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DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse
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Abstract

Among the fundamental processes involved in the development of an organism, mor-

phogenesis is one of the most complex. During the past centuries, an amount of ex-

perimental studies have improved our actual knowledge of the mechanisms which drive

many morphogenetic processes in living organisms. Only recently, experiments have been

complemented with mathematical modeling as a tool for proving novel insights on mor-

phogenesis in soft tissues. In this context, this thesis aims at developing new mathematical

models for the formation of patterns and forms in soft tubular organs. A macroscopic ap-

proach is adopted, where the tissue is considered as a continuum body undergoing growth

and remodeling. The main idea behind the proposed models is that during growth and

remodeling, residual stresses can arise and once they exceed a critical value, an elastic

instability can occur in the tissue and lead to a morphological change. Therefore, the

morphoelastic models are developed integrating the modern theories of growth and re-

modeling within the framework of the thermo-mechanics of open systems. The occurrence

of the elastic instability is investigated using the method of incremental deformations su-

perposed on finite deformations. The critical thresholds for the onset of the instability are

determined together with the modes of the associated instability pattern. The morphoe-

lastic theory is applied to the modeling of different morphogenetic processes occurring in

soft tubular organs and gives useful insights in two interesting problems: the formation of

the wide range of patterns in the gastro-intestinal system and the occurrence of torsional

instabilities in pre-stressed tubular organs.
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Résumé

Parmi les processus fondamentaux qui ont lieu pendant le développement d’un organ-

isme, la morphogenèse est un des plus complexes. De nombreuses études expérimentales

ont contribué à mieux comprendre les mécanismes morphogénétiques dans les organismes

vivants. Cependant peu de modèles mathmatiques ont été proposés afin d’étudier la mor-

phogenèse dans les tissus vivants. Dans ce contexte, la thèse se propose de développer de

nouveaux modèles mathématiques pour étudier les changements de forme dans les tissus

mous tubulaires. L’approche adoptée est macroscopique o le tissu biologique est considéré

comme un milieu continu déformable. L’hypothèse principale sur laquelle se basent les

modèles proposés est la suivante : pendant les processus de croissance et remodelage,

des contraintes résiduelles peuvent s’accumuler dans le tissu et, une fois une valeur cri-

tique dépassée, le mener à un changement morphologique sous la forme d’une instabilité

élastique. Pour cela, les modèles développés intègrent les théories modernes de crois-

sance et remodelage, dans le cadre de la thermomécanique des systèmes ouverts. Ensuite,

l’analyse de stabilité linéaire permet de calculer les seuils et modes de l’instabilité élastique

en utilisant la méthode des déformations incrémentales superposées aux déformations

finies. L’ensemble de ces techniques (théorie morpho-élastique) est utilisé dans cette thèse

afin de modéliser deux différents processus morphogénétiques ayant lieu dans les tissus

mous tubulaires : la formation dune variété des formes dans le système gastro-intestinal

et le flambage hélicöıdal dans les organes tubulaires avec précontraintes.
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Riassunto

Tra i processi fondamentali che contribuiscono allo sviluppo embrionale di un organ-

ismo, la morfogenesi è uno dei più complessi. In passato, molti studi sperimentali hanno

contribuito ad arricchire le conoscenze che abbiamo oggi circa i meccanismi coinvolti

durante la morfogenesi negli organismi viventi. Solo ultimamente, parallelamente agli

esperimenti, i modelli matematici hanno iniziato ad essere utilizzati come strumenti per

studiare tali meccanismi nei tessuti biologici. In tale contesto, la tesi si propone di for-

mulare nuovi modelli matematici per la formazione di pattern e forme nei tessuti molli

tubolari. Un approccio macroscopico è utilizzato, dove il tessuto è considerato come un

corpo continuo elastico che cresce e si rimodella. L’idea principale che sta dietro ai modelli

proposti si basa sul fatto che, durante la crescita ed il rimodellamento, possano insorg-

ere degli stress residui e, accumulatisi oltre un certo valore critico, possano dare origine

ad un’instabilità elastica nel tessuto e indurvi un cambiamento di forma. Pertanto, i

modelli morfoelastici sono sviluppati integrando le teorie moderne di crescita e rimodella-

mento nel contesto della termomeccanica dei sistemi aperti. L’insorgenza dell’instabilità

è studiata utilizzando il metodo delle deformazioni incrementali sovrapposte alle defor-

mazioni finite. Le soglie critiche dei parametri dell’instabilità e i corrispondenti modi

critici associati al pattern geometrico, sono calcolati. La teoria morfoelastica è applicata

alla modellizzazione di diversi processi morfogenetici che coinvolgono gli organi tubolari,

permettendo di studiare due interessanti problemi: la formazione dei diversi pattern che si

sviluppano sulla parete interna del sistema gastro-intestinale nei vertebrati e l’insorgenza

di instabilità in organi tubolari con stress residui sottoposti a torsione.
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Introduction to morphogenetic theories in

living matter
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Morphogenesis is the ensemble of the coordinates processes which lead to the forma-

tion of shapes and structures in living organisms. From a biomechanical point of view,
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Chapter 1. Introduction to morphogenetic theories in living matter

together with growth and remodeling, morphogenesis is one of the main processes under-

lying biological development. As defined by Taber in a seminal biomechanical review [11],

growth can be defined as the change of mass in a material. It can occur by change of vol-

ume or by surface deposition, the former is called volumetric growth, the latter is defined

as surface growth. Remodeling is considered as an alteration of the microstructure in the

tissue. Material properties such as stiffness, orientation of fibers, density, strength can

change in response of some external stimuli such as stress, pressure, chemical concentra-

tion. If changes in the microstructure of the tissue occur without involving variation of

mass, they are referred to as remodeling processes.

Therefore, morphogenesis includes growth and remodeling, but it is a much more complex

phenomenon. First of all, it is the result of a chain of developmental events which are

not independent one from another. Second, it is a multi-scale process involving aspects

from the molecular, cellular and tissue levels. Third, it is a four-dimensional problem

(three-dimensional in space and dependent of time). This first Chapter aims to provide

an historical overview on the morphogenetic theories in living matter which built our

current knowledge on this fascinating branch of research. First, the main discoveries and

ideas behind them will be presented following a chronological order. Then, the modern

biomechanical approaches to morphogenesis will be presented, with particular attention

on the link between mechanical stimuli and generation of form.

1.1 Early mechanistic vision

The first speculations on morphogenesis date back to ancient Greece time. In order

to explain how shapes and structures originate in living organisms, in his book Historia

Animalium, Aristotle introduced the epigenetic hypothesis. Although his approach was

mainly philosophical, it was based on the idea that structures and shapes gradually de-

velop and are not pre-existent from the beginning. By contrast, this latter vision called

preformationism, became predominant in the years when theology was having a strong in-

fluence on the society and persisted until the 17th Century. Malpighi even claimed that

a miniature of the human body (a homunculus) was present in the head of each sperm,

completely avoiding the problem of generation of shapes in developing organisms. Besides

these very early attempts, mostly based on intuition and theological preconceptions, the

first approach to morphogenesis based on mechanical and geometrical arguments came

from Galileo Galilei. After having started his studies in medicine, Galileo followed his
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Chapter 1. Introduction to morphogenetic theories in living matter

Figure 1.1: Galileo sketch of bones for a small animal (top) and a large animal (down)
based on allometric arguments, taken from [1]. The natural length of the small bone has
been increased three times and the thickness multiplied until, for a correspondingly large
animal, the large bone would have the same strength of the small one.

passion for mathematics and physics and he devoted his entire life to investigate mechan-

ical problems. His method was based on the idea that “mathematics is the best way of

supplying physics with the finest rules of logics” [1]. The wide interests of Galileo cov-

ered some aspects of biomechanics such as allometric studies on vertebrates. He showed

that most organisms change their shape in function of the loads that they have to hold,

according to a scaling law in the form:

y = a0x
α

where a0 is a constant depending on the organism, α is the scaling exponent, x the

reference variable and y is the dependent variable. If an animal increases its length l,

then its mass M , being proportional to the volume, would increase by a power α = 3 and

its strength S, being proportional to the area, by α = 2. Therefore, in the case of isometric

growth, its mass would have increased more than its strength and thus the animal would

have been subjected to a higher load while having a lower strength to support it. Thus,

Galileo proved that the changes in size are actually governed by allometric scaling (see

Figure 1.1).

The 19th century was the era of Darwinism and evolutionary theories, but also of

the discovery of the cell and of the birth of experimental embryology. In particular, a
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school of thought which established itself in the second half of the 19th century was

the Recapitulation theory of Ernst Haeckel [12]. Supported by Darwinism, he claimed

that steps of embryonic development of a species correspond to adult stages of their

ancestors. Haeckel’s school was very influential in the scientific community of the time

and every attempt to show that the theory was unfounded and not able to provide a

through description of morphogenesis was brutally suppressed.

1.1.1 Wilhelm His and the “constrained expansion” model

The recapitulation theory was particularly rejected by the German scientist Wil-

helm His. He rather supported a mechanical causation behind embryonic development.

He performed several experiments to prove the constrained expansion principle, i.e.

expansion of a spherical or cylindrical tissue surrounded by inelastic tissue [13]. He per-

formed several experiments on rubber tubes under constrained compression and tension,

in order to model the gut tube, the brain formation and other changes of shape during

embryogenesis. Among the most relevant results, His showed that the gut tube mor-

phogenesis could be modeled by a rubber tube under tension. In Figure 1.2 a sketch of

His’s mechanical explanation for gut shaping is depicted. Because of Haeckel scientific

influence, His’s work had to wait some decades to be diffused. The input came right from

one of Haeckel’s students, Wilhelm Roux.

Figure 1.2: Sketch of His’s model for gut tube morphogenesis, adapted from [2].
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1.1.2 Wilhelm Roux and developmental mechanics

At the end of the 19th century, Wilhelm Roux shifted the attention from evolution

(final purpose) to mechanisms (cause) in developmental biology. As well as being a

promoter of His’s work, he was interested into two aspects of development: first, the role of

self-differentiation and second, the role of dependent-differentiation. He investigated self-

differentiation by performing a lot of experiments on embryos, which eventually opened

the way to the discovery of regulation and induction. Regulation is the property by which

the embryo develops normally even if a part of it is removed. Induction is the ability of

a cell or a tissue to influence the development of another.

The experiments to test the role of self-differentiation in the embryo where based on

the analysis of the first cleavage of the embryo. Roux separated the two blastomeres

which resulted after the first cleavage, killing one of the two, and he observed that from

the surviving blastomere, a half-embryo still developed. He erroneously explained the

result in the context of the mosaic theory, first introduced by August Weismann in the

1880s [3]. According to Weismann’s theory, the nucleus of the egg contains a number of

factors which determinate the cell fate, as shown in Figure 1.3. During cleavage these

determinants are asymmetrically distributed between the daughter cells in the embryo.

As cleavage proceeds, the potentiality of each daughter cell decreases while the cells

become more and more specialized. Roux thought that killing one of the two blastomeres

corresponded to remove part of the cell determinants, which resulted in the development

of a half-embryo.

Some years later, Hans Driesch, another of Haeckel’s students, explained Roux’s

Figure 1.3: Mosaic theory: during cell division, the cell fate determinants are unequally
distributed among the daughter cells, adapted from [3].
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results with the discovery of regulation. Driesch repeated the experiment done by Roux

using frog embryos. Unlike in Roux’s experiment, after having killed one of the two

blastomeres, he removed the killed cell. As a result, he observed that a whole, but smaller

embryo developed from the one-cell fertilized egg because the killed cell didn’t prevent

the other cell from regulating and forming a complete embryo [14].

The discovery of induction had to wait some more years. Following the methodic

experimental approach of Roux, in 1924 Spemann and Mangold transplanted part of the

embryonic tissue from a amphibian into an embryo of a different amphibian species [15].

They observed that a partial second embryo developed from the transplanted tissue: the

hosting tissue induced the development of the hosted tissue.

Roux is also remembered for establishing the concept of functional adaptation as a

principle for dependent-differentiation: cells and tissues respond to change in external

conditions in order to preserve their global organization and functions. He applied the

principle of functional adaptation to the study of development of bone, cartilage and

muscle. Pauwels [16] summarized Roux principle of functional adaptation as follows:

The formation of the different types of tissue should be considered

as an adaptation of the formative tissue to the function demanded of it.

According to Roux, the bone would be built with the minimum amount of tissue, in order

to support the stresses which it undergoes. Moreover, it would adapt under the action of

external forces, through growth in width in order to preserve the lightness.

1.2 The 20th century

The 20th century has been a century rich in crucial discoveries and scientific contri-

butions to the understanding of morphogenesis. This period can be split into two phases.

The first half of the century was characterized by the statical point of view of D’Arcy

Thompson on the relation between physical forces and generation of shapes. The second

half was the era of genetics and molecular biology which shifted the focus to the dynamical

aspects of morphogenesis.
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1.2.1 D’Arcy Thompson: a first mathematical approach to mor-

phogenesis

In 1917, D’Arcy Thompson published his only scientific book, entitled “On growth

and form” [17]. While other contemporary scientists focused on experimental analysis,

D’Arcy Thompson’s investigations were based on a mathematical approach. As Wilhelm

His, D’Arcy Thompson was skeptical about evolution theories and natural selection, which

were dominant during the 19th century. His idea of morphogenesis was based on the role

of physical forces in shaping organisms. Therefore, the book has a purely mechanical ap-

proach where living organisms are treated as material bodies subjected to physical forces,

obeying to simple physical and geometrical laws. An example of D’Arcy Thompson’s

approach can be found in the second chapter of his book, where he focused on the effect

of external forces on animals of different sizes. He stated that big animals are subjected

to inertial forces while small animals are subjected to surface tension. It follows that

big animals have strong and heavy structures in order to support the gravitational force,

while small animals need lighter structures in response to the weaker surface tension.

Figure 1.4: Left: Transformation grid applied to the transformation of the shape of a
small amphiopod (a) Harpinia Plumosa into the shapes of two other genera belonging
to the same family (b) Stegocephalus Inflatus, and (c) Hyperia Galba), adapted from [4].
Right: Transformation grid applied to the growth of a skull in human foetus. In both
examples the transformation is achieved by applying physical forces on the considered
structure, during evolution and growth respectively.

10



Chapter 1. Introduction to morphogenetic theories in living matter

Furthermore, he proposed a grid transformation method, aimed at showing that physi-

cal forces can shape a living organism during growth and even evolution, see Figure 1.4.

As highlighted by Ulett [18], “On growth and form” had a great influence on modern

biomechanics and is still read and published in reduced and revised versions. D’Arcy

Thompson’s book inspired the work of Julian Huxley on allometric growth [19] and of

Gould in his attempt to deal with such a mechanistic theory of shape in evolutionary

theories [20].

1.2.2 Genetics

The origins of genetics date back to the second half of the 19th Century when Gregor

Mendel discovered the inheritance of biological traits [3]. His theory was based on the

idea that the hereditary package is transmitted from parents to offspring through a set

of discrete hereditary factors. Each factor is a potential expression of a biological trait.

For any biological feature, a child receives one factor from the mother and one from the

father. The effective expression of a biological trait is given by the combined action of the

two related factors. When the two factors combine, they are not affected by each other,

but they just influence the potentiality of the fertilized egg. Mendel proved his theory

by performing experiments on pea plants, but his results remained mostly unappreciated

until the first half of the 20th century. One of the main problems of Mendel’s theory was

that it couldn’t give a concrete description of the nature of these factors. At that time,

genetics was considered the study of transmission of heredity properties in the embryo,

while embryology was seen as the science investigating how the organisms develop. But

there wasn’t any link between the two disciplines, which finally merged only in the second

half of the 20th Century. The main steps leading to the fusion of the two fields are

basically the discovery that the DNA carries the genetic information and that genes

encode proteins. The properties of a cell are determined by the proteins they contain,

genes control and act on proteins in order to drive the cell fate and consequently, the

development of the embryo. Right after these discoveries, a lot of experiments focused

on finding the genes responsible for several morphogenetic events in the embryo. The

strategy adopted was to introduce changes in the molecular organization of the DNA in

order to observe abnormal changes in a final structure. In this way, it has been possible

to identify which genes play an active role in the formation of an emerging pattern.
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1.2.3 Pattern Formation

The fast development of genetics in the years following the 50s also promoted an

increasing attention to the chemical and molecular mechanisms which might underpin

morphogenetic processes. The concept of pattern formation in morphogenesis originated

from that period. Pattern formation can be defined as the emergence of organized struc-

tures in space and time. The main contributions to the development of this concept were

given by Alan Turing and Lewis Wolpert.

1.2.3.1 Alan Turing: chemical basis of morphogenesis

In 1952 Alan Turing, published his paper on the chemical bases of morphogenesis,

which later became another milestone in biomathematics [21]. This was his only contri-

bution on morphogenesis, but it represents the first reaction-diffusion model for pattern

formation. The main ingredients of Turing’s model are:

• The presence of at least two chemical species which undergo chemical reaction.

Turing called them morphogens, in order to underline their role in generating a new

pattern. The concentration of the two morphogens in the cell drives the cell activity.

(In this sense genes can be considered indirectly as morphogens).

• In absence of diffusion, the system is in a stable state, defined by homogeneous con-

centrations of the two reactants. Under certain conditions, diffusion can destabilize

the homogeneous state and a new non-homogenous pattern arises. This is counter-

intuitive because generally diffusion would rather be thought to introduce chaos in

a system, instead of generating an organized pattern [22].

Turing’s model predicted the existence of six possible steady-states as shown in Figure 1.5.

The uniform stationary (I) and oscillatory (II) states, the short wavelengths stationary

(III) and oscillatory (IV) states and the finite wavelength stationary (V) and oscillatory

(VI) states. Of particular interest is the Case VI, which occurs when the diffusion coef-

ficients of the two morphogens differ substantially and initiate the so-called short range

activation long range inhibition [23] mechanism. The two morphogens are seen as an

activator and an inhibitor, respectively, which can act on themselves as well as on the

other. A small perturbation in the homogeneous concentration can induce an increase in

the activator concentration and initiate the feedback which lead to the formation of one

of the Turing’s patterns in Figure 1.5 (b).
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Figure 1.5: Turing’s reaction-diffusion model: (a) Examples of the six stable states so-
lutions of Turing’s model. (b) The so-called Turing’s pattern is depicted as the Case VI
where a stationary wave of finite wavelength develops, adapted from [5].

Turing’s model has later been largely employed for modeling the emergence of several pat-

terns in vertebrates such as the stripes in the zebra-fish pigmentation [24], the branching

pattern in feathers [25], but also the fabulous seashell patterns [26] and the mechanism

of plant phyllotaxis, i.e. the arrangement of leaves on a plant stem [27].

1.2.3.2 Positional Information: molecular basis of morphogenesis

In the years right after its publication, Turing’s work didn’t receive a great attention.

The problem of emergence of organized cellular patterns in the tissue was brought back

to the attention of developmental biologists some years later in the 70s. In fact, Lewis

Wolpert introduced the concept of Positional Information (PI) in order to explain how

complex patterns could arise from initial asymmetries in the tissue [28]. The main idea

of Wolpert is that the position of a cell in the tissue specifies the information about the

molecular changes the cell will undergo. The key elements of Wolpert’s theory can be

summarized in the definition of:

• A mechanism which specifies the polarity in the tissue. Polarity is the direction in

which PI is specified and is defined with respect to one or more reference points.

• A mechanism for specifying the different responses of the cell.
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Figure 1.6: The french flag model: positional information is specified by the gradient of
a morphogen concentration, the dotted line identifies the direction of the polarity.

PI can be specified by a quantitative variation of some factor such as the concentration,

or a qualitative variation of some cell parameters such as a combination of genes or

enzymes. A set of cells which have their PI specified with respect to the same reference

points constitutes a field. Interpretation of PI is the process by which PI specifies the cell

state and conversion is the mechanism by which PI is translated in a particular cellular

activity. Furthermore, PI is universal in organisms and size invariant, meaning that if a

part of the tissue is removed, the tissue is still able to pattern and interpret the PI.

The concept of positional information is well clarified in the French Flag Model depicted

in Figure 1.6. In this example, the mechanism which specifies polarity is the monotonic

variation of the morphogen concentration C, in respect to the reference values C0 and CF .

The thresholds C1 and C2 identify the mechanism for the differential response of the cells.

The interpretation acts according to the following rule: cells with position in the region

where C0 < C < C1 express the blue pigment, a cell in the region where C1 < C < C2

expresses the white pigment and cells in the region where C2 < C < CF express the red

pigment. The molecular patterning in the early Drosophila embryo has been explained

using positional information [29].

The models proposed by Turing and Wolpert offer two different points of view on

pattern formation. A first difference comes from the fact that Turing aimed at modeling

spontaneous formation of a pattern, while Wolpert asked how a more complex pattern

can arise from an asymmetry (polarity) in the tissue. Furthermore, in Turing’s model

the concentration of morphogens is directly related to the spatial pattern, in this sense
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it is a “pre-pattern”. Conversely, Wolpert introduced an interpretation step where the

cell activity is specified by the concentration gradient. On the other hand, in their recent

paper Green and Sharpe have proposed a different mechanism through which the two

models can cooperate in pattern formation [30]. For example, in the mouse limb bud a

periodic pattern develops with different wavelengths depending on the position along a

polarity gradient.

1.3 Modern approaches to morphogenesis

In the previous sections, the main discoveries and theories which have contributed

to our current understanding of morphogenesis have been presented. The research field

rapidly expanded in the last decades. In particular, modern approaches focused on the

effect of external stimuli, such as mechanical, chemical, molecular on the generation of

patterns and on the structural organization in living organisms.

In the following, the modern approaches to morphogenesis from a biomechanical viewpoint

will be summarized.

1.3.1 Volumetric Growth and Remodeling

At the beginning of the 80s, Skalak and coworkers gave the first analytical descrip-

tion of finite volumetric and surface growth [31,32] in a continuum mechanics framework.

They introduced the idea that growth can induce incompatibilities in the geometry of a

body. According to the authors, the growing body can pass from an unloaded stress-free

configuration to a pre-stressed reference configuration arising due to incompatibilities in

the growth process. Conversely, if the growth strains are compatible, then no internal

stresses will be generated in the tissue.

The seminal work of Skalak opened the door to a number of experimental studies which

aimed at characterizing the residual stress distribution in biological tissues. Residual

stresses have been found in blood vessels (arteries [10, 33] and veins [34]), heart [35],

airways [36]. On the theoretical side, Skalak’s formulation of volumetric growth pre-

pared the ground for the paper of Rodriguez and colleagues [37] in which they formalized,

in an elegant mathematical formulation, the relation between growth and remodeling

on one side and residual stresses on the other side. In their fundamental contribution,

they use the multiplicative decomposition of the deformation gradient associated to the

growth/remodeling process, into a purely growth/remodeling and an elastic component.
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The growth/remodeling deformation introduces the incompatibility in the tissue and the

elastic deformation restores the compatibility, while residual stresses arise. As highlighted

by Ambrosi et al. [38], the main advantage of this type of representation is that it allows

to account for the effects of growth and remodeling. On the other hand, the mechanisms

underlying these processes are neglected.

The multiplicative decomposition was first introduced in the theory of elasto-plasticity

by Kröner [39] and Lee [40] in order to split the inelastic and the elastic components

and it has been widely employed in continuum mechanics models. In this framework, the

growth and remodeling processes are basically modeled as deformations from a stress-free

configuration to a residually stressed state, where the body has grown or remodeled and

changed its natural state. The relation between the variation of mass and changes in

shapes is given by a volumetric growth. For remodeling, the micro-structural reorganiza-

tion of the tissue can be linked for example to the changes in density, stiffness, orientation

of fibers. Therefore, the thermo-mechanics of open systems has been used to describe the

evolution of growth or remodeling parameters in time, as well as the constitutive relations

for the material.

1.3.1.1 Extended theories and applications

In the years following Skalak’s and Rodriguez’s papers, a lot of work has been done

both at the theoretical level and for experimental purposes. From the theoretical view-

point, the attention has been pointed to develop constitutive theories for growth and re-

modeling. Accounting for mass volumetric sources and fluxes, Epstein and Maugin derived

constitutive and evolution laws using the thermomechanical principles [41]. Ganghoffer

et al. developed a constitutive framework for volumetric and surface growth involving the

Eshelby stress [42]. Following the work of Di Carlo and Quiligotti [43] where accretive

forces for growth are included in the system, Ambrosi and Guana derived the evolution

laws for mass production which involves a direct link between stress and growth [44].

In parallel, another part of the biomechanical community has focussed on the applica-

tion of the growth and remodeling theory to determine the onset of pattern formation

after an elastic instability. This branch is called morpho-elasticity. A number of studies

have employed the growth theory of Skalak and of Rodriguez et al. in order to model

the emergence of geometrical patterns in tissues as an elastic instability due to excessive

accumulation of residual stresses in the tissue. Among the main contributions, Ben Amar

and Goriely studied the stability of elastic growing shells of different geometries [45], Li
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et al. modeled the formation of mucosal pattern in the oesophagus of pigs [46], Moulton

and Goriely modeled the mucosal folding mechanism in growing airways [47].

1.3.2 Mixture theory

The approaches described so far consider the growing tissue as an open system of a

single constituent with an internal source of mass. Soft tissues are composed by several

constituents such as collagen, elastin, ground substance. In mixture theory, the tissue

is considered as a sum of different constituents. Each of them obeys some constitutive

laws, and it exchanges mass with the other constituents. The mixture theory allows for

a more realistic growth considered as exchange of mass between constituents. But, on

the other hand, it introduces some controversial issues, such as the constitutive modeling

of the partial stresses which act on each constituent and the definition of their physical

meaningful boundary conditions.

From a theoretical viewpoint, one of the early contributions came at the end of the

70s from Bowen. He proposed a thermo-mechanical theory for mixtures, which gave the

bases for modeling diffusing mixtures of elastic materials [48]. Later in the 90s, Cowin

proposed poroelasticity, i.e the theory of interactions between deformation and fluid flow

in a porous medium, as theoretical framework to study the bone [49]. Humphrey and

Rajagopal proposed one of the first mixture models [50] for living materials. The main

idea in their model was that each constituent has its own natural configuration. Therefore,

the state of stress of each constituent might not be compatible with that of the surrounding

tissue and residual stresses arise.

Loret and Simòes developed a theoretical framework for growth within mixture theory [51].

They considered a biphasic tissue composed by a solid and a liquid phase. Using the

multiplicative decomposition on the solid phase they split the growth and the elastic effects

and they derived the constitutive laws for growth from the second law of thermodynamics.

A similar approach has been applied by Garikipati et al. to the growth of artificial

tendon [52] and by Baek et al. for modeling aneurysm in brain [53].

Ambrosi et al. used the mixture theory in order to investigate the emergence of resid-

ual stresses during growth and remodeling of soft tissues [54]. The mixture framework

has also been used for modeling tumor growth. Byrne and Preziosi modeled the tumor

as a multicellular spheroid constituted by cells, considered as an elastic fluid, and extra-

cellular space filled by the organic liquid [55]. Such a biphasic model was later extended

by Ambrosi and Preziosi to a triphasic mixture which also accounted for the effect of the

17



Chapter 1. Introduction to morphogenetic theories in living matter

extracellular matrix [56]. Finally, Athesian modeled growth and remodeling of a reac-

tive mixture including electrical charged solid and fluid constituents which are typical of

cartilage tissue [57].

1.3.3 Morphomechanics: hyper-restoration principle

Another modern approach to morphogenesis comes from the work of Lev Beloussov.

During the 70s he performed several experiments on embryos in order to investigate

the effects of mechanical stresses on early morphogenetic events [58, 59]. Beloussov in-

Figure 1.7: Hyper-restoration principle: Beloussov’s illustration of the mechanical feed-
backs acting in the embryo during gastrulation, adapted from [6]. Active stresses (red
curves) overshoot passive ones (blue curves). Horizontal and vertical axes represent stress
and time, respectively.

troduced the idea that the changes in shape during gastrulation occur according to a

hyper-restoration principle [6, 60]. Cells tend to restore the original stress distribution in

the embryo by responding to the external forces with generation of active forces inside

the embryo and which overshoot the original stress. Therefore, gastrulation is seen as a

chain of events driven by mechanical feedbacks. In Figure 1.7, a graphical interpretation

of Beloussov’s results is depicted. For example, during the early stages of gastrulation

(A and B) the passive stretching of the roof of the blastocoel induces an active increase

of the blastocoel internal pressure (red curve in Figure 1.7ab), which in turn affects the

stress distribution in the neighboring marginal zone (MZ).
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1.3.4 Mechanotransduction

The generation of shapes can be initiated by the chemical response of the tissue to

some mechanical stimulus. Models which account for this mechanism belong to the class of

mechanotransduction models. Mechanical stimuli are sensed by the cell through mechan-

otransducers, such as transmembrane proteins (e.g. cadherins and integrins). They re-

spond to a mechanical stimulus by generating a transduction current which in turn changes

the membrane potential and activates a cascade of processes. For example during em-

bryogenesis, changes in the membrane potential induce the contraction of the actomyosin

in order to maintain tensional homeostasis in the cell. This process is called mechano-

reciprocity and is fundamental during embryogenesis, when the stiffness of the external

environment of the cell is translated into contraction forces which in turn drive morpho-

genetic movements in the embryo [61]. Furthermore, the conversion of physical forces into

biochemical information has been demonstrated to play a crucial role in the formation of

left-right asymmetry in mammal embryos [62] and during the embryonic development of

the heart [63], where the mechanical stimulus is represented by the blood flow.

Mechanotransductors can directly act on gene activation and inhibition, or indirectly, al-

tering morphogen gradients [64]. During tumor growth for example, the stiffness increase

of the extra-cellular matrix induces an increase in the cytoskeletal tension which in turn

activates the expression of a malignant phenotype through regulation of integrins [65].

Ciarletta et al. recently proposed an analytical mechano-transduction model of avascular

tumor growth [66]. Paszek et al. develop a numerical model to investigate how a cluster of

integrin responds to chemical and mechanical changes in the extra-cellular matrix [67]. In

their review, Mitchell and King provide examples of both experimental and computational

methods to model and predict how cancer cells respond to fluid shear forces [68].

1.4 Summary and conclusions

In the first part of this chapter, an historical overview on the evolution of the concept

of morphogenesis from ancient to modern times has been presented. Our actual knowledge

on morphogenesis has been built over the centuries through the work of many scientists

which contributed on several levels and fields. The early mechanistic vision of Galileo, who

showed that most organisms change their shape in function of the loads that they have

to hold, later inspired D’Arcy Thompson in developing a first mathematical approach to

morphogenesis. The methodic experimental approach of Roux to the investigation of the
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early steps of embryogenesis opened the way to understand the fascinating properties of

the embryo and of the cells. The evolutionary theories developed during the 19th Century

gave the basis for the development of the modern genetics.

Since the research field has rapidly expanded in the last decades, in the second part of

the chapter the focus has been pointed to the modern theories which consider the effect

of external stimuli, such as mechanical, chemical, molecular on the generation of forms

in living organisms. In particular, this thesis is based on the recent theory of volumetric

growth and remodeling which have been proposed at the end of the 90s. The next chapter

is intended to give a comprehensive description of the method adopted in this work to

model morphogenesis in tubular organs.

20



Chapter 2
Morphoelasticity: theory and methods

Contents

2.1 The thermo-mechanics of open systems . . . . . . . . . . . . . 22

2.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Mathematical theory of growth and remodeling . . . . . . . . . 23

2.1.3 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.5 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.6 Summary of the key equations and some comments . . . . . . . 36

2.2 Method of incremental deformations superposed on finite

deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Incremental deformation . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Incremental boundary value problem . . . . . . . . . . . . . . . 40

2.2.3 Summary of the key incremental equations . . . . . . . . . . . 42

2.3 Theories and methods for solving the incremental problem . 43

2.3.1 Stroh formulation . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 The surface impedance method . . . . . . . . . . . . . . . . . . 52

2.3.3 Mixed boundary conditions . . . . . . . . . . . . . . . . . . . . 54

2.3.4 Neumann boundary conditions . . . . . . . . . . . . . . . . . . 56

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 57

21



Chapter 2. Morphoelasticity: theory and methods

In this thesis a macroscopic approach for modeling morphogenesis in living matter is

adopted. In particular, the focus is on tubular organs. This chapter is intended to give a

description of the methodology used.

2.1 The thermo-mechanics of open systems

There are few main issues one has to deal with, when modeling morphogenetic pro-

cesses involving soft tissues. First, biological tissues undergo large deformations. Thus

undeformed and deformed configurations can substantially differ and classical infinites-

imal elastic theories cannot be used. A second issue is that biological tissues exhibit

residual stresses. This means that even when all external loads have been removed, a

self-equilibrated distribution of internal stresses persists in the tissue. Residual stresses

can be introduced in the tissue by addition of mass (growth) or either from changes in

tissue properties (remodeling). They may accumulate in the tissue and, once exceeded a

critical value, residual stresses may provoke an elastic instability, thus guiding the tran-

sition to a morphological change. Residual stresses have been found in several tubular

organs such as arteries [69,70], airways [36,71] and the gastro-intestinal system [72,73]. In

arteries for instance, their presence is revealed when radially (i.e. on a plan parallel to the

longitudinal axis) cutting a ring of the blood vessel. The arterial ring opens up releasing

the circumferential residual stress. Lastly, soft tissues exhibit a nonlinear mechanical

behavior and this has to be taken into account when making constitutive assumptions.

In view of these considerations, thermo-mechanics of open systems is a natural framework

for a macroscopic modeling of morphogenesis in living tissues. The kinematics of finite

deformations allows for the mathematical description of the morphogenetic process. The

balance of mass and linear momentum governs the physical problem and the second law

of thermodynamics dictates the restrictions for the evolution of the growth and for the

constitutive equations for the material.

2.1.1 Kinematics

Let the soft tissue be an elastic body and let E ⊂ R3 be a three-dimensional Euclidean

space. Let B0,Ba ⊂ E be two regions occupied by the tissue in two different instants of

time. Let χ be the deformation which transforms the tissue from its initial unstressed

configuration B0 to its final residually stressed configuration Ba. It is defined as the
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following C1-diffeomorphism:

χ : B0 → Ba x = χ(X), with inverse X = χ−1(x) (2.1)

where X, x are the position vectors in the reference and actual configurations B0 and Ba,
respectively. The deformation gradient, associated to the deformation in Eq.(2.1), is the

second order two-point tensor defined as:

F : TB0 → TBa F = Grad x =
∂χ(X)

∂X
=

∂xi
∂Xj

ei ⊗ Ej, (2.2)

where Ej, ei (with i, j ∈ {1, 2, 3}) are the basis unit vectors in the reference and actual

configurations, respectively, and TB0, TBa are the collections of all tangent spaces on B0

and Ba, respectively. A tangent space is the set of all line elements attached to a body

point. The capital notation Grad in Eq.(2.2) indicates the gradient operator with respect

to the material position Xj in the reference configuration B0 and the symbol ⊗ indicates

the dyadic product between two vectors ((a⊗ b)αβ = (abT )αβ = aαbβ).

According to Eq. (2.2), the following relations for the transformation of line, surface and

volume elements, respectively, hold:

dx = FdX (2.3)

nds = JF−TNdS (2.4)

dv = JdV (2.5)

where J = det F and the quantities dX,NdS, dV and dx,nds, dv are defined in the

reference and actual configurations, respectively, with N and n being the unit normal

vectors to dS and ds, respectively. Eq. (2.5) can be directly derived from Eq. (2.3), while

Eq (2.4) is also known as Nanson’s Formula.

2.1.2 Mathematical theory of growth and remodeling

The aim of this section is to give a mathematical description of growth and remodeling

in soft tissues.

The mathematical theory for volumetric growth and remodeling adopted in this thesis,

has been first proposed by Skalak [31] and later formalized by Rodriguez et al. [37]. As

noted in the first chapter, it has its origins in the plasticity theory.
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According to these authors, the mapping χ introduced in Eq.(2.1) can be split into two

parts. One component is associated to the growth (remodeling) and it transforms the

tissue from its initial stress free configuration B0 into a new stress-free grown (remodeled)

state, denoted as Bg in Figure 2.1. This may not be an observable physical state and the

tissue can never reach it in vivo. Indeed, the grown (remodeled) state Bg is a collection

of local grown (remodeled) states of the body parts, which may not be geometrically

compatible with each other, meaning that they can overlap and intersect. The second

component restores the global compatibility of the tissue and transforms it from the grown

(remodeled) state Bg into the final compatible and residually stressed configuration Ba.
According to this decomposition, the deformation gradient F defined in Eq.(2.2), can be

split into two components, as follows:

F = FeFg (2.6)

where Fg represents the volumetric growth (remodeling) tensor and Fe is the elastic tensor.

According to the definition given in Chapter 1, remodeling occurs without changes in

mass, thus in this case det Fg = 1. The decomposition in Eq.(2.6) is called multiplicative

decomposition of the deformation gradient. It is worth noting that even if F is a gradient

of a deformation, this is not the case for its components Fg and Fe which are defined as

tangent maps as follows:

Fg : TB0 → TBg Fe : TBg → TBa. (2.7)

In order to clarify the meaning of the multiplicative decomposition, one can think of

cutting an unloaded tissue which is in its residually stressed configuration Ba, into small

pieces until all the residual stresses are released. The collection of these stress-free parts

defines the natural grown state of the tissue Bg. The natural state is the result of volu-

metric growth of its body parts, which has occurred over a certain time.

The multiplicative decomposition in Eq.(2.6) implies that the growth (remodeling) and

the elastic deformations can be separated. This assumption resides on the physical obser-

vation that the typical time-scales involving elasticity and growth (remodeling) are very

different.

Let τg, τv, τl, τe be the four characteristic times of the growth problem, namely the growth,

the viscoelastic, the loading and the elastic time scales. The characteristic time of growth

τg can range from hours to days, e.g. being characterized by the typical doubling time of
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Figure 2.1: The multiplicative decomposition of the deformation gradient F: the growth
(remodeling) component Fg defines a natural grown (remodeled) state Bg in which geo-
metrical incompatibilities are allowed, and the elastic component Fe restores the physical
compatibility of the tissue deformation.

living cells. The viscoelastic characteristic time τv is of the order of hundreds of seconds

and is considered as the relaxation time of the tissue [74]. The elastic time τe is associ-

ated to the characteristic propagation time of elastic waves and the loading time τl to the

external loading. Therefore the growth time scale is much bigger than the others. This

allows for the growth to be separated from the elastic deformations and for τg to be the

only relevant time in the process. Furthermore, since the elastic response is much faster

than the growth, the soft tissue is in elastic static equilibrium at times comparable to

τg [75].

In the next section, the governing equations for a soft elastic continuum body which

undergoes volumetric growth will be derived. The theory can be adapted to the case of

remodeling by considering that no change of mass occurs, but instead the microstructure

of the tissue varies with time according to an internal parameter, such as for example the

density, the stiffness, the symmetry or the orientation of fibers within the tissue.
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2.1.3 Governing equations

Before deriving the thermo-mechanical laws for a growing biological tissue, it is useful

to introduce some relations that will be used in the following.

Let f(x, t) be a continuously differentiable spatial vector field, its total time derivative

writes as:

ḟ(x, t) =
Df(x, t)

Dt
=
∂f(x, t)

∂t
+ v(x, t) grad f(x, t), (2.8)

Moreover, considering the integral of the spatial field f on a volume changing with time,

the Reynolds theorem allows for the time derivative to be calculated as:

D

Dt

∫
Ba

f(x, t) dv =

∫
Ba

[ḟ(x, t) + f(x, t) div v(x, t)] dv, (2.9)

where v(x, t) is the spatial velocity. Furthermore, the divergence theorem writes:∫
∂Ba

n · f(x, t) ds =

∫
Ba

div f(x, t) dv, (2.10)

where, in both Eqs.(2.9,2.10), div is the divergence operator with respect to x. If f is a

tensor field, the divergence operates as div(f) = fih,i

2.1.3.1 Balance of mass

In the following, it will be assumed, for the sake of brevity, that body forces and

inertial contributions can be neglected, and that there is no flux of mass. Under these

assumptions, the global form of the mass balance for a growing body writes in

spatial coordinates:
D

Dt

∫
Ba
ρ dv =

∫
Ba
ω dv (2.11)

where ρ is the mass density per unit current volume, D/Dt denotes the total time material

derivative, and ω is the internal mass production rate per unit current volume. Applying

the Reynolds theorem in Eq.(2.9) to the l.h.s of Eq.(2.11), it follows that:∫
Ba

[ρ̇+ ρ div v] dv =

∫
Ba
ω dv. (2.12)
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In order to derive the material counterpart of Eq.(2.12), it is useful to write the mass

element change:

dm = ρ0dV = ρdv, (2.13)

where ρ0 is the mass density per unit reference volume. Using Eq.(2.5), it follows that:

ρ0 = Jρ. (2.14)

Therefore, using Eq.(2.14), Eq.(2.11) rewrites:

D

Dt

∫
B0
ρ0 dV =

∫
B0

Ω dV (2.15)

where ρ0 is the density mass per unit reference volume and, by means of Eq.(2.5), the

spatial rate of mass production ω is related to Ω as follows:

Jω = Ω. (2.16)

The local forms of Eqs.(2.12,2.15), can now be easily derived. From Eq.(2.12), the local

form of the mass balance in spatial coordinates writes:

ρ̇+ ρ div v = ω, (2.17)

where the dot symbol ˙ operates as the total time derivative defined in Eq.(2.8). Permuting

integration and differentiation in Eq.(2.15), the local form of the mass balance in

material coordinates reads:

ρ̇0 = Ω. (2.18)

Now, with the aim of deriving a relation between the rate of mass production ω (thus

Ω) and the growth tensor Fg, it is assumed that all the mass production takes place in the

transformation from B0 to Bg. Accordingly, a mass element dM = ρ0dV in B0 transforms

into:

dm = ρg dVg = ρJe dVg = ρ dv (2.19)

in Ba, where ρg and dVg are the mass density and the volume element, respectively in

Bg and Je = det Fe. Substituting Eqs.(2.14) and (2.16) into Eq. (2.18) and assuming ρ
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constant, the material mass balance in Eq.(2.18) reads:

ρJ̇ = ωJ. (2.20)

Now, soft tissues are mostly made of water. This feature characterizes them as incom-

pressible materials, i.e. they deform at constant volume. The incompressibility constraint

implies that the elastic deformation is isochoric in the transformation from Bg to Ba, so

that:

Je = dv/dVg = 1 ⇒ det Fe = 1. (2.21)

According to the multiplicative decomposition, which implies the following relation:

J = det F = det Fe det Fg = JeJg, (2.22)

Eq.(2.20) rewrites:

ρ
J̇g
Jg

= ω. (2.23)

The l.h.s. of Eq. (2.23) is given by:

J̇g =
D

Dt
(det Fg) = JgF

−T
g : Ḟg, (2.24)

where the symbol : operates as A:B=tr(BAT )=BijAij and tr is the trace operator. Sub-

stituting Eq.(2.24) into Eq.(2.23), the relation between the rate of mass production ω and

the growth tensor Fg is given by:

ω = ρ F−Tg : Ḟg = ρ I : ḞgF
−1
g = ρ tr(ḞgF

−1
g ), (2.25)

where I is the identity matrix. Then, either ω is assigned from constitutive argument, or

a form of the growth tensor Fg must be chosen.

2.1.3.2 Balance of linear momentum

Under the assumption that the body forces can be neglected and there is no flux of

mass, the global form of the linear momentum balance in presence of volumetric

growth can be written in spatial coordinates as:

D

Dt

∫
Ba
ρv dv =

∫
∂Ba
σTn ds +

∫
Ba
ωv dv (2.26)
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where σ is the Cauchy stress tensor and v is the spatial velocity. Applying the material

time derivative of a spatial field rule in Eq.(2.9) on the l.h.s, the divergence theorem in

Eq.(2.10) on the first term of the r.h.s and substituting the local mass balance in Eq.(2.17)

into the second term of the r.h.s, Eq.(2.26) rewrites:∫
Ba
ρ v̇ dv =

∫
Ba

divσ dv. (2.27)

Eq.(2.27) is the global form of the balance of linear momentum in spatial coor-

dinates.

The aim now is to derive the material counterpart of Eq.(2.27). Applying the Nanson’s

formula in Eq.(2.4) to the first term of the r.h.s of Eq.(2.26), it follows that:

D

Dt

∫
B0
ρ0v dV =

∫
∂B0

STN dS +

∫
B0

Ωv dV (2.28)

where the volume element transformation in Eq.(2.5) and the relation in Eq.(2.16) have

been used. The stress tensor S in Eq.(2.28) is called the Nominal stress and is related to

the Cauchy stress by S = JF−1σ.

Using the material form of the mass balance in Eq.(2.18) and the divergence theorem,

Eq.(2.28) reduces to the global form of the linear momentum balance in material

coordinates: ∫
B0
ρ0v̇ dV =

∫
B0

Div S dV, (2.29)

where Div operates as Div(•) = (•)ij,i. The local forms of the material and spatial

balance of linear momentum in Eqs.(2.27,2.29) respectively, write:

ρ v̇ = divσ (2.30)

ρ0v̇ = Div S. (2.31)

Eqs. (2.17,2.21,2.30) and (2.18,2.21,2.31) are the governing equations for a body under-

going finite growth in spatial and material coordinates, respectively.

In order to solve the governing equations, appropriate boundary conditions need to be

assigned. Before giving a brief overview on the type and form of the boundary conditions,

the balance of angular momentum will be presented in the next section, in order to derive

the symmetry property of the Cauchy stress tensor.
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2.1.3.3 Balance of angular momentum

Under the assumption that the body forces can be neglected and there is no flux of

mass, the global form of the angular momentum balance in presence of volumetric

growth can be written in spatial coordinates as:

D

Dt

∫
Ba

y× ρv dv =

∫
∂Ba

y× σn ds +

∫
Ba

y× ωv dv (2.32)

where × is the cross product and the position vector y has been introduced as y = x−x0

with x0 being a fixed vector position. Using the Reynolds theorem in Eq.(2.9), the l.h.s

of Eq.(2.32), rewrites:

D

Dt

∫
Ba

y×ρv dv =

∫
Ba

[
˙

(y× ρv)+(y×ρv) div v] dv =

∫
Ba

[y×(ρ̇v+ρv̇)+(y×ρv) div v] dv

(2.33)

where the second equality follows from ẏ = ẋ = v and the product differentiation rule of

the cross product.

Using the divergence theorem in Eq.(2.10) and the properties of the cross product, the

first term in the r.h.s of Eq.(2.32) transforms into the volume integral:∫
∂Ba

y× σn ds =

∫
Ba

[y× divσ + E : σT ] dV (2.34)

where E = εjklej ⊗ ek ⊗ el is the third-order permutation tensor with components εjkl =

(ej × ek) · el. Now, using the mass balance in Eq.(2.17), the balance of linear momentum

in Eq.(2.30) and substituting Eqs.(2.33,2.34) into Eq.(2.32), it follows that:∫
Ba

E : σT dV = 0 (2.35)

The local form of Eq.(2.35) rewrites in index notation:

E : σT = εjklσmn(ej ⊗ ek ⊗ el) : (en ⊗ em) = εjklσmn(ek · en)(el · em)ej = εjklσlkej = 0.

(2.36)

Recalling the property of εjkl, the Cauchy stress tensor σ must satisfy:

σ = σT (2.37)
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which implies that:

FS = STFT (2.38)

hence, the Nominal stress S is not symmetric.

In the following, a brief description of the type of boundary conditions which can be

assigned to the governing equations will be given.

2.1.4 Boundary conditions

Let ∂B0, ∂Bx
0 , ∂Bσ

0 be the boundary in the reference configuration and two portions of

the boundary, respectively, such that ∂B0 = ∂Bx
0 ∪ Bσ

0 . Let ∂Ba, ∂Bx
a , ∂Bσ

a the associated

quantities in the actual configuration, where ∂Ba = ∂Bx
a ∪ Bσ

a . In the following three

possible categories of boundary conditions are listed:

• Dirichlet boundary conditions: the displacements at all points in ∂B0 and ∂Ba
are specified in the following forms, respectively:

u0(X) = x(X)−X = u∗0 on ∂B0 (2.39)

ua(x) = x−X(x) = u∗0 on ∂Ba (2.40)

where u0,ua are the displacements in material and spacial form, respectively and

u∗0 is the displacement vector to be assigned at the boundaries.

• Neumann boundary conditions: the tractions at all points of ∂B0 and ∂Ba are

given in the following forms, respectively:

STN = t∗0 on ∂B0 (2.41)

σn = t∗ on ∂Ba, (2.42)

where S,σ are the Nominal and Cauchy stress respectively and t∗0, t
∗ are traction

vectors to be assigned.

• Mixed boundary conditions: displacements are specified on a portion of the

boundary ∂Bx
0 , ∂Bx

a and tractions are given on the remaining subset ∂Bσ
0 ,∂Bσ

a , in
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the following forms:

u0(X) = u∗0 on ∂Bx
0 (2.43)

STN = t∗0 on ∂Bσ
0 , (2.44)

in the reference configuration or:

ua(X) = u∗0 on ∂Bx
a (2.45)

σn = t∗ on ∂Bσ
a , (2.46)

in the actual configuration.

2.1.5 Constitutive relations

This section deals with the derivation of the constitutive equations for the elastic stress

and the evolution laws for the growth tensor. Following the approach proposed in [41],

the first law of thermo-dynamics for an open system with an internal source of growth

will be derived. Then, the Clausius-Duhem form of the second law of thermodynamics

will be used to impose the restrictions on the constitutive relations for the stress tensors

and the evolution law for the growth tensor.

2.1.5.1 First law of thermodynamics

Assuming no heat flux and that the process occurs at constant temperature, the first

law of thermodynamics for an open system writes:

D

Dt
K(t) +

D

Dt
Eint(t) = Pint(t) + Pg(t). (2.47)

where K(t) is the kinetic energy, Eint(t) is the internal energy, Pint(t) is the internal

mechanical power and Pg(t) is the power associated to the generation of mass. The

kinetic energy K(t) is given by:

D

Dt
K(t) =

D

Dt

∫
B0

1

2
ρ0v

2 dV (2.48)
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Let ε0 be the internal energy per unit mass in the reference configuration B0, then the

variation of the internal energy Eint(t) writes:

D

Dt
Eint(t) =

D

Dt

∫
B0
ρ0ε0 dV, (2.49)

The power Pint(t) associated to the work done by internal forces is given by:

Pint(t) =

∫
∂B0

STN · v dS. (2.50)

and the power due to the internal production of growth reads:

Pg(t) =

∫
B0

1

2
Ωv2 dV +

∫
B0

Ωε0 dV. (2.51)

Now, Ω can be eliminated substituting the mass balance in Eq.(2.18) into Eq.(2.51). Ap-

plying the product differentiation rule to Eqs.(2.48) and (2.49) and substituting Eq.(2.51),

the variation of kinetic and internal energy rewrite respectively:

D

Dt
K(t) =

∫
B0
ρ0v̇ · v dV (2.52)

D

Dt
Eint(t) =

∫
B0
ρ0ε̇0 dV (2.53)

Using the divergence theorem in Eq.(2.10), Eq.(2.50) expands as:

Pint(t) =

∫
B0

[Div S · v + ST : Ḟ] dV =

∫
B0

[ρ0v̇ · v + ST : Ḟ] dV. (2.54)

Now, substituting Eqs.(2.52,2.53,2.54) into Eq.(2.47), the first law of thermodynamics

writes for a growing body: ∫
B0
ρ0ε̇0 dV =

∫
B0

ST : Ḟ dV. (2.55)

Eq.(2.55) defines how the energy is transformed in the physical system.
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2.1.5.2 Second law of thermodynamics

While the energy balance in Eq.(2.55) governs the energy transfer, the Clausius-Duhem

form of the second law of thermodynamics defines the direction in which the energy trans-

fer takes place in a physical system. In this section, the second law of the thermodynamics

will be used in order to obtain some restrictions on the constitutive relations for the stress

tensors S and σ and to derive the evolution law for the growth tensor Fg.

The second law of thermodynamics states that the total production of entropy is never

negative:
D

Dt

∫
B0
ρ0η0 dV−

∫
B0

Ωη0 dV ≥ 0, (2.56)

where η0 is the entropy per unit reference mass; thus the first term is the rate of entropy

change and the second term is the rate of entropy production due to the internal produc-

tion of mass. Differentiating the first term in Eq.(2.56) and using the mass balance in

Eq.(2.18), the inequality in Eq.(2.56) rewrites:∫
B0
ρ0η̇0 dV ≥ 0. (2.57)

Now, let the free energy per unit mass ψ0 in the reference configuration be introduced

as follows:

ψ0 = ε0 − η0T. (2.58)

The r.h.s of Eq.(2.58) has a conservative contribution, which comes from the internal

energy ε0 and is the amount of available work, and a dissipative term η0T , where T is the

absolute temperature. Multiplying Eq.(2.57) by T and then substituting the differentiated

form of Eq.(2.58), into Eq.(2.57), it follows:∫
B0
ρ0[ε̇0 − ψ̇0] dV ≥ 0. (2.59)

Using the first law of thermodynamics in Eq.(2.55), the inequality in Eq.(2.59) transforms

into: ∫
B0

[ST : Ḟ− ρ0ψ̇0] dV ≥ 0. (2.60)

By means of the multiplicative decomposition in Eq.(2.6), the first term in Eq.(2.60) can
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be derived as follows:

ST : Ḟ = ST : (ḞeFg + FeḞg) = STFT
g : Ḟe + FT

e STFT
g : ḞgF

−1
g (2.61)

where the properties of the double contraction (A : (BC) = (BTA) : C = (ACT ) : B)

have been used. Assuming that the free energy ψ0 only depends on the elastic part Fe of

the deformation gradient, the second term in Eq.(2.60) rewrites:

ρ0ψ̇0 = ρ0
Dψ0

Dt
= ρ0

(∂ψ0

∂Fe

)T
: Ḟe (2.62)

Now, substituting Eqs.(2.61) and (2.62) into Eq.(2.57), the inequality in Eq.(2.60) rewrites

in the local form:

[STFT
g − ρ0

(∂ψ0

∂Fe

)T
] : Ḟe + [FT

e ST ] : Ḟg ≥ 0. (2.63)

Eq.(2.63) has to hold for every choice of Ḟe and Ḟg. Thus, from the first term of Eq.(2.63),

follows the constitutive equation for the Nominal stress tensor:

S = ρ0F
−1
g

∂ψ0

∂Fe

, (2.64)

In the case of an incompressible material, the constitutive equation in Eq.(2.64) takes the

following form:

S = ρ0F
−1
g (

∂ψ0

∂Fe

− pF−1
e ), (2.65)

where the Lagrange multiplier p has been introduced in order to enforce the incompress-

ibility condition. From Eq.(2.65), the constitutive relation for the Cauchy stress

tensor writes in the form:

σ = ρFe
∂ψ0

∂Fe

− pI, (2.66)

where I is the identity matrix. Substituting Eq.(2.64) into Eq.(2.63), the Clausius-Duhem

inequality reduces to:

[FT
e STFT

g ] : ḞgF
−1
g = ρ0[FT

e

(∂ψ0

∂Fe

)T
] : ḞgF

−1
g = M : ḞgF

−1
g ≥ 0, (2.67)

where the so called Mandel stress tensor M = ρ0F
T
e

(∂ψ0

∂Fe

)T
appears as the work conjugate

of ḞgF
−1
g , thus it is defined in the grown state Bg. Its counterpart expressed in the
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reference configuration B0 can be derived rewriting the reduced inequality in Eq.(2.67),

in the equivalent form:

M : ḞgF
−1
g = [FT

g MF−Tg ] : F−1
g Ḟg ≥ 0. (2.68)

The term in the square brackets of Eq.(2.68) can be rearranged as follows:

FT
g MF−Tg = ρ0[FT

g FT
e

(∂ψ0

∂Fe

)T
F−Tg ] = ρ0[FT

g FT
e

(∂ψ0

∂Fe

)T
FT
e F−Te F−Tg ] =

= [FTσTF−T ] = TT
s ,

(2.69)

where the tensor Ts is the Mandel tensor in the material configuration, which is sym-

metric. This implies that F−1
g Ḟg is also symmetric, having at most six independent

components.

The inequality in Eq.(2.67) has to hold for all ḞgF
−1
g , thus the evolution law for Fg

can be derived by making appropriate assumptions and would usually write as function

of Fg,Fe and the stress, in the general form:

Ḟg = H(Fg,Fe,S,σ). (2.70)

As proposed in [44], one simple possible assumption could be:

KFT
e

(∂ψ0

∂Fe

)T
= ḞgF

−1
g (2.71)

where K is a constant symmetric positive-definite second order tensor. Under the hy-

pothesis in Eq.(2.71), the inequality in Eq.(2.67) is automatically satisfied (because of the

quadratic form) and the evolution law for the growth would be given by:

Ḟg = KFT
e

(∂ψ0

∂Fe

)T
Fg. (2.72)

The Eq.(2.72), also represents a constitutive equation for the mass production term ω in

Eq.(2.25), in the case where the grown matter is produced at a given constant density.

2.1.6 Summary of the key equations and some comments

In this section, it has been shown how continuum mechanics can provide a useful

framework in order to model the problem of volumetric growth and remodeling of an elastic
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body. The growth process has been described as a motion from an initial configuration B0

where the body is stress-free, into a current residually stressed configuration Ba. Following

the theory of volumetric growth developed by Skalak and by Rodriguez et al. in the 90s,

the gradient associated to the deformation has been split into a pure volumetric growth

component and a pure elastic one. Following the approach proposed by Epstein and

Maugin [41], the classic mechanical balance laws for closed systems have been adapted to

a physical system in which an internal production of mass takes place and the governing

equations for the equilibrium problem have been derived from the balance of mass and

linear momentum. The two thermodynamic laws have provided the tools for deriving the

constitutive relations for the elastic body and the evolution law for the growth tensor.

The elastic problem is thus completely described in the current configuration Ba by the

following set of equations:

ρv̇− divσ = 0 (2.73)

ω = ρ I : ḞgF
−1
g (2.74)

det Fe = 1 (2.75)

σ = ρFe
∂ψ0

∂Fe

− pI (2.76)

ḞgF
−1
g = H(Fe,Fg,σ) (2.77)

which are the balance of momentum and mass in absence of body forces and fluxes of

mass, the incompressibility constraint, the constitutive equation for the Cauchy stress

tensor and the evolution law for the growth tensor, respectively.

In the case of a quasi-static growth process the time doesn’t enter in the governing equa-

tions as a variable. It follows that the evolution law for the growth and the mass balance

are not needed, and in this case, it is sufficient to specify a form for the growth tensor

Fg. Therefore, for a quasi-static growth problem, the governing equations reduce to the

spatial form:

divσ = 0 (2.78)

det Fe = 1. (2.79)

σ = ρ(Fe
∂ψ0

∂Fe

− pI), (2.80)
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or equivalently to the material form:

Div S = 0 (2.81)

det Fe = 1 (2.82)

S = ρ0F
−1
g (

∂ψ0

∂Fe

− pF−1
e ). (2.83)

The basic solution x(0) = χ(0)(X) to the quasi-static problem defines an equilibrium

configuration for the elastic body. Moreover, the solution x(0) depends on a control

parameter which is related to the volumetric growth or remodeling. It might happen that

the solution is stable for certain values of the control parameter but it becomes unstable

when the parameter reaches a critical value and a bifurcation in the solution path occurs.

In the next section, the method used to perform the linear stability analysis of the basic

solution will be outlined.

2.2 Method of incremental deformations superposed

on finite deformations

An accumulation of residual stresses during growth and remodeling can trigger elastic

instabilities in the tissue. Morpho-elasticity investigates the emergence of complex pat-

terns in living matter after the occurrence of an elastic instability. Therefore, the method

of incremental deformations superposed on finite deformations will be introduced in the

following.

Following Ogden [76], the fundamental idea is to perturb the basic solution x(0) to the

elastic problem, with a small incremental deformation so that, the perturbed solution can

be written as a series expansion to the first order around the basic solution. The zeroth

order term is in the form of a finite deformation, representing the basic solution with

the initial shape of the material. The first order term is in the form of an incremental

deformation, defining the morphology of the material after a possible bifurcation.

In the following, the method of incremental deformation will be introduced and the first-

order constitutive and governing equations will be derived.
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2.2.1 Incremental deformation

Let x(0) be the basic position vector in Ba identified by the basic finite deformation

χ(0) and let εx̂ be a small displacement from x(0). It follows that the perturbed position

x̄ can be written as:

x̄ = x(0) + εx̂ = χ(0)(X) + εχ(1)(x(0)) (2.84)

where |ε| � 1 and εχ(1)(x(0)) is a small deformation which in the following will be referred

to as the incremental deformation. Note that χ(1) maps the basic position vector x(0)

into its incremental displacement x̂ in the perturbed actual configuration B̂a. Adopting

the convention of summation on repeated indexes, the incremental deformation can be

written:

χ(1)(x) = uj(x)ej (2.85)

where the components uj (j = 1, 2, 3) are the displacements along the principal directions

ej (j = 1, 2, 3), respectively. Figure 2.2 gives a graphical representation of the basic and

F

F
g

F
e

B
0

B
a

B
g

B
aX

x

x=x  + εx

F=F  +εF

F
e
=F

e 
+εF

e

 S
0
=S

0 
+εS

0

I + εΓ

Reference 

configuration

Natural state

Actual 

configuration

Perturbed

configuration

χ(0)

χ(0)+εχ(1)

1
χ
+εχ(1)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

 S
0

(0)

 S
(0)

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 2.2: Scheme of the basic and perturbed variables. The basic finite deformation
χ(0), the basic position vector x(0), the basic deformation gradient F(0) and its elastic
component F(0)

e , the basic Nominal stress S(0) and its push-forward S
(0)
0 . The variables

after the introduction of the incremental deformation χ(1): the perturbed position vector
x̄, the perturbed deformation gradient F̄ and its elastic component F̄e, the push forward

of the perturbed Nominal stress S̄
(0)

.
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perturbed quantities introduced in this section.

2.2.2 Incremental boundary value problem

With the final purpose of writing the first-order boundary value problem (BVP),

first the deformation gradient F and the stress tensors S and σ will be rewritten in the

perturbed form. Then, the incremental equilibrium equations and the incompressibility

condition will be derived, together with the incremental boundary conditions. In the

following, the variables after perturbation will be indicated with the symbol ¯(•), and the

incremental variables with the symbol ˆ(•).

2.2.2.1 Perturbed deformation gradient

Using the definition of deformation gradient in Eq.(2.2), the perturbed deformation

gradient F̄ rewrites:

F̄ = F(0) + εF̂ =
∂χ(0)(X)

∂X
+ ε

∂χ(1)(x(0))

∂X
=

=
∂χ(0)(x(0))

∂X
+ ε

∂χ(1)(x(0))

∂x(0)

∂x(0)

∂X
= F(0) + εΓF(0)

(2.86)

where the material and the spatial displacement gradient F̂ = Grad(χ(1)(x(0))) and Γ =

grad(χ(1)(x(0))) respectively, have been introduced and are related by:

F̂ = ΓF(0). (2.87)

2.2.2.2 Perturbed stresses

The perturbed Nominal stress S̄ is given by:

S̄ = S(0)︸︷︷︸
zeroth-order term

+ εŜ,︸︷︷︸
first-order term

(2.88)

where the S(0) is the zeroth order term of the series expansion of the Nominal stress in

Eq.(2.65). The first order increment Ŝ can be derived by differentiating the constitutive

equation in Eq. (2.65) and it reads:

Ŝ = A1F̂ + p(F(0))−1F̂(F(0))−1 − q(F(0))−1. (2.89)
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In Eq. (2.89), the term q = p̂ is the increment in p and A1 is the fourth-order tensor of

the elastic moduli, defined as:

A1 =
∂ψ0

∂F∂F
, A1

γkβj =
∂2ψ0

∂Fkγ∂Fjβ
. (2.90)

The perturbed Cauchy stress tensor in the perturbed configuration B̂a, is given by

σ̄ = F̄S̄, but since B̂a is unknown, in the following it will not be convenient to use σ̄.

Therefore, let the push-forward of the perturbed Nominal stress be defined as:

S̄0 = F(0)S̄ = S
(0)
0 + εŜ0 (2.91)

where, S
(0)
0 = F(0)S(0) is the push forward of the zeroth-order term S(0). Using Eq.(2.87)

the push-forward Ŝ0 of the first order term Ŝ is given by:

Ŝ0 = F(0)Ŝ = A1
0Γ + pΓ− qI (2.92)

and A1
0, i.e. the push-forward of A1 has been introduced. Its components read:

A1
0hklj = F

(0)
hγ F

(0)
lβ A

1
γkβj. (2.93)

The fourth-order tensor A1
0 is also known as the tensor of instantaneous moduli.

2.2.2.3 Incremental governing equations

The equilibrium equations after introducing the perturbation write in the reference

configuration B0:

Div(S̄) = Div(S(0) + εŜ) = Div(S(0)) + εDiv(Ŝ) = 0 (2.94)

Recalling that the zeroth order term S(0) is solution of Eq.(2.81), the incremental equi-

librium equations in the reference configuration B0 rewrite:

Div Ŝ = 0, (2.95)

where Ŝ is given by Eq.(2.89).

Using the properties of the Piola transformation and Eq.(2.91), the equilibrium equations
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in Eq. (2.95) can be written in Ba as:

Div(S̄) = div(F(0)S̄) = div(F(0)S(0) + εF(0)Ŝ) = Div(S(0)) + ε div(Ŝ0) = 0. (2.96)

Recalling that the zeroth order S(0) is solution of Eq.(2.81), the incremental equilib-

rium equations in the actual configuration Ba rewrite:

div Ŝ0 = 0, (2.97)

where Ŝ0 is given by Eq.(2.92).

Furthermore, the incompressibility condition in Eq.(2.21) linearized at the first order

reads:

tr Γ = 0. (2.98)

In the following section, the first order incremental boundary conditions will be derived.

2.2.2.4 Incremental boundary conditions

Let û∗0 and t̂
∗
0 be the increments of the assigned displacement and traction vectors u∗0

and t∗0 respectively and t̂
∗

the increment of the assigned traction vector t∗.

The boundary conditions on displacements, introduced in Section 2.1.4, rewrite in the

first order incremental form:

x̂(X) = û∗0 on ∂Bx
0 (2.99)

x̂(x) = χ(1)(x) = û∗0 on ∂Bx
a (2.100)

and the incremental boundary conditions on tractions read:

Ŝ
T
N = t̂

∗
0 on ∂Bσ

0 (2.101)

Ŝ
T

0 n = t̂
∗

on ∂Bσ
a . (2.102)

2.2.3 Summary of the key incremental equations

Before proceeding to illustrate the resolution methods of the incremental problem, a

brief summary of the main equations derived so far is presented.

In Section 2.1, the governing equations for a body undergoing volumetric growth and

remodeling have been derived together with the constitutive equations for the material,
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both in spatial (Eqs.(2.81,2.82,2.83)) and material coordinates (Eqs.(2.78,2.79,2.80)). The

basic solution to these equations defines an equilibrium configuration for the elastic body.

With the aim of investigating the emergence of complex patterns in living materials after

the occurrence of an elastic instability, the method of incremental deformations superposed

on finite deformations has been introduced in Section 2.2. The solution to the elastic

problem has been written as series expansion to the first order, where the zeroth order

term is in the form of a finite deformation and represents the basic solution, and the

first order term is in the form of an incremental deformation. The constitutive equations

after the introduction of the perturbation have been derived together with the first order

incremental equilibrium equations and read:

div Ŝ0 = 0 (2.103)

tr Γ = 0 (2.104)

Ŝ0 = F(0)Ŝ = A1
0Γ + pΓ− qI (2.105)

with boundary conditions in the general mixed form:

χ(1)(x) = û∗0 on ∂Bx
a (2.106)

Ŝ
T

0 n = t̂
∗

on ∂Bσ
a . (2.107)

Eqs.(2.103-2.107) represent the incremental boundary value problem (BVP) and

define a system of four partial differential equations (PDEs), where the four unknowns are

the three incremental displacements u1(x), u2(x), u3(x) in Eq.(2.85) and the increment q of

the Lagrange multiplier. In the following section the methods for solving the incremental

problem will be presented.

2.3 Theories and methods for solving the incremen-

tal problem

In the previous section, the first order incremental equilibrium problem has been

derived for a body undergoing volumetric growth and remodeling. As already mentioned,

the problem is a system of four PDEs with boundary conditions. In this section, the focus

will be on the analytical techniques that can be used in order to transform the problem

in a more suitable form for implementing an efficient numerical solution procedure.
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First, the Stroh formalism will be introduced. It will allow to transform the system of

PDEs with boundary conditions into a system of first order ordinary differential equations

(ODEs) with initial conditions. It will be shown that the Stroh formalism provides an

optimal form for building a numerical solution procedure when the problem has a Dirichlet

boundary condition. Second, the surface impedance method will be illustrated. It will

allow to further transform the Stroh form of the incremental problem into a matrix Riccati

equation, which in the case of Neumann boundary conditions, allows to build a more

efficient numerical solution algorithm.

2.3.1 Stroh formulation

The Stroh formalism was originally developed by Stroh [77] for a steady state elastic

problem and allows the set of four PDEs in Eqs.(2.103,2.104) with the associated boundary

conditions to be transformed into a set of six ODEs of first order with initial conditions.

In the following, the Stroh formulation will be first derived for a general three-dimensional

problem in Cartesian coordinates. Then it will be extended to a problem in cylindrical

coordinates, and lastly the formulation will be adapted to incompressible materials.

First, the governing equation of the problem are rewritten in the more suitable index

notation. The equilibrium equations in Eq.(2.103) rewrite:

Ŝ0hj,h = 0, with h, j = {1, 2, 3} (2.108)

where summation applies to repeated indexes and the comma indicates the derivative

with respect to the variables which follows. The components of the incremental nominal

stress Ŝ0hj from Eq.(2.92) are given by:

Ŝ0hj = A1
0hjklΓlk + pΓhj − qδhj. (2.109)

Let the traction vector in the direction e1 be:

t = Ŝ
T

0 e1 = Ŝ01h. (2.110)

The incompressibility condition in Eq.(2.98), rewrites:

Γhh = 0, (2.111)
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where the incremental displacement gradient Γ is given by:

Γ =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 . (2.112)

Recalling that the fourth order tensor A1
0 has the major symmetry A1

0hjkl = A1
0klhj, it is

useful to introduce the following 3x3 matrices:

A33 = A1
03j3l, A22 = A1

02j2l, A11 = A1
01j1l,

A32 = A1
03j2l, A31 = A1

03j1l, A21 = A1
02j1l.

(2.113)

In order to briefly illustrates the usefulness of the Stroh formalism, first the most general

three-dimensional case without accounting for the incompressibility constraint is consid-

ered and the compact form of the problem is derived.

Example 1. Stroh formulation in Cartesian coordinates Let t2 = Ŝ02h and

t3 = Ŝ03h, using the matrices in Eq.(2.113), it follows:

t = A11u,1 + AT
21u,2 + AT

31u,3 (2.114)

t2 = A21u,1 + A22u,2 + AT
32u,3 (2.115)

t3 = A31u,1 + A32u,2 + A33u,3 (2.116)

and the divergence in Eq.(2.108) rewrites in the following compact form:

t,1 + t2,2 + t3,3 = 0. (2.117)

Now, substituting Eq.(2.115) and (2.116) into Eq.(2.117):

t,1 + A21u,12 + A22u,22 + (A32 + AT
32)u,32 + A31u,13 + A33u,33 = 0. (2.118)

From Eq.(2.114) u,1 can be calculated as:

u,1 = A−1
11 (t−AT

21u,2 −AT
31u,3) (2.119)
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where the invertibility of A11 is guaranteed by the strong convexity of A1
0. Differentiating

Eq.(2.119):

u,12 = A−1
11 (t,2 −AT

21u,22 −AT
31u,32) (2.120)

u,13 = A−1
11 (t,3 −AT

21u,23 −AT
31u,33) (2.121)

substituting into Eq.(2.118) and rearranging terms:

t,1 = −A21A
−1
11 t,2 −A31A

−1
11 t,3 + (A21A

−1
11 AT

21 −A22)u,22 + (A31A
−1
11 AT

31 −A33)u,33+

+(A21A
−1
11 AT

31 − (A32 + AT
32) + A31A

−1
11 AT

21)u,23.

(2.122)

Assuming that separation of variables holds, solutions are sought in the form:

u = U(x1) ei(k2x2+k3x3)

t = S(x1) ei(k2x2+k3x3),
(2.123)

where k2 and k3, are the wavenumber in the x2 and x3 direction respectively, i is the

imaginary unit and U(x1),S(x1) are the amplitude of the incremental displacement and

traction vectors, respectively. Using Eq.(2.123) and substituting the vectors u and t,

Eqs.(2.119) and (2.122) rewrite, respectively:

d

dx1

U(x1) = −
{

A−1
11 [AT

21(ik2) + AT
31(ik3)]

}
U(x1) + A−1

11 S(x1) (2.124)

d

dx1

S(x1) =
{

[A21A
−1
11 AT

31 − (A32 + AT
32) + A31A

−1
11 AT

21](−k2k3)+

+[A21A
−1
11 AT

21 −A22](−k2
2) + [A31A

−1
11 AT

31 −A33](−k2
3)
}
U(x1)+

−
{

[A21(ik2) + A31(ik3)]A−1
11

}
S(x1)

(2.125)

or, equivalently:

d

dx1

η(x1) = iGη(x1) with η(x1) =

[
U(x1)

iS(x1)

]
(2.126)

The vector η(x1) is the six-component displacement-traction vector and G is the so-called

Stroh matrix, which was first introduced by Stroh [77] and has the following block-type
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structure:

G =

[
G1 G2

G3 G+
1

]
(2.127)

where

G1 = −A−1
11 [AT

21(k2) + AT
31(k3)]

G2 = −A−1
11

G3 = [A21A
−1
11 AT

31 − (A32 + AT
32) + A31A

−1
11 AT

21](−k2k3)

+[A21A
−1
11 AT

21 −A22](−k2
2) + [A31A

−1
11 AT

31 −A33](−k2
3)

G4 = G4

(2.128)

In particular, the Hermitian property G4 = G+
1 , where the apex + indicates the transpose

conjugate, leads to a great simplification in solving the problem associated to the compact

formulation in Eq.(2.126).

Example 2. Stroh formulation in cylindrical coordinates This section deals

with the derivation of the Stroh formalism in a system of cylindrical coordinates. In the

following, the variables x1, x2, x3 will be substituted with r, θ, z.

Following the notation adopted in [78], the incremental displacement gradient Γcyl has

the form:

Γcyl =


ur,r

ur,θ − uθ
r

ur,z

uθ,r
uθ,θ + ur

r
uθ,z

uz,r
uz,θ
r

uz,z

 (2.129)

The traction vectors in Eqs.(2.114,2.115,2.116) take the following form:

t = A11u,r +
1

r
AT

21(u,θ + Ku) + AT
31u,z (2.130)

tθ = A21u,r +
1

r
A22(u,θ + Ku) + AT

32u,z (2.131)

t,z = A31u,r +
1

r
A32(u,θ + Ku) + A33u,z (2.132)

47



Chapter 2. Morphoelasticity: theory and methods

where the matrix K is given by:

K =


0 −1 0

1 0 0

0 0 0

 , (2.133)

and the equilibrium equations in cylindrical coordinates rewrite:

(rt),r + tθ,θ + Ktθ + rtz,z = 0. (2.134)

Substituting Eq.(2.131) and (2.132) into Eq.(2.134), the equilibrium equations rewrite:

(rt),r +A21u,rθ +
1

r
A22(u,θθ + Ku,θ) + K

[
A21u,r +

1

r
A22(u,θ + Ku)

]
+r
[
A31u,rz +

1

r
A32(u,θz + Ku,z) + A33u,zz

]
= 0.

(2.135)

Now, from Eq.(2.130) u,r can be calculated as:

u,r = A−1
11 (t− 1

r
AT

21(u,θ + Ku)−AT
31u,z) (2.136)

Deriving Eq.(2.136), it follows:

u,rθ = A−1
11

[
t,θ −

1

r
AT

21(u,θθ + Ku,θ)−AT
31u,zθ

]
(2.137)

u,rz = A−1
11

[
t,z −

1

r
AT

21(u,θz + Ku,z)−AT
31u,zz

]
(2.138)

Substituting Eqs.(2.137) and (2.138) and replacing the vector u and t with Eq.(2.123),

Eqs.(2.136) and (2.135) rewrite, respectively:

d

dr
U(r) = −1

r

{
A−1

11 [AT
21κ+ rAT

31(ik3)]
}
U(r) +

1

r
A−1

11

(
rS(r)

)
(2.139)

d

dr

(
rS(r)

)
=

1

r

{
κ(A22 −A21A

−1
11 AT

21)κ+ (k3r)
2[A33 −A31A

−1
11 AT

31]+

−irk3[κ(AT
32 −A21A

−1
11 AT

31) + (A32 −A31A
−1
11 AT

21)κ]
}
U(r)+

−1

r

{
[κA21 + rA31(ik3)]A−1

11

}(
rS(r)

) (2.140)
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where the matrix κ = ik2I + K has been introduced.

Therefore, the compact form of the the problem in Eqs.(2.139) and (2.140) writes:

d

dr
η(r) =

i

r
Gη(r) with η(r) =

[
U(r)

irS(r)

]
(2.141)

where the four blocks of the Stroh matrix have the form:

G1 = iA−1
11 [AT

21κ+ (irk3)AT
31]

G2 = −A−1
11

G3 = κ(A22 −A21A
−1
11 AT

21)κ+ (k3r)
2[A33 −A31A

−1
11 AT

31]+

−irk3[κ(AT
32 −A21A

−1
11 AT

31) + (A32 −A31A
−1
11 AT

21)κ]

G4 = i[κA21 + (irk3)A31]A−1
11 = G+

1 .

(2.142)

Recalling that κ+ = −κ the identity Hermitian property G4 = G+
1 holds, but in this case

the blocks of the Stroh matrix are complex.

Example 3. Stroh formulation for incompressible materials So far, the Stroh

compact form has been derived for material without internal constraint. In the following,

the case of an incompressible material will be considered. In a Cartesian reference system,

the traction vectors in Eqs.(2.114,2.115,2.116) write:

t = Ã11u,1 + Ã
T

21u,2 + Ã
T

31u,3 − q e1 (2.143)

t2 = Ã21u,1 + Ã22u,2 + Ã
T

32u,3 − q e2 (2.144)

t3 = Ã31u,1 + Ã32u,2 + Ã33u,3 − q e3, (2.145)

where the following matrices have been introduced:

Ã33 = A1
03j3l + p e3 ⊗ e3, Ã22 = A1

02j2l + p e2 ⊗ e2, Ã11 = A1
01j1l + p e1 ⊗ e1,

Ã32 = A1
03j2l + p e3 ⊗ e2, Ã31 = A1

03j1l + p e3 ⊗ e1, Ã21 = A1
02j1l + p e2 ⊗ e1.

(2.146)

The incompressibility condition in Eq.(2.111) writes:

e1 · u,1 + e2 · u,2 + e3 · u,3 = 0. (2.147)
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Substituting Eq.(2.144) and (2.145) into Eq.(2.117), the equilibrium equations rewrite:

t,1 +Ã21u,12 +Ã22u,22 +(Ã32 +Ã
T

32)u,32 +Ã31u,13 +Ã33u,33−q,2 e2−q,3 e3 = 0. (2.148)

Now, as in the case of material without internal constraints, from Eq.(2.143) u,1 can be

calculated as:

u,1 = Ã
−1

11 (t− Ã
T

21u,2 − Ã
T

31u,3 + q e1) (2.149)

Deriving Eq.(2.149), it follows:

u,12 = Ã
−1

11 (t,2 − Ã
T

21u,22 − Ã
T

31u,32 + q,2 e1) (2.150)

u,13 = Ã
−1

11 (t,3 − Ã
T

21u,23 − Ã
T

31u,33 + q,3 e1) (2.151)

Substituting Eqs.(2.150) and (2.151) into Eq.(2.148), the equilibrium equations in Eq.(2.148)

rewrite:

t,1 +Ã21Ã
−1

11 (t,2 − Ã
T

21u,22 − Ã
T

31u,32 + q,2 e1)+

+Ã31Ã
−1

11 (t,3 − Ã
T

21u,23 − Ã
T

31u,33 + q,3 e1)+

+(Ã32 + Ã
T

32)u,32 + Ã22u,22 + Ã33u,33 − q,2 e2 − q,3 e3 = 0.

(2.152)

Now, the aim is to eliminate the unknown q from Eq.(2.152).

Therefore, the scalar product e1· is applied to Eq.(2.149). Then, using the incompress-

ibility condition in Eq.(2.147) the term e1 · u,1 can be eliminated and after some rear-

rangements the expression for q can be derived as follows:

q = ξ
(
e1 · Ã

−1

11 AT
21u,2 − e2 · u,2 + e1 · Ã

−1

11 AT
31u,3 − e3 · u,3 − e1 · Ã

−1

11 t
)
, (2.153)

where ξ = 1/(e1 · Ã
−1

11 e1).

Using Eqs.(2.123) and (2.153), Eq.(2.149) and Eq.(2.152) rewrite:

d

dx1

U(x1) = −i
{

Ã
−1

11

[
Ã
T

21(k2) + Ã
T

31(k3) + ξe1 ⊗ (k2α+ k3β)
]}

U(x1)+

−i
{

Ã
−1

11 − ξe1 ⊗ e1Ã
−1

11

}
(iS(x1))

(2.154)
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d

dx1

(iS(x1)) = i
{[

Ã21Ã
−1

11 Ã
T

31 − (Ã32 + Ã
T

32) + Ã31Ã
−1

11 Ã
T

21 − ξ(α⊗ β + β ⊗α)
]
(−k2k3)+

+
[
Ã21Ã

−1

11 Ã
T

21 − Ã22 − ξα⊗α
]
(−k2

2)+

+
[
Ã31Ã

−1

11 Ã
T

31 − Ã33 − ξβ ⊗ β
]
(−k2

3)
}
U(x1)+

−i
{[

Ã21(k2) + Ã31(k3) + ξ(k2α+ k3β)⊗ e1

]
Ã
−1

11

}
(iS(x1))

(2.155)

respectively, where α = (e2− Ã21Ã
−1

11 e1) and β = (e3− Ã31Ã
−1

11 e1). Therefore the blocks

which constitute the Stroh matrix in the case of incompressible materials take the form:

G1 = − Ã
−1

11

[
Ã
T

21(k2) + Ã
T

31(k3) + ξe1 ⊗ (k2α+ k3β)
]

G2 = − Ã
−1

11 + ξe1 ⊗ e1Ã
−1

11

G3 =
[
Ã21Ã

−1

11 Ã
T

31 − (Ã32 + Ã
T

32) + Ã31Ã
−1

11 Ã
T

21 − ξ(α⊗ β + β ⊗α)
]
(−k2k3)+

+
[
Ã21Ã

−1

11 Ã
T

21 − Ã22 − ξα⊗α
]
(−k2

2)+

+
[
Ã31Ã

−1

11 Ã
T

31 − Ã33 − ξβ ⊗ β
]
(−k2

3)

G4 = G+
1 ,

(2.156)

where the Hermitian property G4 = G+
1 holds.

2.3.1.1 Some comments on the Stroh formalism

The compact Stroh form of the incremental problem has been derived in both Cartesian

and cylindrical coordinates and in the case of incompressible materials. In all the examples

presented, the hermitian property G4 = G+
1 holds. This property is crucial for the Stroh

formalism to provide an optimal form in a great variety of elasticity problems. Optimal

here is used in the sense that an efficient numerical procedure can be implemented in order

to solve the incremental problem. The hermitian property, also implies that the matrix

iÎG is symmetric, where Î is defined as the block matrix with 0-blocks on the diagonal

and identity blocks elsewhere. This property can be used to derive the orthogonality

and closure relations which provide useful informations on the nature of the blocks of

the Stroh matrix [79]. Furthermore, Fu et al. pointed out that the hermitian property

is a direct consequence of the Hamiltonian nature of the Stroh formalism. In particular,

every Hamiltonian system in which the variables u and t are work conjugates owns the

fundamental property [80,81].

In the following section, another compact representation of the incremental problem,

based on the surface impedance method, will be presented.
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2.3.2 The surface impedance method

The surface impedance method is largely used for studying waves propagation in inho-

mogeneous solids. It was first introduced by Biryukov [82] and developed for cylindrical

geometries by Destrade et al. [83] and Norris and Shuvalov [84]. The method is presented

in the case both of Cartesian an cylindrical coordinates.

Case 1. Surface impedance method in Cartesian coordinates The Stroh formu-

lation for a general three-dimensional problem in Cartesian coordinates reads:

d

dx1

η(x1) = iGη(x1) with η(x1) =

[
U(x1)

iS(x1)

]
(2.157)

With G having the property G4 = G+
1 . Now, let ηn, n = {1, . . . , 6} be a set of indepen-

dent solutions of the system in Eq. (2.157) and the 6 × 6 matricant M(x1, x
∗
ini) be the

following block matrix:

M(x1, x
∗
ini) =

(
M1(x1, x

∗
ini) M2(x1, x

∗
ini)

M3(x1, x
∗
ini) M4(x1, x

∗
ini)

)
= N (x1)N−1(x∗ini), (2.158)

where x∗ini is the point where the initial condition is assigned and N is the integral matrix,

defined as:

N (x1) = [η1, . . . ,η6 ] . (2.159)

The matricant in Eq.(2.158), is the solution of the initial value problem :

dM

dx1

(x1, x
∗
ini) = iG(x1)M(x1, x

∗
ini) with M(x∗ini, x

∗
ini) = I(6), (2.160)

where I(6) is the 6× 6 identity matrix. Now, let z = z(x1) be the conditional impedance

matrix defined as the 3× 3 matrix, such that:(
iS(x1)

)
= −iz(x1)U(x1). (2.161)

The impedance matrix z is called conditional because of its dependence on the auxiliary

value at xini. Now, the matricant in Eq.(2.158) can be alternatively written in the form:

η(x1) = M(x1, x
∗
ini)η(x∗ini), (2.162)
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which rewrites:

U(x1) = [M1 − iM2z(x∗ini)]U(x∗ini) (2.163)

iS(x1) = [M3 − iM4z(x∗ini)]U(x∗ini), (2.164)

where z(x∗ini) is the conditional impedance matrix at x∗ini. Now, substituting Eq.(2.161)

into Eq.(2.164), it follows:

z(x1) = i[M1 + M2z(x∗ini)][M3 + M4z(x∗ini)]
−1 (2.165)

Therefore, in the case of Neumann and Dirichlet boundary conditions, respectively, the

impedance matrix z reads:

z(x1) = iM3M
−1
1 for S(xini) = 0 (2.166)

z(x1) = iM4M
−1
2 for U(xini) = 0. (2.167)

Now, substituting Eq.(2.161) in Eq.(2.157), the Stroh form of the incremental problem

rewrites in term of the impedance matrix:

d

dx1

U = iG1U + G2zU

d

dx1

(z U) = −G3U + iG+
1 zU

(2.168)

and substituting the first of Eq.(2.168) into the second of Eq. (2.168) it follows the

differential matrix Riccati equation:

dz

dx1

= i(G+
1 z + iG3 + izG2z− zG1). (2.169)

The conditional impedance matrix z(x∗ini) can be used as initial value condition for the

Riccati Eq.(2.169) and can be calculated using the relation between z and the traction-

displacement vectors in Eq.(2.161).

Case 2. Surface impedance method in cylindrical coordinates In the following,

the Stroh form in Eq(2.141), introduced in the previous section will be rewritten in the

case of a cylindrical system of coordinates. The matricant M(r, r∗ini) is now solution of
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the system:

dM

dr
(r, r∗ini) =

i

r
G(r)M(r, r∗ini) with M(r∗ini, r

∗
ini) = I(6), (2.170)

The impedance matrix z(r) is defined such that:

i r S(r) = z(r)U(r). (2.171)

Substituting Eq.(2.171) into the Stroh form in Eq.(2.141), the matrix Riccati equation

reads in cylindrical coordinates:

dz

dr
=
i

r

(
G+

1 z + iG3 + izG2z− zG1

)
. (2.172)

In the following, the Stroh formalism and the Surface Impedance method will be

employed in two examples, in order to numerically solve the incremental problem in

Eqs.(2.103,2.104) in the case of Dirichlet and Neumann boundary conditions.

2.3.3 Mixed boundary conditions

One of the advantages of the Stroh formulation is that it allows for a stable numerical

resolution of the incremental problem with a Dirichlet boundary condition. In this section,

an example will be illustrated.

The incremental problem introduced in Section 2.2.2.3 writes:

div Ŝ0 = 0 (2.173)

tr Γ = 0 (2.174)

Ŝ0 = F(0)Ŝ = A1
0Γ + pΓ− qI (2.175)

with boundary conditions in the mixed form:

χ(1)(x(0)) = {0, 0, 0} on ∂Bx
a (2.176)

Ŝ
T

0 n = {0, 0, 0} on ∂Bσ
a . (2.177)

It is a set of four PDEs where the unknowns are the components of the incremental

deformation χ(1)(x(0)), namely u1, u2, u3 and the increment of the Lagrange multiplier q
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introduced to enforce incompressibility. The problem rewrites in the compact Stroh form:

d

dx1

η(x1) = iGη(x1) with η(x1) =

[
U(x1)

iS(x1)

]
(2.178)

where the blocks of the Stroh matrix G are in the form of Eq.(2.156), U(x1) = Uj

{j=1,2,3} and S(x1) = s01j {j=1,2,3}. The problem is now a set of six ODEs in the

six unknowns: the three incremental displacements U1(x1), U2(x1), U3(x1) and the three

incremental stresses s011(x1), s012(x1), s013(x1). Using the Dirichlet boundary condition

in Eq.(2.176), an initial condition for Eq.(2.178) can be written in the following form:

η0(x1) = {û∗0, t̂
∗} = {0, 0, 0, t∗1, t∗2, t∗3} at x1 = x∗ini, (2.179)

where the values {t∗1, t∗2, t∗3} are the initial values of the incremental stress vector to be

assigned. In order to numerically solve Eqs.(2.178) and (2.179), the determinantal method

can be used [45, 85]. The idea is to express the solution η of Eq.(2.178), as a linear

combination of three scalar functions η1,η2,η3, being:

η = ν1η1 + ν2η2 + ν3η3 (2.180)

where ν1, ν2, ν3 are constant coefficients. The scalar functions ηk, k = {1, 2, 3}, in

Eq.(2.180) are three linearly independent copies of the solution, obtained numerically

integrating the system of Eq.(2.178) between x1 = xini and x1 = xfin and imposing three

linearly independent sets η0k of initial conditions, expressed as:

η0k(x1 = xini) = {0, 0, 0, (t∗1)k, (t
∗
2)k, (t

∗
3)k}, with k = {1, 2, 3} (2.181)

with arbitrary linearly independent incremental stress components (t∗1)k, (t
∗
2)k, (t

∗
3)k at

x1 = xfin. Then, the solution in Eq.(2.180) must satisfy the other boundary conditions

in Eq.(2.177) at x1 = xfin, which rewrites:

det

 (s011(xfin))1 (s012(xfin))1 (s013(xfin))1

(s011(xfin))2 (s012(xfin))2 (s013(xfin))2

(s011(xfin))3 (s012(xfin))3 (s013(xfin))3

 = 0 (2.182)

where (s01l)k, l, k = {1, 2, 3} are the incremental stresses numerically calculated at x1 =

xfin from the initial value η0k. At this point the numerical solution to the determinant
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condition in Eq.(2.182) can be easily calculated using standard root-finding algorithms.

In this example, the matrix in Eq.(2.182) doesn’t exhibit specific numerical problems.

However, it might happen that the matrix is sparse and thus, rigidity problem might

arise when numerically solving Eq.(2.182). A typical example is when Neumann boundary

conditions are associated to the incremental problem. In this case the Stroh form of the

incremental problem cannot be directly solved, and an alternative method must be used.

2.3.4 Neumann boundary conditions

The surface impedance method introduced in Section 2.3.2 can be used to implement

a fast and efficient procedure to numerically solve the problem in Eqs.(2.173,2.174,2.175)

with Neumann boundary conditions in the form:

Ŝ
T

0 n = {0, 0, 0} on ∂Bσ1
a (2.183)

Ŝ
T

0 n = {0, 0, 0} on ∂Bσ2
a . (2.184)

The Stroh formulation of the problem writes in the form of Eq.(2.178). As anticipated

in the previous section, in this case the Stroh form does not provide the most suit-

able form of the problem for implementing an efficient numerical resolution procedure.

Therefore, Eqs.(2.178) is rewritten in the form of the Riccati equation (2.169), where the

impedance matrix z has the form of Eq.(2.166). Using Eq.(2.161), the boundary condi-

tions in Eq.(2.183) can be transformed in the following initial condition for the differential

matrix Riccati equation:

z(x∗ini) = 0. (2.185)

From the boundary conditions in Eq.(2.184), the following stop condition is derived:

det z(xfin) = 0 (2.186)

Then, Eq.2.169 is numerically integrated using the initial conditions in Eq.(2.185) until

the stop condition in Eq.(2.186) is satisfied. This procedure allows to calculate the critical

thresholds of the instability i.e. the bifurcation parameter, and the wavenumbers kcr2 and

kcr3 of the associated instability pattern. Furthermore, it is possible to calculate the

displacement fields at the onset of the instability by integrating the Riccati equation in
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Eq.(2.169) together with the first of Eqs.(2.168) and using the following initial conditions:

U(xfin) = Ufin = {u0, v0, w0} (2.187)

z(xfin) = zfin. (2.188)

The value zfin is calculated by substituting the critical value of the bifurcation parameter

and the critical wavenumbers kcr2 , k
cr
3 into the Riccati equation and integrating Eq.(2.169)

using Eq.(2.185) as initial condition. The solution is then evaluated at x = xfin. The

value Ufin is calculated as follows. By means of Eq.(2.161), the condition in Eq.(2.184)

rewrites:

z(xfin)U(xfin) = 0 (2.189)

Substituting Eqs.(2.187) and (2.188) into Eq.(2.189) and setting u0 = 1, the components

v0 and w0 are calculated solving the two linearly independent equations of Eq.(2.189).

2.4 Concluding remarks

In this chapter, a morphoelastic theory for the modeling of morphogenesis in living

tissues has been presented. The theory stands in the framework of the thermo-mechanics

of open systems and addresses all the main issues related to the modeling of soft tissues.

It accounts for the large deformations, the presence of residual stresses and the nonlinear

behavior of soft tissues. The main points of the theory can be summarized as follows:

• The kinematics of finite deformations allows for the mathematical description of the

morphogenetic process.

• The theory of volumetric growth and remodeling allows to account for the emergence

of residual stresses in the tissue.

• The thermo-mechanics of open systems provides the governing equations for the

physical problem and dictates the restrictions for both the evolution of the growth

(remodeling) and the constitutive equations of the tissue.

• The method of incremental deformations superposed on finite deformations allows

to derive the governing equations of the perturbed problem linearized at the first

order.
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• The Stroh formalism and the surface impedance method allow to transform the

incremental problem into a compact form, more suitable for numerical resolution.

• The numerical methods for solving the incremental problem allow to calculate the

thresholds for the instability and determine the associated instability pattern.

In the next chapter, the morpho-elastic theory will be applied to two biological prob-

lems: the gastro-intestinal morphogenesis and the helical buckling of pre-stressed remod-

eled tubular tissues.
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In the following, the morphoelastic theory presented in Chapter 2 will be applied

to the modeling of the gastro-intestinal (GI) organogenesis. In fact, a rich collection of

fascinating patterns can be found when observing the internal lumen of the GI system

in different vertebrates. These patterns arise during the early stages of the embryonic

development, just few days after fertilization. The aim of this chapter is to employ the

morphoelastic theory to give insight on the morphogenetic mechanisms which drive the

emergence of these patterns. Two possible mechanisms will be considered: the first one

is related to the spatially constrained volumetric growth and the second one is based on

the hypothesis of spatially unconstrained differential volumetric growth of the intestinal

embryonic tissues. In the first model, the main idea is that the geometrical constraint,

imposed by the outer surrounding tissue will introduce incompatibilities in the growing

embryonic tissue, thus residual stresses will arise and eventually provoke buckling. In the

second example, the incompatible differential growth of the two constituting layers of the

GI tissue will be assumed to be the driving effect of the instability.

Following the layout of Chapter 2, the corresponding morphoelastic models will be built

step by step according to the main assumptions.

Before starting with the modeling aspects, a brief overview on the GI anatomy and physi-

ology and on what is currently known about its embryonic development will be presented.

3.1 Introduction to intestinal morphogenesis

The GI tissue originates from the embryonic differentiation of two primary matrices,

the endoderm and the mesoderm. In later stages of development, the endoderm gives

rise to the mucosa, while the mesoderm differentiates into several tissues including the

submucosa, the sereosa (or adventitia) and the smooth muscle layers [86, 87]. As shown
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or Adventitia

Figure 3.1: Schematic structure of the GI wall in adult vertebrates: the inner layer
called mucosa (in which concur the epithelium, the lamina propria and the muscularis
mucosae), the submucosa (made of dense irregular connective tissue), the muscularis
propria (oriented smooth muscles) and the outer serosa (or adventitia) layer are evidenced.

in Figure 3.1, the typical GI mucosa in adult vertebrates is made of three layers: the

epithelium, the lamina propria and the muscularis mucosae. Epithelial cells constitute

the epithelial layer and cover the inner part of the mucosa. The lamina propria is the

layer which is most specific to the anatomical origin. In particular, the lamina propria

of the GI mucosa includes blood-vessels, lymph nodes and connective tissue composed by

cells and an extracellular matrix made of ground substances (fluids) and fibers (collagen

and elastin). Finally, the lamina muscularis mucosae is a continuous thin sheet of smooth

muscle cells.

The inner mucosal surface in the intestine of all vertebrates is characterized by fas-

cinating structures such as the crypts of Lieberkuhn, and finger-like projections, called

villi. Intestinal villi contain the majority of differentiated absorptive cells, possessing a

peculiar morphology which allows to increase the surface area of the intestine as well as

its capacity to absorb liquids and nutrients from food. In fact, an increased surface area

decreases the average distance traveled by nutrient molecules, thus improving the effec-

tiveness of the diffusion process.

Since the pioneering experimental works of Hilton [88] and Johnson [89], it is well known

that these structures can emerge in vertebrates from the embryonic development of either
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plain circumferential folds or a more complex epithelial network of folds.

A recent study on the development of intestine in vertebrates has shown that the mor-

phogenesis of the intestinal mucosa is strictly related to the muscle layer differentiation

in the gut [90]. In the chick, for instance, muscle layers form between Days 8 and 16 after

Figure 3.2: Scanning electron micrographs of emerging villi in the jejunum of turkey
embryos (from [7]). The micrographs are taken at 21 days of incubations, and shown using
scales of 100µm (a) and 10µm (b) for outlining of the morphology of the two-dimensional
undulated pattern at the free surface of the mucosa.

incubation, passing through three stage of differentiation. At Day 8, a circumferentially

oriented muscle forms, which corresponds to the onset of longitudinal ridges at the free

surface of the epithelium. Around Day 13, a second exterior muscular layer starts forming

longitudinally and the longitudinal ridges transition into zigzag patterns. Finally, at Day

16, a third longitudinally oriented muscle layer forms, interior to the first one, and simul-

taneously bulges arise from the zigzags, giving rise to the final villi. In the mouse gut, the

muscle layer differentiates much faster than in the chick and develops in only 48 hours,

without requiring the formation of an inner longitudinal layer (in the chick the same pro-

cess takes 8 days). As a consequence, villi directly start forming from a two-dimensional

pattern at the luminal surface, as shown in Figure 3.2, without passing through folding

and zigzags.
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3.2 State of the art of biomechanical modeling

Some morphoelastic models have been proposed in the last years to study some of the

instability patterns which can occur at the inner surface of the mucosal tissue. In the

following, a brief review of the main contributions is presented.

3.2.1 Spatially constrained growth models

Based on the hypothesis of spatially constrained growth, Li et al. studied the circum-

ferential buckling of the mucosa considered as a one-layered cylinder made of a hyperelas-

tic isotropic material [46]. Moulton and Goriely performed a linear stability analysis for

studying the circumferential buckling of a growing cylinder under external pressure [91].

More recently Ciarletta and Ben Amar proposed a variational method for studying how

the spatially constrained growth of thick-walled cylinders can induce the occurrence of

either circumferential or longitudinal folds. In their model, they also accounted for the

anisotropic distribution of collagen fibers inside the tissue [8,85]. However, none of these

analytical models considered the simultaneous occurrence of circumferential and longitu-

dinal instabilities.

3.2.2 Differential growth models

Accounting for the anisotropic differential growth between epithelium and mesenchyme,

Ben Amar and Jia proposed a weakly nonlinear stability analysis for studying the emer-

gence of the zigzag pattern, which typically develops in the chick embryo in the later

stages of villi formations [92]. Li et al. studied the occurrence of wrinkling in a two-

layered cylinder with fixed outer boundaries, modeling mucosal-submucosal differential

volumetric growth [93]. A similar approach has also been used for modeling surface pat-

terns emerging in other soft tissues. Papastavrou et al. studied the non-linear stability of

the skin epithelium also including the finite element implementation of surface growth [94].

Furthermore, Eskandari et al. investigated the role of volumetric growth in lung disease,

where circumferential folding characterizes the pathologic state of the airway mucosa [95].

All these models assume that the muscle surrounding the differentially growing tissue is

rigid, implying that the tissue cannot move outward while it grows.
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3.3 Homogeneous growth model with spatial constraints

In order to model the early stages of intestinal morphogenesis in vertebrates species

such as mouses where villi originate from a two-dimensional network of folds, the em-

bryonic intestine is modeled as a one-layered cylinder composed by embryonic mucosal

tissue which undergoes volumetric growth. Since the surrounding tissues, in particular

the muscularis propria and the serosa are much stiffer, they are included in the model

by introducing a rigid confinement at the outer radius of the cylinder. Although being

simplificative, this hypothesis may be a valid approximation in the very early stages of

embryogenesis when the displacements at the outer radius of the mucosal tissue can be

neglected [96]. According to the morphoelastic theory presented in Chapter 2, first the

geometry of the model will be sketched and the kinematics of the morphogenetic process

will be described. Then, the constitutive laws for the embryonic tissue will be assigned

and the equations governing the morphoelastic problem will be derived. In order to inves-

tigate the emergence of the two-dimensional network of folds, the linear stability analysis

will be performed. First the basic solution to the governing problem, which represents

the axial-symmetric shape of the embryonic mucosa prior to instability, will be calculated.

Then, a small perturbation in the form of an incremental deformation, which describes

a two-dimensional undulated pattern will be superposed on the basic axial-symmetric

deformation. The incremental problem associated to the perturbed state will be derived

using the Stroh formalism. A numerical procedure will be implemented in order to cal-

culate the thresholds of the instability in term of the volumetric growth ratio and the

effect of the geometrical and mechanical parameters on the onset of the instability will be

investigated.

3.3.1 Kinematics

Let (R,Θ, Z) be the cylindrical coordinates in the initial reference configuration B0,

with orthonormal basis vectors (ER,EΘ,EZ) and (r, θ, z) the cylindrical coordinates in

the actual configuration Ba, with orthonormal basis vectors (er, eθ, ez). The mucosa is

described as a thick-walled tube, as sketched in Figure 3.3, whose geometry in B0 is defined

by

Ri ≤ R ≤ R0, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (3.1)

where Ri and R0 are the internal and external radii, respectively, and L� R0 is the axial

length of the cylinder.
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Figure 3.3: Geometrical model of the mucosal growth process: the mapping χ transforms
the point X from the reference configuration B0 into the point x in the actual configuration
Ba. The intermediate incompatible grown state Bg is depicted. The dotted cylinder
indicates the geometrical constraint.

Let the morpho-elastic deformation χ, defined as in Eq.(2.1), be in the axial-symmetric

form:

χ(r, θ, z) =


r(R,Θ, Z) = r(R)

θ(R,Θ, Z) = Θ

z(R,Θ, Z) = Z.

(3.2)

As introduced in Chapter 2, the growth time scale is much larger than the one associated

to the elastic deformation. Therefore, the multiplicative decomposition in Eq.(2.6) can

be applied to the deformation gradient F, associated to the morphoelastic deformation

χ in Eq.(3.2), and reads F = FeFg. Accordingly, the growth component Fg identifies an

intermediate grown stress-free state Bg where the spatial constrained growth has intro-

65



Chapter 3. Morphoelastic modeling of gastro-intestinal organogenesis

duced a geometrical incompatibility in the tissue. The elastic part Fe is associated to the

elastic deformation from the grown state Bg to the final configuration Ba and restores the

geometrical compatibility of the tissue, whilst residual stresses arise.

Now, since the total process is quasi-static, an evolution law for the growth tensor is not

needed. It is sufficient to specify a growth tensor Fg which identifies the grown stress-free

state Bg after growth occurred. For the sake of simplicity, a homogeneous growth tensor

is considered in the form:

Fg = diag(gr, gr, gz) with Jg = det Fg = g2
rgz (3.3)

where the operator diag indicates that the growth tensor is diagonal. The growth rates in

the radial and longitudinal directions are expressed as gr and gz, respectively, and they are

assumed constant and positive definite. Accordingly, the elastic part of the deformation

gradient Fe = FF−1
g writes:

Fe = diag(λr, λθ, λz), (3.4)

where λr, λθ and λz are the principal stretches and from Eq.(3.2) are calculated as:

λr =
r,R
gr

λθ =
r

grR
λz =

1

gz
, (3.5)

so that the left Cauchy-Green tensor Be is defined as Be = FeF
T
e = diag(λ2

r, λ
2
θ, λ

2
z). Since

the cells and extra-cellular matrix constituting the mucosa are prevalently composed by

water, the tissue can be considered incompressible. The incompressibility constraint writes

according to Eq.(2.21).

3.3.2 Constitutive equations

The mucosa is modeled as a one-layered, hyperelastic, homogeneous, incompressible

tissue, composed by a cross-ply continuous distribution of collagen and elastin fibers

(anisotropic component), immersed into a homogeneous ground substance (isotropic com-

ponent). It is assumed that collagen and fibers are distributed along the two principal

directions mα and m−α, defined as:

mα = (sinα)eθ + (cosα)ez

m−α = −(sinα)eθ + (cosα)ez
(3.6)
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where α is the cross-ply fiber angle in respect to the longitudinal direction ez. Hence,

neglecting the mutual interaction between fibers and ground substance, and adopting the

additive decomposition proposed by Holzapfel and Ogden [97], the strain energy function

can be expressed as a sum of two terms:

ψ0(Ce,m±α) = ψIso(Ce) + ψAniso(Ce,m±α) (3.7)

where ψIso is the isotropic component, a scalar function of the right Cauchy-Green tensor

Ce = FeF
T
e , and ψAniso is the anisotropic component, which also depends on the orienta-

tion of the fibers through the vectors m±α. Let the ground substance have a Neo-Hookean

behavior, so that the isotropic contribution ψIso(Ce) in Eq. (3.7) reads:

ψIso(Ce) =
µ

2
(I1 − 3) =

µ

2
(λ2

r + λ2
θ + λ2

z − 3) (3.8)

where µ is the shear modulus, λl are the principal stretches, with l ∈ {r, θ, z}, and

I1 = tr[Ce] is the first principal invariant of Ce. The structural tensors are defined as

M±α = m±α ⊗ m±α. The anisotropic strain energy function ψAniso(Ce,m±α) can be

defined as [98]:

ψAniso(Ce,m±α) = k1I4, (3.9)

where k1 is the anisotropic stiffness of the material, and I4 is a structural pseudo-invariant,

which reads:

I4 =
1

4
(Ce + C−1

e − 2I) : (Mα + M−α) =

=
1

2

[(
1

λ2
z

+ λ2
z − 2

)
cos(α)2 +

(
1

λ2
θ

+ λ2
θ − 2

)
sin(α)2

] (3.10)

Note that the strain energy in Eq. (3.9) is polyconvex and physically consistent both

with the compression and the extension of fibers. The Nominal stress tensor S of the

mucosa defined in Eq.(2.65) can be then expressed as:

S = 2ψ1F
T
e +

∑
j=±α

1

2
ψ4(mj ⊗mj)F

T
e −

∑
j=±α

1

2
ψ4(C−1

e mj ⊗mjF
−1
e )− pF−1

e , (3.11)

where p is the Lagrange multiplier introduced to enforce the incompressibility constraint.

Note that the Nominal stress tensor in Eq.(3.11) is obtained by multiplying Eq.(2.65) by

a factor Fg, thus has one basis in Bg and one basis in Ba. The Cauchy stress tensor
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σ = FeS reads:

σ = 2ψ1Be +
∑
j=±α

1

2
ψ4(Femj ⊗ Femj − F−Te mj ⊗ F−Te mj)− pI = Σ− pI (3.12)

where ψ1 = ∂ψ0/∂I1, ψ4 = ∂ψ0/∂I4 and Σ = µBe+
∑

j=±α
1
2
k1(Femj⊗Femj−F−Te mj⊗

F−Te mj). The principal components of the Cauchy stress σ read:

σrr(r) = Σr(r)− p(r) = µλ2
r − p(r)

σθθ(r) = Σθ(r)− p(r) = µλ2
θ +

k1

2

(
λ2
θ −

1

λ2
θ

)
sin2(α)− p(r)

σzz(r) = Σz(r)− p(r) = µλ2
z +

k1

2

(
λ2
z −

1

λ2
z

)
cos2(α)− p(r)

(3.13)

where Σk, k = {r, θ, z} are the diagonal components of Σ in Eq. (3.12) and λr, λθ, λz are

the principal stretches in Eq.(3.5).

3.3.3 Governing equations and basic axial-symmetric solution

The following aim is to write the governing equations of the elastic problem and

calculate the basic solution.

According to the hypothesis of spatially constrained growth, the external radius is

fixed during the entire process (r0 = r(R0) = R(r0) = R0). Moreover, the free annular

surfaces cannot slide longitudinally (z(0) = 0 and l = z(L) = L) and, since the inner

intestinal pressure in embryos is negligible, the mucosal internal surface is free of external

traction. Therefore the elastic problem is governed by Eqs.(2.78,2.79) in Ba with mixed

boundary conditions in Eqs.(2.43,2.44). Now, the deformation χ has been assumed in the

axial-symmetric form of Eq.(3.2), thus the governing equations reduce to:

dσrr(r)

dr
+

1

r
(σrr(r)− σθθ(r)) = 0 in Ba (3.14)

r r,R
Rg2

rgz
= 1 in Ba (3.15)

r0 −R(r0) = 0 at r = r0 (3.16)

σrr(ri) = 0 at r = ri. (3.17)

where Eq.(3.14) is the first component of Eq.(2.78) written in cylindrical coordinates,

Eq.(3.15) is the incompressibility condition in Eq.(2.79), rewritten after substituting
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Eqs.(3.4) and (3.5), Eq.(3.16) is the Dirichlet boundary condition coming from the as-

sumption of rigid outer boundary and Eq.(3.17) is the Neumann boundary condition

following from the stress-free assumption at the inner surface.

The aim now is to calculate the basic solution of the governing problem. From integrat-

ing Eq.(3.15) follows the relation between the initial and the deformed radii r and R,

respectively:

r =
√
g2
rgzR

2 + a (3.18)

where the constant a = (1 − g2
rgz)R

2
0 follows from the condition in Eq.(3.16). Using

Eq.(3.18), the basic deformation in Eq.(3.2) rewrites in the following form:

x(0)(r, θ, z) = χ(0)(r, θ, z) =


r(R,Θ, Z) =

√
g2
rgzR

2 + a

θ(R,Θ, Z) = Θ

z(R,Θ, Z) = Z,

(3.19)

which is the basic solution of the problem in Eqs.(3.14-3.17). The elastic part of the

associated deformation gradient reads:

F(0)
e = diag(λ(0)

r , λ
(0)
θ , λ(0)

z ). (3.20)

where λ
(0)
r , λ

(0)
θ and λ

(0)
z are calculated substituting Eq.(3.19) into Eq.(3.5). Finally,

substituting σrr and σθθ from Eq.(3.13) into Eq.(3.14) the only unknown is the Lagrange

multiplier p. By imposing the boundary condition in Eq. (3.17), p can be obtained by

solving Eq. (3.14) as:

p(r) = Σr(r) +

∫ r

ri

Σr(s)− Σθ(s)

s
ds. (3.21)

Substituting Eq.(4.23) in Eq.(3.13), the spatial distribution of the residual stresses inside

the mucosa can be calculated as a function of the growth rates. In the following, the

linear stability analysis of the basic solution in Eq.(3.19) will be performed.

3.3.4 Incremental boundary value problem

According to the method of incremental deformations superposed on finite deforma-

tions, introduced in Section 2.2, let the incremental deformation χ(1)(x(0)) be defined in

the following form:

χ(1)(r, θ, z) = u(r, θ, z)er + v(r, θ, z)eθ + w(r, θ, z)ez (3.22)
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where (u, v, w) are scalar functions representing the incremental displacements. The as-

sociated displacement gradient Γ reads:

Γ =

 u,r (u,θ − v)/r u,z

v,r (u,θ + v)/r v,z

w,r (v,θ)/r w,z

 . (3.23)

Following the theory presented in Section 2.2, the perturbed deformation gradient rewrites

in the form of Eq.(2.86) and the perturbed Nominal stress in the form of Eq.(2.88). The

first-order increment Ŝ of the Nominal stress tensor S is in the form of Eq.(2.89) and its

push forward Ŝ0 = F(0)
e Ŝ is given by Eq.(2.92) and writes:

Ŝ0 = A1
0Γ + pΓ− qI. (3.24)

From Eq.(3.20) and from the definition of the instantaneous moduli A1
0 given in Eq.(2.93)

it follows that the non-zero components of A1
0 are:

A1
0kkjj = λkλjψ0kj

A1
0kjkj = (λkψ0k − λjψ0j)

λ2
k

λ2
k − λ2

j

, k 6= j

A1
0kjjk = A1

0jkkj = A1
0kjkj − λkψ0k, k 6= j

(3.25)

where ψ0k = ∂ψ0/∂λk, ψ0kj = ∂2ψ0/∂λk∂λj and with k and j running over r, θ and z [99].

Therefore the incremental BVP, rewrites:

∂(rŜ0rr)

∂r
+
∂Ŝ0θr

∂θ
+ r

∂Ŝ0zr

∂z
− Ŝ0θθ = 0 in Ba (3.26)

∂(rŜ0rθ)

∂r
+
∂Ŝ0θθ

∂θ
+ r

∂Ŝ0zθ

∂z
+ Ŝ0θr = 0 in Ba (3.27)

∂(rŜ0rz)

∂r
+
∂Ŝ0θz

∂θ
+ r

∂Ŝ0zz

∂z
= 0 in Ba (3.28)

u,r +
u+ v,θ
r

+ w,z = 0 in Ba (3.29)

u(r, θ, z) = 0, v(r, θ, z) = 0, w(r, θ, z) = 0 at r = r0 (3.30)

Ŝ0rr = 0, Ŝ0rθ = 0, Ŝ0rz = 0 at r = ri (3.31)

where Eqs.(3.26-3.28) are the first order incremental equilibrium equations in Eq.(2.103),

Eq.(3.29) is the incremental incompressibility condition in Eq.(2.104), and Eqs.(3.30) and
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(3.31) are the first-order increments of the boundary conditions in Eqs.(3.16) and (3.17),

respectively. Eqs.(3.26-3.29) define a system of four partial differential equations, where

the four unknowns are the three incremental displacements in Eq.(3.22) and the increment

q of the Lagrange multiplier. In the next section, a compact form of the incremental

problem will be derived, using the Stroh formalism introduced in Section 2.3.1.

3.3.5 Stroh formulation of the BVP and numerical solution

In order to solve Eqs.(3.26-3.29), the system of PDEs is transformed into a system of

ODEs of the first order.

According to the separation of variables, the solution is sought in the form:

(u, v, w, q) = (U(r), V (r),W (r), Q(r))ei(mθ+kzz) (3.32)

where m (resp. kz = 2nπ
L

) is the circumferential (resp. longitudinal) wavenumber of

the perturbation, with m and n positive integers, and i is the imaginary unit. Using

the perturbation defined in Eq. (3.32), the deformed mucosa is depicted in Figure 3.4,

showing a characteristic two-dimensional undulated pattern at the inner surface emerging

at the initial stages of intestinal villi formation.

From Eqs.3.24 it follows that the incremental stress components have the similar form:

Ŝ0kj = S0kj(r)e
i(mθ+kzz) (3.33)

where S0kj is a function of r, with indices {k, j} running over {r, θ, z}. Substituting Eqs.

(3.25,3.32,3.33) in the incremental constitutive equations for Ŝ0rr, given by Eq. (3.24), it

follows that:

Q =
(
A1

0rrrr + p
)
U ′ +A1

0rrθθ

imU + V

r
+A1

0rrzzikzW − (S0rr) . (3.34)

Similarly, from the constitutive equations for the incremental components Ŝ0rθ and Ŝ0rz,

V ′ and W ′ can expressed as:

V ′ =
S0rθ

A1
0rθrθ

−
(
A1

0rθθr + p
) imU − V
rA1

0rθrθ

(3.35)

W ′ =
S0rz

A1
0rzrz

− (A1
0rzzr + p) ikzU

A1
0rzrz

. (3.36)
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Figure 3.4: Morphology of the intestinal mucosa after imposing a perturbation of the
axial-symmetric solution of the elastic problem, having the form of Eq. (3.32). The
geometrical parameters are r0 = 2, ri = 1.5, L = 5, m = 7, kz = 5 and ε = 0.15.

Furthermore, the incremental incompressibility condition in Eq. (3.29) yields:

U ′ = −U + imV

r
− ikzW. (3.37)

Now, first the components Ŝ0rr, Ŝ0rθ, Ŝ0rz are replaced in Eqs.(3.26-3.28) using Eq. (3.33)

and setting s0kj = (irS0kj) for (k, j) = {r, θ, z}. Using Eqs. (3.24,3.25,3.32), the incre-

mental equilibrium equations take the following expressions:

1

ir
(s0rr)

′ +m
1

r

(
−A1

0θrθr

mU + iV

r
+ i
(
A1

0θrrθ + p
)
V ′
)

+

+k2
zA1

0zrzrU + kzi (A1
0zrrz + p)W ′+

−1
r

(
A1

0θθrrU
′ +A1

0θθθθ
miU+V

r
+ kziA1

0θθzzW + pmiU+V
r
−Q

)
= 0

(3.38)
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1

ir
(s0rθ)

′ − k2
zA1

0zθzθV −mkzA1
0zθθz

V

r
−mkz

V

r
p+

+1
r

(
A1

0θrrθV
′ +A1

0θrθr
miU−V

r
+ pV ′

)
+

+m
r

(
iA1

0θθrrU
′ −A1

0θθθθ
mU−iV

r
−mkzA1

0θθzzW − pmU−iVr
− iQ

)
= 0

(3.39)

1

ri
(s0rz)

′ − m

r

(
1

r
A1

0θzθz + kz (A1
0θzzθ + p)

)
V+

+kz (A1
0zzrriU

′ −A1
0zzθθ − kz (A1

0zzzz + p)W − iQ) = 0
(3.40)

where prime denotes the differentiation with respect to the variable r. Then, the displacement-

traction vector η is defined as:

η = {U, V,W, s0rr, s0rθ, s0rz}T . (3.41)

Substituting Eqs.(3.34-3.37) in Eqs.(3.38-3.40), the unknown Q is eliminated and three

ODEs of first order that depend only on (U, V,W ) and (s0rr, s0rθ, s0rz) are obtained.

Accordingly, Eqs.(3.35-3.40) can be written in a more compact formulation as follows:

dη(r)

dr
=
i

r
G(r)η(r), (3.42)

where the Stroh matrix G has the form:

G =

(
G1 G2

G3 G4

)
. (3.43)

In particular, the four blocks of G read:

G1 =

 i −m −kzr
−m(1− σ1) −i(1− σ1) 0

−kzr(1− σ2) 0 0

 , G2 =

 0 0 0

0 −1/α1 0

0 0 −1/α2

 , (3.44)

G3 =

 κ11 iκ12 iκ13

−iκ12 κ22 κ23

−iκ13 κ23 κ33

 , G4 = G+
1 (3.45)
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where G+
1 is the adjugate (transpose conjugate) of G1 and

κ11 = m2[γ1 − α1(1− σ1)2] + k2
zr

2[γ2 − α2(1− σ2)2] + 2[β1 + α1(1− σ1)]

κ12 = m[2β1 + γ1 + α1(1− σ2
1)]

κ13 = kzr[2β2 + α3(1− σ3)2]

κ22 = 2m2[β1 + α1(1− σ1)] + γ1 − α1(1− σ1)2 + k2
zr

2γ3

κ23 = 2mkzr[β2 + α3(1− σ3)]

κ33 = m2α3 + 2k2
zr

2[β3 + α2(1− σ2)]

(3.46)

with:
γ1 = A1

0θrθr, α1 = A1
0rθrθ, σ1 = σrr/α1,

γ2 = A1
0zrzr, α2 = A1

0rzrz, σ2 = σrr/α2,

γ3 = A1
0zθzθ, α3 = A1

0θzθz, σ3 = σθθ/α3,

2β1 = A1
0rrrr +A1

0θθθθ − 2A1
0rrθθ − 2A1

0rθθr,

2β2 = A1
0rrrr −A1

0rrθθ −A1
0rrzz +A1

0θθzz −A1
0zθθz,

2β3 = A1
0rrrr +A1

0zzzz − 2A1
0rrzz − 2A1

0rzzr.

(3.47)

Using the Dirichlet boundary condition in Eq.(3.16), the following initial conditions are

associated to the Stroh form of the incremental problem in Eq.(3.42):

η0(R0) ={0, 0, 0, s∗0rr, s∗0rθ, s∗0rz} (3.48)

η0(ri) ={U∗, V ∗,W ∗, 0, 0, 0} (3.49)

where the values {U∗, V ∗,W ∗} and {s∗0rr, s∗0rθ, s∗0rz} are the initial values of the incremental

displacement and stress vectors, respectively, to be determined. In the following, the

numerical procedure for solving Eq. (3.93) will be presented.

3.3.5.1 Numerical resolution procedure

The aim of this section is to find the critical values of a control parameter solving

Eq.(3.42) with initial conditions given by Eqs.(3.48,3.49). The growth has been con-

sidered homogeneous, thus the growth rates gr and gz can be considered as the control

parameters of the elastic instability for the mucosa.

Since the incremental BVP has a Dirichlet boundary condition, the Stroh form in Eq.(3.42)

allows for a safe and efficient implementation of a numerical resolution algorithm. There-

fore, as motivated in Section 2.3.3, the determinantal method is used to implement the

numerical procedure. The following numerical procedure is implemented in Mathemat-
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ica [100].

The solution η of Eq.(3.42) is expressed as a linear combination of three scalar functions

η1,η2,η3, being:

η = ν1η1 + ν2η2 + ν3η3 (3.50)

with ν1, ν2, ν3 constant coefficients. The scalar functions ηk, k = {1, 2, 3}, in Eq.(3.50)

are three linearly independent copies of the solution. Using the function NSolve, the

three copies are obtained numerically integrating the system of Eq.(3.42) between r = R0

and r = ri and imposing three linearly independent sets η0k of initial conditions, from

Eq.(3.48), expressed as:

η0k(r = R0) = {0, 0, 0, (s0rr)k, (s0rθ)k, (s0rz)k}, with k = {1, 2, 3} (3.51)

with appropriately chosen incremental stress components (s0rr)k, (s0rθ)k, (s0rz)k at r = R0.

Then, the solution in Eq. (3.50) must satisfy the other initial condition in Eq. (3.49) at

r = ri, which rewrites:

D(gτ (r = ri)) = det

 (s0rr(ri))1 (s0rθ(ri))1 (s0rz(ri))1

(s0rr(ri))2 (s0rθ(ri))2 (s0rz(ri))2

(s0rr(ri))3 (s0rθ(ri))3 (s0rz(ri))3

 = 0 (3.52)

where (s0jl)k, jl = {r, θ, z}, k = {1, 2, 3} are the incremental stresses numerically calcu-

lated at r = ri from the initial value η0k. As shown in Figure 3.5, the bifurcation threshold

gτ (H), τ = {r, z} are calculated with the help of two cycles of iteration: a first iteration

is on the aspect ratio H = R0/Ri, followed by a second cycle in which the bifurcation

parameter is iterated until the stop condition in Eq. (3.52) is reached.
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H

H

H

Determine

the critical 

value

Figure 3.5: Implementation of the numerical scheme: after a first iteration on the aspect
ratio H, it follows a second iteration on the bifurcation parameter g(H). In this second
cycle, the solution is numerically integrated until the condition D((gτ (r = ri)) is satisfied
and the threshold value for the parameter gτ is obtained.

3.3.6 Results

The numerical results obtained from the linear stability analysis of the growing intesti-

nal mucosa are presented in the following. First, the mucosa is considered as an isotropic

material, with the aim to investigate the effect of the volumetric growth on the onset of

instability. The volume increase is considered resulting from both isotropic (gr = gz) and

anisotropic (gr 6= gz) growth processes. The curves of marginal stability depict the growth

thresholds at which a bifurcation occurs in function of the aspect ratio H, and are shown

for different perturbation modes. Second, the mucosa is considered as a fiber-reinforced

tissue according to Eq. (3.7). The numerical results are shown with the aim of investi-

gating the effect of the material anisotropy on the bifurcation thresholds for gr and gz, in

order to study the effects of the stiffness and the orientation of the reinforcing fibers on

the onset of instability.

3.3.6.1 Isotropic behavior of the mucosa

First, the mucosa is considered as an isotropic material (i.e. setting k1 = 0 in Eq.

(3.7)). The marginal stability curves obtained assuming an isotropic growth process (gr

=gz) with m = kz are plotted in Figure 3.6 within the range of 1 < H ≤ 2. An increase of
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gr gz

kz =m

H
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Figure 3.6: Marginal stability curves for isotropic growth showing the isotropic growth
rate gr = gz at different modes kz = m = 2, 5, 10, 15.

the value of the perturbation modes results in a decrease of the growth thresholds, high-

lighting the occurrence of a surface instability at very short wavelengths. The same in-

stability mechanism occurs when considering anisotropic growth processes. The marginal

stability curves are plotted in Figure 3.7, referring to a volume increase completely due

to a radial (gz = 1, left) or to a longitudinal (gr = 1, right) growth process. In Figure 3.8,

1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

gr

kz  = m

H
1.0 1.2 1.4 1.6 1.8 2.0

1.5

2.0

2.5

3.0

gz

kz=m

H

Figure 3.7: Marginal stability curves for anisotropic growth showing the radial growth gr
(left, setting gz = 1) and the longitudinal growth gz (right, setting gr = 1) thresholds,
calculated at different modes m = kz = 2, 5, 7, 10, 15.

the marginal stability curves are shown for different circumferential perturbation modes

m, at fixed the perturbation mode in the longitudinal direction, kz = 10. In the same

way, fixing the circumferential perturbation mode at m = 10, the instability thresholds

are depicted in Figure 3.9, for different longitudinal modes kz. These results confirm the

occurrence of a surface instability mechanism: the growth thresholds for high values of
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Figure 3.8: Marginal stability curves for anisotropic growth showing the radial growth gr
(left, setting gz = 1) and the longitudinal growth gz (right, setting gr = 1) thresholds,
calculated at different modes m = 2, 5, 7, 10, 15 and fixed kz = 10.

m, kz collapse to a single master curve in the case of thick tissues (H > 1.5), while a

large variability on the perturbation mode appear as the aspect ratio decreases. Even

if the instability is predicted for (m, kz) → ∞, the biological system will select a finite

wavelength because of the existence of boundary energies penalizing the increase in the

surface area of the mucosa. Although such correction of the wavelength can be calculated

following the method proposed by Ben Amar and Ciarletta for a soft layer attached to

a rigid substrate [101], it will be neglected in here for the sake of simplicity. Finally, it

is useful to compare the instability thresholds for the three different growth processes

investigated in terms of the total volume increase, given by Jg = g2
rgz. In Figure 3.10, the

1.2 1.4 1.6 1.8 2.0

1.2
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Figure 3.9: Marginal stability curves for anisotropic growth showing the radial growth gr
(left, setting gz = 1) and the longitudinal growth gz (right, setting gr = 1) thresholds,
calculated at different modes kz = 2, 5, 7, 10, 15 and fixed m = 10.
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gr
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1.2 1.4 1.6 1.8
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3.0

Jg

Figure 3.10: Marginal stability curves showing the critical volume increase Jg at modes
kz = m = 10 for isotropic (gr = gz, magenta) and anisotropic (gr = 1, yellow and gz = 1,
blue) growth processes.

marginal stability curves are depicted for Jg in the cases gr = gz, gr = 1 and gz = 1, pre-

dicting that the two-dimensional surface undulations occur first when the mucosal growth

is uniquely longitudinal.

3.3.6.2 Anisotropic behavior of the mucosa

In this paragraph, the material anisotropy of the mucosa is taken into account, and
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Figure 3.11: Marginal stability curves for anisotropic growth showing the radial growth
gr (left, setting gz = 1) and the longitudinal growth gz (right, setting gr = 1) thresholds
at modes kz = m = 5. The material anisotropy ratio is fixed at k1/µ = 10, while the
curves are shown at different cross-ply fiber angles α = (0, π/6, π/4, π/3).

the numerical results are calculated for different cross-ply fiber angles α (Figure 3.11) and
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for different material anisotropy ratios k1/µ (Figure 3.12).

The curves plotted in Figure 3.11 show how increasing the cross-ply angle α increases

the instability thresholds increase, both for the radial and longitudinal growth processes.
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Figure 3.12: Marginal stability curves for anisotropic growth showing the radial growth
gr (left, setting gz = 1) and the longitudinal growth gz (right, setting gr = 1) thresholds

at modes kz = m = 5. The cross-ply fiber angle is fixed at α =
π

4
, while the curves are

shown at different material anisotropy ratios k1/µ = (0.1, 1, 10).

Hence, a surface instability first occurs when the fiber orientation angle is α = 0. More-

over, the curves of marginal stability in Figure 3.12 show that the presence of a material

anisotropy is a stabilizing factor, as increasing k1/µ increases the growth thresholds of

the instability. The results in Figure 3.11 (resp. Figure 3.12) are shown for 1 < H < 1.25

(resp. 1.5) as the equation system became stiff for thicker tissues.

3.3.7 Discussion of the results

In the first part of this chapter, the morphoelastic theory presented in Chapter 2 has

been applied in order to investigate the occurrence of undulated two-dimensional patterns

during the initial stages of villi morphogenesis. The main idea behind the model is that

epithelial patterns originate from an elastic instability which arise as consequence of the

spatially constrained volumetric growth of the embryonic mucosa. Therefore, in order to

test this hypothesis the intestinal mucosa has been modeled as a thick-walled cylinder

with an outer spatial confinement. Its deformation gradient has been decomposed into

a homogeneous growth component and an incompressible elastic deformation, in order

to account for the spatial distribution of residual stresses arising during the spatially

constrained growth process. The mechanical behavior of the mucosa has been described

80



Chapter 3. Morphoelastic modeling of gastro-intestinal organogenesis

using the hyperelastic model presented in Section 3.3.2. The nonlinear mechanical be-

havior accounts for the anisotropy of the tissue, including a polyconvex energy term that

depends on both the orientation and the stiffness of the collagen and elastin fibers lying

under the epithelial layer. The linear stability analysis has been performed perturbing

the basic axial-symmetric solution in Eq.(3.19) with an incremental deformation. With

the aim of describing the undulated morphology at the free surface of the mucosa, a two-

dimensional perturbation has been considered in the form of Eq.(3.32). The incremental

BVP has been derived using the Stroh formulation, and it has been solved with the help

of the determinantal method. The numerical results have been presented in Section 3.3.6.

The growth rate thresholds for the onset of instability have been depicted in function

of the aspect ratio H = R0/Ri, considering isotropic and anisotropic growth processes

in Figures 3.6 and 3.7, respectively. The marginal stability curves show that a short-

wavelength two-dimensional undulation occurs. An increase in the perturbation modes

results in decreasing instability thresholds, showing the occurrence of a surface instability

on the internal surface of the mucosal wall, as depicted in Figure 3.8 and Figure 3.9.

The calculated volume increase thresholds are smaller when considering an anisotropic

growth process, with the most unstable scenario being the mucosa growing only along

the longitudinal direction, as shown in Figure 3.10. In Section 3.3.6.2, the role played

by the material anisotropy of the mucosa on the onset of the surface instability has been

investigated. The results in Figures 3.11 and 3.12 show that an increase of both the cross-

ply angle and the stiffness of the reinforcing fibers provokes an increase of the growth

instability thresholds, highlighting that the material anisotropy is a stabilizing effect.

The aim is now to compare the growth thresholds obtained from the linear stability

analysis for the occurrence of undulated two-dimensional patterns with those reported

in [8] for prismatic deformations, representing both circumferential folding and longitu-

dinal segmentation. This comparison shows how the instability thresholds for the two-

dimensional perturbations are smaller than those required for folding and segmentation,

both for isotropic (Figure 3.13, left) and anisotropic (Figure 3.13, right) growth processes.

This also prove that a two-dimensional undulation always occurs first for a thin mucosa

(i.e. H < 1.15), while for thicker tubes the growth threshold is roughly the same as the

one reported for circumferential folding. In the last case, the emerging kind of instability

will be selected by nonlinear effects.

Using the experimental curves reported by Sbarbati [9], the aspect ratio of the mucosa

in mouse embryos are calculated within the range H = 1.75− 1.93 (duodenum) and H =

1.51−1.72 (large intestine), whilst the external radius is about R0 = 20−40 µm between 12
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Figure 3.13: Instability thresholds in terms of volume increase due to isotropic (left) and
anisotropic (right, gr = 1) growth processes. The curves referring to the circumferential
and longitudinal folding are taken from [8].

and 16 days after incubation. The predictions of the proposed model using such values of

aspect ratio are consistent with the experimental observations of circumferential folding

preceding the villi elongation mouse embryos. In conclusion, the model demonstrates

that the villi morphogenesis can start directly from a two-dimensional undulation of the

mucosa when the tissue grows subjected to an outer rigid constrain. The theoretical

analysis predicts that the selected previllous structure on the mucosa is mainly driven by

the initial aspect ratio of the tubular tissue, with thinner tubes not requiring any preceding

mucosal folding. The proposed morphoelastic model highlights that both the geometrical

and the mechanical properties of the mucosa strongly influence the formation of previllous

structures in embryos, providing useful suggestions for interpreting the dynamics of villi

morphogenesis in living organisms. Nonetheless, the proposed model is unable to identify

the critical wavelength of the emerging surface pattern. Accordingly, it will be refined

in the following in order to take into account a differential growth between the layers

removing the outer spatial constraint.
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3.4 Differential growth model without spatial con-

straints

In the previous section, a morphoelastic model for the morphogenesis of the GI mu-

cosa has been presented. Assuming the GI tissue composed by a single embryonic layer,

spatially constrained by the surrounding tissues, the emergence of a two-dimensional net-

work of folds have been investigated using the morphoelastic theory presented in Chapter

2. It has been shown that the proposed model well reproduces the early formation of villi

in vertebrates species such as mouses, but it doesn’t allow for the prediction of the finite

wavelength of the pattern.

Now, with the aim of modeling the formation of the wider range of patterns observed

in the human GI system, a second morphoelastic model will be presented in the following.

The embryonic GI tube will be modeled as a two-layered cylinder. The inner and outer

layers, respectively represent the primary endodermal layer from which the embryonic

mucosa develops and the primary mesoderm matrix from which the mesenchyme and the

muscles originate. The model is based on the idea that the differential growth between the

two primary matrices induces geometrical incompatibilities in the tissue. As consequence,

the residual stresses accumulate in the tissue and eventually they result in the onset of

an instability pattern. The factors which can be involved in the selection of the specific

pattern will also be investigated. Furthermore, the nonlinear regime of the instability

will be investigated using numerical simulations, in order to study the evolution of the

pattern as the growth proceeds. As experimentally shown in [90], during the mature

stages of intestinal embryogenesis, the tissues surrounding the mucosal layers allow for

the intestine to move outward, thus the hypothesis of fixed outer boundary is no more

realistic. Instead, it is assumed that the differential growth process evolves without spatial

constraints.

The section is organized as follows. The geometry of the model will be first presented,

together with the kinematics of the morphoelastic deformation associated to the volumet-

ric growth process. The constitutive equations for the two layers will be assigned using a

Neo-Hookean model to account for the nonlinear, hyperelastic and isotropic behavior of

the embryonic tissues. The linear stability analysis will be performed and the instability

thresholds will be calculated in term of the ratio between the volumetric growth of the

endoderm and that of the mesoderm. The wavelength of the associated instability pattern

will also be determined for different values of the geometrical and mechanical parameters
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of the model. Then, the nonlinear regime of the instability will be studied using a fi-

nite element method implemented in Abaqus [102]. Finally the numerical and analytical

results will be validated with the experimental data available in the literature.

3.4.1 Kinematics

Let E ⊂ R3 be the three-dimensional Euclidean space, so that B0,Ba ⊂ E are two

regions occupied by the cylinder at two different instants of time. Let B0 be the refer-

ence configuration with orthonormal basis {ER,EΘ,EZ} and Ba the spatial or deformed

configuration at time t, with orthonormal basis {er, eθ, ez}. Let Ri and R0 be the initial

internal and external radii, respectively, Rm be the initial contact radius at the interface

of the two layers and L the initial length of the tube. The internal, the contact, and the

external radii are denoted by ri, rm and r0, respectively, and the length of the tube in the

deformed state is indicated as l. Figure 3.14 depicts the geometric representation of the
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Figure 3.14: Kinematics of the two-layered embryonic gut and representation of the de-
formation χ from the stress free reference configuration B0, to the deformed residually
stressed configuration Ba, with the use of cylindrical coordinates.

model.

The growth process of the GI wall is modeled as a deformation χ from the reference

configuration B0 to the spatial configuration Ba, defined as in Eq.(2.1). For each layer the
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finite deformation χ has the axial-symmetric form:

χ(r, θ, z) =


r(R,Θ, Z) = r(R)

θ(R,Θ, Z) = Θ

z(R,Θ, Z) = Z

(3.53)

The deformation in Eq.(3.53) identifies the morphology of the GI tube prior to the

occurrence of any instability pattern.

Following the volumetric growth theory presented in Chapter 2, the multiplicative de-

composition in Eq.(2.6) can be applied to the deformation gradient F associated to the

morphoelastic deformation χ in Eq.(3.53), and reads F = FeFg. Accordingly, the growth

component Fg identifies an intermediate grown stress-free state Bg. In this case, a geo-

metrical incompatibility is introduced in the tissue by the differential growth between the

two layers (see Figure 3.14). The elastic part Fe, associated to the deformation from the

grown state Bg to the final configuration Ba, restores the geometrical compatibility of the

tissue, whilst residual stresses arise.

Now, since the total process is quasi-static, an evolution law for the growth tensor is not

needed. It is sufficient to specify a growth tensor Fg which identifies the grown stress-free

state Bg after growth occurred. For the sake of simplicity, a homogeneous growth tensor

is considered in the form:

Fg = gI with Jg = det Fg = g3 (3.54)

where g denotes the volumetric growth factor of each layer (constant and positive definite)

and I is the identity tensor. Accordingly, the deformation gradient Fe = FF−1
g writes:

Fe = diag(λr, λθ, λz). (3.55)

where λr, λθ and λz are the principal stretches and from Eq.(3.53) are calculated as:

λr =
r,R
g

λθ =
r

gR
λz =

1

g
. (3.56)

Accounting for the incompressibility constraint, it follows that:

det Fe = λrλθλz = 1 (3.57)
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The left and right Cauchy-Green tensors Be and Ce, respectively are defined as Be =

FeF
T
e = diag(λ2

r, λ
2
θ, λ

2
z) and Ce = FT

e Fe = diag(λ2
r, λ

2
θ, λ

2
z).

In the following the constitutive relations for the two embryonic layers will be assigned.

3.4.2 Constitutive equations

Since the cellular components of the embryonic tissue are mostly composed of water,

the intestine is modeled as an incompressible, hyperelastic, isotropic, two-layered tube. In

order to account for the typical nonlinear behavior of the tissues, a Neo-Hookean model

is used, so that the elastic strain energy function of each layer can be defined as:

ψ0(Fe) =
1

2
µ(tr Ce − 3) (3.58)

where µ is the shear modulus of each layers. From Eq. (3.58) the nominal stress defined

in Eq.(2.65) can be calculated as:

S = µFT
e − pF−1

e , (3.59)

where p is the Lagrange multiplier of each layer. The Cauchy stress σ = FeS follows as:

σ = µBe − pI. (3.60)

Since the deformation χ has been considered axial-symmetric, the only non-zero compo-

nents of the Cauchy stress are the principal stresses:

σrr(r) = µλ2
r(r)− p(r)

σθθ(r) = µλ2
θ(r)− p(r)

σzz(r) = µλ2
z − p(r),

(3.61)

The aim of the next section is to write the governing equations of the elastic problem and

to derive the basic solution.

3.4.3 Governing equations and axial-symmetric solution

It has been assumed that no tractions are acting on the internal and external surfaces

of the embryonic GI tube. Moreover, recalling that the pressure due to embryonic fluids
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acting at the internal wall of the forming gut can be neglected, a zero-traction condition is

assigned at the internal surface. Therefore, the elastic problem is governed by Eqs.(2.78)

and (2.79) with Neumann boundary conditions in the form of Eq.(2.46) at both the inner

and outer surfaces. Moreover, the continuity of the radial displacement and of the radial

component of the stress must be ensured at the contact radius between the two layer.

Accordingly, the governing equations reduce to:

dσrr(r)

dr
+

1

r
(σrr(r)− σθθ(r)) = 0 in Ba (3.62)

r r,R
Rg3

= 1 in Ba (3.63)

σrr(r0) = 0 at r = r0 (3.64)

σrr(ri) = 0 at r = ri (3.65)

σrr(r
en
m ) = σrr(r

me
m ) at r = rm (3.66)

renm −R(renm ) = rmem −R(rmem ) at r = rm. (3.67)

Eq.(3.62) is the equilibrium equation in Eq.(2.78) reduced to the first component because

of the axial-symmetric property of the deformation χ in Eq.(3.53). Eq.(3.63) is the in-

compressibility condition which follows substituting Eqs.(3.55) and (3.56) in Eq.(2.79).

Eqs.(3.64) and (3.65) are the Neumann boundary conditions at the outer and inner sur-

faces, respectively. Eq.(3.66) and (3.67) are the continuity conditions of the displacements

and of the radial stress components at the interface between the two embryonic layers.

The aim is now to calculate the basic solution to the equilibrium problem. Integrat-

ing Eq.(3.63), the relation between the undeformed and the deformed radii, r and R

respectively is calculated as:

r =
√
g3
lR

2 + al (3.68)

where l = {en,me} such that gen and gme are the volumetric growth factors of the

endodermal and mesodermal layers and aen = (r2
i −g3

enR
2
i ) and ame = (r2

m−g3
meR

2
m) follow

from the global incompressibility condition. For the sake of notation simplicity, unless

explicitly stated, from now on the sub- and superscript l, which refers to the individual

layers, will be omitted. Using Eq.(3.68), the basic axial-symmetric deformation in
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Eq.(3.53) rewrites in the following form:

x(0)(r, θ, z) = χ(0)(r, θ, z) =


r(R,Θ, Z) =

√
g3
lR

2 + al

θ(R,Θ, Z) = Θ

z(R,Θ, Z) = Z,

(3.69)

which is the basic solution of the equilibrium problem in Eqs.(3.62-3.67). The elastic

component F(0)
e of the associated deformation gradient reads:

F(0)
e = diag

(
λ(0)
r (r), λ

(0)
θ (r), λ(0)

z

)
, (3.70)

where λ
(0)
r (r), λ

(0)
θ (r), λ

(0)
z are calculated using Eqs.(3.69) and (3.56). The two unknowns

of the problem are now the two Lagrange multipliers pl with l = {en,me} in Eqs.(3.61).

They are calculated by integrating Eq.(3.62) with the boundary conditions in Eqs.(3.64)

and (3.65) as follows:

pen(r) = µen(λ
(0)
r )2(r) + µen

∫ r

ri

(λ
(0)
r )2(s)− (λ

(0)
θ )2(s)

s
ds

pme(r) = µme(λ
(0)
r )2(r) − µme

∫ r0

r

(λ
(0)
r )2(s)− (λ

(0)
θ )2(s)

s
ds,

(3.71)

where the internal and external radii follow from the global form of the incompressibility

in Eq.(3.63):

ri =

√( gen
gme

)3( 1

H2
en

− 1

H2
me

)
+ r2

m and r0 =

√
1− 1

H2
me

+ r2
m. (3.72)

Here Hen = Rm/Ri and Hme = R0/Rm denote the geometric aspect ratios of the internal

and external layers, respectively. Using the continuity condition in Eq.(3.66), Eq.(3.62)
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Figure 3.15: Deformed internal, external, and contact radii, ri, r0, rm as functions of
the growth ratio gen/gme at fixed Hen = 1.1 and Hme = 1.8 (a), and as function of
the mesoderm aspect ratio Hme, at fixed Hen = 1.1 (b), and gen/gme = 1.1, setting
µme/µen = 10. Radial and circumferential components of the Cauchy stress σ plotted
with respect to r at fixed gen/gme = 1.1 with gme = 1, µme/µen = 10, R0 = 1, Hen = 1.1
and Hme = 1.8 (c).

can be solved with the boundary conditions in Eqs.(3.64) and (3.65):

gme
H2
me

(
1

r2
m

− H4
me

H2
me(1 + r2

m)− 1

)
+
µme
µen

g4
en

g3
me

(
1( gen

gme

)3

(1−H2
en) +H2

enH
2
mer

2
m

− 1

H2
mer

2
m

)

+gme log

((
H2
me(r

2
m + 1)− 1

)
r2
mH

4
me

)
− gen

µme
µen

log
(( gen

gme

)3

(1−H2
en) + r2

m(H2
enH

2
me)

r2
mH

2
me

)
= 0.

(3.73)

Finally, the deformed radius is calculated at the interface between the two layers rm by

numerically solving Eq.(3.73) using the function NSolve in Mathematica [100]. In Figure

3.15, the deformed internal, external, and contact radii, ri, r0, rm are plotted against Hen

(a) and Hme (b), and the radial and circumferential components of the Cauchy stress in

Eq.(3.60) are depicted as a function of r.

3.4.4 Incremental boundary value problem

Now, the method of incremental deformations superposed on finite deformations will

be applied in order to perform the linear stability analysis of the basic solution calcu-

lated in Section 3.4.3. Let the basic solution χ(0) be perturbed by superposing a small

incremental deformation χ(1) to the finite deformation in Eq.(3.69). Let χ(1) be expressed

as:

χ1(r, θ, z) = u(r, θ, z)er + v(r, θ, z)eθ + w(r, θ, z)ez, (3.74)
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where u, v, w are three scalar functions. The displacement gradient Γ, associated to the

incremental deformation has the form:

Γ =

 u,r (u,θ − v)/r u,z

v,r (v,θ + u)/r v,z

w,r (v,θ)/r w,z

 , (3.75)

According to the theory presented in Section 2.2, the perturbed deformation gradient

F̄ rewrites in the form of Eq.(2.86) and the perturbed Nominal stress S̄ in the form of

Eq.(2.88). The first-order increment Ŝ of the Nominal stress tensor S is in the form of

Eq.(2.89) and its push forward Ŝ0 = F(0)
e Ŝ is given by Eq.(2.92) and writes:

Ŝ0 = A1
0Γ + pΓ− qI. (3.76)

where A1
0 is the tensor of instantaneous moduli, defined in Eq.(2.93), p is the Lagrange

multiplier and q its first-order increment. The incremental BVP rewrites:

∂(rŜ0rr)

∂r
+
∂Ŝ0θr

∂θ
+ r

∂Ŝ0zr

∂z
− Ŝ0θθ = 0 in Ba (3.77)

∂(rŜ0rθ)

∂r
+
∂Ŝ0θθ

∂θ
+ r

∂Ŝ0zθ

∂z
+ Ŝ0θr = 0 in Ba (3.78)

∂(rŜ0rz)

∂r
+
∂Ŝ0θz

∂θ
+ r

∂Ŝ0zz

∂z
= 0 in Ba (3.79)

u,r +
u+ v,θ
r

+ w,z = 0 in Ba (3.80)

Ŝ0rr(r0) = 0, Ŝ0rθ(r0) = 0, Ŝ0rz(r0) = 0 at r = r0 (3.81)

Ŝ0rr(ri) = 0, Ŝ0rθ(ri) = 0, Ŝ0rz(ri) = 0 at r = ri (3.82)

Ŝ0rr(r
en
m ) = Ŝ0rr(r

me
m ), Ŝ0rθ(r

en
m ) = Ŝ0rθ(r

me
m ), Ŝ0rz(r

en
m ) = Ŝ0rz(r

me
m ) at r = rm (3.83)

u(renm ) = u(rmem ), v(renm ) = v(rmem ), w(renm ) = w(rmem ) at r = rm (3.84)

where Eqs.(3.77-3.79) are the first-order incremental equilibrium equations in Eq.(2.103).

Eq.(3.80) is the incremental incompressibility condition in Eq.(2.104). Eqs.(3.81) and

(3.82) are the first-order increments of the boundary conditions in Eqs.(3.64) and (3.65),

respectively. Eqs.(3.83) and (3.84) are the continuity incremental conditions for the radial

components of the stress and for the displacements, at the interface between the two

layers. Eqs.(3.77-3.80) define a system of four partial differential equations, where the

four unknowns are the three incremental displacements in Eq.(3.74) and the increment
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q of the Lagrange multiplier. In the next section, a compact form of the incremental

problem will be derived, using the Stroh formalism introduced in Section 2.3.1.

3.4.5 Stroh formulation of the BVP

In order to solve the incremental problem the Stroh formalism is used in the following.

The set of four PDEs in Eqs.(3.77-3.80) is transformed into a set of six ODEs of first

order with initial conditions for both layers, l = {en,me}.
Assuming the separation of variables, the components in Eq. (3.74) and the increment

of the Lagrange multiplier in Eq. (3.76) can be expressed in the following form:

u = U(r) cos (mθ) cos (kzz)

v = V (r) sin (mθ) cos (kzz)

w = W (r) cos (mθ) sin (kzz)

q = Q(r) cos (mθ) cos (kzz),

(3.85)

where m and kz = 2πn/L (with m,n ∈ N), are the circumferential and longitudinal

modes respectively, and U(r), V (r),W (r), Q(r) are four scalar functions. Similarly, the

incremental stress components Ŝ0rr, Ŝ0rθ, Ŝ0rz can be written as follows:

Ŝ0rr = s0rr (r) cos (mθ) cos (kzz)

Ŝ0rθ = s0rθ (r) sin (mθ) cos (kzz)

Ŝ0rz = s0rz (r) cos (mθ) sin (kzz),

(3.86)

where s0rr(r), s0rθ(r), s0rz(r) are three scalar functions. Substituting Eqs. (3.85) and Eq.

(3.86) into Eqs. (3.80) and (3.76) gives:

U ′ = −U +mV

r
− kzW, V ′ =

s0rθ +mUp+ V p

A1
0rθrθr

, W ′ =
s0rz + rkzUp

A1
0rzrzr

, (3.87)

and

Q = −s0rr

r
+ (A1

0rrrr + p)U ′ . (3.88)

Finally, by substituting Eqs.(3.85,3.86) into the three incremental equilibrium equations in

Eqs.(3.77-3.79) and by using Eq.(3.88) to eliminate the variable Q, the following equations
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are obtained:(
A1

0θθθθ +A1
0θrθrm

2 + p+A1
0zrzrk

2
zr

2
)
U +m

(
A1

0θrθr +A1
0θθθθ + p

)
V

+s0rr − r
(

(A1
0rrrr + p)U ′ + p(mV ′ + kzrW

′) + s′0rr

)
= 0,

(3.89)

m
(
A1

0θrθr +A1
0θθθθ + p

)
U +

(
A1

0θrθr +m2(A1
0θθθθ + p) +A1

0zθzθk
2
zr

2
)
V

+
(
mkzrp

)
W +ms0rr −mr

(
A1

0rrrr + p
)
U ′ − prV ′ − rs′0rθ = 0,

(3.90)

rs′0rz + kzrs0rr −
(
kzmrp

)
V +

(
A1

0θzθzm
2 − k2

zr
2(A1

0zzzz + p)
)
W

−kz
(
A1

0rrrr + p
)
r2U ′ = 0.

(3.91)

In order to write the set of six first ODEs in Eqs.(3.87) and Eqs.(3.89-3.91) in the compact

form, the displacement-traction vector η is defined as follows:

η(r) =

[
U(r)

r S(r)

]
with

U (r) = [U(r), V (r),W (r) ]T

S (r) = [ s0rr(r), s0rθ(r), s0rz(r) ]T .
(3.92)

It follows that Eqs.(3.87) and Eqs.(3.89-3.91) rewrite in the Stroh compact form:

dη(r)

dr
=

1

r
G(r)η(r), (3.93)

where G is the so-called Stroh matrix, which takes the following block form:

G =

(
G1 G2

G3 G4

)
, (3.94)

The four blocks in Eq. (3.94) are given by:

G1 =

 −1 −m −kzr
mσ1 σ1 0

kzrσ2 0 0

 G2 =

 0 0 0

0 1/α1 0

0 0 1/α2


G3 =

 κ11 κ12 κ13

κ12 κ22 κ23

κ13 κ23 κ33

 G4 =

 1 −mσ1 −kzrσ2

m −σ1 0

kzr 0 0


(3.95)
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with G4 = −GT
1 and:

κ11 = m2(ν1 − α1σ
2
1) + k2

zr
2(ν2 − α2σ

2
2) +A1

0rrrr +A1
0θθθθ + 2α1σ1

κ12 = m(A1
0rrrr +A1

0θθθθ + 2α1σ1l + ν1 − α1σ
2
1)

κ13 = kzr(A1
0rrrr + α1σ1)

κ22 = m2
[
A1

0rrrr +A1
0θθθθ + 2α1σ1

]
+ k2

zr
2ν3 + ν1 − α1σ

2
1

κ23 = mkzr(A1
0rrrr + 2α1σ1)

κ33 = m2α3 + k2
zr

2(A1
0rrrr +A1

0zzzz + 2α3σ3),

(3.96)

and:
ν1 = A1

0θrθr, α1 = A1
0rθrθ, σ1 = p/α1,

ν2 = A1
0zrzr, α2 = A1

0rzrz, σ2 = p/α2

ν3 = A1
0zθzθ, α3 = A1

0θzθz, σ3 = p/α3.

(3.97)

Note that, since the perturbation in Eq.(3.85) has real components, the four blocks of the

Stroh matrix are real.

As mentioned in Section 2.3.3, the Stroh form of the incremental BVP doesn’t provide the

best form of the problem to be solved when Neumann boundary conditions are assigned.

Therefore, the surface impedance method will be used in order to obtain a compact form

which will allow for the implementation of a stable numerical solving procedure.

3.4.6 Surface impedance method and numerical solution

Following Section 2.3.2, a set of independent solutions ηn, n = {1, . . . , 6} of the system

in Eq. (3.93) is defined. Then the 6× 6 matricant M(r, rk) is introduced as in Eq.(2.113)

for the inner and outer layers k = (i, o). The matricant in Eq. (2.113), is the solution of

the initial value problem for the inner and outer layers, k = (i, o):

dM

dr
(r, rk) =

1

r
G(r)M(r, rk) with M(rk, rk) = I(6), (3.98)

where I(6) is the 6 × 6 identity matrix. Now, since the components of the incremental

deformation in Eq.(3.85) are real, the conditional impedance matrix z = z(r, rk) is defined

as the 3× 3 matrix, such that:

r S = zU, with z = M3M
−1
1 (3.99)
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Substituting Eq. (3.92) and Eq. (3.99) in Eq. (3.93), the following equations are obtained:

d

dr
U =

1

r
G1U +

1

r
G2zU

d

dr
(z U) =

1

r
G3U −

1

r
GT

1 zU

(3.100)

and substituting Eq.(3.100).1 into Eq. (3.100).2, the matrix Riccati equation is de-

rived:
dz

dr
=

1

r

(
G3 −GT

1 z− zG1 − zG2z
)
. (3.101)

From the boundary condition at the inner layer in Eq.(3.82) and using Eq.(3.99), the

initial condition of zero traction at the inner surface ri writes:

zen(ri) = 0, (3.102)

The initial conditions of zero traction at the outer surface in Eq.(3.81) are used to derive

the following stop condition:

det zme(r0) = 0 (3.103)

and the continuity conditions at the interface of the two layers in Eqs.(3.83,3.84) read:

zen(renm ) = zme(rmem ). (3.104)

The matrix Riccati equation (3.101) for the endoderm is integrated from r = ri to r = renm
using the initial condition in Eq.(3.102). Using this solution and the continuity condition

in Eq. (3.104) the initial condition for the mesoderm at r = rmem is derived and the Riccati

equation is integrated again, now from r = rmem to r = r0, until the convergence criterion

in Eq.(3.103) is satisfied.

The numerical resolution algorithm is implemented in Mathematica and the function

NSolve is used to numerically integrate the Riccati Equation. The function automatically

uses the most suitable numerical method to solve the system of equations. In Figure 3.16

the algorithm flowchart is sketched.
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Figure 3.16: Algorithmic flowchart to solve the differential Riccati equation in Eq.(3.101).

3.4.7 Theoretical results of the linear stability analysis

In this section, the analytical results obtained from the linear stability analysis per-

formed in Section 3.4.4 will be presented. In particular, the role played by the aspect

ratios Hen and Hme of the endodermal and mesodermal layers on the onset of the insta-

bility is analyzed. Furthermore, it will be investigated in the following how the stiffness

ratio µme/µen affects the morphology of the emerging pattern.
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3.4.7.1 Effect of the aspect ratios of the layers on the pattern selection

First, the effect that the geometric aspect ratios of the two layers have on the onset

of the mechanical instabilities of the growing tube is investigated. Since the mesoderm

is physiologically stiffer than the endoderm, the stiffness ratio is fixed to µme/µen = 5 in

Figures 3.17 and µme/µen = 10 in Figure 3.18. In both cases the initial external radius is

R0 = 1 and the initial aspect ratio of the mesodermal layer Hme ranges between 1.8 and 2.

In Figures 3.17(a) and 3.18(a) the critical growth ratio (gen/gme)
cr is plotted against the
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Figure 3.17: Critical growth ratios (gen/gme)
cr (a), with the corresponding critical cir-

cumferential modes mcr (b) and longitudinal modes kcrz (c), plotted against the initial
aspect ratio of the endoderm Hen, at different initial aspect ratios of the mesoderm
Hme = {1.8, 1.85, 1.9, 2} for constant µme/µen = 5.

initial aspect ratio of the endodermal layer Hen at different ratios of Hme. The correspond-

ing critical circumferential modes mcr and the critical longitudinal wavenumber kcrz are

depicted in Figures 3.17(b), 3.18(b) and Figures 3.17(c), 3.18(c), respectively. The curves
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Figure 3.18: Critical growth ratio (gen/gme)
cr (a), with the corresponding critical circum-

ferential and longitudinal modes mcr (b) and kcrz (c), at different mesodermal aspect ratios
Hme = 1.2, 1.3, 1.4, 1.5, 1.8, fixing µme/µen = 10.
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show how increasing either Hen or Hme decreases the critical growth ratio (gen/gme)
cr.

A different trend can be observed in Figure 3.17(b): the critical circumferential modes

mcr increase as the initial aspect ratio Hme of the external layer increases, but the crit-

ical modes mcr decrease as the initial aspect ratio Hen of the internal layer increases.

The critical longitudinal wavenumber kcrz , in Figure 3.17(c), decreases as Hme increases.

When the internal layer is thin, i.e., Hen ≤ 1.3, the following trends can be observed: low

longitudinal wavelengths emerge for cylinders with thick external layers, i.e., Hme ≥ 2,

whereas high longitudinal wavelengths emerge for cylinders with thinner external layer,

i.e., Hme ≤ 1.9. In order to explore the behavior of the tissue when the mesodermal layer

is thin, the stiffness ratio is fixed to µme/µen = 10 and the focus is pointed to the range

Hme = 1.2 − 1.8. In the following, the effect of the stiffness ratio between the two layer

on the onset and the morphology of the instability is investigated.

3.4.7.2 Effect of the stiffness ratio on the pattern selection

Now, fixed the initial aspect ratio of the mesoderm Hme = 1.8 and the initial external

radius R0 = 1, different values of the stiffness ratio µme/µen between mesoderm and en-

doderm are considered.

In Figure 3.19(a) the critical growth ratio (gen/gme)
cr are plotted against the initial as-

pect ratio of the endodermal layer Hen at different stiffness ratios µme/µen. In Figure

3.19(b) and Figure 3.19(c), the corresponding critical circumferential modes mcr and the

longitudinal wavenumber kcrz are plotted against Hen at different µme/µen. Figure 3.19(a)

highlights how the critical growth factor gen/gme decreases as the stiffness ratio µme/µen
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Figure 3.19: Critical growth ratios (gen/gme)
cr (a), with the corresponding critical cir-

cumferential modes mcr (b) and longitudinal modes kcrz (c), plotted against the initial
aspect ratio of the endoderm Hen, at different stiffness ratios µme/µen = {3, 5, 5.3, 6, 10}
for constant Hme = 1.8.
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increases. The stiffer the external layer, the lower the critical growth required to induce

the instability. The curves in Figure 3.19(b) and 3.19(c) show how an increase in the

stiffness ratio corresponds to an increasing critical circumferential mode and a decreas-

ing longitudinal wavenumber kcrz . In the following, the implementation of the numerical

model for investigating the evolution of the instability patterns will be described.

3.4.8 Finite element simulations in the post-buckling regime

The linear stability analysis performed in Section 3.4.4 allows to calculate the thresh-

olds for the onset of the instability and the associated patterns, but does not allow to

study the evolution of the patterns beyond the linear threshold. A more complete analysis

would require the resolution of Eqs.(3.77-3.80) and Eqs.(3.81-3.83), including the terms

of higher orders in ε. For the elastic problem considered in this work, this strategy leads

to a form of the equations which is not analytically treatable. Therefore, a numerical

solution will be derived using the finite element method.

To explore the behavior of the system in the post-critical regime, the commercial finite

element program Abaqus/Standard, Version 6.12 has been employed [102]. In the next

paragraph, a brief description of the implementation of the numerical model will be given.

3.4.8.1 Implementation of the model in Abaqus

Step 1. Geometry

The three-dimensional cylindrical model is built including the two layers. The geometry

is defined by the aspect ratios Hen = Rm/Ri and Hme = R0/Rm of the endoderm and of

the mesoderm, respectively, with R0 set equal to 1. In order to optimize the number

of elements needed to well capture the sinusoidal component of the instability in the

longitudinal direction, the initial length of the cylinder is calculated as follows. The

longitudinal wavenumber is given by

kz = 2π ∗ nz/L, (3.105)

where nz is an integer which identifies the number of folds in the longitudinal direction,

associated to the instability pattern. The value of kz is given by the linear stability anal-

ysis, thus as long as Eq.(3.105) is satisfied, L and nz can be chosen arbitrarily. Therefore,

nz can be chosen equal to 1 and accordingly L can be calculated from Eq.(3.105).
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Step 2. Constitutive model

The two layers are modeled as incompressible and hyperelastic materials. A Neo-Hookean

model is used, setting the values of the shear moduli mu en and mu me = mu ratio∗mu en

for the endoderm and the mesoderm, respectively.

Step 3. Differential Growth

The growth is implemented in the model as a thermal expansion. The Expansion and

Conductivity properties of the materials are set according to Table 3.1.

Expansion α Conductivity
Endoderm 1.0 0.0
Mesoderm 0.0 0.0

Table 3.1: Thermal constants used in the numerical simulations in order to model the
differential volumetric growth of the endodermal and mesodermal layers.

The following linear evolution law is adopted for the growth:

gl = 1 + αl · t, l = (en,me) , (3.106)

where αl are the expansion constants, representing the growth rates for each layer and t

is the time.

Step 4. Mesh

In order to exactly model the incompressibility of the materials, tri-linear brick hybrid

elements with 8 integration points (C3D8H) are used. The number of elements in the ra-

Hme = 1.8 Hme = 1.9 Hme = 2
radial En. 2 2 2
radial Me. 12 15 20

circum. m*10 m*10 m*10
long. 100 100 100

Table 3.2: Mesh parameters in function of the geometry of the model and of the pertur-
bation. m is the circumferential wavenumber.

dial, circumferential and longitudinal directions is chosen depending on the geometry of

the cylinder and on the shape of the initial perturbation, see Table 3.2.

99



Chapter 3. Morphoelastic modeling of gastro-intestinal organogenesis

Step 5. Initial imperfection

The perturbation is included in the model, introducing a small imperfection in the initial

mesh, with an amplitude Perturbation = 0.001 and the form of Eq.(3.85). The circum-

ferential and longitudinal wavenumbers m and kz respectively, are those predicted by the

linear stability analysis for each combination of the initial parameters.

Step 6. Time Step

The static analysis procedure offered by Abaqus Standard is used to solve the equilibrium

problem. The initial, the minimum and the maximum time steps are manually set to

InitialStep = 10−2, MinStep = 10−3 and MaxStep = 10−2.

Step 7. Boundary Conditions

A condition of zero-longitudinal displacement at the top and the bottom of the cylinder

is imposed. In order to model the stress-free boundary conditions at the inner and outer

surfaces, a local cylindrical reference system is defined. Then, the circumferential dis-

placements are set to zero at the outer boundary. This allows for a more stable numerical

solution and avoids unconstrained rigid body motions.

Step 8. Contact control

A contact control is set to the inner surface, in order to avoid incompatible deformations

due to superposition of elements, with the tolerance option set to

absolutePenetrationTolerance = 0.5.

3.4.9 Numerical results

In this section, the numerical results from the fully nonlinear finite element analysis

performed with Abaqus/Standard are summarized. First, the numerical implementation

will be validated by comparing the theoretical predictions of Section 3.4.7 with the cor-

responding results from the numerical simulations. Second, the non-linear evolution of

the instability patterns developing at the inner surface of the embryonic endoderm will

be investigated.

3.4.9.1 Validation of the numerical code versus the theoretical predictions

In order to validate the finite element implementation, the critical growth ratios in

the numerical simulation are compared with the theoretical predictions. The criterion
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for such a comparison is based on the energy considerations. In this physical system

the selected solution always minimizes the total elastic energy of the system. Before the

onset of buckling, the solution with the minimal elastic energy is the basic axisymmetric

deformation in Eq. (3.69). During the growth process, the stresses accumulate until a

critical growth value is reached. At this point, the system bifurcates into a solution with a

lower energy than the one associated with the basic axisymmetric solution, thus buckling

occurs.
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Figure 3.20: The energy ratio Enum/E0 against the growth ratio gen/gme at Hme = 1.8,
fixing µme/µen = 10 and at different Hen = 1.1, 1.2, 1.3, 1.4, 1.5. The filled colored bullets
identify the critical growth values defined according to the energy criterion.

The critical growth in the numerical simulations is identified as the value of (gen/gme)
cr

at which the ratio between the total current elastic energy and the initial elastic energy

Enum/E0 has decreased by more than 1% of its initial value. The total elastic energy E0

follows from integrating Eq. (3.58), as:

E0 = 2π

(∫ L

0

∫ Rm

Ri

ψ0en ·Ren dRen dZen +

∫ L

0

∫ R0

Rm

ψ0me ·Rme dRme dZme

)
,

where ψ0en and ψ0me are the strain energy functions of the endodermal and mesodermal

layers associated with the basic deformation in Eq. (3.69). In Figure 3.20, the curves for

the ratio Enum/E0 are plotted for different Hen at fixed Hme = 1.8 for µme/µen = 10. The

trend of the curves shows how the ratio Enum/E0 undergoes a steep decrease right after
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Figure 3.21: Comparison between the critical growth value (gen/gme)
cr from the numerical

finite element solution (dots) and the analytical linear stability analysis (lines). The
parameters are set as Hme = 1.8, µme/µen = 10 (blue) and µme/µen = 6 (magenta).

the bifurcation point. Furthermore, as predicted from the linear stability analysis, the

critical growth ratios are higher for cylinder with small Hen .

Figure 3.21 shows that the critical growth values of the numerical simulations are in good

agreement with the analytical predictions. The solid lines refer to the analytical solutions,

whereas the markers indicate the numerical thresholds found from the simulations. This

confirms the numerical implementation, which can now be employed to investigate pattern

formation in the fully nonlinear regime.
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3.4.9.2 Evolution of the instability pattern

Now, the aim is to analyze the morphological evolution of the instability patterns far

beyond the onset of buckling. Figure 3.22 collects the resulting patterns in the (Hen, Hme)-

space. The phase diagram in Figure 3.22 highlights a transition from a one-dimensional

circumferential pattern to a two-dimensional pattern, already indicated by the analyti-

cal curves in Fig 3.17. In particular, tissues with both thick endoderm and mesoderm

select a circumferential instability pattern with mcr > 0 and kcrz = 0, whereas tissues

with both thin endoderm and mesoderm select a two-dimensional instability pattern with

mcr, kcrz > 0. Figure 3.23 illustrates the phase diagram of the instability patterns in the

(Hen, µme/µen)-space. In agreement with the analytical curves in Fig. 3.19, the instabil-

Figure 3.22: Phase diagrams in the (Hen, Hme)-space at constant µme/µen = 5: Different
instability patterns emerge during the numerical simulations, a one-dimensional circum-
ferential pattern for mcr > 0, and kcrz = 0 and a two-dimensional pattern for mcr > 0 and
kcrz > 0, where the colorbar indicates the value of the radial displacement.
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Figure 3.23: Phase diagrams in the (Hen, µme/µen)-space at constant Hme = 1.8: Dif-
ferent instability patterns emerge during the numerical simulations, a one-dimensional
circumferential pattern for mcr > 0 and kcrz = 0, a one-dimensional longitudinal pattern
for mcr = 0 and kcrz > 0, and a two-dimensional pattern for mcr > 0 and kcrz > 0. The
colorbar indicates the value of the radial displacement.

ity pattern undergoes a transition from a one-dimensional to a two-dimensional mode in

Figure 3.23. In particular, for high stiffness ratios µme/µen a circumferential pattern with

mcr > 0 and kcrz = 0 is selected, whereas for low stiffness ratios µme/µen a longitudinal

pattern with mcr > 0 and kcrz = 0 emerges. The region in which the shear moduli are of

the same order is characterized by a two-dimensional pattern with mcr > 0 and kcrz > 0.

In the next section, the fully nonlinear evolution for each of these endodermal patterns is

studied and the amplitude of the emerging surface undulations is investigated.
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Case 1. One-dimensional circumferential pattern. Figure 3.24 shows the ampli-

tudes εθ of the one-dimensional circumferential instability pattern, kcrz = 0, for varying

growth factors gen/gme. The amplitude is normalized with respect to the average internal

radius r̄i such that εθ = (rmaxi − rmini )/r̄i, where r̄i is the average of ri for each growth

multiplier gen/gme and rmini and rmaxi are the minimum and maximum radii among all the

values calculated for the nodes on the inner surface. Before the critical point is reached

(1), the simulations show a slow increase in the amplitude of the perturbation. The in-

stability thresholds of Section 3.4.7 are marked with crosses in Figure 3.24. Beyond the

critical point (2), the curves become steeper, reveal a fast increase in amplitude (3), then

show a discontinuity which corresponds to the incipient formation of creases, whose width

increases over increasing growth ratio (4-5).

Figure 3.24: (left) Amplitudes εθ of the one-dimensional circumferential instability pat-
tern, against the growth gen/gme. The curves are shown for constant Hme = 1.8 and
µme/µen = 10 at varying Hen = {1.1, 1.2, 1.3, 1.4, 1.5}. (right) Zoomed views of the re-
sulting patterns depicted in the snapshots (1-5), highlighting the creasing of the inner
surface. The colorbar indicates the absolute value of the radial displacement.
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Case 2. One-dimensional longitudinal pattern. Figure 3.25 illustrates the ampli-

tudes εz of the one-dimensional longitudinal instability pattern for different thicknesses

of the internal layer Hen. To calculate εz = (rmaxi − rmini )/r̄i, the radii r̄i, r
min
i , and rmaxi

are calculated among all nodes of the inner surface, at a fixed θ coordinate. Two charac-

teristic trends can be observed, as depicted by the lines a and b in Figure 3.25, and the

corresponding insets. Cylinders with a thinner inner layer, Hen ≤ 1.3, undergo a steep

increase in the amplitude of the perturbation (line a) after the critical point, with a dis-

continuity, which indicates the formation of creases. Conversely, cylinders with a thicker

inner layer, Hen > 1.3 (line b), undergo an initial increase in the wrinkling perturbation,

followed by a gradual decrease over increasing growth. Therefore, the endoderm surface

is characterized by stable wrinkles.
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Figure 3.25: Amplitudes εz of the one-dimensional longitudinal instability pattern, against
the growth gen/gme. The curves are shown for constant Hme = 1.8 and µme/µen = 3 at
varying Hen = {1.1, 1.2, 1.3, 1.4, 1.5}.
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Case 3. Two-dimensional pattern. Figure 3.26 depicts the amplitude of the two-

dimensional instability pattern. In Figure 3.26, the value ε2D = (rmaxi − rmini )/r̄i with

r̄i, r
min
i , and rmaxi is evaluated among all nodes at the inner surface. Similar to the one-

dimensional longitudinal pattern, the curves now display two different trends: cylinders

with a thicker inner layer, Hen > 1.4, select stable wrinkles with an initially increasing

amplitude later reaching a saturation value (line a), wheres cylinders with a thinner inner

layer, Hen ≤ 1.4, undergo a steep increase in the amplitude of the perturbation after the

critical point, forming a creased surface. Moreover, both the circumferential εθ and the

longitudinal εz amplitudes of the two-dimensional instability pattern have the same trend

when plotted against the growth ratio gen/gme, as shown in Figure 3.27.
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Figure 3.26: The amplitudes ε2D of the two-dimensional instability pattern, against the
growth gen/gme. The curves are shown for constant Hme = 1.8 and µme/µen = 5 at varying
Hen = {1.1, 1.2, 1.3, 1.4, 1.5}.
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Figure 3.27: The two components εθ (blue) and εz (magenta) of the amplitude of the
two-dimensional instability pattern, against the growth gen/gme. The curves are shown
for µme/µen = 5, Hen = 1.5 at Hme = 1.8 (dotted).

3.4.9.3 Secondary bifurcations: wavelength doubling

The undulation wavelengths depicted in Figures 3.24, 3.25, and 3.26 remain unaltered

for increasing values of gen/gme, so that the number of circumferential and longitudinal

folds remains the same value selected by the linear stability analysis. Nonetheless, the

numerical simulations highlight another possible scenario for the non-linear evolution of

the instability.

In Figure 3.28, the instability initially begins with m = 12 and nz = 2 as predicted

by the analytical solution, but then, beyond the critical point (gen/gme)
cr = 1.44, the

number of longitudinal folds doubles. Therefore, a secondary transition from a square to
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Figure 3.28: Wavelength doubling of the two-dimensional instability pattern, along the
z-axes. The snapshots are taken at gen/gme = {1, 1.72, 1.81} (left, middle, right), for
Hen = 1.35, Hme = 1.9, and µme/µen = 5. The colorbar indicates the value of the radial
displacement. The predicted critical growth ratio is (gen/gme)

cr = 1.44.

a hexagonal surface pattern is observed far beyond the linear stability threshold. Such

a wavelength doubling is very similar to the one observed for the wrinkling of a stiff

elastic layer over a soft substrate [103], undergoing a secondary bifurcation driven by the

subharmonic resonance. A similar behavior has also been found for the circumferential

folding of core-shell soft cylinders [104].

3.4.10 Validation of the model with experimental data

The aim of this section is to discuss the theoretical predictions and the results from

the numerical simulations in comparison with the few available data in the biological lit-

erature on GI embryogenesis.

From Figure 3.17, the morphoelastic model predicts the emergence of a circumferential

pattern for embryonic GI tissues with thin epithelium and thick mesoderm. Conversely,

a two-dimensional pattern is selected for tissues with similar aspect ratios of the lay-

ers. These results are in agreement with the experimental results from chick and mouse

embryos reported in [90]. In fact, circumferential folds emerge around Day 8 after fertiliza-

tion in chick embryos, which are characterized by a thin endoderm, whilst two-dimensional

patterns first arise in mouse embryos. In Figure 3.29(a-b), the measurements of the area

and external perimeter of the epithelium and mesenchyme of small and large intestine
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Figure 3.29: Experimentally measured geometries of embryonic mouse intestines: outer
circumference (blue), mesoderm area (magenta) and endoderm area (green) in the duo-
denum (a) and in the large intestine (b) [9]. Analytically predicted values of volumetric
growth ratios for the small intestine (cyan) and large intestine (orange) over the days
after fertilization(c).

in mouse embryos are reported [9]. Assuming a stress free-configuration at the first day

and an isotropic growth process, the corresponding growth ratios for the small and large

intestine are calculated at different embryonic ages, as depicted in Figure 3.29(c). Our

simulations indicate that the growth ratio for the small intestine is greater than the one

for large intestine. In particular, a two-dimensional pattern arises in the small intestine

between day 13−14 after incubation at a growth factor gen/gme = 1.2−1.4. This value is

in agreement with the analytical predictions in Figure 3.17 which predict the emergence

of a two-dimensional pattern at a growth factor gen/gme = 1.4, for an initial geometry

with Hen = 1.4, Hme = 2.

Geometrical parameter Jejunum Ileum asc. colon desc. colon
Endoderm (mucosa) 208 µm 140 µm 155 µm 115 µm

Mesoderm (muscularis+serosa) 49 µm 53 µm 66 µm 64 µm
2R0 1.5 mm 1 mm 1.26 mm 1.26 mm
Hen 1.42 1.45 1.38 1.25
Hme 2.13 1.11 1.13 1.11

Table 3.3: Geometrical parameters, thicknesses and diameter, of jejunum and ileum,
ascending and descending colon, measured at the first trimester of gestation of a human
fetus.

In Table 3.3, the geometrical measurements of the endodermal and mesodermal layers
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in different segments of the small and large intestines in human embryos are reported

from [105]. In the small intestine, where both the endoderm and the mesoderm are thick,

villi start forming from a two-dimensional pattern, while in the colon, characterized by a

very thin mesoderm, a longitudinal pattern is observed first. This is in agreement with the

analytical results presented in Section 3.4.7.1, which predict the formation of longitudinal

folds in the colon with a mesodermal aspect ratio in the range of 1.15 ≤ Hme < 1.3. In

fact, the growth thresholds and the associated modes depicted in Figure 3.18 show that a

longitudinal folding pattern is selected for tissues with thin mesodermal layer Hme < 1.3.

Moreover, the results predict that intestines with a thicker endoderm have lower growth

thresholds, which suggests that instabilities occur earlier in intestinal tissues with a thick

endoderm. This finding is in qualitative agreement with the measurements, which showed

that villi first form in the upper part of the duodenum where the epithelium is thicker

respect to the epithelium of the other gut segments in a human fetus [89].

3.5 Concluding remarks

In this chapter, the morphoelastic theory presented in Chapter 2 has been applied in

order to model the GI morphogenesis in different species of vertebrates. A first model has

been proposed, where the GI tube has been modeled as a one layered cylinder, made of

hyperelastic, incompressible and anisotropic tissue, i.e. the embryonic mucosa surrounded

by a much stiffer composite of tissues. The theoretical model showed that the spatially

constrained growth of the embryonic mucosa, could be the mechanism driving the early

formation of the intestinal villi in mouse embryos. In fact, these functional structures arise

from a two-dimensional undulated pattern, which the model has been able to reproduce.

Nevertheless, the model didn’t allow to predict the finite wavelength of the emerging in-

stability pattern, thus a more complex model has been proposed. The GI tube has been

modeled as a two-layered cylinder, made of two hyperelastic, incompressible and isotropic

tissues: the two primary matrices from which the gut originates, i.e the inner endoderm

and the outer stiffer mesoderm. Note that, since the mesoderm is considered stiffer than

the endoderm, the limit case µme/µen →∞ corresponds to the one-layer model proposed

in the first part of the chapter. The mechanisms driving the onset of the instability is

thus the unconstrained differential growth between the primary layers. This model not

only allows for investigating the onset of different mono-dimensional patterns such as the

circumferential folding in chick small intestines and the longitudinal rings observed in
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the human colon, but also the emergence of the two-dimensional network of folds which

precedes the formation of the intestinal villi in mouse embryos. Moreover, the model

highlights that the selection of this variety of patterns relies in the geometrical and me-

chanical factors, characterizing the GI embryonic tissues. With the aim of investigating

the evolution of the established patterns as the growth proceeds, the problem has been

implemented in Abaqus and the numerical simulations in the fully nonlinear regime have

been performed. The numerical results have shown that the patterns can evolve, following

different paths ranging from the formation of stable wrinkles to the emergence of creases.

In some cases, even a dramatic wavelength doubling can occur. Furthermore, the numer-

ical simulations highlighted that the geometry and the mechanical properties of the two

embryonic layers are crucial in determining the post-buckling evolution of the instability

pattern.

In conclusion, the few experimental data available in the literature have validated the

proposed model and the hypothesis according to which the differential growth between

the two embryonic layers could be the underlying mechanisms which drive the formation

of the diverse structures in the GI tract of vertebrates.
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In this chapter, the morphoelastic theory illustrated in Chapter 2 will be applied

to another interesting biological problem: the helical buckling of pre-stressed tubular

tissues. The study is motivated by the necessity of predicting dangerous phenomena,

such as the obstruction of the blood vessels. Blood vessels and in particular arteries

might be subjected to torsional loads during life. For example, rotation of the head exerts

a torsion load on the carotids and on the vertebral artery at the level of the atlantoaxial

joint [106]. The vertebral arteries are also subjected to twist when the back rotates.

Torsional instabilities in blood vessels can induce an alteration of the blood flow and an

increase of the resistance of the vessel to the blood flow. Eventually, those alterations

can initiate ischemic episodes and may eventually be fatal [107]. Therefore, the study of

torsional instabilities in tubular tissues is a topic of utmost interest.

An introduction to the anatomy and the mechanisms which are known to govern the

functionality of the arteries is first presented. Then, the morphoelastic model will be

formulated following the theory presented in Chapter 2, with the aim of providing a

useful tool for the prediction of the occurrence of torsional instabilities in tubular organs.

4.1 Preliminary remarks

Before formulating the morphoelastic model, some useful concepts will be introduced.

In particular, the main biological phenomena regulating the physiological state of arteries

will be illustrated.

4.1.1 Introduction to the anatomy and the physiology of arteries

Blood vessels constitute the vast network ensuring blood circulation in vertebrates

where arteries, veins and capillaries are the main components. Precisely, arteries and

veins are the sites where the macro-circulation occurs. Arteries distribute the blood

(reach of oxygen) from the heart to the organs and veins transport the blood (reach of

carbon dioxide) back to the heart. Micro-circulation takes place in the capillaries which

are the smallest blood vessels and are embedded in organs. They directly exchange oxygen
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and carbon dioxide with organs [108].

As sketched in Figure 4.1, arteries are made of three layers, the tunica intima, media

and adventitia. The innermost layer, the tunica intima is a thin sheet of epithelial cells.

Intima
(Endothelial cell)

Media
(Smooth muscle cells

Collagen

Elastin

Proteoglycans)

Adventita
(Fibroblast

Collagen

Elastin)

Figure 4.1: Multi-layered structure of the artery. The main components of the Tunica
Intima, Media and Adventitia.

The tunica media is the middle layer and is made up of smooth muscle cells, few elastic

layers, collagen and elastin fibrils. The outermost layer, the tunica adventitia contains

collagen fibers, fibroblasts, ground substances and nerves. The structure of arteries varies

depending on the distance from the heart. Big arteries such as the aorta have a diameter >

10mm and their tunica media is mainly composed by elastic tissue, while small peripheral

arteries (0.1–10mm) have a dominant muscular composition [74]. In the following the

spectacular mechanism which is behind the ability of arteries to adapt in response to

external stimuli, will be illustrated.

4.1.2 Principle of homeostasis

During the second half of the 19th Century, Claude Bernard coined the word milieu

intérieur for describing the internal equilibrium state which characterizes all living organ-

isms [109]. Later, Cannon extended the concept to the so-called homeostasis principle

according to which living systems tend to maintain the internal equilibrium by coopera-

tion of internal physiological processes [110]. Behind the homeostasis principle is the idea

that a living tissue is in a physiological equilibrium steady-state. When it is perturbed

from this state, it reacts by activating some internal processes aiming at restoring the

original homeostatic state.
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β

Figure 4.2: Loaded, unloaded and stress free state of pulmonary (left) and ileal (right)
aorta in rats, from [10].

As all tissues exposed to mechanical cues, blood vessels are known to respond to changes

in external mechanical factors, such as blood flow and pressure in order to maintain their

own homeostatic state. Several hypotheses for a characterization of the homeostatic state

in arteries have been proposed. According to Choung and Fung arteries adapt to external

stimuli to reduce the transmural stress gradient [69]. Takamizawa et al. [111] proposed

that arteries tend to maintain an optimal homeostatic state in which the tissue is char-

acterized by a uniform circumferential strain. This is an optimal state in the sense that

a uniform distribution of circumferential strain ensures a higher resistance to changes in

loads. Recently, Destrade et al. proposed an extension of Takamizawa’s and coworkers

hypothesis, according to which arteries are in a state of homogeneous transmural strain

under the physiological blood pressure [112]. In the following, this hypothesis will be

adopted.

4.1.3 Residual stresses and stress-free state

Arteries adapt to external mechanical stimuli by growing and by reorganizing their

internal architecture (remodeling). As discussed in Section 2.1.2, growth and remodeling

might introduce incompatibilities in the tissue, and consequently residual stresses arise.

In fact, experiments performed by Fung and co-workers [10, 33] have shown that, when

removed from its anatomical environment and cut radially, a ring of artery strengthens

and opens up into a cylindrical open sector, revealing the presence of residual stresses in

the vessel, see Figure 4.2. The open sector, which is a stress-free natural state for the
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tissue, is characterized by an opening angle β. Different values of β have been measured

in arteries in physiological conditions and in those affected by hypertension (higher blood

pressure), suggesting that the opening angle adjusts as a function of the internal blood

pressure. Therefore, the residual stresses arising from the growth and remodeling must

be taken into account when modeling torsional instabilities in arteries.

4.1.4 Remodeling process in arteries

From experiments it is known that the stress-free state of an artery is an open sector.

Therefore, let B0 be the stress-free state where the artery is defined as an open sector (see

Figure 4.3), so that the circumferential and longitudinal pre-stretches λθ (related to the
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Figure 4.3: Schematic representation of the remodeling process in the artery: the initial
hypothetical stress-free state B∗0, the stress-free remodeled state B0 associated to the
pre-stretches λθ, λz, the unloaded residually-stressed state Bm and the homeostatic state
Ba where the artery is a remodeled residually-stressed cylinder subjected to the internal
pressure P .
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opening angle) and λz, respectively, are defined. The residual stresses completely depend

on these two parameters. Precisely, they arise from the deformation which closes the

open sector and squeezes/stretches it along its longitudinal axis into an intact unloaded

residually-stressed cylinder. Let Bm be the unloaded residually-stress state of the artery,

and χλ be the deformation mapping transforming the open sector into the intact cylinder

in Bm. Now, B0 is actually a stress-free remodeled state, defined by an upstream pure

remodeling process which transforms the initial state B∗0, where the artery is a stress-free

cylinder, into the geometrically incompatible open-sector. According to the approach

based on the multiplicative decomposition, a tensor Fg (which depends on λθ, λz) can

be associated to the pure remodeling process. Furthermore, since during remodeling no

change of mass occurs, it must be det Fg = 1.

Arteries are subjected to an internal pressure during their life. According to the

homeostasis principle formulated in [112], λθ, λz adjust depending on the internal pressure

so that the deformation χh which closes and squeezes/stretches the open sector from B0

to the final homeostatic state (with an applied internal pressure) is homogeneous. Let Bh

be the homeostatic state of the artery and Fh the gradient associated to the deformation

χh, thus Fh
g = FhFg.

As for the growth process, the characteristic time scale of remodeling is much bigger

than the one associated to the elastic deformation and to the external loads. Therefore

the considered problem is quasi-static and the dynamics which drive the remodeling from

the initial state B∗0 to the remodeled stress-free state B0 can be neglected. In order to solve

the elastic problem, it is essential to know the values of λθ, λz in the state B0, which can

be easily determined from cutting experiments. According to the homeostasis principle,

let B0 be a stationary state and let F∗g and F∗e be two tensors such that:

Ḟg = H(F∗g,F
∗
e) ≈ 0. (4.1)

F∗g = Fg(t � τg) and F∗e = Fe(t � τg) = Fh are the remodeling tensor depending on

the pre-stretches λθ, λz and the homogeneous elastic deformation gradient, respectively.

Consequently, following the hypothesis of homogeneous transmural strain, λθ, λz can be

calculated as functions of the pressure and thus the state B0 is completely defined.

In the following, the morphoelastic model will be used to study torsional instabilities

in pre-stressed cylinders. Three different cases will be considered, associated to three

different loading scenarios: zero-traction boundary conditions, an applied internal pressure

and an applied external pressure, respectively. The three considered cases covered a wide
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range of biological applications. For example in the airways no pressure is acting on the

surfaces, while due to the presence of surrounding tissues, the adult intestine is subjected

to external pressure. Lastly, the case of internal pressure applies to the arteries. The

remodeling process described above will be taken into account in all the three cases and

the critical value of the torsion rate will be calculated at varying values of the pre-stretches

λθ, λz in order to investigate the effects of residual stresses on the onset of torsional

instabilities in hollow cylinders.

4.2 Kinematics of the elastic problem

Let E ⊂ R3 be the three-dimensional Euclidean space, so that Bm,Ba ⊂ E are two

regions occupied by a hollow circular cylinder in two different instants of time. A finite

torsion rate γ is applied to the tube, which moves from the residually-stressed material

configuration Bm to the spatial configuration Ba. As illustrated in Section 4.1.4, let the
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Figure 4.4: Schematic representation of the mapping χ: the component χλ restores the
geometrical compatibility mapping into the residually-stressed hollow cylinder in Bm;
while the component χγ takes into account the finite torsion rate γ. Φ = γλzZ is the
twist angle associated to γ.
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reference state B0 be identified by a cylindrical sector with:

Ri ≤ R ≤ R0, 0 ≤ Θ ≤ 2π − β, 0 ≤ Z ≤ L (4.2)

where Ri and R0 are the inner and outer radii, respectively, L is the axial length and

β < 2π is the initial opening angle, as depicted in Figure 4.4. Note that if β is negative

there is an overlapping region in the reference state.

Setting the orthonormal bases (ER,EΘ,EZ) in B0 and (er, eθ, ez) in Ba, the mapping χ

which transforms the position X in B0 into its spatial counterpart x in Ba is defined as

in Eq.(2.1). The mapping χ can be split into two components as χ = χγ ◦ χλ, where

χλ is the component which restores the geometrical compatibility of the tube, therefore

associated with the definition of the circumferential and axial pre-stretches, and χγ takes

into account the application of a finite torsion rate, as shown in Figure 4.4.

Considering the cylindrical coordinate systems (r, θ, z) and (R,Θ, Z) in Ba and B0,

respectively, the mapping χ is defined using the following deformation fields:

χ(r, θ, z) =


r(R,Θ, Z) = r(R)

θ(R,Θ, Z) = λθΘ + λzγZ

z(R,Θ, Z) = λzZ

(4.3)

where r(R) is a scalar function of R, λθ = 2π/(2π − β) is the circumferential pre-stretch,

depending on the initial angle β, and γ is the finite torsion rate. According to the

definition in Eq.(2.2), the deformation gradient F associated to the mapping χ is radially

inhomogeneousin general and reads:

F =


∂r(R)
∂R

0 0

0
r

R
λθ λzγr

0 0 λz

 (4.4)

in the ek ⊗ El basis, (l, k) spanning over {r, θ, z} and {R,Θ, Z}, respectively. Further-

more, the kinematics of the elastic problem is completely defined by introducing the

incompressibility constraint in Eq.(2.21) and imposing:

r(R) =

√
R2

λzλθ
+ a, with a = r2

i − R2
i /(λzλθ). (4.5)
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Using equation (4.4), the left Cauchy-Green tensor B = FFT reads:

B =


(

R

rλzλθ

)2

0 0

0
( r
R
λθ

)2

+ (λzγr)
2 λ2

zγr

0 λ2
zγr λ2

z

 (4.6)

in the eh ⊗ ek basis, (h, k) spanning over {r, θ, z}. As shown by Ogden [76], the Eulerian

principal axes associated to the deformation in equation (4.3) have the following unit

vectors:

e1 = er, e2 = eθ cosφ− ez sinφ, e3 = eθ sinφ+ ez cosφ, (4.7)

where φ identifies the rotation angle of the principal vectors e2 and e3 with respect to

eθ and ez. The corresponding principal stretches λ1, λ2 and λ3 can be calculated by

diagonalizing B as follows:

QTBQ = V2 = diag(λ2
1, λ

2
2, λ

2
3) (4.8)

where Q is the rotation matrix associated to the change of basis in equation (4.7), diag

indicates a diagonal matrix and V is the unique, positive-definite spatial stretch tensor

arising from the polar decomposition of the deformation gradient. It follows that the

principal stretch associated to the principal axis e1 is λ1 =
R

rλzλθ
, while the two other

principal stretches are related by:
λ2

2 + λ2
3 = λ2

θ

r2

R2
+ λ2

zγ
2r2 + λ2

z

λ2λ3 =
λzλθr

R

(4.9)

with:

tan(2φ) =
2λ2

zγr

λ2
2 + λ2

3 − 2λ2
z

, (4.10)

which is valid within the range 0 6 φ < π/4.

With the final aim of applying the model to soft tubular tissues, the constitutive equations

for the cylinder will be introduced in the following section.
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4.3 Constitutive equations

As first proposed by Ogden et al. [113] and later adopted by Destrade et al. [112], it

is assumed here that the mechanical behavior of the vessel is mainly driven by the tunica

media layer, being mostly constituted by rubber-like elastin, collagen and smooth muscle

cells. Therefore, the cylinder is modeled as a hyperelastic, incompressible and isotropic

material. Moreover, a neo-Hookean model for the strain energy function ψ is assumed:

ψ =
µ

2
(tr C− 3), (4.11)

where µ is the shear modulus, and tr is the trace operator and C = FTF is the right

Cauchy-Green tensor. From Eq.(4.11), the constitutive relations defined in Eqs.(2.65)

and (2.66) for the nominal stress S and the Cauchy stress σ respectively, can be written:

S = µFT − pF−1 (4.12)

σ = µB− pI. (4.13)

Using Eqs.(4.6, 4.13), the non-null components of the Cauchy stress tensor read:

σrr(r) = µBrr − p = µ
(r2 − a)

r2λθλz
− p

σθθ(r) = µBθθ − p = µ

(
r2λθ

λz(r2 − a)
+ λzγr

)
− p

σθz(r) = σzθ(r) = µBθz = µλ2
zγr

σzz(r) = µBzz − p = µλ2
z − p.

(4.14)

It is useful to recall that, as first reported by Rivlin [114], the finite torsion of the

pre-stretched cylinder can be obtained by applying surface tractions alone at the end

surfaces:

Nγ = 2π

∫ r0

ri

σzzrdr; Mγ = 2π

∫ r0

ri

σzθr
2dr (4.15)

where Nγ is the normal force and Mγ is the torque, whose values depend on the applied

boundary conditions.

In the following, the governing equations for the elastic problem will be derived and the

basic solutions calculated in the three load scenarios considered.
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4.4 Governing equations and basic axial-symmetric

solutions

The elastic problem is governed by Eqs.(2.78) and (2.79) with Neumann boundary

conditions which, according to Eqs.(2.42), write in the general form:{
σn = C1n on ∂B1

a = {r : r = ri}
σn = C2n on ∂B2

a = {r : r = r0}
(4.16)

where n is the spatial outer normal unit vector on the surface and C1, C2 are two scalar

values describing the presence of traction loads. As depicted in Figure 4.5, three sets of

b) c)

a)

No Loads

r
i

P

a)

Internal pressure

r
0

r
0r
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P

External pressure

r
i

r
0

n

Figure 4.5: Three different boundary conditions are considered: the hollow cylinder (a)
is stress-free at both surfaces, a pressure P is applied (b) at the internal surface or (c) at
the external surface.

boundary conditions will be investigated in the following:

(a) no traction loads on the internal and external surfaces;

(b) a pressure of magnitude P acting on the internal surface ∂B1
a.

(c) a pressure of magnitude P acting on the external surface ∂B2
a;

whose corresponding values of the constants C1, C2 are collected in Table 4.1.

Therefore, substituting Eq.(4.4) with Eq.(4.3) into Eqs.(2.78) and (2.79), the governing
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on r = ri on r = r0

(a) No loads C1 = 0 C2 = 0
(b) Internal pressure C1 = −P C2 = 0
(c) External pressure C1 = 0 C2 = −P

Table 4.1: Scalar values C1, C2 in equation (4.16), defining the boundary conditions of
Eq.(2.78), for the three loading scenarios shown in Figure 4.5.

equations reduce to:

dσrr(r)

dr
+

1

r
(σrr(r)− σθθ(r)) = 0 in Ba (4.17)

r r,R
R

λθλz = 1 in Ba (4.18)

with boundary conditions in Eq.(4.16).

As discussed by Hoger [115] the distribution of residual stresses inside the material will

depend on the shape of the body. According to the assumption that the pre-stretches

calibrate with the pressure loads, the residual stresses will also depend on the boundary

conditions, which fix the Lagrange multiplier p. Therefore, the basic solution of the elastic

problem expressed by in Eqs.(4.16,4.17,4.18) is calculated for each of the three cases under

consideration.

4.4.1 Case (a): stress-free internal and external surfaces

First, the basic axial-symmetric solution is derived when no traction loads are applied

on both the external and the internal surfaces of the cylindrical tube. In this case, the

boundary conditions in Eqs.(4.16) reduce to:{
σrr(ri) = 0

σrr(r0) = 0
(4.19)

The basic position vector x(0) is identified by the inhomogeneous basic deformation in

Eq.(4.3), with r(R) defined as in Eq.(4.5). Substituting Eqs.(4.14) into Eq.(4.17), it

follows that: ∫ r0

ri

Brr(r)−Bθθ(r)

r
dr = 0, (4.20)
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where the boundary conditions in Eq.(4.19) have been used. Now, the relation between

the deformed external and internal radii is given by the global incompressibility constraint

in Eq.(4.18), reading here as:

r0 =

√
R2

0 −R2
i

λzλθ
+ r2

i . (4.21)

By substituting r0 from Eq.(4.21) into Eq.(4.20), it follows that:

1

H2λ2
θ

(
1

r2
i λz
− γ2(H2 − 1)λθλ

2
z −

H4λθ
H2 +H2r2

i λθλz − 1

)
+

−2λθ log[H] +
1

λθ
log

[
1 +

H2 − 1

H2r2
i λθλz

]
= 0,

(4.22)

where H = R0/Ri is the initial aspect ratio. Eq.(4.22) defines an implicit relation to

derive the deformed internal radius ri, and, consequently, r0 from Eq.(4.21), given the

initial geometry of the hollow tube H, the axial and circumferential pre-stretches λθ, λz

and the finite torsion rate γ. The variation of ri and r0 with the initial aspect ratio is

depicted in Figure 4.6 (left), showing the curves obtained by numerically solving, for a

given choice of β, λz and γ, Eqs.(4.21, 4.22) using the software Mathematica [100]. Finally,

the Lagrange multiplier p can be easily calculated from Eq.(4.17), using Eq.(4.21), and
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Figure 4.6: External and internal radii, r0 (thick) and ri (dashed), respectively, plotted
against the initial aspect ratio H = R0/Ri (left); and Cauchy stress components σrr
(thick) and σθθ (dashed) within a tube with initial aspect ratio H = 1.2 (right). The
curves are obtained setting β = π/6, λz = 1, and γ = 0.15, for traction-free internal and
external surfaces.
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reads:

p = µBrr(r) + µ

∫ r0

r

Brr(s)−Bθθ(s)

s
ds, (4.23)

which allows to calculate the distributions of the Cauchy stress components inside the

tube. In Figure 4.6 (right) the distribution of the radial and circumferential components

of the Cauchy stress are depicted as functions of the radius. The circumferential stress

is compressive at the internal radius and tensile at the external radius, while the radial

component is always compressive across the layer and it vanishes at the internal and

external surfaces for the boundary conditions.

4.4.2 Case (b): Pressure load P at the internal surface

The aim of this section is to calculate the basic solution to Eqs.(4.17,4.18) when a

pressure P acts on the internal surface of the cylindrical tube. Precisely, this case applies

to the problem of an artery, which underwent a prior remodeling process under the effect

of the internal pressure P and is now twisted. The boundary conditions in Eqs.(4.16)

read: {
σrr(ri) = −P
σrr(r0) = 0.

(4.24)

According to the homeostasis principle, the residual strains arise in response to the applied

pressure P in order to provide an optimal material behavior of the artery. Therefore, as

illustrated in Section 4.1.4, in the absence of a torsion rate it is assumed that the tube

undergoes a homogeneous deformation when a pressure P is applied on the external

surface of the cylinder. Let the homogeneous deformation be in the following form:

rh(R,Θ, Z) =
R√
λzλθ

; θh(R,Θ, Z) = λθΘ; zh(R,Θ, Z) = λzZ. (4.25)

The associated homogeneous deformation gradient writes:

Fh = diag

(
1√
λzλθ

,

√
λθ
λz
, λz

)
. (4.26)

The Cauchy stress related to the homogeneous deformation in Eq.(4.26) is calculated by

substituting Eq.(4.26) into Eq.(4.13) and reads σh = Bh− phI, where Bh = Fh(Fh)T . Its
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components write: 
σrr(r) = µBh

rr − ph = µ
1

λθλz
− ph

σθθ(r) = µBh
θθ − ph = µ

λθ
λz
− ph

σzz(r) = µBh
zz − ph = µλ2

z − ph.

(4.27)

The relation between P and the pre-strains can now be calculated by substituting Eq.(4.27)

into Eq.(4.17) and writes:

P = −
∫ rh0

rhi

F h
rr

2
(r)− F h

θθ
2
(r)

r
dr =

(−1 + λ2
θ)µ ln[H]

λθλz
, (4.28)

where rh0 =
R0√
λzλθ

and rhi =
Ri√
λzλθ

. Eq.(4.28) corresponds to the pressure calculated by

Destrade et al. in their Eq.(3.5) [112].

Finally, the basic position vector x(0) is identified by the inhomogeneous basic deformation

in Eq.(4.3), with r(R) defined as in Eq.(4.5), thus the Lagrange multiplier p in Eqs.4.14 is

obtained by solving the equilibrium equation (4.17) with boundary conditions in Eq.(4.24)

where P is given by Eq.(4.28), being:

p = µBrr(r) + µ

∫ r

ri

Brr(r)−Bθθ(r)

r
dr +

(−1 + λ2
θ)µ ln[H]

λθλz
. (4.29)

The deformed internal radius ri is calculated from Eqs.(4.17,4.24) by substituting Eqs.(4.14)

and Eq.(4.28). The radial and circumferential components of the Cauchy stress for the

case (b) are depicted in Figure 4.7 (left).

4.4.3 Case (c): Pressure load P at the external surface

Lastly, the case of a pressure load P applied on the external surface of the cylindrical

tube is considered. In this case the boundary conditions in Eqs.(4.16) take the following

form: {
σrr(ri) = 0

σrr(r0) = −P
(4.30)
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As done for the case b), the boundary conditions allow to derive an analytical relationship

between the external pressure P and the pre-strains inside the tube:

P = µ

∫ r0

ri

F h
rr

2
(r)− F h

θθ
2
(r)

r
dr = −(−1 + λ2

θ)µ ln[H]

λθλz
, (4.31)

The Lagrange multiplier p in Eqs.4.14 can be calculated from Eq.(4.17), using the basic

inhomogeneous deformation in Eq.(4.3), as follows:

p = µBrr(r)− µ
∫ r0

r

Brr(r)−Bθθ(r)

r
dr − (−1 + λ2

θ)µ ln[H]

λθλz
, (4.32)

where r0 is given by Eq.(4.21). As in the previous case, the internal radius ri is implic-

itly calculated from the boundary conditions in Eqs.(4.30), using Eqs.(4.14, 4.17). The

variations of the radial and circumferential components of the Cauchy stress with r are

depicted in Figure 4.7 (right). For the given pre-stretches, the resulting circumferential

stresses have the same sign for both cases. Moreover, the radial stress is tensile across

the layer in the case (c), whilst it is compressive in the case (b).
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Figure 4.7: Cauchy stress components σrr (thick) and σθθ (dashed) within a tube with
initial aspect ratio H = 1.2. The curves are obtained setting β = π/6, λz = 1, and
γ = 0.15, when a pressure is applied at the internal (left) and external (right) surface.

In the following section, the linear stability analysis of the basic axial-symmetric elastic

solutions will be performed in order to study the onset of torsional instabilities for the

hollow cylinder in the three cases considered. The method of incremental deformations

superposed on finite deformations presented in Section 2.2 will be used.

128



Chapter 4. Helical buckling of pre-stressed tubular organs

4.5 Incremental boundary value problem

Let the basic position x(0) be perturbed superposing to the finite basic deformation in

Eq.(4.3) an incremental deformation χ(1) in the following form:

χ(1)(r, θ, z) = u(r, θ, z)er + v(r, θ, z)eθ + w(r, θ, z)ez (4.33)

where u, v, w are three incremental displacement fields. The displacement gradient Γ,

associated to the incremental deformation has the form:

Γ =

 u,r (u,θ − v)/r u,z

v,r (v,θ + u)/r v,z

w,r (v,θ)/r w,z

 , (4.34)

According to the theory presented in Section 2.2, the perturbed deformation gradient

F̄ rewrites in the form of Eq.(2.86) and the perturbed Nominal stress S̄ in the form of

Eq.(2.88). The first-order increment Ŝ of the Nominal stress tensor S is in the form of

Eq.(2.89) and its push forward Ŝ0 = FŜ is given by Eq.(2.92) and writes:

Ŝ0 = A1
0Γ + pΓ− qI. (4.35)

where A1
0 is the instantaneous moduli, defined in Eq.(2.93), p is the Lagrange multiplier

and q its first-order increment.

The incremental BVP writes:

div Ŝ0 = 0 in Ba (4.36)

tr Γ = 0 in Ba (4.37)

Ŝ
T

0 n = δC1n− C1Γ
Tn at r = ri (4.38)

Ŝ
T

0 n = δC2n− C2Γ
Tn at r = r0 (4.39)

where Ŝ0 is given by equation (4.35) and δC1, δC2 are the increments of the boundary

values C1, C2, respectively.

In summary, the bulk equations of the incremental BVP are given by a system of four

PDEs, i.e. the three incremental equilibrium equations in Eqs.(4.36), and the first-order

increment of the incompressibility constraint in Eq.(4.37), together with the increment of
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the boundary conditions in Eqs.(4.38,4.39), which read in components:

∂(rŜ0rr)

∂r
+
∂Ŝ0θr

∂θ
+ r

∂Ŝ0zr

∂z
− Ŝ0θθ = 0 in Ba (4.40)

∂(rŜ0rθ)

∂r
+
∂Ŝ0θθ

∂θ
+ r

∂Ŝ0zθ

∂z
+ Ŝ0θr = 0 in Ba (4.41)

∂(rŜ0rz)

∂r
+
∂Ŝ0θz

∂θ
+ r

∂Ŝ0zz

∂z
= 0 in Ba (4.42)

u,r +
u+ v,θ
r

+ w,z = 0 in Ba (4.43)

Ŝrr(ri) = δC1 − C1Γrr(ri) at r = ri (4.44)

Ŝrr(r0) = δC2 − C2Γrr(r0) at r = r0 (4.45)

The four unknowns of the problem are the three incremental displacements in Eq.(4.33)

and the increment of the Lagrange multiplier q.

In the next section, the incremental elastic problem will be rewritten using the Stroh

formulation.

4.6 Stroh formulation of the BVP

In order to solve the incremental BVP, Eqs.(4.40-4.45) are transformed into a system of

six first-order ODEs. Assuming variable separation, the solution is sought in the following

form:
{u, q} = {U(r), Q(r)} cos(kzz −mθ)
{v, w} = {V (r),W (r)} sin(kzz −mθ)

(4.46)

where m is the circumferential mode and kz = 2nπ/L is the wavenumber of the tube in

the longitudinal direction, with m and n being integers, and U, V,W,Q are four scalar

functions of r. Such a helical perturbation deforms the hollow cylinder as illustrated in

Figure 4.8. From Eq.(4.35) and Eq.(4.46), the incremental stress components must have

the following form:

Ŝ0rr = S0rr(r) cos(kzz −mθ)
{Ŝ0rθ, Ŝ0rz} = {S0rθ(r), S0rz(r)} sin(kzz −mθ)

(4.47)

where S0rr, S0rθ, S0rz are three scalar functions of r. Substituting Eqs.(4.46) and (4.47)

into the incremental constitutive equations in Eq.(4.35), the following equation can be
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Figure 4.8: Helical buckling of a cylindrical tube obtained from the output of the numerical
simulations in the case (a) for H = 1.6, R0 = 1, L = 5, U(r0) = 0.15 λz = 1 and β = π/6,
occurring at the critical wavenumbers m = 2, kz = 1.37 (left). Plots of the resulting
incremental displacement fields U(r), V (r) and W (r) inside the tube, setting U(r0) =
1 (right). The amplitude of the linear perturbation is fixed arbitrarily for illustrative
purposes.

derived:

Q = (A1
0rrrr + p)U ′ − S0rr (4.48)

V ′ =
S0rθ

A1
0rθrθ

+
1

r

(V −mU)

A1
0rθrθ

p (4.49)

W ′ =
S0rz

A1
0rzrz

+
kzU

A1
0rzrz

p, (4.50)

where the prime denotes differentiation with respect to r. Moreover, the incremental

incompressibility condition in equation (4.43), reads:

U ′ =
mV − U

r
− kzW. (4.51)
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Substituting Eqs.(4.35) and (4.46) into Eqs.(4.40-4.42) and using Eq.(4.47) to replace the

components Ŝ0rr, Ŝ0rθ, Ŝ0rz of the incremental stresses, it follows that:

1

r2

{
−rS0rr −

[
A1

0θθθθ +A1
0θrθrm

2 + p+ kzr
(
−mA1

0θrzr −mA1
0zrθr +A1

0zrzrkzr
)]
U

+

[
m
(
A1

0θrθr +A1
0θθθθ + p

)
−
(
A1

0θθzθ +A1
0zrθr

)
kzr

]
V

+r

[(
rS0rr

)′
+
(
A1

0rrrr + p
)
U ′ −mpV ′

]
+ kzpr

2W ′

}
= 0,

(4.52)

1

r2

{
−m

(
rS0rr

)
−
[
m
(
A1

0θrθr +A1
0θθθθ + p

)
−
(
A1

0θrzr +A1
0zθθθ

)
kzr

]
U

+

[
A1

0θrθr +m2
(
A1

0θθθθ + p
)
−
(
A1

0θθzθ +A1
0zθθθ

)
kzmr +A1

0zθzθk
2
zr

2

]
V

−kzmprW − r
(
rS0rt

)′
+A1

0rrrrmrU
′ +mprU ′ − prV ′

}
= 0,

(4.53)

1

r2

{
kzr
(
rS0rr

)
− kzmprV +

[
A1

0θzθzm
2 + k2

z

(
A1

0zzzz + p
)
r2 −

(
A1

0θzzz +A1
0zzθz

)
mkzr

]
W

−r
(
rS0rz

)′
− kz

(
A1

0rrrr + p
)
r2U ′

}
= 0.

(4.54)

Now, let the displacement-traction vector η(r) be defined as follows:

η(r) =

[
U(r)

r S(r)

]
with

U (r) = [U(r), V (r),W (r) ]T

S (r) = [ s0rr(r), s0rθ(r), s0rz(r) ]T .
(4.55)

Accordingly, Eqs.(4.49-4.54) rewrite:

dη(r)

dr
=

1

r
G(r)η(r), (4.56)

where G is the so-called Stroh matrix, having the following block form:

G =

(
G1 G2

G3 G4

)
. (4.57)
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In particular, the four blocks of G read:

G1 =

 −1 m −kzr
−mσ1 σ1 0

kzrσ2 0 0

 , G2 =

 0 0 0

0 1/α1 0

0 0 1/α2

 , (4.58)

G3 =

 κ11 κ12 κ13

κ12 κ22 −κ23

κ13 −κ23 κ33

 , G4 = −GT
1 , (4.59)

where:

κ11 = m2(ν1 − α1σ
2
1) + k2

zr
2(ν2 − α2σ

2
2) + (A1

0rrrr +A1
0θθθθ) + 2α1σ1 − kzrm(A1

0θrzr +A1
0zrθr),

κ12 = m
{
−A1

0rrrr −A1
0θθθθ − ν1 + α1

[
(σ1 − 1)2 − 1

]}
+ kzr(A1

0θθzθ +A1
0zrθr),

κ13 = kzr(A1
0rrrr + α1σ1),

κ22 = m2
[
(A1

0rrrr +A1
0θθθθ) + 2α1σ1

]
− kzrm(A1

0θθzθ +A1
0zθθθ) + k2

zr
2ν3 + ν1 − σ2

1α1,

κ23 = mkzr(A1
0rrrr + 2α1σ1),

κ33 = m2α3 + k2
zr

2(A1
0rrrr +A1

0zzzz + 2α3σ3)− kzrm(A1
0θzzz +A1

0zzθz),

(4.60)

and:
ν1 = A1

0θrθr, α1 = A1
0rθrθ, σ1 = p/α1,

ν2 = A1
0zrzr, α2 = A1

0rzrz, σ2 = p/α2,

ν3 = A1
0zθzθ, α3 = A1

0θzθz, σ3 = p/α3

(4.61)

As discussed in Section 2.3.3, the Stroh form of the incremental BVP doesn’t provide

the most convenient form for implementing an efficient numerical algorithm for solving

the incremental problem when Neumann boundary conditions are assigned. Therefore,

the surface impedance method will be used in order to obtain a compact form which will

allow for the implementation of a stable numerical solving procedure.

133



Chapter 4. Helical buckling of pre-stressed tubular organs

4.7 Surface impedance method and numerical solu-

tion

Following Section 2.3.2, a set of independent solutions ηn, n = {1, . . . , 6} of the system

in Eq.(4.56) is defined. Then the 6× 6 matricant M(r, ri) is introduced as in Eq.(2.113).

The matricant in Eq. (2.113), is the solution of the initial value problem:

dM

dr
(r, ri) =

1

r
G(r)M(r, ri) with M(ri, ri) = I(6), (4.62)

where I(6) is the 6 × 6 identity matrix. Now, since the components of the incremental

deformation in Eq.(4.46) are real, the conditional impedance matrix z = z(r, ri) is defined

as the 3× 3 matrix, such that:

r S = zU, with z = M3M
−1
1 (4.63)

Hence, substituting Eq.(4.55) and Eq.(4.63) in Eq.(4.56), the following set of equations is

obtained:

d

dr
U =

1

r
G1U +

1

r
G2zU, (4.64)

d

dr
(zU) =

1

r
G3U−

1

r
GT

1 zU. (4.65)

Moreover, substituting Eq.(4.64) in Eq.(4.65), the differential matrix Riccati is derived:

d

dr
z =

1

r

(
G3 −GT

1 z− zG1 − zG2z
)
. (4.66)

Using equation (4.63), the boundary conditions in Eqs.(4.38,4.39) can be transformed in

the initial and the stop conditions of the differential matrix Riccati equation in Eq.(4.66),

as listed in Table 4.2.

The following numerical procedure is implemented in Mathematica [100], for solving

the incremental problem based on the conditional impedance matrix. Fixing the initial

aspect ratio H of the tube, and making outer iterations on the wavenumbers m and kz,

Eq.(4.66) is numerically integrated (using the initial conditions in the first column in

Table 4.2) and the torsion rate γ is iterated until the stop condition in the second column

of Table 4.2 is satisfied.

In the next section, the numerical results obtained from this procedure are presented
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initial conditions stop conditions
a) No loads z(ri) = 0 det z(r0) = 0

c) Internal pressure z(r0) = 0 det

z(ri)− P

 G11 G12 G13

0 0 0
0 0 0

 = 0

b) External pressure z(ri) = 0 det

z(r0)− P

 G11 G12 G13

0 0 0
0 0 0

 = 0

Table 4.2: Initial and stop conditions used to integrate numerically equation (4.66) in
order to get the bifurcation parameters of the torsional instability.

and discussed in order to investigate the role of the axial and circumferential pre-stretches

on the onset of helical buckling.

4.8 Numerical results

The numerical results of the linear stability analysis are presented in the following

for each of the three different load scenarios under consideration. First an illustrative

example is presented to show how the critical value of torsion rate and the associated

circumferential and longitudinal modes at the onset of the torsional instability are calcu-

lated. In Figure 4.9, the bifurcation parameter γ is plotted against the longitudinal mode
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Figure 4.9: Critical torsion rates γ in function of the longitudinal mode kz, plotted for
different circumferential modes m = 1, 2, 3, 4, 5, obtained considering (a) a stress-free
cylindrical tube, (b) a tube with an applied internal or (c) external pressure. In each
case, H = 1.05, R0 = 1, µ = 1 and in case (b) and (c), the pressure is calculated from
Eq.(4.28) and Eq.(4.28) respectively, using β = π/4 and λz = 1. The absolute minimum
among all the curves identifies the critical values for mcr, kcrz and γcr.
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kz and for different circumferential numbers m, for cylindrical tubes without external

loads (Figure 4.9a), with internal pressure P given by Eq.(4.28) (Figure 4.9b) and with

external pressure P given by Eq.(4.31) (Figure 4.9c), setting H = 1.05, R0 = 1, µ = 1,

β = π/4, and λz = 1.

For each example, the critical value γcr corresponds to the absolute minimum among

all the curves, whilst the corresponding mcr and kcrz define the critical circumferential and

longitudinal modes, respectively. For each class of BVPs, the results show that both the

critical circumferential and longitudinal modes depend on the initial aspect ratio.

Although the pressure is the control parameter in the cases (b) and (c), the functional

relationships in Eqs.(4.28, 4.31) allow to consider the pre-stretches as the order parameters

of the helical buckling. In fact, the strategy of fixing P , and then calculating from

Eqs.(4.28, 4.31) one pre-stretch λθ or λz at any given H whilst keeping the other fixed,

would give a pre-strain varying with H, and a direct comparison with the results of the

case (a) would be difficult. Furthermore, in many biological tissues the in-vivo pressure

is not always known, while the geometrical data and the pre-strains are measurable from

ex-vivo cutting experiments. Accordingly, in the following paragraphs the role played by

the circumferential and axial pre-stretches λθ and λz, respectively, on the onset of the

torsional instability is investigated.

4.8.1 Effect of the circumferential pre-stretch

Here, the role played by the circumferential pre-stretch λθ, on the onset of the torsional
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Figure 4.10: Critical values of torsion rate γcr plotted against the initial aspect ratio H at
λz = 1, in three physical examples: traction-free (a) at β = −π,−π/2,−π/4, 0, π/4, π/3
applied internal (b) and external (c) pressure. In cases (b) and (c), the internal and
external pressure P are calculated from Eq.(4.28) and Eq.(4.31), respectively, using β =
0, π/6, π/4, π/3, π/2.
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instability is investigated. The circumferential pre-stretch depends on the initial angle

β < 2π, as λθ = 2π/(2π − β). In Figure 4.10, the values of critical torsion rates γcr are

plotted against the initial aspect ratio H, for different initial opening angles β and at

fixed λz = 1.

The bifurcation parameters are shown in the case of traction-free cylindrical tubes

(Figure 4.10a), tubes with applied internal pressure P given by equation (4.28) (Fig-

ure 4.10b) or applied external pressure P given by equation (4.31) (Figure 4.10c). The

marginal stability curves show how, for a fixed H, an increase in the initial opening angle

corresponds to an increase of the critical torsion rate. In the case of traction-free cylin-

drical tubes, this effect becomes more relevant for thicker tubes, while the critical torsion

γcr → 0 for H → 1. When a pressure is applied on the external or the internal surface of

the cylindrical tube, instead, the critical torsion rate for H → 1 approaches a finite value

depending on β.

In Figure 4.11, the values of the critical longitudinal mode kcrz are plotted as functions

of the initial aspect ratio H at different initial opening angles and at fixed λz = 1, for

traction-free cylindrical tubes (Figure 4.11a), tubes with applied internal pressure (Fig-

ure 4.11b) or applied external pressure (Figure 4.11c). The critical circumferential modes

are also depicted at different range of H, showing that when a traction free boundary

condition is considered, the circumferential mode is always mcr = 2. The same behavior

is observed in the case of applied external or internal pressure, when λθ = 1. Otherwise,

when λθ 6= 1, tubes with H ≥ 1.2 exhibit mcr = 2, while thinner tubes have higher critical
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Figure 4.11: Critical values of longitudinal mode kcrz plotted against the initial as-
pect ratio H at λz = 1, in three physical examples: traction-free (a) at β =
−π,−π/2,−π/4, 0, π/4, π/3, applied internal (b) and external (c) pressure. In the cases
(b) and (c) the pressure P is calculated from Eq.(4.28) and Eq.(4.31), respectively, at
β = 0, π/6, π/4, π/3, π/2. The solid black lines indicate the related value of mcr for each
branch of the curves.

137



Chapter 4. Helical buckling of pre-stressed tubular organs

circumferential wavenumbers.

On the other hand, for a fixed initial aspect ratio, the absolute value of the critical lon-

gitudinal mode increases as the initial opening angle increases. Moreover, thin tubes

(1 < H < 1.1) select higher longitudinal critical wavenumbers than thick tubes.

4.8.2 Effect of the axial pre-stretch

In this section, the role played by the pre-stretch λz on the onset of torsional instabili-

ties is analyzed. In Figure 4.12, the critical torsion rates γcr are plotted against the initial

aspect ratio H, for different pre-stretches λz at fixed β = π/6. The marginal stability

curves are depicted for traction-free cylindrical tubes (Figure 4.12a), tubes with applied

internal pressure given by equation (4.28) (Figure 4.12b) and with applied external pres-

sure given by Eq.(4.31) (Figure 4.12c). At fixed initial aspect ratio, the critical values of

torsion rates increase as λz increases, showing how a cylindrical tube under a finite com-

pression becomes unstable at lower torsion rates than one subjected to a finite extension.

Furthermore, thin tubes have always lower values of critical torsion rate than thick tubes.
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Figure 4.12: Critical values of torsion rate γcr plotted against the initial aspect ratio
H for three sets of boundary conditions: traction-free tube (a), applied internal (b) or
external (c) pressure for λz = 0.9, 0.95, 1, 1.1, 1.2, and β = π/6. In the cases (b) and
(c), the internal and external pressure P are calculated from Eq.(4.28) and Eq.(4.31),
respectively, at the given values of λz.

In Figure 4.13, the critical longitudinal modes are depicted for traction-free cylindrical

tubes (Figure 4.13a), cylindrical tubes with applied internal (Figure 4.13b) and external

(Figure 4.13c) pressure. The critical circumferential modes are also displayed for the

three cases. The marginal stability curves highlight that tubes under axial compression
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Figure 4.13: Critical values of longitudinal mode kcrz plotted against the initial aspect
ratio H in three physical examples: traction-free (a), applied internal (b) and external (c)
pressure at λz = 0.9, 0.95, 1, 1.1, 1.2, and β = π/6. In the cases (b) and (c) the pressure
P is calculated from Eq.(4.28) and Eq.(4.31), respectively, at the given values of λz. The
solid black lines indicate the related value of mcr for each branch of the curves.

select higher longitudinal modes than tubes under axial extension, while mcr = 2 for thick

tubes. For λz < 1, the axial compression provokes a barreling instability, corresponding

mcr = 0, in thin tubes without any torsion. Although out of the scope of this work, it

should be recalled that in this case other asymmetric modes can occur for the buckling

of a compressed tube with guided-guided end conditions [116].

4.9 Discussion of the results

In this chapter, the torsional instabilities which can emerge when a soft, residually-

stressed cylindrical tube is subjected to a finite torsion have been investigated. The

model accounts for an initial opening angle β, which defines the circumferential pre-

stretch λθ = 2π/(2π − β), and for a uniform axial pre-stretch λz, in order to represent

the three-dimensional distribution of residual strains that is observed in living tubular

tissues, such as arteries.

In Section 4.2, the geometry and the kinematics of the elastic model have been pre-

sented. Considering an incompressible neo-Hookean material, in Section 4.3, the basic

axial-symmetric solutions for the three different sets of boundary conditions have been

derived. As depicted in Figure 4.5, three load scenarios were considered: traction-free

boundary conditions at both internal and external surfaces (a), an applied pressure load

P given by Eq.(4.28) at the internal surface (b) or an applied pressure load P given by

Eq.(4.31) at the external surface (c). Using the method of small deformations superposed
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on finite strains, a linear stability analysis have been performed. The incremental elastic

problem has been derived using the Stroh formulation. The incremental solution has been

calculated using a numerical procedure based on the surface impedance method. The nu-

merical results have been presented in Section 4.8, reporting the marginal stability curves

for the critical torsion rate γcr. An illustration of the deformed tube at the onset of the

torsional instability is depicted in Figure 4.8. As illustrated in Figure 4.9, the helical

buckling is characterized by critical circumferential and longitudinal modes, mcr and kcr,

respectively, depending both on the initial thickness of the tube and on the existing-pre-

stretches. This confirms that the torsional instability in soft tubes strongly differs from

the one for solid cylinders, which is characterized by a critical mode m = 1 [117, 118],

with the initial formation of a kink nonlinearly evolving into a knot [119].

Moreover, the analytical results highlighted that the critical torsion rate γcr increases

with an increasing initial thickness of the hollow cylinder in accordance with the exper-

imental results of Ertepinar and Wang [120] on stress-free rubber tubes. Furthermore,

when a traction-free boundary condition is considered, the circumferential mode is inde-

pendent of the thickness of the tube and is always mcr = 2 for λz ≥ 1.

Another novel aspect of this study concerns the investigation of the effects of the

circumferential and axial pre-strains on the onset of the torsional instability. The marginal

stability curves in Figures 4.10-4.13 have shown that both the critical torsion rate and
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Figure 4.14: Critical values of the torsion rate γcr (left) and the longitudinal mode kcrz
(right) plotted against the initial aspect ratioH, considering stress-free conditions (orange,
solid), and applied external (purple, dashed) or internal (blue, dash-dot) pressure, with
λz = 1, and β = π/6. The blue and purple lines are obtained by calculating the internal
and external pressures from Eq.(4.28) and Eq.(4.31), respectively. The solid black lines
indicate the related value of mcr for each branch of the curves.
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the axial wavenumber increase for increasing circumferential and axial pre-stretches. In

particular, such a result on the axial wavenumber is in accordance with the results on

torsional instabilities in solid cylinders [117, 121]. Finally, in Figure 4.14 the critical

torsion rates and the critical circumferential and longitudinal modes have been compared

for the three considered sets of boundary conditions. As expected, a tube without any

loads is the most unstable configuration with respect to torsional instabilities, while the

most stable configuration is always the externally pressured tube.

4.10 Validation of the model with experimental data

In this section, the critical values of the torsion rate predicted by the analytical results

in Section 4.8 will be compared with the few experimental data available in the literature.

A certain amount of experiments have been performed in order to investigate the effect of

the twist on arteries and veins during and after anastomosis. Anastomosis is the surgical

practice employed to reconnect two segments of the vessels. It is a typical operation

performed when a part of the vessel is irreversibly injured and thus needs to be removed.

During anastomosis, the artery can be subjected to twist, hence in order to guarantee a

positive outcome of the operation, the vessel must be stable to torsional loads.

Topalan et al. studied the effect of torsion on both arteries and veins [122]. They found

that arteries, which are thicker and subjected to a higher blood pressure buckle at higher

twisting angles than veins. These findings are in accordance with the results obtained

from the model presented here. In fact, the model predicts higher critical torsion rates

for thicker cylinders in all the three load scenarios considered. Furthermore, according

to the relation between pressure and pre-stretches in Eq.(4.28), the results in Figure

4.12b show that, at high values of the internal pressure, the longitudinal pre-stretch is

calibrated in order to induce a tensile residual stress (as found in arteries [123, 124]).

Accordingly, the critical torsion rate values are higher than for cylinder subjected to a

lower pressure, such as veins where torsional buckling occurs at lower critical twisting

angle [125]. Finally, as shown in Figure 4.11 and Figure 4.13, the morphoelastic model

predicts critical circumferential modes mcr = 2 for thick cylinders (H > 1.2). These

predictions are in accordance with the pattern observed in the rat femoral aorta reported

by Selvaggi et al., who measured an initial external radius R0 = 0.416mm and a thickness

R0 −Ri = 0.166mm, corresponding to an initial aspect ratio H = 1.664.
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4.11 Concluding remarks

In this chapter, a predictive model for helical buckling in tubular tissues has been built

up following the morphoelastic theory presented in Chapter 2.

The novelties of the proposed model reside in the following main points:

• the model accounts for the physiological adaptation of soft tubular tissues to changes

in applied pressure load

• the residual stresses arising from the remodeling process of the soft tissue have been

taken into account

• the effects of the residual stresses on the onset of the helical instability have been

investigated

• the critical values of torsion rates and the associated critical modes of the instability

have been calculated as functions of biological measurable parameters.

In conclusion, the model proposed in this chapter links measurable biological parameters

(blood pressure, shear modulus, initial thickness, initial opening angle and longitudinal

pre-stretch) to the critical torsion at the onset of an helical instability and could be used

as predictive tool for the occurrence of torsional instabilities in tubular organs.
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Among the fundamental processes involved in the development of an organism, mor-

phogenesis is one of the most complex. It is the result of concatenated events which occur

at different (temporal and spatial) scales. During the past centuries, the experimental re-

sults collected by several scientists have improved our actual knowledge of the mechanisms

that drive many morphogenetic processes in living organisms. Recently, experiments have

been complemented with mathematical modeling as a tool for proving novel insights on

morphogenesis in soft tissues. Few main issues must be overcome when modeling pro-

cesses involving soft tissues: their nonlinear behavior, the presence of large deformations

and of residual stresses. All these elements contribute to increase the complexity of the

problem and require ad hoc theories for modeling soft tissues. In this context, this thesis

aimed at developing new mathematical models for the formation of patterns and forms

in biological tissues. In particular, the focus has been pointed to soft tubular organs.

A macroscopic approach has been adopted, where the tissue has been considered

as a continuum body undergoing growth and remodeling. The main idea behind the

proposed models is that during growth and remodeling, residual stresses can arise and

once they exceed a critical value, an elastic instability can occur in the tissue and lead

to a morphological change. Therefore, the morphoelastic models have been developed

in the framework of the thermo-mechanics of open systems. The kinematics of finite

deformations allowed for the mathematical description of the morphogenetic process. The

theory of volumetric growth and remodeling, proposed by Skalak and coworkers, was used

to separate the growth (remodeling) and the elastic parts of the morphogenetic process.

The balance of mass and linear momentum govern the physical problem and the Clausius-
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Duhem form of thermodynamics dictates the restrictions for the evolution of the growth

(remodeling) and for the constitutive equations of the tissue. In order to investigate the

occurrence of elastic instabilities, a linear stability analysis has been performed using the

method of incremental deformations superposed on finite deformations and the critical

thresholds for the onset of the instability have been determined together with the modes

of the associated instability pattern.

The morphoelastic theory has been applied to the modeling of different morphogenetic

processes occurring in soft tubular organs: the formation of the wide range of patterns

in the gastro-intestinal system and the occurrence of torsional instabilities in pre-stressed

tubular organs. In the following the main results achieved and some future perspectives

will be summarized.

First, a model for the early stages of intestinal morphogenesis in vertebrate embryos

has been proposed with the aim of modeling the formation of the intestinal villi from a

two-dimensional undulated pattern in vertebrates species such as mouses. The embryonic

intestine has been modeled as one-layered cylinder, made of hyperelastic, incompressible

and anisotropic tissue, the mucosa which grows under the rigid confinement imposed by

the much stiffer surrounding tissues. The spatially constrained growth introduces incom-

patibilities in the embryonic tissue, thus residual stresses arise and provoke the emergence

of a two-dimensional pattern at the inner surface of the embryonic tissue. In this case,

from the results of the linear stability analysis, the model highlighted the occurrence of

a surface instability at the internal surface of the mucosal wall, in fact an increase in the

perturbation modes resulted in decreasing instability thresholds. The model also allowed

for investigating the effects of the structural anisotropy of the tissue on the onset of the

instability, showing that both an increase in the orientation angle between fibers and in

the stiffness of the tissue decrease the critical growth at which the elastic instability oc-

curs. Moreover, both isotropic and anisotropic growth processes have been considered and

compared, showing that the most unstable scenario is represented by the tissue growing

only in the longitudinal direction. In conclusion, the theoretical model showed that the

spatially constrained growth of the embryonic mucosa could be the mechanism driving the

early formation of the intestinal villi in mouse embryos. Nevertheless, the model didn’t

allow to predict the finite wavelength of the emerging instability pattern, and thus a more

complex model has been proposed.

In the second proposed model, the gastro-intestinal tube has been modeled as a two-
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layered cylinder, made of two hyperelastic, incompressible and isotropic tissues. The two

layers represent the two primary matrices from which the gut originates, i.e the inner

endoderm and the outer mesoderm. The outer mesoderm is considered stiffer than the

inner endoderm, so that the model allowed to account for the spatially constrained growth

as the limit case where the mesoderm is infinitely stiffer than the endoderm. The mech-

anism driving the onset of the instability is then the spatially unconstrained differential

growth between the primary layers. One of the novelty of the proposed model is that

it accounts for stress-free boundary conditions at both the inner and the outer surfaces.

Furthermore, the model is able to reproduce the wide range of patterns observed in the

gastro-intestinal system of vertebrates. In fact, by investigating the effects of the geo-

metrical and mechanical parameters on the onset of the instability, the model allowed to

prove that these factors drive the selection of the specific pattern. Therefore, the model

predicted not only the emergence of the circumferential foldings observed in the oesoph-

agus, or the longitudinal rings which form in the jejunum but also the two-dimensional

pattern which is typical of pathological states such as the feline oesophagus. The the-

oretical model has been supplemented with the numerical simulations performed using

the finite element method in Abaqus, with the aim of investigating the fully nonlinear

evolution of the linearly unstable patterns. The numerical results highlighted that those

patterns can evolve following different paths which range from the formation of stable

wrinkles to the emergence of creases. In some cases, even a dramatic wavelength doubling

can occur. Furthermore, the numerical simulations allowed to conclude that the geometry

and the mechanical properties of the two embryonic layers are also crucial in determining

the post-buckling evolution of the instability pattern.

Although capturing the main macroscopic features of gastro-intestinal organogenesis,

the model has the following weaknesses:

• The numerical simulations do not reproduce any transition from one pattern to

another. For instance, in chick embryos, a transition from the circumferential to

a zigzag pattern is observed around the 14th day after fertilization of the egg.

According to the experiments performed by Shyer et al. [90], this transition is ob-

served simultaneously to the differentiation of the mesoderm into a longitudinal

oriented muscular layer, suggesting that mechanical forces might induce this transi-

tion. Therefore, both anisotropic growth and the structural anisotropy of the tissue,

which have been neglected in this model, might play a role in the transition from

the circumferential foldings into the zigzag pattern.
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• The model doesn’t account for processes occurring at the micro-scale such as sig-

naling between endoderm and mesoderm or biochemical reactions which play an

important role in the differentiation of the primary layers.

• Numerical algorithms could be developed to investigate secondary bifurcations which

the present analysis have shown to occur for some combinations of the initial pa-

rameters.

Another biological problem investigated in this thesis has been the helical buckling of

pre-stressed tubular tissues. This study was mainly motivated by the dangerous effects

that torsional loads can have on arteries during surgical operations or even during daily

life. Tubular soft tissues are known to be residually stressed. For example, when an

artery is radially cut it opens into a cylindrical open sector (characterized by an opening

angle) and shortens along its longitudinal axis, releasing the residual stresses. In this

thesis, it has been assumed that residual stresses arise in the tubular tissues as conse-

quence of an upstream remodeling process. The effects of remodeling have been taken

into account by introducing longitudinal and circumferential (associated to the opening

angle) pre-stretches. Furthermore, living tissues are known to be regulated by the homeo-

static principle, i.e. they adapt to external changes in order to maintain their equilibrium

stead-state. Therefore, according with the homeostatic principle, it has been assumed

that the pre-stretches adjust in function of the pressure acting at the internal or external

surface of the tubular organ, in order to make the strain distribution inside the tissue

uniform. The tubular tissues have been modeled as one-layered hyperelastic, incompress-

ible and isotropic materials. Three cases have been considered, associated to different

load scenarios: no applied loads, an applied internal or external pressure load. Therefore

the model applies to a wide range of soft tubular tissues: the intestine, where negative

opening angles have been measured and which is constantly subjected to an external

pressure, exerted by the surrounding tissues, but also the airways where no tractions act

on their surfaces. The proposed model showed that the residual stresses arising from the

remodeling process affect the critical values of torsion rate, at which the helical instability

occurs in the cylinders. In particular, tissues with circumferential compressive residual

stresses buckle at lower values of the torsion rate than tissues exhibiting circumferential

tensile residual stresses. The model also highlighted that thin cylinders are more unstable

to torsional loads than thick tubes.

The residual stresses also affect the critical modes associated with the emerging helical

pattern. In particular, thin cylinders with higher initial opening angle have higher critical
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circumferential and longitudinal modes, in both the cases of applied external or internal

pressure. Interestingly, the model showed that in all the three load scenarios considered,

thin cylinders buckled under the effect of compressive longitudinal pre-stretch developing

a barreling instability. In conclusion, the proposed model could be used as a predictive

tool for torsional instability in hollow cylinders. It has the novel feature of linking initial

geometrical and mechanical parameters (such as the aspect ratio, the shear modulus of

the cylinder and the applied pressure) with the order parameter associated to the onset

of the helical instability, i.e. the critical torsion rate and the associated circumferential

and longitudinal modes of the instability.

However, the following improvements could be considered for future investigations:

• The heterogeneous composition of the soft tubular tissues and their multi-layered

structures have been neglected in the present study, but could play an important

role in determining the onset of the helical instability in the tubular tissues.

• Numerical simulations could be performed in the nonlinear regime in order to inves-

tigate vessel occlusion. In particular, the values of torsion rate at which a complete

occlusion occurs in the vessel can be calculated as a function of the residual stresses

and of the blood pressure.

• In this study, it has been assumed that L � R0; numerical simulations could be

performed to investigate the boundary effects at L = 0, L on the onset of the

instability.

In conclusion, the modeling of morphogenesis in living tissues has been approached

from a theoretical and numerical viewpoint. The task is characterized by a complexity

which derives from the intrinsic complex nature of living tissues. A morphoelastic theory

has been adopted, where the modern theories of growth and remodeling, the thermo-

mechanics of open systems, the theories and methods for solving problems in nonlinear

elasticity have been combined to address the complexity of the problem. The morphoelas-

tic theory has provided the bases for useful insights in two interesting biological problems

such as the gastro-intestinal organogenesis and the torsional instabilities of pre-stressed

tubular organs. The results of these studies have been published in four peer-review

journals.
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