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Abstract 

Organic-inorganic hybrid semiconductors based on metal halide units have attracted attention 

due to their potential applications in light-emitting optical devices and more recently in 

photovoltaic devices. The exciton binding energies and oscillator strengths are sufficiently 

large in these systems making the realization of microcavities in the strong coupling regime 

with high quality at room temperature possible. As a relatively new material, the perovskites 

still have many behaviors that are not well understood and a lot of research work is necessary. 

The research in this manuscript is divided into two parts: In the first part, we study the dynamics 

of excitons in a particular perovskite (PEPI) at room temperature using pump-probe 

spectroscopy for low and high excitation regime. At high excitation density, a process of Auger 

recombination of excitons comes into play. An ultrafast intraband relaxation has been 

observed. The second part of the manuscript is dedicated to the study the optical properties of 

high quality PEPI-based microcavity at room temperature using microphotoluminescence 

spectroscopy. A new perovskite material with better photostability has also been synthesized.

   

Résumé 

Les pérovskites hybrides organiques-inorganiques ont attiré l'attention en raison de leurs 

applications potentielles dans des dispositifs optiques et plus récemment dans les dispositifs 

photovoltaïques. L'arrangement cristallin des pérovskites forme une structure en multi-puits 

quantiques dans laquelle les états excitoniques présentent une grande force d'oscillateur et une 

énergie de liaison importante, ce qui rend la réalisation de microcavités dans le régime de 

couplage fort avec une haute qualité possible à la température ambiante. Comme un matériau 

relativement nouveau, les pérovskites ont encore beaucoup de comportements qui ne sont pas 

bien compris et beaucoup de travail de recherche est nécessaire. La recherche dans ce 

manuscrit est divisé en deux parties: Dans la première partie, nous étudions la dynamique des 

excitons sur une pérovskite particulière (PEPI), à température ambiante par mesure pompe-

sonde sous faible et fort régime d'excitation. Sous forte densité d'excitation, d'un processus de 

recombinaison Auger des excitons est présenter. Relaxation intrabande ultra-rapide a été 

observée. La deuxième partie du manuscrit est consacrée à l'étude des propriétés optiques à 

microcavité PEPI à haut qualité à température ambiante par spectroscopie microPL. Des 



 

nouvelles pérovskites avec des propriétés optimisées (propriétés optiques d'émission, rugosité 

de surface et photostability) ont  également été synthétisé. 
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 Introduction 

 

The topic of light-matter interaction in semiconductors has long been the subject of a 

huge research effort because of both its importance in the fundamental understanding of these 

solids and the many applications that depend on it. On the former aspect we can cite the 

photoconductivity property, light emission capability and various electro-optic and nonlinear 

effects. On the latter aspect, we recall such large scale applications as light detectors, LEDs and 

laser diodes, photovoltaic generators, displays, etc.[1] 

From the very beginning, it has been recognized that the fundamental optical properties 

of semiconductors are intimately linked to features originating in the symmetry and 

dimensionality of the electron system. In an optical transition, an electron from the valence 

band is promoted to the conduction band. Therefore, it leaves an electron vacancy in the valence 

band which can be described as a positive particle named a hole. The electron-hole pair in 

Coulombic interaction is called an exciton. Depending on their density and temperature, 

excitons can behave as a weakly interacting Bose gas. It has been understood by Moskalenko 

[2] and Blatt [3] that excitons remain in the gas phase at low densities and low temperature and 

are therefore good candidates for observation of Bose-Einstein condensation (BEC). The 

clearer signature of exciton Bose-Einstein condensation should be the emission of a coherent 

light by spontaneous recombination of condensed excitons [4]. In order to enhance the coupling 

between excitons and photons, photons can be confined in cavities, leading to the formation of 

polaritons, half-light half-matter quasi-particles existing when the light-matter strong coupling 

regime is reached. This field has been intensively studied due to the interest in coherent and 

stimulated effects in such systems which can lead to optical devices. In particular, the properties 

of polaritons to form a Bose-Einstein condensate may lead to the realization of low threshold 

polariton lasers. 

From the point of view of materials, most studies of exciton-photon coupling in such 

strong coupling cavities focus on using InAs-GAAs emitters (semiconductor Quantum Dots 

and Quantum Wells) in high Q-factor planar microcavities at low temperatures [5, 6]. In order 

to raise the working temperature of these polariton-based devices up to room temperature, a lot 

of efforts has been put on alternative semiconductors presenting large exciton binding energies 

and oscillator strengths such as GaN [7, 8], ZnO [9], and organic materials [10-11].  
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Besides the inorganic semiconductors and the organic materials, an interesting class of 

materials is intensively studied: the hybrid materials, which are expected to combine the 

attractive features of organic materials and inorganic materials within a single molecular-scale 

composite, and can be synergistically exploited to overcome the limitations of organic and 

inorganic materials. In the past two decades, the organic-inorganic hybrid perovskites have 

arisen as a new functional material and have drawn great attention and research effort.  

Due to the belief that organic-inorganic hybrid semiconductor inside microcavities could 

open the way to realize polariton lasers at room temperature, the team "NANOPHOT" of LAC/ 

ENS Cachan has performed a lot of studies and has successfully realized [12-22] : 

1. strong coupling regime at room temperature in microcavities containing two-

dimensional layered organic-inorganic perovskites, emitting in green, blue and near UV 

range 

2. strong coupling regime at room temperature in hybrid vertical microcavities containing 

a layer of inorganic semiconductors such as GaN or ZnO and a perovskite layer 

3. optical optimization of new functionalized organic-inorganic hybrid perovskites for 

applications in microcavities and photonics.  

In order to go further, a better understanding of the electronic structure as well as the 

excitonic interactions in perovskite thin layers are necessary [23, 24]. The knowledge of the 

carrier dynamics is of particular importance since it governs excitonic non-linearities which are 

at the basis of operations in optoelectronic devices. One of these fundamental non-linearities is 

the absorption coefficient saturation of the excitonic transition in presence either of free carriers 

in the continuum or excitons. These important issues bring about the research subject of this 

thesis where we focus our attention on a particular group of perovskites: the two-dimensional 

(2D) layered lead halide perovskites. 

Thus, this manuscript is developed in four chapters as follows: 

In Chapter 1, we talk about the organic-inorganic hybrid materials and introduce the 

chemical composition and crystal structure of perovskites compounds. We present the 

preparation and deposition techniques of 2D layered perovskites. We also present the optical 

and structural characterizations of the two-dimensional perovskites which will be mainly 

studied in this manuscript. Moreover, we discuss the strong coupling regime observed in 

semiconductor microcavities containing these 2D-perovskites. 

Chapter 2 presents the different experimental techniques used to characterize the optical 

properties of both perovskite thin films and microcavities containing them. Besides, we detail 
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a complete description of the fabrication of Standard perovskite based microcavities covered 

with a silver metallic mirror.  

 Chapter 3 presents the exciton dynamics in the (C6H5-C2H4-NH3)2PbI4 layered 

perovskite by means of pump/probe spectroscopy performed at room temperature and at low 

carriers density where multiexcitonic effects are negligible. Both interband and intraband 

relaxations are investigated.  The origin of the saturation of the absorption coefficient is 

demonstrated, and a theory reported for 2D excitons is presented. Finally, exciton-exciton 

interactions are probed through experiments as a function of the injected carriers density.   

Finally, Chapter 4 is devoted to a new assembly technique making use of top-dielectric 

mirror migration in a liquid. It is based on the migration in liquid of the top dielectric mirror 

allowing a significant increase of the cavity mode quality factor. Both angle resolved 

reflectivity and microphotoluminescence measurements are performed to characterize the 

optical properties of this high quality perovskite based microcavity. Besides, zero-dimensional 

cavity polaritons have been demonstrated at room temperature. Finally, a new perovskite has 

been synthesized to improve the materials photostability.  
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Chapter1 

1. Hybrid Organic-Inorganic perovskite 

Perovskite materials represent a very large family of compounds, which ramify to many 

groups. One of them is the Hybrid organic-inorganic perovskites which provide significant 

opportunities as multifunctional materials for many electronic and optoelectronic applications, 

such as organic-inorganic field-effect transistors [25], or nonlinear optical switches based on 

strong exciton-photon coupling in microcavity photonic architectures. Very recently, hybrid 

organic-inorganic perovskites have been suggested as a new class of low-cost material for high 

efficiency photovoltaic cells [26-28]. 

In the last years, an increasing number of studies were dedicated on hybrid organic-

inorganic materials due to the possibility of combining the advantages of both materials. 

Organic compounds offer a number of useful properties including structural diversity, ease of 

processing and high luminescence quantum yield at room temperature. On the other side, 

inorganic materials have a distinct set of advantages, including good electrical mobility, band 

gap tunability (enabling the design of metals, semiconductors, and insulators), mechanical and 

thermal stability, and interesting magnetic or electric properties. 

We are interested in a specific class of hybrid compounds: 2D layered organic-inorganic 

hybrid perovskites. In this chapter, we will show that they are an original kind of semiconductor 

for optoelectronics. First, we will talk about the general properties of some organic-inorganic 

hybrid materials, specifically focusing our attention on the hybrid perovskites semiconductors. 

Then, we will talk about the fabrication of perovskites samples, from the synthesis of chemical 

compounds to the formation of two dimensional layered thin films. Experimental methods used 

to characterize crystal structure, surface topography, and optical resonances will be presented. 

1.1. Perovskite Crystal Structure 

Perovskite crystal is a relatively rare ionic crystal whose chemical formula is CaTiO3. It 

was discovered in 1839 in the Ural mountains of Russia by Gustav Rose and is named after in 

the honor of a Russian mineralogist L.A. Pervoski (1792-1856).  

Generally, the term "perovskite" includes crystals having the same structure as the 

perovskite and whose chemical formula is of the form AMX3. The basic 3D perovskite 

structure AMX3 is schematically depicted in Figure 1.1. It consists of corner-sharing MX6 
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octahedra, where X is typically an anion: Cl-, Br- , or I-. In order to satisfy the charge balancing 

requirements, the M cation is generally a divalent metal that can adopt an octahedral anion 

coordination, such as Ge2+, Sn2+, Pb2+, Co2+, Fe2+, Cu2+, Ni2+, Mn2+, Cr2+, Pd2+,Cd2+, Ge2+, 

Sn2+, Pb2+, Eu2+, or Yb2+. The A ions fill the large 12-fold coordinated holes between the 

octahedra. 

The size of A ions influences a lot the perovskite structure. Here we define t as the 

tolerance factor which satisfies the relation: 

   A X M XR R t 2 R R                                   (1.1) 

where RA, RM, and RX are ionic radii of A, M, and X ions respectively. The values of RA+RX 

and RM+RX are supposed to be approximately the distance A-X and M-X respectively. For 

perfect 3D network, Perovskite has a cubic structure wherein the tolerance t is equal to 1. 

 

Figure 1.1 Basic AMX3 perovskite structure 

Besides the 3D network, the 2-dimensional network is a common structure for organic-

inorganic hybrid perovskites. It happens when the organic group A is too large to fit into the 

space provided by the nearest-neighbors X within the inorganic sheet, causing the distortion of 

the cubic structure. The tolerance factor is much larger than 1 in this case and the organic group 

needs to be held away from the inorganic sheets by a spacer, such as an alkyl chain, in order to 

grow 2D perovskites layered structures. 

 The 2D layered perovskite compounds of general formula: (R-NH3)2MX4, where R is an 

aliphatic or aromatic ammonium cation, M is a divalent metal that can adopt an octahedral 

coordination, and X is a halogen, are one of the typical self assembled materials. In (R-

NH3)2MX4 systems shown in Figure1.2, the perovskites consist of single layers of oriented 

inorganic sheets separated by bilayers of organic ammonium cations, where the organic groups 

R self-assemble via "π - π" interaction (when the organic group contains aromatic groups) or 

through Van der Waals force (when the organic group contains alkyl chains).  
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Figure1. 2  Sketch of 2D organic-inorganic perovskite (R-NH3)2MX4. 

 

1.2. Preparation of perovskite layers  

In this section we will introduce the perovskite crystals performed in our laboratory in 

layered film form. Method of preparation and some factors that may influence surface quality 

of layered films will be discussed. 

The synthesis of perovskites is a primary and important procedure among perovskites 

study. The fabrication of perovskites is relatively easy compared to that of other traditional 

semiconductors which needs huge equipments and strict environment conditions. The 

perovskites thin films are deposited using simple techniques such as spin coating, dip coating 

or evaporation. In our work, we have chosen the spin coating technique for all film depositions. 

The perovskites that we are interested in and that we synthesize are mainly in the form of (R-

NH3)2PbX4. The protocol developed in this manuscript concerns a particular perovskite, namely 

(bi-(phenethylammonium) tetraiodoplumbate, PEPI): (C6H5C2H4NH3)2 PbI4. Generally, the 

synthesis of a perovskite thin film occurs in three steps: synthesis of ammonium salts, 

preparation of perovskites solution and deposition on a substrate. 

1.2.1. Synthesis of ammonium salt precursors 

Generally, Ammonia salts can be synthesized by reacting different amines (monoamine 

R-NH2 or diamine H2N-R-NH2) with halogen acid (HX).This reaction is described by 

equation1.2.                   

                                          R-NH2 + HX→ R-NH2.HX      (1.2) 
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It is a neutralization reaction where the salts are easy to generate with a yield rate of 

relatively high level (nearly 100%). We have synthesized different organic salts; however we 

present here the synthesis of “phenethylamine iodide salt” C6H5C2H4-NH3I which is involved 

in the preparation of PEPI perovskite that is the main perovskite studied in this thesis. The 

halogen acid used is HI 57 wt% aqueous solution purchased from Sigma Aldrich Company. For 

the organic part, 2-phenylethanamine commercially available is used. This reaction is described 

by equation1.3 

C6H5C2H4-NH2+HI→C6H5C2H4-NH3I                                       (1.3) 

The reaction setup is shown in Figure 1.3. The setup is proposed by Pierre Audebert and 

mounted by Laurent Galmiche at PPSM1, the chemistry laboratory at ENS Cachan. 

 

Figure 1.3 Reaction setup to produce the ammonium salts. 

Gaseous HI is obtained in flask 1 by dropping excess concentrated HI acid gingerly on 

P2O5 powder, with the bottle placed in ice water path (for cooling) since the dehydration process 

of P2O5 to HI solution is exothermic and dangerous. Gaseous HI is then guided by pipes through 

the first safety flask to the reaction flask as soon as it is generated. In the reaction flask, 

precipitate of small white grains of C6H5C2H4-NH3I salts are obtained as HI gas reacts with 

C6H5C2H4-NH2 (phenylethyl amine) dissolved in diethyl ether. The reason to choose diethyl 

ether in the reaction flask comes from the fact that it is a very good solvent for amines on the 

one hand, and that the salts have very low solubility in it on the other hand. Therefore the 

                                                 
1 Laboratory of Photophysics and Photochemistry Supramolecular and Macromolecular, ENS, Cachan. 
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generated ammonium salts tend to precipitate out of solution while the reaction is in progress. 

Moreover, diethyl ether has the ability to separate the reactant from final salts which insures 

the purity of ammonium salts. Meanwhile, an ice-water bath under reaction flask will favor the 

precipitation process. After the reaction flask, unreacted HI gas is guided by pipes through 

secondly safety flask to a bottle containing NaOH aqueous solution. This bottle serves as gas-

washing bottle to neutralize the unreacted HI gas. 

However this gaseous acid method is relatively long and may cause the pipes to be eroded. 

So, we tried to synthesize ammonium salts by adding aqueous acid to amines in diethyl ether 

solution directly. Thus white grains of C6H5C2H4-NH3I salts are obtained as HI aqueous acid 

reacts with C6H5C2H4-NH2 in diethyl ether. Then these salts are filtered and rinsed two times 

by diethyl ether and one time by n-pentane to remove the unreacted HI acid, C6H5C2H4-NH2 as 

well as water traces. This method simplifies the fabrication procedure and enables us to 

fabricate larger quantities of ammonium salt by single reaction. However it may introduce some 

water to reaction solution which is unfavorable for the generation of perovskites. So, 

ammonium salts are placed under vacuum line for several hours to eliminate the residual 

solvents and then transferred in the desiccator for few days to remove the traces of water and 

to be completely dried.  

The synthesis protocol that we followed in the preparation of phenylethylamine iodide 

salt includes the addition of hydroiodic acid solution (191.51 mmol, 14.4 ml) to 

phenylethylamine (101.13 mmol, 12.7 ml). The phenylethylamine iodide salt was obtained (21 

g) at 83% yield. 

1.2.2. Perovskite solution and its deposition on a substrate 

After few days of drying in the desiccator, the salts are ready to be used. These dry 

ammonium salts are used to prepare perovskites solutions. 

Each ammonia salt (organic) was mixed with PbI2 in a stoichiometric ratio of 2:1, and 

then dissolved in dimethylformamide (DMF) solvent at a 1:10 mass ratio to form PEPI 

perovskite. This reaction is described by equation 1.4. Since 2-phenylethanamine is used as 

the organic group of PEPI perovskite,  6 5 2 4 3 2
C H C H NH is noted as PhE 

hereafter for convenience. And thus, (C6H5C2H4NH3)2PbI4 will be referred as PhE-PbI4. 

2 (C6H5C2H4-NH3I) + PbI2 → (C6H5C2H4-NH3)2PbI4                    (1.4) 

Our thin films samples are realized by spin coating, by which the perovskites form 2D-

layered crystals by self-organization process. The effect of self organization can be optically 
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characterized. For instance, we see a sharp resonant peak at 517 nm in the optical absorption 

spectrum of a PEPI thin film, which doesn’t exist for PEPI solution (Figure 1.4). This line is 

characteristic of the self-organization that took place during spin coating. More details about 

the origin of this peak will be discussed later in the manuscript.  

 

Figure 1.4 OA spectra of a 50 nm PEPI thin film (black line) and of a solution 
containing PEPI dissolved in DMF solvent (blue line). 

Spin-coating is a very simple method, compared to the deposition techniques used for 

inorganic semiconductors such as MBE (Molecular Beam Epitaxy), MOCVD (Metal Organic 

Chemical Vapor Deposition) and PECVD (Plasma Enhanced Chemical Vapour Deposition). 

The technique of spin-coating applied for the deposition of perovskite is shown in Figure 1.5: 

1. Place a quartz substrate on a spinner 

2. Using a syringe, release few drops of the solution containing the constituents of the 

perovskite on the substrate 

3. Start the spinner after entering some parameters: spin speed, spin acceleration and spin 

duration depending on the size of the sample and the desired thickness of perovskite. 

Actually, in order to realize a layer with the desired thickness, we modify the 

concentration of perovskites solution keeping the spin coating parameters fixed, such that 

less concentrated solutions give thinner layers. 

280 320 360 400 440 480 520 560 600 640

0,0

0,2

0,4

0,6

0,8

1,0

1,2

 

 

A
bs

or
ba

nc
e

Wavelength(nm)



11 
 

 

Figure 1.5 Schema of the spin coating process. 

An important issue for preparing homogeneous perovskite films is the surface effect 

related to substrate. Prior to preparing perovskite films on quartz slides, we first cleaned the 

surface subsequently by acetone, ethanol and propanol in ultrasonic bath, where each step lasted 

for 15 min. After that, the quartz slides were immersed in 1mol L-1 KOH in ethanol solution for 

15 min for modifying the surface charge [29]. Then the slides were rinsed by distilled water 

and dried by nitrogen flow. The homogeneity of perovskite films prepared on KOH treated 

surface is better than on untreated surface. 

After the spin-coating process, the samples are placed on a hot plate for annealing. The 

annealing conditions are very crucial for the formation of crystals. If the annealing temperature 

and time are too small, the films may present relatively weak optical absorption; on the contrary, 

the perovskites will be destroyed and decomposed if the annealing temperature is too high and 

the annealing time too long. The annealing parameters depend a lot on the perovskite 

composition and also on the solvent [21]. The parameters determined for preparing, on slide of 

quartz of 4 cm2, 50 nm PEPI thin layers with PEPI 10% in DMF solution are: rotational speed 

of 1500 rpm during 30 second, and then heating the sample during about one minute at 95 ° C 

to evaporate the remaining solvent. 

To prevent PEPI layer from degradation due to humidity and oxygen, we put the 

perovskites samples in He environment or we add a transparent polymer PMMA (Poly(methyl 

methacrylate)) layer on the top of perovskites layer. PMMA can be deposited by spin coating 

with the parameters: 1000 rpm (rotational speed) during 40 sec (time) and then heating it for 

twenty minute at 95°C.  

The spin coating perovskite films are very reproducible, and are appropriate to make 

devices [3]. Figure 1.6 shows the optical absorbance measurements on two PEPI layers where 

the time interval between their fabrications is around three months. 
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Figure 1.6 O.A of two PEPI layers fabricated at different times  

1.3.  Structural Characterizations 

In this section, we introduce the characterization techniques that are frequently used in 

our studies of PEPI perovskite: structural characterizations such as the X-ray Diffraction and 

Atomic Force Microscopy. 

1.3.1. X-ray diffraction 

The properties of a material can often be linked back to the arrangement of atoms in its 

crystal structure. X-ray diffraction (XRD) is a non-destructive analytical technique which can 

yield the unique fingerprint of Bragg reflections associated with a crystal structure. 

Crystal structure is considered as being built of planes of atoms, where each plane acts as 

a semi-transparent mirror. An X-ray beam impinging on a crystal at an angle θ will be scattered 

in all directions by the atoms of the crystal. In some directions, an increased intensity is 

observed due to the constructive interference of the scattered waves. The conditions for 

constructive interference are easily derived from the simple geometric picture for the scattering 

of an X-ray beam by planes of atoms in a crystal, shown in Figure 1.7. Constructive interference 

will be observed for X-rays that are reflected from the planes at a specular angle if the path 

length difference between X-rays scattered from different planes is an integer times the 

wavelength. This condition is summarized in Bragg’s lawμ   

                                                     2dsinθ= pȜ                                                      (1.5) 
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where Ȝ is the wavelength of the X-ray, θ is the scattered angle, d is the inter-planar 

distance and p is an integer representing the order of the diffraction peak. An X-ray diffraction 

pattern is then obtained by scanning the sample over a range of θ angles. 

 

 

Figure 1.7 X-ray diffraction principle. 

X-Ray Diffraction measurements on PEPI thin films were performed at LPN by Ludovic 

Largeau and Olivia Mauguin. The results of these measurements are part of a paper published 

in 2010 in Optics Express [24]. Figure 1.8 presents XRD pattern measured on a spin-coated 50 

nm thick PEPI film deposited on fused quartz substrate. Numerous diffraction orders from (0 0 

2) to (0 0 24) are observed. The observation of numerous diffraction orders proves the high 

crystallinity of the thin layer and the very good periodicity of the stacking. A period of 1.64 nm 

is accurately estimated from the patterns of Figure 1.8. This value is very coherent with those 

given by literature [30, 31]. 
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Figure 1.8 X-Ray Diffraction patterns of a spin-coated 50-nm-thick PEPI layer. 

1.3.2. Atomic Force Microscopy 

The Atomic Force Microscopy (AFM) is a frequently-used tool that we employ to 

characterize the surface topography of the 2D perovskite. It gives us direct information about 

the surface quality by providing a way to evaluate the surface roughness with quantified values. 

This is so important, for example, in the realization of microcavities containing perovskites 

where an active layer with large roughness reduces the quality factor of the cavity. 

To determine the effect of the spin coating process on the surface topography of the 

perovskite thin films, the surface profiles of the (R-NH3)2PbI4 perovskites were measured. The 

room-temperature AFM images of the various thin films were recorded on VEECO Explorer 

microscope of PPSM laboratory. Non-contact mode tip was used for all measurements. The 

scan area was typically 2*2 micrometers. 

The average surface roughness (Δ) of the thin films was calculated from the AFM surface 

topographic data in a scanning area of 2 ȝm x 2 ȝm by the equation 1.6: 

           
N

2
i ave

i 1

1
(x x )

N 

             (1.6) 

where N is the total number of pixels in each AFM image, xi the height at the ith pixel, 

and xave is the average height for each AFM image. The factors that may influence the surface 

quality are various. For example it depends on the nature of the substrate. Moreover, the 

concentration of the 2D perovskite greatly affects the surface roughness. Concerning the 

concentration parameter, the decrease of solution concentration helps improving the surface 

quality. Figure 1.9 (a) and (b) show the topography of PEPI 10% and 1% thin films. These two 

samples are prepared by depositing a 10wt% and 1wt% PEPI solution by spin coating with the 

parameters: 200rmp, 2000rmps during 30sec and annealing at 95°C for 1 min, resulting in 

thickness of about 50 nm and 6 nm respectively. The values of average roughness of these 

samples calculated with equation 1.6 are 10.5 and 1.27 nm for PEPI 10% and 1% respectively. 

The AFM images in Figure 1.9 (a) and (b) clearly show the effect of solution concentration on 

surface roughness. 
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                    (a) PEPI 10% thin film                                    (b) PEPI 1% thin film 

Figure 1.9 AFM images for PEPI thin films prepared from 10%, and 1% solutions, 
and deposited on quartz substrate, performed by Y.Wei at PPSM-ENS Cachan. 

We have also synthesized new perovskite thin layers: p-fluorophenethylamine 

tetraiodoplumate perovskite, whose chemical formula is (pFC6H5C2H4NH3)2PbI4 (abbreviated 

as 4FPEPI hereafter), included in a PMMA (PolyMethylMetAcrylate) matrix. Figure 1.10 

shows the topography of 4FPEPI doped 10% PMMA. This sample is prepared by depositing 

4FPEPI doped 10% PMMA solution on quartz substrate. To prepare this solution, a transparent 

polymer PMMA and a stoichiometric amount of the ammonium salt and PbI2 are dissolved into 

DMF. The concentration of PMMA in DMF is 10 wt% and the weight ratio of 

perovskite/PMMA is fixed at 1:5. With this solution, spin coating is performed at 2000 rpm, 

2000 rpms, 40s; annealing condition is 150°C for 90 min. The solution where the concentration 

of PMMA in DMF is 10 wt%, gives a layer of thickness of about 350 nm. The average 

roughness Δ is found to be 0.86 nm. As a consequence, we can conclude that this method of 

deposition allows improving the roughness of the layer, so it may be interesting in the 

framework of the realization of the perovskite-based microcavities. 

 

Figure 1.10 AFM image for a 4FPEPI doped 10% PMMA thin film deposited on a 
quartz substrate performed by Y.Wei at PPSM-ENS Cachan. 
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1.4. Electronic structure of 2D perovskites 

The unique structural and chemical characteristics of the organic-inorganic perovskites 

provide for equally interesting and potentially useful physical properties. The electronic 

structure of 2D perovskites is schematically shown in Figure 1.11. It consists of alternating 

organic and inorganic layers of thickness about 1 and 0.6 nm respectively. The electronic 

structure of 2D layered organic-inorganic perovskites can be regarded as a self-organized 

multiple quantum well structure, consisting of organic layer that forms the barrier, and the 

inorganic layer being the well. Because the HOMO-LUMO (Highest Occupied Molecular 

Orbital and Lowest Unoccupied Molecular Orbital) energy gap of the inorganic layers (2-3 eV) 

is smaller than that of the organic layers (5-6 eV), the lowest exciton (exciton is an electron-

hole pair bound by coulombic interaction) is confined in the inorganic layer. Moreover, the 

organic ammonium groups have a low relative dielectric constant of about 2.4 while the metal 

halide layers possess a high relative dielectric constant of about 6.1. By virtue of this high 

contrast in dielectric constant between the organic layers and the inorganic layers, the Coulomb 

interaction in the well layer is hardly screened by the presence of barrier layers. Namely, the 

interaction between an electron and a hole in an exciton is strengthened, which is referred to as 

“dielectric confinement” effect [41]. This quantum and dielectric confinement in 2D organic-

inorganic perovskites results in large exciton binding energies of a few hundred of meV and 

huge oscillator strengths: the order of magnitude of the oscillator strength per quantum well in 

(C6H5C2H4-NH3)2PbI4 is 4x1013 cm-3 [32], which is one order of magnitude higher than that of 

conventional inorganic semiconductor quantum wells [33]. Indeed, such layered structures have 

been demonstrated to show enhanced non-linear optical properties in microcavities [13]. 

 

Figure 1.11 Schematic electronic structure of 2D layered organic-inorganic 
perovskites 
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Numerous self-assembled hybrid organic-inorganic perovskite systems with lead halide 

have been studied, but their electronic band structures are not known precisely. Density 

Functional Theory (DFT) calculations have been performed by J. Even et al on a prototype 

Single Crystal Hybrid Organic-Inorganic layered perovskite combined with symmetry analysis 

of the band edge Bloch states [34]. Density Functional Theory (DFT) is usually used to study 

the structural, electronic and vibrational properties of the system. Figure 1.12 shows the band 

structure of monocrystalline 4FPEPI with and without spin orbit coupling (SOC). Note that no 

excitonic effect has been taken into consideration at this step of the calculation. It reveals a 

direct band gap character where the fundamental transitions with and without SOC are of 1.2 

and 2 eV respectively. Moreover, the optical absorption near the band edge without SOC is 

modeled by three active Bloch states at Γ point: a non degenerate level for the valence-band 

maximum (VBM) and two nearly doubly degenerate levels for the conduction band minimum 

(CBM). This ordering of the band edge states is found reversed compared to tetrahedrally 

bonded conventional semiconductor structures. Interestingly, it has also been shown that the 

spin orbit coupling (SOC) induces a large splitting of the conduction bands (1.2 eV) [34], in 

comparison to the splitting of the valence bands of conventional semiconductor [33]. 

 

Figure 1.12 Electronic band structure of 4FPEPI (a) without and (b) with the spin-
orbit coupling interaction calculated by the Density Functional Theory. The energy 

levels are referenced to the valence band maximum [34].  

Recently, both 2D and 3D hybrid organic-inorganic perovskite crystal structures based 

on Density Functional Theory calculations and symmetry analysis have been investigated. The 

findings reveal the universal features of the electronic band structure for the class of lead-halide 
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hybrids (R-NH3)nPbXm, where (n,m) = (2,4) and (1,3) respectively for 2D and 3D structures, 

providing a clear sight inside their electronic and optical properties [35].  

1.5. Optical characterization of the perovskite thin films 

In this section, we will introduce some frequently-used optical methods for the 

characterization of perovskites. Experimental principles and set-ups for absorption and 

photoluminescence spectroscopy will be presented. 

1.5.1.  Optical absorption spectrum at room temperature 

The basic process for an optical transition in highly simplified energy diagram of two 

separated bands in a semiconductor is shown in Figure 1.13. The energy gap between the bands 

is called the band gap Eg. By absorbing a photon, an electron is promoted from the valence band 

at lower energy to conduction band at higher energy.  

 

Figure 1.13 Interband optical absorption between an initial state of energy Ei in an 
occupied lower band and a final state at energy Ef in an empty upper band. The 

energy difference between the two bands is Eg. 

Figure 1.14 shows the absorption spectrum of a spin-coated 50 nm thick PEPI film .We 

observe a sharp absorption peak at 2.40 eV which is attributed to the excitonic absorption of 

PEPI, the Full Width at Half Maximum (FWHM) of this peak is 73meV. The appearance of an 

intense excitonic absorption peak denotes that a layered perovskite structure was formed in the 

spin-coated film. In this figure, the number of quantum wells is of the order of 30 (thickness of 

the perovskite layer: 50 nm). When the film thickness decreases, the number of quantum wells 

decreases but the width of the excitonic peak does not vary. The inset of Figure 1.14 shows the 
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normalized optical spectra of two PEPI films of different thicknesses. The contributions to the 

linewidth of the excitonic line are due to interactions with phonons, trapping of carriers on 

impurities and fluctuations in the thickness of the well as observed in GaAs “classical” quantum 

wells [36]. Due to the fact that the 2D-layered perovskite is self-assembled and to the fact that 

the width of the excitonic line doesn’t depend on the number of wells, we think that the 

linewidth is mainly due to exciton-phonon interaction. 

 

Figure 1.14 Absorption Spectrum of 50 nm PEPI on glass slide (black line). Inset: 
50 nm thick PEPI (black line), 25 nm thock PEPI (red line).  

1.5.2. Photoluminescence spectrum at room temperature 

Photoluminescence (PL) is one of the most remarkable properties of 2D organic-

inorganic perovskites. When a laser is sent on the sample, a non-equilibrium electron-hole pair 

due to the transfer of electrons from the valence into the conduction band is created, which 

tends to relax back by emission of phonons or photons. The process in which a significant 

portion of the created excitons recombine by emission of photons is known as 

photoluminescence (Figure 1.15). The study of PL peaks intensity as a function of illumination 

time allows evaluating the photo-stability of the perovskites. 

Figure 1.16a shows PL spectrum of a layer of 50 nm PEPI deposited on quartz measured 

at room temperature. The PL intensity is normalized to 1. We can observe that the PL of PEPI 

is centered at 2.37eV (ȜPL=523 nm), and the Full Width at Half Maximum (FWHM) of the line 

is 62meV. The emission is bright green and can be seen by naked eyes as shown on the photo 

in Figure16b. 
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Figure1.15: Schematic band diagram for photoluminescence process 

 

 

 

 

Figure1.16 Photoluminescence of 50 nm thin film of PEPI (the excitation 
wavelength is 405nm, from a diode laser) 
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Comparison between absorption and photoluminescence spectra 

By comparing the O.A spectrum and the photoluminescence spectrum of the PEPI film, 

we notice an energy difference between the absorption and PL maxima defined as the Stokes 

shift, equal to 38 meV as shown in Figure1.17. Moreover, the widths of the two peaks are of 

the same order of magnitude: the linewidths of the optical density and photoluminescence 

spectra are 73 meV and 62 meV respectively.  

 

Figure 1.17 Normalized photoluminescence (green line) and absorption spectra  

1.6. Flexibility and applications of 2D Perovskites 

Among all the unique features of 2D-layered perovskites, one of the most important is 

their strong flexibility. For the mostly used 2D layered (R-NH3)2MX4 perovskites, the organic 

part is optically inert and the optical transition energy is mainly decided by the inorganic part. 

The width of the wells is mainly controlled by the M-X bond length, while the width of the 

barrier is controlled by the organic radical R. The depth of the well is controlled by M and X 

species, that is to say, the spectral position of the excitonic transitions can be tailored by 

substituting different metal cations or halides within the inorganic part. In particular, it is 

possible to have excitonic lines over a range of wavelengths covering the visible and near 

ultraviolet by changing X [12, 37-39], it covers also the infrared range by changing Pb to Sn 

[40]. Furthermore, the lengths of the R group can dramatically influence the molecular rigidity 

as well as the distance between inorganic sheets and then the self-assembly ability [18]. It can 

also influence the contrast of dielectric constant between organic and inorganic layers which 

will affect the exciton binding energy. Indeed, this flexibility lies in the great diversity of 
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molecules provided by chemistry. In collaboration with Pierre Audebert (PPSM-ENS Cachan), 

various perovskites have been developed by varying either the organic chain or halogen, 

depending on the property that we want to adjust in our studies. For example, we have increased 

the photoluminescence efficiency and the self-assembly properties of the 2D perovskites by 

changing the organic group [18]. In all our studies, the metal used was always the lead. 

An example of flexibility of 2D perovskites is clearly shown in Figure 1.18, where the 

OA spectra of PhE-PbX4 are presented for different X. The excitonic peaks of PhE-PbX4 locate 

at 2.4 eV, 3.08 eV, and 3.64 eV for X = I, Br and Cl respectively. The excitonic absorption peak 

of PhE-PbI4 (PEPI) is attributed to the electronic transition from Pb(6s)-I(5p) mixed states to 

Pb(6p) states [41]. Similarly the excitonic absorption peaks are due to transition from Pb(6s)-

Br(4p) states to Pb(6p) state for PEPB [39] and from Pb(6s)-Cl(3p) states to Pb(6p) state for 

PEPC [39].  

 

Figure 1.18 OA spectra of PEPI, PEPB and PEPC thin films at room 
temperature. 

To adjust the energy of exciton more finely between PEPC and PEPB, mixed perovskites 

PEPBr4-xClx are synthesized for different values of x (the same work can be also done with 

PEPI4-xBrx). Figure 1.19a shows that mixing two kinds of halogens into perovskite doesn’t give 

two excitonic absorption peaks but one absorption peak whose position depends on the 

proportion of the two kinds of halogen. Moreover, Figure 1.19b shows that the excitonic 

absorption can be continuously tuned by tuning x between 0 and 4. This result provides 

information about exciton. Henceforth, the continuous dependence of exciton’s energy with the 
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parameter x reveals that the exciton is delocalized enough in the plane layers to be influenced 

by the presence of both chlorine and bromine. 

 

(a)                                                                      (b) 

Figure 1.19 Absorption spectrum of the mixed perovskite PEPBr4-xClx for x=0 
(PEPB), x=1, x=1.5, x=2, x=3 and x=4(PEPC).                             

Potential Application 

Interest in hybrid organic-inorganic perovskites is highlighted in numerous scientific 

publications. The interesting optical and electrical properties of organic-inorganic perovskites, 

along with the low cost processing, make them strong potential candidates to be applied to 

optoelectronic devices such as OILEDs and solar cells. Light emitting devices based on organic-

inorganic perovskites have been considered. The layered perovskite compounds are promising 

for the application to electroluminescent (EL) devices because of very specific optical and 

electronic properties and flexibility of material design and processability: intense EL from PEPI 

layer was observed at liquid nitrogen temperature [3]. Further, solar cell is one of the most 

attractive optoelectronic devices, because of its promising potential to transfer renewable solar 

energy into electrical energy. The devices using QDs in a liquid-type electrolyte showed the 

best cell efficiencies, ranging from 3 to 6% [42-44]. For solid-state QD-sensitized solar cells 

(QDSCs), the device performances were generally poor; only devices made of Sb2S3 and PbS 

QDs attained cell efficiencies approaching around 7% [45, 46]. In contrast, nanocrystalline lead 

halide perovskites have emerged since 2009 as potential photosensitizers in liquid-type 

sensitized Ti02 solar cells [26, 47].  In 2012, the efficiencies of the all-solid-state 3D perovskite 

solar cells were enhanced to 9.7 and 10.9% using anodes of TiO2 and Al2O3 films, respectively 
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[27, 48]. In 2013, the performance of a TiO2 solar cell sensitized with lead iodide perovskite 

(CH3NH3PbI3) was optimized further to attain an overall power conversion efficiency of 15% 

[49]. Such a striking and rapid progress in the development of organic-inorganic hybrid 

photovoltaic devices (Figure 1.20) indicates the threshold of a new era for a commercialization 

of all-solid-state mesoscopic solar cells in the near future.  

 

Figure 1.20 Efficiency progressing charts of all-solid-state DSSC, QDSC and 
perovskite –based SC developed from 2005 to 2013. 

Many other applications can be envisioned for the hybrid organic-inorganic perovskites. 

For the last decade, strong exciton-photon coupling in vertical microcavities has been 

energetically studied with a view to control the properties of both photons and excitons. When 

exciton state is strongly coupled to photon states, quasi particles called cavity polaritons are 

produced. The major feature of the cavity polariton technology centers around large and unique 

optical nonlinearities which could lead to another class of optical devices such as low threshold 

polariton lasers. More details on study of light-matter interaction in semiconductor 

microcavities are presented in the next paragraph. From the point of view of materials, most 

studies of exciton-photon coupling in such strong coupling cavities focus on devices using 

inorganic emitters (semiconductor Quantum Dots (QDs) and Quantum Wells) in high Q-factor 

planar microcavities at low temperatures [5, 6]. However in order to raise the working 

temperature of these polariton-based devices up to room temperature, alternative 

semiconductors, presenting large exciton binding energies and oscillator strengths such as GaN 

[7, 8], ZnO [9], organic [11, 50] and hybrid organic-inorganic material should be employed.  
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The 2D layered organic-inorganic perovskites, for example (C6H5C2H4NH3)2PbI4, have 

large exciton binding energies up to 220 meV, which is substantially larger than kBT at room 

temperature ( ≈25 meV). It enables the excitonic effects to be observed at room temperature 

and therefore it is a good choice as emission center in a microcavity. Recently, strong coupling 

regime with large Rabi splitting of 100-200 meV has been reported at room temperature in 

microcavities containing perovskites such as (C6H5C2H4NH3)2PbI4 [14]. These materials can be 

used alone in a cavity, as well as be combined with another inorganic or organic exciton [16]. 

In particular, in hybrid cavities containing an inorganic semiconductor and an organic material, 

it is thought that it is possible to enhance the radiative rate of inorganic excitons and it is hoped 

that it will be possible to create an electrically driven organic-inorganic laser.  

1.7. Strong Coupling in Semiconductor Microcavities 

Light-matter interaction in vertical microcavities, and more particularly the strong 

coupling regime, has been intensively studied since two decades. In order to increase the 

coupling between light and matter, it is favorable to increase the spatial overlap between the 

photonic modes and the matter excitations: the excitons. A typical structure of a semiconductor 

microcavity (Figure1.21) consists of an active medium, like quantum wells or quantum dots or 

perovskites in our case, sandwiched between two mirrors. 

 

 

       Figure 1.21 Typical structure of semiconductor microcavity. 

The study of light-matter interaction is described in Figure 1.22. An exciton, represented 

by a two-level system (∣1>, ∣2>), is placed in a cavity, where ∣1> is the fundamental state of 

exciton and ∣2> is the excited state of exciton. This two-level system is coupled to both free 

space with a coupling strength Ωext and to the cavity mode with a strength Ωmod. Two types 

of regime may exist depending on the strengths of coupling Ωext and Ωmod. If Ωext>> Ωmod, 
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the coupling between the system and cavity mode is described as “weak”μ when a photon is 

emitted by the system {|1>; |2>} in the cavity, the probability that it escapes out of the cavity 

before being reabsorbed is close to 1. If the system is, at t=0, in state |2>, then the probability 

to find it again in this state at t>0 decreases exponentially with a characteristic time governed 

by Ωmod, whose value can be obtained by applying Fermi’s golden rule. By positioning the 

energy of the cavity mode more or less in resonance with the energy of transition of the two 

level systems, it is possible for example to modify the spontaneous emission rate, this effect is 

known as Purcell effect. When the coupling to the free space is very small compared to the 

coupling to cavity mode, that is to say when Ωext << Ωmod, the cavity is in the strong coupling 

regime. In this case, the reabsorption is stronger and the system is in a dynamic process of 

absorbing and emitting energy, which is named Rabi oscillations.  

 

Figure 1.22 Schematic representation of a system consisting of a cavity, and a two-
level system. Ωext and Ωmod are coupling strengths between two-level system with 

free space and mode cavity respectively. 

The strong coupling in microcavities can be treated within quantum mechanics or by a 

semi-classical model of two coupled oscillators [51]. We consider a microcavity where the two 

oscillators: photon mode and exciton mode, are in resonance. In a single quantum well 

structure, the in-plane translational invariance imposes that only excitons and photons of same 

in-plane wavevector k|| can be coupled. For a given k||, the Hamiltonian of the system is written 

in the basis of non-coupled states as: 

      
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Where Eph(k||) and Eex(k||) are the energies of the photon and exciton modes as a function 

of k|| (dispersion curves). V is the coupling energy between photon and exciton modes. It is 

supposed to be real and independent from k||. The effective mass of excitons is very high 

compared to that of photons, thus the dispersion of excitons is neglected and we now write Eex 

instead of Eex(k||).  

As a result of the coupling term V, the exciton and photon modes cannot be considered 

as independent eigenmodes of the system anymore. The Hamiltonian H(k||) can be diagonalized 

and the new eigenmodes are a linear and coherent superposition of exciton and photon modes, 

called “cavity polaritons”. The new eigenvalues of H(k||) are then found to be:  

     
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             (1.8) 

Where EUP (k||) and ELP (k||) are the energies of the upper and lower polariton branches 

(UPB and LPB) respectively. The new photon-exciton mixed states are related to the non-

coupled states as followed: 

exkphkUP EPEXE                                            (1.9) 

         exkphkLP EXEPE                        (1.10) 

with,  
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         and, 

         
  

2
2

ph ex ph ex

k 2
2

ph ex

4V E k E E k E
P

2 4V E k E

   


 

                       (1.12) 

 

The square modulus values of Pk and Xk: ∣Pk∣2 and ∣Xk∣2 are called Hopfield coefficients and 

satisfy ∣Pk∣2+∣Xk∣2 =1. They correspond respectively to the photonic and excitonic fractions 

of polaritons.  
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Figure1.23 shows the dispersion curves of polaritons: the energy position of LPE  

and UPE states as a function of k|| at negative detuning. The detuning is the 

energy difference between photon and exciton Eph-Eex at k||=0 .The dashed lines represent the 

dispersions of uncoupled exciton and photon modes. The lifting of degeneracy caused by 

exciton-photon coupling results in the anticrossing of the dispersion curves of upper and lower 

polariton branches. At resonance, that is to say when the dispersion curves of both non-coupled  

exciton and photon modes intersect, the energy separation reaches its minimum value, called 

the Rabi splitting ħΩrabi, which is equal to twice the coupling energy.  

                                            2V= ħΩrabi.              (1.13) 

For a negative detuning, the lower polariton branch presents a strong exciton character 

at large k||, whereas the upper branch presents a strong photon character. 

 

Figure 1.23 The cavity polariton dispersion curves: UPB, Upper polariton branch; 
LPB, lower polariton branch. The dispersions of the uncoupled perovskite exciton 

and photon modes are also shown by the dashed lines.  

 The first observation of the strong coupling regime was discovered by C. Weisbuch et 

al. in Fabry-Perot cavities containing III-V inorganic semiconductor in 1992 [52]. Soon after, 

strong coupling was also found in II-VI semiconductor [53], and later in nitrides [54]. In 

molecular materials, the strong coupling has been demonstrated at room temperature with zinc 

porphyrin [10], J-aggregates [55], sigma-conjugated polysilane [56], anthracene [57] and 
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perovskite molecules [32]. These meaningful works, especially the cavities operating at room 

temperature such as the cavities containing GaN, ZnO and perovskites, provide a good mean 

to study the coherent and stimulated optical effects which are expected in such confined 

systems at room temperature and which can lead to realization of new optoelectronic devices 

such as low threshold polariton lasers [58]. 

1.8. Conclusion 

2D Hybrid organic-inorganic perovskites have shown to have a self-organized multiple 

quantum well structure. They are obtained by simple spin-coating of solutions containing all 

components in the stoichiometric proportions, that is to say, M2+, 4*X- and 2*(R-NH3)+. The 

thickness of the layer obtained is about a few tens of nanometers and can be adjusted using the 

concentration of the solutions and parameters of the spin-coating. The position, intensity and 

shape of the excitonic bands depend on the dimensionality and size of the inorganic network, 

as well as on the nature of M, X and R groups. When R contains an alkyl- or phenyl-group, the 

inorganic network of the system behaves as an artificial LD (Low Dimensional) system, in 

which the organic part plays the role of barrier [59, 60]. This chapter has presented the 

structural and optical characterization of the perovskites. In addition, the 2D-layered 

perovskites have shown a great flexibility in their optical properties: the spectral position of 

the excitonic transitions can be tailored by substituting different halides [39], and the 

photoluminescence efficiency can be tailored by changing the organic part R [18].  

The strong coupling regime between the two-dimensional perovskite exciton and the 

confined photon modes in a Perot-Fabry microcavity has been explained. This could give the 

opportunity of using the perovskites in many applications as high-speed emitters, nonlinear 

optical switches, and polariton lasers. 
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2. Experimental setup and fabrication of microcavities 

We have used different techniques in order to study the optical properties of perovskite 

thin films and of microcavities containing them. We have performed absorption spectroscopy, 

angle resolved reflectivity spectroscopy, angle-resolved photoluminescence spectroscopy, 

microphotoluminescence spectroscopy and time resolved pump-probe spectroscopy. Details on 

the different experimental setups will be presented in this chapter.  

2.1. Absorption 

The optical absorbance (OA) spectra of perovskite thin films are measured using a Perkin-

Elmer Lambda 950 UV/Vis spectrophotometer at room temperature, it detects the intensity of 

the light passing through a layer sample: I, and compares it to the intensity of the light before 

passing the sample: I0. The optical absorbance OA is thus defined as: 

     OA (Ȝ) = -log10(I/I0)                  (2.1) 

The OA spectra are essential for the characterization of perovskite thin layers deposited 

by spin-coating. It is often the first measurement performed on perovskite thin layers after their 

preparation, because the analysis of the position and height of the excitonic peak allows 

verifying the self-organization of perovskite.   

2.2. Angle resolved reflectivity measurement 

Angle resolved reflectivity measurement is frequently used as a tool to examine light-

matter interaction regime inside the cavity. In fact, the analysis of the absorption spectra of a 

microcavity can determine whether the coupling is in the strong or weak regime. Generally, it 

is necessary to acquire both reflectivity R and transmission T spectra to deduce absorption via 

the relation 1=T+R+A. In the case of cavities, transmission coefficient is negligible compared 

to reflectivity, so direct access to absorption and thus to the study of strong coupling is provided 

by measuring R [61]. Moreover, the easiest solution to tune the cavity photon energy mode 

with respect to that of exciton (considered as dispersionless and so angle-independant) is to 

vary the angle of incidence on the cavity θext: 



32 
 

 

 

          

              0
ph ext 2

ext

cav

E
E

sin
1

n

 
 

 
 

                                     

   

 

 

   

 

where E0 is the photon mode at normal incidence (θext = 0) and neff is the effective refractive 

index of the entire cavity. 

Figure 2.1 show schematically the experimental setup used to achieve angle-resolved 

reflectivity measurement. Xenon lamp is used as excitation source with broad white light 

emission from 280 nm to 780 nm. Its output light is filtered by SpectraPro-2150i 

monochromator (Princeton Instruments, ActonTM ) and then is collimated by a f = 50.2 mm 

focusing lens. The beam is mechanically chopped at about 720 Hz in order to overcome the 

low frequency noise. A part of the beam is reflected by a piece of glass in order to record Ir0(Ȝ) 

by PMT1 (PMT = Photomultiplier), while the other part is transmitted and is recorded as Is0(Ȝ) 

by PMT2. Then, the cavity sample is fixed in the center of a rotating plate and the PMT2 is 

moved to the 2θext direction to collect the reflected beam from the cavity sample. In this 

configuration, the signal of the two PMTs are recorded as Ir1(Ȝ) and Is1(Ȝ). The incident angle 

θext is varied by rotating the plate, and positions of PMT2 are accordingly adjusted to collect 

the reflection signal. The reflectivity signal R is then given by: 

                                  s1 r0

s0 r1

I I
R

I I
             (2.2) 

This two PMTs configuration allows to overcome the fluctuations of the incident Xenon lamp 

source. 

θext 
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Figure 2.1 Angle-resolved reflectivity experimental setup. 

2.3. Angle-resolved photoluminescence 

Photoluminescence (PL) is one of the most remarkable properties of 2D layered 

perovskites. Most 2D layered perovskites mainly dissipate energy by efficient spontaneous 

emission after being promoted to an excited state by absorbing photons. Different light sources 

are used as excitation sources. In Figure 2.2, a 405 nm laser diode is sent under normal 

incidence to the sample. Photons are emitted from the sample in all directions in space as they 

are generated by spontaneous emission. A lens is placed such that it collects photons emitted 

in a solid angle based on the half-cone angle θ, centered at the optical axis. The photons are 

then collected by a SpectraPro 2500i spectrometer, coupled to a PIXIS:100B (Ropers 

Scientific) CCD camera.  
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Figure 2.2 Experimental setup used to measure PL using blue laser at Ȝ=405nm. 

2.4.    Micro-photoluminescence  

The micro-PL system is an integrated system designed for micro-photoluminescence 

studies. Micro-photoluminescence (µPL) is a technique especially suited for characterization 

of very small structures. The principle behind the technique is the same as for conventional PL, 

but a microscope objective is placed between the excitation laser and the sample. The purpose 

of the objective is to focus the laser into a very small spot size to localize excitation to specific 

regions of the sample. In our setup, the laser is focused onto a 1.5 ȝm spot diameter [62]. This 

allows spatial resolution of the order of several micrometers, which is crucial for 

semiconductor samples containing multiple µm-scale structures [63].  

2.4.1. Micro-photoluminescence in Confocal Geometry 

A confocal setup has been developed to provide high efficiency of the laser injection 

combined with a versatile detection to measure the energy of light emitted by the sample in 

either real or momentum space. 

Two kinds of lasers (Figure 2.3) have been used in this thesis: 

 continuous wave (CW) lasers of wavelengths 405 nm and 473 nm 

 a femtosecond (fs) laser of wavelength 405 nm or 440 nm. The two wavelengths are 

obtained from Ti-sapphire oscillator producing 120 fs pulses at 800 nm with 1 khz 

repetition rate followed by an optical parametric amplifier 
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In fact, a pulsed laser has the advantage to produce high peak power compared to a laser 

in a continuous intensity mode. This high peak power is a key parameter to inject a large 

number of carriers in a small amount of time and, therefore, to reach the non-linear regime in 

organic semiconductor structures. The low repetition rate of 1 kHz is favorable to limit the 

photobleaching of the perovskites. 

After fixing the laser used at the beginning of the injection line, the laser beam, as photo-

excitation source, reaches the sample surface through a microscope. The latter is constituted 

with objective lens having a numerical aperture (NA) =0.55, corresponding to a focused laser 

spot diameter of about 2 ȝm. The luminescence emitted by the sample is collected by the same 

objective lens and passes through an achromatic 50:50 beam splitter (BS). The beam splitter 

sends a part of the incident laser to the powermeter. The PL signal is directed through the 

entrance of SpectraPro 2500i spectrometer (Princeton Instrument Company) having a 1200 

lines/mm grating blazed at 300 nm. Then, the PL signal is collected using a thermoelectrically 

cooled CCD camera (PIXIS 256, Princeton Instruments). The spectrometer and camera were 

controlled by proprietary software (WinSpec, Princeton Instruments).  

 

Figure 2.3 Micro-photoluminescence experimental setup. 

A Ȝ/2 blade along with a polarizer is placed in the path of the laser in order to change the 

power of the beam excitation. A powermeter is placed to measure the power of the incident 

beam directed to the sample and a yellow filter is placed at the entrance of spectrometer as 

shown in the Figure 2.3. The yellow filter is used to block reflections from laser light and 

allows only the sample’s emitted light to pass. 

Spectro
CC

Diode 

Femto

Power meter 

FL 

MM 

BS 

Objective 

S
am

p
le

 



  

Page | 36  
 

Moreover, this experimental setup is designed to give an image of the surface of the 

sample on the detector in the real space configuration or of its Fourier plane in the reciprocal 

space configuration. It is possible to switch from real to Fourier space spectroscopy by adding 

a Fourier plane lens (FL) as shown in Figure 2.3. The FL is placed on a movable mount that 

moves forward when switching from real to Fourier space spectroscopy and backward when 

switching from Fourier to real space spectroscopy. Finally, this set-up allows to quickly 

measure the energy of light with either spatial or momentum resolution (see next paragraph).  

2.4.2.      Microphotoluminescence experiment using Fourier Imaging 

The basic principle of Fourier imaging is explained in Figure 2.4. Fourier space of a 

given object is situated at the focal length after the lens. In the configuration presented on 

Figure 2.4, where the real space and the Fourier space are situated, respectively, at a focal 

length before and after the lens, the light collected in the Fourier space is the exact Fourier 

transform of the light emitted from the real space. This statement is limited to the paraxial 

approximation which can be considered as valid up to 30°. As shown in Figure 2.4, Fourier 

space is a direct image of the light emission from the object. Indeed, a given angle of emission 

α corresponds only to one position in the Fourier space at f.tan(α) from the optical axis. 

Therefore, one can optically use the signal in this Fourier plane to measure the dispersion 

relations directly on a detector.   

 

Figure 2.4 Principle of an angular resolved experiment using Fourier space 
imaging. α is the angle of emission of a photon. 
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Micro-photoluminescence measurements were performed on different kinds of samples: 

perovskite thin layers and perovskite based microcavities. Results of these measurements will 

be shown through the manuscript. 

2.5. Dynamic study by pump-probe measurement 

Pump-probe spectroscopy investigates the fast transient dynamics of optically excited 

carriers. More precisely, it measures the carrier population dynamics. By using a strong pump 

pulse and a weaker probe pulse, the transient changes in the optical properties induced by the 

pump are recorded as a function of time with a very high temporal resolution. Pump-probe 

spectroscopy is a well-established technique, which has been widely applied to 

semiconductors, highly correlated systems and other condensed matter samples. 

In this section, we present the pump-probe experimental setup mounted at LAC – ENS 

Cachan which allows the time resolved optical characterization of perovskite thin films, and 

the preliminary studies necessary for acquiring temporal and spectral pump-probe 

measurements. 

2.5.1. Time-resolved optical characterization 

In the following, we will introduce the pump-probe experimental setup mounted at LAC 

– ENS Cachan which allows the time resolved optical characterization of perovskite thin films. 

2.5.2. Principle of Measurement 

With the advent of ultra short pulse laser in the late 1980s, it was possible to determine 

the dynamics of spectral variations by pump-probe measurement [64, 65]. This technique uses 

a short optical excitation pulse (the pump) to generate a nonequilibrium charge carrier 

distribution in the sample. A second weaker and synchronous optical pulse (the probe) is then 

used to interrogate the pump-induced changes of the optical properties of the sample. These 

changes (i.e. changes in absorption coefficient) are directly dependent upon the optically 

generated excess carrier density. The transmission of the probe through the sample is monitored 

and the density-dependent change in absorption coefficient provides the change in optical 

properties. By delaying the arrival time of the probe relative to the pump, the excess carriers 

have time to recombine and/or diffuse before being interrogated. Measuring the change in 

transmission of the probe at increased time delays allows an access to the time-resolved 

relaxation of the excited carriers back to equilibrium. A typical ultrafast pump-probe 

experiment is illustrated in Figure 2.5.  
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Figure 2.5: Illustration of typical ultrafast pump-probe experiment.  

The pump-probe experimental setup implemented at LAC – ENS Cachan before this 

thesis and optimized during this thesis is presented in details in the following paragraph. 

2.5.3. Pump-probe experimental setup 

Figure 2.6 shows the schematic diagram of the synchronized, two color pump-probe fs 

system used during this thesis. Seed pulses of the laser system are generated by Hurricane laser 

system designed and made by Spectra Physics. The output of the laser system was set to work 

at 1 kHz repetition rate, providing pulses of duration between 80 and 120 fs. The output beam 

centered at about 800 nm is directed towards the input of an optical parametric amplifier OPA-

800C designed and made also by Spectra Physics. The OPA divides the laser pulse into two 

beams: one is used as the pump beam and the other beam, much weaker, is used as the probe. 

The pump pulse corresponds to the fourth harmonic of the OPA and can be tuned from 2.81 

eV (above the 2D continuum step) to 2.397 eV (exciton resonance). The probe consists of a 

spectrally broad pulse obtained by self-phase modulation in the sapphire crystal of the OPA. 

The pump beam was passed through a fixed optical path and then focused to the sample. 

Variable density is placed in the path of the pump beam to adjust the power of the excitation 

used. The probe beam was passed through an optical delay line, which is a reflective optics 

consisting of two perpendicular flat mirrors mounted on a computer-controlled motorized 

translational stage. With 0.1 m accuracy, such a translation achieves a time resolution of 0.66 

fs, which demonstrates that it is not the main limitation of the time resolution in a pump-probe 

setup. This optical delay line was designed and made by Newport. Following different optical 

paths, the pump and probe beams are then directed and focused on the same spatial area of the 

sample, with the help of an imaging system composed of a periscope and a webcam. After 
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transmission through the sample, the probe beam is directed through the entrance of SpectraPro 

2150i Monochromator (Princeton Instrument Company/Acton) having a 300 lines/mm grating 

blazed at 500 nm. A photomultiplier (H9307-03, Hamamatsu) was placed at the output of the 

monochromator to collect the probe beam. 

The value to extract from a transmission-based pump-probe measurement is the relative 

increase or decrease in transmission of the probe that occurs when excess carriers are present 

compared to when they are not. The method used here is referred to as time-resolved 

differential transmission (ΔT/T). This technique compares the transmission of the probe pulse 

in the absence of pump pulse (i.e. the equilibrium transmission) to the transmission of the probe 

pulse in the presence of pump pulse (i.e. the transmission when excess carriers are present) and 

is expressed as, 

   on off

off

T T
T / T

T


             (2.3) 

where Ton and Toff  are the transmission of the probe through the sample in the presence 

and absence of pump pulse, respectively. ΔT/T is generally quite low, of the order of one 

percent or less, and so an optical chopper is placed in the path of the pump beam and modulates 

the pump pulse series at a frequency of about 117 Hz. The synchronized signal from the 

chopper and the output signal from the photomultiplier are transmitted to Lock-In Amplifier 

synchronous detection (SR830 DSP, Stanford Research SystemsTM). The synchronous 

detection delivers a voltage image of the difference ΔT signal. 

A computer associated with specially designed software under Labwindow, allows 

measuring the voltage from the synchronous detection. The optical chopper is mounted on a 

rail so that it can also be placed on the path of the probe beam in order to make the acquisition 

of the transmitted signal T of the probe in the absence of the pump. This allows forming ΔT/T, 

the only quantity that can be related to the populations of excitons and electron-hole pairs. As 

this computer controls the delay line and the monochromator, it allows recording ΔT/T as 

function of time and wavelength. 

The pump and probe beams are generally polarized in the vertical plane of the 

experimental setup. The pump and the probe beams are made cross-polarized, thanks to a half-

wave plate, in order to reject as much as possible the scattered pump signal. For that, a polarizer 

having a polarization direction parallel to the probe polarization is placed at the input of the 

monochromator. 
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Figure 2.6 Schematic diagram of the synchronized two color pump-probe fs 
system. 

Using pump-probe experimental setup, several measurements were performed for both 

perovskite thin films and microcavities. However, most of the work was concentrated on 

perovskite thin films. 

 

2.5.4. Cross Correlation 

The shape of pump-probe traces depends on the relaxation properties of excitons and 

electron-hole pairs of the studied sample on one hand and on the temporal envelopes of both 

pump and probe pulses on the other hand. More specifically, this shape is a result of time 

convolution between pump pulse, probe pulse and the impulse response of the material 

concerned. This relation can be described as: 

 

  S (t) = (CC   R) (t)             (2.4) 

where S (t) is the time trace signal resulting from pump-probe measurement, R (t) is the 

impulse response of the studied sample, and CC (t) corresponds to the pump-probe cross-

correlation function, that is to say the convolution product between the temporal envelopes of 
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both pump and probe pulses. The cross correlation is closely related to the temporal resolution 

of pump-probe system since the characteristic times below the temporal extension cannot be 

resolved in the study of temporal traces. 

Information about relaxation properties of excitons and electron-hole pairs are found only 

in the impulse response function R (t). To extract this information from the obtained time 

traces, it is then necessary to make an adjustment of the relaxation model (mono or bi-

exponential) taking into account the pump-probe cross-correlation function CC (t). The 

temporal width of CC (t) is considered as a fitting parameter of these models since it may 

slightly vary depending on the laser pulse and OPA’s setting. 

To avoid interpretation errors during extracting the time characteristics of the temporal 

traces, it is necessary to have an approached value of this parameter. This is achieved by 

acquiring a temporal trace associated with pump-probe signal that presents a very short 

characteristic time in comparison to the temporal width of the cross correlation CC(t) which 

we try to determine. In this case, the impulse response of the physical phenomenon can be 

treated as a Dirac impulse, and then the time trace S (t) is identified with the cross-correlation 

CC (t). The physical phenomenon used here is the amplification of the probe pulse by 

stimulated Raman scattering. 

The amplification of the probe pulse by stimulated Raman scattering is described in 

details in the references [66, 67]. It is generated if at least two photons, the pump and the probe 

photons, coincide in time and space inside the medium. Emission of a third photon can be 

stimulated provided that the energy of each of the incident photons differs by an amount Ev 

corresponding to the molecular oscillation energy specific of the medium. This amplification 

of the probe pulse in the temporal trace is signed by a positive pump-probe signal (that is to 

say in phase with the synchronizing signal of the optical chopper) which reproduces the 

temporal profile of the cross-correlation.  

The evolution of the temporal width of the cross-correlation was conducted using the 

Raman scattering of water for which Ev = 422 meV. Therefore to obtain an amplification of 

the probe by stimulated Raman scattering, the pump must be placed at 2.4 ± 0.422 eV. Due to 

practical reasons related to the use of the OPA, we choose to place the pump at 2.822 eV which 

corresponds to 440 nm. 

For the cross-correlation adjustment, the temporal envelopes of the two pulses are 

assumed to have Gaussian shape. This implies that the cross-correlation is also Gaussian. The 

adjustment of the Gaussian to the positive part of the experimental time trace led to the red 
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solid line in Figure 2.7. Despite the signal to noise ratio, the agreement between the Gaussian 

model and the cross-correlation obtained experimentally is quite satisfactory. The width at half 

maximum of the Gaussian fit is 112 fs. This value is taken, subsequently, as a fixed parameter 

to verify the appropriateness of the adjustment relaxation models. 

 

Figure 2.7 Time trace corresponding to the amplification of the probe pulse (517 
nm) by stimulated Raman scattering in water: the monochromator is set at 517 nm 

and the wavelength of the pump is 440 nm. 

 

Determination of the time resolution and the “zero time” dispersion 

The position of the delay line corresponding to the superposition time between the pump 

and   probe pulses is called "zero". Due to the dispersive nature of the materials used to design 

optical elements (lenses, filters, densities, etc...) traversed by the probe pulse, the "zero" 

depends on the probe wavelength Ȝs selected by the monochromator. Indeed, the index of these 

materials vary depending on the wavelengths considered and then probe pulses having different 

wavelengths do not propagate at the same speed. 

The software controlling the acquisition of the spectra ΔT/T should be able to compensate 

for this “zero” to maintain the pump-probe delay constant during the acquisition of a spectrum. 

To do this, we use the effect of cross-phase modulation in water, observed on the temporal trace 

of Figure 2.7, which unlike the stimulated Raman amplification, occurs whatever the energy 

difference between the pump and the probe is. 
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Cross-phase modulation (XPM) generated in the liquid phase using pump probe 

technique has been reported by several authors [68-71]. It is a non-linear process where a 

transient modification of the optical index of the sample occurs when pump pulse passes 

through it: Kerr effect. This modification of the refractive index affects the probe pulse, which 

is temporally and spatially superimposed with the pump pulse. It modifies the frequency 

distribution of the photons that constitute the probe pulse. A comprehensive and rigorous 

description of this phenomenon is given by Lorenc et al. [66]. Figure 2.8 below shows an 

example of pump-probe time trace corresponding to an effect of cross-phase modulation 

occurring in water. This trace is consistent with the expected time signature [66]. 

 

Figure 2.8 Pump-probe time trace measurement corresponding to cross phase 
modulation occurring in water. The pump wavelength is set at 440 nm, the probe 

wavelength is set at 505 nm. 

Pump-probe time traces with the signature of the cross-phase modulation of water were 

recorded for different wavelengths Ȝs covering a range from 460 to 600 nm. The pump 

wavelength Ȝp remains set for this part at 440 nm. Figure 2.9 a) shows the traces obtained for 

Ȝs between 501 and 519 nm. The temporal positions of the signature of the cross-phase 

modulation are plotted on the graph in Figure 2.9 b) (blue squares). 
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                    (a)                                                                              (b) 

Figure 2.9 a) Pump-probe time traces showing the signature of the cross phase 
modulation occurring in water obtained for different values of Ȝs. The pump 
wavelength ȜP is set at 440 nm. b) Temporal positions (blue squares) of the 

signature of cross phase modulation plotted as a function of Ȝs. The red curve 
corresponds to the fit with the model described in the text. 

Let Δt be the offset of "zero" generated by the passage from a reference wavelength λs,0 

to another wavelength λs. Assuming that probe passes through different dispersive optical 

elements made with the same material, this offset is written as: 

           s,0 s

L
t n n

c
                                (2.5) 

with c , the speed of light, L the thickness of dispersive material, and n(Ȝ) its optical index 

at wavelength Ȝ . Referring to Cauchy’s law which gives a good approximation for the index 

variations of transparent materials in the visible range, we can write: 

    0 2 4

A B
n n   

 
                (2.6) 

with n0, A and B, three constants dependent on the material considered. The offset 

Δt is then: 

2 2 4 4
s,0 s s,0 s

1 1 1 1
t A ' B'

   
                

            (2.7) 

The constants A’ and B' are taken as adjustment variables of the offset term measured via 

the cross-phase modulation of water as a function of Ȝs. The red curve in Figure 2.9 b) 
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corresponds to the adjustment made with A’= 1.317λλ x109 (fs.nm2) and B’= 

4.73669x1013(fs.nm4). The mathematical expression of the shift of "zero" thus obtained is 

programmed in the acquisition software of spectra ΔT/ T to allow its compensation via the 

displacement of the delay line. 

2.6. Standard Microcavity 

A.Bréhier and G.Lanty [13, 32] have developed during their thesis at LPQM - ENS Cachan 

the method of fabricating and optimizing a perovskite-based microcavity (Standard microcavity) 

working in strong coupling regime. It is composed of a PEPI thin film (50 nm) sandwiched 

between two mirrors, a dielectric Bragg mirror DBR (bottom mirror) and a silver mirror (top 

mirror) as illustrated in the Figure 2.10. The PMMA layer is a spacer layer, optically non active, 

necessary to tune the wavelength of the photon modes. In particular, we choose to work with Ȝ/2-

cavities in which only one photon mode is present. To observe the strong-coupling regime, we 

will tune the wavelength of the photon mode close to the wavelength of the perovskite exciton 

mode. 

                                   

Figure 2.10 Standard Microcavity Structure. 

In order to enter the physics of microcavities, I have learnt the technique of fabrication of 

standard microcavity. In the following, a complete description of each stage of fabrication of 

such microcavity will be presented. 
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2.6.1. Bottom Mirror: Dielectric Bragg mirror (DBR) 

Bragg mirror (also called dielectric mirror, or Distributed Bragg Reflector DBR) is 

involved in the fabrication of standard microcavity. It is composed of multiple thin layers of two 

different materials, one with low refractive index nL and another with high refractive index nH. 

Figure 2.11 shows schematically the structure of a Bragg mirror. At each interface between 

different materials, there is a partial reflection of the optical wave. A dielectric Bragg mirror is 

able to reflect an incident wave of wavelength Ȝ0 in vacuum if the widths of the layers meet the 

Bragg conditions: the optical path associated with each layer must be equal to Ȝ0/4 such that 

nHLH= nLLL= Ȝ0 /4 with LH (LL) the length of the layer of index nH ( nL). 

 

Figure 2.11 Dielectric mirror Structure 

 

If the refractive index difference between the two dielectric materials is relatively small, a 

large number of pairs N are needed to achieve a high reflectivity. Dielectric mirror can provide 

high reflectivity over a region called the “stop-band”, whose width ΔȜ is approximately given 

by: 

                
 H L

eff

2 n n

n

 
 

           (2.8) 

            where neff is the effective refractive index of the dielectric mirror. The stop-band is the 

region in which the condition nHLH=nLLL=Ȝ0/4 is satisfied. It is clear that a small refractive 
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index contrast results in a narrow stop-band. Moreover, the width of the stop-band is 

independent of the number of layers, it depends only on the refractive index difference between 

the layers of the stack. The value of the reflectivity of the mirror is limited by the absorption in 

the dielectric materials. 

The dielectric mirror used in the fabrication of perovskite based cavities is made by 

Layertec TM Company. They come in round pellet form of diameter 12.7 mm and thickness 1 

mm thick. The structure of the dielectric Bragg mirror proposed by Layertec TM Company is 

shown in Figure 2.12. The Bragg mirror is deposited onto a fused silica substrate by Plasma 

Enhanced Chemical Vapor Deposition (PECVD). It is formed of 6.5 pairs of two different 

layers with nH = 2.36 and nL=1.46. A 10 nm thick silica layer is deposited on the top of the 

mirror to ensure a good deposit of the self-organized perovskite.  

 

 

Figure 2.12 (a) Photograph of the dielectric mirrors in their box. (b)  Structure of 
the LayertecTM   Society Bragg mirror used for the development of PEPI based 

cavities. 

Figure 2.13 presents an example of the reflectivity spectrum of the dielectric Bragg mirrors 

prepared by LayertecTM company. This spectrum was obtained using the experimental setup 

which measures the Reflectivity spectrum of the mirror at normal incidence. We can see that the 

stop band of the mirror at normal incidence is centered at 2.43 eV, having a maximal reflectivity 

of 98% and the stop band extends from 2.18 eV to 2.7 eV (that is to say from 460 nm to 570 nm). 

The two dips at 1.88 eV and 2.95 eV are the Bragg modes of this DBR mirror. 
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Figure 2.13 Reflectivity spectrum of the dielectric Bragg mirror at normal 
incidence. 

The reflectivity spectra for the incident angles 0°, 20°, 30°, and 40° are exhibited in Figure 

2.14. We note that the reflectivity spectrum shifts to higher energy as the angle of incidence 

increases. 

 

Figure 2.14 Reflectivity spectra of the dielectric Bragg mirror at the angles of 
incidence 0°, 20°, 30°, and 40°. 

2.6.2. Top mirror: Metallic mirror 

The top mirror of the Standard cavities is a metallic mirror deposited in the clean room 

of Institut d’Alembert at ENS-Cachan. It is deposited on the top of the spacer layer by 
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electrobeam evaporation. For mirrors used in the visible range (near the exciton energy of PEPI, 

at 2.4 eV), several metals can be used such as: aluminum, silver, gold and platinum. However 

silver mirror has been chosen as the top mirror used in the fabrication of standard microcavity 

since its reflectivity coefficient is very good (around 80%)  for energies below 3 eV, which is 

well suited to the production of PEPI based microcavities [20]. In addition, the deposition of 

silver by evaporation does not raise any difficulties in contrast to that of aluminum and platinum 

[20]. A schematic diagram of the self evaporation frame is represented in Figure 2.15. First, 

the sample is placed in a high-vacuum chamber that also contains, in a crucible below the 

sample, the metal to be deposited (Silver metal in our case). An electric current is applied to the 

crucible which is heated to a certain temperature (by Joule effect) leading to the liquefaction of 

the metal and the release of metal atoms into the chamber along straight paths as shown in 

Figure 2.15. Some of these atoms are deposited on the sample up to a thickness controlled by 

a piezoelectric balance. The control of the thickness is very important because the transmission 

and reflection coefficients of the metallic mirrors depend sensitively on this thickness. 

 

Figure 2.15 Schematic diagram of self evaporation frame. 

2.6.3. Microcavity Preparation 

In this thesis, we have embedded the perovskite molecule (PEPI) in a Ȝ/2 Fabry-Pérot 

microcavity. The first step in the fabrication of microcavities is to clean the bottom dielectric 

mirror subsequently with three different solvents: acetone, ethanol and isopropanol in an 

ultrasonic bath, where each step lasts for 15 minutes. It is then immersed in a solution of 1 mole.L-
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1 KOH dissolved in ethanol  for  15 minutes to modify the surface charge and thus to activate the 

silica surface for the self-organization of the perovskite layer. Then the dielectric mirror is rinsed 

by distilled water and dried by nitrogen flow. Note that the homogeneity of the PEPI film 

prepared on KOH treated surface is better than that prepared on untreated one.   

In a second step, a 50 nm thin film of (C6H5C2H4-NH3)2PbI4 (PEPI) perovskite is deposited 

on top of this dielectric mirror by spin coating a 10 wt% solution of (C6H5C2H4-NH3I) and PbI2 

dissolved in stoichiometric amounts in N,N-dimethylformamide (DMF). The parameters of the 

deposition by spin-coating are: a rotational speed of 3000 rpm-1 and a deposition time of 60 sec. 

The sample is then placed at 95 ° C for one minute to evaporate the remaining solvent and ensure 

the self organization. 

Then in a third step, a 100 nm PMMA (polymethylmetacrylate) spacer layer is deposited 

on the perovskite layer by spin coating. A preparation of PMMA solution is needed: PMMA is 

dissolved in the toluene with a mass concentration of 4% of this solution. The parameters of the 

PMMA deposition are: a rotational speed of 2200 rpm-1 and a deposition time of 40 sec. The 

deposit by spin coating is then followed by annealing at 95 °C for 20 minutes. Note that besides 

the main role of the PMMA layer in adjusting the cavity photon mode, the PMMA layer plays 

an important role also in protecting the perovskite layer upon the deposition of the metallic 

mirror. 

Finally, the microcavity is completed by a top metallic mirror which is produced by 

electron-beam evaporation of silver (thickness of 28 5 nm) on the PMMA layer. 

2.7. Conclusion 

In this chapter, we have presented the different techniques: absorbance, angle–resolved 

reflectivity, angle-resolved photoluminescence, pump-probe experimental setup mounted at 

LAC-ENS Cachan and microphotoluminescence set-up of LPN, to study the optical properties 

of both perovskite thin films and microcavities containing them. The experimental setup used 

to perform ȝPL measurements was designed to give an image of the surface of the sample on 

the detector, in the real-space configuration, and of its Fourier plane, in the reciprocal space 

configuration. The pump-probe experimental setup has been explained in details, the width at 

half maximum of the cross-correlation pump and probe pulses have been estimated to be about 

112 fs, the dispersion of "zero" with the wavelengths selected by the monochromator was also 

determined to allow its compensation when acquiring T/T spectra. We then introduced a 

complete description of the fabrication of Standard PEPI based microcavities covered with a 
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silver metallic mirror. Some better cavities, presenting a higher quality factor, will be presented 

in chapter 4, for which the top mirror is a dielectric mirror. 
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 Chapter͵  
3. Ultrafast carrier dynamics in hybrid organic-inorganic quantum 

wells 

The work in the field of optoelectronic devices and in particular the photovoltaic ones 

highly recommend the knowledge of the carrier dynamics of the used materials.  Dynamics 

should be closely monitored at operating temperature, which is normally the room temperature 

[72]. A lot of studies have been devoted to the optical studies of 2D perovskite , some about the 

excitonic structure [23, 24, 39, 73-76], or about the influence of the dielectric confinement [77-

80]. For instance, the dielectric confinement effect on excitons has been demonstrated by 

varying the dielectric constant of the barrier material in PbI4-based layered structures. It has 

been found that the dielectric confinement dominates the exciton binding energy, in contrast 

with conventional semiconductor quantum wells [80]: for example, the exciton binding 

energies in (C6H13NH3)2PbI4 (named as C6-PbI4) and (C6H5C2H4NH3)2PbI4 (named PEPI) are 

400 meV and 220 meV respectively. 

On the other side, the excitonic non-linearities are not very well reported in the literature. 

Only some studies about the exciton relaxation and the existence of the excitonic molecule were 

reported in several papers.  Fujita et al. [73] have estimated the half-life time of excitons in 

PEPI to be very short (5-10 ps) through time-resolved photoluminescence measurements 

performed at 10K. It has also been shown by Schimizu et al. [81] that the exciton absorption 

band in PEPI exhibits bleaching and blue shift which lasts for 10 ps when pump photon energy 

is set at the exciton resonance through a subpicosecond pump-probe spectroscopy performed at 

5K. The excitonic molecule with a binding energy of 50 meV was observed in a PbI4-based 

two-dimensional semiconductor structure by photoluminescence measurements performed at 

2K by Ishihara et al. [78]. Once again, the large binding energy is due to the dielectric 

confinement effect, in contrast with conventional semiconductors where the binding energy of 

a biexciton is usually a few meV at most. Biexciton lasing has also been observed for the first 

time in C6-PbI4 by Kondo et al [82]. Moreover, Kondo et al. [83] measured the third-order 

nonlinear susceptibility χ(3) of the lead iodide based perovskite type material C6-PbI4 by a 

transient four-wave mixing technique. A large modulus of χ(3) of 1.6 x 10-6 esu was observed at 

the exciton resonance at 8K. This value of χ(3) is larger than that of (C10H21NH3)2PbI4 and of 
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one dimensional organic polymers, which was found to be equal to 10-9 esu by an optical third-

harmonic generation measurement at room temperature [84]. A nondegenerate four-wave-

mixing measurement was carried out for C6-PbI4 by Ishi et al. [85], to demonstrate biexcitonic 

contributions. The result was analyzed with a few-level model which includes biexcitons. 

Detuning dependence of the ac Stark shift in PEPI was studied using pump-probe spectroscopy 

by Schimizu et al., to show the contributions of the bound and unbound biexcitons [76]. It was 

also suggested that the giant oscillator strength model for the excitonic molecule may not be 

applicable due to the extremely strong light-exciton interaction [86]. 

Nevertheless, all these studies have been performed at low temperature and for high 

carrier densities where carrier-carrier interactions dominate the dynamics of the excitonic state, 

and to our knowledge, no information on the intraband relaxation is available in the literature. 

In this chapter, we report on the exciton dynamics in PEPI perovskites by means of pump/probe 

spectroscopy performed at room temperature and for both low and high carrier densities. The 

studied sample consists in a 50 nm film of (C6H5C2H4NH3)2PbI4 perovskite (PEPI) deposited 

on a quartz substrate, corresponding to approximately 30 QW. It is obtained by spin coating a 

10% wt solution of C6H5C2H4-NH3I and PbI2 dissolved in stoichiometric amounts in N, N-

dimethylformamide. The sample is then placed at 95 ° C for one minute. A 100 nm PMMA 

layer is then deposited by spin coating in order to protect the pervoskite. In fact, we have 

observed that the photostability of PEPI layers is greatly enhanced with this protection layer.   

This section is divided into two parts: the first part will present the dynamics of excitons 

in PEPI layer under low excitation regime where multiexcitonic effects such as Auger effect 

are negligible, while the second part will study their dynamics under high excitation regime.   

3.1. Protocol of measurement 

The exciton dynamics is studied thanks to femtosecond pump/probe non-linear 

spectroscopy. The experimental setup has been described in details in chapter 2. The probe 

consists in a white light continuum which allows performing transient absorption spectroscopy. 

The energy of the probe pulse selected by the monochromator is fixed at 2.397 eV, which 

corresponds to the spectral position of the excitonic peak of PEPI (see Figure 3.1).  On the 

other hand, the pump pulse can be tuned from 2.818 eV to 2.397 eV.  The pump spectra are 

plotted as blue (2.818 eV) and green (2.397 eV) dash lines in Figure 3.1.  

We have performed two sets of experiments in order to study the change of transmission 

and thus the change of absorption in PEPI quantum wells. In one set of experiments, the pump 
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pulse with energy in resonance with the excitonic band (2.397 eV) is used to generate primarily 

excitons. In the other set, the multi-quantum wells structure is excited above the 2D continuum 

[24] with pump energy at 2.818 eV. 

 

Figure 3.1 Optical density of a 50 nm PEPI layer. The spectrum of the pump is 
displayed in dash lines for a central energy of 2.397 eV (green) and 2.818 eV 

(blue). 

One important parameter is the number of carriers per cm2 injected in the multi-quantum 

wells structure. This quantity is defined as:  

O.D.power
n .(1 10 )

1kHz. .S
 


                     (3.1) 

with S the surface of the spot in cm2 at the surface of the sample, O.D. the optical density 

at the pump wavelength, and ħ the energy of the photon. 

In order to calculate the number of injected carriers for energies in resonance with the 

exciton (2.397 eV) and with the continuum (2.818 eV), the spot size of pump in these two 

configurations has been measured thanks to the knife edge method.  It is based on recording the 

total power in the beam as a knife edge is translated through the beam using a calibrated 

translational stage. A powermeter is placed in the position of the sample in order to record the 

intensity of the Gaussian beam between  and the position of the knife. The signal can be 

fitted by a complementary error function: 
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              (3.2) 

and its derivative by a Gaussian. Figure 3.2 shows the derivative of the intensity profiles 

recorded by the powermeter versus position for pump pulses at 2.397 eV (left) and 2.818 eV 

(right). The red line represents the Gaussian fit of the intensity profile where its FWHM is equal 

to the spot size. The spot sizes of the 2.397 eV pump pulse and the 2.818 eV pump pulse are 

measured to be 38 ȝm and 31ȝm respectively.  

   

                          (a)                                                                   (b)  

Figure 3.2 Plot of power output versus knife edge position for pump pulse of 
energies: (a) 2.397 eV and (b) 2.818 eV. Red line: Gaussian fit. 

Figure 3.3 shows typical relative variation of transmission as function of the pump/probe 

delay for pump energies at 2.397 eV (left) and at 2.818 eV (right). In both configurations, a 

positive variation of the transmission is observed (photobleaching). The physics of this transient 

signal will be discussed in the next part of the chapter. Perovskite molecular quantum wells are 

hybrid organic-inorganic compounds. Their stability under illumination is better than common 

organic materials [21]. Nevertheless, when exposed to energetic pulses such as the ones 

provided by this optical parametric amplifier, the molecular structure of perovskites can be 

degraded. Therefore, in order to extract intrinsic physics from these pump/probe experiments, 

one has to pay attention to this problem. Moreover, the samples studied in this thesis consist in 

spincoated layers. The optical absorption spectrum is measured to be the same on different 

points of the same PEPI layer or on two different PEPI layers as the one shown in Figure 1.6. 
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This shows that the mean value of the layer thickness is well controlled at the millimeter scale 

of the spot size of optical absorption experiment [20]. Nevertheless, thickness of lateral 

fluctuations of 1-2 ȝm is well observed by the AFM images of PEPI thin films in Figure 3.4 

with a scanning area of 10*10 micrometers [13]. 

 

Figure 3.3 Relative variation of transmission in function of pump/probe time 
delay. Left side: Pump and probe at 2.397 eV, carrier density: 2.17х1013 cm-2. 

Right side: Pump at 2.818 eV, probe at 2.397 eV, carrier density: 1.29х1013 cm-2. 

 

Figure 3.4 Typical AFM image for a PEPI thin film. 

These fluctuations may induce some dispersion in the value of the optical density at the 

scale of the spot size (~30 m) in the pump/probe experiments, and then in the evaluation of 

the carrier density. In order to address these questions, two methods have been used. First, 

statistics of the amplitude of the relative variation of transmission have been performed. Figure 
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3.5 reports statistical measurements over 50 point both for pump in resonance with the exciton 

and above the continuum. The mean value of the amplitude of T/T normalized by the carrier 

density (n) at zero time delay is 8.7 x10-16 for pump at 2.397 eV and 9.8x10-16 for pump at 2.818 

eV. The standard deviation is 7.4x10-17 for both cases, which leads approximately to a 8 % 

dispersion on the T/T/n amplitudes from one point to another on the sample. Finally, the 

amplitude of the transient photobleaching of the exciton line is quite identical for a given carrier 

density whether the pump is tuned in the continuum or in resonance with the exciton.  

 

Figure 3.5: Statistics of the photobleaching amplitude normalized by carrier 
density (n), for pump at 2.397 eV, n= 2.17х1013 cm-2 (right) and pump at 2.818 eV, 

n= 1.29 х1013 cm-2 (left). 

The second procedure was implemented to perform several acquisitions one after the 

other on the same point and to compare both the amplitudes and the dynamics. Figure 3.6 

shows a series of three scans acquired at the same point. Both the amplitudes and the dynamics 

are identical within the noise. It allows to state that no degradation of the materials is occurring 

during the acquisition time. In the end, it also allows to perform an averaging over the scans to 

improve the signal to noise ratio.       

Finally, because experiments are performed at the limit of the signal to noise ratio in order 

to work at the lowest carrier density, the averaging procedure has been extended to acquisitions 

performed on different points on the samples. Figure 3.7 displays normalized acquisitions 

which show the same dynamics within the uncertainty due to the low signal to noise ratio. The 

curve resulting from the averaging of the six scans is plotted, showing an improvement of the 
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signal to noise ratio of a factor ~ 3 - 4. In this manuscript, each time this procedure has been 

used, this will be mentioned in the text. 

                      

Figure 3.6: Series of three scans acquired at the same point in function of time 

delay between pump and probe pulses. 

     
Figure 3.7: Normalized T/T as function of time delay between pump and probe 

pulses measured over 6 points and its mean. Pump and probe at 2.397 eV, 
n=2.17х1013 cm-2. 

3.2. Dynamics of the excitonic state: low excitation regime 

In this part, the dynamics of the excitonic state is investigated at room temperature in a 

degenerated configuration where both pump and probe pulses are tuned with the exciton line. 

The absorption of the pump pulse creates some excitons and the probe pulse monitors the 
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variation of transmission of the excitonic transition as function of the delay between pump and 

probe pulses. Because relative variation of reflectivity (R/R) is negligible in comparison to 

the one of the transmission (T/T)2, the relative variation of transmission is related to a transient 

change in the absorption coefficient of the excitonic line. In this section, we report experiments 

performed at the lowest carrier density (2.17х1013 cm-2) at the limit of our signal to noise ratio. 

The goal was to work at carrier densities for which multi-excitonic effects such as Auger 

assisted relaxation are negligible.  

 

Figure 3.8: Relative variation of transmission normalized by the carrier density (n) 
in function of time delay between pump and probe pulses (mean over 6 

acquisitions). Pump and probe at 2.397 eV, n=2.17х1013 cm-2. The red curve is a 
bi-exponential fit. 

Figure 3.8 displays the relative variation of transmission averaged over 6 points in 

function of time delay between pump and probe pulses for both pump and probe pulses tuned 

in resonance with the excitonic transition. It shows a positive variation of transmission of ~2.10-

2 which corresponds to a transient decrease of the absorption coefficient. When pump/probe 

delay increases, T/T decreases to reach a plateau at long time delay3. The red curve 

corresponds to a fit with a bi-exponential decay. The main contribution to the relaxation at short 

time delay is fitted with a lifetime R ~ 110 ps. The long tail is not resolved in our experiment. 

The fit begins to converge for a recombination time higher than 5 ns. The interpretation of these 

observations is not straightforward, and the lack of information on the band structure of PEPI 

                                                 
2 In practice, no signal has been obtained for R/R. 
3 1200 ps is the highest delay that can be reached on this experimental setup.  
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makes it even more difficult. Nevertheless, a first interpretation can be done. Thanks to PL and 

PLE (Photoluminescence Excitation) experiments in function of temperature, it has been 

previously stated that some excitons can be localized on defects of the structure at room 

temperature with activation energy of the order of few tenth of meV [24]. Then, the population 

of excitons should be composed both of free and localized excitons leading to a bi-exponential 

decay. Therefore, we interpret the 110 ps relaxation time as the one of “free” exciton whereas 

the long tail is attributed to the localized excitons.  

 

Figure 3.9 Relative variation of transmission normalized by the carrier density in 
function of time delay between pump and probe pulses in a log-log scale. Pump 
and probe at 2.397 eV, n=2.17х1013 cm-2. The red curve is a fit with a stretched 

exponential. 

In the light of the previous discussion, the problem could be addressed in another way. 

Perovskite films obtained by spin-coating can be viewed as disordered materials as shown by 

the AFM image in Figure 3.4. In these kind of materials, recombination of electron-hole pairs 

are often described with stretched exponentials:    

   ct
0I(t) I e

       (3.3) 

where I is, for instance, the PL intensity, c is a constant independent of time and  a parameter 

somehow related to the disorder. These relaxation behaviors have been observed in several 

disordered materials such as porous silicon [87], CdSe-ZnSe superlattice [87], AlInGaN alloys 

[88] etc… Figure 3.9 shows the relative variation of transmission in function of the time delay 
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(black) and a fit with a stretched exponential (red).  The data are quite well fitted with a stretched 

exponential model suggesting that disorder indeed plays an important role in the relaxation 

mechanisms. Nevertheless, the parameters (c ~ 1.54  0.76 ps-1;  ~0.150.04) display large 

error bars, and are difficult to interpret in terms of simple physical parameters. The physical 

origin of this behaviour in the relaxation mechanisms may have different origins. It can come 

from energetic disorder, meaning that excitons can move from localized states to delocalized 

states. It can also result from hopping of excitons between localized stated (topological 

disorder) [88]. To investigate this point, more experiments are needed. First, time resolved 

photoluminescence experiments will be performed in the next months. It will, for instance, tell 

us whereas all the spectral components of the PL spectrum have the same dynamics or not. 

Experiments in function of the temperature will also be performed. In fact, theory suggests that 

within the stretched exponential relaxation model, the variation of the  parameter with the 

temperature is related to the disorder physical mechanisms. Indeed, a variation of  with the 

temperature would be related to energetic disorder whereas a constant  would come from 

dispersive tunnelling mechanisms [88, 89]. Finally, one can also work on the fabrication of the 

perovskite films to vary the disorder of the structure. In this context, it would be interesting to 

perform experiments on films obtained by co-evaporation techniques that are known to lead to 

higher crystalline structure as it enhances for instance the mobility in 3D-perovskite based solar 

cells [90].  

3.2.1. Intraband relaxation 

The relative variation of transmission of the sample in function of time delay for a pump 

pulse tuned in the continuum (Ep = 2.818 eV; Es = 2.397 eV), has been performed. Since the 

measurements were performed under similar conditions as the previous ones, in the limit of 

signal to noise ratio, the mean value of T/T over 9 points is reported in Figure 3.10.  As for 

the degenerated configuration, the signal can be fitted with a bi-exponential decay with X ~ 

100 ps and a long tail which is not resolved in this experiment. Figure 3.11 shows the 

comparison of T/T in function of the time delay for pump energies at 2.818 eV (red) and 2.397 

eV (black). Within the measurements incertitude, the two curves are superimposed, showing 

that the recombination dynamics is the same regardless of the energy at which carriers are 

injected. 
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Figure 3.10 Mean relative variation of transmission over 9 points normalized by 
the carrier density (n) in function of time delay between pump and probe pulses. 

Pump at 2.818 eV and probe at 2.397eV, n=2.17х1013 cm-2. 

 

 

Figure 3.11: Comparison between normalized T/T for pump energies at 2.397 eV 
(black) and 2.818 eV (red). 

Figure 3.12 shows a zoom at short delays for different pump energies between 2.397 eV 

and 2.818 eV. One can notice that the different curves superimpose within the measurements 

uncertainties. This observation means that no sizeable rise time is observed. Therefore, one can 

conclude that the intraband relaxation down to the excitonic state is faster than the time 
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resolution of the experiment i.e. ~150fs. One can argue that this instantaneous signal could be 

due to a screening of the transition due to the presence of carriers in the continuum, without the 

presence of carriers on the exciton state. Nevertheless, excitonic population has to build up to 

lead to luminescence. Therefore, a relaxation of carriers from the continuum to the exciton state 

has to occur. The fact that transient bleaching curves superimposed on the different time scales 

(100 fs to 1000 ps) rules out the screening interpretation. Moreover, we have seen in section 

3.1, that the amplitude of the transient bleaching normalized by the number of injected carriers 

is the same whether the pump pulse is in resonance with the exciton line or above the 

continuum. This observation means that approximately all the carriers injected in the continuum 

are recovered on the ground state within the pulse duration. This supports the interpretation of 

an ultrafast intraband relaxation. 

 

Figure 3.12: Normalized variation of transmission in function of the pump/probe 
time delay for different pump energies. Probe at 2.397 eV. 

This value of hundred of femtoseconds has to be compared with the energy difference 

between the initial and final states i.e. around 421 meV (2.818 - 2.397 eV). In common 

semiconductors where excitons have small binding energies, the intraband relaxation is phonon 

assisted. In particular, a 130 fs relaxation time per emitted LO-phonon has been measured in 

CdZnTe quantum wells [91, 92]. In hybrid 3D perovskite, the phonon energies are in the range 

of 8 meV (vibration of inorganic cage) [109]. If we assume that the value of 2D perovskite 

phonon has the same order of magnitude than the 3D one, a phonon assisted relaxation would 

therefore lead to 7 ps intraband relaxation. One can argue that the strong phonon coupling 

occurring in these materials [24] should lead to a speed-up of the relaxation time per emitted 
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phonon. Even if this time was as fast as 10fs, it should lead to a sizeable rise time (600 fs) in 

the pump/probe signal. Therefore, common assisted phonon mechanism cannot alone account 

for this sub 150 fs intraband relaxation. Ultrafast intraband relaxation has also been reported in 

CdSe quantum dots [93, 94], in 3D perovskite [72] and organic semiconductors [95-97]. In 

CdSe, the relaxation of hot carriers depends on the size of the dot and can vary from picoseconds 

to few hundreds of femtoseconds. In 3D perovskite, a 0.4 ps hot hole cooling has been reported, 

whereas in organic semiconductors it can go down to around 100 fs. In order to account for 

these ultrafast relaxation times, two main mechanisms are invoked. The first mechanism that 

leads to ultrafast relaxation is related to non-adiabatic relaxation pathways. It is based on the 

breakdown of the Born-Oppenheimer approximation where vibrational motions and electronic 

states cannot be separated [94]. To test this hypothesis, experiments at low temperature are 

planned. The second mechanism consists in Auger mediated recombination. For instance, in 

CdSe quantum dots, a hot exciton cools down through the interaction with a hole in an Auger 

process. These processes have attracted much attention for few years since they can be at the 

origin of multiple exciton generation, mechanism of high interest for photovoltaic applications 

[97]. Therefore, the observation of such a process in 2D perovskite should bring attention on 

these materials. 

3.2.2.  Analysis of carrier dynamics 

Let us now discuss the origin of the exciton line bleaching. Excitons are quasi-boson 

particles composed of two fermions: an electron and a hole. The presence of excitons in the 

system fills the conduction and valence band states from which they are formed. This is called 

Phase Space Filling (PSF) and leads to a reduction of the oscillator strength ( Xf ) of the 

transition due to the decrease of the density of states available to perform the optical transition. 

Moreover, Coulomb interaction between electrons and holes from different excitons can also 

lead to a renormalization of the exciton wave function. The renormalization can affect both the 

oscillator strength and the energy of the exciton transition X . Finally, the 2D dimensionality 

enhances the collision probability between excitons in comparison to the bulk case. These 

collisions can lead both to broadening of the transition linewidth ( X ) and to the opening of 

new Auger assisted relaxation channels (see section 3.5 for the latter).  

In order to investigate which physical parameter ( Xf , X , X ) is influenced by the 

presence of excitons in the quantum well structure, transient spectra have been performed. 

Figure 3.13 displays the relative variations of transmission spectra as function of energy at 
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different pump/probe delays. The main feature is a positive variation of transmission 

(photobleaching) at the energy of the exciton line and a negative signal (induced absorption) on 

the wings.  

 

Figure 3.13 Spectra of relative variation of transmission for different pump/probe 
time delays. Pump at 2.818 eV; n= 1.29 х1013 cm-2. 

The exciton line of PEPI being non symmetric, the analysis of ΔT/T is not 

straightforward. In order to disentangle which physical parameter is influenced by the presence 

of excitons, data have been analyzed by the momenta method following the procedure proposed 

by Litvinenko at al. for GaAs/AlGaAs quantum wells [98]. In this analysis, the zeroth, first and 

second order moments correspond to the oscillator strength Xf , the energy of the exciton X  

and the square of the linewidth X  respectively. 

Thus, the three quantities Xf , X , X  are calculated via the following equations: 

      xf ( )d                                                          (3.4) 

                      x x( )d / f                                                  (3.5) 

      2 2
x x x( ) ( )d / f                                   (3.6) 

where     is the absorption coefficient at the energy  .  
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Figure 3.14 Results of moment analysis. f stands for the oscillator strength, Г for 
the linewidth, Pump at 2.818 eV, probe at 2.397 eV. 

We can observe from Figure 3.14 that both Xf  and 2
X are modified by the presence of 

excitons. On the contrary, X  is not modified or at least more than one order of magnitude 

smaller than Xf  and X  quantities. At zero delay, the reduction of oscillator strength f / f  is 

of the order of 7.10-3 and the broadening /   around 3.10-3. The variation of these 

parameters is what is observed in common inorganic quantum wells [98]. In order to compare 

the amplitude of these effects in these two materials, we normalized the relative variation (

f / f , /  ) by the quantity
2
0

QW

n a

N

 , where n is the carrier density, a0 is the exciton Bohr 

radius and NQW is the number of wells. This quantity is of the order of 5.10-3 for GaAs/AlGaAs, 

and 3.10-2 for PEPI4. Both f / f , and /  are two orders of magnitude smaller in PEPI than 

in GaAs/AlGaAs quantum wells [98]. 

To compare our experimental results with theoretical ones, we present here the model 

developed by Schmitt-Rink et al. [99] to study the excitonic non-linearities for two dimensional 

systems. In fact, this model gives analytical results for the contributions of ( Xf , X , X )  to 

exciton bleaching. These three parameters are linked to the exciton line through its 

susceptibility, which is defined as:  

                                                 
4 For PEPI the numerical values are: a0 ∼1.5 nm, NQW ∼ 30, n∼ 1013 cm−2. For AlGaAs the numerical values are: 
a0 ∼ 5.9 nm, NQW ∼ 20, n∼1011 cm−2 [98] 
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  
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           (3.7) 

As one or more of these 3 quantities ( Xf , X , X ) is changed by optical excitation, the 

excitonic non-linearities arise. According to Miller et al. [100] and Knox et al. [101], no energy 

shift of the exciton peak is observed. This simply reflects the charge neutrality of the exciton. 

After neglecting the effect of the variation of exciton energy, the authors move to study the 

effect of the variation of the exciton oscillator strength. 

The relative variation of the exciton oscillator strength is defined as: 

X

X

f n

f Ns


                                      (3.8) 

where Ns is the exciton saturation density. The negative relative change of the oscillator 

strength, that is to say the reduction of the oscillator strength, can be explained in two processes:  

 the blocking mechanism (Phase Space Filling) due to the Pauli exclusion principle  

 the changes in the exciton orbital wavefunction due to the modification of the 

electron-hole interaction induced by the presence of other electron-hole pairs 

which includes both exchange effects and long-range Coulomb effects 

In order to go further, the wavefunction of two-dimensional excitons is introduced. It is 

defined as: 

0

1/2
2r/a

X
0

2 2
U (r) e

a
    

                                   (3.9) 

  0
X 3/22

0

a
U (k) 2

1 (a k / 2)
 

  

                                     (3.10) 

where a0 is the usual 3D Bohr radius. According to [102, 103] , the long range Coulomb 

effects on relative change of oscillator strength is very small at 2D and so Phase Space Filling 

and exchange effect are only taken into account in this study. The reduction of the exciton 

oscillator strength due to the Phase Space Filling contribution is defined as: 

        X X
e h

kX XPSF

f U (k)
(f (k) f (k)

f U (r 0)


  

                     (3.11) 
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where fe,h(k) are the electron and hole distribution functions given by: 

2

e h X

N
f (k) f (k) U (k)

2
                                         (3.12) 

One can thus obtain the following relation: 

   2
2D

S PSF

1 32
a

N 7
                      (3.13) 

where a2D is the Bohr radius of 2D exciton (a2D = a0/4).  

By evaluating n and 1/Ns(PSF), the reduction of the oscillator strength for PEPI related to Phase 

Space Filling x xf f  is of the order of few 10-1 for a 2D Bohr radius of 1.5 nm and a carrier 

density of the order of 1013 cm-2. This value is two orders of magnitude higher than our 

experimental findings as shown in Figure 3.14. This highlights the need of advanced 

calculations in order to describe the excitonic physics in these hybrid quantum wells. 

Let us now consider the reduction of the oscillator strength due to the renormalization of 

the exciton orbital wavefunction. In the presence of other excitons, the bound state binding 

energy is weakened thus the probability of finding electron near the hole is reduced. This gives 

rise to another reduction of oscillator strength. The change of binding energy can lead to either 

change of exciton energy or continuum. In order to investigate these effects, the relative 

variation of transmission of the sample for a probe tuned to the continuum edge (blue side of 

the excitonic transition) was recorded as seen in Figure 3.15. We can see that the variation of 

transmission remains positive for probe tuned from 2.389 eV to 2.441 eV. Then, a negative 

variation of transmission is observed for the energy of the probe pulses tuned from 2.441 eV to 

the continuum. This negative signal is related to an induced absorption.   



  

Page | 70  
 

 

Figure 3.15 Relative variation of transmission in function of pump/probe time delay. 
Pump at 2.818eV and probe tuned from exciton energy to continuum edge. 

Moreover, Figure 3.17 shows the comparison between the dynamics of this negative 

variation of transmission and the one of the bleaching of the exciton line. Both dynamics are 

identical, meaning that the induced absorption observed at the continuum energy is due to the 

presence of excitons in the system. We interpret this induced absorption as a consequence of a 

transient red-shift of the continuum. Figure 3.16 shows a scheme of red shift of continuum. 

This shift should be a consequence of the exciton wavefunction renormalization. In fact, the 

renormalization can be understood as a spread of the wavefunction in the real space that induces 

a decrease of the exciton binding energy. The exciton binding energy is defined as the difference 

between the exciton and continuum energies.  Then a reduction of the binding energy can lead 

both to a blue shift of the exciton line and a red-shift of the continuum. Since the excitonic line 

does not show any shift (or at least a small blue shift), the red-shift of the continuum is a 

signature of the exciton wavefunction renormalization. 

 

 

Figure 3.16 Scheme of red shift of continuum. 
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Figure 3.17 Relative variation of transmission in function of pump/probe time 
delay. Pump at 2.818eV; probe at 2.397 eV (black line) and at 2.61 eV (green line). 

Therefore, the reduction of the oscillator strength in PEPI is related to both Phase Space Filling 

and renormalization effects. The latter can be viewed as screening effects. In PEPI, the 

dielectric confinement due to the difference in the dielectric constants of the organic and 

inorganic parts, have a strong influence on the excitonic properties of this material [80]. This 

mechanism is nothing more than screening effects. It is therefore not so surprising that 

screening effects such as wavefunction renormalization play an important role in the physics of 

these hybrid quantum wells. 

Finally, let us now discuss briefly the transient broadening of the exciton line induced by 

excitons themselves. As in conventional inorganic quantum wells, this may come from 

collisions broadening. To test this, one should perform experiments in function of the injected 

carrier density. Unfortunately, increasing the carrier density leads to the appearance of a fast 

component at low delays that may be due to exciton-exciton annihilation5. On the other hand, 

decreasing the carrier density brings the data under our signal to noise ratio. Nevertheless, it is 

reasonable to attribute the transient broadening to collisions. 

3.3. Excitonic dynamic study as function of carrier density 

The interactions between excitons have been widely discussed in recent years due to their 

key role in the operations of optoelectronic devices. For example, the process of Auger effects 

                                                 
5 Some studies in high carriers density regime are presented in the next part of this chapter 
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becomes of increasing importance at high carrier density. This effect acts as a limiting factor 

on the performance of lasers for which it increases the lasing threshold. To study these processes 

in our quantum wells, we conducted time resolved pump-probe experiments as function of the 

pump fluence. The results of the normalized ΔT/T as function of time delay between pump and 

probe pulses for the pump energy in resonance with the continuum (2.818 eV) is presented in 

Figure 3.18a for different pump powers. For the data reported, an average pump power between 

0.1ȝW and 6.4 ȝW was focused onto the sample surface, producing fluences of 13 ȝJ.cm-2 to 

848 ȝJ.cm-2. We can see that the relaxation dynamics is accelerated as the fluence increases. 

This general behavior is observed in semiconductor nanostructures (quantum wells, quantum 

dots) where Auger effects come into play [104, 105]. Moreover, at long time delay, one can 

observe that the contribution of the process with a recombination time higher than 5 ns (see 

section 3.2) is decreasing while increasing the pump fluence. In addition, a zoom at short time 

delays (up to 800 fs) for different fluences varying between 13 ȝJ.cm-2 to 848 ȝJ.cm-2 is 

presented in Figure 3.18b. We can see that the curves from different fluences superimpose 

within the measurements uncertainties. This shows that intraband relaxation does not vary with 

the fluence or is accelerated at a time scale below the resolution of the setup. 

 

                       (a)       (b) 

Figure 3.18 The normalized relative variation ΔT/T of sample in function of time 
delay between pump and probe. Pump at 2.281 eV. a) Fluence varies from 13 

ȝJ.cm-2 to 848ȝJ.cm-2. b) Zoom at a time delay up to 800 fs. 

We first discuss the overall acceleration of the dynamics by increasing the fluence. Auger 

effect is a non radiative process that occurs when two excitons collide. It depends on the exciton 

diffusion constant and on the excitons size. In this process an exciton recombines via energy 
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transfer to an exciton that is excited to a higher energy state within or outside the quantum well 

without emitting a photon. This process is shown in Figure 3.19. 

 

Figure 3.19 Auger recombination process. 

The Auger effect can be included in the rate equation: 
2

Auger

dN
.N .N

dt
        

(3.14) which describes the recombination of exciton population N = N(t), where Auger is the 

Auger recombination (AR) constant. We have first numerically solved the equation and fit the 

curves in Figure 3.18a. The fit is shown in Figure 3.20 for two different excitation densities.  

 

                        (a)                                                                         (b) 

Figure3.20 The relative variation ΔT/T of sample in function of time delay 
between pump and probe. Pump at 2.281 eV. The red line is Auger fit. Fluence at 

a) 53 ȝJ.cm-2, ɣAuger=0.0107 ps-1 b) 848 ȝJ.cm-2, ɣAuger=0.0028 ps-1. 

We can see a discrepancy between the fit and the data for a fluence of 53 ȝJ.cm-2 (left side). 

This behavior is observed for all the fluences except the higher one. Indeed, it seems to fit better 
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at the highest fluence of 848 ȝJ.cm-2 (right side) where Auger is found to be equal to 0.0028 ps-

1.  More complex Auger effect resulting in N(N-1) or N3 dependence in the rate equation have 

been tried without success.  

Let us focus on the 848 ȝJ.cm-2 fluence case for which the model begins to fit the data. 

We can try to evaluate, with a very simple and naïve model, the mean distance between 

excitons. First, we consider excitons as “spheres” of 1.5 nm radius. Considering a hexagonal 

compact arrangement, it is possible to put ~5.1020 of these spheres in 1 cm3 volume. The 848 

ȝJ.cm-2 fluence corresponds to ~7.1014 excitons per cm2. Considering that excitons are confined 

and uniformly distributed in the inorganic layers, it corresponds to ~4.1020 excitons per cm3. 

This shows that the highest fluence used in these experiments leads to a situation where 80% 

of the available space is occupied (see Figure 3.21), and therefore that excitons are very close 

to each other. On the contrary, the lowest fluence leads to a ~1% occupation. 

 

 

 

 

 

 

Figure 3.21 Schematic representation of the 80% occupation rate of space by 
disks. Green disks shows occupied sites, blank one shows unoccupied sites. 

The model described by the rate equation 2
Auger

dN
.N .N

dt
    considers a constant 

Auger rate which is characteristic of non-diffusing processes. For fully localized excitons, this 

process can occur when the mean distance between excitons is comparable to the exciton 

wavefunction extension. This is what seems to happen in the highest fluence situation, 

explaining the relatively good fitting. On the contrary, for low fluence, the mean distance 

between excitons is much bigger than the exciton wavefunction. Therefore, fully localized 

excitons should not interact. Nevertheless, an acceleration of the dynamics is observed even at 

low fluence. Therefore, the fact that the ‘static’ Auger rate equation does not fit the data at low 
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fluence shows that exciton diffusion has to be considered to explain our observations. More 

developments are needed to get a deeper understanding of these phenomena.  

Figure 3.22a presents the variation of transmission ΔT/T as function of time delay 

between pump and probe pulses for fluences varying from 13 ȝJ.cm-2 to 848 ȝJ.cm-2. We can 

see both the variation in the amplitude of ΔT/T and the dynamics as function of the fluence.  In 

Figure 3.22b we plot the amplitude of ΔT/T as a function of the pump fluence at maximum 

signal (at 0 ps) and at a time delay of 50 ps. At 0 ps time delay, we see that the variation of 

transmission ΔT/T increases sublinearly as function of fluence. This result can be well fitted 

using the saturation law I/Is*1/(1+I/Is) with Is equals to 818 J.cm-2. To understand the origin 

of this saturation, we may first suppose that the state at 2.818 eV is saturated by the injected 

carriers. However the lifetime of states at 2.818 eV is very short due to very fast intraband 

relaxation. Therefore it should be very difficult to saturate this transition.  It is more likely that 

we saturate the excitonic transition from the exciton-exciton interactions. On the other hand, 

we see that the amplitude also saturates for longer delays (at 50 ps) as shown in Figure 3.22b, 

yet it seems to saturate faster than that at 0 ps with Is equals to 100 J.cm-2. 

   

                        (a)                                                                         (b) 

 Figure 3.22 The relative variation ΔT/T of sample in function of time delay 
between pump and probe. Pump at 2.818 eV. a) Fluence varies from 13 ȝJ.cm-2 to 
848 ȝJ.cm-2. b) Plot of the amplitude of ΔT/T at both 0 ps and 50 ps time delay as 
function of the fluence. The red lines are the saturation curve fits with Is equals to 

818 ȝJ.cm-2 and 100 ȝJ.cm-2 for ΔT/T at 0 ps and 50 ps respectively. 

The origin of this saturation may come from a combination of two effects. First, the 

contributions at long time delay correspond to localized excitons. By saturating the number of 

exciton localization sites, their relative contribution to the pump/probe signal at the long time 
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delay will be less important. Moreover, similar behavior can be observed when Auger effect 

becomes significant.  To illustrate this, we perform two different simulations. First, we plot the 

bi-exponential decay curves and we saturate the amplitude of the second exponential, in order 

to model the saturation of the localization sites. In Figure 3.23a), we plot the normalized 

amplitude of the bi-exponential decay versus time delay. We see that the curves have almost 

same behavior as experimental ones. On the other hand we plot the variation ΔT as function of 

amplitude of injected carriers (modeled by the amplitude of the cross correlation used in the fit 

function of T curves) for time delay at max signal (0 ps) and at 1000 ps. This result is fitted 

with the saturation law where Is is the saturation of the amplitude of second exponential in this 

case. We can see from Figure 3.23b) that the curve at 1000 ps saturates faster than that at 0 ps. 

In fact, we find that Is is equal to 34 (arb. units) for ΔT at 0 ps while equal to 10 (arb. units) for 

ΔT at 1000 ps.  

 

                        (a)                                                                         (b) 

 Figure3.23 a) The normalized simulated amplitude versus time delay b) Plot of 
the amplitude of ΔT/T at both 0 ps and 1000 ps time delay as function of the 

amplitude. The red line is the saturation curve fit. 

Moreover, we have made simulations starting from the equation including Auger
 . By changing 

the amplitude of initial conditions which must correspond to the change of exciton density, time 

traces are obtained in Figure 3.24a). We can see that same behavior of dynamics acceleration 

is obtained as experimental ones for time delay up to 400 ps. However at longer time delay, we 

can see that all curves superimposes, in contrast with experimental observations. In Figure 

3.24b), we plotted the amplitude of ΔT/T as a function of the initial number of excitons in these 

0 200 400 600 800 1000 1200

0,0

0,2

0,4

0,6

0,8

1,0

 

 

A
m

p
li

tu
d

e
 (

N
o

rm
a
li

z
e
d

)

Time delay (ps)
0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

400

 0 ps
 1000 ps

 

Amplitude of the cross correlation


T

 a
t 

0
p

s 
(a

.u
.)

0

20

40

60

80

100

120

140

160

180


T

 a
t 1

0
0

0
p

s (a
.u

.)



  

Page | 77  
 

simulations for both 0 ps and 1000 ps time delay. This result is fitted with saturation law. Again 

we observe that the saturation is faster at long time delay, where Is is equal to 557 for ΔT/T at 

0 ps while equal to 8 for ΔT/T at 1000 ps.  

 

Figure3.24 a) Simulated time traces b) Plot of the amplitude of ΔT/T at both 0 ps 
and 1000 ps time delay as function of the fluence. The red line is the saturation 

curve fit. 

To conclude, we must certainly consider both effects to explain the whole dynamics. It may also 

explain, in addition to diffusion phenomena, why we cannot fit the curves at low fluences with a 

model that does not take into account the presence of the localization sites. 

3.4. Conclusion 

In conclusion, we have reported time resolved measurements performed on PEPI 

perovskites at room temperature for both the pump energy in resonance with that of exciton 

(2.397 eV) and above the 2D continuum (2.818 eV). Experiments are performed at the limit of 

the signal to noise ratio in order to work at the lowest carrier density. The amplitude of the 

transient bleaching of the exciton line normalized by the number of injected carriers is quite 

identical in both cases. A bi-exponential decay has been extracted from the measurements with 

short decay of 110 ps and a long decay tail > 5 ns, one order of magnitude higher than previous 

report at low temperature and high exciton densities. We interpret the lifetime of the short time 

decay as the one of “free exciton”, whereas the long tail is attributed to localized excitons. 

Moreover, an ultrafast intraband relaxation has been observed.  
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On the other hand, the relative variation of transmission spectra in function of energy at 

different pump-probe delay has been analyzed using the momenta method. It has been found 

that the reduction of oscillator strength f / f and the broadening /   are around 7.10-3 and 

3.10-3 respectively, one order of magnitude smaller than in GaAs/AlGaAs quantum wells. 

Calculations of the contribution of both Phase Space Filling and exchange effects on the 

reduction of the oscillator strength are introduced. It gives a value for the reduction of the 

oscillator strength two orders of magnitude higher than the experimental ones. In addition, it 

has been demonstrated that the renormalization of the exciton wavefunction, which is 

interpreted as red-shift of the continuum, plays an important role in the understanding of the 

carrier dynamics in 2D perovskites. We have also attributed the transient broadening to 

collisions. 

Finally, we have studied the exciton dynamics as function of injected carrier density. It 

has been shown that relaxation dynamics is accelerated as fluence increases. It is interpreted as 

the consequence of exciton-exciton annihilation assisted relaxation which can be an important 

step toward the use of these materials for photovoltaic applications. Moreover intraband 

relaxation does not vary with fluence.  
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 Chapter Ͷ  

4. High-Q planar microcavities 

Polaritons-quasiparticles are the eigenmodes in a semiconductor cavity where excitons 

are coupled to photons in the case of the strong coupling regime. Over the last 20 years, 

polaritons have emerged as an important research topic for both fundamental and applied 

physics. On the former aspect, it provides a new insight for studying the physics of out of 

equilibrium Bose-Einstein condensate. On the latter aspect, we see the development of a new 

generation of optical devices based on condensation of polaritons and propagation of these 

polariton condensates in engineered confined microstructures [110]. From the point of view of 

materials, most studies of polaritons use inorganic InAs/GaAs based emitters (semiconductor 

Quantum Dots and Quantum Wells) in high Q-factor planar microcavities at low temperatures. 

However in order to raise the working temperature of these polariton-based devices up to room 

temperature, a big effort has been done to work on alternative semiconductors presenting large 

exciton binding energies and oscillator strengths, such as GaN [7, 8], ZnO [9], organic [10, 11] 

and hybrid organic-inorganic materials [13-22].  

In the last few years, vertical microcavities containing hybrid organic-inorganic 

perovskite thin layer, working in the strong coupling regime at room temperature, have been 

realized. In this chapter we will first present the optical properties of these microcavities, named 

as standard microcavities, containing the layered perovskite semiconductor: 

(C6H5C2H4NH3)2PbI4 (PEPI) described in details in chapter 2. Two difficulties are present in 

such microcavities. Firstly, the improvement of the quality factor by monolithic deposition of 

a dielectric mirror directly on the perovskite layer, is difficult. Secondly, to reach non linear 

thresholds, high excitation densities are needed. Unfortunately, perovskite materials exhibit 

photobleaching that prevents to reach these thresholds. In this chapter, we will first present a 

new assembly technique making use of top-dielectric mirror migration in liquid. Then, 

microphotoluminescence experiments both in cw and pulsed regime will be described. Finally, 
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to improve the material photostability, a new perovskite: p-fluorophenethylamine 

tetraiodoplumate, whose chemical formula is (pFC6H5C2H4NH3)2PbI4 (abbreviated as 4FPEPI) 

has been synthesized and included in a polymer matrix of PMMA at different concentrations. 

Photobleaching studies of this new material will be presented at the end of this chapter. 

4.1.  Standard PEPI-based microcavity 

A standard microcavity is composed of a 50 nm PEPI layer deposited on Layertec 

dielectric mirror by spin coating. A 100 nm phase layer of PMMA is then deposited by 

spincoating on the PEPI layer. Finally, the microcavity is closed with a top metallic mirror. 

Details on protocol of fabrication are presented in chapter 2. Although strong coupling regime 

at room temperature has been previously demonstrated in such cavities by G. Lanty, it was 

necessary to learn fabrication and characterization techniques of microcavities as a first step in 

my work in the domain of microcavities. In this section, we will present the optical properties: 

angle resolved reflectivity and photoluminescence measurements of standard PEPI-based 

microcavities. 

4.1.1.  Angle resolved reflectivity measurement  

This section presents the study of reflectivity, performed by using the experimental setup 

already described in paragraph 2.2 of chapter 2 for PEPI microcavity (standard one). As 

described in Chapter 2, the unbalanced structure of this microcavity (bottom mirror is much 

more reflective than top mirror) allows to consider the reflectivity spectra as a direct image of 

absorption spectra, which is the only physical data that allows to unambiguous distinguish 

between strong and weak coupling.  

Figure 4.1 presents the reflectivity spectra of the studied microcavity for different 

incident angles. Each spectrum shows the presence of two dips. When the incident angle 

increases, the low energy dip shifts towards high energy dip which stays unchanged in a first 

step. Upon approaching the lower vicinity of exciton energy, the position of low energy dip 

stabilizes and the energy shift is transmitted to high energy dip, which is the characteristic of 

an anticrossing. 

For the microcavity studied, it appears for small angles of incidence that the low energy 

dip is stronger than that of the high energy one. When the angle of incidence increases, this 

finding is reversed since the intensity of low energy dip decreases as it approaches the exciton 

energy of PEPI, while at the same time the intensity of the high energy dip increases. Thus, 

transfer of intensity occurs between low and high energy dips. 
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The anticrossing and transfer in intensity observed between the two dips are two 

signatures of the strong coupling regime in microcavities, which was described in paragraph 

1.7 of chapter 1. Indeed, the anticrossing comes from raising degeneracy caused by the coupling 

between excitons of PEPI and photons of cavity modes while the transfer of intensity 

corresponds to changes in photonic and excitonic parts of the two cavity polaritons.  

The energy positions of the two polaritons are plotted (red and black squares) as function 

of k// as shown in Figure 4.1. The relationship between the angle of incidence and the 

wavevector in the layers plane of polaritons is given by: 

 

E
k sin

c
   

 
 

where E is the energy of the cavity polariton considered, ħ is the reduced Planck constant and 

c is the speed of light. Moreover, these experimental data are fitted by a two-level model in 

which the dispersion of the cavity mode is of the form: 

   
2

2

ph 0
eff

c k
E k E

n

 
   

 
                   (4.1) 

with E0 the energy of cavity mode at k||=0 and neff is the effective index taking into account the 

optical indices of the different layers of materials experienced by electric field. E0, neff, coupling 

energy V and exciton energy Eex are taken as fitting parameters of the two level model 

previously presented in chapter 1. The dispersion curves of the two polaritons obtained with 

this two level model are plotted in red solid line and the dispersion curves of the uncoupled 

exciton and cavity modes are plotted in black dash line in Figure 4.1. 

For our studied microcavity, we get the following fitting parameters: neff = 1.81, Eex = 

2.378 eV, E0 = 2.15eV, and V=60 meV. Coupling energy obtained corresponds to a Rabi 

splitting of about 120 meV. Note also that the obtained value of Eex is closed to 2.398 eV, the 

energy position of the excitonic peak obtained from OA spectrum of PEPI. We conclude that 

the strong coupling regime occurs in this microcavity and that the two dips result from the lower 

and upper polaritons. 

θ 
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Figure 4.1 (a) Reflectivity spectra of the microcavity for several angles of 
incidence at room temperature. The dashed lines are guides to the eyes. (b) 

Dispersion of the upper polariton branch (UPB) and lower polariton branch (LPB). 
The squares are experimental data. The solid lines are fits from two level system. 

The dash lines represent the dispersion of uncoupled photon cavity mode and 
exciton mode. 

4.1.2. Angle Resolved Photoluminescence measurements 

To demonstrate the strong coupling unambiguously, photoluminescence experiments 

have to be performed in addition to the reflectivity experiments. In order to observe the emission 

of the mixed polaritonic states, angle-resolved photoluminescence experiments have been 

performed at room temperature by G. Lanty [13]. A 405 nm diode laser beam is focused on the 

microcavities through the metallic mirror, at normal incidence, and the photoluminescence 

spectra are recorded for various detection angles. The excitation density was chosen to be low 

enough to limit the degradation of the PEPI layer. Figure 4.2 shows the photoluminescence 

spectra obtained for standard microcavity in linear scale (left) and logarithmic scale (right) for 

different angles of detection, ranging from 5°to 35°.The upper part of the graph shows the PL 

spectrum acquired before microcavity is completed by silver mirror. 

For lower angles, the PL spectra of the microcavity are composed of two peaks: the 

emission peak corresponding to the lower energy polariton branch and a second peak at higher 

energy. The spectral position of this second peak is independent on detection angle and 

coincides with the emission peak of the non closed microcavity. This second peak, whose 

energy doesn’t match with any dips in the reflectivity spectra, is regarded to be the 

photoluminescence of the non-coupled excitons of PEPI layer. It is also possible to distinguish 

on the logarithmic scale a very slight shoulder on the high energy side of uncoupled perovskite 
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peak, which doesn’t appear in the emission spectra of half-microcavities without silver mirror. 

It seems coherent to attribute this shoulder to the emission of higher energy polariton branch. 

Gradually, as the angle of detection increases, the shoulder corresponding to UPB seems to 

disappear, while the emission of LPB strengthens to be as intense as the one of uncoupled 

perovskite peak. The variation of the low energy photoluminescence peak as a function of the 

detection angle coincides with the dispersion relation of the low energy polaritonic branch. This 

clearly indicates that this photoluminescence peak arises from the polaritonic emission and 

confirms the demonstration of the strong coupling regime in the microcavities containing 

perovskite thin layers.  

 

Figure 4.2 Photoluminescence spectrum of « standard » PEPI based-microcavity 
studied for different detection angles in a) linear scale and b) logarithmic scale. On 

the upper part of the two graphs, a photoluminescence spectrum acquired before 
the microcavity is completed by the silver mirror. 

 

4.1.3.  Quality factor of a microcavity 

Quality factor is an important characteristic parameter that identifies the cavity quality. It 

is a dimensionless parameter that corresponds to the average number of reflections of a photon 

before it leaves the cavity. Generally the quality factor Q of the cavity is defined as: 

c

c

Q





,                (4.2) 
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Where Ȝc is the wavelength of cavity photon mode and ΔȜc is the spectral width of cavity photon 

mode. Q is related to photon lifetime ph, the  time during which the photon stays in the cavity. 

It can be expressed as: 

  ph
ph

Q

E
                             (4.3) 

The quality factor Q of the standard cavity can be roughly estimated from the 

characteristics of the LPB dip in reflectivity since the LPB is more photon-like at low angles: 

Q = 20 for the cavity of Figure 4.1. It has been shown by S. Faure that the quality factor of 

ZnO-based microcavities changed from 60 to 120 by changing the nature of the top mirror from 

metallic mirror (Al mirror) to dielectric mirror (5 pairs of Si3N4/SiO2 while keeping the same 

nature of bottom mirror (AlN/AlGaN dielectric mirror) [106].This is due to the fact that the 

reflectivity R2 of the top mirror is 55% and 68% for Al mirror and Si3N4/SiO2 dielectric mirror 

respectively. Moreover, the reflectivity coefficient R2 of Si3N4/SiO2 dielectric mirror reaches 

95% by increasing the number of pairs in the dielectric mirror (11 pairs of Si3N4/SiO2 instead 

of 5 pairs). Thus, an increase of the number of pairs in dielectric mirror results in higher mirrors 

reflectivity and thus in higher quality factor microcavities. In the following section, we present 

the technique used for the deposition of the dielectric mirror on the perovskite layer, in order to 

increase the quality factor of perovskite based microcavities. 

4.2.  High-Q planar perovskite based microcavity 

In order to study the stimulated polaritonic effects, a larger quality factor (typically > 100) 

is required to increase the lifetime of polaritons. This can be achieved by using highly reflective 

dielectric Distributed Bragg Reflectors (DBRs) as top mirrors instead of semitransparent 

metallic mirrors. Unfortunately, the demonstration of such high-Q microcavities is complicated 

by the difficulties associated with fabricating highly reflective dielectric DBRs on top of a 

fragile molecular material, which is generally very sensitive to any temperature increase, 

mechanical stress or chemical reactions induced by standard dielectric deposition processes. As 

a consequence, new fabrication methods have to be developed. In the following, we will present 

a new assembly technique making use of top-dielectric-mirror migration in a liquid developed 

in our group by Z. Han in collaboration with S. Bouchoule at LPN [107]. 

 



  

Page | 86  
 

4.2.1. Technique of Fabrication 

The technique of top-dielectric mirror migration is schematically depicted in Figure 4.3. 

The perovskite layer having an approximate thickness of 60 nm is spin-coated on top of the 

bottom mirror. The bottom mirror consists of 11 pairs of SiNx ∕SiO2 layers deposited on a fused 

silica substrate by Plasma Enhanced Chemical Vapor Deposition. And then the Ȝ ∕2 optically 

thick cavity is completed by a sputtered SiNx phase layer. This half-cavity structure is referred 

to as the destination sample in the following. On the other side, the top dielectric Bragg mirror 

is first deposited on a silicon host substrate preliminarily covered with a polymer sacrificial 

layer. This polymer is chosen to be stable under high temperature (up to 200°C) and robust 

against typical dielectric mirror deposition conditions (sputtering or vacuum evaporation). In 

this study, the top Bragg mirror is deposited onto the sacrificial layer by vacuum evaporation, 

and consists of eight pairs of quarter-wavelength YF3 ∕ZnS layers (well adapted to the visible 

spectral range). It is completed by a thin Ti ∕Ni bilayer acting as a stress compensator. The Ti/Ni 

layer thickness is adapted to compensate for the internal strain of the dielectric multilayer pile, 

therefore to avoid the rolling-up of the mirror after its release from the silicon substrate as 

shown in step 2 of Figure 4.3a. In order to proceed to the top mirror assembly, the host substrate 

is dipped in a solvent (EBR PG by Micro Chem) that dissolves the sacrificial layer, releasing 

the top mirror as shown in step 2 of Figure 4.3a. When the top mirror is completely released, 

floating in the solution, the solvent is expelled from the recipient, and the latter is gradually 

filled by a non destructive liquid to the active material (toluene solvent for the perovskite 

material).  The released top mirror is positioned in the liquid above the immersed destination 

sample, and the liquid is gradually evacuated so that the top mirror lies flat onto the surface of 

the destination sample as shown in step 3 of Figure 4.3a. Moreover, these overall details of the 

release and migration steps of dielectric mirror in liquid are presented in Figure 4.3b. The 

whole cavity structure is lastly annealed on a heating plate at a temperature of about 90°C in 

order to evacuate the residual liquid and to firmly attach the two surfaces. The sample is then 

mounted up-side-down on a copper plate with the fused silica substrate side outwards.  
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Figure 4.3 (a) Top-dielectric-mirror migration process: (1) deposition of the Bragg 
mirror (green) and the metallic bilayer (magenta and dark gray) on silicon host 

substrate (black) with sacrificial polymer layer (brown), (2) release of the mirror by 
dissolving the sacrificial layer, (3) evacuation of the solvent and positioning of the 

released mirror onto the surface of the destination sample with the active layer 
(yellow), phase layer (violet), and bottom dielectric Bragg mirror (green) on fused 
silica substrate (light gray).(b) Detailed release and migration steps of the dielectric 

mirror in the liquid. 

4.2.2.  Angle-resolved reflectivity measurement 

I have performed angle-resolved reflectivity measurement on this perovskite-based 

microcavity with F. Boitier (ATER in the team). Figure 4.4 presents the reflectivity spectrum 

measured at normal incidence. We can distinguish three distinct dips at 2.1, 2.2, and 2.4 eV, 

corresponding to three polariton branches (PBs): the low (LPB), the middle (MPB), and the 

high (HPB) energy polariton branches respectively. The three polariton branches arise from the 

coupling of the perovskite exciton to both the cavity mode and the Bragg mode just at the lower 

energy edge of the stop band of the bottom mirror. Such coupling to the Bragg mode is possible, 

despite the relatively wide stop-band of this mirror (the stop band of bottom mirror is 470 meV 

wide coming from a refractive index contrast of about 0.38), owing to the large exciton binding 

energy of perovskite. Such a kind of coupling has also been reported for ZnO-based 

microcavities [106]. 
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Figure 4.4 Measured reflectivity at normal incidence. The three dips correspond to 

the high (HPB), middle (MPB), and low (LPB) polariton branches, respectively. 

 

The three coupled modes are further investigated by angle-resolved reflectivity measurements, 

as shown in the right part of Figure 4.5. The white, green, and red dashed curves corresponding 

to LPB, MPB, and UPB respectively, are fitted from a quasiparticle model with three different 

levels, describing the interactions between two photon modes (cavity and Bragg photon modes) 

with one exciton. 
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                                               (4.4) 

Eex is the energy of perovskite exciton, fixed at the value Eex= 2.39 eV, EBragg is the energy of 

the Bragg photon mode and Ecav is the energy of the cavity photon mode. The two parameters, 

VPE and VBE are the interaction potentials between the exciton and the cavity and Bragg photon 

modes respectively. We also show in the left part of Figure 4.5, the results from a Transfer 

Matrix Model (TMM) simulation done by Z. Han and F. Boitier. The complex refractive index 

values used in the simulations are those estimated from spectroscopic ellipsometry 

measurements for the different materials. As can be observed from Figure 4.5, a very good 

agreement is found between the experiments and the simulations for a 65 nm thick perovskite 

layer. 
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An estimate of the quality factor can be derived from the Full Width at Half Maximum 

of the middle polariton branch at normal incidence, since it is dominated by the cavity photonic 

mode and may be considered to be the closest measured value of quality factor. The 

experimental results of Figure 4.5 lead to an estimated quality factor of 76. It is close to the 

value of 88 deduced from the calculated spectra (left part of Figure 4.5) and is about three times 

higher than the quality factor estimated for the cavities where a semitransparent metallic mirror 

was used as the top mirror. However, it should be noted that, even though the MPB is dominated 

by cavity photonic mode at normal incidence, the broadening related to the exciton coupling 

cannot be neglected due to the strong exciton broadening at room temperature. 

  
Figure 4.5 Angle-resolved reflectivity of the cavity (the jet colormap from red to 

blue represents the reflectivity value from 0 to 1). Left: Simulation. Right: 
Measurements. White, green, and red dashed curves: fitted HPB, MPB, and LPB, 

with a three-level model [16]. Magenta dash-dotted line: uncoupled exciton energy. 

4.2.3.  Validation of the Migration technique 

In order to validate the migration technique, two passive cavities have been fabricated 

using the standard monolithic approach and the top-dielectric-mirror migration approach. 

Passive cavities are cavities with the fragile perovskite layer replaced by a dielectric HfO2 layer 

of similar refractive index. The cavity structure consists of: bottom mirror (11 pairs of 

HfO2/SiO2 layers on fused silica substrate), half-wavelength cavity layer (HfO2), and top mirror 

(8 pairs of YF3/ZnS layers with a thin Ti/Ni bilayer). All layers are deposited using electron-

beam vacuum evaporation. In the case of the monolithic cavity, the YF3/ZnS top mirror is 

directly evaporated onto the destination sample composed of bottom mirror and cavity layer. 
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The cavity structure is designed to obtain a central resonance frequency at about 520 nm (close 

to the perovskite emission wavelength). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Measurements performed on the passive microcavities: (a) monolithic 
approach (Q =2900), (b) top-dielectric mirror migration approach (Q =2500). The 
blue open circles are the measured data, and the red plain curve is the Lorentzian fit. 
(c) The colorful open circle curves are the measurements performed on different 
positions of the microcavity assembled with top-mirror migration. 

Figures 4.6(a) and (b) show the microreflectivity (spot diameter 2 ȝm) spectra measured 

at normal incidence for the two cavities. The measured linewidth of the resonant cavity mode 

corresponds to a Q-factor of 2500 (respectively 2900) for the cavity fabricated using the top-

mirror migration approach (respectively the standard monolithic approach). Measurements 

have been performed at many different positions on the samples and confirm that both samples 

are fairly homogenous, as illustrated in Figure 4.6(c) for the sample assembled with top-mirror 

migration. The Q-factors obtained by both fabrication methods are very similar, which validate 

the top-mirror migration technique. 

 

4.2.4. Microphotoluminescence measurements 

4.2.4.1. Microphotoluminescence measurements performed at LPN 

In this section we will show ȝPL measurements performed on this kind of cavity at room 

temperature. Experiments were performed by H. NGuyen at LPN (J. Bloch team) using a 
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confocal setup where the excitation laser beam (energy of 3.06 eV) is focused to a 2 ȝm 

diameter spot by a microscope objective. The emission is then collected by the same objective 

and detected by a CCD camera through a spectrometer as described in chapter 2. This 

measurement is performed on two cavities containing 60 nm PEPI active layer fabricated using 

the monolithic and mirror migration approaches. Both cavities have a similar structure. It 

consists of: bottom mirror (11 pairs of SiNx/SiO2 layers on fused silica substrate), PEPI layer, 

half wavelength cavity layer (SiNx), and top mirror (8 pairs of YF3/ZnS layers with a thin Ti/Ni 

bilayer). The cavities are expected to operate in the strong coupling regime owing to the large 

oscillator strength of the perovskite exciton. In the monolithic case (see Figure 4.7(a)), a strong 

emission line at about 2.36 eV is observed, which can be attributed to non-coupled perovskite 

excitons, and the anticrossing of the polariton branches is not observed. Figure 4.7(b) shows 

the photoluminescence emission spectrum of monolithic cavity at k|| = 0. The Full Width at 

Half Maximum (FWHM) of the photonic mode (energy of 2.247 eV) is measured to be 45 meV. 

This corresponds to an equivalent Q-factor of 49. 

On the other hand, strong photon–exciton coupling is clearly evidenced in microcavity 

using the top dielectric-mirror migration approach as shown in Figure 4.8(a). The measured 

dispersion is in good agreement with the one deduced from angle resolved reflectivity of Figure 

4.5. The luminescence intensity is dominated by the MPB and the signal is strongest at k|| = 0, 

thus highlighting efficient relaxation of polaritons along the MPB. The HPB is not observed in 

luminescence because of fast polariton relaxation assisted by optical phonons toward lowest 

energy states. Although the relaxation in the LPB is extremely inefficient due to its negligible 

exciton weight, weak emission from the LPB can be resolved thanks to its very high photon 

component inherited from the Bragg mode. Importantly, in contrast with the photoluminescence 

obtained from our previous cavity design using semitransparent top metallic mirror, no 

signature of noncoupled perovskite exciton is observed.  
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Figure 4.7 Monolithic approach a) ȝPL spectrum of the cavity in reciprocal space 
b) spectrum profile of cavity at k||= 0 (Q= 49). The blue open circle curve is the 
measurement and the red plain curve is the Lorentzian fit of the measurement. 

Figure 4.8 (b) shows the photoluminescence emission spectrum at k|| = 0 for the 

microcavity assembled by the top mirror migration approach, the FWHM of the LPB at k|| = 0 

is measured to be 26 meV, corresponding to a Q-factor of 86. This value is 4.3 times larger than 

the one obtained from standard cavities operating in the strong coupling regime in Figure 4.1. 

The improvement is obviously attributed to the higher reflectivity of the dielectric Bragg mirror, 

compared with the semitransparent metallic top mirror used for the standard cavities. 

 
 

Figure 4.8. Top-dielectric-mirror migration approach (a) ȝPL spectrum of the 
cavity in reciprocal space. The green and red dashed curves are the fitted 

dispersions of LPB and MPB obtained from the reflectivity measurements of 
Figure 4.5. b) Spectrum profile of cavity at k|| = 0 (Q= 86). The blue open circle 

curve is the measurement and the red plain curve is the Lorentzian fit of the 
measurement. 
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4.2.4.2.  Microphotoluminecence measurements performed at LAC-ENS Cachan: 

The previous PL results on PEPI based microcavity using migration technique in liquid 

were performed by the group at LPN just after the microcavity fabrication. The excitation laser 

used in these measurements was a cw 405 nm diode laser (3.06 eV). Lateron, the ȝPL setup has 

been mounted at ENS Cachan as described in details in section 2.4 of chapter 2 in order to be 

able to use the pulsed laser, which allows to reduce the heating (related to average power), and 

to reach high peak powers necessary to reach the non-linear regime. In the following, a set of 

PL measurements using both continuous wave laser and femtosecond laser are presented. Note 

that these measurements are performed at the end of the thesis, which is after around two years 

of the fabrication of the studied microcavity. Moreover, due to technical reasons, the cavity was 

attached to silicon wafer from its top mirror side. So, measurements were performed in the case 

where the excitation laser is sent to the sample from its bottom mirror. 

In a first step, we have performed ȝPL measurements using continuous wave (cw) laser 

in order to compare them with those performed at LPN as shown in Figure 4.8. Figure 4.9 

shows the emission spectrum of the microcavity assembled by the top mirror migration 

approach using 405 nm cw diode laser (3.06 eV) as excitation laser. The ȝPL emission 

measured in reciprocal space is displayed in Figure 4.9a). Moreover, we can see from Figure 

4.9b) a strong emission at 2.28 eV which can be attributed to the MPB. A mismatch between 

the energy of highest signal in real space and k-space is observed. This is due to both the size 

of the lenses and of the slit of spectrometer, which affect just the k-space measurements and so 

forbide to have all “k||”. In Figure 4.9a), we see that higher signal is at high k||, so if we would 

be able to measure higher k we should observe higher signal at higher energy. The FWHM of 

MPB at k||=0 is measured to be 91 meV. This value is 3.5 times larger than the value obtained 

previously under same conditions but just after fabrication.  

We have also performed several measurements using cw laser but on different points on 

the sample. We present here four of them. Figure 4.10a) presents the ȝPL emission of the 

corresponding four points measured in reciprocal space. Moreover, Figure 4.10b) presents the 

spectrum profile of the cavity at k||=0 for the four different points on the sample. We can see 

clearly that the energy of emission peak varies between 2.18 eV and 2.34 eV. The FWHM at 

k||=0 is 123 meV for point 1, 167 meV for point 2, 90 meV for point 3 and 229 meV for point 

4. The sample is around two years old and many measurements have been performed on it such 

as measurements as function of temperature and power. All these studies may have induced 

damages on the sample thus explaining the broadening of the polariton modes. 
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Figure 4.9: (a) ȝPL spectrum of the cavity in reciprocal space. (b) Spectrum 
profile of the cavity at k||=0. The blue line is the measurement and the red line is 

the Gaussian fit of the measurement. 

 
 

     

Figure 4.10: (a) ȝPL spectrum of the cavity in reciprocal space corresponding to 
four different points on the sample. (b) Spectrum profile of the cavity at k||=0 for 

the four different points on the sample. 

Similar results have been found using 355 nm picosecond laser. This laser is set to work 

at 1kHz repetition rate, providing pulses of duration 0.3 ns. This laser is focused to a 2ȝm spot 

diameter by microscope objective on the microcavity. The optical elements were placed in a 

way where we can change easily the excitation laser from continuous wave laser to the 

picosecond one as shown in section 2.4 of chapter 2. This study is performed on point 1 shown 

in Figure 4.10. Figure 4.11a) and Figure 4.11b) show the ȝPL emission measured in k-space 

and real space respectively. We can see an emission at around 2.258 eV, with FWHM at k||=0 
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measured to be 112 meV which is comparable to the MPB emission observed in cw experiments 

(see Figure 4.10b), black curve).                         

    

Figure 4.11: Point1 Using 355 nm picosecond laser: a) ȝPL spectrum of the 
cavity in reciprocal space, (b) Spectrum profile of the cavity at k||=0.

Figure 4.12 a) presents the ȝPL spectra recorded as a function of power performed on 

point 1 using the 355 nm picosecond laser. Using this laser, only MPB mode is observed. An 

increase of the MPB signal as well as a redshift of its spectrum is observed while increasing the 

pump power. Moreover, the integrated intensity of the cavity mode increases superlinearly with 

the power (Figure 4.12 b)). This may be a first indication of the appearance of non-linear effects 

in these cavities. Unfortunately, we had a limited access to this laser, and no more experiments 

have been performed in this configuration.  

 

 

Figure4.12: Point1 Using 355 nm picosecond laser: (a) Spectrum profile of the 
cavity at k||=0 as function of power. (b) Integrated intensity of cavity mode as 

function of power. 
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On the other hand, we have performed ȝPL measurements using femtosecond laser of 

wavelengths 405 nm and 440 nm originated from a Ti-sapphire oscillator producing 100 fs 

pulses with 1kHz repetition rate and followed by an optical parametric amplifier. First, 405 nm 

femtosecond pulses are focused on a 2 ȝm spot diameter by microscope objective on the 

microcavity. This study is performed on point 2 shown in Figures 4.10. For point 2 and just 

after its emission measurement performed using cw laser, we changed the cw laser to the 405 

nm femtosecond one; then real space and k-space measurements were performed. Figures 4.13 

a) and (b) show the  ȝPL emission measured in reciprocal space, while Figure 4.13 c) shows 

the spectrum profile of the cavity at k||=0. We can distinguish two peaks, high peak at around 

2.13 eV and a smaller one at around 2.313 eV which can be attributed to Bragg mode and cavity 

mode respectively. Moreover, we can see from Figure 4.13 a) and b) that the Bragg mode is 

localized whereas the cavity mode has a dispersion form.  

 

                                       (a)                                      (b) 

 

       (c) 

Figure 4.13 Point 2 Using femtosecond laser: ȝPL spectrum of the cavity in 
reciprocal space; showing (a) Bragg mode(left side) and (b) cavity mode (right 

side). (c) Spectrum profile of the cavity at k||=0.
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Similar to points 1 and 2 and just after the emission measurement performed using cw 

laser on point 3 shown in Figure 4.10, we changed the laser to 440 nm femtosecond one 

working in same conditions as 405 nm femtosecond laser; then real space and k-space 

measurements were performed.  Figure 4.14 c) shows the spectrum profile of the cavity at k||=0. 

We can distinguish two peaks, high peak at around 2.13 eV and a smaller one at around 2.29 

eV which can also be attributed to Bragg mode and cavity mode respectively. The ȝPL emission 

measured in reciprocal space is displaced in Figure 4.14 a) and b). We can see that the Bragg 

mode is localized and that the cavity mode has a dispersion form similar to the results found 

using 405nm femtosecond laser.  

 

                                    (a)                                                                             (b) 

            (c)

Figure 4.14: Point 3 Using femtosecond laser: ȝPL spectrum of the cavity in 
reciprocal space; showing (a) Bragg mode (left side) and (b) cavity mode (right 

side). (c) Spectrum profile of the cavity at k||=0.

 

On the other hand, Figure 4.15 a) shows the ȝPL spectra recorded as function of power 

performed on point 2 using 405nm femtosecond laser. Figure 4.15 b) presents the integrated 
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intensity of both Bragg and cavity modes as a function of power. We can see that the integrated 

intensity of the Bragg mode increases as power increases from 0.1ȝW to around 1.5ȝW and 

then decreases linearly with power whereas the integrated intensity of the cavity mode saturates 

as power increases. 

         

 
Figure 4.15: Point2: Using 405nm femtosecond laser: (a) Spectrum profile of the 

cavity at k||=0 as function of power, (b) Integrated intensity of both Bragg and 
cavity mode as function of power.  

However using the 440 nm femtosecond laser, ȝPL spectra performed on point 3 are 

recorded as a function of power (Figure 4.16a). Note that we were able to go further in power 

with 440 nm femtosecond laser than with 405nm femtosecond laser. Figure 4.16 b) presents 

the integrated intensity of both Bragg mode and cavity mode as a function of power. We can 

see that the integrated intensity of the Bragg mode increases linearly with power whereas the 

integrated intensity of the cavity mode saturates as power increases.  

First, we can conclude that the MPB saturation is reached in the femtosecond excitation 

configuration. This observation may come from the high number of injected carriers that should 

lead to Auger effects such as the ones observed in the pump/probe experiments (see chapter 3).  

Indeed, polariton-polariton interactions are mediated by their excitonic part. Therefore, exciton-

exciton annihilation that occurs at such high excitation densities will lead to a saturation of the 

polaritons population. The consequence is the saturation of the MPB emission reported both in 

figures 4.15 and 4.16. Finally, the intense signal at low energy, localized in the k-space, is not 

well understood. The interference patterns observed in the k-space images suggest coherent 

effects. The linear dependence on power (figure 4.16), and the fact that no narrowing of the 

line width is observed, seem to rule out the possibility of polariton lasing as origin of this signal.   
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           Figure 4.16: Point 3: Using 440 nm femtosecond laser: (a) Spectrum 
profile of the cavity at k||=0 as function of power. (b) Integrated intensity of 

both Bragg and cavity mode as function of power. 

       

4.3. 0D polariton: 

In this section, we demonstrate the quantum confinement of zero-dimensional (0D) 

perovskite-based polaritons in sphere-like defects. This work was done with H. S. Nguyen at 

LPN, and detailed in the reference [62]. The sphere-like defects observed for high Q-perovskite 

microcavity are formed during the evaporation process performed at low temperature for the 

fabrication of top Bragg mirror.  It is believed that a weak surface adhesion combined to the 

strain accumulated into the dielectric film may induce a local detachment of the film from the 

surface. It is also likely that the formation of spheres is assisted by a degassing process during 

the deposition of YF3 layer, similar to the H2 sphere like defects formed during PECVD 

deposition of Si with SiH4 precursor. These defects have a symmetric half-sphere shape with 

diameter varying from a few hundred nanometers to a few micrometers measured by SEM 

(Scanning Electronic Microscopy). Their density is very low, around 10-2 ȝm-2 but always 

packages of several defects separated by less than 20 ȝm are frequently observed as shown in 

Figure 4.17 a). Figure 4.17 b) depicts a SEM image of the surface of the initial top mirror 

before the release from its substrate, showing a sphere like defect of 900 nm diameter and of 

300 nm height. Once the top mirror released and attached to the perovskite layer, the sphere-

like defects are fully conserved on the final samples as shown in Figure 4.17 c). Notice that 

similar defects have been reported for GaAs based cavities [108]. In this case, they were 

attributed to point-like defects formed during the molecular beam epitaxy of the top mirror.  
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Figure 4.17 (a) Image taken by optical microscope of a package of sphere-like 
defects on the top Bragg mirror. (b) SEM image of a sphere-like defect of the top 
Bragg mirror before the release from its substrate. (c) SEM image of a sphere-like 

defect of the top Bragg mirror on the final sample. 

 
Confocal photoluminescence on single sphere-like defects is performed at room 

temperature using 405 nm cw diode laser focused onto a 1.5 ȝm spot diameter by a microscope 

objective (NA=0.65). Polariton emission is imaged on a CCD camera coupled to a 

monochromator. Figure 4.18 presents the PL intensity as function of energy (vertical axis) and 

position (horizontal axis) of polariton emission within D1 where D1 is a chosen sphere-like 

defect in our sample. Five discrete polariton modes are distinguished, which correspond to 0D 

polaritons within the defect due to confinement of photonic component. Interestingly, the 

confined states have a linewidth 4-8 times smaller than the one of the 2D photonic mode, 

corresponding to a quality factor Q ≥ 750. This value is one order of magnitude higher than the 

Q-factor of the perovskite-based planar cavity measured on the same sample.  More 

informations on these 0D polaritons are detailed in the reference [62].    
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Figure 4.18 (a) Photoluminescence intensity I(x,E) of polariton emission within 
D1 as a function of position and energy. Green circles: polariton potential of 

confinement within D1. Red line: Gaussian fit of FWHM amounts to 2.6ȝm. Inset: 
Dispersion spectrum of 2D polaritons in the planar region outside D1. Blue line: 

fitting of dispersion using three level model. 

 

4.4.  Photostability of Perovskite 

 Besides the fabrication technique of top dielectric mirror, the realization of high quality 

optoelectronic devices based on 2D-layered organic-inorganic perovskites requires 

optimization of several properties of the hybrid molecules such as the surface roughness and 

the photostability. Improving the photostability is important in the framework of both long life-

time optoelectronic devices and of fundamental studies, where a great reproducibility of the 

optical results is necessary and where the study of the non-linear effects requires high incident 

power. 

Due to the fact that perovskite layers protected with PMMA present a slightly improved 

photostability and that fluoroperovskites present improved photostability too, we introduce 

nanometer-sized fluoroperovskite crystals in a PMMA matrix. This approach has been used in 

Y. Wei’s work [21] and remarkable improvements of thermal and photo-stability were achieved 

for instance with 4F-(C6H5C2H4NH3)2PbI4 (named 4FPEPI) doped PMMA films. The 

nanocrystals of perovskites included in PMMA layer still keep stable crystalline and electronic 
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structures, leading to good optical properties. These advantages make the fluoroperovskite 

doped PMMA layers very promising for the fabrication of optical devices. 

4.4.1.  Structure characterization  

Table 4.1 shows the chemical structures, the names and the abbreviations of the amines T-

(CH2)2NH2 used in this study. As previously mentioned, the bis(phenethylammonium) 

tetraiodoplumbate is noted as PEPI. When fluorine is present, the amine is simply designated 

by xFPE, where the number x labels the position of the fluorine atom on the phenyl ring: x=4 

for para, x=3 for meta and x=2 for ortho. For clarity this has been summarized in Table 4.1. 

The ammonium salts have been prepared by simple way of the considered amines, and the 

properties of the corresponding perovskites are analyzed in comparison with the generic PEPI 

compounds containing no fluorine. 

Table 4.1: Chemical structure, complete name and abbreviation of amine part of fluorinated 

perovskites 

 

Chemical structure of 

amine 

 

Name 

 

Abbreviation 

 

      2-Phenylethanamine 

 

                 PE 

 

 

 

2-Fluorophenethylamine 

 

2FPE 

 

 

3-Fluorophenethylamine 

 

3FPE 

 

   4-Fluorophenethylamine 

 

                  4FPE 

 

 

 

An important difference is observed according to the place of the fluorine substituent. 

Figure 4.19 shows the normalized ȝPL measurement as function of time of PEPI perovskite 

and different fluorinated perovskites performed by Y.Wei [21]. We can see that the para 

substitution provides the most resistant character. The structure of the perovskite produced from 

para-fluorophenylamine is represented in Figure 4.20, based on the analogy with the generic 



  

Page | 103  
 

(C6H5(CH2)2NH3)2PbI4 structure and considering that the steric hindrance of a fluorine atom is 

almost the same than the one of an hydrogen atom. 

 

Figure 4.19 Photobleaching of iodide based perovskites layers deposited from 
10wt% solutions. The measurement are carried on by Y. Wei, the laser power is 

7mW at 325nm. 

 

 

 

 

 

 

 

Figure 4.20 Sketch of the structure of the (4-FC6H4(CH2)2NH3)2PbI4 (4FPEPI) 
perovskites. 

4.4.2.  Preparation of 4FPEPI doped PMMA 

The 4FPEPI doped PMMA solution is deposited on a quartz substrate by conventional 

spin-coating method. To prepare the solution, a transparent polymer PMMA and a 

stoichiometric amount of the ammonium salt and PbI2 are dissolved into DMF. In the following 

measurements, we varied the concentration of PMMA in DMF while the weight ratio of 
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perovskite/PMMA is fixed at 1:5. With these solutions, spin-coating is performed at 2000 rpms, 

40 sec. The solution in concentrations 20wt%, 10wt%, and 5wt% respectively give layers of 

thickness of about 1ȝm, 375 nm and 162 nm respectively. 

After spin-coating, these films need to be subsequently dried in a hot place. This step is 

especially important for perovskite doped PMMA layers because the PMMA component makes 

the solution quite viscous and thick, which suppresses the movement of perovskite molecules 

in solution environment. Therefore the temperature and the annealing time should be 

appropriately raised to 150°C and for 90min to promote the self-organization process. 

4.4.3. Optical characterization 

The perovskites based on fluorophenylamine are studied, both from the point of view of 

the absorbance and PL, but also the photoresistance of the films is estimated. The absorbance 

of four films of different concentrations is represented in Figure 4.21. A clear bathochromic 

effect of the concentration is noticeable on the spectra: E4FPEPI doped PMMA 20% -EPEPI10% = 4.6meV 

and E4FPEPI doped PMMA 5% - EPEPI10% = 6.9 meV. The two peaks of PEPI10% and 4FPEPI doped 

PMMA 10% are almost at same energy. 

 

Figure 4.21 Absorbance of iodide based perovskites made from different PMMA 
solution concentration. 

The luminescence of the iodide-based perovskites is represented in Figure 4.22. Apart 

from the correlated bathochromic shift of the emission of 4FPEPI doped PMMA10%  ( 13 

meV), it appears that it shines almost as strongly as PEPI, while the emission yield is higher for 

4FPEPI doped PMMA 20% and lower for 4FPEPI doped PMMA 5%. 
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Figure 4.22. Photoluminescnece of iodide based perovskites made from different 
PMMA solution concentration. The excitation laser is the 405 nm cw diode laser. 

 

Figure 4.23 Normalized photobleaching rate of iodide based perovskite layers 
made from different PMMA solution concentrations. The excitation laser is the 405 

nm cw diode laser. 

To investigate photostability of these layers, photobleaching measurement is carried on 

using 405 nm cw diode laser focused to a 2ȝm diameter spot by a microscope objective. To be 

able to compare the luminescence from the corresponding four layers, we have injected the four 

layers with the same carriers density. Figure 4.23 shows the normalized ȝPL measurement as 

a function of time of iodide based perovskite layers made from different PMMA solution 
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concentrations. We can see that the 4FPEPI doped PMMA layer is more stable than the PEPI 

thin film sample. The 4FPEPI doped PMMA layer degrades much less under illumination than 

PEPI layer. Being the robust layer with optimized optical properties, the 4FPEPI doped PMMA 

therefore becomes a good candidate to be introduced into a microcavity. Moreover 4FPEPI 

doped PMMA 5% seems to be more stable than 4FPEPI doped PMMA 20% and 4FPEPI doped 

PMMA 10% where the time decays are 90 min, 22 min and 7 min respectively. 

The photostability process is a complex process influenced by many factors working 

together such as oxidation, temperature, spatial arrangements and many others. We thought 

energy of excitation may also affect the photostability and so ȝPL measurements as a function 

of time for the four different perovskites is performed using 473 nm cw diode laser as excitation 

laser. The hope was that using a higher wavelength of excitation (lower energy) will improve 

the photostability. Indeed, some photo-assisted oxidation processes are more efficient as the 

energy of photons is increased. Figure 4.24 shows that the degradation behavior of perovskite 

under illumination is the same using an excitation wavelength of 473 nm or 405 nm.  

 

Figure 4.24 Normalized photobleaching rate of iodide based perovskite layers 
made from different PMMA solution concentrations. The excitation laser is the 405 

nm or 473 nm cw diode laser. 

Moreover, ȝPL measurements as a function of excitation power is performed in order to 

further investigate the photostability of these layers. Figure 4.25 shows the normalized ȝPL 

measurements as a function of power in logarithmic scale. The excitation laser is the 405 nm 

cw diode laser in Figure 4.25 a) and the 473 nm cw diode laser in Figure 4.25 b). Power was 

increased from 1ȝW to 1mW for the four layers. We can see in Figure 4.25 a) that intensity of 
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luminescence, excited at 405 nm, increases linearly with power for 4FPEPI doped PMMA 10%,  

however it increases sublinearly for the others. On the other hand, for excitation at 473 nm, we 

can see that intensity of luminescence increases sublinearly with power for PEPI, however it 

increases almost linearly for the others and especially the 4FPEPI doped PMMA 5%.  

Comparisons of results displayed in figures 4.23, 4.24 and 4.25 does not show any 

improvement in terms of photostability while changing the excitation wavelength from 405 nm 

to 473 nm. Therefore, future experiments that will be performed on cavities containing this new 

material will use a 405nm laser diode because its energy lies out of the stop band of dielectric 

mirror. 

  

      

  (a)                                                                          (b) 

Figure 4.25 ȝPL measurements as function of power in logarithmic scale. The 
excitation laser is a) the 405nm cw laser diode and b) the 473nm cw laser diode. 

4.5. Conclusion 

In this Chapter, we have presented a new technique for the fabrication of high-Q planar 

microcavities containing a fragile active material. The technique allows replacing 

semitransparent metallic top mirror by a highly reflective Bragg mirror without degrading the 

active material. It is based on the migration in liquid of the top dielectric mirror allowing a 

significant increase of the cavity mode quality factor. Reflectivity measurements on passive 

cavities demonstrate that the top-mirror migration approach allows to have higher quality factor 

in comparison with the monolithic approach. Perovskite-based microcavity operating in the 
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strong coupling regime fabricated using this approach shows superior performances compared 

with standard monolithic cavities. Using both angle resolved reflectivity and 

microphotoluminescence measurements, emission spectra having well-resolved polariton 

branches are shown without any significant emission from the uncoupled perovskite exciton, 

contrary to the case of microcavities using metallic top mirror and exhibiting a low quality 

factor. Moreover, efficient polariton relaxation toward the minimum of the middle polariton 

branch is obtained.  

 PL measurements on PEPI based microcavity using migration technique in liquid has 

been also performed using different lasers. The 355 nm picosecond laser has shown similar 

results to the results obtained when using the 405 nm continuous laser. We can see one peak 

attributed to MPB (cavity mode). However when using the 405 nm and 440 nm femtosecond 

lasers, two peaks are present attributed to cavity and Bragg modes. Zero-dimensional cavity 

polaritons have been demonstrated at room temperature, making use of polariton confinement 

within micron-size sphere-like defects.  

It is true that we were able to increase the quality factor of perovskite-based microcavities, 

however it was not sufficient to see Bose condensation. For that, we need to increase further 

the quality factor of our system. Another thing we have to do, is to improve the photo-resistance 

of the active material in order to be able to use stronger laser illumination to reach the threshold 

for non-linear effects. A new kind of perovskite material has been synthesized: 4FPEPI doped 

PMMA layers, presenting a high stability under laser illumination. Studying the emission of 

this material with different concentrations of PMMA as a function of power and time shows 

that 4FPEPI doped PMMA 5% is the best material. This opens the way to the realization of 

high quality factor cavities containing 4FPEPI doped PMMA 5% by closing the cavity with a 

dielectric mirror, and then to the study of non-linear effects using strong laser illumination.
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General Conclusion  

 

Organic-inorganic hybrid semiconductors based on metal halide units have attracted 

attention due to their potential applications in light-emitting optical devices and more recently 

in photovoltaic devices. They are easily grown from solution and deposited by spin-coating on 

a substrate. They present a self-organized structure whose crystalline nature can be 

demonstrated by X-ray diffraction. The structure of the 2D layered perovskites is 

bidimensional, consisting of an alternation of inorganic layers around 0.5 nm thick and of 

organic layers around 1 nm thick. The exciton binding energies and oscillator strengths are 

sufficiently large in these systems making the realization of microcavities in the strong coupling 

regime with high quality at room temperature possible. As a relatively new material, the 

perovskites still have many behaviors that are not well understood and a lot of research work is 

necessary. In this thesis, the main aim of this research work concerns the study of the optical 

properties of perovskites and their use as active material in microcavities working in the strong 

coupling regime. 

During the three years of my thesis, our research was brought simultaneously on two 

different main axes. The first was to study the dynamics of excitons in the particular perovskite 

named as PEPI using pump-probe spectroscopy. The second axe was focused on the study of 

PEPI-based microcavities with both silver mirror and dielectric mirror as top mirrors. In order 

to characterize the properties of both perovskite thin films and microcavities containing them, 

we have used our home made techniques at room temperature: angle –resolved reflectivity, 

angle-resolved photoluminescence, ȝPL and pump-probe experimental setup.  

We have presented in chapter 3 the dynamics of excitons in PEPI layers at room 

temperature under both low and high excitation regimes. For low excitation regime, time 

resolved measurements have been performed using pump-probe spectroscopy for both the 

pump energy in resonance with that of exciton (2.397 eV) and above the 2D continuum (2.818 

eV). The amplitude of the transient bleaching of the exciton line normalized by the number of 

injected carriers is shown to be identical in both cases.  A biexponential decay has been 

extracted from the measurements with decays of 170 ps and > 1ns attributed as first 

interpretation to free excitons and localized excitons respectively. To investigate this point, 

more experiments such as time resolved photoluminescence experiments and experiments in 

function of temperature will be performed in the coming months. 
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Moreover, an ultrafast intraband relaxation has been observed. Finally, it has been 

demonstrated that the renormalization of the exciton wavefunction plays an important role in 

the understanding of the carrier dynamics in 2D perovskites. 

On the other hand we have presented in Chapter 4 the separate growth of the Bragg 

mirrors and the assembly technique based on the migration in liquid of the top dielectric mirror 

which allows a significant increase in the cavity mode quality factor. The quality factor could 

be further improved by simply increasing the number of Bragg pairs. Moreover, emission 

spectra exhibit well-resolved polariton branches without any significant emission from the 

uncoupled perovskite exciton contrary to standard perovskite-based microcavities presenting a 

low quality factor. Efficient polariton relaxation toward the minimum of the middle polariton 

branch is obtained.  

Besides the fabrication technique of top dielectric mirror, a new kind of perovskite 

material: 4FPEPI doped PMMA layers, presenting a higher stability under laser illumination 

than PEPI is synthesized. It has been found that 4FPEPI doped PMMA 5% is the most stable 

material. This opens the way to the realization of high quality factor cavities containing 4FPEPI 

doped PMMA 5% by closing the cavity with a dielectric mirror, and then to the study of non-

linear effects using strong laser illumination. 
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 ANNEX A 

 

Mono and bi-exponential Relaxation Model: 

 

In a mono-exponential relaxation model, the impulse response R (t) of the material is of the 

form: 

   t
R t Aexp H t    

 

Where H(t) is a Heaviside step function, A and τ  are the amplitude and the  time characteristics 

respectively. The pump-probe time traces corresponding to mono-exponential relaxation are a 

result of the convolution product between the impulse Response R(t) and the cross correlation 

of the pump and probe CC(t). 

    s t CC R t   

If the envelopes of the pump and probe pulses are assumed to be Gaussian, then the cross 

correlation CC (t) is itself a Gaussian function whose mathematical expression is given by: 

 
2

2

2 1 t
CC t exp 2

 
     

 

The width at half maximum of the Gaussian function is related to ω by the relation 2ln 2 . 

The pump-probe time trace can be written using the mathematical equations of R(t) and C(t) 

as: 

     2

2

t x2 A x
s t exp H x exp 2 dx





             
               H(x)=1 for x>0 

   2

2
0

t x2 A x
s t exp exp 2 dx

              
  

   2 2
2

0

2 A x 2
s t exp exp t 2xt x dx

                   
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 
2 2

2 2 2
0

2 A x 2t 4xt 2x
s t exp dx

  
           

  

 
2 2

2
2 2

0

2 A 2t 2
s t exp exp x x 2t dx

2

      
                   

  

   
2

2
2 2

0

2 A 2t 2
s t exp exp x cx dx

              
  

let :  
2 2

2 c c
x cx x

2 4
     
 

 and 
2

c 2t
2


 


 

 
22 2

2 2
0

2 A 2t 2 c c
s t exp exp x dx

2 4

                          
  

 
22 2

2 2 2
0

2 A 2t c 2 c
s t exp exp exp x dx

2 2

                            
  

Let :  
22

2

X 2 c
x

2 2
     

 

 
2 2 2

2 2
2t

2

2 A 2t c X
s t exp exp exp dX

2 2 2






 

     
               

  

 
2 2 2

2 2
2t

2

2 A 2t c X
s t exp exp exp dX

2 2 2






 

     
               

  

 
2

2t

2

X
s t K1 exp dX

2






 

 
  

 
  

With 

22 2 2 2

2 2 2 2

2 A 2t c 2 A 2t 1
K1 exp exp exp exp 2t

2 2 2 2 2

                                   
 

2

2

2 A t t
K1 exp exp K2exp

2 8

                    
 where  

2

2

2 A
K2 exp

2 8

 
    

 

 
2

2t

2

t X
s t K2exp exp dX

2





 

         
  

Finally taking advantage of the error function erf(x) defined as: 
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 
x 2 21 t

erf x 2 exp dt 1
22 

 
    

  
  

 We obtain: 

  2 2t t 2t
s t K1 erf 1 K exp erf 1

2 2 2 2 2

                                      
 

With 
2

2

A
K exp

2 8

 
   

 

This result can be generalized, and the pump-probe traces corresponding to biexponential decay 

model can then be written as: 

 
2

short
2
short short short

2
long

2
long long long

A t 2t
s t exp exp 1 erf

2 8 2 2

A t 2t
exp exp 1 erf

2 8 2 2

       
                   

                           

 

Ashort and τshort (Along and τlong respectively) corresponds to the amplitude and the time 

characteristic of rapid relaxation (respectively slow relaxation) phenomenon. 
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