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Abstract

The parking problem is nowadays one of the major issues in urban transportation planning

and traffic management research. In fact, the consequences of the lack of parking slots

along with the inadequate management of these facilities are tremendous.The aim of this

thesis is to provide efficient and robust algorithms in order to save time and money for

drivers and to increase the income of parking managers. The problem is formulated as

a multi-objective assignment problem in static and dynamic environments. First, for the

static environment, we propose new two-phase heuristics to calculate an approximation of

the set of efficient solutions for a bi-objective problem. In the first phase, we generate the

supported efficient set with a standard dichotomic algorithm. In the second phase we use

four metaheuristics to generate an approximation of the non-supported efficient solutions.

The proposed approaches are tested on the bi-objective shortest path problem and the bi-

objective assignment problem. For the dynamic environment, we propose a mixed integer

linear programming formulation that is solved several times over a given horizon. The

objective functions consist of a balance between the satisfaction of drivers and the interest

of the parking managers. Two approaches are proposed for this dynamic assignment

problem with or without learning phase. To reinforce the learning phase, an estimation of

distribution algorithm is proposed to predict the future demand. in order to evaluate the

effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot

implementation has also been conducted in the parking of the University of Valenciennes,

using an existing platform called framework for context aware transportation services,

which allows dynamic deployment of services. This platform can dynamically switch

from one approach to another depending on the context. This thesis is part of the project

SYstem For Smart Road Applications (SYFRA).

Keywords: Bi-objective shortest path problem, bi-objective assignment problem, smart

parking, dynamic assignment problem, learning, metaheuristic.



LIST OF ALGORITHMS

Système de Gestion du Stationnement dans un Environnement Dynamique

et Multi-Objectifs

Aujourd’hui, le problème de stationnement devient l’un des enjeux majeurs de la

recherche dans la planification des transports urbains et la gestion du trafic. En fait, les

conséquences de l’absence de places de stationnement ainsi que la gestion inadéquate de

ces installations sont énormes. L’objectif de cette thèse est de fournir des algorithmes

efficaces et robustes afin que les conducteurs gagnent du temps et de l’argent et aussi

augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un

problème d’affectation multi-objectifs dans des environnements statique et dynamique.

Tout d’abord, dans l’environnement statique, nous proposons de nouvelles heuristiques

en deux phases pour calculer une approximation de l’ensemble des solutions efficaces pour

un problème bi-objectif. Dans la première phase, nous générons l’ensemble des solutions

supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous

proposons quatre métaheuristiques pour générer une approximation des solutions non

supportées. Les approches proposées sont testées sur le problème du plus court chemin

bi-objectif et le problème d’affectation bi-objectif. Dans le contexte de l’environnement

dynamique, nous proposons une formulation du problème sous forme d’un programme

linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon

de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la

satisfaction des conducteurs et l’intérêt du gestionnaire de parking. Deux approches

sont proposées pour résoudre ce problème d’affectation dynamique avec ou sans phase

d’apprentissage. Pour renforcer la phase d’apprentissage, un algorithme à estimation de

distribution est proposé pour prévoir la demande future. Pour évaluer l’efficacité des

algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre

pilote a été menée dans le parking à l’Université de Valenciennes en utilisant une plate-

forme existante, appelée Context Aware Transportation Services (CATS), qui permet le

déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d’une

approche à l’autre en fonction du contexte. Enfin cette thèse s’inscrit dans le projet

SYstem For Smart Road Applications ( SYFRA).

Mots-clés: Plus court chemin bi-objectif, affectation bi-objectif, parking intelligent, af-

fectation dynamique, apprentissage, métaheuristique.
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Chapter 1

Smart parking management systems

1.1 Introduction

As the population keeps growing and the concentration of cars in cities increases, our

society faces the significant challenge of global gridlock. To find a parking space becomes

a common challenge, faced by millions of city-dwellers every day (Shoup et al., 2005), due

to the significant and substantial increase in the demand for parking slots in cities and

urban areas. Furthermore, the severe shortage of such spaces has created a challenge and

a problem of management of these areas. Despite the creation of locations along roads

and streets in the cities, it remains that these solutions do not absorb all of the demand,

which is constantly increasing. The consequences are known, for example, an increase

in traffic congestion and also economic, social and environmental losses. Moreover, with

the continuous increase of the population, the problem becomes more and more critical.

As such, the optimization of the parking slot allocation and control has become a real

challenge for transport planners and traffic authorities. Most modern cities provide ade-

quate support and guidance to drivers on the choice of parking slots and the efficient use

of the parking slots in terms of variable message signs, directional arrows, the names of

parks, the state, the number of parking slots, the actual entry, exit point of parking, etc.

However, despite this, the circulation system and drivers are facing extreme difficulties es-

pecially during peak hours, or special events such as festivals, celebrations, new years and

unpredictable situations of traffic congestion (Teodorović and Lučić, 2006). Ultimately in

many urban or metropolitan areas, it is time consuming to find an available parking slot,

1



1.1. INTRODUCTION

and when it is done, it is hard to know if it meets the aspirations of both drivers and the

parking managers. Today, authorities are more concerned than ever with greenhouse gas

emissions, and transport is one of the major contributors to this phenomenon. In the last

decades several studies have been conducted to seek solutions to this problem and most

of them are related to parking management. On a daily basis, it is estimated that 30% of

cars on the road in the center of large cities are in search of a parking slot and it takes,

on average, 7.8 minutes to find one (Arnott et al., 2005). This situation causes not only

a waste of time and fuel for drivers looking for a parking slot, but it also contributes to

further waste of time and fuel to other drivers due to traffic congestion. For example,

it has been reported in (Shoup et al., 2005) that, during one year, in a small business

district in Los Angeles, the distance travelled by cars looking for a parking was equivalent

to 38 times around the world, burning 177 tons of gasoline and producing 730 tons of

carbon dioxide. It has also been shown that over 40% of the total traffic volume in urban

areas is composed of cars searching for parking (Shoup, 2006). By either decreasing the

amount of cars searching for a parking slot or decreasing the waiting time to find one,

it is possible to reduce pollution and to preserve resources (time and fuel) (Shoup et al.,

2005).

The assignment problem of cars to parking slots has been discussed by many re-

searchers and there have been numerous works studying this problem. (Caicedo, 2009)

used two different ways of managing information availability of slot in parking facilities

with PARC system to reduce the search time. (Caicedo, 2010) developed a demand as-

signment model in order to reduce the time and distance involved in the search for a

parking slot. (Zhao and Collins Jr, 2005) developed a parallel algorithm for automatic

parking in tight slots using a system based on a fuzzy logic controller. Spatial allocation of

the parkings was analyzed by (Davis et al., 2010) to estimate the number of parking slots

given a certain demand. (Leephakpreeda, 2007) presented a guide system for parkings.

(Arnott and Rowse, 2009) developed an integrated parking on the sidewalk and control

traffic congestion in inner-city model. (Shoup, 2006) presented a model to know whether

drivers should search for a parking slot along the street or pay for off-street parking.

(Teodorović and Lučić, 2006) proposed an inventory slot intelligent parking system. The

system is based on a combination of fuzzy logic and techniques of integer programming.

2



1.2. THE ISSUE OF CAR PARKING DEMAND

It makes on line decisions to accept or reject the request of a new driver for a parking

slot. (Ayala et al., 2011) presented a game-theoretic framework to analyze parking sit-

uations, and to introduce and analyze parking slot games in complete and incomplete

information contexts. For both models they presented algorithms for individual players

to choose parking slots ideally. (Benenson et al., 2008) presented an agent based system

that simulates the behavior of each driver within a spatially explicit model. The sys-

tem captures, within a non-homogeneous road space, the self-organizing and dynamics

of a large collective parking agents. (Chou et al., 2008) presented an intelligent agent

system with negotiable parking pricing for optimum car park for the driver. (Geng and

Cassandras, 2012) proposed a system for an urban environment; the system assigns and

reserves an optimal parking slot for each driver based on his requirements that combine

proximity to destination and parking cost. In order to satisfy the users requirements and

the parking managers at the same time, the authors used a Mixed Integer Linear Pro-

gram (MILP) to solve this problem at each decision point. (Phillips, 1985) suggested a

multi-objective optimization approach to assign university personnel cars to parking lots.

(Geng and Cassandras, 2011) proposed a smart parking approach to help drivers in their

search for an available parking lot. This approach is used by a centralized system that col-

lects requests sent by drivers. The requests are collected over a certain time window after

which, at the decision point, allocation of drivers to parking slots is made. In (Venkatara-

manan and Bornstein, 1991), a decision support system for the parking slot assignment

is proposed where the parking lot assignment problem is modelled as a network problem.

The proposed network combines the objectives of priority, cost and distance by weighting

factors.

1.2 The issue of car parking demand

• Parking demand: refers to the amount of parking that would be used at a partic-

ular time, place and price. It is a critical factor in evaluating parking problems and

solutions. Parking demand is affected by vehicle ownership, trip rates, mode split,

duration (how long cars park), geographic location (i.e, downtown, regional town

centre or suburban), the quality of travel alternatives, type of trip (work, shopping,

3



1.2. THE ISSUE OF CAR PARKING DEMAND

recreational), and factors such as fuel and road pricing. There are usually daily,

weekly and annual demand cycles. For example, parking demand usually peaks on

weekdays at office buildings and on weekend evenings at theaters and restaurants.

Parking demand can change with transportation, land use and demographic pat-

terns. For example, a particular building may change from industrial to residential

or office use, neighborhood demographics and density may change, and the quality

of transit service may change, all of which affect parking demand. Different types

of trips have different types of parking demand, and different types of parking facil-

ities tend to serve different types of trips. For example, commuters need long-term

parking, and because they park all day they are relatively price sensitive. Many

commuters are willing to walk several blocks for cheaper parking. Off-street park-

ing leased by the month tends to serve commuters. Customers need shorter-term

parking that is located as close as possible to their destination, and are often willing

to pay a relatively high hourly price to increase convenience. On-street parking that

is metered or regulated to maximize turnover tends to serve customers.

• Parking Adequacy: refers to whether there is sufficient parking at a particular

time and location. What constitutes adequacy varies depending on conditions and

user expectations. For example, even in dense areas parking is usually adequate, or

at a sufficient price during off-peak periods. Similarly, parking may be considered

inadequate at a particular location, but is available a few blocks away. Unregulated

parking may be adequate for residents and employees, who park early in the day,

but inadequate for delivery vehicles or clients, who arrive later. On the other hand,

parking with a two-hour or less time limit, or more expensive, may be considered

adequate for short-term users but inadequate for employees and residents who must

park all day.

• Parking problems: most of the time, drivers consider parking as inadequate, in-

convenient or expensive. This impression is based on the facts previously explained.

As a solution, it is needed to increase parking supply without additional costs for

the drivers. But there are other ways to tackle parking problems without making

huge investments; for example developing new methods of management based on

4



1.3. CARS AND PARKING IN SMART CITIES

technology of information and communication can be much more efficient than con-

structing new parking. Some situations that drivers may face when searching for

a parking lot/slot are: inadequate information on parking availability and price;

inconvenient parking pricing methods; economic, environmental and visual impacts

of parking facilities, etc.

1.3 Cars and parking in smart cities

A real-time parking information system is composed of a variety of elements that gen-

erate raw data, that process the data into useable information, and that transmit the

information to users. Each of these elements can be addressed with a number of different

technology options. Parking guidance information systems, first proposed two decades

ago, are used to minimize parking search traffic in large parking facilities and central

cities by dynamically monitoring available parking, and directing drivers with variables

message signs (Sakai et al., 1995). Parking guidance systems based on wireless sensor

networks were also designed for automated and accurate monitoring of the parking slots

and guidance to a vacant parking slot (Yoo et al., 2008).

Information and communication technologies are now integrated onboard systems for

intelligent cars and offer new solutions to transportation problems. The main goal of

these systems is to bring convenience, comfort and security for users. These systems rely,

among others, on the current power of network technologies and the various protocols of

communication (Biswas et al., 2006).

These systems help drivers to avoid accidents in the first place. In fact, several

researches (see (Hafner et al., 2013)) have highlighted the dramatic impact of vehicular

collisions in terms of costs, injuries and fatalities. Hence, intelligent cars will play a

great role in reducing economical, social and environmental impacts. Some benefits of

generalization of these cars are:

• Provide drivers with real-time information on traffic and allow them to avoid traffic

jams (Baskar et al., 2011).

• Find the fastest or the shortest route between two places (Fu, 2001).
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• Optimize the performance of their cars and thereby improve energy efficiency

(Manzie et al., 2007).

• Monitor the status of the driver: vigilance, alcohol, drugs (Dong et al., 2011).

• Provide real-time information about available parking lots.

Due to the potential expected impact, car makers (such as Mercedes, BMW, or Re-

nault) and independent laboratories intensify their research and development to come

out with intelligent cars capable not only to assist the drivers all the time but also to

become an interactive part of a more global and dynamic system as smart cities. As a

consequence, during the last years, interest in applications for inter-vehicle communica-

tions increased in Europe and in the United States, giving rise to several communication

projects such as: Vehicle Safety Communication, Car2Car Communication Consortium,

Network on Wheels, Vehicular Event Sharing with a mobile P2P Architecture (VESPA).

In VESPA, the dissemination service is about to be stopped and replaced by a reser-

vation service, which the trader can download and install. Whereas the use of V2V

communications provides several advantages (cost, locality, dynamicity, etc.), it creates

new technological challenges that the community faces in data management, to develop

new techniques for data and query processing. (Delot et al., 2011) developed several

prototypes for smart phones and evaluated the scalability of different approaches using

simulation (see also (Delot and Ilarri, 2012), (Cenerario et al., 2011)). More precisely,

they considered in the VESPA project ( see Figure 1.1):

• The problem of assessing the relevance of the data exchanged in the network using

both techniques based on distance calculations in the Euclidean space and technical

operations of the road network information available in digital maps.

• The use of data relevance to design dissemination protocols.

• The use of data aggregation approaches that can help cars to extract and share

environmental knowledge by summarizing the data elements.

• Information sharing about scarce resources such as parking slots; this is important

because the communication of information for many cars without control could

easily lead to sterile competition between cars to try to take the same resource.
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• The problem of processing queries that need to access data remotely. They analyzed

the challenge of conveying the results obtained remotely for a query back to the

moving vehicle that issued this query. They are also studying the potential of

mobile agent technology to route queries and results towards the appropriate nodes.

The exchange of multimedia information is also discussed.

• The potential benefits of the application of the management of other technical and

semantic data. They envision a future in which smart cars will be equipped with

V2V communications and perform tasks for managing multiple data.

Figure 1.1: The Framework Architecture

It is clear that the outcomes of these projects will help the achievement of a safer

automobile transportation. Nevertheless, many unresolved issues remain today including

technical issues such as standardization, development issues such as application systems,

and legal and institutional issues (Tsugawa, 2005).
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1.4 Smart parking architectures

In order to address the problems associated with parking slots, smart parking has been de-

veloped for slot assignment or/and drivers guidance, and can be classified into centralized

and distributed systems (see Figure 1.2 and Figure 1.3).

• Centralized systems: Centralized systems always have a server to store all park-

ing slots information. They use sensor networks to gather parking slot information.

Drivers must connect to the server through Internet or other communication means

to access the parking slot information. These systems always have a database to

store all parking slot information and a server to handle requests from users. The

server gathers data of parking slot via vehicular ad hoc network VANET or wireless

sensor networks with gateways, and updates its database with the latest informa-

tion. The users must query the server to have knowledge of free parking slots.

Although the centralized methods seem to work well, there are still some disadvan-

tages. Constructing a reliable and scalable server costs a lot of money. And the

region near the sinks or gateways to server will lead to heavy network loading. This

will cause the congestion of network and decrease the data availability and accuracy.

Thus, the service will be unstable in peak hours (Gibbons et al., 2003).

Figure 1.2: Centralized System Architecture

• Distributed system: An alternative to the previous architecture is the distributed

8



1.4. SMART PARKING ARCHITECTURES

systems (Basu and Little, 2002), (Caliskan et al., 2006). They use wireless devices

on parking meters and cars to construct a VANETs environment and then spread

parking slot information on VANETs. The VANETs can provide many vehicular

applications such as car safety, traffic analysis and information dissemination. The

dissemination of parking slots information is one of the most popular applications

in VANETs. It is able to gather and disseminate information in a dynamic and

fast way, which is crucial as the availability of on-street parking slots is subject to

frequent changes. This approach is characterized by the absence of a centralized

infrastructure where each vehicle becomes at the same time a client and server

through exchange or dissemination of information. Two modes can be distinguished:

– Cooperative mode, where cars share a common set of information so that ev-

eryone can locate one or more empty parking slots at the nearest destination

and minimize the path relative to current their position.

– Non-cooperative mode (competitive) where cars do not share any information

with each other. Each car must take into account, in its research strategy, the

possibility that other cars choose the same slot as it.

Figure 1.3: Distributed System Architecture

The cost of distributed systems is usually much lower than the cost of centralized

ones, since there is no central server to dispatch the information. However, the main
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disadvantage is that the wireless devices in distributed systems usually transmit a

lot of redundant packets with the same parking information. Users with any mobile

device or a car navigation system can communicate with the parking meters, book,

spot and pay for parking even before arriving at the lot. But the same vacancies are

displayed for all users, if the user just wants to check for vacant slots. This might

cause multiple users to drive to the same slot and therfeore find it occupied when

they get there.

Another reservation protocol was designed (Delot et al., 2009) using vehicular ad

hoc networks where drivers can receive information about parking slots around

them while driving. The protocol allocated efficiently parking slots to interested

cars, thereby avoiding competition between them to get to the slot. Cars establish

a VANET and receive, manipulate and relay parking slot information to cars in

their vicinity. (Caliskan et al., 2007) proposed a mathematical model for parking

lot occupancy prediction and an algorithm that uses parking lot data disseminated

in a VANET to estimate the future occupancy of parking. This enables each vehicle

to choose an appropriate parking lot.

Hybrid system architectures could use a combination of centralized and decentralized

systems to form another one.

1.5 Context aware transportation services

A framework for Context Aware Transportation Services (CATS) has been developed at

the University of Valenciennes. The goal of this framework is to provide an execution

environment for service-based applications as well as management functionalities for the

deployment and the adaptation to context changes. The aim of this framework is also to

ensure continuous service applications, regardless of the conditions. That can be achieved

by adjusting or replacing parts of the application with regard to the evolution of the

context. The focus is on transportation applications such as routing, parking, traffic

events in a context of low (pedestrians) or strong (VANETs) mobility. Some evaluations

of CATS have been presented in (Popovici et al., 2011), showing that the framework

is light enough for mobile devices such as smartphones. With CATS, using the ad-hoc
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network we can detect services that offer a specific functionality to the area we are in,

and we can benefit from them by installing them on our device. In (Popovici et al., 2011),

the authors evaluated the necessary time for service download in different situations and

found results coherent with our need: services can be downloaded fast enough from one-

hop neighbors. In CATS, applications are composed of multiple functionalities, which can

be divided in independent modules. The different reservation protocols are one of these

functionalities.

With CATS, a simple dissemination service can be used to publish available park-

ing slots on the network, or it can be replaced by reservation protocol, depending on

the context in which the application is executed (centralized architecture or distributed

architecture). The service switch modifies the architecture of the application and is the re-

sponsibility of the execution manager. However the decision of implementing this change

is done according to the context and the available services that the trader can reach.

These three components of CATS are illustrated on the right side of Figure 1.4.

Figure 1.4: The Framework Architecture

In the configuration presented here, the dissemination service is about to be stopped

and replaced by a reservation service, which the trader can download and install.

1.6 Parking search models

Parkings play an important role in the traffic system since all cars require a storage loca-

tion when they are not being used to transport passengers. Due to the inherent uncertainty

associated with many of the attributes of public car parks, including availability and lo-

cation (Axhausen and Polak, 1991; Thompson and Richardson, 1998), a high proportion
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of drivers travelling within central city areas must search for a parking slot. Generally,

dedicated searching speed and searching time models represent a parking search phase.

Such models are further split in two sub-models depending on the category of parking:

on-street and off-street. In the on-street parking, searching speed is modeled by a fuzzy

model as a function of the linear traffic density and the occupation rate of the parking

facility. Searching time for on-street parking uses a probabilistic approach to calculate

the searching time based on the occupation rate of the link connecting parking areas and

searching speed. Searching time models estimate the time employed by a driver from the

moment he decides to park up to the moment he finds the first available slot to park.

1.7 Contribution of this thesis

The current smart parking or parking guidance systems only obtain the availability

information of parking slots from deployed sensor networks, and simply publish the

parking information directly to drivers. However, since these systems cannot guide

the drivers to their desired parking and destinations, and even sometimes make the

situation worse, they are not smart enough. For instance, when the number of vacant

slots in an area is limited, more drivers, who obtain the parking information, are heading

for those slots. To alleviate such traffic problems and improve the convenience for

drivers, the work presented in this thesis aims at proposing methods for assigning a

parking lot/slot and computing driver paths across a metropolitan leading them, in a

first moment, toward a parking slot and after to their final destination in a dynamic

environment. Unlike classical assignment and shortest path problems, here the context

is multi-objective due to existence of several criteria such as the distance/time between

the current vehicle position and parking lot/slot and the distance/time between parking

and the driver final destination, which must be considered in the path computation.

In a multi-objective problem, there is no single solution, but a set of compromise

solutions. Then, the difficulty is to compute assignments and shortest paths under a

time constraint of a few seconds, in order to integrate the computation in the response

time of lot/slot system assignment like centralized system architecture. In this thesis, we

first propose new two-phase heuristics to approximate the set of the efficient solutions
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to solve a bi-objective problem. In the first phase, we generate the supported efficient

set by a standard dichotomic algorithm. In the second phase we propose four different

metaheuristcs to generate an approximation of the non-supported efficient solutions.

These metaheuristics are a cost perturbation method, a path-reliking, a genetic algorithm

and finally a hybrid approach combining all of them. The hybrid approach combines

genetic algorithm and mathematical programming techniques. This method is based on

the dominance cost variant of the multi-objective genetic algorithm hybridized with an

exact method. The initial population is generated by solving a series of mono-objective

optimization problems obtained by a suitable choice of a set of weights. The crossover

operator solves a reduced mono-objective problem where the weights are chosen to

identify an unexplored region. The proposed approaches are tested on the bi-objective

shortest path problem and the bi-objective assignment problem. In the second part,

we consider a dynamic multi-objective assignment problem for a smart parking over a

horizon. A mixed integer linear programming formulation is proposed. The objective

functions consist of a balance between the satisfaction of the driver and the interest of

the parking manager. The goal of a driver is to reduce the distance traveled between

the assigned parking slot and his final destination. In addition, minimizing the waiting

time to satisfy his request also interests him. Two approaches are proposed for this

dynamic assignment problem with or without learning phase. To reinforce the learning

phase, an estimation of distribution algorithm is proposed to adjust the demand during

the horizon. To reduce the computational effort, a local search algorithm is introduced

based on a decomposition scheme of the whole problem into a set of sub-problems with

reduced number of cars parking slots.

Concepts of bi-objective optimization and methods are presented in Chapter II, and

three sub-problems are considered in this thesis:

1. Approximation of the set of nondominated shortest paths, discussed in Chapter III.

2. Approximation of the set of non-dominated assignments, discussed in chapter IV.

3. Dynamic assignment with learning reinforcement, discussed in chapter V.
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Chapter 2

Bi–objective combinatorial

optimization problems

2.1 Introduction

Combinatorial optimization encompasses a wide class of problems with many real world

applications in science, engineering, economics, social, medicine, etc. A combinatorial

optimization problem consists in optimizing a given criterion with respect to various con-

straints. These constraints define the set of feasible solutions. However, the optimization

problems in real applications are often multi-objective (production costs, quality, mainte-

nance costs, times, distance, price, etc.), and the different criteria are usually conflicting.

Thus, finding a single solution that optimizes all the criteria is a very difficult task.

Therefore, using the multi-objective combinatorial optimization was the adequate solu-

tion for the interesting researchers in this field. Solving these multi-objective optimization

problems exactly or approximatively requires methods that can generate the whole set

of non–dominated points (called the Pareto-optimal front) or its approximation. For a

general introduction to multi-objective optimization, we refer to (Ehrgott, 2005). In ad-

dition, Ehrgott and Gandibleux provided in (Ehrgott and Gandibleux, 2002) some details

the multi-objective combinatorial optimization and presented their characteristics and the

main findings of the related works.

In this chapter, the basics of multi-objective optimization are discussed and an intro-

duction to some methods in multi-objective combinatorial optimization is given, including
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the definitions of efficient solutions and non-dominated points. The two-phase method

for bi-objective combinatorial optimization problems is also discussed.

2.2 Bi–objective combinatorial optimization

A combinatorial optimization problem consists of finding an optimal solution in a finite

discrete set. Several problems of operational research are included in this framework, such

as the knapsack problem, the assignment problem, the traveling salesman problem, and so

on. The multi-objective combinatorial optimization belongs to the field of combinatorial

optimization. Therefore, some definitions are inspired from combinatorial optimization,

but specific concepts related to multi-objective are also introduced. Indeed, the main

difference is the existence of several functions to optimize.

A bi-objective combinatorial optimization problem can be defined as follows:

(BP ) ”Minimize”{c(x) = (c1(x), c2(x)) : x ∈ X},

where c1 and c2 are two objective functions to minimize simultaneously, X is the set of

feasible solutions, and x is n–dimensional vector of the decision variables.

2.2.1 Pareto optimality

First, we introduce some basic definitions for bi–objective optimization problems. The

objective space is defined by Y = {(y1, y2) ∈ R
2 : yk = ck(x), x ∈ X, k = 1, 2}. The set

Y ⊂ R
2 is the image of the set of feasible solutions X on the space of objectives, (see

Figure 2.1).
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Figure 2.1: Definition of X and Y (case of two variables and two criteria)

Since in general there is no feasible solution that minimizes the two objectives simulta-

neously, we search for an acceptable trade-off between them. This compromise is defined

by a dominance relation that corresponds to a partial order of the objective space (Giard

and Roy, 1985). This dominance is such that no strictly better solution exists, and the

equivalence between solutions is used to characterize Pareto efficiency, which replaces the

notion of optimality in single objective optimization problems. The dominance relation

is a binary relation R defined on a coherent of two criteria c1 and c2. Let x and x′ be two

solutions of the considered multi-objective problem: xRx′ if and only if ck(x) ≤ ck(x
′) for

k = 1, 2. It should be noted that R defines a partial preorder structure on X. The latter

allows to define the concept of efficient solution. Therefore, a feasible solution x∗ ∈ X is

called efficient if and only if there exists no solution x ∈ X such that xRx∗ and non x∗Rx.

In other words, x∗ ∈ X is an efficient solution if there is no other feasible solution x ∈ X

that leads to an improvement on some criterion without simultaneous deteriorating at

least another one.

Definition (Dominance relation). Let y and y′ be two solutions of the objective space

Y of a bi-objective problem. We say that y dominates y′, denoted by y′ ≻ y, if and only

if yk ≥ y′k for k = 1, 2, with at least one inequality being strict.

For multi-objective optimization problems, the order relation between solutions is partial

(two solutions are not always comparable), so the concept of global optimality does not

exist, and thus we talk about compromise solutions. Unlike the mono-objective case,
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the goal here is to find a good compromise between the different optimized objective

functions. The output of the optimization procedure consists of a set of solutions and the

decision maker chooses the one among them that offers the most attractive compromise.

The concept of Pareto optimality has appeared at the end of the 19th century. It allows to

find the compromise solutions. The optimal Pareto front is the set of all non-dominated

solutions in the space of objectives (Allais, 1968).

Definition (Pareto efficiency). A solution x ∈ X is Pareto efficient, if and only if there

is no solution x′ ∈ X such that c(x) ≻ c(x′). The efficient set is defined as E∗ = {x ∈ X :

x is Pareto efficient}, and the Pareto front as F ∗ = {c(x) : x ∈ E∗}.

An efficient solution x∗ ∈ E∗ is also known as a Pareto optimal solution and its image

c(x∗) is called a non–dominated point. In other words, x∗ ∈ X is efficient if there is no

other feasible solution x ∈ X that leads to an improvement in some criterion without

simultaneous deterioration in at least one other.

Definition (Weak Pareto optimum). A solution x ∈ X is a weak Pareto optimum,

also called weak efficient optimum, if and only if there is no solution x′ ∈ X such that

ck(x
′) > ck(x),∀k = 1, 2. The Pareto set E∗ is uniformly dominant if all points in F ∗ are

weakly Pareto.

Definition (Strict Pareto optimum). A solution x ∈ X is a strict Pareto optimum, also

called efficient solution if and only if there is no solution x′ ∈ X such that ck(x
′) ≥

ck(x),∀k = 1, 2 with at least one strict inequality.

The ideal point and nadir point are lower and upper bounds on non–dominated points.

These points give an indication of the range of the values which non–dominated points

can attain. They are often used as reference points in interactive methods in order to

help the decision maker in his choice.

Definition (Ideal and Nadir points.) The point yI = (yI1 , y
I
2), with yIk = min{ck(x) : x ∈

X} for k = 1, 2, is called the ideal point. The point yN = (yN1 , yN2 ) with yNk = max{ck(x) :

x ∈ E∗} for k = 1, 2, is called the nadir point.
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Those points correspond to the optimal solution for each criterion if they are considered

separately. They are reached if the objective functions are independents. If this condition

is satisfied, the multi-objective problem can be considered as a set of mono-objective

problems. In contrast, the nadir point corresponds to the worst values obtained for each

objective function when the space of solutions is considered as the compromise area.

The ideal and nadir points for a nonconvex problem are shown in Figure 2.2. For a

bi–objective optimization problem, the nadir point yN can be determined as follows:

yN1 = max{c1(x) : x ∈ E∗, c2(x) ≤ yI2},

yN2 = max{c2(x) : x ∈ E∗, c1(x) ≤ yI1}.

Note that it is difficult to compute the nadir point yN for multi-objective optimization

problems with more than two objectives.

Figure 2.2: Ideal and Nadir points

Below we introduce Geoffrions definition of efficient solutions with bounded trade-offs,

so called properly efficient solutions.

Definition (properly efficient solution, (Geoffrion, 1968)). A feasible solution x̂ ∈ X is

called properly efficient, if it is efficient and if there is a real number M > 0 such that

for all k = 1, 2 and x ∈ X satisfying ck(x) < ck(x̂) there exists an index h 6= k such that
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ch(x̂) < ch(x) and

ck(x̂)− ck(x)

ch(x)− ch(x̂)
≤ M.

The corresponding point ŷ = c(x̂) is called properly non-dominated.

Note that the definition of efficient solutions and non-dominated points is not unique

in the literature (see references (Chankong et al., 1981), (Miettinen, 1999) and table 2.4

in the book (Ehrgott, 2005) for more details).

In the following, we summarize the main results regarding (weakly) efficient solutions

of bi–objective optimization problems.

Proposition 2.1 . Let λ = (λ1, λ2) ∈ R
2 be a weight vector, and suppose that x̂ is an

optimal solution of the weighted sum optimization problem

(BP (λ)) min{λ1c1(x) + λ2c2(x) : x ∈ X}.

Then, the following statements hold

• If λ1, λ2 > 0, then x̂ is an efficient solution.

• If λ1, λ2 ≥ 0, then x̂ is a weak efficient solution.

• If λ1, λ2 ≥ 0, and x̂ is a unique solution of BP (λ) then x̂ is a strict efficient solution.

(Geoffrion, 1968) establishes the relationships between properly non-dominated points

and optimal points of weighted sum scalarizations with positive weights. He shows that

these points coincide for convex sets.

Theorem 2.1 (Geoffrion, 1968). Let λ = (α, 1 − α) be a positive weight vector with

α ∈]0, 1[. If x̂ is an optimal solution of BP (λ) then x̂ is a properly efficient solution of

BP. Moreover, if the feasible set X is convex and the objective functions c1 and c2 are

convex, then x̂ ∈ X is properly efficient if and only if x̂ is an optimal solution of BP (λ).

2.2.2 Determining the set of efficient solutions

The most common methods for determining the set of efficient solutions are:
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• ǫ–constraints method. This method, introduced by (Haimes et al., 1971), is the

best known technique to solve multicriteria optimization problems. There is no

aggregation of criteria. Instead, only one of the original objectives is minimized,

while the others are transformed into constraints. This method is based on the

minimization of one objective function (the most preferred or primary), and consider

the other objectives as constraints bounded by some allowable level ǫ. Hence, a

single objective minimization is carried out for the most relevant objective function,

subject to additional constraint on the other objective function. More specifically,

the bi–objective optimization problem BP is replaced by the following ǫ–constraint

problem:

(BP k(ǫ)) min{ck(x) : x ∈ X, ch(x) ≤ ǫh, h 6= k},

where ǫ ∈ R. The level ǫ is then altered to generate the entire Pareto optimal set.

The ǫ–constraint method is easy to implement, but it requires a potentially high

computational cost (many runs may be required).

The ǫ–constraint method is justified by the following properties.

Proposition 2.2 – Let x̂ be an optimal solution of BP k(ǫ) for some k. Then x̂

is weakly efficient.

– Let x̂ be a unique optimal solution of BP k(ǫ) for some k. Then x̂ is a strict

efficient (and therefore it is efficient).

– The feasible solution x̂ ∈ X is efficient if and only if there exists an ǫ ∈ R such

that x̂ is an optimal solution of BP k(ǫ) for all k = 1, 2.

(Vira and Haimes, 1983) provides a link between the weighted sum method and the

ǫ–constraint method.

Theorem 2.2 (Vira and Haimes, 1983).

– Suppose x̂ is an optimal solution of BP (λ). If λk > 0, there exists ǫ̂ such that

x̂ is an optimal solution of BP k(ǫ̂), too.
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– Suppose X is a convex set and c1 and c2 are convex functions. If x̂ is an

optimal solution of BP k(ǫ) for some k, there exists λ̂ ∈ R2 with λ̂ ≥ 0 such

that x̂ is optimal for BP (λ̂).

• Benson’s Method (Benson, 1978): This method chooses an initial feasible solu-

tion x′ ∈ X and, if x′ is not efficient, produces a dominated solution x′′ as far from

x′ as possible. The distance from x′ to x′′ is computed as the sum of nonnegative

deviations δk = ck(x
′) − ck(x

′′), k = 1, 2. More formally, the following problem is

solved:

BM(x′) max{δ1 + δ2 : δk = ck(x
′)− ck(x), x ∈ X, δk ≥ 0, k = 1, 2}.

Proposition 2.3 The feasible solution x′ ∈ X is efficient if and only if the optimal

objective value of the problem BM(x′) is 0.

• Weighted Tchebycheff method (Bowman Jr, 1976)

A weighted Chebyshev norm of a point y ∈ R2 with weight β ∈ [0, 1] is defined as

||y||β∞ = max{β|y1|, (1− β)|y2|}.

Methods based on weighted Chebyshev norms select points with minimum weighted

Chebyshev distance from the ideal point yI . The following proposition is a well-

known result for the weighted Chebyshev scalarization (Steuer and Choo, 1983).

Proposition 2.4 If a point y∗ ∈ Y is a non–dominated point, then y∗ is an optimal

solution of the following problem

max{||y − yI ||β∞ : y ∈ Y },

for some β ∈ [0, 1].

The following result of (Bowman Jr, 1976) was originally stated for the efficient set

but it is useful here to state the equivalent result for the Pareto set.
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Proposition 2.5 . If the Pareto set F ∗ is uniformly dominant, then any solution

to the following problem





max z

s.t. z ≥ β(yI1 − y1),

z ≥ (1− β)(yI2 − y2),

y ∈ Y.

where β ∈ [0, 1], corresponds to a Pareto front point.

• Lexicographic Ordering : In this method, the user is asked to rank the objectives

in order of importance. The optimum solution is then obtained by minimizing the

objective functions, starting with the most important one and proceeding according

to the assigned order of importance of the objectives. Lexicographic optimization

problems arise naturally when conflicting objectives exist in a decision problem but

for reasons outside the control of the decision maker, the objectives have to be

considered in a hierarchical manner. This method requires a definition of an order

of the objectives, in decreasing importance, and thus, it defines a total order of the

solutions. If some solutions have the same value for objectives ck, objective ch, with

k 6= h, is used to break ties. For bi-objective problems, there are only two possible

orderings of the objectives, and thus only two different scalarized problems can be

defined, preventing the return of more than two solutions. The lexicographic or

lexicographical order is a generalization of the alphabetical order of words, which is

based on the alphabetical order of their component letters. Let y, y′ ∈ R2, y <lex y′

if yk < y′k where k = min{h : yh 6= y′h}, the lexicographic order is total.

Definition (lexicographically optimality): A solution x̂ ∈ X is lexicographically

optimal if

c(x̂) <lex c(x), ∀x ∈ X.

The following proposition establishes the relationship between lexicographically op-

timal solution and efficient solution.

Proposition 2.6 . A lexicographically optimal solution is also an efficient solution.
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• Max-Ordering Optimality The max-ordering (MO) optimization problem is de-

fined as follows:

(MO)min{max{c1(x), c2(x)} : x ∈ X}.

Definition A feasible solution x̂ ∈ X is max-ordering optimal if there is no x ∈ X

such that

max{c1(x), c2(x)} < max{c1(x̂), c2(x̂)}.

Proposition 2.7 An optimal solution of the max-ordering problem is weakly effi-

cient but not necessarily efficient.

In the literature, there are other methods to characterize the set of non-dominated solu-

tions as decision aid methods (ELECTRE methods and PROMETHEE methods (Figueira

et al., 2005)). When the set of feasible solutions is discrete, fuzzy methods are used. These

approaches will not be considered in this thesis. Interested readers can consult the book

of (Collette and Siarry, 2003). For a broader survey of the field, we refer to recent bibli-

ographies by (Ehrgott and Gandibleux, 2000), (Ehrgott and Gandibleux, 2002), (Ulungu

and Teghem, 1994), and (T’kindt and Billaut, 2001).

2.2.3 The performance measures of optimal Pareto fronts

In a single objective optimization, the evaluation of the solution found by an algorithm is

trivial. Indeed, it suffices to compare this solution with other ones of the same problem

in terms of quality and time. However, in the multi-objective case, there is a set of non-

dominated solutions and therefore they are not comparable. Hence, it is necessary to

provide performance measures to assess the obtained results.

The goal of a multi-objective algorithm is to converge to the true Pareto front of a

problem, which normally consists of a diverse set of points. In this comparative study, per-

formance measures are taken into account for assessing the quality of solutions generated

by the proposed algorithm such as:

1. Solution quality: the number or percentage of true Pareto-optimal solutions gener-

ated,
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2. Solution efficiency: the computation time used to generate the Pareto-optimal set,

3. Generational distance,

4. Error ratio.

Three are normally the issues to take into consideration to design a good metric in

this domain (Zitzler et al., 2000):

1. Minimize the distance of the Pareto front Ẽ produced by an algorithm with respect

to the true Pareto front E∗.

2. Maximize the spread of solutions found, so that we can have a distribution of solu-

tions as smooth and uniform as possible.

3. Maximize the amount of elements of the Pareto optimal set found Ẽ.

Most of the performance metrics assume that the true Pareto front E∗ of the multi-

objective optimization under study is known. In this case, we can test the performance

of a multi-objective algorithm by comparing the Pareto fronts produced by an algorithm

Ẽ with the true Pareto front E∗ and then determine certain error measures that indicate

how efficient is the algorithm analyzed.

The error ratio and generational distance metrics discussed next make this assump-

tion. In order to compare two sets of non-dominated solutions, we need to identify the

characteristics of these sets:

• The distance between the approximate set of non-dominated solutions Ẽ and the

true Pareto front E∗, which must be minimal.

• A good distribution of the solutions (uniform in most cases) is required.

• The magnitude of the obtained front must be maximized that is to say, for each

objective, a wide range of values should be present.

In the literature, several metrics have been proposed (Knowles and Corne, 2002) and are

divided into two sets. The first includes the metrics providing an absolute measurement

with respect to Pareto optimal solutions E∗ and the second contains the metrics that

provide the measures associated between two approximate sets X ′ and X ′′.
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The set E∗ is known:

• Error Ratio (ER): This metric, proposed by (Van Veldhuizen, 1999a), reports the

proportion of solutions in Ẽ (approximation set of Pareto optimal solutions) that

are not members of E∗ (set of efficient solutions). Formally this metric is computed

by the following equation:

ER =

∑
x∈Ẽ XE(x)

|Ẽ|

where XE is the characteristic function relative to the set E, i.e.. XE(x) = 0 if

x ∈ E and XE(x) = 1 if x /∈ E. Thus, when ER = 0 all the solutions in Ẽ belong

to E∗; but when ER = 1, this indicates that none of the points in Ẽ are in E∗. The

drawback of this metric is that it requires knowing the Pareto optimal set, which is

often not easy to determine.

• Generational Distance (GD): This metric is proposed by (Van Veldhuizen and

Lamont, 1998b). It estimates, for a given problem, how far is Ẽ from the E∗ of

a problem, using the Euclidean distance (measured in objective space), between

each solution and the nearest member of E∗. It is mathematically defined by the

following equation:

GD =

√
(
∑

x∈Ẽ d(x, x∗)2)

|Ẽ|
,

where x∗ is the closest solution in E∗ to that solution x, i.e., x∗ = argmin{d(x, x′) :

x′ ∈ E∗}, being d(x, x′) the distance between the two solutions x and x′. It is easy

to see that a value of GD = 0 indicates that Ẽ = E∗. Other similar metrics were

proposed by (Rudolph, 1998; Schott, 1995; Zitzler et al., 2000; Van Veldhuizen and

Lamont, 1998a). The problem with this metric is that only the distance to E∗ is

considered and not a uniform spread along the Pareto front.

• Maximum Pareto front Error(ME): The Maximum Pareto front Error (ME)

compares two set of solutions (Van Veldhuizen, 1999b; Van Veldhuizen and Lamont,

1999). More precisely, it measures the largest minimum distance between each

solution in Ẽ and the corresponding closest solution in E∗, i.e.,

ME = max{min{(|c1(y)− c1(x)|
p + |c2(y)− c2(x)|

p)
1

p : y ∈ Ẽ} : x ∈ E∗}.
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• Spacing metric (S): It describes the spread of the solution in Ẽ (Coello et al.,

2002; Schott, 1995). It measures the distance variance of neighboring solution in Ẽ

by computing the distance between two consecutive solutions of Ẽ:

S =

√
1

|Ẽ| − 1

∑

x∈Ẽ

(d(x)− d̂)2,

where

d(x) = min{|c1(x)− c1(y)|+ |c2(x)− c2(y)| : y ∈ Ẽ}

and

d̂ =

∑
x∈Ẽ d(x)

|Ẽ|
.

In the case where S = 0, all members are spaced evenly apart. Note that this

becomes important in the deception problems where all Pareto front solutions are

equally spaced.

• Maximum Spread (MS): The metric measures the distribution of individuals in

Ẽ over E∗. It uses a statistical metric such as the chi-square distribution to measure

spread along the Pareto front. This metric assumes that we know the true Pareto

front of the problem:

MS =

√√√√ 1

|Ẽ|

2∑

k=1

(
maxx∈Ẽ ck(x)−minx∈Ẽ ck(x)

cmax
k − cmin

k

),

where cmax
k is the maximum value of the kth objective function, i.e. cmax

k =

max{ck(x) : x ∈ X}, and cmin
k is the minimum value of the kth objective func-

tion, i.e., cmin
k = min{ck(x) : x ∈ X}.

The set E∗ is not known: In this case, the metrics allow to compare two approx-

imate sets of non-dominated solutions. There are measures that evaluate the quality of

one approximate set, that evaluate the convergence or the diversification or that evaluate

both the convergence and the diversification simultaneously.

• Attainment Surfaces(AS): Draw a boundary in the objective space that sep-

arates the points that are dominated from those which are not (this boundary is

called attainment surface). Perform several runs and apply standard non-parametric

statistical procedures to evaluate the quality of the non-dominated vectors found.
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It is unclear how we can really assess how much better is a certain approach with

respect to others.

• The coverage measures (CM): This metric measures the size of the objective

value space area Y that is covered by a set of non–dominated solutions E∗. It

combines the three issues previously mentioned (distance, spread and amount of el-

ements of the Pareto optimal set found) into a single value. Therefore, sets differing

in more than one criterion cannot be distinguished. (Zitzler et al., 2000) proposed

another metric for comparing the performances of different algorithms. Suppose

we want to compare the performance of two algorithms A′ and A′′, which gener-

ate the two sets X ′ and X ′′, respectively. More specifically, for each ordered pair

(X ′, X ′′) subsets of solutions, i.e., X ′, X ′′ ⊆ X, the metric CM corresponds to a

value CM(X ′, X ′′) in the interval [0, 1] computed as follows

CM(X ′, X ′′) =
|{x ∈ X ′′ : ∃y ∈ X ′such that y ≺ x}|

|X ′′|
.

If CM(X ′, X ′′) = 1, then all the solutions in X ′′ are dominated by or are equal to

solutions in X ′. If CM(X ′, X ′′) = 0, then none of the solutions in X ′′ are covered

by the set X ′.

There are other existing performance metrics given in (Sarker and Coello, 2002) and

(Zitzler et al., 2003). However, we will only use these two previous metrics ( AS and and

CH).

2.3 Bi–objective methods

Solving a multi-objective combinatorial optimization problem consists of providing a set

of Pareto solutions (as complete as possible) to the decision maker. Therefore, he can

choose the most interesting solutions among them. Hence a question arises about the

nature of these Pareto solutions and the techniques available to get them all. A study of

the Pareto frontier should be performed.
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2.3.1 Decision aid methods

Solving a multi-objective problem leads to the determination of a set of Pareto solutions.

Therefore, it is necessary to integrate the decision maker, who is responsible for the final

choice of the solution. Thus, before starting to solve of a multi-objective problem, we

should select the kind of optimization method to be used. Indeed, one can divide the

methods of solving multi-objective problems into three groups, depending on the time

available to the decision maker. We can find the following families of methods(Knowles

and Corne, 2004):

• A priori methods: In a priori optimization, the decision maker is consulted

before the search process begins in order to build a mathematical model of his

preferences that will be used in the search to evaluate all solutions. The best solution

of this model is the result of process optimization without additional intervention of

the decision maker. The main drawback of these methods is obvious: it is very hard

for the decision maker to provide adequate models that determine which solutions

he prefers without having an idea about the number of objectives to sacrifice for the

benefit of others. This approach is fast, but we should take into account the time of

modeling the compromise and the possibility that of the decision maker will be not

satisfied with the obtained solution and repeat the search with another compromise.

• A posterior methods: In this second family of methods, we try to provide a set

of good solutions to the decision maker. He can select among these solutions the

one that seems most appropriate. These methods do not require the modeling of

preferences of the decision maker and its presence throughout the search process. In

this kind of method, two main phases are considered: the search phase of all Pareto

optimal solutions (i.e. solving the optimization problem) and the choice phase of

these solutions.

• Interactive methods: Here, the decision maker is involved in the process of finding

solutions by answering different questions in order to guide the search. Interactive

methods combine a priori i and a posterior methods in an iterative process, prefer-

ences and discover solutions. These methods are probably preferable to a posterior

methods, since they limit the choices shown to the decision maker at any time, and

28



2.3. BI–OBJECTIVE METHODS

focus the search in a narrower space. This approach allows us to properly take into

account the preferences of the decision maker, but requires its presence throughout

the search process.

2.3.2 Two-phase methods

In this section, we present a two-phase method for the bi–objective problem. The two–

phase methods have been widely used to solve bi–objective optimization problems. In the

first phase, the set of supported efficient solutions is computed by solving a series of the

single problems, while in the second phase other efficient solutions are computed. The

two-phase method is a general method for solving bi–objective combinatorial problems

((Przybylski et al., 2008), (Przybylski et al., 2010), (Raith and Ehrgott, 2009b), (Ulungu

and Teghem, 1995)). A description of the two-phase method for general multi-objective

combinatorial optimization problems can be found in (Ulungu and Teghem, 1995).

The non–dominated points in F ∗ are partitioned into supported and non–supported

points. The supported ones can be further subdivided into extreme and non-extreme

points. Let us define the following notation:

Y ≥ = Y ⊕ {y ∈ R2 : y ≥ 0}),

where the operator ⊕ denotes the usual direct sum.

Definition (Supported efficient solution) A supported efficient solution x is an efficient

solution of a BP problem, such that x ∈ E∗ and its image is situated on the boundary of

the convex hull of the space Y ≥, i.e., c(x) is on the boundary of Conv(Y ≥). We denote

E∗
S the set of supported efficient solutions.

The supported efficient solutions of the BP problem can be obtained by solving a series

of mono–objective problems with a weighted sum of two objectives.

Proposition 2.8 (Steuer, 1986). Given a bi–objective problem, a solution x̃ ∈ X is a

supported efficient solution if it is an optimal solution of the following parametrized single

objective problem:

(BP (λ)) min{c̃(λ, x) = λ1c1(x) + λ2c2(x) : x ∈ X},
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where λ = (λ1, λ2) ∈ R
2
+ − {0}.

The supported points are those found on the boundary of the convex hull of the objective

space Conv(Y ≥), while the non–supported efficient solutions are located in the interior of

Conv(Y ≥). The method to find supported efficient solutions is referred as the weighting

method. The non–supported solutions can be found by the weighting method since their

objectives are dominated by the convex combination of the supported efficient solution ob-

jectives. However, there is no known characterization of non–supported efficient solutions

and a polynomial time algorithm for their computation is not known up to now. Figure

2.3 displays the set of efficient solutions where points A,B,C, and D are non–dominated

supported extreme points; points E,F, and G are non–dominated non–supported points;

and points H and I are dominated points.

In the bi–objective case, the supported extreme non–dominated points define a number

of triangles in which non–supported non-dominated points may be found. These triangles

are illustrated in the Figure 2.3.

Figure 2.3: Supported and non supported efficient solutions

The Phase 1 is the non-inferior set estimation algorithm proposed by (Cohon, 1978),
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and the idea was first applied to the bi-objective transportation problem (Aneja and

Nair, 1979), where it was used to determine the set of supported extreme non-dominated

points. The pseudo–code for Phase 1 is shown in Algorithm 1. The Phase 1 is initialized

by finding the upper left and lower right points. The upper left point x1,2 is an optimal

solution of the lexicographic optimization problem

lexmin{”c1(x), c2(x)” : x ∈ X}.

The lower right point x2,1 is computed by solving the lexicographic optimization problem

lexmin{”c2(x), c1(x)” : x ∈ X}.

In the case where the two points c1(x
2,1)) and c2(x

1,2)) coincide, the algorithm stops and

returns only one supported solution. In Phase 1, the set of supported extreme non–

dominated points is usually found using a parametric optimization problem BP (λ). To

define this problem BP (λ), two supported extreme non-dominated points x+ and x− are

used to define λ as the slope of the line connecting two non–dominated points c(x+) and

c(x−). If the optimal solution x∗ of BP (λ) corresponds to a new supported extreme non-

dominated point, then the parametric objective function value λ1c1(x
∗) + λ2c2(x

∗) must

be less than λ1c1(x
+)+λ2c2(x

+) (see Figure 2.4). This process is finite since the weighted

sums eventually find no solutions in interior of the convex hull conv(Y ).

Figure 2.4: An iteration of dichotomic algorithm
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Algorithm 1: Phase 1 – Finding Supported Extreme Non–dominated Points

Input: The two objectives ck for k = 1, 2.

Output: E∗
S set of supported efficient solution set for the BP problem.

Let x1 be an optimal solution of BP (1, 0);

Let x1,2 be an optimal solution of BP (c2(x
1), 1);

Let x2 be an optimal solution of BP (0, 1);

Let x2,1 be an optimal solution of BP (1, c1(x
2));

Set E∗
S = {x1,2, x2,1};

if c(x1,2) = c(x1,2) then

Stop (only one non-dominated point);

Dichotomic(E∗
S, x

1,2, x2,1);

return E∗
S;

Algorithm 2: Dichotomic to Compute Supported Solutions

Input: E∗
S set of supported efficient solution set, x+, x− ∈ E∗

S with

c1(x
+) < c1(x

−).

Output: E∗
S set of supported efficient solution set for the BP problem.

Let λ1 = c2(x
+)− c2(x

−) and λ2 = c1(x
−)− c1(x

+);

Solve BP (λ1, λ2) with x∗ optimal solution;

if λ1c1(x
∗) + λ2c2(x

∗) < λ1c1(x
+) + λ2c2(x

+) then

Set E∗
S = E∗

S ∪ {x∗};

Dichotomic(E∗
S, x

+, x∗);

Dichotomic(E∗
S, x

∗, x−);

return E∗
S;

Because supported and unsupported non–dominated points may exist, it is not possi-

ble, in general, to find all non–dominated points during the first phase. These points are

found in Phase 2, which separately searches each triangle defined by the set of supported

non–dominated points found in Phase 1. The set of supported non–dominated points F ∗
S

found in Phase 1 may be ordered according to increasing values of the first objective,

and a given triangle is defined by two consecutive points in this list. The search for

non–dominated points in this triangle may be carried out in several ways and it is often

problem specific. There are many proposed methods in the literature (see, for instance,
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(Tuyttens et al., 2000), (Visée et al., 1998), (Przybylski et al., 2008), and (Pedersen et al.,

2008)). The best methods exploit some ranking algorithms to generate solutions to the

weighted sum problem in the order of their objective value. This has been applied to

many problems where efficient ranking algorithms exist, such as the multi-modal assign-

ment problem (Pedersen et al., 2008), shortest path problem (Raith and Ehrgott, 2009)

and finding network spanning trees (Steiner and Radzik, 2008).

2.3.3 Multi-objective evolutionary algorithms

Evolutionary algorithms (EAs) are inspired from the Darwinian theory of the natural

evolution in order to provide solutions to optimization problems. The main difference

between EAs and traditional techniques is that they are methods population based. The

general framework of an EA can be presented as follows: initially a population of indi-

viduals that represent candidate solutions of the studied problem is generated. Then, the

fitness of each individual is evaluated. Next, according to a fitness function, a subset of

parents is selected from the initial population. At the next steps, some search operators

such as recombination and mutation are applied to the selected parents for producing

new generation. The whole process is repeated until satisfying a predetermined stopping

criterion. Several algorithms have been developed in this area and the differences between

them are defined by fitness evaluation, selection and search operators. The genetic algo-

rithms (GA) where first proposed in (Holland, 1975) in 1975 and were later adapted by

Goldberg for optimization problems (Goldberg, 1989). A GA is an evolutionary meta-

heuristic based on the process of natural evolution. Genetic Algorithms are the most

popular techniques of evolutionary algorithms. They consist of a stochastic procedure

based on mechanisms of natural selection, genetics and evolution.

Evolutionary algorithms are suitable to solve multi-objective optimization problems

as they are able to find several Pareto-optimal solutions in a single evolutionary process,

and may exploit similarities of solutions by recombination.

In each iteration, two parents are selected for reproduction, based on a fitness value,

to create children. The created solutions can then mutate, in order to vary a bit from

their parents and can replace some individuals of the current population. The first

multi-objective GA was proposed by (Schaffer, 1985) in 1985 and it is called Vector
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Evaluated Genetic Algorithm. Several multi-objective evolutionary algorithms were

developed such as multi-objective Genetic Algorithm (C.M. Fonseca, 1993), Niched

Pareto Genetic Algorithm (J. Horn, 1994), Random Weighted Genetic Algorithm

(T. Murata, 1995), Non–dominated Sorting Genetic Algorithm (N. Srinivas, 1994),

Strength Pareto Evolutionary Algorithm (E. Zitzler, 1999), Pareto-Archived Evolution

Strategy (J.D. Knowles, 1985), Fast Non–dominated Sorting Genetic Algorithm (Deb

et al., 2002), multi-objective Evolutionary Algorithm (R. Sarker, 2002), Rank-Density

Based Genetic Algorithm (H. Lu, 2003). A survey on evolutionary multi-objective

optimization can be found in (Coello, 2000).

Aggregating approach: In this approach, all objectives are combined into a single one

via a weight vector. The weights define the relative importance of the objectives of the

problem. The most used way is the weighted sum aggregation. In this case, it is usually

assumed that the sum of weights is equal to one. However, in practice, it is difficult

to predetermine precisely the weights. Moreover, this approach suffers the drawback of

missing some members of the Pareto optimal set in the presence of concave Pareto front,

regardless of the weights used (Coello Coello, 1996).

Vector Evaluated Genetic Algorithm (VEGA): It was proposed by Schaffer (1985).

This method treats the objectives separately by presenting a particular selection operator.

Given k objective functions and a population size P , k sub-populations of size P/k are

generated, at each generation, by performing proportional selection according to each

objective function in turn. These sub-populations are shuffled together to obtain a new

population of size P and recombination and mutation are performed as usual.

Multi-Objective Genetic Algorithm (MOGA): This method was implemented by

(C.M. Fonseca, 1993). Firstly, all non-dominated individuals are ranked to 1 and the

rank of a dominated solution i, at generation g, is obtained according to the number

of individuals by which it is dominated (qi) as follows: rank(i, g) = 1 + qi. Secondly,

each individual should have fitness through one of two possible ways the Pareto ranking

scheme of (Goldberg, 1989) or niche-formation methods.

Non-dominated Sorting Genetic Algorithm (NSGA): It was proposed by

(N. Srinivas, 1994). The framework of this algorithm is the following. After generating

the initial population, the latter is ranked using Pareto ranking. All non-dominated
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solutions are classified in the first level, which represents the best front. Then, the next

level consists of the non-dominated solutions after removing the first level and so on until

all members of the population are classified. The next step consists to assign the highest

fitness to the solutions belonging to the first front and then assign a progressively worse

fitness to solutions of larger index front. Any solution i of the first non-dominated set is

assigned to a fitness equal to the size of the population. In order to maintain diversity,

the fitness is degraded according to the number of neighboring solutions. The sharing

function is used for this aim. Therefore, the normalized Euclidean distance is computed

for each pair of solutions (i, j) based on the decision variables of the problem. These

distances are then used to compute the sharing function. Any solution j that has a

distance greater than a constant sharing factor value σshare from the ith solution does

not contribute to the sharing function value. Then, the niche count is obtained by the

sum of the sharing function values. It gives the number of neighboring solutions of the

ith solution. The last step is to reduce the fitness of the ith solution by its niche count

and obtain the shared fitness values. For the solutions of the second front, initially, the

assigned fitness is the minimum shared function value of the first front and then the

shared function method is applied. The process continues in the same way for all the

remaining fronts. Against MOGA, NSGA has presented lower performance and it seems

to be more sensitive to the value of the sharing factor (Coello, 1996).

Niched Pareto Genetic Algorithm (NPGA): This algorithm was proposed by Horn

et al. (1994). It differs from the previous methods in the selection phase. Two individuals

are chosen at random and compared against a subset Q of the initial population. If

one of them dominates all the solutions of Q and the other is dominated by at least

one individual, then the non-dominated one is selected. If both individuals are either

dominated or non-dominated, the selection is performed through the sharing function

method based on the objective domain called equivalent class sharing.

Strength Pareto Evolutionary Algorithm (SPEA): This algorithm, proposed

by (E. Zitzler, 1999) uses the concept of strength to locate and maintain a front of

non-dominated solutions. The strength, computed as the ranking procedure in MOGA,

indicates the degree to which a solution is dominated (strength). The fitness assignment

of each individual is performed according to the strengths of all non-dominated solutions
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that dominate it. The diversity of the algorithm is guaranteed by using the average

linkage method.

Pareto Archived Evolution Strategy (PAES): It was developed by (J.D. Knowles,

1985) and uses the (1+1) evolutionary strategy. In fact, each parent produces one

offspring via mutation and then they are compared to decide which one will be the parent

of the next generation. If the offspring wins, it is added to an archive that contains the

set of non-dominated solutions found so far.
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Chapter 3

Metaheuristics for the bi–objective

shortest path problem

3.1 Bi–objective shortest path problem

Shortest Path (SP) problems are among the most fundamental combinatorial optimiza-

tion problems from an academic point of view. They play a major role in problems arising

in many industrial applications such as transportation, logistic, routing, robot navigation,

urban traffic planning, routing of telecommunications messages, approximating piecewise

linear functions, optimal truck routing through given traffic congestion pattern, etc. Al-

gorithms for solving these problems have been intensively studied since 1950’s (see (Gallo

and Pallottino, 1988; Ahuja et al., 1993; Cormen et al., 2001)) and still remain an active

area of research. There are many contributions on a wide range of SP problems, including

the combination of the following problems: point–to–point, single–source, single–target,

all–pairs, directed or undirected graph, dense or space graph, arbitrary arc costs, k–

shortest paths, dynamic problems, exact and approximate shortest paths, etc. Generally,

shortest path problems are multi–objective in nature, and in many cases the choice of a

route depends on various factors like time, cost and length. This choice may depend also

on parking or maintenance facilities, accessibility, environmental impact, reliability and

risk. For instance, in transportation of hazardous materials, a route is chosen considering

the distance, the risk for the population, and the transportation costs (Erkut et al., 2007).

Recently, (Wang et al., 2013) incorporates the travel time reliability and monetary cost
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to design efficient routes in a road network.

In this chapter, we consider the Bi–objective Shortest Path (BSP) problem that aims

to find efficient (non–dominated or Pareto–optimal) paths from a source vertex to a target

vertex while optimizing two objectives simultaneously. Hereafter a standard mathematical

formulation of the BSP problem is provided. Consider a directed graph G = (N,A) where

N = {1, 2, ..., n} is the set of nodes and A = {(i, j) ∈ A : i, j ∈ N, i < j} is the set of

arcs joining nodes in N . For each arc (i, j) ∈ A, two costs (c1ij and c2ij) are associated. A

path π in the graph G from node i0 to node ip is a sequence π = (i0, . . . , ip) such that

(ih, ih+1) ∈ A for h = 0, . . . , p − 1. Let Π(i, j) be the set of all paths from i to j. The

BSP problem from source s ∈ N to target t ∈ N can be formulated as:

min{c(π) = (c1(π), c2(π)) : π ∈ Π(s, t)},

where ck(π =< i0, . . . , ip >) =
∑p−1

h=0 ck(ih, ih+1) for k = 1, 2. The standard mixed integer

program formulation of the BSP problem may be stated as follows:

min c(x) = (c1(x), c2(x))

s.t.

∑
{j|(i,j)∈A} xij −

∑
{j|(j,i)∈A} xji =





1 if i = s,

0 if i 6= s, t,

−1 if i = t,

xij ∈ {0, 1} , ∀ (i, j) ∈ A.

(3.1)

where xij is a binary variable that equals to 1 if edge (i, j) is selected in an efficient path,

and 0 otherwise, and ck(x) =
∑

(i,j)∈A ckijxij for k = 1, 2.

A simple graph is given in Figure 3.1, where three efficient paths from node s to node

t are shown in color, namely (s, a, d, t), (s, b, c, d, t) and (s, b, c, t) with total costs (7, 5),

(5, 7) and (6, 6) respectively.
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Figure 3.1: A small example with 3 efficient solutions.

The BSP problem is well known to be NP–hard (Serafini, 1987). (Hansen, 1980) shows

that the number of non-dominated paths may increase exponentially with the number of

nodes n. The BSP problem is more difficult to solve than the corresponding single criterion

problem. BSP problems are often treated independently of multi–objective SP problems

with more than three objectives because of their special structure, the difficulty grows

strongly with the number of objectives (”Three is more than two plus one.” (Ehrgott and

Gandibleux, 2002)).

Several exact and approximative methods for solving the bi–objective shortest path

problem are proposed in the literature. (Skriver, 2000), (Ehrgott and Gandibleux, 2002)

and (Raith and Ehrgott, 2009a) give surveys on existing exact methods proposed for BSP

problem. They classify these approaches into two categories: enumerative approaches

such as label correcting ((Daellenbach and De Kluyver, 1980), (Corley and Moon, 1985),

(Brumbaugh-Smith and Shier, 1989), (Skriver and Andersen, 2000), (Guerriero and Mus-

manno, 2001), (Sastry et al., 2003)), and label setting ((Hansen, 1980), (Martins, 1984),

(Tung and Chew, 1988), (Tung Tung and Lin Chew, 1992), (Martins and Santos, 1999))

or ranking methods ((Namorado Climaco and Queiros Vieira Martins, 1982)). The sec-

ond category includes the two phase method or parametric approach ((Mote et al., 1991),

(Raith and Ehrgott, 2009a)). The interested reader is referred to (Raith and Ehrgott,

2009a) for a more detailed discussion on the related literature. The most recent work,

see for example (Xie and Travis Waller, 2012), proposes an approximate polynomial–time

parametric procedure for BSP problems, to find the full or near full set of Pareto–optimal

paths.

Despite their efficiency to solve the considered problem for a small to medium size
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instances, these methods cannot be used to solve real problems where instances are very

large. The reason is that none of these instances can be solved in a reasonable time.

Thus, during the last few years, multi-objective evolutionary algorithms have attracted

the interest of many researchers from the field of combinatorial optimization. For instance,

(Gen and Lin, 2005) use a multi-objective hybrid genetic algorithm to solve the network

design problem in order to minimize the cost and maximize the flow simultaneously.

(Mooney and Winstanley, 2006) developed an Evolutionary Algorithm to solve the

BSP problem on networks with multiple independent criteria. (Pangilinan and Janssens,

2007) presented a review of recent issues regarding the resolution methods of the BSP

problem. (Lin and Gen, 2009) proposed new multi–objective hybrid genetic algorithms

for three kinds of bicriteria network design models. (Ghoseiri and Nadjari, 2010) studied

and solved the BSP problem using an algorithm based on multi-objective Ant Colony

Optimization. More recently (Mohamed et al., 2010) presented a bi-objective genetic

algorithm approach based on vector evaluation to solve the bi-objective shortest path

problem, and (Liu et al., 2012) investigated an oriented spanning tree based genetic

algorithm for the multi–criteria shortest path problem.

In this chapter, we present a two phase method for the BSP problem. The two–phase

methods have been widely used to solve bi–objective optimization problems ((Przybylski

et al., 2008), (Przybylski et al., 2010), (Raith and Ehrgott, 2009b), (Ulungu and Teghem,

1995)). In the first phase, the set of supported efficient solutions is generated by solving

a series of the single SP problems, while in the second phase an approximation of the

set of unsupported solutions is investigated. We adopt the dichotomic approach for the

first phase of the two phase algorithm proposed by (Raith and Ehrgott, 2009b) (see also

(Aneja and Nair, 1979), (Cohon, 1978)). The next sections describe the metaheuristics

used to approximate the non-supported efficient solutions set: cost perturbation method,

path–relinking, genetic algorithm and finally an hybrid approach combining these three

metaheuristics.
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3.2. COST PERTURBATION METHOD

3.2 Cost perturbation method

The first proposed heuristic is a new method based on the cost perturbation. In this

method, small perturbations are performed on the costs of the considered bi–objective

problem. The new weighted cost c̃ij of variable xij is as follows:

c̃ij(λ) = λ1(c
1
ij + ǫ1ij) + λ2(c

2
ij + ǫ2ij),

where λ1 and λ2 are respectively the weights of objective c1 and c2. The ǫ
k
ij’s are random

values in [−ǫkmax, ǫ
k
max].

For each disturbed cost, the single SP problem with this weighted sum problem is solved

using the Dijkstra algorithm. These variations will allow us to slightly move to the

Pareto front and therefore find a non-supported efficient solution. The cost perturbations

heuristic starts with the set of supported efficient solutions generated at the first phase

and the process is repeated for a fixed number of iterations. At each iteration, the

optimal solution of the current disturbed single SP problem is added to the current list

of non-dominated solutions if it is non dominated by those solutions. This approach is

connected with the noising method proposed by (Charon and Hudry, 1993). The noising

method applied to single objective optimization tries to generate local optima, while if it

is applied to multi–objective optimization problem it generates non–dominated ones.

Algorithm 3 summarizes the Cost Perturbations Heuristic (CPH). Let S be a subset of

efficient solutions and x a feasible solution, and let Dom(x, S) = {y ∈ S : x dominates y}.
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Algorithm 3: Cost perturbation heuristic

Input: The two objectives ck and parameters ǫkmax, for k = 1, 2; and Itermax the

maximum number of iterations.

Output: Ẽ Approximation of efficient solution set for the BSP problem associated

with G.

Compute the set of supported efficient solutions ES;

Set Ẽ = ES = {(π, λ) : π is an optimal solution of SP (λ)};

Set iter = 1;

while iter ≤ Itermax do

Select randomly (π, λ) ∈ Ẽ;

For k = 1, 2, choose randomly ǫkij ∈ [−ǫkmax, ǫ
k
max];

For all (i, j) ∈ A, set c̃(λ)ij = λ1(c
1
ij + ǫ1ij) + λ2(c

2
ij + ǫ2ij);

Solve the SP (λ) problem related to the graph G with the cost function c̃(λ),

obtaining solution π;

if Dom(π, Ẽ) = ∅ then

Add π to the set Ẽ, i.e.. Ẽ = Ẽ + {π};

Set iter = iter + 1;

return Ẽ;

3.3 Bi–objective path relinking

Path-Relinking (PR) was originally proposed by (Glover, 1977) as an evolutionary meta-

heuristic to explore trajectories connecting good solutions obtained by heuristic methods

such as tabu search or scatter search. Path-relinking generalizes the combination method

of scatter search. It generates paths between two selected solutions in the neighborhood

space. In single objective optimization, path relinking is used as an intensification

strategy, while here we use it to generate non–supported efficient solutions. In order to

deal with the BSP problem, we present in this section a new Bi–objective Path Relinking

(BPR) heuristic to generate an approximation of the non–supported efficient solution

set ES̄. This BPR heuristic takes as an argument the set of supported solutions ES

generated in the first phase. At each iteration, two solutions are generated, as usually

done by path relinking. One is called the initial solution, and the other is called the
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guiding solution. The initial solution π is selected randomly from the set of the support

efficient solutions, π ∈ ES with its associated weight λ = (λ1, λ2), i.e.. π is an optimal

solution of the parametrized single objective problem SP (λ). The guiding solution π′ is

also selected randomly from π′ ∈ ES with its associated weighted λ′ = (λ′
1, λ

′
2), i.e.. π

′ is

an optimal solution of SP (λ′).

Once the two solutions are selected, a Local Search (LS) procedure is applied. The LS

procedure takes as arguments the initial solution π and the weights λ′ of the guiding

solution π′. At each iteration, two nodes i and j belonging to the path π are selected

randomly, then the sub–graph Hij of G is constructed, containing all the paths between

nodes i and j in G. After, the single SP (λ′) problem is solved related to Hij to obtain

a shortest path π′(i, j). Next, the sub–path π(i, j) is replaced by π′(i, j) in the shortest

path π and if this new path is added to the efficient set Ẽ , it is non dominated by one

of the already efficient solutions generated, (i.e., if yes, a new non–supported efficient

solution is generated).

Algorithm 4: Bi–objective path relinking

Input: The two objectives ck and ES the set of supported efficient solutions for

the BSP problem associated with G.

Output: Ẽ Approximation of efficient solution set for the BSP problem associated

with G.

Set Ẽ = {(π, λ) : π ∈ ES and λ the associated weight };

while stopping criterion is not met do

select randomly (π, λ) ∈ Ẽ;

select randomly (π′, λ′) ∈ Ẽ;

E ′ = Local Search(π, λ′, Ẽ);

Ẽ = Dom(E ′, Ẽ);

return Ẽ;
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Algorithm 5: Local Search

Input: A supported efficient solution π, a weight λ, and an approximation Ẽ of

efficient solutions set.

Output: E ′ a subset of efficient solutions set for the BSP problem associated with

G.

Set E ′ = ∅;

while stopping criterion is not met do

Select randomly two nodes i and j on the path π;

Construct the sub–graph Hij containing all paths between i and j;

Let π′(i, j) be a shortest path between i and j in Hij with the cost c̃(λ′);

Replace the sub–path π(i, j) by π′(i, j) in π;

if Dom(π, Ẽ) = ∅ then

Add π to the set E ′ and Ẽ, i.e.. E ′ = E ′ + {π}, Ẽ = Ẽ + {π};

return E ′;

This process is repeated 20 times at each iteration, meaning, 20 new generated

solutions by iteration.
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Figure 3.2: A non–supported efficient solution generated by local search

Figure 3.2 illustrates one iteration of the LS procedure to generate a non–supported

efficient solution. Let π = (1−2−5−8−14−17−21−28−30) be the supported efficient

solution chosen randomly from the set ES. Let i = 8 and j = 21 the two nodes of π

selected randomly. The sub-graph Hij of G containing all paths between i and j is drawn

bellow G. Now, the single SP (λ) is solved on the sub–graph Hij to obtain the shortest

path π′(i, j) = (8− 12 − 15 − 18 − 21). Then, this subpath replaces π(i, j) in π. Hence,

the generated path by local search is π = (1− 2− 5− 8− 12− 15− 18− 21− 28− 30).

3.4 Genetic algorithm

In this section, we propose a Genetic Algorithm ( GA) for the bi-objective shortest path

problem to generate an approximation of the set of non-supported efficient solutions. GA

operates with a collection of solutions, called a population. The population is initialized as

the set of supported efficient solutions. GA uses two operators to generate new solutions

from the existing ones: crossover and mutation operators. The crossover operator is the
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most important operator of GA. In crossover, generally two solutions, called parents, are

combined together to form new solutions, called offspring. The crossover operator may

generate a new non–supported solution by solving a single SP problem combining the two

SP problems associated to parents. The parents are selected from the current population.

The mutation operator introduces random changes into characteristics of solutions. In

our implementation the mutation is not applied.

Algorithm 6: Genetic algorithm

Input: The two objectives ck and ES the set of supported efficient solutions for

the BSP problem associated with G.

Output: Ẽ Approximation of efficient solution set for the BSP problem associated

with G.

Set Ẽ = {(π, λ) : π ∈ ES and λ the associated weight };

while stopping criterion is not met do

Select randomly two supported solutions (π′, λ′), (π′′, λ′′) ∈ Ẽ;

Set E ′ = Crossover((π′, λ′), (π′′, λ′′), Ẽ);

Ẽ = Dom(E ′, Ẽ);

return Ẽ;

• Solution representation: For routing problems various encoding methods have

been proposed in the literature (see for example, (Gen et al., 1997), (Inagaki et al.,

1999), and (Ahn and Ramakrishna, 2002)). In the proposed GA, a solution is

represented by a chromosome as proposed by (Ahn and Ramakrishna, 2002). Since

a solution of the BSP problem is a path, a variable-length representation is adopted

for each chromosome, which consists of sequences of nodes belonging to this path.

Each locus of the chromosome represents an order of nodes in the path, and the

length of the chromosome is variable but should not exceed the number of nodes.

The first and last loci are reserved respectively to the source and the target nodes.

Figure 3.3 shows a solution π = (1− 3− 5− 8− 10) where s = 1 and t = 10.

• Initial population: The initial population is defined as the set of supported ef-

ficient solutions E∗
S determined in the first phase of the two phase method. This

set E∗
S is generated by the dichotomic approach described in Chapter 2. For each
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Figure 3.3: Chromosome representation.

solution (path) π in the initial or the current population. We keep its associated

weight vector λ(π).

• Crossover operator: The crossover operator in genetic algorithms allows to gen-

erate new solutions to add to the current population. The crossover operator imple-

mented for the BSP problem is described in Algorithm 7. The crossover operates

on two parents π′ and π′′, chosen randomly from the current population. Those

parents correspond to two efficient solutions π′ and π′′ with their associated weights

λ′ and λ′′ respectively. We define a set of blocks relating to π′ and π′′. A block of π′

and π′′ is a subpath π of π′ and π′′ and if we extend π from left or right relatively to

π′ or π′′, π will not be a subpath of π′ and π′′. For each block π with the extremities

i and j, we construct a sub–graph Hij containing all possible paths between i and

j. Then the SP (λ) problem is solved relatively to Hij to obtain a shortest path

π′(i, j), where the weight λ is a linear combination of the two weights λ′ and λ′′.

Next, the sub–path π′(i, j) is replaced by π(i, j) in π′ and the same happens for π′′.

If those paths are not dominated, we add them to the approximate set of efficient

solutions.
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Algorithm 7: Crossover Operator

Input: The two efficient solutions π′ and π′′ with their associated weights λ′ and

λ′′ respectively, and an approximation Ẽ of efficient solutions set.

Output: E ′ a subset of efficient solutions set for the BSP problem associated with

G.

Set E ′ = ∅;

Set B = {π : π is a block of π′ and π′′};

for π ∈ B do

Select randomly two nodes i and j on the subpath π;

Construct the sub–graph Hij containing all paths between i and j;

Choose randomly δ ∈ [0, 1] and set λ = δ × λ′ + (1− δ)× λ′′;

Let π′(i, j) be a shortest path between i and j in Hij with the cost c̃(λ);

Replace the sub–path π(i, j) by π′(i, j) in π′;

if Dom(π′, Ẽ) = ∅ then

Add π′ to the set E ′ and Ẽ, i.e.. E ′ = E ′ + {π′}, Ẽ = Ẽ + {π′};

Replace the sub–path π′′(i, j) by π′(i, j) in π′′ ;

if Dom(π′′, Ẽ) = ∅ then

Add π′′ to the set E ′ and Ẽ, i.e.. E ′ = E ′ + {π′′}, Ẽ = Ẽ + {π′′};

return E ′;

3.5 Hybrid genetic algorithms

In this hybrid GA we apply a local search to each offspring generated by the crossover

operator. This local search is the same as the crossover operator. The crossover operator

in genetic algorithms allows to generate new solutions to add to the current population.

The crossover operator implemented for the BSP problem is described in Algorithm 7.

The crossover operates on two parents π′ and π′′, chosen randomly from the current

population. Those parents correspond to two efficient solutions π′ and π′′ with their

associated weights λ′ and λ′′ respectively. We define a set of blocks relative π′ and π′′,
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A block of π′ and π′′ is a subpath π of π′ and π′′ and if we extend π from left or right

relatively to π′ or π′′, π will be not a subpath of π′ and π′′. For each block π with the

extremities i and j, we construct a sub–graph Hij containing all possible paths between

i and j. Then the SP (λ) problem is solved relatively to Hij to obtain a shortest path

π′(i, j), where the weight λ is a linear combination of the two weights λ′ and λ′′. Next,

we replace the sub–path π(i, j) by π′(i, j) in π′ and the same for π′′. If those paths are

not dominated we add them to the approximate set of efficient solutions.

Due to the potential and characteristics of each of the previously proposed heuristics,

we propose a combination of them to take advantage from the best properties of each one.

This originates the heuristic HGA.

Algorithm 8: Hybrid genetic algorithm

Input: The two objectives ck and ES the set of supported efficient solutions for

the BSP problem associated with G.

Output: Ẽ Approximation of efficient solution set for the BSP problem associated

with G.

Set Ẽ = {(π, λ) : π ∈ ES and λ the associated weight };

while stopping criterion is not met do

Select randomly two supported solutions (π′, λ′), (π′′, λ′′) ∈ Ẽ;

Set E ′ = Crossover((π′, λ′), (π′′, λ′′), Ẽ);

for (π, λ) ∈ E ′ do

E ′′ = Local Search(π, λ, Ẽ);

Ẽ = Dom(E ′′, Ẽ);

return Ẽ;

3.6 Computational results

In order to evaluate the efficiency of the proposed heuristics (CPH, BPR, GA and HGA),

several numerical experiments were conducted. The purpose of this set of experiments is

to investigate the behavior of these heuristics, and evaluate their efficiency for networks

with large sizes and different densities. The results of the proposed heuristics on a set of

instances are compared with those of the Brumbaugh-Smith (BRUM) algorithm. This last
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one returns the best route for every visited node. To our knowledge, this algorithm is one

of the most effectient algorithms among all the bi–objective labeling methods available

in the literature. The algorithms were implemented with language C++. We used a

personal computer with a processor Intel Corei7 quadri-core, CPU 3 GHz, 16 Go RAM

Windows 7.

Instances of n ∈ {100, 200, 300, 500} nodes are considered. For each network size,

5 random networks are generated. In addition, 60 large sized problems are randomly

generated with n ∈ {1000, 3000, 4000, 5000} nodes.

Table 3.1 gives the results of the proposed heuristics (CPH, BPR and HGA) for the set

of small size instance and different density networks. The density of a graph G = (N,A) is

defined as d = 2m
n(n−1)

where m = |A|. It gives respectively, in the first and second column,

the size and the number of edges of networks. The third and fourth columns illustrate

the computational time (in seconds) and the number of Pareto solutions of the labeling

algorithm (BRUM) and the remainder of the table gives the average consumed time (in

seconds), the average number of non-dominated solutions and the average percentage of

the true Pareto solutions found by each heuristic.

n m BRUM CPH BPR HGA

Times |Ẽ| Times |Ẽ| % Best sol Times |Ẽ| %Best sol Times |Ẽ| % Best sol

d = 5

100 501.6 0.038 16.8 0.069 16.6 96.89 0.068 16 93.03 0.069 15.6 88.12

200 995.8 0.101 15.8 0.141 15.6 98.67 0.115 14.8 91.89 0.132 15.4 89.28

300 1541.4 0.355 20.4 0.189 20.2 99.2 0.223 19.4 93.84 0.205 18.4 86.69

500 2549.6 0.909 32.6 0.468 31.6 97.21 0.436 29.8 90.67 0.395 28.8 86.81

d = 10

100 985.4 0.105 17.8 0.090 17.8 97.65 0.086 17.2 94.92 0.093 16.6 86.98

200 2029.2 0.200 13.4 0.184 13.4 100 0.158 12.2 91.33 0.145 11.2 82.07

300 3009.8 0.343 13.8 0.248 13.8 100 0.287 13 94.76 0.267 13.6 97.71

500 5087.4 1.006 16.4 0.795 16.4 100 0.829 16.2 96.4 0.656 15.4 90.22

d = 20

100 2031.2 0.121 8 0.103 7.8 97.5 0.107 7.6 95.56 0.102 7.4 91.56

200 4068.6 0.603 16 0.255 16 100 0.282 15.4 96.54 0.261 14.6 91.96

300 5994.6 0.967 15.4 0.338 15 97.78 0.410 14 90.06 0.387 13.4 84.91

500 10459.2 1.158 10.2 1.099 10 98.82 1.132 10.2 100 0.891 10 98.82

Table 3.1: Average number of non-dominated solution in large size networks.

From Table 3.1, we can observe that the three heuristics provide good results. We
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Figure 3.4: Computation time in 500 nodes network over different densities.

observed that the CPH heuristic far exceeds other heuristics having a percentage of the

true Pareto solutions that varies between 96 and 100%. In a second position, there is

the BPR heuristic wich has a percentage of true Pareto solution between 90 and 100%,

and in the last position, the HGA gives a percentage between 82 and 98% of true Pareto

solutions. Concerning the computation time used to generate the Pareto-optimal set, it

is the same as the one consumed by the labeling algorithm and it does not exceed 0.13

seconds for the instance of 100 and 200 nodes; 1 second for the instances of 300 nodes

and 1.16 seconds for the instances of 500 nodes. Figure 3.4 illustrates the variation of

time consumed over the variations of networks density (example for networks of 500

nodes).

Table 3.2 summarizes the results for experimental analysis on the large–scale instances.

The information given in this table is related to specific details about instances

(number of nodes (n), number of edges (m) and the density (d) of networks), the

consumed computation CPU time and the number of Pareto optimal solutions generated

by the labeling algorithm (BRUM). In the next columns we present the number of

supported non-dominated solutions of each instance. The remaining columns of the table
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are devoted to the results found by the proposed heuristics (CPH, BPR, GA and HGA).

We list the number of solutions and the consumed computation time for each proposed

heuristic. To analyze the efficiency of these heuristics, some performance measures are

used and illustrated. These performance measures are the generational distance (GD),

the error ratio (ER) and the percentages of the true Pareto solutions found.

A more comprehensive comparison is made by putting review the various results found

by the labeling and the proposed heuristics. From the results illustrated in Table 3.2,

and considering the generational distance and error ratio, we can see that the results of

the proposed algorithms are of a very good quality. Concerning the error ratio, it does

not exceed the average value 0.058 in the three heuristics and 0.022 in the combination

of the three heuristics (HGA). The generational distance does not exceed the average

value 1.17 in the three heuristics and is at worst 0.474 in GA. This indicates that the

generated Pareto front has a very small distance to the true Pareto front.
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Table 3.2: Average number of non-dominated solution in large size networks.

ES BRUM HGA CPH BPR GA

n m |Ẽ| |Ẽ| CPU |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best

d = 5

1000-1 4701 10 70 11.91 69 4.64 0.092 0.015 97.14 69 3.26 0.164 0.029 95.71 57 4.87 2.880 0.140 70 33 3.79 2.727 0.091 42.89

1000-2 4685 15 66 11.57 64 4.65 0.000 0.000 96.97 65 3.29 0.000 0.000 98.48 59 4.83 0.000 0.000 89.39 52 3.79 0.000 0.000 78.79

1000-3 4659 17 60 6.60 60 4.76 0.000 0.000 100 60 3.31 0.000 0.000 100 55 4.67 0.509 0.036 88.33 52 3.52 0.000 0.000 86.68

1000-4 4685 9 58 6.95 58 4.67 0.000 0.000 100 57 3.32 0.000 0.000 98.28 48 4.77 0.495 0.063 77.59 38 3.04 0.000 0.000 65.52

1000-5 4714 10 51 8.36 51 4.73 0.000 0.000 100 50 3.30 0.278 0.020 96.08 43 4.84 0.323 0.023 82.35 32 3.20 0.828 0.063 58.82

Average 4688.8 12.2 61 9.07 60.4 4.69 0.018 0.003 98.822 60.2 3.29 0.088 0.010 97.71 52.4 4.80 0.841 0.053 81.532 41.4 3.47 0.711 0.031 66.54

3000-1 15066 22 115 138.39 113 17.99 0.000 0.000 98.26 107 11.88 0.218 0.019 91.3 104 16.66 0.714 0.039 86.96 98 18.48 1.731 0.153 72.17

3000-2 15181 12 84 149.31 81 16.27 0.000 0.000 96.43 83 12.04 0.000 0.000 98.81 75 15.93 0.195 0.027 86.9 45 12.78 1.960 0.067 50

3000-3 14858 18 97 188.56 95 17.65 0.024 0.011 96.91 92 11.98 0.023 0.109 93.81 89 16.15 0.355 0.034 88.66 80 17.26 0.725 0.013 81.44

3000-4 14977 17 85 158.70 83 16.79 0.000 0.000 97.65 84 11.96 0.036 0.024 96.47 83 15.83 0.000 0.000 97.65 70 14.88 0.477 0.043 78.82

3000-5 14965 15 77 164.95 77 16.54 0.000 0.000 100 77 11.83 0.557 0.039 96.1 66 15.82 0.835 0.061 80.52 62 14.64 0.175 0.016 79.22

Average 15009.4 16.8 91.6 159.98 89.8 17.05 0.005 0.002 97.85 88.6 11.94 0.167 0.038 95.298 83.4 16.08 0.420 0.032 88.138 71 15.61 1.014 0.058 72.33

4000-1 20045 22 116 350.10 114 25.49 0.000 0.000 98.28 116 20.46 0.260 0.017 98.28 102 22.60 0.000 0.000 87.93 96 28.41 0.000 0.000 82.76

4000-2 19844 15 108 367.45 99 24.17 0.276 0.030 88.89 101 20.52 1.560 0.059 87.96 94 22.36 1.310 0.117 76.85 83 24.41 0.879 0.072 71.3

4000-3 20000 21 122 396.46 121 25.07 0.033 0.008 98.36 122 20.76 0.000 0.000 100 114 22.18 0.256 0.035 90.16 95 28.49 0.312 0.032 75.41

4000-4 19910 19 116 380.25 110 24.58 0.069 0.009 93.97 113 20.53 0.163 0.018 95.69 105 22.46 0.568 0.076 83.62 76 24.73 1.933 0.079 60.34

4000-5 19873 22 135 466.99 133 24.01 0.405 0.053 93.33 131 23.03 0.297 0.031 94.07 124 22.10 0.682 0.088 83.7 117 23.16 0.864 0.077 80

Average 19934.4 19.8 119.4 392.25 115.4 24.66 0.157 0.020 94.566 116.6 21.06 0.456 0.025 95.2 107.8 22.34 0.563 0.063 84.452 93.4 25.84 0.798 0.052 73.962

5000-1 25163 19 145 710.48 145 31.00 1.027 0.062 93.79 136 33.02 0.380 0.059 88.28 124 29.83 1.715 0.145 73.1 114 30.40 1.074 0.079 72.41

5000-2 25205 30 162 880.81 159 31.81 0.028 0.006 97.53 159 32.75 0.154 0.019 96.3 145 29.41 0.314 0.035 86.42 142 33.76 0.342 0.035 84.57

5000-3 25276 23 134 769.05 130 31.11 0.011 0.008 96.27 131 29.73 0.108 0.007 97.01 115 30.40 0.124 0.017 84.33 107 32.28 0.545 0.028 77.61

5000-4 25124 27 159 879.11 153 33.95 0.178 0.033 93.08 146 33.45 0.029 0.014 90.57 140 29.48 1.035 0.136 76.1 125 32.11 2.227 0.096 71.07

5000-5 24304 21 128 593.84 126 31.67 0.000 0.000 98.44 128 38.81 0.000 0.000 100 122 29.66 0.187 0.016 93.75 111 37.90 1.670 0.054 82.03

Average 25014.4 24 145.6 766.66 142.6 31.91 0.249 0.022 95.822 140 33.55 0.134 0.020 94.432 129.2 29.75 0.675 0.070 82.74 119.8 33.29 1.172 0.058 77.538

53



3.6.
C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

Table 3.2: Average number of non-dominated solution in large size networks (continued).

ES BRUM HGA CPH BPR GA

n m |Ẽ| |Ẽ| CPU |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best

d = 10

1000-1 10280 8 39 10.62 39 6.52 0.000 0.000 100 39 4.79 0.000 0.000 100 31 6.93 0.000 0.000 79.49 30 6.34 0.000 0.000 76.92

1000-2 10330 7 37 14.29 37 6.44 0.000 0.000 100 37 4.69 0.000 0.000 100 29 7.32 1.147 0.138 67.57 29 5.13 0.358 0.103 70.27

1000-3 10419 12 38 9.43 38 6.80 0.000 0.000 100 38 4.81 0.000 0.000 100 35 6.82 0.000 0.000 92.11 34 5.50 0.000 0.000 89.47

1000-4 10053 11 30 11.00 30 6.38 0.000 0.000 100 30 4.70 0.500 0.033 96.67 29 7.08 0.000 0.000 96.67 28 4.94 0.927 0.036 90

1000-5 10350 12 44 8.73 43 6.69 0.000 0.000 100 43 4.72 0.000 0.000 97.73 42 7.08 0.075 0.024 93.18 43 5.32 0.000 0.000 97.73

Average 10286.4 10 37.6 10.81 37.4 6.57 0.000 0.000 100 37.4 4.74 0.100 0.007 98.88 33.2 7.05 0.244 0.032 85.804 32.8 5.44 0.257 0.028 84.878

3000-1 31722 17 71 286.96 69 22.64 0.000 0.000 97.18 68 18.87 0.000 0.000 95.77 66 21.62 0.242 0.015 91.55 68 19.42 0.282 0.029 92.96

3000-2 31507 18 69 400.44 66 22.88 0.000 0.000 95.65 67 18.96 0.000 0.000 97.1 64 22.17 0.377 0.031 89.86 57 19.09 0.055 0.018 81.16

3000-3 31210 16 96 320.80 94 22.28 0.000 0.000 97.92 96 18.89 0.000 0.000 100 90 21.27 0.069 0.022 91.67 90 18.97 0.069 0.022 91.67

3000-4 31273 14 54 135.00 54 22.13 0.000 0.000 100 54 18.95 0.176 0.019 98.15 50 21.69 0.000 0.000 92.59 47 17.96 0.060 0.021 85.19

3000-5 31262 20 84 316.82 83 22.76 0.000 0.000 98.81 83 19.24 0.555 0.012 97.62 83 21.85 0.000 0.000 98.81 81 19.87 0.027 0.012 95.24

Average 31394.8 17 74.8 292.00 73.2 22.54 0.000 0.000 97.912 73.6 18.98 0.146 0.006 97.728 70.6 21.72 0.138 0.014 92.896 68.6 19.06 0.099 0.020 89.244

4000-1 53639 13 77 629.95 73 35.47 1.197 0.055 89.61 73 30.23 0.000 0.000 94.81 71 33.19 0.803 0.127 80.52 58 32.53 0.422 0.086 68.83

4000-2 53623 16 86 630.23 84 34.22 0.000 0.000 97.67 81 30.20 0.000 0.000 94.19 78 33.10 0.628 0.013 89.53 77 31.57 0.000 0.000 89.53

4000-3 53527 17 59 902.12 58 35.65 0.000 0.000 98.31 58 30.27 0.000 0.000 98.31 58 33.98 0.017 0.017 96.61 57 34.93 0.092 0.035 93.22

4000-4 53946 18 98 599.52 98 34.24 0.000 0.000 100 97 33.24 0.170 0.010 97.96 93 33.06 0.050 0.022 92.86 89 34.04 0.091 0.023 88.78

4000-5 53634 22 85 664.36 83 34.28 0.000 0.000 97.65 84 33.50 0.000 0.000 98.82 82 32.89 0.343 0.049 91.76 77 33.58 0.209 0.026 0.8824

Average 53673.8 17.2 81 685.23 79.2 34.77 0.239 0.011 96.648 78.6 31.49 0.034 0.002 96.818 76.4 33.25 0.368 0.045 90.256 71.6 33.33 0.163 0.034 68.24848

5000-1 70382 16 114 1297.15 110 44.74 0.218 0.009 95.61 109 50.54 0.592 0.028 92.98 106 48.31 0.000 0.000 92.98 101 45.89 0.014 0.010 87.72

5000-2 70479 15 85 1246.53 85 44.56 0.000 0.000 100 84 51.32 0.000 0.000 98.82 83 44.76 0.349 0.048 92.94 79 44.63 0.229 0.025 90.59

5000-3 70054 18 93 1152.10 89 44.08 0.000 0.000 95.7 92 42.50 0.202 0.033 95.7 84 46.16 0.089 0.036 87.1 82 39.99 0.061 0.024 86.02

5000-4 70354 24 97 1776.08 92 44.88 0.199 0.022 92.78 93 43.93 0.000 0.000 95.88 94 44.02 0.021 0.011 95.88 88 44.29 0.046 0.011 89.69

5000-5 70431 22 111 1384.17 107 45.75 0.068 0.009 95.5 101 40.90 0.193 0.030 88.29 106 46.84 0.177 0.057 90.09 109 47.98 0.000 0.000 98.2

Average 70340 19 100 1371.21 96.6 44.80 0.097 0.008 95.918 95.8 45.84 0.197 0.018 94.334 94.6 46.02 0.127 0.030 91.798 91.8 44.56 0.070 0.014 90.444
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Table 3.2: Average number of non-dominated solution in large size networks (continued).

ES BRUM HGA CPH BPR GA

n m |Ẽ| |Ẽ| CPU |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best |Ẽ| CPU GD ER %Best

d = 20

1000-1 20519 9 30 12.40 30 9.39 0.000 0.000 100 30 6.99 0.000 0.000 100 30 9.27 0.000 0.000 100 29 7.02 0.000 0.000 96.67

1000-2 20446 7 23 10.84 23 10.14 0.000 0.000 100 22 6.74 0.000 0.000 95.65 21 9.51 0.662 0.048 86.96 21 7.23 0.000 0.000 91.3

1000-3 20512 7 25 12.25 25 9.98 0.000 0.000 100 25 6.71 0.000 0.000 100 24 9.42 0.000 0.000 96 22 6.69 0.000 0.000 88

1000-4 20858 9 29 12.65 28 6.79 0.000 0.000 96.55 29 6.71 0.000 0.000 100 27 9.67 0.000 0.000 93.1 25 8.14 0.000 0.000 86.21

1000-5 20452 7 20 15.31 20 6.84 0.000 0.000 100 20 6.78 0.000 0.000 100 20 9.76 0.335 0.050 95 17 6.94 0.395 0.059 80

Average 20557.4 7.8 25.4 12.69 25.2 8.63 0.000 0.000 99.31 25.2 6.79 0.000 0.000 99.13 24.4 9.53 0.199 0.020 94.212 22.8 7.20 0.079 0.012 88.436

3000-1 59720 14 50 325.65 50 30.40 0.000 0.000 100 50 26.81 0.000 0.000 100 50 29.27 0.160 0.040 96 47 23.48 0.000 0.000 94

3000-2 59470 14 44 161.90 44 30.12 0.000 0.000 100 43 26.06 0.000 0.000 97.73 42 29.31 0.119 0.238 93.18 38 24.29 0.132 0.026 84.09

3000-3 59813 10 48 364.72 47 30.97 0.447 0.021 95.83 48 26.42 0.813 0.063 93.75 43 29.99 0.000 0.000 89.58 44 26.32 0.364 0.046 89.58

3000-4 59139 16 49 401.56 47 30.79 0.000 0.000 95.92 49 26.30 0.641 0.041 95.92 43 29.40 0.000 0.000 87.76 43 25.73 0.000 0.000 87.76

3000-5 59559 9 38 342.57 38 30.07 1.333 0.026 97.37 34 26.42 0.912 0.029 86.84 35 28.93 0.000 0.000 92.11 34 22.97 0.278 0.029 86.84

Average 59540.2 12.6 45.8 319.28 45.2 30.47 0.356 0.009 97.824 44.8 26.40 0.473 0.027 94.848 42.6 29.38 0.056 0.056 91.726 41.2 24.56 0.155 0.020 88.454

4000-1 80298 17 56 348.82 56 41.43 0.161 0.018 98.21 55 44.53 0.000 0.000 98.21 55 40.79 0.000 0.000 98.21 54 38.53 0.000 0.000 96.43

4000-2 80222 13 70 924.50 66 44.43 1.390 0.061 88.57 65 46.76 1.180 0.046 88.57 66 41.13 0.097 0.030 91.43 61 36.47 0.000 0.000 87.14

4000-3 79766 16 69 869.08 66 43.89 0.015 0.015 94.2 66 46.27 0.518 0.046 91.3 58 40.73 0.000 0.000 84.06 60 39.38 0.000 0.000 86.96

4000-4 80178 16 70 804.08 67 43.89 0.612 0.015 94.29 66 46.69 0.015 0.015 92.86 65 40.19 0.203 0.046 88.57 63 40.87 0.813 0.079 82.86

4000-5 80272 83 16 756.08 83 42.57 0.000 0.000 100 83 50.48 0.098 0.024 97.59 81 41.48 0.089 0.037 93.98 81 38.47 0.260 0.025 95.18

Average 80147.2 15.6 69.6 740.51 67.6 43.24 0.436 0.022 95.054 67 46.95 0.362 0.026 93.706 65 40.87 0.078 0.023 91.25 63.8 38.75 0.215 0.021 89.714

5000-1 102023 19 92 1826.81 87 53.32 1.024 0.046 90.22 86 52.97 1.051 0.047 89.13 85 61.58 0.106 0.035 89.13 81 50.29 0.149 0.037 84.78

5000-2 103297 16 59 1358.60 59 53.09 0.000 0.000 100 59 60.67 0.000 0.000 100 58 56.77 0.069 0.017 96.61 58 53.71 0.103 0.035 94.92

5000-3 103536 19 71 1307.62 70 53.45 0.101 0.014 97.18 69 56.91 0.013 0.015 95.77 67 57.04 1.535 0.105 84.51 65 48.66 0.314 0.031 88.73

5000-4 102485 17 82 1625.23 78 54.78 1.046 0.039 91.46 80 57.89 1.374 0.063 91.46 78 59.33 0.000 0.000 95.12 80 51.15 0.000 0.000 97.56

5000-5 102121 16 76 1593.45 76 53.68 0.201 0.013 98.68 76 56.69 0.000 0.000 100 74 61.20 0.000 0.000 97.37 74 55.63 0.027 0.014 96.05

Average 102692.4 17.4 76 1542.34 74 53.66 0.474 0.022 95.508 74 57.03 0.488 0.025 95.272 72.4 59.19 0.342 0.031 92.548 71.6 51.89 0.119 0.023 92.408
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Concerning the percentage of the true found solutions, both heuristics (GA and BPR)

found on average 80-90% of Pareto solutions. This represents a worse result than the

one provided by the CPH heuristic, which generates results varying from 93% to 99% of

the true Pareto solutions. While the heuristic combining the three heuristics HGA can

generate solutions that are slightly better than the CPH heuristic, the generated results

vary on average between 94.5% and 100% of the true Pareto solutions.

Figure 3.5, presents the percentage of true Pareto solutions generated by each one of

the different heuristics in large networks with different densities. From Tables 1 and 2,

considering the evaluation performance measure, we can conclude that the HGA is the

best one from the proposed heuristics and can find very good results that can reach 100%

of the true Pareto solutions and can cover the entire Pareto front. But we should not

ignore the performance of the three heuristics separately and in particular heuristic CPH,

which represents an excellent method that provides very good results in a reasonable time.

Figure 3.6: Pareto-optimal solution profiles of different large size networks (worst results).

Figure 3.6, presents a set of selected Pareto front found by the HGA heuristic.

These sets represent the worst found results. These are compared to the true Pareto

front generated by the labeling algorithm BRUM. In this figure, we can notice that the

generated Pareto fronts are superimposed to the true Pareto fronts and that they cover

almost the whole of solutions in these real Pareto fronts.
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Figure 3.5: % of Pareto solution generated by different heuristics in large networks with

different density.

Figure 3.7: Computation time in large networks.

In Figure 3.7, to show the solution efficiency, we compare the average CPU time of
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Figure 3.8: Computation time of (HGA and BRUM) over network density.

the labeling algorithm (BRUM) and the HGA heuristic over the largest size networks and

different densities. Indeed, the exact algorithm can find all the Pareto optimal solutions,

but we noticed that the time required to find these solutions explodes while increasing

the size of the networks. In fact, the consumed time by the labeling algorithm passes

from 9 seconds for the networks with 1000 nodes to 1540 seconds for networks with 5000

nodes. Sometimes, the proposed algorithm does not permit to enumerate all the Pareto

optimal solutions. However, the percentage of true Pareto-optimal solutions generated

approximately ranges between 87% and 100%, and the time consumed to obtain these

solutions passes from 4.6 seconds, for the networks with 1000 nodes, to 53.66 seconds for

the networks with 5000 nodes, which represents a rate of 5% of the time consumed by the

labeling algorithm BRUM.

Figure 3.8 illustrates the CPU time variations over the density of the networks of the

proposed algorithm and the labeling algorithm. From these two figures, one can notice a

slight sensitivity of the HGA heuristic regarding the labeling algorithm (BRUM) for this

variation in density.

3.7 Conclusion

A bi–objective shortest path problem is a natural extension of the mono–objective short-

est path problem. To solve this NP-hard problem, we propose new two phase heuristics to

approximate the set of the efficient solutions. In the first phase, we generate the supported

efficient set by a standard dichotomic algorithm. In the second phase we use four meta-

heuristics to generate an approximation of the non–supported efficient solutions. These
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metaheuristics are the cost perturbation method, the path–reliking, the genetic algorithm

and, finally, a hybrid approach combining all of them. We propose a hybrid approach for

bi–objective optimization problems, which combines genetic algorithm and mathematical

programming techniques. This method is based on the dominance cost variant of the

multi-objective genetic algorithm hybridized with an exact method. The initial popula-

tion is generated by solving a series of mono–objective optimization problems obtained

by a suitable choice of a set of weights. The crossover operator solves a reduced mono-

objective problem where the weights are chosen to identify an unexplored region. The

proposed approaches are tested on instances of the bi–objective shortest path problem.
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Chapter 4

Metaheuristics for the bi-objective

assignment problem

4.1 Bi–objective assignment problem

The assignment problem arises in many real life situations including production scheduling

(Dessouky and Kijowski, 1997), student schools (McKeown and Workman, 1976), aircraft

routing (Soumis et al., 1980), snow removal and disposal (Campbell and Langevin, 1995),

parking place assignment (Venkataramanan and Bornstein, 1991), etc. The classical As-

signment Problem (AP) is a combinatorial optimization problem involving one-to-one

matchings from two finite sets. In the canonical variation of the problem the two sets

have the same cardinality. Typically, its objective, is to obtain the minimum cost or the

maximum profit (Burkard et al., 2009). The dimension of the problem is assessed by the

number of items to be matched. In the AP, tasks must be assigned to agents in such a way

that the sum of the assignment costs is minimized. Mathematically, the AP is equivalent

to the weighted bipartite matching problem from graph theory. The single objective AP

can be formulated as a linear 0–1 Programming:

min c(x) =
∑

i,j∈N

cijxij (4.1)

s.t.
∑

j∈N

xij = 1, ∀i ∈ N, (4.2)

∑

j∈N

xji = 1, ∀i ∈ N, (4.3)

xij ∈ {0, 1}, ∀i, j ∈ N, (4.4)
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where xij is a binary variable that equals to 1 if task i is assigned to agent j, and 0

otherwise. In the objective function (4.1), cij is the cost resulting from assigning task i to

agent j and c(x) designates the total cost of the assignments. Constraints (4.2) state that

every task is assigned to one and only one agent. Constraints (4.3) ensure that every agent

is allocated to one and only one task. Variables xij are restricted to be binary, according

to constraint (4.4). By considering only one objective, the Hungarian method of (Kuhn,

1955) provides an adequate solution of the problem (Papadimitriou and Steiglitz, 1998).

The assignment problem becomes multi–objective whenever the decision maker must

take into account several criteria simultaneously, in order to provide more realistic solu-

tions that optimize, for example, cost, time, distance, and quality. Therefore, the AP can

be defined as an optimization problem with multiple potentially conflicting objectives. We

consider the bi–objective framework of the assignment problem that can be formulated

as follows:

min c(x) = (c1(x), c2(x)) (4.5)

s.t.
∑

j∈N

xij = 1, ∀i ∈ N, (4.6)

∑

j∈N

xji = 1, ∀i ∈ N, (4.7)

xij ∈ {0, 1}, ∀i, j ∈ N. (4.8)

where ck(x) =
∑

i,j∈N ck(i, j)xij. We denote by X the set of feasible solutions.

The bi–objective assignment problem is NP-complete, #P-complete, and intractable. The

intractability means that the number of efficient solutions can be exponential. For a proof

see (Serafini, 1987) for NP-completeness. (Malhotra et al., 1982) exploited the duality of

the problem while assuming that the efficient solutions are connected by simplex pivots

in order to generate the set of efficient supported solutions.

4.2 Genetic algorithm

In this section, we discuss the framework of our proposed genetic algorithm for solving the

Bi-objective Assignment Problem (BAP). We propose a genetic algorithm for the BAP to

generate an approximation of the set of non-supported efficient solutions. The proposed

GA is similar to the one for the bi–objective shortest path problem. The population is
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initialized as the set of supported efficient solutions generated by the first phase of the

two phases method. The main steps of our GA consist of encoding solutions, defining an

initial population and a crossover operator (see Algorithm 9). In our implementation the

mutation is not applied.

Algorithm 9: Genetic algorithm

Input: E∗
S the set of supported efficient solutions for the BAP problem.

Output: Ẽ approximation of efficient solution set for the BAP problem.

Set Ẽ = {(x, λ(x)) : x ∈ E∗
S and λ(x) the associated weight };

while stopping criterion is not meet do

Select randomly two supported solutions (x′, λ(x′)), (x′′, λ(x′′)) ∈ Ẽ;

Set x̃ = Crossover((x′, λ(x′)), (x′′, λ(x′′)));

Ẽ = Dom(x̃, Ẽ);

return Ẽ;

• Encoding solutions: An assignment is a bi–ojective mapping of the set N into

itself, i.e. a permutation. An assignment can be modeled and visualized in different

ways: every permutation ϕ of the set N corresponds in a unique way to a permuta-

tion matrix xϕ = (xij), with xij = 1 for j = ϕ(i) and xij = 0 for j 6= ϕ(i). The ma-

trix xϕ can be viewed as an adjacency matrix of a bipartite graph Gϕ = (N ∪N,E),

where an edge (i, j) ∈ E if and only if j = ϕ(i). In our implementation of the genetic

algorithm, an assignment is represented as a permutation ϕ of n agents ({1, . . . , n}).

Table 4.1 illustrates the assignment of 7 tasks to 7 agents.

Tasks 1 2 3 4 5 6 7

Agents 5 2 7 3 6 4 1

Table 4.1: Encoding scheme

Figure 4.1: Bipartite graph representation.
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In this coded solution, ϕ(1) = 5 signifies that task 1 is assigned to agent 5, ϕ(2) = 2

i.e. task 2 is assigned to agent 2 and so on. In the equivalent binary solution x, i.e.

x15 = x22 = x37 = x43 = x56 = x64 = x71 = 1 and xij = 0 for the remaining cases.

The associated matrix x is as follows:

x =




0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0




• Initial population: The initial population is defined as the set of supported ef-

ficient solutions E∗
S determined in the first phase of the two phase method. This

set E∗
S is generated by the dichotomic approach described in Chapter 3. For each

solution x′ ∈ E∗
S in the initial or the current population, we keep its associated

weight vector λ′ = λ(x′), i.e. the solution x′ is an optimal solution of the following

aggregated problem:

(AP (λ′))





minλ′
1c1(x) + λ′

2c2(x)
∑

j∈N xij = 1, ∀i ∈ N
∑

j∈N xji = 1, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N

Example Consider the following numerical example for assigning 7 tasks to 7

agents, where the matrix costs associated to the first and the second objectives

are c1 and c2, respectively:
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c1 =




42 68 35 1 70 25 79

59 63 65 6 46 82 28

62 92 96 43 28 37 92

5 3 54 93 83 22 17

19 96 48 27 72 39 70

13 68 100 36 95 4 12

23 34 74 65 42 12 54




c2 =




69 48 45 63 58 38 60

24 42 30 79 17 36 91

43 89 7 41 43 65 49

47 6 91 30 71 51 7

2 94 49 30 24 85 55

57 41 67 77 32 9 45

40 27 24 38 39 19 83




The initial population defined by the optimal set of supported efficient solu-

tions obtained by the above procedure is given in the Table 4.2.

λ1 λ2 c1 c2

0.995851 0.004149 115 239

0.537815 0.462185 140 208

0.511962 0.488038 170 175

0.477778 0.522222 198 148

0.356913 0.643087 217 132

0.003155 0.996845 315 128

Table 4.2: The initial population

Columns 1 and 2 present the weight vector (λ1, λ2) associated to each efficient

supported solution. Columns 3 and 4 display the value of each objective function

c1 and c2, respectively.
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4.2. GENETIC ALGORITHM

• Crossover operator: It is well known that the crossover (recombination) operator

is the main operator in genetic algorithms. It produces new individuals, called off-

spring, from the selected parents (in our case, efficient non supported assignments).

In our genetic algorithm, the crossover operator works as follows. Let x′ and x′′ be

two parents from the current efficient set with their associated weights λ(x′) and

λ(x′′) respectively. We define the set I(x′, x′′) = {(i, j) ∈ N × N : x′
ij = x′′

ij = 1},

which corresponds to the set of tasks i assigned to the agent j in both solutions x′

and x′′. Now, we define the reduced assignment problem AP (x′, x′′) associated to

the two parents x′ and x′′ as follows:

(AP (x′, x′′))





minλ1c1(x) + λ2c2(x)
∑

j∈N xij = 1, ∀i ∈ N
∑

j∈N xji = 1, ∀i ∈ N

xij = 1, ∀(i, j) ∈ I(x′, x′′)

xij ∈ {0, 1}, ∀i, j ∈ N

where λ1 = αλ1(x
′) + (1−α)λ1(x

′′), λ2 = βλ2(x
′) + (1− β)λ2(x

′′), and α, β ∈ [0, 1].

In our experimentation, we set α = β = 0.5. An optimal solution x̃ of the problem

AP (x′, x′′) is a candidate solution to be added to the current approximation Ẽ of

efficient solutions set.

The crossover operator implemented for the BAP problem is described in Algo-

rithm 10. The crossover operates on two parents chosen randomly from the current

population. Those parents correspond to two efficient solutions x′ and x′′ with

their associated weights are λ′ and λ′′, respectively. We solve the reduced problem

AP (x′, x′′). Let x̃ be its optimal solution. If it is not dominated, we add it to the

approximate set Ẽ of efficient solutions.
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4.2. GENETIC ALGORITHM

Algorithm 10: Crossover Operator

Input: Two efficient solutions x′ and x′′ with their associated weights λ(x′) and

λ(x′′) respectively.

Output: x̃ a possible efficient solution for the BAP problem.

Compute the set I(x′, x′′) = {(i, j) ∈ N ×N : x′
ij = x′′

ij = 1};

Solve the reduced problem AP (x′, x′′) with x̃ an optimal solution;

return x̃;

Example Consider two parents x′ and x′′, selected at random from the current

approximate set Ẽ of efficient solutions, and x̃ a new offspring (Table 4.3).

i 1 2 3 4 5 6 7

x′ 4 3 5 2 1 7 6

x′′ 4 5 3 7 1 6 2

x̃ 4 * * * 1 * *

Table 4.3: crossover operator

From Table 4.3 we have I(x′, x′′) = {(1, 4), (5, 1)}.

The obtained feasible offspring of the example after solving the reduced problem

AP (x′, x′′) is presented in Table 4.4.

i 1 2 3 4 5 6 7

x̃ 4 5 3 2 1 7 6

Table 4.4: The complete permutation of the obtained offspring

The value of the first objective of this solution is equal to 189 whereas the second

objective is equal to 159.
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4.3. BI–OBJECTIVE PATH RELINKING

4.3 Bi–objective path relinking

In this section, we present the details of the proposed Bi–objective Path Relinking pro-

cedure (BPR) for BAP to generated an approximation of the non–supported efficient

solution set E∗
S̄
. The procedure is similar to the one proposed for the bi–objective short-

est path problem. Based on the same idea of the crossover operator, a new efficient

solution will be generated by solving a reduced problem in a dynamic way. However, in

the crossover operator a new solution is generated based on two other solutions called

parents.

The procedure starts from an initial solution selected randomly from the set of sup-

ported efficient solutions E∗
S and a weight vector chosen arbitrarily. The latter corresponds

necessarily to another efficient supported solution as a target to the search direction. Next,

we select at random some decision variables to be fixed and optimize the remaining ones

according to the weight vector, by solving the weighted sum sub-problem. The process

is repeated for several search directions to approximate the Pareto Front until reaching a

given stopping criterion.

This BPR heuristic has as argument the set of supported solutions E∗
S generated in

the first phase of the two phases method. At each iteration, two solutions are generated,

as usually done by path relinking. One of them is called the initial solution, and the

other is called the guiding solution. The initial solution x is selected randomly from the

set of the support efficient solutions (x ∈ E∗
S) with its associated weight λ(x), i.e. x is

an optimal solution of the parametrized single objective problem AP (λ(x)). The guiding

solution x′ is also selected randomly from E∗
S with its associated weighted λ(x′), i.e. x′ is

an optimal solution of AP (λ(x′)).

Once the two solutions are selected, the crossover procedure is applied. The solution x̃

generated by the crossover operator is added to the efficient set Ẽ if it is non dominated by

one of the already efficient solutions generated, (i.e., if yes a new non–supported efficient

solution is generated).
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4.4. HYBRID GENETIC ALGORITHM

Algorithm 11: Bi–objective path relinking

Input: E∗
S the set of supported efficient solutions for the BAP.

Output: Ẽ approximation of efficient solution set for the BAP.

Set Ẽ = {(x, λ(x)) : x ∈ E∗
S and λ the associated weight };

while stopping criterion is not meet do

select randomly (x, λ(x)) ∈ Ẽ;

select randomly (x′, λ(x′)) ∈ Ẽ;

Set x̃ = Crossover((x′, λ(x′)), (x′′, λ(x′′)));

Ẽ = Dom(x̃, Ẽ);

return Ẽ;

4.4 Hybrid genetic algorithm

In the literature, various hybridization methods have been integrated to genetic algorithms

aiming at preventing them from being trapped into a local optimum. Hybrid approaches

were extensively exploited in combinatorial optimization. Therefore, the proposed bi–

objective path relinking presented in the above section is combined with the genetic

algorithm after the crossover operator. Thus, the new offspring is considered as an initial

solution. At each iteration, the choice of the weight vector is modified in an altering way

between the weight vector of the first parent λ(x′) and the weight vector of the second

parent λ(x′′). In other words, the weight sum sub-problem is solved by considering λ(x′)

and λ(x′′) iteration-by-iteration. At each iteration of the local search procedure, we must

check if the obtained solution is an efficient one or not. If there is a new efficient solution,

then it will be introduced into the initial population.
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Algorithm 12: Hybrid genetic algorithm

Input: E∗
S the set of supported efficient solutions for the BAP.

Output: Ẽ approximation of efficient solution set for the BAP.

Set Ẽ = {(x, λ(x)) : x ∈ E∗
S and λ the associated weight };

while stopping criterion is not meet do

Select randomly two supported solutions (x′, λ(x′)), (x′′, λ(x′′)) ∈ Ẽ;

Set x̃ = Crossover((x′, λ(x′)), (x′′, λ(x′′)));

E ′ = BPR(x̃, λ(x̃), Ẽ);

Ẽ = Dom(E ′, Ẽ);

return Ẽ;

4.5 Computational results

The proposed algorithms were coded with language C++. All experiments for the

bi-objective assignment problem were run in Windows 7 on a workstation with Intel

Pentium, quad core i7, 3.00 GHz processor and 16 MB memory. The data sets used

in our experiments are those of (Przybylski et al. (2008)). Moreover, we generated

large scale instances for n ∈ {150, 200, 250, 300, 350, 400, 450, 500}. For each size, the

range of the coefficients cij varies between 20 and 100 with a step of 20. In total, 180

instance problems were tested. The parameters of the proposed Genetic Algorithm

(GA), Biobjective Path Relinking (BPR), Hybrid Genetic Algorithm (HGA) and Cost

Perturbation Heuristic (CPH), described in Chapter 3, were set experimentally as

follows: the stopping criterion for the GA is fixed as a maximum CPU time according to

the instances type. For the instances with size n ∈ {20, 40, 60, 80, 100}, the maximum

CPU time is equal to 100 seconds. For the instances with n ∈ {150, 200, 250, 300, 350}

this time is set to 900 seconds. Finally, for the remaining instances, the maximum

CPU time is set to 3600 seconds. For the CPH, the stopping criterion is fixed to 5000

iterations. In order to evaluate the performance of the proposed algorithms, we use the

following measures of performance: Error Ratio (ER), Generational Distance (GD), and

the Coverage Metric (CM).
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Tables 4.5- 4.8 display the experimental results of the tested instances. The first

column indicates the name of the instances, which are identified as 2APn-lAu, being n

the number of agents (vehicles) and [l, u] the interval of possible values for the allocating

costs ( cij ). The second column shows the cardinality of the optimal set of non-dominated

solutions (|E∗|), and the following columns indicate, for each of the four methods, the

cardinality of the non-dominated set, the GD metric, the ER metric and the CPU time.

The values of |E∗| are obtained with the exact two-phase method proposed in (Przybylski

et al. (2008)) for the instances with n ≤ 100. For the larger instances this algorithm

was unable to converge to the optimal set after a CPU time of three hours. Therefore,

these classes of instances, the set E∗ is found by determining the set of non-dominated

solutions among all the solutions of GA, BPR, HGA and CPH.

Tables 4.5- 4.8 present the computational results for the instances with, respectively,

n = 20, n ∈ {40, 60, 80, 100}, n ∈ {150, 200, 250, 300, 350} and n ∈ {400, 450, 500}.
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Table 4.5: Computational Results for range 20

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP10-1A20 29 11 0.000 0.62 0.00 29 0.000 0.00 1.13 29 0.000 0.00 0.22 29 0.00 0.00 0.08

2AP20-1A20 49 37 0.001 0.37 0.18 49 0.000 0.00 4.05 49 0.000 0.00 2.24 48 0.00 0.02 0.46

2AP30-1A20 98 67 0.000 0.43 0.97 98 0.000 0.00 2.84 98 0.000 0.00 2.05 98 0.00 0.01 1.58

2AP40-1A20 106 96 0.000 0.26 4.27 106 0.000 0.00 7.22 106 0.000 0.00 6.39 105 0.00 0.02 3.80

2AP50-1A20 117 94 0.000 0.38 4.10 117 0.000 0.00 47.45 117 0.000 0.00 12.00 115 0.00 0.02 5.43

2AP60-1A20 181 166 0.000 0.18 61.66 173 0.000 0.08 86.03 181 0.000 0.00 29.28 179 0.00 0.02 11.00

2AP70-1A20 176 164 0.000 0.15 15.82 167 0.000 0.19 62.38 175 0.000 0.02 8.84 173 0.00 0.02 15.10

2AP80-1A20 190 152 0.000 0.29 32.23 169 0.000 0.23 86.41 190 0.000 0.00 30.38 189 0.00 0.03 18.65

2AP90-1A20 216 203 0.000 0.19 26.60 194 0.000 0.32 89.06 216 0.000 0.02 52.16 216 0.00 0.04 29.61

2AP100-1A20 230 222 0.000 0.10 26.24 210 0.000 0.27 98.19 230 0.000 0.01 28.13 230 0.00 0.05 52.28

Average 0.000 0.30 17.21 0.000 0.11 48.48 0.000 0.01 17.17 0.00 0.02 13.80

AP10-2A20 10 7 0.000 0.30 0.02 10 0.000 0.00 0.25 10 0.000 0.00 0.09 10 0.00 0 0.05

2AP20-2A20 40 21 0.000 0.50 0.16 40 0.000 0.00 0.47 40 0.000 0.00 0.49 40 0.00 0 0.49

2AP30-2A20 96 66 0.000 0.44 1.05 96 0.000 0.00 3.22 96 0.000 0.00 5.52 95 0.00 0.01 1.49

2AP40-2A20 109 88 0.000 0.28 1.22 109 0.000 0.00 3.34 109 0.000 0.00 2.64 109 0.00 0.01 3.06

2AP50-2A20 152 128 0.000 0.28 2.20 152 0.000 0.01 31.53 152 0.000 0.00 69.98 152 0.00 0.02 6.14

2AP60-2A20 152 143 0.000 0.16 66.93 146 0.000 0.10 28.41 152 0.000 0.00 11.83 150 0.00 0.03 11.45

2AP70-2A20 163 146 0.000 0.28 31.87 157 0.000 0.13 48.27 163 0.000 0.00 18.84 161 0.00 0.02 13.10

2AP80-2A20 173 157 0.000 0.22 81.19 158 0.000 0.23 91.42 173 0.000 0.01 19.41 173 0.00 0.03 22.39

2AP90-2A20 200 194 0.000 0.17 10.98 182 0.000 0.35 83.91 200 0.000 0.01 28.72 200 0.00 0.01 29.74

2AP100-2A20 225 214 0.000 0.14 16.60 209 0.000 0.29 90.06 225 0.000 0.00 24.20 224 0.00 0.04 40.38

Average 0.000 0.29 21.22 0.000 0.09 38.09 0.000 0.00 18.17 0.00 0.02 12.83

2AP10-3A20 20 9 0.000 0.55 0.02 20 0.000 0.00 0.84 20 0.000 0.00 0.13 20 0.00 0 0.07

2AP20-3A20 49 29 0.000 0.43 0.06 49 0.000 0.00 0.48 49 0.000 0.00 0.45 49 0.00 0.02 0.43
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Table 4.5: Computational Results for range 20 (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP30-3A20 93 61 0.000 0.45 2.09 93 0.000 0.00 1.72 93 0.000 0.00 2.99 91 0.00 0.04 1.41

2AP40-3A20 133 107 0.000 0.35 1.65 133 0.000 0.00 24.02 133 0.000 0.00 2.36 133 0.00 0.02 3.22

2AP50-3A20 132 110 0.000 0.25 9.00 132 0.000 0.01 75.31 132 0.000 0.00 4.50 131 0.00 0.02 5.32

2AP60-3A20 188 167 0.000 0.22 16.22 183 0.000 0.15 95.28 188 0.000 0.03 46.19 188 0.00 0.02 9.97

2AP70-3A20 175 160 0.000 0.19 80.32 163 0.000 0.26 82.30 175 0.000 0.01 13.27 174 0.00 0.04 16.85

2AP80-3A20 191 181 0.000 0.16 40.24 170 0.000 0.26 93.73 191 0.000 0.00 43.06 189 0.00 0.04 22.20

2AP90-3A20 211 197 0.000 0.17 32.96 192 0.000 0.25 61.41 211 0.000 0.03 20.97 210 0.00 0.06 29.18

2AP100-3A20 247 229 0.000 0.18 35.51 230 0.000 0.25 66.45 245 0.000 0.03 41.20 247 0.00 0.05 45.26

Average 0.000 0.30 21.81 0.000 0.11 50.15 0.000 0.00 17.51 0.00 0.03 13.39

2AP10-4A20 15 7 0.000 0.53 0.01 15 0.000 0.00 0.17 15 0.000 0.00 0.16 15 0.00 0 0.08

2AP20-4A20 48 31 0.001 0.38 0.07 48 0.000 0.00 0.47 48 0.000 0.00 1.09 48 0.00 0 0.46

2AP30-4A20 81 48 0.000 0.53 1.33 81 0.000 0.00 3.03 81 0.000 0.00 2.45 80 0.00 0.01 1.34

2AP40-4A20 143 116 0.000 0.29 1.69 143 0.000 0.00 13.41 143 0.000 0.00 4.08 142 0.00 0.01 3.05

2AP50-4A20 151 121 0.000 0.36 3.29 147 0.000 0.03 51.27 149 0.000 0.01 5.24 146 0.00 0.07 6.38

2AP60-4A20 158 141 0.000 0.27 25.77 155 0.000 0.11 96.66 158 0.000 0.01 8.52 158 0.00 0.05 10.01

2AP70-4A20 177 162 0.000 0.22 7.39 171 0.000 0.18 96.06 176 0.000 0.01 18.67 177 0.00 0.01 15.30

2AP80-4A20 195 184 0.000 0.24 12.59 184 0.000 0.23 76.31 195 0.000 0.03 13.44 195 0.00 0.06 20.78

2AP90-4A20 190 174 0.000 0.18 30.21 173 0.000 0.27 59.94 190 0.000 0.01 18.89 188 0.00 0.05 28.88

2AP100-4A20 227 213 0.000 0.16 71.24 198 0.000 0.29 76.05 224 0.000 0.02 44.53 226 0.00 0.07 48.96

Average 0.000 0.33 15.36 0.000 0.09 47.34 0.000 0.01 11.71 0.00 0.03 13.52

2AP10-5A20 14 9 0.000 0.36 0.00 14 0.000 0.00 0.14 14 0.000 0.00 0.14 14 0.00 0 0.07

2AP20-5A20 39 16 0.000 0.59 0.12 39 0.000 0.00 0.44 39 0.000 0.00 0.55 38 0.00 0.03 0.44

2AP30-5A20 68 35 0.000 0.51 0.13 68 0.000 0.00 2.44 68 0.000 0.00 2.72 66 0.00 0.04 1.29

2AP40-5A20 133 114 0.000 0.28 2.26 133 0.000 0.00 21.36 133 0.000 0.00 4.63 133 0.00 0.02 3.68

2AP50-5A20 131 118 0.000 0.18 13.01 131 0.000 0.01 46.03 131 0.000 0.00 13.55 126 0.00 0.05 5.55
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Table 4.5: Computational Results for range 20 (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP60-5A20 164 140 0.000 0.32 15.11 161 0.000 0.09 89.56 164 0.000 0.01 10.53 164 0.00 0.03 10.37

2AP70-5A20 189 169 0.000 0.17 24.64 176 0.000 0.22 99.47 189 0.000 0.01 48.52 186 0.00 0.06 16.08

2AP80-5A20 183 172 0.000 0.15 42.55 174 0.000 0.23 70.03 183 0.000 0.03 14.67 183 0.00 0.04 22.66

2AP90-5A20 228 215 0.000 0.14 21.16 212 0.000 0.35 91.44 228 0.000 0.01 17.94 226 0.00 0.04 28.94

2AP100-5A20 213 207 0.000 0.10 78.70 200 0.000 0.30 96.78 212 0.000 0.02 40.83 212 0.00 0.04 40.57

Average 0.000 0.29 19.77 0.000 0.11 51.77 0.000 0.01 15.41 0.00 0.03 12.97

2AP10-6A20 10 10 0.000 0.00 0.02 10 0.000 0.00 0.11 10 0.000 0.00 0.14 10 0.00 0 0.09

2AP20-6A20 51 22 0.000 0.57 0.08 51 0.000 0.00 0.44 51 0.000 0.00 0.47 51 0.00 0 0.48

2AP30-6A20 92 54 0.000 0.48 0.17 92 0.000 0.00 1.30 92 0.000 0.00 11.16 90 0.00 0.02 1.59

2AP40-6A20 117 70 0.000 0.48 2.55 117 0.000 0.00 8.39 117 0.000 0.00 3.20 116 0.00 0.01 3.18

2AP50-6A20 145 132 0.000 0.24 4.34 144 0.000 0.01 29.20 144 0.000 0.01 3.72 145 0.00 0.01 5.69

2AP60-6A20 170 152 0.000 0.28 19.50 162 0.000 0.14 90.17 170 0.000 0.01 11.30 170 0.00 0.01 11.19

2AP70-6A20 198 185 0.000 0.17 10.69 184 0.000 0.25 84.38 198 0.000 0.02 19.63 198 0.00 0.03 15.81

2AP80-6A20 193 186 0.000 0.16 13.18 186 0.000 0.34 99.27 193 0.000 0.01 13.17 193 0.00 0.05 22.79

2AP90-6A20 207 194 0.000 0.13 54.99 180 0.000 0.32 81.02 207 0.000 0.00 27.14 207 0.00 0.01 32.04

2AP100-6A20 218 206 0.000 0.09 26.88 204 0.000 0.31 95.80 218 0.000 0.00 24.30 218 0.00 0.02 45.37

Average 0.000 0.28 13.24 0.000 0.11 49.01 0.000 0.01 11.42 0.00 0.02 13.82

2AP10-7A20 19 6 0.000 0.68 0.00 19 0.000 0.00 0.19 19 0.000 0.00 0.13 19 0.00 0 0.08

2AP20-7A20 58 34 0.000 0.45 0.10 58 0.000 0.00 1.97 58 0.000 0.00 0.92 58 0.00 0 0.50

2AP30-7A20 95 64 0.000 0.39 0.43 95 0.000 0.00 11.02 95 0.000 0.00 5.77 95 0.00 0 1.64

2AP40-7A20 108 80 0.000 0.34 31.04 108 0.000 0.00 5.44 108 0.000 0.00 2.31 108 0.00 0.01 2.69

2AP50-7A20 124 86 0.000 0.43 1.71 124 0.000 0.00 32.09 124 0.000 0.00 27.67 119 0.00 0.09 5.83

2AP60-7A20 159 152 0.000 0.16 8.06 155 0.000 0.15 59.98 159 0.000 0.01 39.28 158 0.00 0.06 8.91

2AP70-7A20 181 171 0.000 0.14 27.02 173 0.000 0.20 81.59 181 0.000 0.02 39.11 180 0.00 0.04 16.82

2AP80-7A20 199 194 0.000 0.15 63.89 186 0.000 0.29 78.28 198 0.000 0.02 17.14 198 0.00 0.05 21.75
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Table 4.5: Computational Results for range 20 (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP90-7A20 169 161 0.000 0.19 63.17 152 0.000 0.37 85.09 169 0.000 0.02 52.36 168 0.00 0.02 25.70

2AP100-7A20 226 214 0.000 0.12 30.93 214 0.000 0.22 75.03 223 0.000 0.02 24.88 226 0.00 0.03 40.12

Average 0.000 0.31 22.63 0.000 0.11 43.07 0.000 0.01 20.96 0.00 0.03 12.40

2AP10-8A20 21 7 0.000 0.67 0.01 21 0.000 0.00 0.16 21 0.000 0.00 0.11 21 0.00 0 0.08

2AP20-8A20 51 32 0.001 0.43 0.08 51 0.000 0.00 0.20 51 0.000 0.00 0.55 50 0.00 0.02 0.54

2AP30-8A20 92 56 0.000 0.49 0.45 92 0.000 0.00 2.77 92 0.000 0.00 9.34 92 0.00 0 1.58

2AP40-8A20 124 103 0.000 0.25 1.44 124 0.000 0.00 31.88 124 0.000 0.00 4.72 123 0.00 0.02 3.22

2AP50-8A20 156 122 0.000 0.38 5.07 153 0.000 0.03 25.84 156 0.000 0.00 37.67 155 0.00 0.02 6.09

2AP60-8A20 162 142 0.000 0.26 15.34 161 0.000 0.07 69.42 162 0.000 0.02 8.61 162 0.00 0.01 10.51

2AP70-8A20 184 178 0.000 0.13 14.94 176 0.000 0.20 96.08 183 0.000 0.02 15.72 184 0.00 0.03 14.85

2AP80-8A20 208 206 0.000 0.11 10.27 187 0.000 0.33 88.88 208 0.000 0.01 14.91 208 0.00 0.04 22.59

2AP90-8A20 220 208 0.000 0.10 21.13 205 0.000 0.25 45.89 220 0.000 0.02 42.53 219 0.00 0.06 35.11

2AP100-8A20 216 207 0.000 0.12 18.81 194 0.000 0.34 97.56 216 0.000 0.02 40.81 216 0.00 0.05 43.14

Average 0.000 0.31 8.75 0.000 0.09 45.87 0.000 0.01 17.50 0.00 0.03 13.77

2AP10-9A20 15 8 0.000 0.47 0.00 15 0.000 0.00 1.75 15 0.000 0.00 0.16 15 0.00 0 0.10

2AP20-9A20 63 36 0.000 0.44 0.06 63 0.000 0.00 1.27 63 0.000 0.00 0.50 63 0.00 0 0.45

2AP30-9A20 83 51 0.000 0.47 0.56 83 0.000 0.00 1.34 83 0.000 0.00 2.67 83 0.00 0 1.32

2AP40-9A20 108 82 0.000 0.33 3.18 107 0.000 0.01 14.02 108 0.000 0.00 8.09 108 0.00 0.02 3.05

2AP50-9A20 141 115 0.000 0.32 2.21 140 0.000 0.01 77.64 141 0.000 0.00 6.19 140 0.00 0.03 5.99

2AP60-9A20 172 162 0.000 0.10 10.92 169 0.000 0.07 98.91 172 0.000 0.00 13.63 172 0.00 0.04 10.04

2AP70-9A20 184 175 0.000 0.23 4.52 171 0.000 0.24 99.28 184 0.000 0.01 98.11 183 0.00 0.03 15.67

2AP80-9A20 182 172 0.000 0.15 60.72 167 0.000 0.27 79.14 182 0.000 0.01 11.73 182 0.00 0.05 20.81

2AP90-9A20 203 187 0.000 0.23 56.49 183 0.000 0.38 95.39 203 0.000 0.01 16.95 203 0.00 0.04 29.81

2AP100-9A20 213 199 0.000 0.16 56.58 198 0.000 0.26 93.25 213 0.000 0.00 23.88 213 0.00 0.03 43.46
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Table 4.5: Computational Results for range 20 (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

Average 0.000 0.29 19.52 0.000 0.10 56.20 0.000 0.01 18.19 0.00 0.02 13.07

2AP10-10A20 11 8 0.007 0.36 0.03 11 0.000 0.00 0.19 11 0.000 0.00 0.11 11 0.00 0 0.08

2AP20-10A20 68 44 0.000 0.47 0.13 68 0.000 0.00 0.64 68 0.000 0.00 0.77 68 0.00 0 0.49

2AP30-10A20 107 64 0.000 0.53 2.80 107 0.000 0.00 8.86 107 0.000 0.00 37.64 107 0.00 0.02 1.35

2AP40-10A20 121 82 0.000 0.40 0.57 121 0.000 0.00 6.52 121 0.000 0.00 6.20 120 0.00 0.01 2.85

2AP50-10A20 165 120 0.000 0.42 7.17 162 0.000 0.02 95.48 164 0.000 0.01 4.53 164 0.00 0.02 5.81

2AP60-10A20 180 143 0.000 0.28 35.68 171 0.000 0.14 92.64 178 0.000 0.02 41.00 175 0.00 0.06 9.56

2AP70-10A20 198 181 0.000 0.24 38.59 187 0.000 0.23 64.78 198 0.000 0.02 37.95 198 0.00 0.04 15.92

2AP80-10A20 194 183 0.000 0.19 8.93 175 0.000 0.30 96.53 193 0.000 0.02 73.91 192 0.00 0.06 25.87

2AP90-10A20 182 169 0.000 0.16 90.93 161 0.000 0.38 91.08 182 0.000 0.01 87.38 181 0.00 0.04 27.42

2AP100-10A20 211 200 0.000 0.15 71.33 192 0.000 0.34 99.36 211 0.000 0.02 21.66 211 0.00 0.07 39.48

Average 0.001 0.33 25.62 0.000 0.11 55.61 0.000 0.01 31.11 0.00 0.03 12.88
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Table 4.6: Computational Results for range 40, 60, 80 and 100

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP10-1A40 21 10 0 0.52 0.02 21 0 0.00 0.52 21 0 0.00 0.28 20 0.00 0.05 0.09

2AP20-1A40 66 23 0 0.65 0.07 66 0 0.00 1.58 66 0 0.00 1.50 59 0.00 0.11 0.55

2AP30-1A40 109 76 0 0.43 0.43 109 0 0.00 6.94 109 0 0.00 4.61 92 0.00 0.17 1.44

2AP40-1A40 186 96 0 0.60 58.19 186 0 0.00 67.86 186 0 0.00 45.34 141 0.00 0.25 3.32

2AP50-1A40 216 178 0 0.28 13.43 216 0 0.02 89.94 216 0 0.00 96.78 191 0.00 0.13 6.69

2AP60-1A40 253 189 0 0.42 11.69 223 0 0.30 98.91 248 0 0.05 87.53 208 0.00 0.23 9.86

2AP70-1A40 331 270 0 0.41 80.52 281 0 0.42 94.09 312 0 0.14 99.00 262 0.00 0.24 15.50

2AP80-1A40 355 280 0 0.39 80.99 291 0 0.41 95.88 337 0 0.09 96.97 305 0.00 0.20 21.86

2AP90-1A40 432 367 0 0.34 77.40 342 0 0.53 99.99 407 0 0.11 82.38 387 0.00 0.14 29.78

2AP100-1A40 429 380 0 0.30 94.14 333 0 0.51 94.52 415 0 0.07 89.11 401 0.00 0.13 41.79

Average 0 0.42 41.69 0 0.16 65.02 0 0.03 60.35 0.00 0.16 13.09

2AP10-1A60 17 10 0.001 0.47 0.02 17 0 0.00 94.52 17 0 0.00 0.80 15 0.00 0.12 0.02

2AP20-1A60 66 19 0 0.71 0.04 66 0 0.00 0.28 66 0 0.00 1.94 35 0.00 0.48 0.27

2AP30-1A60 139 78 0 0.50 13.11 139 0 0.00 0.75 139 0 0.00 9.78 98 0.00 0.31 0.84

2AP40-1A60 259 161 0 0.56 60.18 258 0 0.00 8.55 259 0 0.00 48.45 159 0.00 0.40 1.65

2AP50-1A60 304 187 0 0.50 17.59 299 0 0.02 42.16 295 0 0.04 92.03 187 0.00 0.42 3.36

2AP60-1A60 374 275 0 0.42 47.33 320 0 0.31 85.73 358 0 0.07 89.22 240 0.00 0.43 5.34

2AP70-1A60 460 335 0 0.42 46.60 370 0 0.43 91.33 437 0 0.12 98.31 262 0.00 0.46 8.00

2AP80-1A60 498 369 0 0.47 63.83 384 0 0.55 97.50 450 0 0.20 98.23 278 0.00 0.52 11.99

2AP90-1A60 571 462 0 0.37 93.94 370 0 0.69 98.42 491 0 0.26 99.19 360 0.00 0.44 15.87

2AP100-1A60 585 476 0 0.35 85.14 381 0 0.64 96.98 497 0 0.25 97.14 305 0.00 0.51 17.96

Average 0 0.48 42.78 0 0.20 61.62 0 0.05 63.51 0.00 0.41 6.53

2AP10-1A80 25 9 0 0.64 0.02 25 0 0.00 99.13 25 0 0.00 99.19 16 0.00 0.36 0.06

2AP20-1A80 94 58 0 0.45 0.73 94 0 0.00 0.44 94 0 0.00 0.52 59 0.00 0.37 0.30
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Table 4.6: Computational Results for range 40, 60, 80 and 1000 (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP30-1A80 158 57 0 0.66 0.38 158 0 0.00 1.17 158 0 0.00 1.73 74 0.00 0.53 0.68

2AP40-1A80 218 124 0 0.52 6.40 218 0 0.00 11.50 218 0 0.00 8.41 113 0.00 0.50 1.66

2AP50-1A80 375 228 0 0.54 55.71 360 0 0.07 42.86 366 0 0.05 93.56 183 0.00 0.53 3.26

2AP60-1A80 431 254 0 0.58 41.73 347 0 0.36 92.98 392 0 0.17 92.72 157 0.00 0.65 4.52

2AP70-1A80 477 337 0 0.44 98.41 344 0 0.50 98.30 417 0 0.21 86.61 176 0.00 0.66 7.06

2AP80-1A80 677 482 0 0.51 90.81 451 0 0.64 97.72 561 0 0.32 97.30 278 0.00 0.62 13.83

2AP90-1A80 691 550 0 0.39 76.09 484 0 0.64 94.22 601 0 0.25 97.53 334 0.00 0.56 19.19

2AP100-1A80 845 637 0 0.49 93.85 521 0 0.65 99.77 656 0 0.37 99.59 319 0.00 0.67 24.19

Average 0 0.52 46.41 0 0.24 63.81 0 0.10 67.72 0.00 0.54 7.48

2AP10-1A100 13 7 0 0.46 0.00 13 0 0.00 99.97 13 0 0.00 98.69 11 0.00 0.15 0.05

2AP20-1A100 82 38 0 0.57 0.16 82 0 0.00 0.08 82 0 0.00 0.23 44 0.00 0.46 0.28

2AP30-1A100 169 56 0 0.67 1.07 169 0 0.00 5.72 169 0 0.00 1.27 58 0.00 0.64 0.64

2AP40-1A100 243 120 0 0.60 13.27 243 0 0.00 71.81 243 0 0.00 33.80 96 0.00 0.60 1.49

2AP50-1A100 301 143 0 0.65 94.98 294 0 0.03 55.59 295 0 0.04 45.59 72 0.00 0.76 2.89

2AP60-1A100 470 307 0 0.50 94.95 380 0 0.35 97.50 431 0 0.14 68.08 173 0.00 0.64 4.76

2AP70-1A100 573 387 0 0.47 65.95 437 0 0.43 99.81 509 0 0.21 97.14 201 0.00 0.65 8.80

2AP80-1A100 671 413 0 0.58 87.14 460 0 0.58 98.30 512 0 0.38 96.05 221 0.00 0.68 11.59

2AP90-1A100 722 497 0 0.52 98.39 427 0 0.64 98.36 537 0 0.40 95.45 221 0.00 0.71 16.71

2AP100-1A100 947 656 0 0.49 87.33 545 0 0.69 99.41 723 0 0.40 98.00 263 0.00 0.73 23.02

Average 0 0.55 54.32 0 0.23 72.65 0 0.12 63.43 0.00 0.61 7.02
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Table 4.7: Computational Results for n ∈ {150, 200, 250, 300, 350}

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP150-1A20 234 234 0 0.04 153.13 223 0 0.31 879.30 234 0 0.01 90.22 234 0 0.01 90.36

2AP150-1A40 577 538 0 0.22 683.64 468 0 0.56 861.97 551 0 0.10 898.58 445 0 0.31 82.38

2AP150-1A60 856 776 0 0.30 835.08 613 0 0.70 852.95 779 0 0.23 860.61 512 0 0.48 85.86

2AP150-1A80 1298 1107 0 0.34 892.88 870 0 0.69 896.72 1124 0 0.26 860.38 616 0 0.58 76.84

2AP150-1A100 1273 1014 0 0.45 805.71 801 0 0.75 894.27 1099 0 0.34 873.36 402 0 0.70 78.49

Average 0 0.27 674.09 0 0.60 877.04 0 0.19 716.63 0 0.43 82.79

2AP200-1A20 271 264 0 0.07 112.59 243 0 0.36 847.75 271 0 0.00 61.90 271 0 0.03 189.16

2AP200-1A40 657 614 0 0.19 876.33 554 0 0.59 884.16 640 0 0.07 742.63 526 0 0.30 202.81

2AP200-1A60 1040 920 0 0.36 893.37 759 0 0.68 876.75 959 0 0.20 809.56 669 0 0.46 207.10

2AP200-1A80 1363 1166 0 0.42 893.76 800 0 0.79 899.77 1201 0 0.32 879.56 612 0 0.62 201.29

2AP200-1A100 1633 1336 0 0.47 892.60 955 0 0.77 896.34 1262 0 0.46 890.36 520 0 0.72 218.04

Average 0 0.30 733.73 0 0.64 880.95 0 0.21 676.80 0 0.43 203.68

2AP250-1A20 265 255 0 0.10 185.70 254 0 0.43 590.61 265 0 0.00 247.34 264 0 0.06 346.60

2AP250-1A40 776 728 0 0.22 862.57 688 0 0.60 846.02 753 0 0.06 867.35 617 0 0.30 403.06

2AP250-1A60 1080 1002 0 0.28 893.05 797 0 0.69 899.39 1024 0 0.13 876.04 698 0 0.44 415.49

2AP250-1A80 1402 1264 0 0.34 891.72 1056 0 0.70 897.58 1279 0 0.20 881.96 693 0 0.56 463.08

2AP250-1A100 1672 1518 0 0.30 896.92 1122 0 0.73 891.89 1529 0 0.22 897.45 696 0 0.63 411.33

Average 0 0.25 745.99 0 0.63 825.10 0 0.12 754.03 0 0.40 407.91

2AP300-1A20 299 289 0 0.11 494.56 274 0 0.44 890.00 299 0 0.00 694.81 299 0 0.02 554.85

2AP300-1A40 805 719 0 0.32 886.08 628 0 0.66 845.92 706 0 0.20 945.42 710 0 0.19 751.83

2AP300-1A60 1173 1018 0 0.41 893.99 856 0 0.70 898.10 847 0 0.35 934.90 851 0 0.35 744.57

2AP300-1A80 1455 1253 0 0.41 898.70 1058 0 0.71 895.53 899 0 0.45 910.42 848 0 0.47 726.46

2AP300-1A100 1564 1292 0 0.46 897.80 1251 0 0.63 892.66 832 0 0.53 1001.81 849 0 0.52 809.18
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Table 4.7: Computational Results for n ∈ {150, 200, 250, 300, 350} (continued).

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

Average 0 0.34 814.23 0 0.63 884.44 0 0.31 897.47 0 0.31 717.38

2AP350-1A20 290 281 0 0.05 400.77 256 0 0.56 724.05 284 0 0.05 1262.45 286 0 0.03 1093.64

2AP350-1A40 845 743 0 0.37 898.10 678 0 0.66 896.67 745 0 0.21 1354.22 744 0 0.19 1245.35

2AP350-1A60 1337 996 0 0.54 899.52 1116 0 0.63 898.82 978 0 0.36 1488.82 982 0 0.33 1223.79

2AP350-1A80 1455 1130 0 0.53 898.06 1164 0 0.66 898.22 898 0 0.45 1434.13 903 0 0.44 1246.18

2AP350-1A100 1556 1113 0 0.55 899.84 1247 0 0.65 898.33 847 0 0.51 1703.95 842 0 0.51 1551.15

Average 0 0.41 799.26 0 0.63 863.22 0 0.32 1448.71 0 0.30 1272.02
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Table 4.7 presents the results for n ∈ {150, 200, 250, 300, 350}. It can be observed

that when the size of the problems increases, the performance of the genetic algorithm is

better than the performance of the cost perturbation heuristic.
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Table 4.8: Computational Results for n = 400, 450 and 500

Instances E∗ GA BPR HGA CPH

|E∗| |GA| GD(GA) ER(GA) CPU |BPR| GD(BPR) ER(BPR) CPU |HGA| GD(HGA) ER(HGA) CPU |CPH| GD(CPH) ER(CP) CPU

2AP400-1A20 268 264 0 0.05 2261.89 255 0 0.38 2955.52 268 0 0.00 705.28 268 0 0.01 1706.680

2AP400-1A40 889 845 0 0.20 3490.77 777 0 0.66 3589.65 869 0 0.05 3578.66 741 0 0.23 1987.270

2AP400-1A60 1425 1319 0 0.30 3568.69 1153 0 0.66 3544.94 1352 0 0.13 3567.02 984 0 0.39 1694.310

2AP400-1A80 1861 1679 0 0.34 3578.88 1416 0 0.71 3557.58 1644 0 0.25 3571.63 965 0 0.53 2176.660

2AP400-1A100 2119 1861 0 0.33 3593.11 1575 0 0.75 3579.52 1867 0 0.26 3576.41 893 0 0.63 1943.120

Average 0 0.24 3298.67 0 0.63 3445.44 0 0.14 2999.80 0 0.36 1901.61

2AP450-1A20 293 293 0 0.01 2188.91 272 0 0.43 3578.22 293 0 0.00 1253.90 288 0 0.02 2197.720

2AP450-1A40 895 845 0 0.23 2863.62 751 0 0.62 2925.80 868 0 0.08 2891.61 736 0 0.23 2547.080

2AP450-1A60 1438 1280 0 0.37 3563.08 1129 0 0.70 3469.67 1296 0 0.21 3596.64 939 0 0.41 3022.470

2AP450-1A80 1847 1644 0 0.40 3598.77 1395 0 0.72 3565.76 1645 0 0.26 3587.95 943 0 0.55 2636.690

2AP450-1A100 2219 1873 0 0.45 3102.61 1669 0 0.72 3396.98 1929 0 0.29 2865.98 1020 0 0.59 3137.690

Average 0 0.29 3584.33 0 0.64 3584.44 0 0.17 3588.29 0 0.36 2708.33

2AP500-1A20 288 277 0 0.08 1108.87 270 0 0.43 3366.03 288 0 0.00 1481.22 283 0 0.02 3110.070

2AP500-1A40 967 908 0 0.25 3559.83 816 0 0.70 3284.53 920 0 0.10 3581.62 808 0 0.22 3960.460

2AP500-1A60 1492 1292 0 0.44 3591.99 1209 0 0.73 3587.11 1306 0 0.24 3596.34 995 0 0.40 4419.000

2AP500-1A80 1890 1695 0 0.36 3597.90 1388 0 0.75 3586.79 1527 0 0.38 3567.77 993 0 0.53 4046.210

2AP500-1A100 2264 1917 0 0.45 3596.38 1806 0 0.69 3559.04 1788 0 0.38 3595.57 1050 0 0.58 3989.330

Average 0 0.31 3091.00 0 0.66 3476.70 0 0.22 3164.50 0 0.35 3905.01
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In terms of the ER measure, the HGA can be considered as the best one for the class

of instances with n = 20 ( Table 4.5), with an average value of 0.007. For the majority

of the instances, HGA finds all the solutions of the optimal front. In average, the ER

measures for GA, BPR and CPH are equal to 0.29, 0.12 and 0.27, respectively. In terms

of the GD measure, we can see that, although these three methods do not find the whole

optimal front, the obtained front is very close to it since the values of GD tend to zero

(Figures 4.2 and 4.3).

For the class of instances with n ∈ {40, 60, 80, 100}, the HGA can still be considered as

the best one in terms of the ER measure, with an average value of 0.11. The ER measures

for GA, BPR and CPH are, in average, equal to 0.50, 0.26 and 0.43, respectively. Note that

the ER increases when the coefficients cij are in [1, 60], [1, 80] and [1, 100]. This occurs

specially for CPH. For the larger instances ( Tables 4.7 and 4.8), the HGA continues

to be the best one in terms of the ER measure, with average values of 0.23 and 0.18,

respectively. For these instances, the performance of GA increases ( the average values of

ER are respectively 0.31 and 0.28) whereas the performance of BPR declines ( the average

values of ER are respectively 0.63 and 0.64). For the CPH, the average values of ER, for

these instances, are respectively 0.43 and 0.36.

In terms of CPU time, the obtained results show that, in average, GA, BPR and HGA

are similar, whereas CPH consumes less computational time.

Finally, again in terms of the GD measure, although the methods do not find the

whole optimal front, the obtained front is very close to it since the values of GD tend to

zero (Figures 4.4–4.6).
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Figure 4.2: Pareto fronts of 2AP10-1A20

Figure 4.3: Pareto fronts of 2AP100-10A20
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Figure 4.4: Pareto fronts of 2AP50-1A80

Figure 4.5: Pareto fronts of 2AP250-1A60
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Figure 4.6: Pareto fronts of 2AP500-1A100

4.6 Conclusion

In this chapter, we proposed metaheuristics for the bi-objective assignment problem.

More precisely, we proposed a two phase method where the first phase generates the

supported efficient set and the second phase approximates the unsupported efficient set.

For this four metaheuristics are proposed namely a multi-objective genetic algorithm, a

bi-objective path relinking and a hybrid approach. Moreover, a local search procedure was

introduced for balancing the diversification and the intensification in the search process.

The experimental results show the efficiency of our proposed algorithms for large instances

in comparison with an exact method from the literature.
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Chapter 5

Dynamic assignment for parking slot

problem

5.1 Introduction

A dynamic assignment problem consists of solving a sequence of assignment problems

over time. At each time period, decisions must be made in what concerns which resources

and tasks to assign to each other. Assignments that are made at earlier time periods

affect the assignments that are made during later time periods, and information about

the future is often uncertain. Some examples of dynamic assignment problems include

dispatching truck drivers to deliver loads, pairing locomotives with trains and assigning

company employees to jobs (Spivey and Powell (2003)).

(Geng and Cassandras (2011)) propose a ”smart parking” system for an urban en-

vironment based on a dynamic resource allocation approach. The goal of the system is

to provide an optimal assignment of users (drivers) to the parking slots, respecting the

overall parking capacity. The quality of an assignment is measured using a function that

combines proximity to destination and parking cost. At each decision point, the system

considers two queues of users: WAIT queue (consists of users who wait to be assigned

to resources) and RESERVE queue (consists of users who have already been assigned

and have reserved a resource in some earlier decision point). An optimal allocation of

all users in both WAIT queue and RESERVE queue at each decision point is determined

by solving a mixed integer linear programming problem. Simulation results show that
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the ”smart parking” approach provides near-optimal resource utilization and significant

improvement compared to classical guidance-based systems.

In (Mejri et al. (2013)), the authors present an approach for assigning parking slots

using a semi-centralized structure that uses Parking Coordinators (PC). They propose

a new approach to guide drivers to parkings. It aims to ensure driver satisfaction and

improve the occupancy balance between parking areas. They propose two variants: in the

first variant, each PC affects a parking independently of the others; in the second variant,

the PCs interact with their near neighbors, to assign a location with the constraint of

balancing the load of each car park. The idea behind this approach is to use PCs to

gather vehicles (drivers) queries during a certain time window and assign a parking slot

according to these vehicles preferences. Both variants of the solution were simulated. In

the first one, the PCs take parking decisions regardless of their environment and neighbors.

In the second variant, these computers (i.e. PCs) exchange informations with their close

neighbors. The simulation results showed that the second variant outperformed the first

one, specially when the number of conflicting demands between PCs increased. The results

for the second variant are very close to the case with a decision-centralized system, while

being more scalable. These preliminary results showed that cooperation between the

parking coordinators is strongly recommended.

5.2 Mixed integer programming formulation

A driver represents a user and a parking slot represents a resource. A driver i ∈ I =

{1, 2, . . . , n}, aiming to visit a given destination, starts looking for a parking slot by

launching a request at a non–deterministic moment. These moments are not known in

advance and are discovered during the assignment process. A parking j ∈ J = {1, 2, ...m}

has a certain number of available slots that change during the time. Both drivers requests

and available parking slots appear in a non–deterministic way and can change their state

at any moment. We assume that each resource, each driver and each destination has a

known location associated to it in a two–dimensional Euclidean space.

The density of drivers requests is not uniform, it varies from a time period to another

during the same day. For example, the requests density for a parking slot near to a
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hospital rises in the visiting hours and declines at other times. In the same way, the

requests density of a parking slot around public administration buildings depends on the

working hours. Therefore, to take into account this feature, each day of the time horizon

is subdivided into a fixed number T of equally spaced time periods. Periods that represent

peak hours, normal hours, ... off-peak hours.

The objective of assigning vehicles to parking slots is to provide a global satisfaction

of all customers. For instance, when the decision is performed request per request inde-

pendently using a FIFO (First In First Out) rule, it may not be satisfactory because it

can have a negative impact on the future situations. The following example, presented

in Figure 5.1, illustrates the impact of the starting choice on the future decision when

using a FIFO rule. We assume that we have one available parking slot in parking p1

and another in parking p2. Moreover, we suppose that vehicle v1 launches a request for

a parking slot near to destination d1 and vehicle v2 looks for a place near to destination

d2. In addition, it is assumed that vehicle v1 arrives before vehicle v2 into the system. If

we aim to minimize the distance between the parking and the destination, the FIFO rule

will suggest to assign vehicle v1 to parking p1 and vehicle v2 to parking p2. As the vehicle

v1 request is handled first, regardless of the vehicle v2 request. The result is ”good” for

deriver r1 but ”bad” for driver r2 and bad for the global system. This is due to the fact

that the future information concerning the second driver is excluded. However, if vehicle

v1 is assigned to parking p2 and vehicle v2 to parking p1, driver r1 preserves his satisfaction

degree as the distance from parking p1 to destination d1 is similar to the distance from

parking p2 to destination d1, but the degree of satisfaction of driver r2 is increased.

Figure 5.1: Illustrative example

To escape from this drawback, two alternatives may be presented: the first one consists
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in collecting a subset of the requests in a given moment and solving the associated problem.

The second one consists in establishing a forecast process to model the future information.

In this section, we will discuss the first alternative and in a later section we will propose

a forecast approach. The operation of collecting requests needs a collecting time period.

We define a partition of time to gather requests and to determine the number of available

slots in each parking created by the outgoing vehicles. Each time period, t = 1, 2, ..., T , of

a day is partitioned into fixed K equally spaced sub-periods. We denote by k the index of

the kth sub-period. The process of assignment is performed in a discrete given moment,

at the end of each sub-period called ”decision point”. Each decision point has also an

index denoted by k.

At each decision point k, we denote by Nk the set of new requests gathered during

the sub-period k. Due to the limited capacity of the parking, some requests may not be

satisfied at each decision point k. We denote by Rk the set of yet unassigned vehicles

at the decision point k. Therefore, the set of vehicles that have to be assigned at the

next decision point k + 1 is Ek+1 = Nk+1 ∪ Rk, the sum of new requests Nk+1 and the

non-handled requests up-to-now Rk.

To formally define the dynamic assignment problem, we need the following:

• Parameters:

– destki : the location of the destination of vehicle i from the set Ek in the two-

dimensional Euclidean space.

– locki : the location of vehicle i from the set Ek in the two-dimensional Euclidean

space.

– dki,j: the distance between the location of the vehicle i from the set Ek and the

parking j at the decision point k.

– dk[i],j: the walking distance, i.e. distance between the destination destki of the

vehicle i from the set Ek and the parking j at the decision point k.

– V : the velocity of vehicles. We assume that all vehicles have the same velocity.

– V ′: the walking velocity of a driver needed to reach the destination after park-

ing the vehicle. We assume that this velocity is the same for all drivers.
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– wk
i : the waiting time of a vehicle i between the launch of the request and the

decision point k.

– Ck
j : the capacity of the parking j at the decision point k. This parameter

designates the number of available slots in the parking j at the kth decision

point.

• Variables: We introduce the binary decision variables defined as follows:

xk
i,j =





1 if the vehicle i is assigned to parking j at the decision point k,

0 otherwise.

• Criteria: As the occupancy time of a parking slot begins from the assignment of

the requests, which is not necessary the arrival time to the parking, the objective of

the decision maker is to minimize the total distance between all vehicles and their

assigned parking slots. This maximizes the occupancy and satisfies the parking

manager. However, to guarantee a good quality of service to the customers, it is

also necessary to minimize two elements:

– the distance traveled between the assigned parking slot and the customer final

destination. This could be done by choosing the closest possible available

parking slot;

– the waiting time that separates the launch of the request and the decision

to assign the vehicle to a parking slot. This could be done by introducing

a queuing factor to provide a priority for the vehicles having longer waiting

times.

These objectives are aggregated into a single weighted objective as follows:

Minfk(x) =
∑

i∈I

∑

j∈J

xk
i,j(λ1

dki,j
V

+ λ2

dk[i],j
V ′

− λ3w
k
i ) (5.1)

where λ1, λ2 and λ3 are non-negative values denoting the weights of each criterion.

The non-positive coefficient associated to the third criterion is used as a priority

factor.
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• Constraints: The main constraints in the considered problem at each decision

point deal with the limited capacity of each parking and the satisfaction of the

drivers requests. However, as the total number of available parking slots at each

decision point is not necessarily equal to the total requests to be assigned, the

constraints will be different. In this subsection, the constraints of the problem

are expressed according to the availability of the parking slots and the number of

launched requests at the considered decision point. Three possible cases will be

considered.

– Case 1: The number of available slots is larger than the number of requests

at the kth decision point:

∑

i∈I

xk
i,j ≤ Ck

j ∀j ∈ J (5.2)

∑

j∈J

xk
i,j = 1 ∀i ∈ I (5.3)

Constraints (5.2) guarantee that, at each decision point k, the number of as-

signed cars in the parking j cannot exceed its capacity. Constraints (5.3) ensure

that each driver i is assigned to one and only one parking slot.

– Case 2: The number of available slots is less than the number of requests at

the kth decision point:

∑

i∈I

xk
i,j = Ck

j ∀j ∈ J (5.4)

∑

j∈J

xk
i,j ≤ 1 ∀i ∈ I (5.5)

In this case, we formulate the constraints such that all the slots in the parking

j will be occupied and some drivers may not be assigned to any parking slot.

– Case 3: The number of available slots is equal to the number of requests at

the kth decision point:

∑

i∈I

xk
i,j = Ck

j ∀j ∈ J (5.6)
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∑

j∈J

xk
i,j = 1 ∀i ∈ I (5.7)

In this last case, the offer of the parking slots is equal to the demand and thus

each parking slot should be occupied and each driver should find a parking

slot.

For the ease of use, we propose to formulate our problem as a simple assignment

problem, where the capacity of each agent is equal to one. This is done by disag-

gregating the parking slots. Instead of considering the slots through the capacity

of each parking we consider the available slots individually. Therefore, the prob-

lem becomes an assignment of drivers to parking slots instead of an assignment of

drivers to parking. Let Jk
j be the set of available slots in a parking j in the set J

at the decision point k. The binary decision variables will be defined, from now on,

as follows:

xk
i,h =





1 if the vehicle i is assigned to parking slot h at the decision point k,

0 otherwise.

The new proposed formulation of our problem can be presented as follows:

Minfk(x) =
n∑

i=1

∑

j∈J

∑

h∈Jk
j

xk
i,h(λ1

dki,h
V

+ λ2

dk[i],h
V ′

− λ3w
k
i ), (5.8)

subject to the following constraints:

– Case 1: The number of available slots is larger than the number of requests

at the kth decision point:

∑

i∈I

xk
i,h ≤ 1 ∀j ∈ J, ∀h ∈ Jk

j (5.9)

∑

j∈J

∑

h∈Jk
j

xk
i,h = 1 ∀i ∈ I (5.10)

– Case 2: The number of available slots is less than the number of requests at

the kth decision point:
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∑

i∈I

xk
i,h = 1 ∀j ∈ J, ∀h ∈ Jk

j (5.11)

∑

j∈J

∑

h∈Jk
j

xk
i,h ≤ 1 ∀i ∈ I (5.12)

– Case 3: The number of available slots is equal to the number of requests at

the kth decision point:

∑

i∈I

xk
i,h = 1 ∀j ∈ J, ∀h ∈ Jk

j (5.13)

∑

j∈J

∑

h∈Jk
j

xk
i,h = 1 ∀i ∈ I (5.14)

The considered problem is dynamic because, during a given day, the demand for

parking slots is not uniform and the number of requests launched by the drivers

changes from one period t ∈ T of the day to another. Therefore, assignments

that are made at earlier periods affect which assignments can be made during later

periods. Moreover, the information about the future periods is uncertain. Our goal

is to efficiently manage the requests in the time to deal with this uncertainty. To

do so, we propose to establish a forecasting process based on a learning effect. We

introduce a penalty term in the objective function that determines for each parking

and each period of the day if the current assignment has or not an impact on the

future ones. In other words, if the future demand around a parking j is going be

higher, the current penalty should be big, in order to leave more available slots in

this parking for the future period. Otherwise, the penalty will be small, in order

to make the slots of this parking more attractive for the current assignment. The

value of these penalties are calibrated through a learning process.

Let ptj denote the penalty term associated to parking j at the period of time t

(t = 1, 2, ..., T ). It should be noted that for each slot in the parking j, the penalty is

equal to the parking penalty ptj. In addition, between two consecutive time periods

t1 and t2, such that t1 < t2 and for a decision points k such that t1 ≤ k < t2 , we

set pkj = pt1j .
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The new objective function can be written as follows:

Minfk(x) =
n∑

i=1

∑

j∈J

∑

h∈Jk
j

xk
i,h(λ1

dki,h
V

+ λ2

dk[i],h
V ′

− λ3w
k
i + pkj ) (5.15)

5.3 Estimation of distribution algorithms

According to the framework of the classical Genetic Algorithm (GA), the process of re-

combination occurs during meiosis, resulting from crossovers between parental chromo-

somes. Through this process, the offspring inherit different combinations of genes from

their parents regardless the link between them. Moreover, the tuning of the parameters

(population size, probabilities of crossover and mutation, etc) and the prediction of the

movements of the populations are difficult tasks to perform in a GA. These drawbacks

motivated the development of the Estimation of Distribution Algorithm (EDA).

The EDA was introduced to estimate the correlation between genes and uses this in-

formation during the search process. In an EDA there are neither crossover nor mutation

operators. It was first introduced by (Mühlenbein and Paass, 1996), and it is a stochas-

tic optimization technique that explores the space of potential solutions by building and

sampling explicit probabilistic models of promising candidate solutions. Starting with a

population of individuals (candidate solutions), generally randomly generated, this algo-

rithm selects good individuals with respect to their fitness. Then, a new distribution of

probability is estimated from the selected candidates. Next, new offspring are generated

from the estimated distribution. The process is repeated until the termination criterion

is met.

This model-based approach to optimization has allowed EDAs to solve successfully

many large and complex problems such as the quadratic assignment problem (Zhang

et al., 2006), the 0–1 knapsack problem (Li et al., 2004), the n–queen problem (Paul and

Iba, 2002), the traveling salesman problem (Robles et al., 2002).

EDA typically works with a population of individuals generated at random. At each

generation, a subset of the most promising solutions is selected by a selection operator

with respect to a fitness function. The main phase of the algorithm is to estimate, from

informations contained in the selected individuals, a probability distribution. Then, a
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new individual is generated from the constructed probability model. The new solution

may be incorporated into the previous population if it satisfies a replacement criterion.

Otherwise, it will be rejected. Finally, the process is reiterated until a stopping criterion

is satisfied. The main steps of a basic EDA are summarize in Algorithm 13.

Algorithm 13: Basic EDA

Generate an initial population of P individuals

repeat

Select a set of Q parents from the current population P with a selection

method;

Build a probabilistic model for the set of selected parents;

Create a new offspring to P according to the estimated probability distribution;

Replace some individuals in the current population P with new individuals;

until a stopping criterion is met ;

The choice of the probabilistic model is not a trivial task. Many works have focused on

the way to establish the distribution of probability that allows capturing the features of

the promising solutions. Three classes of EDA may be presented according to the chosen

probabilistic model and the degree of dependency between the variables of the problem.

The first class called univariate model, assumes no dependencies between variables of

candidate solutions, wich is to say that all variables are independent. The second one,

called bivariate model, assumes only pairwise dependencies between these variables and

the last class, called multivariate model, assumes multiple dependencies between variables.

In the next sections, we describe the main principles of those methods.

5.3.1 Univariate models

In this section, we discuss the simplest approaches of EDA where it is assumed that the

problem variables are independent. Under this assumption, the probability distribution

of any individual variable should not depend on the values of any other variables. The

common characteristic between all the models belonging to this category is to consider

that, for each generation g, the n-dimensional joint probability distribution decomposes

the probability of a candidate solution into a product of n univariate and independent

probability distributions such that pg(x) =
∏n

i=1 p
g(xi).
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• Population based incremental learning: It was introduced by (Baluja, 1994)

and considers binary variables. Here, at each generation g, a candidate solution

x ∈ {0, 1}n of a current population P is encoded by a vector of probability pg(x) =

(pg(x1), p
g(x2), . . . , p

g(xn)), where pg(xi) denotes the probability of the component

xi to take value “1“. Initially, all positions are equiprobable and all probabilities are

set to 0.5. Then, based on Q selected individuals, the probability vector is updated

according to the following expression

pg+1(x) = (1− α)pg(x) +
α

Q

Q∑

k=1

xg
k (5.16)

where xg
k is the kth best individual in the population at the gth generation and α is

the learning rate. It is easy to observe that in equation (5.16) each component is

evaluated independently of others and thus no interaction is considered. In (Sebag

and Ducoulombier, 1998), the authors proposed an adaptation of the population

based incremental learning to continuous domain. Each element of the mean vector

is estimated, at generation g + 1, by the following equation

µ̂g+1
k = (1− α)µ̂g

k + α(xg
1∗ + xg

2∗ − xg
w) (5.17)

where solutions xg
1∗ and xg

2∗ are the two best solutions and solution xg∗w is the worst

solution discovered in the current generation. Moreover, the authors proposed some

heuristics to estimate the variance vector.

• Stochastic hill climbing with learning by vectors of normal distributions:

It was developed by (Rudlof and Köppen, 1996) specifically for the continuous do-

main. The parameters of the density function, the mean vector µ̂ and the variance

vector σ̂ are estimated using:

µ̂g+1 = µ̂g + α(bg − µ̂g) (5.18)

σ̂g+1 = β × σ̂g (5.19)

where α denotes the learning factor, bg denotes the barycenter of the B best indi-

viduals in the gth generation and 0 < β < 1 denotes a fixed constant.
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• Univariate marginal distribution algorithm: This algorithm, proposed by

(Mühlenbein, 1997), behaves differently from the two previous algorithms. It es-

timates the joint probability distribution pg(x) of the selected individuals at each

generation. In the case of binary variables, the probability vector is estimated from

marginal frequencies and pg(xi) is set by counting the number of occurences of ”1”,

fk(xi = 1) for k = 1, 2, ..., Q, in the set of selected individuals. In order to generate

new individuals, each variable is generated according to pg(xi) as follows

pg(xi) =
1

Q

Q∑

k=1

fk(xi = 1) (5.20)

For continuous domains, the Univariate Marginal Distribution Algorithm is de-

signed, through statistical tests, to find the density function that best fits the

variables. Then, using the maximum likelihood estimates, the evaluation of the

parameters is performed.

5.3.2 Bivariate models

In order to make the interactions between variables more realistic, this class of models

takes into account pairwise dependencies. In this class of EDA, we focus only on the

Mutual Information Maximization for Input Clustering (MIMIC) proposed by (Bonet

et al., 1996) as it is used for both continuous and discrete domains. In MIMIC, the

conditional dependencies of pg(x) are defined by a Markovian chain in which each variable

is conditioned by the previous one. Therefore, in each generation, the MIMIC uses a

permutation framework of ordered pairwise conditional probabilities, which can be written

as follows:

pgπ(x) = pg(xi1 |xi2)p
g(xi2 |xi3) . . . p

g(xin−1
|xin) (5.21)

where π = {i1, i2, ..., in} is a permutation of the indexes 1, 2, ..., n. The objective is

to find the best pgπ(x) as closely as possible to the complete joint probability pg(x) =

pg(x1|x2, . . . , xn)p
g(x2|x3, . . . , xn) . . . p

g(xn−1|xn)p
g(xn). The degree of similarity between

pgπ(x) and pg(x) is measured bu using the Kullback-Leibler distance. The same idea was

used by (Larrañaga et al., 2000) to extend this algorithm to the continuous space.
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5.3.3 Multivariate models

This section discusses the models that do not impose any restriction about the dependen-

cies among variables.

• Estimation of multivariate normal density algorithms (EMNA): It was

developed by (Larrañaga et al., 2001). At each generation g, the multivariate normal

density function is estimated. Therefore, the vector of mean µ̂g and the variance-

covariance matrix σ̂g are estimated using their maximum likelihood estimates:

µ̂g
k =

1

Q

Q∑

r=1

xg
k,r k = 1, 2, ..., Q (5.22)

(σ̂g
k)

2 =
1

Q

Q∑

r=1

(xg
k,r − µ̂g

k)
2 k = 1, 2, ..., Q (5.23)

(σ̂g
j,k)

2 =
1

Q

Q∑

r=1

(xg
j,r − µ̂g

j )(x
g
k,r − µ̂g

k) j 6= k = 1, 2, ..., Q. (5.24)

Finally, the new individuals are generated following the estimated function. An

adaptive version of this algorithm was also developed by (Larrañaga et al., 2001).

In this algorithm, the first model is estimated according to the multivariate normal

density function. Next, one individual xg
current is generated from the current density

function. Depending on the fitness of this individual, it will be kept for the next

population or not. If the answer is yes, the new individual is introduced in the

population, and it is necessary to update the parameters of the multivariate normal

density function as follows:

µ̂g+1 = µ̂g +
1

Q
(xg

current − xg
Q) (5.25)
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(σ̂g+1
j,k )2 = (σ̂g

j,k)
2 −

1

Q2
(xg

k,current − xg
k,Q)

Q∑

r=1

(xg
j,r − µ̂g

j )

−
1

Q2
(xg

j,current − xg
j,Q)

Q∑

r=1

(xg
k,r − µ̂g

k)

+
1

Q2
(xg

k,current − xg
k,Q)(x

g
j,current − xg

j,Q) (5.26)

−
1

Q
(xg

k,Q − µ̂g+1
k )(xg

j,Q − µ̂g+1
j )

+
1

Q
(xg

k,current − µ̂g+1
k )(xg

j,current − µ̂g+1
j )

Moreover, the authors proposed an incremental version of EMNA. The main differ-

ences comparing to the previous one are that each generated individual is added to

the population regardless of its fitness and the update rules are given by:

µ̂g+1 =
Qg

Qg + 1
µ̂g +

1

Qg + 1
xg
current (5.27)

(σ̂g+1
j,k )2 =

Qg

Qg + 1
σ̂g
j,k +

1

Qg + 1
(xg

k,current − µ̂g
k)(x

g
j,current − µ̂g

j ) (5.28)

It should be noted that the size of the population increases as the algorithm evolves.

• Estimation of Gaussian network algorithms: This algorithm was developed

by (Larrañaga et al., 2000). The first step is to induce the Gaussian network from

the data. The authors present three different induction models: edge–exclusion

tests, Bayesian score + search and penalized maximum likelihood + search. Once

the induction is done, a new individual is created according to the scheme of the

learned network.

• Iterative density-estimation evolutionary algorithm: It was proposed by

(Bosman and Thierens, 1999). It uses the Bayesian factorization and mixture distri-

butions for learning probabilistic models. Moreover, the iterative density-estimation

evolutionary algorithm uses the truncated distribution for sampling the new indi-

viduals and only part of the population is replaced in each generation.
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5.4 Estimation of distribution algorithm with rein-

forcement learning

Generally speaking, the estimation of distribution algorithm proceeds as follows. First,

an initial population of candidate solutions is generated randomly. Then, a subset of

solutions is selected from the initial population. At this moment comes the main step of

the algorithm, consisting of building a probability model based on the selected solutions to

create a new ”good” solution. Finally, the step of replacement decides if the new solution

should be kept or not. The algorithm continues until it reaches a stopping criterion. In

our context, we propose to apply the EDA to find good values for the penalties pkj .

Therefore, the problem considered in this section consists of finding the best values

for the matrix of the the penalties pkj to be used in our dynamic assignment problem.

This current problem will be referred as the Penalties Calibration Problem (PCP). Our

proposed algorithm follows these steps:

• Encoding solution: A solution of the PCP problem is encoded by a matrix π

where the rows represent the parking j ∈ J and the columns correspond to the

time periods t = 1, 2..., T . The intersection between each row j and each column t

represents the penalty term ptj. Figure(5.2).

π =




p11 p21 ... pT1

p12 p22 ... pT2

: : ... :

: : ... :

p1m p2m ... pTm




Figure 5.2: Encoding solution

• Evaluation and forecasting: Each solution of the PCP problem is evaluated ac-

cording to the objective function described in (5.15). The evaluation of any given

solution of the PCP is the total assignment cost, over a day, for the dynamic as-

signment problem with the corresponding penalties. That is to say, a solution of

the PCP is a set of penalties. These penalties are used in equation (5.15); the

100



5.4. ESTIMATION OF DISTRIBUTION ALGORITHM WITH REINFORCEMENT
LEARNING

problem is solved for all the decision points, the total cost of period t is given by

f t(x) =
∑K

k=1 f
k(x) and the total cost of a day d is fd(x) =

∑T

t=1 f
t(x). After

that, a smoothing technique is used to take into account the forecasting of the de-

mand. At the end, the evaluation of any solution π of PCP is given by the following

equation:

F (x) =
δ∑

q=0

α(1− α)qfd−q(x), (5.29)

where 0 < α < 1 is the smoothing factor which represents the weight of the previous

observations. Therefore, the EDA consists to minimize F (x).

• Initial population: The initial population of P solutions is randomly generated.

This means that we generate P matrices π such that each penalty ptj,r (penalty for

parking j during period t in the PCP solution r) of matrix πr is generated according

to a uniform distribution.

• Selection: From the initial population we propose to select Q solutions according

to the ranking of the objective functions F (x) defined in equation (5.29).

• Probabilistic model: In order to generate new candidate solutions, in our proposi-

tion we use the probabilistic model of the univariate marginal distribution algorithm

for Gaussian models (Larrañaga and Lozano, 2002) where the parameters mean and

standard deviation of a solution are extracted from population information during

the optimization process. The two parameters to be estimated at each generation

for each variable are the mean µ̂j and the standard deviation σ̂j. Their respective

maximum likelihood estimates are:

µ̂t
j = p̄tj =

1

Q

Q∑

r=1

ptj,r (5.30)

σ̂t
j =

√√√√ 1

Q

Q∑

r=1

(ptj,r − p̄tj)
2 (5.31)
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• Replacement: We compare the new solution with the worst solution in the current

population. If the new solution is best than this solution, then the worst solution

is removed from the population and it is replaced with the new one.

• Stopping criterion: The stopping criterion indicates when the search finishes.

We set a maximum number of iterations and a maximal computational time in our

algorithm.

• Local search procedure for dynamic assignment problem: The local search

procedure was proposed to improve the performance of the algorithm through prob-

lem decomposition. Instead of tackling the whole complex assignment problem at

the same time, the problem is divided into a set of smaller sub-problems, each of

which can be solved easily in terms of computational time. The purpose of the

decomposition scheme is to break down a large problem into smaller ones.

If the number of vehicles that appear in the system and the number of considered

parking are large, then the number of variables and constraints taken into account

for solving the whole problem at each decision point may be huge. The idea is to

decompose the area of the system (city) into a set of regions and solve an assignment

problem for each one of them. At each iteration, a region is selected randomly, we

record the set of requests Ω from vehicles in this region and the set of parking lots L

existing in the same region.Then, the problem formulated by the associated variables

is solved while taking into account the assignments of the remaining regions.

Therefore, we set a threshold on the number of vehicles nmax from which the local

search procedure is applied. The procedure starts from an initial solution randomly

generated. Then, we select at random some decision variables to be fixed and opti-

mize the remaining sub-problem, according to the objective function. The process

is repeated until a given stopping criterion is reached (Algorithm 14).

The framework of the proposed algorithm with forecast is given in Figure 5.3 and

Algorithm 15. It should be noted that if we set πbest to 0, we obtain the assign-

ment algorithm without forecasting process. We denote by AAEDA and AA the

assignment algorithm with and without EDA, respectively.
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Figure 5.3: The proposed algorithm

Algorithm 14: Pseudo-code of the local search procedure

repeat

Select a set L of parking slots at random at the decision point k;

Find the set Ω associated to those spaces at the decision point k;

Solve the assignment problem of (Ω, L, πbest);

until A stopping criterion is met ;

Algorithm 15: Pseudo-code of the assignment algorithm with forecast process

based on EDA
R0 = ⊘;

for k = 1, 2, ..., (K × T ×D) do

Find Nk, Rk and locki ;

Ek = {Nk

⋃
Rk−1};

if |Ek| < nmax then

(Ak, Rk)=Apply assignment algorithm
(
Ek, J

k
j , πbest

)
;

else

(Ak, Rk)=Apply local search procedure
(
Ek, J

k
j , πbest

)
;

Update locki of Rk

5.5 Computational results

In our experiments, we developed a simulation environment using the C++ programming

language to reproduce the features of a real world problem. The simulation tests are
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Figure 5.4: Map with 5 parkings

generated in the two dimensional Euclidean space with different number of parkings. We

assume that we have the map of the locations of the parking. Figures 5.4-5.8 present these

maps with 5, 7, 10, 15 and 20 parking, respectively. Each figure represents a problem

instance. The parking are denoted by red diamonds. Then, each parking represents the

center of a region of 20 square sizes.

In Figure 5.4, the regions are denoted by the blue squares. These regions define the

density of the parking slots at each period t = 1, 2, . . . , 6 at each day, and may overlap.

In the simulation, we consider that the parking opens at 07:00 a.m. and closes at 07:00

p.m. That is to say, each day consists of 6 periods of two hours and the time horizon of the

simulations lasts for 120 days. It is assumed that all the parking have the same capacity of

200 slots. Moreover, the number of occupied slots in each parking, at the beginning of each

day, is generated according to the uniform distribution in the range [50, 100]. Initially, the

parkings are partially occupied as some vehicles can stay overnight in the parking slots.

We assume that all parking slots can be used by any vehicle without any time limit. If a

vehicle is assigned to a parking, the system selects any available slot in that parking. The

frequencies of enter/exit of each parking for each region are randomly generated for each

period according to the normal distribution, with the means provided in Tables 1-5 for

each instance problem and the variance equal 0.5. These frequencies define the number

of requests associated to each region. For generating the number of requests we used the

truncated normal distribution because we only wish to consider data within a particular
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Figure 5.5: Map with 7 parkings

Figure 5.6: Map with 10 parkings
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Figure 5.7: Map with 15 parkings

Figure 5.8: Map with 20 parkings

106



5.5. COMPUTATIONAL RESULTS

Instance t1 t2 t3 t4 t5 t6

Parking 1 Enter 1 5 2 2 2 1

Exit 1 2 1 1 4 1

Parking 2 Enter 2 2 5 3 1 1

Exit 4 4 5 3 1 1

Parking 3 Enter 4 1 2 2 1 2

Exit 2 1 2 2 2 1

Parking 4 Enter 2 1 3 4 4 2

Exit 2 1 3 2 4 1

Parking 5 Enter 2 2 2 1 3 3

Exit 2 1 2 1 2 4

Table 5.1: Instance problem with 5 parkings

range of interest to us. It should be noted that these parameters were set experimentally

and the same distribution is used for all days. Each time period t, is partitioned into

120 equally spaced decision points where the decisions take place, i.e. each minute the

problem will be solved taking into account the frequencies of enter/exit of each parking.

The same distribution is used for all decision points k = 1, 2, . . . , K = 120 between two

consecutive time periods. For each generated request, a vehicle and its destination appear

on the map. The location of the vehicle can be generated anywhere and the location of

the destination must be generated within the considered region. We note that more than

one vehicle may have the same destination.

In Figure 5.4, the vehicle and the destinations are denoted by the yellow triangle and

the green circle respectively. Therefore, for each region, for each decision point, the total

number of requests is computed by adding the number of new generated requests and

the number of requests not assigned at the previous decision point. The vehicles not

assigned in the previous period are assumed to move in the direction of their destination,

as denoted by the dashed line in Figure 5.4. Thus, their distances dki,j are recomputed.

The performance measure employed in our numerical study was the average relative

percentage deviation in terms of the objective functions at each day d:

∆d = 100×
fd(AAEDA)− fd(AA)

fd(AA)
,

where AA denotes the proposed algorithm without the learning factor and AAEDA the

proposed algorithm with learning factor. As mentioned above, the total assignment cost

of period t in a given day is, f t(x) =
∑K

k=1 f
k(x) and the total cost of each day d,
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Instance t1 t2 t3 t4 t5 t6

Parking 1 Enter 1 1 2 1 2 2

Exit 1 1 2 1 5 2

Parking 2 Enter 1 1 2 3 5 2

Exit 1 1 5 4 3 2

Parking 3 Enter 4 2 4 1 1 3

Exit 2 1 3 1 1 2

Parking 4 Enter 2 4 2 3 2 1

Exit 2 3 2 3 2 2

Parking 5 Enter 2 2 2 2 5 2

Exit 2 2 1 2 4 2

Parking 6 Enter 1 1 5 1 1 1

Exit 2 2 4 1 2 2

Parking 7 Enter 5 1 1 1 2 1

Exit 2 2 1 1 1 1

Table 5.2: Instance problem with 7 parkings

Instance t1 t2 t3 t4 t5 t6

Parking 1 Enter 1 1 1 1 2 2

Exit 1 2 1 1 1 1

Parking 2 Enter 2 2 1 2 1 1

Exit 4 2 2 2 1 2

Parking 3 Enter 4 1 2 2 2 3

Exit 2 2 1 2 1 2

Parking 4 Enter 2 1 1 2 1 2

Exit 2 2 2 4 2 2

Parking 5 Enter 2 1 1 1 5 1

Exit 2 2 2 2 3 2

Parking 6 Enter 1 2 1 2 5 4

Exit 2 1 2 2 3 2

Parking 7 Enter 2 2 1 2 2 2

Exit 1 4 1 4 2 1

Parking 8 Enter 2 3 1 2 4 1

Exit 1 5 1 2 3 1

Parking 9 Enter 2 2 2 1 1 4

Exit 1 2 1 1 1 3

Parking 10 Enter 2 1 2 2 4 1

Exit 2 2 1 1 3 1

Table 5.3: Instance problem with 10 parkings
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Instance t1 t2 t3 t4 t5 t6

Parking 1 Enter 1 2 2 2 2 2

Exit 1 1 1 2 2 1

Parking 2 Enter 1 1 1 5 2 3

Exit 1 1 2 3 1 2

Parking 3 Enter 4 3 2 2 1 1

Exit 2 5 2 1 2 1

Parking 4 Enter 2 2 1 1 3 2

Exit 2 2 1 1 4 1

Parking 5 Enter 2 1 2 1 2 4

Exit 2 2 1 1 1 5

Parking 6 Enter 1 1 4 1 1 1

Exit 2 1 3 1 2 1

Parking 7 Enter 2 2 2 4 1 1

Exit 1 4 2 5 2 1

Parking 8 Enter 2 1 2 5 1 2

Exit 1 1 2 2 1 1

Parking 9 Enter 2 1 2 1 2 4

Exit 1 2 1 2 2 4

Parking 10 Enter 2 1 1 3 2 2

Exit 1 1 2 4 2 2

Parking 11 Enter 2 3 2 2 5 1

Exit 1 2 2 1 3 1

Parking 12 Enter 2 2 4 1 2 1

Exit 5 1 5 1 2 1

Parking 13 Enter 5 1 1 1 1 2

Exit 4 1 1 2 2 2

Parking 14 Enter 5 1 1 1 1 1

Exit 4 2 1 2 1 1

Parking 15 Enter 3 2 2 2 1 2

Exit 2 5 2 2 1 1

Table 5.4: Instance problem with 15 parkings
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Instance t1 t2 t3 t4 t5 t6

Parking 1 Enter 1 1 2 4 2 2

Exit 1 1 2 2 1 2

Parking 2 Enter 2 2 4 2 2 2

Exit 4 4 5 2 1 1

Parking 3 Enter 4 1 1 2 1 2

Exit 2 1 1 1 2 2

Parking 4 Enter 2 1 1 2 1 2

Exit 2 2 1 2 1 1

Parking 5 Enter 2 1 2 2 2 2

Exit 2 1 2 2 2 2

Parking 6 Enter 1 3 2 2 4 1

Exit 2 2 2 1 2 2

Parking 7 Enter 2 2 2 2 2 2

Exit 1 1 2 1 1 2

Parking 8 Enter 2 1 2 2 2 1

Exit 1 1 2 1 2 2

Parking 9 Enter 2 1 2 2 2 1

Exit 1 2 1 1 1 2

Parking 10 Enter 2 2 1 1 2 1

Exit 2 5 1 2 5 2

Parking 11 Enter 2 2 2 1 1 5

Exit 1 2 1 2 1 4

Parking 12 Enter 1 1 2 2 2 2

Exit 2 1 1 2 2 2

Parking 13 Enter 5 2 1 5 2 3

Exit 4 2 2 4 2 2

Parking 14 Enter 5 5 3 1 2 1

Exit 4 4 2 1 1 2

Parking 15 Enter 3 1 2 1 1 1

Exit 2 2 2 1 2 2

Parking 16 Enter 2 3 1 1 4 4

Exit 2 4 2 2 3 4

Parking 17 Enter 2 2 4 1 1 1

Exit 1 1 2 2 1 1

Parking 18 Enter 3 1 2 2 1 2

Exit 3 2 1 4 2 2

Parking 19 Enter 2 3 1 1 2 1

Exit 2 3 1 1 3 2

Parking 20 Enter 4 1 1 4 1 1

Exit 2 1 2 3 2 2

Table 5.5: Instance problem with 20 parkings
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Figure 5.9: Computational results for the instance with 5 parkings

Figure 5.10: Computational results for the instance with 7 parkings

fd(x) =
∑6

k=1 f
t(x). It is assumed that all objectives have the same weights.

Figures 5.9-5.13 show the evolution of ∆d during the 120 days of the simulation. It

can be clearly seen that the values of ∆d are below the 0-line. Therefore, the learning

effect by forecasting the requests has improved the total assignment costs. Moreover, we

observe that the curve begins to decline from the early periods. This shows that the

learning speed of AAEDA is very fast.

Furthermore, we conclude that the number of parkings has an impact on the perfor-

mance of the AAEDA because the small instance with 5 parkings has some peaks above

the 0-line. So, the increase of the number of parkings increases the learning capacity of

the algorithm.

Figure 5.11: Computational results for the instance with 10 parkings
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Figure 5.12: Computational results for the instance with 15 parkings

Figure 5.13: Computational results for the instance with 20 parkings

In order to compare the performance of our algorithms we used the unilateral paired

t − test procedure (Montgomery, 2001) at the 99% significance level. This procedure

consists of comparing the means of two samples coming from paired observations. Let

µA and µB denote the average of the evaluation of the fitness function for respctively,

algorithm A algorithm B. The tested hypotheses are:

H0 : µA − µB = 0

H1 : µA − µB < 0

H0 implies that the average relative percent deviations of the two algorithms are similar

while H1 implies that the average relative percent deviations of algorithm A are less than

the ones of the algorithm B.

In our case, the algorithms A and B denote AA (without learning effect) and AAEDA

(with learning effect) respectively. The statistical tests prove that the negative difference

between AAEDA and AA is meaningful at the 99% confidence level.
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Instances t− value p− value

5 parkings -9.7913 1.1102e-016

7 parkings -31.587 1.0713e-059

10 parkings -29.319 2.7874e-056

15 parkings -50.3 4.9424e-082

20 parkings -45.419 5.1241e-077

Table 5.6: Unilateral paired t− test at the 99% significance level (N = 120).

5.6 Conclusion

We approached the problem of dynamic assignment for parking slots. A driver, aiming

to visit a given destination, starts looking for a parking slot by launching a request at

a non-deterministic moment. The parking lot manager has to fulfil these requests by

assigning available slots to vehicles. The objectives are to provide a global satisfaction

to all customers and to maximize the parking lots occupancy. The problem is dynamic,

the requests and the parking lots change over the time. First, the problem is modelled

as a sequence of consecutive assignment problems, over the time. These problems are

inter-related. At each decision point (a small time window) a static assignment problem

is solved, we assign non-handled requests up-to-this point to the current available slots.

Second, as the assignments that are made at earlier periods affect which assignments can

be made during later periods, we propose to establish a forecasting process based on a

learning effect. We introduce penalty terms in the objective function. The values of these

penalties are calibrated through a learning process using the Estimation of Distribution

Algorithm (EDA). We notice that solving each assignment problem at every decision point

can be time consuming, depending on the number of the concerned requests and available

slots. A local search procedure is proposed to improve the performance of our approach

through problem decomposition and, hence, to reduce the solving time. Instead of tackling

the whole complex assignment problem at the same time, the problem is divided into a

set of smaller sub-problems. We tested our approach with and without the learning effect.

Our approach is efficient since we were able to manage a set of parking lots, of up-to 20

parking lots, during a horizon of 120 days, which corresponds to assignment problems
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with up-to 4000 parking slots to manage and 86400 requests to handle. The results also

show the benefit of the learning effect. The total cost of the solutions with learning effect

is less than the cost of the solutions without learning effect ( a student test is used to

prove the difference between these two methods).
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Chapter 6

Conclusion and further research

6.1 Contributions of the thesis

This thesis contributes to the improvement of the parking management system. In partic-

ular, we studied the multi-objective assignment problem of tasks to agents in static and

dynamic environments, where tasks correspond to drivers or cars, agents correspond to

parking or parking slots, and the objective is to satisfy both the drivers and the parking

managers. This thesis proposes efficient and robust algorithms that help to save time

and money for drivers and to increase the income of parking managers. The problem is

formulated as a multi-objective assignment problem in static and dynamic environments.

The main contributions of our work to this management problem can be summarized as

follows. We developed four new two-phase heuristics to approximate the set of the effi-

cient solutions for the bi-objective shortest path problem. The first phase uses a standard

dichotomic algorithm to generate the supported efficient set. For the second phase, we

developed four metaheuristics to generate an approximation of the non-supported efficient

solutions: a cost perturbation method, a path relinking, a genetic algorithm and a hybrid

genetic algorithm. The proposed approaches were tested on instances of the Bi-objective

Shortest Path problem and the results are significant. The percentage of true Pareto-

optimal solutions generated by the proposed algorithms ranges, approximately, between

87% and 100%, and the CPU time consumed to obtain these solutions is of 4.6 seconds

for the networks with 1000 nodes and 53.66 seconds for the networks with 5000 nodes,

which is faster than the labeling algorithm BRUM. We applied the same heuristics devel-
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oped in Chapter 3 to the bi-objective assignment problem. The experimental results show

the efficiency of our proposed algorithms for large instances in comparison with an exact

method from the literature. We tackled the dynamic assignment problem for parking

slots. We developed two approaches. In the first approach, the problem was modeled as

a sequence of consecutive static assignment problems; in the second approach, we intro-

duced a reinforcement learning method where history an assignment over several days are

taken into account. For the learning process, we developed an Estimation of Distribution

Algorithm using a Gaussian Univariate Marginal Distribution. In these approaches, the

objectives are aggregated in a single objective function to keep the focus on the resolu-

tion technique. The aggregation is done to find a best compromise solution that takes

into account the preferences of the parking manager, favoring one objective over another

according to the state of the supply and demand. A platform for dynamic deployment of

services can dynamically switch from one approach to another depending on the context.

We tested our approach with and without the learning effect. Our approach is efficient

since we were able to manage a set of parking lots, of up-to 20 lots, during a horizon of

120 days, which corresponds to an assignment problem with up-to 4000 parking slots to

manage and 86400 requests to handle. The results also show the benefits of the learning

effect. The total cost of the solutions with learning effect is smaller than the one of the

solutions without learning effect.

6.2 Future research directions

The potential research directions may be summarized as follows. The integration of the

proposed heuristics, for the shortest path and the dynamic assignment problems could

be implemented in the framework for Context Aware Transportation Services (CATS),

which could be used for real problems. In order to improve the proposed algorithms,

certain periodical events can be taken into account. Therefore the system must be able

to configure the algorithm before certain problems occur or when there is a peak demand.

The various proposals could be validated both by simulation and in a realistic envi-

ronment using data from the network of sensors deployed on the parking LAMIH in the

CISIT1 / SYFRA project. We found that the number of non-dominated solutions could
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be very important. An interesting problem is then to sample the Pareto front to offer the

user a subset of representative solutions.

The extension of the implemented Estimation of Distribution Algorithm (EDA) to the

multi-objective context. In our case, we aggregate the three objectives (the distance to

parking, the distance from the parking to the drivers destination and the waiting time for

getting a parking slot). However, it will be more interesting to consider the problem as a

multi-objective one.

The EDA could be improved through a multivariate distribution model or a Gaussian

Network. In our case, we supposed independent penalties, but in real life there is a

dependency between them. This is due to the fact that the demands around the parking

lots for different periods are interrelated. Some events are cyclical, and in order to

take them into account, it is necessary to develop a long-term memory or knowledge

base in EDA algorithm to better predict future demands. The developed heuristics for

our parking dynamic assignment problem could be easily adapted to other dynamic

assignment problems like cab company, task assignment in shops, etc.

1:Campus International sur la Sécurité et l′Intermodalité dans les Trans-

ports.
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