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Résumé : Cette thèse étudie une problématique d’optimisation concernant la gestion
de la distribution au niveau de la chaîne logistique. Elle aborde les problèmes de tournées
de véhicules avec flotte limitée hétérogène, à travers le développement de stratégies de
résolution avec des méthodes heuristiques. Tenant compte des contraintes de capacité
et de limitation du nombre de la flotte hétérogène de véhicules disponibles, nous avons
étudié trois variantes des problèmes de tournées de véhicules : le problème de tournées
avec flotte limitée hétérogène, le problème de tournées de véhicules avec flotte limitée et
transporteur externe et le problème de tournées de véhicules dynamiques. Nous avons ap-
pliqué des algorithmes de recherche tabou, des algorithmes évolutionnaires et l’algorithme
de colonie de fourmis pour apporter des solutions efficaces à ces différents problèmes.

Mots clés : Logistique, Transport, Problèmes des tournées de véhicules, Flotte limitée,
Métaheuristiques.

Abstract: This thesis investigates an optimization problem concerning the distribu-
tion management in the supply chain. It addresses the Vehicle Routing Problems (VRP)
with Heterogeneous Limited Fleet, through the development of resolution strategies with
heuristics methods. Taking into account capacity constraints and the limited number of
heterogeneous fleet of vehicles available, we studied three variants of vehicle routing prob-
lems: the Heterogeneous Fixed Fleet Vehicle Routing Problem (HFFVRP), the Vehicle
Routing Problem with Private fleet and common Carrier (VRPPC) and the Dynamic Ve-
hicle Routing Problem (DVRP). We have applied Tabu search algorithms, evolutionary
algorithms and ant colony algorithm to provide effective solutions to these problems.

Keywords: Logistics, Transportation, Vehicle Routing Problem, Limited fleet, Meta-
heuristics.

iii



Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

Introduction générale 1

1 Introduction 7
1 Research Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . 8
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature review 15
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Travelling Salesman Problem (TSP) . . . . . . . . . . . . . . . . . . . . . . 18
4 Vehicle Routing Problem (VRP) . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Distribution network . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Decisions variables . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Variants of the vehicle routing problem . . . . . . . . . . . . . . . . . . . . 22
5.1 Capacitated vehicle routing problem . . . . . . . . . . . . . . . . . 23

iv



Contents

5.2 Muli-Period Vehicle Routing Problem . . . . . . . . . . . . . . . . . 23
5.2.1 Period Vehicle Rouing Problem . . . . . . . . . . . . . . . 24
5.2.2 Inventory Routing Problem . . . . . . . . . . . . . . . . . 25

5.3 Vehicle Routing Problem with limited fleet . . . . . . . . . . . . . . 25
5.3.1 M-Vehicle Routing Problem with Time Windows (SATIS-

FIABLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 M-Vehicle Routing Problem with Time Windows (DIS-

SATISFYING) . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 M-Heterogeneous Vehicle Routing Problem (M-HVRP) . . 27

5.4 Vehicle Routing Problem with full truckload . . . . . . . . . . . . . 27
5.4.1 Vehicle Routing Problem with return truckload . . . . . . 28
5.4.2 VRP with pick up and delivery with full truckload . . . . 28

5.5 Vehicle Routing Problem wih Profit . . . . . . . . . . . . . . . . . . 28
5.6 Vehicle Routing Problem with Private fleet and Common carrier . . 29
5.7 Dynamic Vehicle Routing Problem . . . . . . . . . . . . . . . . . . 30

6 An overview of proposed approaches for the VRP . . . . . . . . . . . . . . 31
6.1 Metaheuristics optimization via memory . . . . . . . . . . . . . . . 32

6.1.1 Tabu Search algorithm . . . . . . . . . . . . . . . . . . . . 32
6.1.2 Variable Neighborhood Search algorithm . . . . . . . . . . 33
6.1.3 Ejection chains neighborhood . . . . . . . . . . . . . . . . 33
6.1.4 Adaptive memory . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Evolutionary algorithms metaheuristics . . . . . . . . . . . . . . . . 34
6.2.1 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 Iterated Density Estimation Evolutionary Algorithms . . . 36
6.2.3 Artificial Ant Colony . . . . . . . . . . . . . . . . . . . . . 37

7 Our personal contributions to solve some variants of the VRP problems . . 37
7.1 First line of research: A Hybrid Tabu Search to Solve the Hetero-

geneous Fixed Fleet Vehicle Routing Problem . . . . . . . . . . . . 40
7.2 Second line of research: Heuristic Search Techniques to Solve the

Vehicle Routing with Private Fleet and Common Carrier . . . . . . 40
7.3 Third line of research: Iterated Density Estimation Evolutionary

Algorithm with 2-opt local search for the vehicle routing problem
with private fleet and common carrier. . . . . . . . . . . . . . . . . 41

7.4 Fourth line of research: Solving the Dynamic Vehicle Routing Prob-
lem by means of Artificial Ant Colony. . . . . . . . . . . . . . . . . 41

v



Contents

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 M-Heterogeneous Vehicle Routing Problem 43
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Heterogeneous Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . 47

3.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . 47
4 Vehicle Routing Problem with Private fleet and Common carrier . . . . . . 48

4.1 Formulation of the VRPPC . . . . . . . . . . . . . . . . . . . . . . 48
4.1.1 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Decision varianles . . . . . . . . . . . . . . . . . . . . . . . 49

5 Metaheuristics approaches to solve the M-VRP . . . . . . . . . . . . . . . 50
5.1 A Hybrid Tabu Search to solve the Heterogeneous Fixed Fleet Ve-

hicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.1 Initialization (Step 1 in the Adaptive Memory) . . . . . . 51
5.1.2 Construction of solution (step 2 in the Adaptive Memory) 53
5.1.3 Solution improvements (Step 3 in the Adaptive Memory) . 53
5.1.4 Updating the Adaptive Memory (Step 4 in the Adaptive

Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Implementation and instances . . . . . . . . . . . . . . . . 56
5.2.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Heuristic Search Techniques to Solve the Vehicle Routing with Pri-
vate Fleet and Common Carrier . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Neighborhood Structure . . . . . . . . . . . . . . . . . . . 63
5.3.3 Tabu List . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.4 Aspiration criterion . . . . . . . . . . . . . . . . . . . . . . 68
5.3.5 Ejection chains . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.6 Intensification . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.7 Diversification . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.8 Stopping condition . . . . . . . . . . . . . . . . . . . . . . 70

vi



Contents

5.4 Iterated Density Estimation Evolutionary Algorithm with 2-opt lo-
cal search for the VRPPC . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Hybrid IDEA to solve the VRPPC . . . . . . . . . . . . . 73
5.4.2 Vehicle routing representation . . . . . . . . . . . . . . . . 73
5.4.3 2-opt Local Search . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.5 Selection operators . . . . . . . . . . . . . . . . . . . . . . 76
5.4.6 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . 76
5.4.7 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.8 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Experiments results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1 Implementation and instances . . . . . . . . . . . . . . . . 78
5.5.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . 78
5.5.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 The Dynamic Vehicle Routing Problem 95
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2 Main definition of the Dynamic Vehicle Routing Problem . . . . . . . . . 97
3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.1 Pick-up and delivery vehicle Routing Problem . . . . . . . . . . . . 98
3.2 Dynamic Pick-up and delivery vehicle Routing Problem . . . . . . . 98

4 A framework of the Dynamic Pick-up and delivery vehicle Routing Problem 101
4.1 The Static Pick-up and delivery vehicle Routing Problem . . . . . . 101
4.2 The Dynamic Pick-up and delivery vehicle Routing Problem . . . . 102
4.3 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . 103

5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1 Merging of New Event Procedure (MNEP) . . . . . . . . . . . . . . 105
5.2 Artificial Ant Colony with 2-opt local search to solve the DPDVRP 106

5.2.1 Solutions representation . . . . . . . . . . . . . . . . . . . 107
5.2.2 Solution construction . . . . . . . . . . . . . . . . . . . . . 107
5.2.3 Pheromone Trail update . . . . . . . . . . . . . . . . . . . 109
5.2.4 Local Pheromone Update . . . . . . . . . . . . . . . . . . 109
5.2.5 Global Pheromone Update . . . . . . . . . . . . . . . . . . 110
5.2.6 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



Contents

5.3 Experimental Results and Performance Comparison . . . . . . . . . 112
5.3.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 The experimental environment . . . . . . . . . . . . . . . 112
5.3.3 Results discussion . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Conclusion 121
1 Research work summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 Resulting papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Conclusion générale 127

Annexe 1 133
1 Appendix A. Best solutions found . . . . . . . . . . . . . . . . . . . . . . . 133

1.1 The best routes constructed with available vehicles . . . . . . . . . 133

Bibliography 143

viii



List of Figures

2.1 classification of vehicle routing . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 A feasible tour in a seven-city traveling salesman problem . . . . . . . . . . 19
2.3 Representation of a vehicle Routing Problem . . . . . . . . . . . . . . . . . 20
2.4 Solution of Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . 20

3.1 Example of solution of VRP with 9 customers . . . . . . . . . . . . . . . . 64
3.2 1-exchange for a single customer (shift) . . . . . . . . . . . . . . . . . . . . 64
3.3 1-exchange for a 2 customers (swap) . . . . . . . . . . . . . . . . . . . . . . 65
3.4 1-exchange applying in the external transporter (shift process) . . . . . . . 65
3.5 1-exchange applying in the external transporter (swap process) . . . . . . . 66
3.6 2-exchange for a two customers (shift) . . . . . . . . . . . . . . . . . . . . 66
3.7 2-exchange for a two customers (swap moves) . . . . . . . . . . . . . . . . 67
3.8 2-exchange applying in the external transporter (shift process) . . . . . . . 67
3.9 2-exchange applying in the external transporter (swap process) . . . . . . . 67
3.10 General Scheme of the IDEA / 2-opt local search . . . . . . . . . . . . . . 72
3.11 vehicle routing representation . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.12 2-Opt intra route movement . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.13 Comparison results for the homogeneous instances . . . . . . . . . . . . . . 85
3.14 Comparison results for the heterogeneous instances . . . . . . . . . . . . . 85
3.15 Effect of the number of generation in the fitness value . . . . . . . . . . . . 86
3.16 Efficiency of the IDEA/ 2-opt . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Solution of Static vehicle routing . . . . . . . . . . . . . . . . . . . . . . . 99

ix



List of Figures

4.2 Dynamic vehicle routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Solution of a Dynamic vehicle routing . . . . . . . . . . . . . . . . . . . . . 100
4.4 Experiment for selection of the shortest branches by a colony of ants: (a)

at the beginning of the experiment and (b) at the end of the experiment. . 104
4.5 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



List of Tables

2.1 Overview of different problems . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Specifications of eight benchmark problems with at most six types of vehicles 57
3.2 Specifications for five new test problems with at most six types of vehicles 58
3.3 Computational results for TSAM algorithms on eight test problems . . . . 59
3.4 A comparison of TSAM, HCG, BATA, and HRTR according to overall costs 60
3.5 Comparative result on five new test problems . . . . . . . . . . . . . . . . 60
3.6 Percent deviation results for HFFVRP algorithms on eight test problems . 62
3.7 Characteristics of instances with homogeneous limited fleet . . . . . . . . . 79
3.8 Characteristics of the instances with heterogeneous limited fleet . . . . . . 80
3.9 TS/EC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.10 Comparative result for the homogeneous instances . . . . . . . . . . . . . . 83
3.11 Comparative result for the heterogeneous instances . . . . . . . . . . . . . 84
3.12 Results for the homogeneous instances . . . . . . . . . . . . . . . . . . . . 88
3.13 Results for the heterogeneous instances . . . . . . . . . . . . . . . . . . . . 89
3.14 Best known solution for the homogeneous limited fleet instances . . . . . . 90
3.15 Best known solution for the heterogeneous limited fleet instances . . . . . . 91

4.1 Parameter calibration of our experimental environment . . . . . . . . . . . 113
4.2 Computational results for the AAC for the dynamic delivery instances . . . 114
4.3 Computational results for the AAC for the dynamic pickup instances . . . 116
4.4 Performance comparison of our proposed approach for the dynamic delivery

routing instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



List of Tables

4.5 Comparison processing time results for the dynamic routing instances . . . 119

xii



List of Algorithms

1 Pseudo code of Tabu local search . . . . . . . . . . . . . . . . . . . . . . . 54
2 Initial solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3 Pseudo code of Tabu Search Ejection Chains algorithm . . . . . . . . . . . 71
4 Pseudo code of initial solution algorithm . . . . . . . . . . . . . . . . . . . 75
5 Pseudo code of IDEA/2-Opt algorithm . . . . . . . . . . . . . . . . . . . . 77
6 Pseudo code of an artificial ant colony based on 2-Opt . . . . . . . . . . . 106
7 Initialization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



Introduction générale

La logistique est apparue dans les domaines militaire et civil depuis plusieurs siècles. Les
calculs de besoins, de délais de transport, d’espace de ramassage et de stocks faisaient
apparaître une sorte de nouvelle science que l’on n’appelait pas encore recherche opéra-
tionnelle mais qui en avait déjà un peu l’esprit et que l’on appela logistique pour en
consacrer le caractère logico-mathématique.

L’activité de transport est le coeur même de la logistique, c’est l’un de ses postes de
coûts les plus importants de telle sorte que l’organisation logistique est souvent déter-
minée par l’optimisation des coûts de transports. Quand on parle de transport, on pense
directement à l’organisation des tournées de véhicules. Une meilleure organisation de ces
dernières présente un potentiel d’économies majeur. C’est cette importance accrue des
problèmes d’optimisation des tournées dans le secteur de transport qui a attiré de plus
en plus les chercheurs et les gestionnaires d’entreprises. Toute entreprise moderne a son
propre programme de transport.

Par exemple, Cooper et al. (1991) soutiennent que le transport et le stockage de
marchandises occupent le centre de toute activité logistique. Nous rappelons que La
logistique est la fonction responsable de l’écoulement de matériaux provenant des four-
nisseurs d’une organisation, par des opérations au sein de cette organisation, et ensuite
aux clients.

De plus, au cours des dernières années, le monde a vécu une forte et spectaculaire
augmentation des prix des carburants. Cette hausse est susceptible de perdurer au cours
des décennies à venir. Etant donné que cela engendre un des problèmes les plus critiques
quant à l’utilisation des véhicules, la gestion efficace du coût de ces carburants est devenue
par la force des faits accomplis un parmi les enjeux majeurs de ce siècle.

1



Généralement, les projets de transport sont destinés à améliorer la prospérité économique
et sociale des personnes. Ainsi, de nombreux pays à travers le monde investissent massive-
ment, et de manière très importante, sur l’amélioration de ces transports. Les objectifs
étant très ambitieux, des investissements plus importants sont toujours nécessaires.

Le problème de tournées de véhicules (PTV) tient une place centrale dans la gestion
de la distribution. Son importance économique a incité les chercheurs universitaires et les
industriels à trouver des moyens pour s’acquitter efficacement du transport de biens et
services. Le premier article portant sur le problème de tournées de véhicules a été publiée
vers la fin des années 1950 par Dantzig et Ramser (1959). Ainsi, la plupart des entreprises
qui doivent livrer des produits à plusieurs clients sont confrontées à ce problème. Dans
la littérature le PTV a été formulé en plusieurs formes comme celle présenté dans notre
rapport de Fisher and Jaikumar (1981).

Le rôle de la distribution dans le modèle de gestion de chaîne d’approvisionnement
s’est considérablement étendu pour s’écarter de sa vision classique. En effet, le point de
vue conventionnel de l’activité traitait uniquement le transport et l’entreposage. Comme
proposition de minimisation du coût du carburant, la planification optimisée des tournées
des véhicules semble être une voie digne d’exploration. Cela permet de réduire le coût du
transport.

Ce travail de recherche est motivé par le désir de trouver une modélisation réaliste
et qui soit la plus fidèle possible de l’état réel du transport via la prise en compte de
l’aspect d’hétérogénéité des véhicules (les véhicules ne sont pas identiques et ils n’ont pas
tous la même capacité) et de limitation de la flotte de la plupart des industriels (chaque
entreprise possède un nombre limité de véhicules). Ces aspects ont souvent été étudiés
séparément par plusieurs chercheurs. Laporte (1992) a donné une revue sur les méthodes
exactes pour la résolution du problème de tournées de véhicules. Toth et Vigo (2002) ont
présenté quelques modèles et approches de résolution exacte. Quelques tentatives d’études
couplées de ces effets ont déjà été avancées. Klincewicz et al. (1990) ont proposé une plan-
ification de tournées en présence du transporteur externe en se basant sur une méthode
classique. Diaby et Ramesh (1995) ont traité le problème de tournées de véhicule avec
transporteurs externes en utilisant un seule véhicule dont l’objectif était de décider quels
clients qui seront servis par un transporteur externe et d’optimiser les clients restants.
Chu (2005) et Bolduc et al. (2007, 2008) ont utilisé des heuristiques constructives pour
la résolution du problème de tournées de véhicules avec flotte limitée et transporteur ex-
terne. Nous proposons de formuler des nouvelles formulations des problèmes, d’avancer
quelques méthodes de résolutions (voir les travaux d’Euchi and Chabchoub (2010), Eu-
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chi et al. (2011)), et de proposer de nouvelles méthodologies qui peuvent contribuer à
l’amélioration des réflexions avancées par la communauté scientifique.

Objectifs de la thèse

Le travail de recherche effectué dans cette thèse fait appel à une approche de recherche à
voisinages et certaines approches méta-heuristiques pour résoudre le problème de tournées
de véhicules avec flotte limitée hétérogène.

Etant donné tout le potentiel envisageable concernant les multiples possibilités de
développer des liens commerciaux avec l’industrie en résolvant les problèmes de trans-
ports les concernant, nous nous sommes donnés comme défi la proposition de méthodolo-
gies et le développement de solutions pratiques optimisant les tournées de véhicules avec
flotte limitée hétérogène. Afin d’atteindre cet objectif, nous avons identifié les points clés
suivants:

1. Une hybridation avec la recherche tabou : Cette méthode permet à la recherche de
voisinage de type chaînes d’éjection d’être intégrée dans l’algorithme tabou. Cela
permet de savoir si l’intégration des voisinages de type chaînes d’éjection avec les
métaheuristiques est capable de générer des solutions de bonne qualité.

2. Combiner la mémoire adaptative (AMP) avec la métaheuristique tabou. L’AMP et
son mécanisme de mise à jour des solutions enregistrées permettent relativement la
plus importante diversification et l’aboutissement à de bonnes solutions. Ces solu-
tions seront enregistrées et utilisées au cours du processus de recherche. L’utilisation
qui en découle aura lieu entre les différentes phases de voisinages au cours de la mé-
taheuristique.

3. Chercher à développer une méthodologie pour étudier cette problématique. Notre
approche est basée sur les métaheuristiques évolutives qui rendent possible la plan-
ification de tournées tout en déterminant les clients qui seront servi à l’aide d’un
transporteur externe.

4. Utiliser l’optimisation par colonies de fourmis pour résoudre le problème de tournées
de véhicules dynamique. Il s’agit de l’implémentation d’une méthode de colonie de
fourmis basée sur une recherche locale de type 2-Opt. Dans cette application nous
avons opté pour la résolution du problème de collecte de tournées de véhicules
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dynamiques, fait qui jusque là semble non abordé dans les différentes sources de
littérature de notre état de l’art.

5. Déterminer l’état de l’art actuel du problème de tournées de véhicules avec flotte lim-
itée hétérogène puis explorer l’utilisation de différentes méthodes de résolution dans
le cas de quelques variantes du dit problème. La voie à suivre étant l’amélioration
des méthodes récentes qui traitent les problèmes fortement contraints.

Cette thèse vise l’étude de quelques problèmes d’optimisation de la logistique du trans-
port et se rapporte à la proposition des métaheuristiques pour la résolution de ces dif-
férents problèmes. Cela se fait par l’étude des problématiques d’optimisation dans la
chaîne logistique en s’intéressant à la partie gestion de distribution.

La thèse est organisée comme suit:
Le chapitre 1 représente l’introduction générale de ce manuscrit. Il présente l’ensemble

des raisons qui ont motivé ce travail de recherche et expose une présentation non exhaus-
tive des contributions accomplies.

Le chapitre 2 commence en premier lieu par un état de l’art de la littérature consacrée
aux problèmes de tournées de véhicules en général : nous rappelons donc les notions de
base et nous présentons quelques formulations mathématiques et variantes du problème
de transport. En deuxième lieu, nous détaillons les différentes approches et méthodes de
résolution dont on fera appel par la suite. En dernier lieu, nous proposons de nouvelles
idées que nous développons et qui constituent notre apport personnel dans la résolution
des variantes considérées.

Les M-problèmes de tournées de véhicules (M-VRP) sont abordés dans le chapitre 3
dédié à :

• l’extension de ces problèmes au cas où la flotte hétérogène est limitée ;

• la présence du transporteur externe.

Il s’agit d’un problème complexe, avec des contraintes de capacité et de limitation du
nombre de la flotte hétérogène de véhicules disponibles. Cette extension s’inscrit dans
le cadre d’un intérêt pratique, celui d’une représentation plus réaliste des phénomènes
observés. Ensuite, nous avons proposé une méthode itérative, hybride et coopérative de
résolution, puis, nous avons étudié le problème de tournées de véhicules avec flotte limitée
et transporteur externe. La résolution de ce dernier cas permet la prise de décision
stratégique favorisant :
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• soit le maintien d’une flotte privée ;

• soit opter pour un transporteur externe ;

• soit de faire appel à une combinaison des deux premières options.

Compte tenu de la nature fortement combinatoire de ce problème, les instances peu-
vent être de très grande taille, par conséquent, les méthodes exactes peuvent s’avérer
inefficaces. Afin de contourner ce problème, nous avons opté pour les approches heuris-
tiques et métaheuristiques.

En se basant sur les réflexions et méthodes empiriques, nous avons implémenté en
un premier temps, une méthode hybride avec une mémoire adaptative pour résoudre le
problème de tournées de véhicules avec une flotte limitée hétérogène. En deuxième temps,
deux approches ont été proposées pour résoudre le problème de tournées de véhicules
avec flotte limitée et transporteur externe. La première approche se traduit par une
technique de recherche heuristique basée sur des voisinages de types chaînes d’éjection, et
la deuxième constitue une méthode évolutionnaire avec une recherche locale 2-opt.

Au travers des expérimentations menées avec cette hybridation, nous montrons que
l’incorporation d’une méthode efficace (ici la méthode d’échange d’arcs où voisinage2-
opt) qui donne une forte amélioration de la qualité des résultats. De plus, et bien que
le problème soit difficile, les méthodes proposées résolvent des problèmes de taille très
importante.

Le Chapitre 4 traite le problème de tournées de véhicules dynamique (PTVD). Cer-
taines données du problème en question ne sont pas connues à l’avance. Elles constituent
de nouvelles informations révélées en ligne après l’exécution des routes par les véhicules.
Les nouvelles informations correspondent souvent à l’apparition, au cours du temps, de
nouveaux clients qui doivent être inclus dans les routes actuelles.

L’exécution manuelle de l’organisation et la planification d’un tel service se révèle
longue et fastidieuse. L’optimisation proposée des démarches visant l’atteinte d’une solu-
tion de ce problème combinatoire passe par diverses heuristiques permettant la planifica-
tion de tournées de véhicules.

Dans ce chapitre nous abordons la résolution de la variante dynamique avec la méthode
de colonie de fourmis. La décision prise à partir des expérimentations est la planification
des itinéraires et le ré-ordonnancement de services des clients. Autrement, les demandes
des clients sont traitées de façon dynamique et la résolution du problème se poursuit en
parallèle et en temps réel avec la simulation de nouveaux clients.
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On termine la rédaction par une conclusion générale montrant les apports personnels
et les nouvelles contributions que nous avons apportés à la résolution à ces problèmes de
tournées de véhicules.
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Chapter 1

Introduction

Logistics has emerged in the military and civilian domain for several centuries. The
calculations of needs, traveling time, space and inventory collection showed a new kind of
science that were not yet called operational research but who had a little spirit and that the
was called to devote the logistics logico-mathematical nature. It is the function responsible
for the flow of materials from suppliers into an organization, through operations within
the organization, and then out to customers. The role of distribution in the supply chain
management model has extended considerably from the conventional view of the activity
as being concerned solely with transport and warehousing. For example Cooper et al.
(1991) maintain that the transport and storage of goods are at the centre of any logistics
activity.

Moreover, in recent years the world has experienced a sharp and dramatic increase in
fuel prices. Efficient management of fuel cost has become a critical issue in today’s of using
vehicles. Many countries around the world are making large investments in transportation
improvements, but even greater investments are still needed. This increase is likely to
continue over the coming decades. Transport projects are generally intended to improve
the economic and social care of people. Thus, many countries around the world are
investing heavily, and very importantly, on improving the transport. One method of
managing the increase of fuel cost is to reduce the cost of transportation, and planning
of vehicle routing.

Vehicle Routing Problem (VRP) holds a central place in distribution management. Its
economic importance has encouraged academic researchers and industry to find ways to
effectively fulfill the transportation of goods and services. The VRP dates back to the end
of the fifties of the last century when Dantzig and Ramser (1959) set the mathematical
programming formulation and algorithmic approach to solve the problem of delivering
gasoline to service stations. Several models have been developed such as the mathematical
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1.1 Research Objectives of the thesis

model presented in our thesis by Fisher and Jaikumar (1981).
The role of distribution in the model of supply chain management has grown consid-

erably to depart from its traditional view. Indeed, the conventional view of the business
dealt only transportation and storage. Proposal as to minimize the cost of fuel, the opti-
mized planning of vehicle routing seems to be a worthy exploration. This allows thereby
reducing the transportation costs.

This research is motivated by the desire to find a realistic model and that is as faithful
as possible to the state transport through the consideration of the appearance of hetero-
geneous vehicles (vehicles are not identical and they not all have the same capacity) and
limited fleet of most industrial (each company has a limited number of vehicles).

These aspects have often been studied separately. Laporte (1992) which give a review
on the exact methods for solving the vehicle routing problem, and Toth and Vigo (2002)
presents some models and exact approaches to solve this type of problem.

Kilncewicz et al. (1990) presented the problem in a context to divide the customers into
sectors and the private fleet size and common carrier must be determined for each sector.
Diaby and Ramesh (1995) have been studied the problem and they fixed an objective
to decide which customers are served by external carriers and to optimize the remaining
customers. Recently, Chu (2005) and Bolduc et al. (2007, 2008) have used constructive
heuristics for solving the vehicle routing problem with limited fleet and external carrier.

We propose to formulate new problems studies and put forward some methods of reso-
lutions (e.g. Euchi and Chabchoub (2010), Euchi et al. (2011)). Thus, new methodologies
described in this thesis may contribute to the improvement of thinking advanced by the
scientific community.

1 Research Objectives of the thesis

In recent years, interest in meta-heuristic approaches such as simulated annealing, tabu
search, variable neighborhood search and genetic algorithms, evolutionary algorithm, ant
colony (for VRP) has increased due to the ability of these approaches to generate solutions
which are better than those generated from sequential heuristics alone. This research uses
metaheuristics algorithms to solve the vehicle routing problem with heterogeneous limited
fleet.

Given the potential for possible multiple opportunities to develop trade links with
industry in solving transport problems, we set a challenge the proposed methodologies
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1.1 Research Objectives of the thesis

and the development of practical solutions optimizing vehicle routing with heterogeneous
limited fleet. To achieve this goal, we identified the following key points:

1. Hybridization with tabu search: This method allows the search for neighborhood-
type ejection chains to be incorporated into the tabu algorithm. This shows whether
the integration of neighborhoods like ejection chains with metaheuristics is able to
generate good solutions.

2. We combine the adaptive memory procedure (AMP) with tabu search metaheuristic.
The AMP and its mechanism for updating stored solutions allow a comparatively
large pool of good and diversified solutions to be stored and used during the search
process, alternating between small and large neighbourhood stages during the meta-
heuristic course.

3. We seek to develop a methodology to address this decision of planning of tours. Our
approach is based on the evolutionary metaheuristics ones making it possible to plan
routing while determining the customers to be useful via an external transporter.

4. We use an ant colony optimization to solve the dynamic vehicle routing problem. We
implement an artificial ant colony based on 2-Opt local search. In this application
we chose to solve the dynamic pick up vehicle routing problem, in fact which seems
hitherto not addressed in the various sources of literature of our state of the art.

5. To explore the state of the art of vehicle routing problem with heterogeneous limited
fleet and investigate the use of different methods in the case of some variants of the
heterogeneous vehicle routing problem with limited fleet. The way forward is the
improvement of recent methods that deal with highly constrained problems.

This thesis aims to study some optimization of logistics and transport problems and
refers to the proposal of metaheuristics for solving these variants of problems. This is
done through the study of optimization problems in the supply chain by focusing on the
management part of distribution.
The thesis is organized as follows:

Chapter 1 represents the introduction of the main manuscript. It presents all the rea-
sons that motivated this research and presents a non exhaustive presentation of completed
contributions.

Chapter 2 begins firstly by a state of the art of literature on vehicle routing problems in
general: thus we remind the basic notions and we present some mathematical formulations
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1.1 Research Objectives of the thesis

and variants of the transportation problem. Secondly, we detail the different approaches
and methods which we will identify thereafter. Finally, we propose new ideas that we
develop and that’s represent our personal contribution to the solving of the considered
variants.
In chapter 3, we deal with the M- Vehicle Routing Problems dedicated to:

• the extension of this problem in the case of the heterogeneous limited fleet;

• the presence of an external carrier.

This is a complex problem with capacity constraints and the limited number of hetero-
geneous fleet of available vehicles. This extension is part of practical interest, which is a
more realistic representation of the observed phenomena. Then, we proposed an iterative,
hybrid and cooperative methods; thereafter we have studied the vehicle routing problem
with limited fleet and external carrier (VRPPC).
Solving the VRPPC case makes the strategic decision support:

• maintain a private fleet;

• either for external carrier;

• or to use a combination of the two options

Given the highly combinatorial nature of this problem, instances can be very large;
therefore, the exact methods may be ineffective. To solve this problem, we opted for the
heuristics and metaheuristics algorithms.

Based on the empirical methods, we implemented in the first step, a hybrid method
with an adaptive memory to solve the vehicle routing problem with heterogeneous limited
fleet. In the second step, two approaches have been proposed to solve the vehicle routing
problem with limited fleet and common carrier. The first approach is a heuristic search
technique based on ejection chains neighborhoods, and the second is an evolutionary
approach with 2-opt local search.

Through experiments conducted with this hybridization, we show that the incorpora-
tion of an effective method (here the exchange arcs method or the 2-opt), which gives a
strong improvement in the quality of results. Furthermore, the proposed methods solve
the large instances of the problem.

Chapter 4 deals with dynamic vehicle routing problem (DVRP). In DVRP, some data
about the problem are not known before hand. That is, new information is revealed online,
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1.2 Contributions

after the routes are executed by the vehicles. The new information often corresponds to
the appearance of a new vertex (customer) that must be included into the current routes.

The organization and the planning of such a service prove to be long and tedious if it
is done manually. In order to bring a solution for complex combinatorial problem, various
heuristics make it possible to build planning’s of vehicle routing.

In this chapter we discuss the solving of the dynamic vehicle routing problem with an
artificial ant colony. The decision taken from the experiments is the planning of the routes
and the re-scheduling of the customers. Otherwise, the customers’ requests are handled
dynamically and the resolution of the problem is made in parallel and in the real-time
with the simulation of new customers.

2 Contributions

This thesis has dealt with three variants of heterogeneous vehicle routing problem with
fixed fleet while addressing the following special cases:

• Case where the fleet is limited and heterogeneous;

• Case taking into account the external carrier in addition to a limited and heteroge-
neous fleet;

• Case of the dynamic vehicle routing problem.

In the following we present the main contributions of this thesis:

1st case: proposed ideas and developed strategies

The first contributions appear in Chapter 3. We remind that it has the solving of vehicle
routing problem with heterogeneous limited fleet as well as on the case of the presence of
an external carrier.

The presence of the limited fleet constraint makes the problem more complex and
realistic. The choice of a good metaheuristic can provide better results.

We propose in this work the description of the strategies which we provide examples of
applications. Through these examples we focus on the optimization of empirical research
by using a hybridization method with tabu search. These strategies allow the solving of
the vehicle routing problem with heterogeneous limited fleet. The comparative results
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1.2 Contributions

favor the proposed strategies at the expense of those derived through the application of
the methods described in literature.

These strategies help to find best satisfied solutions by using the concept of adaptive
memory. The development of these strategies has allowed us to propose a new algorithm
which has been the subject of a publication in Logistics Research (international journal)
(Euchi and Chabchoub (2010)).

2nd case: proposed ideas and developed strategies

In Chapter 3, we present work related to solve the vehicle routing problem with lim-
ited fleet and common carrier. The considered problem is solved by two methods.

The first method derived from the idea that we are proposing and that involves
the application of the ejection chains neighborhoods structures in the tabu search al-
gorithm(Euchi and chabchoub (2010)) . We have seen the effectiveness of this algorithm
to solve this variant of vehicle routing, which demonstrates the relevance of the idea.

The second method is the application of a version that we have improved from the.
The key idea is reflected by a combination of 2-Opt local search and use of the probabilis-
tic model (Euchi et al. (2011)). These results prove the satisfaction and the performance
of the Iterated Density Estimation Evolutionary Algorithm (IDEA), whose results were
published in the International Journal of Applied Metaheuristic Computing (International
Journal of Range A) and in the International Journal of Universal Computer Science.
These same results have been a subject of a communication published in IEEE simulta-
neously with our participation at the international conference "International Conference
on Computers Industrial Engineering (Euchi and Chabchoub (2009)).

3rd case: proposed ideas and developed strategies

Finally, we discuss a dynamic vehicle routing problem. In this case we are interested
in the variant which considers the dynamic delivery pickup problems.
We draw the attention to two facts:

• Taking into account the dynamic pickup seems ever addressed in literature. To the
best of our knowledge, our attempt in this regard could be the first in the field.

When handling large instances, good results are recorded following the improvement
of the strategy and the combination method of ant colony in one side and the local
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1.2 Contributions

search method to another. The comparative results highlights those deduced from
our method depend on those provided by the state of the art.

• This work was presented through two communications and at two international
conferences. The first submission made during the progress of work, is partial
when the second traces the total work done in this direction. The enthusiasm
generated after these communications has encouraged us to submit our results to
the international journal "Applied Mathematics and Computation"(review of row
A) in the form of paper.
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Chapter 2

Literature review

In this chapter, we are going to present a literature review of the general vehicle routing
problem then we are going to focus on the problematics approaches in this thesis. For each
one of these problematic, a positioning compared to this state of the art will be developed.

In the first part a synthesis of literature review devoted to the Complex and Logistic
Transport problems in general and a transport problem with limited fleet and common
carrier in particular with stochastic and dynamic vehicle routing problem.

In the second part, a description of the vehicle routing problem with mathematical
formulations will be presented. The different variants of this problem will be approached.

1 Introduction

As we already mentioned in the introduction of this thesis, coordination of the various
entities of the vehicle routing problem represents a major challenge today. The line of
research that we have exposed the face of this problem is to define a tool to assist decision-
making for planning the vehicles routing. To define precisely the problem and to make
it necessary to focus on certain points from both a state of the art of academic research
and industrial practices.

We’ll explain more precisely what is the Vehicle Routing Problems (VRPs)? This
chapter aims at positioning this thesis work in the broad field of research on Vehicles
Routing issues. The purpose of this study is to bring the complete problem of vehicle
routing adapted to the problems of classical literature.
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2.2 Related works

2 Related works

The VRP and its generalizations have been widely studied in recent years.
Figure 2.1 illustrates the classification of the VRP

Figure 2.1 – classification of vehicle routing

In general, distribution problems are in the ability to meet requests from several cus-
tomers (destinations) from one or several warehouses (sources), at lower cost. Normally,
these problems are solved by placing the customers demands in some way in vehicles of
limited capacity.

The optimization of a distribution network involves two types of decisions that allow
us to reduce costs or increase the level of service. Both types are strategic decisions and
operational decisions. Strategic decisions are not taken every day, and their effects are
medium and long term. The location of warehouses or transhipment nodes, the allocation
of products to warehouses, the frequency of delivery and composition of the fleet vehicles
are examples of strategic decisions.

The operational decisions are taken daily and their effects are immediate. For example,
the allocation of customers to warehouses, the allocation of products to customers, mode
of transportation and / or the choice of routes to take is indeed a Vehicle Routing Problem
(VRP).

The VRP is a part of the combinatorial optimization problems most studied. This
problem holds the attention of several researchers for many years, and everywhere in the
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2.2 Related works

world. Several authors have made literature review that deal with problems tours.

The first paper dealing with the vehicle routing was published in the late 1950’s by
Danzig and Ramser (1959). This problem, more often called Vehicle Routing Problem
(VRP), draws a large number of researchers because it is theoretically very interesting.
Moreover, applications of VRP are numerous. Thus, most companies which must deliver
a product to several customers are facing this problem. The literature of the VRP is
therefore very large. These include Bodin et al. (1983), Laporte (1992a, 1992b, 1993),
Laporte and Osman (1995) who presented the problems of Vehicle Routing as problems
easy to explain but difficult to solve.

More specifically, two types of problems have been addressed in literature: VRP with
limited fleet and the VRP with limited fleet and external carrier. Some authors studied
the VRP with limited fleet including Osman and Salhi (1996), Gendreau et al. (1999),
Taillard (1999) and Tarantilis et al. (2004). All these authors considered a heterogeneous
limited fleet with sufficient capacity to serve all customers. Another interesting idea was
made by Fisher and Jaikumar (1981) in their article on the development of a heuristic in
the Vehicle Routing problem. They used an algorithm of assignment to assign each order
to a vehicle. The objective was to minimize the total cost of tours. On the other hand,
N, the number of vehicles available is given, and thus is not to minimize. One advantage
of this algorithm is that it always gives a feasible solution if there is one.

Also Frederickson et al. (1978) address the problem of building tours with N vehicles.
Their objective is to minimize the maximum length of tours. Although this problem brings
together the VRP and it appears in reality. Similarly, the paper of Renaud and Boctor
(2002) presents the VRP with a heterogeneous fleet. The fleet of vehicles can be made up
of vehicles with different capacities. Also, fixed and variable costs of vehicles may differ
from one vehicle to another. The hiring of part or all of the fleet is possible providing
the advantage of flexibility since the composition of the fleet may change frequently. The
objective is to minimize the total cost consisting of fixed and variable costs of vehicle use.
Moreover, we must find better allocation of vehicles to different routes.

At the level of VRP with limited fleet and external carrier, Volgenant and Jonker
(1987), which demonstrated that the problem involving a fleet of one single vehicle and
external carriers, can be rewritten as Travelling Salesman Problem (TSP). This problem
was also studied by Diaby and Ramesh (1995) whose objective was to decide which clients
to visit ugly external carriers and to optimize the tour of remaining customers.
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2.3 Travelling Salesman Problem (TSP)

Also among the literature we find in Fisher et al. (1982) who have also included a
choice of using an external carrier or its own fleet in developing their application. Hall
and Racer (1995) have studied this same choice with the approximation continues. Brown
et al. (1987) incorporate this decision in their model to allocate oil trucks, also Yang et
al. (2000) incorporate the problem in their distribution to stores in detail.

Generally, when the company does not have enough vehicles to carry out all tours we
must decide which tours will be made by an external carrier and which will be made by
the fleet of the company. The Vehicle Routing Problem with Private fleet and Common
carrier (VRPPC) is a more complex problem because it involves an internal fleet of several
vehicles. To our knowledge, VRPPC was introduced by Chu (2005) and Bolduc et al.
(2007). In his article Chu presents the mathematical modelling of the problem and solves
it with heuristic economies improved interstate and intrastate routes. Thereafter, Bolduc
et al. (2007) have improved the results of Chu using more sophisticated exchanges.

3 Travelling Salesman Problem (TSP)

The name of Traveling Salesman Problem - TSP for the optimization problem is believed
to have originated in the United States. It is a prominent illustration of a class of problems
in computational complexity theory which is classified as NP-hard. However, it would
be reasonable to say that a systematic study of the TSP as a combinatorial optimization
problem began with the work of the Dantzig et al. (1954). Applegate et al. (2003),
Johnson and McGeach (1997), and Junger et al. (1995) are excellent survey and compu-
tational aspects of the TSP.

Traveling salesman problem considers a salesman who needs to visit each of n cities,
which we shall enumerate as {0,1, ...,n−1}. His goal is to start from his home city, 0, and
make a tour visiting each of the remaining cities once and only once and then returning
to his homecity. We assume that the "distance" between two cities, ci j, is known (distance
does not necessarily have to be distance-it could be travel time or, even better, the cost of
travel) and that the salesman wants to make the tour that minimizes the total distance.
This problem is called the traveling salesman problem. The following figure 2.2 shows an
example with seven cities.
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2.4 Vehicle Routing Problem (VRP)

Figure 2.2 – A feasible tour in a seven-city traveling salesman problem

4 Vehicle Routing Problem (VRP)

The VRP generally determine the best routes or schedules to support and / or to deposit
passengers or goods across sites, while respecting certain requirements and optimizing
the cost associated with the solution of the problem. This part is devoted to describe
the vehicle routing problem. The VRP, the generic name given to all these problems
or vehicles, must perform actions on a network. Danzig and Ramser have proposed a
mathematical formulation which can be explained by the patterns that follow. The first
is the problem with the warehouse and operations materialized by the crosses.

4.1 Distribution network

The vehicles generally move on a transportation system (e.g. Clarke and Wright (1964)).
Whether an aircraft or vessel which must comply with air or sea routes, a train or a car.
The geographical area is usually represented by a directed graph or symmetrical. Each
node represents a remarkable place (a city, a warehouse, a customer, etc.) Each edge
connects symmetrical and each arc directed a connection between these places (e.g.Figure
2.3).

The graph can also submit for each arc or edge one or more useful assessments to
the problem. They may represent a distance or a cost toll, particular restrictions, or a
travelling time depending on the type of vehicle.

Figure 2.4 shows the solution with three rounds of vehicles that start and finish filing
satisfying all the demands of operations.
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2.4 Vehicle Routing Problem (VRP)

Figure 2.3 – Representation of a vehicle Routing Problem

Figure 2.4 – Solution of Vehicle Routing Problem

4.2 Mathematical model

The Vehicle Routing Problem can be defined as a problem which many customers must
serve starting from a single depot with known demands.

Mathematically, the Vehicle Routing Problem is defined on an undirected graph G =
(V,A) where V = {v0,v1, ...,vn} is the vertex set and A = {(i, j) : i, j ∈V, i 6= j} is the arc set.
Vertex v0 represent depots at which are located at most m identical vehicles of capacity
Q. With each customer i ∈ V {0} is associated with a non-negative demand qi ≤ Q. A
distance di jis associated with each arc (i, j) ∈ A, these symmetrical distances i.e. that
di j = di j∀i, j ∈ A. A limit l can also be being imposed over the maximum duration of the
tours.

In some versions of the problem, the number of vehicles is given a priori. In the others,
the number of vehicles is a decision variable. The tours must make it possible to visit
all the customers once and only once. The vehicles are assigned to the tours so as to

20



2.4 Vehicle Routing Problem (VRP)

minimize the objectives which for example can be the covered distance to visit all the
customers. The problem consists of determining a set of m vehicle routes such that:

1. Starting and ending at the depot;

2. Each customer is visited by exactly one vehicle;

3. The total demand of any route does not exceed Q, and

4. The total routing cost is minimized.

There are many formula of the vehicle routing problem. The following formula is drawn
by Fisher and Jaikumar (1981). First of all let us define the set of the necessary variables
to carry out the mathematical formulation.

4.2.1 Parameters

m : Number of available vehicles
N : Number of customers to be visited. The customers are numbered from 1 to n and the
depot has the number 0
Qk : Capacity of the vehicle k

qi : Demand of customer i

di j : Outdistance between the customer i and j.

4.2.2 Decisions variables

yik:Binary decision variable which is equal to 1 if the truck k travels from customer i to
customer j and 0 otherwise.
xi jk:Binary decision variable which is equal to 1 if the truck k travels from customer i to
customer j and 0 otherwise.

4.2.3 Formulation

Fisher and Jaikumar (1981) formulate the VRP as follows:
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Minimize
n

∑
i=0

n

∑
j=0

K

∑
k=1

di jxi jk (2.1)

subject to

n

∑
i=1

qiyik ≤ Qk k ∈ {1, ...m} (2.2)

K

∑
k=1

yik =

{
k i=0
0 i=1, ..., n

yik = {0,or1} i ∈ {0, ...n} k ∈ {1, ...m}(2.3)

and with constraints of the Traveling Salesman problem (TSP)

n

∑
i=0

xi jk = y jk j ∈ {0, ...n} k ∈ {1, ...m} (2.4)

n

∑
j=0

xi jk = yik i ∈ {0, ...n} k ∈ {1, ...m} (2.5)

∑
I∈S

∑
J∈S

xi jk ≤ |S|−1 ∀S ∈ {1, ...n} k ∈ {1, ...m} 2≤ |S| ≤ n−1 (2.6)

xi jk = {0 or1} i, j ∈ {0, ...n} k ∈ {1, ...m} (2.7)

This formula (2.1) can minimize the distance travelled by all vehicles. Constraint (2.2)
ensures that the loading of vehicles respects their capacity. Constraint (2.3) ensures that
each route begins and ends at the depot and that each customer is assigned to a single
vehicle. Constraints (2.4) to (2.7) avoid sub-tours and that each customer is visited only
one time. Hence, there are the constraints used for the travelling salesman problem.

5 Variants of the vehicle routing problem

During these recent years of research for other problems, derivatives vehicle routing prob-
lem, made their appearances. These appearances are due mainly to the activities of
researchers who work more and more on the problems of transport and distribution that
companies face. In what follows we will present the main problems derived from Vehicle
Routing Problem. Our primary interset in the problem to optimize the management of
a limited fleet homogeneous or heterogeneous vehicle finite capacity, to domicile it in the
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same depot, and to visit a set of geographically dispersed customers, who formulate a
demand ( or an offer, but not both) known in the presence of an external carrier. In this
section, we are presenting a brief period mono certain extensions of the vehicle routing
problem, the Capacitated VRP in Section 5.1and the Multi period VRP in Section 5.2.
We also deal with two multi-period problems : Period Vehicle Routing Problem, Inven-
tory Routing Problem. The VRP with a limited fleet in Section 5.3. We present the VRP
with full truckload in Section 5.4. Section 5.5 deal with the vehicle routing with profit.
After, we introduce the Vehicle Routing Problem with Private fleet and common Carrier
in Section 5.6. Finally, Section 5.7 located the Dynamic VRP in Section.

5.1 Capacitated vehicle routing problem

The most elementary version of the vehicle routing problem is the capacitated vehicle
routing problem (CVRP). The CVRP is described as follows: n customers must be served
from a unique depot. Each customer asks for a quantity qi of goods (i = 1, ...,n) and a
vehicle of capacity Q is available to deliver goods. Since the vehicle capacity is limited,
the vehicle has to periodically return to the depot for reloading. In the CVRP, it is not
possible to split customer delivery. Therefore, a CVRP solution is a collection of tours
where each customer is visited only once and the total tour demand is at most Q. The
goal is to find a set of tours of minimum total travel time.

Data: A set of nodes customer (having a demand) and edges (provided with costs)
and an unlimited fleet of vehicles with uniform capacity Q on the basis of a single depot.

To find: Vehicles tours, satisfying each demand once and only once and respecting
the constraints of capacity.

To Minimize: The total cost of transport related to the arcs borrowed by the vehicles
and/or the fixed costs associated with the use of the vehicles.

The CVRP can be formulated as a general vehicle routing problem where constraints
(2) are added.

5.2 Muli-Period Vehicle Routing Problem

More recent than the classical vehicle routing problems, the period vehicle routing prob-
lems consider a planning horizon where a vehicle may make several routes. The period
vehicle routing problem is to be delivered by a range of customers, the quantity of de-
mand for one or several products on a horizon of time. In this problem, the quantity of
products delivered to a customer, allows the latter to cover its needs until the next visit
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of the vehicle. As a result, the vehicles can make several trips. The main purpose of this
problem is divided into two parts: the first is to schedule deliveries for each customer over
a predetermined time, and the second is to organize the vehicles tours to make deliveries
required while optimising the total cost of transport. We describe in this section two types
of multi-periods problems : the PVRP (Period Vehicle Routing Problem) and IRP (Inven-
tory Routing Problem). These two problems generally correspond to industrial problems
but addressed in different ways. Among these issues there are generally the delivery of
liquid gas and oil, the distribution of beverages, and more generally periodic distributions
of goods and consumption needing several deliveries on the planning horizon.

5.2.1 Period Vehicle Rouing Problem

In the PVRP, consider that each customer have to be served a certain number of times in
the horizon, and that this number constitutes data of the model. The goal to be used each
customer as many as time as necessary. To each customer a total of possible sequences
of deliveries is allotted, corresponding to the days of deliveries. The PVRP can thus
break up into two problems: assignment of sequences of delivery to the customers and
resolution of a classical vehicle routing problems per day of the horizon. The definition
of the problem is presented as follows:

Data: A set of nodes customer (having a demand); and time windows (flexible and
hard); a set of edges (provided with costs) and an unlimited fleet of vehicles with fixed
capacity Q on the basis of a single depot.

To find: A set of vehicles tours, satisfying each demand one and only once in the
horizon of planning and respecting the constraints of capacity of the vehicles.

To Minimize: The total cost of transport related to the arcs borrowed by the vehicles.
This problem was formulated the first time by Beltrami & Bodin (1974) [8] concerning

the domestic garbage collection. Two approaches are proposed:
- Affect to each customer a sequence of delivery to solve the vehicle routing problem

for every day of the horizon.
- Construct the tours then affect them to days while respecting sequences of delivery.
However, the frequency of visiting of the customers is a hard constraint which can

penalize the resolution. More recent methods slacken this constraint and allow a customer
to be visited more often than necessary. This relaxation is particularly useful in Period
Vehicle Routing Problem with Service Choice (Francis et al. (2004)) where the frequency
of visiting is a decision variable of the problem.
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5.2.2 Inventory Routing Problem

For twenty years, Inventory Routing Problem has aroused much more interest on behalf
of the researchers. It is about a more global solution than for the PVRP, so far as he
also integrates problems of inventory control. In Inventory Routing Problem, the concept
of sequence of delivery becomes implicit, and is not any more one fact of the case. Each
customer has a rate of consumption which is generally known and a stock of product at the
beginning of horizon. The goal is to avoid the out-of-stock conditions at the customer.
One can then cut out the IRP in three problems: quantity and inventory control of
each customer to deliver in order to avoid the out-of-stock conditions, assignment of the
customers at the days of delivery, and design and optimization of the tours.

Data: A set of node customers (with an inventory) and consumption of this stock
in the planning horizon; a set of edges (provided with costs) and an unlimited fleet of
vehicles with fixed capacity Q on the basis of a single depot.

To find: A set of vehicles tours, avoiding stock outs at the customer, within con-
straints of capacity of vehicles and respecting the constraints of capacity of the vehicles.

To Minimize: The total cost of transport related to the arcs borrowed by the vehicles.

5.3 Vehicle Routing Problem with limited fleet

Traditionally, we differentiate the fleets on a criterion from homogeneity. It is said that
a homogeneous fleet if each vehicle is identical in all points. A fleet is known as hetero-
geneous if the capacity is not the same for each vehicle, or so various competences exist
according to vehicles. In the case of multi-depot (MDVRP) problems, departure / arrival
for each vehicle can vary, which may be seen as an aspect of heterogeneous fleet. The
problem can then be broken down into two sub-problems, which are the assignment of the
demands to the depots, then the resolution of a VRP for each depot (Cluster first, route
second). We can refer to Tansini et al. (2001) for the case of vehicle routing problem
multi-depot (vehicles have specific points of departure and arrival).

For a few years, a new type of vehicle routing problem arouses a growing interest:
the vehicle routing problems with limited fleet, called m-Vehicle Routing Problem (m-
VRP). If there is an assignment making it possible to satisfy all the demands on the
horizon of planning, the problem is known as satisfiable and we solve it according to
the present objective. Otherwise, it defines a secondary objective and we start again the
resolution of the problem. Typically, this objective will aim at maximizing the number of
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satisfied demands. However, it can vary according to the constraints (time windows hard
or flexible, etc). The satisfaction of each demand becomes a decision variable then, and
it is thus necessary to adapt the consequently objective.

We will define three statements of the problem according to these two alternatives.

5.3.1 M-Vehicle Routing Problem with Time Windows (SATISFIABLE)

The case of satisfaisables problems presents no complications concerning the definition of
the objective: since there is a solution satisfying all the demands, it is considered that
a valid solution must satisfy all demands, whether such "meeting" or deferrable. The
objective is then to minimize the total cost of the tours. There is not fixed cost associated
with the creation with a tour and the cost compared to the distance. The objective of
the satisfiable problems is to minimize the total travelled distance.

The definition of the problem is as follows:
Data: A set of nodes customer (having a demand) and time windows; a set of edges

(provided with costs); Limited fleet of vehicles.
To find: A set of tours respecting the constraints of capacity of the vehicles, hard

time windows and constraints on depots.
To Minimize: The total cost of transport related to the arcs borrowed by the vehicles.

5.3.2 M-Vehicle Routing Problem with Time Windows (DISSATISFYING)

The case of dissatisfying problems corresponds the company’s willingness to test the pos-
sibilities of excessive size of the entrance to the problem. The underlying idea is that
if there are more choices for applications, it can produce better solutions. The insat-
isfiable problems therefore correspond to satisfiable problems plus deferrable demands,
not criticism. The goal is then considered minimizing the number of deferrable demands
dissatisfied. Each meeting must be satisfied, and constitutes a constraint.

The definition of the problem is as follows:
Data: A set of nodes customer (having a demand) and time windows; a set of edges

(provided with costs); Limited fleet of vehicles.
To find: A set of tours respecting the constraints of capacity of the vehicles, hard

time windows of the jobs actually carried out and constraints on depots.
Minimising: The number of satisfied customers.
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5.3.3 M-Heterogeneous Vehicle Routing Problem (M-HVRP)

This section considers an important variant of the VRP in which a fleet of vehicles char-
acterized by different capacities and costs is available for distributing activities. The
problem is known as the Mixed Fleet VRP or as the Heterogeneous Fleet VRP, and was
first considered in a structured way in Golden et al. (1984). Case-studies and applications
related to the solution of Heterogeneous VRPs can be found in Semet and Taillard (1993),
Rochat and Semet (1994), Brandao and Mercer (1997), Prins (2002), Wu et al. (2005)
and Moghaddam et al. (2006).

5.4 Vehicle Routing Problem with full truckload

In most vehicles Routing Problem, it is assumed that charges are partial (less than truck-
load) i.e. that one must visit several clients to load the truck. A full load more often
called "full truckload" (FL) means that the control of a single client can fill the capacity
of the truck. Arunapum et al. (2003) address a variant of VRP recital full loads, it
is the "vehicle routing with full truckload" (VRPFL). This problem is to determine the
tours with a minimum cost and to deliver a predetermined number of full loads between
pairs of cities specified using a fleet of vehicles located in one or more depots. Every tour
must satisfy the time windows in each city where a shipment is made. Thus, trucks visit
pairs of cities unlike VRP visiting only cities. The algorithm also takes into account the
constraints of time windows.

Less-than-truckload shipments are arranged so that the driver of the tractor trailer
picks up the shipment along a short route and brings it back to the terminal, where it
is later transferred to another truck. This second truck brings the shipment, along with
other small shipments, to another city’s terminal. The less-than-truckload shipment is
transferred from truck to truck until it finally reaches its destination. Full truckload
carriers normally deliver a semi trailer to a shipper who will fill the trailer with freight
for one destination. After the trailer is loaded, the driver returns to the shipper to collect
the required paperwork (i.e. Bill of lading, Invoice, and Customs paperwork) and depart
with the trailer containing freight. In most cases the driver then proceeds directly to the
consignee and delivers the freight him or herself.

Occasionally, a driver will transfer the trailer to another driver who will drive the
freight the rest of the way. Full Truckload (FTL) transit times are normally constrained
by the driver’s availability according to Hours of Service regulations and distance. It is
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normally accepted that Full Truckload drivers will transport freight at an average rate of
47miles per hour (including traffic jams or queues at intersections). Finally, when a truck
on the route is not in motion, a penalty period is imposed. The goal is to minimize the
movement of empty vehicles as they offer no value added to the final product.

5.4.1 Vehicle Routing Problem with return truckload

The VRP with return truckload means that after having made its deliveries, return the
depot must be made in transporting the goods. Osman and Wassan (2002) describe
two constructive heuristic of routes to generate an initial solution. These routes have
improved thanks to a reactive tabu search metaheuristic. The concept reagent can trigger
an exchange between neighbouring structures to intensify and diversify phases of research.
The algorithm was based on economies of Clarke and Wright (1964) and included several
other phases of local improvement. The algorithm was tested on real problems and helped
improve the solutions obtained by dispatcher’s experience.

5.4.2 VRP with pick up and delivery with full truckload

Like the travelling salesman problem, the VRP can also help make different types of
operations. These operations can be pickups and / or deliveries. When these two types
of operations are combined, we must make the pickings before deliveries associated. In
addition, it is possible that loading is complete or partial according to the weight or space
used in the truck. Also, constraints delivery with the return pickings may be imposed.

One article discusses the case of pickups and deliveries in a context of full loads (full
truckload). It is the paper of Gronalt et al. (2003). The pickups are made at some
distribution centres and 48 orders are delivered to customers. They try to minimize the
movement of vehicles with no charge, therefore having no value added to the product.
They are based on the problem of pickup and delivery with the constraints of time windows
to develop four different heuristic savings based on Clarke and Wright (1964) to solve the
problem. They bring together the concepts of opportunity costs and values of regret in
the calculation of savings for this algorithm. A lower bound is set, the latter represents a
solution with no movement of empty vehicles.

5.5 Vehicle Routing Problem wih Profit

A recent paper proposed by Feillet et al. (2005) elaborated on the Profitable Arc Tour
Problem (PATP) which is a generalization of vehicle routing problem where it is not
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necessary to visit all vertices of the given graph. The profit is known as a priori and asso-
ciated with each customer. PATP can be formulated as a discrete bicriteria optimization
problem where the two goals are maximizing the profit and minimizing the traveling cost.
It is also possible to define one of the goals as the objective function and the other as a
satisfiability constraint.

The extension of the PATP to multiple vehicles is referred to as Vehicle Routing Prob-
lem with Profits (VRPP). In one version, this is known as Selective Traveling Salesman
Problem (STSP), Orienteering Problem (OP), or Maximum Collection Problem (MCP)
in the literature, the objective is the maximization of the collected profit so that the total
traveling cost (distance) does not exceed an upper bound. The other version, named as
the Prize Collecting Traveling Salesman Problem (PCTSP), is concerned with determin-
ing a tour with minimum total traveling cost where the collected profit is greater than
lower bound. Feillet et al. (2005)provided an excellent survey of the existing literature on
Traveling Salesman Problem with Profits (TSPP). Their survey presents various modeling
approaches to TSPP and exact as well as heuristic solution techniques.

The multi-vehicles version of the OP is called the Team Orienteering Problem (TOP)
which is studied by Chao et al. (1996a, 1996b). The authors propose a 5 step metaheuris-
tic based on deterministic annealing for its solution. Butt and Cavalier (1994) address to
the Multiple Tour Maximum Collection Problem (MTMCP) in the context of recruiting
football players from high schools. They propose a greedy tour construction heuristic to
solve this problem. Later on Butt and Ryan (1999) develop an exact algorithm for the
MTMCP based on branch and price solution procedure. Recently, Euchi and Chabchoub
(2010) are using the metaheuristics approaches to solve the PATP, they apply a tabu
search and a variable neighborhood search embedded in adaptive memory procedure.

5.6 Vehicle Routing Problem with Private fleet and Common
carrier

The only difference between the vehicle routing problem with limited fleet and the vehicle
routing problem with limited fleet and common carrier is the presence of external carrier.
Generally, when the company does not have enough vehicles to carry out all the tours, it
relies on external carrier. The network studied consists of a depot and several customers.
One or more products are distributed and ordered all units are available in the depot
during the planning of transport. Each customer must be served one and only once by
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the fleet by an internal or external carrier. The internal fleet is composed by a limited
number of vehicles. The ability of vehicles is determined in terms of units produced.

The definition of the problem is as follows:
Data: A set of nodes customer (having a demand); a set of edges (provided with

costs); Limited and private fleet of vehicles with fixed capacity; External carrier.
To find: A set of tours respecting the constraints of capacity of the vehicles, and the

constraints of depots.
To Minimize: Transportation cost:

• Fixed and variable costs of the internal fleet

• Fixed cost of the external transporter

5.7 Dynamic Vehicle Routing Problem

During recent years, distribution systems have become increasingly complex. Another
complicating distribution is the increased focus on timeliness in the distribution chains,
as intelligent planning offers potential savings in capital bindings related to stock and
distribution. This fact has caused an increasing interest in dynamic transportation models
and systems in which data are considered to be dependent.

We are considering an alternative dynamic version of the VRP, in which the customers
have uncertain demands. In the dynamic VRP, a number of customer requests are avail-
able initially, while others become available during the execution plan. Specifically, the
vehicles carry multiple types of product, each customer has an initial reported demand for
certain quantities of each product, when the vehicles reaches the customer, the customer
may change this request based on the current contents of the vehicle.

The problem is defined as follows:
Data: A set of nodes customer (having a dynamic demand); a set of edges (provided

with costs); unlimited fleet of vehicles with uniform capacity on the basis of a single depot.
To find: A set of vehicles tours, satisfying each dynamic demand and only once and

respecting the constraints of capacity of the vehicles.
To Minimize: The total travel cost.
The table below 2.1 summarizes the different variants that were actually considered

in the literature, together with the corresponding references:
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Tableau 2.1 – Overview of different problems
Problem Fleet size Fixed costs Routing costs References

CVRP Unlimited Considered Dependant [12] [17] [24] [30] [82] [123]
VRPTW Unlimited Not Considered Dependant [8] [18] [67] [101] [91]
FFVRP limited Considered Dependant [39] [17] [103] [111] [116]
PVRP Unlimited Not Considered Dependant [100]

SDVRP Unlimited Considered Dependant [3] [5] [70] [111] [126]
FSMFD Unlimited Considered Dependant [29] [79] [98]
FSMD Unlimited Not Considered Dependant [33] [68] [91]
FSMF Unlimited Considered Independant [33] [68] [91] [98] [109] [113]

VRPHF Unlimited Not Considered Dependant [23] [60] [88] [119] [121]
VRPPC limited Considered Dependant [7] [13] [14] [26] [71] [81]
VRPP Unlimited Considered Dependant [6] [11] [20] [22] [45] [50] [51]
DVRP limited Considered Dependant [106] [107] [114] [94]

When:
CVRP:Capacitated Vehicle Routing Problem
VRPTW: Vehicle Routing Problem with Time Windows
FFVRP: Vehicle Routing Problem with Fixed Fleet
multi-periods VRP : multi-periods Vehicle Routing Problem
SDVRP: Split Delivery Vehicle Routing Problem
FSMFD: Fleet Size and Mix VRP with fixed costs and Vehicle Dependent Routing costs
FSMD: Fleet Size and Mix VRP with Vehicle Dependent Routing Costs
FSMF: Fleet Size and Mix VRP with fixed costs
VRPHF: Vehicle Routing Problem wit Heterogeneous Fleet
VRPPC: Vehicle Routing problem with Private fleet and Common carrier
VRPP: Vehicle Routing with Profit
DVRP: Dynamic Vehicle Routing Problem

6 An overview of proposed approaches for the VRP

The metaheuristics are from now on regularly employed in all sectors of engineering. In
this section, we provide an overview of heuristic methods for operational research that
are somewhat familiar with the basic application in this thesis.
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The first part is devoted to the detailed presentation of the metaheuristics via memory,
and then in the second part we describe other evolutionary metaheuristics.

6.1 Metaheuristics optimization via memory

In this section we consider the metaheuristics with memory as the Tabu Search, Variable
Neighborhood Search algorithm, Ejection chains neighborhood and the adaptive memory.

6.1.1 Tabu Search algorithm

Tabu Search (TS) is one of the most widely used metaheuristics. The TS is described,
introduced and refined by Glover (1989). As many other metaheuristics, the success of
TS is, in large part, due to its ability to steer the search process from getting stuck in a
local optimum. This is achieved by allowing a move to a neighboring solution that may
result in deterioration in the objective value but that simultaneously avoids cycling back
through previous moves. TS procedures exploit the short term memory i.e. the Tabu list,
which keeps track of recently visited solution or their attributes. A move to a neighboring
solution is permitted if the neighboring solution is neither contained in the Tabu list nor
possesses an identical attribute (e.g. objective value) to a solution in that list.

However, a move to a neighboring solution could be basically selected on some aspi-
ration criteria even if it is prohibited by the Tabu list. For example, in most Tabu Search
applications, a particular move may be permitted even if it (or its attribute) is contained
in the tabu list as long as such a move will result in a solution that is superior to the best
solution obtained thus far.

Tabu Search has become the focus of numerous comparative studies and practical
applications in recent years as in Brandãò (2009). Fruitful discoveries about preferred
strategies for solving difficult optimization problems have surfaced as a result. We first
describe the basic concepts of TS. The method begins with a complete, feasible solution
(obtained, e.g., by a constructive heuristic) and, just like local improvement, it continues
developing additional complete solutions from a sequence of neighbourhoods.

We suppose that we are trying to minimize a function f (S) over some domain and
we apply the so-called "best improvement" version of TS, i.e., the version in which one
chooses at each iteration the best available move (this is the most commonly used version
of TS).
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6.1.2 Variable Neighborhood Search algorithm

Variable neighbourhood search (VNS) (e.g. Hansen and Mladenovic (2001)) is a recent
metaheuristic for solving combinatorial and global optimization problems whose basic
idea is systematic change of neighbourhood within a local search. This helps the VNS
to explore neighbourhoods which are distant from the current solution and to jump to
new solutions. The basic VNS is made up of three stages: shaking, local search and
move. More details can be found in Hansen and Mladenovic (2001). A local search is
applied repeatedly to obtain the local optima from the current solution. Originally the
basic VNS approach was a descent method. It does not accept a worsening solution to
get out of local optima since the neighbourhood structures are varied regularly. Since the
local optima in one neighbourhood structure is not necessarily a local optima in another
neighbourhood structure, the change of the neighbourhood structures can be undertaken
during the search. The termination criteria may be selected as a maximum number of
iterations, the CPU time or a certain number of iterations without improvement.

6.1.3 Ejection chains neighborhood

The use of compound neighbourhoods adds another level of sophistication to the proce-
dures of generation of movements. The ejection chains combine and generalize the ideas
based on alternate ways of the graph theory (e.g. Harary (1969)), the construction of
networks based on exchanges (e.g. Lawler (1976)), and the restriction of structures to
solve the Integer linear Programming Problem (e.g. Glover (1977)). All these fields have
a compound neighbourhood search and suggest large varieties of new approach to solve
combinatorial optimization.

By interpreting the definition of Glover (1992), we preserved for an ejection chains the
flowing characteristics:

• A neighbourhood of a simple movement is included on each level in a sequence of
neighbourhoods to render more complex movements.

• The evaluation of a movement on each level does not depend on the movements
carried out on the former level of the chains.

• The passage of a level to the following reproduces on incomplete structure but guard
on high level of legitimacy.
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• On each level, the obtaining of a complete structure is obtained by application of
the appropriate movements to the closing of the chains.

6.1.4 Adaptive memory

The AMP was first proposed by Rochat and Taillard (1995) as an enhancement of Tabu
Search (TS) to solve the Vehicle Routing Problem (VRP). It was motivated by the work
of Glover regarding surrogate constraints Glover (1977). An important principle behind
AMP is that good solutions may be constructed by combining different components of
other good solutions. A memory containing components of visited solutions is kept.
Periodically, a new solution is constructed using the data in the memory and improved
by a local search procedure. The improved solution is then used to update the memory.

A pseudo code of the AMP is given below:

1. Initialize the memory M.

2. While a stopping criterion is not met, do:

• Construct a new solution s combining components of M.

• Apply a local search procedure to s(let s∗ be the improved solution).

• Update M using components of s∗.

6.2 Evolutionary algorithms metaheuristics

Evolutionary algorithms, as the name implies, are a class of metaheuristics that emulate
natural evolutionary processes. Sometimes the adjective "genetic" is used instead of "evo-
lutionary". A major portion of the Michalewicz and Fogel (2000) book is devoted to the
subject. Another general reference is Reeves (1993) in which several applications (with
associated references) are discussed, including the travelling salesman problem, vehicle
routing.

6.2.1 Genetic algorithm

The widespread term Evolutionary algorithms appeared in 1993 as the title of a new
journal entitled Evolutionary Computation published by the MIT Press, and then it was
widely used to designate all the techniques based on the metaphor of the biological evo-
lution theory. However, some specialists use the term "Genetic Algorithms" to designate
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any evolutionary technique even though they have few common points with the original
propositions of Holland and Goldberg.

The genetic algorithm (GA) was invented by John Holland and his colleagues in the
early 1970s, inspired by Darwin’s theory. The idea behind GA is to model the natural
evolution by using genetic in heritance together with Darwin’s theory. In GA, the popu-
lation consists of a set of solution or individuals instead of chromosomes.

Genetic algorithms are the most well known and robust methods. The most important
stage in designing a GA is to represent solution with chromosome. A chromosome should
be able to reflect the features of a problem and represent them properly, and produce
a more suitable solution for the objective function, through an evolutionary process, by
a genetic operator. To solve an optimization problem, genetic algorithm start with the
chromosomal representation of a parameter set, which is to be encoded as a finite size
string over an alphabet of finite length. Usually, the chromosomes are strings of 0 and 1.
Each chromosome actually refers to a coded possible solution. A set of such chromosomes
in a generation is called a population, the size of which may be constant or may vary from
one generation to another.

The fitness/objective function is chosen depending on the problem to be solved, in such
a way that the strings (possible solutions) representing good points in the search space
have high fitness value. The frequently used genetic operators are selection, crossover and
mutation operators. These are applied to a population of chromosomes to yield potentially
new offspring.

It seems that the population diversity and the selective pressure are the two most
important factors in the genetic algorithm. They are strongly related, since an increase in
the selective pressure decreases the population diversity and vice versa. If the population
becomes too homogeneous the mutation will almost be the only factor causing variation in
the population. Therefore, it is very important to make the right choice when determin-
ing a selection method for genetic algorithm. A selection mechanism is necessary when
selecting individuals for both reproducing and surviving. A few methods are available
and they all try to simulate the natural selection, where stronger individuals are more
likely to reproduce than the weaker ones.

The main genetic operator is crossover, which simulates a reproduction between two
organisms, the parents. It works on a pair of solutions and recombines them in a certain
way generating one or more offsprings. The offsprings share some of the characteristics
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of the parents and in that way the characteristic are passed on to the future generation.
It is not able to produce new characteristics.

Mutation is the process by which a random alteration in the genetic structure of a
chromosome takes place. Its main objective is to introduce genetic diversity into the
population. It may so happen that the optimal solution resides in a portion of the search
space that is not represented in the population’s genetic structure. The process will
therefore be unable to attain the global optima. In such situations, only mutation can
possibly direct the population to the optimal section of the search space by randomly
altering the information in a chromosome. Mutation aids a genetic algorithm to break
free from fixation at any given point in the search space.

6.2.2 Iterated Density Estimation Evolutionary Algorithms

In recent years, an increasing interest has been stressed on a class of competent proba-
bilistic and graphical model based genetic algorithm (GA), which is commonly called as
the Estimation of Distribution Algorithm (EDA) (see e.g. Larranaga (2002), Mühlenbein
et al. (1999) and Bosman and thierens (2002). In EDA, there is neither crossover nor
mutation operators, the new solutions are generated through sampling an estimated prob-
ability distribution of the promising solutions. EDA has successfully extracted the global
information about the search space so far, and has solved many problems of bounded
difficulty at a single or multiple hierarchical levels requiring only polynomial number of
fitness evaluations.

Although EDA has gained a significant success both in theory and application, much
work still needs to be done to improve its performance. Among them is to design a
flexible model to estimate the probability distribution of promising solutions. This topic
commonly named as structure selection 3 and parameters learning is the kernel of EDA
which directly determines the quality of its final solution. During the process to select a
proper structure, both the reliability of the selected structure and the time requirement to
get such a model should be considered. It may not be an advisable alternative to build a
perfect structure, but its time consumption is not practical realistic. In addition, a simple
model sometimes may be better than a complex one, because a complex model usually
tends to overfit the data when the population size is small.

Another deficiency of EDA is its single convergence. All the promising solutions tend
to converge to one global optimal point at the final stage of evolution. This is because
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the distribution of promising solutions to be estimated is always assumed uni-modal and
the structure to reflect relationships among variables is considered unity.

IDEA iterates the three steps listed below, until some termination criterion is satisfied:

1. Select good candidates (i.e., solutions) from a (initially randomly generated) popu-
lation of solutions.

2. Estimate the probability distribution from the selected individuals.

3. Generate new candidates (i.e., offspring) from the estimated distribution.

6.2.3 Artificial Ant Colony

Artificial Ant Colony(Dorigo et al.(1996)) is a metaheuristic in which a colony of artificial
ants cooperates in finding good solutions to discrete optimization problems. Each ant
of the colony exploits the problem graph to search for optimal solutions. An ’artificial
ant’, unlike natural counterparts, has a memory in which it can store information about
the path it follows. Every ant has a start state and one or more terminating conditions.
The next move is selected by a probabilistic decision rule that is a function of locally
available pheromone trails, heuristic values as well as the ant’s memory. Ant can update
the pheromone trail associated with the link it follows. Once it has built a solution, it
can retrace the same path backward and update the pheromone trails. ACO algorithm is
interplay of three procedures as described in Dorigo and Stutzle (2004).

7 Our personal contributions to solve some variants
of the VRP problems

This section aims to set this work of thesis in the broad field of research on issues of
vehicle routing problems. The work performed has resulted in several contributions of
different types. We will study and analyze the tool used to solve the HFFVRP as well
as the presence of an external carrier, and then we will treat the solution of a Dynamic
Vehicle Routing Problem.

In the following we describe a generic model which combines respectively, three prob-
lems tackled in this thesis: the HFFVRP ( Eq2.8), the VRPPC (Eq 2.9) and the DVRP
(Eq 2.8).
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• Parameters:
n: number of customers
m: number of vehicles
nk: number of vehicles of type k

t: elapsed service time, such that t ∈ [0,D]
V́ : set of non-served customers
vk

s : last customer served by vehicle k

Fk : Fixed cost of vehicle k

ci jk : Variable cost for vehicle k traveling from customer i to customer j

Li : Fixed cost to supply customer i with the external transporter
qi : Demand of customer i

Qk : Capacity of vehicle k

Qt
k: remaining available capacity of vehicle k at time t

Dt
k: remaining available time of vehicle k at time t before reaching upper bound D

• Decisions variables:

xi jk =

{
1 if the vehicle k travels from customer i to customer j

0 otherwise

yik =
{

1 if the demand of customer i is supplied by the vehicle k

0 otherwise

Zi =
{

1 if the demand of customer i is supplied by the external transporter
0 otherwise

• Objectives functions:

Minimize
n

∑
i=0

n

∑
j=0

m

∑
k=1

ci jkxi jk (2.8)

Minimize
n

∑
i=0

n

∑
j=0

m

∑
k=1

ci jkxi jk +
m

∑
k=1

Fky0k +
n

∑
i=1

LiZi (2.9)

• Constraints:

m

∑
k=1

y0k ≤ m ∀k ∈ {1, ...m} (2.10)
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n

∑
i=1

qiyik ≤ Qk ∀k ∈ {1, ...m} (2.11)

n

∑
i=0

m

∑
k=1

yikxi jk = 1 ∀ j ∈ {0, ...n} (2.12)

n

∑
i=0

n

∑
j=0

xi jk ≤ nk ∀ j ∈ {0, ...n} (2.13)

m

∑
k=1

yik +Zi = 1 ∀i ∈ {1, ...n} (2.14)

m

∑
k=1

yik = 1 ∀i ∈ {1, ...n} (2.15)

n

∑
i=1

qiyik ≤ Qt
k ∀k ∈ {1, ...m} (2.16)

n

∑
i=0|i 6=h

xihk +
n

∑
j=0| j 6=h

xh jk = yik ∀h∈ {0, ...n} ,k ∈ {1, ...m} (2.17)

n

∑
i=0

n

∑
j=0

ci jkxi jk ≤Dt
k ∀k ∈ {1, ...m} (2.18)

∑
i j∈S

xi jk≤ |S|−1 ∀S⊆{2, ...n} , k∈{1, ...m} (2.19)
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In our work, we are interested in three alternatives variant of heterogeneous fixed fleet
vehicle routing problems that are grouped according to 4 area of research:

7.1 First line of research: A Hybrid Tabu Search to Solve the
Heterogeneous Fixed Fleet Vehicle Routing Problem

One of the most significant problems of supply chain management is the distribution of
products between locations. The delivery of goods from a warehouse to local customers
is a critical aspect of material logistics. The Heterogeneous Fixed Fleet Vehicle Routing
Problem (HFFVRP) is a variant of the Vehicle Routing Problem (VRP) that aims to
provide service to a specific customer group with minimum cost using a limited number
of vehicles. We assume that the number of vehicles is fixed.

We must decide how to make the best use of the fixed fleet of vehicles. In the generic
model we are interested to solve the model where the objective is to minimize the function
2.8 subject to constraints 2.10, 2.11, 2.12 and 2.13. In this work we describe a Tabu Search
algorithm embedded in the Adaptive Memory (TSAM) procedure to solve the HFFVRP.

7.2 Second line of research: Heuristic Search Techniques to
Solve the Vehicle Routing with Private Fleet and Common
Carrier

The Vehicle Routing Problem with Private fleet and common Carrier consists of serving
all customers in such a way that:

Each customer is served exactly once either by a private fleet vehicle or by a common
carrier vehicle, all routes associated with the private fleet start and end at the depot.
Each private fleet vehicle performs only one route and the total demand of any route does
not exceed the capacity of the vehicle assigned to it.

The total cost is minimized over the objective function 2.9 respecting the constraints
2.10, 2.11, 2.14. In practice, several common carriers may be used to serve any of the
customers unvisited by the private fleet.
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7.3 Third line of research: Iterated Density Estimation Evolu-
tionary Algorithm with 2-opt local search for the vehicle
routing problem with private fleet and common carrier.

In this work we apply an evolutionary algorithm based on 2-opt local search to solve the
vehicle routing problem with private fleet and common carrier.

7.4 Fourth line of research: Solving the Dynamic Vehicle Rout-
ing Problem by means of Artificial Ant Colony.

In this area of research we use a hybrid artificial ant colony optimization algorithm to
solve the Dynamic Vehicle Routing Problem such a way that:

- Not all information relevant to the planning of the routes is known by the planner
when the routing process begins.

- Information can change after the initial routes have been constructed.
We are interested to solve the mathematical model which minimize the objective fun-

cion 2.8 while considering the constraints 2.10, 2.15, 2.16, 2.17 and 2.18.

8 Conclusion

This chapter presented a state of the art of VRP. We clarified the general framework
vehicle routing and various parameters and issues that such problems can make. Turning
an overview and a description of the VRP, we have listed the different variations of the
vehicles routing. The VRPs in spite of many years of research, are a subject of topicality
which always draws researchers attentions. It is possible to conclude that the VRP, too
complex to be solved, are still very present in literature. In addition, new problems appear
by adding additional constraints. These constraints will come closer and closer to reality.

After the presentation of the state of the art for the vehicle routing problems we will be
concentrated to some variants that deal with heterogeneous and limited fleet. Therefore
the aim of the next chapter is to provide a complete description of the M-Vehicle routing
problems and to propose some applications with metaheuristics algorithm for solving these
variants.
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Chapter 3

M-Heterogeneous Vehicle Routing Problem

A bad management of routing and deliveries between the sites of the same company or
towards the sites involve consequent cost of transport. When shipping alternatives exist,
the selection of the appropriate shipping alternative (mode) for each shipment may result
in significant cost savings. In this chapter we consider two class of vehicle routing in
which a fixed internal fleet is available at the warehouse and the fixed fleet in the presence
of an external transporter.

The Heterogeneous Vehicle Routing Problem (HVRP) is a variant of Vehicle Routing
Problem (VRP) that aims to provide service to a specific customer group with minimum
cost using a limited number of vehicles. We assume that the number of vehicles of the
fleet is fixed. We must decide how to make the best use of the fixed fleet of vehicles.

1 Introduction

The modern global economy is moving increasingly towards open markets and encourages
exchanges of resources across the globe. This new trend leads to greater competitiveness in
the pursuit of efficiency at all levels, inter alias in the distribution of goods and services.
Thus, management problems of vehicle fleets very complex and considerable size have
emerged. Accordingly, any improvement in the techniques of solving this problem has a
major impact on the economic front.

The management of supply chains requires the integration of different models, which
hitherto (until now) were often treated separately and not jointly. In particular, pro-
duction management (related to internal logistics) and transport problems (related to
external logistics) have mutual interference that must be taken into account. As in pro-
duction management, all types of decisions should be considered the structure of the
logistics chain and its rules of operation between partners who may belong to different
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legal entities.
Numerous organizations are involved in the production and distribution of goods.

Very often trucks with different physical, operational and cost characteristics are available
to distribute such goods, and the shipper has to decide which shipments to assign to each
truck for delivery. Many manufacturers and distributors use private fleets, or common
carrier, for the purpose of collecting and delivering shipments for their facilities. In
addition to offering greater control over goods movement, private fleets may reduce costs
over common carrier prices. Whereas common carriers typically require that shipments
be processed at consolidation terminals, private fleets can transport shipments directly
from origin to destination via multiple stop routes.

Planning the selection and utilization of transport vehicles is one of a trilogy of prob-
lems along with facility location and inventory policy determination that is essential to
good strategic planning.

There has been growing interest in truck service selection and the deregulation of
truck common carrier. This has had particular impact on organization that use privately-
ownell vehicles, since they are responsible for the utilization of the fleet and must make
choices that determine the balance between common carrier and private carrier usage.

The common management problem of delivering finished goods or picking up raw
materials involves choices: whether to use privately-owned vehicles or common carrier,
and to what extend each should be used. If private vehicles are used, routing the ve-
hicles for best utilization, sizing the vehicles, and determining the number needed are
common choices that must be made. If common carrier used, rate negotiation, shipment
consolidation, and routing are important consideration. Multiple shipping modes must
be considered when one faces economies of scale in shipping.

There are also a multitude of firm specific factors that will make either private or
common carrier more efficient and productive. Owing to its scale economies, a common
carrier may be able to offer a lower price, for small shipments in particular. To take an
extreme example, few companies would use a private fleet to retrieve small packages or
letters from their vendors. These can be more economically handled by the postal service,
packages services, or less-than-truckload (LTL) carriers.

The operations research community shows that the VRP is one of its great success
stories. The interplay between theory and practice is recognized as a major driving force
for this success. Many variants and extensions of VRP have been subject of research
during the last four decades. Some well studied characteristics include the existence of
demands, fixed fleet and heterogeneous vehicles.
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2 Literature review

The VRP is one of the optimization problems most studied. This problem holds the
attention of several researchers for many years, and everywhere in the world. The VRP
was firstly introduced by Dantzig and Ramser (1959) and since then it has been widely
studied. It is a complex combinatorial optimization problem. The problem involves a fleet
of vehicles set-off from a depot to serve a number of customers at different geographic
locations with various demands. Several authors have made a literature review that deal
with vehicle routing these include those of Bodin et al. (1983), Laporte (1992a, 1992b,
1993), and Toth and Vigo (2002). Like other authors, Golden and Assad (1988) presented
the problems of VRP as problem easy to explain but difficult to solve.

More specifically, two types of problems have been addressed in literature: the VRP
with limited fleet and the VRP with private fleet and common carrier. Some authors have
studied the problem of vehicle routing with limited fleet include Osman and Salhi (1996),
Gendreau et al. (1999), Taillard (1999), Tarantilis et al. (2004), Choi and Tcha (2007)
and Li et al. (2007). All these items using a mixed fleet limited but sufficient capacity to
serve all customers.

VRPs are divided into various areas. In most of the studies, the vehicle fleets that are
studied consist of homogeneous or heterogeneous vehicles (e.g., Tarantilis et al. (2004)
and Taillard (1999)). Problems related to providing service through fixed fleets are com-
plicated in comparison to unlimited fleet VRP. Heterogeneous VRP is studied in two
different ways. On the one hand some researchers make an assumption that there are an
unlimited number of vehicles of each type and they try to find the optimal set of vehicles
to be scheduled in the problem. This is called the Fleet Size and Mix VRP (FSMVRP).
On the other hand, other researchers study the case where there is a fixed vehicle fleet
and try to schedule this fleet of vehicles to the customers in an optimal way. This problem
is called Heterogeneous Fixed Fleet VRP (HFFVRP).

In the literature, three variants of VRP with heterogeneous fleet (HFVRP) have been
studied. The first one is introduced by Golden et al. (1984), in which variable costs are
uniformly given over all vehicle types with the number of available vehicles assumed to
be unlimited for each type. The second version considers the variable costs depending on
vehicle type, which is neglected in the first version. The third one, called Heterogeneous
Fixed Fleet VRP (HFFVRP), generalizes the second version by limiting the number of
available vehicles of each type.

Due to the complexity of the HFFVRP no exact algorithms have ever been presented
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for it. It is widely studied by heuristic design as those proposed in Salhi et al. (1992)
and Osman and Salhi (1996). Recently, the solution methods for the HFFVRP have sub-
stantially progressed in Rochat and Taillard (1995), Rego and Roucairol (1996), Taillard
(1999), Tarantilis et al. (2004), Li et al. (2007) and Choi and Tcha (2007). Classi-
cal heuristics for the HFFVRP including the saving based algorithms are presented in
Desrochers et al. (1991). Golden et al. (1984) develop a savings heuristic to solve the
Fleet Size and Mix VRP as well as techniques for generating a lower bound and an un-
derestimate of optimal solutions. Gendreau et al. (1999) have proposed the Tabu Search
algorithm for the Fleet Size and Mix VRP (FSMVRP).

Taillard (1999) has presented a Heuristic Column Generation method (HCG) for
solving the Heterogeneous Fixed Fleet VRP (HFFVRP). A new metaheuristic called
Back-tracking Adaptative Threshold Accepting (BATA) was developed by Tarantilis et
al. (2004) in order to solve the HFFVRP. Also, Li et al. (2007) developed a record-to-
record travel algorithm for the Heterogeneous Fleet VRP (HFVRP). Recently, Choi and
Tcha (2007) propose a column generation method to solve the HFFVRP. They have built
an integer programming model and solved the linear relaxation by column generation
technique.

The second extension of VRP is the VRPPC. Despite its wealth and abundance of
work that are devoted to him, the VRP with Private fleet and common Carrier (VRPPC)
represent only a subset of a larger family known as VRP.

At the level of routing problem with external carrier are Volgenant and Jonker (1987),
which demonstrated that the problem involving a fleet of one single vehicle and external
carriers can be rewritten as Traveling Salesman Problem - TSP. This problem also have
been studied by Diaby and Ramesh (1995) whose objective was to decide that customers
visited with external carrier and optimize the tour of remaining customers.

Several approaches have been used to solve the classical VRP, exact methods, heuris-
tics and metaheuristics solution principally are proposed. The VRPPC is more complex
problem because it involves an internal fleet of several vehicles.

To our knowledge, the VRPPC was introduced by Ball et al. (1983) were among the
first authors to tackle this problem of determining optimal homogeneous fleet size in the
presence of an external carrier.

Kilncewicz et al. (1990) presented the problem in a context to divide the customers
into sectors and the private fleet size and common carrier must be determined for each
sector. Chu (2005) put forward an interesting formulation for the VRPPC and solve it
with a heuristic economies improved by inter and intra routes. There after, Bolduc et
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al. (2007) have improved the results of Chu using more sophisticated customer exchanges
using two different initial solutions.

Recently, Bolduc et al. (2008) used an efficient application of a local descent tech-
nique based on different neighborhood structures which is enhanced by two diversification
strategies, a randomized construction procedure and a perturbation mechanism.

3 Heterogeneous Vehicle Routing Problem

In this section, we are interested to the HFFVRP that involves a limited number of
vehicles which can be heterogeneous or homogeneous. In this problem, the aim is to
provide service to the customer group with minimum cost.

3.1 Description of the problem

The HFFVRP can be described as follows: Let N = (1, ...,n) be the set of customers and
G =(V,A) be a directed graph where V = v0, ...,vn is the vertex set and A =

{
(vi,v j),vi,v j ∈V,

i 6= j is the arc set. The vertex v0 represents a depot at which is grouped a fleet of vehicles
while the remaining vertices correspond to cities or customers. Each customer vi has a
non-negative demand qi. Denote by zk the fixed cost of a vehicle k, gk its variable cost
per distance unit, and Qk its capacity. ci jk represent the cost of the travel from customer
i to customer j with a vehicle of type k. There are a several types of vehicles, with T

denoting the set of such types. nk is the number of vehicles of type k. In this version of
the HFFVRP, the values of nk are fixed. Then, the number of vehicles of type k is limited
and the fleet is known in advance. Let m = |T | represent the sum of routes realized of nk

for all types of vehicles. With each arc (vi,v j) is associated a distance di j.
The HFFVRP consists of designing a set of vehicle routes, each starting and ending

at the depot such that each customer is visited exactly once by exactly one vehicle of the
available fleet, the total demand of a route does not exceed the capacity of the vehicle
assigned to it, the route length constraint is maintained, and the total cost is minimized.

Using binary decision variable:

xlk =

{
1 if the lth route is selected and performed by a vehicle of type k

0 otherwise
A feasible HFFVRP solution exists only if all customers are served by exactly one

vehicle of the available fleet composition. Given the above condition, the objective of
HFFVRP is to minimize both the total travelling cost by vehicles and the fixed costs such
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that all the problems’ constraints are satisfied.

4 Vehicle Routing Problem with Private fleet and
Common carrier

One of the most general versions of the VRP is the VRPPC, which can be formally
described in the following way. Let G = (V,A) be a graph where V = {0,1, ...,n} is the
vertex set and A = {(i, j) : i, j ∈V, i 6= j} is the arc set. Vertex 0 is a depot, while the
remaining vertices represent customers. A private fleet of m vehicles is available at the
depot. The fixed cost of vehicle k is denoted by fk, its capacity by Qk, and the demand of
customer i is denoted by qi. A travel cost matrix (ci j) is defined on A. If travel costs are
vehicle dependent, then ci j can be replaced with ci jk, where k ∈ 1, ...,m . Each customer
i can be served by a vehicle of the private fleet, in which case it is called an internal
customer or by a common carrier at a cost equal to ei , in which case it is called an
external customer. The VRPPC consists of serving all customers in such a way that:

1) Each customer is served exactly once either by a private fleet vehicle or by a
common carrier vehicle.

2) All routes associated with the private fleet start and end at the depot.
3) Each private fleet vehicle performs only one route.
4) The total demand of any route does not exceed the capacity of the vehicle assigned

to it.
5) The total cost is minimized. In practice, several common carriers may be used to

serve any of the customers unvisited by the private fleet.
Typically, the one selected is the lowest cost carrier. It is not necessary to specify the

routes followed by the common carrier because it charges a fixed amount ei for visiting
customer i , irrespective of visit sequence.

4.1 Formulation of the VRPPC

4.1.1 Index

n : Number of customers
m : Number of vehicles in the internal fleet
i ∈ 0, ...,n : Index of customer (depot = 0)
j ∈ 0, ...,n : Index of customer (depot = 0)
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4.1.2 Parameters

Fk : Fixed cost of vehicle
ci jk : Variable cost for vehicle traveling from customer i to customer j

Li : Fixed cost to supply customer i with the external transporter
qi : Demand of customer i

Qk : Capacity of vehicle k

4.1.3 Decision varianles

The formulation uses the following variables:

xi jk =

{
1 if the vehicle k travels from customer i to customer j

0 otherwise

yik =
{

1 if the demand of customer i is supplied by the vehicle k

0 otherwise

Zi =
{

1 if the demand of customer i is supplied by the external transporter
0 otherwise

Bolduc et al. (2008) formulate the VRPPC as follows:

Minimize
m

∑
k=1

Fky0k +
n

∑
i=0

n

∑
j=0

m

∑
k=1

ci jkxi jk +
n

∑
i=1

LiZi (3.1)

subject to

m

∑
k=1

y0k ≤ m (k = 1, ...,m) (3.2)

n

∑
j=0| j 6=h

xh jk =
n

∑
i=0|i6=h

xi0k = yhk (h ∈ {0, ...n} ;k ∈ {1, ...m}) (3.3)

m

∑
k=1

yik +Zi = 1 i ∈ {1, ...n} (3.4)

n

∑
i=1

qiyik ≤ Qk k ∈ {1, ...m} (3.5)
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∑
i j∈S

xi jk ≤ |S|−1 ∀ S⊆ {2, ...n} k ∈ {1, ...m} (3.6)

The objective functions (3.1) minimize the transportation cost: fixed and variable cost
of the internal fleet and fixed cost of the external transporter. Constraint (3.2) specify
that at most m private fleets vehicles can be used in the solution, while constraint (3.3)
indicate that the same vehicle k must enter and leave customer h, (3.4) apply that each
customer is served either by the private truck or the external transporter. (3.5) Ensure
that the vehicle capacity is never exceeded. (3.6) Are the sub tour-breaking constraints.

5 Metaheuristics approaches to solve the M-VRP

In this section we present three applications to solve different problem with metaheuristics.
The first application is the adaptation of the tabu search algorithm to solve the heteroge-
neous fixed fleet vehcile routing. In this part of this thesis, a mathematical model of the
HFFVRP is first given in the section 7 in chapter 2 (Literature review) conducted by the
objective function 2.8 with the constraints 2.10, 2.11, 2.12 and 2.13.

The second applications consider the solving of the VRPPC. This research presents a
mathematical model specified with the objective function 2.9 respecting the constraints
2.10, 2.11, 2.14and a heuristic search technique based on the Tabu Search with ejection
chains neighborhood (HST) and an Iterated Density Estimation Evolutionary Algorithm
(IDEA) metaheuristics to solve the vehicle routing problem with private fleet and common
carrier (VRPPC).

5.1 A Hybrid Tabu Search to solve the Heterogeneous Fixed
Fleet Vehicle Routing Problem

Our proposed solution algorithm is based on the Adaptive Memory Procedure (e.g.,
Golden et al. (1997), Arntzen et al. (2006)) to solve the HFFVRP. The AMP was
first proposed by Rochat and Taillard (1995) as an enhancement of TS to solve the VRP.
It was motivated by the work of Glover regarding surrogate constraints, Glover (1977).

An important principle behind AMP is that good solutions may be constructed by
combining different components of other good solutions. A memory containing compo-
nents of visited solutions is kept. Periodically, a new solution is constructed using the
data in the memory and improved by a local search procedure. The improved solution is
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then used to update the memory.
Our algorithm uses a TS embedded in adaptive memory, the choice of our solution

procedure is based on the successful of TS to solve a wide range of challenging problems.
A key feature of TS is its use of adaptive memory to enhance a search strategy.

A pseudo code of the Adaptive Memory Procedure (AMP) is given below:

1. Initialize the memory M.

2. While a stopping criterion is not met, do:

• Construct a new solution s combining components of M.

• Apply a tabu Search algorithm to s(let s∗ be the improved solution).

• Update M using components of s∗.

In the sequel, we investigate and develop a TS heuristic embedded in Adaptive Mem-
ory Procedure (TSAM) to solve the HFFVRP (e.g. Euchi and chabchoub (2010)).

The TS heuristic embedded in Adaptive Memory (TSAM) proposed herein for the
HFFVRP can be roughly characterized into four steps: Initialization, construction of
solution, solution improvements and updating the Adaptive Memory Procedure (AMP).
The details of each step of the TS Adaptive Memory (TSAM) are presented below:

5.1.1 Initialization (Step 1 in the Adaptive Memory)

To begin with, a certain amount of storage space called adaptive memory is allocated
within the AMP. A set of routes is generated by the nearest neighbour method and is
stored in the adaptive memory. The feasibility in the initialization is made with respect
to the route length constraint and by avoiding the violation of capacity constraints.

For each arc (vi,v j) in A, we receive a profit value based on the distance travelling
from vi to v j and the number of times this arc appears in the solution denoted by g(vi,v j)
if the vehicle of type k traveling from customers vi to v j (vi,v j ∈ lk).

We are going to skew the selection in favour of the most profitable vertices.
To generate an initial solution, define an advantage to insert the arc (vi,v j) in the solution
by:

avi jk =


(g(vi,v j)−clk)

ci jk
if (vi,v j) ∈ routelk

1
ci jk

otherwise

51



3.5 Metaheuristics approaches to solve the M-VRP

To choose an arc of a set Ā⊆ A, let

avĀk = ∑
(vi,v j)∈Ā

avi jk

To choose an arc (vi,v j) in Ā we proceed by firstly selecting randomly a number α ∈
b0cavĀk. Then select the arc (viτ,v jτ) such that τ is the smallest integer value sucht that
∑

τ

l=1 avit jt > α. If ∑
τk
t=1 avil jlk ≥ α. The procedure to generate m routes of the adaptive

memory sums up as follows:

1. Step1: Create m vehicle routes containing only an arc (v0,v0). Also create the set
M =

{
(vi,v j) : cv0vik + cviv jk + cv jv0k ≤ cmax

}
. Let k = 1 and move to Step 2.

2. Step 2: If Ā contains only an arc (v0,v0), select by roulette wheel an arc (vi,v j)
from M and insert it into route lk. Let Ā = A− (vi,v j) and ck = cv0vi + cviv j + cv jv0 .
Otherwise continue the construction of route lk as follows:

• Choose with roulette wheel an arc (vi,v j) ∈ Ā

• Insert an arc (vi,v j) and select two vertices p and q in lk, so that the evaluation
functions

{
(avvpvik +avviv jk +avv jvqk−avvpvqk : cvpvik + cviv jk + cv jvqk− cvpvqk ≤ cmax

}
will be maximal.
If such (vi,v j) is not found (because ck + cvpvik + cviv jk + cv jvqk− cvpvqk ≥ cmax),
go to Step 3.

• Insert (vi,v j) between p and q and adjust the length ci jk of route:lk := ci jk +
cvpvik + cviv jk + cv jvqk− cvpvqk .

• Let Ā = A− (vi,v j)

• if Ā 6=� , repeat Step 2

3. Step3: Let k = k +1 . If k ≤ m , go back to Step 2.

The Hybrid TSAM in the initialization phase may be started from heuristic created
solution. In the first Step we consider that all vehicles are at the depot. Second for every
Step we select a customer based in the constructive methods described above and we
insert it in the best position that minimizes the total cost. In the next phase we try to
construct a solution and to repair and improve the solution constructed from the routes
generated in the AMP.
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5.1.2 Construction of solution (step 2 in the Adaptive Memory)

The TSAM procedure starts from an initial solution s constructed in the AMP. Then to
improve the solution we use the regret heuristic used by Potvin and Rousseau (1993), Liu
and Shen (1999). Generate an order {ak1,ak2, ...,akN} in which the routes of the AMP are
considered.

The regret heuristic works in the following way:

1. Initialization

• For every artificial vertex (chosen vertex) vi ∈ V : find the closest transport
vertex v j and the second closest transport vertex vz .

• Calculate a regret-value REGi = ciz− ci j.

• Sort the regret-value in descending order

• Allocate the closest transport vertex to the artificial vertex according to this
order; if a transport vertex is the closest to two or more artificial vertex, it is
assigned to the one with the highest regret value.

2. Continue with the same procedure until all of the transport vertices are assigned
to a tour. Always find the closest and second-closest transport vertex to the last
included vertex.

5.1.3 Solution improvements (Step 3 in the Adaptive Memory)

In order to improve the solution, we propose to use a TS algorithm as a local search. We
give a pseudo-code of the proposed algorithm in algorithm 1.
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Algorithm 1 Pseudo code of Tabu local search
1: begin Tabu Search
2: S0 initial solution
3: Scurrent = S0;Sbest = S0; θ = 0;T L = 0
4: —- for ( j = 1; j ≤ nbclient; j ++) do
5: ——–//apply Nearest Neighbour
6: ——– S = NearestNeighbour(Scurrent);
7: ——– for (i = 1; i≤ θmax; i++) do
8: ———– //find the best non tabu solution
9: ———– Update T L

10: ———– //use the permutation local search
11: ———– Ś = permuation(Scurrent);
12: ———– Scurrent = 2−move(Ś);
13: ———– value = evaluate(Scurrent);
14: ———– if (value < Sbest) then
15: ———– Sbest = value;
16: ———– θ++;
17: ———– endif
18: ——– Update T L;
19: ——endfor
20: —-endfor
21: end Tabu Search

Initial solution
The TS starts from an initial solution s constructed with the nearest neighbourhood

method where customers are placed in an array sorted in the increasing order of demand.
In this method, the customer with the biggest demand is appended to a route. When the
next to-be inserted customer’s distance exceeds the length of cycles on the current route,
a new route is initiated.

Neighbourhood structures
The TS algorithm that we have implemented uses two structures of neighbourhoods:

• Permutation-neighborhood:
Let vi and ví) be two vertices on two different routes li(s) and lí(s). A permutation-
move consists of replacing lvi(s) and lví

(s) by (lvi(s)− vi) + ví and lví
(s)− ví + vi ,

respectively.

• 2-move-neighborhood:
In a 2-move, vertex vi is moved from its route to a route l 6= lvi(s). Route l can be
an empty route. Hence, lvi(s) and l are replaced by lvi(s)−vi and l +vi, respectively.

A conventional Tabu List (TL) contains pairs (vi, l) with the condition that it is forbidden
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to move customer c to circuit l. A move (vi, l) is considered as Tabu if (vi, l) ∈ T L . The
Tabu Search is stopped where θmax iterations have been performed without improving the
best solution found s∗. To improve the solution generated for each algorithm, we use two
improvement procedures:

Exchanging of arcs between two routes
For randomly selected route l1 and l2 from the current solution s, these improvement

procedures make one-arc exchange between route l1 and l2, Brandão (2009). Starting with
the first arc on l1. We scan from the first to the last arc on l2 to examine if an exchange
of the first arc on l1 with the current arc on l2 makes the total cost of the two routes
shorter. The exchange is made immediately when such arc on l2 is found. Then, the
procedure is repeated with the second arc on l1 and scanning arc on l2. This procedure
stops when all one-arc exchanges between l1 and l2 leading to improve tour duration have
been performed.

A random arc-insertion procedure
For a select vehicle cycle τ of duration D(τ), this semi-greedy random insertion ap-

proach randomly removes a subset of arcs from the cycle and re-inserts them in the
resulting partial cycle in a greedy way.

5.1.4 Updating the Adaptive Memory (Step 4 in the Adaptive Memory)

The strategy adopted in this paper is based in the framework of tabu search algorithm,
but also borrows some heuristic ideas from the greedy constructive heuristics mentioned
before. The main features of the algorithm are in the constructive greedy methods used
in the different phases to improve the solution. Below, the implementation of each part
of the TSAM to solve the HFFVRP is described. The Steps of the hybrid metaheuristic
are summarised as follows:

1. Step1:Generate m routes derived from solution nearest neighbour methods.
Start with AMP = φ .

2. Step2: While a stopping criterion is not met, do:
Initialize the m routes to AMP

′
,s = φ.

Apply the constructive method mentioned in initialization Step.
Repeat, while AMP

′
= φ

Choose randomly a route l ∈ AMP
′ .

Let s
′
= s

′ ∪ l}.
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For each route l ∈ AMP
′ , where l∩ l

′ 6= φ,
Let AMP

′
= AMP

′ \
{

l
′
}

Apply regret heuristic

3. Step3: Improve the new constructed solution.
For each route l in s, let AMP = AMP∪ l. Find a solution s∗(best solution) by
considering the continuous routes in AMP.
Apply Tabu Search algorithm
Exchange vertices between two routes and perform the random vertex-insertion
procedure

4. Step4: Update the AMP by inserting the new constructed routes and removing
routes (if necessary) which belong to the worst solutions.

5.2 Computational results

This section reports on the performance of the proposed TS heuristic embedded in Adap-
tive Memory (TSAM) over the benchmark test problem of Golden et al. (1998) and Li et
al. (2007).

5.2.1 Implementation and instances

We consider two sets of instances to evaluate the performance of TSAM algorithm. The
first set is composed by the eight tests problems developed by Golden et al. (1998) for
the vehicle fleet size and mix routing problem which can be viewed as a special case of
HFFVRP where the travel costs are the same for all vehicles types and the number of
vehicles of each type is limited. The specifications for the HFFVRP problem set are given
in Table 3.1. We use the numbering scheme (problem 13... problem 20) given by Golden
et al. (1984).

The second set is composed by the five new tests problems developed by Li et al.
(2007), selected from the large-scale vehicle routing with 200 - 360 customers from Golden
et al. (1998) and adapted to the HFVRP (Table 3.2). These problems contain between
50 and 100 vertices as well as the depot all randomly located over a square. They have
fixed fleet, capacity restrictions, no route length constraints, and no service times at the
vertices. Moreover euclidean distances are used in the entire problem.

The algorithm described here has been implemented in C++ using Visual Studio
C++ 6.0. Experiments are performed on a PC Pentium 4, 3 GHz with 512MB of RAM.
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5.2.2 Parameter settings

The Tabu Search procedure employs a set of parameters whose values need to be set
before the algorithm is run. These parameters include the number of Tabu iteration Nmax,
tour improvement frequency χ, tour selection parameter T , number of neighbourhood
solutions generated in the Tabu Search β and maximum non-improvement iterations θ

and the size of tabu list T L. Our preliminary experiments show that the suitable length
of tabu list increases as the ratio of the number of customers (n) to the number of vehicles
(m) becomes larger for the considered problem. These parameters were determined as
the basis of a number of preliminary runs. The values of these parameters are defined as
follows:Nmax=200;χ=6;T=30;β=200,θ=100 and T L = 10+n/m.

5.2.3 Evaluation method

The results produced by our algorithms have been compared with those produced by the
algorithms of Taillard (1999), Tarantilis et al. (2004)and Li et al. (2007).

We begin the presentation of the results by examining, in Table 3.3, the efficiency of
the procedure of TSAM. This table shows the strong performance of the TSAM algorithm
in the form of the quality of solution and in the best CPU time.

Tableau 3.3 – Computational results for TSAM algorithms on eight test problems
TSAM (Tabu Search embedded in adaptive memory)

Problem number n Total vertices used Fixed cost variable cost Time
13 50 15 1650 1477.34 3
14 50 6 6800 590.00 8
15 50 9 2050 1019.69 3
16 50 9 2200 1112.92 2.26
17 75 10 1035 1022.31 31.19
18 75 13 1930 1768.51 25.35
19 100 8 9500 1104.87 82.94
20 100 13 3200 1510.72 71.09
n: number of customers

Time: processing time en seconds

In Table 3.4 we describe the efficiency of the TSAM algorithm over other metaheuris-
tics presented in the literature. It gives the comparison results between the TSAM and
the other methods proposed by Taillard (1999), Tarantilis et al. (2004), Li et al. (2007).
We observe that in seven out of eight test problems, the TSAM finds a better solution.

In Table 3.5 we report the comparative result on five new test problems proposed by
Li et al. (2007). It is interesting to observe that Over the five large instances, four new
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Tableau 3.4 – A comparison of TSAM, HCG, BATA, and HRTR according to overall
costs

Problem Taillard Tarantilis et al. Li et al. our algorithm
HCG Time BATA Time HRTR Time TSAM Time

13 1518.05 476 1519,96 843 1517.84 358 1477.34 3
14 615.64 575 611,39 387 607.53 141 590.00 8
15 1016.86 335 1015,29 368 1015.29 166 1019.69 3
16 1154.05 350 1145,52 341 1144.94 188 1112.92 2.26
17 1071.79 2245 1071,01 363 1061.96 216 1022.31 31.19
18 1870.16 2876 1846,35 971 1823.58 366 1768.51 25.35
19 1117.51 5833 1123,83 428 1120.34 404 1104.87 82.94
20 1559.77 3402 1556,35 1156 1534.17 447 1510.72 71.09
HCG Heuristic column generation solution from Taillard (1999), Sun Sparc workstation,
50 MHz;
BATA Backtracking adaptive threshold accepting solution from Tarantilis et al.(2004),
Pentium II, 400 MHz, 128MB RAM;
HRTR Record-to-record travel solution from Li et al.(2007), Athlon, 1 GHz, 256MB
RAM;
TSAM Tabu search adaptative memory, Pentium IV, 3 GHz, 256MB RAM

Tableau 3.5 – Comparative result on five new test problems
Problem n Li et al. our algorithm

HRTR Average CPU (s) TSAM Average CPU(s)
H1 200 12067.65 687.82 11742.62 413.05
H2 240 10234.40 995.27 10103.87 724.00
H3 280 16231.80 1437.56 16231.80 1060.18
H4 320 17576.10 2256.35 17529.21 1755.37
H5 360 21850.41 3276.91 20996.15 2355.47
HRTR Record-to-record travel solution from Li et al. (2007), Athlon, 1 GHz, 256MB

RAM;
TSAM Tabu Search Adaptive Memory, Pentium IV, 3 GHz, 512MB RAM.

best solutions were produced with our algorithm. In the large test problems, the TSAM
yields consistently better results than the HRTR metaheuristic of Li et al. (2007).

Finally, in Table 3.6, we give the relative percentage deviation of each algorithm’s
solution from the best known solution. A simple criterion to measure the efficiency and
the quality of an algorithm is to compute the relation percentage deviation of its solution
from the best solution reported in the literature on specific benchmark instances. From
this table we conclude that the solution quality of the algorithms is comparable with an
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average deviation that is between 1 and 5% for the eight test problems. Our algorithm still
seems to be superior in terms of solution quality with an average deviation of 0.0222%.
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5.3 Heuristic Search Techniques to Solve the Vehicle Routing
with Private Fleet and Common Carrier

In this section we describe a Tabu Search algorithm based on the ejection chains move-
ments (TS/EC) to solve the VRPPC.
The TS/EC algorithm proposed herein for the VRPPC can be roughly characterized into
seven steps: Initialization, Neighborhood structure, Tabu list, aspiration criterion, Inten-
sification, Diversification, stopping criterion step. We refer the reader to the paper of
Euchi and Chabchoub (2010).

5.3.1 Initial solution

The initialization step consists of generating an initial solution s where all customers
i(i = 1, ...,n) are visited by construction of mmax tours.

To choose an initial solution, the main heuristic used are the same presented in the
paper of Euchi and Chabchoub (2009).

In order to obtain an initial feasible solution, the insertion method embedded in the
following algorithm is used. Algorithm 2 describes the main initial solution heuristic used.

Algorithm 2 Initial solution algorithm
1: begin
2: sort all available vehicles in increasing order of capacity
3: for each available vehicle k := 1 to mmaxloop
4: for each vi ∈V (i = 1, ...,n) loop
5: if (vi ∈ rkiand qi ≤ Qk)then
6: Insert vi into route rki using the insertion method
7: end if
8: end for
9: customers not inserted will be assigned to the external transporter

10: Execute 2-Opt local search
11: end for
12: end

5.3.2 Neighborhood Structure

The use of the ejection chains method requires the definition of our neighborhood struc-
tures to generate moves. The TS implementation proposed here use two structures of
neighborhood to move from the current customer (current solution S ) to another one
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(new solution Ś) in the neighborhood of S. We adapt the 1-exchange and 2-exchange
neighborhoods based on shifting and swapping vertices (customers) between a given set
of routes. Figure 3.1play an example of solution of VRP with 9 customers.

Figure 3.1 – Example of solution of VRP with 9 customers

1-exchange neighborhood
The 1-exchange neighborhood proposed in this algorithm consist in shifting a customer

(vertex) from one route to another, then swapping two customers between two given routes
realized by the internal fleet. When a new best solution is found, we apply the 1- exchange
procedure to the route performed by the external transporter. (see the following figures
3.2, 3.3, 3.4, 3.5).

Figure 3.2 – 1-exchange for a single customer (shift)

In the final step of generating a 1-exchange, when a new best solution is found, we
apply the 1-exchange to the best route found with the route performed by the external
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Figure 3.3 – 1-exchange for a 2 customers (swap)

transporter. We suppose that the best routes found when applying the 1- exchange is :
Route 1"= 0-1-5-6-7-0 then,

Figure 3.4 – 1-exchange applying in the external transporter (shift process)
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Figure 3.5 – 1-exchange applying in the external transporter (swap process)

2-exchange neighborhood
The 2-exchange is the application of the 1-exchange twice. This second structure of

neighborhood corresponds to moving from the current solution to a nonadjacent solution
by performing the 1-exchange twice. We used the shifting and swapping moves for 2
consecutives customers between two given routes from the internal fleet, and then at each
step when the solution is improved, we apply the 2-exchange to the new solution with
the route performed by the external transporter. Figures 3.6, 3.7, 3.8, 3.9 shows the
application of the 2-exchange to the VRP with 9 customers and 2 owned vehicles and one
external transporter.

Figure 3.6 – 2-exchange for a two customers (shift)
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Figure 3.7 – 2-exchange for a two customers (swap moves)

Figure 3.8 – 2-exchange applying in the external transporter (shift process)

Figure 3.9 – 2-exchange applying in the external transporter (swap process)
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5.3.3 Tabu List

To avoid cycling, solutions possessing some attributes of recently explored ones are tem-
porarily declared as tabu. The latter is achieved using a so-called short term memory.
Tabu moves are represented by attributes which are stored in an ordered queue called
tabu list. A tabu list is associated with each attribute. If the customer i is shifted from
the route r. We add (i,r) as tabu and it is not possible to reinsert customer i in route r

for the next iteration.
At each iteration the best solution that does not exist in the tabu list, is chosen as the

new current solution. After, it is added to the tabu list and the first inserted is removed.

5.3.4 Aspiration criterion

The tabu status of a solution is overridden when the aspiration criterion is satisfied. It
temporarily overrides the tabu status if the move is sufficiently good. In our approach,
if a set of solution is selected at iteration t and this move results in a best cost for all
previous iterations, then that solution is selected even if that feature is in the tabu list.

The aspiration is conducted if the solution obtained by the tabu movement is the best
from any solution considered so far.

5.3.5 Ejection chains

At each iteration of the neighborhood search structure, ejection chains are built and the
corresponding compound movements at higher evaluation is selected, if it is not tabu or
satisfy the aspiration criterion.

To form a sophisticated neighborhood and to allow the search space, the ejection
chains work in the following way: When the route receiving a new customer, we eject one,
in a way that the solution still feasible. The customer who was ejected must naturally
be integrated in another round, with the requirement by ejecting a third customer. The
customer ejected is inserted to the route performed by the external transporter. Thus, at
each iteration, we stay in one of the two following situations:

• The vehicle does not have a sufficient capacity to integrate the new customer. In this
case, another customer must be ejected from the route and the process continues
(unless the chain of the ejected-integrated customers is longer than a parameter h).

• Or the vehicle has a sufficient capacity to integrate the customer. In this case, we
have an admissible solution which we can keep it in memory before ejecting another
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customer if the chain of the ejected-integrated customers is shorter than h.

Naturally, the ejection chain can be initialized from whatever n customers. Further-
more, we can try several customers during the later ejection. We can thus repeat the
process for a certain number of initial customers (possibly all) and after every insertion
of a customer in a route; we can also try the ejection of a number of customers outside
the same route (in the external transporter). We will generally allow storing numerous
acceptable solutions which will form a new neighborhood structure. If every insertion
gives place to several ejections, it is clear that the size of the neighborhood grows with
the value of the parameter h.

5.3.6 Intensification

The principle idea of the intensification is to return periodically visit areas of the research
space that seem particularly promising. In the intensification phase, the algorithm carries
out for the neighborhood search from the best solution so far. If a better solution is found,
the intensification phase is reactivated.

The technique adopted is rebuilding a starting solution which attempts to combine
the attributes that have often been present in the best configurations. In the Tabu search
algorithm the intensification step start with the best solution found created and we try
to intensify the search by visiting the customers created with the routes performed with
the external transporter basis on the ejection chains neighborhood.

This technique are executed periodically after the moves, if the solution is infeasible,
no attempt is made to make it feasible, then the incumbent is updated, and some more
time is spent in an attempt to further improve using the ejection chains. When the current
intensification does not find a better solution, then a diversification phase is initialized.

5.3.7 Diversification

The most common approaches here are to start from different points and to penalize
frequently performed moves according to the penalty factor . The diversification phase is
performed over a fixed number of iterations.

We make a diversification immediately after intensification by removing all the tabu
status so as to authorize the movements which were forbidden before diversification. We
thus redirect the local search towards regions of the search space not yet explored.

The key idea in the diversification is to analyze the differences between the created
solutions with respect to some common attribute, and penalize search directions that
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increase the number of previously selected common attributes.

5.3.8 Stopping condition

The Tabu search status of a solution is overridden when these two criteria are satisfied:

• The search is stopped after a fixed number of iterations (Maximum allowable number
of iteration);

• Or when a maximum allowable number of non-improving moves is reached.

Algorithm 3 describes the operational details of TS/EC procedure.
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Algorithm 3 Pseudo code of Tabu Search Ejection Chains algorithm
1: Notation
2: S0:initial solution
3: S:current solution
4: S∗:Best-Known solution
5: N(S):Neighborhood of solution S
6: CL:Candidate List
7: Nmax: Number of maximum iteration
8: Nnoimp:Number of non-improvement iteration
9: T L:Tabu List

10: Begin
11: Construct an initial solution S0 according to construction method.
12: Generate the set RCL(i) with Eq.2
13: Initialize T L,Nmax,Nnoimp
14: While (N < Nmax) or (i < Nnoimp) do
15: Generate neighbor solution ⊂ N(S)
16: Apply 1-exchange neighborhood
17: Apply 2-exchange neighborhood
18: if S0←S∗ is not in T L then
19: S0 := S∗
20: Update T L,Nmax
21: i++
22: else
23: Generate solution over the ejection chain method
24: if f (S) < f ∗ then
25: Set f ∗ := f (S),S∗ := S
26: Update T L,Nmax
27: i++
28: end if
29: If no improvement of iterations is found then
30: Apply diversification step
31: end if
32: end while
33: end
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5.4 Iterated Density Estimation Evolutionary Algorithm with
2-opt local search for the VRPPC

The need for optimization using methods of operations research in VRP has become
more and more important in recent years. One way of tackling the VRPPC is by allowing
the search space of the IDEA with 2-opt local search. Local search remains the main
practical tool for finding good solutions for large instances of the VRPPC, more details
are presented in Euchi and Chabchoub (2009).

Figure 3.10 present the scheme of the IDEA / 2-opt approach.

Figure 3.10 – General Scheme of the IDEA / 2-opt local search
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5.4.1 Hybrid IDEA to solve the VRPPC

To solve the VRPPC, it is recommended to hybridize it with a local search (e.g. Lozano
et al. (2006)). In this way, we propose to use a 2-opt local search (e.g. Lin (1965))
to improve the solution generated after the creation of the initial population and after
the generation of new solution. With each generation t, IDEA algorithm maintains a
population pop(t) =

{
π1,π2, ...,πN}

of N solutions and the probability matrix is

p(t) =


p11t · · · p1nt

... ...
pn1t · · · pnnt


where p(t) models the distribution of promising solutions in the search space. More

precisely, pk j (t) is the probability that vehicle k is assigned to customer j in the assign-
ment.

Below the implementation of each part of the IDEA to solve the VRPPC is described,
vehicle routing representation, initialization, selection operators, probabilistic model, re-
placement and stopping criterion.

5.4.2 Vehicle routing representation

A suitable presentation of solution to VRP is i.e. a chromosome consisting of several
routes, each containing a subset of customers that should be visited in the same order as
they appear. Every customer has to be a member of exactly one route r. The solution is
coded as follows:

The solution is presented by one vector of dimension n + k where n is the number of
customers and k is the number of vehicles. It is assumed that every solution is started from
the depot. Each vector has a combined value of 1 to n and k value = 0. Each value∈ [1,n]
indicates the customer and each value 0 indicates the return to the depot (depot for the
new truck) in the k− 1 value 0 in the sequence. For the last value 0 indicates the end
of the cycle allocated to vehicles. The last remaining customers will be assigned to the
external carrier.

Figure 3.11 present the solution with one vector. Each value between 1 and n represent
the index of the customers when each customer is listed in the order in which they are
visited. In our example, we have 7 customers and 2 private vehicles.

The solution of the VRPPC is defined by a set of vehicles and route where each route
has a sequence to serve customers.
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Figure 3.11 – vehicle routing representation

The solution is represented as follows:

• Internal fleet:
Vehicle1 = route 1 = 3, 6;
Vehicle2 = route 2 = 1, 4, 7;

• External fleet:
External transporter = route 3 = 2, 5;

5.4.3 2-opt Local Search

To improve the solution we have used the 2-opt local search. This is an intra route
movement. This procedure is used in the following way. Let π be a solution for the
VRPPC. Then its 2-opt neighbourhood N (π) is defined as a set of all possible solutions
resulting from π by swapping two distinct nodes. This operator involves the substitution
of two arcs, (i, j) and (i+1, j +1) with two others arcs, (i, i+1) and ( j, j +1), and the
reversal of path p(i+1, j). Customer i on route 1 and customer j on route 2 are exchanged
in the best possible way to result in a cost savings. If such a better solution is found,
it replaces the current solution and the search continues. The process is repeated until
no further reduction of route length is possible. Figure 3.12 illustrate the main 2-opt
procedure used in this application.
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Figure 3.12 – 2-Opt intra route movement

5.4.4 Initialization

In this section, insertion heuristic is developed and used for obtaining an initial solution.
IDEA / 2-opt in the initialization start with the insertion heuristic and then apply the
2-opt local search to improve it as in Euchi and Chabchoub (2009).

When inserting a customer vi into a route rk, the least cost of insertion, Cik is computed
in the following manner. A customer can be inserted into a non used vehicle, with at least
one customer in it. When assigning a customer to a vehicle on the route, the type of loads
(demand) required by the customer and the vehicle type servicing the customer must be
compatible. In order to obtain an initial feasible solution, the following algorithm 4 is
used.

Algorithm 4 Pseudo code of initial solution algorithm
1: sort all available vehicles in increasing order of capacity
2: ——– for each available vehicle k := 1 to Kmax loop
3: ———– for each vi ∈V (i = 1, ...,n) loop
4: ———– if (vi ∈ rki and qi < Qk then
5: ————- insert a customer vi into route rki using the insertion method
6: ———– end if
7: ——— end for
8: —— customers not inserted will be assigned to the external transporter
9: ——– Execute 2-opt local search

10: ——– end for
11: end

The last remaining customers not inserted with the insertion method will be assigned
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to the external carrier.
The N resultant solutions

{
π1,π2, ...,πN}

constitute the initial population Pop(0). The
initial probability matrix p(0) is set as pi j = 1

N .
Then the probability matrix p(t) can be updated as follows:

pi j(t) = (1−β) 1
N ∑

N
k=1 Ii j(πk)+βpi j(t−1),(1≤ i, j ≤ n) where

Ii j (π) =

{
1 ifπ(i) = j

0 otherwise

0≤ β≤ 1 is a learning rate. The bigger β is, the greater the contribution of the
solutions in pop(t) is to the probability matrix p(t).

5.4.5 Selection operators

Selection in evolutionary algorithms meant to select the better solutions of the population
to perform the variation. In our IDEA/ 2-opt local search algorithm we use the selection
Pressure Towards Diversity of Bosman et al. (2002). The selection operator proposed
are presented as follows: the selection operator selects bτpopc solutions, where pop is the
population size and τ ∈

[
1

pop ,1
]

is the selection percentile.

5.4.6 Probabilistic Model

One of the successful ways of IDEA is the use of a probabilistic model that captures the
important correlations of the search distribution, assigning high probability values to the
selected solution. The IDEA builds a probabilistic model with the best individuals and
then sample the model to generate new ones.

This section presents an efficient technique for learning probabilistic model on the
base of a probability matrix p = (pi j)n×n, we generate a new solution.

In order to create a new solution based on the probabilistic model we proceed as
follows:

1. Divides the vehicles into two groups based on their capacity. The first group has
assigned to [αn] customers and the second one to n− [αn] customers.

2. Vehicle k is assigned to location π(k), which is the location for this customer in
solution π.
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3. Arranges the vehicles in the second group sequentially, based on the probability
matrix p(t).

4. Customers not served are assigned to the external transporter.

5.4.7 Replacement

The role of the replacement is keeping the population size constant. To do so, some
individuals from the population have to be substituted by some of individuals created
during the probabilistic model. This can be done using the tournament replacement.

A subset of α individuals is selected at random, and the worst one is selected for
replacement (for α > 1).

5.4.8 Stopping criterion

The stopping criterion is inherent to the complexity of used probabilistic model.
We use a maximum number of iteration Maxiter and maximum of execution time tmax as a
stopping condition. We can give a pseudo-code of the proposed approach in the following
algorithm 5.

Algorithm 5 Pseudo code of IDEA/2-Opt algorithm
1: P: Population size
2: π0: initial solution
3: π∗,π∗∗: intermediate solution
4: F : Fitness value
5: begin
6: —- t:=0;
7: —- P:population (t); // initialization using the insertion heuristics
8: —-π0 = π0∪(Insertion heuritic)
9: —-π∗= 2-Opt local serach (π0)// selection operator and probabilistic model

10: ——– While (stopping condition is not met) do
11: ———– S= selection (pop(t));
12: ———– M= learn model (S);
13: ———– Pop = S;
14: ———– for (i≤ bτpopcton≤ 1) do
15: ———– Pop = Pop∪ (Pops(z)) // improve solution with local search
16: ———– π∗∗= 2-Opt local search(π∗)
17: ———– if (F(π∗∗) > F(π∗)) then
18: ————- π∗ = π∗∗;
19: ———– end if
20: ———– end for
21: —t = t +1;
22: ——– endwhile
23: end
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5.5 Experiments results

In this section we discuss the performance of our IDEA / 2-opt local search and the tabu
search with ejection chains algorithm when applied on a wide set of instances taken from
the literature.

5.5.1 Implementation and instances

In order to evaluate and to compare the performance of the proposed algorithms we will
compare it with the results presented in the literature. We used the same set of test cases
reported in Bolduc et al. (2008). Two sets instances were used to assess the performance
of our algorithms. For the 34 instances on the first set (Table 3.7), the fleet is composed
of a limited number of homogeneous vehicles, while the fleet for the 44 instances of the
second set (Table 3.8) is limited and heterogeneous.

The first set is divided into two subsets: the 14 instances proposed by Christofides &
Eilon (1969) and the 20 instances proposed by Golden et al. (1998). The second set is
the same as presented in Bolduc et al. (2008) with the same notations and parameters.
The set of instances with heterogeneous fleet (Table 3.8) are composed with the five small
instances beginning with Chu-H used by Chu (2005), and the five instances B-H used by
Bolduc et al. (2008) and the set generated by Christofides and Eilon (1969) and from
those of Golden et al. (1998) (CE-H and G-H).

The algorithm described here has been implemented in C++ using Visual Studio
C++ 6.0. Experiments are performed on a PC Pentium 4, 3.2 GHz with 512MB of RAM.

The description of the instances for the VRPPC are presented as follows: n is the
number of customers, n is the average number of customers per route, m is the number of
vehicles, qmin and qmax are the lowest and highest demands, respectively, Q is the capacity
of vehicle, f is the fixed cost and the vehicle variable cost is set equal to 1 per unit of
distance.

5.5.2 Parameter settings

The TSEC and IDEA procedures employs a set of parameters which values need to be
set before the algorithms are runs.

• Calibration of parameter for the TSEC algorithm :

The TSEC procedure employs a set of parameters include the number of iteration
Nmax, the number of non improvement tabu iteration Nnoimp , tabu list T L, tour improve-
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Tableau 3.7 – Characteristics of instances with homogeneous limited fleet
Instances n n m Q qmin qmax f c
CE-01 50 12,5 4 160 3 41 120 1
CE-02 75 8,3 9 140 1 37 100 1
CE-03 100 16,7 6 200 1 41 140 1
CE-04 150 16,7 9 200 1 41 120 1
CE-05 199 15,3 13 200 1 41 100 1
CE-06 50 12,5 4 160 3 41 140 1
CE-07 75 8,3 9 140 1 37 120 1
CE-08 100 16,7 6 200 1 41 160 1
CE-09 150 15 10 200 1 41 120 1
CE-10 199 15,3 13 200 1 41 120 1
CE-11 120 20 6 200 2 35 180 1
CE-12 100 12,5 8 200 10 50 120 1
CE-13 120 20 6 200 2 35 260 1
CE-14 100 14,3 7 200 10 50 140 1

G-01 240 34,3 7 550 10 30 820 1
G-02 320 40 8 700 10 30 1060 1
G-03 400 50 8 900 10 30 1380 1
G-04 480 60 8 1000 10 30 1720 1
G-05 200 50 4 900 10 30 1620 1
G-06 280 56 5 900 10 30 1700 1
G-07 360 51,4 7 900 10 30 1460 1
G-08 440 55 8 900 10 30 1480 1
G-09 255 23,2 11 1000 29 300 60 1
G-10 323 24,9 13 1000 25 300 60 1
G-11 399 28,5 14 1000 23 300 80 1
G-12 483 32,3 15 1000 20 300 80 1
G-13 252 12 21 1000 60 300 60 1
G-14 320 13,9 23 1000 52 300 60 1
G-15 396 15,2 26 1000 47 300 60 1
G-16 480 16,6 29 1000 42 300 60 1
G-17 240 13,3 18 200 10 40 40 1
G-18 300 13,6 22 200 10 40 60 1
G-19 360 13,9 26 200 10 40 60 1
G-20 420 13,6 31 200 10 40 60 1
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Tableau 3.8 – Characteristics of the instances with heterogeneous limited fleet
Instances n Vehicle A Vehicle B Vehicle C

m Q f c m Q f c m Q f c
Chu-H-01 5 1 40 60 1.50 1 30 50 1.50
Chu-H-02 10 1 75 120 1.50 1 65 100 1.50
Chu-H-03 15 1 110 150 1.50 1 100 140 1.50 1 90 130 1.50
Chu-H-04 22 1 4500 250 1.50 1 4000 200 1.50
Chu-H-05 29 1 4500 250 1.50 1 4000 200 1.50 1 3500 180 1.50

B-H-01 5 1 40 60 1.50 1 30 50 1.50
B-H-02 10 1 75 120 1.50 1 65 100 1.50
B-H-03 15 1 110 150 1.50 1 100 140 1.50 1 90 130 1.50
B-H-04 22 1 4500 250 1.50 1 4000 200 1.50
B-H-05 29 1 4500 250 1.50 1 4000 200 1.50 1 3500 180 1.50

CE-H-01 50 2 160 140 1.00 2 192 168 1.00
CE-H-02 75 4 112 80 1.00 5 168 120 1.00
CE-H-03 100 2 160 112 1.00 2 200 140 1.00 2 240 168 1.00
CE-H-04 150 2 160 96 1.00 4 200 120 1.00 3 240 144 1.00
CE-H-05 199 7 160 80 1.00 5 200 100 1.00 2 240 120 1.00
CE-H-06 50 1 128 112 1.00 2 160 140 1.00 1 192 168 1.00
CE-H-07 75 4 112 96 1.00 3 140 120 1.00 2 168 144 1.00
CE-H-08 100 1 160 128 1.00 1 200 160 1.00 4 240 192 1.00
CE-H-09 150 4 160 96 1.00 3 200 120 1.00 3 240 144 1.00
CE-H-10 199 2 160 96 1.00 5 200 120 1.00 6 240 144 1.00
CE-H-11 120 2 160 144 1.00 2 200 180 1.00 2 240 216 1.00
CE-H-12 100 2 160 96 1.00 3 200 120 1.00 3 240 144 1.00
CE-H-13 120 1 160 208 1.00 4 200 260 1.00 1 240 312 1.00
CE-H-14 100 1 160 96 1.00 1 200 120 1.00 5 240 144 1.00

G-H-01 240 3 440 656 1.00 1 50 820 1.00 3 660 984 1.00
G-H-02 320 2 560 848 1.00 2 700 1060 1.00 4 840 1272 1.00
G-H-03 400 3 720 1104 1.00 3 900 1380 1.00 2 1080 1656 1.00
G-H-04 480 2 800 1376 1.00 4 1000 1720 1.00 2 1200 2064 1.00
G-H-05 200 2 720 1296 1.00 2 900 1620 1.00
G-H-06 280 3 720 1360 1.00 2 900 1700 1.00 1 1080 2040 1.00
G-H-07 360 3 720 1168 1.00 1 900 1460 1.00 3 1080 1752 1.00
G-H-08 440 1 720 1184 1.00 2 900 1480 1.00 5 1080 1776 1.00
G-H-09 255 6 800 48 1.00 3 1000 60 1.00 3 1200 72 1.00
G-H-10 323 3 800 48 1.00 3 1000 60 1.00 6 1200 72 1.00
G-H-11 399 6 800 64 1.00 8 1000 80 1.00 1 1200 96 1.00
G-H-12 483 6 800 64 1.00 6 1000 80 1.00 4 1200 96 1.00
G-H-13 252 6 800 48 1.00 4 1000 60 1.00 10 1200 72 1.00
G-H-14 320 11 800 48 1.00 2 1000 60 1.00 11 1200 72 1.00
G-H-15 396 7 800 48 1.00 9 1000 60 1.00 10 1200 72 1.00
G-H-16 480 12 800 48 1.00 6 1000 60 1.00 11 1200 72 1.00
G-H-17 240 4 160 32 1.00 7 200 40 1.00 6 240 48 1.00
G-H-18 300 7 160 48 1.00 9 200 60 1.00 6 240 72 1.00
G-H-19 360 9 160 48 1.00 7 200 60 1.00 10 240 72 1.00
G-H-20 420 16 160 48 1.00 6 200 60 1.00 10 240 72 1.00
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ment frequency χ, tour selection parameter T and neighborhood size β, Tabu tenure and
penalty factor µ. In our algorithm after a number of preliminary runs we choose the good
values of these parameters.

In this section the TS/EC for the VRPPC can be characterized by its capability to
intensify and diversify the search by using the tour improvement frequency χ. The number
of candidate tours that will be considered for selection in initial solution construction T=
30 and the number of neighborhood solutions generated in the TS procedure β= 100 are
chosen randomly. The tabu tenure is selected, based on the sum of the improvements
from consecutive improving moves rather than from an individual move.

The objective function value is increased by the frequency of the move weighted by a
penalty factor µ. Thus, this mechanism plays an important role on diversifying the search
by decreasing the possibility to select a frequently examined non improving move as the
solution for the next iteration. The value of µ is fixed to 0.5 and it affects the quality
solution.

Tabu search contains several elements and strategies that should be explored to pro-
duce good solution for complex problems. The performance of our algorithm with regard
to both solution quality and computation time comes from the exploitation of the tabu
search framework and the choice of good parameters. The values of these parameters were
determined in the basis of a number of preliminary runs. Table 3.9 present the values of
these parameters.

Tableau 3.9 – TS/EC parameters
Parameter Type Value

Number of maximum iteration 500
Maximum non improvement iteration 200

Tour improvement frequency 6
Number of candidate tours 30

Number of neighborhood solutions 100
Tabu tenure 3

Penalty factor 0.5

• Calibration of parameter for the IDEA algorithm :

In order to have a uniform comparison, the algorithm were evaluated with a maximal
number of iteration = 500, a selection percentage of τ = 100

5 = 20%, a population size =
100. We experimented with various factor α ∈ {1,10}. We run the algorithm to find the
best results within a maximum number of 105 evaluations (After 10 runs).
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5.5.3 Evaluation method

In order to evaluate and to compare the performance of the proposed TS with the ejection
chains algorithm many experiments results were conducted.

In particular, computation results reported in this paper are compared with the best
results proposed by Bolduc et al. (2008). We indicate the best and average solution value
as well as the average computation time in seconds over 10 runs.

Results obtained with TS/EC algorithm over 10 runs are given in Table 3.10 and 3.11.
We report in Table 3.10 results of RIP metaheuristic of Bolduc et al. (2008) and the basic
TS/EC corresponding to the first set of 34 instances with homogeneous limited fleet. In
Table 3.11 we present the results corresponding to the second set with heterogeneous fleet.
We show that for the homogeneous and heterogeneous instances, a new best solution was
found.

The solution quality of the TS/EC algorithm is measured in terms of cumulative total
travel distance required to serve all demands of a given instance.

The computational results in Table 3.10 shows that our algorithm produces better
results than other heuristic provides in the literature, is on average 0.12% over the best
known solutions produced by the TS/EC and with the 0.24% for the RIP metaheuristic.

Table 3.11 shows for the heterogeneous limited fleet instances, that the TS/EC pro-
vides a good solution than the RIP metaheuristic with an average 0.37% and 0.96% for
the RIP over the best known solution provided by the TS/EC. The results indicate that
our algorithm always generates better results than the others that are tested on the whole
of 44 instances. The second observation is that the values of CPU time are very weak
and varied according to the size of the problem.

It can be seen from these Tables (3.10, 3.11) the TS/EC algorithm finds reasonably
good and best execution time in all instances, TS/EC algorithm is faster than the RIP
metaheuristic with respect of the conversion factor.

The generally favorable factor has the fast obtaining of the optimal solution from the
greedy solution proposed at the beginning of the algorithm and the use of the ejection
chain in order to find the neighborhood of a current given solution.
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Tableau 3.10 – Comparative result for the homogeneous instances

Instances TS/EC RIP metaheuristic
Best Average CPU (s) Best CPU(s)

CE-01 1118,47 1119,47 17 1132.91 25
CE-02 1810,52 1819,02 39 1835.76 73
CE-03 1940,2 1956,89 76 1959.65 107
CE-04 2538,991 2552,17 175 2545.72 250
CE-05 3124,7 3175,18 287 3172.22 474
CE-06 1207,4 1208,51 13 1208.33 25
CE-07 2006,52 2010,17 60 2006.52 71
CE-08 2072,05 2081,33 81 2082.75 110
CE-09 2438,5 2443,27 232 2443.94 260
CE-10 3429,71 3439,81 401 3464.90 478
CE-11 2332,8 2332,91 159 2333.03 195
CE-12 1953,55 1953,55 82 1953.55 128
CE-13 2859,4 2863,18 110 2864.21 188
CE-14 2213,08 2221,32 97 2224.63 110
G-01 14330,8 14336,71 407 14388.58 651
G-02 19269,804 19335,54 1102 19505.00 1178
G-03 24659,5 24925,28 1859 24978.17 2061
G-04 34675,58 34695,29 2668 34957.98 3027
G-05 14340,28 14375,42 397 14683.03 589
G-06 21838,47 21838,81 825 22260.19 1021
G-07 23713,26 23925,11 1339 23963.36 1628
G-08 30360,7 30423,48 1894 30496.18 2419
G-09 1336,25 1336,25 756 1341.17 832
G-10 1605,44 1617,18 1157 1612.09 1294
G-11 2166,45 2180,12 1366 2198.45 2004
G-12 2518,43 2520,12 2592 2521.79 2900
G-13 2268,22 2284,33 740 2286.91 802
G-14 2736,49 2744,11 1196 2750.75 1251
G-15 3194,52 3212,59 1741 3216.99 1862
G-16 3684,28 3691,45 2652 3693.62 2778
G-17 1695,82 1700,05 527 1701.58 806
G-18 2752,99 2764,71 1198 2765.92 1303
G-19 3544,63 3553,16 1221 3576.92 1903
G-20 4367,59 4369,03 2423 4378.13 2800

%deviation 0.12% 879.08 0.24% 1074.14
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Tableau 3.11 – Comparative result for the heterogeneous instances
Instances TS/EC RIP metaheuristic

Best Average CPU (s) Best CPU(s)
Chu-H-01 387,50 387,50 0.00 387,50 0.35
Chu-H-02 586.00 586.00 0.08 586.00 1.9
Chu-H-03 826,50 826,50 1.02 826,50 3.50
Chu-H-04 1389.00 1389.00 3.00 1389.00 5.85
Chu-H-05 1441,50 1441,50 5.70 1444.50 10.40
B-H-01 423,50 423,50 1.30 423,50 1.85
B-H-02 476,50 476,50 2.00 476,50 3.50
B-H-03 777 777 2.80 778.5 4.75
B-H-04 1564,50 1564,50 10.23 1564,50 15.85
B-H-05 1609,50 1609,50 10.29 1609,50 12.90
CE-H-01 1168,23 1183,91 15.9 1192.72 26
CE-H-02 1753,35 1781,59 53.26 1798.26 72
CE-H-03 1861,93 1922.35 90.7 1934.85 105
CE-H-04 2492,32 2493,14 195.91 2493.93 251
CE-H-05 3126,99 3177,99 407.33 3195.66 470
CE-H-06 1169,84 1202,99 17.2 1210.23 25
CE-H-07 2034,5 2041,58 62.1 2042.79 74
CE-H-08 2005,19 2009,17 106.41 2015.72 112
CE-H-09 2433,28 2444,94 257.16 2445.88 267
CE-H-10 2995,64 3265,84 259.39 3304.69 482
CE-H-11 2303,06 2306,42 112.22 2308.76 188
CE-H-12 1902,05 1902,05 106.94 1908.74 130
CE-H-13 2739,35 2824,99 156.4 2842.18 195
CE-H-14 1707,24 1752,15 100.2 1920.36 114
G-H-01 14216,9 14295,22 566.22 14408.31 647
G-H-02 18508,31 18557,82 836.9 18663.15 1254
G-H-03 25368,27 25411,28 1954.82 25561.55 2053
G-H-04 35272,66 35486,27 1996.89 35495.66 2049
G-H-05 16119 16121,01 441.39 16138.50 512
G-H-06 20065,81 20183,03 991.5 20329.04 1005
G-H-07 24691,2 24741,77 1207.6 24840.83 1608
G-H-08 27442,6 27691,33 2098.37 27710.66 2584
G-H-09 1313,63 1322,75 521.46 1346.03 814
G-H-10 1373,19 1374,1 1035.07 1575.82 1332
G-H-11 2203,9 2208,61 2005.4 2218.91 2140
G-H-12 2363,21 2368,13 2235.10 2510.07 2970
G-H-13 2213,39 2214,35 2006.25 2253.45 733
G-H-14 2652,28 2663,5 2635.77 2711.81 1246
G-H-15 3063 3116,49 1335.53 3156.93 1895
G-H-16 3433,8 3535,29 2635.77 3649.09 2785
G-H-17 1663,19 1668,01 635 1705.48 762
G-H-18 2723,39 2733,38 1005 2759.99 1299
G-H-19 3363,99 3378,77 1235.41 3517.48 1892
G-H-20 4363,88 4382,63 2135.89 4413.82 2733
%deviation 0.37% 715.74 0.96% 793.29

84



3.5 Metaheuristics approaches to solve the M-VRP

Figure 3.13 and 3.14 present the comparison of results between the IDEA / 2-opt,
SRI and RIP metaheuristic in the generation space of homogeneous and heterogeneous
instances. According to the figures we notice that the average percentage deviation tends
towards zero for the IDEA / 2-opt algorithm both in the homogeneous and heterogeneous
instances. In fact, the IDEA / 2-opt finds slightly fitter solutions than the previous
approach using SRI and RIP metaheuristic.

Figure 3.13 – Comparison results for the homogeneous instances

Figure 3.14 – Comparison results for the heterogeneous instances

Figure 3.15 indicate how the proposed probabilistic model in the generation of new
solution in the VRPPC. We measure the efficiency of the IDEA / 2-opt changes during
the optimization. Finally, in figure 3.16 we observed that with our proposed approach,
we obtain quickly, a best fitness value in a number of reasonable generations.
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Figure 3.15 – Effect of the number of generation in the fitness value

Figure 3.16 – Efficiency of the IDEA/ 2-opt

Table 3.12 gives the solution values for the instances of homogeneous fleet, while
Table 3.13 contains results for the heterogeneous fleet instances. These Tables compare the
results obtained with IDEA / 2-opt to those obtained with the SRI and RIP metaheuristic
of Bolduc et al. (2008) for each instances.

From these tables, we can see that the IDEA/2-opt with 15000 and 30000 iterations
is on average 0.23% and 0.007% respectively over the best known solutions with the
0.63% for the RIP metaheuristic. Table 14 show that the IDEA/2-opt with 15000 and
30000 iterations is on average 0.99% and 0.24% with 1.2% for the RIP metaheuristic over
the best known solutions. The results in Tables 3.12 and 3.13 clearly show the strong
performance of hybrid IDEA algorithm.

Over the 34 homogeneous instances, 31 best solutions were produced with our al-
gorithm. So, for all heterogeneous instances, a new best solution was found. Although
IDEA / 2-opt local search is better than the RIP metaheuristic with a good parameter
setting.

We want to turn to the evaluation of the solution quality obtained by hybridization
between the IDEA and the local search 2-opt over time. To that end Tables 3.12, 3.13
show for each instance the time needed to obtain solution. It can be seen from this
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table that IDEA / 2-opt algorithm finds reasonably good and best execution time in all
instances.

For the homogeneous instances we save the CPU time on average 346.33 and 438.28
seconds for the IDEA/2-opt with 15000 and 30000 iterations respectively, then for the
heterogeneous instances we report 326.805 and 418.92 seconds. We conclude that IDEA/2-
opt algorithm is faster than the RIP metaheuristic with respect of the conversion ratio.

Tables 3.14 and 3.15 gives the best solution founded with the TSEC and the IDEA/2-
opt with the others methods reported in Bolduc et al. (2008).
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Tableau 3.12 – Results for the homogeneous instances
Instances IDEA (15000 iteration) IDEA (30000 iteration) RIP

BS Average CPU BS Average CPU Solution CPU
CE-01 1119.47 1119.47 4.21 1119.47 1119.47 7.49 1132.91 25
CE-02 1814.52 1818.12 2.55 1814.52 1814.52 3.73 1835.76 73
CE-03 1920.36 1946.97 15.71 1920.36 1920.36 22.98 1959.65 107
CE-04 2520.58 2550.74 35.64 2511.63 2521.50 37.72 2545.72 250
CE-05 3102.54 3173.81 110.04 3087.95 3099.81 172.31 3172.22 474
CE-06 1211.05 1217.51 110.98 1204.56 1206.99 131.21 1208.33 25
CE-07 2006.52 2010.17 114.53 2004.02 2008.37 159.14 2006.52 71
CE-08 2050.32 2071.33 28.56 2045.63 2051.55 48.09 2082.75 110
CE-09 2431.12 2473.72 50.67 2427.99 2431.12 53.26 2443.94 260
CE-10 3403.94 3413.81 110.29 3391.23 3404.98 112.86 3464.90 478
CE-11 2332.21 2332.21 23.15 23.29.01 2333.01 26.41 2333.03 195
CE-12 1953.55 1953.55 13.82 1950.64 1952.88 18.21 1953.55 128
CE-13 2861.39 2864.21 27.51 2857.03 2859.17 31.78 2864.21 188
CE-14 2214.14 2222.32 15.79 2214.14 2217.04 19.57 2224.63 110
G-01 14206.51 14206.51 81.12 14206.51 14206.51 81.12 14388.58 651
G-02 19171.62 19235.64 201.63 19169.84 19234.69 220.98 19 505.00 1178
G-03 24925.28 24925.28 1071.46 24763.11 24956.83 1145.91 24 978.17 2061
G-04 34645.19 34645.19 936.52 34601.79 34618.23 1985.27 34 957.98 3027
G-05 14249.82 14325.42 602.53 14249.82 14292.57 654.09 14 683.03 589
G-06 21550.39 21838.81 559.73 21550.39 21550.39 612.99 22 260.19 1021
G-07 23525.15 23925.11 764.10 23525.15 23525.15 958.36 23 963.36 1628
G-08 30025.13 30123.48 875.13 30025.13 30179.06 1072.75 30 496.18 2419
G-09 1321.73 1326.38 93.41 1316.53 1316.53 103.91 1341.17 832
G-10 1599.01 1607.18 194.23 1583.10 1596.71 204.30 1612.09 1294
G-11 2229.56 2230.12 850.99 2123.98 3180.44 1020.36 2198.45 2004
G-12 2485.00 2496.12 765.91 2485 2485.01 825.66 2521.79 2900
G-13 2268.32 2288.33 72.18 2266.21 2266.21 78.56 2286.91 802
G-14 2746.06 2704.01 548.7 2688.31 2708.99 698.71 2750.75 1251
G-15 3141.72 3242.59 1079.08 3104.68 3142.98 1249.13 3216.99 1862
G-16 3601.23 3695.45 980.31 3595.22 3598.69 1180.49 3693.62 2778
G-17 1685.22 1710.05 57.36 1631.29 1631.29 65.92 1701.58 806
G-18 2701.05 2766.15 105.16 2686.54 2688.32 125.97 2765.92 1303
G-19 3513.16 3513.16 745.69 3413.56 3421.98 988.21 3576.92 1903
G-20 4361.74 4460.38 526.77 4268.12 4360.08 784.12 4378.13 2800
%deviation 0.23% 0.49% 346.33 0.007% 0.13% 438.28 0.63% 1074.14
BS:Best solution
CPU:average CPU time en seconds
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Tableau 3.13 – Results for the heterogeneous instances
Instances IDEA (15000 iteration) IDEA (30000 iteration) RIP

BS Average CPU BS Average CPU Solution CPU
Chu-H-01 387.5 387.5 0.13 387.5 387.5 0.02 387.5 0.35
Chu-H-02 586.0 586.0 0.18 586.0 586.0 0.08 586.0 1.9
Chu-H-03 826.5 826.5 1.05 826.5 826.5 1.02 826.5 3.5
Chu-H-04 1389.0 1389.0 3.2 1389.0 1389.0 3 1389.0 5.85
Chu-H-05 1444.5 1444.5 6.15 1441.5 1441.5 5.7 1444.5 10.4
B-H-01 423.5 423.5 2.2 423.5 423.5 1.3 423.5 1.85
B-H-02 476.5 476.5 2 476.5 476.5 2 476.5 3.5
B-H-03 778.5 778.5 3.4 777 777 2.8 778.5 4.75
B-H-04 1564.5 1564.5 8.5 1564.5 1564.5 10.23 1564.5 15.85
B-H-05 1609.5 1609.5 9.26 1609.5 1609.5 10.29 1609.5 12.9
CE-H-01 1183.91 1186.19 3.58 1183.91 1183.91 5.18 1192.72 26
CE-H-02 1781.59 1781.59 12.15 1781.59 1781.59 16.15 1798.26 72
CE-H-03 1921.77 1938.16 40.58 1918.29 1920.35 45.98 1934.85 105
CE-H-04 2446.95 2446.95 20.62 2428.22 2431.14 24.76 2493.93 251
CE-H-05 3142.81 3159.66 245.61 2059.86 2117.07 321.83 3195.66 490
CE-H-06 1204.36 1204.89 0.55 1202.99 1202.99 1.51 1210.23 25
CE-H-07 2036.81 2040.86 10.54 2014.65 2021.78 14.6 2042.79 74
CE-H-08 1984.49 1989.36 59.37 1981.17 1981.17 77.18 2015.72 112
CE-H-09 2433.52 2436.87 87.04 2409.46 2424.94 95.73 2445.88 267
CE-H-10 3225.41 3304.21 182.05 3207.20 3265.84 191.78 3304.69 482
CE-H-11 2315.56 2348.30 72.53 2246.87 2269.42 93.62 2308.76 188
CE-H-12 1902.05 1908.54 14.25 1902.05 1902.05 23.74 1908.74 130
CE-H-13 2836.11 2840.19 88.42 2814.10 2824.99 90.47 2842.18 195
CE-H-14 1913.87 1923.44 8.54 1903.01 1912.15 12.44 1920.36 114
G-H-01 14382.07 14405.41 410.78 14345.09 14395.22 489.39 14408.31 647
G-H-02 18537.40 18557.24 769.16 18506.39 18557.82 852.33 18663.15 1254
G-H-03 25482.0 25559.09 743.24 25309.61 25511.8 972.66 25561.55 2053
G-H-04 34797.50 34960.39 678.43 34473.26 34886.27 952.57 35495.66 2049
G-H-05 15685.69 15711.43 358.39 15609.30 15621.01 376.36 16138.50 512
G-H-06 19987.69 20280.11 666.01 19960.21 20183.03 787.10 20329.04 1005
G-H-07 23639.51 23877.03 402.35 23410.63 23415.77 651.42 24840.83 1608
G-H-08 27529.83 27704.67 1001.25 27410.59 27691.33 1279.05 27710.66 2584
G-H-09 1309.41 1314.18 388.67 1304.09 1306.57 476.03 1346.03 814
G-H-10 1553.28 1573.59 741.45 1540.66 1544.10 975.70 1575.82 1332
G-H-11 2207.44 2216.93 979.98 2179.20 2198.61 1194.02 2218.91 2140
G-H-12 2455.97 2489.76 970.28 2420.02 2488.38 1682.73 2510.07 2970
G-H-13 2216.13 2221.17 368.16 2209.29 2214.35 438.71 2253.45 733
G-H-14 2698.15 2722.66 559.88 2602.33 2652.28 732.21 2711.81 1246
G-H-15 3144.65 3149.45 950.21 3101.90 3126.67 1132.09 3156.93 1895
G-H-16 3629.03 3644.28 735.69 3623.12 3635.92 856.93 3649.09 2785
G-H-17 1673.07 1702.71 400.80 1661.96 1668.01 548.05 1705.48 762
G-H-18 2732.36 2740.59 593.50 2718.41 2733.38 809.24 2759.99 1299
G-H-19 3478.48 3488.30 807.61 3408.60 3480.26 991.69 3517.48 1892
G-H-20 4382.12 4391.83 971.68 4322.97 4382.63 1182.87 4413.82 2733
%deviation 0.79% 0.99% 326.805 0% 0.24% 418.92 1.20% 791.90

BS:Best solution
CPU:average CPU time en seconds
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Tableau 3.14 – Best known solution for the homogeneous limited fleet instances
Instances Best Solution SRI RIP IDEA/2-opt TS/EC

Z Z CPU Z CPU Z CPU Z CPU
CE-01 1119.47 1199.99 0 1119.47 25 1119.47 7.49 1118,47 17.00
CE-02 1814.52 1890.33 0 1814.52 73 1814.52 3.73 1810,52 39.00
CE-03 1920.36 2050.33 1 1937.23 107 1920.36 22.98 1940,2 76.00
CE-04 2511.63 2694.72 1 2528.36 250 2511.63 37.72 2538,991 175.00
CE-05 3087.95 3228.67 3 3107.04 474 3087.95 172.31 3124,7 287.00
CE-06 1204.56 1282.94 0 1207.47 25 1204.56 131.21 1207,4 13.00
CE-07 2004.02 2092.32 0 2006.52 71 2004.02 159.14 2006,52 60.00
CE-08 2045.63 2163.32 1 2052.05 110 2045.63 48.09 2072,05 81.00
CE-09 2427.99 2526.82 1 2436.02 260 2427.99 53.26 2438,5 232.00
CE-10 3391.23 3511.02 3 3407.13 478 3391.23 112.86 3429,71 401.00
CE-11 2329.01 2375.71 1 2332.21 195 2329.01 26.41 2332,8 159.00
CE-12 1950.64 2037.54 0 1953.55 128 1950.64 18.21 1953,55 82.00
CE-13 2857.03 2916.21 1 2858.94 188 2857.03 31.78 2859,4 110.00
CE-14 2214.14 2220.77 1 2216.68 110 2214.14 19.57 2213,08 97.00
G-01 14 160.77 14675.33 4 14160.77 651 14206.51 81.12 14330,8 407.00
G-02 19169.84 20108.84 9 19234.03 1178 19169.84 220.98 19269,804 1102.00
G-03 24 646.79 26046.80 16 24646.79 2061 24763.11 1145.91 24659,5 1859.00
G-04 34601.79 36234.51 27 34607.12 3027 34601.79 1985.27 34675,58 2668.00
G-05 14249.82 15751.31 5 14249.82 589 14249.82 654.09 14340,28 397.00
G-06 21550.39 23255.65 8 21703.54 1021 21550.39 612.99 21838,47 825.00
G-07 23525.15 25298.48 13 23549.53 1628 23525.15 958.36 23713,26 1339.00
G-08 30025.13 30899.74 18 30173.53 2419 30025.13 1072.75 30360,7 1894.00
G-09 1316.53 1378.67 4 1336.91 832 1316.53 103.91 1336,25 756.00
G-10 1583.10 1646.91 8 1598.76 1294 1583.10 204.30 1605,44 1157.00
G-11 2123.98 2238.57 14 2179.71 2004 2123.98 1020.36 2166,45 1366.00
G-12 2485 2597.14 17 2503.71 2900 2485 825.66 2518,43 2592.00
G-13 2266.21 2339.93 5 2268.32 802 2266.21 78.56 2268,22 740.00
G-14 2688.31 2825.76 8 2704.01 1251 2688.31 698.71 2736,49 1196.00
G-15 3104.68 3269.96 12 3171.20 1862 3104.68 1249.13 3194,52 1741.00
G-16 3595.22 3784.63 19 3654.20 2778 3595.22 1180.49 3684,28 2652.00
G-17 1631.29 1732.70 5 1677.22 806 1631.29 65.92 1695,82 527.00
G-18 2686.54 2821.82 8 2742.72 1303 2686.54 125.97 2752,99 1198.00
G-19 3413.56 3614.59 11 3528.36 1903 3413.56 988.21 3544,63 1221.00
G-20 4268.12 4439.45 15 4352.95 2800 4268.12 784.12 4367,59 2423.00
SRI: Selection - Routing - Improvement algorithm of Bolduc et al. (2007).
RIP: Randomized construction- Improvement-Perturbation algorithm of Bolduc et al.
(2008). Xeon 3.6 GHz processor and 1.00 GB of RAM under Windows XP.
IDEA/2-opt: Iterated Density Estimation Evolutionary algorithm with 2-opt local
search
TS/EC: Tabu search heuristic with ejection chains neighborhoods
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Tableau 3.15 – Best known solution for the heterogeneous limited fleet instances
Instances Best Solution SRI RIP IDEA/2-opt TS/EC

Z Z CPU Z CPU Z CPU Z CPU
Chu-H-01 387.5 387.5 0.00 387.5 0.35 387.5 0.00 387,50 0.00
Chu-H-02 586.0 586.0 0.02 586.0 1.9 586.0 0.08 586.00 0.08
Chu-H-03 826.5 826.5 0.03 826.5 3.5 826.5 1.02 826,50 1.02
Chu-H-04 1389.0 1389.0 0.08 1389.0 5.85 1389.0 3 1389.00 3.00
Chu-H-05 1441.5 1444.5 0.09 1444.5 10.4 1441.5 5.7 1441,50 5.70
B-H-01 423.5 423.5 0.02 423.5 1.85 423.5 0.3 423,50 1.30
B-H-02 476.5 476.5 0.02 476.5 3.5 476.5 1.02 476,50 2.00
B-H-03 777 804.0 0.03 778.5 4.75 777 2.8 777 2.80
B-H-04 1564.5 1564.5 0.09 1564.5 15.85 1564.5 7.23 1564,50 10.23
B-H-05 1609.5 1609.5 0.13 1609.5 12.9 1609.5 8.29 1609,50 10.29
CE-H-01 1183.91 1 220.72 0 1191.70 26 1183.91 3.58 1168,23 15.9
CE-H-02 1781.59 1858.24 0 1790.67 72 1781.59 12.15 1753,35 53.26
CE-H-03 1918.29 1999.91 1 1919.05 105 1918.29 45.98 1861,93 90.7
CE-H-04 2428.22 2615.95 1 2475.16 251 2428.22 24.76 2492,32 195.91
CE-H-05 2059.86 3248.26 3 3146.45 490 2059.86 321.83 3126,99 407.33
CE-H-06 1202.99 1264.72 0 1204.48 25 1202.99 1.51 1169,84 17.2
CE-H-07 2014.65 2093.48 1 2025.98 74 2014.65 14.6 2034,5 62.1
CE-H-08 1981.17 2058.81 0 1984.36 112 1981.17 77.18 2005,19 106.41
CE-H-09 2409.46 2570.57 2 2438.73 267 2409.46 95.73 2433,28 257.16
CE-H-10 3207.20 3391.25 3 3267.85 482 3207.20 191.78 2995,64 259.39
CE-H-11 2246.87 2334.41 1 2303.13 188 2246.87 93.62 2303,06 112.22
CE-H-12 1902.05 1924.92 0 1908.74 130 1902.05 23.74 1902,05 106.94
CE-H-13 2814.10 2925.27 1 2842.18 195 2814.10 90.47 2739,35 156.4
CE-H-14 1903.01 1957.63 1 1907.74 114 1903.01 12.44 1707,24 100.2
G-H-01 14345.09 14599.16 4 14251.75 647 14345.09 489.39 14216,9 566.22
G-H-02 18506.39 18945.77 13 18560.07 1254 18506.39 852.33 18508,31 836.9
G-H-03 25309.61 26151.24 13 25356.93 2053 25309.61 972.66 25368,27 1954.82
G-H-04 34473.26 36519.42 22 34589.11 2049 34473.26 952.57 35272,66 1996.89
G-H-05 15609.30 17173.22 3 15667.13 512 15609.30 376.36 16119 441.39
G-H-06 19960.21 21083.42 8 19975.32 1005 19960.21 787.10 20065,81 991.5
G-H-07 23410.63 24854.96 14 23510.98 1608 23410.63 651.42 24691,2 1207.6
G-H-08 27410.59 28412.97 21 27420.68 2584 27410.59 1279.05 27442,6 2098.37
G-H-09 1304.09 1371.98 5 1331.83 814 1304.09 476.03 1313,63 521.46
G-H-10 1540.66 1599.77 8 1561.52 1332 1540.66 975.70 1373,19 1035.07
G-H-11 2179.20 2249.11 14 2195.31 2140 2179.20 1194.02 2203,9 2005.4
G-H-12 2420.02 2573.81 19 2487.38 2970 2420.02 1682.73 2363,21 2235.10
G-H-13 2209.29 2325.09 5 2239.18 733 2209.29 438.71 2213,39 2006.25
G-H-14 2602.33 2783.74 10 2682.85 1246 2602.33 732.21 2652,28 2635.77
G-H-15 3101.90 3224.50 13 3131.89 1895 3101.90 1132.09 3063 1335.53
G-H-16 3623.12 3740.85 22 3629.41 2785 3623.12 856.93 3433,8 2635.77
G-H-17 1661.96 1741.66 4 1695.75 762 1661.96 548.05 1663,19 635.00
G-H-18 2718.41 2787.10 7 2740.05 1299 2718.41 809.24 2723,39 1005.00
G-H-19 3408.60 3518.50 11 3464.70 1892 3408.60 991.69 3363,99 1235.41
G-H-20 4322.97 4362.31 15 4352.35 2733 4322.97 1182.87 4363,88 2135.89
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3.6 Conclusions

6 Conclusions

In this chapter we have introduced two types of VRP. The HFFVRP and the VRPPC.
We have presented a survey for this variants and we have described the specification and
the formulation of the basic VRPPC variant.

The general HFFVRP and VRPPC problems are at least as complex as the VRP,
which known to be NP-hard. Which prove the necessity of using heuristic/metaheuristic
approaches for solving the considered problems which is the purpose of the second part
of the chapter.

This work presents a TS heuristic embedded in Adaptive Memory (Euchi and Chab-
choub (2009)). The computational results obtained with the TSAM metaheuristic on a
set of benchmark instances compare favourably to existing literature, both with respect
to solution quality and to computation time. The results of this research show that the
performance of the proposed metaheuristic (TSAM) is competitive when compared with
other approaches presented in the literature.

We have discussed the VRPPC and we have proposed a TS/EC algorithm to solve
this variant of VRP (Euchi and Chabchoub (2010)). The proposed TS algorithm provides
the best results and it outperforms those obtained by the SRI and RIP metaheuristic
proposed in Bolduc et al. (2008) on the same problem sets. The initial solution and
the ejection chains neighbourhoods and its mechanism to create new solution allow a
comparatively large pool of good and diversified solutions to be stored and used during
the search process, alternating between small and large neighbourhood stages during the
metaheuristic course.

The results showed that the solution produced by our proposed approach was highly
dependent on the choice of the initial solution and the use of ejection chains neighbour-
hood. The algorithm requires minimal computation time and it is very performing ac-
cording to similar experiment presented in the literature. The results of this research
show that the proposed metaheuristic is a very effective tool for finding good solutions
for the VRPPC.

We have proposed an Iterated Density Estimation Evolutionary Algorithm with 2-opt
local search to solve the VRPPC (Euchi and Chabchoub (2009a, 2009b), and Euchi et al.
(2011)). The main features of this metaheuristic are a simple and flexible local search as
well as an acceptance criterion for the search space and the use of the probabilistic model.
In the process of comparing the algorithm, the contributions of the local search operator
and the use of probabilistic model to the performance of the IDEA are also displayed.
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3.6 Conclusions

The combination of the IDEA / 2-opt local search to solve the VRPPC has been shown
to result in efficient algorithms for combinatorial optimization.

The results demonstrated the competitiveness and accuracy of proposed IDEA algo-
rithm. From the experiments carried out here we can conclude that the IDEA algorithm
obtained the best solution, although it was the best performer on the data sets. More-
over, the IDEA runs quickly, even for problems with many variables. The results of this
research show that the proposed metaheuristics is a very effective tool for finding good
solutions for the VRPPC.

We remind that this thesis has dealt with three variants of heterogeneous vehicle
routing problem with fixed fleet while addressing the following special cases where the
fleet is limited and heterogeneous, presence of the external carrier and the case of dynamic
routing. In this chapter we have discussed the two cases presented below. Therefore the
purpose of the next chapter is the study of the dynamic pickup and delivery routing
problems. In chapter 4 we seek to develop a solution methodology based on artificial ant
colony with 2-Opt local search to solve the considered problem.
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Chapter 4

The Dynamic Vehicle Routing Problem

The increased awareness in just-in-time supply systems with the apparition of the new
advances in communication and information technologies, have recently led researchers
to focus on dynamic vehicle routing problems. So, in this chapter we will scrutinize the
dynamic pickup and delivery vehicle routing problem.

First, we discuss the differences between the traditional static vehicle routing problems
and its dynamic counterparts and we conducted a literature review to get an overview of
the work that has been done on the various issues. Second, we propose a solution technique
to solve this variant of dynamic PDVRP.

1 Introduction

The globalization of the economy leads to a rapidly growing exchange of goods on our
planet. Transportation and logistics play an important role in many companies. Optimiz-
ing the processes that are involved directly influences a company’s efficiency and hence
can lead to better revenues. With the advances in technology in communication and navi-
gation, companies can exert an increasing amount of direct control on their transportation
and logistics processes. In almost all developed economies, and increasingly in developing
ones as well, transport has become a major problem for policy-makers.

Despite short-term fluctuations in the economic climate, international trade continues
to grow at a remarkable rate. Leontiades1 notes that: ( Leontiades J.E. (1985) Multina-
tional Business Strategy, D.C. Heath & Co., Lexington, MA.)

One of the most important phenomena of the 20th century has been the international
expansion of industry. Today, virtually all major firms have a significant and growing
presence in business outside their country of origin.

This trade is based on the recognition that an organization can buy things from a
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supplier in one country, use logistics to move them, and then sell them at a profit to a cus-
tomer in another country. Improved communications, transport, financial arrangements,
trading agreements, and so on, mean that organizations search the world to find the
best location for their operations. Then international logistics move the related materials
through long and complex supply chains.

Any organization involved in transport has to consider many types of problem. We
have discussed some of the most important, but there are always operational details to
consider. The number of vehicles needed, type and size, special features required, routes
used, assignment of loads and customers to vehicles, schedules, maintenance schedules,
measures of service and quality, and so on. A basic routing problem looks for the best
path for a delivery vehicle around a set of customers. There are many variations on this
problem, all of which are notoriously difficult to solve.

An important subtask in this context is the operational planning of trucks or other
specialized transportation vehicles. These optimization tasks are called Vehicle Routing
Problems (VRP).

The high complexity and intractable nature of the dynamic VRP forms an attractive
row of research motivated by the significance of the transport industry. The transportation
and logistics problems are optimized using a static model, but with the increasing of
the traffic, and demand and with the flexibility of customers, the growing quantity of
computing, and communication, the problem is studied in dynamic conditions.

There exist many models of the supply chain logistics systems among them we consider
the dynamic routing models which try to determine the optimal minimum total travel cost.
The main characteristics of this type of problem are the uncertainty in the data and it
can be due to different sources, and it can have different natures. The automaticity and
flexibility are the main features and activities of the dynamic routing. Here we will focuses
on a dynamic pick-up-and-delivery routing problem, i.e., where goods are collected from
various customers and then delivered to a central depot.

In this chapter we focus on the dynamic pick up and delivery vehicle routing problem.
Each service request either has a combined pick-up and delivery location or only a single
pick-up (or delivery) location. The dynamic vehicle routing with pickup and delivery rep-
resents an interesting research issue since it presents some characteristic facial appearance
with regards to the static pickup and Delivery.

The dynamic vehicle routing may not be performed proficiently and due to this com-
plexity little report of minimizing costs has given for this variant of problem. Therefore
the responsible for administration the transport function must perfectly be educated in
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the basic principles of transport cost management; should use the computer aided systems
for the planning of the dynamic vehicle routing problem.

The main goal of this study is to develop an Ant Colony System based on 2-Opt
local search algorithm to solve the Dynamic Pickup and Delivery VRP. In the ACS meta-
heuristic, a set of agents (ants) build solutions to the given problem cooperating through
pheromone-update. The success principles of ACS consist in an intelligent exploitation
of the problem structure and in an effective interplay between the search space and the
solution space elaborating with the local search.

The chapter is structured as follows. In Section 2 we present the main definition and
framework of the DPDVRP. Section 3 is devoted to the literature review of the existing
papers that deals with the DPDVRP. Section 4 give the framework of the Dynamic Pick-up
and delivery vehicle Routing Problem. Section 5 contains the description of our algorithm.
In section 6 we include the experiment results and the corresponding analysis to test our
proposal algorithm. In section 7 we conclude the chapter.

2 Main definition of the Dynamic Vehicle Routing
Problem

To give a main definition of the Dynamic Vehicle Routing Problem we look at the work of
Psaraftis who was among the very first to consider the dynamic extension of the traditional
static VRP. Therefore, Psaraftis (1988, 1995) uses the following classification of the static
routing problem;

• "if the output of a certain formulation is a set of preplanned routes that are not
re-optimized and are computed from inputs that do not evolve in real-time".

While he refers to a problem as being dynamic;

• "if the output is not a set of routes, but rather a policy that prescribes how the routes
should evolve as a function of those inputs that evolve in real-time".

3 Related Works

The role of managing the planning of the vehicle routing problem holds an essential
place in distribution management. The academic researchers and private companies were
motivated to conduct powerfully the transportation of goods and services.
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3.1 Pick-up and delivery vehicle Routing Problem

For all the explosive growth in the VRP literature over the past several years, Pick-
up and Delivery problems are a class of VRP in which objects or people have to be
transported between an origin and a destination. Several routing problems with pick-up
and delivery service are reported in the literature. The number of pickup, delivery, and
service locations is the same in all transportation demands in the classical models. In the
VRP all transportation requests are associated with a single pickup or delivery location.
In the PDP all transportation requests concern the pickup of a shipment at its origin and
the delivery at its destination.

Little research in the vehicle routing problem considers the multiple pickup, delivery,
and/or service locations but we reflect on Savelsbergh and Sol (1995)which represent
the General Pickup and Delivery Problem (GPDP) with multiple pickup and delivery
locations. In the GPDP a transportation request is composed of several shipments with
different pickup and delivery locations. Each pickup location has to be visited before any
delivery location. However, the sequence in which the pickup (or delivery) locations must
be visited is not specified.

Ai and Kachitvichyanukul (2009) propose a particle swarm optimization for the vehicle
routing problem with simultaneous pickup and delivery. Among publication that have
explicitly addressed a Pick-up and Delivery VRP situation we may mention several papers,
such as Psaraftis (1980, 1983), Dumas et al. (1991) proposed a branch-and-price algorithm
for the multiple-vehicle Pick-up and Delivery Problem with Time Windows.

Nanry and Barnes (2000) propose a reactive tabu search for the PDPTW in which
the search progress is continuously analyzed and search parameters such as the length of
the tabu list are adjusted accordingly during search.

Schonberger et al. (2003) propose a Genetic Algorithm for solving the so-called Pickup
and Delivery Selection Problem (PDSP) which extends the PDPTW by the decision of
acceptance or rejection of transportation requests. Figure 4.1 describe the solution of a
static vehicle routing problem

3.2 Dynamic Pick-up and delivery vehicle Routing Problem

In figure 4.2 we present a general scheme of a Dynamic VRP. Therefore the figure 4.3
present a solution for the dynamic VRP.

Until now, little research has been focused on the dynamic Pick up and Delivery
Vehicle Routing Problem, where problem size and parameters changes after the vehicles
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Figure 4.1 – Solution of Static vehicle routing

Figure 4.2 – Dynamic vehicle routing
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Figure 4.3 – Solution of a Dynamic vehicle routing

are already commissioned. We consider the paper of Bertsimas and Ryzin (1991) among
the earliest work of the most basic dynamic vehicle routing problem which present an
objective function with the waiting time and it describe a generic mathematical model.
To our knowledge, very few published papers deal with the Dynamic Pick-up and Delivery
Routing Problem. Some further work can be found on Powell et al. (1995) and Berbeglia
et al. (2009).

We present a general discussion of dynamic network modeling problems that arise
in logistics and distribution systems, including a priori optimization and on-line decision
policies for stochastic routing problems in Powell et al. (1995). Recently, in Berbeglia et
al. (2009) we surveys the subclass of dynamic pickup and delivery problems, where the
objects or people have to be collected and delivered in real time. The paper discusses
various issues as well as solution strategies.

Since the first formulation of the VRP by Dantzig and Ramser (1959), thousands of
algorithms have been proposed for the optimal and approximate solution of the VRP,
PDVRP and their variants. The immense popular of these algorithms distress the static
vehicle routing problem, i.e. it is unspecified that all data is known and invariant during
resolution. Only recently dynamic problems have been increasingly premeditated in the
vehicle routing literature. We present the most relevant literature on DPDVRP and in
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the solutions techniques devoted to it. A comprehensive discussion of dynamic vehicle
routing can be found in Psaraftis (1988) and Psaraftis (1995). In the literature, there are
many methods and strategies have been proposed to tackle DVRPs.

Montemanni et al. (2005) considered a DVRP as the extension to the standard VRP
by decomposing a DVRP as a sequence of static VRPs and then solving them with artificial
ant colony algorithm.

Gendreau et al.(1999) propose a tabu search heuristic for the DPDVRP with Time
Windows. Hvattum et al. (2004) presented an approach for problems where statistical
information about orders appearance is available. A neighborhood search heuristics for the
dynamic dispatching problem with pick-ups and deliveries has been applied in Gendreau
et al. (2006).

Savelsbergh and Sol (1998) presented a planning module designed for a transportation
company, which embeds a dynamic VRP module. A survey on results achieved on the
different types of DVRPs can be found in Gendreau and Potvin (1998).

4 A framework of the Dynamic Pick-up and delivery
vehicle Routing Problem

Dynamic (or adaptive) routing goes beyond static routing by admitting the possibility
of building/changing the vehicles routing solution online according to the current traf-
fic events. It is useful to distinguish between the ability of adapting to the changing
traffic conditions and to topological modifications (e.g., link/node failures, link/node ad-
dition/removal). This section defines two different types of PDVRP: the static PDVRP
and the dynamic PDVRP.

4.1 The Static Pick-up and delivery vehicle Routing Problem

The static PDVRP is described in the following way: let G = (V,A) be a graph where
V = {0,1, ...,n} is a set of vertices and A = {(i, j) : i, j ∈V, i 6= j} is a set of arcs. Vertex 0
is a depot at which is based a fleet of m vehicles, while the remaining vertices represent
customers. Each arc (i, j) ∈ A is associated with a non negative demand qi . The total
demand of a vehicle route may not exceed the vehicle capacity Q. The objective is to find
a vehicle route starting from the depot, finishing all the requests of tasks, and ending at
one of the delivery locations. The total distance travelled is minimized.

101



4.4 A framework of the Dynamic Pick-up and delivery vehicle Routing
Problem

4.2 The Dynamic Pick-up and delivery vehicle Routing Problem

In this section we addresses a Dynamic DVRP, in which the distribution plan needs to
be adjusted in real-time to accommodate changes in uncontrollable parameters of the
delivery environment. The problem is a dynamic in a sense that customer requests are
handled dynamically, and where the problem is solved in real-time.

Formally, the dynamic VRP is defined over a graph G = (V,A) as a static PDVRP
such as the pick up and delivery vertices of a request cannot be visited by different routes
and the pick up vertex naturally precedes the delivery vertex. At each time t, each vehicle
is either serving a vertex, waiting at a vertex, or moving toward a vertex. In either of
these cases, the request associated with the vertex is known at time t (see e.g. Berbeglia,
G. et al. (2009)).

In dynamic environment, new orders may appear over the time, that is, the initial
problem specification can change after the vehicles have started their tours. Recently
Garrido and Riff (2010) they proposed a new model formulation to the dynamic vehicle
routing problem (DVRP).
Garrido and Riff (2010) formulate the problem as follows:

• Parameters:
t: elapsed service time, such that t ∈ [0,D]
m: number of vehicles
V́ : set of non-served customers
vk

s : last customer served by vehicle k

St
k: sequence of customers vk

0, ...,v
k
l served by the k− th vehicle before t

cil: travel distance from vi to vl

ql: demands delivered by/to customer vl

Qt
k: remaining available capacity of vehicle k at time t

Dt
k: remaining available time of vehicle k at time t before reaching upper bound D

• Variables:

xlk =
{

1 if vehicle k serves customervl, vl ∈ V́ ∪
{

vk
s
}

0 otherwise

yilk =

{
1 if vehicle k goes directly from clientvi to vl

0 otherwise
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• Objective function:
Minimize ∑

ilk,i 6=l
cil ∗ yilk (4.1)

• Constraints: m

∑
k=1

xlk = 1,∀vl ∈ V́ ,vl 6= v0 (4.2)

∑
l

xlk ∗ql ≤ Qt
k,∀k = 1, ...,m,∀vl ∈ V́ ∪

{
vk

s

}
(4.3)

∑
i

yilk +∑
j

yl jk = xlk,∀k = 1, ...,m,∀vl ∈ V́ ∪
{

v1
s , ...,v

m
s
}

(4.4)

∑
i,l

cil ∗ yilk ≤ Dt
k,∀k = 1, ...,m (4.5)

∑
i,l

yilk ≤ |S| ,S⊆V
′
∪

{
v1

s , ...,v
m
s
}

,2≤ |S| ≤ n−1,∀k = 1, ...,m (4.6)

The objective function 4.1 minimize the total travel time. Constraint 4.2 limits the
service of each remaining customer vl to a single vehicle k and only once. Constraint 4.3
describe the remaining available vehicle capacities, which are updated over specific time
periods. A vehicle k serves a customer vl, if and only if, vl belongs to its scheduling, it is
handled in constraint 4.4. In constraint 4.5, travel times of each vehicle k are limited to
Dt

k. Finally, constraint 4.6 establishes the maximum number of clients that can be served
by each vehicle k.

4.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a family of optimization algorithms based on real ants’
behaviour in finding a route to food nest. It has been observed in Dorigo and Stutzle
(2004) that of available routes, ants find shortest route to food nest. To achieve this,
ants communicate through deposition of a chemical substance called pheromone along
the route. Shortest path has highest concentration leading to more and more ants using
this route. The algorithm is based on an experiment conducted in 1989 by Goss et al.
(1989) as shown in figure 4.4.
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Figure 4.4 – Experiment for selection of the shortest branches by a colony of ants: (a)
at the beginning of the experiment and (b) at the end of the experiment.

In Mullen et al. (2009) we present a review of ant algorithms. The idea behind ant
algorithms is to simulate artificial stigmergy to coordinate societies of artificial ants. Ini-
tially, the ants choose one of the available paths randomly because of absence of pheromone
trail on any of the paths. However, the ants that choose shorter paths, take less time to
traverse it and hence pheromone deposition on the shorter paths occur earlier than the
longer ones. Ants which arrive after pheromone deposition on shorter path has occurred
and before ants on longer path have completed their journey prefer to choose shorter path
because of higher pheromone concentration on it. More number of ants on shorter path
further increases the rate of pheromone deposition on that path. Cumulatively, over time
this results in highest pheromone concentration on best path and finally all the ants travel
through that path only.

ACO (we refer the reader to the papers of Dorigo et al. (1999, 1996))is a metaheuris-
tic in which a colony of artificial ants cooperates in finding good solutions to discrete
optimization problems. Each ant of the colony exploits the problem graph to search for
optimal solutions. An ’artificial ant’, unlike natural counterparts, has a memory in which
it can store information about the path it follows. Every ant has a start state and one or
more terminating conditions. The next move is selected by a probabilistic decision rule
that is a function of locally available pheromone trails, heuristic values as well as the ant’s
memory. Ant can update the pheromone trail associated with the link it follows. Once it
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has built a solution, it can retrace the same path backward and update the pheromone
trails. ACO algorithm is interplay of three procedures as described in Dorigo and Stutzle
(2004).

5 Application

In this section we have implemented an hybrid AAC-2Opt algorithm for solving the
DPDVRP and their performance to give competitive and high quality solutions.

Based on the paper of Montemanni et al. (2005) and on the idea of splitting working
into nts time slices proposed initially in kilby et al.(1998) and adopted in the ant based
metaheuristic by Montemanni et al .(2005). Each time slices with an equal length of time
T
nts

where T is the length of the working day and we reschedule the arrival of new customers
to the end of that time slice. The concept of time slice is to make a partial static VRP.
Kilby et al. (1998) introduced the concept of time slice to bound the time committed to
each static problem. The objective is to make an order to serve the new demands and
the appearance of new customers. Also the concept of cut-off time is considered in our
approach with the purpose that the orders up until a certain time are permitted, and all
orders thereafter are postponed. We assume that an order has to be commited to a driver
at time therefore the advanced commitment time is equal to zero.

5.1 Merging of New Event Procedure (MNEP)

Derived from the initialization procedure and based on splitting the working day the
MNEP procedure constructs a static problems by means of a Tco and Tac parameters.
The MNEP procedure makes the assignment of the demands to the effective vehicles. It
represents an interface between the appearance of new customers and the optimization
methods. The first time slice corresponds to the first static problems created from the
previous working day. Therefore the cutoff time parameter Tco controls the time dedicated
to the arrival of new orders and the guideline of unserviced customers.

In our implementation, basis on the time available section we try to divide the cus-
tomers into nts time slices, each time slice represent a static VRP. For each static problem
we apply the AAC algorithm to solve the dynamic problem.

All the orders received after the Tco are interpreted as being customers that were
not serviced the day before and the re-optimization starts with the rest of non served
customers. Each vehicle starts from the location of the last customer committed to it, with

105



4.5 Application

a starting time resulting to the end of the servicing time for this customer with appropriate
travel time and capacity changes after it has served all the customers previously committed
to it. After each time slice and to the same static problem we keep the best solution
selected and orders with a processing time starting within the next T

nts
+ Tac seconds be

required to be committed to their respected vehicles, i.e when a vehicle worn all its
capacity, it should be return to the depot.

5.2 Artificial Ant Colony with 2-opt local search to solve the
DPDVRP

This subsection introduces the basic concepts of Artificial Ant Colony hybridized with
a 2-Opt local search to solve the DPDVRP. We describe the processing steps of the
algorithm including details of the solution representation step, solution construction step,
pheromone trail update step and the local search step. Algorithm 6 display a pseudo code
of the ACS-2-Opt approach to solve the DPDVRP.

Algorithm 6 Pseudo code of an artificial ant colony based on 2-Opt
1: Begin
2: A set of ants
3: iter← 1;BEST SOL← φ;
4: Initialize pheromone values ∀(i, j) ∈ (1, ...,n)
5: Apply algorithm 7
6: Improve the initialization by applying a Dynamic Construction method
7: PQi j = 0 (on every customer for each colony)
8: —- While(iter<itermax)
9: —- for j = 1 to n

10: —- Apply the Local pheromone update according to the total cost of solution S
(Eq.4.8)

11: —- endfor
12: —- for a = 1 to amax do (for each ant)
13: —- choose the next customer i to be served according to the BEST POS rule (Eq.2)
14: —- BEST SOL← BEST SOL∪{i}
15: —- endfor
16: —- Local search: apply 2-Opt method
17: —- BEST SOL← 2−Opt(BEST SOL)
18: ——–if the current solution is better than the previous
19: ——– replace the current solution with the worst
20: ——–end if
21: ——– Global pheromone updates (Eq.4.9)
22: —- end
23: end
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5.2.1 Solutions representation

Solution representation of vehicle routing is one of the key elements for effective imple-
mentation of Ant Colony Optimization.

The majority of ACO algorithms for the VRP represent the solution as a sequence
of customers to be served, which determine the relative assignment of vehicles. In our
algorithm the solution representation is based on the vehicles assignment. The solution
is represented as a string of length equal to the number of customers.

In the string, the corresponding value to each position i, represent the vehicle to which
customer i was assigned.

To illustrate the encoding solution, we propose an example (figure 4.5) treating 10
customers and 3 vehicles. Then the customers and the vehicles allocation are represented
as follows:

Figure 4.5 – Solution representation

Vehicle 1: Customers 1, 5, 6, 9
Vehicle 2: Customers 2, 4, 8
Vehicle 3: Customers 3, 7, 10

5.2.2 Solution construction

The construction of heuristic function is very important to the search speed and the
solution quality. The constructive solution proposed here it characterized by two parts:
The first part of the construction is related to the static scheme of the problem, we refer
the reader to the paper of Euchi and Chabchoub (2009), and the second part is related
to the dynamic scheme of the VRP.

The two parts are ensured in a parallel way, after the execution of the first constructive
solution, we try to improve the solution and to optimize the vehicles tours dynamically
using the dynamic construction method.

In the first constructive solution, insertion heuristic is developed and used for obtain-
ing an initial solution. AAC-2opt in the initialization start with the insertion heuristic
and then apply the second dynamic constructive solution to improve it.
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We first compute an order of the customer’s basis on their demands; sort all customers
in increasing order of demands. Then at each step, the next customer with high demand
in the list is selected for insertion in a route.

When inserting a customer i into a route rk, the least cost of insertion, Cik is computed
in the following manner. A customer can be inserted into a non used vehicle, with at
least one customer in it. When assigning a customer to a vehicle on the route, the type
of demands required by the customer and the vehicle type servicing the customer must
be compatible.

In order to obtain an initial feasible solution, algorithm 7 is used:

Algorithm 7 Initialization algorithm
1: begin
2: sort all available vehicles in increasing order of capacity
3: for each available vehicle k := 1 to Kloop
4: for each customer i ∈V (i = 1, ...,n) loop
5: if (i ∈ rkand qi ≤ Qk)then
6: Insert a customer i into route rk using the insertion method
7: end if
8: end for
9: end for

10: end

The ACO, such as we know it, is a sequential construction algorithm which never
calls into question the decisions taken. A new way of building the solutions is proposed in
this section. It is about the concept of Dynamic Construction. For the routes carried out
using the first constructive method, we continue the solution construction dynamically.

According to this method, the ants dynamically build a route rk , in which they add a
new customer i while inserting it into any place of the already partial constructive route.
In this manner, it is possible to add conflicts to the temporary route, then to cancel
them by the insertion of other customers later in the solution construction. This way
of making takes as a starting point it happens that is impossible to place a customer
i without conflict after a certain time finds an advantageous place among the positions
already placed.

The Dynamic construction already refers to a construction where the route rk is built
using a dynamic chain of customers denoted by (DCC) that we can insert into all the
positions, by shifting the elements already places while preserving overall constraints of
the problem. For the Dynamic Construction, the logic of solution construction is reversed.
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With each step, randomly an ant must initially choose a route rk. Then, the best position
BEST POS into which a customer i of this route will be inserted is selected according to a
modified transition pseudo random rule according to the formula 4.7.

Formally, if during the tth iteration the kth ant is located in customer i, the next
customer j is chosen according to the probability distribution over the set of unvisited
customers (n−DCC) defined by:

Pk
i j(t) =


[PQi j]α[V ISi j]β

∑ant∈DCC [PQi j]α[V ISi j]β
if j∈ (n−DCC)

0 otherwise
(4.7)

Where (n-DCC) represent the number of all customers minus the set of chosen customer.
To conduct the reader it necessary to define some parameters; we denote whether going
from customer i to customer j led to good solutions in the past by the pheromone quantity
PQi j associated with the coefficient α and the visibility V ISi j in significant the benefit of
moving from customer i to customer j associated with the coefficient of visibility denoting
by β. In this case of the DVRP we set the V ISi j = 1

di j
.

The decision an ant makes is probabilistic in nature and influenced by the pheromone
quantity and the visibility factors. We indicate how good it is to choose customer i after
BEST POS. The set of valid choices for an ant is denoted by S. With probability p0

where0≤ p0 < 1 is a parameter of the algorithm, the ant chose the customer i ∈ S which
maximizes

[
PQi j

]α [
V ISi j

]β
.

5.2.3 Pheromone Trail update

During the phase of solution construction, the ant can in principle also carry out some
update of the values of the pheromone array, typically along the path that it is just
following. When each ant has constructed a solution, it is time to deposit pheromone.

An alternative pheromone update method is to create a pheromone update thread.
Additionally we can build two structures, Local Pheromone Update and Global Pheromone
Update to record proper ants’ solutions.

5.2.4 Local Pheromone Update

The first update is a local pheromone update which occurs after an ant completes its
solution. This update evaporates the pheromone values along the customers visited by
the ant in order to allow the succeeding ants to explore other customers. Once an arc
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(i, j) is chosen by an ant, its level of pheromone will be changed by applying the following
local trail updating according to his rule:

PQi j = (1−ρ)PQi j +ρPQi j(0) (4.8)

where ρ is the evaporation rate (with 0 ≤ ρ ≤ 1) and PQi j(0) represent the initial value
of the trails. The AAC differs mainly by its pheromone function which keeps track of
recently visited solution or their attributes. After locally updating the pheromone, each
ant undergoes local search.

5.2.5 Global Pheromone Update

The second update is the global pheromone update. The pheromone values of an objective
are updated by the iteration’s best route (after local search) with respect to that objective.
The best solution found is used for the global pheromone update. A constructive solution
is stored in the pheromone trail matrix to generate a new solution by the next ants. This
global pheromone update rule is defined as follows:

PQi j = (1−ρ)PQi j +
ρ

cost(π)
∀(i, j) ∈ S (4.9)

Where cost(π) is the total travelling distance of solution S.

5.2.6 Local Search

Local search has been testified to be of great improvement in ACO metaheuristic Dorigo
and Stutzle (2004). Once ants complete their solution construction phase, local search
algorithms can be used to refine their solutions before using them for the pheromone
update. Various experimental researches have shown that the combination of solution
construction by ants and local search procedures is a promising approach. There exist a
large number of possible choices when using local search in ACO algorithms. We refer
the reader to the papers of Stützle and Hoos (2000) and Dorigo et al. (1996) for a recent
review of these techniques.

Our implementation of local search uses the intra-route improvements. For the intra-
improvement, we use a 2-opt method for each vehicle route of the DPDVRP.

In this study, to allow the search space of the ACO metaheuristic, the 2-opt local
search approach (e.g. Euchi and Chabchoub (2009a)) is incorporated in ACO before the
update of a global pheromone of each iteration.
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4.5 Application

The 2-opt local search Lin (1965) is used in the following way. Let S be a solution
for the DPDVRP. Then its 2-opt neighbourhoodN(S) is defined as a set of all possible
solutions resulting from S by swapping two distinct customers. This operator involves
the substitution of two arcs, (i, j) and (i + 1, j + 1) with two others arcs, (i, i + 1) and
( j, j+1), and the reversal of path p(i+1, j). If such a better solution is found, it replaces
the current solution and the search continues. When implementing 2-Opt to each vehicle
route, the termination condition used the best-accept strategy, i.e. all the neighbors are
examined until no improvements can be obtained.

This method links good solutions and the routes that result from the substitution
comprise the new solutions. Linking the solutions may be performed either in decision
or objective space. The basic processing steps in AAC-2Opt to solve the DDVRP are
summarized as follows:

Step 0: Initialization
—- Set iter = 0;

—- Set initial value PQi j ∀(i,j)∈ A

—- Place m ants at the depot
—- Set ρ

cost(π) = 0 ∀(i,j)∈S
Step 1: Route construction
—- For i = 0 to n do(n is the number of customers)

———- For every k = 1 to m do
——– Step1.1 Build solution based on algorithm 7
——– Step1.2 Apply the Dynamic Solution Construction

Step 2: Memorize the BESTSOL found
Step 3: Local Pheromone Update
——– Pheromone update with the formula in 4.8
Step 4: Local Search
—- Apply 2-Opt method for the improvement of BEST SOL

———— BEST SOL← 2−Opt(BEST SOL)
Step 5: Global Pheromone Update
—- ∀(i,j)∈ BEST SOL do

——– Pheromone update with the formula in 4.9
Step 6: Stop criterion
—- If the stop criterion is satisfied then stop

—- Otherwise go to Step1
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4.5 Application

5.3 Experimental Results and Performance Comparison

We present in this part an experimentation that aims to compare the ACS-2Opt with
the proposed algorithms presented in the literature. We have performed a number of
experiments and comparisons on several public data sets derived from Montemanni et al.
(2005) and Kilby et al. (1998).

5.3.1 Problem instances

Computational experiments are reported into two small groups delivery and pickup in-
stances each using three sets of instances from the literature based on the paper of Kilby
et al. (1998) and Montemanni et al. (2005).

The first group (delivery instances) is composed by the first set contains 13 in-
stances with sizes varying from 75-150 customers derived from Taillard (1994). The
second set consists of 7 instances with sizes varying from 50-199 customers derived from
Christophides and Beasley (1984). The third set consists of 2 instances with sizes varying
from 71-134 customers derived from Fisher et al. (1995).

The second group (pickup instances) is composed by the first set contains 14 in-
stances with sizes varying from 75-385 customers derived from Taillard (1994). The
second set consists of 7 instances with sizes varying from 50-199 customers derived from
Christophides and Beasley (1984). The third set consists of 2 instances with sizes varying
from 71-134 customers derived from Fisher et al. (1995).

5.3.2 The experimental environment

We note that we have tested our proposed algorithm with the dynamic delivery routing
instances and with the dynamic pickup routing instances which not considered in the
other paper tackled the dynamic routing. It is the first paper dealing the instances with
negative demands.

In Table 4.1, we give the parameters of the AAC algorithm to solve the DVRP. In our
experimental setup and in order to standardize the benchmarks instances, Montemanni et
al. (2005) explored the cutoff time tco and the advanced commitment time tac which have
been chosen according to the suggestions provided in Kilby et al. (1998): tco = 750 and
tac = 0 and the total length of working day T equal to 1500. In Montemanni et al. (2005)
we have proved that the best number of time slices nts is 25. It is the best substitution
between the objective value and computational cost.
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4.5 Application

Tableau 4.1 – Parameter calibration of our experimental environment
Parameters type Description Value
nts Number of time slices 25.OO
tco Cutoff time 750.00
tac Advanced commitment time 00.00
T Total length of working day Max time available section
m Number of ants 8.00
α Coefficient of pheromone quantity 0.8
β Coefficient of visibility 0.2
ngen Number of generation 10000;15000
phe0 Initialization of pheromone 10.00
r evaporation rate 0.625
nr Number of runs 10.00

The values of these parameters are defined as follows: we fixed the number of ants
m = 8; the coefficient of pheromone quantity α = 0,8and the coefficient of visibility β

equal to 0,2. For the initialization of the pheromone quantity we choose phe0 = 10; the
evaporation rate r equal to 0,625; for the preliminary experiments, we choose to run the
algorithm into two values of generation ngen equal to 10000 and 15000. We finish by
admitting the solution after 10 runs of algorithm.

5.3.3 Results discussion

To evaluate the effectiveness of our proposed approach, the AAC meta-heuristic is com-
pared with two algorithms presented in the paper of Montemanni et al. (2005), the
GRASP-DVRP and the ACS-DVRP.

The Table below 4.2 gives the computational results for our proposed approach for
the dynamic delivery routing instances. In this table we present the results of AAC
algorithm with and without 2-Opt local search within 10000 and 15000 generations. For
each instance we provide the best, average and the worst solution. From this table, we
conclude that the results obtained from the AAC algorithm with 2-Opt local search are
the best compared with results obtained without 2-Opt local search. Also the number of
generation considered is an important factor to achieve the best solution.
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4.5 Application

The Table 4.3, present the computational results for the AAC for the dynamic pickup
routing instances. We notice that this paper represent the first dealing with the dynamic
pickup routing instances. This table summarizes the solution quality of the AAC algo-
rithm. We give the results of AAC within 10000 and 15000 generations with and without
2-Opt local search. For each instance we describe the best, average and the worst solution.
We demonstrate the role of the 2-Opt to obtain the best results.
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4.5 Application

In order to verify the effectiveness and efficiency of the proposed algorithm, we com-
pare the results generated with AAC-2-Opt, with those generated in the literature derived
from the paper of Montemanni et al. (2005). The Table 4.4 give the performance com-
parison of our proposed approach for the dynamic delivery routing instances

We compared the AAC-2-Opt with the GRASP and ACS algorithms. We can see
from this table that our algorithm provides the best results compared with the GRASP
and ACS algorithms. For more than 71.42% instances, a new best solution was found
with solution produced by the results of Montemanni et al. (2005). Over 21 instances 15
new best solution is found by the AAC algorithm.

Table 4.5 shows the comparison processing time results for the dynamic delivery rout-
ing instances and for the dynamic pickups routing instances with and without 2-Opt local
search and within 10000 and 15000 generations. This table describes the pressure of the
number of generations to the processing time results. When we increase the number of
generation, the CPU time increased automatically, also the integration of the 2-Opt local
search has an effect on the final value of the processing time.

With respect of the fixed parameters, the computational results compared very favor-
ably with existing literature and justify the effectiveness of the AAC algorithm to solve
the dynamic routing instances (e.g. see Appendix A)(2).

117



4.5 Application
T

ab
le

au
4.

4
–

Pe
rfo

rm
an

ce
co

m
pa

ris
on

of
ou

r
pr

op
os

ed
ap

pr
oa

ch
fo

r
th

e
dy

na
m

ic
de

liv
er

y
ro

ut
in

g
in

st
an

ce
s

In
st

an
ce

s
G

R
A

SP
-D

V
R

P
A

C
S-

D
V

R
P

A
A

C
-D

V
R

P
(w

ith
2-

O
pt

)

B
es

t
Av

er
ag

e
w

or
st

B
es

t
Av

er
ag

e
w

or
st

B
es

t
Av

er
ag

e
w

or
st

C
10

0
10

80
.3

3
11

69
.6

7
11

19
.0

6
97

3.
26

11
00

.6
1

10
66

.1
6

13
11

,7
2

13
80

,2
5

14
17

,8
7

C
10

0b
97

8.
39

11
73

.0
1

10
22

.1
2

94
4.

23
11

23
.5

2
10

23
.6

0
80

0.
93

84
1.

44
89

0.
34

C
12

0
15

46
.5

0
17

54
.0

0
16

43
.1

5
14

16
.4

5
16

22
.1

2
15

25
.1

5
10

49
,4

7
11

53
,2

9
13

90
.5

8
C

15
0

14
68

.3
6

15
41

.5
4

15
01

.3
5

13
45

.7
3

15
22

.4
5

14
55

.5
0

21
88

,3
3

23
86

.9
3

23
91

,4
9

C
19

9
17

74
.3

3
19

56
.7

6
18

98
.2

0
17

71
.0

4
19

98
.8

7
18

44
.8

2
16

50
,8

5
17

58
.5

1
17

74
,1

1
C

50
69

6.
92

75
7.

97
71

9.
56

63
1.

30
75

6.
17

68
1.

86
55

1,
95

57
0.

89
59

3.
42

C
75

10
66

.5
9

11
42

.3
2

10
79

.1
6

10
09

.3
8

10
86

.6
5

10
42

.3
9

11
56

,8
3

12
13

.4
5

12
74

,8
7

f1
34

15
43

3.
84

17
32

5.
73

16
45

8.
47

15
13

5.
51

17
30

5.
69

16
08

3.
56

13
01

5,
56

15
52

8.
81

15
98

6.
84

f1
71

35
9.

16
42

9.
64

37
6.

66
31

1.
18

42
0.

14
34

8.
69

30
1.

79
30

9.
94

34
6.

77
ta

i1
00

a
24

27
.0

7
25

83
.0

2
25

10
.2

9
23

75
.9

2
25

75
.7

0
24

28
.3

8
21

94
,9

3
22

32
.7

1
22

95
.6

1
ta

i1
00

b
23

02
.9

5
26

36
.0

5
25

12
.2

7
22

83
.9

7
24

55
.5

5
23

47
.9

0
21

26
,0

9
21

82
,6

1
22

15
.3

9
ta

i1
00

c
15

99
.1

9
18

00
.8

5
17

04
.4

0
15

62
.3

0
18

04
.2

0
16

55
.9

1
15

44
,5

0
15

62
.6

6
16

20
,7

8
ta

i1
00

d
19

73
.0

3
21

65
.3

9
20

87
.5

5
20

08
.1

3
21

41
.6

7
20

60
.7

2
19

09
,5

5
19

12
.4

3
19

21
,3

3
ta

i1
50

a
37

87
.5

3
41

65
.4

2
38

99
.1

6
36

44
.7

8
42

14
.0

0
38

40
.1

8
29

99
,2

7
31

85
,7

27
35

01
.8

3
ta

i1
50

b
33

13
.0

3
36

55
.6

3
34

85
.7

9
31

66
.8

8
34

51
.6

9
33

27
.4

7
28

46
,2

8
28

80
,5

7
29

33
.4

0
ta

i1
50

c
31

10
.1

0
36

35
.1

7
32

19
.2

7
28

11
.4

8
32

26
.7

3
30

16
.1

4
27

18
,3

6
27

43
.5

5
27

79
,6

7
ta

i1
50

d
31

59
.2

1
35

41
.2

7
32

98
.7

6
30

58
.8

7
33

82
.7

3
32

03
.7

5
32

30
,6

7
33

45
.1

6
34

56
,3

7
ta

i7
5a

19
11

.4
8

21
16

.9
5

20
05

.4
4

18
43

.0
8

20
43

.8
2

19
45

.2
0

17
55

,3
3

17
82

.9
1

18
56

.6
6

ta
i7

5b
15

82
.2

4
19

34
.3

5
17

58
.8

8
15

35
.4

3
19

23
.6

4
17

04
.0

6
13

06
,4

7
14

52
,2

6
15

27
.7

7
ta

i7
5c

15
96

.1
7

18
59

.7
1

16
74

.3
7

15
74

.9
8

18
42

.4
2

16
53

.5
8

14
24

,7
6

14
41

.9
1

15
28

,8
5

ta
i7

5d
15

45
.2

1
16

41
.9

1
15

88
.7

3
14

72
.3

5
16

47
.1

5
15

29
.0

0
13

34
,6

7
14

22
.2

7
13

56
,5

5
Av

er
ag

e
25

10
,0

7
28

08
,8

7
26

45
,8

4
24

22
,6

7
27

45
,0

2
25

61
,1

4
22

60
,4

2
24

42
,2

9
25

26
,6

9
To

ta
l

52
73

1.
63

58
98

6.
36

55
56

2.
64

50
87

6,
25

57
64

5,
52

53
78

4,
02

40
68

7,
59

51
28

8,
27

53
06

0,
5

118



4.5 Application

T
ab

le
au

4.
5

–
C

om
pa

ris
on

pr
oc

es
sin

g
tim

e
re

su
lts

fo
r

th
e

dy
na

m
ic

ro
ut

in
g

in
st

an
ce

s
D

yn
am

ic
de

liv
er

y
ro

ut
in

g
in

st
an

ce
s

D
yn

am
ic

pi
ck

up
ro

ut
in

g
in

st
an

ce
s

A
A

C
-2

-o
pt

(1
00

00
ite

r)
A

A
C

-2
-o

pt
(1

50
00

ite
r)

A
A

C
-2

-o
pt

(1
00

00
ite

r)
A

A
C

-2
-o

pt
(1

50
00

ite
r)

In
st

an
ce

s
C

PU
(s

ec
on

ds
)

C
PU

(s
ec

on
ds

)
C

PU
(s

ec
on

ds
)

C
PU

(s
ec

on
ds

)
C

10
0(

D
)

69
7,

48
13

56
,5

0
12

26
,4

5
18

75
,7

5
C

10
0b

(D
)

65
8,

16
20

86
,2

5
15

40
,3

9
17

32
,4

4
C

12
0(

D
)

89
4,

06
24

71
,2

5
25

30
,3

8
22

74
,3

4
C

15
0(

D
)

14
26

,2
9

38
61

,1
5

57
77

,6
14

36
83

,1
2

C
19

9(
D

)
24

47
,5

9
30

01
,3

5
47

31
,3

5
63

35
,0

5
C

50
(D

)
36

0,
98

52
5,

68
26

4.
57

49
1,

66
C

75
(D

)
40

2,
06

11
42

,4
1

72
2,

07
13

69
,6

9
f1

34
(D

)
20

40
,5

7
34

17
,7

0
18

79
,0

7
28

16
,5

2
f7

1(
D

)
71

8,
53

11
43

,7
2

74
3,

28
10

84
,1

5
ta

i1
00

a(
D

)
12

90
,1

8
19

17
,0

5
11

70
,3

8
14

84
.7

4
ta

i1
00

b(
D

)
11

93
,0

1
18

87
,1

3
11

70
,2

8
17

77
,4

9
ta

i1
00

c(
D

)
24

51
,2

6
19

29
,0

9
18

69
.9

8
18

85
,7

4
ta

i1
00

d(
D

)
18

97
,8

0
19

91
,8

4
10

24
.3

8
17

94
,6

0
ta

i1
50

a(
D

)
36

18
,7

8
33

23
,2

7
18

67
.8

7
38

58
,0

7
ta

i1
50

b(
D

)
39

35
,0

6
36

87
,8

1
23

07
,9

6
43

10
,4

2
ta

i1
50

c(
D

)
34

09
,6

7
38

67
,3

4
22

30
,0

3
37

13
,0

4
ta

i1
50

d(
D

)
16

12
9,

24
34

96
,6

4
22

30
,1

8
35

61
,1

6
ta

i7
5a

(D
)

78
0,

44
94

2.
42

78
6,

75
10

87
,4

7
ta

i7
5b

(D
)

74
9,

38
90

6.
60

72
4,

69
10

89
,8

7
ta

i7
5c

(D
)

75
0,

82
90

6.
20

70
5,

53
10

83
,1

6
ta

i7
5d

(D
)

80
3,

95
10

91
,8

9
76

2,
25

11
60

,7
7

To
ta

l
46

65
5,

31
42

19
8,

07
31

23
8,

65
46

98
4,

51

119



4.5 Application

5.4 Conclusion

In this chapter, we reconsidered the dynamic vehicle routing problem (DVRP). It con-
tributed to understanding the dynamic delivery and pickup problem. Because their com-
plexity, a few papers deal with the DVRP. Depending on the complexity of the problem,
the use of approximate methods is very necessary. To solve the DVRP, we have proposed
an Artificial Ant Colony based on 2-Opt local search (AAC-2-Opt). To the best of our
knowledge, this is the first application dealing with dynamic pickup routing instances.

The decision taken from the experimental results is the planning of the routes and the
reschedule of customers in a sense that customer requests are handled dynamically, and
where the problem is solved in real-time with the simulation of new customers. As we
seen in the results discussion section, our proposed approach is compared to the methods
produced by Montemanni et al. (2005) on each benchmarks instance. The developed
meta-heuristic integrates a 2-Opt local search, and an artificial ant colony for obtaining
a good results to solve the DVRP.

The computational experiments provided prove the utility and the importance of the
mixing of the 2-Opt local search with the best usage of AAC algorithm. The solution
quality from the algorithm specify that the proposed approach is an essential tool, either
in the case of dynamic delivery routing instances also in the case of dynamic pickup
routing instances. Therefore the results show that the AAC-2-Opt algorithm produced a
best results compared with the GRASP-DVRP and the ACS-DVRP of Montemanni et al.
(2005). The tentative analysis reveals high-quality results compared to the best-known
results published in literature.
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Chapter 5

Conclusion

In this chapter we summarize the major developments represented in this thesis. We
elaborate the main conclusion reported and future work to be realized. In Section 1 we
give a summary of the research work developed which we discuss our contributions in
this thesis where we suggests the possible future work directions. Section 2 outlines the
resulting papers that have been published for journals and conference proceedings.

1 Research work summary

According to the Council of Supply Chain Management Professionals (CSCMP), logistics
management can be defined as, "that part of supply chain management that plans, imple-
ments, and controls the efficient, effective forward and reverse flow and storage of goods,
services and related information between the point of origin and the point of consumption
in order to meet customers’ requirements."

Transportation involves the physical movement or flow of goods. The transportation
system is the physical link that connects customers, raw material suppliers, plants, ware-
houses and channel members. These are the fixed points in a logistics supply chain. This
problem is described in literature as Vehicle Routing Problems.

In this thesis, an attempt was made to deal comprehensively with the complicated
phenomenon of vehicle routing and the satisfactory of customers and optimization of
tours. This work deals with meta-heuristics approaches to solve some variants of the
heterogeneous fixed fleet vehicle routing problems.

In particular, we aim to provide many algorithms to solve different types of problems.
Our work focuses on many subjects within the heterogeneous vehicle routing problems
with limited fleet. In the last decades the ground of meta-heuristics has developed signif-
icantly. To solve hard combinatorial problems of practical sizes, several researchers have
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5.1 Research work summary

unproven the capability of these methods within rational processing time.
In this collection we highlight the recent developments made in the area of:

• Tabu Search

• Variable Neighborhood Search

• Evolutionary-inspired algorithms like Genetic Algorithms

• Iterated Density Estimation

• Ant Colony Optimization.

To improve the solutions quality of these variants of the heterogeneous vehicle routing
problems with limited fleet, various combinations of heuristics and meta-heuristics have
been suggested which allows a better planning of tours.

In chapter 1 (General Introduction) we have introduced the methodology and the
need of the new methods called meta-heuristics to improve the solution quality of the
heterogeneous vehicle routing problems with limited fleet.

A comprehensive survey was described in the Chapter 2 (Literature review). This
chapter begins with a summary on literature of vehicle routing problems in general and
a heterogeneous fixed fleet vehicle routing problem with common carrier in particular.
Then, a description of the considered problems with mathematical formulations will be
presented. After there, a detailed of different variants of heterogeneous fixed fleet vehicle
routing problems are discussed.

Chapter 3 (M-Heterogeneous Vehicle Routing Problem) treated the cases of M-
Vehicle Routing Problems. We studied two variants taking into account the heterogeneity
and the limited fleet. The two considered variants of problems deal with the following
scenarios: the vehicle routing with heterogeneous limited fleet and the vehicle routing
with heterogeneous limited fleet and common carrier.

The vehicle routing problem with heterogeneous limited fleet is a variant of vehicle
routing that involves a limited number of vehicles which can be heterogeneous. In this
problem, the aim is to provide service to the customer group with minimum cost. The
question that arises is: How to exploit the limited and heterogeneous vehicles for better
planning of tours while optimizing the transportation costs?

To solve this problem we developed a new hybridization considering the implementa-
tion of tabu search algorithm embedded in adaptive memory procedure. This hybridiza-
tion is specific and appropriate to our situation. The metaheuristic is developed along
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5.1 Research work summary

four stages including the development of several constructive heuristics in the purpose to
improve the solution.

To evaluate the effectiveness of our approach, we provided experimentation over the
benchmark test problem of Golden et al. (1998) and Li et al. (2007) for the same problems.
The results produced by our algorithms have been compared with those produced by the
algorithms of Taillard (1999), Tarantilis et al. (2004) and Li et al. (2007).

The comparative study with the methods of Taillard (1999), Tarantilis et al. (2004)
and Li et al. (2007), observe that in seven out of eight test problems, our approach finds
a better solution. It is interesting to observe that over the five large instances of Li et
al. (2007), four new best solutions were produced with our algorithm. In the large test
problems, the TSAM yields consistently better results than the HRTR metaheuristic of
Li et al. (2007).

In second scenario we tackle the vehicle routing problem with private fleet and common
carrier, the problem consist of the choice of made of transport. There has been growing
interest in truck service selection and the deregulation of truck common carrier. This
has had particular impact on organization that use privately owned vehicles, since they
are responsible for the utilization of the fleet and must make choices that determine the
balance between common carrier and private carrier usage. The problematic asked is:
How to supply customers to minimize routing costs using the private fleet (fixed and
variable costs) or an external carrier (visited cost)?

To address this problem, two approaches have been proposed. The first application
is the adaptation of the tabu search algorithm with ejection chains neighbourhood (e.g.
Euchi and Chabchoub (2009, 2010)). The second method is the application of Iterated
Density Estimation Evolutionary Algorithm with 2-Opt local Search (e.g. Euchi and
Chabchoub (2010,2009)).

To highlight the relevance of the results provided by our methods many experiments
results were conducted. We have advanced a comparative study with the methods pro-
vided in literature and presented in the papers of Bolduc et al. (2007, 2008). Our
approach, through the two proposed methods, improves the results of the literature for
all considered instances of Christofides and Eilon (1969), Golden et al. (1998). Our meta-
heuristics have been improving all results provided by the 34 heterogeneous instances
proving their effectiveness.

The algorithm requires minimal computation time and it is very performing according
to similar experiment presented in literature. The results of this research show that the
proposed metaheuristic is a very effective tool for finding good solutions for the VRPPC.
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5.1 Research work summary

In Chapter 4 (The Dynamic Vehicle Routing Problem) we address the dynamic
vehicle routing problem. Dynamic routing goes beyond static routing by admitting the
possibility of building/changing the vehicles routing solution online according to the cur-
rent traffic events. In dynamic optimization data such as customer demands are unknown
where new customers are appeared after the execution of the tour.

The Integrating of the dynamic concepts on the combinatorial problems requires the
development of effective tools for their resolution. Our approach is based on artificial
ant colony with a 2-Opt local search (AAC) to solve this variant. The use of an initial
algorithm to construct the initial solution has an impact in the improvement of the final
solution. Also the involvement of the local search after the two structures of pheromones
update has generated a good improvement in the compute of the vehicle routing costs.

To evaluate the effectiveness of our proposed approach, the AAC meta-heuristic is
compared with two algorithms presented in the paper of Montemanni et al. (2005), the
GRASP-DVRP and the ACS-DVRP. Computational experiments are reported into two
small group’s delivery and pickup instances each using three sets of instances from the
literature based on the paper of Kilby et al. (1998) and Montemanni et al. (2005).
The first set contains 13 instances derived from Taillard (1994). The second set contains
7 instances derived from Christophides and Beasley (1984). The third set consists of
2 instances derived from Fisher (1995). Over 21 instances a 15 new best solution are
found by the AAC algorithm. Our algorithm provides the best results compared with the
GRASP and ACS algorithms. For more than 71.42% instances, a new best solution was
found with solution produced by the results of Montemanni et al. (2005). Our approach
has solved the dynamic pick up vehicle routing problem that has not been studied in
literature. To the best of our knowledge, this is the first application dealing with dynamic
pickup routing instances.

We conclude that the attempts and approaches developed for different types of vehicle
routing problems with heterogeneous limited fleet and the results are promising with
respect to different results in literature. The vehicle routing problem with heterogeneous
limited fleet is a very important area of research in combinatorial optimization. Due to its
complexity, it was generally resolved by metaheuristics. In this thesis, the proposed and
developed methodology proves to be effective in solving some variants of heterogeneous
limited fleet vehicle routing problem. Our future research will focus on the study of all
problems mentioned in literature review chapter. We try to add dynamic constraints to
various problems.

Another perspective is attractive to us is the important choice of the mode of transport
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and the use of the external carrier. However, in our future work we mainly concentrated in
the vehicle routing problem with dynamic external carrier taking into account the limited
size of the fleet.

2 Resulting papers
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Conclusion générale

Dans cette partie du rapport nous résumons nos contributions apportées pour la réso-
lution des problèmes étudiés en présentant d’abord l’ensemble des résultats, théoriques
et numériques, auxquels nous avons abouti, et en proposant ensuite des objectifs pour
la poursuite du travail entamé, et ce, sous forme d’orientations et de perspectives de
recherche. Cette conclusion se structure comme suit :

D’abord nous résumons l’ensemble de nos travaux, puis nous mettons l’accent sur les
résultats obtenus, ensuite nous avançons quelques idées aptes à constituer une extrapola-
tion de celles développées et enfin une liste de nos publications et communications clôture
ce rapport.

Selon la vision classique la logistique représentait, l’activité allant de la mise à dis-
position des produits ou le négociant jusqu’à la livraison au client. Elle s’est désormais
fondue dans le concept de " supply chain management " dont l’objectif est d’optimiser la
gestion des flux physiques et des flux d’information le long de la chaîne logistique depuis
le fournisseur du fournisseur jusqu’au client du client.

Notre idée clé consistait en la proposition des méthodes métaheuristiques efficaces
pour la résolution des différents problèmes de la Logistique et du Transport. Pour cela,
nous avons développé des algorithmes qui résolvent différents types de problèmes de
tournées de véhicules tenant compte de la limitation de la flotte et de son hétérogénéité.
Si nous avons choisi de faire appel à des métaheuristiques c’est parce qu’ils ont montré
leurs efficacité face à des problèmes de taille modérée. Nous mettons l’accent en premier
lieu sur les développements récents réalisés concernant :
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• la recherche tabou

• la recherche à voisinage variable

• les algorithmes évolutionnaires (comme les algorithmes génétiques)

• les algorithmes à estimation de distribution

• l’optimisation par colonies de fourmis

Afin d’améliorer la qualité des solutions de ces variantes du problème de tournées de
véhicules, diverses combinaisons des heuristiques et méta-heuristiques ont été avancées ce
qui permet une meilleure planification des tournées.

Dans le chapitre 1 (Introduction) nous avons introduit la méthodologie permettant
l’étude des différentes variantes du problème de tournées de véhicules.

Dans le chapitre 2 (Literature review) nous avons fait un état de l’art de l’essentiel
des travaux réalisés en rapport avec notre problématique d’étude. Ce chapitre débute par
une synthèse de revue de littérature consacrée aux problèmes de tournées de véhicules
en général et les problèmes de tournées de véhicules avec flotte limitée hétérogène et
transporteur externe en particulier. Par la suite, nous enchainons avec la description et
la formulation mathématique du problème de tournées de véhicules. Différentes variantes
de ce problème sont abordées.

Dans le chapitre 3 (M-Heterogeneous Vehicle Routing Problems) nous traitons
le cas des m-problèmes de tournées de véhicules. Nous avons étudié deux variantes en
tenant compte de l’hétérogénéité et de la limitation de la flotte. Les deux variantes
en question traitent les cas de figure suivants : la tournée de véhicules avec flotte limitée
hétérogène et la tournée de véhicules avec flotte limitée hétérogène et transporteur externe.

Le problème de tournées avec flotte limitée hétérogène est une variante du problème
de tournées de véhicules (PTV) qui vise à fournir des services à un ensemble de clients
avec un coût minimum en utilisant un nombre limité de véhicules. La question qui se
pose est : Comment exploiter l’ensemble des véhicules limités et hétérogènes pour avoir
une meilleure planification des tournées tout en optimisant les coûts de transport ?

Pour résoudre ce type de problème nous avons développé une nouvelle hybridation
de l’algorithme tabou avec une mémoire adaptative. Cette hybridation est spécifique et
adéquate à notre cas de figure. La métaheuristique est développée le long de quatre étapes
dont des heuristiques constructives ont été développées pour améliorer la solution.
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Pour évaluer l’efficacité de notre approche, recherche tabou avec mémoire adaptative,
nous avons pris les instances fournies par Golden et al. (1998) et Li et al. (2007) pour
le problème de tournées de véhicules avec flotte limitée hétérogène. L’étude comparative
avec les méthodes de Taillard (1999), Tarantilis et al. (2004) et Li et al. (2007) a donné
que parmi 8 instances, notre algorithme a fournit 7 meilleures solutions. Il est intéressant
d’observer que pour les cinq grandes instances de Li et al. (2007), quatre nouvelles
meilleures solutions ont été produites avec notre algorithme.

Pour le problème de tournées de véhicules avec flotte limitée hétérogène et trans-
porteur externe, le problème consiste en un réseau contenant : un dépôt, plusieurs clients,
une flotte privée limitée hétérogènes et un transporteur externe. La question que nous
nous sommes posée est : Comment desservir les clients afin de minimiser les coûts de
transport en utilisant la flotte privée (coûts fixes et variables) ou un transporteur externe
(coût de visite)?

Pour répondre à cette problématique, deux approches ont été proposées. La pre-
mière consiste en une technique de recherche heuristique basée sur des voisinages de types
chaînes d’éjection. La seconde est une méthode évolutionnaire avec une recherche locale
2-opt.

Pour mettre en évidence la pertinence des résultats fournis par nos méthodes, nous
avons avancé une étude comparative avec les méthodes fournies par la littérature et qui
sont présentées dans les papiers de Bolduc et al. (2007, 2008). Notre approche, par le
biais des deux méthodes proposées, améliore les résultats de la littérature pour toutes
les instances considérées de Christofides and Eilon (1969), Golden et al. (1998). Nos
métaheuristiques ont pu améliorer toutes les résultats fournis par les 34 instances de
types hétérogène prouvant ainsi son efficacité.

Dans le chapitre 4 (The Dynamic Vehicle Routing Problem) nous traitons le
problème de tournées de véhicules dynamique. Dans l’optimisation dynamique, certaines
données, comme les demandes des clients sont inconnues. Un parmi la spécificité du
problème de tournées de véhicules dynamique est l’apparition de nouveaux clients après
le commencement des tournées. Les tournées dynamiques se diffèrent par rapport aux
tournées statiques c’est qu’on admet la possibilité de la construction et de changement de
la solution de tournées de véhicules après que les véhicules débutent leurs tournées.

L’intégration des concepts aléatoires ou dynamiques aux problèmes combinatoires
nécessite le développement de méthodes efficaces pour leur résolution. Notre approche
est basée sur une méthode de colonie de fourmis avec une recherche locale de type 2-
opt. Au niveau de l’application de notre méthode, l’utilisation d’un algorithme initial
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pour la construction de la solution a un impact au niveau de l’amélioration de la solution
finale. L’implication de la recherche locale après les deux structures de mise à jour de
la phéromone a engendré une bonne amélioration au niveau de traitement du calcul des
coûts de tournées de véhicules.

Pour mettre en évidence notre méthode et plus spécifiquement avec la problématique
abordée nous avons utilisées les instances de Taillard (1994), Christophides and Beasley
(1984) et Fisher (1995). Notre méthode a été comparé avec les méthodes de résolution
de Montemanni et al. (2005) sur la même base de benchmarks. Suite a cette étude
comparative la méthode de colonie de fourmis a donné de bons résultats. Parmi 21
instances, 15 nouvelles meilleures solutions sont obtenus par l’algorithme de colonie de
fourmis. Bien que les instances de livraison utilisées, notre approche a pu résoudre le
problème de tournées de véhicules avec collecte dynamique (Dynamic pick up) qui n’a
pas été étudié par la littérature. Il nous semble que notre essai pour la résolution du
problème tenant compte de la collecte dynamique est la première.

Les expérimentations menées au niveau de cette variante de tournées de véhicules
se révèlent l’utilité et l’importance de l’hybridation de la recherche locale 2-opt avec
l’algorithme de fourmis.

On conclut que les tentatives et les approches développées aux différents types de
problèmes de tournées de véhicules avec flotte limitée hétérogène ainsi que les résultats
sont prometteurs par rapport aux différents résultats fournis dans la littérature.

Le problème de tournées de véhicules avec flotte limitée hétérogènes correspond à un
domaine de recherche très important dans l’optimisation combinatoire. Vu sa complexité,
il a été résolu généralement par des métaheuristiques.

Dans cette thèse, notre méthodologie proposées et développées prouve son efficacité
pour résoudre certaines variantes de problèmes de tournées de véhicules avec flotte lim-
itée hétérogène. Nos recherches futures se concentrent sur l’étude de tous les problèmes
mentionnés dans le chapitre revue de littérature. Nous essayons d’ajouter des contraintes
dynamiques aux différents problèmes.

Une autre perspective nous semble intéressante c’est le choix du mode de transport
et de l’utilisation du transporteur externe. Cependant, dans nos futurs travaux nous
avons essentiellement concentré dans le problème de tournées de véhicules dynamique
avec transporteur externe avec la prise en compte de la taille limitée de la flotte.
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Annexe 1

1 Appendix A. Best solutions found

Here in the appendix we present the following routes constructed with the available ve-
hicles to achieve the new best results realized with the AAC with 2-Opt local search.
The format of these results are described in the following details in appendix A 2 :
〈instance〉 : 〈bestcost〉 : 〈routenumber〉 : 〈depot〉 : 〈circuit〉 : 〈depot〉 .

1.1 The best routes constructed with available vehicles
Benchmark C100: best cost =1311, 72
Route 1: 0-1-9-3-4-2-6-5-8-7-11-10-12-13-15-0
Route2 : 0-16-14-19-18-17-20-21-22-24-23-27-28-26-25-0
Route3 : 0-31-30-29-35-34-33-32-38-37-40-39-36-41-42-43-0
Route4 : 0-48-47-46-45-44-49-50-52-51-54-55-56-57-0
Route5 : 0-53-59-58-61-60-62-63-64-65-67-68-0
Route6 : 0-66-75-74-72-73-69-70-71-76-77-78-79-82-83-84-0
Route7 : 0-80-81-86-85-87-89-88-90-91-93-92-96-0
Route8 : 0-94-95-97-99-98-100-0

Benchmark C100b: best cost =800.9371
Route 1: 0-3-2-1-4-6-7-5-8-9-12-14-13-0
Route 2: 0-10-11-15-16-19-18-17-22-23-26-0
Route 3: 0-21-20-24-25-27-28-30-29-31-35-33-0
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1 Appendix A. Best solutions found

Route 4: 0-32-34-36-39-38-37-40-41-42-44-45-0
Route 5: 0-43-46-48-50-51-52-49-47-54-53-56-0
Route 6: 0-58-59-57-55-60-61-62-63-65-0
Route 7: 0-66-64-67-69-68-70-71-73-72-74-75-77-0
Route 8: 0-79-78-76-81-80-82-83-84-85-88-0
Route 9: 0-87-86-89-91-92-93-94-95-96-97-0
Route 10: 0-98-99-100-0.

Benchmark C120: best cost =1049, 47
Route 1: 0-2-4-3-5-1-10-7-6-9-8-12-13-14-11-16-0
Route 2: 0-15-18-17-19-20-21-23-22-24-25-27-28-26-29-32-31-30-33-34-36-0
Route 3: 0-37-35-43-38-39-42-41-40-46-44-47-45-48-51-50-49-0
Route 4: 0-52-54-53-55-58-56-57-59-61-62-64-63-60-66-65-0
Route 5: 0-67-69-70-71-72-68-81-73-76-77-78-74-75-80-79-0
Route 6: 0-87-86-85-84-83-82-88-89-90-91-94-93-95-92-98-100-97-0
Route 7: 0-96-99-101-102-105-106-107-104-103-110-109-108-111-112-
113-114-115-116-118-117-0
Route 8: 0-119-120-0

Benchmark C150: best cost =2188, 33
Route1:0-5-2-4-3-6-8-7-9-11-10-12-13-15-14-0
Route2:0-18-17-16-19-20-26-21-22-23-25-24-29-28-27-0
Route3:0-30-34-33-31-32-35-39-37-38-36-41-40-0
Route4:0-42-43-44-45-46-47-48-49-52-53-50-51-56-55-0
Route5:0-58-57-59-60-54-61-62-63-64-65-66-70-69-0
Route6:0-68-67-71-73-72-74-75-81-78-79-0
Route7:0-76-77-80-82-87-85-91-86-84-83-89-88-90-0
Route8:0-94-95-92-93-102-101-96-99-98-100-97-103-0
Route9:0-105-104-106-107-108-110-109-111-112-116-115-117-0
Route10:0-118-114-113-119-121-120-122-123-124-125-0
Route11:0-132-127-126-131-128-129-130-133-136-135-134-138-137-139-0
Route12:0-144-142-141-140-143-145-149-150-146-147-148-0
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Benchmark C199: best cost =1650, 85
Route1 : 0-4-3-9-10-11-7-8-5-6-19-18-17-16-14-15-0
Route2 : 0-13-12-20-24-21-22-23-27-26-25-29-34-35-33-0
Route3 : 0-28-31-30-32-36-37-39-41-40-42-43-44-38-0
Route4 : 0-45-46-49-47-48-52-50-51-62-60-59-0
Route5 : 0-53-58-57-56-55-54-61-64-63-66-65-68-0
Route6 :0-67-75-74-72-73-69-70-71-76-77-78-79-81-80-0
Route7 : 0-83-84-82-86-85-87-89-88-90-96-0
Route8 :0-94-95-97-92-98-93-91-102-101-99-100-110-109-105-0
Route9 : 0-104-106-107-108-103-114-113-117-112-111-116-0
Route10 : 0-115-121-120-122-126-123-124-125-118-119-137-133-0
Route11 : 0-132-127-131-128-135-136-129-134-130-143-148-146-147-0
Route12 : 0-152-149-138-150-139-145-144-142-151-141-140-153-0
Route13 : 0-156-154-158-157-162-159-160-161-0
Route14 : 0-155-168-166-167-169-164-163-165-170-171-0
Route15 : 0-176-177-179-178-172-173-174-175-186-187-180-0
Route16 : 0-183-182-189-181-188-185-184-195-196-0
Route17 : 0-190-194-193-191-192-197-198-199-0

Benchmark C50: best cost =551, 95
Route1 : 0-3-2-1-5-4-7-6-8-10-9-0
Route2 : 0-11-13-12-14-17-15-16-19-0
Route3 : 0-18-20-21-22-23-25-24-26-0
Route4 : 0-27-30-29-28-31-33-34-32-36-35-37-0
Route5 : 0-38-43-41-40-42-44-39-46-47-45-48-0
Route6: 0-49-50-0

Benchmark C75: best cost =1156, 83
Route 1: 0-3-1-2-4-5-8-7-0
Route 2: 0-6-9-10-11-13-0
Route 3: 0-12-14-15-17-16-19-18-0
Route 4: 0-21-22-23-24-20-25-28-0
Route 5: 0-26-27-29-31-32-33-0
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Route 6: 0-30-36-34-35-37-38-39-41-0
Route 7: 0-40-42-45-44-43-47-48-0
Route 8: 0-46-49-50-51-52-54-53-55-0
Route 9: 0-58-59-57-56-60-62-61-0
Route 10: 0-63-64-66-65-67-70-71-69-0
Route 11: 0-68-73-72-74-75-0

Benchmark f134: best cost =13015, 56
Route 1: 0-1-3-2-4-5-6-7-13-12-11-10-9-8-16-15-14-19-18-17-22-21-20-23-24-
25-26-27-28-30-31-29-0
Route 2: 0-32-34-35-36-37-33-42-41-40-39-38-46-47-48-45-43-44-49-50-51-52-
54-53-58-57-56-55-59-60-61-62-65-0
Route 3: 0-66-71-64-63-67-68-69-70-78-77-76-74-73-72-75-79-83-0
Route 4: 0-82-84-80-81-85-86-87-88-89-95-96-97-93-94-92-90-91-99-98-100-0
Route 5: 0-103-104-101-102-105-106-107-108-109-114-113-0
Route 6: 0-112-111-110-115-116-117-119-118-120-121-122-123-130-0
Route 7: 0-133-132-125-126-124-127-128-129-131-134-0

Benchmark f71: best cost =301, 79
Route 1: 0-4-3-5-6-1-2-8-7-9-10-0
Route 2: 0-11-13-12-16-17-15-14-18-20-19-0
Route 3: 0-22-21-24-23-25-26-27-28-30-29-31-35-36-34-32-0
Route 4: 0-33-37-38-39-41-42-40-44-43-46-45-48-47-50-49-
51-52-54-56-55-53-0
Route 5: 0-57-58-59-61-60-62-63-65-64-66-67-68-69-70-71-0

Benchmark tai100a: best cost =2194, 93
Route 1: 0-9-8-5-4-6-3-2-7-1-11-10-15-0
Route 2: 0-14-16-12-13-17-18-0
Route 3: 0-19-20-23-21-22-24-25-26-0
Route 4: 0-28-27-29-30-31-33-32-0
Route 5: 0-34-36-37-35-38-43-41-39-44-40-0
Route 6: 0-42-47-46-48-45-49-0
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Route 7: 0-51-50-53-55-54-52-59-58-57-56-0
Route 8: 0-60-61-62-64-63-65-67-0
Route 9: 0-66-69-68-70-0
Route 10: 0-73-74-72-71-75-77-78-79-76-82-80-81-0
Route 11: 0-83-84-85-90-86-88-91-89-87-0
Route 12: 0-94-95-96-92-93-97-0
Route 13: 0-98-99-100-0

Benchmark tai100b: best cost =2126, 09
Route 1: 0-3-1-2-4-5-8-7-9-10-6-11-0
Route 2: 0-13-17-16-12-14-15-18-0
Route 3: 0-22-20-21-19-25-23-24-27-28-0
Route 4: 0-26-29-31-33-30-34-32-0
Route 5: 0-37-35-38-36-43-0
Route 6: 0-41-40-42-39-49-48-47-44-46-50-45-51-0
Route 7: 0-52-53-56-54-55-57-60-61-59-58-63-64-0
Route 8: 0-62-65-66-67-68-69-73-72-0
Route 9: 0-70-71-75-76-74-0
Route 10: 0-77-80-79-78-81-82-83-85-87-86-84-88-90-89-0
Route 11: 0-91-93-92-94-0
Route 12: 0-96-95-99-97-0
Route 13: 0-100-98-0

Benchmark tai100c: best cost =1544, 50
Route 1: 0-3-4-2-5-0
Route 2: 0-1-9-8-7-6-10-14-13-11-12-17-16-0
Route 3: 0-15-18-20-21-22-0
Route 4: 0-19-25-23-24-26-29-27-0
Route 5: 0-28-30-33-32-31-34-35-38-37-36-42-39-40-41-43-0
Route 6: 0-46-45-47-49-44-48-56-55-53-0
Route 7: 0-52-51-50-54-58-57-61-62-60-0
Route 8: 0-64-59-63-66-67-65-70-68-0
Route 9: 0-69-72-71-73-75-76-74-79-78-77-84-0
Route 10: 0-85-82-83-80-81-88-86-0

137



1 Appendix A. Best solutions found

Route 11: 0-89-87-97-90-94-93-92-95-0
Route 12: 0-91-96-99-100-98-0

Benchmark tai100d: best cost =1909, 55
Route 1: 0-3-1-2-4-5-9-8-6-7-10-13-14-12-11-15-0
Route 2: 0-18-17-16-22-20-21-19-23-25-0
Route 3: 0-24-26-28-0
Route 4: 0-27-29-30-0
Route 5: 0-31-32-33-37-35-34-38-36-41-39-42-40-0
Route 6: 0-47-45-44-46-49-43-48-0
Route 7: 0-51-55-54-53-56-52-50-57-58-62-64-61-63-60-0
Route 8: 0-59-65-70-69-66-67-68-71-0
Route 9: 0-72-74-73-76-75-77-78-0
Route 10: 0-79-0
Route 11: 0-81-80-83-82-84-85-88-87-86-90-92-89-93-91-0
Route 12: 0-97-94-0
Route 13: 0-95-96-98-99-100-0

Benchmark tai150a: best cost =2999, 27
Route 1: 0-4-6-3-1-2-7-5-9-12-11-10-8-16-13-14-0
Route 2: 0-18-17-15-19-22-23-20-21-24-25-35-0
Route3 : 0-31-33-32-27-29-34-28-0
Route4 : 0-26-30-38-44-45-39-41-43-42-40-0
Route5 : 0-36-37-48-49-51-46-47-50-53-57-0
Route6 : 0-56-55-54-58-52-59-60-0
Route7 : 0-62-61-63-64-65-66-0
Route8 : 0-67-70-68-71-69-72-75-73-74-77-76-83-82-79-78-0
Route9 : 0-85-81-80-84-86-88-91-89-87-90-93-92-0
Route10 : 0-95-94-96-97-103-0
Route11 : 0-98-101-99-100-102-105-104-106-107-108-0
Route12 : 0-109-112-111-110-117-118-115-114-116-0
Route13 : 0-113-119-127-123-122-126-121-124-125-120-0
Route14 : 0-129-128-131-130-137-133-136-0
Route15: 0-132-134-135-138-140-139-141-145-143-148-149-142-144-0
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Route16: 0-147-146-150-0

Benchmark tai150b: best cost =2846, 28
Route 1: 0-2-6-1-7-4-5-3-11-9-10-8-0
Route 2: 0-13-12-18-19-15-16-17-14-22-20-23-0
Route 3: 0-26-25-21-24-27-28-0
Route 4: 0-29-31-33-30-34-32-37-36-38-35-43-0
Route 5: 0-42-40-41-39-44-45-47-46-49-48-50-54-0
Route 6: 0-53-52-51-56-55-60-57-59-58-63-64-68-61-67-0
Route 7: 0-65-66-62-69-70-72-73-71-74-76-0
Route 8: 0-75-81-77-80-0
Route 9: 0-78-79-86-84-82-83-85-88-87-90-91-89-95-0
Route 10: 0-96-94-92-97-0
Route 11: 0-93-101-0
Route 12: 0-102-98-100-0
Route 13: 0-103-104-99-107-108-105-106-0
Route 14: 0-111-109-113-110-112-115-119-117-114-116-118-120-
126-125-121-122-124-123-0
Route 15: 0-127-131-128-129-130-134-132-138-135-133-137-136-
139-142-140-141-146-143-0
Route 16: 0-147-148-145-144-149-150-0

Benchmark tai150c: best cost =2718, 36
Route 1: 0-6-7-1-0
Route 2: 0-4-2-5-3-11-10-8-9-15-12-14-13-0
Route3: 0-18-16-19-17-0
Route4: 0-20-28-24-26-23-27-22-21-25-0
Route5: 0-29-30-32-31-35-34-33-38-39-36-37-43-42-0
Route6 : 0-40-41-46-51-48-50-0
Route7 : 0-49-44-47-45-52-56-57-55-53-54-61-58-60-62-0
Route8 : 0-59-63-64-65-66-69-68-0
Route9 : 0-70-67-75-72-71-74-73-0
Route10 : 0-76-81-79-80-83-82-0
Route11 : 0-78-77-91-87-89-86-90-85-88-84-0
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Route12 : 0-92-93-94-96-95-97-98-0
Route13 : 0-100-101-99-102-105-103-0
Route14 : 0-104-106-109-107-110-108-111-115-113-112-114-116-119-121-0
Route15 : 0-117-118-120-123-124-125-0
Route16: 0-127-126-122-135-129-133-128-134-132-130-131-136-139-140-138-
137-143-142-141-144-145-0
Route17: 0-147-148-146-149-150-0

Benchmark tai150d: best cost =3230, 67
Route 1: 0-5-1-2-6-4-3-13-12-9-8-10-7-11-17-14-15-16-19-21-23-25-20-18-22-0
Route 2: 0-24-0
Route 3: 0-27-28-26-29-30-0
Route 4: 0-34-33-32-31-36-38-41-39-35-37-40-42-43-46-44-0
Route 5: 0-45-47-50-48-49-52-58-53-54-55-51-57-59-0
Route 6: 0-60-56-67-66-62-64-65-61-63-71-69-70-68-73-72-74-0
Route 7: 0-78-76-75-77-79-81-80-83-85-84-82-86-0
Route 8: 0-94-91-93-89-87-92-90-88-97-95-96-100-101-102-99-0
Route 9: 0-98-104-105-106-103-107-109-110-108-0
Route 10: 0-118-113-117-112-115-116-111-0
Route 11: 0-114-121-120-119-123-125-124-0
Route 12: 0-122-126-0
Route 13: 0-128-127-134-131-129-130-133-132-0
Route 14: 0-139-138-135-137-0
Route 15: 0-136-140-141-142-0
Route 16: 0-146-145-143-147-144-0
Route 17: 0-149-150-148-0

Benchmark tai75a: best cost =1755, 33
Route 1: 0-1-3-2-6-4-5-7-10-0
Route 2: 0-8-9-11-12-13-14-15-0
Route 3: 0-16-17-18-19-21-20-22-23-0
Route 4: 0-24-27-25-0
Route 5: 0-26-28-29-31-33-0
Route 6: 0-35-36-30-34-32-37-0
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Route 7: 0-39-38-40-44-0
Route 8: 0-45-43-42-41-47-46-50-49-48-51-52-53-54-56-55-57-60-59-58-63-0
Route 9: 0-61-62-64-65-66-0
Route 10: 0-67-69-68-73-71-72-0
Route 11: 0-70-74-75-0

Benchmark tai75b: best cost =1306, 47
Route 1: 0-1-6-7-0
Route 2: 0-2-4-0
Route 3: 0-3-5-10-8-11-9-12-14-13-18-17-16-0
Route 4: 0-15-19-20-25-21-0
Route 5: 0-23-24-22-27-29-28-26-33-30-32-35-31-34-36-37-0
Route 6: 0-38-39-40-41-42-43-0
Route 7: 0-44-46-45-47-49-50-0
Route 8: 0-48-51-52-58-57-56-55-53-54-59-60-62-0
Route 9: 0-61-63-64-67-65-0
Route 10: 0-68-66-70-69-73-74-71-72-0
Route 11: 0-75-0

Benchmark tai75c: best cost =1424, 76
Route 1: 0-3-1-2-4-7-5-6-9-8-10-11-12-14-0
Route 2: 0-13-17-16-15-18-20-19-22-23-21-26-25-0
Route 3: 0-24-27-0-28-32-31-0
Route 4: 0-29-0
Route 5: 0-30-0
Route 6: 0-36-33-37-35-34-40-39-38-42-41-43-0
Route 7: 0-44-46-45-49-47-52-51-0
Route 8: 0-48-50-53-55-54-58-56-0
Route 9: 0-57-59-60-62-61-63-66-64-65-67-71-69-70-0
Route 10: 0-68-74-73-72-75-0

Benchmark tai75d: best cost =1334, 67
Route 1: 0-2-3-0
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Route 2: 0-1-4-5-6-7-11-10-9-8-0
Route 3: 0-13-14-12-17-15-16-20-19-18-0
Route 4: 0-21-23-22-24-26-0
Route 5: 0-25-27-32-0
Route 6: 0-30-28-31-29-33-36-35-34-37-38-39-40-0
Route 7: 0-42-41-43-44-46-45-49-0
Route 8: 0-50-51-48-47-52-53-55-56-0
Route 9: 0-54-57-58-59-60-64-0
Route 10: 0-62-63-61-66-65-67-68-69-71-70-72-73-74-0
Route 11: 0-75-0

142



Bibliography

[1] Ai T.J., Kachitvichyanukul V. A particle swarm optimization for the vehicle routing
problem with simultaneous pickup and delivery. Computers & Operations Research,
36: 1693 - 1702, 2009.

[2] Appelegate D., Cook W.J and Rohe A. Chained Lin-Kernighan for large travelling
salesman problems. INFORMS Journal on Computing, 15(1): 82-92, 2003.

[3] Archetti C., Savelsbergh M.W.P, Speranza M.G. To split or not to split: That is the
question. Transportation Research Part E, 44: 114-123, 2008. 31

[4] Arntzen H., Hvattum L.M, L0kketangen A. Adaptive memory search for multi de-
mand multidimensional knapsack problems. Computers & Operations Research, 33:
2508-2525, 2006.

[5] Arunapuram Sundararajan, Mathur Kamlesh, Solow Daniel. Vehicle Routing and
scheduling with full truckloads. Transportation Science, 37 (2): 170-182, 2003. 31

[6] Balas E. (1989). The prize collecting travelling salesman problem. Networks, 19:
621-636, 1989. 31

[7] Ball M.O., Golden A., Assad A., Bodin L.D. Planning for truck fleet size in the
presence of a common-carrier option. Decision Sciences, 14; 103-120, 1983. 31

[8] Beltrami E, Bodin L. Networks and vehicle routing for municipal waste collection.
Networks, vol.4, pages 568-581, 1974. 24, 31

[9] Berbeglia G., Cordeau J.-F., Laporte G. Dynamic pickup and delivery problems.
European Journal of Operational Research, Volume 202, Issue 1, Pages 8-15, 2010.

143



Bibliography

[10] Bertsimas, D.J., van Ryzin, G.J. A stochastic and dynamic vehicle routing problem
in the Euclidean plane. Operations Research, 39: 601-615, 1991.

[11] Bèrubé J.F, Gendreau M., Potvin J.Y. An exact E-constraint method for bi-objective
combinatorial optimization problems: Application to the Travelling Salesman Prob-
lem with Profits. European Journal of Operational Research, 194: 39-50, 2009. 31

[12] Bodin L.D, Golden B.L, Assad A.A, Ball M.O. Routing and scheduling of Vehicles
and crews. The state of the Art. Computers and Operations Research,10: 69-211,
1983. 31

[13] Bolduc M.C., Renaud J. and Boctor F.F. A heuristic for the routing and carrier
selection problem. Short communication. European Journal of Operational Research,
183, 926-932, 2007. 31

[14] Bolduc M.C., Renaud J. , Boctor F.F. and Laporte G. A perturbation metaheuristic
for the vehicle routing problem with private fleet and common carriers. Journal of
the Operational Research Society, 59, 776-787, 2008. 31

[15] Bosman P.A.N. and Thierens D. Multi-objective optimization with diversity preserv-
ing mixture-based iterated density estimation evolutionary algorithms. International
Journal of Approximate Reasoning, 31, 259-289, 2002.

[16] Brandão J. A deterministic tabu search algorithm for the fleet size and mix vehicle
routing problem. European Journal of Operational Research, 195: 716-728, 2009.

[17] Brandão J.C.S and Mercer A. Tabu search algorithm for the multi-trip vehicle rout-
ing and scheduling problem. European Journal of Operational Research, 100, 181-
191, 1997. 31

[18] Brown G., Ellis C., Graves G.W. and Ronen D. Real-time wide area dispatching of
Mobil tank trucks. Interfaces, Vol 17 No. 1, pp. 107-20, 1987. 31

[19] Butt S.E, Ryan D.M. An optimal solution procedure for the multiple tour maximum
collection problem using column generation. Computers & Operations Research, 26
(4): 427-441, 1999.

[20] Butt S.E, Cavalier T.M. A heuristic for the multiple tour maximum collection prob-
lem. Computers and Operations Research, 21: 101-111, 1994. 31

[21] Chao I.M, Golden B., Wasil E.A. A fast and effective heuristic for the orienteering
problem. European Journal of Operational Research, 88: 475-489, 1996.

[22] Chao I.M, Golden B., Wasil E.A. The team orienteering problem. European Journal
of Operational Research, 88: 464-474, 1996. 31

144



Bibliography

[23] Choi E. and Tcha D.W. A column generation approach to the heterogeneous fleet
vehicle routing problem. Computers and operations research, 34, 2080-2095, 2007.
31

[24] Christofides N. and Eilon S. An algorithm for the vehicle dispatching problem. Op-
erations Research, 20, 309-318, 1969. 31

[25] Christophides N, Beasley J. The period routing problem. Networks, 14:237-256,
1984.

[26] Chu C.W. A heuristic algorithm for the truckload and less-than-truckload problem.
European Journal of Operational Research, 165, 657-667, 2005. 31

[27] Clarke G., Wright J.W. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12, 568-581, 1964.

[28] Cooper, J, Browne, M and Peters M. European Logistics: Markets, management and
strategy. Blackwell, London, 1991.

[29] Corberán A., Mota E., Sanchis J.M. A comparison of two different formulations
for arc routing problems on mixed graphs. Computers & Operations Research, 33:
3384-3402, 2006. 31

[30] Cordeau J.F, Laporte G. A tabu search heuristic for the static multi-vehicle dial-
a-ride problem. Transportation Research Part B: Methodological, 37 (6): 579-594,
2003. 31

[31] Dantzig G.B, Ramser J.H. The truck dispatching problem. Management science,
6(1), 80-91, 1959.

[32] Dantzig G.B, Fulkerson R., Johnson S. Solution of a Large-Scale Traveling-Salesman
Problem. Journal of the Operations Research Society of America, Vol. 2, No. 4 pp.
393-410, 1954.

[33] Desrochers M. and Verhoog T.W. A new heuristic for the fleet size and mix vehicle
routing problem. Computers & Operations Research, 18(3), 263-274, 1991. 31

[34] Diaby M. and Ramesh R. The Distribution Problem with Carrier Service: A Dual
Based Penalty Approach. ORSA Journal on Computing, 7, 24-35, 1995.

[35] Dorigo M., Stutzle T. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

[36] Dorigo M., V. Maniezzo & A. Colorni. The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1), 29-41, 1996.

[37] Dorigo M., Di Caro G., and Gambardella L.M . Ant algorithms for discrete opti-
mization. Artificial Life, 5:137-172, 1999.

145



Bibliography

[38] Dumas Y., Desrosiers J., Soumis F. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54: 7-22, 1991.

[39] Euchi. J, Chabchoub H. A Hybrid Tabu Search to Solve the Heterogeneous Fixed
Fleet Vehicle Routing Problem. Logistics Research, vol 2 (1) pp. 3-11, 2010. 31

[40] Euchi. J, Chabchoub H. Heuristic Search Techniques to Solve the Vehicle Routing
with Private Fleet and Common carrier. International Journal of Universal Com-
puter Sciences, 1 (1), pp. 10-18, 2010.

[41] Euchi. J, Chabchoub H. Hybrid Metaheuristics for the profitable arc tour problem.
Journal of Operational Research Society, doi:10.1057/jors.2010.179, 2011.

[42] Euchi J., Chabchoub H., Yassine A. New evolutionary algorithm to solve the vehicle
routing problem with private fleet and common carrier. A paraître dans International
Journal of Applied Metaheuristic Computing, vol. 2 (1), 2011.

[43] Euchi. J, Chabchoub H. Iterated Density Estimation Evolutionary Algorithm with
2-opt local search for the vehicle routing problem with private fleet and common
carrier. IEEE proceedings of 39ème International Conference on Computers and
Industrial Engineering, ISBN 978-1-4244-4136-5 pp: 1058-1063. Troyes - France, 6-9
July 2009.

[44] Euchi. J, Chabchoub H. Iterated Density Estimation Evolutionary Algorithm with
2- opt local search for the vehicle routing problem with private fleet and common
carrier. Proceedings of the European Chapter on Metaheuristics, Portugal pages
133-140, 2009.

[45] Euchi. J, Chabchoub H. Tabu search metaheuristic embedded in adaptative memory
procedure for the Profitable Arc Tour Problem. IEEE proceedings of Nature and
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on , vol., no.,
pp.204-209, 9-11 Dec. 2009. A pdf copy of the paper is accessible at
http://ieeexplorepreview.ieee.org/stamp/stamp.jsp?tp=&arnumber=5393689 31

[46] Euchi J, Chabchoub H. Hybrid Tabu Search heuristic with ejection chains algorithms
for the Vehicle Routing Problem with Private fleet and common Carrier. The VIII
Metaheuristics International Conference, MIC 2009, Extended Abstract, p. 151-156.
Hamburg, Germany, July 2009.

[47] Euchi J, Chabchoub H. A hybrid genetic algorithm for the vehicle routing problem
with private fleet and common carriers. 10ème Journes Nationales de lassociation
franaise de Recherche Oprationnelle et dAide la Dcision, ROADEF2009, Resume
pp. 243-245. Nancy - France, fvrier 2009.

[48] Euchi J, Chabchoub H, Yassine A. Ant Colony System Based on 2-opt Local Search
to Solve the Dynamic Vehicle Routing Problem. The 9th international conference on

146



Bibliography

Multiple Objective Programming and Goal Programming, MOPGP 2010, Abstract,
p 60. Sousse, Tunisia, May 24-26, 2010.

[49] Euchi J, Yassine A, Chabchoub H. Solving the dynamic vehicle routing by means
of Artificial Ant Colony. The 3rd International Conference on Metaheuristics and
Nature Inspired Computing, META10, Djerba, Tunisia, October 27-31, 2010.

[50] Feillet D., Dejax P., Gendreau M. The Profitable Arc Tour Problem: Solution with
a Branch-and-Price Algorithm. Transportation Science, 39(4): 539-552, 2005. 31

[51] Feillet D, Dejax P, Gendreau M. Traveling Salesman problems with Profits. Trans-
portation Science, 39(2): 188-205, 2005. 31

[52] Fisher M.L, Jaikumar R. A generalized assignement heuristic for vehicle routing
problem. Network, 11, 109-124, 1981.

[53] Fisher, M.L, Greenfield, A.J, Jaikumar, R. and Lester, J.T. A computerized vehicle
routing applications. Interfaces, vol 12, N 4, pp 42-52, 1982.

[54] Fisher ML. Vehicle routing. Handbooks Operation Research Management Science,
8, 1995.

[55] Frederickson G. N., Hecht M. S. , and Kim C. E. Approximation algorithms for some
routing problems. SIAM Journal on Computing, 7(2):178-193, 1978.

[56] Garrido P., Riff, M.C. DVRP: a hard dynamic combinatorial optimization problem
tackled by an evolutionary hyper-heuristic. Journal of Heuristics, 16: 795-834, 2010.

[57] Gendreau M., Guertin F., Potvin J., and Seguin R. Neighborhood search heuristics
for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transporta-
tion Research Part C, 14:157-174, 2006.

[58] Gendreau M., Potvin J.-Y. Dynamic vehicle routing and dispatching. In Fleet man-
agement and logistic. Kluwer Academic Publishers, T.G. Crainic, G. Laporte eds.,
pages 115-226, 1998.

[59] Gendreau M., Laporte G., Semet F. A tabu search heuristic for the undirected se-
lective travelling salesman problem. European Journal of Operational Research, 106
(2-3): 539-545, 1998.

[60] Gendreau M., Laporte G., Musaraganyi C. and Taillard E.D. A tabu search heuris-
tic for the heterogeneous fleet vehicle routing problem. Computers & Operations
Research, 26, 1153-1173, 1999. 31

[61] Gendreau M, Guertin F., Potvin J.-Y., and Taillard É.D. Parallel tabu search for
real-time vehicle routing and dispatching. Transportation Science, 33:381-390, 1999.

147



Bibliography

[62] Goss S., Aron, Doneubourg J., and Pasteels J.M. Self-organized shortcuts in the
argentine ants. Naturwissenschaften, 76:579-581, 1989.

[63] Glover F. Tabu Search - Part I. ORSA Journal on Computing, 1 (3), 190-206, 1989.

[64] Glover F. Ejection chains, references structures and alternating path methods for
the travelling salesman problem. Discrete Applied Mathematics, 65, 223-253, 1992.

[65] Glover F. Heuristics for Integer Programming Using Surrogate Constraints. Decision
Sciences, 8( 1): 156-166, 1977.

[66] Golden B.L, Laporte G., Taillard E.D. An adaptive memory heuristic for a class of
vehicle routing problems with minmax objective. Computers & Operations Research,
24(5): 445-452, 1997.

[67] Golden B. L. and Assad A.A. Vehicle Routings: Methods and Studies. North-
Holland, Amsterdam, 1988. 31

[68] Golden B.L., Assad A.A., Levy L. and Gheysens F. The fleet size and mix vehicle
routing problem. Computers & Operations Research, 11: 49-66, 1984. 31

[69] Golden B.L., Wasil E.A., Kelly J.P. and Chao I.M. The impact of metaheuristics
on solving the vehicle routing problem: Algorithms, problem sets, and computational
results. In: Crainic TG and Laporte G (eds). Fleet Management and Logistics.
Kluwer: Boston, 33-56, 1998.

[70] Gronalt, M., Hartl, R.F. and Reimann, M. New Savings Based Algorithms for Time
Constrained Pickup and Delivery of Full Truckloads. European Journal of Opera-
tional Research, 151(3), 520-535, 2003. 31

[71] Hall R.W., Racer M. Transportation with common carrier and private fleets: system
assignement and shipment frequency optimization. IIE Transactions, 27, 217-225,
1995. 31

[72] Hansen P., Mladenovic N. Variable neighbourhood search: Principles and applica-
tions. European Journal of Operational Research, 130: 449-467, 2001.

[73] Harary F. Graph Theory. Reading. MA: Addison-Wesley, 1969.

[74] Hvattum L.M., Løkketangen A., Laporte G. Solving a dynamic and stochastic vehicle
routing problem with a sample scenario hedging heuristic. Transportation Science,
40(4): 421-438, 2006.

[75] Jozefowiez N., Semet F., Talbi E.G. An evolutionary algorithm for the vehicle routing
problem with route balancing. European Journal of Operational Research, 195: 761-
769, 2009.

148



Bibliography

[76] Johnson D. S. and McGeoch L. A. The Traveling Salesman Problem:A Case Study
in Local Optimization. Local Search in Combinatorial Optimization. E. H. L. Aarts
and J. K. Lenstra (editors). John Wiley and Sons, Ltd., pp. 215-310, 1997.

[77] Jünger M., Reinelt G. and Rinaldi G. The Traveling Salesman Problem. In Ball,
Magnanti, Monma and Nemhauser (eds.). Handbook on Operations Research and
the Management Sciences vol. 7. Elsevier, Amsterdam, 1995.

[78] Keller, C. P., Goodchild M. The multiobjective vending problem: A generalization of
the traveling salesman problem. Environ Planning B: Planning Design, 15 447-460,
1988.

[79] Keller, C. P. Multiobjective routing through space and time: The MVP and TDVP
problems. Unpublished doctoral dissertation, Department of Geography, The Uni-
versity of Western Ontario, London, Ontario, Canada, 1985. 31

[80] Kilby P, Prosser P, Shaw P. Dynamic VRPs: a study of scenarios. Technical Report
APES-0-1998, University of Strathclyde, 1998.

[81] Klincewicz J.G., Luss H. and Pilcher M.G. Fleet size planning when outside carrier
services are available. Transportation Science, 24, 169-182, 1990. 31

[82] Laporte G. The Vehicle Routing Problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(3): 345-358, 1992. 31

[83] Laporte G. The traveling salesman problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(2): 291-247, 1992.

[84] Laporte G. Computer aided routing CWI tract.75:M.W.P. Savelsbergh Mathema-
tisch Centrum, Amsterdam, 1992, 134 pages, DFL.40.00, ISBN 90 6196 412 1. Eu-
ropean Journal of Operational Research, 71(1), 143, 1993.

[85] Laporte G., Osman I.H. Routing Problems: A Bibliography. Annals of Operations
Research, 61, 227-262, 1995.

[86] Larrañaga P. A review on estimation of distribution algorithms. In P. Larrañaga
and J. A. Lozano, editors, Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, pp. 80-90, 2002.

[87] Lawler E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston. Network, 1976.

[88] Li F., Golden B.L. and Wasil E.A. A record-to-record travel algorithm for solving
the heterogeneous fleet vehicle routing problem. Computers & Operations Research,
34: 2734-2742, 2007. 31

149



Bibliography

[89] Libertad Tansini, Maria Urquhart, & Omar Viera. Comparing assignment algo-
rithms for the Multi-Depot VRP. Tech. rept. University of Montevideo, TR0108.pdf,
2001.

[90] Lin S. Computer solutions of the traveling salesman problem. The Bell System Tech-
nical Journal, 2245-2269, 1965.

[91] Liu F.H. and Shen S.Y. The fleet size and mix vehicle routing problem with time
windows. Journal of Operational Research Society, 50:721-732, 1999. 31

[92] Lozano J.A., Larrãnaga P., Inza I., and Bengoetxea E. Towards a New Evolutionary
Computation. Springer, Berlin Heidelberg, New York, 2006.

[93] Michalewicz Z., and Fogel D.B. How to solve it: modern heuristics. Springer-Verlag
New York, Inc. 2000, NY, USA, 2000.

[94] Montemanni, R., Gambardella, L. M., Rizzoli, A. E, and Donati, A. V. Ant colony
system for a dynamic vehicle routing problem. Journal of Combinatorial Optimiza-
tion, 10: 327-343, 2005. 31

[95] Mühlenbein H. and Mahnig T. FDA - a scalable evolutionary algorithm for the opti-
mization of additively decomposed functions. Evolutionary Computation, 7(4):353-
376, 1999.

[96] Mullen R.J, Monekosso D., Barman S., Remagino P. A review of ant algorithms.
Expert Systems with Applications, 36: 9608-9617, 2009.

[97] Nanry, W.P., Barnes, J.W. Solving the pickup and delivery problem with time win-
dows using reactive tabu search. Transportation Research B, 34: 107-121, 2000.

[98] Osman I.H., Salhi S. Local search strategies for the VFMP. In: Rayward-Smith VJ,
Osman IH, Reeves CR, Smith GD (Eds.), Modern Heuristic Search Methods. Wiley,
New York, pp. 131-153, 1996. 31

[99] Osman I.H. and Wassan N. Reactive tabu search meta-heuristic for the vehicle rout-
ing problem with backhauls. Journal of Scheduling, Vol. 5, 263-285, 2002.

[100] Peter Francis, Karen Smilowitz & Michal Tzur. The period vehicle routing problem
with service choice. working paper WP 04 005.pdf, 2004. 31

[101] Potvin J.Y. and Rousseau J.M. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of Operational
Research, 66: 331-340, 1993. 31

[102] Powell, W.B., Jaillet, P., Odoni, A. Stochastic and dynamic networks and routing.
In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (Eds.), Network
routing, Handbooks in Operations Research and Management Science, 8. Elsevier,
Amsterdam, The Netherlands, pp. 141-295, 1995.

150



Bibliography

[103] Prins C. A simple and effective evolutionary algorithm for the vehicle routing prob-
lem. Computers and Operations Research, 31: 1985-2002, 2004. 31

[104] Psaraftis, H.N. A dynamic programming approach to the single-vehicle, many-to-
many immediate request dial-a-ride problem. Transportation Science, 14: 130-154,
1980.

[105] Psaraftis, H.N. An exact algorithm for the single-vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science, 17: 351-357, 1983.

[106] Psaraftis, H. N. Dynamic vehicle routing problems. In B. L. Golden, A. A. Assad,
eds. Vehicle Routing: Methods and Studies. Elsevier North-Holland, Amsterdam
pp. 223-248, 1988. 31

[107] Psaraftis, H. Dynamic vehicle routing: Status and prospects. Annals of Operations
Research, 61:143-164, 1995. 31

[108] Reeves C.R. Diversity and diversification in genetic algorithms: some connections
with tabu search. In R.F.Albrecht, C.R.Reeves and N.C.Steele (1993). Proc. of 1st In-
ternational Conference on Artificial Neural Nets and Genetic Algorithms, Springer-
Verlag, Vienna, 1993.

[109] Renaud J., Boctor F. A sweep based algorithm for the fleet size and mix vehicle
routing problem. European Journal of Operational Research, 140:618-628, 2002. 31

[110] Rego C., Roucairol C. A parallel tabu search algorithm using ejection chains for the
vehicle routing problem. In: Osma, I.H., Kelly J. (Eds.): Meta-Heuristics: Theory
and Applications, 1996.

[111] Rochat Y., Semet F. A tabu search approach fo delivering pet food and flour in
Switzerland. Journal of the Operational Research Society, 45:1233-1246, 1994. 31

[112] Rochat Y., Taillard E.D. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of heuristics, 1: 147-167, 1995.

[113] Salhi, S., Rand, G.K. Incorporating vehicle routing into the vehicle fleet composition
problem. European Journal of Operational Research, 66:313360, 1993. 31

[114] Savelsbergh M.W.P. and Sol M. DRIVE: Dynamic routing of independent VEhicles.
Operations Research, 46: 74-490, 1998. 31

[115] Savelsbergh M.W.P. and Sol M. The general pickup and delivery problem. Trans-
portation Science, 29:17-29, 1995.

[116] Semet F., Taillard É. D. Solving real-life vehicle routing problems efficiently using
taboo search. Annals of Operations research, 41:469 488, 1993. 31

151



Bibliography

[117] Schönberger J., Kopfer H., and Mattfeld H. A combined approach to solve the pickup
and delivery selection problem. In Operations Research Proceedings, pages 150-155,
2002.

[118] Stützle T., Hoos H.H. MAX-MIN Ant System. Future Generation Computer
Systems,16(8):889-914, 2000.

[119] Taillard E.D. A heuristic column generation method for the heterogeneous fleet VRP.
RAIRO, 33(1):1-14, 1999. 31

[120] Taillard ED. Parallel iterative search methods for vehicle routing problems. Net-
works, 23(8):661-673, 1994.

[121] Tarantilis C., Kiranoudis C. and Vassiliadis V. A threshold accepting metaheuris-
tic for the heterogeneous fixed fleet vehicle routing problem. European Journal of
Operational Research, 152, 148-158, 2004. 31

[122] Tavakkoli-Moghaddam R., Safaei N., Gholipour Y. A hybrid simulated annealing
for capacitated vehicle routing problems with the independent route length. Applied
Mathematics and Computation, Volume 176, Issue 2, Pages 445-454, 2006.

[123] Toth P. and Vigo D. Models relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics, 123:487-512, 2002. 31

[124] Volgenant T. and Jonker R. On some generalizations of the traveling salesman prob-
lem. Journal of the Operational Research Society, 38:1073-1079, 1987.

[125] Wu P.L., Hartman J.C., and Wilson G.R. An integrated model and solution ap-
proach for fleet sizing with heterogeneous assets. Transportation Science, 39(1):87-
103, 2005.

[126] Yang J., Jaillet P. and Mahmassami H.S. Study of a real-time multi-vehicle truck
load pickup-and-delivery problem. INFORMS, November, 2000. 31

152


	Page de Garde1
	THESE DE DOCTORAT
	Jalel EUCHI


	these
	List of Figures
	List of Tables
	List of Algorithms
	Introduction générale
	1 Introduction
	1 Research Objectives of the thesis
	2 Contributions

	2 Literature review
	1 Introduction
	2 Related works
	3 Travelling Salesman Problem (TSP)
	4 Vehicle Routing Problem (VRP)
	4.1 Distribution network
	4.2 Mathematical model
	4.2.1 Parameters
	4.2.2 Decisions variables
	4.2.3 Formulation


	5 Variants of the vehicle routing problem
	5.1 Capacitated vehicle routing problem
	5.2 Muli-Period Vehicle Routing Problem
	5.2.1 Period Vehicle Rouing Problem
	5.2.2 Inventory Routing Problem

	5.3 Vehicle Routing Problem with limited fleet
	5.3.1 M-Vehicle Routing Problem with Time Windows (SATISFIABLE)
	5.3.2 M-Vehicle Routing Problem with Time Windows (DISSATISFYING)
	5.3.3 M-Heterogeneous Vehicle Routing Problem (M-HVRP)

	5.4 Vehicle Routing Problem with full truckload
	5.4.1 Vehicle Routing Problem with return truckload
	5.4.2 VRP with pick up and delivery with full truckload

	5.5 Vehicle Routing Problem wih Profit
	5.6 Vehicle Routing Problem with Private fleet and Common carrier
	5.7 Dynamic Vehicle Routing Problem

	6 An overview of proposed approaches for the VRP
	6.1 Metaheuristics optimization via memory
	6.1.1 Tabu Search algorithm
	6.1.2 Variable Neighborhood Search algorithm
	6.1.3 Ejection chains neighborhood
	6.1.4 Adaptive memory

	6.2 Evolutionary algorithms metaheuristics
	6.2.1 Genetic algorithm
	6.2.2 Iterated Density Estimation Evolutionary Algorithms
	6.2.3 Artificial Ant Colony


	7 Our personal contributions to solve some variants of the VRP problems
	7.1 First line of research: A Hybrid Tabu Search to Solve the Heterogeneous Fixed Fleet Vehicle Routing Problem
	7.2 Second line of research: Heuristic Search Techniques to Solve the Vehicle Routing with Private Fleet and Common Carrier
	7.3 Third line of research: Iterated Density Estimation Evolutionary Algorithm with 2-opt local search for the vehicle routing problem with private fleet and common carrier.
	7.4 Fourth line of research: Solving the Dynamic Vehicle Routing Problem by means of Artificial Ant Colony.

	8 Conclusion

	3 M-Heterogeneous Vehicle Routing Problem
	1 Introduction
	2 Literature review
	3 Heterogeneous Vehicle Routing Problem
	3.1 Description of the problem

	4 Vehicle Routing Problem with Private fleet and Common carrier
	4.1 Formulation of the VRPPC
	4.1.1 Index
	4.1.2 Parameters
	4.1.3 Decision varianles


	5 Metaheuristics approaches to solve the M-VRP
	5.1 A Hybrid Tabu Search to solve the Heterogeneous Fixed Fleet Vehicle Routing Problem
	5.1.1 Initialization (Step 1 in the Adaptive Memory)
	5.1.2 Construction of solution (step 2 in the Adaptive Memory)
	5.1.3 Solution improvements (Step 3 in the Adaptive Memory)
	5.1.4 Updating the Adaptive Memory (Step 4 in the Adaptive Memory)

	5.2 Computational results
	5.2.1 Implementation and instances
	5.2.2 Parameter settings
	5.2.3 Evaluation method

	5.3 Heuristic Search Techniques to Solve the Vehicle Routing with Private Fleet and Common Carrier
	5.3.1 Initial solution
	5.3.2 Neighborhood Structure
	5.3.3 Tabu List
	5.3.4 Aspiration criterion
	5.3.5 Ejection chains
	5.3.6 Intensification
	5.3.7 Diversification
	5.3.8 Stopping condition

	5.4 Iterated Density Estimation Evolutionary Algorithm with 2-opt local search for the VRPPC
	5.4.1 Hybrid IDEA to solve the VRPPC
	5.4.2 Vehicle routing representation
	5.4.3 2-opt Local Search
	5.4.4 Initialization
	5.4.5 Selection operators
	5.4.6 Probabilistic Model
	5.4.7 Replacement
	5.4.8 Stopping criterion

	5.5 Experiments results
	5.5.1 Implementation and instances
	5.5.2 Parameter settings
	5.5.3 Evaluation method


	6 Conclusions

	4 The Dynamic Vehicle Routing Problem
	1 Introduction
	2 Main definition of the Dynamic Vehicle Routing Problem 
	3 Related Works
	3.1 Pick-up and delivery vehicle Routing Problem 
	3.2 Dynamic Pick-up and delivery vehicle Routing Problem

	4 A framework of the Dynamic Pick-up and delivery vehicle Routing Problem
	4.1 The Static Pick-up and delivery vehicle Routing Problem
	4.2 The Dynamic Pick-up and delivery vehicle Routing Problem
	4.3 Ant Colony Optimization

	5 Application
	5.1 Merging of New Event Procedure (MNEP)
	5.2 Artificial Ant Colony with 2-opt local search to solve the DPDVRP
	5.2.1 Solutions representation
	5.2.2 Solution construction
	5.2.3 Pheromone Trail update
	5.2.4 Local Pheromone Update
	5.2.5 Global Pheromone Update
	5.2.6 Local Search

	5.3 Experimental Results and Performance Comparison
	5.3.1 Problem instances
	5.3.2 The experimental environment
	5.3.3 Results discussion

	5.4 Conclusion


	5 Conclusion
	1 Research work summary
	2 Resulting papers

	Conclusion générale
	Annexe 1
	1 Appendix A. Best solutions found
	1.1 The best routes constructed with available vehicles


	Bibliography




