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Notations

Variables and functions
r = (rp, z) position
rp in-plane space variable
z out-of-plane space variable
R lattice vectors (positions of crystal cells)
G reciprocal lattice vectors
da internal coordinate (within the cell) of atom a
k electronic wave vector (in-plane for graphene)
q phonon momentum (in-plane for graphene)
n(r) electronic density
ψk,s(r) wave function of state k in band s
εk,s energy of state k in band s
ωq,ν phonon frequency (mode ν at q)
eq,ν phonon eigenvector (mode ν at q)
u atomic displacement
f Fermi-Dirac distribution
nq,ν Bose-Eistein distribution for phonon mode ν at q
vc Coulomb interaction
χ Susceptibility
ε dielectric function
T temperature

Parameters
b lattice parameter (graphene)
b0 interatomic distance (graphene)
S unit cell area
Ω unit cell volume
N number of unit cells
µS mass density per unit area (graphene)
vF Fermi velocity (graphene)
εF Fermi level

Physical constants
e elementary Coulomb charge (> 0)

iii



iv Notations

~ Planck constant
kB Boltzmann constant

Indices
i,j run over Cartesian coordinates
s,s′ run over bands
a,a′ run over atoms
ν,µ run over phonon modes
p indicates in-plane quantity

Acronyms
3D three-dimensional
2D two-dimensional
EPC Electron-Phonon Coupling
FET Field Effect Transistor
QE Quantum ESPRESSO
DFT Density-Functional Theory
DFPT Density-Functional Perturbation Theory
LDA Local Density Approximation
KS Kohn-Sham
XC Exchange-Correlation
PBC Periodic Boundary Conditions
TB Tight Binding
RPA Random Phase Approximation
DOS Density Of States
BZ Brillouin Zone



Introduction

Despite arguments against the stability of 2D materials at room temperature, Andre
Geim and Kostantin Novoselov successfully produced graphene in 2004. The unique
electronic properties of this monolayer of carbon atoms were first studied theoretically
in 1947 by P.R. Wallace. During the following five decades, graphene raised the interest
of several theoreticians as a condensed matter toy model for Dirac fermions physics.
At the time, however, graphene was not believed to exist on its own. Rather than
the discovery of a new material, it was Geim and Novoselov’s experimental efforts to
isolate and characterize graphene that earned them the 2010 Nobel prize in physics.

Dimensionality is well known to be a critical parameter in condensed matter. It
often defines the characteristics and singularities of phase transitions, whether they are
structural, electronic, magnetic or otherwise. Although theoreticians had been working
in two-dimensional frameworks for a long time, the isolation of graphene meant that
this dimensionality was accessible to experimentalists as well. Fundamental solid-state
physics could finally benefit from the crucial interplay between theory and experiment
in two dimensions.

Equally important as the actual 2D material is the ability to control and character-
ize its properties. A crucial aspect of Geim and Novoselov’s characterization technique
was the use of the electric field effect. The idea of using an electric field to modulate
the electrical properties of materials was introduced by Julius Lilienfeld in 1925, but it
took a few decades before John Atalla and Dawon Kahng fabricated the first working
version of the modern field effect transistor in 1960. The field effect turned out to be
a physical mechanism of the utmost importance, as the field effect transistor became
the building block of the many electronic devices that we use everyday. The funda-
mental pertinence of the field effect relies on its capacity to induce significant changes
in the electronic properties of the target material via a variation of the density of
mobile charges. This is why field effect transistors, up to this day, are mostly made
of semiconductors rather than metals or semimetals like graphite. In semiconductors,
a relatively small electric field induces a sufficient density of mobile charges to switch
between insulating and conducting regimes. In bulk metals or semimetals, the typical
intensity of the electric field that we find in transistors turn out to induce a relatively
small density of mobile charges compared to the already large intrinsic density. The
electric field effect is then too small to be exploited. In his Nobel lecture, Geim states
that one of the major motivations for initiating his research on thin graphitic films
was the prospect of achieving significant electric field effects in materials other than
semiconductors. To do this, it was necessary to further increase the density of charges
induced in graphite. Rather than trying to increase the number of induced charges,
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vi Introduction

his ambition was to reduce the thickness of graphite and thus the volume in which
the charges were induced. In a sense, eliminating one spatial dimension and using the
field effect was a way to explore another dimension of the semimetallic graphite, its
electronic structure.

For more technological motivations, the industry of semiconductor electronic de-
vices has always been involved in the race towards thinner materials and downscaling in
general. The isolation of graphene marked the attainment of the ultimate limit of that
race, as well as the opening of a whole new range of 2D materials to explore. A remark-
able aspect of Geim and Novoselov’s Nobel prize is the short time delay that separates
the actual research and the prize. A similarly short time separated the realization of
the first transistor in 1947 by Bardeen, Brattain and Shockley, and the correspond-
ing Nobel prize in 1956. The reason is that both works had a huge and immediate
impact on research and technology. Considering the importance of transistors today,
we can expect a bright future for graphene and 2D materials in general. In slightly
over a decade, a formidable amount of research has been conducted on 2D materials.
Their sensibility to external stimulations (electric or magnetic field, light, tempera-
ture, strain, etc...) calls for a great number of prospective applications in electronic
devices, sensors, solar cells, batteries, thermoelectrics, and many more. For some new
fields of applications such as spintronics, quantum computing and superconductivity,
2D materials might very well lead to some breakthroughs.

Electronic transport plays a role in many of those prospective applications. De-
veloping good models and identifying all the different contributions that deteriorate
transport is paramount to improve the performances of the devices. It is also a very
common mean of characterization, extensively used in fundamental studies to observe
the signature of diverse phenomena. Two essential concepts to consider when study-
ing electronic transport are the electron-phonon interaction and screening. In some
cases the electron-phonon interaction is a limiting factor. In the electronic devices
discussed above, the scattering of electrons by phonons decreases the material’s effi-
ciency in transporting electrons. In other cases, like conventional superconductivity,
the electron-phonon interaction induces the pairing of electrons, which is the driving
mechanism. In any case, this interaction is omnipresent in condensed matter, and
its understanding is necessary for both fundamental and applied physics. Screening
is an important and complex aspect of the collective behavior of electrons in a ma-
terial. It refers to the ability of mobile charge carriers to screen electric fields via a
collective response driven by the long-range Coulomb interaction. As such, it modifies
the response of electrons to perturbing fields and, in particular, the electron-phonon
interaction. Screening is highly dependent on dimensionality, and requires a certain
amount of careful modeling. A lot remains to be understood about the specificity of
electronic transport, electron-phonon coupling and screening in 2D materials.

Ab initio simulations, as a complement to experiment, can help to understand the
electronic, structural and transport properties of materials. Most often, being able to
reproduce experimental results with simulations entails a good understanding of the
underlying physical mechanisms. Carried out upstream, ab initio simulation is also a
convenient tool to predict and explore 2D materials, pointing the way for experimental
research and technology.

This PhD thesis was initiated by the observation that numerical simulations failed
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to properly reproduce graphene’s phonon-limited resistivity, a direct effect of electron-
phonon interactions. Although theory gave a fairly good qualitative interpretation
of the experimental resistivity, numerical studies fell short of experiments quantita-
tively. This pointed to some possible flaws or deficiencies in the models and ab initio
simulations of electron-phonon interactions in graphene.

To achieve accurate simulations of electron-phonon interactions in this 2D mate-
rial, existing ab initio methods based on plane-wave density-functional theory needed
improvement. Those methods were initially implemented to simulate electrons and
phonons in 3D-periodic materials. Although they have been successful on many oc-
casions in that context, they are not adapted for the simulation of 2D materials. In
particular, they fail to simulate screening and the electric field effect in 2D systems.
Since both those mechanisms affect the electron-phonon interaction, it was impor-
tant to improve their simulation. Furthermore, they are both subject to some debate
and their importance extends much further than their influence on electron-phonon
interactions. Indeed, as an inherent characteristic of the electrons, screening is in-
volved in all electronic responses while the field effect is used in most experimental
measurements of resistivity and many prospective applications. In order to simulate
the influence of screening and the field effect on the interplay between electrons and
phonons in 2D materials, we implemented rather extensive modifications of existing ab
initio codes. Those new computational methods allowed us to establish quantitative
models of electron-phonon interactions in graphene. We improved existing qualitative
models and computed the parameters involved ab initio. The phonon-limited resistiv-
ity of graphene can then be found by including the electron-phonon interactions in a
transport model. Usually, some approximations are made to solve the resulting equa-
tion analytically. To overcome those approximations, we implemented a more accurate
numerical solution.

A direct objective of this work is to improve the understanding of electron-phonon
interactions and their role in the electronic transport properties of graphene. However,
beyond the study of graphene specifically, many of the issues approached in this thesis
apply to other 2D materials. A less immediate but very important objective of this
work is to provide several new computational methods that we hope will prove valuable
for the simulation of 2D materials in general.

In the first chapter, we introduce and motivate the concepts treated in the thesis.
In chapter 2, we present and improve analytical models for electrons, in-plane phonons
and their interactions in graphene. In chapter 3, we evaluate the parameters involved
in the electron-phonon coupling model using ab initio simulations. In chapter 4, we
present the implementation of a computational method based on density-functional
theory to compute the static screening function of 2D materials. We apply this method
to graphene and compare it to analytical models. In chapter 5, we focus on the
specificity of the field effect transistor setup, and study its effect on electron-phonon
interactions. We modify a density-functional theory code to enable the simulation of
2D materials in such a setup. We detail the implementation and apply it to graphene.
Finally, in chapter 6, we develop a numerical solution to Boltzmann transport equation
to simulate the phonon-limited resistivity of graphene.



viii Introduction



Chapter 1
Electrons and phonons
in 2D materials

In this first chapter we introduce and motivate the concepts at the center of this thesis.
In an effort to focus on the importance and general nature of the physical mechanisms,
we will try to reduce the use of mathematical formalism to a minimum. The condensed
matter concepts discussed here are well-known and well documented, see for example
Refs. [1, 2, 3, 4]. We simply recall the most relevant characteristics of the phenomena
in our context. Most importantly, the objective is to convey the importance of two-
dimensional systems, the peculiarities of electrons and phonons in that context, and
the challenges they present in terms of computational simulation. The purpose is to
set the general framework of the thesis rather than to give an exhaustive or exact
description. It is also an opportunity to specify some aspects that are usually implicit
in the field.

First, we set the practical framework of this work, namely, two-dimensional (2D)
materials. We present the typical setup in which they are found for the kind of appli-
cations we have in mind. Second, we set the theoretical framework used to study the
corresponding quantum system. We introduce the tools necessary to describe electrons,
phonons, as well as their interactions. In the process, we highlight the consequences
of working in two dimensions. Finally, we identify the challenges encountered in the
process of simulating 2D materials.

1.1 Two-dimensional materials

Since the experimental isolation of graphene [5, 6, 7], 2D materials have undergone
unprecedented scrutiny due to their interesting properties both at the fundamental and
applied levels. We first need to state what we mean by "2D material". An adequate
definition in the context of this work would be "a material constructed by infinitely
repeating a pattern of a few atoms in only two dimensions". This implies that two of
the material’s dimensions are much larger than the third one, which is the more general
definition of 2D materials. With no periodicity in the third dimension, the thickness is
limited to a few atomic layers while in the two other dimensions, the pattern is repeated
infinitely. A more precise term for this system would be "2D-periodic crystal", and this
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2 Chapter 1. Electrons and phonons in 2D materials

is what we will model. This model will be used to study the properties of more realistic
2D materials in which the periodicity is neither perfect (there can be some defects)
nor infinite. In practice, the length and width of 2D materials are at the microscopic
scale (∼ µm). With a pattern at the atomic scale (∼Å), the number of repetitions is
then of the order of ∼ 104 in each direction with periodicity. In the framework of our
models and simulations, this number will be considered large enough to neglect edge
effects. In other words, we assume that for the physical properties studied here, a 2D
material of a few µm2 is equivalent to an infinite 2D-periodic crystal. Typical examples
of atomically thin monolayer systems are graphene and hexagonal boron nitride, made
up of a honeycomb lattice of either carbon, or boron and nitrogen. Since the few atoms
included in the pattern are not necessarily in the same plane, the above definition also
includes compounds thicker than one atom. Examples of such compounds that are
still considered as one layer are the monolayer transition-metal dichalcogenides. A few
layers of any of those materials, or a combination thereof are called few-layer materials
and are also included in our definition of 2D materials.

In practice, a 2D material can exist in various setups. The purest (yet not the
simplest) form is probably when the 2D material is suspended. In that kind of setup,
the edges of a sheet of material are attached to a support, while a significant part of
the material is suspended in between those points of attach. A more common setup
is to deposit the material on a certain supporting material, called substrate. The
difference between those setups boils down to the nature of the surroundings of the
2D material in the third direction. Is it vacuum, an insulating dielectric material, a
semiconductor? Does the environment interact with the 2D material? Is there some
chemical reactions at the interface? Is there an external electric field? A great variety
of situations are possible and the physical properties of the 2D material depend on
them. In this work, we will focus on the very common field effect transistor (FET)
setup [5, 8], as represented in Fig.1.1. In this setup, the 2D material is deposited on an
insulating bulk substrate (silicon oxyde for example). On both extremities of the 2D
material are contacts, a source and a drain, between which a current can be established.
When the source and drain have different electric potential, an in-plane electric field
is established between the two, which drives the electrons from one contact to the
other. The efficiency of the 2D material in carrying the current from one contact to
an other is referred to as its electronic transport properties and will be the main type
of experimental measurement studied in the thesis (chapter 6).

On top of the 2D material is a dielectric material, a few tens of nanometers thick.
This material is insulating, such that no charge can go through it. Finally, a metallic
top gate or grid is deposited on top of the dielectric. The purpose of this gate is
to induce additional charges in the 2D material. Following the same principle as a
capacitor, applying a voltage difference between the 2D material and the gate results
in the accumulation of opposite charges on both sides of the insulating dielectric.
This process, called gate-induced doping, is represented in Fig. 1.2. This effect is
particularly interesting in 2D materials. Indeed, due to their reduced dimensionality,
the accumulated charges translate into large induced densities. Being able to change
the density of free carriers implies the ability to tune the electronic properties of 2D
materials. For example, in Fig. 1.3, a transition from a semimetallic to a metallic
behavior is induced in monolayer graphene by varying the gate voltage [9]. This is of
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Substrate! 2D material!

Dielectric!

Grid!

Source! Drain!

Figure 1.1: On the left is a schematic representation of a FET setup. On the right,
the layers are separated to show the succession of piled materials.

E = 0

E = 0

E =
V

d

Grid! Dielectric!
2D!

material! Substrate!

V d

Figure 1.2: Within the FET setup, we focus on the above subsystem. Note that the
system has been rotated with respect to the previous figure. We represent a monolayer
2D material, the black dots symbolizing the atoms. In this situation, electron doping
is achieved. Additional electrons, represented by the blue "−" signs accumulate at the
dielectric/2D material interface. Holes, represented by the "+" signs, accumulate on
the gate/dielectric interface.

course essential to use graphene as a conductor of charges. Another beautiful example
[10, 8] is the case of 2D transition-metal dichalchogenides, in which one can induce
sufficiently high doping to obtain superconductivity. Fig. 1.2 is a rather simplistic
representation of gate-induced doping. The form of the electric potential in the vicinity
of the 2D material will be studied more extensively in this thesis. For now, let us
recall some important general features of this setup. The accumulation of charges on
either side of the dielectric implies the establishment of an electric field in between,
corresponding to a linear variation of the potential. It is important to distinguish
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Figure 1.3: Taken from [9]. This figure shows the experimental resistivity of monolayer
graphene deposited on a boron nitride substrate, as a function of the gate voltage. The
inset shows the conductivity as a function of the carrier density. It is clear here that
the gate voltage induces charge carriers in graphene, thus changing quite abruptly its
tranport properties, going from a semimetallic to a metallic behavior.

this out-of-plane electric field from the in-plane one driving current between source
and drain. The accumulation of charges also implies a global dipolar moment for the
system. On either side of the system of Fig. 1.2 (on the right of the 2D material and
on the left of the region of the gate where the charges accumulate), the electric field is
zero. This means that the electric potential is a constant, but this constant is different
on either side of the system. Indeed, the finite electric field in the dielectric induces
a shift in the potential. This will be particularly important when trying to simulate
this system with periodic boundary conditions. The system is quite asymmetric due
to this potential shift. In the vicinity of the 2D material, we observe that the electric
field is finite on one side while zero on the other.

We now proceed to the description of the electrons and phonons evolving in the
2D material.

1.2 Electrons and phonons in two dimensions

In this section we examine two central objects of condensed matter physics, electrons
and phonons. Covering the very large span of physical properties in which they are
involved would be a difficult task. Here, we will try to set up the minimal framework
necessary to address important topics in this thesis, i.e. electron-phonon interactions,
(gate-induced) doping and screening. We will concentrate on the particularities and
challenges presented by those topics in a 2D framework.

It is useful to separate each atom of the material in two parts. The first consists
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of the nucleus plus some core electrons that stay close to the nucleus and do not
participate in bonding with neighbors. This subsystem is positively charged. The
remaining electrons are valence electrons that participate in the bonding. They can
travel in the material. In the following, the term "ion" will refer to the first subsystem
(nucleus and core electrons), while the term "electron" will refer to the valence electrons
unless specified otherwise. In solids, both ions and electrons can move, generating a
gigantic number of degrees of freedom. Fortunately, in the Born-Oppenheimer (BO)
approximation [11], we can decouple ionic and electronic degrees of freedom. The BO
approximation roughly states that since the electrons are much lighter than the ions,
they will react much faster than the ions can move. This means that the positions
of the ions can be considered as parameters for the equations ruling the motion of
electrons. We can then consider the movements of electrons and ions separately.

We first study an non-interacting electron gas moving in a charge compensating
lattice of fixed ions. In this system, we can introduce the concepts of Bloch functions,
band structure and charge doping. We then proceed to an interacting electron gas,
introducing the concepts of electron-electron interactions and screening. Being aware of
the key features of those concepts in 2D is the first step towards their correct treatment
in the thesis. We then describe the motion of ions, using phonons. Phonons are quanta
of vibrations of the ionic lattice. They have particularly interesting properties in 2D.
Finally, we introduce the first order correction to the BO approximation, the electron-
phonon interaction. We identify the important issues to consider for their modeling
and simulation, which is the central topic of the thesis.

1.2.1 2D non-interacting electron gas in fixed ions
We consider a 2D electron gas moving in a background lattice of fixed ions. The
lattice of ions is not included in the system, but its effect on the electrons can be
captured by an effective periodic potential U . This potential is a combination of the
ion-ion interaction and the interaction between ions and electrons. It is a single-particle
potential in the sense that its effect on a given electron does not depend on the other
electrons. We start with the Bloch theory for non-interacting electrons moving in such
a periodic single-particle potential. The Hamiltonian for the electrons is simply the
sum of their kinetic energy and this potential:

H = Tel + U

For the infinite and periodic system considered here, a plane-wave basis set is ade-
quate to construct the wave functions. The Hamiltonian is solved by the Bloch wave
functions:

ψk,s(rp,z) = wk,s(rp,z)eik·rp , (1.2.1)

where rp is a position vector in the plane defined by the 2D material and z is the space
variable in the third dimension. The function wk,s(rp,z) has the periodicity of the
2D crystal, and the factor eik·rp represents a plane wave. The quantum numbers k, s
represent the in-plane wave vector and band index, respectively.

The particularity of the Bloch wave functions in a 2D material is that they propa-
gate only in the plane of the material. This is indicated by the in-plane nature of the
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variables k and rp in the plane-wave factor. The first quantum number, the momen-
tum k, gives the periodicity of the plane wave. The corresponding period is equal or
larger than the unit cell of the crystal. The variations of the wave functions on the
scale of the unit cell are given by wk,s(rp,z). This function also gives the extension
of the wave functions in the third dimension. The electrons are strongly attracted
by the positively charged ions in the lattice and cannot go very far from them. This
means that if the 2D material is situated around z = 0, wk,s(rp,z) decays rapidly as a
function of |z|.

The couple of indices k,s defines an electronic quantum state. The electrons being
fermions, the Pauli principle dictates that only two electrons of opposite spin can
occupy one of those quantum states. We will not study spin-dependent phenomena
and can consider a k,s state as a single state with two degenerate electrons. To each k,s
state is associated an energy εk,s. Those allowed energies, as functions of the electron
momenta, define the electronic band structure. Several energies might be allowed for
a single momentum, thus the need for the quantum number indicating the band s.

In a neutral crystal and at zero temperature, the electrons occupy the lower-energy
valence bands. For the purpose of this work, the energy of the highest occupied state
at zero temperature will be called Fermi level and noted εF (the norm of the wave
vectors for the corresponding states is the Fermi wave vector kF ). Higher in energy
are the unoccupied conduction bands. As the temperature increases, some energy is
available to promote some electrons to the conduction bands. The occupation of a
state of energy εk,s is then given by the Fermi-Dirac distribution:

f(ε) = 1

e
ε−εF
kBT + 1

(1.2.2)

where kB is Boltzmann constant and T is the temperature. Using this function and
the wave functions, one can calculate the electronic density:

n(rp,z) = 2
∑
k,s

f(εk,s)|ψk,s(rp,z)|2. (1.2.3)

where the factor 2 is for spin degeneracy. This quantity represents the probability of
finding an electron at position (rp,z).

By adding charges to the system, as can be done via the FET setup mentioned
earlier, one can change the Fermi level [12]. This is called doping (or charging) the
system. In the case of electron doping, the number of electrons is increased and the
Fermi level is shifted higher in energy. In the case of hole doping, the number of
electrons is decreased, thus creating vacancies or holes, and the Fermi level is shifted
down. At zero temperature, the Fermi level defines a sharp boundary between occupied
and unoccupied states. Temperature has the effect of smearing this boundary according
to Eq. (1.2.2).

In 2D, an iso-energetic section of the band structure gives a line. When this section
is done at the Fermi level, this line is called the Fermi surface (although it should be
called the Fermi line). Doping the material changes the form of the Fermi surface.
As mentioned earlier, large densities of charges can be added in 2D materials in the
FET setup. This corresponds to a wide range of accessible Fermi levels, and thus the
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opportunity to probe a large portion of the electronic structure. Gate-induced doping is
crucial in numerous applications. Although the principle of gate-induced doping seems
relatively simple, the details of its effects on the electrons of the 2D materials are not
trivial. The presence of an electric field can change the form of the electronic density in
the out-of-plane direction. When a few layers of material are present, the added charge
will surely not be distributed homogeneously over the layers. In practice, doping the
system is more complex than simply shifting the Fermi level. Understanding the side
effects of gate-induced doping is a major challenge. Some of them will be treated in
chap. 5.

The non-interacting gas in a lattice of fixed ions has provided us with a simple
system in which to introduce basic tools. The validity of the Bloch theory extends to
a system of electrons moving in any periodic single-particle potential.

1.2.2 2D electron gas: electron-electron interactions
Let us now turn on the electron-electron interactions. Those interactions are extremely
complex, and the system is not exactly solvable anymore. However, we know that with-
out any perturbation, the system stabilizes in its lowest-energy state, or ground state.
The electrons then form the so-called Fermi sea. The details of what happens inside the
Fermi sea are too complex. However, we can study its reaction to small perturbations.
Thus, we start with the lowest-energy state of the system, and consider small exci-
tations of the ground state. Within certain approximations (see Fermi liquid theory
in Ref. [1]), the low-energy excitations of the Fermi sea can be described as quasi-
particles that behave like single electrons weakly interacting with one another. Often,
in condensed matter physics and in the following, the term "electron" actually refers
to those quasiparticles. The Fermi liquid theory is fundamental because it justifies
that we keep using all the previously introduced tools to study an interacting electron
gas. We still need to treat the interactions between those electron quasiparticles, what
we call electron-electron interactions. This is a very vast topic in condensed matter
physics. For now, let us start with the contribution from the Hartree term, included
throughout the thesis. The Hartree term accounts for the classical Coulomb repulsion
that occurs between similarly charged particles. In our framework, it will be accounted
for via the use of an additional term in the Hamiltonian for the electrons:

H = Tel + U + VH

where VH is the Hartree potential, which is the electric potential generated by the
electronic density. The sum U+VH is still a periodic single particle potential, such that
we don’t go out of the Bloch framework. Reducing the electron-electron interactions
to the Hartree potential amounts to a mean field approximation, since the sum of the
contributions from each individual electron is averaged by the contribution from the
electron density.

This "lowest-order" contribution is sufficient to introduce the concept of screening.
Screening is the ability of the charges (electrons) to rearrange in order to counteract an
external electric field. Any external perturbing potential that induces a varying electric
field leads to a movement of the charges. The new configuration of charges will produce
a new Hartree potential which tends to counteract the external perturbing potential. A
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simple example is when a positive external charge is added to an electron gas. Electrons
agglomerate around this added charge such that its influence is negated outside of
certain region of space around it. This can be generalized to an arbitrary perturbing
external potential. The effective potential felt by a test charge is the sum of the
perturbing potential and the Hartree potential generated by the electrons (the induced
potential). This effective potential is weaker than the original external potential, due
to the global reaction of the electron gas. The electrons are said to screen the external
potential.

Reduced dimensionality has substantial effects on screening [4]. This can be seen in
the Fourier transform of the 2D/3D Coulomb interaction, which rules the interactions
between charged particles, and thus the reaction of the electron gas:

v3D
c (|q|) = 4πe2

|q|2 (1.2.4)

v2D
c (|q|) = 2πe2

|q| (1.2.5)

where e is the elementary charge (e > 0). The different power-laws in |q| suggest
completely different behaviors. We will see that for the transport applications we
have in mind, the small momentum perturbations are most relevant. The divergent
behavior of the Coulomb interaction at small |q| must then be carefully treated in
the numerical calculations. The importance of dimensionality can also be sensed in
the Lindhard function, Fig. 1.4, which gives the electron density response of the non-
interacting gas to a static perturbative potential of wave vector q. There we see that
dimensionality yields different singularities near twice the Fermi wave vector. In view
of the differing singularities of the Coulomb interaction at small momenta and the
Lindhard function at twice the Fermi wave vector, we can expect drastically different
screening behaviors from the electron gas depending on dimensionality.

In addition to those formal singularities, delicate issues arise on a more practical
level. The screening properties of the 2D electron gas are subject to the influence
of the environment of the 2D material. Indeed, the driving force of screening is the
Coulomb interaction and the electric field generated by charged particles. Electrons
in 2D materials are exposed to the influence of other charges from the environment in
the out-of-plane direction. Modeling and simulating screening in 2D materials will be
one of the major challenges of the following chapters.

Screening occurs as soon as there are mobile charges due to the classical Coulomb
interaction between charged particles. However, electron-electron interactions beyond
the Hartree term can of course play a role. Those interactions, of a more quantum
nature, will be called electron correlations. Let us now quickly discuss their treatment.
In general, they affect a wide variety of phenomena, basically everything that can
be described as a reaction of the electrons to a certain perturbation. In strongly
correlated systems, electron-electron interactions are very strong, and the formalism
of the non-interacting gas (Bloch wave-functions, band structure, ...) may not make
sense anymore. In weakly correlated systems, as studied in this thesis, the formalism of
the non-interacting gas can be kept. Electron correlations then bring corrections to the
band structure, finite lifetimes to the electrons, and they can renormalize the response
of the electrons to a perturbation. Estimating those corrections is an important and
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Figure 1.4: From [4]. This shows the Fourier transform of the Lindhard function in
1D, 2D and 3D, as a function of the norm of q in units of kF . The Fermi wave vector
kF is the norm of the wave vector of a state on the Fermi surface (the band structure
being isotropic here). The Lindhard function corresponds to the independant particle
suceptibility of an electron gas χ0 divided by its density of states at the Fermi level
(DOS(εF) in this plot), derived in a non-interacting electron gas with a quadratic band
structutre.

non-trivial task. In principle, one can use an additional potential, similar to the Hartree
potential, to account for further electron-electron interactions. However, the exact form
of this potential is not known, such that electron correlations are always treated within
a certain approximation.

By discussing the 2D electron gas, we were able to introduce most of the peripheral
topics treated in the thesis. Understanding the side effects of gate-induced doping,
simulating the peculiarities of screening in 2D and estimating corrections for electron
correlations are among the objectives of the next chapters. We now proceed to the
description of the second central object of the thesis.

1.2.3 2D phonons

When thermal energy is available, the ions of the crystal vibrate around their equi-
librium positions. Those vibrations are usually (in the scope of this work at least)
well described by harmonic oscillators. They can be decomposed in a set of conve-
nient quanta of vibrations called phonons. It does not concern an individual particle,
but a collective movement of a very large (infinite) number of atoms. In the Born-
Oppenheimer approximation used here, electrons adapt instantaneously to the changes
in the positions of the ions. They simply act as the restoring force of the harmonic
oscillators, always bringing the ions back to their equilibrium positions.
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Phonon excitations are described by wave functions defining the displacements
uq,ν(ra) of each atom a with respect to its equilibrium position ra. Those functions
bear resemblance with the wave functions of the electrons. The function uq,ν is also
a wave, and is similarly characterized by two quantum numbers q, ν. The momentum
q gives the periodicity of the propagating wave of displacements and is an in-plane
quantity in the case of a 2D material. The other index indicates a phonon branch, or
mode. It specifies how the ions move. For example, for a small momentum, one may
distinguish three kind of modes: (i) longitudinal modes in which the ions move in the
same direction as the momentum; (ii) transverse modes in which the atoms move in the
plane of the 2D material, in the direction perpendicular to the momentum; (iii) out-of-
plane modes in which the ions move in the out-of-plane direction. If there are several
atoms in a unit cell, the modes also distinguish whether those atoms move in phase
(acoustic phonons) or out of phase (optical phonons), see Fig. 1.5. To a given phonon
uq,ν is associated an energy �ωq,ν , where � is Planck’s constant and ω is a frequency.
Plotting those energies as functions of momenta gives the phonon dispersion, Fig. 1.5.
Electrons and phonons are described in a quite similar way, using momentum, energy

L̃A T̃A L̃O T̃O
q

Figure 1.5: In a 2D materials with 2 atoms per unit cell, there are six phonon modes:
longitudinal acoustic (LA), transverse acoustic (TA), out-of-plane acoustic (ZA), longi-
tudinal optical (LO), transverse optical (TO), out-of-plane optical (ZO). (Top) Phonon
dispersion of graphene, taken from Ref. [13]. The plain lines are ab initio dispersions,
while the other symbols are experimental data. (Bottom) Schematic representation of
the zero-momentum limit of the in-plane phonon modes (the use of tilde notation is
to indicate that this is a simplified model, as will become clearer in the next chapter).
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and bands or branches. A fundamental difference, however, is that phonons are bosons.
This means that unlike fermions, there is no limit to the population of a given state.
More precisely, the population of a given phonon state q, ν of energy �ωq,ν is given by
the Bose-Einstein distribution:

nq,ν(�ωq,ν) = 1

e
�ωq,ν
kBT − 1

(1.2.6)

where the use of the indices q,ν in nq,ν distinguishes the Bose-Einstein distribution
from the electronic density.

In 2D materials there is a clear distinction between in-plane and-out-plane phonon
modes. The term in-plane phonons is used when the ions move only in the plane.
We will see that having a good model to describe the in-plane motions of the ions
is essential for modeling the transport properties of graphene. Out-of-plane phonons,
and in particular flexural acoustic phonons represented in Fig. 1.6, are a peculiarity
of 2D materials. In single-layer materials, they present a quadratic dispersion at small

Figure 1.6: Flexural acoustic (ZA) phonon in a 2D material.

momenta �ωq,ν ∝ |q|2, see Fig. 1.5. As a consequence, flexural phonons dominate low-
energy, small-momentum structural properties of free-standing single-layer materials.
At finite temperature, the quadratic dispersion makes the number of phonons divergent
in the thermodynamic limit of an infinite system, prohibiting long-range structural
order. This has generated surprise and debate concerning the existence of free-standing
graphene. More in the scope of this thesis are the properties of out-of-plane phonons
in the FET setup. The zero-momentum limit of the acoustic out-of-plane phonon is
equivalent to a displacement of the whole 2D material in the out-of-plane direction.
When the 2D material is enclosed between a substrate and a dielectric, the energy
required to achieve such a displacement is finite. Contrary to a free standing material,
the dispersion should then tend to a constant in the small-momentum limit. This is
one of the side-effects of the FET setup that would be interesting to simulate.

Phonons are involved in many properties of the material. Their vibrational nature
and the fact that their abundance is ruled by temperature makes them central for the
description of the thermodynamical and mechanical properties of crystals. They are
involved in many other physical properties via their coupling to the electrons.

1.2.4 Electron-phonon interactions
The ground state picture is that of electrons moving in a periodic potential generated
by fixed ions. An electron in a Bloch state can move in the ionic potential without
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disturbance. Phonons come as a perturbation of this picture. By displacing ions,
charge imbalances are created with respect to the unperturbed ionic potential. This
idea, for a single ion displacement, is represented in Fig. 1.7. A phonon can be seen
as a creation of such charge imbalance for each ion, in a periodic manner. In terms of

Figure 1.7: From [1]. On the left, a Bloch electronic state propagates freely in the ionic
potential. On the right, a displaced ion results in the creation of a charge imbalance
and a scattering event from one Bloch state to another.

electronic structure, a phonon perturbation translates into the possibility for electrons
to jump from one electronic state to another. This is called a scattering event, often
represented as in Fig. 1.8. Such scattering events are characterized by the exchange
of energy and momentum between phonons and electrons. Electron-phonon coupling
(EPC) is a measure of how probable it is for a given electron to be scattered by a
certain phonon.

k

k + q

q

gk,k+q

k
q

k � q

gk,k�q

Figure 1.8: The electron-phonon vertex represents an echange of energy and momen-
tum between an electron and a phonon. On the left, the electron-phonon matrix
element gk,k+q is represented. An electron of momentum k and energy εk,s is scat-
tered to a state of momentum k + q and energy εk,s + �ωq,ν via the absorption of a
phonon of momentum q and energy �ωq,ν . On the right, the electron-phonon matrix
element gk,k−q is represented. An electron of momentum k and energy εk,s is scattered
to a state of momentum k−q and energy εk,s− �ωq,ν via the emission of a phonon of
momentum q and energy �ωq,ν .

EPC is particularly relevant in the context of electron transport. If an in-plane
electric field is applied to generate a net carrier current, the scattering events tend to
counteract its effects. The phonons can then be seen as obstacles impeding the flow of
carriers, and the material becomes resistive. We will study the corresponding physical
quantity, the phonon-limited resistivity, in chapter 6. There are, of course, numerous
other sources of scattering in practice. Defects are usually the major one. However,
the intrinsic nature of phonon scattering makes it particularly interesting. Intrinsic
sources of scattering set an ideal limit for electronic devices. Indeed, the fabrication
processes can be improved to reduce the extrinsic sources of scattering such as defects.
Scattering by phonons, however, will always be present. It is thus important to have a
good understanding of it. An other common source of intrinsic scattering are electron-
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electron interactions. However, when looking at the transport properties of a material
as a function of temperature, EPC is the most relevant intrinsic scattering source. The
typical behavior of resistivity as a function of temperature is shown in Fig. 1.9. The
zero-temperature limit of the resistivity, called residual resistivity, is mainly due to the
impurities and defects in the material. As temperature increases, more phonon states
are populated, leading to more electron-phonon scattering events and an increasing
resistivity.

Re
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Temperature!
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Phonons!

Figure 1.9: The typical behavior of a material’s resisitivity is characterized by an
increase with temperature as phonon states are populated.

EPC is important in other contexts than transport, such as spectroscopy. In
photoemission spectroscopy, one probes the spectral function of an excited electron.
Phonons interact with the excited electron, absorbing its extra energy. This translates
into a finite lifetime for the excited electron and a broadening of its spectral function.
Inversely, in neutron scattering or Raman spectroscopy, a phonon state is excited.
Electron-phonon interactions then modify the signature of the phonon state. EPC is
the origin of complex and fascinating phenomena such as Kohn anomalies [14], phonon
softening and superconductivity [15]. Kohn anomalies and phonon softening relate to
the effects of electrons on the phonon dispersions. They appear when the lattice vi-
brates at momenta and frequencies that happen to have a particular relevance for the
electrons. Superconductivity, in conventional superconductors at least, occurs thanks
to the pairing of electrons via phonons. Large EPC is one of the ingredients to obtain
high-temperature superconductivity.

Reduced dimensionality has interesting implications on the interplay between elec-
trons and phonons, via the previously introduced concepts of gate-induced doping,
electron-electron interactions and screening. Large doping levels imply significant
changes in the form of the Fermi surface along with the characteristics of the electrons
involved in the electron-phonon interactions. Via temperature, the phonon momenta
and energies can also be tuned. A fundamentally interesting aspect of 2D materials is
thus the opportunity to explore a large span of momenta and energies for the electrons
and phonons. The particular case of gate-induced doping in the FET setup has con-
sequences for the coupling of electrons with out-of-plane phonons. Since this kind of
modes involves atomic displacements in the out-of-plane direction, they are evidently
influenced by the direct vicinity of the 2D material in this direction. The dispersion
of those modes and their coupling to electrons can then be affected. In particular,
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the out-of-plane symmetry of the system is important. A free-standing 2D material in
vacuum presents certain symmetries with respect to the material’s plane. In graphene,
for example, the carbon-carbon π-bonds are anti-symmetric, as is the perturbation
induced by an out-of-plane phonon. This forbids the coupling of electrons to a single
out-of-plane phonon [16]. In the FET setup of Figs. 1.1 and 1.2, however, the anti-
symmetry with respect to the plane is broken and scattering by a single out-of-plane
phonon becomes possible.

EPC stems from the perturbation of the potential of the ions by phonons. As a
perturbing potential, EPC can be screened. The previous remarks about the particu-
larities of screening in 2D and in the FET setup thus apply to EPC if it is screened.
Correctly simulating the screening of EPC in 2D materials is an important topic
throughout the thesis. Electron-electron interactions, by bringing corrections to the
energies of the electronic states, change the momentum-energy landscape in which the
electron-phonon interactions occur. They can also bring corrections directly to the
magnitude of the interaction. This will be discussed in chapter 3.

Accurate models and reliable simulations of electron-phonon interactions are essen-
tial to understand a wide variety of phenomena, including transport properties. This
is the main objective of this thesis. We will need to understand the subtle way in which
this interaction depends on the Fermi level, the electronic and phonon momenta, tem-
perature, screening, the surrounding environment, etc... A good understanding can be
achieved via computer simulations, but some aspects of the 2D system we described
need to be dealt with carefully.

1.3 Simulation challenges

Our simulations are performed within the density-functional theory (DFT) framework,
described in App. A and well documented in the literature, see for example Refs.
[17, 18, 19, 20, 21]. We use the Quantum ESPRESSO (QE) distribution. In this
section, we point out why the treatment of some of the previously introduced concepts
will prove problematic in our simulations.

The first challenge is the treatment of electron-electron interactions in the calcu-
lation of EPC. DFT maps the problem of the interacting electron gas on a system
of non-interacting electrons moving in an effective potential (see App. A for more
details). In this framework, electron-electron interactions are accounted for by adding
density-dependent potentials to the effective potential, like the Hartree potential men-
tioned earlier. The Hartree potential will always be included in our DFT calcula-
tions. Further quantum many-body aspects of electron-electron interactions will be
approximately accounted for via the addition an exchange-correlation potential, de-
termined within the local-density approximation [22] (LDA). In this approximation,
the exchange-correlation potential is computed using analytical results derived for the
3D homogenous electron gas. The effects of this potential will be discussed further in
the thesis, but it is reasonable to assume that its reliability for the non-homogenous
2D electron gases studied in the following is limited. For certain significant electron-
phonon interactions, we will go beyond LDA and develop a method to compute EPC
parameters within the GW approximation [23]. GW designates an approximation in
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the calculation of the self-energy of interacting electrons. It provides corrections to the
energies of the electronic eigenstates found by DFT. In graphene, the corresponding
corrected band structure is in good agreement with experiment. The challenge is that
those corrections cannot be included in the direct simulation of electron-phonon inter-
actions. We developed a method to extract electron-phonon interactions from band
structure calculations, which can be carried out within the GW approximation. This
method is presented in Chapter 3.

The second challenge is related to the fact that our DFT calculations require peri-
odic boundary conditions in the three dimensions (3D PBC). In practice, one defines
a unit cell that is implicitly repeated infinitely in the three dimensions, resulting in a
3D-periodic system. To simulate a 2D material, we actually simulate a system that
is a collection of copies of the 2D material arranged periodically in the out-of-plane
direction. Those copies are called the periodic images. Their presence raises two im-
portant issues. The first one concerns the simulation of screening. As was pointed
out earlier, the environment of the 2D material in the out-of-plane direction matters.
We’ll see that the presence of periodic images leads to some spurious screening. We
can reduce this effect by increasing the distance between the periodic images, but
the computational cost of the calculation increases linearly with this distance. The
computational cost quickly becomes prohibitive when the 2D electron gas (in each pe-
riodic image) is perturbed at small wave vector. Indeed, the diverging behavior of the
Coulomb interaction in the limit of small wave vectors implies long-range interactions
between the periodic images. The small wave vector limit of screening is relevant for
many applications, including phonon-limited transport. Thus, we need to find a way
to simulate the correct screening properties of an isolated 2D material by getting rid
of the periodic images. This issue is tackled in chapter 4.

We saw that gate-induced doping as in the FET setup relies on a certain asymmetry
in terms of electric potential. We also determined that it is essential to be able to
simulate this asymmetry to explore some interesting consequences of gate-induced
doping on the electronic density and the phonons. 3D PBC present a challenge for
the simulation of such an asymmetric system. Indeed, 3D PBC require equal values of
the potential on both sides of the 2D system, since the right boundary of one periodic
image is the left boundary of the next one. In the FET setup, Fig. 1.2, the out-
of-plane electric field established in the dielectric induces a difference in the values
of the potential on both sides. Consequently, the FET setup does not fulfill PBC
in the third direction and simulating gate-induced doping is a challenge in our DFT
framework. The current standard method to dope materials while fulfilling 3D PBC
in DFT amounts to the use of a compensating uniform background of charges, the
so-called jellium background. However, this "jellium-induced" doping is fundamentally
different from gate-induced doping because the system remains symmetric with respect
to the plane of the 2D material. To explore the effects of gate-induced doping and in
particular the possibility of a linear coupling with out-of-plane phonons in graphene,
it is essential to find a way around 3D PBC and simulate asymmetric setups like
the FET. In chapter 5, we will devise a different approach concerning the treatment
of PBC, effectively isolating the periodic images from each other and enabling the
simulation of the FET setup.

The structure of the following chapters mirrors the successive tackling of those
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challenges in the process of simulating electron-phonon interactions in graphene. Since
the linear coupling with out-of-plane phonons is zero in graphene unless we are able to
simulate the FET setup, we ignore out-of-plane phonons in the first place. We start
with models for electrons, in-plane phonons and their interactions in chapter 2. Among
the couplings between electrons and in-plane phonons, those that are not screened are
readily calculable in the standard DFT framework. We go one step beyond in terms
of electron-electron interactions and compute those EPC parameters within the GW
approximation in chapter 3, tackling the first challenge. To obtain an estimation of the
screened EPC parameters, we tackle the challenge presented by the presence of periodic
images to study the screening properties of graphene in chapter 4. We then solve the
issue of the periodic images more comprehensively to be able to simulate graphene
in the FET setup and study the coupling with out-of-plane phonons in chapter 5.
In chapter 6, we test our model of electron-phonon interactions by including it in a
transport model, computing the phonon-limited resistivity of graphene and comparing
our results to experimental data.



Chapter 2
Electron-phonon interactions model
in graphene

The study of EPC involves the derivation of models for the interaction Hamiltonian
as well as the phonon modes. The interaction Hamiltonian was derived within the
tight-binding (TB) model (see Refs. [24, 25, 26, 14, 27, 28] and App. B) and in a
symmetry-based approach [16]. In many works the simple set of strictly longitudinal
and transverse phonon modes is used to find the EPC matrix elements. However, some
qualitative [16] and quantitative [25, 26] models showed that more realistic phonon
modes may be essential to obtain numerically accurate results for acoustic phonon
scattering. In this chapter we improve the most general symmetry-based model of
EPC [16] by introducing a DFT-based model for the phonon modes. Within this an-
alytical model, we consider a single layer of graphene free standing in vacuum. In
this context, out-of-plane phonon modes do not couple with electrons at the linear
order [16]. They will thus be discarded for now. Their numerical study requires the
implementation of the more complex FET setup. This is postponed to chapter 5. In
this chapter, we focus on the coupling to in-plane phonon modes. After presenting the
low-energy Hamiltonian for the electrons, we use density-functional perturbation the-
ory (DFPT) calculations to obtain a realistic model for the relevant in-plane phonon
modes. We then present the different terms that appear in the electron-phonon inter-
action Hamiltonian and derive the corresponding EPC matrix elements.

2.1 Electrons and phonons models

2.1.1 Dirac Hamiltonian for electrons

The crystal structure of graphene is represented in Fig. 2.1. Within DFT, this
yields the band structure represented in Fig. 2.2. We consider low electron dop-
ing of graphene, i.e. the Fermi level energy shift from the Dirac point is εF . 0.5
eV (all energies throughout the thesis are measured with respect to the Dirac point).
This corresponds to an additional surface charge density of less than 1.8× 1013 cm−2.
In this regime, the electronic structure of doped graphene is well represented by two
Dirac cones [29] at special pointsK= (2/3,0)2π/b andK′ = (−2/3,0)2π/b in Cartesian
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Figure 2.1: Definition of the real space unit cell (left) and the first Brillouin zone
(right). b1 = (1,0)b and b2 = (−1/2,

√
3/2)b are the lattice vectors in Cartesian

coordinates and |b1| = |b2| = b = 2.46 Å is the lattice parameter. b0 = b/
√

3 = 1.42 Å
is the interatomic distance. The x-axis (y-axis) corresponds to the zig-zag (armchair)
direction. d1 = (1/6,1/3) and d2 = (−1/6,− 1/3) are the internal coordinates of the
carbon atoms in the basis of the lattice vectors. In reciprocal space, b∗1 = (1,1/

√
3)2π/b

and b∗2 = (0,2/
√

3)2π/b are the reciprocal lattice vectors in cartesian coordinates. In
the Brillouin zone, the high symmetry points Γ, K, K′ and M are represented.

coordinates, see Figs. 2.1 and 2.2. The x-axis is defined as the zig-zag direction of the
graphene sheet, and b = 2.46 Å is the lattice parameter of graphene. We will extend
the validity of the Dirac cones model to εF � 1.0 eV by assuming that the so-called
trigonal warping of the bands has a negligible effect when the quantities of interest here
are angularly averaged. In the absence of electron-phonon scattering the unperturbed
Hamiltonian at momentum k expanded around the Dirac point K is

HK(k) = �vF

(
0 kx − iky

kx + iky 0

)
(2.1.1)

where vF is the Fermi velocity and k = (kx,ky) is the electron-momentum measured
with respect to the Dirac point K, in a Cartesian basis. It can also be written as
HK(k) = �vFk ·σ, where σ = (σx, σy) are the Pauli matrices. This Dirac Hamiltonian
is written in the pseudospin [30] basis emerging from the two inequivalent sub-lattices
of graphene. It satisfies the eigenvalues equation:

HK(k)ψk,s(r) = εk,sψk,s(r), (2.1.2)

with εk,s = s �vF |k|, and s = ∓1 for the valence π and conduction π∗ bands respec-
tively. The Bloch functions are

ψk,s(r) = 1√
NS

eik·r|k,s〉, (2.1.3)

where S =
√

3b2

2 is the area of a unit cell, N is the number of unit cells in the sample
and |k,s〉 is a pseudospinor eigenfunction, normalized to unity, corresponding to the
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Figure 2.2: On the left is represented the band structure and density of states of
graphene as obtained in DFT, along the high symmetry lines. On the right is a
comparison of the DFT band structure with the Dirac cone model around the Dirac
point.

in-plane state k of the band s. The eigenfunction |k,s〉 is defined in the pseudospin
basis as:

|k,s〉 = 1√
2

(
e−iθk/2

seiθk/2

)
. (2.1.4)

The angle θk is the angle between k and the x-axis.

2.1.2 Phonons
We label eq,ν the eigenvector of the dynamical matrix corresponding to the phonon
mode ν of momentum q and eigenvalue ω2

q,ν (those quantities are defined in App. A).
This phonon eigenvector is normalized on the unit cell and ωq,ν is the frequency of
the phonon mode. The components of the vector eq,ν are labeled ea,iq,ν where a = 1,2
is an atomic index and i = 1,2 are the in-plane Cartesian coordinates (out-of-plane
phonons are ignored here). For a scattering event to effectively occur, a phonon must
scatter an electron from an occupied initial state to an available final state. Since the
phonon energies are relatively small (. 0.20 eV) in comparison with the full range of
the electronic band structure ( ≈ 5 eV), the electronic states involved in scattering
processes stay relatively close to the Fermi surface. At the moderate doping levels
considered, the Fermi level lies in the Dirac cones. Consequently, the relevant phonon
momenta are those connecting electronic states in those cones. The relevant phonons
are thus restricted to the regions around the Γ and K points of the phonon dispersion
in Fig. 2.3. The small-momentum phonons near the Γ point scatter electrons within
a single Dirac cone or valley. They are called intra-valley scattering modes. The
phonons with momenta near the K point scatter electrons from one Dirac cone to an
other and are called inter-valley scattering modes. We first focus on small-momentum
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Figure 2.3: Phonon dispersion of graphene, taken from Ref. [13]. The plain lines are
ab initio dispersions, while the other symbols are experimental data.

intra-valley phonons. Near the Γ = (0,0) point (i.e. |q| → 0), it is customary to
use what will be called here the canonical representation of the four in-plane phonon
modes to approximate the real ones. The construction of those canonical modes relies
on the following rules: i) the eigenvector of a longitudinal (transverse) mode is parallel
(perpendicular) to the phonon’s momentum; ii) the phase differences between the two
atoms of the unit cell is eiq·(d1−d2) for acoustic modes and −eiq·(d1−d2) for optical
modes. This leads to the following eigenvectors:

ea
q,L̃A

= 1√
2
eiq·(R+da) q

|q|

ea
q,T̃A

= 1√
2
eiq·(R+da) q⊥

|q⊥|

ea
q,L̃O

= γa
1√
2
eiq·(R+da) q

|q|

ea
q,T̃O

= γa
1√
2
eiq·(R+da) q⊥

|q⊥|

(2.1.5)

where R is the position of the unit cell, da a = 1,2 are defined in Fig. 2.1 and q⊥ is
such that q⊥ · q = 0. γa = ±1 for a = 1,2 respectively. The mode indices L̃A, T̃A
label the canonical longitudinal and transverse acoustic phonon modes, respectively.
The canonical longitudinal and transverse optical phonon modes are labeled L̃O and
T̃O respectively. In Fig. 2.4 is a schematic representation of those modes.

As noted in Ref. [16], the real phonon modes of graphene at finite momentum tend
to the canonical modes in the long wavelength limit. However, at finite momentum,
there is some mixing between the canonical acoustic and optical phonon modes in
o(|q|). We find that the use of the canonical eigenvectors leads to a significant error in
the following work. Therefore we seek an analytical model for the phonon modes that
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L̃A T̃A L̃O T̃O
q

Figure 2.4: A schematic representation of the in-plane canonical phonon modes. This
picture is valid in the limit |q| → 0 or in a perfectly square lattice. At finite |q|, in
graphene, the real phonon modes are a mixture of the above canonical modes.

includes acoustic-optical mixing. We diagonalize the dynamical matrix, calculated by
DFPT (see App. A) on a small circle around the Γ point. This allows us to obtain
the angular dependence in q at fixed |q|. Comparing the DFT eigenvectors to the
canonical ones, we obtain the following expressions:

eq,LA =
√

1− δ2|q|2 eq,L̃A − δ |q|
(
sin(3θq)eq,L̃O + cos(3θq)eq,T̃O

)
eq,TA =

√
1− δ2|q|2 eq,T̃A + δ |q|

(
cos(3θq)eq,L̃O − sin(3θq)eq,T̃O

)
eq,LO =

√
1− δ2|q|2 eq,L̃O − δ |q|

(
sin(3θq)eq,L̃A + cos(3θq)eq,T̃A

)
eq,TO =

√
1− δ2|q|2 eq,T̃O + δ |q|

(
cos(3θq)eq,L̃A − sin(3θq)eq,T̃A

)
(2.1.6)

Where δ ≈ 0.10 Å is a small parameter, and θq is the angle of q with respect to the
x-axis. Our DFT results are consistent with the symmetry-based analysis of Ref. [16].

In addition to the intra-valley scattering modes at Γ, we have to consider the
optical A′1 inter-valley phonon mode, having momentum K + q, with q being small.
The electron-phonon coupling for this mode will be parametrized as in Ref. [14].
At small |q|, optical phonons frequencies can be considered constant (�ωTO = �ωLO =
0.20 eV, �ωA′1 = 0.15 eV). Acoustic phonon frequencies are of the form �ωq,ν = vν |q|,
where vν is the sound velocity of ν mode (from our DFT calculations, vTA = 13.6 km/s
and vLA = 21.4 km/s, independent of the direction).

2.2 Electron-phonon coupling matrix elements
In this section we develop the electron-phonon interactions model at small but finite
momentum (i.e. |q| → 0). We use both the canonical and DFT-based eigenvectors of
the phonon modes at Γ and compare the results. For the inter-valley scattering A′1
mode at K, the model has already been developed [14] and is simply summarized in
paragraph 2.2.3. We will focus on the case of the Hamiltonian expanded around the
Dirac point K. Similar results are obtained around K′ by complex conjugation and
the transformations k→ −k and q→ −q.

The small |q| limit of the derivative of the Dirac Hamiltonian with respect to a
general phonon displacement eq can be found from symmetry considerations. In the
basis of Dirac pseudospinors, Eq. (2.1.4), it is written [16]:

∆Hq = ∆Hq,Ã + ∆Hq,Õ (2.2.1)
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where

∆Hq,Ã = i|q| ×
(

2α(q)QL̃A β̃Ae
−2iθq(QL̃A − iQT̃A)

β̃Ae
2iθq(QL̃A + iQT̃A) 2α(q)QL̃A

)
(2.2.2)

accounts for the canonical in-plane acoustic modes and

∆Hq,Õ = i×
(

0 β̃Oe
iθq(QL̃O + iQT̃O)

−β̃Oe−iθq(QL̃O − iQT̃O) 0

)
(2.2.3)

accounts for the canonical in-plane optical modes1. Parameters β̃A and β̃O are real
constants and α(q) is a real function of the norm of the phonon momentum q = |q|. In
a tight-binding model, they are related to the derivatives of the hopping parameters
with respect to bond length, see App. B. Here, we stay in the more general symmetry-
based approach of Ref. [16]. The scalar quantities Qν̃ are the components of eq in the
basis of the canonical eigenvectors, namely:

Qν̃ = eq · eq,ν̃ (2.2.4)

∆Hq,ν is easily understood as a change of the electronic structure due to the phonon
displacement, see Fig. 2.5. In more details:

• β-terms (normally labeled “gauge fields” [24]) in Eqs. (2.2.2), (2.2.3) are added
to the off-diagonal terms of the Dirac Hamiltonian, Eq. (2.1.1). They shift the
Dirac point in the Brillouin zone without changing its energy. As such, these
terms do not alter the overall charge and are unaffected by electronic screening.
In a TB model, these terms are related to a variation of the nearest neighbors
hopping integral with respect to the in-plane lattice parameter. In a uni-axially
strained graphene sheet, the β-terms correspond to the magnitude of the vector
potential (the so-called “synthetic gauge field” [31, 32, 16]) that appear in the
perturbed terms of the Dirac Hamiltonian. Note that in the presence of a non-
uniform strain field, such a synthetic vector potential affects the band structure
as an effective magnetic field [33].

• α-term (labeled “deformation potential") occurs only in the diagonal part of
Eq. (2.2.2). These terms shift the Dirac point in energy, without changing its
position in the Brillouin zone. As they imply a variation of the charge state,
they are strongly affected by electronic screening. We use here the screened
deformation potential α(q), in contrast with the original model of Ref. [16]
where screening is ignored and a bare constant deformation potential αbare is
used. In a TB model this kind of term corresponds to a variation of the on-site
energy. In mechanically strained graphene, it represents the magnitude of the
scalar potential or “synthetic electric field” [31, 16] triggered by a change in the
unit cell area.

The EPC matrix elements are defined as

gk+q,s,k,s′,ν =
√

~
2Mωq,ν

〈k + q,s|∆Hq,ν |k,s′〉 (2.2.5)

1Sign differences with respect to Ref. [16] are due to switched definitions of K and K′.
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Figure 2.5: A schematic representation of the two different contributions to the cou-
pling to in-plane acoustic phonons.

where M is the mass of a carbon atom, |k,s′〉 and |k + q,s〉 are the initial and final
electronic states of the scattering process. Since we are mostly interested in intraband
scattering processes (with acoustic phonons), we will drop the s and set s = s′ = 1.
Setting s = s′ = −1 would give the same final results due to electron-hole symmetry.
When we consider interband scattering from optical phonons, we will specify the s-
dependency. We further simplify the notation by setting:

〈k + q, 1|∆Hq,ν |k, 1〉 = ∆Hq,ν(k) (2.2.6)

We will now study the EPC models obtained using either canonical or DFT phonon
modes at Γ with Eq. (2.2.1).

2.2.1 Coupling to canonical phonon modes at Γ

Using the canonical phonon modes, the small phonon-momentum limit (|q| → 0) of
∆Hq,ν(k) can be written as:

|∆Hq,T̃A(k)| =
∣∣∣∣β̃A|q| sin(2θq +

θk+q + θk
2

)∣∣∣∣ (2.2.7)

|∆Hq,L̃A(k)| =
∣∣∣∣2α(q)|q| cos

(
θk+q − θk

2

)
+ β̃A|q| cos

(
2θq +

θk+q + θk
2

) ∣∣∣∣ (2.2.8)

|∆Hq,L̃O(k)| =
∣∣∣∣β̃O sin

(
θq −

θk+q + θk
2

)∣∣∣∣ (2.2.9)

|∆Hq,T̃O(k)| =
∣∣∣∣β̃O cos

(
θq −

θk+q + θk
2

)∣∣∣∣ (2.2.10)

These expressions were obtained by symmetry considerations in Ref. [16]. Using the
TB model of App. B, similar expressions can be obtained [27, 14, 24, 28]. Due to their
high energy, L̃O and T̃O phonon modes can involve interband (π − π∗) scattering.
However, setting s = 1 and s′ = −1 simply exchanges the angular dependencies of T̃O
and L̃O. This has no impact in the following transport model since the contributions
of those modes are always summed. We can thus keep the above expressions without
loss of generality.
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2.2.2 Coupling to DFT phonon modes at Γ

We now insert the DFT phonon modes, Eq. (2.1.6), into the canonical model of Eq.
(2.2.1). In the expressions for the acoustic DFT eigenvectors (Eq. (2.1.6)), the angular
dependency and |q| behavior of the T̃O and L̃O components are of the same form as
in Eqs. (2.2.7) and (2.2.8), when considering a circular Fermi surface. It can be shown
that the effect of using the DFT phonon eigenvectors in ∆Hq,TA(k) and ∆Hq,LA(k)
is a simple redefinition of the magnitude β̃A. Concerning the matrix elements derived
from the DFT optical modes, the contribution of the canonical acoustic modes is in
o(|q|2) and can be neglected with respect to the dominant o(1) term from the canonical
optical modes. Optical EPC matrix elements are thus unaffected by the ab initiomodel
for phonons. The small phonon-momentum limit (|q| → 0) of ∆Hq,ν(k) for the DFT
modes can then be written:

|∆Hq,TA(k)| =
∣∣∣∣βA|q| sin(2θq +

θk+q + θk
2

)∣∣∣∣ (2.2.11)

|∆Hq,LA(k)| =
∣∣∣∣2α(q)|q| cos

(
θk+q − θk

2

)
+ βA|q| cos

(
2θq +

θk+q + θk
2

) ∣∣∣∣ (2.2.12)

|∆Hq,LO(k)| =
∣∣∣∣βO sin

(
θk+q + θk

2 − θq
)∣∣∣∣ (2.2.13)

|∆Hq,TO(k)| =
∣∣∣∣βO cos

(
θk+q + θk

2 − θq
)∣∣∣∣ (2.2.14)

Where βA =
√

1− δ2|q|2β̃A − δβ̃O ≈ β̃A − δβ̃O and βO ≈ β̃O are effective parameters,
and α(q) is unchanged because there are no diagonal terms in Eq. (2.2.3).

2.2.3 Coupling to inter-valley A′1 mode at K

The inter-valley A′1 mode at K scatters an electron from state k around K to state
k + q around K′, where q is still small. Using a TB model, it is found to be [14]:

|∆HK+q,A′1(k)| =
∣∣∣∣√2βK sin

(
θk+q − θk

2

)∣∣∣∣ (2.2.15)

where βK is a real constant. This high energy mode will involve interband scattering.
In the case s = −s′, the above expression becomes:

|〈k + q|∆Hs=−s′K+q,A′1
|k〉| =

∣∣∣∣√2βK cos
(
θk+q − θk

2

)∣∣∣∣ (2.2.16)
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Summary

• Derivation of a reliable EPC model.

• Acoustic EPC is decomposed into a gauge field and a deformation potential.

• The gauge field shifts the position of Dirac point. It is not screened.

• The deformation potential shifts the Dirac cone in energy. It is screened.

• Using DFT acoustic phonons leads to a renormalization of the gauge field.
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Chapter 3

Ab initio calculations of
electron-phonon coupling in graphene

For optical phonons, EPC parameters have been estimated using ab initio calculations
at the DFT and GW levels [14, 34, 35, 27]. We will simply review the results of those
calculations. The main interest of this chapter is the study and calculation of EPC
for acoustic phonons. The coupling to acoustic phonons was studied at the DFT level
in Refs. [36, 37, 28]. However, the DFT calculations were compared with different
analytical models. The screening of the deformation potential was ignored in Refs.
[36, 37], and a tight-binding model for EPC was used in Ref. [28]. Overall, some
important details remained to be clarified concerning the consistency between the
analytical symmetry-based model of EPC and the simulations. Furthermore, although
the effect of electron-electron interactions was discussed, direct calculation of EPC
parameters within the GW approximation remained to be achieved.

DFPT calculations can be performed to calculate the EPC matrix elements at
any chosen electron and phonon momenta. This flexibility makes DFPT a convenient
method to check the validity of the analytical expressions derived in the previous chap-
ter. This will be the first objective of this chapter. We then need accurate numerical
values for EPC parameters, including the acoustic gauge field and deformation poten-
tial. At that point, we are faced with the two aforementioned challenges of the DFPT
method. The first is the approximative treatment of electron-electron interactions and
the second is the presence of periodic images. To tackle the first challenge, we would
like to estimate the effects of electron-electron interactions on the EPC parameters
within the GW approximation. This was done for the coupling to optical phonons
at the Γ point using frozen phonons [34]. We propose a similar method to calculate
the coupling to acoustic phonons within the GW approximation. We interpret the
zero-momentum limit of in-plane acoustic phonons as a strain of the crystal unit cell
and link electron-phonon coupling parameters to the strain-induced fields. This al-
lows for the extraction of the gauge field parameter from band structure calculations
in strained graphene, which can be carried out within the GW approximation. The
“static strain” method also gives access to the bare deformation potential. This will
be useful to tackle the second challenge. Indeed, the presence of periodic images leads
to some spurious screening of the deformation potential in standard DFPT calcula-

27



28 Chapter 3. Ab initio calculations of EPC in graphene

tions. However, with a value for the bare deformation potential, along with the static
screening function of graphene calculated in chapter 4, we will be able to estimate the
screened deformation potential.

Technical details of ab initio calculations

In this chapter, we perform density-functional theory (DFT) calculations within the
local density approximation [22] (LDA) using the Quantum ESPRESSO (QE) distribu-
tion [38]. We use norm-conserving pseudo-potentials with 2s and 2p states in valence
and cutoff radii of 0.78 Å. We use a 0.01 Ry Methfessel-Paxton smearing function for
the electronic integrations and a 65 Ry kinetic energy cutoff. The electron momentum
grid depends on the type of calculations performed. Accurate band structures can be
obtained at a relatively low computational cost with a 16× 16× 1 electron momentum
grid. In the same framework, we used density functional perturbation theory (DFPT)
in the linear response [20] to perform phonon and electron-phonon coupling calcula-
tions. In this case, however, a 96×96×1 electron momentum grid was needed to reach
convergence. The distance between graphene and its periodic images is ≈ 20 Å.

The GW part of the calculations were done with BerkeleyGW package [39]. Elec-
tronic wave-functions in a 72×72×1 k-point grid are expanded in a plane-waves basis
with a kinetic energy cutoff of 65 Ry. Graphene layers between adjacent supercells are
separated by 8.0 Å and the Coulomb interaction is truncated to prevent spurious inter-
supercell interactions [40]. The inverse dielectric matrix at zero frequency is calculated
with a kinetic energy cutoff of 12 Ry and we take into account dynamical screening
effects in the self energy through the generalized plasmon pole model [41].

3.1 EPC parameters at finite phonon momentum from DFPT

In this section we perform direct ab initio calculations of acoustic EPC matrix elements
by using DFPT [20] in the linear response. The parameters βO, βK for optical phonons
have already been evaluated using this method [14, 27] and compared to experimental
Raman measurements. Their numerical values are reported in Table 3.1. We will
mainly focus here on the acoustic phonon EPC parameters. DFPT calculations of
EPC can be performed at chosen k and q vectors. This enables the verification of the
angular and |q| dependencies of the matrix elements. EPC matrix elements can also
be calculated for a chosen set of phonon modes. This involves minor modifications of
the QE code to print out the EPC matrix in the basis of atomic displacements along
the Cartesian directions, and the development of a small post-processing program to
project the matrix on a chosen set of phonon modes. This allows for the calculation
of both the canonical (β̃A) and effective (βA) gauge field parameters to verify the
consistency of our model.

By choosing the phonon momentum q along the high symmetry directions Γ→ K
and Γ →M, we have θq = 0 and π/6, respectively. If initial and scattered states are
taken on a circular iso-energetic line, i.e. if |k| = |k + q|, then θk+q+θk

2 = θq± π
2 . From
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Eqs. (2.2.11) and (2.2.12) we obtain:

|∆H(Γ→K)
q,TA (k)| = |q|βA (3.1.1)

|∆H(Γ→K)
q,LA (k)| = |q|

∣∣∣∣2α(q) cos
(
θk+q − θk

2

)∣∣∣∣ (3.1.2)

|∆H(Γ→M)
q,TA (k)| = 0 (3.1.3)

|∆H(Γ→M)
q,LA (k)| = |q|

∣∣∣∣±βA + 2α(q) cos
(
θk+q − θk

2

)∣∣∣∣ (3.1.4)

We then consider an iso-energetic line at ε = ~vF |q|/2 and select the electron-momentum
k point such that θk+q − θk = π. In this way the cosines in Eqs. (3.1.2) and (3.1.4)
are null and only the contribution of the βA coefficient remains. Although we used the
notations of the effective model here, the same strategy can be applied to the canonical
model. The EPC matrix element is then calculated in either the canonical or DFT
eigenvectors basis to obtain β̃A or βA, respectively. In Fig. 3.1, we plot the resulting
β̃A and βA for different doping conditions (jellium-induced doping) and for q along
Γ → K and Γ → M. The fact that we obtain constants for this particular angular
setup confirms the angular dependencies of Eqs. (2.2.11) and (2.2.12). Moreover, this
is true whether the canonical or DFT phonon modes are used. This confirms that
the effects of mode mixing is a simple (yet significant) renormalization of the gauge
field parameter. As expected, the gauge field parameters β̃A and βA are essentially
doping independent and screening has no effect on them. A direct consequence is that
scattering by gauge field is independent of the doping, the dielectric background and
the general environment of the 2D material, since all those dependencies come via
screening. The numerical results are reported in the first column of Table 3.1.

Knowing the value of β̃A and βA, we adopt a similar strategy to obtain the screened
α(q) coefficient by setting θk+q − θk = 2π/3. It is important to underline that those
DFPT calculations do not provide access to the bare deformation potential parame-
ter αbare due to electronic screening. In linear response at small finite (i.e. non-zero)
phonon momentum q, the phonon displacement induces a small but finite q-modulated
electric field. The electrons screen the finite electric field and consequently the magni-
tude of EPC. Thus, a finite induced electric field is always present in the linear response
calculation at any non-zero phonon momentum and the screened parameter α(q) is ob-
tained. We find that the α(q) coefficient is very small (� 1 eV). It is then completely
negligible with respect to the other parameters. However, note that the present DFPT
calculations are performed in a multilayered system where the graphene planes are
separated by 20 Å. For the phonon momenta considered in the paper, the spurious
screening from the periodic images is not negligible at all. Indeed, a phonon of wave
vector q induces a charge fluctuation with a periodicity equal to 2π/|q|. The electric
field induced by such a charge fluctuation decays exponentially, along the out-of-plane
direction, on a typical length scale of 1/|q|. Therefore, for the interlayer distance of 20
Å used in our calculations, the electric field induced by the periodic images is negligible
only for |q| much larger than 1/20 Å−1 = 0.05 Å−1. Such requirement is not satisfied
by our DFPT calculations where |q| is in the range 0.013− 0.077 Å−1.
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Figure 3.1: Ab initio calculations of |∆Hq,LA/TA(k)|
|q| in high symmetry (Γ →M)/(Γ →

K) directions respectively lead to gauge field EPC parameters, which depend neither
on direction nor doping. β̃A(βA) is obtained when the canonical (DFT) phonon modes
are used. The blue square and dot at |q| = 0 represent the values of βA and β̃A found
in strained graphene calculations, respectively.

3.2 EPC in the tight-binding model

In this section we compare the results of DFPT with other results obtained within the
tight binding (TB) model. In particular, we compare with the TB model of EPC used
in the collaborative work of Ref. [28].

The TB model provides a computationally cheap way to calculate EPC to a first
approximation. In the two-nearest-neighbors TB model of EPC, App. B, the gauge
field parameters are all proportional to the derivative η1 of the first-neighbor hopping
integral with respect to bond length. We also have a link between the bare deformation
potential αbare and the derivative η2 of the second-neighbor hopping integral. Such
relationships are obviously very specific to the TB model and are not enforced in the
symmetry-based model used here. The hopping to the first neighbors is linked to the
Fermi velocity, while hopping to the second neighbors is linked to the work function.
By performing DFT calculations of the band structure of graphene for varying bond
lengths, one can calculate η1 and η2. Those DFT calculations of η1 and η2 result in
the numerical values of EPC parameters reported in Table 3.1, column "TB-DFT".
It is important to underline that within this TB model, the canonical phonon modes
are used to calculate the perturbation to the TB Hamiltonian. Thus, we obtain the
canonical EPC parameters β̃A, β̃O. There is no further modeling of the phonon modes,
and therefore, no values for the effective parameters βA and βO. This is not really
relevant for the optical phonons, because we have seen that the phonon model has
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Table 3.1: Electron-Phonon Coupling parameters, calculated by different methods: (i)
DFPT EPC: direct DFPT LDA calculation of EPC, Sec. 3.1. This method does not
give access to unscreened αbare. (ii) |q| = 0: from zero-momentum model, see Sec. 3.3.
Acoustic parameters are obtained by calculating the magnitude of strained-induced
scalar and vector potentials. Optical parameters are obtained with the frozen phonon
method from Ref. [34]. (iii)TB-DFT: results obtained in Ref. [28] using a TB model
(App. B) and DFT to calculate the derivative of the hopping parameter with respect
to bond length (see Sec. 3.2). (iv) GW calculations of EPC parameters. For phonons
at Γ, the renormalization is 20%, as the Fermi velocity. For the A′1 mode, results are
taken from Ref. [35]. (v) Exp: obtained by fitting our numerical solution of Boltzmann
transport equation to experiment. β̃A and αbare are not used in the simulations. The
values of βK in the last line are doping dependent, see chapter 6, Sec. 6.3 for plots
(Fig. 6.3) and discussion.

DFPT EPC |q| = 0 TB-DFT [28] GW Exp

β̃A (eV) 4.60 4.58 3.58 5.52 –
βA (eV) 3.60 3.64 – 4.32 4.97
αbare(eV) – 2.96 3.25 – –
βO = β̃O (eV/Å) 9.5 9.5 10.08 11.39 11.39
βK (eV/Å) 9.5 9.5 10.08 12.5 ∼ 14 17 ∼ 40

a small effect on those. It has however, a sizable effect on the acoustic gauge field.
By chance, the DFT value of η1 leads to a canonical EPC β̃A that happens to be
close to the value of the effective EPC βA found by DFPT. Thus, there is a seemingly
very good numerical agreement between the simple TB model and the results of DFPT
calculations. However, we would like to point out that this agreement is fortuitous, and
in view of the analysis made here, it should rather be interpreted as a manifestation of
the limits of the TB model. Indeed, when the distinction between canonical and DFT
phonon modes is made, the numerical values are no longer consistent. Also, note that
in a nearest neighbor TB model βK = βO. This is verified [14] within a 1% error in
the frameworks of the first two columns. At the GW level however, this equality does
not hold.

An other way to evaluate EPC matrix elements for acoustic phonons can be found
in Refs. [25, 26]. The Hamiltonian for electron-phonon is similarly derived from a
TB model. The important difference is the use of a microscopic "valence-force-field"
model to derive the dynamical matrix and the resulting phonon modes. This model
involves two parameters describing the forces resulting from changes in bond lengths
and angles in the lattice. Those parameters are fitted on graphene’s phonon dispersion
derived from models using the force-constants measured in graphite. The resulting
phonon modes are then inserted in the TB electron-phonon interaction Hamiltonian.
Results qualitatively similar to our work are obtained. In particular, a reduction factor
originating from the mixing of the acoustic and optical canonical modes appears in the
coupling to acoustic modes. The parameter obtained in our DFPT calculations using
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the canonical phonon modes (β̃A) falls in the interval estimated in Refs. [25, 26].
However, the aforementioned reduction factor, equivalent to the ratio βA/β̃A, is found
to be ≈ 0.5 in Refs. [25, 26] while we find βA/β̃A ≈ 0.78.

Finally, note that the TB model enables to form a link between EPC and the
variation of the band structure with respect to structural changes. However, this link
is less reliable and captures less physical meaning that the one we present in the next
section.

3.3 EPC at zero momentum from static strain method

In order to calculate the electron-phonon matrix elements in the GW approximation,
we calculate the GW band structure for suitably chosen deformation patterns. If
the displacement pattern is chosen to reproduce the zero-momentum limit of a given
phonon, the matrix elements of the resulting perturbation Hamiltonian can be linked
to the EPC parameters. Following this approach, the frozen phonons method [34]
was used to calculate the electron-electron renormalization of the coupling to optical
modes (LO, TO, A′1) within GW. In order to perform GW calculations and to check
the consistency of the small momentum EPC model, we also seek an interpretation
of the acoustic EPC parameters at momentum exactly zero. This is achieved by link-
ing acoustic EPC parameters to the perturbation potentials induced by a mechanical
strain. This link is then verified numerically at the DFT level. Finally, we present
the results of GW calculations for acoustic EPC parameters using this method, and
summarize the already existing results on the optical EPC parameters.

3.3.1 Acoustic EPC and strain-induced potentials

For acoustic phonons at Γ, a static phonon displacement in the zero momentum limit is
equivalent to a strain deformation. We consider the long wavelength limit of an acoustic
phonon and the corresponding perturbation occurring on a portion of the graphene
sheet of scale d << 2π

q . Provided there is no long-range (Coulomb) interaction between
such zones distant to each other, the phonon perturbation can be seen locally as a
simple mechanical strain of the sheet. Author of Ref. [16] derived the |q| → 0 limit
of the electron-phonon interaction (Eqs. (2.2.7) and (2.2.8)) for the canonical acoustic
modes presented in Sec. 2.2 (Eq. (2.1.5)). Since screening was ignored in this EPC
model, the magnitude of the bare deformation potential αbare was used. Without
screening, there is no long-range interaction and strain can be considered to be the
exactly |q| = 0 equivalent of the |q| → 0 limit of an acoustic phonon. We will discuss
the consequences of screening on the interpretation of the deformation potential in
the zero-momentum limit in paragraph 3.3.2. We first review the model of strain
introduced in Ref. [16]. This model will be called canonical. The strained unit cell is
defined with the lattice vectors b′1,b′2 such that:

b′i = (I + U) bi (3.3.1)

U =
(
uxx uxy
uyx uyy

)
(3.3.2)
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where I and U are the identity matrix and strain tensor, respectively. In this first
canonical model, the vectors defining the positions of the carbon atoms in real space
are given by the same transformation as the lattice vectors. Namely, the internal
coordinates of atoms are unchanged in the basis of the lattice vectors {b′1,b′2}, see
Fig. 3.2. Evidently, strain also changes the reciprocal lattice vectors according to
the transformation b∗i

′ = (I + U)−1b∗i . It is then natural to develop the Hamiltonian
around the special point K = (2/3,−1/3), as defined in the basis of those new reciprocal
lattice vectors. While the coordinates of K in the basis of the reciprocal lattice vectors
are unchanged, it is useful for DFT calculations to note that the Cartesian coordinates
of this special point changed compared to the unstrained case. This change is only
due to the geometrical redefinition of the lattice vectors. The canonical perturbed
Hamiltonian H̃UK, expanded around point K of strained graphene is then written in
terms of a vector potential Ã = (Ãx,Ãy) and a scalar potential φ [16]:

H̃UK(k) = φ I + (�vFk + Ã) · σ (3.3.3)

where

Ãx =
√

2β̃A(uxx − uyy) (3.3.4)
Ãy = −

√
2β̃A(uxy + uyx) (3.3.5)

φ =
√

2αbare(uxx + uyy) (3.3.6)

φ acts as a global energy shift while Ã yields a redefinition of the Dirac point’s po-
sition. In strained graphene and in the presence of gauge fields, it is then important
to distinguish special point K from the Dirac point labeled K̄ here. The former is
defined geometrically while the latter is defined as where the π and π∗ bands intersect.
The Dirac point is now K̄ = K − Ã

�vF , as can be seen in Eq. (3.3.3). Similar expres-
sions are obtained around the other Dirac cone K′, by complex conjugation and the
transformations k→ −k and Ã→ −Ã.
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Figure 3.2: Schematic of a strain in the unit cell. The lattice vectors are transformed
as described by the strain tensor U . Within the canonical model of strain, the strained
internal coordinates d′1 and d′2 are given by the same tranformation. Within the
effective model, we allow the relaxation of internal coordinates.

In chapter 2, an addition to the canonical model of EPC Eqs. (2.2.7) and (2.2.8)
was the use of the DFT phonon modes of Eq. (2.1.6). In order to obtain the strain
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pattern equivalent to the |q| = 0 limit of those modes, we allow the relaxation of
internal coordinates after imposing a given strain to the crystal axes. This structural
optimization of the internal coordinates is crucial as after the strain deformation,
there are non-zero forces on the atoms. To give some numerical example, consider the
positions of the two carbon atoms as defined in Fig. 2.1. If we apply to the unit cell
a 1% uni-axial strain in the y-direction,

U =
(

0 0
0 0.01

)
(3.3.7)

and allow the relaxation of internal coordinates, we obtain the new atomic positions
d′1 = −d′2 ≈ 0.9987 × (1/6, 1/3) in the {b′1,b′2} basis. As was the case for phonon
modes at small momenta, this relaxation has substantial numerical consequences. We
assume that the process of relaxing internal coordinates leads to a strain model with
gauge field parameter βA (as in Eqs. (2.2.11) and (2.2.12)) instead of β̃A (as in Eqs.
(2.2.7) and (2.2.8)). This is analogous to the effects of using the DFT phonon modes
of Eq. (2.1.6) in DFPT. We will thus use the following effective strain model:

HUK(k) = φ I + (~vFk + A) · σ (3.3.8)
Ax =

√
2βA(uxx − uyy) (3.3.9)

Ay = −
√

2βA(uxy + uyx) (3.3.10)
φ =
√

2αbare(uxx + uyy) (3.3.11)

3.3.2 Calculation of strain-induced potentials at the DFT level
In this section we calculate the changes in the electronic structure of graphene [42]
under strain within DFT. The magnitudes of the scalar and vector potentials are then
extracted from the displacement in the Brillouin zone and the energy shift of the Dirac
cone. Within DFT, doping has a negligible effect on this process. By comparing the
results to the previous DFPT results, we validate the zero-momentum strain model.

Calculation and interpretation of the strain-induced bare deformation po-
tential

If there are no long-range interactions and screening is ignored in the EPC model, then
the deformation potential part of the EPC is bare and its |q| = 0 limit is directly related
to the global energy shift φ. Since long-range Coulomb interactions and screening are
present in our EPC model, however, an additional complication appears. In finite
differences calculations (DFT calculations on strained graphene), differently to what
happens in DFPT, the diagonal perturbation φ shifts the Dirac Point in energy just by
adding a constant potential with no modulation in q. As a result, the scalar potential
φ obtained with finite differences is bare and does not correspond to the |q| → 0 limit
of the screened deformation potential used in our EPC model. However, we can obtain
the screened α(q) by assuming:

α(q) = αbare

ε2D(q) (3.3.12)
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where ε2D(q) is the static dielectric function of graphene. Provided the value of αbare

and a reliable static dielectric function for a single layer of graphene ε2D(q), we could
thus evaluate α(q) in single-layer graphene. The static dielectric function of single
layer graphene will be the focus of chapter 4.

The parameter αbare is obtained by a global variation of lattice parameter b and is
related to the scalar potential φ:

U =
(
δb
b 0
0 δb

b

)
(3.3.13)

Ax = Ay = 0 (3.3.14)

φ = 2
√

2αbare δb

b
(3.3.15)

The structure obtained with such biaxial uniform strain is already relaxed. The relax-
ation process is thus irrelevant for αbare, as was the use of canonical or DFT phonon
modes for α(q). We obtain the value reported in the second column of Table 3.1.

Calculation of strain-induced gauge fields

The parameter βA is obtained by applying a strain in the armchair (y) direction:

U =
(

0 0
0 uyy

)
(3.3.16)

Ax = −
√

2βAuyy (3.3.17)
Ay = 0 (3.3.18)
φ =
√

2αbareuyy (3.3.19)

Such uni-axial strain induces a shift in the position of the Dirac point in the x-direction
or, equivalently, the opening of a gap ∆Eg at special point K. At this point, the value
of the Hamiltonian expanded around K is:

HUK(0) =
(

0 −
√

2βAuyy
−
√

2βAuyy 0

)
(3.3.20)

The gap is thus:

∆Eg(0) = 2
√

2βAuyy (3.3.21)

After imposing a strain on the lattice vectors, the internal coordinates of atoms are
relaxed within DFT, and the band energies are calculated at special point K. We
repeat the process for two values of strain uyy = −0.01, 0.01. The resulting βA is
reported in the second column of Table 3.1. We repeat the whole process without
relaxing the internal coordinates of the atoms and find the value of β̃A reported in
Table 3.1.

Direct DFPT calculations and this static strain method at the DFT level are two
different techniques to calculate the same gauge field. Comparing their results is
useful to check the validity of the models and gain more depth in our understanding of
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electron-phonon interactions. The unscreened gauge field parameters β̃A and βA are
in good agreement with the results of the previous section (see Table 3.1 and Fig. 3.1),
confirming the validity of the |q| → 0 and |q| = 0 models (canonical and effective) in
our simulation framework. The significant difference between the values of canonical
and effective parameters emphasizes the necessity of DFT phonons and relaxation. The
static strain method we propose here for acoustic parameters is especially well-suited
for the computationally expensive GW calculations since the energy bands are needed
only for one k-point.

3.3.3 EPC parameters at the GW level

Here we discuss how the relevant quantities are renormalized by electron-electron in-
teractions within GW [23]. The Fermi velocity is renormalized by approximately 20%,
depending slightly on doping [35]. The renormalization is strongest for neutral (or
very low-doped1) graphene (≈ +21%) and slightly decreases with increasing doping
(≈ +17% at εF = 1eV). It can be argued theoretically [34, 43] that the renormalization
of the coupling with phonon modes at Γ scales with that of the Fermi velocity because
those intra-valley scattering modes involve only a gauge transformation (change in the
position of the Dirac cone). This can be illustrated here by noticing that we have for
acoustic phonons:

|K̄−K| =
∣∣∣∣ A
~vF

∣∣∣∣ ∝ βA
~vF

(3.3.22)

where the quantity |K̄−K| and thus the ratio βA
~vF are unaffected by electron-electron

interactions between low energy Dirac electrons. Indeed, since such interactions are
centro-symmetric, their inclusion cannot displace the position of the Dirac cone, both
in presence and absence of a strain distortion. In simpler terms, as far as the electrons
(and only the electrons) are concerned, there is no preferential direction, since they
"live" in a cone. Thus their interactions are also direction-independent and cannot
induce a displacement of the cone in a particular direction. Using the frozen phonon
method, it was verified [35] that the renormalization of optical modes at Γ is relatively
weak and is equal to the renormalization of the Fermi velocity. In order to verify
that this is the case for acoustic modes as well, we repeat the process of the previous
paragraph within GW. The band energies are calculated at one additional k-point to
access the Fermi velocity. We use two different doping levels (εF = 0.5 eV and 0.75 eV)
to study the doping dependency of the renormalization. The doping levels are rather
high to ensure that the Fermi surface is satisfactorily sampled by our grid. The results
are presented in Table 3.2.

Our calculations2 confirm the ≈ 20% renormalization of vF at low doping. More
importantly, they confirm that the electron-electron interactions renormalize βA as the

1Strictly speaking, for graphene very close to charge neutrality, there is a logarithmic singularity
in the group velocity near the Dirac point. We do not consider this effect here. By neutral graphene,
we mean doping levels very low compared to those mentionned in the text, but high enough that the
logarithmic singularity can be neglected

2I am particularly thankful to Cheol-Hwan Park for performing the GW calcualtions.
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Table 3.2: Renormalization of Fermi velocity and acoustic gauge field parameter by
electron-electron interactions within GW, presented for two different values of doping
and for uniaxial strain uyy = −0.01,+0.01 as explained in Sec. 3.3.2.

Strain uyy −0.01 +0.01
Fermi energy εF 0.50 eV 0.75 eV 0.50 eV 0.75 eV
vGWF /vDFTF 1.203 1.166 1.204 1.164
βGWA /βDFTA 1.215 1.172 1.202 1.165

Fermi velocity:
vGWF
vDFTF

≈ βGWA
βDFTA

In contrast, the interaction of electrons with the inter-valley A′1 mode is not just a
gauge transformation of the electronic Hamiltonian. The renormalization of this mode
is much stronger overall, and its doping dependency is more pronounced. According to
Ref. [35], βK is renormalized by ≈ +46% close to neutrality, and ≈ 20% at εF = 1eV.

Summary

• Validation of EPC model for in-plane phonons within the DFT framework.

• Spurious screening of the deformation potential in standard DFPT.

• Development of the static strain approach to calculate acoustic EPC in GW.

• It is essential to relax internal coordinates to obtain effective acoustic EPC.

• Static strain method gives an estimation for the bare deformation potential.

• Acoustic gauge field is renormalized as Fermi velocity within GW.

• Numerical GW values for EPC parameters βA, βO, βK .
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Chapter 4

Static screening in 2D materials within
DFPT: application to graphene

We saw in the previous chapter that the presence of periodic images led to some spuri-
ous screening of the deformation potential. This invalidates the direct DFPT calcula-
tion of the screened deformation potential. Nevertheless, we obtained the bare defor-
mation potential from the static strain method. One way to estimate the screened de-
formation potential would be to apply the static screening function of isolated graphene
to the bare deformation potential. We would like to calculate this quantity with our
DFT framework. Having a reliable expression for the static screening of graphene is
crucial for many uses beyond the particular case of the deformation potential. Staying
in the context of electronic transport in graphene, screening is important for electron
scattering by charged impurities [44, 45, 46, 47], electron-phonon coupling [31, 48, 49],
or electron-electron interactions [50].

Dimensionality is well known to be essential in determining the physical properties
of materials. Correctly describing the physics of 2D materials requires careful modeling
and definition of the relevant physical quantities. This is particularly true in our DFT
framework, due to the presence of periodic images. For some physical properties, the
interactions between the periodic images are sufficiently suppressed by imposing large
distances between them [51]. However, if the electronic density is perturbed at small
wave vector, long-range Coulomb interactions between electrons from different peri-
odic images persist even for very large distances, leading to some spurious screening.
Despite this drawback, ab initio calculations have the advantage of describing a com-
plete band structure and accounting for local fields. Local fields designate electronic
density perturbations at wavelengths smaller than the unit cell dimensions [52, 53, 54].
Accounting for local fields usually requires heavier analytical and computational work
[55, 56, 57]. They have been estimated in various semiconductors using first-principles
calculations [58, 59, 60, 61, 62] and often renormalize the screening by a few tens of
percent.

The static dielectric function of graphene has been derived analytically within a 2D
Dirac cone model [63, 64, 65, 66, 67, 68, 69] in the random phase approximation (RPA).
In those derivations, the role of higher energy electronic states, the deviation from
conical bands and the so-called local fields were neglected. Later, quasiparticle self-

39
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consistent GW calculations [70] of the screening of point charges in neutral graphene
seemed to indicate a significant contribution from the local fields. The general behavior
of the static dielectric function was found to be quite different from the analytical RPA
derivation. However, Coulomb interactions between periodic images were not disabled.
There have been some propositions [71, 72], within density-functional theory, to correct
the contributions from the periodic images. More simply, complete suppression of those
spurious interactions can be achieved by cutting off the Coulomb interactions between
periodic images [73, 74, 40]. In a recent study of the energy loss function of neutral
isolated graphene [75], the use of a truncated Coulomb interaction (Coulomb cutoff)
was implemented in the framework of time-dependent density-functional theory. It
was found that the dynamical screening properties of graphene were strongly affected
by the spurious interactions between periodic images.

In this chapter, we focus on the long-wavelength and static screening properties of
both neutral and doped graphene. We use DFPT as it includes the complete band
structure of graphene and the effects of local fields [76, 20] and exchange correlation in
the local density approximation (LDA). We implement the Coulomb cutoff technique
and carefully address the issue of extracting two dimensional dielectric properties from
simulated three-dimensional potentials. We then compare our DFPT calculations with
the analytical derivations for the two dimensional massless Dirac fermions within RPA.

In Sec. 4.1, we set the general background of this chapter by defining the static
dielectric function in different dimensionality frameworks. In Sec. 4.2, we present dif-
ferent methods to calculate the static dielectric function of graphene. This includes an-
alytical derivations previously developed [63, 64, 65, 66, 67, 68, 69] and a self-consistent
solution implemented in the phonon package of the Quantum ESPRESSO (QE) dis-
tribution. In Sec. 4.3 those methods are applied to both doped and neutral graphene
and the results are compared.

4.1 Static dielectric function
In this section we introduce the quantities of interest in the formulation of the static
dielectric response. We use the DFT framework within LDA and atomic units to be
consistent with the following ab initio study. Both the unperturbed system and its
response to a perturbative potential are described within this framework. We start
with a quick description of the unperturbed system. Since we are interested only in
the static limit here, we consider a time-independent Kohn-Sham (KS) potential [77]
VKS(r), where r = (x,y,z) is a space variable. This potential is the sum of three
potentials:

VKS(r) = Vext(r) + VH(r) + VXC(r). (4.1.1)

In the unperturbed system, the external potential Vext is simply the potential generated
by the ions of the lattice. The remaining potentials are functionals of the electronic
density. The Hartree potential VH reads:

VH(r) = e2
ˆ
dr′ n(r′)
|r− r′| , (4.1.2)
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and VXC is the exchange-correlation potential. Since the KS potential determines the
solution for the density which in turn generates part of the KS potential, this approach
leads to a self-consistent problem. When solved for the system at equilibrium with no
perturbation, the ground-state density n(r) is found.

We now proceed to the description of this system within perturbation theory. An
external perturbing potential δVext is applied. This triggers a perturbation of the
electronic density such that the total density is n + δn, where δn is the first-order
response to the perturbing potential. Likewise, all the previously introduced potentials
can be separated into an equilibrium and a perturbed part. The screened perturbation
δVKS felt by an individual electron is the sum of the bare external perturbation δVext
and the screening potential δVH + δVXC induced by the density response δn:

δVKS(r) = δVext(r) + δVH(r) + δVXC(r). (4.1.3)

This leads to another self-consistent system [61] solved by the density response δn.
From this response we can extract the quantities characterizing the screening properties
of a material. The induced electron density δn can be seen as independent electrons
responding to the effective perturbative potential δVKS:

δn(r) =
ˆ
dr′χ0(r,r′)δVKS(r′), (4.1.4)

thus defining the independent particle static susceptibility χ0. It can also be seen as
interacting electrons responding to the bare external perturbative potential:

δn(r) =
ˆ
dr′χ(r,r′)δVext(r′), (4.1.5)

thus defining the interacting particle susceptibility χ.
We can now proceed to further description of the screening properties of the ma-

terial. The static dielectric function is first defined in three- and two-dimensional
frameworks in order to highlight and clarify their differences. We then treat the inter-
mediary cases of a 2D-periodic system of finite thickness and a periodically repeated
2D system, particularly relevant for ab initio calculations. For those cases, we will de-
termine the conditions in which it is suitable to define a 2D static dielectric function.

4.1.1 Three-dimensional materials
In a periodic system, it is more convenient to work with the Fourier transform of Eq.
(4.1.4). We consider a periodic external potential δVext(r) = δVext(q)eiq·r of wave
vector q. In this chapter, q is not a phonon wave vector in the plane of a 2D material,
it is a generic wave vector. We have in linear response theory:

δn(q + G) =
∑
G′
χ0(q,G,G′)δVKS(q + G′). (4.1.6)

Here, reciprocal lattice wave vectors G,G′ were introduced. Even though δVext(r)
only has a q component, the electronic density response can include larger wave vec-
tors q + G. Consequently, the induced and total potentials can also have q + G
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components. Those small wavelength components (smaller than the lattice periodic-
ity) in the response of the electrons are called local fields [70]. In a three-dimensional
framework, the Fourier components of the induced Hartree potential are:

δVH(q + G) = v3D
c (q + G)

κ0
δn(q + G) (4.1.7)

v3D
c (q + G) = 4πe2

|q + G|2 , (4.1.8)

where v3D
c (q+G) is the q+G component of the Fourier transform of the 3D Coulomb

interaction. The static dielectric constant κ0 renormalizes the Coulomb interaction
depending on the dielectric environment. We will focus on an isolated graphene layer,
so that κ0 = 1. This constant can also be used in a simple Dirac cone model to include
the effects of other bands [63, 64, 65, 66, 67, 68, 69], though no definite value has been
proposed. This will be discussed in Sec. 4.3. Until then, we set κ0 = 1. The Fourier
components of the XC potential are written δVXC(q + G). From Eqs. (4.1.3), (4.1.6)
and (4.1.7), we can write:

δVKS(q + G) =δVext(q) δG,0 + δVXC(q + G)
+ v3D

c (q + G)
∑
G′
χ0(q,G,G′)δVKS(q + G′), (4.1.9)

where δG,0 represents Kronecker’s delta.
The inverse screening function is defined as the ratio of the G = 0 component of

the KS potential (the coarse-grained effective potential) over the external potential:

ε−1
3D(q) = δVKS(q)

δVext(q) . (4.1.10)

4.1.2 2D materials
We now wish to work with 2D electronic densities δñ(rp), defined in the {x,y} plane
as follows:

δñ(rp) ≡
ˆ +∞

−∞
δn(rp, z)dz, (4.1.11)

where rp is the in-plane component of r, and z is the out-of-plane component.
We first consider the system usually studied in analytical derivations, which will be

called the strictly 2D framework. By strictly 2D, we mean that the electronic density
can be written as follows:

δn(rp, z) = δñ(rp)δ(z), (4.1.12)

where δ(z) is the Dirac delta distribution. There is no periodicity in the out-of-plane
direction. Considering an external potential δVext(qp) with an in-plane wave vector qp,
we can define the Fourier transform of the 2D electronic density δñ(qp+Gp) where Gp

is a 2D reciprocal lattice vector. The Hartree potential δVH(rp, z) generated by this
infinitely thin electronic distribution is three-dimensional. We thus separate in-plane
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and out-of-plane space variables to stress the fact that the induced Hartree potential
does extend in the out-of-plane (z) direction, in contrast with the density. Using Eq.
(4.1.7) and performing an inverse Fourier transform in the out-of-plane direction only,
we find:

δVH(qp + Gp, z) = 2πe2

|qp + Gp|
δñ(qp + Gp)e−|qp+Gp|z. (4.1.13)

For our purpose, only the value of the Hartree potential where the electrons lie δVH(qp+
Gp, z = 0) is of interest. Similarly, the KS potential also extends in the out-of-plane
direction, but we consider only the z = 0 value. We can work in a 2D reciprocal space
with δñ(qp + Gp) and the following potentials:

δṼH(qp + Gp) ≡ δVH(qp + Gp, z = 0)
δṼKS(qp + Gp) ≡ δVKS(qp + Gp, z = 0)
δṼXC(qp + Gp) ≡ δVXC(qp + Gp, z = 0)

δṼext(qp) ≡ δVext(qp, z = 0).

(4.1.14)

Note that since qp is in-plane, δṼext(qp) = δVext(qp, z). It is then common practice
to use the 2D version of Eq. (4.1.7), with the 2D Coulomb interaction v2D

c (qp + Gp)
(and κ0 = 1):

δṼH(qp + Gp) = v2D
c (qp + Gp)δñ(qp + Gp) (4.1.15)

v2D
c (qp + Gp) = 2πe2

|qp + Gp|
. (4.1.16)

We also define a 2D independent particle susceptibility as follows:

δñ(qp + Gp) =
∑
G′p

χ̃0(q,Gp,G′p)δṼKS(qp + G′p). (4.1.17)

Working with the 2D quantities defined above, Eq. (4.1.9) becomes:

δṼKS(qp + Gp) =δṼext(qp) δGp,0 + δṼXC(qp + Gp)
+ v2D

c (qp + Gp)
∑
G′p

χ̃0(qp,Gp,G′p)δṼKS(qp + G′p), (4.1.18)

and the definition of the inverse screening function is modified as follows:

ε−1
2D(qp) = δṼKS(qp)

δṼext(qp)
. (4.1.19)

We wish to use this definition in an ab initio framework. This raises some issues that
we address now.

4.1.3 2D-periodic materials with finite thickness
In ab initio calculations, the electronic density extends also in the out-of-plane direc-
tion. In this section we consider the consequences of a finite out-of-plane thickness of
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the electronic density. We consider now an isolated layer with an electron density of
thickness 2t. The results of the purely 2D system should be recovered if the wavelength
of the perturbation is very large compared to t. We illustrate this idea by considering
an electronic density such that:ˆ +∞

−∞
δn(rp, z)dz = δñ(rp) , δn(rp, z) = 0 if |z| > t . (4.1.20)

Using Eq. (4.1.7), the z = 0 value of the Hartree potential is then found to be:

δṼH(qp + Gp) = v2D
c (qp + Gp)×

ˆ +t

−t
e−|qp+Gp||z|δn(qp + Gp, z)dz. (4.1.21)

From this equation one can easily deduce that the condition |qp+Gp|t� 1 is necessary
to obtain results equivalent to the strictly 2D system. Since the largest value of |Gp|−1

is only a fraction of the lattice parameter, the above condition can only be fulfilled
for Gp = 0. The qp + Gp components of the induced perturbation have wavelengths
comparable to or much smaller than t and the thickness of the electronic density cannot
be ignored. However, as long as |qp|t � 1, the coarse-grained induced potential can
be written:

δṼH(qp) ≈ v2D
c (qp)δñ(qp). (4.1.22)

Working with reasonably small perturbation wave vectors, the z = 0 value of the
coarse-grained induced potential is equivalent to that of the purely 2D system. It
is then reasonable to use Eq. (4.1.18) at Gp = 0 and it makes sense to define the
dielectric function as in Eq. (4.1.19).

4.1.4 2D materials periodically repeated in the third dimension
In ab initio calculations, in addition to the non-zero thickness of the simulated elec-
tronic density, another issue arises. Current DFT packages such as QE rely on the
use of 3D plane waves, requiring the presence of periodic images of the 2D system in
the out-of-plane direction, separated by a distance c (interlayer distance). For many
quantities, imposing a large distance between periodic images is sufficient to obtain
relevant results for the 2D system. However, simulating the electronic screening of 2D
systems correctly is computationally challenging due to the long-range character of the
Coulomb interaction. As illustrated in Eq. (4.1.13), the Hartree potential induced by
a 2D electronic density perturbed at wave vector qp goes to zero in the out-of-plane
direction on a length scale 1/|qp|. For the layers (or periodic images) to be effectively
isolated, they would have to be separated by a distance much greater than 1/|qp|. The
computational cost of calculations increasing linearly with interlayer distance, fulfilling
this condition is extremely challenging for the wave vectors considered in the following.
It is thus preferable to use an alternative method.

In order to isolate the layers from one another, the long-range Coulomb interaction
is cut off between layers, as previously proposed in such context [74, 40, 75]. We use
the following definition of the Coulomb interaction in real space:

v̄c(rp, z) = e2θ(lz − |z|)√
|rp|2 + z2

, (4.1.23)
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where θ(z) = 1 if z ≥ 0 and θ(z) = 0 if z < 0. The cutoff distance lz should be small
enough that electrons from different layers do not see each other, but large enough
that electrons within the same layer do. In other words, if t is representative of the
thickness of the electronic density, we need the following inequalities to be true:

t < lz < c− t. (4.1.24)

The interlayer distance can be chosen such that c� t within reasonable computational
cost. Then we choose to cut off the Coulomb potential midway between the layers,
lz = c

2 . The Coulomb interaction is generally used in reciprocal space. Setting lz = c
2

and considering an external perturbative potential with in-plane wave vector δVext(qp),
the Fourier transform of the above Coulomb interaction is written as follows [74, 40]:

v̄c(qp + Gp, Gz) = 4πe2

|qp + Gp|2 +G2
z

×
[
1− e−|qp+Gp|lz cos(Gzlz)

]
, (4.1.25)

where Gz is the out-of-plane component of the reciprocal lattice vector G. In an ab
initio framework, the 3D Coulomb interaction v3D

c should thus be replaced by the
cutoff Coulomb interaction v̄c:

δVH(qp + Gp, Gz) = v̄c(qp + Gp, Gz)δn(qp + Gp, Gz). (4.1.26)

Within the DFT LDA framework, the exchange-correlation potential is short-range,
such that we can neglect interlayer interactions originating from that term. When
the Coulomb interaction is cut off and within the region z ∈ [−lz; +lz], everything
happens as if the system was isolated, and it can be treated as the 2D-periodic system
with finite thickness of the previous paragraph. For the layer at z = 0, and as long
as |qp|t � 1, we can thus work with the z = 0 values of the potentials and use the
definition of Eq. (4.1.19) for the dielectric function.

4.2 Static screening properties of graphene

In this section we present several methods to calculate the inverse static dielectric
function of graphene. First, the derivation of an analytical expression and a semi-
numerical solution are presented, following Refs. [63, 64, 65, 66, 67, 68, 69]. Graphene
is treated as a strictly 2D material, its electronic structure is represented by the Dirac
cone model, the random phase approximation (RPA) is used and local fields are ne-
glected. Then, we present an ab initio method based on the phonon package of QE.
This second method allows one to relax the approximations involved in the analytical
derivations.

4.2.1 Analytical and semi-numerical solutions

When the out-of-plane thickness of the electronic density can be neglected with respect
to the wavelength of the external potential, we can work in a strictly 2D framework
and Eqs. (4.1.18) and (4.1.19) can be used. In this section, two other approximations
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are used to simplify Eq. (4.1.18). Namely, we set δṼXC(qp + Gp) = 0 (RPA) and we
neglect the local fields, that is, all Gp 6= 0 components. Eq. (4.1.19) then reads:

ε−1
2D(qp) = 1

1− 2πe2

|qp| χ̃
0(qp)

, (4.2.1)

where it is understood that χ̃0(qp) = χ̃0(qp,0,0). In a model including only π − π∗
bands, the independent particle susceptibility is written as follows [63, 64, 65, 66, 67,
68, 69]:

χ̃0(qp) = 1
π2

ˆ
K
d2k

∑
s,s′

|〈k,s|k + qp,s′〉|2
f(εk,s)− f(εk+qp,s′)

εk,s − εk+qp,s′
. (4.2.2)

The integral is carried out over electronic wave vectors k in one valley around Dirac
point K, with a factor two for valley degeneracy. The indexes s and s′ designate the
π or π∗ bands. The occupation of the state of momentum k in band s is f(εk,s) and
εk,s is the corresponding energy. Within the Dirac cone model, a linear dispersion
is assumed εk,s = s ~vF |k|, with s = −1 (s = +1) for the π (π∗) band, and vF
is the Fermi velocity. The wave functions overlap is then written |〈k,s|k + q,s′〉|2 =
(1 + ss′ cos(θk − θk+qp))/2, where θk (θk+qp) is the angle between k (k + qp) and an
arbitrary reference axis. The Dirac cone band structure is isotropic and χ̃0 depends
only on the norm of the perturbation wave vector |qp|. The numerical implementation
of this integral in the Dirac cone model will be referred to as the "semi-numerical
solution". It has the advantage of accounting for temperature effects. In the zero
temperature limit and following the tedious but straightforward calculus of App. C,
the following analytical forms can be found. In the case |qp| ≤ 2kF :

ε2D(|qp|) = 1 + 2e2

~vF
2kF
|qp|

, (4.2.3)

where kF = |εF |
~vF is the Fermi wave vector, if εF is the Fermi energy taken from the

Dirac point. Note that in the limit of small wave vectors, ε2D diverges, indicating
complete screening of long-wavelength perturbations. In the case |qp| > 2kF :

ε2D(|qp|) = 1 + 2e2

~vF
2kF
|qp|
×
[
π|qp|
8kF

+ 1− 1
2

√
1− 4k2

F

|qp|2
− |qp|4kF

sin−1
(

2kF
|qp|

)]
. (4.2.4)

For large wave vectors (|qp| � kF ), we find that ε2D ≈ 5. Those expressions are
relevant for doped graphene. For neutral graphene, we are in the case |qp| > 2kF , but
since kF → 0, Eq. (4.2.4) simplifies to:

ε2D(|qp|) = 1 + πe2

2~vF
≈ 5. (4.2.5)

Here, we naturally recover the |qp| � kF limit of the doped case. The following ab
initio study aims at investigating the validity of those expressions.
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4.2.2 DFPT LDA solution

Several approximations (Dirac cone model, neglecting local fields, RPA, etc.) were
used in order to derive the previous analytical expressions. Their validity is not obvi-
ous in graphene. Ab initio methods such as DFPT offer the opportunity to relax those
approximations [61]. In this section we detail how we obtain the 2D static dielectric
function as defined in Eq. (4.1.19) from DFPT. The equilibrium system is calculated
using the usual plane-wave DFT package. At that point, interlayer interactions can be
neglected in graphene. At the DFPT level, the issues of the periodic images and finite
thickness in the out-of-plane direction are treated as previously discussed. The remain-
ing issues are to apply the adequate perturbation and extract relevant 2D quantities.
To study the screening properties, we develop the response of the electronic density to
an external potential within QE. The code originally calculates the induced electronic
density in response to a phonon perturbation [20]. Here, we replace the phonon pertur-
bation by the perturbation δVext(qp). This perturbation is constant in the out-of-plane
direction and modulated by a single wave vector qp in the plane. As shown previously,
the relevant quantity is the z = 0 value of the KS potential, coarse-grained in the
plane δṼKS(qp). Note that the Gz 6= 0 components are needed to perform a Fourier
transform and then take the z = 0 value. The number of Gz elements is limited only
by the kinetic energy cutoff. We then use the definition of Eq. (4.1.19).

Technical details of DFPT calculations

Our DFT/DFPT calculations were performed using the Quantum ESPRESSO (QE)
distribution [38]. The electronic structure is obtained by DFT calculations within the
local density approximation [22] (LDA). Since the electronic structure is calculated
without cutoff, it can contain some spurious interlayer states above the Dirac point. In
the calculations, it is thus safer to dope graphene with holes to avoid those states. We
will assume electron-hole symmetry and consider the following results valid for both
electron and hole doping. The doping is jellium-induced. We use norm-conserving
pseudo-potentials with 2s and 2p states in valence and cutoff radii of 0.78 Å. We use
a 0.01 Ry Methfessel-Paxton smearing function for the electronic integrations, a 65
Ry kinetic energy cutoff, and a 96 × 96 × 1 electron momentum grid. The lattice
parameter is b = 2.46 Å and the distance between graphene and its periodic images is
c = 4.0× b ≈ 9.8 Å. The Coulomb interaction is cutoff when calculating the response
of the system to an external perturbative potential. The results presented here were
obtained for a perturbation wave vector in the direction Γ→ K of the Brillouin zone.
Identical calculations were performed in different directions. The variations of the
results were small enough to assume that the screening properties of graphene are
isotropic. Occasionally, variations from this setup were required and will be specified.

Validity of the 2D framework

Now we quickly discuss the validity of the 2D treatment with respect to the thickness of
the electronic density. Fig. 4.1 shows the out-of-plane variations of the coarse-grained
induced potential δVH(qp,z) and the equilibrium electronic density n0(Gp = 0,z) of
a single isolated graphene layer in our ab initio framework. We use three values of
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Figure 4.1: The induced potential δVH(qp, z) in the out-of-plane direction at different
values of |qp|, expressed in units of the distance between the Γ and K points of the
Brillouin zone. Calculations were performed for a Fermi level of εF = 0.25 eV, taken
from the Dirac point. Details of the numerical calculations can be found in Sec. 4.2.2.
The typical profile of n0(Gp = 0,z) is represented. The equilibrium density was chosen
here to have a common reference for all perturbations.

|qp| covering the range of values used in the following section. In that range, Fig.
4.1 shows negligible variations of the induced potential over the extent of the electron
distribution. The two-dimensional description of the screening properties is thus valid.
This range of wave vectors covers a large span of situations where static screening plays
a role. For example, in the case of electronic transport we are typically interested in
values of |qp| on the scale of the Fermi wave vector for relatively small doping levels.
Thickness effects are negligible in this situation.

4.3 Results in graphene

In this section we present the results of the full DFPT LDA method (Sec. 4.2.2, labeled
"LDA") and compare them to the analytical solution (Eqs. (4.2.3)-(4.2.5), labeled
"Analytical") for the static dielectric function of doped and neutral graphene. We
identify the contributions of temperature, bands, local fields, and exchange correlation
by using different methods. When the analytical derivation presented in Sec. 4.2.1
is used, the Fermi velocity is the only parameter needed to define the Dirac cone
band structure. For consistency with the ab initio methods, we use the Fermi velocity
obtained in the linear part of the DFT band structure, such that ~vF = 5.49 eV·Å. It
is well known that electron-electron interactions increase this value by approximately
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20% (depending on doping) within the GW approximation [35]. The renormalized
value is in good agreement with experiments. This renormalization is ignored here,
but should be accounted for when comparing with experiment. Three intermediary
methods were used to investigate the differences between the analytical solution and the
self-consistent DFPT LDA solution. The first is the semi-numerical method introduced
in Sec. 4.2.1. The independent particle susceptibility χ̃0(qp) is obtained by numerical
integration of Eq. (4.2.2), and inserted into Eq. (4.2.1). This solution relies on the
same approximations as the analytical solution but it can be carried out at a chosen
temperature (or energy smearing) as long as the integration grid is adequately fine.
The second is labeled "RPA" and consists in setting the exchange-correlation potential
to zero within the DFPT method. The third is labeled "RPA no LF" and consists in
evaluating the DFPT independent particle susceptibility and inserting it in Eq. (4.2.1).
This implies using RPA and neglecting local fields, as well as a strictly 2D treatment,
since Eq. (4.2.1) was derived in a strictly 2D framework. This method boils down
to the evaluation of Eq. (4.2.1) within a more complete ab initio model for the band
structure. Table 4.1 summarizes the labels and main characteristics of the various
methods used in the following plots.

Table 4.1: Summary of the various methods used in the plots of Sec. 4.3. For each
method, we report: (i) the treatment of electron-electron correlation, LDA referring
to the use of the XC potential within LDA, "= 0" meaning that the XC potential is
set to zero ; (ii) whether local fields are included (YES) or neglected (NO) ; and (iii)
which band structure model was used, the full ab initio band structure or the simpler
Dirac cone model for π − π∗ bands.

Label Exchange-Correlation Local Fields Bands
LDA LDA YES ab initio
RPA = 0 YES ab initio
RPA no LF = 0 NO ab initio
Analytical = 0 NO Dirac cones

4.3.1 Importance of cutting off the Coulomb interactions

We begin by presenting the DFPT LDA results and pointing out the importance of the
2D Coulomb cutoff in Fig. 4.2. We plot the inverse dielectric function obtained with
the LDA method with and without cutoff. In the latter case, we follow the process
of Sec. 4.2.2 but the original 3D Coulomb interaction v3D

c is used. Two different
interlayer distances are displayed, namely c ≈ 9.8 Å and c ≈ 40 Å . It is clear that
interlayer interactions play a major role in the screening without cutoff, as a strong
dependency on the interlayer distance is shown. For c ≈ 9.8 Å, the effect of the cutoff
is drastic. When the interlayer distance is increased, the results without cutoff slowly
approach the results with cutoff. This is also the case in the limit of large wave vectors.
In general, the results with and without cutoff are similar when the scale on which
the induced Hartree potential decreases 1/|qp| is negligible compared to the interlayer
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Figure 4.2: DFPT LDA results are plotted with and without cutoff of the Coulomb
interactions. The inverse dielectric function, as defined in Eq. (4.1.19), is plotted as
a function of the adimensional variable |qp|/|Γ−K|, where |Γ−K| ≈ 1.7 Å−1 is the
distance between the Γ and K points of the Brillouin zone. The calculations were
performed for neutral graphene (lower panel) and doped graphene (upper panel) with
εF = 0.25 eV, measured with respect to the Dirac point. In the upper panel, we also
represent the scale |qp|/kF where kF ≈ 0.27|Γ −K| refers to the Fermi wave vector
in the doped case. Two interlayer distances were used c ≈ 40 Å and c ≈ 9.8 Å to
convey the dependency of the results (without cutoff) on that parameter. When the
Coulomb interaction is cutoff, the results are independent of the interlayer distance
c. Finally, note that for the neutral case at small wave vectors and with cutoff, the
results are quite sensitive to energy smearing/grid effects. In this situation, we used a
140× 140× 1 grid and 0.005 Ry energy smearing to be as close as room temperature
as manageable.
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distance c. However, even using large interlayer distances, the effect of cutting off the
Coulomb interactions remains significant. To obtain accurate ab initio results for an
isolated layer, it is thus essential to cut off the Coulomb interactions. To give a clearer
picture of the effects of the Coulomb cutoff, we plot the Hartree potential with and
without cutoff for two different interlayer distances c in Fig. 4.3. With cutoff, the
Hartree potentials corresponding to the two interlayer distances coincide exactly with
each other within the region [−lz; +lz], lz being half the smaller interlayer distance
here. This confirms that within this region, everything happens as if the layers were
isolated. Without cutoff, in contrast, the Hartree potentials are significantly different,
stressing the fundamental difference in the response of systems with different interlayer
distances.
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Figure 4.3: The Hartree potentials are plotted in the out-of-plane direction with and
without cutoff and for two different interlayer distances c ≈ 40 Å and c ≈ 9.8 Å .
The calculations were performed for doped graphene with εF = 0.25 eV, at |qp| ≈
0.32 |Γ−K| ≈ 1.2 kF .

4.3.2 Comparison of analytical and LDA methods: band structure effects
In Fig. 4.4, we compare the LDA results (with cutoff) to the analytical solution of
Eqs. (4.2.3)-(4.2.5). The results of the two methods are rather close overall. In doped
graphene, the LDA results are in very good agreement (≈ 3%) with the analytical
method for |qp| ≤ 2kF . A more pronounced discrepancy (≈ 10%) is observed for
|qp| > 2kF . In the neutral case, a similar ≈ 10% discrepancy occurs for most values of
|qp|, but agreement seems to be reached in the small |qp| limit. For neutral graphene
at small wave vectors, smearing plays a significant role. Though not plotted here,
the semi-numerical method is equivalent to the analytical solution when performed
with an energy smearing corresponding to room temperature. Using the same energy
smearing and grid as in DFPT to perform the numerical integration of Eq. (4.2.2)
showed that smearing effects are negligible except in the small wave vector limit of the
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neutral case. For DFPT LDA calculations in this regime, we lowered the smearing to
0.005 Ry and changed the grid accordingly to 140× 140× 1 in Figs. 4.2 and 4.4. For
this smearing, agreement between LDA and analytical results is reached around |qp| ≈
0.025|Γ−K|. Although quite low in terms of what is computationally manageable in
DFT, this energy smearing is still large compared to the value corresponding to room
temperature. At room temperature, we expect that DFPT LDA calculations would
show the agreement to be reached for smaller |qp|. In the zero temperature limit, it
should be reached for |qp| → 0. Thus, for graphene in general, we can consider that
LDA and analytical results significantly differ only for |qp| > 2kF , which corresponds
to |qp| > 0 in the neutral case.

To investigate the origin the ≈ 10% discrepancy above 2kF , we use the afore-
mentioned "RPA no LF" method. In Fig. 4.4, this method gives a smaller inverse
dielectric constant than both the LDA (≈ 8%) and analytical (≈ 16%) methods above
2kF . Comparing the "RPA no LF" and LDA methods indicates that the combined
effect of RPA, neglecting local fields, and a strictly 2D framework is a ≈ 8% decrease
of the results. As mentioned before, the band structure model is the only difference be-
tween the "RPA no LF" and analytical methods. This suggests that the effects of using
the Dirac cone approximation are more sizable (≈ 16%) but somewhat compensate the
other approximations. Overall, we end up with the ≈ 10% discrepancy above 2kF be-
tween LDA and analytical method. When setting the exchange-correlation potential to
zero in DFPT, see "RPA" in Fig.4.4, the results are only slightly changed. This means
that neglecting the local fields in the plane (what is meant by neglecting local fields
in the derivation of Eq. (4.2.1)) and out-of-plane (equivalent to making the strictly
2D approximation) has more important effects than exchange-correlation. Although
the use of an LDA exchange-correlation potential has negligible consequences for the
results presented here, we would like to point out that such potentials are derived in
the framework of a three-dimensional electron gas. Consequently, their relevance in a
2D framework is limited and the RPA method might be more reliable than the LDA
one.

A better interpretation of the effects of band structure can be achieved by compar-
ison of the independent particle susceptibility χ̃0 from the "RPA no LF" and analytical
methods in Fig. 4.5. In the |qp| ≤ 2kF regime, the screening is dominated by the
zeroth-order of χ̃0, proportional to the density of states. The linear part of the DFT
band structure of graphene is well represented by the Dirac cone model. As long as the
Fermi level is reasonably small (but finite), the densities of states obtained in DFT and
analytically are very close. We then find a very good agreement with the analytical
derivation in this regime. In the upper panel of Fig. 4.5, it is clear that a higher-order
(in |qp| ) term in χ̃0 from DFPT is responsible for the gradual disagreement with the
analytical solution as |qp| increases. In the neutral case, the zeroth order of χ̃0 vanishes
with the density of state, and χ̃0 is always dominated by contributions of higher-order
terms. For the |qp| > 2kF regime in general, the first-order in |qp| seems to dominate.
The susceptibility χ̃0 is then ruled by interband processes, some of them going beyond
the range of validity of the Dirac cone model.

Overall, we find a rather good agreement with the analytical derivation of Refs.
[63, 64, 65, 66, 67, 68, 69]. This is in strong contrast with the conclusions of a previous
ab initio study [70] of the screening of point charges in neutral graphene. Our work
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differs mainly on the use of a Coulomb cutoff, and the treatment of ab initio results to
extract the 2D screening properties of a system that is effectively 3D. Finally, we can
comment on the use of the constant κ0 in Eq. (4.1.7) to include the effects of other
bands. Such a constant is not appropriate since it would affect all the orders in χ̃0,
including the zeroth order that is correct. To have an analytic expression quantitatively
closer to the DFPT LDA results, one should only renormalize the contribution from
the interband processes.

4.3.3 Estimation of the screened deformation potential
Using the bare deformation potential and the analytical 2D static dielectric function
of Eqs. (4.2.3)-(4.2.5), we can estimate α(|qp|) in single-layer graphene. This gives
the results of Fig. 4.4, multiplied by a factor three. We find that α(|qp|) ≤ α(|qp| =
2kF ) ≈ 0.5 eV. Note that underlying this present estimation is the assumption that
the deformation potential can be approximated as a simple perturbing potential with
a single Fourier component at qp. In truth, the phonon perturbation associated to the
deformation potential has Fourier components at qp + G. The simple qp-modulated
external potential considered in this chapter does induce a response of the electronic
density with components qp + G, the so-called local fields contributions. Those local
fields were shown to have relatively small effects on the static dielectric function.
However, in case of a phonon, the source of the perturbation includes local fields. This
more direct excitation of the small wavelength components of the electronic density
could lead to more significant local fields. In this estimation, we also neglect some
possible variations of the bare perturbation as a function of qp, and take the qp = 0
value found using the static strain method. Note finally that the DFPT values of
α(|qp|) from Chapter 3, with some spurious screening by the periodic images, were
much smaller than this estimation.

Summary

• Definition of screening function depends on dimensionality.

• Careful treatment is necessary to extract 2D quantities.

• New method to calculate screening properties of 2D materials within DFPT.

• Implementation of 2D Coulomb cutoff is essential.

• Good agreement with strictly 2D, Dirac cones, RPA, no local fields model.

• ∼ 10% discrepancy above 2kF due to Dirac cone model.
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Figure 4.4: Comparison of the static dielectric function of graphene obtained within
the LDA and analytical methods. We use the same axes as in Fig. 4.2. We also plot
the results of the "RPA" and "RPA no LF" methods. For this last method applied
to neutral graphene, the point with the smallest |qp| was not converged and is not
represented.
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Figure 4.5: Comparison of the independent electron susceptibility of graphene obtained
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The contribution of intraband and interband processes to χ̃0 are represented by circles
and crosses, respectively. To calculate those contributions, we used the semi-numerical
solution with a small energy smearing (0.001 Ry). The analytical and semi-numerical
methods are equivalent in that case.
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Chapter 5

DFT and DFPT for 2D materials
doped in the FET setup

DFT based on plane-wave basis sets, Kohn-Sham equations and pseudopotentials (sim-
ply called DFT in this thesis), has proven to be a valuable tool to understand and
predict electronic and structural properties of materials. DFT studies can help in
the process of understanding and controlling experimentally observed phenomena. In-
versely, an exciting prospect is the use of DFT to identify potentially interesting new
2D compounds, thus encouraging their experimental study. The wide range of po-
tential applications and fascinating phenomena offered by 2D materials would benefit
from accurate DFT simulation.

As discussed before, a particularly interesting aspect of 2D materials is the possibil-
ity to induce large gate-induced doping in a FET setup. However, current implemen-
tations of plane-wave DFT with three-dimensional periodic boundary conditions (3D
PBC) are not adequate to the simulation of 2D materials doped in the FET setup.
While doping the material is possible via the use of a compensating jellium back-
ground, to simulate gate-induced doping remains a difficult task. The fundamental
issue is that its asymmetric configuration in terms of electric field breaks 3D PBC.
Some methods have been proposed to palliate this issue at the DFT level. A dipole
correction [78, 79, 80] can be used to recover 3D PBC in systems with an out-of-
plane dipole moment. This method has been used to simulate chloronitrides [12] and
transition-metal dichalcogenides [81] in the FET setup. Another way to deal with those
issues is to separate the solving of the Poisson equation and that of the Kohn-Sham
(KS) equations. In the effective screening medium (ESM) technique [82], the Poisson
equation is solved without 3D PBC, resulting in the correct potentials. The potentials
are then modified where the electron density is negligibly small to allow their use in
the KS equations with 3D PBC. This method has recently been used to simulate a
graphene-based vertical field-effect tunneling transistor [83] at the DFT level.

Here, we use the Coulomb cutoff technique [73, 40, 74], effectively isolating each
periodic images from one another. This is implemented at the DFT level for the calcu-
lation of the ground-state electronic density, total energy and forces. In addition to be
more adapted to the specific case of the FET setup, the 2D Coulomb cutoff technique
can be considered simpler and more flexible than the previous dipole correction and

57
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ESM techniques for the simulation of 2D materials in DFT. We also implement the
2D Coulomb cutoff at the DFPT level to compute the linear response of the system
to a perturbation. An important addition with respect to the previous methods is
then the possibility to compute phonon dispersions and EPC in 2D, and in particular
for 2D materials doped in the FET setup. This offers the possibility of simulating
phonon features and electron-phonon interactions that are specific to the FET setup.
The ability to simulate an isolated 2D system in DFPT is also important in view of
the conclusions drawn in the previous chapter [84], where we have shown that inter-
actions between periodic images are important for 2D materials perturbed at small
wave vectors. In the previous chapter, it was sufficient to cut the perturbation part
of the Hartree potential off, since we were only interested in the electronic response.
Since we were not in the FET setup, the periodic images were not a problem for the
ground-state density, energy and bands. Also, we did not consider any phonon per-
turbation. Here, however, we wish to compute the KS potential, total energy, forces,
phonon dispersions and EPC of a 2D material doped in the FET setup. Although the
concept of the 2D Coulomb cutoff stays the same, the modifications implemented here
are much more extensive.

The chapter is structured as follows. We begin with a description of our model for
2D materials doped in the FET setup in Sec. 5.1. We restrict ourselves to a description
in terms of potentials. In Sec. 5.2, we highlight the issues raised by the presence of
periodic images to simulate the KS potential of 2D materials in the FET setup, and
show how the 2D Coulomb cutoff technique can solve those issues. In Sec. 5.3, we
detail the implementation of the 2D Coulomb cutoff for the KS potential, total energy,
forces, phonons and EPC in the Quantum ESPRESSO (QE) code. Finally, we use
our implementation of the 2D Coulomb cutoff to study some previously inaccessible
properties of graphene in the FET setup. Namely, we observe the emergence of a
finite phonon frequency for the ZA phonons at Γ, simulate the screened deformation
potential for graphene without the periodic images, and demonstrate a finite coupling
of the electrons with the out-of-plane phonons.

5.1 Description of a 2D material doped in the FET setup

In this section we present our model for a 2D material doped in the FET setup,
focusing on the potential of such a system. Other quantities (e.g. the total energy)
will be treated when we detail the implementation.

The central object is the 2D material in itself. We consider a system which has
periodicity in the {x, y} plane, defined as the infinite periodic repetition in the plane
of a unit cell. The positions of the cells are Rp = m1b1 +m2b2, where m1 and m2 are
two integers. The primitive lattice vectors b1,b2 have coordinates in the {x, y} plane.
The z-component of Rp is a constant. The position of atom a within the unit cell is
labeled da. The atomic internal coordinates da can have different z-components such
that all atoms are not necessarily on the same plane, e.g. in the case of multilayered
2D materials. In reciprocal space, the crystal is described by reciprocal vectors Gp,
generated by two in-plane primitive reciprocal lattice vectors b∗1 and b∗2.

Within our DFT framework, the ground state properties of the system are deter-
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mined by the ground-state electronic density n(rp, z), where we separate in-plane (
rp) and out-of-plane (z) space variables, as they clearly have different roles in a 2D
system:

n(rp, z) = 2
∑
k,s

f(εk,s)|ψk,s(rp,z)|2 (5.1.1)

ψk,s(rp, z) = wk,s(rp, z)eik·rp . (5.1.2)

The in-plane wave vector k and the band index s define an electronic state. The
Bloch wave functions ψk,s are the solutions of the Kohn-Sham (KS) equations. The
KS potential of the 2D system is the sum of the external potential V 2D

ext (which, for
now, consists of the potential generated by the ions V 2D

ion ), the Hartree potential V 2D
H ,

and the exchange-correlation potential V 2D
XC (rp, z):

V 2D
KS (rp, z) = V 2D

ext (rp, z) + V 2D
H (rp, z) + V 2D

XC (rp, z). (5.1.3)

The above quantities possess the 2D-periodicity of the crystal. That is, for any f ≡
n, V 2D

KS , V
2D

ext , V
2D

H or V 2D
XC , we can write:

f(rp + Rp, z) = f(rp, z) . (5.1.4)

We can define the 2D Fourier transform of those quantities as:

f(Gp, z) = 1
S

ˆ
S
f(rp, z)e−iGp·rpdrp, (5.1.5)

where the integral is over the area of the unit cell S. We will write in-plane averages as
f(Gp = 0, z) = 〈f〉p(z). Those quantities also extend in the out-of-plane direction. A
relevant scale for the out-of-plane extension of the 2D material would be the electronic
density’s thickness t, defined such that:

ˆ t/2

−t/2
〈n〉p(z) dz ≈ n0 , (5.1.6)

where n0×S is the number of valence electrons per unit cell in the system, equal to the
sum of the ionic charges

∑
a Za in the neutral case. The total energy, forces, phonons

and electron-phonon interactions of a neutral 2D material can be computed using the
formalism of App. A.

We now consider what we must do to simulate this 2D material doped in conditions
emulating the FET setup. In the out-of-plane direction, it is essential that we simulate
the correct 2D potentials in a region at least as large as the thickness t. We do not
need to simulate the ions and electrons in the dielectric, substrate or gate. We simply
need to simulate the effects of those on the 2D material. The first effect is doping. We
consider an electron density such that:

ˆ +t/2

−t/2
〈n〉p(z) dz = n0 =

∑
a

Za
S

+ ndop , (5.1.7)

where Za is the number of pseudo charges of atom a, and ndop × S is the number of
electrons added per unit cell. We focus now on the general electrostatic properties
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of the FET setup. If we look at the planar-averaged potential generated by the 2D
material at distances |z| > t/2, we can approximate the sum of the charge distributions
of the ions and electrons %ion +%elec as a simple charged plane of surface charge density
−endop. The associated electrostatic potential is defined up to a constant electric field
(that is a linear potential ∝ z) that we choose to be zero:

〈%ion + %elec〉p(z) ≈ −endopδ(z) (5.1.8)
〈V 2D

ion + V 2D
H 〉p(z) ≈ −2πe2ndop|z|. (5.1.9)

Considered alone, this potential is quite different from the one present in the FET
setup. In particular, it is still symmetric with respect to the plane of the material.
We have established that a key feature of the FET setup is its asymmetry. In the
FET setup, the doping comes from the presence of accumulated counter-charges in the
gate. We add a charged plane of opposite surface charge density +endop at zg < −t/2,
playing the role of the gate:

%gate(z) = +endopδ(z − zg) (5.1.10)
V 2D

gate(z) = +2πe2ndop|z − zg|. (5.1.11)

We now have a globally neutral system:
ˆ
〈%ion + %elec〉p(z) + %gate(z) dz = 0. (5.1.12)

The potential of the gate is included in the external potential:

〈V 2D
ext 〉p(z) = V 2D

gate(z) + 〈V 2D
ion 〉p(z), (5.1.13)

and the planar-averaged KS potential V 2D
KS reads:

〈V 2D
KS 〉p(z) = 2πe2ndop


zg if z < zg

2z − zg if zg < z < −t/2
−zg if t/2 < z

(5.1.14)

In the case of hole doping (ndop < 0), the effective KS potential 〈V 2D
KS 〉p(z) is then as

shown in Fig. 5.1. The derivative of the KS potential gives the electric field experienced
by an electron:

d〈V 2D
KS 〉p(z)
dz

=


0 if z < zg

4πe2ndop if zg < z < −t/2
0 if t/2 < z

(5.1.15)

The system has acquired an out-of-plane dipolar moment which induces a shift in the
KS potential:

〈V 2D
KS 〉p(+∞)− 〈V 2D

KS 〉p(−∞) = 4πe2ndop|zg|. (5.1.16)

The last component we have to consider to have a working minimal model for the
FET setup is the dielectric. Its necessity appears in the case of electron-doping. In
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Figure 5.1: On the left, out-of-plane behavior of the KS potential of a hole-doped
single-layer 2D material (graphene) with a charged plane to simulate the gate. On the
right, we add a potential barrier to simulate the dielectric material.

that situation, the polarity of the system pictured in Fig. 5.1 is reversed. This means
that the gate lies at a lower potential than the 2D material. In our simulations, there
would then be some leaking of electrons towards the gate. This is not physical 1. In
a FET setup, this is prevented by the presence of the insulating dielectric material.
The dielectric also has a more mechanical purpose. Indeed, there is an attractive force
between the gate and the material, which is simply the electrostatic attraction between
two oppositely charged plates:

Fgate−material = S × 2πe2n2
dop sign(zg). (5.1.17)

In this context, the dielectric provides a counteracting repulsive force. To simulate
the insulating and repulsive roles of the dielectric we can add a potential barrier in
between the material and the gate:

V 2D
barrier(z) =

{
Vb if z < zb

0 otherwise
(5.1.18)

where zg < zb < 0. This potential can be included in the external potential V 2D
ext .

Adding such a barrier results in the potentials shown on the right side of Fig. 5.1.
This barrier potential essentially forbids (or makes highly unlikely) the presence of
electrons for z < zb, thus preventing electrons from leaking towards the gate. Since
the electrons cannot go past the barrier, and since the ions are strongly attracted by
the electrons, the barrier repulses the 2D material as a whole. As will be detailed later,
the position of the barrier is determined by relaxation of the forces in the system.

1We could think about cold emission (an electron being emitted from a metal plate towards an
other under a strong electric field), but in that case we would have to account for the work function
of the gate.
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In the following section, we explain how we deal with the periodic images to obtain
the KS potential we just described in a plane-wave DFT code. Then, we will detail the
modifications implemented to compute the total energy, forces, phonons and electron-
phonon interactions for a 2D material doped in the FET setup.

5.2 Treatment of the periodic images
Ab initio calculations based on plane-wave basis sets require periodic boundary con-
ditions along the three dimensions (3D PBC). In this framework, periodic images of
the 2D system are present in the out-of-plane direction. Our goal is for each periodic
image to be strictly equivalent to the 2D system presented in the previous section, at
least within a certain "physical region" around the 2D material (for example, within
the boundaries of Fig. 5.1). In this section, we detail the issues that arise from the
use of 3D PBC for the simulation of doped systems, systems with out-of-plane dipolar
moment, and systems perturbed at long wavelengths. We then show how the Coulomb
cutoff technique can solve those issues.

5.2.1 Inadequacy of 3D PBC

The 3D-periodic system obtained by adding translated copies of the 2D system gen-
erates potentials that are different from the ones described in the previous section.
This comes from interactions between periodic images, due to the combination of their
potentials while satisfying PBC. The sum of the KS potential from each periodic image
can be written:

VKS(rp, z) =
∑
i

V 2D
KS (rp, z − ic), (5.2.1)

where i is an integer, and c is the distance between the periodic images (interlayer
distance). V 2D

KS is the potential of the 2D system, while VKS is the one simulated in
DFT with 3D PBC. In addition to the 2D PBC of Eq. (5.1.4) that V 2D

KS already fulfills,
VKS has to fulfill the PBC in the third direction:

VKS(rp, z + ic) = VKS(rp, z) , ∀ i. (5.2.2)

We first consider a doped 2D material. Away from the direct vicinity of the ions,
this system behaves like a monopole, with lim|z|→∞〈V 2D

KS 〉p(z) = ∞, and VKS is ob-
viously ill-defined. As mentioned before the standard method in current plane-wave
DFT packages amounts to the use of a jellium background. Each slab is then globally
neutral, containing the doped material and a uniform distribution of compensating
charges. In between the periodic images, the resulting potential is quadratic in z, with
extrema at mid-distance between layers, see Fig. 5.2. This potential does fulfill the
PBC and doesn’t diverge. However, it is quite different from the linear potential of
Eq. (5.1.9).

Now we consider a 2D system with a global dipolar moment in the out-of-plane
direction and a V 2D

KS potential like in Fig. 5.1. Here, each periodic image is globally
neutral. However, the potential 〈VKS〉p(z) would experience a shift with each periodic
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Figure 5.2: Planar-averaged KS potential in the out-of-plane direction as simulated
in DFT with 3D PBC for neutral (left) and doped (right) graphene. In the case of
doped graphene, the quadratic behavior of the KS potential indicates the presence of
a jellium background.

images, eventually diverging. Imposing PBC forbids this kind of situation. Instead, it
leads to a combination of additional electric field and re-organization of the charge so
that the total average electric field in one slab is zero [79, 78, 80], see Fig. 5.3. Here
again, we loose the equivalence with V 2D

KS .

Figure 5.3: From Ref. [80]. Schematic representation of the effects of 3D PBC on
the planar-averaged KS potential 〈VKS〉p(z) of a polar system. The finite slope of the
potential in between the periodic images indicates the presence of an external electric
field. The slope of the average potential within the material (dashed line) indicates an
internal electric field.

Finally, 3D PBC are also problematic when the system is perturbed at small wave
vector. As seen in chapter 4, the Hartree potential generated by an electronic density
perturbed at an in-plane wave vector q decreases on a scale q−1 in the out-of-plane
direction. At small wave vector, the extent of the potential induced by the electron
density is thus very large. When it is of the order of the distance between periodic
images, there is some spurious screening. This issue holds in the case of a phonon
perturbation.
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5.2.2 Isolate the layers with 2D Coulomb cutoff
To reduce interlayer interactions, a naive solution is to increase the distance between
the periodic images. Eventually, interlayer interactions are bound to fade away. How-
ever, the cost of the calculations increasing linearly with the distance, this method can
be very expensive, especially in the particular cases presented before. One solution for
the FET setup and for systems with an out-of-plane dipolar moment in general is to
add a dipole correction to catch up the potential shift [78, 79, 80, 12]. However, the
dipole correction has to be recalculated self-consistently at each iteration.

Here, we tackle 3D PBC issues by using the Coulomb cutoff technique, successfully
used in the previous chapter for screening. The general idea is to cut all the potentials
off between the periodic images. In effect, all physical links between periodic images
are severed because the potential generated by one periodic image does not reach
the others. Each slab is effectively isolated. There is no physical 3D-periodic system
anymore. There is a 2D-periodic system, copied and repeated in the third dimension
in order to build something that mathematically fulfills 3D PBC.

Each long-range potential (V ≡ Vion,VH,Vgate) in the original 3D code is generated
by a certain distribution of charges via the Coulomb interaction vc(r) = e2

|r| . To build
the corresponding cutoff potentials in the code (V̄ ≡ V̄ion,V̄H,V̄gate), we use the following
cutoff Coulomb interaction:

v̄c(r) = e2θ(lz − |z|)
|r| , (5.2.3)

where r ≡ (rp, z) is a generic 3-dimensional space variable . An arbitrary charge
density % then generates the following potential:

V̄ (r) =
ˆ

e%(r′)
|r− r′|θ(lz − |z|)dr

′. (5.2.4)

Roughly speaking, considering a single charged plane, we generate its potential only
within a certain slab of thickness 2lz centered on the charge distribution. Within this
slab, we have that V̄ (r) = V 2D(r). Outside of this slab, the potential is zero. Each
periodic image of each charge distribution (%ion,%elec,%gate) generates its own potential
within its own slab. To fulfill 3D PBC, the simpler way is to cut off midway between
the periodic images:

lz = c

2 . (5.2.5)

Since the potentials V 2D
ion , V 2D

H , and V 2D
gate are symmetric with respect to the plane of the

associated subsystem (ions, electrons, gate), they have the same value on both sides
of the corresponding slab. V̄ion, V̄H, and V̄gate are each continuous and periodic, and
so is their sum V̄KS. However, since the slabs of each subsystem do not coincide, the
KS potential is only physical within the overlap of the subsystems’ slabs. This overlap
region defines a "physical region", as illustrated in Fig. 5.4 , where all the potentials
make sense. Outside of this region, there are some spurious unphysical variations of
the KS potential. Those spurious variations are a necessary consequence of fulfilling
3D PBC. Let us consider the example Fig. 5.4 in more details. The simplest subsystem
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Figure 5.4: Determination of the physical region. On the left, we show the gate
potential and the material’s potential 〈V̄ion + V̄H〉p(z), and indicate where they make
sense physically. The physical region is the overlap between those regions. On the
right, we show that the KS potential 〈V̄KS〉p(z) (the sum of the potentials on the left)
makes sense within the physical region. In both plots, c ≈ 37 a.u. and zg ≈ −8.5 a.u.

is the gate because %gate is infinitely thin in the out-of-plane direction. Within the slab
z ∈ [zg − c

2 ; zg + c
2 ], we see the potential generated by the gate at zg.

V̄gate(rp, z) =
∑
i

V 2D
gate(rp, z − ic)θ(

c

2 − |z − ic|) (5.2.6)

= V 2D
gate(rp, z) if z ∈ [zg −

c

2; zg + c

2]. (5.2.7)

For z outside of this interval, we see the potential generated by the neighboring pe-
riodic images of the gate, which has no physical sense with respect to the 2D system
represented in Fig. 5.4. For the electrons, the charge distribution %elec is spread in the
out-of-plane direction. Each infinitesimal slice of electronic density with surface charge
density %elec(z)dz generates its contribution to the Hartree potential only within a cer-
tain slab. The Hartree potential is physical only within the overlap of all those slabs. If
the electrons are centered around a position ze, that would be z ∈ [ze− c

2 + t
2 ; ze+ c

2−
t
2 ].

The ions are in a similar situation, but the charge distribution is much less spread.
The difference in the spreading of %elec and %ion leads to the "bumps" we can observe
for V̄ion + V̄H , at z ≈ ±18.5 a.u. in Fig. 5.4. Thus, the unphysical variations of the KS
potential outside the physical region are due to the addition of potentials generated
by incomplete subsystems or different periodic images.

Nevertheless, everything happens as in the previous section within the physical re-
gion associated to the KS potential. To simulate the system, we just need to make sure
that the 2D material lies in this physical region. We will need 3D Fourier transforms
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V̄ (Gp, Gz), easily related to the 2D Fourier transform of V 2D(Gp, z) as follows:

V̄ (Gp, Gz) = 1
Nc

ˆ ∞
−∞

dz V̄ (Gp, z)e−iGzz (5.2.8)

= 1
c

ˆ c/2

−c/2
dz V 2D(Gp, z)e−iGzz. (5.2.9)

5.3 Implementation
In this section we detail the implementation of the Coulomb cutoff for the potentials,
and show how it affects the energies, forces, phonons and EPC in the code. Most of
the potentials, or at least their long-range part, are calculated in reciprocal space. We
thus need the cutoff Coulomb interaction in reciprocal space, as defined in Ref. [74]:

v̄c(Gp, Gz 6= 0) = 4πe2

|Gp|2 +G2
z

×
[
1− e−|Gp|lz cos(Gzlz)

]
,

v̄c(G = 0) = 0.
(5.3.1)

The choice of the G = 0 value is just a convention since every potential is defined up
to a constant. Here, we choose the same convention as in the original 3D code, such
that the average of a potential over the unit cell is zero. A more detailed justification
about this choice, especially its implications in terms of energy, can be found in App.
D. Our modifications concern mostly the potentials. On some occasions, we will first
need to describe the implementation of the original 3D code in order to identify what
needs to be modified. We use different notations to distinguish the potentials that stay
as implemented in the original 3D code (noted V ) and those that were modified with
the implementation of the 2D Coulomb cutoff (noted V̄ ). For other quantities (energy,
forces, phonons and EPC), such distinction in the notation is not necessary. Indeed,
their definition essentially does not change. It is the potential that is used to compute
them that changes.

5.3.1 KS Potential

The KS potential is the sum of the external potential, the Hartree potential, and the
exchange-correlation potential:

V̄KS(rp, z) = V̄ext(rp, z) + V̄H(rp, z) + VXC(rp, z). (5.3.2)

The exchange-correlation potential, at least within the LDA approximation used in
this thesis, is short-range and does not need to be cut off2. The external potential is
the sum of the ionic, gate and barrier potentials:

V̄ext(r) = V̄ion(r) + V̄gate(z) + V̄barrier(z). (5.3.3)
2As mentioned in the previous chapter, the relevance of current LDA functionals for 2D materials

is limited, since they are derived in the framework of a 3D electron gas. In any case, the treatment of
exchange-correlation functionals is out of scope for this work.
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The ionic potential is separated in local and non-local parts V̄ion = V̄ loc
ion +

V non−loc
ion . The non-local part is short-range. It does not need to be cut off and is

ignored here. We need to compute the Fourier transform of the cutoff local potential
V̄ loc

ion (G). It is computed from the the pseudopotentials, which are separated in short-
range and long-range parts. We first describe this separation as it is done in the original
code, identify what we must modify, then present the implementation of the cutoff.

In the original 3D code, the local part of the pseudopotential is a radial function
in real space va(|r|) associated to each type of atom. It is separated in short-range
(SR) and long-range (LR) parts:

va(|r|) = vSR
a (|r|) + vLR

a (|r|) (5.3.4)

vSR
a (|r|) = va(|r|) + Zae

2erf(|r|)
|r| (5.3.5)

vLR
a (|r|) = −Zae

2erf(|r|)
|r| , (5.3.6)

where erf(|r|) is the error function and vSR
a (r) is indeed short-range because the pseu-

dopotential always behaves as −Zae2erf(|r|)
|r| for |r| large enough. In particular, we have

that vSR
a (r) = 0 for |r| ≥ rSR. The Fourier transform of the SR part is calculated via

numerical integration, while the LR part is analytic. The SR part, specific to each
atom, is Fourier transformed on a finite sphere:

vSR
a (G) = 1

Ω

ˆ |r|=rSR

0
vSR
a (r)e−iG·r dr, (5.3.7)

where Ω = S × c is the volume of the unit cell. The potential vSR
a does not need

to be cut off as long as rSR < lz, which is easily satisfied. The Fourier transform
of the LR part vLR

a (G) is easily found analytically, since vLR
a (|r|) is the potential

generated by a gaussian distribution of charges. This SR/LR separation is implemented
in the original 3D code to restrict the numerical Fourier transform to a finite region of
space. The original code also relies heavily on the rotational invariance of the radial
pseudopotentials to define the arrays containing their Fourier transforms.

In our implementation, we replace the analytic LR part of the pseudopotential by
its cutoff version:

v̄LR
a (G) = −ZaΩ v̄c(G)e−|G|2/4. (5.3.8)

The SR/LR separation turns out to be very convenient to implement the Coulomb
cutoff. However, since the Coulomb cutoff breaks the rotational invariance, it cannot
be implemented as a simple modification of the existing array. A separate array for
the cutoff LR part is calculated in a separate routine. It is then added to the SR part
when constructing the local part of the ionic potential:

V̄ loc
ion (G) =

∑
a

e−iG·da
(
vSR
a (G) + v̄LR

a (G)
)
. (5.3.9)
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The Hartree potential is relatively easy to cut off. It is computed in reciprocal
space from the electronic density:

V̄H(G) = v̄c(G)n(G). (5.3.10)

The gate potential must be added for a doped system. In practice, the potential
of the gate is added in real space to the external potential. We define directly in real-
space the saw-tooth potential generated by %gate, Eq. (5.1.10) via the cutoff Coulomb
interaction Eq. (5.3.1). Within the interval z ∈ [zg − c

2 ,zg + c
2 ], it is defined as:

V̄gate(z) = 2πe2ndop

(
|z − zg| −

lz
2

)
, (5.3.11)

where the constant term is due to the definition of v̄c(G = 0). It sets the out-of-plane
average of the potential to zero.

The barrier potential is necessary to relax the forces in the system and to prevent
electrons from leaking to the gate. It is also used to prevent electrons from going
outside the physical region. Indeed, the variations of the potential outside the physical
region can lead to the presence of potential wells. Placing a barrier potential outside
the physical region ensures that no unphysical leaking occurs. The barrier is added in
real space along with the gate. In practice, this barrier consists in the addition of a
constant to the external potential within a certain region in the out-of-plane direction.
For z ∈ [− c

2 ,+
c
2 ], it is defined as:

V̄barrier(z) =
{
Vb if z < zb1 or zb2 < z

0 otherwise
(5.3.12)

The borders of the barrier at zb1 and zb2 are smoothed via a linear transition from Vb
to 0 on a small distance. The implementation of the gate and the barrier was adapted
from a previous modification of the code, discussed in Ref. [12].

Verifications: To check the consistency of our modifications on the potentials, we
can first simulate the potentials of a neutral and non-polar 2D system, without gate
or barrier. The corresponding ionic, Hartree and KS potentials are plotted with and
without the 2D Coulomb cutoff in Fig. 5.5. With 3D PBC, setting the G = 0 value of
the ionic or Hartree potential to zero is equivalent to the inclusion of a compensating
jellium background (see App. D). The potentials we observe then correspond to either
ions or electrons bathed in the associated jellium. This leads to a quadratic behavior in
z between the periodic images. When the 2D Coulomb cutoff is applied, we recover the
linear behavior in z. Setting the G = 0 value of the ionic or Hartree potential to zero
leads to a simple shift. For such a neutral and non-polar system, the KS potentials
with and without cutoff coincide up to a constant within the physical region. This
constant comes from the fact that both KS potential average to zero but the cutoff KS
potential has "bumps" outside the physical region while the other does not.

Let us now simulate the KS potential of a hole-doped 2D material as shown in Fig.
5.6. Using the original code with 3D PBC, we obtain the potential of the material
bathed in a jellium compensating for the added charge (or missing electrons). In that
case, the KS potential is quadratic, with a varying slope and thus a varying electric
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Figure 5.5: On the left, we show the planar-averaged ionic, Hartree and KS potential
obtained with and without the 2D Coulomb cutoff. On the right, we zoom in on
the KS potential. Within the physical region, the KS potentials with and without
cutoff coincide up to a constant, as is desmonstrated by the difference 〈V̄KS−VKS〉p(z)
(dash-dot indigo line).

field. The electric field is symmetric with respect to the plane of the 2D material. It
vanishes midway between the periodic images, on the left and right borders of Fig. 5.6.
If we use the 2D Coulomb cutoff without adding a gate, we obtain the potential that
would be generated by the doped 2D material in vacuum, as in Eq. (5.1.9), within
the physical region. If we add a compensating charged plane to simulate the gate, we
obtain the configuration of the FET setup, with a finite electric field on the left of the
2D material, and zero electric field on the right.

Finally, we simulate the KS potential of an electron-doped system to show the
necessity of the barrier potential in Fig. 5.7. Without the barriers, some potential
wells appear on both sides of the 2D material. On the left, this is due to the presence
of the positively charged gate. On the right, this is due to the unphysical variations of
the KS potential outside the physical region. Electrons leak towards those potential
wells, which can be inferred here from the slopes of the KS potential in the vicinity of
the 2D material. Compared to what we should obtain in the FET setup, the slope of
the KS potential on the left of the 2D material is too small while the slope on the right
is not zero. This is due to the Hartree potential contribution from the electrons that
leaked in the potential wells. This is not what we want to simulate. The addition of
a potential barrier prevents the electrons from leaking towards the barrier or outside
the physical region, and we find the right slopes (or electric field) in the vicinity of the
material.
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Figure 5.6: The planar-averaged KS potential of hole-doped graphene is simulated in
various situations. The label "without cutoff" means that the standard 3D code was
used. The label "with cutoff" means that the 2D Coulomb cutoff was implemented.
In that case, we plotted the result with and without a gate. The right panel is a
zoom in the region delimited by the blue box in the left panel. We show the different
configurations in terms of electric field.
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Figure 5.7: Planar-averaged KS potential in the case of electron doping. The gate
is always included. We plot the potential without barrier to show how there is some
unphysical leakage. With the barrier, we effectively prevent electrons from reaching
any of the unphysical potential wells.
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5.3.2 Total Energy

The total energy per unit cell associated with the system is:

Etot = Ekin + Eext + EH + EXC + Ei−i + Eg−i + Eg−g. (5.3.13)

It is the sum of the kinetic energy of the electrons, the energy of the electrons in the
external potential, the Hartree energy, the exchange-correlation energy, the ion-ion
interaction energy, the energy of the ions in the potential of the gate, and finally, the
self-interaction energy of the gate. The terms Ekin and EXC are short-range. They are
computed as in the standard 3D code and will be ignored here. The computation of
the remaining terms is detailed in the following. A general definition of Eext, EH and
Ei−i can be found in App. A. Those definitions stay valid provided one uses the cutoff
potentials V̄ext, V̄H and Φ̄. Unlike the potentials, the total energy is not defined up to a
constant. The choice of the v̄c(G = 0) can affect the value of the energy contributions,
but it should not affect the total energy. This is checked in App. D.

The external energy Eext is calculated via the sum of the eigenvalues of the KS
system. It includes the energy of the electrons in the potential of: i) the ions Eion

ext, ii)
the gate Egate

ext and iii) the barrier Ebarrier
ext . We use sufficiently sharp and high barrier

potentials to write that Ebarrier
ext ≈ 0 because there are (almost) no electrons where

there is a potential barrier. The other contributions Eion
ext and Egate

ext are non-zero, but
we have no further modifications to make as soon as V̄ext is defined.

The Hartree energy is easily written in reciprocal space as:

EH = Ω
2
∑
G
n∗(G)V̄H(G), (5.3.14)

and is computed in practice by replacing V̄H(G) by its expression (Eq. (5.3.10)):

EH = Ω
2
∑
G
|n(G)|2v̄c(G). (5.3.15)

The ion-ion interaction energy Ei−i is computed using the ion-ion interaction
potential Φ̄. The computation is based on the Ewald summation technique [85], which
involves a separation into SR and LR parts Ei−i = ESR

i−i +ELR
i−i . Much like for the ionic

potential, we do not need to modify the SR part. Here again, we start by presenting
what is done in the original code, identify what we must modify, then present the
implementation of the cutoff.

In the original 3D code, the ion-ion interaction potential Φ is separated in SR and
LR part as follows:

Φ(r) =ΦSR(r) + ΦLR(r)− Φself (5.3.16)

=
∑
R′

∑
a′

′ e2Za′

|r−R′ − da′ |
erfc(√η|r−R′ − da′ |)

+
∑
R′

∑
a′

e2Za′

|r−R′ − da′ |
erf(√η|r−R′ − da′ |)− Φself ,

(5.3.17)
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where the prime in the first sum excludes the case {R′ = R, a′ = a} if r = R + da
and Φself subtracts that term from the second sum. The constant η tunes the SR/LR
separation. The SR part of the ion-ion interaction potential ΦSR is dealt with in real
space and does not need to be modified as long as erf(√ηlz) ≈ 1 (easily satisfied). Φself

is simply the value of ΦLR(r) for r −R′ − da′ = 0. As such Φself is also short-range.
We include the corresponding energy contributions in ESR

i−i . Those contributions do
not need to be cut off. The contribution of the LR potential ΦLR to the energy is
computed in reciprocal space and needs to be be modified.

In our implementation, we replace the Fourier transform of the LR part of the
ion-ion interaction potential by its cutoff version:

Φ̄LR(G) = 1
Ω
∑
a

Zae
iG·da v̄c(G)e−|G|2/4η. (5.3.18)

The LR contribution to the ion-ion interaction energy is then computed in reciprocal
space as follows:

ELR
i−i = Ω

2
∑
G
n∗ion(G)Φ̄LR(G) = 1

2Ω
∑
G

∣∣∣∣∣∑
a

Zae
iG·da

∣∣∣∣∣
2

v̄c(G)e−|G|2/4η, (5.3.19)

where nion(G) = 1
Ω
∑
a Zae

iG·da is the Fourier transform of the distribution of ions
(%ion = enion).

The other energies to account for are the energy of the ions in the potential of
the gate Eg−i, and the self interaction of the gate Eg−g.

Eg−i =
ˆ

Ω
dr nion(r)(−V̄gate(r)) =

∑
a

Za2πe2ndop

(
−|da,z − zg|+

lz
2

)
(5.3.20)

Eg−g = 1
2

ˆ
Ω
dr ndopδ(z − zg)(−V̄gate(z)) = n2

dopπe
2lz, (5.3.21)

where da,z is the z-component of da. Note that those contributions to the energy have
a manifest dependency on the cutoff distance lz. The total energy, of course, should
not depend on lz. As detailed in App. D, the lz-dependent terms in the expression
above will cancel with corresponding terms in Eext and EH.

Verifications. In the absence of doping, gate and barrier, the total energy is:

Eneutral
tot = Ekin + Eion

ext + EH + EXC + Ei−i. (5.3.22)

We can thus check the consistency of the implementation of Eion
ext, EH and Ei−i in a

neutral system. We first compute the total energy of the neutral, non-polar system
of Fig. 5.5 with and without cutoff. We should obtain the same result as there is no
issue with the periodic images in that case. We checked that the difference is below
numerical precision. We can then use a neutral system with an out-of-plane dipolar
moment such that interlayer interactions do play a role without the 2D Coulomb cutoff.
We use graphene with hydrogen atoms on top of half of the carbon atoms, see Fig.
5.8. The effect of the Coulomb cutoff is clear on both the KS potential and total
energy. The KS potential of the system without cutoff illustrates the comments of
Sec. 5.2. Namely, imposing 3D PBC leads to the compensation of the out-of-plane
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dipolar moment by an external electric field, visible here via the finite slope of the KS
potential away from the material. When we use the 2D Coulomb cutoff, we observe
the right behavior, with a potential shift and no external electric field. The energy of
the system simulated without cutoff tends to the one with cutoff at large interlayer
distances. With the cutoff, the energy is independent of interlayer distance. There is
a lower limit to the interlayer distance, which is when the boundaries of the physical
region are too close to the material. Still, the minimal distance we can use in our
implementation of the code is negligible with respect to what we would have to use
without cutoff. A way to get the right total energy in this kind of polar material is to
simulate the mirror image of the system within the unit cell. In that case, we obtained
the same energy as with the use of the 2D Coulomb cutoff. The advantage of the
Coulomb cutoff, in that case, is a drastic reduction of the computational cost.
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Figure 5.8: DFT simulation of graphene with hydrogen atoms on top (z > 0) of half
the carbon atoms. On the left is the planar-averaged KS potential, with and without
using the 2D Coulomb cutoff. On the right is the total energy per unit cell as a function
of the interlayer distance, with and without using the 2D Coulomb cutoff. The zero
for the energies corresponds to the total energy per unit cell obtained with cutoff.

5.3.3 Forces

The forces on the ions are found by computing the derivative of the total energy with
respect to a displacement ua,i of atom a in direction i. Only the terms related to an
interaction in which the ions are involved remain. The force acting on ion a in direction
i is written:

Fa,i = −∂Etot
∂ua,i

= −
ˆ

Ω
n(r)∂V̄ion

∂ua,i
dr− ∂Ei−i

∂ua,i
+ Fg−i

a,i + Fb−i
a,i , (5.3.23)

where the first term is the force on the ion from the electrons, the second is from the
other ions, the third is from the gate and the last from the barrier. The notation ∂

∂ua,i
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implies taking the derivative at zero displacement ua,i = 0. All the quantities involved
are known once the self-consistent calculation is completed. We will only detail the
terms for which we need to apply the 2D Coulomb cutoff. The first term is calculated
by computing the derivative of the ionic potential, separated in local and non-local
parts. The derivative of the local part is found by using the Fourier transform of the
pseudopotentials:

∂V̄ loc
ion (r)
∂ua,i

= −i
∑
G

(
vSR
a (G) + v̄LR

a (G)
)
Gie

−iG·daeiG·r. (5.3.24)

The effect of the derivative in reciprocal space is basically to bring down a factor −iGi
from the exponential. The corresponding force is then calculated in reciprocal space:

−
ˆ

Ω
n(r)∂V̄

loc
ion (r)
∂ua,i

dr = iΩ
∑
G
n∗(G)

(
vSR
a (G) + v̄LR

a (G)
)
Gie

−iG·da . (5.3.25)

The gate and the barrier have indirect contributions to this term. Indeed, they have
an effect on n(r), via their presence in the self-consistent KS potential.

The second term in Eq. (5.3.23) is the force from the other ions. It is found
by derivation of the ion-ion interaction energy. We only treat the LR contribution,
because it is the only one that needs to be cut off:

−
∂ELR

i−i
∂ua,i

= − ∂

∂ua,i

(
Ω
2
∑
G
n∗ion(G)Φ̄LR(G)

)
(5.3.26)

= − 1
Ω
∑
G
v̄c(G)e−|G|2/4ηZaGi

∑
a′

Za′ sin(da′ − da). (5.3.27)

The third term is the direct contribution of the electrostatic force applied by the
gate to the ions. Depending on doping, it can be repulsive or attractive:

Fg−i
a,i = −∂Eg−i

∂ua,i
= +Za2πe2ndop sign(da,z − zg). (5.3.28)

The barrier applies no direct force on the ions Fb−i
a,i = 0. The ions effectively never

see the barrier potential (they could if the barrier was smoother). However, the barrier
can act on the ground-state electronic density n(r) which in turn acts on the ions. For
example, if the system is too close from the barrier, the repulsive effect of the barrier
will show in the self-consistent cycles, shifting the electrons away from the barrier. The
first term in Eq. (5.3.23) will thus include a force that tends to push the ions away
from the barrier, with the electrons. The barrier is then essential to relax the forces,
arriving at an equilibrium between the attraction from the gate and repulsion from the
barrier. This is represented in Fig. 5.9. For large material-barrier distances, the force
tends to the attraction from the gate, and the total energy is linear. In that case, we
have checked that the total force on the ions is the force between two charged plates,
Eq. (5.1.17). ∑

a

Fa,z = S × 2πe2n2
dop sign(zg). (5.3.29)

For small material-barrier distances, as the system gets too close to the barrier, there
is a sharper increase of the force and the total energy.
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Figure 5.9: Total energy (variation from relaxed position) and forces as a function of
the distance between the barrier and the 2D material. The gate is moved with the
barrier zg = zb1 − 0.02c where c is the interlayer distance c ≈ 37 a.u. The position of
the second barrier is such that it covers the unphysical region zb2 = zg + 0.5c. The 2D
material is graphene doped at a Fermi level of +0.5 eV. The relaxed material-barrier
distance is found to be around 6.26 a.u.

5.3.4 Phonons and EPC
To calculate the phonon dispersion and electron-phonon interactions, as shown in App.
A, we need to calculate the response of the electronic density to a phonon perturba-
tion. In essence, the linear response of the system involves derivatives of the previous
potentials and energies. Once the previous framework is set up, we just have to apply
the Coulomb cutoff to the derivatives consistently.

Dynamical matrix

In practice, the dynamical matrix is given by the following integrals on the unit cell:

Da,i,a′,j ×
√
MaMa′ =

ˆ
Ω
dr ∂2V̄ion(r)
∂ua,i(q)∂ua′,j(q)n(r)

+
ˆ

Ω
dr
(
∂V̄ion(r)
∂ua,i(q)

)∗(
∂n(r)

∂ua′,j(q)e
−iq·r

)
+Di−i

a,i,a′,j

(5.3.30)

The first term can readily be computed from the quantities obtained in the ground-
state calculation. It is computed in reciprocal space as:
ˆ

Ω
dr ∂2V̄ loc

ion (r)
∂ua,i(q)∂ua′,j(q)n(r) =

− δa,a′Ω
∑
G

(
vSR
a (q + G) + v̄LR

a (q + G)
)
GiGj<

(
n∗(G)e−iG·da

)
.

(5.3.31)



76 Chapter 5. DFT/DFPT for 2D materials in the FET setup

where <(x) gives the real part of x.
The last term comes from the second derivative of the ion-ion interaction Ei−i with

respect to a phonon displacement. The contribution from ESR
i−i does not change. The

LR part ELR
i−i yields the following contribution to the dynamical matrix:

Di−i,LR
a,i,a′,j = 1

Ω
∑

G,q+G6=0
v̄c(q + G)e−|q+G|2/4ηZaZa′(q + G)i(q + G)jei(q+G)·(da−da′ )

− 1
Ω
∑
G6=0

v̄c(G)e−|G|2/4ηZaGiGj

(∑
a′′

Za′′ cos(G(da − da′′))
)
δa,a′ .

(5.3.32)

The second term is computed as expressed in Eq. (5.3.30), that is, via numerical
integration over the unit cell in real space. The quantities inside the integral are
computed during the calculation of the electronic density response to the perturbed
KS potential, presented in the following.

Perturbed KS potential

The linear electronic density response is found by solving a self-consistent system
involving the effective perturbation, that is the derivative of the KS potential with
respect to a phonon displacement ∂V̄KS(rp,z)

∂ua,i(q) , Eq. (A.2.7) (the notation "V̄" indicates
lattice periodic functions, see App. A). The first term is the perturbation of the
external potential. The phonons only bring a direct perturbation to the potentials in
which the ions are involved. This means the perturbed external potential contains only
the contribution from the ionic potential. The Fourier transform of the derivative of
the local part of the ionic potential has non-zero components at wave vectors q + G:

∂V̄ loc
ion(q + G)
∂ua,i(q) = −i

(
vSR
a (q + G) + v̄LR

a (q + G)
)

(q + G)ie−i(q+G)·da , (5.3.33)

where the Fourier components of the long-range part of the local pseudopotential are
similar to Eq. (5.3.8):

v̄LR
a (q + G) = −ZsΩ v̄c(q + G)e−|q+G|2/4. (5.3.34)

The perturbed ionic potential of Eq. (5.3.33) (along with the non-local part that is
computed as in the original 3D code), is Fourier transformed and inserted in the second
term of the dynamical matrix Eq. (5.3.30).

The remaining long-range potential to cut off is the Hartree potential generated by
the density response, computed in reciprocal space:

∂V̄H(q + G)
∂ua,i(q) = v̄c(q + G)∂n(q + G)

∂ua,i(q) . (5.3.35)

The density response, solution of the self-consistent system corresponding to the
effective perturbation ∂VKS(rp,z)

∂ua,i(q) is inserted in the second term of the dynamical matrix
Eq. (5.3.30).
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EPC

We already have all the quantities to calculate the EPC.

gk+q,s,k,s′,ν =
∑
a,i

ea,iq,ν

√
~

2Maωq,ν
〈k + q,s|∂V̄KS(r)

∂ua,i(q) |k,s
′〉. (5.3.36)

Those EPC matrix elements can be screened via the induced part of the effective KS
perturbation (Hartree and exchange-correlation). The Hartree part of the screening is
then that of a 2D material. The gate and the barrier have no direct effect in the KS
perturbation. Note that they are absent from this section. However, they broke the
symmetry of the ground-state. In particular, the electronic distribution is not centered
on the ions’ plane anymore. We will study the consequences of their presence in the
following section.

5.4 Results in graphene
In this section we present some results demonstrating that our implementation of the
2D Coulomb cutoff is operational. We will show that the predicted peculiarities of
the FET setup can indeed be simulated. We perform calculations for graphene doped
in the FET setup. The following results can be described as preliminary from the
point of view of applications. Presently, some work remains to be done to determine
with more confidence the setup that should be used for comparison with experiment.
With the ability to simulate the FET comes many new degrees of freedom, the most
influential probably being the barriers. As will be shown, the presence of one or two
barriers, their nature and their positions play an important role. As of yet, we have
not determined the right method to choose the corresponding parameters. This section
should thus be considered as a demonstration of principle and a first estimation rather
than a attempt to reproduce experimental data. We will show that we now have all
the tools to model an experimental FET setup.

We first show that we can simulate the finite frequency of the ZA phonons at Γ.
We then simulate the screened deformation potential of graphene in the FET setup.
Finally, we show the emergence of a non-zero linear coupling with ZA phonons.

5.4.1 Finite frequency for ZA phonons at Γ

We would like to be able to simulate the emergence of a finite ZA phonon frequency
at Γ when graphene is enclosed between two barriers. We use a setup in which this
finite frequency would be important. We put the graphene sheet between two barriers
separated by a relatively small distance of ≈ 9.2 Å. Roughly, this is twice the exper-
imental distance between graphene and a SiO2 substrate. However, the equilibrium
distances between graphene and the substrate or the dielectric depend on the details
of the interactions between those materials. It is possible to simulate the main conse-
quences of the presence of a substrate and dielectric with potential barriers. However,
the distance between graphene and the barriers on the one hand and between graphene
and its substrate/dielectric on the other hand might very well be different. The choice
of the graphene-barrier distance is thus rather arbitrary.
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We plot the KS potential, total energy per unit cell, and out-of-plane forces on
the atoms of the unit cell in the upper panel of Fig. ∗.9. The barriers are placed at
zb1 and zb2 = −zb1, such that zb2 − zb1 ≈ 9.2 Å. As the graphene sheet is displaced
between the two barriers, the total energy presents a minimum. This minimum occurs
when the ions are at a position that is slightly closer to the barrier on the opposite
side of the gate. This suggest a strong effect of the barriers on the electrons. Since
the barriers are relatively close to each other, they force the electron density to be in
between them, and the effect of the gate is negligible. Indeed, since we are considering
electron-doping here, the electrons should be attracted by the gate and thus shifted
left. But the barriers are so close to each other that the electronic density is forced to
be essentially centered around z = 0. The ions are not subject to any direct force from
the barriers, but they are attracted by the electrons toward the middle, and slightly
repulsed by the positively charged gate. This is why they end up shifted slightly to
the right. Around its minimum, the energy is approximately quadratic. The force is
then linear. We have numerically checked the corresponding relation:∑

a

Fa,i = ∂Etot
∂zions

. (5.4.1)

We then calculate the phonons in this system and get the dispersion in the lower panel
of Fig. ∗.9 for the acoustic phonons at small momenta. The dispersion of the in-plane
modes is essentially unaffected by the cutoff or the presence of the gate and barriers.
For neutral graphene (without gate or barriers), the use of the 2D Coulomb cutoff
seems to induce a slight increase of the ZA frequencies. However, numerical accuracy
for such small momenta and energies is of the order of the disagreement between the
two dispersions. In contrast, the large shift in the dispersion of the ZA phonons in the
double barrier setup cannot be attributed to numerical errors. We observe in this case
a rather flat dispersion, with ω(Γ) ≈ 2.0905 THz, ≈ 70 cm−1. This value is consistent
with the derivatives of the total energy and forces.

ω2
Γ,ZA = 1

2M
∂2Etot
∂z2

ions
(5.4.2)

= 1
2M

∑
a

∂Fa,z
∂ua,z

. (5.4.3)

5.4.2 Screening
We discuss here the screening of the deformation potential. We have seen that the
original 3D code leads to some spurious screening from the periodic images for the 3D
deformation potential α3D(q). We have calculated the bare deformation potential with
the static-strain method. We have managed to simulate the response of an isolated 2D
graphene sheet to a single wavelength perturbing potential in chapter 4. From this we
have inferred the static dielectric function of graphene ε2D(q). This provided us with
an estimation of the screened deformation potential via the relation αbare

ε2D(q) .
We are now in a position to compute directly the screened deformation potential of

single layer graphene doped in the FET setup, α2D(q). We compare the results of this
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Figure 5.10: On the top left is the KS potential of the simulated system. The dashed
line represents the electronic density, in arbitrary units. The 2D material is graphene
doped at a Fermi level of 0.5 eV. On the top right are the corresonding total energy
(variation from relaxed position) and force as a function of the position of graphene
between the two barriers. Below is the dispersion of the acoustic phonons of graphene
in the FET setup, enclosed between two potential barriers. For comparison, we added
the dispersions in the case of neutral graphene calculated with or without the Coulomb
cutoff.

method to the values of αbare

ε2D(q) in Fig. 5.11, and observe a significant difference. There
are several possible sources for this discrepancy. When we computed ε2D(q) in chapter
4, we used a simple single-wavelength perturbing potential, adequate for the definition
of ε2D(q). Assuming that α(q) = αbare

ε2D(q) then amounts to consider that the deformation
potential contribution to the phonon perturbation is equivalent to a single-wavelength
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perturbing potential. In truth, the phonon perturbation is more complicated. In
particular, for a phonon of momentum q, it has local fields components at q + G. We
don’t know how important those local fields components are and how they would be
screened. Also, we computed the value of the bare perturbation potential with the
static strain method, that is at q = 0. Assuming α(q) = αbare

ε2D(q) implies using this
same constant at finite q. It is possible that the bare perturbation in itself includes
a dependency on q. Finally, the presence of an out-of-plane electric field could have
an influence on the bare deformation potential. In light of those remarks, it is not so
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Figure 5.11: On the left, the screened deformation potential is calculated as αbare

ε2D(q)
where ε2D(q) is the analytical expression of the screening function of graphene studied
in the previous chapter. On the right, the screened deformation potential of graphene
in the FET setup is computed directly in DFPT using our implementation of the 2D
Coulomb cutoff. This is done for several doping levels εF (0, 0.25 and 0.5 eV).

surprising that α2D(q) 6= αbare

ε2D(q) . Presently, we have not investigated the discrepancy
further. An idea for further investigation would be to disable the screening of the
phonon perturbation to study the bare deformation potential at finite q. Another idea
would be to manipulate the phonon perturbation and study the effects of its q + G
components. Those are interesting leads to pursue in general. However, a common
feature of all the results for the screened deformation potential in graphene is that it is
quite small and negligible in comparison with the gauge field 3. For now, we will settle
for this conclusion. Investigating the screening of the deformation potential further
does not seem essential for graphene applications. It would be more interesting to
investigate in a different material, where a deformation potential would dominate the
EPC. Another interesting phenomenon to study in graphene is the coupling between
electrons and remote phonons from the substrate. Since screening plays an crucial role
in this interaction, it is essential to be able to eliminate interactions between periodic
images. Those simulations are feasible with the implementation presented here, since
we can simulate a 2D material consisting of graphene and a few layers of substrate

3We have checked that the gauge field is unchanged by the 2D Coulomb cutoff.
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(h-BN for example). Overall, there are many interesting calculations left to do. For
now, we finish this chapter with the coupling of electrons to ZA phonons in graphene.

5.4.3 Finite coupling to out-of-plane phonons

We now wish to demonstrate the emergence of a finite coupling to linear order of the
electrons with the out-of-plane acoustic phonons. For this we use the minimal setup
that makes sense from the point of view of DFT simulations. Namely, we use a gate
and a single barrier on the same side to relax the forces in the out-of-plane direction.
In practice, there is a second potential barrier on the other side at the limit of the
physical region, but it is far enough from the system to be ignored. Graphene is doped
at a Fermi level of εF = 0.5 eV. We obtain the results of Fig. 5.12. Those g2
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Figure 5.12: Emergence of a non-zero value of EPCmatrix elements g2
ZA ≡ g2

k+q,π,k,π,ZA
for the ZA phonons in graphene.

are small in comparison with the gauge field. The coupling with the ZA phonons is of
the order of the screened deformation potential. As simulated here, the contribution
of the ZA phonons to the scattering would then be negligible. However, in different
gate/barrier setups, it might be much more significant. The important advance here
is that the coupling is not zero. With the original 3D code, in the case of neutral or
"jellium-doped" graphene, g2

ZA is numerical noise, with values of the order of 10−26

Ry2a.u.−2. Here, values of the order of 10−6 Ry2a.u.−2 and the general angular and
|q| dependency of g2

ZA clearly indicate that we are getting more than numerical noise.
The 2D Coulomb cutoff thus enables the simulation of the coupling to linear order to
ZA phonons in graphene. Still, this first estimation of the coupling seems to indicate
that it can be neglected in graphene. Similar conclusions can be drawn concerning the
coupling to out-of-plane optical phonons ZO.
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Summary

• 3D PBC are not adequate for 2D materials in the FET setup.

• 2D Coulomb cutoff enables the simulation of the FET setup.

• 2D Coulomb cutoff implemented in QE for energy, forces, phonons and EPC.

• Emergence of finite ωΓ,ZA with two barriers.

• Screened deformation potential in the FET setup stays negligible.

• Emergence of a finite yet negligible linear coupling with ZA/ZO phonons.



Chapter 6

Solution to Boltzmann equation for
phonon-limited resistivity in graphene

We conclude the thesis with the application of our EPC model to the phonon-limited
resistivity of graphene. Given the general enthusiasm concerning the use of graphene
in prospective electronic devices, accurate models and precise understanding of its
transport properties are essential. Intrinsic contributions to resistivity are of particu-
lar interest because they set an ideal limit for technological improvements to reach. As
the fabrication methods improve, intrinsic contributions begin to dominate the tem-
perature dependence of transport measurements [86, 87]. The measured resistivity can
now be compared with numerical approaches to the intrinsic resistivity.

The dominant contribution to the intrinsic resistivity of graphene comes from
phonons. Some partial (i.e. including only a restricted set of phonon modes) trans-
port models were developed analytically [88, 89] to predict the qualitative behavior
of acoustic phonon scattering below room-temperature. The low-temperature ∝ T 4

behavior was theoretically predicted [24, 89] and experimentally verified [87], as was
the linear behavior in the equipartition regime. Those behaviors are interesting expres-
sions of the unique Dirac Cone structure of graphene and the peculiarity of electron
and phonon dynamics in 2D. Around room-temperature, a remarkable change of be-
havior in the temperature-dependent resistivity indicates a strong contribution from
a scattering source other than acoustic phonons, often attributed to remote optical
phonons from the substrate [86].

In those models, the calculated resistivity fell well below experiments, due to a
lack of completeness and consistency of the EPC and transport models. Preliminary
to the model presented in this chapter, we participated in the developments of Ref.
[28]. In this work, it was shown that by calculating the resistivity in the framework
of the Allen model [90] and including estimations of EPC parameters at the GW level
[23], a better agreement with experiments could be achieved in the low temperature
(T < 270 K), high doping regime where acoustic phonon scattering dominates. We also
noticed a surprisingly important contribution of intrinsic optical phonons around room
temperature. Although their energy is much higher than thermal energy, we found that

83
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their coupling to electrons is much stronger than that of acoustic phonons. This called
for further investigation of this contribution at higher temperatures (T > 270 K).

In order to model transport correctly at higher temperatures, we go one step beyond
in the transport model. We overcome the approximations involved in the Allen model
by solving directly the Boltzmann equation with full inclusion of acoustic and optical
phonon modes. Furthermore we compare our numerical results to experimental data in
a larger range of temperatures and electron densities. Finally, we detail the derivation
of approximated solutions to the Boltzmann equation and check their validity against
the full solution.

6.1 Boltzmann transport theory

In this section we present a numerical solution to the Boltzmann transport equation
for phonon-limited transport in graphene. The general method presented here is well
known in carrier transport theory and has been applied to some extent to graphene
[26, 88, 91, 92, 89, 93]. The central addition to those previous works resides in the
treatment of a more complete EPC model, and a numerical solution involving very few
approximations. The initial steps are repeated in an effort to clarify the assumptions
involved.

A carrier current is created by applying an in-plane electric field E. This has
the effect of changing the electronic distribution f(k). The notation of the latter has
slightly changed because here, contrary to the rest of the thesis, the occupation of a
state depends on both its energy and the direction of the associated momentum k.
In the steady state regime, the new distribution favors states with electron momenta
in the opposite direction of the electric field, thus creating a net current j. We are
interested in the current in the direction of the electric field that we choose to be the
x-axis, used as a reference for angles in our model. This is simply a practical choice,
the following results do not depend on it. Throughout this work, the resistivity is to
be understood as the diagonal part of the resistivity tensor ρ = ρxx. It is given by [3]:

1
ρ

= j · x
|E| = 2e

|E|

ˆ
BZ

dk
(2π)2 f(k)v(k) · x (6.1.1)

The integral is made over the Brillouin zone with a factor 2 for spin degeneracy, e is
the elementary charge, v(k) is the carrier velocity of state |k〉, and x is the Cartesian
coordinate basis vector. In the framework of linear response theory, we are interested
in the response of f(k) to the first order in electric field [94, 95, 96]. We study graphene
moderately doped with electrons, such that we can consider only the π∗ band (s = 1).
Within the Dirac cone model, we assume εk = ~vF |k| and v(k) = vF

k
|k| . We then

separate the norm and angular dependency of k in f(k) = f(εk, θk) and consider the
first order expansion:

f(εk,θk) = f (0)(εk) + f (1)(εk, θk) (6.1.2)

where f (1) is proportional to the electric field, and f (0) is the equilibrium Fermi-Dirac
distribution, which has no angular dependency. Due to graphene symmetries, the two
Dirac cones of the Brillouin zone give the same contribution to Eq. (6.1.1). Multiplying
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by a factor 2 for valley degeneracy, performing the dot product, and using f , Eq. (6.1.1)
becomes:

1
ρ

= 4e
|E|

ˆ
K

dk
(2π)2 f

(1)(εk, θk)vF cos(θk) (6.1.3)

where the integral is now carried out within a circular region around K. It is clear
that the zeroth order term gives no contribution due to the angular integral, and that
we have to look for f (1) ∝ cos(θk).

We now use Boltzmann transport equation to obtain the energy dependency of
f (1). A key quantity is the collision integral

(
∂f
∂t

)
coll

(k) describing the rate of change
in the occupation of the electronic state |k〉 due to scattering. Assuming that the
electronic distribution is spatially uniform, out-of-equilibrium but in steady state, the
change of the occupation function triggered by the electric field must be compensated
by the change due to collisions [3]:

− eE
~
· ∂f
∂k =

(
∂f

∂t

)
coll

(k) (6.1.4)

Using Fermi golden rule, the collision integral is:(
∂f

∂t

)
coll

(k) =
∑
k′

{
Pk′kf(k′)(1− f(k))− Pkk′f(k)(1− f(k′))

}
(6.1.5)

Here, k belongs to a circular region around K. The momentum of the scattered states
k′ is i) around K for intra-valley scattering modes; ii) around the other Dirac cone K′
in case of inter-valley scattering. The quantity Pkk′ is the scattering probability from
state |k〉 to |k′〉. It satisfies the detailed balance condition, namely:

Pk′kf
(0)(εk′)(1− f (0)(εk)) = Pkk′f

(0)(εk)(1− f (0)(εk′)) (6.1.6)

The scattering probability Pkk′ is composed of two terms,

Pkk′ = Pkk′,I +
∑
ν

Pkk′,ν (6.1.7)

where Pkk′,I is the impurity scattering probability and Pkk′,ν is due to the electron-
phonon scattering of the νth phonon branch.

In the Born approximation, the impurity scattering probability is

Pkk′,I = 2π
~

1
N
ni|〈k|Hi|k′〉|2δ(εk − εk′) (6.1.8)

where Hi is the electron-impurity interaction Hamiltonian, ni the impurity density and
N is the number of unit cells. When needed for comparison with experiment, we use
existing methods [93, 97, 98] to fit charged and short-range impurity densities on the
low temperature resistivity measurements. The electron-phonon scattering probability
is given by

Pk,k+q,ν = 2π
~

1
N
|gk+q,k,ν |2×{
nq,νδ(εk+q − εk − ~ωq,ν) + (nq,ν + 1)δ(εk+q − εk + ~ωq,ν)

} (6.1.9)



86 Chapter 6. Phonon-limited resistivity of graphene

where k + q = k′, gk+q,k,ν is the electron-phonon matrix element introduced in Eq.
(2.2.5) and nq,ν is the Bose-Einstein equilibrium occupation of mode ν with phonon-
momentum q and phonon frequency ωq,ν .

By Replacing Eq. (6.1.2) in Eq. (6.1.5), using Eq. (6.1.6) and keeping only first
order terms we obtain

− eE
~
· ∂f
∂k

=
∑
k′
Pkk′

1− f (0)(εk′)
1− f (0)(εk)

(
f (1)(εk′ , θk′)

f (0)(εk)(1− f (0)(εk))
f (0)(εk′)(1− f (0)(εk′))

− f (1)(εk, θk)
)

(6.1.10)
We first consider the left-hand side of Eq. (6.1.10) and, looking for a solution that

is first order in the electric field, we have:

−eE
~
· ∂f
∂k = −F cos(θk)~vF

∂f (0)

∂ε
(εk) (6.1.11)

with F = e|E|
~ . In the right-hand side of Eq. (6.1.10) we adopt [95] the following ansatz

for f (1)(εk, θk):

f (1)(εk, θk) = Fτ(εk) cos(θk)~vF
∂f (0)

∂ε
(εk) (6.1.12)

and verify that it solves Eq. (6.1.10). We need to find τ(εk), which captures the
energy dependency of f (1) . This auxiliary variable has the dimension of time. The
time τ(εk) depends on the perturbation and has a meaning only in the the framework
studied here, namely the steady state of a distribution under an external electric field.
It is different from the relaxation time from relaxation time approximation and from
the scattering time as can be measured by angle resolved photoemission spectroscopy.

By replacing Eqs. (6.1.11) and (6.1.12) in Eq. (6.1.10) and dividing both members
by cos(θk) (we can ignore the case cos(θk) = 0, for which everything is zero), we obtain
the following equation, as in Refs. [94, 96, 95]:

1 =
∑
k′
Pkk′

1− f (0)(εk′)
1− f (0)(εk)

(
τ(εk)− τ(εk′)

cos(θk′)
cos(θk)

)
(6.1.13)

We then parametrize k-space in energy (equivalent to norm through ε = ~vF |k|).
On an energy grid of step ∆ε, Eq. (6.1.13) can be written:∑

ε′

Mε,ε′τ(ε′) = 1 (6.1.14)

where ε = ~vF |k|, ε′ = ~vF |k′| and the matrix M is defined in appendix E.1. The
time τ can then be obtained by numerical inversion of the matrix M (see App. E.1
for more details).

It is worthwhile to recall that, due to the additivity of the scattering probabilities
in Eq. (6.1.7), the matrix M involves a sum over impurities and different phonon
branches, namelyM =MI +

∑
νMν . Strictly speaking, the time τ is obtained from

the inversion of the global matrix M and not from the sum of the inverse of the
matricesMν andMI. The latter is equivalent to applying Matthiessen’s rule, which
is an approximation (see Sec. 6.4).
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From the time τ we obtain the distribution function. Inserting it into Eq. (6.1.1),
the electrical resistivity is found by evaluating the following integral numerically:

1
ρ

= e2v2
F

2

ˆ
dεDOS(ε)τ(ε)

(
−∂f

(0)

∂ε
(ε)
)

(6.1.15)

Where DOS(εk) = 2|εk|
π(~vF )2 is the total density of states per unit area of graphene,

valley and spin degeneracy included.

6.2 EPC included in the transport model
To compute the intrinsic resistivity of graphene, we accounted for the following sources
of scattering:

• impurities

• gauge field contribution of the acoustic in-plane phonons at Γ (βA)

• Optical in-plane phonons at Γ (βO)

• Optical in-plane mode at K (βK)

For those contributions we use the EPC parameters evaluated within the GW ap-
proximation in Sec. 3.3.3. As will be discussed later, the contribution to the resistivity
of each phonon mode is proportional to the squared ratio of the EPC parameter and
the Fermi velocity. For the phonon modes at Γ, the Fermi velocity renormalization
is exactly compensated by the electron-phonon coupling renormalization. The GW
corrections thus has no effect on their contributions resistivity. The A′1 mode, on the
other hand, is renormalized more strongly than the Fermi velocity. Therefore, we
have to choose relevant values of the renormalization for both the Fermi velocity and
βK . Given the experimental measurements of high-temperature resistivity available
for comparison with our model, we will need a value of βK only in a short range of
doping close to neutrality (0.12 → 0.21eV). In our resistivity simulations we will use
the +46% renormalization of βK obtained at neutrality by Ref. [35]. We then choose
the corresponding +20% renormalization of the Fermi velocity, relevant at low doping.
The coupling to phonons modes at Γ (βA, βO) are renormalized by +20%, as the Fermi
velocity.

We neglect the coupling to out-of-plane phonons at Γ, as well as the contribution
from the screened deformation potential. Overall, the matrix elements gk+q,k,ν of the
neglected couplings are found to be three orders of magnitude smaller than those we
account for.

6.3 Results
On general grounds, three different regimes are present in our calculations. These
three regimes depend on three energy scales: i) the Fermi energy εF is the reference
energy around which initial and scattered states are situated; ii) the phonon energy
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Table 6.1: Sources of the experimental data used in this section. Experiment I and II
correspond to Ref. [87] and Ref. [86] respectively. Combining those two experiments
provides us with a wide range of temperature and doping conditions. PEO stands for
poly(ethylene)oxide.

Experiment I II
Temp. range (K) 4 ∼ 250 14 ∼ 480
Doping range (eV) 0.36 ∼ 1.01 0.09 ∼ 0.21
Gate dielectric PEO SiO2

~ω is the energy difference between initial and scattered states; iii) the temperature
kBT sets the interval on which electronic and phonon occupations vary. Comparing
~ω to εF indicates how much the density of states changes during a scattering process.
Comparing ~ω to kBT indicates phonon occupations and the change of electronic
occupations. Based on those observations, we have:

• Bloch-Grüneisen (BG) regime (0K < T . 0.15×TBG , TBG = 2~vTA/LAkF /kB).
At these temperatures, kBT is small compared to the energy of optical phonons.
Those modes are not occupied and do not contribute. In contrast, the acoustic
modes contribute since kBT is of the order of ~ωq,TA/LA. Moreover, the occupa-
tion of initial states f(εk) and scattered states f(εk±~ωq,TA/LA) are significantly
different. Finally, as ~ωq,TA/LA << εF , quantities other than occupation, such as
the density of states, can be considered constant. In this regime, the resistivity
has a ∝ T 4 dependency due to acoustic phonons.

• Equipartition (EP) regime (0.15× TBG . T . 0.15× ~ωA′1/kB ≈ 270K): optical
phonons still do not contribute. As ~ωq,TA/LA << kBT << εF the scattering by
acoustic phonons can be approximated as elastic, including in the occupations of
initial and final states. The resulting resistivity is then linear in temperature.

• High temperature (HT) regime (T & 0.15×~ωA′1/kB ≈ 270K): the elastic approx-
imation for acoustic phonons holds, but the three energy scales are comparable
in the case of optical phonons. In this case, no reasonable approximation can be
made globally. The optical phonon participation is characterized by a strongly
increasing resistivity at a temperature around 15% of the phonon energy. Due to
their lower energy and stronger coupling, the contribution of optical A′1 phonons
is more pronounced than LO/TO phonons.

Our calculated resistivity is compared with experimental data in Fig. 6.1. Experi-
mental data are from the references cited in Table 6.1. In those experiments, the FET
setup is used. The computational parameters are summarized in Table 6.2.

Below room temperature, Fig. 6.1a, the comparison between theory and exper-
iment is meaningful only above εF & 0.14 eV. Indeed, when approaching the Dirac
point [46], the electron density tends to zero and resistivity diverges. One has to adopt
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Table 6.2: Numerical values of parameters used in resistivity calculations. The effective
sound velocity vA is defined in Eq. (6.4.5).

Parameter symbol Value
Acoustic gauge field (GW) βA 4.32 eV
Acoustic gauge field (fitted) βA 4.97 eV
Optical gauge field (GW) βO 11.4 eV/Å
A′1 EPC parameter (GW) βK 13.9 eV/Å
A′1 EPC parameter (fitted) βK see Fig. 6.3
Lattice parameter b 2.46 Å
Unit-cell area S 5.24 Å2

Sound velocity TA vTA 13.6 km.s−1

Sound velocity LA vLA 21.4 km.s−1

Effective sound velocity vA 16.23 km.s−1

LO/TO phonon energy ~ωLO/TO 0.20 eV
A′1 phonon energy ~ωA′1 0.15 eV
Carbon atom mass M 12.0107 u
Mass density µS = 2M/S 7.66 kg/m2

Fermi Velocity (GW) vF 1.00 106 ms−1

a model with non-homogenous electron density [99] to obtain a finite resistivity, such
that the Fermi energy is ill-defined. Temperature-dependent screening of impurity
scattering as well as temperature-dependent chemical potential shift [47] also play a
role in this regime. Those issues are not treated in our model. At sufficiently high
doping, the temperature behavior in the BG and EP regimes is well reproduced, de-
spite an overall underestimation. The doping-dependency of the resistivity is limited
to the BG (ρ ∝ T 4) regime. The upper boundary of this regime increases with doping,
since TBG ∝ kF . Above ∼ 0.15 × TBG, in the EP regime, the slope of the resistivity
is essentially doping independent. This confirms that the deformation potential term
can be neglected, since its screening would induce such a dependency.

In the HT regime, Fig. 6.1b, the underestimation is globally more pronounced.
The increase of experimental resistivity around room temperature is steeper than the
theoretical one. A strong doping dependency of the experimental curves appear. The
agreement with the simulations improves as the system is doped far away from the
Dirac point. This discrepancy is usually attributed to remote-phonon scattering from
the SiO2 substrate [86]. This effect is missing in our calculations as the substrate
is not included. Moreover, we found no experimental data on other substrates for
those temperatures. It follows that substrate-dependent sources of scattering cannot
be ruled out in the HT regime. However, we would like to point out that based on the
observation that the contribution of optical phonons seems to appear at a temperature
≈ 0.15 × ~ων , we expect intrinsic optical phonons to be better candidates than the
relatively low-energy remote phonons proposed in Ref. [86]. The optical A′1 mode at K
does induce a sudden increase of resistivity, and the temperature at which this occurs is
in very good agreement with experiment. The increasing discrepancy between theory
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Figure 6.1: Comparison of experimental data (plain lines) and the numerical solution
of the Boltzmann equation (dashed lines) in the Bloch-Grüneisen and Equipartition
regimes(a) and in the HT regime(b), for several doping levels ranging from εF = 0.12
eV to εF = 1.01 eV. Experimental data are from Refs. [86] (0.12 → 0.21 eV) and
[87] (0.36 → 1.01 eV). For each curve, the residual resistivity was subtracted, then
a fictitious residual resistivity was added for clarity of the plot (different values were
used in the two plots). Though their value has no absolute sense, the fictitious residual
resistivities are ordered as the real ones.

and experiment in the magnitude of resistivity at lower doping could be explained by
the fact that the EPC parameter βK corresponding to the A′1 mode is renormalized
by electron-electron interactions [35]. This renormalization decreases the larger the
electron-doping of graphene, and tends to the DFT value at high doping.

We then fit the value of βA for acoustic modes on experimental data in the EP
regime. We find that an increase of the electron-phonon coupling of the acoustic
modes of 15% leads to an excellent agreement with experimental data in the BG and
EP regimes, as shown in Fig. 6.2a. We found an equivalent agreement for resistivity
measurements of graphene on h-BN [9] or on SiO2 with HfO2 gate dielectric [100], thus
ruling out any significant contribution from substrate dependent sources of scattering
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Figure 6.2: Results presented as in Fig. 6.1, with fitted values for βA (see Table 3.1)
and βK (see Fig. 6.3) in the simulations. Experimental data from a different sample
are added in plain lines in Fig. 6.2b to show that the sample-to-sample discrepancy
when approaching the Dirac point is of the same order as the disagreement with the
fitted numerical model.

(other than charged and short-range impurities) in the BG and EP regimes. We then
conclude that the solution of the Boltzmann equation based on DFT and GW (the two
methods are equivalent here) electron-phonon coupling parameters and bands explains
fairly well the low-temperature regime (BG and EP), although DFT seems to underes-
timate the coupling to acoustic modes by 15%, or the resistivity by ≈ 30%. On closer
inspection (see Sec. 6.4 and App. E.2), the resistivity in the EP regime is proportional
to β2

A

v2
A

where vA is the effective sound velocity given in Table 6.2 and defined in Eq.
(6.4.5). An overestimation of vA could also explain the 30% underestimation of the
resistivity. This discrepancy might also be partly due to some other ∝ T contribution
from processes ignored here, such as impurity scattering with temperature-dependent
screening [47]. Finally, it could be due to the coupling to ZA phonons in a FET setup.
Although our very first estimation of the latter gave negligible results in the previous
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chapter, this coupling is very sensible to the details of graphene’s environment. Some
improvements of our model for the FET setup (replacing the potential barriers by a
material for example), could reveal some non-negligible coupling with ZA phonons.
In any case, defining an effective parameter βA with the fitted value found here is
sufficient to describe low temperature resistivity in a relatively large range of doping
levels.

Within such a picture, we fit the optical βK parameter as a function of doping.
The fitted values of βK are plotted in Fig. 6.3, along with GW and DFT values.
Near the Dirac point, the fitted coupling parameter increases substantially more than
previous estimates [35] at the GW level, but it seems to approach the DFT value at
high doping. We then plot the resistivity with the fitted βA and βK , and find a good
agreement with experiments on Fig. 6.2b. As mentioned, the increase of the fitted βK
could be due to a renormalization from electron-electron interactions. A small doping,
computing reliable estimates for this renormalization within the GW approximation
is quite a challenge. Indeed, large k-point grids are necessary to sample the small
Fermi surfaces. Thus, the reliability of the GW βK is questionable at small doping.
The increase of the fitted βK could also represent the effect of the screened coupling
to remote phonons. Such contribution would give a similar behavior as a function of
doping. Due to screening, the simulation of the coupling to remote phonons is affected
by the presence of periodic images. The implementation of the previous chapter enables
the correct simulation of this kind of coupling. We intend to perform the corresponding
calculations soon.
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Figure 6.3: The parameter βK fitted on experimental results as a function of Fermi
energy is compared to the DFT LDA and DFT GW values. The DFT GW values are
from Ref. [35].
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6.4 Approximated solutions
In this section we seek a compromise between analytical simplicity and numerical
accuracy. We review some of the approximations often made in transport models, and
check their validity against the full numerical solution presented in Sec. 6.1. Fitted
EPC parameters are used in the resistivity calculations.

6.4.1 Semi-analytical approximated solution
The first essential step is to derive an analytical expression of the time τν(εk) for each
phonon branch. We first rewrite equation (6.1.13) as:

1
τ(εk) =

∑
k′
Pkk′

1− f (0)(εk′)
1− f (0)(εk)

×
(
1− τ(εk′) cos(θk′)

τ(εk) cos(θk)
)

(6.4.1)

For the doping level considered here, impurity scattering is essentially constant on
the energy scale of the phonon energies. When this type of scattering dominates,
the approximation τ(εk′) ≈ τ(εk) becomes reasonable. We can simplify τ(εk) on the
right-hand side of Eq. (6.4.1) and write:

1
τ(εk) =

∑
ν

1
τν(εk) (6.4.2)

In other words, Matthiessen’s rule [101] can be applied. With mild restrictions on the
form of the angular dependency of the scattering probability, one can then use the
following expression for the times τν [37, 89]:

1
τν(εk) ≈

∑
k′
Pkk′,ν

1− f (0)(εk′)
1− f (0)(εk)

(
1− cos(θk′ − θk)

)
(6.4.3)

A solution of Eq. (6.4.3) can now be carried out for different times separately by using
phonon-specific approximations. Details can be found in App. E.2. We present here
a solution that is relatively simple, yet very close to the complete one in a large range
of temperature. For the sum of TA and LA acoustic phonons, labeled by the index
A ≡ TA + LA, we use the time derived in the EP and HT regime:( 1

τA(εk)

)
EP,HT

= 2β2
AkBT

µS~v2
A

εk
(~vF )2 (6.4.4)

where µS = 2M/S is the mass density per unit area of graphene. The full derivation
can be found in App. E.3. The effective sound velocity for the sum of TA and LA
contributions vA is such that:

2
v2

A
= 1
v2

TA
+ 1
v2

LA
(6.4.5)

For the sum of LO and TO phonons, labeled by O ≡ LO + TO, we use no other
approximation than the constant phonon dispersion (~ωLO = ~ωTO = ~ωO = 0.20 eV)
and find the expression given in Eq. (E.2.5) of App. E.2. The same approximation
is made for Optical A′1 phonons at K (~ωA′1 = 0.15 eV) and we find the expression
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given in Eq. (E.2.6) of App. E.2. Finally, impurity scattering can be easily included
knowing the residual resistivity ρI(T = 0) = ρ(T = 0):

1
τI(εk) = 1

τI(εF ) = e2v2
F

2 DOS(εF )ρI(T = 0) (6.4.6)

Defining τ =
(∑

ν
1
τν

)−1
, and numerically evaluating the integral in Eq. (6.1.15)

we obtain the results shown in Fig. 6.4 that are only weakly different from the solution
of the complete Boltzmann equation. The low temperature BG regime (ρ ∝ T 4) is
not reproduced because of the quasi-elastic approximation made to obtain Eq. (6.4.4).
However, a more complicated yet analytical expression for τA in the BG regime is
given in App. E.2 and yields better results. In the EP regime, both solutions are
equivalent. The effects of the τ(εk′) ≈ τ(εk) approximation are seen only slightly in
the high temperature regime, when optical A′1 phonons dominate the resistivity. It
is thus a good and useful approximation, since it allows a separate treatment of each
contributions and the use of Matthiessen’s rule. Furthermore, inspecting the times τν
validates the statement made in Sec. 3.3.3, namely that the contribution to resistivity
from each phonon is proportional to the squared ratio of the EPC parameter and the
Fermi velocity.

6.4.2 Additivity of resistivities

As shown in Sec. 6.4.1, in the presence of impurities, it is possible to define independent
times τν for each mode. Then from each time τν , the resistivity ρν of a given mode
is obtained via the use of Eq. (6.1.15). It is then tempting to sum the resistivities
to obtain the total resistivity. However, the energy integral of Eq. (6.1.15) should be
carried on the total time τ , found by adding the inverse times of each modes under
Matthiessen’s rule. For the resistivities to be additive, it is required that

τ =
(∑

ν

1
τν

)−1

≈
∑
ν

( 1
τν

)−1
(6.4.7)

which is rarely valid, as demonstrated in Fig. 6.5. An important consequence is that
care needs to be taken when the resistivity due to impurities (the so called residual
resistivity) is subtracted from the overall resistivity to isolate the intrinsic contribu-
tions. This approach is justified only if the time τI corresponding to impurities is such
that 1/τI >> 1/τA + 1/τA′1 + 1/τO. In general, this is not the case and impurity scat-
tering has a more subtle effect than just shifting the total resistivity by ρI as shown in
Fig. 6.5. Throughout this work, we include impurity scattering and then subtract the
residual resistivity. This procedure is convenient but one must keep in mind that what
remains is not the theoretical intrinsic resistivity. Both are plotted in Fig. 6.5, as well
as Allen’s method [90] used in Ref. [28]. The latter overestimates the resistivity.

At low temperature, and in the EP regime, the process of adding the residual
resistivity ρI(T = 0) and the acoustic resistivity ρA is justified and allows one to access
directly the magnitude of the gauge field parameter βA. Indeed, when only impurities
and acoustic phonons contribute and if τI << τA, the corresponding resistivities are
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Figure 6.4: Comparison between the full Boltzmann transport solution (plain lines)
and the semi-analytical solution with the τ(εk) ≈ τ(εk′) approximation made and the
expressions of τν given in Sec. 6.4.1 (dotted lines). Fitted EPC parameters were used.
Residual resistivity was included in the transport simulation then subtracted for the
plots. A fictitious residual resistivity was then added for clarity.
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Figure 6.5: Comparison of various methods for the simulation of graphene’s resistiv-
ity. The complete solution to Boltzmann equation (including impurities) to which we
subtract the residual resistivity ρI+A+A′1+O− ρI gives the result closer to experimental
conditions. The Boltzmann solution including only phonon contributions ρA+A′1+O
corresponds to the theoretical intrinsic resistivity. The resistivity made up of the sum
of independently derived resistivities is ρA+ρA′1 +ρO. Allen’s method, used in Ref. [28],
overestimates the resistivity. Only at low temperature are those methods equivalent.

additive. Moreover, in the EP regime, ρA has the simple expression (see appendix E.3
for detailed derivation):

ρA ≈
2πβ2

AkBT

e2~v2
FµSv

2
A

(6.4.8)

It is clear that the slope of the resistivity is determined by v2
A and β2

A. Once the
sound velocities are known, it is then possible to extract βA directly from transport
measurements. We expect this parameter to be very close to the amplitude of the
synthetic vector potential [102]. One must be careful when comparing the result of
such measurement to other values in literature. As noted in Ref. [91], different EPC
models bring different pre-factors in Eq. (6.4.8). For example, the magnitude of the
deformation potential D in Ref. [89] is defined such that a similar equation is obtained,
but D ≡ 2βA.
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Summary

• Development of numerical solution to Boltzmann transport in graphene.

• Predominant role of acoustic phonons below room-temperature is confirmed.

• EP regime dominated by doping-independent acoustic gauge field βA.

• Experimental low-T transport reproduced with 15% increase of βA.

• A′1 mode is the dominant intrinsic contribution at high-T.

• Remote phonons could also contribute to high-T resistivity.

• Thorough survey of approximated solutions to resistivity.

• Indications for experimental extraction of acoustic gauge field.
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Conclusion

This work starts with an effort to clarify, improve and quantify existing models for
the coupling of electrons to in-plane acoustic phonon modes. By diagonalizing the
density-functional dynamical matrix at finite phonon momenta, we develop a model for
graphene’s in-plane acoustic phonon modes beyond the set of strictly longitudinal and
transverse phonon modes. With the support of ab initio simulations, we demonstrate
that inserting those phonon modes into the most general symmetry-based model of
electron-phonon interactions is essential to obtain numerically accurate values for the
acoustic gauge field parameter.

In order to calculate the coupling to acoustic modes in the GW approximation, we
develop the static strain method, similar to the frozen phonon scheme used for opti-
cal modes. We interpret the zero-momentum limit of an acoustic phonon as a static
strain of the unit cell. We then extract acoustic coupling parameters from band struc-
ture calculations performed on strained graphene. Using this method within the GW
approximation, we confirm that the acoustic gauge field is renormalized by electron-
electron interactions as the Fermi velocity. The unscreened acoustic gauge field is the
main contribution to the coupling of electrons with acoustic phonons. The other con-
tribution, the deformation potential, is screened. However, the values of the screened
deformation potential obtained using standard plane-wave density-functional theory
calculations are wrong. Indeed, 3D periodic boundary conditions imply the presence
of periodic images of the graphene sheet, which leads to some spurious screening. As for
the static strain method, it only gives an estimation for the bare deformation potential.
We then naturally proceed to the study of the screening properties of graphene.

The definition of the dielectric function depends on dimensionality. After clarifying
the formalism for screening in two dimensional frameworks, we review previous analyt-
ical derivations of the screening properties of graphene. We highlight the approxima-
tions involved in those derivations and propose a method based on density-functional
theory to overcome them. We compute the electronic density response to a perturbing
potential and implement the 2D Coulomb cutoff to prevent screening from the periodic
images. We show that cutting off the Coulomb interactions between periodic images is
essential to recover the screening properties of an isolated layer. Applied to graphene,
our method leads to an inverse dielectric function that is very close to the analytical
form for |q| ≤ 2kF , and is smaller by ≈ 10% for |q| > 2kF , where q is an in-plane
wave vector and kF is the Fermi wave vector. Overall, the Dirac cone model in a
strictly 2D framework, in the zero temperature limit, using random phase aproxima-
tion and neglecting local fields gives a quite accurate and simple analytical expression
for the static dielectric function of graphene. Smearing effects are negligible at room
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temperature and exchange-correlation effects within the local density approximation
are also quite small. Neglecting the local fields amounts to an ≈ 8% underestimation
of the inverse dielectric function above 2kF . The largest error comes from the Dirac
cone model for the band structure. This model remains an excellent approximation
in the |q| ≤ 2kF regime, as long as the Fermi level lies in the region where the bands
are linear. In the |q| > 2kF regime, however, the Dirac cone model leads to a ≈ 16%
overestimation of the inverse dielectric function due to the contribution of interband
processes probing states beyond the Dirac cones. This overestimation compensates
the local fields effects and the analytical model ends up overestimating the simulated
inverse dielectric function by ≈ 10% above 2kF .

Using the value of the bare deformation potential and the simulated screening
function of graphene, we estimate the screened deformation potential and note that it
is one order of magnitude smaller that the acoustic gauge field. Thus, the unscreened
gauge field remains the dominating contribution for the coupling of electrons to the
in-plane acoustic phonons.

The ability to simulate 2D materials in a field effect setup within the plane-wave
density-functional framework is essential to study out-of-plane phonons and their cou-
pling to electrons. We first describe the typical potential profile of the field effect setup.
We then show that 3D periodic boundary conditions, as used in standard plane-wave
density-functional theory, raise serious issues for its simulation. We then show how the
2D Coulomb cutoff technique can solve those issues. We detail the implementation of
the 2D Coulomb cutoff for the ground state and linear response of 2D systems in the
density-functional theory code Quantum ESPRESSO. This implementation includes
the calculation of the total energy, forces, phonons and electron-phonon coupling in
2D materials. We apply the method to graphene and demonstrate the benefits of the
implementation by simulating mechanisms specific to the field effect setup. We show
the emergence of a finite frequency for out-of-plane acoustic phonons in the limit of
small momenta when the 2D material is blocked between two repulsive barriers. We
show that out-of-plane phonons can couple linearly to electrons for graphene doped in
the field effect setup, in contrast with the case of neutral or jellium-doped graphene.
In the preliminary estimation performed here, the coupling with ZA and ZO phonons
is found to be small compared to the acoustic gauge field and the coupling to in-plane
optical modes. The method also enables the calculation of the screened deformation
potential within density-functional theory without spurious screening from the peri-
odic images. The screened deformation potential obtained with this method remains
negligible compared to the acoustic gauge field.

We then developed a numerical solution to the complete Boltzmann transport equa-
tion including contributions from acoustic and optical phonon branches. Comparison
to experiment confirms the role of acoustic phonons in the low temperature regime of
resistivity. In the equipartition regime, the resistivity is proportional to the squared
ratio of the acoustic gauge field parameter over the effective sound velocity (the har-
monic mean of the squared LA and TA sound velocities). The slope of the resistivity
as a function of temperature is then doping and substrate independent. We found that
increasing the acoustic gauge field parameter by 15% with respect to the GW value
leads to an excellent agreement with experiment. In the high temperature regime, scat-
tering by intrinsic A′1 optical phonon modes at K could account for the strong increase

100



in resistivity. However, a doping-dependent renormalization of the corresponding cou-
pling parameter is necessary, and this renormalization is much stronger than existing
estimate within GW. The role of remote-phonon scattering at high temperature was
not ruled out. If remote-phonons are indeed involved, their screening plays an impor-
tant role and needs to be modeled and simulated accurately. We verified the validity
of approximations commonly used when solving the Boltzmann transport equation.
An approximate yet accurate semi-analytical solution is proposed. Finally, partial an-
alytic solutions were derived in order to extract the numerical parameter (gauge field
parameter) that relates the synthetic vector potential to strain directly from transport
measurements.

The interactions with out-of-plane intrinsic phonons and with remote phonons are
among the interesting mechanisms to explore further in graphene. Our implementa-
tion of the 2D Coulomb cutoff in Quantum ESPRESSO is the adequate tool to study
those interactions. The solution to Boltzmann transport equation and the static strain
method require some analytical work that is specific to each material. However, the
processes can be adapted to other 2D materials. The 2D Coulomb cutoff was imple-
mented in a general manner and is readily applicable to other 2D materials. The corre-
sponding codes can be used to compute the ground-state density, total energy, bands,
static screening function, phonon dispersions and electron-phonon coupling of isolated
and gate-doped 2D materials. We expect that the computational methods developed
in this thesis can be exploited for numerous applications other than graphene.
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Chapter A
Computational Methods

In this appendix we introduce the computational methods used in the thesis. A reca-
pitulative diagram is given in Fig. A.1.

DFT!

Ground-state density, Band structure!

Density response, Phonons,  EPC!

DFPT!

GW!

Phonon perturbation!
Band structure!

(with e-e interactions)!

Figure A.1: Schematic of the main computational methods used in this work. The
DFT and DFPT calculations are performed with the Quantum ESPRESSO package
[38]. The GW calculations were carried out by C-H. Park on the BerkeleyGW package
[39].

The general framework is that of density-functional theory (DFT) [103]. Density-
functional theory can be used in several contexts. In this work, the term DFT will
always imply the context of the Kohn-Sham (KS) equations [77], Bloch plane waves [18]
and pseudopotentials [104]. The DFT calculations were performed using the Quantum
ESPRESSO (QE) code [38].

The first Hohenberg-Kohn theorem [103] states that all the properties of the ground-
state of a system are determined by its electron density. In other words, a theory (such
as DFT) that gives us the electronic density is sufficient to obtain the physical proper-
ties of the system. In particular, the energy of the system of electrons can be expressed
as a functional of the density:

Eelec[n] = Ekin[n] + Eext[n] + EH[n] + EXC[n] (A.0.1)
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where the different contributions are functionals for the kinetic energy of the electrons,
the energy of the electrons in an external field (e.g. the ions), the Hartree energy and
exchange-correlation (XC) energy. A potential V [n] = δE[n]

δn can be associated to each
of those energy functionals.

To find the electronic density, DFT maps a complex interacting electron system
onto the simpler problem of free electrons moving in an effective potential, the Kohn-
Sham (KS) potential [77]. The KS potential VKS(r), where r = (x,y,z) is a space
variable, is the sum of three potentials:

VKS(r) = Vext(r) + VH(r) + VXC(r). (A.0.2)

For a 2D material in the ground state, without any perturbation, the external poten-
tial Vext is simply the potential generated by the ions of the lattice, computed using
the pseudopotentials. The remaining potentials VH and VXC are functionals of the
electronic density. VH is the Hartree potential, accounting for the classical Coulomb
repulsion between electrons. The KS potential also includes, to some extent, a contri-
bution from the more quantum mechanical nature of electron-electron interactions in
the form of the exchange-correlation potential VXC. The QE code solves the KS equa-
tions, which are the Schrödinger equations for a system of free electrons in the effective
KS potential. This process is achieved in reciprocal space thanks to the plane-wave
formalism, and yields the KS electronic density. Since the KS potential determines the
solution for the density which in turn generates part of the KS potential (Hartree and
XC terms), this approach leads to a self-consistent problem. When self-consistency is
reached, the ground-state density n(r) is found. That is the only physical observable
defining the density functionals. It is also possible to extract the band energies and
the Bloch wave functions from the solution of the KS equations. However, it should
be noted that those quantities have no strict physical meaning in principle [105]. Nev-
ertheless, they usually represent a good single-particle representation of the system.

The major approximation of DFT comes from the fact that the exact functional giv-
ing all the contributions from electron-electron correlations to the energy is unknown.
We only have approximate forms of EXC and the corresponding potential VXC. DFT is
known to be limited to treat electron correlations. Computational methods based on
the GW approximation allows one to compute corrections to the DFT results. In those
kind of calculations, represented in Fig.A.1, we start from the electronic density, wave
functions and band energies obtained in DFT and compute corrections that electron-
electron interactions might bring to the energies of the Bloch states. Other methods,
such as Quantum Monte Carlo, go beyond those corrections and allow one to com-
pute wave functions more similar to those of interacting electrons, as opposed to the
non-interacting Bloch waves used in DFT. Still, DFT is computationally much cheaper
than these methods, and works very well in a great number of situations. This is our
main tool for simulations. In graphene, we evaluate corrections from electron-electron
interactions within the GW approximation when necessary.

Density-functional perturbation theory (DFPT) [19, 20, 21] allows one to calculate
the linear response of the ground state energy to a certain perturbation. An example of
perturbation are phonons. Of course, the response is that of the fictive system on which
the real system is mapped. Its validity relies on the linear response assumption and the
approximations related to the exchange-correlation part of the DFT functional used in
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the calculations. We will see that phonon dispersions can be inferred from the second
derivative of the total energy with respect to the displacement of ions. The second
derivative of the total energy can be calculated with the first-order perturbations of
the KS potential and electronic density, such that it is accessible in linear response
theory. EPC stems from the linear order perturbation of the effective KS potential
by phonons. DFPT, as implemented in the QE phonon code, will be used to simulate
phonons and their interactions with electrons.

Although we present a few calculations within the GW approximation, DFT and
DFPT remain the central methods that we use and develop in this work. The basic
formalism of those methods, as implemented in the QE code, is presented in the
following.

A.1 DFT

In this section we introduce the quantities that can be calculated in DFT. We give
the most straightforward expressions for a generic 3D-periodic material. The following
description is obviously very far from exhaustive. The aim is simply to set the notations
and provide definitions for the quantities mentioned in the main text of the thesis. For
more details, we refer the reader to the literature cited in the above introduction. The
lattice vectors are noted R, the internal coordinate of atom a is da. The reciprocal
lattice vectors G are such that eiG·R = 1.

A.1.1 Potentials

The central potential in the self-consistent process is the KS potential of Eq. (A.0.2).
It contains:

• Vext: the principal contribution to Vext is the potential generated by the ions Vion
calculated via the pseudopotentials. For the purpose of this thesis, we consider
only the local part of Vion, written as:

V loc
ion (r) =

∑
R,a

va(r−R − da) (A.1.1)

where va is the pseudopotential associated to atom a. We can put other contri-
butions into Vext, but in this appendix Vext = Vion.

• VH: the Hartree potential is given by:

VH(r) = e2
ˆ
dr′ n(r′)
|r− r′| , (A.1.2)

Here, and whenever there is no specified interval, the integrals are carried out
over the entire space spanned by the corresponding variable.

• VXC: the exchange-correlation potential is based on the local density approxima-
tion [22] (LDA).
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We also have to mention the potential Φ(r) which is the potential generated by the
ions used to compute ion-ion interactions. Although it is generated by the same source
as Vion, it is not calculated via the pseudopotentials. To generate this potential, the
ions are modeled by a collection of point charges. This potential is defined as:

Φ(r) =
∑
R′,a′

′ e2Za′

|r−R′ − d′a|
(A.1.3)

where the prime on the sum excludes the {R = R′, a = a′} case if r = R + da.

A.1.2 Total Energy
What we call the total energy of the system is the clamped-ions energy or the Born-
Oppenheimer energy surface [11]:

Etot = Ekin + EXC + EH + Eext + Ei−i (A.1.4)

where

Ekin = − ~2

2me

∑
k,s

f(εk,s)〈ψk,s|∇2|ψk,s〉 (A.1.5)

EH = 1
2

ˆ
n(r)VH(r)dr (A.1.6)

Eext =
ˆ
n(r)Vext(r)dr (A.1.7)

Ei−i = 1
2
∑
R,a

ZaΦ(R + da) (A.1.8)

and EXC is the exchange-correlation energy. For any of the above quantity E , one can
define the corresponding energy per unit cell E = E/N where N is the number of
unit cells. This is often more useful in practice, since the system is infinite, as are the
energies E .

A.1.3 Forces
To calculate the force on atom a in direction i, we compute the derivative of the total
energy per unit cell with respect to a displacement ua,i of this atom in this direction,
and take the value at ua,i = 0. Using the Hellmann-Feynman theorem [106, 107], the
force acting on ion a, in direction i is given by:

Fa,i = −∂Etot
∂ua,i

(A.1.9)

= −
ˆ

Ω
n(r)∂Vext(r)

∂ua,i
dr− ∂Ei−i

∂ua,i
, (A.1.10)

where the integral is carried over the volume of the unit cell Ω. Here and in the
following, the notation ∂

∂ua,i represents the value of the derivative at zero displacement.
The first term is the contribution from the electrons, the second from the ions. The
forces can be computed as soon as we have solved the ground state, since there are
only known quantities and their derivatives.
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A.2 DFPT

DFPT enables the computation of the linear response of the ground state to given
perturbation. In the case of the QE phonon code, those perturbations are phonons.

A.2.1 Phonons

We can simulate the response of the system to a phonon perturbation within DFPT.
A phonon perturbation of momentum q is represented by a collection of displacements
ua,i(R) of atom a in Cartesian direction i:

ua,i(R) = ua,i(q)eiq·R (A.2.1)

where ua,i(q) is the Fourier transform of ua,i(R). The phonon frequencies are obtained
from the second derivative of the total energy of the crystal Etot (not the energy of a
unit cell) via the matrix of the interatomic force constants defined as [21]:

Cai,a′j(R −R′) = ∂2Etot
∂ua,i(R)∂ua′,j(R′)

(A.2.2)

= Cion
ai,a′j(R −R′) + Celec

ai,a′j(R −R′)

In this particular context, it does not make sense to talk about energy per unit cell.
Indeed, the energy is not lattice periodic because of the phonon perturbation. There
are two contributions, one from the electrons, one from the ions:

Celec
ai,a′j(R −R′) =

ˆ
∂2Vext(r)

∂ua,i(R)∂ua′,j(R′)
n(r)dr +

ˆ
∂Vext(r)
∂ua,i(R)

∂n(r)
∂ua′,j(R′)

dr (A.2.3)

Cions
ai,a′j(R −R′) = ∂2Ei−i

∂ua,i(R)∂ua′,j(R′)
(A.2.4)

The first term of Eq. (A.2.3) and Eq. (A.2.4) are simply the second derivatives of
quantities we already know. The second term of Eq. (A.2.3), however, contains the
linear response of the electronic density to a phonon perturbation. This quantity
can be calculated within DFPT. A phonon perturbation translates into a periodic
perturbation of the potential generated by the ions, that is a periodic perturbation of
Vext:

∂Vext(r)
∂ua,i(q) = ∂Vion(r)

∂ua,i(q) (A.2.5)

where we now work with the (single-component) Fourier transform of the phonon
perturbation ua,i(q). The phonon perturbation triggers the linear response of the
electronic density:

∂n(r)
∂ua,i(q) , (A.2.6)
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which is found by solving a new set of equations, involving the linear perturbation to
the KS potential:

∂VKS(r)
∂ua,i(q) = ∂Vext(r)

∂ua,i(q) + ∂VH(r)
∂ua,i(q) + ∂VXC(r)

∂ua,i(q) (A.2.7)

where the V notation indicates that we take the lattice-periodic part of the perturba-
tions:

∂V (r)
∂ua,i(q) = ∂V(r)

∂ua,i(q)e
iq·r. (A.2.8)

The last two terms of Eq. (A.2.7) are generated by the density response Eq. (A.2.6).
We thus have a new self-consistent system to solve. Once self-consistency is reached,
we can calculate the dynamical matrix D which is the Fourier transform of the matrix
of the force constants:

Da,i,a′,j(q) = 1√
MaMa′

∑
R

Cai,a′j(R)eiq·R (A.2.9)

where Ma is the mass of atom a, and we have used translational invariance to express
the matrix of the force constant as a function of the generic lattice vector R. The
eigenvalue problem:

ω2(q)ua,i(q) =
∑
a′,j

Da,i,a′,j(q)ua,i(q) (A.2.10)

gives the frequencies ωq,ν (ω2
q,ν being the eigenvalues) and eigenvectors eq,ν of mode

ν at momentum q.

A.2.2 EPC
The electron-phonon interaction matrix elements are obtained from the derivative of
the KS potential as follows:

gk+q,s,k,s′,ν =
∑
a,i

ea,iq,ν

√
~

2Maωq,ν
〈k + q,s|∂VKS(r)

∂ua,i(q) |k,s
′〉 (A.2.11)



Chapter B
Electron-phonon coupling in the tight-
binding model of graphene

In this appendix, we detail the derivation of the tight-binding (TB) Hamiltonian model
for the electronic structure and the EPC in graphene. Although not detailed, parts of
those calculations were carried out in Refs. [27, 14, 24, 28]. Even if we go beyond this
model in the main text, the TB model is useful to get a formal understanding of EPC.

B.1 Low-energy, two nearest neighbors TB Hamiltonian
Omitting on-site energy, the TB Hamiltonian reads:

HTB = −
∑

1stn.n.
t1|R,a〉〈R′,a′| −

∑
2ndn.n.

t2|R,a〉〈R′,a′| (B.1.1)

where t1 and t2 are the first and second neighbor hopping integrals, respectively. Using
the following basis:

|K + k, a〉 = 1√
N

∑
R
ei(K+k)·(R+da)|R, a〉, (B.1.2)

the two nearest neighbor TB Hamiltonian yields:

〈K + k, a|HTB|K + k, a′〉 = HTB
K (k) =

(
g(k) h(k)
h∗(k) g(k)

)
, (B.1.3)

where the "star" notation indicates complex conjugates and

h(k) = −t1
∑
l=1,3

e(K+k)·C1
l , g(k) = −t2

∑
l=1,6

e(K+k)·C2
l . (B.1.4)

The vectors Cj
l connect atom 1 to its l jth nearest neighbors. For k� K, one gets:

HTB
K (k) =

(
3t2 3b0

2 t1(kx − iky)
3b0
2 t1(kx + iky) 3t2

)
, (B.1.5)

111
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where b0 is the interatomic distance. Up to a redefinition of the zero for energies, this
is similar to the Hamiltonian of Eq. (2.1.1), with:

~vF = 3b0
2 t1 (B.1.6)

B.2 Derivation of EPC from the TB Hamiltonian

In the following we derive the TB electron-phonon interaction Hamiltonian. The TB
Hamiltonian is separated in first and second nearest neighbors contributions as follows:

HTB
1 = −

∑
1stn.n.

t1|R,a〉〈R′,a′| (B.2.1)

HTB
2 = −

∑
2ndn.n.

t2|R,a〉〈R′,a′| (B.2.2)

B.2.1 First nearest neighbors contribution

We start by calculating the derivative ∆HTB
1,1 of the first nearest neighbors term of the

TB Hamiltonian with respect to a phonon displacement e1
q,ν̃ of atom 1.

∆HTB
1,1 = ∂

∂e1
q,ν̃

− ∑
1stn.n.

t1|R,a〉〈R′,a′|

 =
∑

1stn.n.
η1

C1
l · e1

q,ν̃
b0

|R,a〉〈R′,a′| (B.2.3)

where η1 = ∂t1
∂b0

, and −η1
C1

l ·e
1
q,ν̃

b0
is the variation of the hopping parameter when atom

1 moves by e1
q,ν̃ . The minus sign is because the hopping parameter increases when the

distance decreases. A similar expression is obtained for a displacement of atom 2, with
a minus sign because the vectors connecting atom 2 to its neighbors are opposite:

∆HTB
1,2 = ∂

∂e2
q,ν̃

− ∑
1stn.n.

t1|R,a〉〈R′,a′|

 = −
∑

1stn.n.
η1

C1
l · e2

q,ν̃
b0

|R,a〉〈R′,a′| (B.2.4)

Now we calculate the corresponding matrix elements 〈K + k + q,a|∆HTB
1,a′′ |K + k,a′〉.

Only off-diagonal (a 6= a′) matrix elements are non-zero since the first neighbors of
atom a are necessarily from the other sublattice. For a = 1, a′ = 2 and a′′ = 1, we get:

〈K + k + q,1|∆HTB
1,1 |K + k,2〉 = 1

N

∑
1stn.n.

η1
C1

l · e1
q,ν̃

b0
e−i(K+k+q)·(R+d1)ei(K+k)·(R′+d2)

(B.2.5)

= 1
N

∑
R,l

η1
C1

l · e1
q,ν̃

b0
e−iq·(R+d1)ei(K+k)·C1

l (B.2.6)
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It is now convenient to extract the phase factor from the phonon eigenvector eaq,ν̃ =
ēaq,ν̃eiq·(R+da) such that we end up with the same contribution from each cell:

〈K + k + q,1|∆HTB
1,1 |K + k,2〉 = 1

N

∑
R,l

η1
C1

l · ē1
q,ν̃

b0
ei(K+k)·C1

l (B.2.7)

=
∑
l

η1
b0
ei(K+k)·C1

l C1
l · ē1

q,ν̃ (B.2.8)

= h′(k) · ē1
q,ν̃ (B.2.9)

We introduce the vector function h′(k) =
∑
l
η1
b0
ei(K+k)·C1

l C1
l . The prime notation in

h′ is loosely used for its resemblance to a derivative of the function h(k) used before.
By following the same process of eliminating the phonon phase factors, we get:

〈K + k + q,2|∆HTB
1,1 |K + k,1〉 = h′∗(k + q) · ē1

q,ν̃ (B.2.10)
〈K + k + q,1|∆HTB

1,2 |K + k,2〉 = −h′(k + q) · ē2
q,ν̃ (B.2.11)

〈K + k + q,2|∆HTB
1,2 |K + k,1〉 = −h′∗(k) · ē2

q,ν̃ (B.2.12)

B.2.2 Second nearest neighbors contribution

Now we calculate ∆HTB
2,a′′ . This yields non-zero matrix elements 〈K+k+q,a|∆HTB

2,a′′ |K+
k,a′〉 only when a = a′ = a′′, since the 2nd nearest neighbors of an atom of type a are
of type a as well, and those must move to give a non-zero contribution.

∆HTB
2,a = ∂

∂eaq,ν̃

− ∑
2ndn.n.

t2|R,a〉〈R′,a|

 (B.2.13)

=
∑

2ndn.n.
η2

C2
l · eaq,ν̃√

3b0

(
1− eiq·(R′−R)

)
|R,a〉〈R′,a| (B.2.14)

(B.2.15)

where η2 = ∂t2
∂b0

. Again, the phonon phase factor cancel in the matrix elements, and
we get the same contribution from every cell:

〈K + k + q,a|∆HTB
2,a |K + k,a〉 =

∑
l

η2
C2

l · ēaq,ν̃√
3b0

(
1− eiq·C2

l
)
ei(K+k)·C2

l (B.2.16)

= g′(k,q) · ēaq,ν̃ (B.2.17)

with g′(k,q) =
∑
l

η2√
3b0

(
1− eiq·C2

l
)
ei(K+k)·C2

l C2
l

B.3 First order expansion at small wave vectors

By summing the above contributions, we can write the TB EPC matrix ∆HTB
q,ν̃ in the

pseudo-spinor basis:

∆HTB
q,ν̃ =

(
g′(k,q) · ē1

q,ν̃ h′(k) · ē1
q,ν̃ − h′(k + q) · ē2

q,ν̃
h′∗(k + q) · ē1

q,ν̃ − h′∗(k) · ē2
q,ν̃ g′(k,q) · ē2

q,ν̃

)
(B.3.1)
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We are interested in the small vector limit of EPC. We develop the function h′ at first
order in k:

h′(k) = h′(0) + k · ∇kh′|k=0 (B.3.2)

=
∑
l

η1
b0
eiK·C

1
l C1

l + k ·
∑
l

iη1
b0

C1
l e
iK·C1

l C1
l (B.3.3)

with K = (2/3, 0)2π
b , C

1
1 = (0,−1/

√
3)b, C1

2 = (1/2,1/2
√

3)b, and C1
2 = (−1/2,1/2

√
3)b,

we get:

h′(0) = 3η1
2

(
i
−1

)
(B.3.4)

∇kh′|k=0 = 3iη1b0
4

(
−1 i
i 1

)
(B.3.5)

The function g′ is developed at first orders in k and q:

g′(k) = g′(0,0) + k · ∇kg′|k=0,q=0 + q · ∇qg′|k=0,q=0 (B.3.6)
g′(0,0) = 0 (B.3.7)
∇kg′|k=0 = 0 (B.3.8)

∇qg′|q=0 = −
∑
l

iη2√
3b0

C2
l e
iK·C2

l C2
l (B.3.9)

with K = (2/3, 0)2π
b , C2

1 = (1,0)b, C2
2 = (1/2,

√
3/2)b, C2

3 = (−1/2,
√

3/2)b, C2
4 =

(−1,0)b, C2
5 = (−1/2,−

√
3/2)b, C2

3 = (1/2,−
√

3/2)b, we get:

∇qg′|q=0 = 3
√

3iη2b0
2

(
1 0
0 1

)
(B.3.10)

We now have all the elements to express the EPC matrix for the canonical acoustic
and optical phonon modes.

B.4 EPC matrix in the TB model

B.4.1 Optical phonons

For the optical phonons, we have ē2
q,Õ = −ē1

q,Õ. This implies that the lowest order in
q is zero, in the off-diagonal elements. We neglect all higher orders.

∆HTB
q,Õ =

(
0 2h′(0) · ē1

q,Õ
2h′∗(0) · ē1

q,Õ 0

)
(B.4.1)

The scalar product is easiest in the 1
|q| {q,q⊥} basis. For this, we have to rotate the

vectors in the {x,y} by an angle −θq, that is multiplying them from the left by the
rotation matrix:
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R =
(

cos(θq) sin(θq)
− sin(θq) cos(θq)

)
(B.4.2)

2h′(0) · ē1
q,Õ = 23η1

2 eiθq

(
i
−1

)
· 1√

2

(
QL̃O
QT̃O

)
(B.4.3)

= i
3η1√

2
eiθq(QL̃O + iQT̃O) (B.4.4)

2h′∗(0) · ē1
q,Õ = −i3η1√

2
e−iθq(QL̃O − iQT̃O) (B.4.5)

∆HTB
q,Õ = i×

(
0 3η1√

2 e
iθq(QL̃O + iQT̃O)

−3η1√
2 e
−iθq(QL̃O − iQT̃O) 0

)
(B.4.6)

The matrix has of course the same form as the one derived from symmetry consider-
ations in Sec. 2.2. However, it is less general. The particularity of the TB model is
that the magnitude of the matrix elements are related to the derivative of the hopping
integral. We can associate the parameters from both model by writing:

β̃O ≡
3η1√

2
. (B.4.7)

One should keep in mind that β̃O is much more general than its TB counterpart, as
discussed in Sec. 3.2. Similar calculations for the coupling to the optical mode A′1 at
K can be carried out and we find that:

βK ≡ β̃O ≡
3η1√

2
. (B.4.8)

B.4.2 Acoustic phonons

For the acoustic phonons, we have ē2
q,Ã = ē1

q,Ã. This implies that the lowest order in
q is one, in the off-diagonal and diagonal elements. We neglect all higher orders.

∆HTB
q,Ã =

(
q · ∇qg′|q=0 · ē1

q,Ã −q · ∇kh′|k=0 · ē1
q,Ã

q · ∇kh′∗|k=0 · ē1
q,Ã q · ∇qg′|q=0 · ē2

q,Ã

)

With:

q · ∇qg′|q=0 · ēaq,ν̃ = 3
√

3iη2b0
2 q · ēaq,ν̃ (B.4.9)

= 3
√

3iη2b0

2
√

2
|q|Q

L̃A
(B.4.10)
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and

−q · ∇kh′|k=0 · ē1
q,Ã = −3iη1b0

4 q ·R
(
−1 i
i 1

)
RT · ē1

q,Ã (B.4.11)

= 3iη1b0

4
√

2
e−2iθq |q|(Q

L̃A
− iQ

T̃A
) (B.4.12)

q · ∇kh′∗|k=0 · ē1
q,Ã = 3iη1b0

4
√

2
e2iθq |q|(Q

L̃A
+ iQ

T̃A
) (B.4.13)

∆HTB
Ã

= i|q| ×

 3
√

3η2b0
2
√

2 Q
L̃A

3η1b0
4
√

2 e
−2iθq(Q

L̃A
− iQ

T̃A
)

3η1b0
4
√

2 e
2iθq(Q

L̃A
+ iQ

T̃A
) 3

√
3η2b0

2
√

2 Q
L̃A

 (B.4.14)

Again, the EPC matrix has the same form as in 2.2, and we can associate the following
parameters:

β̃A ≡
3η1b0

4
√

2
(B.4.15)

αbare ≡ 3
√

3η2b0

4
√

2
(B.4.16)

once more keeping in mind that the validity of those relations is limited to the validity
of the of the two-nearest-neighbors TB model. Also, the bare deformation potential is
used because screening is absent from the TB model.



Chapter C
Derivation of the suceptibility

In this appendix we detail the derivation of the analytical independent particle sus-
ceptibility χ̃0(qp):

χ̃0(qp) = 1
π2

ˆ
K
d2k

∑
s,s′

|〈k,s|k + qp,s′〉|2
f(εk,s)− f(εk+qp,s′)

εk,s − εk+qp,s′
. (C.0.1)

Similar derivations were performed by the authors of Refs. [63, 64, 65, 66, 67, 68, 69].
Since very few details were given, we deem useful to give some more details here. Note
that there might be more efficient ways to perform the following derivations.

Since we are working in a strictly 2D framework, there is no ambiguity about the
fact that qp is in-plane and we drop the "p" index. In the Dirac cone model, we sum
over the π (s = +1) and π∗ (s = −1) bands:

χ̃0(|q|) = 1
2π2

ˆ
K
d2k

[
(1 + cos(θk,k+q))

f+
k − f

+
k+q

εk − εk+q
+ (1 + cos(θk,k+q))

f−k − f
−
k+q

−εk + εk+q

+ (1− cos(θk,k+q))
f+
k − f

−
k+q

εk + εk+q
+ (1− cos(θk,k+q))

f−k − f
+
k+q

−εk − εk+q

]
(C.0.2)

where we set εk = |εk,s| = ~vF |k|, f+
k = f(εk,+1), and θk,k+q = θk − θk+q to simplify

notations. As indicated in [69], it is convenient to separate χ̃0(|qp|) = χ̃0
+(|qp|) +

χ̃0
−(|qp|) as follows:

χ̃0
+(|q|) = 1

2π2

ˆ
d2k

[
(1 + cos(θk,k+q))

f+
k − f

+
k+q

εk − εk+q
+ (1− cos(θk,k+q))

f+
k + f+

k+q
εk + εk+q

]
(C.0.3)

χ̃0
−(|q|) = − 1

2π2

ˆ
d2k

[
(1 + cos(θk,k+q))

f−k − f
−
k+q

εk − εk+q
+ (1− cos(θk,k+q))

f−k + f−k+q
εk + εk+q

]
(C.0.4)

Let us start with χ̃0
−(|q|). The first term is obviously zero for electron doping (and at
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zero temperature), but we must keep it in order to rearrange the integral as follows:

χ̃0
−(|q|) = − 1

2π2

ˆ
d2k

[
f−k

(
1 + cos(θk,k+q)
εk − εk+q

+
1− cos(θk,k+q)
εk + εk+q

)

+ f−k+q

(
1− cos(θk,k+q)
εk + εk+q

−
1 + cos(θk,k+q)
εk − εk+q

)] (C.0.5)

By extracting a common denominator for all the fractions, we find:

χ̃0
−(|q|) = − 1

π2

ˆ
d2k 1

ε2
k − ε2

k+q

[
f−k
{
εk + εk+q cos(θk,k+q)

}
− f−k+q

{
εk+q + εk cos(θk,k+q)

} ] (C.0.6)

There is a kind of symmetry between k and k + q. We are going to exploit this
symmetry by noticing that:

|k + q| cos(θk,k+q) = |k|+ |q| cos(θk) (C.0.7)
|k| cos(θk,k+q) = |k + q| − |q| cos(θk+q) (C.0.8)

where the angles θk and θk+q are measured from the direction of q. We now write:

χ̃0
−(|q|) = − 1

π2

ˆ
d2k 1

ε2
k − ε2

k+q

[
f−k {2εk + ~vF |q| cos(θk)}

− f−k+q
{
2εk+q − ~vF |q| cos(θk+q)

} ] (C.0.9)

Using a change of variable k + q → k in the second term and using εk = ~vF |k| we
obtain:

χ̃0
−(|q|) = − 1

π2~vF

ˆ
d2kf−k

[2|k|+ |q| cos(θk)
|k|2 − |k + q|2 + 2|k| − |q| cos(θk)

|k|2 − |k− q|2
]

(C.0.10)

= − 1
π2~vF

ˆ
d2kf−k

[ 2|k|+ |q| cos(θk)
−|q|2 − 2|k||q| cos(θk) + 2|k| − |q| cos(θk)

−|q|2 + 2|k||q| cos(θk)

]
(C.0.11)

= 1
2π2~vF

ˆ
d|k|dθkf−k

 2|k|
|q| + cos(θk)
|q|
2|k| + cos(θk)

+
−2|k|
|q| + cos(θk)

− |q|2|k| + cos(θk)

 (C.0.12)

Changing variables shows that the two terms give the same contribution to the integral.
We have to calculate:

χ̃0
−(|q|) = 1

π2~vF

ˆ
d|k|f−k

ˆ dθk

2|k|
|q| + cos(θk)
|q|
2|k| + cos(θk)

 (C.0.13)

We first perform the angular integral. It is of the form:

I1 =
ˆ π

−π
dθ

a+ cos(θ)
a−1 + cos(θ) (C.0.14)

(C.0.15)
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We substitute u = tan(θ/2) and du = 1
2 sec2(θ/2) and transform sin(θ) = 2u

1+u2 ,
cos(θ) = 1−u2

1+u2 , dθ = 2du
1+u2 :

I1 =
ˆ ∞
−∞

du
2
(
a+ 1−u2

1+u2

)
(1 + u2)

(
1/a+ 1−u2

1+u2

) (C.0.16)

= 2
ˆ ∞
−∞

du
1

(1 + u2) + (a2 − 1)
(1 + u2) + a(1− u2) (C.0.17)

= 2
([

tan−1(u)
]∞
−∞

+ a2 − 1
1 + a

ˆ ∞
−∞

du
1

1 + 1−a
1+au

2

)
(C.0.18)

The first term gives
[

tan−1(u)
]∞
−∞

= π. The solution of the remaining integral depends

on the sign of the prefactor of u2, and therefore on a = 2|k|
|q| . If |k| < |q|/2, we have:

a2 − 1
1 + a

ˆ ∞
−∞

du
1

1 + 1−a
1+au

2 = −π
√

1− a2 (C.0.19)

If |k| ≥ |q|/2, we have:

a2 − 1
1 + a

ˆ ∞
−∞

du
1

1− a−1
1+au

2 = 0 (C.0.20)

Thus, coming back to χ̃0
−(|q|):

χ̃0
−(|q|) = 2

π~vF

ˆ ∞
0

d|k|f−k −
2

π~vF

ˆ |q|/2
0

d|k|f−k
√

1− (2|k|/|q|)2 (C.0.21)

The derivation of χ̃0
+(|q|) is very similar:

χ̃0
+(|q|) = − 2

π~vF

ˆ ∞
0

d|k|f+
k + 2

π~vF

ˆ |q|/2
0

d|k|f+
k

√
1− (2|k|/|q|)2 (C.0.22)

Setting the density of states to zero at the Dirac point, we have:

2
π~vF

ˆ ∞
0

d|k| = DOS(εF = 0) = 0 (C.0.23)

For εF ≥ 0, this gives:

χ̃0
−(|q|) = − 2

π~vF

ˆ |q|/2
0

d|k|f−k
√

1− (2|k|/|q|)2 (C.0.24)

χ̃0
+(|q|) = −DOS(εF ) + 2

π~vF

ˆ |q|/2
0

d|k|f+
k

√
1− (2|k|/|q|)2 (C.0.25)

χ̃0(|q|) = −DOS(εF ) + 2
π~vF

ˆ |q|/2
0

d|k|(f+
k − f

−
k )
√

1− (2|k|/|q|)2 (C.0.26)
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Chapter D

2D Coulomb cutoff at G = 0

D.1 Treatment of divergent G = 0 terms in the 3D QE code

In this section we highlight some practical issues arising in the implementation of
a plane-wave DFT code and review the general idea behind their resolution in the
standard QE code. We focus on the specific treatment of the individually divergent
G = 0 terms in the potentials and energy contributions. We refer to App. A and the
references cited therein for a more global description of plane-wave DFT. More details
on the issues approached here can be found in Ref. [18].

We consider the simulation of a 2D material using the plane-wave code of the QE
package. In truth, we are discussing the simulation of a 3D-periodic material made of
periodic images of the 2D system. We first consider a neutral system for which both
the 2D system and the 3D-periodic system are well defined. The structure of the KS
potential entails the separation of the material into two subsystems corresponding to
ions and electrons. The electrons interact with the ions via the ionic potential, and
with themselves via the Hartree interaction. For the purpose of this discussion, we
can ignore the exchange-correlation potential. The two subsystems are treated quite
differently. The ionic potential is computed from the pseudopotentials only once at
the beginning of the calculation. For the electrons, the central quantity is the electron
density, the Hartree potential being computed for the purpose of constructing the KS
potential. The electron density and the Hartree potential are re-computed at each
iteration of the self-consistent process. The computation of the potentials of the two
subsystems is done separately.

The issue is that the subsystems are not physically well defined when taken indi-
vidually. They roughly consist in the infinite periodic repetition of charged planes in
vacuum. Such subsystems are unphysical because their charge, potentials and energies
are diverging. In practice, this translates into a finite average charge in the unit cell,
that is to say a non-zero G = 0 component of the Fourier transform of either the ionic
or electronic charge distribution. Via the diverging Coulomb interaction at small mo-
menta, the G = 0 terms of the potential and energy contribution associated with each
subsystem is divergent. As long as the total system is globally neutral, it can be shown
that those divergences cancel each other when summed in the KS potential and total
energy [18, 19]. Yet we do need to compute finite potentials and energy contributions
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for each subsystem.
This practical issue is easily treated at the potential level, since every potential

is defined up to a constant. In the QE code, the simple convention of setting the
average (G = 0 term) of each potential to zero is chosen. At the potential level, this
process can be interpreted as the addition of the so-called "jellium background", a
uniform distribution of charges compensating for the charges of the subsystems. Each
subsystem plus its jellium is then neutral, and the potentials are finite. For a neutral
2D material, since the charges of the subsystems – ions and electrons – are equal and
opposite, so are their respective jellium backgrounds. Hence, when the subsystems
are added, the jellium backgrounds cancel each other and the correct KS potential is
recovered.

The separation into subsystems also applies at the energy level. The G = 0 terms
of the energy contributions associated with the ion-electron, electron-electron and ion-
ion interactions are individually diverging. It can be shown, however, that their sum
is finite in the case of a neutral system. At the energy level, the interpretation of the
treatment of the G = 0 divergences is more complex than the jellium picture used for
the potentials. The general idea is to compute combinations of the individually diver-
gent G = 0 energy terms to form finite contributions [18]. Those finite contributions
are then added to the total energy that we would obtain in a jellium picture by setting
all the G = 0 terms to zero. In any case, the idea that every contribution must be
treated consistently remains.

Let us now consider the simulation of a doped 2D material. The 3D-periodic
system made of periodic images of the charged 2D system has divergent potential and
total energy. At the potential level, the use of a compensating jellium for the ionic
and Hartree potentials implicitly takes care of this divergence. Indeed, as for a neutral
system, each subsystem is defined with its own compensating jellium background. Due
to the doping, however, those jellium backgrounds are not equal and opposite, and they
do not cancel each other in the total KS potential. What the code effectively simulate is
then the potential of a doped 2D material bathed in a remaining jellium background to
compensate the doping. This situation could be labeled as a "jellium-induced doping",
and is evidently very different from gate-induced doping. At the energy level, the
divergent term that should appear because of the addition of the doping charges is
dropped, and the meaning of the total energy becomes somewhat obscure.

In order to simulate the potential of a 2D material doped within the FET setup, we
effectively eliminate the jellium. This implies modifying the treatment of the G = 0
divergences. This treatment must be consistent for every potential and energy contri-
bution.

D.2 Treatment of the G = 0 singularities in the 2D code

D.2.1 G = 0 value of the Coulomb interaction

The treatment of the G = 0 terms with a 2D Coulomb cutoff is developed in Ref.
[74], where the authors show that one should consistently separate all potentials into
short-range and long-range contributions and use the following value for the G → 0
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limit of the cutoff Coulomb interaction on the long-range parts:

v̄c(G→ 0) = −2πe2l2z (D.2.1)

The following is an attempt at justifying this recommendation. Note that we use
the notation G → 0 to distinguish this value from the value v̄c(G = 0) = 0 used in
our implementation. The potential V (rp, z) generated by a generic 2D distribution
m(rp, z) via the cutoff Coulomb interaction is written:

V (rp, z) = e2
ˆ

plane

ˆ +lz

−lz

m(r′p,z′)√
|r′p − rp|2 + (z′ − z)2

dr′pdz′ (D.2.2)

By changing variables and exploiting the in-plane periodicity of m(rp, z), it can be
shown that the planar average of the potential V (Gp = 0, z) reads:

V (Gp = 0, z) = e2
ˆ

plane

ˆ +lz

−lz

〈m〉p(z′)√
|rp|2 + (z′ − z)2

drpdz′ (D.2.3)

This can be written as :

V (Gp = 0, z) =
ˆ +lz

−lz
〈m〉p(z′) v̄c(Gp = 0, |z − z′|) dz′ (D.2.4)

with

v̄c(Gp = 0, |z|) = e2
ˆ

plane

1√
|rp|2 + z2

drp (D.2.5)

= e2
ˆ

plane

 1
|rp|

+ 1√
|rp|2 + z2

− 1
|rp|

 drp (D.2.6)

= e2
ˆ

plane

drp
|rp|
− 2πe2|z| (D.2.7)

The first term of the above equation is the one that gives the diverging behavior in the
potential of a charged plane. However, this term vanishes as soon as the 2D system
is globally neutral within the cutoff because it does not depend on z. If we replace m
by a distribution ntot that would be the sum of the distributions of the electrons, ions
and gate, we get:
ˆ +lz

−lz
〈m〉p(z′)

(
e2
ˆ

plane

drp
|rp|

)
dz′ =

(
e2
ˆ

plane

drp
|rp|

)ˆ +lz

−lz
〈ntot〉p(z′)dz′ = 0 (D.2.8)

We can thus drop this term. The definition of the v̄c(G→ 0) is then found by Fourier
transform along the third direction (as in Eq. (5.2.9)):

v̄c(G→ 0) = 1
c

ˆ +lz

−lz

(
−2πe2|z|

)
dz (D.2.9)

= −2πe2l2z (D.2.10)
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D.2.2 Implementation
We now show why we can further simplify the process and use v̄c(G = 0) = 0 in our
implementation. The exchange-correlation and barrier contributions to the potentials
and energies are ignored here because they bring no divergence. We refer the reader
to App. A and the main text for definitions of the potentials and energies. Since we
are talking about cutoff quantities, the following concerns the long-range part of the
potentials and the corresponding contributions to energy when the long-range/short-
range separation is done. In order to simplify the argument, we do not make the
distinction in the notation. In the following, the "tilde" quantities are those defined
using the value v̄c(G → 0) = −2e2πl2z recommended in Ref. [74]. Here is how we
define the potentials in our implementation:

V̄H(r) = ṼH(r)− v̄c(G→ 0)n(G = 0)
V̄ion(r) = Ṽion(r) + v̄c(G→ 0)nion(G = 0)

V̄gate(r) = Ṽgate(r) + v̄c(G→ 0)ndop
c

Φ̄(r) = Φ̃(r)− v̄c(G→ 0)nion(G = 0)

(D.2.11)

Defined this way, the G = 0 value of our potentials is zero (at least for the long-range
part in the case of V̄ion and Φ̄). Note that if we sum V̄H, V̄ion and V̄gate, we find that
V̄KS = ṼKS, which is essential. The potentials give the following energies:

EH = ẼH −
Ω
2 (nion(0) + ndop

c
)2v̄c(G→ 0)

Eion
ext = Ẽion

ext + Ω(nion(0) + ndop
c

)nion(G = 0)v̄c(G→ 0)

Egate
ext = Ẽgate

ext + Ω(nion(G = 0) + ndop
c

)ndop
c
v̄c(G→ 0)

Ei−i = Ẽi−i −
Ω
2 n

2
ion(G = 0)v̄c(G→ 0)

Eg−i = Ẽg−i − Ωndop
c
nion(G = 0)v̄c(G→ 0)

Eg−g = Ẽg−g −
Ω
2

(
ndop
c

)2
v̄c(G→ 0)

(D.2.12)

where, once again, we have that all the G = 0 contributions to the energy are zero,
and that Etot = Ẽtot, if we sum all the contributions. The process described above is
equivalent to setting v̄c(G = 0) to zero, and it gives the same KS potential and total
energy as using v̄c(G → 0) = −2πe2l2z . It also mimics the method adopted to treat
the G = 0 divergences in the original code.



Chapter E
Boltzmann transport equation

E.1 Numerical Solution to Boltzmann transport equation

Eq. (6.1.13) can be written as a matrix-vector product of the kind
∑
ε′Mε,ε′τ(ε′) = 1,

with M = MI +
∑
νMν where MI is just a diagonal matrix containing the inverse

relaxation times for impurity scattering obtained using existing methods [93, 97, 98]
and

[Mν ]ε,ε′ =
∑
θ′

|ε′|∆θ′

(2π~vF )2Pν(ε,θ, ε′,θ′)1− f (0)(ε′)
1− f (0)(ε)

(
δε,ε′ −

cos(θ′)
cos(θ)

)
(E.1.1)

where angular variables have been discretized with step ∆θ′ to perform numerical
integrals, θ = θk and θ′ = θk′ . The scattering probability Pν(ε,θ, ε′,θ′) is the equivalent
of Eq. (6.1.9), defined in a way more suitable for the numerical integration:

Pν(ε,θ, ε′,θ′) = 2π
~
S|gk+q,k,ν |2

{
nq,νδε′,ε+~ωq,ν + (nq,ν + 1)δε′,εk−~ωq,ν

}
(E.1.2)

We represent the matrix [Mν ]ε,ε′ by discretizing the energy bands with NM = 8000
energy points on a scale of EM = 4~ωA′1 around εF , such that ∆ε = EM

NM
. We sum

over matrices associated with each phonon branch. The sum of scattering probabilities
PLO+PTO being isotropic, the corresponding matrix is diagonal. On the contrary, PTA,
PLA and PA′1 have angular dependencies such that the term cos(θ′)

cos(θ) does not integrate
to zero and give rise to off-diagonal terms.

The number of off-diagonal terms in the matrix [Mν ]ε,ε′ depends of the energy con-
servation in the scattering probability, Eq. (6.1.9). In the small |q| limit and for optical
A′1 having constant long-wavelength phonon dispersion, each energy conservation in
Eq. (6.1.9) is satisfied for only one value of ε at fixed phonon momentum. Thus, the
matrix

[
MA′1

]
ε,ε′

has only 2 off-diagonal terms for each ε. The energy parametrization
is such that the energies ε± ~ωA′1 are on the grid.

In the case of acoustic phonons, the linear phonon dispersion ~ωq,ν = vν |q| implies
that the energy conservation in Eq. (6.1.9) is satisfied by a larger subset of ε′ values
for each ε. [MTA,LA]ε,ε′ is thus a band matrix. However, the distance from the
diagonal is given by the magnitude of the phonon frequency, and since ~ωq,TA/LA .
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~ω2kF ,LA = 2vLA
vF
εF << ~ωA′1 , the band is very narrow compared to the width of the

full matrix. For the acoustic modes only, we made the approximation that all off-
diagonal terms can be summed up and concentrated into the diagonal term, which
is equivalent to neglecting [89] the variation of τ(ε) on the energy scale ~ω2kF ,TA/LA.
This approximation is discussed in App. E.2 concerning the acoustic phonons in the
BG regime. It is not equivalent to the elastic approximation, as in this case, we do not
constrain ε = ε′ in the calculation of each term in Eq. (E.1.1).
Matrix inversion of the 8000× 8000 M matrix gives the time τ(ε).

E.2 Relaxation times

In this appendix, the τ(εk′) ≈ τ(εk) approximation is made, such that each phonon
mode can be treated separately. Some phonon-specific approximations can then be
made to simplify the calculation of each τν . In the following the indices A and O des-
ignate the summed contributions of acoustic (TA/LA) and optical (LO/TO) phonons,
respectively.

E.2.1 Acoustic phonons in the BG regime
The variation of τA on the scale ~ωq,TA/LA is neglected [89]. Since ~ωq,TA/LA � εF ,
the initial and final states can be considered to be on the same iso-energetic line at
ε = εF , which simplifies the angular part of the calculus. However, the variation of
the electronic occupation must be included because ~ωq,TA/LA is of the order of kBT .
The following expression of τA is found, with ν = TA,LA:( 1
τA(εk)

)
BG

=
∑
k′

2π
~

1
N

∑
ν

|gk′,k,ν |2
1− f (0)(k′)
1− f (0)(k)

(1− cos(θk′ − θk)) (E.2.1)

×
{
n|k′−k|νδ(εk′ − εk − ~ω|k−k′|,ν) + (n|k−k′|ν + 1)δ(εk′ − εk + ~ω|k−k′|,ν)

}
where k′ = k + q.

E.2.2 Acoustic phonons in the EP and HT regimes
The quasi-elastic approximation is valid. The phonon occupation can be approximated
as nq,TA/LA ≈ ~ωq,TA/LA/(kBT ), since kBT >> ~ωq,TA/LA. We use the following
expression of τν(εk), easily deduced from Eq. (6.4.3) in the elastic case:

1
τν(εk) =

∑
k′
Pkk′,ν

(
1− cos(θk′ − θk)

)
(Elastic) (E.2.2)

The cosine in the scattering probabilities Pkk′,TA/LA times the cosine in the above
equation integrates to zero, so that 1

τA(εk) =
∑
ν=TA,LA

∑
k′ Pkk′,ν . We finally obtain:( 1

τA(εk)

)
EP,HT

= 2β2
AkBT

µS~v2
A

εk
(~vF )2 (E.2.3)

Where vA is the effective sound velocity defined in Eq. (6.4.5), and µS is the mass
density defined in Table. 6.2.
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E.2.3 Optical LO/TO phonons
The scattering probability made by the sum of LO and TO branches (Pkk′,LO+Pkk′,TO)
is isotropic. We can use a simplified form of Eq. (6.4.1) in the isotropic case:

1
τν(εk) =

∑
k′
Pkk′,ν

1− f (0)(εk′)
1− f (0)(εk)

(Isotropic) (E.2.4)

We obtain the following expression, with ~ωLO = ~ωTO = ~ωO = 0.20 eV, and
nLO = nTO = nO = n(~ωO):

1
τO(εk) = β2

O

µSωO

1
(~vF )2

{
nO|εk + ~ωO|

1− f (0)(εk + ~ωO)
1− f (0)(εk)

+ (nO + 1)|εk − ~ωO|
1− f (0)(εk − ~ωO)

1− f (0)(εk)
}

(E.2.5)

E.2.4 Optical A′1 phonons
As mentioned before, a difficulty encountered with optical A′1 phonons at K is the
change in the EPC matrix element for interband scattering. Since we consider only
electron doping, interband scattering occurs only in case of phonon emission. We find
the general expression of τA′1 to be, with ~ωA′1 = 0.15 eV and nA′1 = n(~ωA′1):

1
τA′1(εk) = β2

K

µSωA′1

1
(~vF )2 ×

{
3
2nA′1 |εk + ~ωA′1 |

1− f (0)(εk + ~ωA′1)
1− f (0)(εk)

+(nA′1 + 1)
(
|εk − ~ωA′1 |+

1
2(εk − ~ωA′1)

) 1− f (0)(εk − ~ωA′1)
1− f (0)(εk)

} (E.2.6)

E.3 Derivation of acoustic phonon resistivity in EP regime

In the EP regime, we can consider scattering by acoustic phonons (ν = TA,LA) to be
elastic:

1
τA(εk) =

∑
k′
Pkk′,A

(
1− cos(θk′ − θk)

)
(E.3.1)

with

Pkk′,A =2π
~

1
N

∑
ν=TA,LA

|gk,k′,ν |2
{
n|k′−k|νδ(εk′ − εk − ~ω|k−k′|,ν) (E.3.2)

+ (n|k−k′|ν + 1)δ(εk′ − εk + ~ω|k−k′|,ν)
}

(E.3.3)

By neglecting the phonon frequency in the delta functions we obtain:

Pkk′,A ≈
2π
~

1
N

∑
ν=TA,LA

|gk,k′,ν |2δ(εk′ − εk)
{
2n|k−k′|ν + 1

}
(E.3.4)

≈ 2π
~

1
N

∑
ν=TA,LA

β2
AkBT

µSSv2
ν

(1± cos 3(θk′ + θk))δ(εk′ − εk) (E.3.5)
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where |k − k′| = |q| and the angular expressions are simplified because k′ and k are
on a iso-energetic line. The ± sign corresponds to LA and TA respectively. We made
the approximation n|q|,TA/LA ≈ kBT

~ωq,TA/LA
, since kBT >> ~ωq,TA/LA.

Thus we have:

1
τA(εk) ≈

∑
k′

2π
~

1
N

∑
ν=TA,LA

1
µSSv2

ν

β2
AkBT (1± cos 3(θk′ + θk)) (E.3.6)

× δ(εk′ − εk)(1− cos(θk′ − θk))
1

τA(εk) ≈
∑

ν=TA,LA

β2
AkBT

µS~v2
ν

1
(~vF )2

ˆ
|εk′ |dεk′dθk′

(2π) (1± cos 3(θk′ + θk)) (E.3.7)

× δ(εk′ − εk)(1− cos(θk′ − θk))
1

τA(εk) ≈
∑

ν=TA,LA

β2
AkBT

µS~v2
ν

|εk|
(~vF )2

ˆ
dθk′

(2π)(1± cos 3(θk′ + θk))(1− cos(θk′ − θk))
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Doing the usual approximation valid at low temperature:
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Chapter ∗
Résumé

Malgré de nombreux arguments contre la stabilité des matériaux 2D à température am-
biante, André Geim et Konstantin Novoselov sont parvenus à produire du graphène en
2004. Les propriétés uniques de cette monocouche de carbone ont d’abord été étudiées
par P.R. Wallace, en 1947. Pendant des dizaines d’années, plusieurs théoriciens se
sont intéressés au graphène en tant que réalisation de la physique des fermions de
Dirac en matière condensée. À l’époque, cependant, on ne pensait pas pouvoir ob-
server le graphène en lui-même. Plutôt que la découverte d’un nouveau matériau,
c’est l’isolation et la caractérisation du graphène qui ont valu le prix Nobel Nobel de
physique 2010 à Geim et Novoselov.

La dimensionalité est un paramètre critique dans l’étude des propriétés des matéri-
aux. Elle définit souvent les caractéristiques et particularités des transitions de phase,
qu’elle soient structurelles, électroniques, magnétiques ou autres. Bien que les théori-
ciens travaillaient déjà en deux dimensions, l’isolation du graphène ouvra la porte des
matériaux 2D aux expérimentateurs. Ceci permit à la physique de la matière condensée
de bénéficier de l’échange fondamental entre théorie et expérience en deux dimensions.

La capacité à contrôler et caractériser les propriétés d’un matériau est tout aussi
importante que le matériau lui-même. Une composante cruciale de la technique de
caractérisation employée par Geim et Novoselov est l’utilisation de l’effet de champ.
L’idée d’utiliser un champ électrique pour moduler les propriétés électroniques d’un
matériau fût introduite par Julius Lilienfeld en 1925, mais il faudra quelques décennies
pour que John Atalla et Dawon Kahng fabriquent la première version opérationnelle
de ce que nous appelons aujourd’hui le transistor à effet de champ. L’effet de champ
se révéla être d’une importance capitale pour la technologie d’aujourd’hui puisque le
transistor à effet de champ est devenu le composant élémentaire de la plupart des
systèmes électroniques que nous utilisons.

L’intérêt de l’effet de champ réside dans sa capacité à induire des changements
notoires dans les propriétés électroniques du matériau cible en variant sa densité de
porteurs de charges. C’est pourquoi les transistors à effet de champ modernes sont
principalement constitués de semi-conducteurs plutôt que de métaux ou semi-métaux
comme le graphite. En effet, il suffit d’induire une densité de porteurs relativement
faible dans les semi-conducteurs pour engendrer une transition entre un comportement
isolant et conducteur. Dans les métaux ou semi-métaux épais, l’intensité typique
des champs électriques que l’on trouve dans les transistors à effet de champ s’avère
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trop faible pour induire une densité de porteurs mobiles significative comparée à la
densité intrinsèquement présente. L’effet du champ électrique est alors trop faible
pour être exploité. Durant son discours d’acceptation du prix Nobel, Geim indique
que ses recherches sur les fines couches de graphites furent en partie motivées par
l’observation potentielle de l’effet de champ dans des matériaux autres que les semi-
conducteurs. Pour cela, il était nécessaire d’augmenter la densité des porteurs de charge
induite dans le graphite. Plutôt que d’essayer d’augmenter le nombre de charges, son
ambition était de réduire l’épaisseur du graphite, et donc le volume dans lequel les
charges sont induites. D’une certaine façon, l’élimination d’une dimension spatiale et
l’utilisation de l’effet de champ furent un moyen d’explorer une autre dimension du
graphite semi-métallique, à savoir sa structure électronique.

Pour des raisons d’ordre plus technologique, l’industrie du semi-conducteur a tou-
jours été impliquée dans la course vers de plus fins matériaux et la réduction de leur
taille en général. L’isolation du graphène marque l’atteinte de la limite ultime de cette
course ainsi que l’accès à une nouvelle catégorie de matériaux. Le temps qui sépare les
travaux de Geim et Novoselov sur le graphène et leur récompense par le prix Nobel est
remarquablement court. Ce fût également le cas pour la réalisation du premier transis-
tor en 1947 par Bardeen, Brattain et Shockley et le prix Nobel correspondant en 1956.
Ceci résulte de l’impact considérable et immédiat que ces travaux ont eu sur la sci-
ence et la technologie. Etant donné l’importance des transistors de nos jours, on peut
s’attendre à un grand succès pour les matériaux 2D. En un peu plus d’une décennie,
une quantité impressionnante de travaux de recherche ont été réalisés sur les matéri-
aux 2D. Leur sensibilité au stimulations externes (champs électriques ou magnétiques,
lumière, température, contraintes, etc...) invite à de nombreuses applications dans les
composants électroniques, capteurs, panneaux solaires, batteries, thermoélectriques, et
bien d’autres. Pour d’autres champs d’application jusque là moins développés, comme
la spintronique, l’informatique quantique ou la supraconductivité, les matériaux 2D
pourraient être l’élément déclencheur d’avancées considérables.

Le transport électronique joue un rôle prépondérant dans un grand nombre de ces
applications. Il est alors essentiel de développer de bons modèles et d’identifier les dif-
férents facteurs susceptibles d’agir sur le transport afin d’améliorer les performances des
matériaux. Le transport est aussi une technique de caractérisation courante, utilisée
pour observer les signatures de diverses phénomènes. L’interaction électron-phonon et
l’écrantage font partie des concepts à considérer lorsque l’on parle de transport. Dans
les composants électroniques, la diffusion des électrons par les phonons détériore la ca-
pacité d’un matériau à conduire les électrons. L’interaction électron-phonon peut alors
être un facteur limitant. Dans le contexte de la supraconductivité conventionnelle, au
contraire, cette interaction est l’élément moteur du mécanisme physique. Dans tous
les cas, cette interaction est omniprésente en matière condensée, et son étude est essen-
tielle pour la physique fondamentale et appliquée. L’écrantage est un aspect important
et complexe du comportement collectif des électrons d’un matériau. Ce terme désigne
la capacité des électrons à atténuer un champ électrique extérieur via une réponse col-
lective engendrée par l’interaction coulombienne à longue portée. En tant que réponse
à un champ électrique, l’écrantage influe sur la réponse des électrons à un champ per-
turbateur, et en particulier sur le couplage électron-phonon. Ce phénomène dépend de
la dimensionalité et requiert une modélisation soigneuse. Beaucoup reste à compren-
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dre concernant la spécificité du transport, l’interaction électron-phonon et l’écrantage
dans les matériaux 2D.

Les simulations ab initio, en complément de l’expérience, peuvent aider à la com-
préhension des propriétés électroniques et structurelles des matériaux. Bien souvent,
la reproduction de résultats expérimentaux par la simulation implique une bonne com-
préhension des mécanismes physiques mis en jeu. En amont de l’expérience, les simu-
lations ab initio permettent de prédire et d’explorer les matériaux 2D, indiquant ainsi
le chemin à suivre aux recherches expérimentales et appliquées.

Cette thèse fait suite à la constatation d’un écart quantitatif entre simulations et
mesures expérimentales concernant la résistivité associée à la diffusion des électrons
par les phonons dans le graphène. Malgré une interprétation théorique qualitative-
ment satisfaisante, les travaux numériques sous-estiment largement l’expérience. Ceci
indique d’éventuels défauts ou lacunes dans les modèles et simulations ab initio de
l’interaction électron-phonon du graphène.

Afin de réaliser des simulations plus fidèles des interactions électron-phonon dans
les matériaux 2D, il a été nécessaire d’améliorer les méthodes ab initio existantes
fondées sur la théorie de la fonctionnelle de la densité avec ondes planes. Ces méth-
odes furent initialement développées pour la simulation de matériaux périodiques dans
les trois dimensions. Malgré leurs nombreux succès dans ce contexte, ces méthodes
ne sont pas adaptées à la simulation de matériaux 2D. En particulier, elles ne per-
mettent pas la simulation correcte de l’écrantage et de l’effet de champ. Puisque
ces deux mécanismes ont un effet sur l’interaction électron-phonon, il est important
de développer leur simulation pour les matériaux 2D. De manière plus générale, ces
deux sujets font l’objet de nombreux débats et leur importance dépasse largement
le cadre des interactions électron-phonon. En effet, l’écrantage peut être impliqué
dans tous les types de réponse électronique alors que l’effet de champ est utilisé dans
la plupart des mesures expérimentales de résistivité et dans de nombreuses applica-
tions. Afin de simuler correctement les effets de l’écrantage et l’effet de champ sur le
couplage électron-phonon, nous avons modifié les méthodes ab initio existantes. Ces
nouvelles méthodes numériques nous ont permis d’établir des modèles quantitatifs de
l’interaction électron-phonon dans le graphène. Nous avons amélioré les modèles qual-
itatifs et quantifié ab initio les paramètres en jeu. La résistivité du graphène peut
ensuite être calculée en introduisant les interactions électron-phonon dans un mod-
èle de transport électronique, qu’il faut alors résoudre. Souvent, des approximations
sont utilisées pour pouvoir résoudre les équations analytiquement. Afin de relaxer ces
approximations, nous avons implémenté une solution numérique plus précise.

Un objectif direct de ce travail est l’amélioration de la compréhension du couplage
électron-phonon et de son influence sur le transport électronique dans le graphène. Au
delà de l’application au graphène, un objectif moins direct mais tout aussi important
est de fournir de nouvelles méthodes numériques pour la simulation des matériaux 2D
en général.

Dans le premier chapitre, on introduit les concepts de matière condensée au centre
de cette thèse. Ce premier chapitre étant général et dépourvu de résultats nouveaux,
il ne sera pas résumé ici. Dans le chapitre 2, on présente et améliore les modèles
analytiques des électrons, des électrons (dans le plan), et de leurs interactions dans
le graphène. Dans le chapitre 3, on évalue ab initio les paramètres apparaissant dans
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le modèle de couplage électron-phonon. Dans le chapitre 4, on présente une méthode
numérique fondée sur la théorie de la fonctionnelle de la densité pour calculer les
propriétés d’écrantage des matériaux 2D. Cette méthode est appliquée au graphène
et les résultats sont comparés aux modèles analytiques. Dans le chapitre 5, on se
concentre sur la spécificité des configurations du type transistor à effet de champ
et les implications pour l’interaction électron-phonon. On détaille les modifications
apportées au code ab initio pour permettre la simulation de matériaux 2D dans de
telles configurations. La méthode est ensuite appliquée au graphène. Enfin, dans le
chapitre 6, on développe une solution numérique à l’équation de Boltzmann pour le
transport d’électron en présence de phonons. On simule la résistivité du graphène et
on la compare aux mesures expérimentales.

∗.1 Chapitre 2: Modèlisation analytique du couplage électron-
phonon dans le graphène

Cette étude commence par un travail de clarification, amélioration et quantification du
modèle de couplage entre les électrons et les phonons dans le plan. La modélisation du
couplage électron-phonon passe d’abord par celle des électrons et des phonons. Parmi
ceux-ci, on se concentre sur les électrons et phonons pertinents, c’est-à-dire ceux qui
jouent un rôle dans le transport électronique. Les électrons pertinents ont des énergies
|ε| < 1 eV, où les énergies sont mesurées par rapport à l’énergie de Fermi dans le cas du
graphène neutre. Les phonons pertinents sont les modes LA, TA, LO et TO proches
du point Γ ("L" pour longitudinal, "T" pour transverse, "A" pour acoustique, "O" pour
optique), et le mode optique A′1 proche du point K. On peut montrer que les phonons
hors plan ne se couplent pas linéairement aux électrons dans le cas du graphène isolé ou
en présence d’un champ électrique hors plan symétrique. Il peut y avoir un couplage
pour une configuration de type transistor à effet de champ, mais cette situation n’est
pas modélisée analytiquement. Le couplage des électrons aux phonons hors plan n’est
considéré que dans le chapitre 5, lorsque l’on simule l’effet de champ. Pour les modèles
analytiques, on se restreint donc au couplage avec les modes LA, TA, LO, TO et A′1.
Les modèles de couplage avec les modes optiques, déjà considérablement développés
dans la littérature [14, 34, 35, 27], sont présentés et vérifiés dans le texte principal.
Pour ce résumé, on se concentre sur les développements accomplis lors de cette thèse,
qui concernent principalement la modélisation du couplage aux modes acoustiques.

électrons. La structure électronique du graphène est représentée par des cônes de
Dirac, soit une dispersion linéaire εk,s = ±~vF |k| où εk,s est l’énergie associée à l’état
électronique de vecteur d’onde k dans la bande s, et vF est la vitesse de Fermi. La
structure de bande obtenue dans le cadre de la théorie de la fonctionnelle de la densité
(DFT) coïncide avec ce modèle pour des états électroniques d’énergie ε = ±0,5 eV,
voir Fig. ∗.1. En dehors de ce domaine, la structure de bande DFT est plus complexe.
Cependant, le modèle des cônes de Dirac fourni un support analytique suffisant à
l’interprétation de nos résultats numériques.

Phonons. La dispersion des phonons du graphène est donnée Fig. ∗.2. Les
modes strictement optiques ou acoustiques et strictement longitudinaux ou transverses,
appelés ici modes canoniques, sont souvent utilisés pour modéliser analytiquement les
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Figure ∗.1: Sur la gauche est représentée la structure de bande du graphène obtenue
en DFT, accompagnée de sa densité d’états. Sur la droite, on compare le modèle des
cônes de Dirac avec la structure de bande DFT pour des énergies εk,s = ±1 eV autour
du point de Dirac.

modes LA, TA, LO et TO. En réalité et dans le cadre de la DFT, les modes de phonons
du graphène (et tout autre réseau 2D qui ne soit pas parfaitement tétragonal) sont un
mélange de ces modes canoniques [25, 26, 16]. En diagonalisant la matrice dynamique
à des vecteurs de phonons q proches de zéro mais finis, on quantifie ce mélange et
on établit un modèle analytique approché plus satisfaisant que les modes canoniques.
Pour les phonons acoustiques, les conséquences de ce mélange sur le couplage électron-
phonon s’avèrent importantes.

Figure ∗.2: Dispersion des phonons du grahène, d’après Ref. [13]. Les lignes continues
representent la dispersion DFT, les symboles sont des données expérimentales.

Couplage électron-phonon (EPC). On utilise le modèle le plus général pour
l’Hamiltonien d’interaction électron-phonon, établi à partir d’arguments symétriques
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[16], auquel on ajoute l’effet de l’écrantage. Le couplage avec les phonons acoustiques
est constitué de deux type de termes, représentés Fig. ∗.3:
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Figure ∗.3: Représentation schématique des contributions de types potentiel de dé-
formation et champ de jauge pour le couplage des électrons aux phonons acoustiques
dans le plan.

• les termes de type "champ de jauge" [24], associés au paramètre βA, déplacent le
cône de Dirac dans la zone de Brillouin sans changer l’énergie du point de Dirac.
En tant que tel, ces termes ne modifient pas la charge globale et ne sont pas
écrantés. Pour un feuillet de graphène soumis à une déformation uni-axiale, ce
type de termes correspond à l’amplitude du potentiel vecteur, le "champs de jauge
synthétique" [31, 32, 16], qui apparait dans la perturbation de l’Hamiltonien. En
présence d’un champ de contrainte non-uniforme, l’effet de ce potentiel vecteur
est similaire à celui d’un champ magnétique effectif [33].

• Les termes de type "potentiel de déformation", associés au paramètre α, déplacent
le cône de Dirac en énergie, sans changer la position du point de Dirac dans
l’espace réciproque. Comme ces termes engendrent une variation de la charge
locale, ils sont écrantés par les électrons. Dans un feuillet de graphène soumis à
des déformations, ces termes correspondent à l’amplitude du potentiel scalaire,
ou " champ électrique synthétique" [31, 16], généré par une variations de la surface
de la maille unitaire.

L’incorporation des fonctions d’ondes électroniques ( associés aux cônes de Dirac) et
des modes de phonons dans le modèle d’interaction permet l’obtention des éléments de
matrice EPC, qui représentent la probabilité pour qu’un mode de phonon donné diffuse
un électron d’un état électronique à un autre. L’utilisation du modèle de phonons
DFT plutôt que les phonons canoniques mène à une renormalisation du paramètre de
couplage de type champ de jauge.

∗.2 Chapitre 3: Evaluation des paramètres par calculs ab initio
Comme pour les modèles analytiques, l’évaluation ab initio des paramètres de couplage
aux phonons optiques est amplement couverte dans la littérature [14, 34, 35, 27].
Les calculs ab initio de ces paramètres sont simplement vérifiés et présentés dans
le texte principal. Les développements effectués au cours de cette thèse concernent
majoritairement les phonons acoustiques et sont résumé ici.
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Figure ∗.4: Calculs DFT du paramètre associé au couplage de type champ de jauge,
en fonction de la norme du vecteur d’onde des phonons. Les calculs sont réalisés
dans différentes directions, à différents dopages, et pour les deux ensembles de modes
de phonons canoniques et DFT. Les variations négligeables en fonction du dopage
confirment que le champ de jauge n’est pas écranté. La variation significative du
résultat en fonction de l’utilisation des modes canoniques ou DFT souligne l’importance
de la modélisation du mélange des modes canoniques dans les modes DFT. Les point
et carré bleus représentent les valeurs des paramètres trouvées avec la méthode des
déformations statiques.

On utilise la DFT en perturbation [19, 20, 21] pour calculer directement le cou-
plage électron-phonon. Cette méthode, de par sa flexibilité, permet la vérification des
modèles analytiques. On vérifie les dépendances en angles et en la norme du vecteur de
phonon du modèle analytique des éléments de matrice du couplage électron-phonon,
voir Fig. ∗.4. Une attention particulière est également accordée aux conséquences
numériques des développements apportés au modèle analytique, à savoir le mélange
des modes de phonon canoniques dans les modes DFT et l’écrantage du potentiel de
déformation. On trouve une variation d’environ 30% dans l’amplitude du couplage de
champ jauge lorsqu’on perturbe le système avec les modes canoniques ou DFT, comme
on le voit dans la Fig. ∗.4. Numériquement, une modélisation correcte des phonons
acoustiques et du mélange des modes canoniques est donc essentielle.

La simulation de l’écrantage du potentiel de déformation est un défi majeur. Dans
le cadre de la DFT avec des ondes planes, on ne peut que simuler des systèmes avec
des conditions aux bords périodiques dans les trois dimensions. La simulation d’un
matériau 2D comme le graphène implique alors la présence d’images périodiques du
système 2D. Les électrons de ces images périodiques apportent un écrantage supplé-
mentaire par rapport à celui d’un système 2D isolé. Ainsi, nos calculs DFT confirment
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l’écrantage du potentiel de déformation, mais les valeurs numériques du potentiel de
déformation écranté ne sont pas valables du fait de la présence d’images périodiques.
Le traitement de l’écrantage en DFT est traité dans le chapitre suivant.
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Figure ∗.5: Déformation statique de la maille unitaire. La transformation des vecteurs
de la maille est donnée par le tenseur des déformations U . Une fois la maille déformé,
on doit relaxer les positions internes des atomes.

D’autre part, le calcul direct du couplage électron-phonon en DFT présente une
autre limite: le traitement approximatif des interactions électrons-électrons. Un des
apports de cette thèse réside dans le développement de méthodes permettant d’évaluer
le couplage aux phonons acoustiques dans l’approximation GW. Les méthodes dites
"GW" traitent les interactions électrons-électrons de manière plus poussée que la DFT.
Cependant, elles ne permettent que le calcul des énergies des états électroniques, et
pas le calcul direct du couplage électron-phonon comme la DFT en perturbation. Pour
calculer les couplages électron-phonon dans l’approximation GW, on associe la limite en
|q| → 0 d’un phonon acoustique à une déformation statique du graphène comme celle
représentée Fig. ∗.5. Un phonon strictement acoustique correspond à une déformation
de la maille alors qu’un phonon strictement optique correspond à une variation des
coordonnées internes des atomes. Un mode acoustique DFT étant un mélange de
phonons strictement acoustiques ou optiques, il correspond à une déformation de la
maille accompagnée d’une relaxation des coordonnées internes des atomes. Lors d’une
telle déformation, l’Hamiltonien du graphène est perturbé par des potentiels scalaires
et vecteurs qui peuvent être reliés aux couplages électron-phonon. Les perturbations
apportées à l’Hamilonien du graphène déformé sont celles présentées dans la section
précédente, à savoir des déplacements des cônes de Dirac dans l’espace réciproque
(champ de jauge) ou en énergie (potentiel de déformation). Il suffit alors d’étudier la
structure de bande du graphène déformé pour en déduire les paramètres EPC. Cette
procédure peut être réalisée dans le cadre de la DFT, mais aussi dans l’approximation
GW. Grâce à cette méthode, on observe la renormalisation du paramètre de jauge
par les interactions électrons-électrons et on confirme que cette renormalisation suit
celle de la vitesse de Fermi, soit une augmentation d’environ 20% du paramètre de
jauge. Le paramètre de type champ de jauge est la contribution principale du couplage
avec les phonons acoustiques. Sa valeur numérique et celles des autres paramètres de
couplages sont résumées dans la table ∗.1. Il n’y a pas d’écrantage dans la méthode
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Table ∗.1: Paramètres de couplage électron-phonon, calculés par différentes méthodes.
βA est le paramètre de couplage de type champ de jauge pour les phonons acoustiques
DFT. β̃A est le paramètre obtenu pour les modes acoustiques canoniques. αbare corre-
spond au potentiel de déformation non-écranté. βO et βK sont les paramètres associés
au couplage avec les modes LO/TO et A′1 respectivement. Les différentes méthodes
sont : (i) DFPT EPC: calcul direct du paramètre dans le cadre de la DFT. Cette méth-
ode ne donne pas accès au potentiel de déformation non-écranté αbare. (ii) |q| = 0:
calcul "à moment de phonon nul" via les déformations statiques, dans le cadre de la
DFT. Les paramètres acoustiques sont obtenus en calculant l’amplitude des potentiels
scalaires et vecteurs engendrés par les déformations. Les paramètres optiques ont été
obtenu avec la méthode des "frozen phonons" dans la référence [34]. (iii)TB-DFT:
résultats provenant de l’évaluation en DFT des paramètres du modèle liaison forte de
l’EPC [28]. (iv) Calculs GW. Pour les phonons à Γ, la renormalisation est de 20%,
comme la vitesse de Fermi. Pour le mode A′1, les résultats sont extraits de la référence
[35]. (v) Exp: paramètres obtenus en ajustant la solution numérique de l’équation de
Boltzmann sur l’expérience, voir chapitre 6.

DFPT EPC |q| = 0 TB-DFT [28] GW Exp

β̃A (eV) 4,60 4,58 3,58 5,52 –
βA (eV) 3,60 3,64 – 4,32 4,97
αbare(eV) – 2,96 3,25 – –
βO = β̃O (eV/Å) 9,5 9,5 10,08 11,39 11,39
βK (eV/Å) 9,5 9,5 10,08 12,5 ∼ 14 17 ∼ 40

des déformations statiques. Par conséquent, on ne peut qu’obtenir une valeur du
potentiel de déformation nue ("bare"), c’est à dire non-écrantée. Cette valeur nue n’est
pas renormalisée par les interactions électrons-électrons. Nous n’avons toujours pas
de valeur fiable pour le potentiel de déformation écranté. Cependant, avec la valeur
nue et la fonction d’écrantage du graphene, on peut en obtenir une estimation. La
prochaine étape est donc naturellement l’étude de l’écrantage dans le graphène.

∗.3 Chapitre 4: Écrantage statique dans le graphène

Le phénomène d’écrantage et le formalisme associé dépendent fortement de la dimen-
sionalité. Le premier objectif est donc de clarifier ce que nous cherchons à calculer.
Plusieurs cas de figure sont détaillés dans le texte principal. Le cas d’un matériau
3D périodique fait office de référence et point de départ. On traite ensuite le cas d’un
matériau strictement 2D en considérant une densité électronique d’épaisseur infiniment
petite, cadre dans lequel on se place généralement pour effectuer des développements
analytiques. Puis on traite le cas plus réaliste d’un matériau 2D d’épaisseur fini. Enfin,
on considère un matériau 2D d’épaisseur fini et répété dans la troisième direction, ce
qui est effectivement simulé dans le cadre de la DFT avec les ondes planes. L’objectif
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est de comparer les résultats des travaux analytiques avec les simulations DFT. Pour
ceci, on doit prendre soin de déterminer les conditions dans lesquelles les fonctions
diélectriques dans ces deux situations sont formellement équivalentes. En particulier,
l’élimination de l’écrantage superflu provenant des images périodiques en DFT est es-
sentielle pour simuler un matériau 2D isolé tel qu’il est étudié analytiquement. On
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Figure ∗.6: À gauche, on trace la fonction diélectrique inverse du graphène calculée en
DFT ("LDA") avec et sans troncature ("cutoff") des interactions coulombiennes entre
les images périodiques, et pour du graphène neutre et dopé. qp est le vecteur d’onde
de la pertrubation. La variable |qp|/|Γ − K| est adimensionnelle, et |Γ − K| ≈ 1,7
Å−1 est la distance entre les points Γ et K de la zone de Brillouin. On fait varier
l’espacement entre les images périodiques (c) pour souligner le fait que le résultat en
dépend en l’absence de troncature. À droite, on compare la méthode DFT et les
résultats analytiques ("Analytical"). Voir le texte principal pour la signification des
autres méthodes.

examine le modèle analytique [63, 64, 65, 66, 67, 68, 69] de la fonction d’écrantage
statique du graphène. On souligne plus particulièrement les approximations qui y sont
rattachées, à savoir le cadre de travail strictement 2D, l’utilisation du modèle des cônes
de Dirac, l’approximation des phases aléatoires, et le moyennage du champ induit sur
la maille élémentaire. On développe une méthode DFT pour relaxer ces approxima-
tions. On implémente la réponse électronique à un potentiel perturbatif périodique et
on propose la troncature du potentiel coulombien [73, 74, 40] induit par les électrons
entre les images périodiques pour éliminer l’écrantage superflu. On montre que la
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troncature est nécessaire pour retrouver les propriétés d’écrantage d’un matériau 2D
isolé, ce que l’on peut voir sur la Fig. ∗.6.

La méthode DFT avec troncature est appliquée au graphène neutre et dopé et
la comparaison des résultats à ceux du modèle analytique dans la Fig. ∗.6 révèlent
un bon accord général. Les approximations mentionnées plus haut semblent donc
être un moyen simple et efficace d’obtenir la fonction diélectrique du graphène. Plus
précisément, la fonction diélectrique inverse du graphène simulée est très proche de
l’expression analytique pour |q| ≤ 2kF (kF étant le vecteur d’onde de Fermi, et q le
vecteur d’onde de la perturbation), et ≈ 10% plus faible pour |q| > 2kF . On trouve
que la température a un effet négligeable, ainsi que le potentiel d’échange et corrélation
dans le cadre de l’approximation de la densité locale (LDA). La source principale des
≈ 10% de différence entre les deux méthodes est l’utilisation des cônes de Dirac pour
modéliser la structure de bande.

A partir de la valeur du potentiel de déformation nu et de la fonction diélectrique
du graphène (on peut alors utilisé l’expression analytique de cette dernière), on estime
que le potentiel de déformation écranté est au plus un ordre de grandeur plus petit
que le potentiel de jauge. Le couplage avec les phonons acoustiques dans le plan est
donc bien dominé par le champ de jauge.

∗.4 Chapitre 5: Quantum ESPRESSO 2D

La simulation DFT de matériaux 2D dans une configuration de type transistor à effet de
champ est essentielle pour étudier les phonons hors plan et leur couplage aux électrons.
Le principe de fonctionnement d’un transistor à effet de champ est représenté Fig. ∗.7.
Le matériau 2D est posé sur un substrat isolant. Au dessus du matériau 2D sont dé-
posés un diélectrique isolant puis une grille conductrice. L’application d’une différence
de potentiel entre le matériau 2D et la grille permet d’établir un champ électrique au
sein du diélectrique, perpendiculaire au plan du matériau 2D. Ceci s’accompagne d’une
accumulation de charges de part et d’autre du diélectrique, dans la grille et le matériau
2D. Ce dispositif est très souvent utilisé pour doper, ou charger le matériau. C’est le
caractère asymétrique du champ électrique hors plan, fini d’un côté du matériau 2D,
zéro de l’autre, qui fait la particularité de cette configuration. Pour simuler un matériau
2D dans de telles conditions, on simplifie le système de manière à rendre compte des
effets de la grille et du diélectrique sans forcément simuler les atomes et électrons qui
les constituent. La grille est représentée par un plan de charge homogène et strictement
2D (infiniment fin), alors que le diélectrique est remplacé par une simple barrière de
potentiel. L’objectif est de retrouver le modèle du profil de potentiel du transistor à
effet de champ Fig. ∗.8.

Les conditions aux bords périodiques 3D sont nécessairement respectée dans un
programme DFT utilisant des ondes planes. Dans ce cadre, on simule toujours le
système 3D-périodique constitué de l’ensemble des images périodiques du système 2D
que l’on veut simuler. On voudrait que chaque image périodique soit exactement
équivalente au système 2D, ce qui n’est pas possible dans l’implémentation standard
de la DFT avec ondes planes. En effet, l’apparition d’un moment dipolaire hors plan
dans ce système est incompatible avec les conditions au bords périodiques 3D [78,
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Figure ∗.7: On schématise le principe physique de l’effet de champ. Les points noirs
symbolisent les atomes d’un matériau 2D monocouche. Ici, on représente un dopage
positif. Des électrons sont ajoutés au matériaux 2D, des trous sont ajoutés à la grille.

79, 80]. Ceci est facilement compris lorsque l’on remarque que la valeur du potentiel
électrostatique est différente d’un côté à l’autre du système (à gauche et à droite des
systèmes des Figs. ∗.7 et ∗.8). Certaines méthodes ont été proposées pour remédier
à cette problématique [78, 79, 80, 82]. Ces méthodes on été appliquées au cas de
transistors à effet de champ avec des matériaux 2D [12, 81, 83]. Cependant, elles ne
permettent pas le calcul de l’état perturbé et donc des phonons.

On développe ici la technique de troncature des interactions coulombiennes [73, 74,
40] entre les images périodiques pour tous les potentiels présents en DFT. On mon-
tre alors que l’on peut éliminer les liens physiques entre les images périodiques tout
en respectant mathématiquement les conditions aux bords périodiques. On détaille
l’implémentation de cette troncature dans le code DFT Quantum ESPRESSO [38].
Ces modifications permettent alors de calculer l’énergie totale, les forces, les phonons,
et les interactions électron-phonon dans les systèmes 2D, en particulier dans une con-
figuration type transistor à effet de champ.

On applique ensuite cette méthode au graphène et on démontre son intérêt en
simulant des mécanismes propres au transistor à effet de champ. On observe une
énergie finie pour les phonons acoustiques hors plan dans la limite des longueurs
d’ondes infinies. On montre également qu’en présence d’un champ électrique hors plan
asymétrique, les phonons hors plan (acoustiques et optiques) se couplent linéairement
aux électrons. Une première estimation de ces couplages donne des valeurs qui restent
négligeables devant les autres types de couplage déjà considérés pour les phonons dans
le plan. Comme discuté dans le texte principal, cependant, il n’est pas exclu qu’une
modélisation plus réaliste du diélectrique révèle de plus importants couplages. Enfin,
on calcule directement le potentiel de déformation écranté pour du graphène dans un
transistor à effet de champ. Celui-ci est différent de la valeur obtenue en divisant la
valeur du potentiel de déformation nu (obtenu par la méthode des déformations) par
la fonction diélectrique du graphène. Ceci montre qu’il reste des choses à comprendre
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Figure ∗.8: Profil type du potentiel électrostatique dans notre modèle de transistor à
effet de champ. Sur la gauche, seuls le matériau 2D et la grille sont présents. Sur la
droite, on ajoute une barrière de potentiel pour simuler le diélectrique.

-15 -10 -5 0 5 10 15
z (a.u.)

-4

-3

-2

-1

0

1

2

3

4

5

V
K

S(G
p=0

, z
) [

R
y]

0 0.02 0.04 0.06 0.08
|q|/|Γ-K|

0

50

100

150

ω
 (c

m
-1

)

neutral no cutoff
neutral cutoff
2 barriers setup

LA

TA

ZA

Figure ∗.9: Sur la gauche on représente le potentiel d’un système où le matériau 2D
est dopé et enfermé entre deux barrières de potentiel. La ligne pointillée représente la
densité électronique, en unités arbitraires. À droite, en rouge, on trace la dispersion
des phonons acoustiques de ce système. Pour fournir une référence, on trace en noir les
dispersions obtenues pour du graphène neutre, sans barrières, avec et sans troncature
("cutoff") des interactions coulombiennes.

concernant l’écrantage des couplages électron-phonon en 2D. Quoi qu’il en soit, les
valeurs obtenues restent négligeables devant le champ de jauge.
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Figure ∗.10: Sur la gauche, on trace le rapport du potentiel de déformation non-
écranté sur la fonction diélectrique du graphène. Sur la droite, on trace le potentiel de
déformation écranté obtenu dans la configuration transistor à effet de champ. Ceci est
fait pour différents dopages avec des énergies de Fermi εF de 0, 0,25 et 0,5 eV.

∗.5 Chapitre 6: Résistivité du graphène

Dans le dernier chapitre, on développe une solution numérique à l’équation de Boltz-
mann pour le transport électronique dans le graphène, en prenant en compte la diffusion
par les phonons LA, TA, LO, TO et A′1. Cette solution numérique permet de relaxer
diverses approximations souvent utilisées pour obtenir des expressions analytiques de
la résistivité du graphène [88, 89]. La comparaison des résultats de cette méthode
avec les mesures expérimentales [86, 87] confirme le rôle prédominant des phonons
acoustiques à basse température (en dessous de la température ambiante). Dans le
régime d’équipartition, la résistivité est proportionnelle à la température. La pente est
proportionnelle au carré du rapport du paramètre associé au champ de jauge sur la
vitesse du son effective (la moyenne harmonique des carrés des vitesses du son associées
aux modes LA et TA). Cette pente est alors indépendante du dopage ou de la nature
du substrat. On montre qu’une augmentation de 15% du paramètre de champ de
jauge par rapport à la valeur ab initio GW permet un excellent accord quantitatif avec
l’expérience. Plusieurs hypothèses peuvent être émises pour expliquer ce désaccord de
15%. Quoi qu’il en soit, le désaccord est assez faible pour affirmer la domination du
champ de jauge dans la diffusion des électrons par les phonons acoustiques. Autour
de la température ambiante, une forte augmentation de la résistivité en fonction de la
température apparait. Dans l’interprétation des données expérimentales, celle-ci est
souvent attribuée au couplage à distance avec les phonons optiques du substrat. Il
n’existe cependant pas de simulation ab initio pour confirmer la contribution domi-
nante d’un tel couplage. D’autre part, nos simulations révèlent un fort couplage avec les
phonons optiques A′1. Ces phonons intrinsèques engendrent un augmentation notable
de la résistivité à partir d’une température qui est en accord avec ce que l’on observe
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Figure ∗.11: Comparaison des mesures expérimentales (lignes continues) et de la so-
lution numérique (lignes pointillées) dans les régimes (a) basses températures et (b)
hautes températures, pour différents dopages.

expérimentalement. Cependant, on doit effectuer un ajustement du paramètre de cou-
plage correspondant qui dépend du dopage pour obtenir un bon accord numérique entre
simulations et expériences. Il existe plusieurs explications possibles pour ce désaccord.
On peut remettre en cause la validité des valeurs du paramètre non-ajusté que l’on
utilise. Celui-ci a été calculé [35] dans le cadre de l’approximation GW, mais ces calculs
sont très délicats pour les dopages considérés (du fait de la difficulté d’échantillonner
de petites surface de Fermi). Les phonons optiques intrinsèques hors plan pourraient
aussi contribuer d’une manière similaire. Enfin, le substrat n’étant pas présent dans nos
simulations, les phonons du substrat n’ont pas été écarté. Soulignons que ces derniers
seraient écrantés, et qu’une correcte simulation de leur écrantage serait nécessaire pour
évaluer leur contribution à la résistivité quantitativement.

On met également à profit la solution numérique pour examiner la validité des di-
verses approximations communément utilisées dans les modèles analytiques de trans-
port. On propose une solution semi-numérique facile à implémenter en gardant une
précision satisfaisante. Finalement, on propose des solutions analytiques partielles qui
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Figure ∗.12: Résultats présentés comme sur la figure précédente, avec des paramètres
de couplages fittés, voir tableau ∗.1.

permettent d’extraire des données expérimentales le paramètre de couplage associé au
champ de jauge.

∗.6 Perspectives

L’interaction des électrons avec les phonons intrinsèques hors plan et avec les phonons
du substrat sont parmi les mécanismes qu’il serait intéressant d’étudier plus ample-
ment. Notre développement du programme Quantum ESPRESSO avec troncature
des interactions coulombienne entre les images périodiques est l’outil adapté à ces
études. La solution numérique de l’équation de Boltzmann ainsi que la méthode des
déformations statiques demandent un travail analytique spécifique au matériau étudié.
Cependant, ces méthodes peuvent être adapté à d’autre matériaux que le graphène. La
troncature des interactions coulombienne, quant à elle, a été implémentée de manière
générale et est d’hors et déjà applicable à d’autres matériaux. Les programmes cor-
respondant peuvent être utilisés pour calculer la densité électronique, l’énergie totale,
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les bandes, la fonction diélectrique statique, les dispersions de phonons, et le couplage
électron-phonon pour tous les matériaux 2D dans une configuration de type transistor
à effet de champ. On espère que les méthodes développées au cours de cette thèse
pourront être utile à de nombreuses applications au delà du transport électronique
dans le graphène.
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Thibault SOHIER 22/09/2015

Sujet : Électrons et phonons dans le graphène: couplage
electron-phonon, écrantage et transport dans une configuration type

transistor à effet de champ

Résumé : Comprendre le transport électronique dans les cristaux bidimensionnels est un
enjeu conceptuel majeur pour la nanoélectornique de demain. Dans cette thèse, on dével-
loppe des méthodes ab initio pour étudier l’interaction électron-phonon, l’écrantage et le
transport dans le graphène. Pour surpasser les limites des méthodes ab initio en ondes
planes, à l’origine destinées aux matériaux périodiques en trois dimensions, on tronque
l’interaction coulombienne dans la troisième dimension, isolant ainsi le système bidimen-
sionnel de ses images périodiques. Ceci est réalisé au sein de la théorie de la fonctionnelle
de la densité en perturbation, afin de calculer la réponse de la densité de charge et le
spectre des phonons dans un cadre bidimensionnel.
On utilise ces méthodes pour obtenir un modèle quantitatif du couplage électron-phonon
dans le graphène pour une configuration de type transistor à effet de champ. Le couplage
aux phonons acoustiques est dominé par le champ de jauge non-écranté, que nous calculons
en incluant l’effet des interactions électron-électron au niveau GW. Nos simulations des
propriétés d’écrantage statiques du graphene valident les modèles analytiques et montrent
que le potentiel de déformation est fortement écranté, de sorte que sa contribution à la
diffusion des électrons par les phonons acoustiques est négligeable. On montre également
que le couplage avec les phonons hors-plan est faible mais fini. On obtient la contribution
de la diffusion par les phonons à la résistivité en résolvant l’équation de Boltzmann pour
le transport. En dessous de la température ambiante, nos résultats confirment le rôle des
phonons acoustiques et une augmentation de 15% du paramètre de jauge ab initio permet
un excellent accord avec l’expérience. Au dessus de la température ambiante, on dénote
l’importance des phonons optiques intrinsèques.

Mots clés : graphène, transistor à effet de champ, ab initio, théorie de la fonctionnelle
de la densité, couplage électron-phonon, champ de jauge, potentiel de déformation, écran-
tage, transport, équation de Boltzmann, troncature de l’interaction coulombienne, images
périodiques
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Subject : Electrons and phonons in graphene: electron-phonon
coupling, screening and transport in the field effect setup

Abstract : Understanding the transport properties of two-dimensional crystals doped
by field effect is a conceptual milestone for tomorrow’s nanoelectronics. In this thesis we
develop first-principles methods to investigate electron-phonon interactions, screening and
phonon-limited transport in graphene. To overcome the limitations of existing plane-wave
ab initio packages, originally devised for three-dimensional periodic solids, we truncate the
Coulomb interaction in the third direction and isolate the 2D system from its periodic
images. This is implemented in density-functional perturbation theory to calculate charge
density responses and phonon spectra in a two-dimensional framework.
We use those methods to develop a quantitative model of electron-phonon coupling for
graphene in the field effect transistor configuration. We find that the coupling of electrons
to acoustic phonons is dominated by the unscreened gauge field, which we compute with
full inclusion of electron-electron interactions at the GW level. Our simulations of the static
screening properties of graphene validate analytical models and reveal that the deformation
potential is strongly screened, such that its contribution to acoustic phonon scattering is
negligible. We find a small but finite linear coupling with out-of-plane phonons. By solving
the Boltzmann transport equation we obtain the phonon-limited resistivity. Below room
temperature, our results confirm the role of acoustic phonons and a 15% increase of the ab
initio gauge field parameter leads to an excellent quantitative agreement with experiment.
Above room-temperature, we point to the importance of the coupling with intrinsic optical
phonons.

Keywords : graphene, field effect transistor, ab initio, density-functional theory, electron-
phonon coupling, gauge field, deformation potential, screening, Boltzmann transport,
Coulomb cutoff, periodic images
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