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Encadrant Sébastien, Ambellouis, Chargé de recherche, IFSTTAR, Villeneuve d’Ascq

Thèse préparée dans le Laboratoire Électronique Ondes et Signaux pour les Transports
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“From above it is not bright;

From below it is not dark:

An unbroken thread beyond description.

It returns to nothingness.

The form of the formless,

The image of the imageless,

It is called indefinable and beyond imagination.”

Lao-Tzu





Résumé

La détection de personnes dans les vidéos est un défi bien connu du domaine

de la vision par ordinateur avec un grand nombre d’applications telles que le

développement de systèmes de surveillance visuels. Même si les détecteurs monoc-

ulaires sont plus simples à mettre en place, ils sont dans l’incapacité de gérer des

scènes complexes avec des occultations, une grande densité de personnes ou des

scènes avec beaucoup de profondeur de champ menant à une grande variabilité

dans la taille des personnes. Dans cette thèse, nous étudions la détection de

personnes par un système multicaméras et plus particulièrement, l’utilisation de

cartes d’occupation probabilistes créées en fusionnant les différentes vues grâce à

la connaissance de la géométrie du système. La détection à partir de ces cartes

d’occupation amène cependant de fausses détections dues aux différentes projec-

tions. Celles-ci, bien connues dans la littérature, sont dénommées “fantôme”.

Aussi, nous proposons deux nouvelles techniques remédiant à ce problème et

améliorant la détection des personnes. La première utilise une déconvolution par

un noyau dont la forme varie spatialement tandis que la seconde est basée sur

un principe de validation d’hypothèse. Ces deux approches n’utilisent volontaire-

ment pas l’information temporelle qui pourra être ré-introduite par la suite dans

des algorithmes de suivi. Les deux approches ont été validées dans des conditions

difficiles présentant des occultations, des encombrements plus ou moins denses et

de fortes variations dans les réponses colorimétriques des caméras. Une comparai-

son avec d’autres méthodes de l’état de l’art a également été menée sur trois bases

de données publiques, validant les méthodes proposées dans le cadre des transports

en commun, à savoir, la surveillance d’une gare et d’un aéroport.

Mots-clefs: Géométrie multi-vues, Fusion de capteurs, Reconnaissance des Formes,

Détection d’objects, Surveillance.





Abstract

People detection is a well-studied open challenge in the field of Computer Vision

with various applications such as in the visual surveillance systems. Monocular

detectors have limited ability to handle complexities such as occlusion, clutter,

scale, density. Ubiquitous presence of cameras and computational resources fuel

the development of multi-camera detection systems. In this thesis, we study the

multi-camera people detection; specifically, the use of multi-view probabilistic oc-

cupancy maps based on the camera calibration. Occupancy maps allow multi-view

geometric fusion of several camera views. Detection with such maps produces sev-

eral false detections and we study this phenomenon: ghost pruning. To this end,

we propose two novel techniques in order to improve multi-view detection based

on: (a) kernel deconvolution, and (b) occupancy shape modeling. We perform non-

temporal, multi-view reasoning in occupancy maps to recover accurate positions

of people in challenging conditions such as occlusion, clutter, lighting, and camera

variations. We show improvements in people detections across three challenging

datasets for visual surveillance including comparison with state-of-the-art tech-

niques. We show the application of this work in exigent transportation scenarios

i.e. people detection for surveillance at train stations and airports.

Keywords: Multi-view Geometry, Sensor Fusion, Pattern Recognition, Object

Detection, Surveillance.
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Chapter 1

Introduction

1.1 Background and Motivation

Intelligent automated systems, such as for visual surveillance, is an active area of

interest for human societies with the web of attention spiraling in public, military,

commercial and research circles [1]. Ideally, the goals of automated surveillance

systems are to perform detection, tracking, classification, and recognition of the

objects in the scene. Such goals lead to the endowment towards higher-level se-

mantic tasks such as human behavior analysis and activity recognition. Appli-

cations of visual surveillance range from crime prevention, traffic control [2] to

monitoring patients at hospital [3], and the children at home [4]. Multiple do-

mains of research contribute to the field of intelligent surveillance. These domains

include computer vision, image processing, pattern recognition, artificial intelli-

gence, (big) data management, signal processing, telecommunications, embedded

systems, sensor design and electronics, and socio-ethical studies.

Vision is one of the five human senses and an important one for large scale usage;

it is often said: a picture is worth a thousand words. Computer Vision had been

thought of as an easy problem of artificial intelligence in the early sixties. The

slow initial pace of progress in vision was well explained by the Moravec’s paradox

arguing that tasks requiring high-level reasoning need enormous computational

resources. Nowadays, computer vision has emerged as a discipline itself, trying

to tackle the tasks of automated vision. Despite the challenges, some of which

remain an open area of research even today, substantial progress has been made.

1



Chapter 1. Introduction 2

Research on camera networks, like visual surveillance in general or people detec-

tion in particular, has received much attention in computer vision literature [5].

For example, works on multi-view camera geometry [6] remain a holy grail of

overlapping multi-sensor visual processing [7].

People detection is an integral element of any machine’s environment and also

plays a key part in the surveillance. The numbers of fatalities in France at the

level crossing, or the number of pedestrian fatalities in US related to traffic crash

could be a possible indicator to how we can deploy such people detectors inside our

cars or at transportation infrastructure. The development of the video surveillance

inside the trains is another context where it is required to propose such automatic

video functions to improve the security and the comfort pf passengers. We may

consider the developments of these tasks of paramount importance, requiring high

accuracies, through one camera. However, such a system will have a limited field

of view and resources. Recent technological developments have produced a boom

in the ubiquitous installation and usage of cameras. This has been complemented

by phenomenal breakthroughs in the cheap yet efficient computational resources,

including the embedded processing units. Thus, the multi-camera video surveil-

lance systems with people detection abilities have gained the interest of various

segments of the community including those of the computer vision and pattern

recognition researchers.

This thesis focuses on the areas of computer vision and pattern recognition in order

to answer: can we further add to the performance of existing multi-view people

detectors? For this purpose, we have chosen the context of visual surveillance.

This thesis has been completed at the French Institute of Science and Technology

for Transport, Development and Networks. The institute specializes in the research

of transportation systems across various domains including the domain of artificial

Figure 1.1: Example of application in transportation scenario where people
detection can help to identify a concernful situation. Reproduced from [8].
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intelligence and vision for achieving intelligent transportation systems. Figure 1.1

shows an abnormal situation of interest for manual or automated detectors, or

analysers at a train station. Therefore, one of the motivations of this thesis is to

show the application of multi-view people detection in the transportation context.

This work could also act as a precursor to other areas of active vision research

at the various laboratories of the institute such as person identification and re-

identification (LEOST-IFSTTAR), human activity recognition (LEOST), human

perceptual analysis and cognition in the context of car drivers (LESCOT), and

pedestrian behaviour modeling (LEPSIS).

1.2 Objectives

The aim of our work is to perform people detection across multiple camera sensors.

These surveillance cameras are stationary, wide baseline, viewing planar scenes,

and provide calibrated images. Such synchronised setups are popular in the visual

surveillance scenarios which is a goal of this work. The following is a more fine-

grained list of our aims and objectives:

• To improve multi-camera people detection using a combination of multi-

view geometry and pattern recognition techniques. The problem formula-

tion could be considered as a multi-sensor data fusion [10] or that of image

Figure 1.2: Example of challenges faced in intelligent surveillance. Repro-
duced from [9].
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registration in the field of computer vision [11]. However, the results must

show robustness to adverse and challenging conditions such as camera vari-

ations like resolution, perspectives, image quality, color variations, lighting

variations, motion sensitivity, clutter, noise, occlusions, and issues arising

due to density of the objects such as people of varying sizes present in the

scene. Figure 1.2 illustrates some of these challenges.

• To improve the well-established occupancy map framework [12, 13] for multi-

view detection. Homographic occupancy constraint provides an acceptable

solution to many of the issues mentioned above for multi-view fusion and de-

tection. However, such maps also create several erroneous detections known

as ghosts in the literature [14, 15]. Our goal is thus to avoid these errors

without considering temporal information.

• To demonstrate applications in the transportation scenario. For example,

can we apply our work to the multiple surveillance cameras installed at the

airports, train stations, etc?

Figure 1.3: Example of a commercial multi-camera surveillance system:
eight camera surveillance setup in a Houston, Texas laundromat. Repro-

duced from [16].
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1.3 Applications

Humans are an important element of consideration for computers and machines

in their respective environments. People detection and their manipulation in the

visual sensors paves way to many interesting applications many of which play

a vital role in our societies. These applications, being in a constant state of

innovation, are expected to take various new shapes and forms. The following is

a non-exhaustive list of some of the areas where people detection and surveillance

find their applications:

Transportation: There are several transportation applications e.g. security at

the airports, train, metro, bus stations, sidewalk for pedestrians, monitoring

abandoned objects like luggage inside trains, monitoring line-crossing, traffic

signal violations, etc. One such scenario is the centralized visual surveillance

in Manchester’s transportation services [17].

Personal: People detection has applications in remote and mobile monitoring

such as with security systems installed at apartments. It is also being de-

ployed in automated cars e.g. automated driving in Mercedes Benz F015 con-

cept vehicle or the Google Car. Microsoft Kinect is one innovation, combin-

ing visual and infrared sensors, which has reached the homes of many across

the world with Xbox to revolutionize how people play video games [18, 19].

Commercial: Commercial institutions require applications designed to tackle

issues of facility protection, operational monitoring, vandalism, employee

safety, etc. One such application is seen in Figure 1.3. High-tech companies

on Internet such as Google employ detection applications for improving user

experiences [20].

Government: Public safety is a major concern for governments in the contempo-

rary world [21]. People detection, visual surveillance are key elements in the

installations of event video monitoring, safety apparatus at public locations

such as streets, parks, hospitals, etc. Applications also exist of such algo-

rithms in the Internet security systems. There are military interest in such

technologies as well. Examples of military uses range from the automated

robots, drones to the satellite surveillance.
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Research: People detection algorithms [22] in visual modalities could further aid

towards the development of other semantic contexts such as people tracking,

identification, re-identification, human behavior analysis, activity recogni-

tion, etc. Similarly, the applications diverge into other related fields such as

robotic vision, medical vision, virtual reality, etc.

1.4 Thesis Outline

The goal of this thesis is to contribute to the development of robust multi-camera

people detectors. Exploiting temporal axis is known to improve detection re-

sults [13, 15, 23, 24]; nevertheless, the objective of the thesis is not to build a

complete system rather improve the per-frame detection performance. To this

end, we focus on a stronger per-frame detector. This detector, if used as a module

in a bigger system, would also cause a more holistic dynamic scene understanding

system to perform better. For hardware purposes, we have used static, calibrated,

synchronized, centralized, and overlapping multi-camera networks [5] in a wide

baseline configuration [25]. We emphasise on visual surveillance in transporta-

tion [26, 27] and public spaces [28]. We plan to achieve this using the concepts of

multi-view geometry [6] and pattern recognition [29].

We begin by the presentation of the related works to this thesis covering various

topics about multi-camera surveillance system; and, state-of-the-art on monocular

and multi-camera people detection algorithms. Monocular methods have limited

knowledge about the scene, and thus are limited in terms of detection accura-

cies [30]. This is where the multi-camera systems can be of help [7]. Multi-camera

occupancy maps is a popular technique [12, 13] for people detection and track-

ing, but it has an important flaw that it generates false detections known as

ghosts [14, 24]. In a first time, we present the generation process of the multi-

camera occupancy maps. Further, we explain the homography constraint, which

makes the detection through this method so useful. Finally, study of the limita-

tions of the multi-occupancy maps i.e. the ghost phenomenon is presented. After

covering these fundamental issues in Chapter 3, we begin with the presentation of

the developed techniques.

Chapter 4 presents the multi-camera occupancy map deconvolution method. It

begins with the presentation of the modelling of the process of occupancy map
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creation as a convolution by a spatially-varying kernel. We also present an esti-

mated deconvolution technique for kernel-based detection. This method extends

the monocular technique presented in [31]. While the latter is unable to account for

multi-camera fusion, we successfully present an extension with the multi-view rea-

soning. In chapter 5, we present a method for ghosts pruning in the multi-camera

occupancy maps. For this purpose, we introduce a novel method for the robust

detection of candidates in the occupancy map. We also propose the generation of a

synthetic shape model in the occupancy map at these candidate locations. Finally,

there is a proposition of a similarity measure and clustering on the measures dis-

tribution to perform automatic thresholding for people detection. Experimental

results and analysis have been performed on the popular, public, and challenging

PETS 2009 dataset [28].

For further validation of our techniques, we have also presented experimentations

on two other datasets: PETS 2006 [26] and PETS 2007 [26]. Moreover, we have

also performed ground truth annotation. Experimental results and analysis are

obtained from both these datasets operating in various conditions, and in trans-

portation scenarios. We show the success of our method at improving detection

rates despite the variable, and challenging conditions. Finally, we also present

limitations of our work, and the development of future ideas in light of such lim-

itations. Our method is a contribution in the area of multi-view geometry based

people detection. It accounts for challenging conditions and exhibits significant po-

tential as a module for further higher-level tasks such as: tracking, identification,

activity/behavior analysis, in context of visual surveillance.

1.5 Contributions

The original research contributions of this thesis are listed as follows:

• Modelling of the detection process performed on the occupancy maps as

a convolution with spatially-varying kernels. This novel method performs

multi-view geometric reasoning and studies the shapes of people in the oc-

cupancy maps.
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• People detection based on an approximation of the deconvolution, this method

allows us to avoid the ghost detection, a well known problem in the litera-

ture. False detections due to ghost decrease the per-frame detection rates.

Therefore, this contribution enhances the detection efficiencies.

• Reformulation of the problem of detection as a problem of hypothesis check-

ing. This hypothesis evaluation is limited to the key locations on the oc-

cupancy map. We have also proposed a method for detection of these key

locations.

• Analysis and quantitative evaluation of the proposed methods on three chal-

lenging public datasets — PETS 2006, PETS 2007, and PETS 2009. Further,

we have provided ground truth annotation of multi-sensor people detection

for the sequences PETS 2006 and PETS 2007.





Chapter 2

Related Work

2.1 Introduction

In this chapter, we present a literature study in the context of our research aims

and propositions. We introduce the research works and concepts regarding the

monocular people detection, intelligent multi-camera surveillance methods, and

multi-camera people detection. We show the current achievements and limitations

of these works and introduce some concepts of the multi-camera networks to aid

in the development of our research objectives. We focus on improved per-frame

detection rates, without the use of any temporal information. It is also helpful for

holistic visual systems to have perfect detection as input. Some of these ideas are

also discussed later in the thesis.

2.2 Monocular People Detection

People detection is an active area of research in computer vision; there is an

ever-growing number of approaches in the literature which try to address this

issue [30, 32]. Due to the considerable variety of methodologies and datasets

employed for performing people detection, the fundamental questions on how well

these monocular detectors work, their standardised comparison, and identification

of failure cases are difficult to answer. For answering these questions: sixteen

pre-trained pedestrian detectors have been tested in a standardised manner on

six popular public datasets in [30]. Example of the datasets and scenarios in

9
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which the current pedestrian detectors work is shown in Figure 2.1. The authors

have identified seven specific research directions in the field of monocular people

detector; we present a summary of these research directions [30] for monocular

detection below:

• Scales. People detection is sensitive to the scaling of the humans visible in

the images. The performance decreases at lower scales. According to the

authors, the detectors do not perform well for a scale between 30 and 80

pixels.

Figure 2.1: Example of datasets used for monocular people detection. The
bounding boxes are obtained from the ground truth annotations. Modified

and reproduced from [30].
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• Occlusion. Monocular people detectors do not completely account for oc-

clusion even if it is not severe.

• Motion features. Monocular detectors can perform better with the utili-

sation of motion features.

• Temporal features. Detection techniques do not make use of temporal

features but few consecutive frames could help the detection.

• Context. Geometric constraints such as those introduced with the ground

plane may improve the detection.

• Novel features. Novelties in the feature extraction domain could benefit

the people detectors.

• Datasets. Further research is required to study the effects of the different

types and amount of data used for people detectors, specially those using

the machine learning techniques.

The authors in [30] have discussed monocular people detectors in single still im-

ages and shown that most of them are based on learning. In [33], the authors,

propose a survey on how these people detectors have been employed in a complete

system. The multi-camera systems, in comparison to single camera detectors, can

inherently provide more information and thus have been exploited to perform more

robust people detection [7]. For example, they have better ability to handle scales,

occlusion, motion feature, temporal features, and the ground plane context [13].

Introducing tracking, as presented in [34], may alleviate the problems arising due

to detection, but it does not completely solve it. Nevertheless, in this thesis, our

problem formulation is to focus on per-frame detection [35] i.e. an algorithm to

find bounding boxes for people on the ground plane in the 3D world, and across

all the camera views, without the use of temporal features.

2.3 Intelligent Multi-camera Surveillance

This section addresses the various goals and techniques for intelligent multi-camera

surveillance system. This area of research is multi-disciplinary. It involves domains

such as vision, signal processing, sensor networks, and embedded systems. There-

fore, it could be possible to classify and list these tasks in numerous ways. We
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Figure 2.2: Some algorithms employed for automated multi-camera
surveillance. Flow between various modules is indicated by the arrows.

Modified and reproduced from [7].

use the methodology and presentation in terms of computer vision, as introduced

in [7]. Figure 2.2 shows the various technologies used in the multi-camera surveil-

lance system. We now briefly present each of them below:

• Calibration is the registration of the various camera views to one common

coordinate system. It involves concepts of multi-view geometry [6] and is a

key step for various multi-camera systems including ours. We further discuss

this in Section 2.3.1.

• Network topology is the study of the camera networks in terms of their

spatial adjacency, time transitions, and overlapping or non-overlapping fields

of view. We focus on overlapping camera works during the course of this

thesis. More details on network topology [36] are presented in Section 2.3.2.

• Recognition is the study of object detection and tracking across the camera

networks. We study multi-camera detection in Section 2.4. For a general

study of object tracking algorithms, the literature review in [34] can be

referred to.

• Object re-identification is the recognition of the same person across dis-

joint camera views at a different time and location. Re-identification could

also be understood as the matching of two image regions across different

views. This matching is performed primarily using appearance-based fea-

tures. Object re-identification is not discussed in this thesis but further

details can be seen in [37].

• Activity analysis performs automated recognition of various activities oc-

curring in the scene including understanding the human behavior. The aim
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is to automatically determine the abnormal activities being monitored across

the multiple cameras. We will not be discussing activity analysis or behav-

ior recognition in this work. However, a general literature review on human

activity analysis can been seen in [38].

The work proposed in this thesis is focused specifically on multi-camera recogni-

tion. It is linked to the calibration step and the topology of camera network used.

We will present the details of these three problematics in the next section.

2.3.1 Calibration

Camera calibration, or geometric camera calibration, in the context of 3D vision

is the process used to determine the parameters of the camera. These parameters

can be intrinsic (internal camera geometry, optical characteristics) or extrinsic

(relationship of the 3D camera frame and position to an arbitrary world coordinate

system) [39]. Camera calibration provides information to assist in the inference

of 2D image coordinates from 3D, or inferring the 3D information from the image

coordinates when using several cameras. Camera calibration and pose estimation

are of major interest for researchers in computer vision and it finds application

in various areas, for example, surveillance, structure from motion, stereo vision,

robotic simultaneous localization and mapping, etc [40].

The process of calibration finds an estimation of a model for uncalibrated cameras:

position and orientation parameters which provide the extrinsic information; and,

focal length, image center or the principle point, and distortion coefficients [41].

Sometimes, the internal camera parameters are already provided by the camera

manufacturer. In this case, the problem transforms to that of pose estimation:

that is, to recover the parameters related to the position and the orientation of

the sensor in question [42].

Tsai calibration [43] is an example of the well-known calibration technique em-

ployed in varying applications related to calibration and pose estimation. It can

deal with both coplanar and non-coplanar points and perform both the internal

and external calibrations individually. That is, if the internal parameters of the

camera are already available, then Tsai method can compute the pose estimation.
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There are also methods for camera auto-calibration or camera self calibration

which perform the automatic determination of the internal camera parameters

from multiple uncalibrated images [44]. This technique does not require a ref-

erence calibration object and can be achieved through establishing relationship

between the images formed in an environment. Finally, there are also calibration

techniques for active vision systems [45]. In such techniques, a specific motion

pattern is performed followed by the linear computation of the internal and exter-

nal parameters, using image features and motion model. Further details on these

camera calibration techniques can be studied in [44, 46, 47].

For visual surveillance, one of the most common assumption is that the objects of

interest are located and move on a common ground plane. Following this assump-

tion: camera calibration and pose estimation therefore become a vital element

for multi-camera surveillance. Besides calibration, if there exists an overlap be-

tween the cameras, then, it is also possible to compute planar homography for

establishing correspondence between the views [48].

Temporal synchronization also affects the performance of the camera correspon-

dences [49]. The frames acquired from several cameras have to correspond to the

same moment to be sure that the objects have not moved between the frames.

Time synchronization methods include hardware methods involving distributing

time stamps, detecting visible flashes; or, calculation of automated temporal shifts

till achievement of optimal correspondences. A generic study of time synchroniza-

tion in sensor networks can be seen in [50].

Figure 2.3: Overlapping in the camera fields of view. Reproduced
from [51].
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2.3.2 Network Topology

Multi-camera networks are utilised for monitoring the objects in a wide area setup

or analysing objects with different view points in the scene. There are two strate-

gies for performing the wide-area surveillance: overlapping and non-overlapping

camera networks [51]. Figure 2.3 illustrates the concept of the overlapping re-

gion in the Field of View (FOV) of two cameras. Determination of this particular

configuration along with the location and orientation of cameras provides an use-

ful knowledge for automation [52]. In case of overlapping cameras, the concepts

of multi-view geometry including image formation, epipolar geometry, projective

transformation can be applied [53]. This may be in combination with the fea-

ture detection and matching strategies [54]. The concepts of space-time reason-

ing [55] and appearance-based matching remain more relevant for non-overlapping

cases [56]. We work with the overlapping scenarios in this thesis.

In the context of multi-camera system, several camera network fusion strategies

can be applied. The camera networks can be classified as centralized, distributed

or clustered based on the fusion strategies [5]. Centralized processing configuration

involves a single central fusion node which receives and processes all the camera

Figure 2.4: Fusion strategies in multi-camera networks. Reproduced
from [5].
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feeds. Whereas, in the clustered processing there are several local fusion nodes,

instead of a single node, fusing the information together. There is no such fusion

of processing occurring in the distributed processing technique. These concepts

are illustrated in the Figure 2.4. For a survey of the techniques on distributed

and decentralized processing the paper [57] can be considered. We utilise the

centralized fusion processing strategy in this thesis.

Finally, we also introduce the concept of the wide baseline images. Baseline is

termed as the line joining the projection centers between the two cameras. In case

of multiple cameras, pair-wise combination between the cameras can be considered.

We can also define the width of the baseline for cameras: it is the distance which

cameras generate as this particular baseline is traversed. Cameras having wide

baseline will generate varying looks across the views. Wide baseline images require

less images than short baseline (such as stereoscopic rig) in terms of the FOV.

Furthermore, wide baseline images provide better depth clarity and thus the FOV

coverage. More details on wide baseline images can be studied in [25].

In terms of hardware: we focus our work on static, rectilinear camera networks.

Nevertheless, there are also research applications using the dynamic and active

vision sensors. Moreover, there is also a field of smart camera networks in which

the architecture, middle-ware, and applications focus on remote, tiny, intelligent

embedded systems. These topics and others on multi-camera vision can be visited

in [5].

2.4 Multi-Camera People Detection

This section specifically focuses on multi-camera people detection, its applications

for visual surveillance, and literature based on the improvement of detection. The

challenges pertaining to people detection include the involvement of human artic-

ulations, scale and appearance based variations, occlusion, density, and environ-

ment clutter. Extensive research has been performed on the single camera human

detection algorithms; however, these systems remain limited in their ability to

handle occlusions, dense and cluttered environments [30]. As people detection is

a well-studied issue of importance, finding applications in the domain of visual

surveillance; thus, as a possible remedy, the research community has focused on

using multi-camera systems for improvements in people detection and thus the
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visual surveillance [13–15, 23, 24, 58]. The ubiquitous presence of cameras with

the increase in computational resources has also fueled the development of multi-

view research; sensor fusion, multi-view visual analysis are some of the challenges

faced [5, 7]. Before we begin the presentation of the literature, a summary of

monocular and multi-camera systems is presented in Table 2.1 and 2.2 respec-

tively.

Fusion of information across multiple cameras requires a level of consistency across

all the views of the object of interest. This fusion must also determine the presence

or the absence of the object. Registration of an object present across multiple

camera views can be used to estimate its location. One common approach in

these systems constraints the search space to the ground plane using the planar

world assumption [13, 15, 23]. Therefore, assuming the non-floating objects, planar

homographies are calculated for the ground plane. The use of only ground plane

may not be robust for several reasons such as bad foreground detections or the

occlusion of the lower part of the body [12]. Recent approaches [13, 15] extend

this by using multi-planar homographies combined with the ground plane.

Multi-view object detection can also be achieved with the aid of image registration

with the use of camera calibration information of various cameras present in the

scene. The use of camera calibration instead of camera homographies provides a

more detailed scene reasoning to project the camera views to a common search

space such as the ground plane [58, 59]. In addition to geometric techniques: prob-

abilistic methodologies [23, 58, 59] have also been utilised for multi-view detection

such as modeling people occupancy with primitives located on a discretized ground

plane. Occupancy is the probability of the presence of a person at a particular

position on the reference plane. We assume the reference plane as a real world

plane to which all the camera views are projected or warped.

Khan and Shah [13] use the camera homography constraint to generate occupancy

maps which is the fusion of projected scene planes across various views. The

authors apply the multi-planar homographic constraint and combine it with graph

cut segmentation in order to track people [13]. No calibration information is

required but planar references must be present in at least one of the views and

affine homography must be manually computed by the user for each sequence.

Their proposed solution suffers from false positives or ghosts due to the limitations

of the homography constraint. Khan and Shah account for ghosts using the space-

time occupancies.
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Eshel and Moses [60] perform people tracking in a dense, crowded environment

using homography constraints applied only at the top layers combined with the

pixel intensity correlation, motion direction, and velocity constraints. This method

requires the use of partial calibration data. Temporal information is used to reduce

phantoms. But, the algorithm is limited to those sequences in which heads are

visible in a top view configuration. In summary, the algorithm uses multi-planar

projections for top-view camera topologies in order to perform head detection.

Different from the two techniques mentioned above: Fleuret et al. [23] define a

probabilistic occupancy map (POM) based on a quantized ground plane. They also

define a distance measure in relation to the multi-view projections. Thus, POM is

an algorithm to estimate an approximation of the marginal posterior probabilities

of presence of individuals at different locations of an area of interest, given the

result of a background subtraction procedure in different views. The camera cali-

brations are indirectly provided through a family of rectangles which approximate

the silhouettes of individuals located at the considered locations. They further

integrate it with Hidden Markov Model (HMM) for joint color, motion and occu-

pancy modeling to perform tracking. The method suffers from high false positive

rate and has a high computational cost. Moreover, this algorithm is limited to

tracking up to a maximum of six people and fails to account for height variations.

In [58, 59], the authors extend POM: they improve the localization accuracy by

performing an optimization process that fits a cylinder instead of rectangle. The

cylinder-fitting process approximating a person is achieved using the multi-planar

projective features. However, this method is sensitive to the detection, localization

of the feet.

The literature on multi-camera detection may also be classified into direct and

inverse methods. Direct methods erect the objects from primitives. Examples

of such primitives could be the segmented parts in the image or the silhouette

blobs [61]. The inverse techniques assign a fitness value, a single figure of merit, to

many possible object configurations. This is followed by an optimization process

in order to find the best configuration corresponding to the objects. Examples of

the inverse methods are the works presented in [58, 59, 62].

The majority of the methods presented so far suffer from a high false detection

rate. For the geometric, multi-planar or homographic techniques, fusion of the

projections corresponding to different people in the occupancy map could generate

false detections, these detections of non-corresponding regions in the projected
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space are referred to as the ”ghosts”. Besides focusing on the rather complete

detection or tracking systems, this phenomenon of false detections has been studied

in the literature as the ghost pruning problem.

Ren et al. [14] define ghosts as the false positives due to the intersections of non-

corresponding regions. They propose to use color template matching for ghost

pruning. But, as shown later, their method is unable to account for views with

high variations in the color constancy. Moreover, their equations are limited to

only two views. Unlike [14], we tend to propose works having no limitation in the

number of views, number of planes used and that accounts for the views which

lack color constancy.

Evans et al. [24] compute the probability of a ghost detection based on a spatiotem-

poral relationship of the objects present in the scene with the camera positions.

The authors introduce a suppression map technique which is able to predict the

possible location of the ghosts but it requires prior information about the location

of the objects of interest which is obtained from the previous frames.

During this work, we try to achieve better detection performances without the use

of any temporal information. The tracking of an unknown and variable number of

people in a scene, without constraints, is still a challenge. Even if some methods

do not use detection (e.g. [63]), other ones are based on the detection of people

in fixed images(e.g. [13, 15]). The latter then perform tracking via association of

these detections along time. As association is a complex task and as complexity

increases with the number of objects detected. It is important to use, as input, as

perfect detections as possible. To this end, the goal of this work is to detect people

in still images, without considering temporal information in order to facilitate the

tracking, or higher-level semantic, modules. Further, we have identified a core

issue in multi-view geometry based detection, i.e. ghosts, and keeping this in

mind, we try to achieve robust people detection.

In this thesis, we present a novel approach for pedestrian detection using multi-

camera occupancy maps and by modeling the object shapes as 3D geometric prim-

itives. We define a spatially varying kernel which depends upon the shape and

geometric characteristics of the primitives and the camera calibration. We propose

an analytical formation model for object detection by performing convolution of

the proposed kernel with the object location map. Our spatially varying kernel

is able to perform suppression of false detection through multi-view reasoning.
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This specific kernel allows us to define sharp peak responses corresponding to the

object detections. These detections can be localized by a deconvolution process.

We also propose an efficient approximate deconvolution using a modified version

of watershed transform specific to our kernel.

Further, we propose another novel method for people detection across multiple

synchronized views based on coherence analysis. We have observed that it is

possible to generate a shape model in the synergy map based on the location of an

object in the scene. We refer to this shape as the Occupancy Shape Model (OSM).

This shape model is a map created by modeling the person as the axis of a cylinder,

at a given 3D location, followed by the fusion of the multi-planar projections of

its synthetic images. We apply this model for ghost pruning using a similarity

measure between the OSM and the real occupancy map. The 3D locations, at

which our model is processed, are obtained by the application of local maxima

detection using a modified watershed transform on the real occupancy map. Thus,

our algorithm is based on the knowledge of the multi-view scene geometry. Finally,

we perform cluster analysis on the similarity measures to automatically define the

decision boundary for people detection.

The propositions account for challenging situations such as lighting, color, weather

variations, and is able to robustly localize the pedestrians handling occlusion and

projective shadows from the relatively dense scenarios. The propositions are not

limited to a head-only camera topology [60], require no temporal information [24],

account for color variations [14], perform multi-camera reasoning rather than the

concatenation of monocular primitive detections [31], and have lower number of

parameters with no optimization requirements as in [58, 59]. Finally, we propose

the quantitative analysis, in comparison with the state-of-the-art [13, 23, 58, 59]

to demonstrate the efficiency of our technique on popular public datasets [26–28].

2.5 Summary

We have presented a detailed survey of the related work and literature in this

chapter. We began with the monocular people detectors to see their limitations

and make an extension towards multi-camera visual surveillance. We presented the

core vision-related technologies of the multi-camera systems. We then focused on

calibration, topology and recognition in terms of multi-camera people detection.
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Finally, we have presented the state-of-the-art in multi-camera people detection in

link to our own work. A summary of the state-of-the-art has been summarized in

Table 2.1 and 2.2. After a presentation of the goals of this thesis, we have briefly

introduced the two propositions. These propositions are presented, in detail, in

the following chapters.
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Chapter 3

Ghosts in the Multi-camera

Occupancy Maps

3.1 Introduction

Occupancy map is the fusion of projected information, present across multiple

camera views, on to the common world coordinate system. Occupancy maps are

calculated as the probability (or the confidence) of the presence of an object at the

quantized ground location. These probabilities are determined by the projection

of the camera views at the ground planes and several planes parallel to the ground

planes, thus aggregating the evidence across several views and scene planes.

One popular application of occupancy maps is the detection of objects of interest

employed in the multi-camera visual surveillance. Occupancy maps have been

known to show robustness to occlusion, noise, variations of color or light. For this

purpose, foreground masks are projected across the scene planes using camera

calibration or by calculation of planar homographies. The method while having

a see through effect, that is accounting for full or partial occlusion, suffers from

a phenomenon of false detections which is referred to in the literature as ghosts.

The objective of this chapter is to introduce the concept of occupancy maps and

ghosts generation, so that we can proceed towards better handling, and achieving

robustness to ghosts that is performing ghost pruning.

Figure 3.1 shows the block diagram for object detection using several overlapping

cameras. In a first step, foreground masks are extracted from each camera view.

24
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Foreground 
Masks Projections Aggregation Thresholding

Figure 3.1: Block diagram for detection using occupancy maps

These images are then projected on planes parallel to the ground planes. All these

projections are aggregated in a single map: the occupancy map that provides

information about the presence of object. A simple threshold on this map is then

sufficient to retrieve the objects of the scene. 1

3.2 Multi-planar Projections and their combina-

tion

We present the multi-camera occupancy maps generated by the simultaneous ag-

gregation of all the camera views across the various planes of the scene. The

fundamental of this approach is that the projection of the image view to the

ground plane, such as through homography, remains consistent across all the cam-

era views. Moreover, this idea can be extended across several planar heights. In

this section, we go through the process of multi-planar projections and also their

synergy to generate the occupancy maps.

3.2.1 Foreground Masks

The first step to generate the occupancy map is the extraction of foreground

masks in each camera view. It is generally done using background subtraction

algorithms [13, 65, 66]. Instead of the Gaussian distributions [67, 68] as used by

Khan and Shah [13] or Mixture of Gaussians (MoG) as employed by Utasi and

Benedek [58, 59], our foreground masks are obtained using a multilayer background

substraction method, based on Local Binary Pattern (LBP) and proposed by Yao

and al. in [69].

Actually, even if methods based on Mixture of Gaussians (MoG) remain popular,

they suffer from the balancing between the speed at which the model adapts to

1A part of this chapter appeared in the proceedings of the 9th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2014 [64].
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the non-static background, and stability against the occluded background. The

method proposed by Yao and Odobez [71] is a combination of photometric invari-

ant color measurements, as a pixel-region model in the RGB space, and texture

measurements using the local binary patterns, which provides structural informa-

tion in the neighborhood of the pixel. This particular modeling of background

allows to manage both texture and texture-less surfaces. This method is also able

to handle non-static backgrounds thanks to a flexible weight adaptation in the

background model. This is especially useful in moving areas such as the leaves

of a tree or moving escalators present at airports, metro and train stations. The

model is also able to account for addition or removal of stationary foreground

objects e.g. a bag left in the train stations.

Local Binary Pattern (LBP) [72] is a texture-based descriptor. It is a gray-scale

invariant statistic measure defined in a neighborhood around each pixel. The

gray-level intensity (or the color) of each neighboring pixel of the studied pixel

is thresholded, leading to a binary number (binary pattern) characterizing the

texture around the central pixel.

We show the working of a basic LBP operator in figure 3.2. The texture operator

is calculated on a 3x3 window around the central pixel. It assigns a label to each

of the neighboring pixels by comparing them to the central pixel. The resulting

binary assignment can be read in either clockwise or counter clockwise direction.

LBP feature descriptor is a histogram designed with the decimal values of these

binary assignments. Circular neighborhoods have also been proposed for LBP

computation. One example is shown in figure 3.2 where P represents the sampling

points defined on the circumference of a circle of radius R. The labeling criteria,

Figure 3.2: The basic and extended local binary patterns. Modified and
reproduced from [70].
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direction selection; including mathematical implementations for the different kinds

of LBP feature descriptor are discussed in [72].

The main advantage of LBP is that it tolerates global and local illumination

changes, and is computationally inexpensive. However, it fails for a texture-

less object or when the textural description between background and foreground

is the same. Yao and Odobez [71] thus add a RGB color descriptor to the

LBP one. The background modeling thus consists of several modes mk based

on LBP and color features. Each mode is characterized by seven components

mk = {Ik, Imink , Imaxk , LBPk, wk, w
max
k , Lk} where:

• Ik denotes the average RGB vector composed by the average of three colors

R, G, B of the mode.

• Imink and Imaxk are the maximal and minimal RGB vectors that the pixels

associated with this mode can take.

• LBPk denotes the average of the local binary pattern learned from this mode

• wk ∈ [0, 1] denotes the weight factor, i.e. the probability that this mode

belongs to the background.

• wmaxk represents the maximal value of wk reached in the past.

• Lk is the background layer number to which the mode belongs. Lk = 0

means that the mode mk is not a reliable background mode. Lk = l > 0

indicates that mk is a reliable background mode in the l-th layer.

The detection then works as follows: for a new pixel characterised by its LBP

and RGB values, the nearest mode mk is searched. If it is close enough to the

pixel (the distance is below a threshold), the mode is updated, otherwise, a new

mode is created. The considered distance between a new pixel and a mode is

a weighted average between color distance and texture distance. In order to be

invariant to illumination changes such as shadows and highlights, the comparison

between RGB values (color distance) is defined by their relative angle in the color

space. Moreover, the weight wk of all the modes are updated according to a novel

‘hysteresis’ scheme in order to manage moving background objects.

For the foreground detection, a distance map is built, similarly to the foreground

probabilities map in the MoG method. Furthermore, the final results are smoothed

using a bilateral filter applied to the distance map in order to decrease the noise.
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The mathematical details of this background modeling, the learning process, the

distance measures employed and the foreground detection are present in the origi-

nal paper [69]. The authors have shown encouraging results in real and simulated

datasets. The method is shown to produce fast and reliable results in surveil-

lance scenarios on real databases obtained from a metro station, train station,

and on general surveillance scenarios. We have utilized the default parameters

for the generation of the binary foreground masks as given in the online available

code 2. A complete review of the background subtraction techniques in context of

multi-sensor surveillance can be read in [73].

Figure 3.3 shows some examples of the foreground masks obtained. As it can be

seen: some images are well segmented (see Figures 3.3(d) and 3.3(e)); in other

cases, false detections can appear or some areas can be missed (see Figure 3.3(f)).

It clearly appears that a multi-planes and multi-views consistency analysis yields

results quality that depends on these different phenomena. The detection algo-

rithm has to therefore manage imperfect foreground detection.

Next, the foreground map of all camera views are projected on several planes to

create the occupancy map as explained in the following sections.

3.2.2 Multi-planar Projections

The camera calibration model is used to project the silhouettes obtained by back-

ground subtraction to the ground plane and several planes parallel to it.

Foreground silhouette maps are projected on the ground plane P0 and on several

planes Pz parallel to the ground plane at height z in the range of human height, as

shown in Figure 3.4. These projections are made in two steps. First, the projection

on the ground plane P0 is obtained using the camera calibration [43]. Then, the

projections on the parallel planes Pz are efficiently computed from the projection

on P0 using the following equations [58]:

xz = x0 +
(xc − x0)z

hc
(3.1)

yz = y0 +
(yc − y0)z

hc
(3.2)

2The foreground masks used in this thesis have been extracted using the default parameters
of the code available at: http://www.idiap.ch/~odobez/human-detection/index.html

http://www.idiap.ch/~odobez/human-detection/index.html
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(a) View 1 (b) View 2

(c) View 3

(d) View 1 (e) View 2

(f) View 3

Figure 3.3: Example of a PETS 2009 frame and its corresponding fore-
ground masks. The bounding boxes in (c) are the approximate locations
of two persons. The red bounding box in (f) points out one missed detec-

tion and the blue bounding box is for the false detection.
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hc

(xc,yc) (xz,yz) (x0,y0)

Figure 3.4: Projection of point of the image on a plane at height z and
the ground plane.

where:

• (xc, yc) represents the camera position located at height hc.

• (xz, yz) is the projection of a point on the plane Pz knowing that this point

has been projected at (x0, y0) on the ground plane P0

If the camera calibration model or homography information is not available then

the method proposed by Khan and Shah [13] in section 4.2 of their paper can be

used.

The same projection is applied for all the pixels of the silhouettes of the foreground

map. Moreover, several projections are obtained for each foreground, one for each

plane height z. As it can be observed on Figure 3.5 from top view, these projections

are not located on the same position. The projected shape is scaled and translated

with regards to the height z of the plane projection.

Figure 3.6 illustrates the same process obtained on a randomly selected frame of

the real sequence PETS 2009. Three projections are presented: on ground plane

and two parallel planes at height 100cm and 190 cm. It can be noticed that, as

the size of the area of projection is fixed and is the same for the different heights,

some object can be visible for a height and not for others. It is the reason why

some objects not present in Figure 3.6(a) are visible in Figures 3.6(b) and 3.6(c).

These projections, detailed for one camera, can be done and merged in a multi-

camera context to manage occlusion.
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Figure 3.5: Projection the people perceived by the camera on the ground
plane (blue) and a parallel plane at height z (red).

3.2.3 Homographic Occupancy Constraint

In this section we introduce the homographic occupancy constraint as defined

by Khan and Shah [13]. Let us consider a scene with a single object observed

by several wide-baseline stationary cameras as shown Figure 3.7. This object

produces a single foreground region in each view. Let us define some notations:

• π is a reference plane, for example the ground plane or a plane parallel to

it, in the 3D space ;

• Φi is the foreground region in view i;

• Hiπj is the homography induced by plane π from view j to view i;

(a) (b) (c)

Figure 3.6: Multi-planar projections on a frame of PETS 2009. Projections
at (a) ground (b) 100 cm (c) 190 cm.
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• P is a point of the space that is projected in p1, p2,..., pi in any n view.

Figure 3.7: Principle of multi-views projection. Reproduced from [13].

With these notations, Khan and Shah [13] introduce two propositions:

Proposition 1: If P lies in the reference plane π and is inside the volume of the

object, then

• pi, its projection in view i belongs to Φi

• pi = [Hiπj]pj

This proposition is illustrated on the same example than in [13] in Figure 3.7.

Considering the feet of the people and the ground plane as reference plane, these

feet are projected in a foreground region in all views. On the contrary, a point

of the reference plane π, outside of the volume of the object will be projected on

foreground or background area, according to the views.

The homographic occupancy constraint is defined as the following proposition:

Proposition 2: Consider a particular view j with its foreground region Φj. Then,

∀pj ∈ Φj, pi = [Hiπj]pj belongs to Φi.

This second proposition assures the management of occlusion as explained in Fig-

ure 3.8 based on the same example as that in [13]. Actually, in view 1, the green

person is occluded by the blue one and its feet are not visible. It results in the fu-

sion of both foreground regions in a single region. However, all these pixels satisfy
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the homography occupancy constraint. On the view 2, both persons are visible.

If H1π2 is the homography induced by π from view 2 to view 1 then for all p2 of

the view 2, p1 = [H1π2]p2 belongs to the single silhouette in the view 1.

Figure 3.8: Principle of multi-views projection in case of occlusion. Re-
produced from [13].

The occupancy map gathers the information to measure, for all position P , how

much the homography occupancy constraint is satisfied. It is computed by merging

all the projections calculated for all the views to detect people and to deal with

occlusion problem.

3.2.4 Multi-camera Occupancy Maps and Ghosts effect

Khan and Shah [13] define the occupancy map as a 2D grid of object occupancy

likelihoods. Occupancy map is obtained by the fusion of the multi-planar projec-

tions3 previously defined and calculated for several cameras. Let us assume that

Pv,Pz(x, y) is the map corresponding to the projection of the camera view v ∈ V
on the plane Pz ∈ P . V is the set of views and nv = card(V ) is the total number

of views i.e. the number of cameras of the system. Then, the occupancy map

OP,V(x, y) is defined as follows:

OP,V(x, y) =
SP,V(x, y)

max(SP,V(x, y))
(3.3)

3The code for multi-planar projections is available at: http://web.eee.sztaki.hu/~ucu/

mbd/sw/fgprojection.tar.gz.

http://web.eee.sztaki.hu/~ucu/mbd/sw/fgprojection.tar.gz
http://web.eee.sztaki.hu/~ucu/mbd/sw/fgprojection.tar.gz
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where SP,V(x, y) is the accumulation map defined by:

SP,V(x, y) =
1

nv

∑
Pz∈P

∑
v∈V

Pv,Pz(x, y) (3.4)

Figure 3.9(a) and 3.9(b) show the combination of the projections of respectively

a single and two camera views. This combination is done for the three heights

presented figure 3.6.

At each location of the occupancy map is assigned a value depending upon the

number of cameras and the number of planes. Ideally, a nonzero value appear only

if the point is an element of the foreground mask. Let us consider the case of one

plane projection, and more specifically the ground plane, then the occupancy map

value will be the highest if the feet of a person are visible across all cameras. The

value should decrease with the number of cameras observing the corresponding

point. If the foreground is partially segmented, only the plane projections of the

detected parts will contribute to the values of the occupancy map. The use of

several planes (from the ground up to the head) tackles the imperfection of the

foreground. Thus, the values of the occupancy map are directly linked to the

number of planes and views on which a foreground is projected. The highest value

(a) (b)

Figure 3.9: Illustration of the combination of planar projections used in
the Figure 3.6. (a) is for one single camera. (b) is for two camera views.
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(a) (b)

Figure 3.10: Illustration of ghosting phenomenon in a schematic scenario.
Black boundary represents the physical area. Red, blue and cyan are lines
drawn from 3 cameras centers to the known objects. Green points are the
real objects and yellow points are ghosts. (a) illustrates ghost generation
using two cameras. (b) is generated using an additional camera with a

limited Field of View (FOV).

is obtained for a foreground visible across all cameras and across all the parallel

planes.

In this ideal case, an object could be detected by locating the peaks in the occu-

pancy maps as proposed in [13]. This method, however, suffers from false positives

known as ghosts and due to the multi-views projections of several nearby objects.

Ghosts produced by a chance alignment of projections coming from several ob-

jects are illustrated in Figure 3.10. It shows how the intersection of a line from

the camera centre to the object of interest generates a ghost [24].

Let us consider another schematic example proposed by [14] and illustrated in

Figure 3.11. Suppose that there is a person visible in the scene and that this

person can be approximated with a tall cylinder. This cylinder is visible as a circle

from the top view. From the side-views the cylinder is visible as a quadrilateral.

The projection of this cylinder on the ground plane produces a large line which

extends from the lower end of the cylindrical centre to the optical centre of one

camera. Besides the position of the two centers, the line also depends upon the

plane on which the projection occurs. The projected line moves away from the

camera as we approach lower level planes such as the ground. Similarly, the line

moves away as we increase the planar height. This gives rise to the star shaped

structures in the scene. When the cameras are imperfectly aligned, the number of

streaks of one star is equal to the number of cameras.
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(a) Ground Plane (b) Parallel Plane

Figure 3.11: Illustration of ghosting phenomenon across different planes.
The ghost problem occurs across several planar heights of the scene. Re-

produced from [14].

Figure 3.12 shows another example of an occupancy map computed on real data.

As it can be observed, a simple thresholding produces various false detections

represented by the green localizations. Around each real position of people (blue

point), we observe star shaped structures with three streaks corresponding to the

three cameras.

Authors have proposed to tackle the ghost problem by using temporal reasoning

and space [23, 60]. Alternative solutions to these complete detection/tracking

system have been proposed. For example, Ren et al. [14] define ghosts as the false

positives due to the intersections of non-corresponding regions (see Figure 3.11).

They propose to use color template matching for ghost pruning. Evans et al. [24]

introduce a ghost removal technique which is able to predict the possible location of

the ghosts based on the scene geometry. The suppression map assigns a probability

of ghost detection based on the distance of objects from camera centers and camera

calibration parameters. The method requires prior information about the location

of the objects of interest that is obtained from the previous frames.

In the following chapters, we will study the possibility of improving per-frame

detection accuracies and to remove the ghosts. To this end, we study the use of

3D geometric primitives and their respective shapes in the occupancy map space.

This combination of 3D multi-view geometry and pattern recognition techniques

helps for people detection.
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3.3 Summary

In this chapter, we have introduced the concepts of multi-camera occupancy map,

detection in the multi-camera occupancy maps, and the problem of false detections

or ghosts which occur in such maps. Occupancy maps provide a reliable way to

perform multi-camera people detection. The occupancy maps used in the thesis

are generated using the aggregation of multi-planar scene projections across several

heights of the scene. Occupancy maps provide robustness to complex situations

such as occlusion handling, lighting variations, shadows [13, 60].

In the context of object or people detection such as for multi-camera surveillance,

this popular technique of multi-camera occupancy maps suffers from various false

detections. This phenomenon is referred to as ghosts in the literature [14, 24].

Ghosts occur for particular configurations of the objects and cameras in the scene

where intersections appear.

This thesis proceeds by presenting two methods based on the multi-camera oc-

cupancy maps for ghost removal. The first method focuses on the study of the

particular shape generated around each object in the occupancy map space, and

use it in order to perform people detection and ghost suppression. The second

Figure 3.12: Illustration of an occupancy estimated on real data. Brighter
red colors indicate higher probabilities. The blue dots represent the ground
truth that is the location of the people. The green dots represent the

ghosts.
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method identifies key locations in the occupancy map and then performs reason-

ing around ghost pruning in order to achieve people detection. It is relevant to

point out that as we are focusing on detection therefore we further constraint our-

selves not to use prior knowledge about the number of people or their locations.

As shown later in the thesis, these two techniques are able to account for robustly

detecting the people, reducing the number of false detections, and are not limited

in the number of views or number of planes used. They are also able to account

for views such as with the lack of color constancy, shadows, occlusions - without

using temporal information.





Chapter 4

Multi-camera Occupancy Map

Deconvolution

4.1 Introduction

In this chapter, we present an approach for multi-camera people detection ex-

ploiting the concepts of multi-views geometry and the shapes of 3D geometric

primitives. Multi-camera occupancy maps provide peak responses corresponding

to the object detection but suffer from several false detections known as ghosts.

The novelty of the technique in this chapter is the introduction of shape patterns

which can model the objects, such as people, by defining a kernel function in the

projected occupancy space. This kernel depends upon the geometry of the 3D

primitives and also varies in relation to their position with respect to the cameras

in the real world configuration. For multiple objects visible across several cameras,

we define a formation model of the occupancy map which is the convolution of

this spatially varying kernel with the set of possible object locations. The loca-

tions corresponding to detections can thus be obtained through a deconvolution

process. For computational efficiency, we further propose an estimated deconvolu-

tion process specific to our kernel responses which can also be heavily parallelized.

We evaluate the application of this process towards people detection by studying

various 3D cylindrical primitives. Experiments on three public dataset sequences,

presented later in this thesis, including a comparison with other approaches, show

the efficiency of the proposed method in terms of people detection and ghost

pruning, including in adverse and challenging conditions. Figure 4.1 illustrates

39
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Foreground
Masks

Projections
Occupancy

Maps
Deconvolution

Maxima 
Selection

Kernel

Figure 4.1: Block diagram for primitive detection process applied on the
occupancy maps

the various steps through which the proposed algorithm proceeds. We discuss

these steps in detail, later in this chapter; but; first, we present the modeling of

the occupancy maps.1

4.2 Modeling of the occupancy map

Occupancy maps are well known in the multi-camera context to exhibit peak

responses corresponding to the object locations in the scene as shown in the previ-

ous chapter and illustrated in Figure 3.12. Multi-camera occupancy maps assign

a probability that is based on the normalized sum of the image evidence, binary

or probabilistic, gathered from all the cameras and projected to a common search

space such as the ground plane.

Figure 4.2 shows an example of occupancy map generated using two camera views

and multi-planar projections parallel to the ground. It can be observed in the figure

that there is a star shape centered on the objects. The legs of this star correspond

to the number of cameras observing the scene (two in this case). The rectangular

bounding box in Figure 4.2(a) and 4.2(b) represent the Area of Interest (AOI) on

which the occupancy map is computed (Figure 4.2(c)). It can be noticed in this

figure that difficulties appear on real sequences, such as those arising from errors

in the background subtraction process; and, the projection/presence of people

outside AOI, but, present in the occupancy.

1This chapter appears as a section of a publication accepted in the proceedings of the 12th
IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS), 2015.
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The method proposed in this chapter is based on the modeling of the occupancy

map generation that explains the particular star shape present around this object.

This allows to derive the proposed detection method.

Let us consider the section 3.2.4 about the multi-camera occupancy maps and

estimation. Let us suppose that an arbitrary 3D shape is present on the ground

plane. It produces foreground masks in each camera view i which are projected

on the occupancy map, as explained in equation 3.3. We can model the pres-

ence of a 3D object in the occupancy map. This object can be a cylinder, cube,

pyramid or another shape. The selection of shape depends upon the object to be

detected. At each location in the world, a 3D object on the ground plane Xo, Yo

corresponds to a specific occupancy map, referred as the kernel. To this end, the

(a) View 1 (b) View 2

(c) Multi-camera Occupancy Map

Figure 4.2: Illustration of the multi-camera occupancy map and primitive
based detection using two views of the PETS 2007 dataset. The occupancy
map contains a star pattern corresponding to the person. The arrow points
out a case of projection from outside the Area of Interest (AOI) affecting

the occupancy map.
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presence of an object at position (Xo, Yo) on the ground plane generates a ker-

nel KXo,Yo,P,V,S,θ(x, y), defined in the same Area of Interest (AOI) as that of the

occupancy map, depending on:

• Xo, Yo, the position of the 3D object,

• θ, the orientation of the object,

• P , the set of planes Pz used to compute the occupancy map (equation 3.3),

• V the different camera views, including camera configuration, geometry,...

• S the shape of the object

For this particular work focusing on people, primitives are selected as cylinders.

As this shape is symmetric according to the vertical axis, and as we only consider

cylinder in this application of people detection, the notation of the kernel can

be simplified with KXo,Yo,P,V(x, y). Figure 4.3 shows four kernels generated at

different locations (Xo, Yo) of the 3D cylinder and two cameras. These kernels are

computed offline.

(a) (b)

(c) (d)

Figure 4.3: Example of kernel generated at different locations for a 3D
cylinder and 2 cameras

Now, suppose that several people are standing on the ground floor. We can model

their presence by a 2D function D(x, y) which is the summation of 2D Dirac delta

functions δ(x, y):
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D(x, y) =
n∑
i=1

δ(x−Xi, y − Yi). (4.1)

where (Xi, Yi) are the coordinates of the n people. Ideally, the occupancy map,

that reflects the probability of presence for each location, should be equal to this 2D

function D(x, y). But as shown earlier, the process involved in its creation induces

particular shapes around the people; these shapes called kernel as introduced

before. So, the occupancy map can be mathematically modelled as the summation

of convolution between the Dirac functions and the kernels:

OP,V(x, y) =
n∑
i=1

δ(x−Xi, y − Yi) ∗KXi,Yi,P,V(x, y) (4.2)

4.3 People Detection

4.3.1 Deconvolution

Using this formulation, people detection consists in finding the different locations

{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, knowing the occupancy map OP,V(x, y) and the

kernels KXo,Yo,P,V(x, y) for all positions (Xo, Yo). This can be achieved by the

deconvolution of OP,V(x, y) followed by a peak extraction process. However, as

the shape of the kernel changes according to the position, we have to make a

deconvolution of the whole image for each pixel, just changing the kernel used for

the deconvolution, and keeping only the result for the considered pixel. This step is

too computationally expensive to be implemented and thus approximate solutions

have to be found. Even if correlation seems to be appropriate to solve this problem,

we introduce another measure based on the intersection of the shapes and inspired

from the intersection of histograms [74]. Assuming that the scene is not of overly

dense crowds, this measure is utilized as an estimation of the deconvolution:

D̂(X, Y ) =
1

‖KX,Y,P,V(x, y)‖max

∑
x

∑
y

min(KX,Y,P,V(x, y),OP,V(x, y)). (4.3)
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where ‖KX,Y,P,V(x, y)‖max is the max-norm [75]. D̂K(X, Y ) searches for any ev-

idence of local matching and proceeds further by normalizing it with respect to

the global kernel space. Actually, the size of the kernel KX,Y,P,V(x, y) changes ac-

cording to the studied location (X, Y ). This measure is further justified in section

5.3 and its utilisation is validated in Table 5.1. There exists a trade-off between

the detection accuracy and the computational processing defined by the number of

samples over which the similarity is computed. Higher number of samples produce

a sharper response at the cost of the time required. This measure is quantitatively

analyzed in section 5.5.1. Its principal advantage is to manage the case where

several people are present in the scene.

By detecting in this way, we manage directly all problems by detecting people and

avoiding ghosts:

• at a location where a person is present, the shape in the occupancy map and

the shape of the kernel are similar. Thus an important value of D̂(X, Y ) is

obtained.

• at a location where no one is present, there is no shape in the occupancy

map. Thus a small value of D̂(X, Y ) is obtained.

• at a location where a ghost is present in the occupancy map, we suppose

that the shape in the occupancy map and the shape of the kernel are not

similar leading to a small value of D̂(X, Y ).

Figure 4.4 shows the whole process on an image of the PETS 2006 sequence with

first the original images of both cameras (a) and (b). Then the foreground masks

for each view are presented as well as the Area of Interest projected on this view

(c) and (d). Figure (e) shows the real occupancy map computed from foreground

images. Figure (f) presents the kernel computed with a 3D cylinder localized at

the position of the people (the position has been manually selected for illustration.

In the algorithm, a kernel is computed for all location). Figure (g) presents the

result of the approximate deconvolution estimated using a similarity measure as

explained equation 4.3.

A final step is necessary on the deconvoluted image: the selection of local maxima

that leads to the positions of the people {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} in the

scene.
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(a) Image
View 1

(b) Image
View 2

(c) Foreground
Mask View 1

(d) Foreground
Mask View 2

(e) Occupancy Map (f) Kernel Profile (g) Normalized
Template Similarity

(h) Results
View 1

(i) Results
View 2

Figure 4.4: Illustration of the various stages of the proposed algorithm.
(Top two rows) Two views of PETS 2006 dataset, and their corresponding
foreground masks. The boundaries represent the Area of Interest (AOI).
The person is modeled by a 3D cylinder. (Third row) The occupancy
maps obtained from the foreground masks, the kernel profile of the cylinder
generated using the camera calibration, and the corresponding estimated
deconvolution. (Bottom) The results obtained. The bounding box around
the person represents the ground truth, and the circle marks the estimated
detection. The proposed analytical model induces a maximum response for
the object centre and the estimated detection is the result of this maxima

selection in the estimated deconvolution.
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4.3.2 Maxima Selection using Watershed

The template similarity image D̂(X, Y ) does not resemble to the required com-

bination of Dirac delta responses (see Figure 4.4(g)). The result is a distribution

consisting of several modes for which it is necessary to estimate the maxima to

obtain the number of objects or people, and their locations on the ground plane.

This step of maxima extraction is done using the watershed principle as it presents

some advantages in this application.

Watershed is a concept in the field of geography - it defines the ridge which sepa-

rates the regions drained by two separate rivers. This ridge is called the watershed

line. The two separate drainage entities formed are called the catchment basins.

The watershed transform applies this reasoning to the domain of image processing.

It is popular for the problems of image segmentation.

Algorithm 1 Watershed based maxima selection

• Calculation of the local maxima in 8×8 pixel neighborhood blocks

• Sorting of the local maxima in descending order

• Perform flood-fill algorithm for each local maximum corresponding to the
tolerance threshold

• Maxima in the already filled regions are discarded

• If several maxima occur in a flood-fill region; then, calculate the geometric
center

In order to understand the watershed transform, we need to imagine the two-

dimensional grayscale image in the form of a topological surface. In this topological

surface, the height is defined by the grayscale values of the image. Let us imagine

this topological surface as in the Figure 4.5. Further, we hypothesise rainfall over

the 3D surface. The water falling on this surface is collected in the two catchment

basins. The watershed transform locates the watershed lines and the catchment

basins in the grayscale image. This then solves problems such as the mode retrieval

or the segmentation of the images. But it is necessary to define a way in which

the grayscale image can be represented in the form of a topological surface.

If we look at the Figure 4.4(g), and imagine it as a 3D surface (see Figures 4.5

and 4.6), it looks like a mountain. But by inverting this surface, a catchment basin
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Figure 4.5: The catchment basins created with the watershed transform
process. Reproduced from [76].

appears at the location of people. So, watershed theory can be applied to solve

our problem of maxima detection and, more particularly, a modified version of the

watershed transform with markers [77].

Keypoints are first initialized at the local maxima of the template similarity image

D̂(X, Y ) calculated using 8×8 pixel blocks. These local maxima are sorted in

descending order and inverted to define the markers (Figure 4.6). Flood-filling

is then performed with these markers that are kept only if their topographical

D

x

local maxima

(a)

watershed regions

crest

1
2 3

x x x
D

x

(b)

Figure 4.6: One-dimensional illustration of the keypoint extraction based
on the watershed transform applied to the local maxima. (a) Local maxima
are extracted on an arbitrary distance field D. (b) Inverted local maxima
are treated as markers on which the marker based watershed transform is
applied. The crest here acts as the watershed line and is defined by the τ

parameter. The local maxima must be the greatest value in its region. In
case of multiple similar local maxima, the geometric centre is taken as the

keypoint location.



Chapter 4. Multi-camera Occupancy Map Deconvolution 48

Algorithm 2 People detection by deconvolution

1: for all X of the occupancy map do
2: for all Y of the occupancy map do
3: compute the local kernel KX,Y,P,V (x, y) (parameter: �)
4: end for
5: end for
6: for all time k do
7: compute the occupancy map OP,V (X, Y )
8: for all X of the occupancy map do
9: for all Y of the occupancy map do

10: compute the template similarity i.e. D(X, Y ) using Equation 4.3
11: end for
12: end for
13: local maxima using watershed, removing multiple ambiguities (parameter:

τ)
14: end for

prominence is greater than a tolerance threshold τ. τ accounts for the maximum

distance between two maxima to conclude that they are from the same watershed

regions. So, the number of detected keypoints decreases as τ increases. Further,

if multiple similar local maxima exist in one catchment basin then we define the

resulting keypoint at their geometric centre. The τ value is directly linked to

the number of watershed regions that are detected. By increasing the value of τ

the watershed regions are likely to be fused. A 1D illustration of this process is

shown in Figure 4.6 and the whole procedure is summarized in Algorithm 1. The

implementation of the algorithm is publicly available2.

4.4 Experimental Results

The whole method introduced in this chapter is referenced as MOD in the fol-

lowing, for Multi-camera Occupancy map Deconvolution. Before presenting the

results, let us introduce the studied database and the evaluation measures.

2The executable is available at: http://imagej.nih.gov/ij/download.html. The find max-
ima plugin with ‘point selection’ output type is used.

http://imagej.nih.gov/ij/download.html
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4.4.1 Dataset

We have used a subset of City center sequence from PETS 2009 dataset [28] as

defined in [58, 59]. The evaluation sequence contains 400 outdoor scene images

obtained from three camera views (see Figure 4.7) and representing approximately

1 minute of video. We use the same scenario as [58] and, from the available views

we selected cameras with large fields of view (Cameras 1, 2, and 3). We use the

Area of Interest (AOI) of size 12.2 × 14.9 m2 as defined in the dataset and as

shown in Figures 4.12, 4.13 and 4.14. The ground truth annotations are obtained3

from the same authors [58, 59] Only people inside the Area of Interest AOI are

considered. They are defined as:

• the annotations of the ground truth are enlarged by a 25 cm buffer in order

to manage imprecision

• more than 50% of the ground truth area must be inside the AOI. Other

people are thus not considered in the evaluation

Camera calibration and time synchronization errors are present in the dataset as

specified in [28, 58]. We also encountered this problem as shown for example in

Figure 4.8. We projected a cylinder of unit radius. It can be noticed that the

projections do not converge to one point. For this dataset, the maximum number

of people simultaneously monitored in the AOI is 8.

3The dataset and ground truth is available at: http://web.eee.sztaki.hu/~ucu/3dmpp/

gt_citycenter.tar.gz.

Figure 4.7: Location of PETS 2009 cameras on Google Maps [28]. Cameras
1, 2, and 3 are used.

http://web.eee.sztaki.hu/~ucu/3dmpp/gt_citycenter.tar.gz
http://web.eee.sztaki.hu/~ucu/3dmpp/gt_citycenter.tar.gz
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Figures 4.9 and 4.10 show some frames across the three camera views of the PETS

2009 dataset. The dataset contains scene with full and partial occlusions, e.g.

the person occluded by the post lighting (see Figure 4.9(a)), or the person barely

noticeable behind the tree (see Figure 4.9(c)). The third view suffers from heavy

clutter due to the tree. There is also significant color variation in the third view

compared to the other two views (e.g. see Figures 4.9(a) and 4.9(c)).

4.4.2 Evaluation Measures

In order to compare our algorithm with the other ones, and to tune the parameters

of our method, we need to quantitatively evaluate our results.

For this, we need a ground truth that can be available or manually obtained. Thus,

let us assume that we know the real ground occupancy of people in the scene

represented by a rectangle Ri covering the area of each individual person across

the two legs. These rectangular areas are present in both the real world coordinate

system and the image coordinate system of each camera view. Furthermore, let

us assume that these ground truth rectangles are immune to the effects of the

calibration or time synchronization errors.

Figure 4.8: Illustration of a line-based kernel not converging to a singular
point due to the calibration, time synchronization errors. Further details
of the quantized impact of this error on PETS 2009 dataset can be seen

in [78].
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(a) View 1

(b) View 2

(c) View 3

Figure 4.9: Frame 683 from PETS 2009 dataset. Notice the occlusion
introduced by the post lighting in the View 1. The proposed algorithm is
designed to handle such partial occlusions. Notice also the heavy clutter
for person behind the tree in View 3. Color variation across the camera

views can also be seen.
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(a) View 1

(b) View 2

(c) View 3

Figure 4.10: Frame 752 from PETS 2009 dataset. This particular frame
shows cases of full and partial occlusion.
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For numerical comparison, we define the concepts of matching the rectangles

{R1, R2, . . . , Ri, . . . , RM} in the ground truth to the estimated position of pedestri-

ans {(X1, Y1), (X2, Y2), . . . , (Xj, Yj), . . . , (Xn, Yn)}. Then, and as proposed by [58],

a match function m(i, j) is defined such as:

• m(i, j) = 1 if (Xj, Yj) is inside the rectangle Ri.

• m(i, j) = 0 otherwise

Then, the Hungarian algorithm [79] is employed to find the best association and

make the final matching A = [a(i, j)] such as:

• a(i, j) = 1 if the detection i is associated to the jth rectangle of the ground

truth.

• a(i, j) = 0 otherwise

From this matrix, Utasi et al. [58] define four measures:

• The False Detections (FD). This measure counts the number of detection

without corresponding rectangle in the ground truth as it can be seen (see

Figure 4.11(a)).

• The Missed Detections (MD). This measure counts the number of rectangle

of the ground truth not assigned to a detection as illustrated Figure 4.11(b).

• The Multiple Instances (MI). This measure counts the number of times that

several detection are assigned to the same rectangle of the ground truth

(Figure 4.11(c)).

• The total error (TE). This measure is simply the sum of FDs, MDs, and

MIs.

These measures allow the definition of the four parameters defined by [58] and

used in this thesis for comparison as explained below.
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(a) A False Detection represented
by a cross and two good detection

represented by circles

(b) Missed Detection: the rectangle
of the ground truth is not associ-

ated to a circle

(c) Multiple Instances: a circle and
a cross associated to the same rect-

angle

Figure 4.11: Example of detection errors. The rectangle represents the
ground truth, the white circle represents a good detection the white cross

represents a bad detection.

False Detections Rate (FDR)

The False Detections Rate (FDR) is the ratio of the detections not corresponding

to a person to the total number of rectangles present in the ground truth:

FDR =
FD

M
=

#{(Xj, Yj) :
∑n

i=1 a(i, j) = 0}
M

(4.4)
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where M is the number of people really present and #F is the cardinal of the set

F . It should be noted that the FDR may exceed 1.

Missed Detections Rate (MDR)

The Missed Detections Rate (MDR) is the ratio of the number of people which

are not detected to the total number of rectangles present in the ground truth:

FDR =
MD

M
=

#{Ri :
∑M

j=1 a(i, j) = 0}
M

(4.5)

Here, MDR ≤ 1.

Multiple Instances Rate (MIR)

The Multiple Instances Rate (MIR) is the ratio of number of people detected

multiple times in a frame to the total number of rectangles present in the ground

truth. Here, MIR ≤ 1.

FDR =
MI

M
=

∑M
j=1max(0, a(i, j)− 1)

M
(4.6)

Here, MIR ≤ 1.

Total Error Rate (TER)

The Total Error Rate (TER) is the sum of FDR, MDR and MIR:

TER = FDR +MDR +MIR (4.7)

Because FDR can exceed 1, therefore TER may also exceed 1.

It should be noted that the evaluation measure heavily penalises imprecision on

the location of the person, i.e. it generates both a false detection and a missed

detection4.

4The evaluation code is available at: http://web.eee.sztaki.hu/~ucu/3dmpp/.

http://web.eee.sztaki.hu/~ucu/3dmpp/
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Table 4.1: Comparison of the proposed approach based on the Multi-
camera Occupancy map Deconvolution (MOD) and an approach without
pruning. The parameter sets are such that the TER is minimized for both

method.

Sequence Method TER FDR MDR MIR

PETS 2009
Without pruning 0.36 0.29 0.05 0.02
MOD 0.13 0.03 0.10 0.00

4.4.3 Results

First, we present the experimental setup for our proposed algorithm. We model

people with 175 cm high 3D cylinders as regularly done in literature [23, 58,

59]. The planar heights used to compute occupancy maps Pz are 211 planes, one

plane for each centimeter between 0–210 cm, covering the range of possible human

heights. The occupancy maps remain the same throughout this chapter and are

generated at a 2 cm grid resolution.

In a first time, we compare in Table 4.1 our method with a simple detection

based on a thresholding on the occupancy map. As expected, the number of false

detection is considerably smaller. This proves that the proposed approach is able

to manage the ghost phenomenon. The results on three images are presented in

Figures 4.12, 4.13 and 4.14, where the rectangle is the bounding box in the ground

truth and the white circle is the detection.

Furthermore, we have compared in Table 4.2 our method to five of the state-of-

the-art techniques:

• Two methods proposed by Ren et al (Ren eq 6 and Ren eq 7). [14]

• Probabilistic Occupancy Map (POM) [23]

• 3D Marked Point Process (3DMPP) model [58, 59]

• Multiple Scene Plane Localization Method (MSPL) [13]

The results for POM and 3DMPP are reported from [58]. For MSPL, instead of

a simple thresholding, we have extended the method in [13] to perform people

detection by applying the same maxima detector to the occupancy maps.

We show that two methods proposed by Ren et al. [14] are unable to account for

views with high variations of color. It is logical as both methods are based on color
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(a) View 1

(b) View 2

(c) View 3

Figure 4.12: Results obtained on Frame 593 from PETS 2009 dataset. No-
tice the clutter introduced by the tree especially in View 3. The algorithm

shows robustness to the color variation across the camera views.
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(a) View 1

(b) View 2

(c) View 3

Figure 4.13: Results obtained on Frame 683 from PETS 2009 dataset.
Notice that the occlusion introduced by the post lighting in the View 1 is

handled.
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(a) View 1

(b) View 2

(c) View 3

Figure 4.14: Results obtained on Frame 752 from PETS 2009 dataset.
This particular frame shows cases of full and partial occlusion.
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constancy. If we consider TER, it can be observed that we obtain improvements

over MSPL and POM methods in PETS 2009. It remains close but does not

surpass the performance compared to 3DMPP.

For the proposed MOD algorithm, Figure 4.15 shows TER plotted as a function

of the τ and � parameters. � performs 3D reasoning whereas τ performs local

analysis in the kernel space. The � parameter fits to the specific radius of the

pedestrians in the dataset (around 50 cm). The value of τ constraints two detec-

tions not to be too close. As in Figure 4.15, the best result for minimized TER is

obtained for τ = 55.

The process used to detect people is based on the principle of deconvolution. A

true deconvolution with a space-varying kernel is not possible due to the computa-

tional constraints. This step is, therefore, approximated by a template similarity

measure as presented in equation 4.3. This step is necessary as proved in Ta-

ble 4.1 to avoid false detections due to ghost. However, this deconvolution step

blurs the occupancy map and especially around the object-of-interest locations.

For example, Figure 4.16 shows examples of the blurring effect observed across

various images. This can also reflect towards the higher MDR rate in Table 4.2.

This drawback led us to reconsider the method and propose a second method,

presented in the following chapter.

10
15

20
25

30
35

40
45

50
55

60

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

1

2

3

4

τ (pixels)
ø (m)

T
E
R

Figure 4.15: Evaluation of the MOD method with different parameter
settings. Total Error Rate (TER) as a function of the τ and � parameters

for PETS 2009.



Chapter 4. Multi-camera Occupancy Map Deconvolution 61

Table 4.2: Comparison of the proposed Multi-camera Occupancy map De-
convolution (MOD) method with the Multiple Scene Planes Localization
(MSPL) method [13]. The parameter set is such that the TER is mini-
mized. For MSPL: τ = 35. For MOD and PETS 2009: � = 0.50, τ = 55.

Sequence Method TER FDR MDR MIR

PETS 2009

Ren eq6 [14] 0.88 0.20 0.68 0.00
Ren eq7 [14] 0.89 0.20 0.69 0.00
MSPL [13] 0.28 0.18 0.10 0.00
POM [23] 0.25 0.18 0.07 0.00
3DMPP [58] 0.12 0.02 0.10 0.00
MOD 0.13 0.03 0.10 0.00

Like other projective methods relying on homographic occupancy constraints: the

proposed algorithm is also influenced by the height of the cameras. We may study

the two extreme cases. First, when cameras are at extremely low heights, then,

the algorithm provides imprecise detections, yet precise height estimations. In

the other extreme, when cameras are at the extreme top, the algorithm provides

precise detections, but, imprecise height estimations. Thus, the results can further

be improved with the increased height of the cameras or the introduction of another

camera with increased height.

4.5 Summary

We have proposed a robust approach for performing people detection using multi-

view reasoning in the multi-camera occupancy maps that avoids the problem of

ghosts. We model the occupancy map by a convolution of 2D Dirac function and

spatially varying kernel. This kernel depends upon the properties of an assumed

3D geometric primitive, the position and the camera parameters. Moreover, this

allows to formalize the detection problem as a deconvolution that provides the

object locations. We further introduce a novel parallelized approximation of the

deconvolution, specific to our kernel responses.

In terms of computational efficiency, the kernel generation step is time consuming

but is performed offline, as the camera configuration does not change. For one

diameter: the generation of 609×745 kernels using 211 planes takes approximate

5 days on a 64-core implementation. The computational times further increase

with the diameter of cylinder; 50cm taking approximate 7 days. Similarly, for one
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diameter, the estimated deconvolution step for 395 frames takes around 3 days

to complete with our current implementation; however, this was performed with

a single-core implementation. Combination of MATLAB, C++ and Java codes

have been utilised. It is important to emphasise here that we have not focused on

strict algorithmic efficiencies during the course of this thesis. Conversion of all the

code into C++, memory optimizations (instead of disk writes), and a multi-core

or GPU implementations (such as [31]) may result in real-time performances.

To improve the computational speed efficiency and to account for the blurring

effect, we propose another idea in the following chapter. Instead of performing

object modeling, we could first identify the relevant keypoints in the occupancy

map. Once these points are identified, then we can use an idea similar to the

template similarity measure in order to focus on ghost pruning. The identification

of key locations in the beginning can lower the computational loads. We now

introduce this proposition, based on the principle of hypothesis validation, in the

next chapter.
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(a) Occupancy Map (b) Template Similarity

(c) Occupancy Map (d) Template Similarity

(e) Occupancy Map (f) Template Similarity

Figure 4.16: Illustration of several images showing the blurring effect in-
troduced in the occupancy maps due to the proposed approach.





Chapter 5

Ghost Pruning in the

Multi-camera Occupancy Maps

5.1 Introduction

In this chapter, we present another method for multi-camera people detection

based on the multi-view geometry and shape analysis performed on the occu-

pancy maps. As in the previous chapters, we propose to create an occupancy

map by the projection of foreground masks across all camera views on the ground

plane and the planes parallel to the ground. This leads to significant values on

locations where people are present, and also to a particular shape around these

values. Moreover, a well-known ghost phenomenon appears i.e. when shapes cor-

responding to different persons are fused then false detections are generated. The

first method proposed in this thesis models the process of occupancy map gen-

eration by a convolution of 2D Dirac functions and space varying kernel. People

detection is then directly obtained with an approximation of deconvolution. This

method improves detection results by avoiding ghosts but has two main draw-

backs. (i) The deconvolution process involves a blurred effect on the occupancy

map. (ii) The deconvolution is done for each pixel of the occupancy map with a

kernel specific to this position, leading to important computation times. Thus, in

this chapter, we begin with a robust detection of the candidate locations, namely

keypoints, from the occupancy map based on a watershed transform. Then, in

order to reduce the false positives, mainly due to the ghost phenomena, we check

if the particular shape, for a person, is present or not. This shape, that is different

64
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Figure 5.1: Block diagram for detection process by shaping the occupancy
maps across the keypoints. Here synergy shape model refers to the pro-

posed synthetic shapes.

for each location of the occupancy map, is synthesized for each keypoint, assuming

the presence of a person, and with the knowledge of the scene geometry. Finally,

the real shape and the synthetic one are compared using a similarity measure that

is similar to correlation. Another improvement proposed in this chapter is the use

of unsupervised clustering, performed on the measures obtained at all the key-

points. It allows to automatically find the optimal threshold on the measure, and

thus to decide about people detection.

Figure 5.1 shows the block diagram for the proposed algorithm. As in the previous

chapter, the proposed method makes use of the foreground masks obtained with

the background subtraction method. The silhouettes are projected across multiple

planes parallel to the ground plane. These projections are then merged to produce

the occupancy map that has significant values at the locations corresponding to

people or ghosts. Details on this part can be found in Chapter 3. We now proceed

to the definition of keypoints in the following section1.

5.2 Keypoint Extraction in the Occupancy Map

The first step consists in extracting locations of the occupancy map with impor-

tant values denoted as keypoints. In order to be robust to noise and to impose

a minimal distance between keypoints, the watershed based maxima selection al-

gorithm (Algorithm 1) is employed. It leads to a set P = {pn}, n = 1 . . . N , of

N keypoints that can correspond to people or ghosts. Actually, we know that

ghosts may be detected as there are high probability locations other than the ob-

jects represented in the ground truth. Ghosts occur as a result of the intersection

1A part of this chapter appeared in the proceedings of the 10th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2015 [80].
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of non-corresponding regions along the lines joining the camera centers and the

object of interest. Therefore, a step is now necessary to distinguish between real

people and ghosts.

5.3 Ghost Pruning with Shape Analysis

Some false positives or ghosts appear in the set of keypoints obtained (see Fig-

ure 3.12). Evans et al. [24] found that the ghost detections are probable along the

lines from the camera centre to the centre of the objects of interest, intuited as

“star” shape aound the object location, having “streaked legs” corresponding to

the lines (see Figure 3.12). In this work, we propose a novel model that plays a

role in ghost pruning using the shape cues defined around these “star” shapes and

“streaked legs”. Liu et al. [81], for robust auto-calibration, models the pedestrian

blobs using two end points of the axes of the ellipses, represented by the vanishing

point and estimating the 3D blob heights resembling the real world distribution

of human heights. Following this, we define a shape for each person, represented

by the longitudinal axis of a cylinder in the 3D coordinate system of the scene as

represented in Figure 5.2(b).

Let us assume that the people are standing on a flat ground. We monitor a

rectangular Area of Interest (AOI) in the P0 ground plane, and we attempt to

model the shape of each possible pedestrian in P . Thus, the free parameters of

the given longitudinal axis of the cylinder are its coordinates p = (x, y) in the

ground plane and its length L. This is illustrated in Figure 5.2(b).

We employ a discrete space of objects in the ground plane of the AOI, consisting of

SW×SH locations. For each keypoint pn detected in this space, synthesized camera

views In,v are generated using the camera calibration matrices. In,v corresponds

to the projection of the longitudinal axis situated at pn in the camera view v . Let

In denotes the set of synthetic images created for the keypoint pn:

In = {In,v} , v = 1 . . . V. (5.1)

All these images are projected on the ground plane P0 and several planes Pz

parallel to the ground planes with different heights z. Let us denote Pn,v,Pz the
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(a) Camera View 1

(b) Synthetic View

Figure 5.2:
(a) Original image

(b) Longitudinal axis (in red) of a 3D cylinder modeling the person. The
height of this axis is denoted by L.

projection of In,v on the plane Pz. All these projections are fused, as detailed in

equation 3.3, to produce a synthetic occupancy map SOn(x, y).

The goal here is to use the fact that a person generates not only a significant

value in the occupancy map but also a particular shape around this point — a

shape that is not present in case of a ghost. Illustration of synthetic occupancy

maps SOn(x, y) are presented in Figure 5.4 where the synthesized models [see Fig-

ures 5.4(a)-(c)] have more similarity with the real occupancy map, as compared to

the ghosts [see Figures 5.4(d)-(f)]. In visual terms, we may consider these synthe-

sized occupancy maps as asterisk. However, for ghosts, streaks of the asterisk in
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Figure 5.3: Justification of the intersection measure between forms: when
several people are present, a simple correlation measure is perturbed by
the legs of the star shape produced by the other persons (white ellipse).

the real occupancy map are inconsistent with the streaks of the synthesized occu-

pancy map patterns, pointing towards a probable anomalous detection. Thus, it

seems that ghost removal can be achieved by comparing real and ideal asterisks.

Therefore, for each keypoint pn, we generate a synthetic occupancy map SOn(x, y),

that corresponds to the occupancy map to be observed if a person is present at

the location pn: the person is modeled by a vertical line, the axis of a cylinder,

with height L (see Figure 5.2). By comparing SOn(x, y) to the real occupancy

map O(x, y), we can define a similarity measure D̂n associated to the keypoint pn

between the shapes. Two similarity measures have been proposed. The first one,

is the simple 2D correlation defined as:

D̂n =

∑
x

∑
yO(x, y)SOn(x, y)∑
x

∑
y SOn(x, y)

(5.2)

The second measure looks like an intersection between the two shapes and is

inspired from histogram intersection [74]:

D̂n =

∑
x

∑
ymin(O(x, y),SOn(x, y))∑

x

∑
yO(x, y)

(5.3)

This last measure is justified when several people are present in the scene (Fig-

ure 5.3). Indeed, a simple correlation measure is affected by important values of

the occupancy map induced by the legs of the star shape produced by these people.
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(a) Person (b) Person

(c) Person (d) Ghost

(e) Ghost (f) Ghost

Figure 5.4: Illustration of the proposed method on frame 593 of the PETS
2009 dataset. The Occupancy Shape Model is represented by the green
color whereas the occupancy maps are red. It can be observed that the
overlap between both is higher for the persons (a),(b),(c) versus the ghosts

(d),(e),(f).
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These two measures D̂n can be understood as the confidence of the hypothesis

that a person is present at the keypoint pn.

5.4 Detection based on thresholding

A threshold must be estimated on D̂n to decide if the keypoint pn corresponds to

a real person or a ghost. Rather than to optimize it according to the ground truth,

we decided to setup a step to automatically fix the threshold. Given a particular

cameras configuration, this allows to obtain an autonomous system that adapts

itself to each application. So, given the similarity measures distribution over a

dataset, we can proceed towards univariate cluster analysis to group the similarity

measures into class intervals corresponding respectively to people and to ghosts.

Cluster analysis is an unsupervised learning technique which uses a set of unlabeled

data as input and tries to determine an intrinsic grouping in the set. Due to cluster

analysis, the decision threshold for a keypoint pn, to be a person or a ghost,

is automatically computed. Most clustering or vector quantization algorithms

can be classified into partitional or hierarchical algorithms [82] (see Figure 5.5).

Hierarchical clustering algorithms do not require pre-specification of the number of

clusters, are primarily deterministic, but computationally expensive. Partitional

or flat clustering algorithms define a set of disjoint clusters and are suited for large

datasets where computational efficiency is important. However, as no consensus

is present on this issue [83], therefore, we use both partitional and hierarchical

methods.

For hierarchical clustering, we use the Unweighted Pair Group Method with

Arithmetic Mean (UPGMA) agglomerative clustering method [84] with an Eu-

clidean distance for the generation of the distance matrix. The UPGMA algorithm

constructs a rooted tree (dendrogram) that reflects the structure present in a pair-

wise similarity matrix (or a dissimilarity matrix). At each step, the nearest two

clusters are combined into a higher-level cluster. The distance between any two

clusters A and B is taken to be the average of all distances between pairs of objects

“x” in A and “y” in B, that is, the mean distance between the elements of each

cluster. We select UPGMA clustering because it provides a suitable trade-off be-

tween the complete-link method’s sensitivity to outliers, and, single-link method’s

sensitivity to form dendogram chains longer than the intuitive notion of compact
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and spherical clusters. The work in [85] also selects agglomerative clustering tech-

nique for human detection in 3D space.

For partitional clustering, we use two methods:

• the univariate Kernel Density Estimation (KDE) with Epanechnikov ker-

nel [86] and local minimum to separate the clusters.

• the Mixture of Gaussians Expectation Maximization (MoG-EM) method

(univariate, unequal variance) [87]. In this case, we assume as a priori that

the number of real objects exceed ghosts, hence we can have a distribution

for ghosts with lower variance, centered around a mean corresponding to the

lower measure of similarity.

Figure 5.5: Taxonomy of data clustering techniques. Reproduced
from [82].

Algorithm 3 People detection by ghost pruning in multi-camera occupancy maps

1: for all X of the occupancy map do
2: for all Y of the occupancy map do
3: compute the synthetic occupancy map SOn(x, y) (parameter: L)
4: end for
5: end for
6: for all time k do
7: use the watershed algorithm to extract keypoints pn (parameter: τ)
8: for all the keypoints do
9: compute the similarity measure D̂n using Equation 5.3

10: end for
11: end for
12: automated thresholding for detection (univariate unsupervised clustering)
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Table 5.1: Comparison of the different similarity measures. The best pa-
rameters for minimum TER are used. Parameters: τ = 31 pixels, L =

175cm.

Method TER FDR MDR MIR
Intersection Eq. (5.3) 0.076 0.025 0.051 0.000
Correlation Eq. (5.2) 0.096 0.043 0.053 0.000

Hierarchical clustering is more suited to our univariate data because it doesn’t

have enough structure, relative to multi-dimensional data, and the computational

costs are not important. Moreover, KDE requires a bandwidth specification, while

a prior has to be defined in the case of MoG-EM method. For all three methods,

we suppose a priori that the data are divided into two classes or clusters. Results

of the three algorithms are presented in the following section.

5.5 Results on PETS 2009

The method presented in this chapter is denoted as OSM, i.e. Occupancy Shape

Matching, in the following. As in Chapter 4, we present first the experimental

setup. The foreground masks are generated using the default parameters as defined

in [71]. Multi-planar projections are generated at a constant 2 cm resolution as

proposed in [71]. For similarity with [23, 58, 59], we fix the height L to 175 cm,

and the occupancy maps are generated for 56 different planes between 155 and

210 cm. The proposed method has thus only one free parameters: the tolerance

threshold τ . This is an important advantage compared to other methods that have

several parameters [58, 59].

5.5.1 Study of the similarity measure

We present two ways to compare real occupancy map and synthetic one (see Equa-

tions 5.2 and 5.3). In this section, we evaluate these two measures. Evaluation

results are presented in Table 5.1.

The best results are obtained for computations based on the similarity measure

that uses shape intersection. Therefore, we focus only on this similarity measure

in the following.
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5.5.2 Influence of the parameter τ

The proposed method has only one parameter: the parameter τ used to detect

keypoints with the watershed algorithm. Moreover, we fix the height of people

to L = 175 cm as often done in literature [23, 58, 59] (even if all persons do not

measure 175 cm) and we study the influence of both parameters on the performance

of the detection. Figure 5.6(a) shows Total Error Rate (TER) plotted as a function

of τ and L parameters. We observe that the TER depends mainly on τ parameter.

Higher values of τ tend to merge all the keypoints, and the lower values tend

to introduce multiple keypoints for the same “star” shape. The parameter L

seems to have no influence on the TER. We also draw the Precision/Recall and

ROC curves for different L values in Figure 5.6(b). These last curves have been

obtained by fixing τ to its optimal value (τ = 31 pixels) found in Figure 5.6(a)

and varying the detection threshold. The curves show a small improvement when

L increases. In the following, we keep L to 175 cm for three reasons. (i) This

value is commonly used in literature. (ii) This is the average height of human.

(iii) This parameter seems to have no influence when using the detection based

on an automatic threshold selection.

5.5.3 Influence of the methods used to select the optimal

threshold

In section 5.4, we present three clustering techniques to select the optimal threshold

for detection. It can be observed from Table 5.3 that the results remain consistent

in spite of the clustering technique used. So, in the following, we use the UPGMA

method that is the simplest to use.

Table 5.2: Comparison of proposed OSM with other techniques using the
best parameters to minimize TER. Parameters: τ = 31 pixels, L = 175

cm.

Sequence Method TER FDR MDR MIR

PETS 2009

MSPL [13] 0.28 0.18 0.10 0.00
POM [23] 0.25 0.18 0.07 0.00
3DMPP [58] 0.12 0.02 0.10 0.00
OSM 0.08 0.03 0.05 0.00
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5.5.4 Comparison with other works

We have compared our method to three others of the state-of-the-art techniques:

• POM [23]

• 3DMPP [58]

• MSPL [13]

The results of the four algorithms are reported in Table 5.2. Considering TER,

we observe a 4% improvement versus 3DMPP, 17% versus POM, and 20% ver-

sus MSPL. All the algorithms have a negligible Multiple Instances Rates (MIR),

approximately zero. However, the proposed approach presents now a really small

False Detection Rate (0.03) combined with a small Missed Detection Rate (0.05).

Let us recall that without ghost removal, and thus by considering all the keypoints

detected by the watershed algorithm as people, the False Detection Rate was 0.291

(Table 4.1). This proves that the last step, which compares real occupancy map

and the synthetic ones, is effective in removing the ghosts.

Figures 5.7, 5.8, and 5.9 show the successful detection obtained with our algorithm

in challenging scenarios. Figure 5.7 shows the phenomenon of people outside the

AOI affecting the results. In this case, the detection outside the AOI can simply

be pruned with the location priors. However, our algorithm also accounts for

extended erroneous detection inside the AOI. Figure 5.10 shows an example of a

frame with missed detection.

Table 5.3: Comparison of the different clustering techniques. The best
parameters for minimum TER are used. Parameters: τ = 31 pixels, L =

175 cm, and for KDE, the bandwidth of the kernel is 0.04.

Method TER FDR MDR MIR
KDE 0.077 0.026 0.051 0.000
MoG-EM 0.076 0.025 0.051 0.000
UPGMA 0.076 0.025 0.051 0.000
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Figure 5.6: Evaluation of the proposed Occupancy Shape Model with dif-
ferent parameter settings. (a) Total Error Rate (TER) as a function of
the τ and L parameters. (b) Precision/Recall curves and (c) Receiver

Operating Characteristic (ROC) curves in function of L.
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(a) View 1

(b) View 2

(c) View 3

Figure 5.7: Results obtained on frame 593 of the PETS 2009 dataset. The
clutter and color variation is accounted for. We show a detection out-
side the Area of Interest (AOI). These detections occur due to the people
present outside the AOI. In this particular case, they are simply avoided
as being outside the AOI. However, our method also shows robustness to

the phenomena which occur inside our space of interest.
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(a) View 1

(b) View 2

(c) View 3

Figure 5.8: Results obtained on frame 752 of PETS 2009 dataset. All
people present inside the Area of Interest are detected accurately despite

of the full and partial occlusions.
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(a) View 1

(b) View 2

(c) View 3

Figure 5.9: Results obtained on frame 784 of PETS 2009 dataset. All
people present inside the Area of Interest (AOI) are detected accurately.
Notice the case of a person at extreme left of the View 2. He is not inside
AOI of this camera but in the others. The detection is correctly estimated.
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5.6 Summary

In this chapter, we have presented another technique for a multi-camera system

to robustly detect people using the knowledge of the scene geometry. We begin

with the creation of the occupancy maps by merging all the projected views on the

ground plane and the planes parallel to it. The moving objects not only produce

significant values in the occupancy map but also a particular shape around them.

This chapter proposes a solution to perform people detection and to avoid ghosts:

at each candidate detection, we verify if the particular shape for an ideal person is

present. This idea has been implemented, and we focus on the three tasks in this

chapter: (i) how to find the points corresponding to potential candidates, (ii) the

creation of the Occupancy Shape Model, and (iii) which tolerance can be accepted

when studying the shape around the candidate detection.

In chapter 3, we presented the popular solution that consists to threshold the oc-

cupancy. This method presents a main drawback: ghosts are detected at locations

where several shapes induced by different people overlap. We further utilized the

idea of people detection using 3D geometric primitive shapes in chapter 4. How-

ever, the concept suffered from blurring effects and has limited computational

performance. These effects, of blurring and reduced computational performances,

are overcome in the particular technique presented in this chapter. As a final

improvement, we have also presented the application of unsupervised learning

techniques in order to automatically compute the decision threshold.

In terms of computational efficiency, the shape model takes 3 days to compute with

a 64-core implementation. This computation is performed only once provided

the calibration remains constant. Moreover, the similarity matching also takes

significantly less time i.e. around 15-20 minutes on a single-core implementation

for 395 frames. Combination of MATLAB, C++ and Java codes have been utilised.

As mentioned in the previous chapter, it is important to emphasise here that we

have not focused on strict algorithmic efficiencies during the course of this thesis.

Conversion of all the codes into C++, memory optimizations (instead of disk

writes), and a multi-core or GPU implementations (such as [31]) will result in

real-time online performances.

In the following chapter, we compare the proposed methods on two other publicly

available datasets. We explain the datasets and the experimental setup. Finally,
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we proceed with the presentation of the quantitative comparisons and analysis of

our results.

(a) View 1

(b) View 2

(c) View 3

Figure 5.10: Results obtained on frame 683 of PETS 2009 dataset. There
is one missed detection in our estimations for this scene.





Chapter 6

Experiments on Other Datasets

6.1 Introduction

We have presented two different novel approaches for performing people detec-

tion earlier in this thesis. We have shown the efficiency of our approach on the

challenging public dataset PETS 2009. In this chapter, we extend the validity of

our approaches by testing it on other datasets as well. For this purpose, we have

selected two more datasets. Both of these datasets are public, challenging, widely-

used and established in the community of visual surveillance. In a first step, we

introduce these datasets. Following this, we present the experimental setup. The

evaluation strategy is similar to the last two chapters and as in [58, 59]. Finally,

we conclude this chapter by presenting a summary of all the results obtained in

the thesis 1.

6.2 Datasets

We have selected two more datasets from the Performance Evaluation of Track-

ing and Surveillance series of international workshops. The workshop has been

running for over 10 years and addresses the scenario of multi-sensor visual surveil-

lance in order to protect the critical infrastructures. We have already shown the

efficiency of our approach on PETS 2009 [28]. We further proceed by testing it on

1This chapter appears as a section of a publication accepted in the proceedings of the 12th
IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS), 2015.
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Figure 6.1: Sequence selection for PETS 2006: details as presented on the
website of the workshop. Reproduced from [26].

PETS 2006 [26] and PETS 2007 [27] datasets. These datasets are gathered in a

train station and at an airport respectively. The selection of these two datasets was

of a particular interest to the goals of French institute of science and technology

for transport, development and networks (IFSTTAR) i.e. towards the application

of this thesis in the transportation scenarios.

6.2.1 PETS 2006

The second dataset which we used in this thesis is the PETS 2006 dataset [26].

This dataset is a multi-sensor sequence captured in a real-world, indoor scenario of

train station. The aim of this specific dataset is to perform luggage detection, more

specifically generate automated alerts for left luggage scenarios. Figure 6.1 shows

description of one such sequence as captured from the PETS 2006 website [26].

There are four camera views capturing the scene for a left luggage scenario. The

ground truth - provided by the dataset creators - has been made for the luggage

detection scenario only. Therefore, we have to propose adjustments in order to

account for multi-camera people detection. For this purpose, we use the same

guidelines as earlier in the thesis, and as proposed by [58, 59].

We have used the last two cameras of the S1 sequence. The selection of cameras

is based on the wide-base line criteria. The motivation is to produce an AOI
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which covers relatively varying positions and topologies across the camera views.

This selection of camera views and of the AOI can be seen in Figure 6.2 where

views have been labeled as View 1 and Views 2. We manually annotated people

presence in 120 non-consecutive frames per camera, across the two views, in the

sequence. There are total 3021 frames in the S1 sequence. The camera calibration

information using the Tsai framework [43] is provided and used. In case the

calibrations are not available then the camera homography can be calculated and

used as in [13]. The maximum number of people visible anywhere in the scene

is 12.

Figure 6.3 shows a random example from our dataset. This dataset suffers from

partial occlusions, presence of objects other than humans (bags, trolleys), texture-

less surfaces such as the glass partitions installed next to the train (see Figure 6.3),

reflections particularly in View 1 (see Figure 6.3(a)). The selection of AOI also

introduces constraints of perspective selection. If a person is inside the AOI can

produce artifacts in the occupancy maps (shown later in this chapter, see Fig-

ure 6.13). The reflections and the texture-less surfaces introduce noise and errors

in the foreground mask extraction process (see Figure 6.4) that can induce over-

detections in the foreground mask. Compared to PETS 2009, the foregrounds

masks extraction is more difficult and leads to several errors (see Section 3.2.1).

We keep the similar background subtraction method throughout the thesis. Nev-

ertheless, we did extensively test several methods with the BGS library [88], none

of which could give significantly better foreground masks. For a similar problem,

Kiss et al. [89] propose post-processing of the foreground masks, however we do

not perform such procedure to gauge the efficiency of our method while facing the

noise of foreground masks.

6.2.2 PETS 2007

We use another public dataset from the transportation scenario, the PETS 2007

dataset [27]. This dataset is also a multi-sensor sequence and is designed for

benchmarking challenges related to loitering, theft, and abandoned luggage. This

scene is a combination of both indoor and outdoor scenarios, including sunlight

variations across the sequence. The dataset was captured inside the departure area

of an airport. The details of the specific random sequence we use, as available on

the website of PETS 2007, are shown in the Figure 6.5.
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For PETS 2007, we selected the cameras 2 and 3 of the S8 sequence. Similar to

other sequences, the AOI is defined such that it is visible from all cameras (see

Figure 6.6). The cameras above are selected to cover these AOI from relatively

varying positions and topologies. The maximum number of people visible any-

where in the scene at a given time is 17. Thus, PETS 2007 has a higher density

of pedestrians compared to PETS 2006.

We manually annotated a total of 120 non-consecutive frames for PETS 2007.

There are total 3000 frames in the S8 sequence. Figure 6.7 shows an example

of one such frame. We use the camera calibration data which is also available

for this dataset. The tools and criteria as defined in [58] are used for annotation

purposes. We notice presence of errors in the foreground masks (see Figure 6.8),

errors of camera calibration (see the slight variation of the estimated position in

Figure 6.13(c) and Figure 6.13(d)), and the perspective effect due to the AOIs (see

Figure 6.13).

6.3 Experimental Setup

For both algorithms, foreground masks have been estimated using the default

parameters of the process defined in [71] (see Chapter 2). The foreground masks

contain noise and errors (see Figures 6.4 and 6.8). Three methods are compared

in this section:

Figure 6.2: Area of Interest (AOI) selection for PETS 2006 in two views.
We have selected the last two cameras from the original sequence. We call
the left one View 1, and the other View 2. We select these two views as

they are wide-base line stationary cameras.
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(a) PETS 2006
View 1

(b) PETS 2006
View 2

Figure 6.3: Example of a frame in PETS 2006.

• The Multi-camera Occupancy map Deconvolution (MOD) approach

introduced in Chapter 4.

• The Occupancy Shape Model (OSM) approach introduced in Chapter 5

• The Multiple Scene Planes Localization (MSPL) method [13] that is

the most popular in literature.

For all methods, the planar heights used are 211 planes, one plane for each centime-

ter between 0–210 cm, covering the range of possible human heights and we fixed

the height of people to 175 cm. The occupancy maps continued to be generated

(a) PETS 2006
View 1

(b) PETS 2006
View 2

Figure 6.4: Example of foreground masks extracted from the frames pre-
sented in the Figure 6.3. Notice the errors in the foreground masks that
account for two people respectively outside the AOI and behind the glass.
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Figure 6.5: Sequence selection for PETS 2007: details as presented on the
website of the workshop. Reproduced from [27].

at a 2 cm grid resolution using the multi-planar, multi-camera projections. More-

over, we use the similarity measure based on the shape intersection (equation 5.3).

This is because, as we proved earlier, it is more efficient for our application (sec-

tion 5.5.1). The evaluation measures used are the same as defined earlier and

defined in section 4.4.2.

For the Multi-camera Occupancy map Deconvolution (MOD) approach

introduced in Chapter 4, we report optimal results obtained to minimize the Total

Error Rate (TER). So both parameters (diameter of the cylinder � and tolerance

threshold τ) have been optimized. We also report the curves showing the influence

of these parameters.

Figure 6.6: Area of Interest (AOI) selection for PETS 2007. We have
selected the last two cameras from the original sequence. We call the left
one View 1, and the other View 2. We select these two views as they are

wide-based line stationary cameras.
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(a) PETS 2007
View 1

(b) PETS 2007
View 2

Figure 6.7: Example of a frame in PETS 2007.

For the Occupancy Shape Model (OSM) approach introduced in Chapter 5,

results have been optimized according to only one parameter: the tolerance thresh-

old τ that has been optimized in order to minimize the TER. The decision thresh-

old is obtained by choosing the optimal operating point on the Receive Operating

Characteristic (ROC) Curve [90].

For the The Multiple Scene Planes Localization (MSP) method [13], people

detection has been achieved using the proposed watershed transform (see Algo-

rithm 1) in order to made a fair comparison.

(a) PETS 2007
View 1

(b) PETS 2007
View 2

Figure 6.8: Example of foreground masks on a frame in PETS 2007
dataset. Notice the errors in the foreground masks.
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Table 6.1: Comparison of the proposed Multi-camera Occupancy map
Deconvolution (MOD), Occupancy Shape Model (OSM) methods with the
Multiple Scene Planes Localization (MSPL) method [13]. The parameter
set is such that the TER is minimized. For MSPL: τ = 35. For MOD:

� = 0.50, τ = 35. For OSM 6: τ = 30.

Sequence Method TER FDR MDR MIR

PETS 2006
MOD 0.10 0.00 0.10 0.00
OSM 0.12 0.00 0.12 0.00
MSPL [13] 0.28 0.18 0.10 0.00

6.4 Results

We now present the results obtained on PETS 2006 and PETS 2007 datasets,

using MSPL, MOD and OSM techniques. Finally, we present a brief summary of

the results and comparisons obtained through the course of this thesis.

6.4.1 PETS 2006

We report the evaluation results obtained from the three algorithms in Table 6.1.

The best parameters at which these results are obtained are also mentioned with

the table. Considering the Total Error Rate (TER), we observe an approximately

18% improvement versus MSPL. Overall, we obtain comparable results for MOD
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Figure 6.9: Evaluation of the MOD method with different parameter set-
tings. Total Error Rate (TER) as a function of the τ and � parameters

for PETS 2006.
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and OSM methods. We can notice that both methods account in successful re-

moval of the false detection due to ghosts as the FDR (False Detection Rate) is

really smaller than that of MSPL. However, OSM increases the Missed Detection

Rate (MDR) negligibly while removing the FDR. We can see an example of such

a case in Figure 6.10. This is an isolated case for PETS 2006 in which the de-

tection, while identified as a keypoint initially, is removed later by the similarity

assignment with the corresponding shape model. The efficiency of OSM could be

affected at the border regions, as the star-shaped structure is rather incomplete.

Increasing the heights of the cameras, introducing better normalization at border

region could help in such isolated scenarios. Furthermore, as the proximity be-

tween people in PETS 2006 is not important, or in other words, as there is no

situation tending toward crowded scenarios, one may notice that even the MSPL

method performs relatively fine on PETS 2006. Later, we see a different scenario

in the PETS 2007 dataset.

For the MOD method, we also present a curve in Figure 6.9 that shows TER

plotted as a function of the τ and � parameters. We remind that the � performs

3D reasoning based on the 3D primitive shape, fitting a cylinder of particular

radius in 3D coordinates. On the other hand, τ performs local analysis during

the extraction of maxima using the watershed algorithm. Similar to PETS 2009,

optimal values for � resemble those found in [31].

6.4.2 PETS 2007

Table 6.2: Comparison of the proposed Multicamera Occupancy map De-
convolution (MOD), Occupancy Shape Model (OSM) methods with the
Multiple Scene Planes Localization (MSPL) method [13]. The parameter
set is such that the TER is minimized. For MSPL: τ = 35. For MOD and

PETS 2007: � = 0.40, τ = 40. For OSM and PETS 2007: τ = 20.

Sequence Method TER FDR MDR MIR

PETS 2007
MOD 0.36 0.08 0.28 0.00
OSM 0.17 0.00 0.17 0.00
MSPL [13] 1.08 0.89 0.19 0.00

The evaluation results, with their best parameters, for PETS 2009 are reported in

the Table 6.2. Considering Total Error Rate (TER), we observe an approximately

91% improvement with OSM versus MSPL and 72% between MOD and MSPL.
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(a) PETS 2006
MOD

(b) PETS 2006
OSM

Figure 6.10: Example of a same frame being correctly processed by MOD
but not OSM. The reason for this has been explained in the text.
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(a) Result on PETS 2006 with MOD- view1

(b) Result on PETS 2006 with MOD- view2

Figure 6.11: Example of the estimated pedestrian locations in the PETS
2006 dataset. The MOD algorithm correctly distinguishes between the
pedestrian and trolley and manages ambiguities of presence in Area of

Interest (AOI) across views.
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PETS 2007 dataset has dense situations and strong perspective effects. How-

ever, the proposed methods significantly improve the detection scores compared

to MSPL.

OSM also performs notably better than MOD. The reason for this lies with the

blurring effect that has already been explained in Chapter 4. Furthermore, we see

that OSM has successfully removed false detection (False Detection Rate, FDR)

without penalizing the missed detection (MDR). On the opposite, MOD has heav-

ily penalized the missed detection to decrease the false detection - a phenomenon

related to the blurring effect.

We also present a curve in Figure 6.12 that shows the Total Error Rate (TER)

plotted as a function of the τ and � parameters for the MOD method. Similar to

PETS 2007 and PETS 2009, the optimal � resemble those found in other works

of the literature [31]. The curve follows the same trend as that of the earlier two

datasets. The results obtained are illustrated with explanations in Figure 6.14 for

MOD and Figure 6.13 for OSM.
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Figure 6.12: Evaluation of the MOD method with different parameter
settings. Total Error Rate (TER) as a function of the τ and � parameters

for PETS 2007.

6.5 Summary

We can now summarize the results of all the experiments. For this purpose, we

choose the Total Error Rate (TER) measure. We select it because this measure
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Table 6.3: Summary of the results obtained.

Evaluation
Measure

Method/
Dataset

MSPL [13] POM [23] 3DMPP [58] OSM MOD

Total Error Rate
PETS 2006 0.28 - - 0.12 0.10
PETS 2007 1.08 - - 0.17 0.36
PETS 2009 0.28 0.25 0.12 0.08 0.13

is the sum of the errors resulting from false detection, missed detection, and of

multiple detections. For this purpose, we have three datasets (PETS 2006, PETS

2007, and PETS 2009), and five algorithms:

• the Multi-camera Occupancy map Deconvolution (MOD) approach

introduced in Chapter 4.

• the Occupancy Shape Model (OSM) approach introduced in Chapter 5

• the Multiple Scene Planes Localization (MSPL) method [13] that is

the most popular in literature.

• the Probabilistic Occupancy Map (POM) [23]

• the 3D Marked Point Process (3DMPP) model [58, 59]

As we have obtained the POM and 3DMPP results from [58, 59], therefore, we

are unable to show the performances of aforementioned algorithms on PETS 2006

and PETS 2007 datasets.

We can conclude from the Table 6.3 that MOD method surpasses MSPL, POM.

MOD also provides comparable performances to 3DMPP. However, OSM remains

the best method on the three databases. Moreover, OSM is also algorithmically

efficient in terms of speed, and the number of parameters - in a sense, thanks to

unsupervised learning, we only need to define and test one parameter. The reason

for this success of OSM lies in multi-view 3D geometric reasoning coupled with

the shape matching.

MOD tries to achieve a similar feat, shows success at 3D reasoning, but fails

to handle the local deconvolutions by introducing a blur effect. Compared to

MSPL, both methods perform multi-view reasoning developed around the ideas of

ghost pruning. Finally, for extensive study of both proposed approaches, we made

tests on three real, challenging, public datasets with varying vision-related com-

plexities (shadows, lighting variations, density, clutter, noise), scenarios (indoor,
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(a) PETS 2006
View 1

(b) PETS 2006
View 2

(c) PETS 2007
View 1

(d) PETS 2007
View 2

Figure 6.13: Examples of the estimated pedestrian locations in the PETS
2006 and PETS 2007 datasets (OSM). Notice the perspective effect in both
the datasets. It is difficult to decide if the person is inside AOI or not.

Nevertheless, the algorithm provides accurate detection.

outdoor, semi-indoor, semi-outdoor), camera equipment (color variations, com-

pression levels), and configurations (camera placement at various levels of heights,

uncontrolled).

We now conclude this thesis with a summary of our contributions. We then present

the limitations of our work, and how we plan to improve on it in the future. This

is discussed in the next chapter.
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(a) PETS 2007
View 1

(b) PETS 2007
View 2

Figure 6.14: Example of the estimated pedestrian locations in the PETS
2007 datasets. The MOD algorithm correctly distinguishes between the
pedestrians and bag, ambiguities of presence in Area of Interest (AOI)
across views. The algorithm is also able to handle a mixture of indoor,
outdoor situations, variations of intensity such as sunlight vs interior light-

ing, and the projections of pedestrians outside the user-defined AOI.





Chapter 7

Conclusions and Future Work

In this thesis, we have described a complete framework to perform people detection

in images and videos obtained from multiple visual sensors. We have used the con-

cepts of multi-view camera geometry, computer vision, and pattern recognition to

propose two different approaches. We have presented the multi-camera occupancy

maps and the ghost pruning phenomenon. The first approach is based on the de-

convolution of the occupancy maps with a spatially varying kernel. In the second

approach, we have proposed a keypoint extraction process in the occupancy maps.

These keypoints are then validated by checking the presence of a particular shape

model. We have tested these methods on three challenging datasets. We are able

to perform robust people detection using multi-view reasoning in the multi-planar

occupancy maps.

7.1 Summary of Key Contributions

• Study of the multi-camera occupancy map and the process leading

to ghost. We have presented a detailed study of the multi-camera occu-

pancy maps for performing people detection. Multi-camera occupancy is a

popular technique for the fusion of information from multiple views projected

into a common coordinate system. This technique has been applied in the

literature to define probabilities of objects perpendicular to a plane, such as

people standing in an airport or in a park. The occupancy maps perform

this detection while exhibiting robustness to the conditions of varying illu-

mination, shadows, resolution of the camera. However, this fusion technique

96
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suffers from the phenomenon of ghosts. Ghosts are the false detections which

occur by the overlap of several shapes in occupancy maps. These shapes are

generated by the projections of the actual people. Ghosts create a false

see-through effect and the erroneous detections. We have proposed a study

for the multi-view reasoning methods to solve this without requiring tem-

poral information. At the same time, we have presented robustness to color

variations.

• Efficient Modelling of Multi-camera Occupancy Map by a Convo-

lution with a Spatially Varying Kernel. We have proposed to study

the process involved in the creation of the occupancy map. This led us to

a mathematical modelling of the occupancy map by a convolution with spa-

tially varying kernels that depend upon: (a) the 3D geometric shape present

in the scene, (b) multi-view geometry (camera calibration).

• People detection based on deconvolution. We have proposed to ap-

proximate deconvolution by a similarity measure and obtain real positions

of people in the scene by avoiding the ghost phenomena.

• People detection based on a principle of hypothesis validation. The

previous approach suffers from a blurring effect introduced during the decon-

volution process. In order to avoid this drawback, we first localize potential

candidates using a keypoint extraction technique based on the watershed

algorithm. Then, we accept or reject these hypothesis by checking the shape

around them: a shape similar to that which would have been generated by a

person at this position (from synthesis point of view) must be present. Fur-

ther, we proposed an automated selection of the decision threshold leading

to people detection.

• Validation by experiments. We have validated the proposed methods

on three challenging datasets. We have also compared them with the other

state-of-the-art algorithms to demonstrated the effectiveness of our approach.
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7.2 Limitations of the Work

This section presents the limitations of our proposed work. There are several

shortcomings of the proposed work: the following is a list of the intrinsic imper-

fections.

• Blurred Effect of Deconvolution. The deconvolution of the occupancy

map by a spatially varying kernel produces a blur effect which makes the

search of maxima difficult. This blur effect also causes the decrease in de-

tection probabilities of the real objects. For the moment, we are unable

to reduce the negative blurring effect for coarse-grained application of the

convolutional framework. Therefore, we proposed another technique which

could be understood as the limited scale application of the convolutional

framework.

• Keypoint Detection with Watershed Transform. Multi-camera occu-

pancy maps lead to significant values of interest corresponding to the loca-

tions of the object to be detected. There is also a particular shape present

around these values. We have proposed a robust detection of the candidate

detection locations or the keypoints based on the watershed transform. This

particular keypoint detector has decreased the false detections and signifi-

cantly reduced the number of multiple detections. However, this keypoint

detector is designed around the idea of topological prominence. This topo-

logical prominence may not be conspicuously defined at the border regions.

The kernel and its resulting convolutional framework can be designed to take

into account the less topologically prominent pattern of values at the border

e.g. by normalization. Alternatively, the tolerance threshold can be relaxed

at the border areas. Furthermore, in our problem statement, we have to

take into account the removal of projections originating from outside the

AOI. Therefore, any improvement here will result in further reduction of

Missed Detection Rate (MDR). As we have already shown significant de-

crease in the False Detection Rate (FDR), therefore, this will improve the

overall performance of the multi-view detectors. Temporal information can

potentially be useful in this particular case.

• Height of the Visual Sensors. Detection using multi-camera occupancy

maps and the homography occupancy constraint are heavily influenced by
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the camera heights. Homographic occupancy constraint defines the relation

between the uncertainties of the image and the real world. A hypothetical

camera or a set of cameras providing the top-down view of the scene will have

a higher confidence in localizing the object but at the same time face uncer-

tainty in the defining the height of the object. From the other extreme: if

the same set of hypothetical cameras are placed lower to the ground then the

definition of height becomes easier, but, the localization becomes an exercise

of imprecise estimation. This effect of height on occupancy maps has been

presented with experimental analysis and quantification in [31]. Features

such as the appearance-based, texture-based, as in person re-identification,

could be beneficial in this case [37].

In addition to the intrinsic deficiencies, there are also extensions and open issues

related to our thesis which are presented in the future work section below.

7.3 Future Work

This section presents ideas which could result in the extension of our propositions.

The list also includes improvements which could address the open issues faced in

the field of multi-sensor visual surveillance.

• Further Exploration of 3D Shapes. We present two ideas related to the

3D shape modeling aspects of our work.

– Cuboids for Vehicle Detection. Further explorations can be per-

formed in the selection of 3D primitives in relation to the objects of

Figure 7.1: Vehicle Detection with 3D Cuboids. Reproduced from [31].
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interest. For example, we can model vehicles using 3D cuboids. Vehicle

detection is in active research at several laboratories including IFST-

TAR. However, as cuboids are not radially symmetric like cylinders, all

or specific orientations must be appropriately modelled. Bicycles may

also be modeled with similar 3D primitives. This has been discussed in

papers such as [31, 91].

– 3D Modelling of the Occupancy Maps. Occupancy maps are

the fused projections of the camera views across multiple planes. It

is possible to create a 3D plot of these multi-planar projections. One

proposition could be to study this 3D plot and perform detection in it.

This would change the problem statement from 2D shape analysis to

3D shape analysis. There is literature available on 3D human shape

analysis which could be applied to such 3D occupancy maps [92–95].

• Cross-sectional and Top-view. Occupancy maps are fused projections

that provide a 2D top-down view of the 3D real world. It could also be

possible to generate occupancy maps from the four cross-sectional side views.

Thus, occupancy maps could also be studied from the cross-sectional views.

Furthermore, a fusion technique across both the cross-sectional and top-

views may also be found. This will allow us to process the data using 2D

techniques, and possibly further improve the detection rates.

• Learning the Shapes in Occupancy Maps. Shapes present in the oc-

cupancy maps can also be learned. For example, an a priori can be defined

for the static objects or background in the scene such as the trees, lighting

posts, signage, etc. This a priori could also help in adjusting the shape

models, accounting for the particular scene. Similarly, the occupancy mod-

eling can be further enhanced by modeling the presence of various people

together. Currently, we are modeling the presence of one person in the scene

at a time. This can be increased: multiple star-shaped structures or poly-

gons can be synthesized. The particular distance across the shapes, their

presence at a particular time at a particular spot (or not) could be learned

and later applied for detection.

• Temporal Domain. Even though we have worked on detection, and pro-

ceed without using any temporal information; a simple intuitive extension

is to apply the proposed work using consecutive frames, tracking, and to

perform human recognition, behavior analysis [96].
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• Runtime. We have not focused on hardcore runtime performances during

this thesis. For MOD method, the spatially varying kernel and formation

model exhibit linear dependence to the number of camera views and image

resolution. The template similarity module has a linear dependency on the

image resolution. For OSM method, the model generation and matching is

significantly faster due to the fine-grained modeling and application only at

the keypoints. For both OSM and MOD methods, the maxima or keypoint

selection stage has a constant runtime. Some of the proposed algorithms

have been implemented and tested using multi-core implementations. There

is a significant potential for further computational improvements such as by

utilizing only C++ codes, optimization for memory usage, and implementa-

tion of all parts with multi-core or GPU implementations.





Annexe A

Résumé en francais

Introduction

La détection de personnes dans les vidéos est un défi bien connu du domaine

de la vision par ordinateur avec un grand nombre d’applications telles que le

développement de systèmes de surveillance visuels. Même si les détecteurs mono-

culaires sont plus simples à mettre en place, ils ne sont pas adaptés dans le cadre

de scènes complexes avec des occultations, une grande densité de personnes ou des

scènes avec beaucoup de profondeur de champ menant à une grande variabilité

dans la taille des personnes. Dans cette thèse, nous étudions la détection de per-

sonnes multi-caméra et plus particulièrement, l’utilisation de cartes d’occupation

probabilistes créées en fusionnant les différentes vues grâce à la connaissance de

la géométrie du système. La détection à partir de ces cartes d’occupation amène

cependant à des fausses détections dues aux différentes projections. Celles-ci, bien

connues dans la littérature, sont dénommées ”fantôme”. Aussi, nous proposons

deux nouvelles techniques remédiant à ce problème et améliorant la détection des

personnes. La première utilise une déconvolution par un noyau dont la forme varie

spatialement tandis que la seconde est basée sur un principe de validation d’hy-

pothèses. Ces deux approches n’utilisent volontairement pas l’information tempo-

relle qui pourra être ré-introduite par la suite dans des algorithmes de suivi. Les

deux approches ont été validées dans des conditions difficiles présentant des occul-

tations, des encombrements plus ou moins denses et de fortes variations dans les

réponses colorimétriques des caméras. Une comparaison avec d’autres méthodes
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de l’état de l’art a également été menée sur trois bases de données publiques, va-

lidant les méthodes proposées dans le cadre des transports en commun, à savoir,

la surveillance d’une gare et d’un aéroport.

Objectifs

Ce travail a pour objectif de détecter des personnes dans un contexte de vidéo-

surveillance multi-caméras. Ces caméras sont fixes, observent la même scène sous

différents points de vue, et sont reliées par des homographies supposées connues

(ou que l’on déterminera grâce au calibrage des caméras). De tels systèmes, qui

requièrent aussi la synchronisation des caméras, sont courants dans le domaine

de la vidéo-surveillance. Néanmoins, la détection et le suivi de plusieurs per-

sonnes, dans un environnement non contraint reste un problème encore non en-

core résolu aujourd’hui et nous proposons, dans cette thèse, de repousser les li-

mites des systèmes de détection de personnes multi-caméras. Ce problème est sou-

vent considéré comme un problème de fusion de données dans un contexte multi-

capteurs et nous proposons ici de le reformuler sous la forme d’un problème de

reconnaissance des formes. En effet, ceci devrait permettre d’obtenir des résultats

plus robustes dans des conditions particulièrement difficiles comme des caméras

de différentes résolutions, de forts changements de point de vue entre caméras, des

réponses colorimétriques différentes entre les caméras, des variations d’éclairage,

du bruit, des occultations, des scènes plus ou moins denses etc. De plus, cette nou-

velle formulation devrait également permettre d’éviter la détection de ”fantômes”,

phénomène bien connu de la littérature en géométrie multi-vues.

Applications

L’être humain est un élément essentiel dans les interactions avec les machines et

les interactions homme/machine ont de plus en plus d’importance dans la vie de

tous les jours. Ainsi, la détection des personnes grâce à des capteurs visuels non

intrusifs et l’utilisation de leur position amènent au développement de nombreuses

applications qui jouent un rôle important dans la société. Ces applications sont

en constante évolution. Nous en présentons ci-dessous une liste non exhaustive

limitée au domaine de la vidéosurveillance.
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Domaine des transports : Plusieurs applications utilisant la détection de per-

sonnes relèvent du domaine des transports comme la sécurité dans les trains,

les bus, les gares ou les aéroports.

Domaine de la vie personnelle : La détection de personne est aussi utilisée

dans le cadre des habitations personnelles avec par exemple des systèmes

de surveillance à distance de domicile ou des systèmes de vidéosurveillance

de personnes âgées ou atteintes de la maladie d’Alzheimer. Des applications

plus ludiques telles que les jeux vidéo ont aussi connu un essor important ces

dernières années avec notamment l’arrivée de capteurs tels que la kinect.

Domaine commercial : La sécurité est aussi importante dans le commerce ou de

nombreux actes de vol, de vandalisme ou d’agression ont régulièrement lieu.

Des compagnies un peu plus High-tech proposent également de modéliser le

comportement des usagers afin d’améliorer leur offre. Ceci peut être utilisé

pour mieux agencer un magasin ou pour fluidifier les flux de personnes.

Domaine public : La sécurité des personnes est un problème important que

tous les gouvernements s’attèlent à résoudre. Pour cela, les systèmes de

vidéosurveillance à base de caméras sont un outil indispensable, comme le

prouvent les nombreuses caméras installées dans les zones publiques telles

que la rue, les parcs, les hôpitaux etc. Même si ces caméras sont surtout uti-

lisées comme outil d’enregistrement pour le moment, le besoin de traitement

automatique est crucial et la première étape de la chaine de vidéosurveillance

consiste justement à détecter les personnes. Des applications existent également

dans le domaine militaire avec le développement de robots autonomes, de

drones ou de satellites de surveillance.

Domaine de la recherche : Les algorithmes de détection de personnes sont uti-

lisés dans de nombreuses applications encore du domaine de la recherche

comme l’identification ou la ré-identification, la reconnaissance d’activité,

l’analyse du comportement, etc. Autant d’applications qui gagneront en ro-

bustesse avec l’amélioration de la détection de personne.
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Table A.1: Résultats de détection sur PETS2009.

Séquence Méthode TER FDR MDR MIR
PETS 2009 Without pruning 0.362 0.291 0.047 0.024

Résumé des travaux

Dans un premier temps, nous réintroduisons le concept de carte d’occupation. Ces

cartes sont obtenues en projetant les vues des différentes caméras sur plusieurs

plans parallèles au sol, de hauteurs différentes et en agrégeant les projections

dans un seul plan. Ces cartes d’occupation amènent une grande robustesse dans

des situations difficiles comme les occultations, les changements d’éclairage ou

les ombres [13, 60]. Dans le contexte de la vidéosurveillance et de la détection

de personne, cette technique est très populaire mais est réputée pour produire de

nombreuses fausses détections nommées ”fantômes” dans la littérature [14, 24]. Ces

”fantômes” sont dus à une configuration particulière de la position des objets et

des caméras qui fait que les projections des différentes caméras s’intersectent à des

positions particulières qui ne correspondent pas à une vraie personne. Table A.1,

nous présentons les résultats de détection obtenus en recherchant les pics de la carte

d’occupation sur une séquence de la littérature : la séquence PETS2009 [28]. FDR

(false Detection Rate) correspond au taux de fausses détections, MDR (Missed

Detection Rate) au taux de détection manquée, MIR (Multiple Instances Rate) au

taux de multiples détections et TER (Total Erreur Rate) est l’erreur totale, définie

comme la somme des 3 précédents taux. Ces taux ont été obtenus en choisissant

le seuil de détection qui minimise l’erreur globale (TER).

Comme attendu, de nombreuses fausses détections sont obtenues (FDR est impor-

tant). Durant cette thèse, nous proposons deux méthodes permettant de s’affran-

chir du problème des ”fantômes”.

Première approche proposée fondée sur une déconvolution

Dans un premier temps, nous avons étudié en détail le processus de création de

ces ”fantômes” et plus particulièrement, le processus de génération de la carte

d’occupation. Ceci nous a permis de proposer une modélisation mathématique

de la carte d’occupation sous la forme d’une convolution d’impulsions de Dirac

(situées à la position des objets) et de noyaux dont la forme varie spatialement.

En effet, leur forme dépend à la fois des propriétés de l’objet (forme et position)

mais aussi, de la géométrie du système. Ceci permet de formaliser le problème de
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détection comme une déconvolution dont le but sera de retrouver l’ensemble des

impulsions de Dirac. Comme une vraie déconvolution n’est pas envisageable (la

forme du noyau variant de pixel en pixel, il faudrait faire autant de déconvolution

qu’il y a de pixel dans la carte d’occupation), nous proposons une approximation

de la déconvolution en utilisant des mesures de similarités. Cette approche a été

validée sur la base de données PETS2009 et comparée à cinq autres méthodes de

la littérature qui suppriment les ”fantômes” :

• Deux méthodes proposées par Ren et al (Ren eq 6 and Ren eq 7). [14]

• Un travail utilisant la carte d’occupation (Probabilistic Occupancy Map)

POM [23]

• Un processus utilisant des points 3D (3D Marked Point Process) 3DMPP [58,

59]

• Une méthode utilisant plusieurs plans (Multiple Scene Plane Localization

Method) MSPL [13]

Des résultats très encourageants ont été obtenus comme montré table A.2. Cette

nouvelle méthode permet notament de diminuer considérablement le taux de fausses

détection.

La méthode est cependant couteuse en temps de calcul et introduit un flou lors

de la déconvolution qui rend ensuite la détection des pics difficile. Aussi, et en

conservant le formalisme lié à la création de la carte d’occupation, une seconde

méthode a été introduite.

Seconde approche proposée pour la suppression des fantômes de la carte

d’occupation

Table A.2: Résultat de la première méthode utilisant une déconvolution.

Séquence Méthode TER FDR MDR MIR

PETS 2009

Ren eq6 [14] 0.88 0.20 0.68 0.00
Ren eq7 [14] 0.89 0.20 0.69 0.00
MSPL [13] 0.28 0.18 0.10 0.00
POM [23] 0.25 0.18 0.07 0.000
3DMPP [58] 0.12 0.02 0.10 0.00
Proposed 0.13 0.03 0.10 0.00
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Table A.3: Résultats de la seconde méthode

Séquence Méthode TER FDR MDR MIR

PETS 2009

MSPL [13] 0.28 0.18 0.10 0.00
POM [23] 0.25 0.18 0.07 0.00
3DMPP [58] 0.12 0.02 0.10 0.00
Proposed 0.08 0.03 0.05 0.00

Cette seconde approche utilise la même modélisation que la première où une per-

sonne produit des accumulations dans la carte d’occupation mais aussi une forme

spécifique autour de sa position (nommée noyaux précédemment). Ainsi, pour

détecter une personne de manière robuste, nous proposons de sélectionner des

candidats potentiels en recherchant les maximas locaux de la carte d’occupation

puis de vérifier, pour chacun des candidats que le noyau, spécifique à la position

de détection, est bien présent.

Cette méthode a été comparée à trois autres méthodes de la littérature :

• POM [23]

• 3DMPP [58]

• MSPL [13]

Les résultats, présentés Tableau A.3 montrent que non seulement la méthode est

plus rapide que la précédente, mais en plus, elle en améliore les résultats grâce à

une détection de maximas locaux plus facile (le flou introduit par la déconvolution

a été évité)

Validation expérimentale

Les deux algorithmes proposés ont ensuite été validés sur deux autres bases de

données de la littérature : PETS 2006 [26] and PETS 2007 [27]. Des résultats

similaires à ceux obtenus sur PETS 2009 ont été trouvés et sur ces trois séquences,

les approches proposées dépassent l’état de l’art.
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Conclusion et perspectives

Le document se termine par une conclusion générale, un bilan des limites de l’ap-

proche proposée et donne les perspectives qui pourraient être envisagée pour pour-

suivre ce travail.
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Titre en français: Detection de personnes pour des systèmes de videosurveillance multi-caméra intelligents

Résumé en français: La détection de personnes dans les vidéos est un défi bien connu du domaine de la vision

par ordinateur avec un grand nombre d’applications telles que le développement de systèmes de surveillance

visuels. Même si les détecteurs monoculaires sont plus simples à mettre en place, ils sont dans l’incapacité de

gérer des scènes complexes avec des occultations, une grande densité de personnes ou des scènes avec beaucoup

de profondeur de champ menant à une grande variabilité dans la taille des personnes. Dans cette thèse, nous

étudions la détection de personnes par un système multicaméras et plus particulièrement, l’utilisation de cartes

d’occupation probabilistes créées en fusionnant les différentes vues grâce à la connaissance de la géométrie du

système. La détection à partir de ces cartes d’occupation amène cependant de fausses détections dues aux

différentes projections. Celles-ci, bien connues dans la littérature, sont dénommées “fantôme”. Aussi, nous

proposons deux nouvelles techniques remédiant à ce problème et améliorant la détection des personnes. La

première utilise une déconvolution par un noyau dont la forme varie spatialement tandis que la seconde est basée

sur un principe de validation d’hypothèse. Ces deux approches n’utilisent volontairement pas l’information

temporelle qui pourra être ré-introduite par la suite dans des algorithmes de suivi. Les deux approches ont été

validées dans des conditions difficiles présentant des occultations, des encombrements plus ou moins denses et

de fortes variations dans les réponses colorimétriques des caméras. Une comparaison avec d’autres méthodes

de l’état de l’art a également été menée sur trois bases de données publiques, validant les méthodes proposées

dans le cadre des transports en commun, à savoir, la surveillance d’une gare et d’un aéroport.

Mots-clefs: Géométrie multi-vues, Fusion de capteurs, Reconnaissance des Formes, Détection d’objects,

Surveillance.

Titre en anglais: People Detection Methods For Intelligent Multi-Camera Surveillance Systems

Résumé en anglais: People detection is a well-studied open challenge in the field of Computer Vision with

applications such as in the visual surveillance systems. Monocular detectors have limited ability to handle

occlusion, clutter, scale, density. Ubiquitous presence of cameras and computational resources fuel the de-

velopment of multi-camera detection systems. In this thesis, we study the multi-camera people detection;

specifically, the use of multi-view probabilistic occupancy maps based on the camera calibration. Occupancy

maps allow multi-view geometric fusion of several camera views. Detection with such maps create several

false detections and we study this phenomenon: ghost pruning. Further, we propose two novel techniques in

order to improve multi-view detection based on: (a) kernel deconvolution, and (b) occupancy shape modeling.

We perform non-temporal, multi-view reasoning in occupancy maps to recover accurate positions of people in

challenging conditions such as of occlusion, clutter, lighting, and camera variations. We show improvements

in people detections across three challenging datasets for visual surveillance including comparison with state-

of-the-art techniques. We show the application of this work in exigent transportation scenarios i.e. people

detection for surveillance at a train station and at an airport.

Mots-clefs: Multi-view Geometry, Sensor Fusion, Pattern Recognition, Object Detection, Surveillance.
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