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ABSTRACT (ENGLISH)

Keywords: distributed systems, large-scale experiments, experiment control, busi-
ness processes, experiment provenance

Running experiments on modern systems such as supercomputers, cloud
infrastructures or P2P networks became very complex, both technically and
methodologically. It proved difficult to run experiments correctly and under-
stand obtained results, even with the background on the employed technol-
ogy and methods. Moreover, large-scale experiments suffer from erroneous
and the unpredictable behavior of underlying software and hardware, un-
dermining the scientific principles of experimental computer science. This
worrisome state of research on large-scale distributed systems calls for new
approaches to design, run and interpret experiments.

This work explores the use of control-flows (business processes) as a model
for representing the large-scale experiments in research on distributed sys-
tems. We set out to find advantages, disadvantages and limitations of this
approach, and practical considerations for future implementers.

We make 3 main contributions. First, we analyze the current state of exper-
iment management tools, their limits and features to better understand dif-
ficulties that lay ahead. We construct a general framework to evaluate tools
of this type. Second, we design and implement an experiment management
tool which is based on the model of control-flows. We show that this method-
ology can be implemented and used in practice to run challenging and large-
scale experiments while offering a wide set of features, some of them miss-
ing in the previous approaches. Finally, we analyze the use of provenance in
computer science, and in particular in experimental research on distributed
systems, and propose a provenance collection system that emerges from the
control-flow model used as the representation of experiments. The design
is implemented and shown to collect provenance in efficient and automatic
way.

Our results show that workflows are a viable model for the design and ex-
ecution of experiments in distributed systems research. With these positive
conclusions in mind, we also sketch future research directions for improving
our work.
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ABSTRACT (FRENCH)

Titre : Gestion d’expériences a grande échelle dans la recherche sur les systemes dis-
tribués a I'aide de control-flows

Mot-clés : systémes distribués, grande échelle, control-flows, démarche scientifique,
processus métier, workflows scientifiques

L'expérimentation sur les systemes modernes comme les superordinateurs,
les infrastructures cloud ou les réseaux P2P, est devenue complexe a cause
des difficultés techniques et méthodologiques. La réalisation correcte d’ex-
périences et 'analyse des résultats obtenus est difficile, méme en possédant
toute 'expertise nécessaire sur le domaine d’étude et la technologie utilisée.
De plus, les expériences a grande échelle échouent souvent en raison du com-
portements aléatoires du matériel et du logiciel, menagant les principes de
la recherche expérimentale comme la fiabilité et la reproductibilité des résul-
tats. Cette situation inquiétante de la recherche sur les systémes distribués a
grande échelle nécessite la découverte de nouvelles approches pour la struc-
turation, le controle et 'interprétation d’expériences.

Ce travail explore l'utilisation de control-flows (processus métier) comme
un modele pour la représentation d’expériences a grande échelle dans le do-
maine des systémes distribués. Il analyse les avantages, inconvénients et li-
mitations de cette approche, ainsi que des considérations pratiques pour
leur implantation future.

Trois contributions principales peuvent étre distinguées. D’abord, nous
analysons I'état actuel des outils pour le controle d’expériences. Nous mon-
trons les fonctionnalités manquantes et permettons de comprendre les dif-
ficultés partagées par toutes les approches. Cette analyse se termine avec la
construction d’une hiérarchie des propriétés qui peut étre utilisée pour I'éva-
luation des outils qui contrdlent les expériences. La deuxiéme contribution
consiste en un design et une implantation d’un systeme de contrdle d’expé-
riences qui se base sur le modele de control-flows. Nous montrons que cette
méthodologie est capable du contréle efficace et robuste des expériences a
grande échelle et offre des fonctionnalités nécessaires, dont certains ne sont
pas présentes dans les approches existantes. La derniére contribution porte
sur la conception et l'implantation d’'un systéme pour la collection de pro-
venance pendant 'exécution d’expériences sur les systémes distribués. Elle
utilise intensément le modéle de control-flows et améliore lapproche présen-
tée précédemment. Le prototype de ce systéeme est capable d’une collection
de provenance de maniere efficace et automatique.

Les résultats obtenus montrent que le modeéle proposé est une approche
viable du contrdle d’expériences dans les systémes distribués. De plus, les
améliorations possibles sont mentionnées a la fin du document.
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PUBLICATIONS

Some ideas, figures and results have appeared previously in various scien-
tific publications:

« The parts of Chapter 2 dedicated to the state of the art of Business Pro-
cess Management (Section 2.5) and the early results on using control-
flows in management of experiments (Chapter 4) have been published
as two conference articles [25, 27].

« Most of Chapter 3 has been published as the main subject of a journal
article [32].

« The large part of Chapter 4, including the elements of evaluation, has
been presented as a conference article [30].

« Some experimental results presented as the part of evaluation in Chap-
ter 4 have been presented in a conference paper [26].

« Similarly, some results presented in Chapter 4 have been previously
published during a workshop [123].

« The topics discussed in Chapter 5 have been published as a workshop
paper [31].

« Theearlyversion of the presented experiment control engine was used
by Attila Dome Lehéczky in his MSc thesis entitled A testing framework
for validation and improvement of the SMPI simulation framework for MPI
applications’.

Hence the contributions of this thesis are represented by 7 publications of
the author. Four of them [25, 27, 30, 31] discuss the subject directly, whereas
the remaining ones [26, 32, 123] use the methods presented here as research
methodology. The archive containing all assets accompanying the thesis can
be downloaded?.

Finally, although not a scientific publication, another contribution is rep-
resented by software that was written during the work on this thesis. It is
freely available for anyone interested® (contact the author if it is not the case).

1 https://github.com/lehoo/thesis
2 http://xpflow.gforge.inria.fr/thesis/all.tar.xz
3 http://xpflow.gforge.inria.fr
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Overcome by example, grumbling to himself, nevertheless,
Porthos stretched out his hand, and the four friends repeated
with one voice the formula dictated by d’Artagnan:

“All for one, one for all.”

— Alexandre Dumas, The Three Musketeers
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The beginning is the most important part of the work.
— Plato, The Republic

INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Computer science is a relatively young domain of science which has seen a
rapid and unabated evolution since its infancy which can be situated some-
where in the middle of twentieth century. The objects of its study, computers
as well as other information-processing components, have also seen unstop-
pable development thanks to research and technological advances. The com-
puting systems became much faster, but at the cost of increasing complexity:
indeed, the performance of the most powerful computing systems seems to
double every year, as well as their size [185] — faster than what the Moore’s
Law would predict.

As aresult, the current computer systems are of enormous complexity and
are nearly ungraspable to human beings in their entirety. Such systems are
examples of distributed systems, since they can no longer be regarded as in-
dependent elements, but must be seen as one, complex system. To put it
simply, a distributed system is a computer system “in which the failure of
a computer you didn’t even know existed can render your own computer un-
usable”, an informal definition given by Leslie Lamport, one of the pioneers
of distributed systems research.

The role of research in distributed systems is hence to make these systems
more robust and allow them to function despite various problems. The diffi-
culty is due to the fact that the constituents of distributed systems are fallible,
either because of imperfect production process or because of software that is
unprepared for exceptional situations or simply incorrect. In fact, hardware
and software errors are by far the most common source of problems in large
computer systems [93].

Since powerful distributed systems are a necessary enabler for other sci-
ences, this quest is of crucial importance. Biology, chemistry, astrophysics,
medicine, meteorology, physics (the analysis of tremendous amount of data
from the Large Hadron Collider led to the discovery of Higgs Boson in 2012),
to name just a few, are life sciences that routinely profit from the comput-
ing power of modern distributed systems. But they are not the only ones -
large IT companies like Google, Microsoft, Yahoo, Facebook or Amazon use
distributed computing to serve millions of users every day.

Naturally, these complex systems require complex evaluation. When for-
mal verification is possible, there is often a great discrepancy between what
theory promises and what the real world requires [46]. Therefore, the gen-
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eral trend is to turn to experimentation as the mean of validation and evalua-
tion [184].

There are many methodologies, methods and tools that help with experi-
mental evaluation of distributed systems. First, there is simulation, where the
model of a system is evaluated instead of a real system. Although simulation is
based on simplified assumptions about the reality, it can lead to useful con-
clusions, yet the discrepancy between theory and reality still applies. Then,
there are in-situ experiments which evaluate the system on a real platform.
This approach, although virtually unrestricted, brings multiple difficulties.

The inherent complexity of the real-life system must be tamed by the ex-
perimenter, including numerous factors that can influence the behavior of
the system. Unfortunately, there is no way so far to find what can influence
the results and even quite innocuous factors can play a weighty role [133].
Again, there are many approaches proposed to control this aspect: emula-
tion, virtualization and cloud computing for example [74], which are a mid-
dle ground between simulation and in-situ experiments. What is more, ex-
periments with distributed systems must explicitly take into account their
faulty nature. If not, failures may go unnoticed and obtained results will be
wrong.

All these difficulties threaten the reproducibility and as we know from the fa-
mous philosopher of science, Karl Popper, non-reproducible single occurrences
are of no significance to science. Contrary to the previous problems, however,
the lack of reproducibility is partially a fault on our own. Indeed, the exper-
iments themselves are conceptually complicated and there is no efficient or
formal way to disseminate them. More insights into the process of experi-
mentation and the ways of understanding it are necessary.

Scientific workflows are an approach in computational sciences (e. g., biol-
ogy, medicine, genetics or astrophysics) that successfully addresses this dif-
ficulty. Experiments represented as workflows have a formal structure that
can be analyzed, shared and understood much easier than the unstructured
ones [208]. Unfortunately, such methods do not apply, at least directly, in
distributed systems research due to their data-centric model.

Not-that-distant cousins of scientific workflows, business processes modeled
with workflows, have been applied with a similar success in more “real-life” sit-
uations like production and process management, or orchestration of web
services [116]. They focus much more on the control of the process, than on
the efficient data shuffling and processing as scientific workflows do. More-
over, as they are used to model fallible, real-life systems, they are explicitly
designed to cope with exceptional situations.

It seems that the complex, unreliable, real-life systems are in fact quite
similar to the complex systems that need the sophisticated methods of con-
trol to work properly, efficiently and intelligibly. David Wheeler, a famous
computer scientist and the first one to complete a PhD in computer science
is quoted saying that all problems in computer science can be solved by another level
of indirection. Is Business Process Management this indirection that we look
for? This is a question that we will turn to in the following pages.
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1.2 PROBLEM STATEMENT

The problem that is addressed in this thesis is the worrisome state and the
difficulty of experimenting with large-scale distributed systems. The most
important intermediate problems can be observed:

« How can the experiments be reliably controlled and finished despite
their large size and delicate nature?

« How should the experiments be represented so that scientists can un-
derstand and improve them?

« How should the experiment data and provenance be gathered, stored,
structured and queried so that useful observations can be made swiftly
and reproducibly?

Our approach is based on the domain of Business Process Management and
hence further questions must be distinguished:

« Are workflow patterns found in business processes a viable model for
experiments in distributed systems?

« What advantages and disadvantages, if any, do they have?
« How does this method differ from existing approaches?

« How can a system based on this idea be implemented? Can it be effi-
cient?

1.3 CONTRIBUTIONS

The thesis makes 3 principal contributions to the state of the art:

1. It analyzes the current state of experiment management tools for dis-
tributed systems research to understand their limits and features. This
analysis leads to deeper understanding of difficulties laying ahead, as
well as a general framework to evaluate such tools. This work is the
main subject of Chapter 3.

2. Itstudies how experimental research in distributed systems can profit
from applying control-flows and Business Process Management, and
how a system based on them can be designed. We show how to use this
methodology in practice by presenting three case studies based on it.
More importantly, we observe that it can lead to better understanding,
robustness and scalability of experiments by verifying these claims ex-
perimentally in Chapter 4.

3. Itproposes a solution to the difficult problem of collecting provenance
in experiments expressed as control-flows. Different types of prove-
nance are distinguished and the design and implementation of a sys-
tem that collects it efficiently is presented. This is the main subject of
Chapter .
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1.4 STRUCTURE OF THE DOCUMENT

The document consists of 6 chapters. Apart from the current introductory
part and the last one dedicated to conclusions, the remaining chapters can
be divided into two non-disjoint parts. The first part discusses the prior art
and the context of the work and consists of Chapter 2 and Chapter 3. The
second part consists of Chapters 3, 4 and 5 and is dedicated to the contribu-
tions made in this thesis. As can be seen, the role of Chapter 3 is twofold: it
analyzes the prior work, but is a contribution on its own.

The chapters can be to some extent read separately and each chapter starts
with an introductory text that should help the reader. That said, assuming
that the introduction has been finished, the prerequisites for each chapter
are as follows. Chapter 2 generally requires no prior knowledge and is also
strongly recommended for Chapter 3 and Chapter 4, unless the user has ex-
perience with experimental research in the domain of distributed systems.
Chapter 5 is more general than others and most of it can be reasonably ap-
proached on its own (although the knowledge of workflow models is strongly
recommended). For deeper understanding, Chapter 4 is indispensable as it
gives the technical context. This weak requirement is shown with a dashed
arrow in the following summary:

(1) Introduction
(2) State of the art
(3) Survey of experiment management tools

) (4) BPM-based experiment management

1
\

* (5) Provenance tracking in control-flows

(6) Conclusions and future work

The overview of each chapter is presented below.

CHAPTER 1 — INTRODUCTION

In this chapter we introduce the subject and the motivation of the thesis
in general terms. The problem considered is precisely stated, as well as the
contributions made in this thesis. Finally the structure of the document is
presented, so that the reader can easily navigate. This is the chapter that you
read right now.

CHAPTER 2 — STATE OF THE ART

In this chapter we analyze the current state of the art in the domain of
research in distributed systems research. This includes domains such as the
methodology of experimental research, the scientific workflows and the busi-
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ness process management. Note that discussion of methods for provenance
collections is postponed to Chapter s.

CHAPTER 3 — SURVEY OF EXPERIMENT MANAGEMENT TOOLS

This chapter is the analysis of the experiment management tools for re-
search in distributed systems. First, the features of such tools are identified,
defined and explained. Then all relevant experiment management tools are
evaluated according to it, showing their strong and weak points. Moreover,
important conclusions are made about the general state of such tools. It is
the first major contribution of the thesis.

CHAPTER 4 — BPM-BASED EXPERIMENT MANAGEMENT

In this chapter, we introduce XPFLOW, an experiment management tool
for distributed systems research, which, distinguishably, is based on Busi-
ness Process Management. We motivate our approach and show how it helps
with the problems encountered in distributed systems research. Then we de-
scribe the design of our tool and evaluate it with various case studies to vali-
date our claims. It is the second major contribution of the thesis.

CHAPTER 5 — PROVENANCE TRACKING IN CONTROL-FLOWS

This chapter is devoted to the tracking of provenance in control-flows.
First, we analyze the existing work in the domain of provenance collection.
Then, we discuss the importance of provenance in research and identify the
distinct types of it. Later, we design a provenance system that can track and
collect each of them in an efficient way. This system is also evaluated to show
its usefulness regarding provenance collection. It is the third major contri-
bution of the thesis.

CHAPTER 6 — CONCLUSIONS AND FUTURE WORK

In the last chapter, we sum up the contents, the contributions and the
results of the thesis. The limitations of our methods and methodologies are
discussed as well, followed by the overview of the future work that lays ahead
in this domain.






My Mama always said you’ve got to put
the past behind you before you can move on.

— Forrest Gump, Forrest Gump

STATE OF THE ART

This chapter is dedicated to the analysis of prior art in domains supporting
the theses of this work. Such an analysis is necessary to understand the diffi-
culties of performing research on distributed systems, as well as the current
position of researchers tackling these problems.

The chapter consists of a few sections each devoted to a different and in-
dependent subject and therefore can be read separately. First, in Section 2.1
we will discuss the state of research in distributed systems, its challenges,
methodologies and supporting tools. Then, in Section 2.2, tools helping all
researchers in computer science will be presented. This will be followed by
Section 2.3 where we will narrow our focus to tools supporting research in
distributed systems. Finally, we will discuss the domain of scientific work-
flows in Section 2.4 and Business Process Management in Section 2.5. Prove-
nance collection and its state of the art is postponed to Chapter s.

2.1 EXPERIMENTAL DISTRIBUTED SYSTEMS RESEARCH

Each domain of research comes with its own challenges and peculiarities
and this is obviously true for experimental distributed systems research. We
analyze methodologies, trends and tools used in the domain, hoping to bet-
ter understand its difficulties and ways by which it can be improved. In Sec-
tion 2.1.1, we will introduce the domain and motivations for studying dis-
tributed systems. Then in Section 2.1.2, the status of the domain as a science
will be discussed, followed by the presentation of standard research method-
ologies in Section 2.1.3. Then the reproducibility of experiments, especially
those in distributed systems research, will be discussed extensively in Sec-
tion 2.1.4. Finally, some high-level methodological difficulties of experiment
design will be discussed in Section 2.1.5.

2.1.1 Motivation

Distributed systems became indispensable in the modern, interconnected
world. Their study becomes increasingly important as they form the skele-
ton of modern data processing, communication and countless services that
people depend and rely on.

Distributed systems are used on a daily basis, sometimes even without
their users noticing it. Domain Name Service [130], for example, is a globally
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distributed name service used on the Internet. Together with electronic mail,
they are arguably the two oldest distributed systems in existence. More re-
cently peer-to-peer file sharing (P2P) became another prominent distributed
system which is responsible for up to 70 % of Internet traffic in some regions
of the world [167]. Some of these systems are vital to correct and the contin-
uous operation of the Internet. Their proper design and evaluation is of ut-
most importance, as consequently is the research in distributed systems.

Distributed systems became also a necessity for highly available, globally
distributed services for coordination, data storage, transaction processing,
communication, indexing and monitoring. In particular, large IT companies
implemented many complex systems, for example: Spanner [50] (a globally
distributed SQL database), Percolator [144] (an indexing service behind the
Google’s search engine), ZooKeeper [104] (a coordination service) and Map-
Reduce [59] (a parallel programming model), among countless others.

What permeates the research of these well-funded bodies is the unani-
mous use of the experimental verification of their systems. Formal methods
are only used to verify some parts of systems if at all. Moreover, some re-
searchers honestly admit that it is very difficult to apply theoretical results
in practice and there is no practical methodology to develop distributed sys-
tems [46]. For that reason researchers look not only for new approaches, but
also for simpler solutions to problems that has been, at least in theory, al-
ready solved [141].

2.1.2 Scientific method in computer science

The beginnings of computer science were purely theoretical and the reason
for that is quite simple: there were no computers at that time. When Alan
Turing published his famous paper On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem in 1936, paving the road for future computer
revolution, there where no practical realizations of his Turing machines. There
were machines that were able to compute (such as the Enigma machine), but
the first programmable machine capable of the universal computation was con-
structed only a few years later, in 1941, by Konrad Zuse [160].

In this light, it may be considered incorrect to call computer science a sci-
ence since science is the intellectual and practical activity encompassing the system-
atic study of the structure and behavior of the physical and natural world through ob-
servation and experiment (Oxford Dictionary). This image has been reinforced
by some computer scientists (cf. attributed to E. Dijkstra: computer science is
no more about computers than astronomy is about telescopes), but also contested by
others [184]. Actually, computer science is probably all of that: mathematics,
science, engineering, even art, and all combinations of them [64].

It seems, however, that computer science turns to non-formal methods
and a purely analytical, mathematical approach is almost non-existing (i. e.,
amounts to less than 4 % of publications [193]). Even if we grant the status of
science to computer science, a question remains whether computer scientists
actually follow the scientific method and its principles. It has been reported
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Figure 1: Model describing progression from research to adoption [4] (with
some minor adjustments). As can be seen, it involves both simula-
tion and in-situ experimentation on research testbeds.

that approximately 50 % of computer science papers proposing models or hy-
potheses do not test them [184], whereas in other fields of science this num-
ber is as low as 10 % [64]. Clearly the scientific method has not become yet the
mainstream paradigm in computer science.

The situation is worsened by the fact that the term experiment is often am-
biguous. At least five uses of experiment exist: feasibility experiment, trial ex-
periment, field experiment, comparison experiment and controlled experiment [182].
Each of them represents a different activity with slightly different standards
and rules for running it. Although controlled experiments are the gold standard
of scientific research in many fields of science, it is the other meanings that
prevail in computer science.

2.1.3  Research methodologies

We can distinguish two entities involved in experimental research in dis-
tributed systems: an application and an environment. An application is a sys-
tem under the test itself, whereas an environment is everything that makes
the context of the experiment, but is not the application itself. It may be
tempting to associate the application with software and the environment with
hardware, however this is not the case. Software may well be a part of the en-
vironment (e. g., libraries installed in a system) and hardware may be a part
of the application (e. g., sensors in a wireless mesh network).

Both the application and the environment can be real (i. e., similar to pro-
duction systems) or a model (i. e., a simplified view of a real system). By in-
tersecting these two orthogonal aspects of the application and the environ-
ment, the four following research methodologies in distributed systems can
be defined: the in-situ experiments, benchmarking, emulation and simula-
tion [101] (see Table 1). Some existing solutions do not fit in this classification:
Splay [119], for example, can be considered both a simulator and an emulator.

Itis worth noting that the members of National Science Foundation argue
in their report [4] that there is a natural progression from a research idea to
the commercialization which involves the aforementioned methodologies.
This is presented in Figure 1.

In the following sections we will outline each methodology in detail.

2.1.3.1 In-situ experiments

A methodology of experiment consisting in running a real application in a
real environment, in-situ experimentation, is the main subject of this thesis.
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Table 1: Research methodologies in distributed systems research.

Application
Real Model
) Real In-situ ~ Benchmarking
Environment
Model Emulation Simulation

w RESERVATION H DEPLOYMENT
L EXECUTION }—»‘ DATA COLLECTION H CLEANUP }—»O

Figure 2: High-level model of a single instance of an in-situ experiment. It
consists of 5 steps: Reservation, Deployment, Execution, Data col-
lection and Cleanup. Note that these steps make up the step 3 (Per-
form the experiment) in Figure 3.

As the most general methodology it is also the least standardized and count-
less approaches and tools exist to support it. In fact, as standard environ-
ments and well-known software are used, such an approach can be and is
used by people with common computer science knowledge.

The in-situ methodology gives the encouraging promise of the most rele-
vant results. Indeed, the way the experiments are conducted does not differ
significantly from a deployment in a production system. The same problems
must be solved and the same issues arise in both cases. Nevertheless, the ap-
proach can be criticized for not being general nor reproducible, since its ex-
periments depend on numerous factors that are difficult extract, control or
may have erratic and hence unreproducible behavior.

As in-situ experiments are the main subject of this work, it will be useful
to understand how they are structured. By observing habits of scientists and
existing publications, the simplified, high-level model of steps involved in a
single instance of an in-situ experiment can be obtained. It consists of 5 steps:

1. Reservation of resources (Reservation).
2. Deployment of necessary software and configuration (Deployment).
3. The experiment proper (Execution).
4. Collection of results (Data collection).
5. Cleaning up (Cleanup).
There are, of course, experiments that do not follow these steps to the letter.
Moreover, the model presumes that each step is sequential, but it is possible,

for example, to collect results as the experiment proper executes. We will
refer to this model, presented graphically in Figure 2, throughout the thesis.
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Tools supporting this methodology will be presented in more detail in Sec-
tion 2.3. Existing tools to manage and control in-situ experiments will be an-
alyzed extensively in Chapter 3.

2.1.3.2  Benchmarking

Benchmarking is a common way to evaluate a distributed system. It is per-
formed by running a synthetic application on an existing, real system and
evaluate its performance. The metric of performance used depends on the
benchmark, but the most common examples are: time, the number of re-
quests per second, energy consumption, etc.

Benchmarking is usually standardized within each domain. Indeed, there
are benchmarks to measure the performance of high-performance comput-
ing (HPC) [147], memory bandwidth [125] or CPU performance [175]. The re-
sults from benchmarks are relatively easy to obtain and easy to compare be-
tween different experiments. For example, the TOP500 list [185] of the most
powerful computer systems in the world is compiled according to the results
of a single benchmark: the number of floating-point operations per second
(i. e., FLOPS) that a given system can achieve.

It is of course not necessarily true that the system will achieve the same
performance in a real-life situation. It is the main drawback of the approach,
as the system is being represented by a single, possibly idealized and unre-
alistic metric. This bears similarity with representing a whole probabilistic
distribution by its moments such as the expected value or its median.

2.1.3.3 Simulation

In simulation, both the application and the environment are modeled, which
has a few advantages. First, it is in theory fully reproducible and separated
from the effects of unreliable hardware. Second, models of the application
and of the platform enable easier and faster development, as well as simplify
the interpretation of results. Finally, some simulators let the researchers run
their experiments at the scale that is unattainable in the reality [155].

On the other hand, simulators target a specific domain and may not meet
the needs of research. Moreover, they represent a simplified behavior of a
real system that may not reflect reality. Moreover, the simulated application
is effectively a prototype that cannot be directly used in production systems.
There is research, however, on transforming software models to real systems
while keeping their essential properties. Finally, there is a surprising lack of
standardization in simulation. Currently, nearly 75 % of P2P papers using
simulation employ custom simulators and this fraction increases [17, 134].

Simulation is a popular approach in domains such as general distributed
systems [44], P2P networks [17] or networking.

2.1.3.4 Emulation

Emulation consists in running a real, unmodified application in a model of
platform. The main idea is to tame the inherent variability of in-situ experi-
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ments by using a model of the environment, while still maintaining useful
properties, such as the use of standard tools.

Most emulation techniques focus on the emulation of network properties
such as latency and bandwidth (Dummynet [41, 42, 159], P2PLab [136], Study
of Network Emulators [137]). Other techniques integrate emulation of CPU
performance (Distem [28, 29, 165]), IO speed limitation (Wrekavoc [37, 38,
73]) and emulation of multiple nodes via containerization (PlanetLab [40],
Distem [165], LiteLab [194], Mininet [201]). Network emulation is sometimes
a core feature implemented in research testbeds (e. g., Emulab [165], Planet-
Lab [40]).

The next group of emulation techniques is based on time dilation which
consists in changing the perception of time experienced by an application
(DieCast [100], Time Jails [97], SliceTime [199] and others [209]). This pow-
erful technique enables emulation of nonexistent hardware, such as high-
performance CPUs, network devices and storage devices.

Another approach, lying on a crossing between emulation, virtualization
and containerization, relies on emulation of a whole operating system [66,
67]. User-Mode Linux (UML) is a specially crafted Linux kernel that can run
as a standard, unprivileged program that interacts using userspace libraries
and interfaces. A recent work in this area led to a userspace library that fully
emulates the Linux networking stack and can be used with ns-3 network
emulator [181].

Emulation has been used to run large-scale network experiments in the
environment resembling Internet [188]. This approach is another successful
application of the Dummynet emulator.

Disadvantages of using emulation in research are inherited from both in-
situ experiments and simulation. Depending on the particular case, a given
emulator may suffer from low reproducibility, the difficulty of controlling
the experiment (in-situ emulators), or from too simplistic assumptions, un-
realistic emulation and restricted environment (emulators leaning towards
simulation).

2.1.4  Reproducibility

Scienceis a process which accumulates knowledge by observing phenomena,
hypothesizing about their causes and testing these hypotheses experimen-
tally. If the results of an experiment turn out to be in favor of the hypothesis,
confidenceinitis strengthen, but a failure to support it is a reason to reject it
altogether (assuming the experiment was correctly conducted). The more ev-
idence, especially from independent sources, in favor of the hypothesis, the
stronger is the reason to believe it is true.

Reproducibility is an ability to show the veracity of the given scientific hy-
pothesis by a different group and preferably in different settings, for exam-
ple with different measurement techniques. Reproducibility consists there-
fore of making sure that the phenomenon is general, not a mere artifact of
an experiment, coincidence, luck or a result of a scientific fraud.
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’ 1. Make a hypothesis ‘
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Figure 3: Experimental cycle. The steps 1, 2, 3, 4 and A make an ideal research
process one can dream of. However, it may happen that the exper-
iment failed for some reasons (X) or did not support the working
hypothesis (B). Note that the step 3 is essentially represented by the
model in Figure 2.

Reproducibility is considered a hallmark of science, since phenomena that
cannot be reproduced cannot be considered general laws. It should not be
confounded however with replicability that focuses on being able to obtain
the same conclusion multiple times and in a short period of time (e. g., one day).
Repeatability, on the other hand, is a more robust form of replicability and
extends this period of time (e. g., more than a day). The proposed periods of
time are just an example, the importance lies in the following facts:

« Replicability concerns itself with the experiments conducted in an im-
mediate succession, with the same conditions and the same mindset.

« Repeatability assumes that some time has passed, the accumulated
domain knowledge is probably lost, conditions or software may have
changed or protocols have been revised. The design of the experiment
remains nevertheless the same in principle as well as the group of re-
searchers that experiments.

This can be summarized in the following way by referring to the idealized
experimental cycle in Figure 3:

« Reproducibility consists in being able to successfully redo steps 2, 3, 4
and A. It means that the same scientific hypothesis is supported by a
substantially different piece of evidence obtained by a different group,
tools and methods.

« Replicability is about being able to successfully redo steps 3, 4 and A.
In this case, the experiment design remains essentially the same. It is
therefore rather automation of the experiment than its full reproduc-
tion. In the context of distributed systems research it leaves the fol-
lowing elements remain unchanged: software, external factors (e. g.,
workload and injected faults), configuration, etc.

13
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« Repeatability is just as replicability above, but in time periods that are
long enough for the domain knowledge about the experiment to be-
come lost.

Replicability (and hence repeatability) still remains an ambiguous term
and the different types of it have been distinguished in science [96]. More-
over, the usefulness of replicability in science has been questioned [71]. It
may seem, that the lack of reproducibility in science may undermine its pub-
lic perception and trust, but not all see that as a real threat to science [72].

In the following sections, a concise list of threats to reproducibility will be
presented. We will start, however, with a short list of general principles that
are widely considered useful or even necessary for reproducibility.

2.1.4.1  General methods to ensure reproducibility

Many authors in various domains advocated for actions and methodologies
to ensure reproducibility of their research [91].

Itis widely advocated and generally accepted as a good practice to release
source code and other artifacts related to research and publications [106, 124].
Preferably a version control system such as Git or Subversion should be used
as well, so that changes can be easily tracked.

Apart from the source code, it is important to document the details such as
dependencies, platform configuration, information on how to run the exper-
iment, all input data and the details of execution. Moreover, the researchers
should publish raw data obtained from the experiments, as well as scripts
used to postprocess them [43].

The use of existing tools and standards instead of reimplementing them
is preferred as well. If non-standard procedures are used, the research is less
likely to be reproducible. Various tools helping research will be presented in
Section 2.2.

2.1.4.2  Technical threats to reproducibility and countermeasures

There are inherent, technical difficulties associated with experimental re-
search in distributed systems and one has to identify them to know how to
improve the process. In this section we discuss them and try to understand
their impact on the difficulty of conducting experiments.

Large scale of experiments. Experiments are often of large scale which may in-

troduce random or even erratic behavior due to surpassing inherent
limits of experimental environment. This problem belongs not only to
a system under the study, but also to all operations required to control
the experiment as well.
This problem cannot be simply eliminated by not considering large-
scale systems. It is often the very purpose of distributed systems to
handle large-scale installations and to function correctly despite asso-
ciated difficulties.
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Experimental research in distributed systems does not have an inte-
grated approach to deal with large-scale experiments, although simu-
lation is de facto standard to achieve robust and repeatable experiments
at large scale. In in-situ experiments, the early detection of failures
(e. g., via monitoring) and checkpointing are other useful techniques
shielding from the randomness of large-scale computer systems. One
of the enablers of large-scale experiments are testbeds such as those
described in Section 2.3.1.

Heterogeneity. Distributed systems are generally heterogeneous, since it is

virtually impossible to have a large system with identical components
at each level of infrastructure (e. g., disks, switches, routers, network
cards, firmware, operating systems, software, etc.). These differences
are hard to reproduce as they change often and both hardware and
software evolve with time. Heterogeneity may cause failures (e. g., in-
compatible software versions) or unexpected behavior (e. g., network
congestion due to asymmetric links) as well.
Reporting the minute details of platform and software are necessary
to reproduce a heterogeneous platform. More importantly, however,
heterogeneity should be avoided if possible so that the results are more
general and do not require special hardware, for example.

Hardware faults. Hardware cannot be considered infallible, especially when
working with large-scale systems where the number of components
increases the probability of failure substantially. In fact, faults in large
systems are more like a rule than an exception - studies have shown
that the yearly failure rate of hardware disks can be as high as 6 % [149].
The faults may go unnoticed, which may lead in practice to incorrect
conclusions from an experiment. Graphically, an experimenter may
be unable to distinguish between the state X and any of the states A
and B in the experimental cycle in Figure 3.

Monitoring of a platform can be used to discover failures and a strange
behavior of a platform. Similarly, checkpointing may help to progress
despite the presence of failures.

Software bugs. Similarly, problems present in the software, such as bugs, may

imperceptibly influence the behavior of a system or reveal themselves
unexpectedly only in particular conditions. .
There are no obvious ways to protect oneself from bugs in existing,
large software stacks that researchers depend on. Following proper
software engineering practices may at least eliminate bugs in the re-
searcher’s code and scripts.

Inability to identify relevant factors. Some distributed systems are so complex
that it is virtually impossible to control, let alone to identify all rele-
vant factors that may influence an experiment. In fact, even the most
innocent parameters may have a quite substantial effect on the sys-
tem behavior [133]. If these factors cannot be identified, they cannot
be communicated as well, and others cannot prepare their reproduc-
tion study accordingly.
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One has to be very careful to dismiss factors, even the most seemingly
innocuous. Moreover, as mentioned in Section 2.1.5, some statistical
techniques may be used to formally eliminate unimportant factors.

Errors in experimental process. Since experimentingis often regarded asaone-
time activity, they are often prepared in a hasty manner and without
much care, so that they “just work”. Consequently, errors creep in due
to hurry, repetition and low code reuse. These problems with exper-
imentation process may not be observed in a timely fashion or even
simply ignored by a researcher in a hurry.

Some of these problems can be addressed by using existing and well
tested tools, methodologies and protocols.

Complexity of experimental process. Due to complexity of computing systems,

experiments tend to be complex as well. Description of most experi-
ments is therefore difficult to comprehend and important details may
be unavailable to a researcher trying to reproduce an experiment.
Moreover, the common way of preparing experiments is a bottom-up
approach where independent elements (e. g., tools, scripts, services)
arelinked together in an unstructured way. An alternative is a top-down
approach where an experiment is designed as an abstract description
whose particular implementation is supplied later. We will address
this issue in much greater extent later in Chapter 4.
The similar issues of complexity in software programming have been
addressed by many researchers in the past. A methodology that essen-
tially introduced a top-down approach to programming, structured pro-
gramming, was quite radical at some point [65]. Methodologies to pro-
gressively refine software projects have been proposed [205], but man-
aging complexity of software projects remains a difficult and unsolved
problem.

Little or no provenance. The imperfect description of experiments may not be
enough to reproduce it, therefore it is useful to store the minute de-
tails of experiment execution, so that they can be analyzed later. These
additional data is called provenance and is essential to understand the
context of an experiment and its lack may be insurmountable barrier
for reproducibility.

Provenance is mostly understood as a documentation of how experi-
mental results were captured, transformed and summarized, but as
we will see in Chapter 5, it can be generalized to a widely understood
context of an experiment.

Provenance can be collected by many supporting tools, such as dis-
cussed in Section 2.2.3 and more general provenance collection tech-
niques described in Section 5.2.

Configuration of the platform. The installation of software required to run ex-
periments is a complex process itself. In fact, the deployment of soft-
ware is a well-known problem that faces similar challenges as other
distributed systems.
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The difficulties of deploying a complex system consisting of many in-
teracting nodes and services is well-known and many solutions exist
to tackle it (see Section 2.2.2).

Time Another difficulty is posed by passing of physical time, which in the

long run will make all experimental research unreproducible. The rea-
sons are simple: technology to run experiments will not exist anymore,
nor will software run on newer processor architectures [45].
For this reason, it seems, each attempt at reproducible research must
define its target of long-term reproducibility. Some research projects
may be satisfied with 2 years of prospective reproducibility, whereas
others may target longer periods of time. Virtualization (Section 2.3.6)
may be used to extend the lifespan of research work, but comes with
its own reproducibility problems.

2.1.4.3  Non-technical threats to reproducibility and countermeasures

The state of reproducibility from a less technical point of view has been ana-
lyzed in computational sciences [70] and parallel computing [103]. There are
many social and methodological reasons as why reproducible research is not
common.

Time &effort. Making research reproducible takes time and effort that could
be used for other purposes. Current methodologies for ensuring repro-
ducibility are hence too bothersome and tedious when followed.

It can be argued however, that technical means, tools and methodolo-
gies can be used to ensure a good enough reproducibility without mak-
ing the whole process longer.

Scientific community & publishing. Current research practices do not encour-
age reproducibility. There is no real incentive to make and publish re-
producible research. The publishers may have no interest in verifying
reproducibility of submitted research either.

Intellectual property & capital. Details of research may not be published simply
because they are a valuable asset of a researcher or a company. More-
over, researchers may be afraid that their research will be plagiarized.

Reputation concerns. Researchers may withhold publication of details of their
work (e. g., source code), because of not being particularly proud of its
quality and hence undermining their reputation.

Some of these threats would arguably require changes to the existing pub-
lish model. There are already some modest efforts to not only encourage the
distribution of source code with publications, but even mandating it. At the
time of writing, Science requires its authors to submit complete source code,
whereas Nature considers it best practice (similar rules apply to accompany-
ing data).

Similarly, electronic journals have been started in various domains which
require the authors to publish the source code demonstrating their findings
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in demand. For instance, IPOL! is such a concerted effort in the domain of
image processing and image analysis. No such journal exists, as far as the
author can tell, for research in experimental distributed systems, the less in
large-scale ones.

2.1.5 Experimental design

As every domain of science, computer science requires a design of experi-
ments to prepare valid and efficient experiments. Experimental research in
distributed systems presents some additional challenges. Extensive work on
experimental design for performance evaluation has been done [107].

First, the aforementioned plenitude of influencing and interrelated fac-
tors, poses a non-trivial difficulty. The exhaustive exploration of parameter
space is impossible for even simple systems which rules out full factorial de-
signs of experiments. There exist techniques, however, that may be used to
narrow down the analysis to the factors that have the principal effect on be-
havior of a system (fractional designs).

Second, most of performance evaluation questions are often not clearly
defined and form multi-criteria optimization problems without any proper
definition of the best solution. This makes quantifying properties of com-
puter systems difficult and complicates fair comparisons between them.

Moreover, experiments in computer science are rarely statistically robust,
for example experimental runs are rarely repeated to eliminate random vari-
ations (less than 31 % of papers [43]). This casts a doubt on the repeatability of
results even within a single experiment. Moreover, even such an innocuous
detail such as the choice of proper mean to summarize results may lead to
skewed or even wrong results [82, 107].

2.2 TOOLS TO FACILITATE GENERAL RESEARCH

This section summarizes the most relevant general-purpose tools that help
researchers in computer science with no particular focus on a specific do-
main. The main purpose of such tools is to improve the productivity of re-
searchers that work with computers. They may improve it directly, by speed-
ing up the overall process, or prospectively, for example by making it easier
to carry on research by future researchers. Note that our list is minimalis-
tic and by no means complete, since we focus on tools relevant to our work.
These tools are important to our research, since we too aim at facilitating re-
search in distributed systems. The approaches presented in this section are
especially relevant to the description of experiments, which will be discussed
in Chapter 4.

The contents of this section partially overlap with the domain referred
to as research programming which is the form of programming activity that
aims to write programs that obtain insights from data. This domain has been

1 http://www.ipol.im
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the subject of an extensive analysis recently [99]. The same analysis distin-
guishes four different phases involved in the process: preparation, analysis,
reflection and dissemination.

First, literate programming is presented in Section 2.2.1, followed by Sec-
tion 2.2.2 which discusses tools used to configure and manage experimental
environment. Finally, we discuss tools to capture context of experiments in
Section 2.2.3.

2.2.1  Documentation and notetaking

Awell-known approach, not only to research, but to programming in general,
is known as literate programming [115]. It consists in writing the program with
extensive documentation which is an integral part of the program. In fact, the
Knuth’s original approach intermingles code and comments in one single
flow of text.

This approach has been generalized to research activities such as statisti-
cal analysis [118], literate experimentation [174] and planning and time manage-
ment [166].

2.2.2  Configuration management

Configuration of a computing platform is clearly a difficult problem to re-
searchers, but even more so to people whose job is to run and manage such
systems on a daily basis. Indeed, the difficulty of performing the very first
step, software and service deployment, is shared by both researchers and sys-
tem administrators.

A common way to manage relationships between software is to explicitly
track their dependencies. This is an approach that is a base for all popular
Linux distributions such as Debian, Ubuntu (DEB packages), Red Hat, Fe-
dora (RPM packages) and others. By having explicit dependency informa-
tion, a system may install a software package with all its transitive depen-
dencies automatically.

Since the dependencies can be satisfied in multiple ways, system config-
uration necessary to run the package at a particular version is not generally
unique and hence unreproducible. Moreover, and it is a corollary of the pre-
vious observation, the build environment of a package is not reproducible as
well, therefore there is no guarantee that the package will be identical when
built even two times. There are however some promising efforts to address
this problem?.

Configuration management tools try to solve the problem by providing a high-
level framework to describe system configuration. Puppet® and Chef*, Ansi-
ble® are commonly used in automating administrative tasks such as software

2 https://wiki.debian.org/ReproducibleBuilds
3 https://puppetlabs.com/

4 http://www.opscode.com/chef/

5 http://www.ansible.com
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provisioning and the configuration of operating systems. They simplify com-
plex deployments by providing a clear, declarative description of a desired
system state and then carrying out necessary steps to reach it. Moreover, they
abstract differences between different operating systems, so that the same
configuration scripts can be used everywhere. Such tools are commonly used
by researchers to address the reproducibility of experimental platform [114].

Operating at even higher level are orchestration management tools, like
Juju®, which are designed to coordinate complex systems in flexible and re-
active ways, usually in the cloud computing context. These tools can coordi-
nate changes on multiple machines in tandem so that required invariants
are preserved.

Traditional configuration management systems are oblivious to system
state that is not specified explicitly. For example, if a user account informa-
tion is not specified in Puppet recipes, the final system configuration may
or may not have such an account. Consequently, it means that, at least with
respect to unspecified facts, the final state need not be reproducible.

This is mitigated by the novel approach of the Nix package manager [68],
which is based on the functional description of software and its dependencies.
More precisely, every software package is a deterministic result of its con-
figuration and its dependencies. The approach has many useful features, in
particular it allows installing multiple versions of the same software (some-
thing usually impossible with traditional package managers) or have fully
atomic system upgrades. Nix has been used to built a fully functional Linux
distribution called NixOS [69].

2.2.3  Capturing context

Given the complexity of experiments, it is crucial for reproducibility to cap-
ture experimental context, that is, to store information about an environ-
ment where the given experiment has been executed and all related details,
such as input files, environment variables, current state of codebase, etc. Ex-
perimenters can take advantage of version control systems (e. g., Git, Subver-
sion) or more sophisticated tools like Sumatra [57], which aim at recording
the scientific context in which the given experiment was performed. Such
tools store historical information about experiment runs and their parame-
ters and results. This approach documents research with a low burden and
enables meaningful comparing of different experiment runs.

Creation of ontologies describing the experimental platform has been pro-
posed as well [164] as a method for helping reproducibility in computational
sciences.

A related idea is that of reproducible papers, that is, scientific publications
that contain all relevant details on how the final publication was created. This
includes raw data, scientific protocols, configuration details, software ver-
sions possibly in interactive and easy-to-use way [128].

6 https://juju.ubuntu.com/


https://juju.ubuntu.com/

2.3 TOOLS TO FACILITATE RESEARCH IN DISTRIBUTED SYSTEMS

2.3 TOOLS TO FACILITATE RESEARCH IN DISTRIBUTED SYSTEMS

This section completes the previous one by focusing on tools that are partic-
ularly useful for research in distributed systems and less so for general com-
puter science. Presented techniques will be especially relevant to low-level
features (command execution, checkpointing, fault tolerance, testbed types,
etc.) of our experiment control engine which will be presented in Chapter 4.

We start with an overview of experimental testbeds in Section 2.3.1. This
is followed by the discussion of monitoring in Section 2.3.2. Then, workload
generation is introduced in Section 2.3.3 and tools helping with parametric
studies in Section 2.3.4. Fault tolerance and methods to achieve it are the sub-
ject of Section 2.3.5. Finally, we discuss both virtualization and containeriza-
tion in Section 2.3.6.

2.3.1 Testbeds

To meet the needs of in-situ experimenting, researchers designed and con-
vinced their funding bodies to build large systems dedicated to research in
networking, protocols as well as distributed and parallel computing. Many
testbeds have been built for this precise reason and even design guidelines on
how such systems should be built have been identified [172]. The increasing
interest in testbeds led recently to special journal issues dedicated fully to
them [179].

Testbeds differ in many aspects, in particular they focus on different do-
mains of experimental research, but also use different approaches. It is im-
possible to fully separate them, yet some general trends exist.

The scientific focus of testbeds is represented by domains such as: net-
working, distributed and parallel computing (including cloud computing),
services and applications, or wireless communication. This is unsurprising,
considering that precisely research in these domains requires extensive em-
pirical verification.

In terms of approach, there can be three main, but partially overlapping
approaches distinguished. Testbeds such as Emulab and ORBIT rely on net-
work emulation (emulation testbeds) to produce repeatable conditions. Such
testbeds tend to be a single-site installations since emulation of the network
is coordinated centrally. Testbeds giving a direct and unrestricted access to
bare-metal machines (in-situ testbeds) tend to be more distributed, usually
consisting of a few sites connected with reliable, dedicated, but generally
heterogeneous network. The classical example of such a testbed is Grid’s000.
The last group of testbeds (virtualized testbeds) builds on virtualization tech-
nologies applied to the computing power and network resources. This is the
most recent approach that tries to exploit the advantages of virtualization,
that is, the flexibility and virtually unlimited resources. Examples of such
testbeds include Open Cirrus, and more recent CloudLab and Chameleon.

The approach of a testbed does not necessarily imply its focus. For exam-
ple, there is nothing stopping the use of a testbed such as Grid’sooo for cloud
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computing. Moreover, it is also the case that the virtualized testbeds offer
bare-metal provisioning of physical machines (e. g., Chameleon).

Another approach, or rather a meta-approach, that gains a lot of traction
recently, consists in federating testbeds in such a way that resources of dif-
ferent testbeds can be used simultaneously and transparently. The enabling
technology for such federation is Software Defined Networking. An example
of such a testbed federation is GENL.

Below is a short summary of the most prominent testbeds ordered alpha-
betically, followed by meta-testbeds that aggregate and federate other testbeds.
Considering the rapid creation and evolution of testbeds, this list is arguably
not exhaustive nor up-to-date.

pAs (Distributed ASCI Supercomputer’) is a Dutch wide-area distributed
system designed by the Advanced School for Computing and Imaging
(ASCI). It is the fifth generation of this research project which distin-
guishably employs various HPC accelerators (e. g., GPUs) and novel
wide-area interconnect based on light paths. Its current iteration is
called DAS-5 (2015), but was preceded by other systems going back to
1997. DAS does not offer a dedicated tool to control experiments, how-
ever it provides a number of tools to help with deployment, discover-
ing problems and scheduling.

EMULAB [202] is a network testbed that allows one to specify an arbitrary
network topology and characteristics such as latency and bandwidth
of network links. It is achieved thanks to dedicated network nodes
running the Dummynet [41] emulator. These nodes do not explicitly
participate in the experiment, but are located between the nodes and
shape the network traffic according to the configuration. This feature
ensures high-performance emulation of a predictable and repeatable
environment for experiments, at least in terms of network configu-
ration. Users have access to the “root” account on testbed nodes and
hence can easily customize their software and configuration. Emulab
comes with a dedicated tool to control experiments (see Section 3.4.3).
The initial and main Emulab site is located at the University of Utah.

More recent work tries to improve Emulab’s environment repeatabil-
ity understood as an ability to recreate a state of the platform [34, 158].
APT (Adaptable Profile-driven Testbed) uses advanced network emula-
tion of Emulab and snapshotting of disk images to persistently store
experimental environment for later use and easy referencing. There
are also recent and promising efforts to leverage Emulab for cloud
computing research®.

Emulab is an open-source solution and has been deployed besides its
main site. In particular, it has been deployed as an isolated testbed for
potentially dangerous research [129].

7 http://www.cs.vu.nl/das5/
8 https://www.cloudlab.us
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G-LAB [169,170] (German-Lab) is an experimental facility of universities in
six German cities: Wiirzburg, Kaiserslautern, Berlin, Miinchen, Karl-
sruhe, and Darmstadt. G-Lab consists of approximately 200 general-
purpose nodes connected with high-quality links between sites. The
experimenters can use bare-metal machines with custom boot images,
but the default way of interacting is to use virtualization (in particular
via a local PlanetLab installation). Similarly to Emulab, G-Lab can cre-
ate arbitrary topologies which may also span multiple sites.

GRID’5000 [39] is an experimental testbed dedicated to the study of large-
scale parallel and distributed systems. It is a highly configurable ex-
perimental platform with some unique features. For example, a cus-
tomized operating system (e. g., with a custom kernel) can be installed
and full “root” rights are available. The platform offers a REST API to
control reservations, but does not provide dedicated tools to control
experiments. However, the nodes can be monitored during the exper-
iment using a simple API. The multiple sites of the testbed are con-
nected with fast, reliable and dedicated network. Grid’sooo provided
amodel used by other testbeds, e. g., FutureGrid [84]. Recently, Future-
Grid has evolved into a more cloud-oriented testbed, Chameleon®.

The research profile of Grid’s000 is not specified, but due to the low
access to resources, it focuses mainly on system research, protocols
and networking. Interestingly, the computing power of Grid’s000 has
been also used to factor a 768-bit long RSA key, the current factoriza-
tion record to date [113].

IOT-LAB, CORTEXLAB AND NITOS-LAB formagroup ofrelated testbeds
used to experiment with wireless sensors (IOT-LAB'®), cognitive radio
(CorteXlab') and other wireless technologies such as WiFi, Bluetooth
or ZigBee (NITOS-Lab).

The testbeds are managed by the OneLab consortium' and financed
from the same sources. Some software used by these testbeds origi-
nated from Grid’so00 project.

JGN-X, STARBED3 are testbeds focusing on research in next-generation
networks and protocols. The JGN® (Japan Gigabit Network) testbed
enables experiments on multiple networking layers: layer 3 (e. g., [Pv4
and IPvé), layer 2 (non-IP Ethernet) and also layer 1 (wide-area optical
network). The related VNode project provides network virtualization
with a novel isolation technique inspired by PlanetLab slices.

StartBED (Hokuriki Research Center), on the other hand, uses a script-
ing language to model the platform and VMWare virtualization tech-
nology to deploy it on general-purpose computers.

9 http://www.chameleoncloud.org/

10 https://www.iot-lab.info/

11 http://www.cortexlab.fr/

12 https://www.onelab.eu/

13 http://www.jgn.nict.go.jp/english/index.html
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OPEN CIRRUS [11]isacloud computing testbed and the result of collabora-
tion of many entities including such companies as Yahoo, Intel, HP, as
well as universities. It is a testbed distributed around the globe at mul-
tiple sites. Each site has different research focus, but they are all united
by a single authentication system, monitoring resource tracking and
other services. The motivation behind Open Cirrus is to provide low-
level hardware access, heterogeneity of environment and large data-
storage capabilities. It is therefore a platform not only for “application
studies”, but also for more basic “system research”.

ORBIT [143,157] is a radio grid testbed for scalable and reproducible evalu-
ation of next-generation wireless network protocols. It offers a novel
approach involving a large grid of 400 radio nodes which can be dy-
namically interconnected into arbitrary topologies with reproducible
wireless channel models. Due to inherent variability of the wireless
communication, the designers of ORBIT made a special effort to ad-
dress possible reproducibility issues. A dedicated tool to run experi-
ments with ORBIT platform is OMF (see Section 3.4.6).

PLANETLAB [11, 145] is a globally distributed platform for developing, de-
ploying and accessing planetary-scale network services. It consists of
geographically distributed nodes running a light, virtualized environ-
ment (i. e., OpenVZ Linux which is a form of containerization). Net-
work between PlanetLab’s nodes is exposed at layer-3 (network level)
and since nodes are connected over the standard Internet, links be-
tween them are unreliable. PlanetLab offers Plush (see Section 3.4.4)
for experiment control.

The testbed offers network emulation via use of Dummynet [40], and
measurement infrastructure to obtain various metrics, observe topol-
ogy of network and get notifications about important events, such as
changes of link properties [24].

There is the concern of low reproducibility of research done in Planet-
Lab, mainly due to its best-effort capabilities, however some concerns
are unfounded [177].

PlanetLab is a successful model of a testbed and there exist many dif-
ferent variants and installations of it. Recently some of them try to
reach layers below the network layer: VINI [18] (Virtual Network In-
frastructure), VICCI [146] and GpENI [127] (Great Plains Environment
for Network Innovation).

The above presentation about testbeds is summarized in Table 2 (features
and properties).

To increase the size and the list of features offered by network testbeds, re-
searchers started to federate them in unified systems. Such federations offer
unprecedented features, heterogeneity and configurability. The most influ-
ential testbed federation is GENI [21] (Global Environment for Networking
Innovation), a distributed virtual laboratory sponsored by the U.S. National
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Table 2: Summary of the most important testbeds. The dates in parentheses approximate the
dates when testbeds became available (based on the analysis of online resources and

publications).
Characteristics
Focus Approach Participants Distribution
DAS Services & Clustersina NOSR! and other Six clusters
(first in 1997, algorithms wide-area bodies (around 200
last in 2015) network nodes)
EMULAB Networking & Bare-metal nodes University of One site (more
(2000) systems with network Utah than 300 nodes)
emulation
G-LAB New technologies Multiple sites German 6 sites
(2009) and applications managed universities with
together many partners
GRID’5000 Parallel and Multiple sites of GIS? and other 11 sites (1041
(2006) distributed bare-metal nodes bodies nodes)
computing
IOT-LAB, Wireless Large scale OnelLab 6 sites (2728
CORTEXLAB, communication infrastructure to consortium wireless nodes)
NITOS-LAB test for testing
(2014) wireless devices
JGN-X, Next-generation Federation of NICT? 1398 nodes in
STARBED3 networks testbeds various groups
(2011)
OPEN CIRRUS Systems & Federation of Many companies, 10 sites
(2010) services heterogeneous institutes &
data centers universities
ORBIT Wireless Reproducible NSF*and other A single site (400
(2005) communication wireless network bodies wireless nodes)
emulation
PLANETLAB Systems & Nodes hosted by Various More than 700
(2002) services research universitiesand  nodes worldwide
institutions organizations
GENI Networking & Large federation Various Hard to estimate
(2009) systems of testbeds & organizations &
native sites testbeds

! Netherlands Organization for Scientific Research
2 Scientific Interest Group
3 National Institute of Information and Communications Technology
4 National Science Foundation

Science Foundation for development, deployment and validation of trans-
formative, at-scale concepts in network science, services and security. GENI
relies on the concept of virtualization of computing power and advanced,
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flexible network configuration and emulation. GENI builds on previous ad-
vances in testbed design, for example it embraces the PlanetLab’s concept of
slices attributed to experiments.

The GENI federation not only uses dedicated racks for virtualized com-
putation and storage resources, but it is also known for successfully inte-
grating resources of other testbeds such as PlanetLab, Emulab, ORBIT, G-
Lab, etc. They are all available via unified API that abstracts details of each
site. By using technologies related to software-defined networking (SDN)
such as OpenFlow switches or virtualized cellular wireless communication
(WiMaX), GENIis currently able to create transparent layer-2 networks from
geographically and administratively distributed sites. Assigned network re-
sources may offer Quality Of Service (QoS) guarantees thanks to network
slicing [171].

GENTI has been used for realistic experimentation and research in areas
such as novel routing strategies, future Internet protocols, software-defined
networking, among others. GENI does not have a unified platform to con-
trol experiments due to its extreme heterogeneity. Its users have to use an
API and other tools to control the experiments instead. However, there are
multiple tools used for resource discovery and reservation.

Fed4Fire is another research testbed federation funded under European
Union’s Seventh Framework Programme (FP7) addressing Future Internet
Research and Experimentation (FIRE). It includes over 15 different facili-
ties from around the world. Like GENI, Fed4Fire is dedicated to experimen-
tally driven research with wired, wireless, OpenFlow and cloud-computing
testbeds. Thanks to the federated control and services, the experiments can
involve hardware from multiple testbeds simultaneously. Fed4Fire is also in-
teroperable with the GENI federation [198].

Different testbeds usually use a dedicated system that manages testbed
resources in face of multiple users interacting at the same time, but there is
some overlapping (e. g., see Grid’5000 and IOT-Lab above). There exist, espe-
cially in Grid context, management middleware systems that manage access
to resources, such as Globus [83].

2.3.2  Monitoring

A useful element of each experiment is its monitoring. It can be used to col-
lect the overview of a system while it was executing an experiment. Obtained
data can be a principal result of the experiment, but also all additional data
that can lead to deeper insights and as a way to detect that the system did
not run in unexpected manner.

There exist a lot of software used to monitor production systems, collect
historical information and raise alerts in presence of unexpected events. One
has to be wary, however, since too extensive and intrusive monitoring may
have a significant effect on the behavior of the system. This in turn may lead
to situations where a monitored system shows a behavior that is not present
without monitoring.
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Some of the testbeds presented above include monitoring as a standard
feature. PlanetLab’s nodes are monitored and services exist to find nodes
that are available [24]. Monitoring (via instrumentation) is also an integral
part of ORBIT (via OMF) [156].

The collection of large amount of monitoring data from multiple sources
is a difficult problem. Special infrastructures, languages and methods have
been devised to collect and correlate performance measurements [33].

2.3.3  Workload generation

Another useful aspect in some research studies is to be able to produce rep-
resentative workload during an experiment. For example, while testing load
balancing techniques, a researcher may want to test it under a realistic load.

Tools to generate load (or traffic) are readily available for many situations
and exist in many incarnations. As a bare minimum, such tools offer a way
to generate a constant workload (e. g., a constant number of HTTP requests
per second), sometimes with options to change in with time. Such tools are
essentially benchmarks and may be considered unrealistic.

Another method consists in using real, historical information that was col-
lected on a real system and replaying it [63]. Such workload traces are some-
times archived and made available publicly ' and even standardized for the
narrowed and precise types of loads.

2.3.4  Tools supporting parameter studies

By a parameter study, we understand an experiment that focuses on discover-
ing the influence of parameters (or factors) on the behavior of the system.

Tools like ZENTURIO [150] and Nimrod [1] help experimenters to manage
the execution of parameter studies on cluster and Grid infrastructures. Both
tools cover activities like the set up of the infrastructure to use, collection and
analysis of results. ZENTURIO offers a more generic parametrization, mak-
ing it suitable for studying parallel applications under different scenarios
where different parameters can be changed (e. g., application input, num-
ber of nodes, type of network interconnection, etc.). Even though Nimrod
parametrization is restricted to application input files, a relevant feature is
the automation of the design of fractional factorial experiments. NXE [98]
scripts the execution of several steps of the experimental workflow from the
reservation of resources in a specific platform to the analysis of collected logs.
The whole experiment scenario is described using XML which is composed
of three parts: topology, configuration and scenario. All the interactions with
resources and applications are wrapped using bash scripts. NXE is mainly
dedicated to the evaluation of network protocols.

14 http://www.cs.huji.ac.il/labs/parallel/workload/
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2.3.5 Checkpointing and fault tolerance

Checkpointing is a general technique that provides fault tolerance in pres-
ence of failures in a distributed system. Various methods and protocols has
been proposed by researchers that provide fast and scalable recovery [78].
One of the main difficulties is to ensure that checkpoints represent a consis-
tent view of a system as a whole and that restarting from it will not affect the
final outcome. In particular, in-transit network packets must be accounted
for.

Checkpointing is used by researchers working with in-situ distributed sys-
tems as well [34]. The method consists in using a lightweight hypervisor (Xen
in this case) that can stop the system globally, and a network emulation layer
(based on Dummynet) that takes care of network packets in transit.

2.3.6 Virtualization and containerization

With the emergence of robust, efficient and cheap virtualization, scientists
turn to cloud computing infrastructures as a viable experimentation plat-
form [74,102]. There are many technologies and vendors who offer virtualiza-
tion services. Linux Xen [15], for example, was employed by Amazon in their
successful Amazon Web Services platform. Similarly, Linux KVM is another
open source solution and VMWare” is a well-known commercial vendor.

Among the well-known commercial cloud providers one can find Amazon
EC2'¢, Windows Azure'’, Google Cloud Platform'®, and many others. There
are non-commercial, open-source solutions available as well, such as Open-
Stack™.

The services offered by cloud solutions can be split into separate groups
with increasingly deeper access to the underlying infrastructure: Software
as a Service (Saas, i.e., only an application is provided), Platform as a Service
(PaaS$, i.e., a ready-made system like a database is provided), Infrastructure
as a Service (Iaa$, i. e., a whole computing platform is provided) and, finally,
Network as a Service (NaaS$, i. e., additionally network can be virtualized) [51].
Arguably the researchers interested in networking or system research will
only be interested in the last two types of services.

Even though the development of cloud computing solutions was not in-
spired by the need of a research platform, scalability and elasticity offered
by those make it an attractive solution for science. A framework oriented to-
ward reproducible research on such infrastructures has been proposed [114].

Although virtualization is mostly associated with computing power, more
and more focus is given to network virtualization [148]. There are even ef-
forts to virtualize high-performance networking elements, such as Infini-
Band interconnect [161].

15 http://www.vmware.com/

16 http://aws.amazon.com/ec2/
17 http://www.windowsazure.com/
18 https://cloud. google.com/

19 http://www.openstack.org/
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There are many advantages that cloud platforms can offer to science:

« cheap and instant access to virtually unlimited resources,

. no maintenance and associated costs,

- progressively cheaper costs of cloud services,

- easy and cheap storage of datasets (cf. Amazon Public Data Sets*°),

« ease of collaboration.

There are also the dangers and difficulties of using cloud computing for
research and the use of outsourced infrastructure in general:

« questionable reproducibility of research (e. g., the cloud resources are
arbitrarily shared or even over-reserved without users even knowing),

- missing experimental functionality such as network virtualization or
low-level access due to a traditional focus on supporting Web services,

. performance concerns about virtualized environment,

« low applicability to some domains of computer science such as high-
performance computing, since most cloud offerings rely on standard
architectures and components,

« vendor lock-in due to low standardization of cloud platforms,

« security concerns about data stored in remote locations.

Some of these issues can be resolved with advanced cryptography [92], pri-
vate clouds or research testbeds such as those presented in Section 2.3.1.

Containerization is an alternative and lightweight approach to virtualiza-
tion. Whereas virtualization focuses and separating computation and net-
working fully from the host system, containerization uses software separa-
tion, usually through mechanisms implemented in an operating system.

Basic containerization techniques have been present for a long time in re-
search community to improve management of software. Modules [88] have
been used to separate and activate scientific software with dependency man-
agement.

The performance of containers was found to be on par with native execu-
tion [81]. This includes both start-up time of containers (which can be mea-
sured in milliseconds) and overall performance. There is however overhead
associated with copy-on-write (COW) techniques used for storage by con-
tainerization methods. Containerization has been used to scale evaluation
of peer-to-peer (P2P) systems [13].

It has been observed that containerization is traditionally tied to Platform
as a Service (PaaS), whereas virtualization more often to Infrastructure as a Ser-
vice (IaaS) solutions [81]. The same authors argue that due to hard separation
of host and guest systems in virtualization, containerization will always of-
fer better performance (e. g., due to inability of virtualization to account for
NUMA memory hierarchy in the host).

20 https://aws.amazon.com/datasets/
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Containerization sees a lot of interest in system administration and soft-
ware deployment. For example Docker? attained much interest from DevOps
community as a lightweight and powerful system for software and service
deployment. The features of Docker-like containerization have been also ap-
preciated by research community that seeks reproducibility [23].

2.3.7  Efficient and scalable command execution

Efficient command execution on the large number of nodes is a very prac-
tical problem, which is not entirely solved. As it is going to be an important
building block in our approach, we dedicate a few paragraphs to this subject.

The goal of command execution is to run a command on multiple nodes
efficiently and correctly. Various technical problems arise as the number of
nodes increases, mostly due to the limited scalability of network technolo-
gies and protocols. All presented approaches use SSH to access nodes and
execute commands on them, and therefore rely on TCP and the supporting
protocol stack. Standard command execution uses relatively low amount of
effective bandwidth (both input and output of commands is rather small),
but large amount of control traffic required to coordinate the whole process.

A naive way consists in executing a command via SSH on each node in
sequence. It suffers from linear time with respect to the number of nodes,
but is otherwise robust, as it does not stress the network at all. A simple im-
provement is obtained by having a limited number of parallel command exe-
cutions (a window). The optimal size of the window depends on the network
details and on the CPU resources of the machine that initiated the execution.
Until the use of resource is not saturated, the theoretical speedup is propor-
tional to the window size. This method is used notably in clush**.

TakTuk [48] is a tool for large-scale remote execution and file distribution
using an efficient tree-like topology constructed over the set of nodes (the
arity of the tree is configurable). If the network remains unsaturated and
protocols scale properly, the theoretical time of the execution is logarithmic
with respect to the number of nodes.

Parallel command execution is sometimes a feature of configuration man-
agement tools (presented in Section 2.2.2).

The efficient distribution of data is a related problem. It consists in dis-
tributing a single piece of data on all involved nodes. Contrary to the com-
mand execution, the process may involve large volumes of data transferred
from the initiating node. The methods of command execution can be used
for this purpose, but usually dedicated methods are more efficient.

Kascade [123] builds a topology-aware chain of TCP connections between
nodes, transfers data in a pipeline and offers nearly optimal performance in
the best case (no faults). It is however susceptible to slow links that limit the
bandwidth of the method.

21 https://www.docker.com/
22 https://cea-hpc.github.io/clustershell/
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UDPCast* is a file transfer tool that can send data simultaneously to many
destinations on a LAN using IP multicast. It features various methods and
enables a fine-grained tuning of parameters. It is however unfair to other
kind of traffic (due to no congestion avoidance in UDP multicast) and may
disrupt unrelated communication.

2.4 SCIENTIFIC WORKFLOWS

This section summarizes the current knowledge about scientific workflows,
a set of methods and models that have seen a wide adoption and success
in computational sciences. Scientific workflows and scientific workflow sys-
tems are of great relevance to our approach since they share similar purpose,
structure and goals. There are nevertheless important differences and hence
the scientific workflows will be used as a comparison, not as a direct inspira-
tion of our approach. They will be also very important in our work on prove-
nance in Chapter s.

First, we turn to the discussion on the purpose and general use of scientific
workflows in Section 2.4.1. The most popular scientific workflow systems are
presented in Section 2.4.2. Then, in Section 2.4.3, the group of approaches
similar, but distinctively different from scientific workflows, is presented.
In Section 2.4.4, the expressive power of scientific workflows is analyzed.
Section 2.4.5 discusses the advantages and difficulties of analyzing scientific
workflows. Finally, Section 2.4.6 explores how, or if at all, scientific workflow
systems are used by computer scientists working with distributed systems.

2.4.1 Purpose of scientific workflows

The aim of scientific workflow systems is the automation of scientific pro-
cesses that a scientist may go through to get publishable results from raw
data. The main objective is to communicate analytic procedures repeatedly
with minimal effort, enabling the collaboration on conducting large, data-
processing, scientific experiments [180]. Domains that routinely use scien-
tific workflows include biology, astronomy, medicine and other natural sci-
ences. This is due to useful features that such systems provide [61].

More concretely, the following desiderata for existence of scientific work-
flows have been identified [120]:

« Seamless access to resources and services

« Service composition & reuse and workflow design
« Scalability

« Detached execution

« Reliability and fault-tolerance

« User-interaction

« Smart re-runs

23 https://www.udpcast.linux.lu/
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« Smart (semantic) links

« Data provenance

More detailed requirements have been proposed too [126].

As one can see, scientific workflows are designed specifically to compose
and execute a series of computational or data manipulation steps. Normally,
those systems are provided with GUIs that enable non-expert users to rela-
tively easily construct their applications as a visual graph. Workflows consist
of computational steps connected with links that conceptually pass output of
one step to another one (see Figure 4 for example).

Most scientific workflows do not permit cycles in their dependency graphs
and therefore such workflows are directed acyclic graphs (DAGs). The simple
and constrained model remains expressive enough to support even sophisti-
cated computational experiments.

Some authors raise concerns about practical reproducibility of scientific
workflows [20]. It is reported that nearly 80 % of workflows cannot be repro-
duced. This “decay” of ability to reproduce workflows is mostly due to the
lack of resources required for workflow execution.

Despite much success in computational sciences, the scientific workflows
see virtually no use in the computer science community. The reasons behind
that situation will be analyzed in Section 2.4.4 and Section 2.4.6.

2.4.2.  Existing scientific workflow systems

In this section, we will present the most popular scientific workflow systems
used by researchers. Each system will be presented and its distinguishable
features mentioned.

Scientific workflow systems have been compared and classified in a few
studies [16, 180, 208].

ASKALON [80] hasasits goal asimplified development of Grid applications.
It offers a novel environment based on a set of tools and methodolo-
gies that make development of Grid applications easier. In particular,
ASKALON makes the optimization of real applications a routine task
and everyday practice. The primary use of ASKALON is to run and con-
trol grid applications that consume and transform data. It has been
used to manage applications from domains such as materials science,
hydrology, meteorology and astrophysics.

The workflows in ASKALON are dataflows expressed in Abstract Grid
Workflow Language (AGWL [79]) which mixes data-flow and control-
flow constructs (e. g., parallel-for). The workflows are instantiated by
aworkflow enaction engine which deploys the workflow on a grid. The
workflow execution is then monitored.

GALAXY [95] is an open-source platform for data intensive biomedical re-
search, such as genomic research. It has constructs for filtering, group-
ing, sorting and extracting data items from available datasets or from
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Workflow Inputs
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Figure 4: Example of a scientific workflow from the Taverna scientific work-
flow system. The workflow accesses an asynchronous web service
that normalizes raw data from a DNA microarray.

user-uploaded ones. Available tools can be chained into more complex
workflows that are executed on Grid systems.

The end users of Galaxy need not know the details of used tools as they
are encapsulated as reusable abstractions. Moreover, the provenance
of data in workflow is saved, so that the same analysis can be in theory
reproduced later.

KEPLER [120] is another scientific workflow system that uses actor-oriented
modeling that governs interactions between components. A scientific
workflow is the composition of independent actors communicating via
interfaces called ports. Basically, the incoming data that comes through
input ports are processed by the actor and sent further on via output ports.
Thereis also a global director object that defines detailed semantics how
actors are orchestrated, in particular on how they are parallelized.

Kepler can model general workflow patterns including some control-
flow ones. Kepler has been used to implement the COMAD model [126]
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which is a formal framework with useful properties for users, in par-
ticular for providing provenance information for data objects.

PEGASUS [62] is a framework for mapping complex scientific workflows
onto distributed systems. It is able to dynamically remap resources in
case of failures and continue despite their presence. Moreover, it can
checkpoint workflow execution at some stage to restart it later.

Among other useful features of Pegasus are: multi-level provenance
collection and support for cloud platforms as runtime distributed sys-
tems [12]. Moreover, Pegasus explores intelligent and automatic de-
sign of computational experiments [94].

TAVERNA [138, 206] is a tool for the composition and enactment of scien-
tific workflows. Although its primary focus is on bioinformatics re-
search, it is nevertheless a general tool. A standard Taverna workflow
consists of steps interacting with Web Services, requesting and down-
loading data, and processing them in structured pipelines.

With Taverna, scientists have access to different tools and resources
that are freely available from a large range of life science institutions.
Once constructed, the workflows are reusable bioinformatics proto-
cols that can be shared, reused and repurposed. The repository of pub-
lic workflows is available?*.

VISTRAILS [19,35,87]isaframework for enabling interactive multiple-view
visualizations of scientific data. It introduces a vistrail which is an ab-
stract pipeline description that can be instantiated and executed to ob-
tain visualizations of data. Intermediate results can be cached, a neces-
sity for rapid researcher-driven exploration.

Distinguishably, VisTrails focuses on visualization of data as opposed
to pure data processing. As a result, it also provides built-in and easy-
to-use functionality for the exploration of parameter space. Moreover,
VisTrails can trace modifications to the workflow itself, enabling the
researchers to also explore the space of possible workflow-based visu-
alizations.

This short overview of scientific workflow systems shows distinctive fea-
tures offered by them. First, the main purpose of all systems is to aid the
execution of data processing steps, usually in the grid context. Second, the
models used by the systems are mostly data-centric and scientific workflows
tend to be acyclic. Finally, the scientific workflow systems have a good sup-
port for provenance collection.

2.4.3  Workflow-like approaches

There are some approaches to data processing that bear similarities to scien-
tific workflows.

24 http://www.myexperiment.org
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At the very basic level, Makefiles offer a similar type of model consisting
of targets that generate new files taking into account data dependency be-
tween them. Results of a target may be cached so that future executions can
use them instead of repeating their creation again. Moreover, Makefile exe-
cution can be parallelized, just as scientific workflows, although only within
a single machine. This model has been adopted to produce reproducible re-
sults and figures from data [168].

There are examples of parallel programming languages for parallel com-
puting, such as Swift [204]. A program written in Swift is executed in parallel
and groups of steps executed in order are inferred from data dependencies.
Similarly to scientific workflows, Swift programs can be executed on a grid
system, and its engine is responsible for data movement and job submission.
Coincidentally, our implementation presented in Chapter 4, bears some sim-
ilarities with parallel programming languages.

Other data-processing models restrict expressiveness even more than sci-
entific workflows, for example MapReduce [59], where only two stages are
present (called, unsurprisingly, map and reduce phases). It has the effect of
making it easier to program such a computational process, improving its per-
formance, and ensuring high fault-tolerance. On the other hand, the model
cannot be used efficiently in the general case. These drawbacks have been
addressed in later research and a general dataflow, MapReduce-like compu-
tation is possible [207].

Finally, Airavata [122] represents another idea similar to scientific work-
flows. It is a framework used to build science gateways, i. e., well-defined ac-
cess methods to otherwise incompatible scientific applications and systems.
Airavata can be used to compose, manage, execute and monitor them in or-
chestrated way. As such, it also bears resemblance to business workflow sys-
tems which are discussed later on.

2.4.4  Expressiveness of scientific workflows

Ashas been shown, scientific workflows differ in their functionality, but fun-
damentally they are all based on the same restricted model that limits their
expressiveness. The expressive power of scientific workflows has been stud-
ied and is well understood [52, 61].

First of all, scientific workflow systems are generally restricted to acyclic
dataflows. Moreover, scientific workflows are usually static in the sense that
their structure is not subject to dynamic changes during execution (and if it
is, then that fact is hidden from the abstract workflow representation).

2.4.5 Analysis of scientific workflows

The rigid structure of scientific workflows enables researchers to perform
“meta-analyses”, that is, analyses of a form that real-life scientific workflows
take. It is useful in many aspects: workflows can be checked for correctness,
simplified or optimized. The basic verification of correctness is present in
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every scientific workflow system and usually consists of a type system that
verifies if the inputs and outputs of each workflow step are of the correct type.
The design of a general workflow analysis tool has been proposed [53].
Another interesting application is studying similarities and differences
between scientific workflows from the whole domain [90]. Such analyses
led to interesting generalizations such as the confirmation of a hypothesis
that scientific workflows are data-centric processes with occasional domain-
specific focus on data visualization (e. g., social network analysis). Ithas been
also observed that data preparation (i. e., initial transformation of input data
to useful representation) accounts for more than 50 % of workflow structure.

2.4.6  Scientific workflows in computer science

It may come as a surprise that scientific workflows are not used to control
computer science experiments. Despite advantages brought by them, they
are not, at least in the current form, applicable in experimental computer
science.

First of all, the execution of scientific workflows is by no means a data
collection process, contrary to experimentation with a computer system. In
fact, the execution of a scientific workflow presupposes existence of input
data which have been collected beforehand and is essentially a data process-
ing step. In standard scientific workflows this may be a dataset of astrophys-
ical images, genetic markers or MRI scans, all of which have been collected
in a separate process. For this reason, scientific workflows do not concern
themselves with data collection per se.

Second, the acyclic, data-centric model [90] used by scientific workflows
does not match the reality of experimental computer science where steps are
often repeated many and an undefined a priori number of times (e. g., the
number of iterations may depend on the number of physical machines avail-
able). These systems lack complex control patterns that are quite common in
experimentation and may be therefore detrimental and limiting.

Next, by noting that scientific workflows are a tool to perform computa-
tional steps on input data, results of scientific workflow execution should not
depend on an underlying platform. Whether a workflow is executed with 10
machines or 1000 machines should not matter for conclusions drawn from
results, however time required to obtain them may be significantly differ-
ent in both cases. It is in fact the very goal of scientific workflows to execute
a computational workflow without its user knowing the gory details of his
computing system. How this computation is performed physically is a de-
tail that scientific workflows try to hide (knowledge about such details can
be used to find problems and perform optimizations, however). This is in a
strong contrast with experimental computer science where details on how a
given system computes is the very subject of the study.

Finally, although it is a consequence of previous observations, scientific
workflows do not help with necessary steps such as deployment of complex
software and distributed systems. Moreover, a low-level access to machines
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Figure 5: Example of a formalized business process. The model uses work-
flows to represent the real-life process.
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and network may be restricted or just impossible due to abstractions offered
by scientific workflows.

On the other hand, scientific workflows could be used in principle to pro-
cess data collected during an experiment with a distributed system. Whether
this application of scientific workflows brings any benefits, remains to be
seen.

2.5 BUSINESS PROCESS MANAGEMENT

This section is dedicated to the state of knowledge about business processes and
workflow models of them as they are known in the domain of Business Process
Management. Workflow patterns identified in the domain are the principal
structure of proposed model for representing experiments, as will be shown
in Chapter 4. Moreover, the structure of workflows will have great bearing
on the model of provenance presented in Chapter 5.

In Section 2.5.1 we introduce the basic notions and definitions. Then, the
purpose of workflows in BPM is explained in Section 2.5.2. In Section 2.5.3, a
few examples of real BPM systems are presented. Process mining and other
techniques of analyzing business processes are presented in Section 2.5.4.
We finish with Section 2..5.5 that explains why BPM systems do not see much
use in research on distributed systems.

2.5.1 Definitions

Business processes consist of a set of activities that are performed in coordi-
nation in organizational and technical environment to achieve a business
goal [200]. The classic example is the process of buying a product (the goal
being the order and shipment of the product), as shown in Figure 5. Real-
life business processes may possess a formalized description, but often are
conducted informally. It is the goal of Business Process Management and as-
sociated techniques, to help formalize and hence understand business pro-
cesses.

The most established modeling language for business processes is based
on control-flows. For the purpose of this work, we define control-flows as work-
flows consisting of a set of activities that are performed under causal, tempo-
raland spatial constraints to achieve a specific goal. In this work this goal will
be understood as collection of experimental results. This definition is closely
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related to the one of the workflows in the domain of Business Process Mod-
eling [116] and in this work both terms will be interchangeably. Differences
between control-flows and data-flows are studied quite extensively [16, 120],
including expressiveness of both formalisms [52]. Both types of workflows
cannot be strictly separated, that is, some scientific workflows, which are
generally based on data-flows, offer some control-flow patterns, and vice-
versa.

One should not confuse Business Process Modeling, Business Process Manage-
ment and Workflow Management [116]. The first relates to a process of taking
a real-world process (e. g., a process of evaluating a loan application) and
turning it into a formal workflow in unambiguous form, presumably graphi-
cal. Business Process Management is a more holistic discipline that includes
modeling, but also all aspects of how workflows should be executed, analyzed
and improved.

Neither modeling nor management of business processes are necessarily
related to computer science. In fact, one can argue that the ad hoc use of busi-
ness processes predates computers and modern computer science. The use
of computing systems to manage business processes is tackled by the sup-
portive science of Workflow Management. This is reflected in the business pro-
cess lifecycle as presented in Figure 6.

There are important differences between data-flows (represented mainly
by scientific workflows) and control-flows (represented by workflow mod-
els of business processes in BPM). First, semantics of workflow elements is
normally different. In control-flows, workflow nodes represent activities (ac-
tions performed at a given step), whereas directed edges represent causal rela-
tions between these activities. Common workflow patterns used to express ad-
vanced functionality have been identified successfully in the literature [200].
This clearly translates to larger expressiveness, but also complicates interpre-
tation of workflows.

2.5.2  Purpose of workflows in Business Process Management

The main purpose of workflows in Business Process Management is to model
complex processes. The two main communities interested in them are rep-
resented by business administration (to model interactions between people
and administrative processes) and computer science community (to model
interactions in complex and distributed computer systems).

In the former case, one is interested in turning an often informal process
to a model that can be managed in a strict and formal way. In particular,
such a process can be managed with a help of computers with all advantages
they provide. Such an approach has many features: easy access to data, inte-
gration with other computerized systems, ability to store and query historic
data, notifications, formal verification of process consistency, to name just a
few. Having a formal and approachable representation can also lead to use-
ful insights, such as identification of process bottlenecks, deficiencies and
optimization opportunities.
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Figure 6: Business process management lifecycle. Four principal steps are
present in Business Process Management, of which only 3 are en-
compassed by Workflow Management (Design, Configuration and
Enactment).

In computer science, on the other hand, the main use of business pro-
cesses and their workflow models is to orchestrate interaction of distributed
services, usually Web services. The purpose is similar to the traditional use of
workflows, but with focus moved from human interactions to more techni-
cal aspects such as compatibility of interfaces, transactional behavior, han-
dling failures in communication without losing consistency, etc. The de facto
standard for workflow description and orchestration in this domain is the
Web Services Business Process Execution Language (WS-BPEL, less formally
BPEL) [142]. It has a broad support in many software systems and from com-
panies such as IBM or Microsoft.

Business processes have been also used to implement a fault-tolerant ap-
proach to management of distributed applications [135, 187].

Perpetual development and evolution of business processes can be sum-
marized as business process lifecycle [190, 200]. Although different authors use
different names for the same steps, one can define a cycle consisting of 4
steps: Design & Analysis, Configuration, Enactment and Evaluation (sometimes
Diagnosis). The first step consists of turning a real-world process into a work-
flow model and validating its abstract correctness. Configuration consists
of implementation and tests, whereas enactment leads to a working, moni-
tored and curated system. Finally, there is evaluation which consists in draw-
ing conclusions from system’s runtime which may in turn lead to another
iteration of the cycle.

Surveys show that the principal use of workflows is for process automa-
tion (33 %), simulation (27 %), document analysis (22 %) and process improve-
ment (18 %) [2].
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2.5.3  Existing BPM systems

A BPM system consists primarily of an engine that executes workflow mod-
els of business processes, however most platforms include also a set of tools
to help with other aspects of a BPM lifecycle.

Most solutions include a graphical interface to build workflows from basic
patterns. Workflows can be validated to make sure that they respect basic
semantics of workflow models. A finished workflow can be executed with an
execution engine which controls all important aspects.

Most tools offer an interface (usually Web-based) to view details of the pro-
cess and possibility to interact with it. For example, the current state of the
process can be monitored, its execution suspended or canceled. Most tools
offer ways to generate user interfaces that implement workflow steps that re-
quire human interaction. Similarly, non-technical business users may have
access to a global view of all existing processes via reports and monitoring.

The portability of workflows is provided by Business Process Model and
Notation (BPMN) standard [140]. The standards defines a portable and un-
derstandable notation for all business users, from non-technical people mod-
eling processes to technical developers implementing these processes. Nev-
ertheless, the current version of BPMN (2.0) describes also execution seman-
tics of workflows.

Examples of BPM software include Activiti**, Bonita*®, jBPM*” and Pro-
cessMaker*®. Most of them are based on Java, arguably due to existing com-
munity, mature technologies and tools, and its widespread use in implemen-
tation of Web Services and transactional systems. Underlying representa-
tion of data objects is often serialized as XML (eXtensible Markup Language)
data, a standard which is traditionally used in communication of Web Ser-
vices. Moreover, BPMN is also based on XML.

2.5.4  Analysis of business processes

The analysis of business processes modeled as workflows may lead to gen-
eral characterizations of them (e. g., to identify common properties and pat-
terns), but also serve as a help to steer their development [10]. Historical data
and previous versions of the same workflows may be used to give informed,
intelligent proposals as to how modify a workflow, who should be assigned
to newly added tasks, etc.

Researchers have analyzed existing business processes and observed that
there is a set of workflow patterns that frequently appear in informal real-life
processes [189]. Among 20 defined patterns are such basics as sequence of in-
termediate actions, but also advanced patterns such as arbitrary cycles are listed.
This seminal work on workflow patterns became a de facto standard on how to
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evaluate expressiveness and completeness of a workflow engine. Workflow
patterns can be used to build workflows of arbitrary complexity. The detailed
presentation of these patterns is postponed to Section 4.3.1.3.

Process mining [3] is another technique that consists in reconstructing
control-flow from unstructured, linear logs. It has the potential of turning
an informal set of activities into structured models, presumably based on
workflows. It is especially interesting in our case of scientific experiments
where ad hoc approaches are prevalent and the incentive of using structured
approaches is not always justified.

2.5.5 Business processes in computer science

Models of business processes are used to orchestrate complex interactions
between distributed services, usually in the context of Service-Oriented Ar-
chitecture (SOA) and similar paradigms. The purpose of business processes
is to interact multiple, loosely-coupled and administratively separated ser-
vices to obtain a common goal. Despite this successful application, business
processes and workflow technologies have not been used yet for the purpose
of running and controlling experiments in computer science.

First, their use is traditionally focused on modeling complex, real-life pro-
cesses involving documents, products, institutions and people interacting
with each other. The existing methodologies and software solutions focus
on human-process interactions, which is not useful in our case.

Second, business workflows are general tools and lack domain-specific
tools and workflow patterns. Although their expressiveness allows modeling
of computer processes with additional work and the wrapping of services,
it is potentially cumbersome, and requires effort and training. Put differ-
ently, business process management systems do not easily interoperate with
the ecosystem of experimental computer science: tools, platforms, usage pat-
terns, methodologies and culture. In particular, they are not a priori suited for
performance measurement and monitoring, timely execution of commands
on multiple nodes, or data distribution and collection.

What is more, business process management systems are often large soft-
ware packages that require complex installation, maintenance and the range
of supporting services (e. g., databases, schedulers, etc.). This puts unneces-
sary burden on the experimenters (or even forbids them from using them)
and threatens reproducibility. Additionally, many such systems are propri-
etary and hence threaten reproducibility even more.

In the light of low to non-existing use of workflows in experimental com-
puter science, our work is pioneering by trying to use them to control the ex-
ecution of complex experiments. Many of the mentioned shortcomings will
be addressed in Chapter 4.
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If you can not measure it, you can not improve it.

— William Thomson, 1st Baron Kelvin

SURVEY OF EXPERIMENT MANAGEMENT TOOLS

3.1 INTRODUCTION

The previous chapter made it clear that the field of large-scale distributed
systems is a difficult area of experimental research for many reasons. The
studied systems are complex, often non-deterministic and unreliable, soft-
ware is plagued with bugs, whereas the experiment workflows are unclear
and hard to reproduce. Scientists are confronted with low-level tasks that
they are not familiar with, making the validation of current and next gener-
ation of distributed systems a complex task.

In order to lower the burden of running an experiment and to empower
scientists with new capabilities, experimental testbeds have been designed and
built, along with experiment management tools that manage the execution
of experiments on such testbeds. The last decade has seen more interest in
the latter, mainly influenced by the needs of particular testbeds and other
problems found in the process of experimentation such as reproducibility,
replicability (see Section 2.1.4), automation, ease of execution and scalabil-
ity. Despite much research in the domain of distributed systems experiment
management, the current fragmentation of efforts asks for a general anal-
ysis. In this chapter, we therefore propose to build a framework to uncover
the common and missing functionality of these tools, to enable meaningful
comparisons between them and to give informed recommendations for fu-
ture improvements and research.

The contribution of this chapter is twofold. First, we provide an extensive
list of features offered by general-purpose experiment management tools
dedicated to distributed systems research on real platforms. We then use
it to assess existing solutions and compare them, outlining possible future
paths for improvements.

The rest of this chapter is structured as follows. In Section 3.2, the moti-
vation for developing experiment management tools is presented. Then, in
Section 3.3, a set of features offered by existing experimentation tools is con-
structed and each element is carefully and precisely explained. In Section 3.4,
we present the list of experiment management tools helping with research
in distributed systems, where each tool is shortly presented and its features
explained. The final analysis is done in Section 3.5, followed by a summary
in Section 3.6.
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3.2 MOTIVATIONS FOR EXPERIMENTATION TOOLS

In this section, we introduce a few definitions, among them the definition of
experiment management tool, and explain motivations behind their existence.
This serves primarily as a way to define more precisely what we intuitively
consider to be an experiment management tool.

For our purposes, an experiment is a set of actions carried out to test (con-
firm, falsify) a particular hypothesis. An experiment management tool (for re-
search in distributed systems) is a piece of software that helps with the fol-
lowing main steps during the process of experimenting:

« design - by ensuring reproducibility or replicability, providing unam-
biguous description of the experiment, and making the process more
comprehensible,

« deployment — by giving efficient ways to distribute files (e. g., scripts,
binaries, source code, input data, operating system images, etc.), au-
tomating the process of installation and configuration, ensuring that
everything needed to run the experiment is where it has to be,

. running the experiment itself — by giving an efficient way to control
and interact with the nodes, monitoring the infrastructure and the ex-
periment, and signaling problems (e. g., failure of nodes),

« collection of results — by providing means to get and store results of
the experiment.

Note that in Section 2.1.3.1, a model was given that resembles the four ele-
ments mentioned above. The two differences are: the design of experiment
is not the part of experiment execution (and hence is not mentioned in Sec-
tion 2.1.3.1), and we do not consider the cleanup phase here.

In this study we narrow the object of study even more by considering only
general-purpose experiment management tools (i. e., tools that can express ar-
bitrary experimental processes) and only ones that experiment with real ap-
plications (i. e., in-situ and emulation methodologies). The former restriction
excludes many tools with predefined experimental workflows whereas the
latter excludes, among others, simulators (see Section 2.1.3).

Finally, the experiment management tools may have a main motivation,
which often is one of the following:

« ease of experimenting,

. controlling and exploring parameter space,
« scalability,

« replicability and reproducibility.

The following sections cover these principal motivations.
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3.2.1 Ease of experimenting

The first motivation, and the main one, for creating experimentation tools is
helping with the scientific process of experimenting and making the experi-
menter more productive.

By providing well designed tools that abstract and outsource tedious yet
already solved tasks, the development cycle can be shortened, while becom-
ing more rigorous and targeted. Moreover, it may become more productive
as the scientist may obtain additional insights and feedback that would not
be available otherwise.

The ease of experimenting can indirectly help to solve the problem of re-
search of questionable quality in the following sense. As the scientific com-
munity puts pressure on scientists to publish more and more, they are often
forced to publish results of dubious quality. If they can forget about time-
consuming, low-level details of an experiment and focus on the scientific
question to answer, hopefully they could spend more time testing and im-
proving their results.

3.2.2  Exploring the parameter space

Each experiment is run under a particular set of conditions (parameters)
that precisely define its environment. The better these conditions are de-
scribed, the fuller is understanding of the experiment and obtained results.
Moreover, a scientist may want to explore the parameter space in an efficient
and adaptive manner instead of doing it exhaustively.

Typical parameters contained in a parameter space for a distributed sys-
tem experiment are:

. number of nodes,

. network topology,

« hardware configuration (processors, network bandwidth, disks, etc.),
« workload during the experiment.

Of course there are countless other factors that influence experiments and
that we cannot easily account for. Being able to ignore irrelevant ones is one
of the things that make the in-situ experiments so difficult.

One can enlarge the set of parameters tested (e. g., considering CPU speed
in a CPU-unaware experiment) as well as vary parameters in their allowed
range (e. g., testing a network protocol under different topologies).

Although the capability to control the various experimental parameters
can be, and quite often is, provided by an external tool or a testbed (e. g., Em-
ulab), the high-level features helping with the design of experiments (DoE),
such as the efficient parameter space exploration, belong to experimentation
tools.
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3.2.3  Scalability

Another motivation for controlling experiment with dedicated approach is
the scalability of experiments, that is, being able to increase their size with-
out harming some practical properties and scalability metrics. For example,
it is expected that the experimentation tool is able to control many nodes
(say, thousands) without significantly increasing the time to run the experi-
ment, or without hampering the statistical significance of results.

The most important properties concerning scalability are:

« time-additional time needed to control the experiment (over the time
to run it itself),

« resources —amount of resources required to control the experiment,

« cost - funds required to run the experiment and control it (e. g., in the
context of commercial cloud computing),

« quality of results — the scientific accuracy of the results, their repro-
ducibility in particular (contrary to the above properties, this one is
hard to define and measure).

These metrics depend on the experiment parameters (see Section 3.2.2)
and implementation details. Among important factors that limit scalability
understood as the metrics above are:

« number of nodes used in the experiment,
- size of monitoring infrastructure,

. efficiency of data management.

The scalability of experiments is only one of the principal motivations be-
hind the development of simulators, as has been presented in Section 2.1.3.3.

3.2.4 Replicability and reproducibility

Replicability which is also known as replayability deals with the act of re-
peating a given experiment under the very same conditions. In our context
it means: same software, same external factors (e. g., workload, faults, etc.),
same configuration, etc. If done correctly, it will lead to the same results as
obtained before, allowing others to build on previous results and to carry out
fair comparisons.

There are several factors that hamper this goal: the size of the experiment,
heterogeneity and faulty behavior of testbeds, complexity of the software
stack, numerous details of configuration, unrepeatable conditions, etc. It is
one of the goals of experimentation tools to try to control the experiment in
such a way as to be able to produce the same results under the same condi-
tions.

As it was explained in Section 2.1.4, replicability is hard to achieve, but
cannot be mistaken for reproducibility, an even more demanding property.
Achieving reproducibility is much harder than replicability because we have
to deal with the measurement bias that can appear even with the slightest
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change in the environment. Therefore, in order to enhance the reproducibil-
ity of an experiment, the following features are required:

« automatic capture of the context (i.e., environment variables, com-
mand line parameters, versions of software used, software dependen-
cies, etc.) in which the experiment is executed,

o detailed description of all the steps that led to a particular result,

- sufficiently abstract description of the experiment, so that the experi-
ment execution is independent of the physical infrastructure.

3.3 FEATURES OF EXPERIMENT MANAGEMENT TOOLS

In this section, we present the structured set of properties available in ex-
periment management tools for distributed systems. This classification has
been obtained after a literature review using the following sources:

« tools used and published by the most influential, large-scale testbeds
(see Section 2.3.1),

« papers referenced by these tools and papers that cite them,

- IEEE and ACM digital libraries search with the following keywords in
the abstract or title: experiments, experiment, distributed systems, experi-
mentation, reproducible.

We identified 8 relevant tools for managing experiments that met our cri-
teria of the experiment management tool. An extensive analysis of the papers
dedicated to those tools was performed, and an extensive list of features of-
fered by them emerged. The majority of the features give binary information:
either the feature is present, or it is absent. A few features have a larger do-
main of values than just binary choice, Representation for example.

The binary score attributed to most features is a simplification, since all
tools having a given feature may provide it to a different extent, possibly in
a fundamentally different and incomparable way, leading to less objective
results. Moreover, the classification assumes that each feature is of the same
importance and therefore has the same “weight” in the final score. A more
detailed evaluation of each feature could be done, but it would require an
even more fine-grained classification than the existing one and somewhat
arbitrary assignments of weights. Despite this, the current classification will
be enough to obtain significant observations without unnecessary burden
on the researchers.

These features have been split into 9 groups: Type of Experiments, Descrip-
tion Language, Interoperability, Reproducibility, Fault Tolerance, Debugging, Mon-
itoring, Data Management and Architecture. The following sections present the
classification in to groups, and descriptions of the features. The grouping is
concisely summarized in Figure 7.
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3.3.1  Type of experiments

This group encompasses two important aspects of an experiment: the plat-
form where the experiments are going to be run on and the research fields
where those experiments are performed.

Platform type (Real / Model) is the range of platforms supported by the experi-
mentation tool. The platform type can be real (i. ., consists of physical
nodes) or be a model (i. e., built from simplified components that model
details of the platform like network topology, links bandwidth, CPU
speed, etc.). For example, platforms using advanced virtualization or
emulation techniques (like Emulab testbed) are considered to be mod-
eled. Some testbeds (e. g., PlanetLab) are considered real because they
do not hide the complexity of the platform, despite the fact that they
use virtualization.

Intended use (Distributed applications / Wireless / Services / Any) refers to the re-
search context the experimentation tool targets. Examples of research
domains that some tools specialize in include wireless networks, net-
work services, high performance computing, peer-to-peer networks,
among many others.

3.3.2  Description language

The design of the experiment is the very first step in the experimentation
process. The description language helps users with this step, allowing them
to describe how the experiment has to be performed, as well as their needs
for running the experiment. Characteristics that help with describing the
experiment are presented in the following sections.

Representation (Imperative / Declarative / Workflows / Scripts) of experiments is
the approach used to describe the experiment and relevant details. Pos-
sible representations differ in their underlying paradigm (e. g., imper-
ative, declarative) and in the level of abstraction that the description
operates on. Some tools use low-level scripts to represent experiments
whereas others turn to higher abstractions, some of them graphical
(e. g., workflows). The choice of a certain representation has implica-
tions on other aspects of the description language.

Modularity (Yes / No) is a property of experiment description language that
enables easy adding, removing, replacing and reusing parts of exper-
iments. An experiment expressed in a modular way can be logically
split into modules with well-defined interfaces that can be worked on
independently, possibly by different researchers specializing in a par-
ticular aspect of the experiment.

Expressiveness (Yes / No) of the description language makes it effective in con-
veying thoughts and ideas, in short and succinct form. Expressiveness
provides a more maintainable, clearer description. Various elements
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can improve expressiveness: well-chosen abstractions and construc-
tions, high-level structure, among others.

Low entry barrier (Yes / No) is the volume of work needed to switch from naive
approach to the given approach, assuming prior knowledge about the
infrastructure and the experiment itself. In other words, it is the effort
required tolearn how to efficiently design experiments using the given
experimentation tool.

3.3.3  Interoperability

It is important for an experimentation tool to interact with different plat-
forms, as well as to exploit their full potential. The interaction with external
software is an indisputable help during the process of experimenting.

Testbed independence (Yes / No) of the experimentation tool is its ability to be
used with different platforms. The existing tools are often developed
along with a single testbed and tend to focus on its functionality and,
therefore, cannot be easily used somewhere else. Other tools explicitly
target a general use and can be used with a wide range of experimental
infrastructures.

Support for testbed services (Yes / No) is a capability of the tool to interface dif-
ferent services provided by the testbed where it is used (e. g., resource
requesting, monitoring, deployment, emulation, virtualization, etc.).
Such a support may be vital to perform scalable operations efficiently,
exploit advanced features of the platform or to collect data unavailable
otherwise.

Resource discovery (Yes / No) is a feature that allows on to reserve a subset of
testbed resources meeting defined criteria (e. g., nodes with 8 cores
interconnected with 1 Gbit/s network). Among methods to achieve this
feature are: interoperating with testbed resource discovery services or
emulation of resources by the tool.

Software interoperability (Yes / No) is the ability of using various types of ex-
ternal software in the process of experimenting. The experimentation
tool that interoperates with software should offer interfaces or means
to access or integrate monitoring tools, command executers, software
installers, package managers, etc.

3.3.4 Reproducibility

This group of features concerns all methods used to help with reproducibility
and repeatability as was described in Section 2.1.4.

Provenance tracking (Yes / No) is defined as a way of tracing and storing infor-
mation of how scientific results have been obtained. An experimenta-
tion tool supports data provenance if it can describe the history of a
given result for a particular experiment. An experimentation tool can
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provide data provenance through the tracking of details at different
layers of the experiment. At the low-level layer, the tool must be able to
track details such as: command-line parameters, process arguments,
environment variables, version of binaries, libraries and kernel mod-
ules in use, hardware used, and executed file system operations. At
the high-level layer, it must track details such as: the number of nodes
used, details of used machines, the timestamps of events, and the state
of the platform.

The detailed presentation of methods for collection provenance is post-
poned to Chapter s.

Fault injection (Yes / No) is a feature that enables the experimenter to intro-
duce factors that can modify and disrupt the functioning of the sys-
tems being studied. These factors include node failures, link failures,
memory corruption, background CPU load, etc. This feature allows
running experiments under more realistic and challenging conditions
and test behavior of the studied system under exceptional situations.

Workload generation (Yes / No) is arange of features that allow injecting a pre-
defined workload into the experimental environment (e. g., number
of requests to a service). The generated workload is provided by real
traces or by synthetic specification. Similarly to fault injection, this fea-
ture allows running experiments in more realistic scenarios.

3.3.5 Fault tolerance

This group of features encompasses all of them that help with common prob-
lems that can happen during experiments and may lead to either invalid re-
sults (especially dangerous if gone unnoticed) or to increased time required
to manually cope with them.

Checkpointing (Yes / No) provides a way to save the state of the experiment
and to restore it later as if nothing happened. It is a feature that can,
above all, save the time of the user. There are at least two meanings of
checkpointing in our context:

- only some parts of the experiment are saved or cached,

— the full state of the experiment is saved (including the platform).

Of course, the second type of checkpointing is much more difficult to
provide. Checkpointing helps with fault tolerance as well, since a failed
experiment run will not necessarily invalidate the whole experiment.

Failure handling (Yes / No) of the experimentation tool can mitigate runtime
problems with the infrastructure an experiment is running on. This
means in particular that failures are detected and appropriate steps
are taken (e. g., the experiment is restarted). Typical failures are crash-
ing nodes, network problems, etc.

Verification of configuration (Yes / No) consists in having an automatic way to
verify the state of an experimentation platform. Usually such a step
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is performed before the main experiment to ensure that properties of
the platform agree with a specification. We distinguish verification of:

- software — ensuring that the software is coherent on all comput-
ing nodes,

- hardware — ensuring that the hardware configuration is as it is
supposed to be.

3.3.6 Debugging

The features grouped in this section help to find problems and their causes
during the experimentation process.

Interactive execution (Yes / No) refers to an ability to run the experiment “on-
the-fly” including: manually scheduling parts of the experiment, intro-
specting its state and observing intermediate results. This feature is in-
spired by debuggers offered by integrated development environments
(IDEs) for programming languages.

Logging (Yes / No) consists in collecting, storing and presenting auxiliary in-
formation emitted during experiments, such as messages about the
progress. The messages are normally stored sequentially along with
their timestamps making the log a one-dimensional dataset. The log
can be used to debug an experiment and document its execution.

Validation (Yes / No) is a feature that offers the user a way to perform a fast
(that is, faster than full execution of the experiment) and automatic
way to verify the description of an experiment. Depending on the mod-
eling language used and other details, the validation may be accord-
ingly thorough and complete. For our purposes, we require that at least
some semantic analysis must be performed, in contrast to simple syn-
tactic analysis.

3.3.7 Monitoring

Monitoring is necessary to understand the behavior of the platform and the
experiment itself. It consists in gathering data from various sources: the ex-
periment execution information, the platform parameters and metrics, and
other strategic places like instrumented software.

Experiment monitoring (Yes / No) consists in observing the progress of the ex-
periment understood as set of timing and causal information between
actions in the experiment. The monitoring includes keeping track of
currently running parts of the experiment as well as their interrela-
tions. Depending on the model used, this feature may take different
forms.

Platform monitoring (Yes / No) is the capability of an experimentation tool to
know the state of resources that comprise the experiment (nodes, net-
work links, etc.). Data collected that way may be used as a result of the

51



52

SURVEY OF EXPERIMENT MANAGEMENT TOOLS

experiment, to detect problems with the execution or as a way to get
additional insights about the experiment.

Instrumentation (Yes / No) enables the user to take measurements at different
moments and places while executing the experiment. This includes in-
strumentation of software in order to collect measures about its behav-
ior (CPU usage, performance, resource consumption, etc.).

3.3.8 Data management

The management of datais an important part of the experiment. This section
contains features that help with distribution and collection of data.

Provisioning (Yes / No) is the set of actions to prepare a specific physical re-
source with the correct software and data, and make it ready for the
experimentation. Provisioning involves tasks such as: loading of ap-
propriate software (e. g., operating system, middleware, applications),
configuration of the system and starting necessary services. It is nec-
essary for any experimentation tool to provide at least a rudimentary
form of this functionality.

File management (Yes / No) is a feature that abstracts a tedious job of work-
ing with files. Therefore the user does not have to manage them man-
ually at the low level of a filesystem which is often error-prone. This
includes actions like automatic collection of results stored at partici-
pating nodes.

Analysis of results (Yes / No) isaservice of an experimentation tool thatis used
to collect, store and visualize experimental results, as well as making
dynamic decisions based on the runtime values. The latter function-
ality paves the way for intelligent design of experiments by exploring
only relevant regions of parameter space and therefore saving useful
resources like energy or time.

3.3.9 Architecture

This section contains features and properties related to how the tool is de-
signed and what architecture decisions the authors made. This includes the
ways to interact with the tool, as well as various technical details such as soft-
ware dependencies, methods to achieve scalability and efficient execution of
experiments.

Control structure (Centralized / Decentralized) is the type of organization that
the tool uses to control the execution of experiments. The architecture
of a tool is centralized if the control of an experiment is centralized and
there exists one node that performs all principal work. Otherwise, if
there are multiple nodes involved in the experiment control, then the
architecture is decentralized.
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Low resource requirements (Yes / No) of an experimentation tool refer to its re-
source consumption (memory, CPU, network bandwidth, etc.) associ-
ated with the activity of controlling the experiment. As the number of
elements the experiment consists of increases (e. g., nodes), so does
the amount of the resources necessary to control them.

Simple installation (Yes / No) is understood as a low difficulty of setting up a
completely functional infrastructure that the tool needs in order to
be used. This usually implies software dependencies (interpreters, li-
braries, special services, etc.) or a required hardware infrastructure
(number of network interfaces, minimum memory size, number of
dedicated nodes to control the experiment, etc.)

Efficient operations (Yes / No) is the range of features that provide methods,
tools and algorithms to perform large-scale operations with the exper-
imental infrastructure. This in particular includes efficient and scal-
able methods for command execution, file distribution, monitoring of
nodes, gathering of results, among others. Providing efficient versions
of these actions is notably difficult as operations involving nodes in a
distributed systems are non-trivially scalable as a number of nodes in-
creases.

Interface (CLI / GUI / API) consists of different ways that the user can inter-
act with the experimentation tool. Most of the tools provide command
line interface, whereas some tools provide graphical interfaces, usu-
ally via webpage used to interact with the experiment.

3.4 SURVEYED SYSTEMS

The aim of this section is to present the state of the art of the existing tools
for experimentation with distributed systems. We focus our attention on the
tools that fulfill the criteria for being considered as an experimentation tool
(for a list of tools that are not included in the analysis, see Section 3.4.10).
Moreover, we include as a reference Naive approach, which is defined as a
standard, ad hoc way of running experiments that relies on the standard Unix
environment.

3.4.1 Naive approach

Frequently, experiments are done using this method which includes man-
ual procedures and use of hand-written and low-level scripts. Lack of modu-
larity and expressiveness is commonly seen because of the ad hoc nature of
these scripts, and it is even worse when the experiment involves many ma-
chines. The experiment is controlled at a very low level, including necessary
human intervention. Therefore, interaction with many types of applications
and platforms is possible at the cost of time required to do so. Parameters
for running the experiment can be forgotten as well as the reason for which
they were used. This leads to an experiment that is difficult to understand
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Typ_e of Platform type ———— Real / Model
Experiments
Intended use Distributed applications
i | Wireless
| Services / Any
— Representation *‘ Imperative
| Declarative
Description | Workflow / Scripts
Language ————— Modularity ——— Yes/No
Expressiveness ———  Yes / No
Low entry barrier ———— Yes / No
—— Testbed independence ————— Yes / No
- — Support for testbed services ———— Yes / No
Interoperability ——
Resource discovery ————— Yes / No
L— Software interoperability ——————— Yes / No
—— Provenance tracking ———— Yes/No
—— Reproducibility ————— Fault injection ——————————— Yes/No
L—— Workload generation ———  Yes / No
Checkpointing ———  Yes/ No
Fault P ¢
Tolerance I Failure handling ——— Yes / No
L Verification of configuration ———— Yes / No
Interactive execution ——— Yes / No
———— Debugging Logging ———— Yes /No
Validation ———— Yes/ No
Experiment monitoring ———— Yes / No
Monitoring Platform monitoring ———  Yes / No
Instrumentation ——  Yes / No
Provisioning ——— — Yes / No
Data ¢ /
Management ———— File management ——— Yes / No
Analysis of results —————— Yes / No
Control structure ——— Centralized
| Decentralized
+—— Low resource requirements ——— Yes / No
Architecture Simple installation ———— Yes/ No
Efficient operations ———— Yes / No
Interface ———  — CLI/ GUI/ APL

Figure 7: Tree of features identified in experiment management tools. All
evaluated properties and features are presented with their respec-
tive domains of values. The properties are grouped into 9 groups
that cover different aspects of experiment management.
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Table 3b: Summary of experiment management tools for distributed systems research. Each feature is presented along with a number of tools that
provide it. Similarly, for each group a percentage of implemented features from this group is shown. Features that are due to the integration

with a testbed are marked with * (continued from Table 3a).

Naive approach Weevil Workbench  Plush/Gush Expo OMF NEPI XPFlow Execo
Interactive execution (7/9) Yes No Yes Yes Yes Yes Yes No Yes
Debugging .
(17/27 = 63 %) Logging (6/9) No No Yes No Yes Yes Yes Yes Yes
Validation (4/9) No Yes Yes No No No Yes Yes No
Experiment monitoring (4/9) No No Yes No No Yes Yes Yes No
Monitoring o
(10/27 = 37%) Platform monitoring (4/9) No No Yes Yes No Yes Yes No No
Instrumentation (2/9) No No No Yes No Yes No No No
Provisioning (5/9) No Yes Yes~ Yes No Yes Yes No No
Data Management )
(13/27 = 48 %) File management (5/9) No Yes Yes Yes No Yes No No /Yes! Yes
Analysis of results (3/9) No No Yes No No Yes No Yes No
. . . . . . . Centralized / .
Control structure Centralized Centralized  Centralized Centralized  Centralized Decentralized Decentralized ' 2 Centralized
Decentralized
Architecture Low resource requirements (6/9) Yes Yes No No Yes No Yes Yes Yes
(19/27 = 70 %) Simple installation (7/9) Yes Yes No Yes Yes No Yes Yes Yes
Efficient operations (6/9) No Yes No Yes Yes Yes No Yes Yes
Interface CLI CLI GUI, CLI,API CLI, GUI, API CLI CLI, GUI CLI, GUI CLI CLI
*Provided by testbed

!See Section 5.5.3.3
2See Section 5.5.1.2
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and repeat. Since the experiment is run in partially manual fashion, the user
can react against some unexpected behaviors seen during the experiment.

3.4.2 Weevil

It is a tool to evaluate distributed systems under real conditions, providing
techniques to automate the experimentation activity. This experimentation
activity is considered as the last stage of development. Experiments are de-
scribed declaratively with a language that is used to instantiate various mod-
els and provides clarity and expressiveness. Workload generation is one of
its main features, which helps with the replicability of results.

3.4.3  Emulab workbench

Workbench is an integrated experiment management system, which is mo-
tivated by the lack of replayable research on the current testbed-based exper-
iments. Experiments are described using an extended version of the ns lan-
guage which is provided by Emulab. The description encompasses static def-
initions (e. g., network topology, configuration of devices, operating system
and software, etc.) and dynamic definitions of activities that are based on pro-
gram agents, entities that run programs as part of the experiment. Moreover,
activities can be scheduled or can be triggered by defined events. Workbench
provides a generic and parametric way of instantiating an experiment using
features already provided by Emulab to manage experiments. This allows ex-
perimenters to run different instances of the same experiment with differ-
ent parameters. All pieces of information necessary to run the experiment
(e. g., software, experiment description, inputs, outputs, etc.) are bundled
together in templates.

Templates are both persistent and versioned, allowing experimenters to
move through the history of the experiment and make comparisons. There-
fore, the mentioned features facilitate the replay of experiments, reducing
the burden on the user. Data management is provided by the underlying
infrastructure of Emulab, enabling Workbench to automatically collect logs
that were generated during the experiment.

3.4.4 Plush/Gush

Plush, and its another incarnation called Gush, cope with the deployment,
maintenance and failure management of different kinds of applications or
services running on PlanetLab. The description of the application or services
to be controlled is done using XML. This description comprehends the ac-
quisition of resources, software to be installed on the nodes and the work-
flow of the execution. It has a lightweight client-server architecture with a
few dependencies that can be easily deployed on a mix of normal clusters
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and GENI control frameworks: PlanetLab, ORCA® and ProtoGENI?. One of
the most important features of Plush is its capacity to manage failures. The
server receives a constant stream of information from all the client machines
involved in the experiment and performs corrective actions when a failure
occurs.

3.4.5 Expo

Expo offers abstractions for describing experiments, enabling users to ex-
press complex scenarios. These abstractions can be mapped to the hierarchy
of the platform or can interface underlying tools, providing efficient execu-
tion of experiments. Expo brings the following improvements to the exper-
imentation activity: it makes the description of the experiment easier and
more readable, automates the experimentation process, and manages exper-
iments on a large set of nodes.

3.4.6 OMF

It is a framework used in different wireless testbeds around the world and
alsoin PlanetLab. Its architecture versatility aims at federation of testbeds. It
was mainly conceived for testing network protocols and algorithms in wire-
less infrastructures. The OMF architecture consists of 3 logical planes: Con-
trol, Measurement, and Management. Those planes provide users with tools
to develop, orchestrate, instrument and collect results as well as tools to in-
teract with the testbed services. For describing the experiment, it uses a com-
prehensive domain specific language based on Ruby to provide experiment-
specific commands and statements.

3.4.7 NEPI

NEPI is a Python library that enables one to run experiments for testing dis-
tributed applications on different testbeds (e. g., PlanetLab, OMF wireless
testbeds, network simulator, etc). It provides a simple way for managing the
whole experiment life cycle (i. e., deployment, control and results collection).
One important feature of NEPI is that it enables using resources from differ-
ent platforms at the same time in a single experiment. NEPI abstracts appli-
cations and computational equipment as resources that can be connected,
interrogated and conditions can be registered in order to specify workflow
dependencies between them.

1 http://groups.geni.net/geni/wiki/ORCABEN
2 http://www.protogeni.net
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3.4.8 XPFlow

XPFlow is an experimentation tool that employs workflow patterns identified
in Business Process Management research in order to model and run experi-
ments as control-flows. XPFlow is both an experiment management tool and a
workflow engine that uses a domain-specific language to build complex pro-
cesses (experiments) from workflow patterns and smaller, independent tasks
called activities. This representation is claimed to bring some useful features
of Business Process Management (BPM), that is: easier understanding of the
process, expressiveness, modularity, built-in monitoring of the experiment,
and reliability.

The design and evaluation of XPFLOW is presented in Chapter 4 and then
extended and improved in Chapter 5. The features Provenance tracking, File
management and decentralized Control structure are not yet integrated in the
mainline XPFLow, but have a working prototype which is presented in Chap-
ter 5. For this reason they are not taken into account in this survey.

3.4.9 Execo

Execo is a generic toolkit for scripting, conducting and controlling execu-
tion of actions, including experiments, in any computing platform. Execo
provides different abstractions for managing local and remote processes as
well as files. The engine provides functionality to track the experiment exe-
cution and offers features such as parameter sweep over a defined set of values.
The partial results of the parameter sweep can be saved to persistent storage,
therefore avoiding unnecessary reruns in case of a failure.

3.4.10 Tools not covered in the study

In this section, we briefly discuss other tools that could be mistaken for ex-
periment management tools. In particular, we do not include:

« non general-purpose experiment management tools,

« scientific workflow systems,

. simulators and abstract frameworks,

. configuration and orchestration management software,

« tools capturing experimental context.
They either contradict the definition (cf. Section 3.4.10.1) or support only sub-
set of all activities required by it (cf. Section 3.4.10.4). Nevertheless, these

tools are sometimes used by experiment management tools to implement
features presented in Section 3.3.

3.4.10.1  Non general-purpose experiment management tools

Tools like ZENTURIO [150] and Nimrod [1] help experimenters to manage
the execution of parameter studies on cluster and Grid infrastructures. Both
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tools cover activities like the set up of the infrastructure to use, collection and
analysis of results. They are, however, restricted to parameter studies.

NXE [98] is another tool automates several steps of the experimental work-
flow, including reservation of resources and analysis of collected data. On
the other hand, it targets network protocol evaluation.

All these tools are not general enough to be included in this study.

3.4.10.2  Scientific workflow systems

The scientific workflow systems were thoroughly analyzed in Section 2.4. The
main objective of scientific workflow systems is to communicate analytical
procedures repeatedly with minimal effort, enabling the collaboration on
conducting large, data-processing, scientific experiments. Goals such as the
collection of data provenance and experiment repeatability are both shared
by scientific workflows and experimentation tools, however they are not ex-
periment management tools.

There are two main reasons why scientific workflows are not covered in
our study. First, scientific workflows are data-centric which restricts types
of processes that can be modeled. Second, the declarative representation of
many scientific workflows as acyclic graphs is generally limited in its expres-
siveness, therefore they do not meet the criteria of general-purpose experi-
mentation tools according to our definition.

3.4.10.3  Simulators and abstract frameworks

Simulators have been analyzed in Section 2.1.3.3. Even though they provide
many features required by the definition of the experimentation tool, they
are notincluded in our study. First, they do not help with experiments on real
platforms as they provide an abstract and modeled platform instead. Second,
the goals of simulators are often very specific to a particular research subdo-
main and hence are not general-purpose tools.

Other tools such as Splay [119] and ProtoPeer [89] go one step further by
making easy the transition between simulation and real deployment. Both
tools provide a framework to write distributed applications based on the
model of the target platform. They are equipped with measurement infras-
tructures and event injection for reproducing the dynamics of a live system.

The tools providing abstract framework to write applications under exper-
imentation are not considered in our study, because real applications cannot
be evaluated with them. Although real machines may be used to run experi-
ments (as it is the case with Splay), the applications must be ported to APIs
provided by these tools.

3.4.10.4 Configuration and orchestration management software

Configuration and orchestration software has been already presented in Sec-
tion 2.2.2. They simplify complex deployments by providing unambiguous,
declarative description of a desired system state and then carrying out nec-
essary steps to reach it. Operating at even higher level are orchestration man-
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Table 4: Number of publications citing papers dedicated to each experimen-
tation tool (as verified on 27 September 2015).

Tool First publication Citations
Weevil 2005 79
Workbench 2006 83
Plush/Gush 2006 200
Expo 2007 18
OMF 2009 203
NEPI 2010 66
XPFlow 2012 10
Execo 2013 1

agement tools, like Juju?, which are designed to coordinate complex systems
in flexible and reactive ways, usually in the cloud computing context.

All these tools do not fulfill the definition of the experiment management
tool. First, they are not general-purpose since no precise control over the execu-
tion is available (which is actually the goal of these tools). Second, the collec-
tion of results is not present. Nevertheless, they are often used as a building
block by experiment management tools.

3.4.10.5 Tools capturing experimental context

Tools of this kind have been presented in Section 2.2.3. Experimenters can
take advantage of version control systems (e. g., Git, Subversion) or more so-
phisticated frameworks which aim at recording and tracking the scientific
context in which a given experiment was performed.

These tools are not experiment management tools according to our defi-
nition, but they may be used to document the history of any software project,
including the experiment description and results. Some tools use them as a
building block to store experimental context (e. g., Emulab Workbench, Sec-
tion 3.4.3).

3.5 ANALYSIS

Existing tools for experiment control were analyzed and evaluated using our
set of features defined in Section 3.3 and the final results are presented in
Table 32 and Table 3b. For each position in the table (i. e., each property/tool
pair) we sought for an evidence to support possible values of a given property
in a given tool from a perspective of a prospective user. To this end, the publi-
cations, documentation, tutorials and other on-line resources related to the

3 https://juju.ubuntu.com/
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given approach were consulted. If presence of the property (or lack thereof)
could be clearly shown from these observations, the final value in the table
reflects this fact. However, if we could not find any mention of the feature,
then the final value claims that the feature does not exist in the tool, as for all
practical purposes the prospective user would not be aware of this feature,
even if it existed. In ambiguous cases additional comments were provided.
Much more detailed analysis that led to this concise summary is available
on-line*. Using information collected in the table, one can easily draw a few
conclusions.

There is no agreement whether a declarative description is more benefi-
cial than an imperative one. Declarative descriptions seem to be associated
with higher modularity and expressiveness, but at the price of a higher entry
barrier. Moreover, the tools tend to be independent of a particular testbed,
but those with tight integration offer a more complete set of features or fea-
tures not present in other solutions. For example, Emulab Workbench is one
of the most feature-complete tools, but many of its features are provided by
the Emulab testbed.

The majority of addressed features come from Architecture (70 %), Descrip-
tion Language (67 %), Debugging (63 %) and Interoperability (61%) groups. On
the other hand, support for Monitoring is quite low (37 %), whereas support
for Reproducibility is almost nonexistent (only 19 %). The features available in
the majority of the analyzed tools are: Testbed independence (8/9), Expressive-
ness (7/9), Low entry barrier (7/9), Support for testbed services (7/9), Interactive exe-
cution (7/9), Failure handling (6/9), Logging (6/9), Resource discovery (5/9), Check-
pointing (5/9), File management (5/9) and Provisioning (5/9). Moreover, the tools
have nearly universally Simple installation (7/9), Low resource requirements (6/9)
and offer methods to perform Efficient operations (6/9). The most unimple-
mented features are Provenance tracking (1/9) and Workload generation (1/9),
both crucial for reproducibility of experiments. We will turn to the tracking
of provenance in Chapter s.

Additionally, some tools offer features that are unique to them: Software
interoperability (Plush and OMF), Provenance tracking (Workbench), Workload
generation (Weevil), Verification of configuration (Workbench and OMF) and In-
strumentation (Plush and OMF).

Finally, we did a simple “impact analysis” of described tools by summing
all unique scientific citations to papers about each tool using Google Scholar
(see Table 4). Such a measure clearly favors tools that were created earlier, but
is nevertheless an interesting indicator. The most cited tool is OMF which
very recently overtook Plush (27 September 2015). As interesting as these data
may be, we abstain from drawing any more conclusions from them. The sum-
mary of this analysis is available on-line®.

4 http://xpflow.gforge.inria.fr/thesis/survey/survey.yaml
5 http://xpflow.gforge.inria.fr/thesis/survey/impact.yaml
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3.6 SUMMARY

In this chapter, we identified and presented the list of properties offered by
general-purpose experiment management tools for distributed systems on
real platforms. The diversity of the research domain of distributed systems
motivated the development of different techniques and tools to control ex-
periments, and explains the multitude of approaches and features. With the
construction of the feature list, we tried to establish a common vocabulary
in order to understand and compare the existing experiment management
tools. Comparison of the most important tools revealed interesting patterns.

The size and complexity of distributed systems has uncovered new con-
cerns and needs in the experimentation process. With the motivation of pro-
viding a controlled environment to execute experiments in the domain of dis-
tributed systems, several testbeds were created which stimulated the devel-
opment of different experiment management tools. Among the benefits of
experiment management tools are: encouraging researchers to experiment
more and improve their results, the educational value of being able to play
with known algorithms and protocols under real settings, the reduction of
time required to perform an evaluation and publish results, capacity to exper-
iment with many nodes, complex scenarios, different software layers, topolo-
gies, workloads, etc.

Despite the emergence of experiment management tools, some of them
are in an immature state of development which prevents them from fully ex-
ploiting the capacity of certain testbeds. There is a lot of challenges in the
domain of experimentation and the need of further development of those
tools is apparent. To achieve this, technologies developed with different pur-
poses could arguably be used in the experimentation process. For instance,
we mentioned that workflow systems and configuration management tools
share some concerns and goals with the problem of experimenting with dis-
tributed systems.

Finally, a deeper understanding of the experimentation process with dis-
tributed systems is needed to identify novel ways to perfect the quality of
experiments and give researchers the possibility to build on each other’s re-
sults.



The art of programming is the art of organizing
complexity, of mastering multitude and avoiding
its bastard chaos as effectively as possible.

— Edsger Dijkstra, Notes on Structured Programming

BPM-BASED EXPERIMENT MANAGEMENT

4.1 INTRODUCTION

In the previous chapter a comprehensive set of features offered by experi-
ment management tools has been identified. Moreover, we observed that
popular approaches have many overlapping features and that no single so-
lution has all of them. More importantly, we found that some important fea-
tures, such as reproducibility are universally underrepresented.

In this chapter, we introduce a novel approach to control experiments,
which borrows ideas from experiment control systems, scientific workflows
and workflow management systems. This workflow-inspired approach re-
defines the common activities of experimentation in one consistent model.
We illustrate our findings with XPFLow, a workflow engine tailored to the
requirements of distributed systems research. Despite its young age, this ap-
proach shows promising results, unique features and clear research direc-
tions to improve it further.

The rest of the chapter is structured as follows. In Section 4.2, we revisit
the features identified in the previous chapter (see Figure 7 on page 54) and
show that business process workflow models are a promising approach to
implement them. Then, in Section 4.3, we describe our approach and its main
features:

1. Aflexible workflow representation of experiments that promotes good
practices, code reuse, improves understanding and paves a way to for-
mal analysis.

2. A modular architecture that supports interoperability with low-level
tools, instrumentation of experimental workflows and composability
of experimental patterns.

3. Robusterror handling thatincludes special, domain-specific workflow
patterns and checkpointing of workflow execution.

We also describe the building blocks of workflows (patterns) and their exe-
cution semantics. Then we present a series of three case studies that eval-
uate the properties of our approach and describe its real-life applications.
Therefore, in Section 4.4, we evaluate our approach with a large-scale exper-
iment. In Section 4.5, a challenging experiment with nearly 40 000 nodes
is presented. The last case study is discussed in Section 4.6, which focuses
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on a thorough performance evaluation of a data-distribution technique con-
ducted with our approach. Finally, Section 4.7 concludes the chapter and out-
lines future research directions.

4.2 ADEQUACY OF BUSINESS PROCESS MANAGEMENT FOR EXPER-
IMENT MANAGEMENT

In this section, we use the framework established in Chapter 3 to make an ini-
tial evaluation of our approach. To this end, the use of business process work-
flow models is evaluated in the light of features presented there, and shown
to have useful properties that are not present in the majority of existing ap-
proaches. As the approach relies and borrows from scientific workflows (Sec-
tion 2.4) and Business Process Management (Section 2.5), it is expected to
profit from features offered by both of them. This analysis highlights only
the potential of the approach — the real-world implementation may possess
only a subset of the promised features, as it is in our case.
See Table 5 for the summary.

Type of Experiments. It has been already stated before that our goal is to tar-

get real platforms (Platform type is Real) and so is the focus of our ap-
proach. The use of workflows for experiments running on the model
of a platform is less justified due to higher control of the experiment
execution.
Moreover, as has been shown, workflows have been used to manage
various processes, ranging from human resources management, pro-
duction, emergency situation management, to tasks such as orches-
tration of distributed services. Their successful application and use in
such diverse situations is a strong indication that they are a general
tool and will apply to many methods and ways of conducting exper-
iments. Hence, there is no particular intended use for the approach
(Intended use is Any).

Description Language. Our approach relies on workflow representation of ex-
periments (Representation is Workflow). More precisely, it uses business
workflow patterns as building blocks.

Workflows, being built from interchangeable patterns, are inherently
modular (Modularity), but also offer great expressiveness due to their
top-down representation and information hiding (Expressiveness). The
primary goal and high-level tasks of a workflow can be grasped from
its top-level, graphical representation.

For the same reasons, the models of business processes (as well as sci-
entific workflows) can be used by non-specialists to perform tasks that
would otherwise require technical or domain-specific knowledge. It
has therefore the potential of giving the experimenters a gentle way
to start using the approach (Low entry barrier).

Interoperability. Business processes have been used as a model to orchestrate
heterogeneous, distributed services, and hence are not only capable of
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interoperability, but are also the solution to provide interoperability
itself between real systems (Features in Interoperability). In particular,
the discovery of resources is available to the extent that the platform
offers a service to perform such a task.

It will be shown later on that the approach indeed offers great inter-
operability in terms of testbed independence and software interoper-
ability.

Reproducibility. Therigid structure of workflows has another useful property:
it is quite straightforward to trace provenance of objects produced or
involved in the workflow (Provenance tracking). Scientific workflows are
the prime example, as they offer advanced and deep tracking of data
provenance. However, the collection of provenance in control-flows
poses some additional challenges as will be shown in Chapter s.

Fault Tolerance. Itisone of the principal uses of workflows (both in Business

Process Management and scientific workflow systems) to account for
exceptional situations and mitigate their effects on the proper execu-
tion (Failure handling).
Similarly, the rigid and well-defined structure of workflows allows ef-
ficient and, more importantly, correct checkpointing of intermediate
state (Checkpointing). This found a successful application in scientific
workflows where in some cases the previously obtained results of the
workflow can be reused later hence avoiding costly recomputation.

Debugging. Workflow systems have advanced logging capabilities which au-

tomatically collect rich and structured information, as opposed to the
naive logging consisting of a linear sequence of events (Logging).
Moreover, workflow systems often offer graphical user interfaces that
enable interaction with on-going processes and real-time monitoring
of progress (Interactive execution).
Finally, the correctness of workflows can be often performed statically
due to a well-defined model (Validation). For example, some scientific
workflow systems use meta-information about the types of data ex-
changed between computational steps to establish basic correctness
of the construction.

Monitoring. Workflow systems have been traditionally well suited to moni-
tor the progress of executed workflows and processes (Experiment mon-
itoring). It is indeed the very purpose of workflows to present the de-
tailed view of modeled processes. Some applications of workflows in
Business Process Management rely precisely on this information to
make intelligent decisions based on historical data (see Section 2..5.4).

Data Management. Workflow systems rarely address the problem of provi-
sioning the platform with required software. On the other hand, scien-
tific workflows are very capable of managing and transforming data,
be it in the form of files or coming from external sources (File manage-
ment, Analysis of results).
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Architecture. Although workflow systems are predominantly centralized sys-
tems (i. e., their execution is managed by a single process), they often
interact with multiple external services and hence form a distributed
system (Control structure is Decentralized).

Scientific workflows are often used with large computer installations
consisting of many nodes and hence require efficient and scalable im-
plementation of collective operations such as distribution of data, dis-
covering faults and monitoring (Efficient operations).

Workflow systems offer rich graphical interfaces to observe and inter-
act with the process (Interface is GUI). This can be done thanks to the
natural graphical representation of workflows.

As can be seen, the workflow-based approach covers most of the required
features. In particular it offers convenient representation of experiments,
high interoperability, checkpointing and provenance tracking. The last two
features are particularly interesting, since they have a rather low support in
the existing tools.

4.3 XPFLOW - BPM-BASED EXPERIMENT MANAGEMENT TOOL

Our approach is an interdisciplinary merger of three domains: experiment
control systems, scientific workflows and workflow management. First, our
main motivation is the control of experiments. Second, we share common
concepts and goals with scientific workflows, the workflow representation
of experiments and provenance in particular. Finally, we borrow the basic
model of execution and workflow patterns from the domain of workflow
management (a supporting science of Business Process Management).

The approach consists in using a domain-specific language to describe
experiment workflows and execute them using a workflow engine tailored
to control of experiments (called an experiment control system for short). The
workflow engine launches, controls and monitors all aspects of experiment
execution. A detailed log is kept which includes timing information, low-
level and user-defined debugging information, etc. Additionally, it provides
low-level features which cannot be implemented as workflows (e. g., check-
pointing and error handling). Precise information about execution of the ex-
periment can be exported, analyzed afterward and stored as an experiment
log.

Our implementation of this approach, XPFLow, is written in Ruby which
was chosen because of its popularity in configuration management tools,
such as Puppet or Chef, and its flexible syntax (for the purpose of implement-
ing a high-level, domain-specific language). XPFLOW is a workflow engine
that focuses on the control of experiments in distributed systems research.
To achieve our goals a set of different software and low-level tools are used:
SSH (to control nodes), TakTuk [48] (for a scalable command execution, see
Section 2.3.7) and some standard Unix programs.

In the remaining part of this section, a high-level overview of XPFLow
is presented. First, in Section 4.3.1, we introduce the workflow-based repre-



4.3 XPFLOW

- BPM-BASED EXPERIMENT MANAGEMENT TOOL

69

Table 5: Advantages of workflow-based approach to experimentation (the
summary of analysis in Section 4.2). The first group (Type of Exper-

iments) is omitted.

Group of Features offered by Remaining
features/properties workflow-based approach features
. Representation (workflow),
Description . .
Modularity, Expressiveness, -
Language .
Low entry barrier

Testbed independence,
Interoperability Support for testbed services,
Resource discovery, Software
interoperability

Provenance tracking

Reproducibility
Checkpointing, Fail
Fault Tolerance eckpotnting, fanture
handling
. Interactive execution, Logging,
Deb o
ebugging Validation
Monitoring Experiment monitoring
Data Management File management, Analysis of
results
Control structure
Architecture (decentralized), Efficient

operations, Interface (GUI)

Fault injection,
Workload
generation

Verification of
configuration

Platform
monitoring,
Instrumentation

Provisioning
Low resource

requirements,
Simple installation
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sentation of experiments that is based on workflow models of business pro-
cesses, but introduces some important improvements. We also make a brief
introduction to the implemented control-flow and experimental patterns. In
Section 4.3.2, we discuss the modular and extensible architecture that builds
on the workflow representation. Section 4.3.3 discusses the handling of fail-
ures through dedicated patterns. Finally, in Section 4.3.4 we discuss the gen-
erality of our approach and the limits of its applicability.

4.3.1  Workflow-based description of experiments

One of main problems with published research is the lack of experimental
verification of the presented ideas — substantial amount of research based
on “engineering epistemology” does not devote much space to evaluation of
presented ideas (only 36 % of such publications dedicate more than 20 % of
space to evaluation [193]). Even if experiments are presented in a publication,
they are often poorly documented using informal and ambiguous language.
The lack of a formal description of experiments prevents any formal analy-
sis or verification of correctness. Moreover, the existing practices (the use of
low-level scripts and the manual control of experiment execution) make it
very difficult to monitor the progress or instrument the execution of experi-
ments.

Our approach to this problem consists in representing experiments using
workflows. To achieve that, we provide a domain-specific language to define
workflows built from activities. Activities can be implemented imperatively
(using a low-level programming language), or declaratively as processes that
use various patterns to group activities and other processes into more com-
plex workflows. In other words, the processes orchestrate the execution of ac-
tivities, including other processes, whereas imperative activities implement
final actions. The workflow engine parses the description and builds an inter-
nal representation of workflows which maintains one-to-one relation with
their original description.

In this section we discuss the domain-specific language that is used to de-
scribe workflows (Section 4.3.1.1) and how this representation manifests it-
self as a high-level workflow (Section 4.3.1.2). Then we present common basic
workflow patterns (Section 4.3.1.3) and domain-specific, experimental pat-
terns (Section 4.3.1.4).

4.3.1.1  Domain-specific language representation

In our approach, workflows are described using a domain-specific, declar-
ative language. The building blocks are activities which can be grouped to-
gether into more complex workflows using special patterns for: sequential
and parallel execution, looping over a set of variables, error handling, etc.
(see Figure 9 for an example). Almost every high-level feature of our approach
is provided as a set of activities (including: acquiring resources for experi-
ments, communication with nodes, analysis of data). For handling low-level
tasks, the user is free to use traditional, imperative code.
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process :setup_experiment do |clients, server|
parallel do
forall clients do |node|
run :setup_client, node
end
sequence do
run :setup_server, server
run :start_server, server
log "Server started”
end
end
end

‘SETUP_SERVER}awSTART_SERVER}%* LOG k\

49/// x\\\}
@» SETUP_CLIENT 6
. _®

N S o -

Figure 9: Example of a mapping between the DSL and a workflow. Different
language-level constructs (parallel, forall, sequence) result in respec-
tive workflow patterns (parallel execution of subworkflows, a par-
allel loop and sequential execution of activities, cf. Figure 12).

The advantage of representing experiments in the textual form is that it
does not diverge from existing practices which consist in describing exper-
iments as a set of text files. Moreover, the human-readable text files can be
easily copied, modified and published without any heavyweight or propri-
etary software. Finally, plain text files can be compared using standard tools
and meaningfully versioned with version control systems (this aspect will be
explored further in Chapter 5).

The domain-specific language is primarily a tool to express the workflow
structure of experiments, but it has additional functionality. In particular
it has variables that are single assignment promises, behavior similar to paral-
lel programming languages (e. g., Swift [204]), and functional programming
languages (e. g., Haskell). They are used to store results of workflow execu-
tions and a way to pass parameters to workflows. They define data depen-
dencies between tasks ordered using control-flow patterns, resembling the
dependencies between tasks in scientific workflows.

To avoid the perils of concurrent access to shared variables, the following
semantics are enforced:

« the workflow variables are promises (also known as futures) and every
access to them blocks until their value is available; it is the behavior
present in some parallel programming languages,
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process :example do
parallel do
a = activity1()
b = activity2(a)
c = activity3()
end

end

Figure 10: Semantics of workflow variables in XPFLow. The data depen-
dency forces the runtime order of otherwise parallel activities.
The execution of activity?2 depends on the result of activityl,
hence it will be executed after it. On the other hand, the last activ-
ity (activity3) will be executed in parallel to the both remaining
activities.

« the variables can be assigned only once, and later reassignments are
not allowed; this behavior, often called single assignment, is common to
the functional programming languages,

« only a single thread of execution can set a given variable.

Such a behavior completely avoids the problem of concurrent access. More-
over, the variables can be used as a synchronization primitive. An example
illustrating this behavior is presented in Figure 10.

An alternative way to communicate state between workflow steps is to use
workitems. Workitem is a global state that is the context of execution of cur-
rently executing workflow. We decided against this solution since it suffers
from the aforementioned problems with access synchronization. We never-
theless consider this feature an implementation detail, and hence it will not
be discusses further.

4.3.1.2  Workflow representation

An experiment written in the domain-specific language is a workflow which
can be represented as a directed graph with annotated nodes. The expressive
power is close to that of workflow management systems as it uses standard
patterns that were identified in the literature [189]. Workflows can be built
from user-defined activities or from activities provided by the core library
that includes node management, data collection and statistics, logging, etc.

A workflow has the structure of a graph that is easy to visualize or trans-
form. Such a representation can be stored, modified and analyzed using well-
known methods and algorithms. In particular, a static analysis of workflows
can be done in order to identify their consistency and correctness, to ensure
that all referenced activities exist, for example. Moreover, workflows can be
represented in graphical form which may be easier to understand than tra-
ditional ways to structure experiments.

The workflow representation enjoys a variety of monitoring possibilities.
Information about execution times of activities is stored and can be analyzed
to find bottlenecks, suspicious behavior or causal relations that affected the
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Figure 11: Gantt chart of an experiment (edited for readability). Various activ-
ities are executed, some of them in parallel: install_pkgs: x rep-
resents multiple parallel activities install_pkgs that execute on
the nodes of the experiment (by means of forall experimental
pattern).

experiment. The timing information about activities can be presented in a
graphical form as well, for example as a Gantt chart (see Figure 11).

4.3.1.3  Control-flow patterns

In this section we present workflow patterns used to model experiments in
our approach. This includes most of the standard patterns identified in the
literature on control-flow patterns. We also discuss which patterns are not
available and the reasons behind it.

Traditionally, the traditional workflow patterns can be grouped into: basic
control-flow patterns, advanced branching and synchronization patterns, structural
patterns, patterns involving multiple instances, state-based patterns and cancella-
tion patterns [189]. Not all traditional patterns are implemented nor available
in our approach.

More generally, the following assumptions have been made:

« The structure of workflows is hierarchical — the patterns are nested in-
side each other, but arbitrary cycles are forbidden. This implies that
workflows can be represented as a tree and can be directly and arbi-
trarily reused within other patterns. Moreover, with some minor ex-
ceptions, the nesting of workflows respects causal ordering of execu-
tions — the nested workflows start after the parent workflow is started,
and finish before the parent workflow are terminated.

« Some patterns are difficult to implement correctly due to their compli-
cated semantics, hence they are not supported. In particular, we dis-
allow most of the cancellation patterns (i. ., patterns that stop execu-
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tion of other patterns) since they pose non-trivial synchronization and
consistency difficulties.

It must be noted, however, that these assumptions do not limit the expres-
siveness of workflows modeled in such a way.

In what follows, we present the list of patterns that are essential in the
approach. Each pattern is briefly presented and its semantics under normal
and anomalous execution explained. The graphical representations of the
patterns are given in Figure 12.

The following basic patterns are supported:

Activity isapatternthatdeclares anamed action that can be executed during
workflow execution. It is often a low-level action such as an execution
of acommand on a remote node. In our implementation, the language
used to implement activities defaults to Ruby. The XPFLOW runtime
has a number of predefined activities that can be used in any workflow.
Activities execute successfully when the underlying Ruby code finishes
without a problem.

Activities are declared using the activity keyword.

Sequence executes a list of other activities in a strict, sequential order. Each
activity in the sequence is activated only if the previous one has suc-
cessfully finished.

The sequence executes with a success if, and only if, all its activities
executed successfully.

Sequence is represented with sequence in the DSL, but can be also im-
plied is some other patterns, in particular the Process pattern described
below.

Process is a pattern that executes according to the semantics of the sequence
pattern. Contrary to a sequence, however, it has a name associated
with it, which is used to reference it in workflows and execute it, pos-
sibly multiple times.

Processes execute under the semantics of the sequence pattern.
Processes are declared using the process keyword.

Parallel split (also known as fork and join) executes a list of activities in paral-

lel, without predefined order between them, and waits for the termi-
nation of all of them.
The execution of parallel split is successful if, and only if, all parallel
activities executed successfully. If one of the parallel activities failed,
the parallel split awaits for all executions nevertheless, and then fails.
Parallel split is available as parallel in the DSL.

Exclusive choice executes one of possible activities according to the result of
a comparison. It can be considered a workflow counterpart of the clas-
sical branching in programming languages.

The execution of exclusive choice succeeds if, and only if, the chosen
activity executed successfully.

The DSL offers two patterns that implement exclusive choice: on for sim-
ple, binary branching, and swi tch for handling multiple choices.
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Among branching and synchronization patterns, the following are imple-
mented:

Multi-choice executes possibly multiple activities activated when associated
conditions are met. Itis a parallel version of exclusive choice pattern pre-
sented above. Multiple branches are executed with semantics equiva-
lent to the parallel pattern.

Similarly to the parallel pattern, the execution is successful when all
parallel branches are executed without a failure.
The DSL implements this pattern as multi.

Discriminator executes multiple parallel activities and waits till the prede-
fined number (say N) of them finishes successfully. When this num-
ber is reached, the execution of discriminator finishes and the control
is handed over to the next activity. Some of the remaining parallel ac-
tivities may still execute.

The discriminator will execute successfully if, and only if, at least N of
its activities executed successfully. Note that it is not necessary for all
activities to succeed.

The DSL pattern implementing the discriminator pattern is any.

The following structural pattern is available too:

Loop executes a sequence of activities repeatedly and sequentially until a
condition is met (similarly to the while loop from common program-
ming languages). At each iteration, the sequence of activities is exe-
cuted according to the semantics of the sequence pattern.

This pattern is executed successfully if, and only if, all its iterations
are executed successfully. The execution fails immediately when one
of the iterations fail.

The DSL construct implementing the loop pattern is loop.

4.3.1.4 Experimental patterns

In this section, we present the remaining patterns implementing operations
that are particularly useful when modeling experiments. The presentation
follows the same structure as the previous section: the patterns are briefly
presented, along with their execution semantics. Figure 13 presents the vi-
sual representation of these patterns.

The following patterns are available:

Sequential loop of multiple instances executes multiple instances of a single ac-
tivity. Each iteration is executed separately and with different param-
eters. It is usually used to iterate over a set of values.

The loop executes successfully if, and only if, all iterations finished suc-
cessfully. It fails immediately when the currently executing iteration
fails.

The DSL counterpart of the pattern is called foreach.
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() Activity (ACTIVITY)

O+ 2 O

(c) Process (PROCESS)

XS ﬂé

(e) Exclusive choice (IF/SWITCH)

(g) Discriminator (ANY)

PN

(b) Sequence (SEQUENCE)

5 n@

(d) Parallel split (PARALLEL)

0 n@

(f) Multi-choice (MULTI)

%?FB -

(h) Arbitrary cycle (Loop)

Figure 12: Overview of the most important control-flow patterns. The nota-
tion is based on, but not entirely identical to, the Business Process

Model and Notation.
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(2) Sequential loop of multiple
instances (FOREACH)

(b) Parallel loop of multiple
instances (FORALL)

LT

(c) Checkpoint execution
(CHECKPOINT)

ﬂ?%B

(d) Retry workflow (TRY)

Figure 13: Overview of experiment-oriented patterns in XPFLOW.

77



78 BPM-BASED EXPERIMENT MANAGEMENT

Parallel loop of multiple instances executes multiple instances of a single activ-
ity in parallel. There is no order between parallel instances, and each
iteration is executed with different parameters.

The loop executes with the semantics similar to the parallel pattern. In
particular, its execution is successful if, and only if, all parallel itera-
tions finish successfully. The failure is propagated only when all itera-
tions are finished.

This pattern is available as forall in the DSL.

Checkpoint stores the state of workflow execution so that the workflow ex-
ecution can be restarted from this point later. Checkpoints are only
meaningful within the sequence pattern, and change the way the se-
quence is executed. When such a sequence is executed, the most re-
cent checkpointis restored and the execution continues as if the check-
point pattern just finished. If there are no checkpoints available, the se-
quence executes normally. The proper use of checkpoints assumes cer-
tain properties of the workflow where the checkpoint pattern is used,
as will be discussed in Section 4.3.3.3.

There are two complementary cases when the checkpoint pattern is ex-
ecuted: when the checkpoint is taken, and when it is restored. In both
cases, the execution is successful, when the respective operations suc-
ceeded.

The DSL operation implementing the pattern is available as check-
point.

Try executes an activity and re-executes it if fails (hence the executions are
sequential). It finishes the execution if either: the predefined number
of retries has been reached, or on of the executions finished success-
fully. The proper use of this pattern requires the nested activity to have
certain properties as discussed in Section 4.3.3.

The execution is successful if, and only if, there is at least a single suc-
cessful execution of the inner activity. Also, the execution finishes as
soon as the inner activity finishes with a success.

The DSL implements this pattern via try keyword.

4.3.2  Modular and extensible architecture

The common shortcoming of existing methods and tools is the difficulty of
extending their functionality or reuse them in a different context. Most of
the tools support a single testbed and require a dedicated software stack to
function, for example. Similarly, many approaches suffer from limited pos-
sibilities to extend them, either by interoperating with external solutions or
extending the capabilities of the framework itself. In both cases, the compos-
ability of them is important so that the modules can be used together in an
arbitrary, flexible way.

In that regard, the workflow representation gives a powerful way to ab-
stract any existing functionality, including one offered by external tools. The
activities represent actions that can be grouped together to form more com-
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plicated workflows. Moreover, the workflows can act as parameters for the
execution of other workflows giving the powerful method of composing ex-
periments from well-defined experimental patterns. Thanks to that architec-
ture, most of the features of our approach are provided in a completely mod-
ular way.

Two features of our approach approach are presented in this section. First
the interoperability with external environments and tools is discussed (Sec-
tion 4.3.2.1), and then composable and reusable experiments (Section 4.3.2.2).

4.3.2.1 Interoperability with testbeds and external tools

To illustrate the interoperability of our approach, we show how the control
over nodes of the experiment is implemented. In particular we show its inde-
pendence from an underlying testbed and a way to achieve a scalable method
of command execution.

The primary abstraction is that of a node which at the level of a workflow is
treated just as any other variable. To interact with the node, one uses the set
of activities that provide a portable and scalable implementation of common
operations. These operations include remote command execution, copying
files, retrieving files, etc. The method of accessing the nodes and software
used to perform these operations is abstracted and transparent to the user.

The first benefit of this architecture is that the testbed used in the exper-
iment can be easily changed to an alternative set of activities that perform
all necessary actions on the new testbed. Another benefit is that it is equally
easy to work with nodes at any level of the infrastructure. It does not matter
if a node is accessible directly or via a gateway node of a testbed — from the
workflow point of view both situations are exactly the same.

The scalable execution of commands on multiple nodes, as well as distri-
bution of files, is implemented on top of TakTuk [48].

4.3.2.2  Composable experiments

Experiments are workflows which form a hierarchical structure. There is al-
ways a topmost, root experiment that encompasses the process of the experi-
ment. During its execution sub-experiments can be started, which may con-
tain their sub-experiments and so on. An example of such a nested experi-
ment is presented in Figure 14.

An experiment can take another experiment as a parameter and execute
it, possibly multiple times. For example, a study of scalability may consists
in measurement of performance of an application as the number of clients
varies. Instead of modeling this experiment as a monolithic loop that exer-
cises more and more nodes, we can model it as two distinct problems: (1) im-
plementing a process that runs a benchmark with a given set of nodes and
(2) implementing an experiment that executes it with more and more nodes.
The high-level experiments can be used in an arbitrary way depending on the
needs of a user. This encourages reuse of code and good scientific practices.
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experiment :scalability do |exp, opts, *args|
items = items_of opts
n = length_of items
start = start_of opts
step = step_of opts
sizes = range(start, n, step)

Size Performance

foreach sizes do |size| 1 2.4
subset = item_range(items, size) 2 1.7
result = run(exp, subset, *args)
log "Result for #{size} is #{result}” 3 1.5
value([ size, result 1)

end

end

scalability(:perf, :items =>7[ 'a', 'b', 'c' 1,
:start =>1, :step=>1)

perf:1 perf:2 perf:3
['a' ] ['a’, 'b’1['a, 'b', 'c' ]

T

Result: 2.4s Result: 1.7s Result: 1.5s

Figure 14: Example of a composable experiment that measures performance
with multiple nodes (DSL representation on the left, an example
how scalability experiment executes : perf experiment with a list
of 3 items, and final results of the example on the right). A sub-
experiment passed as an argument is executed with more and
more items (e. g., clients). Additional options specify an initial size,
a step size, etc. The final value is a mapping between number of
items and results obtained with them.

4.3.3  Workflow execution and failure handling

The ultimate goal of experiment execution is to finish it with success, even in
the presence of intermittent failures. Unfortunately, the execution of experi-
ments in large-scale experiments is difficult due to their complexity and size.
Large-scale experiments involving hundreds or thousands of nodes reach
scalability limits of a platform (e. g., overload network hardware) and may
fail for known reasons (such as timeouts) but also in unexpected ways. Fail-
ures cannot be left unnoticed, because they could bias measurements and
conclusions. However some failures may be intermittent and therefore not
fatal to the experiment execution and its correctness. These characteristics
of the domain of large-scale experiments call for proper analysis of how the
experiments can fail and what can be done about such failures.

Error handling in our approach consists of special workflow patterns to
handle failures and checkpointing. However, before discussing them, a dis-
cussion about failures during experiment execution (Section 4.3.3.1) is nec-
essary. Then we discuss the handling of failures via dedicated patterns, and
properties that workflows must have to be used with them (Section 4.3.3.2).
At the end, we turn to checkpointing as another fault tolerance technique
(Section 4.3.3.3).
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4.3.3.1  Failure types and workflow properties

We distinguish the two types of failures:

« Platform failures are caused by external technical problems, software
or hardware bugs, etc., and in an idealized environment such failures
would not happen. Examples of platform failures include a dropped
HTTP connection due to an overloaded server or a node crashing due
to software or hardware error.

« Workflow failures are the result of wrong structure of the experiment or
wrong assumptions which, contrary to platform failures, happen even
in an idealized environment. An example of a workflow failure is an
attempt to copy a file that does not exist.

The workflow execution can result in various outcomes: a success, a failure
caused by the platform or a failure caused by the workflow (see the execu-
tion semantics of control-flow patterns in Section 4.3.1.3). Platform failures
can be further divided into intermittent and fatal ones. In practice, these two
types of failures cannot be easily distinguished and the standard approach
consists in using timeouts and retries to decide whether the failure is inter-
mittent or fatal.

Further on, we will say that two executions of workflows are equivalent if
they lead to the same effect on the platform. It does not imply exactly the
same state of the platform, but two states whose differences have no impact
on the execution of the workflow and on the overall result of the experiment.
The precise definition depends on the object of study and technical details.
For instance, if hard disk performance is studied, any disk access may affect
the state and hence experimental results. Therefore, executions that differ
by the disk access patterns in general are not equivalent. However, if it is the
network that is studied, the state of the hard disk can be arguably ignored.

We will say that a workflow is restartable if it can be executed repeatedly
(with a success or a failure) in sequence without causing a workflow failure.
In other words the workflow execution cannot break its own prerequisites as
the result of the execution. An example of a workflow that is not restartable
would be one that moves a file - the file will not be present the second time
the workflow is run. Such a workflow modifies its own prerequisites that are
necessary for its proper execution.

Aworkflow is idempotent if a sequence of its multiple successful executions
is equivalent to a single successful execution. Observe that making the copy
of afileisidempotent, but appending to a file is not. A workflow composed of
idempotent constituents does not have to be idempotent. For example, the
sequence (copy a b; copy ¢ a) is not idempotent if contents of the files a and
c differ. Similarly, an idempotent workflow is not necessarily composed of
idempotent actions — the sequence (copy a b; move b ¢) is idempotent as a
whole even though moving a file is not.

If a workflow is restartable and if in the presence of intermittent failures
it will nevertheless eventually succeed in a state that is equivalent to a single
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process :prepare_experiment do |machines|
forall machines do |machine]|
try :retry => 5
run :install_software, machine
end
end
end

Figure 15: Error handling during parallel installation of software. If there
is an intermittent failure during installation of software on each
node, the process will be retried 4 times more until it will become
an unrecoverable failure. Without the try block any failure what
propagate to parent activities and, if not handled by them, would
stop the experiment.

successful execution, then we will say that it is eventually successful. If it is also
idempotent, then we will say it is eventually idempotent.

The aforementioned properties are crucial in a discussion explaining fail-
ure handling patterns and checkpointing. We show that by handling inter-
mittent failures adequately, the experiment as a whole can still be executed

properly.
4.3.3.2  Failure handling patterns

Users do not have to explicitly define what constitutes a failure as any anoma-
lous behavior is treated as such. On the other hand, they can force an error
(e. g., as a result of monitoring activity), signaling the presence of a failure.
Failures can be subsequently delegated to failure handling patterns.

Any workflow can be embedded inside a failure handling pattern that will
retry its execution the predefined number of times (the try pattern). The in-
ner workflow should be eventually successful so thatit can be restarted multiple
times until finally it succeeds. If the limit of retries is reached, the problem
is treated as fatal and the workflow finishes with a failure.

The primary use for failure handling of workflows is to cope with inter-
mittent failures which are a common problem in large-scale experiments. If,
for example, many nodes use a shared resource (e. g., connection bandwidth,
broadcast domain, etc.), some requests may fail due to timeouts, operating
system limits, software and hardware bugs, etc. The common case is a highly
parallel installation of software on many nodes — the bottleneck is the shared
access to a single server with packages. Fortunately, the software installation
process can be treated as restartable and hence our approach applies.

Therefore, if the experiment is built from constituents that are eventually
successful, and proper error handling is used, then the experiment can be
eventually finished even in the presence of intermittent failures. Moreover,
the results of the execution are equivalent to execution that experienced no
failures at all. An example how the pattern is used in practice is shown in
Figure 15.



4.3 XPFLOW - BPM-BASED EXPERIMENT MANAGEMENT TOOL

4.3.3.3 Checkpointing

The state of the experiment execution can be saved in strategic, predefined
places and restored later. The common use of that feature is to restart the exe-
cution from already reached checkpoints in the case of a failure, to save time
and other resources. Experiments are often implemented iteratively, that is,
by repeatedly designing and running the experiment until the researcher is
satisfied with it. Thanks to checkpointing, the parts that are already finished
do not have to be re-executed every time. Moreover, even if a finished exper-
iment fails unexpectedly, the cause of the problem can be found, fixed and
the experiment restarted.

It is important to note that the checkpoint contains the high-level state of
the experiment execution, not the full checkpoint of the platform. The con-
tent of the checkpoint is essentially the serialized state of the workflow en-
gine and external information that is necessary to reconnect to the testbed
and nodes. This is usually enough, since full checkpointing would be pro-
hibitively costly or require close, and often unavailable, cooperation with the
testbed. The structured form of experiments represented as workflows al-
lows taking checkpoints without much cost, and without much restrictions
in practice.

Although checkpoints can be used anywhere in the main workflow of the
experiment, the properties of failures suggest that the placement of them
must not be arbitrary. More precisely, the use of checkpoint assumes that the
remaining part of the workflow, executed after the checkpoint, is eventually
idempotent.

Thanks to techniques like the snapshotting of virtual machines or of the
underlying file system, the checkpointing may in theory include the state of
the underlying physical platform where the experiment is executed. In that
case, restarting the checkpoint consists in restoring the underlying platform
to the state at the moment when the checkpoint was taken. The primary ad-
vantage is that the workflow following the checkpoint may assume a partic-
ular state of the platform and may even not be restartable. This functionality
is not yet available in our implementation.

4.3.4 Applicability and limitations

Our approach was developed as a method to run in-situ experiments in dis-
tributed systems. This makes it suited for this kind of experiments, but less
practical in other situations.

Itis arguably well suited when running experiments with grid, cluster and
cloud infrastructures as will be shown in the remaining sections of this chap-
ter. There are a few reasons behind this. First, these are the platforms that
are traditionally associated with in-situ experiments. Second, the evolution
of our approach and its implementation was driven by the author’s own ex-
perience in this domain. In particular the patterns available in XPFLOW are
precisely those that are common while experimenting with such platforms.
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It is not clear whether the approach can profit research with testbeds run-
ning emulated resources, such as wireless testbeds (such as ORBIT). Such
platforms are often used by means of dedicated tools and interfaces, and
consequently the use of workflow-based approach may not interoperate well
with existing infrastructures.

Although most operations managing infrastructure are distributed in the
currentimplementation, the workflow execution is not. Thisled and will lead
to scalability problems in some extreme scenarios. Moreover, the workflow
execution is synchronous and a direct reaction to asynchronous events is not
possible (such a feature would greatly complicate checkpointing). As a conse-
quence, failures are handled when their devastating effects are encountered,
making the experiments that study failures in distributed systems cumber-
some.

Although XPFLow is efficient in distributing data, such as files, and run-
ning commands efficiently, it is not yet able to collect large volumes of data
afterward and index it in useful way. Moreover, only limited interaction with
external data sources, such as monitoring infrastructures, was implemented
and tested. A general framework to collect data and provenance is one of the
most direct research directions and will be discussed in Chapter s.

Another impeding difficulty is the entry barrier associated with the ap-
proach. The researchers may refrain from changing the old habits, due to the
initial complexity and not immediately obvious benefits of learning the new
approach. Moreover, the current implementation lacks in terms of usabil-
ity and features, which is another reason that may discourage the potential
uses.

A possible way to encourage the use of our approach would be to give an
automatic or nearly automatic way to rewrite existing experiments to the
workflow-based approach. This is an interesting research question by itself,
that is, how to find control-flow structure in ad hoc and manual actions of
somebody experimenting with a testbed. Process mining solves the equivalent
problem in Business Process Management, but whether the similar methods
apply in our case is not directly clear.

Finally, nodes that are involved in an experiment must provide a Unix-like
environment. These shortcomings are not inherent to our approach and can
be addressed by hardening and extending our implementation.

4.4 CASE STUDY I - TYPICAL EXPERIMENTAL SCENARIO

In this section, we will evaluate our approach with its implementation called
XPFLow. To this end, we designed an experiment that covers all relevant fea-
tures and shows how they are used together. In particular, we test such fea-
tures as the workflow representation of experiments, the modularity and extensi-
bility of our approach, and failure handling via dedicated workflow patterns.
This evaluation has been published as part of a conference article [30].
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4.4.1 Introduction and technical details

Our experiment is a basic performance analysis of a single server instance
of nginx' HTTP server (version 1.2.1) with 4 worker threads, while serving a
varying number of clients. As a benchmark, we used ApacheBench?. A sin-
gle run of the experiment consists in measuring the throughput of a single
HTTP server while serving many clients simultaneously during 10 seconds.
The result is measured in requests per second that the server was able to suc-
cessfully deliver. The requested document is a short web page (that easily fits
the filesystem cache) and therefore we mostly measure the scalability and re-
liability of the request loop implemented in the server. The operating system
used to run all experiments is Debian 64-bit (wheezy) running a Linux kernel
(version 3.2).

The following subsections follow the structure of Section 4.2 in the sense
that each subsection evaluates one of the features announced previously.

4.4.2. Workflow representation

The workflow representation of the experiment exploits various patterns to
build experiments. We used the sequential and parallel loops to iterate over
sets of nodes, the parallel execution patterns to perform actions in paral-
lel, the error handling patterns to harden the execution of the experiment,
etc. The workflow representation is verified by XPFLow before execution to
check if there are any problems that can be detected before runtime.

Moreover, the workflow can be visualized by exporting its graphical form
to a file. This may in some cases provide an advantage over a plain, textual
representation. Moreover, the workflows may be exported in a form that may
be tuned for the inclusion in scientific articles.

The overview of the experiment is presented as a workflow presented in
Figure 16. That part is independent from the underlying testbed and nor-
mally is preceded by testbed-specific part that reserves physical nodes and
prepares a testbed.

4.43  Modularity and extensibility

To evaluate the modularity and extensibility of our implementation, we show
the following results:

« the experiments can be built from modular and reusable components
(Section 4.4.3.1),

« the experimental testbeds can be replaced while running the same, un-
modified experiment on each of them (Section 4.4.3.2).

1 http://nginx.org/
2 http://httpd.apache.org/docs/2.4/programs/ab.html
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o FOR EACH k-SUBSET
C <. OFn NODESk € {1, ...,n}

STORE RESULT R O
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Figure 16: Principal workflow of the experiment consisting of 2 compos-
able experiments and the main experiment (i. e., the HTTP server
benchmark). The input of the experiment is a set of nodes pro-
vided by a testbed-specific workflow. One node is designated as a
server, the remaining act as clients. The scalability experiment takes
avarying number of clients in a sequential loop (denoted with “=”
and passes them to the minimal sample experiment. The minimal sam-
ple experiment executes the benchmark as many times as necessary
to achieve a required statistical precision.

4.4.3.1 Modular structure of the experiment

Our experiment is built from reusable, modular components. One can dis-
tinguish three sub-experiments with the increasing depth of nesting:

« the scalability experiment — runs a given experiment with an increas-
ing number of objects (in our case these objects are clients),

« the minimal-sample experiment — given an experiment tries to find a
minimal number of samples necessary to reach a desired precision,

« the benchmark — the main experiment that benchmarks the perfor-
mance of an HTTP server.

The nested structure of these components is clearly visible in Figure 16.

The minimal-sample experiment uses the fact that results are represented
as variables passed between activities. In particular, a workflow may have
alooping behavior that depends on a result of partially collected results (see
Figure 17 for illustration). The workflow assumes that the results returned by
the nested experiment follow a normal distribution. This implies that the av-
erage of n results follows Student’s t-distribution with v = n — 1 degrees
of freedom. After an initial sample is drawn, the nested experiment is re-
executed until the confidence interval derived from Student’s t-distribution
is smaller than a desired precision.

4.4.3.2.  Interchangeable testbeds

The modular structure of the experiment allows replacing parts of it with
ease. In particular, we show that a single experiment can be run unmodified
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process :minimal_sample do |precision]|
first_samples = foreach(range 3) do
run :experiment
end
data = data_vector(first_samples)
loop do
conf_prec = confidence_ratio_of data
return_on (conf_prec <= precision)
r = run :experiment
data_push(data, r)
end
value(data)
end

Figure 17: Implementation of the minimal-sample experiment (simplified).
First, 3 measures are taken and then the experiment is repeated
until a desired precision is reached.

on 3 different testbeds: a container-based testbed, a real testbed consisting
of physical nodes, and a virtualized one resembling the OpenStack infras-
tructure.

LIGHTWEIGHT CONTAINER-BASED PLATFORM

This platform was used to rapidly develop the experiment without the neces-
sity of using a real, shared testbed. The advantages are numerous: the ideas
can be tested rapidly, the “testbed” resources are always available, the connec-
tion is much more reliable and fast. This feature can be described as a virtual
testbed - a sandbox to test ideas, iterate rapidly and spot problems early.

Atthetechnicallevel, this feature is implemented using Linux Containers®.
Allinstances share a common base image using the Copy-On-Write features
of a Btrfs filesystem, whereas their virtual network interfaces are bridged
with the host network card. The process of launching containers is imple-
mented as a separate XPFLow workflow and is not included in the main
XPFLOW runtime.

The machine used to host containers and develop the experiment is a desk-
top machine running Linux. The results for this “sandbox” testbed are not
presented, since they are neither comparable with other testbeds nor can re-
motely achieve the similar scale of an experiment.

GRID’5000-BASED PLATFORM

This experiment is the most common case that we are interested in. The
nodes used in the experiment come from two different clusters. One con-
sists of nodes that are equipped with the Intel Xeon X3440 processors, 16 GB
RAM, a magnetic hard disk and Gigabit Ethernet network cards. The second
one consists of machines that only significantly differ in that they have the
Intel Xeon L5420 processors. We used the total number of 199 nodes during
the experiment.

3 http://1xc.sourceforge.net/
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This experiment uses a small set of activities to interact with Grid’5000
testbed. The activities are used to submit user reservations, obtain informa-
tion about associated nodes and install the operating system used during the
main experiment. This reusable part amounts to few hundred lines of code,
whereas the non-reusable boilerplate added to the original experiment s less
than 30 lines.

CLOUD-LIKE PLATFORM

Thisvariation of the experiment uses the KVM-virtualized instances of Linux
operating system. The physical nodes used to host the virtual machines are
the same as those used in the previous experiment and are running Linux
as well. This experiment is the most challenging, as well as the most time-
consuming due to a fairly complicated installation process. The complete
listing of workflows used to run the deployment is presented in Figure 18.

The multi-level setup complicates communication with nodes at different
levels of the installation, as they may not be reachable directly from the host
running XPFLow. In our case, we use one Grid’s000 node as a gateway to
all virtual machines (it is also a gateway that acts as a router for virtual ma-
chines). Thanks to our abstractions the whole process is completely transpar-
ent (see Figure 20).

The physical infrastructure that hosts the cloud-like setup is the same as
in the Grid’sooo-based experiment. Each physical node hosts two VMs per
each core available on that node (that is, each core is shared by 2 instances).
During the experiment we started 2034 virtual machines (and another VM
dedicated as a web server).

Each virtual machine has a one virtual core and 1 GB of RAM available with
the exception of the virtual machine that hosts the HTTP server — this node
has 4 cores and 4 GB of RAM. The network interfaces of the virtual machines
are bridged to the physical Ethernet network. This cloud-like infrastructure
is in many respects similar to one of possible configurations offered by Open-
Stack* cloud software and arguably serves as a good model to study clouds
with many deployed instances.

This variation of experimental scenario required to design and implement
workflows to deploy the virtualized infrastructure. This (reusable) process
amounts to 315 lines of code. Moreover, we had to prepare a KVM image used
by the virtual machines. It required the installation of Debian Linux with nec-
essary software. The image can be reused in different experimental scenario.

4.4.4  Failure handling

Our method takes a strict, almost paranoid approach to failure handling - by
default every single problem will cause the experiment to fail. However, the
user can manually define aretry policy for parts of the workflow forcing them
to restart automatically if a failure happens during experiment execution, or
by restarting the experiment from a checkpoint by manual intervention.

4 http://www.openstack.org/
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use :g5k
import :http,

IMAGE = "/home/tbuchert/public/wheezy.qcow2"

# shadow package installation

process :"http.deploy” do |master, slaves|
execute master, "service nginx start”

end

process :install_master do |master|
distribute master, #! text="Copy files”
"files/master.sh”, "/tmp/"
execute_many master, #! text="Configure the node”
"bash /tmp/master.sh"”
end

process :install_slaves do |slaves|

distribute slaves, #! text="Copy files”
"files/x.sh”, "/tmp/"
distribute slaves, #! text="Copy SSH key"

$ssh_key, "/tmp/"
distribute slaves, #
IMAGE, "/tmp/"
execute_many slaves, #! text="Conf. nodes”
"bash /tmp/client.sh”
end

text="Copy KVM image”

activity :get_instances do |master, slaves|
results = run :execute_many, slaves,
"cat /tmp/__instances__"
mega_result = results.to_list.map(&:stdout).join
nodes = mega_result.strip.lines.map do |line|
name, ip, mac, group = line.split
run :proxy_node, master, "root”, ip
end
nodes
end

process :run_nginx do |slaves, master|
try :retry => 3 do
run :"http.conf_performance”, master, slaves
end
end

process :perform_experiment do |master, slaves|
run :"http.deploy”, master, slaves
step = var(:step, :int)
results = run :"http.scalability”, :"/run_nginx",
{ :items => slaves, :start => step,
:step => step }, master
save_yaml "./results.yaml”, results
end

process :deploy_grid5000_nodes do
job = gbk_auto_raw :site => var(:site)
vlan = g5k_kavlan_id(job)
vnodes = g5k_kavlan_nodes(job)
vnodes = code(vnodes) { |xs| xs.map(&:host) }

"../http/common.rb” # import the main exp.

TYPICAL EXPERIMENTAL SCENARIO

process :launch_instances do |nodes|
execute_many nodes, #! text="Stop all VMs"
"bash /tmp/flush.sh”
execute_many nodes, #! text="Start client VMs”
"bash /tmp/instances.sh $TAKTUK_RANK"
sleep 60
end

process :retrieve_instances do |master, server, hosts|
nginx = get_instances(master, server)
clients = get_instances(master, hosts)
bootstrap_taktuk(nginx)
bootstrap_taktuk(clients)
value([ first_of(nginx), clients 1)

end

process :deploy_cloud do

nodes = \  #! text="Deploy Grid'5000 nodes"”
deploy_grid5000_nodes()

log "Using #{length_of nodes} G5K nodes."

checkpoint :nodes_kadeployed

master, slaves = shift nodes

log "The master is #{master}, slaves are #{slaves}"

parallel do
install_master(master)
install_slaves(slaves)

end

checkpoint :configured

server, hosts = shift slaves

parallel do
start_nginx_server(server)
launch_instances(hosts)

end

nginx, clients = #! text="Configure VMs"
retrieve_instances(master, server, hosts)

value([ nginx, clients 1)

end

process :cloud_experiment do
nginx, clients = deploy_cloud :deploy_cloud
checkpoint :testbed_prepared
log "The nginx server is #{nginx}.”
log "There are #{length_of clients} clients.”
test_connectivity(nginx)
test_connectivity(clients)
checkpoint :before_main_experiment
perform_experiment(nginx, clients)

nodes = gbk_kadeploy(job, "virsh-image”, end
"--vlan #{vlan}", :real_nodes => vnodes)
bootstrap_taktuk(nodes)
value(nodes)
end
process :start_nginx_server do |server|
execute server, #! text="Stop all VMs"
"bash /tmp/flush.sh”
execute server, #! text="Start server VM"
"bash /tmp/server.sh”
end
install master start_nginx_server
——{Copy files [Configure the node}
.
install_slaves launch_instances
Copy files || Copy SSH key || Copy KVM image |{Conf. nodes

Figure 18: Full listing of workflows used to deploy a cloud-like testbed and
the autogenerated graphical representation of the deploy_cloud
workflow. Blocks defined with the process keyword describe
workflows, whereas blocks defined with activity contain a low-
level Ruby code. Various workflow patterns are presented: failure
handling, checkpoints, parallel execution and composable experi-
ments. See also Figure 19 which lists the most important built-in

activities.
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Activity Description
log store a message in the experiment log
bootstrap_x initialize functionality on nodes
execute run a command on a single node
execute_many run a command on many nodes efficiently
distribute send a file to many nodes efficiently
test_connectivity check if nodes are reachable
save_yaml store results in a file
gbk_* interact with the Grid’sooo testbed

Figure 19: List of built-in activities in XPFLow. They are used, among others,
to execute commands on nodes, distribute files and interact with
the testbed (cf. Figure 18).

XPFLow
engine

GsK node GsKnode GsK node
(hosts VMs) (gateway) (hosts VMs)

SN N

KVM KVM N KVM KVM

instance instance instance instance

Figure 20: Hierarchical structure of nodes used in the cloud-like testbed.
Three nested levels can be distinguished (XPFLOW engine,
Grid’sooo nodes, KVM instances). The red, dashed path describes
a connection used to access and control virtual machines.

Our approach to error handling allowed us to cope with some intermittent
failures that happened during the experiments. In particular, the occasional
problems with running the benchmark were handled by restarting the part
of workflow that failed and problems have been mitigated (see the use of the
try workflow pattern in the : run_nginx workflow in Figure 18).

The experiment was structured according to the workflow properties de-
scribed before. For example, the checkpoints were used in proper places to
save time and to ease debugging. During the development of the experiment,
they were occasionally used to fix bugs in the experiment that caused it to fail
and then to restore the execution state before the failure.
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4.4.5 Conclusions

The obtained results are presented in Figure 21. For each data point, the ex-
periment was repeated at most 10 times to obtain a sample mean value that
is at most 3 % from the real mean value with 95 % confidence. The data points
that failed to converge are presented with intervals of the same confidence,
but of a larger size.

Unsurprisingly, the physical testbed offers better performance than the
virtualized environment. The peak performance reached more than 30 000
requests per second for 180 clients and would likely improve if more nodes
were used.

The results obtained in the virtualized environment are not as good. The
performance reached around 10 000 requests per second in our experimen-
tal scenario. The lower performance is due to the overhead of CPU and net-
work interface virtualization. Also, we noticed that for more than 900 simul-
taneous clients some requests were not served successfully, but the overall
performance remained the same.

All in all, the nginx HTTP server offers very good performance and scal-
ability while serving a large number of clients. Thanks to the cloud-like in-
frastructure managed with XPFLow, we were not limited by the size of the
physical infrastructure and were able to run our experiment with more than
2000 virtualized nodes.

We have illustrated a few aspects of conducting experiments represented
as control-flows. First, the experiment was expressed with a domain-specific
language based on common workflow patterns extended with some special
patterns present in experiments in distributed systems research. The main
workflow is not monolithic and instead consists of independent workflows,
some of them potentially useful in a different context. Such a top-down ap-
proach promotes logical workflow structure, progressive development of an
experiment, as well as reusability which is nearly non-existing in current
practices.

Second, the top-down description of experiments leads to an experiment
that can be executed on different platforms. We illustrated this fact by re-
placing the standard physical platform with a cloud-like one, or with a one
hosted on a single node. This has been achieved with measurably low amount
(i.e., lines of code) of changes done to the primary workflow. If developed
and adopted, this can also lead to more efficient use of physical resources,
as the experimenters will be able to test their experiments locally and then
smoothly deploy them on a final platform.

Third, we have shown the usefulness of such features as failure handling
via special workflow patterns, and checkpointing. The former assured that
our experiments could continue despite occasional problems, and the latter
saved significant, although unmeasured, amount of time that would be oth-
erwise lost to manual experiment control. Ensuring that workflows used in
the experiment met the requirement criteria presented in Section 4.3.3.2 and
in Section 4.3.3.3 proved to be easy and straightforward in practice.
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Figure 21: Performance (measured in requests per second) of the nginx
HTTP server while serving a varying number of clients (X axis has
a logarithmic scale). Results for two different testbeds are shown:
one built using two physical clusters and one cloud-like with virtu-
alized nodes. Each data point is presented with its 95 % confidence
interval derived from Student’s t-distribution.

The raw results, XPFLow software and the experimental workflows are
available’.

4.5 CASE STUDY II - EXPERIMENT WITH 40000 NODES

In this section we present a case study using our approach to conduct a large-
scale experiment. This experiment consists in evaluation of a new feature
implemented in the Distem system emulator. To this end, the experimental
environment is set up and the evaluation of three different algorithms for
the scalable execution of commands is conducted. We will briefly introduce
the topic, describe the experimental setup and mention the advantages of
using our approach in this case.

This section covers some details of these experiments only superficially as
they are not required in our context. For the complete presentation, please
see the original publication [26].

4.5.1 Introduction

Distem [165] is a distributed system emulator that leverages advanced Linux
featureslike LXC, CPU frequency scaling and traffic control, to emulate a het-
erogeneous platform on top of ahomogeneous cluster. Heterogeneity can be
obtained by (1) specifying a virtual network topology where latency and band-
width of the links can be defined, (2) emulating a degraded CPU capability,
(3) executing several virtual nodes on a single physical node. Furthermore,

5 http://xpflow.gforge.inria.fr/thesis/experiments/xpflow2013.tar.xz


http://xpflow.gforge.inria.fr/thesis/experiments/xpflow2013.tar.xz

4.5 CASE STUDY II - EXPERIMENT WITH 40000 NODES

Distem is able to inject failures in the virtual platform in order to perform
the experiment in realistic conditions.

Distem is a valuable tool for distributed system evaluation since it allows
one to perform experiments in various conditions with only one physical
testbed. Furthermore, Distem improves reproducibility since the same en-
vironment setup can be reproduced on a different physical infrastructure.
Distem can be applied to domains such as: the study of a peer-to-peer proto-
col, the study of a load-balancing algorithm, the study of a scheduler, etc.

Distem scales easily to several thousands of virtual nodes (vnodes) running
on clusters with 100 physical nodes (pnodes). Going beyond these numbers
in terms of scale meets with various network issues. The primary reason is
that the Distem vnodes are in the same L2 network. When running more than
5000 of them using the current architecture, several ARP-related problems
appear. The ARP protocol is used to provide mapping between a network
hardware address (i. e., MAC) and an IP address, a process required in Ether-
net networks to enable communication between any two nodes. The encoun-
tered problems are:

« the ARP protocol does not scale very well, in particular when a lot of
requests are performed at the same time, a phenomenon known as
ARP flooding;

« the ARP tables, in particular those in the network equipment, have a
hard-wired size limit (usually 8096 or 16 192 entries) or are conserva-
tively small (in the case of default Linux settings); consequently, the
addresses of vnodes are constantly evoked according to the LRU policy,
which causes many ARP requests and excess traffic; this problem can
be worked around by partitioning the address into smaller networks
and setting up routing between those smaller networks;

« by default, the ARP entries are purged after a quite short time, leading
to unnecessary and intrusive ARP traffic during an experiment.

Some of those issues has been fixed at the system level. Indeed, Distem per-
forms tuning of various operating system parameters on the pnodes to avoid
useless ARP requests. In particular, on each pnode Distem increases the ARP
table size and the aging time of the ARP entries. Furthermore, Distem can be
used to statically set a complete ARP table on all the vnodes, completely avoid-
ing the ARP requests between them. These adjustments prove to be very ef-
fective, making it possible to perform experiments with 15 000 vnodes in the
same L2 network. However, the problem of ARP tables still affects the net-
work equipment, since in most of the cases it is not possible to modify their
settings.

To go beyond this limitation, we leveraged the capabilities of overlay net-
works, and in particular the VXLAN [121] protocol. VXLAN encapsulates L2
network traffic in UDP datagrams, relieving the network switches since they
do not have to deal anymore with vnode traffic directly: their ARP tables only
need to store information about pnodes.
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Figure 22: Network stack of a virtual node when using VXLAN encapsulation.
Each virtual node has a virtual interface (veth;) that is bridged
with VXLAN interface (vxlang) on each pnode. This interface is
associated with physical IP interface (ibg). In our study IPoIB is
used, but more traditional IP over Ethernet can be used as well.

Furthermore, to enable high bandwidth and low latency between pnodes,
we used the InfiniBand network. This allowed us to lower the inter-vnode la-
tency and to run large-scale experiments since the involved network equip-
ment is more efficient when dealing with high-throughput traffic.

4.5.2 Technical details

Using VXLAN to encapsulate the inter-pnode traffic slightly modifies the orig-
inal Distem design. To create such an overlay we leverage in-kernel Linux
implementation of VXLAN supported since version 3.7.

Figure 22 presents the network stack of a vnode when using the VXLAN
encapsulation in Distem. First, a VXLAN interface is set on top of the pnode’s
physical interface. Because the VXLAN overlay carries aggregated traffic of
all vnodes, a high-performance network interface offering IP interface, like
10G-Ethernet interface or IPoIB, is needed. Then, each pnode has a bridge
that contains the VXLAN interface and the interfaces of all vnodes on the
given pnode. In this case, the bridge does not contain directly the physical
network interface and all the vnodes’ traffic is encapsulated before reaching
the physical network interface. There is no need to specify routes between
pnodes since VXLAN uses multicast-based discovery to learn the routes be-
tween nodes automatically.
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Figure 23: Workflow of the experiment in Section 4.5. After the infrastruc-
ture is prepared (the first two lines of the workflow), a varying
number of virtual nodes () is used to run Clush and TakTuk meth-
ods in a simple loop (denoted with “=”). At each iteration, the in-
frastructure is analyzed and failed virtual nodes are discarded if
necessary.

4.5.3  Experimental validation

In those experiments, we want to study two parallel commands tools: Tak-
Tuk [48] and ClusterShell [183] (also known as Clush). Both tools aim at the
efficient execution of commands on a large set of nodes, which is a critical
concern since executing administrative tasks or executing complex applica-
tions on large-scale clusters may rely on such tools. As we will see, executing
a simple command on tens of thousands of nodes can take a lot of time if not
performed in a proper way.

ClusterShell and TakTuk differ in their way to achieve high performance.
ClusterShell uses a sliding window: the root node establishes SSH connec-
tions in parallel to several nodes, bounding the number of concurrent con-
nections. TakTuk, instead, uses a tree-based algorithm, using the already
connected nodes to connect to additional nodes. The experiment presented
below will compare these two strategies.

4.5.3.1 Physical setup

The experiment has been executed on the Grid’5000 testbed. More precisely,
we used the Graphene and Griffon clusters from the Nancy site. Graphene is
composed of 144 nodes (1 CPU Intel X3440 @2.53 GHz, 4 cores/CPU, 16 GB
RAM on each node) and Griffon is composed of 92 nodes (2 CPU Intel L5420
@2.50GHz, 4 cores/CPU, 16 GB RAM on each node). Both clusters are inter-
connected with 20 Gbit InfiniBand network links and run Debian Jessie with
Linux kernel at version 3.12.
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On top of those clusters, we emulated a virtual platform with Distem and
162 physical nodes (pnodes). Each pnode hosted 246 vnodes. All inter-pnode traf-
fic was encapsulated inside a VXLAN overlay. Each VXLAN interface was cre-
ated on top of the physical IPoIB interface to leverage the performance of the
InfiniBand network.

4.5.3.2  Methodological setup

The experiments where carried out with XPFLow. Among its features are
robust failure handling and useful workflow patterns that model common
experimental activities. In particular, XPFLow allowed us to transparently
manage the failure of one physical node during our experiments, as it is ex-
plained in the following section. Figure 23 presents the experimental work-
flow.

Although our primary goal is to verify and show the scalability of Distem,
we wanted to show it by conducting a study of various methods for command
execution in large computer installations. To this end, we measured the time
necessary to successfully execute the command true on a varying number of
virtual nodes. Each measure is repeated 3 times and the results are presented
with 95 % confidence intervals according to the Student’s t-distribution.

The raw results, the experimental workflow and the associated files are
available®.

4.5.3.3 Results

The results obtained with the small number of virtual nodes are presented in
Figure 24. This range was chosen to show the size of the infrastructure when
the sliding-window algorithms for command execution become inferior to
these based on the tree topology. It happens around 1400 virtual nodes (for
TakTuk with arity 3) and around 1800 virtual nodes (for TakTuk with arity 2).

Figure 25 shows the same type of experiments, but with a much larger in-
frastructure. Distem, thanks to its use of the VXLAN encapsulation, shows a
great scalability. Our initial goal of 40 ooo virtual nodes was almost reached,
as we were able to successfully run our measurements with up to 39 852 vir-
tual nodes. The reason for that is that one physical node failed during our
measurements and had to be discarded. The presence of this failure was de-
tected and addressed by our experimental framework. Apart from that detail,
we do not see why the scalability of Distem could not be pushed even more.

It can be expected that the total execution time consists of a constant fac-
tor, a linear factor (due to a constant time required by each node) and a log-
arithmic factor (due to a tree topology used by TakTuk). Therefore, we mod-
eled the execution time using the model function

T(n)=A-n+B-log(n) +C @

6 http://xpflow.gforge.inria.fr/thesis/experiments/scale2014.tar.xz
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Figure 24: Time required to execute a command using various methods
(small number of virtual nodes). Clush performs better than
TakTuk-based methods for around 1400 virtual nodes, but is out-
performed by them for 2000 virtual nodes and more.
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Figure 25: Time required to execute a command using various methods
(large number of virtual nodes). Clush is increasingly outper-
formed by both variations of TakTuk which use a tree overlay to
execute commands.

where T - execution time, 7 - number of nodes, and A, B, C - parameters of
the model. The least squares fitting of the data to this model gives:

Tc (n) =0.01649 - n —7.55 -log (n) + 52, (2)
T, (n) = 0.00146 - n + 3.55 - log (n) —4, 3
T, (1) = 0.00099 - n +2.27 - log (1) + 4. @)

where T, T, T5 are results for Clush, TakTuk with arity 2, and TakTuk with
arity 3, respectively.

We clearly see that the linear factor of Clush has the most impact on its
total execution time, whereas in the case of the TakTuk methods the linear

97



98

BPM-BASED EXPERIMENT MANAGEMENT

factor is the order of magnitude smaller and constitutes smaller percentage
of execution time.

4.5.4 Conclusions

We showed the Distem’s ability to scale to large emulated infrastructures.
We were able to successfully run our experiments with 39 852 virtual nodes
hosted on 162 physical nodes interconnected with InfiniBand (although one
physical node failed unexpectedly), showing the scalability of VXLAN and
Distem. Finally, we used this infrastructure to perform the analysis of differ-
ent methods for command execution.

XPFLow proved to be a useful tool to conduct these experiments. The use
of patterns for the fault-tolerant execution allowed us to continue with the
experiment execution despite the problems. Notably, we were able to detect
the physical node that crashed during the experiment. Although, we did not
established why the node failed, our experimental workflow accounted for
the problem and the experiment continued with a smaller number of nodes.

The experiment can be run unattended, with the exception of node reser-
vation which is manual. Moreover, restarting the experiment does not re-
quire the previously obtained results and reuses the same platform if it is
still available. This is achieved via the checkpointing feature of XPFLOW, as
well as via a data saving pattern that executes a workflow only if it has not
been finished previously.

Thanks to the abstraction of the platform, the experiment control engine
has the capability of running on a remote machine while communicating
with the platform. This proved to be very useful, as the results were instantly
available on our machine and ready to be investigated. Moreover, we could
rapidly fix bugs or implement missing features locally without constantly
switching between the local machine and the platform.

One of the problems found during these experiments was the number of
managed nodes. XPFLOW represents each node as a directory in the filesys-
tem with around a dozen of associated files. This turned to be problematic,
since with nearly 40 0oo nodes, the space in temporary directory was soon
exhausted. It was addressed by changing the representation of nodes in this
experiment, but it calls for a more efficient representation of node states in
our engine.

Another observation is that the work on the experiment proceeded in dis-
tinctively different way than we were accustomed with. The focus shifted
from the low-level details such as running shell scripts by hand, copying files
between machines, etc., to more high-level problems, such as how to take
care of execution failures and whether they will render the results invalid.
In essence, we were able to solve many problems at more generic and formal
level than the common way of inspecting the low-level details of the platform
or ad hoc scripts.
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4.6 CASE STUDY III - EVALUATION OF DATA DISTRIBUTION ALGO
RITHMS

The last case study concerns a series of experiments that were carried out
to evaluate a novel, efficient and fault-tolerant file distribution method tar-
geting high-performance clusters. As in the previous section, we once again
introduce the topic to the reader, explain the experimental setup with the
focus on the workflow-inspired control of the experiments.

Our focus is the control of experiments and for that reason some details
of the original study have been omitted (in particular, the evaluation of fault-
tolerant features and low-level details of fault-tolerant protocol are missing).
For more information, please see the original publication [123].

4.6.1 Introduction

Over the recent years, many areas of scientific research and industry shifted
to a data-driven model, which paves the way to many changes in today’s soci-
ety, science and engineering. However, this important paradigm evolution
changes our vision of our computing infrastructure: due to the exponential
growth of amounts of information, the storage and the management of data
emerged as the new bottleneck for many applications.

Several very different ways to organize data have been designed and used
over the years. Traditional storage servers with large RAID array of disks
continue to be used, but are often aggregated into storage clusters as part
of a distributed file system such as Lustre, or more recently GlusterFS or
Ceph. Those file systems provide a POSIX interface, or at least an interface
that is very similar to POSIX. Switching from POSIX-compliant semantics
to other logical organizations of data enables higher performance, scalabil-
ity and fault-tolerance, as demonstrated by NoSQL databases such as Apache
Cassandra and MongoDB, or the MapReduce programming model.

The broadcast of data from one storage system to a large number of nodes
is typically used as the first operation of distributed data analysis. The same
operation is also required in other contexts, such as the efficient broadcast of
system images in Clouds or HPC clusters. Broadcasting has been the subject
of alot of attention both from a theoretical and from a more practical point
of view.

There are algorithms that have optimal or near-optimal performance on
contention-free networks. Unfortunately, most real-life networks have bot-
tlenecks that make them behave poorly. This can be addressed to some ex-
tent by network fabrics with high performance and efficient hardware data
broadcast (e. g., InfiniBand). Protocols such as UDP multicast or BitTorrent
have been tried as well, but due to their verbosity, overhead and unfair behav-
ior with respect to other network flows, they may not acceptable or efficient.

In this case study we briefly present and evaluate Kascade, a solution for
the broadcast of data to a large number of nodes. Kascade organizes nodes
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Figure 26: Fat tree network: links between the core switch and the top-of-the-
rack switches are fatter (higher available bandwidth) than the ones
between the top-of-the-rack switches and the nodes.

in a pipeline to achieve high scalability, and includes fault-tolerance mecha-
nisms to handle the failure of nodes during the transfer.

4.6.2.  Technical details

In this section, we present Kascade, a pipelined and fault tolerant file broad-
casting tool. Kascade leverages standard network technologies (TCP/IP), is
written in Ruby, and provides a friendly command-line interface.

There are three main challenges that Kascade had to address:

Local storage performance. The local storage on nodes is a performance bottle-
neck: mechanical drives can be written to at around 100 MB/s, whereas
the fastest SSD drives provide from 500 MB/s to 600 MB/s, in both
cases much lower than the 10 Gbit/s Ethernet bandwidth. Hence, it is
important to start writing data as soon as possible, rather than waiting
for the full data to be received. Moreover, it is advantageous to write
the raw partition directly to the disk, instead of decompressing all files
and paying the price of file system overhead.

Efficient use of fat tree networks. Most clusters have hierarchical, fat tree net-
works such as the one in Figure 26. Top-of-the-rack switches are con-
nected to between 30 and 35 nodes using 1 Gbit Ethernet links, but the
inter-switch links are only 10 Gbit. It is therefore important to orga-
nize the communication in such a way as to avoid bottlenecks.

Fault-tolerance. Failures are an important problem in the context of large-
scale infrastructures. With many nodes cooperating, the chance thata
single one fails is relatively high (that chance is aggravated by the fact
that mechanical disks are involved). The transmission method should
cope with such situations and continue despite failing nodes.

These difficulties are addressed with:
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Figure 27: Topology-aware pipeline built by Kascade: node 1 (sending node)
connects to node 2, which connects to node 3, etc. Node 10 con-
nects back to node 1, which is used to forward the final report.

Topology-aware pipeline. Kascade builds a pipeline where each internal node
receives data from its predecessor and passes it to the next one (and
simultaneously saves it to the local storage). Moreover, the order of
nodes in the pipeline reflects underlying physical topology. As a result,
each participating link is used only once in each direction, avoiding
congestion (see Figure 27).

Efficient start. To initiate the transfer, Kascade first copies itself to all nodes
and then starts itself on each of them. The goal is to build the pipeline
as soon as possible, so that the transfer may start. This step is per-
formed using TakTuk [48] (default) or ClusterShell [183], both very effi-
cient for the parallel distribution of small files. Although, TakTuk uses
an efficient, tree-like hierarchy for distribution, we do not use it as it
is susceptible to failures. Instead a windowed mode is used, which has
better properties in this respect.

Fault tolerance. The Kascade protocol uses a few control messages to signal
the end of transfer, aborted transfer, failures, etc. Most importantly,
Kascade is able to detect and react to nodes failing in the transmission
chain. If this happens, the chain is reestablished without the problem-
atic node and the transfer can continue.

4.6.3  Experimental validation

In the following section we present the evaluation of the Kascade approach
to data distribution and its comparison with other existing methods. In par-
ticular, we seek to answer the following questions:

« How does Kascade perform and scale up to large number of nodes?

« How does Kascade perform on high-performance networks?

« What is the impact of network topology on performance?
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« What it the impact of I/O performance on performance?
« How does Kascade perform on smaller files?

« How does Kascade perform with large-latency links?

To answer these questions, we evaluated different methods for data dis-
tribution in computer networks:

Kascade isthe approach described in Section 4.6.2. We evaluate the topology-
aware version (Kascade) and a variant with a random order of nodes
(Kascade/rand). The version used in our experiments is 0.1.5. Kascade
can be found in the addons/kascade directory of the Kadeploy3 source
distribution’.

TakTuk is a tool for large-scale remote execution and file distribution using
an efficient tree-like topology. We evaluate two different TakTuk over-
lays: a tree of arity 1 (i. e., a tree that degenerates into a chain, shown
as TakTuk/chain) and of arity 2 (TakTuk/tree). The version used is 3.7.4.

UDPCast is a file transfer tool that can send data simultaneously to many
destinations on a LAN using IP multicast. We use the default mode
that uses a feedback channel. The version used is 20120424.

MPI Broadcast is an implementation of data distribution method using MPI
primitives (e. g., MPI_Bcast). The algorithm uses a 1 MB size buffer to
send consecutive fragments of a file to participating nodes. We con-
sider two ways of execution: with Ethernet (MPI/Eth) and with Infini-
Band (MPI/IB). The MPI runtime is Open MPI (version 1.4.5).

The operating system is Debian/Linux 7 with kernel version 3.2.0. The ex-
periments were run on different clusters of the Grid’so00 infrastructure [39].

All figures show average, normalized bandwidth as a function of the num-
ber of nodes (the node initiating the transfer is not included in that number).
The bandwidth is computed as the size of a file divided by the time required
to transmit it to all nodes. The results are presented with 95 % confidence
intervals according to Student’s t-distribution.

The raw results, XPFLow distribution and the experimental workflows are
available®.

4.6.3.1 Results

The listing of the most important parts of the experiment is presented in Fig-
ure 28. It can be seen that the experiments in this section bear great resem-
blance to the evaluation done in Section 4.4. In fact, the high-level workflow
is nearly identical to the one presented in Figure 16.

The results are of the experiments are presented in Figure 29. The follow-
ing experiments have been conducted:

7 http://kadeploy3.gforge.inria.fr/
8 http://xpflow.gforge.inria.fr/thesis/experiments/kascade2014.tar.xz
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4.6 CASE STUDY III - EVALUATION OF DATA DISTRIBUTION ALGORITHMS

use :g5k
import :common, "common.rb"”

process :entry do
job = g5k_auto_raw :site => var(:site)
nodes = g5k_nodes(job)
nodes = g5k_kadeploy(job, "wheezy-x64-nfs")
checkpoint :kadeployed
log "Nodes: #{nodes}"
execute_many nodes, "true”
run :prepare_nodes, nodes
checkpoint :nodes_prepared
run :testsuite, nodes
end

process :testsuite do |nodes|
execute_many nodes, "rm -f /tmp/x.sh”
distribute "files/x", nodes, "/tmp/"
root = first_of nodes
chain = tail_of nodes
generate_file root, var(:size)
log "Head is: #{root}"
log "Chain is: #{chain}"
results = run :"common.scalability"”,
:"/single_measure”, {
:items => chain,
:step => var(:step, :int),
:start => var(:step, :int) }, root
save_yaml "./results/results-#{var(:type)} \
~#{var(:size)}.yaml”, results
end

process :single_measure do |chain, root|
generate_machinefiles(root, chain)
run :"common.minimal_sample”,
:"/run_transfer”, {
:precision => 0.1, :initial => 3
3}, root, chain
end

process :run_transfer do |root, chain|
log "Timeout is #{TIMEOUT}"
log "Head: #{root}"
log "Chain: #{chain}"
i = try :retry => 5, :timeout => TIMEOUT do
parallel do
kascade_clean(root)
kascade_clean(chain)
end
info do
r = execute root,
"/tmp/#{var(:type) }-run.sh”
end
end
value(time_of i)
end

Figure 28: Simplified listing of workflows used by the experiments in Sec-
tion 4.6. Many parts of the experiment reuse the elements in-
troduced in Section 4.4, in particular the :minimal_sample and
:scalability workflows. Moreover, a platform-specific work-
flow :entry can be seen that features integration with the
Grid’soo00 testbed. The workflow responsible for running the data
distribution method is : run_transfer.

Performance and scalability. The experiment consists in sending a 2 GB file to

avarying number of nodes via 1 Gbit/s Ethernet network (Figure 29a).
The file is not saved to the disk.

Kascade and MPI Broadcast achieve almost the maximum utilization
of the 1Gbit/s Ethernet network and scale very well with number of
participating nodes. The performance of UDPCast drops rapidly if the
number of nodes exceeds 120, but outperforms the TakTuk methods
which show only the one third of the theoretical bandwidth utilization.

Performance (10 Gbit/s Ethernet). The second experiment explores the perfor-

mance on a cluster of 14 nodes interconnected with 10 Gbit/s Ethernet
network (Figure 29b). The transmitted file has 5 GB.

No method was able to saturate the high-speed links, due to the satura-
tion of memory bandwidth. Among them, the best one is MPI Broad-
cast that peaked at approximately 5 Gbit/s, but usually stays around
3 Gbit/s. It is followed by UDPCast which is able to reach slightly more
than 3 Gbit/s, but usually rests just above 2 Gbit/s. Kascade shows a
more stable behavior with transfer bandwidth slightly above 2 Gbit/s
(likely to improve with tuned implementation). In contrast, the meth-
ods based on TakTuk show particularly low performance.

Performance (20 Gbit/s InfiniBand). In an experiment very similar to the previ-

ous one, Ethernet is replaced by IP-over-InfiniBand (with 2 switches)
and the performance measured (Figure 29c¢).
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MPI Broadcast is very efficient for the small number of nodes, but does
not scale very well and with 160 nodes shows a very low performance
similar to TakTuk, due to saturation of the link between switches. Kas-
cade, although having more modest performance for small number
of nodes, is fairly scalable and shows a behavior similar to the experi-
ments with 10 Gbit/s Ethernet network.

Performance (random node order). In an experiment similar to the first one, we

test the impact of the network topology and force a random order of
nodes during Kascade transfer (Figure 29d).

Unsurprisingly, the performance of Kascade deteriorates significantly.
This phenomenon, observed also for MPI Broadcast distribution, is
caused by saturation of links between switches. This does not pose a
problem in our case, since the topology of the network is known to us.

Performance (writing to disk). In all previous experiments the hard disk was

neither read from nor written to. In this experiment, a 2 GB file is dis-
tributed just like it was described in the first experiment, but this time
the datais written to a hard disk instead of being discarded. The fact of
datareaching the disk is not concerned - its presence in the file system
cache is enough (Figure 29¢).

The results show a much lower performance when the file is written
to a disk. Among the methods, Kascade has the best performance by
being able to write around 45 MB/s.

Performance (small file). To measure the overhead of protocols used by each

method when transferring small files, we have run a transmission of
a small file (50 MB) as in the first experiment (Figure 29f).

The transmission of small files gives a different picture than the one
presented in Figure 29a. The setup time takes relatively more time and
methods that have efficient start-up (i.e., MPI Broadcast and UDP-
Cast) are clearly better. The results for Kascade or not surprising as
it actually uses TakTuk to start itself on all involved nodes.

Performance (large latency). Finally, the last experiment measures the perfor-

mance while using a routed, heterogeneous, long-distance network
(Figure 29g). We chose 6 sites in the Grid’5000 testbed (Lille, Grenoble,
Luxembourg, Lyon, Rennes and Sophia, in this order) and reserved
one node on each of them. Moreover, we reserved one more node on
the first site so that the first point in each plot represents intra-site
distribution (see Figure 29h). Each consecutive point, therefore, rep-
resents an inter-site 10 Gbit/s link with higher latency of around 16 ms
between sites (compared to 0.2 ms within a single site). The methods
that cannot work with routed traffic are excluded.

All methods tend to lose performance when using high-latency and
heterogeneous links. Nevertheless, Kascade offers the best overall per-
formance. MPI Broadcast suffers from network and node heterogene-
ity and is even outperformed by TakTuk.
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Figure 29: Evaluation of Kascade (see summary in Section 4.6.3.1). The verti-
cal axis represents the obtained throughput in MB/s, whereas the
vertical is the number of nodes participating in the data distribu-
tion. The last figure is the topology used in the scenario (g).
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4.6.4 Conclusions

We presented Kascade, a solution for the large scale broadcast of data. Kas-
cade achieves high performance and scales very well - saturating 1 Gbit/s net-
works even at large scale. It also provides acceptable performance on high
performance networks (10 Gbit/s Ethernet, 20 Gbit/s InfiniBand) and net-
works with large latency. Among the evaluated solutions, it is the only one
that performs adequately in all situations.

The experimental process was streamlined thanks to XPFLow. In partic-
ular, composability of experiments allowed us to replace the experimental
environment, while keeping the same main experiment that consisted of
running data distribution methods with a varying number of participating
nodes. In fact, each experiment presented in Figure 29 shares the same struc-
ture and the same common workflow that runs the data distribution method
(:run_transfer in Figure 28). The adaptive calculation of a sample size al-
lowed us to minimize the time required to run the experiments, and check-
pointing accelerated the development and collection of results.

We reused many workflows developed previously, in particular those that
were used in the evaluation in Section 4.4 and the workflow presented in Fig-
ure 16. This again shows the modularity and reusability of components in our
approach.

Some new patterns were introduced in this case study, for example info
that collects basic information about subworkflow execution. Although very
useful in practice, their inclusion in XPFLOW has not been finalized.

4.7 SUMMARY

In this chapter we have presented our novel method of modeling and con-
ducting experiments. It is based on two mature and tested approaches: Busi-
ness Process Management and scientific workflows. We have shown with
three case studies that this novel methodology is a promising approach to
the management of experiments. It offers a range of properties that are not
available in the current methods. It has also shown applicability in the con-
text of large-scale experiments.

In particular, the modular construction of workflows makes the experi-
ments reusable. Moreover, the experimental patterns improve the robust-
ness of the experiments, ensuring that they finish successfully despite inter-
mittent failures. Many features are the result of direct application of Busi-
ness Process Management: implicit monitoring, the graphical representa-
tion of the process, etc.

There are many ways to improve the current approach. First, the execution
of experiments is centralized on the master node (often the machine of the
experimenter) which schedules tasks on remote nodes. It would profitable to
be able to schedule workflows on remote nodes to achieve greater scalability.

Second, other experimental patterns could be identified and implemented
in XPFLow. More generally, the capability of declaring custom patterns and
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reusing them in a modular way would be a promising improvement. This
would enhance the functionality and modularity of the current approach.

Third, a methodology for porting already existing experiments to the rep-
resentation based on workflows could be developed. It can be done manu-
ally, of course, but the interesting challenge would be to do it automatically.
One of the promising approaches coming from the Business Process Man-
agement domain, process mining, strives to find workflow structure from un-
structured process logs. Whether this could be applied in our context, re-
mains to be seen.

Last, with respect to reproducibility and documentation, it is useful to cap-
ture provenance of the experiment. This poses some interesting challenges
for control-flows, and is addressed in the following chapter.
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In solving a problem of this sort, the grand thing is to be able
to reason backwards. That is a very useful accomplishment
and a very easy one, but people do not practice it much.

— Sherlock Holmes, Study in Scarlet (by Sir Arthur Conan Doyle)

PROVENANCE TRACKING IN CONTROL-FLOWS

51 INTRODUCTION

Computers are becoming faster and more powerful, but our understanding
is not advancing accordingly. On the contrary, since the systems become
more and more complex one can argue that we know less and less about
them. This discrepancy is disconcerting and calls for an action in almost all
domains of computer science.

Experimental research in distributed systems is especially exposed to this
problem. The systems under study are complex, built from similarly complex
software and hardware which interact in unexpected ways. Often the scale of
experiments is large and even their execution is challenging, as is the under-
standing of a particular system or drawing scientifically valid conclusions. A
platform may suffer from intermittent or fatal failures which should not go
unnoticed. The number of relevant factors and the level of complexity has
long surpassed our capacity to reason about such systems as a whole.

The complexity of the systems is not the only difficulty, however. Quite
often the description of processes (including descriptions of scientific exper-
iments) that run on them is complex, incomplete or even erroneous. This is
another menace to reproducibility which is generally considered a hallmark of
science.

Among the techniques that may improve both understandability and re-
producibility of scientific research is provenance. Traditionally understood as
information about origins and/or a chain of custody of a historical object, it
has found another meaning in computing and science as a representation
of origin and transformation of a given data object during computation. In
this senseitis, in fact, a form of documentation. It improves understandabil-
ity and reproducibility by tracking how the processes transform data and by
capturing the context where these processes take place.

However, obtaining useful provenance information is not an easy task.
The problems are conceptual (e. g., what should be tracked and to which level
of detail?) and technical (e. g., how to store and query provenance informa-
tion efficiently?). Collection of provenance may be in conflict with perfor-
mance or even correctness of the system by inadvertently changing its be-
havior.

This chapter makes four contributions. First, we analyze provenance col-
lection techniques in computer science with the intention to improve their
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use in experimental distributed system research. Second, building upon the
previous observations, we classify provenance into three distinct but inter-
related types. We then design a provenance system that follows this distinc-
tion and can provide answers to a range of queries. Finally, we evaluate our
prototype of a system based on this design.

The chapter is structured as follows. In Section 5.2 we make our first con-
tribution by making a thorough analysis of provenance in various domains.
In Section 5.3, as another contribution, we propose a new classification into
three types of provenance. Then, in Section 5.4, we make our third contribu-
tion by considering implications of this classification for experimental dis-
tributed systems research and sketch a design of a provenance system. This
design is materialized in the prototype evaluated in Section 5.5. Finally, we
draw final conclusions and describe our future work in Section 5.6.

5.2 PROVENANCE IN COMPUTER SCIENCE

In this section, we look at provenance as an object of study on its own, and
then gradually narrow the domain and discuss its use and support in general
computing, scientific workflows, control-flows and, finally, in experimental
research in distributed systems.

5.2.1 General provenance

In this work, provenance is a collection of metadata associated with a run of
a computational process that provides any kind of useful information as to
how it was executed. This is a much broader term than data provenance which
is a prevailing notion of provenance in computational life and earth sciences.
Collection of data provenance is an active domain of research that meets
much success in computational natural sciences [173].

Provenance can be prospective (i. e., obtained via static analysis) and retro-
spective (i. e., obtained postmortem) [55, 56]. Additionally, one may differen-
tiate by the level of abstraction that provenance provides [14]. Four levels of
provenance can be distinguished: Lo (abstract experiment description), L1
(service instantiation), L2 (data instantiation) and L3 (run-time provenance)
of increasing precision and decreasing level of abstraction. Formal ways to
the representation of provenance [49, 126, 131], and generic standards for in-
terchange of provenance information have been proposed’.

Efficient storage and querying of provenance information (which may be
voluminous) is another important aspect. Using efficient representation of
provenance based on its type is a standard approach [22].

A common way to construct and evaluate provenance systems consists
in defining queries that the provenance has to answer [49]. Such a use-case
driven approach is common in the domain as is shown by provenance chal-
lenges evaluating capabilities of provenance systems [132].

1 http://www.w3.org/TR/prov-overview/
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Hierarchicallogging, which is essential to our approach to track the prove-
nance of experiments, is often used to provide a way of looking at series of
events in a way that would be otherwise difficult with a linear representa-
tion. Recently, systemd” benefited from this approach to improve the logging
of Unix services.

From this overview we conclude that there are numerous aspects of prove-
nance and fragmented initiatives to provide it. The lack of general prove-
nance tracking is mainly due to different requirements imposed by different
domains. In the next sections, we will observe how provenance collection is
addressed in different domains of computer science. To this end, we turn to
provenance in general computing, scientific workflows, control-flows and in
distributed systems research.

5.2.2 Provenance in general computing

In this section, we explore how provenance is provided in a general context
(programming languages, scientific computing, data analysis, etc.). Prove-
nance in general computing is rarely addressed, at least explicitly. First, col-
lection of provenance always incurs overhead that may make it unfeasible
to use (e. g., in high-performance computing). Moreover, each subdomain
of computing calls for a different approach and therefore can be impracti-
cal and tedious to implement in each case. We will see that provenance is,
with some exceptions, often addressed in ad hoc manner and in a very lim-
ited sense.

Some notions of provenance in database systems has been proposed [47],
the most common describing relationship between a data source, a query
and the results of query execution.

Software documentation is a form of prospective provenance information
that explains how the software works in usually unstructured way. Literate
programming [115] proposes to have a verbose, natural-language description
interwoven with code in a single document. Similar initiatives have been pro-
posed in the scientific context (e. g., literate experimentation [174]).

A useful source of provenance is provided by instrumentation and monitor-
ing. Deep instrumentation or monitoring may be intrusive for the execution,
and change the behavior of the studied system or even cause it to malfunc-
tion.

The history of how experiments evolved over time is also a form of prove-
nance and is generally provided by version control systems (Git, Subversion,
Mercurial, etc.). These systems trace the content of individual files and have
no semantic knowledge about the whole system. Many systems, program-
ming languages being a prime example, offer therefore language-specific
software archives that host code that can be referenced (e. g., PyPI for Python
or Hackage for Haskell). Studies of large, language-agnostic software reposi-
tories have been done as well, showing interesting aspects of long-term soft-

2 http://freedesktop.org/wiki/Software/systemd/
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ware evolution (e. g., Debsources [36]). Some retrospective studies trace au-
thorship of modern BSD systems, as far as 40 years into the past [176].
There are solutions that build on version control systems and aim at the au-
tomated capture of experiment context and data files for easier reproducibil-
ity of research [57]. More recently, some researchers propose workflows us-
ing the Git branching model and literate programming with Org-mode [178].

5.2.3  Provenance in scientific workflows

Scientific workflows describe the set of tasks needed to carry out a compu-
tational experiment [61]. Their role usually consists in carrying out the com-
putation using a given infrastructure (e. g., a computational grid or virtual
machines in a cloud), but without going into details about how exactly these
operations are executed. Therefore scientific workflow systems provide a
high-level abstraction of computing and are used even by non-technical re-
searchers. The efficient scheduling and execution of scientific workflows is
avivid domain of research.

The standard representation of scientific workflows uses acyclic data-flows
to describe transformations of input data in a structured way. The acyclic
graph structure implies a natural way to collect data provenance by workflow
systems. The data-centric nature of scientific workflows is a well-known fact:
it has been observed that the data preparation (i. e., initial transformation of
input data to useful representation) accounts for more than 50 % of workflow
structure [90].

The history of how experimental workflows evolved is rarely tracked, with
some exceptions. For example, VisTrails [87] enables backtracking from an
unsuccessful approach by storing historical changes in a tree.

Similarly, the details of the underlying platform are also rarely collected.
Since the premise of scientific workflow systems is to abstract the details
of the computing platform away and still obtain qualitatively equivalent re-
sults, this is understandable. This type of provenance can be still useful, for
example for debugging, but is not essential.

The examples of scientific workflow systems include Kepler, Pegasus, Tav-
erna, and VisTrails; see [180, 208] for surveys of scientific workflow systems.
The details of provenance support in scientific workflow systems have been
explored thoroughly [86].

5.2.4 Provenance in control-flows

For the purpose of this work, we define control-flows as workflows consisting
of a set of activities that are performed under causal, temporal and spatial
constraints to achieve a specific goal, such as, in the context of this work,
the collection of experimental results. This definition is closely related to the
one of business processes in Business Process Modeling [116]. The differences
between control-flows and data-flows are studied quite extensively [16, 120],
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including the expressiveness of both formalisms [52]. The most important
distinction is that data-flows are data-centric, contrary to control-flows.

The provenance collection in BPM and control-flows does not seem to be
very much explored yet. This may be due to the mentioned difficulties and
due to the proprietary nature of many BPM systems. To our knowledge, our
work may be the first to explore provenance tracking in control-flows to a
larger extent.

5.2.5 Provenance in experimental distributed systems research

Research in distributed systems developed a wide range of methods to tame
the complexity associated with running complex experiments. These meth-
ods can be grouped into four methodologies: simulation, benchmarking, em-
ulation and in-situ experiments [101]. The in-situ methodology, which we fo-
cus on in this work, consists in running a real system on a real platform,
and arguably requires the most extensive provenance coverage among all
methodologies.

There are various solutions that control executions of in-situ experiments
on real platforms (e. g., Plush [8], OMF [156]). The support for the collection
of provenance in these tools is almost nonexistent, as has been shown in Sec-
tion 3.5.

Recording and subsequently restoring the state of platform configuration
is another aspect of provenance addressed to some extent by system config-
uration management tools like Puppet, Chef or Salt. NixOS [69] takes a more
generic approach of declarative and stateless description of a full system.

5.3 NEW CLASSIFICATION OF PROVENANCE

As has been observed above, there are many different ways to provide prove-
nance information and methods differ between domains. In this section, we
will observe that for any form of computation executed on a system like grid,
cloud, or any computing platform, the general provenance can be splitinto 3
different types. More precisely, we will show that apart from the provenance
of data two other types of provenance exist: the provenance of description and
the provenance of process, and that all three are useful and even necessary for
a complete provenance system. Although this work concentrates on the do-
main of experimental distributed systems research, the discussion in this
section is general and applies to scientific workflow systems and even out-
side the scientific context.

To explain the existence of these three types of provenance, we make the
following observations about entities that are present in an arbitrary compu-
tation on a computing platform. First, from an abstract point of view, there
are two elements necessary to run it: its abstract description and a physical
platform. The platform consists of physical machines, network equipment, in-
stalled software and other details. The execution of the given computation
may have useful runtime information and may produce, receive or transform
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Table 6: Summary of the three proposed provenance types and their position
in existing classifications. L2 provenance is not present in most dis-
tributed research experiments.

Moment of Level

Name Entities collection ([56]) ([14D

. L3 (and

Results, monitoring data, . .
Data . Retrospective L2, if
platform configuration
present)
. Experiment description, . Lo and
Description . . Prospective

platform specification L1
Process Runtime information Retrospective L3

arbitrary data. All these objects can be separated into 3 different classes (see
Table 6 for a summary).

Note that L2 provenance (data instantiation) is not covered, since experi-
ments we focus on do not take raw data as an input. However, if need be, L2
provenance can be classified under the provenance of data.

PROVENANCE OF DATA isinformation on how data objects were created
and transformed during the execution of a given computation. This
is the type of provenance that is largely synonymous with provenance
itself due to its successful application in scientific workflow systems.
Moreover, data provenance is implied by the structure of data-flows,
that is, its interpretation and representation is derived from the orig-
inal structure of a data-flow.

According to the existing classifications (see [14, 56]), the provenance
of data is of retrospective and runtime (L3) type. It may also cover L2
provenance (data instantiation), however it is not the case in our do-
main.

PROVENANCE OF DESCRIPTION is information on how the description
of the computation evolved as a function of time and how it came to
be (e. g., who authored it). This provenance type is a form of documen-
tation, but has multiple other uses. In particular it may track depen-
dencies of the computation, as well as authorship information, among
others. We will see that in our proposed approach even more features
are present (see Section 5.4.2).

This provenance is prospective and covers the levels Lo and L1 of prove-
nance.

PROVENANCE OF PROCESS constitutes metadata that document details
of how the execution of the computation progressed. In particular, it
includes information on how it behaved in time (e. g., when parts of
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it executed) and in space (e. g., which machines were involved). This
kind of information is useful to understand the inner workings of the
computation and the system, and resolve problems when they happen.
Additionally, it documents the execution for reproducibility purposes.
The provenance of process is implied by the control-flow structure,
just like the provenance of data is implied by the structure of scientific
workflows (see Section 5.4.3).

The provenance of process is retrospective and of runtime (L3) type.

One can argue, that all the mentioned supplementary types of provenance
can be considered like any other data that, by definition, is tracked by the
provenance of data. There are nevertheless a few reasons that warrant such
a distinction.

First, the provenance of description operates at a higher level than the oth-
ers. Indeed, the information it provides would not normally require the exe-
cution of the given computation, unlike the others. Second, as we will see in
Section 5.4, different types of questions can be posed for each type of prove-
nance. The presented distinction leads to more efficient storage and access,
as well as more appropriate representation and visualization. Finally, prove-
nance information is difficult to query without structured data and may be
overwhelming both conceptually and in terms of resource requirements. For
this reason, virtually every approach models provenance information in one
way or another.

5.4 DESIGN OF A PROVENANCE SYSTEM

In Section 5.3 we introduced a new classification of provenance into three
types. This section proposes a design of a system that takes as an assumption
the control-flow structure of experiment description. Our decision is dic-
tated by promising results obtained while running large-scale, challenging
experiments represented as business processes (see Chapter 4). To represent
experiments, the BPM workflow patterns [189] are used, extended with ex-
perimental patterns that include parallel execution of commands, failure han-
dling, etc. We have shown previously that under sensible assumptions large-
scale experiments can be run robustly.
First, let us explicitly state assumptions guiding our discussion and de-
sign:
« The experiment follows in-situ methodology in distributed systems re-
search.
« The experiment description is a control-flow based on workflow pat-
terns.
« The data processing does not constitute a large fraction of the experi-

ment execution. If it is not the case then it would be reasonable to use
scientific workflow systems which are more suited for this task.
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G COLLECT < INSTALL
CONFIGURATION BENCHMARK

Figure 30: High-level workflow description of the exemplary experiment
(modified BPMN notation). First, the configuration of the nodes s
collected. Then, on each node in parallel, a benchmark is installed
and run.

o L 0~O
BENCHMARK | - =

For such an experiment, one can ask a question about requirements of a
prospective provenance system. We take the following approach: (1) we find
entities that can be distinguished in the experiment, (2) we define questions
that can be asked about them.

The first part has been already done in the previous section. As for the sec-
ond step, we start with a general principle that for a given entity X the two
following pieces of information describe fully its provenance: (1) the origin
of X and (2) the logical, spatial and temporal context of X.

For the objects stored as the provenance of experiment data, the prospec-
tive questions ask which activities created the given datum (logical), which
physical nodes or equipment was involved (spatial) and when that datum
was collected (temporal). In the case of the provenance of experiment de-
scription this leads to questions about authorship of code (logical), about the
dependencies between modules (logical) and about the changes to the exper-
imentin time (temporal). There is no spatial context for the provenance of ex-
periment, however, since it is only present in an abstract form. Finally, in the
context of the provenance of experiment process this information reduces to
details on how the experiment activities executed with respect to each other
and the experiment description (logical), where they executed (spatial) and
when they executed (temporal). This analysis leads to examples of questions
presented in Table 7.

In the following sections, a design of a provenance system is presented.
It consists of three subsystems, each capturing a single type of the defined
provenance. We observe that the natural representation for the provenance
of data, the provenance of description and the provenance of process is: by a
directed graph, by a rooted acyclic graph, and by a hierarchical tree, respec-
tively. We illustrate the discussion with an abstract example of a benchmark
executed on multiple nodes (see Figure 30 for its workflow description).

5.4.1 Provenance of experiment data

As observed before, capturing and storing the provenance of data is a chal-
lenging task with many difficulties. However, due to our special use case (i. e.,
control-flow based experiments in distributed systems research) we were
able to make a few assumptions. In particular, since the data transforma-
tions does not constitute a significant portion of experiments that we are in-
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Table 7: Summary of the provenance types and examples of queries that one
may ask for each of them.

przzszatorfce Examples of queries
Data Which node produced the highest benchmark result?

What was the runtime system configuration of the nodes?

What are the dependencies of the experiment?
Description Are there newer versions of modules?
Who is the author of the activity X?

What is the Gantt diagram of the experiment?
Process What is the critical path of the experiment?
What are the failure rates of activities?

Data &
.. Did the system specification reflect reality?
Description Y pecif f b
Data & .
What activities executed at the node X?
Process

Description &

Who authored a change that caused the experiment to fail?
Process

All types Who is the author of a module that produced the result X?

terested in, we can store the provenance of data (and data itself) in mostly un-
structured way. As a result, we propose a simple key-value store, e. g., Berke-
leyDB [139]. Distributed key stores may be preferred if high-availability or
scalability is requested (e. g., Dynamo [60]). Although in principle data ob-
jects stored as the provenance of data may reference each other, the design
does not support directly queries involving these relations. Nevertheless, in
general, data provenance is an arbitrary directed graph, which presumably is
sparse.

Each datum in the store has its name, type, value and context. The name is an
identifier (not necessarily unique) of the given data artifact in the context of
the current experiment run. Its type defines a group of objects it belongs to
(e. g., nodes, results) and can be used to optimize queries by narrowing them
down to a subset of elements in the store. The value of the datum is its raw
value, it may be, for example, the result of a benchmark on anode. Finally, the
context is used to link the data to the provenance of process, and contains
information such as the node that the result comes from, or a timestamp
when this data object was stored. The context allows also to link the stored
data to other types of provenance.

The data stored as provenance must be explicitly marked as such. There
are two reasons behind this decision: (1) contrary to data-flows, in control-
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Description

Std. module

Figure 31: Relations between the three types of provenance. The central role
is occupied by the process provenance. It refers two-sidedly to the
description provenance and to the data provenance, with no direct
links between them.

flows it is not explicitly known what constitutes data, (2) it narrows down the
scope of what is collected and improves performance. Nevertheless, some el-
ements of data provenance can be collected automatically, the configuration
of the platform, for example.

The data provenance collected in the exemplary experiment (Figure 30)
consists of benchmark results (benchmark type) and runtime configuration
of nodes (configuration type). The benchmark results point to the nodes that
collected them and to the instances of activities that produced them (see Fig-
ure 31).

5.4.2  Provenance of experiment description

In this section, we provide a design for the representation of experiments
that traces the provenance of the experiment description. By experiment de-
scription we mean the workflow of actions executed as the experiment.

Our solution to this problem is inspired by software engineering, more
precisely, by (1) a version control system (Git) to track the evolution and au-
thorship of the description and (2) a module system based on programming
languages (Go) to improve reproducibility, document dependencies and fa-
cilitate collaboration. Note that creative use of Git branching model is noth-
ing new [57, 178].

However, as Git tracks content at the level of files, it does not meet all our
needs. For that reason we propose a simple, yet powerful and easy to use
module system that is built on top of it. It adds an additional layer that tracks
dependencies of experiments. The approach is modular and ensures repro-
ducibility and consistency of the experiment description, while remaining
easy to use.

The experiment and its modules are tracked in a Git repository, and tags
represent its evolution. Dependencies of the experiment follow the same ver-
sioning scheme and are referenced as a pointer to a tag in another repository.
It implies that a pair (repository, tag) unambiguously defines the experiment



5.4 DESIGN OF A PROVENANCE SYSTEM

G COLLECT 1 - INSTALL RUN R | O
CONFIGURATION BENCHMARK BENCHMARK | -*?

Figure 32: Example of a mapping between the control-flow and its log. The
nesting of workflows implies the hierarchical structure of the log,
as is shown with arrows (cf. Figure 31).

description with its all transitive dependencies. Cycles in the dependency
graph are forbidden, hence the provenance of description is a directed, acyclic
graph.

In our exemplary experiment (Figure 30), the main workflow references
the benchmark module (module Benchmark) and the standard library module
(module Standard). Moreover, the benchmark module depends on the stan-
dard module too (see Figure 31).

The repositories containing the workflows can be hosted at social software
repositories like GitHub, which offer useful features supporting collabora-
tion, innovation, knowledge sharing and community building [54].

5.4.3  Provenance of experiment process

In this section we start with the analysis of control-flows (based on workflow
patterns from Business Process Modeling) and observe that their structure
maps to a hierarchical log. We then use this structure as the representation
of the provenance of process.

Just like scientific workflows imply the structure of data provenance, the
structure of an experiment represented as a control-flow implies a form of
process provenance. From a high-level point of view, a BPM-like data-flow
can be defined either as an activity (a basic, atomic action) or as a pattern
(e. g., a sequence of activities). Other patterns have been defined in the lit-
erature [189] and by us, in Section 4.3.
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In Figure 32, we see the same workflow that was shown in Figure 30, and
associated structure of the provenance of process. In particular, subwork-
flows map deeper into the log hierarchy. We see therefore that the natural
representation for the provenance of process is a hierarchical tree.

Each log entry has some predefined data recorded: a timestamp when its
execution started, timestamp when its execution finished and the node that
executed this activity. The log entries annotate their log with relevant infor-
mation, such as a pointer to the source code. The log can be stored in the
key-value store used to store the provenance of data.

5.5 EVALUATION

In this section, we introduce the details of the implemented provenance sys-
tem and evaluate it with a simple, but telling example. The introduction in
Section 5.5.1 focuses on differences between the system presented in this
chapter and the one discussed in Chapter 4. Moreover, it mentions a few
technical details specific to the new prototype. Then, in Section 5.5.2, the
description of an experimental scenario is given. It is a simple experiment
crafted to explore the important aspects of the collection of provenance. In
Section 5.5.3, a discussion of the experiment from the point of view of the
provenance types is presented. Finally, in Section 5.5.4 we draw final conclu-
sions that are drawn from this evaluation.

5.5.1 Introduction and technical details

The implementation is based on the general methodology presented in Chap-
ter 4, but is a separate framework (although much of the previous code is
reused). The use of workflow patterns is retained, but the model and imple-
mentation details differ. In particular:

« The provenance collection is integrated according to the high-level de-
sign presented in the previous sections.

« The execution model differs in some aspects that make the design of
the original domain-specific language simpler, but not without break-
ing backwards compatibility. However, this change also enables fea-
tures that were impossible to attain before. It also integrates much
better with the proposed provenance model.

« Some features present in original XPFLOW are not yet present in the
new implementation (e. g., scalable command execution, testbed inte-
gration, many workflow patterns). These shortcomings are due to the
current focus on the aspect of provenance collection. There is nothing
inherently conflicting between the new model and previously imple-
mented features.

« On the other hand, we implemented some new features that were not
available in original XPFLow. Prominently, decentralized experiment
execution has been implemented in the new framework.



5.5 EVALUATION

process :main do

sequence :a => "al"” do # context is { :a => "al" }
show_vars :b => "b1" # context is { :a => "al1", :b => "b1" }
show_vars :a => "a2",
b => "b2" # context is { :a => "a2", :b => "b2" }
end
end
activity :show_vars do # requires :a and :b in the context
log "({:a}, {:b}H"
end

Figure 33: Execution model of the provenance-enabled XPFLow. The context
can be modified inside a workflow as it is done with sequence pat-
tern and two calls to show_vars. The context is not global — the
changes apply only to the activities deeper in the structure. The
execution of main will result in two lines: (a1, b1) and (a2, b2).

activity :a do

. log "executes on A"
process :main do

a :node => 'A’

other :node => 'B’

set :nodes, [ 'A’, 'B' ]

foreach :node => :nodes do
both

end

end

process :other do
log "executes on B”
end

activity :both do
log "executes on {:node}"
end

end

Figure 34: Example of decentralized workflow execution. See Figure 35 for a
readable log of its execution.

The decision to rewrite the system was motivated by inflexible implemen-
tation of the previous system and the fundamental constraints posed by its
execution model. The new prototype is available for download®.

In the following sections, the focus is on the set of features that are either
distinct or new when compared with the previous implementation. First, we
discuss the new model of execution that gives rise to simpler implementa-
tion and new features. Second, the decentralized execution of workflows,
a powerful new feature based on this model, is the subject of the next sec-
tion. Then the caching subsystem is presented and explained, followed by
the explanation of how the state of the experiment, as well as provenance
are stored in a generic key-value store.

5.5.1.1 Execution model

The principal departure from the previous model of execution is the removal
of unconstrained variables in the workflows. Instead a context (or a scope) is
passed between the workflow steps. It contains the provenance of process
such as parameters to activities, the current position in the workflow, the

3 http://xpflow.gforge.inria.fr/thesis/experiments/prov2015.tar.xz
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name of the executing node, etc. This information is everything that is nec-
essary to execute a given activity or a workflow. The fact that there is no
global, shared state paves the way to the decentralized execution of exper-
iments and caching of partially executed experiments.

Activities and workflows do not explicitly accept parameters as it was done
in the previous execution model. Instead, the parameters are contained in
the execution context and therefore are implicitly required as the result of
being referred inside an activity or a workflow. This is illustrated in Figure 33.

This model may bear resemblance to the workitem as it is often used in
Business Process Management systems. It is a state that is passed between
workflow steps and generally modified by them. A common analogy is that
of a dossier with files that is transferred and amended by responsible people
oradministrative units. It is therefore a form of shared state, something that
we entirely avoid in our approach and that enables interesting features and
scalability.

Node failures are treated as before, that is, by default the failures cause the
workflow execution to fail unless special patterns are used. However, in the
new model the patterns store provenance data concerning their execution.
For example, the try pattern stores provenance of failed executions.

5.5.1.2  Decentralized execution

The new model enables the implementation of decentralized execution of ex-
periments (see Control structure in Section 3.3.9). Although this feature does
not contribute to the collection of provenance directly, it makes the imple-
mentation simpler and has more general advantages as well. First, the user
does not have to treat remote nodes in any special way, but simply make the
workflow execute transparently in the context of a remote node. The results
of remote execution, including provenance information, are sent back to the
main node and stored in a database. Second, remotely executed workflows
can refer to other remote nodes too, making the remote execution of exper-
iments (e. g., from a personal machine of the experimenter) or using nested
testbeds such as the one presented in Figure 20, straightforward to imple-
ment. Finally, decentralized execution has the potential of improving scala-
bility.

Remote execution of workflows is triggered by the change of the node con-
text variable. The new value is interpreted as the name of a node that will ex-
ecute a workflow pattern or an activity. For instance, the workflow :main in
Figure 34 executes the activity : a on the node A, and the workflow : other on
the node B, all that in a transparent way.

The nodes of the experiment must have their clocks synchronized (NTP
precision is sufficient for all practical purposes), since otherwise the time of
events could violate causal relationships. A possible solution that does not
require fine-grained synchronization consists in measuring the time of sub-
servient workflow execution with respect to the node that initiated its execu-
tion (cf. Lamport timestamps). Although it avoids the violation of causality,
the latency between the nodes skews each relative time measurement.
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Start [main]
|-- Start [process]

| |-- Start [a]
| executes on A Start [main] (cached)
| Finish [a] (0.00 s) |-- Start [process] (cached)
|-- Start [other] | |-- Using cache for 'a’

|-- Start [other]

| |-- Start [process]

| | |-- executes on B

| | Finish [process] (0.00 s)

| Finish [other]

|-- Setting 'nodes’ to '["A", "B"]’
|-- Start [foreach] (cached)

| |-- Start [process] |
|
I
|
I
|
|

| executes on A | | | |-- Using cache for 'both’
I
I
[
F

| | |-- executes on B

| | Finish [process] (0.00 s)

| Finish [other]

|-- Setting 'nodes’' to '["A", "B"]’'
|-- Start [foreach]

| |-- Start [both]

|-- Start [both] | Finish [foreach] (0.63 s, cached)
Finish [process] (1.34 s, cached)
inish [main] (1.34 s, cached)

|
|
| | Finish [both] (0.00 s) | | |- Using cache for 'both’
|
|

| executes on B
| |  Finish [both] (0.00 s)
| Finish [foreach] (0.63 s)
Finish [process] (1.34 s)
inish [main] (1.34 s)

\
\
\
\
\
\
\
\
\
\
[
[
[
I
[
\

\

F

Figure 35: Caching of workflow execution. The execution log on the left exe-
cutes with an empty cache, whereas the right one uses the previ-
ously populated cache. Although activities of the workflow are not
actually executed, making the execution faster, the timing infor-
mation remains the same and the cache is not modified.

Finally, it is also assumed that all participating nodes have access to the
same description of the experiment. This means that it must be accessible
via a network file system (e. g., NFS) or distributed manually to all nodes par-
ticipating in the experiment before.

5.5.1.3 Caching

The presented model of execution makes caching of already finished work-
flows and activities simple to implement. By default, XPFLOW caches the ex-
ecution of both patterns and activities. However, the workflow patterns are
executed even on subsequent executions, but the cache is used instead of the
actual executions. This preserves the structure of the workflow in the textual
output, but does not overwrite previous runtime information. This is illus-
trated in Figure 35.

The caching system implemented in the new framework provides an alter-
native to the checkpointing introduced in Section 4.3.3.3. Indeed, the state
of the experiment is automatically cached as the execution progresses, and
restarting it will pick up directly after the last successful step. The insertion
of named checkpoints, such as those available in the previous framework,
should be possible to implement without much effort.

The disadvantage of the current caching system, which is also shared by
the previous implementation, is that the cache is not invalidated when the
underlying experiment description changes. Although XPFLow will properly
execute an activity that was appended to an already cached workflow, it will
not behave correctly if the activities are removed, reordered or modified, and
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in some cases such changes may lead to unexpected and wrong results. The
solution to this problem is not obvious, but would arguably require a robust
method to find differences between cached workflow execution and the new
description, and then migrate or invalidate cache entries. The difficulty of
doing this is somewhat similar to the problem of migrating a database from
one schema to another.

5.5.1.4 Use of key-value store

The current implementation relies heavily on a persistent key-value store
that contains all provenance information, as well as the whole state of ex-
periment execution is stored in it. On the other hand, the provenance of de-
scription is not stored directly, but is still referenced by the provenance of
process in enough detail to make the provenance complete.

The execution of an experiment consists in executing workflows and ac-
tivities which store runtime information in this key-value store. All activities
and workflow patterns store their timing information automatically. Simi-
larly, when a datum is stored in the store, it is annotated with the context of
its execution and the current timestamp.

The current implementation uses a centralized storage. All stores, includ-
ing initiated by the remote workflow execution, are redirected to the prin-
cipal node which stores the information on disk. Although this approach
suffers from potential scalability problems, it enables the use of XPFLow
with experiments spanning isolated networks, or the remote management
of experiments from the machine of the XPFLOow user. More scalable and
distributed key-value stores can be used as well, but they normally require
all the nodes to be in the same network. Ideally, a hybrid approach could be
used to take advantage of any solution depending on the particular needs.

The stores from remotely executing activities are immediately pushed to
the principal node to ensure that it is stored as soon as possible. However,
other strategies could be used: for example the data could be sent at the end
of the remote execution in a large batch, or even downloaded at the very end
of the experiment execution. Although it has the potential of improving scal-
ability and overall performance, it negates most advantages of caching, as
the values may not be stored on durable storage soon enough.

5.5.2  Description of the experimental scenario

The experiment described in this section is purposely simple to show impor-
tant aspects of our approach and implementation. It consists in running a
simple experiment that consists of the following steps:

1. Installation (unless already present) of necessary software on partic-
ipating nodes. We use the STREAM benchmark which is one of the
benchmarks offered by the hpcc suite of benchmarks. Its purpose is to
measure the speed of RAM.
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2. Collection of information about participating nodes (and storing it as
data provenance). This is achieved with the facter* utility that queries
the host system about its peripherals, parameters, network addresses,
and other useful pieces of information.

3. Running hpce on all nodes and collecting the results of the STREAM
benchmark.

The experiment is run on a single machine, with “remote” nodes being
reached over localhost, with names of the form localhost/o, localhost/1, etc. The
operating system is Debian Linux. The only requirements of the current pro-
totype are: a Ruby interpreter (the 2.x line), an SSH client (if remote execu-
tion is used), and git (if some dependencies of the experiment are not yet
available locally).

5.5.3 Discussion

This sections discusses the experiment in detail by looking at the three types
of provenance collected before and during its execution.

5.5.3.1 Provenance of description

The graph of dependencies between modules involved in the experiment is
presented in Figure 37. The experiment consists of 3 modules that together
form a directed, acyclic graph. The main module, experiment, is stored locally,
contains the main workflow, and imports workflows and activities from hpcc
module (at version 1.0). The github.com/xpflow/std module is a dependency
shared by all modules, as it is implicitly imported by each one of them (with
the sole exception of itself, because it would cause a cyclic dependency).

Special commands are available to download the complete dependency
tree, verify consistency of the experiment (e. g., check whether all referenced
symbols exist and no cycles in the dependency graph exist), or prepare the
complete archive with all dependencies and XPFLow itself. The latter com-
mand can be used to package the experiment description for a publication.
It can be also used to automatically distribute the experiment description
among the nodes participating in the experiment.

The listing of the most important parts of the experiment description is
presented in Figure 38. The activities of the involved modules are also refer-
enced in the global overview of the collected provenance in Figure 36.

5.5.3.2  Provenance of process

The provenance of process forms a base that consists of the state of the ex-
periment execution. As it was described previously, its form is hierarchical
with subworkflows pointing to their enclosing workflows. This can be seen
in Figure 36, where the provenance of process is a tree rooted at the node
named process.

4 https://puppetlabs.com/facter
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{LOCAL}/experiment/main.rb:3
github.com/xpflow/hpcc#1.0

<>

github.com/xpflow/std

Figure 37: Dependency graph of modules involved in the experiment. The
standard module is imported by default, hence the edges pointing
to it have no context information. The import of hpcc#1.0, however,
was done in the main. rb file (line 3).

In Figure 39, the object that represents one of the nodes is shown. It also
contains various pieces of information:

« the name of the activity (: collect_facts),
« the start, the end and the duration of its execution,

« the context (scope) of the execution, which in particular contains the
name of the executing node, pointer to the location in the provenance
of description, and other details.

The identifiers of the nodes in the provenance of process are made unique
by encoding the information on how the workflows are nested inside each
other. For example, process:* represents the workflow :main (cf. Figure 38),
whereas the node process:*:1 contains information pertaining to the execu-
tion of the foreach pattern. In general, the unique identifier is formed by
appending a unique suffix to the key of the parent workflow (but a special
case exists for some patterns, such as foreach loop). Not only this scheme
makes the keys globally unique within a single experiment, but is addition-
ally put to good use by the caching subsystem. Moreover, it can be used to
extract and obtain the workflow structure purely from the collected prove-
nance of process.

The provenance of process can be queried and analyzed, for example to ob-
tain visualizations such as the one in Figure 36. Moreover, it can be exported
in a portable format and analyzed elsewhere.

5.5.3.3  Provenance of data

The provenance of data consists of data stored during the execution along
with metadata that explains the context where it was collected (see Figure 40).
In our example only a small number of data artifacts is collected and they are
shown as ellipses in the overview in Figure 36. This includes data collected
automatically (such as standard output and error streams of executed com-
mands), but also explicitly stored values. For this purpose the datacommand
exists, that stores the given value with its context and associated name. This
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# module: experiment

# module: std import "github.com/xpflow/hpcc#1.0"
activity :ensure_package do process :main do
pkg = get :pkg std.init
if Std.packages.include?(pkg) foreach :node => :nodes do
log "Package #{pkg} present.” hpcc.init
else hpcc.run
log "Installing #{pkg}" end
output(”"files/install.sh") end
end
end

# module: hpcc
activity :collect_facts do

facts = output('facter --json') activity :run do
facts = JSON.load(facts) out = output('files/run_hpcc.sh")
data :packages, Std.packages() stream = out.scan(/"(.*STREAM.*)=(.+)$/)
data :facts, facts h ={}
end stream.each do |k, v|
h[k] = v.to_f
process :init do end
foreach :node => :nodes do data :stream, h
ensure_package :pkg => 'facter’ file :cpuinfo, '/proc/cpuinfo’
collect_facts end
end
end process :init do
std.ensure_package :pkg => 'hpcc’
end

Figure 38: Listing of the experiment code. The main experiment consists of a
workflow that references external modules (via import directive).
Some details are simplified or omitted for brevity.
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"duration”: 1.226482629776001,

"finish": 1442023171.3166747,

"key": "process:*:1:%:0:0:1",

"name”: "collect_facts”,

"scope": {
"chain”: [ "localhost"”, "localhost/0" 1],
"ident”: [ "%", 1, "x", 0, 0, 1 1,
"location”: "{STD}/std/pkg.rb:36",
"module”: "github.com/xpflow/std"”,
"name": "collect_facts”,
"node": "localhost/0",
"nodes”: [ "localhost/0" 1,
"options": {3},
"pstack”: []

:}!
"start”: 1442023170.090192

}

Figure 39: Example of the provenance of process. This object is stored in the
key-value store under the unique key process: *:1:*:0:0:1. It contains
the context pertaining to the execution of collect_facts activity from
module github.com/xpflow/std. It can also be seen that it executed
on a node named localhost/o.

is illustrated by :collect_facts activity (Figure 38) that stores the list of
installed packages and the information obtained from the facter program.

The same activity uses the file command to collect the contents of a file
as the provenance of data. Therefore, instead of downloading the files man-
ually they can be stored transparently in a key-value store as any other data
artifact, and then retrieved back. This functionality partially implements the
feature File management mentioned in Section 3.3.8.

In this example, the data objects do not reference each other and more gen-
erally the current implementation does not give means to express such links.
Although an implementation of such feature is not difficult, the context of
our domain does not require to trace such relations.

A simple interface was implemented to query and access the provenance
of data. It can be used to extract relevant data from the key-value store into
a common format (e. g., CSV, JSON, YAML) and import it into an environ-
ment better suited for further analysis. The query consists of a filter and a
selector (corresponding to WHERE and SELECT clauses from SQL), written
in a domain-specific language based on Ruby.

For example, to get the list of all nodes with their IP addresses and kernel
versions, one can execute the following query (cf. Figure 40):

Filter: { name == "facts" }

Selector: { [ scope.node, value.ipaddress, value.kernelversion ] }

Similarly, to extract the results of the STREAM benchmark along with the
time when it was collected, one can run:
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{
"key": "data:x:1:%:0:0:1:facts”,
"name”: "facts"”,
"process”: "process:x:1:%:0:0:1",
"scope": { ... 3},
"tags": [1,
"time": 1442023171.3049905,
"value": {
"architecture”: "amd64",
"blockdevice_sda_model”: "SAMSUNG SSD PM83",
"kernelversion”: "4.1.0",
"ipaddress”: "10.4.0.3",
3
3

Figure 40: Example of the provenance of data. Each datum has a non-unique
name, avalue, optional tags, its context and reference to the prove-
nance of process (under the key process). The pair consisting of the
name and the reference to the provenance of process make the da-
tum unique. Note that the scope is omitted as it is similar to the
one in Figure 39.

Filter: { name == "stream” }

Selector: { [ scope.node, value.SingleSTREAM_Copy, time 1 }

The same principle can be used to query the provenance of process. For ex-
ample, the next query lists the duration of :collect_facts activity on each
node (cf. Figure 39):

Filter: { name == "collect_facts” }

Selector: { [ scope.node, duration ] }

This approach inherits all benefits of having a complete programming lan-
guage (i. e., the entirety of Ruby standard library can be used), while remain-
ing easy to use at the same time. The language does not support the advanced
data analysis which should be performed with external software more suited
to this task.

5.5.4 Conclusions

The proposed model of provenance was implemented in the prototype that is
able to collect provenance of all types and query it later. Some observations
were made that may serve as a future guidance for researchers and imple-
menters.

First, it must be stated again that the provenance model relies heavily on
the structured representation of experiments based on workflow patterns,
asitwas assumed in Section 5.4. In particular the structure of the provenance
of process is directly implied by the workflow structure of an experiment. Ex-
isting approaches may or may not map well to this model of provenance. For
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example, the imperative approaches to the description of experiments (cf. Ta-
ble 32) can be arguably ruled out (i. e., Naive approach, Workbench, Expo, OMF,
NEPI and Execo) as they do not have a structured way to look at the experi-
mentdescription. Among the remaining tools, Plush/Gush has a declarative ap-
proach to the description of experiments, but only superficially manages the
execution of the proper experiment. Weevil has the most structured model
and could implement the proposed provenance model for its predefined and
rigid workflow.

On the other hand, the provenance of description and the provenance of
data as currently designed and implemented are mostly independent from
the workflow model. It is uncertain, however, whether their use without the
binding of the provenance of process is useful at all. It was mentioned a few
times that the provenance of process occupies the central position in the de-
sign, and in our implementation it is even equivalent to the state of the work-
flow execution.

The evaluation made it clear that the new execution model (as described
in Section 5.5.1.1) is more suitable for the purpose of provenance tracking
than the previous one. Having a single object representing the whole state
of execution tremendously simplifies implementation and enables a group
of features that were unavailable before, such as decentralized execution of
workflows. It is highly preferable to use this model for future realizations of
similar systems.

Moreover, the original observation that a key-value store will be sufficient
to store provenance proved to be correct. This is the result of a few technical
decisions as well as the original assumption that the experiment does not
produce large volumes of data nor operates on these data in complex ways.
The fact that our model does not trace transformations is the main difference
when compared with the collection of provenance in scientific workflows. It
is conceivable that a more data-centric approach to the provenance of data
could be tried, but its use in the studied domain is probably unnecessary.

Although currently the storage is centralized, there is nothing conceptual
or technical that forbids the use of a distributed key-value store. Again, this
is enabled by the decentralized model of execution and the use of key-value
store as a storage for the whole state of the experiment, including collected
provenance. It is recommended to use this kind of architecture in similar
projects as it offers scalability when controlling large systems.

5.6 SUMMARY

This chapter made four contributions. First, we analyzed the provenance in
different disciplines of computer science. Then we observed that provenance
can be splitinto three different types: the provenance of data, the provenance
of description and the provenance of process. After that, we designed a prove-
nance system for distributed systems research that can capture all of them
(see Figure 31). Finally, we presented our early prototype of the experiment
management engine that is based on workflow patterns and collects much
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of the provenance information automatically. The exemplary case study was
presented to show the structure of provenance, the details of the currently
developed prototype and other useful observations. In particular, the imple-
mentation provides three more features identified previously in Chapter 3:
Provenance tracking, File management and decentralized Control structure.



With that disappearance, (...), came the end,
the final end of Eternity. - And the beginning of Infinity.

— Isaac Asimov, The End of Eternity

CONCLUSIONS AND FUTURE WORK

This chapter concludes the research presented in this thesis. First, the sum-
mary of the main results is given. The summary is then followed by the struc-
tured analysis of possible ways to improve this work, the results and the pre-
sented approaches.

6.1 SUMMARY OF THE RESULTS

The main goal of this work was to study how the experimentation in the
domain of distributed systems can be improved with the methods and ap-
proaches used in Business Process Management and related domains. The
focus was on the large-scale, in-situ experiments which are more and more
common given the current trends, modern architectures, and the limits im-
posed by other methodologies. Our research provides three principal obser-
vations.

The analysis of the existing literature, current problems and developed so-
lutions in Chapter 2 and Chapter 3, allowed us to understand and partially
formalize our problem. This analysis ended with the creation of a framework
to evaluate experiment management tools. Not only it uncovered the miss-
ing functionality of existing systems, notably Provenance tracking, but also
was used by us to evaluate our solution later in this work.

In the light of the goals stated in Section 1.2, the general conclusion com-
ing from this work is that the model based on workflow patterns and other
methods of Business Process Management, shows promise in helping the
researchers that want to run challenging, large-scale experiments. In partic-
ular, the evaluation in Chapter 4 showed that our approach can be used to
manage large-scale experiments in a robust, fault-tolerant and scalable man-
ner. We also developed a set of properties that experimental workflow must
possess to provide such properties, as well as the set of patterns that focus
the domain-specific needs of large-scale experimentation.

Finally, by following the implications of using workflow-based model for
experiment execution, the collection of provenance in experiments was ad-
dressed in Chapter 5. This led to the classification of provenance into three
types: the provenance of description, process and data. Consequently, a de-
sign of a system collecting these types of provenance was proposed and then
implemented. The prototype was shown to collect provenance that can im-
prove the understanding and reproducibility of experiments.
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All in all, the representation of experiments based on workflow patterns
identified in Business Process Management is a viable alternative to existing
ways to design, run and reason about experiments. First, our current imple-
mentation implements 13 binary features identified in the survey presented
in Chapter 3, and three more (Provenance tracking, File management and de-
centralized Control structure) in the new prototype. This only falls short of the
more established tools such as OMF and NEPI, but the future work should
alleviate this. Importantly, however, Provenance tracking stands out as a fea-
ture that only one tool implemented before (Emulab Workbench), and, as was
shown in Chapter 4, the workflow-based approach shows good scalability,
robustness and fault-tolerance when running large-scale experiments.

All our results show that the structured way of representing experiments,
in this case by means of workflow patterns, is an advancement over many
existing approaches and can be used to improve the quality of existing and
future research in large-scale experiments in distributed systems research.
Finally, there are many promising ways to improve it even more, as will be
discussed in the following section.

6.2 FUTURE WORK

There are a few promising ways to improve and build upon our work that
can be split into two mostly independent paths of investigation. The first
group consists of two research directions presented in Section 6.2.1 and Sec-
tion 6.2.2 that build directly on our work and our implementation. Note that
both directions can be taken independently as they do not depend on each
other. The second group takes a more general view on the approach and the
obtained results to draw conclusions that are not tied to implementation de-
tails, but applying to the general methodology instead. These three research
directions are presented in Section 6.2.3, Section 6.2.4 and Section 6.2.5. In
this case, the presentation order respects the recommended path of investi-
gation. This is presented in the following summary:

This work

(6.2.1) Collecting and analyzing provenance in a scalable way
(6.2.2) Tracking and detecting changes in experiment description
(6.2.3) Analyzing unstructured experiments with process mining

(6.2.4) Extending the workflow model

V"2

(6.2.5) Using the workflow-based approach in other domains

6.2.1  Collecting and analyzing provenance in a scalable way

This work showed that our methods can be used to manage large experi-
ments with success. Whether this scalability applies equally to the collection
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of provenance discussed in Chapter 5 is an obvious next step towards robust
execution of large-scale experiments together with the collection of prove-
nance.

Successful research in this area would enable the automatic collection of
provenance in large-scale experiments in distributed systems research, an
activity that is almost entirely missing in this domain. The advantages of
collecting provenance were already mentioned, but they apply even more to
large-scale experiments for which it is conceptually impossible to track every
component in the experiment or collect provenance manually.

The first challenge in this research direction is the technical difficulty of
scaling the collection of provenance to the large number of nodes and large
volumes of collected data. Many low-level problems will inevitably arise, but
some of them were already discussed in Section 5.5.1.4.

Additional and more interesting challenge comes from the fact that large-
scale, complex experiments will necessarily produce more provenance infor-
mation. This may lead to difficulties common to the domains that operate on
large volumes of data, often referred to as Big data. Not only storage and ef-
ficiency problems are likely to arise, but also the interpretation of the data
may become non-trivial. These are problems commonly addressed by Big
data, data mining and data visualization communities and may apply to our
problem as well.

A possible strategy is to export data from our provenance model to stan-
dards such as The Open Provenance Model [131], and then use tools that can
use it. Approaching the problem from this angle has the advantage that a
larger community could profit from positive results. Nevertheless, a few chal-
lenges still exist. First, this model may be not suitable for the representation
of provenance that is collected by our approach as our model is far from be-
ing data-centric. Second, The Open Provenance Model does not specify proto-
cols for storing and querying the provenance, hence a lot of work may be
needed to obtain a practical solution.

6.2.2  Tracking and detecting changes in experiment description

Currently, the description of experiments is not tracked at the level of work-
flow representation, but only at the level of files in a version control system. It
would be advantageous to be able to track and detect changes made to work-
flows and therefore better represent changes and history of the description
of experiments.

The first application of this capability directly contributes to reproducibil-
ity by allowing one to meaningfully compare provenance data between dif-
ferent variations of a single experiment. For example, a researcher could
modify the experiment and compare newly obtained results with the orig-
inal ones, despite the differences in the experiment description. More gen-
erally, the historical provenance of experiments could be stored along the
description of experiments and then analyzed to see if and how it evolved.
This functionality generalizes the features of VisTrails (see Section 5.2.3).
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Moreover, this work can address the problem of migrating the state of the
executing experiment according to the changes in its description (see Sec-
tion 5.5.1.3). This would enable the more traditional, iterative approach to
the development of experiments, as well as save precious time required to
rerun experiments.

The main difficulty consists in finding the basic operations that can be ap-
plied to workflows and then designing an algorithm that maps differences
between workflows to a list of these operations. In general, the result may
not be unique, hence heuristics must be applied that exploit domain-specific
knowledge about how the workflows are usually modified. A well developed
algorithm of this type could even find common patterns between unrelated
experiments, something potentially useful in relation to the analysis of unstruc-
tured experiments with process mining described in Section 6.2.3.

Research in similar areas area exists, although with the focus on the con-
ceptual graphs [58]. Interestingly, most of the related research seems to focus
on computing similarity measures between graphs and on the visualization of
differences, less so on finding what the differences exactly are.

6.2.3  Analyzing unstructured experiments with process mining

In Chapter 3 we identified the features of experiment management tools, not
by looking what researchers would like to have, but by analyzing the existing
work in this area. Similarly, the experimental patterns discussed in Chapter 4
were inspired by our own experience in this domain. Alternative approach is
to apply process mining to analyze and understand experiments, and even-
tually turn the informal and unstructured activities of a researcher into a
formal representation that is easier to work with (see also Section 2..5.4).

Positive results coming from such a research have immediate and practi-
cal applications. First, the study of experimental habits could be done, pos-
sibly uncovering interesting trends, patterns and domains that need more
focus and improvement. Second, the prospective mining methods could be
used to migrate existing ad hoc experiments to structured approaches, such
as the one studied in this work. This has the potential of improving the gen-
eral quality of experimental research in the domain of distributed systems
and encouraging the use of structured approaches to experimentation.

A range of process mining methods exists in the domain of Business Pro-
cess Management. The common approach consists in collecting a series of
logs from a studied system and inferring a workflow structure from them [3].
It is worth exploring whether these methods apply to this problem, even if
some challenges exist. First, our case poses additional, domain-specific prob-
lems, notably the fact that there are experimental patterns (e. g., parallel ex-
ecution on multiple nodes) that are not covered by the standard workflow
patterns. Second, it is not clear whether the scale, the complexity and the
amount of data produced by existing computer systems and stored in logs
can be analyzed to obtain any useful insight. Moreover, there are so many
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alternative ways to interact with computer systems that it is not obvious if
any technique may capture all of them.

6.2.4 Extending the workflow model

The next research direction consists in exploring a different model of execu-
tion than the one proposed in Chapter 4 and subsequently modified in Chap-
ter 5. The proposed model may be too restrictive or lack features and patterns
that are useful for running experiments.

Ultimately, the goal of extending the model is to bring more features to
the control of experiments, in particular the features that were identified in
Chapter 3 and are still missing in our approach. Among the features that may
particularly require changes and improvements to the model are: Low entry
barrier, Fault injection, Workload generation and Platform monitoring (cf. Table 5).
If such changes could be introduced without harming previous functionality,
it would make it the most feature complete experimentation tool.

A couple of difficulties can be expected. First, some of the mentioned fea-
tures, for example Fault injection and Workload generation may require an abil-
ity to execute multiple parallel processes in parallel. This is non-trivial con-
sidering that the current model is essentially synchronous and that it inter-
feres with the caching. Second, another difficulty lies in making decisions on
how the model should be changed. Some of them may lead to changes to the
core elements of the main approach and hence invalidate the findings made
in this work. Fortunately, the results of the research direction proposed in
Section 6.2.3 should help in this respect.

6.2.5 Using the workflow-based approach in other domains

It was stated a few times that the methods presented in this work target in-
situ experiments in distributed systems research. This allowed us to make
some simplifying assumptions leading to a simpler design. However, it does
not make it impossible to use this or similar approach in other domains, even
if some changes may be necessary.

A successful application to other domains would bring all or a subset of
features that were explored in this work. Although the main focus is on the
scientific domains, one can imagine applying it to tasks unrelated to science,
such as configuration management, monitoring, testing or benchmarking.

The main difficulty is caused necessarily by the assumptions that were
made in this work. We rely on in-situ testbeds which provide full access to the
experimental platform and provide a Unix environment. This is not the case
in other methodologies used in experimental distributed systems research
and some non-standard testbeds, such as those using low-performance, sen-
sor nodes. Moreover, considering the collection of provenance, an assump-
tion was made that the experiments do not produce or transform large vol-
umes of pure data. This led to a simpler model, but also a model that does not
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store information about data transformations, contrary to scientific work-

flows.

To help with this task, the outcomes of work in Section 6.2.3 could be used
to better understand the targeted domains. Similarly, an extended and more
general model introduced as the result of the work in Section 6.2.4 may prove

to be easier to apply in other domains.
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Abstract (English) Running experiments on modern systems such as supercomputers, cloud in-
frastructures or P2P networks became very complex, both technically and methodologically. It
proved difficult to run experiments correctly and understand obtained results, even with the back-
ground on the employed technology and methods. Moreover, large-scale experiments suffer from
erroneous and the unpredictable behavior of underlying software and hardware, undermining the
scientific principles of experimental computer science. This worrisome state of research on large-
scale distributed systems calls for new approaches to design, run and interpret experiments.

This work explores the use of control-flows (business processes) as a model for representing the
large-scale experiments in research on distributed systems. We set out to find advantages, disad-
vantages and limitations of this approach, and practical considerations for future implementers.

We make 3 main contributions. First, we analyze the current state of experiment management
tools, their limits and features to better understand difficulties that lay ahead. We construct a gen-
eral framework to evaluate tools of this type. Second, we design and implement an experiment
management tool which is based on the model of control-flows. We show that this methodology
can be implemented and used in practice to run challenging and large-scale experiments while
offering a wide set of features, some of them missing in the previous approaches. Finally, we an-
alyze the use of provenance in computer science, and in particular in experimental research on
distributed systems, and propose a provenance collection system that emerges from the control-
flow model used as the representation of experiments. The design is implemented and shown to
collect provenance in efficient and automatic way.

Our results show that workflows are a viable model for the design and execution of experiments
in distributed systems research. With these positive conclusions in mind, we also sketch future re-
search directions for improving our work.

Abstract (French) L'expérimentation sur les systémes modernes comme les superordinateurs, les
infrastructures cloud ou les réseaux P2P, est devenue complexe a cause des difficultés techniques
et méthodologiques. La réalisation correcte d’expériences et 'analyse des résultats obtenus est
difficile, méme en possédant toute 'expertise nécessaire sur le domaine d’étude et la technologie
utilisée. De plus, les expériences a grande échelle échouent souvent en raison du comportements
aléatoires du matériel et du logiciel, menacant les principes de la recherche expérimentale comme
la fiabilité et la reproductibilité des résultats. Cette situation inquiétante de la recherche sur les
systémes distribués a grande échelle nécessite la découverte de nouvelles approches pour la struc-
turation, le contréle et linterprétation d’expériences.

Ce travail explore l'utilisation de control-flows (processus métier) comme un modéle pour la re-
présentation d’expériences a grande échelle dansle domaine des systemes distribués. Il analyse les
avantages, inconvénients et limitations de cette approche, ainsi que des considérations pratiques
pour leur implantation future.

Trois contributions principales peuvent étre distinguées. D’abord, nous analysons 'état actuel
des outils pour le contréle d’expériences. Nous montrons les fonctionnalités manquantes et per-
mettons de comprendre les difficultés partagées par toutes les approches. Cette analyse se termine
avec la construction d’une hiérarchie des propriétés qui peut étre utilisée pour I'évaluation des ou-
tils qui contrélent les expériences. La deuxiéme contribution consiste en un design et une implan-
tation d’'un systéme de contrdle d’expériences qui se base sur le modeéle de control-flows. Nous
montrons que cette méthodologie est capable du contrdle efficace et robuste des expériences a
grande échelle et offre des fonctionnalités nécessaires, dont certains ne sont pas présentes dans
les approches existantes. La derniére contribution porte sur la conception et l'implantation d’'un
systéme pour la collection de provenance pendant lexécution d’expériences sur les systémes dis-
tribués. Elle utilise intensément le modeéle de control-flows et améliore I'approche présentée pré-
cédemment. Le prototype de ce systéme est capable d’une collection de provenance de maniére
efficace et automatique.

Les résultats obtenus montrent que le modéle proposé est une approche viable du contrdle
d’expériences dans les systémes distribués. De plus, les améliorations possibles sont mentionnées
ala fin du document.
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