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Introduction

The notion of monoidal equivalence of compact quantum groups has been introduced by Bichon,
De Rijdt and Vaes in [5]. Two compact quantum groups G; and G are said to be monoidally
equivalent if their categories of representations are equivalent as monoidal C*-categories. They
have proved that G; and Gy are monoidally equivalent if and only if there exists a unital
C*-algebra equipped with commuting continuous ergodic actions of full multiplicity of G; on
the left and of Gy on the right.

Many crucial results of the geometric theory of free discrete quantum groups (random walks
and their associated boundaries, Haagerup property, weak amenability, K-amenability and
so on) rely on the monoidal equivalence of their dual compact quantum groups. Among the
applications of monoidal equivalence to this theory, we will mention the following:

e In [24], Vaes and Vander Vennet have computed the Poisson and Martin boundaries for
the dual of the orthogonal quantum groups A,(F') by using the monoidal equivalence of
A, (F) and SU,(2) for an appropriate value of ¢ (see [5]) and the results of [I5] [25].

e In [12], De Rijdt and Vander Vennet have established a one-to-one correspondence between
the continuous actions of two monoidally equivalent compact quantum groups. Moreover,
this correspondence exchanges the Poisson (resp. Martin) boundaries of the dual discrete
quantum groups. It then follows that the knowledge of the Poisson (resp. Martin) boundary
of a discrete quantum group G provides that of any group whose dual compact quantum
group is monoidally equivalent to G. By using this principle, the authors have computed
the Poisson boundaries of the duals of the automorphism quantum groups.

e In [11], the authors have established the CCAP property and the Haagerup property for
the dual of any orthogonal quantum group by using the same principle. In virtue of the
compatibility of the monoidal equivalence with some operations, they have extended these
properties to free discrete quantum groups.

e In [28], Voigt has established an equivalence of the categories KK®' and KK®* for two
monoidally equivalent compact quantum groups G; and Gs. It follows that the Baum-
Connes conjecture for the duals is invariant by monoidal equvalence. By proving this
conjecture for the dual of SU,(2) for an appropriate value of ¢, Voigt has then proved the
conjecture for the duals of orthogonal quantum groups A,(F') and their K-amenability. In
[27], the authors have used this result to establish the conjecture for the duals of the free
unitary quantum groups A, (F).

In his Ph.D. thesis [9], De Commer has extended the notion of monoidal equivalence to the locally
compact case. Two locally compact quantum groups G; and G (in the sense of Kustermans and
Vaes [18]) are said to be monoidally equivalent if there exists a von Neumann algebra equipped
with a left Galois action of G; and a right Galois action of G, that commute. He proved that
this notion is completely encoded by a measured quantum groupoid (in the sense of Enock and



Lesieur [14]) on the basis C2. Such a groupoid is called a colinking measured quantum groupoid.
The measured quantum groupoids have been introduced and studied by Lesieur and Enock (see
[14, 19]). Roughly speaking, a measured quantum groupoid (in the sense of Enock-Lesieur) is an
octuple G = (N, M, o, 3, T, T, T',v), where N and M are von Neumann algebras (the basis N
and M are the algebras of the groupoid corresponding respectively to the space of units and the
total space for a classical groupoid), a and [ are faithful normal *-homomorphisms from N and
N° (the opposite algebra) to M (corresponding to the source and target maps for a classical
groupoid) with commuting ranges, I' is a coproduct taking its values in a certain fiber product,
v is a normal semi-finite weight on NV and T and 7" are operator-valued weights satisfying some
axioms.

In the case where the basis /V is finite-dimensional, the definition has been simplified by De
Commer [8, 9] and we will use this point of view in this thesis. Broadly speaking, we can take
for v the non-normalized Markov trace on the C*-algebra N = @, My, (C). The relative
tensor product of Hilbert spaces (resp. the fiber product of von Neumann algebras) is replaced
by the ordinary tensor product of Hilbert spaces (resp. von Neumann algebras). The coproduct
takes its values in M ® M but is no longer unital.

In this thesis, we introduce a notion of continuous actions on C*-algebras of measured quantum
groupoids on a finite basis. We extend the construction of the crossed product, the dual action
and we give a version of the Takesaki-Takai duality extending the Baaj-Skandalis duality theorem
[2] in this setting.

If a colinking measured quantum groupoid G, associated with a monoidal equivalence of two
locally compact quantum groups G; and Go, acts continuously on a C*-algebra A, then A splits
up as a direct sum A = A; @ Ay of C*-algebras and the action of G on A restricts to an action
of Gy (resp. Gs) on Ay (resp. As).

We also extend the induction procedure to the case of monoidally equivalent regular locally
compact quantum groups. To any continuous action of G; on a C*-algebra A;, we associate
canonically a C*-algebra Ay endowed with a continuous action of Gs. As important consequences
of this construction, we mention:

e A one-to-one functorial correspondence between the continuous actions of the quantum
groups G; and G, which generalizes the compact case [12] and the case of deformations
by a 2-cocycle [20].

e A Morita equivalence between the crossed product A; x Gy and Ay x Go.
e A complete description of the continuous actions of colinking measured quantum groupoids.

e The equivalence of the categories KK®' and KK®?, which generalizes to the regular locally
compact case a result of Voigt [28].

The proofs of the above results rely crucially on the regularity of the quantum groups G; and
Go. We prove that the regularity of G; and G, is equivalent to the regularity in the sense of
[13] (see also [21) 22]) of the associated colinking measured quantum groupoid. By passing, this
result solves some questions raised in [20] in the case of deformations by a 2-cocycle.

This thesis is organized as follows:

e Chapter 1. First, we recall some notations, definitions and results concerning von Neumann
algebras, the theory of weights and operator-valued weights. We make a brief review of the
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theory of locally compact quantum groups (in the sense of Kustermanns-Vaes [18]). We
recall the construction of the Hopf-C*-algebra associated with a locally compact quantum
group and the notion of action of locally compact quantum groups in the C*-algebraic
setting and also very briefly in the von Neumann algebraic setting (see [23] for more
information). We recall the construction of the crossed product, the dual action and
we recall the Baaj-Skandalis duality theorem, the version of the Takesaki-Takai duality
theorem for actions of regular locally compact quantum groups. Finally, we recall the
biduality for crossed products of equivariant Hilbert bimodules.

Chapter 2. We begin with some technical preliminaries concerning the relative tensor
product of Hilbert spaces and the fiber product of von Neumann algebras. Then, we make
a quick review of the theory of measured quantum groupoid in the sense of Enock-Lesieur
(see [14] for more information) and we recall the simplified definition of measured quantum
groupoids on a finite basis and the associated C*-algebraic structure provided by De
Commer in [8, [9]. In the last paragraph, we make a very brief review of the reflection
technique across a Galois object provided by De Commer (see [9]), the construction and
the structure of the colinking measured quantum groupoid associated with monoidally
equivalent locally compact quantum groups. Finally, we provide a precise description of
the C*-algebraic structure of colinking measured quantum groupoids and we obtain some
new results.

Chapter 3. We prove that the measured quantum groupoids in general satisfy a condition
of irreducibility. We give a more precise result in the case of a measured quantum groupoid
on a finite basis and we obtain some useful corollaries. In the second paragraph, we
introduce the notion of semi-regularity for a measured quantum groupoid and we also
recall the notion of regularity, which already appears in [I3] (see also [21]). We prove the
regularity (resp. semi-regularity) of the dual measured quantum groupoid in the regular
(resp. semi-regular) case and we obtain some useful conditions equivalent to the regularity
(resp. semi-regularity). In the case of a colinking measured quantum groupoid associated
with two monoidally equivalent locally compact quantum groups G; and Gs, we prove
that the regularity (resp. semi-regularity) of the groupoid is equivalent to the regularity
(resp. semi-regularity) of both G; and Gs.

Chapter 4. We introduce and study the notion of actions of measured quantum groupoids
on a finite basis on C*-algebras, we define the crossed product and the dual action. By
using the irreducibility property, we obtain a version of the Takesaki-Takai duality and we
also provide an important improvement of the result in the regular case.

Chapter 5. We investigate in the minute details the continuous actions of colinking meas-
ured quantum groupoids. In the first paragraph, we prove that any C*-algebra A acted
upon by a colinking measured quantum groupoid associated with two monoidally equiva-
lent locally compact quantum groups G; and Go splits up as a direct sum A = A; @ A,.
In particular, we show that the C*-algebras A; and A, inherit a continuous action of G
and G respectively. In the second paragraph, we study in detail the crossed product
and we obtain a canonical Morita equivalence between the crossed products A; x Gy and
Ag X Gy. In the third paragraph, we investigate and provide a thorough description of the
double crossed product. We also give a more precise picture in the regular case.
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e Chapter 6. In the first paragraph, we define an induction procedure which generalizes
that of [I2] to the regular locally compact case. In particular, we obtain a one-to-one
functorial correspondence between the continuous actions of Gy and Gs. It should be
noted that an induction procedure has been developed by De Commer in [9] in the von
Neumann algebraic setting. We also complete the description of the continuous actions of a
colinking measured quantum groupoid by defining a one-to-one functorial correspondence
between the continuous actions of the groupoid and the continuous actions of Gy (resp.
Gs). In the second paragraph, we introduce a notion of equivariant Morita equivalence
(the underlying object is called “equivariant linking algebra”) for continuous actions of
measured quantum groupoids and we prove that the previous functors exchange the
equivariant Morita equivalences. In the third paragraph, we use the previous result to
extend the induction procedure to equivariant Hilbert modules. In the fourth paragraph,
we prove that the double crossed product Ay x Gy x G is canonically equivariantly Morita
equivalent to the Gy-C*-algebra induced by A; x Gy x @1. We also investigate the case
where A; is replaced by an equivariant linking algebra J;.

e Chapter 7. By using the induction procedure developed in the previous chapter, we define
in a canonical way an equivalence of the categories KK®' and KK®? which generalizes the
correspondence obtained by Voigt in [28§].

e Chapter 8. We introduce a notion of equivariant Hilbert modules for actions of measured
quantum groupoids under three guises as in [3]. We discuss the question of the continuity of
the action of the groupoid on the associated linking algebra and we study some examples.
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Basic notations and writing conventions

We give here a short list of the basic notations and symbols that one can find throughout this
thesis.

Hilbert spaces.

M, von Neumann algebras.

A B,C, D, FE,S, C*-algebras.

&, F,E F,.. Hilbert C*-modules.

G, H, locally compact quantum groups.

g measured quantum groupoids.

v, Y, v, weights on von Neumann algebras.

w, ©, Y, normal linear functionals on von Neumann algebras.

¥, 0,6 (relative) flip maps.

Y rex flip map X pgr : H QK — K QR H.

A, A, Ag, Ay, coproducts of von Neumann algebraic quantum groups.

0, S, oG coproducts of Hopf-C*-algebras.

an, YN (left or right) actions of von Neumann algebraic quantum
groups on a von Neumann algebra V.

(X) linear span of a set X in a vector space.
closed linear span of a set X in a normed vector space.

linear span (resp. closed linear span) of a subset
{z; P(x)} in a vector space (resp. normed vector space).

X*CcA the subset {z*; x € X}, where X is a subset of a *-
algebra A.

XY {zy; z € X, y € Y}, where zy is the product/composi-
tion of z and y or the evaluation of x at y.
the restriction of a map f to a subset X.

<'7 '>A (resp. A<'7 >)

H

(CTL

B(A#, x) (vesp. K(H, X))

inner product in a Hilbert space always assumed to be
anti-linear in the first variable and linear in the second
variable.

inner product in a right (resp. left) Hilbert module over
a C*-algebra A.

conjugate Hilbert space of 77.

canonical Hilbert space of dimension n.

bounded (resp. compact) linear operators from 5 to
JH , where 7 and £ are two Hilbert spaces. We denote
B(A) = B(AH, ) (resp. K(H) = K(H,5)).

M., (C) square matrices of order n with entries in the field of
complex numbers.
bcy € B(I, ) rank-one bounded operator given by 6 ,¢ = (1, () for

all ( € A wherene H, e H.



L(&,.F) (resp. K(&,.F))

e € L(E,.F)

e L(&,A)
& ={ e}

[, Y]

M, (resp. M])

©/® /Qn

resp./i.e./e.qg./cf.

adjointable (resp. “compact”) operators from & to .Z,
where & and .# are Hilbert modules, £(&) = L(&, &)
(resp. K(&) = K(&,E)).

elementary operator defined by 6¢,( = &(n, () for all
(€&, where £ € F ,nedb.

the operator given by &*n = (£, n), for all n € &.

left Hilbert A-module defined by a&* = (£a*)%,
(€5 n e == (,m), for all &, n € & and a € A.

the commutator of x and y in some algebra, that is
[2,y] :== zy — yz.

multipliers of the C*-algebra A.

the C*-algebra

{m € M(A®B); (A®B)m c A®B,m(A®B) C A®B}

where A is the C*-algebra obtained from A by adjunction
of a unit element (see [3] §1).
center of an algebra A, that is

Z(A)={rz € A;Yae A, [z,a] =0}.

cone of positive elements in a C*-algebra A.
commutant of M C B(.%), that is

M ={x € B(J); Yy € M, [z,y] = 0}.

opposite von Neumann algebra of M.

normal linear forms (resp. positive normal linear forms)
on the von Neumann algebra M.

algebraic tensor product over C /tensor product of
Hilbert spaces, the external tensor product of Hilbert
modules, the tensor product of von Neumann algebras or
the minimal tensor product of C*-algebras (spatial tensor
product) / internal tensor products of Hilbert modules.
Abbreviation for “respectively”/“id est”/*“exampli gra-
tia” /*“ confere”.



Chapter 1

Locally compact quantum groups

1.1 Preliminaries on von Neumann algebras

1.1.1 Normal linear forms

In this paragraph, we very briefly recall the main notations that we will need later on. For more
information about von Neumann algebras we refer the reader to classical references.

We recall here some notations that we will use several times. Let M be a von Neumann algebra.
Let w € M, and a,b € M. We define aw € M, and wb € M, the normal linear functionals on
M given by

(aw)(x) = w(za), (wb)(x)=w(bx), =€ M.

so that we have d’(aw) = (¢’a)w and (wb)b' = w(bt'), for all a,a,b, b’ € M. We also denote
awb := a(wb) = (aw)b ; w, := a*wa.

If we M, then w, € M. Note that (w,), = wgp for all a,b € M. If w € M, we define w € M,
by setting:

w(r) =w(z*), ze€M.
Let  be a Hilbert space and let us fix £,n € 7. We denote we,, € B(J€),, the normal linear
form defined by:

wen(z) = (€, 7n), =€ B(A).

Note that we have w¢, = wy¢. Furthermore, we also have awe, = we¢ oy and we pa = wWyx¢, for
all a € B(JZ).

O Tensor product of normal linear forms. Let M and N be von Neumann algebras, ¢ € M, and
1 € N,. Then, there exists a unique ¢ ® ¥ € (M ® N), such that (¢ ® ¥)(xz @ y) = ¢(z)(y)
for all z € M and y € N. Moreover, [|¢ @ ¢ < [|¢] - [|¥]|. Actually, it is known that we have
an (completely) isometric identification M,®,N, = (M ® N),, where ®, denotes the projective
tensor product of Banach spaces. In particular, any w € (M ® N), is the norm limit of finite
sums of the form Y, ¢; ® v;, where ¢; € M, and ¢; € N,.

O Slicing with normal linear forms. We will also need to slice maps with normal linear functionals.
Let M; and M; be von Neumann algebras, w; € (M), and wy € (Ms),. Therefore, the maps
w ®id : MiOMy — M; and idOwsy : M1 My — Ms extend uniquely to norm continuous normal
linear maps wi ® id : M1 X M2 — M2 and id R ws : M1 (029 M2 — Ml. We have ||W1 (029 ldH = ||(,LJ1||



and [|id @ wa|| = [Jwal|. If wy € (My)] (resp. wy € (M3)}), then wy ®id (resp. id ® wy) is positive.
Let 2 and % be Hilbert spaces, we define

0. € B(A , @ K), 0,cBAHHK), §cH, neX

by setting 0¢(¢) = @ ¢ for all ¢ € 2" and 0, (¢) = (@n forall ( € . If T € B(AH @ X'),
¢ € B(H ). and w € B(S),, then (id®¢)(T') € B(H) and (w®id)(T) € B(#") are determined
by the formulas:

(&1, (([d® @) (T)&2) = 905, T0s,), &1,& € I,
(1, (w@id)(T)n2) = w(0),T0,,), m,m2 € KA.
In particular, we have:
(id @ Wy, )(T) = 0776, ,, M, € X 5 (wey e, @IANT) = O, TOg,, &1,& € H.

Let us recall some formulas that will be used several times. For all ¢ € B(.¥)., w € B(J),
and T € B(J¢ @ ), we have:

zid®@¢)(Ty=(d®@¢)(z@ 1)T(y®1)) ; (ywr@id)(T) = (w@id)((z @ )T (y ® 1)),
for all z,y € B(#) and
a(w ®id)(T)h = (w @ id)(1® )T(L @ b)) ; (id ® bpa)(T) = (id ® ¢)((1 ® a)T(1 @ b)),
for all a,b € B(J#). We also have the following formulas:
([d@o)(T) = (1d@¢)(T7), (w®id)(T) =(@eid)(T),

(@ ©id)XwerTEraw) = (d@¢)(T), ([d®w)(ErerTErer) = (weid)(T),
forall T € B(# @ ), ¢ € B(X ), and w € B(IH)..
O Predual of B(, %"). An element of B(J¢,. %), is the restriction to B(, %) of some
weBHeX). It e X, ne H, we define we, € B(H, ), as above. We also define aw,

wb, awb and W as above. Let €, &, ', %" be Hilbert spaces, T € B(H# @ K, 4" @ K",
we define the slice maps:

(ideo)(T) e B(o#, "), ¢eB(H,*"), ; (wxid)(T)e B(X,x"), weB(H, ).,
in a similar way. Moreover, we can easily generalize the above formulas. For instance, we have

1.1.2 Weights on von Neumann algebras

Definition 1.1.1. A weight ¢ on a von Neumann algebra M is a map ¢ : M — [0, oo] such
that:

o Va,y € My, p(z +y) = p(x) + ¢(y),
o Vx e My, VIeR,, p(Ax) = Ap(x),



We denote N, = {z € M ; p(z*x) < oo} the left ideal of square ¢-integrable elements of M,
MF = {r € M, ; p(xr) < oo} the cone of positive p-integrable elements of M and 9, = (M?)
the space of p-integrable elements of M.

Definition 1.1.2. Let ¢ be a weight on a von Neumann algebra M. The opposite weight of ¢
is the weight ¢° on M° given by ¢°(2°) = () for all x € M. Then, we have N = (N7)°,
ML = (M7)° and Mo = (M,,)°.

Definition 1.1.3. A weight ¢ on a von Neumann algebra M is called:
e semi-finite, if N, is o-weakly dense in M.
e faithful, if for z € M, we have that ¢(z) = 0 implies z = 0.
e normal, if p(sup,cr ;) = sup;ez ¢(x;) for all increasing bounded net (x;);er of M.

Remarks 1.1.4. Note that ¢ is semi-finite if and only if 97 is o-weakly dense in M, or
again, if and only if 9, is o-weakly dense in M. There are several conditions equivalent to the
normality of ¢.

From now on, we will mainly use normal semi-finite faithful weights. We will then abbreviate
“normal semi-finite faithful weight” to “n.s.f. weight”.

Definition 1.1.5. Let M be a von Neumann algebra and ¢ a n.s.f. weight on M. We define
an inner product on 91, by setting:

(T, y)p = p(z"y), x,y €N,

We denote (47, A,) the Hilbert space completion of DM, with respect to this inner product,
where A, : N, — S, is the canonical map. There exists a unique unital normal *-representation
o M — B(J,) such that

W@(x)Acp(w =A,(vy), €M, yeN,.
The triple (J€,, m,, A,) is called the G.N.S. construction for (M, ¢).

Remarks 1.1.6. The linear map A, is called the G.N.S. map. We have that A,(N,) is dense
in 7, and (A, (), Ap(y)), = p(x*y) for all z,y € N,. In particular, A, is injective. Moreover,
we also call 7, the G.N.S. representation.

We recall here the main objects of the Tomita-Takesaki modular theory.

Proposition-Definition 1.1.7. Let M be a von Neumann algebra and ¢ a n.s.f. weight on
M. The anti-linear map
A@(‘ﬁ; nN,) — Aw(m;; nN,)
Aw) A

is closable and its closure is a possibly unbounded anti-linear map T, - D(T,) C H, — H, such
that D(T,) = Ran7T, and T, o T,(z) = x for all x € D(7,). Let
T, = J@Vglo/Z

be the polar decomposition of T,. The anti-unitary J, : H, — H, is called the modular
conjugation for ¢ and the injective positive self-adjoint operator V., is called the modular
operator for .



The functional calculus can be applied to V,, so that Vif is a unitary operator on J#, for all
t € R and we have the following commutation relation:

JVi, =V tekR.
Note that [J,, VZ] = 0 for all # € R since J? = 1.

Let us recall the following definition:

Definition 1.1.8. A one-parameter group of automorphisms on M is a family o = (0y)er
indexed by R of *-automorphisms of M such that o,,; = 0,0 0 for all s, € R and such that
the map t — oy(z) is o-weakly continuous for all x € M.

Proposition-Definition 1.1.9. There exists a unique one-parameter group (of )ier of auto-
morphisms on M, called the modular automorphism group of @, such that

mo(0f (2)) = Vir,(z)V,", teR, ze M.
Then, for allt € R and x € M we have of (x) € N, and
Ay(of(x)) = ViA,(z), teR, zeM.

The modular conjugation induces a canonical *-isomorphism between M’ and M°.
Proposition 1.1.10. The following map

M° — M’

2° — Jymp(x)*J,.
is a unital normal *-isomorphism.

We are now able to identify all G.N.S. spaces and the corresponding G.N.S. representations
given by the n.s.f. weights on M.

Notations 1.1.11. From now on, we will then identify all the G.N.S. spaces JZ, to a fixed
Hilbert space denoted J%3;. Moreover, we will identify all G.N.S. representations 7, to a fixed
unital normal *-representation 7y, of M on . and we also identify all modular conjugations
J, to a fixed anti-unitary operator Jy;. By abuse of notation, we still denote A, : M, —
the G.N.S. map. Then, we call the triple (%, mp, A,) the standard G.N.S. construction for
(M, ). We denote Cp; : M — M’ the normal unital *-anti-isomomorphism given by

CM(.CE) = JM’R'M(QZ)*JM, r e M.

We also denote jy; : M° — M’ the normal unital *-isomorphism induced by C},, that is to say
jM(ZEO) = JMWM(JI)*JM, forall z € M.

Definition 1.1.12. If ¢ is a n.s.f. weight on M, we denote ¢° the n.s.f. weight on M’ defined
by ¢ =% jy; -

There are canonical identifications 7,0 = 7, = 7 of the standard G.N.S. spaces. Indeed,
let us fix a n.s.f. weight ¢ on M, then the maps

%Mo — %M %M’ — <%]\47

i eNn*
Apo(2°) — Jyho(z?),  Ape(u(z)) — Juhg(z®) 5%

are unitaries and are independent of the chosen n.s.f. weight .
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1.1.3 Operator-valued weights

Definition 1.1.13. Let N be a von Neumann algebra. The extended positive cone of N is the
set N consisting of the maps m : N7 — [0, co] that satisfy:

1. Ywi,ws € N, m(w) +w2) = m(wr) + m(ws).

2. YVw e N VA e Ry, m(Aw) = dm(w).

3. m is lower semicontinuous with respect to the norm topology on N,.
Notations 1.1.14. Let N be a von Neumann algebra.

1. From now on, we will identify N, with its part inside N**. Accordingly, if m € N we
will denote w(m) the evaluation of m at w, for w € N} .

2. Let a € N and m € N, we define a*ma € N$* by setting
w(a*ma) = awa*(m), w e NJ.
If m,n € N{* and A € Ry, we also define m + n, Am € N$* to be given by

wim+n) =w(m)+wn), whm)=Iw(m), we N

Definition 1.1.15. Let N C M be a unital normal inclusion of von Neumann algebras. An
operator-valued weight from M to N (or N-valued weight on M) is a map T : M, — N that
satisfies:

1. Ve,ye My, T(z+y) =T(x)+T(y).
3. Vo € My, Va e N, T(a*za) = a*T(z)a.

By analogy with ordinary weights, if N C M is a unital normal inclusion of von Neumann
algebras and T is an operator-valued weight from M to N we define:

Ny ={zreM;T(x'z) e Ny}, Mf={xeM, ;T(x)e N}, Mp=(M}).
Then, My and Ny are two-sided modules over N and My = (I ).

Definition 1.1.16. Let N C M be a unital normal inclusion of von Neumann algebras. An
operator-valued weight T" from M to N is said to be:

1. semi-finite, if DMy is o-weakly dense in M.
2. faithful, if for z € M, we have that T'(x) = 0 implies x = 0.

3. normal, if for every increasing bounded net (z;);cz of elements of M, we have

w(T'(sup;ez ;) = limjez w(T'(z;)), w € N,



Note that if T : My — N is an operator-valued weight, it extends uniquely to a semi-linear
map 7T : M$t — N This will allow us to compose n.s.f. operator-valued weights. Indeed, let
P C N C M be unital normal inclusions of von Neumann algebras, T and S be respectively a
P-valued n.s.f. weight on N and an N-valued n.s.f. weight on M. We define a P-valued n.s.f.
weight on M by setting (S o T)(z) := S(T(z)) for x € N,.

Fundamental example. Let L, O and P be von Neumann algebras, 7 : L - O ® P be a
faithful normal unital *~homomorphism and ¢ a normal faithful weight on P. Then, we define a
normal faithful operator-valued weight 7' : Ly — O$* by setting T'(z) = (id ® ¢)7(x) for all
x € L+.

1.2 von Neumann algebraic quantum groups

In the following paragraph, we recall the main definitions and results from [I8] on locally
compact quantum groups.

Definition 1.2.1. A locally compact quantum group is a quadruple

G = (LOO(G)7AG7 9071/})7

where L°(G) is a von Neumann algebra, Ag : L*(G) — L*(G) ® L*(G) is a unital normal
*-homomorphism, ¢ and ¢ are n.s.f. weights on L>°(G) satisfying the following conditions:

1. (Ag®id)Ag = (id® Ag)Ag  (coassociativity).
2. p((w®@id)Ag(r)) = @(r)w(l), for all w € L=(G)} and x € M (left invariance).
3. P((id ® w)Ag(z)) = Y(x)w(1), for all w € L*(G)f and z € M (right invariance).

The map Ag is called the comultiplication (or coproduct) of G and the n.s.f. weight ¢ (resp. )
is called the left (resp. right) Haar weight on G.

The notation L*°(G) suggests the analogy with the fundamental example given by complex-
valued essentially bounded measurable functions on a locally compact group. Moreover, by
adding commutativity in the previous definition, we get back to the classical case of a locally
compact group. However, there is no underlying space G in the quantum case and L>*(G) is a
non necessarily commutative von Neumann algebra.

Proposition 1.2.2. Let G be a locally compact quantum group. Let ¢ and ¢ be two left (resp.
right) invariant n.s.f. weights on G. Then, there ezists a real number r > 0 such that ¢ =r - ¢.

Therefore, since the left (resp. right) invariant n.s.f. weight on a locally compact quantum group
G is unique up to a positive scalar factor, we will always suppose that we have associated a
fixed left invariant n.s.f. weight ¢ on a given locally compact quantum group G.

In the following, we fix a locally compact quantum group G = (M, A) and a left invariant weight
pon G.

Proposition-Definition 1.2.3. There exists a unique couple (1, R), where T = (T;)er @S a
one-parameter group of *-automorphisms of M and R is an involutive *-anti-automorphism of
M satisfying the following statements:



1. Rory =70R, forallt € R.
2. Let S = RoT_;5. We have (id ® ¢)(A(y)* (1 ® x)) € D(S) for all x,y € N, and
S((d ® ) (AW (1 )" = (d® ) (A) (1 & y)), for allz,y €N,
The one-parameter group T, is called the scaling group of G. The automorphism R is called the
unitary antipode of G. The map S is called the antipode of G.

We have that 7, commutes with ¢¢ and ¢¥ for all s,¢ € R, where 1 is a right invariant n.s.f.
weight on G. We also have that Ro o} = aft oR for all t € R.

Proposition 1.2.4. We have:
1. AOTt: (Tt®Tt)OA, fO?“ all t € R.
2. ¢o(R®R)oA=AoR, wheres: M @ M — M & M is the flip *-automorphism.

In particular, if ¢ is a left invariant n.s.f. weight on G, we define a right invariant n.s.f. weight
Y on G by setting ¥(x) = p(R(x)) for all x € M, .

Henceforth, we will take 1 = ¢ o R as the right invariant weight on G.

Proposition-Definition 1.2.5. There exists a unique number v > 0 such that
p(ri(x) =v'p(x),  wlof () = vie(z),
(@) =v (@),  ¥(of(z)) =vY(z),

forallt € R and x € M,. We call v the scaling constant of G.

Proposition-Definition 1.2.6. There exists a unique injective positive operator d such that

1. d is affiliated to M (i.e. d"* € M for allt € R)
2. (D : D), = v"*/2d" for allt € R,

where (DY : D) is the Radon-Nikodym derivative of 1 with respect to ¢ (see [1]). We call d
the modular element of G.

Multiplicative unitary. The notion of multiplicative unitary has been introduced and studied
by Baaj and Skandalis in [2]. Let us recall the leg numbering notation. Let .7 be a Hilbert
space, for £ € 7 and i = 1,2,3 we define 0, ¢ € B(H @ A, 7 @ 7 & ) by setting:

@) =E@nRC(, ben®()=n0Ex( Ohne()=na(RE n(cA.
Let T € B(A ® ), we define the operators Tia, T3, Toz € B(H @ H# @ H) by:
Tio0s¢ = 03T, Tigbhe = 02T, Togbe =0T, €.

In other words, we have T1o = T®1 ¢, Tos = 1T and T3 = X15T53312 where ¥ € B(A# @)
is the flip map. We will also use some generalizations of these notations. Let (J4)i<j<, be a
family of Hilbert spaces. Let 1 <k <n,1<i; <iy <--- <ip <nand T € B(Q¢jcr 7).
We define similarly 75, ..;, € B(®1<;<, #;). Moreover, the k-tuple (i1, --- i) of pairwise dis-
tinct indices need not be ordered, e.g. if T' € B( ® ) we denote Ty; = XT3, We can easily
extend the leg numbering notation for adjointable operators on an external tensor product of
Hilbert C*-modules over possibly different C*-algebras.



Definition 1.2.7. Let .7 be a Hilbert space and V' € B(# ® ) be a unitary operator. We
say that V' is multiplicative if it satisfies the pentagon equation

ViaVi3Vag = VasVia.
Let (2,7, A,) be the standard G.N.S. construction for (M, ¢). Then, the linear map
Ay @A, N, ON, = H @ H

is closable with respect to the o-strong* topology on M ® M and the norm topology on ¢ ® .
We denote A, ® A, its closure with respect to these topologies. Therefore, the triple

(@A TR, Ny @A)
is a G.N.S. construction for ¢ ® ¢. By the left invariance of ¢, we have
Aly)(zr®1) € DA, ® A,), z,y €N,.
Moreover, we have

((Ap @ AL)(A(y)(z @ 1)), (A @ AL)(A(Y) (@' ® 1)) ) = (Ap(@) @ Ap(y), Ap(2’) @ Au(y) )
for all z,y,2',y" € MN,.

Proposition-Definition 1.2.8. There ezists a unique W € B(H @ H) such that
W (Ap(2) ® Ap(y)) = (A ® Ag)(Aly)(z @ 1)),

for all x,y € N,. Moreover, W is a multiplicative unitary of 7. We call W the left reqular
representation of G.

In a similar way, we consider (7, m, Ay) the standard G.N.S. construction for (M, ) and we
define (@ 7, m @7, Ay ® Ay) the G.N.S. construction for 1) ®1). By using the right invariance
of 1, we have:

Proposition-Definition 1.2.9. There exists a unique V € B(H ® ) such that
V(Ay(2) @ Ay(y)) = (Ay © Ay)(A(2)(1 @),

for all z,y € My,. Moreover, V is a multiplicative unitary of €. We call V' the right reqular
representation of G.

From now on, we assume that the underlying von Neumann algebra M is in standard form
with respect to a Hilbert space # (also denoted L?(G) by analogy with the classical case).
As before, we fix a left invariant weight ¢ on G and a G.N.S. construction (¢, ¢, A,) where ¢
denotes the inclusion map M C B(s#). We also consider the G.N.S. construction (4, ¢, Ay)
for the right invariant weight ¢ = p o R.

The left (resp. right) regular representation W (resp. V') carries all the relevant data of G. To
be more precise, we have the following result:

Proposition 1.2.10. We have:
e M is the o-strong® closure of the algebra {(id ® w)(W); w € B(H).}.
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o Alx) =W*(1®@x)W, for all x € M.
Similarly, we have:
e M is the o-strong* closure of the algebra {(w ®id)(V); w € B(H).}.

o Alx)=V(x® 1)V* forallxz € M.

Now, we recall the notion of dual of a locally compact quantum group G = (M, A) as it was
originally introduced and studied in [I§].

Proposition-Definition 1.2.11. Let M be the o-strong* closure of the algebra
{(wid)(W); w € B(H).}.
Then, M is_ a von Neumann algebra and there exists a unique unital normal *_homomorphism
A,\ M — M ® M such that
Ax(z) = W(z @ 1)W*, forallz e M.
The pair (Z\//T, A,\) s a locally compact quantum group.
We also recall briefly the construction of the dual weight ¢, where ¢ is a left invariant weight
on G. Let us denote
Ty = {w e BA).; I eR,, ¥r €Ny, [w(z*)] < KA}
By Riesz’ representation theorem, for all w € .#, there exists a unique a,(w) € F such that
Va €0, () = (A, (), a,(w)).
Then, ¢ is the unique n.s.f. weight on M whose G.N.S. construction is (A,1d, A@), where A
is the closure of the operator (w ® id)(W) +— a,(w). The weight ¢ is then right invariant for
(% ,Ay). Starting from a right invariant weight for G, we also define a left invariant weight for
(M, Ay).

Remark 1.2.12. For the definition of the coproduct, we have used a different convention than
n [I8]. As a result, we have to keep in mind the fact that the weight @ is right (and not left)
invariant for (M, A »). The notation A, will be clarified later on.

Definition 1.2.13. Let G = (M, A) be a locally compact quantum group. We can define two
new locally compact quantum groups:

1. The opposite locally compact quantum group G° = (M, A°) whose coproduct is given by
A° =c¢oA.

2. The commutant locally compact quantum group G¢ = (M’, A®) whose coproduct is given
by A¢ = (Cy @ Car) o Ao Cyf.

If ¢ and 1 are respectively left and right invariant weights on G, then i) and ¢ are respectively
left and right invariant on G°. Moreover, the n.s.f. weights ¢ and ¢ are respectively left and
right invariant on G°.

Starting from a locally compact quantum group G = (M, A), we define the dual quantum group
G. This dual will appear better suited to right actions of G.

Definition 1.2.14. Let G = (M, A, ¢, 1) be a locally compact quantum group. We call the
dual quantum group of G, the locally compact quantum group

@ = (']/\4\/7 A? @267 @C)’
where the coproduct A is given by:
Alz)=V*(1®@x)V, forallze M.
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1.3 (Cr-algebraic quantum groups

In this paragraph, we recall how to associate canonically a Hopf-C*-algebra to any locally
compact quantum group.

Definition 1.3.1. A Hopf-C*-algebra is a couple (S,¢) consisting of a C*-algebra S and a
faithful non-degenerate *-homomorphism § : S — M(S ® S) such that:

1. § is coassociative, that is (§ ® idg)d = (idg ® 9)J,
2. [0(9)(S®@1g)] =528 =[3(9)(1lsg® 9)].
The *-homomorphism ¢ is called the comultiplication (or the coproduct).

Remark 1.3.2. Since 0 is non-degenerate, idg ® ¢ and 0 ® idg extend uniquely to strictly conti-
nuous unital *-homormorphisms from M(S®S) to M(S®S®S). Therefore, the coassociativity
condition makes sense.

Let us fix a locally compact quantum group G = (M, A). Let V' be the right regular representa-

-~

tion of G. Let us denote J (resp. J) the modular conjugation of the left invariant weight on G

~

(resp. G).
Theorem 1.3.3. Let S (resp. S) be the norm closure of
{(wid)(V); w e B(s).} C B() (resp. {(id@w)(V); w e B(H).} C B(X)).

Then, S (resp. S) is a C*-algebra and the restriction of A (resp. A) to S (resp. S) defines a
non-degenerate *-homomorphism

§:8 > MBS ®S) (resp.6:8 = M(S®S)).
Moreover, the pair (S,8) (resp. (S,8)) is a Hopf-C*-algebra.

-~

Definition 1.3.4. We call the pair (S, 8) (resp. (S,)) the Hopf-C*-algebra (resp. dual Hopf-
C*-algebra) of G.

Note that the pair (g, 3) is the Hopf-C*-algebra of G. If G = (L>*(G), Ag), we also denote
(Co(G), 0g) the Hopf-C*-algebra associated with G by analogy with the classical case.

Notations 1.3.5. Let us denote U := JJ e B(s). Note that U is unitary. Moreover, we have
Ur=JJ = v~4U, where v is the scaling constant of G. We can endow the C*-algebras S and
S with the following representations:

L:S—B();,y—y, R:S—BX);y—UyU",
p:S—=BH);x—x, NS B z— UzU*.
It follows from Proposition 2.15 of [I8] that
W=3XU V(U ®1)X, [Wi, V] =0.

We denote V :=2(U @ DV(U* @ 1)S and V= S(1 @ U)V(1 @ U = (U U)V(U* @ U*)
(see Définition 6.2 of [2]). We have W =V and V is the right regular representation of G.
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Remark 1.3.6. With the above notations, we have that the Hopf-C*-algebra associated with
(M, Ay) (see Proposition-Definition [1.2.11]) is (A(S), dy), where the coproduct dy is given by

~

(z) =W(x @ 1)W*, for all z € \(S).

Regularity and semi-regularity of locally compact quantum groups

The notion of regularity (resp. semi-regularity) has been introduced and studied in [2] (resp.
[11)-

Notation 1.3.7. Let V' be a multiplicative unitary on a Hilbert space .. We denote C(V')
the norm closure of the subalgebra {(id ® w)(XV); w € B(H).} of B(H).

Proposition 1.3.8. (see Proposition 3.2 of [2]) C(V') is a norm closed subalgebra of B(F)
and the following statements are equivalent:

1. K() C C(V) (resp. K()=C(V)).
2. K(A#A @) Cl(z1)VA®y); z,y € K(H)]
(resp. K(H# @ )=z 1)V(I1Ry);z,y € K(H)]).

Definition 1.3.9. Let V be a multiplicative unitary on a Hilbert space 5. We say that V'
is semi-regular (resp. regular) if () C C(V) (resp. K(o) = C(V)). A locally compact
quantum group is said to be semi-regular (resp. regular) if its right regular representation (or
equivalently its left regular representation) is semi-regular (resp. regular).

We finish with a result concerning the regularity of a corepresentation of a regular multiplicative
unitary. Let us recall a definition:

Definition 1.3.10. (see Définition A.1 in [2]) Let V be a multiplicative unitary on a Hilbert
space J. A corepresentation of V' on a Hilbert space /¢ is a unitary Y € B(J ® %) such
that

ViaYi3Yas = Ya3Vio.

In the following proposition, if V' is a regular multiplicative unitary on a Hilbert space ¢’
we denote py(w) = (id ® w)(V) for w € B(H#),. We also denote Sy the norm closure of
{pv(w); w € B(H).}. Recall that Sy is a C*-algebra (see Proposition 3.5 in [2]).

Proposition 1.3.11. (Proposition A.3 and Remarque A.4 of [2]) Let V' be a regular multiplica-
tive unitary on a Hilbert space 7€ andY a corepresentation of V' on a Hilbert space £ . Then,
we have

[(Sy @ 1)Y (Ly @ K(H))] = Sy @ K(X).

1.4 Actions of locally compact quantum groups

Definition 1.4.1. Let (S,0) be a Hopf-C*-algebra. A (right) coaction of (S, d) on a C*-algebra
A is a non-degenerate *-homomorphism d4 : A - M(A ® S) such that

<5A X ids)(sA = (idA &® 5)5A
Moreover, the coaction 4 is said to be (strongly) continuous if it further satisfies
[04(A)(1a® S)]=A®S.

A (S, 6)-C*-algebra is a couple (A, d4) consisting of a C*-algebra A and an injective continuous
coaction d4 of (S,0) on A.

13



Remarks 1.4.2. 1. Since 4 and ¢ are non-degenerate, id4 ® 0 and 4 ®idg extend uniquely
to strictly continuous unital *-homomorphisms from M(A ® S) to M(A® S ® S). Then,
the condition (4 ® idg)ds = (id4 ® 0)04 makes sense and we will consider the following
*~homomorphism 6% = (64 ® idg)ds = (idy ® )64 : A - M(AR S ®9).

2. We can define left coactions in a similar way. Note that we define a one-to-one cor-
respondence by mapping any left coaction of (S,d) to a right coaction of the opposite
Hopf-C*-algebra (S,s04), where¢: S® S = S®S; a®b+— b® a is the flip map. In the
following, we will refer to right coactions simply as coactions.

Examples 1.4.3. Let us give two basic examples:

1. Let A be a C*-algebra and (S, ) a Hopf-C*-algebra. Let us consider the *-homomorphism
da: A — M(A®S) given by ds(a) = a® 1g for all @ € A. Then, d4 is a coaction
called the trivial coaction of (S,d) on A. Besides, the trivial coaction d4 turns A into a
(S, 9)-C*-algebra.

2. If (S,6) is a Hopf-C*-algebra, the map § : § — M(S ® S) is a right (or left) coaction of
(S,0) called the right (or left) regular coaction.

Definition 1.4.4. Let A and B be two C*-algebras. Let 04 and dg be two coactions of (.5, )
on A and B respectively. A non-degenerate *~homomorphism f : A — M(B) is said to be
(S, 0)-equivariant if we have (f ® idg) 0 s = dpo f.

Remarks 1.4.5. 1. Note that the condition (f ® idg) 004 = dp o f in the above definition
does make sense. Indeed, since f is non-degenerate, f ® idg extends uniquely to a strictly
continuous unital *-homomorphism f®idg : M(A®S) - M(B®S). Besides, dp extends
uniquely to a strictly continuous unital *-homomorphism 65 : M(B) - M(B ® 5).

2. It is clear that the class of all (5, d)-C*-algebras for a given Hopf-C*-algebra (S,¢) is a
category with respect to (S, d)-equivariant non-degenerate *-homomorphisms.

Definition 1.4.6. Let G be a locally compact quantum group and A a C*-algebra. We will refer
to coactions of (Cy(G), dg) as actions of G. Moreover, we will also refer to (Co(G), dg )-C*-algebras
as (G-C*-algebras.

Definition 1.4.7. Let (A,04) and (B, dp) be two G-C*-algebras. Let f: A — M(B) be a non-
degenerate *-homomorphism. We say that f is G-equivariant when it is (Co(G), dg)-equivariant.
We will denote Morg (A, B) the set of all G-equivariant non-degenerate *-homomorphisms from
A to M(B) and G-C*-Alg the category of G-C*-algebras.

1.5 Crossed product and Baaj-Skandalis duality

Let G be a locally compact quantum group. Let (.S,4) (resp. (3 , 5)) be the Hopf-C*-algebra
associated with G (resp. G). We denote L : S — B(¢) and p : S — B(#) the canonical
inclusion maps (see Notations . Since S and S are non-degenerate C*-subalgebras of
B(#), L and p extend uniquely to strictly continuous unital *-homomorphisms

L:M(S) = B(#), p: M(S)— BHK).

Let A be a C*-algebra. The *-homomorphism idy ® L : A® S — L(A ® ) extends uniquely
to a strictly continuous unital *-homomrphism idy ® L : M(A® S) — L(A ® ), where we
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have used the canonical embedding A ® B(#) — L(A® S). Let 4 be an action of G on A.
We define the following *-representation of A on the Hilbert A-module A ® J7:

T = (1dA®L>05AA—>£(A®%)

Proposition-Definition 1.5.1. Let A x5, G (or simply A x G when no ambiguity can arise)
the norm closure of the linear subspace of L(A & ) spanned by all products of the form

7TL(Q)<1A ® p(w)), a€ A we B<%)*
Therefore, A x5, G is a C*-algebra called the crossed product of A by the action d4 of G.

In particular, 77, induces a non-degenerate *-homomorphism 7 : A — M(A x G). Similarly,
p induces a *-homomorphism 6 : S — M(A x G) given by 0(z) = 14 ® p(z), for all z € S.
Besides, we have

AXG=[n(a)f(z);ac A zeS]

Proposition-Definition 1.5.2. Let 04 be an action of G on a C*-algebra A. There exists a
unique *-homomorphism daug : A X G — M((AxG)® S) given for alla € A and x € S by

Saxc(m(a)0(z)) = (1(a) ® 15)(f @ id) 0 d(x).

Then,A daxg 18 an action of@ on AX G called the dual action. Moreover, the pair (A X G, 04xc)
is a G-C*-algebra.

Let us assume that G is regular. Let (A,04) be a G-C*-algebra. Let dy be the action of G on
A® K(S) given by

do(a®@k) =0da(a)i3(1a @k @ 1g),
for all a € A and k € k(). Let us denote Vo € M(S ® S) such that (p® L)(Vp) = V. Let us

then define the unitary V = (p®idg) (Vo) € L(A'®YS). Let 0’y : AQK(H) - M(AQK(H)®5S5)
be the *-homomorphism given by

(Sil(ﬁ) = V2350($)V§37 reEAR® ’C(%)
Therefore, (A ® K(5€),0)) is a G-C*-algebra.

Theorem 1.5.3. (Baaj-Skandalis duality theorem) Let G be a regular locally compact quantum
group. Let (A,04) be a G-C*-algebra, then the double crossed product (A x G) x G, endowed
with the action 6(“@)%@ of G, is canonically G-equivariantly isomorphic to the G-C*-algebra

(A® K(H#),8,).

We will now give some definitions and results concerning actions of locally compact quantum
groups in the von Neumann algebraic setting from the seminal paper [23]. Indeed, this will
be necessary in in order to recall the crucial results of De Commer [9] concerning the
so-called reflection technique. Let us fix a locally compact quantum group G = (M, A) and a
left invariant n.s.f. weight ¢ on G.

Definition 1.5.4. A right (resp. left) action of G on a von Neumann algebra N is a faithful
normal unital *-homomorphism a: N — N ® M (resp. o : N — M ® N) such that

(a®@idy)a = (Idy @ A)a (resp. (idy ® a)a = (A ® idy)a).
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Note that if a is a left (resp. right) action of G on a von Neumann algebra N, then ¢ o a is a
right (resp. left) action of G°. In what follows, we will refer to actions of G as right actions of G.

Definition 1.5.5. Let a be an action of G on a von Neumann algebra N. We call the von
Neumann algebra
N ={zx e N;ax)=x®1} CN,

the algebra of a-invariant elements of N. The action « is said to be ergodic if N¢ is reduced to
the scalars, that is N* = C - 1.

Proposition-Definition 1.5.6. Let N be a von Neumann algebra. Let o be an action of G on
N. For x € N, we denote
T.(z) = (id ® p)a(x) € NT*.

Then, we have T,(x) € (N*)$* and T, : Ny — (N*)9* is a normal faithful operator-valued
weight from N to N®. We say that the action « is integrable if T, is semi-finite, which means
that Miag, N a(N) is o-weakly dense in a(N).

Now, we recall the crossed product construction in this setting.

Proposition-Definition 1.5.7. Let a be an action of G on a von Neumann algebra N. Then,
the crossed product N X, G of N by « is the o-weak closure in N @ B(A) of the linear span of
{a(x)1®y); x € N,y € M'}. Then, N X, G is a von Neumann algebra.

Note that we have N x, G = (a(N)U (1 ® M"))". Now, we give the definition of dual action,
which is an action of G on the crossed product N x, G.

Proposition-Definition 1.5.8. There exists a unique action & of@ on N X, G such that:
ala(@) =az)®1l, zeN ; al®y)=10A®y), yelM.
We call & the dual action of a.

A Takesaki-Takai duality theorem is given in [23] (see Theorem 2.6).

1.6 Equivariant Hilbert modules and bimodules

In the following, we briefly recall the biduality for crossed products of equivariant Hilbert
bimodules (¢f. [2] and [3]).

Let G be a locally compact quantum group. Let (.5, ) be the Hopf-C*-algebra associated with
G. Let (A,d4) and (B, dp) be two G-C*-algebras. A G-equivariant Hilbert A-B-bimodule is
a Hilbert A-B-bimodule & such that the C*-algebra K(& @ B) is endowed with a continuous
action

of G compatible with 4 and dp in the following sense:
e The canonical *~homomorphism v : B — K(& @ B) is G-equivariant.
e The left action of A on &, A — L(&), is G-equivariant.

We denote d the restriction of 0k (sqp) to & (see [3]).
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Definition 1.6.1. A linking G-C*-algebra (or a G-equivariant Morita equivalence) is a quin-
tuple (J, 07, €1, es) consisting of a G-C*-algebra (.J,0;) endowed with two nonzero self-adjoint
projections ey, ea € M(J) such that:

1. €1 + €y — 1].
2. [JeJ = J,i=1,2.
3. 5J<€i>:ei®1s,7::172.

Remark 1.6.2. If (J,0;, €1, e2) is a linking G-C*-algebra, then by restriction of §;, e;Je; and
eoJes are G-C*-algebras and e; Jey is a G-equivariant Hilbert e;Jej-esJeo-bimodule (cf. [3] page
706). We say that two G-C*-algebras A and B are G-equivariantly Morita equivalent if there
exists a linking G-C*-algebra (J,d,, €1, e2) such that A (resp. B) and e;Je; (resp. ey Jeq) are
isomorphic as G-C*-algebras.

Assume that G is regular. It follows from §7 [2] that:

1. The G-equivariant Hilbert A x G x G-B x G x G-bimodule & x G x G is identified to
the G-equivariant Hilbert A ® K(L?(G))-B @ K(L?*(G))-bimodule & @ K(L*(G)).

2. The G-C*-algebras A ® K(L?(G)) and B ® K(L?*(G)) are endowed with the bidual action
of G. The action of G on the Hilbert B ® K(L*(G))-module & @ K(L*(G)) is given by the
action degi(L2(c)) defined by:

dsonz(c)(€) = Vas(id ® 0) (0 @ idxwzy) (E) Ve € € & @ K(LA(G)),

where 0 : S ® K(L*(G))) — K(L*(G)) ® S is the flip map and V € M(K(L*(G)) ® S) is

the right regular representation of G.
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Chapter 2

Measured quantum groupoids: reminders and
supplements

2.1 Preliminaries

In this paragraph, we will recall the definitions, notations and important results concerning the
relative tensor product (also known as Connes-Sauvageot tensor product) and the fiber product
which are the main technical tools of the theory of measured quantum groupoids. For more
information, we refer the reader to [6].

Relative tensor product. In what follows, N is a von Neumann algebra endowed with a
n.s.f. weight . Let m (resp. ) be a normal unital *-representation of N (resp. N°) on a Hilbert
space H (resp. K). Then, H (resp. K) may be considered as a left (resp. right) N-module.
Moreover, JZ, is an N-bimodule whose actions are given by:

w8 = mp(x)§, &y = Jomo(y) o, § € A,y €N

Definition 2.1.1. We define the set of right (resp. left) bounded vectors with respect to ¢ and
7 (resp. y) to be:

o(mH)={{eN;IC R, Vo eN, [r(x)] < CllA ()1},

(resp. (K,7), ={§ € £;3C e Ry, Vo € NG, [[y(2°)8] < CllApe(2°)[1}).
If £ € ,(m, H), we then denote R™% () € B(J,,H) the unique bounded operator such that
R™?(&)Ay(x) = m(x)€, for all z € N,,.
Similarly, if £ € (K, ), we denote L% () € B(H,, K) the unique bounded operator such that
L) Jpho(w7) = 3(a)E, for all 2 € 0,
where we have used the identification S0 — J€,; Apo(2°) — J,A,(z").

Note that ¢ € IC is left bounded with respect to ¢ and v if and only if it is right bounded with
respect to the n.s.f. weight ¢° on N’ and the normal unital *-representation v° = v o j5' of N'.
It is important to note that (KC, ), (resp. ,(m, H)) is dense in K (resp. H) (see Lemma 2 in [6]).

If £ € ,(m,H) (resp. £ € (K,7),), we have that R™%(§) (resp. L7%(§)) is left (resp. right)
N-linear. Therefore, for all £,n € (7w, H) (resp. (K,~),) we have
RT2(§)"R™(n) € mp(N)" = jn(N°),  RT?(§)R™(n)" € m(N)'
(resp. L7#(£)"L74(n) € mo(N),  LT(E)L7#(n)" € v(N°)').
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Notations 2.1.2. Let &,n € (7, H) (resp. (K,7),), we denote:

(€ mwe = 5" (R™2(§)"R™(n)) € N°  (resp. (€, mn =7, (LV9(§)"L7(n)) € N).

Proposition 2.1.3. Forall{,n € ,(m, H) (resp. &,n € (K,7),) andy € N analytic for (o} )ier,
we have:

1. (€ mNo = (0, E)ne (resp. (€, m)y = (0, E)n).
2. (& my° ) ne = (& mnoafn(y)®  (resp. (&, my)n = (§mnoZ, 5 (1Y)
Lemma 2.1.4. For all &, & € ,(m,H) and 1, n2 € (K,7),, we have
(m, Y&, &Inve)me)c = (&, m({m, n2)v)&2)n-
Definition 2.1.5. The relative tensor product

K .,®:H (or simply denoted K ,®, H)
¢

is the Hausdorff completion of the pre-Hilbert space (IC,7), ® ,(m, H), whose inner product is
given by

(& @M, & ®@na) = (m, Y({&1, S2)nve) e = (§1y T({n, M) N)E2)ns
for all &, & € (K, 7), and 1,12 € o(m, H). If £ € (K, ), and n € ,(m, H), we will denote

€,®@,n (or simply denoted & ,®, 1)
%)

the image of £ ® n by the canonical map (KC,7), ® ,(m,H) = K ,®, H (isometric dense range).

Remarks 2.1.6. 1. By applying this construction to (N°, ¢°) instead of (N, ) we obtain

the relative tensor product H .®, K.
(pO

2. The relative tensor product K ,®, H is also the Hausdorff completion of the pre-Hilbert
space KK ® ,(m,H) (resp. (K,7), ® H), whose inner product is given by:

(&1 @m1, & @n2) = (&1, 7({11, M2)N)E2)m
(resp. (§1 @ m1, &2 @ m2) = (1, Y({&1, &2) o)) ic)-

3. Moreover, for all £ € K, n € ,(m,H) and y € N analytic for (o} )er, we have

YY) ®rn = £ @rm(0F, 5 (y))n.

The relative flip map is the isomorphism o)™ from K ,®, H onto H &, K given by:
® ¥°

ol (€4@rm) =020, 8, € (K,7)p, n € o(m,H)  (or simply o77).
® ¥°

T
@

3T B(K ,®@xH) = B(H -®4 K)
Lp (o]

%)
@

Note that 0™ is unitary and (0™)* = 0z’. Then, we can define a relative flip *-homomorphism

(or simply denoted ¢*™) by setting:

g (X) =0l"X (o))", X € B(K,®:H).
)
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Fiber product of von Neumann algebras. We continue to use the notations of the previous
paragraph.

Proposition-Definition 2.1.7. Let K; and H; be Hilbert spaces, and ; : N° — B(K;) and
i N — B(H;) be unital normal *~homomorphisms for i = 1,2. Let T € B(K,K3) and
S € B(Hi,Hz) such that

Tovy(n°) =) oT, Som(n)=m(n)oS, néeN.

Then, the linear map
(’Cla 71)4,0 @ Lp(7T17 Hl) — ]CQ 'yg®7r2 H2
§ON — TE,®r, 51

extends uniquely to a bounded operator
oL 3 @y Sy € B(KCh 4, @, Hi, Ko 1, @, Ho) (o1 simply denoted T, @y, S),

whose adjoint operator is 5, T 1, @, S*r, (or simply T* ,,&~, S*). In particular, let x € y(N°)'
and y € w(N)', then the linear map

(IC77)L,0®<,0(7T7,H> — ’C«,@W,H
§ON — 28,Qryn

extends uniquely to a bounded operator on IC,®, H, denoted x ,®ry € B(K @, H).

Remark 2.1.8. With the notations of Proposition-Definition [2.1.7, let T" : K; — H, and
S : Hy — K5 be bounded antilinear maps such that

Tom(n®) =m(n)oT, Som(n)="7(n") oS, neN.
In a similar way, we define the operator
w5 @ny Sry € B(KCq 4, @, Ha, Ho 7,®4, K2),  (or simply denoted T, ®,, S),

whose adjoint operator is , 7% r,®r, S*,, (or simply T* ;,®~, S*). Note that these notations are
different from those used in [14} [19].

Let M C B(K) and P C B(H) be two von Neumann algebras. Let us assume that 7(N) C P
and y(N°) C M.

Definition 2.1.9. The fiber product

M x. P (or simply denoted M %, P)
N

of M and P over N is the commutant of
{z @ y;xe M, ye P} CBK,Q:H).

Then, M ., P is a von Neumann algebra. We also denote M’ .,®, P’ the von Neumann algebra
generated by the set {z,®@,y |z € M', y € P'}, called the relative tensor product of M’ and
P’. We have

M ok, P = (M @, P').
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Note that we have ¢¥™(M yxx P) = P %, M. We still denote <™ : M %, P — P %, M the
restriction of ¢ to M ,x, P.

O Slicing with normal linear forms. Now, let us recall how to slice with normal linear forms.
For £ € (K,7)p,n € (7, H), we consider the following bounded linear maps

M7 H = K@ H, T K = K@ H.
C — €’y®7r< C = ny®7r77

Let IC and H be Hilbert spaces, and v : N° — B(K) and 7 : N — B(#) be unital normal
*-homomorphisms, T' € B(K ,®, H) and w € B(K). (resp. w € B(H).). By using the fact that
o(m, M) (resp. (K, 7)) is dense in H (resp. K), there exists a unique

(kg 1)(T) € BH)  (resp. (idyep )(T) € B(K)),
which satisfies:
(N2, (W id)(T)m) = w((p,") Toy"), M2 € o(m, H)
(resp. (€2, (e )(T)E1) = (L) TAL), €0, € (K7),)

In particular, we have the formulas:

(Wep 0 = 1) (T) = (AT TAL™ € B(H),  &1,6 € (K,7),,

(idyr ) (T) = (") T3 € BIK), my.s € olm, ).
If v € M %, P, then for all w € B(H), (resp. w € B(K).) we have

(id ok w)(x) € M (resp. (woxrid)(z) € P).

We refrain from writing the details but we can easily define the slice maps if T" takes its values
in a different relative tensor product. Note that we can extend the notion of slice maps for
normal linear forms to normal semi-finite weights.

Fiber product over a finite dimensional von Neumann algebra. Now, let us assume

that
N= P M,(C), ¢v= P Tu(FH-),

1<i<k 1<I<k

where Fj is a positive invertible matrix of M,, (C) and Tr; is the non-normalized trace on M,, (C).
Let us denote (F};)1<i<n, the eigenvalues of Fj. We have:

Proposition 2.1.10. (see §7 of [8]) The bounded linear map
0" K@H — K,@H (or simply denoted v7'")
%)
QN — §,8x1
%)

is a coisometry if and only if 31<;<p, Ffll =1 foralll1 <1< k. In the following, we assume
that this condition is satisfied. Let us denote

g3" = (03")" g™ (or simply ¢77).
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Then, g™ is a self-adjoint projection of B(K @ H) such that

~1/2 p=1/2 !
= 3 3 BPEGPE)) @),
1<I<k 1<,5<n
where, for all 1 <1 <k, (eg'))lgi’jgnl is a system of matriz units such that Fj = 371 <;<p, Flﬂ-eg?.
Furthermore, the map
Mot P — T (M @ P)g)T

T — (Ug’”)*xvz;’r

is a unital normal *-isomorphism.

Now, let us take for ¢ the non-normalized Markov trace on N = € M,,(C), that is

1<I<k
€= @ ny - Tr;.

1<I<k
As a corollary of Proposition [2.1.10, we have:

Proposition 2.1.11. For all system of matrix units (eg)), 1<I<k 1<4,j<n, of N we

have:
T _ o l
"=t Y e @m(el).

1<I<k 1<i,j<n;
The following result is a slight generalization of the previous proposition to the setting of
C*-algebras. This result will be used several times in the subsequent chapters.

Proposition-Definition 2.1.12. Let A, B be two C*-algebras. We consider two non-degenerate
*-homomorphisms v4 : N° — M(A) and 7p : N — M(B). There exists a unique self-adjoint
projection "™ € M(A ® B) such that

= 3 Y qaley”) @ ma(el).

1<ILk 1<i,5<ny;
for all system of matriz units (egé))1<i7j<nl for M,,,(C), 1 <1< k.

Proof. The uniqueness of such a self-adjoint projection is straightforward. In virtue of Gelfand-
Naimark theorem, we can consider faithful non-degenerate *-homomorphisms 64 : A — B(K)
and g : B — B(H). Let us denote v := 64 04 and 7 := 0 o mg. Then, v : N° — B(K)
and 7 : N — B(H) are normal unital *-representations. Let us fix an arbitrary system of
matrix units (egé))lgi,jgnl for M,,,(C) for each 1 < [ < k. We define a self-adjoint projection
Q4™ € M(A® B) by setting:

Q=Y ot Y yale)?) @ mp(e (l))-

1<i<k 1<i,j<ny

By Proposition we have ¢)'" = (04 ® 0p)(¢"*™). By using again Proposition and
the fact that 0, ® 0p is faithful, we obtain that ¢?"472 is independent of the chosen systems of
matrix units. Moreover, the definition of ¢7478 shows that ¢"4™8 is also independent of the
chosen faithful non-degenerate *-homomorphisms 6, and 6p. m

Remark 2.1.13. In a similar way, there also exists a unique self-adjoint projection ¢"™374 such

that
g B = Z nl—l Z (e ())®7 (e (l)O)

1<k ISHISU

for all system of matrix units (e (1))1<”<m for M,,,(C), 1 <1< k.
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2.2 Enock-Lesieur’s measured quantum groupoids

Definition 2.2.1. We call measured quantum groupoid an octuple G = (N, M, o, 5,1, T, T", v),
where:

e M and N are von Neumann algebras,
o I': M — M gxo M is a faithful normal unital *-homomorphism, called the coproduct,

e «: N — M and : N° — M are faithful normal unital *~homormorphisms, called the
range and source maps of G,

o T: M, — a(N)¥ and TV : My — B(N°)* are n.s.f. operator-valued weights,
e v is a n.s.f. weight on N,
such that the following conditions are satisfied:

1. a(n’) and B(n°) commute for all n,n’ € N.

2. V¥n e N, I'(a(n)) = a(n) 58,1 and T'(5(n°)) = 1 3®4 5(n°).

3. T'is coassociative, that is (I' gk, id)I" = (id g*, I')T.

4. The n.s.f. weights ¢ and 1) on M given by p = voa toT and 1) = v o 37! o T" satisfy:
o Vz e M}, T(z) = (idgxa p)L(z) ; Vae ML, T'(z) = (¢ gkeid)(z).
e of and ¢¥ commute for all s,¢ € R.

Let G = (N, M,«, 5,1, T,T",v) be a measured quantum groupoid. We denote (7,7, A) the
G.N.S. construction for (M, ) where ¢ = voa ™t oT. Let (0;)icr, V and J be respectively the
modular automorphism group, the modular operator and the modular conjugation for ¢. In the
following, we identify M with its image by 7 in B(7¢). We have:

e Rg: M — M a*-antihomomorphism satisfying R% = id and ¢ o(Rg gk Rg)ol = I'o Ry.
From now on, we will assume that 7" = RgT Rg and then also ¢ = ¢ o Rg.

e There exist self-adjoint positive non-singular operators A and d respectively affiliated to
Z(M) and M such that
(D : Do), = XP12d% ¢ € R.
The operators A and d are respectively called the scaling operator and the modular operator

of G.

e The G.N.S. construction for (M, ) is given by (J€, 7y, Ay), where Ay is the closure of
the operator which sends any element € M such that zd/? is closable and its closure
xd'/? € N, to Ay (xd'/?), wy : M — B(J) is given by the formula 7y (a)Ay(z) = Ay(az).

e The modular conjugation J,, for v is given by J, = \/4J.
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e We will denote
W T 3Ry I — %”o@g%”

the left regular pseudo-multiplicative unitary of G (see [26]) : 4 is a unitary map, which
satisfies a pentagon relation and some commutation relations with respect to «, 5 and f3,
that is for all n € N we have:

Wg(a(n) p®a 1) = (La®@za(n)#g, W5(15®a8(n%)) = (1.858(n°))#s,
R R R (2.2.1)
Wo(Bn) 52 1) = (B) a3 )We,  Hal(l 40 B°)) = (Bn°) w23 1) %4
Moreover, M is the weak closure of {(id xw)(#5); w € B().} and we have:
['(z) =5 (1.@z2)#5, x€ M.
Starting from a measured quantum groupoid G, we are able to build new ones: the dual, opposite

and commutant measured quantum groupoids respectively denoted G, G° and G°.

Proposition-Definition 2.2.2. Let G = (N, M, «, 5,1, T,T",v) be a measured quantum grou-
poid. Let #g be the regular pseudo-multiplicative unitary for G. We define the dual measured
quantum groupoid of G to be the octuple G = (N, M Oz,ﬁ,F T RoTo R v), where:

o M C B() is the von Neumann algebra generated by
{(wxid)(#g); w € B(A).} C B(IA).

. N° — M is given by 3(n°) = Ja(n*)J for alln € N.

[ )
= @)

:]\//T—>]\/4\§*a]\//\[ is given for all x € M by
D(z) = 0" Hg(w p@a VWG 0™,

o There exists a unique n.s.f. weight @ on M whose G.N.S. construction is (e%”,id,Ag;),

where the G.N.S. map A is the closure of the operator

(wid)(#g) = ap(w),
defined for normal linear forms w in a dense subspace of
={w € B(H).; Ik e Ry, Vo € Ny, |w(z*)]* < kp(a*z)}

and a,(w) € F satisfies

Vo € Ny, wiat) = (Ap(e), a,(w)).

~

o T is the unique n.s.f. operator-valued weight from M to a(N) such that ¢ =vo atoT
(de’—R ~TR~ g where Rz : M — M is given by Ry (x) = Ja*J for all x € M.

We will also consider the n.s.f. weight w ={po R?' We will denote V and J the modular
operator and the modular conjugation for @.

Note that the scaling operator of G is A=!. In particular, we have A" € Z(M) N Z(M) for all
t € R. The regular pseudo-multiplicative unitary 7/5 of G is given by

W= oPoWgole.
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Theorem 2.2.3. Let G = (N, M,a, 3, T, T,T",v) be a measured quantum groupoid. We have:
1 W5(57 a®a J3) = (ad 55 Ja) #5
2. JJ=N/AJJ.

3. Let us define a(n) := JPB(n°)*J = fB(no)*j forn € N. We have the Heisenberg type
relations:

MNOM=«a(N), MM =p(N°, M nM=pBN°, MnM =aN).

Proposition-Definition 2.2.4. Let G be a measured quantum groupoid. We have
NEJ = X% NET = TN forallt € R.

Let us denote U = JJ € B(). Then, U* = X=/*U and U? = X/*. In particular, U is unitary.
We also have: R
a(n) =Ua(n)U, B(n°)=UBMn°)U", neN.

Remark 2.2.5. We have A=/ ¢ Z(M) and U* = \=/*U. Hence,
a(n) = Ua(n)U*, B(n°) =U*B(n°)U, n € N.

Proposition-Definition 2.2.6. Let us fit G = (N, M,«, 3, U, T,T',v) a measured quantum
groupoid.

1. The octuple (N°, M, B, c,>* o', RgT Rg, T, v°) is a measured quantum groupoid denoted
G° and called the opposite measured quantum groupoid (of G). The regular pseudo-
multiplicative unitary #g. of G° is given by:

Woo = (87 a®a J5) #5(5J a®a J)-
2. Let Cyy: M — M’ be the canonical *-antihomomorphism given by Cy(z) = Jo*J, x € M.
Let us define:
I = (Cus gxa Crr) o T o O3, ¢=CyuoRgoCy, T =CyoToCh.

Then, the octuple (N°, M',B,a&,T¢,T¢, R°T°R", v°) is a measured quantum groupoid de-
noted G° and called the commutant measured quantum groupoid (of G). The regular
pseudo-multiplicative unitary #ge of G° is given by:

%C = (EJa@oz Jg)%(ﬂa@% Jﬁ)

Proposition 2.2.7. Let G be a measured quantum groupoid. We have the following formulas:
G°)° =6, (G =¢g, (G°)=(9°)"
Go=(G), G°=(9)

Remark 2.2.8. From on, we will refer to (C;)C instead of QA as the dual of G. Indeed, this
dual will appear better suited to right actions of G. Note that:

(G)° = (N°, M", 8,&,T°,T°, T, 1°),

where the coproduct and the operator valued weights are given by:
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e(x) = (“//(@C)*(l 5®a x)%g)c, for all x € M.

. fC:C’MofoCil,Where C’M:]\/I%]\/Z’;x»%jx*j.
M

Tel _
Ch R(Q)C

oo R(é\)c.

Note also that the commutant weight p'=1v°0pB7to T¢ derived from the weight ¢ is left
invariant for the coproduct I'°.

Notations 2.2.9. For a given measured quantum groupoid G, we will need the following
pseudo-multiplicative unitaries:

V=W, Vi=We=W,

@ = e V=

2.3 De Commer’s weak Hopf-von Neumann algebras with finite basis

In [9], De Commer provides an equivalent definition of a measured quantum groupoid on a finite
basis. This definition is far more tractable since it avoids the use of relative tensor products
and fiber products. Let us assume that:

N = @ Mnl(C), € = @ nl-Trl.

1<I<k 1<ILk

Let G = (N, M,a, 5,1, T,T', €) be a measured quantum groupoid. Let us recall that we have a
unital normal *-isomorphism:

M gxo M — ¢7*(M @ M)¢*
z — (V7)o
Let us then denote A : M — M ® M the (non necessarily unital) faithful normal *-homomor-

phism given by
A(z) = (V)T (2)0?*, z € M.

We have A(1) = ¢7*. We verify easily that for all T' € B(J 3@, %) and w € B(H), we have:
(W pro id)(T) = (w @ id)((V>*) Tv?),  (id gro w)(T) = (id @ w)((>*)* Tv>).
In particular, we obtain:
(W ke id)[(2) = (w®@1d)A(z), (id grew)I'(z) = (id ® w)A(x),

for all x € M, w € B(J).. The coassociativity of A is derived from that of I" and for alln € N
we have:

A(B(n%)) = (1@ f(n°) A1) = A(1)(1 @ 5(n°)).

This leads De Commer to build the following equivalent definition of a measured quantum
groupoid on a finite basis (called “weak Hopf-von Neumann algebra with finite basis and integrals”
in Definition 11.1.2 of [9]):
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Definition 2.3.1. A measured quantum groupoid on the finite-dimensional basis

N: @ an((c>

1<i<k
is an octuple G = (N, M, o, B, A, T, T’ €), where:

e M is a von Neumann algebra, o : N — M and : N° — M are unital faithful normal
*_homomorphisms,

e A: M — M ® M is a faithful normal *-homomorphism,
o T: My — a(N)¥ and T' : My — B(N°)$* are n.s.f. operator-valued weights,

® c— @ n; - Tr; is the non-normalized Markov trace on N,
1<I<k

such that the following conditions are satisfied:
1. a(n’) and B(n°) commute for all n,n" € N.
2. A1) = ¢*~.
A is coassociative, that is (A ® id)A = (id ® A)A.
Vn e N, Ala(n)) = A(1)(a(n) @ 1), A(B(n%)) = A(1)(1 @ 5(n%)).
The n.s.f. weights ¢ and ¥ on M given by ¢ = eoa o T and 1) = eo 7! o T” satisfy:
T(z)=({d®@p)Ax), zeMf ; T(z)=@Wid)A(zx), xeMi.

AR

6. ViR, 0l ca=a,ol o =4

Let us fix a measured quantum groupoid G = (N, M, a, 8, A, T,T’, €) on the finite-dimensional
basis N = @ M,,(C).

1<I<k

Notations 2.3.2. Let us consider the injective bounded linear map

0 LB(H @ A, 520 H) — B(H @A) X»—)(vﬂ’a)*Xva’ﬂ.

L~
a,o

Similarly, we also define LZB\ and Lg\ﬂ. Then, we define:

. B () _a
V=g (), W= Lﬂﬁ("f/), V=43
where we recall that 7 = 7/@6 = 7/(/90\), V =Wz and ¥ = W goye

Proposition 2.3.3. The operators V,W and V are multiplicative partial isometries acting on
R F whose initial and final supports are given by

VIV =g = VTV, WW =g = VYV, W =g, VT = PR
Moreover, we have:
V(Ay(2) @ Ay(y)) = (Ay @ Ap)(A(2) (1 @y)), 2,y €Ny,

W*<Aeo(x) ® Aw(?/)) = (Aso ® Aw)(A(y)(x ®1)), zy¢€ N,
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It is also easy to see that
(wxid)(#g) = (w@id)(W), ([d*xw)(#g) = ({d@w)(W), w e B(H)..
In particular, M (resp. M) is the weak closure of
{([d@w)(W);we B(H).} CB(AH) (resp. {(w®id)(W); w € B(H).} C B(H)).

Proposition 2.3.4. The multiplicative partial isometries V, W,V are related to each other by
the following formulas:

W=S(Ue)WU®l)L, V=X1oU)VAQU"D, where U=.JlJ.

Furthermore, we have

~ ~

Vi=(JNWVI®J), W'=(Jo)W(JJ).

Proof. This is a consequence of the definition of V', W and V, Theorem 1 and Lemma
3.1.1| (proved independently in §3.1)). O

Following the notations of [2], we denote V = %(U ®1)V(U* ® 1)%. The previous proposition
says that W = V. Note that we have V = (U @ U)W (U* ® U*). Note also that we have:

WeMeoM, VeM@M, VeMoM. (2.3.1)

Proposition 2.3.5. We have the following commutation relations:

1. WigVas = VasWia ,  ViaVay = VasVio.
For allm € N, we also have:

2. [Via(n)®1 =0, [V,f(n°)®1 =0, [V,1®am)=0, [V,1®j3(n°)]=0.

3. V(l®an) =(@nh) eV, V(Br)e1l) =1 8n)V.

4. W, B(n°) @ 1] =0, [W,a(n)®1]=0, [W,1®8n°)]=0, [W,1®a)]=0.

5. WA ®Bm)) =(@Bn°)@ )W, W(an)®1)= (1 an))W.

6. [V.a(n)®1 =0, [V,(n°)®1] =0, [V.1®a®)]=0, [V,1®j3(n)] =0.

7. V1 ®B(n°)) = (B(n°) @ 1)V, V(an)®1) =1 an)V.

Proof. The first statement is a consequence of . For the statements 4 and 5, see Lemma
11.1.2 of [9] which is derived from the formulas in Definition 3.2. (i) and Theorem 3.6. (ii) of
[14] (see the formulas above). The formula [W,1 ® @(n)] = 0 is a consequence of
and Theorem [2.2.3| 3. The remaining statements follow from Proposition [2.3.4] O

Furthermore, we also have some formulas of a different kind (these are not commutation
relations).

Proposition 2.3.6. For alln € N, we have:
1L WEr) @) =WA®ahn), (1&Bn)NW = (a(n)®1)W.
2. V1@ Bm)) =V(an) 1), (1ean)V = (8n°)e1)V.
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3. V(B(n°)®1)=V(A®a(n), 1&pBn)V =(an)e1)V.
Proof. See Lemma 11.1.4 of [9] and Proposition above. O

It should be mentioned that these formulas rely heavily on the fact that € is a faithful positive
tracial functional. Indeed, if v is some faithful positive functional we only have

Bn°) p@an =& p@a 0’ s(a(n))y, neN,&ne A

Corollary 2.3.7. For alln € N, we have:

~

L p) 1) = 1@am), (1e5)e? = (a(n) © 1),
2 (1@ B) = P @m @ 1), (1@am)e’ = (B(n°) @ g’
3B ) =" (1@ aMm), (1©)d™ = (@) © 1)g™’.

Proof. The corollary is a straightforward consequence of Propositions [2.3.3] and [2.3.6] O

The coproduct A : M — M ® M is given by:
Al) =V )V =W (1o x)W, ze M.
We denote A : M — M’ @ M’ the coproduct of (G)¢. We have
Alz)=V*A@2)V=V(@o )V, zecM.

Finally, we will use a coproduct A, of G different from the one given in [9]. The coproduct
Ay : M — M ® M is given by:

~ o~

Ay(z)=W(@e )W, zeM.

2.4 Weak Hopf-C*-algebra associated with a measured quantum grou-
poid on a finite basis

We recall - with different notations and conventions - the construction provided by De Commer in
[9] of the weak Hopf-C*-algebra associated with a measured quantum groupoid on a finite basis.
Let us fix a measured quantum groupoid G = (N, M, a, B, A, T, T, €) on the finite-dimensional
basis N = @ M,,(C). Following [2], we denote:

1<ILk
Lw) = (weid)(V), pw)=>@w)V), weB(H).
We define S (resp. S) to be the norm closure of the subalgebra
{L(w); we B(A).} C B(AH) (resp.{p(w);w € B(A).} C B(A)).
In [9], one denotes D (resp. D) the norm closure of the subalgebra

{(d@w)(W); w e B().} C B() (resp. {(w®id)(W); w € B(S).} C B(3#£)).

According to Proposition 11.2.1 of [9], D and D are C*-subalgebras of B(#). Note that we
have:
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Lemma 2.4.1. S =D, §=UDU".

Proof. Indeed, since W = V we have (id @w)(W) = L(wy) for all w € B(€), (see the notations
of §1.1.1). This proves that D C S. Conversely, if w € B(J), we have L(w) = (id ® wy«)(W)
since w = (wy+)p. Hence, S = D. Since (w ® id)(W) = U*p(w)U for all w € B(H)., we obtain

~

S=UDU". ]

Proposition 2.4.2. S and S are non-degenerate C*-subalgebras of B(A) weakly dense in
respectively M and M’.

Proof. The fact that S and S are C*-subalgebras of B(A) is a straightforward consequence
of Proposition 11.2.1 of [9] and Lemma . The fact that S (resp. S) is weakly dense in M
(resp. M') follows from the fact that M (resp. M') is the weak closure of {L(w); w € B(J).}
(resp. {p(w); w € B(J).}) in B(S) (¢f. Lemma 11.1.5 [9]). The non-degeneracy of S (resp.
S) follows directly from the fact that S (resp. S) is strongly dense in M (resp. M'). O

Notations 2.4.3. We endow S and S with two faithful non-degenerate *-representations:
L:S—=BW),y—y, R:S—BX);y— UyU",
p:S—= B x—x, N:S—BH); x— UzU".

We also have R(y) = U*yU and \(z) = U*zU for all y € S and z € S.

Proposition 2.4.4. (see Proposition 11.2.2 of [9])

a(N) c M(S), B(N°) c M(S), B(N°)c M(S), a(N)c M(S).

~

VeMS®S), WeMBS®AS), VeMRS ®S).

~

A (resp. A) restricts to a *-homomorphism 6 : S — M(S® S) (resp. 6 : S — M(S® S)).

d (resp. 5 ) extends uniquely to a strictly continuous *-homomorphism
§: M(S) > M(S®S) (resp. 6 : M(5) = M(S®8S)),

which satisfies 3(1s) = ¢ (resp. 5(15) = ¢*).
5. 8 and § are coassociative, that is (6 ® ids)d = (ids ® 0)J and (J ® idg)d = (idg ® 6)d.
6. We have:

[0(5)(1s ® )] = 0(1s)(S ® 5) = [0(5)(S @ 1s)],

0(S)(13® S)] =d(1g)(S® S) = [6(S)(S @ 13)].
7. The unital faithful *-homomorphisms o : N — M(S) and B : N° — M(S) satisfy:

6(a(n)) = d(1s)(a(n) ® 15), 6(B(n°)) =d(1s)(1s ® B(n°)), n € N.

8. The unital faithful *-homomorphisms 3 : N© — M(S) and & : N — M(S) satisfy:
5(B(n°) = 6(15)(B(n°) ® 1g),  d(a(n)) =6(13)(15®@a(n)), neN.
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Note that we have:
Sy) =WAe@yYW =Vyo)V*, yes ; dz)=V(101z)V=VEeaol)V", zeb.

Definition 2.4.5. With the above notations, we call the pair (S,6) (resp. (5,)) the weak
Hopf-C*-algebra (resp. dual weak Hopf-C*-algebra) associated with the measured quantum
groupoid G.

Remarks 2.4.6. With the notations of the above definition, we have:

1. (S,0) is the weak Hopf-C*-algebra of G¢ while its dual weak Hopf-C*-algebra is (R(S),0r),
where R(S) = USU* and the coproduct dp is given by dg(y) = V*(1@y)V forally € R(S).
2. The weak Hopf-C*-algebra of G is (A(S),d,), where 0y is given by 0x(z) = W(z @ 1)W*,

-~

for all x € A(S).

2.5 Measured quantum groupoids and monoidal equivalence of locally
compact quantum groups

We will recall the construction of the measured quantum groupoid associated with a monoidal
equivalence between two locally compact quantum groups provided by De Commer in his thesis
[9]. First of all, we will need to recall the definitions and the crucial results of De Commer.

Definition 2.5.1. Let G be a locally compact quantum group. A right (resp. left) Galois action
of G on a von Neumann algebra N is an ergodic integrable coaction ay : N — N ® L*(G)
(resp. vy : N = L*(G) ® N) such that the crossed product N x,, G (resp. G ,,x N) is a type
I factor. Then, the pair (N, ay) (resp. (IV,vn)) is called a right (resp. left) Galois object for G.

Let G be a locally compact quantum group and let us fix a right Galois object (N, ay) for
G. In his thesis, De Commer was able to build a locally compact quantum group H equipped
with a left Galois action vy on N commuting with ay, that is (id ® ay)yy = (7v ® id)ay.
This construction is called the reflection technique and H is called the reflected locally compact
quantum group across (N, ay).

In a canonical way, he was also able to associate a right Galois object (O, ap) for H and a left
Galois action 70 : O — L*°(G) ® O of G on O commuting with ap. Finally, De Commer has
built a measured quantum groupoid

g]HI,(G = (CQa M>Oéaﬁa A7T7 T/7€)7

where M = L*(H)® N ® O & L*(G), A : M — M ® M is made up of the coactions and
coproducts of the constituents of M, the operator-valued weights T and 7" are given by the
invariants weights and the non-normalized Markov trace € on C? is simply given by €(a, b) = a+b,
(a,b) € C%. Moreover, the source and target maps o and 3 have range in Z(M) and generate a
copy of C*.

Conversely, if G = (C%, M, «, 8, A, T, T, ¢) is a measured quantum groupoid whose source and
target maps have range in Z(M) and generate a copy of C*, then G is of the form Gy in
a unique way, where H and G are locally compact quantum groups canonically associated with G.

In what follows, we fix a measured quantum groupoid G = (C* M, a, 3, A, T,T’, €) whose source

and target maps have range in Z(M) and generate a copy of C*. It is worth noticing that for
such a groupoid we have:
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Lemma 2.5.2. a = /3, B =q.

Proof. We recall that we have ((n) = Ja(n)*J, for all n € C*. For n € C*, a(n) € Z(M),
hence Ja(n)*J = a(n). Thus, we have §(n) = a(n), for all n € C?. Since a(n) = U*a(n)U and
B(n) = UB(n)U* for all n € C% we also have 3 = a. O

Following the notations introduced in [9], we want to investigate more precisely the left and
right regular representations W and V' of G introduced in the previous section. We identity M
with its image by 7 in B(J€), where (7,7, A) is the G.N.S. construction for M endowed with
the n.s.f. weight ¢ = eoa ! oT. We also consider the n.s.f. weight 1) = eo 1o T". Let us
denote (£1,¢e9) the canonical basis of the vector space C?.

Notations 2.5.3. Let us introduce some useful notations and make some remarks concerning
them:

e For ¢,57 = 1,2, we define the following nonzero central self-adjoint projection of M:
pij = ale)B(e;).
It follows from £(e1) + B(e2) = 1y and af(ey) + a(eg) = 1, that:

ale;) =pa +pio,  B(gj) =p1ij + D2y, 4,J =12

o We haAve Aﬁ(l) = a(e1) ® B(e1) + aler) ® Bez) and A(1) = B(e1) ® B(e1) + Ble2) ® B(er)

o Let us denote M;; = p;; M, for ¢,j = 1,2. Then, M;; is a von Neumann subalgebra of M.

e Let us also denote J77; = p;; 7, for i,j = 1,2. Then, JZ; is a nonzero Hilbert subspace of
A foralli,j=1,2.

® vij = ¢l Vi = V1o, for 4,7 =1,2. Then, ¢;; and 9;; are n.s.f. weights on M;;.

e Forall 7,7, k= 1,2, we denote Afj : M;; — M, ® My,; the unital normal *-homomorphism
given by
Af(zi) = (pix @ pry) Alzy), 35 € My,

e We have Jpy = puJ, jpkl = plkj and Upy, = ppU for k,1 = 1,2. We define the anti-
unitaries Jy; : eA%’?d — f%jd, Ju + HG — HGr, and Ehe unitary Uy, : 76, — 7€ by setting
St = P pris S = puJpr and Uy = ppUpy = JuJu-

o Forallid,j k[ =1,2, we denote Xijoun = Y04, « Hij @ Hu — Hu @ H; the flip map.

We readily obtain:

M = @ M, A = @ A5, A(pij) = pin @ prj + piz @ poj, forall i, j =1,2.

ij=1,2 i,j=1,2
Note that in terms of the parts Afj of A, the coassociativity condition reads as follows:
(Aik & lde])Af](l'U) = (1szl X A@)Aij(l’U% Lij € Mij7 i,j, kijl = 1, 2.

The G.N.S. representation for (M;;, ¢;;) is obtained by restriction of the G.N.S. representation
of (M, ¢) to M;;. In particular, the G.N.S. space /7, is identified with .JZ;.
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Proposition 2.5.4. For all i,j,k,l = 1,2, we have:

(pij @ L)V (e @ L) = 04 - (pij @ pjt)V (pir @ pji),
(L @ pi )W (1 @ pr) = 5; - (Pik @ i)W (Dik @ Dij)

(L ®pﬂ)‘~/(1% ® pik) = 5§ (Pri @ pji)V (Pri © Djk)-
Notations 2.5.5. Therefore, V, W and V each splits up into eight unitaries
AR A — KR A, Wi Ay @ Ay — @ Ay, Vi My @ oy, — Ay @ A,

(2

for i,j,k, 1l = 1,2 given by
sz = (pij @ pj)V (pir @ pjit), Wfk = (Pir. @ Pij)W (Pir @ Pij), ‘7157, = (Pri ®pji)‘7<pki ® Djk)-

It follows from Proposition [2.3.4] that these unitaries are related to each other by the following
relations:

Wi, = Sijein(Usi @ L ) Vi (Use ® Lig ) Sikeris Vi = Sjieni(Lag, @ Uin) Vil (Lo, ® Us) Ehisii,

J
Vi = Uy @ Uy )Wi(Us, @ UR)).

Furthermore, we also have:

(Vi)' = (Ju ® Jy)Vii(Ji; @ Tp), (W) = (Ju ® Jij) Wiy (Jir ® Jij).

J

Moreover, these unitaries satisfy the following pentagon equations
(Vi) 12(Vi)is(Vi)as = (ViDas(Vi)iz,  (WE) a(W)1s(Wh)as = (Wip)as(Wi)ie,
(Vi(Vius(Vig)es = (Vi) (Ve
and the following commutation relations
(Vi)asWi )iz = W2 (Vi)as, (Vi) 12(Vih)2s = (Vi) 2s (Vi) 1a. (2.5.2)

We derive easily the relations (2.5.1)) and (2.5.2)) from the corresponding relations satisfied by V'
and W. Furthermore, we have the formulas

(2.5.1)

Ab(255) = (W) (Lo, ® 2y ) Wi, = Vi (2 © L, )(VE)®,  wij € My, (2.5.3)

which follow from A(z) = W*(1,, @x)W =V (x®@1,4,)V*, 2 € M. Note that for all w € B(7),
we have:

(id @ pjwpin) (Vi) = pii(id @ W) (V)pu,  (pirwpi @ id)(Wi) = pij(w @ id)(W)pr,, (25.4)
(Priwpr: @ id) (Vi) = pji(id @ w)(V)pjx-

Proposition 2.5.6. Leti,j = 1,2, i # j, we have:

1. G; = (My;, AL, i, i) is a locally compact quantum group whose left (resp. right) reqular

representation is Wi (resp. V).

2. (M, A{j) is a right Galois object for G; and ij is its canonical implementation.

3. (M, AY;) is a left Galois object for G; and Wi

o+ 1S its canonical implementation.
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4. The actions AZ]- and A}; on M;; commute.

5 W2 = SG*Y and W), = SH*S, where G and H are the Galois isometries associated with
the right Galois object (Myy, A2,) for Gy and the right Galois object (Moy, AL,) for Gy
respectively (see Lemma 6.4.1 and Definition 6.4.2 of [9]).

Let (S, ) be the weak Hopf-C*-algebra associated with G. Note that

pij = a(e;)B(e;) € Z(M(S)), i,j=1,2.
Let us introduce some notations:

1. Let us denote S;; = p;;S, for i,j7 = 1,2. Then, S;; is a C*-algebra (actually a closed
two-sided ideal) of S weakly dense in M;;.

2. In order to provide a description of the coproduct 9, for 7,7,k = 1,2 we will consider

L M(Si ® Siy) — M(S ® S)

)

the unique strictly continuous extension of the inclusion Sj; ® Si; C S ® S satisfying
v (1s,@8.,) = Pik @ prj. Now, let 6)5 : Si; — M(Si, ® Sk;) be the unique *-homomorphism
such that

LZ o 55(31]) = (pzk ®pkj)5($ij), for all Sij € SU

With these notations, we have:

Proposition 2.5.7. (see Lemmas 7.4.13 and 7.4.14 of [9], Proposition|2.4.4)
For alli,j,k,l =1,2, we have:

((5lk ® ldgk])(s (1dszl ® 5 )5%
2. 65 (s) = (W) (Lo @ $)Wh = Vii(s @ L (Vi)™ for all s € Sy,
3. [05(Sij)(Ls,, ® Skj)] = Sik ® Skj = [05:(Si5) (Sir ® 1s,,)]. In particular, we have

Sy = [(ids, ® w)d(s); s € Sy, w € B(Hy).].

The next result will play a crucial role in the following.

Proposition 2.5.8. The self-adjoint projections f(e1) and [5(g3) are also multipliers of S. They
satisfy the following facts:

~

1. B(e1) + B(e2) = s 0(B(g5)) = B(e;) ® Blgy), 1 =1,2.
2. [SB(;)8] =S, j =1,2.

In order to prove the proposition, we will need the following lemma, which is valid for any
measured quantum groupoid on a finite basis.

Lemma 2.5.9. Let us assume that for some self adjoint projection n € N the linear span of
Ma(n)M is weakly dense in M. Then, we have [Sa(n)S] = S.
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Proof. Let us prove that [(1® A(S)V(1® A(S))V*] = (p(S) ® A(S))¢”*. By Proposition
6, we have

[(p(S) ® 1)3(p(3))] = (p(S) @ p(8))g™”. (2.5.5)

The following formula
VAQAN2)V = (1eU)SV(1ep@)VE1eU*), zeb,

is a consequence of Corollary [3.1.4] 2 that will be established 1ndependently in the next chapter
for a general measured quantum groupoid. Since §(p(x)) = V*(1 ® p(z))V for all 2 € S, we
obtain

1@N))YV (A @ N2))V* = (1@ U)S(p(e)) @ 1)o(p(x))S(1 @ U*), z,2'€S.  (2.5.6)
It follows from (2.5.5]) and (2.5.6) that
(IRAE)V(IRASE)V'] = (12 U)2(p(S) @p(3))g™ B(1U") = (p(3) @ A(3))g™®. (25.7)
Now, since V = V¢®# and M\(S) € M c B(N°)' we have
Q@ A@)VA@Az) =1 A)VA @ Az)q™? = (10 Aa'))V(A @ Az)V*V. (2.5.8)
Since ¢>*V =V, it follows from (2.5.7) and (2.5.8) that
(L@ ANV (L@ AS))] = (p(5) @ A(5)g™*V = (p(S) @ A(S)V. (2.5.9)
Therefore, we have
((d@ )1 A))VA @ A()); z,2' €S, we B(H),] = p(S). (2.5.10)

Note that (2.5.10)) follows more directly from the non-degeneracy of A\. By combining (2.5.10))
with the assumption, we obtain

[(id ® we,)) (1 @ A@)V(1 @ Ax)a(n); z,2’ € S, &,n € #]=8S.

In virtue of (2.5.9), we have

~

(1@ Az)V(A @ Mz)a(n) € (SRS V(1 ®a(n), =z €S.

However, we have V(1 ® a(n)) = (@(n) ® 1)V (see Proposition 3). If u,u’ € S and
w € B(J),, we have

(id ® w)((u @ M)V ® a(n))) = ua(n)(id @ wA(u))(V) € Sa(n)S.
As a result, we finally obtain Sc g&( )§ and the converse inclusion is obvious since we have
a(N) € M(S) (see Proposition [2.4.4] 1). O

Proof of Proposition (2.5.8 Firstly, we have ((e1) + B(e2) = 15 as 3 is unital. Secondly, we

have 6(8(e;)) = 8(1 )( §® 5(53)) and 6(1g) = B(e1) ® f(er) + /3(82) ® B(ez) as @ = . Hence,
5(B(g;)) = Bleg;) ® 5(6]) since B(Ek)ﬂ( i) = 01B(g;), k = 1,2. In virtue of Proposition 7.4.3 of
[9], the linear span of M 04(6])]\/[ is weakly dense in M. By the previous lemma, it then follows
that [Sa(e;)S] = S. The Proposition is then proved since in our case we have @ = f. O
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Notations 2.5.10. Let i,j,k = 1,2. Let z € S and y € A(S). We denote:
vk = Be;)xBer) €S, Filww) = pyzpi 5 Yie = ol yaler) € MS), 7 (yjr) = pjiypui-

Note that we have A(z); = A(z;x) since @ = 3. We also denote Ej, (resp. Ej, ,) the norm
closed linear subspace

{Filzsn); @ € S} C B(Hy, ;) (vesp. {7 (yjn); y € MS)} C B(Ha, 1))
Note that we have EY, \ = Uy EL U
Proposition 2.5.11. Let i,j,k,l = 1,2, we have:
1. Letw € B(J)., if r = (id @ w)(V') we have:
Fizp) = (d @ puwpp) (Vi), & (Maa)) = (prwpa ® id)(W,).
2. Byt = ;.
3. (E;z)* = Elij7 [E]lkElch] = E]ll

In particular, EJ’] is a non-degenerate C*-subalgebra of B(7;). Moreover, Ei, is a Morita
equivalence between Ei, and Ej,.

Proof. The first assertion is just a restatement of . 2) follows from the first statement
and the fact that V}; is unitary (the proof is very similar to that of Proposition 1.4 in [2]).

3) The equality (E%)* = Ej; and the inclusion [E} E}] C Ej; are straightforward. Now, let
w,w" € B(J), and let us set x = p(w) and 2’ = p(w’). Let ¢ € B(H), be the normal linear
form given for all z € B(%) by:

P(2) = (pjrwpir @ puw'pr)(V (2 @ 1)V*) = (pjrwpjk ®pklw/pkl>(vlgl(pj12pjl ® 1)(ij1)*)

Let us set y = p(¢). By using the first statement, the fact that p;¢p; = ¢ and the pentagon
equation, we obtain

7i(yn) = (id @ ¢)(V})
(id ® pjxwpjr @ praw'prr) (V)23 (Vi)12(Vi)33)
(id ® pjrwpsic @ Prw'pr) (Vi )12(Vips)

(50 T (7).

Since each operator ijl is unitary, it follows that the linear subspace of B(.7};). spanned by the
normal linear forms ¢, where w and w’ run through B(.¢).,, is norm dense in B(7¢;).. Hence,
By C BBy O
Remark 2.5.12. Since E;k/\ = UijE;»kak, we also have:

[E;‘l)\jﬁi] = %?z‘a (E;u)* = Elij,)\v [E;kAEIZcZA] = E;l)\'
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Corollary 2.5.13. For all i = 1,2, we have the following faithful non-degenerate *-representa-
tions:

7o S = By @A), 7T NS) = B(A; @ )
given for all z € S and y € A(S) by:

#i(z) = (pz:ll'pzzl pz:m:pz:z) 7 %z(y) _ (pu:ypu: ph:ypm:) ‘
Pi2ZPi1 Pi2ZPi2 P2iYP1i P2iYP2i
Note that we have T;(z) = a(e;)zal(e;) and 7(y) = B(e;)yB(e;) for all z € § and y € A(S). For
all i,5,k,1 = 1,2, we have:

~

(Fx @ 71) 6(zi5) = (V) (Lo, @ Talwig))ViE = VI (Fa(i) ® 1og ) (V). z €S,

(7" @ 7)o (yis) = Wi(7* (4i) © L) (W), y € M(S).

Proof. The non-degeneracy of the *-representation 7; follows from the second statement of
Proposition . Let 2 € S such that 7;(x) = 0, which means that a(g;)za(s;) = 0. However,
alej)yale;) = dialey)yale;) for all y € S and j = 1,2. Hence, za(e;) = 0.

Furthermore, the projection 1 — a(e;) belongs to M, then 1 — a(e;) is the weak limit of finite
sums of elements of the form ya(e;)y’, where y,y' € M. Therefore, z = z(1 — a(e;)) is the weak
limit of finite sums of elements of the form :Uy&(eﬁy’ , where y,y' € M. However, since Sc M
we have zya(g;)y = yra(e;)y =0 for all y,y’ € M. Hence, z = 0.

Since 7; is non-degenerate, 7, ® T; extends uniquely to a unital strictly continuous *-representa-
tion of M(§ ® §) Therefore, for all 7, j = 1,2 we have

(e @ 7)((B(:) @ Blen)2(B(e;) © Bley)) = (i ® pui)2(pry @ pij), 2 € M(S® ).

In particular, if z € S we have

Pri ® pi)o(x) (prj @ pij)
Pri @ pi) V' (1 @ )V (pr; @ pij)
Vi) (o © puaapy) Vi

D (idog, © T(i))Vi),

(7x @ 71)0 () =

(
=
=
=W

where we have used 0(j3(e r)) = 6(&) ® f[(er) for r = 1,2 and the fact that the coproduct

5:5 > M(S® S) satisfies 0(z) = V*(1 ® x)V. Since we also have o(z) = V(z®1)V* we
obtain (ﬂ'k ®7) (i) = V,ﬂ(wk(xw) ® 1,«ﬁk)(V,€lJ) The proof of the corresponding statements
for the *-representation 7 is similar. O

Corollary 2.5.14. Let us recall that we denote
By =#(B(er)SB(2), By =7 (alen)A(S)ale)), ik, 1=1,2

For all i,j,k,1 = 1,2, Ej, ® Sy and Ejy, ® Sy (resp. Six ® Ekl/\ and Sy, ® EZJZ/\) are Hilbert
C*-modules over Ej, ® Sy (resp. Sy @ EZL/\) and we have:
€ L(Ejy, ® Sjt, Ely ® i), Wi, € L(Sik ® Ejj 5, Six ® EJy ).

(2

In particular, we have V}; € M(E!; ® Sj;) and Wi € M(Su ® E,f”\)
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Proof. This follows immediately from V € M(S ® S) and W € M(S ® A(S)). O
We conclude this paragraph with the following definitions:

Definition 2.5.15. A measured quantum groupoid (C?, M, «, 8, A, T, T", €) such that the source
and target maps have range in Z(M) and generate a copy of C* will be denoted Gg, g,, where
G; = (My;, AL, pii, i) (see Notations [2.5.3)) and will be called a colinking measured quantum
groupoid.

Definition 2.5.16. Let G and H be two locally compact quantum groups. We say that G
and H are monoidally equivalent if there exists a colinking measured quantum groupoid Gg, g,
between two locally compact quantum groups G; and G, such that H (resp. G) is isomorphic
to Gy (resp. G3).
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Chapter 3

Irreducibility and regularity for measured quantum
groupoids

3.1 Irreducibility for measured quantum groupoids

Let us fix some notations. If G = (N, M,a, 3, T,T',v) is a measured quantum groupoid,
we denote #; its left regular pseudo-multiplicative unitary. Let G be a measured quantum
groupoid, we recall the following notations:

Vi=We, V=We=Ws., V=W, U:=.JJ

(G°) (G

Lemma 3.1.1. We have the formulas

Q)

YV = UE’O‘(U 5@ DV (U* 4@51)0™, Y = O’B’a(l 3@z U)YV (1,08 U*)ag’ :
Proof. In virtue of Theorem 3.11 (iii) and Theorem 3.12 (v) of [14], we have
Woolad 5@5 J3) = (6T a®a ) Wgo, V= (o 505 J)Weo(ad 55 Ja).

Therefore, we obtain

—

V = (o 505 T) Weo (o 505 J3) (1505 U") = (1a@5 U)# (1 505 U).
Hence, ¥ = UE’O‘(U R D)V (U* @5 1)o7 as ¥ = Wz = oW P
By using Theorem 3.12 (vi) of [14], we have
V= (U 0@ UV (U 584 U)
and the second formula follows. O

Remarks 3.1.2. It follows from this lemma that we can express each unitary 7, ¥ and ¥ in
terms of one of the others. Indeed, we have:

i V= (U 30 )0 T 0P (U 3051) = 0%¥(10@5 UV (1 500 U)o™,
i ¥ = (130, U)o ¥ 05 (1 2@5U) = 0@ (U* 505 )V (U 505 1)o7,
iii. 7 = (U* 0@ U) V(U 30 U) and 7 = (U 305 U) ¥ (U* 525 U").

We will also need the following lemma:
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Lemma 3.1.3. Let Q (N M, o, 5,1, T, T v) be a measured quantum groupoid. Let us denote
G = (N, M ,Q, ﬂ, F T RoTo R v) the dual measured quantum groupoid of G. Then, we have

1 a) V(wp0al) = (@a®31)7, b) V(15052) = (15@a2)¥, x€ M.

o~

2. a) V(x50p1) = (25®0.1)7, b) 77(1§®a$) = (1-®2)¥, ze€M.

3. a) V(wa@s 1)V =T (1a@52)7, b) V(w50;1) = (1503 1)7, x€M.

B

4o 0) V(1580 2)V = V(w50 )V, b) V(15@a7) = (La®z2)V, x€ M

Proof. All operators appearing in this statement are well defined thanks to the Heisenberg type
relations:

MNM=aN), MAM =B(N°, MNM=pj(N°, MnM=a(N).

The proof relies only on Theorems 3.8, 3.11 and 3.12 of [14]. The formula 1 a) follows from
the fact that M is the weak closure of the subalgebra {Gd *xw)(¥); w € B(H#),} C B(AH).
The formula 1 b) follows by using the formula % = o (U 5®a DY (U* ,®g 1)o?<. Similarly, 2
follows from the fact that ¥ = o#9(1 15®5 U)Y(15®5 U*)aﬁ @ and the fact that M is the weak

closure of the subalgebra {(w x id)(¥); w € B(#),} of B(#). The formula 3 a) (resp. 4 a))
follows from the first (resp. last) formula of Theorem 3.12 (v) (resp. Theorem 3.12 (vi)). O

Corollary 3.1.4.
1 YV (UzU* 3@, 1)V = (U o®5 1) 0PV (2 505 1)V 0P (U* @5 1), x € M.
2. V(1@ UyU*)V* = (1 30 U)o PV *(1 3@4y) ¥ 0P2(1 302 U*), ye M.

8. V(1305 UyU) V™ = (1505 U)o? 2V *(1505) Vo™P (1505U%), y € M.

4' [%1\27 %3] = 07 [7/127 %3] =0

Proof. The first (resp. the second) assertion follows from the formula 3 a) (resp. 4 a)) of Lemma
3.1.3 The third one is obtained by replacing G by the measured quantum groupoid (G)¢ in 2.
The first (resp. the second) formula of 4 is equivalent to 2 a) (resp. 3 b)). O

We are now able to provide an irreducibility result for measured quantum groupoid.

Theorem 3.1.5. We have (1505 U)o™P 7 ¥ ¥ € B(N°) 55 a(N).

Note that (15®5 U)craﬁ“/7”//7715 a unitary.

Proof. Let us denote T' = (1 ;05U )Ua"g V¥ ¥ for short. By definition, we have
B(N®) g &(N) = (B(N®) 505 a(N)',

where G(N°Y 5®@5 @(N)" is the von Neumann algebra generated by elements of the form x ;@3 v,
z € B(N°Y and y € @(N). Then, it amounts to proving that

[T, 2 3®5y] =0, forallze B(N°) and y € &(N)'.
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First, let us prove that [T,z ;&5 1] = 0, for all z € B(N®Y

o Let x € M, we have

—

where we have successwely used Lemma [3.1.3] m 3 b), the fact that ¥ is unitary, Lemma [3.1.3] m 3a)
and the fact that 7 is unitary.

o Letze J\//f’, we have
(1:®5 U)UQ’E"//7/77(x ®a NabZ
( Vo BTV V(1 50 )V Y
= (1E®3U)UQE”//( §Ra )V YV
( Jo P (1L a@sa) VIV
(

where we have successively used the fact that Y is unitary, Lemma m 4 a), the fact that Vs
unitary and Lemma/3.1.3(4 b). Hence, [T’z 3&5 1] = 0 for all z € S(N°)’ since B(N°) = M'NM.

Similarly, let us prove now that [T’ 1 ;@5 y] = 0 for all y € a(N)".
o Letye ]\7, we have
T(15059) = (1;0: V)™ TV (12059) 7
= (1:0U)0™P VY (1@ y)V* VYV
= (102 U)oP T (1 5@4 U)o BV (1 500 UryU) ¥ 070 (1 s~ UV ¥,

where we have used Lemma [3.1.3] u 2. b), the fact that ¥ is unitary and Corollary - 3.1.4) 2. applied
to U*yU € M Now, by using the ﬁrst formula of Lemma . we obtain

(1502 D)o 7 (1504 U)o™ = (U 505 U) ¥
Therefore, since ¥ 7* = 1 we have
T(1525y) = (U s®; U)( 5@ UyU) Y 0P (1 305 UV V.
= (1585 9)(1 305 U)(U 3@a )V (U* a@p 1)V Y
= (1595 y)T,
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by using again the first formula of Lemma [3.1.1
o Let y € M, we have
T(1505y) = (1;0: V)™ TV V(1 g059) 7V
= (150: U)o D7 (1,505 U)o 7 (1 505 UyU) Vo0 (1,0, U%) 7,
where we have used ¥*¥ = 1 and Corollary |3.1.4 3 applied to U*yU € M'. Note that

U* = \7/AU = UN"/* and A4 € Z(M) N Z(M). Then, the second formula of Lemma
can be written as follows:

V = 001 50~ U Y (1205 U)o"?

Hence, (1 504 U)o™? = ¥(1 2®3 U)aaa”?*. Therefore, we have

Q)
E)

(1 A®AU*)77
P(1 A®AU*)”//

T(1 395y) = (15395 U)o V(1504 U)o™ (1 505 UyU) Ve
= (1;0;U)0"” BT (U YU 500 1)(1 50 U)oV o°
( )
(

Q)

05 U)o (U yU 003 )TV T

by using Remarks ii and Lemma 1 a). Therefore, since &(N) = M’ N M’ we have
[T,15®5y] =0 for all y € &(N)" and the theorem is proved. O

In the case of a measured quantum groupoid on a finite-dimensional basis, we obtain a more
precise result. In the following, we assume that G = (N, M, «, 3, A, T,T",€) is a measured
quantum groupoid on the finite-dimensional basis N = @<, My, (C) equipped with the
non-normalized Markov trace € = @< 1 - Tr;. We denote (e®)1<i<x the minimal central
self-adjoint projections of N.

Theorem 3.1.6. There exist unimodular complex numbers v;, 1 <1 < k, unique, such that
Q@EWVV =% 3 53 @a(e®) = 3 1 B(e°) @ a(e®) ¢
1<I<k 1<I<k

For the proof, we will need the following result:

Lemma 3.1.7. Let v: N° — B(K) and w : N — B(H) be unital *-homomorphisms. Then, we
have

" (y(N°) @ m(N =@ C- Y@ m(e"))g".

1<I<k

Proof. More precisely, we have

(@) @ m(y)g™ = > 0 %e(yre) (v(eV°) @ w(e)) g7, (3.1.1)

1<ILk

for all z,y € N. By bilinearity, it suffices to check it out for =z = e ) and y = ez(pq), where
1<l <k 1<r,s<mand1<p,qg<ny.
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A

First, if I’ # | we have ¢*" (y(e)°) @ (e

")) =0 and e(el)ele™) = 0 for all 1 < 1" < k, then

€pq’)) = Cpq Crs€
(3.1.1)) is trivially true if I’ # . Now let 1 <Il<kand1l<r,s,p q<n;, wehave
(el @m(e)) = D omt 3 (el ey @ (el el)
1<U<k 1<i,j<ny
I l
= ot 3 alery) @ mlesy).
1<gsmy
Moreover, we also have
l)o Do (I l
(v(e) ) @ (e ™ = > mt Y ylel)el)) @ m(efjell))
1<lU/<k 1<u,v<ny
ro— l)o l
= om0 Ael)?) @ (e,
1<usng
for all 1 < 7 < n;. Therefore, it follows that
¢ (1(eD°) @ w(eD))g™™ = 80rn S0 A(el)°) @ m(el). (3.1.2)
1<7,u<n,;
Furthermore, since e(ll) (5l2 12 ) for 1 < 1y Iy < kand 1<, <ng, we have
o T — o !
(v @ 7)) =nt 3 (el >®w<e§-3>, (3.1.3)
1<j7u<nl

for all 1 <1 < k. Therefore, since e(ez(fq)egs) )y =g O € ( )y = 65,5;5;711 we have

nie(epyerde)(1(e) @ m(e))g" = 6y0m (1(eV?) @ m(eV))g "
1<U<k

=" (1(ef)) @ mlef))a™"

in virtue of (3.1.3)) and (3.1.2)). O
Proof of theorem . We have W = (UO‘7E)*”///\U67Q, V = (vP) ¥ and V = (Ua’ﬁ)*”?vg’a.
Let us denote X = (1@ U)SWVV and T = (1 79 U)o ¥ ¥ ¥ . Since the operators v™* and
1% are coisometries, we have R R

(V> TP = X.
Since 7' is unitary, X is a partial isometry such that

X*X = 7% = X X*,
Now, according to Proposition [2.1.10] we have
BINY) s @(N) = o7 (B(N") @ a(N)) (7).
In virtue of Theorem and Lemma (with K := 2 = H, v := 3, 7 := &), we have
Xe q@%(NO) ® am)qaa = @ C-(Be™) @ a3,

1<ILk
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Then, there exists v, € C for 1 <[ < k such that

~

X =3 upe @aE") " =¢" 3 vpE"") @ ae").

1<i<k 1<i<k

It then follows that

¢ = XX =N ulBe) @ a(el).
1<i<k
Hence, 1| = 1 for all 1 < I < k by injectivity of 5 and a. O

Notation 3.1.8. Let v : N° — B(K) and 7 : N — B(H) be *-homomorphisms. We consider
the following operator

Tori= 2 () @ n(e®) € BK ® H),

1<Ii<ny

where v; € C are the unimodular complex numbers defined in Theorem [3.1.6] We have

10 U)SWVV = 7@ T, (with >, T5.1=0).

We will also denote Ty, = ScanTyrSusk = Y. U m(e®) @ y(e®°) € B(H®K).

1<I<k
Corollary 3.1.9. We have the following formulas:
LVV=W'S1eU")T;,.
2. WV =S(1eU")T;, V"
3.V =WE(1aU)T;,V".
Proof. We have
VV = (VVOVT = (WYY = W'E(1 8 U T2 = W'S(1® U)T;

Ba
since V' is a partial isometry, VV* = W*W (1 ® U*)qg’a = q"‘ﬁE(l ® U*) and W*q“"g = W*.

The second formula follows similarly from the facts that V' is a partial isometry and VV*=V*V.
The third formula is derived from the first one by the same argument. O

Remarks 3.1.10. We also have the following formulas:
L (Z1@U)V)? = ¢ T;4(1 @\,
2. (ZA@U)W)? =¢PTa,(N/*1®1).
3. (S UV = (X1 @ 1) T
Let us prove the first formula. We recall that we denote X = (1 ® U )EWVV. We have

X=SUe DS VU )IVS(1e U)V(1® U
= (U U)V(1eU)VS(1eU)V(1e U
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By multiplying on the left by (U ® 1) and on the right by (U ® 1), we then obtain
(U@ 1DXU 1) = (S(1e U)V)

However, since we have X = q@aTga (Theorem [3.1.6|) we also have

S(U @ D)X (U@L =S o )¢’ T;4(U @ 1)S
aﬁE(U @ 1)T;(U® 1)
= qa ﬁTa,g( ® Al/4)
as we have U? = \/4. We also have
X =SU o)W1 e U)W e U)SU @ U)W (U* @ U
—SU WSl e W1 e U)W(U* e U*).

We then multiply by U ® U* on the left and by U ® U on the right so that the second formula
is proved. Finally, we have

X=XUe)(U'eUHVUU)S(U*®1)V({U 1)2V
=Y(1QUHV(Z(1 e U)V)%.
By multiplying on the left by A/* ® 1, the last formula is proved.

Notations 3.1.11. e Let (S,6) and (S,6) be the weak Hopf-C*-algebra and the dual weak
Hopf-C*-algebra associated with G. We denote [SS] the norm closed linear subspace of
B() spanned by the products L(y)p(x), for all y € S and x € S.

e Following [2], if T' € B(# @ ) we denote C(T") the norm closure of the linear subspace
{((dew)(ET); w e B(H).} C B(J).

Proposition 3.1.12. [SS] is a C*-algebra.
Proof. Let us fix w, 1) € B(#),. Tt suffices to show that p(w)L(v) € [SS]. We have

pw) L) = (1d @ w) (V) (¥ @ id)(V) = (1 @ id)((id @ id @ w)(VasVi)).

We combine the pentagon identities Va3Via = ViaVigVag and V5 VasVia = Vi3Vas to conclude that
VoszVia = V1o Vi VasVia. Tt then follows that

p(W)L(¥) = (Y @ id)(VV*(1 @ p(w))V) = (¥ ®@id)(V(p ® p)(3(2))),

where z € S such that p(z) = p(w). Let us write ¢ = p(2')y, where 2/ € S and ¢/ € B()..
We then have

p)L(¥) = (¢ @1d)(V(p @ p)(5()) (1 ® p(a))) = (¥ @id)(V (p © p) (3(2) (15 ® 2))).

But S(:v)(lg ® 2') is the norm limit of finite sums of the form ¥, 2; ® 2}, where z;, 2, € S.
Therefore, p(w)L(1)) is the norm limit of finite sums of the form

S (W @id)(V(p(a) @ pl(a ZL bi)p

i

where ; := p(x;)Y' € B(J).,. O
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Proposition 3.1.13. [S5] = [(id ® w)(WV); w € B(A#).].
Note that {(id @ w)(WV); w € B().} is already a subspace of B(.7).
Proof. Let w € B(#), and & € S, since W = WW*W = WVV* we have

(id®@w)(W)p(z) = ((d@w)(WVV*(z®1)) = (id@ ) (WVV*(p(x) @ L(y))),

where w’ € B(), and y € S are such that w = L(y)w'. Since V e M(S8® S), (id @ w)(W) is
the norm limit of finite sums of the form

STd @ w)(WV (p(x:) @ L(w:))) = >_(id @ L(y)w)(WV)p(a,), €S,y €.

i i

Hence, [SS] C [(id @w)(WV)p(x); w e B(H)., x € S]. Let us fix w € B(H), and = € §.ALet
us write w = p(z’)w’, where ' € S and W' € B(H).. Since 6(1) = V*V, we have V = V§(1).
Hence,

(id@w)(WV)p(x) = (i[d @)WV (p® p)(6(1)(x © a'))).
It then follows that (id ® w)(WV)p(x) is the norm limit of finite sums of the form

5264 0 W)WV (p® p)(3) (19 ) = Y d © pleu )WV (p® p)3(a)), o € 5.
Hence, [S5] C [(id @ w)(WV (p ® p)d(z)); w € B(H),, = € 5]. Now, we have
WV(p®p)d(z)=WVV(1®px)V =1 pa)WV, zeb.

Indeed, since VV* = ¢%*, p(z) € ]\Z’ and a(N) € M we have [VV*,1® p(z)] = 0. Moreover,
(W, 1® p(x)] =0 since W € M @ M. Tt then follows that

(id®@w)(WV(p® p)d(z)) = (id @ wp(z))(WV), weBH),, zeb.

Hence, [SS] C [(id @ w)(WV); w € B(#),]. Let us prove the converse inclusion. Let us fix
w € B(H),. Let us write w = p(z')w'p(x), where z, 2’ € S and ' € B(H).. Let us recall that

(1@ p(x))WV =WV(p@ p)d(z).

Hence, (1® p(z))WV(1® p(x') = WV (p® p)(d(2)(1 ® 2')) is the norm limit of finite sums of
the form >, WVV*V (p(z;) @ p(x})) = ¥, WV (p(x;) @ p(x})), where x;, 2/ € S. Therefore, we
have that (id ® w)(WV) = (id ® ') ((1 ® p(z)) WV (1 @ p(x'))) is the norm limit of finite sums
of the form

d(id @)WV (p(z:) @ plaf))) = D_(id @ p(al)w')(WV)p(a),  wi,a; € 5.

Hence,
(id @ w)(WV) € [(id® ¢)(WV)p(x); ¢ € B(H),, z € S).

Let w € B(J), and & € 5. We write w = L(y)w’ for some «’ € B(H). and y € S. We
then obtain (id ® w)(WV)p(z) = (id @ w")(WV (p(z) ® L(y))) € [SS] by using the fact that
VeMES®SI). O

The following result is a crucial consequence of Theorem [3.1.6|
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Corollary 3.1.14. [SS] = U*C(V)U. In particular, C(V) is a C*-algebra.

Proof. We have WV = Z(l@U*)TaV* (see Corollary[3.1.9(2) and (1®a(n))V* = (B(n°)@1)V*
for all n € N (see Proposition 3). Therefore, we have

Tﬁ,a‘?* = Z yl(B(e(l)o) ® 1)\7* = (B(u) & 1)‘7*, where wu = Z v -eVe e No.

1<ILk 1<ILk

Since V = 3(1®@ UHV (1 ® U)Y, we obtain

WV =(1®Bw)2(1e UV
= (1@ B)U* UV (1 U)S
= (1@ B)UU* @ 1)V*S(U1).

It then follows that
(id @ w)(WV) = U*(id @ B(w)U*w)(V*S)U, w e B(H),.
We combine the fact that B (u)U* is unitary with Proposition to conclude that
[55] = [(d @ w)(WV); w e B(),] = U*[(id @ w)(V*E); w € B(A#),JU = UC(V)*U.

We also know that [Sg]Ais a C*-algebra (see Proposition [3.1.12)), hence [$5] = U*C(V)U. In
particular, C(V') = U[SS|U* is a C*-algebra. O

Remarks 3.1.15. Let us make some useful comments:

1. The C*-subalgebras [55] and C(V) of B(#) are non-degenerate. Note that we also have
[SS]=UC(V)U*.

~ ~

2. By using the formulas V* = (J ® J)V(J ® J) and W* = (J @ JYW(J® J), we can prove
as in [4] that C(W) and C(V') are C*-algebras and

C(W) =[R(S)p(S)], C(V)=[L(S)A(S)].

3.2 Regularity and semi-regularity for measured quantum groupoids

In this section, we introduce the notion of semi-regularity for measured quantum groupoids.
Note that the notion of regularity has been generalized for measured quantum groupoids by
Enock in [13] and by Timmermann in [21] 22] in the setting of pseudo-multiplicative C*-unitaries.
In the case of a colinking measured quantum groupoid Gg, g,, we will prove that the regularity
(resp. semi-regularity) of Gg, g, is equivalent to the regularity (resp. semi-regularity) of both
the quantum groups G; and Gs. It should be noted that De Commer has provided in [I0] an
example of a colinking measured quantum groupoid Gg, g, such that G, is regular and Gy is
not regular.

As already mentioned in Remark [2.2.8] from now on we will make the following convention:

Definition 3.2.1. From now on, if G = (N, M, «, 5,1, T, T", v) is a measured quantum groupoid
we define the dual measured quantum groupoid to be the measured quantum groupoid denoted

G and defined by: R . I
G = (N°, M, B,a,1°T1° 1" v°).
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Notations 3.2.2. Let H be a Hilbert space, (N, ¢) a von Neumann algebra endowed with a
n.s.f. weight. Let 7 : N — B(H) and v : N° — B(#) be unital normal *-representations. In
what follows, we will use the notations introduced in §2.1] Following [I3], we denote:

Krg = [RT(E)R™(n)"; £, € o(m, H)]

(resp. Ky = [LT2(E) L ()" : &n € (H>7)¢])'
Note that K., (resp. K, ) is a weakly dense ideal of m(N)" (resp. v(N°)’) (see Proposition

3 of [6]). In the following, we will denote K (resp. K,) instead of K, (resp. K, ) since no
ambiguity will arise.

Following [1], [2] and [13], we define the notion of semi-regularity and regularity for measured
quantum groupoids in general.

Definition 3.2.3. Let G = (N, M, B,a, ', T,T', v) be a measured quantum groupoid, we denote
C(#g) the norm closure of the linear subspace of B(5¢),

{(id*w)(aaﬁ%) s w € B(A). )

The measured quantum groupoid G is said to be semi-regular (resp. regular) if K, C C(#5)
(resp. Ko = C(45).
Remarks 3.2.4. 1. By using the intertwining property of #5 with « (see §2.2), we obtain

that (id*w)(aaﬁ%) C a(N) for all w € B(),. Enock has proved that a measured
quantum groupoid G is always weakly regular in the sense of Definition 4.1 of [13], that is

{({d *w)(e“PHg) ; w € B(H#),} is weakly dense in a(N)'. It should be noted that C(#5)
is a subalgebra of B(7¢) (see Proposition 3.10 of [13]).

2. Let us remark that:

(id % w) (0P HG) = (w *id)(#go™P), w € B(IH),.

-~ ~ ~

Indeed, let &, € S we have )\,ﬁ]’a = aa’ﬁpf;’ﬁ and p?’ﬁ = O"B’a)\?’a. Since (07)* = 0%,
we then have (/\g’a)*ao"ﬁ = (,0?”8)*. Therefore, we obtain

(A 0™ HGAT™ = (07 Wgo ™" py”,
for all £,n € S and the result is proved.
Let G = (N, M,a,3,A, T, T ¢) be a measured quantum groupoid on the finite dimensional

basis
N = @ M., (C)

1<ILk

endowed with the non-normalized Markov trace € = @<, m - Try. Let (S,4) and (S, 5) be
the weak Hopf-C*-algebra and the dual weak Hopf-C*-algebra of G. Let v : N° — B(H)
and m : N — B(H) be unital *-representations. In that case, for £ € H the operators
R™¢(€), L7<(§) € B(s#, H) are given by:

RT(E)A(n) = m(n)g, L7 (E)Ac(n) =y(n%)¢, neN.

Since 4 is a finite dimensional Hilbert space, L7¢(n)* is a finite rank bounded operator for all
n € A and then so is L7(§)L"(n)* for all £, € H. It then follows that K, is a C*-subalgebra
of IC(H). Similarly, we also have that /C, is a C*-subalgebras of K(H).
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Lemma 3.2.5. We have the following formulas:
Ks=JKod, Kgz=JKsJ, Kao=JKslJ,
Ks =UKU, ]CE = U"K3U.
Proof. 1t suffices to obtain the formulas
LP(JELP(In)" = JRY(E)R™(n)*J,  RY(JE)R(Jn)* = JL(§) L7 (n)*J,
RY“(JER™(Jn)* = JLP(L(n)"], &ne A,
which follow from the facts that 3(n°) = Ja(n*)J, @(n*) = JB(n°)J and a(n*) = JB(n°)J for
all n € N. For instance, if £ € 7 we have:
JR(©A(n") = Ja(n)é = B(n°)J = LP(JEA(n), n e N.

Hence, JR**(§)J. = LE’E(J@ for all £ € /. Therefore, since J* = J, J.J! = J? =1 we have
JRY(E)R><(n)*J = LP<(JE)LP<(Jn)* for all £, n € S. Moreover, since J% = 1 we obtain the
equality ’CE = JK,J. The formulas K5 = U*K,U and ]C/? = U*KgU are obtained by combining
the previous ones. O

~

Lemma 3.2.6. For all w € B(H)., we have (id x w)(c®P#5) = (id @ w)(XW). In particular,
we have C(#g) = C(W).

Proof. In virtue of Remark 2 and the fact that 0?0 = v*F% we have
(idww) (0™ Hg) = (wid) (Hgo™) = (wid) (17 Wou*'S) = (wid) (W) = (idew)(SW),
for all w € B(J).. O
Lemma 3.2.7. We have JC(V)J = C(W)* and C(V) = U*C(W)U.
Proof. Firstly, since V = (U* @ U)W (U @ U) we have:

(id ® w)(ZV) = U*(id ® wy-)(EW)U,  w € B(),.

Hence, C(V) = U*C(W)U (as w = (wy)y+). Secondly, we have W = S(U* @ 1) V(U ®1)%.
Hence, XV = (1@ U)W(1 ® U*)X. It then follows from the formulas U = 7J, U*J = J and
(J® J)W W*(J ® J) that
Jo)ZVJel)=1eU)(Je )W U*J)S
—(1e)(Jo W1 J)T
— (1 )W (Jo1)D
= (1o )EW) (1o J)
If £,n € S, we have:
T4 & we,) (EV)J = (1 @ we, ) (19 T)EW) (L ® J))
= (id ® wy, 7,) (EW)")
= (id ® w3, 7,) (W),
since W+, » = . This proves that JC(V)J = C(W)*. O
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Proposition 3.2.8. The following statements are equivalent:
1. G is semi-reqular (resp. reqular), that is Ko C C(W) (resp. C(W) = K,).
2. G is semi-regular (resp. regular), that is Kz € C(V) (resp. C(V) = Kg).

3. (G°)¢ is semi-reqular (resp. regular), that is K C C(V') (resp. C(V) = K3).

Proof. Straightforward consequence of Lemmas 3.2.5],[3.2.6] [3.2.7] and the definitions of V., W
and V. O

We give some other equivalent conditions of the semi-regularity (resp. regularity) of G.
Corollary 3.2.9. The following statements are equivalent:
1. G is semi-reqular (resp. reqular).

2. K5 C [SS] (resp. [SS] = K5).

-~

3. Ko C [R(S)S] (resp. [R(S)S] = Ka).

4. K= C [SA(S)] (resp. [SA(S)] = K=).
In particular, if G is reqular we have [SS] C K(), [R(S)S] € K(o) and [SA(S)] C K(H)
(and also C(V') C K(H), C(W) C K(H) and C(V') C K(5€)).

Proof. The equivalence of the first two statements follows directly from the fact that G is
semi-regular (resp. regular) if and only if 3 C C(V) (resp. C(V) = Kj3) and the formulas
UC(V)U = [SS], U*KsU = K5 (see Corollary [3.1.14) and Lemma (3.2.5). The remaining
equivalences are immediate consequences of Remark[3.1.15] 2 and Proposition [3.2.8| O

In order to investigate the semi-regularity (resp. regularity) of the colinking measured quantum
groupoid Gg, ¢, we will need a technical lemma. First, we have to generalize a notation.

Notations 3.2.10. Let H, K, L be three Hilbert spaces. If X € B(X @ H, L @ H) (resp.
Y € BHRK, H® L)) we will denote C(X) (resp. C(Y')) the norm closure of the linear subspace

{([d@w)(YenX); we B(H, L).} C B(K,H)
(resp. {(id ® w)(Twe,Y); w € B(K, H).} C B(H, L)).
Note that we have:
C(X) = [(id @ wey)(BrenX); £ € LineH], CY) =[(id @ wey)(ZuwY); € H, n e K.

Lemma 3.2.11. Let H, K, L, E and E' be Hilbert spaces, X € B(K @ H,L ® H) and
Y e BIH® K, H @ L). The following statements are equivalent:

1. K(H, L) C CY) (resp. K(K,H) C C(X)).

2. KHQE,E QL) C[(KH,E)21,)Y(1y @ K(E, X))
(resp. K(KQE,ERH) C[(K(L,E)® 1) X (14 K(E', H))]).

The equivalences also hold if the inclusions are replaced by equalities.

Proof. A straightforward computation gives:
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(1. @00 )oY (ly @ 0,¢) = ([d @we ) (B Y)®@00¢, E€H, ne K, CeE (cE
It then follows that
(1@ K(H, ENSue Y1y @ K(E, K)] =[CY)OK(E, EN] (CBHRE, LE).

The equivalence is then a consequence of the equality
Srer (10 @ K(H, E)) Supes = K(H, E) @ 1,.

The equivalence of the parallel statements follows by applying the above equivalence to:
Y'i=YaenX Yo, K =L, L =X,

since we have the equality C(Y") = C(X)*. O

From now on, G is a colinking measured quantum groupoid Gg, ¢, between monoidally equivalent
locally compact quantum groups Gy and G,. We will apply the previous lemma to the unitaries:

Vi Ay @ Ay — K @ K, Wk H; @ I, — H; @ Hy, 1,5, kv =1,2.
Lemma 3.2.12. For allw € B(), and i,j,k,r = 1,2, we have:
1. pri(id @ w)(EV)py; = (id @ prjwpir) (Sirer; Vi), priKspyy = K(H;, H5).
2. pir(id @ w)(XW)pi; = (id @ pjrwpij) (ijeiWh),  puKapi; = K(H;, ).
3. pi(id @ w)(SV)pri = (id ® pjswprs) (SriesiVi),  piikapri = K(Ha, ).
Proof. Let w € B().,. Since (pr @ 1)V (pi;; @ 1) = 6, V,".

i, We have

(([dew)XV)= > (([dow)(ECEro)V(p;e1)= > (d® pjwpi)(SierV;).

i,5,k,r=1,2 i,7,r=1,2

Hence, p,;(id ® w)(ZV)pi; = (id & prjwpir)(Birer; V). We prove the corresponding statements

for W and V in a similar way.

Let n € s, ( € 2 and i,j = 1,2. For all n = (ny,ny) € C?, we have

(L7(pijm)*¢, n) = (¢, L7 (piymn) = (¢, B(n)pyym) = (€, nypym) = (¢, piyming = ((piyn, O)gj, n).

Hence, L%<(p;;n)*¢ = (pijn, ¢)e; for all ¢ € #. Note that L?<(p;;n)* = LP<(p;n)*pij. Therefore,
it £,m € A we have

L (pe&) LP“(pigm)*¢ = (pign, OLP (pd)es = 6Lpin. Opeé, ¢ € H .

By sesquilinearity, it then follows that

LPELP )¢ = Y. L&) L% ()¢ = Y. &pim, Opl = Y. (pim, O)prié.

i,4,r,k=1,2 i,5,r,k=1,2 i,5,r=1,2

Hence, pyu L “(€)LP(1)"pij = 810y, puyn for all €, € . Hence, pysKapy; = K(Hy, Hiz). The
other statements follow in virtue of Lemma [3.2.5] O
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Remark 3.2.13. Actually, both C(V') and Kg act on 5 = I, @ 551 & 2 ® Hs as block
diagonal matrices in the following way:

(G0 (K]0
w=(Gfe ) w- (o)
where C; := (C(V;))ri=12 and K; := K(J; @ H35) = (K(H;, ;) )rim12 C B & H;) for
j=12.
Corollary 3.2.14. The following statements are equivalent:

1. GG, G, s semi-reqular (resp. reqular).

2. Foralli,j,r = 1,2, we have K(H;, ;) CC(VY)  (resp. C(V}}) = K(;, 7).

rJ

3. For alli,j,k = 1,2, we have K(A;, ) C C(WE)  (resp. C(W) = K(;, #r)).
4. Foralli,j k =1,2, we have K(y, ;) C C(Vi)  (resp. C(V}) = K(H, 7).
In particular, if G, G, @s reqular, then both Gy and Gy are regular.

Proof. This a consequence of Lemma [3.2.12] (see also the above remark) and Proposition
B.2.8 O

Lemma 3.2.15. For all i,j,r,s = 1,2, we have:

1. C(V};) e = A

2. C(V)5) =C(Vi).

3. [C(V5)CVi] =C(V5)-
Proof. Note that we have C(V) = U[SS]U* = [R(S)A(S)] and p,;S = p,;Sp,;. By Lemma
3.2.12, we then have

C(V) = priC(V)pij = [prs R(S)A(S)py] = [R(S)s B2 ],
where we denote R(S),; = p,;R(S) C B(J;) (see also Notations [2.5.10). Now, it also follows
from the fact that [SS] is a C*-algebra that
(L(8);i B = 9l SSIpjr = piil SSIpsr = [E7,L(S);0),

where we denote L(S);; = L(S)pi; C B(4;). By applying Ady to [L(S);EL] = [ELL(S);], we
then obtain ‘ '

[R(9)ij B a) = (B zR(S)rs),  i4im = 1,2
Now, we can prove the three statements of the lemma. Let us fix 7, 5,r, s =1, 2.
1. Since R is non-degenerate we have R(S)s¢ = 7, hence R(S5);;7¢,; = ;. Moreover, we
have [Eijr,/\%ij] = H; (see Remark , hence C(V}};).76; = ;.
2. C(V;))* = [R(S)n Bl \]" = [E] \R(S),] = [R(S)i EJ, \] = C(V;}). We can also prove it more
directly by using the equality C(V;) = p,;C(V)py; and the fact that C(V)* = C(V).
3. By using again Remark [2.5.12] we obtain

C(VCVE)] = [[R(S)r; EL\R(S) iy Bl A = [R(S)r; EL \R(S)i; EL ]
= [R(S)y R(S) i EL N B2, ] = [R(S)n B2\ = C(V3).

TS,
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Remarks 3.2.16. Since C(W) = JC(V)J, C(V) = U*C(W)U, we have C(W};) = J.C(V})J;;
and C(f/]’;) = UC(W{;)Uj;. Tt then follows that for all i, j,7, s = 1,2 we have:

o C(Wp) Ay = Ay, C(V))HG: = A
o C(WS)" =C(W3), C(Vj)r=C(Vh).
o [CWHICW; )] =C(W}), [C(VHC(Vi)] =C(Vy).

Proposition 3.2.17. Let us fixi,j, k,r =1, 2.
a) The following statements are equivalent:

1. K(A, 25) CC(VY)  (resp. K(A;, #5) = C(V)5)).
2. K(H; @ 5, K5 @ ) C [(K(Hy, ) @ 1, )V (Lo, @ K(H,, H5)) ]
(resp. K(H; @ Sy, 705 @ H5) = [(K(Hr, 705) @ Lo )V (L, @ K(Hr, 765)) ).
b) The following statements are equivalent:
1. K(Hy, Hy) C COWE)  (resp. K(;, ) = C(WE)).
2. K(Hy @ Ky, Hy @ Hy) C [(K( Ay, Hir) @ Lo, W (Los, @ K(Hk)) |
(resp. K(H; @ H, Ky, @ Hy) = [ (K(H;, k) @ Log, )W (Lo, @ K(Hi)) ).

Proof. The equivalence in a) (resp. b)) follows by applying Lemma [3.2.11| with X := V; (resp.
Y = VVZ’;), H := A (vesp. H;), K := H; (vesp. Hy), L := H, (vesp. ), E' = H, (resp.
) and ‘E = J; (resp. Hy). O

Proposition 3.2.18. Let us fix 1,7 = 1,2, the following statements are equivalent:

1. K(;) C C(V) (resp. K () = C(VE).

2. K(HA5, 7,) C C(V)) (resp. K(A5, 55) = C(V)).
3. Gj is semi-reqular (resp. regular).

Proof. Since C(Vé)%’j] = J¢};, the inclusion [C(V;;)IC(%@)] C K(4;, ;) is an equality. As
a result, the implication (1 = 2) is an immediate consequence of C(V}}) = [C(Vi})C(V}))].
Conversely, we also have C(V};)#; = ;. The inclusion [C(V};)K(;, 7)) C K(;) is
then an equality. Moreover, the second statement is equivalent to KC(.J;, .76;) C C(V};) (resp.
K(A;, #;5) = C(V];)) because of C(V;)* = C(V};). Therefore, the converse implication (2 = 1)

follows from the fact that C(Vf]) = [C(V}’])C(Vé)] 0
Now, we can state the main result of this paragraph.

Theorem 3.2.19. Let Gg, g, be a colinking measured quantum groupoid between two monoidally
equivalent locally compact quantum groups Gi and Go. The following statements are equivalent:

1. Gg, G, is semi-regular (resp. reqular).

2. Gy and Gy are semi-reqular (resp. reqular).
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Proof. The implication (1 = 2) has already been investigated and stated in Corollary |3.2.14]
Conversely, let us assume that G; and G are semi-regular (resp. regular). In virtue of Proposition

[3.2.18] we have
K (A5, 7,) CC(Viy)  (resp. K(AG;, ;) = C(V}})), foralli,j=1,2,
By Corollary [3.2.14] the aim is to prove that
K(A;, ;) C C(VL)  (resp. C(V),) = K(6;, 7)), forall i, j,r=1,2.

Since C(VTJJ)%’;] — J;, we have [C(V))K(H;, ;)] = K (A, H,;). Therefore, we have

T

C(V5) = [C(VHICVi] = [C(VEHCVi)'] D [C(VHK (A, 75)) = K(A5, 755)

(vesp. = [C(V;))K (A, 755)] = K (A, ;)

rJ

ant the result is proved. O

Corollary 3.2.20. Let Gg, g, be a colinking measured quantum groupoid between two monoidally
equivalent locally compact quantum groups Gy and Go. Then, Gy and Go are semi-regular (resp.
reqular) if and only if for alli,j, k = 1,2 we have:

K (5 @ Hy., #y, © Hy) C [(K(Hy, Hr) @ L, Wi (Lo, @ K(H1)) ]
(resp. K(G; @ K, K @ ) = [ (K(Hy, Hy) @ 1%k)m]§(1%3 ® K(Hk)) ).

Proof. This result is a straightforward consequence of Theorem [3.2.19, Corollary and
Proposition [3.2.17] O

Remarks 3.2.21. Let G; and G, be monoidally equivalent locally compact quantum groups.

1. In virtue of Proposition [3.2.18] the condition K (7%, #,) = C(V) does not imply in
general that G; is regular. This answers negatively to a question raised in [20].

2. If G; and Gy are semi-regular, the inclusion
K( Aoy ® Aoy, Aoy @ Hir) C (L, @ K(H1))(Wa) (K (1) @ Logs,)]

will play a crucial role in the equivalence of continuous actions of Gy and Gs.
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Chapter 4

Actions of measured quantum groupoids on a finite basis

In the whole chapter, we fix
G:=(N,M,a,3,A, T, T, ¢)

a measured quantum groupoid on the finite basis

N = @ M,,(C), €= @ n; - Try.

1<i<k 1<i<k

We denote (5,6) and (§ , 3) the weak Hopf-C*-algebra and the dual weak Hopf-C*-algebra
associated with G.

4.1 Definition of actions of measured quantum groupoids on a finite
basis

We begin this paragraph with the following lemma:

Lemma 4.1.1. Let A and B be two C*-algebras, f : A — M(B) a *~homomorphism and
e € M(B). The following statements are equivalent:

1. There exists an approzimate unit (uy)x of A such that f(uy) — e with respect to the strict
topology.

2. f extends to a strictly continuous *-homomorphism f : M(A) — M(B), necessarily
unique, such that f(14) = e.

3. [f(A)B] = eB.

In that case, e is a self-adjoint projection, for all approximate unit (v,), of A we have f(v,) — e
with respect to the strict topology and [Bf(A)] = Be.

Proof. Let us assume that the assertion 1 holds. It is clear that e is a self-adjoint projection.
Let us consider the Hilbert B-module eB. We identify the C*-algebras £(B) and M(B). Let
us denote ¢ : L(eB) — M(B) the faithful *-homomorphism defined by

(T)o=T(eb), T e L(eB),be B.

Note that ¢ is strictly continuous and satisfies ¢(l.g) = e. It follows immediately from the
assumption that ef(a) = f(a) = f(a)e for all a € A. In particular, f induces a *-homomorphism
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f:A = L(eB) and f(uy) — 1.p with respect to the strict topology. Therefore, f is non-
degenerate. In particular, f extends to a unital *-homomorphism f : M(A) — L(eB). We
have

t(f(a))b= f(a)(eb) = f(a)eb= f(a)b, a€ A beE B.

Therefore, the *-homomorphism ¢ o f : M(A) — M(B) is a strictly continuous extension of f
and we have +(f(14)) = e. Moreover, since f is non-degenerate, we have [f(A)eB] = eB. It then
follows that we have the equality [f(A)B] = eB. Therefore, we have proved the implications
(1 = 2) and (1 = 3). The implication (2 = 1) is straightforward. Let us prove that (3 = 1)
and let us then assume that [f(A)B] = eB. In particular, we also have [Bf(A)] = Be since f is
stable by the involution. Let a € A, we have f(a)b € eB and bf(a) € Be for all b € B. By taking
an approximate unit of B, we obtain that f(a) € eBN Be = eBe. Hence, ef(a) = f(a) = f(a)e
for all @ € A. Let (uy), be an approximate unit of A. For all « € A and b € B, we have
fux)f(a)b = f(ura)b — f(a)b with respect to the norm topology. By the assumption, we then
have f(ux)b = f(uy)eb — eb with respect to the norm topology for all b € B, which means that
f(uy) — e with respect to the strict topology and we are done. O

Definition 4.1.2. Let us fix a C*-algebra A. An action of G on A is a couple (4, 54) consisting
of a faithful *-homomorphism d4 : A - M(A ® S) and a non-degenerate *-homomorphism
fa: N° — M(A) such that:

1. 04 extends to a strictly continuous *-homomorphism from M(A) to M(A®S) still denoted
(SA such that 5A(1A) = qﬁA’a.

2. (5A X ids)(SA = (idA ® 5)5A
3. 04(Ba(n°)) = ¢°4*(14 ® B(n°)), for all n € N.

We say that the action (04, 84) is continuous if we have further that
[04(A)(1a® 5)] = ¢+ (A® S).
If (04,84) is a continuous action of G on A, we say that the triple (A, 04, 84) is a G-C*-algebra.

Remarks 4.1.3. e By Lemmal4.1.1] the condition 1 is equivalent to requiring that for some
(and then any) approximate unit (uy) of A, we have d4(uy) — ¢4 with respect to the
strict topology of M(A ® S). It is also equivalent to [04(A)(A® 9)] = ¢°4*(A® S).

e The condition 1 also implies that the *~homomorphisms d4 ® idg and idy ® ¢ extend
uniquely to strictly continuous *-homomorphisms from M(A® S) to M(A® S ® S) such
that

(64 ®ids)(Lags) = i3, (ida ® 0)(1ags) = 35"
Examples 4.1.4. Let us give two basic examples:
e (5,6,0) is a G-C*-algebra.

e Let us denote dyo : N° — M(N° ® S) the faithful unital *~homomorphism given by
Ine(n®) = 1yo ® B(n°) for all n € N. Then, the pair (dyo,idye) is an action of G on N°
called the trivial action.

Proposition 4.1.5. Let (04, 34) be an action of G on A. We have:

i (04 ®ids)da(la) = 5 ghs" = (ids ® 6)da(14).
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ii. 64(Ba(n°)) = (14 ® B(n°))g°+2, for alln € N.
iii. If (84, Ba) is continuous, we have [(14 ® S)64(A)] = (A® S)gP+~.

Proof. The equality (64 ® idg)da(14) = g5 ghs® follows easily from d4(14) = ¢°4* and the

condition 3. The second equality (ids ® §)d4(14) = qlﬂé4 ’aqgéa follows from §4(14) = ¢?4* and

the fact that 6(a(n)) = (a(n) ® 1g)¢>?, for all n € N.

The statement ii follows from the condition 3 and the fact that o and 8 commute pointwise.
The equality [(14 ® S)d4(A)] = (A ® S)g?4* is an obvious consequence of the fact that ¢#4 is
self-adjoint. m

Let us provide a more explicit definition of what an action of the dual measured quantum
groupoid G on a C*-algebra B is.

Definition 4.1.6. Let us fix a C*-algebra B. An action of G ona C*-algebra B is a couple
(0p, ap) consisting of a faithful *-homomorphism g : B — M(B ® S) and a non-degenerate
*-homomorphism ap : N — M(B) such that:

1. 0p extends to a strictly continuous *-homomorphism from M(B) to M(B @ S) still
denoted dp such that dz(1p) = 257,

2. (6p ®idg)op = (idp ® 0)Js.
3. dglap(n)) = ¢*BP(1p ® a(n)), for alln € N.
We say that the action (05, ap) is continuous if we have further that
0s(B)(1z® S)] = ¢*#*(B® S).
If (6p, ap) is a continuous action of G on B, we say that the triple (B,dp,ap)is a G-C*-algebra.
Remarks 4.1.7. As for actions of G, we have:

e By Lemma {.1.1} the condition 1 is equivalent to requiring that for some (and then any)
approximate unit (uy), of B, we have dp(uy) — qaf’ﬁ with respect to the strict topology
of M(B® S). It is also equivalent to [6(B)(B ® S)] = ¢*##(B ® S).

e In virtue of 1, the *~homomorphisms dp ® idg and idp ® 5 extend uniquely to strictly
continuous *-homomorphisms from M(B ® S) to M(B ® S ® §) such that

o~

(0p @idg)(1,.5) = gi9”,  (idp ®0)(1,4,9) = 655-
Examples 4.1.8. Let us give two basic examples:
° (g, 5, Q) is a G-C*-algebra.

e Let us denote 6y : N — M(N ® S) the faithful unital *-homomorphism given for all
n € N by dn(n) =1y ® @(n). Then, the pair (dy,idy) is an action of G on N called the
trivial action.

Proposition 4.1.9. Let (65, ) be an action of G on B. We have:
i. (05 ®idg)0p(1s) = ¢i9"¢55" = (idp ® 8)dp(1p).
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ii. dp(ag(n)) = (1g ® a(n))q*s”, for alln € N.
iii. If (65, ) is continuous, we have [(15 ® S)d5(B)] = (B ® S)q*?".

Definition 4.1.10. Let A; (resp. B;) be two C*-algebras, for i = 1,2. Let (4, 34,) (resp.
(0p,,ap,)) be an action of G (resp. G) on A; (resp. B;), for i = 1,2. A non-degenerate *-
homomorphism

f: A — M(As) (resp. f: By = M(By))

is said to be G-equivariant (resp. QA—equivariant) if we have
(f®id5)05A1:5Azof7 foﬁAlzﬁAz

(resp. (f ® ld§)5Bl - 532 © f7 f °cap, = aBQ)'

We denote Morg(Ay, Az) (resp. Morg(Bi, By)) the set of G-equivariant (resp. G-equivariant)
non-degenerate *-homomorphisms from A; (resp. By) to M(As) (resp. M(By)). We also define
the category denoted G-C*-Alg (resp. Q—C*—Alg) whose objects are the G-C*-algebras (resp. G-C-
algebras) and whose set of arrows between two G-C*-algebras (resp. Q—C*—algebras) (Ai 04, Ba,)
(resp. (Bi,dp,, ap,)) i = 1,2 is Morg(As, Az) (resp. Morg(B1, Bs)).

4.2 Crossed product

In this section, we define the crossed product of a C*-algebra acted upon by G. First, we
introduce some notations. Let (A,d4,084) be a G-C*-algebra. Since the *-homomorphism
L:S — B(J) (resp. R : S — B(s)) is non-degenerate the map idy ® L (resp. idy ® R)
extends uniquely to a faithful and unital *-homomorphism from M(A® S) to L(A ® ) still
denoted id4 ® L (resp. idq ® R). Then, let us consider the following faithful *-representations
of A on the Hilbert A-module A ® 7:

WL:(idA®L)5A, WR:(idA®R)(SA.

Since 4 extends uniquely to a strictly continuous *-homomorphism 64 from M(A) to M(A® S)
such that d4(14) = ¢4, 1 (resp. mx) extends to a faithful strictly continuous *-representation
of M(A) on A ® S still denoted 7, (resp. mg) such that

mr(14) = ¢°4*  (resp. mr(14) = qﬁA@é\).
We introduce the following Hilbert A-modules:
Enr = PPAQH), Exn= (AR ).

e Since ¢?4 %y (m) = 7y (m) = 7 (m)g?4« for all m € M(A), 7, induces a faithful unital
strictly continuous *-representation 7 : M(A) — L(&4 ).

e We have [14 ® m, ¢°4°] = 0 for all m € M(S) because of S c M’ C a(N). Therefore, we
have a unital strictly continuous *-representation 0 : M(S) — L(&4 1) given by

~

0(@) = (14 ® p(@)) 5. @ € M(S).

Note that @ is not faithful in general. However, if the fibration map /4 is faithful so is 0. Indeed,
let us assume that 34 is faithful and let € M(S) such that 6(x) = 0, that is to say

>t Y Balel]”) @ Lialel)))pl) = 0.

1<k 1<ij<n
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However, it follows from the assumption that the family (84(e (l-)o))1<l<k 1<ij<n, 1S linearly

independent. Hence, L(a(eg?))p(x) =0forall 1 <I<kand1<i,j<n. However « is unital,

it then follows that l
=3 > L)) =0.

1<I<k 1<i<ny

Hence, z = 0.

Now, we can define the *-representation 7 of A on the Hilbert A-module A ® J# ® -
T:=(rp@L)5s=([da @ LQL)§% : A— LIARQ H R H),

where 6% 1= (04 ®idg)da = (ida ®)da: A - M(A® S ® S). Moreover, 7 extends uniquely to
a *-representation of M(A) on A ® # @ H# such that 7(14) = (ids ® L ® L)(q}5""g5).

Definition 4.2.1. We call crossed product of A by the continuous action (94, 84) of G on A,
the C*-subalgebra A x5, 5, G of L(&4,1) generated by the products of the form 7(a)f(z) for
acAand x € S.

From now on, we will denote the crossed product A x G, instead of A x5, 5, G, since no ambiguity
will arise.

Lemma 4.2.2. The norm closed linear subspace of L(A @ ) spanned by the products of the
form wp(a)(14 ® p(w)), a € A, w € B(H)., is a C*-algebra.

Proof. Let us denote B = [mp(a)(1a ® p(w)); a € A, w € B().]. Let a € A and w € B()..
Let us prove that (14 ® p(w))mr(a) € B. We have

(1a ® p(w))mr(a) = (ida @ idr ® w)(Vasmr(a)12). (4.2.1)
On the one hand, since (L ® L)d(y) = V(L(y) ® 1)V* for all y € S we have
Vasmp(a)Vyy = 7(a). (4.2.2)
On the other hand, [ (a)12, Vi3 Vas] = 0 since V*V = ¢®# and @&(N) C M’. It then follows that
7(a)Vaz = Vogmp(a)12VasVaz = Vasmp(a)12, (4.2.3)
as V is a partial isometry. We derive from (4.2.1]) and ( - ) that
(14 @ p(w))7i(a) = (ida @ idy © w)(7(a)Vas).

Since L is non-degenerate, let us write w = w'L(s) for some s € S and w’ € B(J),. First, note
that we have 7(a) = 7(L1)7(a) = (ids ® L ® L) (g4 g2 (a) = (ids ® L ® L)(g}4")(a) in
virtue of (4.2.2) and the fact that ¢®® = VV*. It then follows that
(m @ L)((1a @ 5)da(a)) = (7L(14) © L(s))7(a)
= (14 ® L @ L(s))(14 ® L & L) (q)3"*)7(a)
= (14 ® Ly ® L(s))7(a).

As a result, we have

(idg ® idr @ w)(7(a)Vas) = (Idg ® idy @ W) (14 @ 1 @ L(s))7(a)Va3)
= (idy ®idyy @ W) (7 @ L)((14 ® 5)d4(a))Vas).
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However, (14 ® s)d4(a) is the norm limit of finite sums of the form Y, a; ® s;, where a; € A
and s; € S. Therefore, (14 ® p(w))mr(a) is the norm limit of finite sums of the form

> (ida ®idy @) ((mr(a;) ® L(si))Vas) = Y_(ida @ idr @ ') (m1(ai)12((1 ® L(s:))V)23)

3 3

=2 _mi(a:)(1a® ([d®w)((1® L(s:))V))

= ZWL(ai)(lA ® p(w'L(s:))),

where a; € A and s; € S. Hence, (14 ® p(w))m(a) € B for all a € A and w € B(.5),.. This
actually proves that B is a C*-subalgebra of L(A ® 7). O

The previous lemma clearly proves that 7 (resp. 0 ) defines a faithful unital *_homomorphism
(resp. a unital *-homomorphism) 7 : M(A) - M(A x G) (resp. 6 : M(S) = M(A x G)). The

following proposition is also an immediate consequence of this lemma.

Proposition 4.2.3. We have w(a)0(z) € Ax G for alla € A and x € S. Moreover, we have
AXG=[n(a)f(z);ac A xS

This proposition allows us to define ¥, ,: A x G — L(A ® J) the faithful strictly continuous
*_representation of A x G on A ® ¢, given by

U, (m(a)f(x)) = mp(a)(1a @ p(z)), a€ A zeS.

Then, ¥y, , extends uniquely to a faithful *-representation of M(A x G) on A® S, still denoted
\I}L’p7 SuCh that \IIL,p(]-Axg) e qBAya'

Proposition 4.2.4. We have the following statements:
1. Va e A VY ,(m(a)) =m(a).
2. ¥z e S, U, ,(0(z) = P14 @ p(x)).

Proof. Let (x)), be an approximate unit of S. Since p is non-degenerate, the net (p(x))a

A

converges strongly to 1. Hence, 7 (a) = s —limy 71 (a)(14a ® p(xy)) = s —limy ¥y ,(7(a)f(x))).

~

Since ¢ is non-degenerate, the net (6(z,))x converges strongly to 1a.g. Therefore, we have
m(a) = s — limy w(a)f(zy). Hence, ¥y ,(m(a)) = s — limy ¥y ,(m(a)f(zy)) as ¥y, is strongly
continuous. This proves the first statement. The second statement is proved in a similar way:.

Indeed, let (ay), be an approximate unit of A. For all z € S, we have
¢ (14 ® p(x)) = s — limm(ax)(1a ® p(x)) = — lim Uy p(w(ar)0(x)) = p,(6(x))

by using ¢°4® = s — lim, 77 (ay), the non-degeneracy of m and the fact that W , is strongly
continuous. O

Proposition 4.2.5. Let S x G be the crossed product of S by the action (6,8) of G on S. Then,
S % G is canonically isomorphic to [SS].
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Proof. Since L is non-degenerate, L ® id : S ® () — B(# ® ) extends uniquely to
a faithful and unital *-homomorphism L ® id : £(S ® J€) — B(# ® ). Besides, the
*-representation Wy, ,: S x G — L(S ® ) is given by

U, (n(s)0(x)) = (ids ® L)(6(s))(1s @ p(z)), s€ S, z€8.

We have (L ® L)d(s) = W*(1® L(s))W for all s € S. Moreover, we have W € M ® M and
p(S) € M'. Tt then follows that

(L @id)¥p,(n(s)8(z)) = (L ® L)(3(s)(1© p(x)) = W*(1® L(s))W (1 & p(x))
=W (1 ® L(s)p(x))W,

for all s € S and 2 € S. We also consider the map Ady, : B(# @ ) — B(A @ H) given by
Adw () = WaW* for all x € B( ® ). It is clear that Ady is a bounded linear map such
that Ady (z*) = Adw (x)* for all x € B(Z @ 7). It is worth noting that unfortunately Ady
is not multiplicative. However, let 2,y € B(J# ® ) such that [x,¢%] = 0 or [y,¢*?] = 0.
Then, we have Ady (zy) = Ady (2)Ady (y) since W is a partial isometry and ¢%% = W*W. In
particular, we have

Ady (W*aWW*yW) = Ady (W*aW)Adw (W*yW), for all z,y € B(H @ ).

It then follows that ¢ = Adw (L ®id)¥;, : S x G — B(A# ® H') is a *-homomorphism.

Furthermore, we have ®(m(s)0(z)) = qaﬁ(l ® L(s)p(z ))qo‘ﬁ = qaﬁ(l ® L(s)p(x)) for all s € S
and z € S. Indeed, since B(NO) M’ N M we have [3(n°), L(s)] = 0 and [3(n°), p(z)] = 0 for
allne N, seSand 2 € S. Hence, [3(n°),2] =0 for all n € N and z € [SS].

Moreover, since Ady is generally not injective, the faithfulness of ® is not obvious. However,
it suffices to prove that the restriction of Ady to the range of (id ® L)V, ,, that is to say

W*(1® [SS])W is injective. Assume that Ady (W*(1® 2)W) = O for some z € [SS]. Then,
we have q"‘ﬂ(l ® z) = 0. But « is faithful, it then follows that 5( Yz =0forall1 <1<k
and 1 < 4,5 < n;. Hence, z = 0. Therefore, since S x G = [« (s)é( );seSzel) disa
*-isomorphism from S x G to the C*-algebra qo"g(l ® [S5)).

It only remains to show that q"‘ﬁ (1 ® [SS]) is canonically isomorphic to [SS]. First, note

that there exists w € B(J#), such that (w®id)(¢*?) = 1. Indeed, let us consider w : a(N) — C
the map defined by w(a(n)) = €(n) for all n € N. Then, w is a well-defined normal positive
linear functional on the von Neumann algebra o(N). Therefore, it extends to a normal linear

functional on B(.), still denoted w. Now, since w(oz(eg))) = md! for all 1 < 1 < k and

1 <14,j < ny, we have (w ® id)(q"‘ﬁ) — 1. Let us look at the map O : [SS] — qo‘ﬁ(l ® [SS])
given by ©(z) = ¢®°(1® 2), for all z € [SS]. Then, © is a surjective *-homomorphism. Besides,
O is also injective since (w ® id)(O(2)) = (w ® id)(¢*")z = z for all z € [SS)]. O

Let (B,dp,ap) be a G-C*-algebra. In order to define the crossed product B Xp.ap G, we
introduce the Hilbert B-module:

gB,)\ = an”B(B X %)

Note that q"‘B75 = (idp ® N)agp(lp). Exactly as for actions of G, we have:
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e a faithful strictly continuous *-representation 7, : B — L(B ® ) given by
7a(b) = (idgp ® \)og(b), b€ B.

Furthermore, the *~homomorphism 7 extends uniquely to a faithful strictly continuous
*_representation 7y : M(B) — L(B ® ) such that 7,(1g) = ¢®8".

e 7, induces a faithful unital strictly continous *-representation 7 : M(B) — L(&5.).

e We have a unital strictly continuous *-representation 6 : M(S) — L(&p.,) given by
0(y) = (1 @ L(y)) s, y € M(S). If ap is faithful, so is 6.

Definition 4.2.6. We call crossed product of B by the continuous action (6p,ap) of G on B ,
the C*-subalgebra B X, , G of L(&5,)) generated by the products of the form 7(b)6(y) for
be Bandye€S.

From now on, we will denote the crossed product B x QA, instead of B X5, a5 C;, since no
ambiguity will arise.

As for G-C*-algebras, we have the following lemma:

Lemma 4.2.7. The norm closed linear subspace of L(B @ ) spanned by the products of the
form m\(b)(1p ® L(w)), where b € B, w € B(J)., is a C*-algebra.

As aresult, 7 (resp. ) defines a faithful unital *-homomorphism (resp. a unital *-homomorphism)
T : M(B) = M(B xG) (resp. 6 : M(S) — M(B % G)). The following proposition is also an
immediate consequence of this lemma.

Proposition 4.2.8. We have 7(b)0(y) € B % G for allb € B and y € S. Moreover, we have
BxG=[7b)0(y);be B, yeS]

This proposition allows us to define T AL B~ G — L(B ® ) the faithful strictly continuous
*_representation of B x G on B ® J, given by

UL (7(0)0(y) = 7a(b)(1p ® L(y)), be B, yeS.

Then, T L extends uniquely to a faithful *-representation of M (B x G ) on B® JZ, still denoted

\if,\,L, such that \TJ,\,L(l = ¢*Bf,

B>q§>
Proposition 4.2.9. We have the following statements:
1. Yb e B, Uy 1(7(D)) = 7 (D).

2. Vy €S, U\ 1(0(y)) = ¢°*P (15 ® L(y)).
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4.3 Dual action

Let (A, 04,34) be a G-C*-algebra. Since Ve M ® M and a(N) C M, we have [Vas, ¢75**] = 0.
Therefore, Va3 € L(A ® S ® H) restricts to a partial isometry

X 1= Vasley yor € L(Ear @ H),

whose initial and final projections are given by
XX = qgéa ré"A,L&;ﬁ”a XX* = qgéﬁ ré"A,L@%” < ‘C(éaAL ® %)7
since V*V = qB\’O‘ and VV* = qa’ﬁ.

Proposition-Definition 4.3.1. Let 64.g : AXG — L(Eap @ IC) and dawg : N — M(AXG)
be the linear maps given by:

® Jaug(h) = X(b®1,)X", forbe AxG.
o ang(n) = B(@(n) = (14 ® p(@(n)ls,,, for n € N.

Then, daug is a faithful *~homomorphism and cqaxg is a non-degenerate *-homomorphism.
Moreover, we have the following statements:

1. Gang(m(a)0(z)) = (n(a) ® lg) - 0 ® 1d§)(3(x)), foralla € A and x € S. In particular,
Sang takes its values in M((Ax G)® S).

2. anwg(n)m(a)f(z) = m(a)f(@(n)z) and m(a)0(x)aaxg(n) = w(a)d(za(n)) for alln € N,
ac€Aandzx €S.

8. daxg extends uniquely to a strictly continuous *-homomorphism from M(A x G) to
M((AxG)®S), still denoted §4.g, and we have § 1.g(1axg) = 4795,

4. If Ba is faithful so is cpxg.

Proof. 1t is clear that d4,g(b*) = daug(b)* for all b € A x G. Now, let us prove that da.g is
multiplicative. Since X X*X = X, we only have to show that

b1y, X*X]=0, be Axg.
It suffices to prove that
mr(@)ia(1a ® p(w) © L), VasVas] =0, a€ A zeS.
Let a € A and z € S. This follows immediately from the following facts:
e [p(z) ®1,V*V] = 0 because of V*V = q’aa, B(N°) € M and p(z) € M'.
o [mL(a)1, Vi3Vas] = 0 because of B(N°) ¢ M’ and L(S) C M.

Let us prove now that the *-representation 4. is faithful. According to the previous discussion,
we have

X*0aug(h) = X*X(b @ 1) X" = (b @ 1) X*XX* = (bR 14)X*, be AxG.
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Assume now that d4.g(b) = 0 for some b € A x G. Hence, (b ® 1,,)X* = 0. It then follows that
blidg, , ®w)(X™) =0, we B(H),.
However, we have
(ids, , ® W)(X*) = (14 @ (iId@@)(V))s, = (1a @ U(id @ W) (W) U")ls, , -

Hence, [(ids, , ® w)(X*); w € B(H).] = [(1a ® R(y))le,, ; y € S]. Therefore, we have b =0
by using the non-degeneracy of R.

Let us compute d4,.g((a)d(x)) for all a € A and € 5. We consider M((4A x G) ® 5) as a
C*-subalgebra of L£(&4 1 @ J). First, since 7 (a)i2, ‘/23] = 0 we have [X, 7(a)12] = 0. Hence,

X(m(a) ® 1Ly) X* = (7(a) ® 1Ly) X X* = (r(a) ® 15) - (0 ® idg)(g55”). (4.3.1)
Furthermore, by using the formula 6(z) = V(z ® 1)V* we obtain
X(0(x) ® Lr)X* = (0 @idg)d(x). (4.3.2)
We then combine the formulas and with the fact that [m ® 1, X*X] =0 for all
m € M(A x G) to conclude that
Sang(m(a)0(x)) = (w(a) @ 1) - (0 @ id5)(5(x)).

In particular, 8 4. (m(a)0(x)) € M((AxG)®S) for all a € A and 2 € S. Therefore, d4,.g takes
its values in M((A x G) ® S). Now, it is clear that 04,g is strictly continuous. Therefore, it
extends uniquely to a strictly continuous *-homomorhism 64.g : M(A % G) = M((Ax G) ® S)
and we have

0awg(Laxg) = XX* = ¢33 lea Lo = q* 97, #

We see immediately that asxg : N — M(A % G) is a non-degenerate *-homomorphism. Let
us fix n € N, a € Aand z € §. We have [aaxg(n), m(a)] = 0 and aa,g(n)0(z) = 0(a(n)z).
Hence, ang(n)W(a)g(x) — 7(a)0(a(n)z). The formula m(a)f(x)aang(n) = w(a)0(za(n)) is
straightforward. As for the last statement of the proposition, we recall that if 34 is faithful so
is 6. The faithfulness of a4, follows since @ is faithful. O

Proposition 4.3.2. We have the following statements:
1. Ya € A, §a46(m(a)) = (1(a) ® 1)(0 ® idg)(¢™*).
2. Vo € 5, §aug(8(2)) = (§ ®idg)(3(x)).

Proof. These statements are straightforward consequences of the formulas ) and - of
the above proof and the fact that we have Ja.g(m) = X(m® 1,,)X* for all m € M(A x@G). O

Theorem 4.3.3. We have:
1. The triple (A X G,0axg, ®axg) @S a C;-C*-algebm.
2. The correspondence

—xG: G-C-Alg — G-C*-Alg
(A75A75A) — (A X gaéAxg,OéAxg)

is functorial.
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Proof. 1. Let us prove that we have
[6456(A % G)(Lang ® §)] = 4™ (A % G) ® 5).
Let us fix a € A and z,2’ € S, then g(x)(lg ®9') is the norm limit of finite sums of the form
i @, where z;, 2 € S. Therefore,
daxg(m()0())(Laxg © ') = (n(a) ® 1g) - (I @ idg) (3(x) (13 ® 2'))

is the norm limit of finite sums of the form ¥, 7(a)0(x;) ® 2}, with z;, 2, € S. Tt then follows
that ~ L

axg(m(a)0(z))(1axg ®y) € (A X 5)® S.

Consequently, we have d4xg(A X G)(1axg @ §) C(AxG)® S. But, since O ang(Lang) = q¥4#9 P
we actually have the inclusion

[6axg(A % G)(Laxg © )] C ¢*9F((A % G) ® 9).
For the converse inclusion, let us take a € A, z,2’ € S. We have
(@ang(n') © B(n°)(m(a)(z) @ 2') = m(a)d(@(n)z) @ B(n°)a’
= (w(a) ® 1g) - (F @ idg)(@(n")x @ B(n°)a’),
for all n,n’ € N. Hence, ¢®4*¢(m(a)0(z) @ 2') = (n(a) ® lg) - 0 1d§)(qa’5(x ® 2')). Now,

¢*#(z ® 2’) is the norm limit of finite sums of the form ¥, S(xz)(lg ® «!) where z;,z, € S.
Therefore, ¢®4%98(m(a)0(z) ® #') is the norm limit of finite sums of the form

> (m(a) @ 15) - (0 ©idg)(5(x,) (15 © 7)) = Z5Axg(7f(a)§(%))(1mg ® ),

7

which proves that ¢®4%98((Ax G)® S) C [64xg(A % G)(1axg ® S)] and then the equality holds.

The formula §4.g(axg(n)) = ¢*479%(1 44 ® @(n)), n € N, follows immediately from
Sang(@ang(n)) = (B @1dg)d(a(n)), b(a(n)) = (1@ B(n°)d(15), neN

(see Proposition m 2). It only remains to prove the coassociativity of d4.g. Since da.g and ]
are strictly continuous, we have:

(Oang ® idg)(m) = Xiami3 X3y, (idaxg ® 0)(m) = VagmioVas, m € M((AxG)® S).
MOI‘GOVGI‘, since ‘712‘713 = ‘723‘712‘72% we have X12X13 = ‘723X12‘72§ in L(é"A,L X W 4 & %) We
will also need the commutation relation

[VasVos, X1o] =0 in L(Exr ® H @ H),

which follows from the facts that Vj;Vas = qf;;“, Ve M ® M and B(N°) C M. Therefore, for
all b € A x G we have

(0anug ®idg)daxg(b) = X126446(0)13X7,
= X2 X13(0b @ Ly ® 1) X13X7s
= Va3 X12(b @ Ly @ 1) Vi Vas X35 Vi
= ‘723X12(b ® 1y ® 1.%))X12‘72§‘723‘72’§
= ‘723X12(b ® 1r ® 1%))(12‘72%
= Va6 4ug(b)12V5
= (idg® )04 (D).
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2. Let (A,d4,084) and (C,0¢,Bc) be G-C*-algebras and f : A — M(C) a G-equivariant
non-degenerate *-homomorphism. Let us denote 74 : A — L(&a1), ¢ : C — L(éc1),
04:8 — L(&41) and 0o : S — L(&¢,1,) the canonical *-homomorphisms. There exists a unique
*-homomorphism f, : A x G — M(C % G) such that

~

fo(mala)la(x)) = me(f(a)0c(x), ac A zeb. (4.3.3)

Indeed, since f is non-degenerate, we have the following unital strictly continuous *-homomor-
phism f ® idgw) : LIA® H) = L(C ® ). But since f o 4 = Bc, we already have
(f @ idik () (L(Ea,L)) C L(Ec,r) via the following identification:

L(Exr) ={T € LIA® H); T+ =T = ¢°+°T}
and similarly for £(&¢ ). Now, in virtue of the G-equivariance of f we have
(f ®@idkue))(mala)) = me(fla), a€ A

We also have (f ® id;c(jg)))(gA(x)) = 0c(x) for all 2 € S. Hence, (f ® idee)(AxG) CcCxg.
Let us denote f, = (f ® idic(#))[axg. Then, f.: Ax G = M(C x G) satisfies and the
uniqueness is guaranteed by Proposition

Let ce Cand z € S, by the non-degeneracy of f we can assume that ¢ = f(a)c; with a € A
and ¢; € C. Then, we have nc(c)0c(z) = me(f(a))me(er)0(x). In virtue of Lemma
me()fc () is the norm limit of finite sums of elements of the form me(f(a))0c(z1)me(cz) with
21 € S and ¢; € C. Let us write #; = 24/ with 2, 2/ € S. Then mc(¢)fc(z) is the norm
limit of finite sums of elements of the form f.(w4(a)f(x}))0c(x?)mc(cs). This proves that f, is
non-degenerate.

Then, f. extends to a unital strictly continuous *-homomorphism f, : M(A x G) — M(C % G).
Moreover, we have proved that

feoma=mcof, f*OGAAZQAC-

By the assertions 1 and 2 of Proposition it follows that

0oxg © fo = (fe ®1dg)0axng, [« 0 Qang = aoxg.
]

Remark 4.3.4. We will need an adaptation of the functoriality of — x G : G-C*-Alg — G-C*-Alg
to possibly degenerate (albeit reasonably) G-equivariant *-homomorphisms (c¢f. Lemma .
With the notations of the proof of Theorem 2, let us assume that there exists e € M(C)
such that [f(A)C] = eC. We prove in a similar way that there exists a unique G-equivariant
*-homomorphism f, : A x G — M(C % G) such that

f*(WA(a)GAA(x)) = Wc(f(a))éc(f), ace A zeSs.

Moreover, by combining the assumption with Lemma and Proposition we obtain the
equality [f.(A % G)(C x G)] =mc(e)(C % G).

Definition 4.3.5. The continuous action (J4xg, ®axg) of the measured quantum groupoid QA
on the crossed product A x G is called the dual action of (04, 54).
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In a similar way, we define the dual action of the measured quantum groupoid G on the crossed
product B x G, where B is a C*-algebra acted upon by the dual measured quantum groupoid G.

Let (B, dp, ap) be a G-C*-algebra. Since V € M'® M and B(N°) C M, we have [Vas, ¢57°] = 0.
Therefore, Vo3 € L(B ® 7 ® ) restricts to a partial isometry

Y = Vasley sor € L(Epa @ H),

whose initial and final projections are given by:

~

VY =63 s 0ms YY = 53 6y 0 € L(Epp @ H).
Let (5Bx§: BxG — L(Ep\® ) and 6BN§ : N° — L(&p,») be the linear maps given by:
Opg0) =Y(c®@1p)Y", B sn°) =0(8(n°) = (1p® L(B(n°)))lss 0

for all c € Bx G and n € N. As for the case of a continuous action of the measured quantum
groupoid G, we obtain the formulas:

Y(@(b)® L)Y = (R(D)®1s)(00ids)(¢™), Y(0(y)®@1x)Y* = (I®ids)é(y), be B,ye S,

Y'Y, c®1,] =0, Y(@DOy) @1,)Y" = (70 ®1s)(0®ids)d(y), c€ Bx Q, be B,yeSs,
YioYis = VasYia Vs,  [VasVas, Yia] = 0 as operators of L(Ep )\ ® H @ ).
Then, we obtain the following result:

Theorem 4.3.6. We have:

1. The triple (B % ) is a G-C*-algebra.

B>4§’ 5B><1§)
2. The correspondence
—xG: G-C-Alg — G-C*-Alg
(B, 53, aB) — (B X g, 6B><1§’ /BBNQ\)
is functorial.

Note that a generalization of Theorem [£.3.6 2 can be stated as in Remark [4.3.4]

Definition 4.3.7. The continuous action (4, B Bx@) of the measured quantum groupoid G

on the crossed product B % G is called the dual action of (0B, ap).

4.4 Takesaki-Takai duality

Let (64, 34) be a continuous action of the measured quantum groupoid G on a C*-algebra A. In
this paragraph, we investigate the double crossed product (A x G) x G endowed with the bidual
action of G. First, we prove that (A x G) x Q can be canonically identified with a C*-subalgebra
D of LI(A® ). We then endow D with a continuous action (dp, Bp) of G obtained by transport
of structure.

Let us fix a G-C*-algebra (A,d4,34). Let us denote B = A x G. We begin by defining the
C*-algebra D.
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Proposition-Definition 4.4.1. Let us denote
D :=[rr(a) (14 @ A2)L(y));ac A, ze S, ye S C LA ).

Then, D is C*-subalgebra of L(A ® ). Moreover, we have:

1. dgP+® = d = ¢P42d, for alld € D.

2. D(A® ) = ¢Pr(A @ ).

3. There exists a unique faithful strictly continuous *-homomorphism

jp : M(D) — L(A® )
extending the inclusion map D C L(A® ) such that jp(1p) = ¢°4°.

Proof. Since [A\(S)L(S)] is a C*-algebra, it is enough to prove that (14 ® A(x)L(y))mr(a) € D,
forallze S, yeSandac A Letusfixz € S, y € S and a € A. Since [R(y), L(s)] = 0 for
all s € S, we have

(1a ®@ A(x)L(y))7r(a)

(La @ Up(x)U*L(y)U)rr(a)(1a @ UY)

(1a®U)(1a @ p(z)R(y))7r(a)(1a @ UY)
(1a®@U)(1a @ p(z)
( )N (x)

14 ® R(y)U™)
14 ®@ U L(y)).

Trla

1la®@U)(1sa ® p(x))mL(a

)z (a)(
)z (a)(
By Lemma [4.2.2) we have that (14 ® A(x)L(y))mr(a) is the norm limit of finite sums of elements
of the form

(1a @ U)m(a)(1a @ p(a'))(1a © U'L(y)) = mr(d')(1a ® A(@') L(y)), «' €5, o’ € A,

Note that the fact that D is a C*-algebra will also appear as a consequence of Proposition {4.4.3,
1. We have mg(a)¢’** = mg(a) = ¢°**7mg(a), for all a € A. We have [14 ® A(x),¢"4] = 0
for all x € S, since @(N) C M" and A(z) € M. But we also have a(N) C M’, then we obtain
[14 ® L(y),q°4*] =0 for all y € S. This proves that

0" ma(a)(La © N@)L(y)) = mr(@)(1a @ M) L(y)) = mr(a) (14 @ A@)L(y))g™ ",

foralla € A, x € S and y € S and the first statement is proved.
2. It follows from the second assertion that we have

D(A® H#) = P *D(A® H) C (" (AQ H) =: Ep.

Let £ € &R, by the non-degeneracy of mp there exist a € A and ¢ € A ® 5 such that
¢ = mr(a)¢’. In particular, £ is the norm limit of finite sums of elements of the form 7x(a)(b®n),
where b € A and n € #. By using the non-degeneracy of the C*-algebra [A(S)L(S)] € B(H),
it follows that & is the norm limit of finite sums of elements of the form

r(a)(b® A@)L(y)n') = wr(a)(1a ® A(z)L(y)) (b @ 1) € D(A® A#), z€S8, yes,

and the second assertion is proved.
3. This is an immediate consequence of 2. O
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Remark 4.4.2. With the notations of §4.2] we have noticed that the crossed products A x G
and B x G are naturally represented in the Hilbert modules &4 ;, and &p ) respectively. In a
similar way, it should be noted that the C*-algebra D is naturally represented on the Hilbert
A-module &4 p. However, unless mentioned otherwise, we will not do so. Indeed, it will
appear more convenient in the computations to work with the representation jp as defined in

Proposition-Definition [4.4.1]
We then prove that we have a canonical *-isomorphism between B x G and D.

Proposition 4.4.3. There exists a unique *-isomorphism gzﬁBX@: B x G — D such that

55T (m(@)0(2))0(y)) = wr(a)(1a ® A(z)L(y)), a€ A zeS yeSs.

Proof. Let us consider the operator Z =14 ® (1, QU ) V(1 @U) € LIA® H ® H). Let us
note that 7 is a partial isometry. Besides, since Z = 2231723223, VAV = g% and VV* = g,
the initial and final projections of Z are given by:

2=, 277 =g
Let us prove that we have
Z*1a@ 1y @Nx)Z =14 ® (p@ N)d(x), forall z € S. (4.4.1)
Indeed, since A(z) = U*p(z)U and (p @ p)d(z) = V*(1 @ p(z))V for all z € S we have

-~ ~

La@(p@A)(0(2) = (1a®@ Lr @ U) (14 @ (p @ p)o(2))(1a @ 1p @ U)
=(1a® (Lr @U)V )14 ® Ly @ p(2))(1a @ V(1r @ U))

for all z € S. Now, let us prove that
Zrp(a)12Z* = (7, @ R)da(a), for all a € A. (4.4.2)
We have

(7TL X R)(éA(CL)) = (ldA X L X R)(Si(a), with 5124 = (514 & lds)(;A
= (ldA®(L®R)5)((5A(CL)), as (5124: (idA®5)§A
=(1a® 1, @U*)(ida® (L®L)0)(0a(a))(la® 1y @U),
since R(y) = U*L(y)U for all y € S. However, since (L ® L)é(y) = V(L(y) ® 1)V* for all y € S,

we obtain

(ida ® (L ® L)6)(t) = Vaz((ida @ L)(t) ® 1) Va3,

forallt € A®S. The above equality also holds when t € M(A® S) since ¢ is strictly continuous
and L is non-degenerate. In particular, we have

(ida ® (L ® L)6)(84(a)) = Vas((ida @ L)da(a) ® 1)y = Vagmr(a)iaVsy, a € A

It then follows that we finally obtain (7, ® R)da(a) = Zmp(a)12Z* for all a € A since we have
mr(a)i2 = (1a® 1y @ U)rp(a)i2(la ® 1 @ U*). We also have

Z4®@ 1y @ L) Z" = 14 1p ® L(y))ZZ*, yeS. (4.4.3)
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Indeed, by using the facts that V € M’ @ M and R(S) € M’ we have

ZAa® 1y @Ly)Z =142 [(1UHV(1® R(y))V (1o U)]
=1a®1pr QU R(y))VazVas(la ® 10 @ U)
=14 ® 1, QU R(Y)U)ZZ*

(la® 1y ® L(y)ZZ",

for all y € S. Since Z2*Z = q%’g and &(N), B(N°) € M’, we have the following commutation
relations

r0(a)12, Z°2) =0, [1la®1yp®L(y),Z°Z] =0, a€A yeS. (4.4.4)

The first relation gives Znp(a)12 = Zmwp(a)122*Z (as ZZ*Z = Z) for all a € A. We then
combine this last equality with (4.4.2) to conclude that

Zrp(a)a = (mp @ R)(0a(a))Z, a€ A. (1)
The second one combined with gives
[Z 1421, L(y) =0, yeS. (1I1)
Since ZZ* = qgéa, a(N) c M’ and A(S) € M, we obtain another commutation relation:
(ZZ*14® 1@ Nx)] =0, z€b.
It then follows from that
ZAa@(p@N(z) =14 @1 @ \Nx), z€S. (I11)
By applying successively the relations , and , we obtain
Zr(@)a(1a @ (p@ Mo ())(1a @ Ly @ L(y) 2" =
(. ® R)(0a(0))(14 ® Ly @ X@) L)' (0)

forallaeA,xegandyeS.

Now, since B = [r(a)0(z); a € A,z € §] and BxG = [7(b)0(y); b € B,y € S] (see Propositions
4.2.3] and 4.2.8]), we have

Bx G =[#(n(a)0(2))0(y); a € A,z e S,yeS].

Besides, since d5(m(a)d(z)) = (7(a) ® 1§)(§® 1d§)(3(x)) for all a € A, z € S, we have

-~ ~

Aa(w(a)f(x)) = (idp @ A)(9p(m(a)0(x))) = (r(a) ® 1) (0 @ N)(5(x)),
for all a € A and x € S. Therefore,
Uy (7 (m(a)0(2))0(y)) = (r(a) @ 1) (0 @ N)(5(2)) (15 @ L(y)),

forall a € A, z € S and y € S. We then combine this equality with Proposition m to
conclude that

(W1, ©id) Uy 1 (7 (m(@)0(2))0(y)) = mr(@)i2(1a © (0 © N)(6(2)))(1a @ L ® L(y)),
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foralla e A, z € S and y € S. Indeed, let us denote u = (§ @ A)(d(z)) for short. We have

(UL, ®@id)(u(lp ® L(y))) = (Y1, @id)(u)¥r,p(1p)12(1a ® 1y @ L(y))
= (U, ®id)(u)(14 ® 1, ® L(y))

and we have (¥, , ® id)(u) = (¥, 0 0@ No(z) =g *(14® (p@N)d(z)). Let us consider the
faithful *-representation (¥, ® 1d)\If>\ L :BxG— LA® # @ ) and let us denote C' its
range. Therefore, C' is a C*-subalgebra of L(A ® 5 ® ) and we have proved that

C = [mp(a)12(1a® (p@ N (z)(1a @1 @ L(y));a€ A, z €8, ye 9

We now consider the map Ady : LIA® @ H) — LIA® H & H) given by Ady(u) = ZuZ*
for all u € LIA® H# @ ). It is clear that Ady is a bounded linear map which satisfies
Adz(u*) = Adz(u)* for all u € B(€ ® ). But Ady is not multiplicative in general. However,
we claim that the restriction of Adz to C' is multiplicative. This will follow from the fact that
u, ue€dl.

Uuga3

af _ aj,,
23 = U = (>3

Indeed, since Z*Z = q23 and Z*ZZ* = Z we then have

Adz(u)Adz(v) = Zquava* = ZwZ* = Adz(uw),

for all u,v € C. Now, we have the following facts:

~ o~

° [qg‘éﬁ,ﬂL(a)u] =0 for all a € A and [q%ﬁ, la®1ly,®L(y)=0forallyesS.

e Let usdenote T = (1@ U"V(1® U) E B(A © ). Then, T = SV is a partial isometry

whose initial projection is T*T = ¢®#. Since (p ® p)d(z) = V*(1 @ p(x))V for all z € S,
we have

(p@Nd(z) =T* Q@ ANz))T, forallzeS.

Hence, qaﬁ(p @ N)o(x) = (p@Nd(z) = (p® )\)g(x)qaﬁ for all € S. In particular, we
have

-~

&P (1a® (p@N8@)) =14 ® (p@N3(@) = (14 ® (r ® NS, z € 8.

It then follows that uq23 =u= q23 u, for all w € C. Let us prove that the restriction of Ady
to C is injective. Let u € C such that Adz(u) = 0. Then, since Z*Z = q23 we have

A A/\ AA

0= AdzAdz(u) = q uq23 = ugyi = u.

Tb
Q

Then, Adz(C) is a C*-algebra and Ad, (¥, ®id)¥,, : B x G — Ady(C) is a *-isomorphism.
In virtue of @, we have
Adz(C) = [(TL@R)(éA(a))(lA®1jf®/\<$)L(y>>q25éa; acA el yeS CLARH H).

We have Adz(c)gis® = Adz(c) = ¢/s*Ady(c) for all ¢ € C. By restriction of the faithful
*-representation Adz, we obtain a faithful *-representation Ady : C' — L(&4 ® ). We now
consider the following unitary equivalence of Hilbert A-modules:
= (A®e%p> Qrp éﬁpA,L — 5A7L®%
(@®&) @, n — m(a)n® &
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Let z€ Sandy € S. Foralla € A, £ € 5 and n € &4, we have

(14 ® Ly @ Mx)L(y))Z((a @ §) @x, 1) = 7r(a)n @ AMx)L(y)§
((a @ Az)L(y)§) @x, 1)
(1a ® AM2)L(y)) @, D((a @ &) @rp 1)

(11 11 >1

Hence,
(14 ® Ly @ M2)L(y) ey por = Z((1a @ M) L(y)) @x, DT, z€ S8, yeS.
Letac€ Aand s € S. Forallbe A, £ € 5 and n € &4, we have

(m @ R)(a© $)E((b® &) @y 1) = mr(a)12(1a © L © R(s))(mL(b)n ®E)
= 7 (ab)n @ R(s)¢
= E((ab ® R(s)¢) ©r, 1)
= E((ida ® R)(a ® s) @r, (b E) @y 1)

Hence, (77 ® R)(t)[ s, Lor=Z((id ® R)(t) ®,, 1)E* for all t € A® S. This equality also holds
when t € M(A ® S) since the maps t € M(A® S) — Z((id ® R)(t) @, 1)Z* € L(E4,L @ H)

and 77, ® R are strictly continuous. In particular, we have

(mL ® R)(0a(a))l sy Lo = E(Tr(a) ®x, 1)E, a € A
Let a,b € A, £ € 7 and n € &4 .. We have

BPE((a® &) @y 1) = oy (m(a)n @ €)
= 3 ' Y (ida®L)((1a ® B(el)*))da(a))n @ aleld)e.

<<k 1<ij<ny
However, (14 ® $(n°))da(a) = 04(Ba(n°)a) for all n € N, we then have
(ida ® L)((14 ® 8(n°))da(a)) = mr.(Ba(n®)a), n € N.

It then follows that

GPE(a@ ) @ n) = 3 it Y m(Balel))a)n © (el

1<ILk 1<,5<n
_ —_ Do ~ l
=Y it Y E((Balel))a®alel)e) @n, )
1<I<k 1<i,j<ng

= 2" @, (4@ E) B, 1)

Therefore, we have

053" T on o = Z(P4° @, 1)E%,

Now, let us consider the following map

O LIAQH) — L(Ess @ H)
T — 2(T ®,, 1)Z*.

Then, € is a faithful *-homomorphism (since 7, is faithful). Since &(N) = M’ N M’ we have
(P42 14 ® L(y)] =0 and [¢°4* 14 @ A(z)] =0 for all z € S and y € S. In particular, we have

mr(a) (14 ® A(@) L))" = 7r(a) (14 ® Mz)L(y)), ac€ A z€8 yes.
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We have proved that

Qma(a)(14 ® M2)L(y))) = (72 © B)(04(0) (14 ® Ly ® AN@) L(1)ah 15, 0

foralla € A, z € S and y € S. In particular, Ad,(C) C Ran €. Let us denote D = Q~'Ad(C).
Then, D is a C*-subalgebra of £L(A ® ) and we have

D = [mp(a)(1a @ ANa)L(y));ac A, ze S,y eS8

We denote ¢, & = QO 'AdZ (9, ® 1d)\I/,\ - Then, ¢, =isa *_isomorphism from B x G onto D
and we have proved that

65T (m()0(2))0(y)) = wr(a) (14 @ M) L(y)), a€ A z€S, yeSs. (4.4.5)
The uniqueness is straightforward since B x G = [#(m(a)0(z))0(y): a € A,z € S,y € S]. O

Now, we define a continuous action on D by transport of structure:

Notations 4.4.4. Let ¢Bx§: B x G — D be the *_isomorphism of Proposition 4.4.3| Let us
denote:

D = (QZSBXgA@idS)O(;BNgogb_ ;. Bp = ¢B><1§OBB><§'

Proposition 4.4.5. The pair (6p, Bp) is a continuous action of G on the C*-algebra D. More-
over, we have:

1. Forallae A,z € S andy € S,
(o ®1d5)3n(ma(a) (14 ® N2) L)) = (Ta(a) © 1s) (14 ® A(z) © 15) (14 ® (L ©1ids) (1)

2. For alln € N, jp(Bp(n°)) = QBA’a(lA ® L(B(n°))).

Proof. We have that ¢, = extends to a unital *-isomorphism ¢, =: M(B x G) — M(D). By
using approximate units, we obtain:

GpgF(m(@)0(2)) = Tr() (14 @ A@) ;  6p,5(0()) = ¢ (14 ® L(y)), (4.4.6)
foralla € A,z € Sandy € S. Letusfixa € A, z € S and y € S. Let us denote
d=mgr(a)(1a ® A(z)L(y)) € D for short. By and (4.4.6)), we have

op(d) = (¢B><1§® idS)5BX§(¢;;§(d)) = (¢Bx§(%(w(a)§(x>)) & 1S)<¢B><_C’70 0 ®ids)(0(y))
= (mr(a)(1a ® A(2)) @ 15)g5 " (14 ® (L ® ids)d(y))
= (Tr(a) ® 1s)(1a ® A(z) ® 15)(1a ® (L ® ids)d(y)).

By definition of dp, we have immediately that 0p is a faithful *-homomorphism satisfying the
coassociativity condition (0p ® idg)dp = (idp ® 0)dp. It is also clear that the action (dp, Bp) is
continuous. Let n € N, we have

Bp(n°)d = ¢y, 6(Bp,6(n°))d = b, 6(Bp.5(n°)7 (m(a)0(2))0(y))

= dp.g(@(()0(2))0(5(n%)y))

= ( )(La @ A(z) L(5(n°)y))
2214 ® L(B(n°)))d,

as [A(z), L(3(n°))] = 0 (because of 3(N°) € M') and [rg(a), 14®L(5(n°))] = 0 (because & and 3

commute pointwise). Hence, Bp(n°)d = ¢°4%(1,® L(8(n°)))d, for all d € D. We prove similarly
that dBp(n°) = dg®4*(14® L(B(n°))), for all d € D. Hence, Bp(n°) = ¢*4*(1,@ L(B(n°))). O
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In the following, we will provide a description of the action (dp,5p) in terms of the action
(04, 84) and the right regular representation of G.

Notations 4.4.6. Let us introduce some notations:

1. Let us denote K := K(#) for short. We consider the flip map 0 : S®@ K - K ® S, given
by o(s®k)=k®s forall s € S and k € K.

2. Let §p : AQK — M(A®RK®S) be the *-homomorphism given by &y = (idy ®0)(d4 ®idx).
Therefore, dy is the unique *-homomorphism from A ® K to M(A ® K ® S) such that

50(a®k):5A(a)13(1,4®k:®15), aeA, ]{?GIC

Moreover, 0 (resp. 0y ® idg) extends uniquely to a strictly continuous *-homomorphism
from M(A® K) to M(A® K ® S) (resp. from M(AQK®S) to M(A®K®S®S))
such that

0o(laex) = qis € LIAQ A ® S),
(resp. (60 ® ids)(lagkas) = @15 € LA® H# ® S® S)).
Similarly, we have a unique strictly continuous *-homomorphism
idagk ®0: M(ARK®S) > MARK®S®S)
extending idagx ® & such that (idagkx @ 0)(Laskes) = ¢ € LIA® A @S ® 9).
3. Let us denote Vy € M(S ® S) such that V = (p ® L)(V;). Then, we denote
V= (p®ids) (Vo) € L(H @ S).
Therefore, V € L( ® S) is the unique partial isometry such that (id ® L)(V) = V.

4. Let us denote:

Oagk(x) = Vasbo(2)Vss, € AQOK ; Pagk(n®) :=¢"**(1a® (n°), neN.
Remarks 4.4.7. a) Since @ and  commute pointwise, we have that Sagx is a (degenerate)

*_homomorphism.

b) dagx : ARQK - M(A®R K ®S) is a bounded linear map and it is also clear that we have
daei(T*) = dagrc(z)*, for all z € A® K. It is worth noting that dagx is unfortunately not
multiplicative in general.

c) Note that Jagx is strictly continuous. In particular, Jagx extends uniquely to a strictly
continuous linear map dsgx : M(A® K) = M(A® K ® S) and for all m € M(A® K) we
have dagic(m) = Vagdo(m)Vss.

We will prove that d40x is coassociative. First, we need the following lemma:

Lemma 4.4.8. For allx € M(A® K), we have

g5 (80 ® idg)do(x) = (6 ® ids)do(x) = (idaek ® 0)do(r) = g (idasic ® 8)do(2).
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Proof. Since 9y is strictly continuous we have dp(a ® 1) = d4(a),3 for all a € A. By the strict
continuity of 0y ®idg and 04 ®idg, it then follows that (dy ® idg)(m13) = (04 ®1idg)(m)134 for all
m € M(A®S). Similarly, we have (idagi ®0)(m3) = (idagre ®0)(m)134 for all m € M(A®S).
We combine these relations with the fact that (04 ® idg)da = (ida ® §)d4 to conclude that

(0p ®@1idg)do(a ® 1) = (idagk ® 0)do(a ® 1), a € A.
Now, we also have dy(14 ® k) = ¢l (14 ® k ® 1g) for all k € K. Besides,
(G ®@ids)(1a @k ®15) = ¢$*(1la @ k® 15 ® 1g),
(idask ® ) (LA @k ® 1s) = 5" (14 @ k @ 15 @ Ls),
for all £ € K. We also obtain
(d0 @ ids)(g73*) = a1 g5 = (idaex ® 8)(a15™),

by using the formulas §4(84(n°)) = ¢°4%(14 ® B(n°)) and §(a(n)) = ¢>*(a(n) @ 1s) for all
n € N. Therefore,

(60 ® idg)do(1a ® k) = ¢4 L4 (a9 k ® 1s ® 1g) = ¢4 (14 @ k ® 15 ® 1g),
for all k € K since [¢5;", ¢15*] = 0. Hence,
(00 ®idg)do(la ® k) = (idagk ® 0)do(1la @ k), ke K.
Therefore, (6 ® idg)do(z) = (idagk ® 6)dp(x) for all x € A ® K. This equality also holds for all

r € M(A® K) because of the strict continuity of dy, 0y ® idg and id ggx ® d. The other relations

follow from the formulas (g ® ids)(lagkes) = qlﬁg“’o‘ and (idagr ® 6)(lagkes) = qgf. O

Proposition 4.4.9. For all x € M(A® K), we have
(Gasx ®ids)dask(z) = (idagk ® 6)0acx ().
Proof. We have
(B ®ids)(1a®k®y) =grd*(la®k®1s®y), keK, yeS.

Hence, (6y ® idg)(x23) = qig"*xay for all z € K ® S. This equality actually holds true for all
r € M(K ® S) because of the strict continuity of dy. In particular, up to the identification
M(K ® S) = E(% (059 S), we have (50 & ids)(Vzg) = qlﬁé‘haVM € E(A R RS ® S) Since
(ide ® 0)(V) = ViaVi3, we have (idagik ® 6)(Vaz) = VasVas. Therefore, in virtue of Lemma [4.4.8]
we obtain

(Gagk ® ids)dasic(x) = Vas(do @ ids)(dack(2))Vss
= VasVasg5* (8o ® idS)(%(@)Q%’aV&V;ﬂ
= Vo3 Vau(idagk ® 6)(00(7))VayVay
= (idagk ® 6)daek(T),

for all z € M(A® K). O
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Lemma 4.4.10. We have do(¢°4°) = qu*’“q%ﬁ. For alln € N, we have
So(Baer(n®)) = 15 "g53” (14 © B(n°) © Ls) = ¢i3*(1a ® B(n°) @ 1s)gzs”
= (La® B(n°) @ 1s)ais 53
Proof. Let n,n’ € N. We have

Jo(Ba(n®) @ a(n')) = 64(Ba(n®))13(1a ® a(n') @ 15) = ¢i4"* (14 @ &(n') @ B(n°)).

In particular, we have 50(qﬁA’a) = qlﬁyf’aq%ﬂ . Therefore, we have

So(Baskc(n®)) = 0o(q"+*)do(1a4 ® B(n%)) = 44555 (14 ® B(n°) ® 15).
The other formulas follow from the fact that § commutes pointwise with a. n

Ba,a B,a

Proposition 4.4.11. We have dagxc(lagk) = ¢13°“ ¢35~ For alln € N, we have

daek (Bask(n®)) = daex(lagk)(lagk © B(n°%)).
Proof. By Proposition [2.3.5] 3, we have V(1 ® a(n)) = (a(n) @ 15)V for all n € N. Hence,
V23qf§"°‘ = qlﬁf’aVQ;g. We then have
Sasr(Lask) = Vasdo(Lawk) Vis = Vasds “Vis = 455 Vi Vi = 45455,
Ask\lagk 2300( LAk ) Va3 23013 Vo3 = Q12 V23Vo3 = Q12 423

We recall that qaﬁ = V*V. Hence, qaﬁ V* = V* since V is a partial isometry. By Lemma |4.4.10),
we then have
Saok (Bawik(n®)) = Vazdo(Baek(n®)) Vas
= Vasqi$* (14 ® B(n°) ® 15)g55" Vs
= ¢15"Vas(14 ® B(n°) @ 1) Vs

= qu"angV;?,(lA@,g ® [(n°)) (cf. Proposition 3)
= 41053 (Laek ® B(n°)),
for all n € N. O

We identify M(A ® K) (resp. M(A® K ® S)) with L(A ® ) (resp. LIAR 5 & 9)).
Proposition 4.4.12. We have:

1. Foralla € A,

(idA®]C X L>50<7TR(CL)) = 223(7TL &® R)(dA(a))Egg
= Qfgf"a(lfl QU @ 1) Y03Vasmr(a)12Vo5503(la @ U @ 1%)%:?’&7

Sack(mr(a)) = gbs*(mr(a) ® 1s) = qi3“¢5s" (mr(a) @ 1g).

2. For allm € M(A), Sac(mr(m)) = a5 (Tr(m) © 1s) = 45" 4a3” (mr(m) © 1s).
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3. Forall:regandyES,

Saek(la ® Mz)L(y)) = gis" Oé(lA ®@MNz)®15)(1a® (L ®idg)d(y))
= qjs" aq§3a<1A @ Az) ®1s)(1a ® (L ®ids)0(y)).

4. Forallace A, z € S andy € S,

daer(mr(a)(1a @ A(z)L(y))) = (WR(ACL) ® 1s)(1a ® A7) ® 15)(14 ® (L ®ids)d(y))
= 5% (mr(a) ® 15) (14 ® A(z) ® 15)(14 ® (L ®ids)d(y)).

Proof. Let us consider the partial isometry Z =14 Q (1, QU*)V(1,, QU) € LIAR H# ® H)
(see proof of Proposition [4.4.3)). Since (idx ® L)o(t) = X(L @ idk) ()X for all t € M(S @ K),

we have
(idagkx ® L)do(u) = (ida @ (ide ® L)o)(04 @ idc)(u) = Ea3(mp @ id)(u) s,
for all w € M(A® K). In particular, in virtue of we have
(idagic @ L)do(mr(a)) = Bag(mr @ R)(da(a))Xag = La3Zmp(a)192  Xas,

for all @ € A. However, we have Yg37 = Va3¥as and Yosmr(a)19Xa3 = mp(a)is for all a € A. It
then follows that ~ N
(idaek ® L)do(mr(a)) = Vasmr(a)i3Vas, a € A.

Therefore, we have

(idask ® L)dask(mr(a)) = VasVasmr(a)1sVasVas,  a € A. (4.4.7)

According to Corollary [3.1.9) 1, we have VV = W*(U* ® 1)2T6 Hence,

(idagk @ L)dack(mr(a)) = Was(1a @ U* @ 1) Ty 505300371 (a)13803 T% 5, (14 @ U © 1) W
=Wy(la® U@ 1,)T, B3 mr(a )12TAE23(1A QU @ 1) Was,

for all a € A, since 2237TL(CL)13223 = 7TL(CL)12 for all a € A and 2231—3323 = Tag23223. By USil’lg
the fact that @(N) C M’ and the fact that |v| = 1 for all 1 < < k (see Notation [3.1.8]), we
have

rr(a)12, Tog0,] =0, a€A ; T.5Ti = a(e) @ Ble).
It then follows that

(idagi ® L)dask(r(a) = Wiy > (1a @ Ura(e") @ B(e®°))mr(a)12(1a @ U @ L) Was

1<I<k
= Y LaoW (ae)® B(eD))mr(a)1aWas,

1<ILk

since U*a(n) = a(n)U* for all n € N and 7g(a
However, we have W*(a(n) ®1) AW*(l@ﬁ( n°)) f
W*(a(e®) @ B(e?°)) = W*(1 ® B(e??)) for all 1 <

(idA®;c X L)5A®;C(7TR(CL)) = W;37TR(G)12W23, for all a € A.

) = (1a®@U"7mp(a)(14 @ U) for all a € A.
or allm € N (see Proposition [2.3.6/1). Hence,
[ < k. Consequently, we have
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Moreover, [mr(a)12, Was] = 0 for all a € A since W € M ® M and R(S) C M'. Hence,
(idagi ® L)dagk(mr(a)) = qgéo‘ﬁR(a)lg, for all a € A, (4.4.8)

since W*W = ¢%* and the first statement is proved. Note also that [ghy”, 7z(a)12] = 0 for all
a€ A. The second statement follows from the first one and the strict continuity of 7x and d agc.
Let x € S and y € S, we have

(idask © L)do(1a @ M) L(y)) = 15" (14 @ A@)L(y) @ Lp).

Since V(1 ® a(n)) = (a(n) ® 1)V for all n € N (Proposition 3), we then obtain that
Vas@o™™ = ¢i5*Vas. We also have [V, M(z) @ 1] = 0 (because of V € M’ ® M and A(S) c M)
and V(L(y) ® 1)V* = (L ® L)d(y). Therefore, we have

(idask ® L)8ask(1a ® A(@)L(y)) = 45 (14 © A(2) @ L) (14 ® (L © L)3(y)) (4.4.9)

and the third statement is proved. Note also that qlﬁé“’a commutes with 14 ® A\(z) ® 1, and

14 ® (L ® L)o(y). Now, ViyVas = ¢53° _commutes with @4 (since o and 8 commute pointwise)
and 14 ® A(z)L(y) ® 1, for all z € S and y € S (since a(N) = M’ N M'). Hence,

[(id sk @ L)8o(14 @ Mz)L(y)), VsiVas) =0, forallze S, ye S.

Therefore, in virtue of (4.4.8) and (4.4.9)) we have

(idagkx @ L)dagk(mr(a)(la @ A(z)L(y)))
= (Idagk ® L)daek(mr(a))(idask @ L)dagi(la @ A(z)L(y))
= mr(@)1255" (1a @ N(z) ® L) (14 ® (L@ L)d(y)),

foralla € A, z € S and y € S. Moreover, g5 commutes with 14 ® A(z) ® 1+ (because of
B(N°) € M') and we have ¢>*(L @ L)d(y) = (L ® L)d(y) for all y € S since ¢** = §(1s).
Hence,

(idagk ® L)dasi(mr(a)(1a @ Mz)L(y))) = mr(a)12(1a @ A(z) ® 1)(1a @ (L @ L)d(y)),
forala € A,z € Sandy € S. O
Corollary 4.4.13. The action (0p,Bp) of G on D is given by:

(jp ®1ds)dp(d) = daek(d) = Vazdo(d) Va3, d € D,
ip(Bo(n°)) = Back(n®) = ¢***(La ® L(B(n°))), n € N.

Proof. Tt is enough to verify the first formula for d = mg(a)(14 @ AM(z)L(y)), where a € A, z € S
and y € S. Then, the first formula follows from Propositions [4.4.5| 1 and [4.4.12[ 4. The second
formula follows from Proposition 2 and the definition of Bxgic. O

Remark 4.4.14. By strict continuity, we obtain the formulas:
(Jp ®ids)dp(m) = daek (jp(m)) = Vasdo(jp(m))Vas, m € M(D).

Now, we can state the main theorem of this chapter.
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Theorem 4.4.15. Let (A,d4,84) be a G-C*-algebra. Let us denote
D= [mp(a)(1a@Na)L(y));ac A,z €S, ye S| C LARA).
Then, D is a C*-algebra and we define a continuous action (6p, Sp) of G on D by setting:

(jp ®ids)dp(d) = Vaszdo(d) Va3, de€ D ;5 jp(Bp(n°)) = qﬁA’a(lA ® L(B(n°))), ne€N.

The double crossed product ((A X G) x G, 5(A>4g)><1§’ /B(Axg)x@\) is canonically isomorphic to the
G-C*-algebra (D, dp, Bp). Moreover, if G is reqular we have

D = P2 (A& K(H))g"+.

For the proof, Proposition [£.4.16] stated below will play a crucial role in the regular case. First,
we need to fix some notations. Let us give a concrete description of the G.N.S. construction
(A, e, \e) for (N e):

« H= @ CuxTh.

1<ILk

e The G.N.S. representation 7, : N — B(J) is given by:

Te(z) = P =@ lgr, == (z)icw € N.

1<i<k
e The G.N.S. map A, : N — J is given by:

Ad(z) =7 (x)é, x € N, where & = @ nf1/2 Z 55”@@

1<i<k 1<i<ny

and (52(-”)1@@1 is an orthonormal basis of C™ for each 1 < [ < k. In particular, & is a
cyclic vector for the representation ..

Note that if (el(-?), 1 <1<k, 1<14,j < ng, is the system of matrix units of N defined by

eel) =005el), 1<LUSk 1<r<m, 1<ij<m,

ij ©r

then the famlly
—1/2 l

ny me(ei o) 1<ich, 1<ij<m
is an orthonormal basis of 77.

Proposition 4.4.16. Let 7 : N — B(H) and v : N° — B(K) be two unital *-representations.
We have:

1. For all&,m e H, we have ¢"Y(R™(§)R™(n)* @ 1) = ¢"7 (0, ® 1x)g™.
2. For all{,n € K, we have ¢""(1g @ L(§)L"(n)*) = ¢™"(1g ® O¢)q™".

In particular, we have:

(K @ 1k) = ¢ (K(H) @ 1k)q™, 7 (1g @ Ky) = ¢77(1n @ K(K))q™.
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Proof. Let us recall that 0¢, for £, € H is the rank-one operator on H given for all ( € H by

be.n(C) = (n, ()€. Note that since (nl_l/QAe(eys)))KKk,ngm is an orthonormal basis of 7 (for
the system of matrix units defined above), we have

ve= > mt D (o AdeldDelAlel), y)e, 2y € A (4.4.10)

1<i<k 1<r,s<ny

Let us take £,n € H. Let (,{’ € H and v,v" € K. On one hand, we have

(C®v, ¢ (R™(E)R™(n)* ® 1x)(¢’ ® "))
=St Y Cou, RER™ () n(el)¢ @ y(el)0'y,

1<i<k I<i,5<my

as R™(&)R™(n)* € n(NY,
= S ot S (RO RO () (e e (v, 1))

1<ILk 1<e,5<n;
-1, — € D € ! l l)o
= 3 aitnpt Y (G RTOA(N (R A(eD), m(e)) (v, (e,
1<LI<k %Eljim
TSNy

in virtue of
= > w'mt Y (. w<e£Z>>s>< (€D, ()Y (v, y(el))

1<LU<k 1<i,5<n;
1<r,s<ny
_ l Do
=Y 02 Y (G (e, w1 v, v,
1<ILk 1<, 7,8<ny

since (el m(el)) = m(elel)) = dhdim(el]).
On the other hand, we have

@V, (0 @ 1)q™ (¢ ® V')
= 3 ittt S (¢ m(el)0eam () (v, (el el

1Lk 1<i,j<ng
1<r,s<ny
_ l l l
=Y 02 Y (g, w( NN we)e) (v, v (el).
1<k 1<i,5,s<ny

Therefore, by exchanging the indices 7 and s in the last summation we obtain

(C®v, " (RT(R™ () @ 1k)((' @) = ((@v, " (0 @ 1x)q"7 (¢ @ V"))

for all (,{’ € H and v,v" € K. This proves the first statement. The second one is proved by
using similar computations. [l

Proof of Theorem[4.4.15 The first part of the theorem is just a restatement of Proposition
and Corollary Assume that G is regular. In particular, by Corollary 4 we
have [A(S)L(S)] C K. Since R is non-degenerate we have R(S)K = K. Therefore, by the
continuity of the action (84, 34) we have D C ¢°+*(A® K). Hence, D C ¢?4*(A ® K)¢°4° as
¢PreDgbae = D (¢f. Proposition-Definition m 1). Since dy is injective, it suffices to show
that R R

8o(¢™ (A ® K)g™) C 6y(D)
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to prove the converse inclusion. In virtue of the continuity of the action and the fact that
K = R(S)K, we have

(A K)g* C [P mr(a) (14 ® k)g**: a € A, k € K]
= [rr(a)g™*(La ® k)¢"* s a € A, k € K],
We have 50((]5,4,&) = qu"aq%ﬁ (see Lemma |4.4.10). For all a € A, k € K, we then have
So(mr(a)g® (14 ® k)g**®) = do(mr(a))als as5" (14 @ k @ 1s)g5 g5
since dp(14 @ k) = ¢74 (14 ® k ® 1g) (see proof of Lemma D and [¢o4" qggﬁ] = 0. Now,
in virtue of the regularity of G, we have [A(S)L(S)] = K5 by Corollary [3.2.9/4. By applying
Proposition [4.4.16|1 to 7 := @ and v := 3 (H :=  =: K), we have
(K @ 15)g™" = ¢ (I; @ 1s) = ¢ (M(S) L(9)] ® 1g).
Then, it follows that do(mr(a)q®4 (14 ® k)¢?4®) belongs to
[o(mr(b)ars g55" (1a @ A(@)L(y) ® 1s)g15" s b€ A, w € S, y € 5]
= [Go(mr(b))ais " a55" (14 © M) L(y) ® 15); b€ A, w € §, y € 5],
for all a € A and k € K. Finally, we have
do(mr(b))ars g5 (14 ® A(w) L(y) @ 1s) = o(mr(b)(1a © A(w)L(y))) € &(D),
forallbe A, z € Sandy € S. O

Proposition 4.4.17. Let (A, 04, 84) and (C,d¢, Bc) be G-C*-algebras. Let us denote D4 and
D¢ the G-C*-algebras defined by:

Dy :=[(ids ® R)04(a) (14 @ Nax)L(y));ac A,z € S, ye S,
D¢ = [(ide ® R)oc(c)(1e @ Ax)L(y)); ce C,z € S, y e S].

Let f: A — M(C) be a non-degenerate G-equivariant *-homomorphism. Then, there exists a
unique non-degenerate G-equivariant *-homomorphism g : Da — M(D¢) such that:

g((ida ® R)3a(a)(14 @ X(z)L(y))) = (ide @ R)oc(f(a))(1e @ Mz)L(y)), a€ A, z€S, yeS.

Proof. This is a straightforward consequence of Theorems 2, 2 and [4.4.15] O

Remark 4.4.18. In virtue of Remark [£.3.4] the above result holds true for G-equivariant
*-homomorphisms f : A — M(C) such that there exists e € M(C) satisfying [f(A)C] = eC.
Note also that we have ¢g((ids ® R)da(a)) = (ide ® R)dc(f(a)) for all a € A.
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Chapter 5

Continuous actions of colinking measured quantum
groupoids

In the whole chapter, we will fix
g = gGl,GQ

a colinking measured quantum groupoid associated with two monoidally equivalent locally
compact quantum groups G; and Gs.

5.1 Preliminaries

Notations 5.1.1. For the convenience of the reader, we recall some notations from §2.5

o Let a, 3: C* — M(S) be the source and target maps of G.

e Let (g1,22) be the canonical basis of the vector space C2. For i,j = 1,2, we define the
following central self-adjoint projection p;; = a(e;)5(g;) € Z(M(S)). It follows from
5(61) + 5(82) = 15 and 05(61) + 04(62) = 15 that:

o(e) =putpe i=12 1 Be)=pytpy J=12

o Let us denote S;; = p;;5, for i,5 = 1,2. Then, S;; is a C*-subalgebra (actually a closed
two-sided ideal) of S. In order to provide a description of 0, for all 7, j, k = 1,2 we consider

ij : M(Szk & Sk]) — M(S (059 S)

the unique strictly continuous extension of the inclusion Sj; ® S; C S ® S satisfying

ij(lsik(gskj) = Dik @ pr;. Now, let 5;‘; 0 Sij = M(Si, ® Sk;) be the unique *-homomorphism

such that

v 0 05 (s55) = (Pie ® Pry)8(s3), 815 € Sij-

In this paragraph, we will give an equivalent description of the G-C*-algebras in terms of
G,-C*-algebras and Go-C*-algebras. Let (A, 04, 84) be a G-C*-algebra. Then, 84 : C* — M(A)
is a unital *~homomorphism and 4 : A - M(A® S) is an injective *~homomorphism satisfying
the conditions of Definition 4.1.2] Note that:

e the fibration map 34 is central, that is 54(C?) C Z(M(A)). Indeed, let n € C%. Since
B(n) € Z(M(S)), we have

6a(Ba(n)a) =64(1a)(1a @ B(n))da(a) = da(a)da(la)(1a ® B(n)) = da(aBa(n)),

for all a € A. We then have [Sa(n),a] = 0 for all a € A by faithfulness of d4. Hence,
[Ba(n),m] =0 for all m € M(A).
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e Let us denote ¢; = S4(g;) for i = 1,2. Then, g; is a central self-adjoint projection of M (A)
and q; + q¢o = 14. Let us also denote A; = ¢;A, + = 1,2. Then, A; is a C*-subalgebra
(actually a closed two-sided ideal) of A and we have A = A; @ As.

e We have
P =g ® aler) + @ @ afes). (5.1.1)
Then, we obtain
0a(qy) = " (1a®@ Be)) = D e ®@pry, =12 (5.1.2)
k=1,2

Note that ¢; # 0, j = 1,2 (unless A = {0}). In particular, the fibration map (4 is faithful.

e For j,k =1,2, we denote 7} : M(A, ® Sk;) = M(A® S) the unique strictly continuous
extension of the inclusion A; ® Sx; C A ® S satisfying Wf(lAk@)Sk].) = Qi @ Dij-

In case of ambiguity, we will denote 7% ; and g, ; instead of 7% and g;.

Lemma 5.1.2. For alla € A and j, k = 1,2, we have

(gr © 15)0a(gja) = (14 @ aler))dalg;a) = (gr © pr;)dala).
Proof. Straightforward consequence of (5.1.2)). O

Proposition 5.1.3. For all j,k = 1,2, there exists a unique faithful non-degenerate *-homo-
morphism

0%, o Aj = M(Ap ® Si;)
such that for all x € A;, we have
0 04 () = (g ® prj)da(e) = (gx © 15)0a(x) = (14 © a(e))da(x) = (1a ® pr;)dalx).
Moreover, we have:

1. 6p(a) = Y m o5A g;a), for alla € A.

k,j=1,2
2. (0 ® idsk].)ékj = (id4, ® (5{“]-)5f4j, for all j,k,1=1,2.
3. [61’flj(Aj)(1Ak ® Skj)| = A @ Sij, for all j,k =1,2. In particular, we have

M(8%5,(A)) C M(A, @ Sky),  Ap = [(ida, @ W) (a;)5 a5 € Aj, w € B().].

4. 5f;1j t A = M(A; ® Sj5) is a continuous action of G; on Aj;.

Proof. First, we have Ran(n}) = (qx ® pi;)M(A® S). Indeed, since 75 (14, s,,) = @k ® prj We
have Ran(7¥) C (qx ® prj) M(A® S). Besides, (qx @ prj)(A® S) = A @ Si; C Ran(7}). Then,
the inclusion (g ® pkj)J\/l(A ® S) C Ran(w ) follows since 7Tk is strictly continuous. Therefore,
in virtue of the injectivity of 7%, there eX1stS a unique -homomorphlsm ) A, Ao M(Ak ® Skj)
such that (gx @ pi;)da(z) = 7} 0 85 (x) for all z € A;. In virtue of Lemma | the first

j
formulas are then proved. Moreover, by (5.1.2)) for all z € A; we have

da(r) = dalgjz) = Y_ (0 @ pij)oa(e) = D mj0d4 (

k=1,2 k=1,2
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Hence, if a € A, we have

da(a) = da(qua) + da(ga) = Y 7} 084 (gja).

7,k=1,2

The first statement is proved. It follows from the non-degeneracy of 5f4k that 5lAk ®idg,, extends
uniquely to a strictly continuous unital *-homomorphism from M (A ® Si;) to M(A; @ Sy, ® Sk;)
for all j, k,1 = 1,2. By strict continuity, we obtain the following formulas:

(m}, ®ids,, ) (04, ®ids, ) (T) = (¢ @ pue @ pr;) (64 @ idg)(w}(T)), T € M(Ax © Siy),
(71'11C & idgkj)(idAl &® 5{;)(7—7) = ((Il & Pk ®pkj)(idA X 5)(7‘(‘;(1—')), T e M(Al ® Slj).

Therefore, the second statement follows from these formulas, the coassociativity of 4 and the
faithfulness of 7}, ® idg,,. Let j,k,l = 1,2 and a; € A;. If 55513_(&]-) = 0, then (5f4j(aj) = 0 for
[ = 1,2 in virtue of the injectivity of 6, and the equality (6} ® idskj)é’jlj = (ids, ® 5,’})52{
By using the first statement, we have d4(a;) = 0. Hence, a; = 0 and 551]_ is injective. The
third statement is an immediate consequence of the continuity of the action (64, 34). By the
non-degeneracy of Sy; C B(7;), we obtain the equality

Ap = [(ida, © w)(05,(ay)); a; € Aj, w € B(Hy).].
The equality [0% (A;)(1a, ® Sk;)] = Ag @ Sy; implies that
(6%, (A4))(Ar ® Si5)] = A ® Sy = [(Ak ® Siy) 34, (4;)],
which proves that M((ngj (A;)) € M(A), ® Sk;). The last statement is then straightforward. O
Corollary 5.1.4. For j,k=1,2, j # k, we have:
1. If w € 8 (A;), we have (ida, © 6],)(x) € M(5% (A;) ® Sj)).

2. The map . .
03, (A;) — M(04,(4;) ® 5j;)
r — (idg, ® (%)(x)

is a continuous action of the quantum group G; on the C*-algebra 5ﬁj (4;).
3. Moreover, the map A; — 51";;j(Aj) S a 5’;,],(@) is a Gj-equivariant *-isomorphism.

Proof. 1. Let us fix x € 5ﬁj(Aj) and let us write x = 51’27,(@), for a € A;. By Proposition m 2,
we have (ids, ® (5@)(3:) = (5,lij ® idgjj)(iilj(a). Moreover, since (ﬂj (a) € M(A; ® Sj;) we have

(ida, ® 67,)(2) (55, (a) @ y) = (05, @ idg,,)(5, (a) (@' ® y)) € 85, (A)) @ Sj5, d' € Aj,y € Sjj.

In a similar way, we have (6’&_(&’) ®y)(ida, ® (%])(x) € 5[’33_ (4;) @ Sj;.

2. The map 51]2]_(14]‘) — M((Sfflj(Aj) ® Sj;); © +> (ida, ® 6};) () is a faithful *-homomorphism.
The coassociativity is an immediate consequence of the formula (ids,, ® 67,)0;; = (01; ®ids;; )0}
The continuity is a straightforward consequence of the continuity of the action 6f4j and the
formula (5fzj ® idsjj)5jj = (ida, ® 5&)5% (Proposition [5.1.32,4).

3. This follows from the faithfulness of 51"21], and the formula ((5"2‘1], ®idg,, )0’ ;= (ida, ® 07 j)(Sij. []
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Examples 5.1.5. Let us consider the basic examples:

1. In the case of the trivial action of G on N := C2%, the C*-algebras A, are identified to C
and Proposition [5.1.3]4 corresponds exactly to the trivial action of G; on C.

2. Let us consider the G-C*-algebra (S, d, ). Then, we have

g = B(e;) = prj + D2y, S5 =51, @ Soj, 05, = O B I

Remark 5.1.6. In the regular case, we will show that the G;-C*-algebra &% i, (A4;) described in
Corollary [5.1.4] can be obtained directly by deformation of the Gy-C* algebra Ay

From this concrete description of G-C*-algebras we can also give a convenient description of the
G-equivariant *-homomorphisms. With the above notations, we have the following result:

Lemma 5.1.7. Let (A,04,54) and (B, dp, f5) be two G-C*-algebras. Let v, : M(By,) — M(B)
be the unique strictly continuous extension of the inclusion map By, C B such that u.(1p,) = qB .,
fork=1,2.

1. Let f: A — M(B) be a non-degenerate G-equivariant *-homomorphism. Then, for all
Jj = 1,2, there exists a unique non-degenerate *-homomorphism f; : A; — M(B;) such
that for k = 1,2 we have:

(fi ®ids,,) 0 05 = 0 o f. (5.1.3)
Moreover, we have f(a) =ty 0 fi(aga1) + t2 0 fa(agas) for all a € A.

2. Conversely, let f; : A; — M(B;), for j = 1,2, be non-degenerate *-homomorphisms such
that (5.1.5) holds for all j, k = 1,2. Then, the map f : A — M(B), given for alla € A by

f(a) =110 fi(aga) + t2 0 fa(agqas),
is a non-degenerate G-equivariant *-homomorphism.

Proof. Since f o a4 = fBp we have f(qaja) = qp;f(a) € ¢ ;M(B) = 1;(M(B;j)), j = 1,2.
By faithfulness of ¢;, there exists a unique *-homomorphism f; : A; = M(B,) such that we
have f(a;) = ¢; 0 f;(a;) for all a; € A;. It then follows from the equality A = A; & A, that
f(a) = t1 0 fi(qaa) + t2 © fa(gaqa) for all a € A. Besides, by Proposition 2, we have
dp oty =Y mp; 00y, Therefore, we have

op(f(a;)) = dp(1;(fi(ay)) Z 7ng o 5k (fj(a])) aj € Aj.

k=1,2

We also have (f ®idg) o7 ; = 7w ; o (fr ® ids,,). Hence, we obtain

(f @ids)dala;) = > (f@idg)omh ;084 (a;) = > mp ;o (fi ®ids,,)(05 (a;)), a; € Aj.

k=1,2 k=1,2

Note that (¢p,;®1s)7} ;(m) = 6Fn ;(m) forall i,k = 1,2 and m € M(By®Sy;). It follows from
(f®idg)ods = dpo f that 7rf§7j0(fk®idgkj)oc5ff‘j = 7rf§7j0(5gj0fj. Hence, (fk®idgkj)0(5’j‘j = (5§j0fj
by faithfulness of Wg?j. The second statement is easily verified. O]

Therefore, we can state the following result:
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Corollary 5.1.8. With the previous notations, for i = 1,2, the correspondence
G-C*-Alg — G;-C*-Alg ; (A,04,84) — (A, 0Y4,), [ € Morg(A, B) — f; € Morg, (4;, B;)
s a functor from the category of G-C*-algebras to the category of G;-C*-algebras.

In order to prove that the correspondences G-C*-Alg — G;-C*-Alg, ©+ = 1, 2, are equivalences of
categories, we will need the following preparatory lemma:

Lemma 5.1.9. Let A1 and Ay be two C*-algebras endowed with non-degenerate faithful *-
homomorphisms 551]_ t Aj = M(A ® Syj) satisfying the conditions 2 and 8 of Proposition @
Let us denote A = Ay ® Ay and let 75 : M(Ag ® Sy;) = M(A® S) be the strictly continuous
*-homomorphism extending the canonical injection Ay @ Sp; — A® S. Let 64 : A — M(A®S)
and 4 : C* — M(A) be the *-homomorphisms given by:

dala) = > Wf oélj‘j(aj), a=(ay,a2) €A ;5 BalA\p) = (g\ 2) , (A p)eC?

kj=1,2
Then, (84, 84) is a continuous action of G on A.

Proof. First, let us introduce some further notations relevant for this proof. Let us fix 5,k = 1, 2.
Let pa, : A — Ai be the canonical surjection, i.e. pa, (a) = ai for a = (a1,a2) € A. Note
that pa, is a non-degenerate *-homomorphism, then it extends to a strictly continuous unital
*-homomorphism from M(A) to M(Ag). Let 34, : M(Ax) — M(A) be the unique strictly
continuous extension of the canonical injection of Ay into A. We will denote ¢ = a4, (14,). Let
s, - M(Sk;) — M(S) be the unique strictly continuous extension of the inclusion Sy; C S
such that jg, (1s,,) = Pr;-

The fibration map 34 is given by Ba(\, u) = Aq1 + pge for all (A, ) € C% Then, B4 is a
*_homomorphism since ¢; and ¢, are two orthogonal self-adjoint projections and it is also clear
that £4 is non-degenerate.

Let us prove that 04 is injective. We have (14 ® py)}(z) = 52’“5,%;“(:6) for all z € M(A), ® Si;j)
and 4,7, k, 1l = 1,2. Hence, (14 ® pi;)da(a) = Wf(éﬁj(aj)) for all a = (a1,a2) € A and j,k =1,2.
In particular, if d4(a) = 0 for some a = (ay,as) € A, then we have Wj’?(é’j‘j(aj)) = 0 for all
J,k = 1,2. Therefore, a; = 0 for j = 1,2 by faithfulness of 61’1;]_ and Wf. Hence, a = 0.

We have 04 = >3 12 7r§-“ o 551]_ o pa,, then d, extends uniquely to a strictly continuous *-

homomorphism from M(A) to M(A ® S). Besides, we have

da(m)= > W;-“odfflj(mj), m = (my,ma) € M(A1) ® M(A,).

k,j=1,2

In particular, since 14 = (14,,14,) we have

0a(la) = Z Wf(ﬁslij(lAj)) = Z Ja,(1a,)®pr; = Z 6@ (Pe1+Dr2) = Z Baler)@al(er).

k,j=12 k,j=1,2 k=1,2 k=1,2

We also have 4 (g4, (m;)) = ﬂf(éf‘f‘j(mj)) for all m; € M(A4;), j = 1,2. In particular,
k=12

oalg) = Y w05, (14)) = > m(lagesy,) = D @ @ prj = 0a(1a) (14 ® B(g;)).

k=1,2 k=1,2 k=1,2
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Let us now prove the coassociativity of 64. We have (pa, ® idg)n}(z) = 6 (ida, ® ys,,)(z) for
all v € M(A; ® Sy;) and 4,7,k = 1,2. We also have

(04 @ids)(z) = D (m @ids)(dy, ®ids)(pa, ® ids)(2z), € M(A®S).

i,1=1,2

Let a = (a1, a2) € A, we then have

(04 @idg)a(a) = Y (64 @ids)(} (05, (a;)))

k,j—1,2

= > (m®ids)(0y, ®ids)(pa, ® ids)m; (65 (a;))
ik l=1,2

- ‘klzl 2(77-1['@ ® ]Sk])(dlAk ® 1d5k3>6§§] (aj>
JRst=1,

= > (m®ids)(ida, @ (idsy, ® Js,,)5;)04, (a;)-

7k, 1=1,2

Besides, 74, ® 75, = m, and jg,, ® Js,, = ;. Then, we have

(m, ©ids)(ida, ® (ids,, © 75,,)075)04, (a;) = (34, @ 1 0 65)0 ()
= (1a®pix @ prj) (g4, ® 0 Jslj)5l/4j(aj)
= (14 ® i ® pry)(ida ® 5)7@(5&1]-(%))-

However, we have (p;;) = pn @ p1;+piz @p2; and (14 ®plj)7ré-(x) = ﬁé(x) for all z € M(A,®S};).
Therefore, we obtain

(04 @idg)oala) = D (14 @ pu @ pij)(ida @ 6)}(8y, (a;))

j:kzl:1a2

= > (La®d(py))(ida ® &) (54, (ay))

§l=1,2
> (ida ® 6)7j(8y, (ay))
41=1,2

— (id4 ® 6)da(a).

It only remains to show that the action (04, 84) is continuous. We have:

o [fz € A® S, we have

ba(la)r = Y (®@prj)r= Y 7 ((pa, ® Liy)(x)),

k,j=1,2 k,j=1,2

where Ly; : S — Si; is the non-degenerate *-homomorphism given by Ly;(y) = pk;v,
yeS.

e Ifac Aandye€ S, we have

dala)la®y) = > (0% (a;)(1a, @ Lij(y))).

k,j=1,2

We combine these statements with the fact that [5ﬁj(Aj)(1Ak ® Skj)| = Ak ® Sk, for all j, k= 1,2
to conclude that [04(A)(1a ® S)] =04(1l4)(A® S). O
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5.2 Morita equivalence between A; X G; and Ay x Gy

Let (A, d4,54) be a continuous action of G. In this paragraph, we provide a precise description
of the crossed product A x G and we obtain a canonical Morita equivalence between the crossed
products A; X Gy and Ay x Go.

Since d4(14) = 1 ® ale1) + g2 @ a(eg), we have:
Erp =E21 D Eao,

where &4 ; is the Hilbert A;-module A; ® a(g;)# = (A @ 7#4) &
us denote B = A x G C L(&4). We recall that B = [7(a)
m: M(A) - M(B) and 6 : M(S) — M(B) are given by:

ﬂ-(m) = WL(m) rffA,Lv m € M(A) ) é\(‘r) = (1A & p(x))rfg’A,Lv LS M(S’\)

( ®jf2) ) 12 Let

) ©
HA();aEAxGS] where

It is clear that 7 (resp. ) defines by restriction to &4, a faithful *-representation
mt A= L(Exg) (vesp. 0;: 5 — L(En;))

of A (resp. §) on the Hilbert A;-module &4 ;. We have:
() _ ((ida, ® Li1)d%, (q1a) 0
7'('1(@) = 7T(CL) féiq,i— ( 0 ! (ldAZ ® Ll2)5,242 ((]2@) , a€ A,

where L;; : S;; — B(7;) is the faithful *-homomorphism defined by L;;(y) = p;; L(y), y € Si;-
We also have:

q L (14, @ Ti(x11) 1a, @ Ti(212) &
o) = (aepolen= (14 S50 22T, e

Let us denote mp the faithful *-representation of B given by the inclusion B C L(&4 1) (that is
g = ¥y ,). Then, mp defines by restriction to &4 ; a faithful *—representatlon g B — L(Ea;)
and we have 7g;(m(a)f(x)) = m;(a)d;(x) for all a € A and € S. Therefore, we have:

pa(()0(z)) = (ida; ® Lin)0y, (qa)(1a; @ Ti(zn))  (ida, ®@ Lin )0y, (q1a)(1a, @ Fi(212))
B (ida, ® Lia)d}y,(qea)(1a, ® Ti(z1)) (ida, ® Lig)dy, (qea)(la, ® Ti(z22)) )’

forall a € A and z € S. Let us denote

Eh = [mi(q;0)05(x0) s a € A, x € S] = [(id, ® Lij)(SZj(qja)(lAi @ 7i(z); a € A x el

We have &) C L(A; ® Hy., A @ H;) and 1p,(B) = (€]})jk=1,2. Furthermore, we have:

j
&L= A Mg, G i=1,2.
Theorem 5.2.1. For alli,j,k,l = 1,2, we have the following statements:
1. ( ;k)* :glij'
2. [S;kglil] - 5}1-
3. [5}k(Az ® )] = A @ I
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For the proof, we will use Proposition [2.5.11| and the following result:
Lemma 5.2.2. Fori,j,k = 1,2, we denote I;k the canonical injection defined by the composition
L(A; @ Hy, Ay @ ;) — L(Ens) — L(Enr). Then, for alla € A and x € S we have:

T B mi(as) = (s © pi)Be) () i © pie)

T(mi(g;0)0:(58)) = (4 @ pig)(a)0(x) (q © pr).
Proof. This a straightforward computation. m

Proof of Theorem 5.2.1. Let us prove the first statement. Let @ € A and = € S. We have
(mi(q;a)0;(x5))* = 0;((z*)x;)mi(q;a*). By Lemma |5.2.2) we then have

Ti(milg;a")0i(x0))) = (g @ par)B(x*)m(a*) (@ @ pyy).

However, it follows from Lemma that g(xi)ﬂ(a*) is the norm limit of finite sums of the
form 35, m(a,)0(xs), where a, € A and z, € S. By continuity of Zj, it then follows that

I,ij((m(qja*)@(xjk))*) is the norm limit of finite sums of the form

s

Z(% ®pik)7(as)§(ﬂfs)(% ® pij) = I/ij <Z Wi(Qkas)éi($s,jk>> , where a,€ A, x, € S.

Since Z}; is isometric, it follows that (mi(q;0)0:(z0))* € &Eij- Hence, (€3,)* C &f;. We also have
(&r;)" C &gy, hence (E5)" = & ‘ ' ' ‘
Let us prove the second statement. Let us fix i, j,k,1 = 1,2. Since &,; = (&) and & = (&};)",
we have

&l = [0i(zw)mi(qa); © € S, a € A, (5.2.1)
5;: = [éi(le)ﬂi(qm) HEORS §7 a€ Al (5.2.2)
Therefore, we have
€461 = [m(g00(e,0)0(xh)milad) s 0, @ € A, @, o' € ] EZ1)
- [Wi(q](I)é\ (z)mi(qa’); a, a' € A, x € §] (Proposition 3)
C [mi(A)E] = & (5-2:2)

For the converse inclusion, let us fix a € A and x € S. Let us prove that m;(g;a)0;(z;;) € [E8E.
In virtue of Proposition , we have [E%, B} = Ej,. Therefore, 0;(x;;) is the norm limit of
finite sums of the form Y, Hl(acs k)0i(z T 1), where x,, v € S. Without loss of generality, we can
assume that 0;(z;,) = 6;(z Jk)ﬁ (1)), where 2/, 2 € S. Let us write a = ayay, where ay, ay € A.
We then have m;(g;a )Hz(Axﬂ) = 7ri(qjal)m-(qjag)gi(x;k)éi(x’k’l). Since m;(qjaQ)éi(x;k) € é}?k = (5;%)*
we finally have m;(q;a)0;(z;) € [£.£4].

Let us prove the last statement. The inclusion [8;k<Az ® )] C A; ® A is straightforward. By
the non-degeneracy of 7 : A — L£(&41), we have [1(A)E4 L] = &4, Moreover, by Proposition
, we also have [E%, 6] = ;. Tt then follows that

[7i(Aj) (A ® Hy)] = Ai @ Ay, A @ Ay = [0:(B(e5)SBler)) (As ® Hp)].
We then combine these two formulas to obtain the converse inclusion. O
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Corollary 5.2.3. Let i,j = 1,2. Then, S;j is a C*-algebra and Sfj 1s a Morita equivalence
between E; = A; g Gi and S;j.

i

Proof. 1t follows from Theorem @ that 8;j is a non-degenerate C*-subalgebra of L(A; ® ;)
and we can then consider M(&};) as a C*-subalgebra of L(A4; ® ;) = M(A; @ K(A;)). 1t
also follows from the same theorem that &; is a &£);-€};-bimodule and &; is a full right (resp.
left) Hilbert £;-module (resp. £j-module) whose &7 Valued (resp. &L Valued) inner product is

given by (¢, 77>g]z;j = £ o (resp. 52;-<§’ n) =&on) for all §,n € gzzj =
Proposition 5.2.4. There exists a unique *-isomorphism pu;; : E;j — Sjj such that
(m; @ idicey) (@) = (W) st (2)13(W))os, @ € ).

Furthermore, we have ,uji(m(qja)éi(xjj)) — m;(q;0)0;(x;;) for alla € A and z € S.
Note that p;; = id. For the proof, we assemble some important formulas in the following lemma:
Lemma 5.2.5. For alli,j,k = 1,2, we have:

1. (Vij)as = (W) 1 (V)as(Wiihe

2.V €5, Ly, ® Filwyy) = (W) (Lo, ® Falyy)) Wi,

3. Va € A, (m; @ idimy))mi(gsa) = (W,)53m5(450)13(W;)as.

Proof. The first formula is just a restatement of a the first commutation relation of (2.5.2)). Let
w € B(A)., let us denote z = p(w) € S and wjj = pjwp;; € B(H;).. By Propositi 1,
we have:

i) = (d @wi)(VS),  Fr(zy) = (d @w;;) (V).
Then, 1y, @ Ti(z;;) = (Wi)* (s, @ 7x(x;;)) Wi, follows directly from the first statement. Let
a € A, we have

T @ LZJ>5A (a])

(m; @ idkny))milgza) = (
(ida, ® Lji ® Lij) (64, ® ids, ) 5% (g;0)
(
(

ida, ® Lj; ® Lij)(ida, ® 65;)5) (g;a)
ida, ® (Lj ® Lij)85;) 8% (g50).

However, we have (Lj; ® Lq;)0%;(y) = (Wj)*<1jf ® ij(y))Viji for all y € S;;. Therefore, we
have (m; ® idic,)mi(a) = (W])35m; ()15 (W))as. 0

Proof of Proposition|5.2./. Let a € A and z € S. In virtue of the statements 2 and 3 of Lemma
5.2.5| (with k = j), we have
(m; @ idk o)) (mi(g5a)0i(x55)) = (75 @ idicmy)) (Ti(g5a)) (La, ® Lo, @ Fi()5))
= (W})5slmi(;0)05 (5 113 (W,)55.

Let fij; : L(A; ® J65) — L(A; ® ; @ ;) be the linear map given for all z € L(A; ® J4;) by

fiji(x) = (Wi)as(m; @ idi )(m)(VVﬂ)23 It is clear that fij; is an injective *-homomorphism.
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Moreover, we have proved that there exists a map p;; : 51 — 5] such that fi;;(z) = p;i(x)13 for
all z € S;j. In particular, p;; is an injective >"—hornornorphrs.rn Furthermore since

wii(mi(g5a)0:(x5)) = i(q;0)0;(x55),

foralla € A and z € g, the range of uj; contains a total subset of Sjj. However, since pj; is
isometric, the range of 15; is norm closed in &};. Hence, uji(f,';fj) =&l U

As a consequence of Corollary and Proposition [5.2.4] we finally obtain the main result of
this paragraph:

Corollary 5.2.6. The crossed products Ay X Gy and Ay X Gy are canonically Morita equivalent.

Now, we will prove that the C*-algebra S;j is endowed with a continuous action of @j, obtained
by restriction of the dual action of (04,4) on B = A x G, such that the *-isomorphism
defined in Proposition [5.2.4] is equivariant.

Proposition-Definition 5.2.7. For alli,7 = 1,2, let us define:

bes, (2) = (Vs © Lo (V)i € £(A: @ 965y @ ), € €L,

Then, 551' : Ei — M(Si ® §M) s a continuous action of the quantum group @j. Moreover,

SZ — A xGjisa (G -equivariant *-isomorphism.

Proof. We already know that 6., = A “E, (¢f. [2]) is a continuous action of G; on Sjj = A;%G;.
77

It is also clear from the definition that 0gi is a *-homomorphism. In virtue of Corollary [2.5.13,
77
we have

ViFilwi) © L) (V)" = (7 ©7))0(xy;), €S, (5.2:3)
Since [(Vj)zy,, (Vi¥)12] = 0 for k = 1,2 (see the commutation relations ), we have

(V)23 mi(gja) ® 1] =0, a€ A. (5.2.4)

)

We combine and -, then for all a € A and z € S we have

Ogi, (Wi(qja)éz'(l‘jj)) = (1:(4ja) ® Log,)(La, @ (% © 73)0(255)) = (milaz0) © Log, ) (6: © 73)0 ().
A A (525
In particular, we have 55}j<ﬂi(qja)6i(xjj)) € M(&; ® Sj;) forall a € A and x € S. Hence,

551 (&) Cc M(EL® S;;) and b is a non-degenerate *-homomorphism. To complete the proof,
27 R
it only remains to show that d4;.¢; © 15 = (1 ® idé\_) 0d¢i . But, foralla € Aand z € S we
J7 17

have
O e, (115 (mi(q0)0:(55))) = (VI )as (s (mi(q;0)0i (55)) @ Lo, ) (V)35
= (Vi)as(m;(g;0)0;(x55) @ Lo, ) (V)35 (Proposition [5.2.4)
= (m;(gja) ® Ly,)(0; @ 7;)0(x;;) (5.2.5) with i = j
= (1 ® idgjj)((%(%a) ® 1%;)(@ ® 7?3)3(%3))
= (s ®idg )de: (m;(a;0)0;(x55)) 5.2.5).
]
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Remarks 5.2.8. Let us make some comments concerning this paragraph:
1) It should be noted that the Corollary has been established (with different notations
and conventions) by De Commer in [9] in the case of the trivial action of G on the C*-algebra
A= N°=C2
Note also that for this action, the C*-algebras A; are identified to C, the *-homomorphisms
0%, : C = M(C® Sy;) = M(Sy;) satisty 0% (1) = px; and we have £, = Ej for all i, j,k = 1,2.
Moreover, the crossed product B = A x G is canonically isomorphic to S. More precisely,
g (B,dp,ap) — (g, i} Q) is a G-equivariant *-isomorphism.
2) If we apply the results of this paragraph to the action (§, 5) of G on S we obtain that the
C*-algebras

(S X5t Gy) @ (Sn X5, G1), (Si2 X52, Gs) @ (S22 X2, G»)

are Morita equivalent.

5.3 Structure of the double crossed product

In this paragraph, we investigate the double crossed product (A x G) x G for a continuous
action (04, 54) of a colinking measured quantum groupoid G := Gg, g, between two monoidally
equivalent locally compact quantum groups G; and Gy. We will need the notations and the
results of the paragraphs [£.4] and [5.1}

Let us fix a G-C*-algebra (A,04,34). We will use the notations of in order to describe
the G-C*-algebra (D, dp, fp) and we take the notations of for (A, d4,84). By the duality
theorem (Theorem |4.4.15]), we know that the C*-algebra

D = [mr(a)(1a @ ANa)L(y));ac A, 2 €S, ye S

endowed with the continuous action (0p, Bp) of G is canonically G-equivariantly isomorphic to
(A x G) x G endowed with the bidual action. Following the discussion of , we have:

D =Dy ®D,, Dj:=pple;)D = (q; ®B(e;))D, where jp(Bple;)) =q; ® B(g;), j=1,2.

Furthermore, note that dp is completely described by the faithful non-degenerate *-homomor-
phisms 5%]_ :D; = M(Dy, ® Si;) given by:

m; 0 0p, () = (Bp(ex) ® piy)dn(x) = (Bp(er) ® 15)dp(2) = (1p @ piyj)dp(w), @ € Dy, (5.3.1)

where 7F : M(Dj,® Si;) = M(D®S) is the unique strictly continuous extension of the inclusion
map Dy, ® Sk; C D ® S such that 7¥(1p,gs,,) = Bp(er) © pr;-

In order to investigate the C*-algebras D; and the *-homomorphisms 5&, we will need some
further notations:

Notations 5.3.1. Let j,k, [ =1,2.

e We denote Lj : Sjr, — B(J;) the faithful *-representation given by Lj.(y) = L(y)[ .z,
for all y € Sjy.

e We recall that Uy, : 5, — 5, is the restriction to J¢; of U to the subspace 7. Let

Rjy, : Sjr — B(H;) be the *-representation given by Rj.(y) = U Ljx(y)Usy, y € Sjr.
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e Let 1 : M(D;) = M(D) be the unique strictly continuous extension of the inclusion
Dy, C D such that ¢;(1p,) = Bp(e;), 7 = 1,2. We have 1;(M(D;)) = Bp(e;) M(D).

e We consider the following self-adjoint projection qu; == qx @ pu, ® prj € LIA® I @ H).

We finish these preliminaries with a remark about the Hilbert A-module &4 = ¢°4%(A ® ).
Since qﬁA’a =q1 ® B(e1) + q2 ® B(e2) we have &4 g = Eag1 B Ea ra, Where &4 gy is the Hilbert
Ag-module (g @ B(ex))(A® ) = (Ar @ Hk) O (A ® Hy). Furthermore, since A; and A,
are closed two-sided ideal of A such that A;A; = {0}, we have K(&4 r) = K(Ea,r1) B K(EAR2).

Lemma 5.3.2. Leta € A, 2z € S andy € S. Let us denote d = mr(a)(14 @ Mz)L(y)) € D.
Let d; := fBp(e;)d = (q; ® B(g;))d € D;, j = 1,2. We have:

1. For j = 1,2, we have d; = Z dy ;, where
LI'=12

i j = mr(qa)(1a ® pyA(@)pr; L(y)pr;) = Tr(qa)(1a ® 7 (Mazw))Ly)pr;), 11 =1,2.
2. For j,k =1,2, we have:
(g ® Bler) ® pry) (Jp © L)op(d;) = > queiVas(ae © pij @ prj) Eas(mr @ R)(0a(qa))Eas - - -
LU=1,2
o (14 @ pyM@)pr; L(y)pr; @ L) (g @ prj @ prj) VosQirk;-
Proof. 1. Let us fix j = 1,2. We have d; = (¢; ® f(g;))d. Since fp(e;) = ¢; ® B(e;) is central
we have d; = (¢; ® B(g;))d(14 ® B(g;)). Since [(g;) is central in M(S) we have [L(y), 8(g;)] = 0.

We recall that (C?) ¢ M’ and A(S) C M, hence [A(z),(g;)] = 0. By combining these
commutation relations, we obtain

d;j = (¢;® B(e;))mr(a)(La @ B(e))A(@)B(e;) Ly)) = > (4@ B(e))mr(a)(La @ piyA(@)pri L(y))-

LI'=1,2
In virtue of the fact that @ = § and Lemma [5.1.2 we have
(¢; @ B(g5))mr(a)(1a ® py) = (ida ® R)((g; ® a(e;))da(a)(1a ® pp))(1a @ pij)
(ida ® R)((q; ® a(e;)pji)da(a))(1a @ pij)
(ida ® R)((g; ® pj1)da(a))(1a ® pij)
Tr(qa)(la ® pij).

The first statement is then proved since py; L(y) = L(y)pr;-

2. Let us fix j,[,I' = 1,2. Let us compute (jp ® L)op(dyy ;) = Vag(ida @ L)do(dy ;) Vs
(see Remark [4.4.14)). By Proposition 4.4.12 we have

(idagk ® L)oo(mr(qia)) = Sas(mr @ R)(Sa(qia))Sas.
We also have
(idask ® L)do(1a @ piA(@)pr; L(y)pr;) = a1 (1a @ pyA@)pe; L(y)pr; @ 1)
By the commutatiAon relation (1® a(n))V* = V*(a(n) @ 1) (¢f. Proposition m 3). we have
GV = Vigis®. Hence,

(jp ® L)dp(dw ;) = VasSas(m @ R)(a(qua))Sas(1a @ puyd(@)pr; L(y)pr; @ L) Vasais ™.
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By using the fact that the projections g, € M(A), pij, pji € M(S) are central, we have
(gx ® B(ex) ® pij)(ip @ L)dp(du ;)
= (qx @ B(er) @ prj)Vas(la @ pi; @ 1) Ea3(mp ® R)(da(qra))Xag - - -
(14 @ pyA@)prs LW)pr; © L) (a6 @ pry @ pig) Vasais ™

By using the following facts: p; = a(e)py, [V,a(e) ® 1] = 0 (see Proposition 2),
B(ex)oer) = pu and py; is central; we obtain

(qx @ B(er) @pij) Vas(la@pi; @ 1) = (@1 @ pik @ piej) Vas(La @ pi; @ 1) = quii Vos (e @ pij @ pij)-

Similarly, we also have

Gk @ prj ® Prj) Vas (g ® Lo @ pry)ars™®

@k @ prja(er) @ pij) Vaz(ar @ B(er) @ prj)
@ @ prrj @ prj)Vos(qr @ aler)B(er) @ prj)
Qe @ Prj @ Dij) Vos @ik

(6 ® prj © piy) Vayais™®

=
=
=
=

and the second statement is proved. O
Let us consider the faithful non-degenerate *-homomorphism
mp, i Dj = L(Earj) 3 mp;(u) =ulg, p, u€D;

If d € D, we have d = mp,(d1) + 7p,(dz), where d; = pp(e;)d € D;. We also consider the
faithful non-degenerate *-homomorphism

TD, (29 ij . Dk X Skj — ﬁ(gA,R,k & t%c])
Then, 7p, (vesp. mp, ® Ly;) extends uniquely to a faithful unital *-homomorphism
TD; : M(D]) — ,C(éaARJ') (resp. Tp, & ij : M(Dk ® Sk]) — ,C(éaAVRJf X %]))

and we have:
mp,(m) = jp(t;(m) 6y p,» m € M(D;)
(resp. (mp, ® Lij)(m) = (jp ® L)wh(m)l s, p,osm,, m € M(Dp® Sij)).
Proposition 5.3.3. Leta € A, z € S andy € S. Let us denote d = wp(a)(14 @ X(z)L(y)) € D.
Let d; == Bp(e;)d = (¢; ® B(ej))d € Dy, j =1,2. We have:

1. In L(Earyj) = @ L(A; ® Ay, Aj @ F;), we have

LI'=1,2

mp,(d;) = > (ida, ® Ry)d% (qa)(1a, ® 7 (Maw))Lv;(prsy)).

LI=1,2

2. In E(éDA,Rﬁ ® J“fk]) = @ ,C(Ak ® jﬁ/k ® %gj, Ak &® %k‘ ® %j), we have

LI'=1,2
(7D, @ Lij)0p, (d;) = > (Vi))2s(Shjers)as(ida, © Liy @ Ryp)((6%, @ ids, )%, (qua)) -
LI'=12
- (La, ® Lg, @ 7 (A(@w) L (priy)) (Svjeri )23 (Vi) 3s-
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Proof. 1. By applying Lemma [5.3.2| 1 and by definition of the *~homomorphisms 5111 (see

Proposition [5.1.3)), we have
7, (diw ;) = (ida, ® Rp)&%, (qa)(1a, ® 77 (Aaw ) L(y)pr;) € L(A; ® Hiy, A @ H;)

and the first statement is proved.
2. We have (mp, @ Ly;)0p (diw ;) = (jp © L)75 (8, (dur 5)) 164 p ww,- Moreover, in virtue of
(5.3.1) we have

(jp@ L) (0p, (dw 5)) = (jp(Bp(ek)) ©pj) (Ip@L)dp(div 5) = (ax®B(ex) @pij) (ip@ L)dp (dur 5)-

We can then apply Lemma 2. We have /qlkj‘/zg(qk ® piy @ prg) = (Vi5)as(qr ® pij @ prj) and
(@ @ prrj @ prj)Vosqrey = (qr @ prj @ ij)(‘/klj)zza- Moreover, we also have

(qk ® pij @ prj)Los(mr @ R)0a(qia) = (qx @ pij @ prj)Los(idsa ® L ® R)((d4 ® idg)da(qa))
= Yo3(ida ® L ® R)((qx ® prj @ pji)(64 ®idg)da(qia))

= (Siyeiy)as(ida, ® Liy @ Rp) (0%, @ ids,, )0, ()
and the second statement is proved. O

The following lemma says in particular that the G;-C*-algebra (D;, (5%3_) is a linking G;-C*-
algebra (see Definition [1.6.1)).

Lemma 5.3.4. For j = 1,2, we have:

1. Forl=1,2, there exists a unique nonzero self-adjoint projection e, ; € M(D;) such that
in(ei(es)) = a5 ® piy.

2. mp,(e1j) = eia;, where e a; € L(EAR;) is the orthogonal projection on the Hilbert Aj;-
module A; ® F4;.
8. erj+ey;=1p,, [Dje;D;] = D;.
4. Fork=1,2, (5gj(el7j) =ex ® lg,, -
Proof. 1. We have
ipM(D))={T e L(A® #); TD C D, DT ¢ D, Tjp(1p) =T = jp(1p)T}.

Since jp(lp) = ghae = Yic12G ® B(&) = Yik=12@ @ pri and by definition of D we have
9 ©piy € jp(M(D)). Since fp(e;)(q; ® pij) = ¢; ® py and Fp(e;) M(D) = 1;(M(Dy)),
we actually have ¢; ® pi; € jp(t;(M(D;))). This proves that there exists a unique nonzero
self-adjoint projection (by faithfulness of jp and ¢;) e;; € M(D;) such that ¢;®@p;; = jp(¢(er;)).

2. mp,(er;) = jp(ti(er i) ern,= (@ @ Pij)lean,= €1,4;-

3. We have jp(¢;(1p,)) = jp(Bp(e;)) = 4 ® B(e;) = jp(y(er;)) + jn(ei(ea;)) because of
B(ej) = p1j + p2j. Hence, 1p, = e1; + ey; by faithfulness of jp and ¢;. Let us prove that
[Djer;D;] = Dj. It is equivalent to prove that [7p,(Dj)e;a,7p,(D;)] = mp,;(D;). Then, the

~

result is a consequence of Proposition m 1, the fact that [A(S)S] is a C*-algebra and the
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formulas [Ej, \E}» \] = By, (see Remark [2.5.12)).

4. Tt amounts to proving that (jp @ L)7}dp (1) = qus. It follows from (5.3.1) that for all
m € M(D;), we have Wfé,’%j (m) = dp(t;(m))(Bp(ek) ® pg;). In particular, we have

(jp ® L)mdp, (e1;) = (jp ® L)(6p(15(e15))) (G (Bp(er)) © pry)
= (Jp ® L)(0p(t;(e15)))(qx @ Bler) @ prj)-

However, we have (jp ® L)dp(¢j(er;)) = Vas(idagx @ L)do(q; @ pij) Vs (cf Remark 4.4.14). We
have

60(q; @ pij) = 0a(Bales))3(1a ® py @ 1s)

=14 ®1r® 5(5j))€I1B§W(1A ® pi; @ 1s)
= Z dr ®plj ®p1"j'

r=1,2

We then obtain

(jp ®@ L)wjop, (er;) = Y- Vas(ar @ piy @ pry) Vs (a1 © Ber) © piy)
r=1,2

= Vas(qx ® pij @ prj) Vs (qr @ Bler) @ prj)-

However, we have V(py; ® prj)V*(B(er) @ prj) = Xim12 V(0 @ prj)V*(Prr @ prj) and by
Proposition we also have (p;; @ 1)V*(ps ® 1) = 0%(pi; @ prj)V* (pix @ prj). Hence,

V(pi; @ o)V (B(er) @ o) = V(o @ L)V (0 @ Drj) = 6(01j) Dk @ Piej) = Dike @ D
Hence, (jp ® L)} (1) = qx @ puix @ ;- .
Notations 5.3.5. Let us denote

Dll’,j = el7ijel’,j7 Dl,j = Dll,ja j, l, l/ = 1, 2.

The following result is an immediate consequence of Remark Lemma and Corollary
b.I4
Corollary 5.3.6. Let us fix j,[,I' =1,2. We have:

1. By restriction of the structure of G;-C*-algebra on D;, Dy ; is a Gj-equivariant Hilbert
D, j-Dy ;-bimodule.

2. If k # 7, we have:

a) The *-homomorphism (D;, ey j,€3;) — (5%]_(Dj), e1e ® sy, €26 @ 1g,,) 5 T 5%], (x) is
a *-isomorphism of linking G;-C*-algebras.

b) 5,’5j_(Dll/,j) is a G;-equivariant Hilbert 5%}_(Dl7j)—(5’f7j (Dyj)-bimodule. Furthermore, by
restriction of the *-isomorphism described in a), the Gj-equivariant Hilbert D, ;-Dy, ;-
bimodule Dy is canonically isomorphic to the Hilbert 5’[“)j(Dl,j)—§ij (Dy,;)-bimodule
(5%]_(Dll/7j) over the *~isomorphisms:

Dl,j — 5%] (Dl,j)7 Dl’,j — (5,’57 (Dl’,j>-
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The case where G; and G, are regular. In this pararaph, we provide a more precise
description of the double crossed product in the regular case. In the following, we assume G,
and G, to be regular. In this situation, we know from Theorem [3.2.19 and the duality theorem

(see Theorem [4.4.15|) that
D = ¢" (A K(H#))q*** C LIA® ).

We recall that &4 5 = quA’a(A Q@ H) = Eapy D Ear2, Wwhere E4p; = A; ® (4, & H ), for

j = 1,2. Since g; is central, we have

D= @ (op)(ARK() (g @pr;) = B A ©K(Ay, ;).

JLU=12 G 1=12
Hence,
mp,(Dj) = D A;@K(Hy Ay), j=1.2 (5.3.2)
LI'=1,2

In particular, mp, takes its values in K(&sr;) and 7p, : D; — K(&ary) is actually a *-

isomorphism of linking algebras.

In the following, we will use the canonical identification K(&4 g ;) = A; ® K(I4; & ;). Let
us introduce some notations that will be useful to describe the linking algebras D; and the
*-homomorphisms 5&- in this case.

Notations 5.3.7. Let j, k,[,I' =1, 2.
1. We denote:

Bk = ’/TDk(Dk) = Ak (%9 K(%k S¥) %k), Bll/,k = Ak ® K(%’k, %k);
By = Bur = A @ K(5).
2. Let (5{% : B; = M(Bj, ® Sk;) be the faithful non-degenerate *-homomorphism given by
(7'('Dk (%9 idskj)(slf)j = 5§; @) 77Dj-
3. Let 52‘;],70 B = M(A, @ K(H4,; & H5;) ® Skj) be the faithful *-homomorphism given by:

0f,0la®T) =05 (a)s(1a, @ T ©1s,), a€ Ay, T € K(H; @ H).

4. Let 5§ll,j70 By = L(Ar @ K(H) @ Skj, Ak @ K(56;, ;) @ Skj) be the linear map
given by:

6§”,J70(a ® T) = 5!?1] (a)lg(lAk RT® 1Skj)7 a € Aj, T e K(%/j, %])
5. Let 5/@”/ ; : Bll’,j — E(Bl’,k X Skj, Bll’,k (%9 Skj) be the linear map given by:

5, (T) = (Viasdh, oT)Vi)ss. T €Bu,.

We also denote:
521,3‘ = 5211,;‘ : Bl,j - ‘C<Bl,k X Sk])
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Proposition 5.3.8. For all j, k,1,I' = 1,2, we have:

1. B is a C*-algebra. Moreover, endowed with the natural actions of By ; and By ;, By j is
a Hilbert By ;-By ;-bimodule.

2. mp,(Dw ;) = By ;.
3. For all § € By ;, we have
B8, (€)= (Vi)as(ida, © 0)(85, @ idiciry, o)) () (Vi
where o : Si; @ K(H;, ;) — K(H 5, 76;) @ Skj; s T — T ® s is the flip map.
Proof. The first statement follows from the formulas:
(Bw,j)* = By, [Bll’,jBl’l”,j] = Burj, J,1, I 0"=1,2,

which follow from the fact that A; is a C*-algebra and the following elementary fact: if #H, X
and L are Hilbert spaces (with H non zero) we have K(‘E, X) = [K(H, K)K(E,#H)]. This
actually proves that By ; is a Morita equivalence between the C*-algebras B; ; and By ;. Note
that we also have [Byy ;(A; ® ;)] = A; @ ;.

The second statement is an immediate consequence of and Lemma 2. To prove
the third one, it is enough to see that the formula holds for £ = mp, (dy ;) (see the notations of
Lemma . However, in that case this is exactly the formula of Proposition 2. O

Proposition 5.3.9. Let j,I,I' = 1,2, we have:

1. 5%1,3' : By = M(B; ® Sj;) is a continuous action of the quantum group G; on the
C*-algebra B ;.

2. Up to the identification A; x G, x @j =A; ® K(5€;) (cf. Theorem , the continuous
action (%M of G; is the bidual action on the double crossed product A; x G; x G;.

3. Ifl £, then (Bll/’j75éll/’j) is a Gj-equivariant Morita equivalence between the G;-C*-
algebras B ; = A; @ K(;) and By j = A; @ K(545).

Proof. The first statement follows from the fact that D, ; is a G;-C*-algebra by restriction of
the structure of G;-C*-algebra on D;. For the second one, there is actually nothing to prove.
Finally, it follows from the statements 1 and 2 of Proposition that the *-isomorphism
mp, : Dj — A; ® (JA; © S3;) induces by restriction to the Gj-equivariant Hilbert Dy ;-Dy ;-
bimodule Dy ; (see Corollary 1) an isomorphism of G;-equivariant Hilbert bimodules from
Dy j to By j over the Gj-equivariant isomorphisms D; ; — B;; and Dy ; — By ;. O

Notation 5.3.10. For j,1,I' = 1,2, we denote
Y j = (Bij, Bur g, B ;)

the Gj-equivariant Morita equivalence of the G;-C*-algebras B; ; and By; given by the Hilbert
bimodule By ; (see Proposition 3).

For the internal tensor product of equivariant bimodules, we refer the reader to [3] (see
Proposition 2.10).
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Proposition 5.3.11. For all j,1,I',1" = 1,2, we have

Yy = g @8, e -
Proof. 1t is clear that the map
T Bu,; ®p, , B — B
£®p,  1n > §on

is an isomorphism of Hilbert B; ;-B;» ;-bimodules. Let us show that 7 is Gj-equivariant. The
structure of Gj-equivariant Hilbert By j-module on By ; @5, ; By ; is given by

By ; ®s, , Briry — L(Bp; ® Sjj, (Buw; ®s, ; Brrj) @ Sj;)
£®p,,n—r A1) = (5{3”% (&) ®s, ,0s;, 1ds;;) © 5{31/1,,,j(77)-
By Proposition 2, we have the formula
(m ®idg,, ) (A(E,m) = 5?3,,,,J (7€ ®@s,, M), &€ Bwg.n€ By,
and the result follows. O

Notation 5.3.12. For 5.k = 1,2, j # k, we denote:
gl]é’,k = 5{%”/7]_ (Bll’,j> C ‘C(Bl/,k (2] Skj, Bll’,k & Skj)
The following formulas:

5l]§l,j (a)atl%”/,]- (5) = 5;%”/7]_ (Clg), 15 € Bll/,j7 a € Blvj’
5{%”% (5)511%/ (a) = 5%#7]_ (6@), 5 € Bll/,j, a € Bl,m

)

<5§ll’,j (5)7 5§zl/,j (77)> = 5531/173- (6*)553”/7]- (77) = 5l’%ll7j (5*77)’ 67 77 € Bll’,j?

endow Sﬂ,’k with a structure of Hilbert (SE;U(BM-)—(S’“U j(Bl/J)—bimodule. In what follows, we will

provide an explicit formula for the action of G; on &}, obtained from that of G; on By ; by
transport of structure.

Lemma 5.3.13. For all j,k,1,I' = 1,2, we have:

1. 5§l/j(8y7j) is a non-degenerate C*-subalgebra of M(By i, ® Skj). Then, the inclusion map
5gl/j(Bl/,j) C M(By i, ® Skj) extends to a unital faithful *-homomorphism

M(85, (Brj)) C M(Br, ® Siy)-

2. We have the following canonical inclusions:

L(05, ,(Br), 05, (Bus)) € LBy ® Sj, Bur s ® Sky),
L(, ,(Brj) ® Sjj, 05, (Burs) ® Sj;) C LIByx ® Sk ® Sjj, Bk @ Siy @ ).
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Proof. By Proposition 3, we have [(5,’§)J_(D]-)(1D,c ® Skj)| = Dy @ Sk;. It then follows from
Lemma [5.3.41 4 that
[5%].(Dll',j)(lDl/Jc ® Skj)] = D @ Sy

By composing with 7p, ® idg, ;, we obtain

[5211’,]' <Bll/7j>(181’,k ® Sk])] = Bll’,k & Sk‘j-

It then follows from the equality [Bll’,kBl’,k] = Bll’,k that [52”/ J(Bll’,j)(Bl/,k (029 Sk])] = Bll’,k (024 Skja
which proves 1 by taking [ = I’ and gives also a canonical embedding

L(35, (Br;), 05, (Bus)) € LBrx @ Sij, Burg @ Siy)-

The second canonical embedding follows immediately by taking the tensor product by the
Cr-algebra Sj;. O]

Notation 5.3.14. By the inclusion &}, := 5@11/3_(8”/,]») C E(é’gl,j(Bl:,j),(5’{;”,],(B”:’j)) and
Lemma 2, we obtain an injective linear map

51%/,k — L(Brx @ Sk; ® Sjj, By ® Sk ® Sj5); T+ Tha.
Therefore, we can consider the linear map
6?1’,k : gljl",k — ﬁ(Bl/,k (24 Skj (24 Sjj, Bll’,k X Skj & Sjj)

defined by the formula . .
S o (T) = (V)23 T1a(V)i)s3, T € Ef -

Proposition 5.3.15. For j, k= 1,2, j # k, we have:
1. The linear map &), ), takes its values in L(05, (Brj) © 555, El e ® Sj5).-

2. The map 4 ‘ ‘
(Bllhjv%ll,’j) — (& gor Oy 1)
£ 8, (©)

is an isomorphism of G;-equivariant Hilbert bimodules over the *-isomorphisms of C*-
algebras 5gl,j B — (5@1‘3_ (By;) and 5’[3[/7]_ By — 5'&,’],(81/4).

Proof. In virtue of Corollary applied to the continuous bidual action (6p, fp) of G on the
C*-algebra D, we obtain a G;-equivariant *-isomorphism:

(Dj75})j> — (6%J(D])alde®5i])
T — 5%j($).

By Lemma 2, 4 and Corollary 2 a), we obtain that
(7TDk & idgkj)fsjkjj . Dj — M(Bk & Skj) (Bk = Ak ® ’C(%k S¥) %k))
is a faithful *~homomorphism of linking algebras and we have

(7, @ ids,,)0%, (d) = 65, (7p,(d)), d € Du. (5.3.3)

103



By Proposition 2, we also have
(idp,, , ® 61,)0h,(d) = (6}, ®ids,,)d%, (d), d € D ;.

We then compose with 7p, ®idg,; ®ids;; and we use (5.3.3)) and Proposition 2 to conclude
that

(idB”/,k ® 5%]‘)5@”/’]- (J}') = (62”1’]- ® idsjj>5é”/’j (l’), MRS Bll’,j-

Let us consider the following bijective linear map ® : By ; — &) 5 @+ 5;“3”, (x). Then, we
’ 2]
have

(ids,,, © 6L,)(€) = (@ @ids, )5, (@76), €€ &y

However, we have 6%1(3) = V(s ®1g,,) (V) for all s € Sy;. Therefore, for all £ € Sﬁ/,k we have
(ids,, , ® 03;)(€) = 6 1 (&). It then follows that

Sy o (@(2) = (P @ idsjj)(sg;”,}j@), x € B ;.
In particular, (Sljé,’k, 6{2/7,{) is a Gj-equivariant Hilbert bimodule and we have also proved that

the map @ : (B ;,d5,, ) — (& 1., 0% 1) is an isomorphism of G;-equivariant Hilbert bimodules
J ) )
over the isomorphisms of C*-algebras:

\I/l : Bl,j — 521,;‘ (Bl,j) ; T 523[’]‘ (SL’), \I/l/ : Bl/J — 521/4_ (Bl/J) ; T (521/,]_ (LU)
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Chapter 6

Induction of actions

6.1 Correspondence between the actions of G; and G,

In this paragraph, we fix a colinking measured quantum groupoid

g = gGl,GQ

between two regular locally compact quantum groups Gy and G, and we continue to use all the
notations introduced in and concerning the objects associated with G.

We have already proved in that we can associate to any G-C*-algebra a G;-C*-algebra
(Ai,éili) for i = 1,2 in a canonical way. If G is regular, we will prove that the functor
(A,04,84) = (Ay,0Y,) is an equivalence of categories and we will build explicitly the inverse
functor (Ay1,04,) = (A, d4,84). More precisely, to any G;-C*-algebra (A;y,d4,) we associate a
Go-C*-algebra (Aj,04,) in a canonical way. Then, we will equip the C*-algebra A := A; & A,
with a structure of G-C*-algebra (04, 84). This will allow us to build the inverse functor
(A1,04,) — (A,84,84). The equivalence of categories (Ay,04,) — (A2,04,) generalizes the
correspondence of actions for monoidally equivalent compact quantum groups of De Rijdt and
Vander Vennet [12]. We recall that an induction procedure has been developed by De Commer
in the von Neumann algebraic setting (see [9] §8).

Notations 6.1.1. Let d4, : A — M(A; ® S11) be a continuous action of G; on a C*-algebra
A;. Let us denote:

04, =04y, 0% = (ida, ® 02))04, : A1 = M(A; @ S1s @ Sn).

Then, 51(421) is a faithful non-degenerate *-homomorphism. In the following, we will identify Sy,
with Lo (S91) C B(H5;1). We define

md%(A;) == [(ida, ® ids,, @ W) (a); a € Ay, w € B(H1).] € M(A; @ Shy).

Note that Indg?(A4;) = [(id4, ® ids,, ® wg,n)dfl)(a) ca€ Ay, &n e ).
The main result of this paragraph is the following:
Proposition 6.1.2. Indg?(A;) is a C*-subalgebra of M(A; @ Sa2).
Proof. Let w € B(73;). and a € A;. We have
(ida, ® ids,, ® w)(6%5(a))* = (ida, @ ids,, ® ©)(6%) (a*)).
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Therefore, Indgf (A;) is stable by involution. Let &,n,&' 1 € 74, a,a’ € A;. Let us denote
r = (ida, ® idg,, ® wg,n)&i)(a) and 2’ = (ids, ® idg,, ® wg,n/)éfl) (a"). We have to prove that

wa’ = (ida, ®ids,, ® wey @ wery ) (05 (a)1230%5) (a')124) € IndE2 (Ay).
Since 771 and %3, are nonzero Hilbert spaces, we have
I = [K(HL, H6,)701), I = [K(Hs1) 5.

We can then assume that n = kn; and ' = (€], where 1, € 5, & € A1, k € K(53,) and
l e K(741, #4,). Since we,, = kwe,y, and we ,y = wer pl*, we have

za’ = (idy, ®idg,, ® wey, @ W&i,n’)(éfAZB(a)l?S(k ® )30 (a')124)-

Note that G; and Gy are regular by assumption and k ® (* € (5 ® 5, 51 @ H41). In
virtue of Corollary 3.2.20 (see also Remarks [3.2.21| 2), we have

K (o1 © Ay, o1 @ 1) C (Lo, @ K(H1))(Way)"(K(Ho1) © 1, )]
Therefore, xz' is the norm limit of finite sums of the form

D (ida, ® idsy, ® wewy © wepr) (05, (@)120((Lay © ki) (W) (6 © Logy))aals) (@ )124)
= Z(idAl ®ids,, ® liwe y, @ wf;,n'ki)@ﬁ) (@)123(W3h )50 %) (') 124)
= D (ida, @ idsy, @ (W3)" (e b @ Kty )) (05 (@)125(W31)306%) (@) 124 (W )aa),

where k; € K(541), {; € K(H51). Therefore, xa’ is the norm limit of finite sums of elements of
the form:

y = (ida, ®ids,, ® w ® W) (35 (@)12s(W3)300%, ()12 (Wi )sa),  w € B(Hr ), o € B(HY)..
Since 03, (s) = (W3)*(1 ® s)W; for all s € Sy, we have
(W)300%, (@ Niaa(Wih)sa = (ida, @ ids,, @ 63,)0%) (a).
Since (idg,, ® 04,)0%, = (62, @ idg,, )01, and (ida, ® 611)d4, (a’) = (64, ® ids,,)d4,(a’), we have
(ida, ® ids,, ® 6305 (a') = (6F) @ ids,, )da, (d).

Hence,
y = (ids, ® ids,, ®w ® W) (35, (a)123(0) @ idsy, )3, (a))).
Let us write w’ = sw”, where s € Sj; and w” € B(74).. By using the continuity of the action

Sar, y = (ida, @idg,, ®w @ w”) (65 (a)125(0%5) @ ids,, ) (0, (@) (14, ® s))) is the norm limit of
finite sums of the form

D (ida, ®idg, ®w® w’)(éfl)( )123(5A (a;) ® s;)) Zw ) (id4, ® idg,, ® w)é( )(aaz)

i

where s; € Si1, a; € A;. The result is then proved. O
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Remarks 6.1.3. 1. Actually, we have even proved that for all w,w’ € B(7%; ). we have:
(ida, ® idg,, ® w © w')(6F) (m)1230%) (a)124) € A (A}), m € M(Ay), a € Ay.
This remark will be used several times.

2. Proposition holds true for strongly continuous actions of semi-regular locally compact
quantum groups.

3. The idea of the proof of Proposition is the same as that of Proposition 5.8 of [4].
Proposition 6.1.4. Let us denote Ay := Indgf(Al) C M(A; ® Sis). We have:

1. [As(14,®512)] = A1®S12 = [(14,®S12)As]. In particular, the inclusion Ay C M(A;®S1s)
defines a faithful non-degenerate *-homomorphism and we have M(Ay) C M(A; ® Sia).

2. Let us denote 04, = (idg, ® 6%) [a,.- We have d4,(As) C M(Ay @ Sao) and 04, is a

continuous action of Gy on As.
3. The correspondence Indgf : G1-C*-Alg — Go-C*-Alg s functorial.

Proof. 1. Let us prove the inclusion [As(14, ® S12)] C A; ® Sia. Let w € B(J4,)., a € Ay and
s € Sia. Let us denote = = (idy, ® idg,, ® w)dffl)(a). Let us show that z(14, ® s) € A; ® Sis.
Let us write w = s'w’, where &' € Sy and W’ € B(%,).. We have

#(La, @ ) = (ida, ® ids,, © W) (04 (@)(1a, @ 5@ )).
Since S1a @ Sa1 = [0%,(511)(S12 ® 1g,,)] (see Proposition [2.5.7) and s ® s’ € S5 ® Sa, it follows

that z(14, ® s) is the norm limit of finite sums of elements of the form

Z = (idAl @ idSl2 ® w/>(51(421)(a (1A1 ® 5%1(y))(1141 @ y/ ® 1521))
= (idz‘h ® id»5'12 ® w/)( (idz‘h ® 6%1)(5141 (a)(1A1 ® y)) )(1141 ® y,)>

where y € S1; and y' € Sj5. By continuity of the action d4,, z is the norm limit of finite sums
of the form:

> a; ® (idsy, @ W) (67, (i)Y,  ai € A1, yi € Sii.

Hence, (14, ® s) € A} ® Sy since (idg,, ® w')(6%,(y;)) € M(S12). In a similar way, we obtain
the converse inclusion by applying successively the following formulas (¢f. Proposition m 3):

Si2 = [(ids,, @ w)(611(5)); s € S11, w € B(H).], A1 @ S = [04,(A1)(1a, ® S11)],
[63,(S11)(1s,, ® S21)] = Si2 @ Sar.

2. It is clear that 04, is a faithful *-homomorphism. Let us prove that d4, takes its values in
M (A ® Sag). Let a € Ay and w € B(5;).. Let us denote x = (id4, ® idg,, ® w)éfl)(a). Let
us prove that (ids, ® 0%,)(z) € M(Ay ® Sp) C M(A; ® Si3 ® Sg1). By using the formulas
(62, ®idg,, )03 = (ids,, ® 03,)8%, and 03,(s) = (Wh)*(1 ® s)W, for s € Sy, we have

(ida, ® 0% ® ids,, )05 (a) = (ida, ® 6% @ ids,, ) (ida, @ 62)04, (a)
= (idAl ® idSlQ X 5%1)<idA1 ® 6%1)5141 (CL)
= (Wh)50%) (@)194 (W) 3.
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Since Wy, € M(Sa @ K(H#51)), we have
(ida, @ 67)(2) = (ida, ® idsy, ® idsy, ©® w) (Wi)3404) (@)124(Wa)sa) € M(A1 ® Sy @ Sao).

Let s € Sy and let us write w = w'u, where u € K(5%3;) and W’ € B(5;).. By using again the
fact that Wy, € M(Sa @ K(5;)), it follows that

(14, @ 5)(ida, @ %) () = (ida, @ ids,, ® ids,, @ w')( (5 ® u) (W) )340%) (@) 124 (Wi )34 )
is the norm limit of finite sums of elements of the form
y = (ida, ®ids,, ®ids,, ©w")(05(@)124((s' @ Lz, ) Wi (L, ® 0))a),

where ' € Sy, v € K(H51), w" € B(7#,).. Since Gy is regular, we have (cf. (2.5.1) and
Proposition [1.3.11)):

[(S22 @ Lo, )W (L, ® K(H51))] = Saz @ K(H). (6.1.1)

Hence, (14,05, ® 5)(ida, ® §2%,)(x) € Ay ® Say. We then have (14, ® Sg9)da,(As) C Ay ® Soo.
Then, we also have d4,(As)(1a, ® Sga) C As ® Sag since 04, is involutive. In particular, we have
d4,(Az) C M(Az ® Sa2).

Let us prove that [(14, ® S22)04,(A2)] = Ay ® Syo. It only remains to prove the inclusion
Ay ® Sao C [(1a, ® S22)d4,(A2)]. To do so, we have to follow backward the above argument.

Let a € Ay, w € B(41)+, s € Sy2 and let us denote x = (ids, ® idg,, ® w)éfl)(a). Let us write
w = vw'u with u,v € K(J,) and ' € B(74;).. We have

TRSs= (idA1®512 & id522 ® w/)((1A1®S12 & 1522 ® U)5£121)(a)124(1141®512 ¥ s U))

By using again the fact that Wy, € M (S ® K(.5%;)) and (6.1.1]), we obtain that z ® s is the

norm limit of finite sums of elements of the form

y = (ida, ®ids,, ® ids,, @ 0)((1a,es,, ® 5’ © ') (Wh)505 (a)124(Wiky)34)
= (14, ® 1g, ® &) (ida, ® ids,, @ ids,, © ou')(Wh)540% (@) 124 (Wi )34),

where s € Sy, u' € K(53,) and ¢ € B(H5;1).. We recall (see above) that we have
(ida, ® 0% © ids, )% (@) = (Wi)3a01) (@)12a(Wi)sa
Therefore, we have
y = (1a, @ Lg,, ® §)(ida, ® 0%,)((ida, @ ids,, @ gu')35) (a)),
which proves that 2 ® s € [(14, ® S22)d4,(A2)].
In particular, d4, is non-degenerate. By using (idg,, ® 0%,)0%2, = (0%, ® idg,,)d?,, we have
(ida, ®idg,, ® 03,)(ida, ® 6%,)(m) = (ida, ® 61, ®idg,,)(ida, ® 61,)(m) for all m € M(A; @ Sia).

In particular, we obtain the coassociativity of d4,, that is (ida, ® 63)04, = (64, ® ids,, )04,

3. Let us consider (A;,d4,) and (B, dp,) two G;-C*-algebras. Let us denote Ay = Indgf(Al)
and By = Indg?(By). Let fi € Morg, (A1, By) and let f; ®ids,, be the unital strictly continuous
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extension to M(A; ® Sis) of the *-homomorphism A ® S1o - M(B1®S12) ; « — (fi1®idg,,)(x).
Let a € Ay, b € By and w, ¢ € B(J;).. Since f is Gy-equivariant, it is clear that

(f1 ®ids,, ®1idg,, )05 = 6% o fi. (6.1.2)

Let us denote z = (id4, ®idg,, ®w)5£121)(a) and y = (idp, ®idg,, ® ¢)5g1)(b). By (6.1.2), we have

(fi ®ids,,) )y = (idp, ®ids, ®w® O)(((fi @ ids,, @ ids,, )85, (a)) 12305, (D)124)
= (idp, ® ids,, ® w ® 9)(35. (f1(a))12305 (D) 124).

In virtue of Remark [6.1.3[ 1, we have (f; ® idg,,)(x)y € Bs. Hence, (f; ®idg,,)(A2)By C Bo.
However, we also have the inclusion By(f; ® idg,,)(As) C By since fi is stable by the involution.
We then obtain (f; ® idg,,)(As) C M(Bs). Therefore, f; ® idg,, restricts to a *-homomorphism
fo: Ay — M(B3). Moreover, it is clear that f, is non-degenerate. In particular, fo extends to
a unital strictly continuous *-homomorphism fy : M(Ay) — M(Bsy). Now, the fact that f; is
Go-equivariant is straightforward. Indeed, if € Ay we have

(f2 ®id5’12)5A2 (ZE) = (fl ®id512 ®id521)(id141 ®5%2)($) = (idB1 ®5%2)(f1 ®id512)(l‘) = 6Bz(f2($))

]

Starting from a continuous action of G, on a C*-algebra A,, we define mutatis mutandis the
following faithful non-degenerate *-homomorphisms:

0%, =04y, 04 = (ida, ® 0ky)da, 1 Ay — M(Ay ® Sy1 @ o).
By 1dent1fy1ng 512 with L12(512> - B(%Q), we define

dZ (Ay) = [(ida, ® ids,, @ w)dYL (a); a € Ay, w € B(Hy).] € M(Ay @ Soy).
We have the following result:
Proposition 6.1.5. Let us denote Ay := Indg;(AQ) C M(As ® S91). We have:
1. Ay is a C*-subalgebra of M(Ay @ Sa1).

2. [A1(14,®8591)] = As®S91 = [(14,®521)A1]. In particular, the inclusion Ay C M(As®Sa1)
defines a faithful non-degenerate *-homomorphism and we have M(A;) C M(Ay ® Sa1).

3. Let us denote 64, := (ida, ® 63,) 1 4,- We have §4,(A1) C M(A; @ S11) and 64, is a

continuous action of Gy on A;.
4. The correspondence Indgé 1 Go-C*-Alg — G1-C*-Alg s functorial.
In the following propositions, we investigate the compositions of induction functors:
G1-C*-Alg — Go-C*-Alg — G1-C*-Alg, Go-C*-Alg — G1-C*-Alg — G,-C*-Alg.

Proposition 6.1.6. Let (A1,84,) be a G-C*-algebra. Let us denote Ay = Indg?(A;) endowed
with the continuous action d4, = (ida, ® 6%,)[a,. Let us consider C' = Indg!(As) C M(A2® Sa)
endowed with the continuous action dc = (ida, ® 63,)]c. Then, we have:

1. C CM(AQ@SQl) CM(A1®512®521) andC: ;21)(141)
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2. The map
m o (A1, 04,) — (C,0¢)
z s 69 () = (ida, ® 62)d4, (2)

is a Gy-equivariant *-isomorphism.

3. The map
0%, - Al — M(A® Sy)
a — 0P(a) = (ida, ® 6%)8a, ()
is a faithful non-degenerate *-homomorphism such that (63, (A1)(1a, ® S21)] = A2 ® Sa
and (04, ®1idg,, )05, = (ida, ® 03,)0%, .

Proof. By unfolding the C*-algebra C', we obtain

C= [(idAl ® idS12 ® id521 Qw ¢) (idz‘h ® i(15'12 ® 5%2 ® i(:1521)(1(:1141 ® 5%2 ® id521)5£121) (CL) )
a € Ay, w € B(Hs)., ¢ € B(Hs1).].

In particular, we have C' C M(A; ® S12 ® Sa1). Moreover, by using coassociativity formulas we
obtain

(ida, @ idg,, ® 63,®ids,, )(ida, @ 6% @ ids,, )05 (a)

= (idy, ® 0%, ® idg,, ® idg,,)(ida, ® 61y ® idg,, )(ida, ® 67,)04, (a)
(ida, ® 07, ®idg,, ®idg,, )(ids, ® idg,, ® 63,)(ida, ® 01,)d4, (a)
(ida, ® 67, ®idg,, @ ids,,)(ids, ® idg,, ® 63,)(04, @ idg,, )d4, (a)
((idg, ® 63,)04, ®idg,, ®ids,,)(ids, ® 63,)04, (a)
= (5221) ® ids,, ® id521)51(421) (a),

for all @ € A;. Therefore, we have
C =00 (da, ®w @ $)6F) (a); a € Ay, w € B(Hs)., ¢ € B(H3).).

Since 0% (s) = (W) (1@ s)W, for all s € Sy, we have 0% (a) = (W})330, (a)13(W))as for all
a€ Ay fwe B(Hs)., ¢ € B(H41), and a € Ay, we have

(ida, ®w ® ¢)5£121)(a) = (id4, ® Wllz(w ® ¢)(W112>*)(6A1(a)13>-
Since W, : 54, @ 54, — A3y @ H4, is unitary, we obtain

(ida, @ w @ ¢)05(a); a €Ay, w € B(HAs)., ¢ € B(H1).]
= [(ida, ® w ® ¢)(d4,(a)13); a € A1, w € B(Hz), ¢ € B(H).]
[(idAl ® ¢)5A1(a) ; a € Ala ¢ € B(%l)*] == Al-

In particular, C' = 5&121)(141). Since the *-homomorphism (51(421) is faithful, we obtain that m; is a
*_isomorphism. Let us prove that m; is Gi-equivariant. Let a € A, we have

50<7T1 (a)) - (idA1 ® idSlQ ® 6%1)(1(1141 ® 5%1)5141 (CL) = (idz‘h ® 6%1 ® idSll)(idAl ® 5%1)5141 (a>

= (ida, ® 6%, @ idg,,) (04, ® ids,, )34, (a) = (85 @ ids,,)da, (a) = (1 ©idg,,)da, (a).

The statements 1 and 2 are proved. The last statement follows from the first one, Proposition
2 ([C(1A2 X 521)] = A2 X S21) and the formula ((5%2 X idsﬂ)(gfl = (id512 & (5%1)(5%1 ]
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Starting from a continuous action of G, on a C*-algebra A, we obtain mutatis mutandis the
following result:

Proposition 6.1.7. Let (As,d4,) be a Go-C*-algebra. Let us denote Ay = Indg;(Ag) endowed
with the continuous action §4, = (ida, ® ), Let us consider D = Indg*(A;) C M(4;® S12)
endowed with the continuous action dp = (ida, ® 0%)|p. Then, we have:

1. D C M<A1 & Slg) C M(A2 &® 521 &® Slg) and D = (51(412)(142)

2. The map
T - (A2,5A2) — (D,(SD)

a — 04)(a) = (ida, ® 6k)da,(a)
is a Go-equivariant *-isomorphism.
3. The map
0, - Ay — M(A; ® Si2)
a — 04)(a) == (ida, ® 63,)0,(a)
is a faithful non-degenerate *-homomorphism such that [0},(A2)(1a, ® Si2)] = A1 @ Sia
and (04, ®idg,,)0}y, = (ida, ® 01,)d}, .

Therefore, we have established the following result:

Theorem 6.1.8. Let G be a colinking measured quantum groupoid between two regular locally
compact quantum groups Gy and Go. The induction functors

Indgj : G1-C*-Alg — Go-C*-Alg 5 (A1,04,) — (A = Indgf(zﬁh),@l2 = (ida, ® 0%)[a,),

Indg! : Go-C*-Alg — G;-C*-Alg ;  (A2,04,) = (A1 = Indg! (As), 04, = (ida, ® 631 4,)
are inverse of each other.

Proof. This follows from Propositions [6.1.6] and [6.1.7] It only remains to verify the naturality.
Let (A1,04,) and (A},047) be two G1-C*-algebras. Let us denote (Ag, da,) = Indgf(Al,éAl),
(AY,04;) = Indg?(A7,641), (C,6c) = Indg}(As,64,) and (C',6cr) = Indgl(Ay, 0a;). Let us
then consider m : A; — C and 7} : A} — C’ the Gy-equivariant *-isomorphisms defined in
Proposition 1. Let f € Morg, (A;, A}), we denote f, = (f ® idg,,)[a,€ Morg,(As, A}) and
fex = (f« ®1ds,, ) [ € Morg, (C, C") (see proof of Propositions 3 and 4). We have

foom = (f.@idg,)m = (f @ids,, ©ids,, )85 = (f @ ids,, @ ids,, ) (ida, ® 63)d4,
= (idA’l ® 5%1)(f ®idg,, )04, = (idA’l ® 5%1) © 5A’1 of = 5,(42/1) of = 7T/1 of.
O
Proposition 6.1.9. Let .k = 1,2, j # k. We have:

1. Ify € Sji, we have 5jk(y) € Indgf(Sjj). Moreover, the map

(Sjkafsfk) — Ir}dgf(sjj75§j)

is a Gy-equivariant *-isomorphism.
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2. If y € Sj;, we have 6%,(y) € Indgi(Sjk). Moreover, the map
: G,
(S35, 03;) — Irklde(Sjk’é?k)
y — 05;(y)
is a Gj-equivariant *-isomorphism.
Proof. 1. By definition, we have

Indg*(S;) = [(ids,, ®ids,, @ w)dL" (s): s € Sy, w € B(H,).]-

However, 04" := (ids,, ® 05,)87; = (&), ® ids,,;)6%;. Hence,

VN
(ids;, @ ids,, ® )6\ (s) = & (ids,, @ W)OE(5), s € Sj5, w € B(Hy)..

Moreover, we have Sj, = [(ids,, ® w)d};(s); s € Sj;, w € B(H; ). (see Proposition W
3). Therefore, if y € S;; we have 5§k(y) € Indgf(Sjj). Actually, we have even proved that
Indgj(Sjj) = 5§k(3j ). Since 6§k is faithful, the map S; — Indg;(Sjj) Y= 5§k(y) is a *-
isomorphism, which is also Gj-equivariant in virtue of (idg,; ® 0%,)07, = (6%, ® ids,, )05

2. In a similar way, we prove the second statement by using the formulas:

(idek ® (%k)a;ck = (553 ® id51k>6§k7 Sjj = [(idsjj ® w>5jk<y)a Y€ Sjkv w € B(’%?k)*]v
(ids,, ® 03)d5; = (0] @ ids,, )75
O

By applying the induction procedure established above and Lemma [5.1.9, we will define a
correspondence G1-C*-Alg — G-C*-Alg inverse of G-C*-Alg — G1-C*-Alg (see Corollary [5.1.8)).

Notations 6.1.10. Let (By,dp,) be a G-C*-algebra. Let (Bs,dp,) be the induced G,-C*-
algebra, that is to say By = Indgf(Bl) and g, = (idp, ® 62%,)Ip,. In virtue of Propositions
and [6.1.7, we have four *-~homomorphisms:

0, : B = M(Bp ® Sy;),  j,k=1,2.

Let us give a precise description of them. We have denoted 0y, := 05, and 0%, := dp,. The
*_homomorphism 5%1 : By = M(By ® Sa1) is given by

be By 6% (b) =069 (b) € M(By® Sn) ;5 8% (b) := (idp, ® 62)05 (b), b€ By,
whereas the *-homomorphism 5};2 : By — M(B; ® S12) is defined by the formula
(71 ©ids,,)05,(0) = 6) (D), b€ B,

where
51(312) = (idp, ® 03,)05,, ™ : By — Indg;(Bg) b 5](5?1)(1)).

Lemma 6.1.11. For j, k.l = 1,2, we have:
1. (0, ®@ids,;)0, = (idp, ® Jf;)d, -
2. [5lBk(Bk)(1Bl X Slk)] = Bl & Slk'
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3. B = [(idBl ®w)5gk(Bk), w e B(%k)*]

Proof. 1. We have already proved the coassociativity formulas corresponding to the cases
(J, k1) =(1,1,1), (4, k,1) = (2,2,2) (Proposition 2) and (j,k,1) = (1,2,2) (Proposition
6.1.6| 3). The cases (j,k,1) = (1,1,2) and (j,k,1) = (2,1,2) holds by definition of the *-
homomorphisms 6% and d5, . Indeed, for the first case we have

(6%1 ® id511)5131 = (idB1 ® 6%1 ® id511)(6131 ® idsn)(SEl = (idBl ® 5%1 ® idsn)(idBl ® 5%1)5131
= (idBl ® idSlz ® 5%1)<id31 ® 6%1)61191 = (idB2 ® 5%1)5231

For the second one, since 6%, (b) = (5](331)(b) = m(b) € Indg! (By) C M(B2 ® Sa;) for b € By, we
have

(03, ®ids,,)0, = (m @ ids,,)dp, = 0] = (ids, © 03)d5,.
The remaining cases, i.e. (j,k,1) = (1,2,1) and (j, k,1) = (2,1, 1), are not immediate. In order
to check out the first case, we compose by 0% ®idg,, ®idg,, and we use some already established
coassociativity formulas as follows:

idp, ® 3y ®idg,, ) (03, ®ids,, )05, (.k,1) = (2,1,2)
idp, ® 03, ®idg,, )(idp, ® 63,)0%,, (4, k1) = (1,2,2)
)
(

(03, ®ids,, ®idg,, )(0p, ® ids,, )05, = (
(
(idp, ® ids,, ® 67)(idp, ® 551)51231
= (
= (

1

1d32 ®1d521 ®(5 ) 521 ®id511)(5}31, (],l{?,l)
5231 ® idSlQ ® idSZl)(ldBl ® 5%1)51B1

(1,1,2)

Hence, (0p, ® idg,, )05, = (idp, ® 0f,)0p, by faithfulness of 0% . We prove in a similar way the
last case by composing by 63 ® 1ds11 ®idg,,-
2. In virtue of Proposition 2 and Proposition [6.1.6] 3, it only remains to prove that
[0%,(B2)(1p, ® Si2)] = Bi ® Sia. Let us denote C' = Indg!(B,) and D = Indg?(C). In virtue
of Proposition [6.1.4] 1, we have [D(1¢ ® Si2)] = C ® Si». Note that (7' ® id512)5§2) = 0p,,
= (51(;2)(32) (see Proposition [6.1.7/ 1) and C' = m(B;) (see Proposition [6.1.62). Then, we
obtain the result by composing by the *-isomorphism 7; ' ® idg,,.
3. This is a straightforward consequence of the previous statement. n

Therefore, we have the following result:

Theorem 6.1.12. Let (By,0p,) be a G1-C*-algebra. Let By = Indgf(Bl) be the induced Go-
C*-algebra. Let us denote B = By @ By and let w§ : M(B), @ Sy;) = M(B ® S) be the strictly
continuous *-homomorphism extending the canonical injection By @ Sy; — B ® S. Let us
consider the *-homomorphisms g : B — M(B ® S) and B : C* — M(B) defined by:

A0
Z W;'C © 52’3-([)]')7 b= (bth) €B ) 5B<>‘aﬂ) = <0 N) ) (Anu) < (C2’
k,j=1,2
Therefore, we have:

1. (0, BB) is a continuous action of G on B.

2. The correspondence G1-C*-Alg — G-C*-Alg; (B1,0dp,) — (B, 0s, Bp) is functorial.

Proof. The first statement is an immediate consequence of Lemmas [5.1.9[and [6.1.11] The second
one follows from Proposition 3 and Lemma 2. O
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Theorem 6.1.13. The functors

G-C*-Alg —s G,-C*-Alg,  G,-C*-Alg —s G-C*-Alg
(Aa(SAaBA) — <A1a5,141) (B17531) L (BaéB7ﬁB)

are inverse of each other.
For the proof, we will need the following result:

Proposition 6.1.14. Let (A,04,54) be a G-C*-algebra. With the notations of Proposition
we denote:

(A2,07) = Ind3* (A1, 0%,),  (A1,67) = Indg! (As, 63,).

i) i)
Then, we have:
1. If v € Ay, we have 6}, (x) € Ay € M(A, ® S1y) and the map
Tyt (A2,0%,) — (Ag,07)
r — 0y (2)
is a Go-equivariant *-isomorphism.

2. If x € Ay, we have 63, (x) € Ay C M(Ay ® Say) and the map

7~Tll (A1,61141> — (A1,521>
r — 0%, (x)
is a Gq-equivariant *-isomorphism.

Proof. Let us prove the first statement since that of the second one is similar. In virtue of
Proposition 3, we have Ay = [(ida, ® w)d% (a); a € Ay, w € B(H5;).]. Let a € Ay and
w € B(H41).. By using Proposition 2, we have

51142 (idAz ® w>5,241 (a> = (idAl ® idS12 ® w)(51142 ® id~921)51241 (a)
= (idz‘h ® idS12 ® W)(idz‘h ® 5%1)61141 (a)
= (id4, ® ids,, ® )05 (a).
This proves that 6} (z) € A, for all x € A;. Actually, we even have

04, (Az) = [0, (ida, ® w)675,(a); a € Ay, w € B(H51).]
= [(ida, ® ids,, @w)6T) (a); a € Ay, w € B(H#).) =: As.

Moreover, 5}42 is a faithful *-homomorphism, then 7, is a *-isomorphism. Finally, the fact that
Ty is Go-equivariant is just a restatement of (ida, ® 035)0%, = (0}, ® idg,, )03, (see Proposition

2). 0
Proof of Theorem |6.1.15. 1t is clear that the composition of functors

G1-C*-Alg — G-C*-Alg — G1-C*-Alg
is isomorphic to the identity functor via the Gi-equivariant *-isomorphism

A — A e{0} ; a~(a,0),
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for each G;-C*-algebra (Aj,d4,). Let us prove that the composition of functors
G-C*-Alg — G-C*-Alg — G-C*-Alg

is isomorphic to the identity functor. Let (A,d4,54) be a G-C*-algebra. Let us use the
notations of , for j = 1,2 we denote A; = ¢;A, where q; = Ba(ej). Let us consider the
*_homomorphisms (SIIZJ, t Aj = M(A, ® Sy;) for j, k = 1,2 defined in Proposition m Let us
denote:

(Bl7 531) = (Al, 51141), (BQ, 532) = Indgf(Bl, 531).

Let (B,dp, fg) be the G-C*-algebra associated with the G;-C*-algebra (B, dp,) (see Theorem
6.1.12). Let 7y : Ay — Bs be the Gy-equivariant *-isomorphism defined in Proposition |6.1.14] 1.
Let us consider the map 7: A — B given by

7(a) = (q1a, T2(qea)), a € A

By proposition 1, it is clear that 7 is a *-isomorphism. It it also immediate that we have
7034 = fBp. Hence, 7(A;) C Bj for j = 1,2. Then, let us denote 7; := 7[4,= A; — B;, j = 1,2.
Note that 7 : Ay — By; a — a and 75 = Ty. Let us prove that (7 ® idg)d4 = dp o 7. It then
amounts to proving that

(e ® idg,, )%, = 0, 075, Jk=1,2.

Let us proceed by disjunction elimination. If (j,%k) = (1,1) there is nothing to prove. Assume
that (j,k) = (1,2). We have

03, 0m =05 oy = 8% = (ida, ® 62,)0%, = (6, ®ids,, )02, = (T2 ®ids,, )03, = (12 ®ids,, )67,

The formula corresponding to the case (j, k) = (2,2) is just the Gy-equivariance of 7y. Let
us look at the case (j,k) = (2,1). We have to prove that dp, o T, = d},. By composing by
m ® idg,, (see Notations [6.1.10]), we have

(m1 @ ids,,) 0 8, 0 Ty = 8. 0 7y = (idp, @ 0ky) © 8% 0 Ty = (idp, @ 0ky) (T2 © ids,, )07,
= (7?2 ® idSQl ® id512)(idA2 ® 552)51242 = (77—2 ® idS21 ® id512)<51241 ® id512)51142

and (T ® idg,, )03, = (04, ®idg,, )03, = (ida, ® 03,)0y, = 51(421) = 7. Therefore, we have
(m1 ®idg,,) 0 dp, 0 T2 = (m ®idg,,)d},. We conclude that dp, o T = 0}, by faithfuless of ;.

Let us verify the naturality of the isomorphism 7. We keep the previous notations and we
introduce analogous notations associated with a second G-C*-algebra (A’,d4/, Ba). Let us
consider f: A — M(A") a G-equivariant non-degenerate *-homomorphism. Let

f1 € Morg, (A1, A)), f2 € Morg,(Az, Ay)  (see Lemma 1)
be the images of f by the functors
G-C*-Alg — G;1-C*-Alg, G-C*-Alg — Go-C*-Alg.
Moreover, let us denote Indgf f1 € Morg, (Ba, B}) (see proof of Proposition 3, we recall that

By = A; and B] = A}) the image of f; by the functor Ind&>. Finally, let f. : B — M(B') be
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the G-equivariant non-degenerate *-homomorphism associated with f; and Indgf f1 (see Lemma
2), that is the image of f by the functor

G-C*-Alg — G;-C*-Alg — G-C*-Alg.

Let tp + M(Bj) = M(B') (resp. tar : M(A}) — M(A)) be the strictly continuous *-
homomorphism extending the canonical injection B; — B’ (resp. A7 — A'), j = 1,2. We
have

fi(b) = g 0 fi(b1) + tpy o Indg? fi(bs), b= (bi,bo) € B.
In particular,
fo(r(a)) = 1p; 0 filqua) + g, 0 Ind? f1(Ta(ga0)), a € A.
However, in virtue of Lemma 1, we have
Indg? f1(7a(q20)) = (f1 ©1ds,,)04, (g2a) = 6, © fa(gea) = T5(f2(qa)), a € A.

Hence, we have
Indg fi 0 Ty = 75 0 fo.

By definition of 7' : A" — B', we have tp; o Ty = 7' 014, and tp; = 7' 0 14,. Hence,
vp o filqua) = 7'(tas o fi(qra)), tpyo Indgffl(%g(qga)) = 7' (tay(foqa))), ac€ A

But f(a) = 14 o fi(q1a) + tay o fo(qea) for all a € A. Then, we conclude that f, o7 =7"0 f.00

6.2 Induction and Morita equivalence
In this paragraph, we will prove that the equivalences of categories

G-C*-Alg — G1-C*-Alg, G;1-C*-Alg — Go-C*-Alg, G-C*-Alg — Go-C*-Alg
exchange the equivariant Morita equivalences.

Let us introduce the following general definition:

Definition 6.2.1. Let G be a measured quantum groupoid on a finite basis and (S, ) the
associated weak Hopf-C*-algebra. A linking G-C*-algebra (or a G-equivariant Morita equivalence)
is a quintuple

(‘L 6J7 5J7 €1, 62)

consisting of a G-C*-algebra (J, d,, 5;) and nonzero self-adjoint projections ey, eo € M(J) such
that:

1. e+ ey = 1].
2. [JeJ] = J,i=1,2.

3. 8s(ei) = " (e; @ 1g), i =1,2.
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Remark 6.2.2. As a consequence, we have [e;, 5;(n°)] = 0 foralln € N and i = 1,2. In
particular, we have [¢7/, e; ® 15] = 0. Indeed, if n € N and i = 1,2 we have

85,(85(n%)es) = 6,(B,(n°))6s(e;) = ¢7*(1; ® B(n°))g"*(e: ® 1s) = ¢ (e; ® 15)(1; ® B(n°)).

Therefore, since 6;(1;) = ¢°7* we obtain

35(Bs(n%)e;) = ¢ (e; @ 15) (1, @ B(n°)¢** = &, (eif(n°)).
The result follows by faithfulness of ¢ ;.
Let (J,dy,Bs,¢€1,e2) be a linking G-C*-algebra. Let us use the notations of

q = Bi(ej),  Jj=q;J, 52 = M(Jy ® S;j).

Let ¢j : M(J;) = M(J) be the strictly continuous extension of the inclusion map J; C J such
that ¢;(1;) = ¢;. For all 7,7 = 1,2 we have [e;, q;] = 0, then e;q; is a self-adjoint projection
of M(J). Besides, we have e;q; € ¢;M(J) = 1;(M(J;)). Then, there exists a unique nonzero
self-adjoint projection e; ; € M(J;) such that ¢;(e; ;) = €;g;.
Lemma 6.2.3. With the above notations, for alli,j,k = 1,2 we have:

1. 61’j + GQJ = 1]]., [Jjei,ij] = Jj.

2. 5?],(6@‘7]') =€k X 1Skj'
In particular, (J;, 5§j, €1, €2,;) is a linking G;-C*-algebra.
Proof. 1. tj(e1; + ez;) = e1q; + eaq; = q; = 1;(1;,). Hence, e1; +ex; =15,
2. We have [Jje; ;J;] C J; since e;; € M(J;). If © € J; C J, z is the norm limit of finite
sums of elements of the form ye;z, where y,z € J. Then, x = ¢;z¢; is the norm limit of
finite sums of elements of the form g;ye;2q; = (q;y)eiq;(gj2) = ¢j(y;€i;2;), where y,z € J and
y;j = q;y, zj = ¢;z € J;. Then, x € [J;e; ;J;] and the result is proved.
3. We have 6J(€iq]‘> = €;q19P1;+€;q2QP2;. Hence, (qk®1s)6j<€iqj‘) = €;qrQOPpr; = W.;?(ei,k@lskj)?

k

where 77 : M(Jp ® S;) — M(J @ S) is the strictly continuous extension of the inclusion map

Jr ® Si; € J ® S. However, we have (gx ® 15)0;(1;(m)) = 7} o 5§j (m) for all m € M(J;) (see
Proposition [5.1.3). Hence, &5 (e;;) = eis @ g, as w7} is faithful. O

We have proved that the image of a G-equivariant Morita equivalence by the functor
G-C*-Alg — G;-C*-Alg; (J, 05, 85) = (J;,67.)

is a linking G;-C*-algebra. Conversely, let (J1,0,,,€e11,€e21) be a linking G;-C*-algebra. Let
(J,07,8) be the image of (Ji,0,4,) by the functor

G1-C*-Alg — G-C*-Alg.

We recall that we have J = J; @& J,, where J, = Indgf(Jl) is endowed with the continuous
action ¢z, = (id;, ® 6%,)[ s, of Go. The coproduct is given by the formula:

5](56) = Z 71';-C O(SL]Z(CU]')? T = (%1,1‘2) (- J,

k,j=1,2

where 7 : M(J), ® Sg;) = M(J ® S) are the strictly continuous extensions of the canonical
injections J; ® Sg; = J ® S and 5§j J; = M(J, ® Sg;) are the *-homomorphisms defined in
Notations [6.1.10, 7,k =1, 2.
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Notation 6.2.4. Let us consider the nonzero self-adjoint projections
eioi=e1 ®1lg, € M(Jy ® S1a), i=1,2.

Proposition 6.2.5. With the above notations, (J2,5(2]2,6172,6272) is a linking Go-C*-algebra.
Moreover, for all 1,75,k = 1,2 we have

0 (€i) = €ir @ Lsy,.
Proof. Let i =1,2. Since 6, (e;1) = €1 ® lg,,, we have:
62'72(idJ1 ® idSIZ ® w)ési) (I) = (idJl b2y idSu ® w>5321)(ei,1x)7

(id), ® ids,, ® W)6 ()es2 = (idy, ®ids,, ® w)6P (weiy),

for all x € J; and w € B(5%;).. In particular, it follows that e; 5 € M(.J3) (since e;; € M(Jy))
and ey + €20 =1, (since e;1 +ex; = 1,,). It is clear that

07, (ei) = €ia®1s,, j=1,2. (6.2.1)
Let us prove that [Jee; 2.J5] = Jo. In virtue of the formulas
Jy = [(isz ®W)531 (x)u re,we B(%ﬂ*], Ji = [Jlei,ljl];

it amounts to proving that (id;, ® w)d? (ae;1b) € [Jae;2.0] for all a,b € J; and w € B(H#5)..
Let us fix a,b € J; and w € B(H5;).. Let us write w = sw’ with s € Sy; and W’ € B(J%;).. By
Lemma [6.1.11) 2, we have [03 (J1)(1, ® So1)] = Jo ® Sa1. Therefore,
(idJ2 ® w)‘?h (aei,lb) - (idJQ ® w/>(531 <a> (6i,2 ® 1521)5?]1 (b)(1J2 ® S))
is the norm limit of finite sums of elements of the form
(idJ2 (024 w’)(é?,l (a)(ei’Q X 1521)(y & 8/)) = (id]2 X S’w’)éi (a)emy c J2€1'72J2, Yy c JQ, 8/ € 521.
Finally, we also have
0y, (eij) =€ ®1g,;, j=1,2
For j = 1, there is nothing to prove. For j = 2, we compose by the *-isomorphism 7; ® idg,,,

where m : J; — Indg;(l]g) ;X 5%) (x) (see Notations [6.1.10). By using the formulas (6.2.1)),
we have

(m ®id512)5}12 (€i2) = 53? (€i2) = (idy, ®5%2)532 (€i2) = €i2®1g, ®1g, = (m ®idg,,)(e;1 ®1gy,).
Hence, 0}, (e;2) = €;1 ® 1g,, and the proposition is proved. O
Notation 6.2.6. Let us denote

e; = (€e;1,€2) € M(J), i=1,2.
The following result is then an immediate consequence of Proposition [6.2.5

Corollary 6.2.7. With the above notations, the quintuple (J,d;, s, €1,€2) is a linking G-C*-
algebra.

Therefore, we have proved that the image of a linking G;-C*-algebra by the functor
G1-C*-Alg — G-C*-Alg;; (J1,0,,) = (J,6,,85)
is a linking G-C*-algebra.
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6.3 Induction of equivariant Hilbert modules

In order to extend the induction procedure to equivariant Hilbert C*-modules (see [3]), we will
need to induce degenerate equivariant *-homomorphisms. We begin with the following technical
lemma:

Lemma 6.3.1. Let (By,dp,) and (J1,95,) be G1-C*-algebras. Let f; : By — M(Jy) be a
*_homomorphism such that:

(a) For some approzimate unit (uy) of By, we have fi(uy) — e; € M(Jy) with respect to the
strict topology.

(b) (fl ® idsll)(SBl = 5J1 o f1.
Then, we have:

1. ey is a self-adjoint projection, which does not depend on the approximate unit. More
precisely, for all approzimate unit (v,), of By we have fi(v,) — €.

2. (5]1(61) = €1 & 1511.
3. For all T € M(B; ® Si3), we have
(fl ® idSlz)(T> = (61 ® 1512)<f1 ® id512)(T) (61 ® 1512)'

Proof. The assertion 1 and the fact that (b) makes sense follow from (a) and Lemma [4.1.1] In
particular, f; extends uniquely to a strictly continuous *-homomorphism f; : M(B;) — M(J;)
such that fi(1p,) = e;. Moreover, f; ® idg,, extends uniquely to a strictly continuous *-
homomorphism f; ® idg,, : M(B; ® S12) = M(J; & S12), which verifies

(fl ® id512>(131®312) =e® 1512'
It then follows immediately that:
(fl ® idSm)(T) = (61 ® 1512)(f1 ® id512)(T)(61 ® 1512)’ T e M(Bl ® 512)‘

We have (f; ®ids,,)s,(15,) = €1 ® 1g,,. Besides, if (u,), is an approximate unit of B; we have
(fl ® id511>531 (uk) =0y (f1<u>\)) - 5J1(61)' Hence, 4, (61) =e1®lgy,. [

Proposition 6.3.2. With the hypotheses and notations of Lemma|6.3.1, we denote:
(B2, 0p,) == Indg*(B1,6p,),  (J2,05,) = Ind@(J1,05,), e2:=e1® lg,.
Then, we have:
1. ey is a self-adjoint projection of M(J2) and (f; ® idg,,)(B2) C eaM(J2)es.
Therefore, we consider the *~homomorphism Indgffl : By — M(Js) defined by
Indg? f1(b) = (f1 ®ids,,)(b), b€ Bo.
We will denote fy = Indgf f1 for short.

2. For all approximate unit (v,), of Bz, we have fo(v,) — ey with respect to the strict
topology.
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8. (f2 ®idgy,)dB, = 5, 0 fa.
4. Let Fy € ey M(Jq)ey such that:

[ ] 6J1(F1) - F1 ® 1511.
[ ] VbEBl, [Fl,fl(b)] €€1J1€1, fl(b)(Fl_Fl*) €€1J161, fl(b)(Ff—l) €€1J1€1.

We consider Fy := Fy ® 1g,, € eaM(J3)ea. Then, we have:

[ ] 6J2(F2) — F2 ® 1522.
o Vbc BQ, [FQ, fg(b)] c €2J2€2, fg(b)(Fg — F2*) c €2J2€2, fg(b)(Fg — 1) c €2J2€2.

Proof. 1. It is clear that ey is a self-adjoint projection of M(J; ® Si2). By Lemma 2,

we have 6521)(61) =e ®1lg, ®1g,,. Let us take a normal state ¢ on B(7%;). Let x € J; and
w € B(H51)s, we have

ea(idy, ®idg,, @ w)oY () = (id, ® ids,, ® ¢ ® w)(85 (e1)1250Y; (¥)124).

Since e; € M(J;) we have eq(idj, ®idg,, ®w)5§? () € Jy by Remarks|6.1.3[ 1. Hence, eaJo C Jo.
But J; is stable by the involution and e, is self-adjoint. It then follows that Jyey C Jo and
ey € M(JQ)

Let us prove that (f; ® idg,,)(B2) C eaM(Jy)ea. By Lemma 2, it is enough to prove
that (f1 ®idg,,)(Bs2) C M(Jy). But it also suffices to prove that (f; ® idg,,)(Bs)J2 C J2 since
f1 ®idg,, is a *-homomorphism and Bs and J; are stable by the involution. Finally, it then
amounts to proving that

(fi ®ids,,)((idp, ® ids,, ® w)d5) (b)) (idy, @ ids,, ® )05 (x) € Jo,
for all w, ' € B(H41)«, b € By, v € Jy. Let us fix w, W € B(5)s, b € By and z € J;. We

have
(f1 @ ids,,)((idp, ® ids,, © w)d%s. (b))(idy, @ ids,, ® W)} (z)
= (idy, @ idg,, @ w @ W) (((fi @ ids,, ® idg,, )05 (0))12305 ()124 ).

Since (f1 ®idg,,)0p, = d,, o f1, we have (f; ® idg,, ® idgm)dgl) = 5521) o fi. Then, it follows from
the fact that fi(b) € M(J;) and Remarks 1 that
(f1 @ ids,,)((idp, @ ids,, ® w)3g) (1) (idy, @ ids,, ® W)} (2)
= (idy, ®ids,, ® w @ )6 (f1(0)) 12305 ()124) € Jo.

2. Note that we have ey fo(b) = fo(b) = fo(b)es for all b € By. By Lemma [4.1.1] we have to
prove that ey Jy = [fa(B2)Js]. The inclusion [fo(Bs)Ja] C eaJs is given. Conversely, note that
we have

esJy = [(id), ® ids,, © w)dP (fi(b)x); b€ By, x € Ji, w € B(Hy).).

Indeed, let us fix = € J; and w € B(74;).. Since 5521)(61) = ey ® lg,,, we have
(idJl ® delQ ®w)5§21)(f1 (b)l’) = (idJl ® idSlz ®w>5521)(61f1(b)$) - eQ(idjl & idS12 ®w>6521)(f1 (b):)?)

In particular, we have [(id), ® idg,, ® w)éf,?)(fl(b)x); be B,z e Ji,w e B().] C eals.
Conversely, let us fix € J; and w € B(J;).. Let us recall that by assumption we have
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fi(uy) — e; with respect to the strict topology. Hence, fi(uy)x — e;x with respect to the norm
topology. Therefore,

ea(idy, ® ids,, ® w)3Y) () = (idy, ® ids,, ® )35 (er2) = lim (idy, @ ids,, © )35 (fi(u)2),
with respect to the norm topology and the equality is proved. It only remains to show that
(id), ® ids,, @ w)6C (f1(0)z) € [fa(Ba) o), € Jy, b€ By, w € B(H)..
Let us fix x € J;, b € By and w € B(H5;).. Let us denote w = sw’ with s € Sy; and
W' € B(H).. Since (f @idg, ® idg,, )05 = 67 o f1, we have
(i, ®ids,, ©w)5 (f1(b)r) = (i, @ids,, ®W)( (i®ids,, ®ids, ) (05 (0)d5) () (Lnes, ©5)).
But, we know that [6521)(J1)<1J1®512 ® So1)] = Jo ® Sa1 (see Proposition [6.1.6/3). As a result,
(idy, ®idg,, ® w)5f,21)(f1(b)x) is the norm limit of finite sums of elements of the form
(id), @ ids,, ® W) (/1 ® idg,, ® ids,, ) (65 (1)) (' ® 8'))

= (id), @ ids,, ® 50)((f1 @ ids,, ® idg,, )05, (b))’

= (f1 ®@ids,,)(idp, ®ids,, ® ') (3% (b))’

= fo((idp, ® ids,, @ 5'w)65) (b)) € fo Bs).Ja,

where 2’ € Jy and s’ € Sy;.

3. The formula (f; ®idg,,)dp, = 04, © f2 is just a straightforward consequence of the definitions
of fo and the actions dp, and d,.

4. Let us prove that FyJy C Jo. Let z € J;, w € B(J;), and ¢ a normal state on B(7%3;).

Since 6521)(F1) =F ®1g, ®lg,,, we have

Fy(idy, ® ids,, ® )85 () = (idy, @ ids,, ® ¢ @ w)(85) (F)12305, (2)124) € Jo

by applying Remark 1 to Fy € M(Jy). Similarly, we prove that Fiy.J, C J; by applying
Remark 1 to Ff € M(J;). Therefore, we have JoFy C Jo and Fy € M(J3). We then have
Fy = exFres € eaM(Jy)es. Now, let us prove that [Fy, fo(b)] € exJaes for all b € By, It follows
from (f, ®idsg,,)0%, = 07, © fi that

fo(B2) = [(idy, ®ids,, ® )35 (f1(D)): b € By, w € B(H).].

Then, if we fix b € By and w € B(.%5%;), we have to prove that
[F, (idy, @ idg,, © w)05 (f1(b))] € eatae.
However, since (55,21)(F1) =F ®1lg, ®1lg,, we have
[y, (idy, ® ids,, ® )05 (fi(D)] = (idy, ® ids,, ® )% ([Fy, f1 (D))

Moreover, we also have

exJoes = [(idy, ® idg,, ® w)é&?)(elxel) cx € J1, w € B(H)..
Indeed, this follows from the fact that, since 6521)(61) =e; ® lg, ® 1g,,, we have

eo(idy, ® idg,, ®w)(5§21)(:c)62 = (idy, ® idg,, ®w)6§21)(elxel), r € Ji, w e B(Hy)..

Therefore, we obtain [Fy, (id; ® idg,, ® w)égz)(fl(b))] € egJaey as we have [F, f1(b)] € e1Jieq
by assumption. The formula d§,,(F,) = F, ® 1g,, is an immediate consequence of the definitions
of F, and the action 0. The remaining formulas are proved in a similar way. m
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Remark 6.3.3. With the notations and hypotheses of Proposition [6.3.2] 4, if for all b € B; we
have:

[y, fi(0)] =0, AG)(F—F) =0, f(b)(FF—1)=0,
then for all b € By we have:

[F27f2(b>] :07 fQ(b)<F2_F2*):07 f2(b)(F22_1):O

Let (B1,6p,) be a G1-C*-algebra. Let (&1, 04 ) be a Gy-equivariant Hilbert Bj-module (see §1.6]).
Let us equip J; := K(& @ B;) with the continuous action 0 of G; compatible with the actions
dg and dp, of Gy on & and B;. Let us consider the following self-adjoint projections:

lgg O 0 0
=5 0) = (0 1)) < et m) = M

We recall that (J1,d,,,€e11,€21) is a linking G;-C*-algebra. In virtue of Proposition [6.2.5] the

quintuple (J2,d,,, €12, €2.2) Where
. Go o _
2 - 1 ) ) 2 T HL, ) - &
(Jg, (5] ) : IIldG (Jl 5]1) €12 e1® 1512 € M(JQ) { 1,2

is a linking G,-C*-algebra. In particular, the C*-subalgebra e;2J2€; 2 of J;, endowed with the
restriction of the action d4,, is a Go-C*-algebra (see Remark [1.6.2)).

By definition of the action dj, the canonical *-homomorphism tg, : By — J; satisfies the

conditions (a) and (b) of Lemma We have the following result:
Proposition 6.3.4. Let us denote (B, dp,) = Ind¢?(B1,6p,). Then, for all b € By we have

Indgfbgl(b) € eg2J2e92. Furthermore, the map

By —  eg9J9€99
b +— Indgep, (b)

is a Go-equivariant *-isomorphism.

Proof. Since vp, is faithful so is Indgf tg,. The *-homomorphism Indgf Lp, takes its values in
M(J3) (and even in eg 9 M(J2)eq2), we will show that its range actually lies in es2.J2e25. Note
that we have

6272J2€272 = [<1dJ1 & id512 X w>5§21)(€271$€2’1>; x e Jl, w € B(%l)*]

(see proof of Proposition ). Moreover, we have vp, (B1) = ez1J1€2,1. Let us fix b € By and
w € B(H41),. Since dy, 0 1p, = (1, ®idg,,)0p,, we have

(idJl ® idSl2 ® w)él(]?)(LBl <b>> = (idJ1 @ idsl2 ® w)<LBl ® id512 ® id521>6g1)<b>
= nd2ep, (idp, ® ids,, ® )3y (b).
Therefore, we have even proved that Indgf g, (B2) = eg2J2e9. It then follows that the map

be By — Indgngl(b) € eg9Ja695 is a *-isomorphism and is also Ge-equivariant in virtue of
Proposition [6.3.2 3. O]

From now on, we will identify the G,-C*-algebras:
BQ = Indgf (Bl), 6272J26272 = 62,2111(1%?(;]1)6272.
Then, by restriction of the continuous action 4, of Gy (see Remark [1.6.2)), we obtain:

Definition 6.3.5. We call the induced Hilbert module of the Gi-equivariant Hilbert B;-module
&1, the Go-equivariant Hilbert By-module Indgf(é"l) = elﬁglndgf((fl)ez,g.
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6.4 Induction and duality

Let us fix a G;-C*-algebra (A;,04,). Let us denote (As,d4,) = Indgf(Al,éAl), the induced
Go-C*-algebra. In this paragraph, we will prove that the Go-C*-algebras Indgf(Al X G % @1)
and Ay x Gy x Gy are canonicall Go-equivariantly Morita equivalent. This result will appear
as a consequence of Theorem applied to the double crossed product A x G x G, where
(A, 84, 4) is the image of (A1, d4,) by the functor G;-C*-Alg — G-C*-Alg. This result will then
be applied to the case of a linking G-C*-algebra.

In what follows, we identify the G-C*-algebras A x G x G and (D, Bp,0p) (see Theorem 4.4.15
and we use the notations of and in particular those of Notations [5.3.7 Let us recall the
main results of §5.3

By identification of the G;-equivariant Hilbert bimodules
Dll’,j = €l7ij€l/,j, Bll’,j = Aj &® K(%/j, %), j, l, l/ = 1, 2,
we have for all j,1,I' =1,2,1 # 1"

e The Hilbert A; ® K(74;)-A; ® K(74;)-bimodule A; ® K(54;, 7;) is a G;-equivariant
Morita equivalence between the G;-C*-algebras A; ® K(74;) and A; @ K(7;).

e The action of G; on A; ® K(.7;;) coincide with the bidual action on the double crossed
product A; x G, x G, up to the identification given by the Baaj-Skandalis duality theorem.

e Endowed with the action

Ot Elvw — L(0F, (Brj) ® i Ep © ),
§ — (V}5)as&12(V}5)5s
5&/,/& = (5@”,’], (B ;) is a Gj-equivariant Hilbert 5@[J(Bl7j>—5gl/’j (By_j)-bimodule.
Theorem 6.4.1. Let j, k,1,I'=1,2, j # k. We have:

1. Sﬁ,,k = 55”,’], (Bw ;) = Indgi (Bu k). In particular, 5’@1’]_ (B;) = Indgi (Bik).

2. The action (5{1,7,? of G; on the bimodule 5{2,7k coincides with the action of G; induced by
that of Gy, on By .

3. The linear map
G
Bll’,j — IndGi (Bll’,k)

is an isomorphism of G;-equivariant Hilbert bimodules over the isomorphisms of G;-C*-
algebras:
G, G,
Bl,j — IndG; (Bl,k)7 Bl’,j — IIICI(GJ€ (Bl’,kz)-
T — 0f (z) T — 6§l,j(x)

Proof. By restriction of the Gj-equivariant *-isomorphism

;. Dj — Indgi(Dk) (see Proposition [6.1.14]),
T —> (5'5],(95)
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we obtain the isomorphisms
_ G,
T Dll’,j — IndG; (Dll’,k>7 l, l/ = 1, 2,
of Gj-equivariant Hilbert bimodules over the isomorphisms of G;-C*-algebras
- G, - G,
Ty, - Dl,j — IHdGi<Dl,k), Tyt Dl’,j — IHdeC (Dl’,k)-

Indeed, this follows from the fact that 6 (er;) = e ® 1s,; and 8p (e ;) = evp @ 1g,; (see
Lemma [5.3.44). We then have

7w (D ;) = (e1r @ s, )Indg’ (Dy)(ev e @ 1s,,) = Indg? (Dur ).

Therefore, the first assertion is proved wvia the identification of the G;-C*-algebras D; and
B, = A; ® K(74; & H55). Moreover, we have

O o (T3 () = (V) osTuwr j(2)12(VE)35 = (1d @ 6;)Fw j(x), x € Dy,

which proves that the action 5ljl,’k of G; on the Hilbert Indgi (By j;)-module 55,7k is the action of
G; induced by that of Gy, on the Hilbert By y-module By ;. The last statement is a consequence

of 1, 2 and Proposition [5.3.15( 2. O]
Corollary 6.4.2. Let j, k,1,I' = 1,2 with j # k, we have:

1. The G;-C*-algebras A; ® K(74;) and Indgi (Ar ® K(H)) are canonically isomorphic.
In particular, the G;-C*-algebras A; @ K(.7;) and Indgi (Ar @ K(Hk)) are canonically
isomorphic.

2. The G;-equivariant Hilbert A; @ K(76;)-A; ® (A ;)-bimodules A; @ K(H 5, 74;) and
Indgi(Ak ® K(H, 7)) are canonically isomorphic.

3. The Go-C*-algebras As x Gy X @2 and Indgf (A1 x Gy X @1) are canonically Go-equivariantly
Morita equivalent.

Proof. The first two statements are immediate consequences of Theorem 3. By applying
Proposition m 3with j =2,1=2and !’ =1, we obtain that the G,-C*-algebras Ay ® K(552)
and Ay ® K(,) are canonically Go-equivariantly Morita equivalent. Moreover, the latter is
canonically isomorphic to Indg?(A; ® K(41)) (the first statement with j = 2 and k=1 = [).
As a result, the last statement is proved in virtue of the Baaj-Skandalis duality theorem.  [J

The case of a linking G,-C*-algebra. Let (Ji,d,¢€},¢€?) be a linking G;-C*-algebra. Let
(Jo,00,) = Indgf(Jl, dy,) be the induced Go-C*-algebra. By Proposition , the quintuple
(Ja,04,, €3, €3), where

6% = 6% ® lgy,, 6% = 6% ® lg,,
is a linking Go-C*-algebra. Let (J, 07, 3, ¢!, e?) be the associated linking G-C*-algebra, where
(J,04,Bs) is the image of (Jy1,0,4,) by the functor G;-C*-Alg — G-C*-Alg and the self-adjoint

projections e! and e? are defined by

el = (el,e3), e*:=(e2,e2) (see Corollary[6.2.7).

In what follows, we investigate the structure of linking G-C*-algebra of the double crossed
product J x G X G corresponding to the projections e' and e?>. We will use the notations of
in which we replace everywhere A by J. We also identify J x G x G with the C*-algebra
D cC L(J® ).
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Lemma 6.4.3. Let i = 1,2, there exists a unique nonzero self-adjoint projection et € M(D)
such that . o
ip(eh) = ¢ (e @1y) € LI H)  (a=])

Then, (D, dp, Bp, eh, e%) is a linking G-C*-algebra, that is:
1. e +eh=1p, [Dep,D|=D, i=1,2.
2. 5D(61D) :5D(1D)(€ZD®1S)> 1= 1,2

Proof. We recall that we denote g := (id; ® R)d; : J — L(J ® ). We also recall that the
C*-algebra D is given by:

D = [mp(a)(1; @ Nx)L(y));ae J, ze S, ye S CL(JH).
We have mr(m) = (id; ® R)d;(m) € M(D) for all m € M(J). However, by the equality
JipM(D)) ={T € L(J® #); TD C D, DT C D, Tjp(lp) =T = jp(1p)T}

and the fact that jp(1p) = mr(1,), we have wr(m) € jp(M(D)) for all m € M(J). In
particular, we have

(' ® L) = mr(e’) = (idy @ R)3;(e") € jp(M(D)), i=1,2.

By the faithfulness of jp, there exists a unique e}, € M(D) such that jp(eh) = ¢%(e' @ 1),
for i = 1,2. It is also clear that e}, and €% are nonzero self-adjoint projections. Now, we have
jp(eh + e2) = ¢#7% = jp(1p). Hence, e}, + 2 = 1p. Let us fix i = 1,2 and let us prove that
[Del,D] = D. Let d € D, since D is a C*-algebra we can assume that

d=(1; @ Ly )\ mr(a)(1; @ Mz)L(y)), ae€J za' €8, yy €8

However, we have [Je'J] = J. Therefore, d is the norm limit of finite sums of elements of the
form

(Lr @ L(y)A (@) mr(be'd) (1, @ M@) L)) = (1@ Ly ) A (@) 7r(b)p(ep) (V) (1 @ M) L(y)),
where b, € J. Hence, d € [Del, D]. By Remark [4.4.14] we have
(jp ®ids)dp(ep) = drax(in(€p)) = dsex(Tr(e)).

We recall that 6 g (mr(m)) = qlﬁé”aqgéa(wR(m) ® 1g), for all m € M(J) (see Proposition 4.4.12

2). Furthermore, we have mr(ef) = jp(eh) and (jp ® idg)(¢?P) = ¢4 *¢5s". Hence,

(jp ®ids)dp(el) = (jp @ ids) (g7 (e} ® 1g)).
O

It should be noted that the G-C*-algebra D has two compatible structures of linking algebras.
The first structure is given by the previous lemma whereas the second one is given by the
compatible structure of linking algebra on D; defined by the projections e; ;, [ = 1,2 (see Lemma

1). More precisely, we have:

125



Lemma 6.4.4. For all s,j,1 =1,2, let ¢] ; € M(D;) be the unique self-adjoint projection such
that

vi(er;) = eptjlens),
where v; - M(D;) — M(D) is the unique strictly continuous extension of the inclusion map
D; C D such that 1;(1p,) = Bp(e;). For all s,j,k,l =1,2, we have

(ﬁ)j (eij) = ef,k ® ]‘Skj'

Proof. By composing with jp, it follows immediately from the definitions of the projections
that we have the formulas:

lep,tiler;)] =0, eptjlen;)Bple;) = eptjler;)

and this proves the existence and uniqueness of the self-adjoint projections ej ;. Now, let us
denote ¥ : M(Dy, ® Si;) — M(D ® S) the strictly continuous extension of the inclusion map
D). ® Skj C D ® S such that 7’ (1Dk®Sk3) = Bp(ek) ® pi;j. By using the faithfulness of 77;-“ and
the fact that 7/ (e, ® 1g,,) = Lk(el’k) ® pr; = €phtk(err) @ prj, it suffices to prove that

Wf5%j(€f,j) = eptr(err) @ prj-

We have
Wféfjj( e;;) = 0p(i(er;))(Bp(er) @ prj) (Proposition [5.1.3))
= dp(epj(en;))(Bo(er) @ pij)
= dp(1p)(ep @ 15)dp(;(er;))(Bp(Er) © pj) (Lemma 2)
= 0p(1p)(Bp(er) @ prj)(eh @ 15)dp(L;(er;))(Bp(er) @ prj)

= (Bp(er) @ prj)(ep @ 1s)dp(ei(er;))(Bp(er) @ prj)
= (Bp(er) @ piy)(ep @ Ls)m}op, (ers)-

However, by Lemma 4{4, we have kék’ (el]) f(ez,k ® 1Skj) = u;(erx) @ prj. Hence,

w50, (e1;) = (Bolexr) @ pry)(ebirlern) @ pry)
= (Bp(er) @ prj)(ewlel ) @ prj)
(efk) & Dkj

te(€rr) @ Prj.

Notations 6.4.5. For j,[,l',s,s' = 1,2, we denote:
I bt,S, )y 4
ss’ . s s’ s .__ 1SS
Dll’,j — elthjel/’j, Dl,] .— D”"7
ss’ __ _s s’ s _ .8 s

In virtue of Lemma , we have that D”, is a Gj-equivariant Hilbert Dy, Df, -bimodule by
restriction of the structure of G,-C* algebra on D;. Moreover, we have the followmg result:
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Proposition 6.4.6. Let j,k = 1,2 with j # k. By restriction of the isomorphism of G;-C*-
algebras
#; 1 D; — Indg! (Dy) s @ > 0, (2),

we obtain the isomorphisms
Dfﬁ — IndG (D”, ), Ll,s s =12,
of G;-equivariant Hilbert bimodules over the isomorphisms of G;-C*-algebras
D;; — Indg! (D}y), Dy — Indg (D).

Proof. 1t follows from the formulas &%, ( 7

6.44) that N

— pS k rd g
) =€), ® lg,; and 5Dj(€l/7j) = ejp ® lg,,; (Lemma

ss s G; s’ G; ss’
5% (Dll’ ) = (e, ® 1s,,)Indg) (D) (ey y @ 1s,,) = Indg) (D7 1)

In particular, we have %, (Dp;) = Indgi (D) O

In the following, we will obtain the applications of Proposition [6.4.6] to an equivariant Morita
equivalence corresponding to an equivariant Hilbert module.

Let (A1,04,) and (B, 0p,) be two G1-C*-algebras and (&1, dg ) a Gi-equivariant Hilbert A;-B;-
bimodule. Let us denote:

(AQ, (SAQ) = IHdG (Al, 5141) (BQ, 532) IndG (Bl, 531) (gg, 55’2) IndG (éal, 55’1>

Let us denote:

Ji = K(& ® By) = (’C(é?) é‘i)

endowed with the continuous action d;,, which defines the structure of G-equivariant Hilbert

Bi-module on &;. We have

Jy o= Tnd% (J)) = K(& @ By) = </C(<5’2> (5’2> .

Let us consider the G-C*-algebra (J,d;, B5) with J = J; @& Jy defined by J; and J; (see Corollary
. We identify the G-C*-algebras J x G x G and (D, p, Sp) as in Theorem [4.4.15 and we
use all the notations of §5.3 and in particular those of Notations [5.3.7]

For 7 = 1,2, we identify
D; = B; = J; @ K(J4; © ;) = K((&; © B;) ® (H4; © Hs5)).
Note that for all I,I’ = 1,2 we have:

e For (s,s") = (1,1), the G;-C*-algebra Dy ; is identified to the G;-C*-algebra K(&;) @ K ()

and the action is given by:

z = (Vias(idiws) © 0) (s, © ideony) (@) (Vs @ € K(65) ® K(A),

Ji
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e For (s,5') = (2,2), the G;-C*-algebra D7, is identified to the G;-C*-algebra B; @ K(7;)
and the action is given by

z = (Vi))s(ids, © 0) (0, ® idiemp) (@) (V)33 @ € By @ K(4),

e For (s,5') = (1,2), the Gj-equivariant Hilbert Dj;-Dj ;-bimodule Dj7? ; is identified with
the G;-equivariant Hllbert K(&;) ® K(74;)-B; & IC(%”/ )-bimodule &; @ K(54;, 7;) and
the action is given by:

&= (Vi)as(ids, © 0) (0, ® idxiny, ) (€) (V)i € € & @ K(Hiy, 7)),

77

where o denotes an appropriate flip map.

Theorem 6.4.7. Let (Ay1,04,) and (By,0p,) be two G1-C*-algebras and (61,04,) a Gi-equiva-
riant Hilbert A;-By-bimodule such that the left action of Ay on & is non-degenerate. Let us
denote:

(A27 5142) = Indg? (Alv 5141)’ <B2> 532) = Indg? (Bh 5B1)7 (éa?? 55"2) = Indgi (gla 56"1)
For all j,k,1,I' = 1,2 with j # k, the linear map

3t & @ K(Hy, ;) — Indg! (& © K(Hn, Hr))
£ (Vij)as(idg, ® 0)(0F, @ idk (s, 0,) ) (ViE)3

is an isomorphism of Gj-equivariant Hilbert bimodules over the isomorphisms of C*-algebras:
A; ® K () = Indg! (A ® K(Har)) ; = (Vi)as(ida, @ 0) (8% @ idein,) (@) (Vi)5s,

B, © K(#i) — Ind% (B © K(Hin)) s 2 = (Vi)as(idp, © 0)(85, ® idiciy ) (2) (V)

where o denotes an appropriate flip map.

Proof. 1t follows from Proposition that the theorem is already established if we take (&)
for the G,-C*-algebra A;. More precisely, we have an isomorphism of G;-equivariant Hilbert
bimodules

O+ & ® K(Hij, ;) — Indg) (6 @ K(Hiy, )

over the isomorphisms of C*-algebras
K(&) @ K(A;) — Indg! (K(&) © K(#4)),  B; @ K(H;) — Indg! (By @ K(Hn)).

Let us consider the G;-C*-algebra K(&,), we then have K(&) = IndZ?K(&). By taking the
image of the non-degenerate *-representation A; — E(@@l) by the induction functor, we obtain
a non-degenerate *-representation Ay — L(&) (cf.§6.3). It then follows that we have a
non-degenerate G-equivariant *-homomorphism A — E(é"l @ &), where A = A; & A;. By
composing with the canonical degenerate *-homomorphism L(& ® &) — M(J), we obtain a *-
homomorphism A — M(J), which extends to a non unital strictly continuous *-homomorphism
M(A) — M(J). By the compatibility of the actions, the *-homomorphism L(& & &) — M(J)
is G-equivariant and so is A — M(J). By using the functoriality of the correspondence — x G x G

(see Theorems 2, 2 and Remark [4.3.4), we obtain a G-equivariant *-homomorphism

AXGxG— M xGxG).
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For j = 1,2, let us denote A; := A; ® K(74; & H3;) (cf. Notations|5.3.7). By identifying the
G-C*-algebras A x G x G and A; & A,, the above equivariant *~homomorphism restricts to
*_homomorphisms:

fj Z.Aj %M(BJ), Bj = JJ®K(%J@%J), j:1,2,

which satisfy (fr ® idsk].)éﬁj = 5l’§j o fj for all j,k = 1,2. By restriction of f;, we finally obtain
non-degenerate G;-equivariant *-homomorphims

A; © K(H;) — L(&; @ K(HA;, ), L1I=1,2.

Therefore, the equivariance of dj; ; - & @ K(H;, ;) — Indgi (& @ K(H., 7)) follows from
Proposition and the formula (f;, ® idgkj)éﬁj = 5;“3]_ o fj. O

In order to define an equivalence of category between KK®' and KK®? in the next chapter, we
will need to specify some notations and give a useful lemma.

Notations 6.4.8. Let us fix j, k,[,I' = 1,2 with j # k. We have:

K(&;) @ K(A;) £3-®IC(%@-)>
(& @ K(A;) BjoK(A;))

2. The Hilbert B, ;-By j-bimodule By ; := J; ® K (5, #i;) is of the form:

1. Bm‘ = Jj ® K(%j) = (

B, — (K(&) @ K(HAy, ) & @ K(Huy, )
A (& @ K(HAy, 74;)" By @ K(Hj, H;))

3. By restriction of 5§j, we have the following Gj-equivariant isomorphisms:

0+ K(&) @ K(Hy, #5) — TIndg! (K(&) @ K(Hn, Hir)) /
x — (Vij)as(idk(s) @ 0) (0% s @ idkim, ) (@) (V)35

O+ & © K (A, A1) — Indc (6 © K(Hn, Hir) ,
& — (Vi)aslids, ® 0)(0k, ® idieir,,) (€) (Vi)

o+ B; @ K(Hy, ;) — Indg! (By @ K(Hn, #0r)) |
T (kaj>23(1d3k ® 0-)(6%] & ld’C(Jﬁ/],sz]))(x)(Vklj);fﬁ

where o denotes an appropriate flip map.

Lemma 6.4.9. For all j,k,l=1,2 and T € M(K(8)), we have
8115 (idic(s) ® Rj1)0x () (T) = (idic(s) © Ria)Ox () (T) ® 1,

Proof. This follows immediately from Proposition 4.4.12| 2 for the action of G on J. O
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Chapter 7

Application to equivariant KK-theory

In [28], Voigt has established a canonical equivalence of the categories KK and KK® for
two monoidally equivalent compact quantum groups G; and Gs. In this chapter, we gener-
alize this result to the case of two monoidally equivalent regular locally compact quantum groups.

Let Gy, and G, be two monoidally equivalent regular locally compact quantum groups. If
(A1,04,) and (B, dp,) are two G,-C*-algebras, we consider

(Ag,64,) == Ind3*(A1,64,), (Ba2,0p,) = Ind&(By,dp,),

the induced G,-C*-algebras (see and Propositions [6.1.2| and [6.1.4)). In this chapter, to any
G-equivariant Kasparov A;-Bj-bimodule (&7, F7) we associate canonically a Ge-equivariant
Kasparov Ay-By-bimodule (&3, F») and we define an isomorphism of abelian groups

Je,G, © KK (A1, B)) — KK®(Ay, By)
Tr = [(éal?Fl)] — JG27G1<‘T) = [(527172)]7

whose inverse isomorphism Jg, g, : KK®?(Ay, By) — KK®'(A,, B) is obtained in a similar way
by exchanging the roles of G; and Gs.

First, let us recall briefly some results and notations of [3] concerning the equivariant KK-theory
for actions of locally compact quantum groups. For more precise information and further details,
we refer the reader to [3] and the references therein [16, [I7]. Let us fix a regular locally compact
quantum group G:

e To any pair of G-C*-algebra (A, B), we associate the set denoted KK®(A, B) consisting of
all classes of G-equivariant Kasparov A-B-bimodule (&, F'), that is & is an G-equivariant
A-B-bimodule and F' € L(&) verifies:

[F,a] € K(&), a(F—F*)ek(&), a(F?—1)€K(&), acA,

.CE(5;qg)(F) - Fe 1(30(@)) S K(éa) X CU(G), r€ AR Co(G)

Note that KKG(A, B) becomes an abelian group, with addition given by the direct sum of
equivariant Kasparov bimodules.

e Note that if & is a G-equivariant Hilbert A-B-bimodule and Fy, [y € L(&) such that
(&, Fy) and (&, Fy) are G-equivariant Kasparov A-B-bimodules and a(F, — Fy) € K(&)
for all a € A, then we have [(&, Fy)] = [(&, F})].
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o If A, D, B are G-C*-algebras, we have the product (internal Kasparov product):
KK®(A, D) x KK®(D, B) = KK®(A, B); (z,y) — 2 @p ¥.
e Let A be a G-C*-algebra. Then, (A,0) is a G-equivariant Kasparov A-A-bimodule. We

denote:
14:=[(A,0)] € KKE(4, A).

If x € KKG(A,B), we have 14 Q2 =2 and 2 ®p 15 = x.

e Let A be a G-C*-algebra. We identify the G-C*-algebra A ® K(L2(G)) with A x G x G.
Let us denote:

Ba = [(A®L*G),0)] € KK*(A @ K(L*(G)), 4),
as = [((A®LA(G))*,0)] € KKE(A, A® K(IL*G))).
We have 84 @4 aa = Lagir2(c)) and aa Qagrwz(e)) Ba = la.
e If A and B are G-C*-algebras, for all z = [(&, F)] € KK®(A, B) we have
Bar@an = [(ESKIAE)), (idke) © R)oxie) (F))] € KKEADKI2(G)), BEK(L(E)))

and the operator (idxs) ® R)dk(e)(F) is invariant with respect to the bidual action of G
on K(&) @ K(L*(G)). Moreover, the map

KK®(A,B) — KK®(A® K(L*G)), B® K(L*G)))
r — PaR@41®pap

is an isomorphism of abelian groups.

o If v = [(&, F)] € KK(A, B), we can assume that the left action A — £(&) of A on & is
non-degenerate by replacing x with 14 ® 4 = if necessary.

o If Ay, Ay, B are G-C*-algebras, a G-equivariant *~homomorphism f : A; — A, induces a
homomorphism of abelian groups f* : KK¥(A,, B) — KK®(A;, B).

e If A, By, By are G-C*-algebras, a G-equivariant *~homomorphism ¢ : B; — B, induces a
homomorphism of abelian groups

g« : KK®(A, B)) — KKE(A, By)
(&, F)] ¥ [(& @y Ba, F @4 1p,)].

e Let A, B be G-C*-algebras and f : A — B a G-equivariant *~homomorphism. Then, the
pair (B,0) is a Kasparov A-B-bimodule. By abuse of notation, we will denote

f=f*(15) = [(B,0)] € KKE(A, B).
Let C, D be G-C*-algebras. We have the formulas:
fopr=fi(x), veKKYB,C) ; yoaf="/ly), yeKKE(D,A).

In particular, if A, A, B, B are G-Cr-algebras, f: A — A and g:B— B are G-equivariant
*-homomorphisms and z := [(&, F)] € KK®(A, B), we have

f®g$ 7 g_1 = [(@(" Rg-1 B,F®g71 13)] S KKG(A, B),

where the left action of A on & ®,-1 B is given by a({ ®,-1 b) = f(a){ ®4-1 b for a € A,
Ee& and b e B.
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Let us recall the following result:

Lemma 7.1. Let A, B and D be C*-algebras. Let & and & be respectively a Hilbert D-
module and a Hilbert B-module. Let m : D — L(&) be a *-homomorphism. Let us denote
7T L(&) = L(E @y &) the *~homomorphism defined by:

A(T) =T @, 1s, T L&)
If (D) C K(&2), then we have 7(K(&1)) C K(&1 @5 &2).

Since we could not find a proper reference, we also recall the proof:

Proof. For £ € &, we denote T € L(&, & ®, &) the operator defined by T¢(n) = £ ®, 1, for
all n € &. Then, we have

Tg(<1 O <2) = 7T(<§7 Cl))CQ, Cl S 517 <2 c 52,

A straightforward computation gives
Ter(2)T, = T(Ocpar), & mE &, v E€D.

By assumption, we then have 7(0¢ ) € K(& @, &), for all {,n € & and x € D. By Cohen-
Hewitt factorization theorem, we have & D = &. Hence, 7(0¢,,) € K(&1 @5 &) for all £,n € &.
Therefore, we have T(K(81)) C K(& ®x &3). O

Let us give two technical lemmas:

Lemma 7.2. Let G be a locally compact quantum group. Let A, B and D be G-C*-algebras. Let
(&1, Fy) be a G-equivariant Kasparov A-D-bimodule and & a G-equivariant Hilbert D-B-bimodule.
If the left action D — L(&3) takes its values in (&), then the pair (6 ®p &, F1 ®@p lg,) is a
G-equivariant Kasparov A-B-bimodule and we have

(&, F)] @p [(£5,0)] = [(& ®@p &, Fy @p 1s,)] € KKE(A, B).

Proof. Let us denote m : D — L(&3) the left action of D on &, & = & ®, & and S = Cy(G). By
Lemma , the hypothesis implies that the *-homomorphism £(&)) — L(& ®, &) ; x— x @, 1
restricts to a *-homomorphism (&) — K(&) @, &). Therefore, we obtain immediately that
the pair (&, F1 ®, 1) is a Kasparov A-B-bimodule. In the following, we will recall some of the
notations and identifications used in Proposition 2.10 of [3] and in its proof. Let

Vi€ L(E Rs, (DRS),6E®8), VoeL(&®s, (BS),&E&S)

be the unitaries associated with the actions dg and dg, respectively. We recall that there exists
a unitary Vs € L(& ®s5, (B ® S), &1 @(raidg)sp (62 ® S)) such that

Va((&1 ®r &) ®5, T) = &1 Oridg)sp Voo @5, 7), &L EE, & E& TE€B®S.
We also recall the following identifications:
ERS =(6®S) Rrgids (62 9),

&1 Draidg)ip (62 ® 5) = (61 ®s, (D ® S)) Qrgidg (62 ® S5).
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Finally, we recall that the unitary associated with the action of G on & is
V= (Vi @rgias )Va € L(E ®5, (DR S),E9).
Let us recall that the action of G on K(&) (resp. K(&7)) is given by:
Sy (k) =V(k®s, DV, ke K(&) (resp. dx)(k) = Vilk ®s, VY, k€ K(61))
(see Remarque 2.8 (a) in [3]). It is clear that we have
Va((Fi®x1)®5,1) = (Fy (raiag)sp DVer (Vi @rgids 1)(F1 ®@raias)sp 1) = Vi(Fi @y 1) @rgiag 1.

However, since Vy is unitary we then have 0 () (F1 ®x1) = dx(4)(F1) ®@xgiag 1. By the assumption
and the fact that the Kasparov A-D-bimodule (&7, F}) is G-equivariant, we obtain that the
Kasparov A-B-bimodule (&, F; ®, 1) is G-equivariant.

By the assumption, the pair (&3,0) is a G-equivariant Kasparov D-B-bimodule. The positivity
condition is trivially satisfied by the operator F| ®, 1. Therefore, it only remains to show that
F} ®; 11is a 0-connection in &. However, in virtue of the assumption it is clear that we have
(x @, 1)(F1 ®, 1) € K(&) and (F} @, 1)(x ®, 1) € K(&) for all z € K(&). O

Lemma 7.3. Let G be a locally compact quantum group and A and B two G-C*-algebras. Let
FC and H be two nonzero Hilbert spaces and & a G-equivariant Hilbert A-B-bimodule. We
assume that there exists an operator F' € L(& @ (') such that the pair (& @ K(A'), F) is a
G-equivariant Kasparov bimodule. Let us denotfﬂ:

(& @K(H),F) e KKE(AR K(A), B K(X)),
(AR K(H,),0)] € KKE(A® K(H#), A K(X)),
(B®K(A,%),0)] € KKE(BR K(X), B K(H)).

Let us denote F € L(E @ K(A, %)) the operator acting on & @ K(A, X)) by factorization as
follows:

FEQKD) =[FE@k)](1s0T), €& keK(H), Teck(A,X).
Then, the pair (& @ K(, ), F) is a G-equivariant Kasparov bimodule and we have

7 Opexir 10 = (6 & K(H,H), F)] € KKE(A & K(H), B & K(H)).
Henceforth, we assume that the left action of A on & is non-degegerate and that there exists

an operator F' € L(&) such that F = F' ® 1 and (&, F') and (& @ K(J€),F' @ 1) are
G-equivariant Kasparov bimodules. Then, we have

Ve Dagkx) [(E @ K(I, X ), )} =[(& @ K(H), F' @ 1))
In particular, we have

Ve @ ack(x) T pexx) Ya = [( @ K(H),F' @ 1,)].

!The index “g” (resp. “d”) stands for “gauche” (resp. “droite”), the french words for “left” (resp. “right”) and
refers to the left (resp. right) action.
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Proof. Let us show that F' is well defined. Let us consider an approximate unit (ux)x of K(X).
Forall ¢ € & ke K(#) and T € K(s, %), we have

[FERK)|(1s0T) = liin [F(E@upk)](lg, @T) = li{n [F(E®uy)|(le @ KT).
Therefore, if k, k" € K(¢) and T, T" € K(H, %) are such that kT = k'T’, then we have
[FE@k](le@T) =[FE@K)](1ls @ T").

Let us denote 7 : BQ K(#) = LIBRK

X

, ")) the left action on B ® (5, ). Note
that 7 actually takes its values in K(B ® K(,.%)). Indeed, let a € B and k € (). Since
A # {0}, we have () = [K(, 2 )K(H , 7)]. Then, k is the norm limit of finite sums
of the form Y, T;S;, where T; € K(7, %) and S; € K( ', 7). We also write a = ajay with
aj, ay € B. Forallbe Band T € K(s,.%), we have that 7(a ® k)(b ® T') = ab ® kT is the

norm limit of finite sums of the form

AR

Zal(lgb@) ,I'ZSZT = Z(al ® E><(l; ® S:,b@ T>

By Lemmal 7.2} the pair (6§ @ K(#)) @pex(x) (BRK(A, X)), F @pexx)1) is a G-equivariant
Kasparov A @ K(#)-B ® K(.7)-bimodule. We also have a G-equivariant unitary equivalence
of Hilbert A ® K(.#)-B ® K(s¢)-bimodules:

Q: (ERK(H)) Oparn) (BOK(AH, X)) — ERK(HA,H)
(ERFk) @parur) (bRT) — bR KT.

Moreover, we have F = Q(F Rpek(x) 1)Q2*. Therefore, the pair (& ® K(A, %), F) is a
G-equivariant Kasparov A @ IC(%)-B ® K(#)-bimodule and we have

(& @ K(A, %), F)] = [((6 © K(H)) @paxin) (BOK(A, X)), F @peri) 1)]-
Hence, & @pexr) Ya = (6 @ K(H, ), F)] by Lemma .

Now, let us assume that the left action of A on & is non-degegerate and that there exists
an operator F' € L£(&) such that ' = ' ® 1, and (&, F') and (& & K(J),F' @ 1) are
G-equivariant Kasparov bimodules. Let us prove that

Ve ®A®IC(%) [(5@](,‘(%,{%/),1%)} = [(@Q®K(%)’F/® 17f)]

Note that F = F' ® Li(w,#). Since the left action of A on & is non-degenerate, we have a
G-equivariant unitary equivalence of bimodules:

E: (AQK(H, ) @uskin) (6 RK(H,H)) — & RK(H)
(a®S) @askn) (ERT) — al ® ST.

The positivity condition is trivially satisfied. We then have to prove that the operator F' "R 1
can be interpreted (via the identification E) as a F-connection in the Kasparov product
Ve @ackx) [(E @ K(H, X ), F)|. For v € A® K(H , ), we denote

T, € L(E@K(A, H), (A K(H,H)) Dasicr) (6 @ KA, X))
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the operator defined by T,§ = = ®agi(x) § for all £ € & @ K(J,%). Now, we denote
T, =ET, € LEQK(H, ), EQK(H)), v € AQK(H , 7). Fora € Aand S € K(A, ),
we have

T,.s(6@T)=al®@ST, €&, TekK(AH,X).
Let a € Aand S € K(, ), we have

(F' @ 1) s — ThwsF = [F',a] ® S.

a a

Let us recall that we have [F',a] € (&) by assumption. Moreover, since S € (%, )
and K(, ) = [K(O)K (A, )] we have S € K(K(,.%),K(H)). Therefore, we have
(F' @ 1) Tlgs — TiosF € K(E @ K(H, #),8 @ K(H)). We also prove in a similar way that
(F* @ 1) Tlys — ThosF* € K(E @ K(H, 2,8 @ K(H)). O

a

Let us fix a colinking measured quantum groupoid G := Gg, g, between two monoidally equi-
valent regular locally compact quantum groups G; and Go. Let (Ay,d4,) and (By,dp,) be two
G4-Cr*-algebras, we denote

(Ag,64,) == Indg*(A1,64,), (Ba2,0p,) = Ind&(By,dp,),

the induced Go-C*-algebras. Let (&1, F1) be a Gy-equivariant Kasparov A;-B;-bimodule and we
assume the left action A; — L£(&)) of A; on & to be non-degenerate. Let us denote

(62,05,) = Indg* (&, 0s,),

the induced Go-equivariant Hilbert A,-Bs-bimodule. We also consider the linking G1-C*-algebra
Ji =K (& @ Ap). With the notations of the previous chapter, we have:

Proposition 7.4. The pair (& K(s), (idk ) ®Rz1)5,2<(@@1)(F1)) is a Go-equivariant Kasparov
Ay ® K(H3)-Bs @ K(542)-bimodule.

Proof. The operator (idi(s)® Ri1)dks)(F1) € L(E @ K(A,)) is invariant for the bidual action
of Gy on K(&) ® K(741). Let us denote

F' = (idics) ® Ri1)oxa) (F1) ® Ls,, € L(& @ K(H41) ® Sha).
It is clear that the Kasparov A; ® K(76;)-B; ® K(7#1)-bimodule
(61 ® K(H41), (idg, @ Ri1)oxe)(F1))
satisfies the conditions of Proposition [6.3.2] 4. It then follows that the pair
(Indg2 (& © K(541)), F)

is a Go-equivariant Kasparov Indgf(Al ® K(%l))—lndgf(Bl ® K(7#4,))-bimodule. However, by
Theorem and Lemma [6.4.9) we have that (Indg?(& ® K(J4,)), F') is the image of the pair
(&2 @ K(H2), (idk(s,) ® Ra1)d (g, (F1)) by the Go-equivariant isomorphism 0119- O

Notations 7.5. For j,[,I' = 1,2, we denote ;4 (resp. Yy ja) the G;-equivariant Morita
equivalence 7y ; defined in Notations [5.3.10| corresponding to the G-C*-algebra A := A; ® A,
(resp. B := By & Bs). By abuse of notation, we will also denote vy ;, (resp. yu ja) the
corresponding element of the Kasparov group. More precisely, we have:

e = [(A; @ K(Hy, ;). 0)] € KK (A; @ K(A)), A; © K(Hy)),

wwrga = [(B; ® K(H5, 7;),0)] € KK® (B; @ K(4;), B; @ K(H5)).
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Proposition 7.6. With the hypotheses and notations of Proposition[7.4, there exists an operator
Fy € L(&) such that:

a) (8, Fy) is a Gy-equivariant Kasparov As-By-bimodule.
b) Ba, @a, (62, F2)] ®B, ap, = Vo125 @ [(62 @ K(HA2), (idi(sy) @ Ra1)dx (s (F1))] ® M22.4-
Moreover, if Fy, Fy € L(&) satisfy the conditions a) and b) above, then we have:
(&, F3)] = [(&2, F3)] € KK®2(Ay, By).
Proof. We have:

Vo126 = [(A2 ® K(H2, 762),0)] € KK® (Ay @ K (), Ay @ K(45)),
Y224 = [(Ba ® K(Hsg, #2),0)] € KK (By @ K(H3), By @ K(Hs2)).

We have the following Gg-equivariant unitary equivalences of bimodules:

(Ay @ K(H2, H52)) @ aseiciins) (2 @ K(HG2)) = & @ K(HA2, Hss),
(& @ K(Ha, H32)) Dpyak(ss) (B @ K (I, 742)) = & @ K(H,),

which we combine to obtain:
(Ay @ IC(FA2, 732)) @ ayek(10) (62 @ K(HA2)) @Brak(ss) (Be @ K (e, 742)) = & @ K(Hs).

Then, let us denote Ty € L(&;) an operator such that (& ® K(7,),T3) is a Gy-equivariant
Kasparov Ay ® K(3,)-By ® K(.#52)-bimodule satisfying

V21,2, @ A, 0K (A2) [(5’2®K(¢%ﬂ12), (idK(éaz)@RZl)(slzc(&)(F1>>]®Bz®’€(%’12)712,2,d = [((% ®K(f%ﬂ22>7 T2)]'
By using the isomorphism of abelian groups

KK®2(A,, By) — KK®2(A, @ K(,), By @ K(5,)),
T —> [a, ®a, T Qp, ap,

(©)

we obtain an operator Fy € L£(&,) satisfying the conditions a) and b). If F, € £(&,) satisfies
the conditions a) and b), then we have

Ba, ®a, [((%7 FZ)] ®p, ap, = Pa, @a, [(602’ FQI)] ®B, AB,-
Hence, [(&, F3)] = [(&, F3)] in virtue of the isomorphism (). O
As a corollary, we obtain:

Proposition-Definition 7.7. For all x = [(&1, F})] (with a non-degenerate left action), let us
denote Jg, g, (2) € KK®2(Ay, By) the unique element of KK®2(Ay, By) satisfying

Bay @y J6o,6,(T) @B, ap, = Y126 @ [(62 @ K(H2), (idk(sy) @ R21)5;2c(51)(F1))] ® Y12,2,d-

Then, Jg, G, : KKGl(Al, By) — KKGQ(AQ, By) is a homomorphism of abelian groups.
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Proof. We have to prove that the following map is well defined:

KK®' (A1, Bi) — KK® (A, @ K(45), By ® K(H45))
(&1, F1)] — (6 © K(AA2), (idk(sy) © Rar)dk g (F1))],

i.e. for all Gi-equivariant Kasparov A;-Bj-bimodule (&7, F}) with a non-degenerate left action,
(& ® K(H42), (idks) @ Rgl)é,zc(&)(Fl))] e KK®2 (As ® K(H2), Ba @ K(.#2)) only depends on
the class of (&, F}) in KK®'(A;, By). It amounts to proving that the map

KK®'(Ay, Br) — KK®(Indg? (A ® K(41)), Ind@? (B ® K(H41)))
(&, Fy)] — [(Indg2 (& © K(41)), (idks) © Rk (Fi) @ Lg,,)]

is well defined (see proof of Proposition . However, it follows from Remark that if
(&1, F) is degenerate then so is (Indgf(éal RK(I41)), (idks) @ Ri1)0k ) (F1)®1g,,). Moreover, if
we consider an operatorial homotopy (&7, F})icjo1] of Gi-equivariant Kasparov A;-B;-bimodules,
then it is clear that (Indgf (E1QK(A1)), (dk(s) @ Ri1)0k () (F1)®@1s,, )iejo,1) is also an operatorial
homotopy. Finally, it is clear that the induction procedure is compatible with the direct sum.
Hence, Jg, g, is a homomorphism of abelian groups. O

Proposition 7.8. Let (&1, F1) be a Gy-equivariant Kasparov Ay-Bi-bimodule such that the left
action is non-degenerate and the operator Iy is invariant. Then, we have

JGz,Gl([(éal? Fl)]) - [(Indgf(@("l), F® 1512)]‘

Proof. By Proposition 4, the pair (&, Fy), where & := Indgf(é"l) and Fy = F1 ® 1g,,, is a
Ga-equivariant Kasparov As-Bso-bimodule and the operator F5 is invariant. In particular, we
have (idg(s) ® R21)(5,2C(@@1)(F1) = F5 ® 1,4,. By definition of Jg, ¢,, we have to prove that

Bay @a, [(E2, Fa)] ®p, OB, = Y2126 @ [(&2 @ K(HA2), Fo @ 14,)] @ 112,24
However, by Lemma [7.3[ we have
Vo126 @ [(62 @ K(H2), Fr @ 1, )] © N2,2.a = (62 @ K(Hag), Fo @ 1s,)]-

Moreover, since F; is invariant, we have 84, ®a, [(&2, F2)] ®p, ap, = [(&2 @ K(#52), Fa @ 1 4,)]
and the proposition is proved. O

Let us prove that we have a homomorphism of abelian groups:
Je, G, - KKE2(Ay, By) — KK® (A, By).
For all Ge-equivariant Kasparov As-By-bimodule (&3, Fy), we set:
Ay i=Indg! (Ay), By :=IndE (By), & =Indg!(&), Jo:=Ind2(J1), Ji:=IndZ!(J).
In addition to the G-C*-algebras A = A; & Ay and B = By @ B», we also consider the following

G-C*-algebras: N N B B o
AI:A1€BA2, B::BIEBB27 lejl@Jg.

First, let us define an auxiliary homomorphism of abelian groups:

Jo1.6, + KK®(Ay, By) — KK (A, @ K(H41), By @ K(Hy)).

138



By applying Theorem 2| (and exchanging the roles of G; and Gs) and Corollary [6.4.2] -
we note that the action of G1 on A1 ® IC(,%”gl) (resp. B, ® K (%)) is obtained by restriction
of that of G on AxGxG (resp. B x G x g) which also provides a G- equwarlant isomor-
phism from A, @ K(4,) (resp. Bi QK (H#4,)) to IndGl(A2®K(%2)) (resp. Indg By @K( ).

By exchanging the roles of G, and G, and by applying an adaptation of Theorem and
Lemma to the linking G-C*-algebra .J, we prove:

Proposition 7.9. For all Go-equivariant Kasparov As-Bs-bimodule (85, Fy) with a non-degenerate
left action of Ay on &, the pair

(& @ K(a), (idye 7y © Riz)Okay (F))

is a G1-equivariant Kasparov A; @ K(%l)—él ® K(H51)-bimodule.

By applying Proposition 2 and as in the proof of Theorem [6.1.13| (by exchanging the roles
of Gy and Gy), we obtain two G-equivariant *-isomorphisms:

[ A= A; (a1,02) = (5221)(&1);@2) . g:B = B; (bi,by) (5g3(51>752>~

Note that f (resp. g) acts identically on As (resp. Bs). By using the functoriality of the crossed
product (see Theorems [4.3.3/2 and [4.3.62), we obtain two G-equivariant *-isomorphisms:

f:Axgng—mixgng : g:BxgngﬁB'xgng
still denoted f and g. We use Proposition to obtain Gq-equivariant *-isomorphisms:
fi: A @ K(A) = L@ K(AL) 5 g Bio K(Ah) = Bio K(A), =12
As for Proposition-Definition [7.7] and by using Proposition [7.9 we obtain:

Proposition-Definition 7.10. For y = [(&, F3)] € KK®2(Ay, By) (with a non-degenerate left
action), we denote Jg, c,(y) € KK®'(Ay, By) the unique element of the group KK®'(A,, B))
satisfying

5141 ® 4, JGLGQ (y) ®B, B, = 712,1,g®f2,1® [(%@K(%l), (ld ®R12)5 é”g)(FQ))] ®92_&®721,1,d'
Then, Jg, g, : KK®2(Ay, By) — KK (A, By) is a homomorphism of abelian groups.
Proof. 1t is clear that

Jor6s 0 KK®(Ag, By) — KK (A, @ K(41), By ® K(H41))
y=1[(& F)] — [(61® K(H1), (idg z) @ Ri2)dg (g (£2))]

is a well-defined homomorphism of abelian groups and for all y € KK®? (Ag, Bs) we have

Ba, @4, Jer.6,(Y) @p, ap, = Y1216 @ fo1 ® le,Gg (y) ® g{} @ Y21,1,d-
Therefore, Jg, g, is also a well-defined homomorphism of abelian groups. O]

We can state the main result of this chapter:
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Theorem 7.11. Jg, g, : KK® (A, B)) — KK®2(Ay, By) is an isomorphism of abelian groups
and we have Jg, g, = (Jgy6,) "

Proof. Let us prove that Jg, g,°0Jg,,¢, = idkkes (A1,B1)" Let (&1, F1) be a Gi-equivariant Kasparov

A;-By-bimodule (with a non-degenerate left action) and let us denote & := Ind3*(&1), the
induced Ga-equivariant Hilbert As-Bs-bimodule. Let us denote:

Iy = [(@@17 Fl)]? Yo 1= JGQ,G1(x1)7 xll = JGl,GQ(yQ)'

By Proposition [7.6 there exists an operator Fy € £(&) such that yo = [(&2, F2)] and by
Proposition-Definition we have

Ba, ®a, Ty @p, ap, = V21,6 @ fo1 ® [(6771 ® K(H#31), ( k(&) X R12)5 gg)(FQ))] & 92_% & Y21,1,d-
In order to understand x := Jg, G,(y2), let us denote:
Jl = K((gal D Bl), J2 = ’C((ggg D Bg), <71 = Il’ldgl((]g) == K(gal D El)

By applying again Proposition “ 6.1.6| 2, we have a G-equivariant *-isomorphism between the
G-C*-algebras J := J; @ J, and J := J; & J, (acting identically on J,) given by

hed = J5 (21,22) = (07 (11), 22),
which induces a G-equivariant *-isomorphism
h:JxGxG—JxGxG

still denoted h, compatible with the G-equivariant *-isomorphisms f and g. By applying
Theorem |4.4.15 and Proposition to h, we obtain

f21® (610K (), (ide 7, ® Ri2)dx () (F2))]| ® 951 = [(61 @K (1), (id(s) @ Riz) sy (F2))]-
(7.1)
Indeed, we first have

fo1 ® (6 ® K (A1), (id k@ © Bi2)dia (F2))] @ 951
= [((6 @ K(H1)) ® Ryt (Br @ K(H)), (idy ) @ R12)0x s (F2) Byt Lok () )]
in KK (A, ® K(H4,), B ® K(,)), where the left action is given by:
a(§ @1 b) = fo1(0) @1 b, a € A @K(H), € € 5@ K(H51), b€ By @ K(H).
We now have the following G;-equivariant unitary equivalence of bimodules:
= (50 K1) 0,01 (B @ K() = 6 ©K(A) €@, 005 (b
We also have
E((idgz) ® Ri2)dk(s)(F2) g1 Lokmn) =" = b (dy 7 ® Raz)dg(s,) (F2).
By applying Theorem , we identify the G-C*-algebras J x G x G (resp. J x G x G) and
D (resp. D). We recall that we have h(id; ® R)0;(z) = (id7 ® R)65(h(z)) for all z € J (cf.
Remark . It then follows from Proposition that we have

h(ids, ® Rj)d%, (Bp(e)w) = (idy ® Rj,)azj';(ﬁﬁ(gl)h(:c)), zeld jl=12.
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Moreover, since h acts identically on Jy we have
h(idj, ® Ri2)dy,(z) = (idj, ® Ri2)dy,(z), € Ja,
In particular, we obtain h(idic(s) ® Ri2)dk (s, (F2) = (1d ) ® R12)0x (s, (F2). Hence,
E((idgz, ® R12)dk (5 (F2) @, o1 IBieks)) = = (dke) © Ri)0xc (s (F2)

and is proved. In particular, we have

N21g ® f21 @ [(6 @ K(H), (idye(z) ® Ri2)dx sy (F2))] ® 921 @ 721,10

= Y21 ® (61 ® K(H51), (idk(s) @ Ri2)dx g (F2))] © Vo114
We have the following Gi-equivariant unitary equivalence of bimodules:
(A1 @ K(561, 741)) a0k (7)) (61 @ K(H51)) @Bok() (B1 @ K(HA1, 76,1)) = & @ K(I4,).
Hence, there exists an operator 7} € L£(& ® K(71)) such that
Nz @ [(61 @ K(H51), (idicis) @ Bi2)di(s) (F2)] ® Y2110 = (61 ® K(H41), T1)).

Hence, fa, ®4, ¥} ®p, ap, = [(& @ K(H41),T1)]. It then follows that there exists an operator
F| € L(&) such that 2} = [(&1, F])]. We have to prove that x; := [(&1, F1)] = [(&1, F])] =: 2.
By composing with the isomorphism of abelian groups

Ba, @4, — @p, ap, : KKE(Ar, By) — KK® (A, @ K(H41), By @ K(H41)),
it amounts to proving that
(61 @ K(541), (idiy) @ Rir)dge) (F1))] = [(61 @ K(HA1), (idk(s) @ Ria)dgs)(F))]
in KK® (A1 ® K(74,), By ® K(741)). Let us recall that:
z1 =6, 1),y =&, ), 2 =&, )]

We have
Ba, ®a, Yo Qp, p, = V21,26 QA0K(#i2) L2 OByok(HAs) V12,2,d) (1)

where x5 1= [(6 ® K(Hs), (idk(s) ® Ra1)dis(F1))] (see Proposition-Definition . We also
have
Ba, @a, Ty @B, B, = V12,16 @ a,0K(4:) Y1 @Ak (#1) V21,1,d; (2)

where y; 1= [(61 ® K(H41), (idk(s) @ Ri2)0x s, (F2))] (see (7.1) and Proposition-Definition [7.10).
We recall that we have:

Bay @ay Y2 @B, ap, = [(& @ K(Hs), (idk(sy) ® Raz) 0k, (F2))], (7.2)
BAI @A, xll ®p, OB, = [(@@1 ® ’C(‘%l)v (idlc(éﬁ) ® Rll)éllC(é"l)(Fll))] (73)

Moreover, in virtue of Proposition [5.3.11] we have
M12,:2,d @ Byok(52) V21,2,d = V11,2,d = 1Byok(A2)-
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Therefore, by taking the Kasparov product with 72124 on the right in and by using (7.2)),
we obtain:

(& @ K(), (idk () @ Ra2) 0k () (F2))] @ Baoic(sa) 121,24 = V2125 @tseic(san) T2 (1)

Actually, (1) is equivalent to since we also have

V21,2,d @ By@k(#2) V12,2,d = V22,2,d = 1Bywk(#32)-

Similarly, we prove by using ([7.3)) that is equivalent to:

To11e @ayek(an) (61 © K(HA1), (idks) © Rin)oxis) (F1))] = 11 @iox(m) Y2100 (2)

By applying Lemma [7.3| with G := G, (resp. G1), & := & (vesp. &), H# := Ay (vesp. S1),
H = My (vesp. M), A= Ay (vesp. A1), B := By (resp. By), F = (idi(s) ® Ra2)di (s (F2)
(vesp. (idk(s) ® Ri2)d s, (F2)), we obtain:

(& @ K(H52), (idics,) @ Raa)Oi s, (F2))] @By () V21,24
= [(& @ K(H3, #5s), (idic(s) © Raa)0i s (F2))] (17)

and
(&1 @ K(H1, H51), (idics) @ R12)5;1<(g2)(F2))] = Y1 @Bek(#:) V21,14 (2")

respectively, where we still denote (idx(s,) ® Ra2)d5(s,)(F2) (resp. (idk(s) ® Rlz)é}c(&)(Fg)) the
same operator but acting on & ® K(.72, #52) (resp. & @ K(41,-#5%1)) by factorization. For
7 =1,2, we use again

fit Ay = M(By), A;:=A; @ K(A; © ), By :=J;@K(AH;©H),

the Gj-equivariant *-homomorphism defined by the action of A; on & (see proof of Theorem

6.4.7). By combining (1) and , it then follows that (idy(s,) ® R22)d5 s, (F2) can be interpreted
as a (idg(s) ® Rgl)é%(gl)(Fl)-connection in the Kasparov product a1 24 ® a,ek(,) T2, Which

means that for all a € Ay 5 := Ay ®@ K(H3, H53), we have

(id k(g ® Ra2) 0% ) (F2) fa(@) = fo(a) (id k(i) © Ra) O 5,y (F1) € K(EQK(H2), &0K(Ha, Hor))
(C1)
where fy(a) € Bay o := Jo @ K(Fa, Hos). Let us fix a € Ay @ K(F2, #3s) and let us denote

d = (idk(s) © Ra2)0x (s (F2) f2(a) = fa(a)(idk(s) © Ra1)dgs) (F1).
We then have:
e d € M(B;) and defines an element d’ € L(& ® K(42), &3 @ K(Hs, #59)).
. means that d € By, more precisely d' € K(&, @ K(73), & @ K(Hs, #53)).
Let us denote ¢ = 05, (d) € M(B; ® Sy2). By Lemma [6.4.9, we have

c= ((1dIC(6"1) ® Rl?)éll(l(éaz)(FZ) ® 1512)(f1 ® id512)6./142 ((l)
- (fl ® id512)5}42 (OJ)((id/C(!o@l) 2 R11>5IIC(<£"1)<F1) ® 1512)'
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However, note that we have By = [(idg, ® w)dg, (b); b € By, w € B(A>).]. Therefore, for all
a € Ay ® K(4, #5) and w € B(H3), we have

(idK(éﬁ) ® R12)5ilc(éa)(F2)f1(idA1 ® W)(Si\z(a) — fi(ida, ® W)éiz(a)(idlc(&) ® 311)51%(51)(171) € B;.
However, it follows from Proposition 3 and Theorem 3 that

A1 @ K(H1, ) = [(ida, @ w)dy,(a); a € Ay @ K(Hz, o), w € B(Ha).)-
As a result, for all b € A; @ K(541, H#31) we have

(id () © R12) 0 ) (F2) f1(b) = fr(0) (idke () @ Bn )0 ) (F1) € K(E QK (A1), 50K (S, Han)).

()
In a similar way, it follows from (2] . ) and (2”) that the operator (idi(s) ® Ri2)dk k(&) (F2) can be
interpreted as a (idg(s) ® Ri1)dk k(& )(F )-connection in the Kasparov product

Y11 @arecir) (61 @ K(A01), (i) © Rin)dxs) (F1))).
We then obtain similarly that for all b € Ay 1= A; @ K(541, #51), we have:

(id(s) @ R12) 0 g (F2) f1(b) = fr(0) (idke () @ Br ) O ) (FT) € K(E QK (A1), 50K (S, Han)),

(Ca)
where f1(b) € Ba11 := J1 ® K(41,.75;1). By subtracting from , we obtain that for all
be A @ K(H1, 5):

Fr(b) (idxe ) @ Ru1) O sy (F1) = fr(0) (idie(6) @ Ru1) 0 ) (F1) € K(ERK(HAL), EQK(Hy, H51)).
(C1 —Co)
Since 3 # {0}, it then follows that for all b € A; ® K(74;) we have:

F1(0)(idxes) © Rir) gy (F1) — f1(0)(idk(s) © Run)dgsy (F1) € K(61 © K(HA1)). (%)
Indeed, we have KC(741) = [K(51, 741)K(F41, #51)]. We can then assume that b = (14, ® k),
with k € K(75,, 74,) and x € A; @ K(F41, 7, ). Therefore, we have

fl(b)@dlc(wﬂ) ® Rll)fs/lc(&)(Fl) - fl(b)<id16(£’1) ® R11)611C(£’1)(F1)
= (1, @ k) (f1(2)(idk(s) © Ruin)Oxisy (F1) — f1(2)(idics) @ Rin)dk s (F1)),

where 15 @ k € L(& @ K(H4:1, #51), 61 @ K(741)) and () follows from (C] — Cg). We then
have proved that

(61 @ K(41), (idk(s) © Bu)dxa) (F1))] = (61 @ K(H41), (idics) @ Bin)dis,) (1))

in KK (A, ® K(41), Bi ® K(41)). We have proved that Jg, ¢, © Je,6, = idkker (4,.5,)- This
proves that Jg, g, is surjective and Jg, g, is injective. In order to prove directly that Jg, g,
is injective, we first note that by Proposition-Definition (see also its proof), we have a
homomorphism of abelian groups

le,GQ : KKG2 (A27 Bg) — KKGl (Al & K(%l), él X K:(%l))

It is enough to prove that .Jg, g, is injective. Actually, by composing with the (injective)
homomorphism of abelian groups

Jb, g, - KKE (AL @ K (A1), By @ K(H51)) — KK®(IndZ? (A; © K(1)), IndE? (By @ K(H41)))
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and by identifying the G,-C*-algebras Indgf (A; ® K(,)) (resp. Indgf(él ® K(H#41))) and
Ay @ K(H4,) (vesp. By @ K(A32)), we will prove that the homomorphism Jg, ¢, © Jg, g, is the
isomorphism (Q)) of [3]:

KKG2(A2, Bz) — KKG2 (A2 X K(%2)7 BQ &® ’C(%Q))

Let (&, F5) be a Gy-equivariant Kasparov Ay-Bs-bimodule (with a non-degenerate left action).
We recall that we have Jg, g,([€2, F2)]) = [(€1 ® K(H31), (idy 7, © R13)0x (s, (F2))] and the
operator (idK(é:l) ® R12)0x (s, (F2) is invariant. By Proposition ﬁ, we have

Ta@r © Jo1.6:([(6, F2)]) = [(IndG2 (6 © K(51)), (i 1) @ Ruz) Oy (Fa) © Ls,))-
However, by Theorem and Lemma [6.4.9] we have that the pair
(Ind& (&1 ® K(A)), (i ) © Ri2)0js,)(Fo) © 1sy,)

is the image of (& ® K(H32), (idk(s) ® Ra2)dk(4)(F2)) by the Gy-equivariant isomorphism 5%272.
By making the identifications

Indg; (A ® (A1) = Ay ® K(H),  Indg: (Br @ K(2n)) = By © K(Hn),
it then follows that
Jes. 610 J1 6, (62, F)]) = (60 K(H5y), (idic(s) ® Ra2) O (F2)] = Ba, ©a, (62, F2)] ®, v,
Therefore, Jg, ¢, © thGQ is the isomorphism of abelian groups
Ba, @4y — ®p, ap, : KKF(Ay, By) — KK (A @ K (), By @ K ().

Hence, Jg, g, is injective and then so is Jg, g,. Therefore, Jg, g, is bijective and we have
—1 o
(J61,6:) " = JGs,6:- O

144



Chapter 8

Equivariant Hilbert C*-modules

In this chapter, we require that any action (dp, 8p) of a measured quantum groupoid G on a
finite basis on a C*-algebra B satisfies 05(B) C M(B ® S) (see the notations at page , that
is 0p(B)(1p® S) C B® S. Note that this condition is necessarily satisfied if the action (d, 55)
is continuous.

8.1 Preliminaries

Let us recall some classical notations and elementary facts. Let B be a C*-algebra and & a
Hilbert B-module.

Proposition-Definition 8.1.1. Let us consider the following maps:

e .p: B — K(& @ B), the *-homomorphism given by t5(b)(§ ® a) = 0@ ba for all a,b € B
and £ € &.

o 1p: & — K(& @ B), the bounded linear map given by 1s(§)(n®b) =Eb® 0 for allb e B
and £, € &.

o Lo 1 & — K(& @ B), the bounded linear map given by te«(£*)(n ® b) = 0@ &*n for all
E&Ened andbe B.

* L) K(&) — K(& @ B), the *~homomorphism given by vics)(k)(n @ b) = kn @ 0 for all
ke K(&),ne & and b € B.

We have the following statements:
1. 1e(€b) = 1e(&)tp(b) and tp(b)ie«(£¥) = tg«(bE*) for all é € & and b € B.
2. 16-(€7) = 16(§)" and tx(s)(Oen) = 16(E)ts(n)” for all§;n € &
3. K(& @ B) is the C*-algebra generated by the set 1p(B) U 1g(&).

Remarks 8.1.2. 1. Forbe B, £ € & and k € K(&), the operators tp(b), te(§), te+(€¥) and
ti(s)(k) can be denoted as 2-by-2 matrices acting on & @ B as follows:

LB<b>=<8 2) Lé”@):(g g) L’g*(f*):(&o* 8) L“@”)(’“):(g 8)

Moreover, any operator z € K(& @ B) can be written in a unique way as follows:

xz(Tl;* lé;)’ where ke K(&), &,ne &, be B.

145



2. Note that tp and k() extend uniquely to strictly continuous unital *-homomorphisms
tpms) - M(B) = L(E @ B) and i) 1 L(E) = L(E @ B). Besides, tpqp) and iz s) are
given by

imB) (M) (D D) =0@mb, 1) (T)(EDD) =TEDO,

forallme M(B), T € L(&),{ € & and b € B.

3. e~ admits an extension to a bounded linear map o) @ L(E,B) — L(& @ B) in a
straightforward way. Similarly, up to the identification & = K(B, &), we can also extend
te to a bounded linear map vz s).

4. As in 1, we can denote try(m), tee)(T), tee)(S) and tpwe By (S*), for m € M(B),
T e L(&) and S € L(B,&), as 2-by-2 matrices. Moreover, any operator x € L(& & B)
can be written in a unique way as follows:

T = (g; i) , where T € L(&), S,5" € L(B,&), me M(B).

By using the matrix notations described above, we derive easily the following useful technical
lemma:
Lemma 8.1.3. Let x € L(& & B) (resp. v € K(& @& B)). We have the following statements:

1. x € ey (L(B,&)) (resp. 1e(&)) if and only if x16(§) =0 for all § € & and 1p(b)xr =0
for allb € B. In that case, we have tpp)(m)x =0 for all m € M(B).

2. x €1y (L(E)) (resp. tice)(K(&E))) if and only if xip(b) = 0 and tg(b)x = 0 for allb € B.
In that case, we have xipp)(m) = typ)(m)x =0 for allm € M(B).

Notation 8.1.4. Let .# be a Hilbert B-module. Let ¢ € £(&) a self-adjoint projection and
T e L(g&,F). Let T : & — .Z be the map defined by T¢ := T¢¢, for all £ € &. Therefore,
T € L(&, %) and T* = ¢T*. By abuse of notation, we will still denote 7" the adjointable
operator T.

Let us recall the following definition introduced in [3]:

Definition 8.1.5. Let B and D be two C*-algebras and let & be a Hilbert C*-module over B.
Up to the identification & ® D = K(B® D, & ® D), we define M(& ® D) to be the following
subspace of L(B® D, & ® D)

{Tel(BD,E®D);VeeD, (ly@z)l € @D and T(lp @) € & ® D}.

Note that M(& ® D) is a Hilbert C*-module over M(B ® D), whose M(B ® D)-valued inner
product is given by:

En=¢n &neM(EeD)CL(B®D,&@ D).

We have K(M(& ® D)) ¢ M(K(£) ® D).
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8.2 The three pictures

In this paragraph, we introduce a notion of G-equivariant Hilbert C*-module for a measured
quantum groupoid G on a finite basis in the spirit of [3]. Following [3], if (A,d4,54) is a
G-C*-algebra, an action of G on a Hilbert A-module & will be defined by three equivalent data.

The proof of the following is straightforward.

Proposition-Definition 8.2.1. Let A, and As be two C*-algebras. Let & and & be two Hilbert
C*-modules over Ay and As respectively. Assume that m: Ay — L(&) is a *~homomorphism
and p € L(&) is a self-adjoint projection such that for some approzimate unit (uy)aea of A;
the net (m(uy))ren converges stricly towards p. We consider the m-invariant Hilbert submodule
& = p&y of &. Therefore, we have a non-degenerate *~homomorphism 7 : A; — E(%) There
exists a unique unitary u € L(& Qr &, & Q= gg) such that

u(é) ®r &) =& Q@ pla, &1 € 81, & € &3

Let G be a measured quantum groupoid on the finite basis N = @, My, (C). Let (S,6) be
the weak Hopf-C*-algebra associated with G. Let us fix a G-C*-algebra (A, d4, 84).

Remarks 8.2.2. With the above notations (with &1 = A;), we have the following composition
of unitary equivalences of Hilbert modules:

AR & — A1®;g2 — C?;
ay @ &+ a1 @z p§ > T(a1)pse = m(ar)ée.

In particular, we have the following unitary equivalences of Hilbert modules:

A (A®S) — P44 (A®9)

a®s, v — dala)z, (8:2.1)
(A® S) Qsupias (AR T®S) — ¢i5 (A0S ®S) (8.2.2)
T Qsazids Y — (04 ®1ids)(2)y,
(A®S) Bises (ABS®S) — 4" (A®S®S) (8.2.3)
T Qiduee Y — (1da ® 0)(2)y.
Since the ranges of & and 8 commute pointwise, we have [¢i5®, ¢5°] = 0. In particular,

C3 g e LIA® S ® S) is a self-adjoint projection.

Definition 8.2.3. A G-equivariant Hilbert A-module is a triple (&, d¢, B¢), which consists of a
Hilbert A-module &, a linear map g : & — M(& ® S) and a non-degenerate *-homomorphism
Be : N° — L(&) such that:

1. For all a € A and &, € &, we have
ds(€a) = ds(§)dala), da((€,m) = (0s(£), 0s(n))-
2. [65(E)A®9)] =¢*(E®S9).

3. Forall £ € & and n € N, we have 05(8s(n°)¢) = (1o @ S(n°))ds(§).
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4. The linear maps Js ® idg and idg ® 0 extend to linear maps from L(A ® S,& ® S) to
LIA®S®S,&®S®S). Moreover, we have

(65 ®ids)ds(€) = (ide ® 0)0s(€) € LADS® S, E®S®S), £€6.

Remarks 8.2.4. e If the second formula of the condition 1 holds, then ds is isometric

(¢f. B]). Indeed, we have [[(35(£), ds(n) | = [[0a((& m)Il = [, m]] for all ,n € &. In
particular, we have

15 ()II* = [1{0£ (&), ds (N = K&, )l = lIg]*, € € &.

e [f the condition 1 holds, then the condition 2 is equivalent to:
[66(£)(1a ® )] = ¢*# (£ @ 5).
Indeed, if (uy), is an approximate unit of A we have
56(6) = lim 6s(€ur) = i 5()0a(ux) = 5s(E)g™, £ € 6.

By continuity of the action (4, 84), the condition 1 of Definition and the equality
EA =&, we then have [§¢(&)(A® S)] = [05(&)(14 ® S)] and the equivalence follows.

e We will prove (see Remarks [8.2.8)) that if 0, satisfies the conditions 1 and 2 of Definition
8.2.3] then the extensions of d¢ ® idg and ide ® § always exist and satisfy the formulas:

(ide @ 6)(T)(ida @ 6)(x) = (ids @ 0)(Tx), (0 ®ids)(T)(04 @ ids) (x) = (3 @ ids) (),
foralz€e A Sand T € LIA® S, 6®9).
Notation 8.2.5. For { € &, let T € L(A® S, & ®5, (A® S)) defined by
Te(x) =E@s,x, z€A®S.
In the following, we fix a Hilbert A-module &.

Definition 8.2.6. Let ¥ € L(& ®;5, (A® S),& ® S) be an isometry and fg : N° — L(&) a
non-degenerate *-homomorphism such that:

L. vy = gPe
2. V(Be(n°) ®s, 1) = (1o ® B(n°))¥ for all n € N.
Then, 7 is said to be admissible if we further have:
3. ¥VTe e M(E®S) forall € € &.
4. (V ®cids)(V ®sa0ids 1) = ¥ Qidues 1 € L(E Q52 (AR S®S),6&®5®S),

where 531 = ((SA ®ids)(5A = (idA &® 5)5/; A — M(A@ S® S)
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The fourth statement in the previous definition makes sense since we have used the canonical
identifications thereafter. It follows from the associativity of the internal tensor product,
Proposition-Definition [8.2.1] and Remark [8.2.2] that we have the unitary equivalences of Hilbert
modules:

(€ @5, (A® S)) @s40105 (A S®S) — E@p (ARS®S)

. 8.2.4
(5 ®s4 SL’) Qsa@ids Y — £®6?4 (514 ® 1d5)<$)y, ( )
(€ ®5, (A®S)) udpns (ABS®S) — &R (A®S®S) (8.2.5)

(€ ®s, T) Bidaes Y + € Bs2 (ida ® 6)(2)y. o

We also have:

(£®58) Qs,014s (ARS®S) — (£R5, (ARS))® S (8.2.6)

(E®$) Vs, 0ids (T@F) — (£ Rs, x) @ st, b
(R 58) Qa5 (ARS®S) — @ (ER508) CERS®S (8.27)

£ Qides ¥y — (ide ® )(§)y.

In particular, we have ¥ ®s,zi4s 1 € L(& @52 (A® S ® 9), (6 ® S) ®s,ids (A® S ®5)) and
Y ®cids € LI(E®S) s 0idg (ARIS®S),EER5RS).

The next result provides an equivalence of the definitions [8.2.3| and [8.2.6] Basically, the proof of
the following proposition is based on that of Proposition 2.4 of [3].

Proposition 8.2.7. a) Let 65 : & — M(& ® S) be a linear map and Be : N° — L(&) a
non-degenerate *-homomorphism which satisfy the conditions 1, 2, and 3 of Definition|8.2.5.
Then, there exists a unique isometry V € L(& @5, (A®S), & ®S) such that 65(&) = VT for
all § € &. Moreover, the pair (¥, Be) satisfies the conditions 1, 2, and 3 of Definition .

b) Conversely, let ¥V € L(& @s, (A®S),& ® S) be an isometry and Bs : N° — L(&) a
non-degenerate *-homomorphism, which satisfy the conditions 1, 2, and 3 of Definition[8.2.6,
We consider the map 6z : & — M(E ® S) given by 65(€) = Ve for all § € &. Then, the
pair (8¢, Bg) satisfies the conditions 1, 2 and 3 of Definition[8.2.5

c) Let us assume that the above statements hold, the triple (&,0s, Bs) is a G-equivariant Hilbert
A-module if and only if V' is admissible.

Proof. a) As in the proof of Proposition 2.4 in [3], there exists a unique isometric (A ® S)-linear
map ¥ : & s, (A®S) - & ® S such that

V(E®s, v) =0s&)(x), (€& xeA®S.

In other words, we have #T; = 05(§) for all £ € &. Now, it follows from the second condition
of Definition that the ranges of ¥ and ¢ are equal. Then, let us consider the range
restriction v of #. Therefore, the map v~'¢%4 is an adjoint for #. Indeed, forall z € £ ® S
and y € & ®s, (A® S) we have

(v a,y) = (Yo (@7 %), Vy) = (¢° %z, Vy) = (x, Vy)—((1—¢"*)(2), Vy) = (z,Vy),

where we used the fact that ¥ is isometric in the first equality and the fact that ¥y € Ran(g?¢®)
in the last one. As a result, we have ¥ € L(& ®s, (A® 5),& ® S) and then 7*¥ =1 and
VY= Vo lgee = ¢fee,

The conditions 1 and 3 of Definition [8.2.6] are then fulfilled. Now, we have
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Y (Be(n®) @s, 1)(€ @, ) = 06(Bs(n°)§) () = (e ® B(n°))ds(§)(2) = (Ls @ B(n°))V(§ Qs ),
forallé € & r€ A® S, and n € N. Hence, the condition 2 of Definition holds.
b) is straightforward.

c)Let T € L(A® S,& ® S). By using the identifications (8.2.3) and (8.2.7) and Notation [8.1.4]
we have T' ®iq,05 |l € LA® S® 5,6 ® S ®.S). Now, we can define the extension of idg ® 0,

ide ®0:LA®S,E@S) = LARS®S,6®S® S)

by setting
(idg & 5)(T> =T Qia,ues 1, T € ﬁ(A ®5,8R S)

We also have T' ®;, 5145 1 € LIARS® S, (& ®s, (A®S)) ®S) by using the identifications
(8.2.2)) and (8.2.6)) and Notation Let us define the extension of ds ® idg,

de ®idg : LIARS,ERS) > LIARS® S, @5 ®S)
by setting
(0 @idg)(T) :== (¥ @c 1s)(T Rs,0ids 1), T € LIA®S,E® ).
Therefore, we have
(0s ®1ds)de(§) = (¥ ®c Ls)(V @sa0ids 1)(Te Qsaeidg 1) EL(A® S ® 5,6 @SR S),
(ids ® 0)0s(&) = (7 @idpms 1) (Tt Qidues 1) € LARS® S, 8 ® 5 ®S),
for all £ € &, where
T @515 1 € LAR S ® 5,6 @p (AR S® 9)),
T; @iapeo 1 ELA® S ® 5,6 ®p (AR S®S)),

by using (8.2.2)-(8.2.4) and (8.2.3)-(8.2.5)) respectively and Notation [8.1.4] In particular, if ¥ is
admissible the condition 4 of Definition [R.2.3] holds.

Conversely, let us assume that the aforementioned condition is satisfied. In order to show that
¥ is admissible, we only have to prove that the restrictions of Tr ®s,giag 1 and T ®iq, g5 1 to
the Hilbert submodule ¢is g (A ® S ® S) are surjective.
Letac A, re AR Sandy € A®S®S, weset z = (04 ®idg)(da(a)x)y. It is clear that
ze @3 (A2 S® S). Moreover, we have

2= (04 ®idg)0a(a)(ds ®idg)(z)y = (ida ® 0)(da(a))(04 ® idg)(z)y

and then z also belongs to ¢53" (A ® S ® S). Hence, z € ¢i3 ¢ (A® S ® S). Now, we have
(Tf X5 4widg 1)(5A(a)x X5 4®idg y) - <§ X5 4 514(@)1;) Qs awidg Y = (§a X654 ZE) &5 4@idg Y-

Therefore, we have (T¢ ®s,0ias 1)(2) = {a®s2 (04 ®idg)(z)y. Thus, the restriction of T¢ ®s,giag 1

to @3 (A® S ® S) is surjective thanks to (8.2.4) and the fact that £A = &. The same
statement is obviously true for 7; ®iq,zs 1. O
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Remarks 8.2.8. In the proof of Proposition [8.2.7, we have shown that:

e By using the identifications (8.2.3)) and (8.2.7) and Notation [8.1.4] we have that the linear
map idg ®9: LIARS,ERS) > LIARS®S,&® S ®S) is defined by:

(ldg®5)(T) 1:T®idA®6 1, TG;C(A@S,&@S).

e If . satisfies the conditions 1 and 2 of Definition let 7" be the isometry associated

with d¢ (see Proposition a)). By using the identifications (8.2.2)) and (8.2.6) and
Notation [8.1.4} the linear map dge ® idg : L(AR®R S, &R S) - LIARS® S, &R S®S) is
defined by:

((5,59 &® lds)(T) = (7/ Qc 15)(T X5 a®idg 1), T e L(A ®5,6R S)

Note that the extensions ids ® 0 and dg ® idg satisfy the following formulas:

(ide ® 6)(T)(ida ® 6)(z) = (ide ® 6)(Tx), (06 ®ids)(T)(64 ®ids)(x) = (0s ®ids)(Tx),
foralz€ AR Sand T € LIA® S, 6®9).
Let us denote J := K(& @& A) the linking C*-algebra associated with &

Definition 8.2.9. An action (d,, 5;) of G on J is said to be compatible with the action (04, 84)
if we have:

1. 65:J = M(J®S) is compatible with 04, that is to say
LM(A@S) e} (SA = 5J Oljg.
2. the fibration map (; is compatible with (4, that is to say

ta(Ba(n®)a) = B1(n°)ala), n € N,ac€ A.

Proposition 8.2.10. Let (65,5;) be a compatible action of G on J. There exists a unique
non-degenerate *-homomorphism fg : N° — L(&) such that

By(n°) = (5‘59%”0) 6A?n°)> . neN.

¢’ = ¢t 0 :
O qBA7a

Proof. Note that since ¢4, 84 and ; are *~homomorphisms, the condition 2 of Definition |8.2.9
is equivalent to:

Moreover, we have

ta(aBa(n®)) =ta(a)Bs(n®), a€ A neN.

Therefore, there exists a map Sg : N° — L(&) necessarily unique such that

o\ __ B(f(no) 0
M“‘( 0 6A(n°)>’

for all n € N. Then, it is clear that S¢ is a non-degenerate *~homomorphism and the last
statement is then an immediate consequence. O
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Remarks 8.2.11. Note that if 3,4 is injective then so is 3;. We also have
L;C(@m)(ﬁg(no)/{?) = /BJ(nO)L]C(é”)(k>, neN, ke K:(£)>
The proof of Proposition 2.7 of [3] is adapted to the needs of our setting.

Proposition 8.2.12. a) Let us assume that the C*-algebra J is endowed with a compatible
action (67, 5y) of G. Then, we have the following statements:

e There exists a unique linear map 85 : & — M(E @ S) such that

Le(A®S,£2S) 0 08 = 07 O Lg.

Moreover, (&,6¢,Be) is a G-equivariant Hilbert A-module, where fg : N© — L(&) is the
*_-homomorphism defined in Proposition |8.2.10.

o There exists a unique faithful *-homomorphism 0k e : K(&) — M(K(&) ® S) such that

LL(6@S) © 0K (&) = 07 O (&)

Moreover, the pair (0 sy, Be) is an action of G on K(&).

b) Conversely, let (&,0¢, Bs) be a G-equivariant Hilbert A-module. Then, there exists a faithful
*-homomorphism §; : J — M(J ® S) such that

LL(ARS,E2S) © 08 = 070 Ls.

Moreover, we define a unique action (05, 35) of G on J compatible with (04, B4) by setting

Bs(n°) = (B(Og)n[)) 5A?n°)> , nenN.

Proof. a) Let us assume that the C*-algebra J is endowed with a compatible action (d,, 5;) of
G. Let B : N° — L(&) be the *-homomorphism defined in Proposition |8.2.10, First, let us
prove that there exists a unique linear map

Se & 5 LARS,EDS)
such that t(ags,ees) 0 0s = 050 Le. For all § € &, we have
ey (le)te(§) = 1e(§),  te(§)ice)(ls) = 0.
By the second statement of Proposition [8.2.10, we have
05(17) = ¢ = 12609 (€°%) + tamass) (04(14))

We also have
0s(Ly) = 04(teey(1e)) + 05 (tatcazs)(1a)).

Moreover, we have tyqags) © 04 = 05 0 tpq(a) since the right-hand and left-hand sides are both
strictly continuous *-homomorphisms, which coincide on A. Hence,

51(tee)(1e)) = tesas) (¢°6%).

Therefore, for all £ € & we have
Le(ees)(07)0(te () = 05(16(€)),  0s(1e(€))ieions) () = 0.
Fix any £ € &, then by Lemma 2 we have
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Laws ()05 (1s(§)) = taws(@)ie@ses)(@7)0s(1s(§)) =0,
for all z € A® S. Now, let (uy), be an approximate unit of A. We have

0 (16 (§)) = lim 9y (es(€un)) = lim 6, (ee(€))ermazs) (0a(ur)).

Hence, 6;(ts(§))tsws(n) =0 for all n € & ® S by Lemma 1, which proves the statement.
Moreover, s actually takes its values in the subspace M(& ® S) of L(& ® S). Indeed, fix any
£ e &. For all s € S, we have that

Le(awsses)(le ®8)0s(8)) = (1, ®8)05(1s(§)),  tr(awssns)(0s(§)(1a®s)) = d(ts(§)) (17 @ s)

belong to K((£®5)@(A®S)) = K(E®A)®S as the range of 8, lies in M(J®S). Consequently,
we have (1s ® 5)0g(€), ds(§)(1a ® s) € & ® S. The condition 1 of Definition derives easily
from the compatibility of d; while the condition 4 is a straightforward consequence of the
coassociativity of 9.

The vector subspace of §;(1,)((& & A) ® S) spanned by the elements of the form

5J(9§€Ba,7769b)(g)7 5777 € g? a, b € Aa g € (g D A) ® Sa

is dense. However, we have

07 (Oeganen)(C) = (96(€) @ da(a))(0s(n) © 44 (0))*(C),

where 0£(&) @ da(a), ds(n) B oa(b) € LLAR S, ERS)BLA®S) =L(ARS,(£dA)®S).
Therefore, this vector space is in particular spanned by the elements of the form

(06(&) @ dala))(x) =0g(8)x B dala)r, €&, a€A v€ARS.
Then, the condition 2 follows since we have
5;(1)(E@A)®S) =¢"**(E2S) B " (A S).
Now, let us prove that there exists a unique *-homomorphism
Sy L(E) = LIE®RS) = M(K(E) ® 5)
such that t(ges) 0 0z = 07 0 te(s). We recall that

05 (tee)(Le)) = tesws) (7).

In addition, we have
Laws(T)ieees) (@70%) =0, to@es) (@7 ) ass(z) =0, z€ A®S.
As a result, it follows that
i (@)55 (1) (1)) = 0, 3,(ucie) (T))iass(a) =0, T € L&), v € A®S,

which means that §;(cz)(T)) belongs to teiees)(L£(E ® S)) according to Lemma [8.1.3] Finally,
the statement is proved since i.(sgs) is faithful. Since tr(ggs) is isometric and d; o tz(g) is
strictly continuous, we have that 0.y is strictly continuous. Let us denote dx(¢) the restriction
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of (&) to IC(&) so that (dx(e), Be) turns out to be an action of G on IC(&’). Moreover, the map
dxc(e) does take its values in M(IC( ) ® S) since we have

Sxc(e)(Oe) = 06(€)06(m)* = Os,(¢)65(m) € KIM(E @ S)) C M(K(E) ® S),
for all {,n € &, which follows from the fact that i) (0ey) = te(§)s(n)*.

b) First, it is clear that ; is a non-degenerate *-homomorphism. It is also clear that (3 is
compatible with the fibration map (4, that is to say 5;(n°)ea(a) = ta(Ba(n°)a), for alla € A
andn € N. Let ¥ € L(E®s, (A®S), & ®S) be the isometry associated with the action ds. Let
1:¢P4(A® S) = A® S be the inclusion map. We easily check out that 2 is an (A ® S)-linear
adjointable map and +* = ¢°4%. In particular, ¢ is an isometry as 1*1(z) = ¢®4%z = z for all
z € ¢°4*(A® S). Now, let us denote

W=7V D1EL(ERs5, (A2 9)) D¢ (AR S5),(E®9)D(A®S)).

We have #*# = 1 and then # is an isometry. Henceforth, we will use the following identification
(see (8.2.1))):

(6 @5, (AR 9)) PP (AR S) = (6 ®5, (AR S)) @ (AR5, (AR S)) = (D A) ®s, (A® S).

(ERS)D(ARS)=(EDA)RS.
Hence, # € L((& ® A) @5, (AR S), (& D A)®S). Then, let us define
Sceany(T) =W (T Rs, L)W € L(EDA)®S), TeLllEdA).

In that way, we define a *-homomorphism dzsga) : £(& ® A) = L((& & A) ® S), which is
obviously strictly continuous and verifies dzgga) (1) = #H#* = ¢Pe* @ ¢F4+> = ¢F7. Let us
denote 0 the restriction of 6,(sga) to J 1= K(& @ A).

Let us prove that for all a € A, we have tyags)(0a(a)) = 65(ta(a)). It amounts to proving that
tmaes)(04(a)W = 65(ta(a))¥, ac A,
since we have:
Lam(aws) (0a(@)) W™ = tmaes) (04(a))(tesws) ( ) + LM(A®5)(QBA’Q))
LM(A@S)((SA(CZ)C]’BA “) (Lemma [B.1.3 2)
)

LM (A®S) (5,4(@) and

05(tala) W W™ = d5(tala))ds(1s) = d;(eala)),

for all a € A. Therefore, it is enough to prove that taqags)(da(a))? = # (1a(a) ®s, 1) for all
a € A because of #*# = 1. But, we have

W (nDb) Rs, x) =Y (NRs, ) Doalb)r =dg(n)x ®oalb)r, ne& beA € AR S.
Now, we finally get
W (ta(a) ®s, 1)((n®b) @s, ) = #((0® ab) ®s, x)
= (7 @®1)(0® da(ab)x)
=0® da(ab)x
= tm(ae9)(04(a))(0s(n)x & 04(b)x)
= tm(aes)(04(a)) 7 ((n @ b) ®s, @),

154



for allp € &, a,b € A and r € A® S. By using similar arguments, we can prove that
Le(awsees)(06(€)) = 05(te(§)) for all € € &.

By strict continuity, we obtain
(67 ®ids)tr(ags)(m) = (tm(aes) @ 1ds)(64 ® ids)(m),
(ids ® 0)epm(ass)(m) = (tma) ® ids ® ids)(ida ® 6)(m),
for all m € M(A® S). By compatibility of §; with d4 and coassociativity of d4, we then obtain
(0 ®idg)os(tala)) = (idy ® 0)ds(tala)), a€ A.

By using the coassociativity of ds and the formula 65 0 te = 12(an560s) © d¢, We prove in a
similar way that (0; ®1ids)ds(tg(€)) = (Idy®6)d5(1e(€)), for all £ € &. But since J := K(&@ A)
is generated by ts(&) U ta(A) as a C*-algebra, the coassociativity condition holds.

Now, forallne & be A, xr € A® .S and n € N, we have

5 (Bs(n°)) W ((n @ b) @s, x) =W (Bs(n°)(n ® b) Qs x)

W ((Be(n®)n & Ba(n®)b) ®s, x)
6s(Bes(n°)n)z @ da(Ba(n®)b)x
(L ® B(n°))(ds(n)x ® 04(b)x)
(L ® B(n°))# ((n @ b) s, ),

Then, for all n € N we have

07(B5(n°) = 85(B5(n°)d5(1s) = 65(Bs(nNH W™ = (1, @ B(n°)) W W™ = (1; ® B(n°))d;(1,).

Therefore, (6, 3;) is an action of G on J, compatible with (4, 54). Finally, the uniqueness of
07 follows from the formulas

tm(aws)(04(a) = 05(ala)),  teassess)(06(8)) = 0(1s(E)), a€ A, £,
and the fact that J := IC(& @ A) is generated by 15(&) Uta(A) as a C*-algebra. O
As in [3] (see Définition 2.9), we have:

Definition 8.2.13. Let A and B be two G-C*-algebras, & a G-equivariant Hilbert B-module
and 7 : A — L(&) a *-representation. We say that 7 is G-equivariant if we have:

1. dg(m(a)f) = (m ®idg)(0a(a)) 0 0(&), for all a € A, € € &.
2. Bg(n°)om(a) =m(Ba(n°)a), for alln € N, a € A.

Moreover, if & is a countably generated B-module, we say that (&, ) (or simply & if 7 is
understood) is a G-equivariant Hilbert A-B-bimodule.

Remark 8.2.14. Note that a *-homomorphism 7 : A — £(&) defines a *-homomorphism
T®idg : M(A®S) = L(E® S) (see [3] §1). Indeed, let us denote A the C*-algebra obtained
from A by adjunction of a unit element. Then, 7 induces a unital *-homomorphism 7 : A — L(E)
defined by 7(a + \) = 7w(a) + Mg, for all a € A and A € C. In particular, we have a non-
degenerate *-homomorphism 7 ® idg : A® S — L(& ® S), which then extends to M(A® 9).

By restriction to M(A ® ), we obtain a *homomorphism which extends 7 ® idg.
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If 7 is non-degenerate and satisfies the condition 1 of Definition [8.2.13] then we prove in the
following proposition that the condition 2 is necessarily satisfied.

Proposition 8.2.15. Let A and B be two G-C*-algebras, & a G-equivariant Hilbert B-module
and 7 : A — L(&) a non-degenerate *-representation such that

55 (m(a)E) = (m ©ids) (5a(0)) 0 65(6), foralla € A, £ € &,
Therefore, we have Bg(n®) o m(a) = w(Ba(n)a) for alln € N, a € A.

Proof. In virtue of the non-degeneracy of 7, 7 ® idg extends to a unital strictly continuous
*-homomorphism 7 ® idg : M(A® S) = L(E®S). Let n € N, a € A. For all £ € &, we have

06 (Bs(n®)m(a)8) = (s © B(n°)) o de(m(a)§) (8-2.3/3)
= (e ® B(n°)) o (r ®ids)(da(a)) o ds(E) (8:2.131)
= (7 ®ids)((1a ® B(n°))da(a)) 0 6¢()
= (7 ®ids)(0a(Ba(n®)a)) 0 4 (¢) (1123
= 0s(m(Ba(n®)a)s)

Since ¢ is injective (isometric), we have fg(n°)m(a){ = 7(Sa(n°)a) for all £ € &. Hence,
Pe(n®) om(a) = w(Ba(n®)a). U

If (&,0s,8s) is a G-equivariant Hilbert A-module then the action (dx(saa), Br(cwa)) of G on
K(& @ A) and the action (dxs), fe) of G on K(&) are not necessarily continuous. In the
following, we provide a necessary and sufficient condition on (&,d¢, Ss) so that the triples
(K(& ® A), dksoa), Breaa)) and (K(&), 0k sy, Be) become G-C*-algebras.

Proposition 8.2.16. Let (&,0¢,5s) be a G-equivariant Hilbert A-module and let us denote
J=K(&®A). Let us assume further that

(1 ® S)os(&)] = (& @ S)g?+=. (8.2.8)
Therefore, the actions (65, 87) and (dx(s), Be) are continuous, that is to say:

[6,(1)(L; ® S)] = ¢™ (T ® ), (8.2.9)
(k) (K(8)) (15 @ 8)] = ¢**(K(6) ® S). (8.2.10)

Conversely, let us assume that the action (0, 3) is continuous. Then, the formulas (8 and

(E210) hold.

Proof. Let us assume that [(15 ® S)d¢(&)] = (& @ S)¢?4. First, let us prove that the action
(Ok(#), Be) is continuous. We have

[0ic(6)(K(&))(1e @ )] = [0k(s)(Oe) (e @y); Em € E, y €S

However, we have

k(&) (Oe) (e @ y) = 6(§)0e(n)" (1e @ y) = 06 (§)((1e ® y*)os(n))*, EneE, yeS.

In virtue of the assumption and the fact that d4(£)g%® = §4(€) for all £ € &, we obtain
i) (K(€)) (16 @ S)] = [65(E) (6™ @ 5)] = [65(E) (15 @ 5)(6* @ 5)] = ¢"*(K(&) & S),
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where we have used [64(&)(1e ® S)] = ¢°¢%(& @ S), K(&) = [£&*] and the fact that any
element of S can be written as a product of two elements of S.
Now, let us prove that (4, 3,) is continuous. Let x € J and y € S. Let us write:

55:(;2 i), where a € A, k€ K(&), &,n € &.

Then, we have
05(x)(1; @ y) = 0s(uce) (k) (Ls @ y) + 0s(1e(€)) (1 @ y)
+ 05 (1e- (")) (Ls @ y) + d5(eala))(1; @ y)

= te(ews) (k@) (k) (17 @ y) + teassees) (06(8)) (1) @ y)
+ Lesws,a0s) (06(M))(1s @ y) + taass)(9a(a))(1; @ y)

= L;C(g)®s((s/c(£)(k)(1<§’ ® y)) + L$®S(55(§)(1A ® y))
+ tsws((Le @ y)0s ()" + tass(0a(a)(1a @ 1)),

Then, (8.2.9)) follows from (8.2.10]), the condition 2 of Definition [8.2.3] the assumption (8.2.8)

and the continuity of the action (d4, 54). O

Definition 8.2.17. We say that a G-equivariant Hilbert A-module (&, d¢) is a G-A-module if
it satisfies:

[(1e ® S)65(&)] = (& @ S)g*+°.

We finish this paragraph with some examples:

1) Let G be a measured quantum groupoid on a finite basis. Let (J,d,,e1,e3) be a linking
G-Cr*-algebra (see Definition [6.2.1]). Let us denote:

A= €2J€2, & = €1J€2.

By restriction of the continuous action (d,, 5;) of G on J, we obtain a continuous action (44, 34)
of G on A and a structure of G-A-module on &.

2) Let us fix a regular colinking measured quantum groupoid G. Let us consider the trivial
action of G on N := C2. Let us fix i = 1,2, we then consider the following Hilbert N-module:

& = I D Hs.

Let us consider the isometry 7 € L(& ®s5, (N ® S),& ® S) and the non-degenerate *-
homomorphism fg : N — L(&) given by:

V(&G e1) = > Vi&®1) ; Bele) =py, j=12

k=1,2

Then, the pair (¥, B¢) defines a structure of G-N-module on &.

3) Let G := Gg, g, be a colinking measured quantum groupoid between two monoidally equivalent
regular locally compact quantum groups G; and G,. Let us fix a G;-C*-algebra A; and its
induced G,-C*-algebra A := Indgf(Al). Now, we also consider the G-C*-algebra A := A; & As,.
Let us fix & a Gi-equivariant Hilbert A;-module. We denote & := Indgf (1), the induced
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Ga-equivariant Hilbert Ay-module. We have the following linking G1-C*-algebra (resp Go-C*-
algebra):
Jl = K:((gal D Al) (resp. J2 = ]C(éag D AQ))

Let J := J; @ Jy be the associated G-C*-algebra. Let us define & the Hilbert A-module
& = & O &. By the previous argument, we have proved that & is a G-A-module. Conversely,
we can prove that any G-A-module is of this form.

8.3 The equivariant Hilbert module &4 p

Let G = (N, M,A,«,8,T,T',€) be a regular measured quantum groupoid on the finite dimen-
sional basis N = @ M,,(C). Let (S,6) and (S5, 4) be the associated weak Hopf-C*-algebras.

1<ILk

Let us fix a G-C*-algebra (A, d4, 54).

Notation 8.3.1. We consider the Hilbert A-modules &) = A® S and s = qﬁA’aé"g. Let us
denote Vy € M(S®S) such that V = (p®L)(Vp). We then define V = (p®idg)(Vy) € L(A®S)
(c¢f. Notations 3).

Proposition 8.3.2. There ezists a unique linear map dg, : & — L(A® S, & @ S) such that

g (a®&) =Vazda(a)iz(1la ® @ 1g),
foralla e A and £ € .

Remark 8.3.3. We have Va3 and d4(a)i3 € LIA® # ® S). Moreover, for £ € &, the operator
IAa®ER1s € LIAR S, AR H# ®S) isdefined by (140 €@ 1g)(a®s) =a®ER s, a € A and
s€S. Wehave (14 ®E®1g)* =14 ® & ® 1g, where £ € 7" is defined by £*(n) = (£, n).

Proof. 1If B is a C*-algebra and £ a Hilbert space, we will identify M(B) ® .# with a closed
vector subspace of L(B, B ® ) by denoting (m ® &)(b) = mb® & where m € M(B), £ € A
and b € B. For & € &, we then have (J4 ® idx)(&) € LIA® S, A® S ® ) and we have
(04 ®@idy)(&0)* = (04 ®@id ) (&) (&5 = A® ). Let 0 € L(S ® A, 7 @ S) be the flip map
o(s®¢&) =E&E®s, s €S and £ € . In particular, we have 93 € LIA® S ® 7,8y ® S). Now,
let us define:

530 (fg) = V23023(5A X id,yf)(fo) c ﬁ(A X S, éao X S), fg € éao.

Therefore, we have a well-defined linear map dg, : &6 — L(A® S, & ® S) such that for all a € A
and £ € A, 05(a®E&) = Vazda(a)i13(la ® £ ® 1g). The uniqueness follows from the continuity
of 5(530 . ]

Proposition 8.3.4. We have the following statements:

1M0)*64,(&0) = 5A(<Q5A’a770, QBA’ESO»; for all &y,mo € &.
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Proof. 1. Let &y, m9 € &y, we have

06, (10)"0 (§0) = (9.4 © 1d)(119) 0733V 33V230723(04 ® id) (&o)-

However, we have

VY= S0t Y plael)) @ Bell).

1<I<k 1<i,j<ny

Therefore, we have

oVVe= Y mt 3 B @ platel?)),

1<k 1<ij<n

For all n,n’ € N, we have

(1a® B(n°) @ p(a(n’))) (04 @ idr)(a®E) = (14 ® B(n°))da(a) ® p(a(n’))é
= da(Ba(n®)a) @ p(a(n’))§
= (04 ®idz)((Ba(n®) ® p(a(n)))(a ®)),
for all a € A, £ € 5. Hence,
(la® B(n°) @ p(a(n')))(0a ® idr) (&) = (04 ® idr)((Ba(n®) ® p(a(n')))é0), n,n' €N

It then follows that
T35 Vi Vas023(64 ® id ) (&) = (64 ® id ) (¢74&,).

As a result, we finally have

06, (10) 05, (€0) = (64 @ idLe-) (15) (64 © i) (0*476)
= §a((n0, 7€)
= 04({(¢""no, ¢"**&0)),

where the last equality follows from the fact that qﬁA’a € L(&) is a self-adjoint projection.

2. Let a,b € A and £ € 7, we have

05 ((b® &)a) = dg(ba®§)
= V235A(ba)13(1A X f & 13)
= V2304(b)1304(a)13(14 ® £ ® 1g)
= Va304(0)13(14 ® £ ® 15)da(a),

where d4(a) is looked at as an element of L(A ® S) in the last equality. It then follows that
06 (0 ® €)a) = 05 (bR E)0a(a), abe A, e,

and the statement is proved.

3. Forallbe Aand n € 5, we have 5 (b®@n) = Vas(14RE®15)04(b) = (14 @V(n®15))da(b).
We recall that
V(Lr ® 5(n°)) = V(p(a(n)) ® 1), neN
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(see Proposition ). Let a € A and & € , we have

06 (P (a2€) = 3 mt Y 64(Balel))a® alel)e)

1<i<k I<i,j<ny

= Y 0t Y Laev@E))E © 15)daBalel))a)

1<I<k 1<i,j<m

= S ot S (La@V(EBE))) (14 @ B(el)dala)

1<I<k 1<i,j<m

=3 3 (L@ V(ERBE)))dala) eel) = el

1<I<k 1<i<n,

= Z (1a @ V(E® B(eD°))da(a) o) — Z e%)

1<i<k 1<i<ny

Iégo(a®f). Z e(l)le

1<ILk

4. Tt suffices to show that q%"aégo (&o)x = 0g,(&o)x for all § € & and z € A® S. Let us recall
that (a(n) ® 15)V = V(1 ® a(n)), for all n € N (see the first formula of Proposition [2.3.5] 3).

It then follows that quA’O‘VQ;; = Vggq%"a. Let a,b€ A, £ € # and s € S. Since ¢°4* = §4(1,),
we have

055464 (a @ E)(b® 5) = ¢ Vysoa(a)13(b® £ ® s)
= Vasa5*0a(a)13(b® £ @ 5)
—a(a2E)(b®s)

and we are done. ]
Notation 8.3.5. According to the previous proposition, ds, restricts to a linear map
O6sp  Ear — LIA® S, 64r® 5),
which satisfies the following statements:
® e,y 1 (10) 06, 1 (0) = 04 ({10, &0)), for all no, & € Ear.
® dg, n(Moa) = de, n(M0)da(a), for all ny € &4 p and a € A.
Proposition 8.3.6. We have ds, ,(64.r) C M(E4r® S).

Proof. To begin with, let us prove that ds, ,(§)(14®y) € Ear® S forall § € &y rand y € S.
It amounts to proving that dg (&)(1la ® y) € & @ S for all & € & and y € S thanks to the
statements 3 and 4 of Proposition [8.3.4] Let a € A and £ € JZ, since d4(a)(la®y) € A® S,
I (a@&E(1a®y) = (1a @ V(€ ® 1g))da(a)(1la @ y) is the limit, with respect to the norm
topology, of finite sums of the form:

Y a@VERs) AR A RS =605, a €A, s €8

Hence, 4 (a®&)(1a®@y) € 6@ S.
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Now, let us prove that (lg, , ® ¥)ds, (§0) € Ear @ S for all § € &4 g and y € S. This also
amounts to proving that (1g ® y)dg (§) € o @ S forall §y € & and y € S. Let a € A, £ € A
and y € S, we have

(Le ®Y)dg(a® &) = (1a ® (Lr @ y)V(E ® 15))dala).

There exist € S and n € £ such that & = p(z)n. Hence,
(lr@y)V(ER1ls) = (p@ids) (1@ y)Vo(z @ 15))(n ® 1g).

If (l;@y)Wrels) € S® S forally e Sandz e S, then we are done. Indeed, if this was
true (1, ® y)V(€ ® 1g) would belong to # ® S. In particular, it would exist X € 7 ® S and
s € S such that (1, ® x)V( ® 1g) = X's. But since (14 ® s)da(a) € AR S, (lg ® x)dg (a ®E)
would be the norm limit of finite sums of the form:

Zai®Xsi, a; € A, s; € 8.

Hence, (1g, @ y)dg(a®@§) € & ® 5. Let us prove that (1@ y)V(r ® 1g) € S@Sforallyes
and z € S (for the sake of convenience we identify Vj and V).A It is equivalent to showing that
(Y@ WA @ Ax)) € S®A(S) orelse (z ® 15)V(1g®y) € S® S at the risk of switching W
with V. Tt suffices to see that (id ® w ® id)(Vi2Vis(1r ® 1r ® y)) € S ® S for all w € B(H).
(x = p(w), for w € B(H).). Let w € B(H), and let us write w = aw’, where z € S and
W' € B(A).. Since Vi2Vig = VasV1a Vs, we have
(id®@w®id)(ViaVis(lr ® 1y ®y)) = (ild @ W' @id)(VasVi2Vas(1r @ 2 @ y))
= (ld ®@w ®@id)(VasViz(lr @ V(z @ y))).

But V(z®y) € §® S, therefore (id ® w ® id)(ViVis(1y ® 1+ ® y)) is the norm limit of finite

sums of the form

D (Id@w @id)(VagVia(ly @ 2; @ y;)) = >_(1d @ w} @ 1d)(Vas(1r ® Ly @ 1:)Vi2),

where z; € S, y; € S and W} := 2’ € B().. Now let us write w; = R(y;)w; A(}), with z] €S,
y, € S and w! € B(A),. Then, since Ve M’ @ M, A\(5) c M and R(S) C M’, we have

(id ® w; & id)(‘/gg(ljf Ry ® yi)‘/lg) = (ld ® w;’ &® 1d)((1f &® V()\( )R(yl) ® y,))‘/lg)
= ([d®w @id)((Lr ® V(U* (@5) L(y)U ® i) V12)
However, we have the inclusion [SS] ¢ K(2) (Corollary and V € M(K() ® S).

Consequently, we have V(U*p(2) L(y})U @ y;) € K(H#) @ S. NOW, if k e K(#), s € S and
Y € B(J)., we have

([d® ¢ @id)((1r ® k@ s)Vi2) = ([d@ ) (1r @ k)V) @5 = ([dok)(V)®@se S® S
and we are done. O

Notation 8.3.7. Let 8¢ : N° — L(&) be the injective *-homomorphism given by

Bs(n®) =14 ® p(B(n°)), neN.
Since a(n')B(n°) = B(n°)a(n’) for all n,n’ € N, we have [Bg,(n°),¢*4*] = 0 for all n € N.
Therefore, 3¢, restricts to a non-degenerate faithful *-homomorphism fe, , : N° — L(&ar).
Since (a@(n )® 15)V = V(1 ® a(n)) for all n € N, we have V23q1’8§"a = q12 V23 Thus,

[Vas Vi, i a] = 0 and the operator Va3Vi; € L(&) ® S) restricts to a self-adjoint projection
pgA,R of L:(éDA,R & S)
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Proposition 8.3.8. We have the following statements:
1. [5&4,1& (@@A,R) (A ® S)] = pgA,pz(g}A,R & S)

5£’A,R,a‘

2. Psar =4

8. 064 1 (Bean(n)n) = (g, ® B(1°))ds, n(n), for alln € Ex g andn € N.

Proof. 1. Since VV*V =V, we have Va3V5304,(&0) = 04,(&o), for all £ € &. It then follows that
Pés r064 1 (&) = s, 5 (§), for all £ € &4 g. Thus, we have

O n(EAR)(A®S) Cpsy p(Ear®5).
Conversely, let a € A, £ € 7 and s € S. Since vggqﬁf’“ = q%"ang, we have
Penn (@ (a® &) ® 5) = VosV3pai53 (0 © € @ 5) = Vass * (a @ V' (£ @ 5))

and V*({ ® s) € 7 ® S. In particular, pgA,R(qﬁA’a(a ® &) ® s) is the norm limit of finite sums
of elements of the form:

Vasgid “(a® & ®5), € €A, ses.

By continuity of (04, 84), Vasgid™*(a ® € ® &) is the norm limit of finite sums of the form:

ZVQg(SA(ai)lg(lA & 5/ & Si) = Z(SgA’R(q’BA’a(@i X 5/))(1,4 X Si)> a; € A, S; € S.

As a result, pgAYR(qﬂA’a(a ®E) ®@s) € [0s, o (Ear)(A®SI)], foralla € A, { € S and s € S.
Hence, pg, (Ear ® S) C [6s, n(Ea,r)(A® S)] and the first statement is proved.

2. The statement is a straightforward consequence of the definitions.

3. Let n = qﬁA’a(a ® §), with a € A and £ € . We have

Bey n(n°)n = (14 @ p(B(n°)))g°*%(a © €) = ¢°4%(a @ p(B(n°))€).

Moreover, we have V(p(8(n°)) ® 1s) = (1 ® 5(n°))V for all n € N (see the second formula of
Proposition 3). It then follows that

064 n(Bean(n°)n) = 0g,(a @ p(B(n°))E)
= Vagda(a)13(1a ® p(B(n°))E ® 1g)
= (1a®@V(p(B(n")) @ 1s))da(a)3(1a ® { @ 1)
= (la® 1y ® B(n°))dsg(a ®¢)
= (Leyr @ B(n°))064 5 (0)

and we are done. ]

Consequently, dg, , ® ids and idg, , ® 0 extend to linear maps from L(A ® S, E4r ® S) to
LIARS®S,E4pr®S®S) (cf. Remarks|[8.2.8)) and we have:

(04 ®ids)(T) (04 ®idg)(7) = (g, , ®ids)(Tx),
(idg, , ® 0)(T)(ida ® 6)(x) = (idg, , ® 6)(Tx)
foralz€e A@Sand T € LIA® S, E4r® 95).
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Proposition 8.3.9. The linear map dg, , is coassociative, that is to say

(65A,R ® ids)dé”A,R (é) = (ide,R ® 5)5&1,1%(&)7 ’S € éaA,R'
Proof. Let ae A,ne ,rec A Sandye A®S® S, we have
(05, n @ ids) (0, (¢4 (a®@))) (04 @ ids) (@)Y = (0,  ® ids) (G, (474 (a @ 0)))y

= (0g ® ids) (04 (a @ n)z)y
= ((Sgo X idg)(V23(5A(a)x)13(1A X n X 15))@}.

Now since d4(a)r € A® S, if b€ A and s € S we have
(06, ®1ds)(Vas (b @1 ® ) = (05 @ ids) (6@ V(1 ® 3)).
Let ¥ € 7 and s’ € S, we have
(0g, @idg)(b@ 7 @8') =05 (bRN) @ = Vazoa(b)13(14 @7 @ 15 ® §).
Consequently, we have (0,4 ®idg)(b®X) = Va304(b)13X0 € LIAR A RS®S) forall X € 7 ®S.

In particular, we have

(0 @idg)(bR@ V(N ® 8)) = Va304(b)13V2s(14 @ @ 15 @ 5)
= Va3V2404(0)13(14 @ ® 15 ® s).

However, we have (id ® 6)(V) = Vi2Vi3. Hence, Va3Voy = (idg, ® 6)(Va3). Moreover, we have

04(0)13(1a @M ®1s®@s) = (6a(b)13®5) (14N ® 1s® 1g)
= (0413®ids)(b®@s)(14®N® 15 ® 1g),

for all b€ A and s € S, where 0413 : A - L(A® S ® S) is the *~homomorphism defined by
da13(a) = da(a)3 for all a € A. As a result, we have

(0, ®@ids)(VasYi3(1la ® n ® 1)) = (idg, ® 0)(Va3) (04,13 ® ids)(Y)(1a ® n @ 15 ® 1s)
forallY € A® S. In particular, we have

(0 ®1ds)(04 (a @ n)z)y = (idg © 0)(Vas)(da3 @ idg)(da(a)r)(1a @ n @ 15 © 15)y
= (idgo ® 5)(]}23)((514713 ® ids)(SA<a)(1A QNMR1lg® 15)(5A ® lds)(l’)y

Besides, we have (0413 ® idg)(04(a)) = (idg, @ §)(0a(a)13). Hence,
(00,0 @ ids) (35, (a7 (a @ 1))z = (idg, ® 0) (Vasda(a)r3)(1a © 0 @ 15 ® 1)z,

for all z € ¢4 *(A® S ®S). In particular, if z € 78¢5 (A ® S ® S) we have

(Bt © 1) (05, n(6™ (0 @ 1))z = (idsy © ) (Vasda(@)rs) (14 © 0 @ ¢)2
= (idg ® 0)(de,(a @ 1))z
= (idéaA,R ® 6) (55“}4,12 (qﬁfha(a ® n)))z>
since forallz e A® Sand y € A® S ® S we have
(idsy e ® 6) (66, 1 (47 (@ © 1)) (ida @ D) (2)y = (idss, ,, @ 0) (B, (474" (a © 1))y
= (idg, ®0)(d4 (a @ n)z)y.
Therefore, we have (dg, , ® ids)(égA’R(qﬁA’a(a ®@n))) = (ide, , ® 0)(ds, 5 (¢°4%(a @ 7))) for all
a € A and n € 7 and then the coassociativity condition holds. m
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Now, we can assemble the previous results in the following theorem:
Theorem 8.3.10. The triple (Ea R, 06, 5, Beyr) i a G-equivariant Hilbert A-module.

In the following, we identify the G-C*-algebras A x G x G and (D, dp, Bp) (see Theorem |4.4.15]).
We also denote jp : D — L(&4 r) the canonical non-degenerate faithful *-homomorphism (see

Proposition-Definition and also Remark 4.4.2]).

Proposition 8.3.11. The couple (&g, jp) is a G-equivariant Hilbert D-A-bimodule.
Proof. By Proposition [8.2.15, we have to prove that jp satisfies the following statement (see

Definition :
064, (I(d)E) = (jp ®ids)(0p(d)) 0 dg, 4(§), forall { € Eapr, d € D.
Let us prove it in three steps:
elLetbe A z €S andne . #, we have
06y (b @ A(x)n) = Vasda(b)13(1a @ Mz)n @ 1s) = (1a @ V(A(z) ® 15))5a(b)13(14a @ 1 @ Lg).
However, V(A (z) ® 1g) = (AM(z) ® 15)V (as A(S) € M and V € M’ @ M). Hence,
de (@ AMx)n) = (14 ® AM(z) ® 15)dg (b @ 1),

and then 64 (14 ® Mz))no) = (14 ® AMx) @ 15)d4 (1), for all z € S and ny € &.

e Let y € S, we have V(L(y) @ 1s) = V¢*#(L(y) @ 1g). Since &(N) € M’ and L(y) € M, we
have

V(L(y) ® Ls) = V(L(y) ® 15)¢™" = V(L(y) ® Ls)V*V = (L @ids)(3(y))V.
Let b € A and n € J€, we have

05 ((1a®@ L(y))(b®n)) = (1a @ V(L(y) ® 1s))da(b)13(1a @ n ® 15)
= (14 ® (L ®ids)d(y))dg (b ®@n).

Hence, 04, ((14 ® L(y))no) = (1a @ (L ®1ds)d(y))dg (no) for all y € S and ng € &.

Thanks to the first two steps, we have

04,5 ((La @ A(@)L(y))mo) = (1a ® A(z) ® 15)(1a ® (L ®1d5)d(y))ds, n(10), 10 € Ear-

e Let s € 5, we have
(R(s) @ )V =U@)E(1e L(s)X(U"@1)V=Ua1)S(1® Ls))WEU*®1).

Besides, (1 ® L(s))W = (1 ® L(s))WW*W = WW*(1 ® L(s))W = W{(s) since we have
WW* = ¢* and L(s) € M C B(N°). Therefore, since (U ® 1)SW = V(U ® 1)X we have

(R(s) @ 1)V = VE(1 @ U)é(s)(1® U")S.

Thus, we have
(R(s) ® 15)V = Vo(ids ® R)(d(s))o*, forallseS.
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We then have that ((ida ® R)(2) ®1g)Vag = Vag093(idags @ R)((ida®3)(x))oss, forallz € AR S.
But, since R and ¢ are strictly continuous this equality also holds for all z € M(A® S). In
particular, we have

TRr(a)12Va3 = Vaz03(idass ® R)(65(a))oss, for all a € A,
where 6% (a) = (idy ® §)d4(a). Now, since 6% (a) = (64 ® ids)d(a) we obtain

TRr(a)12Vas = Va3093(04 ® idi())(TR(a))055, for all a € A.
It then follows that

Tr(a)1204 (€0) = Va3023(04 @ idicr)) (Tr(a)) (04 ® idr)(&0)

= Va3093(04 ® id ) (mr(a)&o)

= 550 (T‘-R<a)§0)7
for all @ € A and & € &. In particular, mr(a)126s, (&) = ds, r(TR(a)éo) for all a € A and
& € Ean.

We have proved that foralla € A, z € S, y € S and & € &, we have

O (mr(a)(1a @ AM@)L(y))&0) = Tr(a)12(14 @ Mz) ® 15)(14 ® (L ® ids)d(y))ds (So)-
However, for all a € A, z € S and y € S we have

(jp ®idg)dp(mr(a)(1a @ Mz)L(Y))) = r(a)12(14 ® A(z) ® 15)(14 ® (L ®idg)d(y))

(see Proposition m 1). Therefore, if d = mr(a)(1a ® A(z)L(y)) € D, where a € A, x € S
and y € S, we have dg, ,(ip(d)§) = (jp ®ids)(dp(d)) 0 bs, (&), for all § € &4 r. Thus, the
statement is proved since D = [rr(a)(14 @ M(z)L(y));a € A,z € S, y € S]. O

Proposition 8.3.12. Let (dx(s, poa), Bic(sagea)) be the action of G on K(Exr ® A) associated
with the G-equivariant Hilbert A-module (4 r, 06, », By ). Then, the following statements are
equivalent:

1. ((5}C(gA7R@A),6K(gA7R@A)) is continuous,

2. [(15"A,R ® S)éfA,R(g)A,R)] = (éBA,R X S)q,@ma’
3. [(1a® (1Lg@y)Valz @ 1s))gia; y € S, v € §] = ¢ (14 © S ® S)gis.

Note that (14 ® (1@ y)Vo(z @ 1g))giae = q%"a(lA ® (lg@y)W(r®1s)), for ally € S and
res.

Proof. The equivalence of the statements 1 and 2 is given by Proposition Let us prove
that the statements 2 and 3 are equivalent. Note that the statement 2 is equivalent to

(15, ® )86, ()] = 15" (& @ S)g™**,

since we have dg, R(qﬁf“’a&)) = 0g,(&), for all & € &. Actually, we already have the inclusion

[(1g ® S)de ()] C q%"a(é"o ® S)gP4. Lety€ S,a€ Aand £ € 7. Let v € Sandne #
such that £ = p(x)n. We have

(1, ®Y)ig(a®@&) = (1a @ (Lr @ y)V(E @ 15))da(a)
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and (Ly @ y)V(E® 15) = (p®@ids)((1g @ y)Vo(z @ 15))(n ® 15). Hence, [(1g ® S)dsg (60)] is
equal to

(14 ® (p@ids)((1g @ y)Vo(r @ 15)))0a(a)i3(la@n®1s);a € A, x € S yes, n e H).
Now, let a € A, £ € 57 and y € S. We have
Ba.@ Baa _ Ba.@ Ba,o 1 1
013" (@ ®E@y)q 713" ((a @ y)q Ji3(la ® @ 1g).

Therefore, by continuity of (44, 54), qlﬁf"a(a ® £ ®y)q’4* is the norm limit of finite sums of the
form

> Q’ff’a(lgo @ yi)0a(a;)13(1a ® € ® 1g)

=Y (ida ® p @ ids) (s (14 @ 2 @ y:)qi$*)da(a:)13(14 @ 0 @ 1g),

where a; € A, y; € S and x € S, i € A are such that € = p(x)n. Therefore, qff’a(é”o ® S)gPae
is equal to

[(ida ® p @ ids) (q15"* (14 ® T @ y)grs *)oa(a)i3(la @@ 1s); 2 €S, y € S, n € H).
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