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Résumé 

1. Contexte 

Avec le développement important des techniques d’acquisition de la géométrie, 

les données 3D sont devenues un nouveau sujet de recherche permettant au calcul 

de maillages de devenir un important theme de recherches. 

Durant les deux dernières décennies, la segmentation de maillages a été mise en 

avant en tant que première étape permettant d’extraire l’information sémantique 

vers le calcul et l’analyse de maillages pour de nombreuses applications. Par 

exemple,  les algorithmes de “shape matching” peuvent être basés sur une décom-

position de chaque état d’une forme, suivie d’une reconstruction à partir de sous-

parties (Petitjean, 2002). La simplification de maillage ne pouvant être réalisée sans 

perte de certaines propriétés géométriques dûes à la segmentation du maillage en 

zones planaires et incurvées puis à la simplification des zones planaires (Sheffer, 

2001). Une autre application classique de la segmentation de maillages est la pa-

ramétrisation (Julius et al., 2005). Elle permet à un utilisateur de décrire et contrô-

ler une forme à partir d’un ensembles de parmètres de chaque sous-partie. Cette 

technique est utilisée pour les applications telles que le “mapping” de textures 

(Zhang et al., 2005) et le remaillage (Praun et Hoppe, 2003). D’autres applications 

basées sur la segmentation de maillages font de la compression (Karni et Gotsman, 

2000), de la reconstruction (Funkhouser et al., 2004), de l’édition (Kovar et al., 

2002), etc.  

Etant donné un maillage 3D statique, l’objectif de la segmentation est de spatia-

lement partitionner un maillage en plusieurs dans une des deux manières sui-

vantes :  

 Homogénéité de caractéristiques dans chaque partie, c.-à-d., les éléments 

dans le même segment partagent des propriétés géométriques similaires 

(voir Figure 1(a)). En raison de la similarité géométrique dans chaque 

segment, un nombre plus petit de coefficients spectrales va être demandé 
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pour reconstruire le segment en utilisant l’analyse spectrale, et par 

conséquent, attendre la compression de maillage. 

 Sémantiquement significatif ou segmentation en  parties fonctionnelles, par 

ex., une forme de cheval peut être segmenter  dans un torse, une tête, un 

cou, une queue, et quarte jambes (voir Figure 1(b)) (Kalogerakis et al., 2010). 

Basé sur telles résultats de la segmentation de maillages, on peut soit 

extraire un squelette d’un maillage que peut être utile pour la création des 

animations  (Katz and Tal, 2003), soitt associer les parties fonctionnelles 

entre des formes qui peuvent être étendues plus loin pour des applications 

tel que l’extraction de formes (Petitjean, 2002), ou les segmentations 

constantes (Kalogerakis et al., 2010) (Sidi et al., 2011), etc. Nous allons 

résumer  les méthodes existantes qui génèrent telles résultats de 

segmentation de maillage dans Chapitre 2. 

 

 

(a) (b) 
 

Figure 1 Deux types de segmentation de maillages, (a) homogénéité dans chaque 

segment (Karni and Gotsman, 2000), (b) segments fonctionnellement significatifs 

(Kalogerakis et al., 2010).  

1.1 Enjeux globaux de la segmentation de maillages 

Comme cité par Attene et al. (Attene et al., 2006), il est très difficile de concevoir 

une méthode de segmentation pour des maillages statiques qui répondre parfai-

tement aux toutes les critères d’évaluation, y compris l’extraction de segments 

corrects, les frontières entre les segments, le type de la segmentation multi-échelle, 

la sensibilité de la forme et la complexité asymptotique. Il est difficile car les diffé-

rentes méthodes de segmentation ont des différentes critères en fonction de leur 
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applications, et leurs critères de segmentation peuvent difficilement couvrir tous 

les types de maillages. Dans une recherche ultérieure Chen et al. (Chen et al., 2009), 

comparent la performance de plusieurs méthodes avancées de segmentation en 

utilisant des résultats de segmentation données par une groupe de presonnes, et 

ils ont arrivés à une conclusion similaire :  Il reste toujours difficile à développer 

une méthode de segmentation qui peut fonctionne bien sur tout les types de mail-

lages parce que les critères géométriques ne peuvent pas fournir tous les signales 

pour identifier toutes les parties sémantiques significatives. Par exemple, la mé-

thode de segmentation par l’essayage de primitives, y compris un plan, une sphère, 

et un cylindre, peuvent être performantes avec des formes mécaniques mais pas 

avec des objectes complexe comme un maillage d’un « oiseau », car les ailes des 

oiseaux peuvent pas retrouver leurs formes par les primitives basiques.   

1.2 Enjeux globaux de la segmentation de maillages dynamiques 

Grâce au récents et rapides développements des technologies d'animation, les 

maillages dynamiques sont de plus en plus omniprésents. Bien qu'un nombre im-

portant de travaux ont été effectués  sur les maillages statiques durant les deux 

dernières décennies, la recherche sur les maillages dynamique reste un sujet relati-

vement récent. 
 

Mis à part les enjeux principaux de la segmentation de maillages, présentés dans la 

sous-section précédente, la segmentation de maillages dynamiques reste particu-

lièrement délicate pour les raisons suivantes : 

 Taille des données en entrée : A l'inverse des maillages statiques qui ne 

contiennent que 3 dimensions (spatiales), les maillages dynamiques 

comportent une dimension supplémentaire, le temps, ce qui induit un 

problème relativement à la tailles des données. Un maillage dynamique 

standard sur, par exemple, une durée de 1 minute avec un taux de 

rafraîchissement de 30 images par seconde, regroupe sans peine plus de 1800 

maillages, ce qui représente une augmentation très importante de la taille des 

données à traiter. 

 Comportement dynamique : Contrairement aux méthodes existantes pour les 

maillages statiques, qui ont été développés en se reposant sur des propriétés 

figées de figures géométriques statiques, un algorithme de segmentation pour 

des maillages dynamiques doit tenir compte du comportement dynamique de 

ces maillages qui se caractérise par le mouvement dans le temps de leurs 

différentes sous-parties. Bien qu'il existe plusieurs méthodes de segmentation 

de maillages dynamiques, qui calculent une unique décomposition spatiale des 

maillages en utilisant les comportement dynamiques des primitives du 
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maillages traité (sommets, arêtes, ou triangles) sur la totalité d'une unique 

séquence (Sattler et al., 2005) (Wuhrer et al., 2010), ces méthodes, appliquées 

sur une longue séquence d'un maillage dynamique comportant plusieurs 

mouvement distincts, conduisent à un résultat découpé en 'sous-parties de 

mouvement'  souvent mal segmentées. Dès lors, se présente la nécessité de 

disposer d'un algorithme qui puisse à la fois découper un mouvement en 

plusieurs sous-séquences tout en segmentant spatialement la surface d'un 

maillage dynamique pour chacune des ces sous-séquences. 

L'évaluation du résultat de la segmentation : Bien que l'on veuille décomposer un 

maillage animé en sous-parties pertinentes ou cohérentes, la formalisation ma-

thématique de ce que la perception humaine considère comme étant 'pertinent' 

est très difficile, ce qui rend l'évaluation objective des résultats d'une segmentation 

compliquée. Dans le cas de segmentations de maillages statiques  plusieurs études 

basées sur une appréciation humaine de telles segmentations ont été proposées 

ces dernières années (Chen and Funkhouser, 2009) (Bronstein et al., 2008). Cepen-

dant de telles données n'existent pas, à l'heure actuelle, pour des animations 3D, 

ce qui constitue donc un autre aspect du travail à effectuer.  

2. Objectifs et contributions 

Les maillages dynamiques peuvent être classifié en deux catégories: les mail-

lages animés et les  séquences variantes de maillages. Une animation 3D est 

un maillage animé si sa topologie reste constante durant la totalité de la séquence, 

c'est à dire si le nombre de sommet ainsi que la connectivité sont constants. Sinon, 

on parle de séquences variantes de maillages. Afin d'effectuer la segmentation 

d'une séquence variante de maillages. Il peut être nécessaire de  calculer la corres-

pondance de  vertices entre les images successives où le problème de correspon-

dance demeure une tâche difficile et coûteuse en calcul (Van et al., 2011) (Arcila et 

al., 2013). C'est pour cette raison que nous avons fait le choix de nous intéresser 

aux maillages animés. Nous allons nous intéresser plus particulièrement aux tech-

niques de segmentation pour les maillages animés.  

 

Cette thèse a pour but de développer des méthodes de segmentation qui calcule la 

segmentation temporelle et spatio-temporelle de maillages animés. À notre con-

naissance, aucune méthode n'avait encore été proposée pour la segmentation à la 

fois temporelle et spatio-temporelle de maillages animés jusqu'à aujourd'hui. De 

plus, nous étendrons les résultats de segmentation afin de mesurer la similarité 

entre maillages animeés. Ceci peut être significatif car cela permet de résoudre un 
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problème qui ne pouvait pas être traité jusqu'alors. Concernant le problème de la 

segmentation des maillages dynamiques présenté dans la section précédente, 

notre segmentation temporelle permet de diviser un mouvement en sous-

mouvement ce qui permet de répondre à l'enjeu des comportements dynamiques 

d'un maillage animé. De plus, pour résoudre le problème d'évalutation, nous éten-

dons notre segmentation spatio-temporelle afin de mesurer la similarité de mou-

vements. Ainsi nous validons indirectement la qualité de la segmentation spatio-

temporelle de maillages animés en comparant les similariteés obtenues calculées à 

celle obtenues en questionnant des humains.  

 

Dans le reste de cette section, nous définissons formellement la segmentation spa-

tiale, temporelle et spatio-temporelle de maillages animés puis nous résumons les 

contributions de ce thèse.  

2.1 Définitions formelles 

Définition 1 : Segmentation spatiale de maillages dynamiques (Shamir, 2008) (Arcila 

et al., 2013). Soit M=(     ) la topologie d'un maillage dynamique, où  ,  ,   

sont respectivement les ensembles de sommets, d'arêtes et de triangles. Une seg-

mentation spatiale ∑s de M est un ensemble de sous-maillages ∑s={       }, 

         , où chaque            est un ensemble de sommets connetés. 

Notons que la segmentation spatiale peut aussi   bien être définie comme une par-

tition d'arêtes  que de triangles  en  sous-ensembles disjoints.  

Voir l'exemple de la Figure 2, une segmentation spatiale est calculée pour un mail-

lage animé. 

 

Figure 2 Un exemple d'une segmenation spatiale pour un maillage animé. 
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Definition 2 : Segmentation temporelle de maillages dynamiques (Arcila et al., 

2013). Soit M = *          + un maillage dynamique, où  est le nombre 

d’images. Une segmentation temporelle ∑t de M est un ensemble de sous-

séquences ∑t={       },         =M, où chacun des            est un 

sous-séquence d’images successives. 

Voir l'exemple de la Figure 3, un maillage animé est temporellement segmenté en 

plusieurs sous-séquences  avec différents mouvements. 

 

… … … …    

  un’  Head-right’  Head-do n’ 

Figure 3 n exemple d'une segmentation temporelle de maillages animés. 

Definition 3 : Segmentation spatio-temporelle de maillages dynalmiques. Soit M = 

*  
                 + un maillage dynamique, avec N  le nombre de som-

mets. Nous considérons M comme une donnée volumique, et définissons un seg-

ment spatio-temporel   
  comme un ensemble de sommets (ou de triangles) qui 

sont spatialement ou temporellement connectés les uns aux autres. Alors, le but de 

la segmentation spatio-temporelle est de partitionner un maillage dynamique M en 

segments spatio-temporels, i.e.,      
  = M. Voir l'exemple de la Figure 4, une 

segmentation spatio-temporelle où les joints encerclés sont segmentés comme 

'animé' ou 'rigid' selon leurs mouvements. 

 
 

• Red:    deformed’.      • Blue:   rigid’. 

 

Figure 4 Un exemple d'une segmentation spatio-temporelle d'un maillage animé. 
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2.2 Contributions  

Plusieurs travaux ont été publiés par le passé et qui permettent de segmenter un 

maillage animé en un ensemble de composants rigides. Dans cette thèse, nous pré-

sentons plusieurs techniques qui permettent de calculer une segmentation spatio-

temporelle d’un maillage animé ; de tels travaux n’ont pas encore été publiés sur 

ce sujet. De plus, nous avons étendu cette méthode pour pouvoir comparer ces 

maillages animés entre eux à l’aide d’une métrique. À notre connaissance, aucune 

méthode existante ne permet de comparer des maillages animés entre eux. Dans 

mon travail de thèse, je présente les contributions suivantes :  

Un nouveau descripteur pour les points caractéristiques dynamiques. Nous définis-

sons un descripteur qui permet de mesurer les déformations au niveau des 

triangles et pour chaque image de l’animation. Ce descripteur est invariant par 

rapport à la rotation, translation et dilatation uniforme. De plus, il permet 

d’identifier la similarité entre des formes différentes, mais ayant les mêmes défor-

mations. 

Segmentation temporelle de maillages animés. La plupart des travaux existants 

sont basés sur le regroupement de sommets ou de triangles suivant des critères 

comme la distance géodésique ou l’affinité cinématique des sommets ou triangles 

regroupés. Dans ce cas, il apparait clairement que le résultat de la segmentation 

dépend de la déformation du maillage animé. Idéalement, cette segmentation doit 

correspondre aux mouvements du maillage animés. Mais lorsque le maillage animé 

correspond à une animation longue et complexe, le résultat est une segmentation 

trop morcelée qui ne représente pas correctement l’animation du maillage animé. 

C’est pour cette raison que nous pensons que la segmentation temporelle doit être 

précédée d’une segmentation spatiale. De cette façon, il est possible d’avoir une 

segmentation spatiale consistante à l’intérieur de chaque segment temporel. 

À l’aide de nouveau descripteur, nous définissons ensuite une métrique pour me-

surer la distance entre deux images-clefs du maillage animé. Ceci nous permet en-

suite de définir une métrique pour les segments temporels ; cette métrique est 

calculée comme étant la moyenne des distances des images-clefs appartenant à un 

même segment. Enfin, nous proposons une méthode de segmentation temporelle 

qui minimise la métrique, c’est-à-dire, la distance entre les images-clefs apparte-

nant au même segment. Ceci nous permet d’obtenir une segmentation où chaque 

segment est constitué des images-clefs correspondant à un même mouvement du 

maillage animé. 
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Les résultats de cette méthode de segmentation sur des données synthétiques et 

des données de capture de mouvement démontrent son efficacité. En particulier, 

ces essais montrent que les maillages animés de forme différente, mais représen-

tant les mêmes mouvements sont segmentés de façon consistante entre eux. 

Segmentation spatio-temporelle de maillages animés. À partir de la méthode de 

segmentation temporelle décrite précédemment, nous avons développé une mé-

thode exploitant la cohérence spatio-temporelle des maillages animés. Notre mé-

thode de segmentation spatio-temporelle pour les maillages animés est basée sur 

une nouvelle représentation qui permet de décrire de façon précise les mouve-

ments du maillage animé. 

En utilisant les valeurs de déformation de chaque triangle à chaque image-clef, les 

triangles sont classés en deux catégories : les triangles se déformant et ceux qui 

sont rigides. Ensuite, nous calculons une segmentation spatio-temporelle en re-

groupant les triangles se déformant et qui sont adjacents au niveau du maillage et 

au niveau des images-clefs. Puis, nous utilisons un graphe évoluant (evolving graph) 

pour représenter la segmentation spatio-temporelle, un graphe évoluant étant 

constitué d’une séquence de graphes correspondant aux images-clefs du maillage 

animé ; chaque nœud du graphe évoluant correspond à un segment spatio-

temporel et chaque arête correspond à une relation de voisinage entre les seg-

ments. 

À partir des graphes évoluant de deux maillages animés, nous calculons une mé-

trique pour mesurer le niveau de similarité entre les deux maillages animés ; cette 

métrique est basée sur l’alignement des deux séquences de graphes. Cet aligne-

ment ne peut pas être calculé directement du fait que les graphes sont de dimen-

sion différente (nombre différent de nœuds et d’arêtes). Pour résoudre ce pro-

blème, nous classons les graphes suivant leur similarité pour créer des ensembles 

de graphes ; à chaque ensemble de graphes est attribuée une étiquette. En consé-

quence, chaque graphe évoluant est représenté sous la forme d’une séquence 

d’étiquettes. Ceci nous permet de calculer l’alignement des deux séquences avec 

une méthode inspirée de celle utilisée pour l’alignement des séquences d’ADN. Le 

résultat de l’alignement des deux graphes évoluant est finalement utilisé pour cal-

culer le niveau de similarité entre eux. 

Les avantages de cette méthode sont doubles. Premièrement, elle permet de calcu-

ler l’alignement temporel des deux maillages animés. Les essais que nous avons 

menés avec des maillages animés représentant les mêmes mouvements ont mon-

tré que l’alignement temporel est correctement calculé. Deuxièmement, cette mé-
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thode permet de mesurer la similarité de mouvements entre les maillages animés. 

Pour cela, nous avons proposé une métrique qui utilise les résultats de la segmen-

tation spatio-temporelle. Les essais que nous avons effectués avec un certain 

nombre de maillages animés montrent que notre méthode est capable de détecter 

correctement les similarités de mouvements. Nos résultats sont validés en les 

comparant avec des données produites par un groupe des personnes et en calcu-

lant le facteur de corrélation de Pearson. Le résultat obtenu montre une forte cor-

rélation entre les mesures de similarité calculée par notre algorithme et celles don-

nées par les personnes. 

3. Conclusions et Organisation 

À notre connaissance, aucune méthode n’avait encore été proposée pour la 

segmentation à la fois spatiale et temporale de maillages animés jusqu'aujourd'hui. 

Pour ce travail, les contributions techniques de nos travaux sont les suivantes. 

Premièrement, nous avons proposé une méthode qui calcule une segmentation 

temporelle en minimisant la dissimilarité des images-clefs appartenant au même 

segment. Cette méthode permet de générer une segmentation en cohérence avec 

le mouvement du maillage animé. Les maillages animés présentant les mêmes 

animations sont segmentés de la même façon. Notre deuxième contribution est 

une méthode de segmentation spatio-temporelle qui utilise la cohérence des dé-

formations des triangles du maillage animé. Grâce à l’utilisation des graphes évo-

luant (evolving graph), nous avons pu proposer une méthode qui calcule 

l’alignement temporel de deux maillages animés ainsi qu’une métrique pour me-

sure le degré de similarité de mouvements entre ces deux maillages animés. Les 

essais que nous avons effectués avec plusieurs types de maillages montrent que 

notre méthode est capable de détecter la similarité de la même façon que la per-

ception humaine.  

Le résumé de la  thèse est organisé de la façon suivante : dans  Chapter 2, nous 

faisons l'état de l'art des travaux sur la segmentation pour un unique maillage sta-

tique, un ensemble de modèles 3D similaires et la segmentation spatialle de mail-

lages dynamiques. Ensuite, nous présentons un nouveau descripteur basé sur la 

déformation dans Chapter 3. En utilisant ce descripteur dans Chapter 4, nous pré-

sentons notre méthode de segmentation temporelle pour les maillages dyna-

miques. Après quoi, dans Chapter 5, nous présentons une nouvelle méthode de 

segmentation spatio-temporelle pour les maillages dynamiques, permettant de 

mesurer les similitudes de mouvement entre différents maillages dynamiques. En-
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fin nous concluons par plusieurs remarques sur nos travaux et évoquons des piste 

de poursuites potentielles dans  Chapter 6.  

Mots clefs : maillage qui se déforme, descripteur de points caractéristiques dyna-

miques, segmentation temporelle, segmentation spatio-temporelle, mesure de 

similarité de mouvements. 
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Abstract 

With an abundance of animation techniques available today, animated mesh 

has become a subject of various data processing techniques in Computer Graphics 

community, such as mesh segmentation and compression. Created from animation 

software or from motion capture data, a large portion of the animated meshes are 

deforming meshes, i.e. ordered sequences of static meshes whose topology is fixed 

(fixed number of vertices and fixed connectivity). Although a great deal of research 

on static meshes has been reported in the last two decades, the analysis, retrieval 

or compressions of deforming meshes remain as new research challenges. Such 

tasks require efficient representations of animated meshes, such as segmentation. 

Several spatial segmentation methods based on the movements of each vertex, or 

each triangle, have been presented in existing works that partition a given deform-

ing mesh into rigid components.  

In this thesis, we present segmentation techniques that compute the temporal and 

spatio-temporal segmentation for deforming meshes, which both have not been 

studied before. We further extend the segmentation results towards the applica-

tion of motion similarity measurement between deforming meshes. This disserta-

tion consists of the following contributions.   

A new dynamic feature descriptor. We begin by devising an efficient per-triangle 

feature descriptor that measures the deformation of each triangle at each frame. 

This descriptor is invariant to global shape rotation, translation and uniform scale. 

In our experiments, we observe that the new descriptor is robust over shape diffe-

rences when different shapes performing identical motions, which is desirable.  

Temporal segmentation of deforming meshes. Most existing works on deforming 

mesh compute spatial clustering according to geodesic and kinematic affinities of 

vertices or triangles. In such cases, it is clear that the spatial segmentation results 

may significantly be different depending on the deformation exhibited on a defor-

ming mesh. Ideally, they should represent well the motion exhibited on the mesh. 

However, when it comes a long and complex motion composed of several basic 
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motions, one may obtain overly segmented patches, which do not represent well 

each basic motion. To this end, we believe that temporal segmentation should be 

preceded prior to spatial segmentation, so as to compute consistent spatial seg-

mentation within each temporal segment.  

Based on our new descriptor, we define a distance metric for each frame pair, and 

further define within-segment frame dissimilarity as the average of all possible 

pairwise frame distance within a temporal segment. Then, the boundary frames for 

the temporal segmentation are determined by minimizing the sum of within-

segment frame dissimilarities. This allows us to obtain the segmentation result that 

each temporal segment is a subsequence of similar frames with similar poses. 

Our experiments on both synthesized and motion captured deforming meshes con-

firm the effectiveness of the presented approach. It also shows that we can obtain 

consistent temporal segmentation for different deforming meshes exhibiting simi-

lar motions, despite their shape differences.  

Spatio-temporal segmentation of deforming meshes. Having the above temporal 

segmentation method, we step further to investigate both the spatial and temporal 

coherency simultaneously in deforming meshes. We devise a new spatio-temporal 

segmentation technique for deforming meshes, with an aim of developing a new 

representation that encodes well the motions exhibited in given deforming meshes.  

Based on the degree of deformation of each triangle at each frame indicated by 

using strains, we binarily label the triangles with either  deformed’ or  rigid’. Then 

we compute a spatio-temporal segmentation by merging the  deformed’ triangles 

that are either spatially or temporally connected. We then use an evolving graph to 

represent the spatio-temporal segmentation, where each node represents a spatial 

segment, each edge the neighbourhood between two spatial segments, and each 

graph is a key frame representing a subsequence of frames with the same graph 

representation.  

Having computed the evolving graphs of two deforming meshes, we proceed to 

compute the similarity of the evolving graphs by adopting a sequence alignment 

method. However, a sequence alignment method cannot be directly applied on 

two graph sequences because the graphs may have different dimensions, i.e. diffe-

rent node numbers. In order to avoid this problem, we classify the similar graphs 

and assign the graphs in the same cluster with the same label. As a result, each 

evolving graph is represented into a sequence of cluster labels. Finally, we compute 
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the alignment score between the two cluster label sequences by using a sequence 

alignment algorithm, which reflects the similarity between two deforming meshes.  

The outcome of this method is two folds: (1) Temporal frame alignment. According 

to our experiments, the alignment results between two deforming meshes with 

similar motions show that the key frames performing similar actions are well 

matched to each other. (2) Motion similarity measurement. Based on the spatio-

temporal segmentation results, we have devised a similarity measurement method 

for deforming meshes, which measures the similarity of motions that are per-

formed by deforming meshes. Our experimental results on a number of deforming 

meshes show that the motion similarities can be captured correctly, despite shape 

differences. We validate our similarity results by computing Pearson’s correlation 

with human-based ground truth motion similarities. The obtained high correlation 

indicates that our motion similarity measurement method successfully reflects hu-

man perception on the motion similarities of deforming meshes. 

Keywords : deforming mesh, dynamic feature descriptor, temporal segmentation, 

spatio-temporal segmentation, motion similarity measurement. 
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 Introduction Chapter 1

1.1 Background 

With an abundance of computer hardware and geometry acquisition devices 

available today, 3D mesh data have become a new research subject and according-

ly the mesh processing has become an important research topic. During the last 

two decades, mesh segmentation has drawn a great deal of attentions because it is 

a primary step that extracts semantic information towards mesh processing and 

analysis for numerous applications. For example, shape matching and retrieval can 

be done based on the decomposition of each shape, followed by the matching of 

the sub-parts (Petitjean, 2002). One can also achieve a mesh simplification without 

much loss of geometrical properties by segmenting a mesh into planary and curved 

regions and then simplifying the planary regions (Sheffer, 2001). Another common 

output of mesh segmentation is a parameterization (Julius et al., 2005), which ena-

ble a user to describe and control the shape with a set of parameters of each sub-

part. This is useful for the applications such as texture mapping (Zhang et al., 2005) 

and remeshing (Praun and Hoppe, 2003). Other applications based on mesh seg-

mentation include compression (Karni and Gotsman, 2000), reconstruction (Funk-

houser et al., 2004), editing (Kovar et al., 2002), etc. 

Given a 3D static mesh, the object of segmentation is to spatially partition the 

mesh into multiple parts in either of the two following manners:  

 Homogeneity of features within each part, i.e., the elements within the 

same segment share similar geometrical properties (see Figure 1-1(a)). Due 

to the geometry similarity within each segment, a smaller number of spec-

tral coefficients will be needed to reconstruct the segment by using spectral 

analysis, and therefore achieves mesh compression (Karni and Gotsman, 

2000).  

 Semantically meaningful or functional parts, e.g., a horse shape can be 

segmented into a torso, a head, a neck, a tail and four legs (see Figure 
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1-1(b)) (Kalogerakis et al., 2010). Based on such mesh segmentation results, 

one can either extract mesh skeleton that can be useful for creating anima-

tion (Katz and Tal, 2003), or match the functional parts between shapes that 

can be further extended to the applications such as shape retrieval (Pe-

titjean, 2002) and consistent segmentations (Kalogerakis et al., 2010) (Sidi 

et al., 2011), etc. We will summarize the existing methods that generate 

such mesh segmentation results in Chapter 2. 

 

(a) (b) 
 

Figure 1-1 Two types of mesh segmentation, (a) homogeneity within each segment (Karni 
and Gotsman, 2000), (b) functional meaningful segments (Kalogerakis et al., 2010).  

1.1.1 General challenges of mesh segmentation 

As stated by Attene et al. (Attene et al., 2006), it is very difficult to devise a seg-

mentation method for static meshes that perfectly meet all the evaluation criteria, 

including the extraction of correct segments, the boundaries between segments, 

the type of multi-scale segmentation, the sensitivity to pose and the asymptotic 

complexity. It is difficult because different segmentation methods have different 

segmentation criteria depending on their applications, and their segmentation cri-

teria can hardly cover all mesh types. In a later research, Chen et al. (Chen et al., 

2009) compare the performance of several advanced mesh segmentation methods 

by using human-based ground-truth segmentation results, and draw a similar con-

clusion: It remains a difficult problem to develop a segmentation method that can 

perform well over all mesh types because geometric criteria may not provide suffi-

cient cues to identify all the semantically meaningful parts. For example, the seg-

mentation method by fitting primitives, including a plane, a sphere, and a cylinder, 

can perform well with mechanical shapes but not with more complex objects such 
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as  bird’ meshes, because the bird’s  ings could not be  ell fitted by the basic pri-

mitives. 

1.1.2 General challenges of the segmentation of dynamic meshes 

With the rapid advances of the animation technologies in recent years, dynamic 

mesh data are becoming ubiquitous. Although a great deal of research on 3D static 

mesh segmentation have been reported in the last two decades, the segmentation 

of dynamic meshes remains as a new research challenge.  

Apart from the general challenges of mesh segmentation presented in the previous 

subsection the segmentation of dynamic meshes is particularly difficult due to the 

following reasons:  

 Input data size. Unlike the static meshes that only contain 3D spatial dimen-

sions, a dynamic mesh has an additional dimension of time, which poses a 

challenge because of larger problem size. Typically, a dynamic mesh of 1 

minute with frame rate of 30 frames/second contains 1800 meshes, which 

is a significant increase of data size.  

 Dynamic behaviors. In contrast to the existing segmentation methods for 

static meshes that are developed based on static geometrical features, a 

segmentation algorithm for dynamic meshes needs to take into account of 

the dynamic behaviors, which is the temporal movements of different mesh 

subparts. There exists several segmentation methods for dynamic meshes 

that compute a single spatial mesh decomposition based on the dynamic 

behaviors of the mesh primitives, i.e., vertices, edges, or triangles, in the 

entire mesh sequence (Sattler et al., 2005) (Wuhrer et al., 2010). By using 

these methods on a long dynamic mesh with different motions, we may ob-

tain overly segmented patches that do not represent well of each sub-

motion. In such cases, a segmentation algorithm that can both temporally 

divide a motion into sub-motions and spatially segment the mesh surface 

for each sub-motion would be preferable. 

 Evaluation of segmentation results. One may aim to decompose an ani-

mated mesh into meaningful parts,  hereas human perception of  mea-

ningful’ is difficult to model mathematically, making the objective evalua-

tion of segmentation results as another challenging task. To handle the eva-

luation problem of static mesh segmentation, several benchmarks of hu-

man-based ground-truth segmentation have been made available in recent 
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years (Chen and Funkhouser, 2009) (Bronstein et al., 2008). However, such 

ground-truth segmentation does not exist today for 3D animations, and 

constructing similar benchmark for 3D animations will be another challen-

ging task.  

1.2 Objectives and contributions 

Dynamic meshes can be classified into two types: deforming mesh and variant 

mesh sequence. Given a 3D animation, it is a deforming mesh if the mesh has con-

stant topology over the entire sequence, i.e., a fixed number of vertices and fixed 

connectivity. Otherwise, we consider it as a variant mesh sequence. In order to 

compute the segmentation of a variant mesh sequence, one may have to compute 

vertex correspondence among successive frames, where the correspondence prob-

lem however remains a challenging and a heavy computational task (Van et al., 

2011) (Arcila et al., 2013). For this reason, we choose to work with deforming 

meshes so that we can focus on the discussion and investigation of the segmenta-

tion techniques for deforming meshes.  

In this thesis, we aim to develop segmentation techniques that compute the tem-

poral and spatio-temporal segmentation for deforming meshes, which both have 

not been studied before. Moreover, we further extend the segmentation results 

towards the application of motion similarity measurement between deforming 

meshes. This may be significant as it solves the problem that cannot be handled by 

current approaches. Concerning the challenges of the segmentation of dynamic 

meshes presented in the previous section, our temporal segmentation can divide a 

motion into submotions, which would address the challenge of dynamic behaviors 

performed in a deforming mesh. Additionally, in order to alleviate the challenge of 

evaluation problem, we extend the spatio-temporal segmentation for the applica-

tion of motion similarity measurement. Thus, by evaluating the computed motion 

similarities with human-based ground-truth, we indirectly validate the quality of 

the spatio-temporal segmentation of deforming meshes.  

In the remainder of this section, we formally define the spatial segmentation, the 

temporal segmentation and the spatio-temporal segmentation of deforming mesh-

es, followed by a summary of the contributions of this thesis.  
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1.2.1 Formal definitions 

Definition 1-1 : spatial segmentation of deforming meshes (Shamir, 2008) (Arcila et 

al., 2013). Let M=(     ) be the mesh topology of a deforming mesh, where  ,  , 

  are vertex, edge and triangle sets, respectively. A spatial segmentation ∑s of M 

is a set of sub-meshes ∑s={       }, ⋃          , where each of            is 

a set of connected vertices. Note that the spatial segmentation can also be expres-

sed by a partition of either edges    or triangles   into   disjoint subsets. 

Definition 1-2 : temporal segmentation of deforming meshes (Arcila et al., 2013). 

Let M = *          + be a deforming mesh, where   is the total number of 

frames. A temporal segmentation ∑t of M is a set of subsequences ∑t={       }, 

⋃         =M, where each of            is a subsequence of successive frames. 

Definition 1-3 : spatio-temporal segmentation of deforming meshes. Let M = 

*  
                 + be a deforming mesh, where N is the total number of 

vertices. We consider M as a volumetric data, and define a spatio-temporal seg-

ment   
  as a set of vertices (or triangles) that are either spatially or temporally 

connecting to each other. Then, the object of spatio-temporal segmentation is to 

partition a deforming mesh M into spatio-temporal segments, i.e., ⋃   
 

    = M. 

1.2.2 Contributions  

To overcome the limitations of the existing spatial segmentation methods for 

deforming meshes, we propose new segmentation methods that investigate both 

temporal and spatial deformation coherency in deforming meshes. In this thesis, 

we first present a deformation-based descriptor to measure the degree of defor-

mation of each triangle within each frame. Based on this feature descriptor, we 

devise a temporal segmentation algorithm that divides a deforming mesh into sub-

sequences, each of which is a set of successive frames. In addition, we also propose 

a spatio-temporal segmentation algorithm for the efficient representation of de-

forming meshes. The major contributions of this thesis can be summarized as fol-

lows: 

Deformation-based descriptor. To describe the dynamic motion information within 

a deforming mesh, we present a deformation-based feature descriptor to measure 

the degree of deformation for each triangle at each frame in a deforming mesh. 

This allows us to investigate the deformation coherency within a given deforming 

mesh by observing each triangle’s feature descriptor. Based on this descriptor, we 
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devise the following two new segmentation methods for deforming meshes, which 

have not been studied before. 

Temporal segmentation of deforming meshes. In recent years, several spatial seg-

mentation methods have been proposed to segment a deforming mesh into near-

rigid components (Sattler et al., 2005) (Lee et al., 2006) (Wuhrer et al., 2010). 

However, these methods overlook the temporal coherency, for which reason one 

spatial segmentation result may not be representative for each sub-motions. To 

address such problem, we devise a temporal segmentation algorithm by using the 

temporal coherency within deforming meshes. In specific, we cut a given mesh se-

quence so that each subsequence contains shapes with similar poses. Since we 

measure pose similarity based on our new deformation-based descriptor, we can 

obtain consistent temporal segments for deforming meshes that perform identical 

or similar motions, despite their shape differences.  

Spatio-temporal segmentation of deforming meshes. Having the above temporal 

segmentation, we step further to explore both spatial and temporal deformation 

coherency at the same time in a deforming mesh. To achieve this, we devise a new 

spatio-temporal segmentation technique for deforming meshes, with an aim of 

developing a new efficient representation that encodes well the motions exhibited 

in the given deforming meshes. Knowing the advantage of graph that it is a conve-

nient and compact representation for structured objects, we represent the spatio-

temporal segmentation results of a deforming mesh into an evolving graph, a graph 

changes over time. Moreover, in order to validate the effectiveness of our spatio-

temporal segmentation method and the graph representation of the segmentation 

results, we extend the segmentation results towards similarity measurement by 

comparing the corresponding evolving graphs. 

1.3 Organization 

The reminder of this thesis is organized as follows. In Chapter 2, we give a litera-

ture review of the existing segmentation works for a single static mesh, a set of 

similar 3D models and the spatial segmentation of dynamic meshes. Next, we pre-

sent a new deformation-based feature descriptor in Chapter 3. By using this new 

descriptor, in Chapter 1, we present our temporal segmentation method for de-

forming meshes. After that, in Chapter 5, we present a new spatio-temporal seg-

mentation for deforming meshes, which is further extended for measuring motion 

similarities among deforming meshes. Finally, we give concluding remarks of our 

works and discuss about the potential future works in Chapter 6. 
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In this chapter, we explore the related literatures on 3-Dimension (3D) mesh 

segmentation and discuss about the background of this thesis. We first introduce 

the most popular standalone segmentation techniques for segmenting a single 

static mesh in Section 2.1. Then, in Section 2.2, we present a review of data-driven 

segmentation techniques that either learn feature patterns from human-based 

ground-truth data sets or extract common features from a set of similar shapes. 

After that, we summarize the existing spatial segmentation techniques for deform-

ing meshes in Section 2.3. Both advantages and disadvantages of the reviewed 

methods and their possibilities of being applied on deforming meshes are discussed.  

2.1 Standalone mesh segmentation  

During the last two decades, a large number of standalone segmentation meth-

ods have been developed for one single static mesh. In this section, we propose to 

categorize the mesh segmentation methods based on the characteristics of the 

methods. Note that we study the most popular methods instead of covering all the 

related literatures. One may refer to details from the surveys of different segmen-

tation methods and the other categorization criteria. Several surveys and compara-

tive studies of the existing standalone segmentation methods can be found in (At-

tene et al., 2006b) (Shamir, 2008) (Chen et al., 2009) (Benhabiles et al., 2010) (La-

voué et al., 2012), where Shamir (Shamir, 2008) reviews the most popular 

standalone segmentation methods, and Attene et al. (Attene et al., 2006b), Chen et 

al. (Chen et al., 2009), Benhabiles et al. (Benhabiles et al., 2010), and Lavoué et al. 

(Lavoué et al., 2012) compare and evaluate the performance of different segmen-

tation methods. 

2.1.1 Hierarchical clustering based method 

Hierarchical clustering methods can be divided into two classes, bottom-up and 

top-down (k-way). For a bottom-up type, the methods start by merging atomic 
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items, e.g., vertices or triangles, until stopping criteria are reached. On the other 

hand, for a top-down type, the method starts with a full 3D model and iteratively 

partition the model into k parts until predefined stopping criteria are reached. For 

both of the hierarchy clustering types, they require two key components, merging / 

partitioning rules and stopping criteria.  

Bottom-up methods Attene et al. (Attene et al., 2006a) propose a bottom-up hie-

rarchical clustering method for mesh segmentation. By taking each triangle as a 

tree leaf, this algorithm iteratively merges neighbouring leaves if they together fit 

well to a primitive, i.e., either a plane, a sphere, or a cylinder. The merging process 

is stopped until the fitting costs of all the possible merging exceed a predefined 

threshold, and the segmentation results are immediately obtained, which are the 

merged clusters. Similarly, Gelfand and Guibas (Gelfand and Guibas, 2004) present 

a bottom-up hierarchical clustering method to segment a given mesh into simple 

geometric parts that each part can be attained by a set of rigid transformations 

from primitive shapes. By starting with atomic items, this algorithm iteratively ag-

gregate neighbouring regions so that the aggregated region fits well to one of the 

primitive shapes. One obvious limitation of these methods is that the results are 

biased to primitive shapes. For the same reason, the primitive-fitting based 

methods are most applicable to engineering models, which normally contain regu-

lar primitive shapes. However, oftenly meshes may contain irregular shapes.  

 

(a) Seed points (d) Segmentation result (c) Merging result (b) Over segmentation 
 

Figure 2-1 Hierachical clustering based mesh segmentation (Lai et al., 2008). 

Lai et al. (Lai et al., 2008) present a hierarchical clustering method based on K 

automatically selected seed vertices that distribute on mesh. See the seed points in 

Figure 2-1(a). For each of the seed vertex, this method iteratively merges the 

neighbouring vertices with highest probability to reach, where the probability is 

derived based on the dihedral angles of the edges on the shortest path between 

the candidate vertex and the seed. After obtaining K segments until all the vertices 

are covered Figure 2-1(b), the merging process continues among the K segments 

until satisfactory number of segments is reached, Figure 2-1(c). Finally, the authors 

improve the segmentation result by smoothing the boundaries, Figure 2-1(d).  
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Top-down methods Contrarily to the above methods, Lai et al. (Lai et al., 2006) pro-

pose a k-way top-down approach that iteratively clustering a mesh region into k 

parts, by starting from a full 3D shape. For each clustering, K-means clustering 

method (Shlafman et al., 2002) is used and the pairwise vertex distance is mea-

sured by incorporating geodesic distance, curvature and texture difference. In an 

earlier work, Sheffer (Sheffer, 2001) propose another top-down hierarchical cluste-

ring method for handling the same problem. Sheffer formulates the mesh segmen-

tation problem as a graph contraction problem: He first represents a mesh into a 

graph, where a node is a vertex/triangle or a surface region, and an edge denotes 

the connectivity. Then, in the partitioning process, the algorithm contracts the 

graph by taking into account of surface region size and region smoothness. Katz 

and Tal (Katz and Tal, 2003), Shapira  et al. (Shapira et al., 2008) have also adopted 

the k-way top-down approach for addressing the mesh segmentation problem. 

2.1.2 Region-growing based methods 

Given the topology of a mesh, a region-growing based segmentation method 

starts with seed points, i.e., vertices or triangles, and then iteratively merges 

neighbouring points along the topology until pre-defined criteria are satisfied. Re-

gion-growing based methods have two critical characteristics: seed-point selection 

and the criteria for quitting the region-growing process.  

Zhou and Huang (Zhou and Huang, 2004) propose a region-growing based segmen-

tation method for polygon meshes. In this algorithm, a user supplies a root point, 

which is used to detect critical points : A critical point is a point whose geodesic 

distance to the root point is greater than those of its neighbouring points. See the 

red points in Figure 2-2(a). By taking the critical points as seed points, the segmen-

tation is done by flooding from each seed point until reaching a point has geodesic 

distance greater than those of its neighbouring points, i.e., the same criteria as cri-

tical point detection. The stopping points are shown in green in Figure 2-2(a) and 

the final segmentation result is shown in Figure 2-2(b). One obvious limitation of 

this method is the dependency on human selected root point.  
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(a) Feature point detection (b) Segmentation result 
 

Figure 2-2 Region-growing based mesh segmentation (Zhou and Huang, 2004). 

More commonly, region-growing based methods randomly select an un-merged 

vertex / triangle to merge neighbouring vertices/triangles for a new segment. The 

following merging criteria have been used: the neighbouring vertices/triangles have 

small angular differences (Garland et al., 2001), similar curvatures (Lavoué et al., 

2005), or the same number of intrinsic numbers (Lee et al., 2005).  

The efficiency of region-growing based methods can benefit from the parallel com-

putation of multiple regions growing independently, however this type of methods 

may result in over segmentation due to local noises.  

2.1.3 Spectral embedding based method 

Due to the high dimensionality of mesh data, i.e., large number of vertices, a va-

riety of previous works map mesh data into lower dimensionality space by using 

spectral embedding, so that classical clustering techniques such as K-means cluster-

ing and/or Mean-shift clustering techniques can be applied for segmentation. The 

following are two popular spectral embedding techniques: 

 Principal Component Analysis (PCA) (Abdi and Lynne, 2010). The purpose of 

this method is to transform the high dimensionality data into a set of new 

basis (Principal Components) with eigenvectors where the coordinates are 

linearly uncorrelated. The number of Principal Components (PCs) is lower or 

equal to the original dimension, which is determined by the amount of in-

formation to be retained in the embedded space.  

 Multi-Dimensional Scaling (MDS) (Borg and Patrick, 2005). Based on a pair-

wise distance matrix, the purpose of MDS is to map the points from high 

dimensional space into a lower dimensional space without too much loss of 

information of pairwise point distances.  
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In (Katz et al., 2005), based on a dual geodesic distance matrix among vertices, the 

authors apply MDS to map vertices into lower space, and extract prominent feature 

points that are farthest to the other vertices. These feature points are usually lo-

cated around limb tips. Then the authors merge the feature points close to each 

other (see the feature points on leg tips and head in Figure 2-3(b)), and extract the 

mesh core that disconnects the feature points on limbs, Figure 2-3(c), which im-

mediately results in a mesh segmentation, Figure 2-3(d). However, this method is 

limited to the mesh of star graph skeleton, i.e., a trunk with several limbs. Liu and 

Zhang (Liu and Zhang, 2004) propose a similar spectral embedding based segmen-

tation method. In a later work by the same authors (Liu and Zhang, 2007), they im-

prove the previous method by incorporating vertex geodesic distance with geome-

trical segmentability, which relates to the degree of concavity.  

 

(a) MDS transform (d) Segmentation result (c) Core extraction (b) Feature points 
 

Figure 2-3 Spectral embedding based mesh segmentation (Katz et al., 2005). 

2.1.4 The other standalone mesh segmentation techniques 

Watershed algorithm has been widely utilized in the Computer Vision domain, 

particularly for 2D image segmentation. The key idea of the algorithm is to trans-

form an object, an image or a mesh, by defining a height function over points, and 

then segment the object into catchment basins. Several mesh segmentation tech-

niques have been devised based on watershed algorithm (Mangan and Whitaker, 

1999) (Chen and Georganas, 2006). As a classic example in an early work by Man-

gan and Whitaker (Mangan and Whitaker, 1999), the mesh segmentation method 

defines a height function of each vertex based on curvature, i.e., a vertex with 

higher curvature has larger height, and vice-versa. By applying watershed algorithm, 

the segmentation results tend to lay the segment boundaries along sharp surface 

area with high curvatures. The drawback of the watershed algorithm is over seg-

mentation, due to noises on mesh surface.  

Some segmentation methods involve human interactions (Fan and Liu, 2011) (Li et 

al., 2001) (Chen et al., 2009). In order to collect ground-truth segmentation from 



Chapter 2 State of the Art 

12 

human users, Chen et al. (Chen et al., 2009) develop an online system so that a user 

can pick vertices on mesh surface, which are automatically connected as boundary 

lines for mesh segmentation. As shown in Figure 2-4, human tend to consistently 

place segmentation boundaries in concave regions. Fan and Liu (Fan and Liu, 2011) 

propose a mesh segmentation method based on human painting. In this method, a 

user paint strokes on mesh to indicate the number and area of each mesh segment. 

Then, the segmentation is done by grouping vertices to the closest stroke, where 

the distance is measured by incorporating both Gaussian curvature (Yamauchi et al., 

2005) and Shape Diameter Function (Gal et al., 2007). Although this type of 

methods benefit from human perception, they are not practical for processing 

massive data sets.  

 

 

Figure 2-4 Human-based segmentation boundaries (Chen et al., 2009). 

Golovinskiy and Funkhouser (Golovinskiy and Funkhouser, 2008) propose a seg-

mentation method by integrating the segmentation results by using different 

methods. They first generate a set of over segmentation results by using existing 

segmentation methods, K-Means (Shlafman et al., 2002), Hierachical Clustering (Shi 

and Jitendra, 2000) and Min Cuts (Katz and Ayellet, 2003), each with randomly ge-

nerated parameters to segment an input mesh. Along the boundaries of these 

segmentation results, the authors construct a statistical framework of edges in the 

boundaries. Finally, they determine the final boundaries by taking the edges appear 

most frequently in the boundary lines. However, this method suffers from heavy 

computation because of computing mesh segmentation several times of one model.  

2.1.5 Discussions on the standalone mesh segmentation techniques 

As shown in the above review, a large variety of techniques have been proposed 

for standalone mesh segmentation, either for segmenting a mesh into meaningful 
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parts or geometrical rigid segments. Thanks to the recent contributions by Giorgi et 

al. (Giorgi et al., 2007), Chen et al. (Chen et al., 2009), Benhabiles et al. (Benhabiles 

et al., 2009), Bronstein et al. (Bronstein et al., 2010), Kim et al. (Kim et al., 2011), 

and Lavoué et al. (Lavoué et al., 2012), they have not only made available of a con-

siderable amount of static mesh sets, but also created ground-truth segmentations, 

which enable us to objectively evaluate segmentation results.  

 

 

Figure 2-5 Comparison between different segmentation methods, where the numbers are 
the rankings of the performance by using different methods on each dataset (Chen et al., 
2009). 

In order to compare a segmentation result against ground-truth, we can apply dif-

ferent distance metrics such as Cut Discrepancy (Huang and Dom, 1995), Hamming 

Distance (Huang and Byron, 1995), Rand Index (Rand, 1971), and Consistency Error 

(Martin et al., 2001). By using these distance metrics, Chen et al. (Chen et al., 2009) 

evaluate the performance of several most advanced segmentation techniques at 

the time. According to their experimental results, shown in Figure 2-5, none of the 

standalone segmentation methods performs well over all mesh types, because 

geometric criteria may not provide sufficient cues to identify all the semantically 

meaningful parts. This observation complies well with the conclusion of an earlier 

comparative study of standalone segmentation techniques by Attene et al. (Attene 

et al., 2006b) that each mesh segmentation method has its advantages and draw-

backs. Due to this reason, the later works on mesh segmentation have been mostly 

devoted in data-driven approaches.  
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2.2 Data-driven mesh segmentation  

More recently, researchers in the Computer Graphics community have proposed 

a variety of data-driven segmentation methods, aiming at the consistent segmenta-

tion of a set of 3D shapes.  We categorize these data-driven methods into two clas-

ses: learning-based and co-segmentation.  

2.2.1 Learning-based methods 

A learning-based segmentation method learns the prominent features from a 

set of ground-truth segmentations at the training stage. Then the segmentation of 

input meshes can be achieved by detecting the learned features in the meshes.  

 

(a) Training meshes (b) Test meshes 
 

Figure 2-6 A learning-based mesh segmentation (Kalogerakis et al., 2010). 

Kalogerakis et al. (Kalogerakis et al., 2010) propose a learning-based method for 3d 

mesh segmentation and labelling. The key idea of this method is a classifier that 

determines the label of a triangle based on the triangle’s features. The classifier is a 

linear combination of two terms: a unary term that measures the probability for a 

triangle being assigned with each of the candidate label, and a binary term that 

measures the probability of two neighbouring triangles being assigned with diffe-

rent labels. Given this definition of the classifier, the algorithm trains the parame-

ters for the classifier to adapt to human ground-truth segmentation. Finally, the 

segmentation of a new mesh is to feed with triangle features to the trained classi-

fier, which generates the labelling of each triangle, i.e., the spatial segmentation of 

the input mesh. Several sample segmentation results are shown in Figure 2-6(b).  

In fact, a 3D mesh segmentation can be defined not only as segment patches of 

vertices or triangles, but also boundaries that cut a mesh. By following the latter 

definition, Benhabiles et al. (Benhabiles et al., 2011) propose a learning-based 
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method that addresses the mesh segmentation problem by computing boundaries. 

Similar to (Kalogerakis et al., 2010), Benhabiles et al. (Benhabiles et al., 2011) train 

a classifier based on ground-truth segmentation, to measure the possibility of an 

edge appearing in boundaries. By using a threshold, this method binary labels the 

edges  ith  boundary edge’ or not,  hich results in mesh regions  ith connected 

 boundary edges’. For each of the  boundary edge’ region, the authors apply a 

thinning approach (Hubeli and Gross, 2001) to remove the border edges towards 

inside, which produces a boundary line. Finally, they apply snake movement align-

ment method (Jung and Kim, 2004) to connect head and tail of the boundary lines 

for the mesh segmentation. 

In a recent work, Wang et al. (Wang et al., 2013) propose a method that tunes the 

segmentation of 2D images to 3D shapes. Depicted in Figure 2-7, this method first 

averagely projects a given upright 3D shape into 2D images from different rotation 

angles, Figure 2-7(b). In the meantime, they maintain a set of similar 2D images 

with ground-truth segmentations, Figure 2-7(c). The labelling of each projected 2D 

images can be inferred from closely matched labelled images from ground-truth set 

by using 2D image segmentation techniques, Figure 2-7(d). Finally, the segmenta-

tion is done by back projecting the image labelling to triangles on the original 3D 

shape, Figure 2-7(e,f). Although this method simplifies the challenge of mesh seg-

mentation by working on lower dimensional data, the method has to match each 

2D image projection with each ground-truth image segmentation from database 

and thus suffers from heavy computation. 

 

(a) (f) (e) (d) (c) (b) 
 

Figure 2-7 Mesh segmentation derived from 2D image segmentation (Wang et al., 2013): (a) 
original mesh, (b) 2D projections, (c) best matched ground-truth segmentation of each 2D 
projection, (d) segmentation of each projected image, (e,f) mesh segmentation. 

Therefore, the learning-based methods can learn prominent features based on 

large sets of ground-truth segmentation that are available from (Chen et al., 2009) 
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(Benhabiles et al., 2009) (Bronstein et al., 2010). However, learning-based segmen-

tation methods suffer from heavy computation, and not capable for treating 

meshes without ground-truth segmentation of similar models.  

2.2.2 Co-segmentation methods 

Another solution for the consistent segmentation problem is to extract com-

monly shared features from a set of similar shapes, and then segment meshes into 

consistent parts based on the same criteria.  

 

 

Figure 2-8 Consistent segmentation of a set of similar 3D models (Golovinskiy and Funk-
houser, 2009). 

Golovinskiy and Funkhouser (Golovinskiy and Funkhouser, 2009) propose an unsu-

pervised segmentation method for segmenting a set of similar 3D models at the 

same time. They first define two edge types: adjacency edge (Green edges in Figure 

2-8) and correspondence edge (Red edges in Figure 2-8). The adjacency edges con-

nect neighbouring triangles within one mesh, where each edge is weighted by both 

the dihedral angle and the edge length. And the correspondence edges connect 

corresponding triangles between two models, where the correspondence is obtai-

ned from model alignment.  The segmentation is then done by minimizing the sum 

of within segment adjacency edge weights and inter-model correspondence edge 

distance. This method allows to obtain consistent segmentation because the adja-

cency edges encourage smooth surface within segment and the correspondence 

edges encourage corresponding parts between two meshes to be aggregated into 

the same segment. Similarly, the segmentation methods by Sharma et al. (Sharma 

et al., 2010) and Kim et al. (Kim et al. 2013) both are also based on shape matching. 

In specific, they first generate the mesh segmentation of one shape, and then com-

pute the shape correspondence with another shape for transferring the segmenta-

tion labelling to the shape.  
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Among the co-segmentation methods, a large portion make use of the over seg-

mentation of each model independently (Hu et al., 2012) (Sidi et al., 2011) (Huang 

et al., 2011) (Wu et al., 2013) (Luo et al., 2013). As shown in Figure 2-9, Sidi et al. 

(Sidi et al., 2011) first apply mean-shift clustering (Chen, 1995) to segment each 

model into patches, Figure 2-9(a). Then they apply spectral analysis for each patch 

and classify the patches in their embedded space, in the object of grouping similar 

parts from different meshes into the same cluster, Figure 2-9(b,c). Finally, the seg-

mentation is done by minimizing within cluster triangle energy and maximizing 

pairwise triangle energy along boundaries, which also optimizes the segmentation 

boundaries, Figure 2-9(d,e). With a similar segmentation framework, Huang et al. 

(Huang et al., 2011) first conduct an over segmentation of two similar shapes inde-

pendently by using randomized cuts segmentation method (Golovinskiy and 

Funkhouser, 2008). Then they define a consistency term that both measures the 

geometric similarity between individual corresponding segments, and prioritizes 

adjacent segments in different shapes to have the same labelling. Therefore, the 

optimization of the consistency term allows to obtain consistent segmentation 

between similar shapes. Hu et al. (Hu et al., 2012), Luo et al. (Luo et al., 2013) and 

Wu et al. (Wu et al., 2013) also apply the same segmentation framework, but diffe-

rently these approaches incorporate multiple features within each patch to im-

prove the performance of the segmentation: Wu et al. automatically compute the 

optimized weight among multiple features through spectral analysis; Luo et al. ite-

ratively project the affinity matrices of different features onto the same Laplacian 

eigenvectors (Chung, 1997), then they concatenate different features into one vec-

tor and apply k-means to classify patches.  

 

Figure 2-9 Co-segmentation of a set of similar meshes (Sidi et al., 2011). 

The advantage of this type of method is that a set of similar shapes help to identify 

commonly shared prominent features. For this reason, not only a set of shapes can 

be segmented at the same time, but also the individual segmentation can be im-

proved. However, the requirement of similar shapes poses a limitation on the input 

data. Moreover, most of the above methods also suffer from heavy computation, 
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for which reason these segmentation methods may not be applicable for dynamic 

meshes.  

2.3 Segmentation of dynamic meshes  

Since a dynamic mesh is normally a heavy data that contains an abundance of 

redundancy both in local mesh regions and between successive frames, segmenta-

tion provides a possibility to precede this heavy data for the applications such as 

compressions (Sattler et al., 2005) (Karni and Gotsman, 2004) (James and Twigg, 

2005) (Mamou et al., 2006), skeleton extractions (James and Twigg, 2005) (De et al., 

2008), etc. During the last decade, a variety of spatial segmentation methods have 

been proposed for dynamic meshes. In this section, we categorize these methods 

based on the criteria whether an approach uses vertex trajectories, or extracted 

high-level local feature descriptors.  

2.3.1 Trajectory-based method 

A trajectory-based mesh segmentation method treats a deforming mesh directly 

on coordination data, without pre-processing.  

 

Figure 2-10 Trajectory-based spatial segmentation of a deforming mesh (Sattler et al., 
2005). 

Sattler et al. (Sattler et al., 2005) propose a segmentation method of deforming 

meshes by grouping vertices with similar trajectories. They first compute an initial 

clustering of vertex trajectories by using K-Means clustering, where pairwise vertex 

trajectory distance is computed by using Euclidean distance. Then, iteratively, they 

compute the number of Principle Components (PCs) of each cluster, and classify 

each vertex to the cluster with least reconstruction error by using the correspon-

ding number of PCs. Now that the vertices with similar trajectories are classified 

into the same cluster, optimized number of PCs can be used to represent the ver-

tices within each cluster, and therefore improves the compression rate. Figure 2-10 

shows an example of spatial segmentation result of a chicken animation by using 

Sattler et al.’s approach,  here the mesh is partitioned into rigid segments. Similar-
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ly, De et al. (De et al., 2008) propose a segmentation method for automatic conver-

sion of deforming meshes into skeleton animations by using spectral clustering. To 

this end, they define an affinity matrix among vertices where pairwise vertex affini-

ty is derived from Euclidean distance of vertex trajectories. Having the spatial seg-

mentation results, they can build a skeleton for each frame where each node re-

presents the corresponding segment center and each edge represents neigh-

bourhood between two segments. 

Lee et al. (Lee et al., 2005) propose a region-growing based segmentation method 

for animation sequences that groups triangles with the same intrinsic dimensionali-

ty. Started from a user supplied seed triangle, this method iteratively merges the 

neighbouring triangles that have the same number of PCs and the distance to the 

neighbouring triangle within cluster does not exceed a user threshold. The local 

greedy region-growing process continues until all the triangles have been clustered.  

Since the above segmentation methods in (Sattler et al., 2005), (Lee et al., 2005) 

and (De et al., 2008) group vertices with similar trajectories, they allow to obtain 

the segmentation results that keep the motion rigidity within each segment. 

2.3.2 Nontrajectory-based method 

In fact, most of the segmentation methods have been developed based on local 

feature descriptors.  

Arcilla et al. (Arcilla et al., 2010 and 2013) present a framework for the spatial seg-

mentation of dynamic mesh with inconsistent topology. Their method first com-

putes the vertex matching between two successive meshes, Figure 2-11(a), then 

groups the neighbouring vertices with similar motions, which is measured by the 

displacement vector for each corresponding vertex. In fact, both the 3D shape cor-

respondence (Van et al., 2011) and segmentation are challenging problems for the 

research in Computer Graphics. We focus on the latter problem and therefore work 

with deforming meshes that the mesh topology is fixed. 



Chapter 2 State of the Art 

20 

 

(a) Vertex matching (b) Segmentation result 
 

Figure 2-11 Spatial segmentation of a dynamic mesh based on shape correspondence. 
(Arcilla et al., 2010 and 2013) 

Lee et al. (Lee et al., 2006) propose a region-growing based segmentation method 

for deforming meshes, as shown in Figure 2-12. They first binarily label each 

triangle  ith  deformed’ /  rigid’ based on the degree of deformation (Figure 2-12 

(b)), which is measured by the maximal degree of transformation from the rest 

pose (Figure 2-12(a)). Then they extract the seed triangle in each rigid region that is 

farthest to the neighbouring  deformed’ regions (Figure 2-12 (c)). Finally, the seg-

mentation is done by grouping triangles to seed triangles so that minimizes the 

total sum of within cluster triangle distances (Figure 2-12 (d,e)), where the pairwise 

triangle distance incorporates both the geodesic distance and the difference of 

deformation. Similarly, Kalafatlar and Yemez (Kalafatlar and Yemez, 2010) propose 

a segmentation method by minimizing the within-segment pairwise vertex distance, 

which incorporates the geodesic distance, vertex angular difference and the Eucli-

dean distance in the rest pose.  
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Figure 2-12 Region-growing based spatial segmentation of a deforming mesh (Lee et al., 
2006). (a) degree of deformation of triangles, (b) binary labels, (c) a seed point in a rigid 
region, (d,e) region-growing. 

Wuhrer and Brunton (Wuhrer and Brunton, 2010) achieve the same goal in a more 

efficient approach by using minimum spanning tree (MST) (Kleinberg and Tardos, 

2006) in dual space. They first compute a dual graph wherein nodes are vertices 

and edges are vertex neighbourhood weighted by the maximum dihedral angle in 

the sequence.  After computing the MST of the dual graph, the algorithm removes 

the edges with largest weight, which most likely indicate two dissimilar subgraphs. 

The graph cut process stops until a predefined number of segments is obtained.  

The spatial segmentation of deforming meshes has also been addressed through 

clustering techniques. James and Twigg (James and Twigg, 2005) segments a de-

forming mesh by applying mean-shift clustering (Chen, 1995) to vertex rotation 

sequences, which contains the rotation matrix of each triangle in each frame with 

referring to the corresponding triangle in the rest pose. Similarly, Mamou et al. 

(Mamou et al., 2006) compute the triangle transformation sequence, which is the 

affine transformation of each triangle in each frame. Then they acquire the seg-

mentation by applying K-means clustering to group the vertices with similar defor-

mation behaviours. These two segmentation results have been applied for the 

skinning (James and Twigg, 2005) and the compression (Mamou et al., 2006) of 

deforming meshes, respectively. 
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Figure 2-13 Triangle rotation sequence (James and Twigg, 2005). 

In one of the most recent literature, Vasilakis and Fudos (Vasilakis and Fudos, 2014) 

present a data-driven segmentation method for deforming meshes. This algorithm 

first applies existing static mesh segmentation methods to each pose in the mesh 

sequence, Figure 2-14(a), and then compute an over segmentation by intersecting 

all the spatial segments, Figure 2-14(b). Finally, for each frame, the method simpli-

fies the over-segmentation by merging small neighbouring segments based on dy-

namic behaviours, which results in the final segmentation result, Figure 2-14(c).  

 

(a) Per-frame segmentation. 

 

 

 

(b) Over segmentation through intersection. 

 

 

 

(c) Per-frame simplification. 

 

Figure 2-14 Spatial segmentation of deforming meshes based on pose partitioning (Va-
silakis and Fudos, 2014). 

Nonetheless, a long mesh sequence may result in different segmentation results 

because the existing methods do not consider the temporal coherency within a 

deforming mesh.  
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2.4 Summary 

Mesh segmentation for both 3D static meshes and dynamic meshes has been an 

active research area during the last two decades. In this section, we have summa-

rized the existing spatial segmentation techniques and categorized them based on 

their characteristics. See Table 2-1 in the next page. However, to our best 

knowledge, the existing segmentation methods for dynamic meshes only concerns 

about spatial deformation coherency without considering about temporal defor-

mation coherency. In the remainder of this thesis, we present new segmentation 

methods that investigate both temporal and spatial coherency within deforming 

meshes, which have not studied before.  
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Table 2-1 Summary of 3D mesh segmentation techniques. 

Mesh types Segmentation types Segmentation method type Object Drawback 

Static mesh 

Standalone segmen-

tation 

Hierarchical clustering, Re-

gion-growing, Spectral em-

bedding, etc.  

Segmenting a mesh by using 

the local geometrical cues in 

the mesh. 

None of the methods can perform 

well over all mesh types. 

Data-driven segmen-

tation 

Learning-based 

Segmenting a mesh by using 

the prominent features lear-

ned from ground-truth. 

Requires human-based ground-truth, 

and time consuming. 

Co-segmentation 

Segmenting a set of similar 

shapes by extracting common-

ly shared features. 

Requires a set of similar shapes, and 

time consuming. 

Dynamic 

mesh 
Spatial segmentation 

Trajectory-based 
Grouping vertices with similar 

trajectories. 
Overlooks the temporal deformation 

coherency in dynamic meshes. 

Non-trajectory based 
Segmenting a dynamic mesh 

into near-rigid parts. 
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 A Dynamic Feature De-Chapter 3

scriptor 

In this chapter, we first review existing feature descriptors for 3D meshes in Sec-

tion 3.1. Then, we present a deformation-based feature descriptor, named strain, 

to measure the degree of deformation of each triangle at each frame of deforming 

meshes.  This descriptor is invariant to global shape rotation, translation and uni-

form scale, and its dynamic feature is robust over shape difference when different 

shapes undergoing identical or similar motions. Based on this new descriptor, we 

develop different segmentation methods for deforming meshes, as described in 

Chapter 1 and Chapter 5. 

3.1 Existing 3D feature descriptors  

As have been reviewed in Chapter 2, although there are several mesh segmenta-

tion methods directly make use of vertex coordinates, most of the methods use 

high-level feature descriptors. In this section, we give a review of related literatures 

about 3D feature descriptors. There are many ways to categorize the existing fea-

ture descriptors. In this thesis, we classify the descriptors for static meshes as static 

descriptors and the descriptors for dynamic meshes as dynamic descriptors.  

3.1.1 Static descriptor 

Many static descriptors have been proposed in the contexts of 3D shape corre-

spondence and segmentation. We classify the existing static descriptors into global 

descriptors and local descriptors, based on the criterion whether a descriptor is 

representing a segment patch, or a mesh primitive, i.e., vertex or triangle. 

A global descriptor illustrates the overall properties of a segment patch, which can 

be an entire shape or a patch of mesh primitives. Several commonly used global 

descriptors are listed as follows. 
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 Shape histogram. Ankerst et al. (Ankerst et al., 1999) propose this global 

descriptor to represent a 3D object. This descriptor first decomposes an ob-

ject into concentric shell bins and sector bins around the center point, then 

represent the object into a vector of number of points within each bin. Fi-

gure 3-1(a) shows an example of representing a 2D image with this descrip-

tor, where the top row shows an image being divided into shell bins and 

sector bins, and the number of points in each bin is shown in the bottom 

row as a histogram. However, the shape histogram representations for one 

object may be different depending on the bin orders. In order to avoid such 

problem, based on the representation of 3D shapes with shape histogram, 

Ankerst et al. (Ankerst et al., 1999) measure shape similarities by using 

Quadratic Form Distance Function (Ankerst et al., 1998), which is invariant 

to the order of bins.  

 Spherical harmonics. Kazhdan et al. (Kazhdan et al., 2003) present spherical 

harmonics based on a set of spherical basis functions. In specific, they first 

divide the object volume into a set of concentric shells with different radius, 

and then decompose each shell in frequency domain. Then, the norm for 

each frequency component at each radius becomes the bin size of a 2D his-

togram, which is indexed by radius and frequency.  

 Spin Images (Johnson, 1997). To compute the spin images of a shape, we 

first map 3D vertices on surface into 2D space via the cylindrical coordinate 

system. That is, as shown in Figure 3-1(b), given a tangent plane P and an 

oriental point p, each vertex x has a 2D basis representation (   ), where   

is the perpendicular distance to normal n and   is the perpendicular dis-

tance to P. Johnson and Hebert (Johnson and Hebert, 1997) have applied 

this descriptor to find matching points between two shapes by using itera-

tive closest point algorithm (Zhang, 1994).  

 Other global descriptors. After the over segmentation of a mesh, Huang et 

al. (Huang et al., 2011) represent each mesh segment with the percentage 

of surface area of the full mesh. More commonly, global descriptors are also 

devised as statistical histogram of local geometries of mesh primitives wi-

thin a mesh segment (Sidi et al., 2011). 
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(a) (b) 
 

Figure 3-1 Global descriptors, (a) shape histogram (Ankerst et al., 1999), (b) spin images 
(Johnson and Hebert, 1997). 

A local descriptor describes the local geometric properties of a mesh primitive. Un-

like global descriptors which are relatively coarse to characterize an entire shape, 

local descriptors carry more detail information and therefore can be more distincti-

vely describing each vertex or triangle (Huang et al., 2007). Among different geo-

metrical information, geodesic distance has been widely used for local descriptors 

(Wang et al., 2000) (Gal et al., 2007) (Lee et al., 2006). Below we introduce several 

other commonly used local descriptors for 3D shapes. 

 Average Geodesic Distance (AGD) (Gal et al., 2007). AGD of a vertex is the 

average of the geodesic distance from this vertex to all the other vertices on 

mesh. This descriptor is useful for detecting extreme points that are farthest 

to the other points on the mesh.  

 Gaussian Curvature (Yamauchi et al., 2005) (Lavoué et al., 2005). A curva-

ture value measures the surface convexity, or concavity, which has been 

commonly used for mesh segmentation (Yamauchi et al., 2005) (Kalogerakis 

et al., 2010). Let κ1 and κ2 be the principal curvatures of a point on surface, 

the well-known Gaussian curvature is the product of the two principal cur-

vatures Κ = κ1κ2. One can also derive the other curvature types by incorpo-

rating the two principle curvatures in different ways, including κ1, |κ1|, κ2, 

|κ2|, |κ1κ2|, (κ1+κ2)/2, |(κ1+κ2)/2|, κ1-κ2, etc. (Kalogerakis et al., 2010). 

Wang et al. (Wang et al., 2000) devise a vertex distance metric by incorpo-

rating curvature difference and geodesic distance between two vertices. Fi-

gure 3-2(a) shows the Gaussian curvature field of a 3D plane model, where 

the surface regions with higher convexity have higher curvature values, 

shown in red color, otherwise in blue. 
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 Shape Diameter Function (SDF) (Gal et al., 2007). Figure 3-2(b) shows an 

example of computing SDF of a vertex on head. For computing the SDF of a 

vertex, rays from the vertex are averagely sampled in a cone, which is oppo-

site to the normal of the vertex. These rays intersect on the shape, and the 

local SDF is the average length of the ray segments. Gal et al. linearly com-

bine AGD and SDF as a vertex signature, for computing vertex correspon-

dence between two shapes by measuring the similarity of vertex signatures. 

 Shape Context  (Belongie et al., 2000). As depicted with a 2D image in Figure 

3-2(c), for each point, this descriptor is a 2D histogram measuring the distri-

bution of the other points in logarithmic distance bins and uniform angle 

bins, see the right matrix in Figure 3-2(c). Kalogerakis et al. (Kalogerakis et 

al., 2010) and Acosta et al. (Acosta et al., 2010) compute shape correspon-

dence by comparing shape context of vertices.  

 Heat Kernel Signature (HKS) (Sun et al., 2009). Sun et al. devise an intrinsic 

local descriptor HKS, which measures heat kernel values at multiple time 

scales for each vertex. HKS inherits isometric invariance and multi-scale 

property from the heat kernel (Sun et al., 2009) (Ovsjanikov et al., 2010). 

Tevs et al. (Tevs et al., 2011) compute vertex matching between two shapes 

based on the comparisons of the HKS of vertices. Figure 3-2(d) shows an 

example of HKS field of each point on a 3D model.  
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Figure 3-2 Local shape descriptors, (a) curvature (Lavoué et al., 2005), (b) shape diameter 
function (Gal et al., 2007), (c) shape context (Belongie et al., 2000), and (d) heat kernel 
signature (Sun et al., 2009). 

3.1.2 Dynamic descriptor 

A dynamic descriptor represents the deformation behaviours along time in an 

animation, such as the changing curvatures of a vertex due to deformation. Since a 

deforming mesh is a sequence of static meshes, every vertex/triangle on the shape 

can be represented with a vector of static shape descriptors, where the length of 

the vector is the number of frames in the sequence. Thus, given a deforming mesh, 

the dynamic descriptor of a triangle (or a vertex) can be represented as a vector of 

local descriptors at each frame. In this way, for example, the Gaussian curvature of 

a vertex varies at each frame and therefore represents the deformation behaviours 

of the vertex. 

So far, most of the existing dynamic descriptors have been developed in the con-

text of segmentation and/or compression of dynamic meshes. With an aim of clus-

tering similarly moving vertices into the same cluster, several related literatures 
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have used vertex trajectories to measure similarity between vertices (Sattler et al., 

2005) (Lee et al., 2005) (De et al., 2008). Apart from these, most of the existing 

works represent each mesh primitive with dynamic feature descriptors. James and 

Twigg (James and Twigg, 2005) represent each triangle of a deforming mesh with a 

rotation sequence, wherein each element is the rotation matrix of a triangle in a 

frame w.r.t. the corresponding triangle in the rest pose. Similarly, Lee et al. (Lee et 

al., 2006) compute the transformation of each triangle within each frame, which 

results in a transformation sequence for each triangle.  

Note that a dynamic descriptor can also be derived from global static descriptor. 

That is, for a deforming mesh, we represent each frame with a global descriptor, 

and therefore the deforming mesh can be represented with a vector of global des-

criptors. However, in this thesis, we devise dynamic descriptors by using local static 

descriptors because local descriptors contain the detailed information of each 

triangle, with which we will classify into groups based on their deformation beha-

viors. 

Having a variety of feature descriptors available, one may need to clarify the seg-

mentation criteria before choosing descriptors, since different descriptors may lead 

to different segmentation results. Among the introduced static descriptors in Sec-

tion 3.1.1, AGD, SDF, HKS and Shape Context are invariant to rigid transformations. 

Moreover, HKS holds the property of isometric invariance. However, these descrip-

tors are not practical for deforming meshes because AGD is invariant for isometric 

meshes and therefore cannot represent dynamic behaviors in isometric deforming 

meshes; Gaussian Curvature represents well of bending but not stretching or shrin-

king; SDF, HKS and Shape Context may suffer from heavy computation due to their 

high algorithm complexities and the larger dimensionality of deforming meshes. In 

the following section, we present an efficient deformation-based dynamic descrip-

tor for deforming meshes, which measures the degree of deformation for each 

triangle at each frame.  

3.2 Our deformation-based feature descriptor 

In this section, we present a new efficient dynamic descriptor for deforming 

meshes. For each triangle within each frame of a deforming mesh, this descriptor 

computes a scalar value that indicates the degree of deformation, by comparing to 

the corresponding triangle at a reference pose. In specific, we first introduce de-

formation gradient tensor, based on which we can compute principal stretches of 
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each deformed triangle. Then, we use the principal stretches to measure the de-

gree of deformation.  

3.2.1 Deformation gradient tensor 

The Deformation Gradient Tensor   measures the degree of deformation in con-

tinuum mechanics, which is the derivative of each component of the deformed 

configuration with respect to each component of the reference configuration 

(Crandall et al., 1978). Depicted in Figure 3-3, we formulate the deformation gradi-

ent tensor between a deformed vector    and a reference vector     as follows: 
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Figure 3-3 The reference and deformed configurations (Gullett et al., 2008).  

Invariant to translation. The Deformation Gradient Tensor is invariant to body tran-

slation (Gullett et al., 2008). Consider an example of the translation of   to 

      , based on Equation 3-1, we can obtain   as follows: 

    
   

   
  

   

 (    )
   

where   is an identity matrix. It shows that the body translation   does not affect 

the deformation gradient.  

Cauchy deformation tensors. As have seen above,   only contains rotation as rigid 

movement and stretch as deformation. Then, by using the polar decomposition 



 Chapter 3 A Dynamic Feature Descriptor  

32 

theorem (Higham, 1986), we can decompose   into the product of an orthogonal 

rotation tensor   and a symmetric stretch tensor   or   (Truesdell and Noll, 2004). 

Depending on whether we first apply rotation or stretch, we have the two decom-

position types,      and     , where   is right stretch tensor and   is left 

stretch tensor (see Figure 3-4). Because of the symmetric property of stretch ten-

sors, we have      and     . 

 

deformed 

configuration 
undeformed 

configuration 

 

Figure 3-4 Representation of the polar decomposition of the deformation gradient. (Finite 
strain theory. In Wikipedia. Retrieved November 21st, 2014, from http://en.wikipedia.org 
/wiki/Finite_strain_theory). 

Based on the above properties of deformation gradient tensor, we proceed to in-

troduce the following two Cauchy deformation tensors (Note that the rotation ten-

sor   is orthogonal, i.e.,        and          ): 

- Right Cauchy deformation tensor 

      (  ) (  )    (   )        .   (3-2) 

It shows that the right Cauchy deformation tensor is equal to the square of the 

right stretch tensor, which is invariant to body rotation.  

- Left Cauchy deformation tensor 

      (  )(  )   (   )         . 
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It shows that the left Cauchy deformation tensor is equal to the square of the left 

stretch tensor, which is invariant to body rotation. 

Moreover, since        , we have  

      .      (3-3) 

Based on the definition of eigenvalues and eigenvectors, we assume  

                 ,     (3-4) 

where    and    are the corresponding eigenvalues and eigenvectors of  , and   is 

the size of dimension. By applying Equation 3-3 into Equation 3-4, we have 

    (    )               .   (3-5) 

By applying the same rotation   to both sides of Equation 3-5, we obtain  

 (    )    (   )         (   )        . 

Assuming       , we have  

                . 

Therefore, the two stretch tensors   and   have the same eigenvalues, although 

the eigenvectors may be different. The obtained eigenvalues are called principal 

stretches. In the next section, we use the principal stretches to measure the degree 

of deformation of deforming triangles. Since   and   have the same principal 

stretches, either the right Cauchy deformation tensor   or the left Cauchy deforma-

tion tensor   can be used.  

3.2.2 Strain 

We begin by representing the deformation for each triangle as an affine trans-

formation between the current frame and a reference frame. Non-translational 

component of the affine transformation encodes the change in orientation, scale, 

and skew induced by the deformation on the triangle.  
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Figure 3-5 The deformation of a triangle in two frames. 

As depicted in Figure 3-5, let    and  ̃  be the vertices of the triangle before and 

after the deformation, respectively. A 3 by 3 affine matrix F and displacement vec-

tor d transforms    into  ̃  as follows: 

        ̃         

Similar to Sumner et al.’s approach (Sumner et al., 2005), we add a fourth vertex in 

the direction of the normal vector of the triangle and subtract the first equation 

from the others to eliminate d. In specific, the fourth vertex    is an unit vector, 

obtained by the cross-product of two edge vectors of a triangle. In Figure 3-5, we 

use     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ before deformation (left-side triangle) and use   ̃  ̃
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and   ̃  ̃

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

after deformation (right-side triangle). Then, we get     ̃ where 

  ,                   -, 

and 

 ̃  , ̃   ̃    ̃   ̃    ̃   ̃ -. 

Note that this representation specifies the deformation in per-triangle basis, and 

therefore it is independent of the specific position and orientation of the mesh in 

world coordinates.  

In continuum mechanics, the same matrix F is called deformation gradient tensor 

(Crandall et al., 1978) as it explains the relationship between a material vector in 

the reference object (before deformation) and the deformed one, i.e.,     

       ̃. Without loss of generality, we assume that the triangle is stretched first 

and then rotated. Thus, we have     , where R denotes the rotation tensor and 

U the stretch tensor. Since we want to differentiate triangles according to their 

degree of stretch and shrinking, we eliminate the rotation component of   by com-

puting the right Cauchy deformation tensor C as defined in Equation 3-2, where   is 
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equal to the square of the right stretch tensor. We obtain principal stretches 

through the eigen-analysis on  , and compute the deformation of a triangle as 

(       ), where   ,    and    are the principal components of  . Intuitively,    

and      reflects the degree of stretch and shrinking, respectively. That is, the 

higher degree of stretch (or shrinking) occurs in the triangle, the larger values of     

(or     ) we will obtain.  

Therefore, the strain value we have obtained measures the degree of deformation 

of the triangle. In addition, since all the measurements are based on the adjacent 

edges and their relative length changes throughout deformation, the per-triangle 

feature descriptor is independent on rigid transformations.  

Exceptional triangles Note that although the strain value of a deformed triangle 

can be computed efficiently by the spectral decomposition of a 3-by-3 deformation 

tensor, this computation may fail on some degenerated triangles. That is, when 

either of the reference or current triangle has edges with near-zero length, the 

gradient tensor analysis will fail while computing            ̃. In this thesis, we 

assume such exceptional triangles do not occur in the deforming meshes in our 

experiments.  
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Figure 3-6 Mapping 3D triangles into the same 2D plane, to compute 2D strain. 

3D strain vs. 2D strain In this section, we have introduced a 3D strain based on 3-

by-3 deformation tensor. In fact, a 2D strain can be obtained by mapping the 

triangles into the same plane and compute the spectral decomposition of the 2-by-

2 deformation tensor within the plane (see Figure 3-6). We compare the 3D strain 

and 2D strain as follows : 

 Computation. 2D strain is more efficent on spectral decomposition because 

it analysis a 2D matrix. On the other hand, 2D strain requires extra compu-

tation to map triangles into the same plane.  

 Result. We have obtained 3 eigenvalues for 3D strain, with one of them as a 

constant value 1. This is because we compute the fourth vertex    as an unit 

vector, which means there is no deformation in the dimension perpendicu-

lar to triangle. For the other 2 eigenvalues, they are identical to those of 2D 

strain which both measure the deformation independent on triangle rota-

tion, translation and uniform scaling. Since we only use these 2 eigenvalues 

from 3D strain, the computed degree of deformation are the same as 2D 

strain.  
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3.2.3 Strain normalization  

 

 

 

 

(a) Reference pose. (b) Original strains. (c) Normalized strains. 
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Figure 3-7 Strain normalizations. Mesh triangles are shown with colour varying from blue to 
red, indicating strain values from low to high. By comparing to (a) the reference pose, (b) 
shows the strain values computed by using the method in Section 2.1.1, and (c) shows the 
normalized strain values by using Gaussian Kernel Function. The histograms in (b) and (c) 
show the distributions of the strains before and after normalization, respectively. 

Although we have excluded the occurrence of triangle with near-zero length edge, 

in a less extreme situation, we still may obtain exceptional high strain values for the 

case of long triangles, i.e., triangles with two long edges and a relatively short edge. 

In Figure 3-7,  ith a  galloping-camel’ mesh,  e sho  the mesh triangles with co-

lors varying from blue and red, to linearly indicate strain values from low to high. 

Figure 3-7(b) shows the original triangle strains on the mesh, where we see only 

blue triangles. This is because there are a few triangles with extraordinary large 

strain values (shown in red but not visible due to small quantity) due to noises, 

while the other triangle strain values are relatively small, see the histogram in Fi-

gure 3-7(b). Therefore, we observe the mesh triangles in blue without seeing the 

very small number of red triangles.  

To alleviate such exceptional high strain values, we filter the extremely high strain 

values by using a Gaussian Kernel Function (GKF): Given a deforming mesh M with 

M frames and N triangles, we represent each frame             , as a vector of 

strain values    (  
 
     

 
) , which we obtain by the method described in Sec-

tion 3.1. The strain values are then normalized into [0 1] by using a Gaussian Kernel 

Function (GKF):  

  
 ̅̅ ̅     ( 

  
 

   
)            

where   is a width parameter that is derived from the average of strain values: 

   (∑   
 ) (   )   .The Gaussian filter normalizes the strain values into [0 1]. 

Figure 3-7(c) shows an example of normalized triangle strain values. By comparing 
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to the original strain values in Figure 3-7(b), we have significantly improved the 

granularity of the strain values, i.e., the most highly deformed regions are shown in 

red and the rigid regions are in blue.  

Complexity. The computation of the strain for each triangle requires the deforma-

tion tensor analysis of a 3-by-3 affine matrix (see Section 3.2.2). Therefore, the 

computation of triangle strains of a deforming mesh M with M frames and N 

triangles consumes O(M∙N) time. 

Invariance. Since the measurement of the degree of deformation is based on the 

adjacent edges and their relative length changes along time, it is obvious that the 

per-triangle strain is independent of global rotation, translation and normal scale of 

the mesh. 

Robustness over shape difference. Since strain is a deformation-based descriptor, 

we expect consistent behaviors for the deforming meshes undergoing identical or 

similar motions, despite their shape differences. To validate the motion consistency, 

 e compute the strains of a  Camel’ and a  Horse’  ith the same pose, by using the 

same reference poses. In Figure 3-8 and Figure 3-9, we show the behaviors of 

strains computed by using either rest-pose or previous-pose as reference poses, 

respectively. We show the mesh triangles in colors varying from blue to red, to in-

dicate their low and high strain values.  

In both Figure 3-8 and Figure 3-9, for the corresponding frames of  horse’ and 

 Camel’, we can observe similarly colored regions on both of the meshes, such as 

the  neck’, the knees on the right-front  leg’ and the top of the right-back  leg’. 

Based on this observation, our per-triangle strain values are consistent between 

the two different meshes with similar poses.  
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Figure 3-8 The same behaviors of rest-pose based strains for both ‘Horse’ and ‘Camel’, with 
respect to the same rest poses. 
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Figure 3-9 The same behaviors of previous-pose based strains for both ‘Horse’ and ‘Camel’. 

3.3 Strain with respect to rest-pose vs. previous-pose  

In the previous section, we have presented a feature descriptor, which measures 

the degree of deformation of a triangle by comparing to a reference pose. In prac-

tice, the reference pose can be either the rest pose, which in many cases is the first 
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frame (see Figure 3-8), or the previous pose (the previous successive frame, see 

Figure 3-9). In this section, we present the different behaviors of the strain values 

computed based on both rest-pose and previous-pose, by using synthetic data and 

real animation data.  

 

(a) Original meshes 

(b) Feature-preserved Canonical Forms 
 

Figure 3-10 (a) Non-rigid meshes and (b) their corresponding feature-preserved 3D canoni-
cal forms (Lian et al., 2013). 

Note that for computing the rest-pose based strains, one can either use any pose in 

the deforming mesh as a rest-pose, or generate it by applying existing methods if 

none of the poses is appropriate as a reference. For example, Lian et al. (Lian et al., 

2013) propose a method to transform different meshes into a Canonical Form 

through properly designed rotations and translations of each near-rigid subparts 

(see Figure 3-10). Then, a rest-pose can be obtained by taking the average of the 

Canonical Forms of all frames.  
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(a) Rest-pose based strains 

(b) Previous-pose based strains 

bending static stretching 

 

Figure 3-11 Comparisons between (a) rest-pose based and (b) previous-pose based strains 
for a synthetic deforming mesh ‘bending-cylinder’.  

Analysis of synthetic data. We first show the differences by using a synthetic  ben-

ding-cylinder’ mesh sequence in Figure 3-11. In this mesh sequence, the  cylinder’ 

mesh first bends a joint, then remains static, and finally stretches back to the star-

ting pose. In each of the mesh, we use red color to indicate the deforming regions, 

where each is a patch of triangles with non-zero strains. We show both the rest-

pose based and previous-pose based strains of the mesh sequence in Figure 3-11. 

We describe the different behaviours of each as follows: 

 Rest-pose based strains. In the top row of Figure 3-11, we show the strains 

for each frame based on the rest pose (the first frame). We can observe 

that we obtain non-zero strains in the joint region in all the frames except 

the last frame. This is because the last frame has the same pose as the rest 

pose, while the other intermediate frames are all deformed in the bended-

joint region, compared to the rest pose.  

 Previous-pose based strains. In the bottom row of Figure 3-11, we show the 

strains for each frame based on the previous pose. We observe that we ob-

tain zero strains  hile the  cylinder’ remains static  ith bended-pose. This is 

because each frame is not deformed by comparing to its previous frame in 

this  static’ period. On the other hand, we obtain non-zero strains in the 

other frames, including the last frame since it is deformed by comparing to 

its previous frame.  
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By observing the above behaviors of both rest-pose based and previous-pose based 

strains of the synthesized data in Figure 3-11, the main differences are from static 

frames and the last frame. The comparison shows that previous-pose based strain 

is more sensitive to the motions in the deforming mesh. That is, we obtain non-

zero strains if a motion occurs, which deformes the mesh. On the other hand, the 

rest-pose based strains consider each frame independently by comparing to the 

rest pose.  

Analysis of real-world data. To further analyse the differences between the two 

strain types, we compute both types of strains for three selected frames in a  gallo-

ping-camel’ mesh sequence, as shown in Figure 3-12. We use a neutral pose as the 

reference pose for computing rest-pose based strains. In each of the mesh in Figure 

3-12, the triangles are colored from blue to red to indicate strain values from low 

to high. We describe the behaviours of both strains as follows:  

 Rest-pose based strains. In the top-right row in Figure 3-12, we show the 

strain values for each frame based on the rest pose shown in the left-most 

in Figure 3-12. We can observe that we obtain non-zero strains in the  neck’ 

region and the front-right  knee’ in all the frames. This is because these re-

gions in these frames are all deformed by comparing to the corresponding 

regions in the reference pose.  

 Previous-pose based strains. In the bottom-right row in Figure 3-12, we 

sho  the strains for each frame based on each frame’s previous pose. We 

observe that the  neck’ regions are mostly sho n in blue. This is because 

the Camel rarely moves the  neck’  hen galloping. Moreover,  e obtain 

mostly zero-strains in the front-right  knee’ in f6. This is because the front-

right  knee’ remains nearly the same pose from f5 to f6. 

Based on the above comparisons on the  galloping-camel’ data,  e observe similar 

strain behaviors computed from the synthesized  bending-cylinder’ data. These 

differences can be seen clearly from t o regions: (1)  neck’ regions. Because the 

 neck’ barely moves during galloping,  e obtain mostly zero-value of the previous-

pose based strains. On the contrary we obtain nonzero-value of the rest-pose ba-

sed strains because the  neck’ poses are different from its pose in the rest pose. (2) 

Front-right  knee’. We obtain zero-values of the previous-pose based strains in f6, 

since the  knee’ pose is almost the same in f5. On the contrary, we obtain nonzero-

value of the rest-pose based strains in f6, because the  knee’ poses in both frames 

are different from its pose in the rest pose.  
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Based on the above comparisons, we summarize the differences between the two 

strain types and their potential applications as follows: 

1) Rest-pose based strain.  

This type of strain independently measures the deformation of each frame by com-

paring to a rest pose. Since the rest-pose based strains are computed based on the 

same reference pose, we can apply these strains to compare the pose similarities 

by representing each frame into triangle strain vector. By using this mesh repre-

sentation, in Chapter 1, we devise a temporal segmentation method of deforming 

meshes that each temporal segment contains similar frames, where the frame simi-

larities are computed based on rest-pose based strains.  

2) Previous-pose based strain. 

Comparing to the rest-pose based strains, the previous-pose based strain are more 

sensitive to motions. More specifically, each time a motion occurs, a frame is de-

formed from its previous frame, and therefore we obtain non-zero strains. Based 

on this fact, in Chapter 5, we use the previous-pose based strains for computing 

spatio-temporal segmentation of deforming meshes, whose results is extended 

towards motion similarity measurement between deforming meshes. 

3.4 Summary  

In this chapter, we first give a review of the most popular existing feature de-

scriptors for 3D shapes in Section 3.1. After that, we present a new per-triangle 

deformation-based feature descriptor that is invariant to rigid deformations, in-

cluding rotation, translation and normal scale. We also further process the strains 

so that they are robust under presence of small noises. After that, we have dis-

cussed several properties of the proposed descriptor: (1) It is invariant to global 

mesh rotation or translation, and (2) it shows the similar behaviors for two differ-

ent shapes performing identical or similar motions. Finally, we compare and sum-

marize the behaviours of two types of strains, i.e., rest-pose based and previous-

pose based strains, by using both synthesized animations and real-world 3D anima-

tions. 
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f 4 f 5 f 6 

 

Figure 3-12 Strains for a ‘galloping-camel’ data. From left to right and top to bottom, left-most is the rest pose, top-row the rest-pose based strains 
and bottom-row the previous-pose based strains. The dashed arrows indicate the corresponding reference poses for computing strains. 
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 Temporal Segmentation Chapter 4

of Deforming Meshes 

Most of the existing works on deforming meshes compute one single spatial 

segmentation according to geodesic and kinematic affinities of mesh primitives, i.e., 

vertices or triangles. In such cases, it is clear that the spatial segmentation results 

may significantly be different depending on the motions performed by a deforming 

mesh. Ideally, the mesh decomposition results should represent well the defor-

mation exhibited on the mesh. However, when it comes to a long and complex mo-

tion composed of several basic motions, one may obtain overly segmented patches, 

which do not represent well each sub-motion. To avoid such problem, we perform 

temporal segmentation prior to spatial segmentation, aiming to compute the rep-

resentative spatial segmentation for the sub-motion within each temporal segment.  

In this chapter, based on the dynamic feature descriptor described in Chapter 3, 

we present a method for the temporal segmentation of deforming meshes that 

allows to obtain consistent temporal segmentation for different deforming meshes 

exhibiting identical or similar motions, despite their shape differences, which is 

desirable. In Section 4.3, we demonstrate our segmentation results over both syn-

thesized and motion captured deforming meshes, and compare  ith Barbič et al.’s 

method (Barbič et al., 2004). Finally, we conclude the descriptions of our new tem-

poral segmentation method in Section 4.4. 

4.1 Background 

Given a long sequence of animation, the objective of the temporal segmentation 

is to cut the sequence into meaningful motion clips, or gestures in the case of hu-

man motions. A large variety of applications have been developed based on tem-

poral segmentation, such as motion classification / recognition (Müller and Röder, 

2006) (Spriggs et al., 2009), motion data retrieval (Müller et al., 2005), compression 

(Liu and McMillan, 2006), animation editing (Kovar et al., 2002), etc. In this section, 
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we give a review of several existing methods for character animations, i.e., motion 

capture data, and for the video analysis in Computer Vision field.  

4.1.1 Temporal segmentation of motion capture data  

As noted by Kahol et al. (Kahol et al., 2004), the temporal segmentation of hu-

man motion capture data is a challenging problem because :  

 Motion boundaries are often subjective. 

 A motion sequence can be segmented into different levels of sub-motions. 

For example, a human   alking’ motion can be decomposed into sub-

motions of legs :  left-stop’,  left-for ard’,  right-for ard’ and  right-stop’ 

(Zhou et al., 2013). 

 It may not be possible to enumerate all sub-motions for the methods by 

using sub-motion templates, such as HMM-based or learning-based 

methods. 

Several supervised (Kahol et al., 2004) and unsupervised (Barbič et al., 2004) (Janus 

and Nakamura, 2005) methods have been proposed to address these problems. 

Kahol et al. (Kahol et al., 2004) propose a temporal segmentation method for dance 

sequences by learning from empirical data, which contains the ground-truth boun-

dary frames of training data. Their algorithm first recognizes the potential bounda-

ries as the local minima of feature cues, then determines the correct boundaries by 

feeding the cues’ binary values (whether a feature cue within a frame is locally mi-

nimal or not) in the potential boundaries to a naïve Bayesian classifier, which has 

been trained by using empirical data. One obvious limitation of such supervised 

method is that the segmentation results are biased to human empirical data, which 

may not cover all the possible boundaries. Another method proposed by Barbič et 

al. (Barbič et al., 2004) avoids such limitation. They conduct PCA analysis of the mo-

tion data within a sliding window with a fixed number of intrinsic dimensionalities, 

which returns an error for the reconstruction of the motion data. By following this 

procedure, one can obtain and observe an error curve as the sliding window moves 

forward, see Figure 4-1. Finally, the method automatically detects boundary frames 

along the error curve if significant changes occur, i.e., the change of the error ex-

ceeds a predefined threshold. Figure 4-1 (Barbič et al., 2004) shows an example of 

segmenting   alk’ and  run’ motions in a sequence by applying this algorithm. Simi-

larly, Janus and Nakamura (Janus and Nakamura, 2005) model motion data in a 

sliding window with Hidden Markov Model (HMM) (Baum, 1972), and their method 
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automatically determines the boundary frames by observing the significant 

changes of the probability density of the HMM.  
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Figure 4-1 Temporal segmentation of motion capture data (Barbič et al., 2004). The solid 
curve is a reconstruction error curve by applying spectral analysis on a sliding window. The 
dashed line shows the standard deviation of the previous values. The vertical solid line indi-
cates a boundary for the temporal segmentation. 

4.1.2 Temporal segmentation of videos  

In Computer Vision field, the objective of the temporal segmentation of videos is 

to determine boundary frames that divide a video into meaningful clips. The tem-

poral segmentation of videos is considered as a primary step for automatic annota-

tion of video sequences, which can be used as basic elements for applications such 

as video browsing and retrieval (Koprinska and Carrato, 2001). A large variety of 

techniques for video segmentation have been developed, which we categorize into 

two classes as follows: 

 Threshold-based method . A considerable portion of the temporal video 

segmentation methods determine boundary frames by using a threshold 

based on frame distance (Boreczky and Rowe, 1996) (Pass and Zabih, 1999) 

(Shahraray, 1995) (Krishna et al., 2014). Most of these methods are based 

on the similarity measurement between successive images, and determine 

a cut if the distance between two neighbouring images exceeds a predefi-

ned threshold. Since these approaches are based on inter-image distance 

that limits their applicability to scenarios requiring semantic modelling. 
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Krishna et al. (Krishna et al., 2014) recently propose an approach that first 

trains a One Class Classifier based on Support Vector Machine (Maji et al., 

2008) with the frames for 1 to 3 seconds. Then, they apply the learned mo-

del on each of the successive image to compute a novelty score. When the 

novelty score of a frame exceeds a prefined threshold, the frame is chosen 

as a boundary frame.  

 Over-segmentation based method. Another class of the temporal video 

segmentation methods detects the turning points of the motion accelera-

tion and/or deceleration. Since neither inter-image distance nor image mo-

delling are required, such methods are fast and threshold-free, and thus can 

be used for online segmentation (Liu et al., 2003). Several frequently used 

criteria for determining primitive movements are the local minima / maxi-

ma of velocity (Wang et al., 2001), angular velocity (Fod et al., 2002) of the 

trajectories of observed points, or objects. Having the primitive movements, 

higher level actions can then be defined as the combinations of primitive 

movements. By taking musical conducting gestures as an example, five con-

ducting prototype gestures can be defined by using the primitive 

movements (Wang et al., 2001) (see Figure 4-2). 

 

Figure 4-2 Five conducting prototype gestures defined based on primitive movements, 
which are obtained by over-segmentation (Wang et al., 2001). 

4.1.3 Motivation of our approach  

As have been reviewed in the previous section, there has been a variety of tech-

niques for temporally segmenting videos and motion capture data. However, to the 
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best of our knowledge, no previous work has been done for the temporal segmen-

tation of deforming meshes. Moreover, the existing temporal segmentation tech-

niques for video processing or motion captured animations may not be directly 

applicable for deforming mesh due to the following reasons : 

 For the temporal segmentation techniques for video processing in Compu-

ter Vision, there exists a large heap of local information available from 

image data, such as colour, texture and geometry, etc., yet mesh data in 

most cases contain only geometry information.  

 Comparing to the motion captured animations, deforming mesh data con-

sists of much higher dimension : a motion capture data can be obtained as 

the movements of up to hundreds of markers, while a deforming mesh may 

have tens of thousands of vertices. For this reason, the temporal segmenta-

tion methods for motion capture data may not be applicable to handle de-

forming meshes. For example, the temporal segmentation method propo-

sed by Barbič et al. (Barbič et al., 2004) may fail with a deforming mesh if 

the mesh has a large vertex number, because the computational complexity 

of PCA is O(n3), which increases sharply as the number of vertex n in-

creases.  

Therefore, in the next section, we present a new temporal segmentation method 

for deforming meshes.  

4.2 Temporal segmentation of deforming meshes  

Having computed the per-triangle strain values at each frame by using the de-

scriptor presented in Chapter 3, we proceed with temporal segmentation as fol-

lows: we first compute the deformation distance between every frame pair, and 

measure the average frame dissimilarities within all possible sub-sequences. Then, 

the boundary frames for the temporal segmentation are determined by minimizing 

the sum of within-segment frame dissimilarities. This optimization-based method 

allows to obtain the segmentation results where each temporal segment is a sub-

sequence of similar frames, i.e., similar poses.  

Note that we use the rest-pose based strains (see Section 3.3) in this work. This is 

because our temporal segmentation method is based on the measurement of pair-

wise frame distances, which indirectly requires that the strain of each frame should 

be computed with respect to the same reference pose.  
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4.2.1 Within-segment frame dissimilarity 

Given a deforming mesh M with M frames and N triangles, we represent each 

frame           , with a vector of triangle strain values  
 

 (  
      

 ) , 

where the per-triangle strains can be computed by using the method described in 

Chapter 3. We then can compute the distance   (   ) between frames    and    

by taking the Euclidean distance between their corresponding strain vectors    and 

  , i.e.,  

  (   )  ‖     ‖  
.             

Based on this distance metric between frame pairs, we consider every possible sub-

sequence [p, q] (from    to   ) as a candidate temporal segment, with the corres-

ponding within-segment dissimilarity   (   ) defined as follows: 

  (   )  {

∑ ∑   (   )   
   

 
     

(     ) (   )  
        

  (   )                           
                                         

                 

where          .  

Intuitively,   (   ) is the average dissimilarity of all possible frame pairs within [p, 

q]. Figure 4-3 shows the within-segment dissimilarity matrix computed for a facial 

motion capture data. We show the dissimilarity matrix in color varying from blue to 

red, indicating dissimilarity values from low to high.  
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Figure 4-3 Within-segment dissimilarity matrix.  

4.2.2 Temporal segmentation 

The goal of our temporal segmentation is to cut the given mesh sequence M in-

to distinct segments M1, ..., MK, where K is the number of segments. K as well as 

the boundary frames    
, k      K, (indices of the first frame in each segment) are 

to be determined. To achieve this, we consider every possible subsequence repre-

sented by the average of pairwise frame distance. The main idea is to determine a 

temporal segmentation where each subsequence represents a low dissimilarity 

value. This indicates that the subsequence contains a set of meshes with similar 

poses.  
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Figure 4-4 A synthetic example of temporal segmentation. (left) The colored background is 
a within-segment average dissimilarity matrix, and (m,n) is the first detected temporal 
segment. (right) The remaining of the sequences are iteratively segmented by using the 
same approach. 

We use a threshold    to determine whether the dissimilarity is low enough to form 

a temporal segment, i.e., if Ds(p,q)<  , [p, q] is the considered temporal segment. 

In our experiments,    is driven from        (  ), where    ,   - is a user 

specified parameter. The corresponding settings of    for different experimental 

data are shown in Table 4-1. To avoid over-segmentation, we scan the dissimilarity 

matrix in descending order of subsequence length in favor of longer sub-sequences. 

For example, given two sub-sequences [p1, q1] and [p2, q2] in [p0, q0] with 

p1<p2<q2<q1, Ds(p1,q1)<   and Ds(p2,q2)<  , we take [p1, q1] as a temporal segment 

because q1- p1> q2- p2. In practice, this procedure is to scan the within-segment 

dissimilarity matrix from top-right corner towards the diagonal of the matrix until 

we encounter a dissimilarity value that is lower than   . Next, we repeat the seg-

mentation over the remaining sub-sequences [p0, p1-1] and [q1+1, q0]. In Figure 

4-4, sub-sequence [m, n] is first found as a temporal segment, i.e., Ds(m, n)<  . 

Then, we recursively apply the temporal segmentation over the remaining sub-

sequences [1, m-1] and [n+1, M]. Sometimes, we may obtain short temporal seg-

ments due to noises. To alleviate this problem, for each of the temporal segment 

whose number of frames is less than     , where    is fixed as 0.02 in our expe-

riments, we merge it to its neighboring segment with less dissimilarity.  

The complete algorithm is shown in Algorithm 4-1. In this algorithm, max() is a 

function that returns the maximum value and the corresponding index in a vector. 
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In the most extreme case where each frame becomes a temporal segment, the 

algorithm has to scan all the items in the dissimilarity matrix Ds. Therefore, the al-

gorithm runs in  (  ) time in the worst case. 

Algorithm 1: TempSeg(IB,Ds,Ih,It) 

Init: IB=[], Ih=1, It=M, As 

L=It-Ih+1 

for l=L to 1 do  

for p=1 to L-l+1 do 

Ds-sub(p)=Ds(p,p+l-1) 

end for 

[Ds-max,p]=max(Ds-sub)  

if Ds-max>   then 

IB= [IB p]  

q=p+l-1;  

TempSeg(IB,Ds,Ih,p-1) 

TempSeg(IB,Ds,q+1,It) 

break  

end if 

end for 

Return: IB 

Algorithm 4-1 Temporal segmentation algorithm for deforming meshes. For the inputs, IB  is 
a vector of boundary frames’ indices, Ds is the within-segment average dissimilarity matrix, 
Ih and It are the indices of the first frame and the last frame in the subsequence, respectively. 

4.3 Experimental results and discussions 

In this section, we first introduce our experimental environment and data, then 

show the temporal segmentation results. We also present a comparison between 

our method and the temporal segmentation method for character animations pro-

posed by Barbič et al. (Barbič et al., 2004).  
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4.3.1 Experimental environment and data 

We have tested our temporal segmentation method on both synthesized and 

motion captured animation data. Table 4-1 shows the dimensions of the datasets 

used, the thresholds, and the timings for computing the temporal segmentation of 

each data. The algorithm has been implemented in Matlab on an Intel Core 

3.40GHz PC with 16GB of RAM. The computation for our temporal segmentation 

starts to be heavy as the mesh sequence becomes long, or the data dimension be-

comes large. For example, the runtime of  Face1’ with 1472 frames is 1128.9s, 

 hich is almost doubled comparing to 565.8s for  Face2’  ith 1097 frames. 

Table 4-1 Used data and the timings for temporal segmentation. The timings are the 
runtime for the temporal segmentation of each data (the computation of the within-
segment dissimilarity matrix is excluded). 

Name 
Number of 

faces 

Number of 

frames 
Motions    

Timings 

(second) 

Michael 29999 55 Walking 0.8 2.1 

Gorilla 29999 55 Walking 0.8 1.9 

Camel 43778 51 Galloping 0.8 3.3 

Face1 286 1097 
Facial ex-

pressions 
0.6 565.8 

Face2 269 1472 
Facial ex-

pressions 
0.7 1128.9 

4.3.2 Temporal segmentation results 

The segmentation results of the above deforming meshes are shown in Figure 

4-5, Figure 4-7, Figure 4-10, Figure 4-11 and Figure 4-12, respectively. In each of 

these figures, we show a within-segment dissimilarity matrix with colours ranging 

from blue to red, to indicate within-segment dissimilarity values from low to high. 

And we use vertical dashed lines to indicate boundary frames. We discuss on the 

temporal segmentation results of each data below.  
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Figure 4-5 Temporal segmentation results of (a) ‘Michael’ and (b) ‘Gorilla’, which are both 
segmented into submotions: ‘right-stop’, ‘left-forward and left-stop’, ‘right-forward and 
right-stop’ and ‘left-forward’. 

‘Michael’ and ‘Gorilla’. Both  Michael’ and  Gorilla’ data have been generated by 

rigging TOSCA high-resolution meshes (Bronstein et al., 2008) to the same walking 

skeleton provided by 3ds Max Studio (3dS MAX L&T CD., 2006). In this way, the two 

deforming meshes perform identical   alking’ motion. The temporal segmentation 

results of  Michael’ and  Gorilla’ are sho n in Figure 4-5.  As noted by Zhou et al. 

(Zhou et al., 2013) in their recent temporal segmentation work on motion capture 
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data, a   alking’ motion can be decomposed into 4 types of sub-motions:  left-stop’, 

 left-for ard’,  right-for ard’ and  right-stop’. By follo ing this convention,  e 

name each of the obtained temporal segments as follows :  right-stop’,  left-

forward and left-stop’,  right-forward and right-stop’ and  left-for ard’. Sample 

frames of each temporal segment are shown in Figure 4-12. As can be seen, our 

method decomposes the motions performed by both  Michael’ and  Gorilla’ into 

the same sub-motions, despite their shape differences. 

‘Face1’ and ‘Face2’. Both of  Face1’ and  Face2’ data have been created by using a 

commercial motion capture system Vicon (http::Vicon). For a subject attached with 

reflective markers, Vicon system uses a set of cameras to track the trajectory of 

each marker and reconstruct these markers in 3D space. To collect human facial 

expressions, we have attached about 160 reflective markers on each subject’s face 

(see Figure 4-6), and use the Vicon system to capture facial movements. Sample 

meshes of the captured facial animations  Face1’ and  Face2’ are shown in Figure 

4-8 and Figure 4-9, respectively. To validate the consistency of our approach, we 

ask each subject to perform the following facial expressions in order: three times of 

 eyebro -raise’,  anger’,  disgust’,  fear’,  happy’,  surprise’,  sad’,  ith a  neutral’ 

expression as an interval between each. Note that the facial expressions in the two 

data are not temporally synchronized, and the markers on the two faces are not 

spatially coordinated either. 
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Face1 Face2 

 

Figure 4-6 Capturing facial expressions with markers for ‘Face1’ and ‘Face2’. 

The temporal segmentation results of the two facial animations are both shown in 

Figure 4-7.  Although  Face1’ and  Face2’ have different number of frames and dif-

ferent durations, we obtain 13 segments for both meshes which correspond to the 

following facial expression sequences: (1)  eyebro -raise’, (2)  anger’, (3)  neutral’, 

(4)  disgust’, (5)  neutral’, (6)  fear’, (7)  neutral’, (8)  happy’, (9)  neutral’, (10)  sur-

prise’, (11)  neutral’, (12)  sad’, (13)  neutral’. Sample frames of the facial expres-

sion in each temporal segment for  Face1’ and  Face2’ are shown in Figure 4-8 and 

Figure 4-9, respectively. Quite encouragingly that we have obtained consistent 

temporal segmentation results between the two facial expressions.  
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Figure 4-7 Temporal segmentation results of (a) ‘Face1’ and (b) ‘Face2’, which are both 
segmented into facial expressions ‘eyebrow-raise’, ‘anger’, ‘neutral’, ‘disgust’,  ‘neutral’, 
‘fear’, ‘neutral’, ‘happy’, ‘neutral’, ‘surprise’, ‘neutral’, ‘sad’, and ‘neutral’. 

Note that in the first temporal segment of  eyebor -raise’ motion, it contains three 

times of  eyebor -raise’ motions  ith  neutral’ expressions in between. Such ato-

mic motions can be further segmented by using a different threshold    (see Sec-
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tion 4.2). We will discuss about the segmentation for the atomic motions of facial 

expressions in the next section. 
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Figure 4-8 Sample meshes within each temporal segment of ‘Face1’. 
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Figure 4-9 Sample meshes within each temporal segment of ‘Face2’. 
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4.3.3 Discussion on the threshold 

As have been presented in Section 4.2, the number of temporal segments ob-

tained by using our method is determined by a user specified threshold   . Intui-

tively, this user parameter determines the maximally allowed average dissimilarity 

within each temporal segment.  

Figure 4-10 shows the temporal segmentation results of  Face1’ by using t o diffe-

rent user thresholds,        (top) and         (bottom). The comparisons 

between these two results can be summarized as follows: 

 Although the two temporal segmentation results have different boundary 

frames, they both successfully segment the motion sequence of  anger’, 

 disgust’,  fear’,  happy’,  surprise’ and  sad’,  ith  neutral’ expressions bet-

ween them. 

 The temporal segmentation result by using lower threshold, Figure 4-10(b), 

further returns the atomic motions in the first temporal segment (Figure 

4-10(a)),  hich are (1)  neutral’, (2)  eyebro -raise’, (3)  neutral’, (4) 

 eyebro -raise’, (5)  neutral’, (6)  eyebro -raise’, (7)  neutral’. 

To compute the temporal segmentation with atomic motions, instead of using a 

global threshold over the entire sequence, we can also recursively compute the 

temporal segments with different thresholds. That is, for example, after obtaining 

the temporal segmentation result shown in Figure 4-10(a), we repeat our temporal 

segmentation method on each temporal segment with a lower threshold to acquire 

the atomic motions. The advantage of such approach is that it can generate tempo-

ral segments of different level of motions (motions like   alking’ is a high level mo-

tion,  hile  left-for ard’ and  right-for ard’ are atomic motions of   alking’). 

However, it requires automatic determining, or pre-settings, of the thresholds for 

different level of motions, which will be challenging tasks. Another interesting im-

provement would be to learn the threshold from a set of human-based ground-

truth temporal segmentation.  
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(a)   

(b)   

 

Figure 4-10 Temporal segmentation results of ‘Face1’ by using different thresholds (  , 
Section 4.2), (a)         (the same results in Figure 4-7(a)) and (b)        . Comparing 
to (a), the obtained results in (b) further divide the ‘eyebrow-raise’ into atomic facial ex-
pressions:  ‘neutral’,  ‘eyebrow-raise’,  ‘neutral’,  ‘eyebrow-raise’,  ‘neutral’,  ‘eyebrow-raise’, 
‘neutral’. 

4.3.4 A comparison with Barbič et al.’s method 

To validate the performance of our new temporal segmentation method, we 

have compared our method with a PCA-based motion segmentation method pro-

posed for motion capture data by Barbič et al. (Barbič et al., 2004). In order to 

adapt their method for deforming meshes, one can do either of the followings: (a) 

Replace the joints in motion capture data with triangles as the primitives of each 
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deforming mesh, which means the dimensionality of each frame data is significant-

ly increased since the number of triangles within each frame of a deforming mesh 

may be utterly larger than the number of joints of a motion capture data; (b) Ex-

tract the skeleton of a deforming mesh and apply their method on the skeleton 

sequence. For the sake of algorithm simplicity, we have chosen the approach (a). 

Barbič et al.’s method starts  ith a short initial motion segment to estimate the 

number of Principal Components (PCs). Then, for the successive frames that can be 

precisely reconstructed by using the estimated number of PCs, we merge them to 

the initial segment because they share similar intrinsic basis. Otherwise, a bounda-

ry frame is determined. The remaining motion sequence is segmented by repeating 

this procedure.  

 
Our method                    Barbič et al. ‘04 

 

Figure 4-11 Temporal segmentation results of ‘Camel’ by using both our method and Barbič 
et al.’s method (Barbič et al., 2004).  

In Figure 4-11, we have shown the temporal segmentation results by using both 

methods on  Camel’ data. Figure 4-12(b) shows selected meshes of the temporal 

segments  run’,  head-right’,  head-left’,  run’,  head-do n’,  head-up’, obtained by 

using our method. To apply Barbič et al.’s method on  Camel’,  e set the length of 

the initial segment as 7, so that it is sufficient for PCA method to capture the fea-

tures of  run’ motion of 10 frames. However, because this length is longer than the 

durations of  head-right’ and  head-left’ (both have 5 frames), for which reason we 
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obtain boundary frames (f18 and f25) shifted from the ground-truth (f15 and f20). 

Worse, since the  head-do n’ motion is too short (from f41 to f44), the initial seg-

ment (from f41 and f47) contains both  head-do n’ and  head-up’ motions. This 

method cannot separate the two short motions because of the requirement of the 

minimum length of the initial segment. That is, this method over-fits to the initial 

segment. In order to avoid such drawback, Lin et al. (Lin et al., 2011) apply Barbič et 

al.’s method in both forward and backward directions, and unify the two boundary 

sets, which tends to result in over segmentation in many cases. In comparison, our 

method our method neither requires an initial segment nor has the limitation of 

the minimal length of segments.  

Furthermore, Barbič et al.’s method takes inputs of joint angular data and the seg-

mentation is based on the PCA analysis of the number principal dimensions of 

frames. Due to the significant increase of the computation of PCA on large dimen-

sional data (Kambhatla and Leen, 1997), the application of their method would 

suffers from heavy computation. Comparing to 3.3 seconds by using our temporal 

segmentation method (see Table 4-1), Barbič et al.’s method consumes nearly 10 

minutes. 
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Figure 4-12 Sample meshes within each temporal segment of (a) ‘Gorilla’, ‘Michael’ and (b) ‘Camel’. 
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4.4 Conclusion  

4.4.1 Contributions 

In this chapter, we present a method for the temporal segmentation of deform-

ing meshes. We first compute the deformation of each triangle at each frame, i.e., 

rest-pose based strain values, by using the per-triangle dynamic feature descriptor 

described in Chapter 3. We then define a distance metric for each frame pair, and 

further define within-segment frame dissimilarity as the average of all possible 

pairwise frame distance within a candidate temporal segment. Finally, the bounda-

ry frames for the temporal segmentation are determined by minimizing the sum of 

within-segment frame dissimilarities. This optimization-based method allows to 

obtain the segmentation results where each temporal segment is a subsequence of 

similar frames, i.e., similar poses.  

The contributions of this research can be summarized as follows:  

 We devise a frame distance metric based on deformation behaviour by 

using our dynamic descriptor. The distance between two frames is small if 

the two frames undergo similar deformation with respect to the same rest-

pose.  

 We formulate the temporal segmentation into an optimization problem 

that minimizes the sum of within-segment dissimilarities. This allows to 

automatically determine the number of segments.  

 Since the frame distance metric is defined based on the similarity of defor-

mation behaviours, our temporal segmentation method allows to obtain 

consistent temporal segments with similar sub-motions among two defor-

ming meshes showing identical or similar motions,.  

In order to validate the effectiveness of our method, we have conducted a set of 

experiments with both synthesized and motion captured deforming meshes. The 

experimental results show that we can obtain consistent temporal segmentation 

for different deforming meshes exhibiting similar motions, despite their shape dif-

ferences. Moreover, the comparisons  ith Barbič et al.’s segmentation method 

(Barbič et al., 2004) sho  that our method avoids over-fitting problem by taking 

into account of both for ard and back ard neighbouring frames,  hile Barbič et 

al.’s method only considers forward frames. A threshold    (see Section 4.2) is 

needed though, which can be properly provided by an experienced user. 
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4.4.2 Summary 

In this chapter, we have proposed a new method for the temporal segmentation 

of deforming meshes based on the new dynamic descriptor presented in Chapter 3 

We show the performance of our method with experiment results on both synthet-

ic and motion captured deforming meshes, from which we obtain the same sub-

motion sequences for the deforming meshes exhibiting identical or similar motions, 

despite their shape differences. Moreover, we observe more efficiency and effec-

tiveness of our temporal segmentation method, by comparing with an existing 

temporal segmentation method.  
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 Spatio-temporal Segmen-Chapter 5

tation of Deforming Meshes 

We have presented a temporal segmentation method which divides a deforming 

mesh into temporal segments of similar poses in the previous chapter. However, 

that method has not taken into account of the spatial deformation coherency on 

the deforming mesh. To the best of our knowledge, the spatio-temporal segmenta-

tion of deforming meshes has not been studied by existing works. In Section 5.3 of 

this chapter, we present a spatio-temporal segmentation method, which investi-

gates both the spatial and temporal deformation coherency simultaneously by us-

ing the dynamic feature descriptor described in Chapter 3. Furthermore, we extend 

the segmentation results towards the application of motion similarity measure-

ment between deforming meshes (see Section 5.4). This application is particularly 

interesting, because it partly alleviates the challenge of the evaluation of segmen-

tation results.  By evaluating the computed motion similarities among deforming 

meshes with respect to human-based ground-truth, we indirectly validate the qual-

ity of the segmentation results (see Section 5.6). 

5.1 Background 

In this section, we start by reviewing several spatio-temporal segmentation 

techniques that have been developed in Commputer Vision field. Next, we review 

several studies in Computer Network field about Evolving Graph, which can be used 

as a compact representation of spatio-temporal segmentation results. Then, we 

introduce two existing methods for measuring the similarities among spatio-

temporal sements. 

5.1.1 Spatio-temporal segmetnation techniques in Computer Vision field 

Spatio-temporal segmentation is a primary step of video analysis for the applica-

tions such as scene interpretation and video understanding. Megret and Demen-
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thon (Megret and Dementhon, 2002) give a survey of the spatio-temporal segmen-

tation techniques on video data, among which graph-based segmentation 

(Grundmann et al., 2010) (Tian et al., 2011) is the most popular method type.  

 

 

Figure 5-1 The spatial and temporal neighborhoods in the 3D graph cut model (Tian et al., 
2011). The red lines show spatial neighborhoods, the purple and the blue lines show tem-
poral neighborhoods. 

Grundmann et al. (Grundmann et al., 2010) propose a hierarchical graph-based 

algorithm for segmenting long video sequences. This method first initializes a video 

as a graph, whose nodes are pixels and edges are the spatial and temporal neigh-

borhoods. Then, the segmentation is done by using a region-growing method that 

merges both the spatial and temporal neighboring nodes with similar colors. 

However, this method suffers from the poor efficiency because of the high dimen-

sionality of the initial graph, and over-segmentation due to local noises. To address 

these problems, Tian et al. (Tian et al., 2011) propose an improved graph cut seg-

mentation method: They first compute the initial over-segmentation of each frame 

independently by using an existing efficient segmentation method proposed by 

Comaniciu and Meer (Comaniciu and Meer, 2002). Then , they construct an initial 

graph, whose nodes represent spatial segments within each frame and whose 

edges the immediate spatio-temporal neighborhoods (see Figure 5-1). Finally, the 

segmentation can be done by merging similar neighboring nodes both spatially and 

temporally, where each node is represented with the statistical model of pixel co-

lors. 

5.1.2 The studies of Evolving Graphs in Computer Network field 

A computer network can be represented as a graph, where each node repre-

sents a computer, a server or a web browser, and each edge represents the com-

munication between two nodes. An Evolving Graph can then be defined as a graph 

changes over time, either graph nodes or edges. Based on the graph representation, 

a large quantity of applications has been developed such as the detection of the 
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most correlated sub-networks (Chan et al., 2008) (Bilgin and Yener, 2006), querying 

or mining (Desikan and Srivastava, 2004) (Kan et al., 2009) (Robardet, 2009) (Ber-

lingerio et al., 2009) (Yang et al., 2014) (Sun et al, 2007), and dynamic graph com-

pression (Liu et al, 2012), etc.  

 

(a) (b) 
 

Figure 5-2 (a) Sample graphs in an evolving graph and (b) their union graph (Chan et al., 
2008). 

Chan et al. (Chan et al., 2008) proposed a method to discover regions in a computer 

network that have correlated spatio-temporal changes, i.e., the edges evolve syn-

chronously. To achieve this goal, the authors proposed two distance metrics bet-

ween graph edges: spatial distance and temporal distance. To compute the spatial 

distance between two edges, they compute the union graph over the evolving 

graph and then the shortest path distance between the two edges are taken as the 

spatial distance (see Figure 5-2). To compute the temporal distance between two 

edges, the authors first define a transition sequence that represents the changes of 

an edge in a binary waveform as a sequence of transitions (see Figure 5-3). Based 

on this representation, they can compute the temporal distance between two 

edges by using Euclidean distance. Finally, Chan et al. compute the spatio-temporal 

segmentation by merging the neighbouring edges that have either small spatial 

distance or temporal distance.  
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Figure 5-3 Sample waveform and the corresponding transition sequence of an evolving 
edge (Kan et al., 2009).(a) An evolving graph, (b) the corresponding waveform, graphical 
representation and transition sequence representation of the evolving edge in the dashed 
circle in (a). 

Similarly, Kan et al. (Kan et al., 2009) also model the changes of a graph edge into 

transition sequence. Based on this representation, a user can query by a transition 

sequence for the sub-graphs that contain edge changes indicated by the input tran-

sition sequence. See an example in Figure 5-4.  

 

(a) 

(b) 

 

Figure 5-4 An example of graph query (Kan et al., 2009). By querying the maximal subgraph 
with waveform ‘0111’ in (a), we obtain an evolving subgraph shown in (b), in which the 
edges ‘1-4’ and ‘2-4’ can be represented with the waveform ‘0111’. 

5.1.3  Similarity measurement based on spatio-temporal segmentation 

In our work, we aim to use our spatio-temporal segmentation results of deform-

ing meshes to compare their differences. In Computer Network field, however, 
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although the spatio-temporal segmentation techniques can be used to discover 

correlated regions in an evolving graph (Chan et al, 2008), they are not applicable 

to compare two evolving graphs. In Computer Vision field, on the other hand, sev-

eral distance measurement methods have been proposed for human action recog-

nition.  

Ryoo and Aggarwal (Ryoo and Aggarwal, 2009) compare two spatio-temporal seg-

mentation results that have been obtained by using Dollár et al.’s method (Dollár et 

al., 2005) by computing the spatial and temporal relationships between the spatio-

temporal segments : Assuming S1 and S2 are the spatio-temporal segments of two 

videos, respectively, the authors define the temporal relationships such as  S1 is 

before S2’ if the last frame of S1 occurs before the first frame of S2, and the spatial 

relationships such as  S1 is near S2’ if the pixel colors in S1 is similar to the pixel co-

lors in S2. Based on these definitions, the method detects a similar human action  if 

all the spatio-temporal segments of a sample video matches to those of a ground-

truth video. However, this method is sensitive to noises such as light conditions, 

which affect the occurrences and duration of spatio-temporal segments and there-

fore influence the temporal relationship.  

 

(a) (b) 
 

Figure 5-5 Representation of spatio-temporal segmentation results (Aksoy et al., 2010). The 
left column (a) shows 4 types of interactions between node 2 and 4. In the right column (b), 
from top to bottom, each row shows the spatio-temporal segmentation results, graph rep-
resentation, and the interaction sequences of node pairs.  

Aksoy et al. (Aksoy et al., 2010) and Luo et al. (Luo et al., 2011) propose another 

human action similarity metric by comparing the interactions between spatial-

temporal segments. They first define four types of interactions (see Figure 5-5), 

then represent the interactions of each pair of segments as character labels (see 

Figure 5-5(b)). Finally, Luo et al. concatenate each row of the matric in Figure 5-5(b) 

for a character string, and achieve action recognition by comparing two strings by 
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using string kernels. However, this metric may be not effective for complex human 

actions because of higher complexity of pairwise interactions, which increases the 

dimensionality of the matrix in Figure 5-5(b) significantly, and therefore reduce the 

efficiency of this similarity metric.  

5.2 Outline of our approach 

Having introduced the temporal segmentation method in the previous chapter, we 

step further to investigate the spatial and temporal coherency simultaneously in 

deforming meshes. First, based on the degree of deformation of each triangle in 

each frame,  e binarily label the triangles  ith either  deformed’ or  rigid’. Then, 

we compute a spatio-temporal segmentation by merging the  deformed’ triangles 

that are either spatially or temporally connected. We then represent the spatio-

temporal segmentation with Evolving Graph, where each node represents a spatial 

segment, each edge the neighborhood between two spatial segments, and each 

graph a subsequence of frames with the same graph representation.  

Having computed the Evolving Graphs of two deforming meshes, we proceed to 

compute the similarity of Evolving Graphs: We first classify the similar graphs and 

assign the graphs in the same cluster with the same cluster labels. As a result, each 

evolving graph is represented with a graph cluster label sequence, which allows us 

to apply existing sequence alignments to find the optimized matching between the 

two sequences. Finally, we obtain an alignment score between the two cluster la-

bel sequences by using a local sequence alignment algorithm, which we use as the 

similarity between two deforming meshes.  

The reminder of this chapter is organized as follows. In Section 5.3, we first present 

a spatio-temporal segmentation method for deforming meshes, and represent the 

segmentation results into Evolving Graphs. Next, in Section 5.4, we convert the 

graph sequences into graph cluster label sequences by using graph clustering, and 

then adopt a sequence alignment algorithm to measure the motion similarity bet-

ween the two deforming meshes. Then, we validate the obtained similarity values 

with human-based ground-truth in our experiments, in Section 5.6. Finally, in Sec-

tion 5.7, we discuss about (1) the differences of the segmentation results by using 

either the previous-pose based or the rest-pose based strains, and (2) the diffe-

rences between our temporal segmentation and spatio-temporal segmentation 

results.  
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5.3 Spatio-temporal segmentation of deforming meshes  

5.3.1 Spatio-temporal segmentation algorithm 

We now describe our spatio-temporal segmentation algorithm that makes use 

of the dynamic feature descriptor based on the deformation behaviour of each 

triangle at each frame of the deforming mesh. Our goal is to obtain a compact rep-

resentation of the segmentation results, which is done by adopting evolving graphs. 

Having obtained the strains of each triangle at each frame by using the method 

described in Chapter 3, we start by labeling each triangle of each frame as either 

 deformed’ or  rigid’. We chose binary labeling for the sake of simplicity although 

multi-way labeling could also work but with higher cost.  

Note that we use previous-pose based strains, since this strain type reflects motion 

information. In Section 5.7, we provide a discussion about the influences of spatio-

temporal segmentation results by using either previous-pose based or rest-post-

pose based strains.  

Given a deforming mesh M with M frames and N triangles, we represent each 

frame    (         ) with a vector of strain values    (  
      

 ) , which we 

obtain by the method described in Chapter 3. Next, all the triangles   
  (  

     ) in each frame    are binary labeled as 1 ( deformed’) or 0 ( rigid’), by 

comparing their strain values to a threshold   : 

  
 
 {

       
 
    

            
 

The threshold    has been fixed as 0.5 in our experiments. 
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Figure 5-6: An example of spatio-temporal segmentation of ‘bending-cylinder’. (a) Binary 
labeling. (b) Spatio-temporal segmentation. (c) Spatio-temporal segment. (d) Evolving 
graph representation. 

Once we have the per-frame and per-triangle labeling, we carry out our spatio-

temporal segmentation by finding triangles with identical labels that are adjacent 

along space or time. Figure 5-6(a) illustrates this idea  ith a  bending-cylinder’ 

example. The red regions represent the  deformed’ regions  ith a set of  deformed’ 

triangles that are connected. Figure 5-6(b) shows the 2D representation of the la-

beling, with the horizontal axis denoting the time (frame index) and the vertical axis 

denoting the space (triangle index). The t o small disconnected  deformed’ regions 

at frame i (the dashed vertical line) are merged into one region in the later frames. 

We consider these two regions as belonging to the same spatio-temporal segment 

because they are resulted from the same deforming action. A spatio-temporal 

segment is computed as follo s: We start  ith any  deformed’ triangle, and apply a 

region-gro ing algorithm to merge the  deformed’ triangles that are adjacent ei-
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ther along space or time. See the red area in Figure 5-6(b). Then, we compute the 

space interval and the time interval of the merged area (rectangle in Figure 5-6(b)), 

and take all the triangles in that interval as a spatio-temporal segment. The obtai-

ned spatio-temporal segment can be seen as a solid rectangle in 2D, see Figure 

5-6(b), and is also shown on the mesh in Figure 5-6(c). 

We continue the above procedure until all the  deformed’ triangles have been 

merged into spatio-temporal segments. The complete spatio-temporal segmenta-

tion algorithm is shown in Algorithm 5-1, which runs in  (   ) time. Note that 

the function Neighbors(S) returns the  deformed’ triangles that are adjacent in ei-

ther space or time of every triangle in the triangle patch S.  

Algorithm 2: Spatio-temporal segmentation 

Input:   
 
                . 

Init: S=T=I=P= ;   
 
                  . 

while     ,   
 
   do 

 S=  
 

, T=Neighbors(S)-S. 

while         ( )    do 

S=[S t], T= Neighbors(S)-S. 

end while 

while     ,   
 
   do 

  
 
         

 
. 

  ,   -   ,   -. 

end while 

            
 
  . 

S=T=I=P= . 

end while 

Return: S, T 

Algorithm 5-1 Spatio-temporal segmentation algorithm for deforming meshes. 
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Below we show the segmentation results of several deforming meshes in Figure 5-7, 

Figure 5-8 and  Figure 5-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f1 f4 f3 f11 f8 

f1 f4 f3 f11 f8 

f1 f23 f13 f42 f37 f51 

f1 f23 f13 f42 f37 f51 

C
a
m

e
l 

H
o
rs

e
_
1
 

G
o
ri

ll
a
 

B
o
y

 

 

Figure 5-7 The spatio-temporal segmentation and the graph representation of ‘Camel’, 
‘Horse_1’, ‘Gorilla’ and ‘Boy’.  
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Figure 5-8 The spatio-temporal segmentation and the graph representation of ‘Gorilla-
Jog1’, ‘Michael-Jog1’, ‘Gorilla-Jog2’ and ‘Michael-Jog2’. 
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Figure 5-9 The spatio-temporal segmentation and the graph representation of  Go-

rilla-Jump1’,  Michael-Jump1’,  Gorilla-Jump2’ and  Michael-Jump2’. 

5.3.2 Evolving graph representation 

Graph is a convenient and compact representation that has been broadly used 

for representing structured objects. To this end, we now describe our graph repre-

sentation of the spatio-temporal segmentation results.  
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Given the spatio-temporal segmentation of a deforming mesh, we first extract key 

frames from the mesh sequence, where each key frame contains either the occur-

rence of a new spatio-temporal segment or the disappearance of a segment. Note 

that the first frame is always considered as a key frame. Then, for each key frame, 

we represent its spatial segmentation with a graph, where a node represents a spa-

tial segment and an edge connects two spatially adjacent segments. A series of 

graphs of key frames that we obtain for a deforming mesh is an evolving graph, i.e., 

a graph that evolves over time. The evolving graph of the  bending-cylinder’ is 

shown in Figure 5-6(d). 

5.4 Similarity measurement of deforming meshes  

In this section, we present a method for measuring the similarity between two 

deforming meshes, which are represented with evolving graphs. We first cluster 

similar graphs of the two deforming meshes, thereafter graphs belonging to the 

same cluster are assigned with the same label. As a result, each deforming mesh is 

represented with a sequence of cluster labels. Then, we apply a local sequence 

alignment algorithm to compute the locally optimal alignment between the two 

cluster label sequences. Finally, we measure the similarity between the two de-

forming meshes by normalizing the sequence alignment score. 

5.4.1 Graph clustering 

Let MA and MB be two deforming meshes. By using the segmentation algorithm 

described in Section 5.3, we can generate the evolving graphs 

   *  
    

     
  
 + and    *  

    
     

  
 + for MA and MB, respectively. 

Note that    and    are the number of graphs for the two evolving graphs, respec-

tively.  

To adopt sequence alignment algorithm for comparing two evolving graphs, we 

have to cluster the graphs and assign the graphs within the same cluster with the 

same label, to transform the evolving graphs into graph cluster label sequences. As 

having been discussed in Section 5.1.3, this operation not only filters out noises of 

segmentation results by labeling similar graphs as the same, but also increases the 

efficiency of the sequence alignment algorithm by reducing the number of element 

types (or alphabet size). Unfortunately, the graph clustering cannot be done by 

using existing clustering methods, such as K-mean clustering; this is because the 

graphs have different number of vertices and edges and these clustering methods 

work only for vectors of the same dimension. To avoid of such problem, we 
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adopted the graph embedding method proposed by Riesen et al. (Riesen et al., 

2009a, 2009b). The purpose of graph embedding is to compute a mapping between 

the graphs and a vector space. The graph embedding method works as follows:  

Given a set of graphs   *          + whose cardinality is n, the vector asso-

ciated to a graph    is defined as    ( (     )  (     )    (     ))
 ; 

 (     ) is a graph dissimilarity metric between the graphs    and   . In our case, 

the set   is the union of the sets of evolving graphs of MA and MB, i.e.,       

  , with its cardinality        . The graph dissimilarity metric  (     ) can 

be calculated by using either the Maximum Common Subgraph (Bunke and Shearer, 

1998) or the Graph Edit Distance (Gao et al., 2010). Below we introduce the defini-

tions of both graph distance metrics. 

Definition 5-1: Maximum Common Subgraph (MCS) (Gao et al., 2010). Let    and 

   be two graphs and   
    ,   

    . If there exists a graph isomorphism be-

tween   
  and   

 , then both   
  and   

  are called a common subgraph of    and   . 

If there exists no other common subgraph of    and   that has more nodes than 

  
  and   

 ,   
  and   

  are called a MCS of    and   . 

Definition 5-2: Graph distance metric based on maximum common subgraph 

(Bunke and Shearer, 1998). Let    (     ) be the maximum common subgraph of 

   and   , and    (     ) be the graph with more nodes between    and   . 

The distance of    and    is defined as  

 (     )    
|   (     )|

    (|  | |  |)
. 

Definition 5-3: Graph Edit Distance (GED) (Gao et al., 2010). The graph edit distance 

between    and    is defined as the minimum number of graph edit operations to 

transform    to   ; these operations include additions and deletions of nodes and 

edges. 

In this work, we use the latter graph distance metric GED (Definition 5-3). The 

computation of GED is an optimization problem that is usually addressed by using a 

tree search algorithm, whose objective is to find an edit path with minimum costs. 

The idea is to dynamically construct a search tree, where each node of the tree is a 

candidate graph edit operation and each leaf node represents the complete solu-

tion that a graph is transformed to the other. At each step during tree traversal, all 

the successor nodes are evaluated to find the route with lowest cost. Iteratively, 
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this method can compute the best approximation of the optimization objective. 

However, the running time and memory consumption increase exponentially with 

the increase of problem size, i.e., the number of vertices of graphs. To speedup the 

computation, Neuhaus et al. (Neuhaus et al., 2006) have proposed a simple modifi-

cation : Instead of expanding all the successor nodes in the search tree, only a fixed 

number of the best of them are kept. Therefore, in each step during tree traversal, 

the number of successor nodes is limited, and the fast computation of GED is rea-

lized. We use this efficient algorithm for computing GED in our method. 
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Figure 5-10: Graph embedding. (a) The input deforming meshes MA and MB. (b) The se-

quences of evolving graphs    and   . (c) The graph embedding. Each graph gi is repre-
sented with a vector Vi , where d(gi, gj) denotes the graph edit distance between graphs gi 
and gj. 

The overview of graph embedding algorithm is shown in Figure 5-10. After the 

graph embedding, each graph    is represented with a vector 

   ( (     )  (     )    (     ))
 
   ,       ].  

Note that the size of the data produced by the graph embedding may be very large 

depending on the size of  . If   is composed of n graphs, the dimension of the out-

put data is    (  vectors    whose dimension is  ). We apply PCA (Abdi and Wil-

liams, 2010) to reduce the dimension of the data. The PCA method uses orthogonal 

transformation to convert the set of vectors    into a set of values of linearly uncor-
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related variables called principal components. Redundant information is removed 

by representing the vectors    with the top r principal components. Hence, each 

graph    is represented with a vector     whose dimension is r. 

Finally, we apply K-means clustering method on the vectors     to cluster all the 

graphs    into   cluster;    is a user-specified parameter, which is chosen depen-

ding on the range of the deformation in MA and MB. This value is set from 5 to 8 in 

our experiments. All the graphs    belonging to the  -th cluster (  ,     -) are 

given the same cluster label   . Therefore, the deforming mesh MA, which is re-

presented with a sequence of evolving graphs    *  
    

     
  
 +, is now be 

represented with a sequence of cluster labels    *  
    

     
  
 +. A cluster label 

sequence    *  
    

     
  
 + is also computed for   . Although    and    con-

tain different graphs, the same cluster label may appear in    and   . This is be-

cause the K-mean clustering has been computed on the union set      . There-

fore, two graphs of     and    may belong to the same cluster, and thus be as-

signed with the same label. 

In addition to the cluster labels   , we also compute the center of each cluster    , 

which is the mean vector of all the vectors     whose corresponding graph   be-

longs to the cluster  . These cluster centers are required later to compute the se-

quence alignment, see Section 5.4.2. 

Figure 5-11 shows an example of graph clustering for two deforming cylinder 

meshes. The deformation of MA is composed of the bending of the center part of 

the cylinder. The deformation of MB includes the bending of the upper and lower 

parts of the cylinder with the bending of upper part starting first. After graph clus-

tering, both of MA and MB are represented with the cluster label sequences,    

and    respectively (Figure 5-11(c)). 
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Figure 5-11: Graph clustering. (a) The input deforming meshes MA and MB. (b) The se-

quences of evolving graphs    and   . (c) The sequences of graph cluster labels    and   . 

5.4.2 Local sequence alignment 

Now that we have computed the cluster label sequences    and    of the de-

forming mesh MA and MB, the next step is to compute the alignment between the 

two sequences    and    by matching identical subsequences between them.  

Sequence alignment algorithm is commonly used in bioinformatics to identify simi-

lar regions among DNA sequences. The purpose of the alignment method is to lo-

cate and align the most similar subsequences between two DNA sequences, which 

allow gaps within the alignment. One of the most known methods is the Smith-

Waterman algorithm (Smith and Waterman, 1981), which finds the optimal local 

alignment based on dynamic programming approach. It requires inputs of an affini-

ty matrix between sequence items (or alphabets) and a gap penalty value. See an 

example in Figure 5-12. 

In order to use the Smith-Waterman algorithm to compute the alignment between 

two cluster label sequences    and   , we first need to compute the affinity matrix 

of the clusters. As explained in Section 5.4.1, each of these cluster labels     cor-

responds to a cluster whose center is    . The cluster distance matrix D is a matrix 

whose size is   by  ; each of its elements      
 is the distance between the cluster 

   and   ; it is calculated as the Euclidean distance between the cluster centers    
 

and    
, that is,      

 √   
    

. The affinity matrix   is a matrix whose dimen-

sion is   by  ; each of its elements      
 is the affinity value between the clusters 

   and    and is computed as follows: 
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  ̅       

            ,     -      (5-1) 

where  ̅ is the average value of all the elements of the distance matrix D. Unlike 

the distance matrix, the affinity matrix has negative and positive values, where po-

sitive values indicate high level of affinities between the clusters and negative va-

lues indicate low affinities. 

Once the similarity matrix has been computed, we use the improved Smith-

Waterman algorithm proposed by Barton et al. (Barton et al., 1993). An implemen-

tation is available by using Matlab (http::Matlab). This algorithm takes as input the 

two cluster label sequences    and    with their corresponding similarity matrix  ; 

it generates a set of pairs of matching cluster labels   {  
    ( )

 |        }, 

where  ( ) indicates the label in    that is aligned to the  -th label in   , and   is 

the total number of non-matching cluster labels that are located among the 

matched ones. The set of matching pairs   is computed such that the following 

matching score is maximized: 

    ∑ (   
   ( )

 )
  

   
    ,            (5-2) 

where      ̅ is the penalty coefficient for the gaps occurring in the alignment; 

The coefficient  , which has been set to     in our experiments, can be adjusted 

depending on how large gaps we want to allow (smaller   value will allow larger 

gaps and vice versa) in the alignment. 
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Figure 5-12: The sequence alignment between     and   . Matching cluster labels are 
shown with dashed lines. 

The matching score     is simply the summation of the similarity values    
   ( )

  of 

each of the matching pairs of cluster labels subtracted by    , which is the penalty 

score of the gaps. Figure 5-12 shows an example of computing alignment score 

between    and    without a gap. Here the alignment score is        
   

  

   
   

     . 

Although     computed in Equation 5-2 can be negative in theory, the algorithm 

that computes the matching score must return a non-negative result. This is be-
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cause the empty set     is always taken into account when computing the most 

optimal alignment. In case of mismatching between    and    such that     is 

negative, the algorithm returns the empty set   whose matching score is 0. 

5.4.3 Time complexity 

Let MA and MB be two deforming meshes whose evolving graph sequences are 

   and   . Let    ,    and n be the numbers of  graphs of    and    and the total 

number of graphs (i.e.,        ), respectively. We show the computation 

complexity of our method in Table 5-1. Our method involves computing the PCA 

whose time complexity is  (  ) (Abdi and Williams, 2010), followed by the K-

means clustering whose time complexity is  (         ) (Inaba and Imai, 1994), 

with r being the number of principal components used for the PCA and K the num-

ber of clusters (see Section 5.4.1). Our algorithm also requires computing the se-

quence alignment whose time complexity is  (     ) (Smith and Waterman, 

1981) and the graph embedding whose time complexity is  (       )  with      

being the polynomial time for computing the graph edit distance (Neuhaus et al., 

2006).  

Table 5-1 Computation complexities of the used techniques. 

Algorithms Complexity 

PCA  (  ) 

K-means  (         ) 

Sequence alignment  (       ) 

5.5 Similarity measurement 

The alignment score we have defined in Equation 5-2 relies on the lengths of se-

quences. For example, given two similar sequences, we obtain higher scores for 

longer sequences. In order to alleviate such problem, we normalize the alignment 

score as follows: 

    
   

√       
.                       (5-3) 

This normalized alignment score by using our similarity measurement method 

holds the following properties:  
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P.1 Non-negativity      . 

As explained in Section 5.4.2, the matching score     is non-negative, and so is the 

value of    . In the extreme case, a value of     equals to 0 implies that no align-

ment has been found between the two sequences.  

P.2 Symmetry        . 

The alignment algorithm score in Equation 5-2 does not depend on the order in 

which the sequences are aligned. That is, the same pairs of matching cluster labels 

are found whether    is aligned to   , or    to   . It follows that     is equal to 

   , and therefore     is equal to    . 

P.3 Boundness     √
   

   
  , assuming        . 

According to Equation 5-2, the matching score increases as the number of matching 

pairs gets larger. It follows that        . This is because the number of matching 

pairs for    being matched to itself is always larger than or equal to those matched 

to   . It follows that:  

    
   

√       
 √

       

       
 √

       

       
  . 

If two input sequences are the same, i.e.,    =  , we have      . 

More strictly, the upper bound of     is √
   

   
, assuming        . As explained 

above,        , thus it follows that  

    
   

√       
 

   

√       
 √

       

       
 √

   

   
. 

In a special case where    is a subsequence of   , based on the definition of the 

alignment score in Equation 5-2, we have        . Hence,     √
   

   
. 

P.4 Subsequence Assuming        , if     √
   

   
, we have    , i.e.,    is a 

subsequence of   . 

Given     √
   

   
, it follows that:  
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    √
   

   
 √

       

       
 

   

√       

  

By comparing to the definition of     in Equation 5-3, we have   

       . 

As explained in P.3, the alignment score between    and    being equal to the 

alignment score between    and    indicates that     is a subsequence of   , 

i.e.,      . 

To sum up, the properties P.1 and P.3 show that     ,  √
   

   
-. A value close to 1 

indicates that the two sequences    and    are similar, i.e., the two deforming 

meshes MA and MB perform similar motions. In addition, the properties P.3 and 

P.4 show that     √
   

   
 is the necessary and sufficient condition for      , 

i.e.,    is a subsequence of   . 

5.6 Experimental results  

In this section, we first introduce our experimental environment and data, and 

then present the pairwise sequence alignment results and the similarity measure-

ment results between deforming meshes. For the sequence alignment results, we 

compare the performance by using our method and the other classical sequence 

alignment methods (see Section 5.6.2). For the experiments on similarity meas-

urement, we evaluate our results by collecting and comparing with human-based 

ground-truth motion similarities (see Section 5.6.3.2). In Section 5.7, we continue 

with the analytical discussions of our method including: (1) the possibilities of ex-

tending GED with node/edge attributes, (2) the differences of the spatio-temporal 

segmentation results by using either the previous-pose based or the rest-pose 

based strains, and (3) the comparative discussions on the results between the spa-

tio-temporal segmentation in this chapter and the temporal segmentation present-

ed in previous chapter. 

5.6.1 Experimental environment and data 

The deforming meshes used in our experiments include both synthetic anima-

tions and motion capture sequences, which are summarized in Table 5-2. The three 

models  Michael’,  Gorilla’ and  Boy’ are generated by rigging TOSCA high-
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resolution meshes (Bronstein et al., 2008) with the same walking skeleton provided 

by 3D Max Studio (3dS MAX L&T CD., 2006). The t o other models,  Head’ and 

 Face_1’ are obtained by linear interpolation of 8 key poses (anger, fury, grin, laugh, 

rage, sad, smile and surprise) (Sumner and Popovid, 2004). The t o models  Camel’ 

and  Horse_1’ are from Sumner et al.’s  ork on Deformation Transfer (Sumner and 

Popovid, 2004). The model  Horse_2’ is the same model as  Horse_1’ except that 

the frame rate and the starting pose are different. The t o models  Face_2’ and 

 Face_3’ have been obtained  ith the motion capture of t o person’s facial ex-

pressions using the Vicon system (http:Vicon); these motion data have been used 

to animate the scanned faces of the two persons. These t o models  Face_2’ and 

 Face_3’ contain the facial expressions in the follo ing order:  eyebrow-raise’ for 

three times,  anger’,  disgust’,  fear’,  happy’,  surprise’,  sad’, and with a  neutral’ 

facial expression in between. Selected frames of several deforming meshes are 

shown in Figure 5-7.  

Table 5-2 Used deforming meshes for spatio-temporal segmentation and timings. 

Name 
Nb. Of 

Triangles 

Nb. Of 

Frames 

Timings 

(Second) 
Description 

Camel 43778 48 6.2 Gallop animation 

Horse_1 16858 48 2.8 Gallop animation 

Horse_2 29984 80 4.1 Gallop animation 

Michael 29999 54 2.0 Walk animation 

Gorilla 29999 54 1.9 Walk animation 

Boy 10146 54 0.9 Walk animation 

Head 31620 80 2.3 Facial expression animation 

Face_1 57836 80 1.0 Facial expression animation 

Face_2 1171 1473 20.1 Facial expression motion capture 

Face_3 1272 1064 8.4 Facial expression motion capture 

All our algorithms have been implemented in Matlab, and the results are computed 

on a Windows PC with 3.4 GHz Intel Core i7-2600 processor, 4GB of RAM.  

We first process each deforming mesh with our segmentation method to generate 

the sequence of evolving graphs for each of them. The computation time of the 
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segmentation of each data in a Matlab implementation has been shown in Table 

5-2. Figure 5-7 shows several segmentation results we have obtained by using our 

algorithm. In each figure,  deformed’ segments are sho n in red and  rigid’ seg-

ments in blue.  

5.6.2 Frame alignment 

One important by-product of computing sequence alignment is the frame 

alignment, i.e., optimal alignment of graphs (or the corresponding key frames). 

Having the evolving graph representation of deforming meshes, we apply Smith-

Waterman algorithm for computing the sequence alignment between two se-

quences. In fact, there exist a variety of methods for computing sequence align-

ment, such as Dynamic Time Wrapping (DTW) and its variations. DTW is a well-

known technique for computing optimal global temporal alignment between two 

sequences, which computes the sequential alignment of each element (a frame of 

a deforming mesh in our case) from a sequence to an element in the other se-

quence by minimizing total aligned element distance (Kruskall and Liberman, 1983). 

DTW has been commonly used for speech recognition (Turetsky and Ellis, 2003). 

One variation of the classical DTW algorithm is to include another constraint on the 

alignment rule that the first (and the last) elements of the two sequences are 

forced to be aligned to each other. This rule is especially useful when the input se-

quences are well synchronized. We name this modified classical DTW as mDTW in 

this work.  

In order to apply DTW and mDTW for optimally aligning two deforming meshes, 

one needs to compute a frame distance matrix. To do this, for each deforming 

mesh, we first represent each frame with the key frame that is used to represent 

the subsequence containing this frame. That is, if a key frame is representing a 

subsequence with    frames, the key frame repeats    times in the sequence. We 

then compute the frame distance as graph edit distance since each key frame is 

associated with a graph representation.  

We show the distance matrices between several deforming meshes in Figure 5-13, 

Figure 5-14, Figure 5-15, Figure 5-16, with color varying from blue to red indicating 

distance values from low to high. In these figures, we also show the comparisons of 

sequence alignment results by using Smith-Waterman, DTW and mDTW, where 

each of the alignment result can be seen as an alignment path on the similarity 

matrix. We describe the comparisons of the alignment methods between several 

deforming meshes as below. 
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Figure 5-13 Comparisons of the sequence alignment results by using Smith-Waterman, 
DTW and mDTW for ‘Camel’ (vertical-wise) and ‘Horse_1’ (horizontal-wise). 

Created by the deformation transfer (Sumner and Popovid, 2004), the two mesh 

sequences  Camel’ and  Horse_1’ are time-synchronized and have the same num-

ber of frames and their corresponding frames have the same poses. In Figure 5-13, 

the alignment paths computed by using three alignment methods are all around 

the diagonal of the distance matrix, which correctly reflects the synchronized mo-

tions between the two deforming meshes. Note that because we force to match 

the first frames by using mDTW, we obtain slightly improved alignment path in the 

first 5 frames than the path computed by using DTW. 
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Figure 5-14 Comparisons of the sequence alignment results by using Smith-Waterman, 
DTW and mDTW for ‘Gorilla’ (vertical-wise) and ‘Boy’ (horizontal-wise). 

Similarly,  Gorilla’,  Boy’ and  Michael’ are time-synchronized deforming meshes 

performing  Walking’ motions. Both in Figure 5-13 and  Figure 5-14 we observe 

gaps in the alignment paths computed by using Smith-Waterman algorithm. This 

could have been resulted from the following two reasons: 

 Smith-Waterman algorithm is a local sequence alignment method that al-

lows gaps among the aligned pairs. This is particularly interesting when we 

want to skip noisy dissimilary subsequences while matching two sequences.  

 The other reason could be because we apply Smith-Waterman algorithm 

over the key-frames, each of which represents a subsequence of frames 

(Section 5.3). For example, in Figure 5-14, the key-frame representing the 

subsequence from f23 to f31 (see the rectangle in Figure 5-14) of  Boy’ is 

aligned to the key-frame representing one frame f28 of  Gorilla’, which is the 

reason why we observe a gap in the alignment path in the rectangle in Fi-

gure 5-14. 
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Figure 5-15 Comparisons of the sequence alignment results by using Smith-Waterman, 
DTW and mDTW for ‘Gorilla’ (vertical-wise) and ‘Michael’ (horizontal-wise). 

 

Although the matchings computed by using DTW and mDTW have shown similar 

results so far, they are significantly different on  Gorilla’ and  Michael’ data as 

shown in Figure 5-15: the alignment path computed by using DTW only aligns 

about a half of  Gorilla’ to  Michael’, which is the globally minimized sum of the 

alignment distance. In comparison, the alignment path computed by using mDTW 

stays near the diagonal of the matrix, resulted from the constraint that the first and 

the last frames are forced to be aligned. The latter alignment path is more prefe-

rable knowing that  Gorilla’ and  Michael’ are time-synchronized deforming meshes. 

Note that the path computed by Smith-Waterman algorithm stays around the dia-

gonal of the matrix, which is similar to that of mDTW.  
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Figure 5-16 Comparisons of the sequence alignment results by using Smith-Waterman, 
DTW and mDTW for ‘Horse_1’ (vertical-wise) and ‘Horse_2’ (horizontal-wise).Arrows are 
directed to several samples of the corresponding matched frames between the two se-
quences. 

Although  Horse_1’ and  Horse_2’ are created in different manners,  Horse_1’ is 

created by the deformation transfer and  Horse_2’ is an animated mesh in Maya, 

they both perform  Galloping’ motions. In Figure 5-16, we do not apply mDTW 

bet een  Horse_1’ and  Horse_2’. Since these two deforming meshes are not syn-

chronized, their first/last frames may have different poses and therefore it is not 

reasonable to assume respective matchings between them. In the alignment obtai-

ned by using Smith-Waterman algorithm,  Horse_2’ is aligned to 7 key frames of 

 Horse_1’,  hich correctly reflects the fact that  Horse_2’ contains 1-cycle of  Gal-

loping’ motion,  hile  Horse_1’ contains 4-cycles. Similarly, the path computed by 

using DTW fails in this comparison.  

Therefore, by comparing the three sequence alignment algorithms, if the input de-

forming meshes contain time-synchronized motions, mDTW has similar perfor-

mance with Smith-Waterman algorithm, and is more robust than DTW by forcing 

the first/last frames being aligned, see Figure 5-16. However, mDTW is not capable 

of handling motion non-synchronized data, while Smith-Waterman algorithm is by 

computing local alignments. 
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5.6.3 Similarity measurement 

5.6.3.1 Similarity of deforming meshes 

Figure 5-17 shows the similarity scores we have obtained for the example de-

forming meshes. As expected, deforming meshes with similar motion shows high 

similarity scores. Note that  Horse_2’ has different motion speed and starting pose 

compared to  Camel’ and  Horse_1’, but the similarities among these three models 

are higher than the others because they all sho   Gallop’ motions. On the other 

hand, although the shape of  Face_1’ is similar to those of  Face_2’ and  Face_3’, 

similarities of  Face_1’ to the other t o facial models are lo  because they perform 

different facial expressions. Additionally, the average similarity bet een  Gallop’ 

and  Walk’ motions is higher than either  Gallop’- Facial expression’ or  Walk’-

 Facial expression’,  hich complies  ith human judgement.  
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Figure 5-17 Similarity matrix among deforming meshes. The values are shown in percent-
age (%). 

5.6.3.2 Evaluation of the motion similarities 

In order to evaluate our similarity measurement method, we first study how 

human perceive the motion similarity between deforming meshes. To this end, we 

invite 11 participants who are not aware of our segmentation method and show 

them with the 10 animated meshes used in our experiments. Based on subjective 

observations, each participant gives a score on motion similarity (with a larger 
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number between [0 100] indicating higher similarity) between each pair of the de-

forming meshes. Therefore, we obtain              pairwise motion similari-

ties of deforming meshes based on human perception.  

Having created the human-based ground truth similarity between deforming 

meshes,  e evaluate our similarity results by applying Pearson’s correlation (Bartko, 

1976). A Pearson’s correlation ranges from -1 to +1, with +/- indicating posi-

tive/negative relationship between two variables, and the values reflecting the de-

gree of linear relationships. In order to compute Pearson’s correlation bet een 

ground-truth and our results, we save the 495 human rated similarities into a vec-

tor Vgt, and create another vector Vours where each value Vours(i), i=1,…,495, is the 

corresponding similarity value of Vgt (i) but computed by using our method. That is, 

Vours actually contains 11 times repetition of the similarity results shown in Figure 

5-18.  

Figure 5-18 shows the scatter plot between Vgt and Vours, and the linear regression 

between the two vectors. Among the human score, there are 4 participants out of 

11 give scores of the similarities bet een  Horse_2’ and deforming meshes  ith 

 Walk’ motion ( Groilla’,  Boy’ and  Michael’) less than 10%, sho n in the dashed 

circle. On the other hand, there are 4 participants give scores of the similarities 

bet een  Camel’ and the deforming meshes  ith  Walk’ motion more than 50%, 

shown in the dotted circle. Finally, although human perception on the similarity 

bet een  Gallop’ and  Walk’ does not sho  clear consistency,  e still obtain 0.9008 

as the Pearson’s correlation bet een Vgt and Vours. The correlation value indicates 

that our similarity measurement method has a high degree of correlation with hu-

man perception on motion similarity.  
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Figure 5-18 Scatterplot between the similarities of deforming meshes computed by using 
our method (horizontal) and the human scores of similarities (vertical). The red line is the 
linear regression of the 2D point distribution.  

5.6.3.3 Granularity of the motion similarities 

In this section, we further evaluate the granularity of our similarity measure-

ment method with similar motions. To this end, we use 6 biped animations (includ-

ing  Jog1’,   Jog2’,  Jump1’,  Jump2’,  Walk1’, and  Walk2’) from 3Ds Max motion 

library, and attach them to 3 meshes, i.e.  Michael’,  Gorilla’, and  Boy’,  hich re-

sults in 18 deforming meshes. The spatio-temporal segmentation and the graph 

representation of selected frames among the new deforming meshes are shown in 

Figure 5-8 and Figure 5-9. By applying our similarity measurement method, we ob-

tain a motion similarity matrix among these deforming meshes (see Figure 5-19). 

We describe this result and its evaluation as follows: 
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Figure 5-19 Similarities among 3 similar motions, ‘Jog’ , ’Jump’ and ‘Walk’. (a) Similarity 
matrix among 18 deforming meshes. (b) Each row shows the rankings of all the motions to 
a motion based on the average motion similarities in (a). (c) Human rated motion similarity 
rankings for each motion, where the numbers within each parentheses is the number of 
participants who give the ranking before the corresponding parentheses. 

In Figure 5-19 (a), we can represent each deforming mesh as a vector of motion 

similarities, i.e., the corresponding row of the similarity matrix. Then, by applying K-

means clustering, we successfully classify the 18 deforming meshes into 3 clusters 

of different motion types, i.e.,  Jog’,  Jump’ and  Walk’. 

Based on the above motion classification, we convert the motion similarity matrix 

of deforming meshes from Figure 5-19 (a) to motion similarity ranking matrix in 

Figure 5-19 (b), where each row shows the rankings of all the motions to a motion 
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based on the average motion similarities in Figure 5-19 (a). In this motion similarity 

ranking matrix,  e use  1/2/3’ to indicate the rankings of the similarity to all the 

motions,  here  1’/’3’ is the highest/lo est ranking. 

In order to validate our motion similarity rankings, we invite 11 participants to give 

the rankings for the 3 motions by observing the 18 animations. In Figure 5-19 (c), 

the number within each parentheses is the number of participants who give the 

ranking number before the corresponding parentheses. Note that 1 participant out 

of the 11 considered  Jog’ and  Jump’ being equally different to  Walk’ and gave 

ranking  3’ for both, see the second row in Figure 5-19 (c). Apart from this, our 

computed ranking results are met with most of the human rankings of the 3 mo-

tions by comparing Figure 5-19 (b) and Figure 5-19 (c). 

Therefore, based on the above experiments on deforming meshes with similar mo-

tions, i.e.,  Jog’,  Jump’ and  Walk’, our similarity measurement method can suc-

cessfully distinguish these 3 similar motion types. Moreover, our similarity mea-

surement method reflects human perceptions on motion similarity because our 

motion ranking results comply well with human rankings among the 3 similar mo-

tions.  

5.7 Discussions  

5.7.1 Previous-pose based strains vs. rest-pose based strains 

As having been discussed in Chapter 3, previous-pose based strains of a deform-

ing mesh contain motion information, for this reason we have chosen previous-

pose based strains for computing the spatio-temporal segmentation of deforming 

meshes. In Figure 5-20, we simulate the spatio-temporal segmentation results of 

the  bending-cylinder’ animation by using both previous-pose based strains and 

rest-pose based strains. By representing the spatio-temporal segmentation into 

evolving graphs, in the top row of Figure 5-20, we clearly observe the bending mo-

tion and the bended pose remains static for a period before stretching. However, 

the segmentation results based on rest-pose strains cannot distinguish the bend-

ing/stretching motions, see the bottom row in Figure 5-20.  
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Figure 5-20 The spatio-temporal segmentation results and the evolving graph representa-
tion of ‘bending-cylinder’, by using (a) previous-pose based strains and (b) rest-pose based 
strains.  

5.7.2 Graph edit distance (GED)  

While computing the sequence alignment between two evolving graphs in Sec-

tion 5.4, we use GED as the graph dissimilarity metric. One natural extension of 

computing GED is to take into account of node attribute such as surface area of 

spatial segments, and edge attribute such as distance between spatial segments. 

However, such node and edge attributes could vary due to shape differences. For 

example, in the frame    of both  Camel’ and  Horse_1’ in Figure 5-7, although 

there is a  deformed’ segment on the tail of both  Camel’ and  Horse_1’, the one of 

 Camel’ is much smaller than the one of  Horse_1’. Due to this reason, by taking 

into account of node attribute of surface area of the corresponding spatial seg-

ments, the GED between these two graphs becomes larger, which is not desirable. 

Moreover, if we use these GED between graph pairs for computing sequence 

alignment,  e  ill obtain lo er alignment score bet een  Camel’ and  Horse_1’, 

which is contrary to our object for devising a similarity measurement method inde-

pendent on shape difference. Therefore, in our similarity measurement method, 

surface area of spatial segment and distance between spatial segments are not 

considered as graph attributes for computing GED. 

In addition, we have investigated with binary node attributes, i.e.,  deformed’ or 

 rigid’, for computing GED. In order to compute GED  ith graph attributes, Neu-
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haus et al. (Neuhaus et al., 2006) compute the dissimilarity of both graph structures 

and attributes, and linearly combine them. However, in our case, determining the 

weight would be challenging because the graph structure distance and the graph 

attribute distance varies significantly between each frame pair (Note that we have 

more than a thousand of graphs for our 10 experimental models.). An intelligent 

self-adapting weight and a learning-based weight may be potential solutions.  

5.7.3 Comparison with temporal segmentation 

As have been described in Section 5.3, we represent the spatio-temporal seg-

mentation of a deforming mesh into an evolving graph, wherein each graph repre-

sents a subsequence of frames that have the same spatial mesh segmentation. 

Note that by interpreting each graph as a temporal segment, we obtain a temporal 

segment as a partial result of our spatio-temporal segmentation. Differently from 

the temporal segmentation method presented in Chapter 1, whose objective is to 

maximize the pose similarity within temporal segments, an evolving graph detects 

the local deformation in a deforming mesh, i.e., the occurance and disappearance 

of  deformed’ segments.  

We elaborate the above differences between our segmentation methods by using a 

 bending-cylinder’ animation, sho n in Figure 5-21. In this data, the  cylinder’ re-

mains static in the beginning, then starts bending, and keeps the bended pose in 

the end (Figure 5-21(a)). Figure 5-21(b) and Figure 5-21(c) shows the results by 

using our temporal segmentation method with different threshold     (see Section 

4.2.2). In Figure 5-21(c), the value of    is lo er, and therefore the  bending’ mesh 

sequences is divided into shorter subsequences so that the dissimilarity within each 

becomes smaller. On the other hand, for the spatio-temporal segmentation results, 

although the boundary frames may vary if we input different thresholds, we obtain 

three temporal segments consistently which can be represented into three graphs 

as shown in Figure 5-21(d) : This method detects the occurance of the  bending’ 

action from    to   , and the disappearance of the  bending’ action from    to   , 

see the red node in Figure 5-21(d). 
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Figure 5-21 A comparison between our temporal segmentation and spatio-temporal seg-
mentation. (a) shows a  ‘bending-cylinder’ animation. (b) and (c) are two temporal segmen-
tation results with different user-threshold, where the threshold in (c) is lower than that in 
(b). (d) shows the evolving graph representation of the spatio-temporal segmentation re-
sult. 

To further illustrate the differences between our segmentation methods, we use 

another  bending-cylinder’ data that it first bends the upper joint and then bends 

the lower joint together, until both joints reach 90 degree at the same time. In Fi-

gure 5-22 (b) and Figure 5-22 (c), we show the temporal segmentation results with 

different threshold     by using the method presented in Chapter 4. In Figure 5-22 

(c), the value of    is lower. Similar to the results in Figure 5-21(c), the  bending’ 

mesh sequences is divided into shorter subsequences so that the dissimilarity wi-

thin each becomes smaller. Again, for the spatio-temporal segmentation results, 

we obtain four temporal segments consistently which can be represented into the 

graph sequence shown in Figure 5-22 (d) , the boundary frames may vary by using 

different thresholds though. In this result,     can represent the action that the 

only the upper joint is  bending’, and    can represent that both upper and lower 

joints are  bending’.  



 Chapter 5 patio-temporal Segmentation of Deforming Meshes  

106 

 
(a) … … … 

(b) 

(c) 

(d) 

ts1 ts4 ts3 ts2 

ts’1 ts’4 ts’3 ts’5 ts’6 ts’2 

g4 g2 g1 g3 

 

Figure 5-22 Another comparison between our temporal segmentation and spatio-temporal 
segmentation. (a) shows another  ‘bending-cylinder’ animation with two ‘bending’ joints. (b) 
and (c) are two temporal segmentation results with different user-threshold, where the 
threshold in (c) is lower than that in (b). (d) shows the evolving graph representation of the 
spatio-temporal segmentation result. 

5.8 Conclusion  

5.8.1 Contributions 

In this chapter, we have presented a method for the spatio-temporal segmenta-

tion of defoming meshes, whose results are represented with Evolving Graphs. We 

then use a sequence alignment algorithm to match Evolving Graphs, with an aim of 

computing the motion similarities between the corresponding deforming meshes. 

The contributions of this research are shown as follows:  

 Spatio-temporal segmentation. Based on the deformation-based feature 

descriptor presented in Chapter 3, we have developed an efficient and ef-

fective spatio-temporal segmentation method, which incorporates both 

spatial and temporal deformation coherency in the deforming mesh. 

 Compact representation. We represent the obtained spatio-temporal seg-

mentation results of a deforming mesh with an evolving graph, where each 

graph represent the spatial segmentation within a temporal segment, with 

nodes denoting spatial segments and edges denoting spatial neighborhood.  

 Graph clustering. By using the graph embedding method (Riesen and Bunke, 

2009a, 2009b), we can embed graphs into vectors with the same dimensio-

nality. Moreover, we can further convert the evolving graphs into graph 

cluster labels by applying K-means clustering and representing each graph 
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with its cluster label. This allows us to apply sequence alignment algorithms 

to measure similarities among different graph sequences.    

 Temporal frame alignment. One important by-product of the sequence 

alignment between two deforming meshes is that the key frames perfor-

ming similar motions are matched to each other. 

 Motion similarity. Since an evolving graph represent the dynamic motions 

of a deforming mesh, by applying the sequence alignment algorithm bet-

ween two sequences, we obtain an alignment score, which indicates their 

motion similarity. 

 Evaluation with ground-truth. In order to validate the obtained motion simi-

larities, we compare with human-rated motion similarities that are collected 

from a number of volunteers. In specific,  e compute Pearson’s correlation 

(Bartko, 1976) between the obtained similarities by using our method and 

the human-based ground-truth motion similarities. The obtained high corre-

lation indicates that our motion similarity measurement method successful-

ly reflects human perception on the motion similarities of deforming 

meshes. 

5.8.2 Summary  

In this chapter, after a review of the existing spatio-temporal techniques in both 

Computer Network and Computer Vision fields, we have presented a new method 

for the spatio-temporal segmentation of deforming meshes, which to the best of 

our knowledge has not been studied before. Moreover, we represent the spatio-

temporal segmentation results into Evolving Graphs, and therefore compare de-

forming meshes by using existing sequence alignment algorithm to match the cor-

responding Evolving Graphs. In this work, we obtain two interesting results, the 

frame alignments and the similarity between deforming meshes, both have been 

shown with our experimental results. Additionally, we evaluate our similarity re-

sults with human-based ground-truth motion similarities among the experimental 

deforming meshes, which show that our similarity measurement method complies 

well with human perception. 
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 Conclusions Chapter 6

6.1 Contributions 

In this thesis, we have developed segmentation techniques that compute the 

temporal and spatio-temporal segmentation for deforming meshes based on the 

deformation coherency in the data. Although there have been several works on 

deforming meshes, the best of our knowledge, the temporal and spatio-temporal 

segmentation have not been studied before. We further extend the segmentation 

results towards the application of motion similarity measurement between defor-

ming meshes. 

Knowing the fact that the deformations in a deforming mesh are normally both 

spatially and temporally correlated. The existing works on deforming mesh howe-

ver compute one single spatial segmentation for an entire deforming mesh, which 

overlooks the temporal deformation coherency. By taking the subsequences with 

similar poses as temporal segments, our temporal segmentation method can divide 

deforming meshes undergoing identical motions into temporal segments with simi-

lar sub-motions, despite of their shape differences. Furthermore, our spatio-

temporal segmentation method enables us to develop a compact representation 

for deforming meshes, which allows us to measure motion similarities among them.  

To summarize, this dissertation contains the following contributions : 

Deformation-based feature descriptor: Strain. Given a deforming mesh, we begin 

by devising a per-triangle feature descriptor that measures the deformation of a 

triangle within each frame. As having been introduced in Chapter 3, this feature 

descriptor is independent to global shape translation, rotation and uniform scale. 

Moreover, the per-triangle strain value is robust over shape difference when diffe-

rent shapes performing identical motions.  

Temporal segmentation of deforming meshes. We have presented a temporal seg-

mentation method for deforming meshes. In our temporal segmentation algorithm, 

based on our deformation-based feature descriptor, we first define a distance me-
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tric for each frame pair based on the difference of their triangle deformation, then 

we further define within-segment frame dissimilarity as the average of all possible 

pairwise frame distance within each candidate temporal segment. Finally, the 

boundary frames for the temporal segmentation are determined by minimizing the 

sum of within-segment frame dissimilarities. This allows us to obtain the segmenta-

tion result that each temporal segment is a subsequence of similar frames, i.e., 

frames with similar poses.  

Our experiments on both synthesized and motion captured deforming meshes vali-

date the effectiveness of the presented approach. It is also encouraging that we 

can obtain consistent temporal segmentation for different deforming meshes exhi-

biting similar motions, despite their shape differences. 

Spatio-temporal segmentation of deforming meshes. Next, we have presented a 

spatio-temporal segmentation method for deforming meshes. First of all, based on 

the degree of deformation of each triangle in each frame, we binarily label the 

triangles  ith either  deformed’ or  rigid’. Then, we compute a spatio-temporal 

segmentation by merging the  deformed’ triangles that are either spatially or tem-

porally connected. We then use an evolving graph to represent the spatio-temporal 

segmentation, where each node represents a spatial segment, each edge the 

neighbourhood between two spatial segments, and each graph is a key frame re-

presenting a subsequence of frames with the same graph representation.  

Having computed the evolving graphs of two deforming meshes, we proceed to 

compute the similarity of the evolving graphs by adopting a sequence alignment 

method. However, a sequence alignment method cannot be directly applied on 

two graph sequences because the graphs may have different dimensions, i.e., diffe-

rent node numbers. In order to avoid this problem, we classify the similar graphs 

and assign the graphs in the same cluster with the same label. As a result, each 

evolving graph is represented into a sequence of cluster labels. Finally, we compute 

the alignment score between the two cluster label sequences by using a sequence 

alignment algorithm, which reflects the similarity between two deforming meshes.  

The outcome of this method is two folds: (1) Temporal frame alignment. According 

to our experiments, the alignment results between two deforming meshes with 

similar motions show that the key frames performing similar actions are well 

matched to each other. (2) Motion similarity measurement. Based on the spatio-

temporal segmentation results, we have devised a similarity measurement method 

for deforming meshes, which measures the similarity of motions that are per-

formed by deforming meshes.  
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Our experimental results on a number of deforming meshes show that the motion 

similarities can be captured correctly, despite shape differences. We validate our 

similarity results by computing Pearson’s correlation  ith human-based ground 

truth motion similarities. The obtained high correlation indicates that our motion 

similarity measurement method successfully reflects human perception on the mo-

tion similarities of deforming meshes. 

6.2 Perspectives 

6.2.1 Temporal segmentation of deforming meshes 

By applying our temporal segmentation method, we have successfully handled 

mesh sequences with over a thousand frames, as well as meshes with thousands of 

triangles. In our experiments, the values of the threshold    (see Section 4.2) for 

processing different deforming meshes are provided by user depending on which 

level of motion details are desired. However, we have been aware that the re-

quirement of user-parameter limits the application of this algorithm to experienced 

users. To alleviate this limitation, an interesting improvement would be to learn the 

user parameter    from human-based ground-truth segmentations. A sufficient 

variety of mesh types with different motions would be needed for building the 

ground-truth dataset.  

Additionally, assuming we have the automatic computation of temporal segmenta-

tions, a further future scenario is to assist applications such as shape retrieval from 

a long mesh sequence based on motion similarities:  We first apply our method to 

divide the long mesh sequence into temporal segments of submotions, and then 

search among temporal segments. We save the computation time in such applica-

tion because we compute the matching between a query sequence with each tem-

poral segment independently, instead of with the entire sequence.  

6.2.2 Spatio-temporal segmentation and similarity measurement of defor-

ming meshes 

One limitation of our spatio-temporal segmentation method is that we assume a 

deforming mesh can be segmented into either  deformed’ or  rigid’ parts. Due to 

this reason, our segmentation method will not be applicable to highly dynamic an-

imations such as the surface simulation of flowing water, which would result in one 

single  deformed’ segment by using our method. 
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Note that for computing the spatio-temporal segmentation, we binarily label each 

triangle at each frame  ith  deformed’ and  rigid’, and group the  deformed’ 

triangles that are either spatially or temporally connected as  deformed’ spatio-

temporal segments. In the mean time,  e also obtain  rigid’ spatio-temporal seg-

ments. By mapping the segmentation results onto one mesh,  e  ill obtain  de-

formed’ regions  herein each triangle is from  deformed’ segment  and  rigid’ re-

gions wherein each triangle is from  rigid’ segments. Thefore, our segmentation 

results could be used for mesh simplification by simplifying the  rigid’ regions with 

larger triangles while keeping dense sampling of the  deformed’ regions. In this way, 

we can simply a deforming mesh while keeping the information of motions as 

much as possible. 

Another limitation of the proposed similarity measurement method is the expen-

sive computation cost, mainly due to the heavy computation of the pairwise graph 

edit distance. To compute the similarities among all the evolving graphs of the 10 

deforming meshes used in our experiment, consisting of 1135 graphs, it takes 

about two hours to compute the graph distance matrix, followed by computing 

graph clustering. However, once the clusters have been computed for a dataset 

with sufficient variety, computing the labels for a new deforming mesh will only be 

a matter of computing the graph embedding of each graph in its evolving graph, 

and clustering each of the graphs to the closest graph cluster center.  

One obvious potential of our segmentation-based similarity measurement method 

is its extension towards shape query applications, which will enable to search from 

a database for deforming meshes performing identical or similar motions.  
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