
HAL Id: tel-01273030
https://theses.hal.science/tel-01273030

Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Segmentation methods for deforming meshes and its
application to similarity measurement

Guoliang Luo

To cite this version:
Guoliang Luo. Segmentation methods for deforming meshes and its application to similarity mea-
surement. Computational Geometry [cs.CG]. Université de Strasbourg, 2014. English. �NNT :
2014STRAD026�. �tel-01273030�

https://theses.hal.science/tel-01273030
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG
Logo
Ecole

doctorale

THÈSE DE DOCTORAT présentée par :

 Guoliang LUO

soutenue le : 04 novembre 2014

pour obtenir le grade de : Docteur de l’université de Strasbourg

Mention : Informatique

Segmentation de Maillages Dynamiques
et Son Application pour le Calcul de

Similarité

THÈSE dirigée par :

Mme. SEO Hyewon HDR, université de Strasbourg

RAPPORTEURS :
Mme. HAHMANN Stefanie Professeur, Institut polytechnique de Grenoble
M. DAOUDI Mohamed Professeur, Institut Mines-Télcom/Télécom Lille1

AUTRES MEMBRES DU JURY :
M. CORDIER Frederic HDR, Université de Haute Alsace
M. BASKURT Atilla Professeur, INSA Lyon
M. XU Yong Professeur, South China University of Technology

École doctorale N⁰ 269 : mathématiques, sciences de l’information et de l’ingénieur.
UMR 7357 CNRS / Unistra : laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie

i

Acknowledgement

First and foremost, I wish to deeply thank my supervisor HDR Hyewon Seo for her pa-

tience, encouragement, supports and guidance on my research works throughout these

years that makes this thesis possible. I would also like to give my sincere gratitude to my

co-supervisor HDR Frederic Cordier, who provided tremendous of valuable remarks and

assistance on my works and papers. Moreover, I would like to thank my juries Prof. Stefan-

ie Hahmann, Prof. Mohamed Daoudi, Prof. Atilla Baskurt and Prof. Yong Xu, for expressing

their genuine appreciation on my work and their helpful comments on my manuscript.

I would like to extend my gratitude to Prof. Nadia Magnenat-Thalmann for inviting

and supporting my visits to Miralab in University of Geneva, where I had benefited

from an intellectually inspiring environment with colleagues Hon-Fai Choi, Yvain

Tisserand, Andra Chincisan and Matthias Becker.

I also would like to take this opportunity to thank my previous supervisors Prof.

Danica Kragic and Assistant Prof. Carl Henrik Ek in Royal Institute of Technology,

Assistant Prof. Anders Brun in Uppsala University, who guided me to enter research

world.

I am particularly grateful to my colleagues in Computer Graphics and Geometry

group, who were always willing to help and give their best suggestions. They are

Vasyl Mykhalchuk, Amir Hossein Jaberzadeh Ansari, Kenneth Vanhoey, Lionel Unte-

reiner, Rémi Imbach, Olivier Génevaux, Sylvain Thery, Frédéric Larue. It would be a

lonely journey of this thesis without them. Special gratitude goes to Noura Hamzé,

Pierre Boutry, Alexandre Hurstel, Etienne Schmitt and Thomas Pitiot, for their great

efforts for translating my abstract into French.

Many thanks to my friends Yihan Liu, Blazejewska Katarzyna, Zilong Zhao, who sha-

red me countless pieces of precious memories and enjoyable moments in France. A

special thanks also to Tinghui Chen, who could always cheer me up whenever I

needed it.

 Acknowledgement

ii

Finally, I cannot thank my parents enough for their lasting love, supports and understan-

ding.

iii

Résumé

1. Contexte

Avec le développement important des techniques d’acquisition de la géométrie,

les données 3D sont devenues un nouveau sujet de recherche permettant au calcul

de maillages de devenir un important theme de recherches.

Durant les deux dernières décennies, la segmentation de maillages a été mise en

avant en tant que première étape permettant d’extraire l’information sémantique

vers le calcul et l’analyse de maillages pour de nombreuses applications. Par

exemple, les algorithmes de “shape matching” peuvent être basés sur une décom-

position de chaque état d’une forme, suivie d’une reconstruction à partir de sous-

parties (Petitjean, 2002). La simplification de maillage ne pouvant être réalisée sans

perte de certaines propriétés géométriques dûes à la segmentation du maillage en

zones planaires et incurvées puis à la simplification des zones planaires (Sheffer,

2001). Une autre application classique de la segmentation de maillages est la pa-

ramétrisation (Julius et al., 2005). Elle permet à un utilisateur de décrire et contrô-

ler une forme à partir d’un ensembles de parmètres de chaque sous-partie. Cette

technique est utilisée pour les applications telles que le “mapping” de textures

(Zhang et al., 2005) et le remaillage (Praun et Hoppe, 2003). D’autres applications

basées sur la segmentation de maillages font de la compression (Karni et Gotsman,

2000), de la reconstruction (Funkhouser et al., 2004), de l’édition (Kovar et al.,

2002), etc.

Etant donné un maillage 3D statique, l’objectif de la segmentation est de spatia-

lement partitionner un maillage en plusieurs dans une des deux manières sui-

vantes :

 Homogénéité de caractéristiques dans chaque partie, c.-à-d., les éléments

dans le même segment partagent des propriétés géométriques similaires

(voir Figure 1(a)). En raison de la similarité géométrique dans chaque

segment, un nombre plus petit de coefficients spectrales va être demandé

 Résumé

iv

pour reconstruire le segment en utilisant l’analyse spectrale, et par

conséquent, attendre la compression de maillage.

 Sémantiquement significatif ou segmentation en parties fonctionnelles, par

ex., une forme de cheval peut être segmenter dans un torse, une tête, un

cou, une queue, et quarte jambes (voir Figure 1(b)) (Kalogerakis et al., 2010).

Basé sur telles résultats de la segmentation de maillages, on peut soit

extraire un squelette d’un maillage que peut être utile pour la création des

animations (Katz and Tal, 2003), soitt associer les parties fonctionnelles

entre des formes qui peuvent être étendues plus loin pour des applications

tel que l’extraction de formes (Petitjean, 2002), ou les segmentations

constantes (Kalogerakis et al., 2010) (Sidi et al., 2011), etc. Nous allons

résumer les méthodes existantes qui génèrent telles résultats de

segmentation de maillage dans Chapitre 2.

(a) (b)

Figure 1 Deux types de segmentation de maillages, (a) homogénéité dans chaque

segment (Karni and Gotsman, 2000), (b) segments fonctionnellement significatifs

(Kalogerakis et al., 2010).

1.1 Enjeux globaux de la segmentation de maillages

Comme cité par Attene et al. (Attene et al., 2006), il est très difficile de concevoir

une méthode de segmentation pour des maillages statiques qui répondre parfai-

tement aux toutes les critères d’évaluation, y compris l’extraction de segments

corrects, les frontières entre les segments, le type de la segmentation multi-échelle,

la sensibilité de la forme et la complexité asymptotique. Il est difficile car les diffé-

rentes méthodes de segmentation ont des différentes critères en fonction de leur

 Résumé

v

applications, et leurs critères de segmentation peuvent difficilement couvrir tous

les types de maillages. Dans une recherche ultérieure Chen et al. (Chen et al., 2009),

comparent la performance de plusieurs méthodes avancées de segmentation en

utilisant des résultats de segmentation données par une groupe de presonnes, et

ils ont arrivés à une conclusion similaire : Il reste toujours difficile à développer

une méthode de segmentation qui peut fonctionne bien sur tout les types de mail-

lages parce que les critères géométriques ne peuvent pas fournir tous les signales

pour identifier toutes les parties sémantiques significatives. Par exemple, la mé-

thode de segmentation par l’essayage de primitives, y compris un plan, une sphère,

et un cylindre, peuvent être performantes avec des formes mécaniques mais pas

avec des objectes complexe comme un maillage d’un « oiseau », car les ailes des

oiseaux peuvent pas retrouver leurs formes par les primitives basiques.

1.2 Enjeux globaux de la segmentation de maillages dynamiques

Grâce au récents et rapides développements des technologies d'animation, les

maillages dynamiques sont de plus en plus omniprésents. Bien qu'un nombre im-

portant de travaux ont été effectués sur les maillages statiques durant les deux

dernières décennies, la recherche sur les maillages dynamique reste un sujet relati-

vement récent.

Mis à part les enjeux principaux de la segmentation de maillages, présentés dans la

sous-section précédente, la segmentation de maillages dynamiques reste particu-

lièrement délicate pour les raisons suivantes :

 Taille des données en entrée : A l'inverse des maillages statiques qui ne

contiennent que 3 dimensions (spatiales), les maillages dynamiques

comportent une dimension supplémentaire, le temps, ce qui induit un

problème relativement à la tailles des données. Un maillage dynamique

standard sur, par exemple, une durée de 1 minute avec un taux de

rafraîchissement de 30 images par seconde, regroupe sans peine plus de 1800

maillages, ce qui représente une augmentation très importante de la taille des

données à traiter.

 Comportement dynamique : Contrairement aux méthodes existantes pour les

maillages statiques, qui ont été développés en se reposant sur des propriétés

figées de figures géométriques statiques, un algorithme de segmentation pour

des maillages dynamiques doit tenir compte du comportement dynamique de

ces maillages qui se caractérise par le mouvement dans le temps de leurs

différentes sous-parties. Bien qu'il existe plusieurs méthodes de segmentation

de maillages dynamiques, qui calculent une unique décomposition spatiale des

maillages en utilisant les comportement dynamiques des primitives du

 Résumé

vi

maillages traité (sommets, arêtes, ou triangles) sur la totalité d'une unique

séquence (Sattler et al., 2005) (Wuhrer et al., 2010), ces méthodes, appliquées

sur une longue séquence d'un maillage dynamique comportant plusieurs

mouvement distincts, conduisent à un résultat découpé en 'sous-parties de

mouvement' souvent mal segmentées. Dès lors, se présente la nécessité de

disposer d'un algorithme qui puisse à la fois découper un mouvement en

plusieurs sous-séquences tout en segmentant spatialement la surface d'un

maillage dynamique pour chacune des ces sous-séquences.

L'évaluation du résultat de la segmentation : Bien que l'on veuille décomposer un

maillage animé en sous-parties pertinentes ou cohérentes, la formalisation ma-

thématique de ce que la perception humaine considère comme étant 'pertinent'

est très difficile, ce qui rend l'évaluation objective des résultats d'une segmentation

compliquée. Dans le cas de segmentations de maillages statiques plusieurs études

basées sur une appréciation humaine de telles segmentations ont été proposées

ces dernières années (Chen and Funkhouser, 2009) (Bronstein et al., 2008). Cepen-

dant de telles données n'existent pas, à l'heure actuelle, pour des animations 3D,

ce qui constitue donc un autre aspect du travail à effectuer.

2. Objectifs et contributions

Les maillages dynamiques peuvent être classifié en deux catégories: les mail-

lages animés et les séquences variantes de maillages. Une animation 3D est

un maillage animé si sa topologie reste constante durant la totalité de la séquence,

c'est à dire si le nombre de sommet ainsi que la connectivité sont constants. Sinon,

on parle de séquences variantes de maillages. Afin d'effectuer la segmentation

d'une séquence variante de maillages. Il peut être nécessaire de calculer la corres-

pondance de vertices entre les images successives où le problème de correspon-

dance demeure une tâche difficile et coûteuse en calcul (Van et al., 2011) (Arcila et

al., 2013). C'est pour cette raison que nous avons fait le choix de nous intéresser

aux maillages animés. Nous allons nous intéresser plus particulièrement aux tech-

niques de segmentation pour les maillages animés.

Cette thèse a pour but de développer des méthodes de segmentation qui calcule la

segmentation temporelle et spatio-temporelle de maillages animés. À notre con-

naissance, aucune méthode n'avait encore été proposée pour la segmentation à la

fois temporelle et spatio-temporelle de maillages animés jusqu'à aujourd'hui. De

plus, nous étendrons les résultats de segmentation afin de mesurer la similarité

entre maillages animeés. Ceci peut être significatif car cela permet de résoudre un

 Résumé

vii

problème qui ne pouvait pas être traité jusqu'alors. Concernant le problème de la

segmentation des maillages dynamiques présenté dans la section précédente,

notre segmentation temporelle permet de diviser un mouvement en sous-

mouvement ce qui permet de répondre à l'enjeu des comportements dynamiques

d'un maillage animé. De plus, pour résoudre le problème d'évalutation, nous éten-

dons notre segmentation spatio-temporelle afin de mesurer la similarité de mou-

vements. Ainsi nous validons indirectement la qualité de la segmentation spatio-

temporelle de maillages animés en comparant les similariteés obtenues calculées à

celle obtenues en questionnant des humains.

Dans le reste de cette section, nous définissons formellement la segmentation spa-

tiale, temporelle et spatio-temporelle de maillages animés puis nous résumons les

contributions de ce thèse.

2.1 Définitions formelles

Définition 1 : Segmentation spatiale de maillages dynamiques (Shamir, 2008) (Arcila

et al., 2013). Soit M=() la topologie d'un maillage dynamique, où , ,

sont respectivement les ensembles de sommets, d'arêtes et de triangles. Une seg-

mentation spatiale ∑s de M est un ensemble de sous-maillages ∑s={ },

 , où chaque est un ensemble de sommets connetés.

Notons que la segmentation spatiale peut aussi bien être définie comme une par-

tition d'arêtes que de triangles en sous-ensembles disjoints.

Voir l'exemple de la Figure 2, une segmentation spatiale est calculée pour un mail-

lage animé.

Figure 2 Un exemple d'une segmenation spatiale pour un maillage animé.

 Résumé

viii

Definition 2 : Segmentation temporelle de maillages dynamiques (Arcila et al.,

2013). Soit M = * + un maillage dynamique, où est le nombre

d’images. Une segmentation temporelle ∑t de M est un ensemble de sous-

séquences ∑t={ }, =M, où chacun des est un

sous-séquence d’images successives.

Voir l'exemple de la Figure 3, un maillage animé est temporellement segmenté en

plusieurs sous-séquences avec différents mouvements.

… … … …

 un’ Head-right’ Head-do n’

Figure 3 n exemple d'une segmentation temporelle de maillages animés.

Definition 3 : Segmentation spatio-temporelle de maillages dynalmiques. Soit M =

*
 + un maillage dynamique, avec N le nombre de som-

mets. Nous considérons M comme une donnée volumique, et définissons un seg-

ment spatio-temporel
 comme un ensemble de sommets (ou de triangles) qui

sont spatialement ou temporellement connectés les uns aux autres. Alors, le but de

la segmentation spatio-temporelle est de partitionner un maillage dynamique M en

segments spatio-temporels, i.e.,
 = M. Voir l'exemple de la Figure 4, une

segmentation spatio-temporelle où les joints encerclés sont segmentés comme

'animé' ou 'rigid' selon leurs mouvements.

• Red: deformed’. • Blue: rigid’.

Figure 4 Un exemple d'une segmentation spatio-temporelle d'un maillage animé.

 Résumé

ix

2.2 Contributions

Plusieurs travaux ont été publiés par le passé et qui permettent de segmenter un

maillage animé en un ensemble de composants rigides. Dans cette thèse, nous pré-

sentons plusieurs techniques qui permettent de calculer une segmentation spatio-

temporelle d’un maillage animé ; de tels travaux n’ont pas encore été publiés sur

ce sujet. De plus, nous avons étendu cette méthode pour pouvoir comparer ces

maillages animés entre eux à l’aide d’une métrique. À notre connaissance, aucune

méthode existante ne permet de comparer des maillages animés entre eux. Dans

mon travail de thèse, je présente les contributions suivantes :

Un nouveau descripteur pour les points caractéristiques dynamiques. Nous définis-

sons un descripteur qui permet de mesurer les déformations au niveau des

triangles et pour chaque image de l’animation. Ce descripteur est invariant par

rapport à la rotation, translation et dilatation uniforme. De plus, il permet

d’identifier la similarité entre des formes différentes, mais ayant les mêmes défor-

mations.

Segmentation temporelle de maillages animés. La plupart des travaux existants

sont basés sur le regroupement de sommets ou de triangles suivant des critères

comme la distance géodésique ou l’affinité cinématique des sommets ou triangles

regroupés. Dans ce cas, il apparait clairement que le résultat de la segmentation

dépend de la déformation du maillage animé. Idéalement, cette segmentation doit

correspondre aux mouvements du maillage animés. Mais lorsque le maillage animé

correspond à une animation longue et complexe, le résultat est une segmentation

trop morcelée qui ne représente pas correctement l’animation du maillage animé.

C’est pour cette raison que nous pensons que la segmentation temporelle doit être

précédée d’une segmentation spatiale. De cette façon, il est possible d’avoir une

segmentation spatiale consistante à l’intérieur de chaque segment temporel.

À l’aide de nouveau descripteur, nous définissons ensuite une métrique pour me-

surer la distance entre deux images-clefs du maillage animé. Ceci nous permet en-

suite de définir une métrique pour les segments temporels ; cette métrique est

calculée comme étant la moyenne des distances des images-clefs appartenant à un

même segment. Enfin, nous proposons une méthode de segmentation temporelle

qui minimise la métrique, c’est-à-dire, la distance entre les images-clefs apparte-

nant au même segment. Ceci nous permet d’obtenir une segmentation où chaque

segment est constitué des images-clefs correspondant à un même mouvement du

maillage animé.

 Résumé

x

Les résultats de cette méthode de segmentation sur des données synthétiques et

des données de capture de mouvement démontrent son efficacité. En particulier,

ces essais montrent que les maillages animés de forme différente, mais représen-

tant les mêmes mouvements sont segmentés de façon consistante entre eux.

Segmentation spatio-temporelle de maillages animés. À partir de la méthode de

segmentation temporelle décrite précédemment, nous avons développé une mé-

thode exploitant la cohérence spatio-temporelle des maillages animés. Notre mé-

thode de segmentation spatio-temporelle pour les maillages animés est basée sur

une nouvelle représentation qui permet de décrire de façon précise les mouve-

ments du maillage animé.

En utilisant les valeurs de déformation de chaque triangle à chaque image-clef, les

triangles sont classés en deux catégories : les triangles se déformant et ceux qui

sont rigides. Ensuite, nous calculons une segmentation spatio-temporelle en re-

groupant les triangles se déformant et qui sont adjacents au niveau du maillage et

au niveau des images-clefs. Puis, nous utilisons un graphe évoluant (evolving graph)

pour représenter la segmentation spatio-temporelle, un graphe évoluant étant

constitué d’une séquence de graphes correspondant aux images-clefs du maillage

animé ; chaque nœud du graphe évoluant correspond à un segment spatio-

temporel et chaque arête correspond à une relation de voisinage entre les seg-

ments.

À partir des graphes évoluant de deux maillages animés, nous calculons une mé-

trique pour mesurer le niveau de similarité entre les deux maillages animés ; cette

métrique est basée sur l’alignement des deux séquences de graphes. Cet aligne-

ment ne peut pas être calculé directement du fait que les graphes sont de dimen-

sion différente (nombre différent de nœuds et d’arêtes). Pour résoudre ce pro-

blème, nous classons les graphes suivant leur similarité pour créer des ensembles

de graphes ; à chaque ensemble de graphes est attribuée une étiquette. En consé-

quence, chaque graphe évoluant est représenté sous la forme d’une séquence

d’étiquettes. Ceci nous permet de calculer l’alignement des deux séquences avec

une méthode inspirée de celle utilisée pour l’alignement des séquences d’ADN. Le

résultat de l’alignement des deux graphes évoluant est finalement utilisé pour cal-

culer le niveau de similarité entre eux.

Les avantages de cette méthode sont doubles. Premièrement, elle permet de calcu-

ler l’alignement temporel des deux maillages animés. Les essais que nous avons

menés avec des maillages animés représentant les mêmes mouvements ont mon-

tré que l’alignement temporel est correctement calculé. Deuxièmement, cette mé-

 Résumé

xi

thode permet de mesurer la similarité de mouvements entre les maillages animés.

Pour cela, nous avons proposé une métrique qui utilise les résultats de la segmen-

tation spatio-temporelle. Les essais que nous avons effectués avec un certain

nombre de maillages animés montrent que notre méthode est capable de détecter

correctement les similarités de mouvements. Nos résultats sont validés en les

comparant avec des données produites par un groupe des personnes et en calcu-

lant le facteur de corrélation de Pearson. Le résultat obtenu montre une forte cor-

rélation entre les mesures de similarité calculée par notre algorithme et celles don-

nées par les personnes.

3. Conclusions et Organisation

À notre connaissance, aucune méthode n’avait encore été proposée pour la

segmentation à la fois spatiale et temporale de maillages animés jusqu'aujourd'hui.

Pour ce travail, les contributions techniques de nos travaux sont les suivantes.

Premièrement, nous avons proposé une méthode qui calcule une segmentation

temporelle en minimisant la dissimilarité des images-clefs appartenant au même

segment. Cette méthode permet de générer une segmentation en cohérence avec

le mouvement du maillage animé. Les maillages animés présentant les mêmes

animations sont segmentés de la même façon. Notre deuxième contribution est

une méthode de segmentation spatio-temporelle qui utilise la cohérence des dé-

formations des triangles du maillage animé. Grâce à l’utilisation des graphes évo-

luant (evolving graph), nous avons pu proposer une méthode qui calcule

l’alignement temporel de deux maillages animés ainsi qu’une métrique pour me-

sure le degré de similarité de mouvements entre ces deux maillages animés. Les

essais que nous avons effectués avec plusieurs types de maillages montrent que

notre méthode est capable de détecter la similarité de la même façon que la per-

ception humaine.

Le résumé de la thèse est organisé de la façon suivante : dans Chapter 2, nous

faisons l'état de l'art des travaux sur la segmentation pour un unique maillage sta-

tique, un ensemble de modèles 3D similaires et la segmentation spatialle de mail-

lages dynamiques. Ensuite, nous présentons un nouveau descripteur basé sur la

déformation dans Chapter 3. En utilisant ce descripteur dans Chapter 4, nous pré-

sentons notre méthode de segmentation temporelle pour les maillages dyna-

miques. Après quoi, dans Chapter 5, nous présentons une nouvelle méthode de

segmentation spatio-temporelle pour les maillages dynamiques, permettant de

mesurer les similitudes de mouvement entre différents maillages dynamiques. En-

 Résumé

xii

fin nous concluons par plusieurs remarques sur nos travaux et évoquons des piste

de poursuites potentielles dans Chapter 6.

Mots clefs : maillage qui se déforme, descripteur de points caractéristiques dyna-

miques, segmentation temporelle, segmentation spatio-temporelle, mesure de

similarité de mouvements.

xiii

Abstract

With an abundance of animation techniques available today, animated mesh

has become a subject of various data processing techniques in Computer Graphics

community, such as mesh segmentation and compression. Created from animation

software or from motion capture data, a large portion of the animated meshes are

deforming meshes, i.e. ordered sequences of static meshes whose topology is fixed

(fixed number of vertices and fixed connectivity). Although a great deal of research

on static meshes has been reported in the last two decades, the analysis, retrieval

or compressions of deforming meshes remain as new research challenges. Such

tasks require efficient representations of animated meshes, such as segmentation.

Several spatial segmentation methods based on the movements of each vertex, or

each triangle, have been presented in existing works that partition a given deform-

ing mesh into rigid components.

In this thesis, we present segmentation techniques that compute the temporal and

spatio-temporal segmentation for deforming meshes, which both have not been

studied before. We further extend the segmentation results towards the applica-

tion of motion similarity measurement between deforming meshes. This disserta-

tion consists of the following contributions.

A new dynamic feature descriptor. We begin by devising an efficient per-triangle

feature descriptor that measures the deformation of each triangle at each frame.

This descriptor is invariant to global shape rotation, translation and uniform scale.

In our experiments, we observe that the new descriptor is robust over shape diffe-

rences when different shapes performing identical motions, which is desirable.

Temporal segmentation of deforming meshes. Most existing works on deforming

mesh compute spatial clustering according to geodesic and kinematic affinities of

vertices or triangles. In such cases, it is clear that the spatial segmentation results

may significantly be different depending on the deformation exhibited on a defor-

ming mesh. Ideally, they should represent well the motion exhibited on the mesh.

However, when it comes a long and complex motion composed of several basic

 Abstract

xiv

motions, one may obtain overly segmented patches, which do not represent well

each basic motion. To this end, we believe that temporal segmentation should be

preceded prior to spatial segmentation, so as to compute consistent spatial seg-

mentation within each temporal segment.

Based on our new descriptor, we define a distance metric for each frame pair, and

further define within-segment frame dissimilarity as the average of all possible

pairwise frame distance within a temporal segment. Then, the boundary frames for

the temporal segmentation are determined by minimizing the sum of within-

segment frame dissimilarities. This allows us to obtain the segmentation result that

each temporal segment is a subsequence of similar frames with similar poses.

Our experiments on both synthesized and motion captured deforming meshes con-

firm the effectiveness of the presented approach. It also shows that we can obtain

consistent temporal segmentation for different deforming meshes exhibiting simi-

lar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Having the above temporal

segmentation method, we step further to investigate both the spatial and temporal

coherency simultaneously in deforming meshes. We devise a new spatio-temporal

segmentation technique for deforming meshes, with an aim of developing a new

representation that encodes well the motions exhibited in given deforming meshes.

Based on the degree of deformation of each triangle at each frame indicated by

using strains, we binarily label the triangles with either deformed’ or rigid’. Then

we compute a spatio-temporal segmentation by merging the deformed’ triangles

that are either spatially or temporally connected. We then use an evolving graph to

represent the spatio-temporal segmentation, where each node represents a spatial

segment, each edge the neighbourhood between two spatial segments, and each

graph is a key frame representing a subsequence of frames with the same graph

representation.

Having computed the evolving graphs of two deforming meshes, we proceed to

compute the similarity of the evolving graphs by adopting a sequence alignment

method. However, a sequence alignment method cannot be directly applied on

two graph sequences because the graphs may have different dimensions, i.e. diffe-

rent node numbers. In order to avoid this problem, we classify the similar graphs

and assign the graphs in the same cluster with the same label. As a result, each

evolving graph is represented into a sequence of cluster labels. Finally, we compute

 Abstract

xv

the alignment score between the two cluster label sequences by using a sequence

alignment algorithm, which reflects the similarity between two deforming meshes.

The outcome of this method is two folds: (1) Temporal frame alignment. According

to our experiments, the alignment results between two deforming meshes with

similar motions show that the key frames performing similar actions are well

matched to each other. (2) Motion similarity measurement. Based on the spatio-

temporal segmentation results, we have devised a similarity measurement method

for deforming meshes, which measures the similarity of motions that are per-

formed by deforming meshes. Our experimental results on a number of deforming

meshes show that the motion similarities can be captured correctly, despite shape

differences. We validate our similarity results by computing Pearson’s correlation

with human-based ground truth motion similarities. The obtained high correlation

indicates that our motion similarity measurement method successfully reflects hu-

man perception on the motion similarities of deforming meshes.

Keywords : deforming mesh, dynamic feature descriptor, temporal segmentation,

spatio-temporal segmentation, motion similarity measurement.

xvi

xvii

Contents
Acknowledgement ... i

Résumé .. iii

1. Contexte ... iii

1.1 Enjeux globaux de la segmentation de maillages .. iv

1.2 Enjeux globaux de la segmentation de maillages dynamiques ... v

2. Objectifs et contributions ... vi

2.1 Définitions formelles ... vii

2.2 Contributions ... ix

3. Conclusions et Organisation .. xi

Abstract .. xiii

List of Figures .. xxi

List of Tables .. xxv

List of Algorithms ... xxvii

 Introduction .. 1 Chapter 1

1.1 Background .. 1

1.1.1 General challenges of mesh segmentation ... 2

1.1.2 General challenges of the segmentation of dynamic meshes ... 3

1.2 Objectives and contributions ... 4

1.2.1 Formal definitions ... 5

1.2.2 Contributions... 5

1.3 Organization .. 6

 State of the Art .. 7 Chapter 2

2.1 Standalone mesh segmentation .. 7

2.1.1 Hierarchical clustering based method ... 7

2.1.2 Region-growing based methods .. 9

2.1.3 Spectral embedding based method .. 10

2.1.4 The other standalone mesh segmentation techniques ... 11

Contents

xviii

2.1.5 Discussions on the standalone mesh segmentation techniques 12

2.2 Data-driven mesh segmentation .. 14

2.2.1 Learning-based methods ... 14

2.2.2 Co-segmentation methods .. 16

2.3 Segmentation of dynamic meshes ... 18

2.3.1 Trajectory-based method .. 18

2.3.2 Nontrajectory-based method .. 19

2.4 Summary .. 23

 A Dynamic Feature Descriptor .. 25 Chapter 3

3.1 Existing 3D feature descriptors .. 25

3.1.1 Static descriptor ... 25

3.1.2 Dynamic descriptor .. 29

3.2 Our deformation-based feature descriptor .. 30

3.2.1 Deformation gradient tensor ... 31

3.2.2 Strain.. 33

3.2.3 Strain normalization .. 37

3.3 Strain with respect to rest-pose vs. previous-pose .. 40

3.4 Summary .. 44

 Temporal Segmentation of Deforming Meshes .. 47 Chapter 4

4.1 Background .. 47

4.1.1 Temporal segmentation of motion capture data .. 48

4.1.2 Temporal segmentation of videos ... 49

4.1.3 Motivation of our approach... 50

4.2 Temporal segmentation of deforming meshes .. 51

4.2.1 Within-segment frame dissimilarity .. 52

4.2.2 Temporal segmentation .. 53

4.3 Experimental results and discussions ... 55

4.3.1 Experimental environment and data ... 56

4.3.2 Temporal segmentation results ... 56

4.3.3 Discussion on the threshold... 63

4.3.4 A comparison with Barbič et al.’s method ... 64

4.4 Conclusion .. 68

4.4.1 Contributions ... 68

4.4.2 Summary .. 69

 Spatio-temporal Segmentation of Deforming Meshes .. 71 Chapter 5

5.1 Background .. 71

Contents

xix

5.1.1 Spatio-temporal segmetnation techniques in Computer Vision field 71

5.1.2 The studies of Evolving Graphs in Computer Network field .. 72

5.1.3 Similarity measurement based on spatio-temporal segmentation 74

5.2 Outline of our approach .. 76

5.3 Spatio-temporal segmentation of deforming meshes ... 77

5.3.1 Spatio-temporal segmentation algorithm ... 77

5.3.2 Evolving graph representation .. 82

5.4 Similarity measurement of deforming meshes .. 83

5.4.1 Graph clustering .. 83

5.4.2 Local sequence alignment ... 87

5.4.3 Time complexity .. 89

5.5 Similarity measurement ... 89

5.6 Experimental results .. 91

5.6.1 Experimental environment and data... 91

5.6.2 Frame alignment ... 93

5.6.3 Similarity measurement .. 98

5.7 Discussions ... 102

5.7.1 Previous-pose based strains vs. rest-pose based strains ... 102

5.7.2 Graph edit distance (GED) ... 103

5.7.3 Comparison with temporal segmentation .. 104

5.8 Conclusion ... 106

5.8.1 Contributions... 106

5.8.2 Summary ... 107

 Conclusions ... 109 Chapter 6

6.1 Contributions ... 109

6.2 Perspectives ... 111

6.2.1 Temporal segmentation of deforming meshes ... 111

6.2.2 Spatio-temporal segmentation and similarity measurement of deforming meshes ... 111

References .. 113

Publications .. 125

Contents

xx

xxi

List of Figures

Figure 1-1 Two types of mesh segmentation, (a) homogeneity within each segment

(Karni and Gotsman, 2000), (b) functional meaningful segments (Kalogerakis et al.,

2010). ... 2

Figure 2-1 Hierachical clustering based mesh segmentation (Lai et al., 2008). 8

Figure 2-2 Region-growing based mesh segmentation (Zhou and Huang, 2004). 10

Figure 2-3 Spectral embedding based mesh segmentation (Katz et al., 2005). 11

Figure 2-4 Human-based segmentation boundaries (Chen et al., 2009). .. 12

Figure 2-5 Comparison between different segmentation methods, where the numbers

are the rankings of the performance by using different methods on each dataset (Chen

et al., 2009). ... 13

Figure 2-6 A learning-based mesh segmentation (Kalogerakis et al., 2010). 14

Figure 2-7 Mesh segmentation derived from 2D image segmentation (Wang et al.,

2013): (a) original mesh, (b) 2D projections, (c) best matched ground-truth

segmentation of each 2D projection, (d) segmentation of each projected image, (e,f)

mesh segmentation. .. 15

Figure 2-8 Consistent segmentation of a set of similar 3D models (Golovinskiy and

Funkhouser, 2009). .. 16

Figure 2-9 Co-segmentation of a set of similar meshes (Sidi et al., 2011). .. 17

Figure 2-10 Trajectory-based spatial segmentation of a deforming mesh (Sattler et al.,

2005). ... 18

Figure 2-11 Spatial segmentation of a dynamic mesh based on shape correspondence.

(Arcilla et al., 2010 and 2013) .. 20

Figure 2-12 Region-growing based spatial segmentation of a deforming mesh (Lee et al.,

2006). (a) degree of deformation of triangles, (b) binary labels, (c) a seed point in a rigid

region, (d,e) region-growing. ... 21

Figure 2-13 Triangle rotation sequence (James and Twigg, 2005). .. 22

Figure 2-14 Spatial segmentation of deforming meshes based on pose partitioning

(Vasilakis and Fudos, 2014). ... 22

Figure 3-1 Global descriptors, (a) shape histogram (Ankerst et al., 1999), (b) spin images

(Johnson and Hebert, 1997). .. 27

List of Figures

xxii

Figure 3-2 Local shape descriptors, (a) curvature (Lavoué et al., 2005), (b) shape

diameter function (Gal et al., 2007), (c) shape context (Belongie et al., 2000), and (d)

heat kernel signature (Sun et al., 2009). ... 29

Figure 3-3 The reference and deformed configurations (Gullett et al., 2008). 31

Figure 3-4 Representation of the polar decomposition of the deformation gradient.

(Finite strain theory. In Wikipedia. Retrieved November 21
st

, 2014, from

http://en.wikipedia.org /wiki/Finite_strain_theory). .. 32

Figure 3-5 The deformation of a triangle in two frames. .. 34

Figure 3-6 Mapping 3D triangles into the same 2D plane, to compute 2D strain. 36

Figure 3-7 Strain normalizations. Mesh triangles are shown with colour varying from

blue to red, indicating strain values from low to high. By comparing to (a) the reference

pose, (b) shows the strain values computed by using the method in Section 2.1.1, and

(c) shows the normalized strain values by using Gaussian Kernel Function. The

histograms in (b) and (c) show the distributions of the strains before and after

normalization, respectively. .. 37

Figure 3-8 The same behaviors of rest-pose based strains for both Horse’ and Camel’,

with respect to the same rest poses. .. 39

Figure 3-9 The same behaviors of previous-pose based strains for both Horse’ and

 Camel’... 40

Figure 3-10 (a) Non-rigid meshes and (b) their corresponding feature-preserved 3D

canonical forms (Lian et al., 2013)... 41

Figure 3-11 Comparisons between (a) rest-pose based and (b) previous-pose based

strains for a synthetic deforming mesh bending-cylinder’. .. 42

Figure 3-12 Strains for a galloping-camel’ data. From left to right and top to bottom,

left-most is the rest pose, top-row the rest-pose based strains and bottom-row the

previous-pose based strains. The dashed arrows indicate the corresponding reference

poses for computing strains. ... 45

Figure 4-1 Temporal segmentation of motion capture data (Barbič et al., 2004). The solid

curve is a reconstruction error curve by applying spectral analysis on a sliding window.

The dashed line shows the standard deviation of the previous values. The vertical solid

line indicates a boundary for the temporal segmentation. ... 49

Figure 4-2 Five conducting prototype gestures defined based on primitive movements,

which are obtained by over-segmentation (Wang et al., 2001). ... 50

Figure 4-3 Within-segment dissimilarity matrix. ... 53

Figure 4-4 A synthetic example of temporal segmentation. (left) The colored background

is a within-segment average dissimilarity matrix, and (m,n) is the first detected temporal

segment. (right) The remaining of the sequences are iteratively segmented by using the

same approach. ... 54

Figure 4-5 Temporal segmentation results of (a) Michael’ and (b) Gorilla’, hich are

both segmented into submotions: right-stop’, left-forward and left-stop’, right-

forward and right-stop’ and left-for ard’. ... 57

Figure 4-6 Capturing facial expressions ith markers for Face1’ and Face2’. 59

Figure 4-7 Temporal segmentation results of (a) Face1’ and (b) Face2’, hich are both

segmented into facial expressions eyebro -raise’, anger’, neutral’, disgust’, neutral’,

 fear’, neutral’, happy’, neutral’, surprise’, neutral’, sad’, and neutral’. 60

List of Figures

xxiii

Figure 4-8 Sample meshes ithin each temporal segment of Face1’. .. 61

Figure 4-9 Sample meshes ithin each temporal segment of Face2’. .. 62

Figure 4-10 Temporal segmentation results of Face1’ by using different thresholds (,

Section 4.2), (a) (the same results in Figure 4-7(a)) and (b) .

Comparing to (a), the obtained results in (b) further divide the eyebro -raise’ into

atomic facial expressions: neutral’, eyebro -raise’, neutral’, eyebro -raise’,

 neutral’, eyebro -raise’, neutral’. ... 64

Figure 4-11 Temporal segmentation results of Camel’ by using both our method and

Barbič et al.’s method (Barbič et al., 2004). ... 65

Figure 4-12 Sample meshes ithin each temporal segment of (a) Gorilla’, Michael’ and

(b) Camel’. ... 67

Figure 5-1 The spatial and temporal neighborhoods in the 3D graph cut model (Tian et

al., 2011). The red lines show spatial neighborhoods, the purple and the blue lines show

temporal neighborhoods. .. 72

Figure 5-2 (a) Sample graphs in an evolving graph and (b) their union graph (Chan et al.,

2008). ... 73

Figure 5-3 Sample waveform and the corresponding transition sequence of an evolving

edge (Kan et al., 2009).(a) An evolving graph, (b) the corresponding waveform, graphical

representation and transition sequence representation of the evolving edge in the

dashed circle in (a). .. 74

Figure 5-4 An example of graph query (Kan et al., 2009). By querying the maximal

subgraph ith aveform 0111’ in (a), e obtain an evolving subgraph sho n in (b), in

 hich the edges 1-4’ and 2-4’ can be represented ith the aveform 0111’. 74

Figure 5-5 Representation of spatio-temporal segmentation results (Aksoy et al., 2010).

The left column (a) shows 4 types of interactions between node 2 and 4. In the right

column (b), from top to bottom, each row shows the spatio-temporal segmentation

results, graph representation, and the interaction sequences of node pairs. 75

Figure 5-6: An example of spatio-temporal segmentation of bending-cylinder’. (a)

Binary labeling. (b) Spatio-temporal segmentation. (c) Spatio-temporal segment. (d)

Evolving graph representation. .. 78

Figure 5-7 The spatio-temporal segmentation and the graph representation of Camel’,

 Horse_1’, Gorilla’ and Boy’.. 80

Figure 5-8 The spatio-temporal segmentation and the graph representation of Gorilla-

Jog1’, Michael-Jog1’, Gorilla-Jog2’ and Michael-Jog2’. ... 81

Figure 5-9 The spatio-temporal segmentation and the graph representation of Gorilla-

Jump1’, Michael-Jump1’, Gorilla-Jump2’ and Michael-Jump2’. .. 82

Figure 5-10: Graph embedding. (a) The input deforming meshes MA
 and MB

. (b) The

sequences of evolving graphs and . (c) The graph embedding. Each graph gi is

represented with a vector Vi , where d(gi, gj) denotes the graph edit distance between

graphs gi and gj. .. 85

Figure 5-11: Graph clustering. (a) The input deforming meshes MA
 and MB

. (b) The

sequences of evolving graphs and . (c) The sequences of graph cluster labels

and . .. 87

Figure 5-12: The sequence alignment between and . Matching cluster labels are

shown with dashed lines. ... 88

List of Figures

xxiv

Figure 5-13 Comparisons of the sequence alignment results by using Smith-Waterman,

DTW and mDTW for Camel’ (vertical- ise) and Horse_1’ (horizontal-wise). 94

Figure 5-14 Comparisons of the sequence alignment results by using Smith-Waterman,

DTW and mDTW for Gorilla’ (vertical- ise) and Boy’ (horizontal-wise). .. 95

Figure 5-15 Comparisons of the sequence alignment results by using Smith-Waterman,

DTW and mDTW for Gorilla’ (vertical- ise) and Michael’ (horizontal-wise). 96

Figure 5-16 Comparisons of the sequence alignment results by using Smith-Waterman,

DTW and mDTW for Horse_1’ (vertical- ise) and Horse_2’ (horizontal-wise).Arrows

are directed to several samples of the corresponding matched frames between the two

sequences. ... 97

Figure 5-17 Similarity matrix among deforming meshes. The values are shown in

percentage (%). ... 98

Figure 5-18 Scatterplot between the similarities of deforming meshes computed by

using our method (horizontal) and the human scores of similarities (vertical). The red

line is the linear regression of the 2D point distribution. .. 100

Figure 5-19 Similarities among 3 similar motions, Jog’ , ’Jump’ and Walk’. (a) Similarity

matrix among 18 deforming meshes. (b) Each row shows the rankings of all the motions

to a motion based on the average motion similarities in (a). (c) Human rated motion

similarity rankings for each motion, where the numbers within each parentheses is the

number of participants who give the ranking before the corresponding parentheses. 101

Figure 5-20 The spatio-temporal segmentation results and the evolving graph

representation of bending-cylinder’, by using (a) previous-pose based strains and (b)

rest-pose based strains. .. 103

Figure 5-21 A comparison between our temporal segmentation and spatio-temporal

segmentation. (a) sho s a bending-cylinder’ animation. (b) and (c) are t o temporal

segmentation results with different user-threshold, where the threshold in (c) is lower

than that in (b). (d) shows the evolving graph representation of the spatio-temporal

segmentation result. ... 105

Figure 5-22 Another comparison between our temporal segmentation and spatio-

temporal segmentation. (a) sho s another bending-cylinder’ animation ith t o

 bending’ joints. (b) and (c) are two temporal segmentation results with different user-

threshold, where the threshold in (c) is lower than that in (b). (d) shows the evolving

graph representation of the spatio-temporal segmentation result. ... 106

xxv

List of Tables

Table 2-1 Summary of 3D mesh segmentation techniques. .. 24

Table 4-1 Used data and the timings for temporal segmentation. The timings are the

runtime for the temporal segmentation of each data (the computation of the within-

segment dissimilarity matrix is excluded). ... 56

Table 5-1 Computation complexities of the used techniques. ... 89

Table 5-2 Used deforming meshes for spatio-temporal segmentation and timings. 92

xxvi

xxvii

List of Algorithms

Algorithm 4-1 Temporal segmentation algorithm for deforming meshes. For the inputs,

IB is a vector of boundary frames’ indices, Ds is the within-segment average dissimilarity

matrix, Ih and It are the indices of the first frame and the last frame in the subsequence,

respectively. ... 55

Algorithm 5-1 Spatio-temporal segmentation algorithm for deforming meshes. 79

1

1

 Introduction Chapter 1

1.1 Background

With an abundance of computer hardware and geometry acquisition devices

available today, 3D mesh data have become a new research subject and according-

ly the mesh processing has become an important research topic. During the last

two decades, mesh segmentation has drawn a great deal of attentions because it is

a primary step that extracts semantic information towards mesh processing and

analysis for numerous applications. For example, shape matching and retrieval can

be done based on the decomposition of each shape, followed by the matching of

the sub-parts (Petitjean, 2002). One can also achieve a mesh simplification without

much loss of geometrical properties by segmenting a mesh into planary and curved

regions and then simplifying the planary regions (Sheffer, 2001). Another common

output of mesh segmentation is a parameterization (Julius et al., 2005), which ena-

ble a user to describe and control the shape with a set of parameters of each sub-

part. This is useful for the applications such as texture mapping (Zhang et al., 2005)

and remeshing (Praun and Hoppe, 2003). Other applications based on mesh seg-

mentation include compression (Karni and Gotsman, 2000), reconstruction (Funk-

houser et al., 2004), editing (Kovar et al., 2002), etc.

Given a 3D static mesh, the object of segmentation is to spatially partition the

mesh into multiple parts in either of the two following manners:

 Homogeneity of features within each part, i.e., the elements within the

same segment share similar geometrical properties (see Figure 1-1(a)). Due

to the geometry similarity within each segment, a smaller number of spec-

tral coefficients will be needed to reconstruct the segment by using spectral

analysis, and therefore achieves mesh compression (Karni and Gotsman,

2000).

 Semantically meaningful or functional parts, e.g., a horse shape can be

segmented into a torso, a head, a neck, a tail and four legs (see Figure

Chapter 1 Introduction

2

1-1(b)) (Kalogerakis et al., 2010). Based on such mesh segmentation results,

one can either extract mesh skeleton that can be useful for creating anima-

tion (Katz and Tal, 2003), or match the functional parts between shapes that

can be further extended to the applications such as shape retrieval (Pe-

titjean, 2002) and consistent segmentations (Kalogerakis et al., 2010) (Sidi

et al., 2011), etc. We will summarize the existing methods that generate

such mesh segmentation results in Chapter 2.

(a) (b)

Figure 1-1 Two types of mesh segmentation, (a) homogeneity within each segment (Karni
and Gotsman, 2000), (b) functional meaningful segments (Kalogerakis et al., 2010).

1.1.1 General challenges of mesh segmentation

As stated by Attene et al. (Attene et al., 2006), it is very difficult to devise a seg-

mentation method for static meshes that perfectly meet all the evaluation criteria,

including the extraction of correct segments, the boundaries between segments,

the type of multi-scale segmentation, the sensitivity to pose and the asymptotic

complexity. It is difficult because different segmentation methods have different

segmentation criteria depending on their applications, and their segmentation cri-

teria can hardly cover all mesh types. In a later research, Chen et al. (Chen et al.,

2009) compare the performance of several advanced mesh segmentation methods

by using human-based ground-truth segmentation results, and draw a similar con-

clusion: It remains a difficult problem to develop a segmentation method that can

perform well over all mesh types because geometric criteria may not provide suffi-

cient cues to identify all the semantically meaningful parts. For example, the seg-

mentation method by fitting primitives, including a plane, a sphere, and a cylinder,

can perform well with mechanical shapes but not with more complex objects such

Chapter 1 Introduction

3

as bird’ meshes, because the bird’s ings could not be ell fitted by the basic pri-

mitives.

1.1.2 General challenges of the segmentation of dynamic meshes

With the rapid advances of the animation technologies in recent years, dynamic

mesh data are becoming ubiquitous. Although a great deal of research on 3D static

mesh segmentation have been reported in the last two decades, the segmentation

of dynamic meshes remains as a new research challenge.

Apart from the general challenges of mesh segmentation presented in the previous

subsection the segmentation of dynamic meshes is particularly difficult due to the

following reasons:

 Input data size. Unlike the static meshes that only contain 3D spatial dimen-

sions, a dynamic mesh has an additional dimension of time, which poses a

challenge because of larger problem size. Typically, a dynamic mesh of 1

minute with frame rate of 30 frames/second contains 1800 meshes, which

is a significant increase of data size.

 Dynamic behaviors. In contrast to the existing segmentation methods for

static meshes that are developed based on static geometrical features, a

segmentation algorithm for dynamic meshes needs to take into account of

the dynamic behaviors, which is the temporal movements of different mesh

subparts. There exists several segmentation methods for dynamic meshes

that compute a single spatial mesh decomposition based on the dynamic

behaviors of the mesh primitives, i.e., vertices, edges, or triangles, in the

entire mesh sequence (Sattler et al., 2005) (Wuhrer et al., 2010). By using

these methods on a long dynamic mesh with different motions, we may ob-

tain overly segmented patches that do not represent well of each sub-

motion. In such cases, a segmentation algorithm that can both temporally

divide a motion into sub-motions and spatially segment the mesh surface

for each sub-motion would be preferable.

 Evaluation of segmentation results. One may aim to decompose an ani-

mated mesh into meaningful parts, hereas human perception of mea-

ningful’ is difficult to model mathematically, making the objective evalua-

tion of segmentation results as another challenging task. To handle the eva-

luation problem of static mesh segmentation, several benchmarks of hu-

man-based ground-truth segmentation have been made available in recent

Chapter 1 Introduction

4

years (Chen and Funkhouser, 2009) (Bronstein et al., 2008). However, such

ground-truth segmentation does not exist today for 3D animations, and

constructing similar benchmark for 3D animations will be another challen-

ging task.

1.2 Objectives and contributions

Dynamic meshes can be classified into two types: deforming mesh and variant

mesh sequence. Given a 3D animation, it is a deforming mesh if the mesh has con-

stant topology over the entire sequence, i.e., a fixed number of vertices and fixed

connectivity. Otherwise, we consider it as a variant mesh sequence. In order to

compute the segmentation of a variant mesh sequence, one may have to compute

vertex correspondence among successive frames, where the correspondence prob-

lem however remains a challenging and a heavy computational task (Van et al.,

2011) (Arcila et al., 2013). For this reason, we choose to work with deforming

meshes so that we can focus on the discussion and investigation of the segmenta-

tion techniques for deforming meshes.

In this thesis, we aim to develop segmentation techniques that compute the tem-

poral and spatio-temporal segmentation for deforming meshes, which both have

not been studied before. Moreover, we further extend the segmentation results

towards the application of motion similarity measurement between deforming

meshes. This may be significant as it solves the problem that cannot be handled by

current approaches. Concerning the challenges of the segmentation of dynamic

meshes presented in the previous section, our temporal segmentation can divide a

motion into submotions, which would address the challenge of dynamic behaviors

performed in a deforming mesh. Additionally, in order to alleviate the challenge of

evaluation problem, we extend the spatio-temporal segmentation for the applica-

tion of motion similarity measurement. Thus, by evaluating the computed motion

similarities with human-based ground-truth, we indirectly validate the quality of

the spatio-temporal segmentation of deforming meshes.

In the remainder of this section, we formally define the spatial segmentation, the

temporal segmentation and the spatio-temporal segmentation of deforming mesh-

es, followed by a summary of the contributions of this thesis.

Chapter 1 Introduction

5

1.2.1 Formal definitions

Definition 1-1 : spatial segmentation of deforming meshes (Shamir, 2008) (Arcila et

al., 2013). Let M=() be the mesh topology of a deforming mesh, where , ,

 are vertex, edge and triangle sets, respectively. A spatial segmentation ∑s of M

is a set of sub-meshes ∑s={ }, ⋃ , where each of is

a set of connected vertices. Note that the spatial segmentation can also be expres-

sed by a partition of either edges or triangles into disjoint subsets.

Definition 1-2 : temporal segmentation of deforming meshes (Arcila et al., 2013).

Let M = * + be a deforming mesh, where is the total number of

frames. A temporal segmentation ∑t of M is a set of subsequences ∑t={ },

⋃ =M, where each of is a subsequence of successive frames.

Definition 1-3 : spatio-temporal segmentation of deforming meshes. Let M =

*
 + be a deforming mesh, where N is the total number of

vertices. We consider M as a volumetric data, and define a spatio-temporal seg-

ment
 as a set of vertices (or triangles) that are either spatially or temporally

connecting to each other. Then, the object of spatio-temporal segmentation is to

partition a deforming mesh M into spatio-temporal segments, i.e., ⋃

 = M.

1.2.2 Contributions

To overcome the limitations of the existing spatial segmentation methods for

deforming meshes, we propose new segmentation methods that investigate both

temporal and spatial deformation coherency in deforming meshes. In this thesis,

we first present a deformation-based descriptor to measure the degree of defor-

mation of each triangle within each frame. Based on this feature descriptor, we

devise a temporal segmentation algorithm that divides a deforming mesh into sub-

sequences, each of which is a set of successive frames. In addition, we also propose

a spatio-temporal segmentation algorithm for the efficient representation of de-

forming meshes. The major contributions of this thesis can be summarized as fol-

lows:

Deformation-based descriptor. To describe the dynamic motion information within

a deforming mesh, we present a deformation-based feature descriptor to measure

the degree of deformation for each triangle at each frame in a deforming mesh.

This allows us to investigate the deformation coherency within a given deforming

mesh by observing each triangle’s feature descriptor. Based on this descriptor, we

Chapter 1 Introduction

6

devise the following two new segmentation methods for deforming meshes, which

have not been studied before.

Temporal segmentation of deforming meshes. In recent years, several spatial seg-

mentation methods have been proposed to segment a deforming mesh into near-

rigid components (Sattler et al., 2005) (Lee et al., 2006) (Wuhrer et al., 2010).

However, these methods overlook the temporal coherency, for which reason one

spatial segmentation result may not be representative for each sub-motions. To

address such problem, we devise a temporal segmentation algorithm by using the

temporal coherency within deforming meshes. In specific, we cut a given mesh se-

quence so that each subsequence contains shapes with similar poses. Since we

measure pose similarity based on our new deformation-based descriptor, we can

obtain consistent temporal segments for deforming meshes that perform identical

or similar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Having the above temporal

segmentation, we step further to explore both spatial and temporal deformation

coherency at the same time in a deforming mesh. To achieve this, we devise a new

spatio-temporal segmentation technique for deforming meshes, with an aim of

developing a new efficient representation that encodes well the motions exhibited

in the given deforming meshes. Knowing the advantage of graph that it is a conve-

nient and compact representation for structured objects, we represent the spatio-

temporal segmentation results of a deforming mesh into an evolving graph, a graph

changes over time. Moreover, in order to validate the effectiveness of our spatio-

temporal segmentation method and the graph representation of the segmentation

results, we extend the segmentation results towards similarity measurement by

comparing the corresponding evolving graphs.

1.3 Organization

The reminder of this thesis is organized as follows. In Chapter 2, we give a litera-

ture review of the existing segmentation works for a single static mesh, a set of

similar 3D models and the spatial segmentation of dynamic meshes. Next, we pre-

sent a new deformation-based feature descriptor in Chapter 3. By using this new

descriptor, in Chapter 1, we present our temporal segmentation method for de-

forming meshes. After that, in Chapter 5, we present a new spatio-temporal seg-

mentation for deforming meshes, which is further extended for measuring motion

similarities among deforming meshes. Finally, we give concluding remarks of our

works and discuss about the potential future works in Chapter 6.

7

 State of the Art Chapter 2

In this chapter, we explore the related literatures on 3-Dimension (3D) mesh

segmentation and discuss about the background of this thesis. We first introduce

the most popular standalone segmentation techniques for segmenting a single

static mesh in Section 2.1. Then, in Section 2.2, we present a review of data-driven

segmentation techniques that either learn feature patterns from human-based

ground-truth data sets or extract common features from a set of similar shapes.

After that, we summarize the existing spatial segmentation techniques for deform-

ing meshes in Section 2.3. Both advantages and disadvantages of the reviewed

methods and their possibilities of being applied on deforming meshes are discussed.

2.1 Standalone mesh segmentation

During the last two decades, a large number of standalone segmentation meth-

ods have been developed for one single static mesh. In this section, we propose to

categorize the mesh segmentation methods based on the characteristics of the

methods. Note that we study the most popular methods instead of covering all the

related literatures. One may refer to details from the surveys of different segmen-

tation methods and the other categorization criteria. Several surveys and compara-

tive studies of the existing standalone segmentation methods can be found in (At-

tene et al., 2006b) (Shamir, 2008) (Chen et al., 2009) (Benhabiles et al., 2010) (La-

voué et al., 2012), where Shamir (Shamir, 2008) reviews the most popular

standalone segmentation methods, and Attene et al. (Attene et al., 2006b), Chen et

al. (Chen et al., 2009), Benhabiles et al. (Benhabiles et al., 2010), and Lavoué et al.

(Lavoué et al., 2012) compare and evaluate the performance of different segmen-

tation methods.

2.1.1 Hierarchical clustering based method

Hierarchical clustering methods can be divided into two classes, bottom-up and

top-down (k-way). For a bottom-up type, the methods start by merging atomic

Chapter 2 State of the Art

8

items, e.g., vertices or triangles, until stopping criteria are reached. On the other

hand, for a top-down type, the method starts with a full 3D model and iteratively

partition the model into k parts until predefined stopping criteria are reached. For

both of the hierarchy clustering types, they require two key components, merging /

partitioning rules and stopping criteria.

Bottom-up methods Attene et al. (Attene et al., 2006a) propose a bottom-up hie-

rarchical clustering method for mesh segmentation. By taking each triangle as a

tree leaf, this algorithm iteratively merges neighbouring leaves if they together fit

well to a primitive, i.e., either a plane, a sphere, or a cylinder. The merging process

is stopped until the fitting costs of all the possible merging exceed a predefined

threshold, and the segmentation results are immediately obtained, which are the

merged clusters. Similarly, Gelfand and Guibas (Gelfand and Guibas, 2004) present

a bottom-up hierarchical clustering method to segment a given mesh into simple

geometric parts that each part can be attained by a set of rigid transformations

from primitive shapes. By starting with atomic items, this algorithm iteratively ag-

gregate neighbouring regions so that the aggregated region fits well to one of the

primitive shapes. One obvious limitation of these methods is that the results are

biased to primitive shapes. For the same reason, the primitive-fitting based

methods are most applicable to engineering models, which normally contain regu-

lar primitive shapes. However, oftenly meshes may contain irregular shapes.

(a) Seed points (d) Segmentation result (c) Merging result (b) Over segmentation

Figure 2-1 Hierachical clustering based mesh segmentation (Lai et al., 2008).

Lai et al. (Lai et al., 2008) present a hierarchical clustering method based on K

automatically selected seed vertices that distribute on mesh. See the seed points in

Figure 2-1(a). For each of the seed vertex, this method iteratively merges the

neighbouring vertices with highest probability to reach, where the probability is

derived based on the dihedral angles of the edges on the shortest path between

the candidate vertex and the seed. After obtaining K segments until all the vertices

are covered Figure 2-1(b), the merging process continues among the K segments

until satisfactory number of segments is reached, Figure 2-1(c). Finally, the authors

improve the segmentation result by smoothing the boundaries, Figure 2-1(d).

Chapter 2 State of the Art

9

Top-down methods Contrarily to the above methods, Lai et al. (Lai et al., 2006) pro-

pose a k-way top-down approach that iteratively clustering a mesh region into k

parts, by starting from a full 3D shape. For each clustering, K-means clustering

method (Shlafman et al., 2002) is used and the pairwise vertex distance is mea-

sured by incorporating geodesic distance, curvature and texture difference. In an

earlier work, Sheffer (Sheffer, 2001) propose another top-down hierarchical cluste-

ring method for handling the same problem. Sheffer formulates the mesh segmen-

tation problem as a graph contraction problem: He first represents a mesh into a

graph, where a node is a vertex/triangle or a surface region, and an edge denotes

the connectivity. Then, in the partitioning process, the algorithm contracts the

graph by taking into account of surface region size and region smoothness. Katz

and Tal (Katz and Tal, 2003), Shapira et al. (Shapira et al., 2008) have also adopted

the k-way top-down approach for addressing the mesh segmentation problem.

2.1.2 Region-growing based methods

Given the topology of a mesh, a region-growing based segmentation method

starts with seed points, i.e., vertices or triangles, and then iteratively merges

neighbouring points along the topology until pre-defined criteria are satisfied. Re-

gion-growing based methods have two critical characteristics: seed-point selection

and the criteria for quitting the region-growing process.

Zhou and Huang (Zhou and Huang, 2004) propose a region-growing based segmen-

tation method for polygon meshes. In this algorithm, a user supplies a root point,

which is used to detect critical points : A critical point is a point whose geodesic

distance to the root point is greater than those of its neighbouring points. See the

red points in Figure 2-2(a). By taking the critical points as seed points, the segmen-

tation is done by flooding from each seed point until reaching a point has geodesic

distance greater than those of its neighbouring points, i.e., the same criteria as cri-

tical point detection. The stopping points are shown in green in Figure 2-2(a) and

the final segmentation result is shown in Figure 2-2(b). One obvious limitation of

this method is the dependency on human selected root point.

Chapter 2 State of the Art

10

(a) Feature point detection (b) Segmentation result

Figure 2-2 Region-growing based mesh segmentation (Zhou and Huang, 2004).

More commonly, region-growing based methods randomly select an un-merged

vertex / triangle to merge neighbouring vertices/triangles for a new segment. The

following merging criteria have been used: the neighbouring vertices/triangles have

small angular differences (Garland et al., 2001), similar curvatures (Lavoué et al.,

2005), or the same number of intrinsic numbers (Lee et al., 2005).

The efficiency of region-growing based methods can benefit from the parallel com-

putation of multiple regions growing independently, however this type of methods

may result in over segmentation due to local noises.

2.1.3 Spectral embedding based method

Due to the high dimensionality of mesh data, i.e., large number of vertices, a va-

riety of previous works map mesh data into lower dimensionality space by using

spectral embedding, so that classical clustering techniques such as K-means cluster-

ing and/or Mean-shift clustering techniques can be applied for segmentation. The

following are two popular spectral embedding techniques:

 Principal Component Analysis (PCA) (Abdi and Lynne, 2010). The purpose of

this method is to transform the high dimensionality data into a set of new

basis (Principal Components) with eigenvectors where the coordinates are

linearly uncorrelated. The number of Principal Components (PCs) is lower or

equal to the original dimension, which is determined by the amount of in-

formation to be retained in the embedded space.

 Multi-Dimensional Scaling (MDS) (Borg and Patrick, 2005). Based on a pair-

wise distance matrix, the purpose of MDS is to map the points from high

dimensional space into a lower dimensional space without too much loss of

information of pairwise point distances.

Chapter 2 State of the Art

11

In (Katz et al., 2005), based on a dual geodesic distance matrix among vertices, the

authors apply MDS to map vertices into lower space, and extract prominent feature

points that are farthest to the other vertices. These feature points are usually lo-

cated around limb tips. Then the authors merge the feature points close to each

other (see the feature points on leg tips and head in Figure 2-3(b)), and extract the

mesh core that disconnects the feature points on limbs, Figure 2-3(c), which im-

mediately results in a mesh segmentation, Figure 2-3(d). However, this method is

limited to the mesh of star graph skeleton, i.e., a trunk with several limbs. Liu and

Zhang (Liu and Zhang, 2004) propose a similar spectral embedding based segmen-

tation method. In a later work by the same authors (Liu and Zhang, 2007), they im-

prove the previous method by incorporating vertex geodesic distance with geome-

trical segmentability, which relates to the degree of concavity.

(a) MDS transform (d) Segmentation result (c) Core extraction (b) Feature points

Figure 2-3 Spectral embedding based mesh segmentation (Katz et al., 2005).

2.1.4 The other standalone mesh segmentation techniques

Watershed algorithm has been widely utilized in the Computer Vision domain,

particularly for 2D image segmentation. The key idea of the algorithm is to trans-

form an object, an image or a mesh, by defining a height function over points, and

then segment the object into catchment basins. Several mesh segmentation tech-

niques have been devised based on watershed algorithm (Mangan and Whitaker,

1999) (Chen and Georganas, 2006). As a classic example in an early work by Man-

gan and Whitaker (Mangan and Whitaker, 1999), the mesh segmentation method

defines a height function of each vertex based on curvature, i.e., a vertex with

higher curvature has larger height, and vice-versa. By applying watershed algorithm,

the segmentation results tend to lay the segment boundaries along sharp surface

area with high curvatures. The drawback of the watershed algorithm is over seg-

mentation, due to noises on mesh surface.

Some segmentation methods involve human interactions (Fan and Liu, 2011) (Li et

al., 2001) (Chen et al., 2009). In order to collect ground-truth segmentation from

Chapter 2 State of the Art

12

human users, Chen et al. (Chen et al., 2009) develop an online system so that a user

can pick vertices on mesh surface, which are automatically connected as boundary

lines for mesh segmentation. As shown in Figure 2-4, human tend to consistently

place segmentation boundaries in concave regions. Fan and Liu (Fan and Liu, 2011)

propose a mesh segmentation method based on human painting. In this method, a

user paint strokes on mesh to indicate the number and area of each mesh segment.

Then, the segmentation is done by grouping vertices to the closest stroke, where

the distance is measured by incorporating both Gaussian curvature (Yamauchi et al.,

2005) and Shape Diameter Function (Gal et al., 2007). Although this type of

methods benefit from human perception, they are not practical for processing

massive data sets.

Figure 2-4 Human-based segmentation boundaries (Chen et al., 2009).

Golovinskiy and Funkhouser (Golovinskiy and Funkhouser, 2008) propose a seg-

mentation method by integrating the segmentation results by using different

methods. They first generate a set of over segmentation results by using existing

segmentation methods, K-Means (Shlafman et al., 2002), Hierachical Clustering (Shi

and Jitendra, 2000) and Min Cuts (Katz and Ayellet, 2003), each with randomly ge-

nerated parameters to segment an input mesh. Along the boundaries of these

segmentation results, the authors construct a statistical framework of edges in the

boundaries. Finally, they determine the final boundaries by taking the edges appear

most frequently in the boundary lines. However, this method suffers from heavy

computation because of computing mesh segmentation several times of one model.

2.1.5 Discussions on the standalone mesh segmentation techniques

As shown in the above review, a large variety of techniques have been proposed

for standalone mesh segmentation, either for segmenting a mesh into meaningful

Chapter 2 State of the Art

13

parts or geometrical rigid segments. Thanks to the recent contributions by Giorgi et

al. (Giorgi et al., 2007), Chen et al. (Chen et al., 2009), Benhabiles et al. (Benhabiles

et al., 2009), Bronstein et al. (Bronstein et al., 2010), Kim et al. (Kim et al., 2011),

and Lavoué et al. (Lavoué et al., 2012), they have not only made available of a con-

siderable amount of static mesh sets, but also created ground-truth segmentations,

which enable us to objectively evaluate segmentation results.

Figure 2-5 Comparison between different segmentation methods, where the numbers are
the rankings of the performance by using different methods on each dataset (Chen et al.,
2009).

In order to compare a segmentation result against ground-truth, we can apply dif-

ferent distance metrics such as Cut Discrepancy (Huang and Dom, 1995), Hamming

Distance (Huang and Byron, 1995), Rand Index (Rand, 1971), and Consistency Error

(Martin et al., 2001). By using these distance metrics, Chen et al. (Chen et al., 2009)

evaluate the performance of several most advanced segmentation techniques at

the time. According to their experimental results, shown in Figure 2-5, none of the

standalone segmentation methods performs well over all mesh types, because

geometric criteria may not provide sufficient cues to identify all the semantically

meaningful parts. This observation complies well with the conclusion of an earlier

comparative study of standalone segmentation techniques by Attene et al. (Attene

et al., 2006b) that each mesh segmentation method has its advantages and draw-

backs. Due to this reason, the later works on mesh segmentation have been mostly

devoted in data-driven approaches.

Chapter 2 State of the Art

14

2.2 Data-driven mesh segmentation

More recently, researchers in the Computer Graphics community have proposed

a variety of data-driven segmentation methods, aiming at the consistent segmenta-

tion of a set of 3D shapes. We categorize these data-driven methods into two clas-

ses: learning-based and co-segmentation.

2.2.1 Learning-based methods

A learning-based segmentation method learns the prominent features from a

set of ground-truth segmentations at the training stage. Then the segmentation of

input meshes can be achieved by detecting the learned features in the meshes.

(a) Training meshes (b) Test meshes

Figure 2-6 A learning-based mesh segmentation (Kalogerakis et al., 2010).

Kalogerakis et al. (Kalogerakis et al., 2010) propose a learning-based method for 3d

mesh segmentation and labelling. The key idea of this method is a classifier that

determines the label of a triangle based on the triangle’s features. The classifier is a

linear combination of two terms: a unary term that measures the probability for a

triangle being assigned with each of the candidate label, and a binary term that

measures the probability of two neighbouring triangles being assigned with diffe-

rent labels. Given this definition of the classifier, the algorithm trains the parame-

ters for the classifier to adapt to human ground-truth segmentation. Finally, the

segmentation of a new mesh is to feed with triangle features to the trained classi-

fier, which generates the labelling of each triangle, i.e., the spatial segmentation of

the input mesh. Several sample segmentation results are shown in Figure 2-6(b).

In fact, a 3D mesh segmentation can be defined not only as segment patches of

vertices or triangles, but also boundaries that cut a mesh. By following the latter

definition, Benhabiles et al. (Benhabiles et al., 2011) propose a learning-based

Chapter 2 State of the Art

15

method that addresses the mesh segmentation problem by computing boundaries.

Similar to (Kalogerakis et al., 2010), Benhabiles et al. (Benhabiles et al., 2011) train

a classifier based on ground-truth segmentation, to measure the possibility of an

edge appearing in boundaries. By using a threshold, this method binary labels the

edges ith boundary edge’ or not, hich results in mesh regions ith connected

 boundary edges’. For each of the boundary edge’ region, the authors apply a

thinning approach (Hubeli and Gross, 2001) to remove the border edges towards

inside, which produces a boundary line. Finally, they apply snake movement align-

ment method (Jung and Kim, 2004) to connect head and tail of the boundary lines

for the mesh segmentation.

In a recent work, Wang et al. (Wang et al., 2013) propose a method that tunes the

segmentation of 2D images to 3D shapes. Depicted in Figure 2-7, this method first

averagely projects a given upright 3D shape into 2D images from different rotation

angles, Figure 2-7(b). In the meantime, they maintain a set of similar 2D images

with ground-truth segmentations, Figure 2-7(c). The labelling of each projected 2D

images can be inferred from closely matched labelled images from ground-truth set

by using 2D image segmentation techniques, Figure 2-7(d). Finally, the segmenta-

tion is done by back projecting the image labelling to triangles on the original 3D

shape, Figure 2-7(e,f). Although this method simplifies the challenge of mesh seg-

mentation by working on lower dimensional data, the method has to match each

2D image projection with each ground-truth image segmentation from database

and thus suffers from heavy computation.

(a) (f) (e) (d) (c) (b)

Figure 2-7 Mesh segmentation derived from 2D image segmentation (Wang et al., 2013): (a)
original mesh, (b) 2D projections, (c) best matched ground-truth segmentation of each 2D
projection, (d) segmentation of each projected image, (e,f) mesh segmentation.

Therefore, the learning-based methods can learn prominent features based on

large sets of ground-truth segmentation that are available from (Chen et al., 2009)

Chapter 2 State of the Art

16

(Benhabiles et al., 2009) (Bronstein et al., 2010). However, learning-based segmen-

tation methods suffer from heavy computation, and not capable for treating

meshes without ground-truth segmentation of similar models.

2.2.2 Co-segmentation methods

Another solution for the consistent segmentation problem is to extract com-

monly shared features from a set of similar shapes, and then segment meshes into

consistent parts based on the same criteria.

Figure 2-8 Consistent segmentation of a set of similar 3D models (Golovinskiy and Funk-
houser, 2009).

Golovinskiy and Funkhouser (Golovinskiy and Funkhouser, 2009) propose an unsu-

pervised segmentation method for segmenting a set of similar 3D models at the

same time. They first define two edge types: adjacency edge (Green edges in Figure

2-8) and correspondence edge (Red edges in Figure 2-8). The adjacency edges con-

nect neighbouring triangles within one mesh, where each edge is weighted by both

the dihedral angle and the edge length. And the correspondence edges connect

corresponding triangles between two models, where the correspondence is obtai-

ned from model alignment. The segmentation is then done by minimizing the sum

of within segment adjacency edge weights and inter-model correspondence edge

distance. This method allows to obtain consistent segmentation because the adja-

cency edges encourage smooth surface within segment and the correspondence

edges encourage corresponding parts between two meshes to be aggregated into

the same segment. Similarly, the segmentation methods by Sharma et al. (Sharma

et al., 2010) and Kim et al. (Kim et al. 2013) both are also based on shape matching.

In specific, they first generate the mesh segmentation of one shape, and then com-

pute the shape correspondence with another shape for transferring the segmenta-

tion labelling to the shape.

Chapter 2 State of the Art

17

Among the co-segmentation methods, a large portion make use of the over seg-

mentation of each model independently (Hu et al., 2012) (Sidi et al., 2011) (Huang

et al., 2011) (Wu et al., 2013) (Luo et al., 2013). As shown in Figure 2-9, Sidi et al.

(Sidi et al., 2011) first apply mean-shift clustering (Chen, 1995) to segment each

model into patches, Figure 2-9(a). Then they apply spectral analysis for each patch

and classify the patches in their embedded space, in the object of grouping similar

parts from different meshes into the same cluster, Figure 2-9(b,c). Finally, the seg-

mentation is done by minimizing within cluster triangle energy and maximizing

pairwise triangle energy along boundaries, which also optimizes the segmentation

boundaries, Figure 2-9(d,e). With a similar segmentation framework, Huang et al.

(Huang et al., 2011) first conduct an over segmentation of two similar shapes inde-

pendently by using randomized cuts segmentation method (Golovinskiy and

Funkhouser, 2008). Then they define a consistency term that both measures the

geometric similarity between individual corresponding segments, and prioritizes

adjacent segments in different shapes to have the same labelling. Therefore, the

optimization of the consistency term allows to obtain consistent segmentation

between similar shapes. Hu et al. (Hu et al., 2012), Luo et al. (Luo et al., 2013) and

Wu et al. (Wu et al., 2013) also apply the same segmentation framework, but diffe-

rently these approaches incorporate multiple features within each patch to im-

prove the performance of the segmentation: Wu et al. automatically compute the

optimized weight among multiple features through spectral analysis; Luo et al. ite-

ratively project the affinity matrices of different features onto the same Laplacian

eigenvectors (Chung, 1997), then they concatenate different features into one vec-

tor and apply k-means to classify patches.

Figure 2-9 Co-segmentation of a set of similar meshes (Sidi et al., 2011).

The advantage of this type of method is that a set of similar shapes help to identify

commonly shared prominent features. For this reason, not only a set of shapes can

be segmented at the same time, but also the individual segmentation can be im-

proved. However, the requirement of similar shapes poses a limitation on the input

data. Moreover, most of the above methods also suffer from heavy computation,

Chapter 2 State of the Art

18

for which reason these segmentation methods may not be applicable for dynamic

meshes.

2.3 Segmentation of dynamic meshes

Since a dynamic mesh is normally a heavy data that contains an abundance of

redundancy both in local mesh regions and between successive frames, segmenta-

tion provides a possibility to precede this heavy data for the applications such as

compressions (Sattler et al., 2005) (Karni and Gotsman, 2004) (James and Twigg,

2005) (Mamou et al., 2006), skeleton extractions (James and Twigg, 2005) (De et al.,

2008), etc. During the last decade, a variety of spatial segmentation methods have

been proposed for dynamic meshes. In this section, we categorize these methods

based on the criteria whether an approach uses vertex trajectories, or extracted

high-level local feature descriptors.

2.3.1 Trajectory-based method

A trajectory-based mesh segmentation method treats a deforming mesh directly

on coordination data, without pre-processing.

Figure 2-10 Trajectory-based spatial segmentation of a deforming mesh (Sattler et al.,
2005).

Sattler et al. (Sattler et al., 2005) propose a segmentation method of deforming

meshes by grouping vertices with similar trajectories. They first compute an initial

clustering of vertex trajectories by using K-Means clustering, where pairwise vertex

trajectory distance is computed by using Euclidean distance. Then, iteratively, they

compute the number of Principle Components (PCs) of each cluster, and classify

each vertex to the cluster with least reconstruction error by using the correspon-

ding number of PCs. Now that the vertices with similar trajectories are classified

into the same cluster, optimized number of PCs can be used to represent the ver-

tices within each cluster, and therefore improves the compression rate. Figure 2-10

shows an example of spatial segmentation result of a chicken animation by using

Sattler et al.’s approach, here the mesh is partitioned into rigid segments. Similar-

Chapter 2 State of the Art

19

ly, De et al. (De et al., 2008) propose a segmentation method for automatic conver-

sion of deforming meshes into skeleton animations by using spectral clustering. To

this end, they define an affinity matrix among vertices where pairwise vertex affini-

ty is derived from Euclidean distance of vertex trajectories. Having the spatial seg-

mentation results, they can build a skeleton for each frame where each node re-

presents the corresponding segment center and each edge represents neigh-

bourhood between two segments.

Lee et al. (Lee et al., 2005) propose a region-growing based segmentation method

for animation sequences that groups triangles with the same intrinsic dimensionali-

ty. Started from a user supplied seed triangle, this method iteratively merges the

neighbouring triangles that have the same number of PCs and the distance to the

neighbouring triangle within cluster does not exceed a user threshold. The local

greedy region-growing process continues until all the triangles have been clustered.

Since the above segmentation methods in (Sattler et al., 2005), (Lee et al., 2005)

and (De et al., 2008) group vertices with similar trajectories, they allow to obtain

the segmentation results that keep the motion rigidity within each segment.

2.3.2 Nontrajectory-based method

In fact, most of the segmentation methods have been developed based on local

feature descriptors.

Arcilla et al. (Arcilla et al., 2010 and 2013) present a framework for the spatial seg-

mentation of dynamic mesh with inconsistent topology. Their method first com-

putes the vertex matching between two successive meshes, Figure 2-11(a), then

groups the neighbouring vertices with similar motions, which is measured by the

displacement vector for each corresponding vertex. In fact, both the 3D shape cor-

respondence (Van et al., 2011) and segmentation are challenging problems for the

research in Computer Graphics. We focus on the latter problem and therefore work

with deforming meshes that the mesh topology is fixed.

Chapter 2 State of the Art

20

(a) Vertex matching (b) Segmentation result

Figure 2-11 Spatial segmentation of a dynamic mesh based on shape correspondence.
(Arcilla et al., 2010 and 2013)

Lee et al. (Lee et al., 2006) propose a region-growing based segmentation method

for deforming meshes, as shown in Figure 2-12. They first binarily label each

triangle ith deformed’ / rigid’ based on the degree of deformation (Figure 2-12

(b)), which is measured by the maximal degree of transformation from the rest

pose (Figure 2-12(a)). Then they extract the seed triangle in each rigid region that is

farthest to the neighbouring deformed’ regions (Figure 2-12 (c)). Finally, the seg-

mentation is done by grouping triangles to seed triangles so that minimizes the

total sum of within cluster triangle distances (Figure 2-12 (d,e)), where the pairwise

triangle distance incorporates both the geodesic distance and the difference of

deformation. Similarly, Kalafatlar and Yemez (Kalafatlar and Yemez, 2010) propose

a segmentation method by minimizing the within-segment pairwise vertex distance,

which incorporates the geodesic distance, vertex angular difference and the Eucli-

dean distance in the rest pose.

Chapter 2 State of the Art

21

Figure 2-12 Region-growing based spatial segmentation of a deforming mesh (Lee et al.,
2006). (a) degree of deformation of triangles, (b) binary labels, (c) a seed point in a rigid
region, (d,e) region-growing.

Wuhrer and Brunton (Wuhrer and Brunton, 2010) achieve the same goal in a more

efficient approach by using minimum spanning tree (MST) (Kleinberg and Tardos,

2006) in dual space. They first compute a dual graph wherein nodes are vertices

and edges are vertex neighbourhood weighted by the maximum dihedral angle in

the sequence. After computing the MST of the dual graph, the algorithm removes

the edges with largest weight, which most likely indicate two dissimilar subgraphs.

The graph cut process stops until a predefined number of segments is obtained.

The spatial segmentation of deforming meshes has also been addressed through

clustering techniques. James and Twigg (James and Twigg, 2005) segments a de-

forming mesh by applying mean-shift clustering (Chen, 1995) to vertex rotation

sequences, which contains the rotation matrix of each triangle in each frame with

referring to the corresponding triangle in the rest pose. Similarly, Mamou et al.

(Mamou et al., 2006) compute the triangle transformation sequence, which is the

affine transformation of each triangle in each frame. Then they acquire the seg-

mentation by applying K-means clustering to group the vertices with similar defor-

mation behaviours. These two segmentation results have been applied for the

skinning (James and Twigg, 2005) and the compression (Mamou et al., 2006) of

deforming meshes, respectively.

Chapter 2 State of the Art

22

Figure 2-13 Triangle rotation sequence (James and Twigg, 2005).

In one of the most recent literature, Vasilakis and Fudos (Vasilakis and Fudos, 2014)

present a data-driven segmentation method for deforming meshes. This algorithm

first applies existing static mesh segmentation methods to each pose in the mesh

sequence, Figure 2-14(a), and then compute an over segmentation by intersecting

all the spatial segments, Figure 2-14(b). Finally, for each frame, the method simpli-

fies the over-segmentation by merging small neighbouring segments based on dy-

namic behaviours, which results in the final segmentation result, Figure 2-14(c).

(a) Per-frame segmentation.

(b) Over segmentation through intersection.

(c) Per-frame simplification.

Figure 2-14 Spatial segmentation of deforming meshes based on pose partitioning (Va-
silakis and Fudos, 2014).

Nonetheless, a long mesh sequence may result in different segmentation results

because the existing methods do not consider the temporal coherency within a

deforming mesh.

Chapter 2 State of the Art

23

2.4 Summary

Mesh segmentation for both 3D static meshes and dynamic meshes has been an

active research area during the last two decades. In this section, we have summa-

rized the existing spatial segmentation techniques and categorized them based on

their characteristics. See Table 2-1 in the next page. However, to our best

knowledge, the existing segmentation methods for dynamic meshes only concerns

about spatial deformation coherency without considering about temporal defor-

mation coherency. In the remainder of this thesis, we present new segmentation

methods that investigate both temporal and spatial coherency within deforming

meshes, which have not studied before.

Chapter 2 State of the Art

24

Table 2-1 Summary of 3D mesh segmentation techniques.

Mesh types Segmentation types Segmentation method type Object Drawback

Static mesh

Standalone segmen-

tation

Hierarchical clustering, Re-

gion-growing, Spectral em-

bedding, etc.

Segmenting a mesh by using

the local geometrical cues in

the mesh.

None of the methods can perform

well over all mesh types.

Data-driven segmen-

tation

Learning-based

Segmenting a mesh by using

the prominent features lear-

ned from ground-truth.

Requires human-based ground-truth,

and time consuming.

Co-segmentation

Segmenting a set of similar

shapes by extracting common-

ly shared features.

Requires a set of similar shapes, and

time consuming.

Dynamic

mesh
Spatial segmentation

Trajectory-based
Grouping vertices with similar

trajectories.
Overlooks the temporal deformation

coherency in dynamic meshes.

Non-trajectory based
Segmenting a dynamic mesh

into near-rigid parts.

25

 A Dynamic Feature De-Chapter 3

scriptor

In this chapter, we first review existing feature descriptors for 3D meshes in Sec-

tion 3.1. Then, we present a deformation-based feature descriptor, named strain,

to measure the degree of deformation of each triangle at each frame of deforming

meshes. This descriptor is invariant to global shape rotation, translation and uni-

form scale, and its dynamic feature is robust over shape difference when different

shapes undergoing identical or similar motions. Based on this new descriptor, we

develop different segmentation methods for deforming meshes, as described in

Chapter 1 and Chapter 5.

3.1 Existing 3D feature descriptors

As have been reviewed in Chapter 2, although there are several mesh segmenta-

tion methods directly make use of vertex coordinates, most of the methods use

high-level feature descriptors. In this section, we give a review of related literatures

about 3D feature descriptors. There are many ways to categorize the existing fea-

ture descriptors. In this thesis, we classify the descriptors for static meshes as static

descriptors and the descriptors for dynamic meshes as dynamic descriptors.

3.1.1 Static descriptor

Many static descriptors have been proposed in the contexts of 3D shape corre-

spondence and segmentation. We classify the existing static descriptors into global

descriptors and local descriptors, based on the criterion whether a descriptor is

representing a segment patch, or a mesh primitive, i.e., vertex or triangle.

A global descriptor illustrates the overall properties of a segment patch, which can

be an entire shape or a patch of mesh primitives. Several commonly used global

descriptors are listed as follows.

 Chapter 3 A Dynamic Feature Descriptor

26

 Shape histogram. Ankerst et al. (Ankerst et al., 1999) propose this global

descriptor to represent a 3D object. This descriptor first decomposes an ob-

ject into concentric shell bins and sector bins around the center point, then

represent the object into a vector of number of points within each bin. Fi-

gure 3-1(a) shows an example of representing a 2D image with this descrip-

tor, where the top row shows an image being divided into shell bins and

sector bins, and the number of points in each bin is shown in the bottom

row as a histogram. However, the shape histogram representations for one

object may be different depending on the bin orders. In order to avoid such

problem, based on the representation of 3D shapes with shape histogram,

Ankerst et al. (Ankerst et al., 1999) measure shape similarities by using

Quadratic Form Distance Function (Ankerst et al., 1998), which is invariant

to the order of bins.

 Spherical harmonics. Kazhdan et al. (Kazhdan et al., 2003) present spherical

harmonics based on a set of spherical basis functions. In specific, they first

divide the object volume into a set of concentric shells with different radius,

and then decompose each shell in frequency domain. Then, the norm for

each frequency component at each radius becomes the bin size of a 2D his-

togram, which is indexed by radius and frequency.

 Spin Images (Johnson, 1997). To compute the spin images of a shape, we

first map 3D vertices on surface into 2D space via the cylindrical coordinate

system. That is, as shown in Figure 3-1(b), given a tangent plane P and an

oriental point p, each vertex x has a 2D basis representation (), where

is the perpendicular distance to normal n and is the perpendicular dis-

tance to P. Johnson and Hebert (Johnson and Hebert, 1997) have applied

this descriptor to find matching points between two shapes by using itera-

tive closest point algorithm (Zhang, 1994).

 Other global descriptors. After the over segmentation of a mesh, Huang et

al. (Huang et al., 2011) represent each mesh segment with the percentage

of surface area of the full mesh. More commonly, global descriptors are also

devised as statistical histogram of local geometries of mesh primitives wi-

thin a mesh segment (Sidi et al., 2011).

 Chapter 3 A Dynamic Feature Descriptor

27

(a) (b)

Figure 3-1 Global descriptors, (a) shape histogram (Ankerst et al., 1999), (b) spin images
(Johnson and Hebert, 1997).

A local descriptor describes the local geometric properties of a mesh primitive. Un-

like global descriptors which are relatively coarse to characterize an entire shape,

local descriptors carry more detail information and therefore can be more distincti-

vely describing each vertex or triangle (Huang et al., 2007). Among different geo-

metrical information, geodesic distance has been widely used for local descriptors

(Wang et al., 2000) (Gal et al., 2007) (Lee et al., 2006). Below we introduce several

other commonly used local descriptors for 3D shapes.

 Average Geodesic Distance (AGD) (Gal et al., 2007). AGD of a vertex is the

average of the geodesic distance from this vertex to all the other vertices on

mesh. This descriptor is useful for detecting extreme points that are farthest

to the other points on the mesh.

 Gaussian Curvature (Yamauchi et al., 2005) (Lavoué et al., 2005). A curva-

ture value measures the surface convexity, or concavity, which has been

commonly used for mesh segmentation (Yamauchi et al., 2005) (Kalogerakis

et al., 2010). Let κ1 and κ2 be the principal curvatures of a point on surface,

the well-known Gaussian curvature is the product of the two principal cur-

vatures Κ = κ1κ2. One can also derive the other curvature types by incorpo-

rating the two principle curvatures in different ways, including κ1, |κ1|, κ2,

|κ2|, |κ1κ2|, (κ1+κ2)/2, |(κ1+κ2)/2|, κ1-κ2, etc. (Kalogerakis et al., 2010).

Wang et al. (Wang et al., 2000) devise a vertex distance metric by incorpo-

rating curvature difference and geodesic distance between two vertices. Fi-

gure 3-2(a) shows the Gaussian curvature field of a 3D plane model, where

the surface regions with higher convexity have higher curvature values,

shown in red color, otherwise in blue.

 Chapter 3 A Dynamic Feature Descriptor

28

 Shape Diameter Function (SDF) (Gal et al., 2007). Figure 3-2(b) shows an

example of computing SDF of a vertex on head. For computing the SDF of a

vertex, rays from the vertex are averagely sampled in a cone, which is oppo-

site to the normal of the vertex. These rays intersect on the shape, and the

local SDF is the average length of the ray segments. Gal et al. linearly com-

bine AGD and SDF as a vertex signature, for computing vertex correspon-

dence between two shapes by measuring the similarity of vertex signatures.

 Shape Context (Belongie et al., 2000). As depicted with a 2D image in Figure

3-2(c), for each point, this descriptor is a 2D histogram measuring the distri-

bution of the other points in logarithmic distance bins and uniform angle

bins, see the right matrix in Figure 3-2(c). Kalogerakis et al. (Kalogerakis et

al., 2010) and Acosta et al. (Acosta et al., 2010) compute shape correspon-

dence by comparing shape context of vertices.

 Heat Kernel Signature (HKS) (Sun et al., 2009). Sun et al. devise an intrinsic

local descriptor HKS, which measures heat kernel values at multiple time

scales for each vertex. HKS inherits isometric invariance and multi-scale

property from the heat kernel (Sun et al., 2009) (Ovsjanikov et al., 2010).

Tevs et al. (Tevs et al., 2011) compute vertex matching between two shapes

based on the comparisons of the HKS of vertices. Figure 3-2(d) shows an

example of HKS field of each point on a 3D model.

 Chapter 3 A Dynamic Feature Descriptor

29

(a) (b)

(c) (d)

angle

d
is

ta
n
c
e

n
c
e

Figure 3-2 Local shape descriptors, (a) curvature (Lavoué et al., 2005), (b) shape diameter
function (Gal et al., 2007), (c) shape context (Belongie et al., 2000), and (d) heat kernel
signature (Sun et al., 2009).

3.1.2 Dynamic descriptor

A dynamic descriptor represents the deformation behaviours along time in an

animation, such as the changing curvatures of a vertex due to deformation. Since a

deforming mesh is a sequence of static meshes, every vertex/triangle on the shape

can be represented with a vector of static shape descriptors, where the length of

the vector is the number of frames in the sequence. Thus, given a deforming mesh,

the dynamic descriptor of a triangle (or a vertex) can be represented as a vector of

local descriptors at each frame. In this way, for example, the Gaussian curvature of

a vertex varies at each frame and therefore represents the deformation behaviours

of the vertex.

So far, most of the existing dynamic descriptors have been developed in the con-

text of segmentation and/or compression of dynamic meshes. With an aim of clus-

tering similarly moving vertices into the same cluster, several related literatures

 Chapter 3 A Dynamic Feature Descriptor

30

have used vertex trajectories to measure similarity between vertices (Sattler et al.,

2005) (Lee et al., 2005) (De et al., 2008). Apart from these, most of the existing

works represent each mesh primitive with dynamic feature descriptors. James and

Twigg (James and Twigg, 2005) represent each triangle of a deforming mesh with a

rotation sequence, wherein each element is the rotation matrix of a triangle in a

frame w.r.t. the corresponding triangle in the rest pose. Similarly, Lee et al. (Lee et

al., 2006) compute the transformation of each triangle within each frame, which

results in a transformation sequence for each triangle.

Note that a dynamic descriptor can also be derived from global static descriptor.

That is, for a deforming mesh, we represent each frame with a global descriptor,

and therefore the deforming mesh can be represented with a vector of global des-

criptors. However, in this thesis, we devise dynamic descriptors by using local static

descriptors because local descriptors contain the detailed information of each

triangle, with which we will classify into groups based on their deformation beha-

viors.

Having a variety of feature descriptors available, one may need to clarify the seg-

mentation criteria before choosing descriptors, since different descriptors may lead

to different segmentation results. Among the introduced static descriptors in Sec-

tion 3.1.1, AGD, SDF, HKS and Shape Context are invariant to rigid transformations.

Moreover, HKS holds the property of isometric invariance. However, these descrip-

tors are not practical for deforming meshes because AGD is invariant for isometric

meshes and therefore cannot represent dynamic behaviors in isometric deforming

meshes; Gaussian Curvature represents well of bending but not stretching or shrin-

king; SDF, HKS and Shape Context may suffer from heavy computation due to their

high algorithm complexities and the larger dimensionality of deforming meshes. In

the following section, we present an efficient deformation-based dynamic descrip-

tor for deforming meshes, which measures the degree of deformation for each

triangle at each frame.

3.2 Our deformation-based feature descriptor

In this section, we present a new efficient dynamic descriptor for deforming

meshes. For each triangle within each frame of a deforming mesh, this descriptor

computes a scalar value that indicates the degree of deformation, by comparing to

the corresponding triangle at a reference pose. In specific, we first introduce de-

formation gradient tensor, based on which we can compute principal stretches of

 Chapter 3 A Dynamic Feature Descriptor

31

each deformed triangle. Then, we use the principal stretches to measure the de-

gree of deformation.

3.2.1 Deformation gradient tensor

The Deformation Gradient Tensor measures the degree of deformation in con-

tinuum mechanics, which is the derivative of each component of the deformed

configuration with respect to each component of the reference configuration

(Crandall et al., 1978). Depicted in Figure 3-3, we formulate the deformation gradi-

ent tensor between a deformed vector and a reference vector as follows:

[

]

 (3-1)

where .

Reference

Deformed

dx dx’

X1

X3

X2

x’ x

F

Figure 3-3 The reference and deformed configurations (Gullett et al., 2008).

Invariant to translation. The Deformation Gradient Tensor is invariant to body tran-

slation (Gullett et al., 2008). Consider an example of the translation of to

 , based on Equation 3-1, we can obtain as follows:

 ()

where is an identity matrix. It shows that the body translation does not affect

the deformation gradient.

Cauchy deformation tensors. As have seen above, only contains rotation as rigid

movement and stretch as deformation. Then, by using the polar decomposition

 Chapter 3 A Dynamic Feature Descriptor

32

theorem (Higham, 1986), we can decompose into the product of an orthogonal

rotation tensor and a symmetric stretch tensor or (Truesdell and Noll, 2004).

Depending on whether we first apply rotation or stretch, we have the two decom-

position types, and , where is right stretch tensor and is left

stretch tensor (see Figure 3-4). Because of the symmetric property of stretch ten-

sors, we have and .

deformed

configuration
undeformed

configuration

Figure 3-4 Representation of the polar decomposition of the deformation gradient. (Finite
strain theory. In Wikipedia. Retrieved November 21st, 2014, from http://en.wikipedia.org
/wiki/Finite_strain_theory).

Based on the above properties of deformation gradient tensor, we proceed to in-

troduce the following two Cauchy deformation tensors (Note that the rotation ten-

sor is orthogonal, i.e., and):

- Right Cauchy deformation tensor

 () () () . (3-2)

It shows that the right Cauchy deformation tensor is equal to the square of the

right stretch tensor, which is invariant to body rotation.

- Left Cauchy deformation tensor

 ()() () .

 Chapter 3 A Dynamic Feature Descriptor

33

It shows that the left Cauchy deformation tensor is equal to the square of the left

stretch tensor, which is invariant to body rotation.

Moreover, since , we have

 . (3-3)

Based on the definition of eigenvalues and eigenvectors, we assume

 , (3-4)

where and are the corresponding eigenvalues and eigenvectors of , and is

the size of dimension. By applying Equation 3-3 into Equation 3-4, we have

 () . (3-5)

By applying the same rotation to both sides of Equation 3-5, we obtain

 () () () .

Assuming , we have

 .

Therefore, the two stretch tensors and have the same eigenvalues, although

the eigenvectors may be different. The obtained eigenvalues are called principal

stretches. In the next section, we use the principal stretches to measure the degree

of deformation of deforming triangles. Since and have the same principal

stretches, either the right Cauchy deformation tensor or the left Cauchy deforma-

tion tensor can be used.

3.2.2 Strain

We begin by representing the deformation for each triangle as an affine trans-

formation between the current frame and a reference frame. Non-translational

component of the affine transformation encodes the change in orientation, scale,

and skew induced by the deformation on the triangle.

 Chapter 3 A Dynamic Feature Descriptor

34

Figure 3-5 The deformation of a triangle in two frames.

As depicted in Figure 3-5, let and ̃ be the vertices of the triangle before and

after the deformation, respectively. A 3 by 3 affine matrix F and displacement vec-

tor d transforms into ̃ as follows:

 ̃

Similar to Sumner et al.’s approach (Sumner et al., 2005), we add a fourth vertex in

the direction of the normal vector of the triangle and subtract the first equation

from the others to eliminate d. In specific, the fourth vertex is an unit vector,

obtained by the cross-product of two edge vectors of a triangle. In Figure 3-5, we

use ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ before deformation (left-side triangle) and use ̃ ̃
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and ̃ ̃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

after deformation (right-side triangle). Then, we get ̃ where

 , -,

and

 ̃ , ̃ ̃ ̃ ̃ ̃ ̃ -.

Note that this representation specifies the deformation in per-triangle basis, and

therefore it is independent of the specific position and orientation of the mesh in

world coordinates.

In continuum mechanics, the same matrix F is called deformation gradient tensor

(Crandall et al., 1978) as it explains the relationship between a material vector in

the reference object (before deformation) and the deformed one, i.e.,

 ̃. Without loss of generality, we assume that the triangle is stretched first

and then rotated. Thus, we have , where R denotes the rotation tensor and

U the stretch tensor. Since we want to differentiate triangles according to their

degree of stretch and shrinking, we eliminate the rotation component of by com-

puting the right Cauchy deformation tensor C as defined in Equation 3-2, where is

 Chapter 3 A Dynamic Feature Descriptor

35

equal to the square of the right stretch tensor. We obtain principal stretches

through the eigen-analysis on , and compute the deformation of a triangle as

(), where , and are the principal components of . Intuitively,

and reflects the degree of stretch and shrinking, respectively. That is, the

higher degree of stretch (or shrinking) occurs in the triangle, the larger values of

(or) we will obtain.

Therefore, the strain value we have obtained measures the degree of deformation

of the triangle. In addition, since all the measurements are based on the adjacent

edges and their relative length changes throughout deformation, the per-triangle

feature descriptor is independent on rigid transformations.

Exceptional triangles Note that although the strain value of a deformed triangle

can be computed efficiently by the spectral decomposition of a 3-by-3 deformation

tensor, this computation may fail on some degenerated triangles. That is, when

either of the reference or current triangle has edges with near-zero length, the

gradient tensor analysis will fail while computing ̃. In this thesis, we

assume such exceptional triangles do not occur in the deforming meshes in our

experiments.

 Chapter 3 A Dynamic Feature Descriptor

36

Figure 3-6 Mapping 3D triangles into the same 2D plane, to compute 2D strain.

3D strain vs. 2D strain In this section, we have introduced a 3D strain based on 3-

by-3 deformation tensor. In fact, a 2D strain can be obtained by mapping the

triangles into the same plane and compute the spectral decomposition of the 2-by-

2 deformation tensor within the plane (see Figure 3-6). We compare the 3D strain

and 2D strain as follows :

 Computation. 2D strain is more efficent on spectral decomposition because

it analysis a 2D matrix. On the other hand, 2D strain requires extra compu-

tation to map triangles into the same plane.

 Result. We have obtained 3 eigenvalues for 3D strain, with one of them as a

constant value 1. This is because we compute the fourth vertex as an unit

vector, which means there is no deformation in the dimension perpendicu-

lar to triangle. For the other 2 eigenvalues, they are identical to those of 2D

strain which both measure the deformation independent on triangle rota-

tion, translation and uniform scaling. Since we only use these 2 eigenvalues

from 3D strain, the computed degree of deformation are the same as 2D

strain.

 Chapter 3 A Dynamic Feature Descriptor

37

3.2.3 Strain normalization

(a) Reference pose. (b) Original strains. (c) Normalized strains.

strain strain n
u
m

b
e

r
o

f
tr

ia
n

g
le

s

n
u
m

b
e

r
o

f
tr

ia
n

g
le

s

Figure 3-7 Strain normalizations. Mesh triangles are shown with colour varying from blue to
red, indicating strain values from low to high. By comparing to (a) the reference pose, (b)
shows the strain values computed by using the method in Section 2.1.1, and (c) shows the
normalized strain values by using Gaussian Kernel Function. The histograms in (b) and (c)
show the distributions of the strains before and after normalization, respectively.

Although we have excluded the occurrence of triangle with near-zero length edge,

in a less extreme situation, we still may obtain exceptional high strain values for the

case of long triangles, i.e., triangles with two long edges and a relatively short edge.

In Figure 3-7, ith a galloping-camel’ mesh, e sho the mesh triangles with co-

lors varying from blue and red, to linearly indicate strain values from low to high.

Figure 3-7(b) shows the original triangle strains on the mesh, where we see only

blue triangles. This is because there are a few triangles with extraordinary large

strain values (shown in red but not visible due to small quantity) due to noises,

while the other triangle strain values are relatively small, see the histogram in Fi-

gure 3-7(b). Therefore, we observe the mesh triangles in blue without seeing the

very small number of red triangles.

To alleviate such exceptional high strain values, we filter the extremely high strain

values by using a Gaussian Kernel Function (GKF): Given a deforming mesh M with

M frames and N triangles, we represent each frame , as a vector of

strain values (

) , which we obtain by the method described in Sec-

tion 3.1. The strain values are then normalized into [0 1] by using a Gaussian Kernel

Function (GKF):

 ̅̅ ̅ (

)

where is a width parameter that is derived from the average of strain values:

 (∑
) () .The Gaussian filter normalizes the strain values into [0 1].

Figure 3-7(c) shows an example of normalized triangle strain values. By comparing

 Chapter 3 A Dynamic Feature Descriptor

38

to the original strain values in Figure 3-7(b), we have significantly improved the

granularity of the strain values, i.e., the most highly deformed regions are shown in

red and the rigid regions are in blue.

Complexity. The computation of the strain for each triangle requires the deforma-

tion tensor analysis of a 3-by-3 affine matrix (see Section 3.2.2). Therefore, the

computation of triangle strains of a deforming mesh M with M frames and N

triangles consumes O(M∙N) time.

Invariance. Since the measurement of the degree of deformation is based on the

adjacent edges and their relative length changes along time, it is obvious that the

per-triangle strain is independent of global rotation, translation and normal scale of

the mesh.

Robustness over shape difference. Since strain is a deformation-based descriptor,

we expect consistent behaviors for the deforming meshes undergoing identical or

similar motions, despite their shape differences. To validate the motion consistency,

 e compute the strains of a Camel’ and a Horse’ ith the same pose, by using the

same reference poses. In Figure 3-8 and Figure 3-9, we show the behaviors of

strains computed by using either rest-pose or previous-pose as reference poses,

respectively. We show the mesh triangles in colors varying from blue to red, to in-

dicate their low and high strain values.

In both Figure 3-8 and Figure 3-9, for the corresponding frames of horse’ and

 Camel’, we can observe similarly colored regions on both of the meshes, such as

the neck’, the knees on the right-front leg’ and the top of the right-back leg’.

Based on this observation, our per-triangle strain values are consistent between

the two different meshes with similar poses.

 Chapter 3 A Dynamic Feature Descriptor

39

f 4

f 9

f 11

rest poses

Figure 3-8 The same behaviors of rest-pose based strains for both ‘Horse’ and ‘Camel’, with
respect to the same rest poses.

 Chapter 3 A Dynamic Feature Descriptor

40

f 4

f 5

f 9

f 11

Figure 3-9 The same behaviors of previous-pose based strains for both ‘Horse’ and ‘Camel’.

3.3 Strain with respect to rest-pose vs. previous-pose

In the previous section, we have presented a feature descriptor, which measures

the degree of deformation of a triangle by comparing to a reference pose. In prac-

tice, the reference pose can be either the rest pose, which in many cases is the first

 Chapter 3 A Dynamic Feature Descriptor

41

frame (see Figure 3-8), or the previous pose (the previous successive frame, see

Figure 3-9). In this section, we present the different behaviors of the strain values

computed based on both rest-pose and previous-pose, by using synthetic data and

real animation data.

(a) Original meshes

(b) Feature-preserved Canonical Forms

Figure 3-10 (a) Non-rigid meshes and (b) their corresponding feature-preserved 3D canoni-
cal forms (Lian et al., 2013).

Note that for computing the rest-pose based strains, one can either use any pose in

the deforming mesh as a rest-pose, or generate it by applying existing methods if

none of the poses is appropriate as a reference. For example, Lian et al. (Lian et al.,

2013) propose a method to transform different meshes into a Canonical Form

through properly designed rotations and translations of each near-rigid subparts

(see Figure 3-10). Then, a rest-pose can be obtained by taking the average of the

Canonical Forms of all frames.

 Chapter 3 A Dynamic Feature Descriptor

42

(a) Rest-pose based strains

(b) Previous-pose based strains

bending static stretching

Figure 3-11 Comparisons between (a) rest-pose based and (b) previous-pose based strains
for a synthetic deforming mesh ‘bending-cylinder’.

Analysis of synthetic data. We first show the differences by using a synthetic ben-

ding-cylinder’ mesh sequence in Figure 3-11. In this mesh sequence, the cylinder’

mesh first bends a joint, then remains static, and finally stretches back to the star-

ting pose. In each of the mesh, we use red color to indicate the deforming regions,

where each is a patch of triangles with non-zero strains. We show both the rest-

pose based and previous-pose based strains of the mesh sequence in Figure 3-11.

We describe the different behaviours of each as follows:

 Rest-pose based strains. In the top row of Figure 3-11, we show the strains

for each frame based on the rest pose (the first frame). We can observe

that we obtain non-zero strains in the joint region in all the frames except

the last frame. This is because the last frame has the same pose as the rest

pose, while the other intermediate frames are all deformed in the bended-

joint region, compared to the rest pose.

 Previous-pose based strains. In the bottom row of Figure 3-11, we show the

strains for each frame based on the previous pose. We observe that we ob-

tain zero strains hile the cylinder’ remains static ith bended-pose. This is

because each frame is not deformed by comparing to its previous frame in

this static’ period. On the other hand, we obtain non-zero strains in the

other frames, including the last frame since it is deformed by comparing to

its previous frame.

 Chapter 3 A Dynamic Feature Descriptor

43

By observing the above behaviors of both rest-pose based and previous-pose based

strains of the synthesized data in Figure 3-11, the main differences are from static

frames and the last frame. The comparison shows that previous-pose based strain

is more sensitive to the motions in the deforming mesh. That is, we obtain non-

zero strains if a motion occurs, which deformes the mesh. On the other hand, the

rest-pose based strains consider each frame independently by comparing to the

rest pose.

Analysis of real-world data. To further analyse the differences between the two

strain types, we compute both types of strains for three selected frames in a gallo-

ping-camel’ mesh sequence, as shown in Figure 3-12. We use a neutral pose as the

reference pose for computing rest-pose based strains. In each of the mesh in Figure

3-12, the triangles are colored from blue to red to indicate strain values from low

to high. We describe the behaviours of both strains as follows:

 Rest-pose based strains. In the top-right row in Figure 3-12, we show the

strain values for each frame based on the rest pose shown in the left-most

in Figure 3-12. We can observe that we obtain non-zero strains in the neck’

region and the front-right knee’ in all the frames. This is because these re-

gions in these frames are all deformed by comparing to the corresponding

regions in the reference pose.

 Previous-pose based strains. In the bottom-right row in Figure 3-12, we

sho the strains for each frame based on each frame’s previous pose. We

observe that the neck’ regions are mostly sho n in blue. This is because

the Camel rarely moves the neck’ hen galloping. Moreover, e obtain

mostly zero-strains in the front-right knee’ in f6. This is because the front-

right knee’ remains nearly the same pose from f5 to f6.

Based on the above comparisons on the galloping-camel’ data, e observe similar

strain behaviors computed from the synthesized bending-cylinder’ data. These

differences can be seen clearly from t o regions: (1) neck’ regions. Because the

 neck’ barely moves during galloping, e obtain mostly zero-value of the previous-

pose based strains. On the contrary we obtain nonzero-value of the rest-pose ba-

sed strains because the neck’ poses are different from its pose in the rest pose. (2)

Front-right knee’. We obtain zero-values of the previous-pose based strains in f6,

since the knee’ pose is almost the same in f5. On the contrary, we obtain nonzero-

value of the rest-pose based strains in f6, because the knee’ poses in both frames

are different from its pose in the rest pose.

 Chapter 3 A Dynamic Feature Descriptor

44

Based on the above comparisons, we summarize the differences between the two

strain types and their potential applications as follows:

1) Rest-pose based strain.

This type of strain independently measures the deformation of each frame by com-

paring to a rest pose. Since the rest-pose based strains are computed based on the

same reference pose, we can apply these strains to compare the pose similarities

by representing each frame into triangle strain vector. By using this mesh repre-

sentation, in Chapter 1, we devise a temporal segmentation method of deforming

meshes that each temporal segment contains similar frames, where the frame simi-

larities are computed based on rest-pose based strains.

2) Previous-pose based strain.

Comparing to the rest-pose based strains, the previous-pose based strain are more

sensitive to motions. More specifically, each time a motion occurs, a frame is de-

formed from its previous frame, and therefore we obtain non-zero strains. Based

on this fact, in Chapter 5, we use the previous-pose based strains for computing

spatio-temporal segmentation of deforming meshes, whose results is extended

towards motion similarity measurement between deforming meshes.

3.4 Summary

In this chapter, we first give a review of the most popular existing feature de-

scriptors for 3D shapes in Section 3.1. After that, we present a new per-triangle

deformation-based feature descriptor that is invariant to rigid deformations, in-

cluding rotation, translation and normal scale. We also further process the strains

so that they are robust under presence of small noises. After that, we have dis-

cussed several properties of the proposed descriptor: (1) It is invariant to global

mesh rotation or translation, and (2) it shows the similar behaviors for two differ-

ent shapes performing identical or similar motions. Finally, we compare and sum-

marize the behaviours of two types of strains, i.e., rest-pose based and previous-

pose based strains, by using both synthesized animations and real-world 3D anima-

tions.

 Chapter 3 A Dynamic Feature Descriptor

45

f 4 f 5 f 6

Figure 3-12 Strains for a ‘galloping-camel’ data. From left to right and top to bottom, left-most is the rest pose, top-row the rest-pose based strains
and bottom-row the previous-pose based strains. The dashed arrows indicate the corresponding reference poses for computing strains.

46

47

 Temporal Segmentation Chapter 4

of Deforming Meshes

Most of the existing works on deforming meshes compute one single spatial

segmentation according to geodesic and kinematic affinities of mesh primitives, i.e.,

vertices or triangles. In such cases, it is clear that the spatial segmentation results

may significantly be different depending on the motions performed by a deforming

mesh. Ideally, the mesh decomposition results should represent well the defor-

mation exhibited on the mesh. However, when it comes to a long and complex mo-

tion composed of several basic motions, one may obtain overly segmented patches,

which do not represent well each sub-motion. To avoid such problem, we perform

temporal segmentation prior to spatial segmentation, aiming to compute the rep-

resentative spatial segmentation for the sub-motion within each temporal segment.

In this chapter, based on the dynamic feature descriptor described in Chapter 3,

we present a method for the temporal segmentation of deforming meshes that

allows to obtain consistent temporal segmentation for different deforming meshes

exhibiting identical or similar motions, despite their shape differences, which is

desirable. In Section 4.3, we demonstrate our segmentation results over both syn-

thesized and motion captured deforming meshes, and compare ith Barbič et al.’s

method (Barbič et al., 2004). Finally, we conclude the descriptions of our new tem-

poral segmentation method in Section 4.4.

4.1 Background

Given a long sequence of animation, the objective of the temporal segmentation

is to cut the sequence into meaningful motion clips, or gestures in the case of hu-

man motions. A large variety of applications have been developed based on tem-

poral segmentation, such as motion classification / recognition (Müller and Röder,

2006) (Spriggs et al., 2009), motion data retrieval (Müller et al., 2005), compression

(Liu and McMillan, 2006), animation editing (Kovar et al., 2002), etc. In this section,

 Chapter 4 Temporal Segmentation of Deforming Meshes

48

we give a review of several existing methods for character animations, i.e., motion

capture data, and for the video analysis in Computer Vision field.

4.1.1 Temporal segmentation of motion capture data

As noted by Kahol et al. (Kahol et al., 2004), the temporal segmentation of hu-

man motion capture data is a challenging problem because :

 Motion boundaries are often subjective.

 A motion sequence can be segmented into different levels of sub-motions.

For example, a human alking’ motion can be decomposed into sub-

motions of legs : left-stop’, left-for ard’, right-for ard’ and right-stop’

(Zhou et al., 2013).

 It may not be possible to enumerate all sub-motions for the methods by

using sub-motion templates, such as HMM-based or learning-based

methods.

Several supervised (Kahol et al., 2004) and unsupervised (Barbič et al., 2004) (Janus

and Nakamura, 2005) methods have been proposed to address these problems.

Kahol et al. (Kahol et al., 2004) propose a temporal segmentation method for dance

sequences by learning from empirical data, which contains the ground-truth boun-

dary frames of training data. Their algorithm first recognizes the potential bounda-

ries as the local minima of feature cues, then determines the correct boundaries by

feeding the cues’ binary values (whether a feature cue within a frame is locally mi-

nimal or not) in the potential boundaries to a naïve Bayesian classifier, which has

been trained by using empirical data. One obvious limitation of such supervised

method is that the segmentation results are biased to human empirical data, which

may not cover all the possible boundaries. Another method proposed by Barbič et

al. (Barbič et al., 2004) avoids such limitation. They conduct PCA analysis of the mo-

tion data within a sliding window with a fixed number of intrinsic dimensionalities,

which returns an error for the reconstruction of the motion data. By following this

procedure, one can obtain and observe an error curve as the sliding window moves

forward, see Figure 4-1. Finally, the method automatically detects boundary frames

along the error curve if significant changes occur, i.e., the change of the error ex-

ceeds a predefined threshold. Figure 4-1 (Barbič et al., 2004) shows an example of

segmenting alk’ and run’ motions in a sequence by applying this algorithm. Simi-

larly, Janus and Nakamura (Janus and Nakamura, 2005) model motion data in a

sliding window with Hidden Markov Model (HMM) (Baum, 1972), and their method

 Chapter 4 Temporal Segmentation of Deforming Meshes

49

automatically determines the boundary frames by observing the significant

changes of the probability density of the HMM.

PCA Approach: walk to run transition

frames

D
e
ri
v
a
ti
v
e
 o

f
th

e
 t
o
ta

l
e
rr

o
r

200 400 500 600 700 300 1000 900 800

8000

6000

4000

2000

10000

12000

Figure 4-1 Temporal segmentation of motion capture data (Barbič et al., 2004). The solid
curve is a reconstruction error curve by applying spectral analysis on a sliding window. The
dashed line shows the standard deviation of the previous values. The vertical solid line indi-
cates a boundary for the temporal segmentation.

4.1.2 Temporal segmentation of videos

In Computer Vision field, the objective of the temporal segmentation of videos is

to determine boundary frames that divide a video into meaningful clips. The tem-

poral segmentation of videos is considered as a primary step for automatic annota-

tion of video sequences, which can be used as basic elements for applications such

as video browsing and retrieval (Koprinska and Carrato, 2001). A large variety of

techniques for video segmentation have been developed, which we categorize into

two classes as follows:

 Threshold-based method . A considerable portion of the temporal video

segmentation methods determine boundary frames by using a threshold

based on frame distance (Boreczky and Rowe, 1996) (Pass and Zabih, 1999)

(Shahraray, 1995) (Krishna et al., 2014). Most of these methods are based

on the similarity measurement between successive images, and determine

a cut if the distance between two neighbouring images exceeds a predefi-

ned threshold. Since these approaches are based on inter-image distance

that limits their applicability to scenarios requiring semantic modelling.

 Chapter 4 Temporal Segmentation of Deforming Meshes

50

Krishna et al. (Krishna et al., 2014) recently propose an approach that first

trains a One Class Classifier based on Support Vector Machine (Maji et al.,

2008) with the frames for 1 to 3 seconds. Then, they apply the learned mo-

del on each of the successive image to compute a novelty score. When the

novelty score of a frame exceeds a prefined threshold, the frame is chosen

as a boundary frame.

 Over-segmentation based method. Another class of the temporal video

segmentation methods detects the turning points of the motion accelera-

tion and/or deceleration. Since neither inter-image distance nor image mo-

delling are required, such methods are fast and threshold-free, and thus can

be used for online segmentation (Liu et al., 2003). Several frequently used

criteria for determining primitive movements are the local minima / maxi-

ma of velocity (Wang et al., 2001), angular velocity (Fod et al., 2002) of the

trajectories of observed points, or objects. Having the primitive movements,

higher level actions can then be defined as the combinations of primitive

movements. By taking musical conducting gestures as an example, five con-

ducting prototype gestures can be defined by using the primitive

movements (Wang et al., 2001) (see Figure 4-2).

Figure 4-2 Five conducting prototype gestures defined based on primitive movements,
which are obtained by over-segmentation (Wang et al., 2001).

4.1.3 Motivation of our approach

As have been reviewed in the previous section, there has been a variety of tech-

niques for temporally segmenting videos and motion capture data. However, to the

 Chapter 4 Temporal Segmentation of Deforming Meshes

51

best of our knowledge, no previous work has been done for the temporal segmen-

tation of deforming meshes. Moreover, the existing temporal segmentation tech-

niques for video processing or motion captured animations may not be directly

applicable for deforming mesh due to the following reasons :

 For the temporal segmentation techniques for video processing in Compu-

ter Vision, there exists a large heap of local information available from

image data, such as colour, texture and geometry, etc., yet mesh data in

most cases contain only geometry information.

 Comparing to the motion captured animations, deforming mesh data con-

sists of much higher dimension : a motion capture data can be obtained as

the movements of up to hundreds of markers, while a deforming mesh may

have tens of thousands of vertices. For this reason, the temporal segmenta-

tion methods for motion capture data may not be applicable to handle de-

forming meshes. For example, the temporal segmentation method propo-

sed by Barbič et al. (Barbič et al., 2004) may fail with a deforming mesh if

the mesh has a large vertex number, because the computational complexity

of PCA is O(n3), which increases sharply as the number of vertex n in-

creases.

Therefore, in the next section, we present a new temporal segmentation method

for deforming meshes.

4.2 Temporal segmentation of deforming meshes

Having computed the per-triangle strain values at each frame by using the de-

scriptor presented in Chapter 3, we proceed with temporal segmentation as fol-

lows: we first compute the deformation distance between every frame pair, and

measure the average frame dissimilarities within all possible sub-sequences. Then,

the boundary frames for the temporal segmentation are determined by minimizing

the sum of within-segment frame dissimilarities. This optimization-based method

allows to obtain the segmentation results where each temporal segment is a sub-

sequence of similar frames, i.e., similar poses.

Note that we use the rest-pose based strains (see Section 3.3) in this work. This is

because our temporal segmentation method is based on the measurement of pair-

wise frame distances, which indirectly requires that the strain of each frame should

be computed with respect to the same reference pose.

 Chapter 4 Temporal Segmentation of Deforming Meshes

52

4.2.1 Within-segment frame dissimilarity

Given a deforming mesh M with M frames and N triangles, we represent each

frame , with a vector of triangle strain values

 (

) ,

where the per-triangle strains can be computed by using the method described in

Chapter 3. We then can compute the distance () between frames and

by taking the Euclidean distance between their corresponding strain vectors and

 , i.e.,

 () ‖ ‖
.

Based on this distance metric between frame pairs, we consider every possible sub-

sequence [p, q] (from to) as a candidate temporal segment, with the corres-

ponding within-segment dissimilarity () defined as follows:

 () {

∑ ∑ ()

() ()

 ()

where .

Intuitively, () is the average dissimilarity of all possible frame pairs within [p,

q]. Figure 4-3 shows the within-segment dissimilarity matrix computed for a facial

motion capture data. We show the dissimilarity matrix in color varying from blue to

red, indicating dissimilarity values from low to high.

 Chapter 4 Temporal Segmentation of Deforming Meshes

53

Figure 4-3 Within-segment dissimilarity matrix.

4.2.2 Temporal segmentation

The goal of our temporal segmentation is to cut the given mesh sequence M in-

to distinct segments M1, ..., MK, where K is the number of segments. K as well as

the boundary frames
, k K, (indices of the first frame in each segment) are

to be determined. To achieve this, we consider every possible subsequence repre-

sented by the average of pairwise frame distance. The main idea is to determine a

temporal segmentation where each subsequence represents a low dissimilarity

value. This indicates that the subsequence contains a set of meshes with similar

poses.

 Chapter 4 Temporal Segmentation of Deforming Meshes

54

Figure 4-4 A synthetic example of temporal segmentation. (left) The colored background is
a within-segment average dissimilarity matrix, and (m,n) is the first detected temporal
segment. (right) The remaining of the sequences are iteratively segmented by using the
same approach.

We use a threshold to determine whether the dissimilarity is low enough to form

a temporal segment, i.e., if Ds(p,q)< , [p, q] is the considered temporal segment.

In our experiments, is driven from (), where , - is a user

specified parameter. The corresponding settings of for different experimental

data are shown in Table 4-1. To avoid over-segmentation, we scan the dissimilarity

matrix in descending order of subsequence length in favor of longer sub-sequences.

For example, given two sub-sequences [p1, q1] and [p2, q2] in [p0, q0] with

p1<p2<q2<q1, Ds(p1,q1)< and Ds(p2,q2)< , we take [p1, q1] as a temporal segment

because q1- p1> q2- p2. In practice, this procedure is to scan the within-segment

dissimilarity matrix from top-right corner towards the diagonal of the matrix until

we encounter a dissimilarity value that is lower than . Next, we repeat the seg-

mentation over the remaining sub-sequences [p0, p1-1] and [q1+1, q0]. In Figure

4-4, sub-sequence [m, n] is first found as a temporal segment, i.e., Ds(m, n)< .

Then, we recursively apply the temporal segmentation over the remaining sub-

sequences [1, m-1] and [n+1, M]. Sometimes, we may obtain short temporal seg-

ments due to noises. To alleviate this problem, for each of the temporal segment

whose number of frames is less than , where is fixed as 0.02 in our expe-

riments, we merge it to its neighboring segment with less dissimilarity.

The complete algorithm is shown in Algorithm 4-1. In this algorithm, max() is a

function that returns the maximum value and the corresponding index in a vector.

 Chapter 4 Temporal Segmentation of Deforming Meshes

55

In the most extreme case where each frame becomes a temporal segment, the

algorithm has to scan all the items in the dissimilarity matrix Ds. Therefore, the al-

gorithm runs in () time in the worst case.

Algorithm 1: TempSeg(IB,Ds,Ih,It)

Init: IB=[], Ih=1, It=M, As

L=It-Ih+1

for l=L to 1 do

for p=1 to L-l+1 do

Ds-sub(p)=Ds(p,p+l-1)

end for

[Ds-max,p]=max(Ds-sub)

if Ds-max> then

IB= [IB p]

q=p+l-1;

TempSeg(IB,Ds,Ih,p-1)

TempSeg(IB,Ds,q+1,It)

break

end if

end for

Return: IB

Algorithm 4-1 Temporal segmentation algorithm for deforming meshes. For the inputs, IB is
a vector of boundary frames’ indices, Ds is the within-segment average dissimilarity matrix,
Ih and It are the indices of the first frame and the last frame in the subsequence, respectively.

4.3 Experimental results and discussions

In this section, we first introduce our experimental environment and data, then

show the temporal segmentation results. We also present a comparison between

our method and the temporal segmentation method for character animations pro-

posed by Barbič et al. (Barbič et al., 2004).

 Chapter 4 Temporal Segmentation of Deforming Meshes

56

4.3.1 Experimental environment and data

We have tested our temporal segmentation method on both synthesized and

motion captured animation data. Table 4-1 shows the dimensions of the datasets

used, the thresholds, and the timings for computing the temporal segmentation of

each data. The algorithm has been implemented in Matlab on an Intel Core

3.40GHz PC with 16GB of RAM. The computation for our temporal segmentation

starts to be heavy as the mesh sequence becomes long, or the data dimension be-

comes large. For example, the runtime of Face1’ with 1472 frames is 1128.9s,

 hich is almost doubled comparing to 565.8s for Face2’ ith 1097 frames.

Table 4-1 Used data and the timings for temporal segmentation. The timings are the
runtime for the temporal segmentation of each data (the computation of the within-
segment dissimilarity matrix is excluded).

Name
Number of

faces

Number of

frames
Motions

Timings

(second)

Michael 29999 55 Walking 0.8 2.1

Gorilla 29999 55 Walking 0.8 1.9

Camel 43778 51 Galloping 0.8 3.3

Face1 286 1097
Facial ex-

pressions
0.6 565.8

Face2 269 1472
Facial ex-

pressions
0.7 1128.9

4.3.2 Temporal segmentation results

The segmentation results of the above deforming meshes are shown in Figure

4-5, Figure 4-7, Figure 4-10, Figure 4-11 and Figure 4-12, respectively. In each of

these figures, we show a within-segment dissimilarity matrix with colours ranging

from blue to red, to indicate within-segment dissimilarity values from low to high.

And we use vertical dashed lines to indicate boundary frames. We discuss on the

temporal segmentation results of each data below.

 Chapter 4 Temporal Segmentation of Deforming Meshes

57

(a)

(b)

right-stop
right-forward

and right-stop

left-forward

and left-stop
left-forward

right-stop
right-forward

and right-stop

left-forward

and left-stop
left-forward

Figure 4-5 Temporal segmentation results of (a) ‘Michael’ and (b) ‘Gorilla’, which are both
segmented into submotions: ‘right-stop’, ‘left-forward and left-stop’, ‘right-forward and
right-stop’ and ‘left-forward’.

‘Michael’ and ‘Gorilla’. Both Michael’ and Gorilla’ data have been generated by

rigging TOSCA high-resolution meshes (Bronstein et al., 2008) to the same walking

skeleton provided by 3ds Max Studio (3dS MAX L&T CD., 2006). In this way, the two

deforming meshes perform identical alking’ motion. The temporal segmentation

results of Michael’ and Gorilla’ are sho n in Figure 4-5. As noted by Zhou et al.

(Zhou et al., 2013) in their recent temporal segmentation work on motion capture

 Chapter 4 Temporal Segmentation of Deforming Meshes

58

data, a alking’ motion can be decomposed into 4 types of sub-motions: left-stop’,

 left-for ard’, right-for ard’ and right-stop’. By follo ing this convention, e

name each of the obtained temporal segments as follows : right-stop’, left-

forward and left-stop’, right-forward and right-stop’ and left-for ard’. Sample

frames of each temporal segment are shown in Figure 4-12. As can be seen, our

method decomposes the motions performed by both Michael’ and Gorilla’ into

the same sub-motions, despite their shape differences.

‘Face1’ and ‘Face2’. Both of Face1’ and Face2’ data have been created by using a

commercial motion capture system Vicon (http::Vicon). For a subject attached with

reflective markers, Vicon system uses a set of cameras to track the trajectory of

each marker and reconstruct these markers in 3D space. To collect human facial

expressions, we have attached about 160 reflective markers on each subject’s face

(see Figure 4-6), and use the Vicon system to capture facial movements. Sample

meshes of the captured facial animations Face1’ and Face2’ are shown in Figure

4-8 and Figure 4-9, respectively. To validate the consistency of our approach, we

ask each subject to perform the following facial expressions in order: three times of

 eyebro -raise’, anger’, disgust’, fear’, happy’, surprise’, sad’, ith a neutral’

expression as an interval between each. Note that the facial expressions in the two

data are not temporally synchronized, and the markers on the two faces are not

spatially coordinated either.

 Chapter 4 Temporal Segmentation of Deforming Meshes

59

Face1 Face2

Figure 4-6 Capturing facial expressions with markers for ‘Face1’ and ‘Face2’.

The temporal segmentation results of the two facial animations are both shown in

Figure 4-7. Although Face1’ and Face2’ have different number of frames and dif-

ferent durations, we obtain 13 segments for both meshes which correspond to the

following facial expression sequences: (1) eyebro -raise’, (2) anger’, (3) neutral’,

(4) disgust’, (5) neutral’, (6) fear’, (7) neutral’, (8) happy’, (9) neutral’, (10) sur-

prise’, (11) neutral’, (12) sad’, (13) neutral’. Sample frames of the facial expres-

sion in each temporal segment for Face1’ and Face2’ are shown in Figure 4-8 and

Figure 4-9, respectively. Quite encouragingly that we have obtained consistent

temporal segmentation results between the two facial expressions.

 Chapter 4 Temporal Segmentation of Deforming Meshes

60

(a)

(b)

e
y
e
b
ro

w
-

ra
is

e

s
u
rp

ri
s
e

h
a
p
p
y

fe
a
r

d
is

g
u
s
t

a
n
g
e
r

n
e
u
tr

a
l

s
a
d

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

e
y
e
b
ro

w
-

ra
is

e

a
n
g
e
r

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

n
e
u
tr

a
l

d
is

g
u
s
t

fe
a
r

h
a
p
p
y

s
u
rp

ri
s
e

s
a
d

Figure 4-7 Temporal segmentation results of (a) ‘Face1’ and (b) ‘Face2’, which are both
segmented into facial expressions ‘eyebrow-raise’, ‘anger’, ‘neutral’, ‘disgust’, ‘neutral’,
‘fear’, ‘neutral’, ‘happy’, ‘neutral’, ‘surprise’, ‘neutral’, ‘sad’, and ‘neutral’.

Note that in the first temporal segment of eyebor -raise’ motion, it contains three

times of eyebor -raise’ motions ith neutral’ expressions in between. Such ato-

mic motions can be further segmented by using a different threshold (see Sec-

 Chapter 4 Temporal Segmentation of Deforming Meshes

61

tion 4.2). We will discuss about the segmentation for the atomic motions of facial

expressions in the next section.

neutral

sad

surprise fear happy

disgust anger
eyebrow-

raise

neutral neutral

neutral neutral

neutral

…

…

…

…

…

…

…
…

… …

…

…

Figure 4-8 Sample meshes within each temporal segment of ‘Face1’.

 Chapter 4 Temporal Segmentation of Deforming Meshes

62

neutral neutral

neutral neutral

neutral neutral sad

surprise happy fear

anger
eyebrow-

raise disgust

… … …

… … …

…

…

…

…

…

…

Figure 4-9 Sample meshes within each temporal segment of ‘Face2’.

 Chapter 4 Temporal Segmentation of Deforming Meshes

63

4.3.3 Discussion on the threshold

As have been presented in Section 4.2, the number of temporal segments ob-

tained by using our method is determined by a user specified threshold . Intui-

tively, this user parameter determines the maximally allowed average dissimilarity

within each temporal segment.

Figure 4-10 shows the temporal segmentation results of Face1’ by using t o diffe-

rent user thresholds, (top) and (bottom). The comparisons

between these two results can be summarized as follows:

 Although the two temporal segmentation results have different boundary

frames, they both successfully segment the motion sequence of anger’,

 disgust’, fear’, happy’, surprise’ and sad’, ith neutral’ expressions bet-

ween them.

 The temporal segmentation result by using lower threshold, Figure 4-10(b),

further returns the atomic motions in the first temporal segment (Figure

4-10(a)), hich are (1) neutral’, (2) eyebro -raise’, (3) neutral’, (4)

 eyebro -raise’, (5) neutral’, (6) eyebro -raise’, (7) neutral’.

To compute the temporal segmentation with atomic motions, instead of using a

global threshold over the entire sequence, we can also recursively compute the

temporal segments with different thresholds. That is, for example, after obtaining

the temporal segmentation result shown in Figure 4-10(a), we repeat our temporal

segmentation method on each temporal segment with a lower threshold to acquire

the atomic motions. The advantage of such approach is that it can generate tempo-

ral segments of different level of motions (motions like alking’ is a high level mo-

tion, hile left-for ard’ and right-for ard’ are atomic motions of alking’).

However, it requires automatic determining, or pre-settings, of the thresholds for

different level of motions, which will be challenging tasks. Another interesting im-

provement would be to learn the threshold from a set of human-based ground-

truth temporal segmentation.

 Chapter 4 Temporal Segmentation of Deforming Meshes

64

(a)

(b)

Figure 4-10 Temporal segmentation results of ‘Face1’ by using different thresholds (,
Section 4.2), (a) (the same results in Figure 4-7(a)) and (b) . Comparing
to (a), the obtained results in (b) further divide the ‘eyebrow-raise’ into atomic facial ex-
pressions: ‘neutral’, ‘eyebrow-raise’, ‘neutral’, ‘eyebrow-raise’, ‘neutral’, ‘eyebrow-raise’,
‘neutral’.

4.3.4 A comparison with Barbič et al.’s method

To validate the performance of our new temporal segmentation method, we

have compared our method with a PCA-based motion segmentation method pro-

posed for motion capture data by Barbič et al. (Barbič et al., 2004). In order to

adapt their method for deforming meshes, one can do either of the followings: (a)

Replace the joints in motion capture data with triangles as the primitives of each

 Chapter 4 Temporal Segmentation of Deforming Meshes

65

deforming mesh, which means the dimensionality of each frame data is significant-

ly increased since the number of triangles within each frame of a deforming mesh

may be utterly larger than the number of joints of a motion capture data; (b) Ex-

tract the skeleton of a deforming mesh and apply their method on the skeleton

sequence. For the sake of algorithm simplicity, we have chosen the approach (a).

Barbič et al.’s method starts ith a short initial motion segment to estimate the

number of Principal Components (PCs). Then, for the successive frames that can be

precisely reconstructed by using the estimated number of PCs, we merge them to

the initial segment because they share similar intrinsic basis. Otherwise, a bounda-

ry frame is determined. The remaining motion sequence is segmented by repeating

this procedure.

Our method Barbič et al. ‘04

Figure 4-11 Temporal segmentation results of ‘Camel’ by using both our method and Barbič
et al.’s method (Barbič et al., 2004).

In Figure 4-11, we have shown the temporal segmentation results by using both

methods on Camel’ data. Figure 4-12(b) shows selected meshes of the temporal

segments run’, head-right’, head-left’, run’, head-do n’, head-up’, obtained by

using our method. To apply Barbič et al.’s method on Camel’, e set the length of

the initial segment as 7, so that it is sufficient for PCA method to capture the fea-

tures of run’ motion of 10 frames. However, because this length is longer than the

durations of head-right’ and head-left’ (both have 5 frames), for which reason we

 Chapter 4 Temporal Segmentation of Deforming Meshes

66

obtain boundary frames (f18 and f25) shifted from the ground-truth (f15 and f20).

Worse, since the head-do n’ motion is too short (from f41 to f44), the initial seg-

ment (from f41 and f47) contains both head-do n’ and head-up’ motions. This

method cannot separate the two short motions because of the requirement of the

minimum length of the initial segment. That is, this method over-fits to the initial

segment. In order to avoid such drawback, Lin et al. (Lin et al., 2011) apply Barbič et

al.’s method in both forward and backward directions, and unify the two boundary

sets, which tends to result in over segmentation in many cases. In comparison, our

method our method neither requires an initial segment nor has the limitation of

the minimal length of segments.

Furthermore, Barbič et al.’s method takes inputs of joint angular data and the seg-

mentation is based on the PCA analysis of the number principal dimensions of

frames. Due to the significant increase of the computation of PCA on large dimen-

sional data (Kambhatla and Leen, 1997), the application of their method would

suffers from heavy computation. Comparing to 3.3 seconds by using our temporal

segmentation method (see Table 4-1), Barbič et al.’s method consumes nearly 10

minutes.

 Chapter 4 Temporal Segmentation of Deforming Meshes

67

…

right-stop

… …

left-forward

and left-stop
left-forward

right-forward

and left-stop

run

… … … … …

head-down head-up run head-left head-right

(a)

(b)

Figure 4-12 Sample meshes within each temporal segment of (a) ‘Gorilla’, ‘Michael’ and (b) ‘Camel’.

 Chapter 4 Temporal Segmentation of Deforming Meshes

68

4.4 Conclusion

4.4.1 Contributions

In this chapter, we present a method for the temporal segmentation of deform-

ing meshes. We first compute the deformation of each triangle at each frame, i.e.,

rest-pose based strain values, by using the per-triangle dynamic feature descriptor

described in Chapter 3. We then define a distance metric for each frame pair, and

further define within-segment frame dissimilarity as the average of all possible

pairwise frame distance within a candidate temporal segment. Finally, the bounda-

ry frames for the temporal segmentation are determined by minimizing the sum of

within-segment frame dissimilarities. This optimization-based method allows to

obtain the segmentation results where each temporal segment is a subsequence of

similar frames, i.e., similar poses.

The contributions of this research can be summarized as follows:

 We devise a frame distance metric based on deformation behaviour by

using our dynamic descriptor. The distance between two frames is small if

the two frames undergo similar deformation with respect to the same rest-

pose.

 We formulate the temporal segmentation into an optimization problem

that minimizes the sum of within-segment dissimilarities. This allows to

automatically determine the number of segments.

 Since the frame distance metric is defined based on the similarity of defor-

mation behaviours, our temporal segmentation method allows to obtain

consistent temporal segments with similar sub-motions among two defor-

ming meshes showing identical or similar motions,.

In order to validate the effectiveness of our method, we have conducted a set of

experiments with both synthesized and motion captured deforming meshes. The

experimental results show that we can obtain consistent temporal segmentation

for different deforming meshes exhibiting similar motions, despite their shape dif-

ferences. Moreover, the comparisons ith Barbič et al.’s segmentation method

(Barbič et al., 2004) sho that our method avoids over-fitting problem by taking

into account of both for ard and back ard neighbouring frames, hile Barbič et

al.’s method only considers forward frames. A threshold (see Section 4.2) is

needed though, which can be properly provided by an experienced user.

 Chapter 4 Temporal Segmentation of Deforming Meshes

69

4.4.2 Summary

In this chapter, we have proposed a new method for the temporal segmentation

of deforming meshes based on the new dynamic descriptor presented in Chapter 3

We show the performance of our method with experiment results on both synthet-

ic and motion captured deforming meshes, from which we obtain the same sub-

motion sequences for the deforming meshes exhibiting identical or similar motions,

despite their shape differences. Moreover, we observe more efficiency and effec-

tiveness of our temporal segmentation method, by comparing with an existing

temporal segmentation method.

 Chapter 4 Temporal Segmentation of Deforming Meshes

70

71

 Spatio-temporal Segmen-Chapter 5

tation of Deforming Meshes

We have presented a temporal segmentation method which divides a deforming

mesh into temporal segments of similar poses in the previous chapter. However,

that method has not taken into account of the spatial deformation coherency on

the deforming mesh. To the best of our knowledge, the spatio-temporal segmenta-

tion of deforming meshes has not been studied by existing works. In Section 5.3 of

this chapter, we present a spatio-temporal segmentation method, which investi-

gates both the spatial and temporal deformation coherency simultaneously by us-

ing the dynamic feature descriptor described in Chapter 3. Furthermore, we extend

the segmentation results towards the application of motion similarity measure-

ment between deforming meshes (see Section 5.4). This application is particularly

interesting, because it partly alleviates the challenge of the evaluation of segmen-

tation results. By evaluating the computed motion similarities among deforming

meshes with respect to human-based ground-truth, we indirectly validate the qual-

ity of the segmentation results (see Section 5.6).

5.1 Background

In this section, we start by reviewing several spatio-temporal segmentation

techniques that have been developed in Commputer Vision field. Next, we review

several studies in Computer Network field about Evolving Graph, which can be used

as a compact representation of spatio-temporal segmentation results. Then, we

introduce two existing methods for measuring the similarities among spatio-

temporal sements.

5.1.1 Spatio-temporal segmetnation techniques in Computer Vision field

Spatio-temporal segmentation is a primary step of video analysis for the applica-

tions such as scene interpretation and video understanding. Megret and Demen-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

72

thon (Megret and Dementhon, 2002) give a survey of the spatio-temporal segmen-

tation techniques on video data, among which graph-based segmentation

(Grundmann et al., 2010) (Tian et al., 2011) is the most popular method type.

Figure 5-1 The spatial and temporal neighborhoods in the 3D graph cut model (Tian et al.,
2011). The red lines show spatial neighborhoods, the purple and the blue lines show tem-
poral neighborhoods.

Grundmann et al. (Grundmann et al., 2010) propose a hierarchical graph-based

algorithm for segmenting long video sequences. This method first initializes a video

as a graph, whose nodes are pixels and edges are the spatial and temporal neigh-

borhoods. Then, the segmentation is done by using a region-growing method that

merges both the spatial and temporal neighboring nodes with similar colors.

However, this method suffers from the poor efficiency because of the high dimen-

sionality of the initial graph, and over-segmentation due to local noises. To address

these problems, Tian et al. (Tian et al., 2011) propose an improved graph cut seg-

mentation method: They first compute the initial over-segmentation of each frame

independently by using an existing efficient segmentation method proposed by

Comaniciu and Meer (Comaniciu and Meer, 2002). Then , they construct an initial

graph, whose nodes represent spatial segments within each frame and whose

edges the immediate spatio-temporal neighborhoods (see Figure 5-1). Finally, the

segmentation can be done by merging similar neighboring nodes both spatially and

temporally, where each node is represented with the statistical model of pixel co-

lors.

5.1.2 The studies of Evolving Graphs in Computer Network field

A computer network can be represented as a graph, where each node repre-

sents a computer, a server or a web browser, and each edge represents the com-

munication between two nodes. An Evolving Graph can then be defined as a graph

changes over time, either graph nodes or edges. Based on the graph representation,

a large quantity of applications has been developed such as the detection of the

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

73

most correlated sub-networks (Chan et al., 2008) (Bilgin and Yener, 2006), querying

or mining (Desikan and Srivastava, 2004) (Kan et al., 2009) (Robardet, 2009) (Ber-

lingerio et al., 2009) (Yang et al., 2014) (Sun et al, 2007), and dynamic graph com-

pression (Liu et al, 2012), etc.

(a) (b)

Figure 5-2 (a) Sample graphs in an evolving graph and (b) their union graph (Chan et al.,
2008).

Chan et al. (Chan et al., 2008) proposed a method to discover regions in a computer

network that have correlated spatio-temporal changes, i.e., the edges evolve syn-

chronously. To achieve this goal, the authors proposed two distance metrics bet-

ween graph edges: spatial distance and temporal distance. To compute the spatial

distance between two edges, they compute the union graph over the evolving

graph and then the shortest path distance between the two edges are taken as the

spatial distance (see Figure 5-2). To compute the temporal distance between two

edges, the authors first define a transition sequence that represents the changes of

an edge in a binary waveform as a sequence of transitions (see Figure 5-3). Based

on this representation, they can compute the temporal distance between two

edges by using Euclidean distance. Finally, Chan et al. compute the spatio-temporal

segmentation by merging the neighbouring edges that have either small spatial

distance or temporal distance.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

74

waveform

graphical representation

transition sequence

0 1 0 1

+ - +

(a)

(b)

Figure 5-3 Sample waveform and the corresponding transition sequence of an evolving
edge (Kan et al., 2009).(a) An evolving graph, (b) the corresponding waveform, graphical
representation and transition sequence representation of the evolving edge in the dashed
circle in (a).

Similarly, Kan et al. (Kan et al., 2009) also model the changes of a graph edge into

transition sequence. Based on this representation, a user can query by a transition

sequence for the sub-graphs that contain edge changes indicated by the input tran-

sition sequence. See an example in Figure 5-4.

(a)

(b)

Figure 5-4 An example of graph query (Kan et al., 2009). By querying the maximal subgraph
with waveform ‘0111’ in (a), we obtain an evolving subgraph shown in (b), in which the
edges ‘1-4’ and ‘2-4’ can be represented with the waveform ‘0111’.

5.1.3 Similarity measurement based on spatio-temporal segmentation

In our work, we aim to use our spatio-temporal segmentation results of deform-

ing meshes to compare their differences. In Computer Network field, however,

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

75

although the spatio-temporal segmentation techniques can be used to discover

correlated regions in an evolving graph (Chan et al, 2008), they are not applicable

to compare two evolving graphs. In Computer Vision field, on the other hand, sev-

eral distance measurement methods have been proposed for human action recog-

nition.

Ryoo and Aggarwal (Ryoo and Aggarwal, 2009) compare two spatio-temporal seg-

mentation results that have been obtained by using Dollár et al.’s method (Dollár et

al., 2005) by computing the spatial and temporal relationships between the spatio-

temporal segments : Assuming S1 and S2 are the spatio-temporal segments of two

videos, respectively, the authors define the temporal relationships such as S1 is

before S2’ if the last frame of S1 occurs before the first frame of S2, and the spatial

relationships such as S1 is near S2’ if the pixel colors in S1 is similar to the pixel co-

lors in S2. Based on these definitions, the method detects a similar human action if

all the spatio-temporal segments of a sample video matches to those of a ground-

truth video. However, this method is sensitive to noises such as light conditions,

which affect the occurrences and duration of spatio-temporal segments and there-

fore influence the temporal relationship.

(a) (b)

Figure 5-5 Representation of spatio-temporal segmentation results (Aksoy et al., 2010). The
left column (a) shows 4 types of interactions between node 2 and 4. In the right column (b),
from top to bottom, each row shows the spatio-temporal segmentation results, graph rep-
resentation, and the interaction sequences of node pairs.

Aksoy et al. (Aksoy et al., 2010) and Luo et al. (Luo et al., 2011) propose another

human action similarity metric by comparing the interactions between spatial-

temporal segments. They first define four types of interactions (see Figure 5-5),

then represent the interactions of each pair of segments as character labels (see

Figure 5-5(b)). Finally, Luo et al. concatenate each row of the matric in Figure 5-5(b)

for a character string, and achieve action recognition by comparing two strings by

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

76

using string kernels. However, this metric may be not effective for complex human

actions because of higher complexity of pairwise interactions, which increases the

dimensionality of the matrix in Figure 5-5(b) significantly, and therefore reduce the

efficiency of this similarity metric.

5.2 Outline of our approach

Having introduced the temporal segmentation method in the previous chapter, we

step further to investigate the spatial and temporal coherency simultaneously in

deforming meshes. First, based on the degree of deformation of each triangle in

each frame, e binarily label the triangles ith either deformed’ or rigid’. Then,

we compute a spatio-temporal segmentation by merging the deformed’ triangles

that are either spatially or temporally connected. We then represent the spatio-

temporal segmentation with Evolving Graph, where each node represents a spatial

segment, each edge the neighborhood between two spatial segments, and each

graph a subsequence of frames with the same graph representation.

Having computed the Evolving Graphs of two deforming meshes, we proceed to

compute the similarity of Evolving Graphs: We first classify the similar graphs and

assign the graphs in the same cluster with the same cluster labels. As a result, each

evolving graph is represented with a graph cluster label sequence, which allows us

to apply existing sequence alignments to find the optimized matching between the

two sequences. Finally, we obtain an alignment score between the two cluster la-

bel sequences by using a local sequence alignment algorithm, which we use as the

similarity between two deforming meshes.

The reminder of this chapter is organized as follows. In Section 5.3, we first present

a spatio-temporal segmentation method for deforming meshes, and represent the

segmentation results into Evolving Graphs. Next, in Section 5.4, we convert the

graph sequences into graph cluster label sequences by using graph clustering, and

then adopt a sequence alignment algorithm to measure the motion similarity bet-

ween the two deforming meshes. Then, we validate the obtained similarity values

with human-based ground-truth in our experiments, in Section 5.6. Finally, in Sec-

tion 5.7, we discuss about (1) the differences of the segmentation results by using

either the previous-pose based or the rest-pose based strains, and (2) the diffe-

rences between our temporal segmentation and spatio-temporal segmentation

results.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

77

5.3 Spatio-temporal segmentation of deforming meshes

5.3.1 Spatio-temporal segmentation algorithm

We now describe our spatio-temporal segmentation algorithm that makes use

of the dynamic feature descriptor based on the deformation behaviour of each

triangle at each frame of the deforming mesh. Our goal is to obtain a compact rep-

resentation of the segmentation results, which is done by adopting evolving graphs.

Having obtained the strains of each triangle at each frame by using the method

described in Chapter 3, we start by labeling each triangle of each frame as either

 deformed’ or rigid’. We chose binary labeling for the sake of simplicity although

multi-way labeling could also work but with higher cost.

Note that we use previous-pose based strains, since this strain type reflects motion

information. In Section 5.7, we provide a discussion about the influences of spatio-

temporal segmentation results by using either previous-pose based or rest-post-

pose based strains.

Given a deforming mesh M with M frames and N triangles, we represent each

frame () with a vector of strain values (

) , which we

obtain by the method described in Chapter 3. Next, all the triangles
 (

) in each frame are binary labeled as 1 (deformed’) or 0 (rigid’), by

comparing their strain values to a threshold :

 {

The threshold has been fixed as 0.5 in our experiments.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

78

(a)

(b)

(c)

frame index

frame i

i

(d)
g1 g2 g3

tr
ia

n
g

le
 i

n
d

ex

Figure 5-6: An example of spatio-temporal segmentation of ‘bending-cylinder’. (a) Binary
labeling. (b) Spatio-temporal segmentation. (c) Spatio-temporal segment. (d) Evolving
graph representation.

Once we have the per-frame and per-triangle labeling, we carry out our spatio-

temporal segmentation by finding triangles with identical labels that are adjacent

along space or time. Figure 5-6(a) illustrates this idea ith a bending-cylinder’

example. The red regions represent the deformed’ regions ith a set of deformed’

triangles that are connected. Figure 5-6(b) shows the 2D representation of the la-

beling, with the horizontal axis denoting the time (frame index) and the vertical axis

denoting the space (triangle index). The t o small disconnected deformed’ regions

at frame i (the dashed vertical line) are merged into one region in the later frames.

We consider these two regions as belonging to the same spatio-temporal segment

because they are resulted from the same deforming action. A spatio-temporal

segment is computed as follo s: We start ith any deformed’ triangle, and apply a

region-gro ing algorithm to merge the deformed’ triangles that are adjacent ei-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

79

ther along space or time. See the red area in Figure 5-6(b). Then, we compute the

space interval and the time interval of the merged area (rectangle in Figure 5-6(b)),

and take all the triangles in that interval as a spatio-temporal segment. The obtai-

ned spatio-temporal segment can be seen as a solid rectangle in 2D, see Figure

5-6(b), and is also shown on the mesh in Figure 5-6(c).

We continue the above procedure until all the deformed’ triangles have been

merged into spatio-temporal segments. The complete spatio-temporal segmenta-

tion algorithm is shown in Algorithm 5-1, which runs in () time. Note that

the function Neighbors(S) returns the deformed’ triangles that are adjacent in ei-

ther space or time of every triangle in the triangle patch S.

Algorithm 2: Spatio-temporal segmentation

Input:

 .

Init: S=T=I=P= ;

 .

while ,

 do

 S=

, T=Neighbors(S)-S.

while () do

S=[S t], T= Neighbors(S)-S.

end while

while ,

 do

.

 , - , -.

end while

 .

S=T=I=P= .

end while

Return: S, T

Algorithm 5-1 Spatio-temporal segmentation algorithm for deforming meshes.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

80

Below we show the segmentation results of several deforming meshes in Figure 5-7,

Figure 5-8 and Figure 5-9.

f1 f4 f3 f11 f8

f1 f4 f3 f11 f8

f1 f23 f13 f42 f37 f51

f1 f23 f13 f42 f37 f51

C
a
m

e
l

H
o
rs

e
_
1

G
o
ri

ll
a

B
o
y

Figure 5-7 The spatio-temporal segmentation and the graph representation of ‘Camel’,
‘Horse_1’, ‘Gorilla’ and ‘Boy’.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

81

f6 f30 f22 f44 f40 f54

f6 f30 f22 f44 f40 f54

f6 f30 f22 f44 f40 f54

f6 f30 f22 f44 f40 f54

G
o
ri

ll
a
-J

o
g
1

M
ic

h
a
e
l-

Jo
g
1

G
o
ri

ll
a
-J

o
g
2

M
ic

h
a
e
l-

Jo
g
2

Figure 5-8 The spatio-temporal segmentation and the graph representation of ‘Gorilla-
Jog1’, ‘Michael-Jog1’, ‘Gorilla-Jog2’ and ‘Michael-Jog2’.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

82

f7 f20 f13 f34 f27 f51

f7 f20 f13 f34 f27 f51

f7 f20 f13 f34 f27 f51

f7 f20 f13 f34 f27 f51

G
o

ri
ll

a
-J

u
m

p
1

G
o

ri
ll

a
-J

u
m

p
2

M
ic

h
a
e
l-

Ju
m

p
1

M
ic

h
a
e
l-

Ju
m

p
2

Figure 5-9 The spatio-temporal segmentation and the graph representation of Go-

rilla-Jump1’, Michael-Jump1’, Gorilla-Jump2’ and Michael-Jump2’.

5.3.2 Evolving graph representation

Graph is a convenient and compact representation that has been broadly used

for representing structured objects. To this end, we now describe our graph repre-

sentation of the spatio-temporal segmentation results.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

83

Given the spatio-temporal segmentation of a deforming mesh, we first extract key

frames from the mesh sequence, where each key frame contains either the occur-

rence of a new spatio-temporal segment or the disappearance of a segment. Note

that the first frame is always considered as a key frame. Then, for each key frame,

we represent its spatial segmentation with a graph, where a node represents a spa-

tial segment and an edge connects two spatially adjacent segments. A series of

graphs of key frames that we obtain for a deforming mesh is an evolving graph, i.e.,

a graph that evolves over time. The evolving graph of the bending-cylinder’ is

shown in Figure 5-6(d).

5.4 Similarity measurement of deforming meshes

In this section, we present a method for measuring the similarity between two

deforming meshes, which are represented with evolving graphs. We first cluster

similar graphs of the two deforming meshes, thereafter graphs belonging to the

same cluster are assigned with the same label. As a result, each deforming mesh is

represented with a sequence of cluster labels. Then, we apply a local sequence

alignment algorithm to compute the locally optimal alignment between the two

cluster label sequences. Finally, we measure the similarity between the two de-

forming meshes by normalizing the sequence alignment score.

5.4.1 Graph clustering

Let MA and MB be two deforming meshes. By using the segmentation algorithm

described in Section 5.3, we can generate the evolving graphs

 *

 + and *

 + for MA and MB, respectively.

Note that and are the number of graphs for the two evolving graphs, respec-

tively.

To adopt sequence alignment algorithm for comparing two evolving graphs, we

have to cluster the graphs and assign the graphs within the same cluster with the

same label, to transform the evolving graphs into graph cluster label sequences. As

having been discussed in Section 5.1.3, this operation not only filters out noises of

segmentation results by labeling similar graphs as the same, but also increases the

efficiency of the sequence alignment algorithm by reducing the number of element

types (or alphabet size). Unfortunately, the graph clustering cannot be done by

using existing clustering methods, such as K-mean clustering; this is because the

graphs have different number of vertices and edges and these clustering methods

work only for vectors of the same dimension. To avoid of such problem, we

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

84

adopted the graph embedding method proposed by Riesen et al. (Riesen et al.,

2009a, 2009b). The purpose of graph embedding is to compute a mapping between

the graphs and a vector space. The graph embedding method works as follows:

Given a set of graphs * + whose cardinality is n, the vector asso-

ciated to a graph is defined as (() () ())
 ;

 () is a graph dissimilarity metric between the graphs and . In our case,

the set is the union of the sets of evolving graphs of MA and MB, i.e.,

 , with its cardinality . The graph dissimilarity metric () can

be calculated by using either the Maximum Common Subgraph (Bunke and Shearer,

1998) or the Graph Edit Distance (Gao et al., 2010). Below we introduce the defini-

tions of both graph distance metrics.

Definition 5-1: Maximum Common Subgraph (MCS) (Gao et al., 2010). Let and

 be two graphs and
 ,

 . If there exists a graph isomorphism be-

tween
 and

 , then both
 and

 are called a common subgraph of and .

If there exists no other common subgraph of and that has more nodes than

 and

 ,
 and

 are called a MCS of and .

Definition 5-2: Graph distance metric based on maximum common subgraph

(Bunke and Shearer, 1998). Let () be the maximum common subgraph of

 and , and () be the graph with more nodes between and .

The distance of and is defined as

 ()
| ()|

 (| | | |)
.

Definition 5-3: Graph Edit Distance (GED) (Gao et al., 2010). The graph edit distance

between and is defined as the minimum number of graph edit operations to

transform to ; these operations include additions and deletions of nodes and

edges.

In this work, we use the latter graph distance metric GED (Definition 5-3). The

computation of GED is an optimization problem that is usually addressed by using a

tree search algorithm, whose objective is to find an edit path with minimum costs.

The idea is to dynamically construct a search tree, where each node of the tree is a

candidate graph edit operation and each leaf node represents the complete solu-

tion that a graph is transformed to the other. At each step during tree traversal, all

the successor nodes are evaluated to find the route with lowest cost. Iteratively,

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

85

this method can compute the best approximation of the optimization objective.

However, the running time and memory consumption increase exponentially with

the increase of problem size, i.e., the number of vertices of graphs. To speedup the

computation, Neuhaus et al. (Neuhaus et al., 2006) have proposed a simple modifi-

cation : Instead of expanding all the successor nodes in the search tree, only a fixed

number of the best of them are kept. Therefore, in each step during tree traversal,

the number of successor nodes is limited, and the fast computation of GED is rea-

lized. We use this efficient algorithm for computing GED in our method.

V1

(c)

V2 V6
d(g1, g1)
d(g1, g2)
d(g1, g3)
d(g1, g4)
d(g1, g5)
d(g1, g6)

(a)

MB MA

(b)
g1 g2

GA

g6 g4 g3 g5

GB

V3 V4 V5
d(g2, g1)
d(g2, g2)
d(g2, g3)
d(g2, g4)
d(g2, g5)
d(g2, g6)

d(g3, g1)
d(g3, g2)
d(g3, g3)
d(g3, g4)
d(g3, g5)
d(g3, g6)

d(g4, g1)
d(g4, g2)
d(g4, g3)
d(g4, g4)
d(g4, g5)
d(g4, g6)

d(g5, g1)
d(g5, g2)
d(g5, g3)
d(g5, g4)
d(g5, g5)
d(g5, g6)

d(g6, g1)
d(g6, g2)
d(g6, g3)
d(g6, g4)
d(g6, g5)
d(g6, g6)

Figure 5-10: Graph embedding. (a) The input deforming meshes MA and MB. (b) The se-

quences of evolving graphs and . (c) The graph embedding. Each graph gi is repre-
sented with a vector Vi , where d(gi, gj) denotes the graph edit distance between graphs gi
and gj.

The overview of graph embedding algorithm is shown in Figure 5-10. After the

graph embedding, each graph is represented with a vector

 (() () ())

 ,].

Note that the size of the data produced by the graph embedding may be very large

depending on the size of . If is composed of n graphs, the dimension of the out-

put data is (vectors whose dimension is). We apply PCA (Abdi and Wil-

liams, 2010) to reduce the dimension of the data. The PCA method uses orthogonal

transformation to convert the set of vectors into a set of values of linearly uncor-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

86

related variables called principal components. Redundant information is removed

by representing the vectors with the top r principal components. Hence, each

graph is represented with a vector whose dimension is r.

Finally, we apply K-means clustering method on the vectors to cluster all the

graphs into cluster; is a user-specified parameter, which is chosen depen-

ding on the range of the deformation in MA and MB. This value is set from 5 to 8 in

our experiments. All the graphs belonging to the -th cluster (, -) are

given the same cluster label . Therefore, the deforming mesh MA, which is re-

presented with a sequence of evolving graphs *

 +, is now be

represented with a sequence of cluster labels *

 +. A cluster label

sequence *

 + is also computed for . Although and con-

tain different graphs, the same cluster label may appear in and . This is be-

cause the K-mean clustering has been computed on the union set . There-

fore, two graphs of and may belong to the same cluster, and thus be as-

signed with the same label.

In addition to the cluster labels , we also compute the center of each cluster ,

which is the mean vector of all the vectors whose corresponding graph be-

longs to the cluster . These cluster centers are required later to compute the se-

quence alignment, see Section 5.4.2.

Figure 5-11 shows an example of graph clustering for two deforming cylinder

meshes. The deformation of MA is composed of the bending of the center part of

the cylinder. The deformation of MB includes the bending of the upper and lower

parts of the cylinder with the bending of upper part starting first. After graph clus-

tering, both of MA and MB are represented with the cluster label sequences,

and respectively (Figure 5-11(c)).

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

87

(b)

(a)

MA MB

∂1 ∂2 ∂3

∂1 0 1 0.5

(c) D(∂k, ∂k’):

k,k’ [1,2,3]

∂A

∂1 ∂2

∂B

∂1 ∂2 ∂3 ∂1

g1 g2

GA

g6 g4 g3 g5

GB

Figure 5-11: Graph clustering. (a) The input deforming meshes MA and MB. (b) The se-

quences of evolving graphs and . (c) The sequences of graph cluster labels and .

5.4.2 Local sequence alignment

Now that we have computed the cluster label sequences and of the de-

forming mesh MA and MB, the next step is to compute the alignment between the

two sequences and by matching identical subsequences between them.

Sequence alignment algorithm is commonly used in bioinformatics to identify simi-

lar regions among DNA sequences. The purpose of the alignment method is to lo-

cate and align the most similar subsequences between two DNA sequences, which

allow gaps within the alignment. One of the most known methods is the Smith-

Waterman algorithm (Smith and Waterman, 1981), which finds the optimal local

alignment based on dynamic programming approach. It requires inputs of an affini-

ty matrix between sequence items (or alphabets) and a gap penalty value. See an

example in Figure 5-12.

In order to use the Smith-Waterman algorithm to compute the alignment between

two cluster label sequences and , we first need to compute the affinity matrix

of the clusters. As explained in Section 5.4.1, each of these cluster labels cor-

responds to a cluster whose center is . The cluster distance matrix D is a matrix

whose size is by ; each of its elements
 is the distance between the cluster

 and ; it is calculated as the Euclidean distance between the cluster centers

and
, that is,

 √

. The affinity matrix is a matrix whose dimen-

sion is by ; each of its elements
 is the affinity value between the clusters

 and and is computed as follows:

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

88

 ̅

 , - (5-1)

where ̅ is the average value of all the elements of the distance matrix D. Unlike

the distance matrix, the affinity matrix has negative and positive values, where po-

sitive values indicate high level of affinities between the clusters and negative va-

lues indicate low affinities.

Once the similarity matrix has been computed, we use the improved Smith-

Waterman algorithm proposed by Barton et al. (Barton et al., 1993). An implemen-

tation is available by using Matlab (http::Matlab). This algorithm takes as input the

two cluster label sequences and with their corresponding similarity matrix ;

it generates a set of pairs of matching cluster labels {
 ()

 | },

where () indicates the label in that is aligned to the -th label in , and is

the total number of non-matching cluster labels that are located among the

matched ones. The set of matching pairs is computed such that the following

matching score is maximized:

 ∑ (
 ()

)

 , (5-2)

where ̅ is the penalty coefficient for the gaps occurring in the alignment;

The coefficient , which has been set to in our experiments, can be adjusted

depending on how large gaps we want to allow (smaller value will allow larger

gaps and vice versa) in the alignment.

∂2

∂1 ∂2 ∂3

∂1

∂3

0 1 0.5

0

0

0.5 0.5

0.5 1

∂A: [∂1 ∂2]

∂B [∂1 ∂2 ∂3 ∂1]

D:

Figure 5-12: The sequence alignment between and . Matching cluster labels are
shown with dashed lines.

The matching score is simply the summation of the similarity values
 ()

 of

each of the matching pairs of cluster labels subtracted by , which is the penalty

score of the gaps. Figure 5-12 shows an example of computing alignment score

between and without a gap. Here the alignment score is

 .

Although computed in Equation 5-2 can be negative in theory, the algorithm

that computes the matching score must return a non-negative result. This is be-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

89

cause the empty set is always taken into account when computing the most

optimal alignment. In case of mismatching between and such that is

negative, the algorithm returns the empty set whose matching score is 0.

5.4.3 Time complexity

Let MA and MB be two deforming meshes whose evolving graph sequences are

 and . Let , and n be the numbers of graphs of and and the total

number of graphs (i.e.,), respectively. We show the computation

complexity of our method in Table 5-1. Our method involves computing the PCA

whose time complexity is () (Abdi and Williams, 2010), followed by the K-

means clustering whose time complexity is () (Inaba and Imai, 1994),

with r being the number of principal components used for the PCA and K the num-

ber of clusters (see Section 5.4.1). Our algorithm also requires computing the se-

quence alignment whose time complexity is () (Smith and Waterman,

1981) and the graph embedding whose time complexity is () with

being the polynomial time for computing the graph edit distance (Neuhaus et al.,

2006).

Table 5-1 Computation complexities of the used techniques.

Algorithms Complexity

PCA ()

K-means ()

Sequence alignment ()

5.5 Similarity measurement

The alignment score we have defined in Equation 5-2 relies on the lengths of se-

quences. For example, given two similar sequences, we obtain higher scores for

longer sequences. In order to alleviate such problem, we normalize the alignment

score as follows:

√
. (5-3)

This normalized alignment score by using our similarity measurement method

holds the following properties:

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

90

P.1 Non-negativity .

As explained in Section 5.4.2, the matching score is non-negative, and so is the

value of . In the extreme case, a value of equals to 0 implies that no align-

ment has been found between the two sequences.

P.2 Symmetry .

The alignment algorithm score in Equation 5-2 does not depend on the order in

which the sequences are aligned. That is, the same pairs of matching cluster labels

are found whether is aligned to , or to . It follows that is equal to

 , and therefore is equal to .

P.3 Boundness √

 , assuming .

According to Equation 5-2, the matching score increases as the number of matching

pairs gets larger. It follows that . This is because the number of matching

pairs for being matched to itself is always larger than or equal to those matched

to . It follows that:

√
 √

 √

 .

If two input sequences are the same, i.e., = , we have .

More strictly, the upper bound of is √

, assuming . As explained

above, , thus it follows that

√

√
 √

 √

.

In a special case where is a subsequence of , based on the definition of the

alignment score in Equation 5-2, we have . Hence, √

.

P.4 Subsequence Assuming , if √

, we have , i.e., is a

subsequence of .

Given √

, it follows that:

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

91

 √

 √

√

By comparing to the definition of in Equation 5-3, we have

 .

As explained in P.3, the alignment score between and being equal to the

alignment score between and indicates that is a subsequence of ,

i.e., .

To sum up, the properties P.1 and P.3 show that , √

-. A value close to 1

indicates that the two sequences and are similar, i.e., the two deforming

meshes MA and MB perform similar motions. In addition, the properties P.3 and

P.4 show that √

 is the necessary and sufficient condition for ,

i.e., is a subsequence of .

5.6 Experimental results

In this section, we first introduce our experimental environment and data, and

then present the pairwise sequence alignment results and the similarity measure-

ment results between deforming meshes. For the sequence alignment results, we

compare the performance by using our method and the other classical sequence

alignment methods (see Section 5.6.2). For the experiments on similarity meas-

urement, we evaluate our results by collecting and comparing with human-based

ground-truth motion similarities (see Section 5.6.3.2). In Section 5.7, we continue

with the analytical discussions of our method including: (1) the possibilities of ex-

tending GED with node/edge attributes, (2) the differences of the spatio-temporal

segmentation results by using either the previous-pose based or the rest-pose

based strains, and (3) the comparative discussions on the results between the spa-

tio-temporal segmentation in this chapter and the temporal segmentation present-

ed in previous chapter.

5.6.1 Experimental environment and data

The deforming meshes used in our experiments include both synthetic anima-

tions and motion capture sequences, which are summarized in Table 5-2. The three

models Michael’, Gorilla’ and Boy’ are generated by rigging TOSCA high-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

92

resolution meshes (Bronstein et al., 2008) with the same walking skeleton provided

by 3D Max Studio (3dS MAX L&T CD., 2006). The t o other models, Head’ and

 Face_1’ are obtained by linear interpolation of 8 key poses (anger, fury, grin, laugh,

rage, sad, smile and surprise) (Sumner and Popovid, 2004). The t o models Camel’

and Horse_1’ are from Sumner et al.’s ork on Deformation Transfer (Sumner and

Popovid, 2004). The model Horse_2’ is the same model as Horse_1’ except that

the frame rate and the starting pose are different. The t o models Face_2’ and

 Face_3’ have been obtained ith the motion capture of t o person’s facial ex-

pressions using the Vicon system (http:Vicon); these motion data have been used

to animate the scanned faces of the two persons. These t o models Face_2’ and

 Face_3’ contain the facial expressions in the follo ing order: eyebrow-raise’ for

three times, anger’, disgust’, fear’, happy’, surprise’, sad’, and with a neutral’

facial expression in between. Selected frames of several deforming meshes are

shown in Figure 5-7.

Table 5-2 Used deforming meshes for spatio-temporal segmentation and timings.

Name
Nb. Of

Triangles

Nb. Of

Frames

Timings

(Second)
Description

Camel 43778 48 6.2 Gallop animation

Horse_1 16858 48 2.8 Gallop animation

Horse_2 29984 80 4.1 Gallop animation

Michael 29999 54 2.0 Walk animation

Gorilla 29999 54 1.9 Walk animation

Boy 10146 54 0.9 Walk animation

Head 31620 80 2.3 Facial expression animation

Face_1 57836 80 1.0 Facial expression animation

Face_2 1171 1473 20.1 Facial expression motion capture

Face_3 1272 1064 8.4 Facial expression motion capture

All our algorithms have been implemented in Matlab, and the results are computed

on a Windows PC with 3.4 GHz Intel Core i7-2600 processor, 4GB of RAM.

We first process each deforming mesh with our segmentation method to generate

the sequence of evolving graphs for each of them. The computation time of the

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

93

segmentation of each data in a Matlab implementation has been shown in Table

5-2. Figure 5-7 shows several segmentation results we have obtained by using our

algorithm. In each figure, deformed’ segments are sho n in red and rigid’ seg-

ments in blue.

5.6.2 Frame alignment

One important by-product of computing sequence alignment is the frame

alignment, i.e., optimal alignment of graphs (or the corresponding key frames).

Having the evolving graph representation of deforming meshes, we apply Smith-

Waterman algorithm for computing the sequence alignment between two se-

quences. In fact, there exist a variety of methods for computing sequence align-

ment, such as Dynamic Time Wrapping (DTW) and its variations. DTW is a well-

known technique for computing optimal global temporal alignment between two

sequences, which computes the sequential alignment of each element (a frame of

a deforming mesh in our case) from a sequence to an element in the other se-

quence by minimizing total aligned element distance (Kruskall and Liberman, 1983).

DTW has been commonly used for speech recognition (Turetsky and Ellis, 2003).

One variation of the classical DTW algorithm is to include another constraint on the

alignment rule that the first (and the last) elements of the two sequences are

forced to be aligned to each other. This rule is especially useful when the input se-

quences are well synchronized. We name this modified classical DTW as mDTW in

this work.

In order to apply DTW and mDTW for optimally aligning two deforming meshes,

one needs to compute a frame distance matrix. To do this, for each deforming

mesh, we first represent each frame with the key frame that is used to represent

the subsequence containing this frame. That is, if a key frame is representing a

subsequence with frames, the key frame repeats times in the sequence. We

then compute the frame distance as graph edit distance since each key frame is

associated with a graph representation.

We show the distance matrices between several deforming meshes in Figure 5-13,

Figure 5-14, Figure 5-15, Figure 5-16, with color varying from blue to red indicating

distance values from low to high. In these figures, we also show the comparisons of

sequence alignment results by using Smith-Waterman, DTW and mDTW, where

each of the alignment result can be seen as an alignment path on the similarity

matrix. We describe the comparisons of the alignment methods between several

deforming meshes as below.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

94

 Horse_1
C

am
el

Figure 5-13 Comparisons of the sequence alignment results by using Smith-Waterman,
DTW and mDTW for ‘Camel’ (vertical-wise) and ‘Horse_1’ (horizontal-wise).

Created by the deformation transfer (Sumner and Popovid, 2004), the two mesh

sequences Camel’ and Horse_1’ are time-synchronized and have the same num-

ber of frames and their corresponding frames have the same poses. In Figure 5-13,

the alignment paths computed by using three alignment methods are all around

the diagonal of the distance matrix, which correctly reflects the synchronized mo-

tions between the two deforming meshes. Note that because we force to match

the first frames by using mDTW, we obtain slightly improved alignment path in the

first 5 frames than the path computed by using DTW.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

95

f23 f31

f28

Boy

G
o
ri
lla

Figure 5-14 Comparisons of the sequence alignment results by using Smith-Waterman,
DTW and mDTW for ‘Gorilla’ (vertical-wise) and ‘Boy’ (horizontal-wise).

Similarly, Gorilla’, Boy’ and Michael’ are time-synchronized deforming meshes

performing Walking’ motions. Both in Figure 5-13 and Figure 5-14 we observe

gaps in the alignment paths computed by using Smith-Waterman algorithm. This

could have been resulted from the following two reasons:

 Smith-Waterman algorithm is a local sequence alignment method that al-

lows gaps among the aligned pairs. This is particularly interesting when we

want to skip noisy dissimilary subsequences while matching two sequences.

 The other reason could be because we apply Smith-Waterman algorithm

over the key-frames, each of which represents a subsequence of frames

(Section 5.3). For example, in Figure 5-14, the key-frame representing the

subsequence from f23 to f31 (see the rectangle in Figure 5-14) of Boy’ is

aligned to the key-frame representing one frame f28 of Gorilla’, which is the

reason why we observe a gap in the alignment path in the rectangle in Fi-

gure 5-14.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

96

 Michael
G

o
ri
lla

Figure 5-15 Comparisons of the sequence alignment results by using Smith-Waterman,
DTW and mDTW for ‘Gorilla’ (vertical-wise) and ‘Michael’ (horizontal-wise).

Although the matchings computed by using DTW and mDTW have shown similar

results so far, they are significantly different on Gorilla’ and Michael’ data as

shown in Figure 5-15: the alignment path computed by using DTW only aligns

about a half of Gorilla’ to Michael’, which is the globally minimized sum of the

alignment distance. In comparison, the alignment path computed by using mDTW

stays near the diagonal of the matrix, resulted from the constraint that the first and

the last frames are forced to be aligned. The latter alignment path is more prefe-

rable knowing that Gorilla’ and Michael’ are time-synchronized deforming meshes.

Note that the path computed by Smith-Waterman algorithm stays around the dia-

gonal of the matrix, which is similar to that of mDTW.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

97

 Horse_2

H
o
rs

e
_

1

Figure 5-16 Comparisons of the sequence alignment results by using Smith-Waterman,
DTW and mDTW for ‘Horse_1’ (vertical-wise) and ‘Horse_2’ (horizontal-wise).Arrows are
directed to several samples of the corresponding matched frames between the two se-
quences.

Although Horse_1’ and Horse_2’ are created in different manners, Horse_1’ is

created by the deformation transfer and Horse_2’ is an animated mesh in Maya,

they both perform Galloping’ motions. In Figure 5-16, we do not apply mDTW

bet een Horse_1’ and Horse_2’. Since these two deforming meshes are not syn-

chronized, their first/last frames may have different poses and therefore it is not

reasonable to assume respective matchings between them. In the alignment obtai-

ned by using Smith-Waterman algorithm, Horse_2’ is aligned to 7 key frames of

 Horse_1’, hich correctly reflects the fact that Horse_2’ contains 1-cycle of Gal-

loping’ motion, hile Horse_1’ contains 4-cycles. Similarly, the path computed by

using DTW fails in this comparison.

Therefore, by comparing the three sequence alignment algorithms, if the input de-

forming meshes contain time-synchronized motions, mDTW has similar perfor-

mance with Smith-Waterman algorithm, and is more robust than DTW by forcing

the first/last frames being aligned, see Figure 5-16. However, mDTW is not capable

of handling motion non-synchronized data, while Smith-Waterman algorithm is by

computing local alignments.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

98

5.6.3 Similarity measurement

5.6.3.1 Similarity of deforming meshes

Figure 5-17 shows the similarity scores we have obtained for the example de-

forming meshes. As expected, deforming meshes with similar motion shows high

similarity scores. Note that Horse_2’ has different motion speed and starting pose

compared to Camel’ and Horse_1’, but the similarities among these three models

are higher than the others because they all sho Gallop’ motions. On the other

hand, although the shape of Face_1’ is similar to those of Face_2’ and Face_3’,

similarities of Face_1’ to the other t o facial models are lo because they perform

different facial expressions. Additionally, the average similarity bet een Gallop’

and Walk’ motions is higher than either Gallop’- Facial expression’ or Walk’-

 Facial expression’, hich complies ith human judgement.

Cam
el

M

ichael

Face_3

Face_2

Head

Face_1

Boy

Gorilla

Horse_2

Horse_1

Camel

Horse_1

Horse_2

Gorilla

Michael

Boy

Face_1

Head

Face_2

Face_3

Figure 5-17 Similarity matrix among deforming meshes. The values are shown in percent-
age (%).

5.6.3.2 Evaluation of the motion similarities

In order to evaluate our similarity measurement method, we first study how

human perceive the motion similarity between deforming meshes. To this end, we

invite 11 participants who are not aware of our segmentation method and show

them with the 10 animated meshes used in our experiments. Based on subjective

observations, each participant gives a score on motion similarity (with a larger

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

99

number between [0 100] indicating higher similarity) between each pair of the de-

forming meshes. Therefore, we obtain pairwise motion similari-

ties of deforming meshes based on human perception.

Having created the human-based ground truth similarity between deforming

meshes, e evaluate our similarity results by applying Pearson’s correlation (Bartko,

1976). A Pearson’s correlation ranges from -1 to +1, with +/- indicating posi-

tive/negative relationship between two variables, and the values reflecting the de-

gree of linear relationships. In order to compute Pearson’s correlation bet een

ground-truth and our results, we save the 495 human rated similarities into a vec-

tor Vgt, and create another vector Vours where each value Vours(i), i=1,…,495, is the

corresponding similarity value of Vgt (i) but computed by using our method. That is,

Vours actually contains 11 times repetition of the similarity results shown in Figure

5-18.

Figure 5-18 shows the scatter plot between Vgt and Vours, and the linear regression

between the two vectors. Among the human score, there are 4 participants out of

11 give scores of the similarities bet een Horse_2’ and deforming meshes ith

 Walk’ motion (Groilla’, Boy’ and Michael’) less than 10%, sho n in the dashed

circle. On the other hand, there are 4 participants give scores of the similarities

bet een Camel’ and the deforming meshes ith Walk’ motion more than 50%,

shown in the dotted circle. Finally, although human perception on the similarity

bet een Gallop’ and Walk’ does not sho clear consistency, e still obtain 0.9008

as the Pearson’s correlation bet een Vgt and Vours. The correlation value indicates

that our similarity measurement method has a high degree of correlation with hu-

man perception on motion similarity.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

100

Figure 5-18 Scatterplot between the similarities of deforming meshes computed by using
our method (horizontal) and the human scores of similarities (vertical). The red line is the
linear regression of the 2D point distribution.

5.6.3.3 Granularity of the motion similarities

In this section, we further evaluate the granularity of our similarity measure-

ment method with similar motions. To this end, we use 6 biped animations (includ-

ing Jog1’, Jog2’, Jump1’, Jump2’, Walk1’, and Walk2’) from 3Ds Max motion

library, and attach them to 3 meshes, i.e. Michael’, Gorilla’, and Boy’, hich re-

sults in 18 deforming meshes. The spatio-temporal segmentation and the graph

representation of selected frames among the new deforming meshes are shown in

Figure 5-8 and Figure 5-9. By applying our similarity measurement method, we ob-

tain a motion similarity matrix among these deforming meshes (see Figure 5-19).

We describe this result and its evaluation as follows:

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

101

Jog

G
o

ri
lla

-W
a

lk
2

B
o

y
-J

o
g
1

G
o

ri
lla

-J
o

g
1

M
ic

h
a
e

l-
J
o

g
1

M
ic

h
a
e

l-
J
u

m
p

2

B
o

y
-J

o
g
2

M
ic

h
a
e

l-
J
o

g
2

G
o

ri
lla

-J
o

g
2

G
o

ri
lla

-J
u

m
p

1

B
o

y
-J

u
m

p
1

G
o

ri
lla

-J
u

m
p

2

M
ic

h
a
e

l-
J
u

m
p

1

B
o

y
-J

u
m

p
2

B
o

y
-W

a
lk

1

G
o

ri
lla

-W
a

lk
1

B
o

y
-W

a
lk

2

M
ic

h
a
e

l-
W

a
lk

2

M
ic

h
a
e

l-
W

a
lk

1

Boy-Jog1
Gorilla-Jog1

Michael-Jog1

Michael-Jump2

Boy-Jog2

Michael-Jog2
Gorilla-Jog2

Gorilla-Jump1
Boy-Jump1

Gorilla-Jump2

Michael-Jump1

Boy-Jump2

Boy-Walk1
Gorilla-Walk1

Boy-Walk2

Michael-Walk2

Michael-Walk1

Gorilla-Walk2

(a)

(b)

3(11) 2(11)

3(1)
3(11) 1(11)

3(11)

2(10)

1(11)

2(11) 1(11) 1 3 2

2 1 3

2 3 1

Jog Jump Walk

(c)

Jump Walk

J
o

g

J
u

m
p

W
a

lk

J
o

g

J
u

m
p

W
a

lk

Figure 5-19 Similarities among 3 similar motions, ‘Jog’ , ’Jump’ and ‘Walk’. (a) Similarity
matrix among 18 deforming meshes. (b) Each row shows the rankings of all the motions to
a motion based on the average motion similarities in (a). (c) Human rated motion similarity
rankings for each motion, where the numbers within each parentheses is the number of
participants who give the ranking before the corresponding parentheses.

In Figure 5-19 (a), we can represent each deforming mesh as a vector of motion

similarities, i.e., the corresponding row of the similarity matrix. Then, by applying K-

means clustering, we successfully classify the 18 deforming meshes into 3 clusters

of different motion types, i.e., Jog’, Jump’ and Walk’.

Based on the above motion classification, we convert the motion similarity matrix

of deforming meshes from Figure 5-19 (a) to motion similarity ranking matrix in

Figure 5-19 (b), where each row shows the rankings of all the motions to a motion

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

102

based on the average motion similarities in Figure 5-19 (a). In this motion similarity

ranking matrix, e use 1/2/3’ to indicate the rankings of the similarity to all the

motions, here 1’/’3’ is the highest/lo est ranking.

In order to validate our motion similarity rankings, we invite 11 participants to give

the rankings for the 3 motions by observing the 18 animations. In Figure 5-19 (c),

the number within each parentheses is the number of participants who give the

ranking number before the corresponding parentheses. Note that 1 participant out

of the 11 considered Jog’ and Jump’ being equally different to Walk’ and gave

ranking 3’ for both, see the second row in Figure 5-19 (c). Apart from this, our

computed ranking results are met with most of the human rankings of the 3 mo-

tions by comparing Figure 5-19 (b) and Figure 5-19 (c).

Therefore, based on the above experiments on deforming meshes with similar mo-

tions, i.e., Jog’, Jump’ and Walk’, our similarity measurement method can suc-

cessfully distinguish these 3 similar motion types. Moreover, our similarity mea-

surement method reflects human perceptions on motion similarity because our

motion ranking results comply well with human rankings among the 3 similar mo-

tions.

5.7 Discussions

5.7.1 Previous-pose based strains vs. rest-pose based strains

As having been discussed in Chapter 3, previous-pose based strains of a deform-

ing mesh contain motion information, for this reason we have chosen previous-

pose based strains for computing the spatio-temporal segmentation of deforming

meshes. In Figure 5-20, we simulate the spatio-temporal segmentation results of

the bending-cylinder’ animation by using both previous-pose based strains and

rest-pose based strains. By representing the spatio-temporal segmentation into

evolving graphs, in the top row of Figure 5-20, we clearly observe the bending mo-

tion and the bended pose remains static for a period before stretching. However,

the segmentation results based on rest-pose strains cannot distinguish the bend-

ing/stretching motions, see the bottom row in Figure 5-20.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

103

…

…

(a)

(b)

Figure 5-20 The spatio-temporal segmentation results and the evolving graph representa-
tion of ‘bending-cylinder’, by using (a) previous-pose based strains and (b) rest-pose based
strains.

5.7.2 Graph edit distance (GED)

While computing the sequence alignment between two evolving graphs in Sec-

tion 5.4, we use GED as the graph dissimilarity metric. One natural extension of

computing GED is to take into account of node attribute such as surface area of

spatial segments, and edge attribute such as distance between spatial segments.

However, such node and edge attributes could vary due to shape differences. For

example, in the frame of both Camel’ and Horse_1’ in Figure 5-7, although

there is a deformed’ segment on the tail of both Camel’ and Horse_1’, the one of

 Camel’ is much smaller than the one of Horse_1’. Due to this reason, by taking

into account of node attribute of surface area of the corresponding spatial seg-

ments, the GED between these two graphs becomes larger, which is not desirable.

Moreover, if we use these GED between graph pairs for computing sequence

alignment, e ill obtain lo er alignment score bet een Camel’ and Horse_1’,

which is contrary to our object for devising a similarity measurement method inde-

pendent on shape difference. Therefore, in our similarity measurement method,

surface area of spatial segment and distance between spatial segments are not

considered as graph attributes for computing GED.

In addition, we have investigated with binary node attributes, i.e., deformed’ or

 rigid’, for computing GED. In order to compute GED ith graph attributes, Neu-

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

104

haus et al. (Neuhaus et al., 2006) compute the dissimilarity of both graph structures

and attributes, and linearly combine them. However, in our case, determining the

weight would be challenging because the graph structure distance and the graph

attribute distance varies significantly between each frame pair (Note that we have

more than a thousand of graphs for our 10 experimental models.). An intelligent

self-adapting weight and a learning-based weight may be potential solutions.

5.7.3 Comparison with temporal segmentation

As have been described in Section 5.3, we represent the spatio-temporal seg-

mentation of a deforming mesh into an evolving graph, wherein each graph repre-

sents a subsequence of frames that have the same spatial mesh segmentation.

Note that by interpreting each graph as a temporal segment, we obtain a temporal

segment as a partial result of our spatio-temporal segmentation. Differently from

the temporal segmentation method presented in Chapter 1, whose objective is to

maximize the pose similarity within temporal segments, an evolving graph detects

the local deformation in a deforming mesh, i.e., the occurance and disappearance

of deformed’ segments.

We elaborate the above differences between our segmentation methods by using a

 bending-cylinder’ animation, sho n in Figure 5-21. In this data, the cylinder’ re-

mains static in the beginning, then starts bending, and keeps the bended pose in

the end (Figure 5-21(a)). Figure 5-21(b) and Figure 5-21(c) shows the results by

using our temporal segmentation method with different threshold (see Section

4.2.2). In Figure 5-21(c), the value of is lo er, and therefore the bending’ mesh

sequences is divided into shorter subsequences so that the dissimilarity within each

becomes smaller. On the other hand, for the spatio-temporal segmentation results,

although the boundary frames may vary if we input different thresholds, we obtain

three temporal segments consistently which can be represented into three graphs

as shown in Figure 5-21(d) : This method detects the occurance of the bending’

action from to , and the disappearance of the bending’ action from to ,

see the red node in Figure 5-21(d).

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

105

(a)

(d)

 … …

 g
1
 g

2
 g

3

(b)

(c)

ts1

ts’1

ts2

ts’2

ts3

ts’4 ts’3

ts4

ts’5

… … …

Figure 5-21 A comparison between our temporal segmentation and spatio-temporal seg-
mentation. (a) shows a ‘bending-cylinder’ animation. (b) and (c) are two temporal segmen-
tation results with different user-threshold, where the threshold in (c) is lower than that in
(b). (d) shows the evolving graph representation of the spatio-temporal segmentation re-
sult.

To further illustrate the differences between our segmentation methods, we use

another bending-cylinder’ data that it first bends the upper joint and then bends

the lower joint together, until both joints reach 90 degree at the same time. In Fi-

gure 5-22 (b) and Figure 5-22 (c), we show the temporal segmentation results with

different threshold by using the method presented in Chapter 4. In Figure 5-22

(c), the value of is lower. Similar to the results in Figure 5-21(c), the bending’

mesh sequences is divided into shorter subsequences so that the dissimilarity wi-

thin each becomes smaller. Again, for the spatio-temporal segmentation results,

we obtain four temporal segments consistently which can be represented into the

graph sequence shown in Figure 5-22 (d) , the boundary frames may vary by using

different thresholds though. In this result, can represent the action that the

only the upper joint is bending’, and can represent that both upper and lower

joints are bending’.

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

106

(a) … … …

(b)

(c)

(d)

ts1 ts4 ts3 ts2

ts’1 ts’4 ts’3 ts’5 ts’6 ts’2

g4 g2 g1 g3

Figure 5-22 Another comparison between our temporal segmentation and spatio-temporal
segmentation. (a) shows another ‘bending-cylinder’ animation with two ‘bending’ joints. (b)
and (c) are two temporal segmentation results with different user-threshold, where the
threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the
spatio-temporal segmentation result.

5.8 Conclusion

5.8.1 Contributions

In this chapter, we have presented a method for the spatio-temporal segmenta-

tion of defoming meshes, whose results are represented with Evolving Graphs. We

then use a sequence alignment algorithm to match Evolving Graphs, with an aim of

computing the motion similarities between the corresponding deforming meshes.

The contributions of this research are shown as follows:

 Spatio-temporal segmentation. Based on the deformation-based feature

descriptor presented in Chapter 3, we have developed an efficient and ef-

fective spatio-temporal segmentation method, which incorporates both

spatial and temporal deformation coherency in the deforming mesh.

 Compact representation. We represent the obtained spatio-temporal seg-

mentation results of a deforming mesh with an evolving graph, where each

graph represent the spatial segmentation within a temporal segment, with

nodes denoting spatial segments and edges denoting spatial neighborhood.

 Graph clustering. By using the graph embedding method (Riesen and Bunke,

2009a, 2009b), we can embed graphs into vectors with the same dimensio-

nality. Moreover, we can further convert the evolving graphs into graph

cluster labels by applying K-means clustering and representing each graph

 Chapter 5 patio-temporal Segmentation of Deforming Meshes

107

with its cluster label. This allows us to apply sequence alignment algorithms

to measure similarities among different graph sequences.

 Temporal frame alignment. One important by-product of the sequence

alignment between two deforming meshes is that the key frames perfor-

ming similar motions are matched to each other.

 Motion similarity. Since an evolving graph represent the dynamic motions

of a deforming mesh, by applying the sequence alignment algorithm bet-

ween two sequences, we obtain an alignment score, which indicates their

motion similarity.

 Evaluation with ground-truth. In order to validate the obtained motion simi-

larities, we compare with human-rated motion similarities that are collected

from a number of volunteers. In specific, e compute Pearson’s correlation

(Bartko, 1976) between the obtained similarities by using our method and

the human-based ground-truth motion similarities. The obtained high corre-

lation indicates that our motion similarity measurement method successful-

ly reflects human perception on the motion similarities of deforming

meshes.

5.8.2 Summary

In this chapter, after a review of the existing spatio-temporal techniques in both

Computer Network and Computer Vision fields, we have presented a new method

for the spatio-temporal segmentation of deforming meshes, which to the best of

our knowledge has not been studied before. Moreover, we represent the spatio-

temporal segmentation results into Evolving Graphs, and therefore compare de-

forming meshes by using existing sequence alignment algorithm to match the cor-

responding Evolving Graphs. In this work, we obtain two interesting results, the

frame alignments and the similarity between deforming meshes, both have been

shown with our experimental results. Additionally, we evaluate our similarity re-

sults with human-based ground-truth motion similarities among the experimental

deforming meshes, which show that our similarity measurement method complies

well with human perception.

108

109

 Conclusions Chapter 6

6.1 Contributions

In this thesis, we have developed segmentation techniques that compute the

temporal and spatio-temporal segmentation for deforming meshes based on the

deformation coherency in the data. Although there have been several works on

deforming meshes, the best of our knowledge, the temporal and spatio-temporal

segmentation have not been studied before. We further extend the segmentation

results towards the application of motion similarity measurement between defor-

ming meshes.

Knowing the fact that the deformations in a deforming mesh are normally both

spatially and temporally correlated. The existing works on deforming mesh howe-

ver compute one single spatial segmentation for an entire deforming mesh, which

overlooks the temporal deformation coherency. By taking the subsequences with

similar poses as temporal segments, our temporal segmentation method can divide

deforming meshes undergoing identical motions into temporal segments with simi-

lar sub-motions, despite of their shape differences. Furthermore, our spatio-

temporal segmentation method enables us to develop a compact representation

for deforming meshes, which allows us to measure motion similarities among them.

To summarize, this dissertation contains the following contributions :

Deformation-based feature descriptor: Strain. Given a deforming mesh, we begin

by devising a per-triangle feature descriptor that measures the deformation of a

triangle within each frame. As having been introduced in Chapter 3, this feature

descriptor is independent to global shape translation, rotation and uniform scale.

Moreover, the per-triangle strain value is robust over shape difference when diffe-

rent shapes performing identical motions.

Temporal segmentation of deforming meshes. We have presented a temporal seg-

mentation method for deforming meshes. In our temporal segmentation algorithm,

based on our deformation-based feature descriptor, we first define a distance me-

 Chapter 6 Conclusions

110

tric for each frame pair based on the difference of their triangle deformation, then

we further define within-segment frame dissimilarity as the average of all possible

pairwise frame distance within each candidate temporal segment. Finally, the

boundary frames for the temporal segmentation are determined by minimizing the

sum of within-segment frame dissimilarities. This allows us to obtain the segmenta-

tion result that each temporal segment is a subsequence of similar frames, i.e.,

frames with similar poses.

Our experiments on both synthesized and motion captured deforming meshes vali-

date the effectiveness of the presented approach. It is also encouraging that we

can obtain consistent temporal segmentation for different deforming meshes exhi-

biting similar motions, despite their shape differences.

Spatio-temporal segmentation of deforming meshes. Next, we have presented a

spatio-temporal segmentation method for deforming meshes. First of all, based on

the degree of deformation of each triangle in each frame, we binarily label the

triangles ith either deformed’ or rigid’. Then, we compute a spatio-temporal

segmentation by merging the deformed’ triangles that are either spatially or tem-

porally connected. We then use an evolving graph to represent the spatio-temporal

segmentation, where each node represents a spatial segment, each edge the

neighbourhood between two spatial segments, and each graph is a key frame re-

presenting a subsequence of frames with the same graph representation.

Having computed the evolving graphs of two deforming meshes, we proceed to

compute the similarity of the evolving graphs by adopting a sequence alignment

method. However, a sequence alignment method cannot be directly applied on

two graph sequences because the graphs may have different dimensions, i.e., diffe-

rent node numbers. In order to avoid this problem, we classify the similar graphs

and assign the graphs in the same cluster with the same label. As a result, each

evolving graph is represented into a sequence of cluster labels. Finally, we compute

the alignment score between the two cluster label sequences by using a sequence

alignment algorithm, which reflects the similarity between two deforming meshes.

The outcome of this method is two folds: (1) Temporal frame alignment. According

to our experiments, the alignment results between two deforming meshes with

similar motions show that the key frames performing similar actions are well

matched to each other. (2) Motion similarity measurement. Based on the spatio-

temporal segmentation results, we have devised a similarity measurement method

for deforming meshes, which measures the similarity of motions that are per-

formed by deforming meshes.

 Chapter 6 Conclusions

111

Our experimental results on a number of deforming meshes show that the motion

similarities can be captured correctly, despite shape differences. We validate our

similarity results by computing Pearson’s correlation ith human-based ground

truth motion similarities. The obtained high correlation indicates that our motion

similarity measurement method successfully reflects human perception on the mo-

tion similarities of deforming meshes.

6.2 Perspectives

6.2.1 Temporal segmentation of deforming meshes

By applying our temporal segmentation method, we have successfully handled

mesh sequences with over a thousand frames, as well as meshes with thousands of

triangles. In our experiments, the values of the threshold (see Section 4.2) for

processing different deforming meshes are provided by user depending on which

level of motion details are desired. However, we have been aware that the re-

quirement of user-parameter limits the application of this algorithm to experienced

users. To alleviate this limitation, an interesting improvement would be to learn the

user parameter from human-based ground-truth segmentations. A sufficient

variety of mesh types with different motions would be needed for building the

ground-truth dataset.

Additionally, assuming we have the automatic computation of temporal segmenta-

tions, a further future scenario is to assist applications such as shape retrieval from

a long mesh sequence based on motion similarities: We first apply our method to

divide the long mesh sequence into temporal segments of submotions, and then

search among temporal segments. We save the computation time in such applica-

tion because we compute the matching between a query sequence with each tem-

poral segment independently, instead of with the entire sequence.

6.2.2 Spatio-temporal segmentation and similarity measurement of defor-

ming meshes

One limitation of our spatio-temporal segmentation method is that we assume a

deforming mesh can be segmented into either deformed’ or rigid’ parts. Due to

this reason, our segmentation method will not be applicable to highly dynamic an-

imations such as the surface simulation of flowing water, which would result in one

single deformed’ segment by using our method.

 Chapter 6 Conclusions

112

Note that for computing the spatio-temporal segmentation, we binarily label each

triangle at each frame ith deformed’ and rigid’, and group the deformed’

triangles that are either spatially or temporally connected as deformed’ spatio-

temporal segments. In the mean time, e also obtain rigid’ spatio-temporal seg-

ments. By mapping the segmentation results onto one mesh, e ill obtain de-

formed’ regions herein each triangle is from deformed’ segment and rigid’ re-

gions wherein each triangle is from rigid’ segments. Thefore, our segmentation

results could be used for mesh simplification by simplifying the rigid’ regions with

larger triangles while keeping dense sampling of the deformed’ regions. In this way,

we can simply a deforming mesh while keeping the information of motions as

much as possible.

Another limitation of the proposed similarity measurement method is the expen-

sive computation cost, mainly due to the heavy computation of the pairwise graph

edit distance. To compute the similarities among all the evolving graphs of the 10

deforming meshes used in our experiment, consisting of 1135 graphs, it takes

about two hours to compute the graph distance matrix, followed by computing

graph clustering. However, once the clusters have been computed for a dataset

with sufficient variety, computing the labels for a new deforming mesh will only be

a matter of computing the graph embedding of each graph in its evolving graph,

and clustering each of the graphs to the closest graph cluster center.

One obvious potential of our segmentation-based similarity measurement method

is its extension towards shape query applications, which will enable to search from

a database for deforming meshes performing identical or similar motions.

113

References

3dS MAX L&T CD., (2006). MAX User Reference, Auto Desk Co., Version 9.0, 2006.

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics, 2(4), 433-459.

Acosta, O., Fripp, J., Rueda, A., Xiao, D., Bonner, E., Bourgeat, P., & Salvado, O.

(2010, April). 3D shape context surface registration for cortical mapping. InBiomedical

Imaging: From Nano to Macro, 2010 IEEE International Symposium on (pp. 1021-1024).

IEEE.

Aksoy, E. E., Abramov, A., Worgotter, F., & Dellen, B. (2010, May). Categorizing object-

action relations from semantic scene graphs. In Robotics and Automation (ICRA), 2010

IEEE International Conference on (pp. 398-405). IEEE.

Alexa, M., & Müller, W. (2000, September). Representing animations by principal

components. In Computer Graphics Forum (Vol. 19, No. 3, pp. 411-418). Blackwell

Publishers Ltd.

Amjoun, R. (2007). Efficient compression of 3d dynamic mesh sequences.

Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., & Vandin, F. (2012, January).

Algorithms on evolving graphs. In Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference (pp. 149-160). ACM.

Ankerst, M., Kastenmüller, G., Kriegel, H. P., & Seidl, T. (1999, January). 3D shape

histograms for similarity search and classification in spatial databases. In Advances in

Spatial Databases (pp. 207-226). Springer Berlin Heidelberg.

Ankerst, M., Kriegel, H. P., & Seidl, T. (1998). A multistep approach for shape similarity

search in image databases. Knowledge and Data Engineering, IEEE Transactions

on, 10(6), 996-1004.

Arcila, R., Buddha, S. K., Hétroy, F., Denis, F., & Dupont, F. (2010). A framework for

motion-based mesh sequence segmentation.

Arcila, R., Cagniart, C., Hétroy, F., Boyer, E., & Dupont, F. (2013). Segmentation of

temporal mesh sequences into rigidly moving components.Graphical Models, 75(1), 10-

22.

Attene, M., Falcidieno, B., & Spagnuolo, M. (2006a). Hierarchical mesh segmentation

based on fitting primitives. The Visual Computer, 22(3), 181-193.

Attene, M., Katz, S., Mortara, M., Patané, G., Spagnuolo, M., & Tal, A. (2006b). Mesh

segmentation-a comparative study. In Shape Modeling and Applications, 2006. SMI

2006. IEEE International Conference on (pp. 7-7). IEEE.

Barbič, J., Safonova, A., Pan, J. Y., Faloutsos, C., Hodgins, J. K., & Pollard, N. S.

(2004, May). Segmenting motion capture data into distinct behaviors. InProceedings of

the 2004 Graphics Interface Conference (pp. 185-194). Canadian Human-Computer

Communications Society.

 References

114

Bartko, J. J. (1976). On various intraclass correlation reliability coeffi-

cients.Psychological bulletin, 83(5), 762.

Barton, G. J. (1993). An efficient algorithm to locate all locally optimal alignments be-

tween two sequences allowing for gaps. Computer applications in the biosciences:

CABIOS, 9(6), 729-734.

Baum, L. E. (1972). An equality and associated maximization technique in statistical es-

timation for probabilistic functions of Markov processes.Inequalities, 3, 1-8.

Belongie, S., Malik, J., & Puzicha, J. (2000, November). Shape context: A new de-

scriptor for shape matching and object recognition. In NIPS (Vol. 2, p. 3).

Belongie, S., Mori, G., & Malik, J. (2006). Matching with shape contexts. InStatistics and

Analysis of Shapes (pp. 81-105). Birkhäuser Boston.

Benhabiles, H., Lavoué, G., Vandeborre, J. P., & Daoudi, M. (2011, December). Learn-

ing Boundary Edges for 3D‐Mesh Segmentation. In Computer Graphics Forum (Vol.

30, No. 8, pp. 2170-2182). Blackwell Publishing Ltd.

Benhabiles, H., Vandeborre, J. P., Lavoué, G., & Daoudi, M. (2009, June). A framework

for the objective evaluation of segmentation algorithms using a ground-truth of human

segmented 3D-models. In Shape Modeling and Applications, 2009. SMI 2009. IEEE In-

ternational Conference on (pp. 36-43). IEEE.

Benhabiles, H., Vandeborre, J. P., Lavoué, G., & Daoudi, M. (2010). A comparative

study of existing metrics for 3D-mesh segmentation evaluation.The Visual Comput-

er, 26(12), 1451-1466.

Berlingerio, M., Bonchi, F., Bringmann, B., & Gionis, A. (2009). Mining graph evolution

rules. In Machine learning and knowledge discovery in databases (pp. 115-130).

Springer Berlin Heidelberg.

Boreczky, J. S., & Rowe, L. A. (1996). Comparison of video shot boundary detection

techniques. Journal of Electronic Imaging, 5(2), 122-128.

Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applica-

tions. Springer.

Bronstein, A. M., Bronstein, M. M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B.,

... & Sun, J. (2010). SHREC 2010: robust feature detection and description bench-

mark. Proc. 3DOR, 2(5), 6.

Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2008). Numerical geometry of non-

rigid shapes. Springer. ISBN: 978-0-387-73300-5.

Bunke, H., & Shearer, K. (1998). A graph distance metric based on the maximal com-

mon subgraph. Pattern recognition letters, 19(3), 255-259.

Chan, J., Bailey, J., & Leckie, C. (2008). Discovering correlated spatio-temporal chang-

es in evolving graphs. Knowledge and Information Systems, 16(1), 53-96.

 References

115

Chen, L., & Georganas, N. D. (2006). An efficient and robust algorithm for 3D mesh

segmentation. Multimedia Tools and Applications, 29(2), 109-125.

Chen, X., Golovinskiy, A., & Funkhouser, T. (2009, July). A benchmark for 3D mesh

segmentation. In ACM Transactions on Graphics (TOG) (Vol. 28, No. 3, p. 73). ACM.

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 17(8), 790-799.

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Society.

Page 21.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space

analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5), 603-

619.

Crandall, S. H., Lardner, T. J., Archer, R. R., Cook, N. H., & Dahl, N. C. (1978). An in-

troduction to the mechanics of solids.

De Aguiar, E., Theobalt, C., Thrun, S., & Seidel, H. P. (2008, April). Automatic Conver-

sion of Mesh Animations into Skeleton‐based Animations. In Computer Graphics Fo-

rum (Vol. 27, No. 2, pp. 389-397). Blackwell Publishing Ltd.

Desikan, P., & Srivastava, J. (2004, August). Mining temporally evolving graphs.

In Proceedings of the the Sixth WEBKDD Workshop in conjunction with the 10th ACM

SIGKDD conference (Vol. 22).

Dollár, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005, October). Behavior recognition

via sparse spatio-temporal features. In Visual Surveillance and Performance Evaluation

of Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop on (pp. 65-

72). IEEE.

Fan, L., & Liu, K. (2011, April). Paint mesh cutting. In Computer Graphics Forum (Vol.

30, No. 2, pp. 603-612). Blackwell Publishing Ltd.

Fod, A., Matarić, M. J., & Jenkins, O. C. (2002). Automated derivation of primitives for

movement classification. Autonomous robots, 12(1), 39-54.

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., & Dobkin, D.

(2004, August). Modeling by example. In ACM Transactions on Graphics (TOG) (Vol.

23, No. 3, pp. 652-663). ACM.

Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose-oblivious shape

signature.Visualization and Computer Graphics, IEEE Transactions on, 13(2), 261-271.

Gao, X., Xiao, B., Tao, D., & Li, X. (2010). A survey of graph edit distance.Pattern

Analysis and applications, 13(1), 113-129.

 References

116

Garland, M., Willmott, A., & Heckbert, P. S. (2001, March). Hierarchical face clustering

on polygonal surfaces. In Proceedings of the 2001 symposium on Interactive 3D

graphics (pp. 49-58). ACM.

Gelfand, N., & Guibas, L. J. (2004, July). Shape segmentation using local slippage

analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on

Geometry processing (pp. 214-223). ACM.

Giorgi, D., Biasotti, S., & Paraboschi, L. (2007). Shrec: shape retrieval contest: Water-

tight models track. Online]: http://watertight. ge. imati. cnr. it.

Golovinskiy, A., & Funkhouser, T. (2008, December). Randomized cuts for 3D mesh

analysis. In ACM Transactions on Graphics (TOG) (Vol. 27, No. 5, p. 145). ACM.

Golovinskiy, A., & Funkhouser, T. (2009). Consistent segmentation of 3D mod-

els. Computers & Graphics, 33(3), 262-269.

Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010, June). Efficient hierarchical

graph-based video segmentation. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on (pp. 2141-2148). IEEE.

Gullett, P. M., Horstemeyer, M. F., Baskes, M. I., & Fang, H. (2008). A deformation gra-

dient tensor and strain tensors for atomistic simulations.Modelling and Simulation in Ma-

terials Science and Engineering, 16(1), 015001.

(http::Matlab) MathWorks - MATLAB and Simulink for Technical Computing,

www.mathworks.com/.

(http::Vicon) Vicon Motion Systems, http://www.vicon.com.

Higham, N. J. (1986). Computing the polar decomposition-with applications.SIAM Jour-

nal on Scientific and Statistical Computing, 7(4), 1160-1174.

Huang, P., Starck, J., & Hilton, A. (2007, November). Temporal 3d shape matching.

In Visual Media Production, 2007. IETCVMP. 4th European Conference on (pp. 1-10).

IET.

Huang, Q., & Dom, B. (1995, October). Quantitative methods of evaluating image

segmentation. In Image Processing, 1995. Proceedings., International Conference

on (Vol. 3, pp. 53-56). IEEE.

Huang, Q., Koltun, V., & Guibas, L. (2011, December). Joint shape segmentation with

linear programming. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 125).

ACM.

Hu, R., Fan, L., & Liu, L. (2012, August). Co‐Segmentation of 3D Shapes via

Subspace Clustering. In Computer graphics forum (Vol. 31, No. 5, pp. 1703-1713).

Blackwell Publishing Ltd.

Hubeli, A., & Gross, M. (2001, October). Multiresolution feature extraction for

unstructured meshes. In Proceedings of the Conference on Visualization'01 (pp. 287-

294). IEEE Computer Society.

 References

117

Inaba, M., Katoh, N., & Imai, H. (1994, June). Applications of weighted Voronoi

diagrams and randomization to variance-based k-clustering. In Proceedings of the tenth

annual symposium on Computational geometry (pp. 332-339). ACM.

James, D. L., & Twigg, C. D. (2005, July). Skinning mesh animations. In ACM Transac-

tions on Graphics (TOG) (Vol. 24, No. 3, pp. 399-407). ACM.

Janus, B., & Nakamura, Y. (2005, July). Unsupervised probabilistic segmentation of mo-

tion data for mimesis modeling. In Advanced Robotics, 2005. ICAR'05. Proceedings.,

12th International Conference on (pp. 411-417). IEEE.

Julius, D., Kraevoy, V., & Sheffer, A. (2005, September). D‐Charts: Quasi‐Developable

Mesh Segmentation. In Computer Graphics Forum (Vol. 24, No. 3, pp. 581-590). Black-

well Publishing, Inc.

Johnson, A. E. (1997). Spin-images: a representation for 3-D surface matching(Doctoral

dissertation, Microsoft Research).

Johnson, A. E., & Hebert, M. (1997, May). Surface registration by matching oriented

points. In 3-D Digital Imaging and Modeling, 1997. Proceedings., International

Conference on Recent Advances in (pp. 121-128). IEEE.

Jung, M., & Kim, H. (2004, October). Snaking across 3d meshes. In Computer Graphics

and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on (pp. 87-93).

IEEE.

Kahol, K., Tripathi, P., & Panchanathan, S. (2004, May). Automated gesture segmenta-

tion from dance sequences. In Automatic Face and Gesture Recognition, 2004. Pro-

ceedings. Sixth IEEE International Conference on (pp. 883-888). IEEE.

Kalafatlar, E., & Yemez, Y. (2010, August). 3d articulated shape segmentation using

motion information. In Pattern Recognition (ICPR), 2010 20th International Conference

on (pp. 3595-3598). IEEE.

Kalogerakis, E., Hertzmann, A., & Singh, K. (2010). Learning 3D mesh segmentation

and labeling. ACM Transactions on Graphics (TOG), 29(4), 102.

Kambhatla, N., & Leen, T. K. (1997). Dimension reduction by local principal component

analysis. Neural Computation, 9(7), 1493-1516.

Kan, A., Chan, J., Bailey, J., & Leckie, C. (2009, December). A query based approach

for mining evolving graphs. In Proceedings of the Eighth Australasian Data Mining

Conference-Volume 101 (pp. 139-150). Australian Computer Society, Inc..

Karni, Z., & Gotsman, C. (2000, July). Spectral compression of mesh geometry.

In Proceedings of the 27th annual conference on Computer graphics and interactive

techniques (pp. 279-286). ACM Press/Addison-Wesley Publishing Co..

Karni, Z., & Gotsman, C. (2004). Compression of soft-body animation

sequences. Computers & Graphics, 28(1), 25-34.

Katz, S., Leifman, G., & Tal, A. (2005). Mesh segmentation using feature point and core

extraction. The Visual Computer, 21(8-10), 649-658.

 References

118

Katz, S., & Tal, A. (2003). Hierarchical mesh decomposition using fuzzy clustering and

cuts (Vol. 22, No. 3, pp. 954-961). ACM.

Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003, June). Rotation invariant

spherical harmonic representation of 3 D shape descriptors. InSymposium on geometry

processing (Vol. 6).

Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., & Funkhouser, T. (2013).

Learning part-based templates from large collections of 3D shapes.ACM Transactions

on Graphics (TOG), 32(4), 70.

Kim, V. G., Lipman, Y., & Funkhouser, T. (2011, August). Blended intrinsic maps.

In ACM Transactions on Graphics (TOG) (Vol. 30, No. 4, p. 79). ACM.

Kleinberg, J., & Tardos, É. (2006). Algorithm design. Pearson Education India. page.

160.

Koprinska, I., & Carrato, S. (2001). Temporal video segmentation: A survey.Signal pro-

cessing: Image communication, 16(5), 477-500.

Kovar, L., Gleicher, M., & Pighin, F. (2002). Motion graphs. ACM transactions on

graphics (TOG), 21(3), 473-482.

Krishna, M. V., Bodesheim, P., Körner, M., & Denzler, J. (2014). Temporal video seg-

mentation by event detection: A novelty detection approach. Pattern Recognition and

Image Analysis, 24(2), 243-255.

Kruskall, J. B. & Liberman, M. (1983). The symmetric time warping algorithm: From con-

tinuous to discrete. In Time Warps, String Edits and Macromolecules. Addison-Wesley.

Lai, Y. K., Hu, S. M., Martin, R. R., & Rosin, P. L. (2008, June). Fast mesh segmentation

using random walks. In Proceedings of the 2008 ACM symposium on Solid and physical

modeling (pp. 183-191). ACM.

Lai, Y. K., Zhou, Q. Y., Hu, S. M., & Martin, R. R. (2006, June). Feature sensitive mesh

segmentation. In Proceedings of the 2006 ACM symposium on Solid and physical mod-

eling (pp. 17-25). ACM.

Lavoué, G., Dupont, F., & Baskurt, A. (2005). A new CAD mesh segmentation method,

based on curvature tensor analysis. Computer-Aided Design, 37(10), 975-987.

Lavoué, G., Vandeborre, J. P., Benhabiles, H., Daoudi, M., Huebner, K., Mortara, M., &

Spagnuolo, M. (2012, May). SHREC'12 Track: 3D mesh segmentation. In Proceedings

of the 5th Eurographics conference on 3D Object Retrieval (pp. 93-99). Eurographics

Association.

Lee, N. S., Yamasaki, T., & Aizawa, K. (2008, June). Hierarchical mesh decomposition

and motion tracking for time-varying-meshes. In Multimedia and Expo, 2008 IEEE Inter-

national Conference on (pp. 1565-1568). IEEE.

Lee, T. Y., Lin, P. H., Yan, S. U., & Lin, C. H. (2005). Mesh decomposition using motion

information from animation sequences. Computer Animation and Virtual Worlds, 16(3‐

4), 519-529.

 References

119

Lee, T. Y., Wang, Y. S., & Chen, T. G. (2006). Segmenting a deforming mesh into near-

rigid components. The Visual Computer, 22(9-11), 729-739.

Lezama, J., Alahari, K., Sivic, J., & Laptev, I. (2011, June). Track to the future: Spatio-

temporal video segmentation with long-range motion cues. In Computer Vision and Pat-

tern Recognition (CVPR), 2011 IEEE Conference on. IEEE.

Li, X., Woon, T. W., Tan, T. S., & Huang, Z. (2001, March). Decomposing polygon

meshes for interactive applications. In Proceedings of the 2001 symposium on Interac-

tive 3D graphics (pp. 35-42). ACM.

Lian, Z., Godil, A., & Xiao, J. (2013). Feature-preserved 3D canonical form.International

journal of computer vision, 102(1-3), 221-238.

Lin, I. C., Peng, J. Y., Lin, C. C., & Tsai, M. H. (2011). Adaptive motion data representa-

tion with repeated motion analysis. Visualization and Computer Graphics, IEEE Trans-

actions on, 17(4), 527-538.

Liu, G., & McMillan, L. (2006, September). Segment-based human motion compression.

In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer

animation (pp. 127-135). Eurographics Association.

Liu, R., & Zhang, H. (2004, October). Segmentation of 3D meshes through spectral

clustering. In Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th

Pacific Conference on (pp. 298-305). IEEE.

Liu, R., & Zhang, H. (2007, September). Mesh segmentation via spectral embedding

and contour analysis. In Computer Graphics Forum (Vol. 26, No. 3, pp. 385-394).

Blackwell Publishing Ltd.

Liu, T., Zhang, H. J., & Qi, F. (2003). A novel video key-frame-extraction algorithm

based on perceived motion energy model. Circuits and Systems for Video Technology,

IEEE Transactions on, 13(10), 1006-1013.

Liu, W., Kan, A., Chan, J., Bailey, J., Leckie, C., Pei, J., & Kotagiri, R. (2012, October).

On compressing weighted time-evolving graphs. In Proceedings of the 21st ACM inter-

national conference on Information and knowledge management(pp. 2319-2322). ACM.

Luo, G., Bergstrom, N., Ek, C. H., & Kragic, D. (2011, September). Representing actions

with kernels. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International

Conference on (pp. 2028-2035). IEEE.

Luo, P., Wu, Z., Xia, C., Feng, L., & Ma, T. (2013). Co-segmentation of 3D shapes via

multi-view spectral clustering. The Visual Computer, 29(6-8), 587-597.

Maji, S., Berg, A. C., & Malik, J. (2008, June). Classification using intersection kernel

support vector machines is efficient. In Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on (pp. 1-8). IEEE.

Mamou, K., Zaharia, T., & Prêteux, F. (2006). A skinning approach for dynamic 3D

mesh compression. Computer Animation and Virtual Worlds, 17(3‐4), 337-346.

 References

120

Mangan, A. P., & Whitaker, R. T. (1999). Partitioning 3D surface meshes using water-

shed segmentation. Visualization and Computer Graphics, IEEE Transactions on, 5(4),

308-321.

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented

natural images and its application to evaluating segmentation algorithms and measuring

ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE

International Conference on (Vol. 2, pp. 416-423). IEEE.

Megret, R., & DeMenthon, D. (2002). A survey of spatio-temporal grouping tech-

niques (No. LAMP-094). MARYLAND UNIV COLLEGE PARK LANGUAGE AND MEDIA

PROCESSING LAB.

Müller, M., & Röder, T. (2006, September). Motion templates for automatic classification

and retrieval of motion capture data. In Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics symposium on Computer animation (pp. 137-146). Eurographics

Association.

Müller, M., Röder, T., & Clausen, M. (2005). Efficient content-based retrieval of motion

capture data. ACM Transactions on Graphics (TOG), 24(3), 677-685.

Neuhaus, M., Riesen, K., & Bunke, H. (2006). Fast suboptimal algorithms for the com-

putation of graph edit distance. In Structural, Syntactic, and Statistical Pattern Recogni-

tion (pp. 163-172). Springer Berlin Heidelberg.

Ovsjanikov, M., Mérigot, Q., Mémoli, F., & Guibas, L. (2010, July). One point isometric

matching with the heat kernel. In Computer Graphics Forum (Vol. 29, No. 5, pp. 1555-

1564). Blackwell Publishing Ltd.

Pass, G., & Zabih, R. (1999). Comparing images using joint histograms.Multimedia

systems, 7(3), 234-240.

Petitjean, S. (2002). A survey of methods for recovering quadrics in triangle

meshes. ACM Computing Surveys (CSUR), 34(2), 211-262.

Praun, E., & Hoppe, H. (2003). Spherical parametrization and remeshing. ACM

Transactions on Graphics (TOG), 22(3), 340-349.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.Journal

of the American Statistical association, 66(336), 846-850.

Riesen, K., & Bunke, H. (2009a). Graph classification based on vector space

embedding. International Journal of Pattern Recognition and Artificial

Intelligence, 23(06), 1053-1081.

Riesen, K., & Bunke, H. (2009b). Reducing the dimensionality of dissimilarity space

embedding graph kernels. Engineering Applications of Artificial Intelligence, 22(1), 48-

56.

Robardet, C. (2009, December). Constraint-based pattern mining in dynamic graphs.

In Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on(pp. 950-955).

IEEE.

 References

121

Rossi, R. A., Gallagher, B., Neville, J., & Henderson, K. (2013, February). Modeling dy-

namic behavior in large evolving graphs. In Proceedings of the sixth ACM international

conference on Web search and data mining (pp. 667-676). ACM.

Ryoo, M. S., & Aggarwal, J. K. (2009, September). Spatio-temporal relationship match:

Video structure comparison for recognition of complex human activities. In Computer

Vision, 2009 IEEE 12th International Conference on (pp. 1593-1600). IEEE.

Sattler, M., Sarlette, R., & Klein, R. (2005, July). Simple and efficient compression of an-

imation sequences. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics sympo-

sium on Computer animation (pp. 209-217). ACM.

Shahraray, B. (1995, April). Scene change detection and content-based sampling of

video sequences. In IS&T/SPIE's Symposium on Electronic Imaging: Science & Tech-

nology (pp. 2-13). International Society for Optics and Photonics.

Shamir, A. (2008, September). A survey on mesh segmentation techniques. InComputer

graphics forum (Vol. 27, No. 6, pp. 1539-1556). Blackwell Publishing Ltd.

Shapira, L., Shamir, A., & Cohen-Or, D. (2008). Consistent mesh partitioning and skele-

tonisation using the shape diameter function. The Visual Computer,24(4), 249-259.

Sharma, A., Von Lavante, E., & Horaud, R. (2010). Learning shape segmentation using

constrained spectral clustering and probabilistic label transfer. In Computer Vision–

ECCV 2010 (pp. 743-756). Springer Berlin Heidelberg.

Sheffer, A. (2001). Model simplification for meshing using face clustering.Computer-

Aided Design, 33(13), 925-934.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 22(8), 888-905.

Shlafman, S., Tal, A., & Katz, S. (2002, September). Metamorphosis of polyhedral sur-

faces using decomposition. In Computer Graphics Forum (Vol. 21, No. 3, pp. 219-228).

Blackwell Publishing, Inc.

Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., & Cohen-Or, D. (2011).Unsupervised

co-segmentation of a set of shapes via descriptor-space spectral clustering (Vol. 30, No.

6, p. 126). ACM.

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subse-

quences. Journal of molecular biology, 147(1), 195-197.

Spriggs, E. H., De La Torre, F., & Hebert, M. (2009, June). Temporal segmentation and

activity classification from first-person sensing. In Computer Vision and Pattern Recog-

nition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference

On (pp. 17-24). IEEE.

Sumner, R. W., & Popović, J. (2004, August). Deformation transfer for triangle meshes.

In ACM Transactions on Graphics (TOG) (Vol. 23, No. 3, pp. 399-405). ACM.

Sumner, R. W., Zwicker, M., Gotsman, C., & Popović, J. (2005, July). Mesh-based in-

verse kinematics. In ACM Transactions on Graphics (TOG) (Vol. 24, No. 3, pp. 488-495).

ACM.

 References

122

Sun, J., Faloutsos, C., Papadimitriou, S., & Yu, P. S. (2007, August). Graphscope: pa-

rameter-free mining of large time-evolving graphs. InProceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining (pp. 687-

696). ACM.

Sun, J., Ovsjanikov, M., & Guibas, L. (2009, July). A Concise and Provably Informative

Multi‐Scale Signature Based on Heat Diffusion. In Computer Graphics Forum (Vol. 28,

No. 5, pp. 1383-1392). Blackwell Publishing Ltd.

Tevs, A., Berner, A., Wand, M., Ihrke, I., & Seidel, H. P. (2011, April). Intrinsic shape

matching by planned landmark sampling. In Computer Graphics Forum(Vol. 30, No. 2,

pp. 543-552). Blackwell Publishing Ltd.

Tian, Z., Xue, J., Zheng, N., Lan, X., & Li, C. (2011, September). 3d spatio-temporal

graph cuts for video objects segmentation. In Image Processing (ICIP), 2011 18th IEEE

International Conference on (pp. 2393-2396). IEEE.

Truesdell, C., & Noll, W. (2004). The non-linear field theories of mechanics (pp. 1-579).

Springer Berlin Heidelberg.

Turetsky, R. J., & Ellis, D. P. (2003). Ground-truth transcriptions of real music from

force-aligned midi syntheses. ISMIR 2003, 135-141.

Van Kaick, O., Zhang, H., Hamarneh, G., & Cohen‐Or, D. (2011, September). A sur-

vey on shape correspondence. In Computer Graphics Forum (Vol. 30, No. 6, pp. 1681-

1707). Blackwell Publishing Ltd.

Vasilakis, A. A., & Fudos, I. (2014, May). Pose partitioning for multi‐resolution segmen-

tation of arbitrary mesh animations. In Computer Graphics Forum (Vol. 33, No. 2, pp.

293-302).

Wang, T. S., Shum, H. Y., Xu, Y. Q., & Zheng, N. N. (2001). Unsupervised analysis of

human gestures. In Advances in Multimedia Information Processing—PCM 2001 (pp.

174-181). Springer Berlin Heidelberg.

Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., & Chen, B. (2012). Active

co-analysis of a set of shapes. ACM Transactions on Graphics (TOG), 31(6), 165.

Wang, Y., Gong, M., Wang, T., Cohen-Or, D., Zhang, H., & Chen, B. (2013). Projective

analysis for 3D shape segmentation. ACM Transactions on Graphics (TOG), 32(6), 192.

Wang, Y., Peterson, B. S., & Staib, L. H. (2000). Shape-based 3D surface

correspondence using geodesics and local geometry. In Computer Vision and Pattern

Recognition, 2000. Proceedings. IEEE Conference on (Vol. 2, pp. 644-651). IEEE.

Wu, Z., Wang, Y., Shou, R., Chen, B., & Liu, X. (2013). Unsupervised co-segmentation

of 3D shapes via affinity aggregation spectral clustering.Computers & Graphics, 37(6),

628-637.

Wuhrer, S., & Brunton, A. (2010). Segmenting animated objects into near-rigid compo-

nents. The Visual Computer, 26(2), 147-155.

Yamauchi, H., Gumhold, S., Zayer, R., & Seidel, H. P. (2005). Mesh segmentation

driven by Gaussian curvature. The Visual Computer, 21(8-10), 659-668.

 References

123

Yang, Y., Yu, J. X., Gao, H., Pei, J., & Li, J. (2014). Mining most frequently changing

component in evolving graphs. World Wide Web, 17(3), 351-376.

Zhou, F., De la Torre, F., & Hodgins, J. K. (2013). Hierarchical aligned cluster analysis

for temporal clustering of human motion. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 35(3), 582-596.

Zhou, K., Synder, J., Guo, B., & Shum, H. Y. (2004, July). Iso-charts: stretch-driven

mesh parameterization using spectral analysis. In Proceedings of the 2004

Eurographics/ACM SIGGRAPH symposium on Geometry processing (pp. 45-54). ACM.

Zhou, Y., & Huang, Z. (2004, January). Decomposing polygon meshes by means of crit-

ical points. In Multimedia Modelling Conference, 2004. Proceedings. 10th Internation-

al (pp. 187-195). IEEE.

Zhang, E., Mischaikow, K., & Turk, G. (2005). Feature-based surface parameterization

and texture mapping. ACM Transactions on Graphics (TOG),24(1), 1-27.

Zhang, Z. (1994). Iterative point matching for registration of free-form curves and sur-

faces. International journal of computer vision, 13(2), 119-152.

124

125

Publications

International Journal:

 Guoliang Luo, Frederic Cordier, and Hyewon Seo. Compression of 3D mesh se-
quences by temporal segmentation. In Computer Animation and Virtual Worlds
(2013) 24, pp. 365–375. Special issue of the 26th International conference on Com-
puter Animation and Social Agents 2013, Istanbul, Turkey.

 Guoliang Luo, Frederic Cordier, and Hyewon Seo. Spatio-temporal segmentation
for the similarity measurement of deforming meshes. The Visual Computer. (In
preparation)

International Conference:

 Guoliang Luo, Frederic Cordier, and Hyewon Seo. Similarity of deforming meshes
based on spatio-temporal segmentation. Eurographics 2014 Workshop on 3D Ob-
ject Retrieval (2014) pp. 77-84. Strasbourg, France.

 Guoliang Luo, Hyewon Seo, and Frederic Cordier. Temporal segmentation of de-
forming meshes. Short paper, the 31st Computer Graphics International (June
2014), Sydney, Australia.

126

