Keywords: maillage qui se déforme, descripteur de points caractéristiques dynamiques, segmentation temporelle, segmentation spatio-temporelle, mesure de similarité de mouvements deforming mesh, dynamic feature descriptor, temporal segmentation, spatio-temporal segmentation, motion similarity measurement

fin nous concluons par plusieurs remarques sur nos travaux et évoquons des piste de poursuites potentielles dans Chapter 6.

ii Finally, I cannot thank my parents enough for their lasting love, supports and understanding.

iii Résumé

Contexte

Avec le développement important des techniques d'acquisition de la géométrie, les données 3D sont devenues un nouveau sujet de recherche permettant au calcul de maillages de devenir un important theme de recherches.

Durant les deux dernières décennies, la segmentation de maillages a été mise en avant en tant que première étape permettant d'extraire l'information sémantique vers le calcul et l'analyse de maillages pour de nombreuses applications. Par exemple, les algorithmes de "shape matching" peuvent être basés sur une décomposition de chaque état d'une forme, suivie d'une reconstruction à partir de sousparties [START_REF] Petitjean | A survey of methods for recovering quadrics in triangle meshes[END_REF]. La simplification de maillage ne pouvant être réalisée sans perte de certaines propriétés géométriques dûes à la segmentation du maillage en zones planaires et incurvées puis à la simplification des zones planaires [START_REF] Sheffer | Model simplification for meshing using face clustering[END_REF]. Une autre application classique de la segmentation de maillages est la paramétrisation [START_REF] Julius | D-Charts: Quasi-Developable Mesh Segmentation[END_REF]. Elle permet à un utilisateur de décrire et contrôler une forme à partir d'un ensembles de parmètres de chaque sous-partie. Cette technique est utilisée pour les applications telles que le "mapping" de textures [START_REF] Zhang | Feature-based surface parameterization and texture mapping[END_REF] et le remaillage [START_REF] Praun | Spherical parametrization and remeshing[END_REF]. D'autres applications basées sur la segmentation de maillages font de la compression [START_REF] Karni | Spectral compression of mesh geometry[END_REF], de la reconstruction [START_REF] Funkhouser | Modeling by example[END_REF], de l'édition [START_REF] Kovar | Motion graphs[END_REF], etc.

Etant donné un maillage 3D statique, l'objectif de la segmentation est de spatialement partitionner un maillage en plusieurs dans une des deux manières suivantes :

 Homogénéité de caractéristiques dans chaque partie, c.-à-d., les éléments dans le même segment partagent des propriétés géométriques similaires (voir Figure 1(a)). En raison de la similarité géométrique dans chaque segment, un nombre plus petit de coefficients spectrales va être demandé pour reconstruire le segment en utilisant l'analyse spectrale, et par conséquent, attendre la compression de maillage.

 Sémantiquement significatif ou segmentation en parties fonctionnelles, par ex., une forme de cheval peut être segmenter dans un torse, une tête, un cou, une queue, et quarte jambes (voir Figure 1(b)) [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF].

Basé sur telles résultats de la segmentation de maillages, on peut soit extraire un squelette d'un maillage que peut être utile pour la création des animations [START_REF] Katz | Hierarchical mesh decomposition using fuzzy clustering and cuts[END_REF], soitt associer les parties fonctionnelles entre des formes qui peuvent être étendues plus loin pour des applications tel que l'extraction de formes [START_REF] Petitjean | A survey of methods for recovering quadrics in triangle meshes[END_REF], ou les segmentations constantes [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]) [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF], etc. Nous allons résumer les méthodes existantes qui génèrent telles résultats de segmentation de maillage dans Chapitre 2.

(a) (b)

Figure 1 Deux types de segmentation de maillages, (a) homogénéité dans chaque segment [START_REF] Karni | Spectral compression of mesh geometry[END_REF], (b) segments fonctionnellement significatifs [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF].

Enjeux globaux de la segmentation de maillages

Comme cité par Attene et al. (Attene et al., 2006), il est très difficile de concevoir une méthode de segmentation pour des maillages statiques qui répondre parfaitement aux toutes les critères d'évaluation, y compris l'extraction de segments corrects, les frontières entre les segments, le type de la segmentation multi-échelle, la sensibilité de la forme et la complexité asymptotique. Il est difficile car les différentes méthodes de segmentation ont des différentes critères en fonction de leur v applications, et leurs critères de segmentation peuvent difficilement couvrir tous les types de maillages. Dans une recherche ultérieure Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF], comparent la performance de plusieurs méthodes avancées de segmentation en utilisant des résultats de segmentation données par une groupe de presonnes, et ils ont arrivés à une conclusion similaire : Il reste toujours difficile à développer une méthode de segmentation qui peut fonctionne bien sur tout les types de maillages parce que les critères géométriques ne peuvent pas fournir tous les signales pour identifier toutes les parties sémantiques significatives. Par exemple, la méthode de segmentation par l'essayage de primitives, y compris un plan, une sphère, et un cylindre, peuvent être performantes avec des formes mécaniques mais pas avec des objectes complexe comme un maillage d'un « oiseau », car les ailes des oiseaux peuvent pas retrouver leurs formes par les primitives basiques.

Enjeux globaux de la segmentation de maillages dynamiques

Grâce au récents et rapides développements des technologies d'animation, les maillages dynamiques sont de plus en plus omniprésents. Bien qu'un nombre important de travaux ont été effectués sur les maillages statiques durant les deux dernières décennies, la recherche sur les maillages dynamique reste un sujet relativement récent.

Mis à part les enjeux principaux de la segmentation de maillages, présentés dans la sous-section précédente, la segmentation de maillages dynamiques reste particulièrement délicate pour les raisons suivantes :

 Taille des données en entrée : A l'inverse des maillages statiques qui ne contiennent que 3 dimensions (spatiales), les maillages dynamiques comportent une dimension supplémentaire, le temps, ce qui induit un problème relativement à la tailles des données. Un maillage dynamique standard sur, par exemple, une durée de 1 minute avec un taux de rafraîchissement de 30 images par seconde, regroupe sans peine plus de 1800 maillages, ce qui représente une augmentation très importante de la taille des données à traiter.

 Comportement dynamique : Contrairement aux méthodes existantes pour les maillages statiques, qui ont été développés en se reposant sur des propriétés figées de figures géométriques statiques, un algorithme de segmentation pour des maillages dynamiques doit tenir compte du comportement dynamique de ces maillages qui se caractérise par le mouvement dans le temps de leurs différentes sous-parties. Bien qu'il existe plusieurs méthodes de segmentation de maillages dynamiques, qui calculent une unique décomposition spatiale des maillages en utilisant les comportement dynamiques des primitives du vi maillages traité (sommets, arêtes, ou triangles) sur la totalité d'une unique séquence [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] [START_REF] Wuhrer | Segmenting animated objects into near-rigid components[END_REF], ces méthodes, appliquées sur une longue séquence d'un maillage dynamique comportant plusieurs mouvement distincts, conduisent à un résultat découpé en 'sous-parties de mouvement' souvent mal segmentées. Dès lors, se présente la nécessité de disposer d'un algorithme qui puisse à la fois découper un mouvement en plusieurs sous-séquences tout en segmentant spatialement la surface d'un maillage dynamique pour chacune des ces sous-séquences.

L'évaluation du résultat de la segmentation : Bien que l'on veuille décomposer un maillage animé en sous-parties pertinentes ou cohérentes, la formalisation mathématique de ce que la perception humaine considère comme étant 'pertinent' est très difficile, ce qui rend l'évaluation objective des résultats d'une segmentation compliquée. Dans le cas de segmentations de maillages statiques plusieurs études basées sur une appréciation humaine de telles segmentations ont été proposées ces dernières années [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]) [START_REF] Bronstein | Numerical geometry of nonrigid shapes[END_REF]. Cependant de telles données n'existent pas, à l'heure actuelle, pour des animations 3D, ce qui constitue donc un autre aspect du travail à effectuer.

Objectifs et contributions

Les maillages dynamiques peuvent être classifié en deux catégories: les maillages animés et les séquences variantes de maillages. Une animation 3D est un maillage animé si sa topologie reste constante durant la totalité de la séquence, c'est à dire si le nombre de sommet ainsi que la connectivité sont constants. Sinon, on parle de séquences variantes de maillages. Afin d'effectuer la segmentation d'une séquence variante de maillages. Il peut être nécessaire de calculer la correspondance de vertices entre les images successives où le problème de correspondance demeure une tâche difficile et coûteuse en calcul [START_REF] Van Kaick | A survey on shape correspondence[END_REF] [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF]. C'est pour cette raison que nous avons fait le choix de nous intéresser aux maillages animés. Nous allons nous intéresser plus particulièrement aux techniques de segmentation pour les maillages animés.

Cette thèse a pour but de développer des méthodes de segmentation qui calcule la segmentation temporelle et spatio-temporelle de maillages animés. À notre connaissance, aucune méthode n'avait encore été proposée pour la segmentation à la fois temporelle et spatio-temporelle de maillages animés jusqu'à aujourd'hui. De plus, nous étendrons les résultats de segmentation afin de mesurer la similarité entre maillages animeés. Ceci peut être significatif car cela permet de résoudre un problème qui ne pouvait pas être traité jusqu'alors. Concernant le problème de la segmentation des maillages dynamiques présenté dans la section précédente, notre segmentation temporelle permet de diviser un mouvement en sousmouvement ce qui permet de répondre à l'enjeu des comportements dynamiques d'un maillage animé. De plus, pour résoudre le problème d'évalutation, nous étendons notre segmentation spatio-temporelle afin de mesurer la similarité de mouvements. Ainsi nous validons indirectement la qualité de la segmentation spatiotemporelle de maillages animés en comparant les similariteés obtenues calculées à celle obtenues en questionnant des humains.

Dans le reste de cette section, nous définissons formellement la segmentation spatiale, temporelle et spatio-temporelle de maillages animés puis nous résumons les contributions de ce thèse.

Définitions formelles

Définition 1 : Segmentation spatiale de maillages dynamiques [START_REF] Shamir | A survey on mesh segmentation techniques[END_REF] [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF]. Soit M=(

) la topologie d'un maillage dynamique, où , , sont respectivement les ensembles de sommets, d'arêtes et de triangles. Une segmentation spatiale ∑s de M est un ensemble de sous-maillages ∑s={ }, , où chaque est un ensemble de sommets connetés. Notons que la segmentation spatiale peut aussi bien être définie comme une partition d'arêtes que de triangles en sous-ensembles disjoints.

Voir l'exemple de la Figure 2, une segmentation spatiale est calculée pour un maillage animé.

Résumé viii

Definition 2 : Segmentation temporelle de maillages dynamiques [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF]. Soit M = * + un maillage dynamique, où est le nombre d'images. Une segmentation temporelle ∑t de M est un ensemble de sousséquences ∑t={ }, =M, où chacun des est un sous-séquence d'images successives.

Voir l'exemple de la Figure 3, un maillage animé est temporellement segmenté en plusieurs sous-séquences avec différents mouvements.

Contributions

Plusieurs travaux ont été publiés par le passé et qui permettent de segmenter un maillage animé en un ensemble de composants rigides. Dans cette thèse, nous présentons plusieurs techniques qui permettent de calculer une segmentation spatiotemporelle d'un maillage animé ; de tels travaux n'ont pas encore été publiés sur ce sujet. De plus, nous avons étendu cette méthode pour pouvoir comparer ces maillages animés entre eux à l'aide d'une métrique. À notre connaissance, aucune méthode existante ne permet de comparer des maillages animés entre eux. Dans mon travail de thèse, je présente les contributions suivantes :

Un nouveau descripteur pour les points caractéristiques dynamiques. Nous définissons un descripteur qui permet de mesurer les déformations au niveau des triangles et pour chaque image de l'animation. Ce descripteur est invariant par rapport à la rotation, translation et dilatation uniforme. De plus, il permet d'identifier la similarité entre des formes différentes, mais ayant les mêmes déformations.

Segmentation temporelle de maillages animés. La plupart des travaux existants sont basés sur le regroupement de sommets ou de triangles suivant des critères comme la distance géodésique ou l'affinité cinématique des sommets ou triangles regroupés. Dans ce cas, il apparait clairement que le résultat de la segmentation dépend de la déformation du maillage animé. Idéalement, cette segmentation doit correspondre aux mouvements du maillage animés. Mais lorsque le maillage animé correspond à une animation longue et complexe, le résultat est une segmentation trop morcelée qui ne représente pas correctement l'animation du maillage animé. C'est pour cette raison que nous pensons que la segmentation temporelle doit être précédée d'une segmentation spatiale. De cette façon, il est possible d'avoir une segmentation spatiale consistante à l'intérieur de chaque segment temporel.

À l'aide de nouveau descripteur, nous définissons ensuite une métrique pour mesurer la distance entre deux images-clefs du maillage animé. Ceci nous permet ensuite de définir une métrique pour les segments temporels ; cette métrique est calculée comme étant la moyenne des distances des images-clefs appartenant à un même segment. Enfin, nous proposons une méthode de segmentation temporelle qui minimise la métrique, c'est-à-dire, la distance entre les images-clefs appartenant au même segment. Ceci nous permet d'obtenir une segmentation où chaque segment est constitué des images-clefs correspondant à un même mouvement du maillage animé.

Résumé x

Les résultats de cette méthode de segmentation sur des données synthétiques et des données de capture de mouvement démontrent son efficacité. En particulier, ces essais montrent que les maillages animés de forme différente, mais représentant les mêmes mouvements sont segmentés de façon consistante entre eux.

Segmentation spatio-temporelle de maillages animés. À partir de la méthode de segmentation temporelle décrite précédemment, nous avons développé une méthode exploitant la cohérence spatio-temporelle des maillages animés. Notre méthode de segmentation spatio-temporelle pour les maillages animés est basée sur une nouvelle représentation qui permet de décrire de façon précise les mouvements du maillage animé.

En utilisant les valeurs de déformation de chaque triangle à chaque image-clef, les triangles sont classés en deux catégories : les triangles se déformant et ceux qui sont rigides. Ensuite, nous calculons une segmentation spatio-temporelle en regroupant les triangles se déformant et qui sont adjacents au niveau du maillage et au niveau des images-clefs. Puis, nous utilisons un graphe évoluant (evolving graph) pour représenter la segmentation spatio-temporelle, un graphe évoluant étant constitué d'une séquence de graphes correspondant aux images-clefs du maillage animé ; chaque noeud du graphe évoluant correspond à un segment spatiotemporel et chaque arête correspond à une relation de voisinage entre les segments.

À partir des graphes évoluant de deux maillages animés, nous calculons une métrique pour mesurer le niveau de similarité entre les deux maillages animés ; cette métrique est basée sur l'alignement des deux séquences de graphes. Cet alignement ne peut pas être calculé directement du fait que les graphes sont de dimension différente (nombre différent de noeuds et d'arêtes). Pour résoudre ce problème, nous classons les graphes suivant leur similarité pour créer des ensembles de graphes ; à chaque ensemble de graphes est attribuée une étiquette. En conséquence, chaque graphe évoluant est représenté sous la forme d'une séquence d'étiquettes. Ceci nous permet de calculer l'alignement des deux séquences avec une méthode inspirée de celle utilisée pour l'alignement des séquences d'ADN. Le résultat de l'alignement des deux graphes évoluant est finalement utilisé pour calculer le niveau de similarité entre eux.

Les avantages de cette méthode sont doubles. Premièrement, elle permet de calculer l'alignement temporel des deux maillages animés. Les essais que nous avons menés avec des maillages animés représentant les mêmes mouvements ont montré que l'alignement temporel est correctement calculé. Deuxièmement, cette méxi thode permet de mesurer la similarité de mouvements entre les maillages animés. Pour cela, nous avons proposé une métrique qui utilise les résultats de la segmentation spatio-temporelle. Les essais que nous avons effectués avec un certain nombre de maillages animés montrent que notre méthode est capable de détecter correctement les similarités de mouvements. Nos résultats sont validés en les comparant avec des données produites par un groupe des personnes et en calculant le facteur de corrélation de Pearson. Le résultat obtenu montre une forte corrélation entre les mesures de similarité calculée par notre algorithme et celles données par les personnes.

Conclusions et Organisation

À notre connaissance, aucune méthode n'avait encore été proposée pour la segmentation à la fois spatiale et temporale de maillages animés jusqu'aujourd'hui. Pour ce travail, les contributions techniques de nos travaux sont les suivantes. Premièrement, nous avons proposé une méthode qui calcule une segmentation temporelle en minimisant la dissimilarité des images-clefs appartenant au même segment. Cette méthode permet de générer une segmentation en cohérence avec le mouvement du maillage animé. Les maillages animés présentant les mêmes animations sont segmentés de la même façon. Notre deuxième contribution est une méthode de segmentation spatio-temporelle qui utilise la cohérence des déformations des triangles du maillage animé. Grâce à l'utilisation des graphes évoluant (evolving graph), nous avons pu proposer une méthode qui calcule l'alignement temporel de deux maillages animés ainsi qu'une métrique pour mesure le degré de similarité de mouvements entre ces deux maillages animés. Les essais que nous avons effectués avec plusieurs types de maillages montrent que notre méthode est capable de détecter la similarité de la même façon que la perception humaine.

Le résumé de la thèse est organisé de la façon suivante : dans Chapter 2, nous faisons l'état de l'art des travaux sur la segmentation pour un unique maillage statique, un ensemble de modèles 3D similaires et la segmentation spatialle de maillages dynamiques. Ensuite, nous présentons un nouveau descripteur basé sur la déformation dans Chapter 3. En utilisant ce descripteur dans Chapter 4, nous présentons notre méthode de segmentation temporelle pour les maillages dynamiques. Après quoi, dans Chapter 5, nous présentons une nouvelle méthode de segmentation spatio-temporelle pour les maillages dynamiques, permettant de mesurer les similitudes de mouvement entre différents maillages dynamiques. En-Based on our new descriptor, we define a distance metric for each frame pair, and further define within-segment frame dissimilarity as the average of all possible pairwise frame distance within a temporal segment. Then, the boundary frames for the temporal segmentation are determined by minimizing the sum of withinsegment frame dissimilarities. This allows us to obtain the segmentation result that each temporal segment is a subsequence of similar frames with similar poses.

Our experiments on both synthesized and motion captured deforming meshes confirm the effectiveness of the presented approach. It also shows that we can obtain consistent temporal segmentation for different deforming meshes exhibiting similar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Having the above temporal segmentation method, we step further to investigate both the spatial and temporal coherency simultaneously in deforming meshes. We devise a new spatio-temporal segmentation technique for deforming meshes, with an aim of developing a new representation that encodes well the motions exhibited in given deforming meshes.

Based on the degree of deformation of each triangle at each frame indicated by using strains, we binarily label the triangles with either deformed' or rigid'. Then we compute a spatio-temporal segmentation by merging the deformed' triangles that are either spatially or temporally connected. We then use an evolving graph to represent the spatio-temporal segmentation, where each node represents a spatial segment, each edge the neighbourhood between two spatial segments, and each graph is a key frame representing a subsequence of frames with the same graph representation.

Having computed the evolving graphs of two deforming meshes, we proceed to compute the similarity of the evolving graphs by adopting a sequence alignment method. However, a sequence alignment method cannot be directly applied on two graph sequences because the graphs may have different dimensions, i.e. different node numbers. In order to avoid this problem, we classify the similar graphs and assign the graphs in the same cluster with the same label. As a result, each evolving graph is represented into a sequence of cluster labels. Finally, we compute

List of Figures

Figure 1-1 Two types of mesh segmentation, (a) homogeneity within each segment [START_REF] Karni | Spectral compression of mesh geometry[END_REF], (b) functional meaningful segments [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF] [START_REF] Ankerst | 3D shape histograms for similarity search and classification in spatial databases[END_REF], (b) spin images [START_REF] Johnson | Surface registration by matching oriented points[END_REF] [START_REF] Lavoué | A new CAD mesh segmentation method, based on curvature tensor analysis[END_REF], (b) shape diameter function [START_REF] Gal | Pose-oblivious shape signature[END_REF], (c) shape context ([START_REF] Belongie | Shape context: A new descriptor for shape matching and object recognition[END_REF], and (d) heat kernel signature [START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF] With an abundance of computer hardware and geometry acquisition devices available today, 3D mesh data have become a new research subject and accordingly the mesh processing has become an important research topic. During the last two decades, mesh segmentation has drawn a great deal of attentions because it is a primary step that extracts semantic information towards mesh processing and analysis for numerous applications. For example, shape matching and retrieval can be done based on the decomposition of each shape, followed by the matching of the sub-parts [START_REF] Petitjean | A survey of methods for recovering quadrics in triangle meshes[END_REF]. One can also achieve a mesh simplification without much loss of geometrical properties by segmenting a mesh into planary and curved regions and then simplifying the planary regions [START_REF] Sheffer | Model simplification for meshing using face clustering[END_REF]. Another common output of mesh segmentation is a parameterization [START_REF] Julius | D-Charts: Quasi-Developable Mesh Segmentation[END_REF], which enable a user to describe and control the shape with a set of parameters of each subpart. This is useful for the applications such as texture mapping [START_REF] Zhang | Feature-based surface parameterization and texture mapping[END_REF] and remeshing [START_REF] Praun | Spherical parametrization and remeshing[END_REF]. Other applications based on mesh segmentation include compression [START_REF] Karni | Spectral compression of mesh geometry[END_REF], reconstruction [START_REF] Funkhouser | Modeling by example[END_REF], editing [START_REF] Kovar | Motion graphs[END_REF], etc.

Given a 3D static mesh, the object of segmentation is to spatially partition the mesh into multiple parts in either of the two following manners:  Homogeneity of features within each part, i.e., the elements within the same segment share similar geometrical properties (see Figure 1-1(a)). Due to the geometry similarity within each segment, a smaller number of spectral coefficients will be needed to reconstruct the segment by using spectral analysis, and therefore achieves mesh compression [START_REF] Karni | Spectral compression of mesh geometry[END_REF].

 Semantically meaningful or functional parts, e.g., a horse shape can be segmented into a torso, a head, a neck, a tail and four legs (see Figure 1-1(b)) [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]. Based on such mesh segmentation results, one can either extract mesh skeleton that can be useful for creating animation [START_REF] Katz | Hierarchical mesh decomposition using fuzzy clustering and cuts[END_REF], or match the functional parts between shapes that can be further extended to the applications such as shape retrieval (Petitjean, 2002) and consistent segmentations [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]) [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF], etc. We will summarize the existing methods that generate such mesh segmentation results in Chapter 2.

(a) (b)

Figure 1-1 Two types of mesh segmentation, (a) homogeneity within each segment [START_REF] Karni | Spectral compression of mesh geometry[END_REF], (b) functional meaningful segments [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF].

General challenges of mesh segmentation

As stated by Attene et al. (Attene et al., 2006), it is very difficult to devise a segmentation method for static meshes that perfectly meet all the evaluation criteria, including the extraction of correct segments, the boundaries between segments, the type of multi-scale segmentation, the sensitivity to pose and the asymptotic complexity. It is difficult because different segmentation methods have different segmentation criteria depending on their applications, and their segmentation criteria can hardly cover all mesh types. In a later research, Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF] compare the performance of several advanced mesh segmentation methods by using human-based ground-truth segmentation results, and draw a similar conclusion: It remains a difficult problem to develop a segmentation method that can perform well over all mesh types because geometric criteria may not provide sufficient cues to identify all the semantically meaningful parts. For example, the segmentation method by fitting primitives, including a plane, a sphere, and a cylinder, can perform well with mechanical shapes but not with more complex objects such as bird' meshes, because the bird's ings could not be ell fitted by the basic primitives.

General challenges of the segmentation of dynamic meshes

With the rapid advances of the animation technologies in recent years, dynamic mesh data are becoming ubiquitous. Although a great deal of research on 3D static mesh segmentation have been reported in the last two decades, the segmentation of dynamic meshes remains as a new research challenge.

Apart from the general challenges of mesh segmentation presented in the previous subsection the segmentation of dynamic meshes is particularly difficult due to the following reasons:

 Input data size. Unlike the static meshes that only contain 3D spatial dimensions, a dynamic mesh has an additional dimension of time, which poses a challenge because of larger problem size. Typically, a dynamic mesh of 1 minute with frame rate of 30 frames/second contains 1800 meshes, which is a significant increase of data size.

 Dynamic behaviors. In contrast to the existing segmentation methods for static meshes that are developed based on static geometrical features, a segmentation algorithm for dynamic meshes needs to take into account of the dynamic behaviors, which is the temporal movements of different mesh subparts. There exists several segmentation methods for dynamic meshes that compute a single spatial mesh decomposition based on the dynamic behaviors of the mesh primitives, i.e., vertices, edges, or triangles, in the entire mesh sequence [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] [START_REF] Wuhrer | Segmenting animated objects into near-rigid components[END_REF]. By using these methods on a long dynamic mesh with different motions, we may obtain overly segmented patches that do not represent well of each submotion. In such cases, a segmentation algorithm that can both temporally divide a motion into sub-motions and spatially segment the mesh surface for each sub-motion would be preferable.

 Evaluation of segmentation results. One may aim to decompose an animated mesh into meaningful parts, hereas human perception of meaningful' is difficult to model mathematically, making the objective evaluation of segmentation results as another challenging task. To handle the evaluation problem of static mesh segmentation, several benchmarks of human-based ground-truth segmentation have been made available in recent years [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]) [START_REF] Bronstein | Numerical geometry of nonrigid shapes[END_REF]. However, such ground-truth segmentation does not exist today for 3D animations, and constructing similar benchmark for 3D animations will be another challenging task.

Objectives and contributions

Dynamic meshes can be classified into two types: deforming mesh and variant mesh sequence. Given a 3D animation, it is a deforming mesh if the mesh has constant topology over the entire sequence, i.e., a fixed number of vertices and fixed connectivity. Otherwise, we consider it as a variant mesh sequence. In order to compute the segmentation of a variant mesh sequence, one may have to compute vertex correspondence among successive frames, where the correspondence problem however remains a challenging and a heavy computational task ([START_REF] Van Kaick | A survey on shape correspondence[END_REF] [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF]. For this reason, we choose to work with deforming meshes so that we can focus on the discussion and investigation of the segmentation techniques for deforming meshes.

In this thesis, we aim to develop segmentation techniques that compute the temporal and spatio-temporal segmentation for deforming meshes, which both have not been studied before. Moreover, we further extend the segmentation results towards the application of motion similarity measurement between deforming meshes. This may be significant as it solves the problem that cannot be handled by current approaches. Concerning the challenges of the segmentation of dynamic meshes presented in the previous section, our temporal segmentation can divide a motion into submotions, which would address the challenge of dynamic behaviors performed in a deforming mesh. Additionally, in order to alleviate the challenge of evaluation problem, we extend the spatio-temporal segmentation for the application of motion similarity measurement. Thus, by evaluating the computed motion similarities with human-based ground-truth, we indirectly validate the quality of the spatio-temporal segmentation of deforming meshes.

In the remainder of this section, we formally define the spatial segmentation, the temporal segmentation and the spatio-temporal segmentation of deforming meshes, followed by a summary of the contributions of this thesis.

Formal definitions

Definition 1-1 : spatial segmentation of deforming meshes [START_REF] Shamir | A survey on mesh segmentation techniques[END_REF] [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF]. Let M=(

) be the mesh topology of a deforming mesh, where , , are vertex, edge and triangle sets, respectively. A spatial segmentation ∑s of M is a set of sub-meshes ∑s={ }, ⋃ , where each of is a set of connected vertices. Note that the spatial segmentation can also be expressed by a partition of either edges or triangles into disjoint subsets.

Definition 1-2 : temporal segmentation of deforming meshes [START_REF] Arcila | Segmentation of temporal mesh sequences into rigidly moving components[END_REF].

Let M = * + be a deforming mesh, where is the total number of frames. A temporal segmentation ∑t of M is a set of subsequences ∑t={ }, ⋃ =M, where each of is a subsequence of successive frames.

Definition 1-3 : spatio-temporal segmentation of deforming meshes. Let M = * + be a deforming mesh, where N is the total number of vertices. We consider M as a volumetric data, and define a spatio-temporal segment as a set of vertices (or triangles) that are either spatially or temporally connecting to each other. Then, the object of spatio-temporal segmentation is to partition a deforming mesh M into spatio-temporal segments, i.e., ⋃ = M.

Contributions

To overcome the limitations of the existing spatial segmentation methods for deforming meshes, we propose new segmentation methods that investigate both temporal and spatial deformation coherency in deforming meshes. In this thesis, we first present a deformation-based descriptor to measure the degree of deformation of each triangle within each frame. Based on this feature descriptor, we devise a temporal segmentation algorithm that divides a deforming mesh into subsequences, each of which is a set of successive frames. In addition, we also propose a spatio-temporal segmentation algorithm for the efficient representation of deforming meshes. The major contributions of this thesis can be summarized as follows:

Deformation-based descriptor. To describe the dynamic motion information within a deforming mesh, we present a deformation-based feature descriptor to measure the degree of deformation for each triangle at each frame in a deforming mesh. This allows us to investigate the deformation coherency within a given deforming mesh by observing each triangle's feature descriptor. Based on this descriptor, we devise the following two new segmentation methods for deforming meshes, which have not been studied before.

Temporal segmentation of deforming meshes. In recent years, several spatial segmentation methods have been proposed to segment a deforming mesh into nearrigid components [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] [START_REF] Lee | Segmenting a deforming mesh into nearrigid components[END_REF] [START_REF] Wuhrer | Segmenting animated objects into near-rigid components[END_REF]. However, these methods overlook the temporal coherency, for which reason one spatial segmentation result may not be representative for each sub-motions. To address such problem, we devise a temporal segmentation algorithm by using the temporal coherency within deforming meshes. In specific, we cut a given mesh sequence so that each subsequence contains shapes with similar poses. Since we measure pose similarity based on our new deformation-based descriptor, we can obtain consistent temporal segments for deforming meshes that perform identical or similar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Having the above temporal segmentation, we step further to explore both spatial and temporal deformation coherency at the same time in a deforming mesh. To achieve this, we devise a new spatio-temporal segmentation technique for deforming meshes, with an aim of developing a new efficient representation that encodes well the motions exhibited in the given deforming meshes. Knowing the advantage of graph that it is a convenient and compact representation for structured objects, we represent the spatiotemporal segmentation results of a deforming mesh into an evolving graph, a graph changes over time. Moreover, in order to validate the effectiveness of our spatiotemporal segmentation method and the graph representation of the segmentation results, we extend the segmentation results towards similarity measurement by comparing the corresponding evolving graphs.

Organization

The reminder of this thesis is organized as follows. In Chapter 2, we give a literature review of the existing segmentation works for a single static mesh, a set of similar 3D models and the spatial segmentation of dynamic meshes. Next, we present a new deformation-based feature descriptor in Chapter 3. By using this new descriptor, in Chapter 1, we present our temporal segmentation method for deforming meshes. After that, in Chapter 5, we present a new spatio-temporal segmentation for deforming meshes, which is further extended for measuring motion similarities among deforming meshes. Finally, we give concluding remarks of our works and discuss about the potential future works in Chapter 6.

State of the Art Chapter 2

In this chapter, we explore the related literatures on 3-Dimension (3D) mesh segmentation and discuss about the background of this thesis. We first introduce the most popular standalone segmentation techniques for segmenting a single static mesh in Section 2.1. Then, in Section 2.2, we present a review of data-driven segmentation techniques that either learn feature patterns from human-based ground-truth data sets or extract common features from a set of similar shapes. After that, we summarize the existing spatial segmentation techniques for deforming meshes in Section 2.3. Both advantages and disadvantages of the reviewed methods and their possibilities of being applied on deforming meshes are discussed.

Standalone mesh segmentation

During the last two decades, a large number of standalone segmentation methods have been developed for one single static mesh. In this section, we propose to categorize the mesh segmentation methods based on the characteristics of the methods. Note that we study the most popular methods instead of covering all the related literatures. One may refer to details from the surveys of different segmentation methods and the other categorization criteria. Several surveys and comparative studies of the existing standalone segmentation methods can be found in [START_REF] Attene | Mesh segmentation-a comparative study[END_REF] [START_REF] Shamir | A survey on mesh segmentation techniques[END_REF] [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF] [START_REF] Benhabiles | A comparative study of existing metrics for 3D-mesh segmentation evaluation[END_REF][START_REF] Lavoué | SHREC'12 Track: 3D mesh segmentation[END_REF], where Shamir [START_REF] Shamir | A survey on mesh segmentation techniques[END_REF] reviews the most popular standalone segmentation methods, and Attene et al. [START_REF] Attene | Mesh segmentation-a comparative study[END_REF], Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF], [START_REF] Benhabiles | A comparative study of existing metrics for 3D-mesh segmentation evaluation[END_REF], and Lavoué et al. [START_REF] Lavoué | SHREC'12 Track: 3D mesh segmentation[END_REF] compare and evaluate the performance of different segmentation methods.

Hierarchical clustering based method

Hierarchical clustering methods can be divided into two classes, bottom-up and top-down (k-way). For a bottom-up type, the methods start by merging atomic items, e.g., vertices or triangles, until stopping criteria are reached. On the other hand, for a top-down type, the method starts with a full 3D model and iteratively partition the model into k parts until predefined stopping criteria are reached. For both of the hierarchy clustering types, they require two key components, merging / partitioning rules and stopping criteria.

Bottom-up methods Attene et al. (Attene et al., 2006a) propose a bottom-up hierarchical clustering method for mesh segmentation. By taking each triangle as a tree leaf, this algorithm iteratively merges neighbouring leaves if they together fit well to a primitive, i.e., either a plane, a sphere, or a cylinder. The merging process is stopped until the fitting costs of all the possible merging exceed a predefined threshold, and the segmentation results are immediately obtained, which are the merged clusters. Similarly, Gelfand and Guibas [START_REF] Gelfand | Shape segmentation using local slippage analysis[END_REF]) present a bottom-up hierarchical clustering method to segment a given mesh into simple geometric parts that each part can be attained by a set of rigid transformations from primitive shapes. By starting with atomic items, this algorithm iteratively aggregate neighbouring regions so that the aggregated region fits well to one of the primitive shapes. One obvious limitation of these methods is that the results are biased to primitive shapes. For the same reason, the primitive-fitting based methods are most applicable to engineering models, which normally contain regular primitive shapes. However, oftenly meshes may contain irregular shapes. [START_REF] Lai | Fast mesh segmentation using random walks[END_REF]. [START_REF] Lai | Fast mesh segmentation using random walks[END_REF] present a hierarchical clustering method based on K automatically selected seed vertices that distribute on mesh. See the seed points in Figure 2-1(a). For each of the seed vertex, this method iteratively merges the neighbouring vertices with highest probability to reach, where the probability is derived based on the dihedral angles of the edges on the shortest path between the candidate vertex and the seed. After obtaining K segments until all the vertices are covered Top-down methods Contrarily to the above methods, Lai et al. [START_REF] Lai | Feature sensitive mesh segmentation[END_REF] propose a k-way top-down approach that iteratively clustering a mesh region into k parts, by starting from a full 3D shape. For each clustering, K-means clustering method [START_REF] Shlafman | Metamorphosis of polyhedral surfaces using decomposition[END_REF] is used and the pairwise vertex distance is measured by incorporating geodesic distance, curvature and texture difference. In an earlier work, Sheffer [START_REF] Sheffer | Model simplification for meshing using face clustering[END_REF] propose another top-down hierarchical clustering method for handling the same problem. Sheffer formulates the mesh segmentation problem as a graph contraction problem: He first represents a mesh into a graph, where a node is a vertex/triangle or a surface region, and an edge denotes the connectivity. Then, in the partitioning process, the algorithm contracts the graph by taking into account of surface region size and region smoothness. [START_REF] Katz | Hierarchical mesh decomposition using fuzzy clustering and cuts[END_REF], [START_REF] Shapira | Consistent mesh partitioning and skeletonisation using the shape diameter function[END_REF] have also adopted the k-way top-down approach for addressing the mesh segmentation problem.

Region-growing based methods

Given the topology of a mesh, a region-growing based segmentation method starts with seed points, i.e., vertices or triangles, and then iteratively merges neighbouring points along the topology until pre-defined criteria are satisfied. Region-growing based methods have two critical characteristics: seed-point selection and the criteria for quitting the region-growing process.

Zhou and Huang [START_REF] Zhou | Decomposing polygon meshes by means of critical points[END_REF] propose a region-growing based segmentation method for polygon meshes. In this algorithm, a user supplies a root point, which is used to detect critical points : A critical point is a point whose geodesic distance to the root point is greater than those of its neighbouring points. See the red points in . By taking the critical points as seed points, the segmentation is done by flooding from each seed point until reaching a point has geodesic distance greater than those of its neighbouring points, i.e., the same criteria as critical point detection. The stopping points are shown in green in Figure 2-2(a) and the final segmentation result is shown in Figure 2-2(b). One obvious limitation of this method is the dependency on human selected root point. [START_REF] Zhou | Decomposing polygon meshes by means of critical points[END_REF].

More commonly, region-growing based methods randomly select an un-merged vertex / triangle to merge neighbouring vertices/triangles for a new segment. The following merging criteria have been used: the neighbouring vertices/triangles have small angular differences [START_REF] Garland | Hierarchical face clustering on polygonal surfaces[END_REF], similar curvatures [START_REF] Lavoué | A new CAD mesh segmentation method, based on curvature tensor analysis[END_REF], or the same number of intrinsic numbers [START_REF] Lee | Mesh decomposition using motion information from animation sequences[END_REF].

The efficiency of region-growing based methods can benefit from the parallel computation of multiple regions growing independently, however this type of methods may result in over segmentation due to local noises.

Spectral embedding based method

Due to the high dimensionality of mesh data, i.e., large number of vertices, a variety of previous works map mesh data into lower dimensionality space by using spectral embedding, so that classical clustering techniques such as K-means clustering and/or Mean-shift clustering techniques can be applied for segmentation. The following are two popular spectral embedding techniques:  Principal Component Analysis (PCA) (Abdi and Lynne, 2010). The purpose of this method is to transform the high dimensionality data into a set of new basis (Principal Components) with eigenvectors where the coordinates are linearly uncorrelated. The number of Principal Components (PCs) is lower or equal to the original dimension, which is determined by the amount of information to be retained in the embedded space.

 Multi-Dimensional Scaling (MDS) (Borg and Patrick, 2005). Based on a pairwise distance matrix, the purpose of MDS is to map the points from high dimensional space into a lower dimensional space without too much loss of information of pairwise point distances.

In [START_REF] Katz | Mesh segmentation using feature point and core extraction[END_REF], based on a dual geodesic distance matrix among vertices, the authors apply MDS to map vertices into lower space, and extract prominent feature points that are farthest to the other vertices. These feature points are usually located around limb tips. Then the authors merge the feature points close to each other (see the feature points on leg tips and head in Figure 2-3(b)), and extract the mesh core that disconnects the feature points on limbs, Figure 2-3(c), which immediately results in a mesh segmentation, . However, this method is limited to the mesh of star graph skeleton, i.e., a trunk with several limbs. Liu and Zhang [START_REF] Liu | Segmentation of 3D meshes through spectral clustering[END_REF] propose a similar spectral embedding based segmentation method. In a later work by the same authors [START_REF] Liu | Mesh segmentation via spectral embedding and contour analysis[END_REF], they improve the previous method by incorporating vertex geodesic distance with geometrical segmentability, which relates to the degree of concavity. [START_REF] Katz | Mesh segmentation using feature point and core extraction[END_REF].

The other standalone mesh segmentation techniques

Watershed algorithm has been widely utilized in the Computer Vision domain, particularly for 2D image segmentation. The key idea of the algorithm is to transform an object, an image or a mesh, by defining a height function over points, and then segment the object into catchment basins. Several mesh segmentation techniques have been devised based on watershed algorithm [START_REF] Mangan | Partitioning 3D surface meshes using watershed segmentation[END_REF] [START_REF] Chen | An efficient and robust algorithm for 3D mesh segmentation[END_REF]). As a classic example in an early work by Mangan and Whitaker [START_REF] Mangan | Partitioning 3D surface meshes using watershed segmentation[END_REF], the mesh segmentation method defines a height function of each vertex based on curvature, i.e., a vertex with higher curvature has larger height, and vice-versa. By applying watershed algorithm, the segmentation results tend to lay the segment boundaries along sharp surface area with high curvatures. The drawback of the watershed algorithm is over segmentation, due to noises on mesh surface. Some segmentation methods involve human interactions [START_REF] Fan | Paint mesh cutting[END_REF] [START_REF] Li | Decomposing polygon meshes for interactive applications[END_REF] [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]. In order to collect ground-truth segmentation from human users, Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]) develop an online system so that a user can pick vertices on mesh surface, which are automatically connected as boundary lines for mesh segmentation. As shown in Figure 234, human tend to consistently place segmentation boundaries in concave regions. [START_REF] Fan | Paint mesh cutting[END_REF] propose a mesh segmentation method based on human painting. In this method, a user paint strokes on mesh to indicate the number and area of each mesh segment. Then, the segmentation is done by grouping vertices to the closest stroke, where the distance is measured by incorporating both Gaussian curvature [START_REF] Yamauchi | Mesh segmentation driven by Gaussian curvature[END_REF] and Shape Diameter Function [START_REF] Gal | Pose-oblivious shape signature[END_REF]. Although this type of methods benefit from human perception, they are not practical for processing massive data sets. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]. [START_REF] Golovinskiy | Randomized cuts for 3D mesh analysis[END_REF] propose a segmentation method by integrating the segmentation results by using different methods. They first generate a set of over segmentation results by using existing segmentation methods, K-Means [START_REF] Shlafman | Metamorphosis of polyhedral surfaces using decomposition[END_REF], Hierachical Clustering (Shi and Jitendra, 2000) and Min Cuts (Katz and Ayellet, 2003), each with randomly generated parameters to segment an input mesh. Along the boundaries of these segmentation results, the authors construct a statistical framework of edges in the boundaries. Finally, they determine the final boundaries by taking the edges appear most frequently in the boundary lines. However, this method suffers from heavy computation because of computing mesh segmentation several times of one model.

Discussions on the standalone mesh segmentation techniques

As shown in the above review, a large variety of techniques have been proposed for standalone mesh segmentation, either for segmenting a mesh into meaningful parts or geometrical rigid segments. Thanks to the recent contributions by [START_REF] Giorgi | Shrec: shape retrieval contest: Watertight models track[END_REF], Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF], Benhabiles et al. [START_REF] Benhabiles | A framework for the objective evaluation of segmentation algorithms using a ground-truth of human segmented 3D-models[END_REF], [START_REF] Bronstein | SHREC 2010: robust feature detection and description benchmark[END_REF], [START_REF] Kim | Blended intrinsic maps[END_REF], and Lavoué et al. [START_REF] Lavoué | SHREC'12 Track: 3D mesh segmentation[END_REF], they have not only made available of a considerable amount of static mesh sets, but also created ground-truth segmentations, which enable us to objectively evaluate segmentation results. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF].

In order to compare a segmentation result against ground-truth, we can apply different distance metrics such as Cut Discrepancy [START_REF] Huang | Quantitative methods of evaluating image segmentation[END_REF], Hamming Distance (Huang and Byron, 1995), Rand Index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF], and Consistency Error [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. By using these distance metrics, Chen et al. [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF] evaluate the performance of several most advanced segmentation techniques at the time. According to their experimental results, shown in Figure 2345, none of the standalone segmentation methods performs well over all mesh types, because geometric criteria may not provide sufficient cues to identify all the semantically meaningful parts. This observation complies well with the conclusion of an earlier comparative study of standalone segmentation techniques by Attene et al. [START_REF] Attene | Mesh segmentation-a comparative study[END_REF] that each mesh segmentation method has its advantages and drawbacks. Due to this reason, the later works on mesh segmentation have been mostly devoted in data-driven approaches.

Data-driven mesh segmentation

More recently, researchers in the Computer Graphics community have proposed a variety of data-driven segmentation methods, aiming at the consistent segmentation of a set of 3D shapes. We categorize these data-driven methods into two classes: learning-based and co-segmentation.

Learning-based methods

A learning-based segmentation method learns the prominent features from a set of ground-truth segmentations at the training stage. Then the segmentation of input meshes can be achieved by detecting the learned features in the meshes. [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]. [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF] propose a learning-based method for 3d mesh segmentation and labelling. The key idea of this method is a classifier that determines the label of a triangle based on the triangle's features. The classifier is a linear combination of two terms: a unary term that measures the probability for a triangle being assigned with each of the candidate label, and a binary term that measures the probability of two neighbouring triangles being assigned with different labels. Given this definition of the classifier, the algorithm trains the parameters for the classifier to adapt to human ground-truth segmentation. Finally, the segmentation of a new mesh is to feed with triangle features to the trained classifier, which generates the labelling of each triangle, i.e., the spatial segmentation of the input mesh. Several sample segmentation results are shown in Figure 2-6(b).

In fact, a 3D mesh segmentation can be defined not only as segment patches of vertices or triangles, but also boundaries that cut a mesh. By following the latter definition, Benhabiles et al. [START_REF] Benhabiles | Learning Boundary Edges for 3D-Mesh Segmentation[END_REF] propose a learning-based method that addresses the mesh segmentation problem by computing boundaries. Similar to [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF], [START_REF] Benhabiles | Learning Boundary Edges for 3D-Mesh Segmentation[END_REF] train a classifier based on ground-truth segmentation, to measure the possibility of an edge appearing in boundaries. By using a threshold, this method binary labels the edges ith boundary edge' or not, hich results in mesh regions ith connected boundary edges'. For each of the boundary edge' region, the authors apply a thinning approach [START_REF] Hubeli | Multiresolution feature extraction for unstructured meshes[END_REF] to remove the border edges towards inside, which produces a boundary line. Finally, they apply snake movement alignment method [START_REF] Jung | Snaking across 3d meshes[END_REF] to connect head and tail of the boundary lines for the mesh segmentation. Therefore, the learning-based methods can learn prominent features based on large sets of ground-truth segmentation that are available from [START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF]) [START_REF] Benhabiles | A framework for the objective evaluation of segmentation algorithms using a ground-truth of human segmented 3D-models[END_REF] [START_REF] Bronstein | SHREC 2010: robust feature detection and description benchmark[END_REF]. However, learning-based segmentation methods suffer from heavy computation, and not capable for treating meshes without ground-truth segmentation of similar models.

Co-segmentation methods

Another solution for the consistent segmentation problem is to extract commonly shared features from a set of similar shapes, and then segment meshes into consistent parts based on the same criteria. [START_REF] Golovinskiy | Consistent segmentation of 3D models[END_REF]. [START_REF] Golovinskiy | Consistent segmentation of 3D models[END_REF] propose an unsupervised segmentation method for segmenting a set of similar 3D models at the same time. They first define two edge types: adjacency edge (Green edges in Figure 2345678) and correspondence edge (Red edges in Figure 2345678). The adjacency edges connect neighbouring triangles within one mesh, where each edge is weighted by both the dihedral angle and the edge length. And the correspondence edges connect corresponding triangles between two models, where the correspondence is obtained from model alignment. The segmentation is then done by minimizing the sum of within segment adjacency edge weights and inter-model correspondence edge distance. This method allows to obtain consistent segmentation because the adjacency edges encourage smooth surface within segment and the correspondence edges encourage corresponding parts between two meshes to be aggregated into the same segment. Similarly, the segmentation methods by Sharma et al. [START_REF] Sharma | Learning shape segmentation using constrained spectral clustering and probabilistic label transfer[END_REF] and [START_REF] Kim | Learning part-based templates from large collections of 3D shapes[END_REF] both are also based on shape matching. In specific, they first generate the mesh segmentation of one shape, and then compute the shape correspondence with another shape for transferring the segmentation labelling to the shape.

Among the co-segmentation methods, a large portion make use of the over segmentation of each model independently [START_REF] Hu | Co -Segmentation of 3D Shapes via Subspace Clustering[END_REF] [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF] [START_REF] Huang | Joint shape segmentation with linear programming[END_REF] [START_REF] Wu | Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering[END_REF] [START_REF] Luo | Co-segmentation of 3D shapes via multi-view spectral clustering[END_REF]. As shown in Figure 2-9, Sidi et al. [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF] first apply mean-shift clustering (Chen, 1995) to segment each model into patches, Figure 2-9(a). Then they apply spectral analysis for each patch and classify the patches in their embedded space, in the object of grouping similar parts from different meshes into the same cluster, Figure 23456789c). Finally, the segmentation is done by minimizing within cluster triangle energy and maximizing pairwise triangle energy along boundaries, which also optimizes the segmentation boundaries, Figure 23456789e). With a similar segmentation framework, Huang et al. [START_REF] Huang | Joint shape segmentation with linear programming[END_REF] first conduct an over segmentation of two similar shapes independently by using randomized cuts segmentation method [START_REF] Golovinskiy | Randomized cuts for 3D mesh analysis[END_REF]. Then they define a consistency term that both measures the geometric similarity between individual corresponding segments, and prioritizes adjacent segments in different shapes to have the same labelling. Therefore, the optimization of the consistency term allows to obtain consistent segmentation between similar shapes. Hu et al. [START_REF] Hu | Co -Segmentation of 3D Shapes via Subspace Clustering[END_REF], Luo et al. [START_REF] Luo | Co-segmentation of 3D shapes via multi-view spectral clustering[END_REF] and Wu et al. [START_REF] Wu | Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering[END_REF]) also apply the same segmentation framework, but differently these approaches incorporate multiple features within each patch to improve the performance of the segmentation: Wu et al. automatically compute the optimized weight among multiple features through spectral analysis; Luo et al. iteratively project the affinity matrices of different features onto the same Laplacian eigenvectors [START_REF] Chung | Spectral graph theory[END_REF], then they concatenate different features into one vector and apply k-means to classify patches. [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF].

The advantage of this type of method is that a set of similar shapes help to identify commonly shared prominent features. For this reason, not only a set of shapes can be segmented at the same time, but also the individual segmentation can be improved. However, the requirement of similar shapes poses a limitation on the input data. Moreover, most of the above methods also suffer from heavy computation, for which reason these segmentation methods may not be applicable for dynamic meshes.

Segmentation of dynamic meshes

Since a dynamic mesh is normally a heavy data that contains an abundance of redundancy both in local mesh regions and between successive frames, segmentation provides a possibility to precede this heavy data for the applications such as compressions [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] [START_REF] Karni | Compression of soft-body animation sequences[END_REF] [START_REF] James | Skinning mesh animations[END_REF] [START_REF] Mamou | A skinning approach for dynamic 3D mesh compression[END_REF], skeleton extractions [START_REF] James | Skinning mesh animations[END_REF]Twigg, 2005) (De et al., 2008), etc. During the last decade, a variety of spatial segmentation methods have been proposed for dynamic meshes. In this section, we categorize these methods based on the criteria whether an approach uses vertex trajectories, or extracted high-level local feature descriptors.

Trajectory-based method

A trajectory-based mesh segmentation method treats a deforming mesh directly on coordination data, without pre-processing. [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF].

Sattler et al. [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] propose a segmentation method of deforming meshes by grouping vertices with similar trajectories. They first compute an initial clustering of vertex trajectories by using K-Means clustering, where pairwise vertex trajectory distance is computed by using Euclidean distance. Then, iteratively, they compute the number of Principle Components (PCs) of each cluster, and classify each vertex to the cluster with least reconstruction error by using the corresponding number of PCs. Now that the vertices with similar trajectories are classified into the same cluster, optimized number of PCs can be used to represent the vertices within each cluster, and therefore improves the compression rate. Figure 2345678910shows an example of spatial segmentation result of a chicken animation by using Sattler et al.'s approach, here the mesh is partitioned into rigid segments. Similar-ly, [START_REF] De Aguiar | Automatic Conversion of Mesh Animations into Skeleton-based Animations[END_REF] propose a segmentation method for automatic conversion of deforming meshes into skeleton animations by using spectral clustering. To this end, they define an affinity matrix among vertices where pairwise vertex affinity is derived from Euclidean distance of vertex trajectories. Having the spatial segmentation results, they can build a skeleton for each frame where each node represents the corresponding segment center and each edge represents neighbourhood between two segments. Lee et al. [START_REF] Lee | Mesh decomposition using motion information from animation sequences[END_REF] propose a region-growing based segmentation method for animation sequences that groups triangles with the same intrinsic dimensionality. Started from a user supplied seed triangle, this method iteratively merges the neighbouring triangles that have the same number of PCs and the distance to the neighbouring triangle within cluster does not exceed a user threshold. The local greedy region-growing process continues until all the triangles have been clustered.

Since the above segmentation methods in [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF], [START_REF] Lee | Mesh decomposition using motion information from animation sequences[END_REF] and [START_REF] De Aguiar | Automatic Conversion of Mesh Animations into Skeleton-based Animations[END_REF] group vertices with similar trajectories, they allow to obtain the segmentation results that keep the motion rigidity within each segment.

Nontrajectory-based method

In fact, most of the segmentation methods have been developed based on local feature descriptors. Arcilla et al. (Arcilla et al., 2010 and2013) present a framework for the spatial segmentation of dynamic mesh with inconsistent topology. Their method first computes the vertex matching between two successive meshes, Figure 2-11(a), then groups the neighbouring vertices with similar motions, which is measured by the displacement vector for each corresponding vertex. In fact, both the 3D shape correspondence ([START_REF] Van Kaick | A survey on shape correspondence[END_REF] and segmentation are challenging problems for the research in Computer Graphics. We focus on the latter problem and therefore work with deforming meshes that the mesh topology is fixed. Wuhrer and Brunton [START_REF] Wuhrer | Segmenting animated objects into near-rigid components[END_REF] achieve the same goal in a more efficient approach by using minimum spanning tree (MST) [START_REF] Kleinberg | Algorithm design[END_REF] in dual space. They first compute a dual graph wherein nodes are vertices and edges are vertex neighbourhood weighted by the maximum dihedral angle in the sequence. After computing the MST of the dual graph, the algorithm removes the edges with largest weight, which most likely indicate two dissimilar subgraphs. The graph cut process stops until a predefined number of segments is obtained.

The spatial segmentation of deforming meshes has also been addressed through clustering techniques. James and Twigg [START_REF] James | Skinning mesh animations[END_REF] segments a deforming mesh by applying mean-shift clustering (Chen, 1995) to vertex rotation sequences, which contains the rotation matrix of each triangle in each frame with referring to the corresponding triangle in the rest pose. Similarly, Mamou et al. [START_REF] Mamou | A skinning approach for dynamic 3D mesh compression[END_REF] compute the triangle transformation sequence, which is the affine transformation of each triangle in each frame. Then they acquire the segmentation by applying K-means clustering to group the vertices with similar deformation behaviours. These two segmentation results have been applied for the skinning [START_REF] James | Skinning mesh animations[END_REF] and the compression [START_REF] Mamou | A skinning approach for dynamic 3D mesh compression[END_REF] of deforming meshes, respectively. [START_REF] James | Skinning mesh animations[END_REF].

In one of the most recent literature, Vasilakis and Fudos [START_REF] Vasilakis | Pose partitioning for multi-resolution segmentation of arbitrary mesh animations[END_REF] present a data-driven segmentation method for deforming meshes. This algorithm first applies existing static mesh segmentation methods to each pose in the mesh sequence, Figure 2-14(a), and then compute an over segmentation by intersecting all the spatial segments, Figure 2-14(b). Finally, for each frame, the method simplifies the over-segmentation by merging small neighbouring segments based on dynamic behaviours, which results in the final segmentation result, Figure 2-14(c). Nonetheless, a long mesh sequence may result in different segmentation results because the existing methods do not consider the temporal coherency within a deforming mesh.

Summary

Mesh segmentation for both 3D static meshes and dynamic meshes has been an active research area during the last two decades. In this section, we have summarized the existing spatial segmentation techniques and categorized them based on their characteristics. See Table 2-1 in the next page. However, to our best knowledge, the existing segmentation methods for dynamic meshes only concerns about spatial deformation coherency without considering about temporal deformation coherency. In the remainder of this thesis, we present new segmentation methods that investigate both temporal and spatial coherency within deforming meshes, which have not studied before. Segmenting a mesh by using the local geometrical cues in the mesh.

None of the methods can perform well over all mesh types.

Data-driven segmentation

Learning-based Segmenting a mesh by using the prominent features learned from ground-truth.

Requires human-based ground-truth, and time consuming.

Co-segmentation

Segmenting a set of similar shapes by extracting commonly shared features.

Requires a set of similar shapes, and time consuming.

Dynamic mesh Spatial segmentation

Trajectory-based Grouping vertices with similar trajectories.

Overlooks the temporal deformation coherency in dynamic meshes.

Non-trajectory based

Segmenting a dynamic mesh into near-rigid parts.

A Dynamic Feature De-Chapter 3 scriptor

In this chapter, we first review existing feature descriptors for 3D meshes in Section 3.1. Then, we present a deformation-based feature descriptor, named strain, to measure the degree of deformation of each triangle at each frame of deforming meshes. This descriptor is invariant to global shape rotation, translation and uniform scale, and its dynamic feature is robust over shape difference when different shapes undergoing identical or similar motions. Based on this new descriptor, we develop different segmentation methods for deforming meshes, as described in Chapter 1 and Chapter 5.

Existing 3D feature descriptors

As have been reviewed in Chapter 2, although there are several mesh segmentation methods directly make use of vertex coordinates, most of the methods use high-level feature descriptors. In this section, we give a review of related literatures about 3D feature descriptors. There are many ways to categorize the existing feature descriptors. In this thesis, we classify the descriptors for static meshes as static descriptors and the descriptors for dynamic meshes as dynamic descriptors.

Static descriptor

Many static descriptors have been proposed in the contexts of 3D shape correspondence and segmentation. We classify the existing static descriptors into global descriptors and local descriptors, based on the criterion whether a descriptor is representing a segment patch, or a mesh primitive, i.e., vertex or triangle.

A global descriptor illustrates the overall properties of a segment patch, which can be an entire shape or a patch of mesh primitives. Several commonly used global descriptors are listed as follows.

 Shape histogram. Ankerst et al. [START_REF] Ankerst | 3D shape histograms for similarity search and classification in spatial databases[END_REF] propose this global descriptor to represent a 3D object. This descriptor first decomposes an object into concentric shell bins and sector bins around the center point, then represent the object into a vector of number of points within each bin. Figure 3-1(a) shows an example of representing a 2D image with this descriptor, where the top row shows an image being divided into shell bins and sector bins, and the number of points in each bin is shown in the bottom row as a histogram. However, the shape histogram representations for one object may be different depending on the bin orders. In order to avoid such problem, based on the representation of 3D shapes with shape histogram, Ankerst et al. [START_REF] Ankerst | 3D shape histograms for similarity search and classification in spatial databases[END_REF] measure shape similarities by using Quadratic Form Distance Function [START_REF] Ankerst | A multistep approach for shape similarity search in image databases[END_REF], which is invariant to the order of bins.

 Spherical harmonics. [START_REF] Kazhdan | Rotation invariant spherical harmonic representation of 3 D shape descriptors[END_REF] present spherical harmonics based on a set of spherical basis functions. In specific, they first divide the object volume into a set of concentric shells with different radius, and then decompose each shell in frequency domain. Then, the norm for each frequency component at each radius becomes the bin size of a 2D histogram, which is indexed by radius and frequency.

 Spin Images [START_REF] Johnson | Spin-images: a representation for 3-D surface matching[END_REF]. To compute the spin images of a shape, we first map 3D vertices on surface into 2D space via the cylindrical coordinate system. That is, as shown in Figure 3-1(b), given a tangent plane P and an oriental point p, each vertex x has a 2D basis representation (), where is the perpendicular distance to normal n and is the perpendicular distance to P. [START_REF] Johnson | Surface registration by matching oriented points[END_REF] have applied this descriptor to find matching points between two shapes by using iterative closest point algorithm [START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF].

 Other global descriptors. After the over segmentation of a mesh, Huang et al. [START_REF] Huang | Joint shape segmentation with linear programming[END_REF] represent each mesh segment with the percentage of surface area of the full mesh. More commonly, global descriptors are also devised as statistical histogram of local geometries of mesh primitives within a mesh segment [START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF].

(a) (b)

Figure 3-1 Global descriptors, (a) shape histogram [START_REF] Ankerst | 3D shape histograms for similarity search and classification in spatial databases[END_REF], (b) spin images [START_REF] Johnson | Surface registration by matching oriented points[END_REF].

A local descriptor describes the local geometric properties of a mesh primitive. Unlike global descriptors which are relatively coarse to characterize an entire shape, local descriptors carry more detail information and therefore can be more distinctively describing each vertex or triangle [START_REF] Huang | Temporal 3d shape matching[END_REF]. Among different geometrical information, geodesic distance has been widely used for local descriptors [START_REF] Wang | Shape-based 3D surface correspondence using geodesics and local geometry[END_REF]) [START_REF] Gal | Pose-oblivious shape signature[END_REF]) [START_REF] Lee | Segmenting a deforming mesh into nearrigid components[END_REF]. Below we introduce several other commonly used local descriptors for 3D shapes.

 Average Geodesic Distance (AGD) [START_REF] Gal | Pose-oblivious shape signature[END_REF]. AGD of a vertex is the average of the geodesic distance from this vertex to all the other vertices on mesh. This descriptor is useful for detecting extreme points that are farthest to the other points on the mesh.

 Gaussian Curvature [START_REF] Yamauchi | Mesh segmentation driven by Gaussian curvature[END_REF] [START_REF] Lavoué | A new CAD mesh segmentation method, based on curvature tensor analysis[END_REF]. A curvature value measures the surface convexity, or concavity, which has been commonly used for mesh segmentation [START_REF] Yamauchi | Mesh segmentation driven by Gaussian curvature[END_REF] [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]. Let κ 1 and κ 2 be the principal curvatures of a point on surface, the well-known Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2 . One can also derive the other curvature types by incorporating the two principle curvatures in different ways, including [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF]. Wang et al. [START_REF] Wang | Shape-based 3D surface correspondence using geodesics and local geometry[END_REF] devise a vertex distance metric by incorporating curvature difference and geodesic distance between two vertices. Figure 3-2(a) shows the Gaussian curvature field of a 3D plane model, where the surface regions with higher convexity have higher curvature values, shown in red color, otherwise in blue.

κ 1 , |κ 1 |, κ 2 , |κ 2 |, |κ 1 κ 2 |, (κ 1 +κ 2)/2, |(κ 1 +κ 2)/2|, κ 1 -κ 2 , etc.
 Shape Diameter Function (SDF) [START_REF] Gal | Pose-oblivious shape signature[END_REF]. Figure 3-2(b) shows an example of computing SDF of a vertex on head. For computing the SDF of a vertex, rays from the vertex are averagely sampled in a cone, which is opposite to the normal of the vertex. These rays intersect on the shape, and the local SDF is the average length of the ray segments. Gal et al. linearly combine AGD and SDF as a vertex signature, for computing vertex correspondence between two shapes by measuring the similarity of vertex signatures.

 Shape Context [START_REF] Belongie | Shape context: A new descriptor for shape matching and object recognition[END_REF]. As depicted with a 2D image in Figure 3-2(c), for each point, this descriptor is a 2D histogram measuring the distribution of the other points in logarithmic distance bins and uniform angle bins, see the right matrix in Figure 3-2(c). Kalogerakis et al. [START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF] and Acosta et al. [START_REF] Acosta | 3D shape context surface registration for cortical mapping[END_REF] compute shape correspondence by comparing shape context of vertices.

 Heat Kernel Signature (HKS) [START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF]. Sun et al. devise an intrinsic local descriptor HKS, which measures heat kernel values at multiple time scales for each vertex. HKS inherits isometric invariance and multi-scale property from the heat kernel [START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF]) [START_REF] Ovsjanikov | One point isometric matching with the heat kernel[END_REF]. Tevs et al. [START_REF] Tevs | Intrinsic shape matching by planned landmark sampling[END_REF] compute vertex matching between two shapes based on the comparisons of the HKS of vertices. [START_REF] Lavoué | A new CAD mesh segmentation method, based on curvature tensor analysis[END_REF], (b) shape diameter function [START_REF] Gal | Pose-oblivious shape signature[END_REF], (c) shape context ([START_REF] Belongie | Shape context: A new descriptor for shape matching and object recognition[END_REF], and (d) heat kernel signature [START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF].

Dynamic descriptor

A dynamic descriptor represents the deformation behaviours along time in an animation, such as the changing curvatures of a vertex due to deformation. Since a deforming mesh is a sequence of static meshes, every vertex/triangle on the shape can be represented with a vector of static shape descriptors, where the length of the vector is the number of frames in the sequence. Thus, given a deforming mesh, the dynamic descriptor of a triangle (or a vertex) can be represented as a vector of local descriptors at each frame. In this way, for example, the Gaussian curvature of a vertex varies at each frame and therefore represents the deformation behaviours of the vertex.

So far, most of the existing dynamic descriptors have been developed in the context of segmentation and/or compression of dynamic meshes. With an aim of clustering similarly moving vertices into the same cluster, several related literatures have used vertex trajectories to measure similarity between vertices [START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF] [START_REF] Lee | Mesh decomposition using motion information from animation sequences[END_REF][START_REF] De Aguiar | Automatic Conversion of Mesh Animations into Skeleton-based Animations[END_REF]. Apart from these, most of the existing works represent each mesh primitive with dynamic feature descriptors. James and Twigg [START_REF] James | Skinning mesh animations[END_REF] represent each triangle of a deforming mesh with a rotation sequence, wherein each element is the rotation matrix of a triangle in a frame w.r.t. the corresponding triangle in the rest pose. Similarly, Lee et al. [START_REF] Lee | Segmenting a deforming mesh into nearrigid components[END_REF] compute the transformation of each triangle within each frame, which results in a transformation sequence for each triangle.

Note that a dynamic descriptor can also be derived from global static descriptor. That is, for a deforming mesh, we represent each frame with a global descriptor, and therefore the deforming mesh can be represented with a vector of global descriptors. However, in this thesis, we devise dynamic descriptors by using local static descriptors because local descriptors contain the detailed information of each triangle, with which we will classify into groups based on their deformation behaviors.

Having a variety of feature descriptors available, one may need to clarify the segmentation criteria before choosing descriptors, since different descriptors may lead to different segmentation results. Among the introduced static descriptors in Section 3.1.1, AGD, SDF, HKS and Shape Context are invariant to rigid transformations. Moreover, HKS holds the property of isometric invariance. However, these descriptors are not practical for deforming meshes because AGD is invariant for isometric meshes and therefore cannot represent dynamic behaviors in isometric deforming meshes; Gaussian Curvature represents well of bending but not stretching or shrinking; SDF, HKS and Shape Context may suffer from heavy computation due to their high algorithm complexities and the larger dimensionality of deforming meshes. In the following section, we present an efficient deformation-based dynamic descriptor for deforming meshes, which measures the degree of deformation for each triangle at each frame.

Our deformation-based feature descriptor

In this section, we present a new efficient dynamic descriptor for deforming meshes. For each triangle within each frame of a deforming mesh, this descriptor computes a scalar value that indicates the degree of deformation, by comparing to the corresponding triangle at a reference pose. In specific, we first introduce deformation gradient tensor, based on which we can compute principal stretches of each deformed triangle. Then, we use the principal stretches to measure the degree of deformation.

Deformation gradient tensor

The Deformation Gradient Tensor measures the degree of deformation in continuum mechanics, which is the derivative of each component of the deformed configuration with respect to each component of the reference configuration [START_REF] Crandall | An introduction to the mechanics of solids[END_REF]. Depicted in Figure 3-3, we formulate the deformation gradient tensor between a deformed vector and a reference vector as follows:

[]

(3-1)
where .

Reference Deformed dx dx'

X 1 X 3 X 2 x' x F Figure 3-3
The reference and deformed configurations [START_REF] Gullett | A deformation gradient tensor and strain tensors for atomistic simulations[END_REF].

Invariant to translation. The Deformation Gradient Tensor is invariant to body translation [START_REF] Gullett | A deformation gradient tensor and strain tensors for atomistic simulations[END_REF]. Consider an example of the translation of to , based on Equation 3-1, we can obtain as follows:

()
where is an identity matrix. It shows that the body translation does not affect the deformation gradient.

Cauchy deformation tensors. As have seen above, only contains rotation as rigid movement and stretch as deformation. Then, by using the polar decomposition theorem [START_REF] Higham | Computing the polar decomposition-with applications[END_REF], we can decompose into the product of an orthogonal rotation tensor and a symmetric stretch tensor or [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF].

Depending on whether we first apply rotation or stretch, we have the two decomposition types, and , where is right stretch tensor and is left stretch tensor (see Figure 34). Because of the symmetric property of stretch tensors, we have and .

deformed configuration undeformed configuration Based on the above properties of deformation gradient tensor, we proceed to introduce the following two Cauchy deformation tensors (Note that the rotation tensor is orthogonal, i.e., and):

-Right Cauchy deformation tensor

() () () . (3-2)
It shows that the right Cauchy deformation tensor is equal to the square of the right stretch tensor, which is invariant to body rotation.

-Left Cauchy deformation tensor

()() () .
It shows that the left Cauchy deformation tensor is equal to the square of the left stretch tensor, which is invariant to body rotation.

Moreover, since , we have . Based on the definition of eigenvalues and eigenvectors, we assume , (3)(4) where and are the corresponding eigenvalues and eigenvectors of , and is the size of dimension. By applying Equation 3-3 into Equation 3-4, we have -5) By applying the same rotation to both sides of Equation 3-5, we obtain

() . (3
() () () .
Assuming , we have .

Therefore, the two stretch tensors and have the same eigenvalues, although the eigenvectors may be different. The obtained eigenvalues are called principal stretches. In the next section, we use the principal stretches to measure the degree of deformation of deforming triangles. Since and have the same principal stretches, either the right Cauchy deformation tensor or the left Cauchy deformation tensor can be used.

Strain

We begin by representing the deformation for each triangle as an affine transformation between the current frame and a reference frame. Non-translational component of the affine transformation encodes the change in orientation, scale, and skew induced by the deformation on the triangle. [START_REF] Sumner | Mesh-based inverse kinematics[END_REF], we add a fourth vertex in the direction of the normal vector of the triangle and subtract the first equation from the others to eliminate d. In specific, the fourth vertex is an unit vector, obtained by the cross-product of two edge vectors of a triangle. In Figure 3 Note that this representation specifies the deformation in per-triangle basis, and therefore it is independent of the specific position and orientation of the mesh in world coordinates.

In continuum mechanics, the same matrix F is called deformation gradient tensor [START_REF] Crandall | An introduction to the mechanics of solids[END_REF] as it explains the relationship between a material vector in the reference object (before deformation) and the deformed one, i.e., ̃. Without loss of generality, we assume that the triangle is stretched first and then rotated. Thus, we have , where R denotes the rotation tensor and U the stretch tensor. Since we want to differentiate triangles according to their degree of stretch and shrinking, we eliminate the rotation component of by computing the right Cauchy deformation tensor C as defined in Equation 3-2, where is equal to the square of the right stretch tensor. We obtain principal stretches through the eigen-analysis on , and compute the deformation of a triangle as (), where , and are the principal components of . Intuitively, and reflects the degree of stretch and shrinking, respectively. That is, the higher degree of stretch (or shrinking) occurs in the triangle, the larger values of (or) we will obtain.

Therefore, the strain value we have obtained measures the degree of deformation of the triangle. In addition, since all the measurements are based on the adjacent edges and their relative length changes throughout deformation, the per-triangle feature descriptor is independent on rigid transformations.

Exceptional triangles Note that although the strain value of a deformed triangle can be computed efficiently by the spectral decomposition of a 3-by-3 deformation tensor, this computation may fail on some degenerated triangles. That is, when either of the reference or current triangle has edges with near-zero length, the gradient tensor analysis will fail while computing ̃. In this thesis, we assume such exceptional triangles do not occur in the deforming meshes in our experiments.

36 3D strain vs. 2D strain In this section, we have introduced a 3D strain based on 3by-3 deformation tensor. In fact, a 2D strain can be obtained by mapping the triangles into the same plane and compute the spectral decomposition of the 2-by-2 deformation tensor within the plane (see Figure 3456). We compare the 3D strain and 2D strain as follows :

 Computation. 2D strain is more efficent on spectral decomposition because it analysis a 2D matrix. On the other hand, 2D strain requires extra computation to map triangles into the same plane.

 Result. We have obtained 3 eigenvalues for 3D strain, with one of them as a constant value 1. This is because we compute the fourth vertex as an unit vector, which means there is no deformation in the dimension perpendicular to triangle. For the other 2 eigenvalues, they are identical to those of 2D strain which both measure the deformation independent on triangle rotation, translation and uniform scaling. Since we only use these 2 eigenvalues from 3D strain, the computed degree of deformation are the same as 2D strain. Although we have excluded the occurrence of triangle with near-zero length edge, in a less extreme situation, we still may obtain exceptional high strain values for the case of long triangles, i.e., triangles with two long edges and a relatively short edge. In Figure 3-7, ith a galloping-camel' mesh, e sho the mesh triangles with colors varying from blue and red, to linearly indicate strain values from low to high. shows the original triangle strains on the mesh, where we see only blue triangles. This is because there are a few triangles with extraordinary large strain values (shown in red but not visible due to small quantity) due to noises, while the other triangle strain values are relatively small, see the histogram in Figure 3-7(b). Therefore, we observe the mesh triangles in blue without seeing the very small number of red triangles.

Strain normalization

To alleviate such exceptional high strain values, we filter the extremely high strain values by using a Gaussian Kernel Function (GKF): Given a deforming mesh M with M frames and N triangles, we represent each frame , as a vector of strain values () , which we obtain by the method described in Section 3.1. The strain values are then normalized into [0 1] by using a Gaussian Kernel Function (GKF):

̅̅̅ ()

where is a width parameter that is derived from the average of strain values:

(∑) (

) .The Gaussian filter normalizes the strain values into [0 1]. Complexity. The computation of the strain for each triangle requires the deformation tensor analysis of a 3-by-3 affine matrix (see Section 3.2.2). Therefore, the computation of triangle strains of a deforming mesh M with M frames and N triangles consumes O(M•N) time.

Invariance. Since the measurement of the degree of deformation is based on the adjacent edges and their relative length changes along time, it is obvious that the per-triangle strain is independent of global rotation, translation and normal scale of the mesh.

Robustness over shape difference. Since strain is a deformation-based descriptor, we expect consistent behaviors for the deforming meshes undergoing identical or similar motions, despite their shape differences. To validate the motion consistency, e compute the strains of a Camel' and a Horse' ith the same pose, by using the same reference poses. In Figure 3-8 and Figure 3-9, we show the behaviors of strains computed by using either rest-pose or previous-pose as reference poses, respectively. We show the mesh triangles in colors varying from blue to red, to indicate their low and high strain values.

In both Figure 3-8 and Figure 3-9, for the corresponding frames of horse' and Camel', we can observe similarly colored regions on both of the meshes, such as the neck', the knees on the right-front leg' and the top of the right-back leg'. Based on this observation, our per-triangle strain values are consistent between the two different meshes with similar poses.

Strain with respect to rest-pose vs. previous-pose

In the previous section, we have presented a feature descriptor, which measures the degree of deformation of a triangle by comparing to a reference pose. In practice, the reference pose can be either the rest pose, which in many cases is the first frame (see Figure 345678), or the previous pose (the previous successive frame, see Figure 3456789). In this section, we present the different behaviors of the strain values computed based on both rest-pose and previous-pose, by using synthetic data and real animation data. [START_REF] Lian | Feature-preserved 3D canonical form[END_REF].

Note that for computing the rest-pose based strains, one can either use any pose in the deforming mesh as a rest-pose, or generate it by applying existing methods if none of the poses is appropriate as a reference. For example, Lian et al. [START_REF] Lian | Feature-preserved 3D canonical form[END_REF] propose a method to transform different meshes into a Canonical Form through properly designed rotations and translations of each near-rigid subparts (see Figure 3-10). Then, a rest-pose can be obtained by taking the average of the Canonical Forms of all frames. Analysis of synthetic data. We first show the differences by using a synthetic bending-cylinder' mesh sequence in Figure 3-11. In this mesh sequence, the cylinder' mesh first bends a joint, then remains static, and finally stretches back to the starting pose. In each of the mesh, we use red color to indicate the deforming regions, where each is a patch of triangles with non-zero strains. We show both the restpose based and previous-pose based strains of the mesh sequence in Figure 3-11.

We describe the different behaviours of each as follows:

 Rest-pose based strains. In the top row of Figure 3-11, we show the strains for each frame based on the rest pose (the first frame). We can observe that we obtain non-zero strains in the joint region in all the frames except the last frame. This is because the last frame has the same pose as the rest pose, while the other intermediate frames are all deformed in the bendedjoint region, compared to the rest pose.

 Previous-pose based strains. In the bottom row of Figure 3-11, we show the strains for each frame based on the previous pose. We observe that we obtain zero strains hile the cylinder' remains static ith bended-pose. This is because each frame is not deformed by comparing to its previous frame in this static' period. On the other hand, we obtain non-zero strains in the other frames, including the last frame since it is deformed by comparing to its previous frame.

By observing the above behaviors of both rest-pose based and previous-pose based strains of the synthesized data in Figure 3-11, the main differences are from static frames and the last frame. The comparison shows that previous-pose based strain is more sensitive to the motions in the deforming mesh. That is, we obtain nonzero strains if a motion occurs, which deformes the mesh. On the other hand, the rest-pose based strains consider each frame independently by comparing to the rest pose.

Analysis of real-world data.

To further analyse the differences between the two strain types, we compute both types of strains for three selected frames in a galloping-camel' mesh sequence, as shown in Figure 3-12. We use a neutral pose as the reference pose for computing rest-pose based strains. In each of the mesh in Figure 3-12, the triangles are colored from blue to red to indicate strain values from low to high. We describe the behaviours of both strains as follows:

 Rest-pose based strains. In the top-right row in Figure 3-12, we show the strain values for each frame based on the rest pose shown in the left-most in Figure 3-12. We can observe that we obtain non-zero strains in the neck' region and the front-right knee' in all the frames. This is because these regions in these frames are all deformed by comparing to the corresponding regions in the reference pose.

 Previous-pose based strains. In the bottom-right row in Figure 3-12, we sho the strains for each frame based on each frame's previous pose. We observe that the neck' regions are mostly sho n in blue. This is because the Camel rarely moves the neck' hen galloping. Moreover, e obtain mostly zero-strains in the front-right knee' in f 6 . This is because the frontright knee' remains nearly the same pose from f 5 to f 6 .

Based on the above comparisons on the galloping-camel' data, e observe similar strain behaviors computed from the synthesized bending-cylinder' data. These differences can be seen clearly from t o regions: (1) neck' regions. Because the neck' barely moves during galloping, e obtain mostly zero-value of the previouspose based strains. On the contrary we obtain nonzero-value of the rest-pose based strains because the neck' poses are different from its pose in the rest pose. (2)

Front-right knee'. We obtain zero-values of the previous-pose based strains in f 6 , since the knee' pose is almost the same in f 5 . On the contrary, we obtain nonzerovalue of the rest-pose based strains in f 6 , because the knee' poses in both frames are different from its pose in the rest pose.

Based on the above comparisons, we summarize the differences between the two strain types and their potential applications as follows:

1) Rest-pose based strain.

This type of strain independently measures the deformation of each frame by comparing to a rest pose. Since the rest-pose based strains are computed based on the same reference pose, we can apply these strains to compare the pose similarities by representing each frame into triangle strain vector. By using this mesh representation, in Chapter 1, we devise a temporal segmentation method of deforming meshes that each temporal segment contains similar frames, where the frame similarities are computed based on rest-pose based strains.

2) Previous-pose based strain.

Comparing to the rest-pose based strains, the previous-pose based strain are more sensitive to motions. More specifically, each time a motion occurs, a frame is deformed from its previous frame, and therefore we obtain non-zero strains. Based on this fact, in Chapter 5, we use the previous-pose based strains for computing spatio-temporal segmentation of deforming meshes, whose results is extended towards motion similarity measurement between deforming meshes.

Summary

In this chapter, we first give a review of the most popular existing feature descriptors for 3D shapes in Section 3.1. After that, we present a new per-triangle deformation-based feature descriptor that is invariant to rigid deformations, including rotation, translation and normal scale. We also further process the strains so that they are robust under presence of small noises. After that, we have discussed several properties of the proposed descriptor: (1) It is invariant to global mesh rotation or translation, and (2) it shows the similar behaviors for two different shapes performing identical or similar motions. Finally, we compare and summarize the behaviours of two types of strains, i.e., rest-pose based and previouspose based strains, by using both synthesized animations and real-world 3D animations.

Temporal Segmentation Chapter 4 of Deforming Meshes

Most of the existing works on deforming meshes compute one single spatial segmentation according to geodesic and kinematic affinities of mesh primitives, i.e., vertices or triangles. In such cases, it is clear that the spatial segmentation results may significantly be different depending on the motions performed by a deforming mesh. Ideally, the mesh decomposition results should represent well the deformation exhibited on the mesh. However, when it comes to a long and complex motion composed of several basic motions, one may obtain overly segmented patches, which do not represent well each sub-motion. To avoid such problem, we perform temporal segmentation prior to spatial segmentation, aiming to compute the representative spatial segmentation for the sub-motion within each temporal segment.

In this chapter, based on the dynamic feature descriptor described in Chapter 3, we present a method for the temporal segmentation of deforming meshes that allows to obtain consistent temporal segmentation for different deforming meshes exhibiting identical or similar motions, despite their shape differences, which is desirable. In Section 4.3, we demonstrate our segmentation results over both synthesized and motion captured deforming meshes, and compare ith Barbič et al.'s method [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]. Finally, we conclude the descriptions of our new temporal segmentation method in Section 4.4.

Background

Given a long sequence of animation, the objective of the temporal segmentation is to cut the sequence into meaningful motion clips, or gestures in the case of human motions. A large variety of applications have been developed based on temporal segmentation, such as motion classification / recognition [START_REF] Müller | Motion templates for automatic classification and retrieval of motion capture data[END_REF] [START_REF] Spriggs | Temporal segmentation and activity classification from first-person sensing[END_REF], motion data retrieval [START_REF] Müller | Efficient content-based retrieval of motion capture data[END_REF], compression [START_REF] Liu | Segment-based human motion compression[END_REF], animation editing [START_REF] Kovar | Motion graphs[END_REF], etc. In this section, we give a review of several existing methods for character animations, i.e., motion capture data, and for the video analysis in Computer Vision field.

Temporal segmentation of motion capture data

As noted by [START_REF] Kahol | Automated gesture segmentation from dance sequences[END_REF], the temporal segmentation of human motion capture data is a challenging problem because :  Motion boundaries are often subjective.

 A motion sequence can be segmented into different levels of sub-motions.

For example, a human alking' motion can be decomposed into submotions of legs : left-stop', left-for ard', right-for ard' and right-stop' [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF].

 It may not be possible to enumerate all sub-motions for the methods by using sub-motion templates, such as HMM-based or learning-based methods.

Several supervised [START_REF] Kahol | Automated gesture segmentation from dance sequences[END_REF] and unsupervised [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]) [START_REF] Janus | Unsupervised probabilistic segmentation of motion data for mimesis modeling[END_REF] methods have been proposed to address these problems. Kahol et al. [START_REF] Kahol | Automated gesture segmentation from dance sequences[END_REF] propose a temporal segmentation method for dance sequences by learning from empirical data, which contains the ground-truth boundary frames of training data. Their algorithm first recognizes the potential boundaries as the local minima of feature cues, then determines the correct boundaries by feeding the cues' binary values (whether a feature cue within a frame is locally minimal or not) in the potential boundaries to a naïve Bayesian classifier, which has been trained by using empirical data. One obvious limitation of such supervised method is that the segmentation results are biased to human empirical data, which may not cover all the possible boundaries. Another method proposed by [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]) avoids such limitation. They conduct PCA analysis of the motion data within a sliding window with a fixed number of intrinsic dimensionalities, which returns an error for the reconstruction of the motion data. By following this procedure, one can obtain and observe an error curve as the sliding window moves forward, see Figure 4-1. Finally, the method automatically detects boundary frames along the error curve if significant changes occur, i.e., the change of the error exceeds a predefined threshold. Figure 4-1 [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF] shows an example of segmenting alk' and run' motions in a sequence by applying this algorithm. Similarly, Janus and Nakamura [START_REF] Janus | Unsupervised probabilistic segmentation of motion data for mimesis modeling[END_REF] model motion data in a sliding window with Hidden Markov Model (HMM) [START_REF] Baum | An equality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes[END_REF], and their method automatically determines the boundary frames by observing the significant changes of the probability density of the HMM. [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]. The solid curve is a reconstruction error curve by applying spectral analysis on a sliding window. The dashed line shows the standard deviation of the previous values. The vertical solid line indicates a boundary for the temporal segmentation.

Temporal segmentation of videos

In Computer Vision field, the objective of the temporal segmentation of videos is to determine boundary frames that divide a video into meaningful clips. The temporal segmentation of videos is considered as a primary step for automatic annotation of video sequences, which can be used as basic elements for applications such as video browsing and retrieval [START_REF] Koprinska | Temporal video segmentation: A survey[END_REF]. A large variety of techniques for video segmentation have been developed, which we categorize into two classes as follows:

 Threshold-based method . A considerable portion of the temporal video segmentation methods determine boundary frames by using a threshold based on frame distance [START_REF] Boreczky | Comparison of video shot boundary detection techniques[END_REF] [START_REF] Pass | Comparing images using joint histograms[END_REF]) [START_REF] Shahraray | Scene change detection and content-based sampling of video sequences[END_REF] [START_REF] Krishna | Temporal video segmentation by event detection: A novelty detection approach[END_REF]. Most of these methods are based on the similarity measurement between successive images, and determine a cut if the distance between two neighbouring images exceeds a predefined threshold. Since these approaches are based on inter-image distance that limits their applicability to scenarios requiring semantic modelling. [START_REF] Krishna | Temporal video segmentation by event detection: A novelty detection approach[END_REF] recently propose an approach that first trains a One Class Classifier based on Support Vector Machine [START_REF] Maji | Classification using intersection kernel support vector machines is efficient[END_REF] with the frames for 1 to 3 seconds. Then, they apply the learned model on each of the successive image to compute a novelty score. When the novelty score of a frame exceeds a prefined threshold, the frame is chosen as a boundary frame.

 Over-segmentation based method. Another class of the temporal video segmentation methods detects the turning points of the motion acceleration and/or deceleration. Since neither inter-image distance nor image modelling are required, such methods are fast and threshold-free, and thus can be used for online segmentation [START_REF] Liu | A novel video key-frame-extraction algorithm based on perceived motion energy model[END_REF]. Several frequently used criteria for determining primitive movements are the local minima / maxima of velocity [START_REF] Wang | Unsupervised analysis of human gestures[END_REF], angular velocity [START_REF] Fod | Automated derivation of primitives for movement classification[END_REF] of the trajectories of observed points, or objects. Having the primitive movements, higher level actions can then be defined as the combinations of primitive movements. By taking musical conducting gestures as an example, five conducting prototype gestures can be defined by using the primitive movements [START_REF] Wang | Unsupervised analysis of human gestures[END_REF] (see Figure 4-2). [START_REF] Wang | Unsupervised analysis of human gestures[END_REF].

Motivation of our approach

As have been reviewed in the previous section, there has been a variety of techniques for temporally segmenting videos and motion capture data. However, to the best of our knowledge, no previous work has been done for the temporal segmentation of deforming meshes. Moreover, the existing temporal segmentation techniques for video processing or motion captured animations may not be directly applicable for deforming mesh due to the following reasons :  For the temporal segmentation techniques for video processing in Computer Vision, there exists a large heap of local information available from image data, such as colour, texture and geometry, etc., yet mesh data in most cases contain only geometry information.

 Comparing to the motion captured animations, deforming mesh data consists of much higher dimension : a motion capture data can be obtained as the movements of up to hundreds of markers, while a deforming mesh may have tens of thousands of vertices. For this reason, the temporal segmentation methods for motion capture data may not be applicable to handle deforming meshes. For example, the temporal segmentation method proposed by [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]) may fail with a deforming mesh if the mesh has a large vertex number, because the computational complexity of PCA is O(n 3), which increases sharply as the number of vertex n increases.

Therefore, in the next section, we present a new temporal segmentation method for deforming meshes.

Temporal segmentation of deforming meshes

Having computed the per-triangle strain values at each frame by using the descriptor presented in Chapter 3, we proceed with temporal segmentation as follows: we first compute the deformation distance between every frame pair, and measure the average frame dissimilarities within all possible sub-sequences. Then, the boundary frames for the temporal segmentation are determined by minimizing the sum of within-segment frame dissimilarities. This optimization-based method allows to obtain the segmentation results where each temporal segment is a subsequence of similar frames, i.e., similar poses.

Note that we use the rest-pose based strains (see Section 3.3) in this work. This is because our temporal segmentation method is based on the measurement of pairwise frame distances, which indirectly requires that the strain of each frame should be computed with respect to the same reference pose.

Temporal segmentation

The goal of our temporal segmentation is to cut the given mesh sequence M into distinct segments M1, ..., MK, where K is the number of segments. K as well as the boundary frames , k K, (indices of the first frame in each segment) are to be determined. To achieve this, we consider every possible subsequence represented by the average of pairwise frame distance. The main idea is to determine a temporal segmentation where each subsequence represents a low dissimilarity value. This indicates that the subsequence contains a set of meshes with similar poses. We use a threshold to determine whether the dissimilarity is low enough to form a temporal segment, i.e., if Ds(p,q)< , [p, q] is the considered temporal segment.

In our experiments, is driven from (), where ,is a user specified parameter. The corresponding settings of for different experimental data are shown in Table 4-1. To avoid over-segmentation, we scan the dissimilarity matrix in descending order of subsequence length in favor of longer sub-sequences.

For example, given two sub-sequences [p1, q1] and [p2, q2] in [p0, q0] with p 1 <p 2 <q 2 <q 1 , Ds(p1,q1)< and Ds(p2,q2)< , we take [p1, q 1] as a temporal segment because q1-p1> q2-p2. In practice, this procedure is to scan the within-segment dissimilarity matrix from top-right corner towards the diagonal of the matrix until we encounter a dissimilarity value that is lower than . Next, we repeat the segmentation over the remaining sub-sequences [p0, p1-1] and [q1+1, q0]. In Figure 4-4, sub-sequence [m, n] is first found as a temporal segment, i.e., Ds(m, n)< .

Then, we recursively apply the temporal segmentation over the remaining subsequences [1, m-1] and [n+1, M]. Sometimes, we may obtain short temporal segments due to noises. To alleviate this problem, for each of the temporal segment whose number of frames is less than , where is fixed as 0.02 in our experiments, we merge it to its neighboring segment with less dissimilarity.

The complete algorithm is shown in Algorithm 4-1. In this algorithm, max() is a function that returns the maximum value and the corresponding index in a vector.

In the most extreme case where each frame becomes a temporal segment, the algorithm has to scan all the items in the dissimilarity matrix Ds. Therefore, the algorithm runs in () time in the worst case.

Experimental results and discussions

In this section, we first introduce our experimental environment and data, then show the temporal segmentation results. We also present a comparison between our method and the temporal segmentation method for character animations proposed by [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF].

Experimental environment and data

We have tested our temporal segmentation method on both synthesized and motion captured animation data. Table 4-1 shows the dimensions of the datasets used, the thresholds, and the timings for computing the temporal segmentation of each data. The algorithm has been implemented in Matlab on an Intel Core 3.40GHz PC with 16GB of RAM. The computation for our temporal segmentation starts to be heavy as the mesh sequence becomes long, or the data dimension becomes large. For example, the runtime of Face1' with 1472 frames is 1128.9s, hich is almost doubled comparing to 565.8s for Face2' ith 1097 frames.

Temporal segmentation results

The segmentation results of the above deforming meshes are shown in Figure 4 'Michael' and 'Gorilla'. Both Michael' and Gorilla' data have been generated by rigging TOSCA high-resolution meshes [START_REF] Bronstein | Numerical geometry of nonrigid shapes[END_REF] to the same walking skeleton provided by 3ds Max Studio (3dS MAX L&T CD., 2006). In this way, the two deforming meshes perform identical alking' motion. The temporal segmentation results of Michael' and Gorilla' are sho n in Figure 4-5. As noted by Zhou et al. [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF] in their recent temporal segmentation work on motion capture data, a alking' motion can be decomposed into 4 types of sub-motions: left-stop', left-for ard', right-for ard' and right-stop'. By follo ing this convention, e name each of the obtained temporal segments as follows : right-stop', leftforward and left-stop', right-forward and right-stop' and left-for ard'. Sample frames of each temporal segment are shown in Figure 4-12. As can be seen, our method decomposes the motions performed by both Michael' and Gorilla' into the same sub-motions, despite their shape differences.

'Face1' and 'Face2'. Both of Face1' and Face2' data have been created by using a commercial motion capture system Vicon (http::Vicon). For a subject attached with reflective markers, Vicon system uses a set of cameras to track the trajectory of each marker and reconstruct these markers in 3D space. To collect human facial expressions, we have attached about 160 reflective markers on each subject's face (see , and use the Vicon system to capture facial movements. Sample meshes of the captured facial animations Face1' and Face2' are shown in Figure 4-8 and Figure 4-9, respectively. To validate the consistency of our approach, we ask each subject to perform the following facial expressions in order: three times of eyebro -raise', anger', disgust', fear', happy', surprise', sad', ith a neutral' expression as an interval between each. Note that the facial expressions in the two data are not temporally synchronized, and the markers on the two faces are not spatially coordinated either. 'eyebrow-raise', 'anger', 'neutral', 'disgust', 'neutral', 'fear', 'neutral', 'happy', 'neutral', 'surprise', 'neutral', 'sad', and 'neutral'. Note that in the first temporal segment of eyebor -raise' motion, it contains three times of eyebor -raise' motions ith neutral' expressions in between. Such atomic motions can be further segmented by using a different threshold (see Sec-tion 4.2). We will discuss about the segmentation for the atomic motions of facial expressions in the next section.

Discussion on the threshold

As have been presented in Section 4.2, the number of temporal segments obtained by using our method is determined by a user specified threshold . Intuitively, this user parameter determines the maximally allowed average dissimilarity within each temporal segment.

Figure 4-10 shows the temporal segmentation results of Face1' by using t o different user thresholds, (top) and (bottom). The comparisons between these two results can be summarized as follows:

 Although the two temporal segmentation results have different boundary frames, they both successfully segment the motion sequence of anger', disgust', fear', happy', surprise' and sad', ith neutral' expressions between them.

 The temporal segmentation result by using lower threshold, Figure 4-10(b), further returns the atomic motions in the first temporal segment (Figure 4-10(a)), hich are (1) neutral', (2) eyebro -raise', (3) neutral', (4) eyebro -raise', (5) neutral', (6) eyebro -raise', (7) neutral'.

To compute the temporal segmentation with atomic motions, instead of using a global threshold over the entire sequence, we can also recursively compute the temporal segments with different thresholds. That is, for example, after obtaining the temporal segmentation result shown in Figure 4-10(a), we repeat our temporal segmentation method on each temporal segment with a lower threshold to acquire the atomic motions. The advantage of such approach is that it can generate temporal segments of different level of motions (motions like alking' is a high level motion, hile left-for ard' and right-for ard' are atomic motions of alking'). However, it requires automatic determining, or pre-settings, of the thresholds for different level of motions, which will be challenging tasks. Another interesting improvement would be to learn the threshold from a set of human-based groundtruth temporal segmentation.

A comparison with Barbič et al.'s method

To validate the performance of our new temporal segmentation method, we have compared our method with a PCA-based motion segmentation method proposed for motion capture data by [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]. In order to adapt their method for deforming meshes, one can do either of the followings: (a) Replace the joints in motion capture data with triangles as the primitives of each deforming mesh, which means the dimensionality of each frame data is significantly increased since the number of triangles within each frame of a deforming mesh may be utterly larger than the number of joints of a motion capture data; (b) Extract the skeleton of a deforming mesh and apply their method on the skeleton sequence. For the sake of algorithm simplicity, we have chosen the approach (a). Barbič et al.'s method starts ith a short initial motion segment to estimate the number of Principal Components (PCs). Then, for the successive frames that can be precisely reconstructed by using the estimated number of PCs, we merge them to the initial segment because they share similar intrinsic basis. Otherwise, a boundary frame is determined. The remaining motion sequence is segmented by repeating this procedure. [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF].

In Figure 4-11, we have shown the temporal segmentation results by using both methods on Camel' data. shows selected meshes of the temporal segments run', head-right', head-left', run', head-do n', head-up', obtained by using our method. To apply Barbič et al.'s method on Camel', e set the length of the initial segment as 7, so that it is sufficient for PCA method to capture the features of run' motion of 10 frames. However, because this length is longer than the durations of head-right' and head-left' (both have 5 frames), for which reason we obtain boundary frames (f 18 and f 25) shifted from the ground-truth (f 15 and f 20). Worse, since the head-do n' motion is too short (from f 41 to f 44), the initial segment (from f 41 and f 47) contains both head-do n' and head-up' motions. This method cannot separate the two short motions because of the requirement of the minimum length of the initial segment. That is, this method over-fits to the initial segment. In order to avoid such drawback, Lin et al. [START_REF] Lin | Adaptive motion data representation with repeated motion analysis[END_REF] apply Barbič et al.'s method in both forward and backward directions, and unify the two boundary sets, which tends to result in over segmentation in many cases. In comparison, our method our method neither requires an initial segment nor has the limitation of the minimal length of segments.

Furthermore, Barbič et al.'s method takes inputs of joint angular data and the segmentation is based on the PCA analysis of the number principal dimensions of frames. Due to the significant increase of the computation of PCA on large dimensional data [START_REF] Kambhatla | Dimension reduction by local principal component analysis[END_REF], the application of their method would suffers from heavy computation. Comparing to 3.3 seconds by using our temporal segmentation method (see

Conclusion

Contributions

In this chapter, we present a method for the temporal segmentation of deforming meshes. We first compute the deformation of each triangle at each frame, i.e., rest-pose based strain values, by using the per-triangle dynamic feature descriptor described in Chapter 3. We then define a distance metric for each frame pair, and further define within-segment frame dissimilarity as the average of all possible pairwise frame distance within a candidate temporal segment. Finally, the boundary frames for the temporal segmentation are determined by minimizing the sum of within-segment frame dissimilarities. This optimization-based method allows to obtain the segmentation results where each temporal segment is a subsequence of similar frames, i.e., similar poses.

The contributions of this research can be summarized as follows:

 We devise a frame distance metric based on deformation behaviour by using our dynamic descriptor. The distance between two frames is small if the two frames undergo similar deformation with respect to the same restpose.

 We formulate the temporal segmentation into an optimization problem that minimizes the sum of within-segment dissimilarities. This allows to automatically determine the number of segments.

 Since the frame distance metric is defined based on the similarity of deformation behaviours, our temporal segmentation method allows to obtain consistent temporal segments with similar sub-motions among two deforming meshes showing identical or similar motions,.

In order to validate the effectiveness of our method, we have conducted a set of experiments with both synthesized and motion captured deforming meshes. The experimental results show that we can obtain consistent temporal segmentation for different deforming meshes exhibiting similar motions, despite their shape differences. Moreover, the comparisons ith Barbič et al.'s segmentation method [START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF] sho that our method avoids over-fitting problem by taking into account of both for ard and back ard neighbouring frames, hile Barbič et al.'s method only considers forward frames. A threshold (see Section 4.2) is needed though, which can be properly provided by an experienced user.

Summary

In this chapter, we have proposed a new method for the temporal segmentation of deforming meshes based on the new dynamic descriptor presented in Chapter 3 We show the performance of our method with experiment results on both synthetic and motion captured deforming meshes, from which we obtain the same submotion sequences for the deforming meshes exhibiting identical or similar motions, despite their shape differences. Moreover, we observe more efficiency and effectiveness of our temporal segmentation method, by comparing with an existing temporal segmentation method.

Spatio-temporal Segmen-Chapter 5 tation of Deforming Meshes

We have presented a temporal segmentation method which divides a deforming mesh into temporal segments of similar poses in the previous chapter. However, that method has not taken into account of the spatial deformation coherency on the deforming mesh. To the best of our knowledge, the spatio-temporal segmentation of deforming meshes has not been studied by existing works. In Section 5.3 of this chapter, we present a spatio-temporal segmentation method, which investigates both the spatial and temporal deformation coherency simultaneously by using the dynamic feature descriptor described in Chapter 3. Furthermore, we extend the segmentation results towards the application of motion similarity measurement between deforming meshes (see Section 5.4). This application is particularly interesting, because it partly alleviates the challenge of the evaluation of segmentation results. By evaluating the computed motion similarities among deforming meshes with respect to human-based ground-truth, we indirectly validate the quality of the segmentation results (see Section 5.6).

Background

In this section, we start by reviewing several spatio-temporal segmentation techniques that have been developed in Commputer Vision field. Next, we review several studies in Computer Network field about Evolving Graph, which can be used as a compact representation of spatio-temporal segmentation results. Then, we introduce two existing methods for measuring the similarities among spatiotemporal sements.

Spatio-temporal segmetnation techniques in Computer Vision field

Spatio-temporal segmentation is a primary step of video analysis for the applications such as scene interpretation and video understanding. Megret and Demen-thon [START_REF] Megret | A survey of spatio-temporal grouping techniques[END_REF] give a survey of the spatio-temporal segmentation techniques on video data, among which graph-based segmentation [START_REF] Grundmann | Efficient hierarchical graph-based video segmentation[END_REF] [START_REF] Tian | 3d spatio-temporal graph cuts for video objects segmentation[END_REF] is the most popular method type.

Figure 5-1 The spatial and temporal neighborhoods in the 3D graph cut model [START_REF] Tian | 3d spatio-temporal graph cuts for video objects segmentation[END_REF]. The red lines show spatial neighborhoods, the purple and the blue lines show temporal neighborhoods.

Grundmann et al. [START_REF] Grundmann | Efficient hierarchical graph-based video segmentation[END_REF] propose a hierarchical graph-based algorithm for segmenting long video sequences. This method first initializes a video as a graph, whose nodes are pixels and edges are the spatial and temporal neighborhoods. Then, the segmentation is done by using a region-growing method that merges both the spatial and temporal neighboring nodes with similar colors. However, this method suffers from the poor efficiency because of the high dimensionality of the initial graph, and over-segmentation due to local noises. To address these problems, Tian et al. [START_REF] Tian | 3d spatio-temporal graph cuts for video objects segmentation[END_REF] propose an improved graph cut segmentation method: They first compute the initial over-segmentation of each frame independently by using an existing efficient segmentation method proposed by [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF]. Then , they construct an initial graph, whose nodes represent spatial segments within each frame and whose edges the immediate spatio-temporal neighborhoods (see Figure 5-1). Finally, the segmentation can be done by merging similar neighboring nodes both spatially and temporally, where each node is represented with the statistical model of pixel colors.

The studies of Evolving Graphs in Computer Network field

A computer network can be represented as a graph, where each node represents a computer, a server or a web browser, and each edge represents the communication between two nodes. An Evolving Graph can then be defined as a graph changes over time, either graph nodes or edges. Based on the graph representation, a large quantity of applications has been developed such as the detection of the most correlated sub-networks (Chan et al., 2008) (Bilgin andYener, 2006), querying or mining [START_REF] Desikan | Mining temporally evolving graphs[END_REF] [START_REF] Kan | A query based approach for mining evolving graphs[END_REF] [START_REF] Robardet | Constraint-based pattern mining in dynamic graphs[END_REF][START_REF] Berlingerio | Mining graph evolution rules[END_REF] [START_REF] Yang | Mining most frequently changing component in evolving graphs[END_REF] [START_REF] Sun | Graphscope: parameter-free mining of large time-evolving graphs[END_REF], and dynamic graph compression [START_REF] Liu | On compressing weighted time-evolving graphs[END_REF], etc. [START_REF] Chan | Discovering correlated spatio-temporal changes in evolving graphs[END_REF].

Chan et al. [START_REF] Chan | Discovering correlated spatio-temporal changes in evolving graphs[END_REF] proposed a method to discover regions in a computer network that have correlated spatio-temporal changes, i.e., the edges evolve synchronously. To achieve this goal, the authors proposed two distance metrics between graph edges: spatial distance and temporal distance. To compute the spatial distance between two edges, they compute the union graph over the evolving graph and then the shortest path distance between the two edges are taken as the spatial distance (see Figure 5-2). To compute the temporal distance between two edges, the authors first define a transition sequence that represents the changes of an edge in a binary waveform as a sequence of transitions (see Figure 5-3). Based on this representation, they can compute the temporal distance between two edges by using Euclidean distance. Finally, Chan et al. compute the spatio-temporal segmentation by merging the neighbouring edges that have either small spatial distance or temporal distance. [START_REF] Kan | A query based approach for mining evolving graphs[END_REF]. By querying the maximal subgraph with waveform '0111' in (a), we obtain an evolving subgraph shown in (b), in which the edges '1-4' and '2-4' can be represented with the waveform '0111'.

Similarity measurement based on spatio-temporal segmentation

In our work, we aim to use our spatio-temporal segmentation results of deforming meshes to compare their differences. In Computer Network field, however, although the spatio-temporal segmentation techniques can be used to discover correlated regions in an evolving graph [START_REF] Chan | Discovering correlated spatio-temporal changes in evolving graphs[END_REF], they are not applicable to compare two evolving graphs. In Computer Vision field, on the other hand, several distance measurement methods have been proposed for human action recognition.

Ryoo and Aggarwal [START_REF] Ryoo | Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities[END_REF] compare two spatio-temporal segmentation results that have been obtained by using Dollár et al.'s method [START_REF] Dollár | Behavior recognition via sparse spatio-temporal features[END_REF] by computing the spatial and temporal relationships between the spatiotemporal segments : Assuming S 1 and S 2 are the spatio-temporal segments of two videos, respectively, the authors define the temporal relationships such as S 1 is before S 2 ' if the last frame of S 1 occurs before the first frame of S 2 , and the spatial relationships such as S 1 is near S 2 ' if the pixel colors in S 1 is similar to the pixel colors in S 2 . Based on these definitions, the method detects a similar human action if all the spatio-temporal segments of a sample video matches to those of a groundtruth video. However, this method is sensitive to noises such as light conditions, which affect the occurrences and duration of spatio-temporal segments and therefore influence the temporal relationship. for a character string, and achieve action recognition by comparing two strings by using string kernels. However, this metric may be not effective for complex human actions because of higher complexity of pairwise interactions, which increases the dimensionality of the matrix in Figure 5-5(b) significantly, and therefore reduce the efficiency of this similarity metric.

Outline of our approach

Having introduced the temporal segmentation method in the previous chapter, we step further to investigate the spatial and temporal coherency simultaneously in deforming meshes. First, based on the degree of deformation of each triangle in each frame, e binarily label the triangles ith either deformed' or rigid'. Then, we compute a spatio-temporal segmentation by merging the deformed' triangles that are either spatially or temporally connected. We then represent the spatiotemporal segmentation with Evolving Graph, where each node represents a spatial segment, each edge the neighborhood between two spatial segments, and each graph a subsequence of frames with the same graph representation.

Having computed the Evolving Graphs of two deforming meshes, we proceed to compute the similarity of Evolving Graphs: We first classify the similar graphs and assign the graphs in the same cluster with the same cluster labels. As a result, each evolving graph is represented with a graph cluster label sequence, which allows us to apply existing sequence alignments to find the optimized matching between the two sequences. Finally, we obtain an alignment score between the two cluster label sequences by using a local sequence alignment algorithm, which we use as the similarity between two deforming meshes.

The reminder of this chapter is organized as follows. In Section 5.3, we first present a spatio-temporal segmentation method for deforming meshes, and represent the segmentation results into Evolving Graphs. Next, in Section 5.4, we convert the graph sequences into graph cluster label sequences by using graph clustering, and then adopt a sequence alignment algorithm to measure the motion similarity between the two deforming meshes. Then, we validate the obtained similarity values with human-based ground-truth in our experiments, in Section 5.6. Finally, in Section 5.7, we discuss about (1) the differences of the segmentation results by using either the previous-pose based or the rest-pose based strains, and (2) the differences between our temporal segmentation and spatio-temporal segmentation results.

Spatio-temporal segmentation of deforming meshes

Spatio-temporal segmentation algorithm

We now describe our spatio-temporal segmentation algorithm that makes use of the dynamic feature descriptor based on the deformation behaviour of each triangle at each frame of the deforming mesh. Our goal is to obtain a compact representation of the segmentation results, which is done by adopting evolving graphs.

Having obtained the strains of each triangle at each frame by using the method described in Chapter 3, we start by labeling each triangle of each frame as either deformed' or rigid'. We chose binary labeling for the sake of simplicity although multi-way labeling could also work but with higher cost.

Note that we use previous-pose based strains, since this strain type reflects motion information. In Section 5.7, we provide a discussion about the influences of spatiotemporal segmentation results by using either previous-pose based or rest-postpose based strains.

Given a deforming mesh M with M frames and N triangles, we represent each frame () with a vector of strain values () , which we obtain by the method described in Chapter 3. Next, all the triangles () in each frame are binary labeled as 1 (deformed') or 0 (rigid'), by comparing their strain values to a threshold :

{

The threshold has been fixed as 0.5 in our experiments. Once we have the per-frame and per-triangle labeling, we carry out our spatiotemporal segmentation by finding triangles with identical labels that are adjacent along space or time. illustrates this idea ith a bending-cylinder' example. The red regions represent the deformed' regions ith a set of deformed' triangles that are connected. shows the 2D representation of the labeling, with the horizontal axis denoting the time (frame index) and the vertical axis denoting the space (triangle index). The t o small disconnected deformed' regions at frame i (the dashed vertical line) are merged into one region in the later frames.

We consider these two regions as belonging to the same spatio-temporal segment because they are resulted from the same deforming action. A spatio-temporal segment is computed as follo s: We start ith any deformed' triangle, and apply a region-gro ing algorithm to merge the deformed' triangles that are adjacent ei-ther along space or time. See the red area in . Then, we compute the space interval and the time interval of the merged area (rectangle in Figure 5-6(b)), and take all the triangles in that interval as a spatio-temporal segment. The obtained spatio-temporal segment can be seen as a solid rectangle in 2D, see , and is also shown on the mesh in .

We continue the above procedure until all the deformed' triangles have been merged into spatio-temporal segments. The complete spatio-temporal segmentation algorithm is shown in Algorithm 5-1, which runs in () time. Note that the function Neighbors(S) returns the deformed' triangles that are adjacent in either space or time of every triangle in the triangle patch S. Below we show the segmentation results of several deforming meshes in Figure 5-7, Figure 5-8 and Figure 56789. 'Horse_1','Gorilla' and 'Boy'.

f 1 f 4 f 3 f f 8 f 1 f 4 f 3 f f 8 f 1 f 23 f 13 f 42 f 37 f f 1 f 23 f 13 f 42 f 37 f Camel Horse_1 Gorilla Boy
f 6 f 30 f 22 f 44 f 40 f f 6 f 30 f 22 f 44 f 40 f f 6 f 30 f 22 f 44 f 40 f f 6 f 30 f 22 f 44 f 40 f Gorilla-Jog1
Michael-Jog1

Gorilla-Jog2

Michael-Jog2

Figure 5-8 The spatio-temporal segmentation and the graph representation of ' .

f 7 f 20 f 13 f 34 f 27 f f 7 f 20 f 13 f 34 f 27 f f 7 f 20 f 13 f 34 f 27 f f 7 f 20 f 13 f 34 f 27 f Gorilla-Jump1
Gorilla-Jump2 Michael-Jump1

Michael-Jump2

Figure 5-9 The spatio-temporal segmentation and the graph representation of Gorilla-Jump1', Michael-Jump1', Gorilla-Jump2' and Michael-Jump2'.

Evolving graph representation

Graph is a convenient and compact representation that has been broadly used for representing structured objects. To this end, we now describe our graph representation of the spatio-temporal segmentation results.

Given the spatio-temporal segmentation of a deforming mesh, we first extract key frames from the mesh sequence, where each key frame contains either the occurrence of a new spatio-temporal segment or the disappearance of a segment. Note that the first frame is always considered as a key frame. Then, for each key frame, we represent its spatial segmentation with a graph, where a node represents a spatial segment and an edge connects two spatially adjacent segments. A series of graphs of key frames that we obtain for a deforming mesh is an evolving graph, i.e., a graph that evolves over time. The evolving graph of the bending-cylinder' is shown in .

Similarity measurement of deforming meshes

In this section, we present a method for measuring the similarity between two deforming meshes, which are represented with evolving graphs. We first cluster similar graphs of the two deforming meshes, thereafter graphs belonging to the same cluster are assigned with the same label. As a result, each deforming mesh is represented with a sequence of cluster labels. Then, we apply a local sequence alignment algorithm to compute the locally optimal alignment between the two cluster label sequences. Finally, we measure the similarity between the two deforming meshes by normalizing the sequence alignment score.

Graph clustering

Let M A and M B be two deforming meshes. By using the segmentation algorithm described in Section 5.3, we can generate the evolving graphs * + and * + for M A and M B , respectively.

Note that and are the number of graphs for the two evolving graphs, respectively.

To adopt sequence alignment algorithm for comparing two evolving graphs, we have to cluster the graphs and assign the graphs within the same cluster with the same label, to transform the evolving graphs into graph cluster label sequences. As having been discussed in Section 5.1.3, this operation not only filters out noises of segmentation results by labeling similar graphs as the same, but also increases the efficiency of the sequence alignment algorithm by reducing the number of element types (or alphabet size). Unfortunately, the graph clustering cannot be done by using existing clustering methods, such as K-mean clustering; this is because the graphs have different number of vertices and edges and these clustering methods work only for vectors of the same dimension. To avoid of such problem, we adopted the graph embedding method proposed by Riesen et al. (Riesen et al., 2009a[START_REF] Riesen | Reducing the dimensionality of dissimilarity space embedding graph kernels[END_REF]. The purpose of graph embedding is to compute a mapping between the graphs and a vector space. The graph embedding method works as follows:

Given a set of graphs * + whose cardinality is n, the vector associated to a graph is defined as

(() () ()) ;
() is a graph dissimilarity metric between the graphs and . In our case, the set is the union of the sets of evolving graphs of M A and M B , i.e.,

, with its cardinality . The graph dissimilarity metric () can be calculated by using either the Maximum Common Subgraph [START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF] or the Graph Edit Distance [START_REF] Gao | A survey of graph edit distance[END_REF]. Below we introduce the definitions of both graph distance metrics.

Definition 5-1: Maximum Common Subgraph (MCS) [START_REF] Gao | A survey of graph edit distance[END_REF]. Let and be two graphs and , . If there exists a graph isomorphism between and , then both and are called a common subgraph of and .

If there exists no other common subgraph of and that has more nodes than and , and are called a MCS of and .

Definition 5-2: Graph distance metric based on maximum common subgraph [START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF]. Let () be the maximum common subgraph of and , and () be the graph with more nodes between and . The distance of and is defined as

() | ()| (| | | |) .
Definition 5-3: Graph Edit Distance (GED) [START_REF] Gao | A survey of graph edit distance[END_REF]. The graph edit distance between and is defined as the minimum number of graph edit operations to transform to ; these operations include additions and deletions of nodes and edges.

In this work, we use the latter graph distance metric GED (Definition 5-3). The computation of GED is an optimization problem that is usually addressed by using a tree search algorithm, whose objective is to find an edit path with minimum costs. The idea is to dynamically construct a search tree, where each node of the tree is a candidate graph edit operation and each leaf node represents the complete solution that a graph is transformed to the other. At each step during tree traversal, all the successor nodes are evaluated to find the route with lowest cost. Iteratively, this method can compute the best approximation of the optimization objective. However, the running time and memory consumption increase exponentially with the increase of problem size, i.e., the number of vertices of graphs. To speedup the computation, Neuhaus et al. [START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF] have proposed a simple modification : Instead of expanding all the successor nodes in the search tree, only a fixed number of the best of them are kept. Therefore, in each step during tree traversal, the number of successor nodes is limited, and the fast computation of GED is realized. We use this efficient algorithm for computing GED in our method.

V 1 (c) (a) Each graph gi is represented with a vector V i , where d(g i , g j) denotes the graph edit distance between graphs g i and g j .

V 2 V 6 d(
M B M A (b) g 1 g 2 G A g 6 g 4 g 3 g 5 G B V 3 V 4 V 5 d(
The overview of graph embedding algorithm is shown in Figure 5-10. After the graph embedding, each graph is represented with a vector

(() () ()) ,].
Note that the size of the data produced by the graph embedding may be very large depending on the size of . If is composed of n graphs, the dimension of the output data is (vectors whose dimension is). We apply PCA [START_REF] Abdi | Principal component analysis[END_REF] to reduce the dimension of the data. The PCA method uses orthogonal transformation to convert the set of vectors into a set of values of linearly uncor-related variables called principal components. Redundant information is removed by representing the vectors with the top r principal components. Hence, each graph is represented with a vector whose dimension is r.

Finally, we apply K-means clustering method on the vectors to cluster all the graphs into cluster; is a user-specified parameter, which is chosen depending on the range of the deformation in M A and M B . This value is set from 5 to 8 in our experiments. All the graphs belonging to the -th cluster (, -) are given the same cluster label . Therefore, the deforming mesh M A , which is represented with a sequence of evolving graphs * +, is now be represented with a sequence of cluster labels * +. A cluster label sequence * + is also computed for . Although and contain different graphs, the same cluster label may appear in and . This is because the K-mean clustering has been computed on the union set . Therefore, two graphs of and may belong to the same cluster, and thus be assigned with the same label.

In addition to the cluster labels , we also compute the center of each cluster , which is the mean vector of all the vectors whose corresponding graph belongs to the cluster . These cluster centers are required later to compute the sequence alignment, see Section 5.4.2.

M A M B ∂ 1 ∂ 1 0 (c) D(∂ k , ∂ k'): k,k' [1,2,3] ∂ A ∂ 1 ∂ 2 ∂ B ∂ 1 ∂ 2 ∂ 3 ∂ 1 g 1 g 2 G A g 6 g 4 g 3 g 5 G B

Local sequence alignment

Now that we have computed the cluster label sequences and of the deforming mesh M A and M B , the next step is to compute the alignment between the two sequences and by matching identical subsequences between them.

Sequence alignment algorithm is commonly used in bioinformatics to identify similar regions among DNA sequences. The purpose of the alignment method is to locate and align the most similar subsequences between two DNA sequences, which allow gaps within the alignment. One of the most known methods is the Smith-Waterman algorithm [START_REF] Smith | Identification of common molecular subsequences[END_REF], which finds the optimal local alignment based on dynamic programming approach. It requires inputs of an affinity matrix between sequence items (or alphabets) and a gap penalty value. See an example in Figure 5-12.

In order to use the Smith-Waterman algorithm to compute the alignment between two cluster label sequences and , we first need to compute the affinity matrix of the clusters. As explained in Section 5.4.1, each of these cluster labels corresponds to a cluster whose center is . The cluster distance matrix D is a matrix whose size is by ; each of its elements is the distance between the cluster and ; it is calculated as the Euclidean distance between the cluster centers and , that is, √ . The affinity matrix is a matrix whose dimension is by ; each of its elements is the affinity value between the clusters and and is computed as follows:

̅ , - (5-1)
where ̅ is the average value of all the elements of the distance matrix D. Unlike the distance matrix, the affinity matrix has negative and positive values, where positive values indicate high level of affinities between the clusters and negative values indicate low affinities.

Once the similarity matrix has been computed, we use the improved Smith-Waterman algorithm proposed by [START_REF] Barton | An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps[END_REF]). An implementation is available by using Matlab (http::Matlab). This algorithm takes as input the two cluster label sequences and with their corresponding similarity matrix ;

it generates a set of pairs of matching cluster labels

{ () | },
where () indicates the label in that is aligned to the -th label in , and is the total number of non-matching cluster labels that are located among the matched ones. The set of matching pairs is computed such that the following matching score is maximized:

∑ (()) , (5-2)
where ̅ is the penalty coefficient for the gaps occurring in the alignment;

The coefficient , which has been set to in our experiments, can be adjusted depending on how large gaps we want to allow (smaller value will allow larger gaps and vice versa) in the alignment. Although computed in Equation 5-2 can be negative in theory, the algorithm that computes the matching score must return a non-negative result. This is be-cause the empty set is always taken into account when computing the most optimal alignment. In case of mismatching between and such that is negative, the algorithm returns the empty set whose matching score is 0.

∂ A : [∂ 1 ∂ 2] ∂ B [∂ 1 ∂ 2 ∂ 3 ∂ 1] D:

Time complexity

Let M A and M B be two deforming meshes whose evolving graph sequences are and . Let , and n be the numbers of graphs of and and the total number of graphs (i.e.,

), respectively. We show the computation complexity of our method in Table 5-1. Our method involves computing the PCA whose time complexity is () (Abdi and Williams, 2010), followed by the Kmeans clustering whose time complexity is () [START_REF] Inaba | Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering[END_REF], with r being the number of principal components used for the PCA and K the number of clusters (see Section 5.4.1). Our algorithm also requires computing the sequence alignment whose time complexity is () [START_REF] Smith | Identification of common molecular subsequences[END_REF]) and the graph embedding whose time complexity is () with being the polynomial time for computing the graph edit distance [START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF].

Similarity measurement

The alignment score we have defined in Equation 5-2 relies on the lengths of sequences. For example, given two similar sequences, we obtain higher scores for longer sequences. In order to alleviate such problem, we normalize the alignment score as follows:

√ .

(-3) This normalized alignment score by using our similarity measurement method holds the following properties:

P.1 Non-negativity .

As explained in Section 5.4.2, the matching score is non-negative, and so is the value of . In the extreme case, a value of equals to 0 implies that no alignment has been found between the two sequences.

P.2 Symmetry .

The alignment algorithm score in Equation 5-2 does not depend on the order in which the sequences are aligned.

Experimental results

In this section, we first introduce our experimental environment and data, and then present the pairwise sequence alignment results and the similarity measurement results between deforming meshes. For the sequence alignment results, we compare the performance by using our method and the other classical sequence alignment methods (see Section 5.6.2). For the experiments on similarity measurement, we evaluate our results by collecting and comparing with human-based ground-truth motion similarities (see Section 5.6.3.2). In Section 5.7, we continue with the analytical discussions of our method including: (1) the possibilities of extending GED with node/edge attributes, (2) the differences of the spatio-temporal segmentation results by using either the previous-pose based or the rest-pose based strains, and (3) the comparative discussions on the results between the spatio-temporal segmentation in this chapter and the temporal segmentation presented in previous chapter.

Experimental environment and data

The deforming meshes used in our experiments include both synthetic animations and motion capture sequences, which are summarized in Table 5-2. The three models Michael', Gorilla' and Boy' are generated by rigging TOSCA high-segmentation of each data in a Matlab implementation has been shown in Table 5-2. Figure 5-7 shows several segmentation results we have obtained by using our algorithm. In each figure, deformed' segments are sho n in red and rigid' segments in blue.

Frame alignment

One important by-product of computing sequence alignment is the frame alignment, i.e., optimal alignment of graphs (or the corresponding key frames). Having the evolving graph representation of deforming meshes, we apply Smith-Waterman algorithm for computing the sequence alignment between two sequences. In fact, there exist a variety of methods for computing sequence alignment, such as Dynamic Time Wrapping (DTW) and its variations. DTW is a wellknown technique for computing optimal global temporal alignment between two sequences, which computes the sequential alignment of each element (a frame of a deforming mesh in our case) from a sequence to an element in the other sequence by minimizing total aligned element distance [START_REF] Kruskall | The symmetric time warping algorithm: From continuous to discrete[END_REF]. DTW has been commonly used for speech recognition [START_REF] Turetsky | Ground-truth transcriptions of real music from force-aligned midi syntheses[END_REF]. One variation of the classical DTW algorithm is to include another constraint on the alignment rule that the first (and the last) elements of the two sequences are forced to be aligned to each other. This rule is especially useful when the input sequences are well synchronized. We name this modified classical DTW as mDTW in this work.

In order to apply DTW and mDTW for optimally aligning two deforming meshes, one needs to compute a frame distance matrix. To do this, for each deforming mesh, we first represent each frame with the key frame that is used to represent the subsequence containing this frame. That is, if a key frame is representing a subsequence with frames, the key frame repeats times in the sequence. We then compute the frame distance as graph edit distance since each key frame is associated with a graph representation.

We show the distance matrices between several deforming meshes in Figure 5-13, Figure 5-14, Figure 5-15, Figure 5-16, with color varying from blue to red indicating distance values from low to high. In these figures, we also show the comparisons of sequence alignment results by using Smith-Waterman, DTW and mDTW, where each of the alignment result can be seen as an alignment path on the similarity matrix. We describe the comparisons of the alignment methods between several deforming meshes as below. Similarly, Gorilla', Boy' and Michael' are time-synchronized deforming meshes performing Walking' motions. Both in Figure 5-13 and Figure 5-14 we observe gaps in the alignment paths computed by using Smith-Waterman algorithm. This could have been resulted from the following two reasons:

 Smith-Waterman algorithm is a local sequence alignment method that allows gaps among the aligned pairs. This is particularly interesting when we want to skip noisy dissimilary subsequences while matching two sequences.

 The other reason could be because we apply Smith-Waterman algorithm over the key-frames, each of which represents a subsequence of frames (Section 5.3). For example, in Figure 5-14, the key-frame representing the subsequence from f 23 to f 31 (see the rectangle in Figure 5-14) of Boy' is aligned to the key-frame representing one frame f 28 of Gorilla', which is the reason why we observe a gap in the alignment path in the rectangle in Figure 5-14. Although the matchings computed by using DTW and mDTW have shown similar results so far, they are significantly different on Gorilla' and Michael' data as shown in Figure 5-15: the alignment path computed by using DTW only aligns about a half of Gorilla' to Michael', which is the globally minimized sum of the alignment distance. In comparison, the alignment path computed by using mDTW stays near the diagonal of the matrix, resulted from the constraint that the first and the last frames are forced to be aligned. The latter alignment path is more preferable knowing that Gorilla' and Michael' are time-synchronized deforming meshes. Note that the path computed by Smith-Waterman algorithm stays around the diagonal of the matrix, which is similar to that of mDTW. Although Horse_1' and Horse_2' are created in different manners, Horse_1' is created by the deformation transfer and Horse_2' is an animated mesh in Maya, they both perform Galloping' motions. In Figure 5-16, we do not apply mDTW bet een Horse_1' and Horse_2'. Since these two deforming meshes are not synchronized, their first/last frames may have different poses and therefore it is not reasonable to assume respective matchings between them. In the alignment obtained by using Smith-Waterman algorithm, Horse_2' is aligned to 7 key frames of Horse_1', hich correctly reflects the fact that Horse_2' contains 1-cycle of Galloping' motion, hile Horse_1' contains 4-cycles. Similarly, the path computed by using DTW fails in this comparison.

Therefore, by comparing the three sequence alignment algorithms, if the input deforming meshes contain time-synchronized motions, mDTW has similar performance with Smith-Waterman algorithm, and is more robust than DTW by forcing the first/last frames being aligned, see Figure 5-16. However, mDTW is not capable of handling motion non-synchronized data, while Smith-Waterman algorithm is by computing local alignments.

Similarity measurement

Similarity of deforming meshes

Figure 5-17 shows the similarity scores we have obtained for the example deforming meshes. As expected, deforming meshes with similar motion shows high similarity scores. Note that Horse_2' has different motion speed and starting pose compared to Camel' and Horse_1', but the similarities among these three models are higher than the others because they all sho Gallop' motions. On the other hand, although the shape of Face_1' is similar to those of Face_2' and Face_3', similarities of Face_1' to the other t o facial models are lo because they perform different facial expressions. Additionally, the average similarity bet een Gallop' and Walk' motions is higher than either Gallop'-Facial expression' or Walk'-Facial expression', hich complies ith human judgement.

Evaluation of the motion similarities

In order to evaluate our similarity measurement method, we first study how human perceive the motion similarity between deforming meshes. To this end, we invite 11 participants who are not aware of our segmentation method and show them with the 10 animated meshes used in our experiments. Based on subjective observations, each participant gives a score on motion similarity (with a larger number between [0 100] indicating higher similarity) between each pair of the deforming meshes. Therefore, we obtain pairwise motion similarities of deforming meshes based on human perception.

Having created the human-based ground truth similarity between deforming meshes, e evaluate our similarity results by applying Pearson's correlation [START_REF] Bartko | On various intraclass correlation reliability coefficients[END_REF]. A Pearson's correlation ranges from -1 to +1, with +/-indicating positive/negative relationship between two variables, and the values reflecting the degree of linear relationships. In order to compute Pearson's correlation bet een ground-truth and our results, we save the 495 human rated similarities into a vector Vgt, and create another vector Vours where each value Vours(i), i=1,…,495, is the corresponding similarity value of Vgt (i) but computed by using our method. That is, Vours actually contains 11 times repetition of the similarity results shown in Figure 5-18.

Figure 5-18 shows the scatter plot between Vgt and Vours, and the linear regression between the two vectors. Among the human score, there are 4 participants out of 11 give scores of the similarities bet een Horse_2' and deforming meshes ith Walk' motion (Groilla', Boy' and Michael') less than 10%, sho n in the dashed circle. On the other hand, there are 4 participants give scores of the similarities bet een Camel' and the deforming meshes ith Walk' motion more than 50%, shown in the dotted circle. Finally, although human perception on the similarity bet een Gallop' and Walk' does not sho clear consistency, e still obtain 0.9008 as the Pearson's correlation bet een Vgt and Vours. The correlation value indicates that our similarity measurement method has a high degree of correlation with human perception on motion similarity.

Figure 5-18 Scatterplot between the similarities of deforming meshes computed by using our method (horizontal) and the human scores of similarities (vertical). The red line is the linear regression of the 2D point distribution.

Granularity of the motion similarities

In this section, we further evaluate the granularity of our similarity measurement method with similar motions. To this end, we use 6 biped animations (including Jog1', Jog2', Jump1', Jump2', Walk1', and Walk2') from 3Ds Max motion library, and attach them to 3 meshes, i.e. Michael', Gorilla', and Boy', hich results in 18 deforming meshes. The spatio-temporal segmentation and the graph representation of selected frames among the new deforming meshes are shown in Figure 5-8 and Figure 56789. By applying our similarity measurement method, we obtain a motion similarity matrix among these deforming meshes (see Figure 5678910111213141516171819). We describe this result and its evaluation as follows: based on the average motion similarities in . In this motion similarity ranking matrix, e use 1/2/3' to indicate the rankings of the similarity to all the motions, here 1'/'3' is the highest/lo est ranking.

In order to validate our motion similarity rankings, we invite 11 participants to give the rankings for the 3 motions by observing the 18 animations. In Figure 5-19 (c), the number within each parentheses is the number of participants who give the ranking number before the corresponding parentheses. Note that 1 participant out of the 11 considered Jog' and Jump' being equally different to Walk' and gave ranking 3' for both, see the second row in . Apart from this, our computed ranking results are met with most of the human rankings of the 3 motions by comparing and .

Therefore, based on the above experiments on deforming meshes with similar motions, i.e., Jog', Jump' and Walk', our similarity measurement method can successfully distinguish these 3 similar motion types. Moreover, our similarity measurement method reflects human perceptions on motion similarity because our motion ranking results comply well with human rankings among the 3 similar motions.

Discussions

Previous-pose based strains vs. rest-pose based strains

As having been discussed in Chapter 3, previous-pose based strains of a deforming mesh contain motion information, for this reason we have chosen previouspose based strains for computing the spatio-temporal segmentation of deforming meshes. In Figure 5-20, we simulate the spatio-temporal segmentation results of the bending-cylinder' animation by using both previous-pose based strains and rest-pose based strains. By representing the spatio-temporal segmentation into evolving graphs, in the top row of Figure 5-20, we clearly observe the bending motion and the bended pose remains static for a period before stretching. However, the segmentation results based on rest-pose strains cannot distinguish the bending/stretching motions, see the bottom row in Figure 5

Graph edit distance (GED)

While computing the sequence alignment between two evolving graphs in Section 5.4, we use GED as the graph dissimilarity metric. One natural extension of computing GED is to take into account of node attribute such as surface area of spatial segments, and edge attribute such as distance between spatial segments. However, such node and edge attributes could vary due to shape differences. For example, in the frame of both Camel' and Horse_1' in Figure 5-7, although there is a deformed' segment on the tail of both Camel' and Horse_1', the one of Camel' is much smaller than the one of Horse_1'. Due to this reason, by taking into account of node attribute of surface area of the corresponding spatial segments, the GED between these two graphs becomes larger, which is not desirable. Moreover, if we use these GED between graph pairs for computing sequence alignment, e ill obtain lo er alignment score bet een Camel' and Horse_1', which is contrary to our object for devising a similarity measurement method independent on shape difference. Therefore, in our similarity measurement method, surface area of spatial segment and distance between spatial segments are not considered as graph attributes for computing GED.

In addition, we have investigated with binary node attributes, i.e., deformed' or rigid', for computing GED. In order to compute GED ith graph attributes, Neu-haus et al. [START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF] compute the dissimilarity of both graph structures and attributes, and linearly combine them. However, in our case, determining the weight would be challenging because the graph structure distance and the graph attribute distance varies significantly between each frame pair (Note that we have more than a thousand of graphs for our 10 experimental models.). An intelligent self-adapting weight and a learning-based weight may be potential solutions.

Comparison with temporal segmentation

As have been described in Section 5.3, we represent the spatio-temporal segmentation of a deforming mesh into an evolving graph, wherein each graph represents a subsequence of frames that have the same spatial mesh segmentation. Note that by interpreting each graph as a temporal segment, we obtain a temporal segment as a partial result of our spatio-temporal segmentation. Differently from the temporal segmentation method presented in Chapter 1, whose objective is to maximize the pose similarity within temporal segments, an evolving graph detects the local deformation in a deforming mesh, i.e., the occurance and disappearance of deformed' segments.

We elaborate the above differences between our segmentation methods by using a bending-cylinder' animation, sho n in In this data, the cylinder' remains static in the beginning, then starts bending, and keeps the bended pose in the end (Figure 5-21(a)). and shows the results by using our temporal segmentation method with different threshold (see Section 4.2.2). In , the value of is lo er, and therefore the bending' mesh sequences is divided into shorter subsequences so that the dissimilarity within each becomes smaller. On the other hand, for the spatio-temporal segmentation results, although the boundary frames may vary if we input different thresholds, we obtain three temporal segments consistently which can be represented into three graphs as shown in : This method detects the occurance of the bending' action from to , and the disappearance of the bending' action from to , see the red node in . To further illustrate the differences between our segmentation methods, we use another bending-cylinder' data that it first bends the upper joint and then bends the lower joint together, until both joints reach 90 degree at the same time. In Figure 5-22 (b) and Figure 5-22 (c), we show the temporal segmentation results with different threshold by using the method presented in Chapter 4. In Figure 5-22 (c), the value of is lower. Similar to the results in Figure 5-21(c), the bending' mesh sequences is divided into shorter subsequences so that the dissimilarity within each becomes smaller. Again, for the spatio-temporal segmentation results, we obtain four temporal segments consistently which can be represented into the graph sequence shown in , the boundary frames may vary by using different thresholds though. In this result, can represent the action that the only the upper joint is bending', and can represent that both upper and lower joints are bending'.

Conclusion

Contributions

In this chapter, we have presented a method for the spatio-temporal segmentation of defoming meshes, whose results are represented with Evolving Graphs. We then use a sequence alignment algorithm to match Evolving Graphs, with an aim of computing the motion similarities between the corresponding deforming meshes. The contributions of this research are shown as follows:

 Spatio-temporal segmentation. Based on the deformation-based feature descriptor presented in Chapter 3, we have developed an efficient and effective spatio-temporal segmentation method, which incorporates both spatial and temporal deformation coherency in the deforming mesh.

 Compact representation. We represent the obtained spatio-temporal segmentation results of a deforming mesh with an evolving graph, where each graph represent the spatial segmentation within a temporal segment, with nodes denoting spatial segments and edges denoting spatial neighborhood.

 Graph clustering. By using the graph embedding method (Riesen andBunke, 2009a, 2009b), we can embed graphs into vectors with the same dimensionality. Moreover, we can further convert the evolving graphs into graph cluster labels by applying K-means clustering and representing each graph with its cluster label. This allows us to apply sequence alignment algorithms to measure similarities among different graph sequences.

 Temporal frame alignment. One important by-product of the sequence alignment between two deforming meshes is that the key frames performing similar motions are matched to each other.

 Motion similarity. Since an evolving graph represent the dynamic motions of a deforming mesh, by applying the sequence alignment algorithm between two sequences, we obtain an alignment score, which indicates their motion similarity.

 Evaluation with ground-truth. In order to validate the obtained motion similarities, we compare with human-rated motion similarities that are collected from a number of volunteers. In specific, e compute Pearson's correlation [START_REF] Bartko | On various intraclass correlation reliability coefficients[END_REF] between the obtained similarities by using our method and the human-based ground-truth motion similarities. The obtained high correlation indicates that our motion similarity measurement method successfully reflects human perception on the motion similarities of deforming meshes.

Summary

In this chapter, after a review of the existing spatio-temporal techniques in both Computer Network and Computer Vision fields, we have presented a new method for the spatio-temporal segmentation of deforming meshes, which to the best of our knowledge has not been studied before. Moreover, we represent the spatiotemporal segmentation results into Evolving Graphs, and therefore compare deforming meshes by using existing sequence alignment algorithm to match the corresponding Evolving Graphs. In this work, we obtain two interesting results, the frame alignments and the similarity between deforming meshes, both have been shown with our experimental results. Additionally, we evaluate our similarity results with human-based ground-truth motion similarities among the experimental deforming meshes, which show that our similarity measurement method complies well with human perception.

Conclusions

Chapter 6

Contributions

In this thesis, we have developed segmentation techniques that compute the temporal and spatio-temporal segmentation for deforming meshes based on the deformation coherency in the data. Although there have been several works on deforming meshes, the best of our knowledge, the temporal and spatio-temporal segmentation have not been studied before. We further extend the segmentation results towards the application of motion similarity measurement between deforming meshes.

Knowing the fact that the deformations in a deforming mesh are normally both spatially and temporally correlated. The existing works on deforming mesh however compute one single spatial segmentation for an entire deforming mesh, which overlooks the temporal deformation coherency. By taking the subsequences with similar poses as temporal segments, our temporal segmentation method can divide deforming meshes undergoing identical motions into temporal segments with similar sub-motions, despite of their shape differences. Furthermore, our spatiotemporal segmentation method enables us to develop a compact representation for deforming meshes, which allows us to measure motion similarities among them.

To summarize, this dissertation contains the following contributions :

Deformation-based feature descriptor: Strain. Given a deforming mesh, we begin by devising a per-triangle feature descriptor that measures the deformation of a triangle within each frame. As having been introduced in Chapter 3, this feature descriptor is independent to global shape translation, rotation and uniform scale. Moreover, the per-triangle strain value is robust over shape difference when different shapes performing identical motions.

Temporal segmentation of deforming meshes. We have presented a temporal segmentation method for deforming meshes. In our temporal segmentation algorithm, based on our deformation-based feature descriptor, we first define a distance me-tric for each frame pair based on the difference of their triangle deformation, then we further define within-segment frame dissimilarity as the average of all possible pairwise frame distance within each candidate temporal segment. Finally, the boundary frames for the temporal segmentation are determined by minimizing the sum of within-segment frame dissimilarities. This allows us to obtain the segmentation result that each temporal segment is a subsequence of similar frames, i.e., frames with similar poses.

Our experiments on both synthesized and motion captured deforming meshes validate the effectiveness of the presented approach. It is also encouraging that we can obtain consistent temporal segmentation for different deforming meshes exhibiting similar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Next, we have presented a spatio-temporal segmentation method for deforming meshes. First of all, based on the degree of deformation of each triangle in each frame, we binarily label the triangles ith either deformed' or rigid'. Then, we compute a spatio-temporal segmentation by merging the deformed' triangles that are either spatially or temporally connected. We then use an evolving graph to represent the spatio-temporal segmentation, where each node represents a spatial segment, each edge the neighbourhood between two spatial segments, and each graph is a key frame representing a subsequence of frames with the same graph representation.

Having computed the evolving graphs of two deforming meshes, we proceed to compute the similarity of the evolving graphs by adopting a sequence alignment method. However, a sequence alignment method cannot be directly applied on two graph sequences because the graphs may have different dimensions, i.e., different node numbers. In order to avoid this problem, we classify the similar graphs and assign the graphs in the same cluster with the same label. As a result, each evolving graph is represented into a sequence of cluster labels. Finally, we compute the alignment score between the two cluster label sequences by using a sequence alignment algorithm, which reflects the similarity between two deforming meshes.

The outcome of this method is two folds: (1) Temporal frame alignment. According to our experiments, the alignment results between two deforming meshes with similar motions show that the key frames performing similar actions are well matched to each other. (2) Motion similarity measurement. Based on the spatiotemporal segmentation results, we have devised a similarity measurement method for deforming meshes, which measures the similarity of motions that are performed by deforming meshes.

111

Our experimental results on a number of deforming meshes show that the motion similarities can be captured correctly, despite shape differences. We validate our similarity results by computing Pearson's correlation ith human-based ground truth motion similarities. The obtained high correlation indicates that our motion similarity measurement method successfully reflects human perception on the motion similarities of deforming meshes.

Perspectives

Temporal segmentation of deforming meshes

By applying our temporal segmentation method, we have successfully handled mesh sequences with over a thousand frames, as well as meshes with thousands of triangles. In our experiments, the values of the threshold (see Section 4.2) for processing different deforming meshes are provided by user depending on which level of motion details are desired. However, we have been aware that the requirement of user-parameter limits the application of this algorithm to experienced users. To alleviate this limitation, an interesting improvement would be to learn the user parameter from human-based ground-truth segmentations. A sufficient variety of mesh types with different motions would be needed for building the ground-truth dataset.

Additionally, assuming we have the automatic computation of temporal segmentations, a further future scenario is to assist applications such as shape retrieval from a long mesh sequence based on motion similarities: We first apply our method to divide the long mesh sequence into temporal segments of submotions, and then search among temporal segments. We save the computation time in such application because we compute the matching between a query sequence with each temporal segment independently, instead of with the entire sequence.

Spatio-temporal segmentation and similarity measurement of deforming meshes

One limitation of our spatio-temporal segmentation method is that we assume a deforming mesh can be segmented into either deformed' or rigid' parts. Due to this reason, our segmentation method will not be applicable to highly dynamic animations such as the surface simulation of flowing water, which would result in one single deformed' segment by using our method. 112 Note that for computing the spatio-temporal segmentation, we binarily label each triangle at each frame ith deformed' and rigid', and group the deformed' triangles that are either spatially or temporally connected as deformed' spatiotemporal segments. In the mean time, e also obtain rigid' spatio-temporal segments. By mapping the segmentation results onto one mesh, e ill obtain deformed' regions herein each triangle is from deformed' segment and rigid' regions wherein each triangle is from rigid' segments. Thefore, our segmentation results could be used for mesh simplification by simplifying the rigid' regions with larger triangles while keeping dense sampling of the deformed' regions. In this way, we can simply a deforming mesh while keeping the information of motions as much as possible.

Another limitation of the proposed similarity measurement method is the expensive computation cost, mainly due to the heavy computation of the pairwise graph edit distance. To compute the similarities among all the evolving graphs of the 10 deforming meshes used in our experiment, consisting of 1135 graphs, it takes about two hours to compute the graph distance matrix, followed by computing graph clustering. However, once the clusters have been computed for a dataset with sufficient variety, computing the labels for a new deforming mesh will only be a matter of computing the graph embedding of each graph in its evolving graph, and clustering each of the graphs to the closest graph cluster center.

One obvious potential of our segmentation-based similarity measurement method is its extension towards shape query applications, which will enable to search from a database for deforming meshes performing identical or similar motions.

Figure 2

 2 Figure 2 Un exemple d'une segmenation spatiale pour un maillage animé.

Figure 3 n

 3 Figure 3 n exemple d'une segmentation temporelle de maillages animés.

Figure 4

 4 Figure 4 Un exemple d'une segmentation spatio-temporelle d'un maillage animé.

 Introduction .. 1 Chapter 1

Figure 2 - 3

 23 Figure 2-3 Spectral embedding based mesh segmentation (Katz et al., 2005).

Figure 2 - 4

 24 Figure 2-4 Human-based segmentation boundaries (Chen et al., 2009). ..

Figure 2 - 5

 25 Figure 2-5 Comparison between different segmentation methods, where the numbers are the rankings of the performance by using different methods on each dataset (Chen et al., 2009). ...

Figure 2 - 6 A

 26 Figure 2-6 A learning-based mesh segmentation (Kalogerakis et al., 2010).

Figure 2 - 7

 27 Figure 2-7 Mesh segmentation derived from 2D image segmentation (Wang et al., 2013): (a) original mesh, (b) 2D projections, (c) best matched ground-truth segmentation of each 2D projection, (d) segmentation of each projected image, (e,f) mesh segmentation. ..

Figure 2 - 8

 28 Figure 2-8 Consistent segmentation of a set of similar 3D models (Golovinskiy and Funkhouser, 2009). ..

Figure 2 -

 2 Figure 2-9 Co-segmentation of a set of similar meshes (Sidi et al., 2011). ..

Figure 2 -

 2 Figure 2-10 Trajectory-based spatial segmentation of a deforming mesh (Sattler et al., 2005). ...

Figure 2 -

 2 Figure 2-11 Spatial segmentation of a dynamic mesh based on shape correspondence. (Arcilla et al., 2010 and 2013) ..

Figure 2 -

 2 Figure 2-12 Region-growing based spatial segmentation of a deforming mesh (Lee et al., 2006). (a) degree of deformation of triangles, (b) binary labels, (c) a seed point in a rigid region, (d,e) region-growing. ...

Figure 2 -

 2 Figure 2-13 Triangle rotation sequence (James and Twigg, 2005). ..

Figure 2 -

 2 Figure 2-14 Spatial segmentation of deforming meshes based on pose partitioning (Vasilakis and Fudos, 2014). ...

Figure 3 - 1

 31 Figure 3-1 Global descriptors, (a) shape histogram[START_REF] Ankerst | 3D shape histograms for similarity search and classification in spatial databases[END_REF], (b) spin images[START_REF] Johnson | Surface registration by matching oriented points[END_REF]. ..

Figure 3 - 3

 33 Figure 3-3 The reference and deformed configurations (Gullett et al., 2008).

Figure 3 - 4

 34 Figure 3-4 Representation of the polar decomposition of the deformation gradient. (Finite strain theory. In Wikipedia. Retrieved November 21 st , 2014, from http://en.wikipedia.org /wiki/Finite_strain_theory). ..

Figure 3 - 5

 35 Figure 3-5 The deformation of a triangle in two frames. ..

Figure 3 - 6

 36 Figure 3-6 Mapping 3D triangles into the same 2D plane, to compute 2D strain.

Figure 3 - 7

 37 Figure 3-7 Strain normalizations. Mesh triangles are shown with colour varying from blue to red, indicating strain values from low to high. By comparing to (a) the reference pose, (b) shows the strain values computed by using the method in Section 2.1.1, and (c) shows the normalized strain values by using Gaussian Kernel Function. The histograms in (b) and (c) show the distributions of the strains before and after normalization, respectively. ..

Figure 3 - 8

 38 Figure 3-8 The same behaviors of rest-pose based strains for both Horse' and Camel', with respect to the same rest poses. ..

Figure 3 - 9

 39 Figure 3-9 The same behaviors of previous-pose based strains for both Horse' and Camel'...

Figure 3 -

 3 Figure 3-10 (a) Non-rigid meshes and (b) their corresponding feature-preserved 3D canonical forms (Lian et al., 2013)...

Figure 3 -

 3 Figure 3-11 Comparisons between (a) rest-pose based and (b) previous-pose based strains for a synthetic deforming mesh bending-cylinder'. ..

Figure 3 -

 3 Figure 3-12 Strains for a galloping-camel' data. From left to right and top to bottom, left-most is the rest pose, top-row the rest-pose based strains and bottom-row the previous-pose based strains. The dashed arrows indicate the corresponding reference poses for computing strains. ...

Figure 4 - 1

 41 Figure 4-1 Temporal segmentation of motion capture data (Barbič et al., 2004). The solid curve is a reconstruction error curve by applying spectral analysis on a sliding window. The dashed line shows the standard deviation of the previous values. The vertical solid line indicates a boundary for the temporal segmentation. ...

Figure 4 - 2

 42 Figure 4-2 Five conducting prototype gestures defined based on primitive movements, which are obtained by over-segmentation (Wang et al., 2001). ...

Figure 4 - 3

 43 Figure 4-3 Within-segment dissimilarity matrix. ...

Figure 4 - 4 A

 44 Figure 4-4 A synthetic example of temporal segmentation. (left) The colored background is a within-segment average dissimilarity matrix, and (m,n) is the first detected temporal segment. (right) The remaining of the sequences are iteratively segmented by using the same approach. ...

Figure 4 - 5

 45 Figure 4-5 Temporal segmentation results of (a) Michael' and (b) Gorilla', hich are both segmented into submotions: right-stop', left-forward and left-stop', rightforward and right-stop' and left-for ard'. ...

Figure 4 - 6

 46 Figure 4-6 Capturing facial expressions ith markers for Face1' and Face2'.

Figure 4 - 7

 47 Temporal segmentation results of (a) Face1' and (b) Face2', hich are both segmented into facial expressions eyebro -raise', anger', neutral', disgust', neutral', fear', neutral', happy', neutral', surprise', neutral', sad', and neutral'.

Figure 4 -

 4 Figure 4-10 Temporal segmentation results of Face1' by using different thresholds (, Section 4.2), (a) (the same results in Figure 4-7(a)) and (b) . Comparing to (a), the obtained results in (b) further divide the eyebro -raise' into atomic facial expressions: neutral', eyebro -raise', neutral', eyebro -raise', neutral', eyebro -raise', neutral'. ...

Figure 4 -

 4 Figure 4-11 Temporal segmentation results of Camel' by using both our method and Barbič et al.'s method (Barbič et al., 2004). ...

Figure 4 -

 4 Figure 4-12 Sample meshes ithin each temporal segment of (a) Gorilla', Michael' and (b) Camel'. ...

Figure 5 - 1

 51 Figure 5-1 The spatial and temporal neighborhoods in the 3D graph cut model (Tian et al., 2011). The red lines show spatial neighborhoods, the purple and the blue lines show temporal neighborhoods. ..

Figure 5 -

 5 Figure 5-2 (a) Sample graphs in an evolving graph and (b) their union graph (Chan et al., 2008). ...

Figure 5 - 3

 53 Figure 5-3 Sample waveform and the corresponding transition sequence of an evolving edge (Kan et al., 2009).(a) An evolving graph, (b) the corresponding waveform, graphical representation and transition sequence representation of the evolving edge in the dashed circle in (a). ..

Figure 5 - 4

 54 Figure 5-4 An example of graph query (Kan et al., 2009). By querying the maximal subgraph ith aveform 0111' in (a), e obtain an evolving subgraph sho n in (b), in hich the edges 1-4' and 2-4' can be represented ith the aveform 0111'.

Figure 5 - 5

 55 Figure 5-5 Representation of spatio-temporal segmentation results (Aksoy et al., 2010). The left column (a) shows 4 types of interactions between node 2 and 4. In the right column (b), from top to bottom, each row shows the spatio-temporal segmentation results, graph representation, and the interaction sequences of node pairs.

Figure 5 - 6 :

 56 Figure 5-6: An example of spatio-temporal segmentation of bending-cylinder'. (a) Binary labeling. (b) Spatio-temporal segmentation. (c) Spatio-temporal segment. (d) Evolving graph representation. ..

Figure 5 - 8

 58 Figure 5-8 The spatio-temporal segmentation and the graph representation of Gorilla-Jog1', Michael-Jog1', Gorilla-Jog2' and Michael-Jog2'. ...

Figure 5 - 9

 59 Figure 5-9 The spatio-temporal segmentation and the graph representation of Gorilla-Jump1', Michael-Jump1', Gorilla-Jump2' and Michael-Jump2'. ..

Figure 5 -

 5 Figure 5-10: Graph embedding. (a) The input deforming meshes M A and M B . (b) The sequences of evolving graphs and . (c) The graph embedding. Each graph gi is represented with a vector V i , where d(g i , g j) denotes the graph edit distance between graphs g i and g j . ..

Figure 5 -

 5 Figure 5-11: Graph clustering. (a) The input deforming meshes M A and M B . (b) The sequences of evolving graphs and . (c) The sequences of graph cluster labels and . ..

Figure 5 -Figure 5 -

 55 Figure 5-12: The sequence alignment between and . Matching cluster labels are shown with dashed lines. ...

Figure 5 -

 5 Figure 5-14 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for Gorilla' (vertical-ise) and Boy' (horizontal-wise). ..

Figure 5 -

 5 Figure 5-15 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for Gorilla' (vertical-ise) and Michael' (horizontal-wise).

Figure 5 -

 5 Figure 5-16 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for Horse_1' (vertical-ise) and Horse_2' (horizontal-wise).Arrows are directed to several samples of the corresponding matched frames between the two sequences. ...

Figure 5 -

 5 Figure 5-17 Similarity matrix among deforming meshes. The values are shown in percentage (%). ...

Figure 5 -

 5 Figure 5-18 Scatterplot between the similarities of deforming meshes computed by using our method (horizontal) and the human scores of similarities (vertical). The red line is the linear regression of the 2D point distribution. ..

Figure 5 -

 5 Figure 5-19 Similarities among 3 similar motions, Jog' , 'Jump' and Walk'. (a) Similarity matrix among 18 deforming meshes. (b) Each row shows the rankings of all the motions to a motion based on the average motion similarities in (a). (c) Human rated motion similarity rankings for each motion, where the numbers within each parentheses is the number of participants who give the ranking before the corresponding parentheses.

Figure 5 -

 5 Figure 5-20 The spatio-temporal segmentation results and the evolving graph representation of bending-cylinder', by using (a) previous-pose based strains and (b) rest-pose based strains. ..

Figure 5 -

 5 Figure 5-21 A comparison between our temporal segmentation and spatio-temporal segmentation. (a) sho s a bending-cylinder' animation. (b) and (c) are t o temporal segmentation results with different user-threshold, where the threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the spatio-temporal segmentation result. ...

Figure 5 -

 5 Figure 5-22 Another comparison between our temporal segmentation and spatiotemporal segmentation. (a) sho s another bending-cylinder' animation ith t o bending' joints. (b) and (c) are two temporal segmentation results with different userthreshold, where the threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the spatio-temporal segmentation result. ...

Figure 2 - 1

 21 Figure 2-1 Hierachical clustering based mesh segmentation[START_REF] Lai | Fast mesh segmentation using random walks[END_REF].

 Figure 2-1(b), the merging process continues among the K segments until satisfactory number of segments is reached, Figure 2-1(c). Finally, the authors improve the segmentation result by smoothing the boundaries, Figure 2-1(d).

Figure 2 - 2

 22 Figure 2-2 Region-growing based mesh segmentation[START_REF] Zhou | Decomposing polygon meshes by means of critical points[END_REF].

Figure 2 - 3

 23 Figure 2-3 Spectral embedding based mesh segmentation[START_REF] Katz | Mesh segmentation using feature point and core extraction[END_REF].

Figure 2 - 4

 24 Figure 2-4 Human-based segmentation boundaries[START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF].

Figure 2 - 5

 25 Comparison between different segmentation methods, where the numbers are the rankings of the performance by using different methods on each dataset[START_REF] Chen | A benchmark for 3D mesh segmentation[END_REF].

Figure 2 - 6 A

 26 Figure 2-6 A learning-based mesh segmentation[START_REF] Kalogerakis | Learning 3D mesh segmentation and labeling[END_REF].

 In a recent work, Wang et al.[START_REF] Wang | Projective analysis for 3D shape segmentation[END_REF] propose a method that tunes the segmentation of 2D images to 3D shapes. Depicted in Figure2-7, this method first averagely projects a given upright 3D shape into 2D images from different rotation angles, Figure2-7(b). In the meantime, they maintain a set of similar 2D images with ground-truth segmentations, Figure2-7(c). The labelling of each projected 2D images can be inferred from closely matched labelled images from ground-truth set by using 2D image segmentation techniques,. Finally, the segmentation is done by back projecting the image labelling to triangles on the original 3D shape, Figure2-7(e,f). Although this method simplifies the challenge of mesh segmentation by working on lower dimensional data, the method has to match each 2D image projection with each ground-truth image segmentation from database and thus suffers from heavy computation.

Figure 2 -

 2 Figure 2-7 Mesh segmentation derived from 2D image segmentation (Wang et al., 2013): (a) original mesh, (b) 2D projections, (c) best matched ground-truth segmentation of each 2D projection, (d) segmentation of each projected image, (e,f) mesh segmentation.

Figure 2 -

 2 Figure 2-8 Consistent segmentation of a set of similar 3D models[START_REF] Golovinskiy | Consistent segmentation of 3D models[END_REF].

Figure 2 -

 2 Figure 2-9 Co-segmentation of a set of similar meshes[START_REF] Sidi | Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering[END_REF]

Figure 2 -

 2 Figure 2-10 Trajectory-based spatial segmentation of a deforming mesh[START_REF] Sattler | Simple and efficient compression of animation sequences[END_REF].

 (a) Vertex matching (b) Segmentation result

Figure 2 -

 2 Figure 2-11 Spatial segmentation of a dynamic mesh based on shape correspondence.(Arcilla et al., 2010 and 2013)

Figure 2 -

 2 Figure 2-12 Region-growing based spatial segmentation of a deforming mesh (Lee et al., 2006). (a) degree of deformation of triangles, (b) binary labels, (c) a seed point in a rigid region, (d,e) region-growing.

Figure 2 -

 2 Figure 2-13 Triangle rotation sequence[START_REF] James | Skinning mesh animations[END_REF].

 (a) Per-frame segmentation. (b) Over segmentation through intersection. (c) Per-frame simplification.

Figure 2 -

 2 Figure 2-14 Spatial segmentation of deforming meshes based on pose partitioning[START_REF] Vasilakis | Pose partitioning for multi-resolution segmentation of arbitrary mesh animations[END_REF].

Figure 3 -

 3 2(d) shows an example of HKS field of each point on a 3D model.

Figure 3 - 2

 32 Figure 3-2 Local shape descriptors, (a) curvature[START_REF] Lavoué | A new CAD mesh segmentation method, based on curvature tensor analysis[END_REF], (b) shape diameter function[START_REF] Gal | Pose-oblivious shape signature[END_REF], (c) shape context ([START_REF] Belongie | Shape context: A new descriptor for shape matching and object recognition[END_REF], and (d) heat kernel signature[START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF].

Figure 3 - 4

 34 Figure 3-4 Representation of the polar decomposition of the deformation gradient. (Finite strain theory. In Wikipedia. Retrieved November 21 st , 2014, from http://en.wikipedia.org /wiki/Finite_strain_theory).

Figure 3 - 5

 35 Figure 3-5 The deformation of a triangle in two frames.

 -5, we use ⃗⃗⃗⃗⃗⃗⃗⃗⃗ and ⃗⃗⃗⃗⃗⃗⃗⃗⃗ before deformation (left-side triangle) and use ̃ ⃗⃗⃗⃗⃗⃗⃗⃗⃗ and ̃ ⃗⃗⃗⃗⃗⃗⃗⃗⃗ after deformation (right-side triangle). Then, we get ̃ where

Figure 3 - 6

 36 Figure 3-6 Mapping 3D triangles into the same 2D plane, to compute 2D strain.

Figure 3 - 7

 37 Figure 3-7 Strain normalizations. Mesh triangles are shown with colour varying from blue to red, indicating strain values from low to high. By comparing to (a) the reference pose, (b) shows the strain values computed by using the method in Section 2.1.1, and (c) shows the normalized strain values by using Gaussian Kernel Function. The histograms in (b) and (c) show the distributions of the strains before and after normalization, respectively.

Figure 3 -

 3 shows an example of normalized triangle strain values. By comparing

Figure 3 - 8

 38 Figure 3-8 The same behaviors of rest-pose based strains for both 'Horse' and 'Camel', with respect to the same rest poses.

Figure 3 - 9

 39 Figure 3-9 The same behaviors of previous-pose based strains for both 'Horse' and 'Camel'.

Figure 3 -

 3 Figure 3-10 (a) Non-rigid meshes and (b) their corresponding feature-preserved 3D canonical forms[START_REF] Lian | Feature-preserved 3D canonical form[END_REF].

Figure 3 -

 3 Figure 3-11 Comparisons between (a) rest-pose based and (b) previous-pose based strains for a synthetic deforming mesh 'bending-cylinder'.

Figure 3 -

 3 Figure 3-12 Strains for a 'galloping-camel' data. From left to right and top to bottom, left-most is the rest pose, top-row the rest-pose based strains and bottom-row the previous-pose based strains. The dashed arrows indicate the corresponding reference poses for computing strains.

Figure 4 - 1

 41 Figure 4-1 Temporal segmentation of motion capture data[START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF]. The solid curve is a reconstruction error curve by applying spectral analysis on a sliding window. The dashed line shows the standard deviation of the previous values. The vertical solid line indicates a boundary for the temporal segmentation.

Figure 4 - 2

 42 Figure 4-2 Five conducting prototype gestures defined based on primitive movements, which are obtained by over-segmentation[START_REF] Wang | Unsupervised analysis of human gestures[END_REF].

 53

Figure 4 - 3

 43 Figure 4-3 Within-segment dissimilarity matrix.

Figure 4 - 4 A

 44 Figure 4-4 A synthetic example of temporal segmentation. (left) The colored background is a within-segment average dissimilarity matrix, and (m,n) is the first detected temporal segment. (right) The remaining of the sequences are iteratively segmented by using the same approach.

Algorithm 1 :

 1 TempSeg(I B ,D s ,I h ,I t)Init: I B =[], I h =1, I t =M, A s L=I t -I h +1 for l=L to 1 do for p=1 to L-l+1 do D s-sub (p)=D s (p,p+l-1) end for [D s-max ,p]=max(D s-sub) if D s-max > then I B = [I B p] q=p+l-1; TempSeg(I B ,D s ,I h ,p-1)TempSeg(I B ,D s ,q+1,I t) segmentation algorithm for deforming meshes. For the inputs, I B is a vector of boundary frames' indices, D s is the within-segment average dissimilarity matrix, I h and I t are the indices of the first frame and the last frame in the subsequence, respectively.

- 5 ,

 5 respectively. In each of these figures, we show a within-segment dissimilarity matrix with colours ranging from blue to red, to indicate within-segment dissimilarity values from low to high. And we use vertical dashed lines to indicate boundary frames. We discuss on the temporal segmentation results of each data below.

Figure 4 - 5

 45 Figure 4-5 Temporal segmentation results of (a) 'Michael' and (b) 'Gorilla', which are both segmented into submotions: 'right-stop', 'left-forward and left-stop', 'right-forward and right-stop' and 'left-forward'.

Face1Face2Figure 4 - 6 Figure 4 - 7

 4647 Figure 4-6 Capturing facial expressions with markers for 'Face1' and 'Face2'.

Figure 4 - 8

 48 Figure 4-8 Sample meshes within each temporal segment of 'Face1'.

Figure 4 - 9

 49 Figure 4-9 Sample meshes within each temporal segment of 'Face2'.

Figure 4 -

 4 Figure 4-10 Temporal segmentation results of 'Face1' by using different thresholds (, Section 4.2), (a) (the same results in Figure 4-7(a)) and (b). Comparing to (a), the obtained results in (b) further divide the 'eyebrow-raise' into atomic facial expressions: 'neutral', 'eyebrow-raise', 'neutral', 'eyebrow-raise', 'neutral', 'eyebrow-raise', 'neutral'.

Figure 4 -

 4 Figure 4-11 Temporal segmentation results of 'Camel' by using both our method and Barbič et al.'s method[START_REF] Barbič | Segmenting motion capture data into distinct behaviors[END_REF].

Figure 4 -

 4 Figure 4-12 Sample meshes within each temporal segment of (a) 'Gorilla', 'Michael' and (b) 'Camel'.

Figure 5

 5 Figure 5-2 (a) Sample graphs in an evolving graph and (b) their union graph[START_REF] Chan | Discovering correlated spatio-temporal changes in evolving graphs[END_REF].

Figure 5 - 3

 53 Figure 5-3 Sample waveform and the corresponding transition sequence of an evolving edge (Kan et al., 2009).(a) An evolving graph, (b) the corresponding waveform, graphical representation and transition sequence representation of the evolving edge in the dashed circle in (a).

Figure 5 - 4

 54 Figure 5-4 An example of graph query[START_REF] Kan | A query based approach for mining evolving graphs[END_REF]. By querying the maximal subgraph with waveform '0111' in (a), we obtain an evolving subgraph shown in (b), in which the edges'1-4' and '2-4' can be represented with the waveform '0111'.

Figure 5 - 5

 55 Figure 5-5 Representation of spatio-temporal segmentation results (Aksoy et al., 2010). The left column (a) shows 4 types of interactions between node 2 and 4. In the right column (b), from top to bottom, each row shows the spatio-temporal segmentation results, graph representation, and the interaction sequences of node pairs.

Figure 5 - 6 :

 56 Figure 5-6: An example of spatio-temporal segmentation of 'bending-cylinder'. (a) Binary labeling. (b) Spatio-temporal segmentation. (c) Spatio-temporal segment. (d) Evolving graph representation.

Algorithm 2 :

 2 SpatioAlgorithm 5-1 Spatio-temporal segmentation algorithm for deforming meshes.

Figure 5 - 7

 57 Figure 5-7 The spatio-temporal segmentation and the graph representation of 'Camel','Horse_1', 'Gorilla' and 'Boy'.

Figure 5 -

 5 Figure 5-10: Graph embedding. (a) The input deforming meshes M A and M B . (b) The se- quences of evolving graphsand . (c) The graph embedding. Each graph gi is represented with a vector V i , where d(g i , g j) denotes the graph edit distance between graphs g i and g j .

Figure 5 -

 5 Figure 5-11 shows an example of graph clustering for two deforming cylinder meshes. The deformation of M A is composed of the bending of the center part of the cylinder. The deformation of M B includes the bending of the upper and lower parts of the cylinder with the bending of upper part starting first. After graph clustering, both of M A and M B are represented with the cluster label sequences, and respectively (Figure 5-11(c)).

Figure 5 -

 5 Figure 5-11: Graph clustering. (a) The input deforming meshes M A and M B . (b) The sequences of evolving graphs and . (c) The sequences of graph cluster labels and .

Figure 5 -

 5 Figure5-12: The sequence alignment between and . Matching cluster labels are shown with dashed lines.

Figure 5 -

 5 12 shows an example of computing alignment score between and without a gap. Here the alignment score is .

Figure 5 -

 5 Figure 5-14 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for 'Gorilla' (vertical-wise) and 'Boy' (horizontal-wise).

Figure 5 -

 5 Figure 5-15 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for 'Gorilla' (vertical-wise) and 'Michael' (horizontal-wise).

Figure 5 -

 5 Figure 5-16 Comparisons of the sequence alignment results by using Smith-Waterman, DTW and mDTW for 'Horse_1' (vertical-wise) and 'Horse_2' (horizontal-wise).Arrows are directed to several samples of the corresponding matched frames between the two sequences.

Figure 5 -

 5 Figure 5-17 Similarity matrix among deforming meshes. The values are shown in percentage (%).

Figure 5 -

 5 Figure 5-20 The spatio-temporal segmentation results and the evolving graph representation of 'bending-cylinder', by using (a) previous-pose based strains and (b) rest-pose based strains.

 105

Figure 5 -

 5 Figure 5-21 A comparison between our temporal segmentation and spatio-temporal segmentation. (a) shows a 'bending-cylinder' animation. (b) and (c) are two temporal segmentation results with different user-threshold, where the threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the spatio-temporal segmentation result.

Figure 5 -

 5 Figure 5-22 Another comparison between our temporal segmentation and spatio-temporal segmentation. (a) shows another 'bending-cylinder' animation with two 'bending' joints. (b) and (c) are two temporal segmentation results with different user-threshold, where the threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the spatio-temporal segmentation result.

 Sample meshes ithin each temporal segment of Face1'. ..Figure 4-9 Sample meshes ithin each temporal segment of Face2'. ..

	List of Figures

', hich are both segmented into facial expressions eyebro -raise

', anger', neutral', disgust', neutral', fear', neutral', happy', neutral', surprise', neutral', sad', and

neutral'. xxiii Figure 4-8

 ... Gorilla' and Boy'..

	Figure 5-7 The spatio-temporal segmentation and the graph representation of Camel',
	Horse_1',

Table 2 -

 2 1 Summary of 3D mesh segmentation techniques. ..

Table 4 -

 4 1 Used data and the timings for temporal segmentation. The timings are the runtime for the temporal segmentation of each data (the computation of the withinsegment dissimilarity matrix is excluded). ...

Table 5 -

 5 1 Computation complexities of the used techniques. ...

Table 5 -

 5 2 Used deforming meshes for spatio-temporal segmentation and timings. Temporal segmentation algorithm for deforming meshes. For the inputs, I B is a vector of boundary frames' indices, D s is the within-segment average dissimilarity matrix, I h and I t are the indices of the first frame and the last frame in the subsequence, respectively. ... 55 Algorithm 5-1 Spatio-temporal segmentation algorithm for deforming meshes. 79

	xxvi

Table 2 -

 2 1 Summary of 3D mesh segmentation techniques.

	Mesh types Segmentation types	Segmentation method type	Object	Drawback
	Standalone segmen-tation	Hierarchical clustering, Re-gion-growing, Spectral em-bedding, etc.		
	Static mesh			

Table 4 -

 4 1 Used data and the timings for temporal segmentation. The timings are the runtime for the temporal segmentation of each data (the computation of the withinsegment dissimilarity matrix is excluded).

	Name	Number of faces	Number of frames	Motions		Timings (second)
	Michael	29999	55	Walking	0.8	2.1
	Gorilla	29999	55	Walking	0.8	1.9
	Camel	43778	51	Galloping	0.8	3.3
	Face1	286	1097	Facial ex-pressions	0.6	565.8
	Face2	269	1472	Facial ex-pressions	0.7	1128.9

Table 4

 4

-1), Barbič et al.'s method consumes nearly 10 minutes.

Table 5 -

 5 1 Computation complexities of the used techniques.

	Algorithms	Complexity
	PCA	()	
	K-means	()
	Sequence alignment	()

√ √√ .

Within-segment frame dissimilarity

Given a deforming mesh M with M frames and N triangles, we represent each frame , with a vector of triangle strain values () ,

where the per-triangle strains can be computed by using the method described in Chapter 3. We then can compute the distance () between frames and by taking the Euclidean distance between their corresponding strain vectors and , i.e., () ‖ ‖ .

Based on this distance metric between frame pairs, we consider every possible subsequence [p, q] (from to) as a candidate temporal segment, with the corresponding within-segment dissimilarity () defined as follows:

where .

Intuitively, () is the average dissimilarity of all possible frame pairs within [p, q]. Figure 4-3 shows the within-segment dissimilarity matrix computed for a facial motion capture data. We show the dissimilarity matrix in color varying from blue to red, indicating dissimilarity values from low to high.

resolution meshes [START_REF] Bronstein | Numerical geometry of nonrigid shapes[END_REF] with the same walking skeleton provided by 3D Max Studio (3dS MAX L&T CD., 2006). The t o other models, Head' and Face_1' are obtained by linear interpolation of 8 key poses (anger, fury, grin, laugh, rage, sad, smile and surprise) (Sumner and Popovid, 2004). The t o models Camel' and Horse_1' are from Sumner et al.'s ork on Deformation Transfer (Sumner and Popovid, 2004). The model Horse_2' is the same model as Horse_1' except that the frame rate and the starting pose are different. The t o models Face_2' and Face_3' have been obtained ith the motion capture of t o person's facial expressions using the Vicon system (http:Vicon); these motion data have been used to animate the scanned faces of the two persons. These t o models Face_2' and Face_3' contain the facial expressions in the follo ing order: eyebrow-raise' for three times, anger', disgust', fear', happy', surprise', sad', and with a neutral' facial expression in between. Selected frames of several deforming meshes are shown in Figure 567. We first process each deforming mesh with our segmentation method to generate the sequence of evolving graphs for each of them. The computation time of the Created by the deformation transfer (Sumner and Popovid, 2004), the two mesh sequences Camel' and Horse_1' are time-synchronized and have the same number of frames and their corresponding frames have the same poses. In Figure 5-13, the alignment paths computed by using three alignment methods are all around the diagonal of the distance matrix, which correctly reflects the synchronized motions between the two deforming meshes. Note that because we force to match the first frames by using mDTW, we obtain slightly improved alignment path in the first 5 frames than the path computed by using DTW.

Michael-Walk1

Gorilla-Walk2 c) Human rated motion similarity rankings for each motion, where the numbers within each parentheses is the number of participants who give the ranking before the corresponding parentheses.

In Figure 5-19 (a), we can represent each deforming mesh as a vector of motion similarities, i.e., the corresponding row of the similarity matrix. Then, by applying Kmeans clustering, we successfully classify the 18 deforming meshes into 3 clusters of different motion types, i.e., Jog', Jump' and Walk'.

Based on the above motion classification, we convert the motion similarity matrix of deforming meshes from to motion similarity ranking matrix in , where each row shows the rankings of all the motions to a motion