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Résumé : L’objectif principal de cette thèse est 
l’analyse des performances des réseaux LTE-A 
(Long Term Evolution- Advanced) au travers de 
la géométrie stochastique. L’analyse 
mathématique des réseaux cellulaires est un 
problème difficile, pour lesquels ils existent déjà 
un certain nombre de résultats mais qui demande 
encore des efforts et des contributions sur le long 
terme. L’utilisation de la géométrie aléatoire et 
des processus ponctuels de Poisson (PPP) s’est 
avérée être une approche permettant une 
modélisation pertinente des réseaux cellulaires et 
d’une complexité faible (tractable). Dans cette 
thèse, nous nous intéressons tout 
particulièrement à des modèles s’appuyant sur 
ces processus de Poisson : PPP-based 
abstraction. Nous développons un cadre 
mathématique qui permet le calcul de quantités 
reflétant les performances des réseaux LTE-A,  

tels que la probabilité d’erreur, la probabilité et 
le taux de couverture, pour plusieurs scénarios 
couvrant entre autres le sens montant et 
descendant. Nous considérons également des 
transmissions multi-antennes, des déploiements 
hétérogènes, et des systèmes de commande de 
puissance de la liaison montante. L’ensemble de 
ces propositions a été validé par un grand nombre 
de simulations. Le cadre mathématique 
développé dans cette thèse se veut général, et doit 
pouvoir s’appliquer à un nombre d’autres 
scénarios importants. L’intérêt de l’approche 
proposée est de permettre une évaluation des 
performances au travers de l’évaluation des 
formules, et permettent en conséquences d’éviter 
des simulations qui peuvent prendre énormément 
de temps en terme de développement ou 
d’exécution.  
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Abstract : The main focus of this thesis is on 
performance analysis and system optimization 
of Long Term Evolution - Advanced (LTE-A) 
cellular networks by using stochastic geometry.  
Mathematical analysis of cellular networks is a 
long-lasting difficult problem. Modeling the 
network elements as points in a Poisson Point 
Process (PPP) has been proven to be a tractable 
yet accurate approach to the performance 
analysis in cellular networks, by leveraging the 
powerful mathematical tools such as stochastic 
geometry. In particular, relying on the PPP-
based abstraction model, this thesis develops the 
mathematical frameworks to the computations 
of important performance measures such as 
error probability, coverage probability and  

average rate in several application scenarios in 
both uplink and downlink of LTE-A cellular 
networks, for example, multi-antenna 
transmissions, heterogeneous deployments, 
uplink power control schemes, etc. The 
mathematical frameworks developed in this 
thesis are general enough and the accuracy has 
been validated against extensive Monte Carlo 
simulations. Insights on performance trends and 
system optimization can be done by directly 
evaluating the formulas to avoid the time-
consuming numerical simulations. 
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Abstract
The main focus of this thesis is on performance analysis and system optimization of Long

Term Evolution - Advanced (LTE-A) cellular networks by using stochastic geometry. Mathe-

matical analysis of cellular networks is a long-lasting difficult problem. Modeling the network

elements as points in a Poisson Point Process (PPP) has been proven to be a tractable yet

accurate approach to the performance analysis in cellular networks, by leveraging the power-

ful mathematical tools such as stochastic geometry. In particular, relying on the PPP-based

abstraction model, this thesis develops the mathematical frameworks to the computations of

important performance measures such as error probability, coverage probability and average

rate in several application scenarios in both uplink and downlink of LTE-A cellular networks,

for example, multi-antenna transmissions, heterogeneous deployments, uplink power control

schemes, etc. The mathematical frameworks developed in this thesis are general enough

and the accuracy has been validated against extensive Monte Carlo simulations. Insights on

performance trends and system optimization can be done by directly evaluating the formulas

to avoid the time-consuming numerical simulations.

Key words: Stochastic Geometry, Cellular Networks, LTE-A, Poisson Point Process, Perfor-

mance Analysis, Error Probability, Coverage, Rate
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Résumé
L’objectif principal de cette thèse est l’analyse des performances des réseaux LTE-A (Long

Term Evolution- Advanced) au travers de la géométrie stochastique. L’analyse mathématique

des réseaux cellulaires est un problème difficile, pour lesquels ils existent déjà un certain

nombre de résultats mais qui demande encore des efforts et des contributions sur le long

terme. L’utilisation de la géométrie aléatoire et des processus ponctuels de Poisson (PPP) s’est

avérée être une approche permettant une modélisation pertinente des réseaux cellulaires

et d’une complexité faible (tractable). Dans cette thèse, nous nous intéressons tout particu-

lièrement à des modèles s’appuyant sur ces processus de Poisson : PPP-based abstraction.

Nous développons un cadre mathématique qui permet le calcul de quantités reflétant les

performances des réseaux LTE-A, tels que la probabilité d’erreur, la probabilité et le taux de

couverture, pour plusieurs scénarios couvrant entre autres le sens montant et descendant.

Nous considérons également des transmissions multi-antennes, des déploiements hétéro-

gènes, et des systèmes de commande de puissance de la liaison montante. L’ensemble de

ces propositions a été validé par un grand nombre de simulations. Le cadre mathématique

développé dans cette thèse se veut général, et doit pouvoir s’appliquer à un nombre d’autres

scénarios importants. L’intérêt de l’approche proposée est de permettre une évaluation des

performances au travers de l’évaluation des formules, et permettent en conséquences d’éviter

des simulations qui peuvent prendre énormément de temps en terme de développement ou

d’exécution.

Mots clefs : Géométrie stochastique, réseaux cellulaires, LTE-A, processus de Poisson, Éva-

luation de performances, probabilité d’erreur, probabilité de couverture, taux de couverture.
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Notation
The following notation is used throughout this thesis.

e the Euler’s number

γEM the Euler-Mascheroni constant

j the imaginary unit j =�−1

(·)k the Pochhammer symbol

z a complex number; a scaler

|z| the modulus of z

arg{z} the phase of z

C the field of complex numbers

S a set

card{S} the cardinality of the set S

x a vector

x(l ) the l th entry of x

‖x‖ the norm of x

X a matrix

X(l ,m) the (l ,m)th entry of X

‖X‖ the Frobenius norm of X

vec (X) the vectorization of X

IN a N ×N identity matrix

0N a N ×N all-zero matrix

(·)T the transpose operator

(·)H the Hermitian operator

[·]t the (t , t )-th element in a square matrix

(·)! the factorial operator

1 (·) the indicator function

min{·, ·} the minimum function

max{·, ·} the maximum function(
n

k

)
the binomial coefficient

f (n) (t ) the nth derivative of f (t )

Re{·} the real part operator

Im{·} the imaginary part operators

E {·} the expectation operator

xv



Notation

Pr{·} the probability measure function

exp{·} the exponential function

The following definitions are used for random variables (RVs) X and Y .

fX (·) the Probability Density Function (PDF) of X

FX (·) the Cumulative Distribution Function (CDF) of X FX (ξ) = Pr{X ≤ ξ}

F̄X (·) the Complementary CDF (CCDF) of X F̄X (ξ) = 1−FX (ξ)

MX (·) the Moment Generating Function (MGF) of X :

if X is real, MX (s) = EX
{
exp(−sX )

}
ψX (·) the Characteristic Function (CF) of X :

if X is real, ψX (ω) = EX
{
exp( jωX )

}
;

if X is complex, X = Re{X }+ j Im{X } = X (re) + j X (im), let ω= (ω1,ω2)

ψX (ω) = EX
{
exp

{
jωX

}}= E
{
exp

{
j
(
ω1X (re) +ω2X (im)

)}}
X

d=Y the RVs X and Y are equal in distribution

The following distributions of the RV X are used throughout this thesis.

N
(
μ,σ2

)
a real Gaussian distribution with mean μ and variance σ2

C N
(
μ,σ2

)
a complex Gaussian distribution with mean μ and variance σ2

U (a,b) a uniform distribution in (a,b)

Gamma(m,Ω) a Gamma distribution with PDF as fX (ξ) = mmξm−1

ΩmΓ(m) exp
(−m

Ω ξ
)

[60, Eq. (2.21)]

LogN(μ,σ2) a Log-Normal distribution with PDF of 10log10 (X ) as

f10log10(X ) (ξ) = 10log10(e)�
2πσ2ξ

exp

(
− (10log10(ξ)−μ)2

2σ2

)
[60, Sec. 2.2.3.1]

Gamma/LogN(m,η,σ2) a Gamma distribution by conditioning upon its mean power,

which follows a Log-Normal distribution [60, Sec. 2.2.3.1]

The following special functions are used throughout this thesis.

Γ (·) the Gamma function [56, Eq. 6.1.1]

Γ (·, ·) the upper-incomplete Gamma function

erf(·) the error function [56, Eq. 7.1.1]

U (·, ·, ·) the Tricomi confluent hypergeometric function [57]

p Fq
(
a1, . . . , ap ;b1, . . . ,bq ; ·) the generalized hypergeometric function [57, Ch. IV]

Gm̃,ñ
p̃,q̃

(
(·)
∣∣∣∣∣
(
ap̃
)(

bq̃
) ) the Meijer G-function [58, Sec. 2.24]
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Chapter 1. Introduction

This chapter begins with Section 1.1 which introduces the LTE-A cellular networks and chal-

lenges in the mathematical analysis of such networks. Section 1.2 provides a comprehensive

literature review on the research work on the stochastic geometry analysis of wireless com-

munications systems with Poisson Point Process (PPP) based abstraction models. Section

1.3 highlights the major contributions in this thesis work and the organization of the thesis.

Section 1.4 provides lists of publications produced during my Ph.D. candidature.
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1.1. Background

1.1 Background

1.1.1 LTE-A Cellular Networks

Long Term Evolution - Advanced (LTE-A) is one of current major mobile communication

standards. It was standardized by the 3rd Generation Partnership Project (3GPP) in March

2011 as 3GPP Release 10 [1]. It is intended to satisfy the ever growing demands on data rates

and to improve the capacity and coverage. The main requirements for LTE-A cellular networks

are identified in [1], some of which are summarized in the Table 1.1.

Table 1.1: 3GPP LTE-A Requirements (Spectrum Efficiency is for base station (BS) with 4
antennas and mobile terminal (MT) with 2 antennas).

Peak Data Rate (Downlink) 1 Gbps
Peak Data Rate (Uplink) 500 Mbps

Spectrum Allocation Up to 100 MHz
Latency (User Plane) 10 ms

Latency (Control Plane) 50 ms
Spectrum Efficiency (Peak, Downlink) 30 bps/Hz

Spectrum Efficiency (Peak, Uplink) 15 bps/Hz
Spectrum Efficiency (Average, Downlink) 2.6 bps/Hz

Spectrum Efficiency (Average, Uplink) 2.0 bps/Hz
Spectrum Efficiency (Cell-Edge, Downlink) 0.09 bps/Hz

Spectrum Efficiency (Cell-Edge, Uplink) 0.07 bps/Hz

To achieve these technical requirements, LTE-A pushes the cells closer together and brings

networks closer to the user by adding many low-power nodes, for example, micro-, pico-,

femto- BSs in the coverage area of macro BSs to improve the coverage and rate performance.

Thus, topologically, heterogeneous deployment is emerging where smaller cells are located

heterogeneously in the networks. Heterogeneous deployment is one of the most important

new features supported by LTE-A. The other enhancement features include carrier aggregation,

relaying and advanced Multiple Input Multiple Output (MIMO) transmission [1, 2].

The heterogeneous deployment in LTE-A cellular networks leads to a more flexible and ir-

regular network topology and co-channel interference from other cells becomes one of the

dominant factors of the network performance. To deal with the irregular topology and to better

understand the network interference, mathematical modeling and analysis is a necessary task

and it is the direct motivation of the research work reported in this thesis.

1.1.2 Challenges in the Mathematical Analysis of Cellular Networks

The mathematical modeling of cellular networks is usually performed through abstraction

models, which rely upon simplified spatial models for the locations of the BSs. Common
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Chapter 1. Introduction

approaches include the Wyner model, the single-cell interfering model and the hexagonal grid

model [3, 4, 5]. However, these abstraction models are either inaccurate for many operating

conditions or they require extensive numerical computations [6, 7]. As a result, the analysis

and design of cellular networks is often conducted by resorting to network simulations for

selected scenarios, which represent specific arrangements of BSs. More specifically,

• in [3], the capacity of multi-cell systems is evaluated by presuming a one dimension

arrangement of BSs and a unit gain from each BS to the tagged MT and an equal gain

that is less than one to the two MTs in the two neighboring cells. However, the Wyner

model and related mean-value approaches are particularly inaccurate, unless there

is a very large amount of interference averaging over space, such as in the uplink of

heavily-loaded CDMA systems [8].

• In [4], a two-cell multi-antennas system is studied and the interference is assumed from

a single interfering cell. However, the single-cell interfering model obviously neglects

most sources of interference in the network and is over-simplified.

• In [5], the concept of the cellular network arrangement and certain mathematical proper-

ties of hexagonal cellular geometry are introduced. Although widely accepted, the hexag-

onal grid model has important limitations as well: i) the resulting Signal-to-Interference-

plus-Noise-Ratio (SINR) by using the hexagonal grid model is still a random variable

(RV), thus, commonly complicated and time-consuming Monte Carlo simulations are

needed and they rarely provide insights in network designs and optimization; ii) the

grid-based abstraction model is increasingly inaccurate for heterogeneous deployments

of network elements in today’s LTE-A cellular networks, where the cell size of a BS varies

considerably, for example, in macro, micro, pico and femto cells.

1.2 Stochastic Geometry: A Powerful Tool to the Mathematical Anal-

ysis of Cellular Networks

To circumvent the accuracy problems and tractability problems, a new abstraction model to

the mathematical analysis of cellular networks is emerging, which is referred to as Poisson

Point Process (PPP)-based abstraction [6, 7, 10, 11, 12]. With the aid of this abstraction

model, in single-tier cellular networks, the locations of the BSs are modeled as points of a

homogeneous PPP. Meanwhile, the multi-tier heterogeneous cellular networks can be modeled

as the superposition of many tiers of BSs having different transmit powers, densities, path-

loss exponents, fading parameters and distributions, and flexible bias factors for various tier

association schemes. And the positions of the BSs in each tier are modeled as points of an

independent PPP.

Recent results have confirmed that the PPP-based abstraction model is capable of accurately

reproducing the main structural characteristics of operational cellular networks [13, 14, 15]:
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• in [13], the authors compare the PPP-based and the hexagonal grid-based abstraction

models with real base station deployments in urban areas worldwide provided by the

open source project OpenCellID and show that the PPP-based abstraction model gives

upper bounds of the coverage probabilities for urban areas and is more accurate than

the hexagonal grid model.

• In [14], the authors introduce the concept of “deployment gain”, which allows one to

carry out the analysis based on the mathematically tractable PPP-based abstraction

model, subject to a correction factor (i.e., the deployment gain) that can be estimated

and taken into account for a better and more accurate system design and optimization.

• In [15], the authors investigate the accuracy of PPP-based abstraction model, by ex-

plicitly taking realistic base station locations, building footprints, spatial blockages

and antenna radiation patterns into account. It confirms that the abstraction model

based on stochastic geometry is capable of accurately modeling the communication

performance of cellular networks in dense urban environments.

The usefulness of the PPP-based abstraction model originates from its analytical tractability

and from the possibility of leveraging mathematical tools from applied probability, such

as stochastic geometry, for mathematical performance analysis [16, 17, 18]. Some basic

definitions, properties and theorems of the PPP are introduced in Appendix A.

1.2.1 State of the Art

The PPP-based abstraction model is now routinely used to the analysis and design of wire-

less networks in general and cellular networks in particular. [19] provides a comprehensive

literature survey till year 2013. Notable examples include [6, 7], [20]–[53].

Wireless Networks in the Presence of a Poisson Field of interferers Interferes in wireless

networks, including ad hoc networks, cognitive radio networks, and underlay device-to-device

wireless networks, etc., can be modeled as a Poisson field of interferers, where the distance

from the transmitter to the receiver is fixed and the interferers can be closer to the receiver

than the intended transmitter. Error probability, outage probability and ergodic capacity in

such wireless networks in the presence of a Poisson field of interferers have been studied in

the literature [20]–[28]. For example,

• in [20], a mathematical framework based on characterizing the aggregate interference

as an symmetric alpha-stable (SαS) random variable has been introduced.

• In [22], the ergodic capacity of a multi-cell multi-antenna cooperative cellular network

with co-channel interference is studied. The approach relies upon an interference

model based on the SαS distribution.
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• In [24], a comprehensive framework is introduced for computing the error probability

of a multi-antenna receiver in the presence of different models of network interference.

• In [25], by considering a similar interference model as in [24], the outage probability is

studied.

• In [26], the effect of spatial interference correlation on the performance of maximum

ratio combining is investigated.

Downlink Cellular Networks In cellular networks, where the BS-to-MT cell association

policy is considered, the PPP-based abstraction has also been successfully applied for the mod-

eling of other-cell interference, characterization of SINR and performance analysis of coverage

and rate, for example, in single-tier downlink cellular networks [6, 29], multi-antenna cellular

networks [30, 31], heterogeneous cellular networks [7, 32, 33, 35, 36, 42], and millimeter-wave

cellular networks [44, 45, 46]. More specifically,

• in [6], the coverage probability and the average rate of cellular networks for transmission

over Rayleigh fading channels are computed in closed-form.

• In [7], the authors introduce a framework for computing the average rate of heteroge-

neous cellular networks with biased cell association and for transmission over general

fading channels.

• In [32], the framework of [6] is extended to heterogeneous cellular networks, which are

modeled as the superposition of many PPPs.

• In [33], the authors study heterogeneous cellular networks based on the PPP-based

abstraction model by assuming a cell association criterion based on the maximum

SINR. The analysis in [33] assumes that the SINR threshold is greater than 0 dB. This

assumption is removed in [34], where arbitrary SINR thresholds are considered.

• In [35], the framework in [34] is generalized for a biased cell association criterion.

• In [36], the framework in [32] is generalized by studying heterogeneous cellular networks

that employ a biased cell association criterion.

• In [30], MIMO cellular networks are studied with the aid of tools from stochastic ge-

ometry and stochastic ordering. Various downlink MIMO transmission schemes are

studied and compared, including Space Division Multiple Access (SDMA), Single User

Beamforming (SUBF) and the baseline Single-Input-Single-Output (SISO) transmission.

• In [41], the authors incorporate the load characteristics of the BSs into the mathematical

framework, by using a conditionally thinning approach.
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Uplink Cellular Networks A few researchers have developed mathematically tractable yet

accurate analytical frameworks for the uplink of heterogeneous cellular networks. The follow-

ing contributions are worth being mentioned:

• In [47], the authors study single-tier cellular networks with fractional power control.

• In [48], the authors study cellular networks with truncated channel inversion power

control.

• In [49], the authors study two-tier cellular networks with power control and a biased

cell association. The point process of the interfering MTs is modeled using a thinning

approach based on curve fitting.

• In [50], the authors study multi-tier cellular networks with fractional power control and

a weighted cell association. Similar to [49], a thinning-based approach for modeling

the point process of the interfering MTs is used. The proposed method, however, does

not require any fitting based on simulations. Also, the optimality of using a decoupled

downlink/uplink association is mathematically assessed.

• In [51], the authors study, from a utility optimization standpoint, multi-tier cellular

networks with fractional power control and a weighted cell association. To this end, a

utility function based on the proportionally fair criterion is introduced and optimized.

• In [52], the authors study two-tier cellular networks to characterize the association

probabilities of downlink and uplink transmissions.

• In [53], the authors generalize [52]. They study the rate of the typical MT and validate

their findings against a real-world system-level simulator.

Non-PPP Abstraction Models The PPP-based abstraction model has some fundamental

limitations because it assumes the mutual independence among all points in the point process,

which allows two points to be arbitrarily close to each other. It is then not suitable for networks

with repulsion, where the locations of points are spatially correlated. Some more realistic

abstraction models than the PPP have been considered in the following notable papers:

• In [14], the authors use the Poisson hard-core process (PHCP), the Strauss process

(SP), and the perturbed triangular lattice to model the locations of BSs in real cellular

networks and introduce the “deployment gain” to measure how close a point set is to

the PPP and to further compare the performance of different models analytically.

• In [19], as a survey, the authors introduce other popular PPs other than PPP used in

modeling wireless communications systems, including the Binomial Point Process

(BPP), the Hard Core Point Process (HCPP) and the Poisson Cluster Process (PCP).
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• In [106], the authors introduce the Ginibre point process (GPP) to model the wireless

networks with repulsion and compute the mean and variance of the interference by the

Palm measure approach and the reduced second moment approach.

However, the non-PPP abstraction models are usually not mathematically tractable as PPP-

based abstraction model. Thus, the latter is the main focus of this thesis and a brief summary

of prior work on the stochastic geometry analysis of cellular networks based on the PPP-based

abstraction model is available in Table 1.2.

1.2.2 Methodologies

Different techniques to the mathematical modeling and performance evaluation of cellular

networks based on stochastic geometry have been reported [19]. To the best of the authors

knowledge, eight techniques are commonly used to the computation of important perfor-

mance metrics, which include coverage probability, average rate and error probability. They

offer a different trade-off in terms of modeling accuracy, mathematical tractability, numerical

complexity, etc. [19, Sec. III-F]. These techniques can be classified as based on:

• the Rayleigh fading assumption [19, Sec. III-A], [6];

• the dominant or nearest interferers approximation [19, Sec. III-B];

• approximations of the distribution of the other-cell interference [19, Sec. III-C];

• the Plancherel-Parseval theorem that is applicable to arbitrary fading for the desired

link [19, Sec. III-D], [6];

• numerically inverting the Moment Generating Function (MGF) of the other-cell interfer-

ence [19, Sec. III];

• MGF-based equivalent representations of the performance metrics of interest [7];

• equivalent in distribution representations of the other-cell interference [29]

• the direct computation of spatial averages without using the MGF [38].
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1.2. Stochastic Geometry: A Powerful Tool to the Mathematical Analysis of Cellular
Networks
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Chapter 1. Introduction

1.3 Thesis Overview and Major Contributions

The major contributions of this thesis are three-fold: i) this thesis studies the error performance

mathematically in downlink MIMO cellular networks for the first time; ii) this thesis develops a

general mathematical approach to the computation of coverage and rate in cellular networks;

iii) this thesis proposes a novel and accurate modeling approach of uplink cellular networks,

which is general and proven to be very useful in the uplink cellular system analysis and

optimization.

Chapter 2 is on a mathematical framework to the computation of the error probability of

downlink MIMO cellular networks by using stochastic geometry. Major contributions include:

• Theorems 2.1 and 2.3: The characteristic functions (CF) of other-cell interference in

downlink SISO and MIMO cellular networks, respectively;

• Theorem 2.2: The exact mathematical formulation of the Average Pairwise Error Prob-

ability (APEP) in downlink SISO cellular networks, which is applicable to arbitrary

distributions of the fading envelope;

• Theorem 2.4: The exact mathematical formulation of the Average Pairwise Frame Error

Probability (APEP(F)) in downlink MIMO cellular networks, which is applicable to arbi-

trary fading distributions on the useful link and to Rayleigh fading on the interfering

links;

• Corollaries 2.1 and 2.3 provide the simplified CF of other-cell interference for a constant-

envelope modulation in downlink SISO and MIMO cellular networks, respectively;

• Corollary 2.2 provides asymptotic analysis of APEP in the noise- and interference-limited

regime of downlink SISO cellular networks;

• Corollaries 2.4 and 2.5 provide approximate closed-form expressions of APEP(F) in the

noise- and interference-limited regime;

• Propositions 2.1 and 2.2 provide CFs of other-cell interference with Gamma distributed

and Gamma/Log-Normal distributed per-link power gains , respectively;

• Propositions 2.3 and 2.4 provide APEPs with Gamma distributed and Gamma/Log-

Normal distributed per-link power gains, respectively;

• Proposition 2.5 provides APEP bounds based on Theorem 2.4 and Corollary 2.2.

Chapter 3 is on stochastic geometry modeling and analysis in downlink MIMO cellular net-

works by using the Gil-Pelaez inversion theorem. Major contributions include:

• Theorem 3.1: The exact mathematical framework to compute coverage probability for a

downlink cellular network with arbitrary per-link power gains;

10
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• Theorem 3.2: The exact mathematical framework to compute average rate for a dowlink

cellular network with arbitrary per-link power gains;

• Theorem 3.3: The exact mathematical framework to compute service success probability

for a partially loaded cellular network with arbitrary per-link power gains;

• Corollaries 3.1, 3.2 and 3.3 provide asymptotic frameworks for the mathematical com-

putation of coverage, average rate and service success probability in the interference-

limited regime, respectively;

• Propositions 3.1 – 3.5 confirm the applicability of proposed mathematical frameworks

for downlink cellular networks with different MIMO transmission schemes.

• Propositions 3.6 and 3.7 provide approximated close-form formulas for the mathemati-

cal computation of coverage and average rate in the interference-limited regime with

Gamma distributed per-link power gains, respectively.

• Propositions 3.9 and 3.11 provide BS inactive probability and MT selection probability

on a randomly selected resource blocks in partially loaded cellular networks where NRB

resource blocks are available at each BS, respectively.

Chapter 4 is on stochastic geometry modeling, system-level analysis and optimization of

uplink heterogeneous cellular networks with multi-antenna base stations. Maximum Ratio

Combining (MRC) and Optimum Combining (OC) at the BSs are studied and compared. A

generalized cell association criterion and fractional power control mechanism are considered.

Major contributions include:

• Proposition 4.1: The exact mathematical framework to compute coverage probability

for a heterogeneous uplink cellular networks with MRC receiver;

• Proposition 4.2: The exact mathematical framework to compute average rate for a

heterogeneous uplink cellular networks with MRC receiver;

• Proposition 4.3: The exact mathematical framework to compute average rate for a

heterogeneous uplink cellular networks with OC receiver;

• Corollaries 4.3 – 4.7 provide simplified frameworks for relevant system setups based on

Proposition 4.1;

• Corollaries 4.8 and 4.9 provide asymptotic frameworks to compute coverage probability

and average rate for massive MRC receiver;

• Corollaries 4.10 – 4.18 provide simplified frameworks for relevant system setups based

on Proposition 4.3;

• Corollary 4.19 provides asymptotic frameworks to compute the coverage probability for

massive OC receiver.

11
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Chapter 5 concludes this thesis and proposes possible future work.

1.4 Publications

Journal Papers The following is a list of publications in refereed journals produced during

my Ph.D. candidature. These journal papers [108, 109, 110] are used as the basis for this thesis

.

(J1) M. Di Renzo and P. Guan, “A mathematical framework to the computation of the error

probability of downlink MIMO cellular networks by using stochastic geometry”, IEEE

Transactions on Communications, vol. 62, no. 8, pp. 2860–2879, Aug. 2014. [108]

Abstract: In this paper, mathematical frameworks for system-level analysis and opti-

mization of uplink heterogeneous cellular networks with multiple BSs antennas are

introduced. MRC and OC at the BSs are studied and compared. A generalized cell asso-

ciation criterion and fractional power control mechanism are considered. The locations

of each tier of BSs are modeled as points of homogeneous and independent Poisson

point processes. With the aid of stochastic geometry, coverage and rate are formulated

in integral but mathematically and computationally tractable expressions. Based on

them, performance trends for small- and large-scale multi-antenna BSs are discussed.

Coverage and rate are shown to highly depend on several parameters, including the

path-loss exponent, the fractional power control compensation factor and the max-

imum transmit power of the mobile terminals. The gain of OC compared to MRC is

shown to increase if a more aggressive power control is used and if the number of BSs

antennas increases but is finite. For the same number of BSs antennas, OC is shown to

reach the noise-limited asymptote faster than MRC. Based on the proposed frameworks,

a heuristic algorithm for system-level optimization is proposed and its effectiveness is

demonstrated with the aid of Monte Carlo simulations.

(J2) M. Di Renzo and P. Guan, “Stochastic geometry modeling of coverage and rate of cellular

networks using the Gil-Pelaez inversion theorem”, IEEE Communications Letters, vol. 18,

no. 9, pp. 1575–1578, Sep. 2014. [109]

Abstract: In this Letter, we introduce new mathematical frameworks to the computation

of coverage probability and average rate of cellular networks by relying on a stochastic

geometry abstraction modeling approach. With the aid of the Gil-Pelaez inversion

formula, we prove that coverage and rate can be compactly formulated as a two-fold

integral for arbitrary per-link power gains. In the interference-limited regime, single-

integral expressions are obtained. As a case study, Gamma distributed per-link power

gains are investigated further and approximated closed-form expressions for coverage

and rate in the interference-limited regime are obtained, which shed light on the impact

of channel parameters and physical-layer transmission schemes.

(J3) P. Guan and M. Di Renzo, “Stochastic Geometry Modeling, System-Level Analysis and

Optimization of Uplink Heterogeneous Cellular Networks with Multi-Antenna Base
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Stations”, IEEE Transactions on Communications, submitted, 2015. [110]

Abstract: In this paper, a mathematical framework to the computation of the error

probability of downlink cellular networks is introduced. It is based on the PPP-based

abstraction for modeling the spatial locations of the BSs and it exploits results from

stochastic geometry for characterizing the distribution of the other-cell interference.

The framework is applicable to spatial multiplexing MIMO systems with an arbitrary

number of antennas at the transmitter (Nt ) and at the receiver (Nr ). If Nt = Nr = 1, the

mathematical approach can be used for arbitrary fading distributions on both useful

and interfering links. If either Nt > 1 or Nr > 1, it can be applied to arbitrary fading

distributions on the useful link and to Rayleigh fading on the interfering links. It is shown

that the proposed approach leads to easy-to-compute integral expressions, which reduce

to closed-form formulas in some asymptotic regimes. Furthermore, the framework is

shown to provide insights for system design and optimization. The accuracy of the

mathematical analysis is substantiated through extensive Monte Carlo simulations for

various cellular network setups.

Conference Papers The following is a list of publications in refereed conference proceedings

produced during my Ph.D. candidature. The conference papers [111, 112, 113, 116] contain

material overlapping with the journal publications. The conference papers [114, 115] contain

material not presented in this thesis.

(C 1) P. Guan and M. Di Renzo, “Stochastic geometry analysis of the average error probability

of downlink cellular networks”, 2014 IEEE International Conference on Computing, Net-

working and Communications (ICNC), pp. 1–7, Feb. 2014. [111]

Abstract: In this paper, we introduce a mathematical framework for computing the

average error probability of downlink cellular networks in the presence of other–cell

interference, Rayleigh fading, and thermal noise. A stochastic geometry based abstrac-

tion model for the locations of the BSs is used, hence the BSs are modeled as points

of a homogeneous spatial PPP. The MT is assumed to be served by the BS that is clos-

est to it. The technical contribution of this paper is twofold: 1) we provide an exact

closed–form expression of the Characteristic Function (CF) of the aggregate other–cell

interference at the MT, which takes into account the shortest distance based cell associ-

ation mechanism; and 2) by relying on the Gil-Pelaez inversion theorem, we provide an

exact closed–form expression of the Average Pairwise Error Probability, which accounts

for Rayleigh fading and for the spatial distribution of the BSs. From the APEP, the Average

Symbol Error Probability is obtained by using the Nearest Neighbor (NN) approximation,

which is shown to provide accurate estimates. Finally, the mathematical framework is

substantiated through extensive Monte Carlo simulations and insights on the achievable

performance are discussed.

(C 2) P. Guan and M. Di Renzo, “Stochastic Geometry Analysis of the Energy Efficiency of

Downlink MIMO Cellular Networks”, 2015 IEEE Vehicular Technology Conference Spring
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(VTC-Spring), vol., no., pp.1,5, 11-14 May 2015. [112]

Abstract: In this paper, an approximation to the mathematical evaluation of the spectral

and energy efficiency of multi-antenna downlink cellular networks is introduced. The

locations of the BSs are modeled as points of a PPP and stochastic geometry is used

for system-level performance assessment. The approximation is applicable to spatial

multiplexing MIMO systems having an arbitrary number of antennas at the transmitter

(Nt ) and at the receiver (Nr ). A Rayleigh fading channel model is assumed. The accuracy

of the proposed approximation is substantiated with the aid of Monte Carlo simulations.

(C 3) P. Guan; M. Di Renzo; C. Verikoukis and T. Q. Duong, “Error Probability of Downlink

MIMO Cellular Networks by Using Stochastic Geometry”, 2015 European Conference on

Networks and Communications (EuCNC), to appear, July 2015. [113]

Abstract: In this paper, a mathematical framework to the computation of the error

probability of downlink cellular networks is introduced. It is based on the PPP-based

abstraction for modeling the spatial locations of the BSs and it exploits results from

stochastic geometry for characterizing the distribution of the other-cell interference.

The framework is applicable to spatial multiplexing MIMO systems with an arbitrary

number of antennas at the transmitter (Nt ) and at the receiver (Nr ). It is shown that

the proposed mathematical approach leads to easy-to-compute integral expressions,

which reduce to closed-form formulas in some asymptotic regimes. The accuracy of the

mathematical analysis is substantiated through extensive Monte Carlo simulations for

various setups.

(C 4) P. Guan and M. Di Renzo, “Stochastic Geometry Modeling and Performance Evaluation

of Downlink MIMO Cellular Networks”, 2015 IEEE Vehicular Technology Conference Fall

(VTC-Fall), to appear, Sept. 2015. [114]

Abstract: In this paper, a mathematical framework for evaluating the error probabil-

ity of downlink MIMO cellular networks is introduced. It is based on the PPP-based

abstraction for modeling the spatial locations of the BSs and it exploits results from

stochastic geometry to characterize the distribution of the other-cell interference. The

framework is applicable to spatial multiplexing MIMO systems with an arbitrary number

of antennas at the transmitter (Nt ) and at the receiver (Nr ). It is shown that the pro-

posed framework leads to easy-to-compute integral expressions, which provide insights

for network design and optimization. The accuracy of the mathematical analysis is

substantiated through extensive Monte Carlo simulations for various MIMO cellular

network setups.

(C 5) P. Guan and M. Di Renzo, “ Stochastic Geometry Analysis of Uplink Cellular Networks

with Multi-Antenna Base Stations and Interference-Aware Fractional Power Control”,

2015 IEEE International Conference on Computing, Management and Telecommunica-

tions (ComManTel), to appear, Dec. 2015. [115]

Abstract: In this paper, uplink cellular networks with multiantenna BSs and interference-

aware power control are studied. The locations of the multi-antenna BSs are modeled as
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points of a PPP, and MRC and Optimum Combining OC receivers are compared. Exten-

sive system-level simulations are carried out and the impact of interference-unaware

and interference-aware fractional power control is analyzed. Several numerical results

and performance trends are illustrated in terms of coverage probability, rate and power

consumption. It is shown that competing performance trends emerge for the achievable

performance of cell-edge and cell-center MTs.

(C 6) P. Guan and M. Di Renzo, “Stochastic Geometry Analysis and Optimization of Uplink

Cellular Networks with Fractional Power Control and Optimum Combining”, 2016 IEEE

International Conference on Communications (ICC), submitted, 2015. [116]

Abstract: In this paper, mathematical frameworks for system-level analysis and op-

timization of uplink cellular networks with optimum combining receivers at multi-

antenna BSs are introduced. Fractional power control is taken into account as well. The

locations of the BSs are modeled as points of a homogeneous Poisson point process.

With the aid of stochastic geometry, coverage and rate are formulated in integral but

mathematically tractable expressions. Based on them, performance trends for small-

and large-scale multi-antenna BSs are discussed. Coverage and rate are shown to be

highly dependent on several parameters, including the path-loss exponent, the frac-

tional power control compensation factor and the maximum transmit power of the

mobile terminals. Based on the proposed frameworks, a heuristic algorithm for system-

level optimization is proposed and its effectiveness is demonstrated with the aid of

Monte Carlo simulations.

Best Paper Award The following is a list of awards during my Ph.D. candidature.

1. 2015 IEEE ComManTel Best Paper Award

P. Guan and M. Di Renzo, “ Stochastic Geometry Analysis of Uplink Cellular Networks

with Multi-Antenna Base Stations and Interference-Aware Fractional Power Control”,

2015 IEEE International Conference on Computing, Management and Telecommunica-

tions (ComManTel), to appear, Dec. 2015. [115]
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Chapter 2. A Mathematical Framework to the Computation of the Error Probability of
Downlink MIMO Cellular Networks by Using Stochastic Geometry

In this chapter, a mathematical framework to the computation of the error probability of down-

link cellular networks is introduced. It is based on the PPP-based abstraction for modeling

the spatial locations of the BSs and it exploits results from stochastic geometry for character-

izing the distribution of the other-cell interference. The framework is applicable to spatial

multiplexing MIMO systems with an arbitrary number of antennas at the transmitter (Nt )

and at the receiver (Nr ). If Nt = Nr = 1, the mathematical approach can be used for arbitrary

fading distributions on both useful and interfering links. If either Nt > 1 or Nr > 1, it can

be applied to arbitrary fading distributions on the useful link and to Rayleigh fading on the

interfering links. It is shown that the proposed approach leads to easy-to-compute integral

expressions, which reduce to closed-form formulas in some asymptotic regimes. Furthermore,

the framework is shown to provide insights for system design and optimization. The accuracy

of the mathematical analysis is substantiated through extensive Monte Carlo simulations for

various cellular network setups.

The present chapter is organized as follows. In Section 2.1, the related work is reviewed and

the major new contributions are summarized. In Section 2.2, the system model is introduced.

In Section 2.3, a general mathematical framework to the computation of the error probability

of downlink SISO cellular networks is proposed, which is applicable to arbitrary fading distri-

butions. In Section 2.4, the mathematical analysis is extended to downlink spatial multiplexing

MIMO cellular networks by assuming a Rayleigh fading channel model for the interfering

BSs. In Section 2.5, the performance trends of downlink SISO and MIMO cellular networks are

studied, as a function of system and channel parameters. In Section 2.6, numerical examples

substantiating the mathematical findings are shown. Finally, Section 2.7 concludes the present

chapter.
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Downlink MIMO Cellular Networks by Using Stochastic Geometry

2.1 Related Work and Contributions

As introduced in Section 1.2.1, notable examples on the stochastic geometry modeling and

analysis of downlink cellular networks include [6, 7] and [31] – [46]. These papers mentioned

above are focused on the computation of the coverage/outage probability and of the average

rate of a typical MT. To the best of the authors knowledge, on the other hand, there are no

mathematical frameworks to the analysis of the average error probability of PPP-based cellular

networks. In addition, with the exception of a few papers, e.g., [30], the mathematical analysis

is limited to single-antenna BSs and to single-antenna MTs. Compared to [30], in particular,

the present chapter has three main differences: i) the performance metrics are different. In

the present chapter, we focus our attention on the error probability, while the authors of [30]

study coverage probability and area spectral efficiency; ii) the downlink MIMO transmission

schemes are different. In the present chapter, we focus our attention on open-loop spatial

multiplexing, while the authors of [30] study closed-loop SDMA and SUBF. As discussed in

[30], several downlink MIMO transmission schemes exist in the literature, each one having its

own advantages and disadvantages. Open-loop spatial multiplexing MIMO is a practical case

study that it is usually considered for its mathematical tractability and practical applications;

and iii) the method of analysis is different. In [30], the authors exploit stochastic ordering for

performance analysis and comparison. On the other hand, other tools are used in the present

chapter, as detailed in what follows. The only exception to this status quo is [29], which was

submitted during my Ph.D. candidature. It considers, however, only single-antenna BSs and

single-antenna MTs.

Indeed, error probability, outage probability and ergodic capacity in the presence of a Poisson

field of interferers have been studied in the literature [20]–[28]. These frameworks, however,

are not applicable to cellular networks, since the BS-to-MT cell association is neglected. The

interferers are, in fact, assumed to be arbitrarily close to the typical MT, even closer than the

serving BS. Thus, they are applicable to, e.g., ad hoc, cognitive and underlay device-to-device

wireless networks, where the distance from the transmitter to the receiver is fixed and the

interferers can be closer to the receiver than the intended transmitter.

Motivated by these considerations, in the present chapter we introduce a mathematical

framework for computing the error probability of spatial multiplexing MIMO cellular networks,

by explicitly taking into account the cell association criterion based on the shortest BS-to-MT

distance. The framework is applicable to cellular networks where the locations of the BSs are

modeled according to a homogeneous PPP, the downlink channels experience independent

and identically distributed fading and an arbitrary number of antennas is available at the

BSs (Nt ) and at the MT (Nr ). If Nt = Nr = 1, the mathematical approach is applicable to

arbitrary fading distributions on both useful and interfering links. If either Nt > 1 or Nr > 1,

it can be applied to arbitrary fading distributions on the useful link and to Rayleigh fading

on the interfering links. The technical contribution of the present chapter is threefold: 1) we

provide an exact closed-form expression of the Characteristic Function (CF) of the aggregate

other-cell interference at the MT; 2) by using the Gil-Pelaez inversion theorem [54], we provide
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an exact closed-form expression of the average pairwise frame error probability, which is

averaged with respect to the fading distribution and to all BSs deployments. From the average

pairwise error probability, the average frame error probability is obtained by using the Nearest

Neighbor (NN) approximation [55, p. 138]; and 3) simplified but asymptotically accurate

mathematical frameworks are proposed, which are shown to provide insight on the achievable

error performance as a function of important system parameters. The proposed frameworks

are useful for better understanding and for simplifying the analysis of cellular networks, since

they do not require explicit generation and simulation of BSs locations using Monte Carlo

simulations.

2.2 System Model

We consider a bi-dimensional downlink cellular network deployment, where a probe/typical

multi-antenna MT is located at the origin and the multi-antenna BSs are modeled as points of

a homogeneous PPP (Φ) of density λ. A diagrammatic representation of a PPP-based cellular

network deployment is illustrated in Fig. 2.1. The number of antennas at each BS and at the

MT is denoted by Nt and Nr , respectively. Based on the properties of homogeneous PPPs,

there is no loss of generality in assuming the MT to be located at the origin [16]. The distance

from the i th BS to the MT is denoted by ri for i ∈Φ. The MT is assumed to be tagged to the

nearest BS, i.e., a shortest distance cell association criterion is assumed. The serving BS is

denoted by BS0, and its distance from the MT is denoted by r0. Owing to the random nature

of the PPP-based abstraction model, r0 is a RV with PDF equal to fr0 (ξ) = 2πλξexp
(−πλξ2

)
[6]. According to the Slivnyak-Mecke’s theorem [16, Vol. 1, Th. 1.4.5], the set of interfering BSs

i ∈Φ\{BS0} is still a homogeneous PPP outside the ball centered at the origin and of radius

r0, and it is denoted by Φ(\0). By definition of shortest distance cell association, ri > r0 for

i ∈ Φ(\0). A full frequency reuse scheme is assumed, i.e., all interfering BSs transmit in the

same frequency band as BS0. Upon completion of the cell association, it is assumed that the

interfering BSs transmit packets, in each channel use, with equal probability 0 ≤ p ≤ 1. These

probabilities represent independent activity factors of the interfering BSs. This model finds

application to the analysis of, e.g., slotted-ALOHA cellular networks [59] and it is particularly

suited in the context of a PPP-based abstraction modeling of cellular networks, since, due to

the independent thinning property of the PPPs [16, Proposition 1.3.5], the set of interfering

BSs Φ(\0) is still a PPP of density pλ.

Remark 2.1 As seen in Fig. 2.1, two BSs could be arbitrarily close to each other if using the

PPP-based abstraction to model the locations of BSs. It is indeed the fundamental limitation of

PPP-based abstraction model and it is especially not suitable for networks with repulsion, where

the locations of points are spatially correlated. However, it have been confirmed in the literature

that the PPP-based abstraction model is capable of accurately reproducing the main structural

characteristics of operational cellular networks [13, 14, 15]. In addition, in the later Section 2.6

of this chapter, we compare Monte Carlo simulations obtained by modeling the BS locations via
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grid-based and PPP-based abstraction models and we observe a reasonable agreement between

the two abstraction models by direct inspection of Fig. 2.4.
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Figure 2.1: Illustration of a PPP-based cellular network deployment. A normalized bi-dimensional area of
100×100 is shown, where the MT is located at the origin and the serving BS is denoted by BS0. The red dots denote
the BSs. The density of BSs is λ = 8×10−3. The blue lines denote the coverage regions, which form a Voronoi
tessellation and are computed based on the shortest distance cell association criterion.

In the depicted downlink MIMO cellular network model, the signal received at the MT0 can be

formulated as follows:

y0 =
√

E
/

Nt r−b
0 H0s0︸ ︷︷ ︸

x0

+
√

E
/

Nt
∑

i∈Φ(\0)

r−b
i Hi si︸ ︷︷ ︸

iagg(r0)

+n0 (2.1)

where y0 ∈ CNr ×1, x0 ∈ CNr ×1 is the useful signal transmitted by BS0, iagg(r0) ∈ CNr ×1 is the

aggregate other-cell interference and n0 ∈CNr ×1 is the Additive White Gaussian Noise (AWGN).

It is worth mentioning that the aggregate other-cell interference depends on r0, since all

the interfering BSs must lie outside a disk of radius r0 that is centered at the origin of the

bi-dimensional plane. This originates from the shortest distance cell association. More

specifically: i) E is the BSs transmit-energy per transmission, which is equally split among

the Nt available antennas; ii) s0 ∈MNt×1 ⊆CNt×1 is the vector of information symbols emitted

by BS0, where s(t )
0 =

∣∣∣s(t )
0

∣∣∣exp
{

j arg
{

s(t )
0

}}
∈M ⊆ C and E

{∣∣∣s(t )
0

∣∣∣2} = 1 for t = 1,2, . . . , Nt . M is

the set of modulated symbols and M= card{M}. The M symbols of M are denoted by μχ ∈C

for χ = 1,2, . . . ,M. For example, they can be the M symbols of either a Phase Shift Keying
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2.2. System Model

(PSK) or a Quadrature Amplitude Modulation (QAM) constellation diagram; iii) H0 ∈CNr ×Nt

is the channel matrix of the BS0-to-MT0 link, where H(r,t )
0 =

∣∣∣H(r,t )
0

∣∣∣exp
{

j arg
{

H(r,t )
0

}}
∈ C

and arg
{

H(r,t )
0

}
∼U (0,2π) for t = 1,2, . . . , Nt and r = 1,2, . . . , Nr . The distribution of

∣∣∣H(r,t )
0

∣∣∣ is

provided in Section 2.3 and Section 2.4; iv) b > 1 denotes the amplitude path-loss exponent,

which is the same for useful and interfering links; and v) n0 ∈CNr ×1, where n(r)
0 ∼C N (0,N0)

are independent and identically distributed (i.i.d.) RVs for r = 1,2, . . . , Nr . A similar notation is

adopted for all the interfering channels of iagg(·). As for the other-cell interference model, (2.1)

implicitly assumes the so-called isotropic scenario [24, Sec. II-B], where the Nr antennas at

the MT are omnidirectional and are subject to the interference generated by all the interferers

i ∈Φ(\0). Also, the antennas at the transmitter and receiver are assumed to be co-located, which

implies that the transmission distances r0 and ri for i ∈Φ(\0) are independent of the antennas’

inter-distances. The downlink channels are i.i.d. with mean square value E

{∣∣∣H(r,t )
0

∣∣∣2} =

E

{∣∣∣H(r,t )
i

∣∣∣2}=Ω for t = 1,2, . . . , Nt , r = 1,2, . . . , Nr and i ∈Φ(\0).

At the MT, an interference-unaware Maximum-Likelihood (ML)-optimum demodulator is

considered. It is assumed to have perfect Channel State Information (CSI) of the BS0-to-MT

link (i.e., H0 is known), while it is assumed to ignore other-cell interference. Although this

assumption inherently limits the achievable performance, it provides a reasonable trade-off

between performance and complexity. As such, it is widely used in the literature [6], [7],

[34]–[30]. The generalization of the analysis to interference-aware demodulators is postponed

to future research.

In mathematical terms, the interference-unaware ML-optimum demodulator can be formu-

lated as [60, Ch. 7]:

ŝ0 = argmin
s̃0∈MNt ×1

{
Λ (s̃0) =

∥∥∥∥y0 −
√

E
/

Nt r−b
0 H0s̃0

∥∥∥∥2}
(2.2)

By inserting (2.1) in (2.2) and with the aid of some algebra, the decision metric Λ (·) can be

formulated as follows:

Λ (s̃0) ∝ r−2b
0

E

Nt

Nr∑
r=1

∣∣∣∣∣ Nt∑
t=1

H(r,t )
0 Δ(t )

0

∣∣∣∣∣
2

+2r−b
0

√
E

Nt
Re

{
Nr∑

r=1
v(r ) (r0)

Nt∑
t=1

(
H(r,t )

0 Δ(t )
0

)H
}

= r−2b
0

(
E
/

Nt
)

U+2r−b
0

√
E
/

Nt Re{I(r0)}+2r−b
0

√
E
/

Nt Re{N}

(2.3)
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where Δ0 = s0 − s̃0 ∈CNt×1, v (r0) = iagg (r0)+n0 ∈CNr ×1 and:

U =
Nr∑

r=1

∣∣∣∣∣ Nt∑
t=1

H(r,t )
0 Δ(t )

0

∣∣∣∣∣
2

I(r0) =
Nr∑

r=1
i(r )
agg (r0)

Nt∑
t=1

(
H(r,t )

0 Δ(t )
0

)H

N =
Nr∑

r=1
n(r)

0

Nt∑
t=1

(
H(r,t)

0 Δ(t)
0

)H

(2.4)

In the next sections, the achievable error probability performance of the demodulator in (2.2)

is studied.

2.3 Downlink SISO Cellular Networks

Let us consider a SISO cellular network, i.e., Nt = Nr = 1. The decision metric in (2.3) reduces

to:

Λ (s̃0) ∝ r−2b
0 E |Δ0|2 |h0|2 +2r−b

0

�
ERe

{
v (r0)hH

0 ΔH
0

}
(2.5)

where, for simplicity, the following notation is introduced: i) H(1,1)
0 = h0; ii) H(1,1)

i = hi ; iii)

Δ0 = s(1)
0 − s̃(1)

0 = s0 − s̃0; iv) s(1)
i = si ; v) n(1)

0 = n; vi) i(1)
agg (r0) = iagg (r0) =�

E
∑

i∈Φ(\0)
r−b

i hi si ; and

vii) v(1) (r0) = v (r0) = iagg (r0)+n. The fading envelopes |h0| and |hi | for i ∈Φ(\0) are assumed

to be i.i.d. and to follow a generic distribution with E
{|h0|2

}= E
{|hi |2

}=Ω. As an example,

Gamma [60, Sec. 2.2.1.4] and composite Gamma/Log-Normal [60, Sec. Sec. 2.2.3.1] fading

channels are explicitly analyzed.

In this section, we provide a mathematical framework for computing the Average Symbol

Error Probability (ASEP) of the demodulator in (2.5). The ASEP is defined as the symbol error

probability averaged with respect to the distribution of the fading channels and of the spatial

locations of the BSs. The proposed approach for computing the ASEP consists of four steps:

1. First, the statistical distribution of iagg (·) is studied and a closed-form expression of its

CF conditioned upon r0 is derived with the aid of stochastic geometry (Section 2.3.1);

2. Then, the Pairwise Error Probability (PEP) conditioned upon the fading envelope (h0)

and the transmission distance (r0) of BS0 is computed with the aid of the Gil-Pelaez

inversion theorem (Section 2.3.2);

3. Subsequently, the Average PEP (APEP) is obtained by removing the conditioning with

respect to h0 and r0. The distribution of r0 is computed by using the void probability

theorem of PPPs [16, Th. 1.1.5] (Section 2.3.2);

4. Finally, the ASEP is computed from the APEP by using the NN approximation (Section
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2.3.5).

As for the physical meaning of averaging the error probability with respect to the spatial

positions of the BSs, the reader is referred to [24] for details.

2.3.1 Characteristic Function of the Other-Cell Interference

In this section, the CF of iagg (·) conditioned upon r0 is computed in closed-form for arbitrary

fading models. The main result is summarized in Theorem 2.1 and Corollary 2.1.

Theorem 2.1 Let iagg (r0) =�
E
∑

i∈Φ(\0)
r−b

i hi si . By conditioning upon r0, its CF can be formu-

lated as follows:

ψiagg (ω;r0) =ψiagg (|ω| ;r0) = exp
{
−λπr 2

0 T
(
|ω|2 r−2b

0 E
)}

(2.6)

where T(x) = pΥ (x)−p and:

Υ (x) = 1

M

M∑
χ=1

+∞∑
q=0

(
−1

4

)q 1

q !

(−1
/

b
)

q(
1−1

/
b
)

q (1)q

(
x
∣∣μχ

∣∣2)q
E
{|hi |2q}

= 1

M

M∑
χ=1

E|hi |2
{

1F2

(
− 1

b
;1,1− 1

b
;−x

4

∣∣μχ

∣∣2 |hi |2
)} (2.7)

Proof: See Appendix 2.8.1. �

Corollary 2.1 Let iagg (r0) = �
E
∑

i∈Φ(\0)
r−b

i hi si . Let a constant-envelope modulation be used,

i.e., |si |2 = 1 for i ∈ ψ(\0). By conditioning upon r0, its CF is equal to ψiagg (·; ·) in (2.6) with

T(x) = pΥ (x)−p and:

Υ (x) =
+∞∑
q=0

(
−1

4

)q 1

q !

(−1
/

b
)

q(
1−1

/
b
)

q (1)q
xqE

{|hi |2q}
= E|hi |2

{
1F2

(
− 1

b
;1,1− 1

b
;−x

4
|hi |2

)} (2.8)

Proof: It follows from (2.6) with
∣∣μχ

∣∣2 = 1 for χ= 1,2, . . . ,M. This concludes the proof. �

Remark 2.2 A closed-form expression of the CF of the aggregate other-cell interference of SISO

cellular networks is available in [61, Sec. III-C] as well. Similar to [61, Sec. III-C], the mathe-

matical formulation in (2.6) is obtained with the aid of stochastic geometry. Several differences,

however, between [61, Sec. III-C] and (2.6) exist. The most important of them is that (2.6)
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provides an exact and compact representation of the CF of the aggregate other-cell interference,

while the mathematical development in [61, Sec. III-C] is based on a number of approximations,

which are aimed to show differences and similarities with the Middleton Class A distribution.

As such, [61, Sec. III-C] and (2.6) are different and may serve for different purposes. �

The results in Theorem 2.1 and Corollary 2.1 are general, since they are applicable to arbitrary

fading distributions. However, the expectation with respect to the fading square envelope

|hi |2 of the generic interfering channel needs to be computed in (2.7) and (2.8). In Proposition

2.1 and Proposition 2.2, closed-form expressions of Υ (·) for two channel models usually

used for performance analysis, i.e., Gamma [60, Sec. 2.2.1.4] and composite Gamma/Log-

Normal [60, Sec. Sec. 2.2.3.1] distributions, are given. The propositions are formulated

for arbitrary modulation schemes. From (2.8), they can be readily simplified for constant-

envelope modulations.

Proposition 2.1 Let gi = |hi |2 follow a Gamma distribution with parameters (m,Ω), which we

denote as gi ∼ Gamma(m,Ω) [60, Sec. 2.2.1.4]. Then, Υ (·) in (2.7) has closed-form expression

as follows:

Υ (x) = 1

M

M∑
χ=1

2F2

(
− 1

b
,m;1,1− 1

b
;−1

4

Ω

m

∣∣μχ

∣∣2 x

)
(2.9)

Proof: From [60, Eq. 2.23], we obtain E|hi |
{|hi |2q}=ΩqΓ

(
m +q

)/(
mqΓ (m)

)
. The proof follows

by using the series representation of the generalized hypergeometric function [57, Ch. 5, Eq. 2].

This concludes the proof. �

Proposition 2.2 Let gi = |hi |2 follow a Gamma distribution by conditioning upon its mean

power, which follows a Log-Normal distribution, which we denote as gi ∼ Gamma/LogN(m,η,σ2)

[60, Sec. 2.2.3.1]. Then, Υ (·) in (2.7) has closed-form approximation as follows:

Υ (x) ≈ 1

M

M∑
χ=1

1�
π

NGHQ∑
k=1

wk 2F2

(
− 1

b
,m;1,1− 1

b
;−1

4

τ̃k

m

∣∣μχ

∣∣2 x

)
(2.10)

where τ̃k = 10
(�

2στk+η
)/

10, and wk and τk for k = 1,2, . . . , NGHQ are weights and abscissas of the

Gauss-Hermite quadrature rule [56, Eq. 25.4.46], respectively.

Proof: It follows by using the approximation of the Log-Normal distribution based on the Gauss-

Hermite quadrature formula [7, Secs. D, E]. In particular, by applying the quadrature formula

to [60, Eq. 2.57] and using [60, Eq. 2.23] we obtain E|hi |
{|hi |2q} = Γ(m+q)

(mqΓ(m))
�
π

NGHQ∑
k=1

wk τ̃
q
k . The

rest follows by using the series representation of the generalized hypergeometric function [57,

Ch. 5, Eq. 2]. This concludes the proof. �
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Figure 2.2: Illustration of the accuracy of the GHQ closed-form approximation in (2.10). The following parame-
ters are considered: m = 2; σ= 6dB; M = 16 QAM; b = 3.5 (top) and b = 1.5 (bottom); and η is chosen as described
in Remark 2.3. For consistency, similar parameters are considered in Section 2.6.

In Fig. 2.2, the accuracy of the closed-form approximation in (2.10) is studied, as a function of

the number of points NGHQ. The “exact” curves are obtained by numerically computing the

two-fold integral related to the expectation in (2.7), which originates from the distribution of

gi ∼ Gamma/LogN
(
m,η,σ2

)
[60, Sec. 2.2.3.1]. The figure shows a good agreement between

GHQ approximation and exact results. In particular, the accuracy increases as NGHQ increases.

From the figure, we note that NGHQ = 3 is a reasonable choice to get a good accuracy for the

entire range of values of the function and to keep the computational complexity at a low level.

For this reason, NGHQ = 3 is used in Section 2.6. It is worth noting that the hypergeometric

function in (2.10) is computed by using the approximation discussed in Section 2.3.6.

Remark 2.3 In Section 2.2, it is assumed that E
{

gi
}= E

{|hi |2
}=Ω. As for the composite fading

model of Proposition 2.2, this implies η = κ−1 ln(Ω)− (1/2)κσ2 with κ = 10−1 ln(10) [60, Eq.

2.59]. �

Remark 2.4 In the present chapter, shadowing correlation is neglected for simplicity. However,

it can be readily included in the system model by using the same approach as in [7, Sec. III-F].

In particular, the expectation in (2.7) can be computed similar to (2.10) by using the two-step

approach in [7, Sec. III-F] and [7, Eq. 22]. The price to be paid is an increase of the computational

complexity, since two GHQ summations need to be computed. The approach is applicable to

scenarios with equi-correlated shadowing, as discussed and motivated in [7, Sec. III-F]. �

Remark 2.5 In Proposition 2.2, it is assumed that a cell association criterion based on the

shortest BS-to-MT distance is used even in the presence of Log-Normal shadowing. Accordingly,
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the CF of the aggregate other-cell interference is averaged with respect to the shadowing distri-

bution. In the presence of shadowing, however, the cell association criterion may be modified

by taking it into account. In this case, a cell association criterion based on the best received

power may be used. For example, this is considered in [62] and [63]. It is interesting to note that

the mathematical framework proposed in this section is applicable to this case study as well,

by capitalizing on the results available in [62, Theorem 2] and [63, Lemma 1]. In particular,

the proposed framework still holds by simply introducing a scaling factor in the density of BSs,

which depends on the fractional moments of the shadowing distribution. This approach holds

if the shadowing is assumed to be i.i.d. among the interfering links. �

Remark 2.6 Closed-form expressions of the CF of iagg (·) can be computed for a general class of

fading distributions with the aid of the Meijer G-function. For a wide class of fading models, the

PDF of gi = |hi |2 can be formulated as fgi (ξ) = C ξαGm̃,ñ
p̃,q̃

(
Dξβ/γ

∣∣∣∣∣
(
ap̃
)(

bq̃
) ) [64]. With the aid

of [58, Eq. 8.4.48.1], the expectation in (2.7) and (2.8) can be expressed in terms of the Meijer

G-function by applying the Mellin-Barnes theorem [58, Eq. 2.24.1.1]. �

2.3.2 Average Pairwise Error Probability: Exact Analysis

By definition, the APEP is the probability that the actual transmitted symbol s0 is decoded as

ŝ0 = s̄0 �= s0, by assuming that s0 and s̄0 are the only two symbols of the constellation diagram.

From (2.5), this occurs when Λ (s̃0 = s̄0) <Λ (s̃0 = s0). Since Λ (s̃0 = s0) = 0 from (2.5), the APEP

reduces to the computation of APEP(|Δ0|) = Pr{Λ (s̃0 = s̄0) < 0}. We start by computing the

APEP conditioned upon |h0| and r0, which is denoted by PEP(|Δ0| ; |h0| ,r0) (see Lemma 2.1 in

Appendix 2.8.2). Hence, the APEP is APEP(|Δ0|) = E|h0|,r0 {PEP(|Δ0| ; |h0|,r0)}. From (2.5), the

APEP can be formulated as summarized in Theorem 2.2.

Theorem 2.2 Let the demodulator in (2.5). Let SNR = E
/
N0 denote the Signal-to-Noise-

Ratio (SNR). The APEP can be formulated as APEP(|Δ0|) = Pr{Λ (s̃0) < 0} = APEPN (|Δ0|) +
APEPNI (|Δ0|), where APEPN (·) and APEPNI (·) are given in (2.11):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

APEPN (|Δ0|) = 1

2
�
π

b |Δ0|
�
SNR

+∞∫
0

x−(b+1) exp
(−πλx2)QN (x; |Δ0| ,SNR,b)d x

APEPNI (|Δ0|) = 1

2π

+∞∫
0

+∞∫
0

e−y

x
exp

{
− x yb

4(πλ)bSN R

}[
1−exp

{−yT(x)
}]

QNI (x; |Δ0|)d xd y

(2.11)

and the following short-hands have been introduced:⎧⎨⎩QN (x; |Δ0| ,SNR,b) = E|h0|
{
|h0|exp

{
− (1/4)SNR |Δ0|2 |h0|2 x−2b

}}
QNI (x; |Δ0|) = E|h0|

{
sin
(
(1/2) |Δ0| |h0|x1/2)} (2.12)
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Proof: See Appendix 2.8.3. �

Theorem 2.2 provides an exact mathematical formulation of the APEP, which is applicable to

arbitrary distributions of the fading envelope |h0|. The expectations in (2.12) can be computed

in closed-form for various fading models. In Proposition 2.3 and Proposition 2.4, closed-

form expressions of QN (·; ·, ·, ·) and QNI (·; ·, ·) are provided for Gamma [60, Sec. 2.2.1.4] and

Gamma/Log-Normal [60, Sec. Sec. 2.2.3.1] channels.

Proposition 2.3 Let g0 = |h0|2 ∼ Gamma(m,Ω) [60, Sec. 2.2.1.4]. Let K1 ≥ 0 and K2 ≥ 0 be

two non-negative constants. Let the expectations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I1 (K1) = Eg0

{�
g0 exp

{−K1g0
}}

= mm (ΩmΓ (m)
)−1

Γ (m +1/2)(K1 +m/Ω)−(m+1/2)

I2 (K2) = Eg0

{
sin
(
K2

�
g0
)}

=�
Ω/mΓ (m +1/2)× (Γ (m))−1 K2 × 1F1

(
m +1/2;3/2,− (4m)−1ΩK 2

2

)
(2.13)

Then, QN (x; |Δ0| ,SNR,b) =I1
(
(1/4)SNR |Δ0|2 x−2b

)
and QNI (x; |Δ0|) =I2

(
(1/2) |Δ0|x1/2

)
.

Proof: I1 (·) is computed with the aid of [65, Eq. 3.381.4] and I2 (·) is computed with the

aid of [65, Eq. 3.952.7] and of the Kummer’s transformation 1F1 (1−m;3/2, x)exp{−x} =
1F1 (m +1/2;3/2,−x). The proof follows by direct inspection of I1 (·), I2 (·) and (2.12). This

concludes the proof. �

Proposition 2.4 Let g0 = |h0|2 ∼ Gamma/LogN
(
m,η,σ2

)
[60, Sec. 2.2.3.1]. Let K1 ≥ 0 and

K2 ≥ 0 be two non-negative constants. Let the expectations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 (K1) = Eg0

{�
g0 exp

{−K1g0
}}

≈ mm (Γ (m))−1 ×Γ

(
m + 1

2

)
1

2
�
π

NGHQ∑
k=1

wk τ̃
−m
k

(
K1 +m

/
τ̃k
)−(m+1/2)

I2 (K2) = Eg0

{
sin
(
K2

�
g0
)}

≈ Γ (m +1/2)(Γ (m))−1 × K2�
π

NGHQ∑
k=1

wk

√
τ̃k

m
1F1

(
m +1/2;3/2,− τ̃kK 2

2

4m

)
(2.14)

Then, QN (x; |Δ0| ,SNR,b) =I1
(
(1/4)SNR |Δ0|2 x−2b

)
and QNI (x; |Δ0|) =I2

(
(1/2) |Δ0|x1/2

)
.

Proof: Consider the approximation of the Log-Normal distribution based on the Gauss-Hermite

quadrature formula [7, Secs. D, E], i.e., fg0 (ξ) ≈ mm

Γ(m)ξ
m−1 1�

π

NGHQ∑
k=1

wk τ̃
−m
k exp

{−mξτ̃−1
k

}
. The

proof follows by using mathematical steps similar to the proof of Proposition 2.3. This concludes

the proof. �
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Remark 2.7 The mathematical framework in [111] is a special case of Theorem 2.2 and Propo-

sition 2.3 for m = 1 (Rayleigh fading). �

2.3.3 Average Pairwise Error Probability: Asymptotic Analysis

In this section, we provide simplified mathematical frameworks in two limiting operating

conditions: 1) noise-limited, i.e., SNR→ 0, and 2) interference-limited, i.e., SNR→+∞, cellular

networks, where SNR= E
/
N0. As discussed in [7, Sec. V-g], typical cellular networks operate

in the interference-limited regime.

Corollary 2.2 Let a noise-limited cellular network, limSNR→0{APEP(|Δ0|)} = APEP(0)
N (|Δ0|) =

APEPN(|Δ0|). Let an interference-limited network, limSNR→+∞{APEP(|Δ0|)} = APEP(∞)
NI (|Δ0|),

where:

APEP(∞)
NI (|Δ0|) = lim

SNR→+∞
{APEPNI (|Δ0|)} = 1

2π

+∞∫
0

1

x

T(x)

1+T(x)
QNI (x; |Δ0| ,b)d x (2.15)

Proof: If follows from (2.11) and from the notable integral
+∞∫
0

exp
{−y

}(
1−exp

{−K y
})

d y =
1− (K +1)−1 for K > 0. This concludes the proof. �

2.3.4 Average Pairwise Error Probability: Piecewise Single-Integral Bounds

The exact expression of the APEP in (2.11) requires the computation of a single and a two-fold

integrals for obtaining APEPN (·) and APEPNI (·), respectively. On the other hand, APEP(0)
N (·)

and APEP(∞)
NI (·) are expressed in closed- and single-integral forms, respectively. Thus, they are

simpler to be computed. In this section, we capitalize on the simple mathematical formula-

tions of Corollary 2.2 by providing an Upper-Bound (UB) and a Lower-Bound (LB) of the APEP.

These bounds can serve as an easy-to-compute mathematical formulation for estimating the

performance of cellular networks. They are summarized in Proposition 2.5.

Proposition 2.5 Let the APEPs in Theorem 2.2 and Corollary 2.2. The bounds as follows hold:

APEP(|Δ0|)�APEP(LB) (|Δ0|) = max
{

APEP(0)
N (|Δ0|) ,APEP(∞)

NI (|Δ0|)
}

(2.16)

APEP(|Δ0|) ≤ APEP(UB) (|Δ0|)

=
⎧⎨⎩APEP(|Δ0|)|E=0 = 1/2 if APEP(0)

N (|Δ0|)+APEP(∞)
NI (|Δ0|) ≥ APEP(|Δ0|)|E=0

APEP(0)
N (|Δ0|)+APEP(∞)

NI (|Δ0|) if APEP(0)
N (|Δ0|)+APEP(∞)

NI (|Δ0|) < APEP(|Δ0|)|E=0

(2.17)

Proof: See Appendix 2.8.4. �
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2.3.5 Nearest Neighbor Approximation of the Average Symbol Error Probability

From the APEP in Theorem 2.2, the ASEP can be obtained by using the NN approximation [55, p.

138]. In this paper, we propose the NN approximation for computing the ASEP from the APEP

because of its simplicity and accuracy. The advantage is, in fact, that the ASEP is obtained by

computing a single APEP for every symbol (μχ for χ= 1,2, . . . ,M) of the constellation diagram.

By assuming equiprobable transmitted symbols, the NN approximation of the ASEP can be

formulated as follows:

ASEP ≈ 1

M

M∑
χ=1

N (χ)
Δmin

APEP
(∣∣∣Δ(χ)

min

∣∣∣) (2.18)

where: i)
∣∣∣Δ(χ)

min

∣∣∣ = minμχ̃∈M
{∣∣μχ̃−μχ

∣∣ ,μχ̃ ∈M, χ̃ �=χ
}

is the minimum Euclidean distance

among all pairs
(
μχ̃,μχ

)
of symbols of the constellation diagram for μχ̃ �=χ ∈M and ii) N (χ)

Δmin
is

the number of nearest neighbors of μχ, i.e., the number of points of the constellation diagram

whose Euclidean distance from μχ is equal to
∣∣∣Δ(χ)

min

∣∣∣.
For some constellation diagrams, we may have

∣∣∣Δ(χ)
min

∣∣∣= |Δmin|, which is independent of μχ.

In this case, (2.18) reduces to ASEP ≈ N (avg)
Δmin

APEP(|Δmin|), where N (avg)
Δmin

= (1/M) M∑
χ=1

N (χ)
Δmin

is

the average number of nearest neighbors of the constellation diagram. For example, |Δmin| =
2sin

(
π
/
M
)

with N (avg)
Δmin

= 1 if M= 2 and N (avg)
Δmin

= 2 if M> 2 for PSK modulation. If the standard

square QAM with M= 16 is considered, we have |Δmin| = 2
/�

10 and N (avg)
Δmin

= 3. Similar results

apply for different values of M.

Remark 2.8 Another usual approach for estimating the ASEP from the APEP is the union-

bound method [55], [60]. Our numerical results, however, have shown that the union-bound is

less accurate than the NN approximation. This is due to the other-cell interference whose distri-

bution significantly deviates from that of a Gaussian RV. The accuracy of the NN approximation

is analyzed in Section 2.6. �

2.3.6 On the Computation of Hypergeometric Functions: The Need for Approxi-
mations

In [7, Sec. III-B], it is shown that the calculation of some widely used special functions may

lead to numerical instabilities when applied to the analysis of cellular networks based on the

PPP-based abstraction model. The reason is related to the random spatial locations of the

BSs and to the random distance of MT and serving BS (BS0), which require the integration of

the special functions over the whole positive real axis. Our analysis has shown that similar

problems may arise when using the framework of Theorem 2.2. Similar to [7, Sec. III-B], the

numerical accuracy depends on the mathematical software package being used. In order to

avoid these issues, in this section we provide some efficient asymptotic approximations to the
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computation of some special functions that may arise when using Theorem 2.2. The rationale

behind the proposed approximations is similar to [7, Sec. III-B].

As an illustrative example, which is relevant to the present chapter, let us consider the mathe-

matical frameworks for Gamma and Gamma/Log-Normal fading. From Propositions 2.1-2.4,

it is apparent that two special functions need to be computed: F11 (x) = 1F1
(
α1;β1,−K x

)
and F22 (x) = 2F2

(
α1,α2;β1,β2;−K x

)
for K > 0 and x ≥ 0. Our empirical trials based on

commercially available mathematical software packages have shown that either numerical

inaccuracies or long computational times can be expected if K x � 1. For example, this arises

when computing F22 (·) for α1 =−1
/

b, α2 = m, β2 = 1−1
/

b, e.g., in (2.9), and either b or m are

non-integer numbers. To circumvent this problem, the following asymptotic approximations

are proposed:

F11 (x)
(a)≈
⎧⎨⎩1F1

(
α1;β1,−K x

)
if K x <ℵ∞

Γ(β1)
Γ(β1−α1) (K x)−α1 + Γ(β1)

Γ(α1) exp{−K x} (−K x)α1−β1 if K x ≥ℵ∞
(2.19)

F22 (x)
(b)≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2F2
(
α1,α2;β1,β2;−K x

)
if K x <ℵ∞

Γ
(
β1
)
Γ
(
β2
)
Γ (α2 −α1)

Γ (α2)Γ
(
β1 −α1

)
Γ
(
β2 −α1

) (K x)−α1

+ Γ
(
β1
)
Γ
(
β2
)
Γ (α1 −α2)

Γ (α1)Γ
(
β1 −α2

)
Γ
(
β2 −α2

) (K x)−α2

+ Γ
(
β1
)
Γ
(
β2
)

Γ (α1)Γ (α2)
exp{−K x} (−K x)α1+α2−β1−β2

if K x ≥ℵ∞
(2.20)

where (a) and (b) follow from [71] and [72], respectively.

The key parameter for the efficient computation of F11 (·) and F22 (·) is ℵ∞, which is a positive

constant � 1. The choice of ℵ∞ depends on the mathematical software package being used for

computing the generalized hypergeometric functions. In practice, ℵ∞ is the largest argument

of the hypergeometric functions for which they can be efficiently computed. As an indication,

the numerical results shown in Section 2.6 are obtained by setting ℵ∞ = 100. As an example,

Fig. 2.3 shows the accuracy of the approximations in (2.19) and (2.20) for ℵ∞ = 100. It is

worth mentioning that Fig. 2.3 is obtained by considering a set of parameters for which

1F1
(
α1;β1,−K x

)
and 2F2

(
α1,α2;β1,β2;−K x

)
can be computed without resorting to the

approximations in (2.19) and (2.20), otherwise it would have not been possible to demonstrate

the accuracy of the approximations. The numerical results shown in Section 2.6 confirm the

accuracy of the proposed approximations for those parameters for which 1F1
(
α1;β1,−K x

)
and 2F2

(
α1,α2;β1,β2;−K x

)
cannot be computed as well.
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Figure 2.3: Accuracy of the approximations in (2.19) (top) and (2.20) (bottom). The parameters setup is: b = 3;
m = 2; K = 1, where (top) α1 = m +1/2 and β1 = 3/2; (bottom) α1 =−1/b, β1 = 1, α2 = m and β2 = 1−1/b. For
consistency, similar parameters are considered in Section 2.6.

2.4 Downlink MIMO Cellular Networks

In this section, the error probability of MIMO cellular networks is studied by assuming an

arbitrary number of antennas at the BSs, i.e., Nt , and at the MT, i.e., Nr . The mathematical

analysis is based on the demodulator in (2.3). For mathematical tractability, i.i.d. Rayleigh

fading on the interfering links is considered, i.e.,
∣∣∣H(r,t )

i

∣∣∣∼ Gamma(1,Ω) for t = 1,2, . . . , Nt , r =
1,2, . . . , Nr and i ∈Φ(\0). On the other hand, the framework is general enough to be applicable

to arbitrary fading models on the BS0-to-MT link. As an example, explicit expressions of the

error probability are provided under the assumption that it is Rayleigh distributed too, i.e.,∣∣∣H(r,t )
0

∣∣∣ ∼ Gamma(1,Ω) for t = 1,2, . . . , Nt and r = 1,2, . . . , Nr . The mathematical derivation

shows that this latter scenario can be studied by capitalizing on the mathematical framework

developed in Section 2.3 for SISO cellular networks and for transmission over Gamma fading.

2.4.1 Characteristic Function of the Other-Cell Interference at the Output of the
Demodulator

In this section, we provide a closed-form expression of the CF of I(·) in (2.4), which is the

other-cell interference at the output of the demodulator. The main result is given in Theorem

2.3 and Corollary 2.3.
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Theorem 2.3 Let I(r0) =
Nr∑

r=1
i(r )
agg (r0)

Nt∑
t=1

(
H(r,t )

0 Δ(t )
0

)H
. Let the downlink channels Hi for i ∈Φ(\0)

be i.i.d. Rayleigh distributed. By conditioning upon r0 and upon U given in (2.4), the CF of I(·)
can be formulated as follows:

ψI (ω;r0,U) =ψI (|ω| ;r0,U) = exp
{
−λπr 2

0 T̄
(
|ω|2 r−2b

0 EU
)}

(2.21)

where T̄ (x) = pῩ (x)−p and:

Ῡ (x) = Esi

{+∞∑
q=0

(
−1

4

)q 1

q !

(−1
/

b
)

q(
1−1

/
b
)

q

(‖si‖2

Nt

)q

(Ωx)q

}

= Esi

{
1F1

(
− 1

b
;1− 1

b
;−x

4

‖si‖2

Nt
Ω

)} (2.22)

where Esi {·} denotes the expectation computed with respect to the Nt -tuple of information

symbols si ∈ CNt×1. Let g (·) be a generic function and K > 0 be a positive constant, this

expectation can be formulated as follows:

Esi

{
g

(
K

Nt
‖si‖2

)}
= 1

MNt

M∑
χ1=1

M∑
χ2=1

· · ·
M∑

χNt =1
g

(
K

Nt

Nt∑
t=1

∣∣μχt

∣∣2) (2.23)

Proof: See Appendix 2.8.5. �

Corollary 2.3 Let I(r0) =
Nr∑

r=1
i(r )
agg (r0)

Nt∑
t=1

(
H(r,t )

0 Δ(t )
0

)H
. Let the downlink channels Hi for i ∈Φ(\0)

be i.i.d. Rayleigh distributed. Let a constant-envelope modulation be used, i.e.,
∣∣∣s(t )

i

∣∣∣2 = 1 for

t = 1,2, . . . , Nt and i ∈Φ(\0). By conditioning upon r0 and U in (2.4), the CF of I(·) is ψI (·; ·, ·) in

(2.21) with T̄ (x) = pῩ (x)−p and:

Ῡ (x) =
+∞∑
q=0

(
−1

4

)q 1

q !

(−1
/

b
)

q(
1−1

/
b
)

q

(Ωx)q = 1F1

(
− 1

b
;1− 1

b
;−Ω

4
x

)
(2.24)

Proof: It follows from (2.23) and Esi

{
g
((

K
/

Nt
)‖si‖2

)}= g (K ) for constant-envelope modu-

lations. This concludes the proof. �

Remark 2.9 By direct inspection, Theorem 2.3 with Nt = Nr = 1 reduces to Theorem 2.1 with

Υ (·) in (2.9) for m = 1, i.e., Rayleigh fading. Likewise, Theorem 2.3 with Nt = Nr = 1 reduces

to [111]. As far as the number of antennas Nt and Nr is concerned, Theorem 2.1 is a special

case of Theorem 2.3. As far as the channel model is concerned, on the other hand, Theorem 2.1

is more general than Theorem 2.3. In fact, Theorem 2.3 is applicable only to Rayleigh fading,

while Theorem 2.1 is applicable to general fading distributions. �
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2.4.2 Average Pairwise Frame Error Probability: Exact Analysis

In this section, we compute the error probability of the demodulator in (2.3) by capitalizing

on the closed-form expression of the CF of the aggregate other-cell interference at the demod-

ulator output. More specifically, in this section we are interested in computing the Average

Pairwise Frame Error Probability (APEP(F)), which is defined as the probability that the actual

transmitted vector s0 is decoded as ŝ0 = s̄0 �= s0, by assuming that s0 and s̄0 are the only two

information vectors possibly being transmitted. The rationale behind this definition, which is

widely adopted in the literature [74], is that the typical MT is interested in decoding the entire

information vector s0. Thus, an error occurs even if just one symbol s(t )
0 for t = 1,2, . . . , Nt is not

decoded correctly. Similar to the SISO cellular network setup, the APEP(F) can be formulated

as APEP(F) (Δ0) = EH0,r0

{
PEP(F) (Δ0;H0,r0)

}
. From (2.3), the APEP(F) is summarized in Theorem

2.4.

Theorem 2.4 Let the demodulator in (2.3) and (2.4). Let SNR= E
/
N0 and U defined in (2.4).

Then, APEP(F) can be formulated as APEP(F) (Δ0) = Pr{Λ (s̃0) < 0} = APEP(F)
N (Δ0)+APEP(F)

NI (Δ0),

where APEP(F)
N (·) and APEP(F)

NI (·) are formulated in (2.25), shown at the bottom of the next page,

and:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

APEP(F)
N (Δ0) = 1

2
�
π

b

√
SNR

Nt

+∞∫
0

x−(b+1) exp
(−πλx2)Q(F)

N

(
x;Δ0,

SNR

Nt
,b

)
d x

APEP(F)
NI (Δ0) = 1

2π

+∞∫
0

+∞∫
0

e−y

x
exp

{
−1

4

Nt x yb

(πλ)bSN R

}[
1−exp

{
−yT(Nt x)

}]
Q(F)

NI (x;Δ0)d xd y

(2.25)

⎧⎨⎩Q(F)
N

(
x;Δ0,SNR

/
Nt ,b

)= EU

{�
Uexp

{
− (1/4)

(
SNR

/
Nt
)

Ux−2b
}}

Q(F)
NI (x;Δ0) = EU

{
sin
(
(1/2)

�
Ux1/2

)} (2.26)

Proof: See Appendix 2.8.6. �

Remark 2.10 Theorem 2.3 and Theorem 2.4 hold for arbitrary fading distributions on the

BS0-to-MT link, since they are conditioned upon the RV U that depends only on H0. �

As mentioned in Remark 2.10, Theorem 2.4 holds for any H0. As an example, Proposition 2.6

provides a closed-form expression of Q(F)
N (·; ·, ·, ·) and Q(F)

NI (·; ·) when the BS0-to-MT links are

i.i.d. Rayleigh distributed.

Proposition 2.6 Let Q(F)
N (·; ·, ·, ·) and Q(F)

NI (·; ·) in (2.26). Let
∣∣∣H(r,t )

0

∣∣∣ ∼ Gamma(1,Ω) for t =
1,2, . . . , Nt and r = 1,2, . . . , Nr . Then, Q(F)

N

(
x;Δ0,SNR

/
Nt ,b

)= Ī1
(
(1/4)

(
SNR

/
Nt
)

x−2b ;‖Δ0‖2
)
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and Q(F)
NI (x;Δ0) = Ī2

(
(1/2) x1/2;‖Δ0‖2

)
, where, for arbitrary K1 > 0 and K2 > 0 positive con-

stants, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ī1
(
K1;‖Δ0‖2)= EU

{�
Uexp{−K1U}

}
= N Nr

r

[(
ΩNr ‖Δ0‖2)Nr

Γ (Nr )
]−1

Γ (Nr +1/2)×
(
K1 +

(
Ω‖Δ0‖2)−1

)−(Nr +1/2)

Ī2
(
K2;‖Δ0‖2)= EU

{
sin
(
K2

�
U
)}

=
√
Ω‖Δ0‖2Γ (Nr +1/2)(Γ (Nr ))−1 K2

× 1F1
(
Nr +1/2;3/2,− (1/4)Ω‖Δ0‖2 K 2

2

)
(2.27)

Proof: See Appendix 2.8.7. �

Finally, we close this section with three comments about the computation of APEP(F):

1. Based on the similarity of (2.11) and (2.12) with (2.25) and (2.26), asymptotic expressions

similar to Corollary 2.2 can be computed for MIMO cellular networks. In particular,

Corollary 2.2 can be readily generalized with the substitutions: SNR→ SNR
/

Nt , T(·) →
T̄ (·), QN (·) → Q(F)

N (·) and QNI (·) → Q(F)
NI (·).

2. Based on similar arguments, piecewise single-integral bounds for MIMO cellular net-

works can be obtained from Section 2.3.4.

3. In Section 2.3.6, we have pointed out that the computation of some hypergeometric

functions may either lead to numerical inaccuracies or may need too much time for

some network setups. To avoid these issues, approximations based on asymptotic

expansions of the hypergeometric functions have been proposed. These numerical

problems do not arise, on the other hand, in MIMO cellular networks for propagation

over Rayleigh fading channels. This originates from the fact that the particular form of

the special functions for Rayleigh fading seems to be more numerically stable than for

other fading distributions. This outcome is also in agreement with [111], where the error

probability of SISO cellular networks over Rayleigh fading is studied and the authors

did not experience any numerical issues with the computation of the special functions.

However, these numerical issues are dependent on the mathematical software package

that is used for the computation. Should numerical instabilities occur, the readers may

apply the piecewise asymptotic approximation of (2.19) to MIMO cellular networks too.

2.4.3 Nearest Neighbor Approximation of the Average Frame Error Probability

Similar to Section 2.3.5, in this section we propose a mathematical framework to the com-

putation of the Average Frame Error Probability (AFEP), which is based on the NN approx-
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imation and on the computation of a single APEP(F). For ease of illustration, let us con-

sider the Rayleigh fading case, where
∣∣∣H(r,t )

0

∣∣∣∼ Gamma(1,Ω) and
∣∣∣H(r,t )

i

∣∣∣∼ Gamma(1,Ω) for

t = 1,2, . . . , Nt , r = 1,2, . . . , Nr and i ∈Φ(\0). By direct inspection of (2.25)–(2.27) and with the

aid of (2.19), it follows that APEP(F) depends only on ‖Δ0‖2. In particular, it decreases as ‖Δ0‖2

increases. In other words, the error probability depends on the Euclidean distance between

pairs of Nt -dimensional vectors of the constellation diagram. Also, the larger the Euclidean

distance the smaller the error probability. As a consequence, the AFEP can be computed from

the pairs (s0, s̃0) of the Nt -dimensional constellation diagram providing the smallest Euclidean

distance ‖Δ0‖2. Accordingly, the NN approximation of the AFEP can be formulated as follows:

AFEP ≈ 1

MNt

MNt∑
χ=1

N (χ)
‖Δmin‖2 APEP(F)

(∥∥∥Δ(χ)
min

∥∥∥2
)

(2.28)

where: i)
∥∥∥Δ(χ)

min

∥∥∥2 = minμχ̃∈MNt ×1

{∥∥∥μχ̃−μχ

∥∥∥2
,μχ̃ �=χ ∈MNt×1, χ̃ �=χ

}
is the minimum Euclidean

distance among all pairs
(
μχ̃,μχ

)
of vectors of the Nt -dimensional constellation diagram

MNt×1 and ii) N (χ)
‖Δmin‖2 is the number of nearest neighbors of μχ. If

∥∥∥Δ(χ)
min

∥∥∥2 = ‖Δmin‖2 for

every μχ ∈MNt×1, then (2.28) simplifies to AFEP ≈ N (avg)
‖Δmin‖2 APEP(F)

(‖Δmin‖2
)

with N (avg)
‖Δmin‖2 =(

1
/
MNt

)MNt∑
χ=1

N (χ)
‖Δmin‖2 being the average number of nearest neighbors of the constellation dia-

gram. For some constellation diagrams, we may have N (χ)
‖Δmin‖2 = N‖Δmin‖2 for every μχ ∈MNt×1,

which implies N (avg)
‖Δmin‖2 = N‖Δmin‖2 and AFEP ≈ N‖Δmin‖2 APEP(F)

(‖Δmin‖2
)
.

For example, if the standard square QAM with M symbols is considered, we have:

•
(‖Δmin‖2 , N‖Δmin‖2

)= (4,2) if (M= 2, Nt = 2);

•
(‖Δmin‖2 , N‖Δmin‖2

)= (2,4) if (M= 4, Nt = 2);

•
(
‖Δmin‖2 , N (avg)

‖Δmin‖2

)
= (0.4,6) if (M= 16, Nt = 2);

•
(‖Δmin‖2 , N‖Δmin‖2

)= (4,4) if (M= 2, Nt = 4);

•
(‖Δmin‖2 , N‖Δmin‖2

)= (2,8) if (M= 4, Nt = 4).

It is worth noting that N (χ)
‖Δmin‖2 ∈ {4,5,6,7,8} if (M= 16, Nt = 2). On the other hand, if PSK

modulation is used, it is possible to show, by direct inspection of the constellation diagram,

that ‖Δmin‖2 = 4sin2
(
π
/
M
)

for M≥ 2 and N‖Δmin‖2 = Nt if M= 2 and N‖Δmin‖2 = 2Nt if M≥ 4. If

M= 2 and M= 4, square QAM and PSK modulations provide the same results, as expected.

For a general constellation diagram, Remark 2.11 hold.
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Remark 2.11 Let μχ ∈MNt×1 be the complex points of a generic Nt -dimensional constellation

diagram. Then,
∥∥∥Δ(χ)

min

∥∥∥2 =
∣∣∣Δ(χ)

min

∣∣∣2 and N (χ)
‖Δmin‖2 = Nt N (χ)

Δmin
, where

∣∣∣Δ(χ)
min

∣∣∣ and N (χ)
Δmin

are defined

in Section 2.3.5. This is because the minimization of the summation of Nt positive and identi-

cally distributed functions is equivalent to the minimization of each individual function, each

of them having the same minimum. �

2.5 Insights from the Mathematical Framework: Main Performance

Trends

In this section, we summarize the main performance trends that can be inferred from the

mathematical frameworks developed in the previous sections. Two case studies are considered,

which correspond to noise-limited (SNR→ 0) and interference-limited (SNR→+∞) cellular

networks. As a result, the performance trends are mainly derived from direct inspection of the

asymptotic frameworks of Section 2.3.3.

Let us consider a SISO cellular network operating in the noise-limited regime. From Corollary

2.2, it follows that APEP(|Δ0|) ≈ APEPN (|Δ0|). It is worth nothing that APEPN (·) is different

from common mathematical frameworks in the absence of other-cell interference [60], as the

BS0-to-MT distance is a random variable that depends on the cell association criterion, which,

in turn, depends on the density of BSs λ. However, the performance trends as a function of

the SNR and of the path-loss exponent b are preserved. In addition, by direct inspection of

APEPN (·), the following conclusions can be drawn.

• The diversity order of the APEP, D, [75] depends only on Q(∞)
N = QN (·;SNR→∞). Accord-

ing to [75, Sec. II], the diversity order is defined as the slope of the APEP as a function of

the SNR in a log-log scale. From (2.12), only QN (·; ·) depends on the SNR and, thus, it

determines the diversity order. Let us assume that Q(∞)
N can be formulated, according

to [75, Sec. II], as Q(∞)
N ≈K SNR−d , where K is a positive constant independent of the

SNR. Then, from direct inspection of (2.12), the diversity order is equal to D = d−1/2. As

an example, let us consider either Gamma or Gamma/Log-Normal fading. From direct

inspection of (2.13) and (2.14), respectively, it follows that d = m +1/2 for high-SNR. As

a consequence, D = m in both cases.

• The APEP decreases by increasing the BSs’ density. This follows directly from (2.11), which

shows that the APEP decreases exponentially with the density, λ, of BSs.

• The APEP increases by increasing the shadowing standard deviation. Let us consider the

Gamma/Log-Normal fading model in (2.14). The impact of the shadowing standard

deviation depends on how η is chosen and if it depends on σ. If, as suggested in Remark

2.3, η= κ−1 ln(Ω)− (1/2)κσ2, then the analysis of (2.14) reveals that the APEP increases

by increasing σ. Likewise, if η is independent of σ, e.g., η= 0, it is possible to show that

the APEP still increases by increasing σ. In fact, τk for k = 1,2, . . . , NGHQ can take either
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positive or negative values and the latter ones determine the behavior of (2.14) as σ

increases. Furthermore, the larger m the more pronounced the impact of σ on the APEP.

Let us consider a SISO cellular network operating in the interference-limited regime. From

Corollary 2.2, it follows that APEP(|Δ0|) ≈ APEP(∞)
NI (|Δ0|). Thus, the following conclusions can

be drawn.

• The APEP is independent of the SNR. This follows from (2.15), which is independent of

the SNR. This implies that an error-floor emerges for SNR→∞ and that, as a result, the

diversity order as a function of the SNR is, regardless of the fading model, equal to zero.

• The APEP is independent of the BSs’ density. Similar to the low-SNR setup, this follows

from (2.15), which is independent of λ.

• Impact of the fading parameters. Let us consider the impact of m for Gamma and

Gamma/Log-Normal fading. From (2.15), two functions need to be analyzed: f1 (m) =
(pΥ(x;m)−p)

(pΥ(x;m)−p+1) and f2 (m) = QNI (x;m). Also, it is known that p Fq
(
ap ;bq ; x

)∣∣
x→0 → 1 [7,

Sec. III-B]. As a result, Υ (x;m)|m→+∞ → 1 from (2.9) and (2.10). Thus, f1 (m)
∣∣
m→+∞ → 0.

Likewise, f2 (m)
∣∣
m→+∞ → m−1/2 from (2.13) and (2.14). In summary, we expect that the

APEP decreases by increasing m. However, it is very difficult to study the monotonicity

of the hypergeometric functions as a function of their many parameters. As for the

impact of the shadowing standard deviation σ for Gamma/Log-Normal fading, a similar

mathematical development can be used. In particular, from (2.10) and (2.14) we have to

study τ̃k , whose impact on the APEP is opposite compared to m. By using arguments

similar to the noise-limited regime, we expect that the APEP degrades by increasing σ.

• The APEP decreases by increasing the path-loss exponent. From (2.12) and (2.15), we

note that only T(·) depends on b, which is a function of Υ(·) in (2.7). By using the

series representation [57, Ch. 5, Eq. 2] of the hypergeometric function in (2.7), it

follows that the impact of b depends on the function fq (b) = (−1
/

b
)

q

/(
1−1

/
b
)

q ,

where q ≥ 0 is the index of the series expansion. Since (x)q = Γ
(
x +q

)/
Γ (x), we ob-

tain fq (b) = (1−qb
)−1, which implies that

∣∣ fq (·)∣∣ decreases by increasing b for q ≥ 1.

In particular, Υ (x)|b→+∞ → 1, since only the term q = 0 of the series expansion has a

contribution. The same conclusion can be obtained from (2.9) and (2.10), by noting

that 2F2
(−1
/

b,m;1,1−1
/

b;−K x
)∣∣

b→+∞ → 1. From (2.6), this implies T(x)|b→+∞ → 0,

which in turn implies APEP(∞)
NI (|Δ0|)

∣∣∣
b→+∞ → 0 from (2.15). As a result, it is expected

that the APEP decreases by increasing b.

• The APEP decreases by decreasing the activity factor. First of all, we note that T(·) ≥ 0,

since (2.33) is non-negative by definition. Thus, from (2.6) we obtain Υ (x) ≥ 1. From

(2.15), the impact of p on the APEP depends on the function f
(
p
) = (pΥ(x)−p)

(pΥ(x)−p+1) . By

studying the first- and second-order derivative of f (·) as a function of p and by taking

into account that Υ (x) ≥ 1, it follows that f (·) is monotonically increasing with p. As a

result, the APEP decreases as p decreases.
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Let us now turn our attention to MIMO cellular networks. By direct comparison of (2.11) and

(2.25), it follows that the performance trends of MIMO cellular networks in both noise- and

interference-limited regimes are the same as those of SISO cellular networks, as a function of

many system parameters, such as SNR, λ, b and p. Furthermore, in Appendix 2.8.7 it is proved

that U ∼ Gamma
(
Nr ,ΩNr ‖Δ0‖2

)
. Thus, we conclude that the impact of Nr is equivalent to

the impact of m in SISO cellular networks. More specifically, Nr determines the diversity

order in noise-limited scenarios. Likewise, the error probability decreases by increasing Nr

in interference-limited scenarios. As the SNR increases, however, an error-floor emerges in

the latter operating regime. The main difference between SISO and MIMO cellular networks

consists in the impact of Nt . To better study the impact of Nt , Corollary 2.4 and Corollary 2.5

provide approximate closed-form expressions of (2.25). Similar results can be obtained for

SISO cellular networks.

Corollary 2.4 Let
∣∣∣H(r,t )

0

∣∣∣ ∼ Gamma(1,Ω) for t = 1,2, . . . , Nt , r = 1,2, . . . , Nr and SNR � 1.

Then:

APEP(F)
N (‖Δ0‖)≈

(
1

4

)Nr +1/2 (πλ)−bNr

�
π

× Γ (Nr +1/2)Γ (bNr )

Γ (Nr )
b

(
SNR

Nt
Ω‖Δ0‖2

)−Nr

(2.29)

Proof: It follows from (2.25) and (2.27) by taking into account that K1 +
(
Ω‖Δ0‖2

)−1 ≈ K1

if SNR� 1. The integral is computed in closed-form with the aid of [65, Eq. 3.326.2]. This

concludes the proof. �

Corollary 2.5 Let
∣∣∣H(r,t )

0

∣∣∣ ∼ Gamma(1,Ω) for t = 1,2, . . . , Nt , r = 1,2, . . . , Nr and SNR � 1.

Then:

APEP(F,∞)
NI (‖Δ0‖)

(a)≤ −p

2
− p

4
�
π

1

b

1

Γ (Nr )

‖Δ0‖�
Nt

×G2,2
3,3

(
‖Δ0‖2

4Nt

∣∣∣∣ 1/2−Nr 1/2 1/2−1
/

b

0 −1/2−1
/

b −1/2

)
(b)≈ −p

2
+ p�

π

1

b +2

Γ (Nr +1/2)

Γ (Nr )

‖Δ0‖�
Nt

+ p

2
�
π
Γ

(
1

2
+ 1

b

)
Γ
(
Nr −1

/
b
)

Γ (Nr )

(‖Δ0‖2

4Nt

)−1/b

(2.30)

Proof: The bound in (a) originates from (2.25) and SNR� 1 by using the same line of thought

as (2.15). The integral is computed by using the upper-bound T̄ (x)
/(

T̄ (x)+1
)≤ T̄ (x), which is

accurate especially for low values of p. Finally, the integral is solved by using (2.27) and with the

aid of [65, Eq. 7.612.1], [58, Eq. 8.4.45.1] and the Mellin-Barnes theorem [58, Eq. 2.24.1.1]. The

asymptotic approximation in (b) follows from [76], by taking into account that, based on the NN

approximation, the AFEP is dominated by the APEPs for which the condition ‖Δ0‖2
/

4Nt � 1

holds. This concludes the proof. �

From the NN approximation in Section 2.4.3 and with the aid of Corollary 2.4 and Corollary 2.5,
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the AFEP of MIMO cellular networks can be formulated as AFEP(F)
N ≈KM Nt APEP(F)

N (‖Δ0‖min)

and AFEP(F,∞)
NI ≈ KM Nt APEP(F,∞)

NI (‖Δ0‖min) for noise- and interference-limited regimes, re-

spectively. For example, if PSK modulation is considered, we have: KM = 1 if M = 2; KM = 2 if

M ≥ 4 and ‖Δ0‖min = 2sin(π/M). In order to study the impact of Nt , let us consider MIMO

systems that have to provide the same rate for arbitrary antenna configurations. The rate is

defined as R = Nt log2 (M) bits per channel use (bpcu). Accordingly, ‖Δ0‖min = 2sin
(
π2−R/Nt

)
.

Furthermore, as far as the density λ of BSs is concerned, two case studies are worth being

investigated: 1) λ and Nt are independent of each other and 2) λ=λ (Nt ) =λ0/Nt , which im-

plies that λ depends on Nt but their product is constant and equal to λ0. The latter case study

is of interest in order to compare MIMO cellular networks either with many single-antenna

BSs or with a few multi-antenna BSs, but always keeping the same density of BSs antennas.

This is, in fact, a key optimization problem in cellular networks [84]. While the mathematical

study of the derivatives of (2.29) and (2.30), as a function of Nt , is possible, it turns out to be

quite tedious as it depends on many system parameters. A simpler and more pragmatic way

to proceed is to plot AFEP(F)
N and AFEP(F,∞)

NI for typical cellular setups (the reader is referred to

Section 2.6 for some examples) and to study the impact of Nt , by assuming a fixed rate R and

‖Δ0‖min = 2sin
(
π2−R/Nt

)
. The following trends emerge from this analysis:

• In noise-limited cellular networks, the AFEP is expected to decrease by increasing Nt if

λ and Nt are independent of each other.

• In noise-limited cellular networks, the AFEP is expected to increase by increasing Nt if

λNt =λ0.

• In interference-limited cellular networks, the AFEP is independent of λ and it is expected

to decrease by increasing Nt . The impact is more pronounced in symmetric MIMO

setups having Nt = Nr , while it is less pronounced if Nt > Nr . In fact, increasing Nr is

also beneficial in MIMO cellular networks.

These trends are substantiated in Section 2.6 with the aid of Monte Carlo simulations as well.

In any case, the APEPs in (2.29) and (2.30) are sufficiently simple and depend on all the most

important design parameters that the interested reader may readily plot them for comparing

different MIMO setups of interest.

2.6 Numerical and Simulation Results

In this section, some numerical examples are shown in order to substantiate the accuracy of

the proposed mathematical frameworks and to investigate the performance trends highlighted

in Section 2.5. The following notation is used for SISO transmission: i) MC denotes the results

obtained with the aid of Monte Carlo simulations; ii) NN denotes the results obtained with

the aid of the NN approximation in Section 2.3.5 and of the exact APEP computed in Section

2.3.2; iii) NN-LB differs from NN because the LB of the APEP computed in Section 2.3.4 is
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used; iv) NN-UB differs from NN because the UB of the APEP computed in Section 2.3.4

is used; and v) NN-INF differs from NN because the asymptotic expression of the APEP

(interference-limited regime) computed in Section 2.3.3 is used. All mathematical frameworks

are computed by using the approximations in Section 2.3.6 by setting ℵ∞ = 100. We have

verified that the same curves are obtained by using the exact expressions of the hypergeometric

functions, when they can be computed efficiently (i.e., if neither b nor m are non-integer

numbers). As for MIMO transmission, the mathematical frameworks are replaced with those

available in Section 2.4. In this case, no approximations are used for the computation of the

hypergeometric functions. Monte Carlo simulations are obtained by using the procedure

described in [7, Sec. V]. The only difference is that the error performance instead of the average

rate is computed, by implementing the demodulator in (2.2). All Monte Carlo simulations are

depicted by using “black” curves. Curves with different markers represent the mathematical

frameworks. In all figures, the rate of MIMO systems is defined as R = Nt log2 (M) bpcu. As

for the composite Gamma/Log-Normal channel model, the results are obtained by setting

η= κ−1 ln(Ω)− (1/2)κσ2 with κ= 10−1 ln(10), as discussed in Remark 2.3. The mathematical

frameworks are obtained by setting NGHQ = 3.

Validation of the PPP-based Abstraction Model Before analyzing the accuracy of the math-

ematical frameworks against Monte Carlo simulations based on the PPP abstraction model for

the locations of the BSs, in Fig. 2.4 we compare Monte Carlo simulations obtained by modeling

the BS locations via grid-based and PPP-based abstraction models. A similar comparison is

available in [6, Sec. V-A] for the coverage probability. In this section, we focus our attention

on the error probability. The following notation is used in Fig. 2.4: i) solid lines show the

results obtained with the aid of Monte Carlo simulations based on the PPP-based abstraction

and ii) dashes lines show the results obtained with the aid of Monte Carlo simulations based

on the grid-based abstraction. The latter results are obtained by using the same procedure

as in [6, Sec. V-A] with three main differences: 1) instead of the SINR, the received signal

in (2.1) is generated and the demodulator in (2.2) is applied at the MT; 2) either a Gamma

or a Gamma/Log-Normal channel model is used; and 3) the error probability instead of the

coverage probability is considered. By direct inspection of Fig. 2.4, we observe a reasonable

agreement between the two abstraction models. As expected, and similar to [6, Sec. V-A], the

PPP-based abstraction model provides a worst estimate of the error probability compared

to the grid-based abstraction model, since interfering BSs may be arbitrarily close to each

other. On the other hand, the main advantage of the PPP-based abstraction model lies in its

mathematical tractability and in the design insights that can be inferred from the resulting

mathematical frameworks.
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Figure 2.4: ASEP/AFEP of a Nt ×Nr system against the reference SNR E/N0: comparison between PPP- (solid
lines) and grid-based (dashed lines) abstraction models. Setup: (a) Nt = 1 and Nr = 1, QAM with M = 16,
Gamma/Log-Normal channel model with m = 2 and σ= 6dB, b = 3 and λ= 10−5. (b) Nt = 2 and Nr = 2, QAM
with M = 16, Gamma channel model with m = 1 (Rayleigh fading), b = 3 and λ= 10−5.

Validation of the Mathematical Frameworks In Figs. 2.5–2.7, the accuracy of the mathe-

matical frameworks is compared against Monte Carlo simulations. We observe that a good

accuracy is obtained for the analyzed system setups. In particular, the NN approximation

provides an upper-bound of the simulated ASEP/AFEP. The accuracy for high-SNR increases

by increasing the number of antennas at the receiver. The piecewise singe-integral bounds are

accurate and simple to compute. However, they are less accurate in the two “corners” of the

error probability curves. The accuracy in the corners increases by decreasing the activity factor

p. In the figures, p = 10−3 is shown since it provides reasonable values of the ASEP/AFEP

for the cellular setup under analysis. The framework denoted by NN-INF confirms that the

ASEP/AFEP is independent of λ in the interference-limited regime. For ease of illustration, in

the next figures only the results denoted by MC (“black” curves) and NN (all the other curves)

are shown.

Impact of Wireless Channel and Cellular Setup In Figs. 2.8–2.11, the error performance of

SISO and MIMO transmissions is studied as a function of fading and shadowing conditions, as

well as as a function of BSs density and activity factor. Overall, the performance trends are in

agreement with the analysis of Section 2.5. More specifically, Fig. 2.8 shows that the fading

severity m has a negligible impact on the ASEP and that, on the other hand, the shadowing

standard deviation σ has a more important impact. As expected, the ASEP decreases by
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Figure 2.5: ASEP of a Nt ×Nr = 1×1 system against the reference SNR E/N0. Setup: (a) QAM with M = 16,
Gamma channel model with m = 2, b = 3, λ= 10−5 and p = 10−3. (b) QAM with M = 16, Gamma/Log-Normal
channel model with m = 2 and σ= 6dB, b = 3, λ= 10−5 and p = 10−3.

increasing m and degrades by increasing σ. Figures 2.9 and 2.10 show the important impact

that the path-loss exponent b has on the ASEP. The trend is different for noise- and interference-

limited networks. The figures also confirm that the BS density λ affects the ASEP only in the

noise-limited regime. In Fig. 2.11, the impact of the activity factor p is studied. The figure

confirms the important impact of p on the achievable ASEP/AFEP, as it drastically reduces the

net contribution of the other-cell interference. High values of p may need more sophisticated

demodulators compared to the interference-unaware detector studied in the present chapter,

in order to counteract the impact of other-cell interference. Although not shown due to space

limitations, we have studied the accuracy of our framework for constant-envelop modulations

(e.g., PSK modulation) as well. Our results show that, in general, the mathematical frameworks

are more accurate in this latter case.

Impact of Receive and Transmit Antennas In Figs. 2.12–2.14, we study how multiple an-

tennas at the BSs and at the typical MT affect the error performance. In particular, Fig.

2.12 confirms that having multiple-antenna at the receiver leads to an improvement of the

ASEP/AFEP. However, no receive diversity gain is obtained in the interference-limited regime.

In Fig. 2.13, we study symmetric, i.e., Nt = Nr , MIMO schemes and investigate two cellular

network deployments: i) Fig. 2.13(a) shows the AFEP by assuming that the density λ of BSs

is kept the same but the number of BSs antennas Nt is different and ii) Fig. 2.13(b) shows
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Figure 2.6: ASEP of a Nt ×Nr = 1×1 system against the reference SNR E/N0. Setup: (a) QAM with M = 16,
Gamma/Log-Normal channel model with m = 2.5 and σ = 6dB, b = 3, λ = 10−5 and p = 10−3. (b) QAM with
M = 16, Gamma/Log-Normal channel model with m = 2 and σ= 6dB, b = 2.5, λ= 10−5 and p = 10−3.

the AFEP by assuming that the density of BSs antennas λ0 = Ntλ is kept the same and the

BSs density λ depends on Nt . In this latter case, the fewer Nt the larger λ. The analysis of

these two cellular setups is useful for understanding whether it is better either to increase

the density of BSs and to use simple transmission schemes (SISO) or to reduce the density of

BSs but to use more advanced transmission schemes (MIMO). Fig. 2.13 shows that the two

setups provide a different AFEP only in the noise-limited regime. In particular, Fig. 2.13(b)

illustrates that increasing Nt but reducing λ is not a good option. The reason is that the

reliability of the useful link degrades because of the longer transmission distance, while the

reduction of the other-cell interference has a negligible impact. In the interference-limited

regime, on the other hand, both setups provide the same error-floor, since λ does not affect

the AFEP. As a result, in this operating regime the density of BSs can be reduced as the number

of antennas at the BSs increases. However, λ cannot be arbitrarily reduced by increasing Nt ,

since it has to be guaranteed that the system operates in the interference-limited regime. A

similar study is performed in Fig. 2.14, but an asymmetric, i.e., Nt �= Nr , MIMO scheme is

considered. As for the BSs against BSs antennas densification, trends similar to Fig. 2.13 are

obtained. Also, as discussed in Section 2.5, Fig. 2.14(a) shows that increasing Nt provides

a better AFEP if λ is kept constant. On the other hand, Fig. 2.14(b) shows that increasing

Nt leads to a degradation and to an improvement of the AFEP if λ0 is kept constant, in the

noise- and interference-limited regime, respectively. However, the performance difference as

a function of Nt is smaller compared to Fig. 2.13, since Nt > Nr for some system setups.
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Figure 2.7: ASEP/AFEP of a Nt ×Nr = Nt ×2 system against the reference SNR E/N0. Setup: (a) Nt = 1, QAM
with M = 16, Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5 and p = 10−3. (b) Nt = 2, QAM
with M = 4, Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5 and p = 10−3.
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Figure 2.8: ASEP of a Nt × Nr = 1× 1 system against the reference SNR E/N0. Setup: (a) QAM with M =
16, Gamma/Log-Normal channel model with σ = 6dB, b = 3, λ = 10−5 and p = 10−3. (b) QAM with M = 16,
Gamma/Log-Normal channel model with m = 2, b = 3, λ= 10−5 and p = 10−3.
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Figure 2.9: ASEP of a Nt ×Nr = 1×1 system against the reference SNR E/N0. Setup: (a) QAM with M = 16,
Gamma/Log-Normal channel model with m = 2 and σ = 6dB, λ = 10−5 and p = 10−3. (b) QAM with M = 16,
Gamma/Log-Normal channel model with m = 2 and σ= 6dB, b = 3 and p = 10−3.
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Figure 2.10: AFEP of a Nt ×Nr = 2×2 system against the reference SNR E/N0. Setup: (a) QAM with M = 16,
Gamma channel model with m = 1 (Rayleigh fading), λ = 10−5 and p = 10−3. (b) QAM with M = 16, Gamma
channel model with m = 1 (Rayleigh fading), b = 3 and p = 10−3.

47



Chapter 2. A Mathematical Framework to the Computation of the Error Probability of
Downlink MIMO Cellular Networks by Using Stochastic Geometry

120 160 200 240
10

−4

10
−3

10
−2

10
−1

10
0

(a)

E/N
0
 [dB]

A
S

E
P

 

 

p=100

p=10−1

p=10−2

p=10−3

p=10−4

120 160 200 240
10

−4

10
−3

10
−2

10
−1

10
0

(b)

E/N
0
 [dB]

A
F

E
P

 

 

p=100

p=10−1

p=10−2

p=10−3

p=10−4

Figure 2.11: ASEP/AFEP of a Nt ×Nr system against the reference SNR E/N0. Setup: (a) Nt = 1 and Nr = 1,
QAM with M = 16, Gamma/Log-Normal channel model with m = 2 and σ= 6dB, b = 3 and λ= 10−5. (b) Nt = 2
and Nr = 2, QAM with M = 16, Gamma channel model with m = 1 (Rayleigh fading), b = 3 and λ= 10−5.
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Figure 2.12: ASEP/AFEP of a Nt ×Nr system against the reference SNR E/N0. Setup: (a) Nt = 1, QAM with
M = 16, Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5 and p = 10−3. (b) Nt = 2, QAM with
M = 4, Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5/2 and p = 10−3.
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Figure 2.13: AFEP of a Nt ×Nr system providing Rate = 4 bpcu against the reference SNR E/N0. Setup: (a)
Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5 and p = 10−3. (b) Gamma channel model
with m = 1 (Rayleigh fading), b = 3, λ0 = 10−5 and p = 10−3.
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Figure 2.14: AFEP of a Nt ×Nr = Nt ×2 system providing Rate = 4 bpcu against the reference SNR E/N0. Setup:
(a) Gamma channel model with m = 1 (Rayleigh fading), b = 3, λ= 10−5 and p = 10−3. (b) Gamma channel model
with m = 1 (Rayleigh fading), b = 3, λ0 = 10−5 and p = 10−3.
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2.7 Conclusion

In this chapter, new mathematical frameworks to the computation of the error probability

of MIMO cellular networks have been proposed and have been substantiated with the aid

of Monte Carlo simulations. Various frameworks have been developed, which provide a

flexible trade-off between accuracy and computational complexity. Their analysis has revealed

important performance trade-offs that may emerge depending on the SNR operating regime,

the fading parameters and the number of antennas available at the BSs and MT. For example,

it has been shown that MIMO transmission with Nt = Nr allows one to reduce the density of

BSs by increasing Nt without performance degradation in the interference-limited regime and

with a small performance degradation in the noise-limited regime.

By using the property on the superposition of the independent PPPs (Appendix Definition A.4),

the mathematical framework is readily applicable to the multi-tier heterogeneous cellular

networks, which can be modeled as the superposition of many tiers of BSs having different

transmit powers, densities, path-loss exponents, fading parameters and distributions, and

flexible bias factors for various tier association schemes. And the positions of the BSs in each

tier are modeled as points of an independent PPP.
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2.8 Appendices

2.8.1 Proof of Theorem 2.1

Let zi = hi si = |hi | |si |exp
{

j
(
arg{hi }+arg{si }

)}
. The aggregate interference can be formulated

as iagg (r0) = �
E
∑

i∈Φ(\0)
r−b

i hi si =
�

E
∑

i∈Φ(\0)
r−b

i zi . By definition, the CF of iagg (·) conditioned

upon r0, i.e., ψiagg (ω;r0), can be written as follows:

ψiagg (ω;r0)

= Eiagg

{
exp

{
jωiagg (r0)

}}
(a)=

+∞∑
k=0

(
Ezi ,ri

{
exp

{
jω

�
Er−b

i zi

}})k
︸ ︷︷ ︸

P1(ω;k)

[
pλπ

(
R2

max − r 2
0

)]2
k !

exp
{−pλπ

(
R2

max − r 2
0

)}
︸ ︷︷ ︸

P2(Rmax,r0;k)

∣∣∣∣∣∣∣∣∣
Rmax→+∞

(2.31)

where (a) is obtained by using the same steps as those in [17, Sec. 3.2.2] and [24, Sec. II-

C]. In particular, P1 (ω;k) originates from the assumption that all the interfering BSs are

identically distributed and P2 (Rmax,r0;k) originates from the definition of PPP and denotes

the probability that k interfering BSs fall in the annular region with radii r0 and Rmax [16].

By taking into account that zi is a circularly symmetric complex RV and by using the same

steps as in [20, Secs. III-A, III-B], (2.31) can be formulated as follows:

ψiagg (ω;r0) =ψiagg (|ω| ;r0) = exp
{
−2pλπEz(re)

i

{
Ti

(
|ω| ;r0, z(re)

i

)}}
(2.32)

where z(re)
i = Re{zi } = |hi | |si |cos

(
arg{hi }+arg{si }

)
and Ti (·; ·, ·) is given in (2.33) as follows:

Ti

(
|ω| ;r0, z(re)

i

)
= |ω|2/b E 1/bb−1

|ω|�Er−b
0∫

0

[
1−cos

(
t z(re)

i

)]
t−(1+2/b) d t

(a)= r 2
0

2

[
−1+ 1F2

(
− 1

b
;

1

2
,1− 1

b
;−1

4

|ω|2 E

r 2b
0

(
z(re)

i

)2)]
(b)= r 2

0

2

[
−1+

+∞∑
q=0

(
−1

4

)q 1

q !

(−1
/

b
)

q

(1/2)q
(
1−1

/
b
)

q

(
|ω|2 E

r 2b
0

(
z(re)

i

)2)q]
(2.33)

where (a) follows from [65, Eq. 3.771.3] and (b) is obtained by applying the series representation

of the generalized hypergeometric function [57, Ch. 5, Eq. 2].

The CF in (2.6) follows by computing the expectation in (2.32), which from (2.33) implies the
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need of computing the moments Ez(re)
i

{(
z(re)

i

)2q
}

. This is possible as shown in what follows:

Ez(re)
i

{(
z(re)

i

)2q
}
= Ez(re)

i

{|hi |2q |si |2q cos2q (arg{hi }+arg{si }
)}

(a)= E|hi |,si

{|hi |2q |si |2q Earg{hi }
{
cos2q (arg{hi }+arg{si }

)}}
(b)= E|hi |,si

{|hi |2q |si |2q Γ
(
q +1/2

)/(�
πΓ
(
q +1

))}
= Γ
(
q +1/2

)/(�
πΓ
(
q +1

))
E|hi |

{|hi |2q}E|si |
{|si |2q}

(2.34)

where (a) originates by noting that |hi | and arg{hi } are assumed to be independent in system

model of Section 2.2 and (b) follows from [66, Eq. 16] with the aid of some simplifications.

Finally, (2.6) follows from E|si |
{|si |2q

}= (1/M) M∑
χ=1

∣∣μχ

∣∣2q and some simplifications. The expres-

sion in terms of the hypergeometric function follows from the series representation in [57, Ch.

5, Eq. 2]. This concludes the proof.

2.8.2 Proof of Lemma 2.1

Lemma 2.1 Let the demodulator in (2.5). Then, PEP(|Δ0| ;h0,r0) = Pr{Λ (s̃0) < 0|h0,r0} can be

formulated as follows:

PEP(|Δ0| ;h0,r0) = PEP(|Δ0| ; |h0| ,r0) = PEPN (|Δ0| ; |h0| ,r0)+PEPNI (|Δ0| ; |h0| ,r0) (2.35)

where PEPN (·; ·, ·) and PEPNI (·; ·, ·) are given in (2.36) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

PEPN (|Δ0| ; |h0| ,r0) = 1

2
− 1

π

+∞∫
0

sin

(
1

2
r−b

0

�
E |Δ0| |h0|�

)
�−1 exp

(
−1

4
N0�

2
)

d�

PEPNI (|Δ0| ; |h0| ,r0) = 1

π

+∞∫
0

sin

(
1

2
r−b

0

�
E |Δ0| |h0|�

)
�−1 exp

(
−1

4
N0�

2
)[

1−ψiagg (�;r0)
]

d�

(2.36)

Proof: By definition from (2.5), the PEP can be formulated as follows:

PEP(|Δ0| ;h0,r0) = Pr{Λ (s̃0) < 0|h0,r0}

= Pr

{
Re
{

v (r0) |h0| |Δ0|exp
{− j

(
arg{h0}+arg{Δ0}

)}}<− (1/2)r−b
0

�
E |Δ0|2 |h0|2

}
(a)= Pr

{
Re{v (r0)} <− (1/2)r−b

0

�
E |Δ0| |h0|

}
(b)= Fv (re)

(
− (1/2)r−b

0

�
E |Δ0| |h0|

)
(c)= PEP(|Δ0| ; |h0| ,r0)

(2.37)
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where: (a) holds because v (·) is a circularly symmetric RV, v(r0)exp{− j (arg{h0}+arg{Δ0})}
d=v(r0)

[67]; (b) follows from the definition of CDF of the RV v (re) (r0) = Re{v (r0)}; and (c) emphasizes

that the PEP depends only on the absolute value of h0, i.e., |h0|, while it is independent of the

phase of h0, as shown in the equality in (b).

By using the Gil-Pelaez inversion theorem [54] for computing Fv (re) (·), (2.37) simplifies as follows:

PEP(|Δ0| ; |h0| ,r0)
(a)= 1

2
+ 1

π

+∞∫
0

sin
(
− (1/2)r−b

0

�
E |Δ0| |h0| |ω|

)
|ω|−1ψv (re) (|ω| ;r0)d |ω|

(b)= 1

2
− 1

π

+∞∫
0

sin
(
(1/2)r−b

0

�
E |Δ0| |h0| |ω|

)
|ω|−1ψv (|ω| ;r0)d |ω|

(2.38)

where (a) originates from [68, Eq. 12], by noticing that Re
{
ψv (re) (|ω| ;r0)

}=ψv (re) (|ω| ;r0) and

Im
{
ψv (re) (|ω| ;r0)

}= 0, i.e., ψv (re) (·; ·) is a real function and (b) follows by taking into account

that sin(·) is an odd function and that v (·) is a circularly symmetric RV, i.e., ψv (re) (|ω| ;r0) =
ψv (|ω| ;r0).

Since v (r0) = iagg (r0)+n, as well as iagg (·) and n are independent RVs, we have ψv (|ω| ;r0) =
ψn (|ω|)ψiagg (|ω| ;r0)

(c)=ψn (|ω|)−ψn (|ω|)[1−ψiagg (|ω| ;r0)
]
, where ψn (|ω|) = exp

(−1
4N0|ω|2

)
is the CF of a Gaussian RV [69] and (c) follows from [70, Eq. 18]. Equation (2.35) follows by

inserting ψv (·; ·) in (2.38). In particular, the addend PEPN is related to the factor ψn (·) and the

addend PEPNI is related to the factor ψn (·)[1−ψiagg (·; ·)], respectively. This concludes the proof.

�

2.8.3 Proof of Theorem 2.2

From Lemma 2.1 in Appendix 2.8.2, the expectations APEPN (|Δ0|) = E|h0|,r0 {PEPN (|Δ0| ; |h0| ,r0)}

and APEPNI (|Δ0|) = E|h0|,r0 {PEPNI (|Δ0| ; |h0| ,r0)} need to be computed. Equations (2.39) and

(2.40) provide the mathematical steps to this end:

APEPN (|Δ0|)
(a)= 1

2
−2λE|h0|

⎧⎨⎩
+∞∫
0

⎡⎣ +∞∫
0

sin

(
1

2
ξ−b

�
E |Δ0| |h0|�

)
exp

(
−1

4
N0�

2
)

d�

�

⎤⎦ξexp
{−πλξ2}dξ

⎫⎬⎭
(b)= 1

2
−λπE|h0|

⎧⎨⎩
+∞∫
0

erf
(
2−1

�
SNR |Δ0| |h0|ξ−b

)
ξexp

{−πλξ2}dξ

⎫⎬⎭
(2.39)
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APEPNI (|Δ0|) (a)= 2λ

×
+∞∫
0

+∞∫
0

ξexp
{−πλξ2}E|h0|

{
sin

(
1

2
ξ−b

�
E |Δ0| |h0|�

)}
exp

(
−1

4
N0�

2
)[

1−ψiagg (�;ξ)
] d�

�
dξ

(2.40)

where (a) follows since fr0 (ξ) = 2πλξexp
(−πλξ2

)
[6] and (b) follows by computing the integral

in the square brackets with the aid of [65, Eq. 3.952.6]. The APEPN (·) in (2.11) follows by

applying the integration by part rule and the APEPNI (·) in (2.11) follows from (2.6) and some

changes of variable. This concludes the proof.

2.8.4 Proof of Proposition 2.5

Similar to Corollary 2.2, let a noise-limited cellular network, then limSNR→0 {APEP(|Δ0|)} =
APEP(0)

N (|Δ0|) = APEPN (|Δ0|). Also, let limSNR→+∞ {APEP(|Δ0|)} = APEP(∞)
NI (|Δ0|).

The LB in (2.16) is obtained by taking into account that: 1) since APEPNI (|Δ0|) ≥ 0 for SNR≥ 0,

this implies that APEP(|Δ0|) ≥ APEPN (|Δ0|) = APEP(0)
N (|Δ0|) and 2) since APEPN (|Δ0|) ≥ 0 for

SNR≥ 0, this implies that APEP(|Δ0|) ≥ APEPNI (|Δ0|) ≈ APEP(∞)
NI (|Δ0|), where the last approxi-

mation holds for APEP(∞)
NI (|Δ0|) > APEP(0)

N (|Δ0|) (high-SNR). These two inequalities imply that:

i) for low-SNR, i.e., APEP(0)
N (|Δ0|) > APEP(∞)

NI (|Δ0|), we have APEP(|Δ0|)�APEP(0)
N (|Δ0|) and ii)

for high-SNR, i.e., APEP(∞)
NI (|Δ0|) > APEP(0)

N (|Δ0|), we have APEP(|Δ0|)�APEP(∞)
NI (|Δ0|).

The UB in (2.17) is obtained by taking into account that: 1) APEP(|Δ0|) ≤ APEP(|Δ0|)|E=0 = 1/2

by definition of APEP. This also follows from (2.35) and (2.36), since sin(K E)|E=0 = 0 for

K > 0. This condition applies to low-SNR, when the PEP is dominated by the AWGN and 2)

APEP(∞)
NI (|Δ0|) ≥ APEPNI (|Δ0|) for SNR≥ 0, which follows from (2.11). This last inequality im-

plies that, for high-SNR, APEPNI (|Δ0|) can be replaced by APEP(∞)
NI (|Δ0|). Since low- and high-

SNR conditions correspond to the inequalities APEP(0)
N (|Δ0|)+APEP(∞)

NI (|Δ0|) ≥ APEP(|Δ0|)|E=0

and APEP(0)
N (|Δ0|)+APEP(∞)

NI (|Δ0|) < APEP(|Δ0|)|E=0, respectively, then (2.17) follows. This

concludes the proof.

2.8.5 Proof of Theorem 2.3

By inserting i(r )
agg (r0) =

√
E
/

Nt
∑

i∈Φ(\0)
r−b

i

Nt∑̃
t=1

H(r,t̃)
i s(t̃)

i of (2.1) in I(·) of (2.4), the latter can be for-

mulated as I(r0) = �
E
∑

i∈Φ(\0)
r−b

i z̃i , where z̃i =
√

1
/

Nt

Nr∑
r=1

Nt∑̃
t=1

Nt∑
t=1

H(r,t̃)
i s(t̃)

i

(
H(r,t )

0 Δ(t )
0

)H
. From

Appendix 2.8.1, we note that I(·) and iagg (·) have the same mathematical formulation. The only

difference is that zi in iagg (·) needs to be replaced by z̃i in I(·). In addition, and similar to zi ,

the RVs z̃i are still circularly symmetric and i.i.d. for i ∈Φ(\0). As a consequence, the CF of I(·)
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can be formulated as shown in (2.32) and (2.33), by simply replacing z(re)
i with z̃(re)

i = Re{z̃i }.

Accordingly, the moments of z̃(re)
i conditioned upon H0 and Δ0 need to be computed. Let

us denote these conditioned moments by ηq (H0,Δ0) = E z̃i |H0,Δ0

{(
z̃(re)

i

)2q
}

. Since H(r,t )
i ∼

C N (0,Ω), Re
{

H(r,t )
i

}
∼ C N (0,Ω/2). Thus, z̃(re)

i turns out to be a Gaussian RV by condi-

tioning upon H0, Δ0 and si , which we denote by z̃(re)
i ∼N|H0,Δ0,si

(
0,(Ω/2)U

(
1
/

Nt
) Nt∑̃

t=1

∣∣∣s(t̃)
i

∣∣∣2).
Thus, from [73, Eq. 13] the moments can be computed as follows:

ηq (H0,Δ0) = ηq (U) = Esi

{
(−1)q

�
π

Γ
(
1/2−q

) ( 1

Nt

Nt∑
t̃=1

∣∣∣s(t̃)
i

∣∣∣2)q

Ωq Uq

}
(2.41)

The rest of the proof follows from the series representation of the generalized hypergeometric

function [57, Ch. 5, Eq. 2] and from the identities
Nt∑̃

t=1

∣∣∣s(t̃)
i

∣∣∣2 = ‖si‖2 and 2F2
(1

2 ,α; 1
2 ,β;−x

)=
1F1
(
α;β;−x

)
. This concludes the proof.

2.8.6 Proof of Theorem 2.4

The proof is similar to Appendix 2.8.2 and Appendix 2.8.3. By applying the Gil-Pelaez inversion

theorem [54] to (2.3), APEP(F) conditioned upon H0 and r0 can be formulated, similar to (2.38),

as follows:

APEP(F) (Δ0;H0,r0) = APEP(F) (U,r0)

= 1

2
− 1

π
×

+∞∫
0

sin

(
(1/2)r−b

0

√
E
/

Nt U |ω|
)
|ω|−1 ×ψN(re) (|ω| ;U)ψI(re) (|ω| ;r0,U)d |ω|

(2.42)

where: i) N(re) = Re{N} ∼ N
(
0,
(
N0
/

2
)

U
)

follows from the AWGN assumption and from

(2.4); ii) I(re) = Re{I} is defined in (2.4); iii) ψN(re) (|ω| ;U) = ψN (|ω| ;U) and ψI(re) (|ω| ;r0,U) =
ψI (|ω| ;r0,U), since N and I are circularly symmetric RVs; iv) ψN (|ω| ;U) = exp

{−1
4 |ω|2N0U

}
,

since it is a Gaussian RV [69]; and v) ψI (·; ·, ·) is given in (2.21). The rest of the proof is the same

as in Appendices 2.8.2 and 2.8.3. This concludes the proof.

2.8.7 Proof of Proposition 2.6

Let us consider the RV U =
Nr∑

r=1

∣∣∣∣ Nt∑
t=1

H(r,t )
0 Δ(t )

0

∣∣∣∣2 in (2.4). Since
∣∣∣H(r,t )

0

∣∣∣ ∼ Gamma(1,Ω) and the

channel phases are uniformly distributed, then H(r,t )
0 ∼ C N (0,Ω) for t = 1,2, . . . , Nt and

r = 1,2, . . . , Nr . Thus, by conditioning upon Δ0, we have
Nt∑

t=1
H(r,t )

0 Δ(t )
0 ∼ C N |Δ0

(
0,Ω‖Δ0‖2

)
.

This implies that U ∼ Gamma
(
Nr ,ΩNr ‖Δ0‖2

)
. The rest of the proof follows by comparing

(2.27) with (2.13). This concludes the proof.
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Chapter 3. Stochastic Geometry Modeling and Analysis of Downlink MIMO Cellular
Networks Using the Gil-Pelaez Inversion Theorem

In this chapter, we introduce new mathematical frameworks to the computation of coverage

probability and average rate of cellular networks by relying on a stochastic geometry abstrac-

tion modeling approach. With the aid of the Gil-Pelaez inversion formula, we prove that

coverage and rate can be compactly formulated as a two-fold integral for arbitrary per-link

power gains. In the interference-limited regime, single-integral expressions are obtained. The

new mathematical frameworks are also applicable for the performance analysis of several

important MIMO transmission schemes in downlink cellular networks. As one case study,

Gamma distributed per-link power gains are investigated further and approximated closed-

form expressions for coverage and rate in the interference-limited regime are obtained, which

shed light on the impact of channel parameters and physical-layer transmission schemes. The

other case study studies the service success probability of a typical MT in partially loaded

cellular networks. Furthermore, the trends of coverage and rate on several important system

parameters are discussed based on the mathematical frameworks and the accuracy of the

mathematical analysis is substantiated through extensive Monte Carlo simulations for various

cellular network setups.

The present chapter is organized as follows. Section 3.1 introduces the motivations and

contributions. In Section 3.2, the system model is introduced and the problem is formulated.

In Section 3.3, several MIMO schemes fit the system model in Section 3.2 have been visited.

In Section 3.4, exact frameworks are provided for the computation of coverage and average

rate. In Section 3.5, approximations are provided for the Gamma distributed per-link gains.

In Section 3.6, a partially loaded downlink cellular network is studied with the aid of Gil-

Pelaez inversion formula. In Section 3.7, numerical examples substantiating the mathematical

findings are shown. Finally, Section 3.8 concludes the present chapter.
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Chapter 3. Stochastic Geometry Modeling and Analysis of Downlink MIMO Cellular
Networks Using the Gil-Pelaez Inversion Theorem

3.1 Introduction

Besides the techniques to the mathematical modeling and performance evaluation of cellular

networks based on stochastic geometry reported in [19] and summarized in Section 1.2.2,

in this chapter, we introduce another technique to the computation of coverage and rate of

cellular networks. The proposed approach is based on the Gil-Pelaez inversion formula [54].

The application of the Gil-Pelaez theorem to the analysis of wireless networks in the presence

of interference is not new and various papers are available, e.g., [39], [68]. These mathematical

frameworks, however, are not based on a stochastic geometry abstraction modeling. In this

context, to the best of the authors knowledge, the Gil-Pelaez theorem has been employed

only in [21] and [111], where the error probability of cognitive radio and cellular networks is

investigated, respectively. In this chapter, on the other hand, we are interested in the analysis

of coverage and rate of cellular networks, which lead to a different and novel mathematical

formulation. More specifically, we provide novel two-fold integral expressions for coverage

and rate, which have a compact mathematical formulation and are applicable to arbitrary

per-link power gains and path-loss exponents. In the interference-limited regime, exact

single-integral expressions formulated in terms of generalized hypergeometric functions are

provided. The developed mathematical frameworks are also applicable for several important

MIMO transmissions in downlink cellular networks, including spatial multiplexing (SMX) and

per-stream zero-forcing (ZF) [78, Section II.A.], orthogonal space-time block coding (OSTBC)

[79, Section 3.4],[78, Section II.B.], fixed rate singular value decomposition (SVD) multiplexing

[79, Section 3.2], MIMO MRC [81, 82, 83], selection diversity (SD) and combining [79, Section

3.5].

In one of the case studies, we focus our attention on fading channels and transmission

schemes whose equivalent per-link power gains follow a Gamma distribution with arbitrary

parameters. In this scenario, we provide approximated closed-form expressions for coverage

and rate, whose accuracy is assessed with the aid of Monte Carlo simulations. The rationale

of this choice originates from [37] and [30], where it is shown that the per-link power gains

of a large class of multiple-antenna transmission schemes for transmission over Rayleigh

fading channels can be approximated by a Gamma distribution with adequate parameters.

In [37], the impact of the parameters of the Gamma distribution is investigated by relying on

approximated expressions of the other-cell interference obtained through moment-matching

methods. In [30], the same problem is solved with the aid of stochastic ordering. In [19, Sec.

IV-H], it is shown that, in general, the analysis of multiple-antenna transmission schemes

requires the computation of the derivatives of the MGF of the other-cell interference. In this

Chapter, approximated but simple closed-form expressions for coverage and rate are provided,

which provide insight on the achievable performance of cellular networks as a function of

the parameters of the per-link power gains, e.g., the multiple-antenna transmission scheme if

Rayleigh fading is assumed.

In the other case study, we investigate the load modeling and service success probability of a

typical MT in partially loaded downlink cellular networks. The mathematical formulation of
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3.2. System Model

the load in cellular networks originates from [40, 41, 42, 43] and in this chapter we extend the

analysis of load to the case where multiple resource blocks are available at each BS.

3.2 System Model

3.2.1 PPP-Based Cellular Networks Modeling

A bi-dimensional downlink cellular network deployment is considered, where a probe MT is

located at the origin and the BSs are modeled as points of a homogeneous PPP, denoted by Φ,

of density λ. The MT is served by the nearest BS (BS0). Their distance is denoted by r0, which

is a RV having probability density function equal to fr0 (ξ) = 2πλξexp
(−πλξ2

)
[6]. Similar to

[6, Sec. VI], full-frequency reuse is considered. Thus, the set of interfering BSs (Φ(\0)) is still a

PPP of density λ. The distance from the i th interfering BS to the MT is denoted by ri > r0 for

i ∈Φ(\0).

3.2.2 Problem Formulation

The SINR of this downlink cellular network can be formulated as follows:

SINR = Pγ0r−α
0

N0 +PIag g (r0)

Iag g (r0) =
∑

i∈Φ(\0) γi r−α
i

(3.1)

where P is the equivalent transmit power of the BSs, N0 is the noise power, α > 2 is the

path-loss exponent, α = 2b with b denoting the amplitude path-loss exponent, Iag g (·) is

the aggregate other-cell interference, γ0 and γi for i ∈Φ(\0) are the per-link power gains of

intended and interfering links, which have an arbitrary distribution that usually depends on

fading channel and transmission scheme [37], [30].

In this chapter, coverage probability (Pcov) and average rate (R) are studied. They can be

formulated as follows:

Pcov (τ) = Pr{SINR ≥ τ} (3.2)

R = E {ln(1+SINR)}
(a)=
∫+∞

0
Pcov

(
exp(t )−1

)
d t

(b)= −
∫+∞

0
ln
(
1+ y

)
P(1)

cov

(
y
)

d y (3.3)

where τ> 0 is a reliability threshold, (a) follows from [19, Eq. (7)] and (b) follows by applying

integration by parts, since Pcov (τ→ 0) = 1 and Pcov (τ→∞) = 0.
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Chapter 3. Stochastic Geometry Modeling and Analysis of Downlink MIMO Cellular
Networks Using the Gil-Pelaez Inversion Theorem

3.3 MIMO Transmission Schemes in Downlink Cellular Networks

Let a downlink MIMO cellular network deployed as in Section 3.2, where a probe MT equipped

with Nr receive antennas is located at the origin and the BSs equipped with Nt receive an-

tennas are modeled as points of a homogeneous PPP Φ of density λ. Let H0, Hi , Gi be the

Nr ×Nt fading channel matrices from probe BS0 to the probe MT0, from interfering BSi to the

probe MT0, and from interfering BSi to its intended receiver respectively. More specifically,

H0 = [h0,1,h0,2, ...h0,Nt

]
with h0,t =

[
H(1,t )

0 ,H(2,t )
0 , ...,H(Nr ,t )

0

]T
, and the same notation applies

for Hi and Gi . For simplicity the downlink channels are assumed to be i.i.d. Rayleigh fad-

ing channels with unit mean square value E

{∣∣∣H(r,t )
0

∣∣∣2} = E

{∣∣∣H(r,t )
i

∣∣∣2} = E

{∣∣∣G(r,t )
i

∣∣∣2} = 1 for

t = 1,2, . . . , Nt , r = 1,2, . . . , Nr . s0 =
[

s(1)
0 ,s(2)

0 , ...,s(Nt )
0

]
and si =

[
s(1)

i ,s(2)
i , ...,s(Nt )

i

]
denotes the

transmit symbol vectors at the probe BS0 and interfering BSi , respectively.

In this section, five different MIMO transmission schemes are introduced, namely spatial

multiplexing (SMX) and per-stream zero-forcing (ZF) [78, Section II.A.], orthogonal space-time

block coding (OSTBC) [79, Section 3.4],[78, Section II.B.], fixed rate singular value decomposi-

tion (SVD) multiplexing [79, Section 3.2], MIMO MRC [81, 82, 83], selection diversity (SD) and

combining[79, Section 3.5]. They cover a wide range of practical MIMO systems, including

the open-loop and close-loop networks, single-stream and multi-stream transmissions, etc.,

as summarized in Table 3.1, and performance analysis problem of these MIMO schemes in

downlink cellular networks can be formulated as in (3.1) and can be solved by the Gil-Pelaez

inversion approach introduced in this chapter.

Table 3.1: MIMO Transmission Schemes in Downlink Cellular Networks (MRT = Maximum
Ratio Transmission; Nt s=Number of Time Slots).

Schemes Transmitter Receiver Single-Stream Open-Loop Time
/Multi-Stream /Close-Loop Slot

SMX-ZF SMX Per-stream ZF Multi-Stream Open-Loop 1
OSTBC OSTBC code Matched Filter Multi-Stream Open-Loop Nt s

Fixed Rate SVD SVD SVD Single-Stream Close-Loop 1
MIMO MRC MRT MRC Single-Stream Close-Loop 1

SD & Combining Best Antenna MRC Single-Stream Close-Loop 1

3.3.1 Spatial Multiplexing and Per-Stream ZF Receiver

In an open-loop MIMO system, if spatial multiplexing is applied at the Nt -antenna transmitter,

then Nt streams of data are interfering each other. The Nr ×1 received signal vector y0,t =[
y(1)

0,t ,y(2)
0,t , ...,y(Nr )

0,t

]T
at Nr -antenna MT0 from the t-th stream of Nt -antenna BS0 in the dowlink

62
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open-loop MIMO cellular networks can be formulated as follows:

y0,t =
√

E/Nt r−b
0 h0,t s(t )

0︸ ︷︷ ︸
useful signal

+
∑Nt

q=1,q �=t

√
E/Nt r−b

0 h0,q s(q)
0︸ ︷︷ ︸

self interference

+
∑

i∈Φ(\0)

√
E/Nt r−b

i Hi si︸ ︷︷ ︸
other cell Interference

+n0 (3.4)

The per-stream ZF receiver, multiplies the ZF vector wH
0,t ∈C 1×Nr on y0,t and the self-interference

between streams is eliminated [78, Section II.A.]. wH
0,t is the t-th row of the pseudo channel

inverse
(
HH

0 H0
)−1

HH
0 ∈C Nt×Nr , and per stream output can be formulated as follows:

z0,t = wH
0,t y0,t (3.5)

Proposition 3.1 Let the spatial multiplexing transmitter employed at the Nt -antenna BSs and

the per-stream ZF receiver employed at the Nr -antenna MTs in an open-loop downlink MIMO

cellular network, the SINR of z0,t in (3.5) at the output of the receiver can be formulated as in

(3.1) with P = E/Nt , γ0 ∼ Gamma(Nr −Nt −1, Nr −Nt −1) and γi ∼ Gamma(Nt , Nt ).

Proof: From (3.4) and (3.5), γ0,t =1/
[(

HH
0 H0

)−1
]

t andγi ,t =
[(

HH
0 H0

)−1
HH

0

(
Hi HH

i

)
H0
(
HH

0 H0
)−1
]

t

/
[(

HH
0 H0

)−1
]

t
, where [·]t denotes the (t , t )-th element in a square matrix. The rest of proof fol-

lows from [78, Section II.A.] and the subscript t is dropped since each stream is identical. �

3.3.2 Orthogonal Space-Time Block Coding

In an open-loop MIMO system, if OSTBC is applied, then Ns symbols are transmitted over Nt s

time slots using Nt ≤ Nr antennas [78, Section II.B.]. The code rate is coder ate = Ns/Nt s . The

received Nr ×Ns signal matrix Y0 at MT0 is as follows:

Y0 =
√

E/Nt r−b
0 H0X0︸ ︷︷ ︸

useful signal

+∑i∈Ψ̄\0
RB

√
E/Nt r−b

i Hi Xi︸ ︷︷ ︸
other cell Interference

+N0 (3.6)

where X0 = ∑Ns
q=1

(
s0,q Aq + sH

0,q Bq

)
and Xi = ∑Ns

q=1

(
si ,q Aq + sH

i ,q Bq

)
are Nt × Nt s transmitted

OSTBC code matrices at probe and interfering transmitters respectively, with s0,q and si ,q

denoting the q-th transmitted symbol of probe and interfering transmitters respectively.

For example,if Alamouti code is applied in a 2× 2 OSTBC MIMO system, the code rate is

then coder ate = Ns/Nt s = 1, and A1 =
(

1 0

0 0

)
,B1 =

(
0 0

0 1

)
and A2 =

(
0 0

1 0

)
,B2 =

(
0 −1

0 0

)
.

The fading channel matrices H0 and Hi are assumed to be consistent over Nt s time slots,

N0∼C N
(
0Nr ×Nt s ,N0INr ×Nt s

)
is the AWGN noise matrix.

Proposition 3.2 Let OSTBC in an open-loop downlink MIMO cellular network as in (3.6),

the SINR of the data estimate for one symbol can be formulated as in (3.1) with P = E/Nt ,
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γ0 ∼ Gamma(Nt Nr , Nt Nr ) and γi ∼ Gamma(Nr , Nr ).

Proof: Let h̄0 = vec (H0) be the vectorization of the matrix H0 and h̄(k)
i be a permutation

of entries in vec (Hi ) depending on the block coding structure. Then γ0 = ‖H0‖2 and γi =∑Nr

k=1

(
h̄H

0 /
∥∥h̄0
∥∥) h̄(k)

i s(k)
i . The rest of proof follows by [79, Section 3.4] and [78, Section II.B.] and

neglecting the correlation between each
(
h̄H

0 /
∥∥h̄0
∥∥) h̄(k)

i s(k)
i in γi . �

3.3.3 Fixed Rate SVD Multiplexing

The MIMO channel can be decomposed into spatial modes by means of its SVD as follows:

H0 = U0Σ0VH
0 ,U0 ∈C Nr ×Nr ,Σ0 ∈C Nr ×Nt ,V0 ∈C Nt×Nt

Gi = UiΣi VH
i ,Ui ∈C Nr ×Nr ,Σi ∈C Nr ×Nt ,Vi ∈C Nt×Nt

(3.7)

It is worth noting that Gi denotes the channel matrix from the i th interferer to its intended

receiver. U0,V0 are unitary matrices, Σ0 is the diagonal matrix of singular values, which are the

square roots of eigenvalues of the Wishart matrix H0HH
0 . Meanwhile, let Λ0 be the diagonal

matrix of eigenvalues. The same notation holds for interfering links. If the number of non-zero

eigenvalues is M , we can say MIMO spatial multiplexing has M spatial modes.

It is known that MIMO capacity can be achieved by SVD with full CSI (with power allo-

cation). The system model is as [79, Chapter 3.2], the Nr × 1 received signal vector y0 =[
y(1)

0 ,y(2)
0 , ...,y(Nr )

0

]T
at MT0 can be formulated as follows:

y0 =
√

E/Nt r−b
0 H0V0s0︸ ︷︷ ︸

useful signal

+∑i∈Φ(\0)

√
E/Nt r−b

i Hi Vi si︸ ︷︷ ︸
other cell Interference

+n0 (3.8)

The fixed rate SVD MIMO transmission scheme, multiplies unitary matrices UH
0 on y0, thus,

the post-processing signal vector is:

z0 = UH
0 y0 =

√
E/Nt r−b

0 Σ0s0 +
∑

i∈Φ(\0)

√
E/Nt r−b

i UH
0 Hi Vi si +UH

0 n0 (3.9)

The fixed rate SVD scheme is achieved by randomly selecting one mode among all available

modes [79, Eq. 4.8] as the probe link.

Proposition 3.3 Let fixed rate SVD in a close-loop downlink MIMO cellular network as in

(3.8) and (3.9), randomly selecting one mode among all the M available modes, the SINR

can be formulated as in (3.1) with P = E/Nt , γ0 having its PDF given as follows in (3.10) and

γi ∼ Gamma(M , M).

fγ0

(
φ
)= 1

M

∑M−1
k=0

(
Lk
(
φ
))2e−φ (3.10)
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where Lk
(
φ
)=∑k

i=0

(
k

k − i

)
(−φ)i

i ! .

Proof: From (3.8) and (3.9), for the interfering links, γi = ∑M
k=1

∣∣∣uH Hi vi ,k si ,k

∣∣∣2, where u is

the corresponding vector to the randomly selected mode (singular value); for the probe link,

randomly selecting one mode among all the M available modes results in a unordered eigenvalue

of a Wishart matrix. The rest of proof follows by [79, Eq. 4.13]. �

3.3.4 MIMO MRC

MIMO MRC [79, 80, 81], which performs maximum ratio transmission (MRT) at transmitter

and MRC at receiver. The Nr ×1 received signal vector y0 =
[

y(1)
0 ,y(2)

0 , ...,y(Nr )
0

]T
at Nr -antenna

MT0 can be formulated as follows:

y0 =
√

E/Nt r−b
0 H0wT,0s0︸ ︷︷ ︸

useful signal

+
∑

i∈Φ(\0)

√
E/Nt r−b

i Hi wT,i si︸ ︷︷ ︸
other cell Interference

+n0 (3.11)

where wT,i = Ui ,wT,0 = U0 are MRT vectors applied at the transmitter side with U0 being the

eigenvector corresponding to the largest eigenvalue λmax,0 of F0 = HH
0 H0 and Ui being the

eigenvector corresponding to the largest eigenvalue λmax,i of of Fi = GH
i Gi . The MIMO MRC

scheme, multiplies MRC vector wH
R,0 on y0, where wR,0 = H0U0, thus, the post-processing

signal is:

z0 = wH
R,0y0 (3.12)

Proposition 3.4 Let MRT being employed at the Nt -antenna BSs and MRC receiver being

employed at the Nr -antenna MTs in a close-loop downlink MIMO cellular network, the SINR of

z0 in (3.12) at the output of the receiver can be formulated as in (3.1) with P = E/Nt , γ0 having

its PDF given as follows in (3.14) and γi ∼ Gamma(1,1).

fγ0 (x) =
∑q

v=1

∑(p+q−2v)v
l=p−q cv,l xl e−v x∏q

k=1Γ
(
q −k +1

)
Γ
(
p −k +1

) (3.13)

where q = min(Nt , Nr ) , p = max(Nt , Nr ) and cv,l is the coefficient of xl e−v x .

Proof: From (3.11) and (3.12), γi =
(
1/λmax,0

)∣∣∣wH
R,0Hi wT,i

∣∣∣2 and it is a Rayleigh RV [80, Eq. 36].

γ0 is the largest eigenvalue λmax,0 of F0 = HH
0 H0. And its PDF is available in [81, 82, 83], while

its CDF is available in [80, Eq. 6].

�

Remark 3.1 The moment generating function of γ0 is available in close-form as follows accord-
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ing to [83]:

Mγ0 (s) = 1∏q
k=1Γ

(
q −k +1

)
Γ
(
p −k +1

) ∑q
v=1

∑(p+q−2v)v
l=p−q

dv,l

(1+ s/v)l+1
(3.14)

where the coefficient dv,l =
(
l !/vl+1

)
cv,l is available in [83, Table. I-IV]. For example, in a 2×2

MIMO MRC system, Nr = Nt = 2, the MGF of the γ0 is as follows:

Mγ0 (s) = 1∏2
k=1Γ (2−k +1)Γ (2−k +1)

(
d1,0

(1+ s)1 + d1,1

(1+ s)2 + d1,2

(1+ s)3 + d2,0

(1+ s/2)1

)

where the coefficients d1,0 = 2,d1,1 =−2,d1,2 = 2,d2,0 =−1 are from [83, Table. I]. �

3.3.5 Selection Diversity and Combining

Another single stream MIMO scheme is to perform MRC at receiver and select the best instan-

taneous channel (largest magnitude vector channel) at transmitter. The system model is as

in [79, Section 3.5]. The Nr ×1 received signal vector y0 =
[

y(1)
0 ,y(2)

0 , ...,y(Nr )
0

]T
at Nr -antenna

MT0 can be formulated as follows:

y0 =
√

E/Nt r−b
0 h0,t † s0︸ ︷︷ ︸

useful signal

+∑i∈Φ(\0)

√
E/Nt r−b

i hi ,t † si︸ ︷︷ ︸
other cell Interference

+n0 (3.15)

Let t † = ar g max
t

(∥∥h0,t
∥∥2
)

denote the best channel selection. The SD - combing scheme,

multiplies MRC vector hH
0,t † on y0 at the receiver side, thus, the post-processing signal is:

z0 = hH
0,t † y0 (3.16)

Proposition 3.5 Let best instantaneous channel selected at the Nt -antenna BSs and MRC re-

ceiver being employed at the Nr -antenna MTs in a close-loop downlink MIMO cellular network,

the SINR of z0 in (3.16) at the output of the receiver can be formulated as in (3.1) with P = E/Nt ,

γ0 having its CDF given as follows in (3.17) and γi ∼ Gamma(1,1).

Fγ0 (x) =
(

1−e−x
∑Nr −1

k=0

xk

k !

)Nt

=
(
1− Γ [Nr , x]

Γ [Nr ]

)Nt

(3.17)

Proof: From (3.15) and (3.16), γi =
∣∣∣(hH

0,t † /
∥∥h0,t †

∥∥)hi ,t †

∣∣∣2 and it is a Rayleigh RV [79]. γ0 =∥∥h0,t †

∥∥2 and its CDF is available in [79, Eq. 3.31].
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3.4 Gil-Pelaez Based Mathematical Frameworks to the Computations

of Coverage and Rate

In this section, new mathematical frameworks to the computation of (3.1) and (3.2) are pro-

vided, by assuming that γ0 and γi for i ∈Φ(\0) have an arbitrary distribution. For generality,

and according to, e.g., [37] and [30], the distributions of γ0 and γi are different and inde-

pendent. The interferers power gains γi for i ∈Φ(\0), on the other hand, are assumed to be

independent but identically distributed.

3.4.1 Coverage Probability

Theorem 3.1 Let Pcov (·) in (3.2). It can be formulated as:

Pcov (τ) = 1

2
−2λ

∫+∞

0
Im
{
Mγ0

(
j

x

τ

)
FNI (x)

} d x

x
(3.18)

where Mγ0 is the MGF function of γ0 and the following functions are introduced:

FNI (x) =
∫+∞

0
y exp

(
j yαx

N0

P

)
exp

(−πλy2ΥI
(

j x
))

d y (3.19)

ΥI (z) = Eγi

{
1F1

(
− 2

α
;1− 2

α
; zγi

)}
(3.20)

Proof: See Appendix 3.9.1. �

Corollary 3.1 Let Pcov (·) in (3.2) with N0 = 0, i.e., P[∞]
cov (·). It can be formulated as:

P[∞]
cov (τ) = 1

2
− 1

π

∫+∞

0
Im

{
Mγ0

(
j x
τ

)
ΥI
(

j x
) } d x

x
(3.21)

Proof: It follows from (3.19) letting N0 = 0 and computing the integral using
∫+∞

0 t exp
(−kt 2

)
d t =

1/(2k). �

The computation of (3.18) and (3.21) requires a closed-form expression of the expectation in

(3.20). Remark 3.2 provides a general approach to solve this problem.

Remark 3.2 Let Eγi

{
γk

i

} = γ̄k
((

p
)

k

/(
q
)

k

)
for k = 1,2, . . ., where p = (p1, p2, . . . , pN

)
and q =(

q1, q2, . . . , qM
)

are vectors with N and M real-valued entries, and
(
p
)

k and
(
q
)

k are short-hands

for
(
p
)

k = (p1
)

k

(
p2
)

k · · ·
(
pN
)

k and
(
q
)

k = (q1
)

k

(
q2
)

k · · ·
(
qM
)

k . Then, the following equalities
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hold:

ΥI (z)
(a)=∑+∞

k=0

(−2/α)k
(
p
)

k

(1−2/α)k
(
q
)

k

(
zγ̄
)k

k !

(b)= N+1FM+1

(
− 2

α
,p;1− 2

α
,q; zγ̄

)
(3.22)

where (a) and (b) follow from the series representation of the hypergeometric function [57,

Ch. 5, Eq. (2)]. The formulation Eγi

{
γk

i

}= γ̄k
((

p
)

k

/(
q
)

k

)
holds for a large number of fading

distributions and transmission schemes. A general class of distributions is available in [64, Eq.

(13)], whose moments can be computed using [58, Eq. (2.25.2.1)]. �

3.4.2 Average Rate

Theorem 3.2 Let R in (3.3). It can be formulated as:

R =−2λ
∫+∞

0
Im
{

jF0
(

j x
)
FNI (x)

}
d x (3.23)

where FNI (·) is defined in (3.19) and F0 (·) is given as follows:

F0 (z) =
∫+∞

0

ln
(
1+ y

)
y2 M (1)

γ0

(
z

y

)
d y (3.24)

Proof: It follows from (3.3) by using (3.18), since P(1)
cov
(
y
)= (2λ

y2

)∫+∞
0 Im

{
jM (1)

γ0

(
j
(

x
y

))
FNI (x)

}
d x.

�

Corollary 3.2 Let R in (3.3) with N0 = 0, i.e., R[∞]. It can be formulated as:

R[∞] =− 1

π

∫+∞

0
Im

{
j
F0
(

j x
)

ΥI
(

j x
) }d x (3.25)

Proof: It is the same as the proof of Corollary 3.1. �

Remark 3.3 The computation of (3.24) and (3.25) requires closed-form expressions for the first

derivative of Mγ0 (·). Luckily, they are available for many fading distributions. A summary can

be found in [64, Tables II–V]. �

3.5 Case Study: Coverage and Rate in Downlink Cellular Networks

with Gamma Distributed Per-Link Power Gains

In this section, we focus our attention on the case study where the power gains of intended and

interfering links follow a Gamma distribution with arbitrary parameters, γ0 ∼ Gamma(m0,Ω0)
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and γi ∼ Gamma(mI ,ΩI ). This case study is meaningful because it finds application to the

analysis of cellular networks for propagation over Rayleigh fading, which rely on multiple-

antenna transmission schemes at the physical layer. The reader is referred to [37] and [30] for

further details. In order to get insight on the impact of the multiple-antenna transmission

scheme, the authors of [37] and [30] resort to approximated representations of the aggregate

other-cell interference and to stochastic ordering analysis. In [19, Sec. IV-H], it is shown

that an accurate analysis of this scenario would require the computation of the higher-order

derivatives of the MGF of the aggregate other-cell interference. Unlike these papers, with

the aid of the mathematical formulations in Corollary 3.1 and Corollary 3.2, we propose

approximated but closed-form expressions for coverage and rate. The obtained mathematical

expressions are shown to provide relevant information on the impact of system parameters,

which may offer a simple approach for comparing various multiple-antenna transmission

schemes at the physical layer [37], [30]. In Section 4.6, we show that the performance trends

obtained from the proposed mathematical frameworks are confirmed with the aid of Monte

Carlo simulations.

By assuming γ0 ∼ Gamma(m0,Ω0) and γi ∼ Gamma(mI ,ΩI ), Corollary 3.1 and Corollary 3.2

can be simplified as follows:

P[∞]
cov (τ)

(a)= 1

2
− 1

π

∫+∞

0
Im

{ (
1+ j κ̃0x

)−m0

2F1
(− 2

α ,mI ;1− 2
α ; jκI x

)} d x

x
(3.26)

R[∞] (b)= 1

πΓ (m0)

∫+∞

0
Im

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G2,3

3,3

(
jκ0x

∣∣∣∣∣ 1 1 1−m0

1 1 0

)
2F1
(− 2

α ,mI ;1− 2
α ; jκI x

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

d x

x
(3.27)

where κ0 =Ω0
/

m0, κ̃0 = κ0
/
τ and κI =ΩI

/
mI . Also, (a) is obtained by taking into account

that Mγ0 (s) = (1+ sκ0)−m0 [60, Eq. (2.22)], Eγi

{
γk

i

}= κk
I (mI )k [60, Eq. (2.23)] and by applying

Remark 3.2. The equality in (b) is obtained using similar mathematical steps. In addition,

F0 (·) is computed by taking into account that M (1)
γ0

(s) =−Ω0 (1+ sκ0)−(m0+1) and by using [58,

Eq. (8.4.2.5)], [58, Eq. (8.4.6.5)] and [58, Eq. (2.24.1.1)].

Approximated closed-form expressions of (3.26) and (3.27) are provided in Proposition 3.6 and

Proposition 3.7, respectively.

3.5.1 Coverage Probability

Proposition 3.6 Let P[∞]
cov (·) in (3.26). The following holds:

P[∞]
cov (τ) ≈ 1−

(
1+ 1

2

1

m0

Ω0

ΩI
(α−2)

1

τ

)−m0

(3.28)
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Proof: See Appendix 3.9.2. �

Remark 3.4 By direct inspection of (3.28), the coverage probability has the following perfor-

mance trends: i) it increases as η=Ω0 (α−2)
/

(τΩI ) increases; ii) it increases as m0 increases;

and iii) it is independent of mI . �

Remark 3.5 Let KPcov =
(
Ω0
/
ΩI
)(

1
/

(m0τ)
)
. The accuracy of the approximation in (3.28) in-

creases as KPcov increases. This follows by using the same line of thought as [75, Fig. 1]. In

(3.48), in fact, the first-order Taylor approximation of the hypergeometric function is used. As a

consequence, this approximation is accurate when the numerator of the integrand function in

(3.26) behaves more and more like a delta function at the origin. This occurs as KPcov increases.

�

3.5.2 Average Rate

Proposition 3.7 Let R[∞] in (3.27). The following holds:

R[∞] ≈ 1

Γ (m0)
G3,2

3,3

((
1

2

1

m0

Ω0

ΩI
(α−2)

)−1
∣∣∣∣∣ 0 0 1

m0 0 0

)
(3.29)

Proof: By inserting the first derivative of (3.28) in (3.3), R[∞] is:

R[∞] ≈ κ0I

∫+∞

0
ym0−1 ln

(
1+ y

)(
y +κ0I /m0

)−(m0+1) d y (3.30)

where κ0I = (1/2)
(
Ω0
/
ΩI
)

(α−2). The proof follows by computing the integral using [58, Eq.

(8.4.2.5)], [58, Eq. (8.4.6.5)] and [58, Eq. (2.24.1.1)]. �

Remark 3.6 By plotting the Meijer G-function in (3.29) as a function of η̃= (Ω0/ΩI )(α−2) and

m0, the same performance trends as for the coverage (Remark 3.4) hold. �

Remark 3.7 Let KRate = (Ω0
/
ΩI
)(

1
/

m0
)
. The accuracy of the approximation in (3.29) in-

creases as KRate decreases. It follows similar to Remark 3.5, by taking into account that the

Meijer G-function in the numerator of (3.27) behaves more and more like a delta function at

the origin as KRate decreases. �
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3.6 Case Study: Service Success Probability in Partially Loaded Down-

link Cellular Networks

3.6.1 Modified System Model and Problem Formulation

Let the BSs of a downlink SISO/MIMO cellular network be deployed as in Section 3.2, in

partially loaded networks [40, 41, 42, 43], each BS is assumed to have limited NRB available

resource blocks. Let λ(MT) be the deployment density of the MTs, which is also a PPP, the

following two scenarios could happen: i) multiple MTs could be potentially associated with

one BS. Due to limited resource blocks, only limited number of MTs can be served; ii) a few

or no MTs are potentially associated with a BS and the resource blocks are not fully utilized.

Thus, a BS may not be transmitting on some available resource blocks. The load is considered

by introducing two probabilities: the MT selection probability on a random resource block

p(RB)
select and the BS inactive probability on a random resource block p(RB)

inactive. The mathematical

formulations of these two probabilities are introduced in the next section.

Conditioning on the selection of the probe MT, on a random resource block, the conditional

SINR of this partially loaded downlink cellular network can be formulated as follows:

SINR|(MT being selected
)= P/NRBγ0r−α

0

N0 +P/NRBĨag g (r0)

Ĩag g (r0) =
∑

i∈Φ̃(\0) γi r−α
i

(3.31)

where P/NRB is the equivalent transmit power of the BSs, equally allocated in all NRB resource

blocks, Ĩag g (·) is the aggregate other-cell interference from the active set of interfering BSs

on the random resource block i ∈ Φ̃(\0), where the density of Φ̃(\0) is a thinning version of the

density of all BSs Φ(\0), i.e.,

λ̃=
(
1−p(RB)

inactive

)
λ (3.32)

In this section, conditional coverage probability (P̃cov), which is the SINR coverage probability

conditioning on the probe MT being selected, and service success probability (Pservice), which

is the probability that the cellular network succeeds in serving an arbitrary MT with the target

SINR threshold, are studied. They can be formulated as follows:

P̃cov (τ) = Pr
{

SINR|(MT being selected
)≥ τ

}
(3.33)

Pservice (τ) = p(RB)
select × P̃cov (τ) (3.34)
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3.6.2 Load Modeling

This section is focused on the mathematical modeling of p(RB)
select and p(RB)

inactive. Indeed, a special

case study of p(RB)
select and p(RB)

inactive has been done in [40, 41, 42, 43] for one resource block. In this

section, by relying on the similar steps, we extend the analysis to a general case with multiple

resource blocks.

The load modeling starts from the property of Poisson Voronoi cell, which is exactly the

network tessellation when shortest distance BS-to-MT cell association policy is applied in

cellular networks. The PDF of the size of a typical Voronoi cell, normalized by 1/λ, which has

been obtained through the extensive Monte Carlo simulations [77] and widely used in the

analysis of partially loaded cellular networks [40, 41, 42, 43], is given as follows:

fX (x) = 3.53.5

Γ (3.5)
x2.5e−3.5x (3.35)

where X is a RV denotes the cell size normalized by 1/λ.

Lemma 3.1 Let the random variable N denote the number of MTs in the Voronoi cell of a

randomly chosen BS. Then, the probability mass function (PMF) of N is as follows:

Pr{N = n} = 3.53.5Γ (3.5+n)
(
λ(MT)/λ

)n
Γ (3.5)n!

(
λ(MT)/λ+3.5

)n+3.5 (3.36)

Proof: The proof directly follows from [40, Lemma. 1]. �

Proposition 3.8 The probability that a randomly chosen BS does not have any MT in its Voronoi

cell is defined as p(BS)
inactive

p(BS)
inactive = Pr{N = 0} = (1+3.5−1λ(MT)/λ

)−3.5
(3.37)

Proof: The proof directly follows from Lemma 3.1 and [40, Proposition. 1]. �

Remark 3.8 From (3.37), the BS inactive probability is a monotonically increasing function of

the ratio λ(MT)/λ, i.e., given λ(MT), a higher density of BSs λ results in a higher probability that

a BS is inactive. �

Proposition 3.9 If NRB resource blocks are available, on a randomly chosen resource block, the

probability that a randomly chosen BS does not have any MT in its Voronoi cell is defined as

p(RB)
inactive:

p(RB)
inactive =

∑NRB

n=0 (1−n/NRB)Pr{N = n} (3.38)
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Proof: Let n be the number of MTs located in a randomly chosen Vonoroi cell. If and only if

n < NRB, there will be idle RBs, on which the BS is not transmitting. Given n MTs located in a

BS coverage area, the probability that this BS is not transmitting on a random RB is 1−n/NRB.

The rest of proof follows from the law of total probability. �

Remark 3.9 From (3.38), the BS inactive probability is a monotonically increasing function of

the number of resource blocks NRB, i.e., given λ(MT)/λ, more resource blocks at each BS results

in a higher probability that a BS is inactive on a randomly selected resource block. �

Lemma 3.2 The PDF of the size of the Voronoi cell, to which a randomly chosen MT belongs,

normalized by 1/λ, is as follows:

fY
(
y
)= 3.54.5

Γ (4.5)
y3.5e−3.5y (3.39)

where Y is a RV that denotes the size of the Voronoi cell normalized by 1/λ.

Proof: The proof directly follows from [40, Lemma. 2]. �

Lemma 3.3 Let the random variable N ′ denote the number of other MTs in the Voronoi cell to

which a randomly chosen MT belongs. Then, the PMF of N ′ is as follows:

Pr
{

N ′ = n
}= 3.54.5Γ (4.5+n)

(
λ(MT)/λ

)n
Γ (4.5)n!

(
λ(MT)/λ+3.5

)n+4.5 (3.40)

Proof: The proof directly follows from [40, Lemma. 3]. �

Proposition 3.10 If only one resource blocks are available at each BS, the probability that a

randomly chosen MT is assigned this resource block at a given time and is served by the nearest

BS is defined as p(BS)
select:

p(BS)
select =

1

λ(MT)/λ

(
1− (1+3.5−1λ(MT)/λ

)−3.5
)

(3.41)

Proof: The proof directly follows from [40, Proposition. 2]. �

Remark 3.10 From (3.41), the MT selection probability is a monotonically decreasing function

of the ratio λ(MT)/λ, i.e., given λ(MT), a higher density of BSs λ results in a higher probability

that a MT is selected. �

Proposition 3.11 If NRB resource blocks are available at each BS, the probability that a ran-

domly chosen MT is assigned a resource block at a given time and is served by the nearest BS is
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defined as p(RB)
select:

p(RB)
select = 1−

(
3.5

3.5+λ(MT)/λ

)4.5 Γ [4.5+NRB]

Γ (4.5)

(
λ(MT)/λ

3.5+λ(MT)/λ

)NRB

×
⎛⎝ 2F1

[
1,4.5+NRB,1+NRB, λ(MT)/λ

3.5+λ(MT)/λ

]
/Γ [1+NRB]

−NRB × 2F1

[
1,4.5+NRB,2+NRB, λ(MT)/λ

3.5+λ(MT)/λ

]
/Γ [2+NRB]

⎞⎠ (3.42)

Proof: If NRB resource blocks are available, the selection probability conditioning on N ′ = n <
NRB should always be 1 because in this case all MTs can be served, and selection probability

conditioning on N ′ = n ≥ NRB should be NRB/(n +1). Thus, by law of total probability, we have

p(RB)
select =

∑NRB−1
n=0 1Pr

{
N ′ = n

}+∑∞
n=NRB

NRB

n +1
Pr
{

N ′ = n
}

(a)=∑NRB−1
n=0 1

∫∞

0
Pr
{

N ′ = n
∣∣Y = y

}
fY
(
y
)

d y

+
∑∞

n=NRB

NRB

n +1

∫∞

0
Pr
{

N ′ = n
∣∣Y = y

}
fY
(
y
)

d y

(3.43)

The rest of proof follows by inserting Pr
{

N ′ = n
∣∣Y = y

} = (yλ(MT)/λBS)n

n! exp
(
yλ(MT)/λBS

)
[40,

Proposition. 2] into (3.43) and compute the resulting integrals with the aid of [85]. �

Remark 3.11 From (3.43), the MT selection probability is a monotonically increasing function

of the number of resource blocks NRB, i.e., given λ(MT)/λ, more resource blocks at each BS results

in a higher probability that a MT is selected. �

3.6.3 Service Success Probability

Theorem 3.3 Let Pservice (·) be the probability that the cellular network succeeds in serving an

arbitrary MT with the target SINR threshold. It can be formulated from (3.34):

Pservice (τ) = p(RB)
select × P̃cov (τ) = p(RB)

select

(
1

2
−2λ

∫+∞

0
Im
{
Mγ0

(
j

x

τ

)
F̃NI (x)

} d x

x

)
(3.44)

where Mγ0 (·) is the MGF function of γ0 and the following function is introduced:

F̃NI (x) =
∫+∞

0
y exp

(
j yαx

N0

P/NRB

)
exp

(−πλy2 +πλ̃y2 (1−ΥI
(

j x
)))

d y (3.45)

with the shorthand notation ΥI (z) = Eγi

{
1F1
(− 2

α ;1− 2
α ; zγi

)}
, as defined in (3.20) and the

density of the active set of interfering BSs on the random resource block λ̃=
(
1−p(RB)

inactive

)
λ, as

defined in (3.32).

Proof: The proof follows the steps in Theorem 3.1 with a thinning density λ̃ of interfering

BSs. And the MGF function Mγ0 (·) is available for various MIMO transmission schemes, as
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introduced in Section 3.2 . �

Corollary 3.3 Let Pservice (·) in (3.34) with N0 = 0, i.e., P[∞]
service (·). It can be formulated as:

P[∞]
service (τ) = p(RB)

select×P[∞]
cov (τ) = p(RB)

select

⎛⎝1

2
− 1

π

∫+∞

0
Im

⎧⎨⎩ Mγ0

(
j x/τ

)
1−
(
1−p(RB)

inactive

)(
1−ΥI

(
j x
))
⎫⎬⎭ d x

x

⎞⎠
(3.46)

Proof: It directly follows from the close-form expression of the integral as stated in the proof of

(3.20) . �

Remark 3.12 P[∞]
service (τ) as in (3.46) is a monotonically increasing function of the number of

resource blocks NRB, i.e., given λ(MT)/λ, more resource blocks at each BS results in a higher

probability that a MT is being successfully served. P[∞]
service (τ) as in (3.46) is a monotonically

increasing function of the ratio λ(MT)/λ, i.e., given λ(MT), a higher density of BSs λ results in a

higher probability that a MT is being successfully served.

Proof: By assuming Gamma distributed per-link gains and following the similar steps as in

the proof of (3.28), we can obtain P[∞]
service (τ) ≈ p(RB)

select ×
(
1−
(
1+ 1

1−p (RB)
inactive

1
2

1
m0

Ω0
ΩI

(α−2) 1
τ

)−m0
)
,

which is a monotonically increasing function of p(RB)
inactive. The rest of proof follows by noting the

trends in Remark 3.8,3.9,3.10,3.11. �

3.7 Numerical and Simulation Results

Validation of the Exact and Approximated Mathematical Frameworks In Fig. 3.1 and Fig.

3.2, numerical examples are shown to substantiate the proposed mathematical frameworks

against Monte Carlo simulations, which are obtained as described in [7, Sec. V-a]. For simplic-

ity, the interference-limited regime is analyzed, i.e., N0 = 0 and the per-link power gains are

Gamma distributed. The illustrations confirm that (3.26) and (3.27) are exact. They also show

that (3.28) and (3.29) are fairly accurate. In particular, the expected accuracy discussed in

Remark 3.5 and Remark 3.7 is confirmed. More importantly, (3.28) and (3.29) well reproduce

the behavior of coverage and rate as a function of the system parameters, as discussed in

Remark 3.4 and Remark 3.6. This is, in fact, the main usefulness of these approximations.

Furthermore, the figures show that the accuracy of (3.28) and (3.29) increases as α decreases.

This is an important outcome, since Monte Carlo simulations are either less accurate or require

more simulation time for small values of α. For α = 2.1, in fact, it has not been possible to

produce sufficiently accurate Monte Carlo results in Fig. 3.2.
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Figure 3.1: P[∞]
cov (·) as a function of T and K = (Ω0/ΩI ) (1/m0). Solid lines show (3.26), markers show (3.28) and

“black dots” show Monte Carlo simulations.

1 3 5 7 9 11 13 15 17 19
0

0.5

1

1.5

2

2.5

3

K

R
(∞

)

 

 
α=2.1

α=2.5

α=3

Figure 3.2: R[∞] as a function of K = (Ω0/ΩI ) (1/m0) and α. Solid lines show (3.27), markers show (3.29) and
“black dots” show Monte Carlo simulations.
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3.7. Numerical and Simulation Results

Impact of MIMO Transmission Schemes Fig. 3.4 validates the service success probabilities

and the conditional coverage probabilities of different MIMO schemes discussed in Section

3.3. With current setup in Fig. 3.4, the MIMO scheme results in the best coverage and service

success probability is MIMO MRC, while the worst is resulted from the transmission scheme

employing SMX at the transmitter and per stream ZF at the receiver. If both the probe link

and interfering link gains can be modeled as Gamma RV, the comparison of different MIMO

schemes (for example, SMX - per stream ZF and OSTBC) can be done by the discussions in

Remark 3.4.
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Figure 3.3: P[∞]
service (·) and P̃ [∞]

cov (·) of different MIMO transmission schemes. Markers show Corollary 3.3 and

“black dots” show Monte Carlo simulations. Setup: E/N0 → ∞, NRB = 1, λ(MT) = λ, α = 2b = 4, Nr = Nt = 2,
OSTBC code is the Alamouti code as in Section 3.3.2.

Impact of the Load Fig. 3.4 shows the impact of the load, by observing two factors, the

number of resource blocks NRB and the ratio λ(MT)/λ. As stated in Remark 3.12, P[∞]
service (τ) as

in (3.46) is a monotonically increasing function of the number of resource blocks NRB, i.e.,

given λ(MT)/λ, more resource blocks at each BS results in a higher probability that a MT is

being successfully served. P[∞]
service (τ) as in (3.46) is a monotonically decreasing function of the

ratio λ(MT)/λ, i.e., given λ(MT), a higher density of BSs λ results in a higher probability that a

MT is being successfully served. This trends coincide the intuitions and they are supported by

simulations as shown in Fig. 3.4.
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Figure 3.4: The impact of NRB and λ(MT)/λ on P[∞]
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Monte Carlo simulations. Setup: E/N0 →∞, α= 2b = 4, Nr = Nt = 2, SMX - per stream ZF MIMO transmission.
(a) NRB = 1; (b) λ(MT) =λ.

3.8 Conclusion

In this chapter, new mathematical expressions for coverage and rate of cellular networks are

provided with the aid of the Gil-Pelaez inversion formula. The frameworks are shown to be

general enough for the analysis of different fading channels and transmission schemes. Closed-

form approximated expressions are proposed when the per–link power gains are distributed

according to a Gamma distribution. Furthermore, partially loaded cellular systems are studied

through the Gil-Pelaez inversion as well.

The mathematical frameworks are able to provide insights into the impacts of several impor-

tance parameters on trends of network performance including coverage, rate, load and service

success probability, as well as the accuracy of proposed approximation when the per–link

power gains are distributed according to a Gamma distribution (γ0 ∼ Gamma(m0,Ω0) and

γi ∼ Gamma(mI ,ΩI )). More specifically,

• the coverage probability and average rate increase as η = Ω0 (α−2)
/

(τΩI ) and η̃ =
(Ω0/ΩI )(α−2) increase, respectively.

• The coverage probability and average rate increase as m0 increases and are (almost)

independent of mI .
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• The accuracy of the proposed approximation in terms of coverage probability and aver-

age rate increases as KPcov =
(
Ω0
/
ΩI
)(

1
/

(m0τ)
)

increases and KRate =
(
Ω0
/
ΩI
)(

1
/

m0
)

decreases, respectively.

• The accuracy of the proposed approximation in terms of coverage probability and

average rate increases as α decreases.

• The BS inactive probability and the MT selection probability increase as the number of

resource blocks increases. They also increase as the ratio λ(MT)/λ increases.

• The service success probability P[∞]
service (τ) increases as the number of resource blocks

increases. It also increases as the ratio λ(MT)/λ increases.
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3.9 Appendices

3.9.1 Proof of Theorem 3.1

From (3.1) and (3.2), Pcov (·) can be formulated as follows:

Pcov (τ) =
∫+∞

0
Pr

{
Iag g (ξ) ≤ γ0ξ

−α

τ
− N0

P

∣∣∣∣ξ} fr0 (ξ)dξ

=
∫+∞

0
Eγ0

{
FIag g

(
γ0ξ

−α

τ
− N0

P

)}
fr0 (ξ)dξ

(3.47)

where FIag g (z) = Pr
{
Iag g (ξ) ≤ z

}
. FIag g (·) can be formulated in terms of the CF of the aggre-

gate other-cell interference, ψIag g (·), with the aid of the Gil-Pelaez inversion formula [54].

ψIag g (·) is available in [6, Eq. (4)]. The proof follows by re-writing [6, Eq. (4)] in terms of

1F1 (·; ·; ·), i.e., ψIag g (ω;ξ) = exp
(
πλξ2

[
1−ΥI

(
jωξ−α

)])
.

3.9.2 Proof of Proposition 3.6

From [57, Ch. 5, Eq. (2)], we have 2F1
(−2/α,mI ;1−2/α; jκI x

) ≈ 1− j 2ΩI (α−2)−1 x. Then,

(3.26) can be approximated as follows:

P[∞]
cov (τ)

(a)≈ 1

2
− 1

2π j

∫+∞

0

((
1+ j κ̃0x

)−m0

1− j κ̃I x
−
(
1− j κ̃0x

)−m0

1+ j κ̃I x

)
d x

x

(b)= 1− j

2

((− j
)2m0 − ( j

)2m0

(κ̃0 + κ̃I )m0

κ̃
m0
I

sin(πm0)

) (3.48)

where κ̃I = 2ΩI (α−2)−1, (a) follows from Im{z} = (2 j
)−1 (z − zH

)
and (b) from ln(−1) = jπ

and [85] as shown in (3.49) as follow:

1

2π j

∫+∞

0

((
1+ j κ̃0x

)−m0

1− j κ̃I x
−
(
1− j κ̃0x

)−m0

1+ j κ̃I x

)
d x

x

= j

2π
κ̃
−2m0
0

(
κ̃0 + κ̃I

κ̃0

)−m0

[κ̃2m0
0 ln(−1)

(
κ̃0 + κ̃I

κ̃0

)m0

+ π

sin(πm0)

((− j κ̃0
)m0
(− j κ̃I

)m0 − ( j κ̃0
)m0
(

j κ̃I
)m0
)
]

(3.49)

The proof follows since
(

j
/

2
)((− j

)2m0 − ( j
)2m0

)/
sin(πm0) = 1.
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In this chapter, mathematical frameworks for system-level analysis and optimization of uplink

heterogeneous cellular networks with multiple BSs antennas are introduced. MRC and OC at

the BSs are studied and compared. A generalized cell association criterion and fractional power

control mechanism are considered. The locations of each tier of BSs are modeled as points of

homogeneous and independent Poisson point processes. With the aid of stochastic geometry,

coverage and rate are formulated in integral but mathematically and computationally tractable

expressions. Based on them, performance trends for small- and large-scale multi-antenna

BSs are discussed. Coverage and rate are shown to highly depend on several parameters,

including the path-loss exponent, the fractional power control compensation factor and the

maximum transmit power of the mobile terminals. The gain of OC compared to MRC is shown

to increase if a more aggressive power control is used and if the number of BSs antennas

increases but is finite. For the same number of BSs antennas, OC is shown to reach the noise-

limited asymptote faster than MRC. Based on the proposed frameworks, a heuristic algorithm

for system-level optimization is proposed and its effectiveness is demonstrated with the aid of

Monte Carlo simulations.

The rest of this chapter is organized as follows. In Section 4.1, the related work is reviewed and

the major new contributions are summarized. In Section 4.2, the system model is introduced.

In Sections 4.3 and 4.4, the mathematical frameworks for computing coverage and rate of MRC

and OC demodulators are presented, respectively. In Section 4.5, system-level optimization is

discussed and a heuristic algorithm for computing the optimal operating point is proposed. In

Section 4.6, frameworks and findings are validated with the aid of Monte Carlo simulations, as

well as relevant performance trends are discussed. Finally, Section 4.7 concludes this chapter.
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4.1 Introduction

4.1.1 Challenges in Stochastic Geometry Modeling of the Uplink

Modeling heterogeneous cellular networks by using stochastic geometry and point processes

theories is now routinely adopted for system-level performance evaluation and optimization

[15]. This approach, for example, has been successfully applied to for example, in single-tier

downlink cellular networks [6, 29], multi-antenna cellular networks [30, 31], heterogeneous

cellular networks [7, 32, 33, 35, 36, 42], and millimeter-wave cellular networks [44, 45, 46].The

analysis of uplink cellular networks, however, has received much less attention compared to its

downlink counterpart. The emergence of uplink intensive applications and services, e.g., video

chat/streaming, cloud-based storage/work, online gaming, etc. [86], however, has recently

shifted the focus of researchers towards an accurate modeling, analysis and optimization

of the uplink of heterogeneous cellular networks. This requires, however, to re-think the

modeling and to develop new mathematical frameworks for analysis and optimization. This is

due to the following main reasons:

• Power control plays a critical role for striking a flexible trade-off between coverage/rate

and power consumption as a function of the location of the Mobile Terminals (MTs)

within a cell [87]. The 3GPP, for example, adopts a fractional power control mechanism

that depends on the path-loss and on the maximum transmit power of the MTs [88].

• Several modeling assumptions of the downlink do not hold anymore [89]. Uplink and

downlink need to be considered as two different networks. Thus, the mathematical

frameworks used for the downlink are not directly applicable to the uplink: new accurate

and tractable abstraction models are needed.

• Due to the homogeneous transmit power of the MTs as opposed to the different tiers

of BSs, optimizing the downlink may not necessarily result in an optimized uplink

transmission [90]. The best serving BS, for example, may be different for the downlink

and the uplink (decoupled downlink/uplink) [91].

4.1.2 Related Work

A few researchers have developed mathematically tractable yet accurate analytical frameworks

for the uplink of heterogeneous cellular networks. The following contributions and limitations

are worth being mentioned:

• In [92], the authors study two-tier cellular networks based on Code Division Multiple

Access (CDMA) transmission. Small cell interference is modeled by relying on stochas-

tic geometry modeling. Macro cell interference, however, is modeled by assuming a

truncated Gaussian distribution (no PPP is used).
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• In [47], the authors study single-tier cellular networks with fractional power control. For

tractability, however, the BSs are assumed to be uniformly distributed in the Voronoi

cells of their MTs.

• In [48], the authors study cellular networks with truncated channel inversion power con-

trol. For tractability, a cell association based on the smallest path-loss is considered. To

compute the Laplace transform of the other-cell interference, some spatial constraints

that originate from the cell association are neglected.

• In [49], the authors study two-tier cellular networks with power control and a biased

cell association. The point process of the interfering MTs is modeled using a thinning

approach based on curve fitting.

• In [50], the authors study multi-tier cellular networks with fractional power control and

a weighted cell association. Similar to [49], a thinning-based approach for modeling

the point process of the interfering MTs is used. The proposed method, however, does

not require any fitting based on simulations. Also, the optimality of using a decoupled

downlink/uplink association is mathematically assessed.

• In [51], the authors study, from a utility optimization standpoint, multi-tier cellular

networks with fractional power control and a weighted cell association. To this end, a

utility function based on the proportionally fair criterion is introduced and optimized.

This utility function, however, is not directly related to coverage probability and average

rate of multi-tier cellular networks.

• In [52], the authors study two-tier cellular networks to characterize the association

probabilities of downlink and uplink transmissions. For tractability, however, power

control is not taken into account.

• In [53], the authors generalize [52]. They study the rate of the typical MT and validate

their findings against a real-world system-level simulator. For tractability, power control

is not taken into account and some simplifications to compute the Laplace transform of

the other-cell interference are made.

4.1.3 Contributions

Compared to these contributions, the present paper is different in several aspects. We focus our

attention on multi-antenna BSs, while the aforementioned papers study single-antenna BSs.

Maximum Ratio Combining (MRC) and Optimum Combining (OC) at the BSs are considered,

and their coverage and rate are formulated in integral but mathematically and computationally

tractable expressions. It is shown that the obtained frameworks reduce to simple closed-form

formulas for some simplified, but relevant, setups. A multi-tier cellular network topology

based on a weighted average received power cell association and fractional power control with

maximum transmit power at the MTs is considered. The obtained mathematical frameworks
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are used for system-level optimization as well, e.g., to compute the best cell association weight

and the best fractional power control compensation factor. Due to their relevance for future

cellular network deployments, coverage and rate of massive (or large-scale) Multiple-Input-

Multiple-Output (MIMO) systems [93], i.e., with many BSs antennas, are studied. It is shown,

in particular, that the fractional power control compensation factor plays an important role

on the achievable performance of MRC and OC with large-scale antenna-arrays.

Our approach for modeling uplink heterogeneous cellular networks with multi-antenna BSs

differs from those of [49] and [50]. In these papers, the point process of the actual interfering

MTs in a tier of BSs is modeled as a thinned version of the potential interfering MTs of that tier

of BSs, whose thinning probability depends on the tier association probability. The proposed

modeling approach, on the other hand, is more similar to that of [48] and [51], where the

thinning of [50] is not used. Our numerical results confirm that our approach offers the same

accuracy as that of [50]. The framework in [50], however, assumes single-antenna transmission

and no maximum transmit power constraint at the MTs. Compared to [48] and [51], important

differences hold. We improve the accuracy of the approach proposed in [48], by taking into

account that the distribution of the distance and of the transmit power of the typical MTs

need to be normalized by the tier association probability (see, e.g., [48, Eq. (30)]). Compared

to [48], we consider a weighted average received power cell association and fractional power

control. Compared to [51], we focus our attention on coverage and rate, instead of considering

a modified utility function based on the proportionally fair criterion. This modified utility

function, in fact, is not directly applicable to fading distributions different from Rayleigh (see,

e.g., [51, Eq. (28)]), which come into play if multiple-antenna BSs are considered.

4.2 System Model

A bi-dimensional uplink heterogeneous, i.e., multi-tier, cellular network is considered, where

the MTs act as transmitters and the BSs act as receivers. K tiers of BSs are available, where each

tier is characterized by different transmission characteristics, i.e., transmit-power, deployment

density, etc. The MTs are equipped with a single transmit antenna, while the BSs of the kth tier

are equipped with Nk receive antennas, for k = 1,2, . . . ,K . Each BS of every tier is assumed

to serve (i.e., receive data in the uplink) a single MT in each of its available resource blocks.

All BSs of every tier are assumed to be active, i.e., saturated traffic conditions hold. Let λ(MT)

and λ(BS)
k be the deployment densities of the MTs and of the kth tier of BSs. Saturated traffic

conditions hold if λ(MT) �
K∑

k=1
λ(BS)

k . In each resource block, as a result, the density of active

MTs that are served by the kth tier of BSs is equal to λ̄(MT)
k =λ(BS)

k for k = 1,2, . . . ,K . The set

of active MTs that belong to (i.e., are served by a BS of) the kth tier is denoted by Φ̄(MT)
k for

k = 1,2, . . . ,K .
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4.2.1 PPP-Based Cellular Networks Modeling

The BSs of the kth tier are distributed according to K homogeneous and independent PPPs,

Φ(BS)
k , of density λ(BS)

k for k = 1,2, . . . ,K . The MTs are distributed according to another ho-

mogeneous and independent PPP, Φ(MT), of density λ(MT). In general, Φ̄(MT)
k ⊆ Φ(MT) for

k = 1,2, . . . ,K . For mathematical tractability and in agreement with recent literature, e.g., [48]

and [51], the following modeling assumption is retained.

Assumption 4.1 For each tier of BSs and in each resource block, the sets of active MTs, Φ̄(MT)
k ,

are assumed to constitute K homogeneous and mutually independent PPPs of density λ̄(MT)
k

for k = 1,2, . . . ,K . This implies that the locations of the active MTs (intra- and inter-tier) are

mutually independent as well. �

In practice, the sets Φ̄(MT)
k for k = 1,2, . . . ,K are not PPPs because of the criterion used for

associating BSs and MTs (see Section 4.2.3) and of the constraint of having one active MT in

each resource block. They, in fact, introduce some spatial dependencies among the locations

of the active MTs. The accuracy of Assumption 4.1 is substantiated in Section 4.6. It is shown,

in particular, that Assumption 4.1 is sufficiently accurate if all spatial constraints originating

from the cell association criterion are duly taken into account.

4.2.2 Channel Modeling

The channel model takes path-loss, shadowing and fast-fading into account. The channels of

all uplink links of same tier are assumed to be independent and identically distributed (i.i.d.).

The uplink channels of different tiers are assumed to be independent and non-identically

distributed (i.ni.d.).

Path-Loss

Let a generic BS of the kth tier, i.e., BSk ∈Φ(BS)
k . Let a generic MT, i.e., MT ∈Φ(MT). Let their

transmission distance be rBSk ,MT. The close-in path-loss model, l (·), is defined as �
(
rBSk ,MT

)=
ρ0rαk

BSk ,MT [95], where ρ0 denotes the free-space path-loss at a distance of one meter and αk > 2

denotes the power path-loss exponent. In particular, ρ0 = (4π/ν)2, where ν is the transmission

wavelength.

Shadowing

Each uplink link between MT ∈Φ(MT) and BSk ∈Φ(BS)
k is subject to mid-scale fading, i.e.,

shadowing. Let it be denoted by SBSk ,MT. It is assumed to follow a log-normal distribution

[96], whose PDF is fSBSk ,MT (ξ) = 10log10 (e)
/(√

2πσ2
kξ
)

exp
(
−(10log10 (ξ)−μk

)2/(2σ2
k

))
[60],

where μk and σ2
k are mean and variance (in dB) of the RV 10log10

(
SBSk ,MT

)
, respectively. In

this paper, μk = 0 dB is assumed.
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Fast-Fading

Each uplink link between MT ∈Φ(MT) and BSk ∈Φ(BS)
k is subject to a complex channel gain,

i.e., fast-fading. Let it be denoted by hBSk ,MT. It is assumed to follow a circularly symmetric

complex Gaussian distribution with zero mean and variance Ωk (Rayleigh fading). Hence, the

power gain
∣∣hBSk ,MT

∣∣2 follows an exponential distribution with mean square value Ωk . The

PDF of
∣∣hBSk ,MT

∣∣2 is f∣∣∣hBSk ,MT

∣∣∣2 (ξ) = (1/Ωk
)

exp
(−ξ/Ωk

)
[60]. In this paper, Ωk = 1 is assumed.

4.2.3 Cell Association Modeling

A generalized cell association based on a weighted average received power criterion is consid-

ered [50]. Let the typical MT ∈Φ(MT). It is served by (i.e., it is associated to) the BS of the κth

tier defined as BSMT = argmin
BSκ∈Φ(BS)

κ

{
S−1/ακ

BSκ,MTrBSκ,MT

}
if the following condition holds:

TκR−ακ

κ,MT >Tk R−αk

k,MT for k �= κ= 1,2, . . . ,K

Rk,MT = min
BSk∈Φ(BS)

k

{
S−1/αk

BSk ,MTrBSk ,MT

}
for k = 1,2, . . . ,K

(4.1)

where SBSk ,MT and rBSk ,MT are shadowing and transmission distance of the MT-to-BSk link,

respectively, Tk is the cell association weight and Rk,MT is the shortest generalized distance

from MT to any BSs of the kth tier, i.e., BSk ∈Φ(BS)
k . The distance Rk,MT is generalized because

it accounts for shadowing as well.

Equation (4.1) encompasses several cell association criteria of interest. Let Qk and Bk for

k = 1,2, . . . ,K be the transmit power and the association bias of the BSs of the kth tier. The

following holds:

• If Tk = 1 for k = 1,2, . . . ,K , this corresponds to the minimum path-loss cell association

criterion that accounts for shadowing [63]. In this case, the highest received power in

the uplink is ensured.

• If Tk = Qk for k = 1,2, . . . ,K , this corresponds to the maximum received power cell

association criterion in the downlink [33]. In this case, the highest received power in the

downlink is ensured.

• If Tk = BkQk for k = 1,2, . . . ,K , this corresponds to the maximum biased received

power cell association criterion in the downlink [7]. In this case, neither the highest

received power in the uplink nor the highest received power in the downlink is ensured.

But, a better load balancing may be achieved.

The association weights Tk can be optimized to maximize the performance, as discussed in

Section 4.5.
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4.2.4 Power Control Modeling

According to [88], a fractional power control mechanism is considered. Let us assume that

a generic MT is served by a BS of the kth tier according to (4.1). For ease of notation, let us

introduce the conditional RV R̃k,MT = Rk,MT
∣∣X k for k = 1,2, . . . ,K , where Xk denotes the

event “the MT is served by a BS of the kth tier”. Equivalently, this conditional distance can

be formulated as R̃k,MT = Rk,MT
∣∣MT ∈ Φ̄(MT)

k . The RVs Rk,MT and R̃k,MT have, in general, a

different distribution, since R̃k,MT takes (4.1) into account.

A generalized fractional power control mechanism is considered. Let the typical MT. By

conditioning on MT being served by a BS of the kth tier according to (4.1), its transmit power

is chosen as follows:

P̃k,MT =
⎧⎨⎩P0R̃αkε

k,MT if P0R̃αkε
k,MT ≤ Pmax

P∞ otherwise
(4.2)

where P0 is the transmit power of MT before applying power control, 0 ≤ ε≤ 1 is the fractional

power control compensation factor, Pmax is the maximum transmit power at MT, and P∞ ≤
Pmax is a fixed power level that is enforced if the transmit power after applying power control

exceeds Pmax.

Equation (4.2) encompasses several power control schemes of interest. In particular, the

following holds:

• If P∞ = Pmax =∞, fractional power control with unbounded transmit power is obtained

[50].

• If P∞ = 0 and Pmax < ∞, fractional power control with truncated transmit power is

obtained [48].

• If P∞ = Pmax < ∞, fractional power control with finite maximum transmit power is

obtained [88].

• If ε= 0, no power control is applied. If ε= 1, power control based on channel inversion

is applied.

These case studies provide a different trade-off in terms of performance and power con-

sumption of the MTs [48], [50]. The fractional power control compensation factor, ε, may be

optimized accordingly.

Remark 4.1 Based on Assumption 4.1, the transmission distances of the active MTs are indepen-

dent. Since each MT is assumed to choose, according to (4.2), its transmit power independently

of the others, this implies that the transmit powers of the active MTs can be assumed to be

independent as well. �
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4.2.5 Signal Model and Demodulator

For ease of writing and presentation, the following notation and assumptions are considered:

• Based on Assumption 4.1 and thanks to the Slivnyak theorem [16], the analysis is per-

formed for a typical (MT, BS) pair. For every MT, its serving BS is chosen according to

(4.1). The probe (or intended) uplink link is identified by the subscript “0”. The typical

MT is denoted by MT0.

• The uplink links related to the interfering MTs, i.e., all active MTs in a given resource

block with the exception of MT0, are identified by the subscript “i”. The generic interfer-

ing MT is denoted by MTi .

• The shortest generalized distances Rk,MT of probe and interfering MTs are denoted by

Rk,0 and Rk,i . Likewise for R̃k,MT (conditional shortest generalized distance) and P̃k,MT

(conditional transmit power).

• Let the serving BS of MT0 belong to the κth tier and let it be denoted by BSMT0 . Then,

MT0 ∈ Φ̄(MT)
κ . Let a generic interfering MT be served by a BS that belongs to the kth

tier. Then, MTi ∈ Φ̄(MT)
k . Shadowing and fast-fading gains of the link from MTi ∈ Φ̄(MT)

k
to BSMT0 are denoted by Sκ,k,i and hκ,k,i for k �= κ. If k = κ, i.e., intra-tier interfering

MTs are considered, the simplified notation Sκ,i and hκ,i is used. From Section 4.2.2,

the distribution of Sκ,k,i and hκ,k,i depends on
(
μκ,σ2

κ

)
and Ωκ, i.e., the tier (κ) of the

serving BS of MT0 (BSMT0 ) determines the parameters of the distribution.

• Likewise, the generalized (i.e., that account for shadowing) distances from the interfering

MTs, which belong to the kth tier, to the serving BS of MT0 (i.e., BSMT0 ), which belongs

to the κth tier, are denoted by Dκ,k,i = S−1/ακ

κ,k,i rκ,i for k �= κ, where rκ,i is the distance

between MTi ∈ Φ̄(MT)
k and BSMT0 ∈Φ(BS)

κ . If k = κ, i.e., the interfering MTs are intra-tier,

the simplified notation Dκ,i is used. Unconditional and conditional shortest generalized

distances from the interfering MTs to their own serving BSs, which are different from

BSMT0 , are denoted by Rk,i and R̃k,i . They are defined as discussed in Section 4.2.4.

Remark 4.2 Dκ,k,i is neither a conditional nor a shortest distance. The subscript κ accounts

only for the fact that the shadowing parameters and the path-loss exponent in Dκ,k,i are those

of the κth tier. �

Let the typical MT be served by a BS of the κth tier, i.e., the conditioning upon Xκ holds.

The received vector, yκ,0 =
[

y (1)
κ,0, y (2)

κ,0, . . . , y (Nκ)
κ,0

]T
, at the Nκ-antenna probe BS, BSMT0 , can be
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formulated as follows:

yκ,0 =
√

P̃κ,0ρ
−1
0 R̃−αk

κ,0 hκ,0xκ,0 +nκ,0 +
∑

MTi∈Φ̄(MT)
κ \MT0

√
P̃κ,iρ

−1
0 D−ακ

κ,i hκ,i xκ,i 1
(
Dκ,i > R̃κ,i

)
+

K∑
k �=κ=1

∑
MTi∈Φ̄(MT)

k

√
P̃k,iρ

−1
0 D−ακ

κ,k,i hκ,k,i xk,i 1

(
Dκ,k,i >

((
Tκ

/
Tk
)

R̃αk

k,i

)1/ακ

) (4.3)

where, for t = {0, i }, hκ,k,t =
[

h(1)
κ,k,t ,h(2)

κ,k,t , . . . ,h(Nκ)
κ,k,t

]T
is the vector of fast-fading gains from the

MTs to BSMT0 , nκ,0 =
[

n(1)
κ,0,n(2)

κ,0, . . . ,n(Nκ)
κ,0

]T
is the vector of complex additive white Gaussian

noise at BSMT0 , and xk,t is the modulated symbol transmitted from the MTs. If k = κ, the

notation hκ,t is used. The distribution of each entry of hκ,k,t is in Section 4.2.2. The elements

of nκ,0 are i.i.d. and each of them follows a circularly symmetric complex Gaussian distribution

with zero mean and variance equal to σ2
N . The indicator functions, 1 (·), in (4.3) take the

geometric constraints introduced by the cell association criterion in (4.1) into account.

By inserting the generalized uplink power control of (4.2) in (4.3), the received vector can be

formulated as:

yκ,0 =
√

P0ρ
−1
0 R̃ακ(ε−1)

κ,0 hκ,0xκ,01

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)

+
√

P∞ρ−1
0 R̃−αk

κ,0 hκ,0xκ,01

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
)
+nκ,0

+ ∑
MTi∈Φ̄(MT)

κ \MT0

√√√√P0R̃ακε
κ,i

ρ0Dακ

κ,i

hκ,i xκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i ≤

(
Pmax

P0

)1/(ακε)
)

+ ∑
MTi∈Φ̄(MT)

κ \MT0

√
P∞

ρ0Dακ

κ,i

hκ,i xκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i >

(
Pmax

P0

)1/(ακε)
)

+
K∑

k �=κ=1

∑
MTi∈Φ̄(MT)

k

√√√√ P0R̃αkε
k,i

ρ0Dακ

κ,k,i

hκ,k,i xk,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i ≤

(
Pmax

P0

)1/(αkε)
)

+
K∑

k �=κ=1

∑
MTi∈Φ̄(MT)

k

√
P∞

ρ0Dακ

κ,k,i

hκ,k,i xk,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i >

(
Pmax

P0

)1/(αkε)
)

(4.4)

At the Nκ-antenna probe BS, BSMT0 , the symbol transmitted by the probe MT, MT0, i.e., xκ,0 in

(4.4), is estimated by applying a combiner whose weight vector is wκ,0 =
[

w (1)
κ,0, w (2)

κ,0, . . . , w (Nκ)
κ,0

]T
.

Then, the output of the combiner is zκ,0 = wH
κ,0yκ,0. In Sections 4.3 and 4.4, wκ,0 is chosen

based on MRC and OC criteria.
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4.2.6 Problem Statement

Let SINRκ,0 be the Signal-to-Interference-plus-Noise-Ratio (SINR) associated to zκ,0, assuming

that BSMT0 belongs to the κth tier. Three performance metrics are of interest: coverage

probability (Pcov (·)), average rate (R), and xth percentile rate (Rxth) of MT0. Based on [109]

and [53], they can be formulated as follows:

Pcov (τ) =
K∑
κ=1

Pr
{

SINRκ,0 > τκ
∣∣Xκ

}
Pr{Xκ} (4.5)

R= BW

K∑
κ=1

ESINRκ,0

{
log2

(
1+SINRκ,0

)∣∣Xκ

}
Pr{Xκ}

(a)= BW

ln(2)

K∑
κ=1

⎛⎝ +∞∫
0

Pcov (τκ|Xκ)

τκ+1
dτκ

⎞⎠Pr{Xκ}

(b)= BW

ln(2)

K∑
κ=1

⎛⎝− +∞∫
0

ln(τκ+1)P(1)
cov (τκ|Xκ)dτκ

⎞⎠Pr{Xκ}

(4.6)

Rxth|
(

K∑
κ=1

Pr
{

BW log2

(
1+SINRκ,0

)<Rxth
∣∣Xκ

}
Pr{Xκ}

)
= xth

(c)⇒ Rxth|
K∑
κ=1

Pr{Xκ}−Pcov

(
2Rxth/BW −1

)
= xth

(4.7)

where Xκ is the conditional event introduced in Section 4.2.4, τ = [τ1,τ2, . . . ,τK ]T and τκ

is the reliability threshold of the κth tier, BW is the transmission bandwidth, Pcov (τκ|Xκ) =
Pr
{

SINRκ,0 > τκ
∣∣Xκ

}
, P(1)

cov (τκ|Xκ) = dPcov (τκ|Xκ)
/

dτκ is the first derivative of Pcov (·), (a)

and (b) follow from [109, Eq. (3)], (c) from (4.5). Typically, x = {5,50,90} correspond to the

rates of cell-edge, median and cell-center MTs [53].

Remark 4.3 If P∞ = 0, the intended signal in (4.4) may be zero. Thus, the typical MT, MT0, may

be one of those in truncation outage [48], i.e., a MT whose transmit power after applying power

control exceeds Pmax and that is turned off for reducing its power consumption. Likewise, some

interfering MTs in (4.4) may be turned off, resulting in less interference. Thanks to the indicator

functions in (4.4), the proposed frameworks for coverage/rate account for the MTs in truncation

outage, both in terms of typical MT and interferers. �

Remark 4.4 The xth percentile rate in (4.7) is directly related to the coverage in (4.5). It can

be readily computed by using the Mathematica built-in function FindRoot. Examples are

illustrated in Section 4.6. �
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4.2.7 Preliminaries

In this section, enabling results for facilitating the computation of coverage and rate are

summarized.

Lemma 4.1 Let the shortest generalized distance Rk,t = min
BSk∈Φ(BS)

k

{
S−1/αk

BSk ,t rBSk ,t

}
for k = 1,2, . . . ,K

and t = {0, i }. Its PDF, i.e., fRk,t (·) and CCDF, i.e., F̄Rk,t (·), can be formulated as follows:

fRk,t (ξ) = 2πλ(S,α)
k ξexp

(
−πλ(S,α)

k ξ2
)

; F̄Rk,t (ξ) = exp
(
−πλ(S,α)

k ξ2
)

(4.8)

where λ(S,α)
k =λ(BS)

k E
{

S2/αk
BSk ,t

}
=λ(BS)

k exp

(
(2/αk )

10log10(e)μk + 1
2

(2/αk )2

(10log10(e))2 σ
2
k

)
.

Proof: It follows by applying the displacement theorem of PPPs [63, Sec. II-A] and the void

probability theorem of PPPs [16], [63, Sec. IV-A]. The expectation E
{

S2/αk

BSk ,t

}
follows from [60, Eq.

(2.55)]. �

Lemma 4.2 Let the cell association criterion in (4.1). The probability, Aκ = Pr{Xκ}, that a MT,

MTt for t = {0, i }, is served by a BS of the κth tier, i.e., MTt ∈ Φ̄(MT)
κ , can be formulated as follows:

Aκ = Pr{Xκ} = 2πλ(S,α)
κ

+∞∫
0

ξexp

(
−π

K∑
k=1

λ(S,α)
k

(
Tk
/
Tκ

)2/αk ξ2ακ/αk

)
dξ (4.9)

where λ(S,α)
k =λ(BS)

k exp

(
(2/αk )

10log10(e)μk + 1
2

(2/αk )2

(10log10(e))2 σ
2
k

)
for k = 1,2, . . . ,K .

Proof: From (4.1), by definition, Aκ = ERκ,t

{
Pr

{
K⋂

k �=κ=1
Rk,t ≥

((
Tk
/
Tκ

)
Rακ

κ,t

)1/αk

∣∣∣∣Rκ,t

}}
. By

definition of PPP, the shortest generalized distances Rk,t for k = 1,2, . . . ,K and t = {0, i } are in-

dependent. Thus, Aκ = ERκ,t

{
K∏

k �=κ=1
F̄Rk,t

(((
Tk
/
Tκ

)
Rακ

κ,t

)1/αk
)}

. The proof follows from Lemma

4.1. �

Corollary 4.1 Let Aκ in (4.9). If αk =α for k = 1,2, . . . ,K , the following holds:

Aκ =λ(S,α)
κ

(
K∑

k=1
λ(S,α)

k

(
Tk
/
Tκ

)2/α

)−1

(4.10)

where λ(S,α)
k =λ(BS)

k exp
(
(2/α)

(
10log10 (e)

)−1
μk + (1/2)(2/α)2

(
10log10 (e)

)−2
σ2

k

)
.

Proof: It immediately follows, by computing the integral, from Lemma 4.2. �

Lemma 4.3 Let the conditional shortest generalized distance R̃κ,t = Rκ,t
∣∣Xκ for κ= 1,2, . . . ,K
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and t = {0, i }. Its PDF can be formulated as follows:

fR̃κ,t
(ξ) = 2π

(
λ(S,α)
κ

/
Aκ

)
ξexp

(
−π

K∑
k=1

λ(S,α)
k

(
Tk
/
Tκ

)2/αk ξ2ακ/αk

)
(4.11)

where Aκ is available in Lemma 4.2 and in Corollary 4.1 if ακ =α for κ= 1,2, . . . ,K .

Proof: By definition, the CDF of R̃k,t is FR̃κ,t
(ξ) = Pr

{
R̃κ,t ≤ ξ

∣∣Xκ

}
. By applying the Bayes the-

orem, we have FR̃κ,t
(ξ) = Pr

{
R̃κ,t ≤ ξ∩Xκ

}/
Pr{Xκ}, where, by definition, Pr

{
R̃κ,t ≤ ξ∩Xκ

}=
ERκ,t

{
Pr

{
K⋂

k �=κ=1
Rk,t ≥

((
Tk
/
Tκ

)
Rακ

κ,t

)1/αk 1
(
Rκ,t ≤ ξ

)∣∣∣∣Rκ,t

}}
. The proof follows from Lemma

4.2. �

Corollary 4.2 Let the PDF of R̃κ,t in (4.11). Its CDF is equal to FR̃κ,t
(ξ) =

ξ∫
0

fR̃κ,t
(ζ)dζ. If αk =α

for k = 1,2, . . . ,K , it can be formulated as follows:

FR̃κ,t
(ξ) = 1−exp

(
−π

K∑
k=1

λ(S,α)
k

(
Tk
/
Tκ

)2/α
ξ2

)
(4.12)

Proof: It immediately follows, by computing the integral, from Lemma 4.3 and by using Corol-

lary 4.1. �

Lemma 4.4 Let the transmit power of the typical MT served by a BS of the κth tier be P̃κ,t in

(4.2) for κ= 1,2, . . . ,K and t = {0, i }. Let 0 ≤ P∞ ≤ Pmax. The CDF of P̃κ,t , i.e., FP̃κ,t
(·), can be

formulated as:

FP̃κ,t
(ξ) = FR̃κ,t

(
(min{ξ,Pmax}/P0)1/(ακε))+ F̄R̃κ,t

((
Pmax

P0

)1/(ακε)
)
1 (ξ≥ P∞) (4.13)

where FR̃κ,t
(·) and F̄R̃κ,t

(·) are CDF and CCDF of R̃κ,t , respectively, whose PDF, fR̃κ,t
(·), follows

from Lemma 4.3. If αk =α for k = 1,2, . . . ,K , FR̃κ,t
(·) follows from Corollary 4.2.

Proof: (4.2) can be written as P̃κ,t = P0R̃αkε
κ,t 1

(
R̃κ,t ≤

(
Pmax

P0

)1/(ακε)
)
+P∞1

(
R̃κ,t >

(
Pmax

P0

)1/(ακε)
)
.

By definition, its CDF is equal to FP̃κ,t
(ξ) = Pr

{
P̃κ,t ≤ ξ

} (a)= Pr

{
P0R̃αkε

κ,t ≤ ξ∩ R̃κ,t ≤
(

Pmax
P0

)1/(ακε)
}

+Pr

{
P∞ ≤ ξ∩ R̃κ,t >

(
Pmax

P0

)1/(ακε)
}

, where (a) holds because the two indicator functions are mu-

tually exclusive, i.e., the associated events are incompatible. The proof immediately follows

from Lemma 4.3. �

Lemma 4.5 Let Dκ,k,i = S−1/ακ

κ,k,i rκ,i for k �= κ = 1,2, . . . ,K be the generalized distances be-

tween the inter-tier interferers that belong to the kth tier, i.e., MTi ∈ Φ̄(MT)
k , and the probe

BS that belongs to the κth tier. Likewise, let Dκ,i = S−1/ακ

κ,i rκ,i be the generalized distances
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between the intra-tier interferers that belong to the κth tier, i.e., MTi ∈ Φ̄(MT)
κ \MT0, and the

probe BS that belongs to the κth tier. Let Assumption 4.1 hold, i.e., Φ̄(MT)
k constitutes a PPP

whose density is λ̄(MT)
k = λ(BS)

k . Then,
{
Dκ,k,i

}
MTi∈Φ̄(MT)

k
constitutes a PPP in R+ whose den-

sity is λ̄(S,α)
κ,k = λ(BS)

k exp
((

2
/
ακ

)(
10log10 (e)

)−1
μκ+ (1/2)

(
2
/
ακ

)2 (10log10 (e)
)−2

σ2
κ

)
. Likewise,{

Dκ,i
}

MTi∈Φ̄(MT)
κ \MT0

constitutes a PPP in R+ whose density is λ̄(S,α)
κ = λ̄(S,α)

κ,κ .

Proof: It follows by applying the displacement theorem of PPPs [63, Sec. II-A] and [60, Eq. (2.55)].

�

Remark 4.5 The density λ̄(S,α)
k of Lemma 4.5 is equal to λ(S,α)

k in Lemmas 4.1, 4.2, i.e., λ̄(S,α)
k =

λ(S,α)
k . �

Remark 4.6 Except for Lemma 4.5, all lemmas and corollaries in Section 4.2.7 are exact. The

BSs of each tier, in fact, constitute a PPP. Based on Assumption 4.1, on the other hand, the

active MTs of each tier constitute an approximated PPP. Lemmas 4.1-4.4 and Corollaries 4.1, 4.2

depend only on the distribution of the BSs. �

4.3 System-Level Analysis of Maximum Ratio Combining

Let us assume that a MRC demodulator is employed at the probe multi-antenna BS. As a result,

wκ,0 = hκ,0 [60, Ch. 11]. From (4.4), the SINR of zκ,0 = wH
κ,0yκ,0 = hH

κ,0yκ,0 can be formulated as

follows:

SINRκ,0 =Uκ,0

(
σ2

N +I \0
κ,κ+

K∑
k �=κ=1

Iκ,k

)−1

(4.14)

where the following short-hands have been introduced:

Uκ,0 = P0ρ
−1
0 R̃ακ(ε−1)

κ,0 γκ,01

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)
+P∞ρ−1

0 R̃−ακ

κ,0 γκ,01

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
)

I \0
κ,κ =

∑
MTi∈Φ̄(MT)

κ \MT0

P0ρ
−1
0 R̃ακε

κ,i D−ακ

κ,i γκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i ≤

(
Pmax

P0

)1/(ακε)
)

+ ∑
MTi∈Φ̄(MT)

κ \MT0

P∞ρ−1
0 D−ακ

κ,i γκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i >

(
Pmax

P0

)1/(ακε)
)

Iκ,k = ∑
MTi∈Φ̄(MT)

k

P0ρ
−1
0 R̃αkε

k,i D−ακ

κ,k,iγκ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i ≤

(
Pmax

P0

)1/(αkε)
)

+ ∑
MTi∈Φ̄(MT)

k

P∞ρ−1
0 D−ακ

κ,k,iγκ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i >

(
Pmax

P0

)1/(αkε)
)

(4.15)
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as well as the RVsγκ,0=
∣∣hκ,0

∣∣2∼Gamma(Nκ, NκΩκ), γκ,i =
∣∣∣(hH

κ,0

/∣∣hκ,0
∣∣)hκ,i

∣∣∣2∼Gamma(1,Ωκ)

for MTi ∈ Φ̄(MT)
κ \MT0, and γκ,k,i =

∣∣∣(hH
κ,0

/∣∣hκ,0
∣∣)hκ,k,i

∣∣∣2 ∼ Gamma(1,Ωκ) for MTi ∈ Φ̄(MT)
k .

These latter RVs follow a Gamma distribution because the fast-fading is a circularly symmetric

complex Gaussian RV (Section 4.2.2).

Based on (4.14), the following two sections provide frameworks for computing coverage and

rate. From Lemma 4.3 and Corollary 4.2, for ease of notation, we introduce the weighed PDF

and CDF f (Aκ)
R̃κ,0

(ξ) = Aκ fR̃κ,0
(ξ) = 2πλ(S,α)

κ ξexp

(
−π

K∑
k=1

λ(S,α)
k

(
Tk
Tκ

)2/αk
ξ2ακ/αk

)
and F (Aκ)

R̃κ,0
(ξ) =

ξ∫
0

f (Aκ)
R̃κ,0

(ζ)dζ.

4.3.1 Coverage Probability

Proposition 4.1 Let the SINR in (4.14) for any non-negative P∞ and Pmax. Let ψI \0
κ,κ

(·) and

ψIκ,k (·) be the CFs of I \0
κ,κ and Iκ,k in (4.15), respectively. The coverage probability in (4.5) can

be formulated as follows:

Pcov (τ) = 1/2−1/π
K∑
κ=1

+∞∫
0

Im

{
Ψκ,0 (ω;τκ)exp

(
jωσ2

N

)
ψI \0

κ,κ
(ω)

K∏
k �=κ=1

ψIκ,k (ω)

}
dω
/
ω (4.16)

whereΨκ,0 (ω;τκ)=Ψ
(P0)
κ,0 (ω;τκ)+Ψ(P∞)

κ,0 (ω;τκ), ψI \0
κ,κ

(ω)=ψ
(P0)
I \0

κ,κ
(ω)ψ(P∞)

I \0
κ,κ

(ω), ψIκ,k (ω)=ψ
(P0)
Iκ,k

(ω)

×ψ(P∞)
Iκ,k

(ω), and the following short-hands have been introduced:

Ψ
(P0)
κ,0 (ω;τκ) =

∫( Pmax
P0

)1/(ακε)

0

(
1+ jωP0ρ

−1
0 τ−1

κ Ωκξ
ακ(ε−1))−Nκ f (Aκ)

R̃κ,0
(ξ)dξ

Ψ
(P∞)
κ,0 (ω;τκ) =

∫+∞(
Pmax

P0

)1/(ακε)

(
1+ jωP∞ρ−1

0 τ−1
κ Ωκξ

−ακ
)−Nκ f (Aκ)

R̃κ,0
(ξ)dξ

ψ
(P0)
I \0

κ,κ
(ω) = exp

⎛⎝πλ̄(S,α)
κ

∫( Pmax
P0

)1/(ακε)

0
ξ2Υκ

(
jωP0ρ

−1
0 ξακ(ε−1)) fR̃κ,i

(ξ)dξ

⎞⎠
ψ

(P∞)
I\0
κ,κ

(ω) = exp

(
πλ̄(S,α)

κ

∫+∞(
Pmax

P0

)1/(ακε) ξ
2Υκ

(
jωP∞ρ−1

0 ξ−ακ
)

fR̃κ,i
(ξ)dξ

)

ψ
(P0)
Iκ,k

(ω) = exp

⎛⎝πλ̄(S,α)
κ,k

∫( Pmax
P0

)1/(αk ε)

0
ξ2αk /ακ

(
Tκ

Tk

)2/ακ

Υκ

(
jωP0ρ

−1
0

(
Tk

Tκ

)
ξακ(ε−1)

)
fR̃k,i

(ξ)dξ

⎞⎠
ψ

(P∞)
Iκ,k

(ω) = exp

(
πλ̄(S,α)

κ,k

∫+∞(
Pmax

P0

)1/(αk ε) ξ
2αk /ακ

(
Tκ

Tk

)2/ακ

Υκ

(
jωP∞ρ−1

0

(
Tk

Tκ

)
ξ−ακ

)
fR̃k,i

(ξ)dξ

)
(4.17)
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where Υκ (x) = 1− 2F1
(−2
/
ακ,1;1−2

/
ακ;Ωκx

)
. The rest of the functions are defined in Section

4.2.7.

Proof: See Appendix I. �

Remark 4.7 The modeling approach most similar to ours is that of [48] (Section 4.1). Besides

considering multi-antenna BSs, a generalized cell association and power control mechanism,

the difference between [48] and Proposition 4.1 emerges from (4.17). In (4.17), the PDF of R̃k,i ,

fR̃k,i
(·), which appears in ψI \0

κ,κ
(·) and ψIκ,k (·), is normalized by the association probability Aκ

(see (4.11)). This is not the case of [48, Eq. (30)]. �

Corollary 4.3 Let the SINR in (4.14), Ψ(P0)
κ,0 (·; ·), ψ(P0)

I \0
κ,κ

(·), ψ(P0)
Iκ,k

(·) in (4.17), P∞ = 0. The coverage

in (4.5) is:

Pcov (τ) = 1/2
K∑
κ=1

FR̃ (Aκ)
κ,0

((
Pmax

P0

)1/(ακε)
)

−1/π
K∑
κ=1

+∞∫
0

Im

{
Ψ

(P0)
κ,0 (ω;τκ)exp

(
jωσ2

N

)
ψ

(P0)
I \0

κ,κ
(ω)

K∏
k �=κ=1

ψ
(P0)
Iκ,k

(ω)

}
dω
/
ω

(4.18)

Proof: The proof is the same as that of Proposition 4.1 in Appendix I, by setting P∞ = 0. Al-

ternatively, by noting that 1/2−1/π
+∞∫
0

Im

{
exp

(
jωσ2

N

)
ψI \0

κ,κ
(ω)

K∏
k �=κ=1

ψIκ,k (ω)

}
dω
ω = 0, (4.18)

follows from (4.16). �

Remark 4.8 If P∞ = 0 and Pmax <∞, according to (4.2), the MTs whose distance from their

serving BSs is greater than Rk,max =
(

Pmax
P0

)1/(αkε)
are in truncation outage. If they are typical

MTs, their coverage is zero. Otherwise, their net impact to the other-cell interference is zero

and the coverage increases. The reduction of the coverage due to the typical MTs in truncation

outage corresponds to the first addend in (4.18), i.e., FR̃ (Aκ)
κ,0

((
Pmax

P0

)1/(ακε)
)
<Aκ if Pmax <∞, and

to the truncated integral Ψ(P0)
κ,0 (·; ·) if Pmax <∞. The increase of the coverage due to the reduced

other-cell interference is related to the fact that only the truncated integrals ψ(P0)
I \0

κ,κ
(·) and ψ

(P0)
Iκ,k

(·)
contribute to the CFs of the other-cell interference if Pmax <∞. �

Corollary 4.4 Let the coverage in Proposition 4.1 and Corollary 4.3. If Pmax =∞, it simplifies

to (4.18) with
K∑
κ=1

FR̃ (Aκ)
κ,0

((
Pmax

P0

)1/(ακε)
)
= 1 and by letting Pmax →∞ in Ψ

(P0)
κ,0 (·; ·), ψ(P0)

I \0
κ,κ

(·) and

ψ
(P0)
Iκ,k

(·).

Proof: The proof is the same as that of Proposition 4.1 in Appendix I, by letting Pmax →∞. It is

worth noting that, by definition of CDF,
K∑
κ=1

FR̃ (Aκ)
κ,0

((
Pmax

P0

)1/(ακε)
)
=

K∑
κ=1

Aκ = 1 if Pmax →∞. �
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Remark 4.9 Proposition 4.1 and Corollaries 4.3, 4.4 are formulated in terms of a two-fold

integral, which can be efficiently computed by state-of-the-art computational programs. A two-

fold integral is obtained in [50] too, even though single-antenna BSs, equal path-loss exponents,

a simpler power control are considered. �

From Proposition 4.1 and Corollaries 4.3, 4.4, simplified frameworks for relevant system setups

can be obtained. Some of them lead to minor simplifications and limited reduction of the

computational complexity. Hence, they are not reported here. This includes, e.g., full-channel

inversion power control (ε = 1), no power control (ε = 0), interference-limited networks

(σ2
N = 0), single-tier networks (K = 1), heterogeneous networks where all tiers of BSs have

the same path-loss exponent (αk = α). In the following corollaries, we illustrate three case

studies for which the number of nested integrals reduces to one or a closed-form expression is

obtained.

Corollary 4.5 Let the SINR in (4.14), αk = α, ε = 1, P∞ = 0. The coverage is equal to (4.18)

by setting ε= 1, Aκ = λ(S,α)
κ

(
K∑

k=1
λ(S,α)

k

(
Tk
Tκ

)2/α
)−1

, F (Aκ)
R̃κ,0

(ξ) = Aκ

(
1−exp

(
−π
(
λ(S,α)
κ

/
Aκ

)
ξ2
))

,

and:

Ψ
(P0)
κ,0 (ω;τκ) = (1+ jωP0ρ

−1
0 τ−1

κ Ωκ

)−Nκ F (Aκ)
R̃κ,0

((
Pmax

P0

)1/α
)

ψ
(P0)
I \0

κ,κ
(ω) = exp

(
πλ̄(S,α)

κ Υκ

(
jωP0ρ

−1
0

)
Vκ (Pmax)

)
ψ

(P0)
Iκ,k

(ω) = exp

(
πλ̄(S,α)

κ,k

(
Tκ

Tk

)2/α

Υκ

(
jωP0ρ

−1
0

(
Tk

Tκ

))
Vκ (Pmax)

)

Vκ (Pmax) =
(
πλ(S,α)

κ

Aκ

)−1

−
(
πλ(S,α)

κ

Aκ

)−1

exp

(
−πλ(S,α)

κ

Aκ

(
Pmax

P0

)2/α
)

−
(

Pmax

P0

)2/α

exp

(
−πλ(S,α)

κ

Aκ

(
Pmax

P0

)2/α
)

(4.19)

Proof: Since αk =α, (4.18) holds. It follows from (4.10), (4.12), by computing the integrals in

(4.17). �

Corollary 4.6 Let the SINR in (4.14), αk = α, ε = 1, Pmax = ∞. The coverage in (4.5) can

be formulated as in Corollary 4.5 by setting F (Aκ)
R̃κ,0

(Pmax →∞) = Aκ and Vκ (Pmax →∞) =(
πλ(S,α)

κ

/
Aκ

)−1
.

Proof: It immediately follows from Corollary 4.5 by noting that P∞ is irrelevant if Pmax →∞. �

Corollary 4.7 Let the SINR in (4.14), ε = 1, P∞ = 0, Nκ = 1. The coverage in (4.5) can be
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formulated as:

Pcov (τ) =
K∑

κ=1

(
exp

(−P−1
0 ρ0τκΩ

−1
κ σ2

N

)
ψ

(P0)
I \0

κ,κ

(
j P−1

0 ρ0τκΩ
−1
κ

)
×

K∏
k �=κ=1

ψ
(P0)
Iκ,k

(
j P−1

0 ρ0τκΩ
−1
κ

)
F (Aκ)

R̃κ,0

((
Pmax

P0

)1/ακ

)) (4.20)

where F (Aκ)
R̃κ,0

(·), ψ(P0)
I\0
κ,κ

(·) and ψ
(P0)
Iκ,k

(·) are the same as in Proposition 4.1. If αk =α, they can be

formulated in closed-form as in Corollary 4.5. If Pmax →∞, they simplify as shown in Corollary

4.6.

Proof: If Nκ = 1 for k = 1,2, . . . ,K , γκ,0 ∼ Gamma(1,Ωκ) and Pr
{
γκ,0 > ξ

}= exp
(−ξ/Ωκ

)
. Since

ε= 1 and P∞ = 0, Uκ,0 = P0ρ
−1
0 γκ,01

(
R̃κ,0 ≤

(
Pmax

P0

)1/ακ

)
. Thus, the coverage is equal to

Pcov (τκ|Xκ)

= ER̃κ,0,I \0
κ,κ,{Iκ,k }K

k �=κ=1

{
exp

(
− τκ

P0ρ
−1
0 Ωκ

(
σ2

N +I \0
κ,κ+

K∑
k �=κ=1

Iκ,k

))
1

(
R̃κ,0 ≤

(
Pmax

P0

)1/ακ

)∣∣∣∣∣Xκ

}
.

The rest of the proof follows by computing the expectations in the last formula. �

Remark 4.10 If αk =α, the coverage in Corollary 4.7 is in closed-form. Under the same assump-

tions, a closed-form cannot be obtained by letting Nκ = 1 in Corollaries 4.5, 4.6. The integral

with respect to ω in (4.18), in fact, has no closed-form. This is the reason why a different proof is

provided for the single-antenna setup. By equating (4.18) and (4.20), however, a closed-form for

such an integral is now available. �

4.3.2 Average Rate

An explicit expression of the rate is provided under the assumptions of Proposition 4.1. By

using the same methodology, simplified frameworks can be obtained for the case studies

discussed in the corollaries of Section 4.3.1. Further details are provided in Remark 4.11 in

what follows.

Proposition 4.2 Let the SINR in (4.14) for any non-negative P∞ and Pmax. Let ψI \0
κ,κ

(·) and

ψIκ,k (·) be the CFs of I \0
κ,κ and Iκ,k in (4.15), respectively. The average rate in (4.6) can be

formulated as follows:

R = BW (π ln(2))−1
K∑
κ=1

+∞∫
0

Im

{
Λκ,0 (ω; Nκ)exp

(
jωσ2

N

)
ψI \0

κ,κ
(ω)

K∏
k �=κ=1

ψIκ,k (ω)

}
dω
/
ω (4.21)

where ψI \0
κ,κ

(·), ψIκ,k (·) are defined in (4.17) and Λκ,0 (ω; Nκ) =Λ
(P0)
κ,0 (ω; Nκ)+Λ

(P∞)
κ,0 (ω; Nκ) with:
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WNκ
(x) =

Nκ∑
m=2

(−1)m

(Nκ+1−m) (x −1)m−1 + (−1)Nκ+1

(x −1)Nκ
ln(x)+

Nκ−1∑
m=1

1

m
+ ln(x)

Λ
(P0)
κ,0 (ω; Nκ) =

∫( Pmax
P0

)1/(ακε)

0
WNκ

(
jωP0ρ

−1
0 Ωκξ

ακ(ε−1)) f (Aκ)
R̃κ,0

(ξ)dξ

Λ
(P∞)
κ,0 (ω; Nκ) =

∫+∞(
Pmax

P0

)1/(ακε) WNκ

(
jωP∞ρ−1

0 Ωκξ
−ακ
)

f (Aκ)
R̃κ,0

(ξ)dξ

(4.22)

Proof: It follows by inserting the first derivative of (4.16) in (b) of (4.6), which leads to the

integral WNκ
(x) =

+∞∫
0

(
Nκx

/
τ2
)

ln(1+τ) (1+x/τ)−(Nκ+1) dτ. Its closed-form in (4.22) follows

from the equality WNκ
(x) = Nκx

+∞∫
0

ln(1+τ) (1+xτ)−(Nκ+1) dτ−Nκx
+∞∫
0

ln(τ) (1+xτ)−(Nκ+1) dτ,

whose closed-form expressions are obtained with the aid of the symbolic computational software

program Mathematica and of [97]. �

Remark 4.11 Similar to the coverage in Proposition 4.1, the rate in Proposition 4.2 is formulated

in terms of two nested integrals, which can be efficiently computed by state-of-the-art symbolic

software programs. �

Remark 4.12 Simplified expressions of the rate can be obtained from the corollaries in Section

4.3.1, by using the same approach as in Proposition 4.2 and, in particular, (b) in (4.6). For some

setups, a closed-form for Λκ,0 (·; ·), ψI \0
κ,κ

(·) and ψIκ,k (·) is available, which leads to a single

integral formulation of the rate. The only exception is Corollary 4.7. In this case, a single integral

expression can be obtained from (a) in (4.6). �

4.3.3 Massive MIMO Regime

In this section, a large number of BSs antennas is assumed. Pilot contamination [93] is

neglected, since we are mainly interested in the impact of power control in massive MIMO

[94]. Its analysis is postponed to future research. Due to space imitations, only the general

system setup is analyzed.

Corollary 4.8 Let the SINR in (4.14) for any non-negative P∞ and Pmax. Let Nκ � 1 for κ =
1,2, . . . ,K . Then, SINRκ,0 linearly increases with Nκ and the coverage in (4.5) can be formulated

as in (4.16), where ψI \0
κ,κ

(·) and ψIκ,k (·) are defined in (4.17) and Ψκ,0 (·; ·) is replaced by the
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following function:

Ψκ,0 (ω;τκ) →Ψ(Nκ�1)
κ,0 (ω;τκ) =Ψ

(Nκ�1,P0)
κ,0 (ω;τκ)+Ψ

(Nκ�1,P∞)
κ,0 (ω;τκ)

Ψ
(Nκ�1,P0)
κ,0 (ω;τκ) =

∫( Pmax
P0

)1/(ακε)

0
exp

(− jωP0ρ
−1
0 τ−1

κ ΩκNκξ
ακ(ε−1)) f (Aκ)

R̃κ,0
(ξ)dξ

Ψ
(Nκ�1,P∞)
κ,0 (ω;τκ) =

∫+∞(
Pmax

P0

)1/(ακε) exp
(− jωP∞ρ−1

0 τ−1
κ ΩκNκξ

−ακ
)

f (Aκ)
R̃κ,0

(ξ)dξ

(4.23)

Proof: By virtue of the strong law of large numbers, we have γκ,0 =
∣∣hκ,0

∣∣2 → NκΩκ if Nκ � 1.

As a result, Uκ,0 in (4.15) linearly increases with Nκ. Since γκ,i and γκ,k,i are independent of

Nκ, the other-cell interference in (4.15) is independent of Nκ as well. This implies that SINRκ,0

in (4.14) linearly increases with Nκ. The coverage follows by using the same steps as the proof of

Proposition 4.1 in Appendix I, but by replacing γκ,0 with its large-scale deterministic equivalent,

i.e., its expected value equal to γκ,0 → NκΩκ. �

Corollary 4.9 Let the SINR in (4.14) for any non-negative P∞ and Pmax. Let Nκ → ∞ for

κ= 1,2, . . . ,K . Let Z (x) = γEM + ln(x)+U (1,1, x). The average rate in (4.6) can be formulated

as in (4.21), where ψI \0
κ,κ

(·) and ψIκ,k (·) are defined in (4.17) and Λκ,0 (·; ·) is replaced by the

following function:

Λκ,0 (ω; Nκ) →Λ(Nκ�1)
κ,0 (ω) =Λ

(Nκ�1,P0)
κ,0 (ω)+Λ

(Nκ�1,P∞)
κ,0 (ω)

Λ
(Nκ�1,P0)
κ,0 (ω) =

∫( Pmax
P0

)1/(ακε)

0
Z
(

jωP0ρ
−1
0 NκΩκξ

ακ(ε−1)) f (Aκ)
R̃κ,0

(ξ)dξ

Λ
(Nκ�1,P∞)
κ,0 (ω) =

∫+∞(
Pmax

P0

)1/(ακε) Z
(

jωP∞ρ−1
0 NκΩκξ

−ακ
)

f (Aκ)
R̃κ,0

(ξ)dξ

(4.24)

Proof: It follows from (4.23), using steps similar to the proof of Proposition 4.2. Z (·) originates

by computing Z (x) = x
∫+∞

0 ln(1+ξ)ξ−2 exp
(−x

/
ξ
)

dξ with the aid of the software program

Mathematica. �

Remark 4.13 As for the coverage, from (4.17) and (4.23), the massive MIMO regime emerges if

the number of BSs antennas, Nκ, satisfies the condition

ηcov (Nκ;νκ) =
∫+∞

0

∣∣∣(1+ξ−νκ
)−Nκ −exp

(−Nκξ
−νκ
)∣∣∣2dξ� 1

for νκ = ακ (1−ε) and νκ = ακ. By direct inspection of ηcov (·; ·), we conclude that this error

signal goes faster to zero as νκ (a non-negative parameter) increases. Thus, fewer BSs antennas

are needed to enter into the massive MIMO regime as the path-loss exponent and the power

control compensation factor increases and decreases, respectively. Similar comments and trends

hold for the rate. By direct inspection of (4.22) and (4.24), the error signal is, in this case, equal

to ηrate (Nκ;νκ) =∫+∞0

∣∣WNκ
(ξ−νκ)−Z (Nκξ

−νκ)
∣∣2dξ. �

101



Chapter 4. Stochastic Geometry Modeling, System-Level Analysis and Optimization of
Uplink Heterogeneous Cellular Networks with Multi-Antenna Base Stations

Remark 4.14 By direct inspection of (4.15), we conclude that Nκ does not affect the other-cell

interference. It only affects the intended link. As a result, Nκ does not determine whether or not

the MRC operates in the noise- or interference-limited regimes. This trend applies to both small-

and large-scale MIMO systems. Let υκ (Pmax,P0,P∞,ακ,ε) = Pr

{
I \0

κ,κ+
K∑

k �=κ=1
Iκ,k ≤σ2

N

}
. The

MRC operates in the noise- and interference-limited regimes if υκ (Pmax,P0,P∞,ακ,ε) → 1 and

υκ (Pmax,P0,P∞,ακ,ε) → 0, respectively. The function υκ (·, ·, ·, ·, ·) can be formulated as in (4.16)

by letting Ψκ,0 (ω;τκ) = 1. It is independent of Nκ, but it highly depends on the quintuplet of

parameters (Pmax,P0,P∞,ακ,ε). �

4.4 System-Level Analysis of Optimum Combining

Let us assume that an OC demodulator is employed at the probe BS. As a result, wκ,0 =(
Cκ,0 +σ2

N INκ

)−1
hκ,0, where

C̃κ,0 = Cκ,0+σ2
N INκ

= E

{(
yκ,0 −

√
P̃κ,0ρ

−1
0 R̃−αk

κ,0 hκ,0xκ,0

)(
yκ,0 −

√
P̃κ,0ρ

−1
0 R̃−αk

κ,0 hκ,0xκ,0

)H
}

is the Nκ×Nκ interference plus noise covariance matrix [60, Ch. 11]. From (4.4), Cκ,0 can be

written as follows:

Cκ,0 =
∑

MTi∈Φ̄(MT)
κ \MT0

P0R̃ακε
κ,i

ρ0Dακ

κ,i

hκ,i hH
κ,i

(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i ≤

(
Pmax

P0

)1/(ακε)
)

+ ∑
MTi∈Φ̄(MT)

κ \MT0

P∞
ρ0Dακ

κ,i

hκ,i hH
κ,i

(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i >

(
Pmax

P0

)1/(ακε)
)

+
K∑

k �=κ=1

∑
MTi∈Φ̄(MT)

k

P0R̃αkε
k,i

ρ0Dακ

κ,k,i

hκ,k,i hH
κ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i ≤

(
Pmax

P0

)1/(αkε)
)

+
K∑

k �=κ=1

∑
MTi∈Φ̄(MT)

k

P∞
ρ0Dακ

κ,k,i

hκ,k,i hH
κ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i >

(
Pmax

P0

)1/(αkε)
)

(4.25)

From (4.4), the SINR of zκ,0 = wH
κ,0yκ,0 =

((
Cκ,0 +σ2

N INκ

)−1
hκ,0

)H
yκ,0 can be formulated as

follows:

SINRκ,0 = P0ρ
−1
0 R̃ακ(ε−1)

κ,0 hH
κ,0

(
Cκ,0 +σ2

N INκ

)−1
hκ,01

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)

+P∞ρ−1
0 R̃−ακ

κ,0 hH
κ,0

(
Cκ,0 +σ2

N INκ

)−1
hκ,01

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
) (4.26)

The SINR in (4.26) is a quadratic form in complex Gaussian vectors [98]. Based on this,
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frameworks for computing coverage and rate are provided in what follows. A notation similar

to the MRC is used.

4.4.1 Coverage Probability

Proposition 4.3 Let the SINR in (4.26) for σ2
N > 0 and P∞ > 0. The coverage in (4.5) can be

formulated as:

Pcov (τ) =
K∑
κ=1

∫( Pmax
P0

)1/(ακε)

0
Lκ

(
ξακ(ε−1);τκ,P0

)
f (Aκ)

R̃κ,0
(ξ)dξ

+
K∑
κ=1

∫+∞(
Pmax

P0

)1/(ακε) Lκ

(
ξ−ακ ;τκ,P∞

)
f (Aκ)

R̃κ,0
(ξ)dξ

(4.27)

where, for p ∈ {P0,P∞}, the following short-hands have been introduced:

Lκ

(
x;τκ, p

)= exp

(
− τκσ

2
N

pρ−1
0 Ωκx

)
Nκ∑
l=1

J
(p)
l ,κ (x;τκ)

(l −1)!

(
τκσ

2
N

pρ−1
0 Ωκx

)l−1

J
(p)
l ,κ (x;τκ) =

K∏
k=1

exp
(
−λ̄(S,α)

κ,k O
(p)
κ,k (x;τκ)

)

×

⎛⎜⎝1+
Nκ−l∑
m=1

m∑
m1=0

m∑
m2=0

· · ·
m∑

mK =0
1

(
K∑

k=1
mk = m

)
K∏

k=1

(
λ̄(S,α)
κ,k O

(p)
κ,k (x;τκ)

)mk

mk !

⎞⎟⎠
O

(p)
κ,k (x;τκ) =−π

(
Tκ

Tk

)2/ακ
∫( Pmax

P0

)1/(ακε)

0
ζ2αk /ακῩκ

((
Tk

Tκ

)(
P0
/

p
)(
ζαk (ε−1)/x

)
τκ

)
fR̃k,i

(ζ)dζ

−π

(
Tκ

Tk

)2/ακ
∫+∞(

Pmax
P0

)1/(ακε) ζ
2αk /ακῩκ

((
Tk

Tκ

)(
P∞
/

p
)(
ζ−αk

/
x
)
τκ

)
fR̃k,i

(ζ)dζ

(4.28)

and Ῡκ (x) = 1− 2F1
(−2
/
ακ,1;1−2

/
ακ;−x

)
. The rest of the functions are defined in Section

4.2.7.

Proof: See Appendix II. �

Remark 4.15 Similar to MRC, the coverage in (4.28) is formulated in terms of two nested

integrals (see Remark 4.9). Simplified frameworks exist for some case studies, which are discussed

in the following corollaries. �

Corollary 4.10 Let the SINR in (4.26) for σ2
N = 0 and P∞ > 0. The coverage in (4.5) can be
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formulated as:

Pcov (τ) =
K∑
κ=1

∫( Pmax
P0

)1/(ακε)

0
J

(P0)
1,κ

(
ξακ(ε−1);τκ

)
f (Aκ)

R̃κ,0
(ξ)dξ

+
K∑
κ=1

∫+∞(
Pmax

P0

)1/(ακε) J
(P∞)
1,κ

(
ξ−ακ ;τκ

)
f (Aκ)

R̃κ,0
(ξ)dξ

(4.29)

Proof: It immediately follows from (4.27), by letting σ2
N → 0. �

Corollary 4.11 Let the SINR in (4.26) for σ2
N > 0 and P∞ = 0. The coverage in (4.5) can be

formulated as:

Pcov (τ) =
K∑
κ=1

∫( Pmax
P0

)1/(ακε)

0
Lκ

(
ξακ(ε−1);τκ,P0

)
f (Aκ)

R̃κ,0
(ξ)dξ (4.30)

where O
(P0)
κ,k (x;τκ) =−π

(
Tκ

Tk

)2/ακ ∫( Pmax
P0

)1/(ακε)

0 ζ2αk /ακῩκ

((
Tk
Tκ

)(
ζαk (ε−1)

/
x
)
τκ

)
fR̃k,i

(ζ)dζ.

Proof: The proof is the same as in Appendix II, by letting P∞ = 0. �

Remark 4.16 It is worth emphasizing that the special cases in Corollary 4.10 and Corollary

4.11 cannot be obtained by numerically calculating (4.27), since indeterminate expressions

arise during the computation. �

Corollary 4.12 Let the SINR in (4.26) for σ2
N > 0, P∞ > 0, Nκ = 1 for κ = 1,2, . . . ,K . The

coverage in (4.5) can be formulated as in (4.27) with

Lκ

(
x;τκ, p

)= exp
(
−τκσ2

N

(
pρ−1

0 Ωκx
)−1
) K∏

k=1
exp

(
−λ̄(S,α)

κ,k O
(p)
κ,k (x;τκ)

)
.

Proof: It immediately follows from (4.27), by letting Nκ = 1 for κ= 1,2, . . . ,K . �

Corollary 4.13 Let the SINR in (4.26) for σ2
N > 0, P∞ > 0, and K = 1. The coverage in (4.5) is

as follows:

Pcov (τ1) =
∫( Pmax

P0

)1/(α1ε)

0
L1
(
ξα1(ε−1);τ1,P0

)
f (A1)

R̃1,0
(ξ)dξ

+
∫+∞(

Pmax
P0

)1/(α1ε) L1
(
ξ−α1 ;τ1,P∞

)
f (A1)

R̃1,0
(ξ)dξ

(4.31)

104



4.4. System-Level Analysis of Optimum Combining

where, for p ∈ {P0,P∞}, L1 (·; ·, ·) and O
(p)
1,1 (·; ·) are defined in (4.28) and J

(p)
l ,1 (·; ·) is as follows:

J
(p)
l ,1 (x;τ1) = exp

(
−λ̄(S,α)

1,1 O
(p)
1,1 (x;τ1)

)⎛⎜⎝1+
Nκ−l∑
m=1

(
λ̄(S,α)

1,1 O
(p)
1,1 (x;τ1)

)m
m!

⎞⎟⎠
(a)=

Γ
(
Nκ− l +1, λ̄(S,α)

1,1 O
(p)
1,1 (x;τ1)

)
Γ (Nκ− l +1)

(4.32)

Proof: It immediately follows from (4.27), by letting K = 1. The equality in (a) follows from the

identity 1+
M∑

m=1
xm
/

m! =
M∑

m=0
xm
/

m! = exp(x) (Γ (M +1, x)/Γ (M +1)). �

Although simplified, the frameworks in Corollaries 4.10-4.13 are still formulated in terms

of two nested integrals. In what follows, special cases that lead to either single-integral or

closed-forms are provided.

Corollary 4.14 Let ε= 1 and P∞ = 0. The coverage probability in (4.5) can be formulated as

follows:

Pcov (τ) =
K∑
κ=1

⎛⎝Nκ∑
l=1

J
(P0)
l ,κ (1;τκ)

(l −1)!

(
τκσ

2
N

P0ρ
−1
0 Ωκ

)l−1
⎞⎠exp

(
− τκσ

2
N

P0ρ
−1
0 Ωκ

)
F (Aκ)

R̃κ,0

((
Pmax

P0

)1/(ακε)
)

(4.33)

where O
(P0)
κ,k (1;τκ) =−π

(
Tκ

Tk

)2/ακ

Ῡκ

((
Tk
Tκ

)
τκ

)∫( Pmax
P0

)1/(ακε)

0 ζ2αk /ακ fR̃k,i
(ζ)dζ.

Proof: It immediately follows from Corollary 4.11, by letting ε= 1. �

Corollary 4.15 Let ε= 1 and Pmax →∞. The coverage probability in (4.5) can be formulated as

follows:

Pcov (τ) =
K∑
κ=1

Aκ

⎛⎝Nκ∑
l=1

J
(P0)
l ,κ (1;τκ)

(l −1)!

(
τκσ

2
N

P0ρ
−1
0 Ωκ

)l−1
⎞⎠exp

(
− τκσ

2
N

P0ρ
−1
0 Ωκ

)
(4.34)

where O
(P0)
κ,k (1;τκ) =−π

(
Tκ

Tk

)2/ακ

Ῡκ

((
Tk
Tκ

)
τκ

)∫+∞
0 ζ2αk /ακ fR̃k,i

(ζ)dζ.

Proof: It is similar to the proof of Corollary 4.14, by taking into account that F (Aκ)
R̃κ,0

(Pmax →∞) =
Aκ. �

Remark 4.17 The single-integrals in Corollary 4.14 and Corollary 4.15 are ready-computable,

since they involve no special functions. They correspond, in fact, to the CDF of R̃κ,0 and to the

fractional moments of R̃k,i . �
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Corollary 4.16 Let ακ =α for κ= 1,2, . . . ,K , ε= 1 and P∞ = 0. Let Vκ (·) in (4.19). The coverage

probability in (4.5) can be formulated as in Corollary 4.14 with

Aκ =λ(S,α)
κ

(
K∑

k=1
λ(S,α)

k

(
Tk

Tκ

)2/α
)−1

, F (Aκ)
R̃κ,0

(ξ) =Aκ

(
1−exp

(−π(λ(S,α)
κ

/
Aκ

)
ξ2))

and

O
(P0)
κ,k (1;τκ) =−π

(
Tκ

Tk

)2/α

Ῡκ

((
Tk

Tκ

)
τκ

)
Vκ (Pmax) .

Proof: It follows from Corollary 4.14 by using (4.10)-(4.12) and by computing the integrals in

closed-form. �

Corollary 4.17 Let ακ =α for κ= 1,2, . . . ,K , ε= 1 and Pmax →∞. The coverage in (4.5) can be

formulated as in Corollary 4.15 with

O
(P0)
κ,k (1;τκ) =−

(
Tκ

Tk

)2/α

Ῡκ

((
Tk

Tκ

)
τκ

)( K∑
k=1

λ(S,α)
k

(
Tk

Tκ

)2/α
)−1

.

Proof: It follows from Corollary 4.15, similar to the proof of Corollary 4.16 and Corollary 4.6. �

Corollary 4.18 Let ακ =α, ε= 1, P∞ = 0, Nκ = 1 and Vκ (·) in (4.19). The coverage in (4.5) is:

Pcov (τ) =
K∑
κ=1

exp
(
−τκσ2

N

(
P0ρ

−1
0 Ωκ

)−1
)( K∏

k=1
exp

(
−λ̄(S,α)

κ,k O
(P0)
κ,k (1;τκ)

))
F (Aκ)

R̃κ,0

((
Pmax

P0

)1/α
)

(4.35)

where F (Aκ)
R̃κ,0

(·) and O
(P0)
κ,k (1; ·) are the same as in Corollary 4.16. If Pmax →∞, (4.35) still holds

by letting F (Aκ)
R̃κ,0

(Pmax →∞) =Aκ with Aκ given in Corollary 4.16 and with O
(P0)
κ,k (1; ·) given in

Corollary 4.17.

Proof: It immediately follows from Corollary 4.12, Corollary 4.16 and Corollary 4.17. �

Remark 4.18 If Nκ = 1, MRC and OC reduce to the same demodulator. We expect, thus, that the

coverage in, e.g., Corollaries 4.7, 4.18, are the same. By direct comparison of (4.20) and (4.35),

for Pmax <∞ and Pmax →∞, we observe that they coincide if αk = α. This substantiates the

correctness of our analysis. Mathematically proving this equivalence for every system setup is,

on the other hand, not straightforward. The numerical computation of the frameworks for MRC

and OC confirms, in fact, that this holds in general. �
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4.4.2 Average Rate

As for MRC, Proposition 4.2 provides, in general, a two-fold integral for computing the average

rate. This is possible by capitalizing on the equality (b) in (4.6), which allows us to compute, in

closed-form, the integral with respect to τκ. This is not possible, unfortunately, for OC. In this

case, the most efficient approach for computing the average rate is to use the equality (a) in

(4.6). Based on propositions and corollaries in Section 4.4.1, this implies that the average rate

is formulated in terms of a three-, two- or one-fold integral, depending on the setup. We have

verified for many setups, however, that the integrals are efficiently computable with the aid of

state-of-the-art computational software. We are currently researching on different approaches

for computing the average rate of OC more efficiently. It is worth mentioning, however, that

average rate and 50th percentile rate, i.e., the median, are very close to each other. Thus,

the average rate may be replaced by the 50th percentile rate, which can be computed more

efficiently, as discussed in Remark 4.4.

4.4.3 Massive MIMO Regime

The framework in Proposition 4.3 is applicable to any Nκ, and, thus, it holds for Nκ � 1 as well.

Simplified but accurate frameworks for large but finite values of Nκ are difficult to be obtained,

because Nκ appear in both Lκ (·; ·, ·) and J
(p)
l ,κ (·; ·) of (4.28). In this section, thus, we focus

our attention on the converge, as a function of various parameters, of the OC demodulator

towards its noise-limited regime. This is, in fact, the ultimate objective of massive MIMO:

reducing, as much as possible, the impact of the other-cell interference. To facilitate this study,

Corollary 4.19 provides the coverage of OC in the absence of other-cell interference.

Corollary 4.19 Let the SINR in (4.26) for σ2
N > 0, P∞ > 0, and Cκ,0 = 0Nκ

, i.e., the system is

noise-limited. The coverage probability in (4.5) can be formulated as in (4.27), where:

Lκ

(
x;τκ, p

)= exp

(
− τκσ

2
N

pρ−1
0 Ωκx

)
Nκ∑
l=1

1

(l −1)!

(
τκσ

2
N

pρ−1
0 Ωκx

)l−1
(a)= Γ

(
Nκ,

τκσ
2
N

pρ−1
0 Ωκx

)/
Γ (Nκ)

(4.36)

If, in addition, Nκ � 1, the coverage probability in (4.5) can be formulated as follows:

P (Nκ�1)
cov (τ) =

K∑
κ=1

{
F (Aκ)

R̃κ,0

(
min

{(
Pmax

P0

)1/(ακε)

,

(
τκσ

2
N

P0ρ
−1
0 NκΩκ

)1/ακ(ε−1)})

+
(

F (Aκ)
R̃κ,0

((
τκσ

2
N

P∞ρ−1
0 NκΩκ

)−1/ακ
)
−F (Aκ)

R̃κ,0

((
Pmax

P0

)1/(ακε)
))

×1
((

τκσ
2
N

P∞ρ−1
0 NκΩκ

)−1/ακ

>
(

Pmax

P0

)1/(ακε)
)}

(4.37)
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Proof: In the noise-limited regime, λ̄(S,α)
κ,k = 0 holds. Then J

(p)
l ,κ (x;τκ) = 1 and (4.36) follows

from
M∑

m=1
xm−1

/
(m −1)! = exp(x) (Γ (M , x)/Γ (M)). (4.37) follows from (4.26) setting Cκ,0 = 0Nκ

and by virtue of the law of large numbers, since hH
κ,0

(
σ2

N INκ

)−1
hκ,0 → (NκΩκ)

/
σ2

N if Nκ � 1

holds. �

Remark 4.19 The coverage of OC in (4.36) and (4.37) is formulated in terms of a single-integral,

which reduces to a closed-form if ακ =α (see Corollary 4.2). The average rate can be efficiently

computed from (a) in (4.6). Also, (4.36) and (4.37) are applicable to MRC too, since the SINRs

(4.14) and (4.26) are the same if λ̄(S,α)
κ,k = 0. �

Remark 4.20 In the noise-limited regime, from the proof of Corollary 4.19, J
(p)
l ,κ (x;τκ) = 1

holds. Then, the gap, as a function of the system setup, from the noise-limited asymptote of

OC can be quantified by studying J
(p)
l ,κ (·; ·) for non-zero values of λ̄(S,α)

κ,k . By direct inspection

of J
(p)
l ,κ (·; ·) in (4.28), the following holds. 1) J

(p)
l ,κ (x;τκ) → 1 as O

(p)
l ,κ (x;τκ) → 0. This occurs

if Ῡκ (x) → 0, which implies 2F1
(−2
/
ακ,1;1−2

/
ακ;−x

)→ 1. From (4.28), we conclude that

OC converges faster to the noise-limited (i.e., massive MIMO) regime as the path-loss exponent

and the power control compensation factor increases and decreases, respectively. 2) Consider

the worst-case scenario of an interference-limited setup, i.e., σ2
N = 0. Also, assume K = 1 for

simplicity. From Corollary, 4.10 and Corollary 4.13, the coverage depends on Nκ only through

the function J
(p)
1,1 (x;τ1) = Γ

(
N1, λ̄(S,α)

1,1 O
(p)
1,1 (x;τ1)

)/
Γ (N1). As expected, hence, OC approaches

the massive MIMO regime as N1 increases, since Γ
(
N1, y

)/
Γ (N1) → 1 if N1 � 1 for every y.

The speed of convergence depends on the ratio of upper-incomplete Gamma and Gamma

functions. For a fixed N1, the massive MIMO regime is reached faster as O
(p)
1,1 (x;τ1) → 0, which

is in agreement with 1). These trends hold for σ2
N > 0 and K > 1 as well. In the presence of

other-cell interference, in fact, only a few terms of the summation of Lκ (·; ·, ·) in (4.28) provide

a contribution and, thus, (4.32) still converges to 1 as Nκ increases. �

Remark 4.21 By comparing Corollary 4.8 and Remark 4.20, it is apparent that MRC and OC

have similar trends as a function of the path-loss exponent and of the power control compensa-

tion factor. Coverage and rate, in addition, increase as Nκ increases. As for MRC, the convergence

towards the noise-limited regime is independent of Nκ. As for OC, on the other hand, it depends

on Nκ. In the presence of strong other-cell interference, thus, we expect that OC outperforms

MRC for a finite (small or large) number of receive antennas. Since the mathematical frame-

works of MRC and OC are quite different, this gain cannot be quantified in a mathematically

compact form, as a function of the quintuplet (Pmax,P0,P∞,ακ,ε). It can be readily obtained,

however, by plotting (4.16) and (4.27). Numerical examples are illustrated in Section 4.6. �
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4.5 System-Level Optimization

The mathematical frameworks introduced in Sections 4.3 and 4.4, despite being formulated,

for the most general system setup, in integral forms, constitute accurate utility functions

for system-level optimization. The importance of having them from a network utility op-

timization standpoint is discussed in [51]. Unlike [51], however, the utility functions in-

troduced in this paper are directly formulated in terms of coverage and rate. In general

terms, let o = {o1,o2, . . . ,oN } be the N -tuple of parameters to be optimized, where on ∈
{Pmax,P0,P∞,ε,Tκ, . . .} for n = 1,2, . . . , N . Likewise, let f be the set of fixed (given) parame-

ters that are not to be optimized. Since Pcov (τ) = Pcov (τ;o; f) and R = R (o; f), the network-

level optimization problem can be formulated as oopt = argmax
o

{Pcov (τ;o; f)} and oopt =
argmax

o
{R (o; f)} for coverage and rate, respectively. A similar optimization problem can be

formulated for the xth percentile rate. Based on their mathematical expressions in Sections

4.3 and 4.4, similar to [51], this optimization problem does not have, in general, a closed-form

solution and it is, in general, not convex. To make the computation of the optimum fast

and accurate, i.e., to avoid local maxima, we propose a pragmatic yet accurate algorithm

for system-level optimization. To be concrete, we introduce the main idea by considering a

two-tier, i.e., K = 2, cellular network and we focus our attention on the optimization of the

cell association weights T1 and T2 in (4.1), while keeping all the other parameters fixed. A

similar optimization problem is studied in [50] and [51], but under different assumptions. Let

T̂ = T2
/
T1, then o = {T1,T2} = T̂ . We propose the following algorithm for computing the

optimal value of T̂ , i.e., oopt = T̂opt:

1. Identify the range where the optimum, T̂opt, is likely to belong to, i.e., T̂ ∈ [T̂min,T̂max
]
.

This range can be identified with the aid of the association probability A1 in (4.9). More

specifically,
(
T̂min,T̂max

)
can be computed by solving the equations A1

(
T̂min

)= 0.99

and A1
(
T̂max

)= 0.01. Outside this range, in fact, the typical MT is always served by one

of the two tiers of BSs almost surely. For example, these solutions can be found with the

aid of the NSolve function in Mathematica.

2. Plot the utility function of interest, i.e., coverage or rate, as a function of T̂ ∈ [T̂min,T̂max
]

with a coarse step size T̂step. Based on 3GPP documents, T̂step may be of the order of 2

dB or 3 dB [99].

3. Compute the optimum of the utility function based on the set of available points. Let

denote it by T̂ (0)
opt . In the range T̂ ∈

[
T̂ (0)

opt − T̂step, T̂(0)
opt + T̂step

]
, the utility function is, in

general, concave.

4. Solve the optimization problem T̂opt = argmax
T̂ ∈

[
T̂ (0)

opt−T̂step,T̂ (0)
opt+T̂step

]{F(T̂ )}, where F
(
T̂
) =

Pcov
(
τ;T̂

)
, F
(
T̂
)=R

(
T̂
)

or F
(
T̂
)=Rxth

(
T̂
)
, which has a unique solution. The opti-

mum can be found using the FindMaximum function in Mathematica, by setting the

initial point to T̂ (0)
opt .
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Remark 4.22 If the number of parameters to be jointly optimized is greater than one, i.e., N > 1,

the optimization may be computationally intensive. In this case, an iterative approach may

be used. Assume, e.g., N = 2. First, the optimal solution for o1 may be computed by keeping o2

fixed. Then, the optimal solution for o2 may be computed by assuming o1 fixed and equal to the

optimal value of the previous step. This is iterated until convergence, i.e., the optimal o1 and o2

do not change from an iteration to another. �

In Section 4.6, the effectiveness of this approach is validated for various setups. The im-

portant role played by several parameters, e.g., the path-loss exponent, the power control

compensation factor, is discussed.

4.6 Numerical and Simulation Results

In this section, numerical examples to validate the accuracy of our mathematical frameworks

and to study the trade-offs that emerge in uplink heterogeneous cellular networks with multi-

antenna BSs are illustrated.

Setup System-level Monte Carlo simulations are performed by carefully reproducing the

system model of Section 4.2. It is worth mentioning, however, that Assumption 4.1 is not

enforced in the system-level simulator and that it is used only for developing the mathematical

frameworks. To ensure saturated traffic conditions, the density of MTs is appropriately chosen,

as discussed in Section 4.2. For each available MT, the cell association in (4.1) is applied and

the transmit power is set according to (4.2). The probe link is assumed to be, without loss

of generality, that corresponding to the MT that is closest to the origin. This allows us to

speed up the simulations and to avoid border effects that originate from the practical need

of considering a finite simulation area. This does not bias the validation of the proposed

approach, since the probe link is different for each spatial realization and our results are

obtained by averaging with respect to a large number of realizations. Finally, the SINRs in

(4.14) and (4.26) for MRC and OC, respectively, are computed.

For simplicity, single- and two-tier cellular networks are analyzed. As for single-tier networks,

unless otherwise stated, the following setup is considered: λ(BS)
1 = 5 BSs/Km2, α1 = 3.5, ρ0 = 40

dB, Pmax = P∞ = 30 dBm and Pmax = ∞, BW = 10 MHz, P0 = P0(BW) + 10log10 (BW) with

P0(BW) = −100 dBm/Hz, σ2
N = N0 + 10log10 (BW) dBm with N0 = −174 dBm/Hz, ε ∈ [0,1],

μ1 = 0 dB, σ1 = 8 dB, Ω1 = 1 and N1 = 4. As for two-tier networks, the parameters are in the

captions of the figures. The parameters of tier-2 are the same as those of tier-1, except for the

BSs density and for the path-loss exponent.

Framework Validation In Fig. 4.1, we validate the accuracy of the PPP approximation in

Assumption 4.1. To this end, we exploit the void probability theorem of homogeneous PPPs [16,
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Th. 1.1.5], which states that a point process Φ of density λ is a homogeneous PPP if and only if,

for any region of area A, the equality Pr{Φ (A) =�} = exp(−λA) holds. Assuming Assumption

4.1 true, the following holds: Pr
{
Φ̄(MT)

k (A) =�
}
≈ exp

(
−λ̄(MT)

k A
)

for k = 1,2, . . . ,K . To test the

accuracy of Assumption 4.1, we compare this mathematical expression of the void probability

against that obtained via Monte Carlo simulations. Once all the MTs are associated with

their serving BSs, in particular, we consider a region of area A centered at the origin and

of radius RA, i.e., A = πR2
A. This assumption does not bias our analysis and avoids border

effects. The probability that no nodes fall in this ball of area A is computed as a function of

RA. Theoretical (based on Assumption 4.1) and empirical void probabilities are illustrated in

Fig. 4.1. It confirms that the gap is relatively small. More importantly, the shape of the void

probability is well captured by Assumption 4.1. This substantiates its adoption for system-level

performance evaluation of uplink heterogeneous cellular networks.
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Figure 4.1: Void probability of an area A of radius RA centered at the origin (A= πR2
A

). Solid lines show the

mathematical framework based on Assumption 4.1 and markers show Monte Carlo simulations. Setup: K = 2,

α=α1 =α2 = 3.5 and λ(BS)
1 = 5 BSs/Km2. Other parameters are in Section 4.6. The void probability of Φ̄(MT)

2 is

shown. If λ(BS)
2 =λ(BS)

1 , the void probabilities of Φ̄(MT)
1 and Φ̄(MT)

2 coincide.

In Fig. 4.2, we test the accuracy of our proposed frameworks for computing the coverage

against other frameworks for the analysis of uplink cellular networks available in the literature.

In particular, [48] and [50] are considered as a reference. The same setups as in [48] and [50]

are used. Fig. 4.2 confirms that our frameworks are as accurate as [48] and [50], but ours are

more general and account for multi-antenna BSs.
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Figure 4.2: Validation of the proposed mathematical frameworks against those in [50] (a) and [48] (b). “Sim.”

corresponds to Monte Carlo simulations, “Theo.” to the proposed framework and “Theo. [.]” to the frameworks in

[50] and [48]. The setups are the same as in [50] and [48]: (a) two-tier network, λ(BS)
1 = 5 BSs/Km2, λ(BS)

2 = 6λ(BS)
1 ,

α1 = α2 = 3.5, Pmax =∞, P0(BW) = −80 dBm/Hz, T̂ = T2/T1 = −20 dB, ρ0 = 40 dB, BW = 10 MHz, μ1 = μ2 = 0

dB, σ1 = σ2 = 8 dB, Ω1 =Ω2 = 1, N1 = N2 = 1, τ1 = τ2 = τ, interference-limited setup (SINR = SIR = Signal-to-

Interference-Ratio); and (b) one-tier network, λ(BS)
1 = 2 BSs/Km2, α1 = 4, Pmax = 30 dBm, P0 =−90 dBm, ρ0 = 0

dB, σ2
N =−90 dBm, ε= 1, Ω1 = 1, N1 = 1, there is no shadowing. In (b), “outage = 1 - coverage”.

Impact of Power Control In Figs. 4.3 and 4.4, we study the impact of ε on the achievable rate.

To analyze its impact for different locations of the typical MT within a cell, the xth percentile

rate is considered. In particular, x = 5 and x = 90 correspond to cell-edge and cell-center MTs.

x = 50 corresponds to the median rate within a cell, which, as shown in Figs. 4.3 and 4.4, is

close to the average rate. Figures 4.3 and 4.4 confirm that ε and Pmax strongly affect the rate

for every x. Also, they show that, in general, an optimal value, εopt, of ε exists. The figures

report such εopt obtained by using the optimization algorithm in Section 4.5. The figures

illustrate several interesting trends: i) the rate increases as the typical MT moves from the

cell-edge to the cell-center, as expected; ii) OC usually outperforms MRC, as expected. We

note, however, that the gain is more noticeable for large values of ε; iii) the optimal values of ε

for MRC and OC are similar; and, more importantly, iv) the impact of ε is significantly different

for Pmax =∞ (Fig. 4.3) and Pmax = 30 dBm (Fig. 4.4). The reason is as follows. If Pmax =∞, the

rate tends to initially increase as ε increases, since the received power of the intended link

increases. This trend holds until a critical value of ε is reached: once this occurs, the negative

impact of the other-cell interference tends to be more pronounced, compared to increase of

the received power. This is more evident for cell-center MTs, i.e, if x = 90. If Pmax <∞, on the

other hand, the impact of the other-cell interference is implicitly kept under control. Consider,
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for example, cell-center MTs. As ε increases, the typical MT keeps increasing its transmit

power, which unlikely reaches Pmax, since it is close to its serving BS. The interfering MTs,

on the other hand, increase their transmit power until a given value of ε. Once this occurs,

they reach Pmax and do not increase their transmit power anymore. Because of that, the rate

increases with ε and its optimal value is likely to be close to one. This trend does no hold for

cell-edge MTs: due to their large distance towards their serving BS, they are likely to transmit

at Pmax too. Thus, the trend is more similar to the setup Pmax=∞. It is worth noting that εopt

is different for cell-center and cell-edge MTs. This brings to our attention that intra-cell power

control may be adopted to provide a more uniform quality of service to all MTs within a cell.
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Figure 4.3: Percentile and average rate of OC and MRC as a function of ε. Solid lines show the proposed framework

and markers show Monte Carlo simulations. Setup: single-tier network and Pmax =∞. Other parameters are in

Section 4.6. � denotes the rate corresponding to εopt computed as discussed in Section 4.5.

In Fig. 4.5, we study the average power consumption of the typical MT by assuming the same

setup as in Figs. 4.3 and 4.4. We note that the average power consumption for Pmax =∞ and

Pmax = 30 dBm is different only for large values of ε. This highlights the non-intuitive trend

that having a finite limit of Pmax has a beneficial impact on both the average rate, which in-

creases, and on the average power consumption, which does not increase without any bounds.

The reason is as follows. In interference-limited cellular networks, keeping the other-cell

interference under control is critical: letting the MTs increase, without bound, their transmit

power by increasing ε, on the other hand, boosts the other-cell interference. Identifying the

optimal operating point as a function of the quintuplet of parameters (Pmax,P0,P∞,ακ,ε) is,

however, a non-trivial problem. The proposed mathematical frameworks provide a flexible

tool towards this end.
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Figure 4.4: Percentile and average rate of OC and MRC as a function of ε. Solid lines show the proposed

framework and markers show Monte Carlo simulations. Setup: single-tier network and Pmax = 30 dBm. Other

parameters are in Section 4.6. � denotes the rate corresponding to εopt computed as discussed in Section 4.5.
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Figure 4.5: Average transmit power of the typical MT as a function of ε. Solid lines show the proposed mathe-

matical framework and markers show Monte Carlo simulations. The framework is obtained by computing the

expectation from the CDF in Lemma 4.4: E
{
P̃1,0

}= ∞∫
0

(
1−FP̃1,0

(x)
)

d x. The setup is the same as in Fig. 4.3 and

Fig. 4.4 for Pmax =∞ and Pmax = 30 dBm, respectively.
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Impact of Receive Antennas (N1): MRC versus OC Figures 4.6 and 4.7 confirm the trends in

Remarks 4.13, 4.14, 4.20, 4.21: i) the rate increases as N1 increases; ii) for small values of ε, MRC

and OC provide similar rates. This is because the system is close to be noise-limited and there

is no difference between MRC and OC. As ε increases, the other-cell interference becomes

dominant and OC outperforms MRC; iii) MRC is incapable of reaching the noise-limited

regime for large values of ε and if N1 <∞, since the other-cell interference is independent of

N1; and iv) as N1 increases, OC reaches the noise-limited regime faster for smaller values of ε.

In conclusion, OC is to be preferred to MRC if ε is not too small.
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Figure 4.6: 5th percentile rate of OC and MRC as a function of the number of receive antennas (N1). Solid lines

show the proposed mathematical framework and markers show Monte Carlo simulations. Dotted lines (computed

by using Corollary 4.19) and related markers show the noise-limited asymptote, i.e., the other-cell interference is

neglected. Setup: single-tier network and Pmax = 30 dBm. Other parameters are in Section 4.6. The optimal setup

corresponding to εopt can be computed as discussed in Section 4.5. It turns out to be close to 0.7 for both MRC

and OC. Thus, it is not shown for ease of readability.

System-Level Optimization Finally, we show numerical results obtained by applying the

optimization algorithm of Section 4.5 to a two-tier cellular network. The objective is to

compute the optimal values of T̂ and ε. For simplicity, the iterative algorithm in Remark 4.22

is used. The optimal pair
(
T̂opt,εopt

)
is provided in Table 4.1 and the corresponding rate is

shown in Fig. 4.8. The main takeaway message is that the optimal operating point heavily

depends on the path-loss exponents and that it is different for cell-center and cell-edge MTs.

The results in Table 4.1 can be explained as follows. The other-cell interference decreases as

the path-loss exponent increases. Thus, the best operating setup is obtained by letting the
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Figure 4.7: 90th percentile rate of OC and MRC as a function of the number of receive antennas (N1). Setup:

same as in Fig. 4.6. εopt turns out to be 1 for both MRC and OC.

MTs to be served by the tier with the biggest path-loss exponent. If the path-loss exponents of

the two tiers are the same, the best setup is to force the cell-center MTs to be served by the tier

with the smallest density of BSs (tier-1 in our case, i.e., T̂opt � 1) and the cell-edge MTs to be

served by the BS providing the smallest path-loss with shadowing (i.e., T̂opt = 1). In our system

model, in fact, each BS has a MT to serve (saturated traffic conditions). If T̂opt � 1, the MTs

served by tier-2 need to be very close to their serving BSs, to compensate for the small value of

T2. As for cell-center MTs, this implies that they have a good probe link and are subject to a

small other-cell interference, since the other MTs of tier-2 are close to their serving BSs as well.

The MTs tagged to tier-1, on the other hand, may be far from their serving BSs but the number

of active MTs is smaller than that in tier-2, since λ(BS)
1 <λ(BS)

2 . For cell-center MTs, in any case,

this distance is not that large. As for cell-edge MTs, things are different: the rate increases

by guaranteeing a high-quality intended link and by making power control less aggressive.

This is usually realized by serving these MTs via the BS providing the smallest path-loss with

shadowing (in agreement with [50]) and by keeping ε< 1.

In general, it is very difficult to “guess” the trends of uplink heterogeneous cellular networks.

They, in fact, depend on a large number of parameters and may be different for cell-center and

cell-edge MTs (see, e.g., R5th in Table 4.1 for (α1,α2) = (3.75,3.25)). The proposed mathematical

frameworks are, however, accurate and flexible enough for identifying the optimal operating

point at an affordable computational complexity.
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Table 4.1: Optimal pair
(
T̂opt,εopt

)
corresponding to the case studies of Fig. 4.8. The setup is

the same as that in Fig. 4.8.

(α1,α2) = (3.5,3.5) (α1,α2) = (3.25,3.75) (α1,α2) = (3.75,3.25)

R5th (0dB,0.765) (36dB,0.704) (36dB,0.799)

R (−41.795dB,1) (36dB,1) (−47.923dB,1)

R90th (−42.223dB,1) (36dB,1) (−54dB,1)
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Figure 4.8: Percentile and average rate of a two-tier cellular network corresponding to the optimal pair(
T̂opt,εopt

)
. These optimal parameters are provided in Table 4.1 and are computed by using the iterative al-

gorithm discussed in Remark 4.22, by setting T̂min =−54dB, T̂max = 36dB and ε ∈ [0,1] as the search space. The

marker shows the corresponding rates obtained by using Monte Carlo simulations. Setup: two-tier network,

λ(BS)
2 = 4λ(BS)

1 , MRC and Pmax = 30 dBm. Other parameters are in Section 4.6. Except for λ(BS)
2 and α2, all the other

parameters of tier-2 are the same as those of tier-1.

4.7 Conclusion

Mathematical frameworks for computing coverage and rate of uplink heterogeneous cellular

networks with multiple BSs antennas are introduced. They are formulated in terms of integral

but mathematically and computationally tractable expressions, which reduce to closed-form

formulas for some particular but relevant system setups. Coverage and rate are shown to

depend on a large number of system parameters, which leads to a non-trivial optimization
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of the uplink of cellular networks. The proposed frameworks provide an analytical tool that

facilitates analysis and design of cellular systems by avoiding system-level simulations, whose

complexity, computational time and accuracy depend on the system setup being considered.

More specifically,

• For both MRC and OC receivers, the coverage and rate performance improves as the

number of BSs antennas increases.

• For both MRC and OC receivers, fewer BSs antennas are needed to enter into the massive

MIMO regime as the path-loss exponent and the power control compensation factor

increases and decreases, respectively.

• OC outperforms MRC when the other-cell interference becomes dominant and the

gain is more noticeable as the power control mechanism becomes more aggressive, for

example, with larger values of ε and the number of BSs antennas increases but is finite.

• OC reaches the noise-limited regime by increasing the number of BSs antennas and

MRC is incapable of reaching the noise-limited regime for large values of ε when the

number of BSs antennas increases but is finite.

• The optimum power control compensation factor to maximize the coverage and rate

performance exists and can be found by the proposed numerical optimization method.

It is usually different and sensitive to other system parameters, like Pmax.

• The optimum power control compensation factors to maximize the cell-edge and cell-

center performance are usually different. Thus, intra-cell power control mechanisms

may be adopted for providing a more uniform quality of service to every MT within a

cell.

• In multi-tier uplink heterogeneous cellular networks, optimal pair
(
T̂opt,εopt

)
exists and

can be obtained by the proposed iterative optimization algorithm.

• The optimal pair usually heavily depends on the path-loss exponents and it is different

for cell-center and cell-edge MTs.

• If the path-loss exponents of the two tiers are different, the best operating setup is to be

served by the tier with the biggest path-loss exponent.

• If the path-loss exponents of the two tiers are the same, the best setup is to force the

cell-center MTs to be served by the tier with the smallest density of BSs and the cell-edge

MTs to be served by the BS providing the smallest path-loss with shadowing.
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4.8 Appendices

4.8.1 Proof of Proposition 4.1

Let the SINR in (4.14). Let us introduce the notation Uκ,0 =Uκ,0
(
R̃κ,0,γκ,0

)=U
(P0)
κ,0

(
R̃κ,0,γκ,0

)+
U

(P∞)
κ,0

(
R̃κ,0,γκ,0

)
, where U

(P0)
κ,0

(
R̃κ,0,γκ,0

)= P0ρ
−1
0 R̃ακ(ε−1)

κ,0 γκ,01

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)

as well as

U
(P∞)
κ,0

(
R̃κ,0,γκ,0

)= P∞ρ−1
0 R̃−ακ

κ,0 γκ,01

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
)
. Let Aκ = Pr{Xκ}. Since the events

1

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)

and 1

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
)

are incompatible, from (4.5), we have:

Pcov (τ)

=
K∑
κ=1

AκER̃κ,0

{
Eγκ,0

{
Pr

{
I \0

κ,κ+
K∑

k �=κ=1
Iκ,k <U

(P0)
κ,0

(
R̃κ,0,γκ,0

)/
τκ−σ2

N

∣∣∣∣∣Xκ, R̃κ,0,γκ,0

}}}

+
K∑
κ=1

AκER̃κ,0

{
Eγκ,0

{
Pr

{
I \0

κ,κ+
K∑

k �=κ=1
Iκ,k <U

(P∞)
κ,0

(
R̃κ,0,γκ,0

)/
τκ−σ2

N

∣∣∣∣∣Xκ, R̃κ,0,γκ,0

}}}
(4.38)

From (4.38), (4.16) follows by applying the Gil-Pelaez inversion theorem [54]. In particular,

the expectation with respect to γκ,0 ∼ Gamma(Nκ, NκΩκ) follows from the identity Mγκ,0 (s) =
Eγκ,0

{
exp

(−sγκ,0
)}= (1+ s

/
Ωκ

)−Nκ . The identity

ER̃κ,0

{
1

(
R̃κ,0 ≤

(
Pmax

P0

)1/(ακε)
)}

+ER̃κ,0

{
1

(
R̃κ,0 >

(
Pmax

P0

)1/(ακε)
)}

= 1

is used as well. Finally, it is taken into account that the other-cell interferences of different

tiers of BSs are independent. To complete the proof, the CFs of I \0
κ,κ and Iκ,k are computed

in what follows. Let I \0
κ,κ in (4.15). Let us introduce the RVs I

\0,P0
κ,κ and I

\0,P∞
κ,κ such that

I \0
κ,κ =I

\0,P0
κ,κ +I

\0,P∞
κ,κ , where:

I
\0,P0
κ,κ = ∑

MTi∈Φ̄(MT)
κ \MT0

P0ρ
−1
0 R̃ακε

κ,i D−ακ

κ,i γκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i ≤

(
Pmax

P0

)1/(ακε)
)

I
\0,P∞
κ,κ = ∑

MTi∈Φ̄(MT)
κ \MT0

P∞ρ−1
0 D−ακ

κ,i γκ,i 1
(
Dκ,i > R̃κ,i

)
1

(
R̃κ,i >

(
Pmax

P0

)1/(ακε)
) (4.39)

By definition of CF, the following holds:

ψI \0
κ,κ

(ω) = EI \0
κ,κ

{
exp

{
jωI \0

κ,κ

}} (a)= E
I

\0,P0
κ,κ

{
exp

{
jωI

\0,P0
κ,κ

}}
E

I
\0,P∞
κ,κ

{
exp

{
jωI

\0,P∞
κ,κ

}}
(4.40)

where (a) follows from Assumption 4.1, i.e., the set of active MTs is a PPP and their locations are

independent. Let us focus our attention on E
I

\0,P0
κ,κ

{
exp

{
jωI

\0,P0
κ,κ

}}
. The following equalities
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hold:

E
I

\0,P0
κ,κ

{
exp

{
jωI

\0,P0
κ,κ

}}
(b)= exp

⎛⎜⎝−2πλ̄(S,α)
κ ER̃κ,i ,γκ,i

⎧⎪⎨⎪⎩1
(

R̃κ,i ≤
(

Pmax

P0

)1/(ακε)
) +∞∫

R̃κ,i

(
1−exp

(
jω

P0R̃ακε
κ,i

ρ0 yακ
γκ,i

))
yd y

⎫⎪⎬⎪⎭
⎞⎟⎠

(c)= exp

(
πλ̄(S,α)

κ ER̃κ,i ,γκ,i

{
R̃2
κ,i

(
1−1F1

(
− 2

ακ
;1− 2

ακ
; jω

P0R̃ακε
κ,i

ρ0R̃ακ

κ,i

))}
1

(
R̃κ,i ≤

(
Pmax

P0

)1/(ακε)
))

(d)= exp

(
πλ̄(S,α)

κ ER̃κ,i

{
R̃2
κ,i

(
1−2F1

(
− 2

ακ
,1;1− 2

ακ
;jω

P0

ρ0
ΩκR̃ακ(ε−1)

κ,i

))
1

(
R̃κ,i �

(
Pmax

P0

)1/(ακε)
)})

(4.41)

where (b) follows from Assumption 4.1 and Lemma 4.5, by applying the Probability Generating

Functional Theorem (PGFL) [16], (c) follows with the aid of the notable integral∫+∞

R̃κ,i

(
1−exp

(
jωC R̃vκ

κ,i y−ακ

))
yd y =

(
R̃2
κ,i

/
2
)(

1F1

(
− 2

ακ
;1− 2

ακ
; jωP0ρ

−1
0 R̃ακ(ε−1)

κ,i γκ,i

)
−1

)
,

and (d) follows from γκ,i ∼ Gamma(1,Ωκ) and the equality Eγκ,i

{
1F1
(−2
/
ακ;1−2

/
ακ;C γκ,i

)}
= 2F1

(−2
/
ακ,1;1−2

/
ακ;CΩκ

)
[109, Eq. (8)]. The second term can be computed using the

same approach. Similar steps can be applied for the computation of the CF of Iκ,k . The proof

follows with the aid of some algebraic manipulations and simplifications.

4.8.2 Proof of Proposition 4.3

Consider a given spatial realization of BSs and MTs. Assume that the probe MT is served by the

κth tier of BSs. Let NI ,κ = card
{
Φ̄(MT)

κ \MT0

}
and NI ,k = card

{
Φ̄(MT)

k

}
be the number of intra-

and inter-tier interferers for k �= κ= 1,2, . . . ,K , respectively. Let EPPP {·} denote the expectation

with respect to the entire spatial realization of interfering MTs, i.e., with respect to the RVs NI ,κ,

R̃κ,i , R̃k,i , Dκ,i , Dκ,k,i and R̃κ,0. Let EPPP\R̃κ,0
{·} denote the same expectation, but by keeping

R̃κ,0 fixed. In Rayleigh fading channels, the coverage probability of OC can be formulated

as Pcov (τκ|Xκ,PPP) =Lκ

(
R̃ακ(ε−1)
κ,0 ;τκ,P0

∣∣∣PPP
)
+Lκ

(
R̃−ακ

κ,0 ;τκ,P∞
∣∣∣PPP

)
[98, Eqs. (11)-(13)],

where:

Lκ

(
x;τκ, p

∣∣PPP
)= exp

(
− τκσ

2
N

pρ−1
0 Ωκx

)
Nκ∑
l=1

J
(p)
l ,κ ( x;τκ|PPP)

(l −1)!

(
τκσ

2
N

pρ−1
0 Ωκx

)l−1

(4.42)

J
(p)
l ,κ ( x;τκ|PPP) =

⎧⎪⎪⎨⎪⎪⎩
1 if Nκ ≥

K∑
k=1

NI ,k + l(
1+

Nκ−l∑
m=1

ϑ
(p)
m τm

κ

)
/Y(p)

κ (x;τκ) if Nκ <
K∑

k=1
NI ,k + l

(4.43)
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as well as Y(p)
κ (x;τκ) =

K∏
k=1

NI ,k∏
i=1

(
1+ Ĩ

(P0)
κ,k,i

(
pρ−1

0 x
)−1

τκ

)(
1+ Ĩ

(P∞)
κ,k,i

(
pρ−1

0 x
)−1

τκ

)
, ϑ(p)

r is the

coefficient of τr
κ in Y(p)

κ (·; ·), and, letting Dκ,k,i = Dκ,i for k = κ, the following two short-hands

are introduced:

Ĩ
(P0)
κ,k,i = P0ρ

−1
0 R̃αkε

k,i D−ακ

κ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i ≤

(
Pmax

P0

)1/(αkε)
)

Ĩ
(P∞)
κ,k,i = P∞ρ−1

0 D−ακ

κ,k,i 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
1

(
R̃k,i >

(
Pmax

P0

)1/(αkε)
) (4.44)

The rest of the proof consists of two steps: 1) computing the conditional expectation EPPP\R̃κ,0
{·}

and 2) computing the expectation with respect to R̃κ,0. The latter step follows immediately

with the aid of fR̃κ,0
(·) in (4.8) and it leads to the integral in (4.27). Thus, only the first step

is discussed in what follows. From (4.42) and (4.43), it boils down to the computation of

J
(p)
l ,κ (x;τκ) = EPPP\R̃κ,0

{
J

(p)
l ,κ ( x;τκ|PPP)

}
. For simplicity, let us denote the expectation with re-

spect to the number of interferers, their distances towards their serving BSs and their distances

towards the probe BS by ENI {·}, ER̃ {·} and ED {·}, respectively. It is worth noting that Y(p)
κ (·; ·)

and ϑ
(p)
m depend on (NI, R̃,D), i.e., Y(p)

κ (x;τκ) =Y(p)
κ

(
x;τκ;NI, R̃,D

)
and ϑ

(p)
m =ϑ

(p)
m
(
NI, R̃,D

)
.

As a result, we have J
(p)
l ,κ (x;τκ) = ENI

{
ER̃,D

{
J

(p)
l ,κ

(
x;τκ|NI, R̃,D

)}} = ENI

{
J

(p)
l ,κ ( x;τκ|NI)

}
,

where J
(p)
l ,κ ( x;τκ|NI) = ER̃,D

{
J

(p)
l ,κ

(
x;τκ|NI, R̃,D

)}
. From (4.43), we obtain J

(p)
l ,κ ( x;τκ|NI) =

1

(
Nκ ≥

K∑
k=1

NI ,k + l

)
+J̄

(p)
l ,κ ( x;τκ|NI)1

(
Nκ <

K∑
k=1

NI ,k + l

)
, where:

J̄
(p)
l ,κ ( x;τκ|NI)

= ER̃,D

{
1
/
Y(p)
κ

(
x;τκ;NI, R̃,D

)}+Nκ−l∑
m=1

τm
κ ER̃,D

{
ϑ

(p)
m
(
NI, R̃,D

)/
Y(p)
κ

(
x;τκ;NI, R̃,D

)}
(a)=

K∏
k=1

(
Δ

(p)
κ,k (x;τκ)

)NI ,k +
Nκ−l∑
m=1

τm
κ

⎡⎣ m∑
m1=0

m∑
m2=0

· · ·
m∑

mK =0
1

(
K∑

k=1
mk = m

)
K∏

k=1

X(p)
κ,k,mk

(
x;τκ; NI ,k

)
mk !

⎤⎦
(4.45)

with

X(p)
κ,k,mk

(
x;τκ; NI ,k

)= ((NI ,k
)
!
/(

NI ,k −mk
)
!
)(

1−Δ
(p)
κ,k (x;τκ)

)mk
(
Δ

(p)
κ,k (x;τκ)

)NI ,k−mk

Δ
(p)
κ,k (x;τκ) = ER̃k,i ,Dκ,k,i

{
1
/
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,Dκ,k,i

)}
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,Dκ,k,i

)= (1+ Ĩ
(P0)
κ,k,i

(
pρ−1

0 x
)−1

τκ

)
×
(
1+ Ĩ

(P∞)
κ,k,i

(
pρ−1

0 x
)−1

τκ

) .

The equality in (a) follows because, by virtue of Assumption 4.1, R̃k,i and Dκ,k,i are i.i.d. within

a given tier of BSs and are independent among different tiers of BSs. In (4.45), (R̃k,i ,Dκ,k,i )

denotes the generic pair of distances. To complete the proof, two expectations need to be
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computed:

J
(p)
l ,κ (x;τκ) = ENI

{
J

(p)
l ,κ ( x;τκ|NI)

}
; Δ(p)

κ,k (x;τκ) = ER̃k,i ,Dκ,k,i

{
1
/
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,Dκ,k,i

)}
.

Let us start with the first. By virtue of Assumption 4.1 and Lemma 4.5, the interfering MTs

of the kth tier constitute a PPP of density λ̄(S,α)
κ,k for k = 1,2, . . . ,K . Let a generic area Sk ,

this implies that the number of interferers NI ,k has distribution equal to Pr
{

NI ,k ∈ Sk
} =

exp
(
−λ̄(S,α)

κ,k Sk

)(
λ̄(S,α)
κ,k Sk

)NI ,k
/(

NI ,k !
)
. Furthermore, NI ,k for k = 1,2, . . . ,K are independent,

which implies that their joint probability is the product of their marginal probabilities, i.e.,

Pr{ NI|S} =
K∏

k=1
Pr
{

NI ,k ∈ Sk
}
. Without loss of generality, each area Sk is assumed to be an

annular region with inner and outer radii equal to Dmin and Dmax, repetitively, i.e., Sk =
π
(
D2

max −D2
min

)
. Regardless of the spatial constraints originating from the cell association

criterion in (4.1), i.e., the indicator functions in (4.25), each area Sk can be arbitrary large.

The inner radius Dmin, however, needs to be chosen such that Dmin >
((

Tκ

Tk

)
R̃αk

k,i

)1/ακ

. In this

proof, first we assume that it is finite and then we let it go to infinity, i.e., Sk → ∞. Based

on Assumption 4.1 and Lemma 4.5, in addition, Dκ,k,i is uniformly distributed in Sk and its

PDF is equal to fDκ,k,i (ξ) = (2πξ/Sk
)
1 (ξ ∈ Sk ). Based on this, it is apparent that Δ(p)

κ,k (·; ·) and

X(p)
κ,k,mk

(·; ·; ·) in (4.45) depend on Sk , i.e., Δ(p)
κ,k (x;τκ) =Δ

(p)
κ,k (x;τκ;Sk ) andX(p)

κ,k,mk

(
x;τκ; NI ,k

)=
X(p)
κ,k,mk

(
x;τκ; NI ,k ;Sk

)
. To compute ENI

{
J

(p)
l ,κ ( x;τκ|NI)

}
, based on (4.45), the following ex-

pectations need to be computed:

Ξ1 (S) = ENI

{
1

(
Nκ ≥

K∑
k=1

NI ,k + l

)}
=

+∞∑
NI ,1=0

+∞∑
NI ,2=0

· · ·
+∞∑

NI ,K =0
1

(
Nκ ≥

K∑
k=1

NI ,k + l

)
K∏

k=1
Pr
{

NI ,k ∈ Sk
}

Ξ2 (S) = ENI

{
K∏

k=1

(
Δ

(p)
κ,k (x;τκ;Sk )

)NI ,k
1

(
Nκ <

K∑
k=1

NI ,k + l

)}

=
+∞∑

NI ,1=0

+∞∑
NI ,2=0

· · ·
+∞∑

NI ,K=0
1

(
Nκ <

K∑
k=1

NI ,k + l

)
K∏

k=1

(
Δ

(p)
κ,k (x;τκ;Sk )

)NI ,k
Pr
{

NI ,k ∈ Sk
}

Ξ3 (S) = ENI

{
K∏

k=1
X(p)
κ,k,mk

(
x;τκ; NI ,k ;Sk

)
1

(
Nκ <

K∑
k=1

NI ,k + l

)}

=
+∞∑

NI ,1=0

+∞∑
NI ,2=0

· · ·
+∞∑

NI ,K =0
1

(
Nκ <

K∑
k=1

NI ,k + l

)
K∏

k=1
X(p)
κ,k,mk

(
x;τκ; NI ,k ;Sk

)
Pr
{

NI ,k ∈ Sk
}

(4.46)

The expectations in (4.46) can be computed in closed-form with the aid of the identities
N∑

n=0
xn
/

n! = exp(x)Γ (N +1, x)/Γ (N +1),
+∞∑

n=N+1
xn
/

n! = exp(x)− exp(x)Γ (N +1, x)/Γ (N +1)

and long algebraic manipulations. Due to space limitations, the details are not reported. The
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final results are as follows:

Ξ2 (S)
(b)=

K∏
k=1

exp
(
−λ̄(S,α)

κ,k Δ̄
(p)
κ,k (x;τκ;Sk )

)
Ξ3 (S)

(c)=
K∏

k=1
exp

(
−λ̄(S,α)

κ,k Δ̄
(p)
κ,k (x;τκ;Sk )

) K∏
k=1

(
λ̄(S,α)
κ,k Δ̄

(p)
κ,k (x;τκ;Sk )

)mk

(4.47)

and Ξ1 (S)|S1→∞,S2→∞,...SK →∞
(a)= 0, where Δ̄

(p)
κ,k (x;τκ;Sk ) = Sk

(
1−Δ

(p)
κ,k (x;τκ;Sk )

)
. In (a), the

limit with respect to the areas Sk for k = 1,2, . . . ,K is computed already. This limit needs,

on the other hand, to be computed in (b) and (c), i.e., Ξ2 = Ξ2 (S)|S1→∞,S2→∞,...SK →∞ and

Ξ3 = Ξ3 (S)|S1→∞,S2→∞,...SK →∞. So, the last step is to compute Δ̄
(p)
κ,k (x;τκ;Sk )

∣∣∣
Sk→∞ with

Δ
(p)
κ,k (x;τκ;Sk ) = ER̃k,i ,Dκ,k,i

{
1
/
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,Dκ,k,i ;Sk

)}
. The only expectation that needs to

be explicitly computed is that with respect to Dκ,k,i , while that with respect to R̃k,i corresponds

to the integral O
(p)
κ,k (·; ·) in (4.28). The following equalities hold:

Sk

(
1−EDκ,k,i

{
1
/
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,Dκ,k,i ;Sk

)})
(a)= Sk

⎛⎜⎝ ∫
ξ∈Sk

(
2πξ

/
Sk
)(

1−1
/
Δ

(p)
κ,k,i

(
x;τκ; R̃k,i ,ξ;Sk

))
dξ

⎞⎟⎠
(b)= −π

(
Tκ

Tk

)2/ακ

R̃2αk /ακ

k,i

(
1− 2F1

(
−2
/
ακ,1,1−2

/
ακ;−

(
Tk

Tκ

)(
P0
/

p
)(

R̃αk (ε−1)
k,i

/
x
)
τκ

))
−π

(
Tκ

Tk

)2/ακ

R̃2αk /ακ

k,i

(
1− 2F1

(
−2
/
ακ,1,1−2

/
ακ;−

(
Tk

Tκ

)(
P∞
/

p
)(

R̃−αk

k,i

/
x
)
τκ

))
(4.48)

where (a) follows by definition of expectation with the aid of fDκ,k,i (ξ) = (2πξ/Sk
)
1 (ξ ∈ Sk ) and

by taking into account that
∫
ξ∈Sk

(
2πξ

/
Sk
)

dξ= 1, (b) follows from (4.44) and by computing

the integral with the aid of the identity∫+∞

x

(
1− (1+bξ−ν

)−1
)
ξdξ= (x2/2

)(
1− 2F1

(−2/ν,1,1−2/ν;−bx−ν)) .

The equality in (a) highlights that Sk cancels out. To get (b), in addition, the indicator func-

tion 1

(
Dκ,k,i >

((
Tκ

Tk

)
R̃αk

k,i

)1/ακ

)
in (4.44) is taken into account, which implies ξ ∈ Sk ⇒ ξ ≥((

Tκ

Tk

)
R̃αk

k,i

)1/ακ

. As a result, the limit Sk →∞ does not have to be explicitly computed. The

proof follows by inserting (4.47) and (4.48) in (4.46).
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5 Conclusion and Future Work

This chapter closes the thesis with general conclusions in Section 5.1 and summaries of future

work in Section 5.2.
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Chapter 5. Conclusion and Future Work

5.1 Conclusion

Using PPP-based abstraction model and the tools provided by the stochastic geometry, this

thesis performs mathematical modeling, analysis and optimization in both downlink and

uplink cellular networks. More specially,

• in chapter 2, new mathematical frameworks to the computation of the error probability

of MIMO cellular networks have been proposed for the first time and have been substan-

tiated with the aid of Monte Carlo simulations. The frameworks are applicable for SISO

cellular networks with arbitrary fading channels and spatial multiplexing MIMO cellular

networks with Rayleigh fading channels in the interfering links. Exact and approximated

frameworks have been developed to provide a flexible trade-off between accuracy and

computational complexity. Their analysis has provided insights on the impact of SNR

operating regime, the fading parameters and the number of antennas available at the

BSs and MT on trends and trade-offs of the error performance.

• In chapter 3, new mathematical expressions for coverage and rate of cellular networks

are provided with the aid of the Gil-Pelaez inversion formula. The frameworks are

shown to be general enough for the analysis of different fading channels and MIMO

transmission schemes. Furthermore, a partially loaded cellular networks has been

studied with a little modification of the developed frameworks.

• In chapter 4, new mathematical frameworks for computing coverage and rate of uplink

heterogeneous cellular networks with multiple BSs antennas are introduced. The math-

ematical frameworks show that coverage and rate depend on a large number of system

parameters, which leads to a non-trivial optimization of the uplink cellular networks.

Important findings include that different trends for cell-edge and cell-center MTs as

a function of the power control compensation factor. Thus, intra-cell power control

mechanisms may be adopted for providing a more uniform quality of service to every

MT within a cell. In the interference-limited regime, OC is shown to outperform MRC

as the power control mechanism becomes more aggressive and the number of BSs

antennas increases but is finite.

5.2 Future Work

Many topics of interest in the field of stochastic geometry analysis of wireless and cellular

networks remain open. Relying on the findings in this thesis, some of them can be readily

solved. For example,

• Coverage, rate and error performance studies in the uplink/downlink heterogeneous

MIMO cellular networks, which should be direct applications of mathematical findings

and approaches in Chapter2, Chapter3 and Chapter4.
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• The joint optimization of uplink/downlink heterogeneous MIMO cellular networks,

which should provide a deeper understanding on the uplink/downlink decoupling

association as mentioned in [49, 50, 52, 53].

Some topics are related to the computational complicity, for example,

• The designs of interference-aware receiver structures. The receiver in Chapter2 is

interference-unaware. To design better receivers which are aware of the network inter-

ference, according to the simple rule of receiver design from detection and estimation

theory, e.g., maximum likelihood rule, requires the knowledge of the joint statistics of

other-cell interference plus noise across different and correlated antennas. Although

the other-cell interference in cellular networks has been correctly modeled by its CF,

joint statistics, especially the joint PDF, is complicated and usually involving multi-fold

integrals because it has to be computed by inverting multivariate CF and unfortunately

is without any close-form solution.

• More insightful simplified/approximated mathematical frameworks towards the net-

work designs. As developed in this thesis, commonly single-, double- , even three-fold

integrals need to be numerically computed to evaluate the system performance, depend-

ing on different studied scenarios, and special functions like Hypergeometric functions

and Meijer G-functions are often involved.

Besides these topics, in what follows are the possible directions to exploit the power of stochas-

tic geometry analysis.

5.2.1 Millimeter Wave Cellular Networks

Millimeter Wave (mmWave) is believed to be one of the candidate technologies for the next

generation mobile communications. The large bandwidth from 3GHz to 300GHz makes

it very attractive [100, 101]. mmWave networks have been studied mainly based on the

simulations and field measurements, only recently, mathematical modeling and analysis

based on PPP-abstraction models and stochastic geometry has been reported in [44, 45, 46].

The major differences of mmWave networks from the conventional microwave networks

are: i) the beamforming gain provided by the transmit and receive antenna arrays; 2) the

propagation experiencing Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) links need to

be appropriately modeled and may have different distributions, due to the more prominent

impact of spatial blockages at mmWave frequencies. These differences prevent us to directly

reuse the stochastic geometry frameworks developed for microwave transmissions. In the rest

of this section, we do a review on the current state of and propose possibilities for the future

work.

• Beamforming Gain Modeling. A simple model of beamforming gain can be modeled as
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follows:

Gq (θ) =
{

Gmax
q if |θ| ≤ωq (mainlope)

Gmin
q if |θ| >ωq (sidelope)

, q ∈ (BS,MT)

On the intended link, we have the maximum gain because BS will detect and align

the antennas, which means G0 =Gmax
BS Gmax

MT , On the non-intended link, the orientation

is assumed to be random, so that Gi is a random variable with PDF available in [46].

Generalization of the antenna gain by more realistic models (for example, multiple slope

model) can be one of the future work.

• Link State Modeling. The probabilities of occurrence as a function of distance r can be

formulated as:

pOU T (r ) = max
{
0,1−γOU T exp(−δOU T r )

}
pLOS (r ) = (1−pOU T (r )

)
γLOS exp(−δLOSr )

pN LOS (r ) = (1−pOU T (r )
)(

1−γLOS exp(−δLOSr )
)

This distance dependence leads to difficulties in the mathematical formulations. Thus,

ball approximations of link state have been used for simplifications. For example, one

ball approximation can be described as follows [44]:

pLOS (r ) =
{

p̃ [0,D1]
LOS , ifr ≤ D1

p̃ [D1,∞]
LOS , ifr > D1

, pN LOS (r ) =
{

p̃ [0,D1]
N LOS , ifr ≤ D1

p̃ [D1,∞]
N LOS , ifr > D1

p̃ [0,D1]
LOS + p̃ [0,D1]

N LOS = 1, p̃ [D1,∞]
LOS + p̃ [D1,∞]

N LOS = 1,NO outage status

And the BSs in LOS status and BSs in NLOS status can be modeled as thinning PPPs with

different densities inside and outside the ball of radius D1, which simplifies the system

because it is then equivalent to a heterogeneous microwave network with different

path loss models in each tier. Similarly, a two ball approximation has been used in [46].

Generalization of the ball approximation (for example, multiple ball approximation)

can be one of the future work.

• Path Loss Modeling. The unbounded power-decay path loss model is used as ls (r ) =
(κsr )2bs , s ∈ (LOS, N LOS). It is readily to be extended to the advanced path-loss models,

for example, a bounded path loss function for the link in state s can be expressed as

ls (r ) =
{

(κsD0)2bs ,r ≤ D0

(κsr )2bs ,r > D0

where κ is pre-defined constant, b is the amplitude path loss exponent and D0 is intro-

duced to avoid the singularity in the unbounded path loss model.

• Optimization Problems. It has been reported in [46] that the noise-limited approxima-

tion of mmWave cellular networks is accurate for a regular density of BSs deployments,
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however, it may not be sufficiently accurate for ultra-dense network deployments and for

sub-gigahertz transmission bandwidths. The future work can be on the mathematical

optimization of the density of the BSs deployments.

5.2.2 Interference-Aware Uplink Power Control Schemes

As being said in Chapter 4, power control plays an important role in the trade-off between

the coverage and rate and the power consumption of the MTs. The fractional power control

mechanism that depends on the path-loss and on the maximum transmit power of the MTs

introduced by 3GPP [88] has been studied in Chapter 4. In addition, some recent papers

propose uplink power control schemes which consider the management of uplink inter-cell

interference in order to improve the uplink performance [102, 103].

Let a general MT in a heterogeneous uplink cellular networks, conditioning on this MT being

served by a BS of the kth tier and its transmit power Pk,MT, an interference-aware fractional

power control mechanism can be introduced as follows:

P̃k,MT =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P0R̃αkε

k,MT, if P0R̃αkε
k,MT ≤ PmaxandP0R̃αkε

k,MTΛ̃
−α(I )

k,MT ≤ P (I )
0

P (I )
0 Λ̃α(I )

k,MT, if P0R̃αkε
k,MTΛ̃

−α(I )

k,MT > P (I )
0 andP (I )

0 Λ̃α(I )

k,MT ≤ Pmax

P∞, if P0R̃αkε
k,MT > PmaxandP (I )

0 Λ̃α(I )

k,MT > Pmax

where the notation is kept consistent with the one in Chapter 4. In addition, P (I )
0 denotes

uplink interference PSD target, Λ̃k,MT = Λk,MT

∣∣∣Xk denotes the generalized distance from a

MT to its most interfered BS conditioning on this MT being served by a tier k BS, with Λk,MT

denotes the generalized distance from a generic MT to its most interfered BS in the kth tier.

α(I )
k is the path loss exponent from a MT served by a tier k BS to its most interfered BS, which

can be in tier k or in tier κ �= k = 1,2, ...,K , i.e., α(I )
k = αk if the most interfered BS is in tier

k and α(I )
k = ακ if the most interfered BS is in tier κ �= k = 1,2, ...,K . If a single tier network

(tier κ) assumed, α(I )
k = ακ and the most interfered BS is the one with the second smallest

generalized distance from the MT to BSs.

The interference awareness in uplink power control allows one to keep under control the

interference level caused by the MTs that transmit at very high power in order to compensate

for a high path-loss. This approach is beneficial for reducing the power consumption of the

MTs and the aggregate other-cell interference of the entire network.

A recent paper [115] demonstrates the advantages of interference-aware power control by

extensive system-level Monte Carlo simulations. Some results from [115] are available in

Appendix B. For example, in a single tier uplink cellular network with dual-antenna MRC

receivers at BSs and parameters ε= 1, Pmax = 70 [dBm], P (I )
0 =−100 [dBm/Hz], compared to

the fractional power control, the interference awareness leads to a 20%, 6% and 47% increase

in average rate, 5th percentile rate and 90th percentile rate, respectively, as well as a 18%
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reduction in MT power consumptions.

The above mentioned paper [115] also shows a non-trivial dependence of the coverage and

rate performance on the quadruplet of parameters (ε, NR ,Pmax,P (I )
0 ) which highlights the chal-

lenge of optimizing uplink cellular networks by relying only on numerical simulations. Thus,

developing a mathematical framework based on stochastic geometry, is highly appreciated to

solve the optimization problems of these networks.

To do the system analysis mathematically, the joint PDF of R̃κ,MT and Λ̃κ,MT needs to be

characterized since they are correlated RVs. By relying on the properties of PPP, the joint PDF

of Rκ,MT and Λκ,MT can be introduced as a starting point [104, 105]:

fRκ,MT,Λκ,MT

(
x, y
)= lim

(Δx,Δy)→(0,0)

Pr
{

x ≤ Rκ,MT ≤ x +Δx, y ≤Λκ,MT ≤ y +Δy
}

ΔxΔy
, y > x

= 4π2(λ(S,α)
κ

)2
x y exp

(−πλ(S,α)
κ y2) , y > x

Future work could be carried out on the further investigations of mathematical formulations of

uplink heterogeneous cellular networks based on this joint PDF and the efficient computation

approaches for the additional-fold integrals led by the joint PDF.

5.2.3 Non-PPP Abstraction Models

By leveraging its nice statistic properties, the PPP-based abstraction model has been widely

used to model the spatial deployments in wireless and cellular networks due to its mathemat-

ical tractability and modeling accuracy [15], however, it has some fundamental limitations.

The PPP-based abstraction model assumes the mutual independence among all points in the

point process, where two points could be arbitrarily close to each other. It is then not suitable

for networks with repulsion, where the locations of points are spatially correlated.

In [19], the authors define other popular PPs used in modeling wireless communications

systems and show the analogy between the PPs and the networks they model.

• BPP: A Binomial Point Process (BPP) can model the random patterns produced by a

fixed number of points (N ) in a set B ⊂ Rd with a finite Lebesgue measure L (B) <∞.

Let
∏ = {xi ; i = 1,2,3, ...} and

∏ ⊂ B, then
∏

is a BPP if the number of points inside a

compact set b ⊆B is a binomial random variable, and the numbers of points in disjoint

sets are related via a multinomial distribution. If the total number of nodes is known

and the service area is finite, then the BPP can be used to abstract the network.

• HCPP: A Hard Core Point Process (HCPP) is a repulsive point process where no two

points of the process coexist with a separating distance less than a predefined hard

core parameter rh . A PP
∏= {xi ; i = 1,2,3, ...} ⊂Rd is an HCPP if and only if

∥∥xi −x j
∥∥≥

rh ,∀xi , x j ∈∏, i �= j where rh ≥ 0 is a predefined hard core parameter. If there is a mini-

mum distance separating the nodes due to some physical constrains, due to network
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planning, or due to the MAC layer behavior, then a repulsive point process such as

the Matérn HCPP can be used for modeling their spatial locations. The Matérn HCPP

conditions on having a minimum distance between any two points of the process, and

is obtained by applying dependent thinning to a PPP. That is, starting from a PPP, the

HCPP is obtained by assigning a random mark uniformly distributed in [0,1] to each

point in the PPP, then deleting all points that coexist within a distance less than the hard

core parameter from another point with a lower mark. Hence, only the points that have

the lowest mark within their neighborhood distance are retained. As a result, no two

points with a separation less than a predefined hard core parameter will coexist in the

constructed HCPP.

• PCP: A Poisson Cluster Process (PCP) can model the random patterns produced by

random clusters. The Poisson cluster process is constructed from a parent PPP
∏ =

{xi ; i = 1,2,3, ...} by replacing each point xi ∈ ∏ with a cluster of points Mi , ∀xi ∈ ∏,

where the points in Mi are independently and identically distributed in the spatial

domain. The PCP is used to model a network if the nodes are clustered according to

certain social behavior or by the MAC protocol.

Although some of the above mentioned point process models can lead to a more realistic

modeling than the PPP, the main problem is the mathematical tractability. To overcome this

accuracy vs. mathematical complexity trade-off, the authors of [14] introduce the concept of

“deployment gain”, which allows one to carry out the analysis based on the mathematically-

tractable PPP-based abstraction model, subject to a correction factor (i.e., the deployment

gain) that can be estimated and taken into account for a better and more accurate system

design and optimization.

Until very recently, the Ginibre point process (GPP) is introduced to model the wireless

networks with repulsion [106]. The GPP is one of the main examples of determinantal point

processes that can be used to model random phenomena where repulsion is observed, which

is a soft-core model compared to HCPP. In [106], the authors derive the mean and variance of

the interference using two different approaches: the Palm measure approach and the reduced

second moment approach, and then provide approximations of the interference distribution.

They also find that the fitted β-GPP, which is between PPP and GPP and can closely model the

deployment of actual base stations in terms of the coverage probability and other statistics.

Another notable work is [107]. The authors investigate the impact of spatial and temporal

correlation on the performance in heterogeneous cellular networks which are modeled by

non-PPP abstraction models. They use massive MIMO to understand the impact of spatial

correlation, and use the random medium access protocol to examine the temporal correlation.

Eventually, they use cooperative relay networks to illustrate the spatial-temporal correlation.

Future work could be on: i) more in-depth investigations of available statistic point pro-

cesses which are more realistic than PPP while still tractable; ii) finding reasonable fittings of

typical cellular networks by the approaches introduced in [14, 106]; iii) developing network
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interference statistics with non-PPP abstraction models by accounting the spatial-temporal

correlations identified in [107].
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A Basic Properties of the Poisson Point
Process

In this Appendix, the definitions, properties, and theorems related to Poisson Point Process

are introduced. More information and detailed proofs can be found in notable books on

stochastic geometry analysis in wireless communications and networks [16, 17, 18].

Let S be the set of all sequences of points in a d-dimensional Euclidean space Rd , such that

any sequence φ belonging to S:

• is finite, i.e., has only a finite number of points in any bounded subset of Rd ;

• is simple, i.e., x �= y,∀x, y ∈φ.

A spatial point process Φ is a random, finite or countably-infinite collection of points in the

space Rd , without accumulation points.

Definition and Characterizations Consider a finite non-null measure Λ on the space Rd .

Definition A.1 The Poisson point process Φ of intensity measure Λ is defined by means of its

finite-dimensional distributions:

Pr{Φ (A1) = n1,Φ (A2) = n2, . . . ,Φ (Ak ) = nk } =
∏k

i=1 exp(−Λ (A1))
Λ(A1)ni

ni !

for every k = 1,2, . . . and all bounded, mutually disjoint sets Ai for i = 1,2, . . . ,k. If Λ(d x) =λd x

is a multiple of Lebesgue measure (i.e. volume) in Rd , we call Φ a homogeneous Poisson point

process and l ambd a is its intensity parameter. �

Definition A.2 The Laplace functional L of a point process Φ is defined by the following

formula:

LΦ

(
f
)= E

{
exp

(
−
∫
Rd

f (x)Φ (d x)

)}
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where f runs over the set of all non-negative functions on Rd . �

Laplace Functional A complete characterization of the distribution of a Point Process is

given by its Laplace functional, which plays a similar role as the characteristic function for

random variables.

Proposition A.1 The Laplace functional L of a Poisson point process Φ intensity measure Λ is:

LΦ

(
f
)= exp

(
−
∫
Rd

(
1−exp

(− f (x)
))
Λ (d x)

)
where f runs over the set of all non-negative functions on Rd . �

Probability Generating Functional The Probability Generating Functional (PGFL) is the

equivalent of the Moment Generating Functional for Point Processes.

Definition A.3 Let v(x) : Rd → [0,+∞) be a measurable function. The PGFL of a Point Process

Φ is defined by the following formula:

G [v] = EΦ

{∏
x∈Φ v (x)

}
�

Proposition A.2 The PGFL of a Poisson point process Φ intensity measure Λ is:

G [v] = exp

(
−
∫
Rd

(
1−exp(−v (x))

)
Λ (d x)

)
�

PPP-invariant Operations The most attractive property of a Poisson Point Process is that

many transformations and operations on it preserve the Poisson law. The concepts of superpo-

sition and thinning of a PPP are now introduced, concluding this section with the displacement

theorem which involves the transformation of the Point Process from one Euclidean space to

another one.

Superposition

Definition A.4 The superposition of different Point Processes is defined as the sum Φ=∑kΦk,

and it is still a Point Process if
∑

k E {Φk (·)} is a locally finite measure. �
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Proposition A.3 The superposition of independent Poisson Point Processes with intensity mea-

sures Λk is a Poisson Point Process with intensity measure
∑

k Λk if and only if the latter is a

locally finite measure �

Thinning

Definition A.5 The thinning of a Point Process Φ with the retention function p : Rd → [0,1] is a

Point Process given by:

Φp (A) =
∑

k εkδxk (A)

where the RVs {εk } are independent given Φ with Pr{εk = 1|Φ} = 1−Pr{εk = 0|Φ} = p (xk ) and

A ⊂Rd . �

Proposition A.4 The thinning of a Poisson Point Process with intensity measures Λ and the

retention function p is a Poisson Point Process having intensity measure pΛ with (pΛ)(A) =∫
A p(x)Λ(d x). �

Displacement Theorem Consider a probability kernel p(x,B) from Rd to Rd ′
, where d ′ ≥ 1.

Theorem A.1 The transformation of the Poisson Point Process with intensity measures Λ by a

probability kernel p is the Poisson Point Process with intensity measureΛ′(A) =∫Rd p(x, A)Λ(d x)

and A ⊂Rd . �

Palm Theory Palm theory formalizes the notion of the conditional distribution of a general

point process given it has a point at some location. Note that for a point process without a

fixed atom at this particular location, the probability of the condition is equal to 0 and the

basic discrete definition of the conditional probability does not apply. We first define two

measures associated with a general point process.

Definition A.6 The mean measure of a Point Process Φ is the measure

M(A) = E {Φ(A)}

on Rd . The reduced Campbell measure of Φ is the measure

C ! (A×Y ) = E

{∫
A
1 (Φ−εx ∈ Y )Φ (d x)

}
on Rd ×M, where Y ⊂M and M denotes the set of point measures. �
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Note that M(A) is simply the mean number of points of Φ in A. The reduced Campbell measure

C ! (A×Y ) is a refinement of this mean measure; it gives the expected number of points of Φ

in A such that when removing a particular point from Φ, the resulting configuration satisfies

property Y . The fact that one measure is a refinement of the other, or more formally, that

C ! (·×Y ) for each Y is absolutely continuous with respect to M(·), allows us to express the

former as an integral of some function P!
x , called the Radon–Nikodym derivative with respect

to the latter:

C ! (A×Y ) =
∫

A
P !

x M (d x)

for all A ⊂Rd . The function P !
x = P !

x (Y ) depends on Y .

Definition A.7 Given a point process with a locally finite mean measure, the distribution P !
x (·)

is called the reduced Palm distribution of Φ given a point at x. �

Slivnyak–Mecke Theorem Slivnyak–Mecke Theorem is fundamental for the characteriza-

tion of a Poisson Point Process, and has deep implications on the computational complexity

for the evaluation of the aggregate interference or other performance metrics. Consider a

probability kernel p(x,B) from Rd to Rd ′
, where d ′ ≥ 1.

Theorem A.2 Let Φ be a Poisson Point Process with intensity measures Λ. For Λ almost all

x ∈Rd ,

P!
x (·) = Pr{Φ ∈ ·}

that is, the reduced Palm distribution of the Poisson Point Process is equal to its (original)

distribution. �

Definition A.8 For a Poisson point process Φ one can take Φ!
x =Φ and Φx =Φ+εx for all x ∈Rd .

�
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B Simulation Results: Interference–
Aware Power Control in Uplink Cellu-
lar Networks

In this Appendix, simulation results of different uplink setups are considered in order to shed

light on the effect of interference-unaware/aware fractional power control as a function of

important system parameters, such as the fractional compensation factor ε, maximum MT

transmit power Pmax, interference target P (I )
0 , receive-antenna number NR and demodulators

at BSs. More details are available in the author’s recent conference paper [115].

• P. Guan and M. Di Renzo, “ Stochastic Geometry Analysis of Uplink Cellular Networks

with Multi-Antenna Base Stations and Interference-Aware Fractional Power Control”,

2015 IEEE International Conference on Computing, Management and Telecommunica-

tions (ComManTel), to appear, Dec. 2015.

If an interference-unaware scheme is used, the transmit power of the typical MT can be

formulated as follows:

PMT =
{

P0Rαε
MT, if P0Rαε

MT � Pmax

Pmax, otherwise

where notation from Chapter 4 is used.

If an interference-aware scheme is used, the transmit power of the typical MT can be formu-

lated as follows.

PMT =

⎧⎪⎪⎨⎪⎪⎩
P0Rαε

MT, if P0Rαε
MT � Pmax and P0Rαε

MTΛ
−α
MT � P (I )

0

P (I )
0 Λα

MT, if P0Rαε
MTΛ

−α
MT > P (I )

0 and P (I )
0 Λα

MT � Pmax

Pmax, if P0Rαε
MT > Pmax and P (I )

0 Λα
MT > Pmax

where P (I )
0 denotes the maximum PSD interference level at the BS that experiences the largest

interference, and ΛMT denotes the generalized distance from the MT to this latter BS. In the
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considered system model, ΛMT denotes the second smallest generalized distance from the MT

to any BSs in the network. The interference-aware power control scheme allows one to keep

under control the interference level caused by the MTs that transmit at very high power in

order to compensate for a high path-loss. This approach is beneficial for reducing the power

consumption of the MTs and the aggregate other-cell interference of the entire network.

Let the legend “FPC” and “FPCIA” denote the fractional power control and interference–aware

power control in the figures, respectively. The simulation parameters are listed in Table B.1.

Table B.1: Simulation Parameters: Interference–Aware Power Control in Uplink Cellular Net-
works

Bandwidth Bw = 10 [MHz]
Free-space path-loss at 1 meter ρ0 = 40 [dB]
Path-loss exponent α= 3.5
BS density λBS = 5 BSs/Km2

MT density λMT = 100×λBS
Noise spectral density σ2

N =−174 [dBm/Hz]
P0 P0 =−80 [dBm/Hz]
Shadowing parameters (μ,σ) = (0,8)
Fast-fading parameters Ω= 1
Fractional factor ε 0 to 1
Max. MT power Pmax 20 to 70 [dBm] & ∞
Interference target P (I )

0 -130 to -80 [dBm/Hz]
Receive-antenna number NR 1, 2, 4, 8

In Fig.B.1(a)–(c), mean and standard deviation (std.) of the power consumption,PMT, of the

typical MT as a function of ε, Pmax and P (I )
0 are studied, respectively. The figure shows that the

mean of Pmax is an increasing function of ε, Pmax and P (I )
0 . Also, it highlights that the benefits

of interference-aware power control are more visible for large values of ε and Pmax, as well as

for low values of P (I )
0 .

In Fig.B.2, the coverage probability of the typical MT is illustrated. It shows that uplink cellular

networks tend to be noise- (SINR ≈ SNR) and interference-limited (SINR ≈ SIR) if ε is small

and large, respectively. It confirms that the coverage increases as the number of receive

antennas increases. Finally, it highlights that interference-aware power control seems to be

more useful for cell-center MTs, since a larger gain is observed for large reliability thresholds.

In Fig.B.3–B.4, the impact of interference-unaware/aware power control is studied as a func-

tion of the demodulator being used and of the number of receive antennas NR . In general,

the rate increases as NR increases and the gain of OC demodulation compared with MRC

demodulation increases with NR as well. The impact of interference-aware power control

is different for cell-edge (5th percentile) and cell-center (90th percentile) MTs. Usually, it is

more beneficial for cell-center MTs. In Fig. B.4, in particular, it is shown that the optimal

power control compensation factor ε may be different for cell-edge and cell-center users. This

suggests that different ε factors may be used within a given cell for providing a better quality

of experience to all the MTs in the network.
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Figure B.1: MT transmit power PMT (mean and std.) against (a) ε, (b) Pmax and (c) P (I )
0 , respectively. Setup: (a)

Pmax =∞, P (I )
0 =−100 [dBm/Hz], (b) ε= 1, P (I )

0 =−100 [dBm/Hz], (c) ε= 1, Pmax =∞.
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Figure B.2: Coverage Probability against reliability threshold. Setup: MRC, Pmax =∞, P (I )
0 =−100 [dBm/Hz].
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Figure B.3: (a) Average rate, (b) 5th percentile rate and (c) 90th percentile rate against NR . Setup: MRC, ε= 1,

Pmax =∞, P (I )
0 =−100 [dBm/Hz].

In Fig.B.5–B.6, the impact of the maximum transmit power of the MTs, Pmax, and of the

interference constraint P (I )
0 is studied. The figures show, again, that cell-edge and cell-center

MTs have different performance trends. As far as cell-edge MTs are concerned (5th percentile),

in particular, the rate increases as Pmax and P (I )
0 increase. Furthermore, Fig. 6 confirms that

setting P (I )
0 = P0 eliminates the effect of interference awareness in the power control.

All in all, the figures show that several parameters affect the achievable performance of uplink

cellular networks. If the system is adequately optimized, in particular, interference-aware

power control may enhance the achievable performance. For example, if a MRC with NR = 2

is used, and ε = 1, Pmax = 70 [dBm], P (I )
0 = −100 [dBm/Hz] is assumed, interference-aware

power control leads to a 20%, 6% and 47% increase in average rate, 5th percentile rate and

90th percentile rate, respectively, as well as a 18% reduction in MT power consumptions.

In this Appendix, the numerical examples confirm the importance of power control for en-

hancing coverage and rate of cellular networks, as well as that different performance trends

emerge for cell-edge and cell-center MTs. In particular, different power control compensa-

tion factors may be needed for different MTs in order to provide a more uniform quality of

experience across the cell. The achievable performance shows a non-trivial dependence on

the quadruplet of parameters (ε, NR ,Pmax,P (I )
0 ), which highlights the challenge of optimizing

uplink cellular networks by relying only on numerical simulations.
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Titre : Analyse de Réseaux Cellulaires LTE A : Une Approche Fondée sur la Géométrie 
Stochastique 

Mots clés : Géométrie stochastique, réseaux cellulaires, LTE-A, processus de Poisson, Évaluation de 
performances 

Résumé : L’objectif principal de cette thèse est 
l’analyse des performances des réseaux LTE-A 
(Long Term Evolution- Advanced) au travers de 
la géométrie stochastique. L’analyse 
mathématique des réseaux cellulaires est un 
problème difficile, pour lesquels ils existent déjà 
un certain nombre de résultats mais qui demande 
encore des efforts et des contributions sur le long 
terme. L’utilisation de la géométrie aléatoire et 
des processus ponctuels de Poisson (PPP) s’est 
avérée être une approche permettant une 
modélisation pertinente des réseaux cellulaires et 
d’une complexité faible (tractable). Dans cette 
thèse, nous nous intéressons tout 
particulièrement à des modèles s’appuyant sur 
ces processus de Poisson : PPP-based 
abstraction. Nous développons un cadre 
mathématique qui permet le calcul de quantités 
reflétant les performances des réseaux LTE-A,  

tels que la probabilité d’erreur, la probabilité et 
le taux de couverture, pour plusieurs scénarios 
couvrant entre autres le sens montant et 
descendant. Nous considérons également des 
transmissions multi-antennes, des déploiements 
hétérogènes, et des systèmes de commande de 
puissance de la liaison montante. L’ensemble de 
ces propositions a été validé par un grand nombre 
de simulations. Le cadre mathématique 
développé dans cette thèse se veut général, et doit 
pouvoir s’appliquer à un nombre d’autres 
scénarios importants. L’intérêt de l’approche 
proposée est de permettre une évaluation des 
performances au travers de l’évaluation des 
formules, et permettent en conséquences d’éviter 
des simulations qui peuvent prendre énormément 
de temps en terme de développement ou 
d’exécution.  

 

 

Title : Stochastic Geometry Analysis of LTE-A Cellular Networks 

Keywords : Stochastic Geometry, Cellular Networks, LTE-A, Poisson Point Process, Performance 
Analysis 

Abstract : The main focus of this thesis is on 
performance analysis and system optimization 
of Long Term Evolution - Advanced (LTE-A) 
cellular networks by using stochastic geometry.  
Mathematical analysis of cellular networks is a 
long-lasting difficult problem. Modeling the 
network elements as points in a Poisson Point 
Process (PPP) has been proven to be a tractable 
yet accurate approach to the performance 
analysis in cellular networks, by leveraging the 
powerful mathematical tools such as stochastic 
geometry. In particular, relying on the PPP-
based abstraction model, this thesis develops the 
mathematical frameworks to the computations 
of important performance measures such as 
error probability, coverage probability and  

average rate in several application scenarios in 
both uplink and downlink of LTE-A cellular 
networks, for example, multi-antenna 
transmissions, heterogeneous deployments, 
uplink power control schemes, etc. The 
mathematical frameworks developed in this 
thesis are general enough and the accuracy has 
been validated against extensive Monte Carlo 
simulations. Insights on performance trends and 
system optimization can be done by directly 
evaluating the formulas to avoid the time-
consuming numerical simulations. 
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