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The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous.The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions.

The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. in order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA).

LIST OF ALGORITHMS

Système de Gestion du Stationnement dans un Environnement Dynamique et Multi-Objectifs

Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique.

Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en oeuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA).

Mots-clés: Plus court chemin bi-objectif, affectation bi-objectif, parking intelligent, affectation dynamique, apprentissage, métaheuristique.

Chapter 1

Smart parking management systems 1.1 Introduction

As the population keeps growing and the concentration of cars in cities increases, our society faces the significant challenge of global gridlock. To find a parking space becomes a common challenge, faced by millions of city-dwellers every day [START_REF] Donald C Shoup | The high cost of free parking[END_REF], due to the significant and substantial increase in the demand for parking slots in cities and urban areas. Furthermore, the severe shortage of such spaces has created a challenge and a problem of management of these areas. Despite the creation of locations along roads and streets in the cities, it remains that these solutions do not absorb all of the demand, which is constantly increasing. The consequences are known, for example, an increase in traffic congestion and also economic, social and environmental losses. Moreover, with the continuous increase of the population, the problem becomes more and more critical.

As such, the optimization of the parking slot allocation and control has become a real challenge for transport planners and traffic authorities. Most modern cities provide adequate support and guidance to drivers on the choice of parking slots and the efficient use of the parking slots in terms of variable message signs, directional arrows, the names of parks, the state, the number of parking slots, the actual entry, exit point of parking, etc. However, despite this, the circulation system and drivers are facing extreme difficulties especially during peak hours, or special events such as festivals, celebrations, new years and unpredictable situations of traffic congestion [START_REF] Teodorović | Intelligent parking systems[END_REF]. Ultimately in many urban or metropolitan areas, it is time consuming to find an available parking slot, 1.1. INTRODUCTION and when it is done, it is hard to know if it meets the aspirations of both drivers and the parking managers. Today, authorities are more concerned than ever with greenhouse gas emissions, and transport is one of the major contributors to this phenomenon. In the last decades several studies have been conducted to seek solutions to this problem and most of them are related to parking management. On a daily basis, it is estimated that 30% of cars on the road in the center of large cities are in search of a parking slot and it takes, on average, 7.8 minutes to find one [START_REF] Arnott | Alleviating urban traffic congestion[END_REF]. This situation causes not only a waste of time and fuel for drivers looking for a parking slot, but it also contributes to further waste of time and fuel to other drivers due to traffic congestion. For example, it has been reported in [START_REF] Donald C Shoup | The high cost of free parking[END_REF]) that, during one year, in a small business district in Los Angeles, the distance travelled by cars looking for a parking was equivalent to 38 times around the world, burning 177 tons of gasoline and producing 730 tons of carbon dioxide. It has also been shown that over 40% of the total traffic volume in urban areas is composed of cars searching for parking [START_REF] Donald | Cruising for parking[END_REF]. By either decreasing the amount of cars searching for a parking slot or decreasing the waiting time to find one, it is possible to reduce pollution and to preserve resources (time and fuel) [START_REF] Donald C Shoup | The high cost of free parking[END_REF].

The assignment problem of cars to parking slots has been discussed by many researchers and there have been numerous works studying this problem. [START_REF] Bibliography | The use of space availability information in parc systems to reduce search times in parking facilities[END_REF] used two different ways of managing information availability of slot in parking facilities with PARC system to reduce the search time. [START_REF] Caicedo | Real-time parking information management to reduce search time, vehicle displacement and emissions[END_REF] developed a demand assignment model in order to reduce the time and distance involved in the search for a parking slot. [START_REF] Zhao | Robust automatic parallel parking in tight spaces via fuzzy logic[END_REF] developed a parallel algorithm for automatic parking in tight slots using a system based on a fuzzy logic controller. Spatial allocation of the parkings was analyzed by [START_REF] Davis | The environmental and economic costs of sprawling parking lots in the united states[END_REF] to estimate the number of parking slots given a certain demand. [START_REF] Leephakpreeda | Car-parking guidance with fuzzy knowledge-based decision making[END_REF]) presented a guide system for parkings. [START_REF] Arnott | Downtown parking in auto city[END_REF]) developed an integrated parking on the sidewalk and control traffic congestion in inner-city model. [START_REF] Donald | Cruising for parking[END_REF] presented a model to know whether drivers should search for a parking slot along the street or pay for off-street parking. [START_REF] Teodorović | Intelligent parking systems[END_REF] proposed an inventory slot intelligent parking system. The system is based on a combination of fuzzy logic and techniques of integer programming.

THE ISSUE OF CAR PARKING DEMAND

It makes on line decisions to accept or reject the request of a new driver for a parking slot. [START_REF] Ayala | Parking slot assignment games[END_REF] presented a game-theoretic framework to analyze parking situations, and to introduce and analyze parking slot games in complete and incomplete information contexts. For both models they presented algorithms for individual players to choose parking slots ideally. [START_REF] Benenson | Parkagent: An agent-based model of parking in the city[END_REF] presented an agent based system that simulates the behavior of each driver within a spatially explicit model. The system captures, within a non-homogeneous road space, the self-organizing and dynamics of a large collective parking agents. [START_REF] Chou | Dynamic parking negotiation and guidance using an agent-based platform[END_REF] presented an intelligent agent system with negotiable parking pricing for optimum car park for the driver. [START_REF] Geng | A new smart parking system infrastructure and implementation[END_REF] proposed a system for an urban environment; the system assigns and reserves an optimal parking slot for each driver based on his requirements that combine proximity to destination and parking cost. In order to satisfy the users requirements and the parking managers at the same time, the authors used a Mixed Integer Linear Program (MILP) to solve this problem at each decision point. [START_REF] Phillips | An application of multicriteria optimization to assignment university personnel to parking lots[END_REF] suggested a multi-objective optimization approach to assign university personnel cars to parking lots. [START_REF] Geng | Dynamic resource allocation in urban settings: A smart parking approach[END_REF] proposed a smart parking approach to help drivers in their search for an available parking lot. This approach is used by a centralized system that collects requests sent by drivers. The requests are collected over a certain time window after which, at the decision point, allocation of drivers to parking slots is made. In [START_REF] Venkataramanan | A decision support system for parking space assignment[END_REF], a decision support system for the parking slot assignment is proposed where the parking lot assignment problem is modelled as a network problem.

The proposed network combines the objectives of priority, cost and distance by weighting factors.

The issue of car parking demand

• Parking demand: refers to the amount of parking that would be used at a particular time, place and price. It is a critical factor in evaluating parking problems and solutions. Parking demand is affected by vehicle ownership, trip rates, mode split, duration (how long cars park), geographic location (i.e, downtown, regional town centre or suburban), the quality of travel alternatives, type of trip (work, shopping, 1.2. THE ISSUE OF CAR PARKING DEMAND recreational), and factors such as fuel and road pricing. There are usually daily, weekly and annual demand cycles. For example, parking demand usually peaks on weekdays at office buildings and on weekend evenings at theaters and restaurants.

Parking demand can change with transportation, land use and demographic patterns. For example, a particular building may change from industrial to residential or office use, neighborhood demographics and density may change, and the quality of transit service may change, all of which affect parking demand. Different types of trips have different types of parking demand, and different types of parking facilities tend to serve different types of trips. For example, commuters need long-term parking, and because they park all day they are relatively price sensitive. Many commuters are willing to walk several blocks for cheaper parking. Off-street parking leased by the month tends to serve commuters. Customers need shorter-term parking that is located as close as possible to their destination, and are often willing to pay a relatively high hourly price to increase convenience. On-street parking that is metered or regulated to maximize turnover tends to serve customers.

• Parking Adequacy: refers to whether there is sufficient parking at a particular time and location. What constitutes adequacy varies depending on conditions and user expectations. For example, even in dense areas parking is usually adequate, or at a sufficient price during off-peak periods. Similarly, parking may be considered inadequate at a particular location, but is available a few blocks away. Unregulated parking may be adequate for residents and employees, who park early in the day, but inadequate for delivery vehicles or clients, who arrive later. On the other hand, parking with a two-hour or less time limit, or more expensive, may be considered adequate for short-term users but inadequate for employees and residents who must park all day.

• Parking problems: most of the time, drivers consider parking as inadequate, inconvenient or expensive. This impression is based on the facts previously explained.

As a solution, it is needed to increase parking supply without additional costs for the drivers. But there are other ways to tackle parking problems without making huge investments; for example developing new methods of management based on 1.3. CARS AND PARKING IN SMART CITIES technology of information and communication can be much more efficient than constructing new parking. Some situations that drivers may face when searching for a parking lot/slot are: inadequate information on parking availability and price; inconvenient parking pricing methods; economic, environmental and visual impacts of parking facilities, etc.

Cars and parking in smart cities

A real-time parking information system is composed of a variety of elements that generate raw data, that process the data into useable information, and that transmit the information to users. Each of these elements can be addressed with a number of different technology options. Parking guidance information systems, first proposed two decades ago, are used to minimize parking search traffic in large parking facilities and central cities by dynamically monitoring available parking, and directing drivers with variables message signs [START_REF] Sakai | Parking guidance and information systems[END_REF]. Parking guidance systems based on wireless sensor networks were also designed for automated and accurate monitoring of the parking slots and guidance to a vacant parking slot [START_REF] Yoo | Pgs: Parking guidance system based on wireless sensor network[END_REF].

Information and communication technologies are now integrated onboard systems for intelligent cars and offer new solutions to transportation problems. The main goal of these systems is to bring convenience, comfort and security for users. These systems rely, among others, on the current power of network technologies and the various protocols of communication [START_REF] Biswas | Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety[END_REF].

These systems help drivers to avoid accidents in the first place. In fact, several researches (see [START_REF] Michael R Hafner | Cooperative collision avoidance at intersections: Algorithms and experiments[END_REF]) have highlighted the dramatic impact of vehicular collisions in terms of costs, injuries and fatalities. Hence, intelligent cars will play a great role in reducing economical, social and environmental impacts. Some benefits of generalization of these cars are:

• Provide drivers with real-time information on traffic and allow them to avoid traffic jams [START_REF] Bibliography Lakshmi | Traffic control and intelligent vehicle highway systems: a survey[END_REF].

• Find the fastest or the shortest route between two places [START_REF] Fu | An adaptive routing algorithm for in-vehicle route guidance systems with real-time information[END_REF].

CARS AND PARKING IN SMART CITIES

• Optimize the performance of their cars and thereby improve energy efficiency [START_REF] Manzie | Fuel economy improvements for urban driving: Hybrid vs. intelligent vehicles[END_REF].

• Monitor the status of the driver: vigilance, alcohol, drugs [START_REF] Dong | Driver inattention monitoring system for intelligent vehicles: A review[END_REF].

• Provide real-time information about available parking lots.

Due to the potential expected impact, car makers (such as Mercedes, BMW, or Renault) and independent laboratories intensify their research and development to come out with intelligent cars capable not only to assist the drivers all the time but also to become an interactive part of a more global and dynamic system as smart cities. As a consequence, during the last years, interest in applications for inter-vehicle communications increased in Europe and in the United States, giving rise to several communication projects such as: Vehicle Safety Communication, Car2Car Communication Consortium, Network on Wheels, Vehicular Event Sharing with a mobile P2P Architecture (VESPA).

In VESPA, the dissemination service is about to be stopped and replaced by a reservation service, which the trader can download and install. Whereas the use of V2V communications provides several advantages (cost, locality, dynamicity, etc.), it creates new technological challenges that the community faces in data management, to develop new techniques for data and query processing. (Delot et al., 2011) developed several prototypes for smart phones and evaluated the scalability of different approaches using simulation (see also [START_REF] Delot | Introduction to the special issue on data management in vehicular networks[END_REF], [START_REF] Cenerario | A content-based dissemination protocol for vanets: Exploiting the encounter probability[END_REF]). More precisely, they considered in the VESPA project ( see Figure 1.1):

• The problem of assessing the relevance of the data exchanged in the network using both techniques based on distance calculations in the Euclidean space and technical operations of the road network information available in digital maps.

• The use of data relevance to design dissemination protocols.

• The use of data aggregation approaches that can help cars to extract and share environmental knowledge by summarizing the data elements.

• Information sharing about scarce resources such as parking slots; this is important because the communication of information for many cars without control could easily lead to sterile competition between cars to try to take the same resource.

CARS AND PARKING IN SMART CITIES

• The problem of processing queries that need to access data remotely. They analyzed the challenge of conveying the results obtained remotely for a query back to the moving vehicle that issued this query. They are also studying the potential of mobile agent technology to route queries and results towards the appropriate nodes.

The exchange of multimedia information is also discussed.

• The potential benefits of the application of the management of other technical and semantic data. They envision a future in which smart cars will be equipped with V2V communications and perform tasks for managing multiple data.

Figure 1.1: The Framework Architecture It is clear that the outcomes of these projects will help the achievement of a safer automobile transportation. Nevertheless, many unresolved issues remain today including technical issues such as standardization, development issues such as application systems, and legal and institutional issues [START_REF] Tsugawa | Issues and recent trends in vehicle safety communication systems[END_REF].

SMART PARKING ARCHITECTURES

Smart parking architectures

In order to address the problems associated with parking slots, smart parking has been developed for slot assignment or/and drivers guidance, and can be classified into centralized and distributed systems (see Figure 1.2 and Figure 1.3).

• Centralized systems: Centralized systems always have a server to store all parking slots information. They use sensor networks to gather parking slot information.

Drivers must connect to the server through Internet or other communication means to access the parking slot information. These systems always have a database to store all parking slot information and a server to handle requests from users. The server gathers data of parking slot via vehicular ad hoc network VANET or wireless sensor networks with gateways, and updates its database with the latest information. The users must query the server to have knowledge of free parking slots.

Although the centralized methods seem to work well, there are still some disadvantages. Constructing a reliable and scalable server costs a lot of money. And the region near the sinks or gateways to server will lead to heavy network loading. This will cause the congestion of network and decrease the data availability and accuracy.

Thus, the service will be unstable in peak hours [START_REF] Phillip B Gibbons | Irisnet: An architecture for a worldwide sensor web[END_REF]. [START_REF] Basu | Networked parking spaces: architecture and applications[END_REF], [START_REF] Murat Caliskan | Decentralized discovery of free parking places[END_REF]. They use wireless devices on parking meters and cars to construct a VANETs environment and then spread parking slot information on VANETs. The VANETs can provide many vehicular applications such as car safety, traffic analysis and information dissemination. The dissemination of parking slots information is one of the most popular applications in VANETs. It is able to gather and disseminate information in a dynamic and fast way, which is crucial as the availability of on-street parking slots is subject to frequent changes. This approach is characterized by the absence of a centralized infrastructure where each vehicle becomes at the same time a client and server through exchange or dissemination of information. Two modes can be distinguished:

-Cooperative mode, where cars share a common set of information so that everyone can locate one or more empty parking slots at the nearest destination and minimize the path relative to current their position.

-Non-cooperative mode (competitive) where cars do not share any information with each other. Each car must take into account, in its research strategy, the possibility that other cars choose the same slot as it. The cost of distributed systems is usually much lower than the cost of centralized ones, since there is no central server to dispatch the information. However, the main 1.5. CONTEXT AWARE TRANSPORTATION SERVICES disadvantage is that the wireless devices in distributed systems usually transmit a lot of redundant packets with the same parking information. Users with any mobile device or a car navigation system can communicate with the parking meters, book, spot and pay for parking even before arriving at the lot. But the same vacancies are displayed for all users, if the user just wants to check for vacant slots. This might cause multiple users to drive to the same slot and therfeore find it occupied when they get there.

Another reservation protocol was designed (Delot et al., 2009) using vehicular ad hoc networks where drivers can receive information about parking slots around them while driving. The protocol allocated efficiently parking slots to interested cars, thereby avoiding competition between them to get to the slot. Cars establish a VANET and receive, manipulate and relay parking slot information to cars in their vicinity. [START_REF] Murat Caliskan | Predicting parking lot occupancy in vehicular ad hoc networks[END_REF] proposed a mathematical model for parking lot occupancy prediction and an algorithm that uses parking lot data disseminated in a VANET to estimate the future occupancy of parking. This enables each vehicle to choose an appropriate parking lot.

Hybrid system architectures could use a combination of centralized and decentralized systems to form another one.

Context aware transportation services

A framework for Context Aware Transportation Services (CATS) has been developed at the University of Valenciennes. The goal of this framework is to provide an execution environment for service-based applications as well as management functionalities for the deployment and the adaptation to context changes. The aim of this framework is also to ensure continuous service applications, regardless of the conditions. That can be achieved by adjusting or replacing parts of the application with regard to the evolution of the context. The focus is on transportation applications such as routing, parking, traffic events in a context of low (pedestrians) or strong (VANETs) mobility. Some evaluations of CATS have been presented in [START_REF] Popovici | Context-aware transportation services (cats) framework for mobile environments[END_REF], showing that the framework is light enough for mobile devices such as smartphones. With CATS, using the ad-hoc 1.6. PARKING SEARCH MODELS network we can detect services that offer a specific functionality to the area we are in, and we can benefit from them by installing them on our device. In [START_REF] Popovici | Context-aware transportation services (cats) framework for mobile environments[END_REF], the authors evaluated the necessary time for service download in different situations and found results coherent with our need: services can be downloaded fast enough from onehop neighbors. In CATS, applications are composed of multiple functionalities, which can be divided in independent modules. The different reservation protocols are one of these functionalities.

With CATS, a simple dissemination service can be used to publish available parking slots on the network, or it can be replaced by reservation protocol, depending on the context in which the application is executed (centralized architecture or distributed architecture). The service switch modifies the architecture of the application and is the responsibility of the execution manager. However the decision of implementing this change is done according to the context and the available services that the trader can reach. In the configuration presented here, the dissemination service is about to be stopped and replaced by a reservation service, which the trader can download and install.

Parking search models

Parkings play an important role in the traffic system since all cars require a storage location when they are not being used to transport passengers. Due to the inherent uncertainty associated with many of the attributes of public car parks, including availability and location [START_REF] Kay W Axhausen | Choice of parking: stated preference approach[END_REF][START_REF] Russell | A parking search model[END_REF], a high proportion 1.7. CONTRIBUTION OF THIS THESIS of drivers travelling within central city areas must search for a parking slot. Generally, dedicated searching speed and searching time models represent a parking search phase.

Such models are further split in two sub-models depending on the category of parking: on-street and off-street. In the on-street parking, searching speed is modeled by a fuzzy model as a function of the linear traffic density and the occupation rate of the parking facility. Searching time for on-street parking uses a probabilistic approach to calculate the searching time based on the occupation rate of the link connecting parking areas and searching speed. Searching time models estimate the time employed by a driver from the moment he decides to park up to the moment he finds the first available slot to park.

Contribution of this thesis

The current smart parking or parking guidance systems only obtain the availability information of parking slots from deployed sensor networks, and simply publish the parking information directly to drivers. However, since these systems cannot guide the drivers to their desired parking and destinations, and even sometimes make the situation worse, they are not smart enough. For instance, when the number of vacant slots in an area is limited, more drivers, who obtain the parking information, are heading for those slots. To alleviate such traffic problems and improve the convenience for drivers, the work presented in this thesis aims at proposing methods for assigning a parking lot/slot and computing driver paths across a metropolitan leading them, in a first moment, toward a parking slot and after to their final destination in a dynamic environment. Unlike classical assignment and shortest path problems, here the context is multi-objective due to existence of several criteria such as the distance/time between the current vehicle position and parking lot/slot and the distance/time between parking and the driver final destination, which must be considered in the path computation.

In a multi-objective problem, there is no single solution, but a set of compromise solutions. Then, the difficulty is to compute assignments and shortest paths under a time constraint of a few seconds, in order to integrate the computation in the response time of lot/slot system assignment like centralized system architecture. In this thesis, we first propose new two-phase heuristics to approximate the set of the efficient solutions 1.7. CONTRIBUTION OF THIS THESIS to solve a bi-objective problem. In the first phase, we generate the supported efficient set by a standard dichotomic algorithm. In the second phase we propose four different metaheuristcs to generate an approximation of the non-supported efficient solutions.

These metaheuristics are a cost perturbation method, a path-reliking, a genetic algorithm and finally a hybrid approach combining all of them. The hybrid approach combines genetic algorithm and mathematical programming techniques. This method is based on the dominance cost variant of the multi-objective genetic algorithm hybridized with an exact method. The initial population is generated by solving a series of mono-objective optimization problems obtained by a suitable choice of a set of weights. The crossover operator solves a reduced mono-objective problem where the weights are chosen to identify an unexplored region. The proposed approaches are tested on the bi-objective shortest path problem and the bi-objective assignment problem. In the second part, we consider a dynamic multi-objective assignment problem for a smart parking over a horizon. A mixed integer linear programming formulation is proposed. The objective functions consist of a balance between the satisfaction of the driver and the interest of the parking manager. The goal of a driver is to reduce the distance traveled between the assigned parking slot and his final destination. In addition, minimizing the waiting time to satisfy his request also interests him. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to adjust the demand during the horizon. To reduce the computational effort, a local search algorithm is introduced based on a decomposition scheme of the whole problem into a set of sub-problems with reduced number of cars parking slots.

Concepts of bi-objective optimization and methods are presented in Chapter II, and three sub-problems are considered in this thesis:

1. Approximation of the set of nondominated shortest paths, discussed in Chapter III.

2. Approximation of the set of non-dominated assignments, discussed in chapter IV.

3. Dynamic assignment with learning reinforcement, discussed in chapter V.

Chapter 2

Bi-objective combinatorial optimization problems

Introduction

Combinatorial optimization encompasses a wide class of problems with many real world applications in science, engineering, economics, social, medicine, etc. A combinatorial optimization problem consists in optimizing a given criterion with respect to various constraints. These constraints define the set of feasible solutions. However, the optimization problems in real applications are often multi-objective (production costs, quality, maintenance costs, times, distance, price, etc.), and the different criteria are usually conflicting.

Thus, finding a single solution that optimizes all the criteria is a very difficult task.

Therefore, using the multi-objective combinatorial optimization was the adequate solution for the interesting researchers in this field. Solving these multi-objective optimization problems exactly or approximatively requires methods that can generate the whole set of non-dominated points (called the Pareto-optimal front) or its approximation. For a general introduction to multi-objective optimization, we refer to [START_REF] Ehrgott | Multicriteria optimization[END_REF]. In addition, Ehrgott and Gandibleux provided in [START_REF] Ehrgott | Multiobjective combinatorial optimization: theory, methodology, and applications[END_REF]) some details the multi-objective combinatorial optimization and presented their characteristics and the main findings of the related works.

In this chapter, the basics of multi-objective optimization are discussed and an introduction to some methods in multi-objective combinatorial optimization is given, including 2.2. BI-OBJECTIVE COMBINATORIAL OPTIMIZATION the definitions of efficient solutions and non-dominated points. The two-phase method for bi-objective combinatorial optimization problems is also discussed.

Bi-objective combinatorial optimization

A combinatorial optimization problem consists of finding an optimal solution in a finite discrete set. Several problems of operational research are included in this framework, such as the knapsack problem, the assignment problem, the traveling salesman problem, and so on. The multi-objective combinatorial optimization belongs to the field of combinatorial optimization. Therefore, some definitions are inspired from combinatorial optimization, but specific concepts related to multi-objective are also introduced. Indeed, the main difference is the existence of several functions to optimize.

A bi-objective combinatorial optimization problem can be defined as follows:

(BP ) "M inimize"{c(x) = (c 1 (x), c 2 (x)) : x ∈ X},
where c 1 and c 2 are two objective functions to minimize simultaneously, X is the set of feasible solutions, and x is n-dimensional vector of the decision variables.

Pareto optimality

First, we introduce some basic definitions for bi-objective optimization problems. The objective space is defined by

Y = {(y 1 , y 2 ) ∈ R 2 : y k = c k (x), x ∈ X, k = 1, 2}. The set Y ⊂ R 2
is the image of the set of feasible solutions X on the space of objectives, (see Since in general there is no feasible solution that minimizes the two objectives simultaneously, we search for an acceptable trade-off between them. This compromise is defined by a dominance relation that corresponds to a partial order of the objective space [START_REF] Editeur | Méthodologie multicritère d'aide à la décision[END_REF]. This dominance is such that no strictly better solution exists, and the equivalence between solutions is used to characterize Pareto efficiency, which replaces the notion of optimality in single objective optimization problems. The dominance relation is a binary relation R defined on a coherent of two criteria c 1 and c 2 . Let x and x ′ be two solutions of the considered multi-objective problem: xRx ′ if and only if c k (x) ≤ c k (x ′ ) for k = 1, 2. It should be noted that R defines a partial preorder structure on X. The latter allows to define the concept of efficient solution. Therefore, a feasible solution x * ∈ X is called efficient if and only if there exists no solution x ∈ X such that xRx * and non x * Rx.

In other words, x * ∈ X is an efficient solution if there is no other feasible solution x ∈ X that leads to an improvement on some criterion without simultaneous deteriorating at least another one.

Definition (Dominance relation). Let y and y ′ be two solutions of the objective space Y of a bi-objective problem. We say that y dominates y ′ , denoted by y ′ ≻ y, if and only if y k ≥ y ′ k for k = 1, 2, with at least one inequality being strict.

For multi-objective optimization problems, the order relation between solutions is partial (two solutions are not always comparable), so the concept of global optimality does not exist, and thus we talk about compromise solutions. Unlike the mono-objective case, 2.2. BI-OBJECTIVE COMBINATORIAL OPTIMIZATION the goal here is to find a good compromise between the different optimized objective functions. The output of the optimization procedure consists of a set of solutions and the decision maker chooses the one among them that offers the most attractive compromise.

The concept of Pareto optimality has appeared at the end of the 19 th century. It allows to find the compromise solutions. The optimal Pareto front is the set of all non-dominated solutions in the space of objectives [START_REF] Allais | vilfredo: contributions to economics[END_REF].

Definition (Pareto efficiency). A solution x ∈ X is Pareto efficient, if and only if there

is no solution x ′ ∈ X such that c(x) ≻ c(x ′ ).
The efficient set is defined as E * = {x ∈ X :

x is P areto ef f icient}, and the Pareto front as

F * = {c(x) : x ∈ E * }.
An efficient solution x * ∈ E * is also known as a Pareto optimal solution and its image c(x * ) is called a non-dominated point. In other words, x * ∈ X is efficient if there is no other feasible solution x ∈ X that leads to an improvement in some criterion without simultaneous deterioration in at least one other.

Definition (Weak Pareto optimum). A solution x ∈ X is a weak Pareto optimum, also called weak efficient optimum, if and only if there is no solution x ′ ∈ X such that c k (x ′ ) > c k (x),∀k = 1, 2. The Pareto set E * is uniformly dominant if all points in F * are weakly Pareto.

Definition (Strict Pareto optimum). A solution x ∈ X is a strict Pareto optimum, also called efficient solution if and only if there is no solution x ′ ∈ X such that c k (x ′ ) ≥ c k (x),∀k = 1, 2 with at least one strict inequality.

The ideal point and nadir point are lower and upper bounds on non-dominated points.

These points give an indication of the range of the values which non-dominated points can attain. They are often used as reference points in interactive methods in order to help the decision maker in his choice.

Definition (Ideal and Nadir points.) The point y I = (y I 1 , y I 2 ), with

y I k = min{c k (x) : x ∈ X} for k = 1, 2, is called the ideal point. The point y N = (y N 1 , y N 2 ) with y N k = max{c k (x) : x ∈ E * } for k = 1, 2, is called the nadir point.
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Those points correspond to the optimal solution for each criterion if they are considered separately. They are reached if the objective functions are independents. If this condition is satisfied, the multi-objective problem can be considered as a set of mono-objective problems. In contrast, the nadir point corresponds to the worst values obtained for each objective function when the space of solutions is considered as the compromise area.

The ideal and nadir points for a nonconvex problem are shown in Figure 2.2. For a bi-objective optimization problem, the nadir point y N can be determined as follows:

y N 1 = max{c 1 (x) : x ∈ E * , c 2 (x) ≤ y I 2 }, y N 2 = max{c 2 (x) : x ∈ E * , c 1 (x) ≤ y I 1 }.
Note that it is difficult to compute the nadir point y N for multi-objective optimization problems with more than two objectives. Definition (properly efficient solution, (Geoffrion, 1968)). A feasible solution x ∈ X is called properly efficient, if it is efficient and if there is a real number M > 0 such that for all k = 1, 2 and x ∈ X satisfying c k (x) < c k ( x) there exists an index h = k such that 2.2. BI-OBJECTIVE COMBINATORIAL OPTIMIZATION

c h ( x) < c h (x) and c k ( x) -c k (x) c h (x) -c h ( x) ≤ M.
The corresponding point y = c( x) is called properly non-dominated.

Note that the definition of efficient solutions and non-dominated points is not unique in the literature (see references [START_REF] Chankong | A multiobjective dynamic programming method for capacity expansion[END_REF], [START_REF] Miettinen | Nonlinear multiobjective optimization[END_REF] andtable 2.4 in the book [START_REF] Ehrgott | Multicriteria optimization[END_REF] for more details).

In the following, we summarize the main results regarding (weakly) efficient solutions of bi-objective optimization problems.

Proposition 2.1 . Let λ = (λ 1 , λ 2 ) ∈ R 2 be a weight vector, and suppose that x is an optimal solution of the weighted sum optimization problem

(BP (λ)) min{λ 1 c 1 (x) + λ 2 c 2 (x) : x ∈ X}.
Then, the following statements hold

• If λ 1 , λ 2 > 0, then
x is an efficient solution.

• If λ 1 , λ 2 ≥ 0, then x is a weak efficient solution.

• If λ 1 , λ 2 ≥ 0, and x is a unique solution of BP (λ) then x is a strict efficient solution.

(Geoffrion, 1968) establishes the relationships between properly non-dominated points and optimal points of weighted sum scalarizations with positive weights. He shows that these points coincide for convex sets.

Theorem 2.1 (Geoffrion, 1968). Let λ = (α, 1α) be a positive weight vector with

α ∈]0, 1[. If
x is an optimal solution of BP (λ) then x is a properly efficient solution of BP. Moreover, if the feasible set X is convex and the objective functions c 1 and c 2 are convex, then x ∈ X is properly efficient if and only if x is an optimal solution of BP (λ).

Determining the set of efficient solutions

The most common methods for determining the set of efficient solutions are:
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• ǫ-constraints method. This method, introduced by [START_REF] Haimes | Bicriterion formulation of problems of integrated system identification and system optimization[END_REF], is the best known technique to solve multicriteria optimization problems. There is no aggregation of criteria. Instead, only one of the original objectives is minimized, while the others are transformed into constraints. This method is based on the minimization of one objective function (the most preferred or primary), and consider the other objectives as constraints bounded by some allowable level ǫ. Hence, a single objective minimization is carried out for the most relevant objective function, subject to additional constraint on the other objective function. More specifically, the bi-objective optimization problem BP is replaced by the following ǫ-constraint problem:

(BP k (ǫ)) min{c k (x) : x ∈ X, c h (x) ≤ ǫ h , h = k},
where ǫ ∈ R. The level ǫ is then altered to generate the entire Pareto optimal set.

The ǫ-constraint method is easy to implement, but it requires a potentially high computational cost (many runs may be required).

The ǫ-constraint method is justified by the following properties.

Proposition 2.2 -Let x be an optimal solution of BP k (ǫ) for some k. Then x is weakly efficient.

-Let x be a unique optimal solution of BP k (ǫ) for some k. Then x is a strict efficient (and therefore it is efficient).

-The feasible solution x ∈ X is efficient if and only if there exists an ǫ ∈ R such that x is an optimal solution of BP k (ǫ) for all k = 1, 2. [START_REF] Vira | Multiobjective decision making: theory and methodology[END_REF]) provides a link between the weighted sum method and the ǫ-constraint method.

Theorem 2.2 [START_REF] Vira | Multiobjective decision making: theory and methodology[END_REF].

-Suppose x is an optimal solution of BP (λ). If λ k > 0, there exists ǫ such that

x is an optimal solution of BP k ( ǫ), too.
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-Suppose X is a convex set and c 1 and c 2 are convex functions. If x is an optimal solution of BP k (ǫ) for some k, there exists λ ∈ R 2 with λ ≥ 0 such that x is optimal for BP ( λ).

• Benson's Method [START_REF] Harold P Benson | Existence of efficient solutions for vector maximization problems[END_REF]: This method chooses an initial feasible solution x ′ ∈ X and, if x ′ is not efficient, produces a dominated solution x ′′ as far from

x ′ as possible. The distance from x ′ to x ′′ is computed as the sum of nonnegative

deviations δ k = c k (x ′ ) -c k (x ′′ ), k = 1, 2.
More formally, the following problem is solved:

BM (x ′ ) max{δ 1 + δ 2 : δ k = c k (x ′ ) -c k (x), x ∈ X, δ k ≥ 0, k = 1, 2}.
Proposition 2.3 The feasible solution x ′ ∈ X is efficient if and only if the optimal objective value of the problem BM (x ′ ) is 0.

• Weighted Tchebycheff method [START_REF] Bowman | On the relationship of the tchebycheff norm and the efficient frontier of multiple-criteria objectives[END_REF] A weighted Chebyshev norm of a point y ∈ R 2 with weight β ∈ [0, 1] is defined as

||y|| β ∞ = max{β|y 1 |, (1 -β)|y 2 |}.
Methods based on weighted Chebyshev norms select points with minimum weighted Chebyshev distance from the ideal point y I . The following proposition is a wellknown result for the weighted Chebyshev scalarization [START_REF] Ralph | An interactive weighted tchebycheff procedure for multiple objective programming[END_REF].

Proposition 2.4 If a point y * ∈ Y is a non-dominated point, then y * is an optimal solution of the following problem

max{||y -y I || β ∞ : y ∈ Y }, for some β ∈ [0, 1].
The following result of [START_REF] Bowman | On the relationship of the tchebycheff norm and the efficient frontier of multiple-criteria objectives[END_REF] was originally stated for the efficient set but it is useful here to state the equivalent result for the Pareto set.
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Proposition 2.5 . If the Pareto set F * is uniformly dominant, then any solution to the following problem

                 max z s.t. z ≥ β(y I 1 -y 1 ), z ≥ (1 -β)(y I 2 -y 2 ), y ∈ Y.
where β ∈ [0, 1], corresponds to a Pareto front point.

• Lexicographic Ordering : In this method, the user is asked to rank the objectives in order of importance. The optimum solution is then obtained by minimizing the objective functions, starting with the most important one and proceeding according to the assigned order of importance of the objectives. Lexicographic optimization problems arise naturally when conflicting objectives exist in a decision problem but for reasons outside the control of the decision maker, the objectives have to be considered in a hierarchical manner. This method requires a definition of an order of the objectives, in decreasing importance, and thus, it defines a total order of the solutions. If some solutions have the same value for objectives c k , objective c h , with k = h, is used to break ties. For bi-objective problems, there are only two possible orderings of the objectives, and thus only two different scalarized problems can be defined, preventing the return of more than two solutions. The lexicographic or lexicographical order is a generalization of the alphabetical order of words, which is based on the alphabetical order of their component letters. Let y, y

′ ∈ R 2 , y < lex y ′ if y k < y ′ k
where k = min{h : y h = y ′ h }, the lexicographic order is total.

Definition (lexicographically optimality): A solution x ∈ X is lexicographically optimal if c( x) < lex c(x), ∀x ∈ X.
The following proposition establishes the relationship between lexicographically optimal solution and efficient solution.

Proposition 2.6 . A lexicographically optimal solution is also an efficient solution.
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• Max-Ordering Optimality The max-ordering (MO) optimization problem is defined as follows:

(M O) min{max{c 1 (x), c 2 (x)} : x ∈ X}.
Definition A feasible solution x ∈ X is max-ordering optimal if there is no x ∈ X such that

max{c 1 (x), c 2 (x)} < max{c 1 ( x), c 2 ( x)}.
Proposition 2.7 An optimal solution of the max-ordering problem is weakly efficient but not necessarily efficient.

In the literature, there are other methods to characterize the set of non-dominated solutions as decision aid methods (ELECTRE methods and PROMETHEE methods [START_REF] Figueira | Multiple criteria decision analysis: state of the art surveys[END_REF]). When the set of feasible solutions is discrete, fuzzy methods are used. These approaches will not be considered in this thesis. Interested readers can consult the book of [START_REF] Collette | Multiobjective optimization: principles and case studies[END_REF]. For a broader survey of the field, we refer to recent bibliographies by [START_REF] Ehrgott | A survey and annotated bibliography of multiobjective combinatorial optimization[END_REF], [START_REF] Ehrgott | Multiobjective combinatorial optimization: theory, methodology, and applications[END_REF], [START_REF] El Ulungu | Multi-objective combinatorial optimization problems: A survey[END_REF], and (T'kindt and Billaut, 2001).

The performance measures of optimal Pareto fronts

In a single objective optimization, the evaluation of the solution found by an algorithm is trivial. Indeed, it suffices to compare this solution with other ones of the same problem in terms of quality and time. However, in the multi-objective case, there is a set of nondominated solutions and therefore they are not comparable. Hence, it is necessary to provide performance measures to assess the obtained results.

The goal of a multi-objective algorithm is to converge to the true Pareto front of a problem, which normally consists of a diverse set of points. In this comparative study, performance measures are taken into account for assessing the quality of solutions generated by the proposed algorithm such as:

1. Solution quality: the number or percentage of true Pareto-optimal solutions generated,

BI-OBJECTIVE COMBINATORIAL OPTIMIZATION

2. Solution efficiency: the computation time used to generate the Pareto-optimal set, 3. Generational distance, 4. Error ratio.

Three are normally the issues to take into consideration to design a good metric in this domain [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms: Empirical results[END_REF]:

1. Minimize the distance of the Pareto front Ẽ produced by an algorithm with respect to the true Pareto front E * .

2. Maximize the spread of solutions found, so that we can have a distribution of solutions as smooth and uniform as possible.

3. Maximize the amount of elements of the Pareto optimal set found Ẽ.

Most of the performance metrics assume that the true Pareto front E * of the multiobjective optimization under study is known. In this case, we can test the performance of a multi-objective algorithm by comparing the Pareto fronts produced by an algorithm Ẽ with the true Pareto front E * and then determine certain error measures that indicate how efficient is the algorithm analyzed.

The error ratio and generational distance metrics discussed next make this assumption. In order to compare two sets of non-dominated solutions, we need to identify the characteristics of these sets:

• The distance between the approximate set of non-dominated solutions Ẽ and the true Pareto front E * , which must be minimal.

• A good distribution of the solutions (uniform in most cases) is required.

• The magnitude of the obtained front must be maximized that is to say, for each objective, a wide range of values should be present.

In the literature, several metrics have been proposed [START_REF] Knowles | On metrics for comparing nondominated sets[END_REF] and are divided into two sets. The first includes the metrics providing an absolute measurement with respect to Pareto optimal solutions E * and the second contains the metrics that provide the measures associated between two approximate sets X ′ and X ′′ .
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The set E * is known:

• Error Ratio (ER): This metric, proposed by (Van Veldhuizen, 1999a), reports the proportion of solutions in Ẽ (approximation set of Pareto optimal solutions) that are not members of E * (set of efficient solutions). Formally this metric is computed by the following equation:

ER = x∈ Ẽ X E (x) | Ẽ|
where X E is the characteristic function relative to the set E, i.e.. X E (x) = 0 if

x ∈ E and X E (x) = 1 if x / ∈ E. Thus, when ER = 0 all the solutions in Ẽ belong to E * ; but when ER = 1, this indicates that none of the points in Ẽ are in E * . The drawback of this metric is that it requires knowing the Pareto optimal set, which is often not easy to determine.

• Generational Distance (GD): This metric is proposed by (Van Veldhuizen and Lamont, 1998b). It estimates, for a given problem, how far is Ẽ from the E * of a problem, using the Euclidean distance (measured in objective space), between each solution and the nearest member of E * . It is mathematically defined by the following equation:

GD = ( x∈ Ẽ d(x, x * ) 2 ) | Ẽ| ,
where x * is the closest solution in E * to that solution x, i.e., x * = argmin{d(x, x ′ ) :

x ′ ∈ E * }, being d(x, x ′ ) the distance between the two solutions x and x ′ . It is easy to see that a value of GD = 0 indicates that Ẽ = E * . Other similar metrics were proposed by [START_REF] Rudolph | On a multi-objective evolutionary algorithm and its convergence to the pareto set[END_REF][START_REF] Schott | Fault tolerant design using single and multicriteria genetic algorithm optimization[END_REF][START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms: Empirical results[END_REF]Van Veldhuizen and Lamont, 1998a). The problem with this metric is that only the distance to E * is considered and not a uniform spread along the Pareto front.

• Maximum Pareto front Error(ME): The Maximum Pareto front Error (ME) compares two set of solutions (Van Veldhuizen, 1999b;[START_REF] Bibliography David | Multiobjective evolutionary algorithm test suites[END_REF]. More precisely, it measures the largest minimum distance between each solution in Ẽ and the corresponding closest solution in E * , i.e.,

M E = max{min{(|c 1 (y) -c 1 (x)| p + |c 2 (y) -c 2 (x)| p ) 1 p : y ∈ Ẽ} : x ∈ E * }.
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• Spacing metric (S): It describes the spread of the solution in Ẽ [START_REF] Coello | Evolutionary algorithms for solving multi-objective problems[END_REF][START_REF] Schott | Fault tolerant design using single and multicriteria genetic algorithm optimization[END_REF]. It measures the distance variance of neighboring solution in Ẽ by computing the distance between two consecutive solutions of Ẽ:

S = 1 | Ẽ| -1 x∈ Ẽ(d(x) -d) 2 , where d(x) = min{|c 1 (x) -c 1 (y)| + |c 2 (x) -c 2 (y)| : y ∈ Ẽ} and d = x∈ Ẽ d(x)
| Ẽ| .

In the case where S = 0, all members are spaced evenly apart. Note that this becomes important in the deception problems where all Pareto front solutions are equally spaced.

• Maximum Spread (MS): The metric measures the distribution of individuals in Ẽ over E * . It uses a statistical metric such as the chi-square distribution to measure spread along the Pareto front. This metric assumes that we know the true Pareto front of the problem:

M S = 1 | Ẽ| 2 k=1 ( max x∈ Ẽ c k (x) -min x∈ Ẽ c k (x) c max k -c min k ),
where The set E * is not known: In this case, the metrics allow to compare two approximate sets of non-dominated solutions. There are measures that evaluate the quality of one approximate set, that evaluate the convergence or the diversification or that evaluate both the convergence and the diversification simultaneously.

c
• Attainment Surfaces(AS): Draw a boundary in the objective space that separates the points that are dominated from those which are not (this boundary is called attainment surface). Perform several runs and apply standard non-parametric statistical procedures to evaluate the quality of the non-dominated vectors found.
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It is unclear how we can really assess how much better is a certain approach with respect to others.

• The coverage measures (CM ): This metric measures the size of the objective value space area Y that is covered by a set of non-dominated solutions E * . It combines the three issues previously mentioned (distance, spread and amount of elements of the Pareto optimal set found) into a single value. Therefore, sets differing in more than one criterion cannot be distinguished. [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms: Empirical results[END_REF] proposed another metric for comparing the performances of different algorithms. Suppose we want to compare the performance of two algorithms A ′ and A ′′ , which generate the two sets X ′ and X ′′ , respectively. More specifically, for each ordered pair

(X ′ , X ′′ ) subsets of solutions, i.e., X ′ , X ′′ ⊆ X, the metric CM corresponds to a value CM (X ′ , X ′′ ) in the interval [0, 1] computed as follows CM (X ′ , X ′′ ) = |{x ∈ X ′′ : ∃y ∈ X ′ such that y ≺ x}| |X ′′ | .
If CM (X ′ , X ′′ ) = 1, then all the solutions in X ′′ are dominated by or are equal to solutions in X ′ . If CM (X ′ , X ′′ ) = 0, then none of the solutions in X ′′ are covered by the set X ′ .

There are other existing performance metrics given in [START_REF] Sarker | Assessment methodologies for multiobjective evolutionary algorithms[END_REF] and (Zitzler et al., 2003). However, we will only use these two previous metrics ( AS and and CH).

Bi-objective methods

Solving a multi-objective combinatorial optimization problem consists of providing a set of Pareto solutions (as complete as possible) to the decision maker. Therefore, he can choose the most interesting solutions among them. Hence a question arises about the nature of these Pareto solutions and the techniques available to get them all. A study of the Pareto frontier should be performed.
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Decision aid methods

Solving a multi-objective problem leads to the determination of a set of Pareto solutions.

Therefore, it is necessary to integrate the decision maker, who is responsible for the final choice of the solution. Thus, before starting to solve of a multi-objective problem, we should select the kind of optimization method to be used. Indeed, one can divide the methods of solving multi-objective problems into three groups, depending on the time available to the decision maker. We can find the following families of methods (Knowles and Corne, 2004):

• A priori methods: In a priori optimization, the decision maker is consulted before the search process begins in order to build a mathematical model of his preferences that will be used in the search to evaluate all solutions. The best solution of this model is the result of process optimization without additional intervention of the decision maker. The main drawback of these methods is obvious: it is very hard for the decision maker to provide adequate models that determine which solutions he prefers without having an idea about the number of objectives to sacrifice for the benefit of others. This approach is fast, but we should take into account the time of modeling the compromise and the possibility that of the decision maker will be not satisfied with the obtained solution and repeat the search with another compromise.

• A posterior methods: In this second family of methods, we try to provide a set of good solutions to the decision maker. He can select among these solutions the one that seems most appropriate. These methods do not require the modeling of preferences of the decision maker and its presence throughout the search process. In this kind of method, two main phases are considered: the search phase of all Pareto optimal solutions (i.e. solving the optimization problem) and the choice phase of these solutions.

• Interactive methods: Here, the decision maker is involved in the process of finding solutions by answering different questions in order to guide the search. Interactive methods combine a priorii and a posterior methods in an iterative process, preferences and discover solutions. These methods are probably preferable to a posterior methods, since they limit the choices shown to the decision maker at any time, and 2.3. BI-OBJECTIVE METHODS focus the search in a narrower space. This approach allows us to properly take into account the preferences of the decision maker, but requires its presence throughout the search process.

Two-phase methods

In this section, we present a two-phase method for the bi-objective problem. The twophase methods have been widely used to solve bi-objective optimization problems. In the first phase, the set of supported efficient solutions is computed by solving a series of the single problems, while in the second phase other efficient solutions are computed. The two-phase method is a general method for solving bi-objective combinatorial problems ( [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF], [START_REF] Przybylski | A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives[END_REF], (Raith and Ehrgott, 2009b), [START_REF] Ulungu | The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems[END_REF]). A description of the two-phase method for general multi-objective combinatorial optimization problems can be found in [START_REF] Ulungu | The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems[END_REF].

The non-dominated points in F * are partitioned into supported and non-supported points. The supported ones can be further subdivided into extreme and non-extreme points. Let us define the following notation:

Y ≥ = Y ⊕ {y ∈ R 2 : y ≥ 0}),
where the operator ⊕ denotes the usual direct sum.

Definition (Supported efficient solution) A supported efficient solution x is an efficient solution of a BP problem, such that x ∈ E * and its image is situated on the boundary of the convex hull of the space Y ≥ , i.e., c(x) is on the boundary of Conv(Y ≥ ). We denote E * S the set of supported efficient solutions.

The supported efficient solutions of the BP problem can be obtained by solving a series of mono-objective problems with a weighted sum of two objectives.

Proposition 2.8 [START_REF] Steuer | Multiple criteria optimization: theory, computation, and application[END_REF]. Given a bi-objective problem, a solution x ∈ X is a supported efficient solution if it is an optimal solution of the following parametrized single objective problem:

(BP (λ)) min{c(λ, x) = λ 1 c 1 (x) + λ 2 c 2 (x) : x ∈ X}, where λ = (λ 1 , λ 2 ) ∈ R 2 + -{0}.
The supported points are those found on the boundary of the convex hull of the objective space Conv(Y ≥ ), while the non-supported efficient solutions are located in the interior of Conv(Y ≥ ). The method to find supported efficient solutions is referred as the weighting method. The non-supported solutions can be found by the weighting method since their objectives are dominated by the convex combination of the supported efficient solution objectives. However, there is no known characterization of non-supported efficient solutions and a polynomial time algorithm for their computation is not known up to now. Figure and points H and I are dominated points.

In the bi-objective case, the supported extreme non-dominated points define a number of triangles in which non-supported non-dominated points may be found. These triangles are illustrated in the Figure 2.3.

Figure 2.3: Supported and non supported efficient solutions

The Phase 1 is the non-inferior set estimation algorithm proposed by [START_REF] Cohon | Multiobjective Programming and Planning[END_REF],
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and the idea was first applied to the bi-objective transportation problem [START_REF] Aneja | Bicriteria transportation problem[END_REF], where it was used to determine the set of supported extreme non-dominated points. The pseudo-code for Phase 1 is shown in Algorithm 1. The Phase 1 is initialized by finding the upper left and lower right points. The upper left point x 1,2 is an optimal solution of the lexicographic optimization problem

lexmin{"c 1 (x), c 2 (x)" : x ∈ X}.
The lower right point x 2,1 is computed by solving the lexicographic optimization problem lexmin{"c 2 (x), c 1 (x)" : x ∈ X}.

In the case where the two points c 1 (x 2,1 )) and c 2 (x 1,2 )) coincide, the algorithm stops and returns only one supported solution. In Phase 1, the set of supported extreme nondominated points is usually found using a parametric optimization problem BP (λ). To Output: E * S set of supported efficient solution set for the BP problem. Let x 1 be an optimal solution of BP (1, 0); Let x 1,2 be an optimal solution of BP (c 2 (x 1 ), 1); Let x 2 be an optimal solution of BP (0, 1); Let x 2,1 be an optimal solution of BP (1, c 1 (x 2 ));

Set E * S = {x 1,2 , x 2,1 }; if c(x 1,2 ) = c(x 1,2 ) then Stop (only one non-dominated point); Dichotomic(E * S , x 1,2 , x 2,1 ); return E * S ;
Algorithm 2: Dichotomic to Compute Supported Solutions

Input: E * S set of supported efficient solution set, x + , x -∈ E * S with c 1 (x + ) < c 1 (x -).
Output: E * S set of supported efficient solution set for the BP problem. Let

λ 1 = c 2 (x + ) -c 2 (x -) and λ 2 = c 1 (x -) -c 1 (x + ); Solve BP (λ 1 , λ 2 ) with x * optimal solution; if λ 1 c 1 (x * ) + λ 2 c 2 (x * ) < λ 1 c 1 (x + ) + λ 2 c 2 (x + ) then Set E * S = E * S ∪ {x * }; Dichotomic(E * S , x + , x * ); Dichotomic(E * S , x * , x -); return E * S ;
Because supported and unsupported non-dominated points may exist, it is not possible, in general, to find all non-dominated points during the first phase. These points are found in Phase 2, which separately searches each triangle defined by the set of supported non-dominated points found in Phase 1. The set of supported non-dominated points F * S found in Phase 1 may be ordered according to increasing values of the first objective, and a given triangle is defined by two consecutive points in this list. The search for non-dominated points in this triangle may be carried out in several ways and it is often problem specific. There are many proposed methods in the literature (see, for instance, 2.3. BI-OBJECTIVE METHODS [START_REF] Tuyttens | Performance of the mosa method for the bicriteria assignment problem[END_REF], [START_REF] Visée | Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem[END_REF], [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF][START_REF] Roed Pedersen | The bicriterion multimodal assignment problem: introduction, analysis, and experimental results[END_REF]). The best methods exploit some ranking algorithms to generate solutions to the weighted sum problem in the order of their objective value. This has been applied to many problems where efficient ranking algorithms exist, such as the multi-modal assignment problem [START_REF] Roed Pedersen | The bicriterion multimodal assignment problem: introduction, analysis, and experimental results[END_REF], shortest path problem [START_REF] Raith | A comparison of solution strategies for biobjective shortest path problems[END_REF] and finding network spanning trees (Steiner and Radzik, 2008).

Multi-objective evolutionary algorithms

Evolutionary algorithms (EAs) are inspired from the Darwinian theory of the natural evolution in order to provide solutions to optimization problems. The main difference between EAs and traditional techniques is that they are methods population based. The general framework of an EA can be presented as follows: initially a population of individuals that represent candidate solutions of the studied problem is generated. Then, the fitness of each individual is evaluated. Next, according to a fitness function, a subset of parents is selected from the initial population. At the next steps, some search operators such as recombination and mutation are applied to the selected parents for producing new generation. The whole process is repeated until satisfying a predetermined stopping criterion. Several algorithms have been developed in this area and the differences between them are defined by fitness evaluation, selection and search operators. The genetic algorithms (GA) where first proposed in [START_REF] Holland | Adaptation in natural and artificial systems[END_REF] in 1975 and were later adapted by Goldberg for optimization problems [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF]. A GA is an evolutionary metaheuristic based on the process of natural evolution. Genetic Algorithms are the most popular techniques of evolutionary algorithms. They consist of a stochastic procedure based on mechanisms of natural selection, genetics and evolution.

Evolutionary algorithms are suitable to solve multi-objective optimization problems as they are able to find several Pareto-optimal solutions in a single evolutionary process, and may exploit similarities of solutions by recombination.

In each iteration, two parents are selected for reproduction, based on a fitness value, to create children. The created solutions can then mutate, in order to vary a bit from their parents and can replace some individuals of the current population. The first multi-objective GA was proposed by [START_REF] Schaffer | Multiple objective optimization with vector evaluated genetic algorithms[END_REF] Strength Pareto Evolutionary Algorithm (E. [START_REF] Zitzler | Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[END_REF], Pareto-Archived Evolution Strategy (J.D. [START_REF] Corne | Approximating the nondominated front using the pareto archived evolution strategy[END_REF], Fast Non-dominated Sorting Genetic Algorithm [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF], multi-objective Evolutionary Algorithm (R. Sarker, 2002), Rank-Density

Based Genetic Algorithm [START_REF] Yen | Rank-density-based multiobjective genetic algorithm and benchmark test function study[END_REF]. A survey on evolutionary multi-objective optimization can be found in [START_REF] Bibliography | An updated survey of ga-based multiobjective optimization techniques[END_REF].

Aggregating approach: In this approach, all objectives are combined into a single one via a weight vector. The weights define the relative importance of the objectives of the problem. The most used way is the weighted sum aggregation. In this case, it is usually assumed that the sum of weights is equal to one. However, in practice, it is difficult to predetermine precisely the weights. Moreover, this approach suffers the drawback of missing some members of the Pareto optimal set in the presence of concave Pareto front, regardless of the weights used (Coello Coello, 1996).

Vector Evaluated Genetic Algorithm (VEGA): It was proposed by [START_REF] Schaffer | Multiple objective optimization with vector evaluated genetic algorithms[END_REF].

This method treats the objectives separately by presenting a particular selection operator.

Given k objective functions and a population size P , k sub-populations of size P/k are generated, at each generation, by performing proportional selection according to each objective function in turn. These sub-populations are shuffled together to obtain a new population of size P and recombination and mutation are performed as usual.

Multi-Objective Genetic Algorithm (MOGA): This method was implemented by (C.M. [START_REF] Fleming | Multiobjective genetic algorithms[END_REF]. Firstly, all non-dominated individuals are ranked to 1 and the rank of a dominated solution i, at generation g, is obtained according to the number of individuals by which it is dominated (q i ) as follows: rank(i, g) = 1 + q i . Secondly, each individual should have fitness through one of two possible ways the Pareto ranking scheme of [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF] or niche-formation methods.

Non-dominated Sorting Genetic Algorithm (NSGA): It was proposed by (N. [START_REF] Srinivas | Multiobjective optimization using nondominated sorting in genetic algorithms[END_REF]. The framework of this algorithm is the following. After generating the initial population, the latter is ranked using Pareto ranking. All non-dominated 2.3. BI-OBJECTIVE METHODS solutions are classified in the first level, which represents the best front. Then, the next level consists of the non-dominated solutions after removing the first level and so on until all members of the population are classified. The next step consists to assign the highest fitness to the solutions belonging to the first front and then assign a progressively worse fitness to solutions of larger index front. Any solution i of the first non-dominated set is assigned to a fitness equal to the size of the population. In order to maintain diversity, the fitness is degraded according to the number of neighboring solutions. The sharing function is used for this aim. Therefore, the normalized Euclidean distance is computed for each pair of solutions (i, j) based on the decision variables of the problem. These distances are then used to compute the sharing function. Any solution j that has a distance greater than a constant sharing factor value σ share from the i th solution does not contribute to the sharing function value. Then, the niche count is obtained by the sum of the sharing function values. It gives the number of neighboring solutions of the i th solution. The last step is to reduce the fitness of the i th solution by its niche count and obtain the shared fitness values. For the solutions of the second front, initially, the assigned fitness is the minimum shared function value of the first front and then the shared function method is applied. The process continues in the same way for all the remaining fronts. Against MOGA, NSGA has presented lower performance and it seems to be more sensitive to the value of the sharing factor (Coello, 1996). Pareto Archived Evolution Strategy (PAES): It was developed by (J.D. [START_REF] Corne | Approximating the nondominated front using the pareto archived evolution strategy[END_REF] and uses the (1+1) evolutionary strategy. In fact, each parent produces one offspring via mutation and then they are compared to decide which one will be the parent of the next generation. If the offspring wins, it is added to an archive that contains the set of non-dominated solutions found so far.

Niched
Chapter 3

Metaheuristics for the bi-objective shortest path problem

Bi-objective shortest path problem

Shortest Path (SP) problems are among the most fundamental combinatorial optimization problems from an academic point of view. They play a major role in problems arising in many industrial applications such as transportation, logistic, routing, robot navigation, urban traffic planning, routing of telecommunications messages, approximating piecewise linear functions, optimal truck routing through given traffic congestion pattern, etc. Algorithms for solving these problems have been intensively studied since 1950's (see [START_REF] Gallo | Shortest path algorithms[END_REF][START_REF] Ravindra K Ahuja | Network flows: theory, algorithms, and applications[END_REF][START_REF] Thomas H Cormen | Introduction to algorithms[END_REF]) and still remain an active area of research. There are many contributions on a wide range of SP problems, including the combination of the following problems: point-to-point, single-source, single-target, all-pairs, directed or undirected graph, dense or space graph, arbitrary arc costs, kshortest paths, dynamic problems, exact and approximate shortest paths, etc. Generally, shortest path problems are multi-objective in nature, and in many cases the choice of a route depends on various factors like time, cost and length. This choice may depend also on parking or maintenance facilities, accessibility, environmental impact, reliability and risk. For instance, in transportation of hazardous materials, a route is chosen considering the distance, the risk for the population, and the transportation costs [START_REF] Erkut | Hazardous materials transportation[END_REF].

Recently, [START_REF] Wang | A bi-objective user equilibrium model of travel time reliability in a road network[END_REF] incorporates the travel time reliability and monetary cost 3.1. BI-OBJECTIVE SHORTEST PATH PROBLEM to design efficient routes in a road network.

In this chapter, we consider the Bi-objective Shortest Path (BSP) problem that aims to find efficient (non-dominated or Pareto-optimal) paths from a source vertex to a target vertex while optimizing two objectives simultaneously. Hereafter a standard mathematical formulation of the BSP problem is provided. Consider a directed graph G = (N, A) where N = {1, 2, ..., n} is the set of nodes and A = {(i, j) ∈ A : i, j ∈ N, i < j} is the set of arcs joining nodes in N . For each arc (i, j) ∈ A, two costs (c 1 ij and c 2 ij ) are associated. A path π in the graph G from node i 0 to node i p is a sequence π = (i 0 , . . . , i p ) such that (i h , i h+1 ) ∈ A for h = 0, . . . , p -1. Let Π(i, j) be the set of all paths from i to j. The BSP problem from source s ∈ N to target t ∈ N can be formulated as:

min{c(π) = (c 1 (π), c 2 (π)) : π ∈ Π(s, t)}, where c k (π =< i 0 , . . . , i p >) = p-1 h=0 c k (i h , i h+1 ) for k = 1, 2.
The standard mixed integer program formulation of the BSP problem may be stated as follows:

min c(x) = (c 1 (x), c 2 (x)) s.t. {j|(i,j)∈A} x ij -{j|(j,i)∈A} x ji =          1 if i = s, 0 if i = s, t, -1 if i = t, x ij ∈ {0, 1} , ∀ (i, j) ∈ A. (3.1)
where x ij is a binary variable that equals to 1 if edge (i, j) is selected in an efficient path, and 0 otherwise, and The BSP problem is well known to be NP-hard [START_REF] Bibliography | Some considerations about computational complexity for multi objective combinatorial problems[END_REF]. [START_REF] Hansen | Bicriterion path problems[END_REF] shows that the number of non-dominated paths may increase exponentially with the number of nodes n. The BSP problem is more difficult to solve than the corresponding single criterion problem. BSP problems are often treated independently of multi-objective SP problems with more than three objectives because of their special structure, the difficulty grows strongly with the number of objectives ("Three is more than two plus one." [START_REF] Ehrgott | Multiobjective combinatorial optimization: theory, methodology, and applications[END_REF]).

c k (x) = (i,j)∈A c k ij x ij for k = 1, 2. A simple
Several exact and approximative methods for solving the bi-objective shortest path problem are proposed in the literature. (Skriver, 2000), [START_REF] Ehrgott | Multiobjective combinatorial optimization: theory, methodology, and applications[END_REF] and (Raith and Ehrgott, 2009a) give surveys on existing exact methods proposed for BSP problem. They classify these approaches into two categories: enumerative approaches such as label correcting [START_REF] Hg Daellenbach | Note on multiple objective dynamic programming[END_REF], [START_REF] Corley | Shortest paths in networks with vector weights[END_REF], [START_REF] Brumbaugh | An empirical investigation of some bicriterion shortest path algorithms[END_REF], [START_REF] Anders | A label correcting approach for solving bicriterion shortest-path problems[END_REF], [START_REF] Guerriero | Label correcting methods to solve multicriteria shortest path problems[END_REF], [START_REF] Vn Sastry | New algorithms for multi objective shortest path problem[END_REF]), and label setting ( [START_REF] Hansen | Bicriterion path problems[END_REF], [START_REF] Bibliography | On a multicriteria shortest path problem[END_REF], [START_REF] Tung | A bicriterion pareto-optimal path algorithm[END_REF], [START_REF] Tung | A multicriteria pareto-optimal path algorithm[END_REF], [START_REF] De | The labelling algorithm for the multiobjective shortest path problem[END_REF] or ranking methods [START_REF] Bibliography | A bicriterion shortest path algorithm[END_REF]). The second category includes the two phase method or parametric approach ( [START_REF] Mote | A parametric approach to solving bicriterion shortest path problems[END_REF], (Raith and Ehrgott, 2009a)). The interested reader is referred to (Raith and Ehrgott, 2009a) for a more detailed discussion on the related literature. The most recent work, see for example [START_REF] Xie | Parametric search and problem decomposition for approximating pareto-optimal paths[END_REF], proposes an approximate polynomial-time parametric procedure for BSP problems, to find the full or near full set of Pareto-optimal paths.

Despite their efficiency to solve the considered problem for a small to medium size 3.1. BI-OBJECTIVE SHORTEST PATH PROBLEM instances, these methods cannot be used to solve real problems where instances are very large. The reason is that none of these instances can be solved in a reasonable time.

Thus, during the last few years, multi-objective evolutionary algorithms have attracted the interest of many researchers from the field of combinatorial optimization. For instance, [START_REF] Bibliography Mitsuo | Multi-objective hybrid genetic algorithm for bicriteria network design problem[END_REF] use a multi-objective hybrid genetic algorithm to solve the network design problem in order to minimize the cost and maximize the flow simultaneously. [START_REF] Mooney | An evolutionary algorithm for multicriteria path optimization problems[END_REF] developed an Evolutionary Algorithm to solve the BSP problem on networks with multiple independent criteria. (Pangilinan and Janssens, 2007) presented a review of recent issues regarding the resolution methods of the BSP problem. [START_REF] Lin | Multiobjective genetic algorithm for bicriteria network design problems[END_REF] proposed new multi-objective hybrid genetic algorithms for three kinds of bicriteria network design models. [START_REF] Ghoseiri | An ant colony optimization algorithm for the bi-objective shortest path problem[END_REF] studied and solved the BSP problem using an algorithm based on multi-objective Ant Colony Optimization. More recently [START_REF] Mohamed | A genetic algorithms to solve the bicriteria shortest path problem[END_REF] presented a bi-objective genetic algorithm approach based on vector evaluation to solve the bi-objective shortest path problem, and [START_REF] Liu | An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems[END_REF]) investigated an oriented spanning tree based genetic algorithm for the multi-criteria shortest path problem.

In this chapter, we present a two phase method for the BSP problem. The two-phase methods have been widely used to solve bi-objective optimization problems ( [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF], [START_REF] Przybylski | A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives[END_REF], (Raith and Ehrgott, 2009b), [START_REF] Ulungu | The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems[END_REF]). In the first phase, the set of supported efficient solutions is generated by solving a series of the single SP problems, while in the second phase an approximation of the set of unsupported solutions is investigated. We adopt the dichotomic approach for the first phase of the two phase algorithm proposed by (Raith and Ehrgott, 2009b) (see also [START_REF] Aneja | Bicriteria transportation problem[END_REF], [START_REF] Cohon | Multiobjective Programming and Planning[END_REF]). The next sections describe the metaheuristics used to approximate the non-supported efficient solutions set: cost perturbation method, path-relinking, genetic algorithm and finally an hybrid approach combining these three metaheuristics.

COST PERTURBATION METHOD

Cost perturbation method

The first proposed heuristic is a new method based on the cost perturbation. In this method, small perturbations are performed on the costs of the considered bi-objective problem. The new weighted cost cij of variable x ij is as follows:

cij (λ) = λ 1 (c 1 ij + ǫ 1 ij ) + λ 2 (c 2 ij + ǫ 2 ij ),
where λ 1 and λ 2 are respectively the weights of objective c 1 and c 2 . The

ǫ k ij 's are random values in [-ǫ k max , ǫ k max ].
For each disturbed cost, the single SP problem with this weighted sum problem is solved using the Dijkstra algorithm. These variations will allow us to slightly move to the Pareto front and therefore find a non-supported efficient solution. The cost perturbations heuristic starts with the set of supported efficient solutions generated at the first phase and the process is repeated for a fixed number of iterations. At each iteration, the optimal solution of the current disturbed single SP problem is added to the current list of non-dominated solutions if it is non dominated by those solutions. This approach is connected with the noising method proposed by [START_REF] Charon | The noising method: a new method for combinatorial optimization[END_REF]. The noising method applied to single objective optimization tries to generate local optima, while if it is applied to multi-objective optimization problem it generates non-dominated ones.

Algorithm 3 summarizes the Cost Perturbations Heuristic (CPH). Let S be a subset of efficient solutions and x a feasible solution, and let Dom(x, S) = {y ∈ S : x dominates y}.

BI-OBJECTIVE PATH RELINKING Algorithm 3: Cost perturbation heuristic

Input: The two objectives c k and parameters ǫ k max , for k = 1, 2; and Iter max the maximum number of iterations.

Output: Ẽ Approximation of efficient solution set for the BSP problem associated with G.

Compute the set of supported efficient solutions E S ; Set Ẽ = E S = {(π, λ) : π is an optimal solution of SP (λ)}; Set iter = 1; 

while iter ≤ Iter max do Select randomly (π, λ) ∈ Ẽ; For k = 1, 2, choose randomly ǫ k ij ∈ [-ǫ k max , ǫ k max ]; For all (i, j) ∈ A, set c(λ) ij = λ 1 (c 1 ij + ǫ 1 ij ) + λ 2 (c 2 ij + ǫ 2 ij ); Solve the SP (λ)

Bi-objective path relinking

Path-Relinking (PR) was originally proposed by [START_REF] Glover | Heuristics for integer programming using surrogate constraints[END_REF] as an evolutionary metaheuristic to explore trajectories connecting good solutions obtained by heuristic methods such as tabu search or scatter search. Path-relinking generalizes the combination method of scatter search. It generates paths between two selected solutions in the neighborhood space. In single objective optimization, path relinking is used as an intensification strategy, while here we use it to generate non-supported efficient solutions. In order to deal with the BSP problem, we present in this section a new Bi-objective Path Relinking (BPR) heuristic to generate an approximation of the non-supported efficient solution set E S . This BPR heuristic takes as an argument the set of supported solutions E S generated in the first phase. At each iteration, two solutions are generated, as usually done by path relinking. One is called the initial solution, and the other is called the 3.3. BI-OBJECTIVE PATH RELINKING guiding solution. The initial solution π is selected randomly from the set of the support efficient solutions, π ∈ E S with its associated weight λ = (λ 1 , λ 2 ), i.e.. π is an optimal solution of the parametrized single objective problem SP (λ). The guiding solution π ′ is also selected randomly from π ′ ∈ E S with its associated weighted λ ′ = (λ ′ 1 , λ ′ 2 ), i.e.. π ′ is an optimal solution of SP (λ ′ ).

Once the two solutions are selected, a Local Search (LS) procedure is applied. The LS procedure takes as arguments the initial solution π and the weights λ ′ of the guiding solution π ′ . At each iteration, two nodes i and j belonging to the path π are selected randomly, then the sub-graph H ij of G is constructed, containing all the paths between nodes i and j in G. After, the single SP (λ ′ ) problem is solved related to H ij to obtain a shortest path π ′ (i, j). Next, the sub-path π(i, j) is replaced by π ′ (i, j) in the shortest path π and if this new path is added to the efficient set Ẽ , it is non dominated by one of the already efficient solutions generated, (i.e., if yes, a new non-supported efficient solution is generated). Output: E ′ a subset of efficient solutions set for the BSP problem associated with G.

Set E ′ = ∅; while stopping criterion is not met do Select randomly two nodes i and j on the path π;

Construct the sub-graph H ij containing all paths between i and j;

Let π ′ (i, j) be a shortest path between i and j in H ij with the cost c(λ ′ );

Replace the sub-path π(i, j) by π ′ (i, j) in π;

if Dom(π, Ẽ) = ∅ then Add π to the set E ′ and Ẽ, i.e..

E ′ = E ′ + {π}, Ẽ = Ẽ + {π}; return E ′ ;
This process is repeated 20 times at each iteration, meaning, 20 new generated solutions by iteration. 

Genetic algorithm

In this section, we propose a Genetic Algorithm ( GA) for the bi-objective shortest path problem to generate an approximation of the set of non-supported efficient solutions. GA operates with a collection of solutions, called a population. The population is initialized as the set of supported efficient solutions. GA uses two operators to generate new solutions from the existing ones: crossover and mutation operators. The crossover operator is the Set Ẽ = {(π, λ) : π ∈ E S and λ the associated weight };

while stopping criterion is not met do Select randomly two supported solutions (π ′ , λ ′ ), (π ′′ , λ ′′ ) ∈ Ẽ;

Set E ′ = Crossover((π ′ , λ ′ ), (π ′′ , λ ′′ ), Ẽ); Ẽ = Dom(E ′ , Ẽ);
return Ẽ;

• Solution representation: For routing problems various encoding methods have been proposed in the literature (see for example, [START_REF] Gen | Genetic algorithms for solving shortest path problems[END_REF], [START_REF] Inagaki | A genetic algorithm for determining multiple routes and its applications[END_REF][START_REF] Chang | A genetic algorithm for shortest path routing problem and the sizing of populations[END_REF][START_REF] Chang | A genetic algorithm for shortest path routing problem and the sizing of populations[END_REF]). In the proposed GA, a solution is represented by a chromosome as proposed by [START_REF] Chang | A genetic algorithm for shortest path routing problem and the sizing of populations[END_REF]. Since a solution of the BSP problem is a path, a variable-length representation is adopted for each chromosome, which consists of sequences of nodes belonging to this path.

Each locus of the chromosome represents an order of nodes in the path, and the length of the chromosome is variable but should not exceed the number of nodes.

The first and last loci are reserved respectively to the source and the target nodes. • Crossover operator: The crossover operator in genetic algorithms allows to generate new solutions to add to the current population. The crossover operator implemented for the BSP problem is described in Algorithm 7. The crossover operates on two parents π ′ and π ′′ , chosen randomly from the current population. Those parents correspond to two efficient solutions π ′ and π ′′ with their associated weights λ ′ and λ ′′ respectively. We define a set of blocks relating to π ′ and π ′′ . A block of π ′ and π ′′ is a subpath π of π ′ and π ′′ and if we extend π from left or right relatively to π ′ or π ′′ , π will not be a subpath of π ′ and π ′′ . For each block π with the extremities i and j, we construct a sub-graph H ij containing all possible paths between i and j. Then the SP (λ) problem is solved relatively to H ij to obtain a shortest path π ′ (i, j), where the weight λ is a linear combination of the two weights λ ′ and λ ′′ .

Next, the sub-path π ′ (i, j) is replaced by π(i, j) in π ′ and the same happens for π ′′ .

If those paths are not dominated, we add them to the approximate set of efficient solutions.

HYBRID GENETIC ALGORITHMS

Algorithm 7: Crossover Operator Input: The two efficient solutions π ′ and π ′′ with their associated weights λ ′ and λ ′′ respectively, and an approximation Ẽ of efficient solutions set.

Output: E ′ a subset of efficient solutions set for the BSP problem associated with G.

Set E ′ = ∅;

Set B = {π : π is a block of π ′ and π ′′ };

for π ∈ B do Select randomly two nodes i and j on the subpath π;

Construct the sub-graph H ij containing all paths between i and j;

Choose randomly δ ∈ [0, 1] and set λ = δ × λ ′ + (1 -δ) × λ ′′ ;
Let π ′ (i, j) be a shortest path between i and j in H ij with the cost c(λ);

Replace the sub-path π(i, j) by π

′ (i, j) in π ′ ; if Dom(π ′ , Ẽ) = ∅ then Add π ′ to the set E ′ and Ẽ, i.e.. E ′ = E ′ + {π ′ }, Ẽ = Ẽ + {π ′ };
Replace the sub-path π ′′ (i, j) by π ′ (i, j) in π ′′ ;

if Dom(π ′′ , Ẽ) = ∅ then Add π ′′ to the set E ′ and Ẽ, i.e..

E ′ = E ′ + {π ′′ }, Ẽ = Ẽ + {π ′′ }; return E ′ ;

Hybrid genetic algorithms

In this hybrid GA we apply a local search to each offspring generated by the crossover operator. This local search is the same as the crossover operator. The crossover operator in genetic algorithms allows to generate new solutions to add to the current population.

The crossover operator implemented for the BSP problem is described in Algorithm 7.

The crossover operates on two parents π ′ and π ′′ , chosen randomly from the current population. Those parents correspond to two efficient solutions π ′ and π ′′ with their associated weights λ ′ and λ ′′ respectively. We define a set of blocks relative π ′ and π ′′ ,

COMPUTATIONAL RESULTS

A block of π ′ and π ′′ is a subpath π of π ′ and π ′′ and if we extend π from left or right relatively to π ′ or π ′′ , π will be not a subpath of π ′ and π ′′ . For each block π with the extremities i and j, we construct a sub-graph H ij containing all possible paths between i and j. Then the SP (λ) problem is solved relatively to H ij to obtain a shortest path π ′ (i, j), where the weight λ is a linear combination of the two weights λ ′ and λ ′′ . Next, we replace the sub-path π(i, j) by π ′ (i, j) in π ′ and the same for π ′′ . If those paths are not dominated we add them to the approximate set of efficient solutions.

Due to the potential and characteristics of each of the previously proposed heuristics,

we propose a combination of them to take advantage from the best properties of each one.

This originates the heuristic HGA. while stopping criterion is not met do Select randomly two supported solutions (π ′ , λ ′ ), (π ′′ , λ ′′ ) ∈ Ẽ;

Set E ′ = Crossover((π ′ , λ ′ ), (π ′′ , λ ′′ ), Ẽ);

for (π, λ) ∈ E ′ do E ′′ = Local Search(π, λ, Ẽ); Ẽ = Dom(E ′′ , Ẽ);
return Ẽ;

Computational results

In order to evaluate the efficiency of the proposed heuristics (CPH, BPR, GA and HGA), several numerical experiments were conducted. The purpose of this set of experiments is to investigate the behavior of these heuristics, and evaluate their efficiency for networks with large sizes and different densities. The results of the proposed heuristics on a set of instances are compared with those of the Brumbaugh-Smith (BRUM) algorithm. This last 3.6. COMPUTATIONAL RESULTS one returns the best route for every visited node. To our knowledge, this algorithm is one of the most effectient algorithms among all the bi-objective labeling methods available in the literature. The algorithms were implemented with language C++. We used a personal computer with a processor Intel Corei7 quadri-core, CPU 3 GHz, 16 Go RAM Windows 7.

Instances of n ∈ {100, 200, 300, 500} nodes are considered. For each network size, 5 random networks are generated. In addition, 60 large sized problems are randomly generated with n ∈ {1000, 3000, 4000, 5000} nodes. From Table 3.1, we can observe that the three heuristics provide good results. We Table 3.2 summarizes the results for experimental analysis on the large-scale instances.

The information given in this table is related to specific details about instances (number of nodes (n), number of edges (m) and the density (d ) of networks), the consumed computation CPU time and the number of Pareto optimal solutions generated by the labeling algorithm (BRUM). In the next columns we present the number of supported non-dominated solutions of each instance. The remaining columns of the table 3.6. COMPUTATIONAL RESULTS are devoted to the results found by the proposed heuristics (CPH, BPR, GA and HGA).

We list the number of solutions and the consumed computation time for each proposed heuristic. To analyze the efficiency of these heuristics, some performance measures are used and illustrated. These performance measures are the generational distance (GD), the error ratio (ER) and the percentages of the true Pareto solutions found.

A more comprehensive comparison is made by putting review the various results found by the labeling and the proposed heuristics. From the results illustrated in Table 3.2, and considering the generational distance and error ratio, we can see that the results of the proposed algorithms are of a very good quality. Concerning the error ratio, it does not exceed the average value 0.058 in the three heuristics and 0.022 in the combination of the three heuristics (HGA). The generational distance does not exceed the average value 1.17 in the three heuristics and is at worst 0.474 in GA. This indicates that the generated Pareto front has a very small distance to the true Pareto front. 

COMPUTATIONAL RESULTS

Concerning the percentage of the true found solutions, both heuristics (GA and BPR)

found on average 80-90% of Pareto solutions. This represents a worse result than the one provided by the CPH heuristic, which generates results varying from 93% to 99% of the true Pareto solutions. While the heuristic combining the three heuristics HGA can generate solutions that are slightly better than the CPH heuristic, the generated results vary on average between 94.5% and 100% of the true Pareto solutions. 1 and2, considering the evaluation performance measure, we can conclude that the HGA is the best one from the proposed heuristics and can find very good results that can reach 100% of the true Pareto solutions and can cover the entire Pareto front. But we should not ignore the performance of the three heuristics separately and in particular heuristic CPH, which represents an excellent method that provides very good results in a reasonable time. the labeling algorithm (BRUM) and the HGA heuristic over the largest size networks and different densities. Indeed, the exact algorithm can find all the Pareto optimal solutions, but we noticed that the time required to find these solutions explodes while increasing the size of the networks. In fact, the consumed time by the labeling algorithm passes from 9 seconds for the networks with 1000 nodes to 1540 seconds for networks with 5000 nodes. Sometimes, the proposed algorithm does not permit to enumerate all the Pareto optimal solutions. However, the percentage of true Pareto-optimal solutions generated approximately ranges between 87% and 100%, and the time consumed to obtain these solutions passes from 4.6 seconds, for the networks with 1000 nodes, to 53.66 seconds for the networks with 5000 nodes, which represents a rate of 5% of the time consumed by the labeling algorithm BRUM. 

Conclusion

A bi-objective shortest path problem is a natural extension of the mono-objective shortest path problem. To solve this NP-hard problem, we propose new two phase heuristics to approximate the set of the efficient solutions. In the first phase, we generate the supported efficient set by a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. These 3.7. CONCLUSION metaheuristics are the cost perturbation method, the path-reliking, the genetic algorithm and, finally, a hybrid approach combining all of them. We propose a hybrid approach for bi-objective optimization problems, which combines genetic algorithm and mathematical programming techniques. This method is based on the dominance cost variant of the multi-objective genetic algorithm hybridized with an exact method. The initial population is generated by solving a series of mono-objective optimization problems obtained by a suitable choice of a set of weights. The crossover operator solves a reduced monoobjective problem where the weights are chosen to identify an unexplored region. The proposed approaches are tested on instances of the bi-objective shortest path problem.

Chapter 4

Metaheuristics for the bi-objective assignment problem

Bi-objective assignment problem

The assignment problem arises in many real life situations including production scheduling (Dessouky and Kijowski, 1997), student schools [START_REF] Mckeown | A study in using linear programming to assign students to schools[END_REF], aircraft routing [START_REF] Soumis | A model for large-scale aircraft routing and scheduling problems[END_REF], snow removal and disposal [START_REF] James | The snow disposal assignment problem[END_REF], parking place assignment [START_REF] Venkataramanan | A decision support system for parking space assignment[END_REF], etc. The classical Assignment Problem (AP) is a combinatorial optimization problem involving one-to-one matchings from two finite sets. In the canonical variation of the problem the two sets have the same cardinality. Typically, its objective, is to obtain the minimum cost or the maximum profit [START_REF] Burkard | Assignment Problems, Revised Reprint[END_REF]. The dimension of the problem is assessed by the number of items to be matched. In the AP, tasks must be assigned to agents in such a way that the sum of the assignment costs is minimized. Mathematically, the AP is equivalent to the weighted bipartite matching problem from graph theory. The single objective AP can be formulated as a linear 0-1 Programming:

min c(x) = i,j∈N c ij x ij (4.1) s.t. j∈N x ij = 1, ∀i ∈ N, (4.2) j∈N x ji = 1, ∀i ∈ N, (4.3) x ij ∈ {0, 1}, ∀i, j ∈ N, (4.4)
where x ij is a binary variable that equals to 1 if task i is assigned to agent j, and 0 otherwise. In the objective function (4.1), c ij is the cost resulting from assigning task i to agent j and c(x) designates the total cost of the assignments. Constraints (4.2) state that every task is assigned to one and only one agent. Constraints (4.3) ensure that every agent is allocated to one and only one task. Variables x ij are restricted to be binary, according to constraint (4.4). By considering only one objective, the Hungarian method of [START_REF] Harold W Kuhn | The hungarian method for the assignment problem[END_REF] provides an adequate solution of the problem [START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF].

The assignment problem becomes multi-objective whenever the decision maker must take into account several criteria simultaneously, in order to provide more realistic solutions that optimize, for example, cost, time, distance, and quality. Therefore, the AP can be defined as an optimization problem with multiple potentially conflicting objectives. We consider the bi-objective framework of the assignment problem that can be formulated as follows:

min c(x) = (c 1 (x), c 2 (x)) (4.5) s.t. j∈N x ij = 1, ∀i ∈ N, (4.6) j∈N x ji = 1, ∀i ∈ N, (4.7) x ij ∈ {0, 1}, ∀i, j ∈ N. (4.8)
where c k (x) = i,j∈N c k (i, j)x ij . We denote by X the set of feasible solutions.

The bi-objective assignment problem is NP-complete, #P-complete, and intractable. The intractability means that the number of efficient solutions can be exponential. For a proof see [START_REF] Bibliography | Some considerations about computational complexity for multi objective combinatorial problems[END_REF] for NP-completeness. [START_REF] Malhotra | Bi-criteria assignment problem[END_REF] exploited the duality of the problem while assuming that the efficient solutions are connected by simplex pivots in order to generate the set of efficient supported solutions.

Genetic algorithm

In this section, we discuss the framework of our proposed genetic algorithm for solving the Bi-objective Assignment Problem (BAP). We propose a genetic algorithm for the BAP to generate an approximation of the set of non-supported efficient solutions. The proposed GA is similar to the one for the bi-objective shortest path problem. The population is 4.2. GENETIC ALGORITHM initialized as the set of supported efficient solutions generated by the first phase of the two phases method. The main steps of our GA consist of encoding solutions, defining an initial population and a crossover operator (see Algorithm 9). In our implementation the mutation is not applied.

Algorithm 9: Genetic algorithm Input: E * S the set of supported efficient solutions for the BAP problem. Output: Ẽ approximation of efficient solution set for the BAP problem.

Set Ẽ = {(x, λ(x)) : x ∈ E * S and λ(x) the associated weight }; while stopping criterion is not meet do Select randomly two supported solutions (x ′ , λ(x ′ )), (x ′′ , λ(x ′′ )) ∈ Ẽ;

Set x = Crossover((x ′ , λ(x ′ )), (x ′′ , λ(x ′′ ))); Ẽ = Dom(x, Ẽ);
return Ẽ;

• Encoding solutions: An assignment is a bi-ojective mapping of the set N into itself, i.e. a permutation. An assignment can be modeled and visualized in different ways: every permutation ϕ of the set N corresponds in a unique way to a permutation matrix x ϕ = (x ij ), with x ij = 1 for j = ϕ(i) and x ij = 0 for j = ϕ(i). The matrix x ϕ can be viewed as an adjacency matrix of a bipartite graph

G ϕ = (N ∪ N, E),
where an edge (i, j) ∈ E if and only if j = ϕ(i). In our implementation of the genetic algorithm, an assignment is represented as a permutation ϕ of n agents ({1, . . . , n}).

Table 4.1 illustrates the assignment of 7 tasks to 7 agents.

Tasks 1 2 3 4 5 6 7

Agents 5 2 7 3 6 4 1 
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In this coded solution, ϕ(1) = 5 signifies that task 1 is assigned to agent 5, ϕ(2) = 2

i.e. task 2 is assigned to agent 2 and so on. In the equivalent binary solution x, i.e.

x 15 = x 22 = x 37 = x 43 = x 56 = x 64 = x 71 = 1 and x ij = 0 for the remaining cases.

The associated matrix x is as follows:

x =                  
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0                  
• Initial population: The initial population is defined as the set of supported efficient solutions E * S determined in the first phase of the two phase method. This set E * S is generated by the dichotomic approach described in Chapter 3. For each solution x ′ ∈ E * S in the initial or the current population, we keep its associated weight vector λ ′ = λ(x ′ ), i.e. the solution x ′ is an optimal solution of the following aggregated problem: 

(AP (λ ′ ))                  min λ ′ 1 c 1 (x) + λ ′ 2 c 2 (x) j∈N x ij = 1, ∀i ∈ N j∈N x ji = 1, ∀i ∈ N x ij ∈ {0, 1}, ∀i, j ∈ N
                 
The initial population defined by the optimal set of supported efficient solutions obtained by the above procedure is given in the • Crossover operator: It is well known that the crossover (recombination) operator is the main operator in genetic algorithms. It produces new individuals, called offspring, from the selected parents (in our case, efficient non supported assignments).

In our genetic algorithm, the crossover operator works as follows. Let x ′ and x ′′ be two parents from the current efficient set with their associated weights λ(x ′ ) and λ(x ′′ ) respectively. We define the set

I(x ′ , x ′′ ) = {(i, j) ∈ N × N : x ′ ij = x ′′ ij = 1}
, which corresponds to the set of tasks i assigned to the agent j in both solutions x ′ and x ′′ . Now, we define the reduced assignment problem AP (x ′ , x ′′ ) associated to the two parents x ′ and x ′′ as follows:

(AP (x ′ , x ′′ ))                        min λ 1 c 1 (x) + λ 2 c 2 (x) j∈N x ij = 1, ∀i ∈ N j∈N x ji = 1, ∀i ∈ N x ij = 1, ∀(i, j) ∈ I(x ′ , x ′′ ) x ij ∈ {0, 1}, ∀i, j ∈ N where λ 1 = αλ 1 (x ′ ) + (1 -α)λ 1 (x ′′ ), λ 2 = βλ 2 (x ′ ) + (1 -β)λ 2 (x ′′ ), and α, β ∈ [0, 1].
In our experimentation, we set α = β = 0.5. An optimal solution x of the problem AP (x ′ , x ′′ ) is a candidate solution to be added to the current approximation Ẽ of efficient solutions set.

The crossover operator implemented for the BAP problem is described in Algorithm 10. The crossover operates on two parents chosen randomly from the current population. Those parents correspond to two efficient solutions x ′ and x ′′ with their associated weights are λ ′ and λ ′′ , respectively. We solve the reduced problem AP (x ′ , x ′′ ). Let x be its optimal solution. If it is not dominated, we add it to the approximate set Ẽ of efficient solutions.
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Algorithm 10: Crossover Operator Input: Two efficient solutions x ′ and x ′′ with their associated weights λ(x ′ ) and λ(x ′′ ) respectively.

Output: x a possible efficient solution for the BAP problem.

Compute the set

I(x ′ , x ′′ ) = {(i, j) ∈ N × N : x ′ ij = x ′′ ij = 1};
Solve the reduced problem AP (x ′ , x ′′ ) with x an optimal solution; return x;

Example Consider two parents x ′ and x ′′ , selected at random from the current approximate set Ẽ of efficient solutions, and x a new offspring (Table 4.3).

i 1 2 3 4 5 6 7

x ′ 4 3 5 2 1 7 6

x ′′ 4 5 3 7 1 6 2

x 4 * * * 1 * * Table 4.3: crossover operator From Table 4.3 we have I(x ′ , x ′′ ) = {(1, 4), (5, 1)}.

The obtained feasible offspring of the example after solving the reduced problem

AP (x ′ , x ′′ ) is presented in Table 4.4.
i 1 2 3 4 5 6 7

x 4 5 3 2 1 7 6

Table 4.4: The complete permutation of the obtained offspring

The value of the first objective of this solution is equal to 189 whereas the second objective is equal to 159.

Bi-objective path relinking

In this section, we present the details of the proposed Bi-objective Path Relinking procedure (BPR) for BAP to generated an approximation of the non-supported efficient solution set E * S . The procedure is similar to the one proposed for the bi-objective shortest path problem. Based on the same idea of the crossover operator, a new efficient solution will be generated by solving a reduced problem in a dynamic way. However, in the crossover operator a new solution is generated based on two other solutions called parents.

The procedure starts from an initial solution selected randomly from the set of supported efficient solutions E * S and a weight vector chosen arbitrarily. The latter corresponds necessarily to another efficient supported solution as a target to the search direction. Next, we select at random some decision variables to be fixed and optimize the remaining ones according to the weight vector, by solving the weighted sum sub-problem. The process is repeated for several search directions to approximate the Pareto Front until reaching a given stopping criterion.

This BPR heuristic has as argument the set of supported solutions E * S generated in the first phase of the two phases method. At each iteration, two solutions are generated, as usually done by path relinking. One of them is called the initial solution, and the other is called the guiding solution. The initial solution x is selected randomly from the set of the support efficient solutions (x ∈ E * S ) with its associated weight λ(x), i.e. x is an optimal solution of the parametrized single objective problem AP (λ(x)). The guiding solution x ′ is also selected randomly from E * S with its associated weighted λ(x ′ ), i.e. x ′ is an optimal solution of AP (λ(x ′ )).

Once the two solutions are selected, the crossover procedure is applied. The solution x generated by the crossover operator is added to the efficient set Ẽ if it is non dominated by one of the already efficient solutions generated, (i.e., if yes a new non-supported efficient solution is generated).
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Algorithm 11: Bi-objective path relinking Input: E * S the set of supported efficient solutions for the BAP. Output: Ẽ approximation of efficient solution set for the BAP.

Set Ẽ = {(x, λ(x)) : x ∈ E * S and λ the associated weight }; while stopping criterion is not meet do select randomly (x, λ(x)) ∈ Ẽ;

select randomly (x ′ , λ(x ′ )) ∈ Ẽ; Set x = Crossover((x ′ , λ(x ′ )), (x ′′ , λ(x ′′ ))); Ẽ = Dom(x, Ẽ);
return Ẽ;

Hybrid genetic algorithm

In the literature, various hybridization methods have been integrated to genetic algorithms aiming at preventing them from being trapped into a local optimum. Hybrid approaches were extensively exploited in combinatorial optimization. Therefore, the proposed biobjective path relinking presented in the above section is combined with the genetic algorithm after the crossover operator. Thus, the new offspring is considered as an initial solution. At each iteration, the choice of the weight vector is modified in an altering way between the weight vector of the first parent λ(x ′ ) and the weight vector of the second parent λ(x ′′ ). In other words, the weight sum sub-problem is solved by considering λ(x ′ ) and λ(x ′′ ) iteration-by-iteration. At each iteration of the local search procedure, we must check if the obtained solution is an efficient one or not. If there is a new efficient solution, then it will be introduced into the initial population.

COMPUTATIONAL RESULTS

Algorithm 12: Hybrid genetic algorithm Input: E * S the set of supported efficient solutions for the BAP. Output: Ẽ approximation of efficient solution set for the BAP.

Set Ẽ = {(x, λ(x)) : x ∈ E * S and λ the associated weight }; while stopping criterion is not meet do Select randomly two supported solutions (x ′ , λ(x ′ )), (x ′′ , λ(x ′′ )) ∈ Ẽ;

Set x = Crossover((x ′ , λ(x ′ )), (x ′′ , λ(x ′′ )));

E ′ = BPR(x, λ(x), Ẽ); Ẽ = Dom(E ′ , Ẽ);
return Ẽ;

Computational results

The proposed algorithms were coded with language C++. All experiments for the bi-objective assignment problem were run in Windows 7 on a workstation with Intel Pentium, quad core i7, 3.00 GHz processor and 16 MB memory. The data sets used in our experiments are those of [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF]). Moreover, we generated large scale instances for n ∈ {150, 200, 250, 300, 350, 400, 450, 500}. For each size, the range of the coefficients c ij varies between 20 and 100 with a step of 20. In total, 180 instance problems were tested. The parameters of the proposed Genetic Algorithm (GA), Biobjective Path Relinking (BPR), Hybrid Genetic Algorithm (HGA) and Cost Perturbation Heuristic (CPH), described in Chapter 3, were set experimentally as follows: the stopping criterion for the GA is fixed as a maximum CPU time according to the instances type. For the instances with size n ∈ {20, 40, 60, 80, 100}, the maximum CPU time is equal to 100 seconds. For the instances with n ∈ {150, 200, 250, 300, 350} this time is set to 900 seconds. Finally, for the remaining instances, the maximum CPU time is set to 3600 seconds. For the CPH, the stopping criterion is fixed to 5000 iterations. In order to evaluate the performance of the proposed algorithms, we use the following measures of performance: Error Ratio (ER), Generational Distance (GD), and the Coverage Metric (CM). The values of |E * | are obtained with the exact two-phase method proposed in [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF]) for the instances with n ≤ 100. For the larger instances this algorithm was unable to converge to the optimal set after a CPU time of three hours. Therefore, these classes of instances, the set E * is found by determining the set of non-dominated solutions among all the solutions of GA, BPR, HGA and CPH.

Tables 4.5-4.8 present the computational results for the instances with, respectively, n = 20, n ∈ {40, 60, 80, 100}, n ∈ {150, 200, 250, 300, 350} and n ∈ {400, 450, 500}. that when the size of the problems increases, the performance of the genetic algorithm is better than the performance of the cost perturbation heuristic. 

COMPUTATIONAL RESULTS

In terms of the ER measure, the HGA can be considered as the best one for the class of instances with n = 20 ( Table 4.5), with an average value of 0.007. For the majority of the instances, HGA finds all the solutions of the optimal front. In average, the ER measures for GA, BPR and CPH are equal to 0.29, 0.12 and 0.27, respectively. In terms of the GD measure, we can see that, although these three methods do not find the whole optimal front, the obtained front is very close to it since the values of GD tend to zero (Figures 4.2 and 4.3).

For the class of instances with n ∈ {40, 60, 80, 100}, the HGA can still be considered as the best one in terms of the ER measure, with an average value of 0.11. The ER measures for GA, BPR and CPH are, in average, equal to 0.50, 0.26 and 0.43, respectively. Note that the ER increases when the coefficients c ij are in [1,60], [1,80] and [1,100]. This occurs specially for CPH. For the larger instances ( Tables 4.7 and 4.8), the HGA continues to be the best one in terms of the ER measure, with average values of 0.23 and 0.18, respectively. For these instances, the performance of GA increases ( the average values of ER are respectively 0.31 and 0.28) whereas the performance of BPR declines ( the average values of ER are respectively 0.63 and 0.64). For the CPH, the average values of ER, for these instances, are respectively 0.43 and 0.36.

In terms of CPU time, the obtained results show that, in average, GA, BPR and HGA are similar, whereas CPH consumes less computational time.

Finally, again in terms of the GD measure, although the methods do not find the whole optimal front, the obtained front is very close to it since the values of GD tend to zero .

4.5. COMPUTATIONAL RESULTS 

Conclusion

In this chapter, we proposed metaheuristics for the bi-objective assignment problem.

More precisely, we proposed a two phase method where the first phase generates the supported efficient set and the second phase approximates the unsupported efficient set.

For this four metaheuristics are proposed namely a multi-objective genetic algorithm, a bi-objective path relinking and a hybrid approach. Moreover, a local search procedure was introduced for balancing the diversification and the intensification in the search process.

The experimental results show the efficiency of our proposed algorithms for large instances in comparison with an exact method from the literature. ( [START_REF] Geng | Dynamic resource allocation in urban settings: A smart parking approach[END_REF]) propose a "smart parking" system for an urban environment based on a dynamic resource allocation approach. The goal of the system is to provide an optimal assignment of users (drivers) to the parking slots, respecting the overall parking capacity. The quality of an assignment is measured using a function that combines proximity to destination and parking cost. At each decision point, the system considers two queues of users: WAIT queue (consists of users who wait to be assigned to resources) and RESERVE queue (consists of users who have already been assigned

and have reserved a resource in some earlier decision point). An optimal allocation of all users in both WAIT queue and RESERVE queue at each decision point is determined by solving a mixed integer linear programming problem. Simulation results show that
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the "smart parking" approach provides near-optimal resource utilization and significant improvement compared to classical guidance-based systems.

In [START_REF] Mejri | An efficient cooperative parking slot assignment solution[END_REF]), the authors present an approach for assigning parking slots using a semi-centralized structure that uses Parking Coordinators (PC). They propose a new approach to guide drivers to parkings. It aims to ensure driver satisfaction and improve the occupancy balance between parking areas. They propose two variants: in the first variant, each PC affects a parking independently of the others; in the second variant, the PCs interact with their near neighbors, to assign a location with the constraint of balancing the load of each car park. The idea behind this approach is to use PCs to gather vehicles (drivers) queries during a certain time window and assign a parking slot according to these vehicles preferences. Both variants of the solution were simulated. In the first one, the PCs take parking decisions regardless of their environment and neighbors.

In the second variant, these computers (i.e. PCs) exchange informations with their close neighbors. The simulation results showed that the second variant outperformed the first one, specially when the number of conflicting demands between PCs increased. The results for the second variant are very close to the case with a decision-centralized system, while being more scalable. These preliminary results showed that cooperation between the parking coordinators is strongly recommended.

Mixed integer programming formulation

A driver represents a user and a parking slot represents a resource. A driver i ∈ I = {1, 2, . . . , n}, aiming to visit a given destination, starts looking for a parking slot by launching a request at a non-deterministic moment. These moments are not known in advance and are discovered during the assignment process. A parking j ∈ J = {1, 2, ...m} has a certain number of available slots that change during the time. Both drivers requests and available parking slots appear in a non-deterministic way and can change their state at any moment. We assume that each resource, each driver and each destination has a known location associated to it in a two-dimensional Euclidean space.

The density of drivers requests is not uniform, it varies from a time period to another during the same day. For example, the requests density for a parking slot near to a
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hospital rises in the visiting hours and declines at other times. In the same way, the requests density of a parking slot around public administration buildings depends on the working hours. Therefore, to take into account this feature, each day of the time horizon is subdivided into a fixed number T of equally spaced time periods. Periods that represent peak hours, normal hours, ... off-peak hours.

The objective of assigning vehicles to parking slots is to provide a global satisfaction of all customers. For instance, when the decision is performed request per request independently using a FIFO (First In First Out) rule, it may not be satisfactory because it can have a negative impact on the future situations. The following example, presented in Figure 5.1, illustrates the impact of the starting choice on the future decision when using a FIFO rule. We assume that we have one available parking slot in parking p 1 and another in parking p 2 . Moreover, we suppose that vehicle v 1 launches a request for a parking slot near to destination d 1 and vehicle v 2 looks for a place near to destination d 2 . In addition, it is assumed that vehicle v 1 arrives before vehicle v 2 into the system. If we aim to minimize the distance between the parking and the destination, the FIFO rule will suggest to assign vehicle v 1 to parking p 1 and vehicle v 2 to parking p 2 . As the vehicle v 1 request is handled first, regardless of the vehicle v 2 request. The result is "good" for deriver r 1 but "bad" for driver r 2 and bad for the global system. This is due to the fact that the future information concerning the second driver is excluded. However, if vehicle v 1 is assigned to parking p 2 and vehicle v 2 to parking p 1 , driver r 1 preserves his satisfaction degree as the distance from parking p 1 to destination d 1 is similar to the distance from parking p 2 to destination d 1 , but the degree of satisfaction of driver r 2 is increased. The second one consists in establishing a forecast process to model the future information.

In this section, we will discuss the first alternative and in a later section we will propose a forecast approach. The operation of collecting requests needs a collecting time period.

We define a partition of time to gather requests and to determine the number of available slots in each parking created by the outgoing vehicles. Each time period, t = 1, 2, ..., T , of a day is partitioned into fixed K equally spaced sub-periods. We denote by k the index of the k th sub-period. The process of assignment is performed in a discrete given moment, at the end of each sub-period called "decision point". Each decision point has also an index denoted by k.

At each decision point k, we denote by N k the set of new requests gathered during the sub-period k. Due to the limited capacity of the parking, some requests may not be satisfied at each decision point k. We denote by R k the set of yet unassigned vehicles at the decision point k. Therefore, the set of vehicles that have to be assigned at the next decision point k + 1 is E k+1 = N k+1 ∪ R k , the sum of new requests N k+1 and the non-handled requests up-to-now R k .

To formally define the dynamic assignment problem, we need the following:

• Parameters:

-dest k i : the location of the destination of vehicle i from the set E k in the twodimensional Euclidean space.

-loc k i : the location of vehicle i from the set E k in the two-dimensional Euclidean space.

-d k i,j : the distance between the location of the vehicle i from the set E k and the parking j at the decision point k.

-d k

[i],j : the walking distance, i.e. distance between the destination dest k i of the vehicle i from the set E k and the parking j at the decision point k.

-V : the velocity of vehicles. We assume that all vehicles have the same velocity.

-V ′ : the walking velocity of a driver needed to reach the destination after parking the vehicle. We assume that this velocity is the same for all drivers.
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-w k i : the waiting time of a vehicle i between the launch of the request and the decision point k.

-C k j : the capacity of the parking j at the decision point k. This parameter designates the number of available slots in the parking j at the k th decision point.

• Variables: We introduce the binary decision variables defined as follows:

x k i,j =   
1 if the vehicle i is assigned to parking j at the decision point k, 0 otherwise.

• Criteria: As the occupancy time of a parking slot begins from the assignment of the requests, which is not necessary the arrival time to the parking, the objective of the decision maker is to minimize the total distance between all vehicles and their assigned parking slots. This maximizes the occupancy and satisfies the parking manager. However, to guarantee a good quality of service to the customers, it is also necessary to minimize two elements:

-the distance traveled between the assigned parking slot and the customer final destination. This could be done by choosing the closest possible available parking slot;

-the waiting time that separates the launch of the request and the decision to assign the vehicle to a parking slot. This could be done by introducing a queuing factor to provide a priority for the vehicles having longer waiting times.

These objectives are aggregated into a single weighted objective as follows:

M inf k (x) = i∈I j∈J x k i,j (λ 1 d k i,j V + λ 2 d k [i],j V ′ -λ 3 w k i ) (5.1)
where λ 1 , λ 2 and λ 3 are non-negative values denoting the weights of each criterion.

The non-positive coefficient associated to the third criterion is used as a priority factor.
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• Constraints: The main constraints in the considered problem at each decision point deal with the limited capacity of each parking and the satisfaction of the drivers requests. However, as the total number of available parking slots at each decision point is not necessarily equal to the total requests to be assigned, the constraints will be different. In this subsection, the constraints of the problem are expressed according to the availability of the parking slots and the number of launched requests at the considered decision point. Three possible cases will be considered.

-Case 1: The number of available slots is larger than the number of requests at the k th decision point:

i∈I x k i,j ≤ C k j ∀j ∈ J (5.2) j∈J x k i,j = 1 ∀i ∈ I (5.3)
Constraints (5.2) guarantee that, at each decision point k, the number of assigned cars in the parking j cannot exceed its capacity. Constraints (5.3) ensure that each driver i is assigned to one and only one parking slot.

-Case 2: The number of available slots is less than the number of requests at the k th decision point:

i∈I x k i,j = C k j ∀j ∈ J (5.4) j∈J x k i,j ≤ 1 ∀i ∈ I (5.5)
In this case, we formulate the constraints such that all the slots in the parking j will be occupied and some drivers may not be assigned to any parking slot.

-Case 3: The number of available slots is equal to the number of requests at the k th decision point:

i∈I x k i,j = C k j ∀j ∈ J (5.6) 5.2. MIXED INTEGER PROGRAMMING FORMULATION j∈J x k i,j = 1 ∀i ∈ I (5.7)
In this last case, the offer of the parking slots is equal to the demand and thus each parking slot should be occupied and each driver should find a parking slot.

For the ease of use, we propose to formulate our problem as a simple assignment problem, where the capacity of each agent is equal to one. This is done by disaggregating the parking slots. Instead of considering the slots through the capacity of each parking we consider the available slots individually. Therefore, the problem becomes an assignment of drivers to parking slots instead of an assignment of drivers to parking. Let J k j be the set of available slots in a parking j in the set J at the decision point k. The binary decision variables will be defined, from now on, as follows:

x k i,h =    1 if the vehicle i is assigned to parking slot h at the decision point k, 0 otherwise. 
The new proposed formulation of our problem can be presented as follows: (5.8) subject to the following constraints:

M inf k (x) = n i=1 j∈J h∈J k j x k i,h (λ 1 d k i,h V + λ 2 d k [i],h V ′ -λ 3 w k i ),
-Case 1: The number of available slots is larger than the number of requests at the k th decision point:

i∈I x k i,h ≤ 1 ∀j ∈ J, ∀h ∈ J k j (5.9) j∈J h∈J k j x k i,h = 1 ∀i ∈ I (5.10)
-Case 2: The number of available slots is less than the number of requests at the k th decision point:

5.2. MIXED INTEGER PROGRAMMING FORMULATION i∈I x k i,h = 1 ∀j ∈ J, ∀h ∈ J k j (5.11) j∈J h∈J k j x k i,h ≤ 1 ∀i ∈ I (5.12)
-Case 3: The number of available slots is equal to the number of requests at the k th decision point:

i∈I x k i,h = 1 ∀j ∈ J, ∀h ∈ J k j (5.13) j∈J h∈J k j x k i,h = 1 ∀i ∈ I (5.14)
The considered problem is dynamic because, during a given day, the demand for parking slots is not uniform and the number of requests launched by the drivers changes from one period t ∈ T of the day to another. Therefore, assignments that are made at earlier periods affect which assignments can be made during later periods. Moreover, the information about the future periods is uncertain. Our goal is to efficiently manage the requests in the time to deal with this uncertainty. To do so, we propose to establish a forecasting process based on a learning effect. We introduce a penalty term in the objective function that determines for each parking and each period of the day if the current assignment has or not an impact on the future ones. In other words, if the future demand around a parking j is going be higher, the current penalty should be big, in order to leave more available slots in this parking for the future period. Otherwise, the penalty will be small, in order to make the slots of this parking more attractive for the current assignment. The value of these penalties are calibrated through a learning process.

Let p t j denote the penalty term associated to parking j at the period of time t (t = 1, 2, ..., T ). It should be noted that for each slot in the parking j, the penalty is equal to the parking penalty p t j . In addition, between two consecutive time periods t 1 and t 2 , such that t 1 < t 2 and for a decision points k such that t 1 ≤ k < t 2 , we set p k j = p t 1 j .

ESTIMATION OF DISTRIBUTION ALGORITHMS

The new objective function can be written as follows:

M inf k (x) = n i=1 j∈J h∈J k j x k i,h (λ 1 d k i,h V + λ 2 d k [i],h V ′ -λ 3 w k i + p k j )
(5.15)

Estimation of distribution algorithms

According to the framework of the classical Genetic Algorithm (GA), the process of recombination occurs during meiosis, resulting from crossovers between parental chromosomes. Through this process, the offspring inherit different combinations of genes from their parents regardless the link between them. Moreover, the tuning of the parameters (population size, probabilities of crossover and mutation, etc) and the prediction of the movements of the populations are difficult tasks to perform in a GA. These drawbacks motivated the development of the Estimation of Distribution Algorithm (EDA).

The EDA was introduced to estimate the correlation between genes and uses this information during the search process. In an EDA there are neither crossover nor mutation operators. It was first introduced by [START_REF] Mühlenbein | From recombination of genes to the estimation of distributions i. binary parameters[END_REF], and it is a stochastic optimization technique that explores the space of potential solutions by building and sampling explicit probabilistic models of promising candidate solutions. Starting with a population of individuals (candidate solutions), generally randomly generated, this algorithm selects good individuals with respect to their fitness. Then, a new distribution of probability is estimated from the selected candidates. Next, new offspring are generated from the estimated distribution. The process is repeated until the termination criterion is met.

This model-based approach to optimization has allowed EDAs to solve successfully many large and complex problems such as the quadratic assignment problem [START_REF] Zhang | Estimation of distribution algorithm with 2-opt local search for the quadratic assignment problem[END_REF], the 0-1 knapsack problem [START_REF] Li | Hybrid Estimation of Distribution Algorithm for Multiobjective Knapsack Problem[END_REF], the n-queen problem [START_REF] Paul | Linear and combinatorial optimizations by estimation of distribution algorithms[END_REF], the traveling salesman problem [START_REF] Robles | Solving the traveling salesman problem with edas[END_REF].

EDA typically works with a population of individuals generated at random. At each generation, a subset of the most promising solutions is selected by a selection operator with respect to a fitness function. The main phase of the algorithm is to estimate, from informations contained in the selected individuals, a probability distribution. Then, a

ESTIMATION OF DISTRIBUTION ALGORITHMS

new individual is generated from the constructed probability model. The new solution may be incorporated into the previous population if it satisfies a replacement criterion.

Otherwise, it will be rejected. Finally, the process is reiterated until a stopping criterion is satisfied. The main steps of a basic EDA are summarize in Algorithm 13.

Algorithm 13: Basic EDA Generate an initial population of P individuals repeat Select a set of Q parents from the current population P with a selection method;

Build a probabilistic model for the set of selected parents;

Create a new offspring to P according to the estimated probability distribution;

Replace some individuals in the current population P with new individuals;

until a stopping criterion is met;

The choice of the probabilistic model is not a trivial task. Many works have focused on the way to establish the distribution of probability that allows capturing the features of the promising solutions. Three classes of EDA may be presented according to the chosen probabilistic model and the degree of dependency between the variables of the problem.

The first class called univariate model, assumes no dependencies between variables of candidate solutions, wich is to say that all variables are independent. The second one, called bivariate model, assumes only pairwise dependencies between these variables and the last class, called multivariate model, assumes multiple dependencies between variables.

In the next sections, we describe the main principles of those methods.

Univariate models

In this section, we discuss the simplest approaches of EDA where it is assumed that the problem variables are independent. Under this assumption, the probability distribution of any individual variable should not depend on the values of any other variables. The common characteristic between all the models belonging to this category is to consider that, for each generation g, the n-dimensional joint probability distribution decomposes the probability of a candidate solution into a product of n univariate and independent probability distributions such that p g (x) = n i=1 p g (x i ).

ESTIMATION OF DISTRIBUTION ALGORITHMS

• Population based incremental learning: It was introduced by [START_REF] Baluja | Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning[END_REF] and considers binary variables. Here, at each generation g, a candidate solution

x ∈ {0, 1} n of a current population P is encoded by a vector of probability p g (x) = (p g (x 1 ), p g (x 2 ), . . . , p g (x n )), where p g (x i ) denotes the probability of the component x i to take value "1". Initially, all positions are equiprobable and all probabilities are set to 0.5. Then, based on Q selected individuals, the probability vector is updated according to the following expression

p g+1 (x) = (1 -α)p g (x) + α Q Q k=1 x g k (5.16)
where x g k is the k th best individual in the population at the g th generation and α is the learning rate. It is easy to observe that in equation (5.16) each component is evaluated independently of others and thus no interaction is considered. In [START_REF] Sebag | Extending population-based incremental learning to continuous search spaces[END_REF], the authors proposed an adaptation of the population based incremental learning to continuous domain. Each element of the mean vector is estimated, at generation g + 1, by the following equation

μg+1 k = (1 -α)μ g k + α(x g 1 * + x g 2 * -x g w )
(5.17)

where solutions x g 1 * and x g 2 * are the two best solutions and solution x g * w is the worst solution discovered in the current generation. Moreover, the authors proposed some heuristics to estimate the variance vector.

• Stochastic hill climbing with learning by vectors of normal distributions:

It was developed by [START_REF] Rudlof | Stochastic hill climbing with learning by vectors of normal distributions[END_REF] specifically for the continuous domain. The parameters of the density function, the mean vector μ and the variance vector σ are estimated using:

μg+1 = μg + α(b g -μg ) (5.18) σg+1 = β × σg (5.19)
where α denotes the learning factor, b g denotes the barycenter of the B best individuals in the g th generation and 0 < β < 1 denotes a fixed constant.
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• Univariate marginal distribution algorithm: This algorithm, proposed by [START_REF] Mühlenbein | The equation for response to selection and its use for prediction[END_REF], behaves differently from the two previous algorithms. It estimates the joint probability distribution p g (x) of the selected individuals at each generation. In the case of binary variables, the probability vector is estimated from marginal frequencies and p g (x i ) is set by counting the number of occurences of "1", f k (x i = 1) for k = 1, 2, ..., Q, in the set of selected individuals. In order to generate new individuals, each variable is generated according to p g (x i ) as follows

p g (x i ) = 1 Q Q k=1 f k (x i = 1) (5.20)
For continuous domains, the Univariate Marginal Distribution Algorithm is designed, through statistical tests, to find the density function that best fits the variables. Then, using the maximum likelihood estimates, the evaluation of the parameters is performed.

Bivariate models

In order to make the interactions between variables more realistic, this class of models takes into account pairwise dependencies. In this class of EDA, we focus only on the Mutual Information Maximization for Input Clustering (MIMIC) proposed by [START_REF] Bonet | Mimic: Finding optima by estimating probability densities[END_REF] as it is used for both continuous and discrete domains. In MIMIC, the conditional dependencies of p g (x) are defined by a Markovian chain in which each variable is conditioned by the previous one. Therefore, in each generation, the MIMIC uses a permutation framework of ordered pairwise conditional probabilities, which can be written as follows:

p g π (x) = p g (x i 1 |x i 2 )p g (x i 2 |x i 3 ) . . . p g (x i n-1 |x in ) (5.21)
where π = {i 1 , i 2 , ..., i n } is a permutation of the indexes 1, 2, ..., n. The objective is to find the best p g π (x) as closely as possible to the complete joint probability p g (x) = p g (x 1 |x 2 , . . . , x n )p g (x 2 |x 3 , . . . , x n ) . . . p g (x n-1 |x n )p g (x n ). The degree of similarity between p g π (x) and p g (x) is measured bu using the Kullback-Leibler distance. The same idea was used by [START_REF] Bibliography | Optimization in continuous domains by learning and simulation of Gaussian networks[END_REF] to extend this algorithm to the continuous space.
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(σ g+1 j,k ) 2 = (σ g j,k ) 2 - 1 Q 2 (x g k,current -x g k,Q ) Q r=1 (x g j,r -μg j ) - 1 Q 2 (x g j,current -x g j,Q ) Q r=1 (x g k,r -μg k ) + 1 Q 2 (x g k,current -x g k,Q )(x g j,current -x g j,Q ) (5.26) - 1 Q (x g k,Q -μg+1 k )(x g j,Q -μg+1 j ) + 1 Q (x g k,current -μg+1 k )(x g j,current -μg+1 j )
Moreover, the authors proposed an incremental version of EMNA. The main differences comparing to the previous one are that each generated individual is added to the population regardless of its fitness and the update rules are given by:

μg+1 = Q g Q g + 1 μg + 1 Q g + 1 x g current (5.27) (σ g+1 j,k ) 2 = Q g Q g + 1 σg j,k + 1 Q g + 1 (x g k,current -μg k )(x g j,current -μg j ) (5.28)
It should be noted that the size of the population increases as the algorithm evolves.

• Estimation of Gaussian network algorithms: This algorithm was developed by [START_REF] Bibliography | Optimization in continuous domains by learning and simulation of Gaussian networks[END_REF]. The first step is to induce the Gaussian network from the data. The authors present three different induction models: edge-exclusion tests, Bayesian score + search and penalized maximum likelihood + search. Once the induction is done, a new individual is created according to the scheme of the learned network.

• Iterative density-estimation evolutionary algorithm: It was proposed by (Bosman and Thierens, 1999). It uses the Bayesian factorization and mixture distributions for learning probabilistic models. Moreover, the iterative density-estimation evolutionary algorithm uses the truncated distribution for sampling the new individuals and only part of the population is replaced in each generation.

ESTIMATION OF DISTRIBUTION ALGORITHM WITH REINFORCEMENT LEARNING

Estimation of distribution algorithm with reinforcement learning

Generally speaking, the estimation of distribution algorithm proceeds as follows. First, an initial population of candidate solutions is generated randomly. Then, a subset of solutions is selected from the initial population. At this moment comes the main step of the algorithm, consisting of building a probability model based on the selected solutions to create a new "good" solution. Finally, the step of replacement decides if the new solution should be kept or not. The algorithm continues until it reaches a stopping criterion. In our context, we propose to apply the EDA to find good values for the penalties p k j . Therefore, the problem considered in this section consists of finding the best values for the matrix of the the penalties p k j to be used in our dynamic assignment problem. This current problem will be referred as the Penalties Calibration Problem (PCP). Our proposed algorithm follows these steps:

• Encoding solution: A solution of the PCP problem is encoded by a matrix π where the rows represent the parking j ∈ J and the columns correspond to the time periods t = 1, 2..., T . The intersection between each row j and each column t represents the penalty term p t j . Figure(5.2).

π =             p 1 1 p 2 1 ... p T 1 p 1 2 p 2 2 .
.. p T 2 : : ... : : : ... : problem is solved for all the decision points, the total cost of period t is given by

p 1 m p 2 m ... p T m            
f t (x) = K k=1 f k (x)
and the total cost of a day d is f d (x) = T t=1 f t (x). After that, a smoothing technique is used to take into account the forecasting of the demand. At the end, the evaluation of any solution π of PCP is given by the following equation:

F (x) = δ q=0
α(1α) q f d-q (x),

(5.29) where 0 < α < 1 is the smoothing factor which represents the weight of the previous observations. Therefore, the EDA consists to minimize F (x).

• Initial population: The initial population of P solutions is randomly generated.

This means that we generate P matrices π such that each penalty p t j,r (penalty for parking j during period t in the PCP solution r) of matrix π r is generated according to a uniform distribution.

• Selection: From the initial population we propose to select Q solutions according to the ranking of the objective functions F (x) defined in equation (5.29).

• Probabilistic model: In order to generate new candidate solutions, in our proposition we use the probabilistic model of the univariate marginal distribution algorithm for Gaussian models [START_REF] Larrañaga | Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation[END_REF] where the parameters mean and standard deviation of a solution are extracted from population information during the optimization process. The two parameters to be estimated at each generation for each variable are the mean μj and the standard deviation σj . Their respective maximum likelihood estimates are:

μt j = pt j = 1 Q Q r=1 p t j,r
(5.30)

σt j = 1 Q Q r=1
(p t j,r -pt j ) 2 (5.31) 5.5. COMPUTATIONAL RESULTS In Figure 5.4, the regions are denoted by the blue squares. These regions define the density of the parking slots at each period t = 1, 2, . . . , 6 at each day, and may overlap.

In the simulation, we consider that the parking opens at 07:00 a.m. and closes at 07:00 p.m. That is to say, each day consists of 6 periods of two hours and the time horizon of the simulations lasts for 120 days. It is assumed that all the parking have the same capacity of 200 slots. Moreover, the number of occupied slots in each parking, at the beginning of each day, is generated according to the uniform distribution in the range [50,100]. Initially, the parkings are partially occupied as some vehicles can stay overnight in the parking slots.

We assume that all parking slots can be used by any vehicle without any time limit. If a vehicle is assigned to a parking, the system selects any available slot in that parking. The frequencies of enter/exit of each parking for each region are randomly generated for each period according to the normal distribution, with the means provided in Tables 1-5 for each instance problem and the variance equal 0.5. These frequencies define the number of requests associated to each region. For generating the number of requests we used the truncated normal distribution because we only wish to consider data within a particular 5.5. COMPUTATIONAL RESULTS and the same distribution is used for all days. Each time period t, is partitioned into 120 equally spaced decision points where the decisions take place, i.e. each minute the problem will be solved taking into account the frequencies of enter/exit of each parking.

The same distribution is used for all decision points k = 1, 2, . . . , K = 120 between two consecutive time periods. For each generated request, a vehicle and its destination appear on the map. The location of the vehicle can be generated anywhere and the location of the destination must be generated within the considered region. We note that more than one vehicle may have the same destination.

In Figure 5.4, the vehicle and the destinations are denoted by the yellow triangle and the green circle respectively. Therefore, for each region, for each decision point, the total number of requests is computed by adding the number of new generated requests and the number of requests not assigned at the previous decision point. The vehicles not assigned in the previous period are assumed to move in the direction of their destination, as denoted by the dashed line in Figure 5.4. Thus, their distances d k i,j are recomputed. The performance measure employed in our numerical study was the average relative percentage deviation in terms of the objective functions at each day d:

∆ d = 100 × f d (AA EDA ) -f d (AA) f d (AA) ,
where AA denotes the proposed algorithm without the learning factor and AA EDA the proposed algorithm with learning factor. As mentioned above, the total assignment cost of period t in a given day is, f t (x) = observe that the curve begins to decline from the early periods. This shows that the learning speed of AA EDA is very fast. Furthermore, we conclude that the number of parkings has an impact on the performance of the AA EDA because the small instance with 5 parkings has some peaks above the 0-line. So, the increase of the number of parkings increases the learning capacity of the algorithm. 

H 0 : µ A -µ B = 0 H 1 : µ A -µ B < 0
H 0 implies that the average relative percent deviations of the two algorithms are similar while H 1 implies that the average relative percent deviations of algorithm A are less than the ones of the algorithm B.

In our case, the algorithms A and B denote AA (without learning effect) and AA EDA (with learning effect) respectively. The statistical tests prove that the negative difference between AA EDA and AA is meaningful at the 99% confidence level. 

Conclusion

We approached the problem of dynamic assignment for parking slots. A driver, aiming to visit a given destination, starts looking for a parking slot by launching a request at a non-deterministic moment. The parking lot manager has to fulfil these requests by assigning available slots to vehicles. The objectives are to provide a global satisfaction to all customers and to maximize the parking lots occupancy. The problem is dynamic, the requests and the parking lots change over the time. First, the problem is modelled as a sequence of consecutive assignment problems, over the time. These problems are inter-related. At each decision point (a small time window) a static assignment problem is solved, we assign non-handled requests up-to-this point to the current available slots.

Second, as the assignments that are made at earlier periods affect which assignments can be made during later periods, we propose to establish a forecasting process based on a learning effect. We introduce penalty terms in the objective function. The values of these penalties are calibrated through a learning process using the Estimation of Distribution Algorithm (EDA). We notice that solving each assignment problem at every decision point can be time consuming, depending on the number of the concerned requests and available slots. A local search procedure is proposed to improve the performance of our approach through problem decomposition and, hence, to reduce the solving time. Instead of tackling the whole complex assignment problem at the same time, the problem is divided into a set of smaller sub-problems. We tested our approach with and without the learning effect.

Our approach is efficient since we were able to manage a set of parking lots, of up-to 20 parking lots, during a horizon of 120 days, which corresponds to assignment problems 5.6. CONCLUSION with up-to 4000 parking slots to manage and 86400 requests to handle. The results also show the benefit of the learning effect. The total cost of the solutions with learning effect is less than the cost of the solutions without learning effect ( a student test is used to prove the difference between these two methods).

Chapter 6

Conclusion and further research

Contributions of the thesis

This thesis contributes to the improvement of the parking management system. In particular, we studied the multi-objective assignment problem of tasks to agents in static and dynamic environments, where tasks correspond to drivers or cars, agents correspond to parking or parking slots, and the objective is to satisfy both the drivers and the parking managers. This thesis proposes efficient and robust algorithms that help to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments.

The main contributions of our work to this management problem can be summarized as follows. We developed four new two-phase heuristics to approximate the set of the efficient solutions for the bi-objective shortest path problem. The first phase uses a standard dichotomic algorithm to generate the supported efficient set. For the second phase, we developed four metaheuristics to generate an approximation of the non-supported efficient solutions: a cost perturbation method, a path relinking, a genetic algorithm and a hybrid genetic algorithm. The proposed approaches were tested on instances of the Bi-objective Shortest Path problem and the results are significant. The percentage of true Paretooptimal solutions generated by the proposed algorithms ranges, approximately, between 87% and 100%, and the CPU time consumed to obtain these solutions is of 4.6 seconds for the networks with 1000 nodes and 53.66 seconds for the networks with 5000 nodes, which is faster than the labeling algorithm BRUM. We applied the same heuristics devel-6.2. FUTURE RESEARCH DIRECTIONS oped in Chapter 3 to the bi-objective assignment problem. The experimental results show the efficiency of our proposed algorithms for large instances in comparison with an exact method from the literature. We tackled the dynamic assignment problem for parking slots. We developed two approaches. In the first approach, the problem was modeled as a sequence of consecutive static assignment problems; in the second approach, we introduced a reinforcement learning method where history an assignment over several days are taken into account. For the learning process, we developed an Estimation of Distribution Algorithm using a Gaussian Univariate Marginal Distribution. In these approaches, the objectives are aggregated in a single objective function to keep the focus on the resolution technique. The aggregation is done to find a best compromise solution that takes into account the preferences of the parking manager, favoring one objective over another according to the state of the supply and demand. A platform for dynamic deployment of services can dynamically switch from one approach to another depending on the context.

We tested our approach with and without the learning effect. Our approach is efficient since we were able to manage a set of parking lots, of up-to 20 lots, during a horizon of 120 days, which corresponds to an assignment problem with up-to 4000 parking slots to manage and 86400 requests to handle. The results also show the benefits of the learning effect. The total cost of the solutions with learning effect is smaller than the one of the solutions without learning effect.

Future research directions

The potential research directions may be summarized as follows. The integration of the proposed heuristics, for the shortest path and the dynamic assignment problems could be implemented in the framework for Context Aware Transportation Services (CATS), which could be used for real problems. In order to improve the proposed algorithms, certain periodical events can be taken into account. Therefore the system must be able to configure the algorithm before certain problems occur or when there is a peak demand.

The various proposals could be validated both by simulation and in a realistic environment using data from the network of sensors deployed on the parking LAMIH in the CISIT 1 / SYFRA project. We found that the number of non-dominated solutions could 6.2. FUTURE RESEARCH DIRECTIONS be very important. An interesting problem is then to sample the Pareto front to offer the user a subset of representative solutions.

The extension of the implemented Estimation of Distribution Algorithm (EDA) to the multi-objective context. In our case, we aggregate the three objectives (the distance to parking, the distance from the parking to the drivers destination and the waiting time for getting a parking slot). However, it will be more interesting to consider the problem as a multi-objective one.

The EDA could be improved through a multivariate distribution model or a Gaussian Network. In our case, we supposed independent penalties, but in real life there is a dependency between them. This is due to the fact that the demands around the parking lots for different periods are interrelated. Some events are cyclical, and in order to take them into account, it is necessary to develop a long-term memory or knowledge base in EDA algorithm to better predict future demands. The developed heuristics for our parking dynamic assignment problem could be easily adapted to other dynamic assignment problems like cab company, task assignment in shops, etc.
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  These three components of CATS are illustrated on the right side of Figure1.4.
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  max k is the maximum value of the k th objective function, i.e. c max k = max{c k (x) : x ∈ X}, and c min k is the minimum value of the k th objective function, i.e., c min k = min{c k (x) : x ∈ X}.

  2.3 displays the set of efficient solutions where points A, B, C, and D are non-dominated supported extreme points; points E, F, and G are non-dominated non-supported points;

  define this problem BP (λ), two supported extreme non-dominated points x + and x -are used to define λ as the slope of the line connecting two non-dominated points c(x + ) and c(x -). If the optimal solution x * of BP (λ) corresponds to a new supported extreme nondominated point, then the parametric objective function value λ 1 c 1 (x * ) + λ 2 c 2 (x * ) must be less than λ 1 c 1 (x + ) + λ 2 c 2 (x + ) (see Figure2.4). This process is finite since the weighted sums eventually find no solutions in interior of the convex hull conv(Y ).

Figure 2

 2 Figure 2.4: An iteration of dichotomic algorithm

  Pareto Genetic Algorithm (NPGA): This algorithm was proposed by Horn et al. (1994). It differs from the previous methods in the selection phase. Two individuals are chosen at random and compared against a subset Q of the initial population. If one of them dominates all the solutions of Q and the other is dominated by at least one individual, then the non-dominated one is selected. If both individuals are either dominated or non-dominated, the selection is performed through the sharing function method based on the objective domain called equivalent class sharing.Strength Pareto Evolutionary Algorithm (SPEA): This algorithm, proposed by (E.[START_REF] Zitzler | Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[END_REF] uses the concept of strength to locate and maintain a front of non-dominated solutions. The strength, computed as the ranking procedure in MOGA, indicates the degree to which a solution is dominated (strength). The fitness assignment of each individual is performed according to the strengths of all non-dominated solutions 2.3. BI-OBJECTIVE METHODS that dominate it. The diversity of the algorithm is guaranteed by using the average linkage method.

  Figure 3.1: A small example with 3 efficient solutions.

  problem related to the graph G with the cost function c(λ), obtaining solution π; if Dom(π, Ẽ) = ∅ then Add π to the set Ẽ, i.e.. Ẽ = Ẽ + {π}; Set iter = iter + 1; return Ẽ;

Algorithm 4 :

 4 Bi-objective path relinking Input: The two objectives c k and E S the set of supported efficient solutions for the BSP problem associated with G. Output: Ẽ Approximation of efficient solution set for the BSP problem associated with G. Set Ẽ = {(π, λ) : π ∈ E S and λ the associated weight }; while stopping criterion is not met do select randomly (π, λ) ∈ Ẽ; select randomly (π ′ , λ ′ ) ∈ Ẽ; E ′ = Local Search(π, λ ′ , Ẽ); Ẽ = Dom(E ′ , Ẽ); return Ẽ; 3.3. BI-OBJECTIVE PATH RELINKING Algorithm 5: Local Search Input: A supported efficient solution π, a weight λ, and an approximation Ẽ of efficient solutions set.

  Figure 3.2: A non-supported efficient solution generated by local search

  of GA. In crossover, generally two solutions, called parents, are combined together to form new solutions, called offspring. The crossover operator may generate a new non-supported solution by solving a single SP problem combining the two SP problems associated to parents. The parents are selected from the current population.The mutation operator introduces random changes into characteristics of solutions. In our implementation the mutation is not applied.Algorithm 6: Genetic algorithmInput: The two objectives c k and E S the set of supported efficient solutions for the BSP problem associated with G.Output: Ẽ Approximation of efficient solution set for the BSP problem associated with G.
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 3 Figure 3.3 shows a solution π = (1 -3 -5 -8 -10) where s = 1 and t = 10.

Algorithm 8 :

 8 Hybrid genetic algorithm Input: The two objectives c k and E S the set of supported efficient solutions for the BSP problem associated with G. Output: Ẽ Approximation of efficient solution set for the BSP problem associated with G. Set Ẽ = {(π, λ) : π ∈ E S and λ the associated weight };

  Figure 3.4: Computation time in 500 nodes network over different densities.
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 3 Figure 3.5, presents the percentage of true Pareto solutions generated by each one of the different heuristics in large networks with different densities. From Tables1 and 2,
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 3 Figure 3.6: Pareto-optimal solution profiles of different large size networks (worst results).
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 3 Figure 3.6, presents a set of selected Pareto front found by the HGA heuristic. These sets represent the worst found results. These are compared to the true Pareto front generated by the labeling algorithm BRUM. In this figure, we can notice that the generated Pareto fronts are superimposed to the true Pareto fronts and that they cover almost the whole of solutions in these real Pareto fronts.
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 3 Figure 3.5: % of Pareto solution generated by different heuristics in large networks with different density.
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 3 Figure 3.7: Computation time in large networks.

Figure 3 .

 3 Figure 3.8 illustrates the CPU time variations over the density of the networks of the proposed algorithm and the labeling algorithm. From these two figures, one can notice a slight sensitivity of the HGA heuristic regarding the labeling algorithm (BRUM) for this variation in density.
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 4 Figure 4.1: Bipartite graph representation.

  the experimental results of the tested instances. The first column indicates the name of the instances, which are identified as 2APn-lAu, being n the number of agents (vehicles) and [l, u] the interval of possible values for the allocating costs ( c ij ). The second column shows the cardinality of the optimal set of non-dominated solutions (|E * |), and the following columns indicate, for each of the four methods, the cardinality of the non-dominated set, the GD metric, the ER metric and the CPU time.
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  Figure 4.2: Pareto fronts of 2AP10-1A20

  problem consists of solving a sequence of assignment problems over time. At each time period, decisions must be made in what concerns which resources and tasks to assign to each other. Assignments that are made at earlier time periods affect the assignments that are made during later time periods, and information about the future is often uncertain. Some examples of dynamic assignment problems include dispatching truck drivers to deliver loads, pairing locomotives with trains and assigning company employees to jobs[START_REF] Michael | Some fixed-point results for the dynamic assignment problem[END_REF]).
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  Figure 5.9: Computational results for the instance with 5 parkings
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Table 3 .

 3 1 gives the results of the proposed heuristics (CPH, BPR and HGA) for the set of small size instance and different density networks. The density of a graph G = (N, A) is defined as d = 2m n(n-1) where m = |A|. It gives respectively, in the first and second column, the size and the number of edges of networks. The third and fourth columns illustrate the computational time (in seconds) and the number of Pareto solutions of the labeling algorithm (BRUM) and the remainder of the table gives the average consumed time (in seconds), the average number of non-dominated solutions and the average percentage of the true Pareto solutions found by each heuristic.

	n	m	BRUM			CPH			BPR		HGA
	d = 5									
	100	501.6	0.038 16.8	0.069 16.6	96.89	0.068	16	93.03	0.069 15.6	88.12
	200	995.8	0.101 15.8	0.141 15.6	98.67	0.115 14.8	91.89	0.132 15.4	89.28
	300 1541.4	0.355 20.4	0.189 20.2	99.2	0.223 19.4	93.84	0.205 18.4	86.69
	500 2549.6	0.909 32.6	0.468 31.6	97.21	0.436 29.8	90.67	0.395 28.8	86.81
	d = 10									
	100	985.4	0.105 17.8	0.090 17.8	97.65	0.086 17.2	94.92	0.093 16.6	86.98
	200 2029.2	0.200 13.4	0.184 13.4	100	0.158 12.2	91.33	0.145 11.2	82.07
	300 3009.8	0.343 13.8	0.248 13.8	100	0.287	13	94.76	0.267 13.6	97.71
	500 5087.4	1.006 16.4	0.795 16.4	100	0.829 16.2	96.4	0.656 15.4	90.22
	d = 20									
	100 2031.2	0.121	8	0.103 7.8	97.5	0.107 7.6	95.56	0.102 7.4	91.56
	200 4068.6	0.603	16	0.255	16	100	0.282 15.4	96.54	0.261 14.6	91.96
	300 5994.6	0.967 15.4	0.338	15	97.78	0.410	14	90.06	0.387 13.4	84.91
	500 10459.2	1.158 10.2	1.099	10	98.82	1.132 10.2	100	0.891	10	98.82

Times | Ẽ| Times | Ẽ| % Best sol Times | Ẽ| %Best sol Times | Ẽ| % Best sol

Table 3.1: Average number of non-dominated solution in large size networks.

Table 3 .

 3 2: Average number of non-dominated solution in large size networks.

			E S	BRUM		HGA			CPH			BPR			GA
	n	m	| Ẽ|	| Ẽ|	CPU	| Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best
	d = 5														
	1000-1	4701		70	11.91	69	4.64 0.092 0.015 97.14	69	3.26 0.164 0.029 95.71	57	4.87 2.880 0.140	70	33	3.79 2.727 0.091	42.89
	1000-2	4685		66	11.57	64	4.65 0.000 0.000 96.97	65	3.29 0.000 0.000 98.48	59	4.83 0.000 0.000 89.39	52	3.79 0.000 0.000	78.79
	1000-3	4659		60	6.60	60	4.76 0.000 0.000	100	60	3.31 0.000 0.000	100	55	4.67 0.509 0.036 88.33	52	3.52 0.000 0.000	86.68
	1000-4	4685	9	58	6.95	58	4.67 0.000 0.000	100	57	3.32 0.000 0.000 98.28	48	4.77 0.495 0.063 77.59	38	3.04 0.000 0.000	65.52
	1000-5	4714		51	8.36	51	4.73 0.000 0.000	100	50	3.30 0.278 0.020 96.08	43	4.84 0.323 0.023 82.35	32	3.20 0.828 0.063	58.82
	Average 4688.8 12.2 61	9.07	60.4 4.69 0.018 0.003 98.822 60.2 3.29 0.088 0.010 97.71	52.4 4.80 0.841 0.053 81.532 41.4 3.47 0.711 0.031	66.54
	3000-1 15066		115 138.39 113 17.99 0.000 0.000 98.26	107 11.88 0.218 0.019	91.3	104 16.66 0.714 0.039 86.96	98	18.48 1.731 0.153	72.17
	3000-2 15181		84	149.31	81	16.27 0.000 0.000 96.43	83	12.04 0.000 0.000 98.81	75	15.93 0.195 0.027	86.9	45	12.78 1.960 0.067	50
	3000-3 14858		97	188.56	95	17.65 0.024 0.011 96.91	92	11.98 0.023 0.109 93.81	89	16.15 0.355 0.034 88.66	80	17.26 0.725 0.013	81.44
	3000-4 14977		85	158.70	83	16.79 0.000 0.000 97.65	84	11.96 0.036 0.024 96.47	83	15.83 0.000 0.000 97.65	70	14.88 0.477 0.043	78.82
	3000-5 14965		77	164.95	77	16.54 0.000 0.000	100	77	11.83 0.557 0.039	96.1	66	15.82 0.835 0.061 80.52	62	14.64 0.175 0.016	79.22

Table 3 .

 3 2: Average number of non-dominated solution in large size networks (continued).

			E S	BRUM		HGA			CPH			BPR			GA
	n	m	| Ẽ|	| Ẽ|	CPU	| Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best
	d = 10														
	1000-1 10280	8	39	10.62	39	6.52 0.000 0.000	100	39	4.79 0.000 0.000	100	31	6.93 0.000 0.000 79.49	30	6.34 0.000 0.000	76.92
	1000-2 10330	7	37	14.29	37	6.44 0.000 0.000	100	37	4.69 0.000 0.000	100	29	7.32 1.147 0.138 67.57	29	5.13 0.358 0.103	70.27
	1000-3 10419		38	9.43	38	6.80 0.000 0.000	100	38	4.81 0.000 0.000	100	35	6.82 0.000 0.000 92.11	34	5.50 0.000 0.000	89.47
	1000-4 10053		30	11.00	30	6.38 0.000 0.000	100	30	4.70 0.500 0.033 96.67	29	7.08 0.000 0.000 96.67	28	4.94 0.927 0.036	90
	1000-5 10350		44	8.73	43	6.69 0.000 0.000	100	43	4.72 0.000 0.000 97.73	42	7.08 0.075 0.024 93.18	43	5.32 0.000 0.000	97.73
	Average 10286.4 37.6	10.81	37.4 6.57 0.000 0.000	100	37.4 4.74 0.100 0.007 98.88	33.2 7.05 0.244 0.032 85.804 32.8 5.44 0.257 0.028 84.878
	3000-1 31722		71	286.96	69	22.64 0.000 0.000 97.18	68	18.87 0.000 0.000 95.77	66	21.62 0.242 0.015 91.55	68	19.42 0.282 0.029	92.96
	3000-2 31507		69	400.44	66	22.88 0.000 0.000 95.65	67	18.96 0.000 0.000	97.1	64	22.17 0.377 0.031 89.86	57	19.09 0.055 0.018	81.16
	3000-3 31210		96	320.80	94	22.28 0.000 0.000 97.92	96	18.89 0.000 0.000	100	90	21.27 0.069 0.022 91.67	90	18.97 0.069 0.022	91.67
	3000-4 31273		54	135.00	54	22.13 0.000 0.000	100	54	18.95 0.176 0.019 98.15	50	21.69 0.000 0.000 92.59	47	17.96 0.060 0.021	85.19
	3000-5 31262		84	316.82	83	22.76 0.000 0.000 98.81	83	19.24 0.555 0.012 97.62	83	21.85 0.000 0.000 98.81	81	19.87 0.027 0.012	95.24
	Average 31394.8 74.8 292.00 73.2 22.54 0.000 0.000 97.912 73.6 18.98 0.146 0.006 97.728 70.6 21.72 0.138 0.014 92.896 68.6 19.06 0.099 0.020 89.244
	4000-1 53639		77	629.95	73	35.47 1.197 0.055 89.61	73	30.23 0.000 0.000 94.81	71	33.19 0.803 0.127 80.52	58	32.53 0.422 0.086	68.83
	4000-2 53623		86	630.23	84	34.22 0.000 0.000 97.67	81	30.20 0.000 0.000 94.19	78	33.10 0.628 0.013 89.53	77	31.57 0.000 0.000	89.53
	4000-3 53527		59	902.12	58	35.65 0.000 0.000 98.31	58	30.27 0.000 0.000 98.31	58	33.98 0.017 0.017 96.61	57	34.93 0.092 0.035	93.22
	4000-4 53946		98	599.52	98	34.24 0.000 0.000	100	97	33.24 0.170 0.010 97.96	93	33.06 0.050 0.022 92.86	89	34.04 0.091 0.023	88.78
	4000-5 53634		85	664.36	83	34.28 0.000 0.000 97.65	84	33.50 0.000 0.000 98.82	82	32.89 0.343 0.049 91.76	77	33.58 0.209 0.026 0.8824
	Average 53673.8 17.2 81	685.23 79.2 34.77 0.239 0.011 96.648 78.6 31.49 0.034 0.002 96.818 76.4 33.25 0.368 0.045 90.256 71.6 33.33 0.163 0.034 68.24848
	5000-1 70382		114 1297.15 110 44.74 0.218 0.009 95.61	109 50.54 0.592 0.028 92.98	106 48.31 0.000 0.000 92.98	101 45.89 0.014 0.010	87.72
	5000-2 70479		85 1246.53 85	44.56 0.000 0.000	100	84	51.32 0.000 0.000 98.82	83	44.76 0.349 0.048 92.94	79	44.63 0.229 0.025	90.59
	5000-3 70054		93 1152.10 89	44.08 0.000 0.000	95.7	92	42.50 0.202 0.033	95.7	84	46.16 0.089 0.036	87.1	82	39.99 0.061 0.024	86.02
	5000-4 70354		97 1776.08 92	44.88 0.199 0.022 92.78	93	43.93 0.000 0.000 95.88	94	44.02 0.021 0.011 95.88	88	44.29 0.046 0.011	89.69
	5000-5 70431		111 1384.17 107 45.75 0.068 0.009	95.5	101 40.90 0.193 0.030 88.29	106 46.84 0.177 0.057 90.09	109 47.98 0.000 0.000	98.2
	Average 70340		100 1371.21 96.6 44.80 0.097 0.008 95.918 95.8 45.84 0.197 0.018 94.334 94.6 46.02 0.127 0.030 91.798 91.8 44.56 0.070 0.014 90.444
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 3 2: Average number of non-dominated solution in large size networks (continued).

			E S	BRUM		HGA			CPH			BPR			GA
	n	m	| Ẽ|	| Ẽ|	CPU	| Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best | Ẽ| CPU GD ER %Best
	d = 20															
	1000-1 20519	9	30	12.40	30	9.39 0.000 0.000	100	30	6.99 0.000 0.000	100	30	9.27 0.000 0.000	100	29	7.02 0.000 0.000	96.67
	1000-2 20446	7	23	10.84	23	10.14 0.000 0.000	100	22	6.74 0.000 0.000 95.65	21	9.51 0.662 0.048 86.96	21	7.23 0.000 0.000	91.3
	1000-3 20512	7	25	12.25	25	9.98 0.000 0.000	100	25	6.71 0.000 0.000	100	24	9.42 0.000 0.000	96	22	6.69 0.000 0.000	88
	1000-4 20858	9	29	12.65	28	6.79 0.000 0.000 96.55	29	6.71 0.000 0.000	100	27	9.67 0.000 0.000	93.1	25	8.14 0.000 0.000	86.21
	1000-5 20452	7	20	15.31	20	6.84 0.000 0.000	100	20	6.78 0.000 0.000	100	20	9.76 0.335 0.050	95	17	6.94 0.395 0.059	80
	Average 20557.4 7.8 25.4	12.69	25.2 8.63 0.000 0.000 99.31	25.2 6.79 0.000 0.000 99.13	24.4 9.53 0.199 0.020 94.212 22.8 7.20 0.079 0.012 88.436
	3000-1 59720	14	50	325.65	50	30.40 0.000 0.000	100	50	26.81 0.000 0.000	100	50	29.27 0.160 0.040	96	47	23.48 0.000 0.000	94
	3000-2 59470	14	44	161.90	44	30.12 0.000 0.000	100	43	26.06 0.000 0.000 97.73	42	29.31 0.119 0.238 93.18	38	24.29 0.132 0.026	84.09
	3000-3 59813	10	48	364.72	47	30.97 0.447 0.021 95.83	48	26.42 0.813 0.063 93.75	43	29.99 0.000 0.000 89.58	44	26.32 0.364 0.046	89.58
	3000-4 59139	16	49	401.56	47	30.79 0.000 0.000 95.92	49	26.30 0.641 0.041 95.92	43	29.40 0.000 0.000 87.76	43	25.73 0.000 0.000	87.76
	3000-5 59559	9	38	342.57	38	30.07 1.333 0.026 97.37	34	26.42 0.912 0.029 86.84	35	28.93 0.000 0.000 92.11	34	22.97 0.278 0.029	86.84
	Average 59540.2 12.6 45.8 319.28 45.2 30.47 0.356 0.009 97.824 44.8 26.40 0.473 0.027 94.848 42.6 29.38 0.056 0.056 91.726 41.2 24.56 0.155 0.020 88.454
	4000-1 80298	17	56	348.82	56	41.43 0.161 0.018 98.21	55	44.53 0.000 0.000 98.21	55	40.79 0.000 0.000 98.21	54	38.53 0.000 0.000	96.43
	4000-2 80222	13	70	924.50	66	44.43 1.390 0.061 88.57	65	46.76 1.180 0.046 88.57	66	41.13 0.097 0.030 91.43	61	36.47 0.000 0.000	87.14
	4000-3 79766	16	69	869.08	66	43.89 0.015 0.015	94.2	66	46.27 0.518 0.046	91.3	58	40.73 0.000 0.000 84.06	60	39.38 0.000 0.000	86.96
	4000-4 80178	16	70	804.08	67	43.89 0.612 0.015 94.29	66	46.69 0.015 0.015 92.86	65	40.19 0.203 0.046 88.57	63	40.87 0.813 0.079	82.86
	4000-5 80272	83	16	756.08	83	42.57 0.000 0.000	100	83	50.48 0.098 0.024 97.59	81	41.48 0.089 0.037 93.98	81	38.47 0.260 0.025	95.18
	Average 80147.2 15.6 69.6 740.51 67.6 43.24 0.436 0.022 95.054	67	46.95 0.362 0.026 93.706	65	40.87 0.078 0.023 91.25	63.8 38.75 0.215 0.021 89.714
	5000-1 102023	19	92 1826.81 87	53.32 1.024 0.046 90.22	86	52.97 1.051 0.047 89.13	85	61.58 0.106 0.035 89.13	81	50.29 0.149 0.037	84.78
	5000-2 103297	16	59 1358.60 59	53.09 0.000 0.000	100	59	60.67 0.000 0.000	100	58	56.77 0.069 0.017 96.61	58	53.71 0.103 0.035	94.92
	5000-3 103536	19	71 1307.62 70	53.45 0.101 0.014 97.18	69	56.91 0.013 0.015 95.77	67	57.04 1.535 0.105 84.51	65	48.66 0.314 0.031	88.73
	5000-4 102485	17	82 1625.23 78	54.78 1.046 0.039 91.46	80	57.89 1.374 0.063 91.46	78	59.33 0.000 0.000 95.12	80	51.15 0.000 0.000	97.56
	5000-5 102121	16	76 1593.45 76	53.68 0.201 0.013 98.68	76	56.69 0.000 0.000	100	74	61.20 0.000 0.000 97.37	74	55.63 0.027 0.014	96.05
	Average 102692.4 17.4 76 1542.34 74	53.66 0.474 0.022 95.508	74	57.03 0.488 0.025 95.272 72.4 59.19 0.342 0.031 92.548 71.6 51.89 0.119 0.023 92.408
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1: Encoding scheme

  Example Consider the following numerical example for assigning 7 tasks to 7 agents, where the matrix costs associated to the first and the second objectives

		69 48 45 63 58 38 60
		24 42 30 79 17 36 91
		43 89 7 41 43 65 49
		47 6 91 30 71 51 7
	     	2 94 49 30 24 85 55 57 41 67 77 32 9 45
		40 27 24 38 39 19 83
	are c 1 and c 2 , respectively:	

Table 4

 4 

	.2.

Columns 1 and 2 present the weight vector (λ 1 , λ 2 ) associated to each efficient supported solution. Columns 3 and 4 display the value of each objective function c 1 and c 2 , respectively.
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 4 6: Computational Results for range 40, 60, 80 and 100

	Instances	E *		GA				BPR				HGA				CPH		
		|E * | |GA| GD(GA) ER(GA) CPU |BP R| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CP H| GD(CPH) ER(CP) CPU
	2AP10-1A40	21	10	0	0.52	0.02	21	0	0.00	0.52	21	0	0.00	0.28	20	0.00	0.05	0.09
	2AP20-1A40	66	23	0	0.65	0.07	66	0	0.00	1.58	66	0	0.00	1.50	59	0.00	0.11	0.55
	2AP30-1A40	109	76	0	0.43	0.43	109	0	0.00	6.94	109	0	0.00	4.61	92	0.00	0.17	1.44
	2AP40-1A40	186	96	0	0.60	58.19	186	0	0.00	67.86	186	0	0.00	45.34	141	0.00	0.25	3.32
	2AP50-1A40	216	178	0	0.28	13.43	216	0	0.02	89.94	216	0	0.00	96.78	191	0.00	0.13	6.69
	2AP60-1A40	253	189	0	0.42	11.69	223	0	0.30	98.91	248	0	0.05	87.53	208	0.00	0.23	9.86
	2AP70-1A40	331	270	0	0.41	80.52	281	0	0.42	94.09	312	0	0.14	99.00	262	0.00	0.24	15.50
	2AP80-1A40	355	280	0	0.39	80.99	291	0	0.41	95.88	337	0	0.09	96.97	305	0.00	0.20	21.86
	2AP90-1A40	432	367	0	0.34	77.40	342	0	0.53	99.99	407	0	0.11	82.38	387	0.00	0.14	29.78
	2AP100-1A40	429	380	0	0.30	94.14	333	0	0.51	94.52	415	0	0.07	89.11	401	0.00	0.13	41.79
	Average			0	0.42	41.69		0	0.16	65.02		0	0.03	60.35		0.00	0.16	13.09
	2AP10-1A60	17	10	0.001	0.47	0.02	17	0	0.00	94.52	17	0	0.00	0.80	15	0.00	0.12	0.02
	2AP20-1A60	66	19	0	0.71	0.04	66	0	0.00	0.28	66	0	0.00	1.94	35	0.00	0.48	0.27
	2AP30-1A60	139	78	0	0.50	13.11	139	0	0.00	0.75	139	0	0.00	9.78	98	0.00	0.31	0.84
	2AP40-1A60	259	161	0	0.56	60.18	258	0	0.00	8.55	259	0	0.00	48.45	159	0.00	0.40	1.65
	2AP50-1A60	304	187	0	0.50	17.59	299	0	0.02	42.16	295	0	0.04	92.03	187	0.00	0.42	3.36
	2AP60-1A60	374	275	0	0.42	47.33	320	0	0.31	85.73	358	0	0.07	89.22	240	0.00	0.43	5.34
	2AP70-1A60	460	335	0	0.42	46.60	370	0	0.43	91.33	437	0	0.12	98.31	262	0.00	0.46	8.00
	2AP80-1A60	498	369	0	0.47	63.83	384	0	0.55	97.50	450	0	0.20	98.23	278	0.00	0.52	11.99
	2AP90-1A60	571	462	0	0.37	93.94	370	0	0.69	98.42	491	0	0.26	99.19	360	0.00	0.44	15.87
	2AP100-1A60	585	476	0	0.35	85.14	381	0	0.64	96.98	497	0	0.25	97.14	305	0.00	0.51	17.96
	Average			0	0.48	42.78		0	0.20	61.62		0	0.05	63.51		0.00	0.41	6.53
	2AP10-1A80	25	9	0	0.64	0.02	25	0	0.00	99.13	25	0	0.00	99.19	16	0.00	0.36	0.06
	2AP20-1A80	94	58	0	0.45	0.73	94	0	0.00	0.44	94	0	0.00	0.52	59	0.00	0.37	0.30
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 4 7: Computational Results for n ∈ {150, 200, 250, 300, 350} (continued).Table 4.7 presents the results for n ∈ {150, 200, 250, 300, 350}. It can be observed

	Instances	E *		GA				BPR				HGA				CPH		
		|E * | |GA| GD(GA) ER(GA) CPU |BP R| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA)	CPU	|CP H| GD(CPH) ER(CP)	CPU
	Average			0	0.34	814.23		0	0.63	884.44		0	0.31	897.47		0	0.31	717.38
	2AP350-1A20	290	281	0	0.05	400.77	256	0	0.56	724.05	284	0	0.05	1262.45	286	0	0.03	1093.64
	2AP350-1A40	845	743	0	0.37	898.10	678	0	0.66	896.67	745	0	0.21	1354.22	744	0	0.19	1245.35
	2AP350-1A60 996	0	0.54	899.52	1116	0	0.63	898.82	978	0	0.36	1488.82	982	0	0.33	1223.79
	2AP350-1A80 1130	0	0.53	898.06	1164	0	0.66	898.22	898	0	0.45	1434.13	903	0	0.44	1246.18
	2AP350-1A100 1113	0	0.55	899.84	1247	0	0.65	898.33	847	0	0.51	1703.95	842	0	0.51	1551.15
	Average			0	0.41	799.26		0	0.63	863.22		0	0.32	1448.71		0	0.30	1272.02

Table 4 .

 4 8: Computational Results for n = 400, 450 and 500

	Instances	E *		GA			BPR			HGA			CPH	
		|E * | |GA| GD(GA) ER(GA) CPU	|BP R|	GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CP H| GD(CPH) ER(CP)	CPU
	2AP400-1A20 268 264	0	0.05	2261.89	255	0	0.38	2955.52 268	0	0.00	705.28	268	0.01	1706.680
	2AP400-1A40 889 845	0	0.20	3490.77	777	0	0.66	3589.65 869	0	0.05	3578.66 741	0.23	1987.270
	2AP400-1A60 1425 1319	0	0.30	3568.69	1153	0	0.66	3544.94 1352	0	0.13	3567.02 984	0.39	1694.310
	2AP400-1A80 1861 1679	0	0.34	3578.88	1416	0	0.71	3557.58 1644	0	0.25	3571.63 965	0.53	2176.660
	2AP400-1A100 2119 1861	0	0.33	3593.11	1575	0	0.75	3579.52 1867	0	0.26	3576.41 893	0.63	1943.120
	Average		0	0.24	3298.67		0	0.63	3445.44	0	0.14	2999.80		0.36	1901.61
	2AP450-1A20 293 293	0	0.01	2188.91	272	0	0.43	3578.22 293	0	0.00	1253.90 288	0.02	2197.720
	2AP450-1A40 895 845	0	0.23	2863.62	751	0	0.62	2925.80 868	0	0.08	2891.61 736	0.23	2547.080
	2AP450-1A60 1438 1280	0	0.37	3563.08	1129	0	0.70	3469.67 1296	0	0.21	3596.64 939	0.41	3022.470
	2AP450-1A80 1847 1644	0	0.40	3598.77	1395	0	0.72	3565.76 1645	0	0.26	3587.95 943	0.55	2636.690
	2AP450-1A100 2219 1873	0	0.45	3102.61	1669	0	0.72	3396.98 1929	0	0.29	2865.98 1020	0.59	3137.690
	Average		0	0.29	3584.33		0	0.64	3584.44	0	0.17	3588.29		0.36	2708.33
	2AP500-1A20 288 277	0	0.08	1108.87	270	0	0.43	3366.03 288	0	0.00	1481.22 283	0.02	3110.070
	2AP500-1A40 967 908	0	0.25	3559.83	816	0	0.70	3284.53 920	0	0.10	3581.62 808	0.22	3960.460
	2AP500-1A60 1492 1292	0	0.44	3591.99	1209	0	0.73	3587.11 1306	0	0.24	3596.34 995	0.40	4419.000
	2AP500-1A80 1890 1695	0	0.36	3597.90	1388	0	0.75	3586.79 1527	0	0.38	3567.77 993	0.53	4046.210
	2AP500-1A100 2264 1917	0	0.45	3596.38	1806	0	0.69	3559.04 1788	0	0.38	3595.57 1050	0.58	3989.330
	Average		0	0.31	3091.00		0	0.66	3476.70	0	0.22	3164.50		0.35	3905.01

Table 5 .

 5 1: Instance problem with 5 parkings range of interest to us. It should be noted that these parameters were set experimentally

Table 5 .

 5 6: Unilateral paired ttest at the 99% significance level (N = 120).

	5.6. CONCLUSION		
	Instances t -value p -value
	5 parkings	-9.7913 1.1102e-016
	7 parkings	-31.587 1.0713e-059
	10 parkings -29.319 2.7874e-056
	15 parkings	-50.3	4.9424e-082
	20 parkings -45.419 5.1241e-077
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Multivariate models

This section discusses the models that do not impose any restriction about the dependencies among variables.

• Estimation of multivariate normal density algorithms (EMNA): It was developed by [START_REF] Larrañaga | Estimation of distribution algorithms based on multivariate normal distributions and Gaussian networks[END_REF]. At each generation g, the multivariate normal density function is estimated. Therefore, the vector of mean μg and the variancecovariance matrix σg are estimated using their maximum likelihood estimates:

Finally, the new individuals are generated following the estimated function. An adaptive version of this algorithm was also developed by [START_REF] Larrañaga | Estimation of distribution algorithms based on multivariate normal distributions and Gaussian networks[END_REF].

In this algorithm, the first model is estimated according to the multivariate normal density function. Next, one individual x g current is generated from the current density function. Depending on the fitness of this individual, it will be kept for the next population or not. If the answer is yes, the new individual is introduced in the population, and it is necessary to update the parameters of the multivariate normal density function as follows:

ESTIMATION OF DISTRIBUTION ALGORITHM WITH REINFORCEMENT LEARNING

• Replacement: We compare the new solution with the worst solution in the current population. If the new solution is best than this solution, then the worst solution is removed from the population and it is replaced with the new one.

• Stopping criterion: The stopping criterion indicates when the search finishes.

We set a maximum number of iterations and a maximal computational time in our algorithm.

• Local search procedure for dynamic assignment problem: The local search procedure was proposed to improve the performance of the algorithm through problem decomposition. Instead of tackling the whole complex assignment problem at the same time, the problem is divided into a set of smaller sub-problems, each of which can be solved easily in terms of computational time. The purpose of the decomposition scheme is to break down a large problem into smaller ones.

If the number of vehicles that appear in the system and the number of considered parking are large, then the number of variables and constraints taken into account for solving the whole problem at each decision point may be huge. The idea is to decompose the area of the system (city) into a set of regions and solve an assignment problem for each one of them. At each iteration, a region is selected randomly, we record the set of requests Ω from vehicles in this region and the set of parking lots L existing in the same region.Then, the problem formulated by the associated variables is solved while taking into account the assignments of the remaining regions.

Therefore, we set a threshold on the number of vehicles n max from which the local search procedure is applied. The procedure starts from an initial solution randomly generated. Then, we select at random some decision variables to be fixed and optimize the remaining sub-problem, according to the objective function. The process is repeated until a given stopping criterion is reached (Algorithm 14).

The framework of the proposed algorithm with forecast is given in Figure 5.3 and Algorithm 15. It should be noted that if we set π best to 0, we obtain the assignment algorithm without forecasting process. We denote by AA EDA and AA the assignment algorithm with and without EDA, respectively. Find the set Ω associated to those spaces at the decision point k;

Solve the assignment problem of (Ω, L, π best );

until A stopping criterion is met;

Algorithm 15: Pseudo-code of the assignment algorithm with forecast process based on EDA R 0 = ⊘;

for k = 1, 2, ..., (K × T × D) do Find N k , R k and loc k i ; 

Computational results

In our experiments, we developed a simulation environment using the C++ programming language to reproduce the features of a real world problem.