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Résumé
On s’intéresse au phénomène d’explosion en temps fini dans les équations aux dérivées

partielles paraboliques non linéaires, particulièrement au profil à l’explosion, des points
de vue numérique et théorique.

Dans la partie théorique, on s’intéresse au phénomène d’explosion en temps fini pour
une classe d’équations semi-linéaires de la chaleur perturbées fortement avec l’exposant
sous-critique de Sobolev :

∂u

∂t
= ∆u+ |u|p−1u+ h(u),

où u : (x, t) ∈ R
n× [0, T ) → R, 1 < p, p < n+2

n−2 si n ≥ 3, et la fonction h ∈ C1(R)∩C2(R∗)
satisfait

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
,

avec M > 0 et a > 1, ou h(z) =
µ|z|p−1z

loga(2 + z2)
avec µ ∈ R et a > 0.

Travaillant dans le cadre des variables auto-similaires, on obtient d’abord l’existence
d’une fonctionnelle de Lyapunov, ce qui constitue une étape cruciale pour établir le taux
d’explosion de la solution. Dans une seconde étape, on s’intéresse à la structure de la
solution au voisinage du temps et du point d’explosion. On classifie tous les comporte-
ments asymptotiques possibles pour la solution quand elle s’approche de la singularité.
Ensuite, on décrit les profils à l’explosion correspondant à ces comportements asymp-
totiques. Dans une troisième étape, on construit pour cette équation une solution qui
explose en temps fini en un seul point avec un profil d’explosion prescrit. Cette con-
struction s’appuie sur la réduction en dimension finie du problème et sur l’utilisation du
théorème de l’indice pour conclure.

Dans la partie numérique, on se propose de développer des méthodes afin de don-
ner des réponses numériques à la question du profil à l’explosion pour certaines équa-
tions paraboliques, y compris le modèle de Ginzburg-Landau. Nous proposons deux
méthodes. La première est l’algorithme de remise à l’échelle (rescaling) proposé par
Berger et Kohn en 1988, appliqué à des équations paraboliques satisfaisant une pro-
priété d’invariance d’échelle. Cette propriété nous permet de faire un zoom de la so-
lution quand elle est proche de la singularité, tout en gardant la même équation. Le
principal avantage de cette méthode est sa capacité à donner une très bonne approxi-
mation numérique qui nous permet d’atteindre numériquement le profil à l’explosion.
Le profil à l’explosion que l’on obtient numériquement est en bon accord avec le pro-
fil théorique. De plus, en considérant une équation de la chaleur non linéaire critique
avec un terme de gradient non linéaire, avec peu de résultats théoriques, nous énonçons
une conjecture sur le profil à l’explosion, grâce à nos simulations numériques. La deux-
ième méthode numérique s’appuie aussi sur un raffinement de maillage, dans l’esprit
de l’algorithme de remise à l’échelle de Berger et Kohn. Cette méthode est applicable à
une plus grande classe d’équations dont les solutions explosent en temps fini sans la
propriété d’invariance d’échelle.

Mots clés : Équation semi-linéaire de la chaleur, perturbation d’ordre inférieur, singular-
ité, explosion numérique, explosion en temps fini, profil, stabilité, comportement asymp-
totique, équation complexe de Ginzburg-Landau.





Abstract

We are interested in finite-time blow-up phenomena arising in the study of Nonlinear
Parabolic Partial Differential Equations, in particular in the blow-up profile, under the
theoretical and numerical aspects.

In the theoretical direction, we are interested in particular in finite-time blow-up phe-
nomena for some class of strongly perturbed semilinear heat equations with Sobolev
subcritical power nonlinearity:

∂u

∂t
= ∆u+ |u|p−1u+ h(u),

where u : (x, t) ∈ R
n × [0, T ) → R, p > 1 and p < n+2

n−2 if n ≥ 3, the function h ∈
C1(R) ∩ C2(R∗) satisfies

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
,

where M > 0 and a > 1, or h(z) =
µ|z|p−1z

loga(2 + z2)
with µ ∈ R and a > 0.

Working in the framework of similarity variables, we first derive a Lyapunov functional
in similarity variables which is a crucial step to derive the blow-up rate of the solution.
In a second step, we are interested in the structure of the solution near blow-up time and
point. We classify all possible asymptotic behaviors of the solution when it approaches
to the singularity. Then we describe blow-up profiles corresponding to these asymptotic
behaviors. In a third step, we construct for this equation a solution which blows up in
finite time at only one blow-up point with a prescribed blow-up profile. The construction
relies on the reduction of the problem to a finite dimensional one and the use of index
theory to conclude.

In the numerical direction, we intend to develop methods in order to give numerical
answers to the question of the blow-up profile for some parabolic equations including
the Ginzburg-Landau model. We propose two methods. The first one is the rescaling

algorithm proposed by Berger and Kohn in 1988 applied to parabolic equations which
are invariant under a scaling transformation. This scaling property allows us to make
a zoom of the solution when it is close to the singularity, still keeping the same equa-
tion. The main advantage of this method is its ability to give a very good numerical
approximation allowing to attain the numerical blow-up profile. The blow-up profile
we obtain numerically is in good accordance with the theoretical one. Moreover, by ap-
plying the method to a critical nonlinear heat equation with a nonlinear gradient term,
where almost nothing is known, we give a conjecture for its blow-up profile thanks to
our numerical simulations. The second one is a new mesh-refinement method inspired
by the rescaling algorithm of Berger and Kohn, which is applicable to more general equa-
tions, in particular those with no scaling invariance.

Keyword: Semilinear heat equations, lower order perturbation, singularity, numerical
blow-up, finite-time blow-up, profile, stability, asymptotic behavior, complex Ginzburg-
Landau equation.
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Chapter I

Introduction

This thesis addresses the problem of finite-time blow-up for parabolic equations from
two different points of view. Accordingly it has two parts:

- a theoretical part which is devoted to the study of finite-time blow-up solutions of some
class of strongly perturbed semilinear heat equations with Sobolev subcritical power
nonlinearity. We focus on the answer to the questions of classification of general solu-
tions and construction of solutions with some prescribed behavior, and try to see how the
strong perturbation we consider affect the known results in the unperturbed case.

- a numerical part which is devoted to developing numerical methods in order to give
numerical answers to the question of the blow-up profile for some parabolic equations
including the Ginzburg-Landau model. We propose two methods: the first one is the
rescaling method of Berger and Kohn [14] applied to parabolic equations which are in-
variant under a scaling transformation, and the second one is a new mesh-refinement
method inspired by the rescaling algorithm of [14]. This method is applicable to more
general equations, in particular those with no scaling invariance.

1 Theoretical study: Blow-up results for strongly perturbed
semilinear heat equations

The theoretical objective of this thesis is devoted to the study of finite-time blow-up
solutions for the following semilinear parabolic equation:







∂u

∂t
= ∆u+ |u|p−1u+ h(u), in Ω× ∈ [0, T )

u = 0, on ∂Ω × [0, T )
u(x, 0) = u0(x), in Ω

(1.1)

where u : (x, t) ∈ Ω × [0, T ) → R, u0 : x ∈ Ω → R, Ω is a bounded convex regular open
set of Rn or Ω ≡ R

n, T > 0, ∆ stands for the Laplacian in R
n, p > 1 and p < n+2

n−2 if
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n ≥ 3, the function h ∈ C1(R) ∩ C2(R∗) satisfies

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
, (1.2)

where M > 0 and a > 1, or h(z) =
µ|z|p−1z

loga(2 + z2)
with µ ∈ R and a > 0.

Equation (1.1) arises in various physical problems such as the problem of heat flow, or
more generally, the problems involving diffusion. It is a simple model for a large class of
nonlinear parabolic equations, which are ubiquitous in mathematics and its applications.
The subject of blow-up first arose with singularities in gas dynamics, the intense explo-
sion problem, adiabatic explosion and combustion theory (see Zel′dovich, Barenblatt,
Librovich and Makhviladze [111], Gel′fand [41], Barenblatt [9]). The two classical
models include ut = ∆u+ eu (Frank-Kamenetskii equation [35]) and ut = ∆u+ |u|p−1u
(see Zel′dovich, Barenblatt, Librovich and Makhviladze [111], Bebernes and Eberly [12],
Bebernes, Bressan and Eberly [11], Bebernes and Kassoy [13], Kassoy and Poland [61],
[62], Peral and Vázquez [88]). The problem (1.1) is also related to the Keller-Segel
model for chemotaxis which is one of the most widely studied models in mathematical
biology (see Keller and Segel [63], Tindall, Maini, Porter and Armitage [99], [100]).
There is a rather extensive bibliography devoted to the subject of blow-up. We mention
the surveys by Galaktionov and Vázquez [40], Bandle and Bruner [8], that contain all
the main references on this subject as well as to the main applications.

The Cauchy problem for equation (1.1) can be solved in some functional space, u(t) ∈
H. Frequent instances of H are C(Ω) ∩ L∞(Ω), or the Lebesgue space Lq(Ω), or the
Sobolev space H = H1(Ω) (see Henry [52], Pazy [87], Weissler [107], [106], Ribaud
[92]). Moreover, on can show that either the solution u(t) exists on [0,+∞) (global
existence), or only on [0, T ) with T < +∞ (local existence). In the second case, we say
that u(t) blows up in finite time T if u(t) satisfies (1.1) in Ω× [0, T ) and

‖u(t)‖H → +∞ when t→ T.

We call T the blow-up time of u(t). In such a blow-up case, one can show that there is at
least one blow-up point a which is defined as follows (see Friedman and McLeod [37]):

A point â ∈ Ω is a blow-up point of u if u(x, t) is not locally bounded in the neighborhood

of (â, T ), this means that there exists (xn, tn) → (â, T ) such that |u(xn, tn)| → +∞ when

n→ +∞.

The theoretical part of this thesis is devoted to the study of blow-up for equation (1.1).
Two sets of questions arise in the study of blow-up:

- Classification: We consider an arbitrary blow-up solution. The first question concerns
the rate of blow-up, that is whether we can calculate exactly the norms of the solution
and its derivatives as t approaches the blow-up time and x approaches a blow-up point?
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The second question is about the asymptotic behavior. Given â a blow-up point of u(x, t),
how can we find more information about the asymptotic behavior in the neighborhood
of (a, T )? Can we define a notion of blow-up profile? Another aspect is to see whether
u(t) has a universal behavior as t→ T (independent from initial data)? Is this universal
behavior stable under perturbations of initial data?

- Construction: Are there solutions to equation (1.1) which blow up in finite time? Are
there sufficient conditions on the initial data u0 and the nonlinearity which imply blow-
up in finite time? Can we construct a blow-up solution which blows up in finite time and
verifies some prescribed asymptotic behavior?

In this thesis, we address these questions and will try to see how the perturbation we
consider affects the results known in the unperturbed case (h ≡ 0).

1.1 Blow-up results for the semilinear heat equation

In the study of blow-up phenomena for the problem (1.1), we have currently a fair
understanding of the types of blow-up for the following semilinear heat equation with
no perturbation (h ≡ 0):

∂u

∂t
= ∆u+ |u|p−1u, (1.3)

where u : (x, t) ∈ Ω× [0, T ) → R, p > 1 or p < n+2
n−2 if n ≥ 3.

There is a rich literature regarding the blow-up problem for equation (1.3), see for
instance, the book by Souplet and Quittner [91] and the references therein. Here we
only review some relevant results.

a) Existence of finite-time blow-up solutions:
There are various criteria for blow-up in finite time were derived. The earliest results
on the existence of finite-time blow-up solutions appear in the 1960s with the works of
Kaplan[60], Fujita [38], Friedman [36]. Some early results are due to Ball [7], Levine
[65], Levine and Payne [66], [67], Hayakawa [51], Tsutsumi [101], Weissler [108],
Fila and Filo [31], Palais [86], Mizoguchi and Yanagida[76], Mizoguchi, Ninomiya and
Yanagida [75] and others. We present here some of theirs results. We start with a very
simple criterion based on the Kaplan’s first eigenvalue method [60]:

Let Ω bounded and 0 ≤ u0 ∈ L∞(Ω). If
∫

Ω u0(x)ϕ1(s)dx is sufficiently large, where ϕ1 is the

eigenfunction corresponding to the first eigenvalue of −∆ in W 1,2
0 (Ω) and

∫

Ω ϕ1(x)dx = 1,

then the solution u of (1.3) must blow up in finite time.

The next blow-up criterion, introduced by Levine [65] (see also Levine and Payne [66],
[67], Ishii [59] and Ball [7]), uses the concavity of an auxiliary function. This concavity
method is actually powerful enough to be applied to many other types of second-order
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parabolic equations as well as other types of evolution equations. The following result
is discussed in [65] and Hu [58], that gives a sufficient condition for the existence of
finite-time blow-up solutions for equation (1.3) with the domain Ω either bounded or
unbounded:

Let Ω be a smooth domain and 0 6≡ u0 ∈ L∞ ∩H1
0 (Ω). If E(u0) < 0, where

E(u) =
1

2

∫

Ω
|∇u(x)|2dx− 1

p+ 1

∫

Ω
|u(x)|p+1dx (1.4)

is the energy associated to (1.3), then the solution u of (1.3) must blow up in finite time.

Let us now present Fujita’s result [38] (including Fujita’s critical exponent) which is one
of very first achievements on the study of blow-up:

Let Ω = R
n and u0 ≥ 0. If p > pF := 1 + 2

n , then the solution of (1.3) is global in time,

provided that the initial data u0 satisfies for some ǫ > 0 small,

u0(x) ≤ ǫG(x, 1) for x ∈ R
n,

where G(x, t) = (4πt)−n/2e−|x|2/4t is the Gaussian heat kernel.

If p ≤ pF , then all non trivial solutions of (1.3) blow up in finite time.

Other criteria have been obtained for non-negative blow-up solutions for (1.3) by us-
ing the comparison principle, since the positivity property is naturally supported by the
Maximum Principle for such second-order parabolic equations (see for example, Lions
[68], Fila [30]).

b) Blow-up rate:
We consider u a blow-up solution to equation (1.3) which blows up at time T . Here we
are interested in the Type I blow-up, which is defined as follow (see Matano and Merle
[70] for a statement):

We say that the blow-up is of Type I if the quantity (T − t)
1

p−1 ‖u(t)‖L∞ remains bounded

as t→ T−. The blow-up is called Type II if it is not of Type I.

We plan to describe known results for the question: Are there positive constants c and C

such that

c(T − t)−
1

p−1 ≤ ‖u(t)‖L∞ ≤ C(T − t)−
1

p−1 , ∀0 < t < T ? (1.5)

Note that in the case of Type I blow-up, the blow-up rate of ‖u(t)‖L∞ is the same as that
of the ODE associated to (1.3), namely

dv

dt
= |v|p−1v,
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whose solution is

v(t) = κ(T − t)−
1

p−1 where κ = (p− 1)−
1

p−1 , (1.6)

and note also that the lower bound in (1.5) is always satisfied, in fact the constant c = κ
(see Weissler [107], Friedman and McLeod [37], Giga and Kohn [44]).
The upper bound in (1.5) has been completely established even in the nonradial case, at
least when the domain Ω is convex. Some earlier results were obtained for special classes
of solutions by Weissler [109], [108], Muller and Weissler [77]. Giga and Kohn [43],
[44] established (1.5) under the assumption that either u0 ≥ 0 (so that the solution is
positive everywhere) or 1 < p < 3n+8

3n−4 . Later Giga, Matsui and Sasayama [45] (Ω = R
n),

[46] (Ω is a convex domain in R
n) proved (1.5) without such assumptions. All these

results are obtained mainly by the energy methods. Galaktionov and Posashkov [39]
also obtained the same results in one dimensional via a different method. Merle and
Zaag [72], [74] refined the estimate (1.5) by proving that

(T − t)
1

p−1 ‖u(t)‖L∞ → κ as t→ T.

(See also Fila and Souplet [32] and the references therein for similar results in this
direction).
Let us mention that the proof of (1.5) by the energy method has been done through
the introduction for each â ∈ Ω ( â may be a blow-up point of u or not) the following
similarity variables (see [42], [43], [44]):

wâ(y, s) = (T − t)
1

p−1u(x, t), y =
x− â√
T − t

, s = − log(T − t), (1.7)

and wâ (or w for simplicity) solves a new parabolic equation in (y, s): for all s ≥ − log T
and y ∈ Dâ,s with Dâ,s = {y ∈ R

n|â+ ye−s/2 ∈ Ω},

∂sw =
1

ρ
∇ · (ρ∇w)− w

p− 1
+ |w|p−1w, (1.8)

where

ρ(y) =

(
1

4π

)n/2

e−
|y|2
4 . (1.9)

In view of (1.7), the proof of the upper bound in (1.5) is equivalent to establishing a
uniform bound for the global solution w of (1.8), that is

‖w(s)‖L∞ ≤ C for all s ≥ − log T. (1.10)

The proof written in [45] (see also [46]) is strongly based on the existence of the fol-
lowing Lyapunov functional:

E0[w](s) =
∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy. (1.11)
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Based on this functional, some energy estimates related to this structure and a bootstrap
argument given in [90], the authors in [45] have established the following key integral
estimate

∀q ≥ 2, sup
s≥s′

∫ s+1

s
‖w(s)‖(p+1)q

Lp+1(BR)
ds ≤ Cq,s′ for s′ > − log T, (1.12)

where Cq,s′ is independent of â, and BR is the open ball in R
n centered at zero with

radius R.
Using the key estimate (1.12) together with the interpolation by Cazenave and Lions
[19] and an interior regularity for linear parabolic equations, we then derive (1.10).

We would like to insist that the blow-up rate (1.5) is a fundamental step opening the
doors to the study of the asymptotic behavior of blow-up solutions to problem (1.3),
whose analysis has been initiated by Giga and Kohn in [42], Herrero and Velázquez in
[53], [55], Velázquez in [103], [105], [104], Filippas and Kohn in [33], Filippas and
Liu in [34] and others.

c) Asymptotic behavior:
In this paragraph, we plan to describe known results concerning the asymptotic behavior
of blow-up solutions of problem (1.3) near blow-up points as t approaches the blow-up
time. A fundamental tool for this study is the similarity variables introduced in (1.7).
One can see from (1.7) that the study of u(t) in the neighborhood of (â, T ), where â is
a blow-up point and T is the blow-up time, is equivalent to the study of the asymptotic
behavior of wâ(s) as s → +∞. Assume Ω = R

n (Ω can be a bounded convex domains,
but we restrict ourselves to the case of the whole space for simplicity) and the estimate
(1.5) is satisfied. We start with the following earliest result by Giga and Kohn [42], [44]
(analysis in L2

ρ, where L2
ρ is the weighted L2 space associated with the weight ρ defined

in (1.9)):

If â is a blow-up point of u, then

lim
t→T

(T − t)
1

p−1u(â+ y
√
T − t, t) = lim

s→+∞
wâ(y, s) = ±κ, (1.13)

uniformly on compact sets |y| ≤ R, where κ is given in (1.6).

Note that the only bounded solutions of (1.8) which are independent of the time are
the constant solutions: κ, −κ and 0 (see Giga and Kohn [42]). The estimate (1.13) has
been refined until the higher order by Filippas, Kohn and Liu [33], [34], Herrero and
Velázquez [53], [55], [103], [105], [104]. More precisely, they classified the behavior
of wâ(y, s) for |y| bounded. They prove that one of the following cases occurs (assuming
that wâ → κ, up to replacing u by −u):
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- Case 1 (non-degenerate rate of blow-up): There exists k ∈ {0, . . . , n − 1} and a n × n

orthonormal matrix Q such that

∀R > 0, sup
|y|≤R

∣
∣
∣
∣
wâ(y, s)−

[

κ+
κ

2ps

(

(n− k)− 1

2
yTAky

)]∣
∣
∣
∣
= O

(
1

s1+δ

)

(1.14)

as s→ +∞, where δ > 0,

Ak = Q

(

In−k 0

0 0

)

Q−1, (1.15)

and In−k is the (n− k)× (n − k) identity matrix.

- Case 2 (degenerate rate of blow-up): There exists µ > 0 such that

∀R > 0, sup
|y|≤R

|wâ(y, s)− κ| ≤ C(R)e−µs, (1.16)

(this exponential convergence has been refined up to the order 1 by Herrero and Velázquez

but we omit that description since we choose in this thesis to concentrate on the non-

degenerate rate of blow-up mentioned in the case 1 above).

Back to the original variables u(x, t), this yields information on the blow-up behavior in
a small space range of the form |x − â| ≤ R

√
T − t. In some sense and from a phys-

ical point of view, these results do not show the transition between the singular zone
(wâ > α where α > 0) and the regular one (wâ ≃ 0) well. Indeed, the convergence
is only uniform in the parabolic domain |x − â| ≤ R

√
T − t which does not allow us to

derive a blow-up profile of u(t) in the original variable (x, t). Velázquez [103] (see also
[55]) extended the |y| bounded convergence in (1.14) to the larger set |y| ≤ R

√
s, by

estimating the effect of the convective term 1
2y · ∇wâ in the equation (1.8) in Lp spaces

with Gaussian measure (note that 1
ρ∇ · (ρ∇w) = ∆w − 1

2y · ∇w). However, the conver-
gence (1.17) that Velázquez obtained depends strongly on the considered blow-up point
â, and it is not uniform with respect to â. Merle and Zaag [73] obtained a related profile
existence result, but their result has been shown to be independent of â thanks to a com-
pactness property on wâ uniformly with respect to â ∈ R

n. Particularly, they established
the following blow-up profile in the variable z = y√

s
(which is the intermediate scale

that separates the regular and singular parts in the non-degenerate case):

There exists k ∈ {0, . . . , n} such that

∀R > 0, sup
|z|≤R

∣
∣wâ(z

√
s, s)− fk(z)

∣
∣→ 0 as s→ +∞, (1.17)

where

fk(z) = κ

(

1 +
p− 1

4p
zTAkz

)− 1
p−1

, (1.18)
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and Ak is defined in (1.15).

Following the classification of Herrero and Velázquez, Bricmont and Kupiainen showed
in [16] (see also [15] and [17]) the existence of initial data for (1.3) such that

sup
x∈Rn

∣
∣
∣
∣
∣
(T − t)

1
p−1u(x, t)− f0

(

x− â
√

(T − t)| log(T − t)|

)∣
∣
∣
∣
∣
→ 0 as t→ T, (1.19)

where f0 is defined in (1.18).
More specifically, given a small function g, they find constants d0 ∈ R and d1 ∈ R

n such
that for each â ∈ Rn, the solution of (1.3) with the datum

u0,d0,d1(x) = T− 1
p−1






f0(z)



1 +
d0 + d1z

p− 1 + (p−1)2

4p |z|2



+ g(z)






,

z = (x− â)
√

T | log T |,
has the convergence (1.19). This result was proved again by Merle and Zaag in [71]
by reducing the problem to a finite-dimensional one (see also Zaag [110], Masmoudi
and Zaag [69], Ebde and Zaag [24], Nouaili and Zaag [85] for further results in this
direction). More importantly, the method of [71] allows to derive the stability of the
blow-up behavior (1.19) with respect to perturbations in the initial data or the nonlin-
earity (see also Fermanian, Merle and Zaag [25], [26] for other proofs of stability). This
result also opens to the notion of the limiting profile in the u(x, t) variable, in sense that
u(x, t) → u∗(x) when t→ T if x 6= â and x is the neighborhood of â, with

u∗(x) ∼
[
8p| log |x− â||
(p − 1)2|x− â|2

] 1
p−1

as x→ â. (1.20)

Let us mention the following uniform localization estimate by Merle and Zaag [72],
[74]:

∀ǫ > 0, ∃Cǫ > 0 such that ∀t ∈
[
T
2 , T

)
, ∀x ∈ R

n,

|∆u| =
∣
∣∂tu− |u|p−1u

∣
∣ ≤ ǫ|u|p + Cǫ.

This result together with the stability of the profile (1.19) strongly rely on the following
Liouville theorem for equation (1.3) proved by Merle and Zaag (see [72] and [74]):

Assume that w is a solution in L∞ of (1.8) defined on R
n × R. Then w ≡ 0 or w ≡ ±κ or

w(y, s) = ±θ(s− s0) for some s0 ∈ R, where θ(s) = κ(1 + es)−
1

p−1 .
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This result has an equivalent formulation for solution of (1.3) via the transformation
(1.7):

Assume that u is a solution in L∞ of (1.3) defined for (x, t) ∈ R
n × (−∞, T ). Assume in

addition that |u(x, t)| ≤ C(T − t)−
1

p−1 . Then u ≡ 0 or there exist T0 ≥ T and ω ∈ {−1, 1}
such that for all (x, t) ∈ R

n × (−∞, T ), u(x, t) = κ(T0 − t)
− 1

p−1ω.

1.2 Blow-up results for some class of weak perturbations of the semilinear
heat equation

In this section, we aim at recalling some blow-up results of the following semilinear heat
equation:

∂u

∂t
= ∆u+ |u|p−1u+ h(u,∇u), (1.21)

where u : (x, t) ∈ Ω × [0, T ) → R, p > 1 or p < n+2
n−2 if n ≥ 3, and the perturbation

h : R× R
n → R satisfies

|h(u, v)| ≤M(1 + |u|q + |v|r), M > 0, 0 ≤ q < p, 0 ≤ r <
2p

p+ 1
.

In some sense, the term h(u,∇u) has a subcritical size when q < p and r < 2p
p+1 . In the

selfsimilar variables framework introduced in (1.7), we see that w solves the following
equation:

∂sw = ∆w − 1

2
y · ∇w − 1

p− 1
w + |w|p−1w + e−

ps
p−1h

(

e
s

p−1w, e
(p+1)s
2(p−1)∇w

)

, (1.22)

where the perturbation term satisfies
∣
∣
∣
∣
e−

ps
p−1h

(

e
s

p−1w, e
(p+1)s
2(p−1)∇w

)∣
∣
∣
∣
≤ Ce−δs(|w|q + |∇w|r + 1),

with δ = min
{
p−q
p−1 ,

2p−r(p+1)
2(p−1)

}

> 0. This is the reason why we say that equation (1.21)

is a "weak" perturbed version of (1.3), and justify why our perturbation in (1.2) is called
"strong".

In [43] and [44], Giga and Kohn generalized the results (1.5) for equation (1.3) to
(1.21) (hence (1.13)) in the case where the function h(u, v) ≡ h(u) with 1 ≤ q < p (h
does not depend on ∇u), provided that either u0 ≥ 0 or 1 < p < 3n+8

3n−4 . The proof of
(1.5) is based on the energy method where the energy has an extra term due to h:

J [w](s) = E0[w](s) + e−
(p+1)s
p−1

∫

H
(

e
ps

p−1w
)

ρdy,



18 I. Introduction

where E0 as in (1.11), ρ is defined in (1.9), and H(z) =
∫ z
0 h(ξ)dξ (note that J is not a

Lyapunov functional for equation (1.22)).
Souplet and Tayachi [97] proved (1.5) by considering radial positive solutions of (1.21)
in a ball or in R

n under certain assumptions on the parameters, especially in the cases
where r is subcritial, critical (r = 2p

p+1) and supercritical.

Ebde and Zaag [24] constructed a blowup solution for equation (1.22) with a pre-
scribed blowup profile by the method of [71] (see also Bricmont and Kupiainen [16]).
More precisely, they showed the existence of initial data for (1.22) such that

∥
∥
∥
∥
∥
(T − t)

1
p−1u(·, t)− f0

(

· − â
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
W 1,∞

≤ C
√

| log(T − t)|
, (1.23)

where f0 is defined in (1.18).
Since the presence of the perturbation including a nonlinear gradient term, their proof
needs some involved arguments to control the h(u,∇u) term, and the convergence in
W 1,∞ come from a parabolic regularity estimate for equation (1.22).

1.3 Blow-up results for some class of strong perturbations of the semilin-
ear heat equation

This section is devoted to the description of the main results in the theoretical direction
concerning the study of blow-up solutions of the following nonlinear parabolic equation:

{
ut = ∆u+ |u|p−1u+ h(u),

u(0) = u0 ∈ L∞(Rn),
(1.24)

where u is defined for (x, t) ∈ R
n × [0, T ), p is a subcritical nonlinearity,

p > 1 and p <
n+ 2

n− 2
if n ≥ 3. (1.25)

The function h is in C1(R) ∩ C2(R∗) satisfying

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
, (1.26)

where a > 1 and M > 0, or,

h(z) =
µ|z|p−1z

loga(2 + z2)
with µ ∈ R, a > 0. (1.27)

Consider u a solution of (1.24) blowing up in some finite time T . The study of u has
been done via the similarity variables (1.7). Then the problem is converted to the study
of the long-time behavior of wâ for â ∈ R

n. The equation in wâ (or w for simplicity) is
as follows: for all (y, s) ∈ R

n × [− log T,+∞),

∂sw =
1

ρ
∇ · (ρ∇w)− w

p− 1
+ |w|p−1w + e

− ps
p−1h

(

e
s

p−1w
)

, (1.28)
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where ρ is defined in (1.9).
Since the perturbation term in equation (1.28) satisfies

e
− ps

p−1

∣
∣
∣h
(

e
s

p−1 z
)∣
∣
∣ ≤ C0

sa
(|z|p + 1) , ∀z ∈ R,∀s ≥ s0,

for some C0 > 0 and s0 > 0, we wonder whether a perturbation of the methods devoted
to the study of blow-up solutions of equation (1.3) would work for our problem. In other
words, do the results stated for the unperturbed case (h ≡ 0) in the previous subsection
hold for our perturbed case? We propose to develop three directions in the first part of
this thesis:

- In the first direction, we propose a perturbation of the method of [45] in order to de-
rive the blow-up rate for solutions of (1.24). As in [45] (see also [46]), the crucial step
is to derive the existence of a Lyapunov functional for equation (1.28). Following the
method introduced by Hamza and Zaag in [50] and [49] for perturbations of the semi-
linear wave equation, we first prove the existence of a Lyapunov functional for equation
(1.24). Thanks to energy estimates based on this Lyapunov functional and a blow-up
criterion for equation (1.28), we are able to adapt the analysis in [45] for equation (1.3)
to obtain the blow-up rate for solutions of equation (1.24).

- In the second direction, we are interested in the classification of all possible asymptotic
behaviors of the blow-up solution u(t) of (1.24) near blow-up points as t approaches
to the blow-up time. Because of the presence of the strong perturbation, we need new
crucial ideas to get rid of the effect of this term on the structure of the solution. A key
successful step is the linearization of the bounded solution of (1.28) around an implicit
profile function which is the solution of the ODE associated to equation (1.28).

- The third direction is devoted to the construction of a solution u(x, t) for equation (1.24)
which blows up in finite time T at only one blow-up point â ∈ R

n and converges to some
prescribed blow-up profile as t → T . Since the perturbation term h certainly impacts
the construction of solutions of equation (1.24), we need crucial modifications in the
method of Merle and Zaag [71] in order to totally control this term. This construction is
based on a priori estimates’ technique presented in [71] and based on the estimates of
Bricmont and Kupiainen [16], which reduces the problem to a finite-dimensional one.
This method also allows us to derive a stability of the blow-up profile under perturba-
tions of initial data.

a) Existence of a Lyapunov functional and blow-up rate:
Following the method introduced by Hamza and Zaag in [50], [49] for perturbations
of the semilinear wave equation (see also Giga and Kohn [43]), we introduce for each
α > 0 the following functional:

Jα[w](s) = E [w](s)e γ
α
s−α

+ θs−α, (1.29)
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where γ = γ(α, p, n, µ,M) > 0 and θ = θ(α, p, n, µ,M) > 0 are sufficiently large con-
stants,

E [w] = E0[w] + I[w], I[w](s) = −e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy, (1.30)

where E0 is defined in (1.11) and H(z) =
∫ z
0 h(ξ)dξ.

With this introduction, we derive that the functionals Ja−1[w](s) and Ja[w](s) are de-
creasing functions of time for equation (1.28) in the cases (1.26) and (1.27) respectively,
provided that s is large enough. More precisely, we have established the following result
in [82] and [83] (see Theorem 1.1 page 88 and Theorem 1.1 page 176):

Theorem 1.1 (Existence of a Lyapunov functional for equation (1.28)). Let a, p, n, µ,M

be fixed, consider w a solution of equation (1.28). Then there exist ŝ0 = ŝ0(a, p, n, µ,M) ≥
s0 and θ̂0 = θ̂0(a, p, n, µ,M) such that if θ ≥ θ̂0, then for all s2 > s1 ≥ max{ŝ0,− log T},

Jα[w](s2)− Jα[w](s1) ≤ −1

2

∫ s2

s1

∫

Rn

(∂sw)
2ρdyds, (1.31)

where α = a− 1 > 0 in the case (1.26) and α = a > 0 in the case (1.27).

Remark 1.2. The proof of Theorem 1.1 mainly relies on the following observation (see

Lemm 2.1 page 93 and Lemm 2.2 page 181):

d

ds
E [w](s) ≤ −1

2

∫

Rn

w2
sρdy + γs−(α+1)E [w](s) + Cs−(α+1).

While in the more general case (1.26) for the perturbation h, we restrict to the range a > 1,

taking the more specific form (1.27) allows us to overcome technical difficulties in order to

derive (1.31) for any a > 0.

As mentioned earlier, the existence of this Lyapunov functional Jα is a crucial step in the
derivation of the blow-up rate for equation (1.24). Indeed, with the Lyapunov functional
Jα and some more work, we are able to adapt the analysis in [45] for equation (1.3) and
get the following result in [82] and [83] (see Theorem 1.2 page 88 and i) of Theorem
1.2 page 176):

Theorem 1.3 (Blow-up rate for equation (1.24)). Let a, p, n, µ,M be fixed, p satisfy

(1.25). There exists ŝ1 = ŝ1(a, p, n, µ,M) ≥ ŝ0 such that if u is a blow-up solution of

equation (1.24) with a blow-up time T , then

(i) for all s ≥ s′ = max{ŝ1,− log T},

‖wâ(s)‖L∞(Rn) ≤ C, (1.32)

where wâ is defined in (1.7) and C is a positive constant depending only on n, p, µ,M and

a bound of ‖wâ(ŝ0)‖L∞ .

(ii) For all t ∈ [t1, T ) where t1 = T − e−s
′
,

‖u(t)‖L∞(Rn) ≤ C(T − t)−
1

p−1 . (1.33)
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The proof of Theorem 1.3 is far from being a straightforward adaptation of [45].
Indeed, three major difficulties arise in our case and make the heart of our contribution:
- the existence of a Lyapunov functional in the similarity variables (see Theorem 1.1
above),
- the control of the L2-norm in terms of the energy (see (ii) of Proposition 2.3 page 97),
where we rely on a new blow-up criterion greatly simplifying the approach in [43] (see
Lemma 2.2 page 96):
Let w be a solution of equation (1.28), if there exists s̃1 ≥ max{ŝ0,− log T} such that

−4Jα[w](s̄) +
p− 1

p+ 1

(∫

Rn

|w(y, s̄)|2ρdy
) p+1

2

> 0 for some s̄ ≥ s̃1, (1.34)

then w is not defined for all (y, s) ∈ R
n × [s̄,+∞).

- the proof of a nonlinear parabolic regularity result (see Proposition 2.7 page 100).

b) Asymptotic behavior:
Thanks to the boundedness of the solution in the similarity variables (1.7) and the tech-
nique of Giga and Kohn [44], [42], we have derived an analogous result on the behavior
of wâ(y, s) cited in (1.13), where â is a blow-up point, as s → +∞. More precisely (see
Theorem 1.4 page 89 and ii) of Theorem 1.2 page 176),

Theorem 1.4 (Behavior of wâ as s → +∞). Let a, p, n, µ,M be fixed, p satisfy (1.2).
Consider u(t) a solution of equation (1.24) which blows up at time T and â a blow-up

point. Then

lim
t→T

(T − t)
1

p−1u(â+ y
√
T − t, t) = lim

s→+∞
wâ(y, s) = ±κ,

holds in L2
ρ, and uniformly on compact subsets of Rn.

Consider â a blow-up point of u, we may assume that wâ → κ in L2
ρ as s → +∞ (by

changing u0 in −u0 and h in −h). By linearizing wâ around φ, where φ is the positive
solution of the following ODE associated to equation (1.28):

φs = − φ

p− 1
+ φp + e−

ps
p−1h

(

e
s

p−1φ
)

(1.35)

such that
φ(s) → κ as s→ +∞, (1.36)

(see Lemma A.4 page 125 for the existence of φ) we have classified all possible asymp-
totic behavior of wâ(s) as s → +∞ in [82] and [83] (see Theorem 1.5 page 90 and
Theorem 1.4 page 178):

Theorem 1.5 (Classification of the behavior of wâ as s → +∞). Consider u(t) a

solution of equation (1.24) which blows up in the finite time T and â a blow-up point.

Let wâ(y, s) be a solution of equation (1.28). Then only one of the following possibilities



22 I. Introduction

occurs:

i) wâ(y, s) ≡ φ(s).

ii) There exists l ∈ {1, . . . , n} such that up to an orthogonal transformation of coordinates,

- if h is given by (1.26),

wâ(y, s) = κ− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa

)

+O
(
log s

s2

)

as s→ +∞, (1.37)

- if h is given by (1.27),

wâ(y, s) = φ(s)− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa+1

)

+O
(
log s

s2

)

as s→ +∞. (1.38)

iii) There exist an integer number m ≥ 3 and constants cβ not all zero such that

wâ(y, s) = φ(s)− e−(
m
2
−1)s

∑

|β|=m
cβHβ(y) + o

(

e−(
m
2
−1)s

)

as s→ +∞, (1.39)

where Hβ(y) = hβ1(y1) . . . hβn(yn) with

hk(y) =

[k2 ]∑

i=0

k!

i!(k − 2i)!
(−1)iyk−2i.

The convergence takes place in L2
ρ as well as in Ck,γloc for any k ≥ 1 and γ ∈ (0, 1).

Remark 1.6. Unlike in [34] and [104], we do not linearize wâ around κ, which is an

explicit profile. We instead linearizewâ around φ, which is the key successful step in deriving

this result. Indeed, if we linearize wâ around κ, we then fall in logarithmic scales γ = 1
| log ǫ|

with ǫ = T − t. Further refinements in this direction should give an expansion of w − κ in

terms of powers of γ, i.e in logarithmic scales of ǫ. Therefore, we can not reach significantly

small error terms in the expansion of the solution wâ as Theorem 1.5 describes. In order

to escape this situation, a relevant approximation is required in order to go beyond all

logarithmic scales, i.e approximations up to lower order terms such as ǫα for some α > 0.

Our idea to capture such relevant terms is to abandon the explicit profile obtained as a

first order approximation, namely κ, and take an implicit profile function as a first order

description of the singular behavior, namely φ(s) introduced in (1.35) and (1.36).

Remark 1.7. If we linearize wâ around κ, then we see from Theorem 1.5 that ‖wâ(s) −
κ‖L2

ρ
∼ 1

sa′
with a′ = min{a, 1} in the cases i), ii), and a′ = a in the case iii). This is

contrast with the unperturbed case (h ≡ 0) where three possibilities arrive (either wâ−κ ≡
0, or ‖wâ(s) − κ‖L2

ρ
∼ 1

s or ‖wâ(s) − κ‖L2
ρ
≤ Ce−λs with λ > 0). This fact makes
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the originality of our approach in this thesis, since the perturbation suppresses two of the

behaviors which are available in the non-perturbed case. Of course, as we said in the

previous remark, linearizing around κ is not the good choice, and one has to linearize

around φ(s) to capture exponentially small terms.

Remark 1.8. Expanding φ(s) in a power series of 1
sa in (1.39), namely φ(s) = κ +

∑k
i=1

Ci

sia
+ O

(
1

s(k+1)a

)

, shows two relevant scales in the expansion of wâ: a slow scale

1
sa and a fast scale e−(m/2−1)s. This also another originality of our approach.

Using the result obtained in Theorem 1.5 and the method of Velázquez [104], we can
extend the asymptotic behavior of wâ to larger regions. More precisely, the following
result was established in [82] and [83] (Theorem 1.10 page 92 and Theorem 1.7 page
178):

Theorem 1.9 (Convergence extension of wâ to larger regions). For all K0 > 0,

i) if ii) of Theorem 1.5 occurs, then

sup
|ξ|≤K0

∣
∣wâ(ξ

√
s, s)− fl(ξ)

∣
∣ = O

(
1

sα

)

+O
(
log s

s

)

as s→ +∞, (1.40)

where α = a− 1 > 0 in the case (1.26), α = a > 0 in the case (1.27), and

fl(ξ) = κ



1 +
p− 1

4p

l∑

j=1

ξ2j





− 1
p−1

, ∀ξ ∈ R
n,

with l the same as in ii) of Theorem 1.5.

ii) if iii) of Theorem 1.5 occurs, then m ≥ 4 is even, and

sup
|ξ|≤K0

∣
∣
∣wâ

(

ξe(
1
2
− 1

m)s, s
)

− ψm(ξ)
∣
∣
∣→ 0 as s→ +∞, (1.41)

where

ψm(ξ) = κ



1 + κ−p
∑

|β|=m
cβξ

β





− 1
p−1

, ∀ξ ∈ R
n, (1.42)

with cβ the same as in Theorem 1.5.

Remark 1.10. As in the unperturbed case (h ≡ 0), we expect that (1.40) is stable and

(1.41) should correspond to unstable behaviors (the unstability of (1.41) was proved only

in one space dimension by Herrero and Velázquez in [54] and [56] for h ≡ 0). While

remarking numerical simulations for equation (1.1) in one space dimension, we see that

the numerical solutions exhibit only the behavior (1.40), we could never obtain the behavior

(1.41). This is probably due to the fact that the behavior (1.41) is unstable.
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Remark 1.11. Unlike in Theorem 1.5 where the convergence is uniform only in compact

sets, and where two time-scales coexist, in particular in (1.42) (see Remark 1.8 above),

here, the effect of φ(s) disappears in some sense since we work at the order o(1) in (1.41)
and φ(s) = κ + o(1). Thus, in the larger zones covered by Theorem 1.9, we recover the

same profiles as in the unperturbed case treated by Herrero and Velázquez in [54] and

[103]. However, in the derivation of Theorem 1.9 from Theorem 1.5 by the method of

Velázquez [103], we need new ideas to get rid of the term in the scale 1
s coming from the

strong perturbation. The key successful step is to linearize wâ around a sharpest profile

which is of the form
φ(s)
κ ϕ(y, s), where ϕ(y, s) is the function used for the unperturbed case

treated in [103] (see Section 4 of Chapter III and Section 3 of Chapter V for more details).

c) Construction of a stable blow-up solution:
We are interested in the construction of a solution for (1.24) which blows up in finite
time with a prescribed blow-up profile. In [84], the following result was obtained (The-
orem 1.1 page 141):

Theorem 1.12 (Existence of a blow-up solution for equation (1.1) with the descrip-
tion of its profile). There exists T > 0 such that equation (1.24) has a solution u(x, t) in

R
n × [0, T ) satisfying:

i) the solution u blows up in finite-time T at only one blow-up point â = 0,

ii)

∥
∥
∥
∥
∥
(T − t)

1
p−1u(·

√
T − t, t)− f0

(

·
√

| log(T − t)|

)∥
∥
∥
∥
∥
W 1,∞(Rn)

≤ C

| log(T − t)|̺ , (1.43)

for all ̺ ∈ (0, ν) with ν = min{a− 1, 12} in the case (1.26) and ν = min{a, 12} in the case

(1.27), C is some positive constant and f0 is defined in (1.18).
iii) There exists u∗ ∈ C(Rn \ {0},R) such that u(x, t) → u∗(x) as t → T uniformly on

compact subsets of Rn \ {0}, where

u∗(x) ∼
(

8p| log |x||
(p− 1)2|x|2

) 1
p−1

as x→ 0.

Remark 1.13. We do not need the condition on the second derivative of h in the case (1.26)
for the proof of Theorem 1.12.

The objective of Theorem 1.12 deals with the construction of the initial data u0 of
(1.24) such that (1.43) is satisfied. Its proof is based on techniques developed by Bric-
mont and Kupiainen in [16] and Merle and Zaag in [71] for equation (1.3). Although
our result is analogous as in [71], its proof is far from being a straightforward adaptation
of the proof written in [71]. Because the perturbation term h certainly impacts on the
construction of solutions of (1.24) satisfying (1.43), we need some crucial modifications
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in [71] in order to totally control the term h. Although these modifications do not affect
the general framework developed in [71], they lay in 3 crucial places:
- We modify the profile around which we study equation (1.28), so that we go beyond
the order 1

sa generated by the perturbation term. Indeed, for small a > 0 and with the
same profile as in [71], the order 1

sa will become too strong and will not allow us to close
our estimates. See Section 2 of Chapter III, particularly, see the definition of ϕ given in
(2.1) page 143, which enables us to reach the order 1

sa+1 .
- In order to handle the order 1

sa+1 , we need to modify the definition of the shrinking set
near the profile. See Section 3 of Chapter III, and particularly Proposition 3.1 page 146.
- A sharp understanding of the dynamics of the linearized operator of (1.28) around the
profile ϕ, which allows to handle the new definition of the shrinking set. See Lemma 3.5
page 149.

The proof of Theorem 1.12 is divided into 2 steps:
- In the first step, we reduce the problem to a finite-dimensional problem. We show that
it is enough to control a finite-dimensional variable in order to control the solution near
the profile.
- In the second step, we proceed by contradiction to solve the finite-dimensional problem
and conclude using index theory.

As in [71], the method of reduction to the finite-dimensional problem for the proof of
Theorem 1.12 allows us to derive the stability of the profile f0 (1.43) with respect to
perturbations in the initial data. More precisely, we have the following (Theorem 1.4
page 143):

Theorem 1.14 (Stability of the solution constructed in Theorem 1.1). Let us denote

by û(x, t) the solution constructed in Theorem 1.12 and by T̂ its blow-up time. Then, there

exists a neighborhood V0 of û(x, 0) in W 1,∞ such that for any u0 ∈ V0, equation (1.24)
has a unique solution u(x, t) with initial data u0, and u(x, t) blows up in finite time T (u0)

at one single blow-up point â(u0). Moreover, estimate (1.43) is satisfied by u(x− â, t) and

T (u0) → T̂ , â(u0) → 0 as u0 → û0 in W 1,∞(Rn).

Remark 1.15. Note that from a parabolic regularity, our stability result also holds in the

larger space L∞(Rn).

2 Numerical study of finite-time blow-up arising in models of
nonlinear evolution equations

The numerical study of the blow-up phenomenon was not as advanced as the theoretical
study, in particular when it comes to deriving the numerical blow-up profile. Many of
the theoretical blow-up results were obtained with no numerical results obtained before.



26 I. Introduction

This lack of numerical results is due to the limitations consisting of three parts: the non-
linearity, the unboundedness of the solution, and the multidimentionality of the physical
domain. The delicate problem is how we can obtain a good numerical solution which
attains the blow-up profile? Thanks to the recent theoretical results, we have serious
hints towards the simulation of such delicate behaviors. In this thesis, we are expected
to develop numerical methods in order to give numerical answers to the question of the
blow-up profile for some parabolic equations. We propose two methods:
- the first one is the rescaling algorithm of Berger and Kohn [14] applied to parabolic
equations which are invariant under a scaling transformation,
- the second one is a new mesh-refinement method inspired by the rescaling algorithm of
Berger and Kohn [14]. This method is applicable to more general equations, in particular
those with no scaling invariance.

2.1 Invariant parabolic equations

In this part, we are interested in the blow-up phenomenon appearing in the study of
parabolic problems whose solutions have a common property of blowing up in finite
time and where the equations are invariant under the following scaling transformation

∀λ > 0, u 7→ uλ(x, t) := λ
2

p−1u(λx, λ2t). (2.1)

In particular, we study blow-up solutions of the following parabolic problems. The first
model is 





ut(x, t) = uxx(x, t) + g(u, ux), in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× [0, T ),
u(x, 0) = u0(x), on Ω̄.

(2.2)

where u(t) : x ∈ Ω 7→ u(x, t) ∈ R, p > 1. The function g is given by

g(u, ux) = |u|p−1u+ β|ux|q, with q =
2p

p+ 1
,

for some β ∈ R. The equation (2.2) can be viewed as a population dynamic model (see
Souplet [96] for an example with β < 0).
The second model is the following complex Ginzburg-Landau equation,







ut(x, t) = (1 + ıγ)uxx + (1 + ıδ)|u|p−1u, in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× [0, T ),
u(x, 0) = u0(x), on Ω̄.

(2.3)

where u(t) : x ∈ Ω → u(x, t) ∈ C, p > 1 and the constants γ, δ are real. This equation
appears in various physical situations. An example is the theory of phase transitions
and superconductivity. We refer to Levermore and Oliver [64], Popp et al. [89] and
references therein for the physical background.
In both problems, Ω is a bounded interval and u0 : Ω̄ → R is a given initial value that
belongs to H where H ≡ W 1,∞(Ω) for equation (2.2) and H ≡ L∞(Ω) for equation
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(2.3). In particular, we consider Ω = (−1, 1) and u0 is positive, nontrivial, smooth and
verifies u0(−1) = u0(1) = 0; in addition, u0 is symmetric and nondecreasing on the
interval (−1, 0). One can see that the maximal solution is either global in time, or exists
only for t ∈ [0, T ) for some T > 0. In that case, the solution blows up in finite time T ,
namely,

lim
t→T

‖u(t)‖H = +∞,

and T is called the blow-up time of u(t).

a) The theoretical framework:
For equation (2.2) with β = 0, the equation (2.2) is the semilinear heat equation

(1.3) whose behavior is largely well-understood and which is mentioned in the previous
sections. When β 6= 0 and q > 0, less is known about blow-up for equation (2.2). As
a matter of fact, we loose the gradient structure, and energy methods break down. We
keep however a maximum principal. We have several contributions on the subject by
Chipot and Weissler [22], Souplet [96], Souplet, Tayachi and Weissler [98], Snoussi,
Tayachi and Weissler [95], Snoussi and Tayachi [94], Ebde and Zaag [24] and others.
Note that our choice q = 2p

p+1 is critical in the sense that it is the only choice that makes
equation (2.2) invariant under the dilation given in (2.1). In the case where β ∈ [−2, 0),
in [98] (see also [22], [96]), the authors proved the existence of a non-trivial backward
self-similar solution which blows up in finite time, only at one point and described the
asymptotic behavior of its radially symmetric profile. More precisely, they showed the
existence of a solution of (2.2) of the form

u(x, t) = (T − t)−
1

p−1 v

(
x√
T − t

)

, (2.4)

where v satisfies for all ξ ∈ R,

∆v(ξ) + β|∇v(ξ)|q −
[
ξ

2
· ∇v(ξ) + 1

p− 1
v(ξ)

]

+ |v(ξ)|p−1v(ξ) = 0.

Note that this type of behavior does not hold when β = 0. Indeed, from Giga and Kohn
[42], we know that the only solutions of the form (2.4) are 0 and ±κ(T − t)

− 1
p−1 with κ

given in (1.6).

We wonder however whether equation (2.2) has solutions which behave like the solution
of the case β = 0 (equation (1.3)), namely such that

∥
∥
∥
∥
∥
(T − t)1/(p−1)u(·, t)− f̄β

(

· − â
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
L∞

→ 0, as t→ T, (2.5)

where â is the blow-up point of u,

f̄β(z) =
(
p− 1 + b(p, β)|z|2

)− 1
p−1 , with b(p, 0) =

(p− 1)2

4p
, (2.6)
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or in the similarity variables defined in (1.7),
∥
∥
∥
∥
wâ(s)− f̄β

( ·√
s

)∥
∥
∥
∥
L∞

→ 0, as s→ ∞. (2.7)

Up to our knowledge, there is no theoretical answer to this equation. We answer it pos-
itively through a numerical method in this thesis (see Section 5.2 of Chapter II).

For equation (2.3), when γ 6= δ, we have no gradient structure nor maximum princi-
ple. Therefore, classical methods cannot be applied here. Up to our knowledge, there
are not many papers on this subject, apart from the paper of Popp et al. [89] and the
paper by Masmoudi and Zaag [69] who construct a stable blow-up solution. There are
also papers by Snoussi and Tayachi [93], Cazenave, Dickstein and Weissler [18] when
γ = δ (note that in this case, there is a Lyapunov functional). In [69], the authors
constructed a solution for equation (2.3) which blows up in finite time T only at one
blow-up point and gave a sharp description of its blow-up profile. Furthermore, they
showed the stability of that solution with respect to perturbations in initial data. Their
result extends the previous result of Zaag [110] done in the case γ = 0. Their main
result is the following:

For any (δ, γ) ∈ R
2 such that

p− δ2 − γδ(p + 1) > 0,

equation (1.2) has a solution u(x, t) blowing up in finite time T only at one blow-up point

â, moreover,

∥
∥
∥
∥
∥
(T − t)

1+ıδ
p−1 | log(T − t)|−ıµu(t)− f̃δ,γ

(

· − â
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
L∞

→ 0 as t→ T,

(2.8)
where µ = −2γb(p,δ,γ)

(p−1)2
(1 + δ2), b(p, δ, γ) = (p−1)2

4(p−δ2−γδ(p+1))
and

f̃δ,γ(z) =
(
p− 1 + b(p, δ, γ)|z|2

)− 1+ıδ
p−1 . (2.9)

Remark 2.1. We remark that equation (2.3) is rotation invariant. Therefore, eıθ f̃δ,γ is also

an asymptotic profile of the solution of (2.3) with θ ∈ R.

b) The numerical method:
Let us first review some aspects of the numerical study of blow-up problems such as the
sufficient blow-up conditions, the blow-up rate, the blow-up time, the blow-up set and
the blow-up profile. For the problem (2.2), there are several studies in the case β = 0.
The first works were done by Nakagawa and Ushijima in [78], [79] where the authors
used the finite difference and the finite element method on a uniform spatial mesh.
Some papers focus on the study of the numerical schemes, in particular, some authors
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established sufficient blow-up conditions for the numerical schemes, for example, Abia,
López-Marcos and Martínez [1], [3], Chen [20], [21], Duran, Etcheverry and Rossi[23],
N’gohisse and Boni [80]. For the numerical blow-up rate, there is a series of studies
by Acosta, Ferreira, Groisman and Rossi [28], [5], [29], [47], Hirota and Ozawa [57],
... Those papers gave the relation between the discretized problem and the continuous
ones. For the numerical convergence of the blow-up time, it was investigated in [1],
[2], [102], [4], [57] and [80]. On numerical blow-up sets, we would like to mention
the works in [27], [48], [29] and [6]. Up to our knowledge, there are not many papers
on the numerical blow-up profile, apart from the paper of Berger and Kohn [14] who
already obtained very good numerical results on this subject. There is also the work of
Baruch et al. [10] studying standing-ring solutions.

Here we rely on the rescaling method suggested in [14] to obtain a numerical solution
for equations (2.2) and (2.3). This algorithm fundamentally relies on the scale invari-
ance of those equations:
If u a solution of (1.1) (or (1.2)), then for all λ > 0, the function uλ given by

uλ(ξ, τ) = λ
2

p−1u(λξ, λ2τ), (2.10)

is also a solution of (2.2) (or (2.3)).

This property allows to make a zoom of the solution when it is close to the singularity,
still keeping the same equation (see Section 3 of Chapter II for more details of the
rescaling algorithm). Our aim is to give a numerical confirmation for the theoretical
profile for equation (2.2), and especially for the complex Ginzburg-Landau equation
(2.3). In Section 5.2 of Chapter II, we give a numerical answer to the question of the
blow-up profile (2.7), where no theoretical is available in the case β 6= 0 in equation
(2.2) (see Figure I.1 for an illustration). This way, we have given a numerical evidence
for the following conjecture:

Conjecture 2.2. Equation (2.2) has a solution u(x, t) which blows up in finite time T at

one blow-up point x = 0, moreover,

∥
∥
∥
∥
∥
(T − t)1/(p−1)u(t)− f̄β

(

·
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
L∞

→ 0, as t→ T, (2.11)

where

f̄β(z) =
(
p− 1 + b(p, β)|z|2

)− 1
p−1 , with b(p, 0) =

(p− 1)2

4p
, (2.12)

and b(p, β) is represented in Figure I.2 and Figure I.3.

While remarking numerical simulation for equation (2.2) with β 6= 0, we could never
obtain the self-similar behavior (2.4) rigorously proved in [98]. On the contrary, we
could exhibit the behavior (2.11), at the heart of our conjecture. In our opinion, this is
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z

theoretical profile

numerical profile

Figure I.1. The profile of a rescaled version of the solution of (2.2) after 80 iterations, for computa-

tions with β = 1, p = 5 and the initial data u0(x) = 1.2(1+cos(πx)). They coincide within plotting

resolution.

β

p = 5

β

p = 7

Figure I.2. The computed values of b(5, β) (left) and b(7, β) (right) for various values of β, where

b(p, β) is introduced in (2.12).
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p p

β = 1 β = −1

Figure I.3. The computed values of b(p, 1) (left) and b(p,−1) (right) for various values of p, where

b(p, β) is introduced in (2.12).

probably due to the fact that the behavior (2.4) is unstable, unlike the behavior (2.11),
which we suspect to be stable with respect to perturbations in initial data.

We also proved in Section 4 of Chapter II the convergence of the rescaling method ap-
plied to equation (2.2) under some regularity assumptions (see Theorem 4.1 page 56).
Furthermore, many numerical simulations were performed to give numerical confirma-
tions for the blow-up profile (2.8) for the complex Ginzburg-Ladau equation (2.3), which
has never been done earlier and is quite challenging. In Figure I.4, we give a numerical
confirmation for the blow-up profile (2.8). Both the numerical modulus and phase (up
to adding a constant θ ∈ R) coincide with the theoretical ones within plotting resolution
(see Section 5.3 of Chapter II for more numerical simulations).

2.2 Non scale-invariant parabolic equations

The rescaling method of Berger and Kohn [14] is a very powerful algorithm, however, it
only applies to some equations satisfying the scale-invariance property (2.1). However,
there are many equations whose solutions blow up in finite time but the equation does
not satisfy the property (2.1), for example, equation (1.24) with the strong perturbation
h. In this thesis, we propose a new mesh-refinement method inspired by the rescaling

algorithm of Berger and Kohn [14] applied to such problems. Though the method is
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z z

Figure I.4. The profile of a rescaled version of the solution of the complex Ginzburg-Landau equation

(2.3) after 80 iterations, for computations with γ = δ = 1, p = 5 and the initial data u0(x) =

1.2(1 + cos(πx)).

obviously more general, we have applied it to the following problem:






ut = uxx + F (u), (x, t) ∈ (−1, 1) × (0, T ),
u(1, t) = u(−1, t) = 0, t ∈ (0, T ),
u(x, 0) = ϕ(x), x ∈ (−1, 1),

(2.13)

where p > 1, ϕ(x) > 0, ϕ(x) = ϕ(−x), xdϕ(x)dx < 0 for x 6= 0, and

F (u) = up +
up

loga(2 + u2)
with a > 0. (2.14)

Our method differs from Berger and Kohn’s in the following way: we step the solution
forward until its maximum value multiplied by a power of its mesh size reaches a preset
threshold, where the mesh size and the preset threshold are linked; for the rescaling

algorithm, the solution is stepped forward until its maximum value reaches a preset
threshold, and the mesh size and the preset threshold do not need to be linked. Because
we do not need the scale-invariance property (2.1), our method is applicable to a larger
class of equations whose solutions blow up in finite time (see Section 4.1 of Chapter V
for a full description of this method). Various numerical simulations are performed to
illustrate the effectiveness of our method to the problem of the numerical blow-up pro-
file. These numerical results also give confirmations for the theoretical blow-up results
of equation (1.24) stated in section 1.3 (see Figure I.5 for an illustration and see Section
4.2 of Chapter V for more numerical results).
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z

Figure I.5. The profile of a rescaled version of the solution of (2.13) after 40 iterations, for compu-

tations with a = 0.1, p = 3 and the initial data ϕ(x) = 2(1 + cos(πx)).

This thesis is organized in four chapters which are presented in the papers [81], [82],
[84] and [83]:
- Chapter II: Numerical analysis of the rescaling method of [14] for the parabolic equa-
tions (2.2) and (2.3) whose solutions blow up in finite time and is invariant under the
scaling property.
- Chapter III: Blow-up results for a class of strongly perturbed semilinear heat equations
(1.24) in the case a > 1. We first derive a Lyapunov functional in the similarity variables

and then use it to derive the blow-up rate. We also classify all possible asymptotic be-
haviors and corresponding profiles when the solution approaches to singularity.
- Chapter IV: Construction of a stable blow-up solution for a class of strongly perturbed
semilinear heat equations (1.24) and description of it blow-up profile.
- Chapter V: Complement of the blow-up results for a class of strongly perturbed semilin-
ear heat equations (1.24) in the case a ∈ (0, 1] by taking the particular form (1.27) and
description of the mesh-refinement technique for non-invariant parabolic equations.
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Chapter II

Numerical analysis of the rescaling method
for parabolic problems with blow-up in fi-
nite time 1

V. T. Nguyen

Université Paris 13, Sorbonne Paris Cité,

LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Abstract
In this work, we study the numerical solution for parabolic equations whose solutions
have a common property of blowing up in finite time and the equations are invariant
under the following scaling transformation

u 7→ uλ(x, t) := λ
2

p−1u(λx, λ2t).

For that purpose, we apply the rescaling method proposed by Berger and Kohn [9] to
such problems. The convergence of the method is proved under some regularity as-
sumption. Some numerical experiments are given to derive the blow-up profile verifying
henceforth the theoretical results.

Keyword: Numerical blow-up, finite-time blow-up, nonlinear parabolic equations.
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1 Introduction

We study the solution of the following parabolic problem






ut(x, t) = uxx(x, t) + g(u, ux), in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× [0, T ),
u(x, 0) = u0(x), on Ω̄.

(1.1)

where u(t) : x ∈ Ω 7→ u(x, t) ∈ R, p > 1. The function g is given by

g(u, ux) = |u|p−1u+ β|ux|q, with q =
2p

p+ 1
,

for some β ∈ R. This equation can be viewed as a population dynamic model (see [51]
for an example with β < 0).
We also consider the complex Ginzburg-Landau equation,







ut(x, t) = (1 + ıγ)uxx + (1 + ıδ)|u|p−1u, in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× [0, T ),
u(x, 0) = u0(x), on Ω̄.

(1.2)

where u(t) : x ∈ Ω → u(x, t) ∈ C, p > 1 and the constants γ, δ are real. This equation
appears in various physical situations. An example is the theory of phase transitions
and superconductivity. We refer to Popp et al. [46] and the references therein for the
physical background.

In both problems, Ω is a bounded interval and u0 : Ω̄ → R is a given initial value that
belongs to H where H ≡ W 1,∞(Ω) for equation (1.1) and H ≡ L∞(Ω) for equation
(1.2). In particular, we consider Ω = (−1, 1) and u0 is positive, nontrivial, smooth and
verifies u0(−1) = u0(1) = 0; in addition, u0 is symmetric and nondecreasing on the
interval (−1, 0). Thanks to a fixed-point argument, the Cauchy problem for equation
(1.1) can be solved in W 1,∞(Ω), locally in time. For equation (1.2), we solve it in
L∞(Ω). Then, it is easy to see that the maximal solution is either global in time, or exists
only for t ∈ [0, T ) for some T > 0. In that case, the solution blows up in finite time T ,
namely,

lim
t→T

‖u(t)‖H = +∞,

and T is called the blow-up time of u(t).
When β = 0, the theoretical part for equation (1.1) is largely well-understood. The

literature on the subject is huge, so we refer the reader to the book by Souplet and
Quittner [47]. When β 6= 0 and q > 0, less is known about blow-up for equation (1.1).
As a matter of fact, we loose the gradient structure, and energy methods break down.
We keep however a maximum principal. We have several contributions on the subject
by [14], [51], [52], [50], [49] and [16]. Note that our choice q = 2p

p+1 is critical in the
sense that it is the only choice that makes equation (1.1) invariant under the dilation
given in (1.3) below. As for equation (1.2), when γ 6= δ, we have no gradient structure
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nor maximum principle. Therefore, classical methods cannot be applied here. Up to
our knowledge, there are not many papers on this subject, apart from the paper of Popp
et al. [46] and the paper by Masmoudi and Zaag [39] who construct a stable blow-up
solution. There are also papers by Snoussi and Tayachi [48], Cazenave, Dickstein and
Weissler [11] when γ = δ (note that in this case, there is a Lyapunov functional).

In comparison with the theoretical aspects, the numerical analysis of blow-up has re-
ceived little attention, particularly on the numerical blow-up profile. For other numerical
aspects related to sufficient blow-up conditions, the blow-up rate, the blow-up time and
the blow-up set, there are several studies for (1.1) in the case β = 0. The first work
on this problem was done in [43], [44] by using the finite difference and finite element
method on a uniform spatial mesh. For sufficient blow-up conditions, the solution of
semi or full-discretized equation blowing up in finite time was established in [1], [3],
[12], [13], [15], [43] and [45]. For the numerical blow-up rate, there is a series of
studies by [20], [5], [21], [31], [36] and [45]. Those papers gave the relation between
the discretized problem and the continuous ones. For the numerical convergence of the
blow-up time, it was investigated in [1], [2], [53], [4], [36] and [45]. On numerical
blow-up sets, we would like to mention the works in [19], [32], [21] and [6]. Up to our
knowledge, there are not many papers on the numerical blow-up profile, apart from the
paper of Berger and Kohn [9] who already obtained very good numerical results on this
subject. There is also the work of Baruch et al. [8] studying standing-ring solutions.

For this reason, we will rely on the rescaling method suggested in [9] to obtain a
numerical solution for the equations mentioned above. This algorithm fundamentally
relies on the scale invariance of equation (1.1) and (1.2): if u a solution of (1.1) (or
(1.2)), then for all λ > 0, the function uλ given by

uλ(ξ, τ) = λ
2

p−1u(λξ, λ2τ), (1.3)

is also a solution of (1.1) (or (1.2)). This property allows to make a zoom of the solution
when it is close to the singularity, still keeping the same equation. Our aim is to give a
numerical confirmation for the theoretical profile of the semilinear heat equation (1.1)
in the case β = 0 (already done in [9]) and especially the complex Ginzburg-Landau
equation (1.2) which has never been done earlier numerically, and is quite challenging.
In the case β 6= 0 in equation (1.1), we give a numerical answer to the question of the
blow-up profile, where no theoretical is available. This way, our numerical result gives
use to new conjecture.

The paper is organized as follows: In section 2, we give some theoretical framework
on the study. Section 3 presents the approximation scheme and the rescaling algorithm.
The convergence of the numerical solution for problem (1.1) is proved in section 4. In
the last section, we give some numerical experiments to confirm the theoretical results.

Acknowledgement: The author is grateful to L. El Alaoui and H. Zaag for helpful sug-
gestions and remarks during the preparation of this paper.
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2 The theoretical framework

Equation (1.1) in case β = 0: The existence of blow-up solution for equation (1.1)
has been proved by several authors ([24], [25], [38], [7]). We have lots of results
concerning the behavior of the solution u of (1.1) at blow-up time, near blow-up points
([28], [29], [30], [22], [23], [34], [33], [33], [54], [55] and [40], [42]). This study
has been done through the introduction for each a ∈ Ω (a may be a blow-up point of u
or not) the following similarity variables:

wa,T (y, s) = (T − t)
1

p−1u(x, t), y =
x− a√
T − t

, s = − log (T − t), (2.1)

and wa,T = w solves a new parabolic equation in (y, s): for all s ≥ − log T and y ∈ Da,s,
Da,s = {y ∈ R|a+ ye−s/2 ∈ Ω},

∂sw = ∆w − 1

2
y · ∇w − w

p− 1
+ |w|p−1w. (2.2)

Studying solutions of (1.1) near blow-up is therefore equivalent to analyzing large-time
asymptotics of solutions of (2.2). Each result for u has an equivalent formulation in
terms of w.

One of the main results which is established in [29], [30] is that a is a blow-up point if
and only if

lim
t→T

(T − t)
1

p−1u(a+ y
√
T − t, t) = ±κ,

uniformly in |y| ≤ C, where κ = (p− 1)
− 1

p−1 .

In [26], [27], the authors used a formal argument adapted from [37] to derive the
ansatz

u(x, t) ∼ (T − t)
− 1

p−1

(

p− 1 +
(1− p)2

4p

(x− a)2

(T − t)| log (T − t)|

)− 1
p−1

. (2.3)

This ansatz has been proved in [54], [10], [42] for some examples of initial data. More
precisely, w has a limiting profile in the variable z = y√

s
(see [40], [42], [54], [34]), in

the sense that ∥
∥
∥
∥
wa,T (s)− f

( ·√
s

)∥
∥
∥
∥
L∞

→ 0 as s→ +∞, (2.4)

where

f(z) =

(

p− 1 +
(p − 1)2

4p
|z|2
)− 1

p−1

. (2.5)

The profile (2.5) is stable under perturbations of initial data, other profiles are possible
but they are suspected to be unstable (see [40], [18], [17]). Note that Herrero and
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Velázquez proved the genericity of the behavior (2.3) in [33] and [35] in one space di-
mension.

Equation (1.1) in case β 6= 0: When β ∈ (−2, 0), in [52] (see also [51], [14], [50],
[49]), the authors proved the existence of a non-trivial backward self-similar solution
which blows up in finite time, only at one point and described the asymptotic behavior
of its radially symmetric profile. More precisely, they showed the existence of a solution
of (1.1) of the form

u(x, t) = (T − t)−
1

p−1 v

(
x√
T − t

)

, (2.6)

where v satisfies for all ξ ∈ R,

∆v(ξ) + β|∇v(ξ)|q −
[
ξ

2
· ∇v(ξ) + 1

p− 1
v(ξ)

]

+ |v(ξ)|p−1v(ξ) = 0.

Note that this type of behavior does not hold when β = 0. Indeed, from Giga and Kohn
[28], we know that the only solutions of the form (2.6) are 0 and ±κ(T − t)

− 1
p−1 with

κ = (p − 1)−
1

p−1 .

We wonder however whether equation (1.1) has solutions which behave like the so-
lution of the case β = 0, namely such that

∥
∥
∥
∥
∥
(T − t)1/(p−1)u(t)− f̄β

(

· − a
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
L∞

→ 0, as t→ T, (2.7)

where a is the blow-up point,

f̄β(z) =
(
p− 1 + b(p, β)|z|2

)− 1
p−1 , with b(p, 0) =

(p− 1)2

4p
, (2.8)

or in similarity variables defined in (2.1),
∥
∥
∥
∥
w(s)− f̄β

( ·√
s

)∥
∥
∥
∥
L∞

→ 0, as s→ ∞. (2.9)

Up to our knowledge, there is no theoretical answer to this equation. We answer it pos-
itively through a numerical method in this paper (see Section 5.2 below).

The complex Ginzburg-Landau equation: In [39], Masmoudi and Zaag constructed
the first solution to equation (1.2) which blows up in finite time T only at one blow-up
point and gave a sharp description of its blow-up profile. Furthermore, they showed the
stability of that solution with respect to perturbations in initial data. Their result extends
the previous result of Zaag [56] done for γ = 0. More precisely, they used the following
self-similar transformation of equation (1.2):

wa,T (y, s) = (T − t)
1+ıδ
p−1 u(x, t), y =

x− a√
T − t

, s = − log (T − t), (2.10)
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and then w(y, s) satisfies the following equation:

∂sw = (1 + ıγ)∆w − 1

2
y · ∇w − 1 + ıδ

p− 1
w + (1 + ıδ)|w|p−1w.

Their main result is the following: for any (δ, γ) ∈ R
2 such that p − δ2 − γδ(p + 1) > 0,

equation (1.2) has a solution u(x, t) blowing up in finite time T only at one blow-up
point a ∈ R. Moreover,

∥
∥
∥
∥
|s|−ıµwa,T (s)− f̃δ,γ

( ·√
s

)∥
∥
∥
∥
L∞

≤ C

1 +
√

|s|
, (2.11)

where µ = −2γb(p,δ,γ)
(p−1)2

(1 + δ2), b(p, δ, γ) = (p−1)2

4(p−δ2−γδ(p+1))
and

f̃δ,γ(z) =
(
p− 1 + b(p, δ, γ)|z|2

)− 1+ıδ
p−1 . (2.12)

Remark 2.1. We remark that equation (1.2) is rotation invariant. Therefore, eıθ f̃δ,γ is also

an asymptotic profile of the solution of (1.2) with θ ∈ R.

Remark 2.2. In our paper, we give the first numerical computation of this result. Note that

the stability result of [39] concerning that solution makes it visible in numerical simula-

tions.

3 The numerical method

In this section, we recall the rescaling algorithm introduced in [9].

3.1 The numerical scheme

We first give an Euler approximation of (1.1) and (1.2). Let I be a positive integer and
let us discretize the domain Ω = (−1, 1) by the grid xi = ihwhere −I ≤ i ≤ I and h = 1

I .
Let τ > 0 be a time step and n ≥ 0 be a positive integer. Then, we set tn = nτ . In what
follows, the lowercase letter denotes the exact values, whereas the capital letter denotes
its approximation, for example, we write ui,n ≡ u(xi, tn) and Ui,n the approximation
of u(xi, tn). In the following, the notation Un stands for (U−I , . . . , U0, . . . , UI)

T . In
addition, we denote

δtUi,n =
Ui,n+1 − Ui,n

τ
,

δxUi,n =
Ui+1,n − Ui−1,n

2h
, (3.1)

δ2xUi,n =
Ui−1,n − 2Ui,n + Ui+1,n

h2
.
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Discretization of the semilinear heat equation:
The Euler discretization of (1.1) is defined as follows: for n ≥ 0 and −I +1 ≤ i ≤ I − 1,

{

δtUi,n = δ2xUi,n +
∣
∣
∣U

p−1
i,n

∣
∣
∣Ui,n + β|δxUi,n|

2p
p+1 ,

U−I,n = UI,n = 0,
(3.2)

with Ui,0 = φi where φi = u0(xi). Note that Ui,n is defined for all n ≥ 0 and −I ≤ i ≤ I.

Discretization of the Ginzburg-Landau equation:
Let us write the solution of (1.2) as u = v + ıw and |u| =

√
v2 + w2. Then (1.2) can be

rewritten as follows:






vt = vxx − γwxx +
(
v2 + w2

)p−1
2 (v − δw)

wt = γvxx + wxx +
(
v2 + w2

)p−1
2 (δv +w)

v(x, 0) = ℜ
(
u0(x)

)
, w(x, 0) = ℑ

(
u0(x)

)
.

(3.3)

Denote by Vi,n andWi,n approximations of v(xi, tn) and w(xi, tn) respectively. On setting
Vn = (V−I,n, . . . , VI,n)T , Wn = (W−I,n, . . . ,WI,n)

T , the Euler scheme approximating
the solution of (3.3) is given below: for n ≥ 0 and −I + 1 ≤ i ≤ I − 1,







δtVi,n = δ2xVi,n − γδ2xWi,n +Ri,n(Vi,n − δWi,n),
δtWi,n = γδ2xVi,n + δ2xWi,n +Ri,n(δVi,n +Wi,n),
V−I,n = VI,n =W−I,n =WI,n = 0,

(3.4)

with Vi,0 = ℜ
(
φi
)
,Wi,0 = ℑ

(
φi
)

where φi = u0(xi) and Ri,n = (V 2
i,n +W 2

i,n)
p−1
2 .

Remark 3.1. By Taylor expansion, one can show that the central difference approximation

given in (3.1) is second-order accurate. Therefore, both difference schemes (3.2) and (3.4)
are first-order accurate in time and second-order in space.

In what follows, let a = (a−I , . . . , a0, . . . , aI)T , denote ‖a‖∞ = max
i

|ai|. We say that a

is positive if each component of a is positive and write a > 0. Similar notations ≥,≤, <
can be defined.

3.2 The rescaling method

For the sake of clarity, we present the rescaling method in [9], only for the approximation
of the semilinear heat equation (3.2). Straightforward adaptations allos to derive it for
the Ginzburg-Landau equation approximated in (3.4).
We first introduce some notations:

⋄ λ < 1 is a scaling factor such that λ−1 is a small positive integer.

⋄ M is a maximum amplitude before rescaling.

⋄ α is a parameter controlling the width of the interval to be rescaled.



52 II. Numerical analysis of the rescaling method for parabolic problems

⋄ u(k)(ξk, ηk) is the k-th rescaled solution defined in space-time variables (ξk, ηk). If
k = 0, u(0)(ξ0, η0) ≡ u(x, t), (ξ0, η0) ≡ (x, t).

⋄ hk, τk denote the space and time step used to approximate u(k).

⋄ U
(k)
i,n is an approximation value of u(k)(ξk,i, ηk,n) where ξk,i = ihk and ηk,n = nτk.

Let {(xi, tn, Fi,n)| − I ≤ i ≤ I, 0 ≤ n ≤ N} be a set of data points, we associate the
function Fh,τ which is a piecewise linear approximation in both space and time such
that Fh,τ (xi, tn) = Fi,n and for all (x, t) ∈ (xi, xi+1)× (tn, tn+1),

Fh,τ (x, t) =
1

hτ
[Fi,n(xi+1 − x)(tn+1 − t) + Fi+1,n(x− xi)(tn+1 − t)]

+
1

hτ
[Fi,n+1(xi+1 − x)(t− tn) + Fi+1,n+1(x− xi)(t− tn)] . (3.5)

At some points, we may use the notation Fh,n(x) ≡ Fh,τ (x, tn) for a given tn and
Fi,τ (t) ≡ Fh,τ (xi, t) for a given xi.

We now recall the rescaling method introduced in [9].
The solution of (3.2) is integrated until getting the first time step n0 such that ‖Un0‖∞ ≥
M . Then we find out a value τ∗0 satisfying

(n0 − 1)τ ≤ τ∗0 ≤ n0τ and ‖Uh,τ (·, τ∗0 ) ‖∞ =M,

and two grid points xi−0 , xi+0 , with i+0 , i
−
0 ∈ {−I, . . . , 0, . . . , I}, such that

{

Uh,τ (xi−0 −1, τ
∗
0 ) < αM ≤ Uh,τ (xi−0

, τ∗0 ),

Uh,τ (xi+0 +1, τ
∗
0 ) < αM ≤ Uh,τ (xi+0

, τ∗0 ).

On the interval (xi−0 , xi+0 ) and for t ≥ τ∗0 , we refine the mesh by a factor λ in space and

λ2 in time. More precisely, we introduce

u(1)(ξ1, η1) = λ
2

p−1u(λξ1, τ
∗
0 + λ2η1),

which is also a solution of equation (1.1), thanks to the scale invariance property stated
after (1.3). From a numerical point of view, it is important to use for u(1) the same
discretization as for u. Let h1 be the space discretization step and τ1 be the time dis-
cretization step, then we need to set h1 = h and τ1 = τ to use the same scheme
(3.2) for approximating u(1). In other words, the approximation of u on the interval
(xi−0

, xi+0
) with the steps λh, λ2τ is equivalent to the approximation of u(1) on the inter-

val λ−1
(

xi−0
, xi+0

)

by using h and τ as discretization parameters.
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Let I1 = λ−1i+0 and U
(1)
n =

(

U
(1)
−I1,n, . . . , U

(1)
0,n, . . . , U

(1)
I1,n

)T
be an approximation of u(1) at

time η1,n. Then, U(1)
n+1 solves the following equations: for all n ≥ 0, i between −I1 + 1

and I1 − 1,






δtU
(1)
i,n = δ2xU

(1)
i,n +

∣
∣
∣U

(1)
i,n

∣
∣
∣

p−1
U

(1)
i,n + β

∣
∣
∣δxU

(1)
i,n

∣
∣
∣

2p
p+1

,

U
(1)
I1,n

= U
(1)
−I1,n = ψ

(1)
n , U

(1)
i,0 = φ

(1)
i ,

where

ψ(1)
n = λ

2
p−1Uh,τ (xi+0

, τ∗0 + λ2nτ), n ≥ 0, (3.6)

φ
(1)
i = λ

2
p−1Uh,τ (λξ1,i, τ

∗
0 ), −I1 ≤ i ≤ I1. (3.7)

We stop the computation of U(1) at the first time level η1,n1 (n1 ≥ 1) such that
∥
∥
∥U

(1)
n1

∥
∥
∥
∞

≥
M . After that, we determine τ∗1 and two grid points ξ1,i−1 , ξ1,i+1 where i−1 , i

+
1 ∈ {−I1, . . . , I1}

by

{
(n1 − 1)τ1 ≤ τ∗1 ≤ n1τ1∥
∥
∥U

(1)
h,τ (·, τ∗1 )

∥
∥
∥
∞

=M,
and

{

U
(1)
h,τ (ξ1,i−1 −1, τ

∗
1 ) < αM ≤ U

(1)
h,τ (ξ1,i−1

, τ∗1 ),

U
(1)
h,τ (ξ1,i+1 +1, τ

∗
1 ) < αM ≤ U

(1)
h,τ (ξ1,i+1

, τ∗1 ).

We remark that the computation of U(1) requires an initial and a boundary conditions.
The initial data conditions are already obtained by (3.7). It remains to focus on the
boundary condition (3.6). Both U and U

(1) are stepped forward independently, each
on its own grid. A single time step of U corresponds to λ−2 time steps of U(1). There-
fore, the linear interpolation in time of U is used to find the boundary values of U(1).
After stepping forward U

(1) λ−2 times, the values of U at grid points on the interval
(xi−0

, xi+0
) are modified to better with the fine grid solution U

(1). On the interval where

U
(1) > αM , the entire procedure is repeated, yielding U

(2), and so forth.

The (k + 1)-st rescaled solution u(k+1) is introduced when ηk reaches a value τ∗k satis-
fying

(nk − 1)τk ≤ τ∗k ≤ nkτk, nk > 0 and
∥
∥
∥U

(k) (·, τ∗k )
∥
∥
∥
∞

=M. (3.8)

The interval (ξk,i−k
, ξk,i+k

) to be rescaled satisfies







U
(k)
h,τ (ξk,i−k −1, τ

∗
k ) < αM ≤ U

(k)
h,τ (ξk,i−k

, τ∗k ),

U
(k)
h,τ (ξk,i+k +1, τ

∗
k ) < αM ≤ U

(k)
h,τ (ξk,i+k

, τ∗k ).

The solution u(k+1) is related to u(k) by

u(k+1)(ξk+1, ηk+1) = λ
2

p−1u(k)(λξk+1, τ
∗
k + λ2ηk+1). (3.9)
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Let Ik+1 = λ−1i+k and

U
(k+1)
n =

(

U
(k+1)
−Ik+1,n

, . . . , U
(k+1)
0,n , . . . , U

(k+1)
Ik+1,n

)T

be an approximation of u(k+1) at time ηk+1,n. Then U
(k+1)
n+1 is a solution of the following

equations: for all n ≥ 0, i between −Ik+1 + 1 and Ik+1 − 1,






δtU
(k+1)
i,n = δ2xU

(k+1)
i,n +

∣
∣
∣U

(k+1)
i,n

∣
∣
∣

p−1
U

(k+1)
i,n + β

∣
∣
∣δxU

(k+1)
i,n

∣
∣
∣

2p
p+1

,

U
(k+1)
Ik,n

= U
(k+1)
−Ik,n = ψ

(k+1)
n , Uk+1

i,0 = φ
(k+1)
i ,

(3.10)

where

ψ(k+1)
n = λ

2
p−1U

(k)
h,τ (ξk,i+k

, τ∗k + λ2nτ), n ≥ 0, (3.11)

φ
(k+1)
i = λ

2
p−1U

(k)
h,τ (λξk+1,i, τ

∗
k ), −Ik+1 ≤ i ≤ Ik+1. (3.12)

We step forward U
(k+1) on the interval λ−1(ξk,i−k

, ξk,i+k
) with the space step hk+1 and

time step τk+1. Here, we set hk+1 = hk = · · · = h and τk+1 = τk = · · · = τ to use the
same scheme as for U

(k),U(k−1), . . . ,U. The initial data of (3.10) is given in (3.12).
For the boundary data of (3.10), it is obtained by using the linear interpolation in time
of U(k) given in (3.11). Hence, we step forward independently the previous solutions
U

(k),U(k−1), . . . each one on its own grid. Previously, U(k) is stepped forward once ev-
ery λ−2 time steps of U(k+1), U(k−1) once every λ−4 time steps of U(k+1), . . . . After λ−2

time steps of U(k+1), the values of U(k) on the interval which has been refined need to
be updated to fit with the calculation of U(k+1); this is performed on U

(k−1) after λ−4

time steps of U(k+1) and so forth. We stop the evolution of U(k+1) when its amplitude
reaches the given threshold M and another rescaling can be performed.

To make it clearer, we describe the rescaling method by the following algorithm. As-
sume that we perform up to the K-th rescaled solution.

0. Set up parameters: M,λ, α, h, τ, I.

1. Initial phase:

– Forward U until maxi Ui ≥M .

– Get the values of τ∗0 and xi−0 , xi0+.

2. Iterative phase: set k = 1, while k ≤ K then

(a) Define a grid for U(k) on the interval λ−1
(

ξk−1,i−k−1
, ξk−1,i+k−1

)

.

(b) Compute the initial data for U(k) from U
(k−1)
h,τ (·, τ∗k−1).

(c) For i = 0 to k − 1: forward U
(i) one step.
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(d) Set n = 1.

(e) While maxi U
(k)
i < M then

+ Forward U
(k) one step.

+ Compute the boundary values of U(k) from U
(k−1)
h,τ (ξk−1,i+k−1

, τ∗k−1+λnτk).

+ For j = 0 to k − 1: if mod
(
n, λ−2(j+1)

)
= 0 then

- Update U(k−j−1) on the interval to be rescaled.

- Forward U
(k−j−1) one step.

+ Set n = n+ 1.

(f) Get the values of τ∗k and ξk,i−k
, ξk,i+k

.

(g) For i = 1 to k: update U
k−i.

(i) Set k = k + 1, nk = n and go to step (a).

Remark 3.2. The value of M should be chosen such that the maximum of the initial data

of all rescaled solutions are equal. This means that for all k ≥ 0,

λ
2

p−1‖u(k)(τ∗k )‖∞ = ‖u0‖∞.

Using the fact that ‖u(k)(τ∗k )‖∞ =M , it yields that M = ‖u0‖∞λ−
2

p−1 .

To end this section, we want to give a definition of the numerical solution Uh,τ (x, t)
of the rescaling method. Let σ > 0 small enough, h > 0 and τ > 0 be the space and time
step, then, for each (x, t) ∈ [−1, 1] × [0, T − σ], we can find an integer K ≥ 0 such that

µK−1 ≤ t < µK and
∥
∥
∥U

(K)
h,τ

(
·, λ−2K (t− µK−1)

)
∥
∥
∥
∞
< M,

where µq :=
∑q

i=0 λ
2iτ∗i . Then, Uh,τ (x, t) is defined as follows:

Uh,τ (x, t) =







λ−
2K
p−1U

(K)
h,τ

(
λ−Kx, λ−2K (t− µK−1)

)
if x ∈ ΩK ,

λ−
2(K−1)

p−1 U
(K−1)
h,τ

(
λ−(K−1)x, λ−2(K−1) (t− µK−2)

)
if x ∈ ΩK−1\ΩK ,

...
λ−

2
p−1U

(1)
h,τ

(
λ−1x, λ−2 (t− µ0)

)
if x ∈ Ω1\Ω2,

U
(0)
h,τ (x, t) if x ∈ Ω\Ω1.

(3.13)

where Ωk = (λkξk−1,i−k−1
, λkξk−1,i+k−1

) for k ≥ 1 and U
(k)
h,τ is the linear interpolation

defined in (3.5).
One can see that the solution defined in (3.13) tends to infinity when k goes to infinity.
We say that the solution defined in (3.13) blows up in a finite time if

Th,τ = lim
K→+∞

K∑

k=0

λ2kτ∗k < +∞. (3.14)

The time Th,τ is call the numerical blow-up time.
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Remark 3.3. We can see that Th,τ defined in (3.14) is finite if the solution U
(k)
h,τ (defined

from U
(k)
n by (3.5)) reaches the given threshold M in a bounded number of time steps,

namely when τ̄ = supk≥0 τ
∗
k < +∞. In this case, we see that

Th,τ ≤ lim
K→+∞

τ̄

K∑

k=0

λ2k =
τ̄

1− λ2
< +∞.

4 Convergence of the rescaling method

This section is devoted to the convergence analysis of the rescaling method for problem
(1.1) with β ∈ R and q ∈ [1, 2) not necessarily q = 2p

p+1 , under some regularity assump-
tions. Note that the discrete problem (3.2) when β = 0 has already been treated in [45].
When β 6= 0, proceeding as for β = 0, the crucial step is to obtain a comparison prin-
ciple for the discrete problem (see Lemma 4.10 below). Note that we could not prove
analogous results for the equation (1.2), since we already have no comparison principle
in the continuous case.

Theorem 4.1. Consider h > 0 sufficiently small and τ > 0 such that τ ≤ h2

2 . Let σ > 0,

suppose that the problem (1.1) (with q ∈ [1, 2)) has a non-negative solution u(x, t) ∈
C4,2 ([−1, 1]× [0, T − σ]) and the initial data of (3.2) satisfies

sup
x∈[−1,1]

|φh(x)− u(x, 0)| = O(h2) as h→ 0.

Then the solution Uh,τ defined in (3.13) satisfies

sup
(x,t)∈[−1,1]×[0,T−σ]

|Uh,τ (x, t)− u(x, t)| = O
(
h2
)

as h→ 0.

Remark 4.2. The convergence of the rescaling method stated in Theorem 4.1 is proved by

a recursive application of Proposition 4.5 below. Therefore, it is enough to give the proof of

this proposition.

Remark 4.3. The choice of the central difference approximation for the gradient in (3.1) is

crucial to get the O(h2) convergence in Theorem 4.1.

Remark 4.4. When β 6= 0 and q < 2, we have been unable to show that equation (1.1)
has a C4,2 solution (this is the case when q = 2p

p+1). On the contrary, when β = 0 or q ≥ 2,

we do have C4,2 solutions (just take p ≥ 2 and u0 ∈ C4([−1, 1]), see A for a justification of

this fact). Hence, our convergence result (Theorem 4.1) is at least meaningful when β = 0.

One can see from the definition of Uh,τ in (3.13) that Uh,τ is constructed from U
(k)
h,τ

which is the solutions of the problem (3.10). It is reasonable then to consider the fol-
lowing problem with the non-zero Dirichlet condition,







vt(x, t) = vxx(x, t) + g(v(x, t), vx(x, t)) (x, t) ∈ (−L,L)× (0, T ),
v(−L, t) = v(L, t) = v1(t) t ∈ (0, T ),
v(x, 0) = v0(x) x ∈ (−L,L),

(4.1)
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where v(t) : x ∈ (−L,L) 7→ v(x, t) ∈ R, p > 1,

g(v, vx) = |v|p−1v + β|vx|q, with q =
2p

p+ 1
.

Let I > 0 and consider the grid xi = ih, −I ≤ i ≤ I where h = L
I . Let τ > 0 be a time

step and denote tn = nτ . Let

Vn = (V−I,n, . . . , V0,n, . . . , VI,n)
T

be the approximation of v(tn) at grid points. Then, Vn+1 is a solution of the following
equation: for all n ≥ 0, i = −I + 1, . . . , I − 1,

{
δtVi,n = δ2xVi,n + g(Vi,n, δxVi,n)
V−I,n = VI,n = ψn, Vi,0 = φi,

(4.2)

where ψn and φi stand for ψ(k)
n and φ(k)i introduced in (3.7), (3.12), (3.6) and (3.11).

Let Vh,n(x) be the piecewise linear interpolation generated from Vn by (3.5), then, we
get the following results:

Proposition 4.5. Consider h > 0 sufficiently small and τ > 0 such that τ ≤ h2

2 . Let

η ∈ (0, T ), suppose that the problem (4.1) (with q ∈ [1, 2)) has a non-negative solution

v ∈ C4,2([−L,L]× [0, T − η]), the initial data and boundary data of (4.2) satisfy

ǫ1 = sup
x∈[−L,L]

|v(x, 0) − φh(x)| = o(h) as h→ 0,

ǫ2 = sup
t∈[0,T−η]

|v(L, t)− ψτ (t)‖ = o(1) as τ → 0,

where φh and ψτ are the interpolations of φi and ψn defined in (3.5). Then,

max
0≤n≤N

‖Vh,n − v(tn)‖∞ = O(ǫ1 + ǫ2 + h2) as h→ 0,

where N > 0 is such that tN = Nτ ≤ T − η.

We now state some properties of the discrete scheme (4.2).

Lemma 4.6. Let n = 1, 2, . . . , N , Vn be the solution of (4.2) and V0 be a symmetric data.

Then, Vn is also symmetric for all n = 0, 1, . . . N .

Proof. It is straightforward from the symmetry of the data and the equation.

Remark 4.7. We can consider the problem (4.2) on the half interval [0, L] from now on.

In particular, we have for n ≥ 0 and i = 1, 2, . . . I − 1,

δ2xV0,n =
2V1,n − 2V0,n

h2
, δ2xVi,n =

Vi−1,n − 2Vi,n + Vi+1,n

h2
,

δxV0,n = 0, δxVi,n =
Vi+1,n − Vi−1,n

2h
. (4.3)
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Remark 4.8. The convergence stated in Proposition 4.5 holds without the symmetric prop-

erty. However, we handle only symmetric data to simplify the proofs below.

Lemma 4.9 (Positivity of the discrete solution). Let n = 1, 2, . . . , N and Vn be the

solution of (4.2). Suppose that V0 ≥ 0 and VI,n ≥ 0 for n = 0, 1, . . . , N . Assume in

addition that τ ≤ h2

2 and h ≤
(

2q

|β|Mq−1
0

) 1
2−q

if β < 0, where M0 = max
0≤n≤N

‖Vn‖∞. Then,

Vn ≥ 0 for all n between 0 and N .

Proof. By induction, we assume that Vk ≥ 0 for all k = 0, 1, . . . , n. We need to show
that Vn+1 ≥ 0. Using (4.2), we see that

V0,n+1 =

(

1− 2τ

h2

)

V0,n +
2τ

h2
V1,n + τV p

0,n,

where we used the fact that δxV0,n = 0 from Remark 4.7. From the restriction τ ≤ h2

2 ,
we have V0,n+1 ≥ 0.
For i between 1 and I − 1, we have

Vi,n+1 =

(

1− 2τ

h2

)

Vi,n +
τ

h2
(Vi+1,n + Vi−1,n) + τV p

i,n +
τβ

(2h)q
|Vi+1,n − Vi−1,n|q .

If β ≥ 0 and τ ≤ h2

2 , we directly infer the desired result. If β < 0, we have for i =
1, . . . , I − 1,

Vi,n+1 ≥
(

1− 2τ

h2

)

Vi,n +
τ

h2
(Vi+1,n + Vi−1,n) + τV p

i,n −
τ |β|
(2h)q

(

V q
i+1,n + V q

i−1,n

)

=

(

1− 2τ

h2

)

Vi,n + τV p
i,n +

τ

hq

(
1

h2−q
− |β|

2q
V q−1
i+1,n

)

Vi+1,n

+
τ

hq

(
1

h2−q
− |β|

2q
V q−1
i−1,n

)

Vi−1,n.

Here we used the induction assumption that Vi,n ≥ 0 for i = 0, 1, . . . , I. To obtain
Vi,n+1 > 0, then it requires the following restrictions

τ

h2
≤ 1

2
and

1

h2−q
− |β|

2q
M q−1

0 ≥ 0.

Recall that q ∈ [1, 2), then the last condition yields h ≤
(

2q

|β|Mq−1
0

) 1
2−q

. This ends the

proof of Lemma 4.9.

The following lemma is a discrete version of the maximum principle.
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Lemma 4.10. Let bn = (b0,n, b1,n, . . . , bI,n)
T , cn = (c0,n, c1,n, . . . , cI,n)

T be two vectors

such that bn ≥ 0 and cn is bounded. Let Vn = (V0,n, V1,n, . . . , VI,n)
T satisfy

δtVi,n − δ2xVi,n − bi,nVi,n − ci,nδxVi,n ≥ 0, 0 ≤ i ≤ I − 1,

Vi,0 ≥ 0, 0 ≤ i ≤ I,

VI,n ≥ 0, n ≥ 0.

If τ ≤ h2

2 and h ≤ 2
‖cn‖∞ , then Vn ≥ 0 for all n ≥ 0 .

Remark 4.11. Note that as before, we handle symmetric data in this lemma. That is the

reason why we focus only on i ≥ 0. Note also that (4.3) is useful for this lemma.

Proof of Lemma 4.10. We proof this lemma by induction. Assume that Vk ≥ 0 for
k = 0, 1, . . . , n. Let us show that Vn+1 ≥ 0. A straightforward calculation yields

V0,n+1 ≥
2τ

h2
V1,n +

(

1− 2τ

h2

)

V0,n + τb0,nV0,n,

for i between 1 and I − 1, we have

Vi,n+1 ≥
( τ

h2
− τ

2h
ci,n

)

Vi−1,n +

(

1− 2τ

h2

)

Vi,n

+ τbi,nVi,n +
( τ

h2
+

τ

2h
ci,n

)

Vi+1,n.

Since τ ≤ h2

2 , h ≤ 2
‖cn‖∞ and bn,Vn are non-negative, we deduce that Vn+1 ≥ 0. This

ends the proof.

Let us now give the proof of Proposition 4.5.

Proof of Proposition 4.5. Under the hypothesis stated in Proposition 4.5, we see that
if h is small enough, we may consider K ≤ N be the greatest value such that for all
n < K,

max
0≤i≤I

|Vi,n − v(xi, tn)| < 1 and max
0≤i≤I−1

∣
∣|δxVi,n| − |δxv(xi, tn)|

∣
∣ < 1. (4.4)

From the the fact that v0 ≥ 0 and Lemma 4.9, we see that the solution of (4.2) is non-
negative. Furthermore, since v(x, t) ∈ C4,2 ([−L,L]× [0, T − η]), there exist positive
constants C1 and C2 such that for all (x, t) ∈ [−L,L]× [0, T − η],

|v(i)x (x, t)| ≤ C1, 0 ≤ i ≤ 4 and |v(j)t (x, t)| ≤ C2, 0 ≤ j ≤ 2.

Thus, we obtain from the triangle inequality that

max
0≤i≤I

|Vi,n| ≤ 1 + C1 and max
0≤i≤I−1

|δxVi,n| ≤ 1 + C2, for n < K.
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Using Taylor’s expansion and (4.1), we derive for all 1 ≤ i ≤ I − 1, 0 < n < K,

δtv(xi, tn) ≤ δ2xv(xi, tn) + vp(xi, tn) + β|δxv(xi, tn)|q + C3h
2 + C4τ,

where C3, C4 are positive constants.

Let ei,n = Vi,n − v(xi, tn) be the discretization error. We have,

δtei,n ≤ δ2xei,n + V p
i,n − vp(xi, tn) + β(|δxVi,n|q − |δxv(xi, tn)|q) + C3h

2 + C4τ.

Applying the mean value theorem, we get

δtei,n ≤ δ2xei,n + pξp−1
i,n ei,n + βq|θq−2

i,n |θi,nδxei,n + C3h
2 + C4τ,

where ξi,n is an intermediate value between Vi,n and v(xi, tn), θi,n is between δxVi,n and
δxv(xi, tn).
Since τ ≤ h2

2 , we then obtain for all i ≤ I − 1 and n < K,

δtei,n ≤ δ2xei,n + pξp−1
i,n ei,n + βq|θq−2

i,n |θi,nδxei,n + C5h
2, (4.5)

where C5 = C3 + C4/2.
We now consider the function

z(x, t) = eAt+x
2 (
ǫ1 + ǫ2 +Qh2

)
,

where A,Q are positive constants which will be chosen later.
We observe that, for 0 ≤ i ≤ I,

z(xi, 0) = ex
2
i
(
ǫ1 + ǫ2 +Qh2

)
≥ ei,0,

z(xI , tn) = eAtn+x
2
I
(
ǫ1 + ǫ2 +Qh2

)
≥ eI,n,

and

zt(x, t)− zxx(x, t)− pξp−1
i,n z(x, t)− βq|θq−2

i,n |θi,nzx(x, t)
= (A− 2− pξp−1

i,n − 4x2 − 2βq|θq−2
i,n |θi,nx)z(x, t).

Using Taylor’s expansion, we get

δtz(xi, tn)− δ2xz(xi, tn)− pξp−1
i,n z(xi, tn)− βq|θq−2

i,n |θi,nδxz(xi, tn)
= (A− 2− pξp−1

i,n − 4x2i − 2βq|θq−2
i,n |θi,nxi)z(xi, tn)

+
h2

12
zxxxx(x̃i, tn) + βq|θq−2

i,n |θi,n
h2

6
zxxx(x̄i, tn)−

τ

2
ztt(xi, t̃n),
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where t̃n ∈ [tn, tn+1] and x̃i, x̄i ∈ [xi−1, xi+1].
By taking A,Q large enough, then h small enough such that the right-hand side of the
above equation is lager than C5h

2, we obtain

δtz(xi, tn)− δ2xz(xi, tn)− pξp−1
i,n z(xi, tn)− βq|θq−2

i,n |θi,nδxz(xi, tn) ≥ C5h
2. (4.6)

From (4.5) and (4.6), applying Lemma 4.10 to z(xi, tn)− ei,n with bi,n = pξp−1
i,n ≥ 0 and

ci,n = βq|θq−2
i,n |θi,n bounded, we get ei,n ≤ z(xi, tn) for 0 ≤ i ≤ I and 0 ≤ n < K. By

the same way, we also show that −ei,n ≤ z(xi, tn) for 0 ≤ i ≤ I and 0 ≤ n ≤ K. In
conclusion, we derive

max
0≤i≤I

|Vi,n − v(xi, tn)| ≤ z(xi, tn) ≤ eAT+L
2
(ǫ1 + ǫ2 +Qh2), for n < K.

Let us show that K = N . Assuming by contradiction that K < N , we have

1 ≤ max
0≤i≤I

|Vi,K − v(xi, tK)| ≤ z(xi, tK) ≤ eAT+L
2
(ǫ1 + ǫ2 +Qh2).

But this contradicts with the fact that the last term in the above inequality tends to zero
as h tends to zero. This concludes the proof of Proposition 4.5. Since Theorem 4.1 is a
consequence of Proposition 4.5, as we pointed in Remark 4.2, this is also the conclusion
of the proof of Theorem 4.1.

5 Numerical results

The numerical experiments presented in this section are performed with the initial data

u0(x) = A (1 + cos(πx)) , x ∈ (−1, 1), (5.1)

where A = 1.2. For the non-linearity power, we take p = 5 and p = 7. Let us recall
from Remark 3.2 that the threshold M is given by M = λ−

2
p−1 ‖u0‖∞. Therefore, the

parameters of the algorithm are λ = 1
2 , α = 0.4, M = 2A × 21/2 if p = 5 and M =

2A × 21/3 if p = 7. For the time step τ , we take τ = h2

4 where h = 2
I . We perform the

experiments with I = 50, 100, 160, 250, 320, 400.

5.1 The semilinear heat equation (β = 0 in equation (1.1)).

Note that the original paper of Berger and Kohn [9] was totally devoted to this case. We
now recall the assertion that the value τ∗k is independent of k and tends to a constant
as k tends to infinity. In order to establish this assertion, we recall from Merle and Zaag
[41] that

lim
t→T

(T − t)
1

p−1‖u(t)‖∞ = κ, with κ = (p− 1)−
1

p−1 . (5.2)
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Then, using (3.9) we see that

u(k)(ξk, τ
∗
k ) = λ

2
p−1u(k−1)(λξk, τ

∗
k−1 + λ2τ∗k ) = · · · = λ

2k
p−1u(λkξk, tk), (5.3)

where tk = τ∗0 + λ2τ∗1 + · · ·+ λ2kτ∗k .
Hence, it holds that

(T − tk)
1

p−1‖u(tk)‖∞ = (T − tk)
1

p−1λ
−2k
p−1 ‖u(k)(τ∗k )‖∞.

Since ‖u(k)(τ∗k )‖∞ =M , we obtain

T − tk = λ2kM1−p(p − 1)−1 + o(1) as k → ∞ (5.4)

on the one hand.

On the other hand, we get

τ∗k = λ−2k(tk − tk−1) = λ−2k ((T − tk−1)− (T − tk))

=M1−p(p − 1)−1(λ−2 − 1) + o(1).

Consequently, we obtain

lim
k→+∞

τ∗k =M1−p(p − 1)−1(λ−2 − 1). (5.5)

Figure 5.1 presents the computed values of τ∗k when p = 5, for different values of
I. The values of τ∗k are tabulated in Tables 5.1 and 5.2 for some selected values of k.
These experimental results are in agreement with the fact that τ∗k tends to the constant
indicated in the right-hand side of (5.5) as k tends to infinity. In Figure 5.2, we show the

k

τ∗

k

Figure 5.1. The computed values of τ∗k are plotted against k when p = 5.

plot of ‖Uh,τ (t)‖∞ versus (Th,τ−t) in log-scale where Th,τ is given by Th,τ =
∑K

k=0 λ
2kτ∗k .
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k I = 50 I = 100 I = 160 I = 250 I = 320 I = 400
20 0.6426 0.5913 0.5810 0.5771 0.5760 0.5755
30 0.6401 0.5881 0.5778 0.5739 0.5728 0.5722
40 0.6391 0.5865 0.5762 0.5723 0.5712 0.5706
50 0.6386 0.5856 0.5752 0.5713 0.5703 0.5697
60 0.6384 0.5851 0.5746 0.5707 0.5697 0.5691
70 0.6384 0.5847 0.5742 0.5703 0.5693 0.5687
80 0.6383 0.5844 0.5739 0.5700 0.5689 0.5683

Table 5.1. The computed values of τ∗k (×10−2) when p = 5.

k I = 50 I = 100 I = 160 I = 250 I = 320 I = 400
20 0.1279 0.0826 0.0726 0.0688 0.0677 0.0671
30 0.1279 0.0825 0.0724 0.0686 0.0675 0.0670
40 0.1279 0.0825 0.0724 0.0685 0.0674 0.0669
50 0.1279 0.0825 0.0723 0.0684 0.0674 0.0668
60 0.1279 0.0825 0.0723 0.0684 0.0673 0.0667
70 0.1279 0.0825 0.0723 0.0683 0.0673 0.0667
80 0.1279 0.0825 0.0723 0.0683 0.0673 0.0667

Table 5.2. The computed values of τ∗k (×10−2) when p = 7.

Th,τ − t

‖
U

h
,τ

(t
)‖

∞

p = 5, slope ∼ 0.249

p = 7, slope ∼ 0.166

Figure 5.2. Blow-up rate (in log-scale) when p = 5 and p = 7, for I = 400.
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The slope of the obtained curves measures the blow-up rate. As expected from (5.2),
these slopes for p = 5 and p = 7 are 1

4 and 1
6 respectively.

In order to examine the theoretical profile defined in (2.5), we recall the method of
Berger and Kohn [9] to consider the rescaled profile,

z → u(k)
(
zλ−1ξ+k−1, τ

∗
k

)
, |z| < 1, (5.6)

where ξ+q = ξq,i+q . Using the semilarity variables defined in (2.1) and (5.3), we get

u(k)(ξk, τ
∗
k ) = λ

2k
p−1 (T − tk)

− 1
p−1w

(

λk
ξk√
T − tk

, sk

)

, (5.7)

where sk = − log (T − tk).
We recall from (5.4) that

T − tk ∼
(

λ2kM1−p
)

(p− 1)−1. (5.8)

Substituting (5.8) into (5.7) yields

u(k)(ξk, τ
∗
k ) ∼ (p− 1)

1
p−1Mw

(√

p− 1M
p−1
2 ξk, sk

)

.

From (2.4), we replace ξk by zλ−1ξ+k−1 to obtain

u(k)(zλ−1ξ+k−1, τ
∗
k ) ∼ (p− 1)

1
p−1Mf

(

√

p− 1M
p−1
2 zλ−1

ξ+k−1√
sk

)

. (5.9)

Assume that
ξ+k−1√
sk

tends to ζ. Using the fact that αM = u(k−1)(ξ+k−1, τ
∗
k ) yields

αM =M(p − 1)
1

p−1 f
(√

p− 1M
p−1
2 ζ
)

,

or
α = (p− 1)

1
p−1 f (Aζ) , A =

√

p− 1M
p−1
2 .

Using the definition of f in (2.5), it holds that

α = (p− 1)
1

p−1

(

p− 1 +
(p− 1)2

4p
|Aζ|2

) −1
p−1

.

A straightforward computation gives

|Aζ|2 = 4p

p− 1

(
α1−p − 1

)
. (5.10)

Using (5.10) and (5.9), we arrive at

u(k)(zλ−1y+k−1, τ
∗
k ) ∼ M(p − 1)

1
p−1 f

(
λ−1z(Aζ)

)− 1
p−1

∼ M(p − 1)
1

p−1

(

p− 1 +
(p− 1)2

4p
λ−2z2|Aζ|2

)− 1
p−1

∼ M
(
1 +

(
α1−p − 1

)
λ−2z2

)− 1
p−1 . (5.11)
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Since U
(k)
h,τ converges to u(k) as h goes to zero, it holds that

U
(k)
h,τ (zλ

−1ξ+k−1, τ
∗
k ) ∼M

(
1 +

(
α1−p − 1

)
λ−2z2

)− 1
p−1 , |z| < 1. (5.12)

We expect that the left-hand side of (5.12) tends to the predicted profile as k tends to
infinity. Figures 5.3 and 5.4 display this relationship after 80 iterations with I = 400.
Figures 5.5 and 5.6 illustrate the output of our algorithm using I = 400 at some selected
values of k. As k increases these computed profiles converge to the profile shown in
Figures 5.3 and 5.4 respectively. We give in Tables 5.3 and 5.4 the error in L∞-norm
between the computed profiles and the predicted profile using various values of I in
both cases p = 5 and p = 7. The expression of the error is given by

e
(k)
h,τ = sup

−1≤z≤1

∣
∣
∣U

(k)
h,τ (zλ

−1ξ+k−1, τ
∗
k )−M [1 + (α1−p − 1)λ−2z2]−

1
p−1

∣
∣
∣ .

The graphs of e(k)h,τ versus h in log-scale are visualized in Figures 5.7 and 5.8. We ob-
serve in those figures that the error tends to zeros as h → 0. We note that the error
e
(k)
h,τ includes two sources: the discretization error in using the scheme (3.2) and the

asymptotic error which refers to the behavior of w(y, s) as s tends to infinity.

z

M [1 + (α1−p − 1)λ−2z2]−
1

p−1

U
(80)
h,τ (zλ−1ξ+

k−1, τ
∗

k )

Figure 5.3. The computed profile (5.6) for k = 80 with I = 400 and the predicted profile (5.12)
with p = 5.

5.2 The nonlinear heat equation in case β 6= 0

5.2.1 A formal calculation

This part gives a formal calculation to obtain the prediction given in (2.9). This kind of
arguments can be found in [9], [40] and [39]. Using similarity variables defined in (2.1)
with a = 0, we see that w = w0,T satisfies the following equation for all s ≥ − log T and
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z

M [1 + (α1−p − 1)λ−2z2]−
1

p−1

U
(80)
h,τ (zλ−1ξ+

k−1, τ
∗

k )

Figure 5.4. The computed profile (5.6) for k = 80 with I = 400 and the predicted profile (5.12)
with p = 7.

z

U
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)
h

,τ
(z

λ
−

1
ξ
+ k
−

1
,τ

∗ k
)

Figure 5.5. The computed profiles as in (5.6) for selected values of k with I = 400 and p = 5.
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U
(k

)
h

,τ
(z

λ
−

1
ξ
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−

1
,τ
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Figure 5.6. The computed profiles as in (5.6) for selected values of k with I = 400 and p = 7.
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k I = 50 I = 100 I = 160 I = 250 I = 320 I = 400
10 0.2023 0.1581 0.1501 0.1466 0.1446 0.1432
20 0.1336 0.0858 0.0787 0.0735 0.0722 0.0715
30 0.1213 0.0636 0.0517 0.0480 0.0483 0.0474
40 0.1141 0.0504 0.0404 0.0376 0.0351 0.0354
50 0.1091 0.0444 0.0341 0.0297 0.0289 0.0276
60 0.1076 0.0409 0.0300 0.0249 0.0241 0.0231
70 0.1068 0.0372 0.0255 0.0214 0.0209 0.0202
80 0.1066 0.0354 0.0232 0.0188 0.0182 0.0174

Table 5.3. Error in L∞-norm between the computed profile and the predicted profile for selected

values of k using various values of I with p = 5.

k I = 50 I = 100 I = 160 I = 250 I = 320 I = 400
10 0.2900 0.1930 0.1205 0.0887 0.0792 0.0730
20 0.2748 0.1757 0.0970 0.0651 0.0556 0.0516
30 0.2711 0.1715 0.0880 0.0545 0.0451 0.0398
40 0.2725 0.1699 0.0843 0.0484 0.0391 0.0337
50 0.2723 0.1696 0.0822 0.0441 0.0351 0.0295
60 0.2706 0.1695 0.0810 0.0421 0.0322 0.0265
70 0.2726 0.1694 0.0803 0.0403 0.0298 0.0240
80 0.2720 0.1694 0.0802 0.0393 0.0285 0.0224

Table 5.4. Error in L∞-norm between the computed profile and the predicted profile for selected

values of k using various values of I with p = 7.

h

e
(k)
h,τ

k = 20

k = 30

k = 40

k = 80

...

...

Figure 5.7. Error between the computed profiles and the predicted profile in log-scale when p = 5.
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h

e
(k)
h,τ

k = 20

k = 80

...

k = 30

k = 40

Figure 5.8. Error between the computed profiles and the predicted profile in log-scale when p = 7.

y ∈ R
N :

ws = ∆w − 1

2
y.∇w − w

p− 1
+ |w|p−1w + β|∇w|

2p
p+1 . (5.13)

We try to find a solution of (5.13) in the form v
(
y√
s

)

, with

v(0) = κ, lim
|z|→+∞

|v(z)| = 0.

A computation shows that v must satisfy the following equation, for each s ≥ − log T
and each z ∈ R

N :

−z.∇v(z)
2s

=
1

s
∆v(z)− z.∇v(z)

2
− v(z)

p− 1
+ |v(z)|p−1v(z) +

β

s
p

p+1

|∇v(z)|
2p
p+1 . (5.14)

We formally seek regular solutions of (5.13) in the form

V (z) = v0 (z) +
1

sα
R(z, s),

where z = y√
s
, α > 0 and ‖R‖L∞ ≤ C.

Pugging this ansatz in (5.14) and making s → +∞, we obtain the following equation
satisfied by v0,

−1

2
zv′0(z)−

1

p− 1
v0(z) + v0(z)

p = 0. (5.15)

Solving (5.15) yields

v0(z) =
(
p− 1 + bz2

)− 1
p−1 , (5.16)

for some constant b = b(p, β) ∈ R. We impose b(p, β) > 0 in order to have a bounded
constant solution.
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Remark 5.1. In the case β = 0, imposing an analyticity condition, Berger and Kohn [9]

have formally found b(p, 0) = (p−1)2

4p , which is the coefficient of f given in (2.5). The value

of b(p, 0) was confirmed in several contributions (Filippas and Kohn [22], Herrero and

Velázquez [34], Bricmont and Kupiainen [10]). Unfortunately, we were not able to adapt

the formal approach of [9] in the case β 6= 0, so we only have a numerical expression of

b(p, β) in Figure 5.12 and Figure 5.13 below.

5.2.2 Numerical simulations

An important aim in this work is to give a numerical confirmation for the conjectured
profile given in (2.7). Note that we have just given a formal argument in the previous
subsection, for the existence of that profile, without, specifying the value of b(p, β). Up
to our knowledge, there is neither a rigorous proof nor a numerical confirmation for
(2.7), and our paper is the first to exhibit such a solution numerically. More importantly,
thanks to our computations, we are able to find a numerical approximation of b(p, β) in
the formula of f̄β in (2.8) from our computations.

If we make the same analysis to check that the numerical profile fits with the conjec-
ture theoretical profile (2.7) as the above analysis when β = 0, then the same result
holds in this case, namely

u(k)(zλ−1ξ+k−1, τ
∗
k ) ∼M

(
1 +

(
α1−p − 1

)
λ−2z2

)− 1
p−1 , −1 < z < 1. (5.17)

Figures 5.9 and 5.10 show the graphs of the computed profile U
(80)
h,τ (zλ−1ξ+k−1, τ

∗
k ) and

the predicted profile given in the right hand side of (5.17), for computations using I =
320, β = 1, p = 5 and p = 7.

z

M [1 + (α1−p − 1)λ−2z2]−
1

p−1

U
(80)
h,τ (zλ−1ξ+

k−1, τ
∗

k )

Figure 5.9. The computed and the predicted profiles in (5.17), for computations using I = 320,

β = 1 and p = 5.
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z

M [1 + (α1−p − 1)λ−2z2]−
1

p−1

U
(80)
h,τ (zλ−1ξ+

k−1, τ
∗

k )

Figure 5.10. The computed and the predicted profiles in (5.17), for computations using I = 320,

β = 1 and p = 7.

In order to compute the value of b(p, β) from the simulations, we use the relation (5.7)
with ξk = zλ−1ξ+k−1, we get

u(k)(zλ−1ξ+k−1, τ
∗
k ) = λ

2k
p−1 (T − tk)

− 1
p−1w

(

λk
zλ−1ξ+k−1√
T − tk

, sk

)

. (5.18)

We recall from (2.8) that the predicted profile f̄β is given by

f̄β(z) = κ

(

1 +
b(p, β)

p− 1
z2
)− 1

p−1

, z =
x

√

(T − t)| log(T − t)|
, κ = (p− 1)−

1
p−1 ,

(5.19)
and that

sup
|z|<K

∣
∣w(y, s) − f̄β(z)

∣
∣→ 0 as s→ ∞ with z =

y√
s
. (5.20)

From (5.20), (5.19) and (5.18), ignoring the error of asymptotic behavior as s goes to
infinity, we obtain

u(k)(zλ−1ξ+k−1, τ
∗
k ) = λ

2k
p−1 (T − tk)

− 1
p−1 f

(

λk
zλ−1ξ+k−1√
T − tk

× 1√
sk

)

= λ
2k
p−1 (T − tk)

−1
p−1κ

(

1 +
b(p, β)

p− 1

λ2kz2λ−2(ξ+k−1)
2

T − tk

1

sk

)− 1
p−1

.

After some straightforward calculations, we arrive at

b(p, β) =
sk

(ξ+k−1)
2

[

κλ2k(p − 1)[u(k)(zλ−1ξ+k−1, τ
∗
k )]

1−p − (p− 1)(T − tk)

λ2k−2z2

]

.
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Setting z = λ and taking the limit of the above equation as k goes to infinity, we get

b(p, β) = lim
k→+∞

sk

(ξ+k−1)
2
ζk,

where
ζk = (p− 1)

(

κ[u(k)(ξ+k−1, τ
∗
k )]

1−p − λ−2k(T − tk)
)

.

Using (5.4) and (5.17), we see that ζk approaches a limit given by

lim
k→+∞

ζk =M1−p [(p− 1)κα1−p − 1
]
.

This implies that the ratio sk
(ξ+k−1)

2
should approach a constant as k tends to infinity. This

is presented in Figure 5.11. We remark that the computations of sk and ζk do not depend

sk

(ξ+

k−1
)2

k

Figure 5.11. The graph of sk
(ξ+

k−1)
2

versus k, for computations using I = 320, p = 5 and β = 0.

on β. Moreover, we know that the value of b(p, 0) is (p−1)2

4p . In particular, we compute
the value of b(p, β) by

b(p, β) =
CK

[
ξ+K−1(p, β)

]2 ,

where CK = b(p, 0)
[
ξ+K−1(p, 0)

]2 for K large.
Consequently, we have just given a numerical evidence for the following conjecture:

Conjecture 5.2. Equation (1.1) has a solution u(x, t) which blows up in finite time T at

one blow-up point x = 0, moreover,

∥
∥
∥
∥
∥
(T − t)1/(p−1)u(t)− f̄β

(

·
√

(T − t)| log(T − t)|

)∥
∥
∥
∥
∥
L∞

→ 0, as t→ T, (5.21)
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β

p = 5

β

p = 7

Figure 5.12. The computed values of b(5, β) (left) and b(7, β) (right) for various values of β.

p p

β = 1 β = −1

Figure 5.13. The computed values of b(p, 1) (left) and b(p,−1) (right) for various values of p.

where

f̄β(z) =
(
p− 1 + b(p, β)|z|2

)− 1
p−1 , with b(p, 0) =

(p− 1)2

4p
,

and b(p, β) is represented in Figure 5.12 and Figure 5.13.

While remarking numerical simulation for equation (1.1) with β 6= 0, we could never
obtain the self-similar behavior (2.6) rigorously proved in [52]. On the contrary, we
could exhibit the behavior (5.21), at the heart of our conjecture. In our opinion, this is
probably due to the fact that the behavior (2.6) is unstable, unlike the behavior (5.21),
which we suspect to be stable with respect to perturbations in initial data.
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5.3 The complex Ginzburg-Landau equation

We recall that eıθf̃δ,γ is an asymptotic profile of the solution of (1.2) where θ ∈ R and
f̃δ,γ is given in (2.12), namely

f̃δ,γ =
(
p− 1 + b(δ, γ)|z|2

)− 1+ıδ
p−1 , b(δ, γ) =

(p− 1)2

4(p − δ2 − γδ − γδp)
> 0. (5.22)

Using the same analysis as Section 5.1 resulting (5.11), we have for |z| < 1,

u(k)(zλ−1y+k−1, τ
∗
k ) ∼M1+ıδλ−

2ıkδ
p−1 (p− 1)

ıδ
p−1 eıθ

(
1 + (α1−p − 1)λ−2z2

)− 1+ıδ
p−1 . (5.23)

Remark 5.3. We remark that the rescaled profile (5.23) is obtained under the assumption

p− δ2 − γδ(p + 1) > 0. If this condition is not satisfied, the question is open.

Remark 5.4. If we take the modulus and the phase of both sides in (5.23), then we get

∣
∣
∣u(k)

∣
∣
∣ (zλ−1y+k−1, τ

∗
k ) ∼M(1 + (α1−p − 1)λ−2z2)−

1
p−1 , |z| < 1, (5.24)

phase
[

u(k)
]

(zλ−1y+k−1, τ
∗
k ) ∼ θ +

δ

p− 1
(lnM + ln(p− 1)− 2k lnα)

− δ

p− 1
ln
(
1 + (α1−p − 1)λ−2z2

)
, |z| < 1. (5.25)

The right hand side of (5.24) is the same as in (5.11).

5.3.1 Experiments with p− δ2 − γδ(p + 1) > 0.

We first make an experiment with γ = 0, δ = 0.2, p = 5 and the initial grid with I =
320. The numerical result displayed in Figure 5.14 is in agreement with the expectation
obtained in (5.24) and (5.25). Both the numerical modulus and phase coincide with the
predicted profile given in (5.24) and (5.25) within plotting resolution.

An experiment with γ = 0, p = 5 and various values of δ are performed on three grids
with I = 100, 200, 320. The purpose is to confirm the theoretical profile f̃δ,γ given in
(5.22). More precisely, we would like to calculate values of b(p, δ, 0) from our numerical
simulation. We recall that the theoretical value of b(p, δ, 0) is equal to (p−1)2

p−δ2 . In Figure
5.15, we have the computed values of b(p, δ, 0) on various initial grids I. Note that these
computed values tend to the predicted ones as I increases. However, as δ approaches√
p (

√
5 in Figure 5.15), b becomes singular, and that is the reason why the coincidence

between the numerical and theoretical values becomes less clear.
A further experiment with γ = 1, δ = 1 is shown in Figure 5.16. These calculations

show the relationship we obtained in (5.24) and (5.25). Both the numerical phase and
modulus coincide with the predicted ones given in (5.24) and (5.25) within plotting
resolution.
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Figure 5.17. The numerical values of u(k)(zλ−1y+k−1, τ
∗

k ) at some selected values of k, for com-

putation using the initial grid I = 320 with p = 5. (Above) γ = 0, δ =
√
p + 0.1. (Below)

γ = 0, δ =
√
p+ 0.5.

Proof of Proposition A.1. In what follows, we write ‖ · ‖∞ = ‖ · ‖L∞(Ω̄) for simplicity
and denote by C1, C2, . . . constants depending only on C0, Cu, T0, p, q and β.

i) We see from (A.1) that ‖ut(t)‖∞ is bounded on [0, T0] if ‖uxx(t)‖∞ is bounded on
[0, T0]. Let us consider h = uxx, then h satisfies

ht = hxx + ∂x
(
p|u|p−1ux + qβ|ux|q−2uxh

)
. (A.2)

An integral form of the solution of equation (A.2) is

h(t) = et∆h(0) +

∫ t

0
e(t−s)∆∂x

(
p|u(s)|p−1ux(s) + qβ|ux(s)|q−2ux(s)h(s)

)
ds, (A.3)

where et∆ denotes the heat semigroup on Ω with Dirichlet boundary condition.
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Recall that for all ϕ ∈ L∞,

‖et∆ϕ‖∞ ≤ ‖ϕ‖∞ and ‖et∆∇ϕ‖∞ ≤ C ′
√
t
‖ϕ‖∞. (A.4)

Since u0 ∈ C2 and ‖u(t)‖∞, ‖ux(t)‖∞ are bounded for all t ∈ [0, T0], then we have by
(A.4) and (A.3) that

‖h(t)‖∞ ≤ C1 + C1

∫ t

0

‖h(s)‖∞√
t− s

ds, ∀t ∈ [0, T0].

Using a Growall’s argument, we have

‖h(t)‖∞ ≤ 2C1e
C1

√
T0 , ∀t ∈ [0, T0].

Therefore, ‖uxx(t)‖∞ is bounded for all t ∈ [0, T0] which concludes the proof of i).

ii) We assume additionally in what follows that p, q ≥ 2, ‖u0‖C4(Ω̄) ≤ C0. Consider
v = uxxx, let us show that ‖v(t)‖∞ is bounded for all t ∈ [0, T0]. From (A.1) we see that
v satisfies the following equation

vt = vxx + p|u|p−1v + βq∂x(|ux|q−2uxv) + φ+ ∂xψ, (A.5)

where

φ = p(p− 1)|u|p−3uuxuxx, ψ = p(p− 1)|u|p−3u(ux)
2 + βq(q − 1)|ux|q−2(uxx)

2.

We now use an integral formulation of (A.5) to write

v(t) = et∆v(0) + p

∫ t

0
e(t−s)∆|u(s)|p−1v(s)ds

+ βq

∫ t

0
e(t−s)∆∂x(|ux(s)|q−2ux(s)v(s))ds

+

∫ t

0
e(t−s)∆φ(s)ds +

∫ t

0
e(t−s)∆∂xψ(s)ds.

From (i) and the hypothesis on u0 ∈ C4, we see that for all t ∈ [0, T0],

‖v(0)‖∞ + ‖u(t)‖p−1
∞ + ‖ux(t)‖q−1

∞ + ‖φ(t)‖∞ + ‖ψ(t)‖∞ ≤ C2.

Hence, the use of (A.4) yields

‖v(t)‖∞ ≤ C2 + C2

∫ t

0

(

1 +
1√
t− s

)

‖v(s)‖∞ds ≤ 2C2e
C2(T0+2

√
T0), ∀t ∈ [0, T0],

which follows that ‖uxxx(t)‖∞ is bounded on [0, T0].
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We now bound ‖utt(t)‖∞ on [0, T0]. Consider θ = utt, by (A.1), we see that θ satisfies

θt = θxx + ηθ + βq∂x
(
|ux|q−2uxθ

)
+ γ, (A.6)

where

η = p|u|p−1 − βq(q − 1)|ux|q−2uxx,

γ = p(p− 1)|u|p−3u(ut)
2 + βq(q − 1)|ux|q−2

(
uxxx + p|u|p−1ux + βq|ux|q−2uxuxx

)2
.

An integral form of the solution of equation (A.6) is

θ(t) = et∆θ(0) +

∫ t

0
e(t−s)∆η(s)θ(s)ds

+ βq

∫ t

0
e(t−s)∆∂x

(
|ux(s)|q−2ux(s)θ(s)

)
ds+

∫ t

0
e(t−s)∆γ(s)ds.

Since u0 ∈ C4, then ‖θ(0)‖∞ = ‖utt(0)‖∞ is bounded. Using the fact that ‖uxxx(t)‖∞ is
bounded on [0, T0] and (i), we have by (A.4) that

‖θ(t)‖∞ ≤ C3 + C3

∫ t

0

(

1 +
1√
t− s

)

‖θ(s)‖∞ds ≤ 2C3e
C3(T0+2

√
T0), ∀t ∈ [0, T0].

Since ‖utt(t)‖L∞ is bounded on [0, T0], we have from (A.1) that ‖uxxxx(t)‖L∞ is also
bounded on [0, T0]. This completes the proof of Proposition A.1.
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Chapter III

On the blow-up results for a class of strongly
perturbed semilinear heat equations1

V. T. Nguyen

Université Paris 13, Sorbonne Paris Cité,

LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Abstract
We consider in this work some class of strongly perturbed for the semilinear heat equa-
tion with Sobolev sub-critical power nonlinearity. We first derive a Lyapunov functional
in similarity variables and then use it to derive the blow-up rate. We also classify all
possible asymptotic behaviors of the solution when it approaches to singularity. Finally,
we describe precisely the blow-up profiles corresponding to these behaviors.

Keyword: Finite-time blow-up, asymptotic behavior of solutions, nonlinear parabolic
equations.

1 Introduction

We are interested in the following nonlinear parabolic equation:
{

ut = ∆u+ |u|p−1u+ h(u),
u(0) = u0 ∈ L∞(Rn),

(1.1)

where u is defined for (x, t) ∈ R
n × [0, T ), p is a sub-critical nonlinearity,

1 < p, (n − 2)p < n+ 2. (1.2)

1submitted, arXiv:1404.4018
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The function h is in C1(R) ∩ C2(R∗) satisfying

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
, (1.3)

where a > 1, M > 0. Typically, h(z) = µ|z|p−1z
loga(2+z2)

with µ ∈ R.

By standard results, the problem (1.1) has a unique classical solution u(x, t) in L∞(Rn),
which exists at least for small times. The solution u(x, t) may develop singularities in
some finite time. We say that a function u : Rn × [0, T ) 7→ R is a solution of (1.1) if u
solves (1.1) and satisfies

u, ut,∇u,∇2u are bounded and continuous on R
n × [0, τ ], ∀τ < T. (1.4)

It is said that u(x, t) blows up in a finite time T < +∞ if u(x, t) satisfies (1.1), (1.4) and

lim
t→T

‖u(t)‖L∞(Rn) = +∞.

Here we call T the blow-up time of u(x, t). In such a blow-up case, a point x0 ∈ R
n is

called a blow-up point of u(x, t) if and only if there exist (xn, tn) → (x0, T ) such that
|u(xn, tn)| → +∞ as n→ +∞.

Consider v a positive blow-up solution of the associated ODE of (1.1). It is clear that
v is given by

v′ = vp + h(v), v(T ) = +∞, for some T > 0. (1.5)

Since the blow-up solution of (1.5) satisfies (see Lemma A.1)

v(t) ∼ κ(T − t)−
1

p−1 as t→ T , where κ = (p− 1)−
1

p−1 , (1.6)

it is natural to ask whether the blow-up solution u(t) of (1.1) has the same blow-up rate
as v(t) does. More precisely, are there constants c, C > 0 such that

c(T − t)−
1

p−1 ≤ ‖u(t)‖L∞(Rn) ≤ C(T − t)−
1

p−1 , ∀t ∈ (0, T )? (1.7)

By a simple argument based on Duhamel’s formula, we can show that the lower bound
in (1.7) is always satisfied (see [22]). For the upper blow-up rate estimate, it is much
less simple and requires more work. Practically, we define for all x0 ∈ R

n (x0 may be
a blow-up point of u or not) the following similarity variables introduced in Giga and
Kohn [5], [6], [7]:

y =
x− x0√
T − t

, s = − log(T − t), wx0,T (y, s) = (T − t)
1

p−1u(x, t). (1.8)

Hence wx0,T satisfies for all s ≥ − log T and for all y ∈ R
n:

∂swx0,T =
1

ρ
div(ρ∇wx0,T )−

wx0,T
p− 1

+ |wx0,T |p−1wx0,T + e
− ps

p−1h
(

e
s

p−1wx0,T

)

, (1.9)
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where

ρ(y) =

(
1

4π

)n/2

e−
|y|2
4 , y ∈ R

n. (1.10)

Here, we say that w : Rn× [− log T,+∞) 7→ R is a solution of (1.9) if w solves (1.9) and
satisfies

w,ws,∇w,∇2w are bounded and continuous on R
n × [− log T, S], ∀S < +∞. (1.11)

We can see that the study of u in the neighborhood of (x0, T ) is equivalent to the study
of the long-time behavior of wx0,T and each result for u has an equivalent formulation
in term of wx0,T . In particular, the proof of the upper bound in (1.7) is now equivalent
to showing that there exists a time ŝ ≥ − log T large enough such that

‖wx0,T (s)‖L∞(Rn) ≤ C, ∀s ≥ ŝ. (1.12)

We remark that the perturbation term added to equation (1.9) satisfies the following
inequality,

j = 0, 1, e
− (p−j)s

p−1

∣
∣
∣h(j)

(

e
s

p−1 z
)∣
∣
∣ ≤ C0

sa
(
|z|p−j + 1

)
, ∀s ≥ s0, (1.13)

for some C0 > 0 and s0 > 0 (see Lemma A.3 for a proof of this fact).

When h ≡ 0, Giga and Kohn proved (1.12) in [6] for 1 < p < 3n+8
3n−4 or for non-

negative initial data (so that the solution is positive everywhere) with sub-critical p (note
that Weissler [21] first obtained (1.7) in the positive, radially symmetric case under the
assumption that, for each 0 < t < T , ut(x, t) achieves maximum at x = 0). Estimate
(1.12) is extended for all p satisfying (1.2) without assuming non-negativity for initial
data u0 by Giga, Matsui and Sasayama in [8]. The proof written in [8] is strongly based
on the existence of the following Lyapunov functional:

E0[w](s) =
∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy. (1.14)

Based on this functional, some energy estimates related to this structure and a bootstrap
argument given in [16], the authors in [8] have established the following key integral
estimate

sup
s≥s′

∫ s+1

s
‖wx0,T (s)‖

(p+1)q
Lp+1(BR)

ds ≤ Cq,s′, ∀q ≥ 2, s′ > − log T. (1.15)

Since this estimate holds for all q ≥ 2, we obtain an upper bound for wx0,T which yields
(1.12).
Mueller and Weissler [14], Friedman and McLeod [4] obtained related results for a
general semilinear heat equation of the form

ut = ∆u+ f(u), u0 ≥ 0
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under some mild assumptions on f . In particular, they showed that

‖u(t)‖L∞ ≤ G−1(C(T − t)) with G(s) =

∫ +∞

s

dτ

f(τ)
.

In this paper, we wonder whether a perturbation of the method of [8] would work for
our problem (note that we have no assumption on sign of u0 and h). A key step is to find
a Lyapunov functional for equation (1.9). Following the method introduced by Hamza
and Zaag in [10], [9] for perturbations of the semilinear wave equation, we introduce

J [w](s) = E [w](s)e
γ

a−1
s1−a

+ θs1−a, (1.16)

where γ = 8C0

(
p+1
p−1

)2
and θ > 0 is sufficiently large constant which will be determined

later,

E [w] = E0[w] + I[w], I[w](s) = −e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy, (1.17)

with H(z) =
∫ z
0 h(ξ)dξ.

With this introduction, we derive that the functional J [w] is a decreasing function of
time for equation (1.9), provided that s is large enough. More precisely, we have the
following:

Theorem 1.1 (Existence of a Lyapunov functional for equation (1.9)). Let a, p, n,M

be fixed, consider w a solution of equation (1.9) satisfying (1.11). Then there exist ŝ0 =

ŝ0(a, p, n,M) ≥ s0 and θ̂0 = θ̂0(a, p, n,M) such that if θ ≥ θ̂0, then J satisfies the follow-

ing inequality, for all s2 > s1 ≥ max{ŝ0,− log T},

J [w](s2)− J [w](s1) ≤ −1

2

∫ s2

s1

∫

Rn

(∂sw)
2ρdyds. (1.18)

As mentioned above, the existence of this Lyapunov functional J is a crucial step in the
derivation of the blow-up rate for equation (1.1). Indeed, with the functional J and
some more work, we are able to adapt the analysis in [8] for equation (1.1) in the case
h ≡ 0 and get the following result:

Theorem 1.2 (Blow-up rate for equation (1.1)). Let a, p, n,M be fixed, p satisfy (1.2).
There exists ŝ1 = ŝ1(a, p, n,M) ≥ ŝ0 such that if u is a blow-up solution of equation (1.1)
with a blow-up time T , then

(i) for all s ≥ s′ = max{ŝ1,− log T},

‖wx0,T (s)‖L∞(Rn) ≤ C, (1.19)

where wx0,T is defined in (1.8) and C is a positive constant depending only on n, p,M and

a bound of ‖wx0,T (ŝ0)‖L∞ .

(ii) For all t ∈ [t1, T ) where t1 = T − e−s
′
,

‖u(t)‖L∞(Rn) ≤ C(T − t)−
1

p−1 . (1.20)
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Remark 1.3. The proof of Theorem 1.2 is far from being a straightforward adaptation of

[8]. Indeed, three major difficulties arise in our case and make the heart of our contribution:

- the existence of a Lyapunov functional in similarity variables (see Theorem 1.1 above),

- the control of the L2-norm in terms of the energy (see (ii) of Proposition 2.3, where we

rely on a new blow-up criterion greatly simplifying the approach in [6]),

- the proof of a nonlinear parabolic result (see Proposition 2.7 below).

The estimate obtained in Theorem 1.2 is a fundamental step in studying the asymptotic
behavior of blow-up solutions. When h ≡ 0, Giga and Kohn in [6], [7] (see also [5])
obtained the following result: For a given blow-up point x0, it holds that

lim
s→+∞

wx0,T (y, s) = lim
t→T

(T − t)
1

p−1u(x0 + y
√
T − t, t) = ±κ,

where κ = (p − 1)
1

p−1 , uniformly on compact subsets of Rn. The result is pointwise in x0.
Besides, for a.e. y, lims→+∞∇wx0,T (y, s) = 0.

For our problem, when h 6≡ 0 and h is given in (1.3), we also derive an analogous result
on the behavior of wx0,T as s→ +∞. We claim the following:

Theorem 1.4 (Behavior of wx0,T as s → +∞). Let a, p, n,M be fixed, p satisfy (1.2).
Consider u(t) a solution of equation (1.1) which blows up at time T and x0 a blow-up

point. Then

lim
t→T

(T − t)
1

p−1u(x0 + y
√
T − t, t) = lim

s→+∞
wx0,T (y, s) = ±κ,

holds in L2
ρ (L2

ρ is the weighted L2 space associated with the weight ρ (1.10)), and also

uniformly on each compact subset of Rn.

Up to changing u0 in −u0 and h in −h, we may assume that w → κ in L2
ρ as s → +∞.

Let us consider φ a positive solution of the associated ordinary differential equation of
equation (1.9)

φs = − φ

p− 1
+ φp + e−

ps
p−1h

(

e
s

p−1φ
)

(1.21)

such that

φ(s) = κ+O
(

1

sa

)

as s→ +∞, (1.22)

(see Lemma A.4 for a proof of the existence of φ).
Let us introduce vx0,T = wx0,T − φ(s), then ‖vx0,T (s)‖L2

ρ
→ 0 as s→ +∞ and vx0,T (or v

for simplicity) satisfies the following equation:

∂sv = (L+ ω(s))v + F (v) +H(v, s), ∀y ∈ R
n, ∀s ∈ [− log T,+∞),

where L = ∆− y
2 · ∇+ 1 and ω, F , H satisfy

|ω(s)| = O(s−a) and |F (v)| + |H(v, s)| = O(|v|2) as s→ +∞,
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(see the beginning of Section 3 for the proper definitions of ω, F and G).
Since the linear part will play an important role in our analysis, let us point out its
properties. The operator L is self-adjoint on L2

ρ(R
n). Its spectrum is given by

spec(L) = {1− m

2
, m ∈ N},

and it consists of eigenvalues. The eigenfunctions of L are derived from Hermite poly-
nomials:
- For n = 1, the eigenfunction corresponding to 1− m

2 is

hm(y) =

[m2 ]∑

k=0

m!

k!(m− 2k)!
(−1)kym−2k, (1.23)

- For n ≥ 2: we write the spectrum of L as

spec(L) = {1− |m|
2
, |m| = m1 + · · ·+mn, (m1, . . . ,mn) ∈ N

n}.

For m = (m1, . . . ,mn) ∈ N
n, the eigenfunction corresponding to 1− |m|

2 is

Hm(y) = hm1(y1) . . . hmn(yn), (1.24)

where hm is defined in (1.23).

By studying the behavior of v as s→ +∞, we obtain the following result:

Theorem 1.5 (Classification of the behavior of w as s→ +∞). Consider u(t) a solution

of equation (1.1) which blows-up at time T and x0 a blow-up point. Letw(y, s) be a solution

of equation (1.9). Then one of the following possibilities occurs:

i) w(y, s) ≡ φ(s),

ii) There exists l ∈ {1, . . . , n} such that up to an orthogonal transformation of coordinates,

we have

w(y, s) = κ− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa

)

+O
(
log s

s2

)

as s→ +∞.

iii) There exist an integer number m ≥ 3 and constants cα not all zero such that

w(y, s) = φ(s)− e−(
m
2
−1)s

∑

|α|=m
cαHα(y) + o

(

e−(
m
2
−1)s

)

as s→ +∞.

The convergence takes place in L2
ρ as well as in Ck,γloc for any k ≥ 1 and some γ ∈ (0, 1).

Remark 1.6. Applying our result to a space-independent solution of (1.9), we get the

uniqueness of the solution of the ODE (1.21) that converges to κ as s→ +∞.
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Remark 1.7. Since both the perturbed (h 6≡ 0) and the unperturbed (h ≡ 0) cases in

equation (1.1) share the same convergence stated in Theorem 1.5, we wonder whether the

perturbation h may have an influence on further terms of the expansion of w. From our

result, if case (ii) occurs, we see no difference in the following term of the expansion. On the

contrary, if case (i) or (iii) occurs, with h(x) = µ |x|p−1x
loga(2+x2)

, we see from Lemma A.4 that

w(y, s)− κ ∼ C0(a, p, µ)

sa
as s→ +∞,

which is clearly different from the unperturbed case when in case (i), we have w ≡ κ and

case (iii), we have w − κ = O(e−s), (see [11], [20]).

Remark 1.8. If we linearize w around κ, which is an explicit profile, we then fall in loga-

rithmic scales γ = 1
| log ǫ| with ǫ = T − t. Further refinements in this direction should give

an expansion of w − κ in terms of powers of γ, i.e in logarithmic scales of ǫ. Therefore,

we can not reach significantly small error terms in the expansion of the solution w as (iii)

of Theorem 1.5 describes. In order to escape this situation, a relevant approximation is

required in order to go beyond all logarithmic scales, i.e approximations up to lower order

terms such as ǫα for some α > 0. Our idea to capture such relevant terms is to abandon the

explicit profile obtained as a first order approximation, namely κ, and take an implicit pro-

file function as a first order description of the singular behavior, namely φ(s) introduced in

(1.21) and (1.22). A similar idea was used by Zaag [23] where the solution was linearized

around a less explicit profile function in order to go beyond all logarithmic scales. For our

problem, we particularly take φ(s) as the implicit profile function, which is a solution of

the associated ODE of equation (1.9) in w such that φ(s) → κ as s → +∞. By linearizing

the solution w around φ, we can get to error terms of polynomial order ǫ(
m
2
−1), as stated

in (iii) of Theorem 1.5.

Remark 1.9. When h(x) = |x|q with q ∈ (1, p), we see that

φ(s)− κ ∼ C ′
0(p, q)e

−λs as s→ +∞.

If case (ii) in Theorem 1.5 holds, we then recover the same expansion as in the unperturbed

case (h ≡ 0). On the contrary, if case (i) or (iii) occurs, then

w(y, s)− κ ∼ C ′
0(p, q)e

−λs as s→ +∞.

Moreover, if case (iii) in Theorem 1.5 holds, we have new terms in the expansion of w which

was not available in the unperturbed case, namely

w(y, s) = κ−
K∑

k=1

Cke
−kλs − e−(

m
2
−1)s

∑

|α|=m
cαHα(y) + o

(

e−(
m
2
−1)s

)

as s→ +∞,

where Ck, k = 1, 2, . . . ,K are some constants depending on p and q, and K ∈ N is the

integer part of 1
λ

(
m
2 − 1

)
.
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In the last section, we will extend the asymptotic behavior of w obtained in Theorem
1.5 to larger regions. Particularly, we claim the following:

Theorem 1.10 (Convergence extension of wa to larger regions). For all K0 > 0,

i) if ii) of Theorem 1.5 occurs, then

sup
|ξ|≤K0

∣
∣w(ξ

√
s, s)− fl(ξ)

∣
∣ = O

(
1

sa−1

)

+O
(
log s

s

)

as s→ +∞, (1.25)

where

fl(ξ) = κ



1 +
p− 1

4p

l∑

j=1

ξ2j





− 1
p−1

, ∀ξ ∈ R
n,

with l the same as in ii) of Theorem 1.5.

ii) if iii) of Theorem 1.5 occurs, then m ≥ 4 is even, and

sup
|ξ|≤K0

∣
∣
∣w
(

ξe(
1
2
− 1

m)s, s
)

− ψm(ξ)
∣
∣
∣→ 0 as s→ +∞, (1.26)

where

ψm(ξ) = κ



1 + κ−p
∑

|α|=m
cαξ

α





− 1
p−1

, ∀ξ ∈ R
n,

with cα the same as in Theorem 1.5.

Let us mention briefly the structure of the paper. In Section 2, we prove the existence
of Lyapunov functional for equation (1.9) (Theorem 1.1), we then get Theorem 1.2 and
Theorem 1.4. In Section 3, we follow the method of [3] and [20] to prove Theorem 1.5.
Finally, the section 4 is devoted to the proof of Theorem 1.10.

Acknowledgement: The author is grateful to H. Zaag for his dedicated advice, sugges-
tions and remarks during the preparation of this paper.

2 A Lyapunov functional

This section is divided in four subsections: we first prove the existence of a Lyapunov
functional for equation (1.9) (Theorem 1.1); after that, we derive a blow-up criterion for
equation (1.9) and some energy estimates based on this Lyapunov functional. Following
the method of [8], we prove the boundedness of solution in similarity variables which
determines the blow-up rate for solutions of (1.1) (Theorem 1.2). Finally, we derive the
limit of w as s→ +∞, which concludes Theorem 1.4.
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In what follows, we denote by Ci, i = 0, 1, . . . positive constants depending only on
a, n, p,M , and by Lqρ(Ω) the weighted Lq(Ω) space endowed with the norm

‖ϕ‖Lq
ρ(Ω) =

(∫

Ω
|ϕ(y)|qρ(y)dy

) 1
q

,

and by H1
ρ(Ω) the space of function ϕ ∈ L2

ρ(Ω) satisfying ∇ϕ ∈ L2
ρ(Ω), endowed with

the norm

‖ϕ‖H1
ρ (Ω) =

(

‖∇ϕ‖2L2
ρ(Ω) +

1

p− 1
‖ϕ‖2L2

ρ(Ω)

) 1
2

.

We denote by BR(x) the open ball in R
n with center x and radius R, and set BR :=

BR(0).

2.1 Existence of a Lyapunov function

In this part, we aim at proving that the functional J defined in (1.16) is a Lyapunov
functional for equation (1.9). Note that that functional is far from being trivial and it is
our main contribution. We first claim the following lemma:

Lemma 2.1. Let a, p, n,M be fixed and w be solution of equation (1.9) satisfying (1.11).
There exists s̃0 = s̃0(a, p, n,M) ≥ s0 such that the functional of E defined in (1.17) satisfies

the following inequality, for all s ≥ max{s̃0,− log T},

d

ds
E [w](s) ≤ −1

2

∫

Rn

w2
sρdy + γs−aE [w](s) + Cs−a, (2.1)

where γ = 8C0

(
p+1
p−1

)2
, C0 is introduced in (1.13) and C is a positive constant depending

only on a, p, n,M .

Let us first derive Theorem 1.1 from Lemma 2.1 which will be proved later.

Proof of Theorem 1.1 admitting Lemma 2.1. Differentiating the functional J defined
in (1.16), we obtain

d

ds
J [w](s) =

d

ds

{

E [w](s)e
γ

a−1
s1−a

+ θs1−a
}

=
d

ds
E [w](s)e

γ
a−1

s1−a − γs−aE [w](s)e
γ

a−1
s1−a − (a− 1)θs−a

≤ −1

2
e

γ
a−1

s1−a
∫

Rn

w2
sρdy +

[

Ce
γ

a−1
s1−a − (a− 1)θ

]

s−a (use (2.1)).

Choosing θ large enough such that Ce
γ

a−1
s̃1−a
0 −(a−1)θ ≤ 0 and noticing that e

γ
a−1

s1−a ≥
1 for all s > 0, we derive

d

ds
J [w](s) ≤ −1

2

∫

Rn

w2
sρdy, ∀s ≥ s̃0.
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This implies inequality (1.18) and concludes the proof of Theorem 1.1, assuming that
Lemma 2.1 holds.

It remains to prove Lemma 2.1 in order to conclude the proof of Theorem 1.1.

Proof of Lemma 2.1 . Multiplying equation (1.9) with wsρ and integrating by parts:
∫

Rn

|ws|2ρ = − d

ds

{∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

}

+e−
ps
p−1

∫

Rn

h
(

e
s

p−1w
)

wsρdy.

For the last term of the above expression, denoting H(z) =
∫ z
0 h(ξ)dξ, we write in the

following:

e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wsρdy = e
− (p+1)s

p−1

∫

Rn

h
(

e
s

p−1w
)
(

e
s

p−1ws +
e

s
p−1

p− 1
w

)

ρdy

− 1

p− 1
e−

ps
p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy

= e
− p+1

p−1
s d

ds

∫

Rn

H
(

e
s

p−1w
)

ρdy − 1

p− 1
e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.

This yields
∫

Rn

|ws|2ρdy = − d

ds

{∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

}

+
d

ds

{

e
− p+1

p−1
s
∫

Rn

H
(

e
s

p−1w
)

ρdy

}

+
p+ 1

p− 1
e−

p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy

− 1

p− 1
e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.

From the definition of the functional E given in (1.17), we derive a first identity in the
following:

d

ds
E [w](s) = −

∫

Rn

|ws|2ρdy +
p+ 1

p− 1
e−

p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy

− 1

p− 1
e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy. (2.2)

A second identity is obtained by multiplying equation (1.9) with wρ and integrating by
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parts:

d

ds

∫

Rn

|w|2ρdy = −4

{∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

−e−
(p+1)s
p−1

∫

Rn

H
(

e
s

p−1w
)

ρdy

}

+

(

2− 4

p+ 1

)∫

Rn

|w|p+1ρdy − 4e
− p+1

p−1
s
∫

Rn

H
(

e
s

p−1w
)

ρdy

+2e−
ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.

Using again the definition of E given in (1.17), we derive the second identity in the
following:

d

ds

∫

Rn

|w|2ρdy = −4E [w](s) + 2
p− 1

p+ 1

∫

Rn

|w|p+1ρdy

− 4e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy + 2e−
ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy. (2.3)

From (2.2), we estimate

d

ds
E [w](s) ≤ −

∫

Rn

|ws|2ρdy

+
p+ 1

p− 1

∫

Rn

{∣
∣
∣e

− p+1
p−1

sH
(

e
s

p−1w
)∣
∣
∣+
∣
∣
∣e

− ps
p−1h

(

e
s

p−1w
)

w
∣
∣
∣

}

ρdy.

From (1.13) and using the fact that |w| ≤ |w|p+1 + 1, we obtain for all s ≥ s0,
∣
∣
∣e

− p+1
p−1

s
H
(

e
s

p−1w
)∣
∣
∣+
∣
∣
∣e

− p
p−1

s
h
(

e
s

p−1w
)

w
∣
∣
∣ ≤ 2C0s

−a (|w|p+1 + 1
)
. (2.4)

Using (2.4) yields

d

ds
E [w](s) ≤ −

∫

Rn

|ws|2ρdy + C1s
−a
∫

Rn

|w|p+1ρdy + C1s
−a, (2.5)

where C1 = 2C0
p+1
p−1 .

From (2.3), we have
∫

Rn

|w|p+1ρdy ≤ 2(p + 1)

p− 1
E [w](s) + p+ 1

p− 1

∫

Rn

|wsw|ρdy

+
2(p + 1)

p− 1

∫

Rn

(∣
∣
∣e

− p+1
p−1

s
H
(

e
s

p−1w
)∣
∣
∣+
∣
∣
∣e

− ps
p−1h

(

e
s

p−1w
)

w
∣
∣
∣ ρdy

)

.

Using the fact that |wsw| ≤ ǫ(|ws|2 + |w|p+1) + C2(ǫ) for all ǫ > 0 and (2.4), we obtain
∫

Rn

|w|p+1ρdy ≤ 2(p + 1)

p− 1
E [w](s) + ǫ′

∫

Rn

|ws|2ρdy

+
(
ǫ′ + 2C1s

−a)
∫

Rn

|w|p+1ρdy + 2C1s
−a + C3,



96 III. On the blow-up results for a class of strongly perturbed SHEs

where ǫ′ = ǫp+1
p−1 , C3 = 2C1 + C2

p+1
p−1 .

Taking ǫ = p−1
4(p+1) and s1 large enough such that 2C1s

−a ≤ 1
4 for all s ≥ s1, we see that

∫

Rn

|w|p+1ρdy ≤ 4(p + 1)

p− 1
E [w](s) + 1

2

∫

Rn

|ws|2ρdy + C4, ∀s > s1, (2.6)

with C4 =
C3
2 + 1

8 .
Substituting (2.6) into (2.5) yields (2.1) with s̃0 = max{s0, s1}. This concludes the proof
of Lemma 2.1. Since we have already showed that Theorem 1.1 is a direct consequence
of Lemma 2.1, this is also the conclusion of Theorem 1.1.

2.2 A blow-up criterion for the equation in similarity variables

In this part, we give a new blow-up criterion for equation (1.9). Then, we will use it to
control the L2-norm in terms of the energy (see (ii) of Proposition 2.3). We claim the
following:

Lemma 2.2. Let a, p, n,M be fixed and w be solution of equation (1.9) satisfying (1.11).
If there exists s̃1 = s̃1(a, p, n,M) ≥ max{ŝ0,− log T} such that

−4J [w](s̄) +
p− 1

p+ 1

(∫

Rn

|w(y, s̄)|2ρdy
) p+1

2

> 0 for some s̄ ≥ s̃1, (2.7)

then w is not defined for all (y, s) ∈ R
n × [s̄,+∞).

Proof. We proceed by contradiction and suppose that w is defined for all s ∈ [s̄,+∞).
From definition of J in (1.16) and from (2.3), (2.4), we have for all s ≥ s0,

d

ds

∫

Rn

|w|2ρdy ≥ −4e−
γ

a−1
s1−a (J [w](s)− θs1−a

)

+ 2

(
p− 1

p+ 1
− 4C0s

−a
)∫

Rn

|w|p+1ρdy − 8C0s
−a. (2.8)

We take s1 large enough such that

4C0s
−a ≤ p− 1

2(p + 1)
and e−

γ
a−1

s1−a − 2C0

s
> 0 for all s ≥ s1.

Then, using Jensen’s inequality and noting that e−
γ

a−1
s1−a ≤ 1 for all s > 0, we get from

(2.8) the following: for all s ≥ max{0, s0, s1},

d

ds

∫

Rn

|w|2ρdy ≥ −4J [w](s) +
p− 1

p+ 1

(∫

Rn

|w|2ρdy
) p+1

2

. (2.9)



2. A Lyapunov functional 97

Setting f(s) =
∫

Rn |w(y, s)|2ρdy, A = −4J [w](s̄) and B = p−1
p+1 , then using the fact that

J is decreasing in time to get that

f ′(s) ≥ A+Bf(s)
p+1
2 , ∀s ≥ s̄.

The hypothesis reads A+Bf(s̄)
p+1
2 > 0 which implies that

f ′(s) > 0 and A+Bf(s)
p+1
2 > 0, ∀s ≥ s̄.

By a direct integration, we obtain

∀s ≥ s̄, s− s̄ ≤
∫ f(s)

f(s̄)

dz

A+Bz
p+1
2

≤
∫ +∞

f(s̄)

dz

A+Bz
p+1
2

< +∞,

which is a contradiction and Lemma 2.2 is proved.

As a consequence of Theorem 1.1 and Lemma 2.2, we obtain the following estimates
which will be useful for getting Theorem 1.2:

Proposition 2.3. Let w be solution of equation (1.9) satisfying (1.11), it holds that

−Q0 ≤ E [w](s) ≤ 2J0, ∀s ≥ s̃2 = max{ŝ0,− log T},

where J0 = J [w](s̃2) and Q0 = θs̃1−a2 . Moreover, there exists a time s̃3 ≥ max{ŝ0,− log T}
such that for all s ≥ s̃3

(i)

∫ s+1

s
‖wτ (τ)‖2L2

ρ(R
n) dτ ≤ 2J0,

(ii) ‖w(s)‖2L2
ρ(R

n) ≤ J1,

(iii) ‖w(s)‖p+1

Lp+1
ρ (Rn)

≤ J2

(

1 + ‖w(s)‖2H1
ρ (R

n)

)

,

(iv) ‖w(s)‖2H1
ρ (R

n) ≤ J3

(

1 + ‖ws(s)‖L2
ρ(R

n)

)

,

(v)

∫ s+1

s
‖w(τ)‖2(p+1)

Lp+1
ρ (Rn)

dτ ≤ J4,

(vi)

∫ s+1

s
‖w(τ)‖2H1

ρ(R
n) dτ ≤ J5,

where Ji, i = 1, . . . , 5 depend only on J0, Q0, a, p, n,M .

Proof. The upper and lower bounds of E , (i) and (ii) obviously follow from Theorem
1.1 and Lemma 2.2 (in fact, since w is defined for all s ≥ s̃1, condition (2.7) is never
satisfied).
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(iii) By definition of E given in (1.17) and (2.4), we get for all s ≥ max{s0,− log T},

2E [w](s) ≤
∫

Rn

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy

− 2

(
1

p− 1
− C0s

−a
)∫

Rn

|w|p+1ρdy + 2C0s
−a.

Let s1 large enough such that for all s ≥ s1, C0s
−a ≤ 1

2(p−1) , then for all s ≥ max{s0, s1,− log T},

2E [w](s) ≤
∫

Rn

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy − 1

p− 1

∫

Rn

|w|p+1ρdy +
2

p− 1
.

This follows that for all s ≥ max{s0, s1,− log T},

‖w(s)‖p+1

Lp+1
ρ (Rn)

≤ −2(p − 1)E [w](s) + (p− 1) ‖w(s)‖2H1
ρ(R

n) + 1.

Since E is bounded from below, then (iii) follows.
(iv) From the definition E in (1.17), (2.3) and (2.4), we have ∀s ≥ max{s0,− log T},

‖w(s)‖2H1
ρ(R

n) ≤
1

p− 1

d

ds

∫

Rn

|w|2ρdy + 2(p+ 1)

p− 1
E [w](s)

+
4C0(p+ 1)

p− 1
s−a ‖w(s)‖p+1

Lp+1
ρ (Rn)

+
4C0(p+ 1)

p− 1
s−a.

Using (iii), we have for all s ≥ s̃3,

‖w(s)‖2H1
ρ(R

n) ≤
1

p− 1

d

ds

∫

Rn

|w|2ρdy + 2(p + 1)

p− 1
E [w](s)

+
4C0J2(p + 1)

p− 1
s−a

(

1 + ‖w(s)‖2H1
ρ(R

n)

)

+
4C0(p+ 1)

p− 1
s−a.

Let s2 large enough such that 4C0J2(p+1)
p−1 s−a ≤ 1

2 for all s ≥ s2 and noting that E(s) is
bounded from above, we obtain for all s ≥ max{s2, s̃2},

‖w(s)‖2H1
ρ(R

n) ≤
4

p− 1

∫

Rn

|wws|ρdy + C1,

where C1 =
4J0(p+1)
p−1 + 1

J2
.

Using Schwarz’s inequality and (ii) yields

‖w(s)‖2H1
ρ(R

n) ≤
4

p− 1
‖w(s)‖L2

ρ(R
n)‖ws(s)‖L2

ρ(R
n) +C1 ≤

4
√
J1

p− 1
‖ws(s)‖L2

ρ(R
n) + C1,

which follows (iv).
Since (v) and (vi) follows directly from (i) and (iii), (iv), we end the proof of Proposition
2.3.
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2.3 Boundedness of the solution in similarity variables

This section is devoted to the proof of Theorem 1.2, which is a direct consequence of the
following theorem:

Theorem 2.4. Let a, p, n,M be fixed, p satisfy (1.2). There exists ŝ1 = ŝ1(a, p, n,M) ≥ ŝ0
such that if u is a blow-up solution of equation (1.1) with a blow-up time T , then for all

s ≥ s′ = max{ŝ1,− log T},

‖wx0,T (s)‖L∞(BR) ≤ C, (2.10)

where C is a positive constant depending only on n, p,M,R and a bound of ‖wx0,T (ŝ0)‖L∞ .

Let us show that Theorem 1.2 follows from Theorem 2.4.

Proof of Theorem 1.2 admitting Theorem 2.4. We have from (2.10) that

|wx0,T (0, s)| ≤ C, ∀s ≥ s′,

with C independent on x0 ∈ R
n. Therefore, we get from (1.8) that

|u(x0, t)| ≤ C(T − t)
− 1

p−1 , ∀x0 ∈ R
n,∀t ∈ [T − e−s

′
, T ),

which is the conclusion of Theorem 1.2, assuming that Theorem 2.4 holds.

Following the method in [8], the proof of Theorem 2.4 requests the following key inte-
gral estimate:

Lemma 2.5 (Key integral estimate). Let a, p, n,M be fixed and w be solution of equation

(1.9) satisfying (1.11). For all q ≥ 2 andR > 0, there exists ŝ2 ≥ s̃3 and a positive constant

Kq such that,
∫ s+1

s
‖w(τ)‖q(p+1)

Lp+1(BR)
dτ ≤ Kq, ∀s ≥ ŝ2, (2.11)

where Kq depends only on J0, Q0, a, n, p, q,R, ŝ2.

Let us first show that how Theorem 2.4 follows from Lemma 2.5, then we will prove
it later. In order to derive uniform bound in Theorem 2.4 for all p satisfying (1.2), we
need two following techniques. The first one is an interpolation result from Cazenave
and Lions [1]:

Lemma 2.6 (Interpolation technique, Cazenave and Lions [1]). Assume that

v ∈ Lα
(

(0,∞);Lβ(BR)
)

, vt ∈ Lγ
(

(0,∞);Lδ(BR)
)

for some 1 < α, β, γ, δ <∞. Then

v ∈ C
(

[0,∞);Lλ(BR)
)
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for all λ < λ0 =
(α+γ′)βδ
γ′β+αδ with γ′ = γ

γ−1 , and satisfies

sup
t≥0

‖v(t)‖Lλ(BR) ≤ C

∫ ∞

0

(

‖v(τ)‖αLβ (BR) + ‖vτ (τ)‖γLδ(BR)

)

dτ

for λ < λ0. The positive constant C depends only on α, β, γ, δ, n and R.

The second one is an interior regularity result for a nonlinear parabolic equation:

Proposition 2.7 (Interior regularity). Let

v(x, t) ∈ L∞((0,+∞), L2(BR)
)
∩ L2

(
(0,+∞),H1(BR)

)

which satisfies

vt −∆v + b.∇v = F, (x, t) ∈ QR = BR × (0,+∞), (2.12)

where R > 0, |b(x, t)| ≤ µ1 in QR and |F (x, t, v)| ≤ g(x, t)(|v| + 1) with

∫ t+1

t
‖g(τ)‖β′

Lα′ (BR)
dτ ≤ µ2, ∀t ∈ (0,+∞), (2.13)

and 1
β′ +

n
2α′ < 1 and α′ ≥ 1. If

∫ t+1

t
‖v(τ)‖2L2(BR)dτ ≤ µ3, ∀t ∈ (0,+∞), (2.14)

and µ1, µ2 and µ3 are uniformly bounded in t, then there exists a positive constant C

depending only on µ1, µ2, µ3, α′, β′, n, R and τ ∈ (0, 1) such that

|v(x, t)| ≤ C, ∀(x, t) ∈ BR/4 × (τ,+∞).

Proof. Since the argument of the proof is analogous as in the corresponding part in [13],
we then leave the proof to Appendix B.1.

Let us now use Lemma 2.5 to derive the conclusion of Theorem 2.4, then we will
prove it later.

Proof of Theorem 2.4 admitting Lemma 2.5. Let us recall the equation in w:

ws −∆w +
1

2
y.∇w = − w

p− 1
+ |w|p−1w + e

− ps
p−1h

(

e
s

p−1w
)

,

where h is given in (1.3).
We now apply Proposition 2.7 to w with b = y

2 and

F = − w

p− 1
+ |w|p−1w + e

− ps
p−1h

(

e
s

p−1w
)

.
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From (1.13), we see that

|F | ≤ C ′(C0, p)(|w|p−1 + 1)(|w| + 1), ∀s ≥ s0.

Thus, the first identity in (2.13) holds with g = C ′(|w|p−1 +1) and the second condition
in (2.13) turns into

∫ s+1

s

(∫

BR

|w(y, τ)|α′(p−1)dy

) β′
α′
dτ ≤ C1 for some C1 > 0,

for some α′ and β′ satisfying 1
β′ +

n
2α′ < 1.

For this bound, we first use (i) of Proposition 2.3, (2.11) and apply Lemma 2.6 with
α = q(p+ 1), β = p+ 1, γ = δ = γ′ = 2 to get that

sup
s≥ŝ2

‖w(s)‖Lλ(BR) ≤ C2(R,Kq), ∀λ < λ1 = p+ 1− p− 1

q + 1
. (2.15)

Next, applying Proposition 2.7 with α′(p−1) = λ, β′ and q large (note that the condition
1
β′ +

n
2α′ < 1 turns into p < n+2

n−2), we obtain

∫ s+1

s

(∫

BR

|w(y, τ)|α′(p−1)dy

) β′
α′
dτ ≤ C

β′(p−1)
2 .

Hence, condition (2.13) holds. Therefore, |w(y, s)| is bounded for all (y, s) ∈ BR/4 ×
(τ + ŝ2,+∞) for some τ ∈ (0, 1), which concludes the proof of Theorem 2.4, assuming
that Lemma 2.5 holds.

Remark 2.8. If we use (v) of Proposition 2.3, we already have for all s ≥ s̃3,

∫ s+1

s

(∫

BR

|w(y, τ)|p+1dy

)2

dτ ≤ C(R)K1.

Applying Proposition 2.7 with α′ = p+1
p−1 and β′

α′ = 2 (noting that the condition 1
β′ +

n
2α′ < 1

turns into p < n+3
n−1), we obtain w is uniformly bounded with p ∈

(

1, n+3
n−1

)

.

If we use (i) and (v) in Proposition 2.3, Lemma 2.6 with α = 2(p+ 1), β = p+ 1, γ =

δ = γ′ = 2, then we obtain

sup
s≥s̃3

‖w(s)‖Lλ(BR) ≤ C(R), ∀λ < λ1 =
2(p + 2)

3

Next, Proposition 2.7 applies with α′(p − 1) = λ with λ approaches to
2(p+1)

3 and β′ very

large, then the condition 1
β′ +

n
2α′ < 1 now becomes

∃λ < 2(p + 1)

3
, such that

n

2α′ < 1.
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This turns into p < 3n+8
3n−4 . This result was proved by Giga and Kohn in [6].

Relying on a bootstrap argument, [8] improved the input estimate of Proposition 2.7 cov-

ering this way the whole subcritical range p < n+2
n−2 . Here, we extend their approach to a

larger class of equation.

Let us now give the proof of Lemma 2.5 in order to complete the proof of Theorem 2.4
and Theorem 1.2 also. To this end, let ψ ∈ C2(Rn) be a bounded function, we introduce
the following local functional, which is a perturbed version of the function of [8],

Eψ[w](s) =
1

2

∫

Rn

ψ2

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy

− 1

p+ 1

∫

Rn

ψ2|w|p+1ρdy − e
− p+1

p−1
s
∫

Rn

ψ2H
(

e
s

p−1w
)

ρdy. (2.16)

We get the following bound on the local functional Eψ:

Proposition 2.9. Let a, p, n,M be fixed and w be solution of equation (1.9) satisfying

(1.11). For ψ ∈ C2(Rn) bounded, there exist positive constants Q′,K ′ such that

−Q′ ≤ Eψ[w](s) ≤ K ′, ∀s ≥ s̃3, (2.17)

where s̃3 is given in Proposition 2.3 and Q′,K ′ depend on a, p, n, M , ‖ψ‖2L∞ , ‖∇ψ‖2L∞

and J0.

Proof. The proof is essentially the same as the corresponding part in [8], except for the
control of the last term in (2.16). Since that control is a bit long and technical, we leave
the proof to B.2.

Let R > 0, we fix ψ(y) so that it satisfies

ψ(y) ∈ C∞
0 (Rn), 0 ≤ ψ(y) ≤ 1, ψ(y) =

{
1 on BR

0 on R
n \B2R

. (2.18)

We claim the following:

Lemma 2.10. Let a, p, n,M be fixed and w be solution of equation (1.9) satisfying (1.11).
Then there exists s̃5 ≥ s̃3 such that

‖w(s)‖p+1

Lp+1
ρ (BR)

≤ K1

(

1 + ‖w(s)‖2H1
ρ (B2R)

)

, ∀s ≥ s̃5, (2.19)

where K1 = K1(a, p, n,M,Q′).
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Proof. From (2.4) and the definition of Eψ in (2.16), we have ∀s ≥ max{s0, s1},
∫

Rn

ψ2|w|p+1ρdy ≤ −2(p + 1)Eψ[w](s)

+ (p+ 1)

∫

Rn

ψ2

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy + 1, (2.20)

where s1 is large enough such that 2C0s
−a ≤ 1

2(p+1) for all s ≥ s1.
Thus, (2.19) follows from the lower bound of Eψ and the property of ψ. This ends the
proof of Lemma 2.10.

Remark 2.11. By (2.19), the proof of estimate (2.11) is equivalent to showing that
∫ s+1

s
‖w(τ)‖2q

H1
ρ (BR)

dτ ≤ Kq, ∀s ≥ ŝ2. (2.21)

Note from (i) and (iv) in Proposition 2.3 that (2.21) already holds in the case q = 2.

In order to derive (2.21) for all q ≥ 2, we need the following result:

Lemma 2.12. Let a, p, n,M be fixed and w be solution of equation (1.9) satisfying (1.11).
Then there exists s̃6 ≥ s̃3 such that

‖w(s)‖2H1
ρ (BR) ≤ K2

(

1 + ‖ψ2w(s)ws(s)‖2L1
ρ(B2R)

)

, ∀s ≥ s̃6, (2.22)

where K2 = K2(a, p, n,M,Q′,K ′).

Proof. Multiplying equation (1.9) with ψ2wρ, integrating over R
n, using the definition

of Eψ and estimate (2.4), we have
∫

Rn

ψ2

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy ≤ 2

p− 1

∫

Rn

ψ2wwsρdy +
2(p + 1)

p− 1
Eψ[w](s)

+
4

p− 1

∫

Rn

ψw∇ψ.∇wρdy

+
4(p + 1)C0

(p− 1)sa

∫

Rn

ψ2(|w|p+1 + 1)ρdy, ∀s ≥ s0.

Using (2.20), then taking s2 large such that 4(p+1)2C0

(p−1)sa ≤ 1
2 and noting that E is bounded,

we have for all s ≥ max{s0, s1, s2},
∫

Rn

ψ2

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy ≤ C

(∫

Rn

ψ2wwsρdy +

∫

Rn

ψw∇ψ.∇wρdy + 1

)

.

Let Jψ[w](s) =
∫

Rn ψw∇ψ.∇wρdy, then one can show that Jψ[w](s) ≤ C1 (see (B.8) for
a proof of this fact). Hence, we have for all s ≥ max{s0, s1, s2},

∫

Rn

ψ2

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy ≤ C2

(∫

Rn

ψ2wwsρdy + 1

)

.

Thus, (2.22) follows from the property of ψ, and Lemma 2.12 is proved.
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Since the estimate (2.21) already holds in the case q = 2, we now use a bootstrap
argument in order to get (2.21) for all q ≥ 2.

Proof of (2.21) for all q ≥ 2 by a bootstrap argument. This part is the same as in [8].
We give it here for the sake of completeness. Suppose that (2.21) holds for some q ≥ 2,
let us show that (2.21) holds for all q̃ ∈ [q, q+ ǫ] for some ǫ > 0 independent from q. We
start with Hölder’s inequality,

‖ψ2wws‖L1
ρ(B2R) ≤ ‖ψw‖Lλ

ρ (B2R) × ‖ψws‖Lλ′
ρ (B2R),

1

λ
+

1

λ′
= 1.

Using (2.11) and applying Lemma 2.6, we obtain

‖w‖Lλ(B2R) ≤ C ′
q, ∀λ < λ1(q) = p+ 1− p− 1

q + 1
.

Let us now bound ‖ψws‖Lλ′
ρ (B2R). We remark that for q large then λ approaches to p+ 1

and λ′ approaches to p1 =
p+1
p . Let f = ψws and make use Hölder’s inequality,

‖f‖Lλ′ ≤ ‖f‖1−θ
L2 × ‖f‖θLp1 ,

1

λ′
=

1− θ

2
+

θ

p1
, θ ∈ [0, 1].

From now on, we take λ ≥ 2 and fix θ = (λ−2)(p+1)
λ(p−1) (note that with this choice, θ ∈ [0, 1]).

From Lemma 2.12, we have

‖w(s)‖2H1
ρ (BR) ≤ K ′

2

(

1 + ‖ψws‖1−θL2
ρ(B2R)

× ‖ψws‖θLp1
ρ (B2R)

)

.

This follows that

∫ s+1

s
‖w(s)‖2q̃

H1
ρ (BR)

dτ ≤ Cq̃






1 +

∫ s+1

s
‖ψws‖q̃(1−θ)L2

ρ(B2R)
× ‖ψws‖q̃θLp1

ρ (B2R)
dτ

︸ ︷︷ ︸

G






, (2.23)

for some q̃ > q.
Let α = 2

(1−θ)q̃ and use Hölder’s inequality in time to G, we obtain

G ≤
(∫ s+1

s
‖ψws‖2L2

ρ(B2R)dτ

) 1
α
(∫ s+1

s
‖ψws‖q̃θα

′

L
p1
ρ (B2R)

dτ

) 1
α′

≤ (2J0)
1
α

(∫ s+1

s
‖ψws‖q̃θα

′

L
p1
ρ (B2R)

dτ

) 1
α′

≡ G1,

where we used (i) in Proposition 2.3.
Let us bound G1. To this end, we use the Lp − Lq estimate for the heat equation (see
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Lemmas 6.3 and 6.4 in [8]) to get
∫ s+1

s
‖ψws‖q̃θα

′

L
p1
ρ (B2R)

dτ ≤ C ′
q̃

(

1 +

∫ s+1

s
‖|w|p‖q̃θα′

L
p1
ρ (B2R)

dτ

)

= C ′
q̃

(

1 +

∫ s+1

s
‖w‖pq̃θα′

Lp+1
ρ (B2R)

dτ

)

≤ C ′′
q̃

(

1 +

∫ s+1

s
‖w‖

2pq̃θα′
p+1

H1
ρ(B4R)

dτ

)

(using Lemma 2.20).

By Proposition 6.2 in [8], we have 2pq̃θα′

p+1 < 2q for all q̃ ∈ [q, q + 2
p+1 ]. Then, applying

Hölder’s inequality again yields

∫ s+1

s
‖w(s)‖2q̃

H1
ρ (BR)

dτ ≤ C ′′′
q̃

[

1 +

(∫ s+1

s
‖w(s)‖2q

H1
ρ (B4R)

dτ

) 1
2qα′
]

≤ C̄q̃.

Thus, inequality (2.21) is valid for all q̃ ∈ [q, q + 2
p+1 ]. Repeating this argument, we

would obtain that (2.21) holds for all q ≥ 2. This concludes the proof of Lemma 2.5,
Theorem 2.4 and Theorem 1.2 too.

2.4 Limit of w as s → +∞
This section is devoted to the proof of Theorem 1.4. Note in the unperturbed case
(h ≡ 0) that Theorem 1.4 was proved in [7] (see also [5], [6]). The proof is divided
into two steps. The first step is to show that the limit of solution in similarity variables
exists and belongs to the set of solutions of the following equation,

0 = ∆w − 1

2
y.∇w − 1

p− 1
w + |w|p−1w, (2.24)

Then, by using a nondegeneracy result (Lemma 2.16), the blow-up criterion (Lemma
2.2) and suitable energy arguments, we shall show that the possibility of wa → 0 as
s→ +∞ is excluded if a is a blow-up point. Let us restate Theorem 1.4 in below:

Proposition 2.13 (Limit of w as s → +∞). Let a, p, n,M be fixed, p be a sub-critical

non-linearity given in (1.2). Consider u(t) a solution of equation (1.1) which blows up at

time T and a a blow-up point. Then

lim
s→+∞

wa(y, s) = ±κ, uniformly on each compact subset of Rn.

Before going into the proof of Proposition 2.13, let us first derive some elementary
results. The first one concerns the stationary solutions in R

n of equation (2.24). Partic-
ularly, we have the following:

Lemma 2.14 (Stationary solutions, Giga and Kohn [5]). Let p satisfy (1.2), then all

bounded solutions of (2.24) are constants: w ≡ 0 or w ≡ ±κ.
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Proof. The proof is given in Proposition 2 of [5]. For the reader’s interest, we mention
that the proof relies on a clever use of multiplying factors, together with a Pohozaev
technique, resulting in the following identity:

(
n

p+ 1
− 2− n

2

)∫

Rn

|∇w|2ρdy + 1

2

(
1

2
− 1

p+ 1

)∫

Rn

|y|2|∇w|2ρdy = 0. (2.25)

From (2.25) and the fact that p is Sopolev subcritical, it follows that n
p+1 − 2−n

2 > 0 and
1
2 − 1

p+1 > 0, hence ∇w ≡ 0. This implies that w is actually a constant. This concludes
the proof of Lemma 2.14.

The second one is due to parabolic estimates:

Lemma 2.15 (Parabolic estimates). Let u be a solution to equation (1.1). Assume that

T = Tmax(u0) < +∞ and that u satisfies (1.20). Then, there is a positive constant C such

that for all t ∈ [T/2, T ),

‖∇u(t)‖L∞(Rn) ≤ C(T − t)
− 1

p−1
− 1

2 and ‖∇2u(t)‖L∞(Rn) ≤ C(T − t)
− 1

p−1
−1
. (2.26)

In similarity variables, we have for all s ∈ [− log(T/2),+∞) and x0 ∈ R
n,

‖∇wx0,T (s)‖L∞(Rn) ≤ C and ‖∇2wx0,T (s)‖L∞(Rn) ≤ C. (2.27)

Proof. Since |h(z)| ≤ C(|z|p + 1) and |h′(z)| ≤ C(|z|p−1 + 1) from (1.3), the proof given
in Proposition 23.15, page 189 of Souplet and Quittner [17] in the case h ≡ 0 extends
with no difficulty in this case.

The last one is the nondegeneracy result from Giga and Kohn [7]:

Lemma 2.16 (Nondegeneracy, Giga and Kohn [7]). Let p > 1, T > 0, r > 0, σ ∈ (0, 1),

a ∈ R
n and denote Qr,σ(a) = Br(a) × (T − σ, T ). There exists ǫ = ǫ(n, p) > 0 such that if

u is a classical solution of

ut −∆u = F (u), (x, t) ∈ Qr,σ(a), (2.28)

where |F (u)| ≤M(|u|p + 1) for some M > 0. Assume that u satisfies

|u(x, t)| ≤ ǫ(T − t)
− 1

p−1 , (x, t) ∈ Qr,σ(a), (2.29)

then u is uniformly bounded in a neighborhood of (a, T ).

Proof. See Theorem 2.1, page 850 in Giga and Kohn [7].

Let us now give the proof of Proposition 2.13.
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Proof of Proposition 2.13. Consider a a blow-up point and write w instead of wa for
simplicity. By Lemma 2.15 and equation (1.9), we see that |ws(y, s)| ≤ C(|y| + 1) for
some C > 0. Therefore, w, ∇w, ∇2w and ws are bounded for all |y| ≤ R and s ≥ s′

for some R > 0 and s′ ∈ R. Let {sj} be a sequence tending to +∞ and wj(y, s) =

w(y, s + sj). By the Arzela-Ascoli theorem, there is a subsequence of sj (still denoted
sj) such that wj converges uniformly on compact sets to some w∞, ∇wj → ∇w∞,
∆wj → ∆w∞ and wjs → w∞

s . On the other hand, by (i) and (vi) of Proposition 2.3, we
see that as j → +∞,

∫ +∞

s̃3

∫

BR

|wjs|2dyds =
∫ +∞

s̃3+sj

∫

BR

|ws|2dyds → 0.

This implies that w∞
s = 0 and w∞ satisfies (2.24). Hence, by Lemma 2.14, w∞ ≡ 0 or

w∞ ≡ ±κ.
It remains to show that w(·, sj) 9 0 as j → +∞. We proceed by contradiction. Let
us assume that w(·, sj) → 0 as j → +∞. We observer that if w(·, sj) → 0, then by the
definition of J given in (1.16), the bound of w and ∇w and dominated convergence,
then J [w](sj) → 0. Since J is a Lyapunov functional, it follows that the whole sequence

J [w](s) → 0 as s→ +∞. (2.30)

Let b ∈ R
n, then by (2.27), we have wb(y, s) and ∇wb(y, s) are bounded for all y ∈ R

n

and s ≥ s′. We now use the interpolation inequality which reads

|wb(0, s)| ≤ C
(

‖wb(s)‖θL2(BR)‖∇wb(s)‖1−θL∞(BR) + ‖wb(s)‖L2(BR)

)

,

where θ ∈ (0, 2
n+2) if n ≥ 2 and θ = 1/2 if n = 1.

By Lemma 2.2, we see that ‖wb(s)‖L2(BR) ≤ C(p)
(
J [wb](s)

) 1
p+1 for all s ≥ s̃1. Hence,

|wb(0, s)| ≤ C ′
((

J [wb](s̃1)
) θ

p+1 +
(
J [wb](s̃1)

) 1
p+1

)

, ∀s ≥ s̃1.

Consider some ǫ > 0 small. From (2.30), there is s′(ǫ) such that J [w](s) ≤ ǫ for all
s ≥ s′(ǫ). Therefore, by continuity depending of J [wb](s) on b and the monotonicity of
J [wb](s) in time s, we infer that J [wb](s) ≤ 2ǫ for all s ≥ s′ and |b − a| small. This

implies that |wb(0, s)| ≤ ǫ′′ for all s ≥ s′, or |u(b, t)| ≤ ǫ′′(T − t)
− 1

p−1 for (b, t) close to
(a, T ), where ǫ′′ = ǫ′′(ǫ) → 0 as ǫ → 0. Thus, a is not a blow-up point by Lemma 2.16,
and this is a contradiction. Therefore, this concludes the proof of Proposition 2.13 and
the proof of Theorem 1.4 also.

3 Classification of the behavior of w as s → +∞ in L2
ρ

This section is devoted to the proof of Theorem 1.5. Consider a a blow-up point and
write w instead of wa for simplicity. From Theorem 1.4 and up to changing the signs of
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w and h, we may assume that ‖w(y, s) − κ‖L2
ρ
→ 0 as s → +∞, uniformly on compact

subsets of Rn. As mentioned in the introduction, by setting v(y, s) = w(y, s)− φ(s) (φ is
a positive solution of (1.21) such that φ(s) → κ as s → +∞), we see that ‖v(s)‖L2

ρ
→ 0

as s→ +∞ and v solves the following equation:

∂sv = (L+ ω(s))v + F (v) +H(v, s), ∀y ∈ R
n, ∀s ∈ [− log T,+∞), (3.1)

where L = ∆− y
2 · ∇+ 1 and ω, F , H are given by

ω(s) = p
(
φp−1 − κp−1

)
+ e−sh′

(

e
s

p−1φ
)

,

F (v) = |v + φ|p−1(v + φ)− φp − pφp−1v,

H(v, s) = e
− ps

p−1

[

h
(

e
s

p−1 (v + φ)
)

− h
(

e
s

p−1φ
)

− e
s

p−1h′
(

e
s

p−1φ
)

v
]

.

We remark from (1.22) and (1.13) that

|ω(s)| = O
(

1

sa

)

as s→ +∞. (3.2)

Let us introduce for all y ∈ R
n, for all s ∈ [− log T,+∞),

β(s) = e−
∫+∞
s ω(τ)dτ and V (y, s) = β(s)v(y, s), (3.3)

(note that β(s) → 1 as s→ +∞).
By multiplying equation (3.1) to β(s), we find the following equation satisfied by V :

∂sV = LV + F̄ (V, s), ∀y ∈ R
n, ∀s ∈ [− log T,+∞), (3.4)

where F̄ (V, s) = β(s)(F (v) +H(v, s)) satisfying

|F̄ (V, s)| ≤ CV 2. (3.5)

Since ‖w(s)‖L∞ ≤ C from Theorem 1.2, we may use a Taylor expansion, (1.13), (1.22)
and the fact that β(s) = 1 +O

(
1

sa−1

)
as s→ +∞ to write

∣
∣
∣F̄ (V, s)− p

2κ
V 2
∣
∣
∣ = O(|V |3) +O

(
V 2

sa−1

)

as s→ +∞, (3.6)

(see Lemma C.1 for the proof of (3.6), and note that (3.5) follows from (3.6)).
Since the eigenfunctions of L constitute a total orthonormal family of L2

ρ, we can expand
V as follows:

V (y, s) =
∞∑

k=1

πk(V )(y, s) = V+(y, s) + Vnull(y, s) + V−(y, s), (3.7)
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where πk(V ) is the orthogonal projector of v on the eigenspace associated to λk = 1− k
2 ,

V+(y, s) = π+(V )(y, s) =

1∑

k=0

πk(V )(y, s),

V−(y, s) = π−(V )(y, s) =

∞∑

k=3

πk(V )(y, s),

Vnull(y, s) = π2(V )(y, s) = V2(s) �H2(y), (3.8)

where H2(y) = (H2,ij, i ≤ j), with H2,ii = h2(yi) and H2,ij = h1(yi)h1(yj) if i 6= j, hm is
introduced in (1.24); V2(s) = (V2,ij , i ≤ j), with V2,ij being the projection of V on H2,ij.

We claim that Theorem 1.5 is a direct consequence of the following:

Proposition 3.1 (Classification of the behavior of V as s→ +∞). One of the following

possibilities occurs:

i) V (y, s) ≡ 0,

ii) There exists l ∈ {1, . . . , n} such that up to an orthogonal transformation of coordinates,

we have

V (y, s) = − κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa

)

+O
(
log s

s2

)

as s→ +∞.

iii) There exist an integer number m ≥ 3 and constants cα not all zero such that

V (y, s) = −e(1−m
2 )s

∑

|α|=m
cαHα(y) + o

(

e(1−
m
2 )s
)

as s→ +∞.

The convergence takes place in L2
ρ as well as in Ck,γloc for any k ≥ 1 and γ ∈ (0, 1).

Remark 3.2. Let us insist on the fact that the linearizing of w around κ would generate

some terms of the size 1
sa , and prevent us from reaching exponentially small terms.

Let us first derive Theorem 1.5 assuming Proposition 3.1 and then we will prove it later.

Proof of Theorem 1.5 assuming that Proposition 3.1 holds. By the definition (3.3) of
V , we see that i) of Proposition 3.1 directly follows that v(y, s) ≡ φ(s) which is i) of
Theorem 1.5. Using ii) of Proposition 3.1 and the fact that β(s) = 1 + O( 1

sa−1 ) as
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s→ +∞, we see that as s→ +∞,

w(y, s) = φ(s) + V (y, s)

(

1 +O(
1

sa−1
)

)

= φ(s)− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa

)

+O
(
log s

s2

)

= κ− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa

)

+O
(
log s

s2

)

,

which yields ii) of Theorem 1.5.
Using iii) of Proposition 3.1 and again the fact that β(s) = 1 +O( 1

sa−1 ) as s → +∞, we
have

w(y, s) = φ(s)− e(1−
m
2 )s

∑

|α|=m
cαHα(y) + o

(

e(1−
m
2 )s
)

as s→ +∞.

This concludes the proof of Theorem 1.5 assuming that Proposition 3.1 holds.

The proof of Proposition 3.1 will be very close to that in [3] and [20], thanks to (3.5) and
(3.6). It happens that the proofs written in Filippas, Kohn, Liu, Herrero and Velázquez
[2],[3], [11], [20] in the unperturbed case (h ≡ 0) hold for equation (3.4) under the
general assumptions (3.5) and (3.6). For that reason, we only give the sketch of the
proof below and refer to these papers for details of the proofs.
Following [3] and [20], we divide the proof into 3 steps which are given in separated
subsections:
- Step 1: deriving the fact that either ‖V+(s)‖L2

ρ
+ ‖V−(s)‖L2

ρ
= o

(

‖Vnull(s)‖L2
ρ

)

, or

‖V (s)‖L2
ρ
= O(e−µs) for some µ > 0.

- Step 2: assuming that ‖V (s)‖L2
ρ

∼ ‖Vnull(s)‖L2
ρ
, we find an equation satisfied by

Vnull(s) as s → +∞. Solving this equation, we find that ‖V (s)‖L2
ρ

behaves like 1
s as

s → +∞. Using this information, we can get a more accurate equation for Vnull(s) as
s→ +∞ and then ii) of Proposition 3.1 follows.
- Step 3: assuming ‖V (s)‖L2

ρ
= O(e−µs) for some µ > 0 as s → +∞, we derive i) or iii)

of Proposition 3.1.

3.1 Finite dimension reduction of the problem.

We claim the following proposition:

Proposition 3.3 (Competition between V+, V− and Vnull). As s→ +∞,

either i) ‖V (s)‖L2
ρ
= O

(
e−µs

)
, for some µ > 0, (3.9)

or ii) ‖V+(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= o

(

‖Vnull(s)‖L2
ρ

)

. (3.10)
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Proof. Let us denote

Z(s) = ‖V+(s)‖L2
ρ
, X(s) = ‖Vnull(s)‖L2

ρ
, Y (s) = ‖V−(s)‖L2

ρ
, (3.11)

then the following lemma is claimed:

Lemma 3.4. Let ǫ > 0, there exists s∗ = s∗(ǫ) ∈ R such that for all s ≥ s∗,

Z ′ ≥
(
1

2
− ǫ

)

Z − ǫ(X + Ȳ )

∣
∣X ′∣∣ ≤ ǫ(X + Ȳ + Z)

Ȳ ′ ≤ −
(
1

2
− ǫ

)

Ȳ + ǫ (X + Z)

where Ȳ (s) = Y (s) + r(s) with r(s) =
∥
∥
∥|y|k2V 2(s)

∥
∥
∥
L2
ρ

for a fixed integer k.

Proof. From the fact that |F̄ (V, s)| ≤ CV 2 for s large, the proof is the same as the proof
of Theorem A, pages 842-847 in Filippas and Kohn [2].

The following lemma allows us to conclude Proposition 3.3:

Lemma 3.5. Let ξ(t), ν(t), ζ(t) be absolutely continuous, real-valued functions that are

nonnegative and satisfy:

i) (ξ(t), ν(t), ζ(t)) → 0 as t→ +∞,

ii) For all ǫ > 0, there exists t0 ∈ R such that for all t ≥ t0,

ζ ′ ≥ c0ζ − ǫ(ξ + ν)

|ξ′| ≤ ǫ(ξ + ν + ζ)

ν ′ ≤ −c0ν + ǫ(ξ + ζ),

for some c0 > 0.

Then either ξ + ζ = o(ν) or ν + ζ = o(ξ) as t → +∞.

Remark 3.6. In the first case, we clearly see that ν ′ ≤ − c0
2 ν for t large, hence ξ, υ, ζ tend

to zero exponentially fast.

Proof. The original proof is due to Filippas and Kohn [2]. For this particular statement,
see Lemma A.1, page 3425 [15] for the proof.

Since ‖V (s)‖L∞
loc

→ 0 as s → +∞, we have X(s), Ȳ (s), Z(s) → 0 as s → +∞. Thus,
Lemma 3.5 applies to X(s), Ȳ (s), and Z(s) and yields the desired result (use the remark
after the statement). This ends the proof of Proposition 3.3.
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3.2 Deriving conclusion ii) of Proposition 3.1

In this part, we recall from Filippas and Liu the proof of ii) of Proposition 3.1. We focus
on the case ii) of Proposition 3.3, namely that

‖V+(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= o

(

‖Vnull(s)‖L2
ρ

)

as s→ +∞, (3.12)

and show that it leads to case ii) of Proposition 3.1.
We first claim the following proposition:

Proposition 3.7 (An ODE satisfied by Vnull(s) as s→ +∞). If ‖V+(s)‖L2
ρ
+‖V−(s)‖L2

ρ
=

o
(

‖Vnull(s)‖L2
ρ

)

, then

i) for all i, j ∈ {1, ..., n} and as s→ +∞,

V ′
2,ij(s) =

p

2κ

∫

R

V 2
null(y, s)

H2,ij(y)

‖H2,ij‖2L2
ρ

ρ(y)dy + o
(

‖Vnull(s)‖2L2
ρ

)

. (3.13)

ii) There exist a symmetric n× n matrix A(s) such that for all s ∈ R,

Vnull(y, s) = yTA(s)y − 2tr(A(s))

and c1‖A(s)‖ ≤ ‖Vnull(s)‖L2
ρ
≤ c2‖A(s)‖ (3.14)

where c1, c2 are some positive constant and ‖A‖ stands for any norm on the space of n× n

symmetric matrices. Moreover,

A′(s) =
4p

κ
A2(s) + o

(
‖A(s)‖2

)
as s→ +∞. (3.15)

Proof. Let us remark that ii) follows directly from i). Here, one has to use (3.6) which is
more accurate than (3.5), in order to isolate the O(V 2) term in the nonlinear term. Using
properties of Hermites polynomials, we may project that term and obtain (3.13).

In the next step, we show that although we can not derive directly from (3.13) the
asymptotic behavior of Vnull(s), we can use it to show that ‖V (s)‖L2

ρ
decays like 1

s as
s→ +∞. More precisely, we have the following proposition:

Proposition 3.8. If ‖V+(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= o

(

‖Vnull(s)‖L2
ρ

)

, then for s large, we have

c1
s

≤ ‖V (s)‖L2
ρ
≤ c2

s
, (3.16)

for some positive constants c1 and c2.

Proof. Since ‖V (s)‖L2
ρ
∼ ‖Vnull(s)‖L2

ρ
and because of (3.14), it is enough to show that

c1
s

≤ ‖A(s)‖ ≤ c2
s
, for s large. (3.17)

Since the proof of (3.17) is totally given in Section 3 of Filippas and Liu [3], we just give
its steps of the proof below. The following Lemma asserts that A(s) has continuously
differential eigenvalues:
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Lemma 3.9 ([18], [12]). Suppose that A(s) is a n × n symmetric and continuously dif-

ferentiable matrix-function in some interval I, then there exists continuously differentiable

functions λ1(s), . . . , λn(s) in I such that for all i ∈ {1, . . . , n},

A(s)Φ(i)(s) = λi(s)Φ
(i)(s),

for some orthonormal system of vector-functions Φ(1)(s), . . . ,Φ(n)(s).

Let λ1(s), . . . , λn(s) be the eigenvalues of A(s). We can derive from (3.15) an equation
satisfied by λi(s), i ∈ {1, . . . , n}:

Lemma 3.10 (Filippas and Liu [3]). The eigenvalues of A(s) satisfy for all i ∈ {1, . . . , n},

λ′i(s) =
4p

κ
λ2i (s) + o

(
n∑

i=1

λ2i (s)

)

. (3.18)

Using (3.18), one can show that (see the end of Section 3 in [3])

c1
s

≤
n∑

i=1

|λi(s)| ≤
c2
s
, for s large. (3.19)

Since ‖A(s)‖ =
∑n

i=1 |λi(s)|, this concludes the proof of (3.17) and Proposition 3.8
also.

Using the fact that ‖V (s)‖L2
ρ

decays like 1
s , we will show that ‖V−(s))‖L2

ρ
+‖V+(s))‖L2

ρ

is in fact O(‖Vnull(s))‖2L2
ρ

and not only o(‖Vnull(s))‖L2
ρ
). This new estimate will be used

then to derive a more accurate equation satisfied by Vnull.

Proposition 3.11. If ‖V+(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= o

(

‖Vnull(s)‖L2
ρ

)

, then we have

V ′
2,ij(s) =

p

2κ

∫

Rn

V 2
null(y, s)

H2,ij(y)

‖H2,ij‖2L2
ρ

ρ(y)dy

+O
(

‖Vnull(s)‖3L2
ρ

)

+O
(‖Vnull(s)‖2L2

ρ

sa−1

)

, (3.20)

and

A′(s) =
4p

κ
A2(s) +O

(
1

s3

)

+O
(

1

sa+1

)

, (3.21)

where A(s) is given in (3.14).

Proof. The proof corresponds to Section 4 in [3]. Let us mention that the proof relies
on the following priori estimate of solutions of (3.4) shown by Herrero and Velázquez
in [11]. Although they proved their result in the case N = 1, their proof holds in higher
dimensions under the general assumption (3.5).
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Lemma 3.12 (Herrero and Valázquez [11]). Assume that V solves (3.4) and |V | ≤M <

+∞. Then for any r > 1, q > 1 and L > 0, there exist s∗0 = s∗0(q, r) and C = C(q, r, L) > 0

such that
(∫

Rn

|V (y, s + τ)|rρ(y)dy
) 1

r

≤ C

(∫

Rn

|V (y, s)|qρ(y)dy
) 1

q

,

for any s ≥ 0 and any τ ∈ [s∗0, s
∗
0 + L].

From Proposition 3.8, we have ‖V (s)‖L2
ρ

decays like 1
s . Then Lemma 3.12 implies that

(∫

Rn

|V (y, s)|rρ(y)dy
) 1

r

≤ C

(∫

Rn

|V (y, s)|qρ(y)dy
) 1

q

, (3.22)

for any r > 1, q > 1 and for s large.
Using estimate (3.22), we derive the fact that

‖V+(s)‖L2
ρ
+ ‖V−(s)‖L2

ρ
= O

(

‖Vnull(s)‖2L2
ρ

)

. (3.23)

Then, projecting (3.4) onto the null space of L and using (3.23), (3.22), we would
obtain (3.20). Since ‖V (s)‖L2

ρ
∼ ‖Vnull(s)‖L2

ρ
∼ 1

s , we then obtain (3.21) from (3.20).
This ends the proof of Proposition 3.11.

Let us now use 3.11 to derive conclusion ii) of Proposition 3.1. Using Lemma 3.9, we
get from (3.21) that the eigenvalues of A(s) satisfy

∀i ∈ {1, . . . , n}, λ′i(s) =
4p

κ
λ2i (s) +O

(
1

sa+1

)

+O
(

1

s3

)

, as s→ +∞,

then Lemma C.2 yields

either λi(s) = − κ

4ps
+O

(
1

sa

)

or λi(s) = O
(

1

sa

)

, if a ∈ (1, 2), (3.24)

either λi(s) = − κ

4ps
+O

(
log s

s2

)

or λi(s) = O
(

1

s2

)

, if a ≥ 2. (3.25)

Therefore, Proposition 5.1 in [3] yields the existence of l ∈ {1, . . . , n} and a n × n
orthonormal matrix Q such that

A(s) = − κ

4ps
Al +O

(
1

sa

)

, if a ∈ (1, 2),

A(s) = − κ

4ps
Al +O

(
log s

s2

)

, if a ≥ 2,

where

Al = Q

(
Il O
O O

)

Q−1.

Combining this with (3.14), it yields the behavior of Vnull(y, s) and V (y, s) announced in
ii) of Proposition 3.1. The convergence in Ck,γloc follows from standard parabolic regularity
(see section 5 in [3] for a brief demonstration). This completes the proof of ii) of
Proposition 3.1.
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3.3 Deriving conclusions i) and iii) of Proposition 3.1

In this part, we recall the proof given by Velázquez [20]. We focus on the case i) of
Proposition 3.3, namely ‖V (s)‖L2

ρ
= O(e−µs) for some µ > 0, and we will show that

it leads to either i) or iii) of Proposition 3.1. Let us start the first step. From equation
(3.4), we write V (y, s) in the integration form

V (y, s) = SL(s)V (s0) +

∫ s

s0

SL(s− τ)F̄ (V (τ), τ)dτ, with s0 = − log T,

where SL(s) is the linear semigroup corresponding to the heat-type equation ∂V = LV
given by

SL(s)V (y, τ) =

∞∑

|α|=0

aα(τ)e

(

1− |α|
2

)

(s−τ)
Hα(y),

with

aα(τ) = 〈V (τ),Hα〉 :=
∫

Rn

V (y, τ)Hα(y)ρ(y)dy.

Let us fix a integer k0 > 2 such that k0
2 − 1 < 2µ < k0+1

2 − 1 and write V (y, s) as follow:

V (y, s) =
∑

|α|≤k0
aα(s0)e

(

1− |α|
2

)

(s−s0)Hα(y) +
∑

|α|≥k0+1

aα(s0)e

(

1− |α|
2

)

(s−s0)Hα(y)

+
∑

|α|≤k0
Hα(y)

∫ s

s0

e

(

1− |α|
2

)

(s−τ)〈F̄ (V (y, τ), τ),Hα(y)〉dτ

+
∑

|α|≥k0+1

Hα(y)

∫ s

s0

e

(

1− |α|
2

)

(s−τ)〈F̄ (V (y, τ), τ),Hα(y)〉dτ

:= I + II + III + IV.

Since |F̄ (V, s)| ≤ C|V |2 and ‖V (s)‖L2
ρ
≤ Ce−µs, we derive from Lemma 3.12 that

‖F̄ (V (τ))‖L2
ρ
≤ Ce−2µτ . (3.26)

By a direct computation, we find that

‖II‖L2
ρ
+ ‖IV ‖L2

ρ
≤ Ce−2µs, for some C > 0.

For III, we write
∫ s

s0

e
−
(

1− |α|
2

)

τ 〈F̄ (V (y, τ), τ),Hα(y)〉dτ

= βα −
∫ +∞

s
e
−
(

1− |α|
2

)

τ 〈F̄ (V (y, τ), τ),Hα(y)〉dτ.
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Using (3.26), we can bound the last term of the above expression by Ce−2µs. Hence,

V (y, s) =
∑

|α|≤k0
(aα + βα)e

(

1− |α|
2

)

s
Hα(y) +Q(y, s),

where ‖Q(s)‖L2
ρ
= O(e−2µs).

Since ‖V (s)‖L2
ρ
= O(e−µs), it requires aα + βα = 0 for |α| ≤ 2. Thus, we have two

possibilities: if there exists an integer m ∈ [3, k0] such that aα + βα 6= 0 for |α| = m and
aα+βα = 0 for all |α| < m, then we obtain iii) of Proposition 3.1 for some m ∈ [3, k0]. If
this is not the case, we get ‖V (s)‖L2

ρ
= O(e−2µs). Using this new estimate and repeating

the process in a finite number of steps, we may obtain either iii) of Proposition 3.1 for
some m ≥ 3 or ‖V (s)‖L2

ρ
= O(e−Rs) for any R > 0. For the second case, we use the

following nondegeneracy result from Herrero and Velázquez [11] in order to conclude
that V (y, s) ≡ 0, which is i) of Proposition 3.1,

Lemma 3.13 (Herrero and Velázquez [11]). Let V be a solution to equation (3.4).
Assume that |V (y, s)| is bounded, and that for any R > 0 there exists C = C(R) such that

‖V (s)‖L2
ρ
≤ Ce−Rs if s ≥ 0,

then V (y, s) ≡ 0.

Proof. Since the proof written in [11] holds under general assumption (3.5), we then
refer the reader to Lemma 3.5, page 144 of [11] for detail of the proof.

Since the convergence in Ck,γloc for any k ≥ 1 and γ ∈ (0, 1) follows from a standard
parabolic regularity, we end the proof of Proposition 3.1 here. This also concludes the
proof of Theorem 1.5.

4 Bow-up profile for equation (1.1) in extended spaces re-
gions

We give the proof of Theorem 1.10 in this section. Note that the derivation of Theo-
rem 1.10 from Theorem 1.5 in the unperturbed case (h ≡ 0) was done by Velázquez
in [19]. The idea to extend the convergence up to sets of the type {|y| ≤ K0

√
s} or

{|y| ≤ K0e
( 1
2
− 1

m)s} is to estimate the effect of the convective term −y
2 · ∇w in the equa-

tion (1.9) in Lqρ spaces with q > 1. Since the proof of Theorem 1.10 is actually in spirit
by the method given in [19], all that we need to do is to control the strong perturbation
term in equation (1.9). We therefore give the main steps of the proof and focus only on
the new arguments. The proof will be separated into two parts: the first part concerns
case ii) in Theorem 1.5 and gives the asymptotic behavior of w in the y√

s
variable, and

the second part concerns case iii) in Theorem 1.5 and gives the asymptotic behavior
of w in the ye−(

1
2
− 1

m)s variable. In Part 1, we stick to the method of Velázquez [19],
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whereas, in Part 2, where we work in the scale e−µs for µ > 0, we need new ideas to get
rid of the term in the scale 1

s coming from the strong perturbation.

Part 1: Case ii) in Theorem 1.5 and asymptotic behavior in the y√
s

variable.
Let us restate i) of Theorem 1.10 in the following proposition:

Proposition 4.1 (Asymptotic behavior in the y√
s

variable). Assume that w is a solution

of equation (1.9) which satisfies ii) of Theorem 1.5. Then, for all K > 0,

sup
|ξ|≤K

∣
∣w(ξ

√
s, s)− fl(ξ)

∣
∣ = O

(
1

sa−1

)

+O
(
log s

s

)

, as s→ +∞,

where fl(ξ) = κ
(

1 + p−1
4p

∑l
j=1 ξ

2
j

)− 1
p−1

.

Proof. Following the method in [19], we define q = w − ϕ, where

ϕ(y, s) = κ



1 +
p− 1

4ps

l∑

j=1

y2j





− 1
p−1

+
κl

2ps
. (4.1)

Using Taylor’s formula in (4.1) and ii) of Theorem 1.5, we find that

‖q(s)‖L2
ρ
= O

(
1

sa

)

+O
(
log s

s2

)

, as s→ +∞. (4.2)

Straightforward calculations based on equation (1.9) yield

∂sq = (L+ ω)q + F (q) +G(q, s) +R(y, s), ∀(y, s) ∈ R
n × [− log T,+∞), (4.3)

where

ω(y, s) = p(ϕp−1 − κp−1) + e−sh′
(

e
s

p−1ϕ
)

,

F (q) = |q + ϕ|p−1(q + ϕ)− ϕp − pϕp−1q,

G(q, s) = e−
ps

p−1

[

h
(

e
s

p−1 (q + ϕ)
)

− h
(

e
s

p−1ϕ
)

− e
s

p−1h′
(

e
s

p−1ϕ
)

q
]

,

R(y, s) = −∂sϕ+∆ϕ− y

2
· ∇ϕ− ϕ

p− 1
+ ϕp + e−

ps
p−1h

(

e
s

p−1ϕ
)

.

Let K0 > 0 be fixed, we consider first the case |y| ≥ 2K0
√
s and then |y| ≤ 2K0

√
s and

make a Taylor expansion for ξ = y√
s

bounded. Simultaneously, noticing from (1.13), we
then obtain for all s ≥ s0,

ω(y, s) ≤ C1

s
,

|F (q)|+ |G(q, s)| ≤ C1(q
2 + 1{|y|≥2K0

√
s}),
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|R(y, s)| ≤ C1

( |y|2
s2

+
1

s2
+

1

sa
+ 1{|y|≥2K0

√
s}

)

,

where C1 = C1(M0,K0) > 0, M0 is the bound of w in L∞-norm.
Let Q = |q|, we then use the above estimates and Kato’s inequality, i.e ∆f · sign(f) ≤
∆(|f |), to derive from equation (4.3) the following: for all K0 > 0 fixed, there are
C∗ = C∗(K0,M0) > 0 and a time s′ > 0 large enough such that for all s ≥ s∗ =

max{s′,− log T},

∂sQ ≤
(

L+
C∗
s

)

Q+ C∗

(

Q2 +
|y|2
s2

+
1

s2
+

1

sa
+ 1{|y|≥2K0

√
s}

)

, ∀y ∈ R
n. (4.4)

Since ∣
∣
∣
∣
w(y, s)− fl

(
y√
s

)∣
∣
∣
∣
≤ Q+

κl

2ps
,

the conclusion of Proposition 4.1 follows if we show that

∀K0 > 0, sup
|y|≤K0

√
s

Q(y, s) → 0 as s→ +∞. (4.5)

Let us now focus on the proof of (4.5) in order to conclude Proposition 4.1. For this
purpose, we introduce the following norm: for r ≥ 0, q > 1 and f ∈ Lqloc(R

n),

Lq,rρ (f) ≡ sup
|ξ|≤r

(∫

Rn

|f(y)|qρ(y − ξ)dy

) 1
q

.

Following the idea in [19], we shall make estimates on solution of (4.4) in the L2,r(τ)
ρ

norm where r(τ) = K0e
τ−s̄
2 ≤ K0

√
τ . Particularly, we have the following:

Lemma 4.2. Let s be large enough and s̄ is defined by es−s̄ = s. Then for all τ ∈ [s̄, s] and

for all K0 > 0, it holds that

g(τ) ≤ C0

(

eτ−s̄ǫ(s̄) +
∫ (τ−2K0)+

s̄

e(τ−t−2K0)g2(t)
(
1− e−(τ−t−2K0)

)1/20
dt

)

where g(τ) = L
2,r(K0,τ,s̄)
ρ (Q(τ)), r(K0, τ, s̄) = K0e

τ−s̄
2 , ǫ(s) = O

(
1
sa

)
+ O

(
log s
s2

)

, C0 =

C0(C∗,M0,K0) and z+ = max{z, 0}.

Proof. Multiplying (4.4) by α(τ) = e
∫ τ
s̄

C∗
t dt, then we write Q(y, τ) for all (y, τ) ∈ Rn ×

[s̄, s] in the integration form:

Q(y, τ) = α(τ)SL(τ − s̄)Q(y, s̄)

+ C∗

∫ τ

s̄
α(τ)SL(τ − t)

(

Q2 +
|y|2
t2

+
1

t2
+

1

ta
+ 1{|y|≥2K0

√
t}

)

dt,
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where SL is the linear semigroup corresponding to the operator L.
Next, we take the L2,r(K0,τ,s̄)

ρ -norms both sides in order to get the following:

g(τ) ≤ C0L
2,r
ρ

[
SL(τ − s̄)Q(s̄)

]
+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)Q2(t)

]
dt

+ C0

∫ τ

s̄
L2,r
ρ

[

SL(τ − t)

( |y|2
t2

+
1

t2
+

1

ta

)]

dt

+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)1{|y|≥2K0

√
t}
]
dt

≡ J1 + J2 + J3 + J4.

Proposition 2.3 in [19] (with a slight modification for the estimate of J3) yields

|J1| ≤ C0e
τ−s̄‖Q(s̄)‖L2

ρ
= eτ−s̄O(ǫ(s̄)) as s̄→ +∞,

|J2| ≤
C0

s̄2
eτ−s̄ + C0

∫ (τ−2K0)+

s̄

e(τ−t−2K0)

(
1− e−(τ−t−2K0)

)1/20

[

L2,r(K0,t,s̄)
ρ Q(t)

]2
dt,

|J3| ≤ C0e
τ−s̄

(
1

s̄2
+

1

s̄a

)

(1 + (τ − s̄)),

|J4| ≤ C0e
−δs̄, where δ = δ(K0) > 0.

Putting together the estimates on Ji, i = 1, 2, 3, 4, we conclude the proof of Lemma
4.2.

We now use the following Gronwall lemma from Velázquez [19]:

Lemma 4.3 (Velázquez [19]). Let ǫ, C,R and δ be positive constants, δ ∈ (0, 1). Assume

that H(τ) is a family of continuous functions satisfying

H(τ) ≤ ǫeτ + C

∫ (τ−R)+

0

eτ−sH2(s)
(
1− e−(τ−s−R))δ

ds, for τ > 0.

Then there exist θ = θ(δ, C,R) and ǫ0 = ǫ0(δ, C,R) such that for all ǫ ∈ (0, ǫ0) and any τ

for which ǫeτ ≤ θ, we have

H(τ) ≤ 2ǫeτ .

Applying Lemma 4.3 with H ≡ g, we see from Lemma 4.2 that for s large enough,

g(τ) ≤ 2C0e
τ−s̄ǫ(s̄), ∀τ ∈ [s̄, s].

If τ = s, then es−s̄ = s, r = K0
√
s and

g(s) ≡ L2,K0
√
s

ρ

(
Q(s)

)
= O

(
1

sa−1

)

+O
(
log s

s

)

, as s→ +∞.
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By using the regularizing effects of the semigroup SL (see Proposition 2.3 in [19]), we
then obtain

sup
|y|≤K0

√
s

2

Q(y, s) ≤ C ′(C∗,K0,M0)L
2,K0

√
s

ρ (Q(s)) = O
(

1

sa−1

)

+O
(
log s

s

)

,

as s→ +∞, which concludes the proof of Proposition 4.1.

Part 2: Case iii) in Theorem 1.5 and the asymptotic behavior in the ye−(
1
2
− 1

m)s vari-
able.
We give the proof of ii) of Theorem 1.10 in this part. Since we work in the scale e−µs

for µ > 0 in the case where iii) in Theorem 1.5 occurs, we need new ideas to get rid of
the term in the scale 1

s coming from the strong perturbation.

Let us restate ii) of Theorem 1.10 in the following proposition:

Proposition 4.4 (Asymptotic behavior in the ye−(
1
2
− 1

m)s variable). Assume that w is a

solution of equation (1.9) and satisfies iii) of Theorem 1.5. Then, for all K > 0,

sup
|ξ|≤K

∣
∣
∣w(ξe(

1
2
− 1

m)s, s)− ψm(ξ)
∣
∣
∣→ 0, as s→ +∞, (4.6)

where ψm(ξ) = κ

(

1 + κ−p
∑

|α|=m
cαξ

α

)− 1
p−1

, and m ≥ 4 is an even integer.

Proof. Note that the proof will proceed in the same way as for the proof of Proposition
4.1. Let us introduce q = w − ϕ, where

ϕ(y, s) =
φ(s)

κ
J(y, s), (4.7)

with

J(y, s) =
φ(s)

κ



G
(

ye−(
1
2
− 1

m)s
)

+ e−(
m
2
−1)s




∑

|α|=m
cαy

α −
∑

|α|=m
cαHα(y)







 ,

and G(ξ) = κ

(

1 + κ−p
∑

|α|=m
cαξ

α

)− 1
p−1

satisfying

− ξ

m
· ∇G(ξ) +Gp(ξ) =

G(ξ)

p− 1
. (4.8)

Note that Velázquez [19] takes ϕ = J , and if we do the same, we will obtain some terms
in the scale of 1

s , much stronger than the e−µs scale that we intended to work in.
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Using Taylor’s formula in (4.7) and recalling from Lemma A.3 that fact that φ(s)
κ =

1 +O(s−a) as s→ +∞, we have by iii) of Theorem 1.5,

‖q(s)‖L2
ρ
= o

(

e−(
m
2
−1)s

)

, as s→ +∞. (4.9)

Straightforward calculations based on equation (1.9) yield

∂sq = (L + ω)q + F (q) +G(q, s) +R(y, s), ∀(y, s) ∈ R
n × [− log T,+∞), (4.10)

where

ω(y, s) = p(ϕp−1 − κp−1) + e−sh′
(

e
s

p−1ϕ
)

,

F (q) = |q + ϕ|p−1(q + ϕ)− ϕp − pϕp−1q,

G(q, s) = e
− ps

p−1

[

h
(

e
s

p−1 (q + ϕ)
)

− h
(

e
s

p−1ϕ
)

− e
s

p−1h′
(

e
s

p−1ϕ
)

q
]

,

R(y, s) = −∂sϕ+∆ϕ− y

2
· ∇ϕ− ϕ

p− 1
+ ϕp + e−

ps
p−1h

(

e
s

p−1ϕ
)

.

Fix now K0 > 0 and define χ(y, s) = 1 if |y| ≥ 2K0e
( 1
2
− 1

m)s and χ(y, s) = 0 otherwise.
Then, using Taylor’s formula for ξ = ye−(

1
2
− 1

m)s bounded, and noticing from (1.13), we
then obtain for all s ≥ s0,

ω(y, s) ≤ C1

s
,

|F (q)|+ |G(q, s)| ≤ C1

(
q2 + χ(y, s)

)
,

where C1 = C1(M0,K0) > 0.
To estimate R(y, s), we write R(y, s) as follow:

R(y, s) =
φ(s)

κ

(

−∂sJ +∆J − y

2
· ∇J − J

p− 1
+ Jp

)

+

(

−φ
′(s)
κ

J − φ(s)

κ
Jp + ϕp + e

− ps
p−1h

(

e
s

p−1ϕ
))

≡ φ(s)

κ
I + II.

By using Taylor’s formula, (4.8) and Hermite’s equation, i.e.

LHα(y) =

(

1− |α|
2

)

Hα(y),

it was proved in [19] (see Proposition 2.4) that

I ≤ Ce−(m−2)s(|y|2m−2 + 1)(1 − χ(y, s)) + Cχ(y, s), for some C > 0.

It remains to estimate II. To do so, we write J(y, s) for |y|e( 1
2
− 1

m)s bounded in the form:

J(y, s) = κ− e−(
m
2
−1)s

∑

|α|=m
cαHα(y) +O

(

e−(m−2)s|y|2m
)

.
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We then use Taylor’s formula in II, (1.13), and the fact that φ(s) satisfies (1.21) to find
that

II ≤ C

sa
e−(

m
2
−1)s(|y|m + 1)(1 − χ(y, s)) + Cχ(y, s), for some C > 0.

Note that e−(m−2)s|y|2m−2(1−χ(y, s)) ≤ 1
sa e

−(m
2
−1)s|y|m(1−χ(y, s)) for s large, we then

obtain

|R(y, s)| ≤ C

(
1

sa
e−(

m
2
−1)s(|y|m + 1)(1 − χ(y, s)) + χ(y, s)

)

, for some C > 0.

Let Q = |q| and use Kato’s inequality, we obtain from (4.10) and from the above esti-
mates that: for all K0 > 0 fixed, there are C∗ = C∗(K0,M0) > 0 and a time s′ > 0 large
enough such that for all s ≥ s∗ = max{s′,− log T},

∂sQ ≤
(

L+
C∗
s

)

Q+ C∗

(

Q2 +
1

sa
e−(

m
2
−1)s(|y|m + 1) + χ(y, s)

)

, ∀y ∈ R
n. (4.11)

We claim the following:

Lemma 4.5. Let s be large enough and s̄ = 2s
m . Then for all τ ∈ [s̄, s], τ − s̄ ≥ 2 and for

all K0 > 0, it holds that

g(τ) ≤ eτ−s̄
(

o
(

e−(
m
2
−1)s̄

)

+ C ′
∫ (τ−2K0)+

s̄

e(τ−t−2K0)g2(t)
(
1− e−(τ−t−2K0)

)1/20
dt

)

where g(τ) = L
2,r(K0,τ,s̄)
ρ (Q(τ)), r(K0, τ, s̄) = K0e

τ−s̄
2 , C ′ = C ′(C∗,M0,K0) and z+ =

max{z, 0}.

Proof. Proceeding as in the proof of Lemma (4.2), we write

L2,r
ρ (Q) ≤ C0L

2,r
ρ

[
SL(τ − s̄)Q(s̄)

]
+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)Q2(t)

]
dt

+ C0

∫ τ

s̄
L2,r
ρ

[

SL(τ − t)

(
1

ta
e−(

m
2
−1)t(|y|m + 1)

)]

dt

+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)χ(y, t)

]
dt

≡ J1 + J2 + J3 + J4.

One can show that for s̄ large enough (see Proposition 2.4 in [19]),

|J1| = eτ−s̄o
(

e(1−m/2)s̄
)

,

|J2| ≤ Ce2τ−2(m−1)s̄ + C

∫ (τ−2K0)+

s̄

e(τ−t−2K0)g2(t)
(
1− e−(τ−t−2K0)

)1/20
dt,
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|J3| ≤ Ceτ−s̄
e(1−m/2)s̄

s̄a
(1 + τ − s̄) = eτ−s̄o

(

e(1−m/2)s̄
)

,

|J4| ≤ Ce−θe
(1−2/m)s̄

for some θ > 0.

Putting together the above estimates yields the desired result. This ends the proof of
Lemma 4.5.

Applying now Lemma 4.3 and Lemma 4.5, we obtain for s large enough,

g(τ) ≤ eτ−s̄o
(

e−(m/2−1)s̄
)

, ∀τ ∈ [s̄, s].

Since s̄ = 2s
m , if we set τ = s, then r = K0e

( 1
2
− 1

m)s and

g(s) ≡ L2,r(s)
ρ (Q(s)) = o(1) as s→ +∞.

By the regularizing effects of the semigroup SL, we then obtain

sup

|y|≤K0
2
e(

1
2− 1

m)s
Q(y, s) ≤ C ′(C∗,K0,M0)L

2,r(s)
ρ (Q(s)) → 0, as s→ +∞,

From (4.7), we see that for all |y| ≤ K0
2 e

( 1
2
− 1

m)s,
∣
∣
∣
∣
w(y, s)− φ(s)

κ
G
(

ye−(
1
2
− 1

m)s
)
∣
∣
∣
∣
≤ Q(y, s) + Ce−(1−

2
m)s,

Noticing from Lemma A.4 that φ(s)
κ = 1 +O(s−a) as s→ +∞, we obtain

sup

|y|≤K0
2
e(

1
2− 1

m)s

∣
∣
∣w(y, s)−G

(

ye−(
1
2
− 1

m)s
)∣
∣
∣ = o(1), as s→ +∞.

It remains to show that m is even. Indeed, from (4.6), we can see that if m is not even,
there would exist ξ0 ∈ R

n such that w
(

ξ0e
( 1
2
− 1

m)s, s
)

→ ψm(ξ0) → +∞ as s → +∞,

which contradicts the fact that w is bounded as stated in (2.10). Therefore, m must be
even. This concludes the proof of Proposition 4.4 and Theorem 1.10 too.

A Appendix A

The following lemma shows the asymptotic behavior of the solution of the associated
ODE of equation 1.1:

Lemma A.1. Let v be a positive blow-up solution of the following ordinary differential

equation:

v′(t) = vp(t) + h(v), v(T ) = +∞ for some T > 0, (A.1)

where h is defined in (1.3). Then v satisfies

v(t) ∼ κ(T − t)
− 1

p−1 as t→ T , where κ = (p− 1)
− 1

p−1 .
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Remark A.2. Note that for each T > 0, there exists an unique solution to (A.1) which blows

up at time T . This is a consequence of the classification result (Theorem 1.5) applying to a

space-independent solution.

Proof. Divide (A.1) by vp and note that h(v)
vp → 0 as v → +∞, we see that for all ε > 0,

there exists a number δ = δ(ǫ) > 0 such that
∣
∣
∣
∣

v′

vp
− 1

∣
∣
∣
∣
≤ ε, ∀t ∈ [T − δ, T ). (A.2)

Solving (A.2) with noting that v(T ) = +∞ yields

(1 + ε)−
1

p−1κ(T − t)−
1

p−1 ≤ v(t) ≤ (1− ε)−
1

p−1κ(T − t)−
1

p−1 , ∀t ∈ [T − δ, T ).

This concludes the proof of Lemma A.1.

The following lemma gives us an estimation of the perturbation term in equation (1.9):

Lemma A.3. Let h be the function defined in (1.3), then it holds that

j = 0, 1, e
− (p−j)s

p−1

∣
∣
∣h(j)

(

e
s

p−1w
)∣
∣
∣ ≤ Cs−a

(
|w|p−j + 1

)
, ∀s ≥ ŝ,

where C = C(a, p, µ,M) > 0 and ŝ = ŝ(a, p) > 0 such that log s
s ≤ p

a(p−1) for all s ≥ ŝ.

Proof. We have from (1.3) that for j = 0, 1,

e−
(p−j)s
p−1

∣
∣
∣h(j)

(

e
s

p−1w
)∣
∣
∣ ≤ C ′(M,µ)




|w|p−j

loga
(

2 + e
2s

p−1w2
) + e−

(p−j)s
p−1



 .

Considering the first case w2e
s

p−1 ≥ 4, we have

|w|p−j

loga
(

2 + e
2s

p−1w2
) ≤ |w|p−j

loga
(

4e
s

p−1

) ≤ (p− 1)a

sa
|w|p−j .

Now, considering the second case w2e
s

p−1 ≤ 4, we have |w|p−j ≤ 2p−je−
(p−j)s
2(p−1) which

yields
|w|p−j

loga
(

2 + e
2s

p−1w2
) ≤ |w|p−j

loga(2)
≤ 2p−j

loga 2
e
− (p−j)s

2(p−1) .

Taking C = max
{

C ′, 2p

loga 2 , (p− 1)a
}

and ŝ > 0 such that e−
(p−j)s
p−1 ≤ s−a for all s ≥ ŝ,

we have the conclusion. This ends the proof of Lemma A.3.

The following lemma shows us the existence of solutions of the associated ODE of equa-
tion (1.9):
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Lemma A.4. Let φ be a positive solution of the following ordinary differential equation:

φs = − φ

p− 1
+ φp + e

− ps
p−1h

(

e
s

p−1φ
)

. (A.3)

Then φ(s) → κ as s→ +∞ and φ(s) is given by

φ(s) = κ(1 + ηa(s))
− 1

p−1 , where ηa(s) = O
(

1

sa

)

. (A.4)

If h(x) = µ |x|p−1x
loga(2+x2)

, we have for all k ∈ N,

ηa(s) ∼ C0

∫ +∞

s

es−τ

τa
dτ =

C0

sa



1 +
k∑

j=1

bj
sj



+O
(

1

sa+k+1

)

,

where C0 = µ
(
p−1
2

)a
and bj = (−1)j

∏j−1
i=0 (a+ i).

Proof. By the following transformation

v(t) = (T − t)
− 1

p−1φ(s), s = − log(T − t),

equation (A.1) is transformed into (A.3). From Lemma A.1, we see that φ(s) → κ as
s→ +∞.
By dividing equation (A.3) by φp, we find that

(
1

φp−1

)′
=

1

φp−1
− (p− 1)(1 + g(s)), g(s) =

1

φp
e
− ps

p−1h
(

e
s

p−1φ
)

. (A.5)

Since φ(s) → κ as s → +∞, we have from Lemma A.3 that g(s) = O
(

1
sa

)
as s → +∞.

Solving equation (A.5) yields

φ(s) = κ (1 + ηa(s))
− 1

p−1 , where ηa(s) =

∫ +∞

s
es−τg(τ)dτ.

By integration by part, we find that for all k ∈ N,

∫ +∞

s
es−ττ−adτ =

1

sa



1 +
k∑

j=1

bj
sj



+O
(

1

sa+k+1

)

, bj = (−1)j
j−1
∏

i=0

(a+ i), (A.6)

which follows ηa(s) = O(s−a) as s → +∞. If h(x) = µ |x|p−1x
loga(2+x2)

, we see that g(s) =

µ log−a
(

2 + e
2s

p−1φ2(s)
)

∼ µ
(
p−1
2s

)a
= C0

sa as s → +∞. From (A.6), we conclude the

proof of Lemma A.4.



126 III. On the blow-up results for a class of strongly perturbed SHEs

B Appendix B

B.1 Proof of Proposition 2.7

We give the proof of Proposition 2.7 here.

Proof. The idea of the proof is given in Ladyženskaja and al. [13]. Note that we still get
interior regularity even if we know nothing about the initial or boundary data. Indeed,
let τ ∈ (0, 1) and fix t0 such that t0−τ > 0, we denote Qτ (t0) = BR/2×(t0−τ, t0) ⊂ QR,
and let ϕ(x, t) be a smooth function defined in QR such that 0 ≤ ϕ(x, t) ≤ 1 and
ϕ(x, t) = 0 for all (x, t) ∈ QR \Qτ (t0). Let k ≥ 1, define

vk(x, t) = max{v(x, t)− k, 0} and Ak(t) = {x ∈ BR : v(x, t) > k}.

Then, multiplying equation (2.12) by vkϕ2 and integrating over Qτ (t0), we find that

1

2

∫

BR

v2kϕ
2dx|t0t0−τ +

∫ t0

t0−τ

∫

BR

|∇vk|2 ϕ2dxdt

= −
∫ t0

t0−τ

∫

BR

v2kϕϕtdxdt+ 2

∫ t0

t0−τ

∫

BR

(∇vk · ∇ϕ) vkϕdxdt

−
∫ t0

t0−τ

∫

BR

(b · ∇vk) vkϕ2dxdt+

∫ t0

t0−τ

∫

Ak(t)
Fvkϕ

2dxdt.

Using the assumption |F | ≤ g(|v| + 1) and some elementary inequalities with noticing
that ϕ(·, t0 − τ) = 0, we then obtain

max
t0−τ≤t≤t0

‖vk(t)ϕ(t)‖2L2(BR) +

∫ t0

t0−τ

∫

BR

|∇vk|2 ϕ2dxdt

≤ 2

∫ t0

t0−τ

∫

BR

(4|∇ϕ| + ϕ|ϕt|) v2kdxdt

+ 2

∫ t0

t0−τ

∫

Ak(t)
(µ21 + 2g)

(
v2k + k2

)
ϕ2dxdt. (B.1)

For the last term in the right-hand side (denote by I), we use Hölder’s inequality and
(2.13), which reads

|I| ≤
(∫ t0

t0−τ
‖2µ21 + 4g‖β′

Lα′ (Ak(t))
dt

) 1
β′ (∫ t0

t0−τ

∥
∥
(
v2k + k2

)
ϕ2
∥
∥
β1
Lα1(Ak(t))

dt

) 1
β1

,

≤ γ

(∫ t0

t0−τ

∥
∥
(
v2k + k2

)
ϕ2
∥
∥
β1
Lα1 (Ak(t))

dt

) 1
β1

= γII,
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where γ = γ(µ1, µ2, R, α
′, β′) > 0, α1 =

α′
α′−1 and β1 =

β′

β′−1 .
From pages 184 and 185 in [13], we have the following interpolation identity:

II ≤ βθ
2ǫ
r
k

(

max
t0−τ≤t≤t0

‖vk(t)ϕ(t)‖2L2(Ak(t))
+

∫ t0

t0−τ

∫

Ak(t)
|∇vk|2 ϕ2dxdt

)

+ k2σ
2(1+ǫ)

r
k ,

where ǫ ∈ (0, 1), r ≥ 2, β > 0 are constants,

θk =

∫ t0

t0−τ
|Ak(t)|β1/α1 dt, σk =

∫ t0

t0−τ
‖ϕ(t)‖β1Lα1 (Ak(t))

dt.

Since θk ≤ τRβ1/α1 , we can take τ small enough such that

γβ(τRβ1/α1)
2ǫ
r ≤ 1

2
.

Then from (B.1), we have

max
t0−τ≤t≤t0

‖vk(t)ϕ(t)‖2L2(BR) +

∫ t0

t0−τ

∫

BR

|∇vk|2 ϕ2dxdt

≤ γ′
[∫ t0

t0−τ

∫

BR

(|∇ϕ|+ ϕ|ϕt|) v2kdxdt+ k2σ
2(1+ǫ)

r
k

]

. (B.2)

By Remark 6.4, page 109 and Theorem 6.2, page 103 in [13], we know that if v satisfies
(B.2) for any k ≥ 1, then for all (x, t) ∈ BR/4 × (t0 − τ/2, t0),

|v(x, t)| ≤ γ′′
[(

R

2

)−n+2
2
(

1 +
R

2
√
τ

)(∫ t0

t0−τ
‖v(t)‖2L2(BR)dt

)1/2

+

(

1 +
4τ

R

) 1+ǫ
r

]

< +∞. (B.3)

Analogous arguments with the function −v would yield the same estimate. Since µ1,
µ2 and µ3 are uniformly bounded in t0, this implies that estimate (B.3) holds for all
(x, t) ∈ BR/4 × (τ/2,+∞). This concludes the proof of Proposition 2.7.

B.2 Proof of Proposition 2.9

We prove Proposition 2.9 here. Let us first derive the upper bound for Eψ.

Proof of the upper bound for Eψ. Multiplying equation (1.9) with ψ2ws and integrat-
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ing on R
n yield
∫

Rn

ψ2w2
sρdy = −1

2

d

ds

∫

Rn

ψ2|∇w|2ρdy − 2

∫

Rn

ψws∇ψ.∇wρdy

− 1

2(p − 1)

d

ds

∫

Rn

ψ2|w|2ρdy + 1

p+ 1

d

ds

∫

Rn

ψ2|w|p+1ρdy

+ e−
p+1
p−1

d

ds

∫

Rn

ψ2H
(

e
s

p−1w
)

ρdy

− 1

p− 1
e
− p

p−1
s
∫

Rn

ψ2h
(

e
s

p−1w
)

wρdy.

We derive the following identity from the definition (2.16) of the local functional Eψ,

d

ds
Eψ[w](s) = −

∫

Rn

ψ2|ws|2ρdy − 2

∫

Rn

ψws∇ψ.∇wρdy

+
p+ 1

p− 1
e
− p+1

p−1
s
∫

Rn

ψ2H
(

e
1

p−1
s
w
)

ρdy

− 1

p− 1
e−

p
p−1

s
∫

Rn

ψ2h
(

e
1

p−1
sw
)

wρdy. (B.4)

Using the fact that 2ab ≤ a2

2 + 2b2, we obtain

2ψws∇ψ.∇w ≤ 1

2
ψ2w2

s + 2|∇ψ|2|∇w|2.

Combining with (2.4), we get an estimate for (B.4) as follows:

d

ds
Eψ[w](s) ≤ −1

2

∫

Rn

ψ2|ws|2ρdy + 2‖∇ψ‖2L∞

∫

Rn

|∇w|2ρdy

+ Cs−a
∫

Rn

|w|p+1ρdy + Cs−a,

where C = C(a, p, n,M, ‖ψ‖2L∞).
Using (iii) and (iv) of Proposition 2.3, we see that

d

ds
Eψ[w](s) ≤ C1

(

1 + ‖ws‖L2
ρ(R

n)

)

, ∀s ≥ s̃3, (B.5)

where C1 = C1

(
a, p, n,N, J3, J4, ‖ψ‖2L∞ , ‖∇ψ‖2L∞

)
and Ji is introduced in Proposition

2.3.
From the definition of Eψ given in (2.16), we have

Eψ[w](s) ≤ ‖ψ‖2L∞

{
1

2

∫

Rn

(

|∇w|2 + 1

p− 1
|w|2

)

ρdy − e−
p+1
p−1

∫

Rn

H
(

e
s

p−1w
)

ρdy.

}

= ‖ψ‖2L∞

{

E [w](s) + 1

p+ 1

∫

Rn

|w|p+1ρdy

}

≤ ‖ψ‖2L∞

{

J0 +
1

p+ 1

∫

Rn

|w|p+1ρdy

}

. ∀s ≥ s̃3.
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Integrating on [s, s+ 1], we obtain

∫ s+1

s
Eψ[w](τ)dτ ≤ ‖ψ‖2L∞

{

J0 +
1

p+ 1

∫ s+1

s

∫

Rn

|w|p+1ρdydτ

}

≤ ‖ψ‖2L∞






J0 +

1

p+ 1

[
∫ s+1

s

(∫

Rn

|w|p+1ρdy

)2

dτ

] 1
2







≤ C2

(
‖ψ‖2L∞ , J0, J5

)
(use (v) of Proposition 2.3).

Hence,
∫ s+1

s
Eψ[w](τ)dτ ≤ C2, ∀s ≥ s̃3. (B.6)

Thus, there exists τ(s) ∈ [s, s+ 1] such that

Eψ[w](τ(s)) =
∫ s+1

s
Eψ[w](τ ′)dτ ′ ≤ C2.

We then have

Eψ[w](s) = Eψ[w](τ(s)) +
∫ s

τ(s)

d

ds
Eψ[w](τ ′)dτ ′

≤ C2 +

∫ s+1

s
C1

(

1 + ‖ws‖L2
ρ(R

n)

)

dτ ′ ≤ C ′
2. (use (i) of Proposition 2.3)

This concludes the proof of the upper bound for Eψ.

It remains to prove the lower bound in order to conclude the proof of Proposition (2.3).

Proof of the lower bound for Eψ. Multiplying equation (1.9) with ψ2w and integrating
on R

n yield

1

2

d

ds

∫

Rn

(ψw)2ρdy = −2Eψ[w](s) +
p+ 1

p− 1

∫

Rn

ψ2|w|p+1ρdy

− 2

∫

Rn

ψw∇ψ.∇wρdy

− 2e−
p+1
p−1

s
∫

Rn

ψ2H
(

e
s

p−1w
)

ρdy

+ e−
p

p−1
s
∫

Rn

ψ2h
(

e
s

p−1w
)

wρdy. (B.7)
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We now control the new term Jψ[w](s) = 2
∫

Rn ψw∇ψ.∇wρdy as follows:

Jψ[w](s) = −2

∫

Rn

w∇. (ψw∇ψρ) dy

= −2

∫

Rn

|w|2|∇ψ|2ρdy − 2

∫

Rn

ψw∇ψ.∇wρdy

− 2

∫

Rn

ψ|w|2∆ψρdy +
∫

Rn

ψ|w|2y.∇ψρdy.

= −
∫

Rn

|w|2|∇ψ|2ρdy −
∫

Rn

ψ|w|2∆ψρdy + 1

2

∫

Rn

ψ|w|2y.∇ψρdy.

≤
[

‖ψ‖L∞

(

‖∆ψ‖L∞ +
1

2
‖y.∇ψ‖L∞

)]∫

Rn

|w|2ρdy

≤ J2C1(ψ), ∀s ≥ s̃3 (use (ii) of Proposition 2.3). (B.8)

Using (2.4) and (B.7), we obtain

1

2

d

ds

∫

Rn

(ψw)2ρdy ≥ −2Eψ − J2C1(ψ)− C2s
−a

+

(
p+ 1

p− 1
− C2s

−a
)∫

Rn

ψ2|w|p+1ρdy.

Taking S large enough such that C2s
−a ≤ p+1

2(p−1) for all s ≥ S, we obtain for all s ≥
max{S, s̃3},

1

2

d

ds

∫

Rn

(ψw)2ρdy ≥ −(2Eψ + C3) +
p+ 1

2(p − 1)

∫

Rn

ψ2|w|p+1ρdy,

where C3 = J2C1 +
p+1

2(p−1) .

Let g(s) = 2Eψ +C3 and f(s) = 1
2

∫

Rn ψ
2|w|2ρdy. Using Jensen’s inequality, we have

f(s)
p+1
2 = 2−

p+1
2

(∫

Rn

ψ2|w|2ρdy
) p+1

2

≤ 2−
p+1
2

∫

Rn

(ψ|w|)p+1ρdy ≤ 2−
p+1
2 ‖ψ‖p−1

L∞

∫

Rn

ψ2|w|p+1ρdy.

We therefore obtain for all s ≥ S1 = max{S, s̃3},

f ′(s) ≥ −g(s) + C4f(s)
p+1
2 . (B.9)

From (B.5), we also have

g′(s) ≤ C5 + h(s), ∀s ≥ s̃3, (B.10)
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where h(s) = C5‖ws‖L2
ρ(R

n) and m =
∫ +∞
s̃3

h(s)ds ≤ C6 by using (i) of Proposition 2.3,
where C5, C6 are some positive constants.
We claim that the function of g is bounded from below by some constant M . Arguing by
contradiction, we suppose that there exists a time s∗ ≥ S1 such that g(s∗) ≤ −M . Then
for all s ≥ s∗, we write

g(s) = g(s∗) +
∫ s

s∗
g′(τ)dτ ≤ −M +

∫ s

s∗
(C5 + h(τ))dτ

≤ −M +m+ C5(s− s∗).

Thus, we have by (B.9),

f ′ ≥M −m− C5(s− s∗) + C4f
p+1
2 , f(s∗) ≥ 0.

On the other hand, we know that the solution of the following equation

f ′ ≥ 1 + C5f
p+1
2 , f(s∗) ≥ 0

blows up in finite time before

s = s∗ +
∫ +∞

0

dξ

1 +C4f
p+1
2

= s∗ + T ∗.

On the interval [s∗, s∗ + T ∗], we have

M −m− C5(s− s∗) ≥M −m− C5T
∗.

Thus, we fix M = m+ C5T
∗ + 1 to get M −m−C5(s− s∗) ≥ 1 for all s ∈ [s∗, s∗ + T ∗].

Therefore, f blows up in some finite time before s∗ + T ∗. But this contradicts with the
existence global of w. This follows (2.17) and we complete the proof of Proposition
2.9.

C Appendix C

We claim the following:

Lemma C.1 (Estimate on F̄ ). For s large enough, we have

∣
∣
∣F̄ (V, s)− p

2κ
V 2
∣
∣
∣ ≤ C|V |3 + C|V |2

sa−1
,

where C = C(a, p,M, µ) > 0.
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Proof. Consider the Taylor expansion of the nonlinear terms F and H, we have

F (v) =
1

2
p(p− 1)φp−2v2 + γ1v

3, H(v, s) = γ2v
2,

where

γ1 =
1

6
p(p− 1)(p − 2)|φ+ θ1v|p−3, γ2 =

1

2
e
− (p−2)s

p−1 h′′
(

e
s

p−1 (φ+ θ2v)
)

,

with θi ∈ [0, 1], i = 1, 2.
We claim the following: for s large,

|γ1| ≤ C and |γ2| ≤
C

sa
. (C.1)

Let us leave the proof of (C.1) later and continue the proof of Lemma C.1. Recalling
from Lemma A.4 that φ(s) = κ+O(s−a) as s→ +∞, we derive

∣
∣
∣F (v) +H(v, s)− p

2κ
v2
∣
∣
∣ = O

( |v|2
sa

)

+O(|v|3), as s→ +∞.

From the definition of F̄ and the fact that β(s) = 1 +O( 1
sa−1 ) as s → +∞, we have for

s large enough,
∣
∣
∣F̄ (V, s)− p

2κ
V 2
∣
∣
∣ =

∣
∣
∣β(s) (F (v) +H(v, s))− p

2κ
v2β2

∣
∣
∣

≤
∣
∣
∣F (v) +H(v, s)− p

2κ
v2
∣
∣
∣+

C|v|2
sa−1

≤ C|v|2
sa

+ C|v|3 + C|v|2
sa−1

≤ C|V |3 + C|V |2
sa−1

,

which concludes the proof of Lemma C.1, assuming that (C.1) holds.

Let us now give the proof of (C.1). Since φ(s) → κ as s→ +∞, we can take s∗ > 0 such
that

3κ

4
≤ φ(s) ≤ 5κ

4
, ∀s ≥ s∗.

Let us bound |γ1|. If p ≥ 3, by the boundedness of |φ| and |v|, then |γ1| is already
bounded. If p ∈ (1, 3), we consider the case |θ1v| ≤ κ

2 , then the case |θ1v| > κ
2 . In the

first case, we have |φ+ θ1v| ≥ κ
4 for all s ≥ s∗, then |γ1| ≤ C|φ+ θ1v|p−3 ≤ C

(
κ
4

)p−3 for
all s ≥ s∗ . Now, considering the second case where |θ1v| > κ

2 , note that in this case, we
have θ1 6= 0 and φ < 5

2 |θ1v| for all s ≥ s∗. From the definition of F (v), we have

|γ1v3| =
∣
∣
∣
∣
|φ+ v|p−1(φ+ v)− φp − pφp−1v − 1

2
p(p− 1)φp−2v2

∣
∣
∣
∣

≤ C(|v|p + v2), ∀s ≥ s∗.
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This yields |γ1| ≤ C(|v|p−3 + |v|−1) ≤ C
(
(κ/2θ1)

p−3 + (κ/2θ1)
−1
)

for all s ≥ s∗. This
concludes the proof of the first estimate of (C.1).

Let us now prove that |γ2| ≤ Cs−a for s large enough. From (1.3), we have

|γ2| ≤M
|φ+ θ2v|p−2

loga(2 + e
s

p−1 (φ+ θ2v)2)
. (C.2)

If p > 2, by the same technique given in the proof of Lemma A.3, we can show that (C.2)
implies

|γ2| ≤
C

sa
(|φ+ θ2v|p−2 + 1) ≤ 2C

sa
, ∀s ≥ s′(a, p).

If p ∈ (1, 2], we consider the first case |θ2v| ≤ κ
2 , which implies |φ(s) + θ2v| ≥ κ

4 for all
s ≥ s∗. From (C.2), we derive

|γ2| ≤
C(κ/4)p−2

loga(2 + e
s

p−1 (κ/4)2)
≤ 2C

sa
, for s large.

In the case where |θ2v| > κ
2 , we note that θ2 6= 0 and φ(s) ≤ 5

2 |θ2v| for all s ≥ s∗. Using
the definition of H(v, s) and (1.3), we find that

|γ2v2| ≤ C




|φ+ v|p

loga
(

2 + e
2s

p−1 (φ+ v)2
) +

φp

loga
(

2 + e
2s

p−1φ2
)

+
φp−1v

loga
(

2 + e
2s

p−1φ2
) + e−

ps
p−1 + e−s





≤ C

sa
(
|φ+ v|p + φp + φp−1|v|+ 1

)
≤ 2C

sa
(|v|p + 1),

for s large. This yields |γ2| ≤ 2C
sa (|v|p−2 + |v|−2) ≤ 2C

sa

(

( κ
2θ2

)p−2 + ( κ
2θ2

)−2
)

≤ 3C
sa . This

concludes the proof of (C.1) and the proof of Lemma C.1 also.

Lemma C.2. Let α(s) be a solution of

α′(s) = α2(s) +O
(

1

sq

)

, q ∈ (2, 3], (C.3)

which exists for all time. Then

either α(s) = −1

s
+O

(
1

sq

)

or α(s) = O
(

1

sq

)

, if q ∈ (2, 3), (C.4)

either α(s) = −1

s
+O

(
log s

s2

)

or α(s) = O
(

1

s2

)

, if q = 3. (C.5)
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Proof. Let us first show that

either α(s) = O
(

1

s1+σ

)

or α(s) = −1

s
+O

(
1

s1+σ′

)

as s→ +∞, (C.6)

for some σ ∈
(

0, q−2
2

)

and σ′ = q − 2− 2σ.

Fix s0 large enough et let σ ∈
(

0, q−2
2

)

. If |α(s)| ≤ 1
s1+σ , for all s ≥ s0, then we are

done. If not, namely there exists a time s1 > s0 such that |α(s1)| > 1
s1+σ , we have two

possibilities:

|α(s)| > 1

s1+σ
, ∀s ≥ s1, (C.7)

or there exists a time s2 > s1 such that

|α(s2)| =
1

s1+σ2

and |α(s2)| ≤
1

s1+σ
, ∀s ∈ (s2, s2 + δ), δ > 0. (C.8)

If (C.7) is the case, then we have by equation (C.3),
(
1

α

)′
= 1 +O

(
1

sq−2−2σ

)

, ∀s ≥ s1,

which yields (C.6) by integration.
If (C.8) is the case, we assume that α(s2) > 0, then α′(s2) ≤ − 1+σ

s2+σ
2

< 0. By equation

(C.3) and note that 2 + 2σ < q, we have α′(s2) > 0 and a contradiction follows. If
α(s2) < 0, then α′(s2) ≥ 1+δ

s2+δ
2

, by equation (C.3), we get

1 + δ

s2+δ2

≤ α′(s2) ≤
1

s2+2σ
2

+
1

sq2
.

Since 2 + δ < 2 + 2δ < q, we have a contradiction and (C.6) follows.

We now use (C.6) in order to conclude Lemma C.2. Let us give the proof in the case
q = 3. Assume α(s) = O

(
1

s1+σ

)
for some σ ∈ (0, 12 ), then (C.3) yields

α′(s) = O
(

1

s2+2σ

)

+O
(

1

s3

)

= O
(

1

s2+2σ

)

.

By integration, we get α(s) = O
(

1
s1+2σ

)
. Using this estimate, we obtain α′(s) = O

(
1
s3

)

and the conclusion follows.
Let us consider

α(s) = −1

s
+ β(s), with β(s) = O

(
1

s1+σ′

)

, σ′ = 1− 2σ.
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Substituting this into (C.3) yields

β′(s) =
2β(s)

s
+ β2(s) +O

(
1

s3

)

.

Multiplying this equation by s2, we find

[
s2β(s)

]′
= s2β2 +O

(
1

s

)

= O
(

1

s2σ′

)

+O
(
1

s

)

.

If σ′ ≥ 1
2 , then

[
s2β(s)

]′
= O

(
1
s

)
which follows β(s) = O

(
log s
s2

)

. If σ′ < 1
2 , then

β(s) = O
(

1
s1+2σ′

)

. Using this estimate and repeating the process again, we would

obtain β(s) = O
(
log s
s2

)

and (C.5) then follows. Since the argument is similar in the case

q ∈ (2, 3), we escape here and concludes the proof of Lemma C.2.
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Chapter IV

Construction of a stable blow-up solution
for a class of strongly perturbed semilinear
heat equations1

V. T. Nguyen and H. Zaag2

Université Paris 13, Sorbonne Paris Cité,

LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Abstract
We construct a solution for a class of strongly perturbed semilinear heat equations which
blows up in finite time with a prescribed blow-up profile. The construction relies on the
reduction of the problem to a finite dimensional one and the use of index theory to con-
clude.

Keywords: Blow-up profile, finite-time blow-up, stability, semilinear heat equations.

1 Introduction

We are interested in the following nonlinear parabolic equation:
{

ut = ∆u+ |u|p−1u+ h(u),
u(0) = u0 ∈ L∞(Rn),

(1.1)

1submitted, arXiv:1406.5233
2This author is supported by the ERC Advanced Grant no. 291214, BLOWDISOL and by the ANR project

ANAÉ ref. ANR-13-BS01-0010-03.
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where u is defined for (x, t) ∈ R
n × [0, T ), 1 < p and p < n+2

n−2 if n ≥ 3, the function h is
in C1(R,R) satisfying

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

with a > 1, M > 0, (1.2)

or

h(z) = µ
|z|p−1z

loga(2 + z2)
with a > 0, µ ∈ R. (1.3)

By standard results, the Cauchy problem for equation (1.1) can be solved in L∞(Rn).
The solution u(t) of (1.1) would exist either on [0,+∞) (global existence) or only on
[0, T ), with 0 < T < +∞. In this case, we say that u(t) blows up in finite time T , namely

lim
t→T

‖u(t)‖L∞(Rn) = +∞.

Here T is called the blow-up time, and a point x0 ∈ R
n is called a blow-up point if and

only if there exist (xn, tn) → (x0, T ) such that |u(xn, tn)| → +∞ as n → +∞. In this
paper, we are interested in the finite time blow-up for equation (1.1).

When h ≡ 0, the blow-up result for equation (1.1) is largely well-understood. The
existence of blow-up solutions has been proved by several authors (see Fujita [7], Ball
[1], Levine [13]). We have a lots of results concerning the asymptotic blow-up behav-
ior, locally near a given blow-up point (see Giga and Kohn [10], Weissler [25], Filippas,
Kohn and Liu [5], [6], Herrero and Velázquez [11], [12], [23], [24], Merle and Zaag
[17], [18], [19]). The notion of asymptotic profile appears also in various papers (see
Bricmont and Kupiainen [3], Merle and Zaag [16], Berger and Kohn [2], Nguyen [20]
for numerical studies).

Given b a blow-up point of u, we study the behavior of u near the singularity (b, T )
through the following similarity variables introduced by Giga and Kohn [8], [9], [10]:

y =
x− b√
T − t

, s = − log(T − t), wb(y, s) = (T − t)
1

p−1u(x, t), (1.4)

and wb satisfies for all (y, s) ∈ R
n × [− log T,+∞),

∂swb = (∆− y

2
· ∇+ 1)wb −

p

p− 1
wb + |wb|p−1wb + e−

ps
p−1h

(

e
s

p−1wb

)

. (1.5)

In [21], the author showed that if wb does not approach φ exponentially fast, where φ is
the positive solution of the associated ordinary differential equation of equation (1.5),

φs = − φ

p− 1
+ φp + e

− ps
p−1h(e

s
p−1φ) such that φ(s) → κ as s→ +∞, (1.6)

then the solution u of (1.1) would approach an explicit universal profile as follows:

(T − t)
1

p−1u(b+ z
√

(T − t)| log(T − t)|, t) → f(z) as t→ T, (1.7)
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in L∞
loc and in the case a > 1, where

f(z) = κ
(
1 + cp|z|2

)− 1
p−1 , with cp =

p− 1

4p
. (1.8)

The goal of this work is to show that the behavior (1.7) does occur. More precisely, we
construct a blow-up solution of equation (1.1) satisfying the behavior described in (1.7).
This is our main result:

Theorem 1.1 (Existence of a blow-up solution for equation (1.1) with the descrip-
tion of its profile). There exists T > 0 such that equation (1.1) has a solution u(x, t) in

R
n × [0, T ) satisfying:

i) the solution u blows up in finite-time T at the point b = 0,

ii)

∥
∥
∥
∥
∥
(T − t)

1
p−1u(·

√
T − t, t)− f

(

·
√

| log(T − t)|

)∥
∥
∥
∥
∥
W 1,∞(Rn)

≤ C

| log(T − t)|̺ , (1.9)

for all ̺ ∈ (0, ν) with ν = min{a − 1, 12} in the case (1.2) and ν = min{a, 12} in the case

(1.3), C is some positive constant and f is defined in (1.8).
iii) There exists u∗ ∈ C(Rn \ {0},R) such that u(x, t) → u∗(x) as t → T uniformly on

compact subsets of Rn \ {0}, where

u∗(x) ∼
(

8p| log |x||
(p− 1)2|x|2

) 1
p−1

as x→ 0.

Remark 1.2. Note that i) directly follows from ii). Indeed, ii) implies that u(0, t) ∼
κ(T − t)−

1
p−1 → +∞ as t → T , which means that u blows up in finite-time T at the point

0. From iii), we see that u blows up only at the point b = 0.

Remark 1.3. Note that the profile f is the same as in the nonlinear heat equation without

the perturbation (h ≡ 0), see Bricmont and Kupiainen [3], Merle and Zaag [16].

The estimate (1.9) holds in W 1,∞ and uniformly in z ∈ R
n. In the previous work, Ebde and

Zaag [4] gives such a uniform convergence in the case h involving a nonlinear gradient term.

In fact, the convergence in W 1,∞ comes from a parabolic regularity estimate for equation

(1.5) (see Proposition 3.3 below). Dealing with the case h ≡ 0, Bricmont and Kupiainen

[3], Merle and Zaag [16] also give such a uniform convergence but only in L∞(Rn). In

most papers, the same kind convergence is proved, but only uniformly on a smaller subsets,

|z| ≤ K
√

| log(T − t)| (see Velázquez [23]).

The proof of Theorem 1.1 bases on techniques developed by Bricmont and Kupiainen
in [3] and Merle and Zaag in [16] for the semilinear heat equation

ut = ∆u+ |u|p−1u. (1.10)
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Note that the perturbation term h certainly impacts on the construction of solutions of
(1.1) satisfying (1.9). This causes some crucial modifications in [16] in order to totally
control the term h. Although these modifications do not affect the general framework
developed in [16], they lay in 3 crucial places:
- We modify the profile around which we study equation (1.5), so that we go beyond the
order 1

sa generated by the perturbation term. Indeed, for small a > 0 and with the same
profile as in [16], the order 1

sa will become too strong and will not allow us to close our
estimates. See Section 2 below, particularly definition (2.1), which enables us to reach
the order 1

sa+1 .
- In order to handle the order 1

sa+1 , we need to modify the definition of the shrinking set
near the profile. See Section 3 and particularly Definition 3.1 below.
- A sharp understanding of the dynamics of the linearized operator of (1.5) around the
profile (2.1), and which allows to handle the new definition of the shrinking set (see
Lemma 3.5 below).

For that reason, we will stress only the main parts of the proof of Theorem 1.1 and put
forward the novelties of our argument. In particular, the proof relies on the understand-
ing of the dynamics of the self-similar version of equation (1.5) around the profile (1.8).
Following the work by Merle and Zaag [16], the proof will be divided into 2 steps:
- In the first step, we reduce the problem to a finite-dimensional problem: we will show
that it is enough to control a finite-dimensional variable in order to control the solution
near the profile.
- In the second step, we proceed by contradiction to solve the finite-dimensional problem
and conclude using index theory.

We would like to mention that Masmoudi and Zaag [14] adapted the method of [16] for
the following Ginzburg-Landau equation:

ut = (1 + ıβ)∆u+ (1 + ıδ)|u|p−1u, (1.11)

where p − δ2 − βδ(p + 1) > 0 and u : Rn × [0, T ) → C. Note that the case β = 0 and
δ ∈ R small has been studied earlier by Zaag [26].
In [4], Ebde and Zaag used the same idea to show the persistence of the profile (1.8)
under weak perturbations of equation (1.10) by lower order terms involving u and ∇u.
More precisely, they considered the problem (1.1) in the case where h = h(u, |∇u|)
satisfies

|h(u, v)| ≤M(1 + |u|q + |v|r), M > 0, 0 ≤ q < p, 0 ≤ r <
2p

p+ 1
.

In some sense, the term h(u,∇u) has a subcritical size when q < p and r < 2p
p+1 . In the

selfsimilar setting (1.4), we see that
∣
∣
∣
∣
e−

ps
p−1h

(

e
s

p−1w, e
(p+1)s
2(p−1)∇w

)∣
∣
∣
∣
≤ Ce−δs(|w|q + |∇w|r + 1),
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with δ = min
{
p−q
p−1 ,

2p−r(p+1)
2(p−1)

}

> 0. This is the reason why we say that this perturbation

is "weak", and justify why our perturbation given in (1.2) or (1.3) is called "strong".
Nouaili and Zaag [22] successfully used the method of [16] for the following complex
valued semilinear heat equation:

ut = ∆u+ u2,

where u(t) : x ∈ R
n → C.

As in [16], [26] and [14], it is possible to make the interpretation of the finite-dimensional
variable in terms of the blow-up time and the blow-up point. This allows us to derive
the stability of the profile f in Theorem 1.1 with respect to perturbations in the initial
data. More precisely, we have the following:

Theorem 1.4 (Stability of the solution constructed in Theorem 1.1). Let us denote

by û(x, t) the solution constructed in Theorem 1.1 and by T̂ its blow-up time. Then, there

exists a neighborhood V0 of û(x, 0) in W 1,∞ such that for any u0 ∈ V0, equation (1.1) has

a unique solution u(x, t) with initial data u0, and u(x, t) blows up in finite time T (u0) at

one single blow-up point b(u0). Moreover, estimate (1.7) is satisfied by u(x− b, t) and

T (u0) → T̂ , b(u0) → 0 as u0 → û0 in W 1,∞(Rn).

Remark 1.5. We will not give the proof of Theorem 1.4 because the stability result follows

from the reduction to a finite dimensional case as in [16] with the same proof. Hence, we

only prove the reduction and refer to [16] for the stability. Note that from the parabolic

regularity, our stability result holds in the larger space L∞(Rn).

2 Formulation of the problem

As in [16], [3], we give the proof in one dimension (n = 1). The proof remains the
same for higher dimensions (n ≥ 2). We would like to find u0 initial data such that the
solution u of equation (1.1) blows up in finite time T and satisfies the estimate (1.9).
Using similarity variables (1.4), this is equivalent to finding s0 > 0 and w0(y) ≡ w(y, s0)
such that the solution w of equation (1.5) with initial data w0 satisfies

lim
s→+∞

‖w(s)− f(
·√
s
)‖W 1,∞ = 0,

where f is given in (1.8).
In order to prove this, we will not linearize equation (1.5) around f + κ

2ps as in [16]. We
will instead introduce

q = w − ϕ, where ϕ(y, s) =
φ(s)

κ

(

f(
y√
s
) +

κ

2ps

)

, (2.1)
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with φ and f are introduced in (1.6) and (1.8). Then, the problem is reduced to con-
structing a function q such that

lim
s→+∞

‖q(s)‖W 1,∞ = 0

and q is a solution of the following equation for all (y, s) ∈ R× [s0,+∞),

qs = (L+ V )q +B(q) +R(y, s) +N(y, s), (2.2)

where L = ∆− y
2 · ∇+ 1 and

V (y, s) = p

(

ϕ(y, s)p−1 − 1

p− 1

)

+ ıe−sh′(e
s

p−1ϕ), (2.3)

B(q) = |ϕ+ q|p−1(ϕ+ q)− ϕp − pϕp−1q, (2.4)

R(y, s) = −ϕs +∆ϕ− y

2
· ∇ϕ− ϕ

p− 1
+ ϕp + e

−ps
p−1h

(

e
s

p−1ϕ
)

, (2.5)

N(q, s) = e
−ps
p−1

[

h
(

e
s

p−1 (ϕ+ q)
)

− h
(

e
s

p−1ϕ
)

− ıe
s

p−1h′
(

e
s

p−1ϕ
)

q
]

, (2.6)

with ı = 0 in the case (1.2) and ı = 1 in the case (1.3).

One can remark that we don’t linearize (1.5) around ϕ̃(y, s) = f( y√
s
)+ κ

2ps as in the case
of equation (1.10) treated in [16]. In fact, if we do the same, we may obtain some terms
like 1

sa coming from the strong perturbation h in equation (1.5), and we may not be able
to control these terms in the case a < 3. To extend the range of a, we multiply the factor
φ(s)
κ to ϕ̃ in order to go beyond the order 1

sa and reach at the order 1
sa+1 . Linearizing

around ϕ given in (2.1) is a major novelty in our approach.

In following analysis, we will use the following integral form of equation (2.2): for each
s ≥ σ ≥ s0:

q(s) = K(s, σ)q(σ) +

∫ s

σ
K(s, τ) [B(q(τ)) +R(τ) +N(q(τ), τ)] dτ, (2.7)

where K is the fundamental solution of the linear operator L+V defined for each σ > 0
and for each s ≥ σ,

∂sK(s, σ) = (L+ V )K(s, σ), K(σ, σ) = Identity. (2.8)

Since the dynamics of equation (2.2) are influenced by the linear part, we first need to
recall some properties of the operator L from Bricmont and Kupiainen [3]. The operator
L is self-adjoint in L2

ρ(R
n), where L2

ρ is the weighted L2 space associated with the weight
ρ defined by

ρ(y) =

(
1

4π

)n/2

e−
|y|2
4 .
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Its spectrum is given by
spec(L) = {1− m

2
, m ∈ N},

and its eigenfunctions are derived from Hermite polynomials.
If n = 1, the eigenfunction corresponding to 1− m

2 is

hm(y) =

[m2 ]∑

k=0

m!

k!(m− 2k)!
(−1)kym−2k. (2.9)

We also denote km(y) =
hm(y)
‖hm‖2

L2
ρ

.

If n ≥ 2, we write the spectrum of L as spec(L) = {1 − |m|
2 , |m| = m1 + · · · +

mn, (m1, . . . ,mn) ∈ N
n}. Given m = (m1, . . . ,mn) ∈ N

n, the eigenfunction corre-
sponding to 1− |m|

2 is

Hm(y) = hm1(y1) . . . hmn(yn), where hm is defined in (2.9). (2.10)

The potential V (y, s) has two fundamental properties:
i) V (·, s) → 0 in L2

ρ as s → +∞. In particular, the effect of V on the bounded sets or in
the "blow-up" region (|y| ≤ K

√
s) is regarded as a perturbation of the effect of L.

ii) outside of the "blow-up" region, we have the following property: for all ǫ > 0, there
exist Cǫ > 0 and sǫ such that

sup
s≥sǫ,|y|≥Cǫ

√
s

|V (y, s)− (− p

p− 1
)| ≤ ǫ. (2.11)

This means that L + V behaves like L − p
p−1 in the region |y| ≥ K

√
s. Because 1 is the

biggest eigenvalue of L, the operator L − p
p−1 has purely negative spectrum. Therefore,

the control of q(y, s) in L∞ outside of the "blow-up" region will be done without difficul-
ties.
Since the behavior of V inside and outside of the "blow-up" region are different, let us
decompose q as following: Let χ0 ∈ C∞

0 ([0,+∞)) with supp(χ0) ⊂ [0, 2] and χ0 ≡ 1 on
[0, 1]. We define

χ(y, s) = χ0(
|y|
K
√
s
), (2.12)

where K > 0 to be fixed large enough, and write

q(y, s) = qb(y, s) + qe(y, s), (2.13)

where qb(y, s) = χ(y, s)q(y, s) and qe(y, s) = (1−χ(y, s))q(y, s). Note that supp(qb(s)) ⊂
B(0, 2K

√
s) and supp(qe(s)) ⊂ R \B(0,K

√
s).

In order to control qb, we expand it with respect to the spectrum of L in L2
ρ. More

precisely, we write q into 5 components as follows:

q(y, s) =

2∑

m=0

qm(s)hm(y) + q−(y, s) + qe(y, s), (2.14)
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where qm, q− are coordinates of qb (not of q), namely that qm is the projection of qb in
hm and q− = P−(qb) with P− being the projector on the negative subspace of L.

3 Proof of the existence of a blow-up solution with the given
blow-up profile

In this section, we use the framework developed in [16] in order to prove Theorem 1.1.
We proceed in 4 steps:
- In the first step, we define a shrinking set VA(s) and translate our goal of making q(s)
go to 0 in L∞(R) in terms of belonging to VA(s). We also exhibit a two parameter initial
data family for equation (2.2) whose coordinates are very small (with respect to the re-
quirements of VA(s)), except the two first q0 and q1. Note that the set VA(s) is different
from the corresponding one in [16], and this makes the second major novelty of our
work, in addition to the modification of the profile in (2.1).
- In the second step, using the spectral properties of equation (2.2), we reduce our goal
from the control of q(s) (an infinite dimensional variable) in VA(s) to the control of its
two first components (q0(s), q1(s)) (a two-dimensional variable) in

[
− A
s1+ν ,

A
s1+ν

]2
with

ν > 0.
- In the third step, we solve the local in time Cauchy problem for equation (2.2).
- In the last step, we solve the finite dimensional problem using index theory and con-
clude the proof of Theorem 1.1.

In what follows, the constant C denotes a universal one independent of variables, only
depending upon constants of the problems such as a, p, M , µ and K in (2.12).

3.1 Definition of a shrinking set VA(s) and preparation of initial data

Let first introduce the following definition:

Definition 3.1 (A shrinking set to zero). Let ν = min{a − 1, 12} in the case (1.2) and

ν = min{a, 12} in the case (1.3), we fix ̺ ∈ (0, ν). For each A > 0, for each s > 0, we

define V̂A(s) =
[
− A
s1+ν ,

A
s1+ν

]2 ⊂ R
2, and VA(s) as being the set of all functions g in L∞

such that:

m = 0, 1, |gm(s)| ≤
A

s1+ν
, |g2(s)| ≤

A2

s1+ν
,

∀y ∈ R, |g−(y, s)| ≤
A

s3/2+̺
(1 + |y|3), ‖ge(s)‖L∞ ≤ A2

s̺
,

where gm, g− and ge are defined in (2.14).

As a master of fact, if s ≥ e and g ∈ VA(s), one easily derives from the definition of

VA(s) and the fact that
∣
∣
∣
1−χ(y,s)
1+|y|3

∣
∣
∣ ≤ C

s3/2
the following:

∀y ∈ R, |g(y, s)| ≤ CA2

s3/2+̺
(1 + |y|3) + CA2

s1+ν
(1 + |y|2) and ‖g(s)‖L∞ ≤ CA2

s̺
. (3.1)
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Initial data (at time s0 = − log T ) for the equation (2.2) will depend on two real
parameters d0 and d1 as given in the following proposition:

Lemma 3.2 (Decomposition of initial data on the different components)). For each

A > 1, there exists δ1(A) > 0 such that for all s0 ≥ δ1(A): If we consider the following

function as initial data for equation (2.2):

qd0,d1(y, s0) =
φ(s0)

κ

(

fp(z)(d0 + d1z)−
κ

2ps0

)

, (3.2)

where z = y√
s0

, f and φ are defined in (1.8) and (1.6), then

i) There exists a constant C = C(p) > 0 such that the components of qd0,d1(s0) (or q(s0)

for short) satisfy:

q0(s0) = d0a0(s0) + b0(s0), with a0(s0) ∼ C, |b0(s0)| ≤
C

s0
, (3.3)

q1(s0) = d1a1(s0) + b1(s0), with a1(s0) ∼
C√
s0
, |b1(s0)| ≤

C

s20
, (3.4)

and

|q2(s0)| ≤
C|d0|
s0

+ Ce−s0 , |q−(y, s0)| ≤
(
C|d0|
s0

+
C|d1|
s0
√
s0

)

(1 + |y|3),

‖qe(s0)‖L∞ ≤ C|d0|+
C|d1|√
s0
, ‖∇q(s0)‖L∞ ≤ C(|d0|+ |d1|)√

s0
.

ii) For each A > 0, if (d0, d1) is chosen so that (q0, q1)(s0) ∈ V̂A(s0), then

|d0|+ |d1| ≤
C

s0
,

|q2(s0)| ≤
C

s20
,

∥
∥
∥
∥

q−(y, s0)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s20
, ‖qe(s0)‖L∞ ≤ C

s0
,

q(s0) ∈ VA(s0), ‖∇q(s0)‖L∞ ≤ C

s0
√
s0
,

where the statement q(s0) ∈ VA(s0) holds with "strict inequalities", except for (q0, q1)(s0),

in the sense that

m = 0, 1, |qm(s)| ≤
A

s1+ν
, |q2(s)| <

A2

s1+ν
,

∀y ∈ R, |q−(y, s)| <
A

s3/2+̺
(1 + |y|3), ‖qe(s)‖L∞ <

A2

s̺
.

iii) There exists a rectangle Ds0 ⊂
[

− C
s0
, Cs0

]2
such that the mapping (d0, d1) 7→ (q0, q1)(s0)

is linear and one to one from Ds0 onto
[

− A
s1+ν
0

, A
s1+ν
0

]2
and maps ∂Ds0 into ∂

[

− A
s1+ν
0

, A
s1+ν
0

]2
.

Moreover, it is of degree one on the boundary and the following equivalence holds:

q(s0) ∈ VA(s0) if and only if (d0, d1) ∈ Ds0 .
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Proof. i) Since we have the similar expression of initial data (3.2) as in [16], we refer the
reader to Lemma 3.5 of [16], except for the bound on ‖∇q(s0)‖L∞ . Note that although
i) is not stated explicitly in Lemma 3.5 of [16], they are clearly written in its proof. For
‖∇q(s0)‖L∞ , we use (3.2) and the fact that f ′(z) = −p−1

2p zf
p(z), fp(z), zfp−1(z) and

z2fp−1(z) are in L∞(R) to derive

|∇q(y, s0)| ≤
∣
∣
∣
∣

φ(s0)

κ

∣
∣
∣
∣

∣
∣
∣
∣

fp(z)√
s0

(
pd0zf

p−1(z) + d1 + pd1z
2fp−1(z)

)
∣
∣
∣
∣

≤ C√
s0

(|d0|+ |d1|).

ii) We see from (3.3) and (3.4) that if (d0, d1) is chosen so that (q0, q1)(s0) ∈
[

− A
s1+ν
0

, A
s1+ν
0

]2
,

then |d0| and |d1| are bounded by C
s0

. Substituting these bounds into the estimates stated
in i), we immediately derive ii).
iii) It follows from (3.3) and (3.4), part ii) and the definition of VA. This ends the proof
of Lemma 3.2.

As stated in Theorem 1.1, the convergence holds in W 1,∞(R), we need the following
parabolic regularity estimate for equation (2.2), with q(s0) given by (2.7) and q(s) ∈
VA(s). More precisely, we have the following:

Proposition 3.3. For each A ≥ 1, there exists δ2(A) > 0 such that for all s0 ≥ δ2(A): if

q(s) is a solution of equation (2.2) on [s0, s1] with initial data at s = s0, qd0,d1(s0) given in

(2.7) where (d0, d1) ∈ Ds0 , assume in addition that q(s) ∈ VA(s) for s ∈ [s0, s1], then

‖∇q(s)‖L∞ ≤ CA2

s̺
, ∀s ∈ [s0, s1],

for some positive constant C.

Proof. The proof is the same as Proposition 3.3 of [4]. We would like to mention that
the proof bases on a Gronwall’s argument and the following properties of the kernel eθL

defined in (B.1):

∀g ∈ L∞, ‖∇(eθLg)‖L∞ ≤ Ceθ/2‖g‖L∞√
1− e−θ

,

and
∀f ∈W 1,∞, ‖∇(eθLf)‖L∞ ≤ Ceθ/2‖∇f‖L∞ .

Although the definition of VA is slightly different from the one defined in [4], the reader
will have absolutely no difficulty to adapt their proof to the new situation. For that
reason, we refer the reader to [4] for details of the proof.
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3.2 Reduction to a finite dimensional problem

We are going to the crucial step of the proof of Theorem 1.1. In this step, we will
show that through a priori estimates, the control of q(s) in VA reduces to the control of
(q0, q1)(s) in V̂A(s). As presented in [16] (see also[26],[14]), we would like to empha-
size that this step make the heart of the contribution. Even more, here lays another major
contribution of ours, in the sense that we understand better the dynamics of the funda-
mental solution K(s, σ) defined in (2.8). Our sharper estimates are given in Lemma
3.5 below. In fact all that we do is to rewrite the corresponding estimates of Bricmont
and Kupiainen [3] without taking into account the particular form of the shrinking set
they used. Furthermore, because of the difference in the definition (2.1) of ϕ and the
difference in the definition of VA, the proof is far from being an adaptation of the proof
written in [16]. We therefore need some involved arguments to control the components
of q and conclude the reduction to a finite dimensional problem.

We mainly claim the following:

Proposition 3.4 (Control of q(s) by (q0, q1)(s) in VA(s)). There existA3 > 0 such that for

each A ≥ A3, there exists δ3(A) > 0 such that for each s0 ≥ δ3(A), we have the following

properties:

- if (d0, d1) is chosen so that (q0, q1)(s0) ∈ V̂A(s0), and

- if for all s ∈ [s0, s1], q(s) ∈ VA(s) and q(s1) ∈ ∂VA(s1) for some s1 ≥ s0, then:

i) (Reduction to a finite dimensional problem) (q0, q1)(s1) ∈ ∂V̂A(s1),

ii) (Transversality) there exists η0 > 0 such that for all η ∈ (0, η0), (q0, q1)(s1 + η) 6∈
∂V̂A(s1 + η) (hence, q(s1 + η) 6∈ VA(s1 + η)).

The proof follows the general ideas of [16] and we proceed in three steps:
- Step 1: we give a priori estimates on q(s) in VA(s): assume that for given A > 0 lager,
λ > 0 and an initial time s0 ≥ σ2(A,λ) ≥ 1, we have q(s) ∈ VA(s) for each s ∈ [τ, τ + λ]
where τ ≥ s0, then using the integral form (2.7) of q(s), we derive new bounds on
q2(s), q−(s) and qe(s) for s ∈ [τ, τ + λ].
- Step 2: we show that these new bounds are better than those defining VA(s). It then
remains to control q0(s) and q1(s). This means that the problem is reduced to the control
of a two dimensional variable (q0, q1)(s) and we then conclude i) of Proposition 3.4.
- Step 3: we use dynamics of (q0, q1)(s) to show its transversality on ∂VA(s), which
corresponds to part ii) of Proposition 3.4.

Step 1: A priori estimates on q(s) in VA(s)

As indicated above, the derivation of the new bounds on the components of q(s) bases
on the integral formula (2.7). It is clear to see the strong influence of the kernel K in
this formula. Therefore, it is convenient to give the following result from Bricmont and
Kupiainen in [3] which gives the dynamics of the linear operator L+ V :



150 IV. Construction of a stable blow-up solution for a class of strongly perturbed SHEs

Lemma 3.5 (Refined understanding of the linearized operator in the decomposition
(2.14)). For all λ > 0, there exists σ0 = σ0(λ) such that if σ ≥ σ0 ≥ 1 and ψ(σ) satisfies

2∑

m=0

|ψm(σ)|+
∥
∥
∥
∥

ψ−(y, σ)
1 + |y|3

∥
∥
∥
∥
L∞

+ ‖ψe(σ)‖L∞ < +∞, (3.5)

then, θ(s) = K(s, σ)ψ(σ) satisfies for all s ∈ [σ, σ + λ],

|θ2(s)| ≤
(σ

s

)2
|ψ2(σ)|+

C(s− σ)

s

(
2∑

l=0

|ψl(σ)| +
∥
∥
∥
∥

ψ−(y, σ)
1 + |y|3

∥
∥
∥
∥
L∞

)

+ C(s− σ)e−s/2‖ψe(σ)‖L∞ , (3.6)
∥
∥
∥
∥

θ−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ Ces−σ
(
(s− σ)2 + 1

)

s

(
|ψ0(σ)|+ |ψ1(σ)|+

√
s|ψ2(σ)|

)

+ Ce−
(s−σ)

2

∥
∥
∥
∥

ψ−(y, σ)
1 + |y|3

∥
∥
∥
∥
L∞

+
Ce−(s−σ)2

s3/2
‖ψe(σ)‖L∞ , (3.7)

‖θe(s)‖L∞ ≤ Ces−σ
(

2∑

l=0

sl/2|ψl(σ)| + s3/2
∥
∥
∥
∥

ψ−(y, σ)
1 + |y|3

∥
∥
∥
∥
L∞

)

+ Ce−
(s−σ)

p ‖ψe(σ)‖L∞ . (3.8)

where C = C(λ,K) > 0 (K is given in (2.12)), ψm, ψ−, ψe and θm, θ−, θe are defined by

(2.13) and (2.14).

Remark 3.6. In view of the formula (2.7), we see that Lemma 3.5 will play an important

role in deriving the new bounds on the components of q(s) and making our proof simpler.

This means that, given bounds on the components of q(σ), B(q(τ)), R(τ), N(q(τ), τ), we

directly apply Lemma 3.5 with K(s, σ) replaced by K(s, τ) and then integrate over τ to

obtain estimates on the components of q.

Proof. Let us mention that Lemma 3.5 relays mainly on the understanding of the behav-
ior of the kernel K(s, σ). The proof is essentially the same as in [3], but those estimates
did not present explicitly the dependence on all the components of ψ(σ) which is less
convenient for our analysis below. Because the proof is long and technical, we leave it
to Appendix B.

We now assume that for each λ > 0, for each s ∈ [σ, σ+λ], we have q(s) ∈ VA(s) with
σ ≥ s0. Applying Lemma 3.5, we get new bounds on all terms in the right hand side of
(2.7), and then on q. More precisely, we claim the following:

Lemma 3.7. There exists A2 > 0 such that for each A ≥ A2, λ∗ > 0, there exists

σ2(A,λ
∗) > 0 with the following property: for all s0 ≥ σ2(A,λ

∗), for all λ ≤ λ∗, assume
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that for all s ∈ [σ, σ + λ], q(s) ∈ VA(s) with σ ≥ s0, then we have for all s ∈ [σ, σ + λ],

i) (linear term)

|α2(s)| ≤
(σ

s

)1−ν A2

s1+ν
+
CA2(s− σ)

s2+ν
,

∥
∥
∥
∥

α−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s3/2+̺
+

C

s3/2+̺

(

Ae−
s−σ
2 +A2e−(s−σ)2

)

,

‖αe(s)‖L∞ ≤ C

s̺
+
C

s̺

(

Aes−σ +A2e−
s−σ
p

)

,

where

K(s, σ)q(σ) = α(y, s) =

2∑

m=0

αm(s)hm(y) + α−(y, s) + αe(y, s).

If σ = s0, we assume in addition that (d0, d1) is chosen so that (q0, q1)(s0) ∈ V̂A(s0). Then

for all s ∈ [s0, s0 + λ], we have

|α2(s)| ≤
C

s2
,

∥
∥
∥
∥

α−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s2
, ‖αe(s)‖L∞ ≤ Ces−s0√

s
.

ii) (remaining terms)

|β2(s)| ≤
C(s− σ)

s2+ν
,

∥
∥
∥
∥

β−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s3/2+̺
, ‖βe(s)‖L∞ ≤ C

s̺
,

where
∫ s

σ
K(s, τ) [B(q(τ)) +R(τ) +N(q(τ), τ)] dτ

= β(y, s) =
2∑

m=0

βm(s)hm(y) + β−(y, s) + βe(y, s).

Proof. i) It immediately follows from the definition of VA(σ) and Lemma 3.5. Note that
in the case σ = s0, we use in addition part ii) of Lemma 3.2 to have the conclusion. For
part ii), all what we need to do is to find the estimates on the components of different
terms appearing in equation (2.2), then we use Lemma 3.5 and the linearity to have the
conclusion. We claim the following:

Lemma 3.8. We have the following properties:

i) (Estimates on B(q)) For all A > 0, there exists σ3(A) such that for all τ ≥ σ3(A),

q(τ) ∈ VA(τ) implies

m = 0, 1, 2, |Bm(τ)| ≤
CA4

τ2+2ν
,

∣
∣
∣
∣

B−(y, τ)
1 + |y|3

∣
∣
∣
∣
≤ CA4

τ3/2+2̺
, ‖Be(τ)‖L∞ ≤ CA2p′

τ̺p
′ , (3.9)
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where p′ = min{p, 2}.

ii) (Estimates on R) There exists σ4 > 0 such that for all τ ≥ σ4,

m = 0, 1, |Rm(τ)| ≤
C

τ2
, |R2(τ)| ≤

C

τ2+ν
,

and

∥
∥
∥
∥

R−(y, τ)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

τ2
, ‖Re(τ)‖L∞ ≤ C

τν
. (3.10)

iii) (Estimates on N(q, τ)) For all A > 0, there exists σ5(A) such that for all τ ≥ σ5(A),

q(τ) ∈ VA(τ) implies

m = 0, 1, 2, |Nm(τ)| ≤
CA4

τ2+2ν
,

∥
∥
∥
∥

N−(y, τ)
1 + |y|3

∥
∥
∥
∥
L∞

≤ CA4

τ2+2̺
, ‖Ne(τ)‖L∞ ≤ CA4

τ2̺
. (3.11)

Proof. Since the proof is technical, we leave it to Appendix C.

Substituting the estimates stated in Lemma 3.8 into Lemma 3.5, then integrating over
[σ, s] with respect to τ , and taking σ2(A,λ∗) ≥ max{σ3, σ4, σ5} such that

∀s ≥ σ2(A,λ
∗), (A4 + 1)eλ

∗
((λ∗)3 + 1)

(

s−̺(p
′−1) + s−(ν−̺)

)

≤ 1,

with p′ = min{p, 2}, we have the conclusion. This ends the proof of Lemma 3.7.

Thanks to Lemma 3.8, we obtain the following equations satisfied by the expanding
modes:

Lemma 3.9 (ODE satisfied by the expanding modes). For all A > 0, there exists σ6(A)

such that for all s ≥ σ6(A), q(s) ∈ VA(s) implies that for all s ≥ σ6(A),

m = 0, 1,
∣
∣
∣q′m(s)− (1− m

2
)qm(s)

∣
∣
∣ ≤ C

s3/2+ν
, (3.12)

and ∣
∣
∣
∣
q′2(s) +

2

s
q2(s)

∣
∣
∣
∣
≤ C

s2+ν
. (3.13)

Proof. The proof is very close to that in [16]. We therefore give the sketch of the proof.
By the definition (2.14), we write

m = 0, 1, 2,
dqm(s)

ds
=

∫
∂χ(y, s)

∂s
q(s)kmρdy +

∫

χ(y, s)
∂q(s)

∂s
kmρdy := I + II.

Since the support of ∂χ(y,s)
∂s is the set K

√
s ≤ |y| ≤ 2K

√
s (see (2.12)), using the fact

that ‖q(s)‖L∞ ≤ CA2

s̺ (see (3.1)), we obtain

|I| ≤
∫ ∣
∣
∣
∣

∂χ(y, s)

∂s

∣
∣
∣
∣
|q(s)||km|ρdy ≤ CA2e−ss−̺,
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for K large enough.
For II, we have by equation (2.2),

II =

∫

χ(y, s)Lq(s)kmρdy +
∫

χ(y, s)V (s)q(s)kmρdy

+

∫

χ(y, s) [B(q(s)) +R(s) +N(q(s), s)] kmρdy := IIa+ IIb+ IIc.

Since L is self-adjoint on L2
ρ and L(χ(y, s)km) = (1 − m

2 )χ(y, s)km + ∂2χ(y,s)
∂s2

km +
∂χ(y,s)
∂s (2∂kmdy − y

2km), we obtain

IIa =

∫

L(χ(y, s)km)q(s)ρdy = (1− m

2
)qm(s) +O(CA2e−s),

where O(r) stands for quantity whose absolute value is bounded precisely by r and not
Cr.
Recalling from part c) of Lemma B.1 that |V (y, s)| ≤ C

s (1 + |y|2) and from (3.1) that
|q(y, s)| ≤ CA2

s1+ν (1 + |y|3), we derive

m = 0, 1, |IIb| ≤ CA2

s2+ν

∫

(1 + |y|5)|km|ρdy ≤ CA2

s2+ν
.

For m = 2, using the second estimate in part c) of Lemma B.1, namely that V (y, s) =

−h2(y)
4s +O

(
C(1+|y|4)
s1+ā

)

with ā = min{a− 1, a} in the case (1.2) and ā = min{a, 1} in the

case (1.3), simultaneously noting that
∫
h22ρdy = 8,

∫
h32ρdy = 64 and 2+ ā+ν ≥ 2+2ν,

we obtain

m = 2, IIb = −2

s
q2(s) +O

(
CA2

s2+2ν

)

.

The bound for IIc already obtained from (3.9), (3.10) and (3.11). Adding all these
bounds and taking σ6(A) large enough such that for all s ≥ σ6(A), A4s−ν+A2s2+νe−s ≤
1, we then have the conclusion. This ends the proof of Lemma 3.9.

Step 2: Deriving conclusion i) of Proposition 3.4

Here we use Lemma 3.7 in order to derive conclusion i) of Proposition 3.4. Indeed,

from equation (2.7) and Lemma 3.7, we derive new bounds on |q2(s)|,
∥
∥
∥
q−(y,s)
1+|y|3

∥
∥
∥
L∞

and ‖qe(s)‖L∞ , assuming that for all s ∈ [σ, σ + λ], q(s) ∈ VA(s), for λ ≤ λ∗ and
σ ≥ s0 ≥ σ1(A,λ

∗) (σ1 is given in Lemma 3.7). The key estimate is to show that for
s = σ+λ (or s ∈ [σ, σ+λ] if σ = s0), these bounds are better than those defining VA(s),
provided that λ ≤ λ∗(A). More precisely, we claim that following proposition which
directly follows i) of Proposition 3.4:

Proposition 3.10 (Control of q(s) by (q0, q1)(s) in VA(s)). There exist A4 > 1 such

that for each A ≥ A4, there exists δ4(A) > 0 such that for each s0 ≥ δ4(A), we have the
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following properties:

- if (d0, d1) is chosen so that (q0, q1)(s0) ∈ V̂A(s0), and

- if for all s ∈ [s0, s1], q(s) ∈ VA(s) for some s1 ≥ s0, then: for all s ∈ [s0, s1],

|q2(s)| <
A2

s1+ν
,

∥
∥
∥
∥

q−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ A

2s3/2+̺
, ‖qe(s)‖L∞ ≤ A2

2s̺
. (3.14)

Let us now derive the conclusion i) of Proposition 3.4 from Proposition 3.10, and we
then prove it later.

Proof of i) of Proposition 3.4. Indeed, if q(s1) ∈ ∂VA(s1), we see from (3.14) and the
definition of VA(s) that the first two components of q(s1) must be in ∂V̂A(s1), which is
the conclusion of part i) of Proposition 3.4, assuming Proposition 3.10 holds.

We now give the proof of Proposition 3.10 in order to conclude the proof of part i) of
Proposition 3.4.

Proof of Proposition 3.10. Note that the conclusion of this proposition is very similar
to Proposition 3.7, pages 157 in [16]. However, its proof is far from being an adaptation
of the proof given in the case of the semilinear heat equation treated in [16] because
of the difference of the definition of VA(s) and the presence of the strong perturbation
term. In fact, the argument given in [16] does not work here to control |q2(s)| in this
new situation, we use instead equation (3.13) to handle this term.

Let λ1 ≥ λ2 be two positive numbers which will be fixed in term of A later. It is enough
to show that (3.14) holds in two cases: s−s0 ≤ λ1 and s−s0 ≥ λ2. In both cases, we use
Lemma 3.7 and equation and supposeA ≥ A2 > 0, s0 ≥ max{σ2(A,λ1), σ2(A,λ2), σ6(A), 1}.

Case s − s0 ≤ λ1: Since we have for all τ ∈ [s0, s], q(τ) ∈ VA(τ), we apply Lemma 3.7
with A and λ∗ = λ1, and λ = s− s0. From (2.7) and Lemma 3.7, we have

|q2(s)| ≤
C

s2
+
Cλ1
s2+ν

,

∥
∥
∥
∥

q−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s3/2+̺
, ‖qe(s)‖L∞ ≤ Ceλ1√

s
+
C

s̺
.

If we fix λ1 = 3
2 logA and A large enough, then (3.14) satisfies.

Case s − s0 ≥ λ2: Since we have for all τ ∈ [σ, s], q(τ) ∈ VA(τ), we apply Lemma 3.7
with A, λ = λ∗ = λ2, σ = s− λ2. From (2.7) and Lemma 3.7, we have

∥
∥
∥
∥

q−(y, s)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

s3/2+̺

(

1 +Ae−
λ2
2 +A2e−λ

2
2

)

,

‖qe(s)‖L∞ ≤ C

s̺

(

1 +Aeλ2 +A2e
−λ2

p

)

.
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To obtain (3.14), except for |q2(s)| which will be treated later, it is enough to have
A ≥ 4C and

C
(

Ae−
λ2
2 +A2e−λ

2
2

)

≤ A

4
,

C

(

Aeλ2 +A2e−
λ2
p

)

≤ A2

4
.

If we fix λ2 = log(A/8C) and take A large enough, we see that these requests are satis-
fied. This follows the last two estimates in (3.14).

It remains to show that if q(s) ∈ VA(s) for all s ∈ [s0, s1] then |q2(s)| < A2

s1+ν for all

s ∈ [s0, s1]. We proceed by contradiction, assume that for all s ∈ [s0, s∗), |q2(s)| < A2

s1+ν

and |q2(s∗)| = A2

s1+ν
∗

. Considering the case q2(s∗) = − A2

s1+ν
∗

, we have

q′2(s∗) ≤
d

ds

(−A2

s1+ν∗

)

≤ (1 + ν)A2

s2+ν∗
. (3.15)

On the other hand, we have from (3.13),

q′2(s∗) ≥ −2

s
q2(s∗)−

C

s2+ν∗
=

2A2 − C

s2+ν∗
,

which contradicts (3.15) if we take A large enough.
Using the same argument in the case where q2(s∗) = A2

s1+ν
∗

, we also have a contradiction.

This completes the proof of Proposition 3.10 and part i) of Proposition 3.4 too.

Step 3: Deriving conclusion ii) of Proposition 3.4.

We prove part ii) of Proposition 3.4 here. In order to prove this, we follow the ideas
of [16] to show that for each m ∈ {0, 1} and each ι ∈ {−1, 1}, if qm(s1) = ιA

s
3/2+ν
1

, then

dqm
ds (s1) has the opposite sign of d

ds

(
ιA

s3/2+ν

)

(s1) so that (q0, q1)(s1) actually leaves V̂A at

s1 for s1 ≥ s0 where s0 will be large enough. Indeed, from equation (3.12), we take
A = 2C + 1. If ι = 1, then dqm

ds (s1) > 0 and if ι = −1, then dqm
ds (s1) < 0. This implies

that (q0, q1)(s1 + η) 6∈ ∂V̂A(s1 + η) which yields conclusion ii) of Proposition 3.4.

3.3 Local in time solution of equation (2.2)

In the following, we find a local in time solution for equation (2.2).

Proposition 3.11 (Local in time solution of equation (2.2)). For all A > 1, there exists

δ5(A) such that for all s0 ≥ δ5(A), the following holds: For all (d0, d1) ∈ Ds0 , there exists

smax(d0, d1) > s0 such that equation (2.2) with initial data q(s0) given in (3.2) has a

unique solution satisfying q(s) ∈ VA+1(s) for all s ∈ [s0, smax).
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Proof. Using the definition (2.1) of q and the equivalent formulation (1.4), we see that
the Cauchy problem of (2.2) is equivalent to the Cauchy problem of equation (1.1). Note
that the initial data for (1.1) is derived the initial data for (2.2) at s = s0 given in (3.2),
namely

ud0,d1(x) =
T− 1

p−1φ(− log T )

κ






f(z)



1 +
d0 + d1z

p− 1 + (p−1)2

4p z2










,

where f is defined in (1.8), T = e−s0 and z = x√
T | log T |

.

This initial data is belong to L∞(R) which insures the local existence of u in L∞(R) (see
the introduction). From part iii) of Lemma 3.2, we have qd0,d1(s0) ∈ VA(s0) ⊆ VA+1(s0).
Then there exists smax such that for all s ∈ [s0, smax), we have q(s) ∈ VA+1(s). This
concludes the proof of Proposition 3.11.

3.4 Deriving conclusion ii) of Theorem 1.1

In this subsection, we derive conclusion ii) of Theorem 1.1 using the previous subsec-
tions. Although the derivation of the conclusion is the same as in [16], we would like
to give details of its proof for the reader’s convenience and for explaining the two-point
strategy: reduction to a finite dimensional problem and the conclusion ii) of Theorem
1.1 using index theory.

Proof of ii) of Theorem 1.1. We first solve the finite-dimensional problem and show the
existence of A > 1, s0 > 0 and (d0, d1) ∈ Ds0 such that problem (2.2) with initial data
at s = s0, qd0,d1(s0) is given in (3.2) has a solution q(s) defined for all s ∈ [s0,+∞) such
that

q(s) ∈ VA(s), ∀s ∈ [s0,+∞). (3.16)

For this purpose, let us take A ≥ A1 and s0 ≥ δ3, where A1 and δ3 are given in Propo-
sition 3.4, we will find the parameter (d0, d1) in the set Ds0 defined in Lemma 3.2 such
that (3.16) holds. We proceed by contradiction and assume from iii) of Lemma 3.2
that for all (d0, d1) ∈ Ds0 , there exists s∗(d0, d1) ≥ s0 such that qd0,d1(s) ∈ VA(s) for all
s ∈ [s0, s∗] and qd0,d1(s∗) ∈ ∂VA(s∗). Applying Proposition 3.4, we see that qd0,d1(s∗) can
leave VA(s∗) only by its first two components, hence,

(q0, q1)(s∗) ∈ ∂V̂A(s∗).

Therefore, we can define the following function:

Φ : Ds0 7→ ∂([−1, 1]2)

(d0, d1) →
s1+ν∗
A

(q0, q1)(s∗).
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Since q(y, s0) is continuous in (d0, d1) (see Lemma 3.2), we have that (q0, q1)(s) is con-
tinuous with respect to (d0, d1, s). Then using the transversality property of (q0, q1) on
∂V̂A (part ii) of Proposition 3.4), we claim that s∗(d0, d1) is continuous. Therefore, Φ is
continuous.
If we manage to prove that Φ is of degree one on the boundary, then we have a con-
tradiction from the degree theory. Let us prove that. From Lemma 3.2, we see that if
(d0, d1) is on the boundary of Ds0, then

(q0, q1)(s0) ∈ ∂V̂A(s0), and q(s0) ∈ VA(s0),

where the statement q(s) ∈ VA(s) holds with strict inequalities for q2, q− and qe. Using
again ii) of Proposition 3.4, we see that q(s) can leave VA(s) at s = s0, hence s∗ = s0.
Using iii) of Lemma 3.2, we have that the restriction of Φ to the boundary is of degree
1. This gives us a contradiction (by the index theory). Thus, there exists (d0, d1) ∈ Ds0

such that for all s ≥ s0, qd0,d1(s) ∈ VA(s), which is the conclusion (3.16).
Since qd0,d1(s) satisfies (3.16), we use the parabolic estimate in Proposition 3.3, the
transformations (2.1) and (1.4) and the fact that φ(s)

κ = 1+O(s−a) with a > 0 to derive
estimate (1.9). This concludes the proof of ii) of Theorem 1.1.

3.5 Deriving conclusion iii) of Theorem 1.1

We give the proof of part iii) of Theorem 1.1 in this subsection. We consider u(t) solution
of equation (1.1) which blows-up in finite-time T > 0 at only one blow-up point x = 0
and satisfies (1.9). Adapting the techniques used by Merle in [15] to equation (1.1)
without the perturbation (h ≡ 0), we show the existence of a profile u∗ ∈ C(R \ {0},R)
such that u(x, t) → u∗(x) as t→ T uniformly on compact subsets of R \ {0}, where u∗ is
given in iii) of Theorem 1.1. Note that Zaag [26], Masmoudi and Zaag [14] successfully
used these techniques to equation (1.11). Since the proof is very similar to that written
in [26] and [14], and no new idea is needed, we just give the key argument and kindly
refer the reader to see Section 4 in [26] for details.

For each x0 ∈ R \ {0} small enough, we define for all (ξ, τ) ∈ R ×
[

− t(x0)
T−t(x0) , 1

)

the

following function:

v(x0, ξ, τ) = (T − t(x0))
1

p−1u(x0 + ξ
√

T − t(x0), t(x0) + (T − t(x0))τ), (3.17)

where t(x0) is uniquely defined by

|x0| = K0

√

(T − t(x0))| log(T − t(x0))|, (3.18)

with K0 > 0 to be fixed large enough later.
Note that v blows up at time τ = 1 at only one blow-up point x0 = 0. From (1.1) and
(3.17), we see that v(x0, ξ, τ) satisfies the following equation: for all τ ∈

[

− t(x0)
T−t(x0) , 1

)

,

∂v

∂τ
= ∆ξv + |v|p−1v + (T − t(x0))

p
p−1h

(

(T − t(x0))
− 1

p−1 v
)

. (3.19)
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From estimate (1.9), the definition (3.17) of v and (3.18), we have the following:

sup
|ξ|<| log(T−t(x0))|

̺
2

|v(x0, ξ, 0) − f(K0)| ≤
C

| log(T − t(x0))|
̺
2

→ 0 as x0 → 0,

where f is given in (1.8).
Using the continuity with respect to initial data for equation (1.1) (also for equation
(3.19)) associated to a space-localization in the ball B(0, |ξ| < | log(T − t(x0))|

̺
2 ), it is

showed in Section 4 of [26] that

sup
|ξ|<| log(T−t(x0))|

̺
2 ,0≤τ<1

|v(x0, ξ, τ)− f̂K0(τ)| ≤ ǫ(x0) → 0 as x0 → 0,

where f̂K0(τ) = κ(1− τ + p−1
4p K

2
0 )

− 1
p−1 .

Then letting τ → 1 and using the definition (3.17) of v, we have

u∗(x0) = lim
t′→T

u(x, t′) = (T − t(x0))
− 1

p−1 lim
τ→1

v(x0, 0, τ)

∼ (T − t(x0))
− 1

p−1 f̂K0(1), as x0 → 0.

From (3.18), we have

(T − t(x0))
− 1

p−1 ∼
( |x0|2
2K2

0 | log x0|

)− 1
p−1

, as x0 → 0.

Hence,

u∗(x0) ∼
(

8p| log x0|
(p− 1)2|x0|2

) 1
p−1

, as x0 → 0,

which concludes the proof of part iii) of Theorem 1.1.

A Appendix A

We claim the following:

Lemma A.1. Let ε ∈ (0, p], there exist C = C(a, p, µ,M) > 0 and s0 = s0(a, ε) > 0 such

that for all s ≥ s0,

i) if h is given by (1.2),

j = 0, 1, e−
(p−j)s
p−1

∣
∣
∣h(j)

(

e
s

p−1w
)∣
∣
∣ ≤ Cs−a

(
|w|p−j + 1

)
,

ii) if h is given by (1.3),

3∑

j=0

e−
(p−j)s
p−1 |w|j

∣
∣
∣h(j)

(

e
s

p−1w
)∣
∣
∣ ≤ Cs−a(|w|p + |w|p−ε).
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Proof. We see that the proof directly follows from the following key estimate:

|w|ε

loga
(

2 + e
2s

p−1w2
) ≤ C

sa
(|w|ε + 1), ∀s ≥ s0(a, ε). (A.1)

Indeed, considering the case w2e
s

p−1 ≥ 4, we have

|w|ε

loga
(

2 + e
2s

p−1w2
) ≤ |w|ε

loga
(

4e
s

p−1

) ≤ C|w|ε
sa

,

then the case w2e
s

p−1 ≤ 4 which follows that

|w|ε

loga
(

2 + e
2s

p−1w2
) ≤ |w|ε

loga(2)
≤ Ce−

εs
p−1 ≤ Cs−a.

This concludes the proof of (A.1) and the proof of Lemma A.1 also.

The following lemma shows the existence of solutions of the associated ODE of equa-
tion (1.5):

Lemma A.2. Let φ be a positive solution of the following ordinary differential equation:

φs = − φ

p− 1
+ φp + e

− ps
p−1h

(

e
s

p−1φ
)

. (A.2)

Then φ(s) → κ as s→ +∞ and φ(s) is given by

φ(s) = κ(1 + ηa(s))
− 1

p−1 , where ηa(s) = O
(

1

sa

)

. (A.3)

If h(x) = µ |x|p−1x
loga(2+x2)

, then

ηa(s) ∼ C0

∫ +∞

s

es−τ

τa
dτ =

C0

sa



1 +
∑

j≥1

bj
sj



 ,

where C0 = µ
(
p−1
2

)a
and bj = (−1)j

∏j−1
i=0 (a+ i).

Proof. See Lemma A.3 in [21].
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B Proof of Lemma 3.5

In this appendix, we give the proof of Lemma 3.5. The proof follows from the techniques
of Bricmont and Kupiainen [3] with some additional care, since we have a different
profile function ϕ defined in (2.1), and since we give the explicit dependence of the
bounds in terms of all the components of initial data. As mentioned early, the proof
relies mainly on the understanding of the behavior of the kernel K(s, σ, y, x) (see (2.8)).
This behavior follows from a perturbation method around e(s−σ)L(y, s), where the kernel
of etL is given by Mehler’s formula:

etL(y, x) =
et

√

4π(1− e−t)
exp

[

−(ye−t/2 − x)2

4(1− e−t)

]

. (B.1)

By definition (2.8) of K, we use a Feynman-Kac representation for K:

K(s, σ, y, x) = e(s−σ)L(y, x)
∫

dµs−σyx (ω)e
∫ s−σ
0 V (ω(τ),σ+τ)dτ , (B.2)

where dµs−σyx is the oscillator measure on the continuous paths ω : [0, s − σ] → R with
ω(0) = x, ω(s− σ) = y, i.e. the Gaussian probability measure with covariance kernel

Γ(τ, τ ′) = ω0(τ)ω0(τ
′)

+ 2
(

e−
1
2
|τ−τ ′| − e−

1
2
|τ+τ ′| + e−

1
2
|2(s−σ)+τ−τ ′| − e−

1
2
|2(s−σ)−τ−τ ′|

)

,

which yields
∫
dµs−σyx ω(τ) = ω0(τ), with

ω0(τ) = (sinh((s− σ)/2))−1

(

y sinh(
τ

2
) + x sinh(

s− σ − τ

2
)

)

.

In view of (B.2), we can consider the expression for K as a perturbation of e(s−σ)L.
Since our profile ϕ defined in (2.1) is different from the one defined in [3], we have
here a potential V defined in (2.3) which is different as well. Thus, we first estimate the
potential V , then we restate some basic properties of the kernel K.

Lemma B.1 (Estimates on the potential V ). For s large enough, we have

a) V (y, s) ≤ C
sa′

with a′ = min{a, 1}.

b)
∣
∣
∣
dmV (y,s)
dym

∣
∣
∣ ≤ C

sm/2 for m = 0, 1, 2.

c) |V (y, s)| ≤ C
s (1 + |y|2), V (y, s) = −h2(y)

4s + Ṽ (y, s),

where |Ṽ (y, s)| = O
(
1+|y|4
s2

)

+ O
(

1
sa

)
in the case (1.2) and |Ṽ (y, s)| = O

(
1+|y|4
s2

)

+

O
(
1+|y|2
sa+1

)

in the case (1.3). In particular, in both cases |Ṽ (y, s)| ≤ C(1+|y|4)
s1+ā , where

ā = min{a− 1, 1} in the case (1.2) and ā = min{a, 1} in the case (1.3).
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Proof. a) From the definition (2.3) of V , we see that

V (y, s) ≤ p(ϕ(0, s)p−1 − κp−1) + ı
∣
∣
∣e−sh′

(

e
s

p−1ϕ
)∣
∣
∣ ,

where ı is defined in (2.3). From Lemma A.2, we have

ϕ(0, s)p−1 − κp−1 = κp−1

[

(1 + ηa(s))
−1

(

1 +
1

2ps

)p−1

− 1

]

≤ C

sa
′ .

Since |ϕ| is bounded, Lemma A.1 yields ı
∣
∣
∣e−sh′

(

e
s

p−1ϕ
)∣
∣
∣ ≤ ıC

sa . This concludes part a).

b) We introduce W (z, s) = V (y, s) with z = y√
s
. In order to derive part b), it is enough

to show that |dmWdzm | ≤ C for m = 0, 1, 2, which follows easily from Lemma A.1 and the
following key estimates

∂f(z)

∂z
= − zf(z)

2p(1 + cpz2)
,

where f and cp are defined in (1.8).
c) Since |V (y, s)| ≤ C for all y ∈ R and s ≥ 1, considering the cases |y| ≤ √

s, then
|y| ≥ √

s, we directly see that the first estimate follows from the second. Hence, we
only prove the second. To do so, we introduce W̃ (Z, s) = V (y, s) with Z = |y|2

s . By the
definition (2.1) and by a direct calculation, we find that

d2W̃ (Z, s)

dZ2
= p(p− 1)(p − 2)ϕp−3(Z, s)

(
dϕ(Z, s)

dZ

)2

+ ıe
− (p−3)s

p−1 h′′′
(

e
s

p−1ϕ(Z, s)
)(dϕ(Z, s)

dZ

)2

+

[

p(p− 1)ϕp−2(Z, s) + ıe−
(p−2)s
p−1 h′′

(

e
s

p−1ϕ(Z, s)
)] d2ϕ(Z, s)

dZ2
.

Applying Lemma A.1 with ε = p−1
2 , we see that

∣
∣
∣
∣
∣

d2W̃ (Z, s)

dZ2

∣
∣
∣
∣
∣
≤ C

(

ϕp−3(Z, s) + ıϕp−3− p−1
2 (Z, s)

)(dϕ(Z, s)

dZ

)2

+ C
(

ϕp−2(Z, s) + ıϕp−2− p−1
2 (Z, s)

)
∣
∣
∣
∣

d2ϕ(Z, s)

dZ2

∣
∣
∣
∣
, ∀s ≥ s0.

From the definition (2.1) of ϕ, we note that dϕ
dZ = − cpφ

κ F
p(Z), where cp = p−1

4p and

F (Z) = κ(1 + cpZ)
− 1

p−1 , we derive

ϕ(Z, s)p−3− p−1
2

(
dϕ(Z, s)

dZ

)2

≤ C

(

F +
κ

2ps

)p−3− p−1
2

F 2p ≤ 2C,
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and

ϕ(Z, s)p−2− p−1
2

∣
∣
∣
∣

d2ϕ(Z, s)

dZ2

∣
∣
∣
∣
≤ C

(

F +
κ

2ps

)p−2− p−1
2

F 2p ≤ 2C.

Hence,
∣
∣
∣
d2W̃ (Z,s)
dZ2

∣
∣
∣ is bounded for all Z ∈ [0,+∞) and for all s ≥ s0. Then by a Taylor

expansion, we have
∣
∣
∣
∣
∣
W̃ (Z, s) − W̃ (0, s) − Z

∂W̃ (0, s)

∂Z

∣
∣
∣
∣
∣
≤ CZ2, ∀Z ∈ [0,+∞), ∀s ≥ s0.

From the definition (2.1) of ϕ and from Lemma A.2, we have

W (0, s) =
p

p− 1

[

1

(1 + ηa)

(

1 +
1

2ps

)p−1

− 1

]

+ ıe−sh′
(

e
s

p−1 (φ+
φ

2ps
)

)

=
1

2s
− p

p− 1

(
ηa(s)

1 + ηa(s)

)

+ ıe−sh′
(

e
s

p−1φ
)

+O
(

1

sa+1

)

+O
(

1

s2

)

.

Recalling from Lemma A.2 that ηa(s) = O
(

1
sa

)
, this immediately yields W (0, s) = 1

2s +

O
(

1
sa

)
+O

(
1
s2

)
in the case (1.2). In the case (1.3), we obtain by a direct calculation,

∣
∣
∣
∣
− p

p− 1

(
ηa(s)

1 + ηa(s)

)

+ ıe−sh′
(

e
s

p−1φ
)
∣
∣
∣
∣

=

∣
∣
∣
∣
− p

(p− 1)(1 + ηa(s))

(

ηa(s)−
C0

sa

)∣
∣
∣
∣
+O

(
1

sa+1

)

= O
(

1

sa+1

)

.

In the last estimate, we used that fact that ηa(s) = C0
sa +O

(
1

sa+1

)
in the case (1.3) (see

Lemma A.2). Hence, W (0, s) = 1
2s +O

(
1

sa+1

)
+O

(
1
s2

)
in the case (1.3).

For ∂W (0,s)
∂Z , we use Lemmas A.1 and A.2 to derive

∂W (0, s)

∂Z
= − 1

4(1 + ηa(s))

(

1 +
1

2ps

)p−2

− ıe−
(p−2)s
p−1

φ

4p
h′′
(

e
s

p−1 (φ+
φ

2ps
)

)

= −1

4
+O

(
1

sa

)

+O
(
1

s

)

.

Returning to V , we conclude part c). This ends the proof of Lemma B.1.

In what follows, we denote
∫
f(y)g(y)ρ(y)dy by 〈f, g〉 and write χ(y, s) = χ(s) (χ is

defined in (2.12)). Let us now recall some basic properties of the kernel K stated in [3]:

Lemma B.2 (Bricmont and Kupiainen [3]). For all s ≥ σ ≥ max{s0, 1} with s ≤ 2σ

and s0 given in Lemma A.1, for all (y, x) ∈ R
2,

a) |K(s, σ, y, x)| ≤ Ce(s−σ)L(y, x).

b) K(s, σ, y, x) = e(s−σ)L(y, x) (1 + P2(y, x) + P4(y, x)), where

|P2(y, x)| ≤
C(s− σ)

s
(1 + |y|+ |x|)2,
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and |P4(y, x)| ≤
C(s− σ)(1 + s− σ)

s2
(1 + |y|+ |x|)4.

Moreover,
∣
∣
∣

〈

k2,
(

K(s, σ) −
(
σ
s

)2
)

h2

〉∣
∣
∣ ≤ C(s−σ)(1+s−σ)

s1+ā , with ā = min{a−1, 1} in the case

(1.2) and ā = min{a, 1} in the case (1.3).

c) ‖K(s, σ)(1 − χ)‖L∞ ≤ Ce−
(s−σ)

p .

Proof. a) From part a) of Lemma B.1 and the definition (B.2) of K, we have

|K(s, σ, y, x)| ≤ e(s−σ)L(y, x)
∫

dµs−σyx (ω)e
∫ s−σ
0 C(σ+τ)−a′dτ

≤ Ce(s−σ)L(y, x)
∫

dµs−σyx (ω) ≤ Ce(s−σ)L(y, x),

since s ≤ 2σ and dµs−σyx is a probability.
b) The proof is exactly the same as the corresponding one written in [3]. Although there
is the difference of Ṽ (y, s) given in part c) of Lemma B.1, this change does not affect the
argument given in [3]. For that reason, we refer the reader to Lemma 5, page 555 in [3]
for details of the proof.
c) Our potential V given in (2.3) has the same behavior as the potential in [3] for |y|2

s

and s large (see (2.11)). For that reason, we refer to Lemma, page 559 in [3] for its
proof.

Before going to the proof of Lemma 3.5, we would like to state some basic estimates
which will be used frequently in the proof.

Lemma B.3. For K large enough, we have the following estimates:

a) For any polynomial P ,

∫

P (y)1{|y|≥K√
s}ρ(y)dy ≤ C(P )e−s. (B.3)

b) Let p ≥ 0 and |f(x)| ≤ (1 + |x|)p, then

|(etLf)(y)| ≤ Cet(1 + e−t/2|y|)p, (B.4)

Proof. i) follows from a direct calculation. ii) follows from the explicit expression (B.1)
by a simple change of variable.

Let us now give the proof of Lemma 3.5.

Proof of Lemma 3.5. We consider λ > 0, let σ0 ≥ λ, σ ≥ σ0 and ψ(σ) satisfying (3.5).
We want to estimate some components of θ(y, s) = K(s, σ)ψ(σ) for each s ∈ [σ, σ + λ].
Since σ ≥ σ0 ≥ λ, we have

σ ≤ s ≤ 2σ. (B.5)
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Therefore, up to a multiplying constant, any power of any τ ∈ [σ, s] will be bounded
systematically by the same power of s.
a) Estimate of θ2: We first write

θ2(s) = 〈k2, χ(s)K(s, σ)ψ(σ)〉
= σ2s−2ψ2(σ) +

〈
k2, (χ(s)− χ(σ))σ2s−2ψ(σ)

〉

+
〈
k2, χ(s)(K(s, σ) − σ2s−2)ψ(σ)

〉
:= σ2s−2ψ2(σ) + Ib+ IIb.

To bound Ib, we write ψ(x, σ) =
∑2

l=0 ψl(σ)hl(x) +
ψ−(x,σ)
1+|x|3 (1 + |x|3) + ψe(x, σ) and use

(B.3) to derive

|Ib| ≤ C(s− σ)e−sσ2s−2

(
2∑

l=0

|ψl(σ)|+
∥
∥
∥
∥

ψ−(x, σ)
1 + |x|3

∥
∥
∥
∥
L∞

+ ‖ψe(σ)‖L∞

)

.

For IIb, we write

IIb =
2∑

l=0

〈
k2, χ(s)(K(s, σ) − σ2s−2)hl

〉
ψl(σ)

+
〈
k2, χ(s)(K(s, σ) − σ2s−2)ψ−(σ)

〉

+
〈
k2, χ(s)(K(s, σ) − σ2s−2)ψe(σ)

〉
:= IIb.1 + IIb.2 + IIb.3.

Let us bound IIb.1. For l = 2, we already get from part b) of Lemma B.2 and (B.3) that

∣
∣
〈
k2, χ(s)(K(s, σ) − σ2s−2)h2

〉
ψ2(σ)

∣
∣ ≤ C(s− σ)(1 + s− σ)

s1+ā
|ψ2(σ)|,

with ā > 0.
For l = 0 or 1, we use b) of Lemma B.2, (B.4), (B.3) and the fact that 〈k2, hl〉 = 0 and
e(s−σ)Lhl = e(1−l/2)(s−σ)hl to find that
∣
∣
〈
k2, χ(s)(K(s, σ) − σ2s−2)hl

〉
ψl(σ)

∣
∣ ≤

∣
∣
∣

〈

k2, χ(s)
(

K(s, σ) − e(s−σ)L
)

hl

〉∣
∣
∣ |ψl(σ)|

+
∣
∣
∣

〈

k2, χ(s)
(

e(s−σ)L − σ2s−2
)

hl

〉∣
∣
∣ |ψl(σ)|

≤ C(s− σ)
(
s−1 + e−s

)
|ψl(σ)|

≤ C(s− σ)

s
|ψl(σ)|.

This yields

|IIb.1| ≤ C(s− σ)

s

2∑

l=0

|ψl(σ)|.

If we write ψ−(x, σ) = ψ−(x,σ)
1+|x|3 (1 + |x|3) and use the same arguments as for l = 0, we

obtain

|IIb.2| ≤ C(s− σ)

s

∥
∥
∥
∥

ψ−(x, σ)
1 + |x|3

∥
∥
∥
∥
L∞

.
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For IIb.3, we write

IIb.3 =
〈

k2, χ(s)
(

K(s, σ) − e(s−σ)L
)

ψe(σ)
〉

+
〈

k2, χ(s)
(

e(s−σ)L − 1
)

ψe(σ)
〉

+
〈
k2, χ(s)(1− σ2s−2)ψe(σ)

〉
.

Using (B.3), we bound the last term byC(s−σ)e−σ‖ψe(σ)‖L∞ ≤ C(s−σ)e−s/2‖ψe(σ)‖L∞

from (B.5). For the second term, we write e(s−σ)L − 1 =
∫ s−σ
0 dτLeτL and use the fact

that

sup
|y|≤2K

√
s,|x|≥K√

σ

e
− |y|2

4
− (ye−τ/2−x)2

4(1−e−τ ) ≤ e−2s, (B.6)

for K large enough, then it is also bounded by C(s−σ)e−s‖ψe(σ)‖L∞ . For the first term,
we use b) of Lemma B.2, (B.4) and again (B.6) to bound it by C(s−σ)s−1e−s‖ψe(σ)‖L∞ .
This yields

|IIb.3| ≤ C(s− σ)e−s/2‖ψe(σ)‖L∞ .

Collecting all these bounds yields the bound for θ2(s) as stated in (3.6).

b) Estimate of θ−: By definition,

θ−(y, s) = P− [χ(s)K(s, σ)ψ(σ)] =

2∑

l=0

ψl(σ)P− [χ(s)K(s, σ)hl]

+ P− [χ(s)K(s, σ)ψ−(σ)] + P− [χ(s)K(s, σ)ψe(σ)] := Ic+ IIc+ IIIc.

In order to bound Ic, we write K(s, σ) = K(s, σ)−e(s−σ)L+e(s−σ)L, then we use the fact
that e(s−σ)Lhl = e(1−l/2)(s−σ)hl, part b) of Lemma B.2 and (B.4) to derive for l = 0, 1, 2,

∣
∣
∣

(

K(s, σ) − e(s−σ)(1−l/2)
)

hl

∣
∣
∣ =

∣
∣
∣e(s−σ)L (P2 + P4)hl

∣
∣
∣

≤ Ces−σ(s− σ)

s

(

1 + e−(s−σ)/2|y|
)2+l

+
Ces−σ(s− σ)(1 + s− σ)

s2

(

1 + e−(s−σ)/2|y|
)4+l

.

On the support of χ(s), namely when |y| ≤ 2K
√
s, we can bound s−k/2|y|k by C for

k ∈ N. Then, from the easy-to-check fact that

if |f(y)| ≤ m(1 + |y|3), then P− [f(y)] ≤ Cm(1 + |y|3), (B.7)

we obtain

l = 0, 1, P−
[

ψl(σ)χ(s)K(s, σ)hl − ψl(σ)e
(s−σ)(1−l/2)(χ(s)hl)

]

≤ Ces−σ(s− σ)(1 + s− σ)

s
(1 + |y|3)|ψl(σ)|,
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and

P−
[

ψ2(σ)χ(s)K(s, σ)h2 − ψ2(σ)e
(s−σ)(1−l/2)(χ(s)h2)

]

≤ Ces−σ(s − σ)(1 + s− σ)√
s

(1 + |y|3)|ψ2(σ)|.

Since P−(hl) = 0 and |(1 − χ(y, s))hl(y)| ≤ Cs−3/2+l/2(1 + |y|3), we have

l = 0, 1, 2,
∣
∣
∣ψl(σ)e

(s−σ)(1−l/2)P− [χ(s)hl(y)]
∣
∣
∣ ≤ Ces−σ

s3/2−l/2
|ψl(σ)|(1 + |y|3).

Hence,

|Ic| ≤ Ces−σ
(
(s− σ)2 + 1

)

s

(
|ψ0(σ)|+ |ψ1(σ)|+

√
s|ψ2(σ)|

)
(1 + |y|3).

To bound IIIc, we use a) of Lemma B.2 and the definition (B.1) of e(s−σ)L to write
∥
∥
∥
∥

χ(y, s)K(s, σ)ψe(x, σ)

1 + |y|3
∥
∥
∥
∥
L∞

≤ Ces−σ‖ψe(σ)‖L∞

sup
|y|≤2K

√
s,|x|≥K√

σ

e
− 1

2
(ye−(s−σ)/2−x)2

4(1−e−(s−σ)) (1 + |y|3)−1

≤
{

Cs−3/2‖ψe(σ)‖L∞ if s− σ ≤ s∗
Ce−s‖ψe(σ)‖L∞ if s− σ ≥ s∗

for a suitable constant s∗.
Exploiting again (B.7), we obtain the bound on this term which can be written as

|IIIc| ≤ Cs−3/2e−(s−σ)2‖ψe(σ)‖L∞(1 + |y|3) for σ large enough.

We still have to consider IIc. In order to bound this term, we proceed as in [3]. We
write

K(s, σ)ψ−(σ) =
∫

dxex
2/4K(s, σ)(·, x)f(x) =

∫

dxN(·, x)E(·, x)f(x), (B.8)

where f(x) = e−x
2/4ψ−(x, σ) and

N(y, x) =
es−σex

2/4

√

4π(1− e−(s−σ))
e
− (ye−(s−σ)/2−x)2

4(1−e−(s−σ)) ,

E(y, x) =

∫

dµs−σyx (ω)e
∫ s−σ
0

V (ω(τ),σ+τ)dτ .

Let f0 = f and for m ≥ 1, f (−m−1)(y) =
∫ y
−∞ dxf (−m)(x), then we have the following:
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Lemma B.4. |f (−m)(y)| ≤ C
∥
∥
∥
ψ−(x,σ)
1+|x|3

∥
∥
∥
L∞

(1 + |y|)(3−m)e−y
2/4 for m ≤ 3.

Proof. See Lemma 6, page 557 in [3].

We now rewrite (B.8) by integrating by parts as follows:

K(s, σ)ψ−(σ) =
2∑

l=0

(−1)l+1

∫

dx∂lxN(y, x)∂xE(y, x)f (−l−1)(x)

+

∫

dx∂3xN(y, x)E(y, x)f−3(x). (B.9)

From the definition of N(y, x), we have for l = 0, 1, 2, 3,

|∂lxN(y, x)| ≤ Ce−l(s−σ)/2(1 + |y|+ |x|)lex2/4e(s−σ)L(y, x).

Now using the integration by parts formula for Gaussian measures to write

∂xE(y, x) =
1

2

∫ s−σ

0

∫ s−σ

0
dτdτ ′∂xΓ(τ, τ

′)
∫

dµs−σyx (ω)V ′(ω(τ), σ + τ)

V ′(ω(τ ′), σ + τ ′)e
∫ s−σ
0

dτ ′′V (ω(τ ′′),σ+τ ′′)

+
1

2

∫ s−σ

0
dτ∂xΓ(τ, τ)

∫

dµs−σyx (ω)V ′′(ω(τ), σ + τ)e
∫ s−σ
0

dτ ′′V (ω(τ ′′),σ+τ ′′).

Recalling from Lemma B.1 that V (y, s) ≤ C
sa′

with a′ > 0 and
∣
∣
∣
dmV (y,s)
dym

∣
∣
∣ ≤ C

sm/2 for

m = 0, 1, 2. Since s ≤ 2σ, this yields
∫ s−σ
0 V (ω(τ), σ + τ)dτ ≤ C. Because dµs−σyx is a

probability, we then obtain

|E(y, x)| ≤ C and |∂xE(y, x)| ≤ C

s
(s− σ)(1 + s− σ)(|y| + |x|).

Substituting all these bounds into (B.9), then using (B.4), Lemma B.4, the fact that
s−1(s− σ)(1 + s− σ) ≤ e−3/2(s−σ) for s large and then (B.7), we derive

|IIc| ≤ Ce−(s−σ)/2
∥
∥
∥
∥

ψ−(x, σ)
1 + |x|3

∥
∥
∥
∥
L∞

(1 + |y|3).

Collecting all the bounds for Ic, IIc and IIIc, we obtain the bound (3.7).
c) Estimate for θe: By definition, we write

θe(y, s) = (1− χ(y, s))K(s, σ)ψ(σ) = (1− χ(y, s))K(s, σ) (ψb(σ) + ψe(σ)) .

Using c) of Lemma B.2, we have

‖(1− χ(y, s))K(s, σ)ψe(σ)‖L∞ ≤ Ce−(s−σ)/p‖ψe(σ)‖L∞ .
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It remains to bound (1− χ(y, s))K(s, σ)ψb(σ). To this end, we write

ψb(x, σ) =
2∑

l=0

ψl(σ)hl(x) +
ψ−(x, σ)
1 + |x|3 (1 + |x|3),

then we use χ(x, σ)|x|k ≤ Cσk/2 ≤ Csk/2 for k ∈ N, and a) of Lemma B.2 to derive

‖(1 − χ(y, s))K(s, σ)ψb(x, σ)‖L∞ ≤ Ces−σ
2∑

l=0

sl/2|ψl(σ)|

+ Ces−σs3/2
∥
∥
∥
∥

ψ−(x, σ)
1 + |x|3

∥
∥
∥
∥
L∞

.

This yields the bound (3.8) and concludes the proof of Lemma 3.5.

C Proof of Lemma 3.8

We give the proof of Lemma 3.8 here.

Proof of Lemma 3.8. i) From the definition (2.4) of B, we use a Taylor expansion and
the boundedness of |ϕ| and |q| to find that

|χ(τ)B(q(τ))| ≤ C|q(τ)|2 and |B(q(τ))| ≤ C|q(τ)|p′ , (C.1)

where p′ = min{2, p}.
(Since we have the same definition of B as in [16], we do not give the proof of (C.1)
and kindly refer the reader to Lemma 3.15, page 168 of [16] for its proof.)
Using (C.1) and (3.1), we have

|χ(τ)B(q(τ))| ≤ CA4

τ3+2̺
(1 + |y|6) + CA4

τ2+2ν
(1 + |y|4). (C.2)

From (C.2), we then derive for m = 0, 1, 2,

|Bm(τ)| =
∣
∣
∣
∣

∫

χ(τ)B(q(τ))kmρdy

∣
∣
∣
∣
≤ CA4

τ2+2ν
. (C.3)

Since B−(y, τ) = χ(τ)B(q(τ))−∑2
m=0Bm(τ)hm(y), we have from (C.2) and (C.3),

∣
∣
∣
∣

B−(y, τ)
1 + |y|3

∣
∣
∣
∣
≤
∣
∣
∣
∣

χ(τ)B(q(τ))

1 + |y|3
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∑2
m=0Bm(τ)hm(y)

1 + |y|3

∣
∣
∣
∣
∣

≤ χ(τ)

[
CA4

τ3+2̺
(1 + |y|3) + CA4

τ2+2ν
(1 + |y|)

]

+
CA4

τ2+2ν

(

|∑2
m=0 hm(y)|
1 + |y|3

)
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If we use |y|lχ(y, τ) ≤ Cτ l/2 for l ∈ N, and |
∑2

m=0 hm(y)| ≤ C(1 + |y|2), then we obtain
∥
∥
∥
∥

B−(y, τ)
1 + |y|3

∥
∥
∥
∥
L∞

≤ CA4

τ3/2+2̺
.

Using the second estimates in (C.1) and (3.1), we obviously obtain ‖B(τ)‖L∞ ≤ CA2p′

τ̺p′

which yields ‖Be(τ)‖L∞ ≤ CA2p′

τ̺p′
. This ends the proof of part i).

ii) From the definition (2.5) of R, we write ϕ(y, τ) = φ(τ)
κ ϑ(y, τ) and R(y, τ) = φ(τ)

κ Q+

G, where ϑ(y, τ) = f( y√
τ
) + κ

2pτ and

Q(y, τ) = −ϑτ +∆ϑ− y

2
∇ϑ− ϑ

p− 1
+ ϑp, (C.4)

G(y, τ) = −φ
′

κ
ϑ− φ

κ
ϑp + φp

(
ϑ

κ

)p

+ e
−pτ
p−1 h

(

e
τ

p−1
φ

κ
ϑ

)

. (C.5)

The conclusion of part ii) is a direct consequence of the following:

Lemma C.1. There exists σ7 > 0 such that for all τ ≥ σ7, we have

i) (Estimates on Q)

m = 0, 1, |Qm(τ)| ≤
C

τ2
, |Q2(τ)| ≤

C

τ3
,

∥
∥
∥
∥

Q−(y, τ)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

τ2
, ‖Qe(τ)‖L∞ ≤ C√

τ
. (C.6)

ii) (Estimates on G)

m = 0, 1, 2, |Gm(τ)| ≤
C

τ1+a′
,

∥
∥
∥
∥

G−(y, τ)
1 + |y|3

∥
∥
∥
∥
L∞

≤ C

τ1+a′
, ‖Ge(τ)‖L∞ ≤ C

τa
, (C.7)

where a′ = a > 1 in the case (1.2) and a′ = a+ 1 > 1 in the case (1.3).

Proof. i) See page 563 in [3]. For part ii), one can see that it is a direct consequence of
the following:

|G(y, τ)| ≤ C

τa
and |χ(τ)G(y, τ)| ≤ C

τ1+a
′ (1 + |y|2). (C.8)

By the definition of Gm, G− and Ge, part ii) simply follows from (C.8). By the linearity,
this also concludes the proof of part ii) of Lemma 3.8.

Let us now give the proof of (C.8). For the first estimate, we use the definition (C.5) of
G, Lemmas A.1 and A.2,

|G(y, τ)| ≤
∣
∣
∣
∣

φ′ϑ
κ

∣
∣
∣
∣
+

∣
∣
∣
∣

φϑ

κ

∣
∣
∣
∣

∣
∣
∣
∣
1− φp−1

κp−1

∣
∣
∣
∣
+

∣
∣
∣
∣
e
− ps

p−1h

(

e
s

p−1
φϑ

κ

)∣
∣
∣
∣
≤ C

sa
.
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For the second estimate in (C.8), we use the fact that φ satisfies (1.6) and write

G(y, τ) =
ϑφ

κp
(κp−1 − φp−1)(κp−1 − ϑp−1)

+ e
− pτ

p−1

[

h

(

e
τ

p−1
φϑ

κ

)

− h
(

e
τ

p−1φ
)]

+

(

1− ϑ

κ

)

e−
pτ
p−1h

(

e
τ

p−1φ
)

:= Ḡ+ G̃+ Ĝ.

Noting that ϑ(y, τ) = κ
(

1− h2(y)
4pτ +O

(
|y|4
τ2

))

uniformly for y ∈ R and τ ≥ 1, and

recalling from Lemma A.2 that φ(τ) = κ(1 + ηa(τ))
− 1

p−1 where ηa(τ) = O(τ−a), then
using a Taylor expansion, we derive

Ḡ(y, τ) =
φηa(τ)

1 + ηa(τ)

(
h2(y)

4pτ
+O

( |y|4
τ2

))

,

G̃(y, τ) = −φe−τh′
(

e
τ

p−1φ
)(h2(y)

4pτ
+O

( |y|4
τ2

))

,

Ĝ(y, τ) = e
− pτ

p−1h
(

e
τ

p−1φ
)(h2(y)

4pτ
+O

( |y|4
τ2

))

.

This yields the second estimate in (C.8) in the case (1.2). If h is given by (1.3), we have
furthermore

∣
∣
∣
∣

φηa(τ)

1 + ηa(τ)
− e−sh′(e

s
p−1φ)φ+ e−

ps
p−1h(e

s
p−1φ)

∣
∣
∣
∣

≤
∣
∣
∣
∣

φ

1 + ηa(τ)

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

ηa(τ)−
µ

loga
(

2 + e
2τ
p−1φ2(τ)

)

∣
∣
∣
∣
∣
∣

+
C

τa+1
≤ 2C

τ1+a
,

which yields the second estimate in (C.8) in the case (1.3). This concludes the proof of
(C.8) and the proof of part ii) of Lemma 3.8 also.

iii) From the definition (2.6) of N , we use a Taylor expansion for N to find that in the
case (1.2),

N(q(τ), τ) = e−τh′
(

e
τ

p−1 (φ(τ) + θ1q(τ))
)

q(τ) with θ1 ∈ [0, 1],

and in the case (1.3),

N(q(τ), τ) = e−
(p−2)τ
p−1 h′′

(

e
τ

p−1 (φ(τ) + θ2q(τ))
)

q2(τ) with θ2 ∈ [0, 1].

Since ϕ(τ) → κ and ‖q(τ)‖L∞(R) → 0 as τ → +∞, this implies that there exists τ0 large
enough such that κ2 ≤ |φ(τ)+θiq(τ)| ≤ 3κ

2 for all τ ≥ τ0 and y ∈ R. Then by Lemma A.1,

we have |N(q(τ), τ)| ≤ C|q|β
τa where β = 1 in the case (1.2) and β = 2 in the case (1.3),

which implies part iii) of Lemma 3.8. This concludes the proof of Lemma 3.8.
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Chapter V

Blow-up results for a strongly perturbed semi-
linear heat equation:
Theoretical analysis and numerical method1

V. T. Nguyen and H. Zaag2

Université Paris 13, Sorbonne Paris Cité,

LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Abstract
We consider a blow-up solution for a strongly perturbed semilinear heat equation with
Sobolev subcritical power nonlinearity. Working in the framework of similarity vari-
ables, we find a Lyapunov functional for the problem. Using this Lyapunov functional,
we derive the blow-up rate and the blow-up limit of the solution. We also classify all
asymptotic behaviors of the solution at the singularity and give precisely blow-up pro-
files corresponding to these behaviors. Finally, we attain the blow-up profile numerically,
thanks to a new mesh-refinement algorithm inspired by the rescaling method of Berger
and Kohn [3]. Note that our method is applicable to more general equations, in partic-
ular those with no scaling invariance.

Keywords: Blow-up, Lyapunov functional, asymptotic behavior, blow-up profile, semilin-
ear heat equation, lower order term.

1submitted, arXiv:1410.4079
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ANAÉ ref. ANR-13-BS01-0010-03.



174 V. Blow-up results for a strongly perturbed SHE

1 Introduction

We are concerned in this paper with blow-up phenomena arising in the following non-
linear heat problem:

{
ut = ∆u+ |u|p−1u+ h(u),

u(., 0) = u0 ∈ L∞(Rn),
(1.1)

where u(t) : x ∈ R
n → u(x, t) ∈ R and ∆ stands for the Laplacian in R

n. The exponent
p > 1 is subcritical (that means that p < n+2

n−2 if n ≥ 3) and h is given by

h(z) = µ
|z|p−1z

loga(2 + z2)
, with a > 0, µ ∈ R. (1.2)

By standard results, the problem (1.1) has a unique classical solution u(x, t) in L∞(Rn),
which exists at least for small times. The solution u(x, t) may develop singularities in
some finite time. We say that u(x, t) blows up in a finite time T if u(x, t) satisfies (1.1)
in R

n × [0, T ) and
lim
t→T

‖u(t)‖L∞(Rn) = +∞.

T is called the blow-up time of u(x, t). In such a blow-up case, a point b ∈ R
n is

called a blow-up point of u(x, t) if and only if there exist (xn, tn) → (b, T ) such that
|u(xn, tn)| → +∞ as n→ +∞.

In the case µ = 0, the equation (1.1) is the semilinear heat equation,

ut = ∆u+ |u|p−1u. (1.3)

Problem (1.3) has been addressed in different ways in the literature. The existence of
blow-up solutions has been proved by several authors (see Fujita [10], Levine [21], Ball
[1]). Consider u(x, t) a solution of (1.3) which blows up at a time T . The very first
question to be answered is the blow-up rate, i.e. there are positive constants C1, C2 such
that

C1(T − t)−
1

p−1 ≤ ‖u(t)‖L∞(Rn) ≤ C2(T − t)−
1

p−1 , ∀t ∈ (0, T ). (1.4)

The lower bound in (1.4) follows by a simple argument based on Duhamel’s formula
(see Weissler [31]). For the upper bound, Giga and Kohn proved (1.4) in [11] for
1 < p < 3n+8

3n−4 or for non-negative initial data with subcritical p (note that Weissler [30]
first obtained (1.4) in the positive, radially symmetric case under the assumption that,
for each 0 < t < T , ut(x, t) achieves maximum at x = 0, see also Mueller and Weissler
[24], Friedman and McLeod [9]). Then, this result was extended to all subcritiacal
p without assuming non-negativity for initial data u0 by Giga, Matsui and Sasayama
in [13]. The estimate (1.4) is a fundamental step to obtain more information about
the asymptotic blow-up behavior, locally near a given blow-up point b̂. Giga and Kohn
showed in [12] that for a given blow-up point b̂ ∈ R

n,

lim
t→T

(T − t)
1

p−1u(b̂+ y
√
T − t, t) = ±κ,
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where κ = (p− 1)
− 1

p−1 , uniformly on compact sets of Rn.
This result was specified by Filippas ans Liu [8] (see also Filippas and Kohn [7]) and
Velázquez [28], [29] (see also Herrero and Velázquez [19], [20], [17]). Using the renor-
malization theory, Bricmont and Kupiainen showed in [4] the existence of a solution of
(1.3) such that
∥
∥
∥(T − t)

1
p−1u(b̂+ z

√

(T − t)| log(T − t)|, t)− f0(z)
∥
∥
∥
L∞(Rn)

→ 0 as t→ T, (1.5)

where

f0(z) = κ

(

1 +
p− 1

4p
|z|2
)− 1

p−1

. (1.6)

Merle and Zaag in [23] obtained the same result through a reduction to a finite dimen-
sional problem. Moreover, they showed that the profile (1.6) is stable under perturba-
tions of initial data (see also [5], [6] and [22]).

In the case where the function h satisfies

j = 0, 1, |h(j)(z)| ≤M

( |z|p−j
loga(2 + z2)

+ 1

)

, |h′′(z)| ≤M
|z|p−2

loga(2 + z2)
, (1.7)

with a > 1 and M > 0, the first author proved in [26] the existence of a Lyapunov
functional in similarity variables for the problem (1.1) which is a crucial step in deriving
the estimate (1.4). We also gave a classification of possible blow-up behaviors of the so-
lution when it approaches to singularity. In [27], we constructed a blow-up solution of
the problem (1.1) satisfying the behavior described in (1.5) in the case where h satisfies
the first estimate in (1.7) or h is given by (1.2).

In this paper, we aim at extending the results of [26] to the case a ∈ (0, 1]. As we
mentioned above, the first step is to derive the blow-up rate of the blow-up solution. As
in [13] and [26], the key step is to find a Lyapunov functional in similarity variables for
equation (1.1). More precisely, we introduce for all b ∈ R

n (b may be a blow-up point of
u or not) the following similarity variables:

y =
x− b√
T − t

, s = − log(T − t), wb,T = (T − t)
1

p−1u(x, t). (1.8)

Hence wb,T satisfies for all s ≥ − log T and for all y ∈ R
n:

∂swb,T =
1

ρ
div(ρ∇wb,T )−

wb,T
p− 1

+ |wb,T |p−1wb,T + e
− ps

p−1h
(

e
s

p−1wb,T

)

, (1.9)

where

ρ(y) =

(
1

4π

)n/2

e−
|y|2
4 . (1.10)



176 V. Blow-up results for a strongly perturbed SHE

Following the method introduced by Hamza and Zaag in [14], [15] for perturbations of
the semilinear wave equation, we introduce

Ja[w](s) = E [w](s)e
γ
a
s−a

+ θs−a, (1.11)

where γ, θ are positive constants depending only on p, a, µ and n which will be deter-
mined later, and

E [w] = E0[w] + I[w], (1.12)

where

E0[w](s) =
∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy, (1.13)

and

I[w](s) = −e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy, H(z) =

∫ z

0
h(ξ)dξ. (1.14)

The main novelty of this paper is to allow values of a in (0, 1], and this is possible at
the expense of taking the particular form (1.2) for the perturbation h. We aim at the
following:

Theorem 1.1 (Existence of a Lyapunov functional for equation (1.9)). Let a, p, n, µ

be fixed, consider w a solution of equation (1.9). Then, there exist ŝ0 = ŝ0(a, p, n, µ) ≥ s0,

θ̂0 = θ̂0(a, p, n, µ) and γ = γ(a, p, n, µ) such that if θ ≥ θ̂0, then Ja satisfies the following

inequality, for all s2 > s1 ≥ max{ŝ0,− log T},

Ja[w](s2)− Ja[w](s1) ≤ −1

2

∫ s2

s1

∫

Rn

(∂sw)
2ρdyds. (1.15)

As in [13] and [26], the existence of the Lyapunov functional is a crucial step for deriving
the blow-up rate (1.4) and then the blow-up limit. In particular, we have the following:

Theorem 1.2. Let a, p, n, µ be fixed and u be a blow-up solution of equation (1.1) with a

blow-up time T .

(i) (Blow-up rate) There exists ŝ1 = ŝ1(a, p, n, µ) ≥ ŝ0 such that for all s ≥ s′ =

max{ŝ1,− log T},

‖wb,T (s)‖L∞(Rn) ≤ C, (1.16)

where wb,T is defined in (1.8) and C is a positive constant depending only on n, p, µ and a

bound of ‖wb,T (ŝ0)‖L∞ .

(ii) (Blow-up limit) If â is a blow-up point, then

lim
t→T

(T − t)
1

p−1u(â+ y
√
T − t, t) = lim

s→+∞
wâ,T (y, s) = ±κ, (1.17)

holds in L2
ρ (L2

ρ is the weighted L2 space associated with the weight ρ (1.10)), and also

uniformly on each compact subset of Rn.
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Remark 1.3. We will not give the proof of Theorem 1.2 because its proof follows from

Theorem 1.1 as in [26]. Hence, we only give the proof of Theorem 1.1 and refer the reader

to Section 2 in [26] for the proofs of (1.16) and (1.17) respectively.

The next step consists in obtaining an additional term in the asymptotic expansion given
in (ii) of Theorem 1.2. Given b a blow-up point of u(x, t), and up to changing u0 by −u0
and h by −h, we may assume that wb,T → κ in L2

ρ as s → +∞. As in [26], we linearize
wb,T around φ, where φ is the positive solution of the ordinary differential equation
associated to (1.9),

φs = − φ

p− 1
+ φp + e−

ps
p−1h

(

e
s

p−1φ
)

(1.18)

such that
φ(s) → κ as s→ +∞, (1.19)

(see Lemma A.3 in [26] for the existence of φ, and note that φ is unique. For the reader’s
convenience, we give in Lemma A.1 the expansion of φ as s→ +∞).

Let us introduce vb,T = wb,T − φ(s), then ‖vb,T (s)‖L2
ρ
→ 0 as s → +∞ and vb,T (or v for

simplicity) satisfies the following equation:

∂sv = (L+ ω(s))v + F (v) +H(v, s), ∀y ∈ R
n, ∀s ∈ [− log T,+∞),

where L = ∆− y
2 · ∇+ 1 and ω, F , H satisfy

ω(s) = O(
1

sa+1
) and |F (v)| + |H(v, s)| = O(|v|2) as s→ +∞,

(see the beginning of Section 3 for the proper definitions of ω, F and G).
It is well known that the operator L is self-adjoint in L2

ρ(R
n). Its spectrum is given by

spec(L) = {1− m

2
, m ∈ N},

and it consists of eigenvalues. The eigenfunctions of L are derived from Hermite poly-
nomials:
- For n = 1, the eigenfunction corresponding to 1− m

2 is

hm(y) =

[m2 ]∑

k=0

m!

k!(m− 2k)!
(−1)kym−2k, (1.20)

- For n ≥ 2: we write the spectrum of L as

spec(L) = {1− |m|
2
, |m| = m1 + · · ·+mn, (m1, . . . ,mn) ∈ N

n}.

For m = (m1, . . . ,mn) ∈ N
n, the eigenfunction corresponding to 1− |m|

2 is

Hm(y) = hm1(y1) . . . hmn(yn), (1.21)
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where hm is defined in (1.20).
We also denote cm = cm1cm2 . . . cmn and ym = ym1

1 ym2
2 . . . ymn

n for anym = (m1, . . . ,mn) ∈
N
n and y = (y1, . . . , yn) ∈ R

n.
By this way, we derive the following asymptotic behaviors of wb,T (y, s) as s→ +∞:

Theorem 1.4 (Classification of the behavior of wb,T as s → +∞). Consider u(t) a

solution of equation (1.1) which blows-up at time T and b a blow-up point. Let wb,T (y, s)

be a solution of equation (1.9). Then one of the following possibilities occurs:

i) wb,T (y, s) ≡ φ(s),

ii) There exists l ∈ {1, . . . , n} such that up to an orthogonal transformation of coordinates,

we have

wb,T (y, s) = φ(s)− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa+1

)

+O
(
log s

s2

)

as s→ +∞,

iii) There exist an integer number m ≥ 3 and constants cα not all zero such that

wb,T (y, s) = φ(s)− e−(
m
2
−1)s

∑

|α|=m
cαHα(y) + o

(

e−(
m
2
−1)s

)

as s→ +∞.

The convergence takes place in L2
ρ as well as in Ck,γloc for any k ≥ 1 and some γ ∈ (0, 1).

Remark 1.5. In our previous paper [26], we were unable to get this result in the case where

h satisfies (1.7) with a ∈ (0, 1]. Here, by taking the particular form of the perturbation (see

(1.2)), we are able to overcome technical difficulties in order to derive the result.

Remark 1.6. From ii) of Theorem 1.2, we would naturally try to find an equivalent for

w − κ as s → +∞. A posteriori from our results in Theorem 1.4, we see that in all cases

‖w(s) − κ‖L2
ρ
∼ C

sa′
with a′ = min{a, 1}. This is indeed a new phenomenon observed in

our equation (1.1), and which is different from the case of the unperturbed semilinear heat

equation where either w − κ ≡ 0, or ‖w(s) − κ‖L2
ρ
∼ C

s or ‖w − κ‖L2
ρ
∼ Ce(1−m/2)s

for some even m ≥ 4. This shows the originality of our paper. In our case, linearizing

around κ would keep us trapped in the 1
s scale. In order to escape that scale, we forget the

explicit function κ which is not a solution of equation (1.9), and linearizing instead around

the non-explicit function φ, which happens to be an exact solution of (1.9). This way, we

escape the 1
s scale and reach exponentially decreasing order.

Using the information obtained in Theorem 1.4, we can extend the asymptotic behavior
of wb,T to larger regions. Particularly, we have the following:

Theorem 1.7 (Convergence extension of wb,T to larger regions). For all K0 > 0,

i) if ii) of Theorem 1.4 occurs, then

sup
|ξ|≤K0

∣
∣wb,T (ξ

√
s, s)− fl(ξ)

∣
∣ = O

(
1

sa

)

+O
(
log s

s

)

, as s→ +∞, (1.22)
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where

∀ξ ∈ R
n, fl(ξ) = κ



1 +
p− 1

4p

l∑

j=1

ξ2j





− 1
p−1

, (1.23)

with l given in ii) of Theorem 1.4.

ii) if iii) of Theorem 1.4 occurs, then m ≥ 4 is even, and

sup
|ξ|≤K0

∣
∣
∣wb,T

(

ξe(
1
2
− 1

m)s
)

− ψm(ξ)
∣
∣
∣→ 0 as s→ +∞, (1.24)

where

∀ξ ∈ R
n, ψm(ξ) = κ



1 + κ−p
∑

|α|=m
cαξ

α





− 1
p−1

, (1.25)

with cα the same as in Theorem 1.4, and the multilinear for
∑

|α|=m cαξ
α is nonnegative.

Remark 1.8. As in the unperturbed case (h ≡ 0), we expect that (1.22) is stable (see the

previous remarks, particularly the paragraph after (1.5)), and (1.24) should correspond

to unstable behaviors (the unstability of (1.24) was proved only in one space dimension by

Herrero and Velázquez in [16] and [18] for h ≡ 0). While remarking numerical simulations

for equation (1.1) in one space dimension (see Section 4.2 below), we see that the numerical

solutions exhibit only the behavior (1.22), we could never obtain the behavior (1.24). This

is probably due to the fact that the behavior (1.24) is unstable.

At the end of this work, we give numerical confirmations for the asymptotic profile
described in Theorem 1.7. For this purpose, we propose a new mesh-refinement method
inspired by the rescaling algorithm of Berger and Kohn [3]. Note that, their method
was successful to solve blowing-up problems which are invariant under the following
transformation,

∀γ > 0, γ 7→ uγ(ξ, τ) = γ
2

p−1u(γξ, γ2τ). (1.26)

However, there are a lot of equations whose solutions blow up in finite time but the
equation does not satisfy the property (1.26), one of them is the equation (1.1) because
of the presence of the perturbation term h. Although our method is very similar to Berger
and Kohn’s algorithm in spirit, it is better in the sense that it can be applied to a larger
class of blowing-up problems which do not satisfy the rescaling property (1.26). Up to
our knowledge, there are not many papers on the numerical blow-up profile, apart from
the paper of Berger and Kohn [3], who already obtained numerical results for equation
(1.1) without the perturbation term. Recently, the author in [25] successfully used the
rescaling method and gave numerical confirmations on blow-up profiles of various prob-
lems satisfying (1.26). There is also the work of Baruch et al. [2] studying standing-ring
solutions.
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This paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.1.
Theorem 1.2 follows from Theorem 1.1. Since all the arguments presented [26] remain
valid for the case (1.7), except the existence of the Lyapunov functional for equation
(1.9) (Theorem 1.1), we kindly refer the reader to Section 2.3 and 2.4 in [26] for de-
tails of the proof. Section 3 deals with results on asymptotic behaviors (Theorem 1.4
and Theorem 1.7). In Section 4, we describe the new mesh-refinement method and give
some numerical justifications for the theoretical results.

Acknowledgement: The authors are grateful to M. A. Hamza for several helpful con-
versations pertaining to this work, and especially for giving the idea for the proof of
Theorem 1.1 in this paper.

2 Existence of a Lyapunov functional for equation (1.9)

In this section, we mainly aim at proving that the functional Ja defined in (1.11) is a
Lyapunov functional for equation (1.9) (Theorem 1.1). Note that this functional is far
from being trivial and makes our main contribution.

In what follows, we denote by C a generic constant depending only on a, p, n and µ. We
first give the following estimates on the perturbation term appearing in equation (1.9):

Lemma 2.1. Let h be the function defined in (1.2). For all ǫ ∈ (0, p], there exists C0 =

C0(a, µ, p, ǫ) > 0 and s̄0 = s̄0(a, p, ǫ) > 0 large enough such that for all s ≥ s̄0,

i)

∣
∣
∣e

− ps
p−1h

(

e
s

p−1 z
)∣
∣
∣ ≤ C0

sa
(|z|p + |z|p−ǫ),

and

∣
∣
∣
∣
e−

(p+1)s
p−1 H

(

e
s

p−1 z
)
∣
∣
∣
∣
≤ C0

sa
(|z|p+1 + 1),

where H is defined in (1.14).
ii)

∣
∣
∣
∣
(p+ 1)e−

(p+1)s
p−1 H

(

e
s

p−1 z
)

− e−
ps

p−1h
(

e
s

p−1 z
)

z

∣
∣
∣
∣
≤ C0

sa+1
(|z|p+1 + 1).

Proof. Note that i) obviously follows from the following estimate,

∀q > 0, b > 0,
|z|q

logb(2 + e
2s

p−1 z2)
≤ C

sb
(|z|q + 1), ∀s ≥ s̄0, (2.1)

where C = C(b, q) > 0 and s̄0 = s̄0(b, q) > 0.
In order to derive estimate (2.1), considering the first case z2e

s
p−1 ≥ 4, then the case

z2e
s

p−1 ≤ 4, we would obtain (2.1).
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ii) directly follows from an integration by part and estimate (2.1). Indeed, we have

H(ξ) =

∫ ξ

0
h(x)dx = µ

∫ ξ

0

|x|p−1x

loga(2 + x2)
dx

=
µ|ξ|p+1

(p + 1) loga(2 + ξ2)
+

2aµ

p+ 1

∫ ξ

0

|x|p+1x

(2 + x2) loga+1(2 + x2)
dx.

Replacing ξ by e
s

p−1 z and using (2.1), we then derive ii). This ends the proof of Lemma
2.1.

We assert that Theorem 1.1 is a direct consequence of the following lemma:

Lemma 2.2. Let a, p, n, µ be fixed and w be solution of equation (1.9). There exists s̃0 =

s̃0(a, p, n, µ) ≥ s0 such that the functional of E defined in (1.12) satisfies the following

inequality, for all s ≥ max{s̃0,− log T},

d

ds
E [w](s) ≤ −1

2

∫

Rn

w2
sρdy + γs−(a+1)E [w](s) + Cs−(a+1), (2.2)

where γ = 4C0(p+1)
(p−1)2

, C0 is given in Lemma 2.1.

Let us first derive Theorem 1.1 from Lemma 2.2 and we will prove it later.

Proof of Theorem 1.1 admitting Lemma 2.2. Differentiating the functional J defined
in (1.11), we obtain

d

ds
Ja[w](s) =

d

ds

{

E [w](s)eγ
a
s−a

+ θs−a
}

=
d

ds
E [w](s)eγ

a
s−a − γs−(a+1)E [w](s)eγ

a
s−a − aθs−(a+1)

≤ −1

2
e

γ
a
s−a
∫

Rn

w2
sρdy +

[

Ce
γ
a
s−a − aθ

]

s−(a+1) (use (2.2)).

Choosing θ large enough such that Ce
γ
a
s̃−a
0 − aθ ≤ 0 and noticing that e

γ
a
s−a ≥ 1 for all

s > 0, we derive
d

ds
Ja[w](s) ≤ −1

2

∫

Rn

w2
sρdy, ∀s ≥ s̃0.

This implies inequality (1.15) and concludes the proof of Theorem 1.1, assuming that
Lemma 2.2 holds.

It remains to prove Lemma 2.2 in order to conclude the proof of Theorem 1.1.
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Proof of Lemma 2.2 . Multiplying equation (1.9) with wsρ and integrating by parts:
∫

Rn

|ws|2ρ = − d

ds

{∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

}

+e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wsρdy.

For the last term of the above expression, we write in the following:

e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wsρdy = e
− (p+1)s

p−1

∫

Rn

h
(

e
s

p−1w
)
(

e
s

p−1ws +
e

s
p−1

p− 1
w

)

ρdy

− 1

p− 1
e−

ps
p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy

= e−
p+1
p−1

s d

ds

∫

Rn

H
(

e
s

p−1w
)

ρdy − 1

p− 1
e−

ps
p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.

This yields
∫

Rn

|ws|2ρdy = − d

ds

{∫

Rn

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

}

+
d

ds

{

e
− p+1

p−1
s
∫

Rn

H
(

e
s

p−1w
)

ρdy

}

+
p+ 1

p− 1
e−

p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy

− 1

p− 1
e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.

From the definition of the functional E given in (1.12), we derive a first identity in the
following:

d

ds
E [w](s) = −

∫

Rn

|ws|2ρdy +
p+ 1

p− 1
e
− p+1

p−1
s
∫

Rn

H
(

e
s

p−1w
)

ρdy

− 1

p− 1
e−

ps
p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy. (2.3)

A second identity is obtained by multiplying equation (1.9) with wρ and integrating by
parts:

d

ds

∫

Rn

|w|2ρdy = −4

{∫

Rn

(
1

2
|∇w|2 + 1

2(p− 1)
|w|2 − 1

p+ 1
|w|p+1

)

ρdy

−e−
(p+1)s
p−1

∫

Rn

H
(

e
s

p−1w
)

ρdy

}

+

(

2− 4

p+ 1

)∫

Rn

|w|p+1ρdy − 4e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy

+2e
− ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy.
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Using again the definition of E given in (1.12), we rewrite the second identity in the
following:

d

ds

∫

Rn

|w|2ρdy = −4E [w](s) + 2
p− 1

p+ 1

∫

Rn

|w|p+1ρdy

− 4e−
p+1
p−1

s
∫

Rn

H
(

e
s

p−1w
)

ρdy + 2e−
ps

p−1

∫

Rn

h
(

e
s

p−1w
)

wρdy. (2.4)

From (2.3), we estimate

d

ds
E [w](s) ≤ −

∫

Rn

|ws|2ρdy

+
1

p− 1

∫

Rn

{∣
∣
∣
∣
(p+ 1)e−

(p+1)s
p−1 H

(

e
s

p−1w
)

− e−
ps

p−1h
(

e
s

p−1w
)

w

∣
∣
∣
∣

}

ρdy.

Using ii) of Lemma 2.1, we have for all s ≥ s̄0,

d

ds
E [w](s) ≤ −

∫

Rn

|ws|2ρdy +
C0s

−(a+1)

p− 1

∫

Rn

|w|p+1ρdy + Cs−(a+1). (2.5)

On the other hand, we have by (2.4),
∫

Rn

|w|p+1ρdy ≤ 2(p + 1)

p− 1
E [w](s) + p+ 1

p− 1

∫

Rn

|wsw|ρdy

+
2(p + 1)

p− 1

∫

Rn

(∣
∣
∣e

− p+1
p−1

s
H
(

e
s

p−1w
)∣
∣
∣+
∣
∣
∣e

− ps
p−1h

(

e
s

p−1w
)

w
∣
∣
∣ ρdy

)

.

Using the fact that |wsw| ≤ ǫ(|ws|2 + |w|p+1) + C(ǫ) for all ǫ > 0 and i) of Lemma 2.1,
we obtain

∫

Rn

|w|p+1ρdy ≤ 2(p + 1)

p− 1
E [w](s) + ǫ

∫

Rn

|ws|2ρdy

+
(
ǫ+ Cs−a

)
∫

Rn

|w|p+1ρdy + C.

Taking ǫ = 1
4 and s1 large enough such that Cs−a ≤ 1

4 for all s ≥ s1, we have
∫

Rn

|w|p+1ρdy ≤ 4(p+ 1)

p− 1
E [w](s) + 1

2

∫

Rn

|ws|2ρdy + C, ∀s > s1. (2.6)

Substituting (2.6) into (2.5) yields (2.2) with s̃0 = max{s̄0, s1}. This concludes the
proof of Lemma 2.2 and Theorem 1.1 also.

3 Blow-up behavior

This section is devoted to the proof of Theorem 1.4 and Theorem 1.7. Consider b a
blow-up point and write w instead of wb,T for simplicity. From (ii) of Theorem 1.2
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and up to changing the signs of w and h, we may assume that ‖w(y, s) − κ‖L2
ρ
→ 0 as

s → +∞, uniformly on compact subsets of Rn. As mentioned in the introduction, by
setting v(y, s) = w(y, s) − φ(s) (φ is the positive solution of (1.18) such that φ(s) → κ
as s→ +∞), we see that ‖v(s)‖L2

ρ
→ 0 as s→ +∞ and v solves the following equation:

∂sv = (L+ ω(s))v + F (v) +G(v, s), ∀y ∈ R
n, ∀s ∈ [− log T,+∞), (3.1)

where L = ∆− y
2 · ∇+ 1 and ω, F , G are given by

ω(s) = p
(
φp−1 − κp−1

)
+ e−sh′

(

e
s

p−1φ
)

,

F (v) = |v + φ|p−1(v + φ)− φp − pφp−1v,

G(v, s) = e
− ps

p−1

[

h
(

e
s

p−1 (v + φ)
)

− h
(

e
s

p−1φ
)

− e
s

p−1h′
(

e
s

p−1φ
)

v
]

.

By a direct calculation, we can show that

|ω(s)| = O(
1

sa+1
), as s→ +∞, (3.2)

(see Lemma B.1 for the proof of this fact, note also that in the case where h is given by
(1.7) and treated in [26], we just obtain |ω(s)| = O(s−a) as s → +∞, and that was a
major reason preventing us from deriving the result in the case a ∈ (0, 1]) in [26].
Now introducing

V (y, s) = β(s)v(y, s), where β(s) = exp

(

−
∫ +∞

s
ω(τ)dτ

)

, (3.3)

then V satisfies
∂sV = LV + F̄ (V, s), (3.4)

where F̄ (V, s) = β(s)(F (V ) +G(V, s)) satisfying

∣
∣
∣F̄ (V, s)− p

2κ
V 2
∣
∣
∣ = O

(
V 2

sa

)

+O(|V |3), as s→ +∞. (3.5)

(see Lemma C.1 in [26] for the proof of this fact, note that in the case where h is given
by (1.7), the first term in the right-hand side of (3.5) is O

(
V 2

sa−1

)

).

Since β(s) → 1 as s→ +∞, each equivalent for V is also an equivalent for v. Therefore,
it suffices to study the asymptotic behavior of V as s → +∞. More precisely, we claim
the following:

Proposition 3.1 (Classification of the behavior of V as s→ +∞). One of the following

possibilities occurs:

i) V (y, s) ≡ 0,
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ii) There exists l ∈ {1, . . . , n} such that up to an orthogonal transformation of coordinates,

we have

V (y, s) = − κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa+1

)

+O
(
log s

s2

)

as s→ +∞.

iii) There exist an integer number m ≥ 3 and constants cα not all zero such that

V (y, s) = −e(1−m
2 )s

∑

|α|=m
cαHα(y) + o

(

e(1−
m
2 )s
)

as s→ +∞.

The convergence takes place in L2
ρ as well as in Ck,γloc for any k ≥ 1 and γ ∈ (0, 1).

Proof. Because we have the same equation (3.4) and a similar estimate (3.5) to the case
treated in [26], we do not give the proof and kindly refer the reader to Section 3 in
[26].

Let us derive Theorem 1.4 from Proposition 3.1.

Proof of Theorem 1.4. By the definition (3.3) of V , we see that i) of Proposition 3.1
directly follows that v(y, s) ≡ φ(s) which is i) of Theorem 1.4. Using ii) of Proposition
3.1 and the fact that β(s) = 1 +O( 1

sa ) as s→ +∞, we see that as s→ +∞,

w(y, s) = φ(s) + V (y, s)

(

1 +O(
1

sa
)

)

= φ(s)− κ

4ps





l∑

j=1

y2j − 2l



+O
(

1

sa+1

)

+O
(
log s

s2

)

,

which yields ii) of Theorem 1.4.
Using iii) of Proposition 3.1 and again the fact that β(s) = 1 + O( 1

sa ) as s → +∞, we
have

w(y, s) = φ(s)− e(1−
m
2 )s

∑

|α|=m
cαHα(y) + o

(

e(1−
m
2 )s
)

as s→ +∞.

This concludes the proof of Theorem 1.4.

We now give the proof of Theorem 1.7 from Theorem 1.4. Note that the derivation of
Theorem 1.7 from Theorem 1.4 in the unperturbed case (h ≡ 0) was done by Velázquez
in [28]. The idea to extend the convergence up to sets of the type {|y| ≤ K0

√
s} or

{|y| ≤ K0e
( 1
2
− 1

m)s} is to estimate the effect of the convective term −y
2 · ∇w in the equa-

tion (1.9) in Lqρ spaces with q > 1. Since the proof of Theorem 1.7 is actually in spirit
by the method given in [28], all that we need to do is to control the strong perturbation
term in equation (1.9). We therefore give the main steps of the proof and focus only on
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the new arguments. Note also that we only give the proof of ii) of Theorem 1.4 because
the proof of iii) is exactly the same as written in Proposition 34 in [26].

Let us restate i) of Theorem 1.7 in the following proposition:

Proposition 3.2 (Asymptotic behavior in the y√
s

variable). Assume that w is a solution

of equation (1.9) which satisfies ii) of Theorem 1.4. Then, for all K > 0,

sup
|ξ|≤K

∣
∣w(ξ

√
s, s)− fl(ξ)

∣
∣ = O

(
1

sa

)

+O
(
log s

s

)

, as s→ +∞,

where fl(ξ) = κ
(

1 + p−1
4p

∑l
j=1 ξ

2
j

)− 1
p−1

.

Proof. Define q = w − ϕ, where

ϕ(y, s) =
φ(s)

κ




κ



1 +
p− 1

4ps

l∑

j=1

y2j





− 1
p−1

+
κl

2ps




 , (3.6)

and φ is the unique positive solution of (1.18) satisfying (1.19).

Note that in [28] and [26], the authors took ϕ(y, s) = κ
(

1 + p−1
4ps

∑l
j=1 y

2
j

)− 1
p−1

+ κl
2ps .

But this choice just works in the case where a > 1. In the particular case (1.2), we use
in additional the factor φ(s)

κ which allows us to go beyond the order 1
sa coming from the

strong perturbation term in order to reach 1
sa+1 in many estimates in the proof.

Using Taylor’s formula in (3.6) and ii) of Theorem 1.4, we find that

‖q(s)‖L2
ρ
= O

(
1

sa+1

)

+O
(
log s

s2

)

, as s→ +∞. (3.7)

Straightforward calculations based on equation (1.9) yield

∂sq = (L+ α)q + F (q) +G(q, s) +R(y, s), ∀(y, s) ∈ R
n × [− log T,+∞), (3.8)

where

α(y, s) = p(ϕp−1 − κp−1) + e−sh′
(

e
s

p−1ϕ
)

,

F (q) = |q + ϕ|p−1(q + ϕ)− ϕp − pϕp−1q,

G(q, s) = e−
ps
p−1

[

h
(

e
s

p−1 (q + ϕ)
)

− h
(

e
s

p−1ϕ
)

− e
s

p−1h′
(

e
s

p−1ϕ
)

q
]

,

R(y, s) = −∂sϕ+∆ϕ− y

2
· ∇ϕ− ϕ

p− 1
+ ϕp + e−

ps
p−1h

(

e
s

p−1ϕ
)

.
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Let K0 > 0 be fixed, we consider first the case |y| ≥ 2K0
√
s and then |y| ≤ 2K0

√
s and

make a Taylor expansion for ξ = y√
s

bounded. Simultaneously, we obtain for all s ≥ s0,

α(y, s) ≤ C1

sa′
,

|F (q)|+ |G(q, s)| ≤ C1(q
2 + 1{|y|≥2K0

√
s}),

|R(y, s)| ≤ C1

( |y|2 + 1

s1+a′
+ 1{|y|≥2K0

√
s}

)

,

where a′ = min{1, a}, C1 = C1(M0,K0) > 0, M0 is the bound of w in L∞-norm. Note
that we need to use in addition the fact that φ satisfies equation (1.18) to derive the
bound for R (see Lemma B.2).
Let Q = |q|, we then use the above estimates and Kato’s inequality, i.e ∆f · sign(f) ≤
∆(|f |), to derive from equation (3.8) the following: for all K0 > 0 fixed, there are
C∗ = C∗(K0,M0) > 0 and a time s′ > 0 large enough such that for all s ≥ s∗ =

max{s′,− log T},

∂sQ ≤
(

L+
C∗
sa

′

)

Q+ C∗

(

Q2 +
(|y|2 + 1)

s1+a
′ + 1{|y|≥2K0

√
s}

)

, ∀y ∈ R
n. (3.9)

Since ∣
∣
∣
∣
w(y, s)− fl

(
y√
s

)∣
∣
∣
∣
≤ Q+

C

sa′
,

the conclusion of Proposition 3.2 follows if we show that

∀K0 > 0, sup
|y|≤K0

√
s

Q(y, s) → 0 as s→ +∞. (3.10)

Let us now focus on the proof of (3.10) in order to conclude Proposition 3.2. For this
purpose, we introduce the following norm: for r ≥ 0, q > 1 and f ∈ Lqloc(R

n),

Lq,rρ (f) ≡ sup
|ξ|≤r

(∫

Rn

|f(y)|qρ(y − ξ)dy

) 1
q

.

Following the idea in [28], we shall make estimates on solution of (3.9) in the L2,r(τ)
ρ

norm where r(τ) = K0e
τ−s̄
2 ≤ K0

√
τ . Particularly, we have the following:

Lemma 3.3. Let s be large enough and s̄ is defined by es−s̄ = s. Then for all τ ∈ [s̄, s] and

for all K0 > 0, it holds that

g(τ) ≤ C0

(

eτ−s̄ǫ(s̄) +
∫ (τ−2K0)+

s̄

e(τ−t−2K0)g2(t)
(
1− e−(τ−t−2K0)

)1/20
dt

)

where g(τ) = L
2,r(K0,τ,s̄)
ρ (Q(τ)), r(K0, τ, s̄) = K0e

τ−s̄
2 , ǫ(s) = O

(
1

sa+1

)
+O

(
log s
s2

)

, C0 =

C0(C∗,M0,K0) and z+ = max{z, 0}.
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Proof. Multiplying (3.9) by β(τ) = e
∫ τ
s̄

C∗
ta

′ dt, then we write Q(y, τ) for all (y, τ) ∈ R
n ×

[s̄, s] in the integration form:

Q(y, τ) = β(τ)SL(τ − s̄)Q(y, s̄)

+ C∗

∫ τ

s̄
β(τ)SL(τ − t)

(

Q2 +
|y|2
t1+a′

+
1

t1+a′
+ 1{|y|≥2K0

√
t}

)

dt,

where SL is the linear semigroup corresponding to the operator L.
Next, we take the L2,r(K0,τ,s̄)

ρ -norms both sides in order to get the following:

g(τ) ≤ C0L
2,r
ρ

[
SL(τ − s̄)Q(s̄)

]
+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)Q2(t)

]
dt

+ C0

∫ τ

s̄
L2,r
ρ

[

SL(τ − t)

( |y|2
t1+a′

+
1

t1+a′

)]

dt

+ C0

∫ τ

s̄
L2,r
ρ

[
SL(τ − t)1{|y|≥2K0

√
t}
]
dt ≡ J1 + J2 + J3 + J4.

Proposition 2.3 in [28] yields

|J1| ≤ C0e
τ−s̄‖Q(s̄)‖L2

ρ
= eτ−s̄O(ǫ(s̄)) as s̄→ +∞,

|J2| ≤
C0

s̄1+a′
eτ−s̄ + C0

∫ (τ−2K0)+

s̄

e(τ−t−2K0)

(
1− e−(τ−t−2K0)

)1/20

[

L2,r(K0,t,s̄)
ρ Q(t)

]2
dt,

|J3| ≤
C0e

τ−s̄

s̄1+a′
(1 + (τ − s̄)),

|J4| ≤ C0e
−δs̄, where δ = δ(K0) > 0.

Putting together the estimates on Ji, i = 1, 2, 3, 4, we conclude the proof of Lemma
3.3.

We now use the following Gronwall lemma from Velázquez [28]:

Lemma 3.4 (Velázquez [28]). Let ǫ, C,R and δ be positive constants, δ ∈ (0, 1). Assume

that H(τ) is a family of continuous functions satisfying

H(τ) ≤ ǫeτ +C

∫ (τ−R)+

0

eτ−sH2(s)
(
1− e−(τ−s−R))δ

ds, for τ > 0.

Then there exist θ = θ(δ, C,R) and ǫ0 = ǫ0(δ, C,R) such that for all ǫ ∈ (0, ǫ0) and any τ

for which ǫeτ ≤ θ, we have

H(τ) ≤ 2ǫeτ .
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Applying Lemma 3.4 with H ≡ g, we see from Lemma 3.3 that for s large enough,

g(τ) ≤ 2C0e
τ−s̄ǫ(s̄), ∀τ ∈ [s̄, s].

If τ = s, then es−s̄ = s, r = K0
√
s and

g(s) ≡ L2,K0
√
s

ρ

(
Q(s)

)
= O

(
1

sa

)

+O
(
log s

s

)

, as s→ +∞.

By using the regularizing effects of the semigroup SL (see Proposition 2.3 in [28]), we
then obtain

sup
|y|≤K0

√
s

2

Q(y, s) ≤ C ′(C∗,K0,M0)L
2,K0

√
s

ρ (Q(s)) = O
(

1

sa

)

+O
(
log s

s

)

,

as s→ +∞, which concludes the proof of Proposition 3.2.

4 Numerical method

We give in this section a numerical study of the blow-up profile of equation (1.1) in one
dimension. Though our method is very similar to Berger and Kohn’s algorithm [3] in
spirit, it is better in the sense that is can be applied to equations which are not invariant
under the transformation (1.26). Our method differs from Berger and Kohn’s in the
following way: we step the solution forward until its maximum value multiplied by a
power of its mesh size reaches a preset threshold, where the mesh size and the preset
threshold are linked; for the rescaling algorithm, the solution is stepped forward until its
maximum value reaches a preset threshold, and the mesh size and the preset threshold
do not need to be linked. For more clarity, we present in the next subsection the mesh-
refinement technique applied to equation (1.1), then give various numerical experiments
to illustrate the effectiveness of our method for the problem of the numerical blow-
up profile. Note that our method is more general than Berger and Kohn’s [3], in the
sense that it applies to non scale invariant equations. However, when applied to the
unperturbed case F (u) = |u|p−1u, our method gives exactly the same approximation as
that of [3].

4.1 Mesh-refinement algorithm

In this section, we describe our refinement algorithm to solve numerically the problem
(1.1) with initial data ϕ(x) > 0, ϕ(x) = ϕ(−x), xdϕ(x)dx < 0 for x 6= 0, which gives a
positive symmetric and radially decreasing solution. Let us rewrite the problem (1.1)
(with µ = 1) in the following:







ut = uxx + F (u), (x, t) ∈ (−1, 1) × (0, T ),
u(1, t) = u(−1, t) = 0, t ∈ (0, T ),
u(x, 0) = ϕ(x), x ∈ (−1, 1),

(4.1)
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where p > 1 and

F (u) = up +
up

loga(2 + u2)
with a > 0. (4.2)

Let ~ and τ be the initial space and time steps, we define C∆ = τ
~2

, xi = i~, tn = nτ ,
I = 1

~
and ui,n as the approximation of u(xi, tn), where ui,n is defined for all n ≥ 0, for

all i ∈ {−I, . . . , I} by

ui,n+1 = ui,n + C∆

[
ui−1,n − 2ui,n + ui+1,n

]
+ τF

(
ui,n
)
, (4.3)

uI,n = u−I,n = 0, ui,0 = ϕi.

Note that this scheme is first order accurate in time and second order in space, and it
requests the stability condition C∆ = τ

~2
≤ 1

2 .
Our algorithm needs to fix the following parameters:

• λ < 1: the refining factor with λ−1 being a small integer.

• M : the threshold to control the amplitude of the solution,

• α: the parameter controlling the width of interval to be refined.

The parameters λ and M must satisfy the following relation:

M = λ−
2

p−1M0, where M0 = ~
2

p−1‖ϕ‖∞. (4.4)

Note that the relation (4.4) is important to make our method works. In [3], the typical
choice is M0 = ‖ϕ‖∞, hence M = λ

− 2
p−1 ‖ϕ‖∞.

In the initial step of the algorithm, we simply apply the scheme (4.3) until ~
2

p−1‖u(�, tn)‖∞
reaches M (note that in [3] the solution is stepped forward until ‖u(�, tn)‖∞ reaches M ;
in this first step, the thresholds of the two methods are the same, however, they will
split after the second step; roughly speaking, for the threshold we shall use the quan-

tity ~
2

p−1 ‖u(�, tn)‖∞ in our method instead of ‖u(�, tn)‖∞ in [3]). Then, we use a linear
interpolation in time to find τ∗0 such that

tn − τ ≤ τ∗0 ≤ tn and ~
2

p−1‖u(�, τ∗0 )‖ =M.

Afterward, we determine two grid points y−0 and y+0 such that






~
2

p−1u(y−0 − ~, τ∗0 ) < αM ≤ ~
2

p−1u(y−0 , τ
∗
0 )

~
2

p−1u(y+0 + ~, τ∗0 ) < αM ≤ ~
2

p−1u(y+0 , τ
∗
0 ).

(4.5)

Note that y−0 = −y+0 because of the symmetry of the solution. This closes the initial step.
Let us begin the first refining step. Define

u1(y1, t1) = u(y1, τ
∗
0 + t1), y1 ∈ (y−0 , y

+
0 ), t1 ≥ 0, (4.6)
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and setting h1 = λ~, τ1 = λ2τ as the space and time step for the approximation of u1
(note that τ1

h21
= τ

~2
= C∆ which is a constant), yi1 = ih1, tn1 = nτ1, I1 =

y+0
h1

and ui,n1

as the approximation of u1(yi1, t
n
1 ) (note that in the unperturbed case, Berger and Kohn

used the transformation (1.26) to define u1(y1, t1) = λ
2

p−1u(λy1, τ
∗
0 + λ2t1), and then

applied the same scheme for u to u1. However, we can not do the same because the
equation (4.1) is not in fact invariant under the transformation (1.26)). Then applying
the scheme (4.3) to u1 which reads

ui,n+1
1 = ui,n1 +C∆

[

ui−1,n
1 − 2ui,n1 + ui+1,n

1

]

+ τ1F
(

ui,n1

)

, (4.7)

for all n ≥ 0 and for all i ∈ {−I1 + 1, . . . , I1 − 1}.
Note that the computation of u1 requires the initial data u1(y1, 0) and the boundary
condition u1(y

±
0 , t1). For the initial condition, it is determined from u(x, τ∗0 ) by using

interpolation in space to get values at the new grid points. For the boundary condition,
since τ1 = λ2τ , we then have from (4.6),

u1(y
±
0 , nτ1) = u(y±0 , τ

∗
0 + nλ2τ). (4.8)

Since u and u1 will be stepped forward, each on its own grid (u1 on (y−0 , y
+
0 ) with the

space and time step h1 and τ1, and u on (−1, 1) with the space and time step ~ and τ),
the relation (4.8) will provide us with the boundary values for u1. In order to better
understand how it works, let us consider an example with λ = 1

2 . After closing the ini-
tial phase, the two solutions u1 and u are stepped forward independently, each on its
own grid, in other words, u1 on (y−0 , y

+
0 ) with the space and time step h1 and τ1, and

u on (−1, 1) with the space and time step ~ and τ . Then using the linear interpolation
in time for u, we get the boundary values for u1 by (4.8). Since τ1 = λ2τ = 1

4τ . This
means that u is stepped forward once every 4 time steps of u1. After 4 steps forward
of u1, the values of u on the interval (y−0 , y

+
0 ) must be updated to agree with the cal-

culations of u1. In other words, the approximation of u is used to assist in computing
the boundary values for u1. At each successive time step for u, the values of u on the
interval (y−0 , y

+
0 ) must be updated to make them agree with the more accurate fine grid

solution u1. When h
2

p−1

1 ‖u1(�, nτ1)‖∞ first exceeds M , we use a linear interpolation in

time to find τ∗1 ∈ [τn−1
1 , τn1 ] such that h

2
p−1

1 ‖u1(�, τ∗1 )‖∞ = M . On the interval where

h
2

p−1

1 ‖u1(�, τ∗1 )‖∞ > αM , the grid is refined further and the entire procedure as for u1 is
repeated to yield u2 and so forth.

Before going to a general step, we would like to comment on the relation (4.4). In-
deed, when ~

2
p−1‖u(t)‖∞ reaches the given threshold M in the initial phase, namely

when ~
2

p−1‖u(�, τ∗0 )‖∞ = M , we want to refine the grid such that the maximum values

of h
2

p−1

1 u1(y1, 0) equals to M0. By (4.6), this request turns into h
2

p−1

1 ‖u(�, τ∗0 )‖∞ = M0.

Since h1 = λ~, it follows that M = λ−
2

p−1M0, which yields (4.4).
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Let k ≥ 0, we set hk+1 = λ−1hk and τk+1 = λ2τk (note that τk+1

h2k+1
= τk

h2k
= C∆ which is a

constant), yk+1 and tk+1 as the variables of uk+1, yik = ihk, tnk = nτk. The index k = 0
means that u0(y0, t0) ≡ u(x, t), h0 ≡ ~ and τ0 ≡ τ . The solution uk+1 is related to uk by

uk+1(yk+1, tk+1) = uk(yk+1, τ
∗
k + tk+1), yk+1 ∈ (y−k , y

+
k ), tk+1 ≥ 0. (4.9)

Here, the time τ∗k ∈ [tn−1
k , tnk ] satisfies h

2
p−1

k ‖uk(·, τ∗k )‖∞ = M , and y−k , y
+
k are two grid

points determined by






h
2

p−1

k uk(y
−
k − hk, τ

∗
k ) < αM ≤ h

2
p−1

k uk(y
−
k , τ

∗
k ),

h
2

p−1

k uk(y
+
k + hk, τ

∗
k ) < αM ≤ h

2
p−1

k uk(y
+
k , τ

∗
k ).

(4.10)

The approximation of uk+1(y
i
k+1, t

n
k+1) (denoted by ui,nk+1) uses the scheme (4.3) with

the space step hk+1 and the time step τk+1, which reads

ui,n+1
k+1 = ui,nk+1 + C∆

[

ui−1,n
k+1 − 2ui,nk+1 + ui+1,n

k+1

]

+ τk+1F
(

ui,nk+1

)

, (4.11)

for all n ≥ 1 and i ∈ {−Ik + 1, · · · , Ik − 1} with Ik =
y+k
hk+1

(note from introduction that

Ik is an integer since λ−1 ∈ N).
As for the approximation of uk, the computation of ui,nk+1 needs the initial data and the
boundary condition. From (4.9) and the fact that τk+1 = λ2τk, we see that

uk+1(yk+1, 0) = uk(yk+1, τ
∗
k ) and uk+1(y

±
k , nτk+1) = uk(y

±
k , τ

∗
k + nλ2τk). (4.12)

Hence, from the first identity in (4.12), the initial data is simply calculated from uk(·, τ∗k )
by using a linear interpolation in space in order to assign values at new grid points. The
essential step in this new mesh-refinement method is to determine the boundary con-
dition through the second identity in (4.12). This means by a linear interpolation in
time of uk. Therefore, the previous solutions uk, uk−1, · · · are stepped forward indepen-
dently, each on its own grid. More precisely, since τk+1 = λ2τk = λ4τk−1 = · · · , then uk
is stepped forward once every λ−2 time steps of uk+1; uk−1 once every λ−4 time steps of
uk+1, ... On the other hand, the values of uk, uk−1, ... must be updated to agree with

the calculation of uk+1. When h
2

p−1

k+1‖uk+1(�, τk+1)‖∞ > M , then it is time for the next
refining phase.

We would like to comment on the output of the refinement algorithm:

i) Let τ∗k be the time at which the refining takes place, then the ratio τ∗k
τk

, which

indicates the number of time steps until h
2

p−1

k ‖uk‖∞, reaches the given threshold
M , is independent of k and tends to a constant as k → ∞.

ii) Let uk(·, τ∗k ) be the refining solution. If we plot h
2

p−1

k uk(�, τ
∗
k ) on (−1, 1), then their

graphs are eventually independent of k and converge as k → ∞.
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iii) Let (y−k , y
+
k ) be the interval to be refined, then the quality (h−1

k y+k )
2 behaves as a

linear function of k.

These assertions can be well understood by the following theorem:

Theorem 4.1 (Formal analysis). Let u be a blowing-up solution to equation (4.1), then

the output of the refinement algorithm satisfies:

i) The ratio
τ∗k
τk

is independent of k and tends to a constant as k → ∞, namely

τ∗k
τk

→ (λ−2 − 1)M1−p

C∆(p− 1)
, as k → +∞. (4.13)

Assume in addition that i) of Theorem 1.7 holds,

ii) Defining vk(z) = h
2

p−1

k uk(zy
+
k−1, τ

∗
k ) for all k ≥ 1, we have

∀|z| < 1, vk(z) ∼M
(
1 + (α1−p − 1)λ−2z2

)− 1
p−1 as k → +∞. (4.14)

iii) The quality (h−1
k y+k )

2 behaves as a linear function, namely

(h−1
k y+k )

2 ∼ γk +B as k → +∞. (4.15)

where γ = 2M1−p(α1−p−1)| log λ|
cp(p−1)λ2

, B = −M1−p(α1−p−1)
cp(p−1)λ2

log
(
M1−p~2

p−1

)

and cp =
p−1
4p .

Remark 4.2. Note that there is no assumption on the value of a in the hypothesis in

Theorem 4.1. It is understood in the sense that u blows up in finite time and its profile is

described in Theorem 1.7.

Proof. As we will see in the proof that the statement i) concerns the blow-up limit of the
solution and the second one is due to the blow-up profile stated in Theorem 1.7.
i) Let σk is the real time when the refinement from uk to uk+1 takes place, we have by
(4.9),

σk = τ∗0 + τ∗1 + · · ·+ τ∗k ,

where τ∗j is such that h
2

p−1

j ‖uk(·, τ∗j )‖∞ =M . This means that

uk(·, τ∗k ) = u(·, σk). (4.16)

On the other hand, from i) of Theorem 1.7 and the definition (1.23) of f , we see that

lim
t→T

(T − t)
1

p−1 ‖u(t)‖L∞ = κ. (4.17)

Combining (4.17) and (4.16) yields

(T − σk)
1

p−1‖uk(�, τ∗k )‖∞ = κ+ o(1), (4.18)
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where o(1) represents a term that tends to 0 as k → +∞.

Since ‖uk(�, τ∗k )‖∞ =Mh
−2
p−1

k , we then derive

T − σk =
(
M−1κ

)p−1
h2k + o(1). (4.19)

By the definition of σk and (4.16), we infer that τ∗k = σk − σk−1 (we can think τ∗k as the
live time of uk in the k-th refining phase). Hence,

τ∗k
τk

=
σk − σk−1

τk
=

1

τk
[(T − σk−1)− (T − σk)]

=
1

τk

(
M−1κ

)p−1
(h2k−1 − h2k) + o(1)

=
h2k
τk

(
M−1κ

)p−1
(λ−2 − 1) + o(1).

Since the ratio τk
h2k

is always fixed by the constant C∆, we finally obtain

lim
k→+∞

τ∗k
τk

=
(λ−2 − 1)M1−p

C∆(p− 1)
,

which concludes the proof of part i) of Theorem 4.1.

ii) Since the symmetry of the solution, we have y−k−1 = y+k−1. We then consider the
following mapping: for all k ≥ 1,

∀|z| ≤ 1, z 7→ vk(z), where vk(z) = h
2

p−1

k uk(zy
+
k−1, τ

∗
k ).

We will show that vk(z) is independently of k and converges as k → +∞. For this
purpose, we first write uk(yk, τk∗) in term of w(ξ, s) thanks to (4.16) and (1.8),

uk(yk, τ
∗
k ) = u(yk, σk) = (T − σk)

− 1
p−1w(ξk, sk), (4.20)

where ξk =
yk√
T−σk

and sk = − log(T − σk).
If we write i) of Theorem 1.7 in the variable y√

s
through (1.8), we have the following

equivalence: ∥
∥
∥
∥
w(y, s)− f

(
y√
s

)∥
∥
∥
∥
L∞

→ 0 as s→ +∞, (4.21)

where f is given in (1.23).
From (4.21), (4.19) and (4.20), we derive

uk(yk, τ
∗
k ) =Mκ−1h

− 2
p−1

k f

(

yk

(M−1κ)
p−1
2 hk

√
sk

)

+ o(1).
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Then multiplying both of sides by h
2

p−1

k and replacing yk by zy+k−1, we obtain

h
2

p−1

k uk(zy
+
k−1, τ

∗
k ) =Mκ−1f

(

zy+k−1

(M−1κ)
p−1
2 hk

√
sk

)

+ o(1). (4.22)

From the definition (4.10) of y+k−1, we may assume that

h
2

p−1

k−1uk−1(y
+
k−1, τ

∗
k−1) = αM.

Combining this with (4.22), we have

α = κ−1f

(

y+k−1

(M−1κ)
p−1
2 hk−1

√
sk−1

)

+ o(1).

Since sk = − log(T − σk) and the fact that hk = λk~, we have from (4.19) that

sk = 2k| log λ| − log

(
M1−p

~
2

p− 1

)

+ o(1), (4.23)

which follows limk→+∞
sk−1

sk
= 1. Thus, it is reasonable to assume that

y+k−1√
sk−1

and
y+k−1√
sk

tend to the positive root ζ as k → +∞. Hence,

α = κ−1f

(

ζ

(M−1κ)
p−1
2 hkλ−1

)

+ o(1).

Using the definition (1.23) of f , we have

α =



1 + cp

∣
∣
∣
∣
∣

ζ

(M−1κ)
p−1
2 hk

∣
∣
∣
∣
∣

2

λ2





− 1
p−1

+ o(1),

which follows ∣
∣
∣
∣
∣

ζ

(M−1κ)
p−1
2 hk

∣
∣
∣
∣
∣

2

=
1

cp

[
(α1−p − 1)λ−2

]
+ o(1), (4.24)

where cp is the constant given in the definition (1.23) of f .
Substituting this into (4.22) and using again the definition (1.23) of f , we arrive at

vk(z) =M



1 + cp

∣
∣
∣
∣
∣

ζ

(M−1κ)
p−1
2 hk

∣
∣
∣
∣
∣

2

z2





− 1
p−1

+ o(1)

=M
(
1 + (α1−p − 1)λ−2z2

)− 1
p−1 + o(1).
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Let k → +∞, we then obtain the conclusion ii).

iii) From (4.24) and the fact that y+k√
sk

→ ζ as k → +∞, we have

(h−1
k y+k )

2 =
(α1−p − 1)M1−p

cpλ2(p− 1)
log sk + o(1).

Using (4.23), we then derive

(h−1
k y+k )

2 =
2k| log λ|(α1−p − 1)M1−p

cpλ2(p− 1)
− (α1−p − 1)M1−p

cpλ2(p− 1)
log

(
M1−p

~
2

p− 1

)

+ o(1),

which yields the conclusion iii) and completes the proof of Theorem 4.1.

4.2 The numerical results

This subsection gives various numerical confirmation for the assertions stated in the
previous subsection (Theorem 4.1). All the experiments reported here used ϕ(x) =
2(1+ cos(πx)) as the initial data, α = 0.6 as the parameter for controlling the interval to
be refined, λ = 1

2 as the refining factor, C∆ = 1
4 as the stability condition for the scheme

(4.3), p = 3 and a = 0.1, 1, 10 in the nonlinearity F given in (4.2). The threshold
M is chosen to be satisfied the condition (4.4). In Table 4.1, we give some values of
M corresponding the initial data and the initial space step ~. We generally stop the

~ 0.040 0.020 0.010 0.005
M 0.320 0.160 0.080 0.040

Table 4.1. The value of M corresponds to the initial data and the initial space step.

computation after 40 refining phases. Indeed, since h
2

p−1

k ‖uk(�, τ∗k )‖∞ = M and the fact
that hk = λhk−1, we have by induction,

‖uk(�, τ∗k )‖∞ = h
− 2

p−1

k M = (λhk−1)
− 2

p−1M = · · · = (λk~)
− 2

p−1M.

With these parameters, we see that the corresponding amplitude of u approaches 1012

after 40 iterations.

i) The value τ∗k
τk

is independent of k and tends to the constant as k → +∞.

It is convenient to denote the computed value of τ
∗
k
τk

by Nk and the predicted value given
in the statement i) of Theorem 4.1 byNpre. Note that the values ofNpre does not depend
on a but depend on ~ because of the relation (4.4). More precisely,

Npre(~) =
(1− λ2)‖ϕ‖1−p∞
C∆(p − 1)~2

.
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Then considering the quality Nk
Npre

, theoretically, it is expected to converge to 1 as k tends

to infinity. Table 4.2 provides computed values of Nk
Npre

at some selected indexes of k, for
computing with ~ = 0.005 and three different values of a. According to the numerical
results given in Table 4.2, the computed values in the case a = 10 and a = 1.0 approach
to 1 as expected which gives us a numerical answer for the statement (4.17). However
the numerical results in the case a = 0.1 is not good due to the fact that the speech of
convergence to the blow-up limit (4.17) is 1

| log(T−t)|a′ with a′ = min{a, 1} (see Theorem

1.4).

k a = 10 a = 1.0 a = 0.1

10 1.0325 0.9699 0.5853
15 1.0203 0.9771 0.5885
20 1.0149 0.9816 0.5923
25 1.0117 0.9845 0.5957
30 1.0096 0.9867 0.5989
35 1.0080 0.9885 0.6016
40 1.0072 0.9899 0.6043

Table 4.2. The values of Nk

Npre
at some selected indexes of k, for computing with ~ = 0.005 and three

different values of a.

ii) The function vk(z) introduced in part ii) of Theorem 4.1 converges to a predicted
profile as k → +∞.
As stated in part ii) of Theorem 4.1, if we plot vk(z) over the fixed interval (−1, 1), then
the graph of vk would converge to the predicted one. Figure 4.1 gives us a numerical
confirmation for this fact, for computing with ~ = 0.005 and a = 10. Looking at Figure
4.1, we see that the graph of vk evidently converges to the predicted one given in the
right-hand side of (4.14) as k increases. The last curve v40 seemly coincides to the
prediction. Figure 4.2 shows the graph of v40 and the predicted profile for an other
experiment with ~ = 0.005 and a = 0.1. They coincide to within plotting resolution.

In Table 4.3, we give the error in L∞ between vk(z) at index k = 40 and the predicted
profile given in the right hand-side of (4.14), namely

e~,a = sup
z∈(−1,1)

∣
∣
∣v40(z)−M

(
1 + (α1−p − 1)λ−2z2

)− 1
p−1

∣
∣
∣ . (4.25)

These numerical computations give us a confirmation that the computed profiles vk
converges to the predicted one. Since the error e~,a tends to 0 as ~ goes to zero, the
numerical computations also answer to the stability of the blow-up profile stated in i) of
Theorem 1.7. In fact, the stability makes the solution visible in numerical simulations.

iii) The quality (h−1
k y+k )

2 behaves like a linear function.
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Figure 4.1. The graph of vk(z) at some selected indexes of k, for computing with ~ = 0.005 and

a = 10. They converge to the predicted profile (the dash line) as stated in (4.14) as k increases.
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Figure 4.2. The graph of vk(z) at k = 40 and the predicted profile given in (4.14), for computing

with ~ = 0.005 and a = 0.1. They coincide within plotting resolution.
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~ a = 10 a = 1.0 a = 0.1

0.04 0.002906 0.001769 0.002562
0.02 0.000789 0.000671 0.000687
0.01 0.000470 0.000359 0.000380
0.005 0.000238 0.000213 0.000235

Table 4.3. Error in L∞ between the computed and predicted profiles, e~,a defined in (4.25).

For making a quantitative comparison between our numerical results and the predicted
behavior as stated in iii) of Theorem 4.1, we plot the graph of (h−1

k y+k )
2 against k and

denote by γ~,a the slope of this curve. Then considering the ratio γ~,a
γ , where γ is given

in part iii) of Theorem 4.1. As expected, this ratio γ~,a
γ would approach one. Figure 4.3

shows (h−1
k y+k )

2 as a function of k for computing with the initial space step ~ = 0.005
for different values of a. Looking at Figure 4.3, we see that the two middle curves
corresponding the case a = 10 and a = 1 behave like the predicted linear function (the
top line), while this is not true in the case a = 0.1 (the bottom curve). In order to make
this clearer, let us see Table 4.4 which lists the values of γ~,a

γ for computing with various
values of the initial space step ~ for three different values of a. Here, the value of γ~,a
is calculated for 20 ≤ k ≤ 40. As Table 4.4 shows that the numerical values in the case
a = 10 and a = 1 agree with the prediction stated in ii) of Theorem 4.1, while the
numerical values in the case a = 0.1 is far from the predicted one.

k

(h
−

1
k

y
+ k
)2

Figure 4.3. The graph of (h−1
k y+k )

2 against k, for computing with ~ = 0.005 for three different

values of a.
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~ a = 10 a = 1.0 a = 0.1

0.04 1.9514 1.9863 1.9538
0.02 1.1541 1.1436 0.8108
0.01 0.9991 1.0052 0.6417
0.005 0.9669 0.9682 0.5986

Table 4.4. The values of
γ~,a

γ
for computing with various values of the initial space step ~ for three

different values of a.

A Appendix A

The following lemma from [26] gives the expansion of φ(s), the unique solution of
equation (1.18) satisfying (1.19):

Lemma A.1. Let φ be a positive solution of the following ordinary differential equation:

φs = − φ

p− 1
+ φp +

µφp

loga(2 + e
2s

p−1φ2)
.

Assuming in addition φ(s) → κ as s→ +∞, then φ(s) takes the following form:

φ(s) = κ(1 + ηa(s))
− 1

p−1 as s→ +∞,

where

ηa(s) ∼ C∗

∫ +∞

s

es−τ

τa
dτ =

C∗
sa



1 +
k∑

j=1

bj
sj



+O
(

1

sa+k+1

)

, ∀k ∈ N,

with C∗ = µ
(
p−1
2

)a
and bj = (−1)j

∏j−1
i=0 (a+ i).

Proof. See Lemma A.3 in [26].

B Appendix B

We aim at proving the following:

Lemma B.1 (Estimate of ω(s)). We have

|ω(s)| = O
(

1

sa+1

)

, as s→ +∞.
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Proof. From Lemma A.1, we write

p(φ(s)p−1 − κp−1) = −pηa(s)
p− 1

(1 + ηa(s))
−1 = − pC∗

(p− 1)sa
(1 + ηa(s))

−1 +O
(

1

sa+1

)

.

A direct calculation yields,

e−sh′
(

e
p

p−1φ(s)
)

=
µpφp−1(s)

loga(2 + e
2s

p−1φ2(s))
− 2aµe

2s
p−1φp+1(s)

(2 + e
2s

p−1φ2(s)) loga+1(2 + e
2s

p−1φ2(s))

=
pC∗

(p− 1)sa
(1 + ηa(s))

−1 +O
(

1

sa+1

)

.

Adding the two above estimates, we obtain the desired result. This ends the proof of
Lemma B.1.

Lemma B.2 (Estimate of R(y, s)). We have

|R(y, s)| = O
( |y|2 + 1

sa
′+1

)

, as s→ +∞,

with a′ = min{1, a}.

Proof. Let us write ϕ(y, s) = φ(s)
κ ν(y, s) where

ν(y, s) = κ



1 +
p− 1

4ps

l∑

j=1

y2j





− 1
p−1

+
κl

2ps
.

Then, we write R(y, s) = φ(s)
κ R1(y, s) +R2(y, s) where

R1(y, s) = νs −∆ν − y

2
· ∇ν − ν

p− 1
+ νp,

R2(y, s) = −φ
′

κ
ν − φ

κ
νp + φp

(ν

κ

)p
+ e−

ps
p−1h′

(

e
s

p−1
φν

κ

)

.

The term R1(y, s) is already treated in [28], and it is bounded by

|R1(y, s)| ≤
C(|y|2 + 1)

s2
+ C1{|y|≥2K0

√
s}.

To bound R2, we use the fact that φ satisfies (1.19) to write

R2(y, s) =
νφ

κp
(κp−1 − φp−1)(κp−1 − νp−1)

+ e
− ps

p−1

[

h

(

e
s

p−1
φν

κ

)

− h
(

e
s

p−1φ
)]

+
(

1− ν

κ

)

e
− ps

p−1h
(

e
s

p−1φ
)

.
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Noting that ν(y, s) = κ + ν̄(y, s) with |ν̄(y, s)| ≤ C
s (|y|2 + 1), uniformly for y ∈ R and

s ≥ 1, and recalling from Lemma A.1 that φ(s) = κ(1+ηa(s))
− 1

p−1 where ηa(s) = O(s−a),
then using a Taylor expansion, we derive

|R2(y, s)| ≤ C

( |y|2 + 1

sa+1
+ 1{|y|≥2K0

√
s}

)

.

This concludes the proof of Lemma B.2.
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Étude numérique et théorique du profil à l’explosion dans les équations paraboliques non linéaires.

On s’intéresse au phénomène d’explosion en temps fini dans les équations aux dérivées partielles paraboliques non
linéaires, particulièrement au profil à l’explosion, des points de vue numérique et théorique.

Dans la partie théorique, on s’intéresse au phénomène d’explosion en temps fini pour une classe d’équations semi-
linéaires de la chaleur perturbées fortement avec l’exposant sous-critique de Sobolev. Travaillant dans le cadre des
variables auto-similaires, on obtient d’abord l’existence d’une fonctionnelle de Lyapunov, ce qui constitue une étape
cruciale pour établir le taux d’explosion de la solution. Dans une seconde étape, on s’intéresse à la structure de la
solution au voisinage du temps et du point d’explosion. On classifie tous les comportements asymptotiques possibles
pour la solution quand elle s’approche de la singularité. Ensuite, on décrit les profils à l’explosion correspondant
à ces comportements asymptotiques. Dans une troisième étape, on construit pour cette équation une solution qui
explose en temps fini en un seul point avec un profil d’explosion prescrit. Cette construction s’appuie sur la réduction
en dimension finie du problème et sur l’utilisation du théorème de l’indice pour conclure.

Dans la partie numérique, on se propose de développer des méthodes afin de donner des réponses numériques à
la question du profil à l’explosion pour certaines équations paraboliques, y compris le modèle de Ginzburg-Landau.
Nous proposons deux méthodes. La première est l’algorithme de remise à l’échelle (rescaling) proposé par Berger
et Kohn en 1988, appliqué à des équations paraboliques satisfaisant une propriété d’invariance d’échelle. Cette
propriété nous permet de faire un zoom de la solution quand elle est proche de la singularité, tout en gardant la
même équation. Le principal avantage de cette méthode est sa capacité à donner une très bonne approximation
numérique qui nous permet d’atteindre numériquement le profil à l’explosion. Le profil à l’explosion que l’on obtient
numériquement est en bon accord avec le profil théorique. De plus, en considérant une équation de la chaleur
non linéaire critique avec un terme de gradient non linéaire, avec peu de résultats théoriques, nous énonçons une
conjecture sur le profil à l’explosion, grâce à nos simulations numériques. La deuxième méthode numérique s’appuie
aussi sur un raffinement de maillage, dans l’esprit de l’algorithme de remise à l’échelle de Berger et Kohn. Cette
méthode est applicable à une plus grande classe d’équations dont les solutions explosent en temps fini sans la
propriété d’invariance d’échelle.
Mots clés : Équation semi-linéaire de la chaleur, perturbation d’ordre inférieur, singularité, explosion numérique,
explosion en temps fini, profil, stabilité, comportement asymptotique, équation complexe de Ginzburg-Landau.

Numerical and theoretical study of the blow-up profile in nonlinear parabolic equations.

We are interested in finite-time blow-up phenomena arising in the study of Nonlinear Parabolic Partial Differential
Equations, in particular in the blow-up profile, under the theoretical and numerical aspects.

In the theoretical direction, we are interested in particular in finite-time blow-up phenomena for some class of
strongly perturbed semilinear heat equations with Sobolev subcritical power nonlinearity. Working in the framework
of similarity variables, we first derive a Lyapunov functional in similarity variables which is a crucial step to derive
the blow-up rate of the solution. In a second step, we are interested in the structure of the solution near blow-up
time and point. We classify all possible asymptotic behaviors of the solution when it approaches to the singularity.
Then we describe blow-up profiles corresponding to these asymptotic behaviors. In a third step, we construct for
this equation a solution which blows up in finite time at only one blow-up point with a prescribed blow-up profile.
The construction relies on the reduction of the problem to a finite dimensional one and the use of index theory to
conclude.

In the numerical direction, we intend to develop methods in order to give numerical answers to the question of
the blow-up profile for some parabolic equations including the Ginzburg-Landau model. We propose two methods.
The first one is the rescaling algorithm proposed by Berger and Kohn in 1988 applied to parabolic equations which
are invariant under a scaling transformation. This scaling property allows us to make a zoom of the solution when
it is close to the singularity, still keeping the same equation. The main advantage of this method is its ability to
give a very good numerical approximation allowing to attain the numerical blow-up profile. The blow-up profile we
obtain numerically is in good accordance with the theoretical one. Moreover, by applying the method to a critical
nonlinear heat equation with a nonlinear gradient term, where almost nothing is known, we give a conjecture for its
blow-up profile thanks to our numerical simulations. The second one is a new mesh-refinement method inspired by
the rescaling algorithm of Berger and Kohn, which is applicable to more general equations, in particular those with
no scaling invariance.
Keyword: Semilinear heat equations, lower order perturbation, singularity, numerical blow-up, finite-time blow-up,
profile, stability, asymptotic behavior, complex Ginzburg-Landau equation.
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