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lois de bilan en dimension un d’espace

après avis des rapporteurs

Mme. Fatiha Alabau-Boussouira & M. Günther Leugering

devant le jury composé de
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Introduction

1 Classical Topics in Control Theory for Dynami-

cal Systems

What is the controllability and stabilization for a dynamical system? Let us start
with the case of Ordinary Differential Equations (ODEs). Consider the following
finite dimensional dynamical system

dx

dt
= f(x, u), (1.1)

where t ∈ R is the independent variable (time), x ∈ R
n is the state variable and

u ∈ R
m is the control (note that in many cases m < n), f is a function of class C∞

with respect to x and u. For convenience, we assume that

f(0, 0) = 0. (1.2)

Let us recall some basic definitions of local exact controllability and stabilization for
the system (1.1). One can refer to [19] for an introduction and fruitful results on the
controllability and stabilization of linear and nonlinear dynamical systems.

Definition 1.1 The control system (1.1) is locally controllable at the equilibrium
(0, 0) on the interval [T0, T1] (T0 < T1) if, for every real number ε > 0, there exists a
real number η > 0 such that, for every x0 ∈ Bη := {x ∈ R

n; |x| < η} and for every
x1 ∈ Bη, there exists a measurable bounded function u : [T0, T1] → R

m such that the
solution x = x(t) to the Cauchy problem





dx

dt
= f(x, u(t)),

x(T0) = x0
(1.3)

verifies the final condition

x(T1) = x1. (1.4)

9



10 1. Classical Topics in Control Theory for Dynamical Systems

Remark 1.1 The dynamical system ẋ = f(x, u(t)) is usually called an open-loop
system and u is called the corresponding open-loop control.

Definition 1.2 The control system (1.1) is locally asymptotically (resp. expo-
nentially) stabilizable at the equilibrium (0, 0) if, there exists a feedback law, i.e. a
continuous map, u : Rn → R

m, satisfying

u(0) = 0, (1.5)

such that 0 ∈ R
n is a locally asymptotically (resp. exponentially) stable point for the

system

dx

dt
= f(x, u(x)). (1.6)

Remark 1.2 The dynamical system ẋ = f(x, u(x)) is usually called a closed-loop
system and u : Rn → R

m is called the corresponding closed-loop control.

It is well-known that if we focus on the linear case, i.e.

f(x, u) := Ax+Bu, (1.7)

where A ∈Mn,n(R) and B ∈Mn,m(R), one can find explicit necessary and sufficient
conditions for the aforementioned controllability and stabilization properties (see, for
example, [19, 34, 62] et. al.):

Theorem 1.1 System (1.1) with (1.7) is controllable if and only if

rank(λI − A,B) = n, ∀λ ∈ C. (1.8)

Here and in what follows, rank(·) denotes the rank of the corresponding matrix.

Theorem 1.2 System (1.1) with (1.7) is asymptotically (resp. exponentially)
stabilizable if and only if

rank(λI − A,B) = n, for each λ ∈ C with ℜλ ≥ 0. (1.9)

Remark 1.3 Condition (1.8) is known as the Hautus criterion, which is equiva-
lent to the famous Kalman rank condition:

rank(B,AB, · · · , An−1B) = n. (1.10)

In the finite dimensional case, from Theorem 1.1 and Theorem 1.2, one can easily
see that :
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(1) For linear control system (1.1) with (1.7) which satisfies (1.8) or equivalently
(1.10), the open-loop controllability can be realized almost immediately. In
other words, a linear control system which is controllable in large time (i.e.
T1 − T0 is large) is also controllable in small time (i.e. T1 − T0 is small);

(2) Every linear control system which is controllable can be asymptotically stabi-
lized by means of linear feedback laws.

However, (1)–(2) mentioned above usually do not hold for general nonlinear sys-
tem and for infinite dimensional dynamical systems, which leaves us much research
space. In fact, in what follows, we will study three related control problems, i.e.
controllability, stabilization and synchronization (a weak kind of controllability) for
the linear and nonlinear hyperbolic systems of balance laws, and we will show some
new mechanisms for such systems.

2 Hyperbolic Systems of Balance Laws and Their

Related Control Problems

The concepts in control theory for ODEs in Introduction 1 can be automatically
adapted to Partial Differential Equations (PDEs). Before this, let us briefly review
our hyperbolic systems of balance laws.

2.1 System Description

Consider the following first-order 1-D hyperbolic systems of balance laws

∂u

∂t
+ A(u)

∂u

∂x
= F (u), (t, x) ∈ [0, T ]× [0, L], (2.1)

where, u = (u1, . . . , un)
T is a vector function of (t, x), A(u) is a given n × n matrix

with suitably smooth entries aij(u) (i, j = 1, · · · , n), and F (u) = (f1(u), · · · , fn(u))T
is a given vector function of u with suitably smooth elements fi(u)(i = 1, · · · , n).

Remark 2.1 In general, we call the following systems

∂u

∂t
+
∂g(u)

∂x
= F (u) (2.2)

to be hyperbolic balance laws, where the flux g := (g1, · · · , gn) is a vector function
of u with suitably smooth elements. Obviously, system (2.2) can be written in the
quasilinear form as (2.1) with the Jacobian matrix

A(u) := D(g(u)). (2.3)
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Therefore, throughout this thesis, unless otherwise indicated, we consider the inho-
mogeneous quasilinear hyperbolic system (2.1) as the hyperbolic balance laws.

Remark 2.2 In the special case where there are no source terms (i.e. F (u) ≡ 0),
the homogeneous quasilinear system (2.1) reduces to

∂u

∂t
+ A(u)

∂u

∂x
= 0, (2.4)

which constitutes a so-called hyperbolic system of conservation laws.

Definition 2.1 (2.1) is a hyperbolic system, if, for any given u on the domain
under consideration, A(u) has n real eigenvalues λi(u) (i = 1, · · · , n) and a com-
plete set of left (resp. right) eigenvectors li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) =
(r1i(u), · · · , lni(u))T , (i = 1, · · · , n)):

li(u)A(u) = λi(u)li(u). (2.5)

and

A(u)ri(u) = λi(u)ri(u). (2.6)

Here, by a complete set we mean a basis for R
n.

In what follows, we assume that, maybe after a suitable change of variables,

λr(u) < λp(u) ≡ 0 < λs(u)

r = 1, · · · , l, p = l + 1, · · · ,m, s = m+ 1, · · · , n, (2.7)

and

lij(0) = δij (i, j = 1, · · · , n), (2.8)

where δij stands for the Kronecker symbol. In particular,

A(0) =




λ1(0) 0
. . .

0 λn(0)


 . (2.9)

Definition 2.2 If, for any given u on the domain under consideration, A(u) has
n distinct real eigenvalues

λ1(u) < λ2(u) < · · · < λn(u), (2.10)

then, the set of left (resp. right) eigenvectors forms a complete set. The corresponding
hyperbolic systems (2.1) satisfying (2.10) are called strictly hyperbolic systems.
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Remark 2.3 Here and in what follows, we always suppose that all the real eigen-
values λi(u)(i = 1, · · · , n) and all left and right eigenvectors li(u) and ri(u)(i =
1, · · · , n) have the same regularity as A(u). However, one can easily check that this
is not an issue for strictly hyperbolic systems (see, for example, [72, Appendix A,
Pages 195-210]).

To ensure the well-posedness of system (2.1), we consider the following general
kind of boundary conditions:

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n), (2.11)

x = L : ur = Gr(t, ul+1, · · · , un) +Hr(t) (r = 1, · · · , l), (2.12)

where Gj and Hj (j = 1, · · · , l,m+1, · · · , n) are functions of t with suitably smooth
components. Here and hereafter, we suppose that

Gj(t, 0, · · · , 0) ≡ 0 (j = 1, · · · , l,m+ 1, · · · , n). (2.13)

Remark 2.4 Boundary conditions (2.11)-(2.12) are prescribed under the hypoth-
esis (2.8). We could also replace ui by vi = li(u)u in (2.11)-(2.12) in the general
situation (see also [69, Remark 1.3 on page 171], [72], [111] and [52]).

Hyperbolic balance laws (2.1), even systems modeled by PDEs, are typically infi-
nite dimensional dynamical system, which not only contains all the cases of conser-
vation laws such as the Saint–Venant equation (including subcritical, supercritical,
and critical cases), the isentropic and full Euler equation for one-dimensional gas
dynamics (including subsonic, supersonic, and sonic cases), the nonlinear vibrating
string equations et. al. (see, for example, [18, 23, 40, 41, 44, 48, 69, 102] and the refer-
ences therein), but also the fundamental dynamics of open conservative systems such
as the telegrapher equations for electrical lines, the Saint–Venant–Exner equations
et.al. (see [12, 32, 101]). It is well-known that the controllability theory of hyperbolic
systems (2.1) depends strongly on the matrix A(u) and how the controls act to the
systems (in the equations or to the boundary conditions).

In this thesis, we study the following three control problems, i.e. Problem of Exact
Boundary Controllability (EBC), Problem of Boundary Stabilization (BS) and Prob-
lem of Weak Boundary Controllability (WBC), for the system (2.1) with boundary
conditions (2.11)–(2.12):

• Problem (EBC). Let C ⊆ {1, · · · , n}. For any given initial data ϕ :=
(ϕ1, · · · , ϕn)

T ∈ (C1[0, L])n and final date ψ := (ψ1, · · · , ψn)
T ∈ (C1[0, L])n

with small C1 norm, can we find a time T > 0 and boundary controls Hi ∈
C1[0, T ](i ∈ C) (for i 6∈ C, Hi(t) is given and is assumed to be small) with small
C1 norm, satisfying the C1 compatibility conditions at the points (t, x) = (0, 0)
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and (0, L) (see Remark 2.5), such that the mixed initial-boundary value problem
(2.1), (2.11)-(2.12) with the initial condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L (2.14)

admits a C1 solution u(t, x) on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (2.15)

which satisfies the final condition

t = T : u = ψ(x), 0 ≤ x ≤ L? (2.16)

• Problem (BS). Suppose that Hi(t) ≡ 0 (i = 1, · · · , n) and that λ > 0 is an
arbitrary given constant. Suppose furthermore that C1 compatibility conditions
are satisfied at the point (t, x) = (0, 0) (see Remark 2.5). Does there exist a
linear feedback control B : (H2(0, L))n → R

l, without loss of generality verifying
the C1 compatibility conditions at the point (t, x) = (0, 1), such that for some
ε > 0, every solution u of the mixed initial-boundary value problem (2.1),
(2.11)-(2.12) and (2.14) with H(t) = B(u(t, ·)) satisfies

‖u(t, ·)‖H2(0,L) ≤ Ce−λt‖ϕ(·)‖H2(0,L), (2.17)

for some C > 0, provided that ‖ϕ(·)‖H2(0,L) ≤ ε?

Moreover, generally speaking, if there are essentially not enough boundary con-
trols, then it is not possible to realize the exact boundary (null) controllability (see
[80]). Then, it is nature to ask what happens in the case of lack of boundary controls
to the hyperbolic systems (2.1)? Therefore, we are also concerned with

• Problem (WBC). Which kind of controllability in a weaker sense can be
realized by means of less boundary controls for the general hyperbolic balance
laws (2.1) or its special form?

Remark 2.5 The C1 compatibility conditions at the point (t, x) = (0, 0) are given
by

ϕs(0) = Gs(0, ϕ1(0), · · · , ϕm(0)) +Hs(0) (s = m+ 1, · · · , n),

fs(ϕ(0))−
n∑

j=1

asj(ϕ(0))ϕjx(0) =
∂Gs

∂t
(0, ϕ1(0), · · · , ϕm(0)) +Hst(0)

+
m∑

r=1

n∑

j=1

∂Gs

∂ur
(0, ϕ1(0), · · · , ϕm(0))

(
fr(ϕ(0))− arj(ϕ(0))ϕjx(0)

)
(s = m+ 1, · · · , n).
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The C1 compatibility conditions at the point (t, x) = (0, L) are similar.

2.2 Concise Review of the Literature and Open Problems

Exact Boundary Controllability

There are many publications concerning the exact controllability for linear hyper-
bolic systems (see [88], [100] and the references therein). As a special form of second
order hyperbolic equations, the exact boundary controllability for linear wave equa-
tions was obtained in a complete manner by using the so-called Hilbert Uniqueness
Method (HUM) (see [88]-[89]). In fact, the essence of J.-L. Lions’s HUM is to use the
duality to get the controllability by a corresponding observability inequality. Using
HUM as well as other technical developments, Zuazua [122]-[123], Emanuilov [37]
and Lasiecka & Triggiani [66] subsequently established the exact boundary control-
lability for some semilinear wave equations. As for the general first order hyperbolic
systems, one can refer to the prior works [15, 86] and the recent monograph of Li [72]
for almost complete results on several kinds of exact boundary controllability for the
1-D quasilinear inhomogeneous hyperbolic systems (2.1) in the context of classical
solution (see also Part I). Let us mention [121] for the local boundary controllability
of quasilinear wave equations in the multidimensional space. In the framework of BV
solutions, the corresponding controllability for hyperbolic conservation laws has been
studied in [8, 9, 13, 40, 41, 51, 96].

Since the hyperbolic wave has a finite speed of propagation, the exact boundary
control time T > 0 should be suitably large. However, from the point of view of
applications, T should be chosen as small as possible. Thus, one may ask

(i). Is it possible to get an optimal control time estimate for the hyperbolic balance
laws (2.1), homogeneous case or inhomogeneous case?

On the other hand, it is well known that if all the characteristic speeds of the
system do not vanish, i.e., all the eigenvalues of A(u) are nonzero in the domain
under consideration, then (2.1) is exactly controllable (at least locally in C1 class) by
boundary controls provided that the control time is sufficiently large. (see Li and Rao
[75, 74]; see also Wang [111] for the nonautonomous case). If A(u) has zero eigenvalue,
one can add some internal controls acting on the components corresponding to the
zero eigenvalues and boundary controls acting on the other components [82, 111,
76]. It is worth mentioning that Glass recently obtained the controllability (not
exact boundary controllability) of 1-D non-isentropic Euler equation, a hyperbolic
system of conservation laws with a vanishing characteristic speed, in both Eulerian
and Lagrangian coordinates in the context of entropy solutions [41]. Another open
question naturally arises:
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(ii). Is it possible to establish the exact controllability for a hyperbolic system of
balance laws with vanishing characteristic speeds by only boundary controls?

This situation seems to be complicated. Notice that the solution u(t, x) of the
degenerate case of the equation (essentially an ordinary differential equation)

{
ut = 0, (t, x) ∈ (0, T )× (0, 2π),

u(0, x) = u0(x), x ∈ (0, 2π), (2.18)

obeys
u(t, ·) ≡ u0, ∀t ∈ [0, T ]. (2.19)

Obviously, it is impossible to change the value u by using the boundary controls acting
on the end x = 0 and/or x = 2π. In this direction, Gugat and Leugering [48] proved a
global boundary controllability result which covers the critical case in which one of the
characteristic speed is zero. In spite of the degenerate model (2.18), it is still possible
to prove the controllability for some nonlinear systems. The return method of Coron
has been applied to many situations, where the linearized system is not controllable
while the nonlinearity enables the corresponding nonlinear systems to be controllable
(see, in particular, [19] and the references therein). One can apply the return method
to realize exact boundary controllability for quasilinear hyperbolic systems with a
zero characteristic speed [23], when the possible vanishing characteristic speed can
be driven to nonzero after sufficiently long time. However, this approach seems to
be no longer valid for the system with identically zero characteristic speeds (see [23,
Remark 1.3]).

Remark 2.6 Let us also mention [36, 38] for the distributed (internal) control-
lability of linear/semilinear hyperbolic systems in any space dimension and [90] for
the corresponding stochastic problem. The optimal control problems for wave equation
are considered with controls in both Dirichlet and Neumann boundary conditions and
with pointwise constraints on the control and the state (see [92, 93]).

Boundary Stabilization

In the last three decades or so, there has been a resurgence in the analysis of
the asymptotical behavior for quasilinear hyperbolic systems (2.1). During this time,
three parallel mathematical approaches have emerged. The first one is the so-called
“Characteristic method”, i.e. computing corresponding bounds by using explicit evo-
lution of the solution along the characteristic curves. With this method, Problem
(BS) has been previously investigated by Greenberg and Li (see [42]) for 2 × 2 (i.e.
A ∈ M2,2(R)) systems and Li and Qin (see [69, 98]) for a generalization to n × n
homogeneous systems in the framework of C1 norm. Also, this method was developed
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by Li and Rao [75] to study the exact boundary controllability for general inhomo-
geneous quasilinear hyperbolic systems.

The second method is the “Control Lyapunov Functions method”, which is a use-
ful tool to analyze the asymptotic behavior of dynamical systems. This method was
first used by Coron et.al. to enable the design of dissipative boundary conditions
for nonlinear homogeneous hyperbolic systems in the context of both C1 norm and
H2 norm [11, 20, 21, 22, 25]. Although both Characteristic method and Control
Lyapunov Functions method have been driven to study exponential stability for hy-
perbolic conservation laws or even some hyperbolic balance laws, however, these two
methods fail when dealing with Problem (BS) for the general inhomogeneous hyper-
bolic systems (see [10], [11, Section 5.6], [19, Pages 314 and 361–371], [32], [69], [21]
and [22]).

The third one is the “Backstepping method”, which has been proven to be effective
to stabilize inhomogeneous quasilinear hyperbolic systems (2.1) (see [26] and [31]) and
other equations (see [14, 24, 65, 103]). In [26], a full-state feedback control law, with
actuation on only one end of the domain, which achieves H2 exponential stability
of the closed-loop 2 × 2 linear and quasilinear hyperbolic system is derived using
a backstepping method. Unfortunately, the method presented in [26] can not be
directly extended to n × n systems, even in linear cases, especially when several
states convecting in the same direction are controlled (see also [31]). Therefore, the
following question is of great interest and remained open:

(iii). Can we stabilize the 3× 3 linear or quasilinear inhomogeneous hyperbolic sys-
tems (2.1) by multi-boundary feedback controls? and what about n× n cases?

Remark 2.7 One can also refer [28], [46], [68] and [97] to the results on stabi-
lization for hyperbolic systems on networks.

Weak Boundary Controllability–Exact Boundary Synchronization

As being said before, it is a significant issue from both theoretical and practical
points of view that whether we can shorten the control time or number of controls
for hyperbolic systems (2.1). For instance, consider the following coupled system of
wave equations

Utt − Uxx + AU = 0, (2.20)

where U ∈ R
N and A ∈ MN,N(R). Based on the results in [55], we can see that

one needs N boundary controls to achieve controllability for N coupled wave systems
(2.20). In view of less controls, although one can not realize the exact controllability
in general (see [80] and Remark 2.8), however, the indirect controllability and asymp-
totical controllability (another kind of controllability which is not as mentioned in
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Definition 1.2), both the boundary controllability in a weaker sense, can be realized
by means of M(< N) boundary controls for some special coupled systems of N wave
equations (2.20) (cf. [2], [3], [6], [78]). An interesting open question rises:

(iv). Can we define another kind of weak boundary controllability without enough
controls for hyperbolic systems (2.20), such as the exact boundary synchroniza-
tion and its related topics? and how to construct boundary controls achieving
these synchronizations?

Synchronization is actually a widespread natural phenomenon. Thousands of
fireflies may twinkle at the same time; audiences in the theater can applaud with a
rhythmic beat; pacemaker cells of the heart function simultaneously; and field crickets
give out a unanimous cry—all these are phenomena of synchronization [104], [115].

In principle, synchronization happens when different individuals possess likeness
in nature, that is, they conform essentially to the same governing equation, and
meanwhile, the individuals should bear a certain coupled relation.

The phenomenon of synchronization was first observed by Huygens in 1665 [60].
The theoretical research on synchronization phenomena dates back to H. Fujisaka
and T. Yamada’s study of synchronization for coupled equations in 1983 [39]. The
previous studies focused on systems described by ODEs, such as

dXi

dt
= f(Xi, t) +

N∑

j=1

AijXj (i = 1, · · · , N), (2.21)

and considered the asymptotical synchronization behavior, i.e.,

Xi(t)−Xj(t)→ 0, as t→ +∞ (∀i 6= j), (2.22)

where Xi(i = 1, · · · , N) are n-dimensional vectors, Aij(i, j = 1, · · · , N) are n × n
matrices, and f(X, t) is an n-dimensional vector function independent of i.

Our goal is to synchronize a hyperbolic system (2.20) or its quasilinear form
through boundary controls. Different from the ODE situation, the coupling of systems
can then be fulfilled by coupling of the equations or (and) the boundary conditions,
which has richer research implications, moreover, boundary controls can be used to
realize our goal in a finite time.

Roughly speaking, we want to find a finite time T > 0 and few boundary controls
on [0, T ], such that from the time t = T on, the system states tend to a state having
components which are equal. That is to say, we hope to achieve the synchroniza-
tion of the system states not only at the moment t = T under the action of few
boundary controls on [0, T ], but also when t ≥ T and withdrawing all the controls.
This is forever, instead of short-lived, synchronization, as is desired in many actual
applications.
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All the topics in synchronization are almost blank and uncultivated in the field
of PDEs, especially for hyperbolic systems of balance laws (2.1) or its special form
(2.20).

Remark 2.8 One can also find some results on the exact controllability of cascade
coupled multi-dimensional hyperbolic systems by a reduced number of controls in [4, 5].

3 Motivation and Outline of the Thesis

This thesis is motivated by the above four questions in Introduction 2.2 and brings
precise answers to all of them. It is composed of eight chapters and comprises three
main parts numbered I,II and III, where Part I deals with the Questions (i) and (ii),
while Parts II and III deal with the Questions (iii) and (iv), respectively. Most of
the results presented in the thesis are published or submitted for publication in our
papers [56, 52, 59, 58, 53, 54, 55, 57, 81].

3.1 Main Work in Part I

In Part I (Chapters 1–2), we are concerned with the exact boundary controllability
problem, i.e. Problem (EBC), for hyperbolic systems of balance laws (2.1).

For this, in Chapter 1, we present our results in [52], which is devoted to give
sharp time estimates for local exact boundary controllability of 1-D homogeneous
quasilinear hyperbolic systems without zero characteristic speeds. We improve the
time for the controllability found by Li [72, Theorem 3.2 and Theorem 3.3 on pages
39-41] and Zhang [120] both for the case of one-sided control and for the case of
both-sided controls when the dimension of the controls is the same as the case of
one-sided control. We prove that this control time is sharp. Our approach relies
on the utilization of constructive methods, the characteristic theory together with a
suitable iteration scheme on a suitable time interval.

As being said, despite of the fact that distributed (internal) controls are usually
used to obtain controllability for a hyperbolic system (2.1) with vanishing character-
istic speeds, Chapter 2 is, however, devoted to study the case where only boundary
controls are considered. Following our approach developed in [59], we first prove that
a weak coupled hyperbolic system of balance laws (2.1) is not (null) controllable in
finite time. Meanwhile, we give a sufficient and necessary condition for the asymp-
totic stabilization of the system under a natural feedback. This result somehow gives
a negative answer to Question (ii), that is even for the coupled hyperbolic system
(2.1) with zero characteristic speed, it is also impossible to achieve the corresponding
exact boundary controllability. However, one can stabilize these systems in infinite
time by means of boundary feedback. This extends the previous works [82, 111, 76]
and [23].
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3.2 Main Work in Part II

Part II (Chapters 3–4) is devoted to study boundary stabilization for inhomoge-
neous hyperbolic systems. Two chapters are established in order to illustrate this
topic.

In Chapter 3, we first introduce the definition of heterodirectional and homodi-
rectional hyperbolic systems, and present our results from [54] that deal with back-
stepping control design for linear first-order heterodirectional and homodirectional
hyperbolic systems featuring arbitrary large (local) coupling coefficients. A particular
choice of the target system, featuring a cascade structure similar to [26, Section 3.5],
enables the use of a classical Volterra integral transformation. Well-posedness of the
system of kernel equations, which is the main technical challenge of this chapter,
is proved by a method of successive approximations using a novel recursive bound.
Moreover, we design a stabilizing full-state feedback law for heterodirectional systems.
Along with a dual observer design, this yields an output feedback controller amenable
to implementation. Besides, we solve the problem of boundary motion planning for
homodirectional systems. Our results in Chapter 3 not only give a positive answer to
Question (iii) and the open question proposed in [26] and [31], but also open the door
for a large number of related problems to be solved, e.g. collocated observer design,
disturbance rejection, similarly to [1], parameter identification as in [30], stabilization
of quasilinear systems as in [26], which directly results in the research activities in
Chapter 4.

As an apparent generalization of Chapter 3, in Chapter 4, we present the results
of our paper [53], which deal with the problem of boundary stabilization of first-order
n × n inhomogeneous quasilinear hyperbolic systems (2.1). Based on the results of
the linear case [54] and Chapter 3, we use the linearized feedback control to stabilize
the nonlinear system as it is mentioned in [26]. Although the target system is a little
different from the one in [26] with a linear term involved in the equations, thanks
to its special structure, we still find that the natural control Lyapunov functions do
lead to arbitrarily large exponential decay rate to the target system (2.1) with more
technical developments than that was used in [26]. The main result of this chapter
supplements the previous works on how to design multi-boundary feedback controllers
to realize (rapid) exponential stability of the original nonlinear system in the spatial
H2 sense. Therefore, Part II completely answers the Question (iii).

3.3 Main Work in Part III

In Part III (Chapters 5-6-7-8), we focus on the study of a kind of weak boundary
controllability, i.e. exact boundary synchronization, for a coupled system of wave
equations (2.20) and its quasilinear form, which, to our best knowledge, is first intro-
duced to the field of PDEs.
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In Chapter 5, based on the theory of semi-global classical solutions to quasilinear
hyperbolic systems, we first recall our results in [55] that apply a unified constructive
method to establish the local exact boundary (null) controllability and the local
boundary (weak) observability for the following coupled system of 1-D quasilinear
wave equations

∂2wi

∂t2
− a2i (w)

∂2wi

∂x2
+

n∑

j=1

aij(w)wj = 0, (3.1)

where w = (w1, . . . , wn)
T is the unknown vector function of (t, x), ai(w) and aij(w)

(i, j = 1, · · · , n) are all C1 functions of w on the domain under consideration, satis-
fying

ai(0) > 0, i = 1, · · · , n. (3.2)

Four kinds of boundary conditions, i.e. Dirichlet type, Neumann type, Coupled third
type and Coupled dissipative type are considered. The conclusions we obtain in
Chapter 5 provide significant basis for studying the exact boundary synchronization
for a coupled system of wave equations.

In Chapter 6 and Chapter 7, inspired by the natural phenomena of synchroniza-
tion and combining the null controllability results in Chapter 5, several kinds of exact
synchronizations and the generalized exact synchronization are introduced for a cou-
pled system of 1-D wave equations (2.1) with boundary conditions of Dirichlet type,
Neumann type, Coupled third type and Coupled dissipative type, respectively. Our
results shown in Chapter 6 (see also [81]) indicate that all these synchronizations
can be realized by means of less boundary controls with the boundary conditions
of Dirichlet type, Neumann type and Coupled third type, while similar results are
proven in Chapter 7 (see also [57]) for the hyperbolic system (2.1) with boundary con-
ditions of coupled dissipative type. It should be noted that sufficient and necessary
conditions are obtained in Chapter 6 for the cases of exact boundary synchronization
and exact boundary null controllability and synchronization by groups for coupled
wave systems (2.1) with the first three boundary conditions.

In Chapter 8, we consider the following general kind of coupled system of wave
equations

∂2U

∂t2
− a2(U,Ut, Ux)

∂2U

∂x2
+ A(U,Ut, Ux)U = 0, (3.3)

where, U = (u1, . . . , uN)
T is an unknown vector function of (t, x), A(U,Ut, Ux) =

(aij(U,Ut, Ux)) is an N × N coupling matrix, whose elements are C1 functions with
respect to their arguments. a(U,Ut, Ux), the common velocity for the coupled system,
is also a C1 function with respect to its arguments, satisfying

a(0, 0, 0) > 0. (3.4)

As being said before, it is a significant issue from both theoretical and practical points
of view to see if we can shorten the number of controls for the coupled systems of wave
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equations (3.3). Based on the theory of semi-global classical C2 solution for coupled
wave equations, using a unified constructive method for one-sided exact boundary
controllability (see [55], [74], [75], [72]), by a suitable iteration procedure as well as
certain estimates for coupled systems of wave equations with afore mentioned four
kinds of boundary conditions, we establish its local exact boundary synchronization
around U = 0. The main work in this chapter is also presented in [56].
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1.1 Introduction and Main Results

Consider the following 1-D quasilinear system

∂u

∂t
+ A(u)

∂u

∂x
= 0 (t, x) ∈ [0, T ]× [0, L], (1.1.1)

where, u = (u1, . . . , un)
T is a vector function of (t, x), A(u) is an n × n matrix with

C1 elements aij(u) (i, j = 1, · · · , n). By the definition of hyperbolicity, A(u) has n
real eigenvalues λi(u) (i = 1, · · · , n) and a complete set of left eigenvectors li(u) =

25
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(li1(u), · · · , lin(u)) (i = 1, · · · , n):

li(u)A(u) = λi(u)li(u), (1.1.2)

and, consequently, a complete set of right eigenvectors ri(u) = (r1i(u), · · · , rni(u))T (i =
1, · · · , n):

A(u)ri(u) = λi(u)ri(u). (1.1.3)

Without loss of generality, here we assume that

lij(0) = δij (i, j = 1, · · · , n), (1.1.4)

where δij stands for the Kronecker symbol. Moreover, for simplicity of statement, we
suppose that the set of eigenvalues Λ(u) = (λ1(u), · · · , λn(u)) satisfies the following
condition:

λ1(0) < λ2(0) < · · · < λm(0) < 0 < λm+1(0) < · · · < λn(0), (1.1.5)

and the number of positive eigenvalues is not bigger than the number of negative
eigenvalues, i.e.

m
def.
= n−m ≤ m. (1.1.6)

The boundary conditions are given as follows:

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n), (1.1.7)

x = L : ur = Gr(t, um+1, · · · , un) +Hr(t) (r = 1, · · · ,m), (1.1.8)

where Gi and Hi (i = 1, · · · , n) are C1 functions, without loss of generality, such that

Gi(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n). (1.1.9)

Let us first recall the following well-posedness result due to Li (see [72, Chapter
2 on pages 19-36]) for the system (1.1.1) with (1.1.7)-(1.1.8):

Lemma 1.1.1 Suppose that λi, li, ri, Gi and Hi(i = 1, · · · , n) are all C1 func-
tions with respect to their arguments and (1.1.4) holds. Suppose furthermore that the
conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L),
respectively. For any given T0 > 0, the mixed initial-boundary value problem (1.1.1),
(1.1.7)-(1.1.8) with

t = 0 : u = ϕ(x), 0 ≤ x ≤ L (1.1.10)
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admits a unique C1 solution u(t, x) with sufficiently small C1 norm on the domain

R(T0) = {(t, x)|0 ≤ t ≤ T0, 0 ≤ x ≤ L}, (1.1.11)

provided that ‖ϕ‖1and ‖H‖1 are small enough (depending on T0).

Remark 1.1.1 Here and throughout this chapter, for simplicity, we denote ‖ · ‖0
and ‖ · ‖1 as the corresponding C0 and C1 norms, respectively.

Remark 1.1.2 Boundary conditions (1.1.7)-(1.1.8) are prescribed under the hy-
pothesis (1.1.4). We could also replace ui by the vi = li(u)u in (1.1.7)-(1.1.8) in the
general situation (see also [69, Remark 1.3 on page 171]).

Remark 1.1.3 The C1 compatibility conditions at the point (t, x) = (0, 0) are
given by

ϕs(0) = Gs(0, ϕ1(0), · · · , ϕm(0)) +Hs(0) (s = m+ 1, · · · , n), (1.1.12)
n∑

j=1

asj(ϕ(0))ϕjx(0) =
m∑

r=1

n∑

j=1

∂Gs

∂ur
(0, ϕ1(0), · · · , ϕm(0))arj(ϕ(0))ϕjx(0)

− ∂Gs

∂t
(0, ϕ1(0), · · · , ϕm(0))−Hst(0) (s = m+ 1, · · · , n).

(1.1.13)

The C1 compatibility conditions at the point (t, x) = (0, L) are similar.

Based on Lemma 1.1.1, we are concerned with the corresponding exact controlla-
bility problem for the system (1.1.1) and (1.1.7)-(1.1.8):

Problem (EBC). Let C ⊆ {1, · · · , n}. For any given initial data ϕ ∈ (C1[0, L])n

and final date ψ ∈ (C1[0, L])n with small C1 norm, can we find a time T > 0 and
boundary controls Hi ∈ C1[0, T ](i ∈ C) (for i 6∈ C, Hi(t) is given) with small C1

norm, such that the mixed initial-boundary value problem (1.1.1), (1.1.7)-(1.1.8) and
(1.1.10) admits a C1 solution u(t, x) on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (1.1.14)

which satisfies exactly the final condition

t = T : u = ψ(x), 0 ≤ x ≤ L? (1.1.15)

The exact boundary controllability problems for both linear and quasilinear 1-D
hyperbolic systems have attracted considerable attention over the past several decades
(see, for example, [19, 72, 100] and the numerous references therein). Eventually,
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three cases have been distinguished in the literatures, depending on the number of
boundary controls, the boundary conditions on non-control side as well as the control
time, to study Problem (EBC)(see, for instance, [72, Chapter 3 on pages 37-62]
and [75, 120]):

(1) Both-sided control (C = {1, · · · , n}). One can choose

T > Lmax
( 1∣∣λm(0)

∣∣ ,
1

λm+1(0)

)
and Hi(i = 1, · · · , n) (1.1.16)

to realize the (local) exact boundary controllability for the general first order 1-
D quasilinear hyperbolic system (1.1.1), (1.1.7)-(1.1.8). Since enough boundary
controls are acting on both ends, we can drive any initial data ϕ to any desired
data ψ around equilibrium without any additional assumptions to the boundary
conditions (1.1.7)-(1.1.8).

(2) One-sided control (C = {1, · · · ,m}). In this situation, in order to handle
the Problem (EBC), one should utilize all the boundary functions Hr(t)(r =
1, · · · ,m) as boundary controls on x = L, meanwhile, suppose that the bound-
ary condition (1.1.7) on the non-control side x = 0 in a neighborhood of u = 0
satisfies

us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n)
⇔ur = Gr(t, um+1, · · · , um, um+1, · · · , un) +Hr(t) (r = 1, · · · ,m),

(1.1.17)

where Gr and Hr are also C
1 functions with respect to their arguments, and

Gr(t, 0, · · · , 0) ≡ 0 (r = 1, · · · ,m), (1.1.18)

provided that the control time satisfies

T > L
( 1∣∣λm(0)

∣∣ +
1

λm+1(0)

)
. (1.1.19)

(3) Both-sided with less controls (C = {m + 1, · · · , n}). In this case, under
the same assumption (1.1.19) as in the case of “One-sided control”, one needs
all (i.e. m) boundary controls Hs(s = m + 1, · · · , n) acting on x = 0 together
with m−m boundary controls Hq(= m+ 1, · · · ,m) acting on x = L, provided
that in a neighborhood of u = 0 the first m boundary conditions (1.1.8), the
non-control components, on x = L satisfies

ur = Gr(t, um+1, · · · , un) +Hr(t) (r = 1, · · · ,m)
⇔us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n),

(1.1.20)
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where Gs and Hs are also C
1 functions with respect to their arguments, and

Gs(t, 0, · · · , 0) ≡ 0 (s = m+ 1, · · · , n). (1.1.21)

Compared with the case “Both-sided control”, the latter two cases reduce the
number of boundary controls to m, however, at the cost of the larger control time.
It is easy to show that the control time given by (1.1.16) is sharp for the first case
(see [72, Remark 3.11 on page 47]). However, in the cases of “One-sided control”
and “Both-sided with less controls”, one verifies that the control time (1.1.19) can
be improved for linear hyperbolic systems (see Remark 1.1.4). Taking into account
this phenomenon, one may ask the following natural question: is it still valid for the
general nonlinear systems? Here, we give a positive answer.

In this chapter, based on the constructive methods, the characteristic theory
together with a suitable iteration scheme on a suitable time interval, we shorten the
control time for the quasilinear hyperbolic systems (1.1.1) with boundary controls
acting on one side or both sides with less controls that was proposed by Li [72,
Theorem 3.2 and Theorem 3.3 on pages 39-41] and Zhang [120]. Our main results,
which can be applied to control Saint-Venant-Exner system (see [32]), the full Euler
equation for 1-D gas dynamics ([23, section 4])etc., are given as follows:

Theorem 1.1.1 (One-sided control) Let us assume that the basic hypotheses
of Lemma 1.1.1 hold and (1.1.17)-(1.1.18) is valid in a neighborhood of u = 0. Let
T > 0 satisfies

T > Lmax

(
1

|λm(0)|
+

1

λm+1(0)
,

1

|λm(0)|

)
. (1.1.22)

Then there exists ε > 0 such that for any given initial data ϕ ∈ (C1[0, L])n, any
boundary functions Hs ∈ C1[0, T ](s = m + 1, · · · , n), Hr ∈ C1[0, T ] (r = 1, · · · ,m)
and any ψ ∈ (C1[0, L])n satisfying the C1 compatibility conditions at the point (t, x) =
(0, 0) and (T, 0) respectively, and

‖ϕ‖1 + ‖ψ‖1 + max
r=1,··· ,m

‖Hr‖1 + max
s=m+1,··· ,n

‖Hs‖1 ≤ ε, (1.1.23)

there exist boundary controls Hr ∈ C1[0, T ](r = 1, · · · ,m) on x = L, such that the
mixed initial-boundary value problem (1.1.1), (1.1.7)-(1.1.8) and (1.1.10) admits a
unique C1 solution u = u(t, x) on the domain R(T ), which satisfies the final condition
(1.1.15).

Theorem 1.1.2 (Both-sided with less controls) Let us assume that the basic
hypotheses of Lemma 1.1.1 hold and (1.1.20)-(1.1.21) is valid in a neighborhood of
u = 0. Furthermore, let T > 0 satisfies the sharp time estimate (1.1.22). Then
there exists ε > 0 such that for any given initial data ϕ ∈ (C1[0, L])n, any boundary
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functions Hr ∈ C1[0, T ] (r = 1, · · · ,m), Hs ∈ C1[0, T ](s = m + 1, · · · , n) and any
ψ ∈ (C1[0, L])n satisfying the C1 compatibility conditions at the point (t, x) = (0, L)
and (T, L) respectively, and

‖ϕ‖1 + ‖ψ‖1 + max
r=1,··· ,m

‖Hr‖1 + max
s=m+1,··· ,n

‖Hs‖1 ≤ ε, (1.1.24)

there exist boundary controls Hp ∈ C1[0, T ](p = m + 1, · · · , n), such that the mixed
initial-boundary value problem (1.1.1), (1.1.7)-(1.1.8) and (1.1.10) admits a unique
C1 solution u = u(t, x) on the domain R(T ), which satisfies the final condition
(1.1.15).

In general, when considering our controllability problem for quasilinear hyperbolic
systems, the difficulties usually come from two aspects. One is the nonlinearity from
the boundary conditions, and the other is that from the governing matrix A(u). To
overcome the first difficulty, we use the so-called constructive methods (see [72, 75,
111, 120]). It allows us to find a C1 solution u to the system (1.1.1) on the domain
R(T ), satisfying simultaneously any given initial condition (1.1.10) and any given
final condition (1.1.15), as well as all the boundary conditions without control (i.e.
(1.1.17) for the case“One-sided control” or (1.1.20) for the case “Both-sided with less
controls”). On the other hand, one easily checks from (1.1.17) and (1.1.20) that the
components uq(q = m+1, · · · ,m) are in essence decoupled from up(p = 1, · · · ,m,m+
1, · · · , n) on these boundary conditions. Consequently the main difficulty of this
chapter is from the second one, i.e. how to decouple these two parts of components
from the governing matrix A(u) on the whole domain R(T ). If so, we then respectively
control the two different hyperbolic systems, the first are on uq(q = m + 1, · · · ,m)
and the second are on up(p = 1, · · · ,m,m + 1, · · · , n). Therefore, the control time
for the original system (1.1.1) is much smaller than the one in [72, Theorem 3.2 and
Theorem 3.3 on pages 39-41] and [120]. To overcome the second difficulty, we will see
below that the method used is strongly inspired from a suitable linearized iteration
scheme on a suitable time interval. Then based on theory of the linearized hyperbolic
systems with nonlinear boundary conditions, not only can we shorten the control
time for the linearized system, but also prove the convergence by using constructive
methods as well as some appropriate estimates.

Remark 1.1.4 In this remark, we first show that the time estimates provided in
Theorem 1.1.1 and Theorem 1.1.2 improves the one in [72, Theorem 3.2 and Theorem
3.3 on pages 39-41] and [120]. In fact, noting (1.1.5), one has

Lmax

(
1

|λm(0)|
+

1

λm+1(0)
,

1

|λm(0)|

)
≤ L

(
1

|λm(0)|
+

1

λm+1(0)

)
. (1.1.25)

Moreover, the two sides are equal if and only if m = m. If m < m, one can use
less time given by (1.1.22) to control the nonlinear system (1.1.1). In this sense, our
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results indeed improve the one in [72, Theorem 3.2 and Theorem 3.3 on pages 39-41]
and [120]. Next, we claim that the exact controllability time T > 0 given by (1.1.22)
is sharp for the above two cases. Consider the following linear system

∂ui
∂t

+ λi
∂ui
∂x

= 0, (1.1.26)

with constant characteristic speeds λi (i = 1, · · · , n) satisfying

λ1 < · · · < λm < 0 < λm+1 < · · · < λn. (1.1.27)

(I) (One-sided Control) For the boundary conditions

x = 0 : us = un+1−s (s = m+ 1, · · · , n), (1.1.28)

x = L : ur = Hr(t) (r = 1, · · · ,m), (1.1.29)

when (1.1.6) holds, the whole system (1.1.26) can be divided into two systems, the
one is





∂up
∂t

+ λp
∂up
∂x

= 0 (p = 1, · · · ,m,m+ 1, · · · , n),
x = 0 : us = un+1−s (s = m+ 1, · · · , n),
x = L : ur = Hr(t) (r = 1, · · · ,m),

(1.1.30)

and the other is




∂uq
∂t

+ λq
∂uq
∂x

= 0 (q = m+ 1, · · · ,m),
x = L : uq = Hq(t) (q = m+ 1, · · · ,m).

(1.1.31)

Noting (1.1.27), it is well known that the system (1.1.30) is controllable by boundary
controls Hr(r = 1, · · · ,m) if and only if

T >
L

|λm|
+

L

λm+1

. (1.1.32)

While the system (1.1.31) is controllable by boundary controls Hq(q = m+1, · · · ,m)
if and only if

T >
L

|λm|
. (1.1.33)

Therefore, the system (1.1.26), (1.1.28)-(1.1.29) is controllable by the boundary con-
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trols Hr(r = 1, · · · ,m) if and only if

T > Lmax

(
1

|λm|
+

1

λm+1

,
1

|λm|

)
. (1.1.34)

(II) (Both-sided with less controls) For the boundary conditions

x = 0 : us = Hs(t) (s = m+ 1, · · · , n), (1.1.35)

x = L :

{
ur = un+1−r (r = 1, · · · ,m),
uq = Hq(t) (q = m+ 1, · · · ,m), (1.1.36)

noting (1.1.6), the whole system (1.1.26) can be also divided into two systems, the
one is





∂up
∂t

+ λp
∂up
∂x

= 0 (p = 1, · · · ,m,m+ 1, · · · , n),
x = 0 : us = Hs(t) (s = m+ 1, · · · , n),
x = L : ur = un+1−r (r = 1, · · · ,m),

(1.1.37)

and the other is (1.1.31). An argument similar to the one used in (I) shows that
the system (1.1.26), (1.1.35)-(1.1.36) is controllable by the boundary controls Hp(p =
m+ 1, · · · , n) if and only if (1.1.34) holds.

Remark 1.1.5 We could also treat the case with source term (see, in particular,
Remark 1.3.2 below):

∂u

∂t
+ A(u)

∂u

∂x
= F (u), (1.1.38)

in which F ∈ C1 and

lim
|u|→0

|F (u)|
|u| = 0. (1.1.39)

However, if (1.1.39) is not satisfied, although one can refer [72, Chapter 3 on pages
37-62] and [120] to treat this case by larger control time (i.e. (1.1.19)), the approach
of this chapter is not valid anymore. Can we still shorten control time as in (1.1.22)
for such systems? To our best knowledge, this question remains open.

Remark 1.1.6 The condition (1.1.5) implies that (1.1.1) is a strictly hyperbolic
system around the equilibrium. For the more general case

λr(0) < 0 < λs(0) (r = 1, · · · ,m, s = m+ 1, · · · , n), (1.1.40)
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Theorem 1.1.1 and Theorem 1.1.2 still hold if we replace (1.1.22) by

T > Lmax

(
max

r=1,··· ,m

1

|λr(0)|
+ max

s=m+1,··· ,n

1

λs(0)
, max
q=m+1,··· ,n

1

|λq(0)|

)
. (1.1.41)

The rest of this chapter is organized as follows: In §1.2, we show the C0, C1 and
modulus of continuity estimates for general linear hyperbolic systems with nonlinear
boundary conditions, which is proved in §1.5. In §1.3, we use a suitable iteration
scheme together with fixed point theory to prove Theorem 1.1.1 and Theorem 1.1.2.
In §1.4, we establish a technical result on controllability of the linearized system by
using constructive methods.

1.2 Some Estimates on Linear Hyperbolic Systems

with Nonlinear Boundary Conditions

In order to obtain the desired exact controllability for the nonlinear system (1.1.1),
(1.1.7)-(1.1.8), we have to investigate C0, C1 norms and the modulus of continuity
for the corresponding linear problem. Here, we introduce the modulus of continuity
for f(t, x) to be the following non-negative function:

ω(η|f) := sup
|t′−t′′|≤η, |x′−x′′|≤η
(t′,x′), (t′′,x′′)∈R(T )

|f(t′, x′)− f(t′′, x′′)|, η ≥ 0. (1.2.1)

Similarly, we can define the modulus of continuity of a vector function f = (f1, · · · , fn)
as

ω(η|f) := max
i=1,··· ,n

ω(η|fi), (1.2.2)

and the modulus of continuity of a matrix function A = (aij)n×n can be

ω(η|A) := max
i,j=1,··· ,n

ω(η|aij). (1.2.3)

Consider the linear hyperbolic system as follows (see also [85, 111]):

∂ui
∂t

+ λi(t, x)
∂ui
∂x

=
ñ∑

k=1

bik(t, x)
(∂ck(t, x)

∂t
+ λi(t, x)

∂ck(t, x)

∂x

)
, (1.2.4)

where u = (u1, · · · , un)T is an unknown vector function of (t, x), we assume that
λi, bik, ck(i = 1, · · · , n; k = 1, · · · , ñ) are all C1 functions with respect to their argu-
ments. Moreover, without of generality, we assume also that, on the domain under
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consideration, the set of eigenvalues Λ := {λ1(t, x), · · · , λn(t, x)} satisfies the follow-
ing condition:

λ1(t, x) < · · · < λm(t, x) < 0 < λm+1(t, x) < · · · < λn(t, x), (t, x) ∈ R(T ). (1.2.5)

Suppose furthermore that

‖Λ‖1 + ‖Gu‖0 ≤ K < +∞, (1.2.6)

where K is a positive constant and

‖Gu‖0 := max
r=1,··· ,m

s=m+1,··· ,n

{∥∥∥
∂Gr

∂us

∥∥∥
0
,
∥∥∥
∂Gs

∂ur

∥∥∥
0

}
. (1.2.7)

For the mixed initial-boundary value problem (1.2.4) with the initial condition
(1.1.10) and the nonlinear boundary conditions (1.1.7)-(1.1.8), whereGi(i = 1, · · · , n)
andHi are defined in §1.1, according to the characteristic theory for hyperbolic system
(see [56, 84]), we have the following lemma (the details of the proof can be seen in
§1.5):

Lemma 1.2.1 Suppose Gi and Hi(i = 1, · · · , n) are C1 functions and (1.1.9)
together with (1.2.5) hold. Suppose furthermore that the conditions of C1 compatibility
are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. For any given T >
0, the forward mixed initial-boundary problem (1.2.4),(1.1.7)-(1.1.8) and (1.1.10)
admits a unique C1 solution u = u(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤
x ≤ L}, which depends continuously on (ϕ,Λ, B, c). Moreover, we have

‖u‖0 ≤ C1(T,K)(‖ϕ‖0 + ‖H‖0 + ‖B‖0‖c‖0), (1.2.8)

‖u‖1 ≤ C2(T,K)(‖ϕ‖1 + ‖H‖1 + ‖B‖1‖c‖1 + ‖Gt‖0), (1.2.9)

where B := (bik), c := (c1, · · · , cñ), H := (H1, · · · , Hn) and

‖Gt‖0 := max
r=1,··· ,m

s=m+1,··· ,n

{∥∥∥
∂Gr

∂t

∥∥∥
0
,
∥∥∥
∂Gs

∂t

∥∥∥
0

}
. (1.2.10)

In addition, if

0 < η < min
i=1,··· ,n

inf
(t,x)∈R(T )

L

|λi(t, x)|
, (1.2.11)

one gets

ω(η|ut) + ω(η|ux) ≤ Ω(η), (1.2.12)
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where

Ω(η) = C3(T,K)

(
ω(η|ϕx) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η +

(
1 + ‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
ω(η|Γ)

)

+ (‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1)ω(η|Λx) + ω(η|Ht)

)
,

(1.2.13)
in which Γ denotes the following set of functions

Γ :=

{
∂Gr

∂us
,
∂Gr

∂t
,
∂Gs

∂ur
,
∂Gs

∂t
,
r = 1, · · · ,m;
s = m+ 1, · · · , n

}
. (1.2.14)

Remark 1.2.1 ω(η|Γ) denotes the modulus of continuity for Γ on the domain

R̃ = {0 ≤ t ≤ T, 0 ≤ ‖u‖0 ≤ C1(T,K)(‖ϕ‖0 + ‖H‖0 + ‖B‖0‖c‖0)}.

Remark 1.2.2 Different from the usual hyperbolic systems, the source term of
(1.2.4) is essentially the directional derivative with respect to t along the i-th char-
acteristic dx

dt
= λi(t, x). One can refer [85, 111] to the well-posedness of this kind

of (nonlinear) hyperbolic systems. In this chapter, however, we still show the detail
proof of Lemma 1.2.1 in order to (1) emphasize the explicit estimate on the matrix
B, the smallness of which will be utilized when iteration in § 1.4; (2) obtain inequality
(1.2.12) for the modulus of continuity under nonlinear boundary conditions (1.1.7)-
(1.1.8) on the whole domain R(T ) (not locally), which is not involved in previous
references and will be used to prove the existence of fixed point below; (3) show the
solution u depends continuously on (ϕ,Λ, B, c), which guarantees the continuity of
our iteration scheme in § 1.4.

1.3 Proof of Main results

1.3.1 Proof of Theorem 1.1.1

Since one can recover the boundary controls as the traces of u afterwards, in order
to get Theorem 1.1.1, it suffices to establish the following

Lemma 1.3.1 Under the assumptions of Theorem 1.1.1, let T > 0 be defined
by (1.1.22). For any given initial data ϕ ∈ (C1[0, L])n, final data ψ ∈ (C1[0, L])n

and the functions Hs ∈ C1[0, T ] (s = m + 1, · · · , n) satisfying (1.1.23) and the C1

compatibility conditions at the points (t, x) = (0, 0) and (T, 0), respectively, system
(1.1.1) together with the boundary conditions (1.1.7) on x = 0 admits a C1 solution
u = u(t, x) on the domain R(T ), which satisfies simultaneously the initial condition
(1.1.10) and the final condition (1.1.15).
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Proof of Lemma 1.3.1 Based on the results in §2, we next utilize a suitable
iterative scheme, the constructive methods (see, in particular, [72, Proof of Theorem
3.2 on pages 47-52] and [111]) together with the fixed point theory (see, for instance,
[19, Chapter 4 on pages 159-180]) to prove Lemma 1.3.1. Firstly, multiplying the i-th
left eigenvector li(u)(i = 1, · · · , n) on system (1.1.1) from the left and noting (1.1.2),
we get the characteristic form of hyperbolic system (1.1.1):

li(u)
(∂u
∂t

+ λi(u)
∂u

∂x

)
= 0 (i = 1, · · · , n). (1.3.1)

On the domain R(T ), we introduce some sets of function

Σ1 :=





y(t, x) ∈ (C1[R(T )])n

∣∣∣∣∣∣∣∣∣∣

y(0, x) = ϕ(x), y(T, x) = ψ(x);
yt(0, 0) = −A(ϕ(0))ϕx(0);
yt(0, L) = −A(ϕ(L))ϕx(L);
yt(T, 0) = −A(ψ(0))ψx(0);
yt(T, L) = −A(ψ(L))ψx(L);





, (1.3.2)

Σ2 :=
{
y(t, x) ∈ Σ1

∣∣‖y‖0 ≤ C4ε, ‖y‖1 ≤ κ(ε)
}
, (1.3.3)

Σ3 :=
{
y(t, x) ∈ Σ2

∣∣ω(η|yt) + ω(η|yx) ≤ Ω1(η)}, (1.3.4)

Here and in what follows, for simplicity, when no confusion is possible, we put Ci(i =
4, 5, · · · ) as positive constants which are independent of y, while κ(ε) and Ω1(η)(0 ≤
η ≤ min

i=1,··· ,n
inf

||u||0≤C4ε

L
|λi(u)|

) denote two continuous nonnegative functions with respect

to their arguments, satisfying

κ(0) = 0, (1.3.5)

and

Ω1(0) = 0. (1.3.6)

For any given y ∈ Σ2, we consider the following linear system





∂ui
∂t

+ λi(y)
∂ui
∂x

=
n∑

k=1

Θik(y)
(∂yk
∂t

+ λi(y)
∂yk
∂x

)
(i = 1, · · · , n), (1.3.7)

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n), (1.3.8)

where

Θik(y) :=

{
− lik(y)

lii(y)
, if k 6= i,

0, if k = i
. (1.3.9)
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It is easy to see that Θ := (Θik)n×n is a C
1 matrix function of y, and

Θ(0) = 0. (1.3.10)

In addition, if y ∈ Σ1, from(1.3.7), one can check that

ut(0, 0) = yt(0, 0) = −A(ϕ(0))ϕx(0),

ut(0, L) = yt(0, L) = −A(ϕ(L))ϕx(L),

ut(T, 0) = yt(T, 0) = −A(ψ(0))ψx(0),

ut(T, L) = yt(T, L) = −A(ψ(L))ψx(L),

(1.3.11)

provided u(0, x) = ϕ(x) and u(T, x) = ψ(x). Therefore, the problem becomes
whether there exist a positive constant C4 and two continuous nonnegative value
functions κ(ε) and Ω1(η) satisfying (1.3.5)-(1.3.6), such that

(a)We can find a continuous iterative operator F : Σ2 → Σ2:

u = F(y), (1.3.12)

which satisfies

u ∈ Σ3, if y ∈ Σ3; (1.3.13)

(b) (1.3.7)-(1.3.8) hold under the hypothesis (1.1.22).

In fact, by Ascoli’s theorem, Σ3 is a compact subset of Σ2(see [19, Page 170]).
Clearly Σ3 is convex, then (1.3.13) imply that

F(Σ3) ⊂ Σ3. (1.3.14)

By the Schauder fixed-point theorem, we know F has a fixed point. Thus, when
T > 0 satisfies (1.1.22), there exists a C1 function u on the domain R(T ) such that





li(u)(ut + λi(u)ux) = 0, (t, x) ∈ R(T ),
t = 0 : u = ϕ(x),

t = T : u = ψ(x),

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n).

(1.3.15)

This concludes the proof of Lemma 1.3.1, assuming the existence of operator F.

1.3.2 Proof of Theorem 1.1.2

Assuming the existence of operator F, it is easy to see that we can find another
continuous operator B : Σ2 → Σ2, such that
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(aa)

u = B(y), (1.3.16)

which satisfy

u ∈ Σ3, if y ∈ Σ3; (1.3.17)

(bb) under the hypothesis (1.1.22), we have





∂ui
∂t

+ λi(y)
∂ui
∂x

=
n∑

k=1

Θik(y)
(∂yk
∂t

+ λi(y)
∂yk
∂x

)
(i = 1, · · · , n), (1.3.18)

x = L : ur = Gr(t, um+1, · · · , un) +Hr(t) (r = 1, · · · ,m). (1.3.19)

An argument similar to the one used in § 1.3.1 shows that B has a fixed point.
When T > 0 satisfies (1.1.22), there exists a C1 function u on the domain R(T ) such
that





li(u)(ut + λi(u)ux) = 0, (t, x) ∈ R(T ),
t = 0 : u = ϕ(x),

t = T : u = ψ(x),

x = L : ur = Gr(t, um+1, · · · , un) +Hr(t) (r = 1, · · · ,m).

(1.3.20)

This concludes the proof of Theorem 1.1.2, assuming the existence of operator F.

Remark 1.3.1 The purposes of our iteration (1.3.7)-(1.3.8) are (1) to guarantee
the boundary conditions without control (1.3.8) are always satisfied. (2) to use the
smallness of Θ in order to make (a)-(b) work.

Remark 1.3.2 For the system (1.1.38) with (1.1.39), the iteration scheme is

∂ui
∂t

+ λi(y)
∂ui
∂x

=
n∑

j=1

Θij(y)
(∂yj
∂t

+ λi(y)
∂yj
∂x

)
+

n∑

j=1

lij(y)

lii(y)
Fj(y) (1.3.21)

One can check, if (1.1.39) holds, by a similar manner, Theorem 1.1.1 and Theorem
1.1.2 are still valid. However, if (1.1.39) is not satisfied (for example, F (y) := Ay,
where A 6= 0 is a n × n matrix with constant elements aij(i, j = 1, · · · , n) and
‖A‖ := max

i,j=1,··· ,n
|aij| is large enough), through our iteration scheme (1.3.21), one can

not expect that u = F(y) ∈ Σ2 and (1.3.13) hold.
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1.4 The Existence of Operator F

In this section, we establish the existence of mapping F by a modified constructive
method. Inspired from the iteration scheme (1.3.7)-(1.3.8), we can divide u into the
following two systems:

∂uq
∂t

+ λq(y)
∂uq
∂x

=
n∑

k=1

Θqk(y)
(∂yk
∂t

+ λq(y)
∂yk
∂x

)
(q = m+ 1, · · · ,m), (1.4.1)

and




∂up

∂t
+ λp(y)

∂up

∂x
=

n∑
k=1

Θpk(y)
(

∂yk
∂t

+ λp(y)
∂yk
∂x

)
(p = 1, · · · ,m,m+ 1, · · · , n),

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t) (s = m+ 1, · · · , n).
(1.4.2)

Then the operator F can be established by the following three steps:

Step 1: Control of the system (1.4.1)

In this step, we will construct a C1 solution uq = uq(t, x)(q = m + 1, · · · ,m) for
the system (1.4.1), which satisfies

t = 0 : uq = ϕq(x) (q = m+ 1, · · · ,m), (1.4.3)

t = T : uq = ψq(x) (q = m+ 1, · · · ,m). (1.4.4)

Before proceeding further, let us claim some uniform estimates. Noting (1.1.22),
if ε is small enough, we have

∫ T

0

inf
0≤x≤L

|λm(y(t, x))|dt > L. (1.4.5)

Then from the above estimate, if ε is small enough, there exist T
(y)
1 and T

(y)
2 satisfying

∫ T
(y)
1

0

inf
0≤x≤L

|λm(y(t, x))|dt =
∫ T

T
(y)
2

inf
0≤x≤L

|λm(y(t, x))|dt =
L

2
. (1.4.6)

By (1.1.22), if ε is small enough, one can easily show that

0 < T
(y)
1 <

T − δ

2
<
T

2
<
T + δ

2
< T

(y)
2 < T, (1.4.7)
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in which we denote

δ :=
1

2

(
T − Lmax

( 1

|λm(0)|
+

1

λm+1(0)
,

1

|λm(0)|
))

. (1.4.8)

We now turn to the the construction of uq(q = m+ 1, · · · ,m), which is based on
the following three steps. The proof is similar to the one in [72], however, they are
much more complicate in our situation.

(i) On the domain Rf = {(t, x)|0 ≤ t ≤ T+δ
2
, 0 ≤ x ≤ L} (Not R̂(y) = {(t, x)|0 ≤

t ≤ T
(y)
1 , 0 ≤ x ≤ L} as in [111]), we first consider a forward mixed initial-boundary

problem (1.4.1) with the initial condition ϕq(q = m+1, · · · ,m) and artificial bound-
ary conditions

x = L : uq = fq(t) (q = m+ 1, · · · ,m), (1.4.9)

where fq are any given C
1 functions of t with

max
q=m+1,··· ,m

‖fq‖1 ≤ ‖H̃‖1 ≤ ε, (1.4.10)

max
q=m+1,··· ,m

ω(η|ḟq) ≤ ω(η| ˙̃H) (1.4.11)

and satisfying the following conditions of C1 compatibility at the point (t, x) = (0, L):

ϕq(L) = fq(0) (q = m+ 1, · · · ,m), (1.4.12)
n∑

j=1

aqj(ϕ(L))ϕjx(L) =− fqt(0) (q = m+ 1, · · · ,m). (1.4.13)

Hereafter, we denote

H̃ := {Hm+1, · · · , Hn, H1, · · · , Hr}. (1.4.14)

We point out here that, in our iteration, fq(q = m + 1, · · · ,m) are considered as
chosen: in particular, they do not depend on y ∈ Σ2. This is crucial to guarantee the
continuity of F. By Lemma 1.2.1, there exists a unique C1 solution u = uf (t, x) on
the domain Rf with

‖uf‖0 ≤ C5(‖Θ‖0‖y‖0 +max
q
‖fq‖0 +max

q
‖ϕq‖0)

≤ C5(‖Θ‖0C4 + 2)ε,
(1.4.15)

‖uf‖1 ≤ C6(‖Θ‖1‖y‖1 +max
q
‖fq‖1 +max

q
‖ϕq‖1)

≤ C6(‖Θ‖1κ(ε) + 2ε),
(1.4.16)
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and

ω(η|uft) + ω(η|ufx) ≤ C7Ω2(η), (1.4.17)

where

Ω2(η) =ω(η|ϕx) + ω(η|ψx) + ω(η|H̃t) + κ2(ε)(1 + κ(ε))ω(η|Θy)

+
(
1 + ε+ G̃(ε) + ‖Θ‖1κ(ε)

)(
η +

(
1 + ε+ G̃(ε) + ‖Θ‖1κ(ε)

)
ω(η|Γ∗)

)

+ κ(ε)(1 + κ(ε))
(
ε+ ‖Θ‖1κ(ε) + G̃(ε)

)
ω(η|Λu)

+
(
ε+ ‖Θ‖1κ(ε) + G̃(ε) + ‖Θ‖1 + ‖Θy‖0κ(ε)

)
Ω1(η),

(1.4.18)
in which

Λu :=
{∂λi
∂uj

}
, Θy :=

{∂Θij

∂yk

}
, ‖Θ‖0 := ‖Θ(y(t, x))‖(C0[R(T )])n , ‖Θ‖1 := ‖Θ(y(t, x))‖(C1[R(T )])n ,

(1.4.19)

G̃(ε) := max
r=1,··· ,m

s=m+1,...,n

sup
0≤t≤T
‖u‖0≤C4ε

{∣∣∣
∂Gs

∂t
(t, u1, · · · , um)

∣∣∣,
∣∣∣
∂Gr

∂t
(t, um+1, · · · , un)

∣∣∣
}
, (1.4.20)

Γ∗ :=

{
∂Gs

∂ur
,
∂Gr

∂us
,
∂Gs

∂t
,
∂Gr

∂t

}
(i = 1, · · · , n; r = 1, · · · ,m; s = m+ 1, · · · , n).

(1.4.21)

Here, we point out that ω(η|Θy), ω(η|Λu) and ω(η|Γ∗) denote the modulus of continu-
ity for Θy, Λu and Γ

∗ on the domain R1 = {0 ≤ ‖y‖0 ≤ C4ε}, R2 = {0 ≤ ‖u‖0 ≤ C4ε}
and R3 = {0 ≤ t ≤ T, 0 ≤ ‖u‖0 ≤ C4ε}, respectively. One can easily check that

G̃(ε) ≥ 0 is a C0 function of ε and

G̃(0) = 0. (1.4.22)

Then we can dertermine the value of uf at x = 0 as

x = 0 : uf = a(t), 0 ≤ t ≤ T + δ

2
. (1.4.23)

and

‖a‖0 ≤ C8(‖Θ‖0C4 + 2)ε, (1.4.24)

‖a‖1 ≤ C9(‖Θ‖1κ(ε) + 2ε), (1.4.25)

ω(η|at) ≤ C10Ω2(η). (1.4.26)
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Here, we denote a(t) := (am+1(t), · · · , am(t)). Evidently, By Lemma 1.2.1, one ob-
tains that uf and a depends continuously on y ∈ Σ2 .

(ii) Similarly, on the domain Rb = {(t, x)|T−δ2
≤ t ≤ T, 0 ≤ x ≤ L}, we consider

the backward mixed initial-boundary value problem (1.4.1) with the final condition
ψq(q = m+ 1, · · · ,m) and artificial boundary conditions

x = 0 : uq = gq(t), (1.4.27)

where gq(q = m+ 1, · · · ,m) are any given functions of t with

max
q=m+1,··· ,m

‖gq‖C1 ≤ ‖H̃‖1 ≤ ε, (1.4.28)

max
q=m+1,··· ,m

ω(η|ġq) ≤ ω(η| ˙̃H), (1.4.29)

such that the conditions of C1 compatibility are satisfied at the point (t, x) = (T, 0).
Similarly, in order to have the continuity of F, gq(q = m + 1, · · · ,m) are considered
as chosen. By Lemma 1.2.1, there exists a unique C1 solution u = ub(t, x) on the
domain Rb, which allows us to determine the value of ub at x = 0 as

x = 0 : ub = b(t),
T − δ

2
≤ t ≤ T, (1.4.30)

in which

‖b‖0 ≤ C11(‖Θ‖0C4 + 2)ε, (1.4.31)

‖b‖1 ≤ C12(‖Θ‖1κ(ε) + 2ε), (1.4.32)

ω(η|bt) ≤ C13Ω2(η). (1.4.33)

Here, we denote b(t) := (bm+1(t), · · · , bm(t)). An argument similar to the one used in
(i) shows b depends continuously on y ∈ Σ2.

(iii) Let (α, β) ∈ (C2[T−δ
2
, T+δ

2
])2 be such that

α(
T − δ

2
) = 1, α(

T + δ

2
) = 0, αt(

T − δ

2
) = 0, αt(

T + δ

2
) = 0; (1.4.34)

β(
T − δ

2
) = 0, β(

T + δ

2
) = 1, βt(

T − δ

2
) = 0, βt(

T + δ

2
) = 0. (1.4.35)

Again, the scalar functions α(t) and β(t) as the functions fq and gq (q = m+1, · · · ,m)
are considered as chosen. Next, Set

c(t) =





a(t), 0 ≤ t ≤ T−δ
2
,

α(t)a(t) + β(t)b(t), T−δ
2
≤ t ≤ T+δ

2
,

b(t), T+δ
2
≤ t ≤ T.

(1.4.36)
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Obviously, c ∈ (C1[0, T ])m−m. On the other hand, it can easily be verified from
(1.4.24)-(1.4.26) and (1.4.31)-(1.4.33) that

‖c‖0 ≤ C14(‖Θ‖0C4 + 2)ε, (1.4.37)

‖c‖1 ≤ C15(‖Θ‖1κ(ε) + ‖Θ‖0C4ε+ 2ε), (1.4.38)

ω(η|ct) ≤ C16Ω2(η), (1.4.39)

and that c depends continuously on y ∈ Σ2. Here, we denote c(t) := (cm+1(t), · · · , cm(t)).
Since there are no zero eigenvalues, changing the status of t and x, system (1.4.1)

can be equivalently rewritten as

∂uq
∂x

+
1

λq(y)

∂uq
∂t

=
n∑

k=1

Θqk(y)
(∂yk
∂x

+
1

λq(y)

∂yk
∂t

)
. (1.4.40)

Now we consider the rightward mixed initial-boundary value problem for the system
(1.4.40) with the initial condition

x = 0 : uq = c(t), 0 ≤ t ≤ T (q = m+ 1, · · · ,m), (1.4.41)

and the following boundary conditions reduced from the final data ψq:

t = T : uq = ψq(x) (q = m+ 1, · · · ,m). (1.4.42)

We easily check that the mixed initial-boundary value problem (1.4.40)-(1.4.42) sat-
isfies the condition of C1 compatibility at the point (t, x) = (T, 0). Therefore, by
Lemma 1.2.1, there exists a unique C1 solution uq = ũq(t, x) (q = m + 1, · · · ,m) of
(1.4.40)-(1.4.42) with

max
q=m+1,··· ,m

‖ũq‖0 ≤ C17(‖Θ‖0C4 + 2)ε, (1.4.43)

max
q=m+1,··· ,m

‖ũq‖1 ≤ C18(‖Θ‖1κ(ε) + ‖Θ‖0C4ε+ 2ε), (1.4.44)

max
q=m+1,··· ,m

Ω(η|ũqt) + Ω(η|ũqx) ≤ C19Ω2(η), (1.4.45)

and ũq (q = m + 1, · · · ,m) depends continuously on y. Next, let uq = ũq(t, x)(q =
m+1, · · · ,m). By uniqueness (see also [72] and [111]), uq(q = m+1, · · · ,m) satisfies
(1.4.3)-(1.4.4) and (1.4.43)-(1.4.45).

Step 2: Control of the system (1.4.2)

Once the system (1.4.1) is controlled, we can substitute uq(t, 0) = cq(t)(q =
m + 1, · · · ,m) to (1.3.8), which leads system (1.4.2) to a new linearized system as
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follows:




∂up

∂t
+ λp(y)

∂up

∂x
=

n∑
k=1

Θpk(y)
(

∂yk
∂t

+ λp(y)
∂yk
∂x

)
, (p = 1, · · · ,m,m+ 1, · · · , n),

x = 0 : us = Gs(t, u1, · · · , um) +Hs(t), s = m+ 1, · · · , n,
(1.4.46)

where

Gs(t, u1, · · · , um) := Gs(t, u1, · · · , um, cm+1, · · · , cm), (s = m+ 1, · · · , n). (1.4.47)

Fortunately, noting (1.3.11), one can easily check that the above system (1.4.46)
satisfies the same C1 compatibility conditions at the point (t, x) = (0, 0) and (T, 0)
as the original one (1.1.1) (see Remark 1.1.3), which guarantees the well-posedness
of the system (1.4.46).

Combining the one-side control approach in [72, Chapter 3 on pages 47-52] and a
analogous heuristic argument used in Step 1, the details of which we omit, one can
show that under the hypothesis (1.1.22), there exists a C1 solution up = ũp(t, x)(p =
1, · · · ,m,m+ 1, · · · , n) satisfying

t = 0 : ũp = ϕp(x) (p = 1, · · · ,m,m, · · · , n), (1.4.48)

t = T : ũp = ψp(x) (p = 1, · · · ,m,m, · · · , n). (1.4.49)

Moreover, we have

max
p
‖ũp‖0 ≤ C20

(
‖Θ‖0C4 + 2

)
ε, (1.4.50)

max
p
‖ũp‖1 ≤ C21

(
‖Θ‖1κ(ε) + ‖Θ‖0C4ε+ 2ε+ G̃(ε)

)
, (1.4.51)

max
p
ω(η|ũpt) + ω(η|ũpx) ≤ C22Ω2(η), (1.4.52)

and ũp(p = 1, · · · ,m,m, · · · , n) depends continuously on y ∈ Σ2.

Step 3: Proof of the existence and continuity of F

Let

C23 = max{C17, C20}, (1.4.53)

C24 = max{C18, C21}, (1.4.54)

C25 = max{C19, C22}. (1.4.55)
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We then choose

C4 = 3C23, (1.4.56)

κ(ε) = 5C24ε+ 2C24G̃(ε), (1.4.57)

and

Ω1(η) =2C25

(
ω(η|ϕ̇) + ω(η|ψ̇) + ω(η| ˙̃H) + 2ω(η|Θy)

)

+ (2C25 + 1)

(
η +

(
1 +

1

2C25

)
ω(η|Γ∗)

)
+ 2ω(η|Λu),

(1.4.58)

by (1.1.4), if 0 < ε≪ 1 is small enough, one gets

‖Θ‖0 ≤
1

2C4

, ‖Θ‖1 ≤
1

2C24

, (1.4.59)

and

κ(ε) < 1, C25

(
ε+ ‖Θ‖1κ(ε) + G̃(ε) + ‖Θ‖1 + ‖Θy‖0κ(ε)

)
≤ 1

2
. (1.4.60)

Let

u(t, x) = (ũ1, · · · , ũn). (1.4.61)

Then noting (1.4.43)-(1.4.45) and(1.4.50)-(1.4.52), under the hypothesis (1.1.22), we
have

‖u‖0 ≤ C4ε, ‖u‖1 ≤ κ(ε), (1.4.62)

and

ω(η|ut) + ω(η|ux) ≤ Ω1(η). (1.4.63)

Therefore, combining (1.4.48)-(1.4.49) and (1.4.3)-(1.4.4), we show that

u ∈ Σ3. (1.4.64)

From the construction of the operator F in Step 1-Step 2, one can easily verify it
is continuous on y. The construction of F is now completed.
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1.5 Appendix: Proof of Lemma 1.2.1

In this section, we give a detail proof of Lemma 1.2.1. For the case of coupled
system of wave equations, one can refer to [56].

Set w = (w1, · · · , wn), p = (p1, · · · , pn), where

wi = uix (i = 1, · · · , n), (1.5.1)

pi = uit (i = 1, · · · , n). (1.5.2)

Obviously, noting the equations (1.2.4), one can show that

pi + λi(t, x)wi =
ñ∑

k=1

bik(t, x)
(∂ck(t, x)

∂t
+ λi(t, x)

∂ck(t, x)

∂x

)
. (1.5.3)

Hence, by straightforward computations, we have

‖p‖0 ≤ C̃1(K)
(
‖w‖0 + ‖B‖0‖c‖1

)
(1.5.4)

and

ω(η|p) ≤ C̃2(K)
((
‖w‖0 + ‖B‖1‖c‖1

)
η + ω(η|w) + ‖B‖0

(
ω(η|ct) + ω(η|cx)

))
.

(1.5.5)

Here and in what follows, we assume that C̃n(K)(n ∈ Z
+) are positive real numbers

depending on K.

Thus, if we want to prove that ‖u‖0, ‖u‖1 and ω(η|ut) + ω(η|ux) satisfy (1.2.8)-
(1.2.9) and (1.2.12), respectively, it suffices to show (1.2.8),

‖w‖0 ≤ C̃3(T,K)
(
‖ϕ‖1 + ‖H‖1 + ‖B‖1‖c‖1 + ‖Gt‖0

)
(1.5.6)

and

ω(η|w) ≤ C̃4(T,K)
(
ω(η|ϕx) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)(
η +

(
1 + ‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0

+ ‖H‖1
)
ω(η|Γ)

)
+ (‖ϕ‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1)ω(η|Λx) + ω(η|Ht)

)
(1.5.7)

hold.

Utilizing the decomposition of waves (see [61] and [111]), one gets

dui
dit

= βi(t, x, u), (1.5.8)
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dwi

dit
= γi(t, x, u) +

n∑

j=1

γij(t, x)wj, (1.5.9)

where

d

dit
=

∂

∂t
+ λi(t, x)

∂

∂x
(1.5.10)

denotes the directional derivative along the i-th characteristic,

βi(t, x, u) =
ñ∑

k=1

bik(t, x)
dck(t, x)

dit
, (1.5.11)

and

γi(t, x) =
ñ∑

k=1

[
d

dit

(
bik(t, x)

∂ck(t, x)

∂x

)
− ∂bik(t, x)

∂t

∂ck(t, x)

∂x

+
∂bik(t, x)

∂x

∂ck(t, x)

∂t
+ bik(t, x)

∂λi(t, x)

∂x

∂ck(t, x)

∂x

]
,

(1.5.12)

γij(t, x) = −
∂λi(t, x)

∂x
δij. (1.5.13)

Let

T1 = min
i=1,··· ,n

inf
(t,x)∈R(T )

L

|λi(t, x)|
. (1.5.14)

Next, we will prove (1.2.8), (1.5.6)-(1.5.7) on the domain

R(T1) = {(t, x)|0 ≤ t ≤ T1, 0 ≤ x ≤ L}. (1.5.15)

then claim they still hold on the whole domain R(T ).

Step A (estimate of ‖u‖0): For any given point (t, x) ∈ R(T1), we draw down
the r-th characteristic ξ = fr(τ ; t, x)(r = 1, · · · ,m):

{
dfr(τ ;t,x)

dτ
= λr(τ, fr(τ ; t, x)),

τ = t : ξ = x.
(1.5.16)

passing through (t, x). Noting (1.2.5) and (1.5.14), there are only two possibilities:

(a)This r-th characteristic intersects the x-axis at a point (0, αr). Integrating the
r-th equation in (1.5.8) along this characteristic from (0, αr) to (t, x), noting (1.5.11),



48 1.5. Appendix: Proof of Lemma 1.2.1

we get

|ur(t, x)| ≤ ‖u(0, ·)‖0 + 2‖B‖0‖c‖0, (1.5.17)

(b) This r-characteristic intersects x = L at the point (tr, L), and all s-th charac-
teristics passing through (tr, L) intersect the x-axis at point (0, βs)(s = m+1, · · · , n)
respectively. Then similarly to (1.5.17), we have

|ur(t, x)| ≤ |ur(tr, L)|+ 2‖B‖0‖c‖0. (1.5.18)

Moreover, by means of the boundary conditions (1.1.8) and noting (1.1.9), it is easy
to get

|u(tr, L)| ≤ C̃5(K) max
m+1≤s≤n

|us(tr, L)|+ ‖H‖0, (1.5.19)

without loss of generality, we may suppose C̃5(K) > 1.

Similar to (1.5.17), integrating the s-th equation in (1.5.8) along the s-th charac-
teristic from (0, βs) to (tr, L) gives

|us(tr, L)| ≤ ‖u(0, ·)‖0 + 2‖B‖0‖c‖0. (1.5.20)

The combination (1.5.18) to (1.5.20) leads to

|ur(t, x)| ≤ C̃6(K)
(
‖u(0, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)
. (1.5.21)

Thus, it follows from (1.5.17) and (1.5.21) that

|ur(t, x)| ≤ C̃7(K)
(
‖u(0, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)
. (1.5.22)

Similar estimates can be obtained for us(t, x)(s = m+ 1, · · · , n). Hence, we have

u(t) ≤ C̃8(K)
(
‖u(0, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)
(1.5.23)

in which we may assume that C̃8(K) > 1 and in what follows, we denote

u(τ) := sup
0≤t≤τ

‖u(t, ·)‖0, (1.5.24)

w(τ) := sup
0≤t≤τ

‖w(t, ·)‖0. (1.5.25)

Taking u(T1, x) as the initial data on t = T1, and repeating the previous procedure,
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we obtain

u(t) ≤C̃8(K)
(
‖u(T1, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)

≤C̃2
8(K)

(
‖u(0, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)
, T1 ≤ t ≤ 2T1

Repeating this procedure at most M =
[

T
T1

]
+ 1 times, we get

‖u‖0 ≤ max
t∈[0,T ]

u(t) ≤ C̃M
8 (K)

(
‖u(0, ·)‖0 + ‖H‖0 + ‖B‖0‖c‖0

)
, ∀t ∈ [0, T ].

This concludes the proof of (1.2.8).

Step B (estimate of ‖w‖0): As before, for any given point (t, x) ∈ R(T1), there
are still two possibilities for the r-th characteristic (r = 1, · · · ,m).

In case (a), integrating the r-th equation in (1.5.9) along this r-th characteristic
from (0, αr) to (t, x) yields

wr(t, x)− wr(0, αr) =

∫ t

0

γr(τ, fr(τ ; t, x)) +
n∑

j=1

γrj(τ, fr(τ ; t, x))wjdτ, (1.5.26)

then by (1.5.12)-(1.5.13) and (1.5.25), one can show that

|wr(t, x)| ≤ ‖w(0, ·)‖0 + C̃9(K)
(
‖B‖1‖c‖1 +

∫ t

0

w(τ)dτ
)
. (1.5.27)

In case (b), similar to (1.5.19), we have

|wr(t, x)| ≤ |wr(tr, L)|+ C̃10(K)
(
‖B‖1‖c‖1 +

∫ t

tr

w(τ)dτ
)
. (1.5.28)

In order to estimate |wr(tr, L)|, we seek the boundary conditions satisfied by wr

on x = L. Differentiating (1.1.8) with respect to t, we get

x = L :
∂ur
∂t

=
∂Gr

∂t
+

n∑

s=m+1

∂Gr

∂us

∂us
∂t

+Hrt (r = 1, · · · ,m). (1.5.29)

By (1.2.4), together with (1.5.29), we obtain

wr(t, L) =
1

λr(t, L)

( ñ∑

k=1

brk

(∂ck
∂t

+ λr
∂ck
∂x

)
− ∂Gr

∂t
−Hrt

+
n∑

s=m+1

∂Gr

∂us

(
λsws −

ñ∑

k=1

bsk
(∂ck
∂t

+ λs
∂ck
∂x

)))
(t, L).

(1.5.30)
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Then by noting (1.1.9), one can easily see that

|wr(tr, L)| ≤ C̃11(K)
(

max
m+1≤s≤n

|ws(tr, L)|+ ‖Ht‖0 + ‖B‖0‖c‖1 + ‖Gt‖0
)
, (1.5.31)

in which we may assume that C̃11(K) ≥ 1. Integrating the s-th equation in (1.5.9)
along the corresponding s-th characteristic from (0, βr) to (tr, L) gives

|ws(tr, L)| ≤ ‖w(0, ·)‖0 + C̃12(K)
(
‖B‖1‖c‖1 +

∫ tr

0

w(τ)dτ
)
. (1.5.32)

Combining (1.5.28), (1.5.31)-(1.5.32) yields

|wr(t, x)| ≤ C̃13(K)
(
‖ϕ‖1 + ‖B‖1‖c‖1 + ‖H‖1 + ‖Gt‖0 +

∫ t

0

w(τ)dτ
)
, (1.5.33)

Similar estimates can be obtained for ws(t, x)(s = m+ 1, · · · , n). Hence we get

w(t) ≤ C̃14(K)
(
‖ϕ‖1 + ‖B‖1‖c‖1 + ‖H‖1 + ‖Gt‖0 +

∫ t

0

w(τ)dτ
)
. (1.5.34)

Then, using Gronwall’s inequality, for 0 ≤ t ≤ T1, one shows

w(t) ≤ C̃15(K)(‖ϕ‖1 + ‖B‖1‖c‖1 + ‖H‖1 + ‖Gt‖0), (1.5.35)

we assume here that C̃15(K) ≥ 1.

Repeating above procedures, for 0 ≤ t ≤ T , we have

‖w‖0 ≤ max
t∈[0,T ]

w(t) ≤ C̃16(T,K)(‖ϕ‖1 + ‖B‖1‖c‖1 + ‖H‖1 + ‖Gt‖0), (1.5.36)

which finishes the proof of (1.5.6).

Step C (estimate of ω(η|w)): By (1.2.5), when i = 1, · · · ,m, let us consider
the i-th characteristic from the point (0, L) which divides the domain R(T1) into R

+
i

and R0
i ; Similarly, when i = m+1, · · · , n, let us consider the i-th characteristic from

(0, 0) which divides R(T1) into R
−
i and R0

i . For any given (t, x) in R(T1), let us
consider the i-th characteristic ξi = fi(τ ; t, x) which intersects the boundary of R(T1)
(i.e. x = 0, x = L and t = 0) on (τk(t, x), ξk(t, x)), then we have





τi(t, x) = 0, ξi(t, x) = fi(0; t, x), if (t, x) ∈ R0
i , (i = 1, · · · , n),

ξi(t, x) = L, fi(τi(t, x); t, x) = L, if (t, x) ∈ R+
i , (i = 1, · · · ,m),

ξi(t, x) = 0, fi(τi(t, x); t, x) = 0, if (t, x) ∈ R−i , (i = m+ 1, · · · , n).
(1.5.37)

Before claiming (1.5.7), we need the following estimates, which can be found in many
references (see, for instance, [84, Lemma 3.3 on pages 50-51]):
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Proposition 1.5.1 On the domain R(T1), for any characteristic ξ = fi(τ ; t, x),
we have

∥∥∥
∂fi
∂x

∥∥∥
0
,
∥∥∥
∂fi
∂t

∥∥∥
0
, ‖τit‖0, ‖τix‖0, ‖ξit‖0, ‖ξix‖0 < C̃17(K) < +∞ (i = 1, · · · , n).

(1.5.38)

Integrating the r-th equation in (1.5.9) along the r-th characteristic ξr = fr(τ ; t, x),
we obtain

wr(t, x) = ψr(τr(t, x), ξr(t, x)) +

∫ t

τr(t,x)

(
γr +

n∑

j=1

γrjwj

)
(τ, fr(τ ; t, x))dτ, (1.5.39)

where

ψr(τr(t, x), ξr(t, x)) =

{
wr(τr(t, x), L), ∀(t, x) ∈ R+

r ,

wr(0, ξr(t, x)), ∀(t, x) ∈ R0
r .

(1.5.40)

Obviously, by the basic proposition of the modulus of continuity (see, for example,
[84, Pages 58-59 and 88-90]), one obtains

ω(η|wr(0, ξr(t, x))) ≤ C̃18(K)ω(η|wr(0, ·)). (1.5.41)

Let

ω(τ, η|w) = sup
(t1, x1), (t2, x2) ∈ R(τ)

|t1 − t2| ≤ η, |x1 − x2| ≤ η

|w(t1, x1)− w(t2, x2)|. (1.5.42)

It is easy to see that

ω(T1, η|w) = sup
0≤τ≤T1

ω(τ, η|w). (1.5.43)

Utilizing Proposition 1.5.1, for any given 0 ≤ τ ≤ T1, by (1.5.30), one gets

ω(τ, η|wr(τr(·, ·), L)) ≤ C̃19(K)ω(τ, η|wr(·, L))
≤C̃20(K)

((
‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
η + (1 + ‖u‖1)(1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

+ ‖B‖0
(
ω(η|ct) + ω(η|cx)

)
+ ω(η|Ht) + max

s=m+1,··· ,n
ω(τ, η|ws(·, L))

)

≤C̃21(K)
((
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)(
η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ ‖B‖0
(
ω(η|ct) + ω(η|cx)

)
+ ω(η|Ht) + max

s=m+1,··· ,n
ω(τ, η|ws(·, L))

)
.

(1.5.44)
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For any given point (t, L) on x = L, integrating the s-th equation in (1.5.9) along
the s-th characteristic ξs = fs(τ ; t, x) form (t, L) to (0, ξs), we obtain

ws(t, L) = ws(0, ξs(t, L)) +

∫ t

0

γs(τ, fs(τ ; t, x)) +
n∑

j=1

γsj(τ, fs(τ ; t, x))wjdτ. (1.5.45)

Next, we will use (1.5.45) in order to estimate ω(τ, η|ws(·, L)), where 0 ≤ η ≤ T1.
Setting

Lijk(t, x) :=−
∂bik(t, x)

∂t

∂ck(t, x)

∂x
+
∂bik(t, x)

∂x

∂ck(t, x)

∂t

+ bik(t, x)
∂λi(t, x)

∂x

∂ck(t, x)

∂x
− ∂λi(t, x)

∂x
δijwj(t, x)

(1.5.46)

in which i, j = 1, · · · , n and k = 1, · · · , ñ. For any given 0 ≤ τ ≤ T1, by Proposition
1.5.1, one gets

ω(τ, η|Lijk(τ, fi(τ ; t, L)))

≤C̃22(K)ω(τ, η|Lijk(τ, ξ))

≤C̃23(K)
(
(‖u‖1 + ‖B‖1‖c‖1)

(
η + ω(η|Λx)

)
+ ‖B‖1(ω(η|ct) + ω(η|cx))

+ ‖c‖1(ω(η|Bt) + ω(η|Bx)) + ω(τ, η|w)
)
.

(1.5.47)

Thus, noting (1.5.47), for any given 0 ≤ t̄ ≤ T1, we have

ω
(
t̄, η

∣∣∣
∫ t

0

Lijk(τ, f(τ ; t, L)dτ)
)

≤C̃24(K)
((
1 + ‖u‖1 + ‖B‖1‖c‖1

)
η + (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx)

+ ‖B‖1(ω(η|ct) + ω(η|cx)) + ‖c‖1
(
ω(η|Bt) + ω(η|Bx)

)
+

∫ t̄

0

ω(τ, η|w)dτ
)
.

(1.5.48)
By (1.5.45), it is easy to show that

ω(t̄, η|ws(·, L))
≤C̃25(K)

(
ω(η|w(0, ·)) +

(
1 + ‖u‖1 + ‖B‖1‖c‖1

)
η + (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx)

+ ‖B‖1(ω(η|ct) + ω(η|cx)) + ‖c‖1(ω(η|Bt) + ω(η|Bx)) +

∫ t̄

0

ω(τ, η|w)dτ
)
.

(1.5.49)
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From (1.5.44), we find that

ω(t̄, η|wr(τr(·, ·), L))

≤C̃26(K)

(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht) +

∫ t̄

0

ω(τ, η|w)dτ
)
.

(1.5.50)
Combining (1.5.40)-(1.5.41) and (1.5.50), one has

ω(t̄, η|ψr(τr(·, ·), ξr(·, ·)))

≤C̃27(K)

(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht) +

∫ t̄

0

ω(τ, η|w)dτ
)
.

(1.5.51)
Next, noting (1.5.39) and (1.5.48) together with Proposition 1.5.1, one can show that

ω(t̄, η|wr)

≤C̃28(K)

(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht) +

∫ t̄

0

ω(τ, η|w)dτ
)
.

(1.5.52)
Similar estimates can be obtained for ws(t, x)(s = m+ 1, · · · , n). Thus,

ω(t̄, η|w)

≤C̃29(K)

(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht) +

∫ t̄

0

ω(τ, η|w)dτ
)
,

(1.5.53)
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which, by Gronwall’s inequality, leads to

ω(T1, η|w)

≤C̃30(K)

(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht)

)
.

(1.5.54)

Let

Ri := {(t, x)|ti−1 ≤ t ≤ ti, 0 ≤ x ≤ L}. (1.5.55)

where, i = 1, . . . ,M and

ti − ti−1 ≤ T1, i = 1, . . . ,M (t0 = 0, tM = T ). (1.5.56)

Obviously, one has

R(T ) ⊆
M⋃

i=1

Ri. (1.5.57)

Before claiming (1.5.7), we denote that

ωi(η|w) := sup
(t1, x1), (t2, x2) ∈ Ri

|t1 − t2| ≤ η, |x1 − x2| ≤ η

|w(t1, x1)− w(t2, x2)|. (1.5.58)

Clearly, ω1(η|w) ≤ ω(T1, η|w) and

ω(η|w) = ω(T, η|w) ≤
M∑

i

ωi(η|w). (1.5.59)

Then repeating the procedures in Step C at most M times, we can get similar
estimates (like (1.5.54)) for ωi(η|w)(i = 2, · · · ,M). Therefore, noting (1.5.59), one
obtains

ω(η|w) ≤C̃31(T,K)
(
ω(η|w(0, ·)) + ‖B‖1

(
ω(η|ct) + ω(η|cx)

)
+ ‖c‖1(ω(η|Bt) + ω(η|Bx))

+
(
1 + ‖u‖1 + ‖B‖1‖c‖1 + ‖Gt‖0 + ‖H‖1

)
(η + (1 + ‖u‖1 + ‖B‖1‖c‖1)ω(η|Γ)

)

+ (‖u‖1 + ‖B‖1‖c‖1)ω(η|Λx) + ω(η|Ht)
)
.

(1.5.60)
Applying (1.5.6) to (1.5.60) concludes the proof of (1.5.7).
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Step D (Continuity on (ϕ,Λ, B, c)): For any (ϕ(1),Λ(1), B(1), c(1)), (ϕ(2),Λ(2), B(2), c(2)) ∈
(C1[R(T )])n×(C1[R(T )])n×(C1[R(T )])n×ñ×(C1[R(T )])n, we put u(1)(t, x;ϕ(1),Λ(1), B(1), c(1))
and u(2)(t, x;ϕ(2),Λ(2), B(2), c(2)) be the C1 solution for the corresponding mixed
initial-boundary problems (1.2.4),(1.1.7)-(1.1.8) and (1.1.10). Taken

u∗(t, x) := u(1)(t, x;ϕ(1),Λ(1), B(1), c(1))− u(2)(t, x;ϕ(2),Λ(2), B(2), c(2)),

ϕ∗(x) := ϕ(1)(x)− ϕ(2)(x),

Λ∗(t, x) := Λ(1)(t, x)− Λ(2)(t, x),

B∗(t, x) := B(1)(t, x)− B(2)(t, x),

c∗(t, x) := c(1)(t, x)− c(2)(t, x).

Next, we will show that

lim
‖ϕ∗‖1+‖Λ∗‖1+‖B∗‖1+‖c∗‖1→0

‖u∗‖1 = 0. (1.5.61)

Since u∗ satisfies the following mixed initial-boundary problems





∂u∗i
∂t

+ λ
(1)
i (t, x)

∂u∗i
∂x

= λ∗i (t, x)
∂u

(2)
i

∂x
+

n∑
k=1

b∗ik(t, x)
(

∂c
(1)
k

∂t
+ λ

(1)
i (t, x)

∂c
(1)
k

∂x

)

+
n∑

k=1

b
(2)
ik (t, x)

(
∂c∗

k

∂t
+ λ

(1)
i (t, x)

∂c∗
k

∂x
+ λ∗i (t, x)

∂c
(2)
k

∂x

)
(i = 1, · · · , n),

x = 0 : u∗s = Gs(t, u
(1)
1 , · · · , u(1)m )−Gs(t, u

(2)
1 , · · · , u(2)m ) (s = m+ 1 · · · , n),

x = L : u∗r = Gr(t, u
(1)
m+1, · · · , u(1)n )−Gr(t, u

(2)
m+1, · · · , u(2)n ) (r = 1, · · · ,m),

t = 0 : u∗i = ϕ∗i (x) (i = 1, · · · , n).

By the result in [111, inequality (2.23)] for the inhomogeneous system, one directly
obtains

lim
‖ϕ∗‖1+‖Λ∗‖1+‖B∗‖1+‖c∗‖1→0

‖u∗‖0 = 0. (1.5.62)

On the other hand, on the domain R(T1), noting (1.5.39) and (1.5.3), a straightfor-
ward computation yields that

lim
‖ϕ∗‖1+‖Λ∗‖1+‖B∗‖1+‖c∗‖1→0

‖u∗x‖0 + ‖u∗t‖0 = 0 (on the domain R(T1)). (1.5.63)

Then repeating the procedures in (1.5.63) at most M times, one can show that

lim
‖ϕ∗‖1+‖Λ∗‖1+‖B∗‖1+‖c∗‖1→0

‖u∗x‖0 + ‖u∗t‖0 = 0 (on the domain R(T )). (1.5.64)

We have thus proved the Lemma 1.2.1.
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On boundary control of a
hyperbolic system with a vanishing
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2.1 Introduction and main results

There are many publications concerning the exact boundary controllability for lin-
ear and nonlinear hyperbolic systems, including wave equations, Saint-Venant equa-
tions, Euler equations, etc. (see [19, 72, 89, 100] and the references therein).

As for the general first order hyperbolic systems, one can refer to the recent
monograph of Li [72] for almost complete results on the exact controllability of the
following 1-D quasilinear hyperbolic system (including many conservation laws)

Ut + A(U)Ux = B(U) (2.1.1)

in the context of classical solution. It is well known that if all the characteristic
speeds of the system does not vanish, i.e., all the eigenvalues of A(U) are nonzero in
the domain under consideration, then (2.1.1) is exactly controllable (at least locally

57
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in C1 class) by boundary controls provided that the control time is sufficiently large.
(see Li and Rao [75, 74]; see also Wang [111] for the nonautonomous case).

On the other hand, the controllability problems have been studied also in the
content of weak entropy solutions for hyperbolic conservation laws since the early
result on attainable set by Ancona and Marson [8]. In the scalar case, one can refer
to Horsin [51] for boundary controllability result of Burgers equation and to Perrollaz
[96] when an additional distributed control appears in the right hand side. In the
case of systems, the first result on controllability was due to Bressan and Coclite [13].
For general strictly hyperbolic systems of conservation laws with genuinely nonlinear
or linearly degenerate and non-vanishing characteristic fields, it is shown in [13] that
a small BV initial state can be driven to a constant state by an open-loop control
asymptotically in time (see also [9] for one-sided control). Moreover, a negative result
for a class of 2×2 hyperbolic systems was also proved in [13] that an initial data with a
dense distribution of shocks can not be driven to constant by using boundary control.
Different from this negative result, Glass obtained the boundary controllability of 1-D
isentropic Euler equation [40]. As a further study of [40], Glass recently obtained the
boundary controllability for 1-D non-isentropic Euler equation in both Eulerian and
Lagrangian coordinates. It is surprising because the equivalent controllability in C1

framework is false. Actually, the physical entropy can not be changed by boundary
controls since the corresponding equation of the Lagrangian system has identically
vanishing characteristic speed (See [41, Remark 1.3]).

A widely open question naturally arises that whether it is possible to establish
exact controllability for a hyperbolic system with vanishing characteristic speeds.
The situation seems different. Notice that the solution u(t, x) of the degenerate case
of the equation (essentially an ordinary differential equation)

{
ut = 0, (t, x) ∈ (0, T )× (0, 2π),

u(0, x) = u0(x), x ∈ (0, 2π), (2.1.2)

obeys
u(t, ·) ≡ u0, ∀t ∈ [0, T ]. (2.1.3)

Obviously, it is impossible to change the value u by using the boundary controls
acting on the end x = 0 and/or x = 2π.

There are several directions that have been attempted to answer the above open
question.

One is to add some internal controls. For systems with identically zero character-
istic speeds, a general result on exact controllability has been obtained by combining
internal controls acted on the components corresponding to the zero eigenvalues and
boundary controls acting on the other components [82, 111]. There the internal con-
trols depend on both variables (t, x) and are globally distributed. Later on, an exact
controllability result, with some constrains concerning the compatibility between the
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initial and final data, was established by using only the internal controls acted on
the components corresponding to nonzero eigenvalues [76]. Again the internal con-
trols are globally distributed. It is worthy of mentioning that exact controllability
for a simplified model is also realized in [76] by switching controls where the internal
control is locally distributed.

Another is to loose the requirements of exact controllability if one considers only
the boundary controls because internal controls are usually not applicable for some
physical reasons. It is possible to obtain partial exact controllability by boundary
controls, if one aims to control only the values of the components corresponding to
the nonzero eigenvalues. [113, 114].

While the most interesting problem is whether one could establish exact control-
lability for a hyperbolic system with zero characteristic speeds by only boundary
controls. In this direction, Gugat and Leugering [48] proved a global boundary con-
trollability result which covers the critical case in which one of the characteristic speed
is zero. In spite of the degenerate model (2.1.2), it is still possible to prove the con-
trollability for some nonlinear system. The return method of Coron has been applied
to the many situations in [19], where the linearized system is not controllable while
the nonlinearity enables the corresponding nonlinear system to be controllable. One
can apply the return method to realize exact boundary controllability for quasilinear
hyperbolic systems with a zero characteristic speed [23], when the possible vanishing
characteristic speed can be driven nonzero after sufficiently long time. However, this
approach seems to be no longer valid for the system with identically zero character-
istic speeds (see [23, Remark 1.3]).

In this chapter, we consider the following linear hyperbolic system with a vanishing
characteristic speed: {

ut = αux + βv,

vt = γu,
(2.1.4)

where α, β, γ ∈ R are constants. Without loss of generality, we may assume that α <
0. The problems that we are interested in are (null) controllability and asymptotic
stabilization problems under only boundary controls, and how the control properties
are determined by the coefficients α, β, γ.

More precisely, we first study the null controllability problem for the system (2.1.4)
under the boundary control h ∈ L2(0, T ) for some T > 0:





ut = αux + βv, (t, x) ∈ (0, T )× (0, 2π),

vt = γu, (t, x) ∈ (0, T )× (0, 2π),

u(t, 0)− u(t, 2π) = h(t), t ∈ (0, T ).
(2.1.5)

Definition 2.1.1 Let T > 0, the system (2.1.5) is (null) controllable if: for any
(u0, v0) ∈ (L2(0, 2π))2, there exists a function h ∈ L2(0, T ) such that the solution of
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the mixed initial-boundary problem (2.1.5) with the following initial data

(u(0, x), v(0, x)) = (u0(x), v0(x)), x ∈ (0, 2π) (2.1.6)

satisfies the finial condition:

(u(T, x), v(T, x)) = (0, 0), x ∈ (0, 2π). (2.1.7)

The system (2.1.5) is asymptotically (null) controllable if it is (null) controllable for
T = +∞ in the sense that

lim
t→+∞

(u(t, ·), v(t, ·)) = (0, 0) in L2(0, 2π). (2.1.8)

We also consider the asymptotic stabilization problem for system (2.1.4) under a
feedback law 




ut = αux + βv, (t, x) ∈ (0,+∞)× (0, 2π),

vt = γu, (t, x) ∈ (0,+∞)× (0, 2π),

u(t, 0) = ku(t, 2π), t ∈ (0,+∞).

(2.1.9)

Definition 2.1.2 The system (2.1.5) is asymptotically stabilizable if: there exits
k ∈ R such that for any (u0, v0) ∈ (L2(0, 2π))2, the solution of the closed-loop system
(2.1.9) with the initial data (2.1.6) is asymptotically stable, i.e., (2.1.8) holds.

The Main results that we obtain in this chapter are the following theorems.

Theorem 2.1.1 For any given 0 < T < +∞, the system (2.1.5) is not (null)
controllable.

Theorem 2.1.2 The system (2.1.9) is asymptotically stabilizable if and only if
βγ < 0.

Theorem 2.1.3 If βγ < 0, the system (2.1.5) is asymptotically (null) control-
lable.

The rest of this chapter is organized as follows. In section 2.2, we state the well-
posedness of both the open-loop system (2.1.5) and the closed-loop system (2.1.9).
The proofs of the Theorem 2.1.1,Theorem 2.1.2 and Theorem 2.1.3 are given in Sec-
tion 2.3, Section 2.4 and Section 2.5, respectively.
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2.2 Well-posedness of the system (2.1.5) and the

system (2.1.9)

In this section, we give the definition and well-posedness of solution to the system
(2.1.5) and the system (2.1.9). The well-posedness issue is fundamental to the control
problems. Here we only present the results without proof, which can be derived by
classical methods, such as characteristic method [84] or by theory of semigroup of
linear operators [94].

Definition 2.2.1 Let 0 < T ≤ +∞, h ∈ L2(0, T ) and (u0, v0) ∈ (L2(0, 2π))2 be
given. A solution of the initial boundary problem (2.1.5)-(2.1.6) is a function (u, v) ∈
C0([0, T ]; (L2(0, 2π))2), such that, for every τ ∈ [0, T ] (if T = +∞, τ ∈ [0,+∞)) and
for every (ϕ1, ϕ2) ∈ (C1([0, τ ] × [0, 2π]))2 such that ϕ1(t, 0) = ϕ1(t, 2π), ∀t ∈ [0, τ ],
one has

−
∫ τ

0

∫ 2π

0

[(ϕ1t − αϕ1x)u+ βvϕ1] dxdt+ α

∫ τ

0

h(t)ϕ1(t, 2π)dt

+

∫ 2π

0

ϕ1(τ, x)u(τ, x)dx−
∫ 2π

0

ϕ1(0, x)u0(x)dx = 0 (2.2.1)

and

−
∫ τ

0

∫ 2π

0

[ϕ2tv + γuϕ2] dxdt+

∫ 2π

0

ϕ2(τ, x)v(τ, x)dx−
∫ 2π

0

ϕ2(0, x)v0(x)dx = 0.

(2.2.2)

Lemma 2.2.1 Let T > 0, (u0, v0) ∈ (L2(0, 2π))2 and u ∈ L2(0, T ) be given.
Then the initial boundary problem (2.1.5) with (2.1.6) has a unique solution, which
depends continuously on (u0, v0, h).

Definition 2.2.2 Let k ∈ R and (u0, v0) ∈ (L2(0, 2π))2 be given. A solution of
the initial boundary problem (2.1.9) and (2.1.6) is a function (u, v) ∈ C0([0,+∞); (L2(0, 2π))2),
such that, for every τ ∈ [0,∞) and for every (ϕ1, ϕ2) ∈ (C1([0, τ ] × [0, 2π]))2 such
that kϕ1(t, 0) = ϕ1(t, 2π), ∀t ∈ [0, τ ], one has

−
∫ τ

0

∫ 2π

0

[(ϕ1t − αϕ1x)u+ βvϕ1] dxdt+

∫ 2π

0

ϕ1(τ, x)u(τ, x)dx−
∫ 2π

0

ϕ1(0, x)u0(x)dx = 0,

and

−
∫ τ

0

∫ 2π

0

[ϕ2tv + γuϕ2] dxdt+

∫ 2π

0

ϕ2(τ, x)v(τ, x)dx−
∫ 2π

0

ϕ2(0, x)v0(x)dx = 0.
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Lemma 2.2.2 Let k ∈ R and (u0, v0) ∈ (L2(0, 2π))2 be given. Then the initial
boundary problem (2.1.9) with (2.1.6) has a unique solution, which depends continu-
ously on (u0, v0).

2.3 Proof of Theorem 2.1.1

We divide the proof of Theorem 2.1.1 into two cases: βγ = 0 and βγ 6= 0.

Case 1: βγ = 0. In Case 1, the result is trivial in the sense that (at least) one
of the two equations in (2.1.5) is decoupled from the other one.

Case 1.1: γ = 0. Since γ = 0, the second equation in (2.1.5) becomes

vt = 0, (t, x) ∈ (0, T )× (0, 2π), (2.3.1)

which implies that v(t, ·) = v0(·) ∈ L2(0, 2π) for all t ∈ [0, T ]. Therefore, it is
impossible to drive v from v0 6= 0 ∈ L2(0, 2π) to zero at time T no matter what the
control h is.

Case 1.2: β = 0 and γ 6= 0. Since β = 0, the first equation in (2.1.5) becomes

ut = αux, (2.3.2)

which does not depend on v. Suppose that the system (2.1.5) is (null) controllable.
Let

(u0(x), v0(x)) ≡ (1, 0), x ∈ (0, 2π), (2.3.3)

then there exits h ∈ L2(0, 2π) driving (u, v) from (u0, v0) to (0, 0) at time T . Multi-
plying (2.3.2) by einx (n ∈ Z) and integrating on (0, T )× (0, 2π), we get from γ 6= 0
and (2.1.5), (2.1.7) and (2.3.3) that

0 =

∫ T

0

∫ 2π

0

(ut − αux)e
inx dxdt

=

∫ 2π

0

[
ueinx

]t=T

t=0
dx− α

∫ T

0

[
ueinx

]x=2π

x=0
dt+ inα

∫ T

0

∫ 2π

0

ueinx dxdt

= −
∫ 2π

0

u0(x)e
inx + α

∫ T

0

h(t) dt+
inα

γ

∫ 2π

0

[
veinx

]t=T

t=0
dxdt

= −
∫ 2π

0

einx + α

∫ T

0

h(t) dt, ∀n ∈ Z. (2.3.4)

Therefore
∫ T

0
h(t) = 0 as n 6= 0, while

∫ T

0
h(t) = −2π

α
6= 0 as n = 0. This contradiction

concludes the proof of Theorem 2.1.1 for the Case 1.2: βγ = 0.
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Case 2: βγ 6= 0. In this case, we will prove Theorem 2.1.1 by contradiction
argument. The contradiction is derived by moment theory, with other applications
on controllability in [91] and [99].

Let us assume that there exists h ∈ L2(0, 2π) such that the solution (u, v) of
(2.1.5) with (2.1.6) satisfies (2.1.7). We introduce the adjoint system of the system
(2.1.5):





pt = αpx − γq,

qt = −βp,
p(t, 0) = p(t, 2π).

(2.3.5)

Then for the above solution (u, v) of the system (2.1.5) satisfying (2.1.7), it holds, by
duality, that for all solution (p, q) of the adjoint system (2.3.5),

∫ 2π

0

u0(x)p(0, x) + v0(x)q(0, x)dx

=−
[〈( u

v

)
,
( p
q

)〉

L2(0,2π)

]t=T

t=0

=−
∫ T

0

d

dt

〈( u
v

)
,
( p
q

)〉

L2(0,2π)

dt

=−
∫ T

0

〈( ut
vt

)
,
( p
q

)〉

L2(0,2π)

+

〈( u
v

)
,
( pt
qt

)〉

L2(0,2π)

dt

=−
∫ T

0

[
αu(t, x)p(t, x)

]x=2π

x=0
dt

=α

∫ T

0

h(t)p(t, 0)dt. (2.3.6)

Next we look for the solutions of the adjoint system (2.3.5). Clearly, the corre-
sponding eigenvalue λ and the eigenvector (ξ, η) obey





λξ = αξ′ − γη

λη = −βξ
ξ(0) = ξ(2π)

(2.3.7)

By canceling η, (2.3.7) is reduced to

αλξ′(x) = (λ2 − βγ)ξ(x) with ξ(0) = ξ(2π). (2.3.8)

It is easy to see that λ = 0 happens only when ξ(x) = η(x) ≡ 0 since βγ 6= 0. Hence
(2.3.7) possesses only nonzero eigenvalues.
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Since α < 0, the solution of (2.3.8) is given by

ξ(x) = e
λ2−βγ

λα
xξ(0), (2.3.9)

where the eigenvalue λ is determined by

e
λ2−βγ

λα
2π = 1, (2.3.10)

i.e.

λ2 − βγ

λα
= in, n ∈ Z. (2.3.11)

Therefore, we obtain the eigenvalues of the equations (2.3.7):

λ±n =





inα±
√
4βγ − n2α2

2
, if n2 <

4βγ

α2
, n ∈ Z

inα± i
√
n2α2 − 4βγ

2
, if n2 ≥ 4βγ

α2
, n ∈ Z

(2.3.12)

and the corresponding eigenvectors:

(ξ±n (x), η
±
n (x)) = einx (1,

−β
λ±n

), n ∈ Z. (2.3.13)

Obviously for all n ∈ Z, (p±n (t, x), q
±
n (t, x)) = eλ

±
n t(ξ±n (x), η

±
n (x)) = eλ

±
n t+inx (1, −β

λ±n
)

satisfies (2.3.5). Substituting (p±n (t, x), q
±
n (t, x)) into (2.3.6) yields that the control

h ∈ L2(0, T ) driving (u0, v0) to (0, 0) satisfies that

∫ T

0

h(t)eλ
±
n tdt =

1

αλ±n

∫ 2π

0

(λ±nu0(x)− βv0(x))e
inxdx, ∀n ∈ Z. (2.3.14)

Let

(u0(x), v0(x)) ≡ (c1, c2), x ∈ (0, 2π), (2.3.15)

where c1, c2 ∈ R are two constants such that

λ±0 c1 − βc2 6= 0. (2.3.16)

Thus

∫ T

0

h(t)eλ
±
n tdt =

λ±n c1 − βc2
αλ±n

∫ 2π

0

einxdx = 0, ∀n ∈ Z\{0}, (2.3.17)
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∫ T

0

h(t)eλ
±
0 tdt =

2π(λ±0 c1 − βc2)

αλ±0
6= 0. (2.3.18)

Let

F (z) =

∫ T

0

h(t)e−iztdt, z ∈ C. (2.3.19)

Then it follows that F (iλ±0 ) 6= 0 and F (iλ±n ) = 0 for all n ∈ Z\{0}. On the other
hand, F is an entire function on C due to Paley-Wiener Theorem [63]. It is easy to
get from α < 0 and (2.3.12) that

lim
n→+∞

λ+n = 0. (2.3.20)

Therefore F is an entire function vanishing on the set {z = iλ±n |n ∈ Z\{0}} which
has an accumulation point z = 0 ∈ C. This simply implies F ≡ 0, however, this
contradicts with F (iλ+0 ) 6= 0. Consequently, there exists no function h ∈ L2(0, T )
such that (2.3.14) holds for the initial data given by (2.3.15). This concludes the
proof of Theorem 2.1.1 for the Case 2: βγ 6= 0.

2.4 Proof of Theorem 2.1.2

In this section, we will prove that k ∈ R does exist such that the closed-loop
system (2.1.9) is asymptotically stable if and only if βγ < 0. The proof relies on the
Riesz basis method and a careful analysis of the spectrum.

Proposition 2.4.1 All the the eigenvalues of the closed loop system (2.1.9) have
a strictly negative real part if and only if βγ < 0 and 0 < |k| < 1.

Proof of Proposition 2.4.1. Clearly, the corresponding eigenvalue λ and the eigen-
vector (φ, ψ) satisfy

{
λ(φ, ψ)tr = A(φ, ψ)tr
φ(0) = kφ(2π)

(2.4.1)

where

A =

(
α∂x β
γ 0

)
(2.4.2)

is the infinitesimal generator of the semigroup corresponding to the system (2.1.9).
By canceling ψ, (2.4.1) is reduced to

αλφ′(x) = (λ2 − βγ)φ(x) with φ(0) = kφ(2π). (2.4.3)



66 2.4. Proof of Theorem 2.1.2

It is easy to see that λ = 0 happens only when φ(x) = ψ(x) ≡ 0 since βγ 6= 0. Hence
(2.4.1) has no zero eigenvalues.

Since α < 0, the solution of (2.4.3) is given by

φ(x) = e
λ2−βγ

λα
xφ(0), (2.4.4)

where the eigenvalue λ is determined by

e
λ2−βγ

λα
2π =

1

k
, k 6= 0. (2.4.5)

For every n ∈ Z, let

ñ =

{
n, if k > 0,

n+ 1
2
, if k < 0,

(2.4.6)

then

λ2 − βγ

λα
2π = i2ñπ − ln |k|, (2.4.7)

or equivalently,

λ2 − α

2π
(i2ñπ − ln |k|)λ− βγ = 0. (2.4.8)

Therefore, for any n ∈ Z and k 6= 0, (2.4.8) has two roots λ±n,k ∈ C such that

[
λ±n,k −

α

4π
(i2ñπ − ln |k|)

]2
= βγ +

α2

16π2
(i2ñπ − ln |k|)2 (2.4.9)

Direct computations give us the real and imaginary part of λ±n,k:

ℜ(λ±n,k) =
−α ln |k|

4π
±

√√√√cn,k +
√
c2n,k + 4d2n,k

2
, (2.4.10)

ℑ(λ±n,k) =
αñ

2
∓ sgn(ñ ln |k|)

√√√√−cn,k +
√
c2n,k + 4d2n,k

2
, (2.4.11)

where

cn,k = βγ +
α2

16π2
(ln2 |k| − 4ñ2π2), (2.4.12)

dn,k =
α2 ln |k| ñ

8π
. (2.4.13)
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Since α < 0, it is obvious to see that if |k| ≥ 1, ℜ(λ+n,k) ≥ 0. On the other hand,
if 0 < |k| < 1, we have

ℜ(λ±n,k) < 0, ∀n ∈ Z

⇐⇒α2 ln2 |k|
16π2

>
cn,k +

√
c2n,k + 4d2n,k

2

⇐⇒− βγ +
α2(ln2 |k|+ 4ñ2π2)

16π2
>

√
c2n,k + 4d2n,k

⇐⇒− βγα2 ln2 |k|
4π2

> 0

⇐⇒βγ < 0. (2.4.14)

This ends the proof of Proposition 2.4.1.

In addition to Proposition 2.4.1, we can obtain, after careful computations to
(2.4.10)-(2.4.11), the asymptotic behavior of the eigenvalues λ±n,k as n→∞:

lim
n→∞

λ+n,k = 0 and lim
n→∞

|λ−n,k| = +∞. (2.4.15)

In view of (2.4.4) and(2.4.7), the corresponding eigenvectors can be chosen as

E+
n,k := (φ+

n,k(x), ψ
+
n,k(x))

tr = e(
− ln |k|

2π
+iñ)x(λ+n,k, γ)

tr, n ∈ Z, (2.4.16)

E−n,k := (φ−n,k(x), ψ
−
n,k(x))

tr = e(
− ln |k|

2π
+iñ)x(1,

γ

λ−n,k
)tr, n ∈ Z. (2.4.17)

In order to prove Theorem 2.1.2, we first prove that if βγ ≥ 0 and k ∈ R,
the system (2.1.9) is not asymptotically stable. According to Proposition 2.4.1, if
βγ ≥ 0, then for any k ∈ R, there exists n ∈ Z, such that ℜ(λ+n,k) ≥ 0. Let the initial

data be the corresponding eigenvector : (u0, v0)
tr = E+

n,k ∈ (L2(0, 2π))2, then the

corresponding solution of the system (2.1.9) is given by (u(t, ·), v(t, ·)) = eλ
+
n,k

t(u0, v0),
which is obviously not stable.

Now it remains to prove that if βγ < 0, there exists suitable k ∈ R such that
the system (2.1.9) is asymptotically stable. More precisely, we apply the Riesz basis
approach to prove that the solution of the system (2.1.9) satisfies (2.1.8) if βγ < 0
and 0 < |k| < 1.

Let us emphasize that it is possible that some eigenvalues may coincide. Actually,
the occurrence of an eigenvalue with multiplicity greater than one happens if and only
if

βγ = −α
2 ln2 k

16π2
< 0 and 0 < k < 1. (2.4.18)



68 2.4. Proof of Theorem 2.1.2

Consequently, the only multiple eigenvalue is given by

λ+0,k = λ−0,k = λ0 := −
α ln k

4π
< 0. (2.4.19)

In this case, the dimension of the eigenspace of λ0 is one and the corresponding
eigenvector can be chosen as

E+
0,k := e

− ln k
2π

x(λ0, γ)
tr. (2.4.20)

Let E−0,k be the root vector corresponding to λ0:

AE−0,k = λ0E
−
0,k + E+

0,k (2.4.21)

where the operator A is given by (2.4.2). Then by (2.4.18), (2.4.19) , it is easy to
find a typical root vector

E−0,k := e
− ln k
2π

x(λ0 + 1, γ)tr (2.4.22)

which satisfies (2.4.21) and is linearly independent of E+
0,k.

Now we claim the following proposition:

Proposition 2.4.2 For any fixed βγ < 0 and 0 < |k| < 1, {(E+
n,k, E

−
n,k), n ∈ Z}

forms a Riesz basis of the complex Hilbert space (L2(0, 2π))2.

Proof of Proposition 2.4.2. We introduce the classical orthogonal basis {(e+n,k, e−n,k), n ∈
Z} of (L2(0, 2π))2, where

e+n,k = eiñx(1, 0)tr, e−n,k = eiñx(0, 1)tr, n ∈ Z. (2.4.23)

Clearly, we have

< e+n,k, e
−
m,k >(L2(0,π))2= 0, ∀n,m ∈ Z, (2.4.24)

< e+n,k, e
+
m,k >(L2(0,π))2=< e−n,k, e

−
m,k >(L2(0,π))2= 2πδnm, ∀n,m ∈ Z, (2.4.25)

where δnm stands for the Kronecker’s delta. The proof will be divided into two cases
due to the possibility of the occurrence of multiple eigenvalues.

Case 1. (2.4.18) is not true. In this case, all the eigenvalues are distinct. Since

λ+n,k 6= λ−n,k for all n ∈ Z, the matrix

(
λ+n,k 1

γ γ

λ−
n,k

)
is invertible. Then it is easy to

get from

(E+
n,k, E

−
n,k) = e

− ln |k|
2π

x(e+n,k, e
−
n,k)

(
λ+n,k 1

γ γ

λ−
n,k

)
. (2.4.26)
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that {(E+
n,k, E

−
n,k), n ∈ Z} forms a basis of the complex Hilbert space (L2(0, 2π))2.

For any (f, g) ∈ (L2(0, 2π))2, there is a series of complex pairs {(α+
n , α

−
n ) ∈ C

2}n∈Z
such that

(f, g)tr =
∑

n∈Z

(α+
nE

+
n,k + α−nE

−
n,k) =

∑

n∈Z

(E+
n,k, E

−
n,k)(α

+
n , α

−
n )

tr. (2.4.27)

By (2.4.26), it follows that

(f, g)tr =
∑

n∈Z

(β+
n e

+
n,k + β−n e

−
n,k)e

−
ln |k|
2π

x, (2.4.28)

where (
β+
n

β−n

)
=

(
λ+n,k 1

γ γ

λ−
n,k

)(
α+
n

α−n

)
. (2.4.29)

Notting that 0 < |k| < 1 and eln |k| ≤ e
ln |k|
2π

x ≤ 1, ∀x ∈ [0, 2π]. Then we get, from
(2.4.23) and (2.4.28) that

2π
∑

n∈Z

(|β+
n |2 + |β−n |2) ≤ ‖(f, g)‖2(L2(0,2π))2 ≤ e−2 ln |k|2π

∑

n∈Z

(|β+
n |2 + |β−n |2). (2.4.30)

Moreover, it is easy to see from (2.4.29) and (2.4.15) that there exists a constant
C1 > 0 such that

|β+
n |2 + |β−n |2 ≤ C1(|α+

n |2 + |α−n |2), ∀n ∈ Z. (2.4.31)

On the other hand, we can also derive from (2.4.29) that

(
α+
n

α−n

)
=

(
λ+n,k 1

γ γ

λ−
n,k

)−1(
β+
n

β−n

)

=

(
a+n,k b+n,k
a−n,k b−n,k

)(
β+
n

β−n

)
(2.4.32)

where

a+n,k =
1

λ+n,k − λ−n,k
, a−n,k =

−λ−n,k
λ+n,k − λ−n,k

, (2.4.33)

b+n,k =
−λ−n,k

γ(λ+n,k − λ−n,k)
, b−n,k =

λ+n,kλ
−
n,k

γ(λ+n,k − λ−n,k)
. (2.4.34)
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Thanks to (2.4.15), we get additionally that

lim
n→∞

a+n,k = 0, lim
n→∞

a−n,k = 1, lim
n→∞

b+n,k =
1

γ
, lim

n→∞
b−n,k = 0. (2.4.35)

Therefore we can see that there exists a constant C2 > 0 such that

|α+
n |2 + |α−n |2 ≤ C2(|β+

n |2 + |β−n |2), ∀n ∈ Z. (2.4.36)

Obviously, (2.4.30)-(2.4.31) and (2.4.36) show that {(E+
n,k, E

−
n,k), n ∈ Z} forms a

Riesz basis of (L2(0, 2π))2 in Case 1.

Case 2. (2.4.18) is true. In this case, we still have λ+n,k 6= λ−n,k and (2.4.26) for
all n ∈ Z\{0}. While for n = 0, we get from (2.4.20), (2.4.22) and (2.4.23) that

(E+
0,k, E

−
0,k) = e

− ln k
2π

x(e+0,k, e
−
0,k)

(
λ0 λ0 + 1
γ γ

)
. (2.4.37)

Obviously, the matrix

(
λ0 λ0 + 1
γ γ

)
is reversible since γ 6= 0. Then it is similar to

prove that {(E+
n,k, E

−
n,k), n ∈ Z} still forms a Riesz basis of (L2(0, 2π))2 as in Case

1. This ends the proof of Proposition 2.4.2.

Thanks to Proposition 2.4.2, the solution (u, v) of the initial-boundary problem
(2.1.9) can be decomposed with respect to the Riesz basis {(E+

n,k, E
−
n,k), n ∈ Z}.

Actually, for any given initial data (u0, v0)
tr ∈ (L2(0, 2π))2, there exists a series

{(c+n,k, c−n,k) ∈ C
2}n∈Z such that

(u0, v0)
tr =

∑

n∈Z

(c+n,kE
+
n,k + c−n,kE

−
n,k). (2.4.38)

In order to decompose the solution in terms of the Riesz basis {(E+
n,k, E

−
n,k), n ∈

Z}, we have to discuss the various cases whether the eigenvalues are distinct or not.
Case 1. (2.4.18) is not true. In this case, all the eigenvalues are distinct. Since

{E±n,k} is the eigenvector corresponding to the eigenvalue λ±n,k, it follows from (2.4.38)
that

(u(t, ·), v(t, ·))tr =
∑

n∈Z

(
c+n,ke

λ+
n,k

tE+
n,k + c−n,ke

λ−
n,k

tE−n,k

)
. (2.4.39)

Then by Proposition 2.4.1, we get that in the case of βγ < 0,

|eλ±n,k
t| < 1, ∀n ∈ Z (2.4.40)
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and
lim

t→+∞
|eλ±n,k

t| → 0, ∀n ∈ Z. (2.4.41)

Therefore, there exists C3 > 0 independent of (u0, v0) such that

‖(u(t, ·), v(t, ·))‖2(L2(0,2π))2

≤
∑

n∈Z

∥∥∥c+n,kE+
n,k + c−n,kE

−
n,k

∥∥∥
2

(L2(0,2π))2

≤C3‖(u0, v0)‖2(L2(0,2π))2 , (2.4.42)

which implies that the series on the right hand side of (2.4.39) converges uniformly
and strongly in (L2(0, 2π))2. Then taking the (L2(0, 2π))2 norm of (2.4.39) and letting
t→ +∞, we easily conclude by (2.4.41) that

lim
t→+∞

(u(t, ·), v(t, ·))tr =
∑

n∈Z

lim
t→+∞

(
c+n,ke

λ+
n,k

tE+
n,k + c−n,ke

λ−
n,k

tE−n,k

)
= 0. (2.4.43)

This ends the proof that if βγ < 0, then the system (2.1.9) can be stabilized by taking
the tuning parameter k such that 0 < |k| < 1.

Case 2. (2.4.18) is true. In this case, the only eigenvalue, whose multiplicity is
more than one, is λ0 given by (2.4.19). We get from (2.4.20), (2.4.22), (2.4.23) and
(2.4.38) that

(u(t, ·), v(t, ·))tr = eλ0t[(c−0,kt+ c+0,k)E
+
0,k + c−0,kE

−
0,k]

+
∑

n∈Z\{0}

(
c+n,ke

λ+
n,k

tE+
n,k + c−n,ke

λ−
n,k

tE−n,k

)
. (2.4.44)

Again by Proposition 2.4.1, we have (2.4.41) and

lim
t→+∞

|eλ0tt| → 0. (2.4.45)

Then we easily conclude the asymptotic stability of the closed-loop system (2.1.9),
similarly as in Case 1. This completes the proof of Theorem 2.1.2.

2.5 Proof of Theorem 2.1.3

Thanks to Theorem 2.1.2, one has that if βγ < 0, there exists k ∈ R such that
the system (2.1.9) is asymptotically stable, i.e., (2.1.8) is true for all initial data
(u0, v0) ∈ (L2(0, 2π))2. Let (u(t, x), v(t, x)) be the solution of the closed-loop system
(2.1.9) with (2.1.6). Then according to the uniqueness of solution, it is clear that the
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system (2.1.5) is asymptotically (null) controllable by taking the control as:

h(t) = u(t, 0)− u(t, 2π). (2.5.1)

This concludes the proof of Theorem 2.1.3.
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3.1 Introduction

a) Background: Coupled first-order linear hyperbolic systems, typically for-
mulated on a 1-D spatial domain normalized to the interval (0, 1), are common in
modeling of traffic flow [7], heat exchangers [116], open channel flow [16, 28] or mul-
tiphase flow [29, 33, 35].

Research on stabilization of such PDEs has been dominated by the focus on pairs
of counter-convecting transport PDEs with distributed local coupling. In [26] a first
solution allowing actuation on only one boundary and permitting coupling coefficients
of arbitrary size was presented. A recent extension [31] allows stabilization using only
one control for a system containing an arbitrary number of coupled transport PDEs
that convect at different speeds against the direction of the PDE whose boundary is
actuated.

In this paper we present a solution to the fully general case of coupled hyperbolic
PDEs. We divide such PDE systems into two categories:

• homodirectional systems of m transport PDEs, for which all the m transport
velocities have the same signs, i.e., all of the PDEs convect in the same direction.
Because of the finite length of the spatial domain, these are inherently stable
but the coupling between states can cause undesirable transient behaviors and
the trajectory planning problem is non-trivial.

• heterodirectional systems of n + m transport PDEs, for which there exist at
least two transport velocities with opposite signs, i.e., where m PDEs convect
in one direction and n PDEs convect in the opposite direction. The coupling
between states traveling in opposite directions may cause instability.

In this chapter, we present control designs for the fully general case of coupled
heterodirectional hyperbolic PDEs, allowing the numbers m and n of PDEs in either
direction to be arbitrary, and with actuation applied on only one boundary (to all the
m PDEs that convect downstream from that boundary). To solve this general prob-
lem, we solve, as a special case, the heretofore unsolved problem of control of coupled
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homodirectional hyperbolic linear PDEs, where multiple transport PDEs convect in
the same direction, have possibly distinct speeds, and arbitrary local coupling.

Our approach is based on PDE backstepping and yields solutions to stabiliza-
tion, by both full-state and observer-based output feedback, trajectory planning, and
trajectory tracking problems.

b) Literature: Controllability of hyperbolic systems has first been investigated
using explicit computation of the solution along the characteristic curves in the frame-
work of C1 norm [42, 69, 98]. Later, so-called Control Lyapunov Functions methods
emerged, enabling the design of dissipative boundary conditions for nonlinear hyper-
bolic systems in the context of both C1 norm and H2 norm [19, 21, 20]. Further,
using Lyapunov functions method, sufficient boundary conditions for the exponen-
tial stability of linear [32] or nonlinear [46, 47] hyperbolic systems of balance laws
have been derived. All of these results impose restrictions on the magnitude of the
coupling coefficients, which are responsible for potential instabilities.

In [26], a full-state feedback control law, with actuation only on one end of the do-
main, which achieves H2 exponential stability of closed-loop 2–state heterodirectional
linear and quasilinear hyperbolic systems is derived using a backstepping method.
With a similar backstepping transformation, an output-feedback controller is de-
signed in [31] for heterodirectional systems with m = 1 (controlled) negative velocity
and n (arbitrary) positive ones. These results hold regardless of the (bounded) mag-
nitude of the coupling coefficients. Unfortunately, the method presented in [26, 31]
can not be extended to the case m > 1.

c) Contribution: The first step towards this chapter’s general solution form > 1
was presented (but not published as a paper) in [26] for m = 2 and n = 0. In
conference paper [53], an extension to m = 2 and n = 1 is achieved.

The contribution of this chapter is two-fold. For (n+m)–state heterodirectional
systems, we derive a stabilizing boundary feedback law that ensures finite-time con-
vergence of all the states to zero. For homodirectional systems (for which stability is
not an issue), we design a boundary control law ensuring tracking of a given reference
trajectory at the uncontrolled boundary.

Both designs rely on the backstepping approach. A particular choice of the target
system, featuring a cascade structure similar to [26, Section 3.5], enables the use of
a classical Volterra integral transformation. Well-posedness of the system of kernel
equations, which is the main technical challenge of this chapter, is proved by a method
of successive approximations using a novel recursive bound.

In the case of heterodirectional systems, the approach yields a full-state feedback
law that would necessitate full distributed measurements to be implemented, which
is not realistic in practice. For this reason, we derive an observer relying on mea-
surements of the states at a single boundary (the anti-controlled one). Along with
the full-state feedback law, this yields an output feedback controller amenable to
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implementation.

d) Organization: In Section 3.2 we introduce the model equations. In Sec-
tion 3.3 we present the stabilization result for heterodirectional systems: the target
system is presented in Section 3.3.1 while the backstepping transformation is derived
in Section 3.3.2. The design is summarized in Section 3.3.3. In Section 3.4 we present
the boundary observer design. In Section 3.5 we present the motion planning result
for homodirectional systems. Section 3.6 contains the main technical difficulty of
the paper, i.e. the proof of well-posedness of the backstepping transformation. We
conclude in Section 3.7 by discussing open problems.

3.2 System description

We consider the following general linear hyperbolic system

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (3.2.1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (3.2.2)

with the following boundary conditions

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (3.2.3)

where

u =
(
u1 · · · un

)T
, v =

(
v1 · · · vm

)T
(3.2.4)

Λ+ =



λ1 0

. . .

0 λn


 , Λ− =



µ1 0

. . .

0 µm


 (3.2.5)

with

−µ1 < · · · < −µm < 0 < λ1 ≤ · · · ≤ λn (3.2.6)

and
Σ++ =

{
σ++
ij

}
1≤i≤n,1≤j≤n

, Σ+− =
{
σ+−
ij

}
1≤i≤n,1≤j≤m

,

Σ−+ =
{
σ−+ij

}
1≤i≤m,1≤j≤n

, Σ−− =
{
σ−−ij

}
1≤i≤m,1≤j≤m

(3.2.7)

Q0 = {qij}1≤i≤n,1≤j≤m , R1 = {ρij}1≤i≤m,1≤j≤n , U(t) =
(
U1(t) · · · Um(t)

)T

(3.2.8)
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Remark 3.2.1 We consider here constant coupling coefficients and transport ve-
locities for the sake of readability. The method straightforwardly extends to spatially
varying coefficients, with more involved technical developments.

Besides, we also make the following assumption without loss of generality

∀j = 1, ...,m σ−−jj = 0, (3.2.9)

i.e. there are no (internal) diagonal coupling terms for v-system. Such coupling terms
can be removed using a change of coordinates as presented in, e.g., [26] and [53].
This yields spatially-varying coupling terms, which is not an issue in the light of
Remark 3.2.1.

Remark 3.2.2 If two or more states have the same transport speeds (i.e. µi = µj

for some i 6= j) we refer to those states as isotachic. This case was intentionally
avoided in (3.2.6). To deal with isotachic states, we consider the change of coordinates
v̄(t, x) = A(x)v(t, x). The matrix A(x) is a block-diagonal matrix, with Aii = 1 if
µi 6= µj for j 6= i. If there is a set of ni isotachic states (i.e. there is i such that
µj = µi for j = i + 1, . . . , i + ni − 1, then there is in A(x) a corresponding block
B(x) of dimension ni × ni in A(x). Each of these B(x) is computed independently
for each isotachic set of states. If we call Σiso the matrix of coupling coefficients
among these isotachic states (i.e. with coefficients σ−−jk for j, k = i, i + 1, . . . , i +
ni − 1), then B(x) is computed from the initial value problem B(x) = 1/µiB(x)Σiso,
B(0) = Ini×ni

. It is easy to see that this transformation is invertible, since one can
define a matrix C(x) from C(x) = 1/µiΣisoB(x), C(0) = Ini×ni

. One has that C(x)
is the inverse of B(x) as B(0)C(0) = Ini×ni

and d
dx
B(x)C(x) = 0. Applying this

invertible transformation eliminates the coupling coefficients between isotachic states,
but results in some spatially-varying coupling terms, which is not an issue as explained
in Remark 3.2.1.

3.3 Finite-time stabilization of heterodirectional

systems

In this section, we derive a stabilizing feedback law for the general (n + m)–
state system. Notice that this is interesting only in the case n 6= 0, since instability
arises from coupling between states traveling in opposite directions. Following the
backstepping approach, we seek to map system (3.2.1)–(3.2.3) to a target system with
desirable stability properties using an invertible Volterra transformation.
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3.3.1 Target system

Target system design

The strategy we used here is so-called backstepping method, which transforms
the original system into a “good” (for example, exponentially stable) target system
by using invertible backstepping transformation (see, for example, [19, Chapter 12.5]
and [65]). Here, we want to map system (3.2.1)–(3.2.3) to the following target system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) + Σ+−β(t, x)

+

∫ x

0

C+(x, ξ)α(ξ)dξ +

∫ x

0

C−(x, ξ)β(ξ)dξ
(3.3.1)

βt(t, x)− Λ−βx(t, x) = G(x)β(0) (3.3.2)

with the following boundary conditions

α(t, 0) = Q0β(t, 0), β(t, 1) = 0 (3.3.3)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} , (3.3.4)

while G ∈ L∞(0, 1) is a lower triangular matrix with the following structures

G(x) =




0 · · · · · · 0

g2,1(x)
. . . . . .

...
...

. . . . . .
...

gm,1(x) · · · gm,m−1(x) 0


 . (3.3.5)

The coefficients of C+, C− and G will be determined in section 3.3.2.

Stability of the target system

The following lemma asseses the finite-time stability of the target system.

Lemma 3.3.1 Consider system (3.3.1),(3.3.2) with boundary conditions (3.3.3).
Its zero equilibrium is reached in finite time t = tF , where

tF :=
1

λ1
+

m∑

j=1

1

µj

. (3.3.6)

Noting (3.3.2)-(3.3.3) and (3.3.5), we find that the β–system is in fact a cascade
system, which allows us to explicitely solve it by recursion as follows. The explicit
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solution of β1 is given by

β1(t, x) =

{
β1(0, x+ µ1t) if t < 1−x

µ1
,

0 if t ≥ 1−x
µ1
.

(3.3.7)

Notice in particular that β1 is identically zero for t ≥ µ−11 . From the time t ≥ µ−11

on, we have that β2(t, x) satisfies the following equation

β2t(t, x)− µ2β2x(t, x) = 0. (3.3.8)

Similarly, by expressing the solution along the characteristic lines, one obtains that

β2(t, x) ≡ 0 ∀t ≥ µ−11 + µ−12 . (3.3.9)

Thus, by mathematical induction, one can easily get that βj(j = 1, · · · ,m) vanishes
after

t =

j∑

k=1

1

µk

. (3.3.10)

This yields that

β(t, x) ≡ 0, t >

m∑

j=1

1

µj

. (3.3.11)

When t >
m∑
j=1

1
µj
, the α–system becomes

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) +

∫ x

0

C+(x, ξ)α(ξ)dξ (3.3.12)

with the boundary conditions

α(t, 0) = 0. (3.3.13)

Since there are no zero eigenvalues for the α–system (see (3.2.6)), we may change the
status of t and x, and Equations (3.3.12) can be rewritten as

αx(t, x) + (Λ+)−1αt(t, x) = (Λ+)−1Σ++α(t, x) +

∫ x

0

(Λ+)−1C+(x, ξ)α(ξ)dξ (3.3.14)

with the initial condition (3.3.13). Then by the uniqueness of the system (3.3.13),(3.3.14),
and noting the order of the transport speeds of the α–system (see (3.2.6)), this yields
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(see [64]) that α identically vanishes for

t ≥ 1

λ1
+

m∑

j=1

1

µj

(3.3.15)

This concludes the proof.

3.3.2 Backstepping transformation

To map system (3.2.1)–(3.2.3) to the target system (3.3.1)–(3.3.3), we consider
the following backstepping (Volterra) transformation

α(t, x) = u(t, x) (3.3.16)

β(t, x) = v(t, x)−
∫ x

0

[K(x, ξ)u(ξ) + L(x, ξ)v(ξ)] dξ (3.3.17)

where the kernels to be determined K and L are defined on the triangular domain T .
Deriving (3.3.17) with respect to space and time yields, respectively (omitting the
time argument)

βt(x) = Λ−vx(x) + Σ−+u(x) + Σ−−v(x) +K(x, x)Λ+u(x)−K(x, 0)Λ+u(0)

−
∫ x

0

[
Kξ(x, ξ)Λ

+ +K(x, ξ)Σ++
]
u(ξ)dξ −

∫ x

0

[
K(x, ξ)Σ+−

]
v(ξ)dξ

− L(x, x)Λ−v(x) + L(x, 0)Λ−v(0)

+

∫ x

0

[
Lξ(x, ξ)Λ

− − L(x, ξ)Σ−−
]
v(ξ)dξ −

∫ x

0

[
L(x, ξ)Σ−+

]
u(ξ)dξ

and

βx(x) = vx(x)−K(x, x)u(x)− L(x, x)v(x)−
∫ x

0

[Kx(x, ξ)u(ξ) + Lx(x, ξ)v(ξ)] dξ

Plugging into the target system equations and noting β(0) ≡ v(0) yields the following
system of kernel equations

0 = K(x, x)Λ+ + Λ−K(x, x) + Σ−+ (3.3.18)

0 = Λ−L(x, x)− L(x, x)Λ− + Σ−− (3.3.19)

L(x, 0)Λ− = K(x, 0)Λ+Q0 +G(x) (3.3.20)

0 = Λ−Kx(x, ξ)−Kξ(x, ξ)Λ
+ −K(x, ξ)Σ++ − L(x, ξ)Σ−+ (3.3.21)

0 = Λ−Lx(x, ξ) + Lξ(x, ξ)Λ
− − L(x, ξ)Σ−− −K(x, ξ)Σ+− (3.3.22)
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and yields the following equations for C−(x, ξ) and C+(x, ξ)

C−(x, ξ) = Σ+−L(x, ξ) +

∫ x

ξ

C−(x, s)L(s, ξ)dξ (3.3.23)

C+(x, ξ) = Σ+−K(x, ξ) +

∫ x

ξ

C−(x, s)K(s, ξ)dξ (3.3.24)

Remark 3.3.1 For each x ∈ [0, 1], Equation (3.3.23) is a Volterra equation of
the second kind on [0, x] with C−(x, ·) as the unknown. Besides, Equation (3.3.24)
explicitly gives C+(x, ξ) as a function of C−(x, ξ) and K(x, ξ). Therefore, provided
the kernels K and L are well-defined and bounded, so are C+ and C−.

Developing equations (3.3.18)–(3.3.22) leads to the following set of kernel PDEs

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =
n∑

k=1

σ++
kj Kik(x, ξ) +

m∑

p=1

σ−+pj Lip(x, ξ) (3.3.25)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =
m∑

p=1

σ−−pj Lip(x, ξ) +
n∑

k=1

σ+−
kj Kik(x, ξ) (3.3.26)

along with the following set of boundary conditions

Kij(x, x) = −
σ−+ij

µi + λj

∆
= kij for 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.3.27)

Lij(x, x) = −
σ−−ij

µi − µj

∆
= lij for 1 ≤ i, j ≤ m, i 6= j (3.3.28)

µjLij(x, 0) =
n∑

k=1

λkKik(x, 0)qk,j for 1 ≤ i ≤ j ≤ m. (3.3.29)

To ensure well-posedness of the kernel equations, we add the following artificial
boundary conditions for Lij(i > j)

Lij(1, ξ) = lij, for 1 ≤ j < i ≤ m (3.3.30)

While the gij, for 1 ≤ j < i ≤ n, are given by

gij(x) = µjLij(x, 0)−
n∑

p=1

λpqpjKip(x, 0) (3.3.31)
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provided the K and L kernels are properly defined by (3.3.25)–(3.3.30), which we
prove in the next section.

Remark 3.3.2 The choice of imposing (3.3.30) as the boundary condition for
Lij(1 ≤ j < i ≤ m), on the boundary x = 1 is arbitrary and was designed to ensure
continuity of some of the kernels. This degree of freedom in the control design had
never appeared in previous backstepping designs for hyperbolic system [26, 31]. The
impact of the boundary values of Lij, 1 ≤ j < i ≤ m on the transient behavior of the
closed-loop system remains an open question, out of the scope of this chapter.

Remark 3.3.3 If there are isotachic states, and the transformation explained in
Remark 3.2.2 is applied, then the Lij kernels for i, j corresponding to isotachic states
(µi = µj) have all boundary conditions of the type (3.3.29) instead of (3.3.28)—which
would become singular—or (3.3.30). The results that follow do not change, but we
have omitted the case for the sake of brevity.

The well-posedness of the target system equations is assessed in the following Theo-
rem.

Theorem 3.3.1 Consider system (3.3.25)–(3.3.30). There exists a unique solu-
tion K and L in L∞(T ). Moreover, all the boundary traces for the K-kernel and
L-kernel are functions of L∞(0, 1).

The proof of this Theorem is the main technical difficulty of the chapter and is
presented in Section 3.6.

3.3.3 Control law and main stabilization result

We are now ready to state the main stabilization result as follows.

Theorem 3.3.2 Consider system (3.2.1)-(3.2.2) with boundary conditions (3.2.3)
and the following feedback control law (3.3.32)

U(t) =

∫ 1

0

[K(1, ξ)u(ξ) + L(1, ξ)v(ξ)] dξ −R1u(t, 1), (3.3.32)

where K and L are the solutions of system (3.3.25)–(3.3.30), the existence of which are
guaranteed by the Theorem 3.3.1. For any initial condition (u0, v0) ∈ (L∞(0, 1))(n+m)×(n+m),
the zero equilibrium is reached in finite time t = tF , where tF is given by (3.3.6).

First, notice that evaluating transformation (3.3.17) at x = 1 yields (3.3.32).
Besides, rewriting transformation (3.3.17) as follows

(
α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
−
∫ x

0

(
0 0

K(x, ξ) L(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ. (3.3.33)
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one notices that it is a classical Volterra equation of the second kind. One can
check from, e.g., [50] and [108] that there exists a unique matrix function R ∈
(L∞(T ))(n+m)×(n+m) such that

(
u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
−
∫ x

0

R(x, ξ)
(
α(t, ξ)
β(t, ξ)

)
dξ. (3.3.34)

Applying Lemma 3.3.1 implies that (α, β) go to zero in finite time t = tF , therefore,
by (3.3.34), (u, v) also converge to zero in finite time.

3.4 Uncollocated observer design and output feed-

back controller

In this section, we derive an observer that relies on the measurement of the v
states at the left boundary, i.e.

y(t) = v(t, 0) (3.4.1)

Then, using the estimates from the observer along with the control law (3.3.32), we
derive an output feedback controller.

3.4.1 Observer design

The observer equations read as follows

ût(t, x) + Λ+ûx(t, x) = Σ++û(t, x) + Σ+−v̂(t, x)− P+(x)(v̂(t, 0)− v(t, 0)) (3.4.2)

v̂t(t, x)− Λ−v̂x(t, x) = Σ−+û(t, x) + Σ−−v̂(t, x)− P−(x)(v̂(t, 0)− v(t, 0)) (3.4.3)

with the following boundary conditions

û(t, 0) = Q0v(t, 0), v̂(t, 1) = R1û(t, 1) + û(t) (3.4.4)

where P+(·) and P−(·) have yet to be designed. This yields the following error system

ũt(t, x) + Λ+ũx(t, x) = Σ++ũ(t, x) + Σ+−ṽ(t, x)− P+(x)ṽ(t, 0) (3.4.5)

ṽt(t, x)− Λ−ṽx(t, x) = Σ−+ũ(t, x) + Σ−−ṽ(t, x)− P−(x)ṽ(t, 0) (3.4.6)

with the following boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = R1ũ(t, 1) (3.4.7)
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Remark 3.4.1 One should notice that the output is directly injected at the left
boundary, which means potential sensor noise is only filtered throughout the spatial
domain. Combining the approach of [31] and the cascade structure of (3.3.1)–(3.3.3),
we now derive a target system and backstepping transformation to design observer
gains P+(·) and P−(·) that yield finite-time stability of the error system (3.4.5)–
(3.4.7).

3.4.2 Target system and backstepping tranformation

We map system (3.4.5)–(3.4.7) to the following target system

α̃t(t, x) + Λ+α̃x(t, x) = Σ++α̃(t, x) +

∫ x

0

D+(x, ξ)α̃(ξ)dξ (3.4.8)

β̃t(t, x)− Λ−β̃x(t, x) = Σ−+α̃(t, x) +

∫ x

0

D−(x, ξ)α̃(ξ)dξ (3.4.9)

with the following boundary conditions

α̃(t, 0) = 0, β̃(t, 1) = R1α̃(t, 1)−
∫ 1

0

H(ξ)β̃(ξ)dξ (3.4.10)

where D+ and D− are L∞ matrix functions on the domain T and H ∈ L∞(0, 1) is
an upper triangular matrix with the following structure

H(x) =




0 h1,2(x) · · · h1,m(x)
...

. . . . . .
...

...
. . . . . . hm−1,m(x)

0 · · · · · · 0


 (3.4.11)

all of which have yet to be determined.

Proposition 3.4.1 (Stability of the observer target system) The solutions
of system (3.4.8)–(3.3.3) converge to zero in finite time. More precisely, one has

∀t ≥ tF , α̃ ≡ β̃ ≡ 0 (3.4.12)

where tF is defined by (3.3.6).

The system consists in a cascade of the α̃–system (that has zero input at the left
boundary) into the β̃–system. Further, the β̃ is a cascade of its slow states into its
fast states. The rigorous proof follows the same steps that the proof of Lemma 3.3.1
and is therefore omitted here.
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To map system (3.4.5)–(3.4.7) to the target system (3.4.8)–(3.4.10), we consider
the following backstepping (Volterra) transformation

ũ(t, x) = α̃(t, x) +

∫ x

0

M(x, ξ)β̃(ξ)dξ (3.4.13)

ṽ(t, x) = β̃(t, x) +

∫ x

0

N(x, ξ)β̃(ξ)dξ (3.4.14)

where the kernels to be determinedM and N are defined on the triangular domain T .
Deriving (3.4.13),(3.4.14) with respect to space and time yields (omitting the time
argument)

0 =ũt(x) + Λ+ũx(x)− Σ++ũ(x)− Σ+−ṽ(x) + P+(x)ṽ(0)

=
[
−P+(x)−M(x, 0)Λ−

]
β̃(0) +

[
Λ+M(x, x) +M(x, x)Λ− − Σ+−

]
β̃(x)

+

∫ x

0

[
D+(x, ξ) +M(x, ξ)Σ−+ +

∫ x

ξ

M(x, s)D−(s, ξ)ds

]
α̃(ξ)dξ

+

∫ x

0

[
Λ+Mx(x, ξ)−Mξ(x, ξ)Λ

− − Σ+−N(x, ξ)− Σ++M(x, ξ)
]
β̃(ξ)dξ

and

0 =ṽt(x) + Λ+ṽx(x)− Σ−+ũ(x)− Σ−−ṽ(x) + P−(x)ṽ(0)

=
[
−P−(x) +N(x, 0)Λ−

]
β̃(0) +

[
Λ−N(x, x)−N(x, x)Λ−

]
β̃(t, x)

+

∫ x

0

[
D−(x, ξ) +N(x, ξ)Σ−+ +

∫ x

ξ

N(x, s)D−(s, ξ)ds

]
α(ξ)dξ

−
∫ x

0

[
Λ−Nx(x, ξ) +Nξ(x, ξ)Λ

− + Σ−+M(x, ξ) + Σ−−N(x, ξ)
]
β(ξ)dξ

which yields

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xMij(x, ξ)− µj∂ξMij(x, ξ) =
n∑

k=1

σ++
ik Mkj(x, ξ) +

m∑

p=1

σ+−
ip Npj(x, ξ) (3.4.15)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xNij(x, ξ) + µj∂ξNij(x, ξ) =
n∑

k=1

σ−+ik Mkj(x, ξ) +
m∑

p=1

σ−−ip Npj(x, ξ) (3.4.16)

along with the following set of boundary conditions

Mij(x, x) =
σ+−
ij

µi + λj

∆
= mij for 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.4.17)
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Nij(x, x) = 0 for 1 ≤ i, j ≤ m, i 6= j (3.4.18)

besides, evaluating (3.4.13),(3.4.14) at x = 1 yields

Nij(1, x) =
n∑

k=1

ρikMkj(1, x) for 1 ≤ j ≤ i ≤ m. (3.4.19)

To ensure well-posedness of the kernel equations, we add the following artificial
boundary conditions for Nij(i < j)

Nij(x, 0) = 0, for 1 ≤ i < j ≤ m (3.4.20)

while the d+ij, d
−
ij and hij are given by

hij(x) = Nij(1, x)−
n∑

k=1

ρikMkj(1, x) (3.4.21)

d+ij(x, ξ) = −
m∑

k=1

Mik(x, ξ)σ
−+
kj +

∫ x

ξ

m∑

k=1

Mik(x, s)d
−
kj(s, ξ)ds (3.4.22)

d−ij(x, ξ) = −
m∑

k=1

Nik(x, ξ)σ
−+
kj +

∫ x

ξ

m∑

k=1

Nik(x, s)d
−
kj(s, ξ)ds (3.4.23)

provided theM and N kernels are properly defined. Interestingly, the well-posedness
of the system of kernel equations of the observer (3.4.15)–(3.4.20) is equivalent to that
of the controller kernels (3.3.25)–(3.3.30). Indeed, considering the following alternate
variables

M̄ij(χ, y) =Mij(1− y, 1− χ) =Mij(x, ξ), N̄ij(χ, y) = Nij(1− y, 1− χ) = Nij(x, ξ)
(3.4.24)

yields

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

µj∂χM̄ij(χ, y)− λi∂yM̄ij(χ, y) = −
n∑

k=1

σ++
ik M̄kj(χ, y)−

m∑

p=1

σ+−
ip N̄pj(χ, y) (3.4.25)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µj∂χN̄ij(χ, y) + µi∂yN̄ij(χ, y) = −
n∑

k=1

σ−+ik M̄kj(χ, y)−
m∑

p=1

σ−−ip N̄pj(χ, y) (3.4.26)
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along with the following set of boundary conditions

M̄ij(χ, χ) =
σ+−
ij

µi + λj

∆
= mij for 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.4.27)

N̄ij(χ, χ) = 0 for 1 ≤ i, j ≤ m, i 6= j (3.4.28)

N̄ij(χ, 0) =
n∑

k=1

ρikM̄kj(χ, 0) for 1 ≤ j ≤ i ≤ m. (3.4.29)

N̄ij(1, y) = 0, for 1 ≤ i < j ≤ m (3.4.30)

which has the exact same structure as the controller kernel system, the well-posedness
of which is assessed in Theorem 3.3.1.

3.4.3 Output feedback controller

The estimates can be used in an observer-controller scheme to derive an output
feedback law yielding finite-time stability of the zero equilibrium. More precisely, we
have the following Lemma.

Lemma 3.4.1 Consider the system composed of the original (3.2.1)–(3.2.3) and
target systems (3.4.2)–(3.4.4) with the following control law

U(t) =

∫ 1

0

[K(1, ξ)û(ξ) + L(1, ξ)v̂(ξ)] dξ −R1û(t, 1) (3.4.31)

where K and L are defined by (3.3.25)–(3.3.30). Its solutions (u, v, û, v̂) converge in
finite time to zero.

Proposition 3.4.1 along with the existence of the observer backstepping transfor-
mation (3.4.13),(3.4.14) yields convergence of the observer error states ũ, ṽ defined
by (3.4.5)–(3.4.7) to zero for t ≥ tF

∗. Therefore, for t ≥ tF , one has v(t, 0) = v̂(t, 0)
and Theorem 3.3.2 applies to the observer system (3.4.2)–(3.4.4). Therefore, for t ≥
2tF , one has (ũ, ṽ, û, v̂) ≡ 0 which also yields (u, v) ≡ 0.

3.5 Motion planning for homodirectional systems

3.5.1 Definition of the motion planning problem

Consider now the case n = 0. Then system (3.2.1)–(3.2.3) reduces to

vt(t, x)− Λ−vx(t, x) = Σ−−v(t, x), (3.5.1)

∗the proof of this claim follows the exact same steps as in the controller case, see Section 3.3.3
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where coefficients Λ− and Σ−− defined as in (3.2.5) and (3.2.7), with boundary con-
ditions

v(t, 1) = U(t). (3.5.2)

For simplicity in this section we drop the super-indices in the coefficients.

Equation (3.5.1) represents a system of m states moving in the same direction (in
this case, from right to left). We call such a system homodirectional (in oposition with
heterodirectional systems, whose states move in different directions, such as (3.2.1)–
(3.2.3) with n,m 6= 0). Homodirectional systems are inherently finite-time stable.
Physically, this is due to the fact that they are transport equations with information
flowing only in one direction; thus, setting U(t) to zero in (3.5.2) and solving the
equations with the method of characteristics, we obtain u(t, x) ≡ 0 for t ≥ 1

µm
(the

slowest transport time in (3.5.1)).

For (3.5.1)–(3.5.2) we consider the following motion planning problem. Given
Φ(t), a known function defined as

Φ(t) =
(
Φ1(t) · · · Φn(t)

)T
, (3.5.3)

find the value of U(t) so that v(t, 0) ≡ Φ(t) for t ≥ tM , for some tM > 0.

Remark 3.5.1 Even though the plant (3.5.1) is finite-time stable, and a formula
for the states can be written by using the method of characteristics, the motion plan-
ning problem is not trivial to solve. The entanglement of different states moving with
different speeds severely complicates finding a solution. This design difficulty will be
explicitly shown with an example in Section 3.5.3.

3.5.2 Tracking control design

The following result solves the motion planning problem.

Theorem 3.5.1 Consider system (3.5.1) with boundary conditions (3.5.2), ini-
tial condition v0 ∈ (L2(0, 1))m, and feedback control law

Ui(t) = Φi

(
t+

1

µi

)
−

i−1∑

j=1

∫ 1

0

µj

µi

Lij(ξ, 0)Φj

(
t+

1− ξ

µi

)
dξ +

i=m∑

j=1

∫ 1

0

Lij(1, ξ)vj(ξ)dξ.

(3.5.4)

Then, v(t, 0) ≡ Φ(t) if t ≥ tM , for tM =
∑m

j=1
1
µj
.
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Remark 3.5.2 The motion planning problem has been solved for the homodirec-
tional case for the sake of clarity. However, it can be formulated for the full het-
erodirectional system (3.2.1)–(3.2.3) with only minor modifications. Noting u(t, 0) =
Q0v(t, 0), the values of some ui’s could be chosen as part of the output instead of
some of the vi’s, for a total of m states. The only condition would be that all the rows
of the output vector (written in terms of the vi’s) are linearly independent.

We start by using the backstepping transformation (3.3.17)—where the kernels
K are zero due to n being zero—to map (3.5.1)–(3.5.2) into the target system

βt(t, x)− Λβx(t, x) = G(x)β(0), (3.5.5)

where G(x) was defined in Section 3.3.2 as a function of the kernels, with the following
boundary conditions

β(t, 1) = B(t), (3.5.6)

where B(t) in (3.5.6) is a function defined as

B(t) =
(
B1(t) · · · Bn(t)

)T
, (3.5.7)

with components to be determined. B represents an extra degree of freedom that
did not appear in the target system for the homodirectional control problem (Equa-
tion 3.3.3). It will be used to solve the motion planning problem. The presence of
B(t) in the boundary conditions does not change the backstepping transformation;
however it modifies the feedback control law to

U(t) = B(t) +

∫ 1

0

L(1, ξ)v(ξ)dξ. (3.5.8)

Now, noticing that if one sets x = 0 in the transformation (3.3.17) one obtains
vi(t, 0) = βi(t, 0), it is clear that we only need to solve the motion planning problem
for the target β system by using B(t). The next steps of the proof are devoted to
finding the value of B(t).

Using the method of characteristics, the explicit solution for each state βi(t, x) of
(3.5.5) with boundary condition (3.5.6) at time t ≥ 1−x

µi
is

βi(t, x) = Bi

(
t+

x− 1

µi

)
+

m∑

j=1

1

µi

∫ 1

x

Gij(ξ)βj

(
t+

x− ξ

µi

, 0

)
dξ, (3.5.9)

Using (3.3.5) and (3.3.31) in (3.5.9), we obtain

βi(t, x) = Bi

(
t+

x− 1

µi

)
+

i−1∑

j=1

∫ 1

x

µj

µi

Lij(ξ, 0)βj

(
t+

x− ξ

µi

, 0

)
dξ. (3.5.10)
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To solve now the motion planning problem, consider first (3.5.10) for i = 1 and
x = 0, for t ≥ 1

µ1
. Imposing β1(t, 0) = Φ1(t), we obtain:

Φ1(t) = B1

(
t− 1

µ1

)
, (3.5.11)

thus, setting B1(t) = Φ1

(
t+ 1

µ1

)
for t ≥ 0, we obtain the desired behavior for

β1(t, 0) for t ≥ 1
µ1
. Now consider (3.5.10) for i = 2 and x = 0, for t ≥ 1

µ2
. Imposing

β2(t, 0) = Φ2(t), we obtain:

Φ2(t) = B2

(
t− 1

µ2

)
+

∫ 1

0

µ1

µ2

L21(ξ, 0)β1

(
t− ξ

µ2

, 0

)
dξ. (3.5.12)

Solving for B2 as before

B2 (t) = Φ2

(
t+

1

µ2

)
−
∫ 1

0

µ1

µ2

L21(ξ, 0)β1

(
t+

1− ξ

µ2

, 0

)
dξ. (3.5.13)

To be able to substitute β1(t, 0) for Φ1(t) in the whole domain of the integral in
(3.5.13) we need to wait until t = 1

µ1
. Thus choosing

B2 (t) = Φ2

(
t+

1

µ2

)
−
∫ 1

0

µ1

µ2

L21(ξ, 0)Φ1

(
t+

1− ξ

µ2

, 0

)
dξ, (3.5.14)

we get that β2(t, 0) = Φ2(t) for t ≥ 1
µ1
+ 1

µ2
(as we have to wait an extra 1

µ2
time

for (3.5.14) to propagate). It is clear that this procedure can be continued for i =
3, . . . ,m. Thus we obtain that

Bi (t) = Φi

(
t+

1

µi

)
−

i−1∑

j=1

∫ 1

0

µj

µi

Lij(ξ, 0)Φj

(
t+

1− ξ

µi

)
dξ (3.5.15)

solves the motion problem for βi for t ≥
∑i

j=1
1
µj
. Applying (3.5.15) for i = 1, . . . ,m

and substituting in (3.5.8) produces the feedback law (3.5.4), thus solving the motion
planning problem in time tM =

∑m

j=1
1
µj
.

Remark 3.5.3 Theorem 3.5.1 gives in fact tracking (in finite-time) of the desired
output signal, a result stronger than pure motion planning. To obtain a pure motion
planning result, one should take (3.5.10)—the explicit solutions of the target system
obtained in the proof of the theorem—and substitute the values of Bi found in (3.5.15),
so that the βi’s are explicit functions of the Φi’s. Then, using the inverse backstepping
transformation (3.3.34), find the vi’s as explicit functions of the Φi’s and substitute
them in the control law (3.5.4), which would then be an exclusive function of the
outputs. We omit this result for the sake of brevity purposes.
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3.5.3 An explicit motion planning example

Next we present an specific example of a motion planning problem for m = 2.
Consider the plant

v1t(t, x)− µ1v1x(t, x) = σ12v2(t, x), (3.5.16)

v2t(t, x)− µ2v2x(t, x) = σ21v1(t, x), (3.5.17)

with boundary conditions

v1(t, 1) = U1(t), v2(t, 1) = U2(t). (3.5.18)

The objective is to design U1(t) and U2(t) so that v1(t, 0) = Φ1(t) and v2(t, 0) = Φ2(t)
for some functions Φ1,Φ2 for t ≥ tM . Notice that since (3.5.16)–(3.5.18) is explicitly
solvable, one might think that the inputs can be directly designed. Using the method
of characteristics to explicitly write a solution of the system, one gets, after time
t = 1

µ2
,

v1(t, 0) = U1

(
t− 1

µ1

)
+

1

µ1

∫ 1

0

σ12v2

(
t− ξ

µ1

, ξ

)
dξ, (3.5.19)

v2(t, 0) = U2

(
t− 1

µ2

)
+

1

µ2

∫ 1

0

σ21v1

(
t− ξ

µ2

, ξ

)
dξ. (3.5.20)

However, if one tries to proceed as in the proof of Theorem 3.5.1, by plugging in Φ1(t)
in (3.5.19) and Φ2(t) in (3.5.20), and then solve for U1(t) and U2(t), one ends up with
a feedback law that requires knowing future values of v1 and v2, i.e., a non-causal
(and therefore not implementable) feedback law. Thus, a direct approach does not
work even for the m = 2 case. To solve the motion planning problem, we resort to
Theorem 3.5.1; in this particular case, the motion planning problem is solved by the
inputs

U1(t) = Φ1

(
t+

1

µ1

)
+

∫ 1

0

L11(1, ξ)v1(ξ)dξ +

∫ 1

0

L12(1, ξ)v2(ξ)dξ, (3.5.21)

U2(t) = Φ2

(
t+

1

µ2

)
−
∫ 1

0

µ1

µ2

L21(ξ, 0)Φ1

(
t+

1− ξ

µ2

)
dξ

+

∫ 1

0

L21(1, ξ)v1(ξ)dξ +

∫ 1

0

L22(1, ξ)v2(ξ)dξ,

(3.5.22)

where the kernels L11, L12, L21 and L22 verify

µ1∂xL11(x, ξ) + µ1∂ξL11(x, ξ) = σ21L12(x, ξ) (3.5.23)

µ1∂xL12(x, ξ) + µ2∂ξL12(x, ξ) = σ12L11(x, ξ), (3.5.24)
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µ2∂xL21(x, ξ) + µ1∂ξL21(x, ξ) = σ21L22(x, ξ) (3.5.25)

µ2∂xL22(x, ξ) + µ2∂ξL22(x, ξ) = σ12L21(x, ξ), (3.5.26)

with boundary conditions

L11(x, 0) = L12(x, 0) = L22(x, 0) = 0,

L12(x, x) =
σ12

µ2 − µ1

, L21(x, x) =
σ21

µ1 − µ2

,
(3.5.27)

plus the artificial boundary condition L21(1, ξ) = l21(ξ), where the function l21 is
arbitrary. These kernel PDEs can be explicitly solved using techniques akin to those
used in [107]. The resulting kernels (whose validity can be verified by substitution in
the kernel equations) are

L11(x, ξ) =





√
σ12σ21

µ2 − µ1

√
µ1ξ − µ2x

µ1(x− ξ)
I1

(
2

µ1 − µ2

√
σ12σ21(x− ξ)(µ1ξ − µ2x)

µ1

)
, ξ ≥ µ2

µ1
x

0, ξ < µ2

µ1
x

L12(x, ξ) =





σ21
µ2 − µ1

I0

(
2

µ1 − µ2

√
σ12σ21(x− ξ)(µ1ξ − µ2x)

µ1

)
, ξ ≥ µ2

µ1
x

0, ξ < µ2

µ1
x

L21(x, ξ) =
σ21ξ

µ1x− µ2ξ
J0

(
2

µ1 − µ2

√
σ12σ21(x− ξ)(µ1x− µ2ξ)

µ2

)

+µ1

√
σ21µ2(x− ξ)

σ12(µ1x− µ2ξ)3
J1

(
2

µ1 − µ2

√
σ12σ21(x− ξ)(µ1x− µ2ξ)

µ2

)
,

L22(x, ξ) = ξ

√
σ12σ21

µ2(x− ξ)(µ1x− µ2ξ)
J1

(
2

µ1 − µ2

√
σ12σ21(x− ξ)(µ1x− µ2ξ)

µ2

)

where I0 and I1 are the modified Bessel functions of order 0 and 1, and J0 and J1 are
the (regular) Bessel functions of order 0 and 1, respectively.

The kernels appearing in (3.5.19)–(3.5.20) are depicted in Fig 1 for the case µ1 = 1,
µ2 = 0.2 and σ12 = 2, σ21 = 5. It can be seen that L11(1, ξ) and L12(1, ξ) have a
monotone behaviour (they are always negative or zero), whereas L21(1, ξ), L21(ξ, 0),
and L22(1, ξ) are oscillatory. Fig. 2 shows L11 and L12 in the whole domain T ; notice
that L12(x, ξ) is discontinuous along the line ξ =

µ2

µ1
(which is the lower domain on

Figure 4c), whereas L11(x, ξ) is not discontinuous. On the other hand, it is evident
that l21(ξ) = L21(1, ξ) is rather non-trivial. In fact, the procedure that was followed to
find these explicit solutions was not setting a value of l21 a priori, but rather extending
the domain shown in Figure 4a up to x = µ1

µ1−µ2
, so that boundary condition (3.5.27)

can be used to actually find the value of l21.
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Figure 1: Motion planning kernels (n = 0, m = 2). Solid: L11(1, ξ) and L21(ξ, 0).
Dash-dotted: L12(1, ξ). Dotted: L21(1, ξ). Dashed: L22(1, ξ).

Figure 2: Motion planning kernels L11(x, ξ) and L12(x, ξ) (n = 0, m = 2).

3.6 Proof of Theorem 3.3.1: well-posedness of the

kernel equations

To prove well-posedness of the kernel equations, we classically transform them
into integral equations and use the method of successive approximations.

Remark 3.6.1 Similar proofs have been derived for less general systems, e.g.
in [26] or [31]. The proof is more involved here due to the existence of homodirec-
tional controlled states, which lead to the homodirectional kernel PDEs (3.3.26).



96 3.6. Proof of Theorem 3.3.1: well-posedness of the kernel equations

3.6.1 Method of characteristics

Characteristics of the K kernels

For each 1 ≤ i ≤ m, 1 ≤ j ≤ n, and (x, ξ) ∈ T , we define the following character-
istic lines (xij(x, ξ; ·), ξij(x, ξ; ·)) corresponding to Equations (3.3.25)

{
dxij

ds
(x, ξ; s) = −µi, s ∈

[
0, sFij(x, ξ)

]

xij(x, ξ; 0) = x, xij(x, ξ; s
F
ij(x, ξ)) = xFij(x, ξ)

,

{
dξij
ds
(x, ξ; s) = λj, s ∈

[
0, sFij(x, ξ)

]

ξij(x, ξ; 0) = ξ, ξij(x, ξ; s
F
ij(x, ξ)) = xFij(x, ξ)

(3.6.1)

These lines, depicted on Figure 3, originate at the point (x, ξ) and terminate on
the hypothenuse at the point

(
xFij(x, ξ), x

F
ij(x, ξ)

)
. The expressions of xij(x, ξ; s),

ξij(x, ξ; s) s
F
ij(x, ξ) and xFij(x, ξ) are given in Appendix 3.8.1. Integrating (3.3.25)

Figure 3: Characteristic lines of the K kernels

along these characteristic lines and plugging in the boundary condition (3.3.27) yields

Kij(x, ξ) = kij +

∫ sFij(x,ξ)

0

[
n∑

k=1

σ++
kj Kik(xij(x, ξ; s), ξij(x, ξ; s))

+
m∑

p=1

σ−+pj Lip(xij(x, ξ; s), ξij(x, ξ; s))

]
ds (3.6.2)
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Characteristics of the L kernels

For each 1 ≤ i ≤ m, 1 ≤ j ≤ m, and (x, ξ) ∈ T , we define the following
characteristic lines (χij(x, ξ; ·), ζij(x, ξ; ·)) corresponding to Equations (3.3.26)

{
dχij

dν
(x, ξ; ν) = εijµi, ν ∈

[
0, νFij (x, ξ)

]

χij(x, ξ; 0) = x, χij(x, ξ; ν
F
ij (x, ξ)) = χF

ij(x, ξ)
,

{
dζij
dν
(x, ξ; ν) = εijµj, ν ∈

[
0, νFij (x, ξ)

]

ζij(x, ξ; 0) = ξ, ζij(x, ξ; ν
F
ij (x, ξ)) = ζFij (x, ξ)

(3.6.3)

where εij is defined by

εij(x, ξ) =

{
1 if i > j

−1 otherwise
(3.6.4)

These lines all originate at (x, ξ) and terminate on ∂T at the point
(
χF
ij(x, ξ), ζ

F
ij (x, ξ)

)
.

They are depicted on Figure 4 in the three distinct cases i < j, i = j and i > j. The
detailed expressions of χij(x, ξ; s), ζij(x, ξ; s) ν

F
ij (x, ξ), χ

F
ij(x, ξ) and ζ

F
ij (x, ξ) are given

in Appendix 3.8.2. Integrating (3.3.26) along these characteristics and plugging in
the boundary conditions (3.3.28),(3.3.29) and (3.3.30) yields

Lij (x, ξ) = δij(x, ξ)lij + (1− δij(x, ξ))
1

µj

n∑

r=1

λrqrjKir(χ
F
ij(x, ξ), 0)

−εij
∫ νFij(x,ξ)

0

[
m∑

p=1

σ−−pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν)) +
n∑

k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν

(3.6.5)

where the coefficient δij(x, ξ), defined by

δij(x, ξ) =





0 if i = j

0 if i < j and µiξ − µjx ≤ 0

1 otherwise

, (3.6.6)

reflects the fact that some characteristics terminate on the ξ = 0 boundary of T ,
while others terminate on the hypotenuse or on the x = 1 boundary of T . Plugging
in (3.6.2) evaluated at (χF

ij(x, ξ), 0) yields
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(a) Characteristic lines of the ker-
nels Lij for i > j

(b) Characteristic lines of the ker-
nels Lii

(c) Characteristic lines of the ker-
nels Lij for i < j

Figure 4: Characteristic lines of the L kernels

Lij (x, ξ) = δij(x, ξ)lij + (1− δij(x, ξ))
1

µj

n∑

r=1

λrqrjkir

+
1− δij(x, ξ)

µj

n∑

r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0

[
n∑

k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))

+
m∑

p=1

σ−+pr Lip(xir(χ
F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))

]
ds

− εij

∫ νFij(x,ξ)

0

[
m∑

p=1

σ−−pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν))

+
n∑

k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν

(3.6.7)
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3.6.2 Method of successive approximations

We now use the method of successive approximations to solve equations (3.6.2),(3.6.7).
Define first

ϕij(x, ξ) = kij, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(3.6.8)

ψij(x, ξ) = δij(x, ξ)lij + (1− δij(x, ξ))
1

µj

n∑

r=1

λrqrjkir, 1 ≤ i ≤ m, 1 ≤ j ≤ m.

(3.6.9)

Besides, we define H as the vector containing all the kernels, reordered line by line
and stacked up as follows

H =




H1
...
Hn

Hn+1
...

Hnm

Hnm+1
...

Hnm+m2




=




K11
...

K1n

K21
...

Kmn

L11
...

Lmm




, and similarly φ =




φ1
...
φn

φn+1
...

φnm

φnm+1
...

φnm+m2




=




ϕ11
...
ϕ1n

ϕ21
...

ϕmn

ψ11
...

ψmm




(3.6.10)

we consider the following linear operators acting on H, for 1 ≤ i ≤ m, 1 ≤ j ≤ n

Φij[H](x, ξ) =

∫ sFij(x,ξ)

0

[
n∑

k=1

σ++
kj Kik(xij(x, ξ; s), ξij(x, ξ; s))

+
m∑

p=1

σ−+pj Lip(xij(x, ξ; s), ξij(x, ξ; s))

]
ds (3.6.11)

and for 1 ≤ i ≤ m, 1 ≤ j ≤ m

Ψij[H](x, ξ) =

(1− δij(x, ξ))
1

µj

n∑

r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0

[
n∑

k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))
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+
m∑

p=1

σ−+pr Lip(xir(χ
F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))

]
ds

− εij

∫ νFij(x,ξ)

0

[
m∑

p=1

σ−−pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν)) +

n∑

k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν. (3.6.12)

Define then the following sequence

H0(x, ξ) = 0, (3.6.13)

Hq(x, ξ) = φ(x, ξ) +Φ[Hq−1](x, ξ) (3.6.14)

=




ϕ11(x, ξ) + Φ11[H
q−1](x, ξ)

...
ϕ1n(x, ξ) + Φ1n[H

q−1](x, ξ)
ϕ21(x, ξ) + Φ21[H

q−1](x, ξ)
...

ϕmn(x, ξ) + Φmn[H
q−1](x, ξ)

ψ11(x, ξ) + Ψ11[H
q−1](x, ξ)

...
ψmm(x, ξ) + Ψmm[H

q−1](x, ξ)




(3.6.15)

One should notice that if the limit exists, then H = lim
q→+∞

Hq(x, ξ) is a solution of the

integral equations, and thus solves the original hyperbolic system. Besides, define
for q ≥ 1 the increment ∆Hq = Hq − Hq−1, with ∆H0 = φ by definition. Since
the functional Φ is linear, the following equation ∆Hq(x, ξ) = Φ[Hq−1](x, ξ) holds.

Using the definition of ∆Hq, it follows that if the sum
+∞∑
q=0

∆Hq(x, ξ) is finite, then

H(x, ξ) =
+∞∑

q=0

∆Hq(x, ξ) (3.6.16)

In the next section, we prove convergence of the series in L∞.
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3.6.3 Convergence of the successive approximation series

To prove convergence of the series, we look for a recursive upper bound, similarly
to, e.g. [64]. More precisely, let ε be such that

0 < ε < 1− max
1≤j<i≤m

{
µi

µj

}
. (3.6.17)

Then, the following result holds

Proposition 3.6.1 For q ≥ 1, assume that

∀(x, ξ) ∈ T , ∀i = 1, ..., nm+m2 |∆Hq
i (x, ξ)| ≤ φ̄

M q(x− (1− ε)ξ)q

q!
(3.6.18)

where ∆Hq
i (x, ξ) denotes the i-th (i = 1, · · · ,mn+m2) component of ∆Hq(x, ξ), then

it follows that

∀(x, ξ) ∈ T , ∀i = 1, ...,m∀j = 1, ..., n

|Φij[∆Hq](x, ξ)| ≤ φ̄
M q+1(x− (1− ε)ξ)q+1

(q + 1)!

(3.6.19)

and

∀(x, ξ) ∈ T , ∀i = 1, ...,m∀j = 1, ...,m

|Ψij[∆Hq](x, ξ)| ≤ φ̄
M q+1(x− (1− ε)ξ)q+1

(q + 1)!

(3.6.20)

The proof of this proposition relies on the following Lemma, which is crucial and
different with previous works.

Lemma 3.6.1 For q ∈ N, (x, ξ) ∈ T , and sFij(x, ξ), νFij (x, ξ), χij(x, ξ, ·), ηij(x, ξ, ·)
defined as in (3.8.2),(3.8.4),(3.6.1),(3.6.3), respectively, the following inequalities holds

∫ sFij(x,ξ)

0

(xij(x, ξ; s)− (1− ε)ξij(x, ξ; s))
q ds ≤Mλ

(x− (1− ε)ξ)q+1

q + 1
, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(3.6.21)
∫ νFij(x,ξ)

0

(χij(x, ξ; ν)− (1− ε)ζij(x, ξ; ν))
q dν ≤Mλ

(x− (1− ε)ξ)q+1

q + 1
, 1 ≤ i, j ≤ m

(3.6.22)

where

Mλ = max
i,s=1,...,m,j=1,...,n

{
1

µi + (1− ε)λj
,

1

−εij (µi − (1− ε)µs)

}
(3.6.23)
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Consider the following change of variables, noting (3.6.1),

τ = xij(x, ξ; s)− (1− ε)ξij(x, ξ; s), dτ =

[
dxij
ds

(x, ξ; s)− (1− ε)
dξij
ds

(x, ξ; s)

]
ds

(3.6.24)

= (−µi − (1− ε)λj) ds (3.6.25)

The left-hand-side of (3.6.21) becomes

∫ sFij(x,ξ)

0

(xij(x, ξ; s)− (1− ε)ξij(x, ξ; s))
q ds

=

∫ xF
ij(x,ξ)−(1−ε)ξ

F
ij(x,ξ)

x−(1−ε)ξ

−τ q
µi + (1− ε)λj

dτ

=
(x− (1− ε)ξ)q+1 −

(
xFij(x, ξ)− (1− ε)ξFij(x, ξ)

)q+1

(µi + (1− ε)λj)(q + 1)

≤Mλ

(x− (1− ε)ξ)q+1

q + 1

(3.6.26)

where we have used the fact that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, one has

xFij(x, ξ)− (1− ε)ξFij(x, ξ) ≥ 0 (3.6.27)

which is trivially satisfied since (xFij(x, ξ), ξ
F
ij(x, ξ)) ∈ ∂T and ε > 0. Consider now

the following change of variables

τ = χij(x, ξ; s)− (1− ε)ζij(x, ξ; s), dτ =

[
dχij

ds
(x, ξ; s)− (1− ε)

dζij
ds

(x, ξ; s)

]
ds

(3.6.28)

= εij (µi − (1− ε)µj) ds (3.6.29)

Thus, left-hand-side of (3.6.22) becomes

∫ νFij(x,ξ)

0

(χij(x, ξ; ν)− (1− ε)ζij(x, ξ; ν))
q dν

=

∫ χF
ij(x,ξ)−(1−ε)ζ

F
ij(x,ξ)

x−(1−ε)ξ

τ q

εij (µi − (1− ε)µj)
dτ

=
(x− (1− ε)ξ)q+1 −

(
χF
ij(x, ξ)− (1− ε)ζFij (x, ξ)

)q+1

−εij (µi − (1− ε)µj) (q + 1)

(3.6.30)
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Given the definition of εij given by (3.6.4), one has

−εij (µi − (1− ε)µj) =

{
µi − (1− ε)µj if i ≤ j

(1− ε)µj − µi if i > j
(3.6.31)

Therefore, given the definition of ε (Equation (3.6.17)) in the case i > j and the
ordering of the µi in the case i ≤ j, one has

−εij (µi − (1− ε)µj) > 0 (3.6.32)

Besides, since (χF
ij(x, ξ), ζ

F
ij (x, ξ)) ∈ T , one has

(
χF
ij(x, ξ)− (1− ε)ζFij (x, ξ)

)
> 0

and (3.6.30) becomes

∫ νFij(x,ξ)

0

(χij(x, ξ; ν)− (1− ε)ζij(x, ξ; ν))
q dν ≤Mλ

(x− (1− ε)ξ)q+1

q + 1
(3.6.33)

which concludes the proof.

Remark 3.6.2 Notice that (3.6.32) also implies that, for any (x, ξ) ∈ T and 1 ≤
i ≤ m, 1 ≤ j ≤ n the function

ν ∈ [0, νFij (x, ξ)] 7→ χij(x, ξ; ν)− (1− ε)ζij(x, ξ; ν) (3.6.34)

is strictly decreasing, in particular the following inequality holds

0 ≤ χF
ij(x, ξ)− (1− ε)ζFij (x, ξ) ≤ x− (1− ε)ξ (3.6.35)

which will be useful in the proof of Proposition 3.6.1.

Proof of Proposition 3.6.1 Define

λ̄ = max {λn, µ1} , λ = max

{
1

λ1
,
1

µn

}
, (3.6.36)

σ̄ = max
i,j

{
σ++, σ−+, σ+−, σ−−

}
, q̄ = max

i,j
{qij} (3.6.37)

M =
(
nλ̄λq̄ + 1

)
(n+m)σ̄Mλ, φ̄ = max

i,j
max

(x,ξ)∈T
{|ϕi,j(x, ξ)|, |ψi,j(x, ξ)|}

(3.6.38)

Let now q ∈ N and assume that

∀(x, ξ) ∈ T , ∀i = 1, ..., nm+m2 |∆Hq
i (x, ξ)| ≤ φ̄

M q(x− (1− ξ))q

q!
(3.6.39)
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Then, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (x, ξ) ∈ T one has

|Φij[∆Hq](x, ξ)| ≤
∫ sFij(x,ξ)

0

∣∣∣∣
n∑

k=1

σ++
kj Kik(xij(x, ξ; s), ξij(x, ξ; s))

+
m∑

p=1

σ−+pj Lip(xij(x, ξ; s), ξij(x, ξ; s))

∣∣∣∣ds
(3.6.40)

using (3.6.21) and (3.6.39), this yields

|Φij[∆Hq](x, ξ)| ≤ (n+m)σ̄

∫ sFij(x,ξ)

0

φ̄
M q (xij(x, ξ; s)− (1− ε)ξij(x, ξ; s))

q

q!
ds

≤ (n+m)σ̄
φ̄M q

q!
Mλ

(x− (1− ξ)q+1

q + 1

≤ φ̄
M q+1(x− (1− ε)ξ)q+1

(q + 1)!
(3.6.41)

Similarly, for 1 ≤ i, j ≤ m, one gets that

|Ψij[∆Hq](x, ξ)| ≤

(1− δij(x, ξ))
1

µj

n∑

r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0

∣∣∣∣∣

n∑

k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))

+
m∑

p=1

σ−+pr Lip(xir(χ
F
ij(x, ξ), 0; s), ξir(χ

F
ij(x, ξ), 0; s))

∣∣∣∣∣ ds

+

∫ νFij(x,ξ)

0

∣∣∣∣∣

m∑

p=1

σ−−pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν)) +
n∑

k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

∣∣∣∣∣ dν

(3.6.42)

Using (3.6.39) yields

|Ψij[∆Hq](x, ξ)| ≤

λ̄λq̄(n+m)σ̄
n∑

r=1

∫ sFir(χ
F
ij(x,ξ),0)

0

φ̄
M q

(
xir(χ

F
ij(x, ξ), 0; s)− (1− ε)ξir(χ

F
ij(x, ξ), 0; s)

)q

q!
ds

+ (n+m)σ̄

∫ νFij(x,ξ)

0

φ̄
M q (χij(x, ξ; ν)− (1− ε)ζij(x, ξ; ν))

q

q!
dν (3.6.43)

Then, using (3.6.21) at (x, ξ) = (χF
ij(x, ξ), 0) and (3.6.22) yields
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|Ψij[∆Hq](x, ξ)| ≤ λ̄λq̄(n+m)σ̄nφ̄MλM
q

(
χF
ij(x, ξ)− (1− ε)ζFij (x, ξ)

)q+1

(q + 1)!

+ (n+m)σ̄φ̄
M qMλ(x− (1− ε)ξ)q+1

(q + 1)!
(3.6.44)

Inequality (3.6.35) yields

|Ψij[∆Hq](x, ξ)| ≤
(
nλ̄λq̄ + 1

)
(n+m)σ̄φ̄Mλ

M q(x− (1− ε)ξ)q+1

(q + 1)!
(3.6.45)

≤ φ̄
M q+1(x− (1− ε)ξ)q+1

(q + 1)!
(3.6.46)

which concludes the proof.

Proposition 3.6.1 directly leads to Theorem 3.3.1, since by the same procedures
presented in [26] and [31], one has that (3.6.16) converges and

|H(x, ξ)| =
∣∣∣∣∣

+∞∑

q=0

∆Hq(x, ξ)

∣∣∣∣∣ ≤ φ̄eM(x−(1−ε)ξ). (3.6.47)

3.7 Concluding remarks

We have presented boundary control designs for a general class of linear first-order
hyperbolic systems: an output-feedback law for stabilization of heterodirectional sys-
tems and a tracking controller for motion planning for homodirectional systems.

These results bridge the gap with the results of, e.g. [77], where the null (or weak)
controllability of (n+m)–state heterodirectional states is proved but no explicit design
is given.

Our results open the door for a large number of related problems to be solved,
e.g. collocated observer design, disturbance rejection, similarly to [1], parameter
identification as in [30], stabilization of quasilinear systems as in [26].

Another important question concerns the degree of freedom given by Equation (3.3.30)
in the control design. The effect of the boundary value of the kernels on the transient
performances of the closed-loop system is non-trivial, yet crucial for applications.
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3.8 Appendix: Explicit definition of the charac-

teristic lines

In this appendix, we give the detailed expressions of the characteristic lines of the
kernel equations (3.3.25),(3.3.26).

3.8.1 Characteristics of the K kernels

The characteristic lines corresponding to Equations (3.3.25), for 1 ≤ i ≤ m,
1 ≤ j ≤ n are given by

xij(x, ξ; s) = x− µis, ξij(x, ξ; s) = ξ + λjs, s ∈
[
0, sFij(x, ξ)

]
(3.8.1)

These lines, depicted on Figure 3 originate at (x, ξ) and arrive on the hypotenuse
at (xFij, x

F
ij), with

sFij(x, ξ) =
x− ξ

µi + λj
, xFij(x, ξ) =

λjx+ µiξ

λj + µi

(3.8.2)

3.8.2 Characteristics of the L kernels

The characteristic lines corresponding to Equations (3.3.26), for 1 ≤ i ≤ m,
1 ≤ j ≤ m are given by

χij(x, ξ; ν) = x+ εijµiν, ζij(x, ξ; ν) = ξ + εijµjν, ν ∈
[
0, νFij (x, ξ)

]
(3.8.3)

where εij(x, ξ) are given by (3.6.4) and

νFij (x, ξ) =





ξ

µj

if i = j

ξ

µj

if i < j and µiξ − µjx ≤ 0

x− ξ

µi − µj

if (i < j and µiξ − µjx ≥ 0) or (i > j and µiξ − µjx ≥ µi − µj)

1− x

µi

if i > j and µiξ − µjx ≤ µi − µj.

(3.8.4)
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Therefore the terminating points
(
χF
ij(x, ξ), ζ

F
ij (x, ξ)

)
∈ ∂T of the characteristics are

given by

χF
ij(x, ξ) =





x− ξ if i = j

x− µi

µj

ξ if i < j and µiξ − µjx ≤ 0

µiξ − µjx

µi − µj

if i < j and µiξ − µjx ≥ 0

µjx− µiξ

µi − µj

if i > j and µiξ − µjx ≥ µi − µj

1 if i > j and µiξ − µjx ≤ µi − µj

(3.8.5)

and

ζFij (x, ξ) =





0 if i = j

0 if i < j and µiξ − µjx ≤ 0

µiξ − µjx

µi − µj

if i < j and µiξ − µjx ≥ 0

µjx− µiξ

µi − µj

if i > j and µiξ − µjx ≥ µi − µj

ξ + µj

1− x

µi

if i > j and µiξ − µjx ≤ µi − µj.

(3.8.6)
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4.1 Introduction and Main Result

Consider the following 1-D n× n inhomogeneous quasilinear hyperbolic system

∂u

∂t
+ A(x, u)

∂u

∂x
= F (x, u), x ∈ [0, 1], t ∈ [0,+∞), (4.1.1)

where, u = (u1, . . . , un)
T is an unknown vector function of (t, x), A(x, u) is an n × n

matrix with C2 entries aij(x, u)(i, j = 1, · · · , n), F : [0, 1] × R
n → R

n is a vector
valued function with C2 components fi(x, u)(i = 1, · · · , n) with respect to u and

F (x, 0) ≡ 0. (4.1.2)

Denote

∂F

∂u
(x, 0) := (fij(x))n×n, (4.1.3)

we assume that fij ∈ C2([0, 1])

By the definition of hyperbolicity, we assume that A(x, 0) is a diagonal matrix
with distinct and nonzero eigenvalues A(x, 0) = diag(Λ1(x), · · · ,Λn(x)), which are,
without loss of generality, ordered as follows:

Λ1(x) < Λ2(x) < · · · < Λm(x) < 0 < Λm+1(x) < · · · < Λn(x), ∀x ∈ [0, 1]. (4.1.4)

Here and in what follows, diag(Λ1(x), · · · ,Λn(x)) denotes the diagonal matrix whose
i-th element on the diagonal is Λi(x).

Under the assumption (4.1.4), a general kind of boundary conditions which guar-
antee the well- posedness of the forward problem on the domain {(t, x)|t ≥ 0, 0 ≤
x ≤ 1} can be written as (see [69]):

x = 0 : us = Gs(u1, · · · , um), s = m+ 1, · · · , n, (4.1.5)

x = 1 : ur = hr(t), r = 1, · · · ,m, (4.1.6)

where Gs are C
2 functions, and we assume that they vanish at the origin, i.e.

Gs(0, · · · , 0) ≡ 0, s = m+ 1, · · · , n. (4.1.7)

while, H = (h1, · · · , hm)T are boundary controls. Our concern, in this paper, is to
design a feedback control law for H(t) in order to ensure that the closed-loop system
is locally exponentially stable in the H2 norm.

In other words, we are interested in the following stabilization problem for the
system (4.1.1) and (4.1.5)-(4.1.6):

Problem (ES). For any given λ > 0. Suppose that C1 compatibility conditions
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are satisfied at the point (t, x) = (0, 0). Does there exist a linear feedback control
B : (H2(0, 1))n → R

m, verifying the C1 compatibility conditions at the point (t, x) =
(0, 1), such that for some ε > 0, the mixed initial-boundary value problem (4.1.1),
(4.1.5)-(4.1.6) and the initial conditions

t = 0 : u(0, x) := φ(x) = (φ1(x), · · · , φn(x)), (4.1.8)

with H(t) = B(u(t, ·)) admits a unique C0([0,∞); (H2(0, 1))n) solution u = u(t, x),
which satisfies

‖u(t, ·)‖H2(0,L) ≤ Ce−λt‖φ(·)‖H2(0,L), (4.1.9)

for some C > 0, provided that ‖φ(·)‖H2(0,L) ≤ ε?

The boundary stabilization problem for linear and nonlinear hyperbolic system
has been widely studied in the last three decades or so. During this time, three parallel
mathematical approaches have emerged. The first one is the so-called “Characteristic
method”, i.e. computing corresponding bounds by using explicit evolution of the
solution along the characteristic curves. With this method, Problem (ES) has been
previously investigated by Greenberg and Li (see [42]) for 2× 2 systems and Li and
Qin (see [69, 98]) for a generalization to n×n homogeneous systems in the framework
of C1 norm. Also, this method was developed by Li and Rao [75] to study the exact
boundary controllability for general inhomogeneous quasilinear hyperbolic systems.

The second method is the “Control Lyapunov Functions method”, which is a
useful tool to analyze the asymptotic behavior of dynamical systems. This method
was first used by Coron et.al. to design dissipative boundary conditions for nonlinear
homogeneous hyperbolic systems in the context of both C1 and H2 norm [20, 21,
22]. More recently, it has been shown in [25] that the exponential stability strongly
depends on the considered norm, i.e. a previously known sufficient condition for
exponential stability with respect to the H2 norm is not sufficient in the framework of
C1 norm. Although the Control Lyapunov Functions method has been introduced to
study exponential stability for hyperbolic systems of balance laws, however, finding
a “good” Lyapunov Function is the main difficulty, especially when the “natural”
control Lyapunov functions do not lead to arbitrarily large exponential decay rate to
the original system (see [10], [19, Pages 314 and 361–371]). This phenomenon indeed
happens when we deal with Problem (ES) for the inhomogeneous hyperbolic systems
(see [21] and [22]).

The third one is the “Backstepping method”, which is now a popular mathematical
tool to stabilize the finite dimensional and infinite dimensional dynamic systems (see
[64, 65, 103, 105, 106]). In [26], a full-state feedback control law, with actuation on
only one end of the domain, which achievesH2 exponential stability of the closed-loop
2×2 linear and quasilinear hyperbolic system is derived using a backstepping method.
Moreover, this method ensures that the linear hyperbolic system vanishes in finite
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time. Unfortunately, the method presented in [26] can not be directly extended to n×
n cases, especially when several states convecting in the same direction are controlled
(see also [31]). In [53], a first step towards generalization to 3 × 3 linear hyperbolic
systems is addressed, in the case where two controlled states are considered. With a
similar Volterra transformation, designing an appropriate form of the target system,
Hu et.al.[54] adopt a classical backstepping controller to handle the Problem (ES)
for general n × n linear hyperbolic systems. Well-posedness of the system of kernel
equations, which is the main technical challenge, is shown there by an improved
successive approximation method.

In this paper, based on the results for the linear case [54], we will use the linearized
feedback control to stabilize the nonlinear system as it is mentioned in [26]. Although
the target system is a little different from the one in [26] with a linear term involved
in the equations, thanks to its special structure, we show that all the procedures to
handle nonlinearities in [26] can be also adapted in this paper with more technical
developments. Let us recall some definitions and statements [26]. Define the norms

‖u(t, ·)‖H1 = ‖u(t, ·)‖L2 + ‖ux(t, ·)‖L2 ,

‖u(t, ·)‖H2 = ‖u(t, ·)‖H1 + ‖uxx(t, ·)‖L2 .

Our main result is given by

Theorem 4.1.1 Under the assumptions in §4.1, suppose furthermore that C1

compatibility conditions are satisfied at the point (t, x) = (0, 0), there exists a contin-
uous linear feedback control laws B : (H2(0, 1))n → R

m, satisfying the C1 compatibility
conditions at the points (t, x) = (0, 1), then for every λ > 0, there exist δ > 0 and
c > 0, such that the mixed initial-boundary value problem (4.1.1), (4.1.5), (4.1.6)
and (4.1.8) with H(t) = B(u(t, ·)) admits a unique C0([0,∞), (H2(0, 1))n) solution
u = u(t, x), which verifies

‖u(t, ·)‖H2 ≤ ce−λt‖φ‖H2 , (4.1.10)

provided that ‖φ‖H2 ≤ δ.

Remark 4.1.1 The C1 compatibility conditions at the point (t, x) = (0, 0) are
given by

φs(0) = Gs(φ1(0), · · · , φm(0)) s = m+ 1, · · · , n, (4.1.11)

fs(0, φ(0))−
n∑

j=1

asj(0, φ(0))φ
′
j(0) =

m∑

r=1

∂Gs

∂ur
(φ1(0), · · · , φm(0)) ·

(
fr(0, φ(0))−

n∑

j=1

arj(0, φ(0))φ
′
j(0)

)
s = m+ 1, · · · , n.

(4.1.12)
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The C1 compatibility conditions at the point (t, x) = (0, 1) are similar.

Remark 4.1.2 For convenience, we always assume that the feedback controls
H(t) = B(u(t, ·)) satisfy the C1 compatibility conditions at the point (t, x) = (0, 1).
However, if this property fails, one can add some dynamic terms to the controllers
(see also Remark 4.3.1 and [26, Section 4]).

The rest of this paper is organized as follows. In §4.2, we review a former result
on the boundary backstepping controls for n × n linear hyperbolic system. Besides,
we design a Lyapunov function to stabilize the linear system in the L2 norm. In §4.3,
we input the corresponding linearized closed-loop control to the original nonlinear
system and give the feedback control design. In §4.4, we prove exponential stability
of zero equilibrium for the quasilinear system by using the Control Lyapunov Function
method. We finally include two appendices with some technical details.

4.2 Preliminaries–Linear Case

In this section, we review the results on stabilization of n × n hyperbolic linear
system by using the backstepping method. Similar to the situation in [26], this
procedure can be applied to locally stabilize the original nonlinear system. Consider
the following n× n hyperbolic systems

wt(t, x) + Λ(x)wx(t, x) = Σ(x)w(t, x) (4.2.1)

where, w = (w1, · · · , wn)
T is a vector function of (t, x), Λ: [0, 1] → Mn,n(R) is an

n× n C2 diagonal matrix, i.e.

Λ(x) =

(
Λ−(x) 0
0 Λ+(x)

)
(4.2.2)

in which Λ−(x) := diag(λ1(x), · · · , λm(x)) and Λ+(x) := diag(λm+1(x), · · · , λn(x))
are diagonal submatrices, without loss of generality, satisfying

λ1(x) < · · · < λm(x) < 0 < λm+1(x) < · · · < λn(x), ∀x ∈ [0, 1]. (4.2.3)

On the other hand, Σ : [0, 1]→Mn,n(R) is a n× n matrix with

Σ(x) =

(
Σ−−(x) Σ−+(x)
Σ+−(x) Σ++(x)

)
(4.2.4)

in which Σ−− ∈ Mm,m(R), Σ
−+ ∈ Mm,n−m(R), Σ

+− ∈ Mn−m,m(R) and Σ−− ∈
Mn−m,n−m(R) are all C

2 submatrices with respect to x. Moreover, for any i =
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1, · · · , n, we assume that

Σii(x) ≡ 0, ∀x ∈ [0, 1]. (4.2.5)

The boundary conditions for the linear hyperbolic system (4.2.1) are given by

x = 0 : w+(t, 0) = Qw−(t, 0), (4.2.6)

and

x = 1 : w−(t, 1) = U(t). (4.2.7)

where w− ∈ R
m, w+ ∈ R

n−m are defined by requiring that w := (w−, w+)
T , U =

(U1, · · · , Um)
T are boundary feedback controls, Q ∈ Mn−m,m is a constant matrix.

Our purpose in this section is to find a full-state feedback control law for U(t) to
ensure that the closed-loop system (4.2.1), (4.2.6)-(4.2.7) is globally asymptotically

stable in the L2 norm, which is defined by ‖w(t, ·)‖L2 =

√
n∑

i=1

∫ 1

0
w2

i (t, x)dx.

4.2.1 Target System

In Section 4.2.2, it will be shown that we can transform the system (4.2.1), (4.2.6)-
(4.2.7) into the following cascade system

γt(t, x) + Λ(x)γx(t, x) = G(x)γ(t, 0) (4.2.8)

with the boundary conditions

x = 0 : γ+(t, 0) = Qγ−(t, 0) (4.2.9)

and

x = 1 : γ−(t, 1) = 0, (4.2.10)

where γ− ∈ R
m, γ+ ∈ R

n−m are defined by requiring that γ := (γ−, γ+)
T , G is a

lower triangular matrix with following structure

G(x) =

(
G1(x) 0
G2(x) 0

)
(4.2.11)

in which G1 ∈Mm,m(R) is a lower triangular matrix, i.e.

G1(x) =




0 · · · · · · 0

g2,1(x)
. . . . . .

...
...

. . . . . .
...

gm,1(x) · · · gm,m−1(x) 0


 , (4.2.12)
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and G2(x) ∈ Mn−m,m(R). The coefficients of both G1 and G2 are to be determined
in §2.2. Next, we prove that the cascade system (4.2.8)-(4.2.10) verifies the following
proposition.

Proposition 4.2.1 For any given matrix function G(·) ∈ C1(0, 1), the mixed
initial-boundary value problem (4.2.8)-(4.2.10) with initial condition

t = 0 : γ(0, x) = γ0(x), (4.2.13)

where γ0 ∈ (L2(0, 1))n admits a C0([0,∞); (L2(0, 1))n) solution γ = γ(t, x), which is
globally exponentially stable in the L2 norm, i.e. for every λ > 0, there exists c > 0
such that

‖γ(t, ·)‖L2 ≤ ce−λt‖γ0‖L2 . (4.2.14)

In fact, this solution vanishes in finite time t > tF , where tF is given by

tF =

∫ 1

0

1

λm+1(s)
+

m∑

r=1

1

|λr(s)|
ds. (4.2.15)

Proof. Equations (4.2.8) can be rewritten as

∂tγ−(t, x) + Λ−(x)∂xγ−(t, x) = G1(x)γ−(t, 0),
∂tγ+(t, x) + Λ+(x)∂xγ+(t, x) = G2(x)γ−(t, 0),

(4.2.16)

then consider the following Lyapunov functional

V0(t) =

∫ 1

0

e−δxγ+(t, x)
T (Λ+(x))

−1 γ+(t, x)dx−
∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 γ−(t, x)dx

(4.2.17)

where δ > 0 is a parameter, B = diag(b1, · · · , bm) (with br > 0, r = 1, · · · ,m) whose
coefficients are to be determined. Obviously,

√
V0 is a norm equivalent to ‖γ(t, ·)‖L2 .

Differentiating V0 with respect to t and integrating by parts yields

V̇0(t) = I + II + III + IV

with

I =
[
−e−δxγ+(t, x)Tγ+(t, x) + eδxγ−(t, x)

TBγ−(t, x)
]1
0

II = −
∫ 1

0

δe−δxγ+(t, x)
Tγ+(t, x)dx−

∫ 1

0

δeδxγ−(t, x)
TBγ−(t, x)dx

III = 2

∫ 1

0

e−δxγ+(t, x)
T (Λ+(x))

−1 G2(x)γ−(t, 0)dx
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IV = −2
∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 G1(x)γ−(t, 0)dx

Noting the boundary conditions (4.2.9)-(4.2.10), we have that

I = −eδγ+(t, 1)Tγ+(t, 1)− γ−(t, 0)
T
(
B −QTQ

)
γ−(t, 0) (4.2.18)

III ≤
∫ 1

0

e−δxγ+(t, x)
Tγ+(t, x)dx+ γ−(t, 0)

T

∫ 1

0

e−δxGT
2 (x) (Λ+(x))

−2 G2(x)dxγ−(t, 0)

≤
∫ 1

0

e−δxγ+(t, x)
Tγ+(t, x)dx+ γ−(t, 0)

T

∫ 1

0

GT
2 (x) (Λ+(x))

−2 G2(x)dxγ−(t, 0)
(4.2.19)

IV = −2
∫ 1

0

eδx
∑

m≥i>j≥1

γi(t, x)
bi

Λi(x)
gij(x)γj(t, 0)dx

≤ −M
∫ 1

0

eδx
∑

m≥i>j≥1

bi
Λi(x)

γ2i (t, x)dx−M

∫ 1

0

eδx
∑

m≥i>j≥1

bi
Λi(x)

γ2j (t, 0)dx

≤ −M
∫ 1

0

eδx
∑

m≥i>j≥1

bi
Λi(x)

γ2i (t, x)dx+Mµeδγ−(t, 0)
TCγ−(t, 0)

≤ −mM
∫ 1

0

eδx
m∑

i=2

bi
Λi(x)

γ2i (t, x)dx+Mµeδγ−(t, 0)
TCγ−(t, 0)

≤ −mM
∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 γ−(t, x)dx+Mµeδγ−(t, 0)
TCγ−(t, 0)

(4.2.20)

in which

M := ‖G‖L∞ , C := diag(C1, · · · , Cm) (4.2.21)

with

Cr :=





m∑
j=r+1

bj, 1 ≤ r ≤ m− 1

0, r = m.

(4.2.22)

and

µ := max
i

{
1

‖Λi‖C0

}
. (4.2.23)



Chapter 4: Boundary Exponential Stabilization of 1-D Inhomogeneous Quasilinear
Hyperbolic Systems 117

Let

P = QTQ+

∫ 1

0

GT
2 (x) (Λ−(x))

−2 G2(x)dx. (4.2.24)

There exists a diagonal matrix S = diag(s1, · · · , sm) with sr > 0( r = 1, · · · ,m)
being large enough, such that

P ≺ S. (4.2.25)

where P ≺ S denotes that S − P is a positive-definite matrix. This yields

V̇0(t) ≤− γ−(t, 0)
T
(
B − S −MµeδC

)
γ−(t, 0)− (δ − 1)

∫ 1

0

e−δxγ+(t, x)
Tγ+(t, x)dx

− (δ −mMµ)

∫ 1

0

eδxγ−(t, x)
TBγ−(t, x)dx.

Thus, for any given λ > 0, picking

δ > max {λµ+mMµ, λµ+ 1} (4.2.26)

br >




Mµeδ

m∑
j=r+1

bj + sr, 1 ≤ r ≤ m− 1

sm, r = m.

(4.2.27)

we have

V̇0 ≤ −λV0 (4.2.28)

where λ can be chosen as large as desired. It is easy to see that Parameter matrix B
does exist, since one can easily check (4.2.27) by induction. This shows exponential
stability of γ system.

To show finite-time convergence to the origin, one can find the explicit solution
of (4.2.8)-(4.2.10) as follows. Define

φi(x) =

∫ x

0

1

|λi(ξ)|
dξ, 1 ≤ i ≤ n. (4.2.29)

Notice that every φi(1 ≤ i ≤ n) is monotonically increasing C2 functions of x, and
thus invertible. With the same statement in [26] and noting (4.2.8)-(4.2.12), one can
express the explicit solution of γ1 by

γ1(t, x) =

{
γ1(0, φ

−1
1 (φ1(x) + t)) if t < φ1(1)− φ1(x),

0 if t ≥ φ1(1)− φ1(x)
(4.2.30)
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Notice in particular that γ1 is identically zero for t ≥ φ1(1). From (4.2.8) and (4.2.12),
we obtain that γ2(t, x) satisfies the following equation for t ≥ φ1(1)

∂tγ2(t, x) + λ2(x)∂xγ2(t, x) = 0, (4.2.31)

with

γ2(t, 1) = 0, (4.2.32)

which ensures the explicit expression of γ2(t, x) to be

γ2(t, x) =

{
γ2(φ1(1), φ

−1
2 (φ2(x) + t)) if φ1(1) < t < φ1(1) + φ2(1)− φ2(x),

0 if t ≥ φ1(1) + φ2(1)− φ2(x).

(4.2.33)

Therefore, by induction, one has that γr(t, x)(2 ≤ r ≤ m) satisfies the following

equations, for t >
r−1∑
k=1

φk(1),

∂tγr(t, x) + λr(x)∂xγr(t, x) = 0, (4.2.34)

with the boundary condition

γr(t, 1) = 0. (4.2.35)

Thus, when t >
r−1∑
k=1

φk(1), we have

γr(t, x) =





γr(
r−1∑
k=1

φk(1), φ
−1
r (φr(x) + t)) if

r−1∑
k=1

φk(1) < t <
r∑

k=1

φk(1)− φr(x),

0 if t ≥
r∑

k=1

φk(1)− φr(x).

(4.2.36)

This yields that γ−(t, x) ≡ 0
(
t >

m∑
k=1

φk(1)
)
. From the time t =

m∑
k=1

φk(1) on, we find

γ+ becomes the solution of the following system

∂tγ+(t, x) + Λ+(x)∂xγ+(t, x) = 0 (4.2.37)

with

x = 0 : γ+(t, 0) ≡ 0. (4.2.38)
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Since (4.2.37)-(4.2.38) is a completely decoupled system, by the characteristic method,
after t = tF , where

tF = φm+1(1) +
m∑

r=1

φr(1) =

∫ 1

0

1

λm+1(s)
+

m∑

r=1

1

|λr(s)|
ds, (4.2.39)

one can see that γ+(t, x) ≡ 0(t ≥ tF ), which concludes the Proof of Proposition
4.2.1.

4.2.2 Backstepping transformation and Kernel Equations

To map the original system (4.2.1) into the target system (4.2.8), we use the
following Volterra transformation of the second kind, which is similar to the one in
[26] and [31]:

γ(t, x) = w(t, x)−
∫ x

0

K(x, ξ)w(t, ξ)dξ. (4.2.40)

We point out here that this transformation yields that w(t, 0) ≡ γ(t, 0) (∀t > 0),
which is crucial to design our feedback law.

Utilizing (4.2.1) and straightforward computations, one can show that

γt + Λ(x)γx =−
∫ x

0

(
Kξ(x, ξ)Λ(ξ) + Λ(x)Kx(x, ξ) +K(x, ξ)Σ(ξ) +K(x, ξ)Λξ(ξ)

)
w(t, ξ)dξ

+
(
Σ(x) +K(x, x)Λ(x)− Λ(x)K(x, x)

)
w(t, x)−K(x, 0)Λ(0)

(
I 0
Q 0

)
w(t, 0)

(4.2.41)

The original system (4.2.1) is mapped into the target system (4.2.8) if one has the
following kernel equations:

Λ(x)Kx(x, ξ) +Kξ(x, ξ)Λ(ξ) +K(x, ξ)Σ(ξ) +K(x, ξ)Λξ(ξ) = 0 (4.2.42)

Σ(x) +K(x, x)Λ(x)− Λ(x)K(x, x) = 0 (4.2.43)

G(x) = −K(x, 0)Λ(0)
(

I 0
Q 0

)
(4.2.44)

Developing equations (4.2.42)–(4.2.44) leads to the following set of kernel PDEs

λi(x)∂xKij(x, ξ) + λj(ξ)∂ξKij(x, ξ) = −
n∑

k=1

(
σkj(ξ) + δkjλ

′
j(ξ)

)
Kik(x, ξ) (4.2.45)
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along with the following set of boundary conditions

Kij(x, x) =
σij(x)

λi(x)− λj(x)
∆
= kij(x) for 1 ≤ i, j ≤ n(i 6= j), (4.2.46)

Kij(x, 0) = −
1

λj(0)

n−m∑

k=1

λm+k(0)Ki,m+k(x, 0)qk,j for 1 ≤ i ≤ j ≤ m. (4.2.47)

To ensure well-posedness of the kernel equations, we add the following artificial
boundary conditions for Kij(m ≥ i > j ≥ 1, n ≥ j > i ≥ m+ 1) on x = 1:

Kij(1, ξ) = k
(1)
ij (ξ), for 1 ≤ j < i ≤ m ∪ m+ 1 ≤ i < j ≤ n (4.2.48)

and the boundary conditions for Kij(n ≥ i ≥ j ≥ m+ 1) on ξ = 0:

Kij(x, 0) = k
(2)
ij (x), for m+ 1 ≤ j ≤ i ≤ n. (4.2.49)

where k
(1)
ij and k

(2)
ij are chosen as functions of C∞[0, 1] satisfying the C1 compatibility

conditions at the point (x, ξ) = (1, 1) (see Remark 4.2.1). The equations evolve
in the triangular domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. By Theorem 4.5.1, one
finds that there exists a unique piecewise C2(T ) solution K(x, ξ) to (4.2.45)-(4.2.49)
with K(x, x), K(x, 0) ∈ C1(0, 1), provided that σij(x) are C

2[0, 1], λi(x) are C
2[0, 1].

While G(x) ∈ C1 (with bounded C1 norm) is given by (4.2.44) under the well-
posedness of K(x, 0), which is proved in Theorem 4.5.1.

Remark 4.2.1 The C1 compatibility conditions at the point (x, ξ) = (1, 1) are
given by

kij(1) = k
(1)
ij (1), for 1 ≤ j < i ≤ m ∪ m+ 1 ≤ i < j ≤ n, (4.2.50)

k̇
(1)
ij (1) =

λi(1)k
′
ij(1) +

n∑
k=1

(
σkj(1) + δkjλ

′
j(1)

)
kik(1)

λi(1)− λj(1)
,

for 1 ≤ j < i ≤ m ∪m+ 1 ≤ i < j ≤ n.

(4.2.51)

4.2.3 The inverse transformation and stabilization for linear
system

Transformation (4.2.40) is a classical Volterra equation of the second kind, one
can check from Theorem 4.5.2 that there exists a unique piecewise C2(T ) matrix
function L(x, ξ) such that

w(t, x) = γ(t, x) +

∫ x

0

L(x, ξ)γ(t, ξ)dξ. (4.2.52)
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From the transformation (4.2.40) evaluated at x = 1, one gets the following feedback
control laws

Ui(t) =

∫ 1

0

n∑

j=1

Kij(1, ξ)wj(t, ξ)dξ, (i = 1, · · · ,m), (4.2.53)

which immediately leads to our feedback stabilization result for the linear system as
follows:

Theorem 4.2.1 The mixed initial-boundary value problem (4.2.1) with the bound-
ary conditions (4.2.6), the feedback control law (4.2.53) and initial condition

t = 0 : w(0, x) = w0(x), (4.2.54)

in which w0 ∈ (L2(0, 1))n, admits a (L2(0, 1))n solution w = w(t, x). Moreover, for
every η > 0, there exists c > 0 such that

‖w(·, t)‖L2 ≤ ce−ηt‖w0‖L2 . (4.2.55)

In fact, w vanishes in finite time t > tF , where tF is given by (4.2.15).

Remark 4.2.2 If we focus on the linear problem, Λ and Σ can be assumed to be
C1([0, 1]) and C0([0, 1]) functions. The corresponding kernels K and L are then both
functions of L∞(T ).

4.3 Backstepping boundary control design for non-

linear system

As mentioned in [26], we wish the linear controller (4.2.53) designed by backstep-
ping method to work locally for the corresponding nonlinear system. Let us show
that this is indeed the case. Introduce

ϕi(x) := exp
(
−
∫ x

0

fii(s)

Λi(s)
ds
)

i = 1, · · · , n. (4.3.1)

One can make the following coordinates transformation

w(t, x) =




ϕ1(x)
. . .

ϕn(x)


u(t, x) = Φ(x)u(t, x). (4.3.2)
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Then the original control system u is transformed into the following system expressed
in the new coordinates:

wt(t, x) + A(x, w)wx(t, x) = F̃ (x, w), (4.3.3)

in which

A(x, w) = Φ(x)A(x,Φ−1(x)w)Φ−1(x), (4.3.4)

F̃ (x, w) = Φ(x)F (x,Φ−1(x)w)− A(x, w)




f11(x)
Λ1(x)

. . .
fnn(x)
Λn(x)


w. (4.3.5)

Obviously, one can check that

F̃ (x, 0) = 0, (4.3.6)

A(x, 0) = Φ(x)A(x, 0)Φ−1(x) = A(x, 0). (4.3.7)

Moreover, define

Σ(x) =
∂F̃ (x, w)

∂w

∣∣∣∣
w=0

, (4.3.8)

we have that

Σij(x) =

{
ϕi(x)
ϕj(x)

fij(x), i 6= j,

0, i = j.
(4.3.9)

Therefore, we may rewrite (4.3.3) as a linear system with the same structure as (4.2.1)
plus nonlinear terms:

wt(t, x) + Λ(x)wx(t, x) = Σ(x)w(t, x) + ΛNL(x, w)wx(t, x) + fNL(x, w), (4.3.10)

where

Λ(x) = A(x, 0), (4.3.11)

and

ΛNL(x, w) = Λ(x)− A(x, w), fNL(x, w) = F̃ (x, w)− Σ(x)w(t, x). (4.3.12)

For the boundary conditions of the system (4.3.10), defining

Q =
(∂Gs

∂ur

)
(n−m)×m

∣∣∣∣
u=0

and GNL(w−(t, 0)) = G(w−(t, 0))−Qw−(t, 0), (4.3.13)
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one obtains that

x = 0 : w+(t, 0) = Qw−(t, 0) +GNL(w−(t, 0)) (4.3.14)

and

x = 1 : w−(t, 1) = U(t). (4.3.15)

where

U(t) =




ϕ1(1)
. . .

ϕm(1)


H(t) = Φ̃(1)H(t). (4.3.16)

It is easily verified that

Λ(x, 0) = 0, fNL(x, 0) =
∂fNL

∂w
(x, 0) = 0 (4.3.17)

and

GNL(0) =
∂GNL

∂w
(0) = 0. (4.3.18)

Thus, the feedback control law can be chosen as

hr(t) = Φ̃−1rr (1)Ur(t) = Φ̃−1rr (1)

∫ 1

0

n∑

j=1

Krj(1, ξ)Φ̃jj(ξ)uj(t, ξ)dξ, r = 1, · · · ,m

(4.3.19)

where the kernels are computed from (4.2.45)–(4.2.49) with the coefficients Σ(x)
and Λ(x) obtained from (4.3.9) and (4.3.11). One easily verifies that under the
assumptions of §4.1, both Σ and Λ are functions of C2.

Remark 4.3.1 The C1 compatibility conditions at the point (t, x) = (0, 1) for
system (4.1.1) with boundary conditions (4.3.15) should be

φr(1) =
n∑

j=1

∫ 1

0

k̃rj(ξ)φj(ξ)dξ r = 1, · · · ,m, (4.3.20)

fr(1, φ(1))−
n∑

j=1

arj(1, φ(1))φ
′
j(1) =

n∑

k=1

∫ 1

0

k̃rk(ξ)
(
fk(1, φ(1))−

n∑

j=1

akj(1, φ(1))φ
′
j(1)

)
r = 1, · · · ,m, (4.3.21)
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where k̃rk(ξ) are the elements of the matrix K̃(ξ) with

K̃(ξ) = Φ̃−1(1)K(1, ξ)Φ̃(ξ). (4.3.22)

Notice that (4.3.20)-(4.3.21) depend on the feedback control design, however, there
are no physical reasons that the initial data should satisfy them. In order to guarantee
the initial conditions independent of these artificial conditions, we, following [26],
modify the boundary controls on x = 1 as

x = 1 : ur = hr(t) + ar(t) + br(t) r = 1, · · · ,m, (4.3.23)

where ar and br are the state of the following dynamic systems

ȧr(t) = −drar(t), ḃr(t) = −d̃rbr(t) r = 1, · · · ,m (4.3.24)

with dr > 0, d̃r > 0 and dr 6= d̃r, r = 1, · · · ,m. By the modified control designs
(4.3.23), the compatibility conditions on x = 1 are rewritten by

φr(1) =
n∑

j=1

∫ 1

0

k̃rj(ξ)φj(ξ)dξ + ar(0) + br(0) r = 1, · · · ,m, (4.3.25)

fr(1, φ(1))−
n∑

j=1

arj(1, φ(1))φ
′
j(1) =

n∑

k=1

∫ 1

0

k̃rk(ξ)
(
fk(1, φ(1))−

n∑

j=1

akj(1, φ(1))φ
′
j(1)

)
− drar(0)− d̃rbr(0) r = 1, · · · ,m.

(4.3.26)

For any 1 ≤ r ≤ m, call

Pr(φ) = φr(1)−
n∑

j=1

∫ 1

0

k̃rj(ξ)φj(ξ)dξ (4.3.27)

Mr(φ) = fr(1, φ(1))−
n∑

j=1

arj(1, φ(1))φ
′
j(1)

−
n∑

k=1

∫ 1

0

k̃rk(ξ)
(
fk(1, φ(1))−

n∑

j=1

akj(1, φ(1))φ
′
j(1)

) (4.3.28)

Picking

ar(0) = −
Mr(φ) + d̃rPr(φ)

dr − d̃r
, br(0) =

drPr(φ) +Mr(φ)

dr − d̃r
(4.3.29)
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the compatibility conditions are automatically verified. Similar stabilization results as
Theorem 4.1.1 are still valid for the closed–loop system (4.1.1), (4.1.5) and (4.3.23)
(see [26, Theorem 4.1]). In fact, this dynamic extension is designed to avoid restric-
tion for artificial boundary conditions due to the compatibility conditions at the points
(t, x) = (0, 1), and it has been introduced in [17] to deal with the stabilization of the
Euler equations of incompressible fluids (see also [108]).

4.4 Proof of Theorem 4.1.1

In this section, we will prove the exponential stability for the system (4.1.1),
(4.1.5) and (4.1.6) under the boundary feedback controls (4.3.19) by Control Lya-
punov Function method. The whole proof is divided into the following steps.

4.4.1 Definitions

We first define some notations (omitting the time argument):

‖γ‖∞ := ess sup
x∈[0,1]

|γ(x)|, ‖γ‖Lp :=
(∫ 1

0

|γ(ξ)|pdξ
) 1

p

, 1 ≤ p < +∞. (4.4.1)

For a n× n matrix, denote

|M | := max{‖Mγ‖L∞ : γ ∈ R
n, |γ| = 1}. (4.4.2)

For a piecewise kernel matrix K(x, ξ), which is a continuous function on each domain
Di(i = 1, · · · ,S), respectively, with

T =
S⋃

i=1

Di, (4.4.3)

Di ∩Dj = ∅, (i 6= j). (4.4.4)

Let

‖K‖∞ := max
i

sup
(x,ξ)∈Di

|K(x, ξ)|. (4.4.5)

As before, we recall the following symbols of [26] for simplicity:

K[γ](t, x) = γ(t, x)−
∫ x

0

K(x, ξ)γ(t, ξ)dξ, (4.4.6)

L[γ](t, x) = γ(t, x) +

∫ x

0

L(x, ξ)γ(t, ξ)dξ, (4.4.7)
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K1[γ](t, x) = −K(x, x)γ(t, x) +
∫ x

0

Kξ(x, ξ)γ(t, ξ)dξ, (4.4.8)

K2[γ](t, x) = −K(x, x)γ(t, x)−
∫ x

0

Kx(x, ξ)γ(t, ξ)dξ, (4.4.9)

L1[γ](t, x) = L(x, x)γ(t, x) +

∫ x

0

Lx(x, ξ)γ(t, ξ)dξ. (4.4.10)

Define F1[γ] and F2[γ] as

F1[γ] := ΛNL(x,L[γ]), F2[γ] := fNL(x,L[γ]). (4.4.11)

To prove our result, we notice that if we apply the (inverse) backstepping transfor-
mation (4.2.40) to the nonlinear system (4.3.10), we obtain the following transformed
system

γt(t, x) + Λ(x)γx(t, x)−G(x)γ(t, 0)

=K[ΛNL(x, w)wx] +K[fNL(x, w)]

=K[ΛNL(x, w)γx] +K[ΛNL(x, w)L1[γ]] +K[fNL(x, w)]

=F3[γ, γx] + F4[γ]

(4.4.12)

where

F3 = K[F1[γ]γx],

F4 = K[F1[γ]L1[γ] + F2[γ]].

The boundary conditions are

x = 0 : γ+(t, 0) = Qγ−(t, 0) +GNL(γ−(t, 0)) (4.4.13)

and

x = 1 : γ−(t, 1) = 0. (4.4.14)

Notice that here we may lose the regularity on the point (0, 0) for the kernels K
and L, which leads both of them to be discontinuous (see [54]). However, by the
assumptions on the coefficients and applying Theorem 4.5.1 and Theorem 4.5.2, the
direct and inverse transformations (4.2.40) and (4.2.52) have C2 piecewise kernels
functions. Fortunately, differentiating twice with respect to x in these transforma-
tions, by the similar argument in [26] and [108, Proposition 3.1] as well as the additive
property of the integral, it can be shown that the H2 norm of γ is equivalent to the
H2 norm of w. Thus, if we show H2 local stability of the origin for (4.4.12)-(4.4.14),
the same holds for w i.e. u.

In order to get the desired H2 estimation for γ, the things left are just estimating
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the growth of ‖γ‖L2 , ‖γt‖L2 and ‖γtt‖L2 , respectively.

4.4.2 Analyzing the growth of ‖γ‖L2

Let

F3[γ, γx] =
(
F−3 [γ, γx], F

+
3 [γ, γx]

)T
, F4[γ] =

(
F−4 [γ], F

+
4 [γ]

)T
. (4.4.15)

where F−3 and F−4 ∈ R
m, F+

3 and F+
4 ∈ R

n−m.

Define

V1(t) =

∫ 1

0

e−δxγ+(t, x)
T (Λ+(x))

−1 γ+(t, x)dx−
∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 γ−(t, x)dx

(4.4.16)

Differentiating V1 with respect to time and integrating by parts yields

V̇1(t) = V + V I + V II + V III + IX +X

with

V =
[
−e−δxγ+(t, x)Tγ+(t, x) + eδxγ−(t, x)

TBγ−(t, x)
]1
0

V I =−
∫ 1

0

δe−δxγ+(t, x)
Tγ+(t, x)dx−

∫ 1

0

δeδxγ−(t, x)
TBγ−(t, x)dx

V II =2

∫ 1

0

e−δxγ+(t, x)
T (Λ+(x))

−1 G2(x)γ−(t, 0)dx

V III =− 2

∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 G1(x)γ−(t, 0)dx

IX =2

∫ 1

0

e−δxγ+(t, x)
T (Λ+(x))

−1 (F+
3 [γ, γx] + F+

4 [γ]
)
dx

X =− 2

∫ 1

0

eδxγ−(t, x)
TB (Λ−(x))

−1 (F−3 [γ, γx] + F−4 [γ]
)
dx

By the same argument in [26] and noting Lemma 4.6.2, we have

IX +X ≤ K1

∫ 1

0

|γ|(|F3[γ, γx]|+ |F4[γ]|)dx

≤ K2(‖γx‖∞V1 + V
3
2
1 ).

(4.4.17)
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Moreover, for ‖γ‖∞ ≤ δ, |GNL(γ−(t, 0))| ≤ K3|γ−(t, 0)|, then

V = −e−δγ+(t, 1)Tγ+(t, 1) + eδγ−(t, 1)
TBγ−(t, 1) + γ+(t, 0)

Tγ+(t, 0)− γ−(t, 0)
TBγ−(t, 0)

≤ −γ−(t, 0)T
(
B −QTQ−K2

3Im

)
γ−(t, 0)

(4.4.18)

By (4.2.19) and (4.2.20), one immediately obtains

V̇1(t) ≤− γ−(t, 0)
T
(
B − S̃ −MµeδC

)
γ−(t, 0)− (δ − 1)

∫ 1

0

e−δxγ+(t, x)
Tγ+(t, x)dx

− (δ −mMµ)

∫ 1

0

eδxγ−(t, x)
TBγ−(t, x)dx+K2

(
V

3
2
1 + ‖γx‖∞V1

)

where M, C, µ are given by (4.2.21) and (4.2.23), S̃ := S + K2
3Im with S stated in

(4.2.25). Thus, for any given λ1 > 0, picking

δ > max {λ1µ+mMµ, λ1µ+ 1} (4.4.19)

br :=




Mµeδ

m∑
j=r+1

bj + s̃r, 1 ≤ r ≤ m− 1

s̃m, r = m.

(4.4.20)

we have the following

Proposition 4.4.1 For any given λ1 > 0, there exists δ1 > 0 and K2 > 0, such
that

V̇1 ≤ −λ1V1 +K2

(
V

3
2
1 + ‖γx‖∞V1

)
, (4.4.21)

provided ‖γ‖∞ ≤ δ1.

4.4.3 Analyzing the growth of ‖γt‖L2

Let ζ = γt. Taking the partial derivative with t in (4.4.12) yields:

ζt(t, x) + (Λ(x)− F1[γ])ζx(t, x)−G(x)ζ(t, 0) = F5[γ, γx, ζ] + F6[γ, ζ], (4.4.22)

where

F5 = K1[F1[γ]ζ] +

∫ x

0

K(x, ξ)F12[γ, γx]ζ(ξ)dξ +K(x, 0)ΛNL(0, γ(0))ζ(0) +K[F11[γ, ζ]γx],

(4.4.23)

F6 = K[F11[γ, ζ]L1[γ]] +K[F1[γ]L1[ζ]] +K[F21[γ, ζ]], (4.4.24)
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with

F11 =
∂ΛNL

∂γ
(x,L[γ])L[ζ],

F12 =
∂ΛNL

∂γ
(x,L[γ])(γx + L1[γ]) +

∂ΛNL

∂γ
(x,L[γ]),

(4.4.25)

and

F21 =
∂fNL

∂γ
(x,L[γ])L[ζ]. (4.4.26)

The boundary conditions are given by

x = 0 : ζ+(t, 0) = Qζ−(t, 0) +
∂GNL

∂γ−

(
γ−(t, 0)

)
ζ−(t, 0) (4.4.27)

and

x = 1 : ζ−(t, 1) = 0, (4.4.28)

in which ζ− ∈ R
m, ζ+ ∈ R

n−m are defined by requiring that ζ := (ζ−, ζ+)
T .

Similarly as in [26], we need the following lemma in order to find a Lyapunov
function for ζ(t, x):

Lemma 4.4.1 There exists δ > 0 such that, for any ‖γ‖∞ ≤ δ, there exists a
symmetric matrix R[γ] satisfying the identity

R[γ](Λ(x)− F1[γ])− (Λ(x)− F1[γ])
TR[γ] = 0. (4.4.29)

Moreover, we have that

|R[γ](x)| ≤ c1 + c2‖γ‖∞, (4.4.30)∣∣∣
(
(R[γ]−D(x))Λ(x)

)
x

∣∣∣ ≤ c2(‖γ‖∞ + ‖γx‖∞) (4.4.31)

|(R[γ])t| ≤ c3(|ζ|+ ‖ζ‖L1), (4.4.32)

where c1, c2 and c3 are positive constants, and

D(x) =

(
−eδxB(Λ−(x))−1 0

0 e−δx(Λ+(x))
−1

)
. (4.4.33)

Proof: Denote Dn(x) as the set of n × n diagonal matrices with C1 elements. Let
Λ(x) := diag(Λ1(x), · · · ,Λn(x)) ∈ Dn(x) be such that Λi(x) 6= Λj(x)(i 6= j∀x ∈
[0, 1]) holds. Notice that D ∈ Dn(x). Based on the proof in [21, Lemma 4.1],
one can easily see that there exist a positive real number η and a map N : {M ∈



130 4.4. Proof of Theorem 4.1.1

Mn,n(R; x); ‖M(x)− Λ(x)‖C1 < η} → Sn of class C∞ such that

N (Λ(x)) = D(x), (4.4.34)

and

N (M)M −MTN (M) = 0 ∀M ∈Mn,n(R; x), ‖M(x)− Λ(x)‖C1 < η. (4.4.35)

It then suffices to define R[γ] by

R[γ] = N (Λ(x)− F1[γ]). (4.4.36)

Moreover, by the regularity of N and Lemma 4.6.2–4.6.3, one can show that

|R[γ]| ≤ |D(x)|+ |R[γ]−D(x)|
≤ c4 + c5|F1[γ]|
≤ c4 + c6‖γ‖∞,

(4.4.37)

∣∣∣
(
(R[γ]−D(x))Λ(x)

)
x

∣∣∣ ≤ |(R[γ]−D(x))xΛ(x)|+ |(R[γ]−D(x))Λx(x)|
≤ c7|F12|+ c8|F1|
≤ c9(‖γ‖∞ + ‖γx‖∞)

(4.4.38)

and

|R[γ]t| ≤ c10

∣∣∣∂F1[γ]

∂t

∣∣∣ (4.4.39)

≤ c10|F11[γ, ζ]| (4.4.40)

≤ c11(|ζ|+ ‖ζ‖L1). (4.4.41)

This concludes the proof of Lemma 4.1.

Define

V2(t) =

∫ 1

0

ζT (t, x)R[γ]ζ(t, x)dx. (4.4.42)

Using (4.4.29) and straightforward computations, one can show that

V̇2(t) = XI +XII +XIII +XIV +XV

with

XI =

∫ 1

0

ζT (t, x)(R[γ](Λ(x)− F1[γ]))xζ(t, x)dx
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XII =− [ζT (t, x)R[γ](Λ(x)− F1[γ])ζ(t, x)]
x=1
x=0

XIII =

∫ 1

0

ζ(t, x)(R[γ])tζ(t, x)dx

XIV =2

∫ 1

0

ζT (t, x)R[γ]F5[γ, γx, ζ, ζx]dx+ 2

∫ 1

0

ζT (t, x)R[γ]F6[γ, ζ]dx

XV =2

∫ 1

0

ζT (t, x)R[γ]G(x)ζ(t, 0)dx.

For XII and XV , by the boundary conditions (4.4.27)–(4.4.28), we have

XII +XV = −[ζT (t, x)(D(x) + Θ[γ])(Λ(x)− F1[γ])ζ(t, x)]
x=1
x=0

+ 2

∫ 1

0

ζT (t, x)(D(x) + Θ[γ])G(x)ζ(t, 0)dx

= −[ζT (t, x)(D(x)Λ(x) + Θ[γ]Λ(x)−D(x)F1[γ]−Θ[γ]F1[γ])ζ(t, x)]
x=1
x=0

+ 2

∫ 1

0

ζT (t, x)D(x)G(x)ζ(t, 0)dx+ 2

∫ 1

0

ζT (t, x)Θ[γ]G(x)ζ(t, 0)dx

≤ −ζ−(t, 0)T
(
B − S̃ −MµeδC −K3‖γ‖∞Im

)
ζ−(t, 0)

+

∫ 1

0

e−δxζ+(t, x)
T ζ+(t, x)dx+mMµ

∫ 1

0

eδxζ−(t, x)
TBζ−(t, x)dx

+K4‖γ‖∞V2

As stated in [26], we obtain

XI ≤ −λ2V2 +K4‖ζ‖2L2(‖γ‖∞ + ‖γx‖∞), (4.4.43)

XIII ≤ K5‖ζ‖2L2‖ζ‖∞, (4.4.44)

XIV ≤ K6

(
‖ζ‖2L2(‖γ‖∞ + ‖γx‖∞) + ‖ζ‖L2 |ζ(t, 0)||γ(t, 0)|

)
. (4.4.45)

Following Lemma 4.6.5, we are in the position to conclude that

Proposition 4.4.2 For any given λ2 > 0, there exists δ2 > 0 and K7 > 0, such
that

V̇2 ≤ −λ2V2 +K7

(
‖ζ‖∞ + ‖γ‖∞

)
V2, (4.4.46)

provided that ‖γ‖∞ ≤ δ2.
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4.4.4 Analyzing the growth of ‖γtt‖L2

We next deal with ‖γtt‖L2 . Define θ = γtt. Taking a partial derivative with respect
to t for (4.4.22), one obtains an equation of θ:

θt + [Λ(x)− F1[γ]]θx = G(x)θ(t, 0) + F7[γ, γx, ζ, ζx, θ] + F8[γ, ζ, θ], (4.4.47)

where

F7 = K1[F11[γ, ζ]ζ] +

∫ x

0

K(x, ξ)F12[γ, γx]θ(ξ)dξ +K1[F1[γ]θ]

+

∫ x

0

K(x, ξ)F14[γ, γx, ζ, ζx]ζ(ξ)dξ +K(x, 0)
∂ΛNL

∂γ
(0, γ(0))ζ(0)ζ(0)

+K(x, 0)ΛNL(0, γ(0))θ(0) +K[F11[γ, ζ]ζx] +K[F13[γ, ζ, θ]γx],

(4.4.48)

F8 = 2K[F11[γ, ζ]L1[ζ]] +K[F1[γ]L1[θ]] +K[F13[γ, ζ, θ]L1[γ]] +K[F22[γ, ζ, θ]]
(4.4.49)

with

F13 =
∂Λ2

NL

∂γ2
(x,L[γ])L[ζ]L[ζ] + ∂ΛNL

∂γ
(x,L[γ])L[θ], (4.4.50)

F14 =
∂Λ2

NL

∂γ2
(x,L[γ])L[ζ](γx + L1[γ]) +

∂ΛNL

∂γ
(x,L[γ])(ζx + L1[ζ])

+
∂2ΛNL

∂x∂γ
(x,L[γ])L[ζ],

(4.4.51)

F22 =
∂2fNL

∂γ2
(x,L[γ])L[ζ]L[ζ] + ∂fNL

∂γ
(x,L[γ])L[θ]. (4.4.52)

The boundary conditions of θ are given by

x = 0 : θ+(t, 0) = Qθ−(t, 0) +
∂GNL

∂γ−

(
γ−(t, 0)

)
θ−(t, 0)

+
∂2GNL

∂γ2−

(
γ−(t, 0)

)
ζ−(t, 0)ζ−(t, 0)

(4.4.53)

and

x = 1 : θ−(t, 1) = 0. (4.4.54)

where θ− ∈ R
m, θ+ ∈ R

n−m are defined by requiring that θ := (θ−, θ+)
T .

In order to control ‖θ‖L2 , we introduce

V3(t) =

∫ 1

0

θT (t, x)R[γ]θ(t, x)dx, (4.4.55)
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then it is easy to see that

V̇3(t) = XV I +XV II +XV III +XIX +XX (4.4.56)

with

XV I =

∫ 1

0

θT (t, x)(R[γ](Λ(x)− F1[γ]))xθ(t, x)dx

XV II =− [θT (t, x)R[γ](x)(Λ(x)− F1[γ](x))θ(t, x)]
x=1
x=0

XV III =+

∫ 1

0

θT (t, x)(R[γ])tθ(t, x)dx

XIX =+ 2

∫ 1

0

θT (t, x)R[γ]F7[γ, γx, ζ, ζx, θ]dx+ 2

∫ 1

0

θT (t, x)R[γ]F8[γ, ζ, θ]dx

XX =+ 2

∫ 1

0

θT (t, x)R[γ]G(x)θ(t, 0)dx.

Let us first look at the second and the last term of (4.4.56)(i.e. XVII and XX), by
some straight computations, one gets

XV II +XX ≤− θ−(t, 0)
T
(
B − S̃ −MµeδC −K8‖γ‖∞Im

)
θ−(t, 0)

+

∫ 1

0

e−δxθ+(t, x)
T θ+(t, x)dx+mMµ

∫ 1

0

eδxθ−(t, x)
TBθ−(t, x)dx

+K9‖γ‖∞V3
(4.4.57)

Then by the same procedures in [26], we have the following

Proposition 4.4.3 For any given λ3 > 0, there exists δ3 > 0 and positive con-
stants K10, K11, K12, K13 and K14, such that

V̇3 ≤ −λ3V3 +K10‖γ‖∞V3 +K11V3V
1
2
2 +K12V2V

1
2
3 +K13V

3
2
3 +K14‖ζ‖3∞, (4.4.58)

provided that ‖γ‖∞ + ‖ζ‖∞ ≤ δ3.

4.4.5 Proof of the H2 stability for γ

Denote W = V1+ V2+ V3, by Proposition 4.4.1, 4.4.2 and 4.4.3 as well as Lemma
4.6.7, one can show that for any given λ > 0, there exists δ > 0 and K15 > 0, such
that

Ẇ ≤ −λW +K15W
3
2 , (4.4.59)
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provided that ‖γ‖∞ + ‖ζ‖∞ ≤ δ. This concludes the whole proof of Theorem 4.1.1.

4.5 Appendix A

In this section, we will show the well-posedness and piecewise smoothness of the
Kernel K and L which are given by the following Theorems.

Theorem 4.5.1 Let N ∈ N
+. Under the assumption that σij ∈ CN [0, 1], λi ∈

CN [0, 1](i, j = 1, · · · , n), there exists a unique piecewise CN(T ) solution K to the
hyperbolic system (4.2.45)-(4.2.49). Moreover, if the CN−1 compatibility conditions at
the point (x, ξ) = (1, 1) are satisfied, then K(·, ·) ∈ CN−1(0, 1), K(·, 0) ∈ CN−1(0, 1)
with bounded CN−1 norm.

Proof. We divided the proof into two parts. For the first part, we prove the regularity
of the kernels. For this, we only prove the case N = 1. For N ≥ 1, the results can
be obtained by induction. In the case N = 1, one can, in fact, refer [54] and Remark
4.5.1 to find there exists a piecewise C0 kernel K for the boundary problem (4.2.45)-
(4.2.49), where though only constant coupling coefficients and transport velocities
are considered. However, the method in [54] straightforwardly extends to spatially
varying coefficients with more involved technical developments. Next, we will improve
the regulality of K. Let Hij = ∂xKij(x, ξ) and Yij = ∂ξKij(x, ξ). By differentiating
with respect to x in (4.2.45), one can show that

λi(x)∂xHij(x, ξ) + λj(ξ)∂ξHij(x, ξ) = −
n∑

k=1

(
σkj(ξ) + δkjλ

′
j(ξ)

)
Hik(x, ξ)− λ′i(x)Hij(x, ξ).

(4.5.1)

Differentiating the boundary conditions in (4.2.46) and (4.2.47), we have

Hij(x, x) + Yij(x, x) = k′ij(x) for 1 ≤ i, j ≤ n(i 6= j), (4.5.2)

Hij(x, 0) = −
1

λj(0)

n−m∑

k=1

λm+k(0)Hi,m+k(x, 0)qk,j for 1 ≤ i ≤ j ≤ m. (4.5.3)

Next, differentiating the boundary conditions in (??)–(3.3.30), we have

Yij(1, ξ) = k̇
(1)
ij (ξ), for 1 ≤ j < i ≤ m ∪ m+ 1 ≤ i < j ≤ n (4.5.4)

and the boundary conditions for Hij(n ≥ i ≥ j ≥ m+ 1) on ξ = 0:

Hij(x, 0) = k̇
(2)
ij (x), for m+ 1 ≤ j ≤ i ≤ n. (4.5.5)
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In view of the equations (4.2.45), it is easy to see that

λi(x)Hij(x, x) + λj(x)Yij(x, x) = −
n∑

k=1

(
σkj(x) + δkjλ

′
j(x)

)
Kik(x, x) (4.5.6)

λi(1)Hij(1, ξ) + λj(ξ)Yij(1, ξ) = −
n∑

k=1

(
σkj(ξ) + δkjλ

′
j(ξ)

)
Kik(1, ξ) (4.5.7)

Combining (4.5.2) and (4.5.6), we have

Hij(x, x) =

λj(x)k
′
ij(x) +

n∑
k=1

(
σkj(x) + δkjλ

′
j(x)

)
Kik(x, x)

λj(x)− λi(x)
for 1 ≤ i, j ≤ n(i 6= j).

(4.5.8)

Similarly, plugging (4.5.7) into (4.5.4), one immediately obtains, for 1 ≤ j < i ≤
m ∪ m+ 1 ≤ i < j ≤ n, we have

Hij(1, ξ) = −
1

λi(1)

(
n∑

k=1

(
σkj(ξ) + δkjλ

′
j(ξ)

)
Kik(1, ξ) + λj(ξ)k̇

(1)
ij (ξ)

)
, (4.5.9)

which are piecewise C0(0, 1) function. By the theory in [54], we can prove that there
exists a unique piecewise H ∈ C0(T ) for the boundary value problem (4.5.1), (4.5.3),
(4.5.5) and (4.5.8)–(4.5.9). Noting the equations (4.2.45), we know that Y shares the
same regularity as H.

Next, we prove the regularity of K(·, 0). Obviously, for N = 1, by the theory
in [54] and Remark 4.5.1, one can prove that both K(·, ·) and K(·, 0) ∈ C0(0, 1)
with bounded C0 norm, provided that the C0 compatibility conditions (4.2.50) are
satisfied at the the point (x, ξ) = (1, 1). Next, we prove the case N = 2. Taking an
ξ-derivative in (4.2.45) yields

λi(x)∂xYij(x, ξ) + λj(ξ)∂ξYij(x, ξ) = −
n∑

k=1

(
σkj(ξ) + δkjλ

′
j(ξ)

)
Yik(x, ξ)− λ′j(ξ)Yij(x, ξ)

−
n∑

k=1

(
σ′kj(ξ) + δkjλ

′′
j (ξ)

)
Kik(x, ξ) (4.5.10)

Combining (4.5.2) and (4.5.6), we have

Yij(x, x) =

λi(x)k
′
ij(x) +

n∑
k=1

(
σkj(x) + δkjλ

′
j(x)

)
Kik(x, x)

λi(x)− λj(x)
for 1 ≤ i, j ≤ n(i 6= j).

(4.5.11)
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Since

λi(x)Hij(x, 0) + λj(0)Yij(x, 0) = −
n∑

k=1

(
σkj(0) + δkjλ

′
j(0)

)
Kik(x, 0) (4.5.12)

Plugging (4.5.3) and (4.5.5), respectively, one obtains

Yij(x, 0) = −
1

λj(0)

(
λi(x)k̇

(2)
ij (x) +

n∑

k=1

(
σkj(0) + δkjλ

′
j(0)

)
Kik(x, 0)

)
,

for m+ 1 ≤ j ≤ i ≤ n

(4.5.13)

and

Yij(x, 0) =−
1

λj(0)

n∑

k=1

(
σkj(0) + δkjλ

′
j(0)

)
Kik(x, 0) +

1

λ2j(0)

n−m∑

k=1

λ2m+k(0)qk,jYi,m+k(x, 0)

+
1

λ2j(0)

n−m∑

k=1

n∑

s=1

λm+k(0)qk,j
(
σs,m+k(0) + δs,m+kλ

′
m+k(0)

)
Kis(x, 0)

for 1 ≤ i ≤ j ≤ m.

(4.5.14)

Noting (4.5.4), (4.5.11), (4.5.13) andK(·, 0) ∈ C0, we know that Yij(·, ·) ∈ C0(0, 1)(i 6=
j). Yij(1, ·) ∈ C0(0, 1)(for1 ≤ j < i ≤ m ∪ m + 1 ≤ i < j ≤ n) and Yij(·, 0) ∈
C0(0, 1)(for m + 1 ≤ j ≤ i ≤ n). By the C1 compatibility conditions (4.2.51) at the
point (x, ξ) = (1, 1) and using the theory in [54] and Remark 4.5.1, we can prove that
there exists a unique piecewise C0 function Y = Y(x, ξ) for the boundary value prob-
lem (4.5.10), (4.5.11), (4.5.13), (4.5.4) and (4.5.14), which satisfies Y(·, ·), Y(·, 0) ∈
C0(0, 1). Noting (4.5.12) and (4.5.6), we know that H(·, ·), H(·, 0) ∈ C0(0, 1). This
finishes the proof.

Remark 4.5.1 It is worthy of mentioning that in [54], we only prove K ∈ L∞(T )
and do not clarify the regularity of the kernel because of brevity purposes. How-
ever, with the same procedure in [26, Section A.3] and [31], one can prove that
K is a piecewise C0 function with K(·, ·), K(·, 0) ∈ C0(0, 1) and K(1, ·) being a
function of piecewise C0(0, 1) for the boundary problem (4.2.45)-(4.2.49), provided
σij ∈ C0[0, 1], λi ∈ C1[0, 1](i, j = 1, · · · , n) and the C0 compatibility conditions
(4.2.50) are satisfied at the the point (x, ξ) = (1, 1).

Theorem 4.5.2 Under the assumptions of Theorem 4.5.1, For any N ∈ N, there
exists a unique piecewise CN(T ) kernel L to the inverse transformation (4.2.52).
Moreover, L(x, x), L(x, 0) ∈ CN−1(0, 1).



Chapter 4: Boundary Exponential Stabilization of 1-D Inhomogeneous Quasilinear
Hyperbolic Systems 137

Proof. Substituting (4.2.40) for (4.2.52), it is easy to see that L is the solution of
the following Volterra equations

L(x, ξ) = K(x, ξ) +

∫ x

ξ

K(x, s)L(s, ξ)ds (4.5.15)

which yields that

L(x, x) = K(x, x) ∈ CN−1(0, 1). (4.5.16)

Noting (4.2.43), we have

Σ(x) + L(x, x)Λ(x)− Λ(x)L(x, x) = 0. (4.5.17)

Next, Taking a partial derivative in x and ξ in (4.5.15), respectively, one obtains

Lx(x, ξ) = Kx(x, ξ) +K(x, x)L(x, ξ) +

∫ x

ξ

Kx(x, ξ)L(s, ξ)ds, (4.5.18)

Lξ(x, ξ) = Kξ(x, ξ)−K(x, ξ)L(ξ, ξ) +

∫ x

ξ

K(x, s)Lξ(s, ξ)ds. (4.5.19)

Substituting (4.5.18) and (4.5.19) for (4.2.42) and using integration by parts, one has

Λ(x)Lx(x, ξ) + Lξ(x, ξ)Λ(ξ) =
(
Σ(x)− Λξ(ξ)

)
L(x, ξ) (4.5.20)

Again by (4.5.15), we have

L(x, 0) = K(x, 0) +

∫ x

0

K(x, s)L(s, 0)ds (4.5.21)

since both K(x, 0) and K(x, x) are CN−1 continuous functions, by a suitable itera-
tion procedure (see [87, Theorem 3.2, Pages 32–34]), it easy to see that there exists
L(x, 0) = l(x) ∈ CN−1(0, 1) for the Volterra equation of the second kind (4.5.21).

On the other hand, substituting (4.2.52) for (4.2.40), one gets

L(x, ξ) = K(x, ξ) +

∫ x

ξ

L(x, s)K(s, ξ)ds (4.5.22)

then

L(1, ξ) = K(1, ξ) +

∫ 1

ξ

L(1, s)K(s, ξ)ds (4.5.23)

With the same argument above, we can see that Lij(1, ξ) = l̃ij(ξ)(m ≥ i > j ≥ 1, n ≥
j > i ≥ m+1) on x = 1 are functions of piecewise CN(0, 1). Then, For the boundary
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problem (4.5.20) with the boundary conditions (4.5.17), and

Lij(1, ξ) = l̃ij(ξ), for 1 ≤ j < i ≤ m ∪ m+ 1 ≤ i < j ≤ n (4.5.24)

Lij(x, 0) = lij(x), for 1 ≤ i ≤ j ≤ m ∪ m+ 1 ≤ j ≤ i ≤ n. (4.5.25)

by Theorem 4.5.1, one immediately gets Theorem 4.5.2.

4.6 Appendix B

In this appendix, we first sketch out four useful lemmas (the details can be found
in [26]).

Lemma 4.6.1 There exists a positive real number c1, such that

|K[γ]|+ |L[γ]|+ |K1[γ]|+ |K2[γ]|+ |L1[γ]| ≤ c1(|γ|+ ‖γ‖L1). (4.6.1)

Lemma 4.6.2 Suppose ‖γ‖∞ is suitable small, one can see that

|F1| ≤ c2(|γ|+ ‖γ‖L1), (4.6.2)

|F2| ≤ c3(|γ|2 + ‖γ‖2L1), (4.6.3)

|F3| ≤ c4(|γ|+ ‖γ‖L1)(‖γx‖L2 + |γx|), (4.6.4)

|F4| ≤ c5(|γ|2 + ‖γ‖2L1). (4.6.5)

Lemma 4.6.3

|F11| ≤ c6(|ζ|+ ‖ζ‖L1), (4.6.6)

|F12| ≤ c7(|γx|+ |γ|+ ‖γ‖L1), (4.6.7)

|F21| ≤ c8(|γ|+ ‖γ‖L1)(|ζ|+ ‖ζ‖L1), (4.6.8)

|F5| ≤ c9(|ζ|+ ‖ζ‖L2)(|γ|+ ‖γ‖L2) + c10(|ζ|+ ‖ζ‖L2)((|γx|+ ‖γx‖L2)) + c11|γ(0)||ζ(0)|,
(4.6.9)

|F6| ≤ c12(|γ|+ ‖γ‖L2)(|ζ|+ ‖ζ‖L2). (4.6.10)

Lemma 4.6.4

|F13| ≤c13(|ζ|2 + ‖ζ‖2L2) + c14(|θ|+ ‖θ‖L1), (4.6.11)

|F14| ≤c14(|ζ|+ ‖ζ‖L1)(1 + |γx|+ |γ|+ ‖γ‖L1) + c15(|ζ|+ |ζx|+ ‖ζ‖L1), (4.6.12)

|F22| ≤c16(|γ|+ ‖γ‖L1)(|θ|+ ‖θ‖L1) + c17(|ζ|2 + ‖ζ‖2L2), (4.6.13)

|F7| ≤c18(|ζ|2 + ‖ζ‖2L2)(1 + |γ|+ ‖γx‖)
+ c19(|ζ|+ ‖ζ‖L2)(|ζx|+ ‖ζ‖L2) (4.6.14)



Chapter 4: Boundary Exponential Stabilization of 1-D Inhomogeneous Quasilinear
Hyperbolic Systems 139

+ c20(|γ|+ ‖γ‖L2 + |γx|)(|θ|+ ‖θ‖L2)

+ c21(|ζ(0)|2 + |γ(0)||θ(0)|),
|F8| ≤c22(|ζ|2 + ‖ζ‖2L2)(1 + ‖γ‖∞) + c23(|γ|+ ‖γ‖L2)(|θ|+ ‖θ‖L2). (4.6.15)

Next, we show the following proposition which is also mentioned in [26], however
here more technical developments are involved.

Proposition 4.6.1 There exists δ > 0 such that for any |γ|+ |ζ| ≤ δ, one has

‖θ‖∞ ≤ C1(‖γxx‖∞ + ‖γx‖∞ + ‖γ‖∞), (4.6.16)

‖θ‖L2 ≤ C2(‖γxx‖L2 + ‖γx‖L2 + ‖γ‖L2), (4.6.17)

‖γxx‖∞ ≤ C3(‖θ‖∞ + ‖ζ‖∞ + ‖γ‖∞), (4.6.18)

‖γxx‖L2 ≤ C4(‖θ‖L2 + ‖ζ‖L2 + ‖γ‖L2), (4.6.19)

where C1, C2, C3 and C4 are positive constants.

Proof. We prove the next three lemmas to get Proposition 4.6.1.

Lemma 4.6.5 There exists δ such that, if |γ| ≤ δ, then the following inequalities
hold:

‖ζ‖∞ ≤ c1(‖γx‖∞ + ‖γ‖∞) (4.6.20)

‖ζ‖L2 ≤ c2(‖γx‖L2 + ‖γ‖L2), (4.6.21)

‖γx‖∞ ≤ c3(‖ζ‖∞ + ‖γ‖∞), (4.6.22)

‖γx‖L2 ≤ c4(‖ζ‖L2 + ‖γ‖L2) (4.6.23)

Proof. Noting (4.4.12), one can easily see that

ζ(t, x) + Λ(x)γx(t, x)−G(x)γ(t, 0) = F3[γ, γx] + F4[γ] (4.6.24)

The difference between our proof and the proof in [26, Lemma B.6] is the appearance
of the term G(x)γ(t, 0) in (4.6.24). Noting (4.2.44) and Theorem 4.5.1, we have
G(·) ∈ C1(0, 1) with bounded C1 norm. Then since one can show that

‖G(·)γ(t, 0)‖L2 ≤ c5‖G(·)γ(t, 0)‖∞ ≤ c6‖γ‖∞ ≤ c7(‖γx‖L2 + ‖γ‖L2), (4.6.25)

which yields, by the same argument in [26, Lemma B.6], (4.6.20)-(4.6.22).

On the other hand, by the special structure of G(x), we have

‖∂xγ1‖L2 ≤ c8(‖ζ‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.26)

‖∂xγ2‖L2 ≤ c9(‖ζ‖L2 + ‖γ1‖∞ + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.27)

...
...

...
...
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‖∂xγm‖L2 ≤ cm+7(‖ζ‖L2 +
m−1∑

r=1

‖γr‖∞ + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.28)

‖∂xγs‖L2 ≤ cs+7(‖ζ‖L2 +
m∑

r=1

‖γr‖∞ + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞) (4.6.29)

in which s = m+ 1, · · · , n. Noting the classical Sobolev’s inequality

‖γ‖L∞ ≤ C̃
(
‖γ‖L2 + ‖γx‖L2

)
≤ C̃‖γ‖H1 , (4.6.30)

one gets that

‖∂xγ1‖L2 ≤ C1(‖ζ‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.31)

‖∂xγ2‖L2 ≤ C2(‖ζ‖L2 + ‖γ‖L2 + ‖∂xγ1‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.32)

...
...

...
...

‖∂xγm‖L2 ≤ Cm(‖ζ‖L2 + ‖γ‖L2 +
m−1∑

r=1

‖γr‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞), (4.6.33)

‖∂xγs‖L2 ≤ Cs(‖ζ‖L2 + ‖γ‖L2 +
m∑

r=1

‖γr‖L2 + ‖γx‖L2‖γ‖L∞ + ‖γ‖L2‖γ‖∞) (4.6.34)

where s = m+ 1, · · · , n. Then, we can easily obtain by induction that

‖γx‖L2 ≤ c̃1(‖ζ‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖L2‖γ‖∞ + ‖γ‖L2), (4.6.35)

which concludes (4.6.23), under the assumption that ‖γ‖∞ is small enough.

Combining the same technical approach as in [26, Lemma B.7 and Lemma B.8]
and an analogous argument used in the proof of Lemma 4.6.5 and noting G ∈ C1,
the details of which we omit, one can show the next two lemmas.

Lemma 4.6.6 There exists δ such that, if ‖γ‖∞ ≤ δ, then the following inequal-
ities hold:

‖γxx‖∞ ≤ c1(‖ζx‖∞ + ‖ζ‖∞ + ‖γ‖∞) (4.6.36)

‖γxx‖L2 ≤ c2(‖ζx‖L2 + ‖ζ‖L2 + ‖γ‖L2) (4.6.37)

‖ζx‖∞ ≤ c3(‖γxx‖∞ + ‖ζ‖∞ + ‖γ‖∞) (4.6.38)

‖ζx‖L2 ≤ c4(‖γxx‖L2 + ‖ζ‖L2 + ‖γ‖L2), (4.6.39)

where c1, c2, c3 and c4 are positive constants.

and
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Lemma 4.6.7 There exists δ such that, if ‖γ‖∞ + ‖ζ‖∞ ≤ δ, then the following
inequalities hold:

‖θ‖∞ ≤ c1(‖ζx‖∞ + ‖ζ‖∞ + ‖γ‖∞) (4.6.40)

‖θ‖L2 ≤ c2(‖ζx‖L2 + ‖ζ‖L2 + ‖γ‖L2) (4.6.41)

‖ζx‖∞ ≤ c3(‖θ‖∞ + ‖ζ‖∞ + ‖γ‖∞) (4.6.42)

‖ζx‖L2 ≤ c4(‖θ‖L2 + ‖ζ‖L2 + ‖γ‖L2), (4.6.43)

where c1, c2, c3 and c4 are positive constants.

The above three Lemma 4.6.5–4.6.7 immediately yield Proposition 4.6.1.
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Chapter 5

Exact Boundary Controllability
and Observability for a Coupled
System of Quasilinear Wave
Equations
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5.1 Introduction

There are many publications concerning the exact controllability for linear hy-
perbolic systems (see [88]-[100] and the references therein). As a special form of
second order hyperbolic equations, the exact boundary controllability for linear wave
equation was obtained in a complete manner (see [88]-[89]). Using the Hilbert Unique-
ness Method (HUM) suggested in [88]-[89], Zuazua [122]-[123], Emanuilov [37] and
Lasiecka &Triggiani [66] subsequently established the exact boundary controlla-
bility for some semilinear wave equations. In the quasilinear case, based on the
result on the semi-global C2 solution, by a direct constructive method, Li and Yu
established the local exact boundary controllability for single 1-D quasilinear wave
equation with boundary conditions of various types (see [70]-[83]). Later, this result
has been applied to get the exact boundary controllability of nodal profile and on a
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tree-like network for quasilinear wave equations respectively (see [43], [110]). For the
following second order quasilinear hyperbolic system

utt + A(u, ux, ut)utx +B(u, ux, ut)uxx = C(u, ux, ut) (5.1.1)

under some different hypothesis on matrices A, B and C, the corresponding local
exact boundary controllability was obtained by Yu [118] and Wang [109] respectively.

On the other hand, as a dual problem of controllability, the exact boundary
observability for wave equations has been widely studied (see [27], [67], [88]-[89]). In
fact, The essence of J.-L. Lions’s HUM is to use the duality to get the controllability by
a corresponding observability inequality. Based on the result on semi-global classical
solutions for quasilinear hyperbolic systems, by a constructive method, the exact
boundary observability for single quasilinear wave equation was established by Li (see
[72],[71]) and Guo(see [49]) respectively, and some implicit dualities have been shown
between the exact boundary controllability and the exact boundary observability in
the quasilinear case. As for the second order quasilinear hyperbolic system (5.1.1),
the corresponding local exact boundary observability was obtained by Yu [119] under
some hypothesis on matrices A, B and C.

In this chapter, we consider a kind of coupled system of 1-D quasilinear wave
equations, which can be rewritten in the form of second order quasilinear hyperbolic
systems discussed in [109] and [119], but the systems in [109] and [119] were too gen-
eral, which is not convenient to get the results we want. Therefore, for the coupled
system of quasilinear wave equations under consideration, we restudy its controllabil-
ity and observability and get brief results. In addition, the corresponding discussion
of exact boundary null controllability and weak observability are added. Based on
the existence and uniqueness of semi-global C1 solution and the local exact boundary
controllability and observability for first order quasilinear hyperbolic systems, by a
constructive method developed by Li (see [74] and [71] et.al.), we can obtain the local
exact boundary (null) controllability and (weak) observability for a coupled system
of quasilinear wave equations with boundary conditions of different types. The con-
clusions we get provide basis for studying the exact boundary synchronization for the
coupled system of wave equations (see [81]).

Consider the following the coupled system of 1-D quasilinear wave equations

∂2wi

∂t2
− a2i (w)

∂2wi

∂x2
+

n∑

j=1

aij(w)wj = 0, (5.1.2)

where w = (w1, . . . , wn)
T is the unknown vector function of (t, x), ai(w) and aij(w) (i, j

= 1, · · · , n) are all C1 functions of w on the domain under consideration, satisfying

ai(0) > 0, i = 1, · · · , n. (5.1.3)
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On one end x = 0, we prescribe any one of the following Dirichlet type, Neumann
type, Coupled third type and Coupled dissipative type boundary conditions:

x = 0 : wi = hi(t) (i = 1, · · · , n), (5.1.4a)

x = 0 :
∂wi

∂x
= hi(t) (i = 1, · · · , n), (5.1.4b)

x = 0 :
∂wi

∂x
−

n∑

j=1

bij(w)wj = hi(t) (i = 1, · · · , n), (5.1.4c)

x = 0 :
∂wi

∂x
−

n∑

j=1

cij(w)
∂wj

∂t
= hi(t) (i = 1, · · · , n), (5.1.4d)

where bij = bij(w) and cij = cij(w) are C
1 functions of w, hi(t) are C

2 functions (in
case(5.1.4a)) or C1 functions (in case(5.1.4b)-(5.1.4d)).

Similarly, on another end x = L, the boundary conditions are

x = L : wi = hi(t) (i = 1, · · · , n), (5.1.5a)

x = L :
∂wi

∂x
= hi(t) (i = 1, · · · , n), (5.1.5b)

x = L :
∂wi

∂x
+

n∑

j=1

bij(w)wj = hi(t) (i = 1, · · · , n), (5.1.5c)

x = L :
∂wi

∂x
+

n∑

j=1

cij(w)
∂wj

∂t
= hi(t) (i = 1, · · · , n), (5.1.5d)

where bij = bij(w) and cij = cij(w) are C
1 functions of w, hi(t) are C

2 functions (in
case(5.1.5a)) or C1 functions (in case(5.1.5b)-(5.1.5d)).

The initial conditions are given by

t = 0 : (w,wt) = (ϕ(x), ψ(x)), 0 ≤ x ≤ L, (5.1.6)

where ϕ = (ϕ1, · · · , ϕn)
T is a C2 vector function on [0, L], ψ = (ψ1, · · · , ψn)

T is a
C1 vector function on [0, L], they are all with small C2 norm or C1 norm, such that
the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) are satisfied
respectively.

Obviously, w = 0 is an equilibrium of system (5.1.2). Based on the theory of semi-
global C2 solution, by a constructive method (see [74] and [71]), we will establish local
exact boundary controllability and observability around w = 0.

This chapter is organized as follows. The existence and uniqueness of semi-global
C2 solution to the coupled system of quasilinear wave equations (5.1.2) with boundary
conditions (5.1.4) and (5.1.5) of different types will be presented in § 5.2. Based on
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this, in § 5.3, we obtain the corresponding local exact boundary (null) controllability
with boundary controls on one end or on two ends and in § 5.4, we obtain the
corresponding local exact boundary (weak) observability with observed values on one
end or on two ends.

5.2 Existence and Uniqueness of Semi-global C2

Solution

For the purpose of getting the local exact boundary controllability and observabil-
ity for system (5.1.2) with boundary conditions (5.1.4)-(5.1.5), we should first prove
the existence and uniqueness of semi-global C2 solution for mixed initial-boundary
value problem (5.1.2) and (5.1.4)-(5.1.6). In order to get it in a unified way, the best
way is to reduce the equations to a first order quasilinear hyperbolic system and use
the corresponding results of semi-global C1 solution.

Setting

ui =
∂wi

∂x
, vi =

∂wi

∂t
(i = 1, · · · , n), (5.2.1)

u = (u1, · · · , un)T , v = (v1, · · · , vn)T , (5.2.2)

equations (5.1.2) can be reduced to the following first order quasilinear system





∂w
∂t
= v,

∂u
∂t
− ∂v

∂x
= 0,

∂v
∂t
− Λ2(w)∂u

∂x
= −A(w)w,

(5.2.3)

where Λ(w) = diag{a1(w), · · · , an(w)} and A(w) = (aij(w))n×n. Its equivalent ma-
trix form can be written as

∂

∂t




w
u
v


+




0 0 0
0 0 −In
0 −Λ2(w) 0


 ∂

∂x




w
u
v


 =




v
0

−A(w)w


 . (5.2.4)

The characteristic equation of (5.2.3) or (5.2.4) is

det




λIn 0 0
0 λIn In
0 Λ2(w) λIn


 = λn|λ2In − Λ2(w)| = 0, (5.2.5)

whose solutions, the real eigenvalues of system (5.2.3) or (5.2.4), are

λ−i = −ai(w), λ0i = 0, λ+i = ai(w) (i = 1, · · · , n), (5.2.6)
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the corresponding left eigenvectors, which constitute a complete set, can be chosen
as

l−i = (0, ai(w)ei, ei), l
0
i = (ei,0,0), l

+
i = (0,−ai(w)ei, ei), (i = 1, · · · , n), (5.2.7)

in which 0 = (0, · · · , 0) is the n − D zero vector, ei = (0, · · · ,
(i)

1 , · · · , 0) is a n − D
row vector. Thus, (5.2.3) or (5.2.4) reduced from the system (5.1.2) is a first order
quasilinear hyperbolic system.

Let

U = (w, u, v)T . (5.2.8)

Setting diagonal variables as





V −i = l−i U = ai(w)ui + vi,

V 0
i = l0iU = wi,

V +
i = l+i U = −ai(w)ui + vi,

(i = 1, · · · , n), (5.2.9)

namely, 



V − = Λ(w)u+ v,

V 0 = w,

V + = −Λ(w)u+ v,

(5.2.10)

we have 



w = V 0,

u = 1
2
Λ−1(V 0)(V − − V +),

v = 1
2
(V − + V +).

(5.2.11)

When equations (5.1.2) are reduced to system (5.2.3) or (5.2.4), the boundary
conditions (5.1.4) will be correspondingly replaced by

x = 0 : v = Ḣ(t), (5.2.12a)

x = 0 : u = H(t), (5.2.12b)

x = 0 : u− B(w)w = H(t), (5.2.12c)

x = 0 : u− C(w)v = H(t), (5.2.12d)

in which H(t) = (h1(t), · · · , hn(t))T , B(w) = (bij(w))n×n, C(w) = (cij(w))n×n.

Noting (5.2.11), if

det(Λ−1(0) + C(0)) 6= 0, (5.2.13)

it is easy to see that, at least in a neighborhood of U = 0, the boundary conditions
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(5.2.12) (namely, (5.1.4)) on x = 0 can be rewritten as

x = 0 : V + = −V − + 2Ḣ(t), (5.2.14a)

x = 0 : V + = V − − 2Λ(V 0)H(t), (5.2.14b)

x = 0 : V + = V − − 2Λ(V 0)B(V 0)V 0 − 2Λ(V 0)H(t), (5.2.14c)

x = 0 : V + =
(
Λ−1(V 0) + C(V 0)

)−1(
Λ−1(V 0)− C(V 0)

)
V −

− 2
(
Λ−1(V 0) + C(V 0)

)−1
H(t), (5.2.14d)

which can be uniformly presented as

x = 0 : V + = G(t, V −, V 0) + H̃(t), (5.2.15)

where G and H̃ are C1 functions with respect to their arguments, and without loss
of generality, we may assume that

G(t, 0, 0) ≡ 0. (5.2.16)

Similarly, if

det(Λ−1(0) + C(0)) 6= 0, (5.2.17)

then at least in a neighborhood of U = 0, the boundary conditions (5.1.5) on x = L
are all of the form

x = L : V − = G(t, V 0, V +) + H̃(t), (5.2.18)

in which G and H̃ are C1 functions with respect to their arguments, and without loss
of generality, we may assume that

G(t, 0, 0) ≡ 0. (5.2.19)

Meanwhile, the corresponding initial condition (5.1.6) can be reduced as

t = 0 : U = (ϕ(x), ϕ′(x), ψ(x))T , 0 ≤ x ≤ L. (5.2.20)

Together with the conditions of C2 compatibility at the point (t, x) = (0, 0) and
(0, L) for the coupled system of wave equations (5.1.2) with the boundary conditions
(5.1.4)-(5.1.5) on x = 0 and x = L respectively and the initial condition(5.1.6), it
is easy to see that the conditions of C1 compatibility at these two points for the
mixed initial-boundary value problem (5.2.3), (5.2.15), (5.2.18) and (5.2.20) are also
satisfied.
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For the convenience of statement, we denote in the whole chapter that

d =

{
2 for(5.1.4a),

1 for(5.1.4b)− (5.1.4d)
(5.2.21)

and

d̄ =

{
2 for(5.1.5a),

1 for(5.1.5b)− (5.1.5d),
. (5.2.22)

Based on the theory of semi-global C1 solution for first order quasilinear hyper-
bolic system with zero eigenvalues (see [71], [73], [70] and [117]), it is easy to get the
following

Lemma 5.2.1 Under the hypotheses given in §5.1, suppose that the conditions
of C2 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively.
Suppose furthermore that (5.2.13) and (5.2.17) hold. For any given and possibly
quite large T > 0, if ‖(ϕi, ψi)‖C2[0,L]×C1[0,L], ‖hi‖Cd[0,T ]and ‖hi‖Cd̄[0,T ](i = 1, · · · , n)
are suitably small, then the forward mixed initial-boundary value problem (5.1.2) and
(5.1.4)-(5.1.6) admits a unique semi-global C2 solution w = w(t, x) on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, and

‖w‖C2[R(T )] ≤ C

(
n∑

i=1

‖(ϕi, ψi)‖C2[0,L]×C1[0,L] +
n∑

i=1

‖(hi, h̄i)‖Cd[0,L]×Cd̄[0,L]

)
, (5.2.23)

where C is a positive constant possibly depending on T.

Corollary 5.2.1 Under the hypotheses given in §5.1, if ‖(ϕi, ψi)‖C2[0,L]×C1[0,L](i =
1, · · · , n) are suitably small, then Cauchy problem (5.1.2) and (5.1.6) admits a unique
global C2 solution w = w(t, x) on the whole maximum determinate domain (see, for
example, [84, Remark 4.2 on Chapter 1 pages 72-73])and

‖w‖C2 ≤ C
n∑

i=1

‖(ϕi, ψi)‖C2[0,L]×C1[0,L], (5.2.24)

where C is a positive constant.

As for the backward mixed initial-boundary value problem (5.1.2), (5.1.4)-(5.1.5)
with final condition

t = T : (w,wt) = (Φ(x),Ψ(x)), 0 ≤ x ≤ L. (5.2.25)
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in which Φ = (Φ1, · · · ,Φn)
T is a C2 vector function on [0, L], Ψ = (Ψ1, · · · ,Ψn)

T is a
C1 vector function on [0, L], they are all with small C2 norm or C1 norm, such that
the conditions of C2 compatibility at the points (t, x) = (T, 0) and (T, L) are satisfied
respectively, similar results can be obtained as follows

Lemma 5.2.2 Under the hypotheses given in §5.1, suppose that the conditions
of C2 compatibility are satisfied at the points (t, x) = (T, 0) and (T, L), respectively.
Suppose furthermore that

det(Λ−1(0)− C(0)) 6= 0, (5.2.26)

and

det(Λ−1(0)− C(0)) 6= 0, (5.2.27)

hold. For any given and possibly quite large T > 0, if ‖(Φi,Ψi)‖C2[0,L]×C1[0,L], ‖hi‖Cd[0,T ]

and ‖hi‖Cd̄[0,T ](i = 1, · · · , n) are suitably small, then the backward mixed initial-
boundary value problem(5.1.2),(5.2.25) and (5.1.4)-(5.1.5) admits a unique semi-
global C2 solution w = w(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}
and

‖w‖C2[R(T )] ≤ C

(
n∑

i=1

‖(Φi,Ψi)‖C2[0,L]×C1[0,L] +
n∑

i=1

‖(hi, h̄i)‖Cd[0,L]×Cd̄[0,L]

)
,

(5.2.28)

where C is a positive constant possibly depending on T.

Remark 5.2.1 If ai, aij, bij, bij, cij, cij are all independent of w, then the problem
is linear and it is not necessary to assume the small date for initial (resp. finial)
value as well as boundary functions in Lemma 5.2.1 (resp. Lemma 5.2.2). Moreover,
the C2 solution obtained is global.

Remark 5.2.2 Suppose ai(w) ≡ a > 0(i = 1, · · · , n) are the same constant, the
conditions (5.2.13) and (5.2.17) in Lemma 5.2.1 mean −a is not the eigenvalue of
both matrices C(0) and C(0), while the conditions (5.2.26) and (5.2.27) in Lemma
5.2.2 mean a is not the eigenvalue of both matrices C(0) and C(0).

Remark 5.2.3 By Lemma 5.2.1, conditions (5.2.13) and (5.2.17) for matrices
C and C in the coupled dissipative type boundary conditions (5.1.4d) and (5.1.5d) are
imposed for guaranteing the well-posedness of the corresponding forward mixed initial-
boundary value problem, however, by Lemma 5.2.2, conditions (5.2.26) and (5.2.27)
for matrices C and C in the coupled dissipative type boundary conditions (5.1.4d) and
(5.1.5d) are imposed for guaranteing the well-posedness of the corresponding backward
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mixed initial-boundary value problem. Other coupled matrices A, B and B, however,
can be completely arbitrary.

Remark 5.2.4 Lemma 5.2.1, Corollary 5.2.1 and Lemma 5.2.2 are still valid for
the following equations

∂2wi

∂t2
− a2i (w)

∂2wi

∂x2
+

n∑

j=1

aij(w)
∂wj

∂t
= 0, (5.2.29)

or
∂2wi

∂t2
− a2i (w)

∂2wi

∂x2
+

n∑

j=1

aij(w)wj +
n∑

j=1

aij(w)
∂wj

∂t
= 0, (5.2.30)

in which ai(w) and aij(w), aij(w) are all C
1 functions with respect to their arguments

on the domain under consideration, satisfying (5.1.3).

5.3 Local Exact Boundary Controllability

Theorem 5.3.1 (Two-sided control) Under the hypotheses given in §5.1, sup-
pose furthermore that (5.2.13) and (5.2.17) hold. Let

T > L max
i=1,··· ,n

( 1

ai(0)

)
. (5.3.1)

For any given initial data (ϕ, ψ) and final data (Φ,Ψ) with small norms ‖(ϕi, ψi)‖C2[0,L]×C1[0,L],
‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), there exist boundary controls H = (h1, · · · , hn)
and H = (h1, · · · , hn) with small norms ‖hi‖Cd[0,T ] and ‖hi‖Cd̄[0,T ](i = 1, · · · , n),
such that the mixed initial-boundary value problem (5.1.2) and (5.1.4)-(5.1.6) ad-
mits a unique semi-global C2 solution w = w(t, x) with small C2 norm on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which exactly satisfies the final condition
(5.2.25).

In order to prove Theorem 5.3.1, it suffices to use the constructive method sug-
gested in [74] and [83] to prove the following lemma, the details of whose proofs are
skipped here.

Lemma 5.3.1 Under the assumptions of Theorem 5.3.1, for any given initial
data (ϕ, ψ) and final data (Φ,Ψ) with small norms‖(ϕi, ψi)‖C2[0,L]×C1[0,L] and
‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), the coupled system of quasilinear wave equa-
tions (5.1.2) admits a C2 solution w = w(t, x) with small C2 norm on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies simultaneously the initial
condition (5.1.6) and the final condition (5.2.25).
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Remark 5.3.1 If ai, aij, bij, bij, cij, cij are all independent of w, then the problem
is linear, Theorem 5.3.1 implies the corresponding global exact boundary controllabil-
ity.

Remark 5.3.2 The exact controllability time (5.3.1) given in Theorem 5.3.1 is
sharp.

Theorem 5.3.2 (One-sided control) Under the hypotheses given in §5.1, sup-
pose furthermore that (5.2.13),(5.2.17) and (5.2.26) hold. Let

T > 2L max
i=1,··· ,n

( 1

ai(0)

)
. (5.3.2)

For any given initial data (ϕ, ψ) and final data (Φ,Ψ) with small norms
‖(ϕi, ψi)‖C2[0,L]×C1[0,L], ‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n) and for any given bound-
ary functions H = (h1, · · · , hn) on x = 0 with small norms ‖hi‖Cd[0,T ](i = 1, · · · , n),
such that the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0)
and (T, 0) respectively, there exist boundary controls H = (h1, · · · , hn) on x = L with
small norms ‖h̄i‖Cd̄[0,T ](i = 1, · · · , n), such that the mixed initial-boundary value prob-

lem (5.1.2) and (5.1.4)-(5.1.6) admits a unique semi-global C2 solution w = w(t, x)
with small C2 norm on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
exactly satisfies the final condition (5.2.25).

In order to get Theorem 5.3.2, similarly, it suffices to prove the following

Lemma 5.3.2 Under the assumptions of Theorem 5.3.2, for any given initial
data (ϕ, ψ) and final data (Φ,Ψ) with small norms ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] and
‖(Φi,Ψi)‖C2[0,L]×C1[0,L] (i = 1, · · · , n), for any given boundary functions H = (h1, · · · , hn)
on x = 0 with small norm ‖hi‖Cd[0,T ](i = 1, · · · , n), such that the conditions of C2

compatibility are satisfied at the points (t, x) = (0, 0) and (T, 0) respectively, the cou-
pled system of quasilinear wave equations (5.1.2) with the boundary condition (5.1.4)
on x = 0 admits a C2 solution w = w(t, x) with small C2 norm on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies simultaneously the initial
condition (5.1.6) and the final condition (5.2.25).

Remark 5.3.3 Similar results hold if we take the boundary controls H(t) (0 ≤
t ≤ T ) at x = 0 and hypothesis (5.2.26) is replaced by (5.2.27).

Remark 5.3.4 If ai, aij, bij, bij, cij, cij are all independent of w, then the problem
is linear, Theorem 5.3.2 implies the corresponding global exact boundary controllabil-
ity.



Chapter 5: Exact Boundary Controllability and Observability for a Coupled System
of Quasilinear Wave Equations 155

Remark 5.3.5 The exact controllability time (5.3.2) given in Theorem 5.3.2 is
sharp.

If we only consider the corresponding null controllability (see [77]), for which the
final data (5.2.25) are specially taken as

t = T : w = 0, wt = 0, 0 ≤ x ≤ L, (5.3.3)

then for the coupled dissipative type boundary conditions (5.1.4d) (resp. (5.1.5d)),
the condition (5.2.26) (resp. (5.2.27)) is not necessary. In fact, in this situation,
similar to [77], we have

Theorem 5.3.3 (One-sided null control) Let T > 0 satisfies (5.3.2). Sup-
pose that (5.2.13) and (5.2.17) hold. Suppose furthermore that

H(t) ≡ 0. (5.3.4)

at x = 0. For any given initial data (ϕ, ψ), where ‖(ϕi, ψi)‖C2[0,L]×C1[0,L](i = 1, · · · , n)
are small enough, such that the conditions of C2 compatibility are satisfied at the point
(t, x) = (0, 0), there exists boundary controls H = (h1, · · · , hn) on x = L with small
norms ‖h̄i‖Cd̄[0,T ](i = 1, · · · , n), such that the mixed initial-boundary value problem

(5.1.2) and (5.1.4)-(5.1.6) admits a unique semi-global C2 solution w = w(t, x) with
small C2 norm on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which exactly
satisfies the final condition (5.3.3).

Remark 5.3.6 Similar results hold if we take the boundary controls H(t)(0 ≤
t ≤ T ) on x = 0, and hypothesis (5.3.4) is replaced by

H(t) ≡ 0. (5.3.5)

Remark 5.3.7 Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.3 are still valid
for the coupled system (5.2.29) or (5.2.30), which satisfies (5.1.3).

5.4 Local Exact Boundary Observability

We now consider the exact boundary observability for the mixed initial-boundary
value problem (5.1.2) and (5.1.4)-(5.1.6), in which the boundary functions hi(t) and
h̄i(t)(i = 1, · · · , n) are given.

The principle of choosing the observed values on the boundary is that the ob-
served values together with the boundary condition can uniquely determine the values
(w,wx) on the boundary.
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Hence, the observed values at x = 0 can be taken as

1. wix = ki(t)(i = 1, · · · , n), for the Dirichlet type boundary conditions (5.1.4a),
then

x = 0 : (wi, wix) = (hi(t), ki(t)); (5.4.1a)

2. wi = ki(t)(i = 1, · · · , n), for the Neumann type boundary conditions (5.1.4b),
then

x = 0 : (wi, wix) = (ki(t), hi(t)); (5.4.1b)

3. wi = ki(t)(i = 1, · · · , n), for the Coupled third type boundary conditions
(5.1.4c), then

x = 0 : (wi, wix) = (ki(t),
n∑

j=1

bijkj(t) + hi(t)); (5.4.1c)

4. wi = ki(t)(i = 1, · · · , n), for the Coupled dissipative type boundary conditions
(5.1.4d), then

x = 0 : (wi, wix) =
(
ki(t),

n∑

j=1

cijk
′
j(t) + hi(t)

)
. (5.4.1d)

where ki(t)(i = 1, · · · , n) ∈ C1 for (5.1.4a) or ∈ C2 for (5.1.4b)-(5.1.4d). Thus, by
means of the observed values at x = 0, we have

x = 0 : (w,wx) = (a(t), b(t)), (5.4.2)

and for any given T > 0,

‖(a, b)‖C2[0,T ]×C1[0,T ] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖hi‖Cd[0,T ]

)
, (5.4.3)

where C is a positive constant, d is given by (5.2.21) and

l =

{
1 for(5.1.4a),

2 for(5.1.4b)− (5.1.4d),
. (5.4.4)

The corresponding observed values k̄i(t)(i = 1, · · · , n) at x = L can be similarly
taken, then we have

x = 0 : (w,wx) = (ā(t), b̄(t)), (5.4.5)
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and for any given T > 0,

‖(ā, b̄)‖C2[0,T ]×C1[0,T ] ≤ C
( n∑

i=1

‖k̄i‖C l̄[0,T ] +
n∑

i=1

‖h̄i‖Cd̄[0,T ]

)
, (5.4.6)

where C is a positive constant, d̄ is given by (5.2.22) and

l̄ =

{
1 for(5.1.5a),

2 for(5.1.5b)− (5.1.5d).
. (5.4.7)

By the constructive method suggested in [49],[77],[72] and [71], we can prove
following theorems.

Theorem 5.4.1 (Two-sided observation) Under the hypotheses given in §5.1,
suppose furthermore that (5.2.13) and (5.2.17) hold. Let T > 0 satisfies (5.3.1), for
any given initial condition (ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are suitably small
and the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and
(0, L) respectively. If we have the observed values ki(t)(i = 1, · · · , n) at x = 0 and
k̄i(t)(i = 1, · · · , n) at x = L on the interval [0,T], then the initial data (ϕ, ψ) can be
uniquely determined and the following observability inequality holds:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖(ki, k̄i)‖Cl[0,T ]×C l̄[0,T ] +
n∑

i=1

‖(hi, h̄i)‖Cd[0,T ]×Cd̄[0,T ]

)
,

(5.4.8)

where C is a positive constant.

Remark 5.4.1 If ai, aij, bij, bij, cij, cij are all independent of w, then the problem
is linear, Theorem 5.4.1 implies the corresponding global exact boundary observability.

Remark 5.4.2 The exact observability time (5.3.1) given in Theorem 5.4.1 is
sharp.

Theorem 5.4.2 (One-sided observability) Under the hypotheses given in §5.1,
suppose furthermore that (5.2.13),(5.2.17) and (5.2.27) hold. Let T > 0 satisfies
(5.3.2), for any given initial condition (ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are
suitably small and the conditions of C2 compatibility are satisfied at the points (t, x) =
(0, 0) and (0, L) respectively. If we have the observed values ki(t)(i = 1, · · · , n) at
x = 0 on the interval [0,T], then the initial data (ϕ, ψ) can be uniquely determined
and the following observability inequality holds:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖(hi, h̄i)‖Cd[0,T ]×Cd̄[0,T ]

)
, (5.4.9)
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where C is a positive constant.

Remark 5.4.3 Similar results hold if we take observed values k̄i(t)(i = 1, · · · , n)
at x = L and hypothesis (5.2.27) is replaced by (5.2.26).

Remark 5.4.4 If ai, aij, bij, bij, cij, cij are all independent of w, then the problem
is linear, Theorem 5.4.2 implies the corresponding global exact boundary observability.

Remark 5.4.5 The exact observability time (5.3.2) given in Theorem 5.4.2 is
sharp.

If we only consider the corresponding weak observability (see [77]), for which the
final condition (5.2.25) can be uniquely determined by the observed values ki(t)(i =
1, · · · , n) at x = 0, then for the coupled dissipative type boundary conditions (5.1.4d)
(resp.(5.1.5d)), the condition (5.2.26) (resp.(5.2.27)) is not necessary. In fact, in this
situation, we have

Theorem 5.4.3 (One-sided weak observability) Under the hypotheses given
in §5.1, suppose furthermore that (5.2.13),(5.2.17)hold. Let T > 0 satisfies (5.3.2),
for any given initial condition (ϕ, ψ), such that ‖(ϕi, ψi)‖C2[0,L]×C1[0,L] are suitably
small and the conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0)
and (0, L) respectively. If we have the observed values ki(t)(i = 1, · · · , n) at x = 0
on the interval [0,T], then the final data (Φ,Ψ) can be uniquely determined by the
observed values ki(t)(i = 1, · · · , n) at x = 0 and the boundary conditions hi(t) and
h̄i(t) on the interval [0,T], in addition, the following weak observability inequality
holds:

‖(Φ,Ψ)‖C2[0,L]×C1[0,L] ≤ C
( n∑

i=1

‖ki‖Cl[0,T ] +
n∑

i=1

‖(hi, h̄i)‖Cd[0,T ]×Cd̄[0,T ]

)
, (5.4.10)

where C is a positive constant.

Remark 5.4.6 Similar results hold if we take observed values ki(t)(i = 1, · · · , n)
at x = 0.

Remark 5.4.7 Theorem 5.4.1, Theorem 5.4.2 and Theorem 5.4.3 are still valid
for the coupled system (5.2.29) or (5.2.30), which satisfies (5.1.3).



Chapter 6

Exact Boundary Synchronization
for a Coupled System of Linear
Wave Equations

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Exact boundary synchronization . . . . . . . . . . . . . . 163

6.3 Exact boundary synchronization by groups . . . . . . . . 168

6.4 Exact boundary null controllability and synchronization

by groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5 Generalized exact boundary synchronization . . . . . . . 178

6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Introduction

Synchronization is a widespread natural phenomenon. Thousands of fireflies may
twinkle at the same time; audiences in the theater can applaud with a rhythmic
beat; pacemaker cells of the heart function simultaneously; and field crickets give out
a unanimous cry—all these are phenomena of synchronization [104], [115].

In principle, synchronization happens when different individuals possess likeness
in nature, that is, they conform essentially to the same governing equation, and
meanwhile, the individuals should bear a certain coupled relation.

The phenomenon of synchronization was first observed by Huygens in 1665 [60].
The theoretical research on synchronization phenomena dates back to H. Fujisaka

159
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and T. Yamada’s study of synchronization for coupled equations in 1983 [39]. The
previous studies focused on systems described by ODEs, such as

dXi

dt
= f(Xi, t) +

N∑

j=1

AijXj (i = 1, · · · , N), (6.1.1)

where Xi(i = 1, · · · , N) are n-dimensional vectors, Aij(i, j = 1, · · · , N) are n × n
matrices, and f(X, t) is an n-dimensional vector function independent of i. The
right-hand side of (6.1.1) shows that every Xi(i = 1, · · · , N) possesses two basic
features: satisfying a fundamental governing equation and bearing a coupled relation
among one another.

Our goal is to synchronize a hyperbolic system through boundary controls. Differ-
ent from the ODE situation, the coupling of systems can then be fulfilled by coupling
of the equations or (and) the boundary conditions, which has richer research im-
plications, moreover, boundary controls can be used to realize our goal in a finite
time.

Roughly speaking, we want to find a T > 0 and some boundary controls on [0, T ],
such that from the time t = T on, the system states tend to the same. That is to say,
we hope to achieve the synchronization of the system states not only at the moment
t = T under the action of boundary controls on [0, T ], but also when t ≥ T and
withdrawing all the controls. This is forever, instead of short-lived, synchronization,
as is desired in many actual applications.

Obviously, if the system has the exact boundary null controllability ([77], [88], [89],
[100]), it must have the exact boundary synchronization, but this is a trivial situation
that should be excluded beforehand. The exact boundary null controllability here
also means that the system states remain null not only at the moment t = T under
the action of boundary controls on [0, T ], but also when t ≥ T and withdrawing all
the controls.

In this chapter, we consider the exact boundary synchronization for a coupled
system of 1-D wave equations with various boundary condition in the framework of
classical solutions. The same problem for a coupled system of n-dimensional wave
equations with Dirichlet boundary controls in the framework of weak solutions can
be found in [79]. We point out that in 1-D case, thanks to the theory on semi-global
classical solutions(see [72] and [73]), there is a unified theory on the exact boundary
(null) controllability for a coupled system of wave equations with various kinds of
coupled boundary conditions (see [55], [72], [77], [109]), which enables us to get a
complete result on the exact boundary synchronization. However, in the framework
of weak solutions in n-dimensional case, for getting the corresponding exact bound-
ary synchronization, we have to study the exact boundary (null) controllability for
a coupled system of wave equations with every prescribed kind of boundary con-
ditions separately, and, up to now, only the Dirichlet type of boundary conditions
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was discussed in [79]. In addition, the generalized exact boundary synchronization is
introduced and discussed in this chapter.

Precisely speaking, we will consider the following coupled system of wave equa-
tions

∂2U

∂t2
− ∂2U

∂x2
+ AU = 0, (6.1.2)

where

U = (u1, · · · , uN)T (6.1.3)

is an unknown vector function of (t, x), A = (aij) is a N × N coupling matrix with
constant elements. (6.1.2) can be written as

∂2ui
∂t2

− ∂2ui
∂x2

+
N∑

j=1

aijuj = 0 (i = 1, · · · , N). (6.1.4)

At the end x = 0, we prescribe anyone of the following boundary conditions:

x = 0 : U = H(t) (Dirichlet type), (6.1.5a)

x = 0 : Ux = H(t) (Neumann type), (6.1.5b)

x = 0 : Ux − BU = H(t) (Coupled third type), (6.1.5c)

where B = (bij) is an N ×N coupling matrix with constant elements, and

H(t) = (h1(t), · · · , hN(t))T , (6.1.6)

the components of which will be totally or partially taken as boundary controls.

Similarly, at the end x = L, since no boundary controls are concerned for one-
sided control, we prescribe anyone of the following homogeneous boundary conditions:

x = L : U = 0, (6.1.7a)

x = L : Ux = 0, (6.1.7b)

x = L : Ux +BU = 0, (6.1.7c)

where B = (b̄ij) is an N ×N coupling matrix with constant elements.

The initial condition is given by

t = 0 : U = Φ(x), Ut = Ψ(x), (6.1.8)

where Φ(x) = (ϕ1(x), · · · , ϕN(x))
T and Ψ(x) = (ψ1(x), · · · , ψN(x))

T .
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For the forward mixed initial-boundary value problem (6.1.2), (6.1.5), (6.1.7) and
(6.1.8) of the coupled system of wave equations, by means of its reduction to the mixed
initial-boundary value problem of a corresponding first order hyperbolic system and
using the theory of global C1 solutions to first order linear hyperbolic systems, we
have (see [55], [72])

Lemma 6.1.1 For any given T > 0, assume that Φ ∈ (C2[0, L])N , Ψ ∈ (C1[0, L])N

and H ∈ (C2[0, T ])N (case (6.1.5a)) or (C1[0, T ])N(cases (6.1.5b)-(6.1.5c)) satisfy
the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L), respectively
(see Remark 6.1.2). For any given coupling matrices A, B and B, the forward mixed
initial-boundary value problem (6.1.2), (6.1.5), (6.1.7) and (6.1.8) admits a unique
C2 solution U = U(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}.

Remark 6.1.1 In what follows, (6.1.5) always means anyone of (6.1.5a), (6.1.5b)
and (6.1.5c), and it is similar for (6.1.7).

Remark 6.1.2 The conditions of C2 compatibility at the point (t, x) = (0, L) can
be precisely written as





Φ(L) = 0,

Ψ(L) = 0,

Φ′′(L) = 0,

for (6.1.7a); (6.1.9a)

{
Φ′(L) = 0,

Ψ′(L) = 0,
for (6.1.7b); (6.1.9b)

or
{
Φ′(L) + BΦ(L) = 0,

Ψ′(L) + BΨ(L) = 0,
for (6.1.7c). (6.1.9c)

The conditions of C2 compatibility at the point (t, x) = (0, 0) can be similarly obtained.

Remark 6.1.3 By Lemma 6.1.1, in order to guarantee the well-posedness of the
forward mixed problem (6.1.2), (6.1.5), (6.1.7) and (6.1.8), no assumptions on the
coupling matrices A, B and B are needed.

Remark 6.1.4 For the backward mixed initial-boundary value problem (6.1.2),
(6.1.5), (6.1.7) with the final condition

t = T : U = Φ(x), Ut = Ψ(x). (6.1.10)
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where Φ(x) = (ϕ1(x), · · · , ϕN(x))
T and Ψ(x) = (ψ1(x), · · · , ψN(x))

T , the conclusion
of Lemma 6.1.1 is still valid.

By Lemma 6.1.1 and using a constructive method, we have the following result
on the exact boundary null controllability (also see [55], [109], [118]).

Lemma 6.1.2 Let

T > 2L. (6.1.11)

For any given initial state (Φ,Ψ) ∈ (C2[0, L])N×(C1[0, L])N , satisfying the conditions
of C2 compatibility at the point (t, x) = (0, L), there exist boundary controls H ∈
(C2[0, T ])N (case (6.1.5a)) or (C1[0, T ])N (cases (6.1.5b)–(6.1.5c)) with support on
[0, T ] at the end x = 0, such that the corresponding mixed initial-boundary value
problem (6.1.2), (6.1.5), (6.1.7) and (6.1.8) admits a unique C2 solution U = U(t, x)
on t ≥ 0, and as t ≥ T we have

U(t, x) ≡ 0, 0 ≤ x ≤ L. (6.1.12)

In what follows, we will use Lemma 6.1.1 and Lemma 6.1.2 to consider the exact
boundary synchronization, the exact boundary synchronization by groups, and the
exact boundary null controllability and synchronization by groups in §6.2, §6.3 and
§6.4, respectively, and the generalized exact boundary synchronization in §6.5, for
the coupled system of wave equations (6.1.2), (6.1.5) and (6.1.7). Moreover, several
remarks are given in §6.6.

6.2 Exact boundary synchronization

Definition 6.2.1 If there exists T > 0 such that for any given initial state
(Φ(x),Ψ(x)), we can find some boundary controls with support on [0, T ] in H(t), such
that the corresponding mixed initial-boundary value problem (6.1.2), (6.1.5), (6.1.7)
and (6.1.8) admits a unique C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on
t ≥ 0, and as t ≥ T we have

u1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L, (6.2.1)

then the coupled system (6.1.2), (6.1.5) and (6.1.7) is said to possess the exact

boundary synchronization or is said to be exactly synchronizable, and ˜̃u =
˜̃u(t, x) is called the corresponding synchronizable state.

Obviously, if the system possesses the exact boundary null controllability, then it
must be exactly synchronizable. However, this trivial situation should be excluded
in the discussion.
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Lemma 6.2.1 If the coupled system of wave equations (6.1.2), (6.1.5) and (6.1.7)
is exactly synchronizable, but not exactly null controllable, then the coupling matrices
A, B and B should satisfy the following necessary conditions: The values of the

sum of every row of these matrices,
N∑
j=1

aij,
N∑
j=1

bij and
N∑
j=1

b̄ij are independent of

i = 1, · · · , N , namely,

N∑

j=1

aij
def.
= ˜̃a (i = 1, · · · , N), (6.2.2)

N∑

j=1

bij
def.
=

˜̃
b (i = 1, · · · , N), (6.2.3)

N∑

j=1

b̄ij
def.
=

˜̄̃
b (i = 1, · · · , N), (6.2.4)

where ˜̃a, ˜̃b and ˜̄̃
b are constants independent of i = 1, · · · , N .

Proof. By synchronization, there exists T > 0 and a synchronizable state ˜̃u =
˜̃u(t, x) such that (6.2.1) holds. Then, it follows from (6.1.4) that for t ≥ T we have

∂2˜̃u
∂t2

− ∂2˜̃u
∂x2

+
( N∑

j=1

aij

)
˜̃u = 0, 0 ≤ x ≤ L, i = 1, · · · , N. (6.2.5)

In particular, for t ≥ T we get

( N∑

j=1

aij

)
˜̃u =

( N∑

j=1

akj

)
˜̃u, 0 ≤ x ≤ L, i, k = 1, · · · , N.

By the non exact null controllability, there exists at least an initial data (Φ,Ψ) for

which the corresponding solution U , or equivalently ˜̃u, does not identically vanish
for t ≥ T whatever boundary controls H are chosen. This leads to (6.2.2). In the

meantime, noting (6.2.5), the synchronizable state ˜̃u = ˜̃u(t, x) satisfies the following
wave equation

∂2˜̃u
∂t2

− ∂2˜̃u
∂x2

+ ˜̃a˜̃u = 0, (6.2.6)

where ˜̃a is given by (6.2.2).
We now prove (6.2.3). (6.2.4) can be similarly obtained.



Chapter 6: Exact Boundary Synchronization for a Coupled System of Linear Wave
Equations 165

Similarly to (6.2.5), it follows from (6.1.5c) that for t ≥ T we have

x = 0 :
∂˜̃u
∂x
−

( N∑

j=1

bij

)
˜̃u = 0, i = 1, · · · , N, (6.2.7)

then for t ≥ T we get

x = 0 :
( N∑

j=1

bij

)
˜̃u =

( N∑

j=1

bkj

)
˜̃u, i, k = 1, · · · , N.

Since the system is not exactly null controllable, we claim that at least for an initial

data (Φ,Ψ), ˜̃u does not identically vanish at x = 0 for t ≥ T , then (6.2.3) holds.
Otherwise, noting (6.2.7) we have

x = 0 : ˜̃u ≡ ∂˜̃u
∂x
≡ 0, t ≥ T,

then, by the exact boundary observability ([71], [72]) for the wave equation (6.2.6),
˜̃u should identically vanish for t ≥ T and 0 ≤ x ≤ L, which gives a contradiction to
the non exact null controllability.

This completes the proof of Lemma 6.2.1. �

Remark 6.2.1 Conditions (6.2.2)–(6.2.4) mean that all the matrices A, B and
B̄ have a common right eigenvector (1, 1, · · · , 1)T with the corresponding eigenvalues

˜̃a, ˜̃b and ˜̄̃
b, respectively.

Theorem 6.2.1 Suppose that (6.2.2)–(6.2.4) hold and

T > 2L. (6.2.8)

For any given initial state (Φ,Ψ) ∈ (C2[0, L])N×(C1[0, L])N , satisfying the conditions
of C2 compatibility at the point (t, x) = (0, L), there exist (N − 1) C2(case(6.1.5a))
or C1 (cases (6.1.5b)-(6.1.5c)) boundary controls with support on [0, T ] in H(t) (for
example, take h2(t), · · · , hN(t) with h1(t) ≡ 0), such that the coupled system (6.1.2),
(6.1.5) and (6.1.7) possesses the exact boundary synchronization.

Proof Let

wi = ui − ui+1 (i = 1, · · · , N − 1). (6.2.9)

It is easily shown (see [79]) that by (6.2.2), the original system (6.1.2) for the variable
U can be reduced to a self-closing system of the same kind for the variable W =
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(w1, · · · , wN−1)
T as follows:

∂2W

∂t2
− ∂2W

∂x2
+ ÃW = 0, (6.2.10)

where Ã = (ãij) is an (N − 1)× (N − 1) matrix with the entries

ãij = −
N∑

p=j+1

(aip − ai+1,p) = −
j∑

p=1

(ai+1,p − aip), i, j = 1, · · · , N − 1. (6.2.11)

Similarly, by (6.2.3)–(6.2.4), the original boundary conditions (6.1.5) and (6.1.7)
for the variable U can be reduced, respectively, to self-closing boundary conditions
of the same kind for the variable W as follows:

x = 0 : W = H̃(t), (6.2.12a)

x = 0 : Wx = H̃(t), (6.2.12b)

x = 0 : Wx − B̃W = H̃(t) (6.2.12c)

and

x = L : W = 0, (6.2.13a)

x = L : Wx = 0, (6.2.13b)

x = L : Wx + B̃W = 0, (6.2.13c)

where B̃ = (̃bij) and B̃ = (̃bij) are (N − 1) × (N − 1) coupling matrices reduced by
B = (bij) and B = (bij) in the following way:

b̃ij = −
N∑

p=j+1

(bip − bi+1,p) = −
j∑

p=1

(bi+1,p − bip), i, j = 1, · · · , N − 1 (6.2.14)

etc. Moreover,

H̃(t) = (h̃1(t), · · · , h̃N−1(t))T (6.2.15)

with
h̃i(t) = hi(t)− hi+1(t), i = 1, · · · , N − 1. (6.2.16)

The initial condition of W is given by

t = 0 : W = Φ̃(x), Wt = Ψ̃(x) (6.2.17)



Chapter 6: Exact Boundary Synchronization for a Coupled System of Linear Wave
Equations 167

with
{
Φ̃(x) = (ϕ1(x)− ϕ2(x), ϕ2(x)− ϕ3(x), · · · , ϕN−1(x)− ϕN(x))

T ,

Ψ̃(x) = (ψ1(x)− ψ2(x), ψ2(x)− ψ3(x), · · · , ψN−1(x)− ψN(x))
T .

(6.2.18)

Thus, according to Lemma 6.1.2, by means of (N − 1) C2 (case(6.2.12a)) or C1

(cases (6.2.12b)-(6.2.12c)) boundary controls H̃(t) (for instance, take h2(t), · · · , hn(t)
with h1(t) ≡ 0) at the end x = 0, the variable W is exactly null controllable, then
the variable U is exactly synchronizable. This finished the proof.

Remark 6.2.2 Noting Remark 6.1.3, by Lemma 6.1.1 and Lemma 6.1.2, the
reduced mixed initial-boundary value problem (6.2.10), (6.2.12)–(6.2.13) and (6.2.17)
for the variable W is always well-posed and exactly null controllable.

Remark 6.2.3 As t ≥ T , the synchronizable state ˜̃u = ˜̃u(t, x) defined by (6.2.1)
satisfies the wave equation (6.2.6) with the following boundary conditions:

x = 0 : ˜̃u = 0, (6.2.19a)

x = 0 : ˜̃ux = 0, (6.2.19b)

x = 0 : ˜̃ux − ˜̃
b˜̃u = 0 (6.2.19c)

and

x = L : ˜̃u = 0, (6.2.20a)

x = L : ˜̃ux = 0, (6.2.20b)

x = L : ˜̃ux +
˜̄̃
b˜̃u = 0, (6.2.20c)

where ˜̃a, ˜̃b and ˜̄̃
b are given by (6.2.2)–(6.2.4), respectively.

Noting Remark 6.1.3, the forward mixed initial-boundary value problem for (6.2.6)
and (6.2.19)–(6.2.20) is always well-posed. Hence, if we know the initial state of
˜̃u = ˜̃u(t, x) at the moment t = T :

t = T : ˜̃u = ϕ(x), ˜̃ut = ψ(x), 0 ≤ x ≤ L, (6.2.21)

we can completely determine the evolution of ˜̃u = ˜̃u(t, x) with respect to t.

Remark 6.2.4 Under assumptions (6.2.2)–(6.2.4), in order to realize the exact
boundary synchronization, the (N − 1) boundary controls in H(t) can be chosen in
infinitely many ways, therefore, the initial state (ϕ, ψ) in (6.2.21) will be not unique.
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Moreover, it can be shown that the attainable set of all possible initial data of synchro-
nizable state is the whole space C2[0, L] × C1[0, L] associated with the conditions of
C2 compatibility at (t, x) = (T, 0) and (T, L), respectively, with boundary conditions
(6.2.19) and (6.2.20).

To illustrate this, for any given (ϕ, ψ) ∈ C2[0, L]× [C1[0, L] satisfying the condi-
tions of C2 compatibility with the boundary conditions (6.2.19)–(6.2.20) at (t, x) =
(T, 0) and (T, L) respectively, we can solve the backward mixed initial-boundary value
problem (6.2.6) and (6.2.19)–(6.2.21) to get a unique C2 solution u = u(t, x) and its
initial value at t = 0

t = 0 : u = ϕ̂(x), ut = ψ̂(x). (6.2.22)

Then, by assumptions (6.2.2)–(6.2.4), it is easy to see that

U(t, x) = (u, u, · · · , u)T (t, x) (6.2.23)

is the C2 solution to the original problem (6.1.2), (6.1.5) and (6.1.7) with the null
control H ≡ 0 and the initial condition

t = 0 : U = Φ̂(x) = (ϕ̂(x), ϕ̂(x), · · · , ϕ̂(x))T ,
(6.2.24)

Ut = Ψ̂(x) = (ψ̂(x), ψ̂(x), · · · , ψ̂(x))T .

Then, by solving the mixed problem (6.1.2), (6.1.5), (6.1.7) and (6.2.24) with null
boundary controls, we can reach any given synchronizable state (ϕ, ψ) at the moment
t = T .

6.3 Exact boundary synchronization by groups

The concept of exact boundary synchronization can be generalized to the exact
boundary synchronization by groups. Without loss of generality, we consider here
the exact boundary synchronization by 2-groups. For this purpose, setting U =

(
U(1)

U(2)

)

with U (1) = (u1, · · · , um)T and U (2) = (um+1, · · · , uN)T , we look for some boundary
controls in H(t), such that U (1) and U (2) are independently synchronizable.

Definition 6.3.1 If there exists T > 0 such that for any given initial state
(Φ(x),Ψ(x)), we can find some boundary controls with support on [0, T ] in H(t), such
that the corresponding mixed initial-boundary value problem (6.1.2), (6.1.5), (6.1.7)
and (6.1.8) admits a unique C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on
t ≥ 0, and for t ≥ T we have

u1(t, x) ≡ · · · ≡ um(t, x)
def.
= ˜̃u1(t, x), 0 ≤ x ≤ L, (6.3.1)

um+1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u2(t, x), 0 ≤ x ≤ L, (6.3.2)
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then the coupled system (6.1.2), (6.1.5) and (6.1.7) is said to possess the exact
boundary synchronization by 2-groups or is said to be exactly synchroniz-

able by 2-groups, and
˜̃
U =

˜̃
U(t, x) =

(
˜̃u1(t, x)
˜̃u2(t, x)

)
is called the corresponding synchro-

nizable state by 2-groups.

Obviously, if the coupled system possesses the exact boundary synchronization,
then it must be exactly synchronizable by 2-groups. However, this trivial situation
should be excluded in advance. For this purpose we need to impose suitable assump-

tions on the synchronizable states by 2-groups ˜̃u1(t, x) and ˜̃u2(t, x). We have

Lemma 6.3.1 Suppose that the coupled system (6.1.2), (6.1.5) and (6.1.7) is
exactly synchronizable by 2-groups. Suppose furthermore that at least for an initial

state (Φ(x),Ψ(x)) the synchronizable states by 2-groups ˜̃u1(t, x) and ˜̃u2(t, x) are lin-
early independent. Then the coupling matrix A = (aij) in system (6.1.2) of wave
equations should satisfy the following necessary conditions:

m∑

j=1

aij
def.
=

{˜̃a11 (i = 1, · · · ,m),
˜̃a21 (i = m+ 1, · · · , N), (6.3.3)

N∑

j=m+1

aij
def.
=

{˜̃a12 (i = 1, · · · ,m),
˜̃a22 (i = m+ 1, · · · , N), (6.3.4)

where ˜̃a11 and ˜̃a12 are independent of i = 1, · · · ,m, while, ˜̃a21 and ˜̃a22 are independent
of i = m+ 1, · · · , N .

Proof. By Definition 6.3.1, for t ≥ T we have

∂2˜̃u1
∂t2

− ∂2˜̃u1
∂x2

+
( m∑

p=1

aip

)
˜̃u1 +

( N∑

p=m+1

aip

)
˜̃u2 = 0, 0 ≤ x ≤ L, i = 1, · · · ,m,

(6.3.5)

∂2˜̃u2
∂t2

− ∂2˜̃u2
∂x2

+
( m∑

p=1

aip

)
˜̃u1 +

( N∑

p=m+1

aip

)
˜̃u2 = 0, 0 ≤ x ≤ L, i = m+ 1, · · · , N.

(6.3.6)

Hence we get

t ≥ T :
( m∑

p=1

aip −
m∑

p=1

akp

)
˜̃u1 +

( N∑

p=m+1

aip −
N∑

p=m+1

akp

)
˜̃u2 = 0, 0 ≤ x ≤ L

for i, k = 1, · · · ,m and i, k = m + 1, · · · , N , respectively. Since at least for an

initial data (Φ(x),Ψ(x)), the synchronizable states by 2-groups, ˜̃u1 and ˜̃u2 are linearly
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independent, we get (6.3.3)–(6.3.4) immediately.

For the coupling matrices B and B, we can not get the corresponding necessary
conditions under the assumptions of Lemma 6.3.1 (unless we assume that at least for

an initial data (Φ(x),Ψ(x)), ˜̃u1(t, x) and ˜̃u2(t, x) are linearly independent at x = 0
and at x = L, respectively). However, based on Lemma 6.3.1, in what follows we
impose the following similar assumptions:

m∑

j=1

bij(resp. b̄ij)
def.
=





˜̃
b11(resp.

˜̄̃
b11) (i = 1, · · · ,m),

˜̃
b21(resp.

˜̄̃
b21) (i = m+ 1, · · · , N),

(6.3.7)

N∑

j=m+1

bij(resp. b̄ij)
def.
=





˜̃
b12(resp.

˜̄̃
b12) (i = 1, · · · ,m),

˜̃
b22(resp.

˜̄̃
b22) (i = m+ 1, · · · , N),

(6.3.8)

where
˜̃
b11 (resp.

˜̃
b11) and

˜̃
b12 (resp.

˜̃
b12) are independent of i = 1, · · · ,m, while, ˜̃b21

(resp.
˜̃
b21) and

˜̃
b22 (resp.

˜̃
b22) are independent of i = m+ 1, · · · , N .

Theorem 6.3.1 Suppose that (6.3.3)–(6.3.4) and (6.3.7)–(6.3.8) hold and T > 0
satisfies (6.2.8). For any given initial state (Φ(x),Ψ(x)), there exist (N − 2) C2

(case(6.1.5a)) or C1 (cases (6.1.5b)-(6.1.5c)) boundary controls with support on [0, T ]
in H(t) (for instance, h2(t), · · · , hm(t), hm+2(t), · · · , hN(t) with h1(t) ≡ hm+1(t) ≡ 0),
such that the coupled system (6.1.2), (6.1.5) and (6.1.7) possesses the exact boundary
synchronization by 2-groups.

Proof Let
{

wi = ui − ui+1 (i = 1, · · · ,m− 1),

wi = ui+1 − ui+2 (i = m, · · · , N − 2).
(6.3.9)

Similarly to the proof of Theorem 6.2.1 (cf. [79]), under assumptions (6.3.3)–(6.3.4),
the original system (6.1.2) for the variable U can be reduced to a self-closing system

(6.2.10) of the same kind for the variable W = (w1, · · · , wN−2)
T , where Ã = (ãij) is

an (N − 2)× (N − 2) matrix with the entries

ãij =





−
m∑

p=j+1

(aip − ai+1,p) = −
j∑

p=1

(ai+1,p − aip), i = 1, · · · , N − 2; j = 1, · · · ,m− 1,

−
N∑

p=j+2

(aip − ai+1,p) = −
j+1∑

p=m+1

(ai+1,p − aip), i = 1, · · · , N − 2; j = m, · · · , N − 2.

(6.3.10)

Similarly, under assumptions (6.3.7)–(6.3.8), the original boundary conditions
(6.1.5) and (6.1.7) for the variable U can be reduced to self-closing boundary condi-
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tions (6.2.12) and (6.2.13) of the same kind for the variable W , in which the coupling

matrices B̃ = (̃bij) and B̃ = (̃bij) are (N −2)× (N −2) matrices reduced by B = (bij)
and B = (bij) in the following way:

b̃ij =





−
m∑

p=j+1

(bip − bi+1,p) = −
j∑

p=1

(bi+1,p − bip), i = 1, · · · , N − 2; j = 1, · · · ,m− 1,

−
N∑

p=j+2

(bip − bi+1,p) = −
j+1∑

p=m+1

(bi+1,p − bip), i = 1, · · · , N − 2; j = m, · · · , N − 2

(6.3.11)
etc. Moreover,

H̃(t) = (h̃1(t), · · · , h̃N−2(t)) (6.3.12)

with

h̃i(t) =

{
hi(t)− hi+1(t), i = 1, · · · ,m− 1,

hi+1(t)− hi+2(t), i = m, · · · , N − 2.
(6.3.13)

The initial condition (6.2.17) of W is given by

Φ̃(x) = (ϕ̃1(x), · · · , ϕ̃N−2(x))
T , Ψ̃(x) = (ψ̃1(x), · · · , ψ̃N−2(x))

T (6.3.14)

with

ϕ̃i(x) =

{
ϕi(x)− ϕi+1(x), i = 1, · · · ,m− 1,

ϕi+1(x)− ϕi+2(x), i = m, · · · , N − 2,
(6.3.15)

Ψ̃i(x) =

{
ψi(x)− ψi+1(x), i = 1, · · · ,m− 1,

ψi+1(x)− ψi+2(x), i = m, · · · , N − 2.

Thus, according to Lemma 6.1.2, by means of (N − 2) C2 (case(6.2.12a)) or C1

(cases (6.2.12b)-(6.2.12c)) boundary controls H̃(t) (for instance, take h2(t), · · · , hm(t),
hm+2(t), · · · , hN(t) with h1(t) ≡ hm+1(t) ≡ 0) at the end x = 0, the variable W is
exactly null controllable, then the variable U is exactly synchronizable by 2-groups.
This completes the proof.

Remark 6.3.1 Lemma 6.1.1 and Lemma 6.1.2 are always available for the re-
duced mixed initial-boundary value problem (6.2.10), (6.2.12)–(6.2.13) and (6.3.14)
for the variable W .

Remark 6.3.2 As t ≥ T , the synchronizable state by 2-groups
˜̃
U =

˜̃
U(t, x) =(

˜̃u1(t, x)
˜̃u2(t, x)

)
satisfies the following coupled system of wave equations

∂2
˜̃
U

∂t2
− ∂2

˜̃
U

∂x2
+

˜̃
A
˜̃
U = 0, (6.3.16)
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where

˜̃
A =

( ˜̃a11 ˜̃a12
˜̃a21 ˜̃a22

)
, (6.3.17)

and ˜̃a11, ˜̃a12, ˜̃a21 and ˜̃a21 are given by (6.3.3)–(6.3.4). Moreover,
˜̃
U =

˜̃
U(t, x) satisfies

the following boundary conditions:

x = 0 :
˜̃
U = 0, (6.3.18a)

x = 0 :
˜̃
Ux = 0, (6.3.18b)

x = 0 :
˜̃
Ux − ˜̃

B
˜̃
U = 0 (6.3.18c)

and

x = 0 :
˜̃
U = 0, (6.3.19a)

x = 0 :
˜̃
Ux = 0, (6.3.19b)

x = 0 :
˜̃
Ux +

˜̃
B
˜̃
U = 0, (6.3.19c)

where

˜̃
B =

( ˜̃
b11

˜̃
b12

˜̃
b21

˜̃
b22

)
,

˜̃
B =

( ˜̄̃
b11

˜̄̃
b12

˜̄̃
b21

˜̄̃
b22

)
, (6.3.20)

the elements of which are provided by (6.3.7)–(6.3.8).

Hence, by Lemma 6.1.1, if we know the initial state of
˜̃
U =

˜̃
U(t, x) at the moment

t = T :

t = T :
˜̃
U = (ϕ(1)(x), ϕ(2)(x))T ,

˜̃
U t = (ψ(1)(x), ψ(2)(x))T , 0 ≤ x ≤ L, (6.3.21)

then the evolution of
˜̃
U =

˜̃
U(t, x) with respect to t can be completely determined.

Remark 6.3.3 Under assumptions (6.3.3)–(6.3.4) and (6.3.7)–(6.3.8), in order
to realize the exact boundary synchronization by 2-groups, one has infinitively many
ways to choose (N − 2) boundary controls at the end x = 0. Moreover, as in Re-
mark 6.2.4, any given state (ϕ(1), ϕ(2))T and (ψ(1), ψ(2))T in (C2[0, L])2 × (C1[0, L])2,
satisfying the conditions of C2 compatibility at the points (t, x) = (T, 0) and (T, L),
respectively, with boundary conditions (6.3.18) and (6.3.19), belongs to the attainable
set of the initial data of synchronizable state by 2-groups.

Thus, at least for some initial states (Φ(x),Ψ(x)), the synchronizable states by



Chapter 6: Exact Boundary Synchronization for a Coupled System of Linear Wave
Equations 173

2-groups ˜̃u1(t, x) and ˜̃u2(t, x) are linearly independent on t = T then for t ≥ T . It

shows that the corresponding requirement on ˜̃u1 and ˜̃u2, given in Lemma 6.3.1, is
reasonable.

Remark 6.3.4 In the special case that m = N − 1, U (2)(t, x) is composed of only
one component uN(t, x), then assumptions (6.3.4) and (6.3.8) reduce to

aiN = ˜̃a12 (i = 1, · · · , N − 1), (6.3.22)

and

biN (resp. b̄iN) =
˜̃
b12 (resp.

˜̃
b12) (i = 1, · · · , N − 1), (6.3.23)

where ˜̃a12 and
˜̃
b12 (resp.

˜̃
b12) are independent of i = 1, · · · , N − 1, namely, the first

(N − 1) components of the last column of the coupling matrices A and B (resp. B)
are the same, respectively.

Remark 6.3.5 The exact boundary synchronization by k-groups can be treated in
a similar way.

In order to realize the exact boundary synchronization by 2-groups, the number of
boundary controls is equal to (N − 2), while, in order to realize the exact boundary
synchronization by k-groups, the number of boundary controls is equal to (N − k).

6.4 Exact boundary null controllability and syn-

chronization by groups

For the coupled system of wave equations (6.1.2), (6.1.5) and (6.1.7), by Lemma
6.1.2, we can use N boundary controls to realize the exact boundary null controlla-
bility. When the number of boundary controls is less than N , however, generically
speaking, it is impossible to realize the same requirement. A natural question is
whether we can get the exact boundary null controllability for a part of state vari-
ables when the number of boundary controls is less than N . For instance, is it
possible or not to realize the exact boundary null controllability for (N − 1) state
variables by means of only (N − 1) boundary controls? Since all the state variables
are coupled each other, generally speaking, this requirement is impossible to be re-
alized. However, following the idea given in §6.3, under certain assumptions on the
coupled system, if we divide the state variables into two groups U (1) = (u1, · · · , um)T
and U (2) = (um+1, · · · , uN)T such that U (1) is exactly null controllable, while U (2) is
exactly synchronizable, then we can realize the previous requirement in some sense.
It leads to the following
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Definition 6.4.1 If there exists T > 0 such that for any given initial state
(Φ(x),Ψ(x)), we can find some boundary controls with support on [0, T ] in H(t), such
that the corresponding mixed initial-boundary value problem (6.1.2), (6.1.5), (6.1.7)
and (6.1.8) admits a unique C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on
t ≥ 0, and as t ≥ T we have

u1(t, x) ≡ · · · ≡ um(t, x) ≡ 0, 0 ≤ x ≤ L, (6.4.1)

um+1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L, (6.4.2)

then the coupled system (6.1.2), (6.1.5) and (6.1.7) is said to possess the exact
boundary null controllability and synchronization by 2-groups or is said to

be exactly null controllable and synchronizable by 2-groups, and ˜̃u = ˜̃u(t, x)
is called to be the partially synchronizable state.

Obviously, if the coupled system (6.1.2), (6.1.5) and (6.1.7) possesses the exact
null controllability, then it must satisfy the requirement of Definition 6.4.1. This
situation should be excluded in advance.

Lemma 6.4.1 Suppose that the coupled system (6.1.2), (6.1.5) and (6.1.7) is
exactly null controllable and synchronizable by 2-groups, but not exactly null control-
lable, then the coupling matrix A = (aij) in system (6.1.2) must satisfy the following
necessary conditions:

N∑

j=m+1

aij = 0 (i = 1, · · · ,m), (6.4.3)

N∑

j=m+1

aij
def.
= ˜̃a (i = m+ 1, · · · , N), (6.4.4)

where ˜̃a is a constant independent of i = m+ 1, · · · , N .

For the coupling matrices B = (bij) and B = (b̄ij) in the boundary conditions
(6.1.5) and (6.1.7), similar necessary conditions hold, namely,

N∑

j=m+1

bij(resp. b̄ij) = 0 (i = 1, · · · ,m), (6.4.5)

N∑

j=m+1

bij(resp. b̄ij)
def.
=

˜̃
b(resp.

˜̄̃
b) (i = m+ 1, · · · , N), (6.4.6)

where
˜̃
b and

˜̄̃
b are constants independent of i = m+ 1, · · · , N .
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Proof By Definition 6.4.1, it follows from (6.1.4) that for t ≥ T we have

( N∑

j=m+1

aij

)
˜̃u = 0, 0 ≤ x ≤ L, i = 1, · · · ,m, (6.4.7)

∂2˜̃u
∂t2

− ∂2˜̃u
∂x2

+
( N∑

j=m+1

aij

)
˜̃u = 0, 0 ≤ x ≤ L, i = m+ 1, · · · , N. (6.4.8)

In particular, for t ≥ T we get from (6.4.8) that

( N∑

j=m+1

aij

)
˜̃u =

( N∑

j=m+1

akj

)
˜̃u, 0 ≤ x ≤ L, i, k = m+ 1, · · · , N. (6.4.9)

Then, (6.4.3)–(6.4.4) follows directly from the non exact null controllability.

Similarly to the proof of Lemma 6.2.1, we get (6.4.5)–(6.4.6).

Theorem 6.4.1 Suppose that (6.4.3)-(6.4.6) hold and T > 0 satisfies (6.2.8).
For any given initial state (Φ(x),Ψ(x)), we can find (N−1) C2 (case (6.1.5a)) or C1

(cases(6.1.5b)-(6.1.5c)) boundary controls with support on [0, T ] in H(t) (for instance,
take h1(t), · · · , hm(t), hm+2(t), · · · , hN(t) with hm+1(t) ≡ 0), such that the coupled
system (6.1.2), (6.1.5) and (6.1.7) possesses the exact boundary null controllability
and synchronization by 2-groups.

Proof Let
{

wi = ui (i = 1, · · · ,m),
wi = ui − ui+1 (i = m+ 1, · · · , N − 1).

(6.4.10)

Similarly to the proof of Theorem 6.2.1 (cf.[79]), under assumptions (6.4.3)–
(6.4.4), the original system (6.1.2) for the variable U can be reduced to a self-
closing system (6.2.10) of the same kind for the variable W = (w1, · · · , wN−1)

T ,

where Ã = (ãij) is an (N − 1)× (N − 1) matrix with

ãij =





aij, j = 1, · · · ,m,

−
N∑

p=j+1

aip, j = m+ 1, · · · , N − 1,
for i = 1, · · · ,m, (6.4.11)

ãij =





aij − ai+1,j, j = 1, · · · ,m,
for i = m+ 1, · · · , N − 1.

−
N∑

p=j+1

(aip − ai+1,p) = −
j∑

p=m+1

(ai+1,p − aip), j = m+ 1, · · · , N − 1,

(6.4.12)
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Similarly, by (6.4.5)–(6.4.6), the original boundary conditions (6.1.5) and (6.1.7)
for the variable U can be reduced, respectively, to a self-closing boundary conditions
(6.2.12) and (6.2.13) of the same kind for the variable W , in which the coupling

matrices B̃ = (̃bij) and B̃ = (̃bij) are (N −1)× (N −1) matrices reduced by B = (bij)
and B = (bij) in the following way:

b̃ij =





bij, j = 1, · · · ,m,

−
N∑

p=j+1

bip, j = m+ 1, · · · , N − 1,
for i = 1, · · · ,m, (6.4.13)

b̃ij =





bij − bi+1,j, j = 1, · · · ,m,
for i = m+ 1, · · · , N − 1

−
N∑

p=j+1

(bip − bi+1,p) = −
j∑

p=1

(bi+1,p − bip), j = m+ 1, · · · , N − 1,

(6.4.14)

etc. Moreover, H̃(t) is given by (6.2.15) with

h̃i(t) =

{
hi(t), i = 1, · · · ,m,
hi(t)− hi+1(t), i = m+ 1, · · · , N − 1.

(6.4.15)

The initial condition (6.2.17) of W is given by

ϕ̃i(x) =

{
ϕi(x), i = 1, · · · ,m,
ϕi(x)− ϕi+1(x), i = m+ 1, · · · , N − 1,

(6.4.16)

ψ̃i(x) =

{
ψi(x), i = 1, · · · ,m,
ψi(x)− ψi+1(x), i = m+ 1, · · · , N − 1.

Thus, according to Lemma 6.1.2, by means of (N − 1) C2 (case (6.2.12a)) or C1

(cases(6.2.12b)-(6.2.12c)) boundary controls H̃(t) (for instance, take h1(t), · · · , hm(t),
hm+1(t), · · · , hN(t) with hm+1(t) ≡ 0) at the end x = 0, the variable W is exactly
null controllable, then the variable U is exactly null controllable and synchronizable
by 2-groups. This proves Theorem 6.4.1.

Remark 6.4.1 Lemma 6.1.1 and Lemma 6.1.2 are always available for the re-
duced initial-boundary value problem for the variable W .

Remark 6.4.2 As t ≥ T , the partially synchronizable state ˜̃u = ˜̃u(t, x) satisfies
wave equation (6.2.6) and boundary conditions (6.2.19) and (6.2.20), where ˜̃a, ˜̃b and
˜̄̃
b are given by (6.4.4) and (6.4.6). Lemma 6.1.1 is always available for this system
(6.2.6) and (6.2.19)–(6.2.20).
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Hence, if we know this initial condition (6.2.21) of ˜̃u = ˜̃u(t, x) at the moment

t = T , then the evolution of the partially synchronizable state ˜̃u = ˜̃u(t, x) with respect
to t can be completely determined.

Moreover, any given state (ϕ, ψ) in C2[0, L]×C1[0, L], satisfying the conditions of
C2 compatibility at the points (t, x) = (T, 0) and (T, L), respectively, with boundary
conditions (6.2.19) and (6.2.20), belongs to the attainable set of the initial data of
partially synchronizable state.

Remark 6.4.3 In the special case that m = N − 1, U (2)(t, x) is composed of only
one component uN(t, x), then assumptions (6.4.3) and (6.4.5) become

aiN = 0 (i = 1, · · · , N − 1), (6.4.17)

biN (resp. b̄iN) = 0 (i = 1, · · · , N − 1), (6.4.18)

namely, the first (N−1) components of the last column of the coupling matrices A and
B (resp. B) are all zero. In this case, by Theorem 6.4.1, (N − 1) boundary controls
can be used to realize the exact boundary null controllability for the first (N − 1)
state variables of U , however, since the first (N − 1) wave equations and boundary
conditions constitute a self-closing system, this result is obvious.

Now, taking m = N−2 in Theorem 6.4.1, assumptions (6.4.3) and (6.4.6) become

N∑

j=N−1

aij = 0 (i = 1, · · · , N − 2), (6.4.19)

N∑

j=N−1

aij = ˜̃a (i = N − 1, N) (6.4.20)

and

N∑

j=N−1

bij (resp. b̄ij) = 0, (i = 1, · · · , N − 2), (6.4.21)

N∑

j=N−1

bij (resp. b̄ij) =
˜̃
b (resp.

˜̄̃
b) (i = N − 1, N). (6.4.22)

Thus, we can use (N − 1) (instead of (N − 2)!) boundary controls to realize the exact
boundary null controllability for (N − 2) state variables in U .



178 6.5. Generalized exact boundary synchronization

6.5 Generalized exact boundary synchronization

We now consider the problem of synchronization from a more general mathemat-
ical point of view.

For the coupled system of wave equations (6.1.2), (6.1.5) and (6.1.7), based on
the previous discussions, we can define the corresponding generalized exact boundary
synchronization.

Let

wi =
N∑

j=1

θijuj (i = 1, · · · ,M) (6.5.1)

or

W = H©U, (6.5.2)

where W = (w1, · · · , wM)
T , 0 < M < N and H© = (θij)M×N is of full row-rank.

Suppose that for any given initial state (Φ(x),Ψ(x)), the mixed initial-boundary
value problem (6.1.2), (6.1.5), (6.1.7) and (6.1.8) for the variable U can be reduced to
a self-closing mixed initial-boundary values problem of the same kind for the variable
W , and we can use Lemma 6.1.2 to find M C2 (case (6.1.5a)) or C1 (cases(6.1.5b)-
(6.1.5c)) boundary controls in H(t) with support on [0, T ] with T > 2L, such that as
t ≥ T we have

W (t, x) ≡ 0, 0 ≤ x ≤ L, (6.5.3)

i.e.,

H©U(t, x) ≡ 0, 0 ≤ x ≤ L. (6.5.4)

Thus, the coupled system (6.1.2), (6.1.5) and (6.1.7) is said to have the generalized
exact boundary synchronization associated with H© and U = U(t, x) is the
corresponding generalized synchronizable state.

It is easily seen that this definition covers all the cases discussed in the previous
sections.

(1) If M = N − 1 and we take

wi = ui − ui+1 (i = 1, · · · , N − 1), (6.5.5)
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i.e.,

H© =




1 −1
. . . . . .

1 −1




(N−1)×N

, (6.5.6)

then the generalized exact synchronization leads to the exact synchronization given
in §6.2.

(2) If M = N − 1 and we take

{
wi = ui (i = 1, · · · ,m),
wi = ui − ui+1 (i = m+ 1, · · · , N − 1),

(6.5.7)

i.e.,

H© =




Im 


1 −1
. . . . . .

1 −1




(N−m−1)×(N−m)




(N−1)×N

, (6.5.8)

where Im is the unit matrix of order m, then the generalized exact synchronization
leads to the exact null controllability and synchronization by 2-groups discussed in
§6.4.

(3) If M = N − 2 and we take

{
wi = ui − ui+1 (i = 1, · · · ,m− 1),

wi = ui+1 − ui+2 (i = m, · · · , N − 2),
(6.5.9)

i.e.,

H© =







1 −1
. . . . . .

1 −1




(m−1)×m 


1 −1
. . . . . .

1 −1




(N−m−1)×(N−m)




(N−2)×N

,

(6.5.10)

then the generalized exact synchronization leads to the exact synchronization by
2-groups discussed in §6.3.
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A natural question is under what conditions the original coupled system for the
variable U can be reduced to a self-closing coupled system of the same type for the
variable W .

Multiplying the matrix H© to the system (6.1.2), (6.1.5) and (6.1.7) from the left,
it is easy to get

Theorem 6.5.1 For any given coupling N × N matrices A, B and B, if there

exist a full row-rank matrix H© = (θij)M×N , and M ×M matrices Ã, B̃ and B̃ such
that

H©A = Ã H©, (6.5.11)

H©B = B̃ H©, (6.5.12)

H©B = B̃ H©, (6.5.13)

then we can get a self-closing coupled system (6.2.10) and (6.2.12)–(6.2.13) with

H̃(t) = H© H(t) for the variable W , so that the generalized exact boundary syn-
chronization associated with H© for the variable U can be realized by means of M
boundary control functions.

Remark 6.5.1 Lemma 6.1.1 and Lemma 6.1.2 are always available for the re-
duced coupled system for the variable W .

The next question is for any given coupling N ×N matrices A, B and B, how to
guarantee the existence of such M ×N matrix H© and M ×M matrices Ã, B̃ and

B̃ in Theorem 6.5.1.

We first consider the case M = N − 1.

Theorem 6.5.2 Suppose that M = N − 1. For the coupled system of wave
equations (6.1.2), (6.1.5) and (6.1.7), if the coupling matrices A, B and B possess
a common real right eigenvector X ∈ R

N\{0}:

AX = ˜̃aX, (6.5.14)

BX =
˜̃
bX, (6.5.15)

BX =
˜̄̃
bX, (6.5.16)

where ˜̃a, ˜̃b and
˜̃
b are corresponding eigenvalues, respectively, then there exist an (N−

1)×N full row-rank matrix H© = (θij) and (N − 1)× (N − 1) matrices Ã, B̃ and B̃
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such that (6.5.11)–(6.5.13) hold. Moreover, X constitutes a system of basic solutions
to the linear algebraic system

H©Y = 0. (6.5.17)

Proof There exist (N − 1) linearly independent column vectors Y1, · · · , YN−1
perpendicular to X;

〈X, Yj〉 = 0, j = 1, · · · , N − 1. (6.5.18)

Thus, noting (6.5.14) we have

〈X,ATYj〉 = 〈AX, Yj〉 = 0, j = 1, · · · , N − 1. (6.5.19)

Then,

ATYj =
N−1∑

k−1

âjkYk, j = 1, · · · , N − 1, (6.5.20)

where âjk are constants. Let

Ã = (âjk)
T = (ãjk)(N−1)×(N−1). (6.5.21)

It follows from (6.5.20) that

AT (Y1, · · · , YN−1) = (Y1, · · · , YN−1)ÃT , (6.5.22)

then, taking
H© = (Y1, · · · , YN−1)T , (6.5.23)

we get (6.5.11). Moreover, it is easy to see that X constitutes a system of basic
solutions to the linear algebraic system (6.5.17).

The proof of (6.5.12)–(6.5.13) is completely similar.

Remark 6.5.2 In case (1), M = N − 1, noting (6.5.6), X = (1, · · · , 1)T is a
system of basic solutions to (6.5.17). The requirement that the coupling matrices
A, B and B possess a common right eigenvector X implies (6.2.2)–(6.2.4). Thus,
Theorem 6.5.2 leads to the conclusion given in §6.2.

Remark 6.5.3 In case (2), M = N−1, noting (6.5.8), X = (

m︷ ︸︸ ︷
0, · · · , 0,

N−m︷ ︸︸ ︷
1, · · · , 1)T

is a system of basic solutions to (6.5.17). The requirement that the coupled matrices
A, B and B possess a common right eigenvector X implies (6.4.3)–(6.4.6). Thus,
the conclusion given in §6.4 follows from Theorem 6.5.2.

On the other hand, we have
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Theorem 6.5.3 Suppose that M = N − 1. If the coupled system (6.1.2), (6.1.5)
and (6.1.7) possesses the generalized exact boundary synchronization associated with
H©, but is not exactly boundary null controllable, then the coupling matrices A, B
and B must have a common real right eigenvector X, and X constitutes a system of
basic solutions to the linear algebraic system (6.5.17).

Proof Since the rank of H© is (N − 1), the linear algebraic system (6.5.17) pos-
sesses a basic solution X = (α1, · · · , αN)

T ∈ R
N\{0}. Thus, when t ≥ T , it follows

from (6.5.4) that the generalized synchronizable state U(t, x) = (u1(t, x), · · · , uN(t, x))T
can be written as

ui(t, x) = αi
˜̃u(t, x), 0 ≤ x ≤ L, (6.5.24)

where ˜̃u = ˜̃u(t, x) is a C2 function.

Substituting (6.5.24) into (6.1.4), when t ≥ T we have

αi

(∂2˜̃u
∂t2

− ∂2˜̃u
∂x2

)
+

( N∑

j=1

aijαj

)
˜̃u = 0, i = 1, · · · , N. (6.5.25)

Let
ℵ = {i | αi 6= 0, i = 1, · · · , N}. (6.5.26)

When the number of ℵ is bigger than or equal to 2, it is easy to see form (6.5.25)
that for any given i, k ∈ ℵ,

1

αi

( N∑

j=1

aijαj

)
˜̃u = 1

αk

( N∑

j=1

akjαj

)
˜̃u,

then by the non exact null controllability, we get

1

αi

( N∑

j=1

aijαj

)
=

1

αk

( N∑

j=1

akjαj

)
def.
= ˜̃a, ∀i, k ∈ ℵ,

namely, for i ∈ ℵ we have
N∑

j=1

aijαj = ˜̃aαi, (6.5.27)

where ˜̃a is a constant independent of i ∈ ℵ. On the other hand, for i /∈ ℵ, since
αi = 0, by (6.5.25) and the non exact null controllability, (6.5.27) is still valid.

When the number of ℵ is equal to 1, without loss of generality, we may suppose

that ℵ = {1}, namely, α1 6= 0 and α2 = · · ·αN = 0. Taking ˜̃a = a11, we still have
(6.5.27) for i = 1. Moreover, as in the previous situation, (6.5.27) is still valid for
i /∈ ℵ.
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Thus, for i = 1 · · · , N we always have (6.5.27), where ˜̃a is independent of i.

This proves (6.5.14). Moreover, it follows from (6.5.25) and (6.5.14) that ˜̃u = ˜̃u(t, x)
satisfies the wave equation (6.2.6) for t ≥ T .

We next prove (6.5.15). The proof of (6.5.16) is similar.

Substituting (6.5.24) into the boundary condition (6.1.5c), for t ≥ T we have

x = 0 : αi

∂˜̃u
∂x
−

( N∑

j=1

bijαj

)
˜̃u = 0, i = 1, · · · , N. (6.5.28)

As in the proof of Lemma 6.2.1, we may suppose that ˜̃u(t, 0) 6≡ 0 for t ≥ T , then
similarly we can get

N∑

j=1

bijαj =
˜̃
bαi, i = 1, · · · , N,

where
˜̃
b is a constant independent of i. This proves (6.5.15).

Remark 6.5.4 As t ≥ T , for the generalized synchronizable state U(t, x) =
˜̃u(t, x)X, where X = (α1, · · · , αN)

T is a basic solution of (6.5.17), ˜̃u = ˜̃u(t, x) sat-
isfies the wave equation (6.2.6) and the boundary conditions (6.2.19) and (6.2.20).

Then, if we know the initial state (6.2.21) of ˜̃u = ˜̃u(t, x) at the moment t = T , we

can completely determine the evolution of ˜̃u = ˜̃u(t, x) with respect to t.

Moreover, as in Remark 6.2.4, the set of all possible initial data (ϕ, ψ) of ˜̃u =
˜̃u(t, x) is the whole space C2[0, L] × C1[0, L] associated with the conditions of C2

compatibility at the points (t, x) = (T, 0) and (T, L), respectively, with boundary con-
ditions (6.2.19) and (6.2.20).

For the case M = N − 2, we only consider the special situation that

H© =

(
H©1

H©2

)

(N−2)×N

, (6.5.29)

where H©1 is a full row-rank (N1 − 1) × N1 matrix, while H©2 is a full row-rank
(N2 − 1)×N2 matrix with N1 +N2 = N .

Let

A =

(
A11 A12

A21 A22

)
, Ã =

(
Ã11 Ã12

Ã21 Ã22

)
etc., (6.5.30)

where A11 (resp. Ã11) is an N1×N1 (resp. (N1−1)×(N1−1)) matrix, A21 (resp. Ã21)

is an N2×N1 (resp. (N2−1)× (N1−1)) matrix, A12 (resp. Ã12) is an N1×N2 (resp.
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(N1−1)× (N2−1)) matrix, A22 (resp. Ã22) is an N2×N2 (resp. (N2−1)× (N2−1))
matrix etc. Thus, (6.5.11)–(6.5.13) in Theorem 6.5.1 can be equivalently written as

H©
i
Aij = Ãij H©

j
, i, j = 1, 2, (6.5.31)

H©
i
Bij = B̃ij H©

j
, i, j = 1, 2, (6.5.32)

H©
i
Bij = Bij H©

j
, i, j = 1, 2. (6.5.33)

Theorem 6.5.4 Suppose that M = N − 2. For the coupled system of wave
equations (6.1.2), (6.1.5) and (6.1.7), if there exist real vectors X1 ∈ RN1\{0} and

X2 ∈ RN2\{0} and real numbers ˜̃aij, ˜̃bij and
˜̄̃
bij such that

AijXj = ˜̃aijXi, i, j = 1, 2, (6.5.34)

BijXj =
˜̃
bijXi, i, j = 1, 2, (6.5.35)

BijXj =
˜̄̃
bijXi, i, j = 1, 2, (6.5.36)

then we can find a (N − 2) × N full row-rank matrix H© =
(

H©
1

H©
2

)
and (N −

2) × (N − 2) matrices Ã, B̃ and B̃ such that (6.5.31)–(6.5.33) hold, moreover, X1

(resp. X2) constitutes a system of basic solutions to the linear algebraic system

H©1Y1 = 0 (resp. H©2Y2 = 0). (6.5.37)

Proof Specially taking i = j in (6.5.34)–(6.5.36), we get

AiiXi = ˜̃aiiXi, i = 1, 2, (6.5.38)

BiiXi =
˜̃
biiXi, i = 1, 2, (6.5.39)

BiiXi =
˜̃
biiXi, i = 1, 2. (6.5.40)

Then, by the proof of Theorem 6.5.2, there exist N1− 1 (resp. N2− 1) linearly inde-
pendent column vectors Y1, · · · , YN1−1 ∈ R

N1\{0} (resp. YN1 , · · · , YN−2 ∈ R
N2\{0})

perpendicular to X1 (resp. X2) such that (6.5.31)–(6.5.33) hold for i = j with some

matrices Ãii, B̃ii and B̃ii and

H©1 = (Y1, · · · , YN1−1)
T , H©2 = (YN1 , · · · , YN−2)T . (6.5.41)

We now prove that there exist matrices Ãij, B̃ij and B̃ij for i 6= j such that
(6.5.31)–(6.5.33) are still valid for i 6= j, in which H©1 and H©2 are given by (6.5.41).
For fixing the data, in what follows we only prove (6.5.31) for i = 1 and j = 2.
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Noting (6.5.34), we have

〈X2, A
T
12Yj〉 = 〈A12X2, Yj〉 = 〈˜̃a12X1, Yj〉 = 0, j = 1, · · · , N1 − 1. (6.5.42)

Then

AT
12Yj =

N−2∑

k=N1

âjkYk, j = 1, · · · , N1 − 1. (6.5.43)

where âjk are constants. Let

Ã12 = (âjk)
T = (ãjk). (6.5.44)

By (6.5.43), we have

AT
12(Y1, · · · , YN1−1) = (Y1, · · · , YN1−1)Ã

T
12, (6.5.45)

which together with (6.5.41) leads to (6.5.31) for i = 1 and j = 2.

Remark 6.5.5 In case (3),M = N−2, noting (6.5.10), we have X1 = (

m︷ ︸︸ ︷
1, · · · , 1)T

and X2 = (

N−m︷ ︸︸ ︷
1, · · · , 1)T . The requirements (6.5.34)–(6.5.36) imply (6.3.3)–(6.3.4) and

(6.3.7)–(6.3.8), then Theorem 6.5.4 leads to the conclusion given in §6.3.

By (6.5.29) and noting that the rank of both H©1 and H©2 is (N − 1), linear
algebraic system (6.5.37) possesses a basic solution X1 = (α1, · · · , αN1)

T ∈ R
N1\{0}

(resp. X2 = (αN1+1, · · · , αN)
T ∈ R

N2\{0}). Thus, noting (6.5.4), as t ≥ T the
generalized synchronizable state U(t, x) = (u1(t, x), · · · , uN(t, x))T can be written as

up(t, x) = αp
˜̃u1(t, x), p = 1, · · · , N1, 0 ≤ x ≤ L, (6.5.46)

uq(t, x) = αq
˜̃u2(t, x), q = N1 + 1, · · · , N, 0 ≤ x ≤ L. (6.5.47)

Similarly to Theorem 6.5.3, we have

Theorem 6.5.5 Suppose that M = N − 2. If the coupled system (6.1.2), (6.1.5)
and (6.1.7) possesses the generalized exact boundary synchronization associated with

(6.5.29), and at least for an initial state (Φ(x),Ψ(x)), ˜̃u1(t, x) and ˜̃u2(t, x) given by
(6.5.46)–(6.5.47) for the generalized synchronizable state are linearly independent.
Then there exist real vectors X1 ∈ R

N1\{0} and X2 ∈ R
N2\{0} and real numbers

˜̃aij (i, j = 1, 2) such that (6.5.34) holds.
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Proof Substituting (6.5.46)–(6.5.47) into (6.1.4), we have

αi

(∂2˜̃u1
∂t2

− ∂2˜̃u1
∂x2

)
+

( N1∑

p=1

aipαp

)
˜̃u1 +

( N∑

q=N1+1

aiqαq

)
˜̃u2 = 0, i = 1, · · · , N1,

(6.5.48)

αi

(∂2˜̃u2
∂t2

− ∂2˜̃u2
∂x2

)
+

( N1∑

p=1

aipαp

)
˜̃u1 +

( N∑

q=N1+1

aiqαq

)
˜̃u2 = 0, i = N1 + 1, · · · , N.

(6.5.49)

Let
ℵ1 = {p | αp 6= 0, p = 1, · · · , N1}. (6.5.50)

When the number ℵ1 is bigger than or equal to 2, it is easy to see from (6.5.48)
that for any given i, k ∈ ℵ1

1

αi

[( N1∑

p=1

aipαp

)
˜̃u1 +

( N∑

q=N1+1

aiqαq

)
˜̃u2

]

=
1

αk

[( N1∑

p=1

akpαp

)
˜̃u1 +

( N∑

q=N1+1

akqαq

)
˜̃u2

]
,

then, since we may assume that ˜̃u1 and ˜̃u2 are linearly independent, we get

1

αi

( N1∑

p=1

aipαp

)
=

1

αk

( N1∑

p=1

akpαp

)
def.
= ˜̃a11, ∀i, k ∈ ℵ1,

1

αi

( N∑

q=N1+1

aiqαq

)
=

1

αk

( N∑

q=N1+1

akqαq

)
def.
= ˜̃a12, ∀i, k ∈ ℵ1,

namely, for i ∈ ℵ1, we have
N1∑

p=1

aipαp = ˜̃a11αi, (6.5.51)

N∑

q=N1+1

aiqαq = ˜̃a12αi, (6.5.52)

where ˜̃a11 and ˜̃a12 are constants in dependent of i ∈ ℵ1. On the other hand, for

i 6∈ ℵ1, since αi = 0, by (6.5.48) and noting that ˜̃u1 and ˜̃u2 are linearly independent,
(6.5.51)–(6.5.52) are still valid.
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When the number of ℵ1 is equal to 1, without loss of generality, we may suppose

that ℵ1 = {1}, namely, α1 6= 0 and α2 = · · · = αN1 = 0. Taking ˜̃a11 = a11 and

˜̃a12 = 1
α1

( N∑
q=N1+1

a1qαq

)
, we still have (6.5.51)–(6.5.52) for i = 1. Moreover, as in the

previous situation, (6.5.51)–(6.5.52) are still valid for i 6∈ ℵ1.
Thus, for i = 1, · · · , N , we always have (6.5.51)–(6.5.52), where ˜̃a11 and ˜̃a12 are

independent of i. This proves (6.5.34) for i = j = 1 and i = 1, j = 2.

Similarly, by (6.5.49), we get (6.5.34) for i = 2, j = 1 and i = j = 2. �

Remark 6.5.6 As t ≥ T , for the generalized sychronizable state U(t, x) =
(

˜̃u1(t, x)X1
˜̃u2(t, x)X2

)

given by (6.5.46)–(6.5.47), where X1 = (α1, · · · , αN1)
T (resp. X2 = (αN1+1, · · · , αN)

T )

is a basic solution to (6.5.37),
˜̃
U(t, x) =

(
˜̃u1(t, x)
˜̃u2(t, x)

)
satisfies the coupled system

(6.3.16) of wave equations with (6.3.17), in which ˜̃aij (i, j = 1, 2) are given by
(6.5.34), and the boundary conditions (6.3.18) and (6.3.19) with (6.3.20), in which

˜̃
bij and

˜̃
bij (i, j = 1, 2) are given by (6.5.35)–(6.5.36). Hence, if we know the initial

state (6.3.21) of
˜̃
U =

˜̃
U(t, x) at the moment t = T , then the evolution of

˜̃
U =

˜̃
U(t, x)

with respect to t can be completely determined.

Moreover, any given state (ϕ(1)(x), ϕ(2)(x))T and (ψ(1)(x), ψ(2)(x))T in (C2[0, L])2×
(C1[0, L])2, satisfying the conditions of C2 compatibility at the points (t, x) = (T, 0)
and (T, L), respectively, with boundary conditions (6.3.18) and (6.3.19), can be the

initial data of
˜̃
U =

˜̃
U(t, x).

Thus, at least for some initial states (Φ(x),Ψ(x)), ˜̃u1(t, x) and ˜̃u2(t, x) are linearly
independent on t = T then for t ≥ T . This shows that the corresponding requirement
given in Theorem 6.5.5 is reasonable.

Remark 6.5.7 The situation M = N − k (k > 2) can be similarly discussed.

6.6 Remarks

Remark 6.6.1 The whole previous discussion is still valid for the case of two-
sided controls, provided that (6.2.8) is replaced by

T > L (6.6.1)

and there is an inhomogeneous term H(t) on the right-hand side of (6.1.7).

Remark 6.6.2 It is possible that, different from Lemma 6.1.2, in the case of
one-sided controls, the exact boundary (null) controllability may be realized (perhaps
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in a weaker sense) by means of M(< N) boundary controls for some special coupled
systems of N wave equations (cf.[2],[3], [6],[78]). Thus, the exact boundary synchro-
nization (perhaps in a weaker sense) could be realized by only P (< M) boundary
controls.

Remark 6.6.3 The problem of synchronization might be also considered as an
optimal control problem, where an objective function of the type

N−1∑

i=1

‖ui − ui+1‖2

is minimized. This kind of optimal control is similar to the optimal control of partial
differential equations on networks (cf.[45] for an application in flood management)
and should be studied in the framework of weak solutions.



Chapter 7

Exact Boundary Synchronization
for a Coupled System of Linear
Wave Equations with Coupled
Boundary Conditions of
Dissipative Type

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2 Exact boundary synchronization . . . . . . . . . . . . . . 192

7.3 Exact boundary synchronization by groups . . . . . . . . 197

7.4 Exact boundary null controllability and synchronization

by groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.5 Generalized exact boundary synchronization . . . . . . . 208

7.1 Introduction

Several kinds of exact synchronizations for a coupled system of 1-D wave equations
with boundary conditions of Dirichlet type, Neumann type and coupled third type
are discussed in [81] in the framework of classical solutions. A similar result for a
coupled system of n-dimensional wave equations with Dirichlet boundary controls in
the framework of weak solutions can be found in [79]. In this chapter, we will consider
the corresponding exact synchronizations for the coupled boundary conditions of
dissipative type.
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More precisely, we consider the following coupled system of 1-D wave equations
with coupled boundary conditions of dissipative type:





∂2U

∂t2
− ∂2U

∂x2
+ AU = 0, (7.1.1)

x = 0 : Ux − CUt = H(t), (7.1.2)

x = L : Ux + CUt = 0, (7.1.3)

where U = (u1, · · · , uN)T is the unknown vector function of (t, x), A = (aij), C =
(cij) and C = (c̄ij) are N × N coupling matrices with constant elements, H(t) =
(h1(t), · · · , hN(t))T is a C1 vector function, the components of which will be totally
or partially taken as boundary controls. Our goal is to find a control time T > 0
and some boundary controls in H(t) supported on [0, T ], such that from the time
t = T on, the system states tend to the same. That is to say, we hope to achieve the
synchronization of system states not only at the moment t = T under the action of
boundary controls on [0, T ], but also when t ≥ T and withdrawing all the controls(see
also [79]-[81]).

Obviously, if the system has the exact boundary null controllability ([55], [77],
[88], [89] and [100]), it must have the exact boundary synchronization, but this is
a trivial situation that should be excluded beforehand. The exact boundary null
controllability here also means that the system states remain null not only at the
moment t = T under the action of boundary controls on [0, T ], but also when t ≥ T
and withdrawing all the controls.

For the forward mixed initial-boundary value problem (7.1.1)-(7.1.3) with the
following initial condition

t = 0 : U = Φ(x), Ut = Ψ(x), (7.1.4)

we have(see [55])

Lemma 7.1.1 For any given T > 0, assume that Φ ∈ (C2[0, L])N and Ψ ∈
(C1[0, L])N satisfy the conditions of C2 compatibility at the points (t, x) = (0, 0) and
(0, L), respectively (see Remark 7.1.1). For any given coupling matrices A, C and
C, if

det(C + IN) 6= 0 (7.1.5)

and

det(C + IN) 6= 0, (7.1.6)

where IN denotes the unit matrix of order N , namely, −1 is not an eigenvalue of
both C and C, then the forward mixed initial-boundary value problem (7.1.1)-(7.1.4)
admits a unique C2 solution U = U(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤
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T, 0 ≤ x ≤ L}.

Remark 7.1.1 The conditions of C2 compatibility at the point (t, x) = (0, L) can
be written as

{
Φ′(L) + CΨ(L) = 0,

Ψ′(L) + C(Φ′′(L)− AΦ(L)) = 0.
(7.1.7)

The conditions of C2 compatibility at the point (t, x) = (0, 0) can be similarly obtained.

Remark 7.1.2 For the backward mixed initial-boundary value problem (7.1.1)-
(7.1.3) with the final condition

t = T : U = Φ(x), Ut = Ψ(x), (7.1.8)

where Φ ∈ (C2[0, L])N , Ψ ∈ (C1[0, L])N and the conditions of C2 compatibility are
satisfied at the points (t, x) = (T, 0) and (T, L), respectively. The conclusion of
Lemma 7.1.1 is still valid, provided that assumptions (7.1.5)-(7.1.6) are replaced by

det(C − IN) 6= 0 (7.1.9)

and

det(C − IN) 6= 0, (7.1.10)

namely, 1 is not an eigenvalue of both C and C.

By Lemma 7.1.1 and using a constructive method, we have the following result
on the exact boundary null controllability(see [55], [72], [83], [109], [118]).

Lemma 7.1.2 Let

T > 2L. (7.1.11)

Under assumptions (7.1.5)-(7.1.6), for any given initial data (Φ,Ψ) ∈ (C2[0, L])N ×
(C1[0, L])N , satisfying the conditions of C2 compatibility at the point (t, x) = (0, L),
there exist N C1 boundary controls H(t) = (h1(t), · · · , hN(t))T with support on [0, T ]
at the end x = 0, such that the corresponding mixed initial-boundary value problem
(7.1.1)-(7.1.4) admits a unique C2 solution U = U(t, x) on t ≥ 0, and as t ≥ T we
have

U(t, x) ≡ 0, 0 ≤ x ≤ L. (7.1.12)
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Remark 7.1.3 Different from the situation discussed in [81], in the case of cou-
pled boundary conditions of dissipative type, in order to guarantee the well-posedness
and the exact boundary null controllability for the forward mixed initial-boundary
value problem, we should impose assumptions (7.1.5)-(7.1.6) for matrices C and C.

In what follows, we will use Lemma 7.1.1 and Lemma 7.1.2 to consider the exact
boundary synchronization, the exact boundary synchronization by groups, and the
exact boundary null controllability and synchronization by groups for the coupled
system of wave equations (7.1.1)-(7.1.3) in §7.2, §7.3 and §7.4, respectively, and then
the generalized exact boundary synchronization in §7.5. The whole forthcoming dis-
cussion is based on the situation of one-sided controls, similar results are still valid
for the case of two-sided controls (see [81]).

7.2 Exact boundary synchronization

Definition 7.2.1 If there exists T > 0 such that for any given initial state (Φ,Ψ),
we can find some boundary controls with support on [0, T ] in H(t), such that the
corresponding mixed initial-boundary value problem (7.1.1)-(7.1.4) admits a unique
C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on t ≥ 0, and as t ≥ T we have

u1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L, (7.2.1)

then the coupled system (7.1.1)-(7.1.3) is said to possess the exact boundary syn-

chronization or is said to be exactly synchronizable, and ˜̃u = ˜̃u(t, x) is called
the corresponding synchronizable state.

Obviously, if the system possesses the exact boundary null controllability, then it
must be exactly synchronizable. However, this trivial situation should be excluded
in the discussion. Similarly to [81], we have

Lemma 7.2.1 Under assumptions (7.1.5) and (7.1.6), if the coupled system of
wave equations (7.1.1)-(7.1.3) is exactly synchronizable, but not exactly null control-
lable, then the coupling matrix A should satisfy the following necessary conditions:
The values of the sum of every row of A are independent of i = 1, · · · , N , namely,

N∑

j=1

aij
def.
= ˜̃a (i = 1, · · · , N), (7.2.2)

where ˜̃a is a constant independent of i = 1, · · · , N .

Different from the situation discussed in [81], Lemma 7.2.1 is no longer valid
in general for the coupling matrices C and C in the coupled dissipative boundary



Chapter 7: Exact Boundary Synchronization for a Coupled System of Linear Wave
Equations with Coupled Boundary Conditions of Dissipative Type 193

conditions (7.1.2)-(7.1.3). However, based on Lemma 7.2.1, for matrices C and C we
impose the following similar assumptions:

N∑

j=1

cij
def.
= ˜̃c (i = 1, · · · , N), (7.2.3)

N∑

j=1

c̄ij
def.
= ˜̃̄c (i = 1, · · · , N), (7.2.4)

where ˜̃c and ˜̃̄c are constants independent of i = 1, · · · , N .

Remark 7.2.1 Suppose furthermore that the constant ˜̃a given by (7.2.2) is pos-
itive, it is easy to get the necessity of (7.2.3)-(7.2.4). In fact, for a coupled system
of n-dimensional wave equations with Neumann boundary conditions, in order to
guarantee the uniqueness of solution, one often assumes that A is a positive definite

matrix, then the hypothesis ˜̃a > 0 is reasonable since ˜̃a is an eigenvalue of matrix A.
However, in more general cases, we do not know the necessity of (7.2.3)-(7.2.4). It
is a very interesting problem if we can realize the boundary synchronization for the
coupled system (7.1.1)-(7.1.3) without additional assumptions (7.2.3)-(7.2.4).

Remark 7.2.2 Conditions (7.2.2)-(7.2.4) mean that all the matrices A, C and
C have a common right eigenvector (1, 1, · · · , 1)T with the corresponding eigenvalues
˜̃a, ˜̃c and ˜̃̄c, respectively.

Theorem 7.2.1 Under assumptions (7.1.5)-(7.1.6), suppose furthermore that (7.2.2)
– (7.2.4) hold. Let

T > 2L. (7.2.5)

For any given initial state (Φ,Ψ) ∈ (C2[0, L])N × (C1[0, L])N , satisfying the condi-
tions of C2 compatibility at the point (t, x) = (0, L), there exist (N − 1) C1 bound-
ary controls with support on [0, T ] in H(t) (for example, take h2(t), · · · , hN(t) with
h1(t) ≡ 0), such that the coupled system (7.1.1)-(7.1.3) possesses the exact boundary
synchronization.

Proof Let

wi = ui+1 − ui (i = 1, · · · , N − 1). (7.2.6)

It is easily shown (see [79]-[81]) that by (7.2.2), the original system (7.1.1) for the
variable U can be reduced to a self-closing system of the same kind for the variable
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W = (w1, · · · , wN−1)
T as follows:

∂2W

∂t2
− ∂2W

∂x2
+ ÃW = 0, (7.2.7)

where Ã = (ãij) is an (N − 1)× (N − 1) matrix with the entries

ãij =
N∑

p=j+1

(ai+1,p − aip) =

j∑

p=1

(aip − ai+1,p), i, j = 1, · · · , N − 1. (7.2.8)

Similarly, by (7.2.3)-(7.2.4), the original boundary conditions (7.1.2)-(7.1.3) for
the variable U can be reduced, respectively, to self-closing boundary conditions of
the same kind for the variable W as follows:

x = 0 : Wx − C̃Wt = H̃(t), (7.2.9)

x = L : Wx + C̃Wt = 0, (7.2.10)

where C̃ = (c̃ij) and C̃ = (̃cij) are (N − 1)× (N − 1) coupling matrices reduced from
C = (cij) and C = (cij) in the following way:

c̃ij =
N∑

p=j+1

(ci+1,p − cip) =

j∑

p=1

(cip − ci+1,p), i, j = 1, · · · , N − 1, (7.2.11)

˜̄cij =
N∑

p=j+1

(c̄i+1,p − c̄ip) =

j∑

p=1

(c̄ip − c̄i+1,p), i, j = 1, · · · , N − 1. (7.2.12)

Moreover,

H̃(t) = (h̃1(t), · · · , h̃N−1(t))T (7.2.13)

with

h̃i(t) = hi+1(t)− hi(t), i = 1, · · · , N − 1. (7.2.14)

Meanwhile, the initial condition of W is given by

t = 0 : W = Φ̃(x), Wt = Ψ̃(x) (7.2.15)

with
{
Φ̃(x) = (ϕ2(x)− ϕ1(x), ϕ3(x)− ϕ2(x), · · · , ϕN(x)− ϕN−1(x))

T ,

Ψ̃(x) = (ψ2(x)− ψ1(x), ψ3(x)− ψ2(x), · · · , ψN(x)− ψN−1(x))
T .

(7.2.16)
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Different from the discussion in [79]-[81], in the case of coupled dissipative bound-
ary conditions, we should verify the corresponding conditions (7.1.5)-(7.1.6) in Lemma
7.1.1 and Lemma 7.1.2 for the reduced system (7.2.7) and (7.2.9)-(7.2.10) in order
to guarantee the well-posedness and the exact boundary null controllability of the
reduced mixed initial-boundary value problem. For this purpose, under assumption
(7.2.3) we will prove

det(C + IN) = (˜̃c+ 1)det(C̃ + IN−1). (7.2.17)

In fact, let ei = (0, · · · ,
(i)

1 , · · · , 0)T , Ej =
j∑

i=1

ei, (i, j = 1, · · · , N). Noting (7.2.11), it
is easy to see that

c̃ij = (ei − ej)
TCEj, 1 ≤ i, j ≤ N − 1. (7.2.18)

Moreover, by (7.2.3), we have

(ei − ei+1)
TCEN = 0, 1 ≤ i ≤ N − 1 (7.2.19)

and

eTNCEj =

j∑

i=1

CNi
def.
= xj, 1 ≤ j ≤ N (7.2.20)

with xN = ˜̃c. Therefore, by elementary transformation we have

XNCYN =

(
C̃ 0

x ˜̃c

)
, (7.2.21)

where

XN =




(e1 − e2)
T

(e2 − e3)
T

...
(eN−1 − eN)

T

eTN



=




1 −1
1

. . .

. . . . . .

1 −1
1




N×N

, (7.2.22)

YN = (E1, · · · , EN) =




1 1 · · · · · · 1
1 · · · · · · 1

. . . · · · ...
. . .

...
1




N×N

, (7.2.23)
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x = (x1, · · · , xN−1) is a row vector of order N − 1, and 0 is the zero vector of order
N − 1. Obviously, both XN and YN are invertible matrices, and

XNYN = IN . (7.2.24)

Then

XN(C + IN)YN = XNCYN + IN =

(
C̃ + IN−1 0

x ˜̃c+ 1

)
, (7.2.25)

from which we get immediately (7.2.17).

Thus, assumption (7.1.5) implies that

det(C̃ + IN−1) 6= 0 (7.2.26)

and

˜̃c 6= −1. (7.2.27)

Similarly, by (7.2.4) and (7.1.6) we have

det(C̃ + IN−1) 6= 0 (7.2.28)

and

˜̃̄c 6= −1. (7.2.29)

Therefore, under assumptions (7.1.5)-(7.1.6), by Lemma 7.1.1, the reduced mixed
initial-boundary value problem (7.2.7),(7.2.9)-(7.2.10) and (7.2.15) for the variable
W is always well-posed, moreover, according to Lemma 7.1.2, by means of (N − 1)

C1 boundary controls H̃(t) (for instance, take h2(t), · · · , hn(t) with h1(t) ≡ 0) at the
end x = 0, the variable W is exactly null controllable, then the variable U is exactly
synchronizable. This finishes the proof.

Remark 7.2.3 As t ≥ T , the synchronizable state ˜̃u = ˜̃u(t, x) defined by (7.2.1)
satisfies the following wave equation and boundary conditions:





∂2 ˜̃u

∂t2
− ∂2 ˜̃u

∂x2
+ ˜̃a˜̃u = 0, (7.2.30)

x = 0 : ˜̃ux − ˜̃c˜̃ut = 0, (7.2.31)

x = L : ˜̃ux +
˜̄̃c˜̃ut = 0, (7.2.32)

where ˜̃a, ˜̃c and ˜̃̄c are given by (7.2.2)–(7.2.4), respectively. Noting (7.2.27) and
(7.2.29), by Lemma 7.1.1, this forward mixed system (7.2.30)-(7.2.32) is also well-
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posed. Hence, if we know the initial state of ˜̃u = ˜̃u(t, x) at the moment t = T :

t = T : ˜̃u = ϕ(x), ˜̃ut = ψ(x), 0 ≤ x ≤ L, (7.2.33)

we can completely determine the evolution of ˜̃u = ˜̃u(t, x) with respect to t.

Remark 7.2.4 Under assumptions (7.2.2)-(7.2.4), in order to realize the exact
boundary synchronization, the (N−1) C1 boundary controls in H(t) can be chosen in
infinitely many ways, therefore, the initial state (ϕ, ψ) in (7.2.33) will be not unique.

Moreover, it can be shown that under additional assumptions ˜̃c 6= 1 and ˜̄̃c 6= 1, the
attainable set of all possible initial data of synchronizable state is the whole space
C2[0, L]×C1[0, L] associated with the conditions of C2 compatibility at (t, x) = (T, 0)
and (T, L), respectively, with boundary conditions (7.2.31)-(7.2.32).

To illustrate this, for any given (ϕ, ψ) ∈ C2[0, L] × [C1[0, L] satisfying the con-
ditions of C2 compatibility with the boundary conditions (7.2.31)-(7.2.32) at (t, x) =

(T, 0) and (T, L), respectively, noting ˜̃c 6= 1 and ˜̄̃c 6= 1, by Remark 1.2, we can solve
the backward mixed initial-boundary value problem (7.2.30)-(7.2.33) to get a unique
C2 solution u = u(t, x) and then its initial value at t = 0:

t = 0 : u = ϕ̂(x), ut = ψ̂(x). (7.2.34)

Then, by assumptions (7.2.2)–(7.2.4), it is easy to see that

U(t, x) = (u, u, · · · , u)T (t, x) (7.2.35)

is the C2 solution on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L} to the
original system (7.1.1)-(7.1.3) with the null control H ≡ 0 and the initial condition

t = 0 : U = Φ̂(x) = (ϕ̂(x), ϕ̂(x), · · · , ϕ̂(x))T ,
(7.2.36)

Ut = Ψ̂(x) = (ψ̂(x), ψ̂(x), · · · , ψ̂(x))T .

Then, by solving the mixed problem (7.1.1)-(7.1.3) and (7.2.36) with null boundary
controls, we can reach any given synchronizable state (ϕ, ψ) at the moment t = T
(see also [79], [81]).

7.3 Exact boundary synchronization by groups

Similarly to [81], the concept of exact boundary synchronization can be general-
ized to the exact boundary synchronization by groups. Without loss of generality,
we consider here the exact boundary synchronization by 2-groups. For this pur-
pose, setting U =

(
U(1)

U(2)

)
with U (1) = (u1, · · · , um)T and U (2) = (um+1, · · · , uN)T , we
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look for some boundary controls in H(t), such that U (1) and U (2) are independently
synchronizable.

Definition 7.3.1 If there exists T > 0 such that for any given initial state (Φ,Ψ),
we can find some C1 boundary controls with support on [0, T ] in H(t), such that the
corresponding mixed initial-boundary value problem (7.1.1)-(7.1.4) admits a unique
C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on t ≥ 0, and as t ≥ T we have

u1(t, x) ≡ · · · ≡ um(t, x)
def.
= ˜̃u1(t, x), 0 ≤ x ≤ L, (7.3.1)

um+1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u2(t, x), 0 ≤ x ≤ L, (7.3.2)

then the coupled system (7.1.1)-(7.1.3) is said to possess the exact boundary syn-
chronization by 2-groups or is said to be exactly synchronizable by 2-groups,

and
˜̃
U =

˜̃
U(t, x) =

(
˜̃u1(t, x)
˜̃u2(t, x)

)
is called the corresponding synchronizable state by 2-

groups.

Obviously, if the coupled system possesses the exact boundary synchronization,
then it must be exactly synchronizable by 2-groups. However, this trivial situation
should be excluded in advance. For this purpose we need to impose suitable assump-

tions on the synchronizable states by 2-groups ˜̃u1(t, x) and ˜̃u2(t, x) (see also [79]-[81]).
We have

Lemma 7.3.1 Suppose that the coupled system (7.1.1)-(7.1.3) is exactly synchro-
nizable by 2-groups. Suppose furthermore that at least for an initial state (Φ,Ψ) the

synchronizable states by 2-groups ˜̃u1(t, x) and ˜̃u2(t, x) are linearly independent. Then
the coupling matrix A = (aij) in system (7.1.1) of wave equations should satisfy the
following necessary conditions:

m∑

j=1

aij
def.
=

{˜̃a11 (i = 1, · · · ,m),
˜̃a21 (i = m+ 1, · · · , N), (7.3.3)

N∑

j=m+1

aij
def.
=

{˜̃a12 (i = 1, · · · ,m),
˜̃a22 (i = m+ 1, · · · , N), (7.3.4)

where ˜̃a11 and ˜̃a12 are constants independent of i = 1, · · · ,m, while, ˜̃a21 and ˜̃a22 are
constants independent of i = m+ 1, · · · , N .

For the coupling matrices C and C in boundary conditions (7.1.2)-(7.1.3), we
can not get the corresponding necessary conditions under the assumptions of Lemma

7.3.1 (unless we assume that at least for an initial state (Φ,Ψ), ˜̃u1t(t, x) and ˜̃u2t(t, x)
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are linearly independent at x = 0 and at x = L, respectively). However, based on
Lemma 7.3.1, similarly to [81], we impose the following assumptions:

m∑

j=1

cij(resp. c̄ij)
def.
=

{˜̃c11(resp. ˜̃̄c11) (i = 1, · · · ,m),
˜̃c21(resp. ˜̃̄c21) (i = m+ 1, · · · , N),

(7.3.5)

N∑

j=m+1

cij(resp. c̄ij)
def.
=

{˜̃c12(resp. ˜̃̄c12) (i = 1, · · · ,m),
˜̃c22(resp. ˜̃̄c22) (i = m+ 1, · · · , N),

(7.3.6)

where ˜̃c11 (resp. ˜̃c11) and ˜̃c12 (resp. ˜̃c12) are constants independent of i = 1, · · · ,m,
while, ˜̃c21 (resp. ˜̃c21) and ˜̃c22 (resp. ˜̃c22) are constants independent of i = m+1, · · · , N .

Theorem 7.3.1 Under assumptions (7.1.5)-(7.1.6), suppose furthermore that (7.3.3)
-(7.3.6) hold and T > 0 satisfies (7.2.5). For any given initial state (Φ,Ψ), there ex-
ist (N − 2) C1 boundary controls with support on [0, T ] in H(t) (for instance, take
h2(t), · · · , hm(t), hm+2(t), · · · , hN(t) with h1(t) ≡ hm+1(t) ≡ 0), such that the coupled
system (7.1.1)-(7.1.3) possesses the exact boundary synchronization by 2-groups.

Proof Let
{

wi = ui+1 − ui (i = 1, · · · ,m− 1),

wi = ui+2 − ui+1 (i = m, · · · , N − 2).
(7.3.7)

Similarly to the proof of Theorem 7.2.1 (see also [79],[81]), under assumptions (7.3.3)–
(7.3.4), the original system (7.1.1) for the variable U can be reduced to a self-closing

system (7.2.7) of the same kind for the variable W = (w1, · · · , wN−2)
T , where Ã =

(ãij) is an (N − 2)× (N − 2) matrix with the entries

ãij =





m∑
p=j+1

(ai+1,p − aip) =
j∑

p=1

(aip − ai+1,p), i = 1, · · · , N − 2; j = 1, · · · ,m− 1,

N∑
p=j+2

(ai+1,p − aip) =
j+1∑

p=m+1

(aip − ai+1,p), i = 1, · · · , N − 2; j = m, · · · , N − 2.

(7.3.8)

Similarly, under assumptions (7.3.5)–(7.3.6), the original boundary conditions
(7.1.2)-(7.1.3) for the variable U can be reduced to self-closing boundary conditions
(7.2.9)-(7.2.10) of the same kind for the variable W , in which the coupling matrices

C̃ = (c̃ij) and C̃ = (̃cij) are (N − 2)× (N − 2) matrices reduced from C = (cij) and
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C = (cij) in the following way:

c̃ij =





m∑
p=j+1

(ci+1,p − cip) =
j∑

p=1

(cip − ci+1,p), i = 1, · · · , N − 2; j = 1, · · · ,m− 1,

N∑
p=j+2

(ci+1,p − cip) =
j+1∑

p=m+1

(cip − ci+1,p), i = 1, · · · , N − 2; j = m, · · · , N − 2,

(7.3.9)

˜̄cij =





m∑
p=j+1

(c̄i+1,p − c̄ip) =
j∑

p=1

(c̄ip − c̄i+1,p), i = 1, · · · , N − 2; j = 1, · · · ,m− 1,

N∑
p=j+2

(c̄i+1,p − c̄ip) =
j+1∑

p=m+1

(c̄ip − c̄i+1,p), i = 1, · · · , N − 2; j = m, · · · , N − 2.

(7.3.10)

Moreover,

H̃(t) = (h̃1(t), · · · , h̃N−2(t)) (7.3.11)

with

h̃i(t) =

{
hi+1(t)− hi(t), i = 1, · · · ,m− 1,

hi+2(t)− hi+1(t), i = m, · · · , N − 2.
(7.3.12)

The initial condition (7.2.15) of W is given by

Φ̃(x) = (ϕ̃1(x), · · · , ϕ̃N−2(x))
T , Ψ̃(x) = (ψ̃1(x), · · · , ψ̃N−2(x))

T (7.3.13)

with

ϕ̃i(x) =

{
ϕi+1(x)− ϕi(x), i = 1, · · · ,m− 1,

ϕi+2(x)− ϕi+1(x), i = m, · · · , N − 2,
(7.3.14)

ψ̃i(x) =

{
ψi+1(x)− ψi(x), i = 1, · · · ,m− 1,

ψi+2(x)− ψi+1(x), i = m, · · · , N − 2.

In this situation, in order to guarantee the well-posedness and the exact boundary
null controllability for the reduced system ofW , we should also verify the correspond-
ing conditions (7.1.5)–(7.1.6) in Lemma 7.1.1 and Lemma 7.1.2. Similarly to § 7.2,
under assumptions (7.3.5)-(7.3.6) we will prove

det(C + IN) = det(
˜̃
C + I2)det(C̃ + IN−2), (7.3.15)

where
˜̃
C = (˜̃cij) given by (7.3.5)-(7.3.6) is a 2× 2 matrix.
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In order to get (7.3.15), let

C =

(
C11 C12

C21 C22

)
, (7.3.16)

where, by(7.3.5)-(7.3.6), the values of the sum of every row of partitioned matrices

Cij(1 ≤ i, j ≤ 2) are ˜̃cij(1 ≤ i, j ≤ 2), respectively.

By elementary transformation, similarly to (7.2.21), it is easy to get

(
Xm

XN−m

)
C

(
Ym

YN−m

)
=

(
XmC11Ym XmC12YN−m
XN−mC21Ym XN−mC22YN−m

)

=




C̃11 0 C̃12 0
x11 c̃11 x12 c̃12
C̃21 0 C̃22 0
x21 c̃21 x22 c̃22




}
m

}
N −m

︸ ︷︷ ︸
m

︸ ︷︷ ︸
N−m

,

(7.3.17)
where x11 and x21 are some row vectors of order (m − 1), x12 and x22 are some row
vectors of order (N −m − 1). Deleting the m-th and N-th rows and the m-th and
N-th columns of the matrix on the right-hand side of (7.3.17), we get

C̃ =

(
C̃11 C̃12

C̃21 C̃22

)
. (7.3.18)

Noting (7.2.24), we have

(
Xm

XN−m

)
(C + IN)

(
Ym

YN−m

)

=

(
Xm

XN−m

)
C

(
Ym

YN−m

)
+ IN

=




C̃11 + Im−1 0 C̃12 0
x11 c̃11 + 1 x12 c̃12
C̃21 0 C̃22 + IN−m−1 0
x21 c̃21 x22 c̃22 + 1




}
m

}
N −m

︸ ︷︷ ︸
m

︸ ︷︷ ︸
N−m

.

(7.3.19)

Taking the determinants of both sides of (7.3.19), by Laplace expansion theorem, we
immediately get (7.3.15).
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Thus, under assumption (7.1.5) we have

det(C̃ + IN−2) 6= 0 (7.3.20)

and

det(
˜̃
C + I2) 6= 0. (7.3.21)

Similarly, it follows from (7.3.5)-(7.3.6) and (7.1.6) that

det(C̃ + IN−2) 6= 0 (7.3.22)

and

det(
˜̃
C + I2) 6= 0, (7.3.23)

where
˜̃
C = (̃̃c̄ij) given by (7.3.5)-(7.3.6) is a 2× 2 matrix.

Therefore, under assumptions (7.1.5)-(7.1.6), according to Lemma 7.1.1, the re-
duced mixed initial-boundary problem (7.2.7),(7.2.9)-(7.2.10) and (7.2.15) for the
variable W is always well-posed, then using Lemma 7.1.2, by means of (N − 2) C1

boundary controls H̃(t) (for instance, take h2(t), · · · , hm(t), hm+2(t), · · · , hN(t) with
h1(t) ≡ hm+1(t) ≡ 0) on [0, T ] at the end x = 0, the variable W is exactly null con-
trollable, then the variable U is exactly synchronizable by 2-groups. This completes
the proof.

Remark 7.3.1 As t ≥ T , the synchronizable state by 2-groups
˜̃
U =

˜̃
U(t, x) =(

˜̃u1(t, x)
˜̃u2(t, x)

)
satisfies the following coupled system of wave equations

∂2
˜̃
U

∂t2
− ∂2

˜̃
U

∂x2
+

˜̃
A
˜̃
U = 0, (7.3.24)

x = 0 :
˜̃
Ux − ˜̃

C
˜̃
U t = 0, (7.3.25)

x = L :
˜̃
Ux +

˜̃
C
˜̃
U t = 0, (7.3.26)

where

˜̃
A =

( ˜̃a11 ˜̃a12
˜̃a21 ˜̃a22

)
, (7.3.27)

and ˜̃a11, ˜̃a12, ˜̃a21 and ˜̃a21 are given by (7.3.3)–(7.3.4). Noting (7.3.21) and (7.3.23),
by Lemma 1.1 the forward mixed system (7.3.24)-(7.3.26) is well-posed. Hence, if we
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know the initial state of
˜̃
U =

˜̃
U(t, x) at the moment t = T :

t = T :
˜̃
U = (ϕ(1)(x), ϕ(2)(x))T ,

˜̃
U t = (ψ(1)(x), ψ(2)(x))T , 0 ≤ x ≤ L, (7.3.28)

then the evolution of
˜̃
U =

˜̃
U(t, x) with respect to t can be completely determined.

Remark 7.3.2 Under assumptions (7.3.3)-(7.3.6), in order to realize the exact
boundary synchronization by 2-groups, one has infinitively many ways to choose (N−
2) C1 boundary controls at the end x = 0, then the initial synchronizable state in
(7.3.28) is not unique. Moreover, similarly to Remark 2.2, suppose furthermore that

det(
˜̃
C − I2) 6= 0 (7.3.29)

and

det(
˜̃
C − I2) 6= 0, (7.3.30)

namely, 1 is not an eigenvalue of both
˜̃
C and

˜̃
C, any given state (ϕ(1), ϕ(2))T and

(ψ(1), ψ(2))T in (C2[0, L])2×(C1[0, L])2, satisfying the conditions of C2 compatibility at
the points (t, x) = (T, 0) and (T, L), respectively, with boundary conditions (7.3.25)-
(7.3.26), belongs to the attainable set of the initial data of synchronizable state by
2-groups.

Thus, at least for some initial states (Φ,Ψ), the synchronizable states by 2-groups
˜̃u1(t, x) and ˜̃u2(t, x) are linearly independent on t = T then for t ≥ T . It shows that
the corresponding requirement in Lemma 3.1 is reasonable.

Remark 7.3.3 The exact boundary synchronization by k(k ≥ 2)-groups can be
treated in a similar way.

In order to realize the exact boundary synchronization by 2-groups, the number of
boundary controls is equal to (N − 2), while, in order to realize the exact boundary
synchronization by k-groups, the number of boundary controls is equal to (N − k).

7.4 Exact boundary null controllability and syn-

chronization by groups

Similarly to [79],[81], under some hypotheses on the coupled system, we can divide
the state variables into two groups U (1) = (u1, · · · , um)T and U (2) = (um+1, · · · , uN)T
such that U (1) is exactly null controllable, while U (2) is exactly synchronizable.
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Definition 7.4.1 If there exists T > 0 such that for any given initial state (Φ,Ψ),
we can find some boundary controls with support on [0, T ] in H(t), such that the
corresponding mixed initial-boundary value problem (7.1.1)-(7.1.4) admits a unique
C2 solution U = U(t, x) = (u1(t, x), · · · , uN(t, x))T on t ≥ 0, and as t ≥ T we have

u1(t, x) ≡ · · · ≡ um(t, x) ≡ 0, 0 ≤ x ≤ L, (7.4.1)

um+1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L, (7.4.2)

then the coupled system (7.1.1)-(7.1.3) is said to possess the exact boundary null
controllability and synchronization by 2-groups or is said to be exactly null

controllable and synchronizable by 2- groups, and ˜̃u = ˜̃u(t, x) is called to be
the partially synchronizable state.

Obviously, when the coupled system (7.1.1)-(7.1.3) possesses the exact null control-
lability, it must satisfy the requirement of Definition 7.4.1. This situation should be
excluded in advance. Similarly to [81], we have

Lemma 7.4.1 Under assumptions (7.1.5)-(7.1.6), suppose furthermore that the
coupled system (7.1.1)-(7.1.3) is exactly null controllable and synchronizable by 2-
groups, but not exactly null controllable, then the coupling matrix A must satisfy the
following necessary conditions:

N∑

j=m+1

aij = 0 (i = 1, · · · ,m), (7.4.3)

N∑

j=m+1

aij
def.
= ˜̃a (i = m+ 1, · · · , N), (7.4.4)

where ˜̃a is a constant independent of i = m+ 1, · · · , N .

Different from the situation in [81], the conclusion of Lemma 7.4.1 is no longer valid
in general for the coupling matrices C and C in the coupled dissipative boundary
conditions (7.1.2)-(7.1.3). However, based on Lemma 7.4.1, we impose the following
similar assumptions:

N∑

j=m+1

cij(resp. c̄ij) = 0 (i = 1, · · · ,m), (7.4.5)

N∑

j=m+1

cij(resp. c̄ij)
def.
= ˜̃c(resp. ˜̃̄c) (i = m+ 1, · · · , N), (7.4.6)

where ˜̃c and ˜̃̄c are constants independent of i = m+ 1, · · · , N .



Chapter 7: Exact Boundary Synchronization for a Coupled System of Linear Wave
Equations with Coupled Boundary Conditions of Dissipative Type 205

Remark 7.4.1 Similarly to Remark 7.2.1, if we suppose furthermore that the

constant ˜̃a given by (7.4.4) is positive, it is easy to get the necessity of (7.4.5)-(7.4.6)
for the exact boundary null controllability and synchronization by 2-groups.

Theorem 7.4.1 Under assumptions (7.1.5)-(7.1.6), suppose furthermore that (7.4.3)-
(7.4.6) hold and T > 0 satisfies (7.2.5). For any given initial state (Φ,Ψ), we can
find (N − 1) C1 boundary controls with support on [0, T ] in H(t) (for instance, take
h1(t), · · · , hm(t), hm+2(t), · · · , hN(t) with hm+1(t) ≡ 0), such that the coupled system
(7.1.1)-(7.1.3) possesses the exact boundary null controllability and synchronization
by 2-groups.

Proof Let
{

wi = ui (i = 1, · · · ,m),
wi = ui+1 − ui (i = m+ 1, · · · , N − 1).

(7.4.7)

Similarly to the proof of Theorem 7.2.1 and Theorem 7.3.1 (see [79]-[81]), under as-
sumptions (7.4.3)–(7.4.4), the original system (7.1.1) for the variable U can be reduced
to a self-closing system (7.2.7) of the same kind for the variableW = (w1, · · · , wN−1)

T ,

where Ã = (ãij) is an (N − 1)× (N − 1) matrix with

ãij =





aij, j = 1, · · · ,m,
N∑

p=j+1

aip = −
j∑

p=m+1

aip, j = m+ 1, · · · , N − 1,
for i = 1, · · · ,m,

(7.4.8)

ãij =





ai+1,j − aij, j = 1, · · · ,m,
for i = m+ 1, · · · , N − 1.N∑

p=j+1

(ai+1,p − aip) =
j∑

p=m+1

(aip − ai+1,p), j = m+ 1, · · · , N − 1,

(7.4.9)

Similarly, by (7.4.5)–(7.4.6), the original boundary conditions (7.1.2)-(7.1.3) for
the variable U can be reduced, respectively, to a self-closing boundary conditions
(7.2.9)-(7.2.10) of the same kind for the variable W , in which the (N − 1)× (N − 1)

coupling matrices C̃ = (c̃ij) and C̃ = (̃cij) are reduced from C = (cij) and C = (cij)
in the following way:

c̃ij =





cij, j = 1, · · · ,m,
N∑

p=j+1

cip = −
j∑

p=m+1

cip, j = m+ 1, · · · , N − 1,
for i = 1, · · · ,m,

(7.4.10)
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c̃ij =





ci+1,j − cij, j = 1, · · · ,m,
for i = m+ 1, · · · , N − 1,N∑

p=j+1

(ci+1,p − bip) =
j∑

p=m+1

(cip − ci+1,p), j = m+ 1, · · · , N − 1,

(7.4.11)

and similar expressions for ˜̄cij (i, j = 1, · · · , N − 1). Moreover, H̃(t) is given by
(7.2.13) with

h̃i(t) =

{
hi(t), i = 1, · · · ,m,
hi+1(t)− hi(t), i = m+ 1, · · · , N − 1.

(7.4.12)

The initial condition (7.2.15) of W is given by

ϕ̃i(x) =

{
ϕi(x), i = 1, · · · ,m,
ϕi+1(x)− ϕi(x), i = m+ 1, · · · , N − 1,

(7.4.13)

ψ̃i(x) =

{
ψi(x), i = 1, · · · ,m,
ψi+1(x)− ψi(x), i = m+ 1, · · · , N − 1.

By (7.4.5)-(7.4.6), we can prove

det(C + IN) = (˜̃c+ 1)det(C̃ + IN−1). (7.4.14)

In fact, let

C =

(
C11 C12

C21 C22

)
, (7.4.15)

in which the sums of every row of partitioned matrices C12 and C22 are 0 and ˜̃c,
respectively.

By elementary transformation, using (7.2.21) and noting (7.4.10)-(7.4.11), we have

(
−Im

XN−m

)
C

(
−Im

YN−m

)

=

(
C11 −C12YN−m

−XN−mC21 XN−mC22YN−m

)
=

(
C̃ 0

x ˜̃c

)
,

(7.4.16)
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where x is a row vector of order (N − 1). Thus,

(
−Im

XN−m

)
(C + IN)

(
−Im

YN−m

)

=

(
−Im

XN−m

)
C

(
−Im

YN−m

)
+ IN

=

(
C̃ + IN−1 0

x ˜̃c+ 1

)
.

(7.4.17)

Taking the determinants of both sides of (7.4.17), we immediately get (7.4.14).

Thus, by (7.1.5) we have

det(C̃ + IN−1) 6= 0 (7.4.18)

and

˜̃c 6= −1. (7.4.19)

Similarly, by (7.1.6) we can get

det(C̃ + IN−1) 6= 0 (7.4.20)

and

˜̄̃c 6= −1. (7.4.21)

Therefore, under assumptions (7.1.5)-(7.1.6), by Lemma 7.1.1 the mixed initial-
boundary problem (7.2.7),(7.2.9)-(7.2.10) and (7.2.15) for the variable W is always

well-posed, then using Lemma 7.1.2, by means of (N −1) C1 boundary controls H̃(t)
(for instance, take h1(t), · · · , hm(t), hm+1(t), · · · , hN(t) with hm+1(t) ≡ 0) at the end
x = 0, the variable W is exactly null controllable, then the variable U is exactly null
controllable and synchronizable by 2-groups. This proves Theorem 7.4.1.

Remark 7.4.2 As t ≥ T , the partially synchronizable state ˜̃u = ˜̃u(t, x) satisfies
the wave system (7.2.30)-(7.2.32), where ˜̃a, ˜̃c and ˜̃̄c are given by (7.4.4) and (7.4.6).
Noting (7.4.19) and (7.4.21), this forward mixed system is also well-posed. Hence,

if we know the initial condition (7.2.33) of ˜̃u = ˜̃u(t, x) at the moment t = T , then

the evolution of the partially synchronizable state ˜̃u = ˜̃u(t, x) with respect to t can be
completely determined.

Moreover, suppose furthermore that ˜̃c 6= 1 and ˜̄̃c 6= 1, any given state (ϕ, ψ) in
C2[0, L]×C1[0, L], satisfying the conditions of C2 compatibility at the points (t, x) =
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(T, 0) and (T, L), respectively, with boundary conditions (7.2.31)-(7.2.32), belongs to
the attainable set of the initial data of partially synchronizable state.

7.5 Generalized exact boundary synchronization

We now consider the problem of synchronization from a more general mathemat-
ical point of view.

Let

wi =
N∑

j=1

θijuj (i = 1, · · · ,M) (7.5.1)

or

W = H©U, (7.5.2)

where W = (w1, · · · , wM)
T , M ≤ N − 1, and H© = (θij)M×N is full-rank.

Suppose that for any given initial state (Φ,Ψ), the mixed initial-boundary value
problem (7.1.1)-(7.1.4) for the variable U can be reduced to a self-closing mixed initial-
boundary values problem of the same kind for the variable W , then, if T > 2L, we
can use Lemma 7.1.2 to find M C1 boundary controls in H(t) with support on [0, T ],
such that as t ≥ T we have

W (t, x) ≡ 0, 0 ≤ x ≤ L, (7.5.3)

i.e.,

H©U(t, x) ≡ 0, 0 ≤ x ≤ L. (7.5.4)

Thus, the coupled system (7.1.1)-(7.1.3) is said to have the generalized exact
boundary synchronization associated with H© and U = U(t, x) is the cor-
responding generalized synchronizable state.

As in [81], under hypotheses (7.1.5)-(7.1.6), this definition covers all the cases
discussed in the previous sections.

A natural question is under what conditions the original coupled system for the
variable U can be reduced to a self-closing coupled system of the same type for the
variable W by means of (7.5.2).

Theorem 7.5.1 For any given coupling N × N matrices A, C and C, if there
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exist a full-rank matrix H© = (θij)M×N and M ×M matrices Ã, C̃ and C̃ such that

H©A = Ã H©, (7.5.5)

H©C = C̃ H©, (7.5.6)

H©C = C̃ H©, (7.5.7)

then, by (7.5.2) we can get a self-closing coupled system (7.2.7) and (7.2.9)-(7.2.10)
(in which the numbers of both wave equations and the boundary conditions on two

sides are all equal to M) with H̃(t) = H© H(t) for the variable W . Thus, we can
realize the generalized exact boundary synchronization associated with H© for the
variable U by M C1 boundary controls on x = 0. Moreover,

Spectrum(C̃) ⊆ Spectrum(C), (7.5.8)

Spectrum(C̃) ⊆ Spectrum(C), (7.5.9)

where Spectrum(C) denotes the set of all the eigenvalues of matrix C, etc.

Proof Similarly to [81], here, we need only to prove (7.5.8), and (7.5.9) can be
obtained in a similar way. In fact, for the full-rank matrix H©, by Gram-Schmidt
process on its column vectors, there exists a nonsingular matrix P ∈ R

N×N such that

H©P = (IM ,0). (7.5.10)

Let

P−1CP
def.
=

(
Ĉ11 Ĉ12

Ĉ21 Ĉ22

)
, (7.5.11)

where Ĉ11 and Ĉ22 are matrices of order M and order (N-M), respectively. It is easy
to see that

H©CP = ( H©P )(P−1CP ) = (Ĉ11, Ĉ12), (7.5.12)

C̃ H©P = (C̃,0). (7.5.13)

Hence, by(7.5.6) we have

Ĉ11 = C̃, Ĉ12 = 0, (7.5.14)

then, noting (7.5.11), we get (7.5.8). This ends the proof.

The next question is for any given coupling N ×N matrices A, C and C, how to
guarantee the existence of such M × N matrix H© and M ×M matrices Ã, C̃ and

C̃ in Theorem 7.5.1.

We first consider the case M = N − 1. Similarly to [81], we have
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Theorem 7.5.2 Suppose that M = N−1. For the coupled system (7.1.1)-(7.1.3)
of wave equations, if the coupling matrices A, C and C possess a common real right
eigenvector X ∈ R

N\{0}:

AX = ˜̃aX, (7.5.15)

CX = ˜̃cX, (7.5.16)

CX = ˜̃̄cX, (7.5.17)

where ˜̃a, ˜̃c and ˜̃c are corresponding eigenvalues, respectively, then there exist a (N −
1)×N full-rank matrix H© = (θij) and (N − 1)× (N − 1) matrices Ã, C̃ and C̃ such
that (7.5.5)–(7.5.7) hold. Moreover, X constitutes a system of basic solutions to the
linear algebraic system

H©Y = 0, (7.5.18)

and

Spectrum(C) =
{
˜̃c
}
+ Spectrum(C̃), (7.5.19)

Spectrum(C) =
{˜̃c

}
+ Spectrum(C̃). (7.5.20)

Proof Similarly, we need only to prove (7.5.19). In fact, for the full-rank matrix
H© ∈ R

(N−1)×N , by Gram-Schmidt process on its row vectors, it is easy to see that
there exists a matrix D = (d1, · · · , dN−1), in which dk(1 ≤ k ≤ N − 1) are column
vectors of order N , such that

H©D = IN−1. (7.5.21)

Noting H©X = 0, we can take Z ∈ R
N×1 such that

Z ∈ (Span{d1, · · · , dN−1})⊥ (7.5.22)

and

ZT ·X = 1. (7.5.23)

Then, for any given λ ∈ C, noting (7.5.6),(7.5.16) and (7.5.18), we have

(
H©
ZT

)
(C − λIN)(D,X) =

(
H©CD H©CX
ZTCD ZTCX

)
− λIN =

(
C̃ − λIN−1 0

ZTCD ˜̃c− λ

)
.

(7.5.24)
Taking the determinants of both sides of (7.5.24), we immediately get (7.5.19). The
proof of (7.5.20) is completely similar. This finishes the proof.
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Remark 7.5.1 Under assumptions (7.1.5)-(7.1.6), it follows from (7.5.19)-(7.5.20)
that the reduced coupled system (7.2.7) and (7.2.9)-(7.2.10) for the variable W is al-
ways well-posed.

Remark 7.5.2 As t ≥ T , by (7.5.4) and (7.5.18), the generalized synchronizable
state can be written as U(t, x) = ˜̃u(t, x)X, in which X = (α1, · · · , αN)

T is a system of

basic solutions to (7.5.18), and ˜̃u = ˜̃u(t, x) satisfies the wave system (7.2.30)-(7.2.32).
Under assumptions (7.1.5)-(7.1.6), noting that by (7.5.19)-(7.5.20) we have ˜̃c 6= −1
and ˜̄̃c 6= −1, according to Lemma 7.1.1, if we know the initial condition (7.2.33) of
˜̃u = ˜̃u(t, x) at the moment t = T , then the evolution of ˜̃u = ˜̃u(t, x) with respect to t
can be completely determined.

Moreover, suppose furthermore that ˜̃c 6= 1 and ˜̄̃c 6= 1, then any given state (ϕ, ψ) in
C2[0, L]×C1[0, L], satisfying the conditions of C2 compatibility at the points (t, x) =
(T, 0) and (T, L), respectively, with boundary conditions (7.2.31)-(7.2.32), can be the
initial data of a generalized synchronizable state.

Remark 7.5.3 In the case of exact boundary synchronization, M = N − 1 and
X = (1, · · · , 1)T is a system of basic solutions to (7.5.18). The requirement that
the coupling matrices A, C and C possess a common right eigenvector X implies
(7.2.2)–(7.2.4). Thus, Theorem 7.5.2 leads to the conclusion given in §7.2.

Remark 7.5.4 In the case of exact boundary null controllability and synchro-

nization by 2-groups, M = N − 1 and X = (

m︷ ︸︸ ︷
0, · · · , 0,

N−m︷ ︸︸ ︷
1, · · · , 1)T is a system of basic

solutions to (7.5.18). The requirement that the coupling matrices A, C and C possess
a common right eigenvector X implies (7.4.3)–(7.4.6). Thus, the conclusion given in
§7.4 follows from Theorem 7.5.2.

On the other hand, similarly to [81], we have

Theorem 7.5.3 Suppose that M = N − 1, if the coupled system (7.1.1)-(7.1.3)
possesses the generalized exact boundary synchronization associated with H©, but is
not exactly boundary null controllable, then there exist a real right eigenvector X ∈
R

N\{0} and a real number ˜̃a such that (7.5.15) holds.

For the case M = N − 2, we only consider the special situation that

H© =

(
H©1

H©2

)

(N−2)×N

, (7.5.25)

where H©1 is a full-rank (N1−1)×N1 matrix, while H©2 is a full-rank (N2−1)×N2

matrix with N1 +N2 = N .



212 7.5. Generalized exact boundary synchronization

Let

A =

(
A11 A12

A21 A22

)
, Ã =

(
Ã11 Ã12

Ã21 Ã22

)
etc., (7.5.26)

where A11 (resp. Ã11) is an N1×N1 (resp. (N1−1)×(N1−1)) matrix, A21 (resp. Ã21)

is an N2×N1 (resp. (N2−1)× (N1−1)) matrix, A12 (resp. Ã12) is an N1×N2 (resp.

(N1−1)× (N2−1)) matrix, A22 (resp. Ã22) is an N2×N2 (resp. (N2−1)× (N2−1))
matrix etc. Thus, (7.5.5)–(7.5.7) in Theorem 7.5.1 can be equivalently written as

H©
i
Aij = Ãij H©

j
, i, j = 1, 2, (7.5.27)

H©
i
Cij = C̃ij H©

j
, i, j = 1, 2, (7.5.28)

H©
i
C ij = C̃ ij H©

j
, i, j = 1, 2. (7.5.29)

Similarly to [81], we have

Theorem 7.5.4 Suppose that M = N − 2. For the coupled system of wave
equations (7.1.1)-(7.1.3), if there exist real vectors X1 ∈ RN1\{0} and X2 ∈ RN2\{0}
and real numbers ˜̃aij, ˜̃cij and ˜̃̄cij(i, j = 1, 2) such that

AijXj = ˜̃aijXi, i, j = 1, 2, (7.5.30)

CijXj = ˜̃cijXi, i, j = 1, 2, (7.5.31)

C ijXj =
˜̃̄cijXi, i, j = 1, 2, (7.5.32)

then we can find an (N − 2)×N full rank matrix H© =
(

H©
1

H©
2

)
and (N − 2)×

(N − 2) matrices Ã, C̃ and C̃ such that (7.5.27)–(7.5.29) hold, moreover, X1 (resp.
X2) constitutes a system of basic solutions to the linear algebraic system

H©1Y1 = 0 (resp. H©2Y2 = 0). (7.5.33)

In addition, let

˜̃
C =

(
˜̃c11 ˜̃c12
˜̃c21 ˜̃c22

)
,
˜̃
C =

( ˜̃c11 ˜̃c12
˜̃c21 ˜̃c22

)
. (7.5.34)

We have

Spectrum(C) = Spectrum(C̃) + Spectrum(
˜̃
C), (7.5.35)

Spectrum(C) = Spectrum(C̃) + Spectrum(
˜̃
C). (7.5.36)
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Proof We need only to prove (7.5.35). Similarly to the proof of Theorem 7.5.2, by
Gram-Schmidt process on the row vectors of matrices H©1 and H©2, respectively, it is
easy to see that there exist matrices D1 = (d1, · · · , dN1−1) and D2 = (dN1 , · · · , dN−2),
in which dk(1 ≤ k ≤ N − 2) are column vectors, such that

H©1D1 = IN1−1, (7.5.37)

H©2D2 = IN2−1. (7.5.38)

Take Z1 ∈ R
N1 and Z2 ∈ R

N2 such that

Z1 ∈ (Span{d1, · · · , dN1−1})⊥, Z2 ∈ (Span{dN1 , · · · , dN−2})⊥, (7.5.39)

ZT
1 ·X1 = 1, ZT

2 ·X2 = 1. (7.5.40)

For any given λ ∈ C, noting (7.5.28) and (7.5.31) we have




(
H©1

ZT
1

)

(
H©2

ZT
2

)




(
C11 − λIN1 C12

C21 C22 − λIN2

)(
(D1, X1)

(D2, X2)

)

=




(
H©1

ZT
1

)
C11(D1, X1)

(
H©1

ZT
1

)
C12(D2, X2)

(
H©2

ZT
2

)
C21(D1, X1)

(
H©2

ZT
2

)
C22(D2, X2)


− λIN

=




C̃11 0 C̃12 0

∗ ˜̃c11 ∗ ˜̃c12
C̃21 0 C̃22 0

∗ ˜̃c21 ∗ ˜̃c22


− λIN

=




C̃11 − λIm−1 0 C̃12 0

∗ ˜̃c11 − λ ∗ ˜̃c12
C̃21 0 C̃22 − λIN−m−1 0

∗ ˜̃c21 ∗ ˜̃c22 − λ


 ,

(7.5.41)
where ” ∗ ” denotes some unmarked values. Taking the determinants of both sides
of (7.5.41), by Laplace expansion theorem, we immediately get (7.5.35). (7.5.36) can
be obtained in a similar way. This ends the proof.

Remark 7.5.5 Under assumptions (7.1.5)-(7.1.6), by (7.5.35)-(7.5.36) we can
guarantee the well-posedness of the reduced system (7.2.7) and (7.2.9)-(7.2.10) for
the variable W .

By (7.5.25) and noting that the rank of H©1 (resp. H©2) is N1−1 (resp. N2−1),
the linear algebraic system (7.5.33) possesses a system of basic solutions X1 =
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(α1, · · · , αN1)
T ∈ R

N1\{0} (resp. X2 = (αN1+1, · · · , αN)
T ∈ R

N2\{0}). Thus, noting
(7.5.4), as t ≥ T the generalized synchronizable state U(t, x) = (u1(t, x), · · · , uN(t, x))T
can be written as

up(t, x) = αp
˜̃u1(t, x), p = 1, · · · , N1, 0 ≤ x ≤ L, (7.5.42)

uq(t, x) = αq
˜̃u2(t, x), q = N1 + 1, · · · , N, 0 ≤ x ≤ L. (7.5.43)

Completely similarly to [81], we have

Theorem 7.5.5 Suppose that M = N − 2. If the coupled system (7.1.1)-(7.1.3)
possesses the generalized exact boundary synchronization associated with (7.5.25),

and at least for an initial state (Φ,Ψ), ˜̃u1(t, x) and ˜̃u2(t, x) given by (7.5.42)-(7.5.43)
for the generalized synchronizable state are linearly independent, then there exist real

vectors X1 ∈ R
N1\{0} and X2 ∈ R

N2\{0} and real numbers ˜̃aij (i, j = 1, 2) such that
(7.5.30) hold.

Remark 7.5.6 As t ≥ T , for the generalized sychronizable state U(t, x) =
(

˜̃u1(t, x)X1
˜̃u2(t, x)X2

)

given by (7.5.42)-(7.5.43), in which X1 = (α1, · · · , αN1)
T (resp. X2 = (αN1+1, · · · , αN)

T )

is a system of basic solutions to (7.5.33),
˜̃
U(t, x) =

(
˜̃u1(t, x)
˜̃u2(t, x)

)
satisfies the coupled

system (7.3.24)-(7.3.26) of wave equations, in which ˜̃aij, ˜̃cij are ˜̃cij (i, j = 1, 2) given
by (7.5.30)-(7.5.32) respectively. By (7.1.5)-(7.1.6), and noting (7.5.35)-(7.5.36),

according to Lemma 7.1.1, if we know the initial state (7.3.28) of
˜̃
U =

˜̃
U(t, x) at the

moment t = T , then the evolution of
˜̃
U =

˜̃
U(t, x) with respect to t can be completely

determined.

Moreover, under the additional assumption that 1 is not an eigenvalue of both
˜̃
C and

˜̃
C, any given state (ϕ(1), ϕ(2))T and (ψ(1), ψ(2))T in C2[0, L]×C1[0, L], satisfying

the conditions of C2 compatibility at the points (t, x) = (T, 0) and (T, L), respectively,
with boundary conditions (7.3.25)-(7.3.26), can be the initial data of a generalized

synchronizable state
˜̃
U =

˜̃
U(t, x). Thus, at least for some initial states (Φ,Ψ), the

generalized synchronizable states ˜̃u1(t, x) and ˜̃u2(t, x) are linearly independent on t ≥
T , which means the corresponding requirement in Theorem 7.5.5 is reasonable.

Remark 7.5.7 In the case of exact boundary synchronization by 2-groups, M =

N − 2 and X1 = (

m︷ ︸︸ ︷
1, · · · , 1)T , X2 = (

N−m︷ ︸︸ ︷
1, · · · , 1)T . The requirements (7.5.30)–(7.5.32)

imply (7.3.3)–(7.3.6), then, Theorem 7.5.4 leads to the conclusion given in §7.3.

Remark 7.5.8 The situation M = N − k (k ≥ 2) can be similarly discussed.
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8.1 Introduction and Main Result

Synchronization is a widespread natural phenomenon. How to describe the phe-
nomenon of synchronization for a coupled system has been widely studied by biol-
ogists, engineers and sociologists (see [60], [104]). The previous research activities,
however, only focused on the systems gouverned by ordinary differential equations or
complex networks (see [39], [95] and [115]). Recently, several kinds of exact synchro-
nizations are introduced by Li et.al. (see [57], [81]) for a coupled system of 1-D wave
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equations with boundary conditions of Dirichlet type, Neumann type, coupled third
type and coupled dissipative type in the framework of C2 solutions, and it is shown
that these synchronizations can be realized by means of less boundary controls. For
the multi-dimensional case, by indirectly using the HUM method (see [88]–[89]), a
similar result for a coupled system of wave equations with Dirichlet boundary controls
can be also established in the framework of weak solutions (see [79]). In this chap-
ter, based on the theory of semi-global classical solutions for quasilinear hyperbolic
systems, under suitable hypotheses, we will present an iteration procedure given by a
unified constructive method to establish the local exact boundary synchronization for
a coupled system of 1-D quasilinear wave equations with afore mentioned boundary
conditions.

Precisely speaking, we consider the following coupled system of quasilinear wave
equations:

∂2U

∂t2
− a2(U,Ut, Ux)

∂2U

∂x2
+ A(U,Ut, Ux)U = 0, (8.1.1)

where U = (u1, . . . , uN)
T is an unknown vector function of (t, x), A(U,Ut, Ux) =

(aij(U,Ut, Ux)) is an N × N coupling matrix, whose elements are C1 functions with
respect to their arguments, a(U,Ut, Ux), the common velocity of propagation for the
coupled system, is also a C1 function with respect to its arguments, and

a(0, 0, 0) > 0. (8.1.2)

(8.1.1) can be written as

∂2ui
∂t2

− a2(U,Ut, Ux)
∂2ui
∂x2

+
N∑

j=1

aij(U,Ut, Ux)uj = 0 (i = 1, · · · , N). (8.1.3)

For fixing the idea, we study only the case of one-sided controls, the case of two-
sided controls can be similarly treated. At the end x = 0, we prescribe any one of
the following boundary conditions:

x = 0 : U = H(t) (Dirichlet type), (8.1.4a)

x = 0 : Ux = H(t) (Neumann type), (8.1.4b)

x = 0 : Ux − B(U)U = H(t) (Coupled third type), (8.1.4c)

where B(U) = (bij(U)) is an N × N boundary coupling matrix with C1 elements,
and

H(t) = (h1(t), · · · , hN(t))T (8.1.5)

are C2 (case (8.1.4a)) or C1 (cases (8.1.4b)–(8.1.4c)) functions of t, the components
of which will be totally or partially taken as boundary controls.

At the end x = L, since no boundary controls are concerned, we prescribe any
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one of the following homogeneous boundary conditions:

x = L : U = 0 (Dirichlet type), (8.1.6a)

x = L : Ux = 0 (Neumann type), (8.1.6b)

x = L : Ux +B(U)U = 0 (Coupled third type), (8.1.6c)

where B(U) = (bij(U)) is an N ×N boundary coupling matrix with C1 elements.

The initial condition is given by

t = 0 : (U,Ut) = (Φ(x),Ψ(x)), 0 ≤ x ≤ L, (8.1.7)

in which both Φ = (ϕ1, · · · , ϕN)
T and Ψ = (ψ1, · · · , ψN)

T are C2 and C1 vector
functions of x on [0, L], respectively, such that the conditions of C2 compatibility at
the points (t, x) = (0, 0) and (0, L) are satisfied, respectively. Moreover, we assume
that

‖(Φ,Ψ)‖(C2[0,L])N×(C1[0,L])N ≤ ε. (8.1.8)

where ε > 0 is suitably small.

Definition 8.1.1 The coupled system (8.1.1), (8.1.4) and (8.1.6) is said to pos-
sess the exact boundary synchronization if there exist two positive constants T0 and
T with T > T0, such that for any given initial state (Φ(x),Ψ(x)) with small norm
‖(Φ,Ψ)‖(C2[0,L])N×(C1[0,L])N and satisfying the conditions of C2 compatibility at the
point (t, x) = (0, L), we can find some boundary controls with support on [0, T0] in
H(t), such that the corresponding mixed initial-boundary value problem (8.1.1),(8.1.4)
and (8.1.6)–(8.1.7) admits a unique C2 solution U(x, t) = (u1(t, x), · · · , uN(t, x))T
on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (8.1.9)

and as T0 ≤ t ≤ T we have

u1(t, x) ≡ · · · ≡ uN(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L. (8.1.10)

˜̃u = ˜̃u(t, x), being a priori unknown, is called the corresponding synchronizable state.

For the exact boundary synchronization for a coupled system of 1-D linear wave
equations, it is shown (cf. [81]) that there is a necessary condition that the sum of
the elements in every row of the coupling matrices A = (aij), B = (bij) and B =
(b̄ij) should be independent of i = 1, · · · , N . In this chapter, for the corresponding
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quasilinear case, we impose the similar assumption that

n∑

j=1

aij(U,Ut, Ux)
def.
= ˜̃a(U,Ut, Ux), (8.1.11)

n∑

j=1

bij(U)
def.
=

˜̃
b(U), (8.1.12)

n∑

j=1

b̄ij(U)
def.
=

˜̄̃
b(U), (8.1.13)

where ˜̃a, ˜̃b and ˜̄̃
b are all independent of i = 1, · · · , N .

Obviously, U = 0 is an equilibrium of system (8.1.1) with boundary conditions
(8.1.4) (in which H ≡ 0) and (8.1.6). Based on the theory of semi-global C2 solutions,
using a unified constructive method for one-sided exact boundary controllability (see
[55], [74], [75], [72]), by a suitable iteration procedure as well as certain estimates
for coupled system of wave equations, we will establish the local exact boundary
synchronization around U = 0. The main result in this chapter is

Theorem 8.1.1 Suppose that a, aij, bij and b̄ij are all C1 functions with respect
to their arguments on the domain under consideration. suppose furthermore that
(8.1.2) and (8.1.11)–(8.1.13) hold. Let

T > T0 > 2
L

a(0, 0, 0)
. (8.1.14)

For any given initial state (Φ(x),Ψ(x)) ∈ (C2[0, L])N × (C1[0, L])N , satisfying si-
multaneously (8.1.8), the conditions of C2 compatibility at the point (t, x) = (0, L),
as well as the conditions of C2 compatibility at the point (t, x) = (0, 0) for the
boundary conditions without control in (8.1.4), there exist (N − 1) boundary controls
with support on [0, T0] in H(t) (for example, we take h2(t), · · · , hN(t) as controls
with h1(t) ≡ 0) with small (C2[0, T ])N norm (case (8.1.4a)) or (C1[0, T ])N norm
(cases (8.1.4b)–(8.1.4c)), such that the mixed initial-boundary value problem (8.1.1),
(8.1.4) and (8.1.6)-(8.1.7) admits a unique C2 solution U = U(t, x) on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, and as T0 ≤ t ≤ T , U = U(t, x) possesses the
exact boundary synchronization shown by (8.1.10).

The chapter is organized as follows: In § 8.2 we present the existence and unique-
ness of semi-global C2 solution to the coupled system of quasilinear wave equations
with boundary conditions of various types, meanwhile, for the sake in what follows,
we establish the estimates on the C1, C2 and continuity modulus of the second order
partial derivatives of the C2 solutions for a coupled system of nonautonomous linear
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wave equations. In § 8.3, we use a suitable iteration scheme to establish local exact
boundary synchronization for a coupled system of quasilinear wave equations. Some
remarks are given in § 8.4. Moreover, an appendix (see §8.5) is attached at the end
for the precise proof of a technical lemma in the main text.

Remark 8.1.1 Similar results are still vaild for the coupled boundary conditions
of dissipative type, see Remark 8.4.2.

Remark 8.1.2 Precisely speaking, the conditions of C2 compatibility at the point
(t, x) = (0, L) are given respectively for the boundary conditions (8.1.6a)–(8.1.6c) as
follows:





Φ(L) = 0,

Ψ(L) = 0,

Φ′′(L) = 0;

(8.1.15a)

{
Φ′(L) = 0,

Ψ′(L) = 0;
(8.1.15b)





Φ′(L) + B(Φ(L))Φ(L) = 0,

ψ′i(L) +
N∑

k,j=1

∂b̄ij
∂uk

(Φ(L))ψk(L)ϕj(L) +
N∑
j=1

b̄ij(Φ(L))ψj(L) = 0,
(8.1.15c)

where i = 1, · · · , N .

Similarly, for any given H(t), the conditions of C2 compatibility at the point
(t, x) = (0, 0) are given by





Φ(0) = H(0),

Ψ(0) = H ′(0),

a2(Φ(0),Ψ(0),Φ′(0))Φ′′(0)− A(Φ(0),Ψ(0),Φ′(0))Φ(0) = H ′′(0);

(8.1.16a)

{
Φ′(0) = H(0),

Ψ′(0) = H ′(0);
(8.1.16b)
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Φ′(0)− B(Φ(0))Φ(0) = H(0),

ψ′i(0)−
N∑

k,j=1

∂bij
∂uk

(Φ(0))ψk(0)ϕj(0)−
N∑
j=1

bij(Φ(0))ψj(0) = h′i(0),
(8.1.16c)

where i = 1, · · · , N , respectively. We point out that if some components in H(t) are
known in advance, then the conditions of C2 compatibility at the point (t, x) = (0, 0)
involves only those formulas in (8.1.16) where the corresponding components of H(t)
are given. For example, suppose that h1(t) ≡ 0, and the other components of H(t)
are taken as boundary controls, the conditions of C2 compatibility at the point (t, x) =
(0, 0) are just given by the first formulas of (8.1.16), the right-hand side of which is
zero.

Remark 8.1.3 For the boundary conditions of Neumann type (8.1.4b) and (8.1.6b),
by noting (8.1.15b) and (8.1.16b), the conditions of C2 compatibility at the point
(t, x) = (0, 0) and (0, L) are only related to the initial data and do not depend on the
coupled system of wave equations. This fact will play an important role in establishing
a unified constructive method independent of iteration below.

8.2 Preliminaries

8.2.1 Semi-global classical solutions for a coupled system of
quasilinear wave equations

In order to get the well-posedness of the mixed initial-boundary value problem
(8.1.1), (8.1.4), (8.1.6) and (8.1.7) in the framework of C2 solutions, we first reduce
the system to a first order quasilinear hyperbolic system, then use the corresponding
results of semi-global C1 solutions.

Let

V = (v1, · · · , vN)T =
∂U

∂x
,W = (w1, · · · , wN)

T =
∂U

∂t
. (8.2.1)

System (8.1.1) can be reduced to the following first order quasilinear system:





∂U
∂t
= W,

∂V
∂t
− ∂W

∂x
= 0,

∂W
∂t
− a2(U,W, V )∂V

∂x
= −A(U,W, V )U.

(8.2.2)

Let IN be the identity matrix of order N . (8.2.2) can be written in the following
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matrix form:

∂

∂t




U
V
W


+




0 0 0
0 0 −IN
0 −a2(U,W, V )IN 0


 ∂

∂x




U
V
W


 =




W
0

−A(U,W, V )U


 .

(8.2.3)

The characteristic equation of (8.2.2) is

det




λIN 0 0
0 λIN IN
0 a2(U,W, V )IN λIN


 = λN |λ2IN − a2IN | = 0, (8.2.4)

whose solutions, the eigenvalues of system (8.2.2), are all real:

λ−i = −a, λ0i = 0, λ+i = a (i = 1, · · · , N), (8.2.5)

and the corresponding left eigenvectors, which constitute a complete set, can be
chosen as

l−i = (0, a(U,W, V )ei, ei), l
0
i = (ei,0,0), l

+
i = (0,−a(U,W, V )ei, ei) (i = 1, · · · , N),

(8.2.6)

where 0 = (0, · · · , 0) is the zero vector of order N , and ei = (0, · · · ,
(i)

1 , · · · , 0) is
a unit row vector of order N . Thus, (8.2.2) is a first order quasilinear hyperbolic
system.

Let

Ũ =




U
V
W


 (8.2.7)

and 



V −i = l−i Ũ = avi + wi,

V 0
i = l0i Ũ = ui,

V +
i = l+i Ũ = −avi + wi

(i = 1, · · · , N). (8.2.8)

We have 



V − = aV +W,

V 0 = U,

V + = −aV +W,

(8.2.9)
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where V − = (V −1 , · · · , V −N )T , V 0 = (V 0
1 , · · · , V 0

N)
T and V + = (V +

1 , · · · , V +
N )

T . Then





U = V 0,

V = 1
2a
(V − − V +),

W = 1
2
(V − + V +).

(8.2.10)

Under the above transformation, the boundary condition (8.1.4) can be corre-
spondingly replaced by

x = 0 : W = Ḣ(t), (8.2.11a)

x = 0 : V = H(t), (8.2.11b)

x = 0 : V − B(U)U = H(t). (8.2.11c)

Notice (8.2.10), in a neighborhood of Ũ = 0, i.e., Ṽ
def.
=




V −

V 0

V +


 = 0, the

boundary conditions (8.2.11) on x = 0 can be rewritten as

x = 0 : V + = −V − + 2Ḣ(t), (8.2.12a)

x = 0 : V + = V − − 2a(V 0,
V − + V +

2
, H(t))H(t), (8.2.12b)

x = 0 : V + = V − − 2a(V 0,
V − + V +

2
, B(V 0)V 0 +H(t))

(
B(V 0)V 0 +H(t)

)
,

(8.2.12c)

which can be uniformly expressed as

x = 0 : P (t, V −, V 0, V +) = 0, (8.2.13)

where

P (t, V −, V 0, V +) = V + + V − − 2Ḣ(t) for (8.2.12a), (8.2.14a)

P (t, V −, V 0, V +) = V + − V − + 2a(V 0,
V − + V +

2
, H(t))H(t) for (8.2.12b),

(8.2.14b)

P (t, V −, V 0, V +) = V + − V − + 2a(V 0,
V − + V +

2
, B(V 0)V 0 +H(t))

(
B(V 0)V 0 +H(t)

)

for (8.2.12c).
(8.2.14c)

For the boundary conditions (8.2.13) on x = 0, regarding (t, V −, V 0, V +) as vari-
ables, noting (8.2.9), under the hypothesis that ‖H‖C2(case (8.1.4a)) or ‖H‖C1(cases
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(8.1.4b)–(8.1.4c)) and ‖Ũ‖C0 are suitably small (the validity of this hypothesis will
be shown by Lemma 8.2.1), it is easy to see that

det
( ∂Pi

∂V +
j

)
6= 0, i, j = 1, · · · , N. (8.2.15)

Therefore, using the implicit function theorem, for any given T > 0, on the intervel
[0, T ] the boundary condition on x = 0 can be locally rewritten around Ũ = 0 to the
following unified form:

x = 0 : V + = G(t, V −, V 0) + H̃(t), (8.2.16)

where G and H̃ are C1 functions with respect to their arguments, and without loss
of generality, we assume that

G(t, 0, 0) ≡ 0. (8.2.17)

Obviously, the C1 norm of H̃(t) is small enough.

Similarly, the boundary conditions (8.1.6a)–(8.1.6c) on x = L can be also locally

rewritten around Ũ = 0 to the following unified form:

x = L : V − = G(V 0, V +), (8.2.18)

in which G is a C1 function with respect to its arguments and

G(0, 0) ≡ 0. (8.2.19)

Meanwhile, the initial condition (8.1.7) can be correspondingly written as

t = 0 : Ũ(0, x) =




Φ(x)
Φ′(x)
Ψ(x)


 def.

= Ũ0(x), 0 ≤ x ≤ L. (8.2.20)

By the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) for the
mixed initial-boundary value problem (8.1.1), (8.1.4) and (8.1.6)–(8.1.7), it is easy to
see that the conditions of C1 compatibility at these two points are also satisfied for the
mixed initial-boundary value problem (8.2.2), (8.2.20), (8.2.16) and (8.2.18). Based
on the theory of semi-global C1 solutions to the first order quasilinear hyperbolic
system with zero eigenvalues (see [73], [70], [81], [111]–[112]), we get immediately the
following lemma:

Lemma 8.2.1 Suppose that on the domain under consideration, a, aij, bij and
b̄ij are C1 functions with respect to their arguments. Suppose furthermore that the
conditions of C2 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L),
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respectively. For any given and possibly quite large T > 0, the forward mixed initial-
boundary value problem (8.1.1), (8.1.4) and (8.1.6)–(8.1.7) admits a unique C2 so-
lution U = U(t, x) with small C2 norm on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (8.2.21)

provided that ‖(Φ,Ψ)‖(C2[0,L])N×(C1[0,L])N and ‖H‖(C2[0,T ])N , (case (8.1.4a)) or ‖H‖(C1[0,T ])N

(cases (8.1.4b)–(8.1.4c)) are suitably small (possibly depending on T ).

8.2.2 Estimates on the C1, C2 norms of solutions and the con-
tinuity modulus of the second order partial derivatives
of solutions for a coupled system of nonautonomous
linear wave equations

In order to obtain the exact boundary synchronization for the quasilinear system
(8.1.1), (8.1.4) and (8.1.6), we have to investigate the C1, C2 norms of solutions
and the continuity modulus of the second order partial derivatives of solutions for
a coupled system of nonautonomous linear wave equations. Here, the continuity
modulus of a function f(t, x) on R(T ) is the following non-negative function:

ω(η) = ω(η|f) def.
= sup

|t′−t′′|≤η, |x′−x′′|≤η
(t′,x′), (t′′,x′′)∈R(T )

|f(t′, x′)− f(t′′, x′′)|, η ≥ 0. (8.2.22)

Similarly, the continuity modulus of a vector function f can be defined by

ω(η|f) def.
= max

i=1,··· ,n
ω(η|fi), (8.2.23)

and the continuity modulus of a matrix function A = (aij)n×n can be defined by

ω(η|A) def.
= max

i,j=1,··· ,n
ω(η|aij). (8.2.24)

In this subsection, we still denote U = U(t, x) as the unknown vector function, a =
a(t, x) as the common velocity of propagation and A = A(t, x), B = B(t) and B =
B(t) as coupling matrices. Consider the following coupled system of nonautonomous
wave equations:

∂2U

∂t2
− a2(t, x)

∂2U

∂x2
+ A(t, x)U = F (t, x), (8.2.25)

where U = (u1, . . . , uN)
T is the unknown vector function of (t, x), A(t, x) = (aij(t, x))

is an N×N matrix with C1 elements, a(t, x) > 0, the common velocity of propagation



Chapter 8: Exact Boundary Synchronization for a Coupled System of Quasilinear
Wave Equations 225

for the coupled system, is a C1 function of (t, x), while F (t, x) = (f1(t, x), · · · , fN(t, x))T
is also a C1 vector function of (t, x).

At the end x = 0, corresponding to (8.1.4a)–(8.1.4c), we prescribe any one of the
following boundary conditions:

x = 0 : U = H(t) (Dirichlet type), (8.2.26a)

x = 0 : Ux = H(t) (Neumann type), (8.2.26b)

x = 0 : Ux − B(t)U = H(t) (Coupled third type), (8.2.26c)

in whichB(t) = (bij(t)) is anN×N matrix with C1 elements, andH(t) = (h1(t), · · · , hN(t))T
are C2 (case (8.2.26a)) or C1 (cases (8.2.26b)–(8.2.26c)) functions of t.

At the end x = L, corresponding to (8.1.6a)–(8.1.6c), we prescribe any one of the
following boundary conditions:

x = L : U = H(t) (Dirichlet type), (8.2.27a)

x = L : Ux = H(t) (Neumann type), (8.2.27b)

x = L : Ux +B(t)U = H(t) (Coupled third type), (8.2.27c)

in whichB(t) = (bij(t)) is anN×N matrix with C1 elements, andH(t) = (h̄1(t), · · · , h̄N(t))T
are C2 (case (8.2.27a)) or C1 (cases (8.2.27b)–(8.2.27c)) functions of t.

Denote

l =

{
1 case (8.2.26a),

0 cases (8.2.26b)− (8.2.26c)
, l̄ =

{
1 case (8.2.27a),

0 cases (8.2.27b)− (8.2.27c)
,

(8.2.28)

s = l + 1, s̄ = l̄ + 1. (8.2.29)

Suppose that on the domain under consideration, we have

‖a‖1 + ‖A‖1 + ‖B‖1 + ‖B‖1 ≤ D < +∞, (8.2.30)

where D is a positive constant. Here and hereafter, for simplicity we denote ‖ · ‖0,
‖ · ‖1 and ‖ · ‖2 as as the corresponding C0, C1 and C2 norms, respectively.

For the mixed initial-boundary value problem (8.2.25), (8.2.26)–(8.2.27) and (8.1.7),
by the estimates established in [73] and [72] for the C1 and C2 norms of solutions,
as well as the continuity modulus of the second order partial derivatives of solutions,
obtained by a similar manner, we have

Lemma 8.2.2 For any given T > 0, suppose that a, aij, bij, b̄ij and fi (i, j =
1, · · · , N) are all C1 functions on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L},
suppose furthermore that the conditions of C2 compatibility are satisfied at the points
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(t, x) = (0, 0) and (0, L), respectively. Then the forward mixed initial-boundary value
problem (8.2.25)–(8.2.27) and (8.1.7) admits a unique C2 solution U = U(t, x) on
the domain R(T ), and we have

‖U‖(C1[R(T )])N ≤C1

(
‖(Φ,Ψ)‖(C1[0,L])N×(C0[0,L])N

+ ‖(H,H)‖(Cl[0,T ])N×(C l̄[0,T ])N + ‖F‖(C0[R(T )])N
)

(8.2.31)

and

‖U‖(C2[R(T )])N ≤C2

(
‖(Φ,Ψ)‖(C2[0,L])N×(C1[0,L])N

+ ‖(H,H)‖(Cs[0,T ])N×(C s̄[0,T ])N + ‖F‖(C1[R(T )])N
)
, (8.2.32)

where C1 = C1(T,D) and C2 = C2(T,D) are positive constants depending only on T
and D. Moreover, if

F (t, x) ≡ 0, (8.2.33)

then for any given η with

0 < η ≤ min
(t,x)∈R(T )

L

a(t, x)
, (8.2.34)

we have

ω
(
η
∣∣∂

2U

∂t2

)
+ ω

(
η
∣∣∂

2U

∂x2

)
+ ω

(
η
∣∣ ∂

2U

∂t∂x

)
≤ Ω(η), (8.2.35)

where

Ω(η) =C3

(
ω
(
η
∣∣Φxx

)
+ ω

(
η
∣∣Ψx

)
+ ω

(
η
∣∣d

sH

dts
)
+ ω

(
η
∣∣d

s̄H

dts̄
)
+ (‖Φ‖2 + ‖Ψ‖1 + ‖H‖s + ‖H‖s̄)

·
(
η + ω(η|ax) + ω(η|at) + ω(η|Ax) + ω(η|Bt) + ω(η|Bt)

))

(8.2.36)
is a non-negative function of η, and Ω(η) → 0, when η → 0, C3 = C3(T,D) being a
positive constant depending on T and D.

Remark 8.2.1 For the backward mixed initial-boundary value problem (8.2.25)–
(8.2.27) with final condition

t = T : (U,Ut) = (Φ(x), Ψ(x)), 0 ≤ x ≤ L, (8.2.37)

satisfying the conditions of C2 compatibility at the points (t, x) = (T, 0) and (T, L),
respectively, similar results can be obtained.
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8.3 Proof of Theorem 8.1.1

Arbitrarily choose H(0)(t)
(
where h

(0)
1 (t) ≡ 0

)
to be a C2 (case (8.1.4a)) or C1

(cases (8.1.4b)–(8.1.4c)) functions of t, satisfying

‖H(0)‖(Cs[0,T ])N ≤ C4ε, (8.3.1)

where C4 is a positive constant,

s =

{
2, case (8.1.4a),

1, cases (8.1.4b)− (8.1.4c),
. (8.3.2)

and ε > 0, given by (8.1.8), is a suitably small positive constant, such that the
conditions of C2 compatibility are satisfied at the point (t, x) = (0, 0), and

H(0)(t) ≡ 0, T0 ≤ t ≤ T. (8.3.3)

Remark 8.3.1 Since we have assumed h
(0)
1 (t) ≡ 0, by the the conditions of C2

compatibility at the point (t, x) = (0, 0), the initial condition (8.1.7) can not be arbi-
trarily given near x = 0. Although this is a special case in Theorem 8.1.1, it is not
an issue for the generality of the whole proof.

By Lemma 8.2.1, the initial-boundary value problem (8.1.1), (8.1.4) (in which
H(t) = H(0)(t)) and (8.1.6)–(8.1.7) admits a unique C2 solution U = U (0)(t, x) on
the domain R(T ), satisfying

‖U (0)‖(C2[R(T )])N ≤ G(ε), (8.3.4)

where G(ε) is a C0 function of ε ≥ 0, satisfying

G(0) = 0, (8.3.5)

and, without loss of generality, we may assume that

1≫ G(ε) ≥ C5ε, (8.3.6)

where C5 is a positive constant. Since U
(0) ∈ C2, there exists a non negative function

Ω0(η) of η (with Ω0(η)→ 0, as η → 0), such that

ω
(
η
∣∣∂

2U (0)

∂t2

)
+ ω

(
η
∣∣∂

2U (0)

∂x2

)
+ ω

(
η
∣∣∂

2U (0)

∂t∂x

)
≤ Ω0(η). (8.3.7)

Here we point out that, being the first step of the iteration, U (0) is not asked to be
synchronized on T0 ≤ t ≤ T .
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Let

U (−1)(t, x)
def.
= U (0)(t, x). (8.3.8)

For any givenm ≥ 0, we use an iteration procedure to get U (m)(t, x) from U (m−1)(t, x)
on R(T ):

∂2U (m)

∂t2
− a2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2U (m)

∂x2
+ A(U (m−1), U

(m−1)
t , U (m−1)

x )U (m) = 0,

(8.3.9)

the boundary condition on x = 0 is given by any one of :

x = 0 : U (m) = H(m)(t), (8.3.10a)

x = 0 : U (m)
x = H(m)(t), (8.3.10b)

x = 0 : U (m)
x − B(U (m−1))U (m) = H(m)(t), (8.3.10c)

the boundary condition on x = L is given by any one of

x = L : U (m) = 0, (8.3.11a)

x = L : U (m)
x = 0, (8.3.11b)

x = L : U (m)
x − B(U (m−1))U (m) = 0, (8.3.11c)

and the initial condition is

t = 0 : (U (m), U
(m)
t ) = (Φ(x),Ψ(x)), 0 ≤ x ≤ L. (8.3.12)

In this iteration scheme, for m = 0, since H(0)(t) has been chosen, the corresponding
solution is just U (0)(t, x); while, for each m ≥ 1, H(m)(t) is a C2 (case (8.3.10a))
or C1 (cases (8.3.10b)–(8.3.10c)) functions of t to be determined. Our goal is to

find a suitable H(m)(t) (where h
(m)
1 (t) ≡ 0), for each m ≥ 1, such that the corre-

sponding mixed initial-boundary value problem (8.3.9)–(8.3.12) admits a C2 solution
U (m) = U (m)(t, x) on the domain R(T ), satisfying the exact boundary synchronization
(8.1.10). Notice that in the whole iteration procedure, the form of the conditions of C2

compatibility (8.1.15)–(8.1.16) at the points (t, x) = (0, 0) and (0, L) never changes
(just replacing H(t) by H(m)(t)).

If the synchronization sequences {U (m)(t, x)}(m ≥ 1) are obtained by means of

suitable boundary controls H(m)(t) (in which h
(m)
1 (t) ≡ 0, 0 ≤ t ≤ T ), and if one can

prove that

U (m)(t, x)→ U(t, x) in (C2[R(T )])N as m→ +∞, (8.3.13)
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then U(t, x) should satisfy (8.1.1) and (8.1.6)–(8.1.7) and possesses the synchroniza-
tion (8.1.10), and the boundary controls correspondingly to (8.1.4) are given by

H(t) = lim
m→+∞

H(m)(t), (8.3.14)

with h1(t) ≡ 0 (0 ≤ t ≤ T ). Therefore, in order to get Theorem 8.1.1, it suffices to
establish the following

Lemma 8.3.1 Under the assumptions of Theorem 8.1.1, for any given integer
m ≥ 0, there exist a boundary control H(m)(t) (in which h

(m)
1 (t) ≡ 0 (0 ≤ t ≤ T ))

and positive constants C6 = C6(T0, T ), C7 = C7(T0, T ) and C8 = C8(T0, T ), such
that the mixed initial-boundary value problem (8.3.9)–(8.3.12) admits a unique C2

solution U (m) = U (m)(t, x) on the domain R(T ), which satisfies

‖U (m)‖(C2[R(T )])N ≤ C6G(ε), (8.3.15)

‖U (m) − U (m−1)‖(C1[R(T )])N ≤ Cm
7 G

m(ε), (8.3.16)

ω
(
η
∣∣∂

2U (m)

∂t2

)
+ ω

(
η
∣∣∂

2U (m)

∂x2

)
+ ω

(
η
∣∣∂

2U (m)

∂t∂x

)
≤ Ω1(η), (8.3.17)

where

Ω1(η) =

C8

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + ω(η|Γ∗)

))

1− C8G(ε)

(8.3.18)

is a non-negetive function of η with Ω1(η) → 0 as η → 0, while G(ε) and Ω0(η) are
given by (8.3.4) and (8.3.7),

Γ∗ =
{ ∂a

∂uk
,
∂a

∂ukt
,
∂a

∂ukx
,
∂aij
∂uk

,
∂aij
∂ukt

,
∂aij
∂ukx

,
∂bij
∂uk

,
∂bij
∂uk

; i, j, k = 1, · · · , N
}
. (8.3.19)

Moreover, for any given m ≥ 1, U (m)(t, x) possesses the synchronization (8.1.10) for
T0 ≤ t ≤ T .

Proof: For m = 0, since H(0)(t) has been determined, taking C6 ≥ 1, (8.3.4) im-
mediately yields (8.3.15). Moreover, we have (8.3.16) because of (8.3.8). Combining
(8.3.7) and (8.3.18), one gets (8.3.17), provided that ε > 0 is suitably small and
C8 ≥ 1.

By induction, suppose that for m ≥ 1 we have

‖U (m−1)‖(C2[R(T )])N ≤ C6G(ε), (8.3.20)

‖U (m−1) − U (m−2)‖(C1[R(T )])N ≤ Cm−1
7

(
G(ε)

)m−1
, (8.3.21)



230 8.3. Proof of Theorem 8.1.1

ω
(
η
∣∣∂

2U (m−1)

∂t2

)
+ ω

(
η
∣∣∂

2U (m−1)

∂x2

)
+ ω

(
η
∣∣∂

2U (m−1)

∂t∂x

)
≤ Ω1(η). (8.3.22)

Then for any given m ≥ 1, let

{
w

(m)
i = u

(m)
i+1 − u

(m)
i ,

h̃
(m)
i = h

(m)
i+1 − h

(m)
i ,

i = 1, · · · , N − 1. (8.3.23)

Under assumption (8.1.11), it is easy to see that from the original system (8.3.9) for

the variable U (m) =
(
u
(m)
1 , · · · , u(m)

N

)
, we can get the following self-closing system for

the variable W (m) =
(
w

(m)
1 , · · · , w(m)

N−1

)
(see also [81]):

∂2W (m)

∂t2
− a2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2W (m)

∂x2
+ Ã(U (m−1), U

(m−1)
t , U (m−1)

x )W (m) = 0,

(8.3.24)

where Ã =
(
ãij

)
is an (N − 1)× (N − 1) reduced matrix with

ãij(U
(m−1), U

(m−1)
t , U (m−1)

x )

=
N∑

p=j+1

(
ai+1,p(U

(m−1), U
(m−1)
t , U (m−1)

x )− aip(U
(m−1), U

(m−1)
t , U (m−1)

x )
)

=

j∑

p=1

(
ai,p(U

(m−1), U
(m−1)
t , U (m−1)

x )− ai+1,p(U
(m−1), U

(m−1)
t , U (m−1)

x )
)
, i, j = 1, · · · , N − 1.

(8.3.25)

Similarly, by assumptions (8.1.12)–(8.1.13), from the original boundary condi-
tions (8.3.10)–(8.3.11) for the variable U (m), we can get, respectively, the self-closing
boundary conditions for the variable W (m):

x = 0 : W (m) = H̃(m)(t), (8.3.26a)

x = 0 : W (m)
x = H̃(m)(t), (8.3.26b)

x = 0 : W (m)
x − B̃(U (m−1))W (m) = H̃(m)(t) (8.3.26c)

and

x = L : W (m) = 0, (8.3.27a)

x = L : W (m)
x = 0, (8.3.27b)

x = L : W (m)
x + B̃(U (m−1))W (m) = 0, (8.3.27c)
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in which H̃(m)(t) = (h̃
(m)
1 (t), · · · , h̃(m)

N−1(t))
T , and B̃ = (̃bij) and B̃ = (̃b̄ij) are (N −

1)× (N − 1) matrices reduced by B = (bij) and B = (b̄ij) in the following way:

b̃ij(U
(m−1)) =

n∑

p=j+1

(
bi+1,p(U

(m−1))− bip(U
(m−1))

)

=

j∑

p=1

(
bi,p(U

(m−1))− bi+1,p(U
(m−1))

)
, i, j = 1, · · · , N − 1

(8.3.28)

etc.

The initial condition of W (m) is given by

t = 0 : (W (m),W
(m)
t ) = (Φ̃(x), Ψ̃(x)), 0 ≤ x ≤ L, (8.3.29)

where
{
Φ̃(x) = (ϕ2(x)− ϕ1(x), · · · , ϕN(x)− ϕN−1(x))

T ,

Ψ̃(x) = (ψ2(x)− ψ1(x), · · · , ψN(x)− ψN−1(x))
T .

(8.3.30)

Moreover, it easily follows from the condition of C2 compatibility at the point (t, x) =
(0, L) for U (m) that the condition of C2 compatibility at the point (t, x) = (0, L) for
W (m) is still satisfied.

Noting (8.3.23), once we achieve the exact null controllability for W (m), we cer-
tainly have the exact synchronization for U (m). Similarly to the method in [55] and
[77], our next step is to construct a C2 solution W (m) = W (m)(t, x) on R(T ) for each
m ≥ 1, satisfying simultaneously the system (8.3.24), the initial condition (8.3.29),
the null final condition

W (m)(t, x) ≡ 0, T0 ≤ t ≤ T (8.3.31)

and the boundary condition (8.3.27) on x = L. To this end, we need a suitable treat-
ment on the constructive method for realizing the exact boundary null controllability
of W (m). In order that, regarding the conditions of C2 compatibility at the point
(t, x) = (0, 0), the artificial boundary conditions on x = 0 do not depend on the
iteration (8.3.24), we take Neumann type artificial boundary conditions on x = 0,
which is independent of m, instead of the commonly used Dirichlet type boundary
conditions (see Remark 8.1.2–8.1.3). Thus, for the sequence {W (m)}, we can prove
the following Lemma 8.3.2 (for the details of its proof, see Appendix 8.5):

Lemma 8.3.2 For any given m ≥ 1, under the assumptions of Theorem 1.1,
there exist a boundary control H̃(m)(t) on x = 0, composed of C2 (case (8.3.26a)) or
C1 (cases (8.3.26b)–(8.3.26c)) functions of t with support on [0, T0], and the positive
constants C9(T0, T ), C10(T0, T ) and C11(T0, T ), such that the mixed initial-boundary
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value problem (8.3.24), (8.3.26)–(8.3.27) and (8.3.29) admits a unique C2 solution
W (m) = W (m)(t, x) on the domain R(T ), satisfying (8.3.31) and

‖W (m)‖(C2[R(T )])N ≤ C9G(ε), (8.3.32)

‖W (m) −W (m−1)‖(C1[R(T )])N ≤ C10C
m−1
7

(
G(ε)

)m
, (8.3.33)

and

ω
(
η
∣∣∂

2W (m)

∂t2

)
+ ω

(
η
∣∣∂

2W (m)

∂x2

)
+ ω

(
η
∣∣∂

2W (m)

∂t∂x

)
≤ Ω2(η), (8.3.34)

where

Ω2(η) = C11

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
,

(8.3.35)

and G(ε), Ω0(η) and Ω1(η) are given by (8.3.4), (8.3.7) and (8.3.18), respectively.

Noting (8.3.32)–(8.3.34), by the way to obtain the corresponding boundary con-
trols in the constructive method (see [77]), we have

‖H̃(m)‖(Ce[0,T ])N ≤ C12‖W (m)‖(C2[R(T )])N ≤ C13G(ε), (8.3.36)

‖H̃(m) − H̃(m−1)‖(C ē[0,T ])N ≤ C14‖W (m) −W (m−1)‖(C1[R(T )])N ≤ C15C
m−1
7

(
G(ε)

)m
(8.3.37)

and

ω
(
η
∣∣d

eH̃(m)

dte

)
≤ C16Ω2(η), (8.3.38)

where

e =

{
2, case (8.3.26a),

1, cases (8.3.26b)− (8.3.26c),
, e =

{
1, case (8.3.26a),

0, cases (8.3.26b)− (8.3.26c),
.

(8.3.39)

and C12, C13, C14, C15 and C16 are all positive constants depending only on T0 and
T .

Thus, by (8.3.23) and noting h
(m)
1 ≡ 0, we get

‖H(m)‖(Cr[R(T )])N ≤ C17G(ε) (8.3.40)

‖H(m) −H(m−1)‖(Cr[R(T )])N ≤ C18C
m−1
7

(
G(ε)

)m
(8.3.41)
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and

ω
(
η
∣∣d

rH(m)

dtr

)
≤ C19Ω2(η), (8.3.42)

where

r =

{
2, case (8.3.10a),

1, cases (8.3.10b)− (8.3.10c),
, r =

{
1, case (8.3.10a),

0, cases (8.3.10b)− (8.3.10c),
.

(8.3.43)

and C17, C18, C19 are positive constants depending only on T0 and T .

Obviously, for m ≥ 1, the previously obtained boundary control H(m) satisfies the
conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) for the mixed
initial-boundary problem (8.3.9)–(8.3.12), respectively. Notice (8.3.22), (8.3.40) and
(8.3.42), it is easy to see from Lemma 8.2.2 that

‖U (m)‖(C2[R(T )])N ≤ C20G(ε) (8.3.44)

and

ω
(
η
∣∣∂

2U (m)

∂t2

)
+ ω

(
η
∣∣∂

2U (m)

∂x2

)
+ ω

(
η
∣∣∂

2U (m)

∂t∂x

)

≤ C21

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
,

(8.3.45)

where C20 and C21 are positive constants depending only on T and T0. Therefore,
taking C6 ≥ C20, C8 ≥ C21, we get (8.3.15) and (8.3.17).

On the other hand, let

V (m) = U (m) − U (m−1). (8.3.46)

V (m) satisfies the following miexd initial-boundary value problem:

∂2V (m)

∂t2
− a2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2V (m)

∂x2
+ A(U (m−1), U

(m−1)
t , U (m−1)

x )V (m)

+ (a2(U (m−1), U
(m−1)
t , U (m−1)

x )− a2(U (m−2), U
(m−2)
t , U (m−2)

x ))
∂2U (m−1)

∂x2

+
(
A(U (m−1), U

(m−1)
t , U (m−1)

x )− A(U (m−2), U
(m−2)
t , U (m−2)

x )
)
U (m−1) = 0

(8.3.47)
with the initial condition

t = 0 : (V (m), V
(m)
t ) = (0, 0), 0 ≤ x ≤ L, (8.3.48)
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and the boundary conditions

x = 0 : V (m) = H(m) −H(m−1), (8.3.49a)

x = 0 : V (m)
x = H(m) −H(m−1), (8.3.49b)

x = 0 : V (m)
x − B(U (m−1))V (m) =

(
B(U (m−1))− B(U (m−2))

)
U (m−1) +H(m) −H(m−1)

(8.3.49c)

and

x = L : V (m) = 0, (8.3.50a)

x = L : V (m)
x = 0, (8.3.50b)

x = L : V (m)
x +B(U (m−1))V (m) =

(
B(U (m−2))− B(U (m−1)).

)
U (m−1) (8.3.50c)

Noting (8.3.20)–(8.3.21), we have

‖
(
A(U (m−1), U

(m−1)
t , U (m−1)

x )− A(U (m−2), U
(m−2)
t , U (m−2)

x )
)
U (m−1)‖(C0[R(T )])N

≤C22C
m−1
7

(
G(ε)

)m
, (8.3.51)

‖(a2(U (m−1), U
(m−1)
t , U (m−1)

x )− a2(U (m−2), U
(m−2)
t , U (m−2)

x ))
∂2U (m−1)

∂x2
‖(C0[R(T )])N

≤C23C
m−1
7

(
G(ε)

)m
, (8.3.52)

‖
(
B(U (m−1))− B(U (m−2))

)
U (m−1)‖(C0[0,T ])N ≤ C24C

m−1
7

(
G(ε)

)m
, (8.3.53)

‖
(
B(U (m−1))− B(U (m−2))

)
U (m−1)‖(C0[0,T ])N ≤ C25C

m−1
7

(
G(ε)

)m
, (8.3.54)

where C22, C23, C24 and C25 are positive constants depending only on T and T0.

Noting (8.3.41), by Lemma 8.2.2 there exists a positive constant C26 = C26(T, T0)
such that

‖V (m)‖C1[R(T )] = ‖U (m) − U (m−1)‖C1[R(T )] ≤ C26C
m−1
7

(
G(ε)

)m
. (8.3.55)

Therefore, choosing C7 ≥ C26, we get (8.3.16). The proof of Theorem 8.1.1 is
complete.

8.4 Remarks

Remark 8.4.1 Theorem 8.1.1 is still valid in the case of two-sided controls, pro-
vided that (8.1.14) is replaced by

T > T0 >
L

a(0, 0, 0)
, (8.4.1)
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and there is an inhomogeneous control H(t) on the right-hand side of (8.1.6).

Remark 8.4.2 Similar results hold for the following boundary conditions of cou-
pled dissipative type:

x = 0 : Ux − C(U)Ut = H(t), (8.4.2)

x = L : Ux + C(U)Ut = 0. (8.4.3)

where C(U) = (cij(U))N×N and C(U) = (cij(U))N×N are C1 matrix functions with
respect to their arguments. However, different from boundary conditions (8.1.4) and
(8.1.6), in the case of boundary conditions (8.4.2)–(8.4.3), in order to guarantee
the well-posedness and the exact boundary null controllability for the forward mixed
initial-boundary value problem, we should impose the following assumptions:

det
(
C(0) +

1

a(0, 0, 0)
IN

)
6= 0 (8.4.4)

and

det
(
C(0) +

1

a(0, 0, 0)
IN

)
6= 0. (8.4.5)

for the boundary coupling matrices C(U) and C(U). Then, combining the proof of
Theorem 8.1.1 and the method presented in [57], one can realize the corresponding
local exact boundary synchronization for the coupled system of wave equations (8.1.1)
and (8.4.2)–(8.4.3) by (N − 1) boundary controls on x = 0, provided that

n∑

j=1

cij(U)
def.
= ˜̃c(U) (8.4.6)

and

n∑

j=1

c̄ij(U)
def.
= ˜̃̄c(U), (8.4.7)

where ˜̃c(U) and ˜̃̄c(U) are independent of i = 1, · · · , N .

Remark 8.4.3 Theorem 8.1.1 and Remark 8.4.2 are also valid for the corre-
sponding nonautonomous quasilinear system, in which

a = a(t, x, U, Ut, Ux), A = A(t, x, U, Ut, Ux)

B = B(t, U), B = B(t, U) (or C = C(t, U), C = C(t, U)),
(8.4.8)

with suitable regularity with respect to t and x.
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Remark 8.4.4 For the following more general coupled system of quasilinear wave
equations:

∂2U

∂t2
− a2(U,Ut, Ux)

∂2U

∂x2
+ F (U,Ut, Ux) = 0, (8.4.9)

where F is a C2 vector function with respect to its arguments and

F (0, 0, 0) = 0. (8.4.10)

Thus, one can find C1 matrices A(U,Ut, Ux), Ă(U,Ut, Ux) and Â(U,Ut, Ux) such that

F (U,Ut, Ux) = A(U,Ut, Ux)U + Ă(U,Ut, Ux)Ut + Â(U,Ut, Ux)Ux, (8.4.11)

and the corresponding local exact boundary synchronization can be realized, provided
that A, Ă and Â satisfy similar assumptions as in (8.1.11), respectively.

8.5 Appendix: Proof of Lemma 8.3.2

In order to get Lemma 8.3.2, it suffices to prove that for any given integer m ≥ 1,
there exists a unique C2 solution W (m) = W (m)(t, x) to the coupled system (8.3.24)
of wave equations, which satisfies simultaneously the initial condition (8.3.29), the
finial condition (8.3.31) and the boundary condition (8.3.27) on x = L as well as the
estimates (8.3.32)–(8.3.34).

Let

T (m) =

∫ T0

0

inf
0≤x≤L

a(U (m−1)(t, x), U
(m−1)
t (t, x), U (m−1)

x (t, x))dt. (8.5.1)

Due to (8.1.14) and (8.3.20), for suitably small ε > 0 we have

T (m) > 2L. (8.5.2)

Choose T
(m)
1 and T

(m)
2 such that

∫ T
(m)
1

0

inf
0≤x≤L

a(U (m−1)(t, x), U
(m−1)
t (t, x), U (m−1)

x (t, x))dt

=

∫ T0

T
(m)
2

inf
0≤x≤L

a(U (m−1)(t, x), U
(m−1)
t (t, x), U (m−1)

x (t, x))dt

=L.

(8.5.3)
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By (8.1.14) and (8.3.20), for ε > 0 small enough, we have

0 < T
(m)
1 <

T0 − δ

2
<
T0
2
<
T0 + δ

2
< T

(m)
2 < T0, (8.5.4)

in which

δ =
1

2

(
T0 − 2

L

a(0, 0, 0)

)
. (8.5.5)

(i) We first consider the forward mixed initial-boundary value problem for system
(8.3.24) with the initial condition (8.3.29), the boundary condition (8.3.27) on x = L
and the following artificial Neumann boundary condition

x = 0 : W (m)
x = F(t), 0 ≤ t ≤ T0

2
, (8.5.6)

where F(·) is an arbitrarily given C1 function of t, satisfying the following conditions
of C2 compatibility at the point (t, x) = (0, 0):

{
F(0) = Φ̃′(0),

F′(0) = Ψ̃′(0)
(8.5.7)

(see Remark 8.1.2) and verifying

‖F‖
C1[0,

T0
2
]
≤ ε, (8.5.8)

Ω(η|Ḟ) ≤ Ω0(η). (8.5.9)

Due to (8.5.7)-(8.5.9), this artificial boundary condition (8.5.6) can be chosen to be
independent of the iteration (i.e., independent of m), namely, we can take the same
artificial boundary condition (8.5.6) in every iteration step. Meanwhile, in order
that the constants, obtained from all the estimates of the solutions in the iteration
procedure, to be also independent of m, each iteration should be discussed on the
same domain, i.e., on

Rf =
{
(t, x)

∣∣∣0 ≤ t ≤ T0
2
, 0 ≤ x ≤ L

}
(8.5.10)

or

Rb =
{
(t, x)

∣∣∣T0
2
≤ t ≤ T, 0 ≤ x ≤ L

}
. (8.5.11)

All these are different from the previous works on the constructive method.
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Let

Γ̃∗ =
{ ∂a

∂uk
,
∂a

∂ukt
,
∂a

∂ukx
,
∂ãij
∂uk

,
∂ãij
∂ukt

,
∂ãij
∂ukx

,
∂b̃ij
∂uk

,
∂b̃ij
∂uk

}
,

i, j, k = 1, · · · , N.
(8.5.12)

Obviously, there exists a positive constant C̃1 such that

ω(η|Γ̃∗) ≤ C̃1ω(η|Γ∗). (8.5.13)

Here and hereafter, C̃i(i = 1, 2 · · · ) denote positive constants, C̃i(T0) denote positive

constants depending only on T0, and C̃i(T, T0) denote positive constants depending
only on T and T0.

By Lemma 8.2.2, there exists a unique C2 solution W (m) = W
(m)
f (t, x) on the

domain Rf (see (8.5.10)). In particular, noting (8.3.20), (8.3.22) and the properties
of continuity modulus (see [84]), we have

‖W (m)
f (t, x)‖2 ≤ C̃2(T0)ε ≤ C̃3(T0)G(ε), ∀(t, x) ∈ Rf , (8.5.14)

ω
(
η
∣∣∂

2W
(m)
f

∂t2

)
+ ω

(
η
∣∣∂

2W
(m)
f

∂x2

)
+ ω

(
η
∣∣∂

2W
(m)
f

∂t∂x

)

≤C̃4(T0)

(
ω(η|Φ̃xx) + ω(η|Ψ̃x) + Ω0(η) + ε

(
η + Ω1(η) +

(
1 +G(ε)

)
Ω(η|Γ̃∗)

))

≤C̃5(T0)

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
.

(8.5.15)

Thus we can uniquely determine the value of (W
(m)
f ,W

(m)
fx ) on x = L:

x = L : (W
(m)
f ,W

(m)
fx ) = (a(m)(t), ā(m)(t)), 0 ≤ t ≤ T0

2
, (8.5.16)

and we have

‖(a(m)(t), a(m)(t))‖
(C2[0,

T0
2
])N×(C1[0,

T0
2
])N
≤ C̃6(T0)G(ε), (8.5.17)

ω(η|ä(m)) + ω(η| ˙̄a(m))

≤C̃7(T0)

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
. (8.5.18)

On the other hand, denoting

Z
(m)
f = W

(m)
f −W

(m−1)
f , m = 0, 1, 2, . . . (8.5.19)
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it is easy to see that Z
(m)
f satisfies the following mixed initial-boundary value problem:

∂2Z
(m)
f

∂t2
− a2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2Z

(m)
f

∂x2
+ Ã(U (m−1), U

(m−1)
t , U (m−1)

x )Z(m)

+
(
Ã(U (m−1), U

(m−1)
t , U (m−1)

x )− Ã(U (m−2), U
(m−2)
t , U (m−2)

x )
)
W

(m−1)
f

−
(
a2(U (m−2), U

(m−2)
t , U (m−2)

x )− a2(U (m−1), U
(m−1)
t , U (m−1)

x )
)∂2W (m−1)

f

∂x2
= 0

(8.5.20)
with the initial condition

t = 0 : (Z
(m)
f , Z

(m)
ft ) = (0, 0), 0 ≤ x ≤ L, (8.5.21)

the boundary condition on x = 0

x = 0 : Z
(m)
fx = 0, (8.5.22)

and the boundary condition on x = L:

x = L : Z
(m)
f = 0, (8.5.23a)

x = L : Z
(m)
fx = 0, (8.5.23b)

x = L : Z
(m)
fx + B̃(U (m−1))Z

(m)
f =

(
B̃(U (m−2))− B̃(U (m−1))

)
W

(m−1)
f . (8.5.23c)

Noting (8.3.20)–(8.3.21), (8.3.25) and (8.5.14), we get

I0
def.
=

∥∥∥
(
a2(U (m−2), U

(m−2)
t , U (m−2)

x )− a2(U (m−1), U
(m−1)
t , U (m−1)

x )
)∂2W (m−1)

f

∂x2

∥∥∥
(C0[Rf ])N

≤C̃8(T0)C
m−1
7

(
G(ε)

)m
,

(8.5.24)

I1
def.
= ‖

(
Ã(U (m−1), U

(m−1)
t , U (m−1)

x )− Ã(U (m−2), U
(m−2)
t , U (m−2)

x )
)
W

(m−1)
f

)
‖(C0[Rf ])N

≤C̃9(T0)C
m−1
7

(
G(ε)

)m
,

(8.5.25)

I2
def.
= ‖

(
B̃(U (m−1))− B̃(U (m−2))

)
W

(m−1)
f

)
‖(C0[Rf ])N ≤ C̃10(T0)C

m−1
7

(
G(ε)

)m
.

(8.5.26)

Therefore, by Lemma 8.2.2, there exists a positive constant C̃11(T0) independent
of m, such that

‖W (m) −W (m−1)‖(C1[Rf ])N ≤ C̃11(T0)C
m−1
7

(
G(ε)

)m
. (8.5.27)
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In particular, we have

‖(a(m)(t)− a(m−1)(t), a(m)(t)− a(m−1)(t))‖
(C1[0,

T0
2
])N×(C0[0,

T0
2
])N
≤ C̃12(T0)C

m−1
7

(
G(ε)

)m
.

(8.5.28)

(ii) On the domain Rb (see (8.5.11)), let W
(m)
b (t, x) ≡ 0. Obviously, W =

W
(m)
b (t, x) verifies system (8.3.24), finial condition (8.3.31) and boundary conditions

(8.3.27) .

(iii) Thus, we can find the vector function (c(m)(t), c̄(m)(t)) ∈ (C2[0, T ])N × (C1[0, T ])N

(for example, by polynomial interpolation), such that

(c(m)(t), c̄(m)(t)) =

{
(a(m)(t), ā(m)(t)), 0 ≤ t ≤ T0−δ

2
,

(0, 0), T0+δ
2
≤ t ≤ T,

(8.5.29)

and (c(m)(t), c̄(m)(t)) verifies the boundary condition (8.3.27) at x = L on the whole
intervel 0 ≤ t ≤ T , moreover, we have

‖(c(m)(t), c(m)(t))‖C2[0,T ]×C1[0,T ] ≤ C̃13(T, T0)G(ε), (8.5.30)

‖(c(m)(t)− c(m−1)(t), c(m)(t)− c(m−1)(t))‖C2[0,T ]×C1[0,T ] ≤ C̃14(T, T0)C
m−1
6

(
G(ε)

)m
,

(8.5.31)

ω(η|c̈(m)) + ω(η| ˙̄c(m))

≤C̃15(T, T0)

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
. (8.5.32)

We now change the status of t and x, and consider the following leftward mixed
initial-boundary value problem on the domain R(T ) for system (8.3.24) with the
initial condition

x = L : W
(m)
l = c(m)(t),W

(m)
lx = c̄(m)(t), 0 ≤ t ≤ T (8.5.33)

and the boundary conditions

t = 0 : W
(m)
lt = Ψ̃(x), 0 ≤ x ≤ L, (8.5.34)

t = T : W
(m)
lt = 0, 0 ≤ x ≤ L (8.5.35)

where Ψ̃(x) is given by (8.3.30).

Obviously, the corresponding conditions of C2 compatibility are satisfied at the
points (t, x) = (0, L) and (T, L), respectively. Hence, by Lemma 8.2.2, there exists a
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unique C2 solution W (m) = W
(m)
l (t, x) on the domain R(T ), such that

‖W (m)
l (t, x)‖C2[R(T )] ≤ C̃16(T, T0)G(ε), ∀(t, x) ∈ R(T ), (8.5.36)

ω
(
η
∣∣∂

2W
(m)
l

∂t2

)
+ ω

(
η
∣∣∂

2W
(m)
l

∂x2

)
+ ω

(
η
∣∣∂

2W
(m)
l

∂t∂x

)

≤C̃17(T, T0)

(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) +G(ε)

(
η + Ω1(η) + Ω(η|Γ∗)

))
.

(8.5.37)

Thus, Z
(m)
l = W

(m)
l −W

(m−1)
l satisfies the mixed initial-boundary value problem

of system (8.5.20) with the homogeneous boundary condition

t = 0 : Z(m)
x = 0, (8.5.38)

t = T : Z(m)
x = 0 (8.5.39)

and the initial condition

x = L : (Z(m), Z(m)
x ) = (c(m)(t)− c(m−1)(t), c(m)(t)− c(m−1)(t)). (8.5.40)

Combining (8.5.31), (8.5.36) and Lemma 8.2.2, we get

‖W (m)
l (t, x)−W

(m−1)
l (t, x)‖(C2[R(T )])N ≤ C̃18(T, T0)C

m−1
7

(
G(ε)

)m
. (8.5.41)

(iv) By the uniqueness of the C2 solution for one-sided mixed initial-boundary

value problem (see [72], [84], [111] and [112]), the C2 function W (m) = W
(m)
l (t, x) on

R(T ) satisfies the system (8.3.24), the initial condition (8.3.30), the finial condition
(8.3.31) and the boundary condition (8.3.27) on x = L. Moreover, noting (8.5.36)–
(8.5.37) and (8.5.41), we get (8.3.32)–(8.3.34). This concludes the proof of Lemma
8.3.2.



242 8.5. Appendix: Proof of Lemma 8.3.2



Bibliography

[1] O. Aamo. Disturbance rejection in 2x2 linear hyperbolic systems. Automatic
Control, IEEE Transactions on, PP(99):1, 2012.

[2] Fatiha Alabau-Boussouira. Indirect boundary stabilization of weakly coupled
hyperbolic systems. SIAM J. Control Optim., 41(2):511–541 (electronic), 2002.

[3] Fatiha Alabau-Boussouira. A two-level energy method for indirect boundary
observability and controllability of weakly coupled hyperbolic systems. SIAM
J. Control Optim., 42(3):871–906 (electronic), 2003.

[4] Fatiha Alabau-Boussouira. Controllability of cascade coupled systems of multi-
dimensional evolution PDEs by a reduced number of controls. C. R. Math.
Acad. Sci. Paris, 350(11-12):577–582, 2012.

[5] Fatiha Alabau-Boussouira. Insensitizing exact controls for the scalar wave equa-
tion and exact controllability of 2-coupled cascade systems of PDE’s by a single
control. Math. Control Signals Systems, 26(1):1–46, 2014.

[6] Fatiha Alabau-Boussouira and Matthieu Léautaud. Indirect controllability of
locally coupled wave-type systems and applications. J. Math. Pures Appl. (9),
99(5):544–576, 2013.

[7] S. Amin, Hante F., and A. Bayen. Hybrid Systems: Comp, chapter On stability
of switched linear hyperbolic conservation laws with reflecting boundaries, pages
602–605. Springer-Verlag, 2008.

[8] Fabio Ancona and Andrea Marson. On the attainable set for scalar nonlinear
conservation laws with boundary control. SIAM J. Control Optim., 36(1):290–
312 (electronic), 1998.

[9] Fabio Ancona and Andrea Marson. Asymptotic stabilization of systems of
conservation laws by controls acting at a single boundary point. In Control
methods in PDE-dynamical systems, volume 426 of Contemp. Math., pages 1–
43. Amer. Math. Soc., Providence, RI, 2007.

243



244 Bibliography

[10] Georges Bastin and Jean-Michel Coron. On boundary feedback stabilization of
non-uniform linear 2× 2 hyperbolic systems over a bounded interval. Systems
Control Lett., 60(11):900–906, 2011.

[11] Georges Bastin and Jean-Michel Coron. Stability and Boundary Stabilization
of 1-D Hyperbolic Systems. Preprint, 2015.

[12] Georges Bastin, Jean-Michel Coron, and Brigitte d’Andréa Novel. Using hy-
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[90] Qi Lü. Exact controllability for stochastic transport equations. SIAM J. Control
Optim., 52(1):397–419, 2014.

[91] Sorin Micu. On the controllability of the linearized Benjamin-Bona-Mahony
equation. SIAM J. Control Optim., 39(6):1677–1696 (electronic), 2001.

[92] Boris S. Mordukhovich and Jean-Pierre Raymond. Dirichlet boundary control
of hyperbolic equations in the presence of state constraints. Appl. Math. Optim.,
49(2):145–157, 2004.

[93] Boris S. Mordukhovich and Jean-Pierre Raymond. Neumann boundary control
of hyperbolic equations with pointwise state constraints. SIAM J. Control
Optim., 43(4):1354–1372 (electronic), 2004/05.

[94] A. Pazy. Semigroups of linear operators and applications to partial differential
equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New
York, 1983.

[95] Louis M. Pecora and Thomas L. Carroll. Synchronization in chaotic systems.
Phys. Rev. Lett., 64(8):821–824, 1990.

[96] Vincent Perrollaz. Exact controllability of scalar conservation laws with an
additional control in the context of entropy solutions. SIAM J. Control Optim.,
50(4):2025–2045, 2012.

[97] Vincent Perrollaz and Lionel Rosier. Finite-time stabilization of 2×2 hyperbolic
systems on tree-shaped networks. SIAM J. Control Optim., 52(1):143–163,
2014.



Bibliography 251

[98] Tie Hu Qin. Global smooth solutions of dissipative boundary value problems
for first order quasilinear hyperbolic systems. Chinese Ann. Math. Ser. B,
6(3):289–298, 1985. A Chinese summary appears in Chinese Ann. Math. Ser.
A 6 (1985), no. 4, 514.

[99] Lionel Rosier and Pierre Rouchon. On the controllability of a wave equation
with structural damping. Int. J. Tomogr. Stat., 5(W07):79–84, 2007.

[100] David L. Russell. Controllability and stabilizability theory for linear partial dif-
ferential equations: recent progress and open questions. SIAM Rev., 20(4):639–
739, 1978.

[101] Denis Serre. Systems of conservation laws: a challenge for the XXIst century. In
Mathematics unlimited—2001 and beyond, pages 1061–1080. Springer, Berlin,
2001.

[102] Joel Smoller. Shock waves and reaction-diffusion equations, volume 258 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science]. Springer-Verlag, New York-Berlin, 1983.

[103] Andrey Smyshlyaev and Miroslav Krstic. Adaptive control of parabolic PDEs.
Princeton University Press, Princeton, NJ, 2010.

[104] Steven Strogatz. Sync: The emerging science of spontaneous order. Hyperion,
2003.

[105] Rafael Vazquez and Miroslav Krstic. Control of 1-D parabolic PDEs with
Volterra nonlinearities. I. Design. Automatica J. IFAC, 44(11):2778–2790, 2008.

[106] Rafael Vazquez and Miroslav Krstic. Control of 1D parabolic PDEs with
Volterra nonlinearities. II. Analysis. Automatica J. IFAC, 44(11):2791–2803,
2008.

[107] Rafael Vazquez and Miroslav Krstic. Marcum Q-functions and explicit kernels
for stabilization of linear hyperbolic systems with constant coefficients. Systems
& Control Letters, 68:33 – 42, 2014.
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Boundary controllability, stabilization and

synchronization for 1-D hyperbolic balance laws

Abstract :

This thesis is devoted to three topics in the control field, namely, exact boundary controllability, boundary stabilization

and exact boundary synchronization, for hyperbolic systems of balance laws. For the exact boundary controllability part,

we first improve the boundary control time for hyperbolic systems of conservation laws with general boundary conditions

and show that this control time is sharp. Then for a coupled hyperbolic system with zero characteristic speed, we prove

that it is impossible to achieve the corresponding exact boundary controllability even with inner couplings in the equation.

However, one can stabilize the system in infinite time by means of boundary feedback laws. For the boundary stabilization

part, we show how to stabilize both the n×n linear and quasilinear hyperbolic systems by means of one-sided closed-loop

boundary controls. For that a backstepping method is developed. For the exact boundary synchronization part, we first

recall both the exact boundary controllability and observability results for coupled systems of quasilinear wave equations.

Then several kinds of exact synchronizations are introduced for a coupled system of 1-D linear and quasilinear wave

equations with boundary conditions of Dirichlet type, Neumann type, coupled third type and coupled dissipative type

in the framework of C2 solutions. We show that all these synchronizations can be realized by means of few boundary

controls.

Keywords : Exact boundary controllability, boundary stabilization, boundary synchronization, 1-D hyperbolic balance

laws, coupled wave systems

Contrôle frontière, stabilisation et synchronisation pour

des systèmes de lois de bilan en dimension un d’espace

Résumé :

Cette thèse est consacrée à trois sujets dans le domaine du contrôle, qui sont la contrôlabilité exacte frontière, la stabili-

sation frontière et la synchronisation exacte frontière, des systèmes hyperboliques de lois de bilan. Pour la partie sur la

contrôlabilité exacte frontière, on améliore le temps de contrôlabilité exacte pour les systèmes hyperboliques de lois de

conservation pour des conditions aux limites générales. On montre aussi que ce temps est optimal. En ce qui concerne

les systèmes hyperboliques couplés avec une vitesse caractéristique nulle, nous prouvons que l’on n’a pas la contrôlabilité

exacte, même avec des couplages internes dans les équations. Cependant, on montre que l’on peut stabiliser les systèmes

par les lois de rétroaction à la frontière du domaine. Dans la deuxième partie, nous nous intéressons à la stabilisation

frontière des systèmes hyperboliques de lois de bilan. En utilisant une approche“backstepping”, on montre comment

stabiliser des systèmes d’abord dans les cas linéaires puis dans les cas quasi-linéaires. La troisième partie concerne la

synchronisation exacte frontière. Nous rappelons d’abord les résultats de contrôlabilité et d’observabilité exacte frontière

pour les systèmes couplés d’équations des ondes quasi-linéaires. Puis nous introduisons plusieurs types de synchronisations

pour un système d’équations des ondes linéaires, puis quasi-linéaires, couplées avec des conditions aux limites de type

Dirichlet, de type Neumann, de type Robin et de type dissipatif dans le cadre de solutions de classe C2. Nous montrons

que toutes ces synchronisations peuvent être réalisées en imposant peu de contrôles aux frontières.

Mot clés : Contrôlabilité exacte frontière, stabilisation frontière, synchronisation frontière, systèmes hyperboliques de

lois de bilan 1-D, systèmes d’équations des ondes couplées


