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Abstract

Title: Modeling and Solving University Timetabling

This thesis investigates university timetabling problems. These problems oc-
cur across universities and are faced each year by the practitioners. We propose
new lower bounds, heuristic approaches, mixed integer and constraint program-
ming models to solve them.

We address the exam timetabling and the student scheduling problem. We
investigate new methods and formulations and compare them to the existing
approaches. For exam timetabling, we propose an improvement to an existing
mixed integer programming model that makes it possible to obtain optimal solu-
tions. Next, lower bounds, a more compact reformulation for constraints and a
constraint programming model are proposed. For the exam timetabling problem
at Université de Technologie de Compiègne, we designed a memetic approach.
Finally, we present a new formulation for the student scheduling problem and
investigate its performance on a set of real-world instances.

Keywords. Timetabling, Heuristics, Integer Programming, Exact Approaches.

Supervisors: Aziz Moukrim and Jean-Paul Boufflet
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Résumé

Titre : Modélisation et résolution de problèmes d’emploi du temps d’universités.

Cette thèse s’intéresse aux problèmes d’emploi du temps d’universités. Ces
problèmes sont rencontrés chaque année par les utilisateurs. Nous proposons des
bornes inférieures, des méthodes heuristiques et des modèles de programmation
mixte en nombres entiers et de programmation par contraintes.

Nous traitons le problème d’emploi du temps d’examens et celui d’affectation
des étudiants. Nous proposons de nouvelles méthodes et formulations et les com-
parons aux approches existantes. Nous proposons, pour le problème d’emploi
du temps d’examens, une amélioration d’un modèle mathématique en nombres
entiers qui permettra d’obtenir des solutions optimales. Ensuite, des bornes in-
férieures, une formulation plus compacte des contraintes et un modèle de pro-
grammation par contraintes sont proposés. Pour le problème d’emploi du temps
d’examens à l’Université de Technologie de Compiègne, nous proposons une ap-
proche mémétique. Enfin, nous présentons un modèle mathématique pour le
problème d’affectation des étudiants et nous étudions sa performance sur un en-
semble d’instances réelles.

Mots clés. Emploi du temps, Approches heuristiques, Programmation en
nombres entiers, Approches exactes.

Directeurs de thèse. Aziz Moukrim et Jean-Paul Boufflet.
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INTRODUCTION

Companies, schools, universities or hospitals are regularly brought to solve a
timetabling problem. Building a good timetable is often a time-consuming task
that requires a considerable effort in order to meet the requirements and the
needs. Flight timetables, for instance, are very crucial for the airline companies
as well as airports and passengers because of the tight schedules and the vari-
ous uncertain conditions airplanes operate in. Train schedules, inside or outside
the cities, confront different circumstances such as peak and off-peak times, con-
struction zones and drivers’ availability. Having a good timetable is important
for the students in schools and universities to be able to achieve their best results.
Nurses’ efficiency in hospital is influenced by the quality of the timetable they get
for their shifts.

Within all these categories of problems, the university timetabling problem
has gained an increasing interest in the last two decades. Due to the grow-
ing number of institutions and students across the globe, planning a university
timetable has become harder than ever. Institutions and universities dispose of
different environments and working places, which implies various constraints
and real cases to be solved. Researchers throughout the years tried to bring for-
ward different solution methods and procedures to face the increasing difficulty
of these problems.

Among university timetabling problems, exam and course timetabling are the
two most studied sub-problems. Every university faces these two sub-problems
at least twice a year and is therefore brought to build a course and an exam
timetable. Other variants such as student scheduling and school timetabling con-
stitute other promising variants. While meeting the hard constraints is agreed on
to be the condition to consider a solution feasible, it is often discussed what makes
a solution "good" enough. The community often defines the soft constraints as the
means for measuring the solution quality. However, due to the difference in both
hard and soft constraints set by the institutions, it has become hard to measure
the algorithms proposed in the literature. To overcome this difficulty, benchmarks
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Introduction

and timetabling competition were set in order to reduce the gap between research
and practice and put a common base on which algorithms can be tested and eval-
uated. The Toronto benchmark, the first and the second international timetabling
competitions present one of the most studied benchmarks in exam and course
timetabling.

We are interested in this thesis in proposing new methodologies and approaches
for course and exam timetabling in universities. Chapter 1 presents, in the first
half, an introduction to the different optimization problems related to university
timetabling. The second half is concerned with giving the reader a background on
the existing university timetabling problems and the several methods previously
proposed to solve them.

Following the presentation of the field of the study of the thesis, we detail in
Chapter 2 an improved mathematical model for the exam timetabling problems.
A preprocessing procedure that deduces hidden conflicts and dependencies be-
tween the exams is presented. The preprocessing is based on a transitive closure
applied on the exam-related constraints such as the coincidence and precedence
to deduce new ones. A small MIP model that exploits the room capacities is
used to determine the exams that cannot be placed together in certain periods.
To improve the existing model proposed by McCollum et al. (2012), we propose
a set of reformulations and valid inequalities to help accelerate solving the dif-
ferent instances. We show that our models succeed in reducing the number of
constraints and is able to be run for more instances than the original one. The
valid inequalities proposed include cliques and the dual-feasible functions that
are usually applied on the Bin Packing problems. Both models were tested on the
instances of the second International Timetabling Competition (ITC2007) and the
Yeditepe instances. The results show that our improved model is able to obtain
better results compared to the original one.

In the continuity of Chapter 2, we present in Chapter 3 lower bounds tech-
niques, reformulation for the linear model and a constraint programming model
for the same problem. The lower bounds techniques use the structure of the in-
stances and the cliques to assess inevitable costs. A set covering linear model
is applied on a clique of exams to detect the costs implied on these exams. The
new reformulations are concerned with three types soft constraints and can be
generalized to any spacing constraints. They reduce the number of constraints
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and variables to allow the model to run in limited memory space for the large in-
stances. The constraint programming model presents new solutions and reduces
the existing gap between the lower and upper bounds. Compared to the linear
model, the CP model appears to be promising and further improvements are to
be investigated.

We address in Chapter 4 the exam timetabling problem in Université de Tech-
nologie de Compiègne (UTC) and give a memetic approach to solve it. We start
by the describing the problem and show that some constraints fall in the poten-
tial extensions of the second international timetabling competition given by the
organizers. We then give a mathematical formulation to formally model the prob-
lem and use this formulation to validate the solutions obtained by the memetic
approach. This memetic approach, which operates on a population of chromo-
somes, is afterward detailed. The population is represented by a set of chromo-
somes, each refers to a neighborhood of solutions. An indirect encoding for the
chromosomes is used. To decode the chromosomes, a fast first fit decoding pro-
cess is applied. Using the indirect encoding allows each chromosome to cover
a neighborhood of solutions and therefore a better exploring of the search space
is made. Hill Climbing, Light Destruction Construction and Swap are the three
different operators used to help improve the chromosomes. To test the approach,
we modeled and formatted a set of instances from the read-world data provided
by the practitioner. The algorithm helped solve all the different instances of the
university and presented a very good results compared the ones resulted from
the old method. The instances were put into the ITC2007 format and are made
available for the community to enlarge the existing collection of instances.

For the course timetabling, we describe in Chapter 5 the student scheduling
problem in our university. To solve this problem, we propose a mathematical
model with a set of preprocessing and valid inequalities. Before processing the
model, a preprocessing procedure that helps reduce the number of groups and
detect infeasible timetables for students is applied. Following the preprocessing,
the mathematical model that aims at maximizing the number of students totally
assigned is presented. We next present the valid inequalities used. The results
show that the preprocessing and the valid inequalities help reduce the run time
of the model and show that the optimality can be reached in a very short time.

Finally, the different parts of the thesis are discussed in a general conclusion
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and future works and perspectives are presented.

4



CHAPTER 1
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1.1 Introduction

This chapter is an introduction to combinatorial problems. We first introduce
combinatorial problems. Next, a non-exhaustive list of different techniques used
to solve them is presented. We next provide a general introduction to timetabling
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CHAPTER 1 Field of Study

problems that are the subject of this manuscript. Finally, a conclusion of the chap-
ter is given.

1.2 Combinatorial Optimization

This section tackles first the definition of a Combinatorial Optimization Prob-
lem (COP). Notions and terminology of graphs, algorithms and complexity are
exposed. The goal is to state the main definitions and the framework of the
manuscript.

1.2.1 Combinatorial Optimization Problems

An optimization problem (Pardalos and Resende [2002]) consists in finding the
best variable values according to a given objective function while respecting a set
of constraints. The problem’s difficulty depends on the nature of the variables,
discrete or continuous. When the variables are discrete, the problem is called a
combinatorial optimization problem (Papadimitriou and Steiglitz [1998]). Definition
1 gives a formal description of a combinatorial optimization problem (COP).

Definition 1 A combinatorial optimization problem Φ = (Ω, f ) is defined as:

• A set of variables X = {x1, · · · , xn}

• Each variable xi is associated to a domain Di, i.e. xi ∈ Di

• A set of constraints linking the variables

• An objective function to minimize (or to maximize): f : D1 × · · · × Dn → R

Set Ω is called the search space. A feasible solution s for problem Φ is an ele-
ment s ∈ Ω such that s = {v1, · · · , vn | vi ∈ Di and all the constraints are satis f ied}.
Solving a COP with an objective function to minimize consists in finding a solu-
tion s∗ such that ∀s ∈ Ω, f (s∗) ≤ f (s) (or f (s∗) ≥ f (s) in case of maximization).

Section 1.4 provides some examples of combinatorial optimization problems.
The brute force way to solve a COP is by enumerating all the possible solutions.
However, enumerating impractical and ineffective if the number of possible so-
lutions is huge. Thus, effective and efficient techniques become a necessity for
solving Φ if Ω is huge.
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CHAPTER 1 Field of Study

1.2.2 Complexity Theory

The formal definition of an algorithm is introduced by Alain Turing (Turing [1937]).
This definition is deduced from the notion of a formal language for an abstract
machine, called Turing’s Machine. In a nutshell, an algorithm can be defined as:
Algorithm A is a finite series of instructions allowing the user to solve a defined
problem Φ. For instance, to solve a COP, an algorithm would represent all the
steps needed to find a solution s∗. An algorithm is a heuristic approach when it
does not guarantee finding solution s∗ but a solution s that is as close as possible
to solution s∗, i.e. | f (s∗)− f (s) |< ε with ε being a very small number.

There exist numerous methods to measure the performance of algorithm A:

• Runtime: the time spent to find solution s∗

• Memory: the memory space required to run it

• The quality of the solution

• Robustness: the capacity of the algorithm to adapt to problem’s input chang-
ing

Note that runtime is dependent on the machine used. The theory of com-
plexity has been introduced to measure the performance of an algorithm without
considering the speed of the machine on which it is executed. The idea is to state
asymtotic bounds using the size of the input data parameters.

Definition 2 The algorithmic complexity CA of an algorithm A is defined as the number
of instructions needed to solve any instance of problem Φ of size n.

The Landau’s notation defines for instance asymptotic lower or upper bound
for CA. The notation O corresponds to an upper bound of CA: A is said to be
of complexity O(g(n)) if ∃M > 0, ∃n0 such that ∀n > n0, CA ≤ Mg(n). An
algorithm A is said to be polynomial if g(n) represents a polynomial function.
Below, some examples of algorithmic complexity:

• O(1): constant complexity independent of the size of Φ

• O(logn): logarithmic in the size of Φ

• O(n): linear in the size of Φ
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• O(np): (with p ≥ 2) polynomial in the size of Φ

• O(an): (with a ≥ 2) exponential in the size of Φ

The complexity can also depend on some parameters of the problem. For exam-
ple, g(n) = npvq with v being a parameter of the problem and q a constant. The
algorithm in this case is called pseudo-polynomial.

1.2.3 Complexity of Decision Problems

Considering that solving complex problems in general and optimization prob-
lems in particular is a source of attraction for several researchers, computer per-
formance has gained a noticeable advancement. For some optimization prob-
lems, no one has yet found a polynomial algorithm to solve them. For others,
we know that we can solve them with a polynomial algorithm. Thus, a natural
classification would be classifying the problems according to the complexity of
algorithms solving them (Garey and Johnson [1979]).

To introduce the notion of complexity classes of problems, we introduce the
definition of decision problems: a decision problem is a problem to which the an-
swer is either a yes or a no. Each optimization problem with an objective function
f disposes of an equivalent decision problem. The decision problem would be
formulated as follows: considering k ∈ R, does there exist a solution s∗ for which
f (s∗) = k?

Definition 3 A problem is in class P (polynomial time) if a polynomial algorithm that
solves it exists.

Definition 4 A decision problem is in class NP (non-deterministic polynomial time) if
verifying that the solution is valid can be done in a polynomial time.

Definition 5 A decision problem is said to be NP-Complete if it belongs to class NP but
not to class P, i.e. no polynomial algorithm that solves it has been found.

Definition 6 An optimization problem is said to be NP-Hard if its decision problem is
NP-Complete.
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Figure 1.1 – P vs NP

Definition 7 An optimization problem (or decision) is NP-Hard (or NP-Complete) in
the ordinary sense if it is NP-Hard (or NP-Complete) and if there exists a pseudo-polynomial
algorithm to solve it.

As a result, we easily notice that P ⊆ NP. The remaining question to answer
(and to prove) is: if P ⊂ NP or P = NP. If P = NP then the set of NP-Complete
problems is empty, which implies that there are always polynomial algorithms
that solve NP problems. This hypothesis, difficult to accept, lead the researchers
to orient their works on proving that P 6= NP. For a new optimization problem,
in order to prove that it is NP-Complete, a polynomial reduction can be used
(Karp [1972]).

1.2.4 Graph classes

A graph is a mathematical object that uses nodes to model elements of the prob-
lem and edges (or arcs) as relationships between the elements. Graphs represent
a powerful tool, used to model and solve combinatorial optimization problems.
These definitions will be used to describe approaches developed for the time-
tabling problems.

Definition 8 A graph G is defined by a set of nodes V and a set of edges E ⊆ V × V
that represents the relationships between the nodes. The graph is complete if E = V ×V.
The neighborhood of a node i is defined as: N(i) = {j | (i, j) ∈ E} and the degree of node
i is | N(i) |.

When there is no orientation mentioned for the edges, the graph is called a
non-oriented graph. If orientations exist, we have a directed graph.

9
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Definition 9 A path in a directed graph G is a list of nodes (v1, · · · , vk) such that
(vi, vi+1) ∈ E, ∀i < k. If v1 = vk, the path is called a directed cycle.

Definition 10 G′ = (V′, E′) is a sub-graph of graph G = (V, E) if it is obtained by
removing nodes or edges, i.e. V′ ⊆ V and E′ ⊆ E.

Definition 11 G(S) is an induced graph of G(V, E) if S ⊆ V and ∀ i, j ∈ S, (i, j) ∈
E is kept from the original graph.

Definition 12 A Clique is a subset of nodes S ⊆ V such that G(S) is a complete graph

Definition 13 An independent set of G is a subset of nodes I ⊆ V such that G(I) does
not contain any edge

Definition 14 A vertex cover is a subset of nodes S ⊆ V such that the set ES =

{∀(i, j) ∈ E, i ∈ S or j ∈ S} is equal to E

Definition 15 A coloration of graph G consists in assigning to every node i of the
graph a color ci such that ci 6= cj, ∀(i, j) ∈ E. The minimum number of colors needed to
color graph G is called the chromatic number, denoted χ(G).

1.3 Solution Approaches

We provide next a general idea on some of the different methods used to solve
COPs. Prior to applying any approach to solve a COP, preprocessing can some-
times be applied so as to reduce the size of a problem or to discover dependen-
cies useful to facilitate the processing. We first give an example of preprocessing.
Heuristic and metaheuristic algorithms are described next. Finally, exact algo-
rithms such as tree search and mixed integer programming are introduced.

1.3.1 Preprocessing

Preprocessing is a technique used to modify the problem in order to ease the
solving process. Preprocessing usually reduces the search space of the problem
by analyzing the data of the problem and its nature, namely the objective function
and the constraints. For instance, by analyzing the constraints of a COP Φ, some
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Figure 1.2 – Preprocessing example

variables xi can be fixed or the size of Di can be reduced. However, we have to
guarantee that the optimal solution for the reduced problem must be the optimal
for the original one.

Let us consider a concrete example, finding the maximum clique in a graph
G. The following preprocessing will allow us to reduce the size of graph G: if
∃(i, j) ∈ E such that N(j) ⊂ N(i), then the node j can be deleted from graph
G. The reason is that a maximal clique Kj (i.e. ∀k ∈ V\Kj, Kj ∪ {k} is not a
clique) containing node j has a size that is always less or equal to the size of
the maximum clique Ki containing node i. Figure 1.2 illustrates a series of this
preprocessing on an initial graph which gives eventually the maximum clique:
we have N(3) ⊂ N(1) ⇒ node 3 can be deleted. Next, node 2 is deleted because
N(2) ⊂ N(4). The remaining nodes in the graph represent the maximum clique
of the initial graph.

1.3.2 Heuristic Algorithms

The heuristic algorithms to solve NP-Hard problems can be divided into two
categories: PTAS and non-PTAS algorithms. The first category involves the algo-
rithms with polynomial complexity that assures a certain distance from the opti-
mal solution in the worse case. These algorithms are called PTAS (Polynomial-Time
Approximation Scheme). The second category of algorithms produces generally a
very good solution in a short time, even though no distance from the optimal
solution is guaranteed.
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Greedy Algorithms

Greedy algorithms (Cormen01) are simple constructive algorithms. These algo-
rithms takes a partial (or an empty) solution and fill it element by element. El-
ements are incorporated in turn in the solution. They are chosen according to a
greedy criterion. These algorithms does not question the decision taken in previ-
ous iterations. The resulting solution is most likely not optimal.

Despite their simple design, the greedy algorithms are useful when integrated
in a heuristic approach. They are widely used as a part of elaborated approaches,
especially in preparing solutions for local searches. They are easily maintained
and flexible when changing the criteria.

Local Searches

Local searches (Hoos and Stutzle [2004]) are often effective algorithms used to
solve COPs. Most approaches developed to practically solve NP-Hard COPs con-
tain one or more local searches. Technically, a local search uses a current solution
s and repeatedly replaces it with a better solution s′ close to s in the search space.
The set of solutions close to solution s is called Neighborhood of s, noted N(s).

Definition 16 A neighborhood structure is a function N: Ω → 2Ω which is associated
to a solution s ∈ Ω where Ω is the search space and N(s) ⊆ Ω.

In general, a neighborhood N is not defined by a partial enumeration of Ω
but by an operator of transformation of s. Ideally, local search algorithms permit
to start with a solution s ∈ Ω and, using a series of transformation, to reach the
optimal solution s∗ of the problem. When developing a local search, it is usually
recommended that the comparison between f (s) and f (s′) can be done in a short
time. A smart and fast local search avoids comparing f (s) and f (s′).

Definition 17 A local optimum of a neighborhood N(s), noted s∗N, of a minimization
problem (resp. maximization) is a solution that verifies s∗N ∈ N(s) and ∀s′ ∈ N(s),
f (s′) ≥ f (s∗N)(resp. f (s′) ≤ f (s∗N)). This optimum is strict if f (s′) > f (s∗N) (resp. f (s′) <
f (s∗N)).

There are two ways of choosing s′ out of N(s): the first one is by selecting
s∗N (best improvement) whereas the second consists in taking the first solution
s′ ∈ N(s) that has strictly a better quality than s (first improvement).
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Other local searches proceed otherwise. They permit developing complex
metaheuristics or obtain solutions with the same quality. Two examples of these
local searches are:

• Random Walk: s est replaced by s′ which is not always better. This allows
the local search to escape from local optimum. If the solutions accepted are
only the ones with the same quality as s, the local search is then called a
plateau search

• Stochastic local search (Hoos and Stutzle [2004]): some of the solutions in N(s)
are randomly generated and the best solution s′ is used to replace the solu-
tion s. If the quality of s′ is lower than the one of s, the solution is accepted
with a certain threshold (or probability). This technique is useful when the
neighborhood N(s) is large. In this category of local searches, we can men-
tion the simulated annealing (Kirkpatrick, Gelatt, and Vecchi [1983]; Černý
[1985]) and the ruin and recreate principle (Schrimpf et al. [2000])

Metaheuristics

Metaheuristics (Blum and Roli [2003]; Glover and Kochenberger [2003]) are more
elaborated algorithms and represent a large part of the techniques used to solve
most of the COPs. Numerous metaheuristics exist today and their conception
comes from various sources of inspirations. Some are made by analogy to other
scientific fields such as physics (simulated annealing), biology (ant colony and
evolutionary algorithms), neurology (tabu search) and sociology (memetic algo-
rithms, particle swarm optimization and multi-agent systems).

Our purpose is not to exhaustively present the metaheuristics used in the liter-
ature. We give outlines of algorithms relevant to this thesis hereafter. We classify
these algorithms into two parts: solution-based algorithms and population-based
algorithms.

Greedy randomized adaptive search procedure - GRASP (Feo and Resende
[1995]): this procedure is an elaborated version of constructive heuristics with
local searches. In each iteration, a new solution is generated using random ele-
ments. The solution is then improved using a local search. The best solution is
saved during the process.
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Iterated local search - ILS (Glover and Kochenberger [2003]): ILS consists in
mixing local searches with perturbation/mutation of elements. In each iteration,
the current solution s is modified and perturbed using the two operators. First,
the solution is perturbed with the mutation operator. Second, it is later improved
using a local search operator. If f (s′) is better than f (s), s′ replaces s and becomes
the current solution. There exist several variants of ILS in the literature. Some
accept worse solutions with certain conditions. Others consider more than one
type of perturbations and apply them at specific steps of the algorithm.

Variable Neighborhood Search - VNS (Hansen and Mladenovi [2001]): mul-
tiple neighborhoods are used inside the local search to escape from local opti-
mum. A solution can be a local optimum in a neighborhood but not in another.
The algorithm proceeds as follows. Given the current solution s (initialized ran-
domly using a heuristic), a set of neighborhoods (N1, N2, · · · , Nk) is associated
with it and i the index of the current neighborhood (initialized by 1). In each iter-
ation of the algorithm, neighborhood Ni is explored to obtain a new solution s′.
If s′ is better than s, then s′ becomes the current solution, otherwise i is increased
for the next iteration. When the solution cannot be enhanced, VNS changes the
neighborhood in hope of finding a better neighborhood or diversifying the solu-
tion. This flexibility resulted numerous VNS schemes in the literature, namely
reduced VNS, skewed VNS and VND.

Simulated Annealing - SA (Kirkpatrick, Gelatt, and Vecchi [1983]; Černý
[1985]): by an analogy to metallurgy, simulated annealing is concerned with a so-
lution s and considers the objective function of the problem as the system’s en-
ergy at a given temperature T (initialized at high temperature). In each step,
transformations on the current solution s are done to obtain a new solution s′. If
f (s′) < f (s) (in case of a minimization problem), s is replaced by s′. Otherwise,

the replacement is considered with a probability e−
f (s′)− f (s)

T . Worst solutions can
be accepted to allow the algorithm to escape from local optimum. The tempera-
ture is managed by a cooling strategy.

Tabu Search (Glover and Laguna [1997]): coming from a biological prospec-
tive, tabu search emulates the memory function. At a iteration t, the tabu search
considers a solution s and a list of solutions recently visited Lt, called the tabu
list. The aim of the tabu list is to memorize recently visited solutions in order to
avoid re-exploring them. Additionally strategies sometimes permit to re-consider
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these solutions to escape from local optimum. The algorithm explores the neigh-
borhood N(s) and chooses the solution s∗N from the best solutions of N(s)\Lt to
replace solution s. The tabu list Lt+1 of the next iteration consists in list Lt with
the new solution s∗N. If the max size of Lt is reached, adding a new solution will
automatically remove the oldest solution of the list. The algorithm’s efficiency
comes from the tabu list and in practice we do not keep the solutions in the list
but their signature.

For population-based algorithms, here are some of the most known:
Genetic Algorithm - GA (Holland [1975]): Inspired by molecular biology, GA

considers a solution as a chromosome structure containing good and bad pheno-
types. Assuming that good phenotypes are part of the optimal solutions, GA uses
the reproduction mechanism, the natural selection and the mutation principle to
produce new solutions in which the chromosome contains better phenotypes. In
practice, at each iteration, a set of chromosomes are selected for reproduction.
The selected chromosomes are then crossed to produce new chromosomes called
children chromosomes. The children are then mutated using a mutation operator
with a low probability. Their fitness (solution quality) is then calculated and they
are inserted in the population. The population considered after crossing depends
on the algorithm’s variant. The first variant is the generational genetic algorithm
(GGA) in which only the new chromosomes constitutes the population. The sec-
ond variant is the steady-state genetic algorithm (SSGA) in which the children are
not directly inserted but are in competition with the existing chromosomes.

Scatter Search - SS (Glover and Kochenberger [2003]): The algorithm works
on a reference set. The reference set represents the best solutions found. At each it-
eration of the algorithm, new solutions are generated randomly or with a heuris-
tic and are later combined with the references to have intermediate solutions.
The solution generated (new and intermediate) are then improved using a lo-
cal search. The best of the improved solutions are inserted in the reference set.
This update of the reference set has to assure diversity within the references of
the population. The generalization of scatter search is called path-relinking (PR).
It is about a progressive combination to explore the path relating the solutions
generated and the references in the reference set.

Swarm Intelligence - SI (Bonabeau, Dorigo, and Theraulaz [1999]): the swarm
intelligence is a generic term for metaheuristics inspired by intelligent collec-
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tive aspects. They include ant colony optimization (ACO) (Colorni, Dorigo, and
Maniezzo [1992]; Glover and Kochenberger [2003]) , particle swarm optimiza-
tion (PSO) (Kennedy and Eberhart [1995]), multi-agent systems (MAS) (Meignan,
Koukam, and Créput [2010]; Roli and Milano [2002]), etc. We describe the PSO
as an example of these metaheuristics. PSO has been developed first for the
continuous-variable optimization. The main idea is to observe the orientations
of animals when searching for food in groups. A particle represents an indi-
vidual of a group in a swarm and the solutions are the positions (or the search
places). Every particle memorizes its current position in the search space and the
best position that it visited. The best individual position represents the individ-
ual experience of the particle. The global best position found by the population
represents the group’s experience. Every particle has a movement speed that rep-
resents the degree of change that can occur on its solution in the next iteration.
At each iteration of the PSO algorithm, the speed and the current position of an
individual are updated. Speed update is managed using three orientations: the
current speed of the particle multiplied by w (inertia factor), the tendency of re-
turning to the previous individual experiences multiplied by c1 (cognitive factor)
and the tendency of group’s experiences multiplied by c2 (social factor). That is,
the movement’s speed guides the particles to the global optimum. The applica-
tion of PSO on optimization problems does not have the same success that the
other population-based algorithms have had (for instance Genetic Algorithms).
Indeed, a great difficulty is faced in the different parts of the algorithm that have
to be adjusted according the problem’s definition.

Memetic Algorithm - MA (Corne et al. [1999]): the term was introduced by
Moscato (1989) and is widely used in recent works to point out the hybrid method
between global search (classic metaheuristic) and local search. It has been ob-
served that the genetic algorithm, for example, is not efficient enough for some
problems (Hoos and Stutzle [2004]; Park and Carter [1995]). The reason is that
mutation, crossover and selection cannot intensify the search sufficiently. Crossover
and mutation play a role in diversifying the population but seem to be not effi-
cient enough to improve the population. To overcome this, the genetic algorithm
is usually hybridized with local searches. Such a scheme allows the algorithm
to intensify the search in the areas explored by the genetic operators. In some
memetic algorithms, the mutation stage is replaced by local searches. Moscato
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(1989) compared the different memetic algorithm versions in order to analyze the
performance of the different local searches.

1.3.3 Exact Algorithms

Efficiency of new heuristic approaches are often assessed by comparing the so-
lutions they obtain to those resulted from previous approaches. A safer method
is to compare the quality of the solutions obtained by the new approaches to the
theoretical bounds or to the exact solutions.

In this section, we present the definition of theoretical bounds and two general
exact approaches used to solve COPs.

Theoretical Bounds

Bounds of a COP are defined as the boundaries between which the evaluation of
the optimal solution is included. Thus, the upper and lower bounds are used for
COPs.

Definition 18 For a COP Φ = (Ω, f ), a lower bound LB is a value such that ∀s ∈
Ω, f (s) ≥ LB. In the same spirit, an upper bound UB is defined as ∀s ∈ Ω, f (s) ≤ UB.

For a minimization problem, solutions obtained using heuristic approaches
represent upper bounds (UB), whereas a lower bound (LB) is obtained by solving
a relaxed version of the problem. When LB = UB for an instance of the problem,
the instance is solved.

Branch and Bound Scheme

The branch and bound scheme (B&B) (Clausen [1997]) is a method that enumerates
solutions in the search space of a COP Φ = (Ω, f ). This enumeration is done
by successive branching on Ω into subspaces (S1, · · · , Sk) and by bounding these
sub-spaces. These evaluations are performed by calculating the lower and upper
bounds of Ω on a sub-problem. For example, for a minimization problem, to
accelerate solving the problem, we can prune a sub-space Si if LB(Si) ≥ UBbest

where UBbest is the best upper bound known during the search. This pruning
implies that solutions of the sub-space Si will not be explored. When efficient
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Figure 1.3 – Example of Mixed Integer Programming (MIP)

pruning strategies and evaluation can be designed, B&B is usually faster than a
complete enumeration of the solutions.

The runtime efficiency of a B&B algorithm depends on the following factors:

• The bounding scheme: different techniques for bounding result in different
tree searches.

• UB and LB methods: the more effective the methods that assess the UB and
the LB are, the more efficient decisions, taken during the search, are.

• Exploration strategy: while branching, the strategy used to generate sub-
space to be explored highly contribute to the efficiency of the algorithm

Linear Programming

A linear program is a continuous COP in which the constraints and the objective
function are linear. Solving a linear program is proved to be done in a poly-
nomial time using the ellipsoid method Khachiyan (1979). Although not proved
to be theoretically performed in polynomial time, the simplex method is widely
used thanks to its efficiency in practice. Most of the commercial software (CPLEX,
GUROBI, XPress, SCIP, etc.) implements this method and the interior point method
(barrier method) (Dantzig and Thapa [2003]). The interior point method is also
proved to be polynomial.

COPs can generally be modeled using Mixed Integer linear Programming
(MIP). The integrity constraint on variables makes solving a mixed integer linear
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program difficult, generally NP-Hard. Figure 1.3 shows the difference between
solutions of a MIP and an LP. Due to relaxed constraints, the LP solution shown
is not included in the convex hull of the strong formulation. The dots in bold
represent the ILP solution and are obtained when solving the MIP problem.

Efficient techniques used to solve MIPs are the adaptation of the Branch-and-
Bound scheme by integrating mathematical tools such as cutting planes. When
the cutting planes are added to the branch-and-bound algorithm, the algorithm
is then called branch-and-cut. This algorithm is also available on most of the soft-
ware.

There are several ways to model a COP using a MIP or an LP. The model is
said to be strong if the polyhedron relax the integrity constraint. The model can
be strengthened using the cutting planes. Unfortunately, the number of variables
can be exponential on some problems and therefore the tree search would be
huge. In such a case, column generation (Desaulniers, Desrosiers, and Solomon
[2005]) is used to efficiently solve the program. Integrating column generation in
a branch and bound algorithm results the branch-and-price algorithm (Desaulniers,
Desrosiers, and Solomon [2005]). Note that the Branch-and-Price scheme is a
problem-dependent scheme.

1.4 Timetabling Problems

The Oxford Advanced Learner’s Dictionary defines a timetable as “a list show-
ing the times at which particular events will happen”. Wren (1996) described
timetabling as a special type of scheduling. He defined timetabling as follows:

Timetabling is the allocation, subject to constraints, of given resources to
objects being placed in spacetime, in such a way as to satisfy as nearly as
possible a set of desirable objectives.

A timetabling problem is usually composed of two types of constraints: hard
and soft constraints. Hard constraints are to be satisfied to consider the solution
valid for the problem. Soft constraints can be violated and are used to assess the
quality of the solution. Each violation implies a penalty on the solution that is
added to the cost.

Since the early 1960’s, numerous research papers reporting work on time-
tabling problems have appeared in the literature. Today, research in this area
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is still active and new research directions are continuing to emerge. Overviews
and surveys can be found in papers by Burke et al. (1997a); Werra (1985); Leung
(2004).

The educational timetabling problems can be classified into three types (Schaerf
[1999]), each with their own specific characteristics and constraints:

• School timetabling: These are problems that are concerned with assigning
the weekly lessons in schools. The aim is to assign a set of teachers to a
set of classes (groups of students) for a set of lessons in a set of periods,
while satisfying a set of constraints. There are many variations to the basic
problem. For example, in junior (lower) schools, sometimes a single teacher
remains in the same room with the same class all the day, teaching a variety
of subjects. In secondary schools, teachers may remain in the same room
or a teacher may move between rooms for different lessons. Examples of
hard constraints are: no teacher may teach at two different rooms in the
same period and that no classes can have different lessons at the same time.
Soft constraints may cover issues such as rest periods for teachers, teachers
preferences for certain rooms and / or specific timing of certain lessons.
Further examples of constraints are listed by Costa (1994).

• Exam timetabling: The main objective is to assign a set of exams to a given
set of time slots. Each exam has a list of enrolled students. A main hard
constraint is that no student can sit more than one exam at the same time.
Further details on the problem specification and examples of hard and soft
constraints are given in the Section 1.4.1.

• Course timetabling: The purpose is to assign courses and associated events,
groups of students and lecturers to time slots in such a way that no conflict
occurs at any period. The number of students assigned to a room should
be no more than the maximum room capacity. More details are given in
Section 1.4.2.

Basically, the core characteristic is to assign events to time slots while minimiz-
ing soft constraint violations. However, there are substantive differences between
these problems. For example, in exam timetabling problems, two exams can take
place in the same room, this is not the case in course timetabling. See Carter and
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Laporte (1998) for a more detailed description of the differences between school
and university course timetabling. Description of the differences between exam
and course timetabling are detailed in McCollum and Ireland (2006).

1.4.1 Exam Timetabling

Carter, Laporte, and Lee (1996) defined the exam timetabling problem as:

The assigning of examinations to a limited number of available time periods
in such a way that there are no conflicts or clashes.

Conflicts or clashes are institution-dependent hard constraints. A timetable
which satisfies all hard constraints is called a feasible timetable. In addition to
hard constraints, there are often soft constraints whose satisfaction is desirable
but not essential. The set of constraints which need to be satisfied is usually very
different from one institution to another (Burke et al. [1995]). Examples of widely
encountered hard constraints are the following:

• students cannot sit for two exams at the same time

• each exam should be assigned to one period and at least to a room

• room capacities should always be respected at any period

Each institution has different requirements for evaluating the quality of a fea-
sible timetable. In many cases, the quality is assessed using a penalty function
which measures the soft constraints violations. Examples of soft constraints are
the following:

• Exam A shall be scheduled before/after exam B

• Avoid students having to sit exams in consecutive time slots

• Exams with a large number of students should be scheduled earlier in the
timetable

• Only certain time slots and/or rooms may be available for particular exams

• Some exams should be scheduled in the same time slot
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The timetabling problem, in its simplest form, can usually be modeled as a
graph coloring problem. Nodes represent the exams, colors represent the time
slots and the edges represent the conflict between exams (Werra [1985]; Carter,
Laporte, and Lee [1996]; Burke et al. [2004b]). In the graph coloring problem, the
goal is to find the minimum number of colors used to color the vertices such that
no two adjacent vertices are colored with the same color. This minimum number
of colors χ(G) of a graph G. If the exam timetabling problem is considered as
a graph coloring problem, the aim is to find the minimum number of time slots
which are able to accommodate all the exams without any clashes.

The student enrollment lists permit to build a conflict matrix C = [cij] where
i, j ∈ {1, ..., N} and N is the number of exams. Element cij denotes the number
of students enrolled for both exam i and exam j. When a non-weighted graph is
employed, it is also possible to use cij = 1 if there is conflict between exam i and
exam j; cij = 0 otherwise. C is a symmetrical matrix, i.e. element cij = cji. For
diagonal cells (i.e. i = j), each cell either contains the number of students enrolled
for the particular exam ( cij = number of students for exam i) or the cell contains
zero (cij = 0) to denote that there is no conflict. Either is acceptable, depending
on how the information stored in the conflict matrix is used. The conflict matrix
is used to build the conflict graph. The number of exams in conflict for an exam is
equivalent to the node degree. Node degree values are used, for example, when
heuristic orderings (e.g. Largest Degree, Largest colored Degree and Weighted
Largest Degree) are used to build solutions.

The benchmarks proposed in the literature vary according to the hard and soft
constraints. Carter, Laporte, and Lee (1996) proposed the Toronto Benchmark. This
benchmark is a set of thirteen instances taken from universities around the world.
The authors studied the set of instances with regards to two different objectives:
a graph-coloring objective and a exam-spacing objective. For the graph-coloring
objective, the aim is to plan a clash-free timetable in the minimum number of pe-
riods. Exams represent the nodes in the graph and the number of periods is the
number of colors to be minimized. For the exam-spacing objective, the purpose
is to build a clash-free timetable in a fixed number of periods while spacing out
the exams for the same student. Burke, Newall, and Weare (1996) proposed the
Nottingham Benchmark. The instances of this benchmark were taken from the Not-
tingham university. The objective to minimize was avoiding exams in the same
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day for the students. Merlot et al. (2003) proposed the Melbourne Benchmark which
is a set of two instances. The objective was to minimize the occasions of students
having two exams consecutively either on the same day or overnight. In 2007, the
second International Timetabling Competition (ITC2007) proposed a new bench-
mark. The goal of the competition was to reduce the gap between research and
practice by proposing real-world instances. The objective function to minimize is
a set of summed penalties related to the violation of soft constraints. The compe-
tition brought a new set of hard and soft constraints that didn’t exist in previous
benchmarks. An example of hard constraints is the room exclusive constraint. It
states that some exams require to be scheduled alone in the room. An example
of soft constraints is the front load constraint. The constraint requires some exams
that are identified to be “large” to be scheduled early in the timetable. If this
constraint is not respected, a corresponding penalty is applied.

Researchers continue to study the Toronto benchmark and the interest in the
benchmark of ITC2007 is increasing. Even though the set of benchmarks does not
represent all the constraints available in universities, it still gives a good test base
on which approaches can be tested.

1.4.2 Course Timetabling

A general overview of course timetabling can be found in the paper by Carter
and Laporte (1998). A complete formal description of the problem can be found
in Burke et al. (2004b).

The course timetabling is defined in Carter and Laporte (1998) as:

a multi-dimensional assignment problem in which students, teach-
ers (or faculty members) are assigned to courses, course sections or
classes; “events” (individual meetings between students and teach-
ers) are assigned to classrooms and times.

As stated earlier, in university course timetabling, a set of courses and associ-
ated events is assigned to a set of rooms and periods within a week and, at the
same time, students and teachers are assigned to the courses so that the appropri-
ate lessons can take place, subject to a variety of hard and soft constraints. In 2002,
Paechter (Metaheuristics Network. [2002]) introduced a course timetabling problem
instance generator as part of an “International Timetabling Competition”. The
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objective of the first International Timetabling Competition was to create feasible
weekly class timetables for a university, in which a number of hard constraints
were satisfied, while minimizing the number of soft constraints violated. The in-
stance generator was used to produce simplified, but realistic, problem instances,
all of which had at least one perfect solution (a solution with no constraint viola-
tions, hard or soft).

The competition used the following hard constraints:

• No student is required to attend more than one course at the same time

• A course can only be scheduled to a room which satisfies the features re-
quired by the course

• A course can only be scheduled to a room which has enough room to ac-
commodate all students registered for it

• Only one course can be scheduled in one room at any time slot

By definition, it is not compulsory to satisfy the soft constraints for any given
problem. Thus, some form of penalty function is used to measure the degree to
which the soft constraints are satisfied. There is no universally accepted method,
the number of students for which each constraint is not satisfied are usually sim-
ply summed.

Automated approaches for course timetabling have been studied over the last
thirty years. A comprehensive survey of the early approaches can be found in
Carter and Laporte (1998). Other surveys of university timetabling that cover
both examination and course problems include Burke et al. (2004a); Schaerf (1999);
Wren (1996). The set of twenty instances introduced for the competition (three
more instances were also generated, to be used as ‘unseen’ tests) have also been
used by a number of authors as a benchmark data set. The competition was won
by Kostuch (2005) utilising a ‘three-phase approach’ featuring simulated anneal-
ing, which obtained the best results on 13 out of the 20 instances. Burke et al.
(2004a) used an approach based on the Great Deluge Algorithm, which obtained
the best results on the remaining 7 of the 20 problem instances. Other approaches
used by the competitors include those based on simulated annealing, a hybrid
local search method and several variations of tabu-search.
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Paechter’s test instance generator was used by Socha, Knowles, and Sam-
pels (2002) to generate eleven problem instances of various sizes. They com-
pared a local search method and an Ant Colony Optimization algorithm on these
eleven problem instances and showed that the Ant Colony Optimization algo-
rithm achieved better performance. The same eleven problem instances have
subsequently been used by other authors as a comparison basis. Burke, Kendall,
and Soubeiga (2003) introduced a hyper-heuristic that utilized tabu search in an
attempt to raise the level of generality of automated timetabling systems, and the
system was used to solve both these course timetabling problem instances and
nurse scheduling problems. Burke et al. (2007) developed a graph-based hyper-
heuristic approach which used a sequence of heuristic orderings to construct the
initial solution and then applied steepest descent local search to improve the so-
lution.

These data sets were also used by Abdullah, Burke, and Mccollum (2005) who
employed a variable neighbourhood search with a fixed length tabu list used to
penalise the unperformed neighbourhood structures. Following on from this,
Abdullah, Burke, and McCollum (2007) applied a randomised iterative improve-
ment method featuring composite neighbourhood structures to the test instances.
Despite the fact that the problem of timetabling university courses is very dif-
ferent from timetabling university examinations, some authors have blurred the
distinctions and/or have applied the same techniques to solve both problems
(McCollum and Ireland [2006]).

1.4.3 Student Scheduling

Despite the fact that course and exam timetabling represent the most encountered
problems, the Student Scheduling Problem (SSP) is included, whether implicitly
as in the course timetabling or explicitly by considering it a sole problem.

Cheng, Kruk, and Lipman (2003) defines the student scheduling problem as:

The Student Scheduling Problem is the assignation of students to
sections of courses offered at various times during the week. The
objective is to fulfill student requests, providing each student with a
conflict-free schedule (no two assigned sections meeting at the same
time), while respecting room capacities and possibly also balancing
section sizes (or some other side constraint).
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The student scheduling problem can be considered as a part of course time-
tabling. Since it can be considered a part of course timetabling, it did not get
the same attention the exam and course timetabling have got. The main differ-
ences between the course timetabling and student scheduling problem are that
the course timetabling aims at fixing the timetable whereas the student schedul-
ing problem disposes of a fixed timetable. The fixed timetable in the SSP con-
tains the different courses taught in the university and is made available for the
students in order to allow them choosing the different courses. The courses are
composed of one or multiple sections, each of which has a timeslot and a room in
the timetable.

SSP was discussed by different researchers in the literature. Laporte and
Desroches (1986) provide a mathematical model for SSP. Their model consider
one hard constraint which is respecting the list of preferences for the students.
However, the conflicts are considered as soft constraints and thus to be min-
imized. The problem is solved in three phases: it starts by finding a feasible
solution, balancing the sections and finally adjusting the solution to respect the
room sizes. Cheng, Kruk, and Lipman (2003) refers to SSP as part of solving the
American high school timetabling problem. The goal is to respect the list of stu-
dent preferences while having a conflict-free timetable. They demonstrate that
SSP is an NP-hard problem and present a multi-commodity flow formulation to
solve. Broek, Hurkens, and Woeginger (2009) present the timetabling problem
in the TU Eindhoven. They provide two problem formulations and give some
complexity results to the different variants of SSP. SSP solving approaches and
discussions can also be found in Tripathy (1992); Sabin and Winter (1986); Feld-
man and Golumbic (1989).

1.4.4 Practical Cases

Timetabling problems are generally practical cases taken from real-world prob-
lems. Each university, school or college has their own constraints and environ-
ments that make their problem slightly or heavily different than the ones dealt
with in research. At the Université de Technologie de Compiègne (UTC), two
timetabling problems are faced each semester: a course and an exam timetabling.
The course timetabling is composed into two sub-problems, each processed dif-
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ferently. The first sub-problem is building a fixed timetable that constitutes the
input for the second sub-problem: the student scheduling problem. The first is
done manually by the practitioner by using the data from previous semesters
to build a new timetable. The adjustment is done according to expectations on
the student choice and the teachers requirements. Once this timetable is stabled,
it is made available for students to choose their courses. When the student are
finished choosing, the final timetable is made so that all the students are totally
assigned to their list of preferences (Vayssade [1978]). The exam timetabling prob-
lem is classical with extra constraints which are specific for the UTC (Boufflet
and Nègre [1995]). Most constraints can be found in the benchmarks of the liter-
ature but some are new and to be found nowhere. We believe that through the
UTC problem, we provide a new set of constraints that exist in multiple univer-
sities across the world. Some of these constraints involve having multiple sites in
which exams are taken. A direct consequence from the first one is having over-
lapping periods to allow the students move from one site to another. We explain
in chapter 4 how the UTC’s problem extends an existing benchmark and present
a challenging set of instances to be used for method testing.

1.5 Conclusion

In this chapter, we presented a short introduction to combinatorial problems and
some of the resolution techniques used in the literature. We also briefly described
the timetabling problems discussed in this thesis. The second and the third chap-
ters detail an improved mathematical model and a constraint programming ap-
proach for academic exam timetabling. The fourth chapter presents a memetic
approach to a practical exam timetabling problem taken from Université de Tech-
nologie de Compiègne. The fifth chapter discusses a specific type of course time-
tabling, the Student Scheduling Problem at Université de Technologie de Com-
piègne.
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AN IMPROVED MODEL FOR EXAM
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2.1 Introduction

Examination timetabling is one of the most tedious and time-consuming tasks
for any academic institution, and which has consequently received considerable

29



CHAPTER 2 An Improved Model for Exam Timetabling

attention over a number of decades. Formally, a set of exams is to be scheduled
into a set of timeslots using available rooms while respecting hard and soft con-
straints. The basic problem generally encountered is a graph coloring problem
with extra institutional hard constraints and where penalties incurred for the vi-
olation of soft constraints are to be minimized. A solution is said to be feasible if
it respects all the hard constraints. Although the problem has broad similarities
across different universities, each case is unique in general because institutions
have different rules and use different terms to evaluate the quality of solutions.
Since a number of approaches have been applied to non-identical problems, clear
and meaningful scientific comparisons are difficult. The reader should refer to
(Burke et al. [1997b]; Schaerf [1999]; Qu et al. [2009b]) for a detailed overview of
examination timetabling.

In the second International Timetabling Competition (ITC2007) (McCollum
et al. [2007]; McCollum et al. [2010b]), the examination track introduced a prob-
lem encountered within educational institutions across the world. The competi-
tion presents significant challenges and plays an important role in bridging the
current gap between research and practice by providing real-world datasets for
researchers.

The key aim addressed in many papers is achieving high-quality solutions
within a short computational time. Data may be preprocessed before use to help
reduce the difficulty of the problem (Gogos, Alefragis, and Housos [2012]). As
a first step after preprocessing, most approaches aim to find initial feasible so-
lutions. The solutions are later improved by applying heuristics, metaheuristics
or hyper-heuristics. Since the competition was introduced, several different ap-
proaches have been used. Müller (2009) applied a Hill Climbing and a Great
Deluge (Dueck [1993]) with a re-heating strategy. Gogos, Alefragis, and Housos
(2012) used Hill Climbing, Simulated Annealing and Integer Programming to
ensure a diverse exploration of the search space. A CSP solver, based on Tabu
search and iterated local search, was used by Atsuta, Nonobe, and Ibaraki (2008).
De Smet (2008) also utilized Tabu Search in conjunction with an open-source busi-
ness rule management system. A Cell-biology-based approach with Hill Climb-
ing was introduced by Pillay (2008).

Researchers have shown an increasing interest in this real-world problem since
the competition was introduced. Turabieh and Abdullah (2011) investigated a
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hybrid approach in which a Great Deluge algorithm (Dueck [1993]) is steered
using an electromagnetic-like and particle swarm optimization. Hyper-heuristics
and adaptive approaches, which showed successful results in previous problems,
were also introduced in order to tackle the difficulty of the problem. A hyper-
heuristic steers the process of selecting, combining, generating or adapting sim-
pler (meta)heuristics to solve problems efficiently. Adaptive approaches are a
learning process in which information is exploited in order to intelligently adapt
the behaviour of the algorithm. McCollum et al. (2009) proposed a construction
phase followed by Great Deluge. The construction phase is an extension of the
work presented by (Burke and Newall [2004]) that is based on the adaption of
heuristic orderings. Sabar et al. (2012) derived a hyper-heuristic based on graph
coloring constructive ordering heuristics to select exams to be scheduled. De-
meester et al. (2012) incorporated the decision part of metaheuristics for accept-
ing/rejecting generated solutions in a hyper-heuristic approach. Soghier and Qu
(2013) investigated the impact of bin packing heuristics, and proposed an adap-
tive hybrid hyper-heuristic approach. Rahman et al. (2014) presented a pure con-
structive method, based on the squeaky-wheel optimization approach (Clements
and Joslin [1999]) and the adaption of heuristics (Burke and Newall [2004]).

The original mathematical model described in (McCollum et al. [2012]) was
used for a formal definition of the problem. As McCollum et al. (2012) speci-
fied, this model is not optimized for solving the large competition instances, and
is subject to further improvements (McCollum et al. [2012]; Burke et al. [2008]).
Nevertheless, the model was able to optimally solve the two smallest instances
of the Yeditepe University (Parkes and Özcan [2010]). Fonseca and Santos (2013)
proposed a modified version of this model.

In practice, solving a real case is an interactive process that may take several
days. Because of particular local factors, objectives may be subject to modifica-
tion by the practitioners, who will often spend a lot of time adjusting the timetable
according to the university’s needs. Being aware as soon as possible of infeasibil-
ities and hidden constraints is of crucial importance. There are a variety of con-
straints (such as room capacities) that may make it necessary to place two exams
in different periods, apart from the major constraint of students who are required
to sit both exams. It can also be useful to provide the practitioners with informa-
tion about the unavoidable costs or about the existence of feasible solutions that
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may totally eliminate certain costs. Such information is needed in practice as an
aid to decision making.

The remainder of this chapter is organized as follows. Section 2.2 presents the
problem definition and different hard and soft constraints. The original mathe-
matical formulation of hard and soft constraints is given in Section 2.3. Section
2.4 describes our proposed preprocessing that reveals hidden incompatibilities
between exams. The improved formulation is described in Section 2.5, in which
we present a formulation with a reduced number of hard and soft constraints,
along with clique and data-dependent dual-feasible-function valid inequalities.
Results, given in Section 2.6, show that the preprocessing reveals a considerable
number of hidden constraints and that the formulation proposed gives better re-
sults. The details, for each soft constraint, show that the improved formulation
yields better solutions, uses less memory and faster run times. Our conclusion is
to be found in Section 2.7.

2.2 Problem description

This section provides a brief description of the examination track of the second
International Timetabling Competition (ITC2007). The reader should refer to Mc-
Collum et al. (2007); McCollum et al. (2010b) for a comprehensive presentation.

The problem introduced in this track involves allocating a set of exams to a
set of rooms within an examination session comprising a fixed number of peri-
ods, while satisfying a number of hard constraints. A feasible solution is the one
in which all hard constraints are respected. The quality of the solution is eval-
uated using a sum of weighted terms. Each term measures the violation of the
respective soft constraint.

The benchmark for this competition track consists of eight public instances
and four hidden instances used to counter any over-tuned behaviour in com-
petitors’ solvers. Each instance is defined as sets of data, hard constraints, and
weighted soft constraints. The day, the start time and the duration of each period
are given. A set of rooms, each with a capacity and a weight, is also given. Each
exam has an individual duration and a set of enrolled students. Each student has
to sit a number of exams. In this track, the hard constraints are as follows:

• A student can sit only one exam at a time.
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• An exam cannot be split between rooms.

• An exam cannot be split between periods.

• The duration of an exam allocated to a period must be less than or equal to
the duration of the period.

• The capacity of any room is not exceeded at any period.

• Exams can share a room, as long as the capacity of the room is respected.

• Precedences: exam j has to be scheduled prior to exam i.

• Exclusions: exam i must not take place at the same time as exam j.

• Coincidences: two exams i and j must be assigned to the same period.

• Room exclusives: exam i must take place in a room on its own.

Seven soft constraints are used as terms of the evaluation function. For each
instance, a set of weights is accordingly provided. The terms are defined in the
following way:

• Two In a Row: when two exams are allocated back to back on the same
day, this term corresponds to the number of students that take these exams
multiplied by the weight w2R.

• Two In a Day: when two examinations are scheduled not back to back but
on the same day where there are three periods or more, this term corre-
sponds to the number of students sitting the two exams multiplied by the
weight w2D.

• Period Spread: this term corresponds to the sum of occurrences of students
who have to sit exams within a fixed period spread defined in the dataset.

• Front Load: this term corresponds to the number of large exams scheduled
in the latter part of the session multiplied by the weight wFL. The number of
periods that constitute the “latter part” and the number of candidates that
constitute “large exams” are given.
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• Mixed Duration: for each period and each room, we look at the number of
different exam durations allocated. If all the exams have the same duration
we count 0, otherwise we count the number of different durations minus
one multiplied by the weight wNMD.

• Period Penalty: this term corresponds to the number of exams allocated to
a penalized period multiplied by its weight wP

p .

• Room Penalty: this term corresponds to the number of exams allocated to
a penalized room multiplied by its weight wR

r .

The first three terms are an attempt to be as fair as possible to all students
taking exams. Since exams having more students enrolled take longer to mark, it
is desirable to schedule these exams in the beginning of the examination session
(Front Load). The aim of the Mixed-Duration term is to assign exams which are
of an equal duration to the same room. Institutions often wish to restrict the
use of certain rooms and certain periods to a minimum, and these considerations
correspond to the final two terms (Period Penalty and Room Penalty).

2.3 The original model

We present in the sequel the original model proposed by McCollum et al. (2012).
As stated by the authors, the aim was to give a clear model whereby one can
verify solutions given by the different approaches.

We used the same notation. A brief description of constants, parameters and
variables is given. We invite the reader to refer to the original paper for compre-
hensive details.

2.3.1 The original hard constraints mathematical model

In McCollum et al. (2012), the authors introduced the conflict graph G(E, AC),
where E is the set of exams and an edge [i, j] ∈ AC if there is at least one student
enrolled in exams i and j. An edge [i, j] is weighted by wC

ij , the number of students
taking the two exams. P, R and S denote the sets of periods, rooms and students
respectively. For the sake of compactness, the objective function and the hard
constraints of the model have been rewritten as:
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Minimize:

C2R + C2D + CPS + CFL + CP + CR + CNMD (2.1)

Subject to
∀i ∈ E ∑

p∈P
XP

ip = 1 (2.2)

∀i ∈ E ∑
r∈R

XR
ir = 1 (2.3)

∀i ∈ E ∀p ∈ P XP
ip = ∑

r∈R
XPR

ipr (2.4)

∀i ∈ E ∀r ∈ R XR
ir = ∑

p∈P
XPR

ipr (2.5)

∀p ∈ P ∀r ∈ R ∑
i∈E

sE
i XPR

ipr ≤ sR
r (2.6)

∀i ∈ E ∀p ∈ P dE
i XP

ip ≤ dP
p (2.7)

∀p ∈ P ∀s ∈ S ∑
i∈E

tisXP
ip ≤ 1 (2.8)

∀(i, j) ∈ Ha f t ∀p, q ∈ P with p ≤ q XP
ip + XP

jq ≤ 1 (2.9)

∀[i, j] ∈ Hcoin ∀p ∈ P XP
ip = XP

jp (2.10)

∀[i, j] ∈ Hexcl ∀p ∈ P XP
ip + XP

jp ≤ 1 (2.11)

∀i ∈ Esole ∀j ∈ E i 6= j ∀p ∈ P ∀r ∈ R

XP
ip + XR

ir + XP
jp + XR

jr ≤ 3

}
(2.12)

XP
ip, XR

ir , XPR
ipr ∈ {0, 1} (2.13)

The primary boolean decision variables are XP
ip and XR

ir . XP
ip = 1 iff exam i is
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scheduled in period p and XR
ir = 1 iff exam i is allocated to room r. The secondary

boolean variables are: XPR
ipr . XPR

ipr = 1 iff exam i is in period p and room r.
Equations (2.2) and (2.3) ensure that all the exams are allocated to a unique

period and a unique room. Equations (2.4) and (2.5) link the decision variables.
The room capacities are always respected using Equations (2.6) in which sE

i and
sR

r denote the number of students sitting exam i and the seating capacity of room
r respectively. The duration hard constraints are respected using Equations (2.7),
in which dE

i and dP
p denote the duration of exam i and the duration of period p.

The parameters tis = 1 iff student s is sitting exam i. Equations (2.8) thus enforce
the conflict constraints: at any period, any student will be sitting at most one
exam.

Sets Ha f t, Hcoin, Hexcl contain the precedence, coincidence and exclusion con-
straints. Set Esole contains the exams subject to room exclusive constraint. For
every pair (i, j) ∈ Ha f t, exam i must occur strictly after exam j. These precedence
contraints are checked by Equations (2.9). For every pair [i, j] ∈ Hcoin exams i
and j must be allocated to the same period, but not necessarily to the same room.
Equations (2.10) ensure that exams i and j are assigned to the same period. The ex-
clusion constraints are enforced by Equations (2.11). Room exclusive constraints
are checked using Equations (2.12): for every period, exam i ∈ Esole is the sole
occupier of room r.

All the parameters, sE
i , sR

r , dE
i and dP

p are embedded in the datasets. The hard
constraints for sets Ha f t, Hcoin, Hexcl and Esole are also given.

2.3.2 The original soft constraints mathematical model

The terms of the objective function C2R + C2D + CPS + CFL + CP + CR + CNMD

(See Equation (2.1)) are assessed by the following:

C2R = w2R ∑
[i,j]∈AC

wC
ijC

2R
ij (2.14)

∀[i, j] ∈ AC ∀p, q ∈ P with |p− q| = 1

with ypq = 1 XP
ip + XP

jq ≤ 1 + C2R
ij

}
(2.15)

C2D = w2D ∑
[i,j]∈AC

wC
ijC

2D
ij (2.16)

36



CHAPTER 2 An Improved Model for Exam Timetabling

∀[i, j] ∈ AC ∀p, q ∈ P |q− p| ≥ 2

with ypq = 1 XP
ip + XP

jq ≤ 1 + C2D
ij

}
(2.17)

CPS = ∑
[i,j]∈AC

wC
ijC

PS
ij (2.18)

∀[i, j] ∈ AC ∀p, q ∈ P 1 ≤ |q− p| ≤ gPS

XP
ip + XP

jq ≤ 1 + CPS
ij

}
(2.19)

CFL = wFL ∑
i∈EFL

∑
p≥gFL

XP
ip (2.20)

CP = ∑
i∈E

∑
p∈P

wpXP
ip (2.21)

CR = ∑
i∈E

∑
r∈R

wrXR
ir (2.22)

∀d ∈ D ∀i ∈ Ed ∀p ∈ P ∀r ∈ R

UD
dpr ≥ XP

ip + XR
ir − 1

}
(2.23)

∀p ∈ P ∀r ∈ R 1 + CNMD
pr ≥ ∑

d∈D
UD

dpr (2.24)

CNMD
pr ≥ 0 (2.25)

CNMD = wNMD ∑
p∈P

∑
r∈R

CNMD
pr (2.26)

C2R
ij , C2D

ij , CPS
ij , UD

dpr ∈ {0, 1} (2.27)

C2R, C2D, CPS, CFL, CP, CR, CNMD
pr , CNMD ∈N (2.28)

The boolean variables are C2R
ij , C2D

ij , CPS
ij and UD

dpr. The former three are used
to check whether the soft constraints Two In a Row, Two In a Day and Period
Spread are violated for an edge [i, j]. The latter is set to one iff an exam with
duration d is assigned in period p and room r. The integer variables C2R, C2D,
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CPS, CFL, CP, CR, CNMD
pr and CNMD are used to compute the terms of the objective

function (see Equation (2.1)).
The Two In a Row term C2R is set by Equations (2.14) and (2.15), in which the

boolean parameter ypq = 1 iff periods p and q are on the same day.
The Two In a Day term C2D is set by Equations (2.16) and (2.17).
The Period Spread term CPS is set by Equations (2.18) and (2.19) according to

the period spread parameter gPS.
The Front Load term is computed using (2.20), where EFL is the set of exams

subject to a front load soft constraint, and gFL is the period number from which a
front load penalty has to be counted.

The Period Penalty and Room Penalty terms are taken into account using
Equations (2.21) and (2.22).

The Non Mixed Duration term is set by Equations (2.23) to (2.26). We denote
Ed the set of exams having duration d and D the set of durations of the exams. A
UD

dpr decision variable has to be one whenever some exam with duration d uses
period p and room r (see Equations (2.23)). Equations (2.24) and (2.25) count the
total number of different durations minus one. Hence, the term CNMD is obtained
by applying Equation (2.26).

Institutional weights w2R, w2D, wFL, wp, wr, wNMD and the parameter gPS are
given. The other ones are easily deduced or computed from the dataset, as for
example D, the set of durations, boolean parameters ypq = 1 iff periods p and q
are in the same day, or EFL and gFL, the set of exams subject to front load penalty
and the period number from which such a penalty occurs.

We denote O the original model that consists of Equations (2.1) to (2.28).

2.4 Preprocessing

Gogos, Alefragis, and Housos (2012) proposed a preprocessing step that deduces
existing hidden constraints using the existing constraints in the dataset. We pro-
pose new preprocessing done in two steps to disclose hidden conflicts. The first
exploits capacities of the rooms while the second is based on coincidence con-
straints so as to propagate conflict constraints. For the sake of clarity, i ≺ j rep-
resents a precedence constraint between exams i and j and i � j a coincidence
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Algorithm 1: Preprocessing algorithm

Data: G(E, AC), Ecoin, Hcoin, Ecoin, Ea f t, Hexcl

Result: G(E, AGC), H̃coin, H̃a f t

1 begin
2 H̃coin ← Transitive_closure(Hcoin) /* see Section 2.4.1 */
3 H̃a f t ← Propagate_precedence_coincidence(H̃coin, Ha f t)

/* For each arc (i, j) ∈ H̃a f t we add the edge [i, j] to AGC */
4 AGC ← AC ∪ H̃a f t ∪ Hexcl

5 AGC ← Room_preprocessing(AGC, H̃coin)
/* U: set of non-propagated edges */

6 U ← AGC
/* C: set of propagated edges */

7 C ← ∅
8 while (U 6= ∅) do
9 Let a ∈ U

10 U ← U − {a}
11 C ← C + {a}

/* N: set of edges discovered by the propagation */
12 N ← Propagate_P(a, H̃coin)
13 AGC ← AGC ∪ N

/* Only new edges are added to U */
14 U ← U ∪ (N − C)
15 end
16 end

constraint between exams i and j. Section 2.4.1 presents the previous preprocess-
ing. Our new preprocessing stages are presented in Section 2.4.2.

The preprocessing algorithm (see Algorithm 1) computes H̃coin the new set
of coincidence constraints, H̃a f t the new set of precedence constraints and the
general conflict graph G(E, AGC) where AC ⊆ AGC. The preprocessing is per-
formed in different stages. We apply first the preprocessing stages proposed by
Gogos, Alefragis, and Housos (2012) (see Section 2.4.1). Next, we consider the
precedence and exclusion constraints as general conflict constraints. Thereafter, the
room preprocessing is applied (see Section 2.4.2). At the last stage, the procedure
Propagate_P is repeatedly performed (see Section 2.4.2).
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Algorithm 2: Propagate_precedence_coincidence

Data: H̃coin, Ha f t

Result: H̃a f t

1 begin
/* For each edge [i, j] ∈ H̃coin we have two arcs (i, j) and (j, i) */

2 M← directed_graph(H̃coin)
3 H̃a f t ← Transitive_closure(M ∪ Ha f t)

/* We remove arcs (i, j) and (j, i) such that [i, j] ∈ H̃coin */
4 H̃a f t ← H̃a f t −M
5 end

2.4.1 Previous preprocessing

In Gogos, Alefragis, and Housos (2012), the authors used a preprocessing stage
to discover hidden dependencies between exams. Three types of preprocessing
were proposed. The first adjusts the exam durations using the coincidence con-
straints. Consider a set of exams that should coincide. Since exams must be allo-
cated to the same period, all durations are modified to be equal to the largest one.
The second part of the preprocessing applies the transitive closure on the prece-
dence (i.e. ∀ i, j, k : (i ≺ j) ∧ (j ≺ k) ⇒ (i ≺ k)) and the coincidence constraints
(i.e. ∀ i, j, k : (i � j) ∧ (j � k) ⇒ (i � k)). The third part is the propagation of the
precedence using the coincidence. Algorithm 2 performs the last two preprocess-
ing. M is the set of arcs obtained from [i, j] ∈ H̃coin.

2.4.2 New preprocessing

A general conflict constraint between two exams i and j is defined as a constraint
such that exams i and j cannot be scheduled together in any period. We denote
this general conflict constraint as i ‖ j. As a result, the exclusion and the after
constraints represent general conflict constraints since exams involved cannot be
placed in the same period.

In G(E, AC), the weight of an edge [i, j] represents the number of students in
common between exams i and j. If [i, j] 6∈ AC and i ‖ j, we add the edge [i, j] with
a null cost since it is a non-student-related conflict constraint (i.e. wC

ij = 0).
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Room preprocessing

We use the sizes of exams relative to the room capacities to deduce new general
conflict constraints. Let i and j be two exams such that [i, j] /∈ AC. Let Si be
the set that contains exam i and all exams k such that (i � k). Exams in Si have
to be scheduled in the same period. Set Sj is similarly built. The objective is to
check whether the exams in Si and Sj can be assigned together to the rooms at
any period.

We propose to optimally compute θij the maximum number of exams of the
set Si ∪ Sj that can be allocated together to the same period. If θij < |Si ∪ Sj|,
no exam l ∈ Si can be assigned in the same period with an exam k ∈ Sj and
conversely. We can therefore add an edge [l, k] for each l ∈ Si and k ∈ Sj.

We compute θij as follows:
maximize:

θij = ∑
r∈R

∑
l∈Si∪Sj

YR
lr (2.29)

subject to:
∀l ∈ Si ∪ Sj ∑

r∈R
YR

lr ≤ 1 (2.30)

∀r ∈ R ∑
l∈Si∪Sj

sE
l YR

lr ≤ sR
r (2.31)

∀l ∈
(

Esole ∩ (Si ∪ Sj)
)
∀r ∈ R

∑
m∈Si∪Sj

m 6=l

YR
mr + (| Si ∪ Sj | −1)YR

lr ≤ | Si ∪ Sj | −1

 (2.32)

YR
lr ∈ {0, 1} (2.33)

Recall that R is the set of rooms and sR
r denotes the capacity of a room r. The

number of students sitting exam l is denoted sE
l , and YR

lr is a boolean decision
variable set to one iff the exam l is allocated to room r.

Equations (2.30) ensure that an exam l ∈ Si ∪ Sj is allocated at most once to a
room. Equations (2.31) allow the model to enforce the room capacities. The room
exclusive constraints for the exams in Si ∪ Sj are checked by Equations (2.32).
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Propagation of the general conflict constraints

Let i ‖ j be a general conflict constraint and [i, j] the corresponding edge. Con-
sider that exams j and k are subject to a coincidence constraint (j� k) and assume
that [i, k] /∈ AC. The general conflict constraint (i ‖ k) can be deduced since we
have: (i ‖ j)∧ (j� k)⇒ (i ‖ k). Thus a new edge [i, k] can be added with wC

ik = 0.
We denote P this propagation that can be repeatedly applied until no new edges
can be deduced.

2.5 The improved mathematical model

This section describes the improved formulation that aims to reduce the number
of constraints. In the sequel, nS, nP, nE, nR, and nD denote the number of students,
periods, exams, rooms, and durations respectively. The revisited hard constraints
are presented first. Next, we propose a more compact formulation for the Non-
Mixed-Duration soft constraint. Finally, we introduce the clique and DDFF valid
inqualities.

2.5.1 The revisited constraints

Our objective is to propose modifications that will make it possible to perform
computations on the competition instances.

The conflict constraint

Let N (i1, ..., ik) =
⋂k

l=1N (il) where N (i) corresponds to the usual neighbors of
node i in G(E, AGC). In McCollum et al. (2012), the authors used nSnP equations
to ensure that conflict constraints are respected (see Equations (2.8) in Section
2.3.1). We proposed in Arbaoui, Boufflet, and Moukrim (2013) a new formulation
for the general conflict constraints so that, for an exam i and a period p, at most
|N (i)| neighbors can be assigned if exam i is not.

We propose to compute exactly αip, the maximum number of exams of the
set N (i) that can be allocated together in period p. We argue that some exams
in N (i) may not be allocated together to a period. Conflict constraints between
the exams in N (i), or rooms capacities relative to these exam sizes can prohibit
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placing all the neighbors in the same period. The other hard constraints (e.g.
room exclusive, coincidence, etc.) should also be considered.

Assuming that αip is known, we propose the nEnP improved equations:

∀i ∈ E ∀p ∈ P ∑
j∈N (i)

XP
jp + αipXP

ip ≤ αip (2.34)

Note that G(E, AGC) is used to build the set N (i). The general conflict con-
straints are respected, considering an exam i and a period p: at most αip neighbors
of exam i are scheduled if exam i is not. Since nE � nS (see Table (2.1)), the pro-
posed modification reduces the number of equations. Note that Equations (2.11)
are no more needed since exclusion constraints are now embedded in G(E, AGC).

For each couple (i, p), the αip value is computed using the following formula-
tion:

maximize

αip = ∑
r∈R

∑
j∈N (i)

ZPR
jpr (2.35)

subject to

∀j ∈ N (i) ∑
r∈R

ZPR
jpr ≤ 1 (2.36)

∀j ∈ N (i) ∑
r∈R

∑
k∈N (i,j)

ZPR
kpr+ | N (i, j) | ∑

r∈R
ZPR

jpr ≤| N (i, j) | (2.37)

∀r ∈ R ∑
j∈N (i)

sE
j ZPR

jpr ≤ sR
r (2.38)

∀j, k ∈ N (i) [j, k] ∈ Hcoin ∑
r∈R

ZPR
jpr = ∑

r∈R
ZPR

kpr (2.39)

∀j ∈
(

Esole ∩N (i)
)
∀r ∈ R ∑

k∈N (i)
k 6=j

ZPR
kpr+ | N (i) | ZPR

jpr ≤| N (i) | (2.40)

43



CHAPTER 2 An Improved Model for Exam Timetabling

∀c ∈ C(i) ∑
r∈R

∑
j∈c

ZPR
jpr ≤ 1 (2.41)

The aim of the objective function (2.35) is to maximize the number of exams
j ∈ N (i) that can be allocated to period p. ZPR

jpr are Boolean decision variables, set
to one iff exam j is allocated to room r at period p. Every exam j is assigned to at
most one room using Equations (2.36).

Two exams j, k ∈ N (i) can be subject to general conflict constraints. In such a
case, if exam j is not scheduled, at most |N (i, j)| neighbors in the set N (i) can be
allocated to rooms. Hence, we use Equations (2.37) to enforce the general conflict
constraints between exams in N (i). Room capacities are enforced by Equations
(2.38).

If a coincidence between j, k ∈ N (i) exists, Equations (2.39) ensure that ex-
ams j and k are allocated together. The room exclusive constraints are respected
using Equations (2.40). For every room, if exam j is subject to a room exclusive
constraint, at most | N (i) | exams can be scheduled if exam j is not.

Let us now consider the sub-graph induced byN (i) where only the neighbors
of exam i and the associated edges are considered. The set of maximal cliques
C(i) is computed on this induced graph. The clique inequalities, see Equations
(2.41), are relative to the sub-graph induced by N (i) and are useful to speed up
the computing of αip.

Equations (2.35) to (2.41) permit to optimally compute αip for each couple
(i, p).

Hence, in Equations (2.34), we use αip, the maximum number of neighbors
of exam i one can allocate to a period p with respect to the general conflict con-
straints, room capacities, coincidence constraints and room exclusive constraints.

The room exclusive and precedence constraints

Let i ∈ Esole be an exam that is subject to a room exclusive constraint, and let p be
a period and r a room to which exam i can be allocated. At most nE exams can be
allocated to period p and room r if exam i is not. The equation can therefore be
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written as follows:

∀i ∈ Esole ∀p ∈ P ∀r ∈ R ∑
k∈E
k 6=i

XPR
kpr + nEXPR

ipr ≤ nE (2.42)

There are | Esole | nPnR Equations (2.42) while we have | Esole | nEnPnR Equations
(2.12) in the original model O.

In a similar way, the precedence constraints can be grouped in the following
manner:

∀i ∈ Ea f t ∀p ∈ P ∑
j∈Na f t(i)

∑
q≤p

XP
jq+ | Na f t(i) | XP

ip ≤| Na f t(i) | (2.43)

where Ea f t denotes the set of exams involved in a precedence constraint. We use
the set H̃a f t, resulted from the preprocessing stage (see Section 2.4). We denote
Na f t(i) = {j ∈ Ea f t : i ≺ j}. There were | Ha f t | nPnP Equations (2.9), and now
we have | Ea f t | nP Equations (2.43).

The coincidence constraints

We define Ncoin(i) = {j ∈ Ecoin : i� j}, the set of exams that coincide with exam
i. We propose the following equations:

∀i ∈ Ecoin ∀p ∈ P ∑
j∈Ncoin(i)

XP
jp =| Ncoin(i) | XP

ip (2.44)

There are | Ecoin | nP Equations (2.44) while we have |Hcoin|nP Equations (2.10) in
the original model O.

The Non-Mixed-Duration constraint

McCollum et al. (2012) used nDnEnPnR Equations (2.23). We propose the nDnPnR

Equations (2.45):

∀d ∈ D ∀p ∈ P ∀r ∈ R |Ed|UD
dpr ≥ ∑

i∈Ed

XPR
ipr (2.45)

that ensure that UD
dpr is set to one if there is at least one exam with duration d
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assigned to room r at period p, zero otherwise.

2.5.2 Clique and DDFF valid inequalities

The classical clique cuts proved to be efficient with the proposed formulation. We
used the following cliques valid inequalities:

∀p ∈ P ∀c ∈ C ∑
i∈c

XP
ip ≤ 1 (2.46)

where c is a clique, i an exam in clique c, and C the set of maximal cliques.
The clique inequalities are useful for reducing the computation time. We use
Östergård (2002) to compute the maximal cliques for each instance.

Carlier, Clautiaux, and Moukrim (2007) introduced a new set of Data-dependent
Dual-Feasible Functions (DDFF) to obtain lower bounds for bin packing prob-
lems. In the sequel, we define and adapt this DDFF function.

Definition. Let I = {1, · · · , m}, b1, b2, · · · , bm m integer values and B an
integer such that B ≥ bi for i = 1, · · · , m. A DDFF f associated with B and
b1, b2, · · · , bm is a discrete application from [0, B] to [0, B′] such that:

∀I1 ⊂ I,

(
∑
i∈I1

bi ≤ B

)
⇒
(

∑
i∈I1

f (bi) ≤ f (B)

)

It has been proved that any feasible packing for b1, b2, · · · , bm items in a bin of
size B remains feasible for f (b1), f (b2), · · · , f (bm) items in bin of size f (B). (Car-
lier, Clautiaux, and Moukrim [2007]) proposed three DDFF functions. We use the
function f k

1 that experimentally gives the best results. It is defined for a given pa-
rameter k, 1 ≤ k ≤ 1

2 B and a list of integer values b1, b2, · · · , bm (I = {1, · · · , m}).
We consider the set of indices J = {i ∈ I : k ≤ bi ≤ 1

2 B} and MB(X, J) the opti-
mal value of the one dimensional knapsack problem (1KP) related to J and size
X. The value MB(X, J) is equal to the maximum number of items bi (i ∈ J) which
can be packed in a bin of size X. Assuming that items are sorted by increasing
order of size, MB(X, J) value is obtained in linear time.

Function f k
1 : [0, B] → [0, MB(B, J)] is defined in (Carlier, Clautiaux, and
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Moukrim [2007]) as follows:

x →


MB(B, J)−MB(B− x, J) i f 1

2 B < x

1 i f k ≤ x ≤ 1
2 B

0 otherwise.

We use this DDFF as follows. For a given period p, Equations (2.6)

∀p ∈ P ∀r ∈ R ∑
i∈E

sE
i XPR

ipr ≤ sR
r

can be viewed as packing items (i.e. exams of size sE
i ) into a bin (i.e. room of size

sR
r ). Hence, valid inequalities can be obtained by applying a DDFF function on

the sizes of exams and rooms relative to Equations (2.6).
From a practical standpoint, for each Equation (2.6), the function f k

1 is applied
on all the sE

i and on the room capacity sR
r so as to obtain:

∀p ∈ P ∀r ∈ R ∑
i∈E

f k
1 (s

E
i )XPR

ipr ≤ f k
1 (s

R
r ) (2.47)

We denote M the proposed model that consists of Equations (2.1) to (2.6),
(2.13) to (2.22), (2.24) to (2.28), (2.34), (2.42) to (2.47).

2.6 Experimental results

Tests were done using CPLEX 12.5 IBM (2012) MIP solver with a single thread
and MipEmphasis parameter set to feasibility, gcc version 4.4.7, on a machine with
an Intel Xeon E5-2670 and 8 GB of RAM. We set a one-hour time limit for models
O andM. The computing times are reported in seconds.

2.6.1 ITC2007 instances

Characteristics of the ITC2007 datasets are given in Table 2.1. We report in the first
column the instance label, and, the next four columns show number of exams,
number of students, number of periods and number of rooms. Column |Ha f t|
denotes the number of precedence constraints, |Hexcl| the number of exclusion
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Table 2.1 – Characteristics of the ITC2007

nE nS nP nR |Ha f t| |Hexcl | |Hcoin| |Esole|
1 607 7891 54 7 9 1 (1) 2 0
2 870 12743 40 49 3 1 (1) 4 2
3 934 16439 36 48 1 1 (0) 82 15
4 273 5045 21 1 0 16 (5) 4 0
5 1018 9253 42 3 6 5 (5) 16 0
6 242 7909 16 8 2 2 (2) 18 0
7 1096 14676 80 15 6 9 (9) 13 0
8 598 7718 80 8 15 0 5 1
9 169 655 25 3 7 1 (1) 2 0
10 214 1577 32 48 9 0 49 0
11 934 16439 26 40 1 1 (0) 82 15
12 78 1653 12 50 0 7 (6) 2 7

Table 2.2 – Results of the preprocessing stages for ITC2007 instances

|H̃a f t| |H̃coin| R P |AC| |AGC| % tpre
1 10 (0) 2 928 92 9287 10308 10.9% 30
2 3 (3) 4 0 41 4421 4466 1.0% 28
3 1 (0) 82 0 2477 11410 13887 21.7% 97
4 0 4 188 31 5568 5792 4.0% 1
5 7 (7) 19 0 378 4500 4890 8.6% 1
6 3 (3) 18 4 489 1795 2293 27.7% 3
7 6 (6) 13 1 491 11595 12102 4.3% 1
8 16 (1) 5 902 190 8120 9213 13.4% 43
9 8 (7) 2 49 23 1113 1193 8.0% 2

10 18 (8) 53 1 1198 1133 2340 106.5% 1
11 1 (0) 82 0 2477 11410 13887 21.7% 104
12 0 2 18 57 554 635 14.6% 1

constraints, |Hcoin| the number of coincidence constraints, and |Esole| the number
of exams subject to room exclusive constraints.

Note that column |Hexcl| reports first the initial number of exclusion con-
straints, while in parenthesis, we show the number of edges corresponding to
these general conflict constraints that are not embedded in G(E, AC).

Results of preprocessing on ITC2007 instances

The preprocessing results are reported in Table 2.2. Column |H̃a f t| shows the new
number of precedence constraints, and, |H̃coin| the new number of coincidence
constraints. The number of new general conflict constraints deduced when ap-
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plying the room preprocessing stage is reported in column R, and, the number
of new general conflict constraints deduced when applying Propagate_P is in col-
umn P . Column |AC| reports the initial number of edges in G(E, AC). The total
amount of edges after the preprocessing can be shown in column |AGC|, and, col-
umn % corresponds to the percentage of new edges added. Column tpre reports
the computing times for the preprocessing.

By comparing columns |Ha f t| in Table 2.1 and |H̃a f t| in Table 2.2, we show
that new precedence constraints are discovered for instances 1, 5, 6, 8, 9 and 10.
For example, there are nine precedence constraints in the initial data of instance
10 (see Table 2.1) and nine new precedence constraints are discovered as it can
be seen in Table 2.2. The number of new edges that can be added to G(E, AGC)

is reported in parenthesis in column |H̃a f t|. For instance 10, there are only eight
new edges. By comparing column |H̃coin| (see Table 2.2) and |Hcoin| (see Table
2.1), we see that new coincidence constraints can be exhibited for instances 5 and
10.

The room preprocessing is useful to deduce a significant number of general
conflict constraints for instances 1, 4 and 8 (see column R). A large number
of general conflict constraints are also deduced using propagation Propagate_P .
The preprocessing has a significant impact, the number of edges increases up to
106.5% (see column % in Table 2.2). Column tpre shows that the preprocessing is
done in a short time.

Table 2.3 shows the impact of the preprocessing on the maximum clique size.
The maximum cliques have been computed using the code described in (Östergård
[2002]). Columns ωAC and nωAC

(ωAGC and nωAGC
respectively) give the size of

the maximum clique and the number of different maximum cliques in G(E, AC)

(G(E, AGC) respectively). Note that the size of the maximum clique has more than
doubled for instances 1 and 8. Note also that the number of maximum cliques in-
creases for instances 6, 7, 10 and 12.

The αip values are needed for model M and are computed using the MIP
detailed in Section 2.5.1. The computing times for all the αip values are displayed
in column tαip in Table 2.3. Note that less than half an hour is needed for each
instance.
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Table 2.3 – Impact of the preprocessing stage on maximum cliques and comput-
ing time for the αip value for ITC2007 instances

ωAC nωAC
ωAGC nωAGC

tαip

1 20 4 49 4 172
2 15 1 15 1 124
3 21 8 21 8 1150
4 17 6 18 6 92
5 13 2 13 2 43
6 13 5 13 54 52
7 16 66 16 70 213
8 17 49 48 2 330
9 10 6 11 5 6

10 18 3 18 2688 412
11 21 8 21 8 1059
12 12 4 12 7 6

Results for model O and modelM on ITC2007 instances

Table 2.4 reports results for tests conducted on the ITC2007 datasets using models
O andM . The instance label is reported in the first column. For each model, we
consider every soft constraint separately so as to obtain upper bounds or optimal
values. The time limit was set to one hour. Finally, all the soft constraints are
considered together in the objective function. For each case, the Upper Bound
value (UB) and computing time (t) in seconds are provided. For every soft con-
straint, the results assessed using models O andM are tabulated. In Table 2.4, “
- " stands for time limit reached, NS for no solution found and OM for out of memory.

Table 2.4 is divided in two parts, according to the number of soft constraints
generated in model M. The upper part of Table 2.4 contains the results for the
Front-Load, Period, Room and Non-Mixed-Duration penalties. We call these soft
constraints linear soft constraints because, when they are considered, the number
of constraints generated is in the order of O(nE). The lower part contains the
Two-In-a-Row, Two-In-a-Day, and Period-Spread penalties. When these soft con-
straints are taken into account, the number of constraints in model M is in the
order of O(nEnE).

For the Front-Load penalty, modelM finds two more optimal solutions (i.e.
instances 1 and 8) and better feasible solutions for three instances relative to
model O (i.e. instances 2, 3 and 4). For the Period penalty, model M reaches
optimality for ten out of twelve instances and gives a feasible solution for in-
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Table 2.4 – Results for model O and modelM on ITC2007 instances

Front Load Period Room Non Mixed Duration

I O M O M O M O M
UB t UB t UB t UB t UB t UB t UB t UB t

1 NS - 125 1304 NS - 0 202 NS - NS - NS - 0 1281
2 OM 15 - OM 0 1071 OM 0 53 OM 0 227
3 OM 440 - OM 0 326 OM 0 398 OM OM
4 45 - 40 - NS - 250 - 0 647 0 49 0 643 0 62
5 50 22 50 48 0 7 0 12 0 4 0 7 0 5 0 9
6 375 13 375 15 65 - 75 - 950 77 950 59 25 - 25 -
7 0 196 0 171 0 143 0 153 0 206 0 186 0 644 0 431
8 520 - 0 97 0 89 0 51 2770 - 0 80 0 197 0 174
9 0 6 0 5 0 1 0 0 0 0 0 0 0 4 0 4
10 0 14 0 20 0 3 0 5 0 18 0 19 0 16 0 21
11 OM NS - OM 0 2090 OM 0 1856 OM NS -
12 40 99 40 20 0 7 0 5 0 21 0 4 0 25 0 7

Two In a Row Two In a Day Period Spread All the soft constraints

I O M O M O M O M
UB t UB t UB t UB t UB t UB t UB t UB t

1 NS - NS - 0 275 0 317 OM OM OM OM
2 OM 0 181 OM 0 136 OM 0 182 OM NS -
3 OM OM OM OM OM OM OM OM
4 NS - NS - NS - 2135 - NS - NS - NS - NS -
5 0 20 0 25 0 13 0 21 7145 - 4302 - NS - 123005 -
6 5460 - 5160 - 0 11 0 9 NS - NS - NS - NS -
7 OM 0 687 0 56 0 47 OM OM OM OM
8 0 231 0 296 0 26 0 16 OM OM OM OM
9 0 21 0 17 0 0 0 0 1054 - 1525 - 6559 - 5860 -
10 0 23 0 26 0 5 0 5 13097 - 12814 - 39250 - 20195 -
11 OM NS - OM NS - OM OM OM OM
12 4725 - 3675 - 0 9 0 4 2275 - 2260 - 7027 - 6121 -
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stance 4, whereas model O succeeded for six out of twelve and could not solve
instance 4. Model O, however, is better in the case of instance 6. For the Room
penalty, model M finds four new optimal solutions compared to model O (i.e.
instances 2, 3, 8 and 11). For the Non-Mixed-Duration penalty model O reached
optimality for seven out of twelve instances, while the proposed model gains two
instances (i.e. instances 1 and 2).

The model O cannot run instances 2, 3 and 11 regardless the soft constraint
considered due to an out of memory (OM). This is due to the large number of
conflict constraints based on students in model O. Despite the possibility of run-
ning it, instance 11 remains difficult for the two models. Instance 1 represents
another challenging dataset. Model O cannot find any solution for the four lin-
ear soft constraints considered within the one hour time limit, whereas modelM
succeeded in optimally solve three of them.

The Two-In-a-Row, Two-In-a-Day, and Period-Spread soft constraints are dif-
ficult to deal with. The two models have difficulties to find feasible solutions
within the one-hour time limit, especially for Period-Spread penalty. For the Two-
In-a-Row penalty, modelO reaches optimality for four instances whilst modelM
finds two additional optimal solutions (i.e. instances 2 and 7). For the Two-In-a-
Day penalty, both models find an optimal solution for instances 1, 6, 7, 9 and 12
because, in these instances, days have only one or two periods, which obviously
leads to a null cost notwithstanding the solution obtained. One can also observe
that one additional optimal solution (instance 2), and an upper bound are attain-
able (instance 4) when applying modelM on the Two-In-a-Day soft penalty. We
notice that the Period-Spread soft constraint causes an out of memory for five out
twelve instances for modelM and six out twelve instances for model O. Despite
the large number of constraints, modelM is able to provide the optimal solution
for instance 2 within the one hour time limit.

When all the soft constraints are considered at once, model M find better
solutions than model O and a feasible solution for instance 5. We note that both
models struggle in most cases due to the out of memory though. Considering all
the soft constraints turned finding feasible solutions into a complicated task for
both models.

We report a synthesis of the 96 runs done on ITC2007 instances in Table 2.5.
The first two columns report the number of the out of memory (OM) that oc-
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Table 2.5 – Synthesis for the 96 runs on ITC2007 instances

OM count ranking O andM when solutions are achieved

O M (O =M) (O better_thanM) (O worse_thanM)

31 13 39 2 30

cured over the 96 runs. The comparison between the two columns shows that
compact model M fits better within the memory limit. Columns (O = M), (O
better_than M), and (O worse_than M) report the number of equal solutions
achieved when computations are feasible for both models, the number of better
solutions achieved by model O, and the number of better solutions achieved by
modelM, respectively. In 25 cases, O andM cannot obtain a feasible solution,
either the models cannot fit into memory (OM) or the models cannot find a feasi-
ble solution within the time limit (NS). In the remaining cases, it can be seen that
modelM provides better results for the majority of cases.

The results in Table 2.4 also show that modelM succeeded in solving to op-
timality thirteen cases more than the original model O. In most cases, the com-
puting times of model M are shorter than the ones of model O. The proposed
modelM obtains better results within 8 GB of RAM and one hour time limit.

2.6.2 Yeditepe instances

Characteristics of the Yeditepe datasets are given in Table 2.6. We report in the
first column the instance label, and, the next four columns show number of ex-
ams, number of students, number of periods and number of rooms. Columns
ωAC and nωAC

give the size of the maximum clique and the number of different
maximum cliques in G(E, AC). The computing times for all the αip values are
displayed in column tαip .

Results of preprocessing on Yeditepe instances

No precedence, coincidence, exclusion or room exclusive constraints are embed-
ded in the Yeditepe instances (Parkes and Özcan [2010]). Moreover, the capacities
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Table 2.6 – Characteristics of the Yeditepe datasets

nE nS nP nR ωAC nωAC
tαip

yue20011 126 559 18 2 14 78 1
yue20012 141 591 18 2 17 8 1
yue20013 26 234 6 2 6 4 1
yue20021 162 826 21 2 16 17 1
yue20022 182 869 21 2 20 4 1
yue20023 38 420 6 1 6 2 1
yue20031 174 1125 18 2 14 101 1
yue20032 210 1185 18 2 16 14 1

Table 2.7 – Results for model O and modelM on Yeditepe instances

I O M
UB t UB t

yue20011 147 - 103 -
yue20012 135 - 279 -
yue20013 29 3 29 2
yue20021 113 - 107 -
yue20022 434 - 388 -
yue20023 56 38 56 16
yue20031 287 - 361 -
yue20032 8342 - 645 -

of the rooms are large enough so that no new general conflict constraints can be
deduced using the room preprocessing. As expected, the preprocessing is unable
to exhibit new edges for these instances.

Results for model O and modelM on Yeditepe instances

Table 2.7 reports the results obtained on the Yeditepe instances. The instances
contain only Two-In-a-Row and Room penalty soft constraints. A deep look at
this dataset shows that Room penalty can be avoided by both models. For all
Yeditepe instances but one, a very large room with a high cost has been added
to fit into the ITC2007 problem formulation. We experimentally observed that
Room penalty soft constraint has no impact on the costs of solutions. For the
sake of compactness, we only report in Table 2.7 experiments conducted when
considering the two soft constraints.

The two smallest instances yue20013 and yue20023 are optimally solved by
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both models.
Table 2.7 shows that modelM finds four better solutions, while O finds two

better solutions.

2.7 Conclusion

Preprocessing stages and an improved mathematical model were presented for
examination timetabling problems that fall within the scope described in the sec-
ond International Timetabling Competition (ITC 2007). The preprocessing stages
reveal general conflict constraints between exams even if they have no students
in common. The original model and the improved model were compared using
the ITC 2007 and Yeditepe datasets within a one-hour time limit.

The improved model is more compact and the number of hard and soft con-
straints was significantly reduced. The original model cannot fit into the mem-
ory in 31 cases whereas the proposed model cannot fit only in 13 cases. The
preprocessing stages helped find larger cliques used by the improved model as
valid inequalities. We introduced Data-dependent Dual Feasible Function valid
inequalities that proved to be efficient. When both models can be loaded, the
improved model has better results on the majority of instances.
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3.1 Introduction

Exam timetable problems are hard problems to solve. Heuristics and metaheuris-
tics are able to build good solution that provide upper bounds. Today, exact meth-
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ods based on, for instance, MIP formulations cannot reach optimality except for
small problems. Lower bounds are useful for evaluate how far from the optimal
solution are the practical ones.

We consider the ITC2007 examination timetabling problem discussed in Chap-
ter 2. We invite the reader to refer to Section 2.2 for a description of the problem.

We propose lower bounds for Two-In-a-Row, Two-In-a-Day, and Period-Spread
penalties. As it has been presented in Chapter 2, these penalties are still difficult
to deal with even though improvements have been proposed and tested.

As it can be noticed in the first model presented in McCollum et al. (2012), it
is probably because they are intrinsically quadratic. The authors proposed a lin-
earization which results a quadratic number of constraints. We propose another
linearization to reduce the number of constraints. We observed that current MIP
solvers encounter difficulty running the models developed so far. We propose a
constraint programming formulation to test another exact approach based on this
paradigm. We test, under this context, the new linearization.

3.2 Lower Bounds

The aim behind the spacing soft constraints Two In a Row, Two In a Day and
Period Spread is to place exams for the same student as far apart as possible. For
most solutions the major part of the penalty imposed is due to these criteria.

3.2.1 Clique Size Limits for Unavoidable Penalties

Based on the size of the clique, we determine the unavoidable cost imposed by
the exams of these cliques. This technique is applied on three soft constraints:
Two In a Row, Two In a Day and Period Spread, denoted spacing soft constraints.
For the remaining soft constraints, we use the formulation presented in the pre-
vious chapter in section 2.5 to solve them. For each soft constraint, the objective
function to be minimized is the corresponding penalty and the constraints are all
the hard constraints of the problem. To the best of our knowledge, there exists no
lower-bound-related work on the ITC2007 problem.

To assess lower bounds for these soft constraints, we propose using a set of
cliques C selected according to their sizes. We denote k the size of a clique c. A
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day is said to be of type Di if it has i periods, and nDi is the number of days of
type Di. Not all the possible Di exist for a particular instance (e.g. instance 2
has D2, D3 and D4 types of day but no D1). We denote δ the set of numbers of
periods that corresponds to the types of day of an instance. As an example, for
instance 2, we have δ = {2, 3, 4} since we have D2, D3 and D4 types of days.

We establish the following limits:

Proposition 3.1 If k > L2R = ∑i∈δd i
2enDi, then we have at least one Two-In-a-Row

penalty.

exams of a clique c are pairwise adjacent. For D1 and D2 types of day, one
exam of a clique can be allocated without any two-in-a-row conflict. For D3 type
of day, two exams of a clique can be allocated without any two-in-a-row conflict.
Hence, for Di type of day i/2 exams of a clique can be allocated without any two-
in-a-row conflict. So, the limit L2r holds. Assume now a clique c such k > L2R,
we have a least a two-in-a-row penalty.

Proposition 3.2 If k > L2D = nD1 + 2 ∑4
i∈(δ\{1}) nDi, then we have at least one Two-

In-a-Day penalty.

For the two-in-a-row conflict, one exam can be placed in a D1 day and two
exams can be placed for D2, D3 and D4 days. Hence, for a clique c of size k > L2D,
we have at least a two-in-a-day penalty.

Proposition 3.3 If k > L2RD = ∑i∈δ nDi, then there is at least one penalty due either
to Two In a Row, or to Two In a Day.

To avoid having both two-in-a-row and two-in-a-day penalties, we can sched-
ule at most one exam per day. Hence, a clique c of size k > L2RD, we have at least
a two-in-a-row or two-in-a-day penalty.

Proposition 3.4 If k > LPS =
⌈

nP

gPS+1

⌉
, then we have at least one Period-Spread

penalty.

For a clique c of size k, a minimum gap of gPS periods is required to avoid
having a period-spread penalty. Hence, if k > LPS, we have at least a period-
spread penalty.
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nP gPS L2R L2D L2RD LPS

1 54 5 29 ns 29 9
2 40 1 24 26 13 20
3 36 4 24 24 12 8
4 21 2 14 14 7 7
5 42 5 28 28 14 7
6 16 20 8 ns 8 1
7 80 10 40 ns 40 8
8 80 15 41 79 41 5
9 25 5 13 ns 13 5

10 32 20 22 22 12 2
11 26 4 17 18 9 7
12 12 5 7 ns 12 3

Table 3.1 – Limits on sizes of cliques beyond which a penalty applies

All these limits can be stated by counting the number of exams that can be
scheduled without the considered soft constraint. Table 3.1 reports the values for
the limits on the size of a clique beyond which a violation of the corresponding
soft constraint would necessarily occur. When we have only D1 or D2 day types,
there are no Two-In-a-Day penalties (ns in Table 3.1).

A set of cliques for each instance is built using the approach proposed by
Östergård (2002). Each clique c is evaluated as described in Sections 3.2.2 and
3.2.3.

3.2.2 Two In a Row and Two In a Day Penalties

We now focus on the C2R and C2D lower bound computation. We have L2R ≥
L2RD, and also L2D ≥ L2RD (except when there are no Two-In-a-Day penalties).
We therefore consider L2RD: the number of cliques involved in the computation
should be potentially larger, as shown by a comparison of the columns L2R, L2D

and L2RD in Table 3.1. The objective function for the modified model M (see
Section 2.5) is thus to minimize (C2R

b + C2D
b ) (subscript b means "both"), and the

other soft constraints are not considered. As a result, we determine the optimal
cost for each clique.

Unfortunately, we observe in practice that the computation time for a clique
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is of the order of hours even when we use the modified modelM, and there are
a large number of cliques to evaluate.

We propose a new model that is more effective for computing Two-In-a-Row
and Two-In-a-Day penalties per clique. Since we are considering a clique c ∈ C of
size k, exams are pairwise adjacent: they have to be assigned to k different peri-
ods. The examination session extending over nP periods corresponds to different
day types. There are nDi days of type Di with i periods.

i j

k l

i j

D3

Figure 3.1 – Clique configuration on a D3 day type

The idea is to start by building permutations of the exams in a clique c for
each day type comprising the instance (D1, D2, D3, D4), and then to optimally
select those that can cover all the exams of c with the minimum Two-In-a-Row
and Two-In-a-Day cost. There is a large number of permutations. Fortunately,
not all the permutations need to be used to find the optimal solution for a clique
c.

To provide the reader with some insights on how the permutations are se-
lected, let us consider a D3 day and a 4-exam clique and focus on two exams
i, j ∈ c (see Figure 3.1). There are many feasible permutations of these two exams
that can be allocated to the three periods of a D3. The periods inside a D3 day in
which the two exams are scheduled do not matter: only the penalty is important.
Hence, for a couple of exams i and j a unique permutation with the minimum cost
has to be considered. This rationale can be applied on the other types of days.

We evaluate the contribution for a clique c using the following model:
minimize:

∑
σ∈Π

CσXσ (3.1)
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subject to:
∀j ∈ [1, k] ∑

σ∈Π
ajσXσ = 1 (3.2)

∀i ∈ δ ∑
σ∈Πi

Xσ ≤ nDi (3.3)

Xσ ∈ {0, 1} (3.4)

Subscript σ denotes a permutation. Xσ is a Boolean decision variable, equal to
1 if permutation σ is used, 0 otherwise. The permutations are grouped by days,
i.e. Πi is the set of permutations for the days with i periods. Each permutation
σ has a cost denoted Cσ that corresponds to its Two-In-a-Row and Two-In-a-Day
penalty. Exams j of a k-clique are here numbered from 1 to k. The parameter
ajσ = 1 if exam j belongs to permutation σ, 0 otherwise.

Equations (3.2) ensure that each exam is assigned exactly once (3.2). The usage
of the different days is enforced by (3.3). We use at most the associated number
of days for each type. Note that the days are anonymous: the model allocates the
permutations to an abstract “day”, independently of the actual day to which this
might be made to correspond in practice. We denote K the proposed model.

At this stage, the optimal contributions are computed for each clique c in the
set C for which k =| c |> L2RD.

3.2.3 Period Spead Penalty

In practice, we observe that the time spent finding an optimal solution for a clique
c for CPS is longer than the time spent evaluating (C2R

b + C2D
b ) when we use the

modified modelM (see Section 2.5). Moreover, the total number of cliques whose
cardinality exceeds LPS is huge. We propose the following scheme for evaluating
the contributions of a clique c for the CPS penalty.

We first recall Equations (2.18) and (2.19) that are used to compute the penalty
of each clique:

CPS = ∑
[i,j]∈AC

wC
ijC

PS
ij
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∀[i, j] ∈ AC ∀p, q ∈P 1 ≤ |q− p| ≤ gPS

XP
ip + XP

jq ≤ 1 + CPS
ij

}

Assume a clique | c | = k > LPS: there is at least one Period-Spread penalty.
First we determine αk, the minimum number of edges that contribute to the
penalty of any clique c of size k. Each edge [i, j] represents a term wC

ijC
PS
ij in the

objective function The minimum number of edges αk for this size of clique k is
consequently known, irrespective of clique c. Next, to evaluate clique c, we take
the αk edges that have the smallest penalties.

To compute αk, the idea is to use the proposed model to find an optimal spac-
ing between k exams over the nP periods that formally corresponds to an optimal
pattern (exams allocated to periods). It is important to remark that for given nP

and gPS, each value αk is the same for all the cliques such that | c |= k. Hence, αk

has to be computed once for all the cliques of size k.
We consider formally a clique of size k with a set of exams {i1, i2, · · · , ik}.

All the wij are set to 1. Let us now assume the optimal spacing between the k
exams with the minimum value αk. Since exams are anonymous and wij = 1, two
exams can swap places. As a consequence, there are k! feasible permutations.
Without lack of generality, we introduce the following total order: (i1 ≺ i2 ≺
· · · ≺ ik). This total ordering is useful to speed up the computation. Then we use
the modified model M to minimize CPS for this optimal spacing and the other
soft constraints are not considered. Unfortunately it is still time consuming to
prove optimality for certain cliques. We stop the computation after ten minutes
for each clique. When the time limit is reached, we get a lower bound for αk.

Before computing the penalties, we compute αk a priori for each different clique
size such that k > LPS. For each clique c, the proposed evaluation that counts the
αk smallest weights of the edges of clique c does not represent the optimal value
for clique c, but it gives a lower bound for its CPS criterion.

3.2.4 Evaluation of A Set of Cliques With Unavoidable Penalties

Let c and c′ two cliques and [i, j] ∈ c, c′. The penalties of c and c′ cannot be
summed since we have no guarantee that the edge [i, j] does not contribute in the
penalties of both cliques.
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Assume we have a set of individual cliques, each clique has at least an un-
avoidable penalty and each clique has been assessed as explained.

Proposition 3.5 LetF be a family of cliques embedded in G(E, AGC) such that: ∀c, c′ ∈
F |c ∩ c′ |≤ 1, therefore ∑c∈F C2R(c) + C2D(c) + CPS(c) is a lower bound.

F is a family of edge-disjoint cliques. Since no edge is shared between two
cliques in the family, the penalties of these cliques can be summed.

Such a family F as presented in the above proposition is built using a greedy
algorithm. In Section 3.2.2

3.2.5 Remaining Penalties

To compute lower bounds for the remaining penalties (frontload, room, period
and non mixed duration), we use the modelM with the preprocessing and the
valid inequalities, described in Section 2.5. We run model M on each each soft
constraint individually. The objective function is composed of one term, corre-
sponding to the penalty of the soft constraint. The aim of running model M is
to see whether it is able to reach optimality for the four soft constraints. If it is
possible, this would suggest that a big part of the difficulty of the instances comes
from the spacing constraints Two In a Row, Two In a Day and Period Spread.

3.3 A Modified MIP for Exam Timetabling

In the previous chapter, Section 2.5 presented the set of the different hard and soft
constraints. The spacing soft constraints, originally non-linear, were linearized to
be used in the current MIP.

This linearization, however, presents a drawback. It generates a quadratic
number of variables and constraints (in the order of nE2 variables and np ∗ nE2

constraints). This led to an overload in the memory required by the solver to solve
the MIP. We propose a new linearization based on the work of Glover (1975) in
which the linearization requires the order of nE variables and nP ∗ nE constraints.

We recall the linearization presented in the previous chapter for the spacing
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constraints:

C2R = w2R ∑
[i,j]∈AC

wC
ijC

2R
ij (3.5)

∀[i, j] ∈ AC ∀p, q ∈ P with |p− q| = 1

with ypq = 1 XP
ip + XP

jq ≤ 1 + C2R
ij

}
(3.6)

C2D = w2D ∑
[i,j]∈AC

wC
ijC

2D
ij (3.7)

∀[i, j] ∈ AC ∀p, q ∈ P |q− p| ≥ 2

with ypq = 1 XP
ip + XP

jq ≤ 1 + C2D
ij

}
(3.8)

CPS = ∑
[i,j]∈AC

wC
ijC

PS
ij (3.9)

∀[i, j] ∈ AC ∀p, q ∈ P 1 ≤ |q− p| ≤ gPS

XP
ip + XP

jq ≤ 1 + CPS
ij

}
(3.10)

C2R
ij , C2D

ij , CPS
ij ∈ {0, 1} C2R, C2D, CPS ∈N (3.11)

Equations (3.6), (3.8) and (3.10) are generated for every couple of exams [i, j]
that have students in common. For each couple [i, j], a binary variable Cij is cre-
ated to determine whether a penalty applies for this couple.

We aim at reducing the number of these variables by creating a variable for
each exam instead of each couple. This variable should determine the penalty
implied by the exam. This new linearization introduces three sets of variables Ri,
Di and Pi and a parameter Ti.

∀i ∈ E Ti = ∑
[i,j]∈AC

wC
ij (3.12)

The parameter Ti represents the number of students exam i shares with other
exams. The variables Ri, Di and Pi represent the penalty implied on placing the
adjacent exams of exam i in the periods penalized by the spacing constraints.

C2R = w2R ∑
i∈E

Ri (3.13)
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∀i ∈ E ∀p ∈ P yp(p+1) = 1

Ri ≥ ( ∑
[i,j]∈AC

wC
ij X

P
j(p+1))− Ti(1− XP

ip)

 (3.14)

Equations (3.14) ensure that, when exam i is placed in the period p (i.e. XP
ip =

1), the two-in-a-row penalty is considered for all the adjacent exams in the period
p + 1. Ri = 0 when exam i is not placed in period p (i.e. XP

ip = 0) because of Ti.

C2D = w2D ∑
i∈E

Di (3.15)

∀i ∈ E ∀p ∈ P

Di ≥ ( ∑
q∈P, |p−q|>1

ypq=1

∑
[i,j]∈AC

wC
ij X

P
jq)− Ti(1− XP

ip)

 (3.16)

For Equations (3.16) and (3.16), when exam i is placed in period p, the two-
in-a-day and period-spread penalties should be considered for all the periods,
i.e. p + 2 (and p + 3 for D4 day) for two in a day and all periods within the gPS

interval for period spread.

CPS = ∑
i∈E

Pi (3.17)

∀i ∈ E ∀p ∈ P

Pi ≥ ( ∑
q∈P

|p−q|≤gPS

∑
[i,j]∈AC

wC
ij X

P
jq)− Ti(1− XP

ip)

 (3.18)

Ri, Di, Pi, Ti, C2R, C2D, CPS ∈N (3.19)

Note that equations (3.14), (3.16) and (3.18) are generated for every exam i and
not for a couple of exams [i, j].

Using this linearization, the total number of variables and constraints in the
model is reduced. The number of variables is in the order of nE and the number
of constraints is in the order of nE ∗ nP.
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3.4 A Constraint Programming Approach

We propose a constraint programming model to solve the problem. The aim of
this model is to compare the constraint programming and mixed integer pro-
gramming approaches and check whether it is possible to rapidly obtain good
feasible solutions using the solvers.

3.4.1 Representation

The idea is to exploit both the capacities of domains’ representation and the avail-
able operators that the constraint programming paradigm can offer.

We introduce Xi, an integer variable whose value codes the scheduling of
exam i. The integer variable Xi belongs to a restraint domain. The different values
of this domain are of the form DDPPRR where:

• DD, the first two digits represent the day

• PP the next two digits represent the period

• RR, the last two digits represent the room where exam i is allocated to at
period PP

Note that, the two digits PP correspond to the absolute period number, num-
bered from 0 to nP-1, but not to the period number relative to the day DD.

For example, Xi = 020502 signifies that exam i is scheduled on day number
2, period number 5 in room 2. Thus, if the instance disposes 7 days, 36 periods
and 7 rooms in each period, the biggest value Xi can take is 073607. Note that the
domain of each variable can easily be determined.

In the same spirit, we also introduce the following data:

• DCd as DD, the code of day d

• PCp as DDPP, the code of the period p, that belongs to day d

• RCpr as DDPPRR, as the code the room r, of period p, that belongs to day d

Note that they are many codes for a room r according to the day in which it can
be used.
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Using this representation implies that each period and room have a unique
code. The room 5 in period 4 in day 3 has the code 030405. Note that the code of r
depends on the period in which it is placed. This representation of the assignation
of exams is possible with the flexibility of the constraint programming syntax.
The period in which exam i is placed can be obtained by a simple integer division
by 100. The room is obtained using the remainder of the same division and the
day is obtained using an integer division by 104. We use the symbol / for integer
division, % for the rest of the division and ≡ for equality between two variables
or a variable and a parameter. For the constraint programming model, we use
the same set of parameters defined in Section 2.3. All the parameters, sets and
notations related to rooms, periods and exams remain the same. We invite the
reader to refer to Section 2.3 for a detailed descriptions of the parameters, sets
and notations. The constraint programming model we used is the following:

3.4.2 Hard Constraints

Room capacities should be respected:

∀p ∈ P ∀r ∈ R ∑
i∈E

sE
i (Xi ≡ RCpr) ≤ sR

r (3.20)

The duration of an exam should be compatible with the duration of the period
it is placed in:

∀i ∈ E ∀p ∈ P dE
i (Xi ≡ PCp) ≤ dP

p (3.21)

For every precedence constraint between i and j, the period in which i is
placed should be after the period in which j is placed:

∀(i, j) ∈ Ha f t (Xi/100) > (Xj/100) (3.22)

For every coincidence constraint between i and j, they should be placed in the
same period:

∀[i, j] ∈ Hcoin (Xi/100) = (Xj/100) (3.23)

Two conflicting exams i and j should not be placed in the same period:

∀[i, j] ∈ B (Xi/100) 6= (Xj/100) (3.24)
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A room exclusive exam should be alone in the room it is placed in:

∀i ∈ Esole ∀j ∈ E such that i 6= j Xi 6= Xj (3.25)

3.4.3 Soft Constraints

Maximize:
C2R + C2D + CPS + CFL + CRP + CPP + CNMD (3.26)

Two exams that share students induce a two-in-a-row penalty when placed in
the same day back to back:

C2R = w2R ∑
[i,j]∈AC

wC
ij(Xi/104 ≡ Xj/104 ∧ | Xi/100− Xj/100 |≡ 1) (3.27)

Two exams that share students induce a two-in-a-day penalty when placed in
the same day separated by at least one period:

C2D = w2D ∑
[i,j]∈AC

wC
ij(Xi/104 ≡ Xj/104 ∧ | Xi/100− Xj/100 |> 1) (3.28)

Two exams that share students induce a period-spread penalty when the gap
between the periods in which they are placed is less than gPS:

CPS = ∑
[i,j]∈AC

wC
ij(| Xi/100− Xj/100 |< gPS) (3.29)

Front load exams induce a penalty when placed in the front load periods:

CFL = wFL ∑
i∈EFL

(Xi/100 ≥ gFL) (3.30)

Each exam induce the penalty of the room in which it is placed:

CRP = ∑
r∈R

wr ∑
i∈E

(Xi%100 ≡ r) (3.31)

Each exam induce the penalty of the period in which it is placed:

CPP = ∑
p∈P

wp ∑
i∈E

(Xi/100 ≡ PCp) (3.32)
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If a room contains multiple exams, at least two of them have different periods,
a penalty applies:

∀p ∈ P ∀r ∈ R CNMD
pr = ∑

d∈D
( ∑

i∈Ed

(Xi ≡ RCpr) > 1) (3.33)

CNMD = ∑
p∈P

∑
r∈R

(CNMD
pr − 1)× (CNMD

pr > 0) (3.34)

3.5 Results

All tests are performed using CPLEX optimization studio 12.5.1 (IBM [2012]), gcc
version 4.5.1, on a machine with an Intel Xeon E5430QC@2.66 GHz CPU and 8
GB of RAM.

Table 3.2 shows the characteristics of the instances of the examination time-
tabling track in the second International Timetabling Competition (ITC2007). The
density dC for a G(E, A) graph is computed using dC = 2|A|

n(n−1) × 100. nE repre-
sents te number of exams and | AC | the number of edges in G(E, AC). nS is the
number of students, nP the number of periods and nR the number of rooms. The
PHC (Period Hard Constraint) column corresponds to the sum of the precedence,
coincidence and exclusion constraints, while the RHC (Room Hard Constraint)
column shows the number of room exclusive constraints.

Tables 3.3 shows the optimal values for the frontload (CFL
a ), the period penalty

(CP
a ), the room penalty (CR

a ) and the non-mixed-duration penalty (CNMD
a ). Co-

lumns Opt report the optimal solutions found, Columns UB report the best value
found so far in the literature and columns t report the computing times in sec-
onds. We provide modelM with initial solutions obtained using the solver pre-
sented in Müller (2009). We set a limit of one day for the computing times. In
most cases, the end users can gain useful information for making decisions in the
scope of the time spent to build a timetable. Further work has to be done to deal
with CR for instance 1 and CP for instance 6. In these two cases the time limit has
been reached: we reported the CPLEX lower bound and the best integer solution.

It can sometimes be useful for end users to know whether a null or lowest-cost
solution can be found for each of these criteria. It can be remarked that all the
CNMD

a = 0, and one can try to search for a solution without Non-mixed-duration
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dC nE | AC | nS nP nR PHC RHC

1 5.05 607 9287 7891 54 7 12 0
2 1.17 870 4421 12743 40 49 12 2
3 2.62 934 11410 16439 36 48 170 15
4 15.0 273 5568 5045 21 1 40 0
5 0.87 1018 4500 9253 42 3 27 0
6 6.16 242 1795 7909 16 8 23 0
7 1.93 1096 11595 14676 80 15 28 0
8 4.55 598 8120 7718 80 8 20 1
9 7.84 169 1113 655 25 3 10 0
10 4.97 214 1133 1577 32 48 58 0
11 2.62 934 11410 16439 26 40 170 15
12 18.45 78 554 1653 12 50 9 7

Table 3.2 – Characteristics of the instances of the examination timetabling track
in the second International Timetabling Competition (ITC2007).

CFL
a CP

a CR
a CNMD

a

Opta UB t Opta UB t Opta UB t Opta UB t

1 125 255 3042 0 270 1002 0/350 1050 - 0 100 200
2 0 375 8255 0 0 249 0 0 312 0 0 277
3 30 740 2218 0 100 384 0 0 305 0 0 126
4 25 105 6341 50 1750 20648 0 0 60 0 0 72
5 50 1440 657 0 100 42 0 0 13 0 0 45
6 375 375 25 30/55 450 - 950 1200 331 0 75 1519
7 0 460 250 0 0 339 0 0 232 0 0 37
8 0 380 259 0 342 196 8 0 125 463 0 0 41
9 0 0 4 0 0 1 0 0 1 0 0 1

10 0 5 7 0 0 4 0 0 2 0 0 6
11 30 1370 7514 0 0 509 0 0 224 0 0 145
12 0 40 1 0 0 1 0 0 1 0 0 1

Table 3.3 – Optimal and best values from the literature for Front Load, Period
Penalty, Room Penalty and Non-Mixed Duration
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(C2R
b + C2D

b ) CPS

LB UB t LB UB t LB Best

1 0 42 5 126 2534 4130 215 4128
2 10 10 79 0 0 0 10 380
3 330 2885 82095 140 4926 4645 501 7769
4 291 9104 52632 47 3925 129 428 13103
5 0 0 nc 142 1259 742 136 2513
6 1740 3700 17223 19900 19900 84 22995 25330
7 0 0 nc 312 3602 3449 220 3537
8 0 0 0 836 6718 4837 552 7087
9 0 0 2 57 576 5 57 913

10 0 300 1 2786 11585 4 2786 13053
11 2660 10690 22566 620 13079 5324 3310 24369
12 1330 3780 1 541 1901 3 1871 5095

Table 3.4 – Lower bounds for (C2R
b + C2D

b ) and CPS and the gap between the
lower bounds and the best solutions in the literature.

violations. The optimal CP
a = 0 allows end users to remove the penalized periods

prior to the solution process. For Instance 4, there are two large period penalties
(200 and 500), and the corresponding periods can also be removed, since a CP

a =

50 solution is attainable. In the initial dataset, Room penalties are imposed for
instances 1, 2, 3, 6, and 7. The optimal solutions CR

a = 0 may be used by end users
to avoid all the penalized rooms. The optimal solution can be seen to be close to
the best value for Instance 6, and here a large room penalty cannot be avoided.
Considering the CFL

a criterion, the value is tightened for Instance 6 (Opta = UB).
Table 3.4 displays the values of lower bounds we obtained and the best values

from the literature for (C2R
b + C2D

b ) and CPS. We use Östergård (2002) to com-
pute all the cliques larger than the considered limits. For Instances 2, 5, 7 and 8
the bounds are tightened for (C2R

b + C2D
b ). Columns t report the global comput-

ing time: clique computing, evaluation of each clique using the model K and the
greedy algorithm. Note that for instances 5 and 7, we have L2RD < ωAGC : there
is no clique that can be used to compute, the value is zero and we report nc in
column t. The evaluation of a clique using the model K is very fast, but one can
have a large number of cliques (e.g. the number of cliques is 15598206 for In-
stance 3). For Instance 6 the best value for CPS is achieved using the lower bound
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computation: this is the optimal value for this particular instance where gPS > nP

(see Gogos, Alefragis, and Housos (2012)). The computing time depends on the
considered instance for the two lower bounds since they are tightly coupled to
the number of cliques larger than the limit.

Penultimate Column LB (see Table 3.4) reports the sum of the contributions of
the optimal values and of the obtained lower bounds, while column Best reports
the values of the best solutions found so far (Hamilton-Bryce, McMullan, and
McCollum [2014]). As it can be noticed, these problems remain challenging.

MIP Model CP Model

Instance Root Node Time LB UB UB

Instance 1 - 0 NS 22568
Instance 2 1810 40.66 NS 50569
Instance 3 - 0 NS 108985
Instance 4 65 25.35 NS 25717
Instance 5 46 348.96 361960 72140
Instance 6 968 1627.17 NS 34570
Instance 7 - 0 NS 50115
Instance 8 - 0 NS 53752
Instance 9 5 5.45 2790 2181
Instance 10 10 0 17941 62257
Instance 11 - 0 NS 173235
Instance 12 1 30 5826 12429

Table 3.5 – Results of the MIP and CP models within one-hour time limit

To compare the effect of the MIP model with the new linearization against
the Constraint Programming (CP) model, Table 3.5 presents the results of both
models. The models were run in a one-hour time limit. Columns UB show the
best solution found by the corresponding model. Column “Root Node Time”
shows the time needed to solve the LP relaxation for the new MIP model. When
the LP relaxation is not solved within the time limit, the instance is flagged by “-”.
Column “LB” shows the lower bound by the MIP model within the time limit.

The table shows that the CP model is able to find feasible solutions for all
the instances. The MIP model faces considerable difficulties solving the LP relax-
ation. It finds a feasible solution for four instances (5, 9, 10 and 12). One can easily
notice that some instances are quite difficult to solve. The CP model is clearly out-
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performing the MIP model in finding feasible solutions. It is unfortunately not
possible to compare the lower bound results on both models since the CP solver
proves optimality by proving that no better solutions exist.

The quality of the feasible solutions found by the CP model is far from the
quality of the best solutions found in the literature. This is justified by the fact
that the constraint programming is a generic approach whereas the best solu-
tions were found using dedicated heuristic and metaheuristic approaches. The
use of mathematical and constraint programming in exam timetabling problems
is limited due to the big number of variables and constraints. The solvers are
usually unable to provide better solutions than the ones provided by problem-
adapted approaches. The use of available solvers to solve mixed integer program-
ming and constraint programming models has the disadvantage of the inability
to adapt the algorithm to the problem specifications.

3.6 Conclusion

We presented a set of approaches to compute lower bounds, to reduce the num-
ber of variables and constraints for the mixed integer model and to provide a con-
straint programming model for the exam timetabling problem. The lower bounds
are computed for the Two In a Row, Two In a Day and Period Spread soft con-
straints based on the cliques that can be extracted from the conflict graph. To the
best of our knowledge, this is the first lower-bound-related work for the ITC2007
exam timetabling problem. We used the improved model presented in the pre-
vious chapter to obtain optimal solutions when considering the the Front Load,
Non Mixed Duration, Period and Room penalties individually. We also provided
a new formulations for the Two In a Row, Two In a Day and Period Spread soft
constraints that make it possible to reduce the number of variables constraints for
the MIP model. The Constraint Programming model presented was able to find
feasible solutions for all the instances of the benchmark and can be hybridized
with the MIP model to provide starting solutions. The work presented provides
an promising beginning in exploiting mathematical and constraint programming
as solving techniques for the exam timetabling problem.
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4.1 Introduction

The exam timetabling problem represents one of the main problems encountered
every year in academic institutions. The problem consists in assigning a set of
exams to a set of periods and rooms while respecting hard constraints. A solu-
tion is feasible if all the hard constraints are met. To evaluate the quality of the
timetable, soft constraints can be introduced. When a soft constraint is violated,
a corresponding penalty is applied. Best solutions are therefore the ones that
minimize the soft constraint penalties, i.e. the overall cost.

Researchers have shown practical interest in solving exam timetabling prob-
lems. However, comparing the different methods they proposed is difficult since
institutional constraints change from one university to another. Academic bench-
marks were proposed in the literature to provide the community with a com-
mon test base on which methods can be tested. The Toronto benchmark (Carter,
Laporte, and Lee [1996]), Nottingham benchmark (Burke, Newall, and Weare
[1996]), Melbourne benchmark (Merlot et al. [2003]) and the second international
competition (Metaheuristics Network. [2002]; McCollum et al. [2010a]) are the most
used benchmarks so far. The Toronto benchmark is a collection of thirteen in-
stances taken from real-world universities across the world. The Nottingham
and Melbourne benchmarks are a set of instances taken from the Nottingham
and Melbourne universities. The second international timetabling competition
provides a set of twelve instances taken from different universities.

The core of many exam timetabling problems is a graph coloring problem.
However, the constraints to be satisfied differ from one benchmark to another.
For instance, room-related constraints are present only in one of the variants
of the Toronto benchmarks. The second International Timetabling Competition
(ITC2007) introduces exam-related hard constraints (e.g. precedence and coinci-
dence between exams) which are not included in other benchmarks. Considering
the real-world constraints it introduces, the ITC2007 benchmark is considered as
a solid test base on which methods can be tested.

Evolutionary algorithms are some of the most used and successful approaches
applied to exam timetabling. Burke, Newall, and Weare (1996) used a memetic
algorithm to solve the Toronto and the Nottingham benchmarks. The authors
used two stages: local search and mutation. The local search stage used the Hill-
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Climbing heuristic. The mutation stage is done using two operators: Heavy and
Light Mutation operators.

Abdullah et al. (2010) used a tabu-based memetic scheme. The population
initialization stage used a saturation degree graph coloring heuristic. Once the
crossover and the mutation stages are done, an improvement stage is used to im-
prove the quality of the child. For this purpose, a set of neighborhood structure
are used. Tabu search was used in the improvement stage to penalize the neigh-
borhood structures that failed to improve the child. The authors claimed that
using multiple neighborhood structures proved to be effective in better exploring
the search space.

Ülker, Özcan, and Korkmaz (2007) investigated Linear Linkage Encoding for
Grouping problems and tested it on graph coloring and exam timetabling. The
author modeled the exam timetabling problem as a grouping problem. The ex-
ams are the items and the periods represent the groups in which items are grouped.
The algorithm used two crossovers, the Lowest Index First Crossover and the
Lowest Index Max Crossover to create a new chromosome. We refer to Qu et al.
(2009a) for a detailed overview on the techniques used in exam timetabling.

We propose in this chapter a memetic approach for the exam timetabling
problem encountered at the Université de Technologie de Compiègne (UTC). The
exam timetabling problem at UTC includes some of the widely encountered hard
and soft constraints and some problem-specific constraints. These constraints
however fall in the potential extensions of the ITC2007 exam timetabling track
described by McCollum et al. (2012).

The remainder of the paper is as follows. Section 4.2 presents the exam time-
tabling problem at UTC. We show how the UTC’s problem represents a further
extension of the ITC2007 problem. We believe the instances taken from UTC can
be a consolidating set to be added to the ITC2007 instances to provide the com-
munity with a real-world exam timetabling benchmark. Section 4.3 introduces
the mathematical model used formulate the problem and validate the solutions
obtained by the approach. Section 4.4 presents the memetic approach and details
its components. The results are analyzed and discussed in Section 4.5. Finally,
the conclusions and future work are to be found in Section 4.6.
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4.2 Problem description

The exam timetabling problem at the UTC has evolved since the university was
created. In the sequel, we present the problem encountered nowadays. The soft
and hard constraints are named using the terminology used in the ITC 2007 in
order to have a unified terminology.

When we first met with the practitioners, they explained the exam timetabling
at UTC like a classical exam timetabling problem. After several meetings, we
found out that a number of constraints are not classical and have not been con-
sidered in the benchmarks. For instance, UTC has two different sites separated by
several kilometers. This situation will change in near future because new build-
ings are being built. Thus, the practitioner has to deal with the travel of students
between sites if two exams for the same student are scheduled back to back. The
practitioners also informed us that splitting exams into different rooms is allowed
at UTC.

That being said, the exam timetabling problem at UTC consists in assigning
exams to a set of periods and rooms while respecting the hard constraints. Exams
are divided into two sets: splittable and non-splittable exams. Each exam has
a set of allowed periods and a set of allowed rooms. Periods can overlap and
rooms are not available at all periods. Thus, a list of available rooms is associated
to each period.

The hard constraints are the following:

• A student cannot sit two exams at the same period or at two overlapping
periods.

• An exam must be assigned to a unique period.

• A non-splittable exam must be assigned to a unique room.

• The duration of the exam must be less than or equal to the duration of the
period in which it is assigned.

• The capacity of any room should not be exceeded at any period.

• The sum of the numbers of students in portions of a splittable exam should
be equal to the total number of enrolled students.
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• A room can be used only at one period of a set of overlapping periods.

• Each exam should be assigned only once.

The practitioner considers the timetable feasible when all the hard constraints
are met. The quality of the solution is measured using soft constraints. When a
soft constraint is not satisfied, a penalty is applied. The soft constraints used to
measure the quality of the solution differ from one institution to another. Due
to the limited time given to professors after the exams to mark them, the most
important soft constraint is to place the exams with a large number of students
early in the timetable.

Since exams may take place over different sites, a travel penalty is applied if
the student has two exams in a row in different sites. Note that travel penalty is
different from the two in a row penalty: a travel penalty does not occur while two
in a row does if the student has two exams in a row in the same site.

The following definitions describe briefly the soft constraints used by the prac-
titioner:

Two In a Row: Exams of a student allocated back to back in the same day should
be avoided.

Two In a Day: Exams of student scheduled in the same day but not back to back
should be avoided.

Front Load: Large-size exams should be assigned before a certain period.

Period Spread: Exams of a student allocated in a certain period gap should be
avoided.

Non Mixed Duration: Exams with different durations should not be assigned in
the same room at the same period.

Period Penalty: Each period with a cost should be avoided.

Room Penalty: Each room with a cost should be avoided.

Travel Penalty: Exams in row for the same student in different sites should be
avoided.
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Note that ITC2007 differs in both the hard and the soft constraints. McCollum
et al. (2012) gave potential extentions of the ITC2007 problem. Some of the exten-
sions fit in the UTC’s problem. For instance, the problem in hands allows splitting
exams between rooms. It also considers multiple sites in which exams take place.
This case is handled using a soft and a hard constraint: the hard constraint en-
sures that the students have enough time to travel from one site to another. The
soft constraint implies a penalty (travel penalty) when a student has two exams
in a row in the same day in different sites. Room and period preferences are
also introduced in UTC’s problem. An exam has a list of “allowed” periods and
rooms in which it can be placed. At UTC, the room availability across periods is
an important factor in the exam timetabling problem. Due to management rea-
sons, some rooms are not available for more than a week. Therefore, the set of
available rooms changes from one period to another.

Instance nE nS nP nR Conflict density

S2011 141 2322 32 8 0.30
F2011 119 2388 24 9 0.32
S2012 142 2412 36 9 0.31
F2012 117 2296 26 8 0.30

Table 4.1 – Characteristics of UTC instances

Table 4.1 presents the characteristics of four instances relative to four semes-
ters in UTC. Column instance reports the labels where “S” stands for the spring
semester and “F” stands for the fall semester. Columns nE, nS, nP, nR and Con-
flict density show for each instance the number of exams, the number of students,
the number of periods, the number of rooms and the density of conflict graph
G(E, B), respectively.

4.3 Mathematical model

We introduce the mathematical model used to formulate the problem and to as-
sess the set of solutions obtained by the memetic approach.
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4.3.1 Parameters

Exam Parameters

E: Set of exams, nE = |E| is the number of exams.

ES: Set of splittable exams.

ENS: Set of non-splittable exams.

EExc: Set of exams subject to Room Exclusive constraints.

B: Set of edges [i, j] where i and j are two exams who have students in common.

sE
i : Number of students for the exam i ∈ E.

dE
i : Duration of the exam i ∈ E.

Ed: Set of the exam i ∈ E with duration d.

D: Set of durations.

wij: Number of students in common between exams i and j.

EFL: Set of exams subject to the Front Load penalty and nFL is the number of
exams in this set.

PE
i : Set of periods allowed for exam i.

G(E, B): Conflict graph.

N (i): Set of the neighbors of exam i in the conflict graph G.

Room Parameters

S: Set of sites in the university and nS = |S| is the number of sites in this set.

R: Set of all rooms available and nR = |R| is the number of rooms in this set.

Rs: Set of rooms of site s.

PR
r : Set of periods allowed for room r.
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sR
r : Capacity of room r ∈ R.

nR
p : Number of available rooms in period p.

wR
r : Penalty weight of using room r.

Period Parameters

P: Set of periods and nP is the number of periods in this set.

Pir: Set of allowed periods for exam i and room r, Pir = (PE
i ∩ PR

r ).

dP
p : Duration of period p ∈ P.

Ip: Time interval of period p ∈ P. Time intervals are used for overlapping peri-
ods. If two periods p and q overlaps, then Ip ∩ Iq 6= ∅

γ(p): Set of periods immediately after period p in the same day.

Γ(p): Set of periods not immediately after period p in the same day.

wP
p : Penalty weight of using period p.

4.3.2 Variables

Primary Decision Variables

Xipr: a boolean, 1 iff exam i or a portion of it is placed at period p in room r.

Xip: a boolean, 1 iff exam i is placed at period p.

Secondary Decision Variables

Aipr: An integer representing the number of students of a splittable exam i ∈ E
placed at period p in room r.

C2R
ij : A boolean, set to 1 iff exams i and j, having students in common, are placed

at two periods back to back in the same day.

C2D
ij : A boolean, set to 1 iff exams i and j, having students in common, are placed

at two periods not back to back in the same day.
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CPS
ij : A boolean, set to 1 iff exams i and j, having students in common, are placed

at two periods spread by a gap less than the defined gap of period spread.

CNMD
pr : An integer representing the number of different periods assigned in room

r at period p.

UD
dpr: A boolean, set to 1 if one or multiples exams of duration d are assigned at

period p in room r.

CT
ij : A boolean, set to 1 iff exams i and j have student in common and are placed

in two periods back to back and in rooms located at different sites.

Institutional Parameters

w2R: Weight of the Two In a Row penalty.

w2D: Weight of the Two In a Day penalty.

wT: Weight of the Travel penalty.

wNMD: Weight of the Non Mixed Duration penalty.

gPS: Gap of the Period Spread penalty.

wFL: Weight of the Frontload penalty.

TFL: Threshold of the number of students for an exam to be considered for the
Front Load penalty. We have: ∀i ∈ EFL si ≥ TFL.

gFL: The period number starting from which the Front Load penalty is consid-
ered. If, for a period p, gFL ≺ p, then p is considered as a Front Load
period.

Even though the notations are close to those of ITC2007, some differences can
be noted. Due to overlapping periods, gFL is the number of a particular period
instead of the total number periods. The set of large exams EFL and therefore the
number of large exams can be tuned by the user by changing the value of TFL.
For instance, by setting TFL = 100, we get in EFL the exams having a number of
students greater than or equal to 100.
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4.3.3 Formulation

The objective function

Minimize :

C2R + C2D + CPS + CFL + CNMD + CP + CR + CT (4.1)

The objective function is a sum of penalty terms. Each of the terms refers to a
specific soft constraints.

Hard Constraints

The following hard constraints condition the feasibility of the solution.

The sum of splittable exams (or portions) allocated to room r at period p
should not exceed the capacity of the room:

∀r ∈ R ∀p ∈ PR
r ∑

i∈ES / p∈PE
i

Aipr ≤ sR
r (4.2)

Linking the variables Xipr and Aipr relative to splittable exams:

∀i ∈ ES ∀r ∈ R ∀p ∈ Pir

{
Aipr ≤ sE

i Xipr

Aipr ≥ Xipr
(4.3)

The two parts of Equations 4.3 are required to check Xipr = 1 iff Aipr 6= 0.
The sum of the portions of a splittable exam should be equal to the number of

enrolled students:

∀i ∈ ES ∑
r∈R

∑
p∈Pir

Aipr = sE
i (4.4)

Linking the variables Xipr and Xip relative to splittable exams:

∀i ∈ ES

∀p ∈ PE
i


∑

r∈R / p∈Pir

Xipr ≤ nR
p Xip

∑
r∈R / p∈Pir

Xipr ≥ Xip
(4.5)

At most nR
p rooms can be used to schedule exams in period p. Equations (4.5)
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ensures that, when Xip = 1, there is at least one variable Xipr set to to one and at
most nR

p . Every exam should be placed in exactly one period:

∀i ∈ E ∑
p∈PE

i

Xip = 1 (4.6)

A non splittable exam should be assigned in exactly one room:

∀i ∈ ENS ∑
p∈PE

i

∑
r∈R

Xipr = 1 (4.7)

The sum of the sizes of non splittable exams allocated to room r at period p
should not exceed the size of room r:

∀r ∈ R ∀p ∈ P ∑
i∈ENS

sE
i Xipr ≤ sR

r (4.8)

A room cannot be used by two exams in two overlapping periods:

∀i, j ∈ E ∀r ∈ R

∀p, q ∈ (Pir ∩ Pjr)

Ip ∩ Iq 6= ∅ p 6= q

 Xipr + Xjqr ≤ 1 (4.9)

This hard constraints is added due to considering multiple sites that cannot
be found in the ITC2007 problem.

Two exams that have students in common cannot be placed in the same period
or in two overlapping periods:

∀[i, j] ∈ B ∀p ∈ PE
i ∀q ∈ PE

j Ip ∩ Iq 6= ∅ Xip + Xjq ≤ 1 (4.10)

Every exam subject to the room exclusive constraint should be on its own:

∀i ∈ EExc ∀j ∈ E i 6= j ∀r ∈ R ∀p ∈ (Pir ∩ Pjr) Xipr + Xjpr ≤ 1 (4.11)

When the exam subject to the room exclusive constraint is splittable, each por-
tion should be on its own.
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Soft Constraints

The quality of the solution is measured using the following soft constraints.

Whenever two exams who have students in common are placed in two con-
secutive periods in the same day, a two in a row penalty applies:

C2R = w2R ∑
[i,j]∈B

wijC2R
ij (4.12)

∀[i, j] ∈ B ∀p ∈ PE
i

∀q ∈ PE
j ∩ γ(p)

}
Xip + Xjq ≤ 1 + C2R

ij (4.13)

Whenever two exams who have students in common are placed in two non-
consecutive periods in the same day, a two in a day penalty applies:

C2D = w2D ∑
[i,j]∈B

wijC2D
ij (4.14)

∀[i, j] ∈ B ∀p ∈ PE
i

∀q ∈ PE
j ∩ Γ(p)

}
Xip + Xjq ≤ 1 + C2D

ij (4.15)

Whenever two exams who have students in common are placed in two peri-
ods between which the gap is less than the period spread gap, a period spread
penalty applies:

CPS = ∑
[i,j]∈B

wijCPS
ij (4.16)

∀[i, j] ∈ B ∀p ∈ PE
i

∀q ∈ PE
j and p ≺ q

such that | p− q |≤ gPS

Xip + Xjq ≤ 1 + CPS
ij (4.17)

If a front load exam is placed in a front load period, a front load penalty ap-
plies:

CFL = ∑
i∈EFL

∑
p∈{t/t∈PE

i , gFL≺t}
Xip (4.18)
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If a room with a non-null cost is used, the room penalty applies:

CR = ∑
i∈E

∑
p∈P

∑
r∈R

wR
r Xipr (4.19)

If a period with a non-null cost is used, the period penalty applies:

CP = ∑
i∈E

∑
p∈P

∑
r∈R

wP
p Xipr (4.20)

Due to multiple sites in which exams take place, whenever two exams that
have students in common are placed in two consecutive periods in the same day
and in two different sites, the travel penalty applies:

CT = wT ∑
[i,j]∈B

wijCT
ij (4.21)

∀[i, j] ∈ B ∀p ∈ PE
i

∀q ∈ PE
j ∩ γ(p) ∀s, s′ ∈ S

}
∑

r∈Rs

Xipr + ∑
r′∈Rs′

Xjqr′ ≤ 1 + CT
ij (4.22)

Note that Equations (4.13) differ from equations (4.22) since we consider rooms
located at a particular site in Equations (4.22).

Whenever exams with different durations are placed in the same room at the
same period, a non mixed duration penalty applies:

∀d ∈ D ∀p ∈ P ∀r ∈ R

|Ed|UD
dpr ≥ ∑

i∈Ed

XPR
ipr

 (4.23)

∀p ∈ P ∀r ∈ R 1 + CNMD
pr ≥ ∑

d∈D
UD

dpr (4.24)

CNMD
pr ≥ 0 (4.25)

CNMD = wNMD ∑
p∈P

∑
r∈R

CNMD
pr (4.26)
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Xip, Xipr, C2R
ij , C2D

ij , CPS
ij , CT

ij , UD
dpr ∈ {0, 1}

C2R, C2D, CPS, CFL, CNMD, CP, CR, CT , Aipr ∈N
(4.27)

The model of equations (4.1) to (2.26) is useful to describe our problem. It
permits to formally model the novel hard and soft constraints. This MIP was
coded to check solutions built using the memetic approach presented in the next
section. Unfortunately, it cannot be used to obtain good solutions in a reasonable
time. A week of computation cannot permit to obtain solutions better than those
obtained by the memetic approach within an order of magnitude less time.

4.4 Memetic algorithm

As claimed by Qu et al. (2009b), evolutionary algorithms give some of the best
results for different benchmarks. Memetic algorithms (MA) come from a com-
bination of Genetic Algorithms and Local Search methods. We used a memetic
algorithm to solve our problem. The reason for this choice is the diversity and
the efficiency of population-based techniques. The key feature of MA is in cou-
pling the global optimization done by the the crossover procedure and the local
optimization that enhances the solutions explored. A population of individuals
that evolves throughout a series of crossovers is used. Each individual of the
population is called a chromosome. A chromosome can represent one or multiple
solutions depending on the encoding used. A direct encoding signifies that the
solution is directly represented by the chromosome and that no decoding proce-
dure is needed. An indirect encoding however means that a decoding procedure
is needed to retrieve the solution from the chromosome. Our algorithm is based
on an indirect encoding. One of the advantages of using an indirect encoding is
allowing one chromosome to represent multiple solutions, i.e. a neighborhood of
solutions. In the sequel, we present the implementation details of our MA.

4.4.1 Solution Representation and Decoding/Encoding procedure

Each solution for the problem is represented by a chromosome that belongs to the
population. A chromosome is a permutation of integers, each of which represents
the number of an exam that has to be assigned in to least one room and to one
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period.
Given a permutation of integers, we apply the first fit decoding (FFD) to ob-

tain a solution. The FFD is inspired by the the Bin Packing heuristic First fit
algorithm. Exams in the permutation are taken in turn and assigned to the first
available room and period that respects the hard constraints. FFD proved to be
efficient and fast. During the decoding, the solution cost is assessed. If the chro-
mosome leads to an infeasible solution because some exams are left unscheduled,
a destruction/construction repairing method is applied to obtain a feasible solution
and the chromosome is consequently updated.

The periods and rooms are ordered according to their first apparition in the
instance file. A permutation (i.e. chromosome) can be obtained back from a solu-
tion by taking the exams from this solution in the order of the periods and rooms,
i.e. the first exam in the permutation is one of the exams in the first period at
the first room. When all exams in the first room are considered, the exams in the
second room take the role. When all exams in the first period are considered, the
same procedure is applied on the remaining periods in the same order until all
the permutation is built.

4.4.2 Repairing method

At the end of the decoding process that failed to assign all the exams, the lists of
scheduled and unscheduled exams are LSCH and LNSCH respectively. A number k
of exams are randomly selected from LSCH and then removed to added to LNSCH.
The updated list LNSCH is then shuffled. FFD is applied then applied on LNSCH.
If all the exams in LNSCH are scheduled, the solution is reported as valid. If not,
the same procedure is repeatedly applied until a valid solution can be obtained.
The Repairing Method (RM) is given in Algorithm 4.

Algorithm 3: Repairing Method
Data: LSCH, LNSCH
Result: Valid Solution

1 Select randomly k exams from LSCH and remove them ;
2 Add the removed exams to LNSHC ;
3 Shuffle LNSCH ;
4 FFD(LNSCH) ;
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4.4.3 Population and algorithm initialization

The population consists of pop_size chromosomes randomly generated are the
beginning of the algorithm. If any of chromosomes appears to be invalid during
the decoding, RM is invoked. Next, a number POP_OPT of chromosomes are
improved using a local search. The local search is applied to ensure good quality
chromosomes in the population for crossing.

4.4.4 Crossover and population update

At each iteration, a couple of parents are chosen from the population using the
Binary Tournament strategy. This strategy randomly selects two couples of chro-
mosomes from the population and then, out of each couple, the chromosome
with the least cost is selected. Two parents are therefore selected for the crossover.
Next, the Linear Order Crossover (LOX) is applied on the two selected parents to
produce a child chromosome. LOX selects a parent and randomly defines two
indexes in the permutation of the selected parent. The exams’ numbers between
the two indexes are then given to the child and the rest of the child is completed
from the remaining parent. The child is validated and evaluated. If it is not valid,
RM is applied. Since the population should keep a constant size, if the child has
the same cost as any chromosome of the population, the existing chromosome is
replaced by the child. Otherwise, if the child has better cost than the chromosome
with the worst cost of the population, the child replaces it.

4.4.5 Local search operators

Once a child is obtained from the crossover, the local search stage is applied
with a probability p_m. We use three local search operators: Light Destruc-
tion/Construction (LDC), Hill Climbing (HC) and Swap. To decide which op-
erator is applied, a list of Boolean flags is used. A false flag signifies that the
operator has not been used yet. The stage starts by randomly selecting an opera-
tor and applying it on the current solution. If the operator does not improve the
chromosome, another operator is randomly selected from the remaining unused
operators. If one of the operators improves the chromosome, all the flags (includ-
ing the flag of the current operator) are set to false. We choose to reset the flags
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to give all the operators another chance to improve the new solution. The local
search stage ends when the flags of all operators are set to true.

Best Insertion Procedure (BI)

The local search operators defined in the sequel inserts exams in the solution
using the Best Insertion procedure. This procedure places the exam in the period
and the room that minimize the penalty implied by this exam.

When the exam is not splittable, placing the exam requires a single room and
a single period. Thus, for each room in each period, we compute the penalty
implied by violating all the soft constraints and we select the room and the period
with the minimum penalty.

When the exam is splittable, assigning the exam requires selecting a period
and one or multiple rooms. Since the penalties implied by placing the exam
on rooms and periods are independent, we start by first selecting the period for
which the exam implies the minimum penalty. Two In a Row, Two In a Day, Pe-
riod Spread, Front Load and Period penalties are the considered penalties when
evaluating the penalty related to the period. Next, we seek to find the set of rooms
for which the exam implies the minimum penalty for the Non Mixed Duration,
Travel and Room penalties. To do so, we model the problem as a knapsack prob-
lem. Each room corresponds to an item and the exam represents the knapsack.
Each room has a cost that corresponds to the penalty of planning the exam or
a portion of it in this room. In the following, we present the formulation of the
problem:

Minimize:

∑
r∈R

LR
r Xr (4.28)

Subject to:

∑
r∈R

sR
r Xr ≥ sE

i (4.29)

The decision variable Xr = 1 when the exam i or a portion of it is placed in
the room r. The objective is to minimize the penalty implied by placing exam
i in the different rooms. to which it can be assigned. LR

r represent the penalty
implied by placing the exam i in the room r for the three soft constraints (Non
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Mixed Duration, Travel and Room soft constraints). To solve the problem, we ap-
plied the classical dynamic programming approach. Therefore, the Best Insertion
procedure is of complexity O(n).

Algorithm 4: LDC scheme
1 Backup(current_solution) ;
2 Best = current_solution ;
3 while iter < ITER_MAX_HC do
4 Remove randomly an exam e and k of its neighbors ;
5 Put the removed exams in list of unscheduled exams LNSCH ;
6 Shuffle the list LNSCH ;
7 for each exam e′ in LNSCH do
8 Place e′ using BI ;
9 end

10 if all exams are placed AND Best > current_solution then
11 Best = current_solution ;
12 end
13 ++iter ;
14 end
15 if Best not improved then
16 restore the original solution
17 end

Light Destruction/Construction (LDC)

This operator consists in removing an exam and k of its adjacent exams in the
conflict graph and then trying to better place them. Algorithm 4 presents the
algorithm of this operator. The k + 1 exams are removed and considered as
unscheduled. They are shuffled and inserted again in the timetable using the
Best Insertion procedure. If some exams cannot be placed, another exam is ran-
domly chosen and k exams of its adjacent exams are removed. The unsched-
uled exams are shuffled and placed using the Best Insertion procedure. This De-
struction/Construction routine is repeated until a number of maximum iterations
without improving the solution is reached. LDC is run in O(n2)-time.
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Algorithm 5: Hill Climbing scheme
1 Backup (current_solution) ;
2 Best = current_solution ;
3 while iter < ITER_MAX_HC do
4 Generate a random permutation of exams ;
5 for Each exam e in the permutation do
6 Remove exam e ;
7 Insert exam e back using BI
8 end
9 if Best > current_solution then

10 Best = current_solution;
11 end
12 iter++;
13 end
14 if Best not improved then
15 restore the original solution
16 end

Hill-Climbing (HC)

Hill-Climbing is often used as the core local search of memetic algorithms (Burke,
Newall, and Weare [1996]). Algorithm 5 presents the algorithm of HC. The stop-
ping condition of Hill-Climbing is a maximum number of iterations without im-
provements. At the beginning of each iteration, a random order of the exam is
built. Next, Hill-Climbing considers ordered exams in turn and removes them.
After the removal of each exam, the Best Insertion is called to reinsert the re-
moved exam. Since the Best Insertion procedure is used to place each exam, HC
ensures that, at the end of operator, the solution is valid and at least with the
same cost. If HC finds a new solution and its quality is better than the previ-
ous solution, the new solution is considered as the best. Otherwise, the previous
best solution is considered for the next iteration. As a result, HC is of complexity
O(n2).

Swap

The Swap operator is widely used on different problems. It is often used to test
whether symmetry exists. Swap may be applied to swap periods, rooms or ex-
ams. We opted for period swapping. Algorithm 6 presents the algorithm of the
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Algorithm 6: Swap scheme
1 Backup the current solution ;
2 Best = current_solution ;
3 while iter < ITER_MAX_SWAP do
4 Select randomly two periods p and p;
5 Swap the exams between the two periods ;
6 if Best > current_solution AND solution is valid then
7 Best = current_solution;
8 end
9 ++iter ;

10 end
11 if Best not improved then
12 restore the original solution
13 end

Swap operator. Two periods are randomly selected and the exams scheduled in
these periods are swapped. The feasibility and the cost of the solution are then
assessed. When the new solution is infeasible or its cost is higher than the older
one, it is rejected. If the new solution’s cost is better than the best solution, the
best solution is updated. The period swapping is of complexity O(n2).

4.4.6 Algorithm scheme

The memetic algorithm, presented in Algorithm 7, starts by initializing the popu-
lation. Chromosomes are generated randomly and POP_OPT chromosomes are
improved using the local search operators. The population is then sorted with
respect to the cost of chromosomes. The LOX crossover is used to generate a new
child chromosome at each iteration by crossing two parents from the existing
population. It is next improved with a probability p_m using local search oper-
ators and inserted in the current population if its cost is at least better than the
worst chromosome. The approach stops after a maximum number of iterations
without improvements. Finally, the head of the population is reported as the best
solution.
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Algorithm 7: The proposed memetic approach
Data: ITER_MAX, pm
Result: Sbest: best solution found

1 Pop initialization;
2 iter = 0;
3 while (iter ≤ ITER_MAX) do
4 Choose two parents p1 and p2 using Binary Tournament;
5 ρ = LOX (p1,p2);
6 if (ρ is valid) then
7 RM(ρ);
8 end
9 if (rand(0,1) ≤ pm) then

10 apply local search on ρ ;
11 end
12 if (Evaluation(ρ) ≤Worst solution) then
13 if (∃ Chromosome λ ∈ Pop AND Eval(λ) = Eval(ρ)) then
14 Remove λ from Pop;
15 Insert ρ in Pop;
16 else
17 Remove worst chromosome from Pop;
18 Insert ρ;
19 end
20 else
21 ++iter ;
22 end
23 end

4.5 Experimental results

We tested our approach on the four UTC instances available: fall 2011 and 2012
and spring 2011 and 2012. The time limit used by the practitioner is usually a
day. However, our approach takes generally much less than this time limit. The
algorithm has been written in C++. The tests were run on a machine with an Intel
Xeon E5-2670 and 32 GB of RAM and the compiler g++ (GCC) 4.4.7 was used.
Each test was run 5 times and the one with the best score was selected.
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4.5.1 Parameter Tuning

To be able to tune the parameters for memetic algorithm, a tuning was needed
to be made on the local search operators. We varied a range of values on the set
of parameters for each of the local search operators. All these parameters were
varied using the default settings for the memetic approach: pop_size was set to
20 and ITER_MAX was set to n (n number of exams in the instance). pm was set
to 0.1.

We found that the following parameters for local searches produce overall the
best results for the approach:

• ITER_MAX_HC was set 10.

• ITER_MAX_LDC was set to 10 ∗ n and k was set to 20.

• ITER_MAX_SWAP was set to 10n.

The default settings of the memetic algorithm are : 20 for pop_size; 5 for POP_OPT;
0.1 for pm and n for ITER_MAX (n is the number of exams in the instance).

4.5.2 Analytical Results

The proposed approach was tested on the four available instances. Overall, the
algorithm able to produce satisfying solutions and the solutions were better than
all the solutions produced by the practitioner. However, as the approach contains
different parameters, we aim at analyzing the impact of each the parameters of
algorithm to determine the best configuration to adopt. The set of parameters are
varied in ranges of values in order to extract the best value for each parameter.
For each instance, the best solution in the population is taken as the representative
for each test.

ITER_MAX is a key parameter of the approach. Increasing or decreasing it
would influence the number of generations and the attempts of producing new
solutions Figure 4.1 presents the results when varying ITER_MAX between n
and 2n. The columns in grey represent the results when ITER_MAX set to n and
in black when the ITER_MAX is set to 2n. The figure shows that running the
algorithm with 2n does not help find better solutions. Out of four instances, 2n is
worse than n three times. This can be justified by the complexity of the problem
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Figure 4.1 – Impact of ITER_MAX on the four instances

for the three instances and the existence of splittable and non-splittable exams.
On the other hand, increasing the number of maximum iterations is not without
consequence. The run time can increase with at least 10% when doubling the
maximum number of iterations. This is in fact a draw back for some universities
as they seek to have a timetable in the less time possible.

The probability of applying the local search can be a important factor in the
algorithm. Table 4.2 shows the results on the four instances with the different val-
ues of pm. We considered these values to test whether a high probability would
improve the algorithm. Columns 0.1, 0.4, 0.5 and 0.6 present the different values
of pm that were tested. Each column contains two columns: the rum time (CPU)
in seconds and the quality of the solution (Cost). The default value for pm be-
ing 0.1, results show increasing the probability of calling the local search is not
always beneficial. This can be explained by the fact that calling the local search
more frequently does not necessary improve the best solution in the population.
This shows that the impact of the probability on the best solution is usually not
considerable as the most important part is the local search itself. It is also worth
noting that increasing the probability does not impact the run time.
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0.1 0.4 0.5 0.6

CPU Cost CPU Cost CPU Cost CPU Cost

F2011 559.318 3287 535.903 3639 550.749 3319 516.099 3618
F2012 741.431 6073 775.871 6267 617.722 6226 836.289 6207
S2011 934.689 9067 1021.6 9318 1034.13 9500 984.456 9458
S2012 1517.66 4525 1437.61 4935 2001.5 4648 1437.32 4664

Table 4.2 – Impact of pm on the four instances
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Figure 4.2 – Impact of POP_OPT on the four instances

In the population initialization, POP_OPT chromosomes are improved using
the local search with the goal of creating good initial chromosomes for crossover
later. To assess the impact of POP_OPT, we tested the algorithm by setting the
number of improved chromosomes to 10. Figure 4.2 shows in blue the columns
when the number of improved chromosomes is set to 5 and in dark green when
it is set to 10.

The results show that, unlike what one would expect, increasing POP_OPT
can worsen the results of the algorithm. It slightly improves the solution for F2012
but worsens it on the other three instances. We believe that the reason is that in-
creasing the number of improved chromosome during initialization will decrease
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the diversification the algorithm can get when crossing chromosomes.
The population size is without doubt of crucial importance when consid-

ering population-based algorithms. By default, our approach utilizes 20 chro-
mosomes. However, we would like to know whether considering more chro-
mosomes helps find better solutions by allowing multiple neighborhoods repre-
sented by the chromosomes.

Table 4.3 shows the results for the sizes of population 20, 30, 40 and 50. For
each size, the run time (CPU) in seconds and the cost of the solution is reported.
The test with the best results are in bold. The case of pop_size is not different
from the one of POP_OPT. Results show that when the size of the population is
increased, not only does the quality of the best solution decrease but the run time
for each instance is generally higher. The size 20 seems to be the best comprise be-
tween all the others as, when it does not yield the best solution, the gap between
its best solution and the best solution for other sizes is marginal.

20 30 40 50

CPU Cost CPU Cost CPU Cost CPU Cost

F2011 559.318 3287 582.372 3463 682.105 3535 626.112 3431
F2012 741.431 6073 775.992 6391 858.259 6369 846.447 6481
S2011 934.689 9067 1142.35 9185 1181.56 9279 1271.59 9629
S2012 1517.66 4525 1571.57 4705 1556.34 4630 1597.16 4657

Table 4.3 – Impact of pop_size on the four instances

Finally, we compare the efficiency of the memetic algorithm with the approach
used by the practitioner in Table 4.4. Column Best shows the best scores obtained
by the memetic algorithm and column Average shows the average score for all the
tests presented above. The results clearly show that our algorithm outperforms
the solutions given by the practitioner. When these results were communicated
to the practitioner, they expressed a good satisfaction about the timetable.

4.6 Conclusion

A memetic approach was presented for a practical timetabling problem. The
problem is taken from the Université de Technologie de Compiègne (UTC). This
practical problem consists of a mix of classical constraints that can be found in the
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Best Average Practitioner

F2011 3287 3798 7501
F2012 5891 6530 9266
S2011 9067 9711 10926
S2012 4493 4811 12008

Table 4.4 – Results of the proposed approach compared to the results of the ap-
proach used by the practitioner

benchmarks of the literature and a set of new constraints. The new constraints fall
into the scope of the extensions proposed for the first academic problem.

In particular, the new constraints (hard and soft) consider exams that take
place on multiple sites. The hard constraints forbids students from taking exams
in two overlapping periods and rooms from being used more than once in two
overlapping periods. Splittable exams are also managed using hard constraints.
The new soft constraint imposes a penalty when a student has two exams sched-
uled in two periods in a row in the day day at two different sites.

The approach was tested on four available instances. A parameter tuning was
performed to determine the best parameter settings for the approach. The tuning
results showed that the probability of applying the local search and the size of
the population does not have a big impact on the instances. The results also
showed that the proposed approach outperforms the approach currently used
by the practitioner. We aim at adapting our approach in the near future to the
benchmarks of the literature and compare the results that will be obtained to
existing ones. The four instances we used can also be used as additional instances
to be added to the ITC2007 benchmark.
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5.1 Introduction

University timetabling problems represent some of the problems that are period-
ically faced by universities each year. Within this category of problems, course
and exam timetabling are the most encountered problems in literature. The Stu-
dent Scheduling Problem (SSP) is included, whether implicitly as in the course
timetabling or explicitly by considering it a sole problem. We refer the reader to
Schaerf (1999) for detailed review on course and exam timetabling.
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Timetabling problems are generally composed of soft and hard constraints.
The hard constraints are to be respected in order to consider the solution feasi-
ble. The soft constraints are used to measure the quality of the solution using a
penalty on the violation of each one of them.

For some institutions, students are grouped by year and must perform the
same course curriculum. In such cases, dealing with SSP is much easier since
groups of students have the same courses. In some other institutions, a set of
timetables is made available for the students at the beginning of each term. Stu-
dents have to choose some of their courses according to the rules that are stated
by the institution. In some other cases, a preference list could be built by students.
Despite the fact that SSP covers a large variety of real situations, the core problem
remains assigning the maximum of students to their chosen courses while having
for each assigned student an individual timetable that is conflict-free. Secondary
objectives may also be encountered, for instance balancing the number of stu-
dents in the groups of courses.

SSP is not as widely discussed as course and exam timetabling problems. La-
porte and Desroches (1986) provided a mathematical model that considers re-
specting the list of preferences for the students as the only hard constraint. The
conflicts between the sections are however considered as soft constraints and thus
have to be minimized. The problem is solved in three phases: it first starts by find-
ing a feasible solution, then balancing the sections and finally adjusting the solu-
tion to respect the room sizes. Cheng, Kruk, and Lipman (2003) referred to SSP as
part of solving the American high school timetabling problem. Their goal was to
respect the list of student preferences while having a conflict-free timetable. They
demonstrate that SSP is an NP-hard problem and present a multi-commodity
flow formulation to solve it. Broek, Hurkens, and Woeginger (2009) present the
SSP in the TU Eindhoven. They provide two problem formulations and give
complexity results on the different variants of the problem. For further solving
approaches and discussions on SSP, we refer the reader to Tripathy (1992); Sabin
and Winter (1986); Feldman and Golumbic (1989).

The remainder of the chapter is as follows. Section 5.2 presents a description of
the student scheduling problem in the Université de Technologie de Compiègne
and provides the different hard and soft constraints. Section 5.4 gives a formal
mathematical model for the problem. Section 5.6 discusses the results obtained by
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applying the model on the UTC instances and finally the conclusion is presented
in Section 5.7.

5.2 Problem description

An academic year at Université de Technologie de Compiègne (UTC) is divided
into two semesters of seventeen weeks. There are five engineering degrees de-
composed into a two-year cycle called “fundamental studies” followed by a three-
year cycle called “major studies”. There exist a master program with four majors
and fourteen specialization.

Eight departments share the same premises. Every semester, a timetabling of
about three hundred Units of Value (UV) is built and there are in average two
thousand and five hundred students. Timetables are built based on estimates of
future student enrollments, with limited resources, and, dealing with constraints
related to teachers and rooms. They were made available at each beginning of
term. Students are required to choose at most seven UVs. A student of a depart-
ment can choose a UV of another one if an individual conflict-free timetabling
exists.

A UV is composed of activities that have to be performed by the student dur-
ing the semester. Types of activities widely encountered are courses, tutorials lab
activities, but other type of activities exist. As an example, students who choose
the UV X have to be assigned into a weekly course activity, a weekly tutorial
activity and a fortnightly lab activity.

Set of sections are scheduled weekly or fortnightly and correspond to activity.
To illustrate with an example, a UV X corresponds to a unique section of a course
with a 96 students capacity, 4 tutorial sections each with a 24 students capacity,
and 8 fortnightly lab sections, each with a capacity of 12 students. There are in
average a thousand and four hundred sections with the corresponding

At the beginning of the first week of the first term, students choose at most
seven UVs while verifying on their own that a conflict-free timetable exists using
the set of timetables. Timetables are updated to deal with real enrollments during
the four first days of the first week of each semester. New sections are created and
others are cancelled according to student enrollments and resource availabilities.
Students may be rejected from some UVs by taking into account their individ-
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ual curricula and alternative UVs are proposed. A team composed of heads of
departments and timetabling makers take these decisions. When timetables and
enrollments are finally stabilized, students are scheduled and they receive by e-
mail their own individual timetable for the semester. A student is said to be fully
scheduled when this student is assigned into a unique section for each activity of
the chosen UVs. During the first week of the semester, it is of crucial importance
for the team to have a tool at their disposal to take decisions. We need to detect
students who choose a set of UVs such that there is no feasible timetable for all
these UVs. These students are said pathological. In these cases, it is required for
arbitration to know the maximum number of UVs where they can be assigned to
and the list of these UVs among the chosen UVs.

5.3 Preprocessing

Before the data are processed by the the model, preprocessing them is needed to
help reduce the problem’s size. The idea is to detect infeasible sections in which
students cannot be assigned to remove them.

Consider a set of UVs, each of which has activities. Activities correspond to a
set of sections with events planned in the timetables. A section is mandatory for
an activity if it is unique. The idea is to eliminate sections which have time slots
that intersect with those of mandatory sections.

For example, consider the following timetable:

8h00 - 10h00 10h15 - 12h15 14h15 - 16h15

UV01 C UV02 D2 UV01 D1

monday UV02 D1 UV03 C UV02 C

UV03 D1

thuesday UV04 C UV01 D2

UV04 D1 UV04 D2

Letter C stands for course and D for training. There are four UV, UV01, UV02,
UV03 and UV04. Each UV has two activities: course and training. For instance,
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UV01 has one course section (UV01 C) and two training sections (UV01 D1 and
UV01 D2).

Assume next three students, E1 chooses (UV01, UV02, UV03), E2 chooses
(UV02, UV03), and E3 chooses (UV01, UV02). It is obvious that student E1 can-
not be scheduled: there is an intersection between the time slot of UV01 C course
section and the time slot of the unique training section UV03 D1. Consider next
student E2, the UV03 D1 unique training section eliminates the UV02 D1 training
section since there is an intersection, and, the UV03 C course section eliminates
the UV02 D2 training section since there is an intersection. Student E2 cannot be
scheduled. Consider student E3, the UV01 C course section eliminates the UV02
D1 training section, the UV02 C section eliminates the UV01 D1 training section.
So for student E3:

8h00 - 10h00 10h15 - 12h15 14h15 - 16h15

UV01 C UV02 D2
monday UV02 C

thuesday UV01 D2

is the unique feasible timetable.
The students that cannot be scheduled are called pathological. The reason

can come from their bad initial choices for their UV – without checking if a fea-
sible individual timetable exists within the set of timetables made available at
the beginning of term–, or from the modifications of the timetables make them
pathological. They must be detected and treated apart.

Students with their chosen UV are considered in turn. The elimination proce-
dure is repeatedly performed until no new unique section appears. The algorithm
stops when a pathological case occurs.

The algorithm takes L a list of UV and returns LLsec the list of list of sections
for a list of UV. If LLsec is empty, we cannot find a feasible timetable for the list
of UV: student is pathological. Otherwise, since unique sections eliminate some
other sections, we can obtain a reduced number of section for each activity for
each UV. For the sake of simplicity, we do not detail functions we used in the
algorithm.
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Algorithm 8: filter_list_chosen_UV(L)
Data: L list of UV
Result: LLsec list of lists of sections

1 LLsec ← BuildListsOfSectionsFromActivityOfEachUV(L);
/* Lu is the list of unique sections */

2 Lu ← BuildListsOfUniqueSections(LLsec);
3 B_stop← 0;
4 if empty(Lu) then
5 B_stop← 1
6 end
7 while B_stop = 0 do
8 sec← pop(Lu) ;
9 LLsec ← EliminateSectionsThatIntersect(LLsec,sec);

10 Lu ← FindNewUniqueSectionAndUpdate(LLsec,Lu) ;
11 if empty(Lu) then
12 B_stop← 1 ;
13 end
14 if NoSectionForAnActivity(LLsec) = 1 then
15 B_stop← 1 ;
16 LLsec ← ∅
17 end
18 end
19 return LLs

5.4 Mathematical Model

We present in this section a mathematical model for the student scheduling prob-
lem. The objective is to maximize the number of the students totally assigned to
their activities. A student is totally assigned if they are assigned to one section of
all the activities. list of preference. We propose a set of valid inequalities aiming
at accelerating the model.

5.4.1 Sets, Parameters and variables

Set definitions:

S : set of students, indices associated with students are s and s′;

A : set of activities, indices associated with activities are a and a′;
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K : set of sections, indices associated with sections are k and k′;

As : set of activities chosen by student s deduced from list of chosen UVs;

Ka : set of sections of activity a;

Faa′ : set of couples [k, k′], such that k 6= k′, of two sections k and k′ of two
activities a and a′. At most one of the sections k or k′ should be used, and
hence students are assigned either into k or k′;

mkk′ : Boolean, one if there is a conflict between section k and section k′, k 6= k′,
zero otherwise. Two sections are in conflict if their time slots intersects or if
they belong to the same activity.

pk : positive integer, standard maximum size of a section k.

Decision Variables

Ts : Boolean, set to one if student s is assigned into a unique section for each
activity in As, zero otherwise;

Ysa : Boolean, set to one if student s is assigned into a unique section of activity
a, zero otherwise;

Zsak : Boolean, set to one if student s is assigned into section k of activity a, zero
otherwise;

5.4.2 The Formulation

The objective is to maximize the number of students that are totally assigned to
all courses in their preference list. That is to say the number of students s assigned
into a unique section for each activity in As.

Maximize:

∑
s∈S

Ts (5.1)

subject to:

∀s ∈ S ∑
a∈As

Ysa ≥ |As|Ts (5.2)
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∀s ∈ S ∀a ∈ As Ysa = ∑
k∈Ka

Zsak (5.3)

∀a ∈ A ∀k ∈ Ka ∑
s∈S

Zsak ≤ pk (5.4)

∀s ∈ S ∀a, a′ ∈ As ∀k ∈ Ka ∀k′ ∈ Ka′ such that mkk′ = 1 Zsak +Zsa′k′ ≤ 1
(5.5)

∀s ∈ S ∀a ∈ As ∀s′ ∈ S ∀a′ ∈ As′ ∀[k, k′] ∈ Faa′ Zsak + Zs′a′k′ ≤ 1
(5.6)

Ts, Ysa, Zsak ∈ {0, 1} (5.7)

Let us consider Equation (5.1). At the optimum, we obtain Nt the maximum
number of students s assigned into a unique section for each chosen activity As.
Equations (5.2) set Ts = 1 iff student s is assigned into a unique section for each
chosen activity. The quantity |As| equals the number of chosen activities for a
student s. Equations (5.3) link the decision variables Ysa and Zsak. The section
capacities are always respected using Equations (5.4). Conflicts between any two
sections k and k′ such that mkk′ = 1 are enforced using Equations (5.5). Equations
(5.6) ensure that two students s and s′ cannot be assigned into sections k or k′ at
the same time, so, at most one of the sections k or k′ is used. We define as MTA

the set of Equations (5.1) to (5.7).

5.5 Valid inequalities

We propose valid inequalities to help speeding up the computing time.
We first used the classical clique inequalities. The cliques used to build valid

inequalities are extracted from the conflict graph for a student. Nodes are sections
k ∈

(⋃
a∈As Ka

)
and an edge [k, k′] between two nodes k and k′ corresponds to a

conflict. We compute the set of maximum cliques Cs. For every clique c ∈ Cs,
the students can attend at most one section. Hence, we have the following valid
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inequality:

∀s ∈ S ∀c ∈ Cs ∑
k∈c

Zsak ≤ 1 (5.8)

When linking the variables Ts and Ysa in Equations (5.2), the following in-
equality is implicit:

∀s ∈ S ∑
a∈As

Ysa ≤ (| A | −1) + Ts (5.9)

Its aim is to force Ts to be equal to | A | whenever all the variables Ysa of a
student s are set to one. Since we have a maximization problem, if all the vari-
ables Ysa are set to one, this inequality is implicit since Ts would be set to | A |
automatically. We would like to add this inequality to measure its impact on the
run times of the model.

When a student is assigned to an activity of a UV, they should be assigned to
all the other activities of the same UV. Hence, for two activities a and a′ from the
same UV u, we consider the following constraints:

∀u ∈ U ∀a, a′ ∈ Au a 6= a′ ∑
s∈(Sua∩Sua′ ), k∈Ka

Zsak = ∑
s∈(Sua∩Sua′ ), k′∈Ka′

Zsa′k′

(5.10)
The fourth type of valid inequalities involves an order between the variables.

It is known in integer programming that imposing an order on variables can dras-
tically speed up the model because it breaks the symmetry within the problem.
The variable Ts, equals one if the student s is fully assigned, bit equals zero if stu-
dent s is not assigned to at least one activity. Therefore, we obtain the following
valid inequality:

∀s ∈ S ∀a ∈ As Ts ≤ Ysa (5.11)

Note that Equations (5.11) is the non-compact form of Equations (5.2).

5.6 Results

We tested the model MTA on the set of instances taken from the real-world data
from UTC. We started by modeling the problem with the practitioner in order to
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Instance S U A G Density RealS NbVar NbConst

F10 2268 280 569 1396 0.46 2242 159948 817707
F11 2425 290 577 1435 0.41 2406 175197 962847
F12 2358 300 583 1446 0.43 2322 155644 797774
F13 2365 310 608 1466 0.44 2344 156936 785628
S10 2137 305 619 1409 0.39 2137 144931 823068
S11 2350 303 614 1415 0.45 2329 157443 902394
S12 2471 305 603 1467 0.38 2437 164951 989417
S13 2434 311 609 1488 0.42 2396 154124 866842
S14 2317 303 606 1417 0.43 2276 138606 667172

Table 5.1 – Characteristics of the instances

obtain the dataset. Next and after several meetings, we obtained nine instances
corresponding to semesters from year 2010 to year 2014. Our model was imple-
mented in C++ using CPLEX 12.5 as a solver and G++ 4.7 as a compiler. The
tests were run on a machine with an Intel core i7-950 CPU 3.07 GHz and 24 GB of
RAM.

Table 5.1 shows the characteristics of the different fall (F) and spring (S) se-
mesters in the university. Column S gives the number of the students to schedule
for the corresponding semester. Column U shows the number of UVs that can be
chosen by the students. Column A presents the total number of activities of all
UVs and column G the total number of sections of all the UVs that the students
will take. Finally, column Density shows the density of the graph build between
the UVs. Nodes correspond to the UVs and an edge is added between two UVs
if they have students in common.

A first glimpse at Table 5.1 shows that the fall semesters (as well as spring
semesters) are similar. The number of students in the university didn’t rise since
a few years and so is the case for the UVs. The density of the graph, however,
indicates that there is a considerable interaction between the UVs.

To assess the impact of the cliques cuts on the instances, cliques are computed
on the graphs of students. Students made different choices and have therefore
different graphs on which cliques are computed. For each student, we computed
the set of maximal cliques between the different sections.

Table 5.2 shows the different sizes and numbers of cliques per student. Col-
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Instance Total MaxNb AverageNb MinNb MaxSize MinSize

F10 72247 113 32.2244 0 8 2
F11 76535 125 31.8101 0 6 2
F12 64585 95 27.8144 1 11 2
F13 65917 95 28.1216 0 7 2
S10 58541 88 27.394 0 7 2
S11 64569 88 27.7239 0 3 2
S12 67274 100 27.6053 0 37 2
S13 61653 90 25.7316 0 35 2
S14 56685 88 24.9055 0 30 2

Table 5.2 – Number and size of maximal cliques per student

umn Total shows the total number of cliques extracted for all the students of the
instance. Column MaxNb presents the maximum number of cliques for a single
student whereas column AverageNb shows the average number of cliques per
student. Column MinNb gives the minimum number of cliques per student and
Columns MaxSize and MinSize show the size of the maximum clique and the size
of the smallest maximal clique respectively. Results on MinNb show that certain
students do not have any cliques. This can signify that these students can be easy
to assign and a possible policy is to schedule them at the end of the schedule.

We run the model on the different instances and obtained optimality for all
the instances. Table 5.3 presents the results of the model with and without pre-
processing. Column Heuristic shows the number of non-assigned students using
the heuristic. It takes about five minutes on another computer. This heuristic has
been coded on a very special environment and it would have been tedious to re-
code to get run times. Column MIP reports the optimal number of non-assigned
students with the proposed model. Column “Default Settings” represent the tests
in which the model was run without preprocessing and valid inequalities. Col-
umn “With preprocessing” gives the results when the preprocessing is activated.
For these two columns, we provide NbNodes the number of nodes visited by the
solver and CPU the run time in seconds.

The table shows that our model is effective on the different instances and that
it reaches optimality for all instances in less than five minutes. In six cases over
ten, all the students are assigned. Note that the non-assigned students are treated
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Default settings With preprocessing

instance Heuristic MIP NbNodes CPU(s) NbNodes CPU(s)

a2010 9 0 0 18.41 0 8.19
p2010 8 0 0 9.71 0 8.21
a2011 15 0 0 22.99 0 22.57
p2011 14 3 443 42.09 440 48.37
a2012 19 9 0 12.65 0 8.75
p2012 10 0 0 15.17 0 16.83
a2013 21 11 867 133.36 42 30.61
p2013 17 0 0 12.81 0 5.21
a2014 23 6 2016 206.22 140 24.82
p2014 12 0 0 8.87 0 5.22

Table 5.3 – Impact of the preprocessing on the run time and the number of devel-
oped nodes

by hand which takes a very long time. Moreover, we can manage limited re-
sources while the former heuristic cannot.

Results clearly show that the preprocessing has a big influence on the run
times of the formulation. This is justified by the reduction of the size of the prob-
lem done by the preprocessing using the eliminating of groups for students.

The different valid inequalities proposed are tested on the formulation to de-
termine their efficiency. Table 5.4 presents comparative results of the different
valid inequalities. To clearly assess the effect of the maximal clique cuts, we chose
to deactivate the clique cuts of the solver.

Column “Without CPLEX cliques” refers to the default settings run with the
CPLEX solver cuts deactivated. Column “Maximal cliques” gives the results of
the model when all maximal cliques are added to the model while deactivating
the solvers’ clique cuts. Column Ysa <=| As | −1 + Ts presents the results ob-
tained by adding the second type of valid inequalities to the “Default settings”
model. Columns ∑ Zsak = ∑ Zsa′k′ and Ts <= Ysa corresponds the results ob-
tained by adding the third and the fourth type of valid inequalities to the “Default
settings” model respectively.

Table 5.4 shows that the solver’s clique cuts can be ineffective for some in-
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Default settings Without CPLEX cliques Maximal cliques

instance NbNodes CPU(s) NbNodes CPU(s) NbNodes CPU(s)

a2010 0 18.41 0 18.56 0 18.57
p2010 0 9.71 0 9.72 0 11.18
a2011 0 22.99 0 24.01 0 17.42
p2011 443 42.09 528 88.29 528 222.36
a2012 0 12.65 310 27.81 310 29.93
p2012 0 15.17 0 22.95 0 16.36
a2013 867 133.36 442 103.69 442 203.01
p2013 0 12.81 0 9.41 0 7.81
a2014 2016 206.22 504 110.73 504 154.69
p2014 0 8.87 0 10.17 0 6.91

∑ Zsak = ∑ Zsa′k′ Ysa <=| As | −1 + Ts Ts <= Ysa

NbNodes CPU(s) NbNodes TTotal NbNodes CPU(s)

a2010 0 18.21 0 16.28 0 13.22
p2010 0 10.75 0 10.74 0 7.8
a2011 0 66.09 0 22.65 0 15.29
p2011 1117 122.49 398 45.66 0 10.24
a2012 0 20.96 0 13.31 0 8.52
p2012 0 21.48 0 17.42 0 10.64
a2013 511 156.86 155 48.47 0 10.11
p2013 0 12.9 0 11 0 7.65
a2014 1010 168.49 2068 103.28 0 8.04
p2014 0 10.25 0 10.33 0 6.07

Table 5.4 – Impact of the different valid inequalities on the instances

stances because removing them yields better results. The maximal cliques ex-
tracted from students graphs are however mostly not helpful as it is the case with
instance p2011. We believe that the reason comes from the considerable number
of cliques for each instance. An improvement would be reducing the number
of cliques considered and attempting to consider the “useful” cliques for each
student.

The valid inequality ∑ Zsak = ∑ Zsa′k′ presents an interesting case. The run
times and the number of nodes explored increase for certain instances (p2011) and
decrease for others (a2014). The third type of inequalities does not considerably
impact the results. As expected, these valid inequalities are implicit and in most
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cases not beneficial. However, they might present a good help to tighten the
bounds in the case of hard instances.

The fourth type of valid inequalities are the most effective inequalities. Their
results improve the results of all instances and present the shortest run time
among all the tests. We believe the effectiveness of these valid inequalities is a
result of the order imposed on the variables which helps the solver quickly take
decisions.

5.7 Conclusion

This chapter presented preprocessing and mathematical models for the practi-
cal student scheduling problem taken from Université de Technologie de Com-
piègne. The preprocessing presented a procedure that eliminates sections that
are simultaneous to other mandatory sections and detects pathological students
for which it is impossible to find a feasible timetable. The aim is to maximize
the number of totally assigned students. To accelerate the model, four types of
valid inequalities were proposed. Out of the four valid inequalities, three were
effective and gave better results than the model alone. The preprocessing and the
valid inequalities proved to be effective by halving the run time and providing
solution within less than five minutes. The result presented also showed that we
were able to solve the model to optimality within a very short time.
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In this thesis, we presented different methodologies and strategies for univer-
sity timetabling problems. Mathematical models, lower bounds and a memetic
approach were used to solve both academic and practical problems. The exam
timetabling and student scheduling problems constitute the most studied sub-
problems and were covered in this thesis.

After introducing the optimization problems related to timetabling in Chap-
ter 1, we present in Chapter 2 an improved mathematical model for the exam
timetabling as described in the third track of the second International Timetabling
Competition (ITC2007). We presented a preprocessing procedure that helps re-
veal hidden constraints between exams based on the original ones. We also
improved an existing model that was used to evaluate solutions and made it
possible to find feasible solutions for more instances. To reduce the run time of
the improved model, we proposed valid inequalities that were derived from the
well-known Bin Packing dual-feasible functions. The results showed that the im-
proved model reaches optimality for more instances and uses less memory than
the original one.

Chapter 3 investigates lower bound techniques, a more compact reformula-
tion and a constraint programming model for the exam timetabling problem.
Lower bounds are assessed using a set covering model applied on the cliques
that are extracted from the conflict graph between the exams. We propose next
a reformulation of the constraints to reduce their number from n2 to n. More-
over, we show that the constraint programming model succeeds in finding better
results compared to the linear model within the time limit.

To tackle the practical timetabling problem of Université de Technologie de
Compiègne, we proposed in Chapter 4 a memetic approach with three differ-
ent local search operators. The solutions are represented as chromosomes using
the indirect incoding and are stored in the population. The local search opera-
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tors compromise Hill Climbing, Swap and Light Destruction/Construction. We
showed that the proposed algorithm outperforms the existing approach used in
the university and proposed to extend the set of instances of the ITC2007 collec-
tion.

For the student scheduling problem, we discussed in Chapter 5 the problem
encountered at Université de Technologie de Compiègne. We proposed a pre-
processing stage that reduces the size of the students’ timetables by removing
the time slots in which they cannot be scheduled in. The preprocessing stage
also allows us to detect infeasible timetables for students who wrongly choose
their courses. Next, the mathematical model is presented. The objective aims at
maximizing the number of students that have a timetable which totally satisfies
their demand. Moreover, we proposed a set of valid inequalities to accelerate the
model run time. The results show that the preprocessing reduces the problem’s
size by reducing the number of variables and constraints relative to each student.
The model we proposed is able, with the help of the valid inequalities, to reach
optimality within a very short time.

Future Work

The contributions in this thesis clear the way for numerous future work to be
done on university timetabling. We provide in the following the ongoing work
as well as the future openings we plan to investigate.

Combined Framework. Course and exam timetabling are closely related prob-
lems which, when considered together in a fully automated system, will provide
a comprehensive solution to an academic institution. Investigating a combined
framework has the potential to provide the necessary search engine in a multi-
layer system that could solve both the course and exam timetabling problems.
For such a framework, advanced heuristic and metaheuristics are needed. hyper-
heuristics and heuristics combined with mathematical programming can be a
promising path.

Constraint Programming. The constraint programming model that we pro-

116



Conclusion and Future Work

vided in Chapter 3 presents an encouraging beginning to the application of con-
straint programming to university timetabling. The ease and the flexibility of im-
plementation and adaptation offered by constraint programming encourage us
to apply and adapt the same approach for the student scheduling problem and
course timetabling. It is also in our ongoing work to enhance the current model
by trying to add cuts and inequalities and propose some propagation constraints
in order to help the model provide better results.

A Benchmark For The Student Scheduling Problem. The contribution pro-
posed for the student scheduling problem encourages us to investigate providing
the community with a set of instances for the problem. Currently, the lack of a
common testing base makes it difficult to compare the different solution methods
proposed. To that end, the set of instances will be made online for the researchers.

Column Generation For University Timetabling. The difficulty encountered
using the mixed integer programming model we proposed in Chapter 2 incites
us to investigate a column generation approach for the exam timetabling prob-
lem. A possible start would be trying the generic column generation solvers to
check whether the approach is suitable for the problem. The adaptation of the
column generation approaches applied to course timetabling can also help reach
this goal.
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