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RÉSUMÉ

Cette thèse est consacrée à l’étude de diagnostic de pannes pour les systèmes pile

à combustible de type PEMFC. Le but est d’améliorer la fiabilité et la durabilité

de la membrane électrolyte polymère afin de promouvoir la commercialisation de la

technologie des piles à combustible. Afin d’assurer un diagnostic précis et applicable

en temps réel, les approches explorées dans cette thèse sont celles du diagnostic guidé

par les données.

Parmi les méthodes dédiées au diagnostic guidé par les données, les techniques

basées sur la reconnaissance de forme sont les plus utilisées. Dans ce travail, les vari-

ables considérées sont les tensions des cellules et la démarche adoptée se compose de

deux étapes. La première étape consiste à extraire les caractéristiques, et la deux-

ième étape permet d’établir une classification. Les résultats établis dans le cadre de

la thèse peuvent être regroupés en trois contributions principales.

La première contribution est constituée d’une étude comparative. Plus précisé-

ment, plusieurs méthodes sont explorées puis comparées en vue de déterminer une

stratégie précise et offrant un coût de calcul optimal.

La deuxième contribution concerne le diagnostic online sans connaissance com-

plète des défauts au préalable. Il s’agit d’une technique adaptative qui permet

d’appréhender l’apparition de nouveaux types de défauts. Cette technique est fondée

sur la méthodologie SSM-SVM et les règles de détection et de localisation ont été

améliorées pour répondre au problème du diagnostic en temps réel.

La troisième contribution est obtenue à partir méthodologie fondée sur l’utilisation

partielle de modèles dynamiques. Le principe de détection et localisation de défauts

est fondé sur des techniques d’identification et sur la génération de résidus directement

à partir des données d’exploitation.
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Toutes les stratégies proposées dans le cadre de la thèse ont été testées à travers

des données expérimentales et validées sur un système embarqué.

Mots clés: système PEMFC, diagnostic en ligne, des tensions cellulaires, classifica-

tion de modèle, l’extraction d’entité, la précision du diagnostic, le coût de calcul, sys-

tèmes embarqués, la détection des défauts roman, adaptation en ligne, l’identification

du modèle, l’espace de parité, conception résiduelle, dynamique processus.
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ABSTRACT

Aiming at improving the reliability and durability of Polymer Electrolyte Mem-

brane Fuel Cell (PEMFC) systems and promote the commercialization of fuel cell

technologies, this thesis work is dedicated to the fault diagnosis study for PEMFC sys-

tems. In consideration of the sophistication in establishing the accurate and diagnosis-

friendly model for PEMFC systems, data-driven fault diagnosis is the main focus in

this thesis.

As a main branch of data-driven fault diagnosis, the methods based on pattern

classification techniques are firstly studied. Taking individual fuel cell voltages as

original diagnosis variables, fault detection and isolation (FDI) is achieved through a

two-step procedure. The first step is for feature extraction, while the second one is for

classification. According to this framework, several representative methodologies in

each step are investigated and compared from the perspectives of diagnosis accuracy

and computational cost.

Specific to the defects on novel class detection and online adaptation capabil-

ity of conventional classification based diagnosis methods, a novel diagnosis strategy

is proposed for PEMFC system diagnosis. A new classifier named Sphere-shaped

Multi-class Support Vector Machine (SSM-SVM) and modified diagnostic rules are

utilized to realize the novel fault recognition. While an incremental learning method

is extended to achieve the online adaptation.

Apart from the pattern classification based diagnosis approach, a so-called par-

tial model-based data-driven approach is introduced to handle PEMFC diagnosis in

dynamic processes. With the aid of a subspace identification method (SIM), the

model-based residual generation is designed directly from the normal and dynamic

operating data. Then, fault detection and isolation are further realized by evaluating

the generated residuals.

The proposed diagnosis strategies have been verified using the experimental data
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which cover a set of representative faults and different PEMFC stacks. The prelimi-

nary online implementation results with an embedded system are also supplied.

Key words: PEMFC system, Online diagnosis, Cell voltages, Pattern classifica-

tion, Feature extraction, Diagnosis accuracy, Computational cost, Embedded system,

Novel fault detection, Online adaptation, Model identification, Parity space, Residual

design, Dynamic process.
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General introduction

Environment and resource issues are drawing increasing attention of the world. On

the one hand, according to the report of U.S. Energy Information Administration

(EIA) [1], worldwide energy-related carbon dioxide (CO2) emissions are predicted to

rise from about 31 billion metric tons in 2010 to 45 billion metric tons in 2040, a 46-

percent increase, if the current policies and regulations limiting fossil fuel use is given.

Considering the global warming caused by the greenhouse effect has already appeared,

the increase of anthropogenic carbon dioxide emissions, which are considered as the

main factors of greenhouse effect, is becoming intolerable. Apart from the carbon

dioxide emissions, the air pollution caused by energy-related activities is another

unavoidable environment issue. On the other hand, fossil fuels supply almost 80

percent of world energy use. Since they are non-renewable resources whose reserves

are limited, improving energy structure is the common motif of all over the world.

The hydrogen energy, which can be produced from diverse sources, can be trans-

formed to electric energy by using fuel cells. The development of fuel cell technologies

is drawing increasing attention, since it is demonstrated to be an effective solution

to improve the energy source structure and remit the consuming of nonrenewable

resources. Among different types of fuel cells, Proton Exchange Membrane Fuel Cell

(PEMFC) is one of the most used types, especially in transportation applications.

However, cost, reliability and durability are still the barriers which have to be over-

come to realize the commercialization of PEMFC. For instance, the current announced

lifetime of PEMFC in transportation applications is about 2500 h. This value is still

far away from the target of 5000 h given by U. S. Department of Energy (DOE) [2].
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General introduction

To improve the reliability and durability of PEMFC systems, the faults related

to system operations should be detected, isolated, and corrected in time to avoid

severe damages to the systems. To do so, fault diagnosis should be equipped to

the PEMFC systems. Concerning fault diagnosis strategies, two categories can be

formulated generally with model based diagnosis approaches and data-driven ones.

Both two types of approaches possess both advantages and disadvantages, and the

suitable diagnosis approach should be selected according to the specific applications.

On account of PEMFC, the sufficient accurate, generalized and diagnosis-oriented

models are usually difficult to obtain. In this case, data-driven fault diagnosis seems

to be more relevant for practical use of PEMFC systems. The objective of this thesis

is to develop the efficient data-driven fault diagnosis strategies which are suitable for

PEMFC systems.

Among the different data-driven approaches, the pattern classification based ones

have shown their superiors in fault diagnosis in the last two decades. The principle of

classification based diagnosis can be summarized as follows. An empirical classifier is

firstly established from history data. This is considered as the training phase. Then,

by using the trained classifier, the real-time data can be classified into certain classes

that correspond to the health states, namely normal state or various fault states.

This is considered as the performing phase. Thus, fault detection and isolation can

be achieved with these two phases.

The application of the pattern classification techniques for PEMFC fault diagnosis

is mainly studied in this thesis. The experimental data from several different PEMFC

stacks are concerned. The data are obtained in the experiments involving not only

the normal operating state, but also the fault states. The concerned faults are related

to the different parts of PEMFC systems, such as the air supply subsystem, hydrogen

supply subsystem, water management subsystem, heat management subsystem, etc.

The objective of this work is to diagnose these faults efficiently. To evaluate the

performance of the fault diagnosis approaches, two criteria, namely diagnosis accuracy

and computational cost, are considered through this work. Sufficiently high diagnosis

accuracy and low computational cost make an diagnosis approach reliable and suitable
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for online implementation.

More precisely, in this thesis, several pattern classification methodologies will

firstly be compared from the perspectives of diagnosis accuracy and computational

cost. Then, some procedures are proposed to improve the conventional classification

methods in the aspects of novel fault recognition and online adaptation. In addition

to the pattern classification based approaches, a novel data-driven partially model-

based diagnosis method, which is dedicated to fault diagnosis in dynamic processes,

will be explored. All the obtained results are based on the experimental data sampled

from real testbenches.

Overview of the thesis is as follows:

In the first chapter, the technologies of PEMFC and PEMFC systems are intro-

duced. The state-of-art of the fault diagnosis strategies for PEMFC is also reviewed.

The challenges of online fault diagnosis for PEMFC systems are listed at the end of

this chapter.

Chapter 2 is dedicated to present the test benches, the PEMFC stacks, and the

experiments which have been carried out. The experimental databases which are used

in the thesis work are also described.

In chapter 3, pattern classification based diagnosis approach is proposed. In the

approach, the two water management faults named flooding and membrane drying,

are firstly concerned. Individual cell voltages are selected as the original variables

for diagnosis. Feature extraction techniques, namely PCA, FDA, KPCA and KFDA,

and classification techniques, namely GMM, kNN and SVM, are used successively

to extract diagnosis-oriented features and classify the features into different classes

related to the health states. Fault detection and isolation can therefore be achieved.

The performances of several feature extraction and classification methodologies are

compared from the perspectives of diagnosis precision and computational cost. Since

the classification based diagnosis approach belongs to supervised learning methods, a

strategy, which combines the pressure drop model and statistical analysis, is proposed

to identify the water management faults and used for labeling the training data.
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Experimental data of a 20-cell stack is used to verify this part of the work.

Following the work in chapter 3, chapter 4 is dedicated to further verify the multi-

fault detection and isolation performance of the proposed diagnosis strategy. The

data from more fault types and more PEMFC stacks are used for this test. Still,

cell voltages serve as the variables for diagnosis. The methodologies FDA and SVM

are used for feature extraction and classification. To further decrease the online

performing time, the method Directed Acyclic Graph SVM is adopted for multi-class

classification. The data that cover five fault types of two different PEMFC stacks (an

8-cell stack and a 40-cell stack) are used for this verification work. The results show

that multiple faults can be detected and isolated with high accuracy rate. Moreover,

this classification based diagnosis strategy was successfully integrated to a specially

designed embedded system, the preliminary results are also presented in the thesis.

Chapter 5 is devoted to conquering two defects of conventional classification based

fault diagnosis approaches. One defect is that the conventional classification based

approach fails to detect a novel fault type. The other one is the absence of the online

adaptation capability when the ageing effect of PEMFC is taken into account. Spe-

cific to the first defect, a classification method named Spherical-Shaped Multiple-class

Support Vector Machine (SSM-SVM), as well as the new diagnostic rules are proposed

is proposed instead of the traditional SVM classifier. With the proposed approach,

not only the data from the known health states can be detected, but the data from

the potential failure mode can also be recognized. Aiming at the second defect, an

online adaptation procedure called incremental learning is proposed to update the di-

agnosis models in real time. The diagnostic performance can be maintained through

this procedure. Then, the experimental data are used to justify the capabilities of the

novel fault type recognition and online adaptation of the proposed approach.

Chapter 6 is dedicated to figuring out the PEMFC diagnosis in dynamic processes.

The diagnostic strategy relying on a dynamic model, such as state space model, can

usually do better than the classification based diagnosis in the aspects of diagnosis in

dynamic processes and robustness to unseen data. Based on this observation, a so-

called partial model-based data-driven approach is introduced to achieve the PEMFC
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system diagnosis in dynamic processes. In the approach, the model-based residual

generation procedure can be designed directly from a set of the normal operating

data. Fault detection can therefore be realized. Moreover, SVM classification is

carried out in the residual space to realize the fault isolation aim. This new fault

diagnosis strategy is also verified using the experimental data.

To end the thesis, an independent chapter is added to summarize the contributions

of the thesis work, and highlight the directions of the future work.
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Chapter 1

Generalities on PEMFC systems

and diagnosis

A fuel cell is a device that converts the chemical energy from a fuel (hydrogen is

the most common fuel) into electricity, heat and byproducts (generally water) through

a chemical reaction with oxygen or another oxidizing agent [3]. Hydrogen and fuel

cells offer a broad range of benefits for the environment and the balance of the en-

ergy structure. Due to their high efficiency and in-situ near zero-emission operation,

fuel cells have the potential to drastically reduce greenhouse gas emissions in many

applications. Since hydrogen can be produced from diverse sources such as renewable

resources, biomass-based fuels, and natural gas, large-scale using of fuel cells can slack

the dependence to the fossil fuels, and advance the renewable power development [4].

A variety of fuel cell types, which are distinguished by the electrolyte that is used,

have been proposed since the last century. Basic information about these fuel cell

types is summarized in Table 1.1 [5].

Among the variety types, owing to its simplicity, viability, quick start-up and wide

application range, Proton Exchange Membrane Fuel Cell (PEMFC1) has drawn the

most attention from both academic and industrial institutions.

1PEM in PEMFC can stand for either Proton Exchange Membrane or Polymer Electrolyte Mem-
brane
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Table 1.1: Different fuel cell types [5]

Fuel Cell Type
Mobile
Ion

Operating
Temperature

Application
and notes

Alkaline AFC OH− 50-200 � Used in space vehicles. e.g. Apollo
Shuttle

Proton exchange
membrane
PEMFC

H+ 50-100 � Especially suitable for vehicles and mo-
bile applications, but also for lower
power CHP system

Phosphoric acid
PAFC

H+ 220 � Large numbers of 200 kW CHP systems
in use.

Molten carbon-
ate MCFC

CO2−
3 650 � Suitable for medium to large scale CHP

systems, up to MW capability.
Solid oxide
SOFC

O2− 500-1000 � Suitable for all sizes of CHP systems,
2kW to multi MW

1.1 Principle of PEMFC functioning

As Fig. 1-1 shows, from the middle to the both sides, a typical PEMFC consists the

following components [5]:

� Membrane

Polymer membrane, which acts as the electrolyte, is the heart of PEMFC. It is

impermeable to gases but it conducts protons.

� Catalyst layers (CL)

At the two interfaces of the polymer membrane there are the layers with catalyst

particles. The best catalyst for both the anode and the cathode is platinum.

The catalyst particles are supported on larger carbon particles.

� Gas diffusion layers (GDL)

The polymer membrane, with catalyst layers settled on the two sides, is sand-

wiched between two sheets of porous layers, which are called GDLs. These layers

are typically made out of carbon cloth or carbon fiber paper. One of the func-

tions of GDLs is to allow diffuse of both the reactant gases and product water.

Besides, GDLs also perform as the electrically conductive electrodes and the

heat-conducting mediums. The membrane, CLs, GDLs are usually combined
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Figure 1-1: The basic principle of PEMFC operation

together as the membrane electrode assembly (MEA).

� Collector plates (CP)

The CPs are settled on the two external sides of a PEMFC. Gas flow channels

(GFCs) are grooved on the one side or the both sides for gas flow (one-side

channels are shown in the figure). The CPs can not only house the GFCs, but

also act as the electrically conductors and heat conductors. Moreover, they

provide structural support for fuel cells.

A running PEMFC is usually fed continuously with hydrogen on the anode side

and with air on the cathode side. Electrochemical reactions occur at the surface of

the CLs. On the anode side, hydrogen is oxidized:

H2 → 2H+ + 2e−

Protons travel through the membrane, while the electrons travel through the CLs,

the GDLs, and the external electric circuit where they perform electrical work and

return to the cathode side.
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With the protons transferred through the membrane and the electrons through

the external circuit, the oxygen is reduced on the cathode side:

1

2
O2 + 2H+ + 2e− → H2O

Combined the reactions on the anode and cathode sides, the global reaction is

1

2
O2 +H2 → H2O (1.1)

With the conversion of chemical energy to electrical energy and heat, the by-

product water is generated and expelled mostly with the unreacted air from the

cathode side.

The maximum amount of electrical energy generated in a PEMFC corresponds to

Gibbs free energy2. In the reaction (1.1), denoting the difference between the Gibbs

free energy of the products and the that of reactants as ∆G (expressed in (eV) for

one mole H2O), the theoretical potential (ideal voltage) of the fuel cell corresponding

∆G is

E =
−∆G

2F
(1.2)

where F is the Faraday’s constant. This gives a value of about 1.2 V for a fuel cell

operating below 100 �[5]. However the voltage of a practical PEMFC is usually less

than this value. Voltage losses in an operational fuel cell are caused by several factors.

As Fig. 2-10 shows, the distance between the real open circuit voltage and the

ideal output voltage is caused by the factors such as the crossover of the reactants.

The curve that characterize the relationship between the voltage and the current is

named polarization curve. Three main factors that impact the voltage losses are [5]

[6]:

1. Activation losses. This part of voltage is lost in driving the chemical reaction.

These losses depend on the catalyst material and the micro-structure of MEA,

2Gibb free energy can be defined as the “energy available to do external work, neglecting any
work done by changes in pressure and/or volume”. In a fuel cell the external work involves moving
electrons round an external circuit
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Figure 1-2: Various voltage losses and polarization curve of an operating PEMFC

reactant activities, and on current density.

2. Ohmic losses. This category of voltage losses is caused by the resistance

associated to the electrodes, the electrolyte, and other interconnections. Ohmic

losses are proportional to the current density. Besides, the material and the

structure of the fuel cell, and the temperature can impact this kind of losses.

3. Concentration losses. These losses result from the drop in concentration

of the reactants at the surface of the electrodes, and depend strongly on the

current density, reactant activity, and electrode structure.

The effects of the three factors are easy to distinguish. Activation losses, ohmic

losses, and concentration losses predominate respectively in the zones I, II, III shown

in Fig. 1-2 [7].

When drawing a useful current, the voltage of a single PEMFC is about 0.7 V,

which is too small in most cases. In order to produce a more useful voltage or power,

many cells have to be connected in series, which functions as a fuel cell stack. In
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practice, the cell interconnection is usually achieved by using the bipolar configura-

tion. As Fig. 1-3 shows [8], bipolar plates (BPs) are the CPs installed inside the

stack. GFCs are grooved on the both sides of BPs. This makes connections all over

one cathode and the anode of the next cell. Meanwhile, the air and hydrogen can be

fed to the cathode side and anode side of two neighbored cells.

End plate

Bipolar 

plate

Repeat unit

MEA

Gas flow 

channelsAir

H2

H2

Air

Figure 1-3: Schematic of PEMFC stack [8]

1.2 PEMFC system

A fuel cell stack is obviously the heart of a PEMFC system, however, the stack itself

would not be useful without auxiliary supporting subsystems. As Fig. 1-4 shows,

apart from the stack, the practical PEMFC systems involve the following subsystems:

� Air supply subsystem

� Hydrogen supply subsystem

� Humidification/water management subsystem

� Heat management subsystem

� Power conditioning subsystem
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Figure 1-4: PEMFC system structure

1.2.1 Air supply subsystem

The objective of the air supply subsystem is to supply air with proper flow rate

and/or pressure to the cathode of fuel cells. Air is usually provided by a blower or a

compressor, which is located at the air inlet. By regulating the blower or compressor,

sufficient air can be maintained to keep the desired cathode stoichiometry flow rate

(Sc) over the full power range. The proper Sc can make the stack operate in an optimal

and efficient state; while insufficient air flow cause degradations or even damage the

stack in severe cases.

Another function of air supply subsystem is to supply a proper air pressure for

the fuel cell stacks. The pressure at the air inlet is generally pressurized from slightly

above atmospheric pressure to 2.5 bar [9]. In fact, it is found that running a fuel cell

at higher pressure will increase the output power of the fuel cell stacks. However,

since the high pressure determines a higher energy consumption associated to the
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compressor, a trade-off is supposed to be maintained between increasing efficiency at

stack level and reducing the power losses at the system level. The pressure regulation

requires a variable downstream pressure valve (nozzle) utilization at the reactants

outlet. The controls of Sc and air pressure are usually coupled.

1.2.2 Hydrogen supply subsystem

Hydrogen is usually supplied from a tank, where hydrogen is compressedly stored.

Thanks to the valves, as well as the pressure regulator and the flow regulator, the

hydrogen pressure and flow rate can be controlled. Hydrogen can be supplied either

in dead-end or in a flow-through mode. In the dead-end mode, the hydrogen outlet

is closed and the hydrogen is consumed in the fuel cells. Since the impurities, water

vapor, and nitrogen diffused from the cathode side may accumulate as operating,

periodic purging of the hydrogen compartment is usually required [10]. In the flow-

through mode, excess hydrogen is flowed though the stack, which means that the

anode stoichiometry flow rate (Sa) is more than 1. The unused hydrogen is returned

to the inlet side either by an ejector or pump device. Separating and collecting any

liquid water that may be present at the anode outlet is usually required for flow-

through mode operation.

1.2.3 Humidification/water management subsystem

A strong relationship between proton conductivity and water content of the membrane

exists in PEMFC, thus the membranes need to be maintained properly humidified to

guarantee a satisfactory ion conductivity during stack operation. The water produced

at cathode side and the air moisture is usually not sufficient to maintain properly the

membrane humidification [9]. One common way to solve this problem is to add

humidifiers which can humidify the air, the hydrogen, or both, before they enter the

stack. Various humidification schemes could be employed such as bubbling of gas

through water, direct water or steam injection, exchange of water through a water

permeable medium, etc [10].
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1.2.4 Heat management subsystem

In converting the chemical energy into electricity, the efficiencies of PEMFCs are

normally less than 60 % [4]. This means that more than 40 % of the chemical energy

would be disposed as heat. It is found that running PEMFCs between 60 � and

80 � can obtain higher efficiency [10]. To make the PEMFC stack operate in this

favorable temperature interval, components for cooling must be employed. Several

cooling methods have been studied, such as using highly thermal conductive material

as heat spreaders, air flow cooling, liquid cooling, etc [5].

Notice that water and heat are considered as the byproducts of fuel cell operation.

In some practical systems, they can be partially re-used, for instance, for humidifica-

tion of the reactant gases.

1.2.5 Power conditioning subsystem

The electrical output voltage of a PEMFC stack is not constant when the stack is

employed in a load-varying situation. Moreover, the output power of the stack is not

often at the suitable voltage for the load. A DC/DC converter is used to regulate

the stack voltage to a fixed value, which can be higher or lower than the output

stack voltage [5]. Notice that, depending on the application objects, more than one

DC/DC converters may be needed to generate different output voltages. For instance,

in the fuel cell vehicles, there are DC/DC converters used for auxiliary subsystems

and the ones used for main power chain. The output power of the converter, which

is designed for auxiliary subsystems, can be supplied to the components in auxiliary

subsystems, such as compressors, cooling fans and start-up batteries. Following the

DC/DC converter in the main power chain, the power inverter and electric motor

are usually the main components. Fig. 1-5 shows the powertrain layout of Honda’s

concept fuel cell vehicle [11].
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PEMFC 

system

Hydrogen tank

Electric drive system 

(DC/DC converter, 

inverter, motor) Batteries

Figure 1-5: Powertrain layout of Honda’s next generation FCX fuel cell vehicle [11]

1.2.6 Control/supervision subsystem

To make the PEMFC system operate in the efficient and safe state, various subsys-

tems should function and cooperate properly. Control/supervision subsystem play an

important role in achieving these goals. On the one hand, by synthesizing the oper-

ating information from the sampled data, the commands can be given to control the

different subsystems efficiently; on the other hand, the abnormal states are supposed

to be detected with the supervision function.

1.3 Status and challenges of PEMFC development

PEMFCs are potentially beneficial for many applications, however, PEMFC systems

were always known to be “five years away from commercial exploitation” [5]. Some-

times, this disappointing sentence makes the people suspect the possibility of the final

applications of PEMFCs. Meanwhile, this means that although there are still some

bottle necks for PEMFC technologies to be overcome, the distance from widely use

seems to be not very long.
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1.3.1 Status of PEMFC development

During the last two decades, the increasing environment and resource concerns drive

many countries and organizations to accelerate the researching and developing the fuel

cell technologies. And we have seen the use of fuel cells in the commercial markets

and demonstrations has considerably increased in recent years. Fig. 1-6(a) and 1-6(b)

give the fuel cell systems shipped by application and by fuel cell type in recent years

[12]. The number in 2012 is about 40,000 units, which roughly doubles the one in

2011 and a 400 % increase over the one in 2009. And the increase still trends to

continue.

Significant power growth of the shipped fuel cell systems can be seen from Fig.1-

7. From Fig.1-7(b), it is revealed that a dip in PEMFC capacity shipped occurred

in 2011. By comparing these two charts, it is inferred that this dip is caused pri-

marily by a reduction in transportation deployments. Fortunately, the shipments for

transportation applications recovered in 2012 from the disappointing year 2011 [12].

Actually, in the transportation sector, several car manufacturers, including Gen-
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eral Motors, Daimler, Toyota, Honda, and Hyundai have re-affirmed near-term com-

mercialization goals for fuel cell electric vehicles [4]. For instance, Toyota and Honda

have pledged to offer next-generation fuel cell vehicles set to launch in 2015.

1.3.2 Challenges of PEMFC development

Although considerable effort has been devoted to advancing the PEMFC technologies,

and significant progress has been achieved over the last decades, such as the mild

improvement in overall system efficiency, some challenges still need to be overcome.

For the fuel cell system itself, as shown in Fig. 1-8, cost and durability are always

two key barriers.

On the one hand, the cost of manufacturing needs to be further lowered. For

instance, in the transportation sector which PEMFC is most used, the manufacturing

cost is still too high. As Fig. 1-9, the current (projected high-volume manufacturing)

fuel cell transportation system cost announced in 2012 has been lowered to $47 kW−1

[14]. It is still higher than the target value of $30 kW−1, which is considered as a
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Fuel Cell Technical Team Roadmap 

Key Issues and Challenges 
Durability and cost are the primary challenges to fuel cell commercialization, as shown in Figure 1.  

 

Figure 1.  Fuel Cell Targets versus Status 
(The blue line indicates the status as a fraction of the targets) 

 
 
Durability 
Transportation fuel cell systems must compete with automotive internal combustion engines (ICEs) and 
other alternative technologies. To be competitive in the market, fuel cell systems must have durability 
similar to current ICE systems. The FCTT has identified a durability target of 5,000 hours (equivalent to 
150,000 miles of driving) with less than 10% loss of performance. Fuel cell systems must also function 
over the full range of operating conditions. The desired operating range can encompass operating 
temperatures from well below the freezing point to above the boiling point of water and operating 
humidity levels ranging from dry to wet. Furthermore, automotive driving generates transient and cyclic 
power demands that result in conditions that exacerbate degradation. Fuel cell systems must be 
demonstrated with long-term durability (≥5,000 hours) under dynamic load following, start/stop 
operation, road vibration/shock, and ambient conditions. 
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Figure 1-8: Fuel cell targets versus status [13]

competitive value in the mainstream transportation sector [4].

Figure 1-9: Projected fuel cell transportation system costs per kW, assuming high
volume production (500,000 units per year) [14]

On the other hand, to achieve large scale market penetration, durability is another

technical hurdle. For instance, the lifetime of no less than 40,000 h for stationary

applications and 5000 h for electric vehicles is the target in the strategic Plan of

the U. S. Department of Energy (DOE) [2]. Substantial progress has been made
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in lengthening the lifetime of fuel cells, and the highest demonstrated durability of

stationary and automotive fuel cells can currently reach to 20,000 h and 2,500 h [4]

respectively. However, the distance to target is still great.

Other than the challenges with the fuel cells, the technical challenges associated

with producing, delivering, and storing hydrogen also exist.

1.4 Degradations of PEMFC system

It should be noticed that the cost related to PEMFC systems could be significantly

decreased by large-scale manufacturing. Nevertheless, the durability problems have to

be worked out from the technological perspective. Even more, decreasing the quality

of the materials (catalysts) may be needed to further reduce the costs, the durability

could therefore be lowered in such cases. To improve the PEMFC system durability

performance, a good knowledge of the its degradation mechanism is necessary.

The stack is the heart of a PEMFC system, and the auxiliary subsystems serve

for the stack to make it operate efficiently and safely. The performance of the stack

usually reflect the condition of the whole system. Performance degradations of the

stack can be impacted by various factors. Based on the influencing factors, we can

classify the degradations into two categories: the degradations related to ageing effect

and the ones related to system operations.

1.4.1 Degradations related to ageing effect

The degradations related to ageing effect usually do not lead to catastrophic failure

that makes the system quickly lose the efficiency, but simply to a gradual decrease in

performance. The degradations are not recoverable or reversible, such as the mem-

brane degradation due to loss of electrochemical surface area, the corrosion of the

catalyst layer [15]. This kind of degradations can be affected by many internal and

external factors, such as fuel cell design and assembly, the quality of materials, op-

erational conditions, etc. The improvement of material durability characteristic can

20



1.4. Degradations of PEMFC system

essentially mitigate these degradations. A lot of researchers in chemical and mechan-

ical domains are working on mitigation the ageing effect related degradations.

1.4.2 Degradations related to system operations

The degradations related to system operations can be called as “faults”. The faults

could be associated to different components or functioning parts of the systems.

1.4.2.1 Faults inside fuel cells

Apart from the degradations related to ageing effect, some faults could occur inside

the fuel cells even within the ageing limit. These faults are usually resulted from

uncorrected operations or from fuel cell fabrication processes. The faults could cover

the different internal components, such as membrane, CLs, GDLs, BPs, and are

usually the irreversible ones [15].

1.4.2.2 Faults on reactants supply

� Contamination

Impurities, such as CO, CO2, H2S, and NH3 can cause the contamination fault

at the anode side; while air pollutants, such as NOx, SOx, CO, CO2 can cause

the contamination at the cathode side. The contaminants of the reactants are

mainly from the hydrogen manufacturing process and the exhausts of industrial

processes and vehicles. The contaminants can be adsorbed on the catalyst

surface. In this situation, the reaction sites are partially blocked, which reduces

the membrane proton conductivity. Such that PEMFC performance is degraded

even permanently [16].

� Improper pressures

Usually, higher output power can be generated by operating the PEMFC with

a higher reactant pressures. However, higher pressure means higher power loss

in the air compression, and the size, weight and cost of the compressor increase

accordingly [5]. Hence, to obtain the most efficient operating state, the pressures
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of the hydrogen and air must be controlled in a range. It is considered as a fault

that the pressures exceed this range.

To avoid the strike caused by the pressure difference between cathode side and

anode side, the pressure of the hydrogen should be kept equal to that of the air.

Improper pressure (too high or too low) can accelerate the degradation of the

MEAs [15].

� Improper gas flow rates

Too low hydrogen or/and air flow rate will cause the starvation fault. The main

consequences of fuel cell starvation are loss catalyst active surface area and

carbon-support corrosion [17]. Moreover, low air flow rate could be an incentive

factor that leads to cathode water flooding [18].

An excessively high oxygen flow could result in membrane drying, decreasing

the conductivity of the membrane. In addition, more power is consumed to get

a higher air stoichiometry, which will lower the overall system efficiency [19].

1.4.2.3 Faults on heat management

In practice, PEMFC voltages are usually enhanced at higher temperatures. Besides,

some heat generated in the operation could be utilized without being expelling to the

environment [20]. The faults on heat management could lead to a too low temper-

ature or too high temperature. On the one hand, too low temperature would be a

factor that lower the PEMFC output voltage, and thus lower the system efficiency.

Besides, too low temperature helps the condensation of water vapor, and probably

cause flooding inside the fuel cells. On the other hand, a too high temperature due to

ineffective cooling can cause membrane dehydration and thus lower the conductivity

of the membrane. Additionally and more severely, the increased temperature might

cause overheating damage to the membrane [21].

1.4.2.4 Faults on water management

Inadequate water management may cause the degradation of the PEMFC.
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� Membrane drying

Membrane drying fault results from the inadequate humidified membrane. The

dry membrane not only increases significantly the resistance of membrane, but

also conductivity hinders the access of protons to the catalyst surface. Thus, the

activation losses and the ohmic losses are both increased. In addition, severe

drying fault has been proved to lead to irreversible membrane damage. The

membrane drying fault preferentially takes place at the anode side when water

is produced at the cathode side [7].

� Flooding

The accumulation of liquid water in the GCs and/or gas porosities of GDLs and

CLs, results in a “flooding” fault. Excessive liquid water will block the reactant

pathways, thus making the fuel cell stack degraded. As water is generated and

expelled mostly at the cathode side, flooding happens generally at the cathode

side [7].

1.4.2.5 Faults on electric circuit

The PEMFC should be operated in a suitable load range. Both the cases in which

the load is too low or too high can be seen as the faults. On the one hand, it is

found that the ageing related degradation could be accelerated when the PEMFC is

operated under the too high voltage caused by low current in the long term [22]. On

the other hand, too high load current will cause the concentration voltage loss. In the

special cases such as short circuit or high current pulse, the irreversible degradation

such as melting the electrodes could be caused [23].

1.4.2.6 Remarks

1. Since the functions of the auxiliary subsystems and the stack are coupled, it is

always the case that the occurrence of a specific fault results in other faults.

For instance, the water management faults are usually leaded by the faults of

the reactant supply faults or/and the heat management faults; the short circuit
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can cause the temperature increasing fault.

2. At the early stage of their evolutions, the faults related to operations are usually

considered as “reversible” or “recoverable” ones, which can be corrected through

appropriate correcting operations. Nevertheless, these faults could evolute to

the irreversible faults without adequate actions, such as the structural damages

to the fuel cell.

1.5 Fault diagnosis for PEMFC systems

To minimize the fuel cell performance degradation, much effort is being made on the

research on degradation mechanisms of materials, and the design and assembly of

fuel cells. These are considered as the essential solutions to mitigate the degradations

related to ageing effect. Apart from these internal improvements, making PEMFCs

and the stacks operate in an optimal condition can certainly mitigate the performance

degradation. Especially, the faults related to operations should be detected, isolated,

and corrected in time to avoid severe damage to the systems. To do this, fault

diagnosis should be equipped to the PEMFC systems.

Fault diagnosis, considered as a crucial component of various industrial systems,

is currently receiving considerably increasing attention. The overall concept of fault

diagnosis covers three essential tasks [24]:

� Fault detection: detection of the occurrence of faults.

� Fault isolation: localization of different faults.

� Fault analysis or identification: determination of the type, magnitude and cause

of the fault.

According to different performance requirements, a fault diagnosis system is called

fault detection (FD) system, fault detection and isolation (FDI) system or fault detec-

tion, isolation, and analysis (FDIA) system [25]. It has been found that the efficient

fault diagnosis approaches can considerably reduce the incident rates and economic
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costs [26]. Actually, fault diagnosis is playing an increasingly important role in some

kinds of modern industrial systems [27].

As for PEMFC systems, through efficient diagnosis, more serious faults can be

avoided thanks to an early fault alarm. Based on the diagnostic results, operating

conditions can be adjusted to make the fuel cell operate efficiently and safely. More-

over, the precise diagnosis information can speed up the development of new tech-

nologies and reduce the downtime (repair time) [28]. During the last decade, fault

diagnosis for PEMFC has been receiving increasing attention from both academic and

industrial communities.

Normally, the fault diagnosis could be realized by using hardware redundancy

or/and software redundancy. Hardware redundancy is realized by reconstructing the

crucial components using identical hardware, thus a fault can be diagnosed directly

by the deviation between the actual component output and the one of its redundancy

[24]. Due to the high cost of the hardware components, this strategy is rarely consid-

ered. Versus hardware redundancy, software redundancy is to replace the hardware

components by a software model, which can reconstruct the process behavior. Since

fault diagnosis using software redundancy is more efficient, most studies are carried

out in this direction. Usually, fault diagnosis refers to the software redundancy by

default.

In the literature, some approaches have been proposed to address the PEMFC

system diagnosis problems. Depending on whether an input-to-output process model

is needed, the proposed approach can be generally categorized to two classes: model

based diagnosis methods and data-driven diagnosis methods3. In the following, the

proposed approaches in these two categories are reviewed. The representative papers

are selected to give the hints of each method. For more detailed reviews of these two

categories methods, the review papers [29] [30] can be referred.

3Note that in some literature, the definitions and categories of the diagnosis approaches are
different.
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1.5.1 Model-based diagnostic methods

Model-based diagnosis is a traditional way to realize the aim of FDI. As shown in

Fig. 1-10, when a process model is obtained, the diagnosis starts by a residual gen-

eration procedure, which is to create the estimates of the process outputs and to

build the difference between the process outputs and their estimates. Residual evalu-

ation procedure proceeds following the residual generation. This can be considered as

the post-processing of residuals, which can extract the diagnosis oriented information

from the residual signals and make the diagnostic decision [24]. The process models

used for diagnosis can be sorted to analytical models and “black-box” models.

Process
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Residual 
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Decision 

logic

Process input Process output
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Residual generation Residual evaluation
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Knowledge 
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+
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Figure 1-10: Analytical model-based fault diagnosis scheme [24]

1.5.1.1 Analytical model based

Most of the analytical model-based approach are based on general input-output or

state space model, which is usually developed based on the physics and mathematics

knowledge of the process [24]. According to the residual generation mechanism, it

is possible to classify the analytical model based diagnosis methods into three main

categories: (i) parameter identification based; (ii) observer-based; (iii) parity space

methods.

Strategies have been proposed in these three categories. For the parameter iden-

tification based methods, the values of some parameters in the models are related to

the behavior of the PEMFC system operations. When the variation of these param-

eters exceeds a certain limit, the correlated fault can be detected and isolated. In
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[31], the authors developed an electrical equivalent circuit for charge matter and en-

ergy conservation laws simulation. Gas fluid dynamics is taken into account through

the analogies between the pneumatic elements and the electrical components. The

electrical equivalent could be seen as an analytical model (see Fig. 1-11). The com-

ponent parameters are identified through a recurrent least squared method, and the

variation of the specific electrical component values can be seen as the indicator of

the corresponding faults. As shown in Fig. 1-11, three faults, flooding, membrane

drying, and membrane deterioration are related to the corresponding components in

the equivalent circuit. Therefore, the occurrence of the faults can be detected by

checking the values of these components.HERNANDEZ et al.: MODELING AND FAULT DIAGNOSIS OF A POLYMER ELECTROLYTE FUEL CELL 157

Fig. 19. System equivalent circuit and fault related elements.

in the circuit. In addition to water influence on circuit resis-
tances, stored liquid water also leads to decrease the available
gas volume. Since stack storage properties are modeled by a
capacitance, this capacitance is also affected by liquid water
production. Summarizing, flooding will produce the following
changes in circuit parameters.

1) Increase in input and output resistances, specially at the
cathode side.

2) Increase in Rm value, meaning decreasing gas diffusion
rate.

3) Decrease of circuit capacitance due to reduced effective
volume.

2) Drying: In opposition to flooding, drying occurs when
water vapor balance is negative for a given time producing mem-
brane dehydration. In a PEFC stack, proton transfer is assured
by water molecules contained in the membrane. Membrane de-
hydration will increase electrical resistivity of the stack and will
limit maximal current density and electroosmotic drag coeffi-
cient. Membrane width and thus gas diffusion constants will also
be affected by dehydration. A decrease on Rm and a change on
electroosmotic current source are expected.

Both, flooding and drying phenomena are transient conditions
that can be reversed with an adequate control strategy, before a
major failure occurs.

3) Membrane Deterioration: Membrane degradation takes
place with time, and is considered as a permanent, nonreversible
failure. Fuel cell performance is permanently compromized; it

can be characterized by a system evolution toward new equilib-
rium points. As it can be easily inferred, only membrane parame-
ters are affected in this case. Diffusion constants are significantly
altered in most of the cases. Pressure gradient between cathode
and anode channels drops, proportionally to failure magnitude.
Under this consideration, Rm is expected to drop, but no other
components should be altered.

B. Diagnosis Results

Failure tests presented in this article are conceived to carry
the fuel cell stack onto a flooding failure mode. In order to flood
the stack, two different strategies are used: an increase in input
air humidity level and a stack temperature drop.

For variable relative humidity test, stack temperature was set
to 50 ◦C and delivered current to 40 A for a constant gas flow.
The fuel cell was initially set to initial conditions by operating
it unloaded for 45 min at specified temperature and humidity
conditions. Then, load is set to pull desired current and rela-
tive humidity level change function is set. An excess of water
cumulates in the stack progressively presenting different effects.

Voltage degradation rate is constant as expected, since a di-
rect relation between water content in the stack and voltage is
supposed and given experimental conditions, a constant water
formation rate is expected.

The relation between stack voltage degradation and flow re-
sistance increase is observed in Fig. 20.

Figure 1-11: PEMFC equivalent circuit developed by Hernandez et al. [31]
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In the framework of observer based methods, the residuals are generated by using

a designed observer. In [32] and [33], a observer based diagnosis method is pro-

posed. Specific to the a commercial PEMFC system (Ballard 1.2 kW Nexa), a linear

parameter varying (LPV) model is built through linearization of a previously cali-

brated non-linear PEMFC model. As shown in Fig. 1-12, based on the proposed

LPV model, a observer for state estimation with Luenberger observer structure is

designed. Then, the residuals can be computed through compare the process outputs

and the estimated outputs using the observer. The diagnosis strategy is verified using

a simulator developed using the experimentally calibrated nonlinear model. Some

faults emulated using the simulator can be satisfactorily detected.

Figure 1-12: Diagram of fault diagnosis based on model observer [33]

Parallel to the observer-based methods, and associated to the state space models,

the so-called parity space methods are another group of model based methods. The

parity relation, instead of an observer, is used for residual generation procedure. The

design of parity space based methods can be achieved in a straightforward manner

[25]. In [34], the approach is proposed for PEMFC system diagnosis. The parity

relations are extracted from an eight state equations representation. Some faults

such as flooding, drying, compressor over-voltage could be detected and isolated.

To carry out the above mentioned three kinds of analytical model based ap-

proaches, an accurate process model of PEMFC systems is necessary. To construct
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such a model, a high degree of competence is needed in different areas of knowledge

such as thermodynamics, fluid dynamics, electrochemistry, and thus the model is

usually a complex physical multidimensional model. Sometimes, the complex mathe-

matical equations can be replaced by the empirical laws supported by prior knowledge.

These models are named “grey-box” models. However, modeling the PEMFC systems

either to an analytical model or a “grey-box” one, is a rather difficult task. Especially,

identification of fuel cell inner parameters concerning the operation, the geometries

as well as materials is difficult to obtain [35]. For instance, the knowledge air inlet

flow rate , stack temperature and dew point temperature that usually need a special

monitoring system and a specifically adapted fuel cell geometry. This might be dif-

ficult and even impossible in many fuel cell stacks [36]. Moreover, the composition

and component parameters of PEMFC system usually vary among different PEMFC

systems, it is therefore hard to construct a general model.

1.5.1.2 Black box model based

To avoid the difficulties of constructing an analytical model or “grey-box” model,

“black-box” models are proposed. Essentially, the black-box models are based on

statistical theory. The relationships between the system inputs and outputs are not

based on physical equations, but are deduced through suitable experimental databases

[29].

In the black-box model based methods, the complex non-linear PEMFC systems

can be imitated by a topology of artificial intelligent (AI) models. As conventional

model-based operation, the residuals can be generated by comparing the real system

outputs and the model outputs, and fault diagnosis is then realized via a residual

evaluation procedure.

In [36], the authors proposed a“black-box”model based on neural networks (NNS)

method for PEMFC systems. In the model, four variables: current, stack tempera-

ture, dew point temperature, and air flow rate, are considered as model inputs; stack

voltage and cathode side pressure drop are considered as model outputs. The NNS

model is constructed by using the data in normal operation. A diagnosis decision can
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be made to discriminate flooding, drying and normal operations by comparing the

model outputs and real time outputs.

In [37], a fuzzy model with stack voltage and current as inputs, and a virtual

output named satisfaction rate is built for the diagnosis of a 500 W PEMFC system.

An experimental polarization curve under nominal operating conditions is obtained

and support the data for tuning the model. Two types of faults, nitrogen or water

accumulation and membrane drying, could be detected and discriminated by evaluate

the variation of the output value.

Adaptive neuro-fuzzy inference systems (ANFIS) is another “black-box” model,

which combine NNS and fuzzy logic together. This method is receiving more and

more attention in recent years, especially in the diagnosis domain. In an ANFIS

model, the advantages of both NNS and fuzzy logic can be somehow gained at the

same time. In [38], the ANFIS model is used for performance prediction of a PEMFC.

Cell temperature, anode and cathode humidification temperature and pressure are

used as the model inputs; cell voltage is considered as model output. The model

shows good agreement with the experimental data and this indicates that ANFIS is

capable of predicting fuel cell performance.

Actually, much more effort has been made to modeling PEMFC systems with the

“black-box” models. Other than the aforementioned three. In [39] [40], the models

based on NNS are proposed respectively. Modeling a PEMFC by a support vector

machine (SVM) is proposed in [41] and [42]. However, these modeling methods are

not dedicated to the fault diagnosis objectives.

Although the AI models can offer good ability of modeling the complex process of

PEMFC system, the residual generation and evaluation of AI models are not so well

established as the conventional analytical models. For instance, if only stack voltage

or cell voltage is considered as the output variable for most “black-box” models, it is

hard to discriminate different faults by comparing this single output value with real

time sample. Additionally, as AI models belongs to “black-box” models, the difficulty

of explaining the causal relationship among variables exists.
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1.5.2 Data-driven diagnostic methods

In contrast to model based diagnosis approach, which requires a process model, the

data-driven approach makes use of the information from the history data. Some

data-driven methods have also been proposed for PEMFC diagnosis.

1.5.2.1 Variables can be used

The data-driven diagnosis can be done based on different variables, and the choice of

the variables is usually crucial, and can impact the performance of diagnosis perfor-

mance. For PEMFC systems, the regular variables that can be easily measured on

a real system, such as stack temperature, the air pressure and stack voltage or cell

voltages, can be considered as the variables for diagnosis. Besides, the variables can

come from some specific measurements or experiments rather than the ones from reg-

ular measurements. Electroanalytical methods, polarization curve, electrochemical

impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and cyclic voltag-

mmetry (CV) are four most used ones to obtain the useful variables for diagnosis.

However, it should be emphasized that without the special EIS test instrument, the

EIS measurement can still be partially obtained through the control power converter

and processing of the measured current and voltage signals [43].

� Polarization curve: A plot of cell voltage or stack voltage vs. current den-

sity is known as a polarization curve. As Fig. 1-2 shows, the output voltage

decreases with the increasing of current due to various voltage losses. Polar-

ization curves are one of the most common used method to characterize the

electrochemical performance of the fuel cell stack [44].

� EIS: EIS is a powerful experimental technique that compares the electrical

response of a test system to a time varying electrical excitation in order to de-

lineate interfacial and bulk material parameters [45]. As Fig. 1-13 shows, a

typical EIS curve consists a high frequency arc and a low frequency arc. EIS

can provide the impedance values at different frequencies. Usually, the cross

points of the EIS with real axis are respectively express the internal resistance
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Figure 1-13: A typical EIS curve

and the polarization resistance. Information on the operating states, as well as

the fuel cell internal parameters of the operated electrochemical systems could

be drawn [44]. To measure the EIS of a PEMFC or stack, an AC current sig-

nal with various frequencies is generated and added to a DC current as charge

current. The voltage with different frequency components is measured, and the

impedance at different frequency can be calculated by using the measured volt-

age and current. Other than the galvanostatic mode, EIS can also be measured

in the potentiostatic mode.

� LSV: LSV is a powerful tool to estimate hydrogen crossover and detect internal

electronic short between anode and cathode. In LSV experiments, the anode

is usually fed with hydrogen while the cathode is supplied with nitrogen. A

potential between the working electrode and a pseudo-reference electrode (at

cathode) is swept linearly in time, while the electrons flow at the working elec-

trode is measured as current [46]. An example of LSV record obtained from a

3-cell stack is displayed in Fig. 1-14 [46]. Crossover current and short-circuit

resistance are two crucial variables extracted from the LSV measurement.

� CV: CV is dedicated to the evaluation of the electrocatalytic performances.

As for LSV experiments, the FC is fed with hydrogen at the working electrode

(anode) and inert gas (nitrogen, helium) at the counter/pseudo-reference elec-
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Figure 1-14: LSV test result obtained on a 3-cell stack [46]

trode (cathode), respectively. Compared to LSV experiments, the voltage of the

working electrode is swept not only from low value to high value, but an addi-

tional reverse voltage scan is also performed during a CV measuring experiment

[46].

� Current interruption method: The current interruption test can give both

accurate quantitative results and quick qualitative indications. In this method,

a current provided by a cell or stack is suddenly cut off. The profile of the

voltage in the process is shown in Fig. 1-15. The ohmic losses will immediately

reduce to zero, while the activation losses will take some time to vanish [5].

Hence, from the voltage profile, the ohmic losses and activation losses could be

extracted.

The characters of variables that are potential for PEMFC system diagnosis are

summarized in Table 1.2. The variables that can be sampled through regular measure-

ments are usually used for diagnosis of the degradations related to system operations

or “faults”; while the variables obtained by special measurements are usually used to

diagnose the degradations related to the ageing effect and the faults occurs inside the

fuel cells. Most of the special measurements must be carried out offline, which means

that the normal operating needs to be stopped to launch the measurements. EIS

measurement can be considered to be online which can be measured during the sys-

tem operating. However, the traditional instruments for EIS test are usually costly,
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Figure 1-15: Voltage against time in a current interrupt process

especially for high-power cases. In addition, a completed EIS takes more than ten

minutes, which lowers its online performance. In [43], the possibility of online ob-

taining the partial EIS curves through the control of DC/DC converters has been

demonstrated. Such an EIS measurement method is so interesting that an European

project named D-CODE4, whose objective is to realize the integration of DC/DC

converter based EIS measurement and EIS based diagnosis was launched in 2011 [47].

It could therefore be considered that the variables got from regular measurements

and the power converter based EIS measurement are considered more relevant for

online system diagnosis. The variables can be used for PEMFC system diagnosis are

summarized in Table 1.2.

It should be noticed that other than the above mentioned variables that could be

used as the ones for diagnosis, the open current voltage is used to detect the leakage

fault in [48].

1.5.2.2 Multivariate analysis

Multivariate analysis5 methods aim to remove the often-observed high degree of re-

dundancy in the data by defining a reduced set of statistically uncorrelated variable.

4D-CODE: DC/DC Converter-based Diagnostics for PEM systems
5Multivariate analysis is also called multivariate statistical process control (MSPC)
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Table 1.2: Variables can be used for PEMFC system diagnosis

Measurement type Variable Online/Offline Cost

Regular
measurement

Stack voltage Online Low
Cell voltages Online Medium/high

Current Online Low
Temperatures Online Low

Pressures Online Medium
Flow rates Online High
Humidities Online Medium

EIS (Power converter based) Online Low

Special
measurement

Polarization curves Offline Low
EIS (Traditional) Online (limited) High

LSV Offline Medium
CV Offline Medium

Here, Fig. 1-16 can show the principle of the multivariate analysis. Suppose that the

two variables x and y are monitored, and the fault diagnosis is based on them. The

samples in normal state are distributed in the zone colored gray. If the individual

variables are investigated independently, the upper and lower limits of the two vari-

ables [x1, x2], [y1, y2] could be found by considering the distribution each variables in

normal operation state. With these limits, whether a point is in normal state can be

told by judge whether it is within the variable limits. However, for some points, such

as point 1 and point 2, they will be misdiagnosed to the normal state, although they

are outside the normal zone. Comparatively, by using multivariate analysis, the data

can be projected to a new space composed by x′, y′, and the normal zone obtained in

the new space can rejected point 1 and point 2 successfully.

In [49], multivariate analysis technique, PCA (principal component analysis), is

used for PEMFC diagnosis. PCA is used here mainly for fault detection. The theory

of PCA is to build a principal component model under normal working conditions by

using the relevance of process variables, and to find the fault by testing the divergence

of samples from the principal component model [49]. To achieve this, dataset of 17

parameters were used for building the PCA model offline, and the faults can be

detedted through the PCA model.
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Figure 1-16: Schematic of multivariate analysis

Although multivariate analysis methods are thought to be simple and efficiency to

realize fault detection, they seems only efficient in dealing with the diagnosis problems

in steady state. In addition, the fault isolation performance of multivariate analysis

methods is usually weak. Moreover, many variables are required, which means that

many sensors need to be installed to the system.

1.5.2.3 Classification based

Another data-driven diagnosis branch is the pattern classification based approach.

The classification based diagnostic procedure usually proceeds in two steps. Firstly,

an empirical classifier is established from prior knowledge and history data. This

is considered as the training process. Then, by using the classifier obtained, the

real-time data are classified into certain classes that correspond to the health states,

namely normal state or various fault states. Thus, fault detection and isolation can

be achieved.

It has also been noticed that the classification performance can be improved by

combining some signal analysis and/or feature extraction, as well as the feature selec-

tion methods [50]. Therefore, a general classification based diagnosis procedure can

be summarized in Fig.1-17.

In [51], a kind of NNS named hamming neural network (HNN) is used to monitor
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Figure 1-17: Flowchart of a classification based diagnosis process

the health state of a PEMFC. In this approach, a designed pulse current profile is

performed on 20 single PEMFCs that were in different ageing stages. Four statistical

features were extracted from each output voltage, and used for training HNN. Thus,

HNN can classify the features of an arbitrary operating cell to one of the 20 different

classes. The operating status, which was defined from fresh to aged, could be deter-

mined consequently. However, the proposed approach can only support the ageing

information. The diagnosis of operating faults seems to be weak. Furthermore, a

special current profile must be used to get the features.

In [35], the authors propose a PEMFC system durability diagnosis tool. Two

values have then been extracted from EIS curves. Evolution over time of these two

values is then considered. Fuzzy-clustering methodology is applied to identify clusters

in this 2-D space; each of them relates to a specific behavior or ageing process of the

concerned stack. Although this methodology gives some initial guidelines within the

framework of embedded fuel cell system durability diagnosis, its function on fault

diagnosis aspect is still not explored. Recently, authors of [52] extend the fuzzy

clustering method further to the fault diagnosis of a commercial PEMFC system.
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With feature extraction and selection step, two features, named maximal magnitude

and occurring frequency of maximal phase, are used. The fault oxygen starvation and

flooding could be identified. However, the fuzzy-clustering method is utilized on the

obtained dataset. To diagnose the durability of an arbitrary sample, a classification

procedure seems to be necessary following the clustering.

In [53], Bayesian networks (BS) classification is used for the PEMFC diagnosis.

By using it, the cause-effect relationship among the variables of the process can be

qualified and quantified. Four types of faults, including faults in the reactant sup-

ply subsystem, faults in the heat management subsystem, and faults inside the fuel

cell, were diagnosed based on monitoring the easy-measured variables, such as cur-

rent, stack voltage, temperature. However, the database for training the BS was

still coming from a physical model. Similarly and more recently, another BS based

fault diagnosis is proposed in [54]. Different from the former approach, the diagno-

sis variables are from the EIS measurement. More specifically, Bayesian classifier is

implemented based on the impedance values at six different frequency points. Six

operating modes can be discriminated by using this approach. However, these six

operating modes involve just the status of water management.

The authors of [55] used Fast Fourier Transform (FFT) to correlate the stack volt-

age evolution with the pressure drop signal across the cathode/anode. The dominant

frequency of cathode pressure drop signal was found to be an indicator of cathode

flooding and a predictor of stack voltage increase and decrease. However, even if the

FFT based methods lead to fine frequency resolution, they are not adapted to non-

stationary signals which are typically extracted from the fuel cell during operation

[30].

In [56], a classification based diagnosis strategy is proposed. A signal processing

procedure, called wavelet transformation, is used to extract features from the stack

voltage signal. Then, classification is used to identify whether flooding fault hap-

pens. Although this diagnosis approach is proven to be promising for the detection

of flooding fault, the detection of other fault types and the fault isolation needs to

be further investigated. A similar diagnosis approach is proposed recently in [57].
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Wavelet transform combined with multifractal formalism is used to analyze the stack

voltage, and the features which are sensitive to faults can be extracted. Similarly, the

extracted features serve as the diagnostic symbols for classification. Several abnor-

mal operation states in air supply subsystem can be detected. The approach seems to

be promising for it needs only the regular stack voltage measurement. Nevertheless,

more fault cases and more operating data should be tested to verify its performance

and robustness.

The classification based diagnosis usually requires the data in normal state and in

various fault classes. To do this, experiments in concerned fault situations should be

carried out. This is considered to be hard even impossible missions in consideration of

the hidden dangers. Moreover, these methods might suffer from lacking the robustness

against unseen data [58].

1.5.3 Challenges of online PEMFC system fault diagnosis

Although much work has been done towards efficient and reliable PEMFC system

diagnosis, the development of the diagnosis approach for fuel cell systems is still

comparatively lagging behind the other development areas in fuel cell technology.

Some challenges still exist, which motivate us to take more efforts on this topic.

1. Because model based fault diagnosis offers a physical significance of faults and

the model based diagnosis theory seems to be well built [59]. If a diagnosis

friendly process model, such as state space model, is available, a number of

standard methods are available for diagnosis design. However, the model, which

is accurate enough and adapted for diagnosis, is still absent. Hence, more efforts

should be taken to model the fuel cell systems.

2. The available approaches mainly focus on the capability of the detection of

some specific faults. Less attention is paid to the fault isolation and analysis.

To make the diagnosis procedure more completed and more efficient, fault iso-

lation and analysis should be attached more importance. To do this, amount of

experiments under fault operations should be investigated.
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3. To implement the diagnosis, the costs must also be taken into account, especially

in the case of high-volume production. The costly sensors or instruments should

be avoided if possible. For instance, the sensors for measuring gas flow rate,

and the special instruments for EIS measurements.

4. Until now, the diagnosis strategies are mostly in the test stage. To really apply

and verify these strategies, real-time implementation should be carried out.

Especially, for the mobile applications, the diagnosis strategies should be coded

in an embedded system, which deserves more efforts.

5. The fault diagnosis usually involves the faults that are related to the system

operations. Note that the system degradations can also be caused by the ageing

effects, which is considered as the normal evolution. Hence, the diagnosis strat-

egy should be capable to discriminate the degradations caused by faults from

that caused be ageing effects. In other word, the diagnosis strategy should do

self-adaption in long-time operation.

6. When the faults are correctly diagnosed in time, suitable actions should be

taken to eliminate these faults. Reasonable suggestions orders should be given

to aid the system control or reparation. These tasks are actually in the scope

of the fault tolerance control.

Motivated by the above mentioned challenges, this Ph.D. work is dedicated to

advancing the PEMFC system diagnosis. Especially, the data-driven diagnosis is

focused on. It should be emphasized that the study launched is not only useful for

PEMFC system diagnosis, but it can also support some hints and inspiring thinking

for the diagnosis of other industrial system.

1.6 Conclusion

In this chapter, the principles of the PEMFC functioning, the composition of PEMFC

stack and PEMFC systems are generally introduced. The two main challenges for the
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wide applications and commercialization, cost and durability, are given and discussed.

The necessity of fault diagnosis for PEMFC systems is emphasized. The current

available diagnosis approaches are reviewed, and the existing challenges are listed.
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Chapter 2

Experimental PEMFC stacks and

experimentation framework

This Ph.D. work places emphasis on the data-driven diagnosis, undoubtedly, the

preparation of experimental data from real PEMFC systems are thus necessary. To

make the presentation of the diagnostic strategy more clear, he experimental method-

ology to observe and measure the PEMFC operating parameters in normal and fault

conditions been used will be introduced in this chapter. To do this, the test benches

and PEMFC stacks investigated are firstly presented. After that, the experiments

that were carried out to generate databases are introduced. Finally, the obtained

datasets are described.

2.1 Test benches and stacks

2.1.1 Two test benches

A 1 kW and a 10 kW test benches, which had been developed in-lab, were employed

respectively to fulfill the experimental requirements. Fig. 2-1 and Fig. 2-2 show the

overall view of these two test benches.

Both test benches can be divided into several subsystems. Taking the 10 kW test

bench as example, the schematic of the whole system is shown in Fig. 2-3, and the
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PEMFC stack

Control & monitor Interface

Figure 2-1: Overall view of the 1 kW testbench

Figure 2-2: Overall view of the 10kW test bench
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functions of each subsystem are as follows:

� Air supply subsystem: The air supply subsystem allows the regulation of air

flow rate and air pressure on the cathode side of the fuel cells. The laboratory

air network provides an elevated pressure of the air. Upstream and downstream

valves as well as a mass flow rate regulator were been used to regulate air

flow rate and air pressure in the stack. An automatic adjustment of air flow

rate according to current can achieve a constant air stoichiometry (Sc). The

hygrometry level at the air inlet can be regulated to the required conditions by

using a humidifier located upstream of the stack.

� Hydrogen supply subsystem: Hydrogen is supplied from a high pressure tank.

The pressure at the hydrogen inlet can be controlled to equal value with the air

pressure through pressure regulator. An automatic adjustment of hydrogen flow

rate according to current can achieve a constant stoichiometry (Sa). Hydrogen

flow rate is set through the regulator downstream of the stack. Similarly as

the air supply subsystem, hygrometry level at the hydrogen inlet can also be

regulated thanks to the humidifier for hydrogen. The control of the humidifying

of reactant gases is realized through regulation of the dew point temperatures

of the upstream humidifiers.

� Temperature subsystem: The test bench is equipped with a thermal-regulated

water circuit which ensures the control of the stack temperature. The value

measured by the temperature sensor placed at the water circuit outlet is con-

sidered as the average stack temperature.

� Electronic load: The load current can be flexibly varied through an electronic

load.

� Control/supervision unit: The controls of the test bench and the parameter

monitoring are fulfilled using National Instruments Materials and Labview soft-

ware. The variables that can be measured or monitored are summarized in Table
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2.1. Other than these regular variables, EIS test instruments were installed on

the two systems to measure EIS curves.

The composition of the 1 kW test bench is similar to that of 10 kW test bench.

Except that the positions of gas flow rate regulators and gas pressure regulators are

exchanged, and the component models with the same function are not completely

same. More details about the two test benches, for instance the specific component

models, can be found respectively in [60] and [61].
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Figure 2-3: Schematic of the used 10 kW test bench [61]

2.1.2 Three PEMFC stacks

Three PEMFC stacks, which own respectively 20 cells, 8 cells and 40 cells, were used

to carry out the various experiments. All these tests were in the framework French

ANR DIAPASON project1, which consisted two phases. Among the three stacks, the

20-cell stack was provided by a stack manufacturer. The stack was assembled with

commercial MEAs marked Gore MESGA Primea Series 5510 and graphite distribution

collector plates. The parameters of this stack is summarized in Table 2.2. The 8-

cell stack and the 40-cell stacks were fabricated by the French research organization

1DIAPASON means ”DIAgnostic de Pile à combustible Pour Applications automobiles et Sta-
tionaires sans instrumentatiON”, and in English it means ”Diagnosis of Fuel Cells for stationary and
automotive applications”.
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Table 2.1: Measured variables

Variable Notation

Flow rate at the H2 inlet Din,H2

Pressure at the H2 inlet Pin,H2

Pressure at the H2 outlet Pout,H2

Temperature at the H2 inlet Tin,H2

Temperature at the H2 outlet Tout,H2

Relative humidity at the H2 outlet RHin,H2

Flow rate at the air inlet Din,air

Pressure at the air inlet Pin,air
Pressure at the air outlet Pout,air
Temperature at the air inlet Tin,air
Temperature at the air outlet Tout,air
Relative humidity at the air outlet RHin,air

Temperature at the cooling water inlet Tin,water
Temperature at the cooling water outlet Tout,water
Current I
Stack voltage Vs
nth cell voltage (from anode side) v(n)

CEA specially for automotive application2. Both stacks have the same technology

parameters except the number of cells. The nominal operating conditions of the two

stacks are summarized in Table 2.3. Actually, the 20-cell stack was used to fulfill the

experimental requirements of the first-phase project; while the 8-cell stack and 40-cell

stack were used for the second-phase tests.

Table 2.2: The parameters of the investigated fuel cell stack [56]

Cell area 100 cm2

Cell number 20
Flow field structure serpentine
Electrode surface area 100 cm2

Nominal output power 500 W
Operating temperature region 20-65 �
Maximum operating pressures 1.5 bar
Anode stoichiometry 2
Cathode stoichiometry 4

2CEA: Alternative Energies and Atomic Energy Commission
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Table 2.3: Nominal conditions of the stacks

Parameter Value

Stoichiometry H2 1.5
Stoichiometry Air 2
Pressure at H2 inlet 150 kPa
Pressure at Air inlet 150 kPa
Differential of anode pressure and cathode pressure 30 kPa
Temperature (exit of cooling circuit) 80 ◦C
Anode relative humidity 50%
Cathode relative humidity 50%
Current 110 A
Voltage per cell 0.7 V
Electrical power of 8-cell stack 616 W
Electrical power of 40-cell stack 3080 W

2.2 Experiments and database

A variety of experiments including the ones under normal operating condition and

different fault conditions were carried out on the three stacks. Note that different

fault types are concerned over the two phases of project. The experiments carried out

on the different stacks are summarized in Table 2.4. The faults, caused by the abnor-

mal operations of the water management subsystem, the electric circuit, temperature

subsystem, air supply subsystem and hydrogen supply subsystem, were taken into

consideration. In fact, the failures of the different subsystems or auxiliary compo-

nents usually result in the abnormal or non-optimal operations suffered by the stack.

The faults studied are usually considered as ”reversible” or ”recoverable”, which can

be corrected through appropriate operations. The efficient FDI of such kind of faults

is the key focus of system diagnosis. In the following, these experiments and the

obtained databases are presented respectively.

2.2.1 Experiments and database of 20-cell stack

2.2.1.1 Normal operating (Nl)

Based on the 1 kW experimental test bench, experiments in normal conditions were

firstly carried out. In the experiments, stack temperature is set at Tfc = 40�, the
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2.2. Experiments and database

Table 2.4: Experiments of various health states carried out on different PEMFC stacks

Stack Health state descrip-
tion

Location Notation

20-cell stack
Normal operating Whole system Nl
Flooding Water management subsystem Ff
Membrane drying Water management subsystem Fd

8-cell stack &
40-cell stack

Normal operating Whole system Nl
High current pulse Electric circuit F1

Stop cooling water Temperature subsystem F2

High Sc Air supply subsystem F3

Low Sc Air supply subsystem F4

8-cell stack CO poisoning H2 supply subsystem F5

stoichiometries of hydrogen and air were set at the nominal values as in Table 2.2,

relative humidity RH was been situated between 75% and 98%, which is considered

as a normal region. The output current was configured from 40A to 2A. As Fig. 2-4

shows, current was set at 20 discrete points, for every current point, 100 samples were

collected to one group.
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Figure 2-4: Current evolution in normal experiment
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2.2.1.2 Flooding (Ff) and membrane drying (Fd)

Fault experiments of Ff and Fd were carried out to obtain the data in faulty states.

In the fault experiments, the output current was fixed at 40 A; stack temperature is

set at Tfc = 40 �; the stoichiometries of hydrogen and air were set at the nominal

values as table 2.2. Relative humidity RH was been situated between 85% and 110%.

The value of RH exceeds unity means that some liquid water vapour is presented in

combination with the completely saturated air at inlet. The data acquired from a fault

experiment was used for training procedure. Several independent fault experiments

were done to further test and verify the approach.

It is considered in our study that a certain amount liquid water exists in the air

paths of a normal operating fuel cell stack. At the beginning of each fault experiment,

some time was needed to construct the necessary water environment, and the stack

showed membrane drying state during this period. After this period, with the help

of high humidified inlet air, the liquid water accumulated in the air paths. The

flooding is therefore induced after a period of normal state. Hence, during the fault

experiments, the stack went through three successive states: membrane drying fault

state, normal state, and flooding fault state. The variables exposed in Table 2.1 were

measured and saved in each experiment. Each fault experiment lasted about 15 min,

and the sample time is set as 150 ms.

2.2.2 Experiments and databases of 8-cell stack and 40-cell

stack

Experiments on the 8-cell stack and 40-cell stack were carried out over the 1 kW and

10 kW test benches respectively. Five faulty states other than fault free operating

state were concerned. In order to test the robustness of the diagnosis strategies,

experiments were carried out several times in each condition. Similarly, the variables

in Table 2.1 were measured and saved in each experiment. The sample time is set as

100 ms for the tests of the two stacks. In the normal operating experiments, namely

Nl, the two systems were both set to the nominal conditions. As for fault experiments,
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taking one experiment as example for each fault, some intuitive and visualized results

are presented to give a preliminary and qualitative analysis in the following content.

2.2.2.1 High current pulse (F1)

At the system level, this is a fault which can occur at the electric circuit, such as

electrical power converter. In the faulty experiments, high current pulse or short

circuit was imposed between the two electrodes of the fuel cell stacks. Fig. 2-5 (a)-

(b) show the electrical behavior of the stack in a short circuit process. It can be seen

that a current impact appeared at the beginning of the short circuit. The current

then decreased to stabilize at a fixed value which is about 2 times the nominal value.

Here the current was limited by the mass transfer losses and by the hydrogen flow

[62].

Fig. 2-5 (c)-(d) show the temperatures and humidities of the two stacks in the

F1 process. The short circuit occurred from 19 s to 27 s for the 8-cell stack, and

from 83 s to 94 s for the 40-cell stack approximately. The high current pulse in the

process caused a rise in the stack temperature, which is reflected by the temperature

increase at the outlet of cooling water. The temperature was brought down with the

help of the cooling circuit after the short circuit was eliminated. Since the saturation

pressure of the fuel cell increased with the increasing of stack temperature, the relative

humidities showed the inverted evolution of the stack temperature.

The pressures and gas flow rates in the process are shown in Fig. 2-5 (d)-(e).

It can be observed that the cathode pressure varied little, while the anode pressure

decreased with the abrupt consumption of the hydrogen in the fault process. After the

fault was eliminated, the anode pressure was recovered thanks to a pressure regulator.

The flow rates of the gases did not vary basically.

2.2.2.2 Stop cooling water (F2)

At the system level, the F2 fault happens at the temperature subsystem. It was

caused by stopping the cooling water for some time. Fig. 2-6 shows the experimental

measurements in the F2 process. The disconnection of the cooling water circuit oc-
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(b) Stack voltage and current of 40-cell stack
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(c) Temperatures and relative humidities of 8-cell stack
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(d) Temperatures and relative humidities of 40-cell stack
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(e) Pressures and flow rates of 8-cell stack

0 20 40 60 80 100 120 140
1300

1400

1500

1600

TimeN[s]

P
re

ss
ur

es
N[m

ba
r]

P
in,air

P
out,air

P
in,H2

P
out,H2

0 20 40 60 80 100 120 140
0

50

100

150

TimeN[s]

F
lo

w
Nr

at
eN

[N
l/m

in
]

D
in,air

D
in,H2

FaultNperiod

FaultNperiod

(f) Pressures and flow rates of 40-cell stack

Figure 1: Measurements in F1 process

1

Figure 2-5: Measurements in F1 process
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curred from 33 s to 76 s for the 8-cell stack, and from 8 s to 86 s for the 40-cell stack

approximately. Temperatures and relative humidities in this process are shown in

Fig. 2-6 (c)-(d). For the 8-cell stack, the temperatures of hydrogen inlet and outlet,

inlet of air, inlet and outlet of cooling water showed little variation, while the temper-

ature of air outlet increased in the process. For the 40-cell stack, the temperature at

hydrogen outlet rose (from about 35 s to 100 s), while other temperatures showed no

evident variations. Based on this observation, it is the reasonable to say that Tout,air

of the 8-cell stack and Tout,H2 of the 40-cell stack can better reflect the temperature

variation of the stack than Tout,water in the F2 fault process. After the water circuit

was reconnected, the Tout,water was increased firstly under the influence of the internal

temperature of the stack. Then, it decreased by regulation of the temperature sub-

system. Concerning the relative humidities, an inverted evolution of Tout,water could

be observed for the humidities of both stacks.

Fig. 2-6 (a)-(b) show the electrical behavior of the stack in the process. With the

constant current, the stack voltage decreased in this period. After that, the cooling

water circuit was reconnected and the stack voltage rose up to the nominal value with

the function of temperature regulation. It should be noticed that no marked decrease

in the voltage was observed in the first phase. More precisely, it decreased about 0.25

V from 8 s to 60 s. A fast decline happened from 60 s to 92 s. A decrease of 8 V can be

observed. For the 8-cell stack, voltage started decreasing when the cooling circuit was

disconnected. The drops in the stack voltages could be connected to the membrane

drying phenomenon. Actually, excessive temperature due to ineffective cooling can

cause membrane dehydration and thus lower the conductivity of the membrane.

Fig. 2-6 (e)-(f) show the pressures and flow rates in the F2 fault process. It can be

said that there were no evident variations on these variables during the experiment.

2.2.2.3 High air stoichiometry (F3) and low air stoichiometry (F4)

At the system level, these two faults occur at the air supply subsystem. In the

experiments of F3 (respectively F4), air stoichiometry was set to values that are higher

(respectively lower) than the nominal value. Actually, a fuel cell can operate within
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(b) Stack voltage and current of 40-cell stack
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(c) Temperatures and relative humidities of 8-cell stack
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(d) Temperatures and relative humidities of 40-cell stack
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(e) Pressures and flow rates of 8-cell stack
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(f) Pressures and flow rates 40-cell stack

Figure 2: Measurements in F2 process

2

Figure 2-6: Measurements in F2 process
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a range of air stoichiometry values without the appearance of severe degradation.

Technically, the air stoichiometry shift from nominal value to a certain degree causes

rather a non-optimal operating state than a ”fault”.

The electrical, thermal, and fluidic variables in a F3 fault experiment are shown in

Fig. 2-7. The air stoichiometry was set respectively at 4 for the 8-cell stack and 5 for

the 40-cell stack. From the experimental results, it can be seen that the stack reached

to a stable state. The temperatures of gases and cooling water did not markedly

vary in the process. Pin,air was maintained to be the nominal value, while Pout,air was

smaller compared to the value in a normal operating process. In fact, the difference

in the pressures at the air inlet and air outlet corresponds to the air flow rate. A

larger flow rate usually results in a larger pressure difference [63]. With the nominal

load, the stack voltages varied little from the nominal values. Note that during the

F3 and F4 processes, EIS tests were also carried out for the 8-cell stack. Some light-

magnitude signals of various frequencies could be seen for both currents and stack

voltages.

The electrical, thermal, and fluidic variables in the F4 fault experiment are shown

in Fig. 2-8. The air stoichiometry was set at 1.2 for the 8-cell stack and 1.4 for the

40-cell stack. As in the case of F3, it can be seen that the stack reached to a stable

state. The temperatures of various positions did not show obvious variations in the

process. The pressure at the air inlet was maintained at the nominal value, while the

pressure at the air outlet reached to a higher value, which was contrary to the case

of F3. Little variations are seen in the currents and stack voltages.

Although the obvious degradation did not appear during the F3 and F4 faults,

these faults should be avoided in the long term run. On the one hand, low air

stoichiometry could be an incentive factor that leads to cathode water flooding and

cathode starvation, which are considered as severer faults that can lead to very sharp

degradation or even damage to the stack. On the other hand, an excessively high air

flow could result in membrane drying, decreasing the conductivity of the membrane.

In addition, more power is consumed to get a higher air stoichiometry, which will

lower the overall system efficiency [19].
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(a) Stack voltage and current of 8-cell stack
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(b) Stack voltage and current of 40-cell stack
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(c) Temperatures and relative humidities of 8-cell stack
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(d) Temperatures and relative humidities of 40-cell stack
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(e) Pressures and flow rates of 8-cell stack
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(f) Pressures and flow rates of 40-cell stack

Figure 3: Measurements in F3 process

3

Figure 2-7: Measurements in F3 process
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(a) Stack voltage and current of 8-cell stack
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(b) Stack voltage and current of 40-cell stack
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(c) Temperatures and relative humidities of 8-cell stack
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(d) Temperatures and relative humidities of 40-cell stack
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(e) Pressures and flow rates of 8-cell stack
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(f) Pressures and flow rates of 40-cell stack

Figure 4: Measurements in F4 process

4

Figure 2-8: Measurements in F4 process
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2.2.2.4 CO poisoning (F5)

At the system level, CO poisoning occurs at the hydrogen supply subsystem. Ac-

tually, this fault has been considered one of the most common faults for PEMFC.

The presence of carbon monoxide can block or limit the active sites of the platinum

catalyst, and thus decrease the fuel cell performance [64]. The experiment of fault F5

was carried out over the 8-cell stack by feeding the hydrogen with 10 ppm CO for 1.5

h, and then pure hydrogen was supplied instead of poisoned gas. In the process, EIS

tests were performed several times.

The measurements are shown in Fig. 2-9. From a global point of view, the output

stack voltage gradually decreased in the fault process and increased in the recovery

process. The change rate of stack voltage decreased in both stages. The temperatures

at the hydrogen outlet increased at the beginning of the fault process until 1100 s

approximately , and then decreased. The temperature rise could be correlated to the

increase in the anodic impedance [64]. From Fig. 2-9 (c), the pressure waves at the

hydrogen inlet and outlet correspond to the current waveform, while the pressures at

the air inlet and outlet varied little in the process. Based on the above preliminary

analysis, the faults concerned include the severe faults, which could cause the rapid

degradation of the system performance, such as F1, F2, F5, and the slight faults, such

as F3, F4.

2.3 Role of individual cell voltages for diagnosis

It is observed that different faults result in the different variations of the measure-

ments. From a practical perspective, the “on-board” instrumentation has to be mini-

mized, and using a minimal number of low-cost sensors is usually desirable. In order

to realize FDI of these faults, stack voltage is usually considered as an efficient vari-

able since it is the output of the system. However, only stack voltage seems to be

feeble to achieve fault isolation aim, because a number of faults can cause the voltage

drop.

Fuel cell voltage signals are highly dependent to the current, electrochemical char-
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(b) Temperatures and relative humidities of 8-cell stack
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(c) Pressures and flow rates of 8-cell stack

Figure 5: Measurements in F5 process

5

Figure 2-9: Measurements in F5 process
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acteristics, temperature, and aging effect. So the cell voltage can reflect the local

situation of a stack. In other words, the individual cell voltage can be seen as sensors

inside the fuel cell stack. Without doubt, the individual cell voltages can supply more

information for diagnosis than mere stack voltages. The importance of monitoring

individual cell voltages is also stressed, since the cell with the lowest cell voltage in

the stack restricts the maximum power output of the stack [65], it is necessary to

monitor every single (or several) cell voltage(s) to some degree. Moreover, the cost of

measurement of voltage signal is relatively low. Based on the above points, vectors

constructed by individual cell voltages are considered as the original data for diagno-

sis. However, it should be noticed that a multi-channel voltage measurement system

must be added for acquiring all the single cell voltages. This could lead to an increase

of the overall system cost.

The individual behavior cell voltages of 20-cell stack in normal experiment and

fault experiment are respectively depicted by Fig. 2-10 and 2-11. From the figures,

it can be observed that the amplitudes of cell voltages in a normal experiment are

more homogeneous than in a fault experiment from an overall point of view. In fault

experiment, the cell voltages decrease with different speeds in the second half stage.

Fig. 2-12 shows the evolution of the cell voltages in the aforementioned processes.

It should be noted that the individual cell voltages are distributed more evenly in

certain states, e.g. Nl, F3, F4, than that in others e.g. F1, F2, F5. The spacial distri-

bution of individual cell voltages varies with the type of fault. Essentially, different

faults can lead to different spatial distributions of temperature, humidity, and gas

fluids and thus result in the different spatial distributions of individual cell voltages.

It seems that the individual cell voltages are the variables with the discriminative

capability of different health states. Thus, they can be chosen as the original diagnosis-

oriented variables for carrying out fault diagnosis.
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Figure 2-10: Cell voltages in a normal experiment.
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Figure 2-11: Cell voltages in a fault experiment
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(c) F1 state (8-cell stack)
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(d) F1 state (40-cell stack)
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0 10 20 30 40 0
200

400
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Time [s]
Cell number

V
ol

ta
ge

 [V
]
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(g) F3 state (8-cell stack)
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(h) F3 state (40-cell stack)
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Figure 19: Accumulation eigenvalues of 8-cell stack and 40-cell stack
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Figure 2-12: The evolution of cell voltages in different processes
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2.4 Conclusion

In this chapter, the two test benches and three stacks used to carry out the experi-

ments are introduced. The experiments done for the three stacks are described. The

databases sampled from the experiments are also presented and discussed prelimi-

narily. At the end of this chapter, the role that single-cell voltages can play in fault

diagnosis is discussed. It is found that several advantages can be obtained when the

individual cell voltages are used as the variables for diagnosis.
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Chapter 3

Pattern classification tools for

diagnosis: a comparative study

Based on the discussion of last chapter, it have been acknowledged that individual

cell voltages are very promising variables for PEMFC system diagnosis. Taking in-

dividual cell voltages as diagnostic variables, the classification based fault diagnostic

methodologies will be studied in this chapter. The methodologies in each stage of the

strategy will be compared. The database obtained from the experiments on 20-cell

stack will be dedicated for this comparative study, and the faults Ff and Fd will serve

as the faults to diagnose.

3.1 Approach principle

The approach proposed in this chapter is based on experimental data of 20-cell stack

and contains three steps (see Fig. 3-1) : data labeling process, model training process,

and diagnosis process. The first two processes are off-line, while the third one is on-

line.

The pattern classification methods used belong to supervised ones. In supervised

learning, the samples for training should be provided with their category labels before

the training procedure. Consequently, it is necessary to define the classes and label the

training data. In the labeling stage, a two-phase pressure drop model combined with
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Figure 3-1: The framework of the diagnosis approach

statistical analysis is used to achieve this [66] [67]. After the data labeling process,

the training data can be labeled to three classes: normal state, flooding fault state,

and membrane drying state.

In the model training process, two kinds of actions, which are feature extraction

and classification, need to be realized. In feature extraction, the goal is to find certain

projecting vectors to map the original high-dimensional vectors to feature space, which

is of low-dimension. Notice that in the classification, the classifiers will be trained

in the feature space. By the trained classifiers, a new point in feature space can be

fixed to one of the three predefined classes. In the literature, there are various kinds

of methodologies for feature extraction and classification. Hence, this work present

several relevant and representative methodologies that can be used to compare their

performances on the PEMFC diagnosis.

In the diagnosis process, the real-time cell voltages are sampled and represented

by vectors. Then, the feature extraction and classification procedures are respectively

carried out by using the models obtained in the training process. The real-time data

can thus be classified into three classes, and the diagnosis is realized accordingly after

these two procedures.

66



3.2. Data labeling methodologies

3.2 Data labeling methodologies

For most cases, the data from different health states can be prepared by carrying out

the specific experiments. However, in some cases, historical data that serve as training

data often contains both normal and abnormal data, and cannot be intuitively labeled

with the knowledge in hand. A data labeling procedure seems to be needful in such

situations [68]. Here, in the fault experiments on 20-cell stack, the data of different

health states are mixed. In order to label the training data to the three classes: “Nl”,

“Ff”, and “Fd”, the normal range of liquid water inside the fuel cell must be evaluated.

Here, pressure drop model and statistical analysis are combined to achieve this goal.

3.2.1 Pressure drop model

The pressure drop between inlet and outlet channels is significant of the gases removal

out of the fuel cell, and it is relevant to the content of liquid water in the flow fields

[7]. Since the generated water is mostly expelled from the cathode side, it is more

relevant to the water management issues. Hence, the pressure drop model in the

cathode side will be considered.

GFCs are grooved on both sides of BPs for gas flow and different structures can be

used. Fig. 3-2 depicts three classic structures: parallel, serpentine and interdigitated

flow fields. Notice that the pressure drop model is dependent on the considered

structures.

(a) (b) (c)

(a) (b) (c)

Figure 3-2: Three kinds of flow field structures. (a) Parallel flow field. (b) Serpentine
flow field. (c) interdigitated flow field

For the parallel and serpentine flow fields, the air passes from the GFCs, and the
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pressure drops throughout the GFCs. The major part of pressure loss is associated

with the frictional losses along the channel pipe [69]. In this case, the pressure drop

model based on Darcy law is given by [66]

∆P =
µ

KC0(1− s)nk
DairLGFC (3.1)

where Dair is the average air flow rate, KC0 is permeability, which is impacted by

the sizes and the structures of flow fields. µ denotes viscosity of air and LGFC is the

length of the channel. s ∈ [0, 1) is defined as the volume fraction of GFC occupied

by liquid water, which is a key parameter characterizing the water quantity. nk is a

constant between 4.5 and 5.0 (see [66]).

For the interdigitated flow field, the pressure drop mainly occurs in the GDL. In

this case, the pressure drop can be denoted as [67]

∆P =
150(1− ε(1− s))2µ

ε3(1− s)3d2
0

DairLGDL (3.2)

where d0 is the representative diameter of pore in GDL, LGDL is the rib length of the

BP. ε is constant that reflects the porosity of GDL. s ∈ [0, 1) quantifies the portion

of pores (in GDL) occupied by liquid water. Undoubtedly, in (3.1) and (3.2), s can

be considered as a criteria to quantify the water content inside the fuel cells.

3.2.2 A statistical method for identification Ff and Fd

From (3.1) and (3.2), the quantity ∆P/Dair can be considered as a function depending

on s:

W (s) =
∆P

Dair

where

W (1)(s) =
α

(1− s)nk
and W (2)(s) = β

(1− ε(1− s))2

(1− s)3
(3.3)

with

α =
µLGFC
KC0

and β = 150
µLGDL
ε3d2

0
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Clearly, W (1) and W (2) defined by (3.3) are increasing function for s ∈ [0, 1). Thus,

W can replace s to express water quantity. In normal state, it is considered that the

fuel cell can operate in a range of s, so the values of W also distribute in a normal

range. If the values of W follow a normal distribution, which is the case in our study,

a common statistical method “3-sigma” can be used in order to evaluate the limits of

W in normal state:

Wmax = W̄ + 3σ(W ),Wmin = W̄ − 3σ(W ) (3.4)

where W̄ and σ(W ) are respectively the average value and standard deviation of W

samples in normal state.

In the labeling process, Wmax is the threshold for flooding diagnosis while Wmin

is the one for drying fault diagnosis. The flow chart of the training data labeling

procedure can be depicted as Fig. 3-3.
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Figure 3-3: Training data labeling process
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3.2.3 Data labeling result

The experimental data of 20-cell stack that were presented in the last chapter are

used to verify the methodologies.

In the normal state experiments, water indicator W was calculated for every sam-

ple. The Lilliefors tests were used to test the null hypothesis thatW follows a normally

distributed population for each group [70]. The null hypotheses were not rejected with

significance level 0.05 for all the 20 groups. Hence, it was reasonable to define the up

and down limits as (3.4).

The values W of normal condition in different current points are as in Fig. 3-4.

The up limit Wmax and down limit Wmin are also shown in this figure. It can be seen

that Wmax and Wmin increase globally with current increasing. This could be because

water volume generated increases with the rise of the current. Other phenomena

could produce the nonlinear property of W for a compressible fluid flow, such as the

flow regime (laminar flow, turbulent flow, or transition flow between laminar and

turbulent) [71].
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Figure 3-4: Values of parameter W in normal condition and their limits

The values of W in the fault experiments were compared with the corresponding

limits Wmax and Wmin. The parameter W in a fault experiment was shown in Fig.

3-5.
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It seems that the variable W deduced from the pressure drop model is able to be

used for monitoring the the water management faults Ff and Fd. However, it should

also be noticed that pressure sensors and the instruments for air flow measurement

must be settled at both sides of the air stream. These sensors would increase the

cost of the fuel cell system. This motivates us to make an effort to realize the fault

diagnosis by analyzing only cell voltages.
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Figure 3-5: Parameter W of data in fault process

3.3 Feature extraction

For high power applications, for instance vehicles, a large number of fuel cells are

usually stacked in series to meet the power requirement. Hence, large dimension data

has to be handled when individual cell voltages serve as the variables for diagnosis.

In order to reduce the complexities of computations, it is necessary to lower the data

dimension by some means of feature extraction. At the same time, the feature extrac-

tion procedure is motivated to draw useful features for diagnosis. Based on the above

considerations, four representative feature extraction methodologies, which can meet

these two needs, are presented in this subsection. More precisely, two typical unsuper-

vised and supervised methodologies: Principal Component Analysis (PCA), Fisher
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Discriminant Analysis (FDA), and their nonlinear forms Kernel Principal Component

Analysis (KPCA) and Kernel Principal Component Analysis (KFDA), are considered.

The feature extraction problem can be described as follows: Collect N training

samples v1, v2, . . . , vN ∈ RM , which are distributed in C classes V1, V2, . . . , VC .

Sample indexes in ith class are collected as set ωi. Sample vn is a vector constructed

by M cell voltages (cell number is M):

vn = [vn(1), vn(2), . . . , vn(M)]T (3.5)

The sample number of ith class is Ni, which satisfies
∑C

i=1Ni = N . The class index

of vn is denoted by hn, hn ∈ {1, 2, . . . , C}. The objective of the training process is to

find L (L < M) M -dimension unit projecting vectors: {w1,w2, ...,wL}. With these

vectors, a real-time sample v can be projected to a L-dimension feature space, the

projected vector z is expressed:

z = [wT
1 v,w

T
2 v, . . . ,w

T
Lv]T (3.6)

3.3.1 PCA

PCA is an unsupervised dimensionality reduction and feature extraction technique

that preserves the significant variability information in the original data set. It

changes more relevant variables into seldom uncorrelated variables according to the

lowest data missing rule [49].

Without loss of generality, it is considered that the original data are firstly pro-

jected to into a 1-dimension space with projecting vector w:

zn = wTvn (3.7)
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where {zn} are the projected points corresponding to {vn}, the variance of {zn} is1

sz =
1

N

N∑
n=1

(wTvn −wT v̄)2 = wTSw (3.8)

where v̄ = 1
N

∑N
n=1 vn, and S = 1

N

∑N
n=1(vn − v̄)2.

The task is to find w which makes the sy to be maximum, to do this, Lagrange

multiplier denoted by λ is introduced as

L(w, λ) = wTSw − λ(1−wTw) (3.9)

By setting the derivative with respect to w equal to zero, it is obtained that

Sw = λw (3.10)

So the variance will be a maximum when we set w equal to the eigenvector corre-

sponding to largest eigenvalue

wTSw = λ (3.11)

Since the number of observations is usually much larger than dimension number of

observations, i.e. N � M , matrix S is usually full rank, and there are M positive

eigenvalues related to S2. It can be imagined that when vn is projected to a L

dimensional space, the L eigenvectors w1,w2, . . . ,wL with the L largest eigenvalues

λ1, λ2, . . . , λL are the corresponding projecting vectors.

The Accumulation Contribution Rate (ACR) which is defined as

ACR =

∑L
i=1 λi∑M
i=1 λi

(3.12)

is used to describe the accumulation variance contribution rate of the principal com-

ponents. When ACR is over a threshold, it will be regarded that the principal com-

1Here, the denotation {zn} = {zn|n = 1, . . . , N} is used. The denotation {vn} is similarly defined.
2Because the covariance matrix is positive-semidefinite, of which the eigenvalues are all equal or

greater than 0.
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ponents can represent the information of original data sufficiently.

PCA procedure used in this study can be summarized by Algorithm 1.

Algorithm 1 PCA
Training:

1: Collect samples v1,v2, . . . ,vN .
2: Perform singular value decomposition on covariance matrix:

1

N

N∑
n=1

(vn − v̄)(vn − v̄)T = PΛP T (3.13)

where v̄ =
∑N

n=1 vn/N , P = [w1, . . . ,wM ], Λ = diag(λ1, . . . , λM), λ1 ≥ λ2 ≥
· · · ≥ λM .

3: Determine the number of principal components L by respecting:∑L
i=1 λi∑M
i=1 λi

≥ Th,

∑L−1
i=1 λi∑M
i=1 λi

< Th (3.14)

where Th is a pre-set threshold, whose value is near but less than 1 (here is set
at 0.9).

4: Save vectors w1, . . . ,wL.

Performing:
Calculate the projected vector of a new sample v as (3.6).

3.3.2 FDA

FDA is a supervised technique developed to reduce the dimensions of the data in the

hope of obtaining a more manageable classification problem. The objective of FDA is

to find the mapping vectors that make the data in the same class concentrated while

the data in different classes separated [72] [73].

Original vectors {vn} are projected into the 1-dimension points {zn} with the

same projecting procedure defined in (3.7). Within-class variance sw is defined in the

feature space:

sw =
C∑
i=1

∑
n∈ωi

(zn − z̄i)2 (3.15)

where z̄i is the mean value of data in ith class: z̄i =
∑

n∈ωi
zn/Ni. sw represents the

variance of the data in the identical classes.
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3.3. Feature extraction

The between-class variance sb which represents the variance between data in dif-

ferent classes is defined:

sb =
C∑
i=1

Ni(z̄i − z̄)2 (3.16)

The Fisher criterion, which is large when the between-class covariance sb is large

and the within-class covariance sw is small, is given by

J(w) =
sb
sw

(3.17)

Substituting (3.7) to (3.15) and (3.16), (3.17) can be rewritten under the form

J(w) =
wTSbw

wTSww
(3.18)

where within class scatter matrix Sw and between class matrix Sb are defined

Sw =
C∑
i=1

∑
n∈ωi

(vn − v̄i)(vn − v̄i)T (3.19)

and

Sb =
C∑
i=1

Ni(v̄i − v̄)(v̄i − v̄)T (3.20)

where v̄i is the mean vector in class ωi: v̄i =
∑

vn∈ωi
vn/Ni, and v̄ is the mean vector

of the total dataset: v̄ =
∑N

n=1 vn/N .

The within class scatter matrix Sw is proportional to the sample covariance ma-

trix for the pooled M -dimensional data. It is symmetric and positive semidefinite,

and is usually nonsingular if N > M . Likewise, Sb is also symmetric and positive

semidefinite, but usually Sb is quite singular.

Another matrix named total scatter matrix St is also defined

St =
N∑
n=1

(xn − x̄)(xn − x̄)T (3.21)

it is easy to verify that

St = Sb + Sw (3.22)
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In (3.18), the problem seeking w that makes J(w) be maximum can also be converted

to seeking the equal w which makes either of the following criterion maximized:

J1(w) = J(w) + 1 =
wT (Sb + Sw)w

wTSww
=
wTStw

wTSww
(3.23)

J2(w) =
1

1/J(w) + 1
=

wTSbw

wT (Sb + Sw)w
=
wTSbw

wTStw
(3.24)

Maximization of J(w) in (3.18) is straightforward [74]. The optimal project-

ing vector w1 is equal to the eigenvector of S−1
w Sb that corresponds to the largest

eigenvalue. Similarly, w1, w2, . . . , wL can be obtained by seeking the L eigenvec-

tors corresponding to the L largest eigenvalues (denoted by λ1, λ2, . . . , λL, and

λ1 ≥ λ2 ≥ . . . ,≥ λL).

Because Sb is the sum of C matrices of rank one or less, only C − 1 of these are

independent, Sb is of rank C− 1 or less. Thus, no more than C− 1 of the eigenvalues

are nonzero, and the projecting vectors correspond to these nonzero eigenvalues [72].

Hence, the dimension of the feature space L should satisfy the constraint

L ≤ C − 1 (3.25)

The FDA procedure in this work can be briefly formulated by Algorithm 2.

3.3.3 KPCA

KPCA is an extension of PCA, which aims to solve nonlinear PCA. The key idea of

KPCA is intuitive and generic. In general, the nonlinear correlated data can always

be mapped to a higher-dimensional space in which they vary linearly via a nonlinear

mapping [75]. After this nonlinear mapping, PCA procedure can be carried out in

the new space. Actually, this two-step process can be realized by introducing kernel

functions and playing “kernel trick” [76].
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Algorithm 2 FDA
Training:

1: Collect labeled samples: v1,v2, . . . ,vN .
2: Calculate within-class-scatter matrix Sw and between-class-scatter matrix Sb.

Sw =
C∑
i=1

∑
n∈ωi

(vn − v̄i)(vn − v̄i)T

Sb =
C∑
i=1

Ni(v̄i − v̄)(v̄i − v̄)T

where v̄ =
∑N

n=1 vn/N , and v̄i =
∑

vn∈Vi vn/Ni.
3: Set L that satisfies the condition L ≤ C−1, and find the L eigenvectors of S−1

w Sb,
w1, . . . ,wL with non-zero eigenvalues.

Performing:
Calculate the projected vector of a new sample as (3.6).

We define a nonlinear mapping Φ as

Φ : RM → F (3.26)

where RM denotes the M-dimentional space, F denotes a high-dimentianal space.

The point vn in space RM is mapped to space F. The corresponding mapped point

is denoted as Φ(vn). The covariance matrix of {Φ(vn)} is given as

C =
1

N

N∑
n=1

Φ(vn)Φ(vn)T (3.27)

where it is assumed that
∑N

n=1 Φ(vn) = 03. The linear PCA in the new space F is to

solve the eigenvalue problem

Cw = λw (3.28)

where eigenvalues λ ≥ 0, w are the correlating eigenvector in space F. As

λw = Cw =
1

N

N∑
n=1

Φ(vn)Φ(vn)Tw =
1

N

N∑
n=1

〈Φ(vn),w〉Φ(vn) (3.29)

3We make such a hypothesis for it is easy to discuss, the general situation will be mentioned later.
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from this equation, we can see all solutions w with λ > 0 must lie in the span of

{Φ(vn)}. So eigenvector w can be expressed as

w =
N∑
n=1

αnΦ(vn) (3.30)

Define vector α = [α1, . . . , αN ]T , α is corresponding to w. In order to find the α,

the equation (3.28) can be converted to a new one [77] (see appendix A.1). As

λNα = Kα (3.31)

where K is an N ×N matrix with the elements

Knm = 〈Φ(vn), Φ(vm)〉 = k(vn,vm) (3.32)

where k(vn,vm) is defined as kernel function corresponding to a given nonlinear

mapping Φ. The introduction kernel function allows us to compute the value of the

dot product in F without having to carry out the nonlinear mapping Φ. The general

question is which function k does correspond to a dot product in some space F. This

question has been discussed in [78]. The following Mercer’s theorem gives a solution

to judge if a function is a valid kernel

Theorem 1. (Mercer’s theorem): Let function k(vn,vm) be given, then k(., .) is a

valid kernel function (i.e.∃ nonlinear mapping Φ, s.t. k(vn,vm) = Φ(vn)TΦ(vm)) if

and only if for all set {v1,v2, . . . ,vN}(N < ∞), the kernel matrix K satisfies the

finitely positive semi-definite property4.

The proof of the Mercer’s theorem is given for instance in [79]. Consequently, the

requirement on the kernel function is that it satisfies Mercer’s theorem. There exist

a number of kernel functions [80]. Representative kernel functions are given by Table

3.1.

4In linear algebra, K is said to be positive semi-definite if xTKx is non-negative for every
non-zero N -dimensional column vector x.
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Table 3.1: Representative kernel functions

Name Expression Parameters

Linear kernel k(vn,vm) = vTnvm Null
Polynomial kernel k(vn,vm) = (vnvm + 1)d d
Sigmoid kernel k(vn,vm) = tanh(β0〈vn,vm〉+ β1) β0, β1

Gaussian kernel
(Radial basis kernel)

k(vn,vm) = exp(− ||vn−vm||2
σ

) σ

The polynomial kernel and radial basis kernel always satisfy Mercer’s theorem,

whereas the sigmoid kernel satisfies it only for certain values of β0 and β1 [81]. Among

various kernel functions, Gaussian kernel function is usually the first choice for its

high performance in most cases [82]. Actually, it is found that Gaussian kernel can

approximate most types of kernel functions if the kernel parameter sigma is chosen

appropriately [83]. Hence, this popular kernel function is involved through our study.

For simplicity, the assumption that
∑N

n=1 Φ(vn) = 0 is made previous. For a

general situation, there is a way to do mean centering in space F by modifying K to

K̃, as

K̃ = K − 1NK −K1N + 1NK1N (3.33)

where 1N is a N ×N matrix of which each element is 1/N (see appendix A.2).

For an arbitrary M -dimension data v, in order to map it to a lower L-dimension

space, L eigenvectors α1,α2, . . . ,αL of K̃ corresponding the first L maximum eigen-

values λ1, λ2, . . . , λL must be found. After finding the eigenvectors, the lth element

of the mapped vector (i.e. feature vector) z can be calculated as following

z(l) = 〈wl, Φ(v)〉 = 〈
N∑
n=1

αl(n)Φ(vn), Φ(v)〉 =
N∑
n=1

αl(n)k(vn,v) (3.34)

where wl is the lth eigenvector of C corresponding to αl, αl(n) is the nth element of

vector αl.

The KPCA procedure is summarized by Algorithm 3.
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Algorithm 3 KPCA
Training:

1: Collect v1,v2, . . . ,vN .
2: Get K ∈ RN×N : Kij = k(vi,vj), where k(vi,vj) is a kernal function.
3: Modify K to K̃ as (3.33).
4: Find L eigenvectors of K̃ with the largest eigenvalues, which are denoted as
α1,α2, . . . ,αL ∈ RN .

Performing:
Calculate the projected vector of a new sample v. The lth (l ∈ 1, 2, . . . , L) element
of the projected vector z can be calculated using (3.34).

3.3.4 KFDA

The non-linear versions of FDA have been proposed over the last few years [84]. As

KPCA, the key idea of KFDA is also to map the data to a new space by nonlinear

mapping firstly, and then carry out FDA procedure in the new space. Kernel trick

helps to realize the KFDA process in the similar way as KPCA [85].

With the nonlinear mapping as (3.26), the FDA procedure in the new space can

be achieved by maxmizing the following Fisher criterion:

JΦ(w) =
wTSΦb w

wTSΦt w
(3.35)

where SΦb and SΦt are the between-class scatter matrix and total scatter matrix in

the space F. With the assumption that
∑N

n=1 Φ(vn) = 0, these two matrices can be

expressed as

SΦb =
C∑
i=1

NiΦ̄(xi)Φ̄(xi)
T (3.36)

and

SΦt =
C∑
i=1

∑
n∈ωi

Φ(xn)Φ(xn)T (3.37)

where Φ̄(xi) is the mean value of samples in ith class. The eigenvector w can be

also expressed by a linear combination of the observations in space F as (3.30). From

(3.36), (3.37), (3.7), and (3.30), Fisher criterion (3.35) is converted to the following
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expression (see appendix A.3) [85].

JK(α) =
αT (KWK)α

αT (KK)α
(3.38)

where K is defined by (3.32); W = diag(W1,W2 . . . ,WC), Wi (i = 1, . . . , C) is

a Ni × Ni matrix with terms all equal to 1/Ni. Like FDA, the problem (3.38) is

to find the eigenvectors of (KK)−1KWK, after L eigenvectors of with the largest

eigenvalues α1,α2, . . . ,αL are obtained, (3.34) can be used for computing the feature

vector z for a new data v.

The KFDA procedure is summarized by Algorithm 4.

Algorithm 4 KFDA
Training:

1: Collect labeled samples: v1,v2, . . . ,vN .
2: Get kernel matrix K.
3: Modify K to K̃ as (3.33).
4: Get matrix W :

W = diag(W1,W2 . . . ,WC) (3.39)

where Wi ∈ RNi×Ni with terms all equal to 1/Ni.
5: Find L eigenvectors of (K̃K̃)−1K̃WK̃ with the largest eigenvalues, which are

denoted by α1,α2, . . . ,αL ∈ RN

Performing:
Calculate the projected vector of a new sample v. The lth (l ∈ 1, 2, . . . , L) element
of the projected vector z can be calculated as (3.34).

3.3.5 Remarks on feature extraction methods

1. It was verified in [84] that KFDA is equivalent to KPCA plus FDA. That is,

KPCA is performed first then FDA is carried out in the feature space obtained

by KPCA.

2. PCA and FDA can be seen as the special situation of KPCA and KFDA using

the linear kernel function k(vn,vm) = vTnvm.

3. The performances of both KPCA and KFDA are highly related to the choice of

kernel function and the parameters in the kernel function.
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4. Both KPCA and KFDA have two drawbacks that the computation time may

increase with the number of training samples, and the data patterns in the

feature space are rather hard to interpret in the input data space [86].

3.4 Classification

The classification proceeds after feature extraction step. In this step, classifiers are

trained in the feature space. Following the feature extraction, the classification pro-

cedure can be described as follows: Given N samples z1, z2, . . . ,zN ∈ RL, which are

used for training, the sample indexes are distributed in C classes: ω1, ω2, . . . , ωC . The

sample number in ith class is Ni, which satisfies
∑C

i=1Ni = N . The class index of

zn is denoted by hn, hn ∈ {1, 2, . . . , C}. The objective of the training process is to

get a classifier. With the classifier, the class index h of a real time sample z can be

obtained.

In order to make a comparison among different classifiers, three representative

classifiers: GMM, kNN, and SVM are under consideration. Without loss of generality,

GMM is a preferable parametric classification method, while kNN and SVM are two

typical non-parametric ones. kNN is a widely used method due to its simplicity

and flexibility. The remarkable characteristics of SVM, such as good generalization

performance, the absence of local minima and the sparse representation of solution,

attract much attention in recent years [87].

3.4.1 GMM

GMM is a parametric classification methodology based on Bayes decision theory [88].

In this part, firstly, we introduce Bayesian decision theory, after that, Gaussian mix-

ture model is recommended, a parameter estimation method named expectation-

maximization algorithm is introduced finally.
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3.4.1.1 Bayesian decision theory

Bayes’ formula is given

p(ωi|z) =
p(z|ωi)p(ωi)

p(z)
(3.40)

In this formula, as definition previous, ωi (i = 1, 2, . . . , C) is the index set of ith class;

z is an arbitrary sample; p(ωi) (prior probability) is the probability of next sample

belongs to ith class, which satisfies the following equation

C∑
i

p(ωi) = 1 (3.41)

p(z|ωi) is class-conditional probability ; p(ωi|z) is posterior. p(z) is evidence, which

satisfies

p(z) =
C∑
i

p(z|ωi)p(ωi) (3.42)

To decide which class a data z belongs to, we should compare the probabilities z in

different classes (posterior). It is resolved that z belongs to the class with the biggest

posterior. In other words, we just need to compare p(z|ωi)p(ωi) with different i. The

prior probability p(ωi) is usually thought to be the frequency weight of data belongs

to ith class, so the main object is to estimate the class-conditional probability p(z|ωi).
Generally, there are two steps to accomplish the classification using Bayes decision

theory:

1. Training step: Using training samples to estimate the parameters of a prob-

ability distribution function in individual classes (class-conditional probability

density function).

2. Prediction step: For any unseen test sample, the method computes the pos-

terior probability of that sample belonging to each class, and then classifies the

test sample according the largest posterior probability [72].
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3.4.1.2 GMM for modeling class-conditional probability function

Estimating the class-conditional probability functions is realized by GMM. In GMM,

p(z|ωi), i = 1, . . . , C is represented as a weighted sum of Ri component Gaussian

densities in the following equation:

p(z|ωi) =

Ri∑
j=1

p(cj|ωi)p(z|cj, ωi) (3.43)

where p(cj|ωi), j = 1, . . . , Ri are the mixture weights, which satisfies
∑Ri

j=1 p(cj|ωi) =

1, p(z|cj, ωi) are the component Gaussian densities. Each component density is a

L-variate Gaussian function of the form,

p(z|cj, ωi) =
1

(2π)M/2|Σj|1/2
exp

{
−1

2
(z − µj)TΣ−1

j (z − µj)
}

(3.44)

with mean vector µj and covariance matrix Σj. Parameters µj, Σj and p(cj) are

collectively represented by the notation ζi:

ζi = {p(cj),µj,Σj} j = 1, . . . , Ri

The configuration of Ri is often determined by the complexity of the data distri-

bution. A complex distribution could be described by a choice of a large Ri. A

parameter estimation method, named Expectation-Maximization (EM) algorithm, is

adopted to estimate ζi (see A.2) [89]. The GMM classification method is described

by Algorithm 5.

3.4.2 kNN

kNN (see Algorithm 6) is a widely-used nonparametric classifier [73]. In the kNN

procedure, the classification decision is based on the N training samples. An object

is classified by a majority vote of its neighbors, with the object being assigned to

the class most common among its k nearest neighbors, where k is a positive integer,

typically small [90]. The training calculation is needless, and the procedure is given
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Algorithm 5 GMM
Training:

1: Collect labeled samples z1, z2, . . . ,zN
2: Initial Ri for i = 1, . . . , C.
3: for i = 1 to C

Estimate and save ζi by using EM algorithm.
end for

Performing:
1: For a new sample z, calculate p(z|ωi, ζi).
2: Class index h is assigned:

h = arg

{
max

i∈{1,...,C}
Nip(z|ωi, ζi)

}
(3.45)

by Algorithm 6.

Algorithm 6 kNN
Training:

1: Collect and save labeled samples: z1, z2, . . . ,zN .

Performing:
1: For a new sample z, calculate its Euclidean distances to z1, z2, . . . ,zN .
2: Find the nearest k neighbors of z that are at the minimum Euclidean distances:
zk1 , z

k
2 , . . . ,z

k
k , whose class indexes are hk1, h

k
2, . . . , h

k
k.

3: z is assigned to a class to which most of the neighbors belong:

h = arg

{
max

j∈{1,...,C}

k∑
i=1

δ(hki , j)

}
(3.46)

The number of neighbors k, the only free parameter in kNN, can be optimized

using the leave-one-out cross-validation method. Specifically, leave-one-out cross-

validation involves using a single observation from the training dataset as the valida-

tion data, and the remaining observations as the training data. This is repeated such

that each observation in the sample is used once as the validation data. The error

classification rate could be then obtained. The k that can minimize the error rate is

considered as the final number of neighbors.
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3.4.3 SVM

SVM is a classification method developed by V. Vapnik [91] and has been widely

applied the last two decades. The basic theory comes from binary classification prob-

lem. As Fig. 3-6 shows, there are data samples distributed in two classes, suppose we

have some hyperplane which separates the points. Then, SVM looks for the optimal

hyperplane with the maximum distance from the nearest training samples. A subset

of training samples that lie on the margin are called support vectors.

Maximum

margin

The optimal 

separating 

hyperplane

Support

vectors

Class1
Class2

Figure 3-6: SVM schematic diagram

To explain the binary SVM more specifically, take (N1 + N2) labeled sample z1,

z2, . . . , zN1+N2 from 1st and 2nd classes as training examples. gn ∈ {−1, 1} is defined

as the class label of sample zn (−1 for class 1, 1 for class 2).

Suppose the linear hyperplane is expressed as wz + b = 0, where w is normal to

the hyperplane. For the linearly separable case, the training data satisfy

wzn + b ≥ +1, ∀n s.t. gn = 1

wzn + b ≤ −1, ∀n s.t. gn = −1
(3.47)

which can be equally expressed as

gn(wzn + b− 1) ≥ 1 (3.48)

Let d+ (respectively d−) be the shortest distance from the separating hyperplane

to the closest positive (respectively, negative) point. Define the margin of a separat-
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ing hyperplane to be d+ + d−. The support vector algorithm simply looks for the

separating hyperplane with largest margin [92].

The nearest points lie on the planes wz+ b = ±1, so the margin is simply 2/||w||.
Consequently, the problem is converted to the following quadratic program:

min
w,b

1

2
||w||2

s.t. gn(wzn + b− 1) ≥ 1 ∀n
(3.49)

To solve this quadratic programming problem, Lagrange multipliers an ≥ 0 are

introduced, the Lagrange function is

L(w, b,a) =
1

2
||w||2 −

N∑
n=1

an[gn(wzn + b− 1)] (3.50)

where Lagrange coefficients are collectedly expressed as a = [a1, . . . , aN ]T . Setting

the derivative of L(w, b,a) with respect to w and b equal to zero, we obtain the

following condition

w =
N∑
n=1

angnzn (3.51)

0 =
N∑
n=1

angn (3.52)

Using these conditions, (3.50) is converted to the following quadratic problem

(QP)

min L̃(a) =
1

2

N∑
n=1

N∑
m=1

anamgngmznzm −
N∑
n=1

an

s.t. an ≥ 0 and
N∑
n=1

angn = 0 for n = 1, 2, . . . , N1 +N2

(3.53)

The above algorithm for separable data and the decision function is a linear. To

make the SVM be applied to non-separable and nonlinear cases, the above QP can

be adapted by modifying the constraint condition and introducing kernel functions
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(see Appendix A.5), as

min L̃(a) =
1

2

N1+N2∑
n=1

N1+N2∑
m=1

anamgngmk(zn, zm)−
N1+N2∑
n=1

an (3.54)

subject to
N1+N2∑
n=1

angn = 0 (3.55)

0 ≤ an ≤ D for n = 1, 2, . . . , N1 +N2 (3.56)

In our study, a practical approach, namely Sequential Minimal Optimization

(SMO), is used solve the QP problem (3.54). For more details, the reader is re-

ferred to Appendix A.6 [91]. After solving the QP problem, the Lagrange multipliers

a1, a2, . . . , aN1+N2 are obtained. The samples corresponding to positive Lagrange

multipliers are SVs, which are denoted by zs1, zs2, . . . , zsS. S is the number of SVs.

The corresponding an and gn of SV zsn are denoted by asn and gsn.

The class label g of an arbitrary data point z can be determined by the following

equation:

g = sign

(
S∑
n=1

asng
s
nk(zsn, z) + b

)
(3.57)

where the bias b is given

b =
1

S

S∑
j=1

(
gsj −

S∑
n=1

asng
s
nk(zsn, z

s
j )

)
(3.58)

From (3.57), it could be observed that the determination of the class label is depended

on the SVs, and the corresponding parameters {asn} and {gsn}. This property is central

to the practical applicability of SVM.

The training process and the performing procedure can be synthetically summa-

rized as Algorithm 7.

The above mentioned SVM is a binary classifier. To extend the binary classifier

to multi-classification situations, there are several ways. A method named “One-

Against-One” is adopted in this chapter. Actually, C(C − 1)/2 binary SVMs can
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Algorithm 7 Binary SVM
Training:

1: Collect (N1 + N2) labeled sample z1, z2, . . . , zN1+N2 from classes Z1 and Z2.
gn ∈ {−1, 1}, is the class label of sample zn (−1 for class 1, 1 for class 2). Initial
D.

2: Solve the quadratic problem (3.54) by using SMO method.
3: Save support vectors: zs1, z

s
2, . . . ,z

s
S and corresponding gn and an, which are de-

noted by {gsn} and {asn}.
Performing:

For a new sample z, its class label is determined with respect to (3.57).

be constructed based on the training data in C classes. When an arbitrary sample

comes, its classification results of all the binary SVMs are firstly obtained. The final

classification is obtained by voting all binary classification results. The details can be

found in [93].

3.5 Comparative results of different methodolo-

gies

3.5.1 Results on feature extraction and classification

After the samples in fault experiments were labeled, we got to the model training step.

As aforementioned, the analytic targets were individual cell voltages in this step. The

individual cell voltages in normal experiment and fault experiment are respectively

as in Fig. 2-10 and 2-11.

As 20-cell stack is concerned here, the dimension of original data is M = 20, and

the number of training samples is N = 9000. After labeling process, the training

samples were labeled into three classes, so the class number C = 3. To evaluate

the performance of the feature extraction methods and the different classifiers , A

criterion Error Diagnosis Rate (EDR) is defined. The error diagnosis points refer

to the points which are wrongly diagnosed. EDR means the proportion of the error

diagnosis points to total data points.

With the training data set, the feature extraction models and the classification
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models were trained successively. Some parameters were initialized first. The kernel

functions used in KPCA, KFDA and SVM are all Gaussian kernels. From the similar

experience in [84], the parameters of the kernel functions in KPCA and KFDA, i.e.

σ in Table 3.1, were set as 0.5M , where M = 20 is the data dimension of original

data space in this study. The number of Gaussian components in GMM, i.e. Ri in

(3.43), is set at 1 for all the feature extraction methods considering the distribution

characteristics of data in feature spaces. In fact, from visualization point of view, it

was found that the within-class data distributions in feature spaces (see respectively

Fig. 3-7, 3-8, 3-9, 3-10) are not complex and one Gaussian component could describe

the distributions with an acceptable precision. In kNN, the values of k were set at 5,

7, 1, 15 respectively for the methods PCA, FDA, KPCA, and KFDA, with respecting

to the leave-one-out error [72]. In SVM, the values of kernel parameters (σ) and the

parameter D in (3.56) were determined by trying a group of combinations (see for

instance [93]). The pair of (σ,D) that achieved the lowest EDR for test data was

chosen. Here the values of σ and D were set at 2 and 10000 respectively for all the

feature extraction methods.

Through feature extraction, the original 20-dimensional data was projected to a

2-dimension space. Fig. 3-7, 3-8, 3-9 and 3-10 show the data of a fault experiment in

feature spaces generated by PCA, FDA, KPCA, and KFDA respectively.
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Figure 3-7: Features obtained by adopting PCA
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Figure 3-8: Features obtained by adopting FDA
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Figure 3-9: Features obtained by adopting KPCA

It can be seen that the data points in Fig. 3-7 and 3-9 disperse over the whole

scale, whereas the overlap regions between data in the normal state and the other

two fault states are large. In contrast, as for the results of FDA and KFDA (see

respectively Fig. 3-8, 3-10), the points in the same class are more concentrated, and

the amounts of overlapping points are small, which means points in different classes

are decentralized.

Classification methods, GMM, kNN, and SVM were carried out in the different
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Figure 3-10: Features obtained by adopting KFDA

feature spaces. For instance, Fig. 3-11, 3-12 and 3-13 show the visualization results

of GMM, kNN, SVM classifications in FDA feature space respectively. It can be seen

that the feature space is divided into three zones, which denotes different states, and

the boundaries determined by different classifiers are different.

Table 3.2 shows EDRs for different combinations of the feature extraction methods

and classification methods. In order to evaluate the robustness of the approach, the

data, which is acquired from the other fault experiments than the one for training,

were handled as test data. The test data were firstly labeled. Then, the trained

feature extraction and classification models were used to process the test data. The

EDRs of test data were thus obtained by comparing the diagnostic results with the

labeling results.

From Table 3.2, the performances of the feature extraction methods can be com-

pared. For each classification methodology, the error rates using FDA and KFDA

as feature extraction tools are generally lower than that using PCA and KPCA. The

reason is that PCA and KPCA are unsupervised methodologies, the training samples

are treated equally without considering the label of each point, while FDA and KFDA

are supervised methodologies, the labeling information is utilised sufficiently. Hence,

we can consider that FDA and KFDA are more suitable for classification problems

such as fault diagnosis.
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Figure 3-11: Classification results in FDA feature space by GMM
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Figure 3-12: Classification results in FDA feature space by kNN
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Figure 3-13: Classification results in FDA feature space by SVM

Table 3.2: Results of varied classifications in different feature spaces

Feature extraction Classification EDR of training data EDR of test data

GMM 0.051 0.110

PCA
kNN 0.016 0.110
SVM 0.015 0.129

GMM 0.032 0.087

FDA
kNN 0.013 0.070
SVM 0.014 0.070

GMM 0.089 0.058

KPCA
kNN 0.052 0.121
SVM 0.058 0.113

GMM 0.034 0.085

KFDA
kNN 0.014 0.082
SVM 0.016 0.075
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In practice, it is difficult to choose the highest performance classifier. Various

problems may have different suitable classification solutions. Concerning our case,

the choice of the proper classifier can be achieved firstly by comparing the EDRs of

classifiers with FDA and KFDA as foregoing procedures. It can be observed that

EDRs obtained using kNN and SVM are always lower than when using GMM.

3.5.2 Discussion about computation costs

Apart from EDR, computation cost is a crucial factor that needs to be taken into

account for real-time implementation. For an online use, the diagnosis approach will

be coded in an embedded chip (for instance a DSP), whose computing capability and

storage capacity are much lower than that of a standard computer. The computa-

tion complexity is really a strict constraint for implementation. In our approach, the

training process is usually out of consideration, since it is completed off-line. Concern-

ing the online diagnosis process, feature extraction methodologies and classification

methodologies are considered respectively. The order notation O() is used here to

describe the computation cost. f(x) = O (h(x)) denotes that there are x0 and c0,

such that |f(x)| ≤ c0|h(x)| for all x > x0. The order notation is used to give a bound

on the limiting behavior of a function.

As in Table 3.3 and 3.4, different methodologies are evaluated from the perspec-

tives of occupied memory and computation time. From this table, it can be seen that

among different feature extraction methods, needed memory and computation time

of KPCA and KFDA are in proportion to the number of training samples, and thus

are usually large. While for classifiers, the needed memory and computation time of

kNN are in proportion to the number of training samples. These methodologies are

less suitable than the others for online diagnosis.

For reference here, the computation time and needed memory in a standard com-

puter is given here. With a computer Dell (precision M4700, 2.7 G Processor, 8 G

RAM) and with 64 bit Matlab R2010b, the needed memory and computation time

are summarized in Table 3.5.

Considering synthetically the performances of EDR and feasibility of online im-

95



Chapter 3. Pattern classification tools for diagnosis: a comparative study

Table 3.3: Computation costs of the feature extraction methodologies

Methodologies
Feature extraction

PCA FDA KPCA KFDA

Occupied memory O(ML) O(ML) O(MN +NL) O(MN +NL)
Computation time O(ML) O(ML) O(MN +NL) O(MN +NL)

Table 3.4: Computation costs of the classification methodologies

Methodologies
Classification

GMM kNN SVM

Occupied memory O
(
CR( (1+M)(M+2)

2
)
)

O(MN) O(MS + S)

Computation time O
(
CR( (1+M)(M+2)

2
)
)

O(MN) O(MS + S)

Table 3.5: Computation costs using general computer

Method Needed memory Computation time

PCA 1 kb 0.0070 s
FDA 1 kb 0.0070 s
KPCA 6.114 Mb 0.3700 s
KFDA 6.116 Mb 0.3800 s
GMM 1 kb 0.0003 s
kNN 160 kb 0.0800 s
SVM 2 kb 0.0007 s
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plementation, FDA combined by SVM can be chosen as final solution in our case.

3.6 Conclusion

This chapter presents a strategy based on pattern recognition tools for the diagnosis of

water management faults in PEMFC stacks. The procedure is realized by classifying

the features that are extracted from the vectors constructed by individual cell voltages.

In this approach, the water indicator W , which is calculated using the measured

values of ∆P and Dair, is defined to describe the quantity of water inside the fuel cell

stack and label the training data. Individual cell voltages are chosen as original vari-

ables for diagnosis. Representative feature extraction methods: PCA, FDA, KPCA,

KFDA, and classification methods: GMM, kNN, SVM, are employed and compared

from the point of view of diagnosis precision and computation cost. The test results

for a 20-cell stack show that FDA and SVM have higher performance and less com-

putation costs comparing with other methods in our case. The EDR of diagnosis by

using such an approach is always below 10%. It is therefore inferred that cell voltages

can be considered as diagnostic variables at least for detection of water management

faults. Additionally, the strategy, which combines FDA and SVM, is a very promis-

ing diagnostic proposal to diagnose the faults associated with water management for

PEMFC.

To verify the generality of this strategy, FDI of multiple types of faults for different

PEMFC stacks will be studied and discussed further in next chapter.
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Chapter 4

Pattern classification for diagnosis:

multi-fault FDI

In the last chapter, the pattern classification based fault diagnosis strategy is pro-

posed. Taking cell voltages as the variables for diagnosis, FDA and SVM as feature

extraction and classification tools, the water management faults Ff and Fd are diag-

nosed. In this chapter, in order to further verify this diagnostic strategy, more types

of faults on more stacks will be concerned. The objective of this study is to verify

that individual cell voltages could be considered as diagnostic variables for more fault

types, and the strategy composed by FDA and SVM can obtain appropriate perfor-

mance for multi-fault FDI. Specifically, the experimental data of the five fault types:

F1, F2, F3, F4, F5, and of two stacks 8-cell stack, 40-cell stack will be explored. The

methods FDA and SVM still function respectively as the feature extraction and classi-

fication tools. To further reduce the online computational burden, a multi-class SVM

called Directed Acyclic Graph SVM (DAGSVM) is adopted. To end this chapter, the

embedded system, which is specially designed for implementing PEMFC diagnosis, is

introduced, and the preliminary results of implementation with this system are then

given.
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4.1 DAGSVM for multi-fault FDI

Multi-fault FDI can be considered as a multi-class classification problem taking each

health state as a class. With the diagnostic strategy proposed in the last chapter,

the classification is carried out in the feature space generated using FDA. As a clas-

sification tool, SVM has attracted a lot of attention in the fault diagnosis domain in

recent years (see for instance [94]). Its remarkable characteristics, such as good gen-

eralization performance, the absence of local minima and the sparse representation of

solution, make it an attractive pattern classification tool [87].

The basic SVM is designed for binary classification. To extend the binary SVM to

multiclass classification, several methods have been proposed. In [93], a comparison

study of the performances of various multiclass SVM is given. The results indicate

that the ”one-against-one” and DAGSVM methods may be more suitable for practical

use than the other methods. For instance, in the last chapter, the ”one-against-one”

method is used to achieve the three-class classification problem.

Both the methods ”one-against-one” and DAGSVM are based on basic binary

SVMs. When these two methods are compared, the advantage of using DAGSVM is

that its performing time is less than the ”one-against-one” method, especially in the

situation that the class number is large. This characteristic makes DAGSVM more

suitable for online diagnosis implementation.

DAGSVM was firstly presented in [95]. As ”one-against-one” method, to solve a

C-class classification problem, it is necessary to construct all possible binary classifiers

from a training set of classes, each classifier being trained on only two out of C classes.

There would thus be C(C − 1)/2 binary classifiers trained in the training stage.

Actually, Directed Acyclic Graph (DAG) is used in the performing phase. A

typical rooted binary DAG is shown in Fig. 4-1. It has C layers, C(C− 1)/2 internal

nodes and C leaves. The nodes are arranged in a triangle structure with the single

root node at the top, two nodes in the second layer and so on, until the final layer of

leaves [95].

For DAGSVM, each node represents a binary SVM of ith and jth classes (i, j =
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Figure 4-1: DAGSVM structure

1, . . . , C). Given a test sample, starting from the root node, the binary classification

function at a node is evaluated. Then it moves to the node in the next layer from

either left or right path depending on the binary classification result. Then, the

binary classification function of the next node is evaluated. Therefore, a path is

taken before reaching a leaf which indicates the predicted class. The path is known

as the evaluation path which goes through C − 1 nodes. Hence, performing C − 1

times of binary classifications is needed to derive the final class determination.

4.2 Implementations of the diagnostic approach

To remind the whole strategy, the flowchart used here for multi-fault FDI strategy is

shown in Fig. 4-2. As stated in the last chapter, the strategy contains offline data

labeling process, model training process, and online diagnosis process.
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Figure 4-2: Flowchart of the diagnosis strategy

4.2.1 Data labeling

As described in chapter 2, the experimental datasets of 8-cell stack and 40-cell stack

are taken into account. When the fault free dataset and the datasets of the concerned

faults are obtained by carrying out the corresponding experiments, the FDI problem

is considered as a classification problem. For the 8-cell stack, the class number is 6,

i.e. the classes of Nl, F1, F2, F3, F4, F5 are considered; while the one for the 40-cell

stack is 5, i.e. the classes of Nl, F1, F2, F3, F4 are considered. At each time point, the

vector composed by individual cell voltages is considered as the original variable for

diagnosis. So 8-dimensional data and 40-dimensional data are processed respectively

for the 8-cell stack and the 40-cell stack.

To implement and verify the approach, the datasets for training and test should

firstly be prepared. As both FDA and SVM methods are supervised ones, the samples

in different classes must be prepared and labeled to construct the datasets for training

and test. For states Nl, F3, and F4, the corresponding experiments were carried out

in constant conditions. The data sampled during the experiments can be labeled with

the corresponding class labels easily. Differently, in the experiments of F1, F2 and F5,
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the faults occurred in the transition between the normal operating states. The sam-

ples in the faulty operating time intervals were collected. Since several experiments

were done for each condition, the samples in one (or several) specific experiment(s)

were employed as the training data, while the samples from other experiments were

collected as test data. The sample numbers in different classes for training and testing

are shown in Table 4.1. Notice that, in order to cover the fault zones, the dataset

with longer duration is usually selected for training. Hence, the test data is less than

training data for some classes, e.g. F2 of 40-cell stack.

Table 4.1: Sample numbers of the training and test data

Nl F1 F2 F3 F4 F5

Training data (8-cell stack) 2474 263 201 253 225 246
Test data (8-cell stack) 3633 239 301 253 180 541

Training data (40-cell stack) 2825 111 21 501 401 Null
Test data (40-cell stack) 5431 31 201 2500 2200 Null

4.2.2 FDA procedure

In this procedure, the cell voltage composed vectors are projected into the low-

dimensional feature space by using FDA. In the FDA operation, the dimension of

the projected space must satisfy the constraint (3.25). The maximum feature space

dimension number is therefore 5 for the 8-cell stack and 4 for the 40-cell stack.

Through the training process, 5 projecting vectors are obtained for the 8-cell stack,

while the number of the projecting vectors is 4 for the 40-cell stack. The eigenvalues

can reflect the amount of discriminant information that the corresponding projecting

vectors can preserve. To indicate the proportion of the eigenvalues corresponding

to the projecting vectors in all non-zero eigenvalues, the criterion ACR is defined

similarly:

ACR =

∑L
i=1 λi∑C−1
i=1 λi

(4.1)

After training process, the eigenvalues corresponding to the first 3 projecting vec-

tors and ACRs when the feature dimension L is set at 1, 2, and 3, are shown in Fig.
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Figure 4-3: Eigenvalues and ACR values of FDA result for 8-cell stack

4-3 and Fig. 4-4 respectively for 8-cell stack and 40-cell stack. From the figures, for

both stacks, it can be observed that the first 3 projecting vectors can preserve more

than 95% of the discriminant information.

The first two and three features of the data in different classes can be observed

visually. The data of 8-cell stack in 2-dimensional and 3-dimensional feature spaces

are shown in Fig. 4-5 and Fig. 4-6; While the ones for 40-cell stack are shown in Fig.

4-7 and Fig. 4-8.

From these figures, it is observed that:

� The points of different classes are generally separated visually in either 2-

dimensional or 3-dimensional feature space.

� The samples in F3 and F4 classes are near the ones in Nl. Comparatively, the

samples in class F1, F2 and F5 are mainly far away from the fault-free samples.

� Some overlaps exist between different classes. For instance, Nl and F4 for both

stacks; Nl and F3 for 8-cell stack, can be observed from the figures.

� More discriminative information could be extracted from 3-dimensional feature
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Figure 4-4: Eigenvalues and ACR values of FDA result for 40-cell stack
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Figure 4-5: Data projected to the 2-dimensional space 8-cell stack
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Figure 4-6: Data projected to the 3-dimensional space for 8-cell stack
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Figure 4-7: Data projected to the 2-dimensional space for 40-cell stack
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Figure 4-8: Data projected to the 3-dimensional space for 40-cell stack

space that from 2-dimensional feature space. For instance, some overlaps exist

between the class F1 and F5 in 2-dimensional feature space, and the overlaps

decrease in 3-dimensional feature space.

Concerning the choice of the dimension of the feature space, on the one hand,

more discriminative information can be preserved in a higher dimensional feature

space; On the other hand, the computation cost of performing FDA would increase

with the increasing in feature space dimension. In the following section, it will be

illustrated that the computation cost of DAGSVM is also correlated to the feature

space dimensional number. Hence, the choice of the feature space dimension must be

evaluated with the consideration of the DAGSVM stage.

4.2.3 DAGSVM procedure

After FDA, the DAGSVM classification is carried out to classify the generated fea-

tures into the relevant classes. To implement DAGSVM algorithm, parameter σ in

Gaussian kernel and parameter D in (3.56) were regularized via evaluating the di-
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agnosis accuracy (DA) of the test dataset1. After several attempts, the parameters,

with which a relatively higher DA can be obtained, are used to configure the SVMs.

The performance of the classification procedures in the feature spaces of varied

dimension numbers was firstly evaluated. The comparative results for the two stacks

are summarized in Table 4.2 and 4.3. From the tables, it can be observed that as

the feature dimension number increases, the DAs increase for both training data and

test data. This means that the higher classification performance could be obtained

in the higher feature space. Apart from that, the number of SVs decreases as the

dimension number increases. That is to say, some memory space corresponding SVs

and their coefficients could be saved, and the computation could be achieved within

a shorter time when DAGSVM is carried out in the higher feature space. Hence, it

is recommended to set the feature space dimension number at the maximum possible

value, i.e. one less than the class number.

Table 4.2: Comparative results of classification in various feature spaces for 8-cell
stack

Dimension number ACR DA (training data) DA (test data) SV number

1 0.7082 0.8034 0.8430 1279
2 0.8807 0.9091 0.9172 754
3 0.9908 0.9282 0.9497 660
4 0.9996 0.9869 0.9858 265
5 1 0.9896 0.9885 230

Table 4.3: Comparative results of classification in various feature spaces for 40-cell
stack

Dimension number ACR DA (training data) DA (test data) SV number

1 0.6777 0.8735 0.6270 1150
2 0.9325 0.9978 0.9235 62
3 0.9764 0.9980 0.9331 58
4 1 0.9987 0.9399 54

1DA and EDR defined in the last chapter satisfy DA+ EDR = 1.
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4.3 Results and discussion

From the above analysis, the DAs for test data for the 8-cell stack and 40-cell stack

can be satisfying values when the classification is carried out in a relative high feature

dimension as given in Table 4.2 and 4.3. Other than the global DAs, the mis-classified

points should also be analyzed with more attention. Here, frequently-used criterion

in pattern classification, called confusion matrix, is used to evaluate the diagnostic

performance more specifically.

Definition 1. A confusion matrix is a specific table layout that allows visualization

of the performance of an algorithm, typically a supervised learning one. Each column

of the matrix represents the instances in a predicted class, while each row represents

the instances in an actual class [96].

From confusion matrix, it is easy to see the mis-classification between two classes.

The confusion matrices of test data sets for the 8-cell stack and the 40-cell stack are

summarized in Table 4.4 and 4.5. Here, different from the original definition, each

row of the confusion matrices represents the diagnosed distribution of the data in an

actual class.

Table 4.4: Confusion matrix of the test data after classification for 8-cell stack

Diagnosed class
Nl F1 F2 F3 F4 F5

Actual class

Nl 1.0000 0 0 0 0 0
F1 0 0.9163 0 0 0.0628 0.0209
F2 0.0399 0 0.9502 0.0100 0 0
F3 0 0 0 1 0 0
F4 0.0611 0.0056 0 0.0389 0.8944 0
F5 0 0 0 0 0.0092 0.9908

From the two tables, it can be observed and analyzed that:

� For both stacks, the mis-classifications happen mostly on the data of class F4.

The mis-classified points are located mostly in the class of Nl and some are

classified to the F3 class. This means F4 is a fault type that is the most difficult
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Table 4.5: Confusion matrix of the test data after classification for 40-cell stack

Diagnosed class
Nl F1 F2 F3 F4

Actual class

Nl 0.9479 0 0 0.0059 0.0462
F1 0.0323 0.9355 0 0 0.0323
F2 0 0 1.0000 0 0
F3 0 0 0 0.9956 0.0044
F4 0.1486 0 0 0 0.8514

to detect. For instance, in Table 4.5, 4.62% points in the Nl class are mis-

classified to the F4 class, and 14.8% samples in the F4 class appear in the Nl

class. It can be inferred that the faults of stoichiometry variation (referring to

F4) to a certain extent are light faults compared with other types of faults.

� Some mis-classified samples also appear in class F1, F2, and F5. Actually, from

our observations, the mis-classification mostly happens at the initial stage of

these faults. It could be thought that these samples are located in the transition

zone between the normal state and fault state.

� During test data acquisition in classes Nl, F3, and F4 supplementary EIS mea-

surements were been realized. These EIS measurements added some current

disturbances to the system. With such disturbances, the high classification

rates can still be maintained.

For both stacks, when the approach is performed in PC (CPU@2.7 GHz, RAM@8

Go, MATLAB environment), the needed memory is less than 5 kb to save the FDA

and SVM models. The performing time is less than 0.5 ms. Hence, the approach is

promising for online implementation.

The approach is efficient for detecting and isolating the faults whose data are

available to train the diagnosis models. Nevertheless, we should also notice the bot-

tleneck of this diagnostic strategy. For instance, a sample from an unseen failure

mode would be mis-classified to one of the known fault classes. Hence, an abundant

training dataset, which contains the data from a substantial number of fault classes,

is usually necessary for this approach. This is considered as the drawback of the
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proposed approach.

4.4 Online implementation in an embedded sys-

tem

Although the diagnostic strategy is justified to be suitable for PEMFC system FDI by

using the data from the real system, the last link of the chain for final online diagnosis

is still absent. Actually, to realize the final online diagnosis for PEMFC systems used

for both the stationary or mobile applications, the strategy should be implemented

in a specified embedded system.

In the framework of project DIAPASON2, the programs of the proposed diagnosis

strategy were also integrated in this embedded system, and the synthetic tests were

also supposed to be carried out. In this section, the preliminary test results obtained

from the embedded system are given.

4.4.1 Embedded system designed for PEMFC system diag-

nosis

An embedded system is a computer system with a dedicated function within a

larger mechanical or electrical system, often with real-time computing constraints. It

is embedded as part of a complete device often including hardware and mechanical

parts [97]. The embedded system is proposed versus general-purpose computer, which

is designed for wide-range use.

The structure of a typical embedded system is shown in Fig. 4-9. CPU and

memory are considered as the cores of the system. They will respectively determine

the computation speed and the capability of data and program storage. In addition

to the CPU and memory hierarchy, there are a variety of interfaces that enable the

system to measure, manipulate, and otherwise interact with the external environment

[98].

Fig. 4-10 shows the embedded system, which was specially designed for the
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Figure 4-9: Structure of a general embedded system [98]

PEMFC system diagnosis by the project partners. The upper layer shown in the fig-

ure can be seen as the ”main board” of the system. The main board is equipped with

Smartfusion on-chip system developed by Microsemi company. The device integrates

an FPGA fabric, ARM Cortex-M3 Processor, and programmable analog circuitry [99].

ARM Cortex-M3 processor is an 100 MHz, 32-bit CPU. The programmable analog

circuitry can function as the D/A and A/D conversion blocks. Up to 512 KB flash

and 64 KB of SRAM are also equipped inside this integrated device. Another two

chips of 16 M memory are also added to the system. With the abundant connecting

ports, kinds of communications can be realized with other devices. The other two

layers, which are equipped with GMR sensors, are used for measuring individual cell

voltages precisely.

4.4.2 Implementation results

4.4.2.1 Online fault diagnosis developing process

As shown in Fig. 4-11, in the framework of the project, the online fault diagnosis

developing consists of three steps:

� Offline verification: In this stage, the historical data sampled in the experi-

ments of different health states are analyzed using the PC and the software such

as Matlab. The objective is to train and verify the methods. Actually, this step

is the main focus of this Ph.D. work.
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Figure 4-10: Embedded system designed for PEMFC system diagnosis [100]

� Algorithm integration: In this step, the programs for performing the diag-

nosis strategy are coded and burnt into the designed embedded system. The

integrated programs are then tested using the historical data. Thus, the ob-

tained results can be compared with the results got from the PC. The objective

of this step is to ensure the algorithm can run smoothly in the embedded sys-

tem. The computation time and occupied memory are also evaluated during

this process.

� Online realization: After the first two stages, the embedded system, in which

the diagnosis strategy is programed, is settled in the real PEMFC system. The

tests are carried out using the real-time data. This step is operated just as the

real situation. This step is to make sure the different subsystems can cooperate

as expectation.
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Figure 4-11: Flowchart of online fault diagnosis developing process
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4.4.2.2 Algorithm integration test results

The programs of the proposed methods were coded into the embedded system, and

the tested were carried out by using the same test database. The obtained results

are compared to those obtained from using a PC and Matlab software. As Table 4.6

shows, nearly same results can be obtained by implementing the algorithms in the

embedded system and in the PC. The operating time is also acceptable for real time

implementation.

Table 4.6: Comparative results from embedded system and from PC

Stack Class number
Difference ratio

(compared to PC & matlab)
Computation time

8-cell stack 6 0 11 ms
40-cell stack 5 0.08% 2.8 ms

Until now, the first two steps shown in the Fig. 4-11 have been finished. The

last-step tests are still in process.

4.5 Conclusion

Following the last chapter, the pattern classification based fault diagnosis strategy is

tested for the multi-fault FDI of two more stacks. Still, individual cell voltages serve

as the original variables for diagnosis. Methods FDA and DAGSVM are employed

successively to extract the discriminative features from the raw data and classify the

extracted features. FDI is thus achieved. The results show that five concerned faults

could be detected and isolated with high accuracy. Moreover, the light computation

cost, i.e. needed memory and computing time, makes the approach a promising online

multi-fault FDI tool for various stacks. Following that, the embedded system designed

for final online implementation is presented, and the preliminary results are given.

It is verified that the algorithms are successfully integrated in the embedded system,

and the real time capability, such as computation time, is satisfying.

Notice that the capability to recognize an unseen fault type is weak for this strat-
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egy, the next chapter will be dedicated to improve the performance in this aspect.
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Chapter 5

Pattern classification for diagnosis:

novel fault recognition and online

adaptation

In the last two chapters, the feature extraction method FDA and the classification

method SVM, have been adopted to do FDI for different stacks. The approach pro-

vides high diagnosis accuracy and a low computational cost. Nevertheless, some

aspects of the approach still need to be improved.

One of the main limits of the conventional classification methods, such as SVM is

the impossibility to detect new fault clusters. Actually, the classifiers trained using

the pre-existing data can only be used to recognize the known classes. An arbitrary

example will be classified into a known class even if it belongs to a new cluster which

strongly differs from the samples of known classes. Specifically for PEMFC systems,

multiple physical and chemical processes are involved in the fuel cells, and a set

of auxiliary components are consisted in the systems. A variety of faults could be

encountered on different parts of the systems [15]. It is usually not possible to get

the data in all the failure modes at the training stage. The data from unseen failure

modes would be always falsely diagnosed in such cases.

Moreover, specifically to the PEMFCs, the behavior in normal operating state

is evolutionary when the aging effect is taken into account. For instance, the cell
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voltages decrease after a period of time operation. The diagnosis strategy trained

initially may gradually lose its efficiency.

To solve the aforementioned problems, in this chapter, a modified data-driven fault

diagnosis strategy for PEMFC system is proposed. As in the last two chapters , the

individual cell voltages are employed as the original variables for diagnosis, and FDA

is used to extract the features for classification. A novel classifier, named Spherical-

Shaped Multiple-class Support Vector Machine (SSM-SVM) is adopted to classify the

features into various classes to fulfill the diagnostic tasks, including the detection and

isolation of the known faults and the detection of the potential novel failure modes.

Moreover, an online adaptation procedure is proposed to update the diagnosis models

in real time.

5.1 Framework of the strategy

The framework of the proposed diagnostic strategy can be summarized in Fig. 5-1.

The strategy contains an off-line initial training stage, an on-line performing stage,

Performing FDA

Performing SSM-

SVM

Realtime 

data

Off-line On-line

Basic training 

database

New cluster

Diagnostic 

decision

No

Data for 

updating

Performing FDA

Online updating 

SSM-SVM

Save data for 

analysis

Yes

Initial training FDA

Initial training SSM-

SVM

Figure 5-1: Flowchart of the proposed diagnostic strategy

and an online adapting stage. In the off-line training stage, the initial models of

FDA and SSM-SVM are trained successively based on the basic training database.
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Historical samples of cell voltages, which are distributed in normal class and various

fault classes, form the basic training database. Similarly to the strategy given in the

last two chapters, the basic training database is composed by labeled samples. The

data labeling, which is not shown in Fig. 5-1, is also necessary.

In the on-line performing stage, the real-time sample, i.e. values of cell voltages, is

firstly processed by the trained FDA model, through which features can be extracted

from raw data. Then, with the aid of trained SSM-SVM model, the features are

assigned either to a certain known class to get the diagnostic decision, or to a potential

novel failure class.

During the on-line adapting stage, the labeled data for adapting the models are

firstly collected. The data can either be prepared from real-time samples or from the

potential novel failure class. These data are processed using the trained FDA model.

Then, the extracted features will be explored to update the SSM-SVM model.

5.2 FDI and novel fault recognition

5.2.1 Problem mathematical description

Similarly to what is presented previously, the methodology presented in 5.1 section,

used to solve the diagnostic problem can be mathematically abstracted as follows.

Let M ∈ N. Suppose that we have a training dataset of N M -dimensional samples

xn (n ∈ T = {1, . . . , N}), which are distributed in C classes Ω1, Ω2, . . . , ΩC . Sample

indexes in ith class are collected as set ωi. In the sequel, the cardinal of Ωi (i.e. the

sample number in Ωi) will be denoted by |Ωi|. The class index of xn is denoted by

hn, hn ∈ {1, 2, . . . , C}. FDA and SSM-SVM models are trained based on the training

dataset. Through the trained models, a real-time sample x can be classified into a

defined class Ωi, i = 1, . . . , C or a novel cluster denoted by Ωnovel.

The original data are processed firstly using FDA. With the FDA procedure as pre-

viously, the original M -dimensional data xn (n ∈ T ) are projected to L-dimensional

space, where the projected data are denoted as zn (n ∈ T ). The classification pro-
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cedure is carried out in the L-dimensional feature space. In the following part, the

SSM-SVM procedure is presented.

5.2.2 SSM-SVM

As mentioned in the chapter 3 and chapter 4, the basic SVM was originally designed

for binary classification, and to maximize the margin between two class. Through

constructing the basic binary SVMs, multi-class SVM classification can be achieved

[93]. Although the classifiers based on the binary SVM can classify the data from the

known classes, the capability of detecting an unseen cluster seems to be defective. As

Fig. 5-2 (a) shows, the bounders among the trained classes, i.e. Class1, Class2, and

Class3, can be affirmed by a multi-class classifier based on binary SVM. According to

the decision of the trained classifier, an arbitrary sample will be classified into one of

the three classes, even if the data are from a novel cluster as it is shown by Fig. 5-2

(b).

(a) (b)

(c) (d)

Class1 Class2

Class3

Class1 Class2

Class3

Novel 

cluster

Class1 Class2

Class3

Novel 

cluster

Class1 Class2

Class3

Figure 5-2: Schematic diagrams of conventional binary SVM based multi-class clas-
sifier and SSM-SVM.
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The authors of [101] proposed classification method SSM-SVM. Different from bi-

nary SVM based classifier, the approach finds class-specific spheres that each encloses

the samples from one specific class but excludes the ones from other classes. As Fig.

5-2 (c) shows, the closed bounders for all the known classes can be found by training

SSM-SVM. Thus, the samples from a novel cluster could be probably detected if they

are outside all the closed bounders as it is shown in Fig. 5-2 (d).

Following the FDA step, the training of SSM-SVM is based on the projected vectors

zn (n ∈ T , zn ∈ RL). As shown in Fig. 5-3, to solve the nonlinear classification

problem, zn (n ∈ T ) are firstly projected to a high-dimensional space via a nonlinear

transform Φ [101]. Then, the data in each identical class will be enclosed by a sphere,

and thus the classification will be achieved using these spheres. Equivalently in the

original space, the boundaries among classes are determined consequently.

Take the ith class for example, the method is realized by seeking the sphere with

the minimal radius in the high-dimensional space. The sphere encloses all data points

in the ith class and leaves the other data points outside it. That is

 ||Φ(zn)− ai||2 ≤ R2
i + ξin if zn ∈ Ωi

||Φ(zn)− ai||2 ≥ R2
i − ξin if zn /∈ Ωi

(5.1)

where Ri and ai are the radius and center of the ith sphere respectively, and ξin,

which satisfy ξin ≥ 0 (n ∈ T ), are the slack variables corresponding to the training

data point zn. The slack variables permit the occurrence of errors. For instance, the

data in class i could be outside of the sphere; while the data outside class i could be

inside the sphere. The two inequalities in (5.1) are reduced to

cin(||Φ(zn)− ai||2 −R2
i )− ξin ≤ 0 and ξin ≥ 0 for n ∈ T (5.2)

where cin = 1 if zn ∈ ωi and cin = −1 if n /∈ ωi. With the constraint conditions of
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Figure 5-3: Schematic diagram of SSM-SVM
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(5.2), this amounts solving the following problem

min
Ri,ai

(R2
i +D

∑
n∈T

ξin)

s.t.

 cin(||Φ(zn)− ai||2 −R2
i )− ξin ≤ 0

ξin ≥ 0
for n ∈ T

(5.3)

where D is a parameter controlling the penalty of errors [101].

By introducing Lagrange multipliers, we obtain the following dual problem

L = R2
i +D

N∑
n=1

ξin −
N∑
n=1

βinξ
i
n +

N∑
n=1

αin(cin(||Φ(zn)− ai||2)− ξin) (5.4)

where αin (n ∈ T ) and βin (n ∈ T ) are non-negative Lagrange multipliers. Differenti-

ating L with respect to ai, Ri and ξin and setting the result to zero, we obtain:

∂L

∂Ri

= 0→
N∑
n=1

αinc
i
n = 1 (5.5)

∂L

∂ai
= 0→ ai =

N∑
n=1

αinc
i
nΦ(zn) (5.6)

∂L

∂ξin
= 0→ αinc

i
n + βin = D and 0 ≤ αin ≤ D (5.7)

Based the above three conditions, the following dual problem is obtained from (5.4):

min

( ∑
n,m∈T

αinc
i
nα

i
mc

i
mΦ(zn)Φ(zm)−

∑
n∈T

αinc
i
nΦ(zn)Φ(zn)

)
(5.8)

subject to ∑
n∈T

αinc
i
n = 1 and 0 ≤ αin ≤ D ∀n (5.9)

Introducing kernel function k(zn, zm) = Φ(zn)Φ(zm), the problem is further trans-

formed to the following dual problem that involves {αin}, which subjects to (5.9).
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min

( ∑
n,m∈T

αinQ
i
n,mα

i
m −

∑
n∈T

αinc
i
nk(zn, zn)

)

s.t.
∑
n∈T

αinc
i
n = 1 and 0 ≤ αin ≤ D ∀n

(5.10)

where Qi
n,m = cinc

i
mk(zn, zm). As stated previously, throughout this chapter, the

Gaussian kernel k(zn, zm) = exp(−||zn − zm||2/σ) will be used. For k(zn, zn) = 1,

the term
∑N

n=1 α
i
nc
i
nk(zn, zn) in (5.10) equals to 1.

The training process is to solve the QP (5.10). In this study, an online learning

method is used to achieve the training procedure, and the method is stated in detail

in the next section.

After solving the problem, the distance from a data point z to the ith sphere

center can be expressed by (see [101])

d2
i (z) = ||Φ(z)− ai||2 = 1− 2

∑
n∈T

αinc
i
nk(z, zn) +

∑
n,m∈T

αinQ
i
n,mα

i
m (5.11)

The radius Ri is given

Ri = ||Φ(zn)− ai|| for some zn such that αin ∈ (0, D) (5.12)

The reader is referred to [101] for more details for the derivation process of SSM-

SVM.

5.2.3 Diagnostic rules

The goal of this subsection is to present the diagnostic rules, including that for novel

cluster detection.

Let Fi : R+ → R+ be a smooth function such that Fi is decreasing and is such

that lim
ι→∞

Fi(ι) = 0. In the classical approach; i.e. without detection of novel cluster,
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a general sample z is allotted to a class using the following criterion:

Class(z) = argmax
i
Fi (di(z)) (5.13)

It should be noted that in this classical approach, the number of classes is fixed

and the sample z is associated to a class even if the distances to the different centers

are very large.

In this work, it is assumed that the classes are not limited to those defined initially.

Furthermore, the fact that the distances from a sample z from the different centers

are very large, i.e. maxFi (di(z)) is very small; in a meaning to be defined, can mean

the appearance of a novel cluster.

The principle for deciding that a sample belongs to a defined class or a new cluster

can be described as follows. For each class Ωi, δi ∈ R+ is considered to denote the

threshold from which a sample z is considered to be definitely outside the class. More

precisely, it is assumed that z is outside Ωi if Fi (di(z)) < δi. The value of threshold

can be determined based on calibration dataset and a way to fix its value is the use

of the 3-sigma law :

δi = Mi −
3

|Ωi|

√∑
zn∈Ωi

(Fi (di(z))−Mi)
2 (5.14)

with Mi = 1
|Ωi|
∑

zn∈Ωi
Fi (di(z)).

Within this approach, the decision rule is defined by

Class(z) =


arg max

i
Fi (di(z)) if maxFi(di(z) ≥ δi

novel if maxFi (di(z)) < δi

(5.15)

Note that by considering the threshold given by (5.14), less than 0.15% of the samples

in the training dataset are misclassified to the novel class.

As for the function Fi, several expressions are possible. For the implementation
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part, the one proposed in [101] is used, as

Fi (di(z)) =


0.5

(
1− di(z)/Ri

1 + λ1di(z)/Ri

)
+ 0.5 if di(z) ≤ Ri

0.5

(
1

1 + λ2(di(z)−Ri)

)
otherwise

(5.16)

where parameters λ1 and λ2 are constants that satisfy Riλ2(1 + λ1) = 1.

5.3 Online adaptation method

In [101], the modified SMO method is proposed to solve the QP problem (5.10) so

as to train SSM-SVM. This method is known as a batch training approach which is

performed in one batch. It implies that if more training data arrive subsequently, the

SSM-SVM classifier should be retrained from scratch. Since the computational cost

of training procedure is much heavier compared to the performing procedure. The

batch training is considered to be computationally inefficient in this case [102]. As

for PEMFC system diagnosis, the degradation related to ageing effect can make the

normal class data shift when long-time operation is taken into consideration. The

adaptation of the diagnostic strategy is necessary, and the adaptation is supposed

to be achieved online. The batch training thus can hardly satisfy the requirement of

online adaptation.

In [103], an incremental learning method is proposed for training the classic binary

SVM. In this method, the solution for N + 1 training data could be formulated in

terms of that for N data and one new data point which can avoid the batch learning.

In this section, the incremental training method is extended to the training and online

adaptation for SSM-SVM without much modification. A procedure is also proposed

to further lower the real-time computational cost.
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Figure 5-4: Schematic of incremental learning

5.3.1 Incremental learning method for SSM-SVM

By introducing another Lagrange multiplier bi, the problem (5.10) can be re-expressed

as:

min
0≤αi

n,α
i
m≤D

Wi =
1

2

∑
n,m∈T

αinQ
i
n,mα

i
m + bi(

∑
n∈T

cinα
i
n − 1) (5.17)

The goal of the incremental learning is to keep the Kuhn-Tucker (KT) conditions of

(5.17) satisfied when a new training sample is added to the current training data.

The principle of incremental learning can be shown in Fig. 5-4. When a new training

sample is added to the available training dataset, the training result which is expressed

as boundary just need to be modified slightly through incremental learning to take in

the new sample. Such that the retraining process could be avoided.

5.3.1.1 Incremental procedure

To solve the optimization problem (5.17), we proceed as in [103]. Let gin (n ∈ T ) and

hi be the quantities defined by

gin =
∂Wi

∂αin
=
∑
m∈T

Qi
n,mαm + cinbi (5.18)

and

hi =
∂Wi

∂bi
=
∑
n∈T

cinα
i
n − 1 = 0 (5.19)
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According to the value of gin, the set T is partitioned into three sets.

T = T iM ∪ T iE ∪ T iR
= {n ∈ T : gin = 0} ∪ {n ∈ T : gin ≤ 0} ∪ {n ∈ T : gin ≥ 0}

(5.20)

It should be noted that the solutions for (5.17) (see for instance [103]) are so that
αin = 0 for n ∈ T iR
αin ∈ (0, D) for n ∈ T iM
αin = D for n ∈ T iE

(5.21)

We use (tMj )j=1,...,|T i
M | as the denotations of the elements of T iM , and (t̄Mj )j=1,...,|T i

E∪T
i
R|

for those of T iE ∪ T iR.

The matrix P i ∈ R(|T i
M |+1)×(|T i

M |+1) which is later used is defined, as

P i
1,1 = 0, P i

1,k+1 = P i
k+1,1 = cik, and P i

l+1,k+1 = Qi
tMl ,tMk

for k, l ∈ {1, . . . , |T iM |}
(5.22)

In what follows, U will denote the index set of unlearned vectors. Let zs (s ∈ U)

a new sample to be added to the learned data. Let also αis = 0 be the coefficient

assigned to zs and gis the quantity associated to αis and determined using (5.18). If

gis ≥ 0, s will be added to T iR and thus the KT conditions are satisfied. Otherwise, the

KT conditions are maintained by varying the margin vector coefficients αin (n ∈ T iM)

and bi in response to the perturbation imparted by the incremented new coefficient

∆αis, until the s enters into T iE or T iM .

Taking into account the perturbation caused by the incremental step, the co-

efficient differences ∆αil,∆g
i
l (l ∈ T ∪ {s}), and ∆bi are introduced. Besides, for

ι ∈ {∆bi,∆αin,∆gin;n ∈ T }, coefficient sensitivities ῑ is defined so that ι = ῑ∆αis.

The KT conditions (5.18) and (5.19) can be expressed differentially, as

∆gin =
∑

m∈T i
M∪{s}

Qi
n,m∆αim + cin∆bi ∀n ∈ T ∪ {s} (5.23)
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∆hi =
∑

m∈T i
M∪{s}

cim∆αim = 0 (5.24)

For all n ∈ T iM , the condition gin ≡ 0 should be maintained. Thus, it can be

deduced from (5.23) and (5.24) that

P i



∆bi

∆αi
tM1

...

∆αi
tM
|T i

M
|


= −



cis

Qi
tM1 ,s
...

Qi
tM
|T i

M
|
,s


∆αis (5.25)

Or, in terms of coefficient sensitivities

b̄i

ᾱi
tM1
...

ᾱi
tM
|T i

M
|


= P̄ i



cis

Qi
tM1 ,s
...

Qi
tM
|T i

M
|
,s


(5.26)

where P̄ i = −{P i}−1. Note that ᾱin ≡ 0 for all n ∈ T iE ∪ T iR.

According to (5.23) and (5.26), it can be deduced that

ḡin =
∑

l∈T i
M∪{s}

Qi
n,lᾱ

i
l + cinb̄i, ∀n ∈ T iE ∪ T iR ∪ {s} (5.27)

and ḡin ≡ 0 for all n ∈ T iM .

From above explanations, it can be seen that ∆αis can be absorbed by varying

αin (n ∈ T iM) and bi. Meanwhile, gin (n /∈ T iM) vary accordingly. Thus, within several

incremental steps, s will be added to category T iE when αis = D, or to T iM when gis = 0

[103].

As in [103], some procedures in the incremental learning algorithm can be used

here without modifications.
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5.3.1.2 Upper limit on ∆αis

The composition of sets T iM , T iE, and T iR can be changed with the change of αil (l ∈
T iM ∪ {s}) and gin (n ∈ T iE ∪ T iR ∪ {s}). The procedure to determine ∆αis such that

the index of some sample migrates can be utilized here. Table 5.1 lists the possible

category changes that can occur during the learning process.

Table 5.1: Bookkeeping conditions

Case Initial Category New Category Condition ∆αic

1 U T iM ḡin > 0 −gin
ḡin

2 U T iE null D − αin
3 T iM T iR ᾱin < 0 −αi

n

ᾱi
n

4 T iM T iE ᾱin > 0 D−αi
n

ᾱi
n

5 T iE T iM ḡin > 0 −gin
ḡin

6 T iR T iM ḡin < 0 −gin
ḡin

Once set-to-set migration occurs, which means any condition listed in Table 5.1

happens for one single example, the different sets must be resettled. Therefore, the

maximum increment of αis should be determined by comparing the minimum ∆αis in

each category change case, as

M∆αi
s

= min
j

(∆αis,j) (5.28)

where ∆αis,j is the minimum ∆αis in category change case j

∆αis,j = min{∆αis : Case j} j = 1, . . . , 6 (5.29)

MakeM∆αi
s

as the increment of αis, the updating of αis, bi, α
i
n (n ∈ T ∪ {s}), and

gin (n ∈ T ∪ {s}) can be carried out.

5.3.1.3 Recursive update of the inverse matrix

In the learning process, the composition of the set T iM might change. To account

for the new composition of T iM , matrix P̄ i must be re-computed. The procedure of
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recursive computing the P̄ i proposed in [103] can also be adopted in our case.

Actually, P̄ i can be easily adapted as examples are added or removed from Si
[103]. When adding an example k to T iM , P̄ i expands as


0

P̄ i ...

0

0 . . . 0 0

+
1

ḡik



b̄i

ᾱi
tM1
...

ᾱi
tM
|T i

M
|

1


(
b̄i, ᾱ

i
tM1
, . . . , ᾱi

tM
|T i

M
|
, 1

)
(5.30)

By contrary, to remove an example k from T iM , P̄ i is contracted as

R̄i
n,m ←− R̄i

n,m − {R̄i
k,k}−1R̄i

n,kR̄
i
k,m ∀n,m ∈ T iM ∪ {0};n,m 6= k (5.31)

where index 0 refers to the b̄i-term.

5.3.1.4 Incremental learning algorithm

The overall incremental procedure for learning the new sample zs can be summarized

as Algorithm 8. The samples in U can be learned sequentially using the algorithm.

5.3.1.5 Initialization procedure

The KT conditions (5.18) and (5.19) are assumed to be satisfied on T before carry-

ing out Algorithm 8. However, the conditions are not satisfied initially by default,

when the training of a new SSM-SVM classifier is launched. An initial procedure is

therefore necessary to make the KT conditions fulfilled for a certain number (N i) of

training samples. The initialization procedure proposed in this study is summarized

as Algorithm 9.
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Algorithm 8 Incremental SSM-SVM algorithm

1: Assign αis = 0;
2: Compute gis;
3: if gis ≥ 0 then
4: Add s to T iR;
5: end if
6: while gis < 0 & αis < D do
7: Compute M∆αi

s

8: Update αis +M∆αi
s
→ αis;

9: Compute b̄i;
10: Update bi + b̄iM∆αi

s
→ bi;

11: for l = 1 to |T iM | do
12: Compute ᾱi

tMl
;

13: Update αi
tMl

+ ᾱi
tMl
M∆αi

s
→ αi

tMl
;

14: end for
15: for l = 1 to |T iE ∪ T iR| do
16: Compute ḡi

t̄Ml
;

17: Update gi
t̄Ml

+ ḡi
t̄Ml
M∆αi

s
→ αi

t̄Ml
;

18: end for
19: Update T iM , T iE, T iR;
20: Update P i;
21: end while
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Algorithm 9 Initialization of incremental SSM-SVM

1: Assign N i = b1/Dc+ 11;
2: Select zi1, . . . z

i
N i from Ωi;

3: Assign αi1 = 1− b1/DcD;
4: for n = 2 to N i do
5: Assign αin = D;
6: end for
7: for n = 1 to N i do
8: Compute gin =

∑Nini

m=1 Q
i
n,mα

i
m;

9: end for
10: Assign bi = −max{gin};
11: for n = 1 to N i do
12: Update gin + bi → gin;
13: end for
14: if arg max

n
gin = 1 then

15: Assign T iM = {1}, Assign T iE = {2, . . . , N i};
16: else
17: Assign T iM = {arg max

n
gin}, T iE = {2, . . . , N i} − {arg max

n
gin};

18: Assign s = 1, go to step 6 of Algorithm 8;
19: end if

5.3.2 Improvement of real-time learning performance

It can be noticed that the ith sphere (ai, Ri) is determined by the samples associated

to T iM and T iE; whereas Algorithm 8 involves the whole set T . Based on the tacit

assumption that the sphere surface before incremental training does not move much

after incremental procedure, the samples which are associated to T iR, meanwhile are

far away from the sphere surface have little impact on the training results. Thus, these

samples could be discarded to reduce the memory consumption and the computation

time. Nevertheless, the potential candidates for T iM and T iE should not be deleted in

the deletion process.

In this section, a procedure is proposed to keep the training candidates and to

discard the useless ones whose indexes are from T iR. The principle of the proposed

procedure can be shown in Fig. 5-5. The samples which are nearest to the sphere

surface are kept, for they are more promising candidates than others. In order to find

1In the algorithm, bxc denotes the floor function largest integer not greater than x.
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Class1 Class2

Class3

Class1 Class2

Class3

Discarding useless 

reserve vectors

Figure 5-5: Principle of discarding useless data

these samples, the difference of din
2

(defined in 5.11) and Ri
2 is deduced from (5.11),

(5.12), (5.6) and (5.18) (see Appendix A.8):

|di2(zn)−R2
i | = 2gin n ∈ T iR (5.32)

Hence, the samples corresponding to the |T iR| smallest gin are kept, while the others

are discarded. Here, the maximum |T iR| is set as twice the value |T iM ∪ T iE|, as:

|T iR| =

 |T
i
R|, if |T iR| ≤ 2|T iM ∪ T iE|

2|T iM ∪ T iE|, if |T iR| > 2|T iM ∪ T iE|
(5.33)

Since |T iM ∪ T iE| is usually small, this procedure can confirm the light memory con-

sumption and computation.

5.4 Results and discussion

5.4.1 Experiments and database

The data of 40-cell PEMFC stack mentioned previously were investigated to verify

the proposed strategy.

To observe the ageing effects on the performance of fault diagnosis strategy, the

experiments in normal state and various faulty states were carried out on the test-
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bench. The concerned health states are listed in Table 5.2. Note that the normal

tests were carried out at four different time points to take the influence of aging into

account. The experiment in each state was repeated several times. Although various

physical variables had been sampled and collected from the testbench, only the cell

voltages sampled during the experiments were drawn to construct the training dataset

and the test dataset. For each state, data from one (or several) experiment(s) were

used as training data, while data from others were considered as test data.

Table 5.2: Concerned states (classes)

Health state description Location Notation

Nominal operating (time 1) Whole system Nl1
Nominal operating (time 2) Whole system Nl2
Nominal operating (time 3) Whole system Nl3
Nominal operating (time 4) Whole system Nl4
High current pulse or short circuit Electric circuit F1

Stop cooling water Temperature subsystem F2

High air stoichiometry (4) Air supply subsystem F3

Low air stoichiometry (1.4) Air supply subsystem F4

For recalling, the evolution of cell voltages in different states is shown in Fig. 5-6.

It should be noted that those for Nl2, Nl3, Nl4 are not given here since they are

visually little varied from that of Nl1. Among them, F1, F2 occurred in-between the

experiments, while Nl1, F3, and F4 were maintained during the whole corresponding

experiments. It could be found that the voltages of different cells have different

responses to different health states. Essentially, this character is utilized for fault

diagnosis.

5.4.2 Multi-fault detection and isolation

Firstly, the performance of multi-fault detection and isolation was investigated. Four

faulty states, namely F1, F2, F3 and F4, and the normal state at time point 1, namely

Nl1, were taken into consideration. After training FDA, the data of five states were

projected to a 4-dimensional feature space. Fig. 5-7 shows the first three features of

the projecting vectors. The samples from different classes are overall isolated from
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Figure 20: Accumulation eigenvalues of 8-cell stack and 40-cell stack

19

Figure 5-6: Evolution of cell voltages in different states. (a) Nl1, (b) F1, (c) F2, (d)
F3, (e) F4
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the visual point of view.
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Figure 5-7: First 3 features of the projecting vectors from 5 different health states

Following the FDA training process, the SSM-SVM classifier was then trained in

the feature space. The training process could be considered as the initial training

which is offline.

With the trained FDA and SSM-SVM models, the diagnostic accuracy of the

test dataset was evaluated. The confusion matrix, which allows visualization of the

classification performance, is shown in Table 5.3. From the table, it could be seen

that the diagnostic accuracy is more than 95% for each class except for class F4,

which is 89.32%. Actually, F4 is the lightest fault which has some overlaps with the

normal state. The overlaps can also be observed from Fig. 5-7. Moreover, as the

decision rule given by (5.15) was used, a tiny fraction of samples were misclassified or

misdiagnosed to the new fault class. Table 5.4 gives the results without the new fault

detection procedure. Comparing the two tables, it could be found that the samples

that were misclassified to the new fault class were also mostly misclassified without

the new fault detection procedure.

By comparing Table 5.3 and Table 4.5, the performance of strategy FDA plus
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SSM-SVM can be compared with that of FDA plus DAGSVM strategy. It can be

observed that the former strategy can obtain comparable or even better accuracies in

the aspect of multi-fault FDI.

Table 5.3: Confusion matrix (%) with new fault detection

Actual class
Diagnosed class

Nl1 F1 F2 F3 F4 New fault

Nl1 97.91 0 0 0.59 1.50 0
F1 0 96.77 0 0 3.23 0
F2 0 0 95.24 0 0 4.76
F3 0 0 0 99.68 0 0.32
F4 10.00 0 0 0.05 89.32 0.64

Table 5.4: Confusion matrix (%) without new fault detection

Actual class
Diagnosed class

Nl1 F1 F2 F3 F4

Nl1 97.91 0 0 0.59 1.50
F1 0 96.77 0 0 3.23
F2 0 0 95.24 0 4.76
F3 0 0 0 99.68 0.32
F4 10.00 0 0 0.05 89.95

5.4.3 Online adaptation

When the aging effect is taken into account, a performance degradation arises over

time. Fig. 5-8 shows the stack voltage sampled at four different time points. A de-

crease could be observed over time. Since the operating frequency is not homogeneous,

the descent speed of stack voltage is varying during the time.

The performance degradation due to the aging effect is usually considered as the

normal degradation which is acceptable within certain limits. By using the trained

FDA, the data from states Nl2, Nl3, Nl4 can be projected to the feature space. As in

Fig. 5-7, the first three features of the projected vectors in different states are shown

in Fig.5-9. It could be seen that the data from normal classes shift over time. The

138



5.4. Results and discussion

03/22 05/11 06/30 08/19 10/08 11/27
28.2

28.3

28.4

28.5

28.6

28.7

28.8

28.9

29

29.1

Time/(mm/dd)

S
ta

ck
 v

ol
ta

ge
/V

 

 

Nl
1

Nl
2

Nl
3

Nl
4

sample
mean value

Figure 5-8: Evolution of stack voltage over time

diagnostic models should be updated to avoid the misclassifying of the data in normal

functioning, but collected after normal aging, into the classes representing faults.
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Figure 5-9: First 3 features of the projecting vectors from 8 different health states
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Here, in order to test the efficiency of the updating procedure, the data from classes

Nl1, Nl2, Nl3, Nl4 were tested by using the diagnostic models that are updated at

different times. Model1, Model2, Model3, and Model4 denote the models trained or

updated at time 1, time 2, time 3, and time 4. Each model is updated by using the

previous model and the current samples. For instance, Model3 is updated by using

Model2 and data from Nl2.

Table 5.5 summarizes the test results. It could be seen that the diagnostic accu-

racy is low without updating procedure at each time. On the contrary, with updating

procedure, the diagnosis accuracy could be improved significantly. Hence, the updat-

ing procedure is therefore justified to be useful and efficient.

Table 5.5: Classification accuracy ( %) of normal datasets using the models updated
at different times

Class Model1 Model2 Model3 Model4

Nl1 97.91
Nl2 65.50 99.75
Nl3 0 0.20 1
Nl4 0 0 36.03 1

5.4.4 Detection a novel failure mode

In this subsection, classes NlR (R = 1, . . . , 4) are combined as an unique class denoted

by Nl. In order to test the performance of the proposed strategy for detecting novel

failure mode, we proposed as follows. Let j ∈ {1, . . . , 4}. Assume that the fault

represented by the class Fj was initially an unknown fault. Hence, the initial step

dedicated to training was realized with the data that were representative of classes Nl

and Fi with i ∈ {1, . . . , 4} − {j}. After that, the data from various classes including

the ones used in training phase and the unknown class Fj were treated. Table 5.6-5.9

show the confusion matrices for the different values of j.

For all the cases, the probabilities that the data located in the known classes were

misclassified to the novel classes, are generally low. It should be noted for the cases

where F1, F2, and F3 were considered as novel classes, the probabilities of detection
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Table 5.6: Confusion matrix (%) with F1 as new fault class

Actual class
Diagnosed class

Nl F2 F3 F4 New fault

Nl 98.91 0 0 1.09 0
F2 0 95.24 0 0 4.76
F3 0 0 99.00 0 1
F4 6.77 0 0 93.23 0

New fault 3.23 0 0 0 96.77

Table 5.7: Confusion matrix (%) with F2 as new fault class

Actual class
Diagnosed class

Nl F1 F3 F4 New fault

Nl 94.95 0 0 4.32 0.73
F1 3.32 83.87 0 0 12.9
F3 0 0 99.00 0 1.00
F4 8.55 0 0 90.36 1.09

New fault 0 0 0 0 100

Table 5.8: Confusion matrix (%) with F3 as new fault class

Actual class
Diagnosed class

Nl F1 F2 F4 New fault

Nl 94.68 0 0 4.68 0.64
F1 3.23 90.32 0 0 6.45
F2 0 0 95.24 0 4.76
F4 9.73 0 0 89.45 0.82

New fault 0.12 0 0 4.52 95.36

Table 5.9: Confusion matrix (%) with F4 as new fault class

Actual class
Diagnosed class

Nl F1 F2 F3 New fault

Nl 99.59 0 0 0 0.41
F1 3.23 96.77 0 0 0
F2 0 0 95.24 0 4.76
F3 0 0 0 99.16 0.84

New fault 46.91 13.23 0 0 39.86
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the novel class are more than 95%. However, for the case where F4 was considered

as novel class, the probability is only equal to 39.86%, which is a low level. It can

be deduced that it is relatively difficult to recognize the data in the novel class when

they are too close to the known classes.

5.4.5 Real-time capability

In order to implement the proposed approach online in an embedded system, the

computational cost should be evaluated carefully. In this study, the computational

cost of the two online procedures (i.e. performing process and updating process),

were evaluated from the perspectives of occupied memory and computing time. The

tests were carried out under a 64-bit Matlab 2010b environment with 2.7-GHz CPU

and 8 G RAM. The results are summarized in Table 5.10. Note that Model1 is the

initial model that was trained off-line.

Table 5.10: Occupied memory and computing time

Model1 Model2 Model3 Model4

Occupied memory 30.4 kb 125 kb 125 kb 125 kb
Performing time 0.49 ms 0.53 ms 0.56 ms 0.53 ms
Updating time 2.93 ms 3.98 ms 5.32 ms

It could be found that the updating time is longer than the performing time, and

is thus the main part of the computing burden. To our knowledge, the diagnostic

period of 1 s could satisfy the requirements of diagnosis for most PEMFC systems,

and memory equipped by most embedded systems can achieve the storage task easily.

Hence, the proposed strategy is suitable for online implementation.

5.5 Conclusion

In this chapter, a novel data-driven diagnostic strategy is proposed for PEMFC sys-

tems. The FDA and SSM-SVM methods are used successively to extract the features

from individual cell voltages, and to classify the extracted features to different classes
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corresponding to the known health states and the potential novel failure mode. By

the incremental learning of SSM-SVM, the online adaptation of diagnostic approach

is realized.

The test results for a 40-cell PEMFC stack show that, different faults can be de-

tected and isolated with a high accuracy, and the data from the potential novel failure

modes can be recognized in most cases. Using an online adaptation procedure, the

diagnostic approach can be adapted over the operating time, and diagnostic perfor-

mance can be maintained. Moreover, the computational cost is justified to be suitable

for online implementation.
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Chapter 6

Partially model-based methodology

for data-driven diagnosis

In the previous chapters, the diagnostic strategies, which are based on classification

techniques, are investigated. Although encouraging results are obtained by using these

methodologies, it should still be noticed that the essential bottlenecks hidden inside

these classification methods still exist. Such as, the classification based strategies

suffer from robustness from unseen data; it is hard to sample a completed dataset

when the system operate in dynamic processes. For instance, when the normal state

is mentioned, only the operations near to nominal operating point are taken into

consideration tacitly in the previous three chapters. By contrary, the diagnostic

strategy relying on a dynamic model, such as state space model, can usually do better

in these aspects. In addition, a lot of well established diagnostic model based methods

could be applied for an analytical model. The only thing lacked is an suitable model.

We can say that there are advantages and disadvantages existing in both model-

based and data-driven diagnosis. Hence, a proper combination of them seems to be

attractive. Such a combined diagnosis strategy can proceed from data to diagnosis in

three stages: first, the dynamic model is identified from the historical data; second,

the diagnosis strategy is designed based on the identified model; third, the online

diagnosis is carried out using the designed strategy.

Recently, authors of [104] proposed a FDI design scheme, in which parity vectors
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can be identified from the process data with the aid of SIM (subspace identification

method), and then used for a model-based fault diagnosis design. The attractive

advantages of these methods are that, the well-established model-based fault diagnosis

tools can be adopted; the sophisticated modeling work can be avoided. This chapter

is dedicated to adopt this partially model-based data-driven diagnosis strategy for

PEMFC system diagnosis. Additionally, some modifications are proposed to improve

the performance of this strategy.

6.1 Background knowledge

In this section, a model structure called linear time invariant (LTI) state space

model, which is mostly used in automatic control and model-based fault diagnosis

will be recalled. Specific to this model structure, a model based fault detection tech-

nique and a model identification method will be reviewed generally. The background

knowledge mentioned in this section will be used to develop the diagnosis strategy in

the next sections.

6.1.1 Model description

Suppose that a process data set including process input and output records is avail-

able. These data can be represented by a discrete LTI state-space model, as12

x(k + 1) = Ax(k) +Bu(k) +w(k)

y(k) = Cx(k) +Du(k) + v(k)
(6.1)

with

E


w(p)

v(q)

(w(p) v(q)
) =

Q S

ST R

 δpq (6.2)

1E denotes the expected value operator, δpq the Kronecker delta.
2The symbols used in this chapter are defined independently. To avoid confusion, they will be

defined locally and will not be listed in the nomenclature table.
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where u(k) ∈ Rl, y(k) ∈ Rm, and x(k) ∈ Rn are input, output and state variables.

w(k) ∈ Rn, v(k) ∈ Rm are zero-mean, normal distributed white noises. Q ∈ Rn×n,

S ∈ Rn×m and R ∈ Rm×m are the covariance matrices of the noise sequence w(k)

and v(k).

Many industrial processes can be described very accurately by this type of model

even though this model seems to be restricted. It is also found that complex behaviors

of system can be captured by choosing the high enough system order n [105]. Moreover

the state space representation is the only model that is convenient to work with in

computer aided control system design [105]. Actually, the model-based fault diagnosis

theory is also established and developed based on this kind of model.

6.1.2 Parity space model based fault diagnosis

LTI state space 

model

Parity space based 

fault detection

Figure 6-1: Schematic of parity space based fault detection

As mentioned in chapter 1, various model-based fault diagnosis methods have been

developed, such as observer based diagnostic ones, parity space based ones. Among

them, the parity space based schemes firstly proposed by the authors of [106], have

received much attention. The design of parity relation based residual generator can

be achieved in a straightforward manner.

From (6.1), the system output can be recursively expressed as follows:

y(k − s) = Cx(k − s) +Du(k − s) + v(k − s) (6.3)

y(k − s+ 1) =Cx(k − s+ 1) +Du(k − s+ 1) + v(k − s+ 1)

=CAx(k − s) +CBu(k − s) +Cw(k − s)

+Du(k − s+ 1) + v(k − s+ 1)

(6.4)

147



Chapter 6. Partially model-based methodology for data-driven diagnosis

Repeating this procedure, we can obtain

y(k) =CAsx(k − s) +CAs−1Bu(k − s) + · · ·+CBu(k − 1) +Duk

+CAs−1w(k − s) + · · ·+Cw(k − 1) + v(k)
(6.5)

We can further rewrite the above equations in a compactly form, as

ys(k) = Γsx(k − s) +Hs,uus(k) +Hs,wws(k) + vs(k) (6.6)

where

ys(k) =


y(k − s)

y(k − s+ 1)
...

y(k)


s is the order of the parity space, us(k), ws(k), and vs(k) are defined similarly. Γs,

Hs,u, and Hs,w are defined

Γs =


C

CA
...

CAs

 ∈ Rm(s+1)×n

Hs,u =


D 0 . . . 0

CB D . . . 0
...

. . . . . .
...

CAs−1B . . . CB D

 ∈ Rm(s+1)×l(s+1)

Hs,w =


0 0 . . . 0

C 0 . . . 0
...

. . . . . .
...

CAs−1 . . . C 0

 ∈ Rm(s+1)×n(s+1)
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Assume that (C,A) is observable, for s > n, rank(Γs) = n. This ensures that

there exists at least a row vector αs:

αsΓs = 0 (6.7)

Vectors satisfying (6.7) are called parity vectors, the set of which,

Ps = {αs|αsΓs = 0} (6.8)

is called the parity space. It can be easily found that the rank of parity space is

(s+ 1)m− n.

A parity relation based residual generator can be constructed as

r(k) = αs (ys(k)−Hu,s(k)us(k)) = αs (Hs,wws(k) + vs(k)) (6.9)

The value of r(k) should be zero when the disturbances and noises are zero. Notice

that, the parity space is usually multi-dimensional, and the number of the residuals are

equal to the dimensional number of parity space. Hence, for a sample (us(k),ys(k)),

the multiple residuals could be formulated by a residual vector r(k).

Followed by residual evaluation procedure, fault detection could be realized. In

this study, the residual evaluation is achieved by using the following decision rule:

R = ||r(k)||2
 ≤ Th Fault free

> Th Fault
(6.10)

where Th is the pre-defined threshold.

Normally, for the detection design of a given model, the parameters to be designed

are the parity vectors ; whereas for the case that the model is not available, which is

the case in this work, both αs and αsHu,s are needed.
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Algorithm 10 Parity space model-based fault detection
Design:

1: Obtain the system LTI state space model.
2: Initial parity relation order s.
3: Form matrices Γs, Hu,s.
4: Find the null space of ΓT

s , i.e. the set of parity vectors Ps.

Perform:
1: Calculate the residuals according to (6.9) and using the obtained parity vectors.
2: Carry out fault detection according to (6.10).

6.1.3 Subspace model identification method

Historical operation 

data

LTI state space 

model

SIM

Figure 6-2: Objective of the model identification

For some industrial systems, such as PEMFC systems, it is hard to obtain the LTI

state space models based on the first principles in practice [25]. System identification

is the field of modeling dynamics systems from experimental data [107]. Among the

available system identification methods, subspace algorithms are an important class of

algorithms for identifying LTI state-space models [108]. Compared with other model

identification methods, SIMs possess the attractive advantages. First, they are in-

trinsically robust from a numerical point of view. Second, SIMs are also non-iterative

procedures such that local minima and convergence problems can be avoided. Addi-

tionally, they may also be converted into an adaptive version of model identification

[107].

The main mathematical problem of SIM is stated as following:

Given input and output historical samples u1,u2, . . . ,uNs , y1,y2, . . . ,yNs , find

an appropriate order n and the system matrices A, B, C, D, Q, R, S.

The name ‘subspace’ reflects the fact that linear models can be obtained from

row and column spaces of certain matrices, calculated from input-output data [105].
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Several basic SIM algorithms have been proposed in the literature [109] [110] [111].

In [112], theses basic SIM algorithms are unified as singular value decomposition task

with different of some matrix with different weighting. Developing from these basic

algorithms, a SIM method via PCA procedure is proposed in [113]. This method

is certified to have better performance at solving error in variable (EIV) problem.

Authors in [114] further proposed an orthogonal projection SIM approach, which is

able to significantly improve the model accuracy [115]. Since the performance of the

method seems to be superior to a number of existing, this method will be presented

in the follows and partly used for fault diagnosis.

To present the methodologies conveniently, we define

z(k) =

y(k)

u(k)

 (6.11)

By introducing integers sp and sf with sp, sf > n, the past and future vectors are

defined as

yp(k) =


y(k − sp)

y(k − sp + 1)
...

y(k − 1)

 ∈ Rmsp (6.12)

up(k), zp(k), wp(k) and vp(k) are defined similarly;

yf (k) =


y(k)

y(k + 1)
...

y(k + sf − 1)

 ∈ Rmsf (6.13)

uf (k), zf (k), wf (k) and vf (k) are defined similarly.

The corresponding matrices are defined as

Y (k) =
[
y(k),y(k + 1), . . . ,y(k +N − 1)

]
∈ Rm×N (6.14)
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where N is a pre-set positive integer, U(k), Z(k), W (k) and V (k) are defined simi-

larly;

Yf =


Y (k)

Y (k + 1)
...

Y (k + sf − 1)

 ∈ Rmsf×N (6.15)

Uf , Zf , Wf and Vf are defined similarly.

Yp =


Y (k − sp)

Y (k − sp + 1)
...

Y (k − 1)

 ∈ Rmsp×N (6.16)

Up, Zp, Wp and Vp are defined similarly. To sufficiently use the sample, N is set as

Ns − sf − sp + 1 and k is set at sp + 1.

Similar to (6.6), by iterating (6.1), we can obtain

Yf = Γsf−1X(k) +Hsf−1,uUf +Hsf−1,wWf + Vf (6.17)

where Γsf−1, Hsf−1,u, and Hsf−1,w are defined as Γs, Hs,u, and Hs,w with s replaced

by sf − 1. The essential system information is contained in the extended observability

matrix Γsf−1 from which the system matrices are drawn [105].

6.1.3.1 Identification of the intermediate matrices

To get Γsf−1, we recall the definition of orthogonal projection: The orthogonal pro-

jection of the row space of A onto the row space of B is denoted by A/B and can

be calculated through

A/B = AB†B (6.18)

where B† is the pseudo inverse of B, which can be expressed BT (BBT )−13.

3Here B is a full row rank matrix, and the its row number is less than its column number.
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6.1. Background knowledge

Equation (6.17) can be rewritten as

Yf −Hsf−1,uUf = [I| −Hsf−1,u]Zf

= Γsf−1X(k) +Hsf−1,wWf + Vf

(6.19)

By projecting the left and right sides of (6.19) to the row space of Zp, we can

obtain

[I| −Hsf−1,u]Zf/Zp = Γsf−1X(k)/Zp +Hsf−1,wWf/Zp + Vf/Zp (6.20)

The noise of the future is independent with the past input and output matrix Zp.

The last two terms of the right side of (6.20), namely Hsf−1,wWf/Zp and Vf/Zp, are

orthogonal projections of the future disturbances (white noise) onto the row space of

the the past input and output matrix Zp, which should be zeros [114]. Hence,

[I| −Hsf−1,u]Zf/Zp = Γsf−1X(k)/Zp (6.21)

Now multiplying both sides of (6.21) by orthogonal column space of Γsf−1, denoted

by Γ⊥sf−1,

(Γ⊥sf−1)T [I| −Hsf−1,u]Zf/Zp = 0 (6.22)

Perform Singular Value Decomposition (SVD) of Zf/Zp as

Zf/Zp =
[
U1 U2

]Σz,1 0

0 Σz,2

V T
1

V T
2

 (6.23)

where Σz,2 ≈ 0. In theory, the rank of Zf/Zp should be sf l + n, of which the proof

can be found in [113].

In practice, Zf/Zp is not strictly singular and one has to determine its rank. The

rank determination is equivalent to the determination of system order n. In [115],

the optimal order of the model will be the one which minimize a criteria named AIC

(Akaike Information Criterion). The details are provided in Appendix A.7 [113]. And
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sf and sp is assigned n+ 1 empirically [113].

With (6.23), we can easily find the orthogonal column space of Zf/Zp is U2,

therefore [
(Γ⊥sf−1)T [I| −Hsf−1,u]

]T
= U2M (6.24)

where M ∈ R(msf−n)×(msf−n) is any constant non-singular matrix. Here it is set as a

unit matrix.

U2M =

U2,y

U2,u

 (6.25)

where U2,y is the first sfm rows of U2M ; From (6.24) and (6.25)

Γ⊥sf−1 = U2,y (6.26)

− (Hsf−1,u)
TΓ⊥sf−1 = UT

2,u (6.27)

Therefore,

Γsf−1 = (U2,y)
⊥ (6.28)

− (U2,y)
THsf−1,u = UT

2,u (6.29)

6.1.3.2 Identification of system matrices

In the follows, the system matrices A, B, C, and D will be identified from the

obtained Γsf−1, and Hsf−1,u. Actually, this procedure is presented in some published

books or papers. Here, we refer [105] for more details.

Algorithm 11 Orthogonal projection SIM
1: Obtain historical samples u1,u2, . . . ,uNs , y1,y2, . . . ,yNs .
2: Initial system order n, and parameter sf , sp.
3: Construct matrix Zf and Zp, and further Zf/Zp.
4: Perform SVD decomposition of Zf/Zp as (6.23), and obtain U2.
5: Calculate Γsf−1 and Hsf−1,u according to (6.28) and (6.29).
6: Get system matrices A, B, C, and D using the procedure proposed in [105].
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6.2. Description of the diagnostic strategy

6.2 Description of the diagnostic strategy

Recently, authors of [104] proposed a FDI design scheme, in which parity vectors

can be identified from the process data with the aid of SIM, and then used for a

model-based fault diagnosis design. The attractive advantages of these methods are

that, the well-established model-based fault diagnosis tools can be adopted; the so-

phisticated modeling work can be avoided. In this section, this idea is adopted to

the PEMFC system diagnosis design. Specifically, the orthogonal projection SIM

and parity space based diagnosis method, which are aforementioned, are combined to

realize the fault detection in dynamic process. Moreover, fault isolation is achieved

through classification in residual space.

6.2.1 Fault detection

Historical operation 

data

Parity space based 

fault detection

Figure 6-3: Parity space designed from data

Observing equations (6.6) and (6.17), it is notice that Γs and Γsf−1 would be equal,

if we make s = sf − 1. It is also the case for Hs,u and Hsf−1,u. Thus, the row

vector of (Γ⊥sf−1)T can be seen as the a set of parity vector αs, and the corresponding

row vector of (Γ⊥sf−1)THsf−1,u can be seen as a set of αsHu,s. Hence, the problem

of parity space identification is transferred to seeking (Γ⊥sf−1)T [I| −Hsf−1,u], which

should equal to the orthogonal column space of Zf/Zp. Consequently, each row vector

of UT
2,y and UT

2,u can be considered as αs and αsHu,s with s = sf − 1. The parity

space dimension is msf −n. Until now, it is found that the parity space can be drawn

directly from the historical data which originally used for model identification. The

residual computation given in (6.9) can be re-expressed as

155



Chapter 6. Partially model-based methodology for data-driven diagnosis

r(k) = UT
2,yys(k)−UT

2,uus(k) = UT
2

ys(k)

us(k)

 (6.30)

with s = sf − 1. Thus, the parity space based fault detection procedure is designed

directly from the data without a model. The procedure can be summarized in Algo-

rithm 12.

Algorithm 12 Data-driven parity space fault detection procedure
1: Obtain historical samples u1,u2, . . . ,uNs , y1,y2, . . . ,yNs .
2: Initial system order n, and parameter sf , sp.
3: Construct matrix Zf and Zp, and further Zf/Zp.
4: Perform SVD decomposition of Zf/Zp as (6.23), and obtain U2.

Perform:
1: Calculate the residuals according to (6.30) and using the obtained parity vectors.

2: Carry out fault detection according to (6.10).

Remarks:

� As a whole SIM operation, the system matricesA,B, C,D should be extracted

from the estimated Γ⊥sf−1 and Hsf−1,u, although it is not necessary in our case.

� The data for parity space identification are collected from routine normal oper-

ation rather than a system identification plant test [116].

� It must be remembered that the states identified using these techniques do

not have necessary a physical meaning. The different subspace identification

techniques available in the literature also differ in the manner in which the

basis of the state space is estimated [105].

6.2.2 Fault isolation in residual space

From last subsection, it is known that we can construct a msf − n dimension parity

space. Thus, a residual space of identical dimension can be generated, and fault

detection can be achieved by checking the generated residuals. However, the fault

isolation is still absent. It is reasonable and convincing that the magnitudes and signs
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6.2. Description of the diagnostic strategy

of residuals differ for different faults. Consequently, fault isolation can be realized

by carrying out a classification procedure in residual space, when the data sets of

concerning faults are available in hand.

Generally, the data from fault experiments could be considered as those for train-

ing the classifier. However, the data in normal and faulty states are usually mixed

in one experimental dataset. A procedure is therefore needed and extract the fault

data and peel those in normal state. As shown in Fig. 6-4, the residuals of the data

sampled from the historical fault experiments are calculated and checked. Only the

residuals which are diagnosed as fault ones are saved for training use. In addition, it

should be emphasized that the knowledge of the concerned faults should be necessary.

Experimental 

data of fault 1

Parity space

Experimental 

data of fault 2

Experimental 

data of fault n

Data of fault 1 Data of fault 2 Data of fault n

Check residuals

… 

… 

Figure 6-4: Procedure of fault data preparation

In this study, the classification method DAGSVM presented in chapter 4 is used

in consideration of its superior performance.

6.2.3 Overall framework of the strategy

The approach contains off-line and on-line operations. As shown in Fig. 6-5, in

the off-line part, parity space is identified from normal process data, and the multi-

class SVM is trained with the faulty data. In the on-line diagnostic stage, the fault
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detection and isolation procedures for realtime data can be realized with the obtained

parity space and trained multi-class SVM. Notice that, the faulty data for training

multi-class SVM is usually filtered from normal data with the aid of the parity space.

Parity space 

identification

Multi-class SVM 

training

Parity space 

Multi-class SVM

Realtime 

data

Off-line On-line

Residuals

Fault

Yes

No
Normal state

Fault and 

fault type

Fault data 

extraction

Normal 

operation data

Fault data

Data of fault 

experiments

Figure 6-5: Flow chart of the diagnosis strategy

6.3 Application of PEMFC diagnosis

6.3.1 Experiments and data acquisition

The experimental data from 40-cell stack were used to verify the diagnostic strategy.

The experiments of normal state and various fault states were carried out in our

test bench. The input and output data were measured and saved with the sample

frequency of 1 Hz. The data from fault-free state were used to identify the parity

vectors. The data from faulty experiments were firstly used to verify the parity space

based fault detection, and then used for training and testing of DAGSVM based

fault isolation. In order to carry out the approach, 8 variables, including pressures of
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PEMFC stack 

model

Din,H2

Din,air

Pin,H2

Pin,air

RHin,air

RHin,H2

Tout,water

I

Vs

ΔP

Input variables

Output variables

Figure 6-6: Input and output variables used for fault diagnosis strategy

input air and hydrogen (Pin,air, Pin,H2), flow rates of input air and hydrogen (Din,air,

Din,H2), relative humidity of input air and hydrogen (RHin,air, RHin,H2), current (I),

and stack temperature (considered as temperature of cooling water outlet Tout,water),

are selected as input variables. 2 output variables are stack voltage (Vs), and pressure

drop of input air and output air (∆P ). Hence, as shown in Fig. 6-6, the input variable

number l = 8 and the output variable number m = 2.

The data from fault-free state were used to identify the parity vectors. To realize

the FDI in dynamic process, the database should not only includes the normal data

sampled at or near to the nominal operating point, but also includes that sampled from

the normal dynamic operating states. Concerning the considered PEMFC system, the

routine dynamic processes consist of the system starting and stopping, and varying

load current gradually in safe range, for instance the polarization test.

Four representative faults are presented in 2.2.2. Each faulty experiment was

repeated several times. Data from one experiment are used for training the classifier

DAGSVM; while data from other experiments are used for test.
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6.4 Results and discussion

6.4.1 Parity space identification

The profiles of different input and output variables in normal dynamic states are

shown respectively in Fig. 6-7 and Fig. 6-8. The parity space was identified based on

these data. Note that to cover the normal dynamic states as completed as possible,

the data sampled from two different experiments were joint together. So there will

be a noncontinuous point in between these data sequences.

Firstly, the dimensional number of parity space msf − n, or equally the system

order n should be determined. The AIC values are shown in Fig. 6-9 for cases of

system order from 1 to 15. So the system order n is considered to be 2 in the study.

sf and sp were assigned 3 accordingly. The dimension parity space is msf − n = 4.

By using aforementioned parity space identification procedure, 4 parity vectors

were obtained. The residuals corresponding to these parity vectors were calculated

using (6.9) and denoted by r1, r2, r3 and r4 in figures 6-10-6-14. The residuals and

the corresponding R in normal state are shown in Fig. 6-10. It can be seen that

the residuals in normal state are mostly near to zero. Since data from two normal

experiments were jointed together to identify the parity space, a strike can be observed

in the joining together of the two data sets (at about 5000 s).

After the parity space identification step, UT
2 (shown in (6.30)), which consists of

the parity vectors Γ⊥sf−1
T

and Γ⊥sf−1
T
Hsf−1,u, are identified.

6.4.2 Fault detection

In the fault detection procedure, (6.30) and (6.10) were used to decide whether the

faults happened. Here the threshold Th was set to 1 to insure 99.9% of normal data is

justified in to the normal state. The residuals and R in faulty experiments are shown

in Fig. 6-11 to 6-12. These figures depict that the faults F1 and F2 occurred in a

session of the experiments. It is noticed that the detected starting point and ending

point of fault periods are not exactly the same as those of the fault operating periods.
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Figure 6-7: Input variables in normal operating state
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Figure 6-8: Output variables in normal operating state
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For F3 and F4, the faults could be maintained in the stable states. In Fig. 6-13,

F3 was emerged from the beginning by setting Sc = 4, and aggravated by increasing

Sc to 5 after some time (namely, about 1300s). It can be inferred that the severity of

fault can be somehow reflected through the magnitude of the parameter R. In Fig.

6-14, F4 was brought after a period of normal operating.
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Figure 6-11: Residuals and R in the experiment of F1 fault
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6.4.3 Fault isolation

After faults are detected, fault isolation should be taken into account. The samples,

whose R values are greater than threshold, were selected from various faulty data

sets. Since the faults were deliberately caused, the faulty data can be labeled into

four fault classes. The labeled samples were used to train and test the DAGSVM. For

each fault case, the data from one corresponding experiment were used for training,

while that from other experiments were used for testing. On the basis of our results,

the fault isolation accuracy is 100% for both training data and testing data, which

verify the good fault isolation capability of DAGSVM classification.

Compared with the diagnostic strategies proposed in previous chapters, more vari-

ables need to be measured. Undoubtedly, more information of faults can be extracted

from these variables. That is why the 100% fault isolation rate can be obtained.

Concerning the computation cost of the strategy, the multiplication times for on-

line detection procedure, which is related to (6.30), is O((sfm− n)sf (m+ l)). In our

case, it is considered to be sufficiently light for online implementation. As for fault iso-

lation process, DAGSVM has been justified to be suitable for online implementation.

Hence, globally, the whole diagnostic procedure is suitable for online implementation

in an embedded system.

6.5 Conclusion

A partial model data-driven strategy is proposed to address PEMFC diagnosis prob-

lems, especially for the applications with high dynamic processes. With the aid of an

orthogonal projection SIM approach, parity space can be identified from normal pro-

cess data. With the parity vectors, fault detection can be realized. DAGSVM is used

for the following fault isolation procedure. The diagnostic results of a 40-cell stack

show that the 4 concerned faults can be detected and isolated with a high accuracy.

It should emphasized that a number of variables which can impacts the perfor-

mance of PEMFC system should be measured. On the one hand, this would certainly

increase the overall cost of the system, and also probably increase the system size.
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On the other hand, in some cases, these measurements seems to be necessary for the

system control objectives for some applications. It is still an open issue that which

measurements should be equipped for a specific practice system.
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Conclusion and Perspectives

To promote the utilization and commercialization of fuel cell technologies, the dura-

bility have to be improved. Towards this target, the primary objective of this thesis

is to design data-driven diagnosis strategy for PEMFC systems.

The main contributions of this dissertation can be summarized as follows.

1. The water indicator W , which is calculated using the measured values of the air

pressure drop and the air flow rate, is proposed to describe the quantity of water

inside the fuel cell stack. Combining with statistical analysis, the experimental

data can be labeled by comparing the values of water indicator to the thresholds.

2. The strategy based on pattern recognition tools are designed. The diagnostic

procedure is realized by classifying the features that are extracted from the vec-

tors constructed by individual cell voltages. Individual cell voltages are chosen

as original variables for diagnosis. Representative feature extraction methods:

PCA, FDA, KPCA, KFDA, and classification methods: GMM, kNN, SVM, are

employed and compared from the point of view of diagnosis precision and com-

putation cost. Concerning the diagnosis of water management faults, the test

results for a 20-cell stack show that FDA and SVM have higher performance

and less computation costs compared with other methods.

3. To verify the generality of the diagnosis strategy based on pattern classification,

FDI of multiple types of faults for different PEMFC stacks is studied. To

further decrease the performing time, the multi-class SVM named DAGSVM

is adopted. Experimental data, which cover five fault types of two stacks, are

investigated. The results show that five concerned faults could be detected and
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isolated with high accuracy. The light computation cost still highlights the

strategy in multiple fault diagnosis.

4. The proposed pattern classification based diagnosis algorithms were successfully

integrated to the embedded system specially designed for PEMFC system di-

agnosis. The preliminary results shows that the real time capability, such as

computation time, can be maintained.

5. To detect the unseen fault types, a novel data-driven diagnostic strategy is

proposed for PEMFC systems. By using the classification method SSM-SVM

instead of the traditional classifiers, both the known health states and the poten-

tial novel failure mode can be recognized. The test results for a 40-cell PEMFC

stack show that, different faults can be detected and isolated with a high accu-

racy, and the data from the potential novel failure modes can be recognized in

most cases.

6. Through the incremental learning of SSM-SVM, the online adaptation of diag-

nostic approach is realized. The test results for a 40-cell PEMFC stack show

that the diagnostic approach can be adapted over the operating time, and di-

agnostic performance can be maintained. Moreover, the computational cost is

justified to be suitable for online implementation.

7. A partial model data-driven strategy is proposed to address the diagnosis prob-

lem for PEMFC systems with high dynamic processes. With the aid of an or-

thogonal projection SIM approach, parity space can be identified from normal

process data. Fault detection can be further realized. Moreover, fault isolation

is realized by carrying out classification in the residual space. The diagnostic

results of a 40-cell stack show that the concerned faults can be detected and

isolated with a high accuracy.

A summary of related research directions, which deserve future investigation, is

concluded here.
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1. To complete the developing process of the online diagnosis strategy, online tests

of the designed embedded integrated with the proposed strategy are in process.

2. The evolution of the current demand on a cycle of real application should be

emulated in the PEMFC system. The proposed fault diagnosis strategies will

be tested and adapted in such cases.

3. For the partial model based diagnosis strategy, in order to model and diagnosis

the nonlinear profiles of PEMFC systems, LPV model can be used instead of

LTI model. Hence, much more work should be done in the aspects of LPV model

identification, and LPV model based fault diagnosis for PEMFC systems.

4. The fault diagnosis could be combined with the control strategy. To our knowl-

edge, the research of this aspect is just started. More efforts should be made to

the fault tolerance control for the PEMFC systems.
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P. Schott, G. Coquery, and J. Kauffmann, “Characterisation and modelling
of a 5kW PEMFC for transportation applications,” International Journal of
Hydrogen Energy, vol. 31, no. 8, pp. 1019–1030, Jul. 2006.
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Appendix A

Derivation processes of some

methodologies

A.1 Formulation of KPCA

From equation (3.28), we can obtain

λ〈Φ(vk),w〉 = 〈Φ(vk),Cw〉, k = 1, . . . , N (A.1)

Substitute (3.30) to the left side of (A.1), it is obtained that

λ〈Φ(vk),w〉 = λ
N∑
n=1

αn〈Φ(vk), Φ(vn)〉 (A.2)

Substitute (3.30) and (3.27) to the right side of (A.1), it is obtained that

〈Φ(vk),Cw〉 = 〈Φ(vk),
1

N

N∑
n=1

αn

N∑
m=1

Φ(vm)Φ(vm)TΦ(vn)〉

=
1

N

N∑
n=1

αn〈Φ(vk),
N∑
m=1

Φ(vm)〉〈Φ(vm), Φ(vn)〉
(A.3)
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With the definition of kernel matrix as (3.32), the right side of (A.2) can be expressed

as

λ

N∑
n=1

αn〈Φ(vk), Φ(vn)〉 = λ

N∑
n=1

αnkkn (A.4)

The right side of (A.3) can be expressed as

1

N

N∑
n=1

αn〈Φ(vk),
N∑
m=1

Φ(vm)〉〈Φ(vm), Φ(vn)〉 =
1

N

N∑
n=1

αn

N∑
m=1

kkmkmn (A.5)

(A.4) and (A.5) can be extensionally expressed as λKα and (1/N)K2α with consid-

eration of all the cases of k = 1, . . . , N . Thus, we further obtain

λNKα = K2α (A.6)

to find the solution of (A.6), we solve the eigenvalue problem (3.31).
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A.2 Centering in high-dimension space

The vectors {Φ(vn)} in high-dimension space F are centered as

Φ̃(vn) = Φ(vn)− 1

N

N∑
n=1

Φ(vn) (A.7)

and we define covariance matrix and K̃nm = 〈Φ̃(vn), Φ̃(vm)〉. The eigenvalue problem

(3.31) is converted to

λ̃NK̃α̃ = K̃α̃ (A.8)

where α̃ is the expansion coefficients of eigenvector (in F) in terms of Φ̃(vn), w̃ =∑N
n=1 α̃nΦ̃(xn). As we do not have the centered data {Φ̃(xn)}, it is hard to compute

K̃; however, we can use K to express K̃

K̃nm =
〈(
Φ(vn)− 1

N

N∑
n=k

Φ(vk)
)
,
(
Φ(vm)− 1

N

N∑
k=1

Φ(vk)
)〉

= Knm −
1

N

N∑
k=1

1nkKkm −
1

N

N∑
k=1

Knk1km +
1

N2

N∑
k,j=1

1nkKkj1jm

= K − 1NK −K1N + 1NK1N

(A.9)

where 1nm = 1 for all n,m, 1N is a N ×N matrix with all terms are 1/N .
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A.3 Formulation of KFDA

From (3.37) and (3.30), we can obtain

SΦt w =
C∑
i=1

Ni∑
k=1

Φ(vik)Φ(vik)
T

C∑
p=1

Np∑
q=1

αpqΦ(vpq)

=
C∑
p=1

Np∑
q=1

αpq

C∑
i=1

Ni∑
k=1

Φ(vik)〈Φ(vik), Φ(vpq)〉
(A.10)

Make Fisher criterion (3.35) equal to λ,

λΦ(vij)
TSΦt w = λ

C∑
p=1

Np∑
q=1

αpqΦ(vij)
T

C∑
i=1

Ni∑
k=1

Φ(vik)〈Φ(vik), Φ(vpq)〉

= λ
C∑
p=1

Np∑
q=1

αpq

C∑
i=1

Ni∑
k=1

〈Φ(vij), Φ(vik)〉〈Φ(vik), Φ(vpq)〉
(A.11)

Using this formula for all class i and for all its element j we get:

λ[Φ(v11)T ; . . . , Φ(v1N1)
T ; . . . ;Φ(vij); . . . ;Φ(vC1)T ; . . . ;Φ(vNC

)T ]SΦt w = λKKα

(A.12)

From (3.36) and (3.30), we can obtain

SΦb w =
C∑
i=1

Ni

[ 1

Ni

Ni∑
k=1

Φ(vik)
][ 1

Ni

Ni∑
k=1

Φ(vik)
]T C∑

p=1

Np∑
q=1

αpqΦ(vpq)

=
C∑
p=1

Np∑
q=1

αpq

C∑
i=1

1

Ni

Ni∑
k=1

Φ(vik)
〈
Φ(vik), Φ(vpq)

〉 (A.13)

Multiplied with Φ(vij)
T , we obtain

Φ(vij)
TSΦb w =

C∑
p=1

Np∑
q=1

αpq

C∑
i=1

1

Ni

Ni∑
k=1

〈Φ(vij), Φ(vik)
〉
〈Φ(vik), Φ(vpq)

〉
(A.14)
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Using this formula for all class i and for all its element j we get:

[
Φ(v11)T ; . . . ;Φ(v1N1)

T ; . . . ;Φ(vij); . . . ;Φ(vC1)T ; . . . ;Φ(vCNC
)T
]
SΦb w = KWKα

(A.15)

Combining (A.12) and (A.15) we deduce that

λKKα = KWKα (A.16)

which is left multiplied by αT to obtain (3.38).
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A.4 Proof of EM process

EM is developed from the most popular and well-established method is maximum

likelihood (ML) estimation. The aim of ML estimation is to find the model parameters

ζi, i = 1, . . . , C which maximize the likelihood of the GMM given the training data.

Taking the ith class as example, the GMM likelihood can be written as

p(Zi|ζi) =

Ni∏
n=1

p(zin|ζi) (A.17)

Unfortunately, direct maximization of this equation is not possible. However, ML

parameter estimation can be realized using EM algorithm. The basic idea of the EM

algorithm is, beginning with an initial model ζi, to estimate a new model ζ̂i, such that

p(Zi|ζ̂i) ≥ p(Zi|ζi).
On each EM iteration, the expectation step is to compute posterior probability for

each data point. The posterior probability for component cj is given by

p(cj|zin, ζi) =
p(cj)p(zin|cj, ζi)

p(zin|ζi)
=

p(cj)p(zin|cj, ζi)∑Ri

j=1 p(zin|cj, ζi)
(A.18)

The maximization step is to update the parameter set ζi based on the expectation

step result. The the following formulas are used to guarantee monotonic increase of

(A.17) [117]:

µ̂j =

∑Ni

n=1 p(cj|zin, ζi)zin∑Ni

n=1 p(cj|zin, ζi)
(A.19)

p(ĉj) =
1

Ni

Ni∑
n=1

p(cj|zin, ζi) (A.20)

Σ̂j =

∑Ni

n=1 p(cj|zin, ζi)[(zin − µ̂j)(zin − µ̂j)T ]∑Ni

n=1 p(cj|zin, ζi)
(A.21)

After iterations, the parameter set ζi can be obtained.
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A.5 Extension linear separable SVM to nonlinear

non-separable case

In SVM methodology, kernel function is also used to solve the nonlinear classification

problem. Suppose we first mapped the data to some high dimension space using a

nonlinear mapping Φ, after that the previous procedures are carried out, (3.53) can

be converted to

L̃(a) =
1

2

N∑
n=1

N∑
m=1

anamgngm〈Φ(zn), Φ(zm)〉 −
N∑
n=1

an (A.22)

By introducing kernel function, this can be expressed as follow

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamgngmk(zn, zm) (A.23)

In order to classify new data point x using the trained model, the sign of y(x) is

evaluated.

We have discussed the situation in which data in space Φ(x) is linear separable,

however, the class-condition distributions may overlap in practice. Therefore, a way

is needed to modify SVM to allow some training data points to be misclassified. A

penalty variable is used to do this.

The penalty will increase with distance from the misclassified points from bound-

ary. To make the penalty a linear function of this distance, slack variable ξn ≥ 0

is introduced, where n = 1, . . . , N . ξn = 0, for data inside or on the correct mar-

gin boundary and ξn = |gn − y(zn)| for other data. Thus, data points which satisfy

0 < ξn ≤ 1 lie inside the margin, but on the correct side of the decision boundary,

and those data points for which ξn > 1 lie on the wrong side of the decision boundary.

The classification constrains (3.48) are then replaced by

gn(wzn − b) ≥ 1− ξn (A.24)
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Our goal is now to maximize the margin while softly penalizing points that lie on the

wrong side of the decision boundary, therefore the problem is converted to minimize

D
N∑
n=1

ξn +
1

2
||w||2 (A.25)

where the parameter D > 0 controls the trade-off between the slack variable penalty

and the margin. In the limit D → ∞, the earlier SVM for separable data will be

recovered. In order to minimize (A.25) subject to the constraints (A.24) and ξn ≥ 0,

the corresponding Lagrange function is given by

L(w, b,a) =
1

2
||w||2 +D

N∑
n=1

ξn −
N∑
n=1

an[yn(wzn − b)− 1 + ξn]−
N∑
n=1

µnξn (A.26)

where an ≥ 0 and µn ≥ 0 are Lagrange multipliers, setting the derivative of L(w, b,a)

with respect to w, b and {ξn} equal to zero, we obtain the folowing the condition

other than (3.51) and (3.52)

an = D − µn (A.27)

Using these results to eliminate w, b and {ξn} from the Lagrange function, the dual

Lagrange function is given as (3.54), which is identical to the separable case. Consid-

ering µn > 0, the constraints are given as (3.55) and (3.56).

Until now, the problem is converted to a quadratic programming (QP) problem

as (3.54) with constraints (3.55) and (3.56)
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A.6 SMO training

SMO is a simple algorithm that can quickly solve the SVM QP problem (3.54). SMO

decomposes the overall QP problem into QP sub-problems. There are two components

to SMO: an analytic method for solving for the two Lagrange multipliers, and a

heuristic for choosing which multipliers to optimize.

A.6.1 Solving for two Lagrange multipliers

Taking Lagrange multipliers a1 and a2 as example, because there are only two mul-

tipliers, the constraints of the problem can be easily be displayed in two dimensions.

To satisfy the bound constraints (3.56) and the linear equality constraints (3.55), the

low limit and high limit of term a2, denoted as a2,l and a2,h, can be obtained, as

 a2,l = max(0, a2 − a1), a2,h = min(D, a2 − a1 +D) if g1 6= g2

a2,l = max(0, a2 + a1 +D), a2,h = min(D, a2 + a1) if g1 = g2

(A.28)

The second derivative of the objective function with respect to a2 can be expressed

as:

η = k(z1, z1) + k(z2, z2)− 2k(z1, z2) (A.29)

which is greater or equal to zero. Thus, the minimum could be computed, and the

optimal new a2 is expressed as

anew2 = a2 +
g2(E2 − E1)

η
(A.30)

where En is the error on nth training sample, which can be expressed as

En =

N1+N2∑
m=1

amgmk(zm, zn) + b− gn (A.31)
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Taking the constraints (A.28) into account, a2 is further expressed as

anew2 =


a2,l if a2 < a2,l

anew2 if a2,l
2 ≤ a2 ≤ a2,h

a2,h if a2 > a2,h

(A.32)

New a1 can be deduced, as

anew1 = a1 + g1g2(a2 − anew2 ) (A.33)

New b is calculated, as

bnew = bnew,1 + bnew,2 (A.34)

where

bnew,1 = E1 + g1(anew1 − a1)k(z1, z1) + g1(anew1 − a1)k(z1, z2) + b

and

bnew,2 = E2 + g2(anew2 − a2)k(z2, z2) + g1(anew1 − a1)k(z1, z2) + b

A.6.2 Choosing multipliers to optimize

The KKT conditions of problem (3.54) with its constrains are



an = 0⇔ (

N1+N2∑
m=1

amgmk(zm, zn) + b)gn ≥ 1

0 < an < D ⇔ (

N1+N2∑
m=1

amgmk(zm, zn) + b)gn = 1

an = D ⇔ (

N1+N2∑
m=1

amgmk(zm, zn) + b)gn ≤ 1

∀n (A.35)

There are the methods used to choose the first and the second multipliers respectively.

To choose the first one, the entire training set and the examples whose Lagrange

multipliers are neither 0 nor D are checked in turn against the KKT conditions and
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violating examples are drawn. Once the first multiplier is chosen, the second one

is chosen with respect the maximization of |E1 − E2|. The choosing procedure is

terminated until the entire training dataset obeys the KKT conditions.

More details of algorithm SMO and the pseudo-code can be found in [91].
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A.7 Determination of system order

Given a set of system order n, the system model order is the one which makes the

following AIC minimum.

AIC(n) = N (m(1 + 2π) + log(|Σn|)) + 2δnMn (A.36)

where

|Σn| =
1

N

N∑
k

(y(k)− ŷ(k))(y(k)− ŷ(k))T (A.37)

Mn = 2nm+
m(m+ 1)

2
+ nl +ml (A.38)

δn =
N

N − (Mn

m
− m+1

2
)

(A.39)

In [113], it is proven that the prediction error can be expressed as

y(k)− ŷ(k) = (U2U
T
2 Ξ)†zf (k − sf + 1) (A.40)

where

Ξ =


0(sf−1)m×m

Im

0sf l×m

 (A.41)

0p×q is p× q zero matrix, Im is m×m identity matrix.
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A.8 Proof of (5.32)

According to (5.11) and (5.12), the left side of (5.32) can be expressed

|di2(zn)−R2
i | = | − 2Φ(zn)ai + 2Φ(zl)ai| l ∈ T iM (A.42)

Substituting (5.6) and taking into account (5.18), we obtain

Φ(zl)ai = Φ(zl)
∑
m∈T

cimα
i
mΦ(zm) =

∑
m∈T Q

i
m,l

cil

=
gil − cilbi

cil
=

0− cilbi
cil

= −bi
(A.43)

Substituting (A.43) and (5.6), and taking into account (5.18), the right side of (A.42)

can be expressed by

| − 2Φ(zn)
∑
m∈T

cimα
i
mΦ(zm)− 2bi|

= 2|
∑
m∈T

Qm,n + cinbi| = 2|gin| = 2gin n ∈ T iR
(A.44)
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