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Introduction 

Late 20
th 

century was remarkable in the history of mankind because of the 

technological revolution. During this period, we witnessed unprecedented evolution of 

semiconductor and microelectronics industries. Incredible machines were built that pushed 

performances of human’s tasks to new heights. These days, everyone’s life has become 

unthinkable without electronic devices such as computers, mobile phones etc. 

 Magnetic memories are an integral part of these devices. In the last few decades, from 

magnetic tapes to hard drive disks (HDD), the storage capacity has been increased by orders 

of magnitude. Nowadays, data density in hard drive disks is close to the Tbit /inch
2
. The 

discovery of the giant magnetoresistance (GMR) in 1988 was an important breakthrough in 

the development of high density HDD since it enhances reading performances. The GMR is a 

significant change in the electrical resistance of a magnetic multilayer depending on whether 

the magnetizations of adjacent ferromagnetic layers, separated by a metallic non-magnetic 

layer, are in a parallel or an antiparallel alignment. Spintronics, which combines magnetism 

and electronics, emerged from this discovery. Controlling the magnetization by means of the 

current or vice versa the current by means of the magnetization offers an extra degree of 

freedom for the development of memory and logic devices. One of the first results was the 

discovery of the Tunnel Magnetoresistance (TMR), where, unlike the case of GMR, the two 

adjacent magnetic layers are separated by an insulating layer. This particular stack is called a 

magnetic tunnel junction (MTJ). Since TMR can reach several hundreds percents where GMR 

is limited to some tens. It was rapidly integrated in the read head of HDD and participates to a 

further increase in the storage density. 

Soon after, Magnetic Random Access Memories (MRAM) were proposed and 

attracted a strong interest since they combine large endurance and non-volatility. They are 

based on MTJ and their read uses the TMR signal. Different approaches were introduced for 

the writing. The first generation used a field created by a current flowing through “write-

lines”. This approach raises several serious issues, particularly concerning its scalability. 

Since the magnetic field is proportional to the current, the current density diverges when the 

bit sizes decrease. The last generations are based on the Spin Transfer Torque phenomena 

(STT): a current flowing through a magnetic layer gets polarized and can excite the 

magnetization of an adjacent magnetic layer by transfer of spin angular momentum. This 

discovery that the magnetization can be manipulated by use of an electric current was an 

important achievement of spintronics. STT naturally solves the scalability issue. However 

even though  it offers large endurance for relatively slow writing, an accelerated aging of the 

tunnel barrier is observed for fast switching that requires large current density. Moreover, 

since write and read paths are identical, unintentional write can be observed during writing if 

the read and write current distributions are not sufficiently separated.  
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Very recently, other torques were identified in structures with inversion asymmetry 

(SIA) such as heavy metal/ferromagnetic layer/insulating layer. These torques, so called spin 

orbit torques (SOT), originate from the spin orbit interaction: angular momentum is 

transferred to the magnetization from the orbital part of the carrier wave function, and 

produces the SOT. Depending whether the effect comes from the bulk of the heavy metal or 

the interfaces of the magnetic layer, two mechanisms were identified as responsible for the 

existence of the SOT, respectively the Spin Hall Effect (SHE) and the Rashba effect or more 

generally, the Inverse Spin Galvanic Effect. Since the current used for switching the 

magnetization by SOT is injected in the plane of the layer and not through the tunnel barrier, a 

SOT-based writing naturally solves the issues faced by the STT-MRAM: the MTJ is not 

damaged by the injection of large current densities and the read and write paths are 

decoupled. Moreover, very fast determinist and not precessional switching (switching time 

<200 ps) were observed experimentally in both Pt/Co/AlOx and Ta/CoFeB/MgO based stacks. 

SOT-MRAMs are then credible candidates for the introduction of non-volatility in the 

memory hierarchy and particularly for SRAM replacement in high level cache memory.  

For dot diameter larger than 30nm, magnetization reversal in SOT-MRAM involves 

the nucleation of a reverse domain followed by the domain wall (DW) propagation. Therefore 

understanding the current induced DW motion is mandatory for improving and optimizing 

these memories. Moreover, other memory and logic device concepts were introduced these 

last years, based on current domain wall motion. The most famous one is certainly the race 

track memory proposed by S.S. Parkin from IBM in 2004. The information is stored in 

nanowires in the form of magnetic domains separated by DWs. A current injected in the 

nanowires moves the DW-train back and forth. A read and write elements are located beneath 

the DW-train. This 3D-concept offers potentially very large density and fast data transfer.  

Initial experiments on current induced DW motion focused on in-plane material and 

particularly on permalloy. The observation at SPINTEC of very fast, reproducible current 

induced domain wall motion in the direction opposite to the electron flow, in Pt/Co/AlOx 

multilayers in 2009, has rapidly attracted a tremendous interest. From an application 

perspective, this discovery opened a new route for the realization of the different proposed 

DW-based concepts. From a fundamental point of view, this observation raised several 

questions that needed to go beyond the STT mechanism considered so far. The strong SOT 

measured independently in these stacks was rapidly taken into account. However, its action 

depends on the DW structure: it is efficient in moving the DW as soon as its core 

magnetization starts having a component in the current direction. Moreover, two consecutive 

DW need to have opposite components to move in the same direction. Recently, the 

Dzyaloshinskii-Moriya interaction (DMI) was identified to be the “missing” ingredient and 

the SOT+DMI could explain several experimental results.  
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However, previous studies performed at SPINTEC on Pt/Co/AlOx by Emilie Jué 

during her PhD thesis (unpublished) showed incompatibilities with this DMI+SOT model. 

Therefore, my first goal was to understand these incompatibilities and to test this DMI+SOT 

model in configurations different than the ones studied commonly. In order to try to get a 

picture as complete as possible, I studied in parallel two different systems. 

Since the DMI+SOT model of the current induced DW motion involves several 

parameters such as the amplitudes of the SOT, the STT and the DMI, I choose to study a 

simpler case in addition to the current induced DW motion: the field induced DW motion. 

Moreover, in order to identify the role of the DMI, I choose systems presenting weaker SIA: 

Pt/Co/Pt multilayers with different Pt thicknesses. Following these experiments I identified a 

new source of chirality, the chiral damping. 

In the STT approach, the geometry of the device controls both the shape of the 

magnetic layer and the current direction. This is true either for pillar geometry in the case of a 

uniform magnetization and for wire geometry in the presence of a DW. In the case of SOT, 

the “source” i.e. the non-magnetic layer, can be shaped independently from the magnetic 

layer. This gives a new degree of freedom and allows controlling the spatial and temporal 

distributions of the torques acting on the magnetization. Based on this completely new idea 

emerged during my PhD, I performed experiments in the so-called “non collinear geometry” 

in Pt/Co/AlOx multilayers: Co/AlOx wires with different orientations are patterned on top of a 

Pt pad. My results cannot be explained with the SOT+DMI mechanism and ask for a more 

complete model. Moreover, the observed angle dependent current induced DW velocity, was 

used to design new flexible and multifunctional devices. Some of them were built and tested.  

This manuscript is divided into four chapters. 

In the first chapter, I present the state of the art. I introduce the basic magnetism 

concepts needed to understand my experiments and results. The domain and DW formation in 

material with perpendicular magnetic anisotropy, the physical mechanisms associated with 

the magnetization dynamics and the current induced torques (STT and SOT) are discussed in 

details in this chapter. A special attention is given to the analysis of the SOT related studies. 

This is important for understanding the depths and shallows of my results. 

In the second chapter, I introduce the different techniques used in my experiments. I 

first introduce the Kerr magnetic imaging technique that I used to image the DW 

displacements.. The detailed description of the deposition of Pt/Co/Pt and Pt/Co/AlOx 

multilayers studied during my PhD, as well as their nano-structuration follows. Finally, I 

explain the experimental set-up used respectively for the field induced and current induced 

DW motion studies. 
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The third and fourth chapters are dedicated to my experimental results and 

interpretation. In chapter 3, I present both current and field induced DW motion experiments 

in the weak SIA system, the Pt/Co/Pt multilayers. The studies on system with strong SIA 

(Pt/Co/AlOx) are described in chapter 4. 

In weak SIA multilayers such as Pt/Co/Pt, current induced DW motion is expected to 

be very slow. We performed a simple qualitative analysis of this slow DW motion and, in 

order to check the validity of our conclusions, we compared them with field induced DW 

motion. Systematic and detailed quantitative studies of the field induced DW motion in the 

presence of both out-of-plane and in-plane fields were performed. Following these 

experiments I evidenced the existence of the chiral damping that will enrich the understanding 

of DW dynamics.  

In chapter 4, I present my studies on non-collinear current induced DW motion in 

Pt/Co/AlOx. Beyond the conventional one-dimensional geometries, I show that the current 

induced DW motion can be extended to 2D shapes and that unexpected results are obtained. 

Based on these results, I designed new magnetic device concepts. The details of this device’s 

construction, working principle and proof of concept are described in this chapter. Finally, a 

general conclusion is given and perspectives complete the manuscript. 

 The experiments were done in collaboration between two laboratories in Grenoble: 

SPINTEC and Institute Neel. The nanofabrication was performed in the clean room facilities 

of Platforme Technolgie Amont (PTA), CEA Grenoble.  
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In this section, I will describe the basic concepts in magnetism required to understand 

my experimental results. I will begin with the different energies existing in ferromagnetic 

systems. Based on this I will explain the magnetic domain wall formation. After, the 

characteristics of the domain wall motion under the magnetic field and the electric current 

will be discussed with an emphasis on the effect of the spin transfer torque and spin-orbit 

torques on the domain wall dynamics. Finally, the role of Dzyaloshinskii Moriya interaction 

in domain wall motion will be discussed.  

I.1. Energies of a ferromagnetic system 

In a macroscopic ferromagnetic material, the magnetic structure forms microscopic 

regions called magnetic domains. Each domain consists of magnetic moments of atoms 

aligned in the same direction forming a uniform net magnetization. The boundaries separating 

two different magnetic domains are called magnetic domain walls.  

The domain formation occurs to minimize the total energy of the magnetic system. 

Depending on the magnetic material, several different energy contributions compete with 

each other to produce complex magnetic domain and domain wall patterns [O’Handley, 

1999]. The common energy contributions in a magnetic system are described in the below 

section. 

I.1.1 Zeeman energy (Due to an external field)  

The Zeeman energy is related to the interaction between the magnetic moments and an 

external magnetic field: the magnetization tends to point along the direction of the field to 

minimize its energy. This energy is expressed as  

   𝐸  𝑧𝑒𝑒𝑚𝑎𝑛 = −𝜇0. 𝐻𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   . �⃗⃗�  

Where 𝜇0 is the magnetic permeability of vacuum,  𝐻𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the external magnetic field 

and �⃗⃗�  is the magnetization. 

I.1.2 Exchange energy 

The energy associated with the coupling of the magnetizations of two neighboring 

atoms is the exchange energy. Depending on the nature of the coupling, the two 

magnetizations tend to align parallel (ferromagnetic coupling) or anti-parallel (anti-

ferromagnetic coupling) to each other. It is a short range interaction which is strongest for 

two adjacent atoms. The net exchange energy can be written as the summation of the 

interaction between all the atoms as shown below. 
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 𝐸𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 =  ∑ 𝑆𝑖
⃗⃗⃗  

𝑖,𝑗 . 𝑆𝑗⃗⃗ ⃗⃗   cos 𝜑𝑖𝑗 

Where 𝑆𝑖
⃗⃗⃗   and 𝑆𝑗⃗⃗⃗  are two neighboring spins and 𝜑𝑖𝑗 is the angle between them 

[Buschow 2003]. 

The exchange interaction is isotropic, resulting in no preferential orientation of the 

magnetization with respect to the crystal axis. 

I.1.3. Magnetostatic energy 

Magnetostatic energy can be also referred as magnetic stray field energy, magnetic 

dipolar energy or demagnetizing energy. This energy expresses the magnetic interaction 

between two magnetic dipoles and depends on their relative direction and on the distance 

between them. Locally the demagnetizing energy is small compared to the exchange energy. 

Thus it has less influence on the alignment between two neighboring magnetic moments. 

However, it is a long range interaction that can influence the spatial distribution of the 

magnetization. Mathematically, it can be expressed as [Hubert 1988] . 

 𝐸 𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =
1

2
 𝜇0  ∫ �⃗⃗� 𝑑𝑚  . �⃗⃗�  𝑑𝑉 

Here �⃗⃗� 𝑑𝑚 is the demagnetizing field. It depends linearly to the magnetization and a geometry 

dependent constant (N). 

     �⃗⃗� 𝑑𝑚 = −𝑁. �⃗⃗�   

It is very difficult to calculate the value of Hdm of an arbitrary shaped magnetic object. 

This is because the interaction is long range and all the interactions between each of the 

dipoles in the system should be considered. 

I.1.4. Magneto crystalline energy 

In certain crystals, the magnetization prefers to align along specific crystal axes. The 

related energy is called the magneto-crystalline energy. This energy is anisotropic and the 

preferential axes depend on the system: they can be defined either by the bulk of the material 

and particularly the crystal lattice or by the interfaces.  

  In a system with uniaxial crystalline anisotropy, the magneto-crystalline 

anisotropy energy can be written as  
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𝐸𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 = 𝐾𝑢 . 𝑠𝑖𝑛
2𝜃 

Where 𝐾𝑢 is the uniaxial magneto-crystalline energy constant and 𝜃 is the angle 

between the magnetization and the anisotropy crystalline axis. For complex crystal lattices, 

the above equation can include higher order terms [O’Handley, 1999]. 

The magnetocrystalline energy is dictated by the anisotropy of the orbital momentum 

and to the strength of the spin orbit interaction. The crystal field breaks the spherical 

symmetry of the atomic wavefunctions and sets the orientation of the orbital momentum. The 

spin orbit interaction, Hso = λL.S, couples the spin of the electrons (S) to its orbital angular 

momentum (L). Ultimately the anisotropy depends on the crystallographic arrangement of the 

material. As a result, the magnetization prefers to align with certain crystal axis [O’Handley, 

1999].   

 I.1.4.1. Out of plane magnetic anisotropic materials 

 The magneto-crystalline anisotropy originates from both the bulk and the 

interface. In ferromagnetic thin films, the contribution from the interface plays an important 

role, as it may exceed the in-plane shape anisotropy created by the demagnetizing field and 

bring the magnetic easy axis out of plane [Néel 1954]. 

In my experiments, I used two kinds of perpendicular magnetic trilayer systems: 

Pt/Co/Pt and Pt/Co/AlOx. Here both interfaces contribute to the anisotropy. The typical 

values of the anisotropy field are of the order of Hk > 9Koe in Pt/Co/AlOx and HK >3Koe in 

Pt/Co/Pt.  

The interface contribution to the anisotropy of these materials is well established. The 

out of plane magnetic anisotropy was observed both in multilayers with ferromagnet/ heavy 

metal interfaces (Co/Pt, Co/Pd, CoFeB/Ta etc) as well as those with ferromagnet/oxide 

interfaces (Co/AlOx, CoFeB/MgO).  

While the large spin orbit interaction plays an important role for the contribution of 

the ferromagnet/ heavy metal interface, in the case of the ferromagnet/oxide interface [Monso 

2002] the spin orbit interaction is smaller. Here the anisotropy is highly dependent on the 

oxidation state at the interface. At an optimal oxidation condition, a strong out of plane 

magnetic anisotropy can be achieved [Rodmaq 2003]. The origin of the anisotropy is the 

strong hybridization of the orbitals of the transition metal and oxygen. This mechanism was 

confirmed by ab-initio calculation
 
[Yang 2011]. This study showed that the hybridization of 

the 3d orbital of the metal and the 2p orbital of the oxygen can lead to out of plane magnetic 

anisotropy. They also showed that the anisotropy is reduced in over-oxidized and under-
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oxidized interfaces due to modification of the hybridized state due to the presence or the 

absence of the oxygen atoms. A later study showed that the anisotropy is also sensitive to 

thermal annealing [Rodmaq 2009]. Here it was shown that the annealing induces the 

migration of oxygen towards the interface resulting better interface and thus large anisotropy.  

I.2. Magnetic Domain and domain wall formation  

A simple picture of magnetic domain formation in a perpendicular magnetic system 

due to the interplay of magnetostatic anisotropy and exchange energies is shown in figure I.1. 

Consider that initially the magnetic material consists of a single domain of uniform 

magnetization (figure I.1.a), pointing along the perpendicular direction (due to the 

anisotropy). Magnetic charges appear at two opposite edges creating a strong demagnetizing 

field in the system and increasing the magnetostatic energy (or dipolar energy). In order to 

minimize this energy, the magnetic structure gets divided into domains forming domain walls 

between them (figure I.1.b). The final structure minimizes the total energy by reducing the 

dipolar energy of the system at the cost of domain wall energy (anisotropy and exchange). 

 

Figure I.1. The schematic diagrams of magnetic domain wall formation in a rectangular 

structure. A) In a single domain case, the magnetization aligns along one direction, creating 

magnetic charges at two opposite edges of the rectangular slab. These magnetic charges in 

turn create a strong demagnetization field inside the magnetic material. b) To minimize its 

total energy, magnetic domains are formed so that magnetic charges created by one magnetic 

domain get canceled by the magnetic charges in the adjacent domains. 

I.3. Magnetic domain walls  

The domain wall (DW) is the small region in between two different magnetic domains 

Inside the DW, the magnetization rotates from one domain magnetization direction to the 

other. The width of the DW(∆) depends on the competition between the exchange energy (A) 

and the anisotropy (K): [O’Handley, 1999] [Buschow 2003]  

a) b) 
H

dm
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∆ ∝  √
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𝐾
 

The exchange interaction favors large DW width so that the neighboring magnetic 

moments are separated by small angles. The anisotropy in contrast tends to minimize the 

number of the magnetic moments not aligned along the easy axis. A thin DW will then be 

obtained when the anisotropy is large compared to the exchange energy. 

I.3.1. Bloch and Néel domain walls  

Domain walls can be different of types depending on the way the magnetization varies 

inside the domain wall. In in-plane and out-of-plane magnetic materials, different DW types 

were reported. In my experiments, I only studied out-of-plane magnetic systems. Hence, the 

discussion on the DW presented in the coming section will be focused only on magnetic 

systems with out-of-plane magnetic anisotropy. In this case, the magnetization of the domains 

is directed either up or down. The magnetization inside the domain wall rotates from up to 

down or vice versa. 

Two types of DW can be distinguished: Bloch walls and Néel DW. If the 

magnetization rotates in the plane containing the magnetizations of the two domains, it is 

called a Néel DW. For a Bloch DW, the magnetization rotates perpendicular to this plane. 

[Gignoux 2005] 

Figure I.2. The schematic diagrams of a Néel and a Bloch DW in a wire with perpendicular magnetic 

anisotropy. a) The Néel DW. The magnetization inside the domain wall varies its direction along the 

DW length. B) The Bloch DW. The magnetization rotates out of plane to the DW length. 

A schematic diagram of these two DWs is shown in figure I.2. In perpendicular 

systems with large anisotropy the width of the DW is generally smaller than the width of the 

nanowire. Magnetization rotating perpendicular to the DW width would cost less dipolar 

energy compared to the rotation along the DW. Thus, the DW will prefer the Bloch structure.  

a) b) 



11 

 

I.4. Domain wall motion 

A magnetic DW can be moved both by magnetic field (Hext) and electric current (I). 

The magnetic field induced DW motion is due to the Zeeman energy described above while 

the current induced DW motion is due to the interaction between the spins of the conducting 

electrons and the local magnetization: spin torque effects. The major difference between these 

two kinds of DW motion in a nanowire is shown in figure I.3. The magnetic field induces bi-

directional DW motion: magnetic domains oriented parallel to Hext are energetically favored 

and expand while magnetic domains oriented anti-parallel to Hext shrink. Then, two adjacent 

domain walls will move opposite to each other. The current induced DW motion is 

unidirectional. All the domain walls move in the same direction and the magnetic 

configuration is eventually shifted. From memory application point of view, the current 

induced DW motion is considered to be important. This is because it does not alter the 

magnetic domain structure so that the magnetic information can be retained during the motion 

in contrast with the field induced domain wall motion. [Hayashi 2008] 

The physical mechanisms behind these two kinds of domain wall motion are 

described in details in the following sections. 

 

Figure I.3: The domain wall motion in nanowires in presence of a) an external field (Hext) and b) an 

electric current (I). The field induced domain wall motion results in expansion or contraction of the 

magnetic domains whereas the current induced domain wall motion results in the displacement of 

magnetic domains along the nanowire.  

I.5. Field induced domain wall motion 

In magnetic thin films and bulk materials, the magnetization reversal can occur 

through domain nucleation and domain wall propagation. Figure I.4 shows different magnetic 

states during the magnetization reversal under an applied external magnetic field (Hext). When 

Hext is larger than the saturation field (Hsat), the magnetic system is in a single domain state. 

When Hext is slowly increased in the opposite direction, a magnetic domain with opposite 

magnetization gets nucleated. In the realistic experimental case, the magnetic system has 

imperfections due to defects, crystal mismatches etc. These imperfections can have weaker 

H
ext

 

I 

a) 

b) 
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anisotropies where the magnetization reversal requires smaller fields compare to the other 

parts of the magnetic system. These spots serve as the source of initial domain nucleation 

creating domain wall boundaries in the magnetic structure. As the magnetic field is increased 

further, these domain walls can move expanding the nucleated domain. At the same time, 

new domains can also be nucleated. When the Hext becomes larger than Hsat in the opposite 

direction, a monodomain state is obtained. 

. 

Figure I.4. Schematic diagrams of the magnetic reversal through a nucleation/propagation 

mechanism. A) At Hext < -Hsat, magnetization is saturated along the applied field direction b) For a 

small positive  applied field domains with up magnetization are nucleated c) At higher positive field, 

domain walls moved and the nucleated domains expand d) At Hext > +Hsat, the magnetization is 

saturated up resulting in a single domain state.   

In this section, at first I will briefly describe the physical mechanisms governing the 

field induced DW dynamics. Then I will show the comparison of these theoretical models 

with the experimental results. 

I.5.1. LLG equation 

The time and space evolution of the magnetization under the application of a magnetic 

field is mathematically described by the Landau Lifshitz Gilbert (LLG) equation. The same 

equation can be used to understand the magnetization reversal of a uniform magnetic domain 
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as well as the magnetization dynamics inside the DW. The equation was first proposed by 

Landau Lifshitz [Landau-Lifshitz 1935] and then modified by Gilbert
 
[Gilbert 2004]. 

When an external magnetic field is applied to a magnetic material, the magnetization 

starts to precess around the field axis. The torque that causes this precession can be written as 

𝜕�⃗⃗� 

𝜕𝑡
=  −𝛾�⃗⃗�  × �⃗⃗� 𝑒𝑓𝑓 

Here γ is the gyromagnetic ratio,  𝛾 =  
𝑔𝑒𝜇0

2𝑚𝑒
  where g is the Lande factor (~2). Heff is 

the effective field including all the contributions from exchange field, magneto-crystalline 

anisotropy field, external applied field etc.  

Figure I.5. The schematic diagram showing the magnetization dynamics under an applied external 

magnetic field. A) Precession of the magnetization around Heff without any damping. The 

magnetization describes a perfect cycle. b) In the presence of the damping, the magnetization relaxes 

along Heff describing a spiral. The damping torque is perpendicular to the spiral.  

Considering only this torque, the magnetization will precess endlessly around the 

external field. This is not what is observed experimentally: when an external field is applied, 

the magnetization relaxes into an equilibrium state aligned along �⃗⃗� 𝑒𝑓𝑓. Hence, an additional 

torque describing the damping (T𝑑)  is required to explain the magnetization dynamics. In the 

LLG formalism, the damping can be written as  

(T𝑑)  = 𝛼�⃗⃗�  ×  
𝜕�⃗⃗� 

𝜕𝑡
 

Here α represents the damping constant, α >0. The damping mechanism is associated 

with a transfer of energy from the magnetic system to other degrees of freedom such as the 

lattice through the spin-orbit coupling. 

𝑻𝒑 = −𝜸�⃗⃗⃗�  × 𝑯𝒆𝒇𝒇 

�⃗⃗⃗�  

  

�⃗⃗⃗�  

𝑯𝒆𝒇𝒇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

  
𝑻𝒅 = −𝜶�⃗⃗⃗�  × 

𝝏�⃗⃗⃗� 

𝝏𝒕
 

a) b) 𝑯𝒆𝒇𝒇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
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 Therefore, the LLG equation for the net magnetization dynamics can be written 

as the summation of two terms: a precessional term and dissipation term. 

𝜕�⃗⃗� 

𝜕𝑡
=  −𝛾�⃗⃗�  × �⃗⃗� 𝑒𝑓𝑓 +  𝛼�⃗⃗�  ×  

𝜕�⃗⃗� 

𝜕𝑡
 

I.5.2. Field induced domain wall dynamics 

Even though the DW has a non-uniform magnetic texture, the DW dynamics can be 

described using relatively simple models. This is because the non-uniformity of the 

magnetization in the DW (the DW width) is fixed by energies (anisotropy and exchange) 

much larger than the Zeeman energy from the applied field. Therefore it can be considered 

constant. The only degree of freedom is the orientation of the DW core magnetization. When 

a magnetic field is applied, the magnetizations inside the domain wall rotate leading to the 

overall displacement of the domain wall. The behavior of the domain wall velocity under a 

magnetic field was firstly described by Walker [Schryer 1974]. According to the Walker 

model, the domain wall motion is divided into two velocity regimes: a steady state regime 

and an oscillatory regime. The steady state regime corresponds to the motion of the domain 

wall at low magnetic fields, and the oscillatory regime corresponds to the motion at higher 

fields. Both of these regimes are schematically shown in figure I.6. At low magnetic field, the 

velocity increases linearly with the magnetic field amplitude. Then at a certain field called the 

Walker field, the magnetization inside the domain wall starts to oscillate and the DW velocity 

drops. A further increase in the magnetic field results in a global motion of the DW along the 

same direction with a velocity increasing linearly with the magnetic field amplitude. 

However, the DW motion is turbulent: the DW undergoes transformations from Bloch to 

Néel to Bloch etc., and the motion is constituted of back and forth displacements.  

The interplay between the different torques acting on the magnetization inside the 

domain wall determines the steady or oscillatory behavior of the DW motion. A simple 

picture of the action of the different torques on the magnetization of a Bloch wall in the 

presence of an external applied field (Ha) is shown in figure I.6.b. Here instead of considering 

the whole magnetization gradient, I will simplify the DW into a small region with a constant 

in-plane magnetization (shown by the red arrow in figure I.6.a). According to the LLG 

equation, when an external field is applied, a torque (Ta) acts on the magnetization and rotates 

it in the XY plane. This rotation of the magnetization creates magnetic charges at the edges of 

the domain wall that produce a dipolar field (HDemag) along –X. HDemag creates an out of plane 

torque (TDemag) along the Z direction that pulls the magnetization out of plane. The in-plane 

torque (TDamp) associated to the damping of this motion opposes Ta and at equilibrium they 
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compensate, providing a steady in-plane angle for the magnetization. The DW velocity is 

given by TDemag.   

As the magnetic field increases further, the in-plane magnetization continues to rotate, 

increasing TDemag. However, TDemag reaches a maximum for an in plane angle of the 

magnetization 



=45°. Beyond, Ta is no longer compensated by the TDamp and the 

magnetization starts to precess in the X-Y plane. This phenomenon is called the Walker 

breakdown. Increasing further the magnetic field results in the turbulent DW motion. Since 

the DW undergoes back and forth displacement, the domain wall mobility in this regime is 

smaller compared to the steady state regime [Mougin 2007]. 

Figure I.6. a) The schematic diagram of the velocity versus the applied external field amplitude. The 

velocity shows two linear regimes, the steady state regime and the oscillatory or turbulent regime, 

separated by the Walker breakdown at field Hw. b) Schematics of the different torques acting on a 

single magnetization at the center of the Bloch domain wall. The applied field (Ha, shown in blue) is 

associated with as torque Ta that rotates the magnetization in the plane and creates an in-plane dipolar 

field (HDemag shown in green). The damping torque TDamp associated to the motion induced by HDemag 

then compensates Ta. Finally, TDemag pulling the magnetization out of plane results in the domain wall 

motion. 

I.5.3. Creep and flow regimes of the domain wall motion 

The model presented in the previous section is only applicable to ideal systems. The room 

temperature experiments show deviations from this picture. Especially at low magnetic 

fields, the interplay between material imperfections and thermal energy contribution plays a 

major role in defining the domain wall motion behavior. Samples used for domain wall 

motion studies exhibits imperfections and defects such as impurities, disorders. These 

imperfections can act as pinning, modifying the domain wall motion. At zero temperature, 
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they can even stop the domain wall motion. However, at finite temperature, thermal energy 

activates the depinning of the domain walls from these sites
 
[Chauve 2000]. The motion 

regime is then dependent on the amplitude of the magnetic field. From this perspective, the 

magnetic field induced domain wall velocity can be divided into three regimes:  the creep 

regime, the depinning regime and the flow regime [Metaxas 2007].These regimes are shown 

in figure I.7.  

. 

Figure I.7. The schematic diagram of the experimental field induced velocity (shown in red) compare 

to the velocity expected from the model presented previously (shown as the dotted black curve). a) 

For the case where the Walker breakdown occurs at fields larger than those of the creep and depinning 

regimes, the observed linear dependency corresponds to the steady flow regime. B) For smaller 

Walker fields the sudden velocity drop due to the Walker breakdown is not visible in the experimental 

curve. The observed linear regime corresponds to the oscillatory regime. One of the difficulties in 

analyzing experimental velocity curves is that the Walker breakdown may be hidden by the 

presence of defects (the creep regime and the depinning regime as shown in figure I.7). When 

this happens, it is not always possible to know whether the DW motion in the flow regime is 

steady or turbulent.   

At low magnetic field, the domain wall velocity is extremely slow and the motion can 

be described by the dynamics of an elastic interface driven by a force in the presence of weak 

disorder [Lemerle 1998] [Metaxas 2007]. This regime is called the creep motion. Increasing 

the force, here the magnetic field, along with thermal activation energy, induces the 

depinning of the domain walls from the defects. Thus the domain wall velocity suddenly 

increases. This second regime of the DW motion is called the depinning regime and is shown 
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in figure I.7. As the magnetic field is increased further into high values, the domain wall 

motion becomes independent of the pinning defects and the domain wall velocity becomes 

linear as predicted theoretically. This is the flow regime 

I.6. Current induced domain wall motion: 

In magnetic microstructures, applying current can induce domain wall motion either 

along or opposite to the electric current. The torque responsible for current induced DW 

motion can be of two types: Spin Transfer Torques (STT) and Spin-orbit Torques (SOT). In 

the following section I describe different aspects of the physics associated with STT and SO 

I.6.1. Spin Transfer Torques (STT) 

 When a spin polarized current flows through a magnetized magnetic material its 

spin polarization changes (it aligns with the magnetization). Since the total angular 

momentum (spin of conductive electrons and magnetization) is conserved, the conductive 

electrons transfer their angular momentum to the magnetization of the magnetic material. 

Thus a torque is applied on the magnetization. This spin transfer torque will eventually cause 

the magnetization switching if the current density is large enough (if enough momentum is 

transferred)
 
[Ralph 2008]. The Spin transfer torque is an effective way of changing the 

magnetization that is already used as a new writing scheme in memory and logic devices. 

[Rizzo 2013]  

The spin transfer torque can also lead to domain wall motion. The first prediction of 

current induced domain wall motion was made by L. Berger [Berger 1974]. He proposed that 

electrons passing through the domain wall can induce a torque which can drag the domain 

wall along the electron flow direction. However, the first experimental demonstration of this 

idea was done decades after in 2003[Klaui 2003].  A detailed theoretical model was proposed 

later
 
[Zhang  2004] [Piechon  2007] [Waintal 2004] [Vanhaverbeke 2007]. The different 

aspects of these theoretical models are described in the following sections. 

I.6.1.1. LLG equation 

Two contributions of the spin transfer torque were evidenced both theoretically and 

experimentally. The first one is called adiabatic spin transfer torque. It comes from the 

transfer of angular momentum from the spins of the conducting electrons to the 

magnetization. Here the spins of the conduction electrons adiabatically follow the direction of 

the local magnetization inside the domain wall. Mathematically the adiabatic component of 

the STT can be written as 
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𝜕�⃗⃗� 

𝜕𝑡
= − 

𝑔𝜇𝐵𝐽𝑃

2𝑒𝑀𝑠

𝜕�⃗⃗� 

𝜕𝑥
= −𝑢

𝜕�⃗⃗� 

𝜕𝑥
 

Where 𝑔 is Lande factor, μB is Bohr magnetron, J is current density, P is polarization and Ms 

is the saturation magnetization.  

Considering only the adiabatic contribution, the critical current density for domain 

wall motion predicted theoretically is much larger than the one observed experimentally 

[Thiaville  2004] [Klaui 2003]. Another torque called non-adiabatic is needed to describe the 

experiments. This torque can be written as  

 

𝜕�⃗⃗� 

𝜕𝑡
= 𝛽𝑢 �⃗⃗� ×

𝜕�⃗⃗� 

𝜕𝑥
 

Where 𝛽 is a non-dimensional coefficient that gives the strength of the non-adiabatic torque. 

The above equation is only valid for small  [Zhang  2004] The physical origin and amplitude 

of the non-adiabatic contribution have been the subject of numerous studies, both 

experimental and theoretical (ref). First theoretical studies predicted  equal to the ratio of the 

spin flip rate over the s-d exchange (𝛽 = 𝜏𝑠𝑑/𝜏𝑠𝑓) [Zhang  2004] [Piechon  2007] 

[Vanhaverbeke 2007]. More recently microscopic calculations of the spin transfer torque 

considering the electronic band structure were presented. These calculations find an intrinsic 

origin to : the spin orbit interaction [Hals 2009] [Garate 2009]. Qualitatively, this conclusion 

is the same as this of Zhang and Li since the spin flip frequency increase with the spin orbit 

interaction that couples spins up and spin down.   

According to the Zhang and Li model [Zhang  2004], the slight mistracking between 

the electrons spins and the local magnetization direction generates a non-equilibrium spin 

accumulation across the DW. This spin accumulation precesses around the magnetization and 

relaxes toward the magnetization direction due to spin-flip scattering. These two phenomena 

lead to both adiabatic and non-adiabatic spin-transfer torques. They found the amplitude of 

the non adiabatic torque cj  



c j 
sdsr

sd
2 sf

2 




1 2
 

Where 𝜏𝑠𝑑 is the exchange time and 𝜏𝑠𝑓 is the spin-flip relaxation time. 
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Another very important consequence of the spin orbit interaction will be described in 

the next section 1.7.2: the spin orbit torques. 

 

I.6.1.2 STT driven DW motion: 

The complete LLG equation for the current induced domain wall motion including 

both the adiabatic and non-adiabatic torques can be written as 

𝜕�⃗⃗� 

𝜕𝑡
=  −𝛾�⃗⃗�  × 𝐻𝑒𝑓𝑓 +  𝛼�⃗⃗�  ×  

𝜕�⃗⃗� 

𝜕𝑡
+ −𝑢

𝜕�⃗⃗� 

𝜕𝑥
+  𝛽𝑢 �⃗⃗� ×

𝜕�⃗⃗� 

𝜕𝑥
 

This equation is valid only for small β values according to the Zhang and Li model. It 

contains four terms. The first two terms give the magnetization variation with respect to the 

time, where the last two represent the magnetization variation within the space. The first two 

terms are independent of the current. They represent the precession and damping due to the 

effective filed in the system, just like the case for the field driven domain wall motion 

discussed in the section I.5.1. The last two terms are the current driven adiabatic and non-

adiabatic torques. They are perpendicular to each other and both perpendicular to the 

magnetization.  

If we consider the magnetization at the center of the domain wall and the regime of 

low applied current densities, the direction of the effective magnetic field associated with the 

adiabatic torque is perpendicular to the easy axis while the one associated to the non-adiabatic 

torque is parallel to the easy axis. The non-adiabatic torque is considered to be responsible for 

the steady domain wall motion (figure I.18). In a 1D model, the domain wall velocity in the 

steady state is expressed as 𝑣 =  𝛽𝑢/𝛼. As the current density is increased the DW undergoes 

an instability equivalent to the Walker breakdown and the magnetization inside the DW starts 

precessing. The adiabatic torque is now efficient for DW motion and dominates at higher 

current densities.  

To summarize, the current induced domain wall motion exhibits the same features as 

those of the field induced domain motion shown in figures I.6 and I.7. The current induced 

domain wall motion can be steady or oscillatory depending on the current density.  

From the application point of view, the usefulness of the current induced DW motion 

depends on two parameters: the current required for the depinning of the DW and the DW 

velocity. As discussed in the section I.5.3, the DW can be trapped in the pinning potential 

created by the imperfections in the sample. Thus, a large current may be required for the 

depinning of the DW. Initial studies of the STT driven current induced DW motion were 
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concentrated on NiFe based nanostructures. In these cases, the depinning current is found to 

be relatively large [Yamaguchi  2004] [Hayashi 2006]. By improving the sample quality, the 

depinning critical current could be decreased [Meier  2007] [Kläui  2005]. Regarding the DW 

velocity, it can be increased either by increasing the current density or using the material with 

large STT efficiency. On the other hand, experimentally, increasing the current density may 

damage the sample.  In the high quality samples of NiFe, with the maximum applicable 

current density, the STT driven DW velocities up to 100 m/s were observed [Hayashi 2007]. 

  

Figure I.8. Schematic diagram of the effective fields acting on the DW magnetization. The effective 

fields due to the non-adiabatic and adiabatic torques are along easy and hard axis respectively 

More recently large DW velocities, too large to be explained by the STT, were 

observed in systems with structural inversion asymmetry (SIA). Here experiments were done 

in trilayers made of a thin magnetic layers sandwiched between two different non-magnetic 

layers. In these samples, the DW motion was against the electron flow in contradiction with 

the STT model. To explain these observations, additional torque mechanisms were 

introduced. This will be explained in the next section. 

I.6.2. Spin-orbit torques 

In the case of STT, the spins of conduction electrons get polarized either by passing 

through and adjacent magnetic layer, the polarizer, or in the presence of magnetization 

gradient as DW.  Recently it has been shown that spin angular momentum can be transferred 

to the magnetization from the crystal lattice, through the spin orbit interaction. Due to this 

origin, the resulting torques on the magnetization are named spin-orbit torques (SOT). Unlike 

the STT, the SOT does not require magnetic textures nor is its amplitude limited to the 

maximum spin polarization. As SOTs offer a novel route to manipulate the magnetization and 

open the way to more efficient spintronics devices, it has been studied widely these last years 

within the spintronics community. 

  

H
non-adiabatic

 

H
adiabatic
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In the following section, I discuss in details about the different theoretical and 

experimental aspects related to the spin-orbit torques. At first I explain the structural and 

symmetry requirements of SOT. Then I will present the history of the experimental evidences 

of spin-orbit torques. Finally, the influence of SOT on the domain wall dynamics will be 

discussed. 

I.6.2.1. Need of structural inversion asymmetry 

 In the case of SOT, the magnetization dynamics is manipulated by transferring 

angular momentum from the crystal lattice. There are two requirements in order to have 

efficient SOT: the material should have a large spin-orbit coupling and the system should 

present a structural inversion asymmetry (SIA). Since the electron speed, the Fermi velocity, 

is close from the relativistic regime, electrons traveling through the non-vanishing electric 

field will experience in their own frame a magnetic field (HSO) that is perpendicular to both 

their velocity and the electric field. This magnetic field modifies the spin momentums of the 

conduction electrons that are further transferred to the local magnetization. The SIA can be 

either intrinsic to the material, for example in non-centrosymmetric crystal lattice such as 

zinc-blende crystal structures [Dresselhaus 1955] or provided by specific structure, such as 

for example asymmetric magnetic multilayers systems [Miron 2010]. In the case where the 

non-vanishing electric field is induced inside the ferromagnetic material, the SOT can be 

considered local and originate from the competition between the s-d exchange interaction that 

tends to align the spins of conduction electrons along the local magnetization and the SOC 

that tends to align them along HSO. This case is often referred in the literature as the inverse 

spin galvanic effect
 
[Garate 2010].  

  

Figure I.9. a) In the case of a symmetric multilayer with a ferromagnetic layer (FM) sandwiched 

between two identical nonmagnetic layers (NM), the spin-orbit fields I generated in the FM from the 

presence of the two NM layers cancel each other. b) In the case of multilayer with structural inversion 

asymmetry, the net spin-orbit field in the FM is non-zero 

NM 

FM 

NM 

NM 

FM 
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Figure I.9 shows the schematic diagram of the systems that I studied. It consists of a 

ferromagnetic metal layer (Co in my case) sandwiched in between two nonmagnetic materials 

(Pt or AlOx in my case, here one or both of the layer provides large spin-orbit coupling). If 

the multilayer is symmetric, then the spin-orbit electric fields arising from the two non-

magnetic layers cancel each other (figure I.9.a). For the asymmetric multilayers, the net spin-

orbit field is finite (figure I.9.b) 

It is also possible to inject spins from the adjacent nonmagnetic layer through the spin 

hall effect[Dyakonov 1971] [Hoffman 2011] (detail explanation will be given in section 

I.6.2.4.2). Also in this case, the SIA is required. In order to obtain a net torque, spins should 

be injected only from one side of the ferromagnet. Injection from both sides leads to 

cancelation. The SOT originates then from a transfer to the local magnetization through the s-

d exchange interaction as in the STT case 

I.6.2.2. Symmetry of the spin torques 

In this section, I will discuss the existence of the SOT from symmetry consideration. I 

will more specifically emphasize on the importance of the SIA structure and the direction of 

the SOT. I will study how the torques behave under rotational and mirror symmetry 

operations. 

 

Figure I.10: Schematic diagram of polar (shown in blue) and axial (shown in grey) vectors under 

symmetry operations. a) The mirror symmetry operation. A polar (axial) vector perpendicular to the 

mirror plane is reversed (unchanged) while it remains unchanged (gets reversed) when parallel to the 

plane. b) The rotational symmetry operation. Here both axial and polar vectors behave the same way. 

They are reversed when they are perpendicular to the axis of rotation and remain unchanged when 

they are parallel to the axis of rotation 
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For a better understanding of the symmetry operations discussed in this section, the 

mirror symmetry operations for two different vectors need to be distinguished: the polar and 

axial vectors. As shown in the figure I.10.a, polar vectors (displacement, electric current, etc.) 

perpendicular to the mirror are reversed, while axial vectors (magnetization, magnetic field, 

etc.) are reversed if they are parallel to the mirror plan. On the other hand, these vectors 

behave in the same way under the rotational symmetry operations (figure I.10.b) 

I.6.2.3. Symmetry operation on a magnetic domain  

Since I have studied perpendicular magnetic materials, all the discussion is based on 

such system. Consider both a 180° rotational symmetry around an axis parallel to the current 

direction and mirror symmetry with a mirror perpendicular to the current direction, applied to 

a uniform magnetic domain. As shown in figure I.11, when there is no current, the whole 

system including the magnetization (shown in grey arrows) is invariant under the mirror and 

rotational symmetry operations. Applying current breaks the rotational symmetry, as shown 

in figure I.11. However, the system remains invariant by the mirror symmetry 

Now consider the current creates torques represented by effective fields (represented by 

red and blue arrows in figure I.11) perpendicular to each other and to the magnetization. 

Under the mirror operation, both effective fields are changed to their opposite. It means that if 

such effective fields exist, their opposite fields exist as well resulting in their cancelation 

Figure I.11: Schematic diagram of the mirror symmetry with a mirror perpendicular to the current 

direction, and 180° rotational symmetry around an axis parallel to the current direction, of a uniform 

magnetic domain. The current injection breaks the 180° rotational symmetry but not the mirror 

symmetry. If the current could create torques on the magnetization (represented by two effective fields 

shown in blue and red perpendicular to each other and to the magnetization direction) the mirror 

symmetry allow the existence of both the effective fields as well as of their opposite resulting in their 

cancelation.  

MI 

IM 

MI 

IM 

MI 

IM 



24 

 

The picture changes if another parameter is introduced that breaks the mirror symmetry, 

for example an electric field along the magnetization direction (shown as green arrow in the 

figure I.12). This electric field breaks the invariance of the system by the mirror symmetry 

and allows the existence of the SOT. In the scenario of the SOT, the electric field mentioned 

is created by the lattice (a detailed discussion about this is given in section I.6.2.4 

Figure 1.12: In the presence of an additional vertical electric field represented by the green arrow, the 

mirror symmetry is broken. Then, the existence of an effective field acting on the magnetization does 

not imply the existence of its opposite. There is no more cancellation and the SOT are allowed.  

 

Figure I.13. a) Schematic diagram showing the directions of the current (yellow), magnetization 

(grey), electric field (green) and effective fields under different mirror and rotational symmetry 

operations b) Directions of the effective fields deduced from the symmetry operations in figure a for 

different magnetization directions. One of the effective fields (shown in red) is always aligned along 

the same direction for all the magnetization directions, while the other is rotating with the 

magnetization direction (shown in blue) 

Furthermore, the directions of the two effective magnetic fields can be obtained as a 

function of the magnetization direction as shown in figure I.13. Considering a given electric 
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field and current direction such as represented in figure I.13.a), and starting from an in-plane 

or an out-of-plane magnetization, the successive application of a mirror symmetry and a 180° 

rotation around an in-plane axis change the magnetization in its opposite, every other 

parameters remaining unchanged. The two effective fields acting on the magnetization 

behave differently. The first one is always oriented in the same direction (shown by red 

arrows in figure I.13) and is called the field-like component of the SOT. The second one is 

rotating with the magnetization direction (shown in blue in figure I.13) is called the damping-

like component of the SOT. A detailed discussion on these two components will be done in 

the following sections 

To summarize, the breaking of vertical symmetry is necessary for the existence of the 

SOT. The symmetry arguments discussed here only show that the torque can exist, but it is 

not a proof that they actually exist, nor it gives any information on their amplitude and the 

role of the material and structural parameters. 

I.6.2.4. The field like and damping like torques: 

 As explained in the section I.6.1.2, the STT contain two terms: the adiabatic and 

non-adiabatic torques. This two components act in two perpendicular directions with respect 

to the magnetization. Similarly, the SOTs are composed of two components: the field-like 

torque (TFL) and the damping-like torque (TDL). These torques and their effective fields can 

be written as 

𝑇𝐹𝐿~ �⃗⃗�  × (�̂� × 𝑗)                 &         𝐻𝐹𝐿~�̂� × 𝑗                  

 

𝑇𝐷𝐿~ �⃗⃗� × (�⃗⃗� × (�̂� × 𝑗)           &                𝐻𝐷𝐿 ~ �⃗⃗�  × (�̂� × 𝑗) 

Where z is the direction perpendicular to the plane of the sample and j the current density. In 

the following section, I will discuss in details the various theoretical and experimental studies 

that have been performed to understand these two torque components as well as their 

microscopic origins. 

I.6.2.4.1.The field like term  

As its name suggests, the field-like torque acts as if there were an external magnetic 

field applied to the system. The first experimental observation of the current induced SOT in 

ferromagnetic metallic layers was done by I. M. Miron et al. [Miron 2010] using Pt/Co/AlOx 

multilayer system. In this study, they showed that magnetic domain nucleation can be 
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modified by the presence of an effective magnetic field in-plane and perpendicular to the 

current direction. 

In this experiment, a Pt/Co/AlOx trilayer was patterned into 20 parallel wires and the 

current-induced nucleation was observed by MOKE microscopy. Starting from a down 

saturated magnetic state, a current applied into the wires results in the nucleation of up 

domains (in black in the figure I.14, first raw). When an in-plane external field (Hext) is 

superimposed, the domain nucleation behaves asymmetrical depending on the relative 

directions of the current and Hext: for a given current direction, the nucleations disappear for 

one magnetic field direction and increases for the other. Inversing the current direction 

requires reversing also the external field direction in order to observe the same behavior. The 

same experiment was repeated in Pt/Co/Pt symmetric multilayers. In this case no asymmetric 

nucleation was observed pointing the necessity of having a SIA. 

Figure I.14.  Observation of the asymmetric domain nucleation experiment done on Pt/Co/AlOx 

wires [Miron 2010]. The MOKE microscopy images of the domain nucleations in an array of wires 

are shown, where the black color contrast represents the nucleated domains. For a constant current (I) 

direction, the nucleations can be increased or suppressed depending on the external field (Hext) 

direction. This is interpreted as evidence of the presence of the field-like torque (HFL) perpendicular to 

the current directions that either adds or subtracts to Hext. For an opposite current, the action of Hext on 

the domain nucleation is opposite. HFL produced by the current changes sign.  

This change in the domains nucleation was interpreted as an evidence of the existence 

of a magnetic field (HFL) in-plane and perpendicular to the current direction. Thus when Hext 

is applied the energy barrier for domains nucleation becomes smaller (higher) if it is anti-

parallel (parallel) to HFL resulting in an increase (a reduction) of the domains nucleations 

(figure I.15b).  
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The conduction electrons were claimed to feel a magnetic field originating from the 

spin-orbit coupling, perpendicular to the drift velocity, the current direction, called the 

Rashba field (HR). Hence the spins of the conduction electrons are submitted to both HR and 

the s-d exchange interaction and a torque is exerted on the magnetization. The effective field 

associated to this torque is called HFL. This result confirms the existence of HFL predicted by 

Manchon and Zhang [Manchon 2009] The quantitative study of these asymmetric nucleations 

showed that the amplitude of the HFL can be remarkably large (1T/10
8
 A/cm²). However, this 

value was overestimated due to the measurement principle and particularly the role of the 

thermal energy. Much lower values are reported for this system [Pi 2010]  [Garello 2013] 

Figure I.15 a) The spin of the conduction electrons are submitted to both the Rashba field (HR) and 

the s-d exchange interaction. A torque is then exerted on the localized moments resulting in an 

effective field (Hsd or HFL) in the plane of the sample and perpendicular to the current direction. b) The 

3-D contour represents the energy required for the magnetization reversal in presence (shown in 

orange color) and absence (shown in grey color) of Hsd. The graph shows the variation of the magnetic 

energy with respect to the polar angle (θ) for different Hsd/Hk ratios, where Hk is the anisotropy field. 

In the absence of Hsd, the graph is symmetric with respect to the angle θ=0 (black curve). When Hsd is 

introduced the energy becomes asymmetric with θ and the energy barrier for nucleating a domain is 

decreased (green curve). Eventually it disappears for Hsd larger than HK (red curve) [Miron 2010]  

Following this work, numerous experiments were reported confirming the presence of 

HFL in different asymmetric multilayers such as Ta/Pt/Co/AlOx [Pi 2010] ,Ta/CoFeB/MgO 

[Suzuki 2011] [Kim et al., 2012]  using different magnetic characterization techniques such 

as anomalous Hall effect Later K. Garello et al. proposed a general method to measure the 

SOTs based on the harmonic analysis of planar and anomalous Hall effects [Garello 2013] . 

Using this method, the presence HFL in different multilayer systems was confirmed. 

 

 

a) b) 
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 I.6.2.4.2. Damping like term  

In 2011, the second component of SOT: the damping-like torque (TDL) was observed in 

in-plane magnetic Pt/NiFe multilayers [Liu 2011]. Here the authors demonstrated that the 

spin hall effect in Pt can excite the magnetic precession in the adjacent ferromagnetic film 

(NiFe). This experiment was done using the ferromagnetic resonance (FMR) measurements. 

Later I. M. Miron et al. evidenced the same kind of torque components in Pt/Co/AlOx [Miron 

2011]. In their experiment, they demonstrated that due to the presence of this damping-like 

torque, a perpendicularly magnetized ferromagnetic dot can be switched under an in-plane 

current injection 

Figure I.16. a) Schematic diagram of the geometry used for the switching experiment: a Co/AlOx dot 

sitting on a Pt Hall cross. b) Scanning electron image of the sample with a schematic of the electric 

circuit used for the extraordinary Hall effect measurement. c) Hall resistance (that represents the Mz 

component) of the Co dot versus the external magnetic field amplitude (B) applied nearly in-plane (2° 

from the plane). The switching field (Bc) was around 0.3 T. d) Mz measured after the injection of 

positive (black) and negative (red) current pulses applied along with B, as a function of B amplitude 

e) Schematic of the direction of the switching field (Bsz) depending on the directions of the current (j) 

and field (B) for the case of Pt/Co/AlOx. When both j and B are in same direction (j>0, B>0 or j<0, 

B<0), Bsz is oriented downwards, while for j and B opposite to each other (j>0, B<0 or j<0, B>0) Bsz 

is upwards [Miron 2011].  

The experiment was performed on a 500x500 nm Co0.6AlOx dot sitting on a Pt3 Hall 

cross. Here an in-plane current (j) was injected in the presence of an in-plane magnetic field 

(B).  Mz was measured using the extraordinary Hall Effect (EHE)
 
[Gerber 2002] signal.  At 

a) 

b) 

c) 

d) 

e) 
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first Mz was first measured as a function of B applied nearly in-plane (tilted 2° from the 

plane). The coercive field (Bc) was found around 300 mT. The injection of positive (resp. 

negative) in-plane current pulses results in the switching of the magnetization from up to 

down (resp. down to up) for negative B and down to up (resp. up to down) for positive B in 

the entire field range delimited by the coercive field 

These experiments showed that a current injected in-plane creates a torque acting on 

the magnetization. This torque is equivalent to an effective field acting on the magnetization 

Bsz~ (z x j) x B~ (z x j) x M   since B determines the initial magnetization (M) direction 

(figure 1.16). Eventually, this torque switches the magnetization. As we already discussed 

above, two mechanisms were proposed to account for the spin accumulation at the origin of 

this torque: the the ISGE or Rashba effect here, arising at the heavy metal/ ferromagnet 

interface and the spin hall current produced in the bulk of the heavy metal. 

Concerning the first mechanism, an out of plane polarization had already been 

observed in presence of a longitudinal magnetic field in InGaAs [Kato 2004].  The Rashba 

field (BR ~ (z x j)) acting on the conduction electrons, produces a non-equilibrium spin 

accumulation (sR) along its direction. sR will precess around  B while sB created by B will 

precess around BR (figure 1.17). If both BR and B were “real” magnetic fields, the two 

precessions will cancel each other. However, BR is not a real magnetic field and depends on 

the electrons mobility. In the case of anisotropic scattering on impurities or non-parabolic 

energy band, spins up and spins down will experienced a different spin accumulation. 

Eventually, a perpendicular spin accumulation will build up [Engel 2007] [Miron 2011 Sup]. 

 

Figure 1.17. Schematic diagrams of a) Spin accumulation (SR) due to the Rashba field, (BR) b) The 

spin accumulation (SB) due to the field B. The green arrows shows the torque acting on SR and SB. c) 

The spin polarization due to B is the sum of majority (SB
+
) and minority components(SB

-
). The 

different torque acting on these two components produces a net uncompensated perpendicular torque 

[Miron 2011 Sup]. 

a) b) 
c) 
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 The second mechanism that can produce this torque is the spin hall effect (SHE).  A 

current is injected in heavy metals the spin orbit coupling induces a transverse spin current. If 

the translation symmetry is broken by the presence of an interface, a spin accumulation will 

be created at this interface. The direction of the spins is parallel to the interface and 

perpendicular to the current direction (figure 1.18a). Different mechanisms were identified to 

explain this phenomenon. On one hand spin dependent scattering on a nonmagnetic impurity 

can modify the incident wave vector by the Mott scattering mechanism, this is the “skew 

scattering” phenomenon [Smit 1958] or shift the wave function, the “side jump effect” 

[Nagaosa 2010] [Berger 1970] (figure 1.18 b&c) On the other hand, its origin can be intrinsic, 

due to the band structure [Karplus 1954] [Luttinger  1958] [Murakami 2003] [Murakami 2004]
 

[Sinova 2004] [Inoue  2004] [Kontani 2007 ] [Tanaka 2008]. The strength of the SHE is 

expressed by the parameter called the spin Hall angle SHE, the ratio between the amplitudes 

of the transverse spin current and longitudinal electric current. If a magnetic material is 

brought in contact, this spin accumulation will flow in this material. The absorption of the 

transverse part of this spin current creates this torque as in the STT mechanism [Ando 2008] 

[Liu 2011] and be absorbed. 

This particular term of the SOT that is rotating with the magnetization and that causes 

the switching is called the damping like torque (TDL) and the corresponding effective field 

will be written as HDL in the following.. HDL can be written as (HFL) x M. since the field-like 

component HFL is proportional (z x j): HDL is always perpendicular to HFL and to the 

magnetization as we already noticed above.  

 

Figure I.18. The schematic diagram of a) the formation of transverse spin accumulation in heavy 

metal b,c) The two mechanism that causes the spin hall effect: b, the skew scattering where the two 

spins are scattered due to the spin orbit interaction with an impurity. c, the side jump mechanism due 

to the spin dependent wave function modification. 
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Considerable theoretical and experimental work is dedicated to separating the Rashba 

and SHE contributionsto the HFL [Wang 2012]  [Kim  2012]  [Freimuth  2013] [Haney  2013] 

[Ortiz 2013]. However, since both effects have the same spin-orbit coupling origin, changing 

any material parameter can cause changes in both effects. Thus the experimental separation of 

these two contributions is difficult and the exact contribution of the two effects still under 

debate.  

I.6.2.5. Current induced DW motion in PtCoAlOx – Limitations of the STT model  

I.6.2.5.1. Large velocities without any Walker breakdown signature 

In 2011, I. M. Miron et al. reported very fast domain wall motion in Pt/Co/AlOx 

nanowires [Miron 2011]. In this experiment, a Pt/Co/AlOx trilayers was patterned into 

twenty 500nm wide, 20m long nanowires. CIDW motion was studied using wide field Kerr 

microscopy. As shown in figure I.19, high domain wall velocities up to around 400 m/s were 

reported for current densities of some 10
12

 A/m
2
. This domain wall velocity is much larger 

than the expected DW velocity in the oscillatory regime, even at the limit of full spin 

polarization (P=1). Moreover, the equivalence between the action of the current and the field 

that can be extracted from fast current and field induced DW motion (figure I.19.b) is the 

same as the one obtained in the quasi-static case [Miron 2009].Thus the domain wall motion 

observed here seems to correspond to the steady state motion and involves a large 𝛽 value 

since the velocity is proportional to u/  

Figure I.19. a) Schematic diagram of the action of the field-like term of the SOT, named HR for 

Rashba field in this publication, on the magnetization inside the domain wall. HR acting perpendicular 

to the current stabilizes the DW structure against the DW structure transformation that causes the 

oscillatory motion. b) DW velocity with respect to the current density. A high current induced domain 

a) b) 



32 

 

wall velocity up to 400m/s is reported here. The DW velocity vs the applied magnetic field is 

represented in the inset [Miron 2011]. 

However, the Walker breakdown current is inversely proportional to  (~[1 − 𝛽/

𝛼)]−1) [Mougin 2007]. A large 𝛽 shifts the Walker breakdown to lower currents whereas no 

Walker instability is observed experimentally. The Rashba field (HR) was proposed in this 

work to stabilize the DW structure. It acts along the magnetization in a Bloch DW structure 

and stabilizes its chirality by preventing the magnetization to precess (figure I.19.a). Thus, the 

high mobility regime is maintained up to large current densities 

I.6.2.5.2. DW motion against the electron flow 

Besides this large velocity, I. M. Miron et al. reported that the direction of the domain 

wall motion is against the electron flow (or in the direction of the current flow), opposite to 

what is expected from standard STT model. Two possible scenarios were proposed in the 

framework of this model. 1) Both the adiabatic and the non-adiabatic torques are negative. 

This could happen with a negative spin current polarization [Šipr  2008] [Lee 2010] 2) The 

non-adiabatic torque is negative while the adiabatic torque is positive. A negative β value 

could account for this situation and cause a DW motion in the direction of the current flow 

only below the Walker breakdown. If the adiabatic torque would be negative and the non-

adiabatic torque positive, the DW motion will be opposite to the electron flow direction only 

below the Walker breakdown. Even if negative  values have been predicted [Garate 2009] 

the explanation has evolved since this publication, taking into account now the role of the 

damping like term of the SOT.  

In 2012 A. Thiaville et al. [Thiaville 2012] proposed a new mechanism combining the 

damping-like torque of the SOT and the antisymmetric exchange originating from the spin-

orbit coupling called the Dzyaloshinskii-Moriya interaction (DMI). This mechanism explains 

the direction of the DW motion as well as the very large velocities without any Walker 

breakdown signature. This new mechanism is explained in details in the following section.  

I.7. Dzyaloshinskii Moriya interaction 

  The Dzyaloshinskii Moriya interaction (DMI) is an antisymmetric exchange 

interaction first predicted by [Dzyaloshinskii]. It has been first proposed in bulk materials 

lacking space inversion symmetry [Moriya 1960] and later evidenced at the interface between 

the magnetic thin films and adjacent layer with high spin orbit coupling [Fert]. In the latter 

case, DMI originates 3 site indirect exchange interaction between two neighboring atomic 

spins mediated by an atom that has large spin-orbit coupling, located in an adjacent layer. A 

schematic diagram of this interaction is shown in the figure I.20.a [Fert 2013] , where the 
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interaction between the two neighboring spins S1 and S2 is described by the DMI vector (D12) 

perpendicular to (S1S2). The DMI interaction can be written as: HDMI = D12. (S1×S2).  

Figure I.20. a) Schematic diagram of the Dzyaloshinskii Moriya interaction at the Ferromagnetic/ 

Heavy metal interface. The spin S1 and S2 are coupled through a heavy metal atom. b) The schematic 

diagram of the two virtually travelling electrons between two neighbouring spins S1 and S2. c) In the 

presence of a non-zero crystal fieI(E), the spins of the travelling electrons feels perpendicular 

magnetic field in its own frame of reference and they precess. This cause the rotation of the atomic 

spins S1 and S2. 

The DMI can induce spin textures with specific chirality of rotation. Figure I.20 b&c 

shows the formation of such rotation between two neighboring spins S1 and S2. Consider that 

two electrons virtually travelling between the two spins (Figure I.20 b). In the presence of a 

heavy metal atom that provides a non-compensated crystal Ild (E), the moving electron feels 

a magnetic field perpendicular to it. Here, the two virtual electrons moving opposite to each 

other feel opposite magnetic field (H12 and H21). Therefore, they precess opposite to each 

other around the respective magnetic fields. Then due to the exchange interaction, the spins 

S1 and S2 get tilted to the electron spin direction (figure I.20).  

 In magnetic multilayer system with large spin orbit coupling, the DMI can 

induce chiral DW structure. This is described in the next section. 

I.7.1. Chiral DW structures due to DMI 

The magnetization of the two adjacent DWs can have same or different chirality of 

rotation. If the sense of the magnetization rotations (clockwise or anticlockwise) of the two 

adjacent DWs (up/down and down/up) are the same, they are called homochiral DWs (figure 

1.21.a). In a magnetic system, both chiralities are equally probable unless there is an 

additional mechanism that fixes the chirality of the magnetization rotations.  
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Figure I.21. The schematic diagrams of the rotations of the magnetizations inside the domain wall 

when a) the chiralities of rotation are same and b) they are different. In the case of the homochiral 

domain walls, magnetizations of both up/down and down/up domain walls rotate clockwise; where for 

the second case the rotations are opposite. 

In magnetic thin films with perpendicular anisotropy, the large magnetocrystalline 

anisotropy energy favored the Bloch DW structure: DW is thin so that the demagnetizing 

energy of the DW is less if the magnetization inside the DW is oriented along the DW (Bloch 

structure) than perpendicular to it (Néel structure). The DMI favors a tilt between two 

adjacent moments. For amplitudes small enough to keep the ferromagnetic order, it affects 

mainly the “weak” points, the DW. In fact, if the DMI has to compete with the 

magnetocrystalline anisotropy to destabilize the magnetic order, in the DW it competes with 

the demagnetizing energy, which is much lower. The DMI can then induce a chiral Néel DW 

structure: two consecutive DWs will have their core magnetization opposed to each other 

[Thiaville 2012].The presence of a chiral Néel wall is important in the DW dynamics because 

the action of the SOT on the DWs largely depends on its structure. 

I.7.2. SOT driven current induced DW motion in presence of DMI  

The study of current assisted DW depinning by P.P.J. Haazen et al. [Haazen 2013] 

showed that the damping like (DL) component of SOT is efficient in moving the DW motion 

if this DW has a Néel component. In this study, an in-plane field was used to create such Néel 

component. The action of the DL torque depends on the DW structure. As shown in 

figureI.22.a and b, if the DW has a Bloch structure, the magnetization in the DW is aligned 

with the HFL and the DL torque is zero. In the case of a Néel DW structure, since the 

magnetization is perpendicular to HFL, the DL torque can be very efficient is moving a DW 

since HDL is maximal. However, in the case where two consecutive DWs (up/down and 

down/up) are aligned along the same direction as in the experiment of Haazen et al., [Haazen 

2013]  they feel the same effective field HDL and the two DWs move opposite to each other 

Clockwise rotation Clockwise rotation 

Clockwise rotation Anti-clockwise rotation 

a) 

b) 
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(figure I.22.c). This points the important role of the DMI in the mechanism proposed by 

Thiaville et al. [Thiaville 2012]. Since this interaction promotes a chiral DW, the in-plane 

magnetizations inside two consecutive DWs are opposite to each other. They feel opposite 

effective magnetic field HDL and the two DWs move in the same direction. To summarize, in 

this mechanism, the DMI provides the proper conditions for the DL of the SOT to be efficient 

for current induced DW motion. 

 

Figure I.22: Schematic diagram of the action of SOT on different domain wall structures. The 

magnetization at the center of the domain wall is represented by a grey arrow. The direction of DW 

motion is represented by the red arrows. a, b) TDL acting on  non-chiral and chiral Bloch walls. In both 

cases, the magnetization is aligned with HFL and HDL (M X HFL)=0. No DW motion is observed. c) 

TDL acting on a non-chiral Néel DW. The magnetization inside the down/up and the up/down DWs are 

directed along the same direction. Thus HDL is the same for both DWs, for example upwards, and the up 

magnetic domain expands. Up/down and down/up DWs are then moving in directions (shown by the 

red arrows) opposite to each other. d) In the case of a chiral Néel DW, HDL acting on down/up DW is 

downwards resulting in the expansion of the down magnetic domain, whereas HDL acting on up/down 

DW is upwards resulting in the expansion of the up magnetic domain. Thus the two adjacent domain 

walls move along the same directions. 
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I.7.3. The direction of DW motion 

The signs of the DMI define the chirality of the DW: right handed Néel DW for 

DMI>0 (the magnetization inside the DW rotates clockwise) or left handed chiral Néel wall 

for DMI<0 (the magnetization inside the DW rotates anticlockwise). This sign is defined by 

the material properties and the multilayer composition. Similarly, depending on the 

multilayer system, the DL torque can be either positive or negative. These two parameters 

give four possible combinations; two of them move the DW along the current directions 

while the other two move the DW against the current directions. As shown in figure I.23, for 

a left handed Néel wall (DMI<0) and a DL torque acting along the positive direction as well 

as for a right handed Néel wall (DMI>0) and a DL torque acting along the negative direction, 

the DWs move along the current direction. The other two combinations result in the DW 

motion against the direction of the current. 

Figure I.23: Schematic diagram showing the direction of the effective field acting on the domain wall 

for different DMI and damping like torque (TDL) signs. This effective field defines the direction of the 

DW motion. For DMI< 0, the DW is a left handed Néel wall and the magnetization inside the DW 

(shown by grey arrows) is directed towards the up magnetic domain. For DMI>0, the magnetization is 

directed towards the down magnetic domain. a) DMI<0 and TDL is positive (along the  +Y direction), 

b) DMI>0 and TDLis positive, c) DMI<0 and TDL negative d) DMI>0 and TDL negative For cases c) 

and d), the DWs move in the direction of the current (shown by the red arrows) while for cases b) and 

c), the DW motion is opposite to the current. 
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To summarize, according to the DMI+DL torque model, depending on the multilayer 

system, the current can move the DW along its direction or against it. Then, the puzzling 

issue raised by the observation of DW moving along the courant direction in certain 

multilayers such as Pt/Co/AlOx, can be naturally solved within the framework of this model.  

1.7.4. Experimental proof of the existence of DMI induced chiral Néel wall 

   The first experimental evidences of the presence of the DMIin multilayers systems and 

of its role in the DW motion were indirect. Ryu et al. [Ryu 2013] and Emori et al. [Emori 

2013] measured the DW current induced domain wall velocity in the presence of an in plane 

field respectively on Co/Ni multilayers and on Pt/CoFe/MgO and Ta/CoFe/MgO. The in-

plane longitudinal field (Hx) modifies the DW velocity. As show in figure I.24, depending 

whether Hx is parallel or antiparallel to the current direction, the up/down (resp. down/up) 

DW velocity will increase (resp. decrease) or vice versa. This indicates that the 

magnetizations inside two consecutive DWs are opposite to each other. Moreover, at a certain 

applied field, the domain wall velocity becomes zero, for example, in figure I.24, the up/down 

DW at a negative in-plane field and the down/up DW at positive in-plane field. This field is 

considered as the field that reverses the DW from a Néel structure to a Bloch structure. It is 

the field required to overcome the DMI field inside the domain wall. 

 

Figure 1.24: a) Domain wall velocity versus an in-plane field (Hx) applied along the current (the x 

direction) for a positive current (triangles) and a negative current (circles) in Co/Ni multilayer system 

by Ryu et al
 
[Ryu 2013] The velocity of up/down and down/up domain walls is shown in blue and 

red respectively. The up/down DW velocity becomes zero at around Hx = -2kOe and the down/up DW 

velocity at around Hx = +2kOe. This field is considered as the field that transforms the Neel wall into a 

Bloch wall b) The same kind of measurements performed by in Pt/CoFeB/MgO [Emori 2013] 

a) b) 
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After these first results, numerous studies were focused in obtaining direct evidence of 

the presence of a Néel wall as well as quantitative measurements of the DMI. Direct imaging 

of a chiral Néel DW was reported using different microscopy techniques. G.Chen et al. [Chen 

2013] first observed chiral Néel DWs in Co/Ni based multilayers using SPLEEM. However 

this technique is limited to model samples such as bare magnetic surface obtained typically 

by molecular beam epitaxy. The debate remained then open for “standard” samples obtained 

by sputtering such as the trilayers with SIA. J. P. Tetienne et al., [Tetienne 2014] using a 

scanning nanomagnetometry based on nitrogen-vacancy defect in a diamond tip, evidenced a 

chiral Néel DW in Pt/Co/AlOx and a Bloch DW in Ta/CoFeB/MgO. 

 

Figure I.25: a) The DW imaging in Fe/Ni/Cu by G.Chen et al using SPLEEM [Chen 2013]. The 

magnetization components along X,Y&Z direction (Mx, My, Mz) are shown on the top. The mapping of 

the DW structure is shown below where the blue and yellow colors show the direction of the in-plane 

magnetization inside the DW. For Cu/Ni/Fe and Cu/Fe/Ni they observed opposite chirality. b) The 

measurement done by J. P. Tetienne et al in Pt/Co/AlOx.
 [Tetienne 2014]AFM and scanning 

nanomagnetometry images are shown on the top. In their technique, the Zeeman shift due to the stray 

field from the DW was measured. Below, the graph containing the comparison of the experimentally 

measured Zeeman shift with the theoretical model is shown. The experimental results fit with 

theoretical curve for Left chiral Néel wall structure.  

Even though all these experiments partially indicate the presence of the DMI in DW, a 

universal direct method for the accurate measurement of the DMI is still to be established.   

Very recently, a new way to measure the DMI field (HDMI) is proposed using the asymmetric 

field induced bubble domain expansion method [Je 2013] [Hrabec 2014]. During my Ph.D, I 

b) a) 
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have observed incompatibilities of this method. The details of this method and further 

discussion on the influence on the influence of the DMI in DW dynamic will be done in 

chapter III. 

I.8. Conclusion 

The goal of this chapter was to introduce the basic concept behind the magnetic DWs 

and their dynamics. 

At first, I explained the different magnetic energies and how they lead to the 

formation of magnetic domains and DWs. Then the different magnetic DW structures were 

discussed.  

After this, I have discussed about the DW motion. DW in a magnetic structure can be 

moved by two ways (1) with a magnetic field (2) by applying spin polarized current. At first I 

explained about the basic physics behind the field induced DW dynamics based on the LLG 

equation. Then two current induced torques mechanisms, STT and SOT, were discussed. 

Since our experimental studies were mainly concentrated in magnetic systems with large spin 

orbit interaction, a thorough understanding of the SOT is required to understand our results. 

Therefore in this chapter, special importance was given to the discussions on the various 

aspects behind the SOT mechanism. 

Finally, the importance of the DMI in the DW dynamics was discussed. Here, the 

various experimental studies proving the existence of the DMI were discussed. 

The first experimental evidence of the existence of the SOT in ferromagnetic 

multilayers systems was shown 5 years ago. Within the short span of time, the SOT has 

emerged as one of the hot topics in the spintronics research community. As discussed in this 

chapter, the various studies were performed to improve the fundamental understanding 

behind SOT. As well as, the new magnetic device concepts were introduced. In my Ph.D, I 

continued these two research trends. I have performed two different studies: The first studies 

introduce a new device concept while the second studies bring lights into the physics behind 

the DW dynamics. I have performed experiments related to the both field-induced and current 

induced DW motion. Based on my experiments on the field induced DW dynamics, I propose 

a new phenomenon called chiral damping mechanism.  Parallel to this work, I introduce a 

new device concept based on current induced DW motion and it is called magnetic origami. 

All this work will be described in the following chapters. 
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During my Ph.D, I have studied the DW motion in two multilayer systems: Pt/Co/Pt 

and Pt/Co/AlOx. The field induced DW motion was studied in non-patterned thin films. The 

current induced DW motion was studied in nanostructures of different geometries: nanowires, 

structures with asymmetric shapes, etc. The samples were deposited by sputtering, and 

patterned using standard nanofabrication tools: e beam lithography, deposition, etching, 

etcThe domain wall displacements were measured using MOKE microscopy imaging 

technique. The details of all these techniques are described in this chapter. 

II.1. Imaging of the DW motion using Magneto-optic Kerr effect 

(MOKE) microscopy 

 In my experiments, the DW motion was measured using the optical imaging technique 

called the wide field magneto-optic Kerr effect (MOKE) microscopy. Since the resolution of 

the microscope is ~300nm, this technique is suitable for studying DW displacements in 

nanowires down to 500nm wide as well as in thin films. 

Figure II.1. a) Schematics of the optical diagram of the MOKE microscope. The light from the source 

gets linearly polarized and is then reflected by the semi-reflecting blade to enter the sample through 

the objective. The light reflected from the sample passes through the analyzer and reaches the camera. 

b) Ray diagrams  Polar, transverse and longitudinal Kerr effects are defined according to the direction 

of the magnetization with respect to the incidence plane of the light and to the plane of the sample. 
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The Kerr effect arises due to the interaction between the light and a magnetic material. 

The reflection of a polarized optical wave from a magnetic material results in a change in both 

polarization state and intensity of the incident wave. Detecting these changes enables an 

indirect measurement of the magnetization of the material [Schäfer 2007]  

Depending on the direction of the magnetization with respect to the incidence plane of 

the light and the reflecting sample surface, three different Kerr effects are defined: polar, 

linear and transversal Kerr effects (figure II.1.b). In my experiments, I used the polar Kerr 

effect (PMOKE) set up. In this set up, the normal incidence of the light was used where the 

magnetization is perpendicular to the reflection surface and parallel to the incidence plane. 

The change of the polarization after the reflection contains information about the out of plane 

magnetization state of the material. In the longitudinal MOKE case, magnetization is parallel 

to both the plane of the incidence and the reflection surface (figure II.1.b). Here the incident 

light is at an angle with respect to the reflection surface (not perpendicular as the polar 

MOKE). The linearly polarized incident light becomes elliptically polarized, with the change 

in the polarization is directly proportional to the magnetization component that is parallel to 

the plane of the incidence and the reflecting surface. In the case transverse case, the 

magnetization is perpendicular to the plane of the light incidence. Here unlike the linear 

MOKE case, instead of measuring the polarization, the intensity of the reflected light is 

measured. 

Figure II.2. Schematic diagrams of the MOKE images. Here the white and black color contrasts 

correspond to the down and the up magnetic domains respectively. a) The initial domain structure. 

The DW sits at the boundary of the two areas of different contrasts. b) Normal imaging of the domain 

structure after applying a field (Hext) in the down direction. The image shows only the final boundary 

of the domain where the initial position of the DW can’t be retrieved. c) The differential image, the 

subtraction of the image represented in a) from the one represented in b), shows the difference 

between the final (figure b) and the initial (figure a) domain structure. From this image, the initial and 

final positions of the DW can be easily detected and the DW displacements can be accurately 

measured. 
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A schematic diagram of the optical set up used in the PMOKE measurement is shown in 

figure II.1.a. A light beam passes through a polarizer and becomes linearly polarized. It is 

reflected by the surface of the magnetic material and passes then through an analyzer to finally 

reach the photodetector. At normal incidence, the incidence plane is parallel to the out-of-plane 

magnetization of the material. The interaction with the magnetization changes the linear 

polarization to an elliptical polarization associated with a rotation of the elliptical axis away 

from the initial direction of the polarized light. This angle of rotation and the ellipticity of the 

reflected wave are proportional to the magnetization. The rotation of the polarized light changes 

sign when the magnetization direction gets reversed. To image a sample, one can either scan a 

laser beam over the sample or use a wide field technique typically with a standard microscope. 

A camera connected to the microscope records the magneto-optical images. This is the typical 

set-up that I used during my PhD: a MOKE microscope. Since an up domain will rotate the 

polarization in one direction while a down domain will rotate it in the other direction, two 

different intensity of the light for each domain will result after the passage of the beam through 

the analyzer. Magnetic domains are then imaged by different contrasts (generally dark and 

bright contrasts).  

The contrast of the output signal, that defines the intensity of the output signal varies 

from sample to sample depending on the magnetization, reflectivity etc.  It also depends on 

the external parameters like the incident light intensity, the wavelength of the light, the 

alignment of the polarizer and analyzer etc. By tuning these external parameters, the contrast 

of the magnetic images can be improved. The observation of the sample surface from an 

overview at the centimeter scale down to a detailed imaging at the micrometer size is easily 

done changing the microscope objectives. 

I used the differential imaging mode of the microscope to measure accurately the DW 

displacements. A schematic diagram describing the difference between normal and 

differential imaging modes is shown in figure II.2. Consider initially a small magnetic domain 

and an applied magnetic field resulting in the expansion of this domain. Using the normal 

imaging mode, the final image does not contain any information about the initial position of 

the DW (figure II.2.b). Therefore, it is difficult to measure the DW displacements precisely. 

The differential image shows the difference between the final and initial domains. Here, the 

DW displacement can be accurately measured (figure II.2.c). 

 Besides allowing imaging the magnetic state of a sample, the MOKE set-up can be used 

to measure the magnetic hysteresis loops. The variations with respect to the applied field of 

the intensity corresponding to the variations of the light polarization are plotted. This 

technique is a non-contact method and measurements can be much faster compared to other 

magnetic hysteresis loop measurement techniques such as Vibrating-Sample Magnetometer 

(VSM). One disadvantage of this method is that the magnetization is indirectly measured by 
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the variation of the optical wave properties. Therefore, extracting the quantitative information 

of the magnetization value using this method is difficult.  

II.2. Sample fabrication 

 The sample fabrication includes the deposition of the multilayer using the sputtering 

technique, the patterning using optical or e-beam lithography, deposition, etching, etc. To 

fabricate the different sample structures, the different lithography procedures were followed. 

All the different steps are described in this section. 

II.2.1. Deposition of the multilayers 

 Pt/Co/Pt and Pt/Co/AlOx systems have been studied for many years at SPINTEC. 

Initially they were studied for optimizing the perpendicular magnetic tunnel junctions. They 

have been used then for DW motion studies as described in chapter I. They are deposited on 

Si/SiO2 by sputtering.In the case of Pt/Co/AlOx layer, the upper layer is obtained by 

depositing the Al layer that is then oxidized using a low power RF oxygen plasma [Manchon 

2008] [Monso 2002]. 

 Extraordinary Hall effect measurements are used to measure the magnetic hysteresis 

loops of the samples. Two examples of hysteresis loops for a Pt (3nm) /Co (0.6nm) /AlOx and a Pt 

(2nm) /Co(0.6nm) / Pt(2nm) are shown in figure II.3. The square shapes of the hysteresis loops 

indicate the good out-of-plane magnetic anisotropy with 100% remanence. The coercivity and 

the saturation magnetization values are different for the different samples.  

 

 

 

 

 

 

 

Figure II.3. Examples of hysteresis loops measured using ordinary Hall effect measurements for a) Pt 

(3nm) /Co (0.6nm) /AlOx and b) Pt (2nm) /Co(0.6nm) / Pt(2nm) multilayers. The square loop indicates an out-of-

plane magnetic anisotropic. 
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II.2.2. Fabrication of the nanowires 

 In chapter III, I will discuss the current induced DW motion in Pt/Co/Pt microwires. 

Current induced DW motion requires large current densities of the order of 10
12

 Am
-2

. 

Therefore, experiments have to be done in confined geometries as micro- or nanowires. On 

the other hand, the smallest possible dimensions of the structures are limited by the resolution 

of the MOKE microscope. Since the optical resolution of the microscope is around 300nm, 

the widths of the structures have been chosen equal to or larger than this value. In my 

experiments on Pt/Co/Pt, I used 10µm long, 1µm wide wires. 

 A schematic diagram of the fabrication process of the microwires is shown in the figure 

II.4. The Pt/Co/Pt trilayer is first sputter deposited. Then a Ti mask in the shape of the 

microwires was fabricated on top of this thin film. The fabrication procedure includes the 

spin-coating of a positive photoresist and its exposure by ebeam lithography followed by its 

development. A thin Ti layer is deposited by evaporation followed by a lift off process. Ion 

beam etching is then used to transfer the shape of the Ti mask into the Pt/Co/Pt trilayer. The 

etching of the Ti mask, Pt and Co were monitored by in-situ secondary ion mass spectroscopy 

(SIMS). Whenever the required etching was completed, it was stopped manually. Finally, the 

contact pads were fabricated using optical lithography followed by the evaporation of an Au 

layer and a lift-off process.  

 

Figure II.4. Schematic diagrams of the different steps used to fabricate the wires a)The multilayer of 

the Pt/Co/Pt sample is sputter-deposited. b) After the e-beam lithography and development, a Ti mask 

in the shape of the nanowire is formed above the multilayer. c) After the ion beam etching, the 

nanowires of Pt/Co/Pt are formed. d) Optical lithography was then used to fabricate the gold contact 

pads. 

It is not necessary that the Ti mask above the Pt/Co/Pt wires is etched completely as 

long as it is not too thick. In my experiments, around 5nm of Ti remained on the Pt/Co/Pt 

wires. A too thick Ti layer would potentially deviate a part of the current. However, since the 

electric conductivity of the Ti is much lower than that of the Pt, I did not observe such 

situation. However, in some cases, I have observed that a thick Ti layer may affect the 
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contrast of the magnetic imaging using MOKE microscope. In this case, the etching of the Ti 

was continued until a good magnetic contrast was obtained. 

   II.2.3. Fabrication process of nano-geometries  

In chapter IV, I will describe the topic ‘magnetic origami’ where the DW motion and 

the switching behaviors were studied in different geometries from a Pt/Co/AlOx trilayer. 

There are two differences compared to the case described previously: the geometries used 

here are different from the typical nanowires generally used for current induced DW motion 

experiments; whereas in this last case the whole nanowire is constituted of Pt/Co/AlOx, in the 

magnetic origami case, the shapes of the Co and AlOx are different from that the Pt (figure 

II.5.a). The fabrication process includes different levels of lithography, deposition and 

etching.  

Figure II.5. a) Schematic diagram of the top view of the required sample geometry. It consists in 

Co/AlOx nanostructure sitting on top of a Pt rectangular pad. b, c, d, e) Schematic diagrams of the 

different structures after each etching step b) The structure after the fabrication of the masks on to of 

the Pt/Co/AlOx layer. Mask 1 has a rectangular shape and mask 2 has the shape of the required 

geometry. c) The structure after the first chemical etching of Co and AlOx. Here the layers under the 

masks were protected from etching. d) Ion beam etching removes the Pt and reduces the masks 

thickness. e) The final structure obtained after a last chemical etching step. 

Pt(3nm)/Co(0.6nm)/AlOx trilayer was first sputter-deposited. Two levels of masks were 

then defined on top of this trilayer. Their fabrication involved ebeam lithography, evaporation 

and lift-off. The first mask was fabricated from Ti and Au in the form of a rectangle. On top 

of this, the second mask of Ti was patterned in the form of the required shape. Then three 

steps of etching were done. A schematic diagram of the different structures obtained after 

each etching step is shown in figure II.5. At first, using selective chemical etching, both AlOx 

and Co were removed while the rectangular part underneath the masks was protected (figure 

II.5.c). Secondly ion beam etching was used to remove the Pt as well as to reduce the 
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thickness of the masks until only a thin layer of Ti in the form of the required geometry is left 

on the top (figure II.5.d). Finally, a last selective chemical etching was used to remove all the 

Co and AlOx except the part below the thin Ti mask. 

II.3. The Field Induced domain wall motion set up 

 I studied field induced DW motion using two combinations of magnetic fields: 1) under 

the application of an out-of-plane field and 2) under the combined action of an out-of-plane 

magnetic field and an in-plane field. The description of the corresponding experimental set-up 

is given in this section.  

II.3.1. Out of plane field induced domain wall motion 

Two electromagnetic coils were used in order to apply the out of plane magnetic field: 

for small field experiments, a macroscopic copper solenoid coil was used whereas a micro-

coil was used for high field experiments.   

Our normal macroscopic solenoid coil can generate small magnetic fields up to 30 

mT.  A Kepco (model BOP 100V/4A) was used to apply the voltage to the coil. The time 

duration as well as the value of the input voltage were controlled via a home-built lab view 

program. The field was applied continuously or with pulses (pulses down to 1 ms long can be 

applied). The unpatterned sample was fixed on a flat sample holder located above the 

electromagnetic coil. The complete system is then placed under the objective of the MOKE 

microscope in such a way that the sample stays above the center of the coil. The magnetic 

field is non-uniform since the field lines diverge from the center of the coil to its edges (figure 

II.6.a). Normally this does not affect our experiments since the sample area observed with the 

microscope is very small (few micrometers) compared to the size of the coil (few 

centimeters). The spatial variations of the field can be considered as negligible.  

For the high field measurements, micro-coils designed by Marlio Bonfim [Bonfim 

2001]  were used. As shown in the figure II.6.b&c, the coils are made of copper electro-

deposited on a Si/SiO2 substrate. The copper layer was etched in the shape of a hole at the 

center surrounded by lines (shown by the white part in the figure II.6.b). In this geometry 

when a voltage is applied to the coil, the current lines are forced to follow a circular path 

around the central hole. This creates a perpendicular magnetic field. In my experiments, the 

current up to 60A can be injected, resulting in a magnetic field up to 400mT in the sample 

with pulse from 30ns to a few hundreds of ns long. 

The procedure imaging of the DW motion is the following. The sample is cleaved into 

a 2x2 mm size piece that is pasted on the coil such that the upper surface of the sample is 

faced against the copper surface of the coil. In order to insulate electrically the sample from 
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the copper surface, a 100nm PMMA insulating layer was initially deposited on the copper 

surface of the coil [Bonfim 2001]. The system micro-coil/sample is then placed under the 

MOKE microscope and the imaging is done through the central hole from the back-side of the 

micro-coil (figure II.6.c). The field distribution inside the micro coil is not homogenous. The 

field amplitude increases from the center to the edges. For quantitative measurements of the 

DW displacements, such inhomogeneities were taken into account. The measurements were 

always done on the domain spanning the same spot on the magnetic thin films. Therefore, the 

errors due to the inhomogeneities were same for every measurement. Such errors were then 

subtracted to get the accurate value. 

 

Figure II.6. Schematics of the out-of-plane magnetic coil used for the experiments. a) The normal 

macroscopic solenoid coil with copper windings. b) The front side of the micro-coil fabricated from 

copper. The white part shows the insulating part. During the imaging, the face of the sample is glued 

to this surface.  c) The back side of the micro-coil. This side generally faces the objective of the 

microscope and the imaging is done through the hole at the center[Bonfim 2001]   

To study the domain wall motion, an initial magnetic domain nucleation is required. 

The field required for the nucleation is relatively larger than that for the DW propagation. For 

better experimental conditions, a single domain nucleation is preferred because if several 

domains are nucleated, the DWs propagating from the different nucleated domains can 

overlap. This may limit the accuracy of the single DW displacement measurement. In an ideal 

sample, the anisotropy is uniform over the whole sample and so is the nucleation field. When 

this nucleation field is applied, many domains are nucleated. However I studied sputtered thin 

films that contain localized defects where the anisotropy is lower. At these sites, the 

nucleation fields are smaller and the application of a smaller field results in nucleations that 

can be controlled. In the case where several domains are nucleated because of the presence of 

several defects in the observed area, the sizes of these nucleated domains are generally 

different and the size of the smaller domains can be reduced by applying a reversed 

a) b) c) 
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propagation field, until a single magnetic domain is left on the sample., The DW propagation 

in this domain is then studied.  

After the images acquisition, domain wall displacements are measured using the 

ImageJ software. The velocity is obtained by dividing the displacement by the magnetic field 

pulse duration. 

II.3.2. DW motion in presence of an in-plane magnetic field 

 In chapter III, I will present my studies on the out-of-plane field driven domain wall 

motion in the presence of an in-plane field. In order to apply the in-plane field, the sample 

mounted on the out-of-plane field coil is placed between the poles of an in-plane electro-

magnet. The out of plane field and the in-plane field can be applied together or separately. For 

both cases, a continuous DC field as well as field pulses (pulse duration ≥ 1 ms) can be 

applied.  

 

 

 

 

Figure II.7. Schematic diagrams of the arrangements of the in-plane field (Hx) coil on a supporting 

plate.  a) without any tilt. Here the Hx does not give any out of plane field (along Z direction). b) If 

there is a tilt, then the opposite inn-plane fields (±Hx ) give the opposite out of plane (±Hz) fields. 

 The in-plane field coil was placed on a supporting plate whose height and tilt can be 

adjusted. Any tilt of the in-plane field coil may contribute to the out-of-plane field felt by the 

sample and can influence the domain wall motion. Such sources of errors were removed by 

adjusting the tilt of the supporting plate as follows: The out of plane field driven DW 

displacements under the presence of a positive and then a negative in-plane field were 

studied. The opposite in-plane fields give opposite out of plane field components (figure 

II.7.B) which make the DW displacement different for both cases. The tilt of the supporting 

plate was adjusted until the DW displacements for both cases become equal. 

 The in-plane field was made of copper wire wound on an iron slab. Magnetic fields up 

to 350mT can be provided. 

 

+H
x
 

-H
x
 

Y 

Z 

X 

a) b) 



51 

 

II.4. Current Induced DW motion set-up 

Figure II.8 shows the schematic diagram of the experimental set-up used for the 

current induced DW motion measurements. The sample was fixed on the sample holder that 

presents two copper contact pads, an input and an output. The input is connected to an 

ultrafast voltage pulse generator and the output to an oscilloscope. These copper contact pads 

are connected to the sample using micro-bonding. When an input voltage is applied, the 

current first passes through the sample and then through the 50Ω impedance of the 

oscilloscope. The current is obtained from the voltage measured at the oscilloscope. 

Four parameters can be tuned on the ultrafast voltage source according to the 

experimental requirements: the voltage amplitude, the pulse duration, the number of pulses 

and the frequency of the pulses.  

The maximum current that can be injected through the nanostructures, depends on two 

factors: the maximum voltage that can be generated by of voltage sources and the resistance 

of the sample. For applying large currents, either voltage sources with larger maximum 

voltage can be used or the sample resistance can be reduced. According to the experimental 

requirements (they will be discussed in chapter III and chapter IV), I used different voltage 

sources with different maximum voltage. In order to reduce the sample resistance, gold 

contact pads were defined as explained in section II.2.2. 

 

Figure II.8. Schematic diagram of the current induced DW motion measurement set-up. The sample is 

fixed on the sample holder. Using micro-bonding, it is electrically connected to the two copper 

electrodes (shown in light blue color). One of the copper electrodes is connected to the current source 

(red box) and the other one to the oscilloscope (blue box). The input impedance of the oscilloscope is 

50Ω and the current amplitude is obtained from the voltage measured with the oscilloscope. 
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 The current densities needed for DW motion are high, especially for fast DW motion. 

Applying the corresponding voltage during a relatively long time results in large over-heating 

that may destroy the nanostructures. ,Short pulses are required. In my different experiments I 

generally used pulses from 0.5ns to 10ns. If the domain wall displacement induced by a single 

short pulse was not large enough to be observed with the microscope, a series of several 

identical pulses was applied. To adjust the current induced heat dissipation in the sample I 

varied the interval between two consecutive pulses, the frequency of the pulses generation.  

Knowing the shape of the pulse is important to determine the intrinsic domain wall 

velocity. The very short pulses that I used in my experiment, can present a large rising and 

fall times. Using the pulse duration to calculate the velocity is a source of errors, since the 

domain wall displacement does not occur during most of these rising and fall times. In order 

to remove this error in the velocity extraction, the following procedure was used to determine 

the intrinsic domain wall velocity. Domain wall displacements were measured for three 

different pulse durations. Then the graph of domain wall displacement v/s pulse duration is 

plotted whose slope gives the accurate domain wall velocity (an example is shown in figure 

II.9). Using this procedure, the error due to the rising and fall times are removed and the 

intrinsic velocity of the domain wall is accurately calculated since the rising and fall times are 

identical for the three pulses are same and only the differences between the three domain wall 

displacements are considered. 

 

 

 

 

 

 

 

Figure II.9. Procedure of the DW velocity measurement. a) Example of three voltage pulses measured 

by the oscilloscope. b) DW displacement with respect to the pulse duration for three different pulse 

durations. The slope of the fit (displacement/pulse duration) gives the domain wall velocity. Note that 

the fit does not extrapolate to the origin. As explained in the text, the DW can be static during a part of 

the pulse, typically the rise and fall times. 
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II.5. Summary  

 I studied two different samples: non-patterned films and nanostructures. The layers were 

deposited by sputtering and patterned using standard methods: ebeam lithography, deposition 

and etching. Current and field induced domain wall motions were measured using PMOKE 

microscopy in the differential imaging mode. Out-of-plane as well as in-plane magnetic fields 

can be applied and fields up to 400mT for duration down to 30ns can be generated using 

micro-coils. Current pulses as small as 0.5ns were injected and the intrinsic DW velocity is 

obtained by measuring the DW displacements for several different pulses. All the studies 

using these set-ups and methods are described in the forthcoming chapters III and IV. 
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In this chapter I will discuss about the chiral damping, a mechanism that can influence the 

DW dynamics in systems with structural inversion asymmetry (SIA). This is the result of my 

experimental studies of both current and field induced DW motion in Pt/Co/Pt trilayer 

systems.  

In multilayer systems with SIA, the current induced DW motion is currently described 

using SOT+DMI mechanism. I have performed the qualitative study of the current induced 

DW motion in Pt/Co/Pt. From this measurement, we extracted the sign of the DMI. To 

understand the role of DMI in Pt/Co/Pt, the field induced DW motion was thoroughly studied 

in the same sample. Here, we observed incompatibilities with the expectations from the DMI 

model. To explain our results, we propose a new mechanism based on chiral damping. This is 

explained in the second section of the chapter. Finally the differences between the field 

induced DW motion in Pt/Co/Pt and that in Pt/Co/AlOx will be discussed. 

III.1. Current induced domain wall motion in Pt/Co/Pt nanowires 

 Recently it was proposed that the combined action of DMI and the damping like torque 

(TDL) could explain both the direction and the velocity of the DW motion [Thiaville 2012]. In 

multilayers with SIA, the DMI favors the chiral Néel DW wall structure. As a consequence, 

two consecutive DWs move in the same direction either towards or against the electron flow 

depending on the signs of the DMI and the TDL (explained in details chapter I.7.3) 

In the literature, a few studies reported the observation of current induced DW motion 

in symmetric Pt/Co/Pt multilayer systems
 
[Moore 2008] [Lavrijsen 2012]. They showed that 

an observable pure current induced DW displacement is not achievable in Pt/Co/Pt. Since spin 

orbit torque is generally observed in systems with large structural inversion asymmetry (SIA), 

no DW motion is expected in ideal symmetric Pt/Co/Pt systems. However, recent studies 

show that depending on the growth conditions, from the microscopic point of view, a small 

structural asymmetry can persist in Pt/Co/Pt multilayers
 
[Hrabec 2014] . Furthermore, by 

growing different thickness for Pt under and upper layer, a volume asymmetry can be 

introduced [Lavrijsen 2012] [Haazen 2013]. 

 In this section, I will explain my experimental study of the current induced DW motion 

in Pt (30Å)/Co(6Å)/Pt(15.6Å) nanowires (10 µm x 1 µm size). A detailed discussion of the 

fabrication of the nanowires is given in chapter II. At first, the sign of the TDL was obtained 

by measuring the current induced DW motion in presence of an in-plane field. Then the DW 

displacement under current injection was observed.  Finally, by fitting the direction of the 

DW motion and the sign of TDL into the DMI+SOT model, we obtained the sign of DMI. The 

details of these measurements are described in this section.  
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III.1.1. Method to measure the sign of the damping like torque 

In section I.6.2.4.2, I have discussed how the damping like torque (TDL) can induce the 

switching of a perpendicular magnetic device [Miron 2011a]  [Liu 2012]. Here, a small in-

plane magnetic field is used to define the direction of the magnetization reversal. The out of 

plane switching field (Hsz) that defines the magnetization reversal is proportional to (z × j) × 

Hip. The (z × j) defines the direction of the TDL [Miron 2011a]. On the other hand, by 

measuring the Hsz field in the presence of a current (j) and an in-plane field, one can indicate 

the sign of the TDL. 

Fig III.1. Schematic diagram defining the direction HSz for the systems with a) For Hip along +X 

direction b) For Hip along –X direction, under current injection along +X direction. The in-plane 

magnetic field (Hip) sets the magnetizations of both of the DWs in its direction. Depending on the 

direction of M and TDL, Hsz can be either along ±Z directions. Depending on the direction of Hsz, the 

expansion of an up or down magnetic domain can be observed. 

The spin-orbit effective fields can be quantitatively measured using ac-torque 

measurement set up
 
[Garello 2013]. For my experimental studies explained in this section, the 

qualitative understanding of TDL is enough; no quantitative analysis is required. This is why; I 

measured the current induced DW motion in the presence of Hip to identify the sign of the 

TDL. By imaging the type of DW motion (up to down or down to up), the sign of the Hsz field 

and thus the sign of TDL can be retrieved. 

 Figure III.1 shows the schematics of the current induced displacements of the two DWs 

in the presence the Hip. A sufficiently large Hip saturates the magnetization of the DW along 

Hip. If the Hip along +X axis, the +TDL results Hsz along the –Z direction. Therefore the down 

magnetic domain expands (figure III.1.a). For the -TDL, the up magnetic domain expands. The 

opposite will be observed when the Hip is applied along –X axis (figure III.1.b).  
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III.1.2. Domain growth in presence of current and in-plane field in the 

nanowires 

The sign of the TDL in our sample was experimentally determined using the above 

procedure. At first, using current and Hz, I nucleated a magnetic domain and placed two DWs 

in the nanowire and observed their motion in the presence of current and Hip. Figure III.2.a 

shows that applying current and Hip in the same direction results in the expansion of down 

magnetic domains which indeed means that the Hsz is downwards (along negative Z 

direction). Hsz chages sign when the current and Hip are applied opposite to each other. 

Comparing these results to the schematic diagram shown in figure III.1, we conclude that for 

the current applied in the positive direction, the sign of TDL is positive (figure III.2.b). 

Fig III.2. a) The MOKE differential images of the DW motion in nanowires in presence of current 

and Hip. Here the current density was 2.13 x 10
12

 A.m
-2

 and the Hip was 70 mT. The red dotted lines 

show the initial positions of the DWs. When the current and Hip are applied in the same direction, the 

magnetic switching field (-Hsz) expands the down magnetic domain (bright contrast). When the current 

and Hip were applied opposite to each other the magnetic switching field (+Hsz) expands the up 

magnetic domain (dark contrast).  b) Schematic diagram of the directions of the core magnetization, 

the effective switching field and TDL for the current and Hip applied along positive and negative X axis 

respectively.   

III.1.3. Current induced DW motion in the nanowires 

We performed DW motion experiments in the nanowires by applying only the current. 

As shown in figure III.3.a, we observed the DW motion in the direction of the current. Here 

the DW motion in the sample was very slow (~order of 0.1 m/s), but the direction of the 

motion was always preserved.  
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For the further confirmation the direction of the DW motion, I placed two DWs 

(up/down and down/up) in the nanowire and studied the current induced DW motion in 

presence of an out of plane (Hz) field as shown in figure III.3.b. Here the Hz field moves the 

both DWs equally in the opposite direction while the current applies unidirectional pressure. 

This results in an asymmetric DW motion and the direction of the asymmetry indicates the 

contribution from the current. The asymmetry of the DW motion is always in the direction of 

the current (figure III.3.b). This again confirms the contribution of the current to the domain 

wall motion is in the direction against the electron flow 

III.3. a) The MOKE differential images of CIDW motion in the nanowires of Pt/Co/Pt by applying 

current alone. Here the current density was 2.55 x 10
12

 A.m
-2

. The red dotted lines show the initial 

positions of the DWs. The DWs clearly moves in the same direction of the current. b) The current 

induced DW motion (2.13 x 10
12

 A.m
-2

) of two DWs (up/down and down/up) in the presence of a 

small Hz field (±15mT). Here the DWs moving in the same direction as the current have higher 

velocity compare the DWs moving opposite to it. This confirms that the contribution from the CIDW 

motion to the net DW motion is in the same direction of the current. c) Schematics of the CIDW 

motion according DMI+TDL model. For the TDL along +y direction and DW motion in the direction of 

the current, the sign of the DW should have left handed chirality (DMI<0) 

 The comparison of the DW displacement with DMI+TDL mechanism is shown in 

figure III.3.c.  By analyzing the sign of the TDL, the sign of direction of the current induced 

DW motion, we deduced that the DW has left chiral Néel structure (DMI<0) where the DW 

magnetization rotates anti-clockwise.  

III.1.4. Conclusions 

We observed that the current induce DW motion in Pt/Co/Pt in the direction against 

the electron flow. Comparing this result to the DMII+TDL model, we concluded that our 

sample has left handed chiral Néel DW structure. 

Recently, it was reported that the field induced DW motion studies can be used to 

measure the sign of the DMI. By using this method, we compared the sign of the DMI 
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measured by the current. We found incompatibilities between these measurements. This is 

described in details in the next section. 

III.2. Field induced DW motion in Pt/Co/Pt thin films 

 In this section I will explain about the out of plane field driven DW motion in presence 

of an in-plane field in Pt/Co/Pt thin films. At first, I will explain how we can use the field 

induced DW motion to measure the sign of the DMI. Here I will review the various studies 

reported in the literature and then compare these studies with my experimental results. Then I 

will show a detailed quantitative studies of the field induced DW motion. As a result of this 

study, I will introduce a new mechanism producing an asymmetric DW dynamics, the chiral 

damping. 

III.2.1. Method to measure DMI sign 

In 2012, A. Thiaville et al proposed the DMI+TDL model to describe the current 

induced DW motion mechanism [Thiaville 2012]. Shortly after this prediction, CIDW motion 

in the presence of a longitudinal hard axis magnetic field (HL) evidenced chiral phenomena 

that were claimed as a proof of the existence of the DMI and as a validation of the (DMI+TDL) 

scenario in these metallic layers[Ryu 2013] [Emori  2013]  (explained in chapter I.7.4). These 

experiments open the quest for direct evidence of the (DMI + TDL) scenario as well as the 

measurement of the DMI amplitude. Direct microscopy imaging is the most straightforward 

way to determine the DW structure. However, these observations were limited to particular 

samples well suited for the observation [Tetienne 2014] [Chen 2013]. Interestingly, it was 

proposed that the out of plane field induced DW motion in presence of an in-plane field can 

be used as a method to measure the sign of the DMI. The details of this experiment is 

explained in the next section 

III.2.1.1. Field induced asymmetric bubble domain expansion  

 Recently it was proposed that by measuring the expansion of a magnetic bubble in the 

presence of an in-plane and out of plane field, the sign and the strength of the DMI can be 

identified. In the pioneer studies, S-G. Je et al
 
[Je 2013] showed that analyzing the asymmetric 

bubble domain growth in different Pt/Co/Pt trilayer systems, the DMI field of the systems can 

be quantified. They studied field induced domain wall motion in asymmetric Pt/Co/Pt 

multilayers using wide field Kerr microscopy. They observed that, when the out of plane and 

in plane fields were applied simultaneously, a magnetic bubble domain expands 

asymmetrically. In the case of magnetic multilayers with perpendicular anisotropy like 

Pt/Co/Pt, perpendicular magnetic fields (Hz) propagate the DWs isotropically in the plane of 

the film. Normally, if in-plane field (Hip) is applied along with the Hz, the symmetry of the 

DW displacement should not be affected. But they observed that in presence of Hip the Hz 
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driven DW motion becomes asymmetric (shown in figure III.4.a). i.e. the two DWs (up/down 

and down/up) moving in opposite directions along the axis of Hip have different velocity. S-G. 

Je et al [Je 2013] claimed that this asymmetric DW motion behavior is due to the presence of 

the DMI interaction. According to the DMI model, an internal field HDMI sets the internal 

magnetizations of up/down and down/up DWs in opposite directions.  Thus two DWs moving 

opposite to each other along Hip axis experience different effective fields (Hip-HDMI and 

Hip+HDMI), hence they move with different velocities. 

Fig III.4.a) The observation of asymmetric DW motion by S-G.Je et al [Je 2013]. Here the white 

contrast corresponds to the up magnetization. When Hx=0, Hz causes the symmetric bubble domain 

expansion. When an Hx field introduced along with Hz, the bubble domain expands asymmetrically. b) 

The schematic diagram to explain the asymmetric DW motion based on the idea of DMI. The grey 

arrows show the magnetization at the center of the DW. If DMI>0, the domain wall has right Néel 

structure where the core magnetization inside of the up/down domain wall points to the right; down/up 

DW has opposite magnetization. When the Hip is applied, the DW with the magnetization in the same 

direction moves faster resulting the domain expansion asymmetric. Opposite asymmetry will be 

observed for the case DMI<0. 

Depending on the direction of the asymmetry (or the direction of the fast DW motion), 

the chirality of the Néel DW and thus the sign of the DMI can be identified. If the Néel wall is 

of right handed chirality (the magnetization inside the DW rotates in clock wise direction), 

under the positive in-plane field, the up magnetic bubble domain expands asymmetrically 

towards the positive direction. Opposite asymmetry will be observed for the down magnetic 

domain as well as for the negative in-plane field (figure III.4.b).  
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Later, using the same technique, A. Hrabec et al[Hrabec 2014] showed that the sign 

and the strength of the DMI depend on the growth and the choice of the heavy metal in the 

multilayer systems. They observed that the sign of the DMI in Pt/Co/Pt can be controlled by 

inserting an Ir layer in between Pt and Co. By varying the thickness of the Ir layer, the 

asymmetry of the bubble expansion reverses its direction (figure III.5.a). This is because the 

sign of the DMI reverses by inserting the Ir layer. Further, they showed that the DMI can be 

present or absent in almost symmetric Pt/Co/Pt system depending on the growth condition. To 

prove this, they have studied the asymmetric domain expansion in two Pt/Co/Pt systems with 

same thickness but different growth conditions. One sample was deposited by sputtering and 

another one was deposited epitaxially using MBE technique. In the case of the sputtered 

samples, the asymmetric bubble domain expansion was observed. On the other hand in the 

epitaxial samples, the DW motion was symmetric. They concluded that the structural 

inversion asymmetry in the sputtered Pt/Co/Pt is due to the micro-structural differences 

between the lower Pt/Co and upper Co/Pt interfaces. On the other hand, the epitaxial samples 

have high level of crystallographic ordering and the multilayers are nearly symmetric. 

Fig III.5. a) The MOKE images of asymmetric bubble expansion studied by A. Hrabec et al  [Hrabec 

2014] measured for three different Pt/Co/Ir(t)/Pt samples (t= 0, 2.3Å and 4.6Åfrom left to right). The 

asymmetry of the bubble expansion reverses its direction as the t is increased. This is due to the 

reversal of the sign of the DMI. b) The comparison of the bubble expansion for the epitaxial and 

sputtered samples. For the epitaxial samples, no asymmetry in the DW motion was observed. This 

indicates that there is no SIA exist in the epitaxial sample.  

To summarize, both studies by S.G-Je et al and A. Hrabec et al showed that 

asymmetric bubble expansion experiment can be used as a standard tool to measure the sign 

of the DMI. They also confirmed that by controlling the growth conditions, the SIA can be 

achieved in Pt/Co/Pt.  

III.2.1.2. Asymmetric bubble expansion in Pt (30Å)/Co(6Å)/Pt(15.6Å)   

 In order to determine the sign of the DMI and thus the structure of the DW in our 

Pt/Co/Pt sample, we studied the Hz induced growth of a bubble domain in presence of Hip. 

The films were sputter grown at room temperature on etched Si/SiO2 substrates. The 

differential MOKE microscopy images of the bubble expansion are shown in figure III.6. 

b) a) 
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When Hip is applied along +X, the up/down DW move faster along +X compared to the 

down/up DW moving along -X. Opposite asymmetry is observed for the opposite Hip. This 

indicates that the magnetization inside the DW rotates clockwise (with right handed chirality) 

and hence DMI is positive. This result is the same as the one measured by S-G Je et al
 
[Je 

2013] and A.Hrabec et al [Hrabec 2014]. 

Fig III.6.  a) The MOKE microscopy differential images of DW motion in Pt(30Å)/Co(6Å)/Pt(15.6Å) 

trilayer. The black and white contrasts correspond to the up and down domains respectively. The blue 

arrows show the direction of Hip. The Hz used here was 11mT. When Hip=0, the DW motion is 

symmetric towards all the directions in the plane of the film. When Hip (±40mT) is applied, the DW 

motion becomes asymmetric. For the up/down DW motion the asymmetry is in the direction of the Hip 

and for the down/up DW motion it is opposite. If this asymmetric DW motion is due to DMI, then the 

sign of the DMI should be positive, resulting in right handed Néel wall.  b) The schematic of the core 

magnetization of right handed Néel wall structure (shown by the arrows). 

III.2.1.3. The contradiction of the sign of the DMI 

 In section III.1, I have explained the measurement of the current induced DW motion in 

Pt (30Å)/Co(6Å)/Pt(15.6Å). This measurement predicted the presence of left handed chiral Néel 

wall structure (DMI<0).  Contrary to this, in the same multilayer system, the field induced 

asymmetric domain expansion shows the Néel DW structure with right handed chirality 

(DMI>0). This dilemma questions the validity of determining the sign of the DMI using field 

and current induced DW motion.  

III.2.1.4. Conclusion 

We studied the asymmetric bubble domain expansion in Pt (30Å)/Co(6Å)/Pt(15.6Å) of Hip 

and Hz
 
. We found a discrepancy between the sign of the DMI measured by field and current 

induced DW motion. Even though we do not have a unique explanation for this observation, 

we would like to suggest a few possibilities.  
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1) The field induced bubble expansion method to measure the DMI sign is wrong. If the DMI 

has the opposite sign of that predicted from the asymmetric bubble expansion picture, the 

DMI + TDL model explains the current induced DW motion direction. If so, the asymmetric 

bubble expansion may arise from another mechanism that is different from the DMI. 

 2) The field induced DW motion experiment defining the sign of the DMI is correct, while  

the DMI+TDL model to describe the current induced DW motion is not applicable for our 

sample. If this hypothesis is confirmed, the original question that initially motivated the 

DMI+TDL model, (why the DW moves in the direction of the current? [Miron 2011b] 

[Thiaville 2012]) would remain unanswered. We would have to consider different hypothesis 

such as negative STT [Šipr  2008] [Lee 2010] in order to explain this observation.  

 3) There is no DMI in Pt/Co/Pt. If so, in the absence of DMI, both field induced DW motion 

and the current induced DW motion in Pt/Co/Pt requires an alternate explanation.  

All these three possibilities indicate that more theoretical and experimental efforts are needed 

to understand the DW motion in Pt/Co/Pt. 

In order to shed some light on these discrepancies, we decided to focus our efforts on 

the field induced asymmetric bubble expansion experiment. Since it avoids the extra 

complexity of the current induced torques, it should be easier to understand.  

III.2.2.Chiral damping mechanism of the magnetic DWs 

Magnetic materials with structural inversion asymmetry (SIA) can exhibit different 

spin orbit related phenomena. One such phenomenon is Dzyaloshinskii-Moriya interaction 

(DMI) leading to the existence of chiral Néel domain walls (DW). Until now, DMI was the 

only well-established interaction that may explain chiral DW dynamics. Here, using our 

experimental evidence of field induced domain wall motion in Pt/Co/Pt trilayer; we prove that 

DMI is not the only interaction caused by the SIA that can influence the DW dynamics. We 

propose a new SIA related phenomenon: a chiral damping mechanism. 

In this section, first I will show the detailed experimental studies of the asymmetric 

bubble domain expansion in different Pt/Co/Pt multilayers. Then I will show the comparison 

of the experimental results with micro magnetic and numerical models. At the end, the idea of 

the chiral damping will be discussed in details. 

III.2.2.1. Background  

 A qualitative picture of the asymmetric bubble domain expansion under the application 

of Hz and Hip is explained in the last section. In their pioneer studies, S-G Je et al 
 
reported 

that quantitative variation of the DW velocities with respect to the Hip can be used as a 
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method to measure the DMI field. As explained earlier, according to the DMI model, the two 

DWs moving opposite to each other along Hip experience different effective fields (Hip-HDMI 

and Hip+HDMI). This leads to the differences in their velocities and creates the asymmetric 

domain expansion. They proposed that by studying the variation of the DW velocities by 

varying the Hip for a constant Hz, the intrinsic HDMI of the sample can be measured. 

Fig III.7. a) Schematic diagram of the domain wall velocity vs. Hip at constant Hz. In the absence of 

the DMI, the DW velocity increases symmetrically with respect to Hip=0 for both up/down and 

down/up DWs (red and blue curves). In the presence of the DMI, the two DW velocities shift 

horizontally opposite to each other by a bias field ±HDMI. b) Schematic diagram of a differential image 

of the asymmetric DW motion. Red and blue arrows correspond to the displacements of the up/down 

and down/up DWs. c) The measurement of the velocity vs. Hx by S-G Je et al
8 

for different Pt/Co/Pt 

samples. They show that the values of HDMI, measured by the bias shift, are different for different 

samples. The value of HDMI is determined by the position of the velocity minimum.  

A schematic illustration of the measurements of the HDMI using the velocity curve with 

respect to Hip field is shown in figure III.7.a. In the absence of SIA, Hip can modify the Hz 

driven DW velocity through different mechanisms. For example, it can modify the anisotropy 

or the energy landscape for the DW motion. Assume that applying the Hip increases the DW 

velocity. In this case up/down and down/up DWs move with equal velocities (shown in figure 

III.7.a). The DW velocity curves will have parabola shape with the minimum of the velocity 

at Hip=0. When the SIA is turned on, the DMI provides an intrinsic in-plane bias field (HDMI) 

to the DWs that will shift the minimum velocity will away from Hip=0. The new minimum 
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will occur when Hip = -HDMI. Since the directions of the HDMI for the two DWs (up/down and 

down/up) are opposite to each other, the two velocity (V↑↓ and V↓↑) curves shift opposite to 

each other 

In their experiments, S-G Je et al
 
measured the HDMI fields for different Pt/Co/Pt 

sample (shown in figure III.7.c). i.e, they proposed a way for the quantitative comparison of 

the HDMI values for different samples. 

In my experiments, I followed the same procedure of the S-G Je et al to measure the 

HDMI. In our detailed study, we observed new features for the DW velocities that deviate from 

the simple DMI model. All these experiments are explained in the following section. 

III.2.2.2 Experimental study of field induced DW motion in Pt/Co/Pt 

III.2.2.2.1. The DW velocity vs Hip (at constant Hz) 

 I have studied the field induced domain wall motion in different Pt(30Å)/Co(6Å)//Pt(tÅ) 

samples. The details about the experimental set up are described in chapter II. The DW 

motion was studied using the MOKE microscopy. The experimental procedure is the 

following: At first a bubble domain is nucleated by either applying Hz or applying Hz and Hip. 

Then the differential images of the asymmetric bubble expansion under the action of Hz and 

Hip field were taken. Here synchronized Hz and Hip field pulses were applied for the duration 

of 400ms. Then the DW displacements were analyzed and the DW velocities were calculated. 

 The MOKE differential image of the asymmetric bubble expansion for the Pt (30Å) 

/Co(6Å)/ Pt (15.6Å) sample was already shown in figure III.6. The corresponding DW velocity vs. 

Hip curves for the two DWs (up/down and down/up DWs moving opposite to each other along 

the Hip axis) are shown in figure III.8.b and figure III.8.d. We found a deviation from the 

expected parabolic behavior for the case of the DMI. Nevertheless, according to the DMI 

model HDMI should act as a bias field that shifts the curves laterally (figure III.7.a).  By 

shifting the two curves in opposite directions by the HDMI, they should coincide. In our case, it 

is impossible to overlap the curves by any amount of lateral shifting (Figure III.8.b and figure 

III.8.e). i.e, the DW velocity vs. Hip does not show a horizontal bias shift.  

III.2.2.2.2 Symmetric and antisymmetric component of DW velocity 

The failure to explain our data using the existing DMI model calls for a detailed analysis 

in terms of symmetry. The Hip makes the DW motion asymmetric, but at the same time it can 

also bring symmetric contributions (that are the same for both DWs). This symmetric 

contribution may not necessarily originate from the SIA related mechanism (for example the 

Hip changes the overall anisotropy of the systems). At the same time, the asymmetric 
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contribution can only originate from the SIA associated effects. The velocity variation of the 

DWs in the presence of Hip is a mixture of these both symmetric and asymmetric 

contributions. In order to deduce the contribution of the SIA related effects, it is important to 

start from the study of the anti-symmetric component of the velocity.   

Fig III.8. The experimental graph for  a,d) the asymmetry v/s Hip b,e) the velocity vs Hip c,f) the 

normalized velocity v/s Hip for the two samples Pt (30Å) /Co (6Å)/ Pt (15.6Å) and Pt (30Å) /Co (6Å)/ Pt (18.6Å) 

respectively. The asymmetry and the normalized velocities for both DWs saturate at Hip = ±40mT 

associated with a slope change of the velocity graphs at the same field. 

III.2.2.2.3. Anti-symmetric component of the DW velocity vs. Hip 

 In the presence of the Hip, the bubble DW motion becomes asymmetric. The quantitative 

indicator of the asymmetry is the anti-symmetric component of the velocity. This parameter is 

shown in figure III.8.a and III.8.d. The A can be written as 

     𝐴 =  
V↑↓ −V↓↑

 [(V↑↓+ V↓↑)/2
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A shows the same behavior for all samples. It increases with increasing Hip and then saturates 

around Hsat = ±40mT. This indicates that the physical parameters that responsible for the 

asymmetry also saturates above the Hsat. The only physical parameter that can vary 

monotonically and saturates at 40mT is the DW core magnetization. The other possible 

parameter, the tilt of the magnetization in the domains saturates at much larger fields (> HK~ 

400mT). 

Furthermore, if we analyze the data from this perspective we observe that at 40mT both 

DW velocity curves show a change of slope. Within the DMI scenario, due to the HDMI bias 

field, only one of the DWs should exhibit a feature at 40mT, the other one should saturate 

before, and therefore there should be no particular feature on the DW velocity at this field. 

This observation indicates that the magnetization of both DWs saturates at almost the same 

in-plane field, indicating that HDMI is much smaller than 40mT.  

So far we observe that our data does not behave as predicted by the DMI model, and 

that the HDMI in our samples is very small. Another puzzling observation is that the 

measurements performed for different samples and different values of Hz exhibit a very 

similar variation of their anti-symmetric component even though the raw data looks very 

different. This indicates that besides the SIA phenomenon reflected in the variation of A, 

there is also a supplementary symmetric contribution that may not be related to the SIA.   In 

order to remove this symmetric contribution from the raw data, we normalize the DW 

velocities by the average displacement in all directions. As a result, all the measurements 

performed on different samples at different Hz exhibit an identical behavior: the DW velocity 

decreases (or increases – depending on the direction of Hip) monotonically, and saturates at 40 

mT (figure III.8. c & f)  

III.2.2.2.4. Thickness dependence of DW motion asymmetry and interface anisotropy 

To understand the dependence of the asymmetric DW motion on the material 

properties, we have studied different Pt30Å/Co6Å /Pt(tÅ)samples with different thickness of the 

Pt upper layer (t= 15Å-70Å). The A vs Hip graphs are shown in figure III.9.a. All the samples 

showed the same trend: the asymmetry varies up to Hsat and fully saturates above. The 

saturation values of A decrease as the Pt thickness is increased (figure III.9.a inset). Even 

though the asymmetry values vary from sample to sample the Hsat remains the same. The lack 

of correlation between the value of A and Hsat is also inconsistent with the DMI scenario. 

In order to check if the uniaxial anisotropies (Hk) contribute to the asymmetry 

variations, the HK for different samples were determined using anomalous Hall Effect 

measurements as shown in figure III.9.c. The anisotropy field shows a reduction from the 

sample with the thinnest (15.6Å) Pt upper layer to the thickest (70Å). It shows a variation of 
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30% (0.55 T to 0.38 T). After correcting for the layer’s demagnetizing field (µ0Ms=1.3 T), we 

calculate a maximum variation of the anisotropy constant of 10%. 

Figure III.9. a. Asymmetry curves extracted from Kerr microscopy images for the samples with 

different Pt thickness ranging from 15 Å to 70 Å. The inset shows the variation of A with respect to 

the Pt thickness b. A measured for the sample with different Co thickness varying from 5.5 Å to 7 Å. 

The variation of the saturation asymmetry values with respect to the Co thickness is shown in inset. c. 

The anisotropy fields of all the samples used in the experiment measured using the anomalous Hall 

effect. d. Asymmetry of the annealed sample compared to the as deposited ones. If the asymmetry 

value would be correlated to the anisotropy field the asymmetry of the annealed sample (red) would be 

comprised in-between the asymmetries measured for the samples with 30Å and 56Å of Pt capping. 

In a second experiment, we have studied samples with different thickness of the Co 

layer Pt30ÅCotÅPt18Å (t = 5.5Å–7Å). The measured anisotropy fields are: Hk(Co5.5Å) = 6.0 kOe, 

Hk(Co6Å) = 6.5 kOe, Hk(Co6.5Å) = 6.0 kOe and Hk(Co7Å) = 6.4 kOe. The measured asymmetry 

variation was similar to the samples with different Pt thickness. Here the asymmetry values 

increases with increasing the Co thickness (figure III.9.b). Once again we found that the Hsat 

and the saturation value of A are not correlated.  

To check if the heat induced anisotropy variation affect the asymmetry or not, the 

sample with tPt=18.7Å sample was annealed at 200°C in vacuum for 30 minutes. Then its HK 
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as well as the DW motion asymmetry were measured. We observed that the annealed sample 

has lesser anisotropy. This is due to with the Pt-Co inter-diffusing. On the other hand the 

asymmetry remains almost unchanged (Figure III.9. d). The only consequence of the 

anisotropy variation is that the DW width might vary from sample to sample. However, since 

it depends on the square root of the anisotropy field, its variations will not exceed 10%. 

Consequently, the DW demagnetizing field stabilizing the Bloch DW structure will vary by 

the same ratio. In the absence of DMI, Hsat is given by the DW demagnetizing field. The fact 

that we do not detect any significant sample-to-sample variation of Hsat is consistent with this 

scenario 

III.2.2.3. The idea of chiral damping 

The magnetization dynamics can be mathematically described using the 

phenomenological Landau–Lifshitz–Gilbert (LLG) equation. As discussed in chapter I, the 

LLG equation for the field induced DW motion contains two terms: an energy term expressing 

the effective field and a dissipation term reflecting the damping rate. Since there is no other 

type of term in the LLG equation, the phenomenon responsible for the DW motion asymmetry 

must be either dissipative or conservative. This means that the asymmetric modification of the 

domain wall velocities is either due to the differences in the energies of the two DWs or the 

difference in their damping or their combined actions. While the possibility of chiral energy 

has been widely studied and we now know that chiral energy can be modeled by an additional 

effective field (HDMI fixing the DW chirality), the hypothesis of the chiral damping mechanism 

has never been reported or studied. 

In order to accurately probe this possibility the energy and dissipative contributions to 

DW motion need to be accurately separated. For this, we used the well-known creep scaling 

law.  

III.2.2.4. The creep scaling law 

According to the creep scaling law, at creep regime, the variation of the DW velocity 

with respect to the applied driving field Hz can be written as  

𝑣 =  𝑣0exp [(−
𝑈𝑐𝐻𝑃

𝐾𝐵𝑇
)
1/4

. 𝐻𝑧
−1/4]     (III.1) 

Where, Uc is the height of the pinning barrier and Hp is the pinning field. 

The prefactor 𝑣0can be written as 

𝑣0 = 𝑑0𝑓0exp (𝐶
𝑈𝑐

𝐾𝐵𝑇
)
1/4

     (III.2) 
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Where 1C  is an empirical constant, d0 is the average distance between two pinning centers, 

f0 the attempt depinning frequency.  

𝑣𝐷𝑊 = 𝑑0𝑓0exp (−
𝐸

𝐾𝐵𝑇
(𝐻𝑧

−1/4 − 𝐻𝑐
−1/4))   (III.3) 

where 𝐸 =  𝑈𝑐𝐻𝑝
1/4 represents all the energy term and 𝐻𝑐 = 𝐻𝑝/𝐶

−4 gives the critical field 

that determines the limit of the creep regime.  

According to the above equation, the exponential term contains all the energy terms. 

The damping only affects the prefactor d0f0. Using the above equation, a logarithmic linear 

equation can be written as follows 

ln( 𝑣𝐷𝑊) = 𝑙𝑛 (𝑑0𝑓0) − (−
𝐸

𝐾𝐵𝑇
) (𝐻𝑧

−
1

4 − 𝐻𝑐
−

1

4)   (III.4) 

By measuring the DW velocity variation with respect to Hz, one can plot a linear graph 

according to the equation III.4. Here the slope of the graph gives the energy of the system and 

the intercept can give the information about the attempt frequency. The attempt frequency 

depends on the damping (explained in detailed in the section III.2.2.6) 

Figure III.10 Influence of energy barrier and attempt frequency on the DW creep scaling law. a) The 

variations of the pinning barrier lead to a change of slope (red dotted line), but also to a lateral shift due 

to a change of the pinning field. The horizontal gray line represents the approximate transition from 

creep to flow. The black square is the approximate Hc
-1/4 

b) The variation of the attempt frequency leads 

only to a vertical shift of the curve. c) The graph for 3 systems with different energies ( E, E’, and E’’). 

Due to difference in their slopes, they join at the intercept value ln (v0). The order of magnitude of Hc
-1/4

 

and d0 f0 can be roughly estimated from this intercept. 

 Depending on the differences in the energy barriers and the attempt frequencies 

of the domain walls, the different linear plots can be obtained as shown in figure III.10. If one 

a) b) c) 
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varies the pinning barrier of a DW, it leads to the change of the slope as well as a lateral shift 

due to the change in the pinning field. (Figure III. 10. a). On the contrary, the attempt 

frequency does not produce any variation of the slope; it only shifts the curve vertically 

(figure III.10.b). 

In summary, by measuring the variation of the DW velocity by varying the Hz and 

plotting the graph according to the equation III.4, one can extract the information about the 

energy and damping of the DWs. Therefore, we decided to study the asymmetric DW motion 

for different Hz for a constant Hip. 

III.2.2.5. ln (v) v/s Hz (for a constant Hip) 

 The asymmetric DW motion was studied in two samples, Pt (30Å) /Co (6Å)/ Pt (15.6Å) and Pt 

(30Å) /Co (6Å)/ Pt (30Å), for different Hz at a constant Hx. The measurements were done for Hx = 

80mT, which is above the Hsat. The corresponding plots for the velocity variation of the two 

DWs (V↑↓ and V↓↑) are shown in figure III.11. The variation of the velocities in the absence of 

the Hip is also plotted (black curve). From the figure, it is clear that the two DW velocities 

(blue and red plots) are differed by a linear shift. The slopes of the two graphs are unchanged. 

This indicates that the energies of the two DWs are the same. The difference in the DW 

velocities originated from the difference in their intercept. The intercept is defined by d0f0. i.e, 

the two DWs should have different attempt frequencies. 

For the further confirmation of the asymmetric DW motion depends on the energy or 

not, from the graph, the asymmetric (Acreep) and the symmetric component (Screep) of the DW 

motion can be written as 

𝐴𝑐𝑟𝑒𝑒𝑝 = ln(𝑣80𝑚𝑇↑↓) − ln (𝑣80𝑚𝑇↓↑)    (III.5) 

𝑆𝑐𝑟𝑒𝑒𝑝 = ln(𝑣0𝑚𝑇) − 
1

2
  [ln(𝑣80𝑚𝑇↓↑) + ln(𝑣80𝑚𝑇↑↓)]    (III.6) 

 

According to III.4 they can be written 

𝐴𝑐𝑟𝑒𝑒𝑝 = ln(
𝑑0𝑓0

80𝑚𝑇↑↓

𝑑0𝑓0
80𝑚𝑇↓↑) − (𝐻𝑧

−
1

4 − 𝐻𝑐
−

1

4) [
𝐸80𝑚𝑇↑↓−𝐸80𝑚𝑇↓↑

𝐾𝐵𝑇
])    (III.7) 

   

𝑆𝑐𝑟𝑒𝑒𝑝 = ln(
𝑑0𝑓0

80𝑚𝑇↑↓

√𝑑0𝑓0
80𝑚𝑇↓↑𝑑0𝑓0

80𝑚𝑇↑↓
) − (𝐻𝑧

−
1

4 − 𝐻𝑐
−

1

4) [
𝐸0𝑚𝑇−

1

2
(𝐸80𝑚𝑇↑↓+𝐸80𝑚𝑇↓↑)

𝐾𝐵𝑇
]             (III.8) 
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The Acreep and Screep variation with respect to the Hz is shown in figure III.11 inset. The 

Acreep is independent of the Hz indicating that the asymmetry is not due to the chiral energy 

(𝐸80𝑚𝑇↑↓ = 𝐸80𝑚𝑇↓↑).  At the same time, since Screep varies with Hz confirms that the non-

chiral energy contribution to the DW when Hip is applied (𝐸80𝑚𝑇↑↓ = 𝐸80𝑚𝑇↓↑ ≠ 𝐸0𝑚𝑇↓↑). 

In the creep regime, the DW motion is dominated by the pinning and depinning 

events. Instead of a continuous flow, the DW hops between the consecutive pinning centers. 

The time duration of the pinning is generally very longer than that of the hopping. i.e, the DW 

velocities are largely determined by the time it spends at the pinning regime or it depends on 

the attempt depinning frequency (f0). Both energy and damping can contribute to the f0 [Ferré 

J 2013]. Since the energies of the two DWs are same here, it can be concluded that the 

difference in the attempt frequency originates from the difference in their damping 

Figure III.11. The ln(V) vs Hz
-1/4

 graph for the sample a) Pt (30Å) /Co (6Å)/ Pt (15.6Å)  b) Pt (30Å) /Co (6Å)/ 

Pt (30Å). The graph for Hip=0mT is shown in black. The plots for up/down and down/up DWs at Hip = 

80mT is shown red and blue respectively. In both cases, the slopes of the linear graphs are same 

indicating the energy of the DW velocities are same. The inset show the variation of the Screep and 

Acreep defined by the equations III.5 and III.6. 

Our data does not allow obtaining an accurate determination of Hc
-1/4

 and d0f0 because 

the slopes of the different curves are very close to each other, and therefore their intercept is 

not precisely defined. In order to extract the order of magnitude of the d0f0, we rely on the 

previous measurements of the DW velocity in Pt/Co/Pt samples done by Metaxes et al
1
 

[Metaxes 2007] and Gorchon J. et al [Gorchon 2014] . (figure III.12) They studied the creep 

motion for different Pt/Co/Pt samples with varying Co thickness. The changes in the Co 

thickness lead to large changes in the energy landscape (exchange, anisotropy etc). Because 

of this, the ln (v) vs. Hz
-1/4

 curves for the different samples converges into a small area. This 

a) b) 
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area allows estimating the range of the Hc
-1/4

 and corresponding value of the d0f0. The 

different samples that we studied are nominally identical and were deposited using the same 

technique (sputtering) under the same conditions as these previous studies [Metaxes 2007] 

[Gorchon 2014].We obtain a value of d0f0 of ~ 10m/s. Considering this value, we estimate that 

the deviation from the linear behavior of the creep scaling law should occur at ln (v) ~2.5. By 

considering the disorder correlation length (d0) should be larger than the typical grain size 

(20nm), the order of the attempt frequency (f0) could take a value between 10 MHz to 1GHz.  

To conclude, using the creep scaling law we experimentally prove that the asymmetric 

domain wall motion is due to the chiral dissipation; not due to the chiral energy. The damping 

can modify the f0 values that modify the DW velocity. To prove this we decided to check the 

relation between damping on the f0 using micromagnetic simulation. This will be described in 

the next section. 

Figure III.12. The ln(V) vs Hz
-1/4

 graph for the Pt/Co/Pt samples with different Co thicknesse a) 

Measurement Gorchon J. et al [Gorchon 2014]
 
b) by Metaxes et al[Metaxes 2007]   From both 

measurements the value of ln(V0), where the DW velocity variation deviates from the creep 

scaling law is estimated to be ~2.5 m/s. 

 

 

 

 

a) b) 
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III.2.2.6. Numerical modelling 

In literature, there is no known precise microscopic mechanism that links the damping 

to the attempt frequency, f0. We verify this possibility using 2D micro magnetic simulations. 

The simulation was done by Liliana Prejbeanu at SPINTEC. 

 During the creep motion, since the DWs are generally trapped most of the time on the 

pinning centers, the velocity of the DW is proportional to the average depinning time. To 

implement this, DW depinning time from a single defect for different damping values were 

calculated. We indeed observe that the releasing time of the DW depends on the damping 

values (figure III.13.a). Since the barrier height is kept constant in the simulations, it is only f0 

that can be responsible for this variation. We find that f0 is proportional to the inverse of the 

damping (DW mobility, 𝑣𝐷𝑊 ∝ 1/𝛼).  

  

Figure III.13. a) Design of Micromagnetic model. The first picture is the Kerr differential image of 

the propagated DW. The second picture is the schematic diagram of the localized pinning centers that 

create ripple like DW shape according to the Kerr image. Third picture is a Micromagnetic 

configuration of a pinned DW in a 100 nm wide nanowire pinned at a defect. The pinning center is 

indicated by the rectangle designates an area with 50% smaller anisotropy that traps the DW. b) The 

graph showing the variation of the depinning probability, PDEP (for 60 independent events) with respect 

to the time for two damping values: α = 0.5 (shown in red) α=0.25 (shown in black) at Hz= 18mT. The 

inset shows that the curves overlap when the timescale is normalized by the damping constant. This 

indicates that f0 is proportional to the inverse of the damping. 

Because micromagnetic simulations are time consuming, we completed our study using 

a simpler and much faster 1D model. While 2D micromagnetics allow including realistically 

the partial pinning of the DW, by definition in the 1D models the entire DW is enclosed in the 

pinning potential. As a consequence, when projecting the 2D DW dynamics onto a single 

dimension, the effective pinning potential needs to be adapted accordingly. The simplest way 

a) b) 
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to model the partial pinning of the DW is to use effective pinning centers that are much wider 

than the DW, such that the DW will have to shift far from the energy minimum before 

actually applying pressure on the pinning potential 

In order to probe the influence of the damping variation on the thermally activated 

DW motion, we calculate the velocity (Figure III.14) as a function of the perpendicular 

magnetic field, for several damping values. The DW parameters used in the simulations are 

DW=5nm, Hdip=40mT. The effective pinning field is modeled by a sinusoidal function with 

a period of 50nm, (10 times larger than the DW width) with amplitude of 3 mT. This form of 

pinning is chosen only for ease of implementing in the numerical model. Though it is not 

realistic for the quantitative calculation of the DW velocity, since it allows modeling the 

repeated pinning and de-pinning of the DW, it is sufficient to evidence the impact of damping 

on the DW velocity. We observe that the DW velocity depends strongly on the damping value 

(0.2, 0.4, 0.6). Moreover, by normalizing all the velocity curves by the inverse of the damping 

(proportional to the DW mobility) they overlap (figure III.14.a). This indicates that the DW 

velocity depends on the intrinsic DW mobility. On the contrary, when trapping the DW in a 

narrow potential well with the same barrier height (period of 2.5 nm and amplitude of pinning 

field of 60 mT) the velocity curves completely loose the damping dependence (figure 

III.14.b). 

Figure III.14. DW velocity in the 1D model for 3 different damping values. Each velocity point is 

obtained after averaging 30 displacements produced by 500ns long pulses a). DW velocity when the 

width of the pinning potential is 10 times larger than the size of the DW (5nm). The inset shows the 

velocity curves normalized by the inverse of the damping value. b). The velocity calculated for a 

potential half the width of the DW (5nm). In this case, the DW velocity is independent of the damping 

value.  

 

 

a) b) 
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III.2.2.7. The dependence of the asymmetry on DW velocity (or for different 

Hz)  

As discussed in the last section, the asymmetry is independent of the value of Hz or 

corresponding velocity of the DW motion. In order to check this, we repeated the DW 

velocity measurements for the Pt (30Å) /Co (6Å)/ Pt (15.6Å) samples for a wide range of Hz. This is 

shown in figure III.15. 

Figure III.15. Dependence of the anti-symmetric component A on Hz. a) Velocity curves for different 

values of Hz. b.) The corresponding Araw = 2(v – v)/(v + v). c) The normalized velocities.  

Two important features are apparent on from this study: 

 1) The asymmetric components to the DWs showed the same behavior independent to the Hz 

values  

2) Increasing the Hz value changed the overall shape of the velocity graph.  

Asymmetry 
b) c) a) 
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Since the asymmetric component is always the same, these changes are due to the 

variation of the symmetric components to the velocity. This result confirms the Hz dependence 

of Screep and the Hz independence of Acreep studied previously.  The fact that the anti-symmetric 

component is independent of Hz further confirms our conclusion that its origin is not related to 

energy but to damping.   

III.2.2.8. Mathematical description of chiral damping 

The lnV v/s Hz shows that the velocity asymmetry is not due to the chiral energy, but 

to chiral damping. In the presence of the Hip, the Hz driven up/down and down/up DWs 

experience a different damping. The chiral damping is possible if the damping coefficient (α) 

depends on the orientation the DWs core magnetization with respect to the magnetization 

gradient. Mathematically it can be written as, 

𝛼 ∝  𝛼𝑐 ( 𝑚𝑖𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ . ∇𝑚𝑧) 

where 𝛼𝑐 is the coefficient of chiral damping and 𝑚𝑖𝑝 is the core magnetization along the Hip 

direction. For the up/down and down/up DWs the chiral contribution will have the opposite 

sign. However, this kind of damping cannot exist by itself in a real physical system since it is 

possible that the overall dissipation may become negative if the chiral contribution exceeds 

the intrinsic damping. To prevent this unphysical behavior, the chiral damping must include at 

least a second component, which always offsets its value in the positive range. Then the final 

expression for the chiral damping becomes 

𝛼 ∝  𝛼0 + 𝜆𝑒𝑥 𝛼𝑐 ( 𝑚𝑖𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ . ∇𝑚𝑧), where 𝛼0 > 𝛼𝑐 

Where 𝜆𝑒𝑥 is exchange length (constant value). In the general case the coefficients  𝛼0 and 𝛼𝑐 

depend on absolute value of magnetization gradient such that 𝛼0 > 𝛼𝑐. 𝜆𝑒𝑥 |∇𝑚𝑧|). 

III.2.2.9. DW velocity v/s Hip according to the collective model 

 To establish the influence of the chiral damping on the DW motion, the DW velocity 

variation was studied using the numerical collective coordinate model. Since such models do 

not include explicitly the magnetization gradients, we write the chiral damping using a 

simplified form: 𝛼 ∝  𝛼0 + 𝛼𝑐 cos𝜑. Here the value of the magnetization gradient is 

considered constant and is implicitly included in the values of 0 and C. The orientation of 

the DW magnetization is described by the azimuthal angle .  
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Figure III.16.a) The variation of the calculated DW velocity vs Hip obtained using the numerical 

model at a temperature 0K. As shown in the figure, the velocities increase monotonically when Hip 

increases. After a certain field both DW velocities saturates simultaneously, at the field value where 

their core magnetization saturates. The values used in this calculation are α0=0.6, αc=0.3, ∆DW=5nm, 

Hdip=35mT, Hz=0.01mT   b) The normalized graph, the symmetric component of the measured 

velocity is removed as it is not produced by the chiral damping. The numerical graph in figure a is 

comparable with this experimentally measured normalized velocity graph. 

III.2.2.10. Conclusion 

 We have performed a detailed quantitative study of the asymmetric bubble domain 

expansion in Pt/Co/Pt system in presence of Hz and Hip. Previous studies reported that the 

DW motion asymmetry due to the presence of the DMI. In our study, the detailed analysis of 

the anti-symmetric and the symmetric components of the DW velocities, showed deviation 

from the homo-chiral Néel wall behavior. Thus we concluded that in our system, the DW has 

mostly Bloch structure. Then using the creep scaling law, we have compared the contribution 

of the energy and damping to the domain wall velocity. We found that the anti-symmetric 

domain wall motion is due to the chiral dissipation, not chiral energy. 

 In order to explain the asymmetry in the DW velocity, we introduce a new damping 

term in the LLG equation. The influence of the chiral damping on the DW dynamics is 

verified by numerical modelling. The results from simulations are compatible with the 

experimental data. 

 At this stage, we do not know why the effect of chiral damping is dominant over DMI in 

our samples.  In general these two phenomena should co-exist. The relative strength of the 

two effects may depend on the precise material parameters (crystallographic structure).   
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 While the physical origin of the DMI is well known, the origin of the chiral damping 

mechanism is not clear. Extensive theoretical studies are required to understand the 

mechanism that gives rise to the chiral damping. Nevertheless, we would like to propose a 

possible path towards an explanation. It is well known that the SOTs have two components: 

Field like and damping like. Theoretically DMI is associated with the conservative (field) like 

component. Similarly, the chiral damping can be the reminiscent of the dissipation 

component. Concerning the microscopic mechanism of the chiral damping, just like in the 

case of the current induced spin orbit torques, there can be multiple contributions from 

different phenomena. Among these possibilities, besides the DMI, it could also emerge from 

the Rashba interaction and more generally from any form of SO coupling that includes 

inversion symmetry breaking. 

Despite the unclear mechanism, the discovery of the chiral damping opens new 

possibilities for controlling the DW motion in materials with large spin orbit coupling. 

Furthermore, due to its expected co-existence with DMI, it can play an important role in 

understanding the dynamics of the chiral magnetic spin textures like skyrmions, DWs etc. 

III.2.3.Discussion on similar experiment reported in literature: 

The incompatibility of the DMI model to explain the asymmetric DW motion was also 

reported by Lavrijsen et al [Lavrijsen 2015]. Using dc sputtering technique, they deposited 

different SiO2 /Ta/Pt(4nm) /Co(0.6nm) /Pt(4nm) trilayer samples. In these samples, during the 

deposition of the upper Pt layers, different Ar gas pressures (Ptop) were used such that each 

sample had different growth kinetics. At first, they measured the effective anisotropy field 

(HK, eff) of each sample. They found that for the samples with Ptop=0.29 Pa to Ptop=2.80 Pa, the  

HK, eff values varied by a factor 3 (figure III.17.a). This indicates the different interfacial 

quality or degree of intermixing of the samples that leads to different SIA. After, they 

measured the DW velocity with respect to the Hz field and confirmed the creep behavior of 

each sample (figure III.17b) following the creep equation 

    v = v0 exp(−χ Hz
−

1

4)      (III.10) 

where v0 is the prefactor and χ indicates the energy of the system. 

After, they studied the asymmetric DW motion behavior in presence of out of plane and 

in plane field (Hx) for each samples and DW velocity (v) vs Hx graph. The shape of the graphs 

showed features similar to my observations (figure III.18.a) showing incompatibilities with 

the simple DMI model. As well as, from the minima of the same graph, the DMI fields of 

each sample were measured. For samples with different Ptop, since their HK, eff were different 

indicating their micro-structural differences, different DMI values were expected. Contrary to 
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this, a constant DMI field (60mT±10mT) for all the samples was observed. This also 

questioned the applicability of DMI model to explain the asymmetric DW motion. 

Figure III.17.a) The variation of effective anisotropy (HK,eff) with respect to the variation Ar pressure 

used for the deposition of top Pt layer (Ptop). For the samples with smaller and higher Ptop, the HK,eff 

varies by a factor~3. b) The graph showing variation of ln V with respect to the variation of Hz
-1/4

. The 

linear behavior confirms that the sample behaves according to the creep scaling law. [Lavrijsen 

2015]. 

Figure III.18. a) The variation of DW velocity with respect to Hx, the red, black, blue and green 

curves corresponds the DW motion along +X,-X,+Y,-Y directions. Similar to my observations, the 

two velocity graphs (black and red) shows features not corresponds to DMI. b) The variation  ln v0 vs 

Hx (black curve) and χ vs Hx (red curve) extracted according to the equation III.10. The ln V0 varied 

symmetrically for ±Hx. On the other hand the variation of χ was asymmetric indicating the asymmetric 

energy variation to the DWs  [Lavrijsen 2015]. 
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To differentiate the chiral energy and chiral damping contributions, following the 

similar procedure that I used, they plotted graph of ln v0 vs Hx and χ vs Hx. However, contrary 

to our conclusion, they observed asymmetric energy and symmetric damping contributions 

(figure III.18.b) to the DWs. Therefore they concluded that neither the chiral damping nor the 

simple DMI model can explain the complete picture of the asymmetric bubble expansion in 

Pt/Co/Pt. 

Even though their analysis to differentiate between chiral energy and damping appears 

to be similar to us, there is a major difference: In their studies, they extracted the pre-factor  ln 

v0 at Hz
-1/4

 =0 (from the equation III.10). In our case, we measured the pre-factor at Hz
-1/4

= Hc
-

1/4
 according to the equation (III.18)

 
considering the studies proposed by Gorchon et al 

[Gorchon 2014] . If we apply our analysis to their results, we find that in their case, both the 

slope and the intercept of ln (v) vs Hz
-1/4 

should be different (figure III.19). Therefore we can 

conclude that, their results clearly exhibit the signature of chiral energy contibution; but they 

cannot exclude the chiral damping contribution.  

 

Figure III.19. Schematic diagram showing the difference between extractions of value of prefactior at 

Hz
-1/4

 =0 and Hz
-1/4

= Hc
-1/4

. 
 
Lavarijsen et al [Lavrijsen 2015] extracted the value of prefactor at Hz

-1/4
 

=0 where for both +Hip and –Hip the values of pre-factors appear to be same. But the same graph give 

different pre-factors at  Hz
-1/4

= Hc
-1/4 

(red dotted line)
 
. Therefore, Lavarijsen et al cannot exclude the 

possibility of the asymmetric contribution to the pre-factor  and they does not exclude the possibility 

of chiral damping. 

It is possible that some of the samples used in their experiment exhibit DW motion 

asymmetry similar to our samples. However, since they used different growth conditions that 

changes the microstructure of top Pt layer, contrary to our case, they have different 

observation where chiral energy plays an important role. 
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III.3. Comparison: Asymmetric bubble domain expansion in 

Pt/Co/AlOx and Pt/Co/Pt 

In order to understand how the asymmetric bubble expansion behaves in creep and 

flow regimes, I have performed the study of the asymmetric DW motion at large Hz. We 

observed a significant difference between the behaviors of the anti-symmetric component for 

Pt/Co/AlOx and Pt/Co/Pt. The detailed experimental results and possible conclusions are 

described in this section. 

III.3.1. Asymmetry v/s Hz (at constant Hx) 

  In order to apply large Hz, the micro coil was used (a detailed explanation about 

the micro coil set up is described in section II.3.1). The asymmetric DW displacements for a 

constant Hx were imaged using MOKE microscope. The Hip field used for the Pt(30Å) /Co(6Å) 

/Pt(15.6Å) was 80 mT and that for Pt(30Å)/Co(6Å)/AlOx was 100 mT. The corresponding images 

are shown in figure III.20. For the higher Hz values, for Pt/Co/Pt the experiments were 

affected by the adjacent nucleation (figure III.20.a). This is why we used slightly smaller Hip 

field value for Pt/Co/Pt compared to Pt/Co/AlOx. 

Figure III.20. The MOKE differential images of the asymmetric expansion of a down magnetic 

domain for a constant Hip by varying Hz a) for Pt/Co/Pt at Hip = 80 mT. Here the asymmetry 

disappears at large Hz field b) for Pt/Co/AlOx at Hip=100mT. Here the asymmetry is preserved for all 

the Hz values. 
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A quantitative analysis of the DW displacement and asymmetry variation for the 

Pt/Co/Pt for Hip = ±80mT is shown in figure III.21. The DW displacements along the ±x and 

±y directions are plotted in figure III.21.a & b. The corresponding asymmetric variations with 

respect to the Hz values are shown in the figure III.21. c & d. We observed that the asymmetry 

disappeared 110 mT. Note that the data for +Hip and –Hip yields a slightly different values for 

the asymmetry. this is due to the inhomogeneity of Hz generated by the micro-coil. 

Figure III.21. The DW displacement vs. Hz for Pt/Co/Pt measured from the differential images in 

figure III.20.  a) for Hx=-80mT b) for Hx=+80mT. Here the DW displacements along the axis of Hip 

(±X axis) are different for low Hz values. They became equal at around Hz = 110 mT where the 

asymmetry disappears. c, d) The asymmetry vs. Hz plots for for Hx=-80mT and for Hx=+80mT 

respectively. 

As shown in figure III.20, for Pt/Co/Pt, we observed that the asymmetry of the bubble 

expansion disappeared as the Hz was increased. On the other hand for Pt/Co/AlOx, the 

asymmetries always present for a large range of the Hz values.  These observations are very 

interesting and need better understanding. 
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 A possible explanation behind the asymmetry disappearance can be given based on the 

concept of the different regimes of the DW motion: steady state regime and oscillatory 

regime. This is explained in details in the following sections. 

III.3.2. The Walker breakdown in Pt/Co/Pt and Pt/Co/AlOx 

 In section I.5.2, I have described the different regimes of the DW motion. At smaller Hz 

field, the steady state DW motion is expected. As the Hz increased, the DW motion also 

increases. At a certain field called the Walker field, the DW motion becomes oscillatory. At 

this field, the DW velocity suddenly drops. In section I.5.3, I have explained the problem 

regarding the observance of walker break down. In the realistic experiments, for small Hz 

fields, the ideal behavior of the velocity curve may not necessarily be observed. This masks 

the velocity drop at Walker breakdown  

Figure III.22. The DW velocity vs. magnetic field graph measured by I.M. Miron [Miron 2009].. 

For the same field values, the velocity of the Pt/Co/AlOx (shown in red) is much larger than that of 

Pt/Co/Pt (shown in green) 

The measurements of the field induced DW velocity v/s Hz in Pt/Co/Pt and 

Pt/Co/AlOx were already done in our lab in the thesis work of I.M Miron [Miron 2009]. The 

corresponding graph is shown in figure III.22. For both cases, the DW velocity shows an 

exponential behavior for the small Hz field and then becomes linear. Since the sudden velocity 

drop of the walker breakdown in not observed here, it is difficult to directly identify the linear 

regime is corresponds to the steady state regime or to the oscillatory regime. However, the 

two velocity region can be differentiated by the DW mobility values. In the steady state 
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regime, the DW velocity varies inversely to the damping parameter (1/α). In the oscillatory 

regime, it varies with (
𝛼

1+𝛼2). i.e, the DW mobility for the steady state regime varies 

monotonically with α, while for the oscillatory regime it is limited by a maximum value. i.e, if 

the observed DW mobility is higher than the maximum value attainable in the oscillatory 

regime, it can be concluded that the linear regime corresponds to the steady state regime. In 

his observation, I.M. Miron observed that the DW velocity for the Pt/Co/AlOx is much higher 

than that of Pt/Co/Pt. By analyzing the DW mobility values, it was concluded that the linear 

regime for Pt/Co/AlOx is corresponds to the steady state regime, while that for the Pt/Co/Pt 

corresponds to the turbulent motion.  

The asymmetry disappearance we observed can be explained based on these different 

velocity regimes. 

III.3.3. The asymmetry disappearance due to the Walker breakdown 

In the steady state regime, the internal structure of the DW does not change with time. 

On the other hand, in the turbulent regime the DW transforms continuously between Néel and 

Bloch. When we apply Hip along with the Hz, the Hip can only align the DW in its direction if 

the DW motion is in steady state. In the turbulent regime, since the magnetization oscillates, 

Hip is expected to not have any significant effect. The asymmetric DW motion, according to 

both the DMI and chiral damping mechanism, is proportional to the magnetization in the Hip 

direction (mip component). This indicates that the asymmetric bubble expansion only occurs 

in the steady state regime, while it should disappear at Walker breakdown.  

We have observed that the asymmetry disappearance only occurs in Pt/Co/Pt, not in 

Pt/Co/AlOx. This can be understood considering that for the case of the Pt/Co/AlOx the 

Walker breakdown occurs at large Hz (DWs move in the steady regime) while in Pt/Co/Pt it 

occurs at small Hz (DWs move in the turbulent regime). 

One important thing to specify here is, for the case of the Pt/Co/Pt, the field at which 

the asymmetric DW motion disappears is the field DW motion becomes completely 

oscillatory. It may not necessarily be the walker breakdown field. As discussed extensively in 

this chapter, for small DW velocity region, the DW motion is a mixture of the pinning and 

depinning events. This means even though breakdown occurs, the oscillatory DW motion 

occurs only when the DW hops between two adjacent pinning centers. The Hip can still create 

the asymmetric DW motion by modifying the time of the pinning. In this case, even after the 

Walker breakdown, the asymmetric bubble expansion can be observed. The disappearance of 

the asymmetry only signifies that the DW motion reaches the flow regime, without any 

pinning or depinning events. 
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 As an application of this result, we can propose that asymmetric DW motion studies can 

be used as a standard tool to understand if the DW motion is steady state or oscillatory. This 

method only works for the material with SIA that exhibit asymmetric DW motion. Since 

simple velocity measurements in materials with significant pinning are generally not suitable 

for observing the Walker breakdown, verifying the asymmetric DW motion can serve as a 

simple method to discriminate turbulent and steady DW motion regimes. 

III.3.4. Conclusion 

In this section, I studied the variation of the DW motion asymmetry at large Hz. We 

observed that the asymmetry disappears at large field for Pt/Co/Pt, but not for Pt/Co/AlOx. 

The asymmetry disappearance is linked to the position of the Walker breakdown. Therefore, 

in multilayer systems with SIA, the asymmetric bubble expansion method can be used as a 

tool to distinguish between steady and oscillatory DW motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

III.4. Conclusion  

 In this chapter, I have mainly described my experimental studies of the DW motion in 

Pt/Co/Pt systems. At first, I explained the current induced DW motion measurements in 

Pt/Co/Pt wires. I showed that our observation contradicts the SOT+DMI model. This 

indicates that another possible mechanism can exist in the system. By analyzing the field 

induced asymmetric DW motion in the same system, we propose a new mechanism that can 

govern the DW dynamics: The chiral damping mechanism. I have presented both 

experimental and simulation studies proving the existence of the new mechanism. Finally, a 

comparative study of the field induced DW motion in Pt/Co/Pt and Pt/Co/AlOx was 

presented. We propose a new application of the asymmetric bubble expansion: we can use 

this method to distinguish between oscillatory and the steady state behaviors of the DW 

motion. 
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Chapter IV 

Non-collinear current induced domain wall motion in 

systems with large SIA (Pt/Co/AlOx) 
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 A magnetic memory device requires two basic operations: reading and 

writing of the magnetic state. After the discovery of giant magneto resistance (GMR) [Baibich 

1988]  followed by the discovery of tunnel magneto resistance (TMR) [Miyazaki 1995], the 

reading of the magnetic data is considered as an easy task to build fast and high density 

magnetic memory devices. The major issue of improving the magnetic memories has been 

related to the writing of the magnetic bits. These last years, the magnetic memory industry has 

been highly focused in finding novel routes to optimize the writing process with less power 

consumption and high speed.  

 In order to change the magnetization state of a bit, instead of using the 

magnetic field, the torque induced by the electric current can be used. It combines several 

advantages like e.g. lower energy consumption and scalability. As discussed in chapter 1, two 

mechanisms of current induced spin torques are identified: STT and SOT. Based on both 

these two torque concepts, two kinds of magnetic memory devices have been widely studied: 

1) The current induced DW motion based devices like race track memory device[Parkin 

2008]  where the magnetic bits are separated by the DW; 2) the magnetic random access 

memories (MRAMs) [Dieny 2010] where the magnetic bits are physically separated. The DW 

motion devices are mainly studied in micro-nano wires. The magnetic bits in MRAMs 

generally have pillar shapes (figure IV.1).  

 

Figure IV.1. Schematic diagrams of a) The STT switching scheme: the magnetic bit has a pillar 

shape. The current direction is restricted to a single direction (perpendicular to the tunnel junction). b) 

The SOT geometry: the current is applied along the in-plane direction with respect to the magnetic bit. 

c) The new scheme for manipulating the magnetization. In the case of SOT, the source of spin torque 

is the SIA combined with the presence of the heavy metal. The idea is to play with an additional 

degree of freedom: the current direction is no more restricted by the geometry that defines the 

magnetic dot shape, both can be structured independently. 

 In the case of STT-MRAMs, the current is applied perpendicular to the plane of 

the thin film (along the Z axis as shown in the figure IV.1.a). The electrons spins get polarized 
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by the fixed layer and transfer their spin angular momentum to the free layer resulting in the 

magnetization reversal. On the other hand in the case of SOT, no spin polarization by a 

ferromagnetic layer is required. Under the in-plane current injection, the angular momentum 

is transferred from the heavy metal crystal lattice resulting in the magnetization reversal. 

Here, unlike the STT the current flow is no more restricted to a single direction (along Z), but 

it can be applied in any in-plane direction with respect to the pillar shapes (X & Y directions 

in the figure IV.1.b). In the case of STT, the pillar shape defines the current flow as well as 

the shape of the magnetic element. On the other hand SOT geometry allows decoupling of the 

two: The heavy metal electrode shapes the current flow, independently of the ferromagnetic 

layer. This liberty allows a new approach to control the magnetization reversal: the spatial 

distribution of the current induced torque (SOT (x,y)) can be freely shaped to control the 

temporal evolution of the magnetization (M(x,y,t)). In our experiment we wanted to verify 

this possibility.  

 In SOT-MRAMs, the magnetic bits are of few tens of nanometers, larger than the 

typical size of the DW width. Here the switching occurs through domain nucleation and DW 

propagation. Thus, in order to improve the magnetization switching, the DW motion should 

be controlled. More particularly, the study of the influence of the shape on the magnetization 

switching demands to study its influence on the DW motion. For this, I have studied the 

current induced DW motion in Pt/Co/AlOx wires oriented along different angles with respect 

to the current direction. Based on the specific properties of this non-collinear current induced 

DW motion, I have developed a new kind of magnetic devices, where the shape allows to 

control the magnetization reversal 

This chapter is divided into two parts: I will describe first the non-collinear current 

induced DW motion experiments and the possible physical mechanisms that could explain my 

results.  In the second section, I will discuss about a new device concept called magnetic 

origami.  

IV.1. Non-collinear Current induced DW motion 

As presented in chapter I, in the case of the STT driven DW motion, the direction of 

the spin polarization of the electrons continuously rotates as they pass through the 

magnetization gradient. This rotation is linked to a transfer of spin angular momentum 

between the conduction electrons spins and the local magnetization. This transfer results in 

the DW motion. Here the torques acting on the DW do not depend on the direction of the 

magnetization inside the DW (Bloch or Néel). It only depends on the magnetization gradient 

profile. On the other hand, the SOT driven DW motion may strongly depend on the DW type 

(Néel or Bloch). 



92 

 

In the case of the SOT, the angle between the magnetization inside the domain wall 

with respect to the current direction as well as the direction along which the symmetry is 

broken (z), defines the strength of the effective fields that drive the DWs HFL ~ z × j and HDL~ 

m X HFL). By varying the angle, the action of the current on the DW can be tuned. In the case 

of STT, varying the angle decreases the current density passes through the domain and then 

reaches the DW. i.e., it decreases the spin polarization. In this case, as the non-collinearity 

between the current and the DW increases, a steady decrease in the DW displacement is 

expected. 

In my experiments, I studied the DW displacement variation by applying current at 

different angles with respect to the DW. The details of my experiment, results and their 

consequences are explained in this section.  

IV.1.1. The sample geometry  

 To introduce the non-collinearity, we fix the current direction and rotate the wire at 

different angles with respect to the current. For this, we fabricated Co/AlOx wires oriented in 

different directions on top of the Pt electrode (the fabrication process is described in chapter 

II. Since the Pt layer (3 nm) is much thicker than the Co layer (0.6nm), most of the current is 

expected to flow through the Pt under layer.  A schematic diagram of the system that I have 

studied is shown in figure IV.2.b. It contains 7 wires whose ends are connected. When the 

current is applied along the sample, each wire presents a different angle with respect to the 

current. The angle of the wires varies from 0° to 90° in steps of 15°.  

 

 

 

 

 

Figure IV.2. b) Schematic diagram of the structure used. The 7 different ferromagnetic Co/AlOx 

wires were fabricated on top of the Pt heavy metal. Each wire is connected to a common junction. b) 

The MOKE microscopy image of the saturated state of the wires structure confirming that only the 

wires part is magnetic. If one applies the current through the heavy metal layer (Pt), each of the wire 

presents a different angle with respect to the current direction. The angle of the wires varies from 0° to 

90°, in steps of 15°. 
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IV.1.2. DW displacement measurements 

 The current induced DW motion in each of the wires is studied using MOKE 

microscopy (the experimental set up is described in chapter II). Initially, all the wires were 

saturated using a perpendicular magnetic field. Figure IV.3.a shows the case of the 

magnetization saturated in the downward direction (the white color contrast corresponds to 

the down magnetization state). The image confirms that only the wires are magnetic. When a 

current is injected along the direction represented by the black arrow, a small up magnetic 

domain is nucleated in the upper left corner of the wires system where all the wires are 

connected. Using a small propagation field, the nucleated domain was expanded such that the 

DW reaches each of the wires. Then, under the same current injection, the displacements of 

the DWs in each of the wires were observed. Figure IV.3.b shows a differential image of the 

DW motion induced by a positive current. The black color contrast corresponds to the 

displacement of the up/down DW. By reversing the current, the down/up DW motion was 

observed (figure IV.3.c). The magnetic image clearly shows a difference between the DW 

motion under the positive and negative current injection. The DW displacement strongly 

depends on the angle of the wires.  

Figure IV.3. MOKE microscopy images of the Pt/Co/AlOx wires in the non-collinear geometry. a) 

The down magnetic saturated state. b) The differential images of the up/down DW displacement under 

positive current injection. c) The down/ up DW motion under negative current injection. d) DW 

displacement with respect to the tilt angle of the wires. The displacements under the a positive (resp. 

negative) current are shown in red (resp. green). The current density is 1.75x10
12

 Am
-2 

and a series of 

10 pulses of 2.62ns were applied. 
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 For a better understanding of the DW motion under the non-collinear current, the DW 

displacement in each wire is quantitatively analyzed. Figure IV.3.d shows the variation of the 

displacement with respect to the tilt angle of the wire. The red curve shows the displacement 

of up/down DW under a positive current injection and the green curve shows that of down/up 

DW under a negative current injection. Here the current density used was 1.75x10
12

 Am
-2

. As 

shown by the graph, the two domain walls move differently under the current injection. For 

the 0° wire both DW displacements are almost equal. As the tilt angle is introduced, the 

up/down DW moves faster compared to the down/up DW. The up/down DW displacement 

(red curve) increases and finds a maximum at around 15° and then decreases and vanishes 

around 90°. The 15° angle corresponding to the maximum DW displacement is an 

approximation since the angle is varied by in steps of 15°. For the down/up DW (green 

curve), the displacement decreases as the tilt angle is increased from 0° and it vanishes after 

45°. This means that between 45°≤60°, only one of the DW moves. 

 To confirm that this angular dependence is a characteristic feature of the DW velocities 

rather than mere DW displacements, I have performed additional measurements. In order to 

measure the DW velocity, we followed the same procedure as discussed in section II.4. For 

each wire, DW displacements were measured at a constant current density (1.81x10
12

 Am
-2

) 

for three different current pulse lengths. The DW displacement varies linearly with the pulse 

length as shown in figure IV.4. The slope of the linear dependence gives the DW velocity. 

The DW velocity versus the tilt angle (figure IV.4.c) behaves the same as the DW 

displacement shown previously 

Figure IV.4. a) DW displacement with respect to the tilt angle for three different pulse lengths 3.75ns, 

3.14ns and 2.76ns. The DW displacements corresponding to a single pulse are plotted. They are 

calculated by dividing the total displacement in each wire by the number of pulses injected for each 

case. b) DW displacement versus the pulse length for each wire. Note that for a negative current, there 

is no plot for wires with angles> 30° because the displacements were zero. c) DW velocity versus the 

tilt angle. The DW velocity value in this graph is obtained from the slope of the corresponding linear 

plot in figure b. 
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IV.1.3. DW motion along all the angles in two dimensions 

 In the previous section, I have described the DW motion in wires with angles varying  

clockwise from 0° to 90°. The same DW motion studies can be done in wires whose angles 

are varying anticlockwise from 0° to -90°. For this no additional experimental measurements 

are required. Results can be simply obtained from symmetry operations.  

Figure IV.5 shows the results of the mirror symmetry operations applied on the wires 

system. The magnetization and the magnetic field are axial If the mirror is perpendicular to 

the Y axis (figure IV.5.a), the magnetization, parallel to this mirror, gets reversed. According 

to mirror symmetry, any effect associated with the up magnetized region in the first system 

should be the same for the down magnetized region in the mirror image system. As shown in 

figure IV.5.b, the sample with wires oriented from 0° to -90° is the mirror image of the 

sample with wires oriented from 0° to 90°. It implies that the up/down DW displacements in 

the wires oriented from 0° to 90° should be the same as for the down/up DW displacements in 

the wires oriented from 0° to -90°. In the figure IV.5, the green and red arrows represent the 

DW displacements according to the graph shown figure IV.3.d. This figure IV.5 shows the 

complete picture of both up/down and down/up domain wall displacements in wires oriented 

from -90° to 90°.  

Figure IV.5. The mirror symmetry operations. a) Since magnetization is an axial vector lying in the 

plane of the mirror, the up magnetized region will be changed in a down magnetized region in the 

mirror image. b) The down/up DW displacements represented by length of the green arrows are 

changed in up/down DW displacements represented by the length of the red arrows and vice et versa 

c). The resulting figure represents the complete picture of the DW displacements in wires oriented 

from -90° to 90°. According to this complete picture, the DW motion is asymmetric with respect to the 

current direction and the up/down and down/up DW displacements show opposite asymmetry with a 

maximum displacement at +15° for the up/down DW and -15° for the down/up DW.  

x
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 By analyzing the complete picture of the DW displacements in figure IV.5, it is clear 

that the DW moves asymmetrically with respect to the current direction. The maximum DW 

velocity for up/down DWs is skewed towards positive angles and that for the down/up DWs 

is towards negative angles (figure IV.6.a & b) 

IV.1.4. DW motion in a magnetic pad 

Before discussing the possible physical mechanisms behind the asymmetric DW 

motion observed in the wires, we should first confirm that the observed phenomenon is not an 

artifact. There are two possible artifacts associated with the experiments. 1) Since I used an 

unconventional sample structure where the heavy metal and the ferromagnetic wires were 

shaped separately, we can wonder whether this separate patterning could influence the current 

flow in the sample and create the DW motion asymmetry. 2) In all the wires, we assumed that 

the DW is sitting perpendicular to the wire axis. This may not necessarily be true. The DW 

can be tilted or distorted in the wires (this situation will be explained in details in section 

IV.1.6). Thus, the angle between the current direction and the wires may not necessarily be 

the same as the angle between the current direction and the DW. 

Figure IV.6. Schematic diagrams of the DW displacements in wires with angle -90° to 90° according 

to the mirror symmetry operation showed in figure IV.5 a) for up/down DW. b) for down/up DW. c) 

The MOKE images of the initial position of the DW in a magnetic pad. Two arc-shaped DWs 

(up/down DW in red and down/up DW in green) spanning from -90° to 90° were prepared. d) 

Differential image of the DW displacement under the current injection. The two DWs move 

asymmetrically and show opposite asymmetries with a maximum velocity along the angle ~ ±20°.. 

c) 

d) 

I 

b) a) 
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In order to exclude these two possible scenarios, I repeated this non-collinear current 

induced DW motion experiment in a continuous film. The sample is a 10µm X 10µm 

magnetic pad of Pt/Co/AlOx. I nucleated two semi-circle shaped DWs in this pad (shown in 

figure IV.6.a). The advantage of this shape is that it spans all the angles from 90° to -90°. 

Then under the current injection, the DW motion was studied in the complete range of angles. 

We observed the asymmetric DW motion with opposite asymmetries for up/down and 

down/up DWs and a maximum DW displacement for angles ~ ±20° as in the case of the wires 

(figure IV.5). 

Since we observed the same asymmetry for the samples with wires as well as for the 

continuous films, the artifacts associated with the sample fabrication and the DW tilt in the 

wires can be excluded. This confirms that variation of the DW displacement is due to the fact 

that the current is applied at different angles with respect to the DWs. 

IV.1.5. Absence of the DW tilt 

In a nanowire, in order to minimize its length and thus its energy, the DW is expected 

to sit perpendicular to the wire length. However, recently K.-S. Ryu et al.
5
 showed that in 

perpendicular magnetized Co/Ni nanowires the DW tilts during their fast current induced 

motion (figure IV.7). They showed that the tilts are opposite for up/down and down/up DWs 

and that the tilt angle strongly depends on the length of the pulse (figure IV.7.b). For short 

pulses, the tilt angle is very small. It increases with the pulse length and saturates for pulse 

longer than around 100ns. Later, An explanation of this tilt formation was given by O. Boulle 

et al. [Boulle  2013] using analytical modeling and micromagnetic simulation 

In our non-collinear experiments, the angle is defined between the current direction 

and the wire axis and the DW itself. We assume that the DW does not tilt so that the angles 

defined with respect to the wire axis and the DW are the same. However, if the DW tilts as 

described by the model in
6
, this assumption is wrong. In our experiments, the width of the 

wire is around 500nm. Due to the resolution limitation of the microscope, we cannot observe 

directly if the DWs inside the wires are tilted or not. However, unlike the wire case, for the 

bubble domain case the DW motion can be directly observed for every angle. Since we 

observed the same asymmetric DW motion for the wire structure and the magnetic bubble, 

one could conclude that, with respect to the current direction, the angle with the wire axis and 

with the DW inside the wire are the same. i.e, there is no tilt formation occurs in the wires. 

The absence of DW tilt can be due to the fact that we used very short pulses. According to the 

results by O. Boulle et al for the 500nm wires that I used in my experiments, at least a pulse 

duration of 25 ns is needed to form a stable tiltIn my experiments, I used very short pulse 

length (~2 to 3 ns). This may explain the absence of the tilt formation in the wire.  
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Figure IV.7. The observations K.S. Ryu et al.
5
 a) The DW is tilted along the wire direction during its 

fast current induced motion. Black (white) color contrast corresponds to down (up) magnetic domains. 

For up/down and down/up DWs, the tilts are opposite. b) Variation of the DW tilt with respect to the 

pulse length of the injected current.  

VI.1.6. Physical mechanism behind the non-collinear current induced DW 

motion 

 For the non-collinear geometry, a series of  negative current pulses injected after an 

identical series of positive current pulses does not bring back the DW to its initial position 

(figure IV.3.b & c). If the DWs response to the current were linear, the total DW 

displacement(∆) would vanish after injection of a positive and negative current since the total 

current is zero (∆[+I]+ ∆[-I]= ∆[+I-I] =(∆[0]=0]Thus, here the effect of current on the DW is 

non-linear. The DW displacement results from the SOT and the magnetization of the DW. 

SOT vary linearly with the current. If the current only created SOT without altering the DW 

structure, the DW displacement would be linear with the current. Since it is not the case, we 

can conclude that the current not only induces SOT, but also contributes to the DW motion by 

modifying the DW structure. 

 In our system, there are two possibilities for the modification of DW structure:  1) the 

tilt of the DW in the wires 2) the canting of the core magnetization of the DW (figure IV.8.a). 

In the previous section, I explained why the DW tilt in the wires can be excluded as a relevant 

source of the asymetry. The only remaining possibility of the non-linearity is the distortion of 

the core magnetization of the DW.  

 

 

b) a) 
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IV.1.6.1. Dynamic deformations of the magnetization   

If a strong DMI exists in our system as demonstrated by recent experiments 

[Belmeguenai 2015] ,in the static configuration the DW possesses a perfect chiral Néel 

structure where the core DW magnetization is aligned with the current direction  In the 

dynamic regime, this may not necessarily be true. The combined action of the current (STT 

that I will neglect in the following and strong SOT) and DMI can distort the magnetization 

direction and change its angle with respect to the current direction.   

 

Figure IV.8. a) The two possibilities for the DW distortion: the tilt of the DW in the wires or the 

canting of the core DW magnetization. b) Schematic representation of the dynamic DW distortion in 

the SOT-DMI model. The orientation of the core DW magnetization (black arrow in the grey area), 

initially pointing along HDMI, is modified by the presence of TDL. As the DW equilibrium structure is 

distorted, the effective restoring field (HDMI in this case) exerts a torque pointing out-of the plane. The 

perpendicular magnetization variation, that moves the DW, also produces a dissipative torque αTDMI. 

In steady state motion the in-plane orientation of the DW magnetization is fixed by the balance of in-

plane torques TDL and αTDMI. c) In the presence of forces that oppose the DW motion, such as pinning 

to defects, the effect of TDL on the DW distortion is inhibited by the effective pinning torque, THpinn. 

Since there is no DW distortion, there cannot be any out-of plane torque and thus the velocity must be 

zero. 

The current induced DW motion within the SOT-DMI model can be depicted using a 

graphical construction, as shown in figure IV.8.b. When the current is applied through the 

DW, the damping-like SOT induces a distortion of the Néel DW structure. The restoring 

internal field (HDMI) creates an out of plane torque that displaces the DW. The dissipative 

torque associated to the DW motion is opposed to TDL. Since TDL and the dissipative torque 

are directed opposite to each other, at a certain steady angle, they cancel each other. 

𝑇𝐷𝐿 =  𝛼 . 𝑇𝐷𝑀𝐼 

and the out-of-plane torque dictates the DW velocity  

a) b) 
c) 
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𝑣 ∝  𝑇𝐷𝑀𝐼 

Both TDMI and TDL depend on θ, the angle between the actual DW magnetization and its static 

equilibrium position dictated in this case by the DMI 

𝑇𝐷𝑀𝐼 ∝ 𝐻𝐷𝑀𝐼 sin(𝜃)   and   𝑇𝐷𝐿 ∝ 𝐻𝐷𝐿cos (𝜃)  

Here HDMI and HDL are the corresponding effective fields.  In this case, the deformation angle 

is:  

tan(𝜃) =  
𝐻𝐷𝐿

𝛼.𝐻𝐷𝑀𝐼
 

 

 

Figure IV.9: Schematic picture of the DW distortion across the bubble. a) Down/up DW case. b) 

Up/down DW case. Initially, the magnetizations are aligned along the DMI field (shown by the dotted 

black arrows). When the current is applied, the spin orbit torque cants the magnetization clockwise for 

a down/up DW (anti-clockwise for a up/down DW). The new direction of the magnetization is shown 

by the purple arrows. For a certain angle different from 0°, the magnetization gets aligned with the 

current and the resulting DW velocity (shown by red and green arrows) is maximum. 

 If we include the magnetization distortion into the bubble domain motion 

picture, the asymmetry of the DW velocity can be explained (figure IV.9). According to the 

DMI-SOT mechanism, the DW velocity is proportional to the component of the 
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magnetization aligned with the current When the DW is distorted, the core magnetization of 

the DW at the 0° position of the bubble deviates from its alignement with the current and its 

velocity is reduced. At the same time, because of the same distortion, the core magnetization 

of the DW at a tilt angle of the bubble can align along the current direction. Hence, the DW 

displacement at this particular angle becomes maximum (figure IV.9). Due to the chirality of 

the magnetization imposed by the DMI, the magnetization distortion is opposite (clockwise 

and anti-clockwise) for up/down and down/up DWs. Hence the two DWs shows opposite 

asymmetry. 

IV.1.6.2. Asymmetric DW motion in creep regime 

An important specificity of the SOT-DMI model is that the velocity depends on TDMI 

(see figure IV.8) that depends on the dynamic canting angle: a significant DW distortion is 

synonym of large velocity while a slow DW motion is accompanied with a small distortion. 

 However when the injected current density is decreased to decrease the DW velocity, 

the DW motion regime changes.  At the small current densities, the DW enters the creep 

regime. In this regime, the DW is sensitive to the imperfections or the defects in the material 

structure that act as local pinning centers. Although this regime is much more complicated, 

involving the displacement of an elastic interface in weakly disorder medium (see chapter I), 

it can be viewed here in a simpler way. The DW displacement involves the pinning and 

hopping between pinning centers. The DW spends the majority of the time at the pinning 

centers and moves very fast between the pinning centers. Therefore the average velocity is 

largely determined by the density of the pinning centers and their depinning time, where the 

short period of the DW motion between the pinning centers is negligible.  

 To a first approximation, the DW pinning acts as an effective field opposing the DW 

motion (figure IV.8.c).  

If 𝐻𝐷𝐿  ≈  𝐻𝑝𝑖𝑛𝑛 the DW deformation becomes  

tan(𝜃) =  
𝐻𝐷𝐿 − 𝐻𝑝𝑖𝑛𝑛

𝛼.𝐻𝐷𝑀𝐼
 ≈ 0 

At very small DW velocities the DW distortion should vanish. In the absence of this DW 

distortion, the maximum DW velocity should be along 0°, not at a finite angle. 

 In order to test the validity of the asymmetric DW motion mechanism presented above, I 

repeated the same experiment on the magnetic bubble domain for different, and particularly 

smaller current densities: 1.1x10
12

 Am
-2

, 1.6x10
12

 Am
-2

 (case shown figure IV.6) and 

2.1x10
12

 Am
-2

.  
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For the smaller current density, the DW motion was slowed down approximately by 

three orders of magnitude compared to the two other current densities). The DW velocity was 

extremely small (~0.1m/s) and the DW dynamics is expected to be in creep regime. 

Interestingly, the asymmetric behavior of the DW motion remained the same (figure IV.9). 

Since the same asymmetric behavior is observed for both fast and very slow DW motion, the 

physical mechanism described above is not valid and the asymmetric motion has a different 

origin or needs a more complex model than the simple DMI-SOT mechanism.  

To conclude, with the current understanding of the SOT driven DW motion in the 

presence of DMI, it is very hard to explain the asymmetric DW motion, apparently 

independent on the DW motion regime. More experiments are needed to get a better picture 

of the exact physical mechanisms behind the non-collinear current induced DW motion. 

Figure IV.10. DW displacements in a magnetic pad at very low current density (1.1x10
12 

Am
-2

). a) 

For down/up DW. b) For up/down DW. The maximum DW velocity was very slow (0.1m/s), but the 

DW motion asymmetry was preserved, with a maximum velocity for an angle around 20°, identically 

to the fast domain wall motion regime. 

IV.1.7. Angular dependence of the critical current 

 We have studied the critical current density for the DW motion in each wire. In our 

experiment, the critical current density is defined as the smallest current required observing 

the DW displacement over the resolution of the microscope (300 nm). Ideally, a continuous 

current should be used for this experiment. However, using such current increases the sample 

temperature. This may either lead to the nucleation of new domains or thermal breakdown of 

the sample. This is why, we have measured critical current density for 1000 pulses with three 

different durations (1.8ns, 3.8ns and 6.3ns) injected at 100 Hz frequency. The corresponding 

measurements are shown in figure IV.10. We observed that the critical current density mirrors 

the velocity dependence on the tilt angle of the wire. Again, this result excludes the possibility 

of the DW tilt formation in the wires: the pulses are short and DW does not move enough 

distance to form the DW tilt.  

    

    

I 

b) a) 

I 



103 

 

0 15 30 45 60 75 90

1,0

1,2

1,4

1,6

1,8

2,0

2,2

j c
 (

1
0

1
2
 A

m
-2
)

Angle (°)

1ns  up/down  down/up

3ns  up/down  down/up

5ns  up/down  down/up

j x 'l' ns x 1000 x 100Hz

For each wire, the critical current densities decreased as the pulse length were 

increased. This is expected because the increase in the pulse length increases the thermal 

energy that eases the DW depinning. 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.11. The critical current density v/s the tilt angle of the wire (ϕ) for +I (shown as closed 

symbols) and –I (shown as open symbols). The black, blue and red curves correspond to the current 

pulse lengths1.8ns, 3.8ns and 6.3ns respectively. 
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IV.2. Magnetic origami 

IV.2.1.The basic concept 

Origami is the art of paper folding where one can create different shapes from the 

same sheet of paper. In our studies, we implement the concept of the origami into magnetic 

devices. We introduce new magnetic switching schemes where the magnetization reversal 

depends on the geometry of the device. i.e., different shapes fabricated from the same 

magnetic thin film undergo different magnetization reversal schemes under the same current 

injection.  

As the current technological world craves for faster and more efficient devices, 

magnetic devices like memories and logic devices should also be improved with better 

functionality and faster accessibility. Finding novel routes for storing, retrieving and 

transmitting the magnetic information is important for improving these magnetic devices. 

Information is written by switching the magnetization using either magnetic or electrical 

excitations. If one could introduce a simple additional parameter that harnesses the 

complexities of the magnetization reversal, new and better magnetic devices can be designed. 

This is what the concept of magnetic origami offers. In our experiments, we show that by 

simply changing the geometry of the device,  a large versatility for the magnetic device 

functions can be achieved.  

The idea of the geometrical switching is constructed based on the specific features of 

the non-collinear current induced DW motion that I described in the last section. Even though 

the exact physical mechanism behind this effect is not completely clear, the specific 

characteristics of the DW motion are useful for practical applications. While in the collinear 

geometry, upon current injection, DWs move equally in the wires irrespective to their 

polarity, in the non-collinear geometry, the DW motion depends on the current direction as 

well as on the DW type (up/down or down/up). An important feature of the non-collinear DW 

motion is that in the wires with angles ≥ 45°, only one polarity of DW moves while the other 

stands still: the up/down DW moves in the wire with +45° angle with respect to the current 

direction while the down/up DW moves for the wire with -45° angle. This offers a unique 

possibility of DW selectivity and, from an application point of view, opens up the possibility 

of new devices. The beauty of this idea lies in the simplicity of its implementation; it requires 

only changing the shape of device  

Exploiting the property of the DW selectivity, we have developed new devices whose 

magnetization switching is determined by their geometry. We experimentally demonstrated 

two geometries with different kinds of switching schemes: ‘u shaped’ reversible and ‘s 
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shaped’ irreversible switching. A detailed description of the device construction, switching 

mechanism and experimental results will be given in the following sections. 

IV.2.2. The building blocks 

The geometries for the reversible and irreversible switches were constructed by 

joining three wires of angle 0°, ±45°. The wires with angle 0° can transmit both up/down and 

down/up DWs. The ±45° wires select the DW polarity so that it determines the polarity of the 

magnetization switching (figure IV.12). In our device the switching occurs through domain 

nucleation followed by the DW motion. If the magnetization is initially saturated, we need 

first to nucleate a domain to induce the switching. This nucleation can be induced by joule 

heating due to the injection of relatively high current density pulses. Since the ±45° wires 

determine the switching polarity, the domain should be nucleated in these wires and not in the 

0° wire (the nucleation is discussed in details in section IV.2.6). To control this nucleation, 

this, we make one end of the ±45° wires much narrower than the other (figure IV.12.c). Since 

the magnetic volume is smaller in the narrower regions, its thermal stability is less compared 

to the wider region. Therefore the nucleation can be achieved in the narrow parts of the ±45° 

wires for relatively smaller current compared to that needed for nucleating a domain in the 0° 

wire.  

Figure IV.12. The basic building blocks for the construction of the shape based switches. a) The 0° 

wires:  here under current injection, both up/down and down/up DWs move. Thus, the wire can be 

used as a DW transmitter. b) In the 45° wire, only one of the DW moves. Hence, it can be used as DW 

selector. c) The tilted wires define the direction of the magnetization switching by selecting the DW 

polarity to be injected. In order to inject the DW, we need first to nucleate a domain. The nucleation 

can be controlled by giving pin shapes to one end of the tilted wires. 

In the ±45° wires, the nucleated domains expand or contract depending on their 

magnetization direction. In +45° wires the up/down domain wall moves, while the down/up 

DW does not. If the nucleated domain is oriented upwards, it expands along the wire. On the 

other hand, if the nucleated domain is oriented downwards, the mobile up/down DW moves 

b) 

+I 

a) c) 
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and meets the immobile down/up DW resulting in the collapse of the magnetic domain (figure 

IV.13.c).  Opposite domain expansion occurs in -45° wire. 

By joining these three wires to form specific two dimensional geometries, reversible 

and irreversible magnetic switching devices can be designed. 

IV.2.3. The u-shape device: a reversible switch 

 By joining two tilted wires with opposite tilt angles at the two ends of a straight wire a 

bipolar switch can be built. We call this device a ‘u-shape switch’ because the device shapes 

like the letter ‘u’. In a functional device, the read element, such as the top part of a magnetic 

tunnel junction, is placed on top of the straight wire (0° wire). 

The switching mechanism of the u-shape and inverted u-shape devices is shown in 

figure IV.13. Here the DW motions under positive and negative current injection for the two 

different initial saturation (up or down) states are shown. The magnetization reversal direction 

is defined by two parameters: the device shape and the current direction.  

Figure IV.13. Schematics of the DW motion during switching. The black and white colors correspond 

to up and down magnetization states respectively. a) Switching of inverted u-shape under a positive 

current injection. The DW moves from left to right along the current direction. If the device is initially 

saturated down, an up magnetic domain gets nucleated at the end of the tilted wires. In the nucleated 

domain, the fast moving down/up DW sits behind the immobile up/down DW. Hence, the nucleated 

domain diminishes and no DW is propagated through the straight wire. On the other hand, if the 

saturation is initially up, the down nucleated domain on the left wire expands to the straight wire 

resulting in the switching to the down magnetization. b) Switching for u-shape device under the 

injection of a positive current. c) Switching of inverted u-shape d) and u-shape, under the injection of a 

negative current.  

The magnetization of the inverted u-shape device submitted to a positive current 

injection (figure IV.13.a) switches only into the down direction. If the initial saturation state is 

already downward, no switching occurs. This is because under positive current, the DW 

propagates from left to right. The relevant domain is then nucleated in the narrow part of the 

left wire (-45° wire). In this -45° wire, the down/up DW moves while the up/down DW stays 

No switching 

+
I

+
I

-I -I 

down to up  

 up to down 

down to up  No switching 

No switching  up to down No switching 

a) b) c) d) 
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still. This results in the expansion of the down magnetic domain and the contraction of the up 

magnetic domain. Thus if the initial magnetic state is upwards, under a current injection, a 

down magnetic domain gets nucleated in the left wire and then it expands through the straight 

wire.. If the initial state is already downwards the magnetic state of the straight wire is not 

altered. Now to switch from the down to the up direction, the current should be applied in the 

opposite direction (figure IV.13.c). This is because under negative current injection, it is the 

domain nucleation and the DW propagation in the right wire (45° wire) that defines the 

switching. In this 45° wire the up/down DW moves while the down/up/ DW stays still. Since 

magnetization reversal in opposite directions can be achieved by applying current in opposite 

direction, the device is a bipolar switch. 

The u-shape and the inverted u-shape are mirror images. According to the mirror 

symmetry operations, for the same current direction, the switching behaviors of the two 

devices are opposite to each other as represented in figure IV.13.. 

Figure IV.14: MOKE microscopy images of the switching events in u-shape and inverted u-shape 

devices under the injection of a series of 8 current pulses (whose direction is shown by the black 

arrows) of 4.4ns length with a current density = 1.87x10
12

 Am
-2

. The first raw shows the initial state of 

the devices and the second raw contains the differential images of the switching events after applying 

the current. Different initial saturation states were studied: both u-shape and inverted u-shape saturated 

upwards, downwards, or a mixed state of the two saturations. In all the events, the switching occurs 

according to the mechanism described previously (figure IV.14). The u-shape and inverted u-shape 

devices always behave opposite to each other. 

In order to check experimentally if the switching in the u-shape and inverted u-shape 

occurs according to this mechanism, the two devices were fabricated from the same 

Pt/Co/AlOx thin film (the fabrication process is detailed in chapter II). The final device 

consists in u-shape and inverted u-shape Co/AlOx structures on top of a Pt electrode. The 

length and width of the central region were 2µm and 500 nm respectively. The switching was 

imaged using MOKE microscopy. The two devices were fabricated adjacent to each other on 

the same Pt electrode so that they can be imaged simultaneously under the same current 

1



J = 1.87x10
12

 Am
-2
 

8 x 4.4 ns 

initial 
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injection. The different switching events under different conditions (positive and negative 

current, initial saturation up or down, are shown in figure IV.14. The switching images 

confirm that the two devices are bipolar switches with opposite switching behaviors under the 

same current injection as explained before (figure IV.13) 

IV.2.4. The s-shape device: an irreversible switch 

In the u-shape devices, even though the magnetization reversal is controlled by the 

geometry of the device, it still depends on the current direction. Using the same idea, we can 

build objects whose switching is completely independent of the current direction and purely 

defined by the shape. In the u-shaped device, the two wires with opposite tilt angle were 

connected to the straight wire. In the new ‘s’-shaped device, the two pin wires have the same 

tilt angle. The detailed schematics of the DW motion are shown in figure IV.16. Whatever the 

direction of the current, positive or negative, both right and left pin wires select the same DW, 

resulting in the straight wire always magnetized in the same direction. This direction is only 

determined by the tilt angle (+45° or -45°) of the wire.  

Figure IV.15. a) Schematics of the switching events in s-shaped devices. Since the two pin wires have 

the same tilt angle, they select the same DW to be propagated into the straight wire under both positive 

and negative current injection. Hence the final magnetization state of the device always remains the 

same (either up or down). The switching polarity depends on the sign of the tilt angle. b) MOKE images 

confirming the switching schemes as explained in figure a. Here a series of 8 current pulses of 5ns 

length with a current density = 1.87x10
12

Am
-2

 were applied. Under the current injection, a device always 

ends up in the same magnetization state. i.e, the switching is irreversible 

b) 

a) down to up No switching 

No switching up to down 
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Figure IV.15.b shows the MOKE images of the magnetization switching in the s-

shaped devices. After the current injection, the magnetization state of the particular device 

always remains in the same direction, i.e. the switching in these devices is irreversible. 

 From applications perspectives, such irreversible switches can be used as reference 

bits where the magnetization state always remains in the same direction irrespective of the 

current direction. 

IV.2.5. Imaging of DW motion during switching 

In the previous parts, only the result of the switching process was imaged (figures 

IV.14 and IV.15). In order to confirm that the switching follows the nucleation/propagation 

mechanism that is at the basis of our Origami concept, images during the switching process 

are required. Real time imaging is far from the temporal resolution and sensitivity of the 

MOKE technique we used. However, the complete switching was obtained after the injection 

of 8 consecutives current pulses and images can be obtained after a given series of these 

pulses to follow the switching mechanism.  More precisely these 8 current pulses were 

divided into 4 series of 2 pulses and a differential image was taken after each series. The 

corresponding images are shown in figures IV.16 and IV.17. Initially, the magnetization of 

the devices was saturated by applying a magnetic field. 

Figure IV.16: Step by step imaging of the DW motion during the switching for a u-shape device and 

an inverted u-shape device. The pulses used were 4.4ns long. The first raw contains the images of the 

initial magnetic states of the switches. The black arrows show the direction of the current. The further 

consecutive images in each column correspond to the step-by-step DW motion after applying a series 

of 2 current pulses at each step. These images confirm that the switching occurs according to the 

nucleation and DW propagation mechanism explained in the text 
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Figure IV.17: Step by step imaging of the DW motion during the switching for s-shape devices. The 

length of the current pulse used here was 4.4ns. 

IV.2.6. Switching: size, speed and nucleation limits  

The switching scheme that we propose is based on heat induced domain nucleation 

and selective DW propagation. The speed of the switching depends on the total length of the 

device as well as on the DW velocity. The smaller the size of the bit length and larger the DW 

velocity, the faster will be the switching. Due to the resolution limit of the optical microscope, 

we chose the 2 µm length for all the straight wires in all the devices. Ideally it should be 

possible to make switches with the smaller size that work using exactly the same principle as 

long as their length remains larger than the DW width. A second way of improving the 

switching time is to increase the DW velocity. The maximum DW velocity reported in 

Pt/Co/AlOx was around 400 m/s. In our experiments, the maximum DW velocity achieved 

was around 100 m/s. This is because the sample resistance limited the maximum current 

density that we could apply. By using devices with less resistance, it can be possible to 

improve the DW velocity and thus the switching speed. 
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The range of pulse width and height where controlled switching occurs is limited by 

domain nucleation. As discussed earlier, the shape of the switch contains two tilted wires and 

a straight wire. The switching is only possible if the nucleation takes place in the tilted wires 

and not in the straight wire. For this, the tilted wires have a pin shape in order to decrease the 

thermal stability in the narrower regions. Thus the current required to nucleate the DW in the 

tilted wires is always smaller than that in the straight wire. At the upper limit, when the 

current becomes large enough to create nucleation in the straight wire, the switching becomes 

stochastic.   

Figure IV.18. The current density required for the switching a) Graph showing the pulse length 

required for switching with respect to the current density. The dark and light blue regions correspond 

to the saturated and non-saturated initial states of the switches. Note that the switching pulse length 

window becomes narrow as the current density increases. This is because for large current density, a 

small change in the pulse length produces a large variation in Joule heating and nucleation becomes 

easier. b) A schematic diagram of switching from a saturated state. The reversal begins with a 

nucleation (upper panel) followed by DW propagation through the straight wire and into the second 

tilted wire, where it stops (lower panel). c) Since a DW is already present, the high current density 

required for nucleation is not required any more. Therefore, the object can be switched back with 

lower current density. This phenomenon increases the switching range (light blue area in panel a).  

The critical current density required for switching depends on the initial magnetic state 

of the switches. For all the switching experiments that we discussed so far, magnetization was 

initially saturated using an external magnetic field. But there is also another possible initial 

state where DW is already present in the tilted wires. In this case no nucleation is required for 

switching. One such possible situation is schematically shown in figure IV.18b&c. To switch 

our device, we apply a current such that the nucleated DW in one tilted wire propagates 

through the straight wire and reaches the second tilted wire. Here, because of the opposite tilt, 

the DW will stop. Now if we want to do a second switching to the opposite direction, since 

there is already a DW present in the tilted wire, there is no need of nucleation. Instead we 
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only need to apply current to propagate the DW in opposite direction. Since the current 

required for propagation is smaller than that for the nucleation, the critical switching current 

becomes smaller. Note that the possibility to have DWs that remain in the pins depends on the 

relative magnitude of two effects. The retaining force is given by the strength of the pining to 

defects. The expelling force is derived from the DW energy reduction corresponding to the 

shortening of the DW as it moves toward the end of the triangle. To obtain saturation of the 

tilted wires they could be shortened, thereby increasing the pin angle and the resulting 

expelling force. We chose to work with long tilted wires such that the DWs do not move out 

by themselves, since we can easily saturate the samples using external field.  

In order to evidence these different types of behavior, we systematically studied the 

switching as a function of the length and the intensity of the current pulses. The result shown 

in figure IV.18.a indicates the existence of three different regions: no switching, switching 

and nucleation regions. For a particular current density, an increase in the length of the 

current pulse increases the Joule heating. For short pulses, there is not enough heat for the 

nucleation and thus no switching. When we increase the pulse length, the heating becomes 

sufficient to nucleate in the tilted wires and the switching begins. The upper limit is given by 

the pulse length where nucleation occurs in the straight wire. Above, the switching becomes 

stochastic.  

 The critical current dependence on the initial state is also illustrated in Figure IV.18.a 

where the switching region is further divided into two. The dark and light blue region 

corresponds to the switching window for saturated and non-saturated initial states. 

IV.2.7. The advantages and the future of magnetic origami 

 The current induced DW motion has been a well-known phenomenon for many years. 

Until now, for the application requirements, it has been studied in one-dimensional systems 

like nanowires. Here through our new studies, we could introduce the current induced DW 

motion into a new dimension. We prove that by understanding the current induced DW 

dynamics in different 2D geometries, new and interesting device concepts can be developed. 

The physical phenomenon that led to the realization of this new concept is the 

asymmetric characteristics of the DW motion in the non-collinear geometry. Here, one could 

vary the relative motion of the two domain walls depending on their polarity and the degree of 

the non-collinearity. Such freedom is not possible in the conventional collinear geometry. We 

infer that this new liberty to control the current induced DW motion opens a wide range of 

applicability for the DW based devices. 

The ‘u-shape’ and the ‘s-shape’ devices explained previously are merely two 

examples of what can be achieved by the geometry control. In Pt/Co/AlOx material itself, it 
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will be possible to make numerous shapes and achieve different magnetization reversal 

schemes. At the same time this new concept can be extended into different magnetic 

multilayer systems. The SOT based DW motion and switching experiments have been widely 

studied in many magnetic multilayer systems. Our new experiments can be done in all these 

systems. Since the spin orbit interactions are different in different systems, the asymmetric 

non-collinear DW motion is expected to be material dependent. Then according to the DW 

dynamic properties, each system requires its own device geometries. For this reason, the 

geometrical switching offers countless strategies to develop different magnetic devices.  

Compared to the STT switching, the SOT switching holds the advantage of the better 

endurance. In the case of STT based switching, the writing current should be applied across 

the magnetic tunnel junctions (MTJs). For the SOT switching, the current is applied in-plane 

through the heavy metal and not through the MTJ. Since the MTJs are very sensitive to the 

current induced electrical and thermal breakdown, the SOT based devices present a much 

better endurance. On the other hand, compared to the STT switching where only current is 

used, the SOT switching requires an additional small in-plane field to decide the 

magnetization reversal direction[Miron 2011], i.e. the SOT switching is not a purely current 

induced phenomenon. Our new geometrical switching holds the same properties of the 

conventional SOT switching and, additional to this, it presents the advantage that the 

switching does not require any in-plane field. Here, the magnetization reversal direction is 

dictated by the geometry, not the in-plane field. Hence the switching is a purely current 

induced phenomenon. 

Moreover, the non-collinear current induced DW motion enlightens new insights to 

the understanding of the physics behind the SOT driven DW motion. As discussed in section 

IV.1.5.2, the asymmetric DW motion can be due to a more complex phenomenon than simple 

SOT+DMI mechanism. For more understanding, the non-collinear DW motion of 

experiments can be extended to different multilayer systems. This will be the future 

perspective of this study. 

To summarize, from both the application and the physics point of view, our new 

concept open new and interesting research possibilities to the current and future spin 

orbitronics research field.   
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IV.3. Conclusion 

In this chapter, I described my experimental studies on current induced DW dynamics 

in Pt/Co/AlOx multilayer systems. I have studied the DW motion under non-collinear current 

injection. I observe that the current induced DW motion is asymmetric in the two dimensional 

geometries and that this asymmetry seems to be independent on the motion regime. It remains 

the same in the flow and the creep regime whereas the velocity is changed by three orders of 

magnitude. This observation points the limitations of the standard SOT/DMI model to explain 

my observation. Either an “ingredient” is missing or the model needs to be refined. The 

discovery of this asymmetric DW motion opens a broad field of application that we named as 

magnetic origami. Using this concept, we have shown that it is possible to build magnetic 

devices whose operations depend on the geometry of the magnetic device. I have developed 

two kinds of geometrical switches: reversible (bipolar) and irreversible (unipolar). Unlike the 

conventional SOT case, our new switching schemes are purely current induced phenomenon 

without any in-plane field required. Since this method uses the angular momentum by in-

plane current injection, it can be used with wide range of materials from heavy metals to 

topological insulators. The major advantage is the ease to implementation: making shape is 

easily achievable in the lithography process. In CMOS technology, it provides a large 

versatility to the microchip design: cells with different shapes having different functions can 

be fabricated on a same chip with a single technological process.  

To conclude, we introduce an interesting idea that is capable of extending the capacity 

of the usage of spin orbit torques into more exciting technological applications. 
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General conclusion 

 The role of structural inversion asymmetry (SIA) in different magnetic 

phenomena is currently one of the hottest research topics in nanomagnetism. Recently, along 

with the SIA, the influence of the spin orbit interaction in magnetic DW dynamics is widely 

studied. During my Ph.D, I have performed different experiments on this timely topic. I have 

studied two kinds of multilayers: Pt/Co/Pt and Pt/Co/AlOx. Both of them are perpendicular 

magnetic anisotropic systems. The DW motion was detected using MOKE microscopy 

magnetic imaging technique 

Pt/Co/Pt multilayers are almost symmetric. In this system, a weak SIA can be 

produced by the crystallographic differences between the top and bottom Co interfaces and by 

the different Pt thicknesses.  

The DWs can be moved either by electrical current or magnetic field. I started my 

experiments with the qualitative study of the current induced DW motion 

Pt(30Å)/Co(6Å)/Pt(15.6Å) nanowires. Two kinds of torque mechanisms can be responsible for the 

current induced DW dynamics: spin transfer torque (STT) and spin orbit torques (SOT). For 

the STT case, the direction of the DW motion should be against the current flow. In our 

Pt/Co/Pt sample, the DW moved in the same direction of the injected current. Therefore, we 

concluded that STT does not play a role here.  

Recently, it was predicted that the combined action of the damping like component of 

the SOT (TDL) and Dzyaloshinskii Moriya interaction (DMI) can drive the DW motion either 

in the same or opposite direction of the current flow. In multilayers with SIA, DMI imposes 

chiral Néel DW structure. Depending on the material properties and multilayer composition, 

the DWs can have either left handed or right handed chirality. Similarly, the TDL can be either 

positive or negative. By observing the DW motion direction and measuring the sign of the 

TDL, the DW chirality can be identified. For this, we measured the sign of the TDL by studying 

the current induced DW motion in the presence of an in-plane magnetic field. From this 

measurement, we concluded that in our system the DMI should induce the left handed Néel 

DWs.  

In literature, other indirect methods were proposed to identify the DW chirality. 

Another technique is the field induced asymmetric domain expansion method. It was shown 

that, in Pt/Co/Pt, the out of plane field induced (Hz) domain expands asymmetrically in the 

presence of an in-plane field (Hip). Using this method, both the sign and the strength of the 

DMI exchange field in DW were measured. We also reproduced the same measurements and 

we found that according the DMI model, the DW should have the right handed chiral Néel 

structure. This contradicts to what measured from the current induced DW motion. Therefore, 
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we decided to perform a detailed quantitative study of the asymmetric DW motion. After 

verifying the validity of the DMI model, we also searched for other possible physical 

mechanisms that could give rise to the asymmetry. We performed two kinds of experiments. 

At first we measured the DW velocity variations with respect to the Hip at a constant Hz. 

Secondly, we studied the DW motion at varying the Hz and constant Hip.  

In the first experiment, we extract the anti-symmetric component of the DW motion 

from the DW velocities (V). We found that the saturation of the asymmetry indicating the 

saturation of the DW magnetization along Hip, coincides with a change of slope of the raw 

velocity for both DWs. This proves that both DWs saturate at the same field value, thus ruling 

out the existence of the DMI induced chiral Néel wall in these samples. When repeating  the 

experiment with different samples  of Pt(30Å)/Co(6Å)/PttÅ with varying upper Pt layer thickness 

(x) we observe that they all exhibit  similar  features.  

 The field induced DW motion is mathematically described by Landau–Lifshitz–

Gilbert (LLG) equation that contains two terms: An energy term (related to the effective 

fields) and a dissipative term (related to the damping). DMI influences the DW motion by 

contributing an additional effective field (±HDMI) that modulates the energy term. We realized 

that there is another possible situation where the DW motion can be affected by the damping. 

i.e., the different damping experienced by the two DWs can result in asymmetric DW motion. 

We decided to perform a new experiment to differentiate between these two possible 

scenarios. The DW velocity is now measured as a function Hz under a constant Hip. Based on 

the creep scaling law, we can separate the energy terms influencing the DW motion from the 

slope of the linear plot ln (V) vs Hz
-1/4

. We found that the DW velocities for the two different 

chiralities have the same slope indicating that their energies are same. They differ by an offset 

linked to V0, the creep velocity factor. V0 depends on both energy and damping. Since the 

energies of the DWs are the same, we conclude that the difference in the intercepts that causes 

the difference in the two DW velocities is due to the difference in damping. We confirmed 

this possibility using the simulation and numerical modeling which reproduced the 

experimental results. 

We propose the idea of the chiral damping by including an additional damping term 

(α) in the LLG equation. This additional damping is chiral in the sense that it depends on the 

type of DW (Up/Down or Down/up) and orientation of its core magnetization with respect to 

the magnetization gradient:
 
α ∝ αc (m⃗⃗⃗ ip.∇ m⃗⃗⃗ z). 

Chiral damping is the dissipative counterpart of the DMI. Therefore, just like DMI, it 

can play an important role in the magnetization dynamics in different magnetic textures. 

However, more theoretical work is needed to understand the physical origin of chiral 

damping. This is one of the future perspective of this study. Measuring the contribution of the 
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chiral dmping in different magnetic system may bring more insights for the understanding of 

the DW dynamics in systems with SIA. 

Finally, the asymmetric bubble expansion in Pt/Co/AlOx and Pt/Co/Pt were compared. 

We found that, at constant Hip, increasing the Hz results in the disappearance of the 

asymmetry in Pt/Co/Pt. On the other hand, in Pt/Co/AlOx it survived at large Hz fields. We 

attribute this to the presence of Walker breakdown in Pt/Co/Pt at low Hz field, but not in 

Pt/Co/AlOx. We propose to use the asymmetric bubble expansion as a tool to differentiate 

between the steady and oscillatory regimes of the DW motion in materials with SIA. 

In the second part of my Ph.D, I have studied the non-collinear current induced DW 

motion in Pt/Co/AlOx. This study led to the realization of new magnetic device concept: 

magnetic origami. 

In Pt/Co/AlOx nanowires the measured current induced DW motion is extremely 

efficient. The current induced DW motion measurements were done by injecting the current 

collinear to the wire, and to the direction of the DW motion. In our experiments, we 

performed experiments in an unconventional geometry where the current is injected at 

different angles with respect to the DW. For this purpose we fabricated ferromagnetic (Co) 

wires of different tilt angles above the Pt under layer. This allowed the study of the DW 

velocity dependence on the the tilt angle. To avoid possible artifacts due the nanofabrication, 

the same kind of experiments were repeated in a larger non-patterned magnetic pad where a 

circular DW spans all angles. We observed the same kind of behavior in both cases: the DW 

moves asymmetrically as the wires are tilted left or right with respect to the electric current. 

For up/down and down/up DWs, the opposite asymmetries were observed.  

When analyzing our results using the DMI+TDL mechanism of the current induced 

DW motion, we found that this mechanism may explain the DW motion asymmetry in flow 

regime, but fails to explain it for thermally activated motion. Therefore, the non-collinear DW 

motion characteristics require at least a more complex mechanism than the simple DMI+TDL 

model. This could be the future perspectives of this study. 

Even though the physical mechanism behind the asymmetric DW motion is not 

completely clear, such behavior is highly useful for application. We found that above the tilt 

angle ≥ 45°, only one DW polarity can move. This phenomenon can be used to select the DW 

polarity. Based on this, we constructed new magnetization switches where the magnetization 

reversal depends on the geometry of the device. Experimentally, we showed two different 

geometries (u shape and s shape) giving two kinds of magnetization reversals: reversible and 

irreversible. The same idea is applicable for different geometries and different materials. In 

short, we put forward a simple but fruitful concept with a wide range of applicability in 

magnetic memories. 
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To summarize, during my Ph.D., I have studied the DW motion in magnetic 

multilayers with different SIA. My results contribute to the understanding of the physical 

mechanism underlying the DW dynamics in these materials. I also introduced a new device 

concept offering an easy way of engineering the propoerties of spintronics devices. 
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