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Introduction

The notion of monoidal equivalence of compact quantum groups has been introduced by Bichon,
De Rijdt and Vaes in [5]. Two compact quantum groups G1 and G2 are said to be monoidally
equivalent if their categories of representations are equivalent as monoidal C∗-categories. They
have proved that G1 and G2 are monoidally equivalent if and only if there exists a unital
C∗-algebra equipped with commuting continuous ergodic actions of full multiplicity of G1 on
the left and of G2 on the right.
Many crucial results of the geometric theory of free discrete quantum groups (random walks
and their associated boundaries, Haagerup property, weak amenability, K-amenability and
so on) rely on the monoidal equivalence of their dual compact quantum groups. Among the
applications of monoidal equivalence to this theory, we will mention the following:

• In [24], Vaes and Vander Vennet have computed the Poisson and Martin boundaries for
the dual of the orthogonal quantum groups Ao(F ) by using the monoidal equivalence of
Ao(F ) and SUq(2) for an appropriate value of q (see [5]) and the results of [15, 25].

• In [12], De Rijdt and Vander Vennet have established a one-to-one correspondence between
the continuous actions of two monoidally equivalent compact quantum groups. Moreover,
this correspondence exchanges the Poisson (resp. Martin) boundaries of the dual discrete
quantum groups. It then follows that the knowledge of the Poisson (resp. Martin) boundary
of a discrete quantum group Ĝ provides that of any group whose dual compact quantum
group is monoidally equivalent to G. By using this principle, the authors have computed
the Poisson boundaries of the duals of the automorphism quantum groups.

• In [11], the authors have established the CCAP property and the Haagerup property for
the dual of any orthogonal quantum group by using the same principle. In virtue of the
compatibility of the monoidal equivalence with some operations, they have extended these
properties to free discrete quantum groups.

• In [28], Voigt has established an equivalence of the categories KKG1 and KKG2 for two
monoidally equivalent compact quantum groups G1 and G2. It follows that the Baum-
Connes conjecture for the duals is invariant by monoidal equvalence. By proving this
conjecture for the dual of SUq(2) for an appropriate value of q, Voigt has then proved the
conjecture for the duals of orthogonal quantum groups Ao(F ) and their K-amenability. In
[27], the authors have used this result to establish the conjecture for the duals of the free
unitary quantum groups Au(F ).

In his Ph.D. thesis [9], De Commer has extended the notion of monoidal equivalence to the locally
compact case. Two locally compact quantum groups G1 and G2 (in the sense of Kustermans and
Vaes [18]) are said to be monoidally equivalent if there exists a von Neumann algebra equipped
with a left Galois action of G1 and a right Galois action of G2 that commute. He proved that
this notion is completely encoded by a measured quantum groupoid (in the sense of Enock and

v



Lesieur [14]) on the basis C2. Such a groupoid is called a colinking measured quantum groupoid.
The measured quantum groupoids have been introduced and studied by Lesieur and Enock (see
[14, 19]). Roughly speaking, a measured quantum groupoid (in the sense of Enock-Lesieur) is an
octuple G = (N,M,α, β,Γ, T, T ′, ν), where N and M are von Neumann algebras (the basis N
and M are the algebras of the groupoid corresponding respectively to the space of units and the
total space for a classical groupoid), α and β are faithful normal *-homomorphisms from N and
No (the opposite algebra) to M (corresponding to the source and target maps for a classical
groupoid) with commuting ranges, Γ is a coproduct taking its values in a certain fiber product,
ν is a normal semi-finite weight on N and T and T ′ are operator-valued weights satisfying some
axioms.
In the case where the basis N is finite-dimensional, the definition has been simplified by De
Commer [8, 9] and we will use this point of view in this thesis. Broadly speaking, we can take
for ν the non-normalized Markov trace on the C∗-algebra N = ⊕

16l6k Mnl(C). The relative
tensor product of Hilbert spaces (resp. the fiber product of von Neumann algebras) is replaced
by the ordinary tensor product of Hilbert spaces (resp. von Neumann algebras). The coproduct
takes its values in M ⊗M but is no longer unital.

In this thesis, we introduce a notion of continuous actions on C∗-algebras of measured quantum
groupoids on a finite basis. We extend the construction of the crossed product, the dual action
and we give a version of the Takesaki-Takai duality extending the Baaj-Skandalis duality theorem
[2] in this setting.
If a colinking measured quantum groupoid G, associated with a monoidal equivalence of two
locally compact quantum groups G1 and G2, acts continuously on a C∗-algebra A, then A splits
up as a direct sum A = A1 ⊕ A2 of C∗-algebras and the action of G on A restricts to an action
of G1 (resp. G2) on A1 (resp. A2).
We also extend the induction procedure to the case of monoidally equivalent regular locally
compact quantum groups. To any continuous action of G1 on a C∗-algebra A1, we associate
canonically a C∗-algebra A2 endowed with a continuous action of G2. As important consequences
of this construction, we mention:

• A one-to-one functorial correspondence between the continuous actions of the quantum
groups G1 and G2, which generalizes the compact case [12] and the case of deformations
by a 2-cocycle [20].

• A Morita equivalence between the crossed product A1 oG1 and A2 oG2.

• A complete description of the continuous actions of colinking measured quantum groupoids.

• The equivalence of the categories KKG1 and KKG2 , which generalizes to the regular locally
compact case a result of Voigt [28].

The proofs of the above results rely crucially on the regularity of the quantum groups G1 and
G2. We prove that the regularity of G1 and G2 is equivalent to the regularity in the sense of
[13] (see also [21, 22]) of the associated colinking measured quantum groupoid. By passing, this
result solves some questions raised in [20] in the case of deformations by a 2-cocycle.

This thesis is organized as follows:

• Chapter 1. First, we recall some notations, definitions and results concerning von Neumann
algebras, the theory of weights and operator-valued weights. We make a brief review of the

vi



theory of locally compact quantum groups (in the sense of Kustermanns-Vaes [18]). We
recall the construction of the Hopf-C∗-algebra associated with a locally compact quantum
group and the notion of action of locally compact quantum groups in the C∗-algebraic
setting and also very briefly in the von Neumann algebraic setting (see [23] for more
information). We recall the construction of the crossed product, the dual action and
we recall the Baaj-Skandalis duality theorem, the version of the Takesaki-Takai duality
theorem for actions of regular locally compact quantum groups. Finally, we recall the
biduality for crossed products of equivariant Hilbert bimodules.

• Chapter 2. We begin with some technical preliminaries concerning the relative tensor
product of Hilbert spaces and the fiber product of von Neumann algebras. Then, we make
a quick review of the theory of measured quantum groupoid in the sense of Enock-Lesieur
(see [14] for more information) and we recall the simplified definition of measured quantum
groupoids on a finite basis and the associated C∗-algebraic structure provided by De
Commer in [8, 9]. In the last paragraph, we make a very brief review of the reflection
technique across a Galois object provided by De Commer (see [9]), the construction and
the structure of the colinking measured quantum groupoid associated with monoidally
equivalent locally compact quantum groups. Finally, we provide a precise description of
the C∗-algebraic structure of colinking measured quantum groupoids and we obtain some
new results.

• Chapter 3. We prove that the measured quantum groupoids in general satisfy a condition
of irreducibility. We give a more precise result in the case of a measured quantum groupoid
on a finite basis and we obtain some useful corollaries. In the second paragraph, we
introduce the notion of semi-regularity for a measured quantum groupoid and we also
recall the notion of regularity, which already appears in [13] (see also [21]). We prove the
regularity (resp. semi-regularity) of the dual measured quantum groupoid in the regular
(resp. semi-regular) case and we obtain some useful conditions equivalent to the regularity
(resp. semi-regularity). In the case of a colinking measured quantum groupoid associated
with two monoidally equivalent locally compact quantum groups G1 and G2, we prove
that the regularity (resp. semi-regularity) of the groupoid is equivalent to the regularity
(resp. semi-regularity) of both G1 and G2.

• Chapter 4. We introduce and study the notion of actions of measured quantum groupoids
on a finite basis on C∗-algebras, we define the crossed product and the dual action. By
using the irreducibility property, we obtain a version of the Takesaki-Takai duality and we
also provide an important improvement of the result in the regular case.

• Chapter 5. We investigate in the minute details the continuous actions of colinking meas-
ured quantum groupoids. In the first paragraph, we prove that any C∗-algebra A acted
upon by a colinking measured quantum groupoid associated with two monoidally equiva-
lent locally compact quantum groups G1 and G2 splits up as a direct sum A = A1 ⊕ A2.
In particular, we show that the C∗-algebras A1 and A2 inherit a continuous action of G1
and G2 respectively. In the second paragraph, we study in detail the crossed product
and we obtain a canonical Morita equivalence between the crossed products A1 oG1 and
A2 oG2. In the third paragraph, we investigate and provide a thorough description of the
double crossed product. We also give a more precise picture in the regular case.
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• Chapter 6. In the first paragraph, we define an induction procedure which generalizes
that of [12] to the regular locally compact case. In particular, we obtain a one-to-one
functorial correspondence between the continuous actions of G1 and G2. It should be
noted that an induction procedure has been developed by De Commer in [9] in the von
Neumann algebraic setting. We also complete the description of the continuous actions of a
colinking measured quantum groupoid by defining a one-to-one functorial correspondence
between the continuous actions of the groupoid and the continuous actions of G1 (resp.
G2). In the second paragraph, we introduce a notion of equivariant Morita equivalence
(the underlying object is called “equivariant linking algebra”) for continuous actions of
measured quantum groupoids and we prove that the previous functors exchange the
equivariant Morita equivalences. In the third paragraph, we use the previous result to
extend the induction procedure to equivariant Hilbert modules. In the fourth paragraph,
we prove that the double crossed product A2 oG2 oĜ2 is canonically equivariantly Morita
equivalent to the G2-C∗-algebra induced by A1 oG1 o Ĝ1. We also investigate the case
where A1 is replaced by an equivariant linking algebra J1.

• Chapter 7. By using the induction procedure developed in the previous chapter, we define
in a canonical way an equivalence of the categories KKG1 and KKG2 which generalizes the
correspondence obtained by Voigt in [28].

• Chapter 8. We introduce a notion of equivariant Hilbert modules for actions of measured
quantum groupoids under three guises as in [3]. We discuss the question of the continuity of
the action of the groupoid on the associated linking algebra and we study some examples.
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Basic notations and writing conventions

We give here a short list of the basic notations and symbols that one can find throughout this
thesis.

H , K , H, K, H , K , ... : Hilbert spaces.
M , N , O, P, ... : von Neumann algebras.
A, B, C, D, E, S, ... : C∗-algebras.
E , F , E , F , ... : Hilbert C∗-modules.
G, H, ... : locally compact quantum groups.
G : measured quantum groupoids.
ϕ, ψ, ν, ... : weights on von Neumann algebras.
ω, ϕ, ψ, ... : normal linear functionals on von Neumann algebras.
Σ, σ, ς : (relative) flip maps.
ΣH ⊗K : flip map ΣH ⊗K : H ⊗K → K ⊗H .
∆, ∆̂, ∆G, ∆M , ... : coproducts of von Neumann algebraic quantum groups.
δ, δ̂, δG : coproducts of Hopf-C∗-algebras.
αN , γN : (left or right) actions of von Neumann algebraic quantum

groups on a von Neumann algebra N .
〈X〉 : linear span of a set X in a vector space.
[X] : closed linear span of a set X in a normed vector space.
〈x ;P (x)〉 (resp. [x ;P (x)]) : linear span (resp. closed linear span) of a subset

{x ;P (x)} in a vector space (resp. normed vector space).
X∗ ⊂ A : the subset {x∗ ; x ∈ X}, where X is a subset of a *-

algebra A.
XY : {xy ; x ∈ X, y ∈ Y }, where xy is the product/composi-

tion of x and y or the evaluation of x at y.
f �X : the restriction of a map f to a subset X.
〈·, ·〉 : inner product in a Hilbert space always assumed to be

anti-linear in the first variable and linear in the second
variable.

〈·, ·〉A (resp. A〈·, ·〉) : inner product in a right (resp. left) Hilbert module over
a C∗-algebra A.

H : conjugate Hilbert space of H .
Cn : canonical Hilbert space of dimension n.
B(H ,K ) (resp. K(H ,K )) : bounded (resp. compact) linear operators from H to

K , where H and K are two Hilbert spaces. We denote
B(H ) = B(H ,H ) (resp. K(H ) = K(H ,H )).

Mn(C) : square matrices of order n with entries in the field of
complex numbers.

θξ,η ∈ B(H ,K ) : rank-one bounded operator given by θξ,ηζ = 〈η, ζ〉ξ for
all ζ ∈H where η ∈H , ξ ∈ K .
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L(E ,F ) (resp. K(E ,F )) : adjointable (resp. “compact”) operators from E to F ,
where E and F are Hilbert modules, L(E ) = L(E ,E )
(resp. K(E ) = K(E ,E )).

θξ,η ∈ L(E ,F ) : elementary operator defined by θξ,ηζ = ξ〈η, ζ〉 for all
ζ ∈ E , where ξ ∈ F , η ∈ E .

ξ∗ ∈ L(E , A) : the operator given by ξ∗η = 〈ξ, η〉, for all η ∈ E .
E ∗ = {ξ∗ ; ξ ∈ E } : left Hilbert A-module defined by aξ∗ := (ξa∗)∗,

〈ξ∗, η∗〉E ∗ := 〈ξ, η〉, for all ξ, η ∈ E and a ∈ A.
[x, y] : the commutator of x and y in some algebra, that is

[x, y] := xy − yx.
M(A) : multipliers of the C∗-algebra A.
M̃(A⊗B) : the C∗-algebra

{m ∈M(Ã⊗B) ; (Ã⊗B)m ⊂ A⊗B,m(Ã⊗B) ⊂ A⊗B}

where Ã is the C∗-algebra obtained from A by adjunction
of a unit element (see [3] §1).

Z(A) : center of an algebra A, that is

Z(A) = {x ∈ A ; ∀a ∈ A, [x, a] = 0}.

A+ : cone of positive elements in a C∗-algebra A.
M ′ : commutant of M ⊂ B(H ), that is

M ′ = {x ∈ B(H ) ; ∀y ∈M, [x, y] = 0}.

Mo : opposite von Neumann algebra of M .
M∗ (resp. M+

∗ ) : normal linear forms (resp. positive normal linear forms)
on the von Neumann algebra M .

�/⊗ /⊗π : algebraic tensor product over C / tensor product of
Hilbert spaces, the external tensor product of Hilbert
modules, the tensor product of von Neumann algebras or
the minimal tensor product of C∗-algebras (spatial tensor
product) / internal tensor products of Hilbert modules.

resp./i.e./e.g./cf. : Abbreviation for “respectively”/“id est”/“exampli gra-
tia”/“confere”.
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Chapter 1

Locally compact quantum groups

1.1 Preliminaries on von Neumann algebras

1.1.1 Normal linear forms

In this paragraph, we very briefly recall the main notations that we will need later on. For more
information about von Neumann algebras we refer the reader to classical references.

We recall here some notations that we will use several times. Let M be a von Neumann algebra.
Let ω ∈ M∗ and a, b ∈ M . We define aω ∈ M∗ and ωb ∈ M∗ the normal linear functionals on
M given by

(aω)(x) = ω(xa), (ωb)(x) = ω(bx), x ∈M.

so that we have a′(aω) = (a′a)ω and (ωb)b′ = ω(bb′), for all a, a, b, b′ ∈M . We also denote

aωb := a(ωb) = (aω)b ; ωa := a∗ωa.

If ω ∈M+
∗ , then ωa ∈M+

∗ . Note that (ωa)b = ωab for all a, b ∈M . If ω ∈M∗ we define ω ∈M∗
by setting:

ω(x) = ω(x∗), x ∈M.

Let H be a Hilbert space and let us fix ξ, η ∈H . We denote ωξ,η ∈ B(H )∗, the normal linear
form defined by:

ωξ,η(x) = 〈ξ, xη〉, x ∈ B(H ).

Note that we have ωξ,η = ωη,ξ. Furthermore, we also have aωξ,η = ωξ,aη and ωξ,ηa = ωa∗ξ,η for
all a ∈ B(H ).

♦ Tensor product of normal linear forms. Let M and N be von Neumann algebras, φ ∈M∗ and
ψ ∈ N∗. Then, there exists a unique φ⊗ ψ ∈ (M ⊗N)∗ such that (φ⊗ ψ)(x⊗ y) = φ(x)ψ(y)
for all x ∈M and y ∈ N . Moreover, ‖φ⊗ ψ‖ 6 ‖φ‖ · ‖ψ‖. Actually, it is known that we have
an (completely) isometric identification M∗⊗̂πN∗ = (M ⊗N)∗, where ⊗̂π denotes the projective
tensor product of Banach spaces. In particular, any ω ∈ (M ⊗N)∗ is the norm limit of finite
sums of the form ∑

i φi ⊗ ψi, where φi ∈M∗ and ψi ∈ N∗.

♦ Slicing with normal linear forms. We will also need to slice maps with normal linear functionals.
Let M1 and M2 be von Neumann algebras, ω1 ∈ (M1)∗ and ω2 ∈ (M2)∗. Therefore, the maps
ω1�id : M1�M2 →M1 and id�ω2 : M1�M2 →M2 extend uniquely to norm continuous normal
linear maps ω1 ⊗ id : M1 ⊗M2 →M2 and id⊗ ω2 : M1 ⊗M2 →M1. We have ‖ω1 ⊗ id‖ = ‖ω1‖
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and ‖id⊗ω2‖ = ‖ω2‖. If ω1 ∈ (M1)+
∗ (resp. ω2 ∈ (M2)+

∗ ), then ω1⊗ id (resp. id⊗ω2) is positive.
Let H and K be Hilbert spaces, we define

θξ ∈ B(K ,H ⊗K ), θ′η ∈ B(H ,H ⊗K ), ξ ∈H , η ∈ K

by setting θξ(ζ) = ξ ⊗ ζ for all ζ ∈ K and θ′η(ζ) = ζ ⊗ η for all ζ ∈ H . If T ∈ B(H ⊗K ),
φ ∈ B(K )∗ and ω ∈ B(H )∗, then (id⊗φ)(T ) ∈ B(H ) and (ω⊗ id)(T ) ∈ B(K ) are determined
by the formulas:

〈ξ1, (id⊗ φ)(T )ξ2〉 = φ(θ∗ξ1Tθξ2), ξ1, ξ2 ∈H ,

〈η1, (ω ⊗ id)(T )η2〉 = ω(θ′∗η1Tθ
′
η2), η1, η2 ∈ K .

In particular, we have:

(id⊗ ωη1,η2)(T ) = θ′∗η1Tθ
′
η2 , η1, η2 ∈ K ; (ωξ1,ξ2 ⊗ id)(T ) = θ∗ξ1Tθξ2 , ξ1, ξ2 ∈H .

Let us recall some formulas that will be used several times. For all φ ∈ B(K )∗, ω ∈ B(H )∗
and T ∈ B(H ⊗K ), we have:

x(id⊗ φ)(T )y = (id⊗ φ)((x⊗ 1)T (y ⊗ 1)) ; (yωx⊗ id)(T ) = (ω ⊗ id)((x⊗ 1)T (y ⊗ 1)),

for all x, y ∈ B(H ) and

a(ω ⊗ id)(T )b = (ω ⊗ id)((1⊗ a)T (1⊗ b)) ; (id⊗ bφa)(T ) = (id⊗ φ)((1⊗ a)T (1⊗ b)),

for all a, b ∈ B(K ). We also have the following formulas:

(id⊗ φ)(T )∗ = (id⊗ φ)(T ∗), (ω ⊗ id)(T )∗ = (ω ⊗ id)(T ∗),

(φ⊗ id)(ΣH ⊗K TΣK ⊗H ) = (id⊗ φ)(T ), (id⊗ ω)(ΣH ⊗K TΣK ⊗H ) = (ω ⊗ id)(T ),

for all T ∈ B(H ⊗K ), φ ∈ B(K )∗ and ω ∈ B(H )∗.

♦ Predual of B(H ,K ). An element of B(H ,K )∗ is the restriction to B(H ,K ) of some
ω ∈ B(H ⊕K )∗. If ξ ∈ K , η ∈H , we define ωξ,η ∈ B(H ,K )∗ as above. We also define aω,
ωb, aωb and ω as above. Let H , K ,H ′,K ′ be Hilbert spaces, T ∈ B(H ⊗K ,H ′ ⊗K ′),
we define the slice maps:

(id⊗φ)(T ) ∈ B(H ,H ′), φ ∈ B(K ,K ′)∗ ; (ω⊗ id)(T ) ∈ B(K ,K ′), ω ∈ B(H ,H ′)∗,

in a similar way. Moreover, we can easily generalize the above formulas. For instance, we have
(id⊗ φ)(T ) = (φ⊗ id)(ΣH ′⊗K ′TΣK ⊗H ) for all φ ∈ B(K ,K ′)∗.

1.1.2 Weights on von Neumann algebras

Definition 1.1.1. A weight ϕ on a von Neumann algebra M is a map ϕ : M+ → [0,∞] such
that:

• ∀x, y ∈M+, ϕ(x+ y) = ϕ(x) + ϕ(y),

• ∀x ∈M+, ∀λ ∈ R+, ϕ(λx) = λϕ(x),
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We denote Nϕ = {x ∈ M ; ϕ(x∗x) < ∞} the left ideal of square ϕ-integrable elements of M ,
M+

ϕ = {x ∈M+ ; ϕ(x) <∞} the cone of positive ϕ-integrable elements of M and Mϕ = 〈M+
ϕ 〉

the space of ϕ-integrable elements of M .

Definition 1.1.2. Let ϕ be a weight on a von Neumann algebra M . The opposite weight of ϕ
is the weight ϕo on Mo given by ϕo(xo) = ϕ(x) for all x ∈ M+. Then, we have Nϕo = (N∗ϕ)o,
M+

ϕo = (M+
ϕ )o and Mϕo = (Mϕ)o.

Definition 1.1.3. A weight ϕ on a von Neumann algebra M is called:

• semi-finite, if Nϕ is σ-weakly dense in M .

• faithful, if for x ∈M+ we have that ϕ(x) = 0 implies x = 0.

• normal, if ϕ(supi∈I xi) = supi∈I ϕ(xi) for all increasing bounded net (xi)i∈I of M+.

Remarks 1.1.4. Note that ϕ is semi-finite if and only if M+
ϕ is σ-weakly dense in M+, or

again, if and only if Mϕ is σ-weakly dense in M . There are several conditions equivalent to the
normality of ϕ.

From now on, we will mainly use normal semi-finite faithful weights. We will then abbreviate
“normal semi-finite faithful weight” to “n.s.f. weight”.

Definition 1.1.5. Let M be a von Neumann algebra and ϕ a n.s.f. weight on M . We define
an inner product on Nϕ by setting:

〈x, y〉ϕ = ϕ(x∗y), x, y ∈ Nϕ.

We denote (Hϕ,Λϕ) the Hilbert space completion of Nϕ with respect to this inner product,
where Λϕ : Nϕ →Hϕ is the canonical map. There exists a unique unital normal *-representation
πϕ : M → B(Hϕ) such that

πϕ(x)Λϕ(y) = Λϕ(xy), x ∈M, y ∈ Nϕ.

The triple (Hϕ, πϕ,Λϕ) is called the G.N.S. construction for (M,ϕ).

Remarks 1.1.6. The linear map Λϕ is called the G.N.S. map. We have that Λϕ(Nϕ) is dense
in Hϕ and 〈Λϕ(x),Λϕ(y)〉ϕ = ϕ(x∗y) for all x, y ∈ Nϕ. In particular, Λϕ is injective. Moreover,
we also call πϕ the G.N.S. representation.

We recall here the main objects of the Tomita-Takesaki modular theory.

Proposition-Definition 1.1.7. Let M be a von Neumann algebra and ϕ a n.s.f. weight on
M . The anti-linear map

Λϕ(N∗ϕ ∩Nϕ) −→ Λϕ(N∗ϕ ∩Nϕ)
Λϕ(x) 7−→ Λϕ(x∗)

is closable and its closure is a possibly unbounded anti-linear map Tϕ : D(Tϕ) ⊂Hϕ →Hϕ such
that D(Tϕ) = Ran Tϕ and Tϕ ◦ Tϕ(x) = x for all x ∈ D(Tϕ). Let

Tϕ = Jϕ∇1/2
ϕ

be the polar decomposition of Tϕ. The anti-unitary Jϕ : Hϕ → Hϕ is called the modular
conjugation for ϕ and the injective positive self-adjoint operator ∇ϕ is called the modular
operator for ϕ.
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The functional calculus can be applied to ∇ϕ so that ∇it
ϕ is a unitary operator on Hϕ for all

t ∈ R and we have the following commutation relation:

Jϕ∇it
ϕJϕ = ∇it

ϕ, t ∈ R.

Note that [Jϕ,∇it
ϕ] = 0 for all t ∈ R since J2

ϕ = 1.

Let us recall the following definition:

Definition 1.1.8. A one-parameter group of automorphisms on M is a family σ = (σt)t∈R
indexed by R of *-automorphisms of M such that σs+t = σs ◦ σt for all s, t ∈ R and such that
the map t 7→ σt(x) is σ-weakly continuous for all x ∈M .

Proposition-Definition 1.1.9. There exists a unique one-parameter group (σϕt )t∈R of auto-
morphisms on M , called the modular automorphism group of ϕ, such that

πϕ(σϕt (x)) = ∇it
ϕπϕ(x)∇−itϕ , t ∈ R, x ∈M.

Then, for all t ∈ R and x ∈M we have σϕt (x) ∈ Nϕ and

Λϕ(σϕt (x)) = ∇it
ϕΛϕ(x), t ∈ R, x ∈M.

The modular conjugation induces a canonical *-isomorphism between M ′ and Mo.

Proposition 1.1.10. The following map

Mo −→ M ′

xo 7−→ Jϕπϕ(x)∗Jϕ.

is a unital normal *-isomorphism.

We are now able to identify all G.N.S. spaces and the corresponding G.N.S. representations
given by the n.s.f. weights on M .

Notations 1.1.11. From now on, we will then identify all the G.N.S. spaces Hϕ to a fixed
Hilbert space denoted HM . Moreover, we will identify all G.N.S. representations πϕ to a fixed
unital normal *-representation πM of M on H and we also identify all modular conjugations
Jϕ to a fixed anti-unitary operator JM . By abuse of notation, we still denote Λϕ : Nϕ →HM

the G.N.S. map. Then, we call the triple (HM , πM ,Λϕ) the standard G.N.S. construction for
(M,ϕ). We denote CM : M →M ′ the normal unital *-anti-isomomorphism given by

CM(x) = JMπM(x)∗JM , x ∈M.

We also denote jM : Mo →M ′ the normal unital *-isomorphism induced by CM , that is to say
jM(xo) = JMπM(x)∗JM , for all x ∈M .

Definition 1.1.12. If ϕ is a n.s.f. weight on M , we denote ϕc the n.s.f. weight on M ′ defined
by ϕc = ϕo ◦ j−1

M .

There are canonical identifications HMo = HM = HM ′ of the standard G.N.S. spaces. Indeed,
let us fix a n.s.f. weight ϕ on M , then the maps

HMo −→ HM

Λϕo(xo) 7−→ JMΛϕ(x∗),
HM ′ −→ HM ,

Λϕc(jM(x)) 7−→ JMΛϕ(x∗) x ∈ N∗ϕ,

are unitaries and are independent of the chosen n.s.f. weight ϕ.

6



1.1.3 Operator-valued weights

Definition 1.1.13. Let N be a von Neumann algebra. The extended positive cone of N is the
set N ext

+ consisting of the maps m : N+
∗ → [0,∞] that satisfy:

1. ∀ω1, ω2 ∈ N+
∗ , m(ω1 + ω2) = m(ω1) +m(ω2).

2. ∀ω ∈ N+
∗ , ∀λ ∈ R+, m(λω) = λm(ω).

3. m is lower semicontinuous with respect to the norm topology on N∗.

Notations 1.1.14. Let N be a von Neumann algebra.

1. From now on, we will identify N+ with its part inside N ext
+ . Accordingly, if m ∈ N ext

+ we
will denote ω(m) the evaluation of m at ω, for ω ∈ N+

∗ .

2. Let a ∈ N and m ∈ N ext
+ , we define a∗ma ∈ N ext

+ by setting

ω(a∗ma) = aωa∗(m), ω ∈ N+
∗ .

If m,n ∈ N ext
+ and λ ∈ R+, we also define m+ n, λm ∈ N ext

+ to be given by

ω(m+ n) = ω(m) + ω(n), ω(λm) = λω(m), ω ∈ N+
∗ .

Definition 1.1.15. Let N ⊂ M be a unital normal inclusion of von Neumann algebras. An
operator-valued weight from M to N (or N -valued weight on M) is a map T : M+ → N ext

+ that
satisfies:

1. ∀x, y ∈M+, T (x+ y) = T (x) + T (y).

2. ∀x ∈M+, ∀λ ∈ R+, T (λx) = λT (x).

3. ∀x ∈M+, ∀a ∈ N , T (a∗xa) = a∗T (x)a.

By analogy with ordinary weights, if N ⊂ M is a unital normal inclusion of von Neumann
algebras and T is an operator-valued weight from M to N we define:

NT = {x ∈M ; T (x∗x) ∈ N+}, M+
T = {x ∈M+ ; T (x) ∈ N+}, MT = 〈M+

T 〉.

Then, MT and NT are two-sided modules over N and MT = 〈N∗TNT 〉.

Definition 1.1.16. Let N ⊂ M be a unital normal inclusion of von Neumann algebras. An
operator-valued weight T from M to N is said to be:

1. semi-finite, if NT is σ-weakly dense in M .

2. faithful, if for x ∈M+ we have that T (x) = 0 implies x = 0.

3. normal, if for every increasing bounded net (xi)i∈I of elements of M+, we have

ω(T (supi∈I xi)) = limi∈I ω(T (xi)), ω ∈ N+
∗ .
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Note that if T : M+ → N ext
+ is an operator-valued weight, it extends uniquely to a semi-linear

map T : M ext
+ → N ext

+ . This will allow us to compose n.s.f. operator-valued weights. Indeed, let
P ⊂ N ⊂M be unital normal inclusions of von Neumann algebras, T and S be respectively a
P -valued n.s.f. weight on N and an N -valued n.s.f. weight on M . We define a P -valued n.s.f.
weight on M by setting (S ◦ T )(x) := S(T (x)) for x ∈ N+.

Fundamental example. Let L, O and P be von Neumann algebras, π : L → O ⊗ P be a
faithful normal unital *-homomorphism and ϕ a normal faithful weight on P . Then, we define a
normal faithful operator-valued weight T : L+ → Oext

+ by setting T (x) = (id ⊗ ϕ)π(x) for all
x ∈ L+.

1.2 von Neumann algebraic quantum groups

In the following paragraph, we recall the main definitions and results from [18] on locally
compact quantum groups.

Definition 1.2.1. A locally compact quantum group is a quadruple

G = (L∞(G),∆G, ϕ, ψ),

where L∞(G) is a von Neumann algebra, ∆G : L∞(G) → L∞(G) ⊗ L∞(G) is a unital normal
*-homomorphism, ϕ and ψ are n.s.f. weights on L∞(G) satisfying the following conditions:

1. (∆G ⊗ id)∆G = (id⊗∆G)∆G (coassociativity).

2. ϕ((ω ⊗ id)∆G(x)) = ϕ(x)ω(1), for all ω ∈ L∞(G)+
∗ and x ∈M+

ϕ (left invariance).

3. ψ((id⊗ ω)∆G(x)) = ψ(x)ω(1), for all ω ∈ L∞(G)+
∗ and x ∈M+

ψ (right invariance).

The map ∆G is called the comultiplication (or coproduct) of G and the n.s.f. weight ϕ (resp. ψ)
is called the left (resp. right) Haar weight on G.

The notation L∞(G) suggests the analogy with the fundamental example given by complex-
valued essentially bounded measurable functions on a locally compact group. Moreover, by
adding commutativity in the previous definition, we get back to the classical case of a locally
compact group. However, there is no underlying space G in the quantum case and L∞(G) is a
non necessarily commutative von Neumann algebra.

Proposition 1.2.2. Let G be a locally compact quantum group. Let ϕ and ϕ̃ be two left (resp.
right) invariant n.s.f. weights on G. Then, there exists a real number r > 0 such that ϕ̃ = r · ϕ.

Therefore, since the left (resp. right) invariant n.s.f. weight on a locally compact quantum group
G is unique up to a positive scalar factor, we will always suppose that we have associated a
fixed left invariant n.s.f. weight ϕ on a given locally compact quantum group G.

In the following, we fix a locally compact quantum group G = (M,∆) and a left invariant weight
ϕ on G.

Proposition-Definition 1.2.3. There exists a unique couple (τ, R), where τ = (τt)t∈R is a
one-parameter group of *-automorphisms of M and R is an involutive *-anti-automorphism of
M satisfying the following statements:
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1. R ◦ τt = τt ◦R, for all t ∈ R.

2. Let S = R ◦ τ−i/2. We have (id⊗ ϕ)(∆(y)∗(1⊗ x)) ∈ D(S) for all x, y ∈ Nϕ and

S((id⊗ ϕ)(∆(y)∗(1⊗ x)))∗ = (id⊗ ϕ)(∆(x)∗(1⊗ y)), for all x, y ∈ Nϕ.

The one-parameter group τt is called the scaling group of G. The automorphism R is called the
unitary antipode of G. The map S is called the antipode of G.

We have that τt commutes with σϕs and σψs for all s, t ∈ R, where ψ is a right invariant n.s.f.
weight on G. We also have that R ◦ σϕt = σψ−t ◦R for all t ∈ R.

Proposition 1.2.4. We have:

1. ∆ ◦ τt = (τt ⊗ τt) ◦∆, for all t ∈ R.

2. ς ◦ (R⊗R) ◦∆ = ∆ ◦R, where ς : M ⊗M →M ⊗M is the flip *-automorphism.

In particular, if ϕ is a left invariant n.s.f. weight on G, we define a right invariant n.s.f. weight
ψ on G by setting ψ(x) = ϕ(R(x)) for all x ∈M+.

Henceforth, we will take ψ = ϕ ◦R as the right invariant weight on G.

Proposition-Definition 1.2.5. There exists a unique number ν > 0 such that

ϕ(τt(x)) = ν−tϕ(x), ϕ(σψt (x)) = νtϕ(x),

ψ(τt(x)) = ν−tψ(x), ψ(σϕt (x)) = ν−tψ(x),

for all t ∈ R and x ∈M+. We call ν the scaling constant of G.

Proposition-Definition 1.2.6. There exists a unique injective positive operator d such that

1. d is affiliated to M (i.e. dit ∈M for all t ∈ R)

2. (Dψ : Dϕ)t = νit
2/2dit for all t ∈ R,

where (Dψ : Dϕ) is the Radon-Nikodým derivative of ψ with respect to ϕ (see [7]). We call d
the modular element of G.

Multiplicative unitary. The notion of multiplicative unitary has been introduced and studied
by Baaj and Skandalis in [2]. Let us recall the leg numbering notation. Let H be a Hilbert
space, for ξ ∈H and i = 1, 2, 3 we define θi,ξ ∈ B(H ⊗H ,H ⊗H ⊗H ) by setting:

θ1,ξ(η ⊗ ζ) = ξ ⊗ η ⊗ ζ, θ2,ξ(η ⊗ ζ) = η ⊗ ξ ⊗ ζ, θ3,ξ(η ⊗ ζ) = η ⊗ ζ ⊗ ξ, η, ζ ∈H .

Let T ∈ B(H ⊗H ), we define the operators T12, T13, T23 ∈ B(H ⊗H ⊗H ) by:

T12θ3,ξ = θ3,ξT, T13θ2,ξ = θ2,ξT, T23θ1,ξ = θ1,ξT, ξ ∈H .

In other words, we have T12 = T⊗1H , T23 = 1H ⊗T and T13 = Σ12T23Σ12 where Σ ∈ B(H ⊗H )
is the flip map. We will also use some generalizations of these notations. Let (Hj)16j6n be a
family of Hilbert spaces. Let 1 6 k 6 n , 1 6 i1 < i2 < · · · < ik 6 n and T ∈ B(⊗16j6k Hil).
We define similarly Ti1···ik ∈ B(⊗16j6n Hj). Moreover, the k-tuple (i1, · · · , ik) of pairwise dis-
tinct indices need not be ordered, e.g. if T ∈ B(H ⊗H ) we denote T21 = ΣTΣ. We can easily
extend the leg numbering notation for adjointable operators on an external tensor product of
Hilbert C∗-modules over possibly different C∗-algebras.
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Definition 1.2.7. Let H be a Hilbert space and V ∈ B(H ⊗H ) be a unitary operator. We
say that V is multiplicative if it satisfies the pentagon equation

V12V13V23 = V23V12.

Let (H , π,Λϕ) be the standard G.N.S. construction for (M,ϕ). Then, the linear map

Λϕ � Λϕ : Nϕ �Nϕ →H ⊗H

is closable with respect to the σ-strong* topology on M ⊗M and the norm topology on H ⊗H .
We denote Λϕ ⊗ Λϕ its closure with respect to these topologies. Therefore, the triple

(H ⊗H , π ⊗ π,Λϕ ⊗ Λϕ)

is a G.N.S. construction for ϕ⊗ ϕ. By the left invariance of ϕ, we have

∆(y)(x⊗ 1) ∈ D(Λϕ ⊗ Λϕ), x, y ∈ Nϕ.

Moreover, we have

〈 (Λϕ ⊗ Λϕ)(∆(y)(x⊗ 1)), (Λϕ ⊗ Λϕ)(∆(y′)(x′ ⊗ 1)) 〉 = 〈Λϕ(x)⊗ Λϕ(y),Λϕ(x′)⊗ Λϕ(y′) 〉

for all x, y, x′, y′ ∈ Nϕ.

Proposition-Definition 1.2.8. There exists a unique W ∈ B(H ⊗H ) such that

W ∗(Λϕ(x)⊗ Λϕ(y)) = (Λϕ ⊗ Λϕ)(∆(y)(x⊗ 1)),

for all x, y ∈ Nϕ. Moreover, W is a multiplicative unitary of H . We call W the left regular
representation of G.

In a similar way, we consider (H , π,Λψ) the standard G.N.S. construction for (M,ψ) and we
define (H ⊗H , π⊗π,Λψ⊗Λψ) the G.N.S. construction for ψ⊗ψ. By using the right invariance
of ψ, we have:

Proposition-Definition 1.2.9. There exists a unique V ∈ B(H ⊗H ) such that

V (Λψ(x)⊗ Λψ(y)) = (Λψ ⊗ Λψ)(∆(x)(1⊗ y)),

for all x, y ∈ Nψ. Moreover, V is a multiplicative unitary of H . We call V the right regular
representation of G.

From now on, we assume that the underlying von Neumann algebra M is in standard form
with respect to a Hilbert space H (also denoted L2(G) by analogy with the classical case).
As before, we fix a left invariant weight ϕ on G and a G.N.S. construction (H , ι,Λϕ) where ι
denotes the inclusion map M ⊂ B(H ). We also consider the G.N.S. construction (H , ι,Λψ)
for the right invariant weight ψ = ϕ ◦R.

The left (resp. right) regular representation W (resp. V ) carries all the relevant data of G. To
be more precise, we have the following result:

Proposition 1.2.10. We have:

• M is the σ-strong* closure of the algebra {(id⊗ ω)(W ) ; ω ∈ B(H )∗}.
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• ∆(x) = W ∗(1⊗ x)W , for all x ∈M .
Similarly, we have:
• M is the σ-strong* closure of the algebra {(ω ⊗ id)(V ) ; ω ∈ B(H )∗}.

• ∆(x) = V (x⊗ 1)V ∗ for all x ∈M .
Now, we recall the notion of dual of a locally compact quantum group G = (M,∆) as it was
originally introduced and studied in [18].
Proposition-Definition 1.2.11. Let M̂ be the σ-strong* closure of the algebra

{(ω ⊗ id)(W ) ; ω ∈ B(H )∗}.
Then, M̂ is a von Neumann algebra and there exists a unique unital normal *-homomorphism
∆̂λ : M̂ → M̂ ⊗ M̂ such that

∆̂λ(x) = W (x⊗ 1)W ∗, for all x ∈ M̂.

The pair (M̂, ∆̂λ) is a locally compact quantum group.
We also recall briefly the construction of the dual weight ϕ̂, where ϕ is a left invariant weight
on G. Let us denote

Iϕ = {ω ∈ B(H )∗ ; ∃k ∈ R+, ∀x ∈ Nϕ, |ω(x∗)| 6 k‖Λϕ(x)‖}.
By Riesz’ representation theorem, for all ω ∈ Iϕ there exists a unique aϕ(ω) ∈H such that

∀x ∈ Nϕ, ω(x∗) = 〈Λϕ(x), aϕ(ω)〉.

Then, ϕ̂ is the unique n.s.f. weight on M̂ whose G.N.S. construction is (H , id,Λϕ̂), where Λϕ̂

is the closure of the operator (ω ⊗ id)(W ) 7→ aϕ(ω). The weight ϕ̂ is then right invariant for
(M̂, ∆̂λ). Starting from a right invariant weight for G, we also define a left invariant weight for
(M̂, ∆̂λ).
Remark 1.2.12. For the definition of the coproduct, we have used a different convention than
in [18]. As a result, we have to keep in mind the fact that the weight ϕ̂ is right (and not left)
invariant for (M̂, ∆̂λ). The notation ∆̂λ will be clarified later on.
Definition 1.2.13. Let G = (M,∆) be a locally compact quantum group. We can define two
new locally compact quantum groups:

1. The opposite locally compact quantum group Go = (M,∆o) whose coproduct is given by
∆o = ς ◦∆.

2. The commutant locally compact quantum group Gc = (M ′,∆c) whose coproduct is given
by ∆c = (CM ⊗ CM) ◦∆ ◦ C−1

M .
If ϕ and ψ are respectively left and right invariant weights on G, then ψ and ϕ are respectively
left and right invariant on Go. Moreover, the n.s.f. weights ϕc and ψc are respectively left and
right invariant on Gc.
Starting from a locally compact quantum group G = (M,∆), we define the dual quantum group
Ĝ. This dual will appear better suited to right actions of G.
Definition 1.2.14. Let G = (M,∆, ϕ, ψ) be a locally compact quantum group. We call the
dual quantum group of G, the locally compact quantum group

Ĝ = (M̂ ′, ∆̂, ψ̂c, ϕ̂c),
where the coproduct ∆̂ is given by:

∆̂(x) = V ∗(1⊗ x)V, for all x ∈ M̂ ′.
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1.3 C∗-algebraic quantum groups

In this paragraph, we recall how to associate canonically a Hopf-C∗-algebra to any locally
compact quantum group.

Definition 1.3.1. A Hopf-C∗-algebra is a couple (S, δ) consisting of a C∗-algebra S and a
faithful non-degenerate *-homomorphism δ : S →M(S ⊗ S) such that:

1. δ is coassociative, that is (δ ⊗ idS)δ = (idS ⊗ δ)δ,

2. [δ(S)(S ⊗ 1S)] = S ⊗ S = [δ(S)(1S ⊗ S)].

The *-homomorphism δ is called the comultiplication (or the coproduct).

Remark 1.3.2. Since δ is non-degenerate, idS ⊗ δ and δ⊗ idS extend uniquely to strictly conti-
nuous unital *-homormorphisms fromM(S⊗S) toM(S⊗S⊗S). Therefore, the coassociativity
condition makes sense.

Let us fix a locally compact quantum group G = (M,∆). Let V be the right regular representa-
tion of G. Let us denote J (resp. Ĵ) the modular conjugation of the left invariant weight on G
(resp. Ĝ).

Theorem 1.3.3. Let S (resp. Ŝ) be the norm closure of

{(ω ⊗ id)(V ) ; ω ∈ B(H )∗} ⊂ B(H ) (resp. {(id⊗ ω)(V ) ; ω ∈ B(H )∗} ⊂ B(H )).

Then, S (resp. Ŝ) is a C∗-algebra and the restriction of ∆ (resp. ∆̂) to S (resp. Ŝ) defines a
non-degenerate *-homomorphism

δ : S →M(S ⊗ S) (resp. δ̂ : Ŝ →M(Ŝ ⊗ Ŝ)).

Moreover, the pair (S, δ) (resp. (Ŝ, δ̂)) is a Hopf-C∗-algebra.

Definition 1.3.4. We call the pair (S, δ) (resp. (Ŝ, δ̂)) the Hopf-C∗-algebra (resp. dual Hopf-
C∗-algebra) of G.

Note that the pair (Ŝ, δ̂) is the Hopf-C∗-algebra of Ĝ. If G = (L∞(G),∆G), we also denote
(C0(G), δG) the Hopf-C∗-algebra associated with G by analogy with the classical case.

Notations 1.3.5. Let us denote U := ĴJ ∈ B(H ). Note that U is unitary. Moreover, we have
U∗ = JĴ = ν−i/4U , where ν is the scaling constant of G. We can endow the C∗-algebras S and
Ŝ with the following representations:

L : S → B(H ) ; y 7→ y, R : S → B(H ) ; y 7→ UyU∗,

ρ : Ŝ → B(H ) ; x 7→ x, λ : Ŝ → B(H ) ; x 7→ UxU∗.

It follows from Proposition 2.15 of [18] that

W = Σ(U ⊗ 1)V (U∗ ⊗ 1)Σ, [W12, V23] = 0.

We denote V̂ := Σ(U ⊗ 1)V (U∗ ⊗ 1)Σ and Ṽ := Σ(1⊗ U)V (1⊗ U∗)Σ = (U ⊗ U)V̂ (U∗ ⊗ U∗)
(see Définition 6.2 of [2]). We have W = V̂ and Ṽ is the right regular representation of Ĝ.
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Remark 1.3.6. With the above notations, we have that the Hopf-C∗-algebra associated with
(M̂, ∆̂λ) (see Proposition-Definition 1.2.11) is (λ(Ŝ), δ̂λ), where the coproduct δ̂λ is given by
δ̂λ(x) = W (x⊗ 1)W ∗, for all x ∈ λ(Ŝ).

Regularity and semi-regularity of locally compact quantum groups

The notion of regularity (resp. semi-regularity) has been introduced and studied in [2] (resp.
[1]).

Notation 1.3.7. Let V be a multiplicative unitary on a Hilbert space H . We denote C(V )
the norm closure of the subalgebra {(id⊗ ω)(ΣV ) ; ω ∈ B(H )∗} of B(H ).

Proposition 1.3.8. (see Proposition 3.2 of [2]) C(V ) is a norm closed subalgebra of B(H )
and the following statements are equivalent:

1. K(H ) ⊂ C(V ) (resp. K(H ) = C(V )).

2. K(H ⊗H ) ⊂ [(x⊗ 1)V (1⊗ y) ; x, y ∈ K(H )]
(resp. K(H ⊗H ) = [(x⊗ 1)V (1⊗ y) ; x, y ∈ K(H )] ).

Definition 1.3.9. Let V be a multiplicative unitary on a Hilbert space H . We say that V
is semi-regular (resp. regular) if K(H ) ⊂ C(V ) (resp. K(H ) = C(V )). A locally compact
quantum group is said to be semi-regular (resp. regular) if its right regular representation (or
equivalently its left regular representation) is semi-regular (resp. regular).

We finish with a result concerning the regularity of a corepresentation of a regular multiplicative
unitary. Let us recall a definition:

Definition 1.3.10. (see Définition A.1 in [2]) Let V be a multiplicative unitary on a Hilbert
space H . A corepresentation of V on a Hilbert space K is a unitary Y ∈ B(H ⊗K ) such
that

V12Y13Y23 = Y23V12.

In the following proposition, if V is a regular multiplicative unitary on a Hilbert space H
we denote ρV (ω) := (id ⊗ ω)(V ) for ω ∈ B(H )∗. We also denote ŜV the norm closure of
{ρV (ω) ; ω ∈ B(H )∗}. Recall that ŜV is a C∗-algebra (see Proposition 3.5 in [2]).

Proposition 1.3.11. (Proposition A.3 and Remarque A.4 of [2]) Let V be a regular multiplica-
tive unitary on a Hilbert space H and Y a corepresentation of V on a Hilbert space K . Then,
we have

[ (ŜV ⊗ 1K )Y (1H ⊗K(K )) ] = ŜV ⊗K(K ).

1.4 Actions of locally compact quantum groups

Definition 1.4.1. Let (S, δ) be a Hopf-C∗-algebra. A (right) coaction of (S, δ) on a C∗-algebra
A is a non-degenerate *-homomorphism δA : A→M(A⊗ S) such that

(δA ⊗ idS)δA = (idA ⊗ δ)δA.

Moreover, the coaction δA is said to be (strongly) continuous if it further satisfies

[δA(A)(1A ⊗ S)] = A⊗ S.

A (S, δ)-C∗-algebra is a couple (A, δA) consisting of a C∗-algebra A and an injective continuous
coaction δA of (S, δ) on A.
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Remarks 1.4.2. 1. Since δA and δ are non-degenerate, idA⊗ δ and δA⊗ idS extend uniquely
to strictly continuous unital *-homomorphisms fromM(A⊗ S) toM(A⊗ S ⊗ S). Then,
the condition (δA ⊗ idS)δA = (idA ⊗ δ)δA makes sense and we will consider the following
*-homomorphism δ2

A := (δA ⊗ idS)δA = (idA ⊗ δ)δA : A→M(A⊗ S ⊗ S).

2. We can define left coactions in a similar way. Note that we define a one-to-one cor-
respondence by mapping any left coaction of (S, δ) to a right coaction of the opposite
Hopf-C∗-algebra (S, ς ◦ δ), where ς : S ⊗ S → S ⊗ S ; a⊗ b 7→ b⊗ a is the flip map. In the
following, we will refer to right coactions simply as coactions.

Examples 1.4.3. Let us give two basic examples:

1. Let A be a C∗-algebra and (S, δ) a Hopf-C∗-algebra. Let us consider the *-homomorphism
δA : A → M(A ⊗ S) given by δA(a) = a ⊗ 1S for all a ∈ A. Then, δA is a coaction
called the trivial coaction of (S, δ) on A. Besides, the trivial coaction δA turns A into a
(S, δ)-C∗-algebra.

2. If (S, δ) is a Hopf-C∗-algebra, the map δ : S →M(S ⊗ S) is a right (or left) coaction of
(S, δ) called the right (or left) regular coaction.

Definition 1.4.4. Let A and B be two C∗-algebras. Let δA and δB be two coactions of (S, δ)
on A and B respectively. A non-degenerate *-homomorphism f : A → M(B) is said to be
(S, δ)-equivariant if we have (f ⊗ idS) ◦ δA = δB ◦ f .

Remarks 1.4.5. 1. Note that the condition (f ⊗ idS) ◦ δA = δB ◦ f in the above definition
does make sense. Indeed, since f is non-degenerate, f ⊗ idS extends uniquely to a strictly
continuous unital *-homomorphism f⊗ idS :M(A⊗S)→M(B⊗S). Besides, δB extends
uniquely to a strictly continuous unital *-homomorphism δB :M(B)→M(B ⊗ S).

2. It is clear that the class of all (S, δ)-C∗-algebras for a given Hopf-C∗-algebra (S, δ) is a
category with respect to (S, δ)-equivariant non-degenerate *-homomorphisms.

Definition 1.4.6. Let G be a locally compact quantum group and A a C∗-algebra. We will refer
to coactions of (C0(G), δG) as actions ofG. Moreover, we will also refer to (C0(G), δG)-C∗-algebras
as G-C∗-algebras.

Definition 1.4.7. Let (A, δA) and (B, δB) be two G-C∗-algebras. Let f : A→M(B) be a non-
degenerate *-homomorphism. We say that f is G-equivariant when it is (C0(G), δG)-equivariant.
We will denote MorG(A,B) the set of all G-equivariant non-degenerate *-homomorphisms from
A toM(B) and G-C∗-Alg the category of G-C∗-algebras.

1.5 Crossed product and Baaj-Skandalis duality

Let G be a locally compact quantum group. Let (S, δ) (resp. (Ŝ, δ̂)) be the Hopf-C∗-algebra
associated with G (resp. Ĝ). We denote L : S → B(H ) and ρ : Ŝ → B(H ) the canonical
inclusion maps (see Notations 1.3.5). Since S and Ŝ are non-degenerate C∗-subalgebras of
B(H ), L and ρ extend uniquely to strictly continuous unital *-homomorphisms

L :M(S)→ B(H ), ρ :M(Ŝ)→ B(H ).

Let A be a C∗-algebra. The *-homomorphism idA ⊗ L : A⊗ S → L(A⊗H ) extends uniquely
to a strictly continuous unital *-homomrphism idA ⊗ L :M(A⊗ S)→ L(A⊗H ), where we
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have used the canonical embedding A⊗ B(H ) ↪→ L(A⊗H ). Let δA be an action of G on A.
We define the following *-representation of A on the Hilbert A-module A⊗H :

πL := (idA ⊗ L) ◦ δA : A→ L(A⊗H ).

Proposition-Definition 1.5.1. Let AoδA G (or simply AoG when no ambiguity can arise)
the norm closure of the linear subspace of L(A⊗H ) spanned by all products of the form

πL(a)(1A ⊗ ρ(ω)), a ∈ A, ω ∈ B(H )∗.

Therefore, AoδA G is a C∗-algebra called the crossed product of A by the action δA of G.

In particular, πL induces a non-degenerate *-homomorphism π : A →M(A o G). Similarly,
ρ induces a *-homomorphism θ̂ : Ŝ → M(A o G) given by θ̂(x) = 1A ⊗ ρ(x), for all x ∈ Ŝ.
Besides, we have

AoG = [ π(a)θ̂(x) ; a ∈ A, x ∈ Ŝ ].

Proposition-Definition 1.5.2. Let δA be an action of G on a C∗-algebra A. There exists a
unique *-homomorphism δAoG : AoG→M((AoG)⊗ Ŝ) given for all a ∈ A and x ∈ Ŝ by

δAoG(π(a)θ̂(x)) = (π(a)⊗ 1
Ŝ
)(θ̂ ⊗ id) ◦ δ̂(x).

Then, δAoG is an action of Ĝ on AoG called the dual action. Moreover, the pair (AoG, δAoG)
is a Ĝ-C∗-algebra.

Let us assume that G is regular. Let (A, δA) be a G-C∗-algebra. Let δ0 be the action of G on
A⊗K(H ) given by

δ0(a⊗ k) = δA(a)13(1A ⊗ k ⊗ 1S),

for all a ∈ A and k ∈ K(H ). Let us denote V0 ∈M(Ŝ ⊗ S) such that (ρ⊗ L)(V0) = V . Let us
then define the unitary V = (ρ⊗idS)(V0) ∈ L(H ⊗S). Let δ′A : A⊗K(H )→M(A⊗K(H )⊗S)
be the *-homomorphism given by

δ′A(x) = V23δ0(x)V∗23, x ∈ A⊗K(H ).

Therefore, (A⊗K(H ), δ′A) is a G-C∗-algebra.

Theorem 1.5.3. (Baaj-Skandalis duality theorem) Let G be a regular locally compact quantum
group. Let (A, δA) be a G-C∗-algebra, then the double crossed product (AoG) o Ĝ, endowed
with the action δ(AoG)oĜ of G, is canonically G-equivariantly isomorphic to the G-C∗-algebra
(A⊗K(H ), δ′A).

We will now give some definitions and results concerning actions of locally compact quantum
groups in the von Neumann algebraic setting from the seminal paper [23]. Indeed, this will
be necessary in §2.5 in order to recall the crucial results of De Commer [9] concerning the
so-called reflection technique. Let us fix a locally compact quantum group G = (M,∆) and a
left invariant n.s.f. weight ϕ on G.

Definition 1.5.4. A right (resp. left) action of G on a von Neumann algebra N is a faithful
normal unital *-homomorphism α : N → N ⊗M (resp. α : N →M ⊗N) such that

(α⊗ idM)α = (idN ⊗∆)α (resp. (idM ⊗ α)α = (∆⊗ idN)α).
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Note that if α is a left (resp. right) action of G on a von Neumann algebra N , then ς ◦ α is a
right (resp. left) action of Go. In what follows, we will refer to actions of G as right actions of G.

Definition 1.5.5. Let α be an action of G on a von Neumann algebra N . We call the von
Neumann algebra

Nα := {x ∈ N ; α(x) = x⊗ 1} ⊂ N,

the algebra of α-invariant elements of N . The action α is said to be ergodic if Nα is reduced to
the scalars, that is Nα = C · 1N .

Proposition-Definition 1.5.6. Let N be a von Neumann algebra. Let α be an action of G on
N . For x ∈ N+, we denote

Tα(x) = (id⊗ ϕ)α(x) ∈ N ext
+ .

Then, we have Tα(x) ∈ (Nα)ext
+ and Tα : N+ → (Nα)ext

+ is a normal faithful operator-valued
weight from N to Nα. We say that the action α is integrable if Tα is semi-finite, which means
that Mid⊗ϕ ∩ α(N) is σ-weakly dense in α(N).

Now, we recall the crossed product construction in this setting.

Proposition-Definition 1.5.7. Let α be an action of G on a von Neumann algebra N . Then,
the crossed product N oα G of N by α is the σ-weak closure in N ⊗B(H ) of the linear span of
{α(x)(1⊗ y) ; x ∈ N, y ∈ M̂ ′}. Then, N oα G is a von Neumann algebra.

Note that we have N oα G = (α(N) ∪ (1⊗ M̂ ′))′′. Now, we give the definition of dual action,
which is an action of Ĝ on the crossed product N oα G.

Proposition-Definition 1.5.8. There exists a unique action α̂ of Ĝ on N oα G such that:

α̂(α(x)) = α(x)⊗ 1, x ∈ N ; α̂(1⊗ y) = 1⊗ ∆̂(y), y ∈ M̂ ′.

We call α̂ the dual action of α.

A Takesaki-Takai duality theorem is given in [23] (see Theorem 2.6).

1.6 Equivariant Hilbert modules and bimodules

In the following, we briefly recall the biduality for crossed products of equivariant Hilbert
bimodules (cf. [2] and [3]).

Let G be a locally compact quantum group. Let (S, δ) be the Hopf-C∗-algebra associated with
G. Let (A, δA) and (B, δB) be two G-C∗-algebras. A G-equivariant Hilbert A-B-bimodule is
a Hilbert A-B-bimodule E such that the C∗-algebra K(E ⊕B) is endowed with a continuous
action

δK(E⊕B) : K(E ⊕B)→M(K(E ⊕B)⊗ S)

of G compatible with δA and δB in the following sense:

• The canonical *-homomorphism ιB : B → K(E ⊕B) is G-equivariant.

• The left action of A on E , A→ L(E ), is G-equivariant.

We denote δE the restriction of δK(E⊕B) to E (see [3]).
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Definition 1.6.1. A linking G-C∗-algebra (or a G-equivariant Morita equivalence) is a quin-
tuple (J, δJ , e1, e2) consisting of a G-C∗-algebra (J, δJ) endowed with two nonzero self-adjoint
projections e1, e2 ∈M(J) such that:

1. e1 + e2 = 1J .

2. [JeiJ ] = J , i = 1, 2.

3. δJ(ei) = ei ⊗ 1S, i = 1, 2.

Remark 1.6.2. If (J, δJ , e1, e2) is a linking G-C∗-algebra, then by restriction of δJ , e1Je1 and
e2Je2 are G-C∗-algebras and e1Je2 is a G-equivariant Hilbert e1Je1-e2Je2-bimodule (cf. [3] page
706). We say that two G-C∗-algebras A and B are G-equivariantly Morita equivalent if there
exists a linking G-C∗-algebra (J, δJ , e1, e2) such that A (resp. B) and e1Je1 (resp. e2Je2) are
isomorphic as G-C∗-algebras.

Assume that G is regular. It follows from §7 [2] that:

1. The G-equivariant Hilbert AoGo Ĝ-B oGo Ĝ-bimodule E oGo Ĝ is identified to
the G-equivariant Hilbert A⊗K(L2(G))-B ⊗K(L2(G))-bimodule E ⊗K(L2(G)).

2. The G-C∗-algebras A⊗K(L2(G)) and B ⊗K(L2(G)) are endowed with the bidual action
of G. The action of G on the Hilbert B ⊗K(L2(G))-module E ⊗K(L2(G)) is given by the
action δE⊗K(L2(G)) defined by:

δE⊗K(L2(G))(ξ) = V23(id⊗ σ)(δE ⊗ idK(L2(G)))(ξ)V ∗23, ξ ∈ E ⊗K(L2(G)),

where σ : S ⊗K(L2(G)))→ K(L2(G))⊗ S is the flip map and V ∈M(K(L2(G))⊗ S) is
the right regular representation of G.
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Chapter 2

Measured quantum groupoids: reminders and
supplements

2.1 Preliminaries

In this paragraph, we will recall the definitions, notations and important results concerning the
relative tensor product (also known as Connes-Sauvageot tensor product) and the fiber product
which are the main technical tools of the theory of measured quantum groupoids. For more
information, we refer the reader to [6].

Relative tensor product. In what follows, N is a von Neumann algebra endowed with a
n.s.f. weight ϕ. Let π (resp. γ) be a normal unital *-representation of N (resp. No) on a Hilbert
space H (resp. K). Then, H (resp. K) may be considered as a left (resp. right) N -module.
Moreover, Hϕ is an N -bimodule whose actions are given by:

xξ = πϕ(x)ξ, ξy = Jϕπϕ(y∗)Jϕξ, ξ ∈Hϕ, x, y ∈ N.

Definition 2.1.1. We define the set of right (resp. left) bounded vectors with respect to ϕ and
π (resp. γ) to be:

ϕ(π,H) = {ξ ∈ H ; ∃C ∈ R+, ∀x ∈ Nϕ, ‖π(x)ξ‖ 6 C‖Λϕ(x)‖},

(resp. (K, γ)ϕ = {ξ ∈ K ; ∃C ∈ R+, ∀x ∈ N∗ϕ, ‖γ(xo)ξ‖ 6 C‖Λϕo(xo)‖}).

If ξ ∈ ϕ(π,H), we then denote Rπ,ϕ(ξ) ∈ B(Hϕ,H) the unique bounded operator such that

Rπ,ϕ(ξ)Λϕ(x) = π(x)ξ, for all x ∈ Nϕ.

Similarly, if ξ ∈ (K, γ)ϕ we denote Lγ,ϕ(ξ) ∈ B(Hϕ,K) the unique bounded operator such that

Lγ,ϕ(ξ)JϕΛϕ(x∗) = γ(xo)ξ, for all x ∈ N∗ϕ,

where we have used the identification Hϕo →Hϕ ; Λϕo(xo) 7→ JϕΛϕ(x∗).
Note that ξ ∈ K is left bounded with respect to ϕ and γ if and only if it is right bounded with
respect to the n.s.f. weight ϕc on N ′ and the normal unital *-representation γc = γ ◦ j−1

N of N ′.
It is important to note that (K, γ)ϕ (resp. ϕ(π,H)) is dense in K (resp. H) (see Lemma 2 in [6]).

If ξ ∈ ϕ(π,H) (resp. ξ ∈ (K, γ)ϕ), we have that Rπ,ϕ(ξ) (resp. Lγ,ϕ(ξ)) is left (resp. right)
N -linear. Therefore, for all ξ, η ∈ ϕ(π,H) (resp. (K, γ)ϕ) we have

Rπ,ϕ(ξ)∗Rπ,ϕ(η) ∈ πϕ(N)′ = jN(No), Rπ,ϕ(ξ)Rπ,ϕ(η)∗ ∈ π(N)′

(resp. Lγ,ϕ(ξ)∗Lγ,ϕ(η) ∈ πϕ(N), Lγ,ϕ(ξ)Lγ,ϕ(η)∗ ∈ γ(No)′).
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Notations 2.1.2. Let ξ, η ∈ ϕ(π,H) (resp. (K, γ)ϕ), we denote:

〈ξ, η〉No = j−1
N (Rπ,ϕ(ξ)∗Rπ,ϕ(η)) ∈ No (resp. 〈ξ, η〉N = π−1

ϕ (Lγ,ϕ(ξ)∗Lγ,ϕ(η)) ∈ N).

Proposition 2.1.3. For all ξ, η ∈ ϕ(π,H) (resp. ξ, η ∈ (K, γ)ϕ) and y ∈ N analytic for (σϕt )t∈R,
we have:

1. 〈ξ, η〉∗No = 〈η, ξ〉No (resp. 〈ξ, η〉∗N = 〈η, ξ〉N).

2. 〈ξ, ηyo〉No = 〈ξ, η〉Noσϕi/2(y)o (resp. 〈ξ, ηy〉N = 〈ξ, η〉Nσϕ−i/2(y)).

Lemma 2.1.4. For all ξ1, ξ2 ∈ ϕ(π,H) and η1, η2 ∈ (K, γ)ϕ, we have

〈η1, γ(〈ξ1, ξ2〉No)η2〉K = 〈ξ1, π(〈η1, η2〉N)ξ2〉H.

Definition 2.1.5. The relative tensor product

K γ⊗π
ϕ
H (or simply denoted K γ⊗πH)

is the Hausdorff completion of the pre-Hilbert space (K, γ)ϕ � ϕ(π,H), whose inner product is
given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈η1, γ(〈ξ1, ξ2〉No)η2〉K = 〈ξ1, π(〈η1, η2〉N)ξ2〉H,
for all ξ1, ξ2 ∈ (K, γ)ϕ and η1, η2 ∈ ϕ(π,H). If ξ ∈ (K, γ)ϕ and η ∈ ϕ(π,H), we will denote

ξ γ⊗π
ϕ

η (or simply denoted ξ γ⊗π η)

the image of ξ ⊗ η by the canonical map (K, γ)ϕ � ϕ(π,H)→ K γ⊗πH (isometric dense range).

Remarks 2.1.6. 1. By applying this construction to (No, ϕo) instead of (N,ϕ) we obtain
the relative tensor product H π⊗γ

ϕo
K.

2. The relative tensor product K γ⊗πH is also the Hausdorff completion of the pre-Hilbert
space K � ϕ(π,H) (resp. (K, γ)ϕ �H), whose inner product is given by:

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈ξ1, π(〈η1, η2〉N)ξ2〉H

(resp. 〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈η1, γ(〈ξ1, ξ2〉No)η2〉K).

3. Moreover, for all ξ ∈ K, η ∈ ϕ(π,H) and y ∈ N analytic for (σϕt )t∈R, we have

γ(yo)ξ γ⊗π η = ξ γ⊗π π(σϕ−i/2(y))η.

The relative flip map is the isomorphism σγ,πϕ from K γ⊗π
ϕ
H onto H π⊗γ

ϕo
K given by:

σγ,πϕ (ξ γ⊗π
ϕ

η) := η π⊗γ
ϕo

ξ, ξ ∈ (K, γ)ϕ, η ∈ ϕ(π,H) (or simply σγ,π).

Note that σγ,πϕ is unitary and (σγ,πϕ )∗ = σπ,γϕo . Then, we can define a relative flip *-homomorphism

ςγ,πϕ : B(K γ⊗π
ϕ
H)→ B(H π⊗γ

ϕo
K)

(or simply denoted ςγ,π) by setting:

ςγ,πϕ (X) := σγ,πϕ X(σγ,πϕ )∗, X ∈ B(K γ⊗π
ϕ
H).
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Fiber product of von Neumann algebras. We continue to use the notations of the previous
paragraph.

Proposition-Definition 2.1.7. Let Ki and Hi be Hilbert spaces, and γi : No → B(Ki) and
πi : N → B(Hi) be unital normal *-homomorphisms for i = 1, 2. Let T ∈ B(K1,K2) and
S ∈ B(H1,H2) such that

T ◦ γ1(no) = γ2(no) ◦ T, S ◦ π1(n) = π2(n) ◦ S, n ∈ N.

Then, the linear map
(K1, γ1)ϕ � ϕ(π1,H1) −→ K2 γ2⊗π2H2

ξ � η 7−→ Tξ γ2⊗π2 Sη

extends uniquely to a bounded operator

γ2T γ1⊗π2 Sπ1 ∈ B(K1 γ1⊗π1H1,K2 γ2⊗π2H2) (or simply denoted T γ1⊗π2 S),

whose adjoint operator is γ1T
∗
γ2⊗π1 S

∗
π2 (or simply T ∗ γ2⊗π1 S

∗). In particular, let x ∈ γ(No)′
and y ∈ π(N)′, then the linear map

(K, γ)ϕ � ϕ(π,H) −→ K γ⊗πH
ξ � η 7−→ xξ γ⊗π yη

extends uniquely to a bounded operator on K γ⊗πH, denoted x γ⊗π y ∈ B(K γ⊗πH).

Remark 2.1.8. With the notations of Proposition-Definition 2.1.7, let T : K1 → H2 and
S : H1 → K2 be bounded antilinear maps such that

T ◦ γ1(no)∗ = π2(n) ◦ T, S ◦ π1(n) = γ2(no)∗ ◦ S, n ∈ N.

In a similar way, we define the operator

π2T γ1⊗γ2 Sπ1 ∈ B(K1 γ1⊗π1H1,H2 π2⊗γ2 K2), (or simply denoted T γ1⊗γ2 S),

whose adjoint operator is γ1T
∗
π2⊗π1 S

∗
γ2 (or simply T ∗ π2⊗π1 S

∗). Note that these notations are
different from those used in [14, 19].

Let M ⊂ B(K) and P ⊂ B(H) be two von Neumann algebras. Let us assume that π(N) ⊂ P
and γ(No) ⊂M .

Definition 2.1.9. The fiber product

M γ?π
N

P (or simply denoted M γ?π P )

of M and P over N is the commutant of

{x γ⊗π y ; x ∈M ′, y ∈ P ′} ⊂ B(K γ⊗πH).

Then, M γ?π P is a von Neumann algebra. We also denote M ′
γ⊗π P ′ the von Neumann algebra

generated by the set {x γ⊗π y |x ∈ M ′, y ∈ P ′}, called the relative tensor product of M ′ and
P ′. We have

M γ?π P = (M ′
γ⊗π P ′)′.
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Note that we have ςγ,π(M γ?π P ) = P π?γM . We still denote ςγ,π : M γ?π P → P π?γM the
restriction of ςγ,π to M γ?π P .

♦ Slicing with normal linear forms. Now, let us recall how to slice with normal linear forms.
For ξ ∈ (K, γ)ϕ, η ∈ ϕ(π,H), we consider the following bounded linear maps

λγ,πξ : H → K γ⊗πH,
ζ 7→ ξ γ⊗π ζ

ργ,πη : K → K γ⊗πH.
ζ 7→ ζ γ⊗π η

Let K and H be Hilbert spaces, and γ : No → B(K) and π : N → B(H) be unital normal
*-homomorphisms, T ∈ B(K γ⊗πH) and ω ∈ B(K)∗ (resp. ω ∈ B(H)∗). By using the fact that
ϕ(π,H) (resp. (K, γ)ϕ) is dense in H (resp. K), there exists a unique

(ω γ?π id)(T ) ∈ B(H) (resp. (id γ?π ω)(T ) ∈ B(K)),

which satisfies:

〈η2, (ω γ?π id)(T )η1〉 = ω((ργ,πη2 )∗Tργ,πη1 ), η1, η2 ∈ ϕ(π,H)

(resp. 〈ξ2, (id γ?π ω)(T )ξ1〉 = ω((λγ,πξ2 )∗Tλγ,πξ1 ), ξ1, ξ2 ∈ (K, γ)ϕ).

In particular, we have the formulas:

(ωξ2,ξ1 γ?π id)(T ) = (λγ,πξ2 )∗Tλγ,πξ1 ∈ B(H), ξ1, ξ2 ∈ (K, γ)ϕ,

(id γ?π ωη2,η1)(T ) = (ργ,πη2 )∗Tργ,πη1 ∈ B(K), η1, η2 ∈ ϕ(π,H).

If x ∈M γ?π P , then for all ω ∈ B(H)∗ (resp. ω ∈ B(K)∗) we have

(id γ?π ω)(x) ∈M (resp. (ω γ?π id)(x) ∈ P ).

We refrain from writing the details but we can easily define the slice maps if T takes its values
in a different relative tensor product. Note that we can extend the notion of slice maps for
normal linear forms to normal semi-finite weights.

Fiber product over a finite dimensional von Neumann algebra. Now, let us assume
that

N =
⊕

16l6k
Mnl(C), ϕ =

⊕
16l6k

Trl(Fl−),

where Fl is a positive invertible matrix of Mnl(C) and Trl is the non-normalized trace on Mnl(C).
Let us denote (Fl,i)16i6nl the eigenvalues of Fl. We have:

Proposition 2.1.10. (see §7 of [8]) The bounded linear map

vγ,πϕ : K ⊗H −→ K γ⊗π
ϕ
H (or simply denoted vγ,π)

ξ ⊗ η 7−→ ξ γ⊗π
ϕ

η

is a coisometry if and only if ∑16i6nl F
−1
l,i = 1 for all 1 6 l 6 k. In the following, we assume

that this condition is satisfied. Let us denote

qγ,πϕ = (vγ,πϕ )∗vγ,πϕ (or simply qγ,π).
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Then, qγ,πϕ is a self-adjoint projection of B(K ⊗H) such that

qγ,πϕ =
∑

16l6k

∑
16i,j6nl

F
−1/2
l,i F

−1/2
l,j γ(e(l) o

ij )⊗ π(e(l)
ji ),

where, for all 1 6 l 6 k, (e(l)
ij )16i,j6nl is a system of matrix units such that Fl = ∑

16i6nl Fl,ie
(l)
ii .

Furthermore, the map
M γ?π

N

P −→ qγ,πϕ (M ⊗ P )qγ,πϕ
x 7−→ (vγ,πϕ )∗xvγ,πϕ

is a unital normal *-isomorphism.
Now, let us take for ϕ the non-normalized Markov trace on N =

⊕
16l6k

Mnl(C), that is

ε =
⊕

16l6k
nl · Trl.

As a corollary of Proposition 2.1.10, we have:
Proposition 2.1.11. For all system of matrix units (e(l)

ij ), 1 6 l 6 k, 1 6 i, j 6 nl, of N we
have:

qγ,πε =
∑

16l6k
n−1
l

∑
16i,j6nl

γ(e(l)o
ij )⊗ π(e(l)

ji ).

The following result is a slight generalization of the previous proposition to the setting of
C∗-algebras. This result will be used several times in the subsequent chapters.
Proposition-Definition 2.1.12. Let A, B be two C∗-algebras. We consider two non-degenerate
*-homomorphisms γA : No →M(A) and πB : N →M(B). There exists a unique self-adjoint
projection qγA,πB ∈M(A⊗B) such that

qγA,πB =
∑

16l6k
n−1
l

∑
16i,j6nl

γA(e(l)o
ij )⊗ πB(e(l)

ji ),

for all system of matrix units (e(l)
ij )16i,j6nl for Mnl(C), 1 6 l 6 k.

Proof. The uniqueness of such a self-adjoint projection is straightforward. In virtue of Gelfand-
Naimark theorem, we can consider faithful non-degenerate *-homomorphisms θA : A→ B(K)
and θB : B → B(H). Let us denote γ := θA ◦ γA and π := θB ◦ πB. Then, γ : No → B(K)
and π : N → B(H) are normal unital *-representations. Let us fix an arbitrary system of
matrix units (e(l)

ij )16i,j6nl for Mnl(C) for each 1 6 l 6 k. We define a self-adjoint projection
qγA,πB ∈M(A⊗B) by setting:

qγA,πB :=
∑

16l6k
n−1
l

∑
16i,j6nl

γA(e(l)o
ij )⊗ πB(e(l)

ji ).

By Proposition 2.1.11, we have qγ,πε = (θA ⊗ θB)(qγA,πB). By using again Proposition 2.1.11 and
the fact that θA ⊗ θB is faithful, we obtain that qγA,πB is independent of the chosen systems of
matrix units. Moreover, the definition of qγA,πB shows that qγA,πB is also independent of the
chosen faithful non-degenerate *-homomorphisms θA and θB.
Remark 2.1.13. In a similar way, there also exists a unique self-adjoint projection qπB ,γA such
that

qπB ,γA =
∑

16l6k
n−1
l

∑
16i,j6nl

πB(e(l)
ij )⊗ γA(e(l)o

ji ),

for all system of matrix units (e(l)
ij )16i,j6nl for Mnl(C), 1 6 l 6 k.
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2.2 Enock-Lesieur’s measured quantum groupoids

Definition 2.2.1. We call measured quantum groupoid an octuple G = (N,M,α, β,Γ, T, T ′, ν),
where:

• M and N are von Neumann algebras,

• Γ : M →M β?αM is a faithful normal unital *-homomorphism, called the coproduct,

• α : N → M and β : No → M are faithful normal unital *-homormorphisms, called the
range and source maps of G,

• T : M+ → α(N)ext
+ and T ′ : M+ → β(No)ext

+ are n.s.f. operator-valued weights,

• ν is a n.s.f. weight on N ,

such that the following conditions are satisfied:

1. α(n′) and β(no) commute for all n, n′ ∈ N .

2. ∀n ∈ N , Γ(α(n)) = α(n) β⊗α 1 and Γ(β(no)) = 1 β⊗α β(no).

3. Γ is coassociative, that is (Γ β?α id)Γ = (id β?α Γ)Γ.

4. The n.s.f. weights ϕ and ψ on M given by ϕ = ν ◦ α−1 ◦ T and ψ = ν ◦ β−1 ◦ T ′ satisfy:

• ∀x ∈M+
T , T (x) = (id β?α ϕ)Γ(x) ; ∀x ∈M+

T ′ , T
′(x) = (ψ β?α id)Γ(x).

• σϕt and σψs commute for all s, t ∈ R.

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid. We denote (H , π,Λ) the
G.N.S. construction for (M,ϕ) where ϕ = ν ◦ α−1 ◦ T . Let (σt)t∈R, ∇ and J be respectively the
modular automorphism group, the modular operator and the modular conjugation for ϕ. In the
following, we identify M with its image by π in B(H ). We have:

• RG : M →M a *-antihomomorphism satisfying R2
G = id and ςα,β ◦(RG β?αRG)◦Γ = Γ◦RG .

From now on, we will assume that T ′ = RGTRG and then also ψ = ϕ ◦RG.

• There exist self-adjoint positive non-singular operators λ and d respectively affiliated to
Z(M) and M such that

(Dψ : Dϕ)t = λit
2/2dit, t ∈ R.

The operators λ and d are respectively called the scaling operator and the modular operator
of G.

• The G.N.S. construction for (M,ψ) is given by (H , πψ,Λψ), where Λψ is the closure of
the operator which sends any element x ∈M such that xd1/2 is closable and its closure
xd1/2 ∈ Nϕ to Λϕ(xd1/2), πψ : M → B(H ) is given by the formula πψ(a)Λψ(x) = Λψ(ax).

• The modular conjugation Jψ for ψ is given by Jψ = λi/4J .
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• We will denote
WG : H β⊗α H →H α⊗β̂ H

the left regular pseudo-multiplicative unitary of G (see [26]) : WG is a unitary map, which
satisfies a pentagon relation and some commutation relations with respect to α, β̂ and β,
that is for all n ∈ N we have:

WG(α(n) β⊗α 1) = (1 α⊗β̂ α(n))WG, WG(1 β⊗α β(no)) = (1 α⊗β̂ β(no))WG,

WG(β̂(no) β⊗α 1) = (β̂(no) α⊗β̂ 1)WG, WG(1 β⊗α β̂(no)) = (β(no) α⊗β̂ 1)WG.
(2.2.1)

Moreover, M is the weak closure of {(id ? ω)(WG) ; ω ∈ B(H )∗} and we have:

Γ(x) = W ∗
G (1 α⊗β̂ x)WG, x ∈M.

Starting from a measured quantum groupoid G, we are able to build new ones: the dual, opposite
and commutant measured quantum groupoids respectively denoted Ĝ, Go and Gc.

Proposition-Definition 2.2.2. Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum grou-
poid. Let WG be the regular pseudo-multiplicative unitary for G. We define the dual measured
quantum groupoid of G to be the octuple Ĝ = (N, M̂, α, β̂, Γ̂, T̂ , R̂ ◦ T̂ ◦ R̂, ν), where:

• M̂ ⊂ B(H ) is the von Neumann algebra generated by

{(ω ? id)(WG) ; ω ∈ B(H )∗} ⊂ B(H ).

• β̂ : No → M̂ is given by β̂(no) = Jα(n∗)J for all n ∈ N .

• Γ̂ : M̂ → M̂
β̂
?α M̂ is given for all x ∈ M̂ by

Γ̂(x) = σα,β̂WG(x β⊗α 1)W ∗
G σ

β̂,α.

• There exists a unique n.s.f. weight ϕ̂ on M̂ whose G.N.S. construction is (H , id,Λϕ̂),
where the G.N.S. map Λϕ̂ is the closure of the operator

(ω ? id)(WG) 7→ aϕ(ω),

defined for normal linear forms ω in a dense subspace of

Iϕ = {ω ∈ B(H )∗ ; ∃k ∈ R+, ∀x ∈ Nϕ, |ω(x∗)|2 6 kϕ(x∗x)}

and aϕ(ω) ∈H satisfies

∀x ∈ Nϕ, ω(x∗) = 〈Λϕ(x), aϕ(ω)〉.

• T̂ is the unique n.s.f. operator-valued weight from M̂ to α(N) such that ϕ̂ = ν ◦ α−1 ◦ T̂
and T̂ ′ = RĜT̂RĜ, where RĜ : M̂ → M̂ is given by RĜ(x) = Jx∗J for all x ∈ M̂ .

We will also consider the n.s.f. weight ψ̂ = ϕ̂ ◦ RĜ. We will denote ∇̂ and Ĵ the modular
operator and the modular conjugation for ϕ̂.

Note that the scaling operator of Ĝ is λ−1. In particular, we have λit ∈ Z(M) ∩ Z(M̂) for all
t ∈ R. The regular pseudo-multiplicative unitary WĜ of Ĝ is given by

WĜ = σβ,αW ∗
G σ

β̂,α.
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Theorem 2.2.3. Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid. We have:

1. WG(βĴ α⊗α Jβ̂) = (αĴ β⊗β̂ Jα)W ∗
G .

2. ĴJ = λi/4JĴ .

3. Let us define α̂(n) := Jβ(no)∗J = Ĵ β̂(no)∗Ĵ for n ∈ N . We have the Heisenberg type
relations:

M ∩ M̂ = α(N), M ∩ M̂ ′ = β(No), M ′ ∩ M̂ = β̂(No), M ′ ∩ M̂ ′ = α̂(N).

Proposition-Definition 2.2.4. Let G be a measured quantum groupoid. We have

λitJ = Jλ−it, λitĴ = Ĵλ−it, for all t ∈ R.

Let us denote U = ĴJ ∈ B(H ). Then, U∗ = λ−i/4U and U2 = λi/4. In particular, U is unitary.
We also have:

α̂(n) = U∗α(n)U, β̂(no) = Uβ(no)U∗, n ∈ N.

Remark 2.2.5. We have λ−i/4 ∈ Z(M) and U∗ = λ−i/4U . Hence,

α̂(n) = Uα(n)U∗, β̂(no) = U∗β(no)U, n ∈ N.

Proposition-Definition 2.2.6. Let us fix G = (N,M,α, β,Γ, T, T ′, ν) a measured quantum
groupoid.

1. The octuple (No,M, β, α, ςβ,α ◦ Γ, RGTRG, T, νo) is a measured quantum groupoid denoted
Go and called the opposite measured quantum groupoid (of G). The regular pseudo-
multiplicative unitary WGo of Go is given by:

WGo = (βĴ α⊗α̂ Ĵβ̂)WG(βĴ α⊗α Ĵβ).

2. Let CM : M →M ′ be the canonical *-antihomomorphism given by CM (x) = Jx∗J , x ∈M .
Let us define:

Γc = (CM β?αCM) ◦ Γ ◦ C−1
M , Rc

G = CM ◦RG ◦ C−1
M , T c = CM ◦ T ◦ C−1

M .

Then, the octuple (No,M ′, β̂, α̂,Γc, T c, RcT cRc, νo) is a measured quantum groupoid de-
noted Gc and called the commutant measured quantum groupoid (of G). The regular
pseudo-multiplicative unitary WGc of Gc is given by:

WGc = (
β̂
J α⊗α Jβ̂)WG(βJ α̂⊗α Jβ̂).

Proposition 2.2.7. Let G be a measured quantum groupoid. We have the following formulas:

(Go)o = G, (Gc)c = G, (Go)c = (Gc)o.

Ĝo = (Ĝ )c, Ĝc = (Ĝ )o.

Remark 2.2.8. From §3.2 on, we will refer to (Ĝ)c instead of Ĝ as the dual of G. Indeed, this
dual will appear better suited to right actions of G. Note that:

(Ĝ)c = (No, M̂ ′, β, α̂, Γ̂c, T̂ c, T̂ c′, νo),

where the coproduct and the operator valued weights are given by:
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• Γ̂c(x) = (W(Ĝ)c)∗(1 β⊗α x)W(Ĝ)c , for all x ∈ M̂ ′.

• T̂ c = C
M̂
◦ T̂ ◦ C−1

M̂
, where C

M̂
: M̂ → M̂ ′ ; x 7→ Ĵx∗Ĵ .

• T̂ c′ = R(Ĝ)c ◦ T̂ c ◦R(Ĝ)c .

• Note also that the commutant weight ϕ̂ ′ = νo ◦ β−1 ◦ T̂ c derived from the weight ϕ̂ is left
invariant for the coproduct Γ̂c.

Notations 2.2.9. For a given measured quantum groupoid G, we will need the following
pseudo-multiplicative unitaries:

V̂ := WG, V := W(̂Go) = W(Ĝ)c , Ṽ := W(Go)c .

2.3 De Commer’s weak Hopf-von Neumann algebras with finite basis

In [9], De Commer provides an equivalent definition of a measured quantum groupoid on a finite
basis. This definition is far more tractable since it avoids the use of relative tensor products
and fiber products. Let us assume that:

N =
⊕

16l6k
Mnl(C), ε =

⊕
16l6k

nl · Trl.

Let G = (N,M,α, β,Γ, T, T ′, ε) be a measured quantum groupoid. Let us recall that we have a
unital normal *-isomorphism:

M β?αM −→ qβ,α(M ⊗M)qβ,α

x 7−→ (vβ,α)∗xvβ,α

Let us then denote ∆ : M →M ⊗M the (non necessarily unital) faithful normal *-homomor-
phism given by

∆(x) = (vβ,α)∗Γ(x)vβ,α, x ∈M.

We have ∆(1) = qβ,α. We verify easily that for all T ∈ B(H β⊗α H ) and ω ∈ B(H )∗ we have:

(ω β?α id)(T ) = (ω ⊗ id)((vβ,α)∗Tvβ,α), (id β?α ω)(T ) = (id⊗ ω)((vβ,α)∗Tvβ,α).

In particular, we obtain:

(ω β?α id)Γ(x) = (ω ⊗ id)∆(x), (id β?α ω)Γ(x) = (id⊗ ω)∆(x),

for all x ∈M , ω ∈ B(H )∗. The coassociativity of ∆ is derived from that of Γ and for all n ∈ N
we have:

∆(α(n)) = (α(n)⊗ 1)∆(1) = ∆(1)(α(n)⊗ 1),

∆(β(no)) = (1⊗ β(no))∆(1) = ∆(1)(1⊗ β(no)).

This leads De Commer to build the following equivalent definition of a measured quantum
groupoid on a finite basis (called “weak Hopf-von Neumann algebra with finite basis and integrals”
in Definition 11.1.2 of [9]):
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Definition 2.3.1. A measured quantum groupoid on the finite-dimensional basis

N =
⊕

16l6k
Mnl(C)

is an octuple G = (N,M,α, β,∆, T, T ′, ε), where:

• M is a von Neumann algebra, α : N → M and β : No → M are unital faithful normal
*-homomorphisms,

• ∆ : M →M ⊗M is a faithful normal *-homomorphism,

• T : M+ → α(N)ext
+ and T ′ : M+ → β(No)ext

+ are n.s.f. operator-valued weights,

• ε =
⊕

16l6k
nl · Trl is the non-normalized Markov trace on N ,

such that the following conditions are satisfied:

1. α(n′) and β(no) commute for all n, n′ ∈ N .

2. ∆(1) = qβ,α.

3. ∆ is coassociative, that is (∆⊗ id)∆ = (id⊗∆)∆.

4. ∀n ∈ N , ∆(α(n)) = ∆(1)(α(n)⊗ 1), ∆(β(no)) = ∆(1)(1⊗ β(no)).

5. The n.s.f. weights ϕ and ψ on M given by ϕ = ε ◦ α−1 ◦ T and ψ = ε ◦ β−1 ◦ T ′ satisfy:

T (x) = (id⊗ ϕ)∆(x), x ∈M+
T ; T ′(x) = (ψ ⊗ id)∆(x), x ∈M+

T ′ .

6. ∀t ∈ R, σTt ◦ α = α, σT ′t ◦ β = β.

Let us fix a measured quantum groupoid G = (N,M,α, β,∆, T, T ′, ε) on the finite-dimensional
basis N =

⊕
16l6k

Mnl(C).

Notations 2.3.2. Let us consider the injective bounded linear map

ιβ
α̂,α

: B(H α̂⊗β H ,H β⊗α H )→ B(H ⊗H ) ; X 7→ (vβ,α)∗Xvα̂,β.

Similarly, we also define ια
β,β̂

and ια̂
β̂,β

. Then, we define:

V := ιβ
α̂,α

(V ), W := ια
β,β̂

(V̂ ), Ṽ := ια̂
β̂,β

(Ṽ ),

where we recall that V = W(Ĝ)c = W(̂Go), V̂ = WG and Ṽ = W(Go)c .

Proposition 2.3.3. The operators V,W and Ṽ are multiplicative partial isometries acting on
H ⊗H whose initial and final supports are given by

V ∗V = qα̂,β = Ṽ Ṽ ∗, W ∗W = qβ,α = V V ∗, WW ∗ = qα,β̂, Ṽ ∗Ṽ = qβ̂,α̂.

Moreover, we have:

V (Λψ(x)⊗ Λψ(y)) = (Λψ ⊗ Λψ)(∆(x)(1⊗ y)), x, y ∈ Nψ,

W ∗(Λϕ(x)⊗ Λϕ(y)) = (Λϕ ⊗ Λϕ)(∆(y)(x⊗ 1)), x, y ∈ Nϕ.
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It is also easy to see that

(ω ? id)(WG) = (ω ⊗ id)(W ), (id ? ω)(WG) = (id⊗ ω)(W ), ω ∈ B(H )∗.

In particular, M (resp. M̂) is the weak closure of

{(id⊗ ω)(W ) ; ω ∈ B(H )∗} ⊂ B(H ) (resp. {(ω ⊗ id)(W ) ; ω ∈ B(H )∗} ⊂ B(H )).

Proposition 2.3.4. The multiplicative partial isometries V,W, Ṽ are related to each other by
the following formulas:

W = Σ(U ⊗ 1)V (U∗ ⊗ 1)Σ, Ṽ = Σ(1⊗ U)V (1⊗ U∗)Σ, where U = ĴJ.

Furthermore, we have

V ∗ = (J ⊗ Ĵ)V (J ⊗ Ĵ), W ∗ = (Ĵ ⊗ J)W (Ĵ ⊗ J).

Proof. This is a consequence of the definition of V , W and Ṽ , Theorem 2.2.3 1 and Lemma
3.1.1 (proved independently in §3.1).

Following the notations of [2], we denote V̂ = Σ(U ⊗ 1)V (U∗ ⊗ 1)Σ. The previous proposition
says that W = V̂ . Note that we have Ṽ = (U ⊗ U)W (U∗ ⊗ U∗). Note also that we have:

W ∈M ⊗ M̂, V ∈ M̂ ′ ⊗M, Ṽ ∈M ′ ⊗ M̂ ′. (2.3.1)

Proposition 2.3.5. We have the following commutation relations:

1. W12V23 = V23W12 , V12Ṽ23 = Ṽ23V12.

For all n ∈ N , we also have:

2. [V, α(n)⊗ 1] = 0, [V, β̂(no)⊗ 1] = 0, [V, 1⊗ α̂(n)] = 0, [V, 1⊗ β̂(no)] = 0.

3. V (1⊗ α(n)) = (α̂(n)⊗ 1)V , V (β(no)⊗ 1) = (1⊗ β(no))V .

4. [W, β̂(no)⊗ 1] = 0, [W, α̂(n)⊗ 1] = 0, [W, 1⊗ β(no)] = 0, [W, 1⊗ α̂(n)] = 0.

5. W (1⊗ β̂(no)) = (β(no)⊗ 1)W , W (α(n)⊗ 1) = (1⊗ α(n))W .

6. [Ṽ , α(n)⊗ 1] = 0, [Ṽ , β(no)⊗ 1] = 0, [Ṽ , 1⊗ α(n)] = 0, [Ṽ , 1⊗ β̂(no)] = 0.

7. Ṽ (1⊗ β(no)) = (β̂(no)⊗ 1)Ṽ , Ṽ (α̂(n)⊗ 1) = (1⊗ α̂(n))Ṽ .

Proof. The first statement is a consequence of (2.3.1). For the statements 4 and 5, see Lemma
11.1.2 of [9] which is derived from the formulas in Definition 3.2. (i) and Theorem 3.6. (ii) of
[14] (see the formulas (2.2.1) above). The formula [W, 1⊗ α̂(n)] = 0 is a consequence of (2.3.1)
and Theorem 2.2.3 3. The remaining statements follow from Proposition 2.3.4.

Furthermore, we also have some formulas of a different kind (these are not commutation
relations).

Proposition 2.3.6. For all n ∈ N , we have:

1. W (β(no)⊗ 1) = W (1⊗ α(n)), (1⊗ β̂(no))W = (α(n)⊗ 1)W .

2. V (1⊗ β(no)) = V (α̂(n)⊗ 1), (1⊗ α(n))V = (β(no)⊗ 1)V .
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3. Ṽ (β̂(no)⊗ 1) = Ṽ (1⊗ α̂(n)), (1⊗ β(no))Ṽ = (α̂(n)⊗ 1)Ṽ .

Proof. See Lemma 11.1.4 of [9] and Proposition 2.3.4 above.

It should be mentioned that these formulas rely heavily on the fact that ε is a faithful positive
tracial functional. Indeed, if ν is some faithful positive functional we only have

β(no)ξ β⊗α
ν

η = ξ β⊗α
ν

σν−i(α(n))η, n ∈ N, ξ, η ∈H .

Corollary 2.3.7. For all n ∈ N , we have:

1. qβ,α(β(no)⊗ 1) = qβ,α(1⊗ α(n)), (1⊗ β̂(no))qα,β̂ = (α(n)⊗ 1)qα,β̂.

2. qα̂,β(1⊗ β(no)) = qα̂,β(α̂(n)⊗ 1), (1⊗ α(n))qβ,α = (β(no)⊗ 1)qβ,α.

3. qβ̂,α̂(β̂(no)⊗ 1) = qβ̂,α̂(1⊗ α̂(n)), (1⊗ β(no))qα̂,β = (α̂(n)⊗ 1)qα̂,β.

Proof. The corollary is a straightforward consequence of Propositions 2.3.3 and 2.3.6.

The coproduct ∆ : M →M ⊗M is given by:

∆(x) = V (x⊗ 1)V ∗ = W ∗(1⊗ x)W, x ∈M.

We denote ∆̂ : M̂ ′ → M̂ ′ ⊗ M̂ ′ the coproduct of (Ĝ)c. We have

∆̂(x) = V ∗(1⊗ x)V = Ṽ (x⊗ 1)Ṽ ∗, x ∈ M̂ ′.

Finally, we will use a coproduct ∆̂λ of Ĝ different from the one given in [9]. The coproduct
∆̂λ : M̂ → M̂ ⊗ M̂ is given by:

∆̂λ(x) = W (x⊗ 1)W ∗, x ∈ M̂.

2.4 Weak Hopf-C∗-algebra associated with a measured quantum grou-
poid on a finite basis

We recall - with different notations and conventions - the construction provided by De Commer in
[9] of the weak Hopf-C∗-algebra associated with a measured quantum groupoid on a finite basis.
Let us fix a measured quantum groupoid G = (N,M,α, β,∆, T, T ′, ε) on the finite-dimensional
basis N =

⊕
16l6k

Mnl(C). Following [2], we denote:

L(ω) = (ω ⊗ id)(V ), ρ(ω) = (id⊗ ω)(V ), ω ∈ B(H )∗.

We define S (resp. Ŝ) to be the norm closure of the subalgebra

{L(ω) ; ω ∈ B(H )∗} ⊂ B(H ) (resp. {ρ(ω) ; ω ∈ B(H )∗} ⊂ B(H )).

In [9], one denotes D (resp. D̂) the norm closure of the subalgebra

{(id⊗ ω)(W ) ; ω ∈ B(H )∗} ⊂ B(H ) (resp. {(ω ⊗ id)(W ) ; ω ∈ B(H )∗} ⊂ B(H )).

According to Proposition 11.2.1 of [9], D and D̂ are C∗-subalgebras of B(H ). Note that we
have:

30



Lemma 2.4.1. S = D, Ŝ = UD̂U∗.

Proof. Indeed, since W = V̂ we have (id⊗ω)(W ) = L(ωU ) for all ω ∈ B(H )∗ (see the notations
of §1.1.1). This proves that D ⊂ S. Conversely, if ω ∈ B(H )∗ we have L(ω) = (id⊗ ωU∗)(W )
since ω = (ωU∗)U . Hence, S = D. Since (ω ⊗ id)(W ) = U∗ρ(ω)U for all ω ∈ B(H )∗, we obtain
Ŝ = UD̂U∗.

Proposition 2.4.2. S and Ŝ are non-degenerate C∗-subalgebras of B(H ) weakly dense in
respectively M and M̂ ′.

Proof. The fact that S and Ŝ are C∗-subalgebras of B(H ) is a straightforward consequence
of Proposition 11.2.1 of [9] and Lemma 2.4.1. The fact that S (resp. Ŝ) is weakly dense in M
(resp. M̂ ′) follows from the fact that M (resp. M̂ ′) is the weak closure of {L(ω) ; ω ∈ B(H )∗}
(resp. {ρ(ω) ; ω ∈ B(H )∗}) in B(H ) (cf. Lemma 11.1.5 [9]). The non-degeneracy of S (resp.
Ŝ) follows directly from the fact that S (resp. Ŝ) is strongly dense in M (resp. M̂ ′).

Notations 2.4.3. We endow S and Ŝ with two faithful non-degenerate *-representations:

L : S → B(H ) ; y 7→ y, R : S → B(H ) ; y 7→ UyU∗,

ρ : Ŝ → B(H ) ; x 7→ x, λ : Ŝ → B(H ) ; x 7→ UxU∗.

We also have R(y) = U∗yU and λ(x) = U∗xU for all y ∈ S and x ∈ Ŝ.

Proposition 2.4.4. (see Proposition 11.2.2 of [9])

1. α(N) ⊂M(S), β(No) ⊂M(S), β(No) ⊂M(Ŝ), α̂(N) ⊂M(Ŝ).

2. V ∈M(Ŝ ⊗ S), W ∈M(S ⊗ λ(Ŝ)), Ṽ ∈M(R(S)⊗ Ŝ).

3. ∆ (resp. ∆̂) restricts to a *-homomorphism δ : S →M(S ⊗S) (resp. δ̂ : Ŝ →M(Ŝ ⊗ Ŝ)).

4. δ (resp. δ̂ ) extends uniquely to a strictly continuous *-homomorphism

δ :M(S)→M(S ⊗ S) (resp. δ̂ :M(Ŝ)→M(Ŝ ⊗ Ŝ)),

which satisfies δ(1S) = qβ,α (resp. δ̂(1
Ŝ
) = qα̂,β).

5. δ and δ̂ are coassociative, that is (δ ⊗ idS)δ = (idS ⊗ δ)δ and (δ̂ ⊗ id
Ŝ
)δ̂ = (id

Ŝ
⊗ δ̂)δ̂.

6. We have:

[δ(S)(1S ⊗ S)] = δ(1S)(S ⊗ S) = [δ(S)(S ⊗ 1S)],

[δ(Ŝ)(1
Ŝ
⊗ Ŝ)] = δ̂(1

Ŝ
)(Ŝ ⊗ Ŝ) = [δ̂(Ŝ)(Ŝ ⊗ 1

Ŝ
)].

7. The unital faithful *-homomorphisms α : N →M(S) and β : No →M(S) satisfy:

δ(α(n)) = δ(1S)(α(n)⊗ 1S), δ(β(no)) = δ(1S)(1S ⊗ β(no)), n ∈ N.

8. The unital faithful *-homomorphisms β : No →M(Ŝ) and α̂ : N →M(Ŝ) satisfy:

δ̂(β(no)) = δ̂(1
Ŝ
)(β(no)⊗ 1

Ŝ
), δ̂(α̂(n)) = δ̂(1

Ŝ
)(1

Ŝ
⊗ α̂(n)), n ∈ N.
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Note that we have:

δ(y) = W ∗(1⊗ y)W = V (y ⊗ 1)V ∗, y ∈ S ; δ̂(x) = V ∗(1⊗ x)V = Ṽ (x⊗ 1)Ṽ ∗, x ∈ Ŝ.

Definition 2.4.5. With the above notations, we call the pair (S, δ) (resp. (Ŝ, δ̂)) the weak
Hopf-C∗-algebra (resp. dual weak Hopf-C∗-algebra) associated with the measured quantum
groupoid G.

Remarks 2.4.6. With the notations of the above definition, we have:

1. (Ŝ, δ̂) is the weak Hopf-C∗-algebra of Ĝc while its dual weak Hopf-C∗-algebra is (R(S), δR),
where R(S) = USU∗ and the coproduct δR is given by δR(y) = Ṽ ∗(1⊗y)Ṽ for all y ∈ R(S).

2. The weak Hopf-C∗-algebra of Ĝ is (λ(Ŝ), δ̂λ), where δ̂λ is given by δ̂λ(x) = W (x⊗ 1)W ∗,
for all x ∈ λ(Ŝ).

2.5 Measured quantum groupoids and monoidal equivalence of locally
compact quantum groups

We will recall the construction of the measured quantum groupoid associated with a monoidal
equivalence between two locally compact quantum groups provided by De Commer in his thesis
[9]. First of all, we will need to recall the definitions and the crucial results of De Commer.

Definition 2.5.1. Let G be a locally compact quantum group. A right (resp. left) Galois action
of G on a von Neumann algebra N is an ergodic integrable coaction αN : N → N ⊗ L∞(G)
(resp. γN : N → L∞(G)⊗N) such that the crossed product N oαN G (resp. G γNnN) is a type
I factor. Then, the pair (N,αN ) (resp. (N, γN )) is called a right (resp. left) Galois object for G.

Let G be a locally compact quantum group and let us fix a right Galois object (N,αN) for
G. In his thesis, De Commer was able to build a locally compact quantum group H equipped
with a left Galois action γN on N commuting with αN , that is (id ⊗ αN)γN = (γN ⊗ id)αN .
This construction is called the reflection technique and H is called the reflected locally compact
quantum group across (N,αN).
In a canonical way, he was also able to associate a right Galois object (O,αO) for H and a left
Galois action γO : O → L∞(G)⊗O of G on O commuting with αO. Finally, De Commer has
built a measured quantum groupoid

GH,G = (C2,M, α, β,∆, T, T ′, ε),

where M = L∞(H) ⊕ N ⊕ O ⊕ L∞(G), ∆ : M → M ⊗M is made up of the coactions and
coproducts of the constituents of M , the operator-valued weights T and T ′ are given by the
invariants weights and the non-normalized Markov trace ε on C2 is simply given by ε(a, b) = a+b,
(a, b) ∈ C2. Moreover, the source and target maps α and β have range in Z(M) and generate a
copy of C4.
Conversely, if G = (C2,M, α, β,∆, T, T ′, ε) is a measured quantum groupoid whose source and
target maps have range in Z(M) and generate a copy of C4, then G is of the form GH,G in
a unique way, where H and G are locally compact quantum groups canonically associated with G.

In what follows, we fix a measured quantum groupoid G = (C2,M, α, β,∆, T, T ′, ε) whose source
and target maps have range in Z(M) and generate a copy of C4. It is worth noticing that for
such a groupoid we have:
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Lemma 2.5.2. α̂ = β, β̂ = α.

Proof. We recall that we have β̂(n) = Jα(n)∗J , for all n ∈ C2. For n ∈ C2, α(n) ∈ Z(M),
hence Jα(n)∗J = α(n). Thus, we have β̂(n) = α(n), for all n ∈ C2. Since α̂(n) = U∗α(n)U and
β̂(n) = Uβ(n)U∗ for all n ∈ C2, we also have β = α̂.

Following the notations introduced in [9], we want to investigate more precisely the left and
right regular representations W and V of G introduced in the previous section. We identify M
with its image by π in B(H ), where (H , π,Λ) is the G.N.S. construction for M endowed with
the n.s.f. weight ϕ = ε ◦ α−1 ◦ T . We also consider the n.s.f. weight ψ = ε ◦ β−1 ◦ T ′. Let us
denote (ε1, ε2) the canonical basis of the vector space C2.

Notations 2.5.3. Let us introduce some useful notations and make some remarks concerning
them:

• For i, j = 1, 2, we define the following nonzero central self-adjoint projection of M :

pij = α(εi)β(εj).

It follows from β(ε1) + β(ε2) = 1M and α(ε1) + α(ε2) = 1M that:

α(εi) = pi1 + pi2, β(εj) = p1j + p2j, i, j = 1, 2.

• We have ∆(1) = α(ε1)⊗ β(ε1) + α(ε2)⊗ β(ε2) and ∆̂(1) = β(ε1)⊗ β(ε1) + β(ε2)⊗ β(ε2)
since α̂ = β.

• Let us denote Mij = pijM , for i, j = 1, 2. Then, Mij is a von Neumann subalgebra of M .

• Let us also denote Hij = pijH , for i, j = 1, 2. Then, Hij is a nonzero Hilbert subspace of
H for all i, j = 1, 2.

• ϕij = ϕ�(Mij)+ , ψij = ψ �(Mij)+ , for i, j = 1, 2. Then, ϕij and ψij are n.s.f. weights on Mij.

• For all i, j, k = 1, 2, we denote ∆k
ij : Mij →Mik⊗Mkj the unital normal *-homomorphism

given by
∆k
ij(xij) = (pik ⊗ pkj)∆(xij), xij ∈Mij.

• We have Jpkl = pklJ , Ĵpkl = plkĴ and Upkl = plkU for k, l = 1, 2. We define the anti-
unitaries Jkl : Hkl → Hkl, Ĵkl : Hkl → Hlk and the unitary Ukl : Hkl → Hlk by setting
Jkl = pklJpkl, Ĵkl = plkĴpkl and Ukl = plkUpkl = ĴklJkl.

• For all i, j, k, l = 1, 2, we denote Σij⊗kl := ΣHij⊗Hkl
: Hij ⊗Hkl →Hkl⊗Hij the flip map.

We readily obtain:

M =
⊕

i,j=1,2
Mij, H =

⊕
i,j=1,2

Hij, ∆(pij) = pi1 ⊗ p1j + pi2 ⊗ p2j, for all i, j = 1, 2.

Note that in terms of the parts ∆k
ij of ∆, the coassociativity condition reads as follows:

(∆l
ik ⊗ idMkj

)∆k
ij(xij) = (idMil

⊗∆k
lj)∆l

ij(xij), xij ∈Mij, i, j, k, l = 1, 2.

The G.N.S. representation for (Mij, ϕij) is obtained by restriction of the G.N.S. representation
of (M,ϕ) to Mij. In particular, the G.N.S. space Hϕij is identified with Hij.
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Proposition 2.5.4. For all i, j, k, l = 1, 2, we have:

(pij ⊗ 1H )V (pkl ⊗ 1H ) = δik · (pij ⊗ pjl)V (pil ⊗ pjl),
(1H ⊗ pij)W (1H ⊗ pkl) = δlj · (pik ⊗ pij)W (pik ⊗ pkj),
(1H ⊗ pji)Ṽ (1H ⊗ plk) = δlj · (pki ⊗ pji)Ṽ (pki ⊗ pjk).

Notations 2.5.5. Therefore, V , W and Ṽ each splits up into eight unitaries

V i
jl : Hil⊗Hjl →Hij ⊗Hjl, W j

ik : Hik⊗Hkj →Hik⊗Hij, Ṽ j
ki : Hki⊗Hjk →Hki⊗Hji,

for i, j, k, l = 1, 2 given by

V i
jl = (pij ⊗ pjl)V (pil ⊗ pjl), W j

ik = (pik ⊗ pij)W (pik ⊗ pkj), Ṽ j
ki = (pki ⊗ pji)Ṽ (pki ⊗ pjk).

It follows from Proposition 2.3.4 that these unitaries are related to each other by the following
relations:

W j
ik = Σij⊗ik(Uji ⊗ 1Hik

)V j
ik(U∗jk ⊗ 1Hik

)Σik⊗kj, Ṽ j
ki = Σji⊗ki(1Hji

⊗ Uik)V j
ik(1Hjk

⊗ U∗ik)Σki⊗jk,

Ṽ j
ki = (Uik ⊗ Uij)W j

ik(U∗ik ⊗ U∗kj).
Furthermore, we also have:

(V i
jl)∗ = (Jil ⊗ Ĵlj)V i

lj(Jij ⊗ Ĵjl), (W l
ik)∗ = (Ĵki ⊗ Jkj)W j

ki(Ĵik ⊗ Jij).

Moreover, these unitaries satisfy the following pentagon equations

(V i
jk)12(V i

kl)13(V j
kl)23 = (V j

kl)23(V i
jl)12, (W k

ij)12(W l
ij)13(W l

jk)23 = (W l
ik)23(W k

ij)12,

(Ṽ k
ji)12(Ṽ l

ji)13(Ṽ l
kj)23 = (Ṽ l

ki)23(Ṽ k
ji)12,

(2.5.1)

and the following commutation relations

(V l
kj)23(W j

ll′)12 = (W k
ll′)12(V l′

kj)23, (V l
ki)12(Ṽ j

ki)23 = (Ṽ j
ki)23(V l

ki)12. (2.5.2)

We derive easily the relations (2.5.1) and (2.5.2) from the corresponding relations satisfied by V
and W . Furthermore, we have the formulas

∆k
ij(xij) = (W j

ik)∗(1Hik
⊗ xij)W j

ik = V i
kj(xij ⊗ 1Hkj

)(V i
kj)∗, xij ∈Mij, (2.5.3)

which follow from ∆(x) = W ∗(1H ⊗x)W = V (x⊗1H )V ∗, x ∈M . Note that for all ω ∈ B(H )∗
we have:

(id⊗ pjlωpjl)(V i
jl) = pij(id⊗ ω)(V )pil, (pikωpik ⊗ id)(W j

ik) = pij(ω ⊗ id)(W )pkj,
(pkiωpki ⊗ id)(Ṽ j

ki) = pji(id⊗ ω)(Ṽ )pjk.
(2.5.4)

Proposition 2.5.6. Let i, j = 1, 2, i 6= j, we have:

1. Gi := (Mii,∆i
ii, ϕii, ψii) is a locally compact quantum group whose left (resp. right ) regular

representation is W i
ii (resp. V i

ii).

2. (Mij,∆j
ij) is a right Galois object for Gj and V i

jj is its canonical implementation.

3. (Mij,∆i
ij) is a left Galois object for Gi and W j

ii is its canonical implementation.
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4. The actions ∆j
ij and ∆i

ij on Mij commute.

5. W 2
12 = ΣG̃∗Σ and W 1

21 = ΣH̃∗Σ, where G̃ and H̃ are the Galois isometries associated with
the right Galois object (M12,∆2

12) for G2 and the right Galois object (M21,∆1
21) for G1

respectively (see Lemma 6.4.1 and Definition 6.4.2 of [9]).

Let (S, δ) be the weak Hopf-C∗-algebra associated with G. Note that

pij = α(εi)β(εj) ∈ Z(M(S)), i, j = 1, 2.

Let us introduce some notations:

1. Let us denote Sij = pijS, for i, j = 1, 2. Then, Sij is a C∗-algebra (actually a closed
two-sided ideal) of S weakly dense in Mij.

2. In order to provide a description of the coproduct δ, for i, j, k = 1, 2 we will consider

ιkij :M(Sik ⊗ Skj)→M(S ⊗ S)

the unique strictly continuous extension of the inclusion Sik ⊗ Skj ⊂ S ⊗ S satisfying
ιkij(1Sik⊗Skj ) = pik⊗pkj. Now, let δkij : Sij →M(Sik⊗Skj) be the unique *-homomorphism
such that

ιkij ◦ δkij(sij) = (pik ⊗ pkj)δ(sij), for all sij ∈ Sij.

With these notations, we have:

Proposition 2.5.7. (see Lemmas 7.4.13 and 7.4.14 of [9], Proposition 2.4.4)
For all i, j, k, l = 1, 2, we have:

1. (δlik ⊗ idSkj)δkij = (idSil ⊗ δklj)δlij.

2. δkij(s) = (W j
ik)∗(1Hik

⊗ s)W j
ik = V i

kj(s⊗ 1Hkj
)(V i

kj)∗, for all s ∈ Sij.

3. [δkij(Sij)(1Sik ⊗ Skj)] = Sik ⊗ Skj = [δkij(Sij)(Sik ⊗ 1Skj)]. In particular, we have

Skj = [(idSik ⊗ ω)δkij(s) ; s ∈ Sij, ω ∈ B(Hkj)∗].

The next result will play a crucial role in the following.

Proposition 2.5.8. The self-adjoint projections β(ε1) and β(ε2) are also multipliers of Ŝ. They
satisfy the following facts:

1. β(ε1) + β(ε2) = 1
Ŝ

; δ̂(β(εj)) = β(εj)⊗ β(εj), j = 1, 2.

2. [Ŝβ(εj)Ŝ] = Ŝ, j = 1, 2.

In order to prove the proposition, we will need the following lemma, which is valid for any
measured quantum groupoid on a finite basis.

Lemma 2.5.9. Let us assume that for some self-adjoint projection n ∈ N the linear span of
M̂α(n)M̂ is weakly dense in M̂ . Then, we have [Ŝα̂(n)Ŝ] = Ŝ.
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Proof. Let us prove that [(1⊗ λ(Ŝ))V (1⊗ λ(Ŝ))V ∗] = (ρ(Ŝ)⊗ λ(Ŝ))qβ,α. By Proposition 2.4.4
6, we have

[(ρ(Ŝ)⊗ 1)δ̂(ρ(Ŝ))] = (ρ(Ŝ)⊗ ρ(Ŝ))qα̂,β. (2.5.5)

The following formula

V (1⊗ λ(x))V ∗ = (1⊗ U)ΣV ∗(1⊗ ρ(x))V Σ(1⊗ U∗), x ∈ Ŝ,

is a consequence of Corollary 3.1.4 2 that will be established independently in the next chapter
for a general measured quantum groupoid. Since δ̂(ρ(x)) = V ∗(1 ⊗ ρ(x))V for all x ∈ Ŝ, we
obtain

(1⊗ λ(x′))V (1⊗ λ(x))V ∗ = (1⊗ U)Σ(ρ(x′)⊗ 1)δ̂(ρ(x))Σ(1⊗ U∗), x, x′ ∈ Ŝ. (2.5.6)

It follows from (2.5.5) and (2.5.6) that

[(1⊗λ(Ŝ))V (1⊗λ(Ŝ))V ∗] = (1⊗U)Σ(ρ(Ŝ)⊗ρ(Ŝ))qα̂,βΣ(1⊗U∗) = (ρ(Ŝ)⊗λ(Ŝ))qβ,α. (2.5.7)

Now, since V = V qα̂,β and λ(Ŝ) ⊂ M̂ ⊂ β(No)′ we have

(1⊗ λ(x′))V (1⊗ λ(x)) = (1⊗ λ(x′))V (1⊗ λ(x))qα̂,β = (1⊗ λ(x′))V (1⊗ λ(x))V ∗V. (2.5.8)

Since qβ,αV = V , it follows from (2.5.7) and (2.5.8) that

[(1⊗ λ(Ŝ))V (1⊗ λ(Ŝ))] = (ρ(Ŝ)⊗ λ(Ŝ))qβ,αV = (ρ(Ŝ)⊗ λ(Ŝ))V. (2.5.9)

Therefore, we have

[(id⊗ ω)(1⊗ λ(x′))V (1⊗ λ(x)) ; x, x′ ∈ Ŝ, ω ∈ B(H )∗] = ρ(Ŝ). (2.5.10)

Note that (2.5.10) follows more directly from the non-degeneracy of λ. By combining (2.5.10)
with the assumption, we obtain

[(id⊗ ωξ,η)(1⊗ λ(x′))V (1⊗ λ(x)α(n)) ; x, x′ ∈ Ŝ, ξ, η ∈H ] = Ŝ.

In virtue of (2.5.9), we have

(1⊗ λ(x′))V (1⊗ λ(x)α(n)) ∈ (Ŝ ⊗ λ(Ŝ))V (1⊗ α(n)), x, x′ ∈ Ŝ.

However, we have V (1 ⊗ α(n)) = (α̂(n) ⊗ 1)V (see Proposition 2.3.5 3). If u, u′ ∈ Ŝ and
ω ∈ B(H )∗, we have

(id⊗ ω)((u⊗ λ(u′))V (1⊗ α(n))) = uα̂(n)(id⊗ ωλ(u′))(V ) ∈ Ŝα̂(n)Ŝ.

As a result, we finally obtain Ŝ ⊂ Ŝα̂(n)Ŝ and the converse inclusion is obvious since we have
α̂(N) ⊂M(Ŝ) (see Proposition 2.4.4 1).

Proof of Proposition 2.5.8. Firstly, we have β(ε1) + β(ε2) = 1
Ŝ
as β is unital. Secondly, we

have δ̂(β(εj)) = δ̂(1
Ŝ
)(1

Ŝ
⊗ β(εj)) and δ̂(1

Ŝ
) = β(ε1)⊗ β(ε1) + β(ε2)⊗ β(ε2) as α̂ = β. Hence,

δ̂(β(εj)) = β(εj)⊗ β(εj) since β(εk)β(εj) = δjkβ(εj), k = 1, 2. In virtue of Proposition 7.4.3 of
[9], the linear span of M̂α(εj)M̂ is weakly dense in M̂ . By the previous lemma, it then follows
that [Ŝα̂(εj)Ŝ] = Ŝ. The Proposition is then proved since in our case we have α̂ = β. �
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Notations 2.5.10. Let i, j, k = 1, 2. Let x ∈ Ŝ and y ∈ λ(Ŝ). We denote:

xjk = β(εj)xβ(εk) ∈ Ŝ, π̂i(xjk) = pijxpik ; yjk = α(εj)yα(εk) ∈ λ(Ŝ), π̂i(yjk) = pjiypki.

Note that we have λ(x)jk = λ(xjk) since α̂ = β. We also denote Ei
jk (resp. Ei

jk,λ) the norm
closed linear subspace

{π̂i(xjk) ; x ∈ Ŝ} ⊂ B(Hik,Hij) (resp. {π̂i(yjk) ; y ∈ λ(Ŝ)} ⊂ B(Hki,Hji)).

Note that we have Ei
jk,λ = UijE

i
jkU

∗
ik.

Proposition 2.5.11. Let i, j, k, l = 1, 2, we have:

1. Let ω ∈ B(H )∗, if x = (id⊗ ω)(V ) we have:

π̂i(xjl) = (id⊗ pjlωpjl)(V i
jl), π̂j(λ(xik)) = (pikωpik ⊗ id)(W j

ik).

2. [Ei
jlHil] = Hij.

3. (Ei
jl)∗ = Ei

lj, [Ei
jkE

i
kl] = Ei

jl.

In particular, Ei
jj is a non-degenerate C∗-subalgebra of B(Hij). Moreover, Ei

12 is a Morita
equivalence between Ei

11 and Ei
22.

Proof. The first assertion is just a restatement of (2.5.4). 2) follows from the first statement
and the fact that V i

jl is unitary (the proof is very similar to that of Proposition 1.4 in [2]).
3) The equality (Ei

jl)∗ = Ei
lj and the inclusion [Ei

jkE
i
kl] ⊂ Ei

jl are straightforward. Now, let
ω, ω′ ∈ B(H )∗ and let us set x = ρ(ω) and x′ = ρ(ω′). Let φ ∈ B(H )∗ be the normal linear
form given for all z ∈ B(H ) by:

φ(z) := (pjkωpjk ⊗ pklω′pkl)(V (z ⊗ 1)V ∗) = (pjkωpjk ⊗ pklω′pkl)(V j
kl(pjlzpjl ⊗ 1)(V j

kl)∗).

Let us set y = ρ(φ). By using the first statement, the fact that pjlφpjl = φ and the pentagon
equation, we obtain

π̂i(yjl) = (id⊗ φ)(V i
jl)

= (id⊗ pjkωpjk ⊗ pklω′pkl)((V j
kl)23(V i

jl)12(V j
kl)∗23)

= (id⊗ pjkωpjk ⊗ pklω′pkl)((V i
jk)12(V i

kl)13)
= π̂i(xjk)π̂i(x′kl).

Since each operator V j
kl is unitary, it follows that the linear subspace of B(Hjl)∗ spanned by the

normal linear forms φ, where ω and ω′ run through B(H )∗, is norm dense in B(Hjl)∗. Hence,
Ei
jl ⊂ [Ei

jkE
i
kl].

Remark 2.5.12. Since Ei
jk,λ = UijE

i
jkU

∗
ik, we also have:

[Ei
jl,λHli] = Hji, (Ei

jl,λ)∗ = Ei
lj,λ, [Ei

jk,λE
i
kl,λ] = Ei

jl,λ.
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Corollary 2.5.13. For all i = 1, 2, we have the following faithful non-degenerate *-representa-
tions:

π̂i : Ŝ → B(Hi1 ⊕Hi2), π̂i : λ(Ŝ)→ B(H1i ⊕H2i)
given for all x ∈ Ŝ and y ∈ λ(Ŝ) by:

π̂i(x) =
(
pi1xpi1 pi1xpi2
pi2xpi1 pi2xpi2

)
, π̂i(y) =

(
p1iyp1i p1iyp2i
p2iyp1i p2iyp2i

)
.

Note that we have π̂i(x) = α(εi)xα(εi) and π̂i(y) = β(εi)yβ(εi) for all x ∈ Ŝ and y ∈ λ(Ŝ). For
all i, j, k, l = 1, 2, we have:

(π̂k ⊗ π̂l) δ̂(xij) = (V k
li )∗(1Hkl

⊗ π̂l(xij))V k
lj = Ṽ l

ki(π̂k(xij)⊗ 1Hlk
)(Ṽ l

kj)∗, x ∈ Ŝ,

(π̂k ⊗ π̂l)δ̂λ(yij) = W l
ik(π̂k(yij)⊗ 1Hkl

)(W l
jk)∗, y ∈ λ(Ŝ).

Proof. The non-degeneracy of the *-representation π̂i follows from the second statement of
Proposition 2.5.11. Let x ∈ Ŝ such that π̂i(x) = 0, which means that α(εi)xα(εi) = 0. However,
α(εj)yα(εi) = δijα(εi)yα(εi) for all y ∈ Ŝ and j = 1, 2. Hence, xα(εi) = 0.
Furthermore, the projection 1− α(εi) belongs to M̂ , then 1− α(εi) is the weak limit of finite
sums of elements of the form yα(εi)y′, where y, y′ ∈ M̂ . Therefore, x = x(1− α(εi)) is the weak
limit of finite sums of elements of the form xyα(εi)y′, where y, y′ ∈ M̂ . However, since Ŝ ⊂ M̂ ′

we have xyα(εi)y′ = yxα(εi)y′ = 0 for all y, y′ ∈ M̂ . Hence, x = 0.
Since π̂i is non-degenerate, π̂k ⊗ π̂l extends uniquely to a unital strictly continuous *-representa-
tion ofM(Ŝ ⊗ Ŝ). Therefore, for all i, j = 1, 2 we have

(π̂k ⊗ π̂l)((β(εi)⊗ β(εi))z(β(εj)⊗ β(εj))) = (pki ⊗ pli)z(pkj ⊗ plj), z ∈M(Ŝ ⊗ Ŝ).

In particular, if x ∈ Ŝ we have

(π̂k ⊗ π̂l)δ̂(xij) = (pki ⊗ pli)δ̂(x)(pkj ⊗ plj)
= (pki ⊗ pli)V ∗(1⊗ x)V (pkj ⊗ plj)
= (V k

li )∗(pkl ⊗ plixplj)V k
lj

= (V k
li )∗(idHkl

⊗ π̂l(xij))V k
lj ,

where we have used δ̂(β(εr)) = β(εr) ⊗ β(εr) for r = 1, 2 and the fact that the coproduct
δ̂ : Ŝ → M(Ŝ ⊗ Ŝ) satisfies δ̂(x) = V ∗(1 ⊗ x)V . Since we also have δ̂(x) = Ṽ (x ⊗ 1)Ṽ ∗ we
obtain (π̂k ⊗ π̂l) δ̂(xij) = Ṽ l

ki(π̂k(xij)⊗ 1Hlk
)(Ṽ l

kj)∗. The proof of the corresponding statements
for the *-representation π̂i is similar.

Corollary 2.5.14. Let us recall that we denote

Ei
kl = π̂i(β(εk)Ŝβ(εl)), Ei

kl,λ = π̂i(α(εk)λ(Ŝ)α(εl)), i, k, l = 1, 2.

For all i, j, k, l = 1, 2, Ei
lk ⊗ Sjl and Ei

jk ⊗ Sjl (resp. Sik ⊗ E
j
kl,λ and Sik ⊗ Ej

il,λ) are Hilbert
C∗-modules over Ei

kk ⊗ Sjl (resp. Sik ⊗ E
j
ll,λ) and we have:

V i
jl ∈ L(Ei

lk ⊗ Sjl, Ei
jk ⊗ Sjl), W j

ik ∈ L(Sik ⊗ Ej
kl,λ, Sik ⊗ E

j
il,λ).

In particular, we have V i
jj ∈M(Ei

jj ⊗ Sjj) and W j
ii ∈M(Sii ⊗ Ej

ii,λ).
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Proof. This follows immediately from V ∈M(Ŝ ⊗ S) and W ∈M(S ⊗ λ(Ŝ)).

We conclude this paragraph with the following definitions:

Definition 2.5.15. A measured quantum groupoid (C2,M, α, β,∆, T, T ′, ε) such that the source
and target maps have range in Z(M) and generate a copy of C4 will be denoted GG1,G2 , where
Gi = (Mii,∆i

ii, ϕii, ψii) (see Notations 2.5.3) and will be called a colinking measured quantum
groupoid.

Definition 2.5.16. Let G and H be two locally compact quantum groups. We say that G
and H are monoidally equivalent if there exists a colinking measured quantum groupoid GG1,G2

between two locally compact quantum groups G1 and G2 such that H (resp. G) is isomorphic
to G1 (resp. G2).
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Chapter 3

Irreducibility and regularity for measured quantum
groupoids

3.1 Irreducibility for measured quantum groupoids

Let us fix some notations. If G = (N,M,α, β,Γ, T, T ′, ν) is a measured quantum groupoid,
we denote WG its left regular pseudo-multiplicative unitary. Let G be a measured quantum
groupoid, we recall the following notations:

V̂ := WG, V := W(̂Go) = W(Ĝ)c , Ṽ := W(Go)c , U := ĴJ.

Lemma 3.1.1. We have the formulas

V̂ = σβ̂,α(U β⊗α 1)V (U∗ α⊗β 1)σβ,α, Ṽ = σβ,α̂(1 β⊗α̂ U)V (1 α̂⊗β U∗)σβ̂,α̂.

Proof. In virtue of Theorem 3.11 (iii) and Theorem 3.12 (v) of [14], we have

WGo(αĴ β⊗β Jα̂) = (βĴ α⊗α̂ Jβ)W ∗
Go , V̂ = (αĴ β⊗β̂ Ĵα̂)WGo(αĴ β⊗β Ĵα).

Therefore, we obtain

V̂ = (αĴ β⊗β̂ Ĵα̂)WGo(αĴ β⊗β Jα̂)(1 β⊗α̂ U∗) = (1 α⊗β̂ U)W ∗
Go(1 β⊗α̂ U∗).

Hence, V̂ = σβ̂,α(U β⊗α 1)V (U∗ α⊗β 1)σβ,α as V = WĜo = σα,βW ∗
Goσα,β.

By using Theorem 3.12 (vi) of [14], we have

Ṽ = (U∗ α⊗β U∗)V̂ (U
β̂
⊗α U)

and the second formula follows.

Remarks 3.1.2. It follows from this lemma that we can express each unitary V , V̂ and Ṽ in
terms of one of the others. Indeed, we have:

i. V = (U∗
β̂
⊗α 1)σα,β̂V̂ σα,β(U α̂⊗β 1) = σα,β(1 α⊗β U∗)V̂ (1 β⊗α U)σα̂,β,

ii. V = (1 β⊗α U∗)σα̂,βṼ σα̂,β̂(1 α̂⊗β̂ U) = σα,β(U∗ α̂⊗β 1)Ṽ (U β⊗α̂ 1)σα̂,β,

iii. Ṽ = (U∗ α⊗β U∗)V̂ (U
β̂
⊗α U) and V̂ = (U α̂⊗β̂ U)Ṽ (U∗ β⊗α̂ U∗).

We will also need the following lemma:
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Lemma 3.1.3. Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid. Let us denote
Ĝ = (N, M̂, α, β̂, Γ̂, T̂ , R̂ ◦ T̂ ◦ R̂, ν) the dual measured quantum groupoid of G. Then, we have

1. a) V̂ (x β⊗α 1) = (x α⊗β̂ 1)V̂ , b) V (1 α̂⊗β x) = (1 β⊗α x)V , x ∈M ′.

2. a) V (x α̂⊗β 1) = (x β⊗α 1)V , b) Ṽ (1
β̂
⊗α̂ x) = (1 α̂⊗β x)Ṽ , x ∈ M̂ .

3. a) V (x α̂⊗β 1)V ∗ = V̂ ∗(1 α⊗β̂ x)V̂ , b) Ṽ (x
β̂
⊗α̂ 1) = (x α̂⊗β 1)Ṽ , x ∈M .

4. a) V ∗(1 β⊗α x)V = Ṽ (x
β̂
⊗α̂ 1)Ṽ ∗, b) V̂ (1 β⊗α x) = (1 α⊗β̂ x)V̂ , x ∈ M̂ ′.

Proof. All operators appearing in this statement are well defined thanks to the Heisenberg type
relations:

M ∩ M̂ = α(N), M ∩ M̂ ′ = β(No), M ′ ∩ M̂ = β̂(No), M ′ ∩ M̂ ′ = α̂(N).

The proof relies only on Theorems 3.8, 3.11 and 3.12 of [14]. The formula 1 a) follows from
the fact that M is the weak closure of the subalgebra {(id ? ω)(V̂ ) ; ω ∈ B(H )∗} ⊂ B(H ).
The formula 1 b) follows by using the formula V̂ = σβ̂,α(U β⊗α 1)V (U∗ α⊗β 1)σβ,α. Similarly, 2
follows from the fact that Ṽ = σβ,α̂(1 β⊗α̂ U)V (1 α̂⊗β U∗)σβ̂,α̂ and the fact that M̂ is the weak
closure of the subalgebra {(ω ? id)(V̂ ) ; ω ∈ B(H )∗} of B(H ). The formula 3 a) (resp. 4 a))
follows from the first (resp. last) formula of Theorem 3.12 (v) (resp. Theorem 3.12 (vi)).

Corollary 3.1.4.

1. V ∗(UxU∗ β⊗α 1)V = (U α⊗β 1)σβ,αV (x α̂⊗β 1)V ∗σα,β(U∗ α̂⊗β 1), x ∈M.

2. V (1 α̂⊗β UyU∗)V ∗ = (1 β⊗α U)σα̂,βV ∗(1 β⊗α y)V σβ,α̂(1 β⊗α̂ U∗), y ∈ M̂ ′.

3. Ṽ (1
β̂
⊗α̂ UyU∗)Ṽ ∗ = (1 α̂⊗β U)σβ̂,α̂Ṽ ∗(1 α̂⊗β y)Ṽ σα̂,β̂(1 α̂⊗β̂ U

∗), y ∈M ′.

4. [V̂12,V23] = 0, [V12, Ṽ23] = 0.

Proof. The first (resp. the second) assertion follows from the formula 3 a) (resp. 4 a)) of Lemma
3.1.3. The third one is obtained by replacing G by the measured quantum groupoid (Ĝ)c in 2.
The first (resp. the second) formula of 4 is equivalent to 2 a) (resp. 3 b)).

We are now able to provide an irreducibility result for measured quantum groupoid.

Theorem 3.1.5. We have (1
β̂
⊗α̂ U)σα,β̂V̂ V Ṽ ∈ β̂(No)

β̂
?α̂ α̂(N).

Note that (1
β̂
⊗α̂ U)σα,β̂V̂ V Ṽ is a unitary.

Proof. Let us denote T = (1
β̂
⊗α̂ U)σα,β̂V̂ V Ṽ for short. By definition, we have

β̂(No)
β̂
?α̂ α̂(N) = (β̂(No)′

β̂
⊗α̂ α̂(N)′)′,

where β̂(No)′
β̂
⊗α̂ α̂(N)′ is the von Neumann algebra generated by elements of the form x

β̂
⊗α̂ y,

x ∈ β̂(No)′ and y ∈ α̂(N)′. Then, it amounts to proving that

[T, x
β̂
⊗α̂ y] = 0, for all x ∈ β̂(No)′ and y ∈ α̂(N)′.
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First, let us prove that [T, x
β̂
⊗α̂ 1] = 0, for all x ∈ β̂(No)′.

• Let x ∈M , we have

T (x
β̂
⊗α̂ 1) = (1

β̂
⊗α U)σα,β̂V̂ V (x α̂⊗β 1)Ṽ

= (1
β̂
⊗α U)σα,β̂V̂ V (x α̂⊗β 1)V ∗V Ṽ

= (1
β̂
⊗α U)σα,β̂V̂ V̂ ∗(1 α⊗β̂ x)V̂ V Ṽ

= (1
β̂
⊗α U)σα,β̂(1 α⊗β̂ x)V̂ V Ṽ

= (x
β̂
⊗α̂ 1)T,

where we have successively used Lemma 3.1.3 3 b), the fact that V is unitary, Lemma 3.1.3 3 a)
and the fact that V̂ is unitary.

• Let x ∈ M̂ ′, we have

T (x
β̂
⊗α̂ 1) = (1

β̂
⊗α̂ U)σα,β̂V̂ V Ṽ (x

β̂
⊗α̂ 1)Ṽ ∗Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ V V ∗(1 β⊗α x)V Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ (1 β⊗α x)V Ṽ

= (1
β̂
⊗α̂ U)σα,β̂(1 α⊗β̂ x)V̂ V Ṽ

= (x
β̂
⊗α̂ 1)T,

where we have successively used the fact that Ṽ is unitary, Lemma 3.1.3 4 a), the fact that V is
unitary and Lemma 3.1.3 4 b). Hence, [T, x

β̂
⊗α̂ 1] = 0 for all x ∈ β̂(No)′ since β̂(No) = M ′∩M̂ .

Similarly, let us prove now that [T, 1
β̂
⊗α̂ y] = 0 for all y ∈ α(N)′.

• Let y ∈ M̂ , we have

T (1
β̂
⊗α̂ y) = (1

β̂
⊗α̂ U)σα,β̂V̂ V (1 α̂⊗β y)Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ V (1 α̂⊗β y)V ∗V Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ (1 β⊗α U)σα̂,βV ∗(1 β⊗α U∗yU)V σβ,α̂(1 β⊗α̂ U∗)V Ṽ ,

where we have used Lemma 3.1.3 2. b), the fact that V is unitary and Corollary 3.1.4 2. applied
to U∗yU ∈ M̂ ′. Now, by using the first formula of Lemma 3.1.1, we obtain

(1
β̂
⊗α̂ U)σα,β̂V̂ (1 β⊗α U)σα̂,β = (U β⊗α̂ U)V .

Therefore, since V V ∗ = 1 we have

T (1
β̂
⊗α̂ y) = (U β⊗α̂ U)(1 β⊗α U∗yU)V σβ,α̂(1 β⊗α̂ U∗)V Ṽ

= (1
β̂
⊗α̂ y)(1

β̂
⊗α̂ U)(U β⊗α 1)V (U∗ α⊗β 1)σβ,αV Ṽ

= (1
β̂
⊗α̂ y)T,
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by using again the first formula of Lemma 3.1.1.

• Let y ∈M , we have

T (1
β̂
⊗α̂ y) = (1

β̂
⊗α̂ U)σα,β̂V̂ V Ṽ (1

β̂
⊗α̂ y)Ṽ ∗Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ V (1 α̂⊗β U)σβ̂,α̂Ṽ ∗(1 α̂⊗β U∗yU)Ṽ σα̂,β̂(1 α̂⊗β̂ U

∗)Ṽ ,

where we have used Ṽ ∗Ṽ = 1 and Corollary 3.1.4 3 applied to U∗yU ∈ M ′. Note that
U∗ = λ−i/4U = Uλ−i/4 and λ−i/4 ∈ Z(M) ∩ Z(M̂). Then, the second formula of Lemma 3.1.1
can be written as follows:

Ṽ = σβ,α̂(1 β⊗α̂ U∗)V (1 α̂⊗β U)σβ̂,α̂.

Hence, (1 β⊗α U)σα̂,β = V (1 α̂⊗β U)σβ̂,α̂Ṽ ∗. Therefore, we have

T (1
β̂
⊗α̂ y) = (1

β̂
⊗α̂ U)σα,β̂V̂ (1 β⊗α U)σα̂,β(1 α̂⊗β U∗yU)Ṽ σα̂,β̂(1 α̂⊗β̂ U

∗)Ṽ

= (1
β̂
⊗α̂ U)σα,β̂V̂ (U∗yU β⊗α 1)(1 β⊗α U)σα̂,βṼ σα̂,β̂(1 α̂⊗β̂ U

∗)Ṽ

= (1
β̂
⊗α̂ U)σα,β̂(U∗yU α⊗β̂ 1)V̂ V Ṽ

= (1
β̂
⊗α̂ y)T,

by using Remarks 3.1.2 ii and Lemma 3.1.3 1 a). Therefore, since α̂(N) = M ′ ∩ M̂ ′ we have
[T, 1

β̂
⊗α̂ y] = 0 for all y ∈ α̂(N)′ and the theorem is proved.

In the case of a measured quantum groupoid on a finite-dimensional basis, we obtain a more
precise result. In the following, we assume that G = (N,M,α, β,∆, T, T ′, ε) is a measured
quantum groupoid on the finite-dimensional basis N = ⊕

16l6k Mnl(C) equipped with the
non-normalized Markov trace ε = ⊕

16l6k nl · Trl. We denote (e(l))16l6k the minimal central
self-adjoint projections of N .

Theorem 3.1.6. There exist unimodular complex numbers νl, 1 6 l 6 k, unique, such that

(1⊗ U)ΣWV Ṽ = qβ̂,α̂
∑

16l6k
νl β̂(e(l)o)⊗ α̂(e(l)) =

∑
16l6k

νl β̂(e(l)o)⊗ α̂(e(l)) qβ̂,α̂.

For the proof, we will need the following result:

Lemma 3.1.7. Let γ : No → B(K) and π : N → B(H) be unital *-homomorphisms. Then, we
have

qγ,π(γ(No)⊗ π(N))qγ,π =
⊕

16l6k
C · (γ(e(l)o)⊗ π(e(l)))qγ,π.

Proof. More precisely, we have

qγ,π(γ(xo)⊗ π(y))qπ,γ =
∑

16l6k
n−2
l ε(yxe(l))(γ(e(l) o)⊗ π(e(l)))qγ,π, (3.1.1)

for all x, y ∈ N . By bilinearity, it suffices to check it out for x = e(l)
rs and y = e(l′)

pq , where
1 6 l, l′ 6 k, 1 6 r, s 6 nl and 1 6 p, q 6 nl′ .
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First, if l′ 6= l we have qγ,π(γ(e(l) o
rs )⊗ π(e(l′)

pq )) = 0 and ε(e(l′)
pq e

(l)
rs e

(l′′)) = 0 for all 1 6 l′′ 6 k, then
(3.1.1) is trivially true if l′ 6= l. Now let 1 6 l 6 k and 1 6 r, s, p, q 6 nl, we have

qγ,π(γ(e(l) o
rs )⊗ π(e(l)

pq )) =
∑

16l′6k
n−1
l′

∑
16i,j6nl′

γ(e(l′) o
ij e(l) o

rs )⊗ π(e(l′)
ji e

(l)
pq )

= δspn
−1
l

∑
16j6nl

γ(e(l) o
rj )⊗ π(e(l)

jq ).

Moreover, we also have

(γ(e(l) o
rj )⊗ π(e(l)

jq ))qγ,π =
∑

16l′6k
n−1
l′

∑
16u,v6nl′

γ(e(l) o
rj e(l′) o

uv )⊗ π(e(l)
jq e

(l′)
vu )

= δrqn
−1
l

∑
16u6nl

γ(e(l) o
uj )⊗ π(e(l)

ju),

for all 1 6 j 6 nl. Therefore, it follows that

qγ,π(γ(e(l) o
rs )⊗ π(e(l)

pq ))qγ,π = δspδ
r
qn
−2
l

∑
16j,u6nl

γ(e(l) o
uj )⊗ π(e(l)

ju). (3.1.2)

Furthermore, since e(l1)e
(l2)
ij = δl2l1e

(l2)
ij for 1 6 l1, l2 6 k and 1 6 i, j 6 nl2 we have

(γ(e(l) o)⊗ π(e(l)))qγ,π = n−1
l

∑
16j,u6nl

γ(e(l) o
uj )⊗ π(e(l)

ju), (3.1.3)

for all 1 6 l 6 k. Therefore, since ε(e(l)
pq e

(l)
rs e

(l′)) = δl
′

l δ
r
qε(e(l)

ps ) = δl
′

l δ
r
qδ
s
pnl we have∑

16l′6k
n−2
l′ ε(e(l)

pq e
(l)
rs e

(l′))(γ(e(l′) o)⊗ π(e(l′)))qγ,π = δrqδ
s
pn
−1
l (γ(e(l) o)⊗ π(e(l)))qγ,π

= qγ,π(γ(e(l) o
rs )⊗ π(e(l)

pq ))qγ,π

in virtue of (3.1.3) and (3.1.2).

Proof of theorem 3.1.6. We have W = (vα,β̂)∗V̂ vβ,α, V = (vβ,α)∗V vα̂,β and Ṽ = (vα̂,β)∗Ṽ vβ̂,α̂.
Let us denote X = (1⊗ U)ΣWV Ṽ and T = (1

β̂
⊗α̂ U)σα,β̂V̂ V Ṽ . Since the operators vα̂,β and

vβ,α are coisometries, we have
(vβ̂,α̂)∗Tvβ̂,α̂ = X.

Since T is unitary, X is a partial isometry such that

X∗X = qβ̂,α̂ = XX∗.

Now, according to Proposition 2.1.10 we have

β̂(No)
β̂
?α̂ α̂(N) = vβ̂,α̂(β̂(No)⊗ α̂(N))(vβ̂,α̂)∗.

In virtue of Theorem 3.1.5 and Lemma 3.1.7 (with K := H =: H, γ := β̂, π := α̂), we have

X ∈ qβ̂,α̂(β̂(No)⊗ α̂(N))qβ̂,α̂ =
⊕

16l6k
C · (β̂(e(l)o)⊗ α̂(e(l)))qβ̂,α̂.
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Then, there exists νl ∈ C for 1 6 l 6 k such that

X =
∑

16l6k
νl β̂(e(l)o)⊗ α̂(e(l)) qβ̂,α̂ = qβ̂,α̂

∑
16l6k

νl β̂(e(l)o)⊗ α̂(e(l)).

It then follows that
qβ̂,α̂ = X∗X = qβ̂,α̂

∑
16l6k

|νl|2β̂(e(l)o)⊗ α̂(e(l)).

Hence, |νl| = 1 for all 1 6 l 6 k by injectivity of β̂ and α̂. �

Notation 3.1.8. Let γ : No → B(K) and π : N → B(H) be *-homomorphisms. We consider
the following operator

Tγ,π :=
∑

16l6nl
νl γ(e(l) o)⊗ π(e(l)) ∈ B(K ⊗H),

where νl ∈ C are the unimodular complex numbers defined in Theorem 3.1.6. We have

(1⊗ U)ΣWV Ṽ = qβ̂,α̂ T
β̂,α̂

(with [qβ̂,α̂,T
β̂,α̂

] = 0).

We will also denote Tπ,γ := ΣK⊗HTγ,πΣH⊗K =
∑

16l6k
νl π(e(l))⊗ γ(e(l) o) ∈ B(H⊗K).

Corollary 3.1.9. We have the following formulas:

1. V Ṽ = W ∗Σ(1⊗ U∗)T
β̂,α̂

.

2. WV = Σ(1⊗ U∗)T
β̂,α̂
Ṽ ∗.

3. V = W ∗Σ(1⊗ U∗)T
β̂,α̂
Ṽ ∗.

Proof. We have

V Ṽ = (V V ∗)V Ṽ = (W ∗W )V Ṽ = W ∗Σ(1⊗ U∗)qβ̂,α̂T
β̂,α̂

= W ∗Σ(1⊗ U∗)T
β̂,α̂
,

since V is a partial isometry, V V ∗ = W ∗W , Σ(1⊗ U∗)qβ̂,α̂ = qα,β̂Σ(1⊗ U∗) and W ∗qα,β̂ = W ∗.
The second formula follows similarly from the facts that V is a partial isometry and Ṽ Ṽ ∗ = V ∗V .
The third formula is derived from the first one by the same argument.

Remarks 3.1.10. We also have the following formulas:

1. (Σ(1⊗ U)V )3 = qα̂,βTα̂,β(1⊗ λi/4).

2. (Σ(1⊗ U)W )3 = qβ,αTβ,α(λi/4 ⊗ 1).

3. (Σ(1⊗ U)Ṽ )3 = (λi/4 ⊗ 1)qβ̂,α̂T
β̂,α̂

.

Let us prove the first formula. We recall that we denote X = (1⊗ U)ΣWV Ṽ . We have

X = Σ(U ⊗ 1)Σ(U∗ ⊗ 1)V (U ⊗ 1)ΣV Σ(1⊗ U)V (1⊗ U∗)Σ
= (U∗ ⊗ U)V Σ(1⊗ U)V Σ(1⊗ U)V (1⊗ U∗)Σ.
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By multiplying on the left by Σ(U ⊗ 1) and on the right by (U ⊗ 1)Σ, we then obtain

Σ(U ⊗ 1)X(U ⊗ 1)Σ = (Σ(1⊗ U)V )3.

However, since we have X = qβ̂,α̂T
β̂,α̂

(Theorem 3.1.6) we also have

Σ(U ⊗ 1)X(U ⊗ 1)Σ = Σ(U ⊗ 1)qβ̂,α̂T
β̂,α̂

(U ⊗ 1)Σ

= qα̂,βΣ(U ⊗ 1)T
β̂,α̂

(U ⊗ 1)Σ

= qα̂,βTα̂,β(1⊗ λi/4)

as we have U2 = λi/4. We also have

X = Σ(U ⊗ 1)WΣ(1⊗ U)W (1⊗ U∗)Σ(U ⊗ U)W (U∗ ⊗ U∗)
= Σ(U ⊗ 1)WΣ(1⊗ U)WΣ(1⊗ U)W (U∗ ⊗ U∗).

We then multiply by U ⊗ U∗ on the left and by U ⊗ U on the right so that the second formula
is proved. Finally, we have

X = Σ(U ⊗ 1)(U∗ ⊗ U∗)Ṽ (U ⊗ U)Σ(U∗ ⊗ 1)Ṽ (U ⊗ 1)ΣṼ
= Σ(1⊗ U∗)Ṽ (Σ(1⊗ U)Ṽ )2.

By multiplying on the left by λi/4 ⊗ 1, the last formula is proved.

Notations 3.1.11. • Let (S, δ) and (Ŝ, δ̂) be the weak Hopf-C∗-algebra and the dual weak
Hopf-C∗-algebra associated with G. We denote [SŜ] the norm closed linear subspace of
B(H ) spanned by the products L(y)ρ(x), for all y ∈ S and x ∈ Ŝ.

• Following [2], if T ∈ B(H ⊗H ) we denote C(T ) the norm closure of the linear subspace
{(id⊗ ω)(ΣT ) ; ω ∈ B(H )∗} ⊂ B(H ).

Proposition 3.1.12. [SŜ] is a C∗-algebra.

Proof. Let us fix ω, ψ ∈ B(H )∗. It suffices to show that ρ(ω)L(ψ) ∈ [SŜ]. We have

ρ(ω)L(ψ) = (id⊗ ω)(V )(ψ ⊗ id)(V ) = (ψ ⊗ id)((id⊗ id⊗ ω)(V23V12)).

We combine the pentagon identities V23V12 = V12V13V23 and V ∗12V23V12 = V13V23 to conclude that
V23V12 = V12V

∗
12V23V12. It then follows that
ρ(ω)L(ψ) = (ψ ⊗ id)(V V ∗(1⊗ ρ(ω))V ) = (ψ ⊗ id)(V (ρ⊗ ρ)(δ̂(x))),

where x ∈ Ŝ such that ρ(x) = ρ(ω). Let us write ψ = ρ(x′)ψ′, where x′ ∈ Ŝ and ψ′ ∈ B(H )∗.
We then have

ρ(ω)L(ψ) = (ψ′ ⊗ id)(V (ρ⊗ ρ)(δ̂(x))(1⊗ ρ(x′))) = (ψ′ ⊗ id)(V (ρ⊗ ρ)(δ̂(x)(1
Ŝ
⊗ x′))).

But δ̂(x)(1
Ŝ
⊗ x′) is the norm limit of finite sums of the form ∑

i xi ⊗ x′i, where xi, x′i ∈ Ŝ.
Therefore, ρ(ω)L(ψ) is the norm limit of finite sums of the form∑

i

(ψ′ ⊗ id)(V (ρ(xi)⊗ ρ(x′i))) =
∑
i

L(ψi)ρ(x′i),

where ψi := ρ(xi)ψ′ ∈ B(H )∗.
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Proposition 3.1.13. [SŜ] = [(id⊗ ω)(WV ) ; ω ∈ B(H )∗].

Note that {(id⊗ ω)(WV ) ; ω ∈ B(H )∗} is already a subspace of B(H ).

Proof. Let ω ∈ B(H )∗ and x ∈ Ŝ, since W = WW ∗W = WV V ∗ we have

(id⊗ ω)(W )ρ(x) = (id⊗ ω)(WV V ∗(x⊗ 1)) = (id⊗ ω′)(WV V ∗(ρ(x)⊗ L(y))),

where ω′ ∈ B(H )∗ and y ∈ S are such that ω = L(y)ω′. Since V ∈M(Ŝ ⊗ S), (id⊗ ω)(W ) is
the norm limit of finite sums of the form∑

i

(id⊗ ω)(WV (ρ(xi)⊗ L(yi))) =
∑
i

(id⊗ L(yi)ω)(WV )ρ(xi), xi ∈ Ŝ, yi ∈ S.

Hence, [SŜ] ⊂ [(id⊗ ω)(WV )ρ(x) ; ω ∈ B(H )∗, x ∈ Ŝ]. Let us fix ω ∈ B(H )∗ and x ∈ Ŝ. Let
us write ω = ρ(x′)ω′, where x′ ∈ Ŝ and ω′ ∈ B(H )∗. Since δ̂(1) = V ∗V , we have V = V δ̂(1).
Hence,

(id⊗ ω)(WV )ρ(x) = (id⊗ ω′)(WV (ρ⊗ ρ)(δ̂(1)(x⊗ x′))).

It then follows that (id⊗ ω)(WV )ρ(x) is the norm limit of finite sums of the form∑
i

(id⊗ ω′)(WV (ρ⊗ ρ)(δ̂(xi)(1⊗ x′i))) =
∑
i

(id⊗ ρ(x′i)ω′)(WV (ρ⊗ ρ)δ̂(xi)), xi, x
′
i ∈ Ŝ.

Hence, [SŜ] ⊂ [(id⊗ ω)(WV (ρ⊗ ρ)δ̂(x)) ; ω ∈ B(H )∗, x ∈ Ŝ]. Now, we have

WV (ρ⊗ ρ)δ̂(x) = WV V ∗(1⊗ ρ(x))V = (1⊗ ρ(x))WV, x ∈ Ŝ.

Indeed, since V V ∗ = qβ,α, ρ(x) ∈ M̂ ′ and α(N) ⊂ M̂ we have [V V ∗, 1⊗ ρ(x)] = 0. Moreover,
[W, 1⊗ ρ(x)] = 0 since W ∈M ⊗ M̂ . It then follows that

(id⊗ ω)(WV (ρ⊗ ρ)δ̂(x)) = (id⊗ ωρ(x))(WV ), ω ∈ B(H )∗, x ∈ Ŝ.

Hence, [SŜ] ⊂ [(id ⊗ ω)(WV ) ; ω ∈ B(H )∗]. Let us prove the converse inclusion. Let us fix
ω ∈ B(H )∗. Let us write ω = ρ(x′)ω′ρ(x), where x, x′ ∈ Ŝ and ω′ ∈ B(H )∗. Let us recall that

(1⊗ ρ(x))WV = WV (ρ⊗ ρ)δ̂(x).

Hence, (1⊗ ρ(x))WV (1⊗ ρ(x′)) = WV (ρ⊗ ρ)(δ̂(x)(1⊗ x′)) is the norm limit of finite sums of
the form ∑

iWV V ∗V (ρ(xi)⊗ ρ(x′i)) = ∑
iWV (ρ(xi)⊗ ρ(x′i)), where xi, x′i ∈ Ŝ. Therefore, we

have that (id⊗ ω)(WV ) = (id⊗ ω′)((1⊗ ρ(x))WV (1⊗ ρ(x′))) is the norm limit of finite sums
of the form∑

i

(id⊗ ω′)(WV (ρ(xi)⊗ ρ(x′i))) =
∑
i

(id⊗ ρ(x′i)ω′)(WV )ρ(xi), xi, x
′
i ∈ Ŝ.

Hence,
(id⊗ ω)(WV ) ∈ [(id⊗ φ)(WV )ρ(x) ; φ ∈ B(H )∗, x ∈ Ŝ].

Let ω ∈ B(H )∗ and x ∈ Ŝ. We write ω = L(y)ω′ for some ω′ ∈ B(H )∗ and y ∈ S. We
then obtain (id ⊗ ω)(WV )ρ(x) = (id ⊗ ω′)(WV (ρ(x) ⊗ L(y))) ∈ [SŜ] by using the fact that
V ∈M(Ŝ ⊗ S).

The following result is a crucial consequence of Theorem 3.1.6.
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Corollary 3.1.14. [SŜ] = U∗C(V )U . In particular, C(V ) is a C∗-algebra.

Proof. We haveWV = Σ(1⊗U∗)T
β̂,α̂
Ṽ ∗ (see Corollary 3.1.9 2) and (1⊗α̂(n))Ṽ ∗ = (β̂(no)⊗1)Ṽ ∗

for all n ∈ N (see Proposition 2.3.6 3). Therefore, we have

T
β̂,α̂
Ṽ ∗ =

∑
16l6k

νl(β̂(e(l) o)⊗ 1)Ṽ ∗ = (β̂(u)⊗ 1)Ṽ ∗, where u :=
∑

16l6k
νl · e(l) o ∈ No.

Since Ṽ = Σ(1⊗ U∗)V (1⊗ U)Σ, we obtain

WV = (1⊗ β̂(u))Σ(1⊗ U∗)Ṽ ∗

= (1⊗ β̂(u))(U∗ ⊗ U∗)V ∗(1⊗ U)Σ
= (1⊗ β̂(u)U∗)(U∗ ⊗ 1)V ∗Σ(U ⊗ 1).

It then follows that

(id⊗ ω)(WV ) = U∗(id⊗ β̂(u)U∗ω)(V ∗Σ)U, ω ∈ B(H )∗.

We combine the fact that β̂(u)U∗ is unitary with Proposition 3.1.13 to conclude that

[SŜ] = [(id⊗ ω)(WV ) ; ω ∈ B(H )∗] = U∗[(id⊗ ω)(V ∗Σ) ; ω ∈ B(H )∗]U = U∗C(V )∗U.

We also know that [SŜ] is a C∗-algebra (see Proposition 3.1.12), hence [SŜ] = U∗C(V )U . In
particular, C(V ) = U [SŜ]U∗ is a C∗-algebra.

Remarks 3.1.15. Let us make some useful comments:

1. The C∗-subalgebras [SŜ] and C(V ) of B(H ) are non-degenerate. Note that we also have
[SŜ] = UC(V )U∗.

2. By using the formulas V ∗ = (J ⊗ Ĵ)V (J ⊗ Ĵ) and W ∗ = (Ĵ ⊗ J)W (Ĵ ⊗ J), we can prove
as in [4] that C(W ) and C(Ṽ ) are C∗-algebras and

C(W ) = [R(S)ρ(Ŝ)], C(Ṽ ) = [L(S)λ(Ŝ)].

3.2 Regularity and semi-regularity for measured quantum groupoids

In this section, we introduce the notion of semi-regularity for measured quantum groupoids.
Note that the notion of regularity has been generalized for measured quantum groupoids by
Enock in [13] and by Timmermann in [21, 22] in the setting of pseudo-multiplicative C∗-unitaries.
In the case of a colinking measured quantum groupoid GG1,G2 , we will prove that the regularity
(resp. semi-regularity) of GG1,G2 is equivalent to the regularity (resp. semi-regularity) of both
the quantum groups G1 and G2. It should be noted that De Commer has provided in [10] an
example of a colinking measured quantum groupoid GG1,G2 such that G1 is regular and G2 is
not regular.

As already mentioned in Remark 2.2.8, from now on we will make the following convention:

Definition 3.2.1. From now on, if G = (N,M,α, β,Γ, T, T ′, ν) is a measured quantum groupoid
we define the dual measured quantum groupoid to be the measured quantum groupoid denoted
Ĝ and defined by:

Ĝ := (No, M̂ ′, β, α̂, Γ̂c, T̂ c, T̂ ′c, νo).
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Notations 3.2.2. Let H be a Hilbert space, (N,ϕ) a von Neumann algebra endowed with a
n.s.f. weight. Let π : N → B(H) and γ : No → B(H) be unital normal *-representations. In
what follows, we will use the notations introduced in §2.1. Following [13], we denote:

Kπ,ϕ := [Rπ,ϕ(ξ)Rπ,ϕ(η)∗ ; ξ, η ∈ ϕ(π,H)]

(resp. Kγ,ϕ := [Lγ,ϕ(ξ)Lγ,ϕ(η)∗ ; ξ, η ∈ (H, γ)ϕ]).
Note that Kπ,ϕ (resp. Kγ,ϕ) is a weakly dense ideal of π(N)′ (resp. γ(No)′) (see Proposition
3 of [6]). In the following, we will denote Kπ (resp. Kγ) instead of Kπ,ϕ (resp. Kγ,ϕ) since no
ambiguity will arise.

Following [1], [2] and [13], we define the notion of semi-regularity and regularity for measured
quantum groupoids in general.

Definition 3.2.3. Let G = (N,M, β, α,Γ, T, T ′, ν) be a measured quantum groupoid, we denote
C(WG) the norm closure of the linear subspace of B(H ),

{(id ? ω)(σα,β̂WG) ; ω ∈ B(H )∗}.

The measured quantum groupoid G is said to be semi-regular (resp. regular) if Kα ⊂ C(WG)
(resp. Kα = C(WG)).

Remarks 3.2.4. 1. By using the intertwining property of WG with α (see §2.2), we obtain
that (id ? ω)(σα,β̂WG) ⊂ α(N)′ for all ω ∈ B(H )∗. Enock has proved that a measured
quantum groupoid G is always weakly regular in the sense of Definition 4.1 of [13], that is
{(id ? ω)(σα,β̂WG) ; ω ∈ B(H )∗} is weakly dense in α(N)′. It should be noted that C(WG)
is a subalgebra of B(H ) (see Proposition 3.10 of [13]).

2. Let us remark that:

(id ? ω)(σα,β̂WG) = (ω ? id)(WGσα,β), ω ∈ B(H )∗.

Indeed, let ξ, η ∈ H we have λβ,αη = σα,βρα,βη and ρα,β̂ξ = σβ̂,αλβ̂,αξ . Since (σβ̂,α)∗ = σα,β̂,
we then have (λβ̂,αξ )∗σα,β̂ = (ρα,β̂ξ )∗. Therefore, we obtain

(λβ̂,αξ )∗σα,β̂WGλβ,αη = (ρα,β̂ξ )∗WGσα,βρα,βη ,

for all ξ, η ∈H and the result is proved.

Let G = (N,M,α, β,∆, T, T ′, ε) be a measured quantum groupoid on the finite dimensional
basis

N =
⊕

16l6k
Mnl(C)

endowed with the non-normalized Markov trace ε = ⊕
16l6k nl · Trl. Let (S, δ) and (Ŝ, δ̂) be

the weak Hopf-C∗-algebra and the dual weak Hopf-C∗-algebra of G. Let γ : No → B(H)
and π : N → B(H) be unital *-representations. In that case, for ξ ∈ H the operators
Rπ,ε(ξ), Lγ,ε(ξ) ∈ B(Hε,H) are given by:

Rπ,ε(ξ)Λε(n) = π(n)ξ, Lγ,ε(ξ)Λε(n) = γ(no)ξ, n ∈ N.

Since Hε is a finite dimensional Hilbert space, Lγ,ε(η)∗ is a finite rank bounded operator for all
η ∈H and then so is Lγ,ε(ξ)Lγ,ε(η)∗ for all ξ, η ∈ H. It then follows that Kγ is a C∗-subalgebra
of K(H). Similarly, we also have that Kπ is a C∗-subalgebras of K(H).
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Lemma 3.2.5. We have the following formulas:

K
β̂

= JKαJ, Kα̂ = JKβJ, Kα = ĴKβĴ ,
Kα̂ = U∗KαU, K

β̂
= U∗KβU.

Proof. It suffices to obtain the formulas

Lβ̂,ε(Jξ)Lβ̂,ε(Jη)∗ = JRα,ε(ξ)Rα,ε(η)∗J, Rα̂,ε(Jξ)Rα̂,ε(Jη)∗ = JLβ,ε(ξ)Lβ,ε(η)∗J,

Rα,ε(Ĵξ)Rα,ε(Ĵη)∗ = ĴLβ,ε(ξ)Lβ,ε(η)∗Ĵ , ξ, η ∈H ,

which follow from the facts that β̂(no) = Jα(n∗)J , α̂(n∗) = Jβ(no)J and α(n∗) = Ĵβ(no)Ĵ for
all n ∈ N . For instance, if ξ ∈H we have:

JRα,ε(ξ)Λε(n∗) = Jα(n∗)ξ = β̂(no)Jξ = Lβ̂,ε(Jξ)Λε(n), n ∈ N.

Hence, JRα,ε(ξ)Jε = Lβ̂,ε(Jξ) for all ξ ∈H . Therefore, since J∗ = J , JεJ∗ε = J2
ε = 1 we have

JRα,ε(ξ)Rα,ε(η)∗J = Lβ̂,ε(Jξ)Lβ̂,ε(Jη)∗ for all ξ, η ∈H . Moreover, since J2 = 1 we obtain the
equality K

β̂
= JKαJ . The formulas Kα̂ = U∗KαU and K

β̂
= U∗KβU are obtained by combining

the previous ones.

Lemma 3.2.6. For all ω ∈ B(H )∗, we have (id ? ω)(σα,β̂WG) = (id⊗ ω)(ΣW ). In particular,
we have C(WG) = C(W ).

Proof. In virtue of Remark 3.2.4 2 and the fact that σβ,αvβ,α = vα,βΣ, we have

(id?ω)(σα,β̂WG) = (ω?id)(WGσα,β) = (ω⊗id)((vα,β̂)∗WGvα,βΣ) = (ω⊗id)(WΣ) = (id⊗ω)(ΣW ),

for all ω ∈ B(H )∗.

Lemma 3.2.7. We have ĴC(V )Ĵ = C(W )∗ and C(Ṽ ) = U∗C(W )U .

Proof. Firstly, since Ṽ = (U∗ ⊗ U∗)W (U ⊗ U) we have:

(id⊗ ω)(ΣṼ ) = U∗(id⊗ ωU∗)(ΣW )U, ω ∈ B(H )∗.

Hence, C(Ṽ ) = U∗C(W )U (as ω = (ωU)U∗). Secondly, we have W = Σ(U∗ ⊗ 1)V (U ⊗ 1)Σ.
Hence, ΣV = (1⊗ U)W (1⊗ U∗)Σ. It then follows from the formulas U = ĴJ , U∗Ĵ = J and
(Ĵ ⊗ J)W = W ∗(Ĵ ⊗ J) that

(Ĵ ⊗ 1)ΣV (Ĵ ⊗ 1) = (1⊗ U)(Ĵ ⊗ 1)W (1⊗ U∗Ĵ)Σ
= (1⊗ Ĵ)(Ĵ ⊗ J)W (1⊗ J)Σ
= (1⊗ Ĵ)W ∗(Ĵ ⊗ 1)Σ
= (1⊗ Ĵ)(ΣW )∗(1⊗ Ĵ).

If ξ, η ∈H , we have:

Ĵ(id⊗ ωξ,η)(ΣV )Ĵ = (id⊗ ωξ,η)((1⊗ Ĵ)(ΣW )∗(1⊗ Ĵ))
= (id⊗ ω

Ĵξ,Ĵη
)((ΣW )∗)

= (id⊗ ω
Ĵη,Ĵξ

)(ΣW )∗,

since ω
Ĵξ,Ĵη

= ω
Ĵη,Ĵξ

. This proves that ĴC(V )Ĵ = C(W )∗.
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Proposition 3.2.8. The following statements are equivalent:

1. G is semi-regular (resp. regular ), that is Kα ⊂ C(W ) (resp. C(W ) = Kα).

2. Ĝ is semi-regular (resp. regular ), that is Kβ ⊂ C(V ) (resp. C(V ) = Kβ).

3. (Go)c is semi-regular (resp. regular ), that is Kα̂ ⊂ C(Ṽ ) (resp. C(Ṽ ) = Kα̂).

Proof. Straightforward consequence of Lemmas 3.2.5, 3.2.6, 3.2.7 and the definitions of V , W
and Ṽ .

We give some other equivalent conditions of the semi-regularity (resp. regularity) of G.

Corollary 3.2.9. The following statements are equivalent:

1. G is semi-regular (resp. regular ).

2. K
β̂
⊂ [ŜS] (resp. [ŜS] = K

β̂
).

3. Kα ⊂ [R(S)Ŝ] (resp. [R(S)Ŝ] = Kα).

4. Kα̂ ⊂ [Sλ(Ŝ)] (resp. [Sλ(Ŝ)] = Kα̂).

In particular, if G is regular we have [ŜS] ⊂ K(H ), [R(S)Ŝ] ⊂ K(H ) and [Sλ(Ŝ)] ⊂ K(H )
(and also C(V ) ⊂ K(H ), C(W ) ⊂ K(H ) and C(Ṽ ) ⊂ K(H )).

Proof. The equivalence of the first two statements follows directly from the fact that G is
semi-regular (resp. regular) if and only if Kβ ⊂ C(V ) (resp. C(V ) = Kβ) and the formulas
U∗C(V )U = [ŜS], U∗KβU = K

β̂
(see Corollary 3.1.14 and Lemma 3.2.5). The remaining

equivalences are immediate consequences of Remark 3.1.15 2 and Proposition 3.2.8.

In order to investigate the semi-regularity (resp. regularity) of the colinking measured quantum
groupoid GG1,G2 we will need a technical lemma. First, we have to generalize a notation.

Notations 3.2.10. Let H , K , L be three Hilbert spaces. If X ∈ B(K ⊗H ,L ⊗H ) (resp.
Y ∈ B(H ⊗K,H ⊗L)) we will denote C(X) (resp. C(Y )) the norm closure of the linear subspace

{(id⊗ ω)(ΣL⊗HX) ; ω ∈ B(H ,L)∗} ⊂ B(K ,H )

(resp. {(id⊗ ω)(ΣH⊗LY ) ; ω ∈ B(K ,H )∗} ⊂ B(H ,L)).

Note that we have:

C(X) = [(id⊗ ωξ,η)(ΣL⊗HX) ; ξ ∈ L , η ∈ H ], C(Y ) = [(id⊗ ωξ,η)(ΣH⊗LY ) ; ξ ∈ H , η ∈ K ].

Lemma 3.2.11. Let H , K , L , E and E ′ be Hilbert spaces, X ∈ B(K ⊗ H ,L ⊗ H ) and
Y ∈ B(H ⊗K ,H ⊗ L). The following statements are equivalent:

1. K(H ,L) ⊂ C(Y ) (resp. K(K ,H ) ⊂ C(X)).

2. K(H ⊗E ,E ′ ⊗ L) ⊂ [(K(H ,E ′)⊗ 1L)Y (1H ⊗K(E ,K ))]
(resp. K(K ⊗E ′,E ⊗H ) ⊂ [(K(L ,E)⊗ 1H )X(1K ⊗K(E ′,H ))]).

The equivalences also hold if the inclusions are replaced by equalities.

Proof. A straightforward computation gives:
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(1L ⊗ θζ′,ξ)ΣH⊗L Y (1H ⊗ θη,ζ) = (id⊗ ωξ,η)(ΣH⊗L Y )⊗ θζ′,ζ , ξ ∈ H , η ∈ K , ζ ∈ E , ζ ′ ∈ E ′.
It then follows that

[(1L ⊗K(H ,E ′))ΣH⊗L Y (1H ⊗K(E ,K ))] = [C(Y )�K(E ,E ′)] (⊂ B(H ⊗E ,L ⊗E ′)).
The equivalence is then a consequence of the equality

ΣL⊗E ′ (1L ⊗K(H ,E ′)) ΣH⊗L = K(H ,E ′)⊗ 1L .
The equivalence of the parallel statements follows by applying the above equivalence to:

Y ′ := ΣK⊗HX
∗ΣH⊗L , K ′ := L , L ′ := K ,

since we have the equality C(Y ′) = C(X)∗.

From now on, G is a colinking measured quantum groupoid GG1,G2 between monoidally equivalent
locally compact quantum groups G1 and G2. We will apply the previous lemma to the unitaries:

V i
rj : Hij ⊗Hrj →Hir ⊗Hrj, W k

ij : Hij ⊗Hjk →Hij ⊗Hik, i, j, k, r = 1, 2.

Lemma 3.2.12. For all ω ∈ B(H )∗ and i, j, k, r = 1, 2, we have:

1. prj(id⊗ ω)(ΣV )pij = (id⊗ prjωpir)(Σir⊗rjV
i
rj), prjKβpij = K(Hij,Hrj).

2. pik(id⊗ ω)(ΣW )pij = (id⊗ pjkωpij)(Σij⊗ikW
k
ij), pikKαpij = K(Hij,Hik).

3. pji(id⊗ ω)(ΣṼ )pki = (id⊗ pjkωpki)(Σki⊗jiṼ
j
ki), pjiKα̂pki = K(Hki,Hji).

Proof. Let ω ∈ B(H )∗. Since (pkr ⊗ 1)V (pij ⊗ 1) = δikV
i
rj, we have

(id⊗ ω)(ΣV ) =
∑

i,j,k,r=1,2
(id⊗ ω)(Σ(pkr ⊗ 1)V (pij ⊗ 1)) =

∑
i,j,r=1,2

(id⊗ prjωpir)(Σir⊗rjV
i
rj).

Hence, prj(id⊗ ω)(ΣV )pij = (id⊗ prjωpir)(Σir⊗rj V
i
rj). We prove the corresponding statements

for W and Ṽ in a similar way.

Let η ∈H , ζ ∈H and i, j = 1, 2. For all n = (n1, n2) ∈ C2, we have

〈Lβ,ε(pijη)∗ζ, n〉 = 〈ζ, Lβ,ε(pijη)n〉 = 〈ζ, β(n)pijη〉 = 〈ξ, njpijη〉 = 〈ζ, pijη〉nj = 〈〈pijη, ζ〉εj, n〉.

Hence, Lβ,ε(pijη)∗ζ = 〈pijη, ζ〉εj for all ζ ∈H . Note that Lβ,ε(pijη)∗ = Lβ,ε(pijη)∗pij . Therefore,
if ξ, η ∈H we have

Lβ,ε(prkξ)Lβ,ε(pijη)∗ζ = 〈pijη, ζ〉Lβ,ε(prkξ)εj = δjk〈pijη, ζ〉prkξ, ζ ∈H .

By sesquilinearity, it then follows that

Lβ,ε(ξ)Lβ,ε(η)∗ζ =
∑

i,j,r,k=1,2
Lβ,ε(prkξ)Lβ,ε(pijη)∗ζ =

∑
i,j,r,k=1,2

δjk〈pijη, ζ〉prkξ =
∑

i,j,r=1,2
〈pijη, ζ〉prjξ.

Hence, prkLβ,ε(ξ)Lβ,ε(η)∗pij = δjkθprjξ, pijη for all ξ, η ∈H . Hence, prjKβpij = K(Hij,Hrj). The
other statements follow in virtue of Lemma 3.2.5.
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Remark 3.2.13. Actually, both C(V ) and Kβ act on H = H11 ⊕H21 ⊕H12 ⊕H22 as block
diagonal matrices in the following way:

C(V ) =
(
C1 0
0 C2

)
, Kβ =

(
K1 0
0 K2

)
,

where Cj := (C(V i
rj))r,i=1,2 and Kj := K(H1j ⊕H2j) = (K(Hij,Hrj))r,i=1,2 ⊂ B(H1j ⊕H2j) for

j = 1, 2.

Corollary 3.2.14. The following statements are equivalent:

1. GG1,G2 is semi-regular (resp. regular).

2. For all i, j, r = 1, 2, we have K(Hij,Hrj) ⊂ C(V i
rj) (resp. C(V i

rj) = K(Hij,Hrj)).

3. For all i, j, k = 1, 2, we have K(Hij,Hik) ⊂ C(W k
ij) (resp. C(W k

ij) = K(Hij,Hik)).

4. For all i, j, k = 1, 2, we have K(Hki,Hji) ⊂ C(Ṽ j
ki) (resp. C(Ṽ j

ki) = K(Hki,Hji)).

In particular, if GG1,G2 is regular, then both G1 and G2 are regular.

Proof. This a consequence of Lemma 3.2.12 (see also the above remark) and Proposition
3.2.8.

Lemma 3.2.15. For all i, j, r, s = 1, 2, we have:

1. C(V i
rj)Hij = Hrj.

2. C(V i
rj)∗ = C(V r

ij).

3. [C(V i
rj)C(V s

ij)] = C(V s
rj).

Proof. Note that we have C(V ) = U [SŜ]U∗ = [R(S)λ(Ŝ)] and prjS = prjSprj. By Lemma
3.2.12, we then have

C(V i
rj) = prjC(V )pij = [prjR(S)λ(Ŝ)pij] = [R(S)rjEj

ri,λ],

where we denote R(S)rj = prjR(S) ⊂ B(Hrj) (see also Notations 2.5.10). Now, it also follows
from the fact that [SŜ] is a C∗-algebra that

[L(S)jiEj
ir] = pji[SŜ]pjr = pji[ŜS]pjr = [Ej

irL(S)jr],

where we denote L(S)ij = L(S)pij ⊂ B(Hij). By applying AdU to [L(S)jiEj
ir] = [Ej

irL(S)jr], we
then obtain

[R(S)ijEj
ir,λ] = [Ej

ir,λR(S)rj], i, j, r = 1, 2.
Now, we can prove the three statements of the lemma. Let us fix i, j, r, s = 1, 2.
1. Since R is non-degenerate we have R(S)H = H , hence R(S)ijHij = Hij. Moreover, we
have [Ej

ir,λHrj] = Hij (see Remark 2.5.12), hence C(V i
rj)Hij = Hrj.

2. C(V i
rj)∗ = [R(S)rjEj

ri,λ]∗ = [Ej
ir,λR(S)rj] = [R(S)ijEj

ir,λ] = C(V r
ij). We can also prove it more

directly by using the equality C(V i
rj) = prjC(V )pij and the fact that C(V )∗ = C(V ).

3. By using again Remark 2.5.12, we obtain

[C(V i
rj)C(V s

ij)] = [ [R(S)rjEj
ri,λ][R(S)ijEj

is,λ] ] = [R(S)rjEj
ri,λR(S)ijEj

is,λ]
= [R(S)rjR(S)rjEj

ri,λE
j
is,λ] = [R(S)rjEj

rs,λ] = C(V s
rj).
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Remarks 3.2.16. Since C(W ) = ĴC(V )Ĵ , C(Ṽ ) = U∗C(W )U , we have C(W r
ij) = ĴriC(V j

ri)Ĵij
and C(Ṽ r

ji) = U∗riC(W r
ij)Uji. It then follows that for all i, j, r, s = 1, 2 we have:

• C(W r
ij)Hij = Hir, C(Ṽ r

ji)Hji = Hri.

• C(W r
ij)∗ = C(W j

ir), C(Ṽ r
ji)∗ = C(Ṽ j

ri).

• [C(W r
ji)C(W i

js)] = C(W r
js), [C(Ṽ r

ij)C(Ṽ i
sj)] = C(Ṽ r

sj).

Proposition 3.2.17. Let us fix i, j, k, r = 1, 2.
a) The following statements are equivalent:

1. K(Hij,Hrj) ⊂ C(V i
rj) (resp. K(Hij,Hrj) = C(V i

rj)).

2. K(Hij ⊗Hir,Hrj ⊗Hrj) ⊂ [ (K(Hir,Hrj)⊗ 1Hrj
)V i

rj(1Hij
⊗K(Hir,Hrj)) ]

(resp. K(Hij ⊗Hir,Hrj ⊗Hrj) = [ (K(Hir,Hrj)⊗ 1Hrj
)V i

rj(1Hij
⊗K(Hir,Hrj)) ]).

b) The following statements are equivalent:

1. K(Hij,Hik) ⊂ C(W k
ij) (resp. K(Hij,Hik) = C(W k

ij)).

2. K(Hij ⊗Hjk,Hik ⊗Hik) ⊂ [ (K(Hij,Hik)⊗ 1Hik
)W k

ij(1Hij
⊗K(Hjk)) ]

(resp. K(Hij ⊗Hjk,Hik ⊗Hik) = [ (K(Hij,Hik)⊗ 1Hik
)W k

ij(1Hij
⊗K(Hjk)) ]).

Proof. The equivalence in a) (resp. b)) follows by applying Lemma 3.2.11 with X := V i
rj (resp.

Y := W k
ij), H := Hrj (resp. Hij), K := Hij (resp. Hjk), L := Hir (resp. Hik), E ′ = Hir (resp.

Hik) and E = Hrj (resp. Hjk).

Proposition 3.2.18. Let us fix i, j = 1, 2, the following statements are equivalent:

1. K(Hjj) ⊂ C(V j
jj) (resp. K(Hjj) = C(V j

jj)).

2. K(Hjj,Hij) ⊂ C(V j
ij) (resp. K(Hjj,Hij) = C(V j

ij)).

3. Gj is semi-regular (resp. regular).

Proof. Since C(V j
ij)Hjj = Hij, the inclusion [C(V j

ij)K(Hjj)] ⊂ K(Hjj,Hij) is an equality. As
a result, the implication (1 ⇒ 2) is an immediate consequence of C(V j

ij) = [C(V j
ij)C(V

j
jj)].

Conversely, we also have C(V i
jj)Hij = Hjj. The inclusion [C(V i

jj)K(Hjj,Hij)] ⊂ K(Hjj) is
then an equality. Moreover, the second statement is equivalent to K(Hij,Hjj) ⊂ C(V i

jj) (resp.
K(Hij,Hjj) = C(V i

jj)) because of C(V j
ij)∗ = C(V i

jj). Therefore, the converse implication (2⇒ 1)
follows from the fact that C(V j

jj) = [C(V i
jj)C(V

j
ij)].

Now, we can state the main result of this paragraph.

Theorem 3.2.19. Let GG1,G2 be a colinking measured quantum groupoid between two monoidally
equivalent locally compact quantum groups G1 and G2. The following statements are equivalent:

1. GG1,G2 is semi-regular (resp. regular).

2. G1 and G2 are semi-regular (resp. regular).
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Proof. The implication (1⇒ 2) has already been investigated and stated in Corollary 3.2.14.
Conversely, let us assume thatG1 andG2 are semi-regular (resp. regular). In virtue of Proposition
3.2.18, we have

K(Hjj,Hij) ⊂ C(V j
ij) (resp. K(Hjj,Hij) = C(V j

ij)), for all i, j = 1, 2.

By Corollary 3.2.14, the aim is to prove that

K(Hij,Hrj) ⊂ C(V i
rj) (resp. C(V i

rj) = K(Hij,Hrj)), for all i, j, r = 1, 2.

Since C(V j
rj)Hjj = Hrj, we have [C(V j

rj)K(Hij,Hjj)] = K(Hij,Hrj). Therefore, we have

C(V i
rj) = [C(V j

rj)C(V i
jj)] = [C(V j

rj)C(V
j
ij)∗] ⊃ [C(V j

rj)K(Hij,Hjj)] = K(Hij,Hrj)
(resp. = [C(V j

rj)K(Hij,Hjj)] = K(Hij,Hrj))

ant the result is proved.

Corollary 3.2.20. Let GG1,G2 be a colinking measured quantum groupoid between two monoidally
equivalent locally compact quantum groups G1 and G2. Then, G1 and G2 are semi-regular (resp.
regular) if and only if for all i, j, k = 1, 2 we have:

K(Hij ⊗Hjk,Hik ⊗Hik) ⊂ [ (K(Hij,Hik)⊗ 1Hik
)W k

ij(1Hij
⊗K(Hjk)) ]

(resp. K(Hij ⊗Hjk,Hik ⊗Hik) = [ (K(Hij,Hik)⊗ 1Hik
)W k

ij(1Hij
⊗K(Hjk)) ]).

Proof. This result is a straightforward consequence of Theorem 3.2.19, Corollary 3.2.14 and
Proposition 3.2.17.

Remarks 3.2.21. Let G1 and G2 be monoidally equivalent locally compact quantum groups.

1. In virtue of Proposition 3.2.18, the condition K(H22,H12) = C(V 2
12) does not imply in

general that G1 is regular. This answers negatively to a question raised in [20].

2. If G1 and G2 are semi-regular, the inclusion

K(H21 ⊗H21,H21 ⊗H11) ⊂ [(1H21 ⊗K(H11))(W 1
21)∗(K(H21)⊗ 1H21)]

will play a crucial role in the equivalence of continuous actions of G1 and G2.

56



Chapter 4

Actions of measured quantum groupoids on a finite basis

In the whole chapter, we fix
G := (N,M,α, β,∆, T, T ′, ε)

a measured quantum groupoid on the finite basis

N =
⊕

16l6k
Mnl(C), ε =

⊕
16l6k

nl · Trl.

We denote (S, δ) and (Ŝ, δ̂) the weak Hopf-C∗-algebra and the dual weak Hopf-C∗-algebra
associated with G.

4.1 Definition of actions of measured quantum groupoids on a finite
basis

We begin this paragraph with the following lemma:

Lemma 4.1.1. Let A and B be two C∗-algebras, f : A → M(B) a *-homomorphism and
e ∈M(B). The following statements are equivalent:

1. There exists an approximate unit (uλ)λ of A such that f(uλ)→ e with respect to the strict
topology.

2. f extends to a strictly continuous *-homomorphism f : M(A) → M(B), necessarily
unique, such that f(1A) = e.

3. [f(A)B] = eB.

In that case, e is a self-adjoint projection, for all approximate unit (vµ)µ of A we have f(vµ)→ e
with respect to the strict topology and [Bf(A)] = Be.

Proof. Let us assume that the assertion 1 holds. It is clear that e is a self-adjoint projection.
Let us consider the Hilbert B-module eB. We identify the C∗-algebras L(B) andM(B). Let
us denote ι : L(eB)→M(B) the faithful *-homomorphism defined by

ι(T )b = T (eb), T ∈ L(eB), b ∈ B.

Note that ι is strictly continuous and satisfies ι(1eB) = e. It follows immediately from the
assumption that ef(a) = f(a) = f(a)e for all a ∈ A. In particular, f induces a *-homomorphism
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f̃ : A → L(eB) and f(uλ) → 1eB with respect to the strict topology. Therefore, f̃ is non-
degenerate. In particular, f̃ extends to a unital *-homomorphism f̃ : M(A) → L(eB). We
have

ι(f̃(a))b = f̃(a)(eb) = f(a)eb = f(a)b, a ∈ A, b ∈ B.

Therefore, the *-homomorphism ι ◦ f̃ :M(A)→M(B) is a strictly continuous extension of f
and we have ι(f̃(1A)) = e. Moreover, since f̃ is non-degenerate, we have [f̃(A)eB] = eB. It then
follows that we have the equality [f(A)B] = eB. Therefore, we have proved the implications
(1⇒ 2) and (1⇒ 3). The implication (2⇒ 1) is straightforward. Let us prove that (3⇒ 1)
and let us then assume that [f(A)B] = eB. In particular, we also have [Bf(A)] = Be since f is
stable by the involution. Let a ∈ A, we have f(a)b ∈ eB and bf(a) ∈ Be for all b ∈ B. By taking
an approximate unit of B, we obtain that f(a) ∈ eB ∩Be = eBe. Hence, ef(a) = f(a) = f(a)e
for all a ∈ A. Let (uλ)λ be an approximate unit of A. For all a ∈ A and b ∈ B, we have
f(uλ)f(a)b = f(uλa)b→ f(a)b with respect to the norm topology. By the assumption, we then
have f(uλ)b = f(uλ)eb→ eb with respect to the norm topology for all b ∈ B, which means that
f(uλ)→ e with respect to the strict topology and we are done.

Definition 4.1.2. Let us fix a C∗-algebra A. An action of G on A is a couple (δA, βA) consisting
of a faithful *-homomorphism δA : A → M(A ⊗ S) and a non-degenerate *-homomorphism
βA : No →M(A) such that:

1. δA extends to a strictly continuous *-homomorphism fromM(A) toM(A⊗S) still denoted
δA such that δA(1A) = qβA,α.

2. (δA ⊗ idS)δA = (idA ⊗ δ)δA.

3. δA(βA(no)) = qβA,α(1A ⊗ β(no)), for all n ∈ N .

We say that the action (δA, βA) is continuous if we have further that

[δA(A)(1A ⊗ S)] = qβA,α(A⊗ S).

If (δA, βA) is a continuous action of G on A, we say that the triple (A, δA, βA) is a G-C∗-algebra.

Remarks 4.1.3. • By Lemma 4.1.1, the condition 1 is equivalent to requiring that for some
(and then any) approximate unit (uλ) of A, we have δA(uλ)→ qβA,α with respect to the
strict topology ofM(A⊗ S). It is also equivalent to [δA(A)(A⊗ S)] = qβA,α(A⊗ S).

• The condition 1 also implies that the *-homomorphisms δA ⊗ idS and idA ⊗ δ extend
uniquely to strictly continuous *-homomorphisms fromM(A⊗ S) toM(A⊗ S ⊗ S) such
that

(δA ⊗ idS)(1A⊗S) = qβA,α12 , (idA ⊗ δ)(1A⊗S) = qβ,α23 .

Examples 4.1.4. Let us give two basic examples:

• (S, δ, β) is a G-C∗-algebra.

• Let us denote δNo : No → M(No ⊗ S) the faithful unital *-homomorphism given by
δNo(no) = 1No ⊗ β(no) for all n ∈ N . Then, the pair (δNo , idNo) is an action of G on No

called the trivial action.

Proposition 4.1.5. Let (δA, βA) be an action of G on A. We have:

i. (δA ⊗ idS)δA(1A) = qβA,α12 qβ,α23 = (idA ⊗ δ)δA(1A).
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ii. δA(βA(no)) = (1A ⊗ β(no))qβA,α, for all n ∈ N .

iii. If (δA, βA) is continuous, we have [(1A ⊗ S)δA(A)] = (A⊗ S)qβA,α.

Proof. The equality (δA ⊗ idS)δA(1A) = qβA,α12 qβ,α23 follows easily from δA(1A) = qβA,α and the
condition 3. The second equality (idA ⊗ δ)δA(1A) = qβA,α12 qβ,α23 follows from δA(1A) = qβA,α and
the fact that δ(α(n)) = (α(n)⊗ 1S)qβ,α, for all n ∈ N .
The statement ii follows from the condition 3 and the fact that α and β commute pointwise.
The equality [(1A ⊗ S)δA(A)] = (A⊗ S)qβA,α is an obvious consequence of the fact that qβA,α is
self-adjoint.

Let us provide a more explicit definition of what an action of the dual measured quantum
groupoid Ĝ on a C∗-algebra B is.

Definition 4.1.6. Let us fix a C∗-algebra B. An action of Ĝ on a C∗-algebra B is a couple
(δB, αB) consisting of a faithful *-homomorphism δB : B →M(B ⊗ Ŝ) and a non-degenerate
*-homomorphism αB : N →M(B) such that:

1. δB extends to a strictly continuous *-homomorphism from M(B) to M(B ⊗ Ŝ) still
denoted δB such that δB(1B) = qαB ,β.

2. (δB ⊗ id
Ŝ
)δB = (idB ⊗ δ̂)δB.

3. δB(αB(n)) = qαB ,β(1B ⊗ α̂(n)), for all n ∈ N .

We say that the action (δB, αB) is continuous if we have further that

[δB(B)(1B ⊗ Ŝ)] = qαB ,β(B ⊗ Ŝ).

If (δB, αB) is a continuous action of Ĝ on B, we say that the triple (B, δB, αB) is a Ĝ-C∗-algebra.

Remarks 4.1.7. As for actions of G, we have:

• By Lemma 4.1.1, the condition 1 is equivalent to requiring that for some (and then any)
approximate unit (uλ)λ of B, we have δB(uλ)→ qαB ,β with respect to the strict topology
ofM(B ⊗ Ŝ). It is also equivalent to [δB(B)(B ⊗ Ŝ)] = qαB ,β(B ⊗ Ŝ).

• In virtue of 1, the *-homomorphisms δB ⊗ id
Ŝ
and idB ⊗ δ̂ extend uniquely to strictly

continuous *-homomorphisms fromM(B ⊗ Ŝ) toM(B ⊗ Ŝ ⊗ Ŝ) such that

(δB ⊗ id
Ŝ
)(1

B⊗Ŝ) = qαB ,β12 , (idB ⊗ δ̂)(1B⊗Ŝ) = qα̂,β23 .

Examples 4.1.8. Let us give two basic examples:

• (Ŝ, δ̂, α̂) is a Ĝ-C∗-algebra.

• Let us denote δN : N → M(N ⊗ Ŝ) the faithful unital *-homomorphism given for all
n ∈ N by δN(n) = 1N ⊗ α̂(n). Then, the pair (δN , idN) is an action of Ĝ on N called the
trivial action.

Proposition 4.1.9. Let (δB, αB) be an action of Ĝ on B. We have:

i. (δB ⊗ id
Ŝ
)δB(1B) = qαB ,β12 qα̂,β23 = (idB ⊗ δ̂)δB(1B).

59



ii. δB(αB(n)) = (1B ⊗ α̂(n))qαB ,β, for all n ∈ N .

iii. If (δB, αB) is continuous, we have [(1B ⊗ Ŝ)δB(B)] = (B ⊗ Ŝ)qαB ,β.

Definition 4.1.10. Let Ai (resp. Bi) be two C∗-algebras, for i = 1, 2. Let (δAi , βAi) (resp.
(δBi , αBi)) be an action of G (resp. Ĝ) on Ai (resp.Bi), for i = 1, 2. A non-degenerate *-
homomorphism

f : A1 →M(A2) (resp. f : B1 →M(B2))
is said to be G-equivariant (resp. Ĝ-equivariant) if we have

(f ⊗ idS) ◦ δA1 = δA2 ◦ f, f ◦ βA1 = βA2

(resp. (f ⊗ id
Ŝ
)δB1 = δB2 ◦ f, f ◦ αB1 = αB2).

We denote MorG(A1, A2) (resp. MorĜ(B1, B2)) the set of G-equivariant (resp. Ĝ-equivariant)
non-degenerate *-homomorphisms from A1 (resp. B1) toM(A2) (resp.M(B2)). We also define
the category denoted G-C∗-Alg (resp. Ĝ-C∗-Alg ) whose objects are the G-C∗-algebras (resp. Ĝ-C∗-
algebras) and whose set of arrows between two G-C∗-algebras (resp. Ĝ-C∗-algebras) (Ai, δAi , βAi)
(resp. (Bi, δBi , αBi)) i = 1, 2 is MorG(A1, A2) (resp. MorĜ(B1, B2)).

4.2 Crossed product

In this section, we define the crossed product of a C∗-algebra acted upon by G. First, we
introduce some notations. Let (A, δA, βA) be a G-C∗-algebra. Since the *-homomorphism
L : S → B(H ) (resp. R : S → B(H )) is non-degenerate the map idA ⊗ L (resp. idA ⊗ R)
extends uniquely to a faithful and unital *-homomorphism fromM(A⊗ S) to L(A⊗H ) still
denoted idA ⊗ L (resp. idA ⊗R). Then, let us consider the following faithful *-representations
of A on the Hilbert A-module A⊗H :

πL = (idA ⊗ L)δA, πR = (idA ⊗R)δA.

Since δA extends uniquely to a strictly continuous *-homomorphism δA fromM(A) toM(A⊗S)
such that δA(1A) = qβA,α, πL (resp. πR) extends to a faithful strictly continuous *-representation
ofM(A) on A⊗H still denoted πL (resp. πR) such that

πL(1A) = qβA,α (resp. πR(1A) = qβA,α̂ ).

We introduce the following Hilbert A-modules:

EA,L = qβA,α(A⊗H ), EA,R = qβA,α̂(A⊗H ).

• Since qβA,απL(m) = πL(m) = πL(m)qβA,α for all m ∈ M(A), πL induces a faithful unital
strictly continuous *-representation π :M(A)→ L(EA,L).

• We have [1A ⊗m, qβA,α] = 0 for all m ∈ M(Ŝ) because of Ŝ ⊂ M̂ ′ ⊂ α(N)′. Therefore, we
have a unital strictly continuous *-representation θ̂ :M(Ŝ)→ L(EA,L) given by

θ̂(x) = (1A ⊗ ρ(x))�EA,L , x ∈M(Ŝ).

Note that θ̂ is not faithful in general. However, if the fibration map βA is faithful so is θ̂. Indeed,
let us assume that βA is faithful and let x ∈M(Ŝ) such that θ̂(x) = 0, that is to say∑

16l6k
n−1
l

∑
16i,j6nl

βA(e(l)o
ij )⊗ L(α(e(l)

ji ))ρ(x) = 0.
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However, it follows from the assumption that the family (βA(e(l)o
ij ))16l6k, 16i,j6nl is linearly

independent. Hence, L(α(e(l)
ji ))ρ(x) = 0 for all 1 6 l 6 k and 1 6 i, j 6 nl. However α is unital,

it then follows that
ρ(x) =

∑
16l6k

∑
16i6nl

L(α(e(l)
ii ))ρ(x) = 0.

Hence, x = 0.

Now, we can define the *-representation π̃ of A on the Hilbert A-module A⊗H ⊗H :

π̃ := (πL ⊗ L)δA = (idA ⊗ L⊗ L)δ2
A : A→ L(A⊗H ⊗H ),

where δ2
A := (δA⊗ idS)δA = (idA⊗ δ)δA : A→M(A⊗ S ⊗ S). Moreover, π̃ extends uniquely to

a *-representation ofM(A) on A⊗H ⊗H such that π̃(1A) = (idA ⊗ L⊗ L)(qβA,α12 qβ,α23 ).

Definition 4.2.1. We call crossed product of A by the continuous action (δA, βA) of G on A,
the C∗-subalgebra A oδA,βA G of L(EA,L) generated by the products of the form π(a)θ̂(x) for
a ∈ A and x ∈ Ŝ.

From now on, we will denote the crossed product AoG, instead of AoδA,βA G, since no ambiguity
will arise.

Lemma 4.2.2. The norm closed linear subspace of L(A⊗H ) spanned by the products of the
form πL(a)(1A ⊗ ρ(ω)), a ∈ A, ω ∈ B(H )∗, is a C∗-algebra.

Proof. Let us denote B = [πL(a)(1A ⊗ ρ(ω)) ; a ∈ A, ω ∈ B(H )∗]. Let a ∈ A and ω ∈ B(H )∗.
Let us prove that (1A ⊗ ρ(ω))πL(a) ∈ B. We have

(1A ⊗ ρ(ω))πL(a) = (idA ⊗ idH ⊗ ω)(V23πL(a)12). (4.2.1)

On the one hand, since (L⊗ L)δ(y) = V (L(y)⊗ 1)V ∗ for all y ∈ S we have

V23πL(a)V ∗23 = π̃(a). (4.2.2)

On the other hand, [πL(a)12, V
∗

23V23] = 0 since V ∗V = qα̂,β and α̂(N) ⊂M ′. It then follows that

π̃(a)V23 = V23πL(a)12V
∗

23V23 = V23πL(a)12, (4.2.3)

as V is a partial isometry. We derive from (4.2.1) and (4.2.3) that

(1A ⊗ ρ(ω))πL(a) = (idA ⊗ idH ⊗ ω)(π̃(a)V23).

Since L is non-degenerate, let us write ω = ω′L(s) for some s ∈ S and ω′ ∈ B(H )∗. First, note
that we have π̃(a) = π̃(1A)π̃(a) = (idA ⊗ L⊗ L)(qβA,α12 qβ,α23 )π̃(a) = (idA ⊗ L⊗ L)(qβA,α12 )π̃(a) in
virtue of (4.2.2) and the fact that qβ,α = V V ∗. It then follows that

(πL ⊗ L)((1A ⊗ s)δA(a)) = (πL(1A)⊗ L(s))π̃(a)
= (1A ⊗ 1H ⊗ L(s))(1A ⊗ L⊗ L)(qβA,α12 )π̃(a)
= (1A ⊗ 1H ⊗ L(s))π̃(a).

As a result, we have

(idA ⊗ idH ⊗ ω)(π̃(a)V23) = (idA ⊗ idH ⊗ ω′)((1A ⊗ 1H ⊗ L(s))π̃(a)V23)
= (idA ⊗ idH ⊗ ω′)((πL ⊗ L)((1A ⊗ s)δA(a))V23).
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However, (1A ⊗ s)δA(a) is the norm limit of finite sums of the form ∑
i ai ⊗ si, where ai ∈ A

and si ∈ S. Therefore, (1A ⊗ ρ(ω))πL(a) is the norm limit of finite sums of the form∑
i

(idA ⊗ idH ⊗ ω′)((πL(ai)⊗ L(si))V23) =
∑
i

(idA ⊗ idH ⊗ ω′)(πL(ai)12((1⊗ L(si))V )23)

=
∑
i

πL(ai)(1A ⊗ (id⊗ ω′)((1⊗ L(si))V ))

=
∑
i

πL(ai)(1A ⊗ ρ(ω′L(si))),

where ai ∈ A and si ∈ S. Hence, (1A ⊗ ρ(ω))πL(a) ∈ B for all a ∈ A and ω ∈ B(H )∗. This
actually proves that B is a C∗-subalgebra of L(A⊗H ).

The previous lemma clearly proves that π (resp. θ̂ ) defines a faithful unital *-homomorphism
(resp. a unital *-homomorphism) π :M(A)→M(Ao G) (resp. θ̂ :M(Ŝ)→M(Ao G)). The
following proposition is also an immediate consequence of this lemma.

Proposition 4.2.3. We have π(a)θ̂(x) ∈ Ao G for all a ∈ A and x ∈ Ŝ. Moreover, we have

Ao G = [ π(a)θ̂(x) ; a ∈ A, x ∈ Ŝ ].

This proposition allows us to define ΨL,ρ : Ao G → L(A⊗H ) the faithful strictly continuous
*-representation of Ao G on A⊗H , given by

ΨL,ρ(π(a)θ̂(x)) = πL(a)(1A ⊗ ρ(x)), a ∈ A, x ∈ Ŝ.

Then, ΨL,ρ extends uniquely to a faithful *-representation ofM(AoG) on A⊗H , still denoted
ΨL,ρ, such that ΨL,ρ(1AoG) = qβA,α.

Proposition 4.2.4. We have the following statements:

1. ∀a ∈ A, ΨL,ρ(π(a)) = πL(a).

2. ∀x ∈ Ŝ, ΨL,ρ(θ̂(x)) = qβA,α(1A ⊗ ρ(x)).

Proof. Let (xλ)λ be an approximate unit of Ŝ. Since ρ is non-degenerate, the net (ρ(xλ))λ
converges strongly to 1H . Hence, πL(a) = s− limλ πL(a)(1A⊗ρ(xλ)) = s− limλ ΨL,ρ(π(a)θ̂(xλ)).
Since θ̂ is non-degenerate, the net (θ̂(xλ))λ converges strongly to 1AoG. Therefore, we have
π(a) = s − limλ π(a)θ̂(xλ). Hence, ΨL,ρ(π(a)) = s − limλ ΨL,ρ(π(a)θ̂(xλ)) as ΨL,ρ is strongly
continuous. This proves the first statement. The second statement is proved in a similar way.
Indeed, let (aλ)λ be an approximate unit of A. For all x ∈ Ŝ, we have

qβA,α(1A ⊗ ρ(x)) = s− lim
λ
πL(aλ)(1A ⊗ ρ(x)) = s− lim ΨL,ρ(π(aλ)θ̂(x)) = ΨL,ρ(θ̂(x))

by using qβA,α = s − limλ πL(aλ), the non-degeneracy of π and the fact that ΨL,ρ is strongly
continuous.

Proposition 4.2.5. Let SoG be the crossed product of S by the action (δ, β) of G on S. Then,
S o G is canonically isomorphic to [SŜ].
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Proof. Since L is non-degenerate, L ⊗ id : S ⊗ K(H ) → B(H ⊗H ) extends uniquely to
a faithful and unital *-homomorphism L ⊗ id : L(S ⊗ H ) → B(H ⊗ H ). Besides, the
*-representation ΨL,ρ : S o G → L(S ⊗H ) is given by

ΨL,ρ(π(s)θ̂(x)) = (idS ⊗ L)(δ(s))(1S ⊗ ρ(x)), s ∈ S, x ∈ Ŝ.

We have (L ⊗ L)δ(s) = W ∗(1 ⊗ L(s))W for all s ∈ S. Moreover, we have W ∈ M ⊗ M̂ and
ρ(Ŝ) ⊂ M̂ ′. It then follows that

(L⊗ id)ΨL,ρ(π(s)θ̂(x)) = (L⊗ L)(δ(s))(1⊗ ρ(x)) = W ∗(1⊗ L(s))W (1⊗ ρ(x))
= W ∗(1⊗ L(s)ρ(x))W,

for all s ∈ S and x ∈ Ŝ. We also consider the map AdW : B(H ⊗H )→ B(H ⊗H ) given by
AdW (x) = WxW ∗ for all x ∈ B(H ⊗H ). It is clear that AdW is a bounded linear map such
that AdW (x∗) = AdW (x)∗ for all x ∈ B(H ⊗H ). It is worth noting that unfortunately AdW
is not multiplicative. However, let x, y ∈ B(H ⊗H ) such that [x, qβ,α] = 0 or [y, qβ,α] = 0.
Then, we have AdW (xy) = AdW (x)AdW (y) since W is a partial isometry and qβ,α = W ∗W . In
particular, we have

AdW (W ∗xWW ∗yW ) = AdW (W ∗xW )AdW (W ∗yW ), for all x, y ∈ B(H ⊗H ).

It then follows that Φ = AdW (L ⊗ id)ΨL,ρ : S o G → B(H ⊗ H ) is a *-homomorphism.
Furthermore, we have Φ(π(s)θ̂(x)) = qα,β̂(1⊗ L(s)ρ(x))qα,β̂ = qα,β̂(1⊗ L(s)ρ(x)) for all s ∈ S
and x ∈ Ŝ. Indeed, since β̂(No) = M ′ ∩ M̂ we have [β̂(no), L(s)] = 0 and [β̂(no), ρ(x)] = 0 for
all n ∈ N , s ∈ S and x ∈ Ŝ. Hence, [β̂(no), z] = 0 for all n ∈ N and z ∈ [SŜ].
Moreover, since AdW is generally not injective, the faithfulness of Φ is not obvious. However,
it suffices to prove that the restriction of AdW to the range of (id ⊗ L)ΨL,ρ, that is to say
W ∗(1⊗ [SŜ])W , is injective. Assume that AdW (W ∗(1⊗ z)W ) = 0 for some z ∈ [SŜ]. Then,
we have qα,β̂(1⊗ z) = 0. But α is faithful, it then follows that β̂(e(l) o

ij )z = 0 for all 1 6 l 6 k

and 1 6 i, j 6 nl. Hence, z = 0. Therefore, since S o G = [π(s)θ̂(x) ; s ∈ S, x ∈ Ŝ], Φ is a
*-isomorphism from S o G to the C∗-algebra qα,β̂(1⊗ [SŜ]).

It only remains to show that qα,β̂(1 ⊗ [SŜ]) is canonically isomorphic to [SŜ]. First, note
that there exists ω ∈ B(H )∗ such that (ω⊗ id)(qα,β̂) = 1. Indeed, let us consider ω : α(N)→ C
the map defined by ω(α(n)) = ε(n) for all n ∈ N . Then, ω is a well-defined normal positive
linear functional on the von Neumann algebra α(N). Therefore, it extends to a normal linear
functional on B(H ), still denoted ω. Now, since ω(α(e(l)

ij )) = nlδ
j
i for all 1 6 l 6 k and

1 6 i, j 6 nl, we have (ω ⊗ id)(qα,β̂) = 1. Let us look at the map Θ : [SŜ] → qα,β̂(1 ⊗ [SŜ])
given by Θ(z) = qα,β̂(1⊗ z), for all z ∈ [SŜ]. Then, Θ is a surjective *-homomorphism. Besides,
Θ is also injective since (ω ⊗ id)(Θ(z)) = (ω ⊗ id)(qα,β̂)z = z for all z ∈ [SŜ].

Let (B, δB, αB) be a Ĝ-C∗-algebra. In order to define the crossed product B oδB ,αB Ĝ, we
introduce the Hilbert B-module:

EB,λ = qαB ,β̂(B ⊗H ).

Note that qαB ,β̂ = (idB ⊗ λ)αB(1B). Exactly as for actions of G, we have:
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• a faithful strictly continuous *-representation π̂λ : B → L(B ⊗H ) given by

π̂λ(b) = (idB ⊗ λ)δB(b), b ∈ B.

Furthermore, the *-homomorphism π̂λ extends uniquely to a faithful strictly continuous
*-representation π̂λ :M(B)→ L(B ⊗H ) such that π̂λ(1B) = qαB ,β̂.

• π̂λ induces a faithful unital strictly continous *-representation π̂ :M(B)→ L(EB,λ).

• We have a unital strictly continuous *-representation θ : M(S) → L(EB,λ) given by
θ(y) = (1B ⊗ L(y))�EB,λ , y ∈M(S). If αB is faithful, so is θ.

Definition 4.2.6. We call crossed product of B by the continuous action (δB, αB) of Ĝ on B,
the C∗-subalgebra B oδB ,αB Ĝ of L(EB,λ) generated by the products of the form π̂(b)θ(y) for
b ∈ B and y ∈ S.

From now on, we will denote the crossed product B o Ĝ, instead of B oδB ,αB Ĝ, since no
ambiguity will arise.

As for G-C∗-algebras, we have the following lemma:

Lemma 4.2.7. The norm closed linear subspace of L(B ⊗H ) spanned by the products of the
form π̂λ(b)(1B ⊗ L(ω)), where b ∈ B, ω ∈ B(H )∗, is a C∗-algebra.

As a result, π̂ (resp. θ) defines a faithful unital *-homomorphism (resp. a unital *-homomorphism)
π̂ :M(B)→M(B o Ĝ) (resp. θ :M(S)→M(B o Ĝ)). The following proposition is also an
immediate consequence of this lemma.

Proposition 4.2.8. We have π̂(b)θ(y) ∈ B o Ĝ for all b ∈ B and y ∈ S. Moreover, we have

B o Ĝ = [ π̂(b)θ(y) ; b ∈ B, y ∈ S ].

This proposition allows us to define Ψ̂λ,L : B o Ĝ → L(B ⊗H ) the faithful strictly continuous
*-representation of B o Ĝ on B ⊗H , given by

Ψ̂λ,L(π̂(b)θ(y)) = π̂λ(b)(1B ⊗ L(y)), b ∈ B, y ∈ S.

Then, Ψ̂λ,L extends uniquely to a faithful *-representation ofM(Bo Ĝ) on B⊗H , still denoted
Ψ̂λ,L, such that Ψ̂λ,L(1

BoĜ) = qαB ,β̂.

Proposition 4.2.9. We have the following statements:

1. ∀b ∈ B, Ψ̂λ,L(π̂(b)) = π̂λ(b).

2. ∀y ∈ S, Ψ̂λ,L(θ(y)) = qαB ,β̂(1B ⊗ L(y)).
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4.3 Dual action

Let (A, δA, βA) be a G-C∗-algebra. Since Ṽ ∈ M̂ ′ ⊗M ′ and α(N) ⊂ M̂ , we have [Ṽ23, q
βA,α
12 ] = 0.

Therefore, Ṽ23 ∈ L(A⊗H ⊗H ) restricts to a partial isometry

X := Ṽ23�EA,L⊗H ∈ L(EA,L ⊗H ),

whose initial and final projections are given by

X∗X = qβ̂,α23 �EA,L⊗H , XX∗ = qα̂,β23 �EA,L⊗H ∈ L(EA,L ⊗H ),

since Ṽ ∗Ṽ = qβ̂,α and Ṽ Ṽ ∗ = qα̂,β.

Proposition-Definition 4.3.1. Let δAoG : AoG → L(EA,L⊗H ) and αAoG : N →M(AoG)
be the linear maps given by:

• δAoG(b) := X(b⊗ 1H )X∗, for b ∈ Ao G.

• αAoG(n) := θ̂(α̂(n)) = (1A ⊗ ρ(α̂(n)))�EA,L, for n ∈ N .

Then, δAoG is a faithful *-homomorphism and αAoG is a non-degenerate *-homomorphism.
Moreover, we have the following statements:

1. δAoG(π(a)θ̂(x)) = (π(a) ⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(δ̂(x)), for all a ∈ A and x ∈ Ŝ. In particular,

δAoG takes its values inM((Ao G)⊗ Ŝ).

2. αAoG(n)π(a)θ̂(x) = π(a)θ̂(α̂(n)x) and π(a)θ̂(x)αAoG(n) = π(a)θ̂(xα̂(n)) for all n ∈ N ,
a ∈ A and x ∈ Ŝ.

3. δAoG extends uniquely to a strictly continuous *-homomorphism from M(A o G) to
M((Ao G)⊗ Ŝ), still denoted δAoG, and we have δAoG(1AoG) = qαAoG ,β.

4. If βA is faithful so is αAoG.

Proof. It is clear that δAoG(b∗) = δAoG(b)∗ for all b ∈ A o G. Now, let us prove that δAoG is
multiplicative. Since XX∗X = X, we only have to show that

[b⊗ 1H , X∗X] = 0, b ∈ Ao G.

It suffices to prove that

[πL(a)12(1A ⊗ ρ(x)⊗ 1H ), Ṽ ∗23Ṽ23] = 0, a ∈ A, x ∈ Ŝ.

Let a ∈ A and x ∈ Ŝ. This follows immediately from the following facts:

• [ρ(x)⊗ 1, Ṽ ∗Ṽ ] = 0 because of Ṽ ∗Ṽ = qβ̂,α̂, β̂(No) ⊂ M̂ and ρ(x) ∈ M̂ ′.

• [πL(a)12, Ṽ
∗

23Ṽ23] = 0 because of β̂(No) ⊂M ′ and L(S) ⊂M .

Let us prove now that the *-representation δAoG is faithful. According to the previous discussion,
we have

X∗δAoG(b) = X∗X(b⊗ 1H )X∗ = (b⊗ 1H )X∗XX∗ = (b⊗ 1H )X∗, b ∈ Ao G.
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Assume now that δAoG(b) = 0 for some b ∈ Ao G. Hence, (b⊗ 1H )X∗ = 0. It then follows that

b(idEA,L ⊗ ω)(X∗) = 0, ω ∈ B(H )∗.

However, we have

(idEA,L ⊗ ω)(X∗) = (1A ⊗ (id⊗ ω)(Ṽ )∗)�EA,L= (1A ⊗ U(id⊗ ωU)(W )∗U∗)�EA,L .

Hence, [(idEA,L ⊗ ω)(X∗) ; ω ∈ B(H )∗] = [(1A ⊗R(y))�EA,L ; y ∈ S]. Therefore, we have b = 0
by using the non-degeneracy of R.
Let us compute δAoG(π(a)θ̂(x)) for all a ∈ A and x ∈ Ŝ. We considerM((A o G) ⊗ Ŝ) as a
C∗-subalgebra of L(EA,L ⊗H ). First, since [πL(a)12, Ṽ23] = 0 we have [X, π(a)12] = 0. Hence,

X(π(a)⊗ 1H )X∗ = (π(a)⊗ 1H )XX∗ = (π(a)⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(qα̂,β23 ). (4.3.1)

Furthermore, by using the formula δ̂(x) = Ṽ (x⊗ 1)Ṽ ∗ we obtain

X(θ̂(x)⊗ 1H )X∗ = (θ̂ ⊗ id
Ŝ
)δ̂(x). (4.3.2)

We then combine the formulas (4.3.1) and (4.3.2) with the fact that [m⊗ 1H , X∗X] = 0 for all
m ∈M(Ao G) to conclude that

δAoG(π(a)θ̂(x)) = (π(a)⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(δ̂(x)).

In particular, δAoG(π(a)θ̂(x)) ∈M((AoG)⊗ Ŝ) for all a ∈ A and x ∈ Ŝ. Therefore, δAoG takes
its values inM((Ao G)⊗ Ŝ). Now, it is clear that δAoG is strictly continuous. Therefore, it
extends uniquely to a strictly continuous *-homomorhism δAoG :M(Ao G)→M((Ao G)⊗ Ŝ)
and we have

δAoG(1AoG) = XX∗ = qα̂,β23 �EA,L⊗H = qαAoG ,β.

We see immediately that αAoG : N →M(A o G) is a non-degenerate *-homomorphism. Let
us fix n ∈ N , a ∈ A and x ∈ Ŝ. We have [αAoG(n), π(a)] = 0 and αAoG(n)θ̂(x) = θ̂(α̂(n)x).
Hence, αAoG(n)π(a)θ̂(x) = π(a)θ̂(α̂(n)x). The formula π(a)θ̂(x)αAoG(n) = π(a)θ̂(xα̂(n)) is
straightforward. As for the last statement of the proposition, we recall that if βA is faithful so
is θ̂. The faithfulness of αAoG follows since α̂ is faithful.

Proposition 4.3.2. We have the following statements:

1. ∀a ∈ A, δAoG(π(a)) = (π(a)⊗ 1
Ŝ
)(θ̂ ⊗ id

Ŝ
)(qα̂,β).

2. ∀x ∈ Ŝ, δAoG(θ̂(x)) = (θ̂ ⊗ id
Ŝ
)(δ̂(x)).

Proof. These statements are straightforward consequences of the formulas (4.3.1) and (4.3.2) of
the above proof and the fact that we have δAoG(m) = X(m⊗1H )X∗ for all m ∈M(AoG).

Theorem 4.3.3. We have:

1. The triple (Ao G, δAoG, αAoG) is a Ĝ-C∗-algebra.

2. The correspondence

−o G : G-C∗-Alg −→ Ĝ-C∗-Alg
(A, δA, βA) 7−→ (Ao G, δAoG, αAoG)

is functorial.
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Proof. 1. Let us prove that we have
[δAoG(Ao G)(1AoG ⊗ Ŝ)] = qαAoG ,β((Ao G)⊗ Ŝ).

Let us fix a ∈ A and x, x′ ∈ Ŝ, then δ̂(x)(1
Ŝ
⊗ y′) is the norm limit of finite sums of the form∑

i xi ⊗ x′i, where xi, x′i ∈ Ŝ. Therefore,
δAoG(π(a)θ̂(x))(1AoG ⊗ x′) = (π(a)⊗ 1

Ŝ
) · (θ̂ ⊗ id

Ŝ
)(δ̂(x)(1

Ŝ
⊗ x′))

is the norm limit of finite sums of the form ∑
i π(a)θ̂(xi)⊗ x′i, with xi, x′i ∈ Ŝ. It then follows

that
δAoG(π(a)θ̂(x))(1AoG ⊗ y) ∈ (Ao Ŝ)⊗ Ŝ.

Consequently, we have δAoG(Ao G)(1AoG ⊗ Ŝ) ⊂ (Ao G)⊗ Ŝ. But, since δAoG(1AoG) = qαAoG ,β

we actually have the inclusion
[δAoG(Ao G)(1AoG ⊗ Ŝ)] ⊂ qαAoG ,β((Ao G)⊗ Ŝ).

For the converse inclusion, let us take a ∈ A, x, x′ ∈ Ŝ. We have
(αAoG(n′)⊗ β(no))(π(a)θ̂(x)⊗ x′) = π(a)θ̂(α̂(n′)x)⊗ β(no)x′

= (π(a)⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(α̂(n′)x⊗ β(no)x′),

for all n, n′ ∈ N . Hence, qαAoG ,β(π(a)θ̂(x) ⊗ x′) = (π(a) ⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(qα̂,β(x ⊗ x′)). Now,

qα̂,β(x ⊗ x′) is the norm limit of finite sums of the form ∑
i δ̂(xi)(1Ŝ ⊗ x′i) where xi, x′i ∈ Ŝ.

Therefore, qαAoG ,β(π(a)θ̂(x)⊗ x′) is the norm limit of finite sums of the form∑
i

(π(a)⊗ 1
Ŝ
) · (θ̂ ⊗ id

Ŝ
)(δ̂(xi)(1Ŝ ⊗ x

′
i)) =

∑
i

δAoG(π(a)θ̂(xi))(1AoG ⊗ x′i),

which proves that qαAoG ,β((Ao G)⊗ Ŝ) ⊂ [δAoG(Ao G)(1AoG ⊗ Ŝ)] and then the equality holds.

The formula δAoG(αAoG(n)) = qαAoG ,β(1AoG ⊗ α̂(n)), n ∈ N , follows immediately from
δAoG(αAoG(n)) = (θ̂ ⊗ id

Ŝ
)δ̂(α̂(n)), δ̂(α̂(n)) = (1

Ŝ
⊗ β(no))δ̂(1

Ŝ
), n ∈ N

(see Proposition 4.3.2 2). It only remains to prove the coassociativity of δAoG . Since δAoG and δ̂
are strictly continuous, we have:

(δAoG ⊗ id
Ŝ
)(m) = X12m13X

∗
12, (idAoG ⊗ δ̂)(m) = Ṽ23m12Ṽ

∗
23, m ∈M((Ao G)⊗ Ŝ).

Moreover, since Ṽ12Ṽ13 = Ṽ23Ṽ12Ṽ
∗

23 we have X12X13 = Ṽ23X12Ṽ
∗

23 in L(EA,L ⊗H ⊗H ). We
will also need the commutation relation

[Ṽ ∗23Ṽ23, X12] = 0 in L(EA,L ⊗H ⊗H ),

which follows from the facts that Ṽ ∗23Ṽ23 = qβ̂,α23 , Ṽ ∈ M̂ ′ ⊗M ′ and β̂(No) ⊂ M̂ . Therefore, for
all b ∈ Ao G we have

(δAoG ⊗ id
Ŝ
)δAoG(b) = X12δAoG(b)13X

∗
12

= X12X13(b⊗ 1H ⊗ 1H )X∗13X
∗
12

= Ṽ23X12(b⊗ 1H ⊗ 1H )Ṽ ∗23Ṽ23X
∗
12Ṽ

∗
23

= Ṽ23X12(b⊗ 1H ⊗ 1H )X12Ṽ
∗

23Ṽ23Ṽ
∗

23

= Ṽ23X12(b⊗ 1H ⊗ 1H )X12Ṽ
∗

23

= Ṽ23δAoG(b)12Ṽ
∗

23

= (id
Ŝ
⊗ δ̂)δAoG(b).
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2. Let (A, δA, βA) and (C, δC , βC) be G-C∗-algebras and f : A → M(C) a G-equivariant
non-degenerate *-homomorphism. Let us denote πA : A → L(EA,L), πC : C → L(EC,L),
θ̂A : Ŝ → L(EA,L) and θ̂C : Ŝ → L(EC,L) the canonical *-homomorphisms. There exists a unique
*-homomorphism f∗ : Ao G →M(C o G) such that

f∗(πA(a)θ̂A(x)) = πC(f(a))θ̂C(x), a ∈ A, x ∈ Ŝ. (4.3.3)

Indeed, since f is non-degenerate, we have the following unital strictly continuous *-homomor-
phism f ⊗ idK(H ) : L(A ⊗ H ) → L(C ⊗ H ). But since f ◦ βA = βC , we already have
(f ⊗ idK(H ))(L(EA,L)) ⊂ L(EC,L) via the following identification:

L(EA,L) = {T ∈ L(A⊗H ) ; TqβA,α = T = qβA,αT}

and similarly for L(EC,L). Now, in virtue of the G-equivariance of f we have

(f ⊗ idK(H ))(πA(a)) = πC(f(a)), a ∈ A.

We also have (f ⊗ idK(H ))(θ̂A(x)) = θ̂C(x) for all x ∈ Ŝ. Hence, (f ⊗ idK(H ))(Ao G) ⊂ C o G.
Let us denote f∗ = (f ⊗ idK(H ))�AoG. Then, f∗ : Ao G →M(C o G) satisfies (4.3.3) and the
uniqueness is guaranteed by Proposition 4.2.3.
Let c ∈ C and x ∈ Ŝ, by the non-degeneracy of f we can assume that c = f(a)c1 with a ∈ A
and c1 ∈ C. Then, we have πC(c)θ̂C(x) = πC(f(a))πC(c1)θ̂C(x). In virtue of Lemma 4.2.2,
πC(c)θ̂C(x) is the norm limit of finite sums of elements of the form πC(f(a))θ̂C(x1)πC(c2) with
x1 ∈ Ŝ and c2 ∈ C. Let us write x1 = x′1x

′′
1 with x′1, x

′′
1 ∈ Ŝ. Then πC(c)θ̂C(x) is the norm

limit of finite sums of elements of the form f∗(πA(a)θ̂A(x′1))θ̂C(x′′1)πC(c2). This proves that f∗ is
non-degenerate.
Then, f∗ extends to a unital strictly continuous *-homomorphism f∗ :M(Ao G)→M(C o G).
Moreover, we have proved that

f∗ ◦ πA = πC ◦ f, f∗ ◦ θ̂A = θ̂C .

By the assertions 1 and 2 of Proposition 4.3.1, it follows that

δCoG ◦ f∗ = (f∗ ⊗ id
Ŝ
)δAoG, f∗ ◦ αAoG = αCoG.

Remark 4.3.4. We will need an adaptation of the functoriality of −oG : G-C∗-Alg→ Ĝ-C∗-Alg
to possibly degenerate (albeit reasonably) G-equivariant *-homomorphisms (cf. Lemma 4.1.1).
With the notations of the proof of Theorem 4.3.3 2, let us assume that there exists e ∈M(C)
such that [f(A)C] = eC. We prove in a similar way that there exists a unique Ĝ-equivariant
*-homomorphism f∗ : Ao G →M(C o G) such that

f∗(πA(a)θ̂A(x)) = πC(f(a))θ̂C(x), a ∈ A, x ∈ Ŝ.

Moreover, by combining the assumption with Lemma 4.2.2 and Proposition 4.2.3, we obtain the
equality [f∗(Ao G)(C o G)] = πC(e)(C o G).

Definition 4.3.5. The continuous action (δAoG, αAoG) of the measured quantum groupoid Ĝ
on the crossed product Ao G is called the dual action of (δA, βA).
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In a similar way, we define the dual action of the measured quantum groupoid G on the crossed
product Bo Ĝ, where B is a C∗-algebra acted upon by the dual measured quantum groupoid Ĝ.

Let (B, δB, αB) be a Ĝ-C∗-algebra. Since V ∈ M̂ ′⊗M and β(No) ⊂ M̂ , we have [V23, q
αB ,β
12 ] = 0.

Therefore, V23 ∈ L(B ⊗H ⊗H ) restricts to a partial isometry

Y := V23�EB,λ⊗H ∈ L(EB,λ ⊗H ),

whose initial and final projections are given by:

Y ∗Y = qα̂,β23 �EB,λ⊗H , Y Y ∗ = qβ,α23 �EB,λ⊗H ∈ L(EB,λ ⊗H ).

Let δ
BoĜ : B o Ĝ → L(EB,λ ⊗H ) and β

BoĜ : No → L(EB,λ) be the linear maps given by:

δ
BoĜ(c) = Y (c⊗ 1H )Y ∗, β

BoĜ(n
o) = θ(β(no)) = (1B ⊗ L(β(no)))�EB,λ⊗H ,

for all c ∈ B o Ĝ and n ∈ N . As for the case of a continuous action of the measured quantum
groupoid G, we obtain the formulas:

Y (π̂(b)⊗1H )Y ∗ = (π̂(b)⊗1S)(θ⊗idS)(qβ,α), Y (θ(y)⊗1H )Y ∗ = (θ⊗idS)δ(y), b ∈ B, y ∈ S,

[Y ∗Y, c⊗1H ] = 0, Y (π̂(b)θ(y)⊗1H )Y ∗ = (π̂(b)⊗1S)(θ⊗ idS)δ(y), c ∈ Bo Ĝ, b ∈ B, y ∈ S,

Y12Y13 = V23Y12V
∗

23, [V ∗23V23, Y12] = 0 as operators of L(EB,λ ⊗H ⊗H ).
Then, we obtain the following result:

Theorem 4.3.6. We have:

1. The triple (B o Ĝ, δ
BoĜ, βBoĜ) is a G-C∗-algebra.

2. The correspondence

−o Ĝ : Ĝ-C∗-Alg −→ G-C∗-Alg
(B, δB, αB) 7−→ (B o Ĝ, δ

BoĜ, βBoĜ)

is functorial.

Note that a generalization of Theorem 4.3.6 2 can be stated as in Remark 4.3.4.

Definition 4.3.7. The continuous action (δ
BoĜ, βBoĜ) of the measured quantum groupoid G

on the crossed product B o Ĝ is called the dual action of (δB, αB).

4.4 Takesaki-Takai duality

Let (δA, βA) be a continuous action of the measured quantum groupoid G on a C∗-algebra A. In
this paragraph, we investigate the double crossed product (Ao G) o Ĝ endowed with the bidual
action of G. First, we prove that (Ao G)o Ĝ can be canonically identified with a C∗-subalgebra
D of L(A⊗H ). We then endow D with a continuous action (δD, βD) of G obtained by transport
of structure.

Let us fix a G-C∗-algebra (A, δA, βA). Let us denote B = A o G. We begin by defining the
C∗-algebra D.
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Proposition-Definition 4.4.1. Let us denote

D := [πR(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S] ⊂ L(A⊗H ).

Then, D is C∗-subalgebra of L(A⊗H ). Moreover, we have:

1. dqβA,α̂ = d = qβA,α̂d, for all d ∈ D.

2. D(A⊗H ) = qβA,α̂(A⊗H ).

3. There exists a unique faithful strictly continuous *-homomorphism

jD :M(D)→ L(A⊗H )

extending the inclusion map D ⊂ L(A⊗H ) such that jD(1D) = qβA,α̂.

Proof. Since [λ(Ŝ)L(S)] is a C∗-algebra, it is enough to prove that (1A ⊗ λ(x)L(y))πR(a) ∈ D,
for all x ∈ Ŝ, y ∈ S and a ∈ A. Let us fix x ∈ Ŝ, y ∈ S and a ∈ A. Since [R(y), L(s)] = 0 for
all s ∈ S, we have

(1A ⊗ λ(x)L(y))πR(a) = (1A ⊗ Uρ(x)U∗L(y)U)πL(a)(1A ⊗ U∗)
= (1A ⊗ U)(1A ⊗ ρ(x)R(y))πL(a)(1A ⊗ U∗)
= (1A ⊗ U)(1A ⊗ ρ(x))πL(a)(1A ⊗R(y)U∗)
= (1A ⊗ U)(1A ⊗ ρ(x))πL(a)(1A ⊗ U∗L(y)).

By Lemma 4.2.2, we have that (1A⊗λ(x)L(y))πR(a) is the norm limit of finite sums of elements
of the form

(1A ⊗ U)πL(a′)(1A ⊗ ρ(x′))(1A ⊗ U∗L(y)) = πR(a′)(1A ⊗ λ(x′)L(y)), x′ ∈ Ŝ, a′ ∈ A.

Note that the fact that D is a C∗-algebra will also appear as a consequence of Proposition 4.4.3.
1. We have πR(a)qβA,α̂ = πR(a) = qβA,α̂πR(a), for all a ∈ A. We have [1A ⊗ λ(x), qβA,α̂] = 0
for all x ∈ Ŝ, since α̂(N) ⊂ M̂ ′ and λ(x) ∈ M̂ . But we also have α̂(N) ⊂M ′, then we obtain
[1A ⊗ L(y), qβA,α̂] = 0 for all y ∈ S. This proves that

qβA,α̂πR(a)(1A ⊗ λ(x)L(y)) = πR(a)(1A ⊗ λ(x)L(y)) = πR(a)(1A ⊗ λ(x)L(y))qβA,α̂,

for all a ∈ A, x ∈ Ŝ and y ∈ S and the first statement is proved.
2. It follows from the second assertion that we have

D(A⊗H ) = qβA,α̂D(A⊗H ) ⊂ qβA,α̂(A⊗H ) =: EA,R.

Let ξ ∈ EA,R, by the non-degeneracy of πR there exist a ∈ A and ξ′ ∈ A ⊗H such that
ξ = πR(a)ξ′. In particular, ξ is the norm limit of finite sums of elements of the form πR(a)(b⊗η),
where b ∈ A and η ∈H . By using the non-degeneracy of the C∗-algebra [λ(Ŝ)L(S)] ⊂ B(H ),
it follows that ξ is the norm limit of finite sums of elements of the form

πR(a)(b⊗ λ(x)L(y)η′) = πR(a)(1A ⊗ λ(x)L(y))(b⊗ η′) ∈ D(A⊗H ), x ∈ Ŝ, y ∈ S,

and the second assertion is proved.
3. This is an immediate consequence of 2.
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Remark 4.4.2. With the notations of §4.2, we have noticed that the crossed products Ao G
and B o Ĝ are naturally represented in the Hilbert modules EA,L and EB,λ respectively. In a
similar way, it should be noted that the C∗-algebra D is naturally represented on the Hilbert
A-module EA,R. However, unless mentioned otherwise, we will not do so. Indeed, it will
appear more convenient in the computations to work with the representation jD as defined in
Proposition-Definition 4.4.1.

We then prove that we have a canonical *-isomorphism between B o Ĝ and D.

Proposition 4.4.3. There exists a unique *-isomorphism φ
BoĜ : B o Ĝ → D such that

φ
BoĜ(π̂(π(a)θ̂(x))θ(y)) = πR(a)(1A ⊗ λ(x)L(y)), a ∈ A, x ∈ Ŝ, y ∈ S.

Proof. Let us consider the operator Z = 1A⊗ (1H ⊗U∗)V (1H ⊗U) ∈ L(A⊗H ⊗H ). Let us
note that Z is a partial isometry. Besides, since Z = Σ23Ṽ23Σ23, Ṽ ∗Ṽ = qβ̂,α̂ and Ṽ Ṽ ∗ = qα̂,β,
the initial and final projections of Z are given by:

Z∗Z = qα̂,β̂23 , ZZ∗ = qβ,α̂23 .

Let us prove that we have

Z∗(1A ⊗ 1H ⊗ λ(x))Z = 1A ⊗ (ρ⊗ λ)δ̂(x), for all x ∈ Ŝ. (4.4.1)

Indeed, since λ(x) = U∗ρ(x)U and (ρ⊗ ρ)δ̂(x) = V ∗(1⊗ ρ(x))V for all x ∈ Ŝ we have

1A ⊗ (ρ⊗ λ)(δ̂(x)) = (1A ⊗ 1H ⊗ U∗)(1A ⊗ (ρ⊗ ρ)δ̂(x))(1A ⊗ 1H ⊗ U)
= (1A ⊗ (1H ⊗ U∗)V ∗)(1A ⊗ 1H ⊗ ρ(x))(1A ⊗ V (1H ⊗ U))
= Z∗(1A ⊗ 1H ⊗ λ(x))Z,

for all x ∈ Ŝ. Now, let us prove that

ZπL(a)12Z
∗ = (πL ⊗R)δA(a), for all a ∈ A. (4.4.2)

We have

(πL ⊗R)(δA(a)) = (idA ⊗ L⊗R)δ2
A(a), with δ2

A := (δA ⊗ idS)δA
= (idA ⊗ (L⊗R)δ)(δA(a)), as δ2

A = (idA ⊗ δ)δA
= (1A ⊗ 1H ⊗ U∗)(idA ⊗ (L⊗ L)δ)(δA(a))(1A ⊗ 1H ⊗ U),

since R(y) = U∗L(y)U for all y ∈ S. However, since (L⊗L)δ(y) = V (L(y)⊗ 1)V ∗ for all y ∈ S,
we obtain

(idA ⊗ (L⊗ L)δ)(t) = V23((idA ⊗ L)(t)⊗ 1H )V ∗23,

for all t ∈ A⊗S. The above equality also holds when t ∈M(A⊗S) since δ is strictly continuous
and L is non-degenerate. In particular, we have

(idA ⊗ (L⊗ L)δ)(δA(a)) = V23((idA ⊗ L)δA(a)⊗ 1H )V ∗23 = V23πL(a)12V
∗

23, a ∈ A.

It then follows that we finally obtain (πL ⊗R)δA(a) = ZπL(a)12Z
∗ for all a ∈ A since we have

πL(a)12 = (1A ⊗ 1H ⊗ U)πL(a)12(1A ⊗ 1H ⊗ U∗). We also have

Z(1A ⊗ 1H ⊗ L(y))Z∗ = (1A ⊗ 1H ⊗ L(y))ZZ∗, y ∈ S. (4.4.3)
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Indeed, by using the facts that V ∈ M̂ ′ ⊗M and R(S) ⊂M ′ we have

Z(1A ⊗ 1H ⊗ L(y))Z∗ = 1A ⊗ [(1⊗ U∗)V (1⊗R(y))V ∗(1⊗ U)]
= (1A ⊗ 1H ⊗ U∗R(y))V23V

∗
23(1A ⊗ 1H ⊗ U)

= (1A ⊗ 1H ⊗ U∗R(y)U)ZZ∗

= (1A ⊗ 1H ⊗ L(y))ZZ∗,

for all y ∈ S. Since Z∗Z = qα̂,β̂23 and α̂(N), β̂(No) ⊂ M ′, we have the following commutation
relations

[πL(a)12, Z
∗Z] = 0, [1A ⊗ 1H ⊗ L(y), Z∗Z] = 0, a ∈ A, y ∈ S. (4.4.4)

The first relation gives ZπL(a)12 = ZπL(a)12Z
∗Z (as ZZ∗Z = Z) for all a ∈ A. We then

combine this last equality with (4.4.2) to conclude that

ZπL(a)12 = (πL ⊗R)(δA(a))Z, a ∈ A. (I)

The second one combined with (4.4.3) gives

[Z, 1A ⊗ 1H ⊗ L(y)] = 0, y ∈ S. (II)

Since ZZ∗ = qβ,α̂23 , α̂(N) ⊂ M̂ ′ and λ(Ŝ) ⊂ M̂ , we obtain another commutation relation:

[ZZ∗, 1A ⊗ 1H ⊗ λ(x)] = 0, x ∈ Ŝ.

It then follows from (4.4.1) that

Z(1A ⊗ (ρ⊗ λ)δ̂(x)) = 1A ⊗ 1H ⊗ λ(x), x ∈ Ŝ. (III)

By applying successively the relations (I), (II) and (III), we obtain

ZπL(a)12(1A ⊗ (ρ⊗ λ)δ̂(x))(1A ⊗ 1H ⊗L(y))Z∗ =

(πL ⊗R)(δA(a))(1A ⊗ 1H ⊗ λ(x)L(y))qβ,α̂23 , (♦)

for all a ∈ A, x ∈ Ŝ and y ∈ S.

Now, since B = [π(a)θ̂(x) ; a ∈ A, x ∈ Ŝ] and Bo Ĝ = [π̂(b)θ(y) ; b ∈ B, y ∈ S] (see Propositions
4.2.3 and 4.2.8), we have

B o Ĝ = [π̂(π(a)θ̂(x))θ(y) ; a ∈ A, x ∈ Ŝ, y ∈ S].

Besides, since δB(π(a)θ̂(x)) = (π(a)⊗ 1
Ŝ
)(θ̂ ⊗ id

Ŝ
)(δ̂(x)) for all a ∈ A, x ∈ Ŝ, we have

π̂λ(π(a)θ̂(x)) = (idB ⊗ λ)(δB(π(a)θ̂(x))) = (π(a)⊗ 1H )(θ̂ ⊗ λ)(δ̂(x)),

for all a ∈ A and x ∈ Ŝ. Therefore,

Ψ̂λ,L(π̂(π(a)θ̂(x))θ(y)) = (π(a)⊗ 1H )(θ̂ ⊗ λ)(δ̂(x))(1B ⊗ L(y)),

for all a ∈ A, x ∈ Ŝ and y ∈ S. We then combine this equality with Proposition 4.2.4 to
conclude that

(ΨL,ρ ⊗ id)Ψ̂λ,L(π̂(π(a)θ̂(x))θ(y)) = πL(a)12(1A ⊗ (ρ⊗ λ)(δ̂(x)))(1A ⊗ 1H ⊗ L(y)),
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for all a ∈ A, x ∈ Ŝ and y ∈ S. Indeed, let us denote u = (θ̂ ⊗ λ)(δ̂(x)) for short. We have

(ΨL,ρ ⊗ id)(u(1B ⊗ L(y))) = (ΨL,ρ ⊗ id)(u)ΨL,ρ(1B)12(1A ⊗ 1H ⊗ L(y))
= (ΨL,ρ ⊗ id)(u)(1A ⊗ 1H ⊗ L(y))

and we have (ΨL,ρ ⊗ id)(u) = (ΨL,ρ ◦ θ̂ ⊗ λ)δ̂(x) = qβA,α12 (1A ⊗ (ρ⊗ λ)δ̂(x)). Let us consider the
faithful *-representation (ΨL,ρ ⊗ id)Ψ̂λ,L : B o Ĝ → L(A⊗H ⊗H ) and let us denote C its
range. Therefore, C is a C∗-subalgebra of L(A⊗H ⊗H ) and we have proved that

C = [πL(a)12(1A ⊗ (ρ⊗ λ)δ̂(x))(1A ⊗ 1H ⊗ L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S].

We now consider the map AdZ : L(A⊗H ⊗H )→ L(A⊗H ⊗H ) given by AdZ(u) = ZuZ∗

for all u ∈ L(A ⊗H ⊗H ). It is clear that AdZ is a bounded linear map which satisfies
AdZ(u∗) = AdZ(u)∗ for all u ∈ B(H ⊗H ). But AdZ is not multiplicative in general. However,
we claim that the restriction of AdZ to C is multiplicative. This will follow from the fact that

uqα̂,β̂23 = u = qα̂,β̂23 u, u ∈ C.

Indeed, since Z∗Z = qα̂,β̂23 and Z∗ZZ∗ = Z we then have

AdZ(u)AdZ(v) = Zuqα̂,β̂23 vZ
∗ = ZuvZ∗ = AdZ(uv),

for all u, v ∈ C. Now, we have the following facts:

• [qα̂,β̂23 , πL(a)12] = 0 for all a ∈ A and [qα̂,β̂23 , 1A ⊗ 1H ⊗ L(y)] = 0 for all y ∈ S.

• Let us denote T = (1⊗U∗)V (1⊗U) ∈ B(H ⊗H ). Then, T = ΣṼ Σ is a partial isometry
whose initial projection is T ∗T = qα̂,β̂. Since (ρ⊗ ρ)δ̂(x) = V ∗(1⊗ ρ(x))V for all x ∈ Ŝ,
we have

(ρ⊗ λ)δ̂(x) = T ∗(1⊗ λ(x))T, for all x ∈ Ŝ.

Hence, qα̂,β̂(ρ ⊗ λ)δ̂(x) = (ρ ⊗ λ)δ̂(x) = (ρ ⊗ λ)δ̂(x)qα̂,β̂ for all x ∈ Ŝ. In particular, we
have

qα̂,β̂23 (1A ⊗ (ρ⊗ λ)δ̂(x)) = 1A ⊗ (ρ⊗ λ)δ̂(x) = (1A ⊗ (ρ⊗ λ)δ̂(x))qα̂,β̂23 , x ∈ Ŝ.

It then follows that uqα̂,β̂23 = u = qα̂,β̂23 u, for all u ∈ C. Let us prove that the restriction of AdZ
to C is injective. Let u ∈ C such that AdZ(u) = 0. Then, since Z∗Z = qα̂,β̂23 we have

0 = AdZ∗AdZ(u) = qα̂,β̂23 uq
α̂,β̂
23 = uqα̂,β̂23 = u.

Then, AdZ(C) is a C∗-algebra and AdZ(ΨL,ρ ⊗ id)Ψ̂λ,L : B o Ĝ → AdZ(C) is a *-isomorphism.
In virtue of (♦), we have

AdZ(C) = [(πL⊗R)(δA(a))(1A⊗1H ⊗λ(x)L(y))qβ,α̂23 ; a ∈ A, x ∈ Ŝ, y ∈ S] ⊂ L(A⊗H ⊗H ).

We have AdZ(c)qβA,α12 = AdZ(c) = qβA,α12 AdZ(c) for all c ∈ C. By restriction of the faithful
*-representation AdZ , we obtain a faithful *-representation AdZ : C → L(EA,L ⊗H ). We now
consider the following unitary equivalence of Hilbert A-modules:

Ξ : (A⊗H )⊗πL EA,L −→ EA,L ⊗H
(a⊗ ξ)⊗πL η 7−→ πL(a)η ⊗ ξ.
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Let x ∈ Ŝ and y ∈ S. For all a ∈ A, ξ ∈H and η ∈ EA,L, we have

(1A ⊗ 1H ⊗ λ(x)L(y))Ξ((a⊗ ξ)⊗πL η) = πL(a)η ⊗ λ(x)L(y)ξ
= Ξ((a⊗ λ(x)L(y)ξ)⊗πL η)
= Ξ((1A ⊗ λ(x)L(y))⊗πL 1)((a⊗ ξ)⊗πL η).

Hence,

(1A ⊗ 1H ⊗ λ(x)L(y))�EA,L⊗H = Ξ((1A ⊗ λ(x)L(y))⊗πL 1)Ξ∗, x ∈ Ŝ, y ∈ S.

Let a ∈ A and s ∈ S. For all b ∈ A, ξ ∈H and η ∈ EA,L, we have

(πL ⊗R)(a⊗ s)Ξ((b⊗ ξ)⊗πL η) = πL(a)12(1A ⊗ 1H ⊗R(s))(πL(b)η ⊗ ξ)
= πL(ab)η ⊗R(s)ξ
= Ξ((ab⊗R(s)ξ)⊗πL η)
= Ξ((idA ⊗R)(a⊗ s)⊗πL 1)((b⊗ ξ)⊗πL η).

Hence, (πL ⊗R)(t)�EA,L⊗H = Ξ((id⊗R)(t)⊗πL 1)Ξ∗ for all t ∈ A⊗ S. This equality also holds
when t ∈ M(A⊗ S) since the maps t ∈ M(A⊗ S) 7→ Ξ((id⊗R)(t)⊗πL 1)Ξ∗ ∈ L(EA,L ⊗H )
and πL ⊗R are strictly continuous. In particular, we have

(πL ⊗R)(δA(a))�EA,L⊗H = Ξ(πR(a)⊗πL 1)Ξ∗, a ∈ A.

Let a, b ∈ A, ξ ∈H and η ∈ EA,L. We have

qβ,α̂23 Ξ((a⊗ ξ)⊗πL η) = qβ,α̂23 (πL(a)η ⊗ ξ)
=

∑
16l6k

n−1
l

∑
16i,j6nl

(idA ⊗ L)((1A ⊗ β(e(l)o
ij ))δA(a))η ⊗ α̂(e(l)

ji )ξ.

However, (1A ⊗ β(no))δA(a) = δA(βA(no)a) for all n ∈ N , we then have

(idA ⊗ L)((1A ⊗ β(no))δA(a)) = πL(βA(no)a), n ∈ N.

It then follows that

qβ,α̂23 Ξ((a⊗ ξ)⊗πL η) =
∑

16l6k
n−1
l

∑
16i,j6nl

πL(βA(e(l)o
ij )a)η ⊗ α̂(e(l)

ji )ξ

=
∑

16l6k
n−1
l

∑
16i,j6nl

Ξ((βA(e(l)o
ij )a⊗ α̂(e(l)

ji )ξ)⊗πL η)

= Ξ(qβA,α̂ ⊗πL 1)((a⊗ ξ)⊗πL η).

Therefore, we have

qβ,α̂23 �EA,L⊗H = Ξ(qβA,α̂ ⊗πL 1)Ξ∗.
Now, let us consider the following map

Ω : L(A⊗H ) −→ L(EA,L ⊗H )
T 7−→ Ξ(T ⊗πL 1)Ξ∗.

Then, Ω is a faithful *-homomorphism (since πL is faithful). Since α̂(N) = M ′ ∩ M̂ ′ we have
[qβA,α̂, 1A ⊗ L(y)] = 0 and [qβA,α̂, 1A ⊗ λ(x)] = 0 for all x ∈ Ŝ and y ∈ S. In particular, we have

πR(a)(1A ⊗ λ(x)L(y))qβA,α̂ = πR(a)(1A ⊗ λ(x)L(y)), a ∈ A, x ∈ Ŝ, y ∈ S.
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We have proved that

Ω(πR(a)(1A ⊗ λ(x)L(y))) = (πL ⊗R)(δA(a))(1A ⊗ 1H ⊗ λ(x)L(y))qβ,α̂23 �EA,L⊗H ,

for all a ∈ A, x ∈ Ŝ and y ∈ S. In particular, AdZ(C) ⊂ Ran Ω. Let us denote D = Ω−1AdZ(C).
Then, D is a C∗-subalgebra of L(A⊗H ) and we have

D = [πR(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S].

We denote φ
BoĜ = Ω−1AdZ(ΨL,ρ ⊗ id)Ψ̂λ,L. Then, φBoĜ is a *-isomorphism from B o Ĝ onto D

and we have proved that

φ
BoĜ(π̂(π(a)θ̂(x))θ(y)) = πR(a)(1A ⊗ λ(x)L(y)), a ∈ A, x ∈ Ŝ, y ∈ S. (4.4.5)

The uniqueness is straightforward since B o Ĝ = [π̂(π(a)θ̂(x))θ(y) ; a ∈ A, x ∈ Ŝ, y ∈ S].

Now, we define a continuous action on D by transport of structure:
Notations 4.4.4. Let φ

BoĜ : B o Ĝ → D be the *-isomorphism of Proposition 4.4.3. Let us
denote:

δD := (φ
BoĜ ⊗ idS) ◦ δ

BoĜ ◦ φ
−1
BoĜ

; βD := φ
BoĜ ◦ βBoĜ.

Proposition 4.4.5. The pair (δD, βD) is a continuous action of G on the C∗-algebra D. More-
over, we have:

1. For all a ∈ A, x ∈ Ŝ and y ∈ S,

(jD ⊗ idS)δD(πR(a)(1A⊗ λ(x)L(y))) = (πR(a)⊗ 1S)(1A⊗ λ(x)⊗ 1S)(1A⊗ (L⊗ idS)δ(y)).

2. For all n ∈ N , jD(βD(no)) = qβA,α̂(1A ⊗ L(β(no))).
Proof. We have that φ

BoĜ extends to a unital *-isomorphism φ
BoĜ :M(B o Ĝ)→M(D). By

using approximate units, we obtain:

φ
BoĜ(π̂(π(a)θ̂(x))) = πR(a)(1A ⊗ λ(x)) ; φ

BoĜ(θ(y)) = qβA,α̂(1A ⊗ L(y)), (4.4.6)

for all a ∈ A, x ∈ Ŝ and y ∈ S. Let us fix a ∈ A, x ∈ Ŝ and y ∈ S. Let us denote
d = πR(a)(1A ⊗ λ(x)L(y)) ∈ D for short. By (4.4.5) and (4.4.6), we have

δD(d) = (φ
BoĜ ⊗ idS)δ

BoĜ(φ
−1
BoĜ

(d)) = (φ
BoĜ(π̂(π(a)θ̂(x)))⊗ 1S)(φ

BoĜ ◦ θ ⊗ idS)(δ(y))

= (πR(a)(1A ⊗ λ(x))⊗ 1S)qβA,α̂12 (1A ⊗ (L⊗ idS)δ(y))

= (πR(a)⊗ 1S)(1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y)).

By definition of δD, we have immediately that δD is a faithful *-homomorphism satisfying the
coassociativity condition (δD ⊗ idS)δD = (idD ⊗ δ)δD. It is also clear that the action (δD, βD) is
continuous. Let n ∈ N , we have

βD(no)d = φ
BoĜ(βBoĜ(n

o))d = φ
BoĜ(βBoĜ(n

o)π̂(π(a)θ̂(x))θ(y))
= φ

BoĜ(π̂(π(a)θ̂(x))θ(β(no)y))
= πR(a)(1A ⊗ λ(x)L(β(no)y))
= qβA,α̂(1A ⊗ L(β(no)))d,

as [λ(x), L(β(no))] = 0 (because of β(No) ⊂ M̂ ′) and [πR(a), 1A⊗L(β(no))] = 0 (because α̂ and β
commute pointwise). Hence, βD(no)d = qβA,α̂(1A⊗L(β(no)))d, for all d ∈ D. We prove similarly
that dβD(no) = dqβA,α̂(1A⊗L(β(no))), for all d ∈ D. Hence, βD(no) = qβA,α̂(1A⊗L(β(no))).

75



In the following, we will provide a description of the action (δD, βD) in terms of the action
(δA, βA) and the right regular representation of G.

Notations 4.4.6. Let us introduce some notations:

1. Let us denote K := K(H ) for short. We consider the flip map σ : S ⊗K → K⊗ S, given
by σ(s⊗ k) = k ⊗ s for all s ∈ S and k ∈ K.

2. Let δ0 : A⊗K →M(A⊗K⊗S) be the *-homomorphism given by δ0 = (idA⊗σ)(δA⊗ idK).
Therefore, δ0 is the unique *-homomorphism from A⊗K toM(A⊗K ⊗ S) such that

δ0(a⊗ k) = δA(a)13(1A ⊗ k ⊗ 1S), a ∈ A, k ∈ K.

Moreover, δ0 (resp. δ0 ⊗ idS) extends uniquely to a strictly continuous *-homomorphism
fromM(A⊗K) toM(A⊗K ⊗ S) (resp. fromM(A⊗K ⊗ S) toM(A⊗K ⊗ S ⊗ S))
such that

δ0(1A⊗K) = qβA,α13 ∈ L(A⊗H ⊗ S),

(resp. (δ0 ⊗ idS)(1A⊗K⊗S) = qβA,α13 ∈ L(A⊗H ⊗ S ⊗ S)).

Similarly, we have a unique strictly continuous *-homomorphism

idA⊗K ⊗ δ :M(A⊗K ⊗ S)→M(A⊗K ⊗ S ⊗ S)

extending idA⊗K ⊗ δ such that (idA⊗K ⊗ δ)(1A⊗K⊗S) = qβ,α34 ∈ L(A⊗H ⊗ S ⊗ S).

3. Let us denote V0 ∈M(Ŝ ⊗ S) such that V = (ρ⊗ L)(V0). Then, we denote

V := (ρ⊗ idS)(V0) ∈ L(H ⊗ S).

Therefore, V ∈ L(H ⊗ S) is the unique partial isometry such that (id⊗ L)(V) = V .

4. Let us denote:

δA⊗K(x) := V23δ0(x)V∗23, x ∈ A⊗K ; βA⊗K(no) := qβA,α̂(1A ⊗ β(no)), n ∈ N.

Remarks 4.4.7. a) Since α̂ and β commute pointwise, we have that βA⊗K is a (degenerate)
*-homomorphism.

b) δA⊗K : A⊗K →M(A⊗K ⊗ S) is a bounded linear map and it is also clear that we have
δA⊗K(x∗) = δA⊗K(x)∗, for all x ∈ A⊗K. It is worth noting that δA⊗K is unfortunately not
multiplicative in general.

c) Note that δA⊗K is strictly continuous. In particular, δA⊗K extends uniquely to a strictly
continuous linear map δA⊗K :M(A⊗K)→M(A⊗K ⊗ S) and for all m ∈M(A⊗K) we
have δA⊗K(m) = V23δ0(m)V∗23.

We will prove that δA⊗K is coassociative. First, we need the following lemma:

Lemma 4.4.8. For all x ∈M(A⊗K), we have

qβA,α13 (δ0 ⊗ idS)δ0(x) = (δ0 ⊗ idS)δ0(x) = (idA⊗K ⊗ δ)δ0(x) = qβ,α34 (idA⊗K ⊗ δ)δ0(x).
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Proof. Since δ0 is strictly continuous we have δ0(a⊗ 1) = δA(a)13 for all a ∈ A. By the strict
continuity of δ0⊗ idS and δA⊗ idS, it then follows that (δ0⊗ idS)(m13) = (δA⊗ idS)(m)134 for all
m ∈M(A⊗S). Similarly, we have (idA⊗K⊗δ)(m13) = (idA⊗K⊗δ)(m)134 for all m ∈M(A⊗S).
We combine these relations with the fact that (δA ⊗ idS)δA = (idA ⊗ δ)δA to conclude that

(δ0 ⊗ idS)δ0(a⊗ 1H ) = (idA⊗K ⊗ δ)δ0(a⊗ 1H ), a ∈ A.

Now, we also have δ0(1A ⊗ k) = qβA,α13 (1A ⊗ k ⊗ 1S) for all k ∈ K. Besides,

(δ0 ⊗ idS)(1A ⊗ k ⊗ 1S) = qβA,α13 (1A ⊗ k ⊗ 1S ⊗ 1S),

(idA⊗K ⊗ δ)(1A ⊗ k ⊗ 1S) = qβ,α34 (1A ⊗ k ⊗ 1S ⊗ 1S),

for all k ∈ K. We also obtain

(δ0 ⊗ idS)(qβA,α13 ) = qβA,α13 qβ,α34 = (idA⊗K ⊗ δ)(qβA,α13 ),

by using the formulas δA(βA(no)) = qβA,α(1A ⊗ β(no)) and δ(α(n)) = qβ,α(α(n) ⊗ 1S) for all
n ∈ N . Therefore,

(δ0 ⊗ idS)δ0(1A ⊗ k) = qβA,α13 qβ,α34 q
βA,α
13 (1A ⊗ k ⊗ 1S ⊗ 1S) = qβA,α13 qβ,α34 (1A ⊗ k ⊗ 1S ⊗ 1S),

for all k ∈ K since [qβ,α34 , q
βA,α
13 ] = 0. Hence,

(δ0 ⊗ idS)δ0(1A ⊗ k) = (idA⊗K ⊗ δ)δ0(1A ⊗ k), k ∈ K.

Therefore, (δ0 ⊗ idS)δ0(x) = (idA⊗K ⊗ δ)δ0(x) for all x ∈ A⊗K. This equality also holds for all
x ∈M(A⊗K) because of the strict continuity of δ0, δ0⊗ idS and idA⊗K⊗ δ. The other relations
follow from the formulas (δ0 ⊗ idS)(1A⊗K⊗S) = qβA,α13 and (idA⊗K ⊗ δ)(1A⊗K⊗S) = qβ,α34 .

Proposition 4.4.9. For all x ∈M(A⊗K), we have

(δA⊗K ⊗ idS)δA⊗K(x) = (idA⊗K ⊗ δ)δA⊗K(x).

Proof. We have

(δ0 ⊗ idS)(1A ⊗ k ⊗ y) = qβA,α13 (1A ⊗ k ⊗ 1S ⊗ y), k ∈ K, y ∈ S.

Hence, (δ0 ⊗ idS)(x23) = qβA,α13 x24 for all x ∈ K ⊗ S. This equality actually holds true for all
x ∈ M(K ⊗ S) because of the strict continuity of δ0. In particular, up to the identification
M(K ⊗ S) = L(H ⊗ S), we have (δ0 ⊗ idS)(V23) = qβA,α13 V24 ∈ L(A ⊗H ⊗ S ⊗ S). Since
(idK ⊗ δ)(V) = V12V13, we have (idA⊗K ⊗ δ)(V23) = V23V24. Therefore, in virtue of Lemma 4.4.8,
we obtain

(δA⊗K ⊗ idS)δA⊗K(x) = V23(δ0 ⊗ idS)(δA⊗K(x))V∗23

= V23V24q
βA,α
13 (δ0 ⊗ idS)(δ0(x))qβA,α13 V∗24V∗23

= V23V24(idA⊗K ⊗ δ)(δ0(x))V∗24V∗23

= (idA⊗K ⊗ δ)δA⊗K(x),

for all x ∈M(A⊗K).
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Lemma 4.4.10. We have δ0(qβA,α̂) = qβA,α13 qα̂,β23 . For all n ∈ N , we have

δ0(βA⊗K(no)) = qβA,α13 qα̂,β23 (1A ⊗ β(no)⊗ 1S) = qβA,α13 (1A ⊗ β(no)⊗ 1S)qα̂,β23

= (1A ⊗ β(no)⊗ 1S)qβA,α13 qα̂,β23 .

Proof. Let n, n′ ∈ N . We have

δ0(βA(no)⊗ α̂(n′)) = δA(βA(no))13(1A ⊗ α̂(n′)⊗ 1S) = qβA,α13 (1A ⊗ α̂(n′)⊗ β(no)).

In particular, we have δ0(qβA,α̂) = qβA,α13 qα̂,β23 . Therefore, we have

δ0(βA⊗K(no)) = δ0(qβA,α̂)δ0(1A ⊗ β(no)) = qβA,α13 qα̂,β23 (1A ⊗ β(no)⊗ 1S).

The other formulas follow from the fact that β commutes pointwise with α̂.

Proposition 4.4.11. We have δA⊗K(1A⊗K) = qβA,α̂12 qβ,α23 . For all n ∈ N , we have

δA⊗K(βA⊗K(no)) = δA⊗K(1A⊗K)(1A⊗K ⊗ β(no)).

Proof. By Proposition 2.3.5 3, we have V(1H ⊗ α(n)) = (α̂(n) ⊗ 1S)V for all n ∈ N . Hence,
V23q

βA,α
13 = qβA,α̂12 V23. We then have

δA⊗K(1A⊗K) = V23δ0(1A⊗K)V∗23 = V23q
βA,α
13 V∗23 = qβA,α̂12 V23V∗23 = qβA,α̂12 qβ,α23 .

We recall that qα̂,β = V∗V . Hence, qα̂,βV∗ = V∗ since V is a partial isometry. By Lemma 4.4.10,
we then have

δA⊗K(βA⊗K(no)) = V23δ0(βA⊗K(no))V∗23

= V23q
βA,α
13 (1A ⊗ β(no)⊗ 1S)qα̂,β23 V∗23

= qβA,α̂12 V23(1A ⊗ β(no)⊗ 1S)V∗23

= qβA,α̂12 V23V∗23(1A⊗K ⊗ β(no)) (cf. Proposition 2.3.5 3)

= qβA,α̂12 qβ,α23 (1A⊗K ⊗ β(no)),

for all n ∈ N .

We identifyM(A⊗K) (resp.M(A⊗K ⊗ S)) with L(A⊗H ) (resp. L(A⊗H ⊗ S)).

Proposition 4.4.12. We have:

1. For all a ∈ A,

(idA⊗K ⊗ L)δ0(πR(a)) = Σ23(πL ⊗R)(δA(a))Σ23

= qβA,α13 (1A ⊗ U ⊗ 1H )Σ23V23πL(a)12V
∗

23Σ23(1A ⊗ U∗ ⊗ 1H )qβA,α13 ,

δA⊗K(πR(a)) = qβ,α23 (πR(a)⊗ 1S) = qβA,α̂12 qβ,α23 (πR(a)⊗ 1S).

2. For all m ∈M(A), δA⊗K(πR(m)) = qβ,α23 (πR(m)⊗ 1S) = qβA,α̂12 qβ,α23 (πR(m)⊗ 1S).
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3. For all x ∈ Ŝ and y ∈ S,

δA⊗K(1A ⊗ λ(x)L(y)) = qβA,α̂12 (1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y))

= qβA,α̂12 qβ,α23 (1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y)).

4. For all a ∈ A, x ∈ Ŝ and y ∈ S,

δA⊗K(πR(a)(1A ⊗ λ(x)L(y))) = (πR(a)⊗ 1S)(1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y))

= qβA,α̂12 (πR(a)⊗ 1S)(1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y)).

Proof. Let us consider the partial isometry Z = 1A ⊗ (1H ⊗ U∗)V (1H ⊗ U) ∈ L(A⊗H ⊗H )
(see proof of Proposition 4.4.3). Since (idK ⊗ L)σ(t) = Σ(L⊗ idK)(t)Σ for all t ∈ M(S ⊗K),
we have

(idA⊗K ⊗ L)δ0(u) = (idA ⊗ (idK ⊗ L)σ)(δA ⊗ idK)(u) = Σ23(πL ⊗ idK)(u)Σ23,

for all u ∈M(A⊗K). In particular, in virtue of (4.4.2) we have

(idA⊗K ⊗ L)δ0(πR(a)) = Σ23(πL ⊗R)(δA(a))Σ23 = Σ23ZπL(a)12Z
∗Σ23,

for all a ∈ A. However, we have Σ23Z = Ṽ23Σ23 and Σ23πL(a)12Σ23 = πL(a)13 for all a ∈ A. It
then follows that

(idA⊗K ⊗ L)δ0(πR(a)) = Ṽ23πL(a)13Ṽ
∗

23, a ∈ A.

Therefore, we have

(idA⊗K ⊗ L)δA⊗K(πR(a)) = V23Ṽ23πL(a)13Ṽ
∗

23V
∗

23, a ∈ A. (4.4.7)

According to Corollary 3.1.9 1, we have V Ṽ = W ∗(U∗ ⊗ 1)ΣT
β̂,α̂

. Hence,

(idA⊗K ⊗ L)δA⊗K(πR(a)) = W ∗
23(1A ⊗ U∗ ⊗ 1H )T

α̂,β̂,23Σ23πL(a)13Σ23T∗α̂,β̂,23(1A ⊗ U ⊗ 1H )W23

= W ∗
23(1A ⊗ U∗ ⊗ 1H )T

α̂,β̂,23πL(a)12T∗α̂,β̂,23(1A ⊗ U ⊗ 1H )W23,

for all a ∈ A, since Σ23πL(a)13Σ23 = πL(a)12 for all a ∈ A and Σ23T
β̂,α̂,23 = T

α̂,β̂,23Σ23. By using
the fact that α̂(N) ⊂ M ′ and the fact that |νl| = 1 for all 1 6 l 6 k (see Notation 3.1.8), we
have

[πL(a)12,Tα̂,β̂,23] = 0, a ∈ A ; T
α̂,β̂

T∗
α̂,β̂

=
∑

16l6k
α̂(e(l))⊗ β̂(e(l)o).

It then follows that

(idA⊗K ⊗ L)δA⊗K(πR(a)) = W ∗
23
∑

16l6k
(1A ⊗ U∗α̂(e(l))⊗ β̂(e(l)o))πL(a)12(1A ⊗ U ⊗ 1H )W23

=
∑

16l6k
1A ⊗W ∗(α(e(l))⊗ β̂(e(l)o))πR(a)12W23,

since U∗α̂(n) = α(n)U∗ for all n ∈ N and πR(a) = (1A ⊗ U∗)πL(a)(1A ⊗ U) for all a ∈ A.
However, we have W ∗(α(n)⊗ 1) = W ∗(1⊗ β̂(no)) for all n ∈ N (see Proposition 2.3.6 1). Hence,
W ∗(α(e(l))⊗ β̂(e(l)o)) = W ∗(1⊗ β̂(e(l)o)) for all 1 6 l 6 k. Consequently, we have

(idA⊗K ⊗ L)δA⊗K(πR(a)) = W ∗
23πR(a)12W23, for all a ∈ A.
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Moreover, [πR(a)12,W23] = 0 for all a ∈ A since W ∈M ⊗ M̂ and R(S) ⊂M ′. Hence,

(idA⊗K ⊗ L)δA⊗K(πR(a)) = qβ,α23 πR(a)12, for all a ∈ A, (4.4.8)

since W ∗W = qβ,α and the first statement is proved. Note also that [qβ,α23 , πR(a)12] = 0 for all
a ∈ A. The second statement follows from the first one and the strict continuity of πR and δA⊗K.
Let x ∈ Ŝ and y ∈ S, we have

(idA⊗K ⊗ L)δ0(1A ⊗ λ(x)L(y)) = qβA,α13 (1A ⊗ λ(x)L(y)⊗ 1H ).

Since V (1 ⊗ α(n)) = (α̂(n) ⊗ 1)V for all n ∈ N (Proposition 2.3.5 3), we then obtain that
V23q

βA,α
13 = qβA,α̂12 V23. We also have [V, λ(x)⊗ 1] = 0 (because of V ∈ M̂ ′ ⊗M and λ(Ŝ) ⊂ M̂)

and V (L(y)⊗ 1)V ∗ = (L⊗ L)δ(y). Therefore, we have

(idA⊗K ⊗ L)δA⊗K(1A ⊗ λ(x)L(y)) = qβA,α̂12 (1A ⊗ λ(x)⊗ 1H )(1A ⊗ (L⊗ L)δ(y)) (4.4.9)

and the third statement is proved. Note also that qβA,α̂12 commutes with 1A ⊗ λ(x)⊗ 1H and
1A ⊗ (L⊗ L)δ(y). Now, V ∗23V23 = qα̂,β23 commutes with qβA,α13 (since α and β commute pointwise)
and 1A ⊗ λ(x)L(y)⊗ 1H , for all x ∈ Ŝ and y ∈ S (since α̂(N) = M ′ ∩ M̂ ′). Hence,

[(idA⊗K ⊗ L)δ0(1A ⊗ λ(x)L(y)), V ∗23V23] = 0, for all x ∈ Ŝ, y ∈ S.

Therefore, in virtue of (4.4.8) and (4.4.9) we have

(idA⊗K ⊗ L)δA⊗K(πR(a)(1A ⊗ λ(x)L(y)))
= (idA⊗K ⊗ L)δA⊗K(πR(a))(idA⊗K ⊗ L)δA⊗K(1A ⊗ λ(x)L(y))
= πR(a)12q

β,α
23 (1A ⊗ λ(x)⊗ 1H )(1A ⊗ (L⊗ L)δ(y)),

for all a ∈ A, x ∈ Ŝ and y ∈ S. Moreover, qβ,α23 commutes with 1A ⊗ λ(x) ⊗ 1H (because of
β(No) ⊂ M̂ ′) and we have qβ,α(L ⊗ L)δ(y) = (L ⊗ L)δ(y) for all y ∈ S since qβ,α = δ(1S).
Hence,

(idA⊗K ⊗ L)δA⊗K(πR(a)(1A ⊗ λ(x)L(y))) = πR(a)12(1A ⊗ λ(x)⊗ 1H )(1A ⊗ (L⊗ L)δ(y)),

for all a ∈ A, x ∈ Ŝ and y ∈ S.

Corollary 4.4.13. The action (δD, βD) of G on D is given by:

(jD ⊗ idS)δD(d) = δA⊗K(d) = V23δ0(d)V∗23, d ∈ D,

jD(βD(no)) = βA⊗K(no) = qβA,α̂(1A ⊗ L(β(no))), n ∈ N.

Proof. It is enough to verify the first formula for d = πR(a)(1A⊗λ(x)L(y)), where a ∈ A, x ∈ Ŝ
and y ∈ S. Then, the first formula follows from Propositions 4.4.5 1 and 4.4.12 4. The second
formula follows from Proposition 4.4.5 2 and the definition of βA⊗K.

Remark 4.4.14. By strict continuity, we obtain the formulas:

(jD ⊗ idS)δD(m) = δA⊗K(jD(m)) = V23δ0(jD(m))V∗23, m ∈M(D).

Now, we can state the main theorem of this chapter.
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Theorem 4.4.15. Let (A, δA, βA) be a G-C∗-algebra. Let us denote

D = [πR(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S] ⊂ L(A⊗H ).

Then, D is a C∗-algebra and we define a continuous action (δD, βD) of G on D by setting:

(jD ⊗ idS)δD(d) = V23δ0(d)V∗23, d ∈ D ; jD(βD(no)) = qβA,α̂(1A ⊗ L(β(no))), n ∈ N.

The double crossed product ((Ao G) o Ĝ, δ(AoG)oĜ, β(AoG)oĜ) is canonically isomorphic to the
G-C∗-algebra (D, δD, βD). Moreover, if G is regular we have

D = qβA,α̂(A⊗K(H ))qβA,α̂.

For the proof, Proposition 4.4.16 stated below will play a crucial role in the regular case. First,
we need to fix some notations. Let us give a concrete description of the G.N.S. construction
(Hε, πε,Λε) for (N, ε):

• Hε =
⊕

16l6k
Cnl ⊗ Cnl .

• The G.N.S. representation πε : N → B(Hε) is given by:

πε(x) =
⊕

16l6k
xl ⊗ 1Cnl , x = (xl)16l6k ∈ N.

• The G.N.S. map Λε : N →Hε is given by:

Λε(x) = πε(x)ξε, x ∈ N, where ξε =
⊕

16l6k
n
−1/2
l

∑
16i6nl

ε
(l)
i ⊗ ε

(l)
i

and (ε(l)
i )16i6nl is an orthonormal basis of Cnl for each 1 6 l 6 k. In particular, ξε is a

cyclic vector for the representation πε.

Note that if (e(l)
ij ), 1 6 l 6 k, 1 6 i, j 6 nl, is the system of matrix units of N defined by

e
(l)
ij ε

(l′)
r = δll′δ

r
jε

(l)
i , 1 6 l, l′ 6 k, 1 6 r 6 nl′ , 1 6 i, j 6 nl,

then the family
(n−1/2

l πε(e(l)
ij )ξε)16l6k, 16i,j6nl ,

is an orthonormal basis of Hε.

Proposition 4.4.16. Let π : N → B(H) and γ : No → B(K) be two unital *-representations.
We have:

1. For all ξ, η ∈ H, we have qπ,γ(Rπ,ε(ξ)Rπ,ε(η)∗ ⊗ 1K) = qπ,γ(θξ,η ⊗ 1K)qπ,γ.

2. For all ξ, η ∈ K, we have qπ,γ(1H ⊗ Lγ,ε(ξ)Lγ,ε(η)∗) = qπ,γ(1H ⊗ θξ,η)qπ,γ.

In particular, we have:

qπ,γ(Kπ ⊗ 1K) = qπ,γ(K(H)⊗ 1K)qπ,γ, qπ,γ(1H ⊗Kγ) = qπ,γ(1H ⊗K(K))qπ,γ.
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Proof. Let us recall that θξ,η for ξ, η ∈ H is the rank-one operator on H given for all ζ ∈ H by
θξ,η(ζ) = 〈η, ζ〉ξ. Note that since (n−1/2

l Λε(e(l)
rs ))16l6k, 16r,s6nl is an orthonormal basis of Hε (for

the system of matrix units defined above), we have

〈x, y〉ε =
∑

16l6k
n−1
l

∑
16r,s6nl

〈x, Λε(e(l)
rs )〉ε〈Λε(e(l)

rs ), y〉ε, x, y ∈Hε. (4.4.10)

Let us take ξ, η ∈ H. Let ζ, ζ ′ ∈ H and υ, υ′ ∈ K. On one hand, we have

〈ζ⊗υ, qπ,γ(Rπ,ε(ξ)Rπ,ε(η)∗ ⊗ 1K)(ζ ′ ⊗ υ′)〉
=

∑
16l6k

n−1
l

∑
16i,j6nl

〈ζ ⊗ υ, Rπ,ε(ξ)Rπ,ε(η)∗π(e(l)
ij )ζ ′ ⊗ γ(e(l)o

ji )υ′〉,

as Rπ,ε(ξ)Rπ,ε(η)∗ ∈ π(N)′,
=

∑
16l6k

n−1
l

∑
16i,j6nl

〈Rπ,ε(ξ)∗ζ, Rπ,ε(η)∗π(e(l)
ij )ζ ′〉ε〈υ, γ(e(l)o

ji )υ′〉

=
∑

16l,l′6k
n−1
l n−1

l′

∑
16i,j6nl
16r,s6nl′

〈ζ, Rπ,ε(ξ)Λε(e(l′)
rs )〉〈Rπ,ε(η)Λε(e(l′)

rs ), π(e(l)
ij )ζ ′〉〈υ, γ(e(l)o

ji )υ′〉,

in virtue of (4.4.10),
=

∑
16l,l′6k

n−1
l n−1

l′

∑
16i,j6nl
16r,s6nl′

〈ζ, π(e(l′)
rs )ξ〉〈π(e(l′)

rs )η, π(e(l)
ij )ζ ′〉〈υ, γ(e(l)o

ji )υ′〉

=
∑

16l6k
n−2
l

∑
16i,j,s6nl

〈ζ, π(e(l)
is )ξ〉〈η, π(e(l)

sj )ζ ′〉〈υ, γ(e(l)o
ji )υ′〉,

since π(e(l′)
rs )∗π(e(l)

ij ) = π(e(l′)
sr e

(l)
ij ) = δll′δ

i
rπ(e(l)

sj ).

On the other hand, we have

〈ζ ⊗ υ, qπ,γ(θξ,η ⊗ 1H)qπ,γ(ζ ′ ⊗ υ′)〉
=

∑
16l,l′6k

n−1
l n−1

l′

∑
16i,j6nl
16r,s6nl′

〈ζ, π(e(l)
ij )θξ,ηπ(e(l′)

rs )ζ ′〉〈υ, γ(e(l)o
ji e

(l′)o
sr )υ′〉

=
∑

16l6k
n−2
l

∑
16i,j,s6nl

〈η, π(e(l)
js )ζ ′〉〈ζ, π(e(l)

ij )ξ〉〈υ, γ(e(l)o
si )υ′〉.

Therefore, by exchanging the indices j and s in the last summation we obtain

〈ζ ⊗ υ, qπ,γ(Rπ,ε(ξ)Rπ,ε(η)∗ ⊗ 1K)(ζ ′ ⊗ υ′)〉 = 〈ζ ⊗ υ, qπ,γ(θξ,η ⊗ 1K)qπ,γ(ζ ′ ⊗ υ′)〉

for all ζ, ζ ′ ∈ H and υ, υ′ ∈ K. This proves the first statement. The second one is proved by
using similar computations.

Proof of Theorem 4.4.15. The first part of the theorem is just a restatement of Proposition
4.4.3 and Corollary 4.4.13. Assume that G is regular. In particular, by Corollary 3.2.9 4 we
have [λ(Ŝ)L(S)] ⊂ K. Since R is non-degenerate we have R(S)K = K. Therefore, by the
continuity of the action (δA, βA) we have D ⊂ qβA,α̂(A⊗K). Hence, D ⊂ qβA,α̂(A⊗K)qβA,α̂ as
qβA,α̂DqβA,α̂ = D (cf. Proposition-Definition 4.4.1 1). Since δ0 is injective, it suffices to show
that

δ0(qβA,α̂(A⊗K)qβA,α̂) ⊂ δ0(D)

82



to prove the converse inclusion. In virtue of the continuity of the action and the fact that
K = R(S)K, we have

qβA,α̂(A⊗K)qβA,α̂ ⊂ [qβA,α̂πR(a)(1A ⊗ k)qβA,α̂ ; a ∈ A, k ∈ K]
= [πR(a)qβA,α̂(1A ⊗ k)qβA,α̂ ; a ∈ A, k ∈ K].

We have δ0(qβA,α̂) = qβA,α13 qα̂,β23 (see Lemma 4.4.10). For all a ∈ A, k ∈ K, we then have

δ0(πR(a)qβA,α̂(1A ⊗ k)qβA,α̂) = δ0(πR(a))qβA,α13 qα̂,β23 (1A ⊗ k ⊗ 1S)qα̂,β23 q
βA,α
13

since δ0(1A ⊗ k) = qβA,α13 (1A ⊗ k ⊗ 1S) (see proof of Lemma 4.4.8) and [qβA,α13 , qα̂,β23 ] = 0. Now,
in virtue of the regularity of G, we have [λ(Ŝ)L(S)] = Kα̂ by Corollary 3.2.9 4. By applying
Proposition 4.4.16 1 to π := α̂ and γ := β (H := H =: K), we have

qα̂,β(K ⊗ 1S)qα̂,β = qα̂,β(Kα̂ ⊗ 1S) = qα̂,β([λ(Ŝ)L(S)]⊗ 1S).

Then, it follows that δ0(πR(a)qβA,α̂(1A ⊗ k)qβA,α̂) belongs to

[δ0(πR(b))qβA,α13 qα̂,β23 (1A ⊗ λ(x)L(y)⊗ 1S)qβA,α13 ; b ∈ A, x ∈ Ŝ, y ∈ S]

= [δ0(πR(b))qβA,α13 qα̂,β23 (1A ⊗ λ(x)L(y)⊗ 1S) ; b ∈ A, x ∈ Ŝ, y ∈ S],

for all a ∈ A and k ∈ K. Finally, we have

δ0(πR(b))qβA,α13 qα̂,β23 (1A ⊗ λ(x)L(y)⊗ 1S) = δ0(πR(b)(1A ⊗ λ(x)L(y))) ∈ δ0(D),

for all b ∈ A, x ∈ Ŝ and y ∈ S. �

Proposition 4.4.17. Let (A, δA, βA) and (C, δC , βC) be G-C∗-algebras. Let us denote DA and
DC the G-C∗-algebras defined by:

DA := [(idA ⊗R)δA(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S],
DC := [(idC ⊗R)δC(c)(1C ⊗ λ(x)L(y)) ; c ∈ C, x ∈ Ŝ, y ∈ S].

Let f : A→M(C) be a non-degenerate G-equivariant *-homomorphism. Then, there exists a
unique non-degenerate G-equivariant *-homomorphism g : DA →M(DC) such that:

g((idA⊗R)δA(a)(1A⊗λ(x)L(y))) = (idC ⊗R)δC(f(a))(1C ⊗λ(x)L(y)), a ∈ A, x ∈ Ŝ, y ∈ S.

Proof. This is a straightforward consequence of Theorems 4.3.3 2, 4.3.6 2 and 4.4.15.

Remark 4.4.18. In virtue of Remark 4.3.4, the above result holds true for G-equivariant
*-homomorphisms f : A →M(C) such that there exists e ∈ M(C) satisfying [f(A)C] = eC.
Note also that we have g((idA ⊗R)δA(a)) = (idC ⊗R)δC(f(a)) for all a ∈ A.
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Chapter 5

Continuous actions of colinking measured quantum
groupoids

In the whole chapter, we will fix
G := GG1,G2

a colinking measured quantum groupoid associated with two monoidally equivalent locally
compact quantum groups G1 and G2.

5.1 Preliminaries

Notations 5.1.1. For the convenience of the reader, we recall some notations from §2.5:

• Let α, β : C2 →M(S) be the source and target maps of G.

• Let (ε1, ε2) be the canonical basis of the vector space C2. For i, j = 1, 2, we define the
following central self-adjoint projection pij = α(εi)β(εj) ∈ Z(M(S)). It follows from
β(ε1) + β(ε2) = 1S and α(ε1) + α(ε2) = 1S that:

α(εi) = pi1 + pi2, i = 1, 2 ; β(εj) = p1j + p2j, j = 1, 2.

• Let us denote Sij = pijS, for i, j = 1, 2. Then, Sij is a C∗-subalgebra (actually a closed
two-sided ideal) of S. In order to provide a description of δ, for all i, j, k = 1, 2 we consider

ιkij :M(Sik ⊗ Skj)→M(S ⊗ S)

the unique strictly continuous extension of the inclusion Sik ⊗ Skj ⊂ S ⊗ S satisfying
ιkij(1Sik⊗Skj ) = pik⊗pkj. Now, let δkij : Sij →M(Sik⊗Skj) be the unique *-homomorphism
such that

ιkij ◦ δkij(sij) = (pik ⊗ pkj)δ(sij), sij ∈ Sij.

In this paragraph, we will give an equivalent description of the G-C∗-algebras in terms of
G1-C∗-algebras and G2-C∗-algebras. Let (A, δA, βA) be a G-C∗-algebra. Then, βA : C2 →M(A)
is a unital *-homomorphism and δA : A→M(A⊗S) is an injective *-homomorphism satisfying
the conditions of Definition 4.1.2. Note that:

• the fibration map βA is central, that is βA(C2) ⊂ Z(M(A)). Indeed, let n ∈ C2. Since
β(n) ∈ Z(M(S)), we have

δA(βA(n)a) = δA(1A)(1A ⊗ β(n))δA(a) = δA(a)δA(1A)(1A ⊗ β(n)) = δA(aβA(n)),

for all a ∈ A. We then have [βA(n), a] = 0 for all a ∈ A by faithfulness of δA. Hence,
[βA(n),m] = 0 for all m ∈M(A).
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• Let us denote qi = βA(εi) for i = 1, 2. Then, qi is a central self-adjoint projection ofM(A)
and q1 + q2 = 1A. Let us also denote Ai = qiA, i = 1, 2. Then, Ai is a C∗-subalgebra
(actually a closed two-sided ideal) of A and we have A = A1 ⊕ A2.

• We have
qβA,α = q1 ⊗ α(ε1) + q2 ⊗ α(ε2). (5.1.1)

Then, we obtain

δA(qj) = qβA,α(1A ⊗ β(εj)) =
∑
k=1,2

qk ⊗ pkj, j = 1, 2. (5.1.2)

Note that qj 6= 0, j = 1, 2 (unless A = {0}). In particular, the fibration map βA is faithful.

• For j, k = 1, 2, we denote πkj :M(Ak ⊗ Skj)→M(A⊗ S) the unique strictly continuous
extension of the inclusion Ak ⊗ Skj ⊂ A⊗ S satisfying πkj (1Ak⊗Skj) = qk ⊗ pkj.

In case of ambiguity, we will denote πkA,j and qA,j instead of πkj and qj.

Lemma 5.1.2. For all a ∈ A and j, k = 1, 2, we have

(qk ⊗ 1S)δA(qja) = (1A ⊗ α(εk))δA(qja) = (qk ⊗ pkj)δA(a).

Proof. Straightforward consequence of (5.1.2).

Proposition 5.1.3. For all j, k = 1, 2, there exists a unique faithful non-degenerate *-homo-
morphism

δkAj : Aj →M(Ak ⊗ Skj)
such that for all x ∈ Aj, we have

πkj ◦ δkAj(x) = (qk ⊗ pkj)δA(x) = (qk ⊗ 1S)δA(x) = (1A ⊗ α(εk))δA(x) = (1A ⊗ pkj)δA(x).

Moreover, we have:

1. δA(a) =
∑

k,j=1,2
πkj ◦ δkAj(qja), for all a ∈ A.

2. (δlAk ⊗ idSkj)δkAj = (idAl ⊗ δklj)δlAj , for all j, k, l = 1, 2.

3. [δkAj(Aj)(1Ak ⊗ Skj)] = Ak ⊗ Skj, for all j, k = 1, 2. In particular, we have

M(δkAj(Aj)) ⊂M(Ak ⊗ Skj), Ak = [(idAk ⊗ ω)δkAj(aj) ; aj ∈ Aj, ω ∈ B(Hkj)∗].

4. δjAj : Aj →M(Aj ⊗ Sjj) is a continuous action of Gj on Aj.

Proof. First, we have Ran(πkj ) = (qk ⊗ pkj)M(A⊗ S). Indeed, since πkj (1Ak⊗Skj) = qk ⊗ pkj we
have Ran(πkj ) ⊂ (qk ⊗ pkj)M(A⊗ S). Besides, (qk ⊗ pkj)(A⊗ S) = Ak ⊗ Skj ⊂ Ran(πjk). Then,
the inclusion (qk ⊗ pkj)M(A⊗ S) ⊂ Ran(πkj ) follows since πkj is strictly continuous. Therefore,
in virtue of the injectivity of πkj , there exists a unique *-homomorphism δkAj : Aj →M(Ak⊗Skj)
such that (qk ⊗ pkj)δA(x) = πkj ◦ δkAj(x) for all x ∈ Aj. In virtue of Lemma 5.1.2, the first
formulas are then proved. Moreover, by (5.1.2) for all x ∈ Aj we have

δA(x) = δA(qjx) =
∑
k=1,2

(qk ⊗ pkj)δA(x) =
∑
k=1,2

πkj ◦ δkAj(x).
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Hence, if a ∈ A, we have

δA(a) = δA(q1a) + δA(q2a) =
∑

j,k=1,2
πkj ◦ δkAj(qja).

The first statement is proved. It follows from the non-degeneracy of δlAk that δlAk ⊗ idSkj extends
uniquely to a strictly continuous unital *-homomorphism fromM(Ak⊗Skj) toM(Al⊗Slk⊗Skj)
for all j, k, l = 1, 2. By strict continuity, we obtain the following formulas:

(πlk ⊗ idSkj)(δlAk ⊗ idSkj)(T ) = (ql ⊗ plk ⊗ pkj)(δA ⊗ idS)(πkj (T )), T ∈M(Ak ⊗ Skj),

(πlk ⊗ idSkj)(idAl ⊗ δklj)(T ) = (ql ⊗ plk ⊗ pkj)(idA ⊗ δ)(πlj(T )), T ∈M(Al ⊗ Slj).

Therefore, the second statement follows from these formulas, the coassociativity of δA and the
faithfulness of πlk ⊗ idSkj . Let j, k, l = 1, 2 and aj ∈ Aj. If δkAj(aj) = 0, then δlAj(aj) = 0 for
l = 1, 2 in virtue of the injectivity of δklj and the equality (δlAk ⊗ idSkj)δkAj = (idAl ⊗ δklj)δlAj .
By using the first statement, we have δA(aj) = 0. Hence, aj = 0 and δkAj is injective. The
third statement is an immediate consequence of the continuity of the action (δA, βA). By the
non-degeneracy of Skj ⊂ B(Hkj), we obtain the equality

Ak = [(idAk ⊗ ω)(δkAj(aj)) ; aj ∈ Aj, ω ∈ B(Hkj)∗].

The equality [δkAj(Aj)(1Ak ⊗ Skj)] = Ak ⊗ Skj implies that

[δkAj(Aj)(Ak ⊗ Skj)] = Ak ⊗ Skj = [(Ak ⊗ Skj)δkAj(Aj)],

which proves thatM(δkAj (Aj)) ⊂M(Ak ⊗ Skj). The last statement is then straightforward.

Corollary 5.1.4. For j, k = 1, 2, j 6= k, we have:

1. If x ∈ δkAj(Aj), we have (idAk ⊗ δ
j
kj)(x) ∈M(δkAj(Aj)⊗ Sjj).

2. The map
δkAj(Aj) −→ M(δkAj(Aj)⊗ Sjj)

x 7−→ (idAk ⊗ δ
j
kj)(x)

is a continuous action of the quantum group Gj on the C∗-algebra δkAj(Aj).

3. Moreover, the map Aj → δkAj(Aj) ; a 7→ δkAj(a) is a Gj-equivariant *-isomorphism.

Proof. 1. Let us fix x ∈ δkAj (Aj) and let us write x = δkAj (a), for a ∈ Aj . By Proposition 5.1.3 2,
we have (idAk ⊗ δ

j
kj)(x) = (δkAj ⊗ idSjj)δ

j
Aj

(a). Moreover, since δjAj(a) ∈M(Aj ⊗ Sjj) we have

(idAk ⊗ δ
j
kj)(x)(δkAj(a

′)⊗ y) = (δkAj ⊗ idSjj)(δ
j
Aj

(a)(a′ ⊗ y)) ∈ δkAj(Aj)⊗ Sjj, a′ ∈ Aj, y ∈ Sjj.

In a similar way, we have (δkAj(a
′)⊗ y)(idAk ⊗ δ

j
kj)(x) ∈ δkAj(Aj)⊗ Sjj.

2. The map δkAj(Aj)→M(δkAj(Aj)⊗ Sjj) ; x 7→ (idAk ⊗ δ
j
kj)(x) is a faithful *-homomorphism.

The coassociativity is an immediate consequence of the formula (idSkj ⊗ δ
j
jj)δ

j
kj = (δjkj⊗ idSjj )δ

j
kj.

The continuity is a straightforward consequence of the continuity of the action δjAj and the
formula (δkAj ⊗ idSjj)δ

j
Aj

= (idAk ⊗ δ
j
kj)δ

j
Aj

(Proposition 5.1.3 2,4).
3. This follows from the faithfulness of δkAj and the formula (δkAj⊗ idSjj )δ

j
Aj

= (idAk⊗δ
j
kj)δkAj .
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Examples 5.1.5. Let us consider the basic examples:

1. In the case of the trivial action of G on N := C2, the C∗-algebras Ai are identified to C
and Proposition 5.1.3 4 corresponds exactly to the trivial action of Gj on C.

2. Let us consider the G-C∗-algebra (S, δ, β). Then, we have

qj := β(εj) = p1j + p2j, Sj := S1j ⊕ S2j, δkSj := δk1j ⊕ δk2j.

Remark 5.1.6. In the regular case, we will show that the Gj-C∗-algebra δkAj(Aj) described in
Corollary 5.1.4 can be obtained directly by deformation of the Gk-C∗-algebra Ak.

From this concrete description of G-C∗-algebras we can also give a convenient description of the
G-equivariant *-homomorphisms. With the above notations, we have the following result:

Lemma 5.1.7. Let (A, δA, βA) and (B, δB, βB) be two G-C∗-algebras. Let ιk :M(Bk)→M(B)
be the unique strictly continuous extension of the inclusion map Bk ⊂ B such that ιk(1Bk) = qB,k,
for k = 1, 2.

1. Let f : A →M(B) be a non-degenerate G-equivariant *-homomorphism. Then, for all
j = 1, 2, there exists a unique non-degenerate *-homomorphism fj : Aj →M(Bj) such
that for k = 1, 2 we have:

(fk ⊗ idSkj) ◦ δkAj = δkBj ◦ fj. (5.1.3)

Moreover, we have f(a) = ι1 ◦ f1(aqA,1) + ι2 ◦ f2(aqA,2) for all a ∈ A.

2. Conversely, let fj : Aj →M(Bj), for j = 1, 2, be non-degenerate *-homomorphisms such
that (5.1.3 ) holds for all j, k = 1, 2. Then, the map f : A→M(B), given for all a ∈ A by

f(a) := ι1 ◦ f1(aqA,1) + ι2 ◦ f2(aqA,2),

is a non-degenerate G-equivariant *-homomorphism.

Proof. Since f ◦ βA = βB we have f(qA,ja) = qB,jf(a) ∈ qB,jM(B) = ιj(M(Bj)), j = 1, 2.
By faithfulness of ιj, there exists a unique *-homomorphism fj : Aj →M(Bj) such that we
have f(aj) = ιj ◦ fj(aj) for all aj ∈ Aj. It then follows from the equality A = A1 ⊕ A2 that
f(a) = ι1 ◦ f1(qA,1a) + ι2 ◦ f2(qA,2a) for all a ∈ A. Besides, by Proposition 5.1.3 2, we have
δB ◦ ιj = ∑

k π
k
B,j ◦ δkBj . Therefore, we have

δB(f(aj)) = δB(ιj(fj(aj))) =
∑
k=1,2

πkB,j ◦ δkBj(fj(aj)), aj ∈ Aj.

We also have (f ⊗ idS) ◦ πkA,j = πkB,j ◦ (fk ⊗ idSkj). Hence, we obtain

(f ⊗ idS)δA(aj) =
∑
k=1,2

(f ⊗ idS) ◦ πkA,j ◦ δkAj(aj) =
∑
k=1,2

πkB,j ◦ (fk ⊗ idSkj)(δkAj(aj)), aj ∈ Aj.

Note that (qB,i⊗1S)πkB,j(m) = δki π
k
B,j(m) for all i, k = 1, 2 andm ∈M(Bk⊗Skj). It follows from

(f⊗idS)◦δA = δB◦f that πkB,j◦(fk⊗idSkj )◦δkAj = πkB,j◦δkBj ◦fj . Hence, (fk⊗idSkj )◦δkAj = δkBj ◦fj
by faithfulness of πkB,j. The second statement is easily verified.

Therefore, we can state the following result:
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Corollary 5.1.8. With the previous notations, for i = 1, 2, the correspondence

G-C∗-Alg −→ Gi-C∗-Alg ; (A, δA, βA) 7−→ (Ai, δiAi), f ∈ MorG(A,B) 7−→ fi ∈ MorGi(Ai, Bi)

is a functor from the category of G-C∗-algebras to the category of Gi-C∗-algebras.

In order to prove that the correspondences G-C∗-Alg→ Gi-C∗-Alg, i = 1, 2, are equivalences of
categories, we will need the following preparatory lemma:

Lemma 5.1.9. Let A1 and A2 be two C∗-algebras endowed with non-degenerate faithful *-
homomorphisms δkAj : Aj →M(Ak ⊗ Skj) satisfying the conditions 2 and 3 of Proposition 5.1.3.
Let us denote A = A1 ⊕ A2 and let πkj :M(Ak ⊗ Skj)→M(A⊗ S) be the strictly continuous
*-homomorphism extending the canonical injection Ak ⊗ Skj → A⊗ S. Let δA : A→M(A⊗ S)
and βA : C2 →M(A) be the *-homomorphisms given by:

δA(a) =
∑

k,j=1,2
πkj ◦ δkAj(aj), a = (a1, a2) ∈ A ; βA(λ, µ) =

(
λ 0
0 µ

)
, (λ, µ) ∈ C2.

Then, (δA, βA) is a continuous action of G on A.

Proof. First, let us introduce some further notations relevant for this proof. Let us fix j, k = 1, 2.
Let pAk : A → Ak be the canonical surjection, i.e. pAk(a) = ak for a = (a1, a2) ∈ A. Note
that pAk is a non-degenerate *-homomorphism, then it extends to a strictly continuous unital
*-homomorphism from M(A) to M(Ak). Let Ak : M(Ak) → M(A) be the unique strictly
continuous extension of the canonical injection of Ak into A. We will denote qk = Ak(1Ak). Let
Skj : M(Skj) → M(S) be the unique strictly continuous extension of the inclusion Skj ⊂ S
such that Skj(1Skj) = pkj.

The fibration map βA is given by βA(λ, µ) = λq1 + µq2 for all (λ, µ) ∈ C2. Then, βA is a
*-homomorphism since q1 and q2 are two orthogonal self-adjoint projections and it is also clear
that βA is non-degenerate.
Let us prove that δA is injective. We have (1A ⊗ pil)πkj (x) = δki δ

j
l π

k
j (x) for all x ∈M(Ak ⊗ Skj)

and i, j, k, l = 1, 2. Hence, (1A ⊗ pkj)δA(a) = πkj (δkAj(aj)) for all a = (a1, a2) ∈ A and j, k = 1, 2.
In particular, if δA(a) = 0 for some a = (a1, a2) ∈ A, then we have πkj (δkAj(aj)) = 0 for all
j, k = 1, 2. Therefore, aj = 0 for j = 1, 2 by faithfulness of δkAj and π

k
j . Hence, a = 0.

We have δA = ∑
k,j=1,2 π

k
j ◦ δkAj ◦ pAj , then δA extends uniquely to a strictly continuous *-

homomorphism fromM(A) toM(A⊗ S). Besides, we have

δA(m) =
∑

k,j=1,2
πkj ◦ δkAj(mj), m = (m1,m2) ∈M(A1)⊕M(A2).

In particular, since 1A = (1A1 , 1A2) we have

δA(1A) =
∑

k,j=1,2
πkj (δkAj(1Aj)) =

∑
k,j=1,2

Ak(1Ak)⊗pkj =
∑
k=1,2

qk⊗(pk1+pk2) =
∑
k=1,2

βA(εk)⊗α(εk).

We also have δA(Aj(mj)) =
∑
k=1,2

πkj (δkAj(mj)) for all mj ∈M(Aj), j = 1, 2. In particular,

δA(qj) =
∑
k=1,2

πkj (δkAj(1Aj)) =
∑
k=1,2

πkj (1Ak⊗Skj) =
∑
k=1,2

qk ⊗ pkj = δA(1A)(1A ⊗ β(εj)).
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Let us now prove the coassociativity of δA. We have (pAi ⊗ idS)πkj (x) = δki (idAk ⊗ Skj)(x) for
all x ∈M(Ak ⊗ Skj) and i, j, k = 1, 2. We also have

(δA ⊗ idS)(x) =
∑
i,l=1,2

(πli ⊗ idS)(δlAi ⊗ idS)(pAi ⊗ idS)(x), x ∈M(A⊗ S).

Let a = (a1, a2) ∈ A, we then have

(δA ⊗ idS)δA(a) =
∑

k,j=1,2
(δA ⊗ idS)(πkj (δkAj(aj)))

=
∑

i,j,k,l=1,2
(πli ⊗ idS)(δlAi ⊗ idS)(pAi ⊗ idS)πkj (δkAj(aj))

=
∑

j,k,l=1,2
(πlk ⊗ Skj)(δlAk ⊗ idSkj)δkAj(aj)

=
∑

j,k,l=1,2
(πlk ⊗ idS)(idAl ⊗ (idSlk ⊗ Skj)δklj)δlAj(aj).

Besides, Al ⊗ Slk = πlk and Slk ⊗ Skj = ιklj. Then, we have

(πlk ⊗ idS)(idAl ⊗ (idSlk ⊗ Skj)δklj)δlAj(aj) = (Al ⊗ ιklj ◦ δklj)δlAj(aj)
= (1A ⊗ plk ⊗ pkj)(Al ⊗ δ ◦ Slj)δlAj(aj)
= (1A ⊗ plk ⊗ pkj)(idA ⊗ δ)πlj(δlAj(aj)).

However, we have δ(plj) = pl1⊗p1j+pl2⊗p2j and (1A⊗plj)πlj(x) = πlj(x) for all x ∈M(Al⊗Slj).
Therefore, we obtain

(δA ⊗ idS)δA(a) =
∑

j,k,l=1,2
(1A ⊗ plk ⊗ pkj)(idA ⊗ δ)πlj(δlAj(aj))

=
∑

j,l=1,2
(1A ⊗ δ(plj))(idA ⊗ δ)πlj(δlAj(aj))

=
∑

j,l=1,2
(idA ⊗ δ)πlj(δlAj(aj))

= (idA ⊗ δ)δA(a).

It only remains to show that the action (δA, βA) is continuous. We have:

• If x ∈ A⊗ S, we have

δA(1A)x =
∑

k,j=1,2
(qk ⊗ pkj)x =

∑
k,j=1,2

πkj ((pAk ⊗ Lkj)(x)),

where Lkj : S → Skj is the non-degenerate *-homomorphism given by Lkj(y) = pkjy,
y ∈ S.

• If a ∈ A and y ∈ S, we have

δA(a)(1A ⊗ y) =
∑

k,j=1,2
πkj (δkAj(aj)(1Ak ⊗ Lkj(y))).

We combine these statements with the fact that [δkAj (Aj)(1Ak⊗Skj)] = Ak⊗Skj for all j, k = 1, 2
to conclude that [δA(A)(1A ⊗ S)] = δA(1A)(A⊗ S).
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5.2 Morita equivalence between A1 oG1 and A2 oG2

Let (A, δA, βA) be a continuous action of G. In this paragraph, we provide a precise description
of the crossed product Ao G and we obtain a canonical Morita equivalence between the crossed
products A1 oG1 and A2 oG2.

Since δA(1A) = q1 ⊗ α(ε1) + q2 ⊗ α(ε2), we have:

EA,L = EA,1 ⊕ EA,2,

where EA,i is the Hilbert Ai-module Ai ⊗ α(εi)H = (Ai ⊗Hi1) ⊕ (Ai ⊗Hi2), i = 1, 2. Let
us denote B = A o G ⊂ L(EA,L). We recall that B = [ π(a)θ̂(x) ; a ∈ A, x ∈ Ŝ ], where
π :M(A)→M(B) and θ̂ :M(Ŝ)→M(B) are given by:

π(m) = πL(m)�EA,L , m ∈M(A) ; θ̂(x) = (1A ⊗ ρ(x))�EA,L , x ∈M(Ŝ).

It is clear that π (resp. θ̂) defines by restriction to EA,i a faithful *-representation

πi : A→ L(EA,i) (resp. θ̂i : Ŝ → L(EA,i))

of A (resp. Ŝ) on the Hilbert Ai-module EA,i. We have:

πi(a) := π(a)�EA,i=
(

(idAi ⊗ Li1)δiA1(q1a) 0
0 (idAi ⊗ Li2)δiA2(q2a)

)
, a ∈ A,

where Lij : Sij → B(Hij) is the faithful *-homomorphism defined by Lij(y) = pijL(y), y ∈ Sij.
We also have:

θ̂i(x) := (1A ⊗ ρ(x))�EA,i=
(

1Ai ⊗ π̂i(x11) 1Ai ⊗ π̂i(x12)
1Ai ⊗ π̂i(x21) 1Ai ⊗ π̂i(x22)

)
, x ∈ Ŝ.

Let us denote πB the faithful *-representation of B given by the inclusion B ⊂ L(EA,L) (that is
πB = ΨL,ρ). Then, πB defines by restriction to EA,i a faithful *-representation πB,i : B → L(EA,i)
and we have πB,i(π(a)θ̂(x)) = πi(a)θ̂i(x) for all a ∈ A and x ∈ Ŝ. Therefore, we have:

πB,i(π(a)θ̂(x)) =
(

(idAi ⊗ Li1)δiA1(q1a)(1Ai ⊗ π̂i(x11)) (idAi ⊗ Li1)δiA1(q1a)(1Ai ⊗ π̂i(x12))
(idAi ⊗ Li2)δiA2(q2a)(1Ai ⊗ π̂i(x21)) (idAi ⊗ Li2)δiA2(q2a)(1Ai ⊗ π̂i(x22))

)
,

for all a ∈ A and x ∈ Ŝ. Let us denote

E ijk := [πi(qja)θ̂i(xjk) ; a ∈ A, x ∈ Ŝ] = [(idAi ⊗ Lij)δiAj(qja)(1Ai ⊗ π̂i(xjk)) ; a ∈ A, x ∈ Ŝ].

We have E ijk ⊂ L(Ai ⊗Hik, Ai ⊗Hij) and πB,i(B) = (E ijk)j,k=1,2. Furthermore, we have:

E iii = Ai oδiAi
Gi, i = 1, 2.

Theorem 5.2.1. For all i, j, k, l = 1, 2, we have the following statements:

1. (E ijk)∗ = E ikj.

2. [E ijkE ikl] = E ijl.

3. [E ijk(Ai ⊗Hik)] = Ai ⊗Hij.
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For the proof, we will use Proposition 2.5.11 and the following result:

Lemma 5.2.2. For i, j, k = 1, 2, we denote I ijk the canonical injection defined by the composition
L(Ai ⊗Hik, Ai ⊗Hij) ↪→ L(EA,i) ↪→ L(EA,L). Then, for all a ∈ A and x ∈ Ŝ we have:

I ijk(θ̂i(xjk)πi(qka)) = (qi ⊗ pij)θ̂(x)π(a)(qi ⊗ pik),

I ijk(πi(qja)θ̂i(xjk)) = (qi ⊗ pij)π(a)θ̂(x)(qi ⊗ pik).

Proof. This a straightforward computation.

Proof of Theorem 5.2.1. Let us prove the first statement. Let a ∈ A and x ∈ Ŝ. We have
(πi(qja)θ̂i(xjk))∗ = θ̂i((x∗)kj)πi(qja∗). By Lemma 5.2.2, we then have

I ikj((πi(qja∗)θ̂i(xjk))∗) = (qi ⊗ pik)θ̂(x∗)π(a∗)(qi ⊗ pij).

However, it follows from Lemma 4.2.2 that θ̂(x∗)π(a∗) is the norm limit of finite sums of the
form ∑

s π(as)θ̂(xs), where as ∈ A and xs ∈ Ŝ. By continuity of I ikj, it then follows that
I ikj((πi(qja∗)θ̂i(xjk))∗) is the norm limit of finite sums of the form

∑
s

(qi ⊗ pik)π(as)θ̂(xs)(qi ⊗ pij) = I ikj
(∑

s

πi(qkas)θ̂i(xs,jk)
)
, where as ∈ A, xs ∈ Ŝ.

Since I ikj is isometric, it follows that (πi(qja)θ̂i(xjk))∗ ∈ E ikj. Hence, (E ijk)∗ ⊂ E ikj. We also have
(E ikj)∗ ⊂ E ijk, hence (E ijk)∗ = E ikj.
Let us prove the second statement. Let us fix i, j, k, l = 1, 2. Since E ikl = (E ilk)∗ and E ijl = (E ilj)∗,
we have

E ikl = [ θ̂i(xkl)πi(qla) ; x ∈ Ŝ, a ∈ A ], (5.2.1)

E ijl = [ θ̂i(xjl)πi(qla) ; x ∈ Ŝ, a ∈ A ]. (5.2.2)
Therefore, we have

[E ijkE ikl] = [ πi(qja)θ̂i(xjk)θ̂i(x′kl)πi(qla′) ; a, a′ ∈ A, x, x′ ∈ Ŝ ] (5.2.1)
⊂ [ πi(qja)θ̂i(xjl)πi(qla′) ; a, a′ ∈ A, x ∈ Ŝ ] (Proposition 2.5.11 3)
⊂ [πi(Aj)E ijl] = E ijl. (5.2.2)

For the converse inclusion, let us fix a ∈ A and x ∈ Ŝ. Let us prove that πi(qja)θ̂i(xjl) ∈ [E ijkE ikl].
In virtue of Proposition 2.5.11, we have [Ei

jkE
i
kl] = Ei

jl. Therefore, θ̂i(xjl) is the norm limit of
finite sums of the form ∑

s θ̂i(xs,jk)θ̂i(x′s,kl), where xs, x′s ∈ Ŝ. Without loss of generality, we can
assume that θ̂i(xjl) = θ̂i(x′jk)θ̂i(x′′kl), where x′, x′′ ∈ Ŝ. Let us write a = a1a2, where a1, a2 ∈ A.
We then have πi(qja)θ̂i(xjl) = πi(qja1)πi(qja2)θ̂i(x′jk)θ̂i(x′′kl). Since πi(qja2)θ̂i(x′jk) ∈ E ijk = (E ikj)∗

we finally have πi(qja)θ̂i(xjl) ∈ [E ijkE ikl].
Let us prove the last statement. The inclusion [E ijk(Ai⊗Hik)] ⊂ Ai⊗Hij is straightforward. By
the non-degeneracy of π : A→ L(EA,L), we have [π(A)EA,L] = EA,L. Moreover, by Proposition
2.5.11, we also have [Ei

jkHik] = Hij. It then follows that

[πi(Aj)(Ai ⊗Hij)] = Ai ⊗Hij, Ai ⊗Hij = [θ̂i(β(εj)Ŝβ(εk))(Ai ⊗Hik)].

We then combine these two formulas to obtain the converse inclusion. �
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Corollary 5.2.3. Let i, j = 1, 2. Then, E ijj is a C∗-algebra and E iij is a Morita equivalence
between E iii = Ai oδiAi

Gi and E ijj.

Proof. It follows from Theorem 5.2.1 that E ijj is a non-degenerate C∗-subalgebra of L(Ai ⊗Hij)
and we can then considerM(E ijj) as a C∗-subalgebra of L(Ai ⊗Hij) =M(Ai ⊗ K(Hij)). It
also follows from the same theorem that E iij is a E iii-E ijj-bimodule and E iij is a full right (resp.
left) Hilbert E ijj-module (resp. E iii-module) whose E ijj-valued (resp. E iii-valued) inner product is
given by 〈ξ, η〉Eijj = ξ∗ ◦ η (resp. Eiii〈ξ, η〉 = ξ ◦ η∗) for all ξ, η ∈ E iij.

Proposition 5.2.4. There exists a unique *-isomorphism µji : E ijj → E
j
jj such that

(πj ⊗ idK(Hij))(x) = (W j
ji)∗23µji(x)13(W j

ji)23, x ∈ E ijj.

Furthermore, we have µji(πi(qja)θ̂i(xjj)) = πj(qja)θ̂j(xjj) for all a ∈ A and x ∈ Ŝ.

Note that µjj = id. For the proof, we assemble some important formulas in the following lemma:

Lemma 5.2.5. For all i, j, k = 1, 2, we have:

1. (V i
jj)23 = (W j

ki)∗12(V k
jj)23(W j

ki)12.

2. ∀x ∈ Ŝ, 1Hki
⊗ π̂i(xjj) = (W j

ki)∗(1Hki
⊗ π̂k(xjj))W j

ki.

3. ∀a ∈ A, (πj ⊗ idK(Hij))πi(qja) = (W j
ji)∗23πj(qja)13(W j

ji)23.

Proof. The first formula is just a restatement of a the first commutation relation of (2.5.2). Let
ω ∈ B(H )∗, let us denote x = ρ(ω) ∈ Ŝ and ωjj = pjjωpjj ∈ B(Hjj)∗. By Proposition 2.5.11 1,
we have:

π̂i(xjj) = (id⊗ ωjj)(V i
jj), π̂k(xjj) = (id⊗ ωjj)(V k

jj).

Then, 1Hki
⊗ π̂i(xjj) = (W j

ki)∗(1Hki
⊗ π̂k(xjj))W j

ki follows directly from the first statement. Let
a ∈ A, we have

(πj ⊗ idK(Hij))πi(qja) = (πj ⊗ Lij)δiAj(aj)
= (idAj ⊗ Lji ⊗ Lij)(δ

j
Ai
⊗ idSij)δiAj(qja)

= (idAj ⊗ Lji ⊗ Lij)(idAj ⊗ δijj)δ
j
Aj

(qja)
= (idAj ⊗ (Lji ⊗ Lij)δijj)δ

j
Aj

(qja).

However, we have (Lji ⊗ Lij)δijj(y) = (W j
ji)∗(1Hji

⊗ Ljj(y))W j
ji for all y ∈ Sjj. Therefore, we

have (πj ⊗ idK(Hij))πi(qja) = (W j
ji)∗23πj(qja)13(W j

ji)23.

Proof of Proposition 5.2.4. Let a ∈ A and x ∈ Ŝ. In virtue of the statements 2 and 3 of Lemma
5.2.5 (with k = j), we have

(πj ⊗ idK(Hij))(πi(qja)θ̂i(xjj)) = (πj ⊗ idK(Hij))(πi(qja))(1Aj ⊗ 1Hji
⊗ π̂i(xjj))

= (W j
ji)∗23[πj(qja)θ̂j(xjj)]13(W j

ji)∗23.

Let µ̃ji : L(Ai ⊗Hij)→ L(Aj ⊗Hji ⊗Hjj) be the linear map given for all x ∈ L(Ai ⊗Hij) by
µ̃ji(x) = (W j

ji)23(πj ⊗ idK(Hij))(x)(W j
ji)∗23. It is clear that µ̃ji is an injective *-homomorphism.
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Moreover, we have proved that there exists a map µji : E ijj → E
j
jj such that µ̃ji(x) = µji(x)13 for

all x ∈ E ijj. In particular, µij is an injective *-homomorphism. Furthermore, since

µji(πi(qja)θ̂i(xjj)) = πj(qja)θ̂j(xjj),

for all a ∈ A and x ∈ Ŝ, the range of µji contains a total subset of E jjj. However, since µji is
isometric, the range of µji is norm closed in E jjj. Hence, µji(E ijj) = E jjj. �

As a consequence of Corollary 5.2.3 and Proposition 5.2.4, we finally obtain the main result of
this paragraph:

Corollary 5.2.6. The crossed products A1 oG1 and A2 oG2 are canonically Morita equivalent.

Now, we will prove that the C∗-algebra E ijj is endowed with a continuous action of Ĝj , obtained
by restriction of the dual action of (δA, βA) on B = A o G, such that the *-isomorphism µji
defined in Proposition 5.2.4 is equivariant.

Proposition-Definition 5.2.7. For all i, j = 1, 2, let us define:

δEijj(x) = (Ṽ j
ij)23(x⊗ 1Hji

)(Ṽ j
ij)∗23 ∈ L(Ai ⊗Hij ⊗Hjj), x ∈ E ijj.

Then, δEijj : E ijj → M(E ijj ⊗ Ŝjj) is a continuous action of the quantum group Ĝj. Moreover,
µji : E ijj → Aj oGj is a Ĝj-equivariant *-isomorphism.

Proof. We already know that δEjjj = δ
AjoĜj

(cf. [2]) is a continuous action of Ĝj on E jjj = AjoĜj .
It is also clear from the definition that δEijj is a *-homomorphism. In virtue of Corollary 2.5.13,
we have

Ṽ j
ij(π̂i(xjj)⊗ 1Hji

)(Ṽ j
ij)∗ = (π̂i ⊗ π̂j)δ̂(xjj), x ∈ Ŝ. (5.2.3)

Since [(Ṽ j
ij)23, (V k

ij )12] = 0 for k = 1, 2 (see the commutation relations (2.5.2)), we have

[(Ṽ j
ij)23, πi(qja)⊗ 1Hjj

] = 0, a ∈ A. (5.2.4)

We combine (5.2.3) and (5.2.4), then for all a ∈ A and x ∈ Ŝ we have

δEijj(πi(qja)θ̂i(xjj)) = (πi(qja)⊗ 1Hjj
)(1Ai ⊗ (π̂i ⊗ π̂j)δ̂(xjj)) = (πi(qja)⊗ 1Hjj

)(θ̂i ⊗ π̂j)δ̂(xjj).
(5.2.5)

In particular, we have δEijj(πi(qja)θ̂i(xjj)) ∈ M(E ijj ⊗ Ŝjj) for all a ∈ A and x ∈ Ŝ. Hence,
δEijj (E

i
jj) ⊂M(E ijj ⊗ Ŝjj) and δEijj is a non-degenerate *-homomorphism. To complete the proof,

it only remains to show that δAjoGj ◦ µji = (µji ⊗ id
Ŝjj

) ◦ δEijj . But, for all a ∈ A and x ∈ Ŝ we
have

δAjoGj(µji(πi(qja)θ̂i(xjj))) = (Ṽ j
jj)23(µji(πi(qja)θ̂i(xjj))⊗ 1Hjj

)(Ṽ j
jj)∗23

= (Ṽ j
jj)23(πj(qja)θ̂j(xjj)⊗ 1Hjj

)(Ṽ j
jj)∗23 (Proposition 5.2.4)

= (πj(qja)⊗ 1Hjj
)(θ̂j ⊗ π̂j)δ̂(xjj) (5.2.5) with i = j

= (µji ⊗ id
Ŝjj

)((πi(qja)⊗ 1Hjj
)(θ̂i ⊗ π̂j)δ̂(xjj))

= (µji ⊗ id
Ŝjj

)δEijj(πj(qja)θ̂j(xjj)) (5.2.5).
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Remarks 5.2.8. Let us make some comments concerning this paragraph:
1) It should be noted that the Corollary 5.2.6 has been established (with different notations
and conventions) by De Commer in [9] in the case of the trivial action of G on the C∗-algebra
A := No = C2.
Note also that for this action, the C∗-algebras Aj are identified to C, the *-homomorphisms
δkAj : C→M(C⊗Skj) =M(Skj) satisfy δkAj (1) = pkj and we have E ijk = Ei

jk for all i, j, k = 1, 2.
Moreover, the crossed product B = A o G is canonically isomorphic to Ŝ. More precisely,
πB : (B, δB, αB)→ (Ŝ, δ̂, α̂) is a Ĝ-equivariant *-isomorphism.
2) If we apply the results of this paragraph to the action (δ, β) of G on S we obtain that the
C∗-algebras

(S11 oδ1
11
G1)⊕ (S21 oδ1

21
G1), (S12 oδ2

12
G2)⊕ (S22 oδ2

22
G2)

are Morita equivalent.

5.3 Structure of the double crossed product

In this paragraph, we investigate the double crossed product (A o G) o Ĝ for a continuous
action (δA, βA) of a colinking measured quantum groupoid G := GG1,G2 between two monoidally
equivalent locally compact quantum groups G1 and G2. We will need the notations and the
results of the paragraphs 4.4 and 5.1.

Let us fix a G-C∗-algebra (A, δA, βA). We will use the notations of §4.4 in order to describe
the G-C∗-algebra (D, δD, βD) and we take the notations of §5.1 for (A, δA, βA). By the duality
theorem (Theorem 4.4.15), we know that the C∗-algebra

D = [πR(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S]

endowed with the continuous action (δD, βD) of G is canonically G-equivariantly isomorphic to
(Ao G) o Ĝ endowed with the bidual action. Following the discussion of §5.1, we have:

D = D1 ⊕D2, Dj := βD(εj)D = (qj ⊗ β(εj))D, where jD(βD(εj)) = qj ⊗ β(εj), j = 1, 2.

Furthermore, note that δD is completely described by the faithful non-degenerate *-homomor-
phisms δkDj : Dj →M(Dk ⊗ Skj) given by:

πkj ◦ δkDj(x) = (βD(εk)⊗ pkj)δD(x) = (βD(εk)⊗ 1S)δD(x) = (1D ⊗ pkj)δD(x), x ∈ Dj, (5.3.1)

where πkj :M(Dk⊗Skj)→M(D⊗S) is the unique strictly continuous extension of the inclusion
map Dk ⊗ Skj ⊂ D ⊗ S such that πkj (1Dk⊗Skj) = βD(εk)⊗ pkj.

In order to investigate the C∗-algebras Dj and the *-homomorphisms δkDj , we will need some
further notations:

Notations 5.3.1. Let j, k, l = 1, 2.

• We denote Ljk : Sjk → B(Hjk) the faithful *-representation given by Ljk(y) = L(y)�Hjk

for all y ∈ Sjk.

• We recall that Ujk : Hjk →Hkj is the restriction to Hjk of U to the subspace Hjk. Let
Rjk : Sjk → B(Hkj) be the *-representation given by Rjk(y) = UjkLjk(y)U∗jk, y ∈ Sjk.
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• Let ιj : M(Dj) → M(D) be the unique strictly continuous extension of the inclusion
Dk ⊂ D such that ιj(1Dj) = βD(εj), j = 1, 2. We have ιj(M(Dj)) = βD(εj)M(D).

• We consider the following self-adjoint projection qlkj := qk ⊗ plk ⊗ pkj ∈ L(A⊗H ⊗H ).

We finish these preliminaries with a remark about the Hilbert A-module EA,R = qβA,α̂(A⊗H ).
Since qβA,α̂ = q1 ⊗ β(ε1) + q2 ⊗ β(ε2) we have EA,R = EA,R,1 ⊕ EA,R,2, where EA,R,k is the Hilbert
Ak-module (qk ⊗ β(εk))(A⊗H ) = (Ak ⊗H1k)⊕ (Ak ⊗H2k). Furthermore, since A1 and A2
are closed two-sided ideal of A such that A1A2 = {0}, we have K(EA,R) = K(EA,R,1)⊕K(EA,R,2).

Lemma 5.3.2. Let a ∈ A, x ∈ Ŝ and y ∈ S. Let us denote d = πR(a)(1A ⊗ λ(x)L(y)) ∈ D.
Let dj := βD(εj)d = (qj ⊗ β(εj))d ∈ Dj, j = 1, 2. We have:

1. For j = 1, 2, we have dj =
∑

l,l′=1,2
dll′,j, where

dll′,j := πR(qla)(1A ⊗ pljλ(x)pl′jL(y)pl′j) = πR(qla)(1A ⊗ π̂j(λ(xll′))L(y)pl′j), l, l′ = 1, 2.

2. For j, k = 1, 2, we have:

(qk ⊗ β(εk)⊗ pkj)(jD ⊗ L)δD(dj) =
∑

l,l′=1,2
qlkjV23(qk ⊗ plj ⊗ pkj)Σ23(πL ⊗R)(δA(qla))Σ23 · · ·

· · · (1A ⊗ pljλ(x)pl′jL(y)pl′j ⊗ 1H )(qk ⊗ pl′j ⊗ pkj)V ∗23ql′kj.

Proof. 1. Let us fix j = 1, 2. We have dj = (qj ⊗ β(εj))d. Since βD(εj) = qj ⊗ β(εj) is central
we have dj = (qj⊗β(εj))d(1A⊗β(εj)). Since β(εj) is central inM(S) we have [L(y), β(εj)] = 0.
We recall that β(C2) ⊂ M̂ ′ and λ(Ŝ) ⊂ M̂ , hence [λ(x), β(εj)] = 0. By combining these
commutation relations, we obtain

dj = (qj⊗β(εj))πR(a)(1A⊗β(εj)λ(x)β(εj)L(y)) =
∑

l,l′=1,2
(qj⊗β(εj))πR(a)(1A⊗ pljλ(x)pl′jL(y)).

In virtue of the fact that α̂ = β and Lemma 5.1.2, we have

(qj ⊗ β(εj))πR(a)(1A ⊗ plj) = (idA ⊗R)((qj ⊗ α(εj))δA(a)(1A ⊗ pjl))(1A ⊗ plj)
= (idA ⊗R)((qj ⊗ α(εj)pjl)δA(a))(1A ⊗ plj)
= (idA ⊗R)((qj ⊗ pjl)δA(a))(1A ⊗ plj)
= πR(qla)(1A ⊗ plj).

The first statement is then proved since pl′jL(y) = L(y)pl′j.

2. Let us fix j, l, l′ = 1, 2. Let us compute (jD ⊗ L)δD(dll′,j) = V23(idA ⊗ L)δ0(dll′,j)V ∗23
(see Remark 4.4.14). By Proposition 4.4.12, we have

(idA⊗K ⊗ L)δ0(πR(qla)) = Σ23(πL ⊗R)(δA(qla))Σ23.

We also have

(idA⊗K ⊗ L)δ0(1A ⊗ pljλ(x)pl′jL(y)pl′j) = qβA,α13 (1A ⊗ pljλ(x)pl′jL(y)pl′j ⊗ 1H ).

By the commutation relation (1⊗ α(n))V ∗ = V ∗(α̂(n)⊗ 1) (cf. Proposition 2.3.5 3), we have
qβA,α13 V ∗23 = V ∗23q

βA,α̂
12 . Hence,

(jD ⊗ L)δD(dll′,j) = V23Σ23(πL ⊗R)(δA(qla))Σ23(1A ⊗ pljλ(x)pl′jL(y)pl′j ⊗ 1H )V ∗23q
βA,α̂
12 .
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By using the fact that the projections qk ∈M(A), pkj, pjl ∈M(S) are central, we have

(qk ⊗ β(εk)⊗ pkj)(jD ⊗ L)δD(dll′,j)
= (qk ⊗ β(εk)⊗ pkj)V23(1A ⊗ plj ⊗ 1H )Σ23(πL ⊗R)(δA(qla))Σ23 · · ·

· · · (1A ⊗ pljλ(x)pl′jL(y)pl′j ⊗ 1H )(qk ⊗ pl′j ⊗ pkj)V ∗23q
βA,α̂
12 .

By using the following facts: plj = α(εl)plj, [V, α(εl) ⊗ 1] = 0 (see Proposition 2.3.5 2),
β(εk)α(εl) = plk and pkj is central; we obtain

(qk⊗β(εk)⊗pkj)V23(1A⊗plj⊗1H ) = (qk⊗plk⊗pkj)V23(1A⊗plj⊗1H ) = qlkjV23(qk⊗plj⊗pkj).

Similarly, we also have

(qk ⊗ pl′j ⊗ pkj)V ∗23q
βA,α̂
12 = (qk ⊗ pl′j ⊗ pkj)V ∗23(qk ⊗ 1H ⊗ pkj)qβA,α̂12

= (qk ⊗ pl′jα(εl′)⊗ pkj)V ∗23(qk ⊗ β(εk)⊗ pkj)
= (qk ⊗ pl′j ⊗ pkj)V ∗23(qk ⊗ α(εl′)β(εk)⊗ pkj)
= (qk ⊗ pl′j ⊗ pkj)V ∗23ql′kj

and the second statement is proved.

Let us consider the faithful non-degenerate *-homomorphism

πDj : Dj → L(EA,R,j) ; πDj(u) = u�EA,R,j , u ∈ Dj.

If d ∈ D, we have d = πD1(d1) + πD2(d2), where dj = βD(εj)d ∈ Dj. We also consider the
faithful non-degenerate *-homomorphism

πDk ⊗ Lkj : Dk ⊗ Skj → L(EA,R,k ⊗Hkj).

Then, πDj (resp. πDk ⊗ Lkj) extends uniquely to a faithful unital *-homomorphism

πDj :M(Dj)→ L(EA,R,j) (resp. πDk ⊗ Lkj :M(Dk ⊗ Skj)→ L(EA,R,k ⊗Hkj))

and we have:
πDj(m) = jD(ιj(m))�EA,R,j , m ∈M(Dj)

(resp. (πDk ⊗ Lkj)(m) = (jD ⊗ L)πkj (m)�EA,R,k⊗Hkj
, m ∈M(Dk ⊗ Skj)).

Proposition 5.3.3. Let a ∈ A, x ∈ Ŝ and y ∈ S. Let us denote d = πR(a)(1A⊗λ(x)L(y)) ∈ D.
Let dj := βD(εj)d = (qj ⊗ β(εj))d ∈ Dj, j = 1, 2. We have:

1. In L(EA,R,j) =
⊕

l,l′=1,2
L(Aj ⊗Hl′j, Aj ⊗Hlj), we have

πDj(dj) =
∑

l,l′=1,2
(idAj ⊗Rjl)δjAl(qla)(1Aj ⊗ π̂j(λ(xll′))Ll′j(pl′jy)).

2. In L(EA,R,k ⊗Hkj) =
⊕

l,l′=1,2
L(Ak ⊗Hl′k ⊗Hkj, Ak ⊗Hlk ⊗Hkj), we have

(πDk ⊗ Lkj)δkDj(dj) =
∑

l,l′=1,2
(V l

kj)23(Σkj⊗lj)23(idAk ⊗ Lkj ⊗Rjl)((δkAj ⊗ idSjl)δ
j
Al

(qla)) · · ·

· · · (1Ak ⊗ 1Hkj
⊗ π̂j(λ(xll′))Ll′j(pl′jy))(Σl′j⊗kj)23(V l′

kj)∗23.
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Proof. 1. By applying Lemma 5.3.2 1 and by definition of the *-homomorphisms δjAl (see
Proposition 5.1.3), we have

πDj(dll′,j) = (idAj ⊗Rjl)δjAl(qla)(1Aj ⊗ π̂j(λ(xll′))L(y)pl′j) ∈ L(Aj ⊗Hl′j, Aj ⊗Hlj)

and the first statement is proved.
2. We have (πDk ⊗ Lkj)δkDj(dll′,j) = (jD ⊗ L)πkj (δkDj(dll′,j))�EA,R,k⊗Hkj

. Moreover, in virtue of
(5.3.1) we have

(jD⊗L)πkj (δkDj(dll′,j)) = (jD(βD(εk))⊗pkj)(jD⊗L)δD(dll′,j) = (qk⊗β(εk)⊗pkj)(jD⊗L)δD(dll′,j).

We can then apply Lemma 5.3.2 2. We have qlkjV23(qk ⊗ plj ⊗ pkj) = (V l
kj)23(qk ⊗ plj ⊗ pkj) and

(qk ⊗ pl′j ⊗ pkj)V ∗23ql′kj = (qk ⊗ pl′j ⊗ pkj)(V l′
kj)∗23. Moreover, we also have

(qk ⊗ plj ⊗ pkj)Σ23(πL ⊗R)δA(qla) = (qk ⊗ plj ⊗ pkj)Σ23(idA ⊗ L⊗R)((δA ⊗ idS)δA(qla))
= Σ23(idA ⊗ L⊗R)((qk ⊗ pkj ⊗ pjl)(δA ⊗ idS)δA(qla))
= (Σkj⊗lj)23(idAk ⊗ Lkj ⊗Rjl)((δkAj ⊗ idSjl)δ

j
Al

(qla))

and the second statement is proved.

The following lemma says in particular that the Gj-C∗-algebra (Dj, δ
j
Dj

) is a linking Gj-C∗-
algebra (see Definition 1.6.1).

Lemma 5.3.4. For j = 1, 2, we have:

1. For l = 1, 2, there exists a unique nonzero self-adjoint projection el,j ∈M(Dj) such that

jD(ιj(el,j)) = qj ⊗ plj.

2. πDj(el,j) = el,Aj , where el,Aj ∈ L(EA,R,j) is the orthogonal projection on the Hilbert Aj-
module Aj ⊗Hlj.

3. e1,j + e2,j = 1Dj , [Djel,jDj] = Dj.

4. For k = 1, 2, δkDj(el,j) = el,k ⊗ 1Skj .

Proof. 1. We have

jD(M(D)) = {T ∈ L(A⊗H ) ; TD ⊂ D, DT ⊂ D, TjD(1D) = T = jD(1D)T}.

Since jD(1D) = qβA,α̂ = ∑
i=1,2 qi ⊗ β(εi) = ∑

i,k=1,2 qi ⊗ pki and by definition of D we have
qj ⊗ plj ∈ jD(M(D)). Since βD(εj)(qj ⊗ plj) = qj ⊗ plj and βD(εj)M(D) = ιj(M(Dj)),
we actually have qj ⊗ plj ∈ jD(ιj(M(Dj))). This proves that there exists a unique nonzero
self-adjoint projection (by faithfulness of jD and ιj) el,j ∈M(Dj) such that qj⊗plj = jD(ιj(el,j)).

2. πDj(el,j) = jD(ιj(el,j))�EA,R,j= (qj ⊗ plj)�EA,R,j= el,Aj .

3. We have jD(ιj(1Dj)) = jD(βD(εj)) = qj ⊗ β(εj) = jD(ιj(e1,j)) + jD(ιj(e2,j)) because of
β(εj) = p1j + p2j. Hence, 1Dj = e1,j + e2,j by faithfulness of jD and ιj. Let us prove that
[Djel,jDj] = Dj. It is equivalent to prove that [πDj(Dj)el,AjπDj(Dj)] = πDj(Dj). Then, the
result is a consequence of Proposition 5.3.3 1, the fact that [λ(Ŝ)S] is a C∗-algebra and the
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formulas [Ej
ll′,λE

j
l′l′′,λ] = Ej

ll′′,λ (see Remark 2.5.12).

4. It amounts to proving that (jD ⊗ L)πkj δkDj(el,j) = qlkj. It follows from (5.3.1) that for all
m ∈M(Dj), we have πkj δkDj(m) = δD(ιj(m))(βD(εk)⊗ pkj). In particular, we have

(jD ⊗ L)πkj δkDj(el,j) = (jD ⊗ L)(δD(ιj(el,j)))(jD(βD(εk))⊗ pkj)
= (jD ⊗ L)(δD(ιj(el,j)))(qk ⊗ β(εk)⊗ pkj).

However, we have (jD ⊗ L)δD(ιj(el,j)) = V23(idA⊗K ⊗ L)δ0(qj ⊗ plj)V ∗23 (cf. Remark 4.4.14). We
have

δ0(qj ⊗ plj) = δA(βA(εj))13(1A ⊗ plj ⊗ 1S)
= (1A ⊗ 1H ⊗ β(εj))qβA,α13 (1A ⊗ plj ⊗ 1S)
=

∑
r=1,2

qr ⊗ plj ⊗ prj.

We then obtain

(jD ⊗ L)πkj δkDj(el,j) =
∑
r=1,2

V23(qr ⊗ plj ⊗ prj)V ∗23(qk ⊗ β(εk)⊗ pkj)

= V23(qk ⊗ plj ⊗ pkj)V ∗23(qk ⊗ β(εk)⊗ pkj).

However, we have V (plj ⊗ pkj)V ∗(β(εk) ⊗ pkj) = ∑
r=1,2 V (plj ⊗ pkj)V ∗(prk ⊗ pkj) and by

Proposition 2.5.4 we also have (plj ⊗ 1)V ∗(prk ⊗ 1) = δlr(plj ⊗ pkj)V ∗(plk ⊗ pkj). Hence,

V (plj ⊗ pkj)V ∗(β(εk)⊗ pkj) = V (plj ⊗ 1)V ∗(plk ⊗ pkj) = δ(plj)(plk ⊗ pkj) = plk ⊗ pkj.

Hence, (jD ⊗ L)πkj δkDj(el,j) = qk ⊗ plk ⊗ pkj.

Notations 5.3.5. Let us denote

Dll′,j := el,jDjel′,j, Dl,j := Dll,j, j, l, l′ = 1, 2.

The following result is an immediate consequence of Remark 1.6.2, Lemma 5.3.4 and Corollary
5.1.4.

Corollary 5.3.6. Let us fix j, l, l′ = 1, 2. We have:

1. By restriction of the structure of Gj-C∗-algebra on Dj, Dll′,j is a Gj-equivariant Hilbert
Dl,j-Dl′,j-bimodule.

2. If k 6= j, we have:

a) The *-homomorphism (Dj, e1,j, e2,j)→ (δkDj (Dj), e1,k ⊗ 1Skj , e2,k ⊗ 1Skj ) ; x 7→ δkDj (x) is
a *-isomorphism of linking Gj-C∗-algebras.

b) δkDj(Dll′,j) is a Gj-equivariant Hilbert δkDj(Dl,j)-δkDj(Dl′,j)-bimodule. Furthermore, by
restriction of the *-isomorphism described in a), the Gj-equivariant Hilbert Dl,j-Dl′,j-
bimodule Dll′,j is canonically isomorphic to the Hilbert δkDj(Dl,j)-δkDj(Dl′,j)-bimodule
δkDj(Dll′,j) over the *-isomorphisms:

Dl,j → δkDj(Dl,j), Dl′,j → δkDj(Dl′,j).
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The case where G1 and G2 are regular. In this pararaph, we provide a more precise
description of the double crossed product in the regular case. In the following, we assume G1
and G2 to be regular. In this situation, we know from Theorem 3.2.19 and the duality theorem
(see Theorem 4.4.15) that

D = qβA,α̂(A⊗K(H ))qβA,α̂ ⊂ L(A⊗H ).

We recall that EA,R = qβA,α̂(A ⊗H ) = EA,R,1 ⊕ EA,R,2, where EA,R,j = Aj ⊗ (H1j ⊕H2j), for
j = 1, 2. Since qj is central, we have

D =
⊕

j,l,l′=1,2
(qj ⊗ plj)(A⊗K(H ))(qj ⊗ pl′j) =

⊕
j,l,l′=1,2

Aj ⊗K(Hl′j,Hlj).

Hence,
πDj(Dj) =

⊕
l,l′=1,2

Aj ⊗K(Hl′j,Hlj), j = 1, 2. (5.3.2)

In particular, πDj takes its values in K(EA,R,j) and πDj : Dj → K(EA,R,j) is actually a *-
isomorphism of linking algebras.

In the following, we will use the canonical identification K(EA,R,j) = Aj ⊗K(H1j ⊕H2j). Let
us introduce some notations that will be useful to describe the linking algebras Dj and the
*-homomorphisms δkDj in this case.

Notations 5.3.7. Let j, k, l, l′ = 1, 2.

1. We denote:

Bk := πDk(Dk) = Ak ⊗K(H1k ⊕H2k), Bll′,k := Ak ⊗K(Hl′k,Hlk),

Bl,k := Bll,k = Ak ⊗K(Hlk).

2. Let δkBj : Bj →M(Bk ⊗ Skj) be the faithful non-degenerate *-homomorphism given by

(πDk ⊗ idSkj)δkDj = δkBj ◦ πDj .

3. Let δkBj ,0 : Bj →M(Ak ⊗K(H1j ⊕H2j)⊗ Skj) be the faithful *-homomorphism given by:

δkBj ,0(a⊗ T ) = δkAj(a)13(1Ak ⊗ T ⊗ 1Skj), a ∈ Aj, T ∈ K(H1j ⊕H2j).

4. Let δkBll′,j ,0 : Bll′,j → L(Ak ⊗ K(Hl′j) ⊗ Skj, Ak ⊗ K(Hl′j,Hlj) ⊗ Skj) be the linear map
given by:

δkBll′,j ,0(a⊗ T ) = δkAj(a)13(1Ak ⊗ T ⊗ 1Skj), a ∈ Aj, T ∈ K(Hl′j,Hlj).

5. Let δkBll′,j : Bll′,j → L(Bl′,k ⊗ Skj,Bll′,k ⊗ Skj) be the linear map given by:

δkBll′,j(T ) = (V l
kj)23δ

k
Bll′,j ,0(T )(V l′

kj)∗23, T ∈ Bll′,j.

We also denote:
δkBl,j := δkBll,j : Bl,j → L(Bl,k ⊗ Skj).
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Proposition 5.3.8. For all j, k, l, l′ = 1, 2, we have:

1. Bl,j is a C∗-algebra. Moreover, endowed with the natural actions of Bl,j and Bl′,j, Bll′,j is
a Hilbert Bl,j-Bl′,j-bimodule.

2. πDj(Dll′,j) = Bll′,j.

3. For all ξ ∈ Bll′,j, we have

δkBll′,j(ξ) = (V l
kj)23(idAk ⊗ σ)(δkAj ⊗ idK(Hl′j ,Hlj))(ξ)(V l′

kj)∗23,

where σ : Skj ⊗K(Hl′j,Hlj)→ K(Hl′j,Hlj)⊗ Skj ; s⊗ T 7→ T ⊗ s is the flip map.

Proof. The first statement follows from the formulas:

(Bll′,j)∗ = Bl′l,j, [Bll′,jBl′l′′,j] = Bll′′,j, j, l, l′, l′′ = 1, 2,

which follow from the fact that Aj is a C∗-algebra and the following elementary fact: if H , K
and L are Hilbert spaces (with H non zero) we have K(E ,K ) = [K(H ,K )K(E ,H )]. This
actually proves that Bll′,j is a Morita equivalence between the C∗-algebras Bl,j and Bl′,j. Note
that we also have [Bll′,j(Aj ⊗Hl′j)] = Aj ⊗Hlj.
The second statement is an immediate consequence of (5.3.2) and Lemma 5.3.4 2. To prove
the third one, it is enough to see that the formula holds for ξ = πDj(dll′,j) (see the notations of
Lemma 5.3.2). However, in that case this is exactly the formula of Proposition 5.3.3 2.

Proposition 5.3.9. Let j, l, l′ = 1, 2, we have:

1. δjBl,j : Bl,j → M(Bl,j ⊗ Sjj) is a continuous action of the quantum group Gj on the
C∗-algebra Bl,j.

2. Up to the identification Aj oGj o Ĝj = Aj ⊗K(Hjj) (cf. Theorem 1.5.3), the continuous
action δjBj,j of Gj is the bidual action on the double crossed product Aj oGj o Ĝj.

3. If l 6= l′, then (Bll′,j, δjBll′,j) is a Gj-equivariant Morita equivalence between the Gj-C∗-
algebras Bl,j = Aj ⊗K(Hlj) and Bl′,j = Aj ⊗K(Hl′j).

Proof. The first statement follows from the fact that Dl,j is a Gj-C∗-algebra by restriction of
the structure of Gj-C∗-algebra on Dj. For the second one, there is actually nothing to prove.
Finally, it follows from the statements 1 and 2 of Proposition 5.3.8 that the *-isomorphism
πDj : Dj → Aj ⊗ (H1j ⊕H2j) induces by restriction to the Gj-equivariant Hilbert Dl,j-Dl′,j-
bimodule Dll′,j (see Corollary 5.3.6 1) an isomorphism of Gj-equivariant Hilbert bimodules from
Dll′,j to Bll′,j over the Gj-equivariant isomorphisms Dl,j → Bl,j and Dl′,j → Bl′,j.

Notation 5.3.10. For j, l, l′ = 1, 2, we denote

γll′,j := (Bl,j,Bll′,j,Bl′,j)

the Gj-equivariant Morita equivalence of the Gj-C∗-algebras Bl,j and Bl′j given by the Hilbert
bimodule Bll′,j (see Proposition 5.3.9 3).

For the internal tensor product of equivariant bimodules, we refer the reader to [3] (see
Proposition 2.10).
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Proposition 5.3.11. For all j, l, l′, l′′ = 1, 2, we have

γll′′,j = γll′,j ⊗Bl′,j γl′l′′,j.

Proof. It is clear that the map

π : Bll′,j ⊗Bl′,j Bl′l′′,j −→ Bll′′,j

ξ ⊗Bl′,j η 7−→ ξ ◦ η

is an isomorphism of Hilbert Bl,j-Bl′′,j-bimodules. Let us show that π is Gj-equivariant. The
structure of Gj-equivariant Hilbert Bl′′,j-module on Bll′,j ⊗Bl′,j Bl′l′′,j is given by

Bll′,j ⊗Bl′,j Bl′l′′,j −→ L(Bl′′,j ⊗ Sjj, (Bll′,j ⊗Bl′,j Bl′l′′,j)⊗ Sjj)

ξ ⊗Bl′,j η 7−→ ∆(ξ, η) := (δjBll′,j(ξ)⊗Bl′,j⊗Sjj idSjj) ◦ δ
j
Bl′l′′,j(η).

By Proposition 5.3.8 2, we have the formula

(π ⊗ idSjj)(∆(ξ, η)) = δjBll′′,j(π(ξ ⊗Bl′,j η)), ξ ∈ Bll′,j, η ∈ Bl′l′′,j

and the result follows.

Notation 5.3.12. For j, k = 1, 2, j 6= k, we denote:

E jll′,k := δkBll′,j(Bll′,j) ⊂ L(Bl′,k ⊗ Skj,Bll′,k ⊗ Skj).

The following formulas:

δkBl,j(a)δkBll′,j(ξ) = δkBll′,j(aξ), ξ ∈ Bll′,j, a ∈ Bl,j,

δkBll′,j(ξ)δ
k
Bl′,j(a) = δkBll′,j(ξa), ξ ∈ Bll′,j, a ∈ Bl′,j,

〈δkBll′,j(ξ), δ
k
Bll′,j(η)〉 := δkBl′l,j(ξ

∗)δkBll′,j(η) = δkBl′,j(ξ
∗η), ξ, η ∈ Bll′,j,

endow E jll′,k with a structure of Hilbert δkBl,j(Bl,j)-δ
k
Bl′,j(Bl′,j)-bimodule. In what follows, we will

provide an explicit formula for the action of Gj on E jll′,k obtained from that of Gj on Bll′,j by
transport of structure.

Lemma 5.3.13. For all j, k, l, l′ = 1, 2, we have:

1. δkBl′,j(Bl′,j) is a non-degenerate C∗-subalgebra ofM(Bl′,k ⊗ Skj). Then, the inclusion map
δkBl′,j(Bl′,j) ⊂M(Bl′,k ⊗ Skj) extends to a unital faithful *-homomorphism

M(δkBl′,j(Bl′,j)) ⊂M(Bl′,k ⊗ Skj).

2. We have the following canonical inclusions:

L(δkBl′,j(Bl′,j), δ
k
Bll′,j(Bll′,j)) ⊂ L(Bl′,k ⊗ Skj,Bll′,k ⊗ Skj),

L(δkBl′,j(Bl′,j)⊗ Sjj, δ
k
Bll′,j(Bll′,j)⊗ Sjj) ⊂ L(Bl′,k ⊗ Skj ⊗ Sjj,Bll′,k ⊗ Skj ⊗ Sjj).
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Proof. By Proposition 5.1.3 3, we have [δkDj(Dj)(1Dk ⊗ Skj)] = Dk ⊗ Skj. It then follows from
Lemma 5.3.4 4 that

[δkDj(Dll′,j)(1Dl′,k ⊗ Skj)] = Dll′,k ⊗ Skj.

By composing with πDk ⊗ idSkj , we obtain

[δkBll′,j(Bll′,j)(1Bl′,k ⊗ Skj)] = Bll′,k ⊗ Skj.

It then follows from the equality [Bll′,kBl′,k] = Bll′,k that [δkBll′,j(Bll′,j)(Bl′,k ⊗ Skj)] = Bll′,k ⊗ Skj,
which proves 1 by taking l = l′ and gives also a canonical embedding

L(δkBl′,j(Bl′,j), δ
k
Bll′,j(Bll′,j)) ⊂ L(Bl′,k ⊗ Skj,Bll′,k ⊗ Skj).

The second canonical embedding follows immediately by taking the tensor product by the
C∗-algebra Sjj.

Notation 5.3.14. By the inclusion E jll′,k := δkBll′,j(Bll′,j) ⊂ L(δkBl′,j(Bl′,j), δ
k
Bll′,j(Bll′,j)) and

Lemma 5.3.13 2, we obtain an injective linear map

E jll′,k → L(Bl′,k ⊗ Skj ⊗ Sjj,Bll′,k ⊗ Skj ⊗ Sjj) ; T 7→ T12.

Therefore, we can consider the linear map

δjll′,k : E jll′,k → L(Bl′,k ⊗ Skj ⊗ Sjj,Bll′,k ⊗ Skj ⊗ Sjj)

defined by the formula
δjll′,k(T ) = (V k

jj)23T12(V k
jj)∗23, T ∈ E jll′,k.

Proposition 5.3.15. For j, k = 1, 2, j 6= k, we have:

1. The linear map δjll′,k takes its values in L(δkBl′,j(Bl′,j)⊗ Sjj, E
j
ll′,k ⊗ Sjj).

2. The map
(Bll′,j, δjBll′,j) −→ (E jll′,k, δ

j
ll′,k)

ξ 7−→ δkBll′,j(ξ)

is an isomorphism of Gj-equivariant Hilbert bimodules over the *-isomorphisms of C∗-
algebras δkBl,j : Bl,j → δkBl,j(Bl,j) and δkBl′,j : Bl′,j → δkBl′,j(Bl′,j).

Proof. In virtue of Corollary 5.1.4 applied to the continuous bidual action (δD, βD) of G on the
C∗-algebra D, we obtain a Gj-equivariant *-isomorphism:

(Dj, δ
j
Dj

) −→ (δkDj(Dj), idDk ⊗ δ
j
kj)

x 7−→ δkDj(x).

By Lemma 5.3.4 2, 4 and Corollary 5.3.6 2 a), we obtain that

(πDk ⊗ idSkj)δkDj : Dj →M(Bk ⊗ Skj) (Bk := Ak ⊗K(H1k ⊕H2k))

is a faithful *-homomorphism of linking algebras and we have

(πDk ⊗ idSkj)δkDj(d) = δkBll′,j(πDj(d)), d ∈ Dll′,j. (5.3.3)
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By Proposition 5.1.3 2, we also have

(idDll′,k ⊗ δ
j
kj)δkDj(d) = (δkDj ⊗ idSjj)δ

j
Dj

(d), d ∈ Dll′,j.

We then compose with πDk ⊗ idSkj ⊗ idSjj and we use (5.3.3) and Proposition 5.3.8 2 to conclude
that

(idBll′,k ⊗ δ
j
kj)δkBll′,j(x) = (δkBll′,j ⊗ idSjj)δ

j
Bll′,j(x), x ∈ Bll′,j.

Let us consider the following bijective linear map Φ : Bll′,j → E jll′,k ; x 7→ δkBll′,j(x). Then, we
have

(idBll′,k ⊗ δ
j
kj)(ξ) = (Φ⊗ idSjj)δ

j
Bll′,j(Φ

−1(ξ)), ξ ∈ E jll′,k.

However, we have δjkj(s) = V k
jj(s⊗ 1Sjj )(V k

jj)∗ for all s ∈ Skj. Therefore, for all ξ ∈ E
j
ll′,k we have

(idBll′,k ⊗ δ
j
kj)(ξ) = δjll′,k(ξ). It then follows that

δjll′,k(Φ(x)) = (Φ⊗ idSjj)δ
j
Bll′,j(x), x ∈ Bkll′,j.

In particular, (E jll′,k, δ
j
ll′,k) is a Gj-equivariant Hilbert bimodule and we have also proved that

the map Φ : (Bll′,j, δjBll′,j)→ (E jll′,k, δ
j
ll′,k) is an isomorphism of Gj-equivariant Hilbert bimodules

over the isomorphisms of C∗-algebras:

Ψl : Bl,j → δkBl,j(Bl,j) ; x 7→ δkBl,j(x), Ψl′ : Bl′,j → δkBl′,j(Bl′,j) ; x 7→ δkBl′,j(x).
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Chapter 6

Induction of actions

6.1 Correspondence between the actions of G1 and G2

In this paragraph, we fix a colinking measured quantum groupoid

G := GG1,G2

between two regular locally compact quantum groups G1 and G2 and we continue to use all the
notations introduced in §2.4 and §2.5 concerning the objects associated with G.

We have already proved in §5.1 that we can associate to any G-C∗-algebra a Gi-C∗-algebra
(Ai, δiAi) for i = 1, 2 in a canonical way. If G is regular, we will prove that the functor
(A, δA, βA)→ (A1, δ

1
A1) is an equivalence of categories and we will build explicitly the inverse

functor (A1, δA1)→ (A, δA, βA). More precisely, to any G1-C∗-algebra (A1, δA1) we associate a
G2-C∗-algebra (A2, δA2) in a canonical way. Then, we will equip the C∗-algebra A := A1 ⊕ A2
with a structure of G-C∗-algebra (δA, βA). This will allow us to build the inverse functor
(A1, δA1) → (A, δA, βA). The equivalence of categories (A1, δA1) → (A2, δA2) generalizes the
correspondence of actions for monoidally equivalent compact quantum groups of De Rijdt and
Vander Vennet [12]. We recall that an induction procedure has been developed by De Commer
in the von Neumann algebraic setting (see [9] §8).

Notations 6.1.1. Let δA1 : A1 →M(A1 ⊗ S11) be a continuous action of G1 on a C∗-algebra
A1. Let us denote:

δ1
A1 := δA1 , δ

(2)
A1 := (idA1 ⊗ δ2

11)δA1 : A1 →M(A1 ⊗ S12 ⊗ S21).

Then, δ(2)
A1 is a faithful non-degenerate *-homomorphism. In the following, we will identify S21

with L21(S21) ⊂ B(H21). We define

IndG2
G1(A1) := [(idA1 ⊗ idS12 ⊗ ω)δ(2)

A1 (a) ; a ∈ A1, ω ∈ B(H21)∗] ⊂M(A1 ⊗ S12).

Note that IndG2
G1(A1) = [(idA1 ⊗ idS12 ⊗ ωξ,η)δ

(2)
A1 (a) ; a ∈ A1, ξ, η ∈H21].

The main result of this paragraph is the following:

Proposition 6.1.2. IndG2
G1(A1) is a C∗-subalgebra ofM(A1 ⊗ S12).

Proof. Let ω ∈ B(H21)∗ and a ∈ A1. We have

(idA1 ⊗ idS12 ⊗ ω)(δ(2)
A1 (a))∗ = (idA1 ⊗ idS12 ⊗ ω)(δ(2)

A1 (a∗)).
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Therefore, IndG2
G1(A1) is stable by involution. Let ξ, η, ξ′, η′ ∈ H21, a, a′ ∈ A1. Let us denote

x = (idA1 ⊗ idS12 ⊗ ωξ,η)δ
(2)
A1 (a) and x′ = (idA1 ⊗ idS12 ⊗ ωξ′,η′)δ

(2)
A1 (a′). We have to prove that

xx′ = (idA1 ⊗ idS12 ⊗ ωξ,η ⊗ ωξ′,η′)(δ
(2)
A1 (a)123δ

(2)
A1 (a′)124) ∈ IndG2

G1(A1).

Since H11 and H21 are nonzero Hilbert spaces, we have

H21 = [K(H11,H21)H11], H21 = [K(H21)H21].

We can then assume that η = kη1 and ξ′ = `ξ′1, where η1 ∈ H21, ξ′1 ∈ H11, k ∈ K(H21) and
` ∈ K(H11,H21). Since ωξ,η = kωξ,η1 and ωξ′,η′ = ωξ′1,η`

∗, we have

xx′ = (idA1 ⊗ idS12 ⊗ ωξ,η1 ⊗ ωξ′1,η′)(δ
(2)
A1 (a)123(k ⊗ `∗)34δ

(2)
A1 (a′)124).

Note that G1 and G2 are regular by assumption and k ⊗ `∗ ∈ K(H21 ⊗H21,H21 ⊗H11). In
virtue of Corollary 3.2.20 (see also Remarks 3.2.21 2), we have

K(H21 ⊗H21,H21 ⊗H11) ⊂ [(1H21 ⊗K(H11))(W 1
21)∗(K(H21)⊗ 1H21)].

Therefore, xx′ is the norm limit of finite sums of the form∑
i

(idA1 ⊗ idS12 ⊗ ωξ,η1 ⊗ ωξ′1,η′)(δ
(2)
A1 (a)123((1H21 ⊗ ki)(W 1

21)∗(`i ⊗ 1H21))34δ
(2)
A1 (a′)124)

=
∑
i

(idA1 ⊗ idS12 ⊗ `iωξ,η1 ⊗ ωξ′1,η′ki)(δ
(2)
A1 (a)123(W 1

21)∗34δ
(2)
A1 (a′)124)

=
∑
i

(idA1 ⊗ idS12 ⊗ (W 1
21)∗(ωξ,η1`i ⊗ kiωξ′1,η′))(δ

(2)
A1 (a)123(W 1

21)∗34δ
(2)
A1 (a′)124(W 1

21)34),

where ki ∈ K(H11), `i ∈ K(H21). Therefore, xx′ is the norm limit of finite sums of elements of
the form:

y = (idA1 ⊗ idS12 ⊗ ω ⊗ ω′)(δ
(2)
A1 (a)123(W 1

21)∗34δ
(2)
A1 (a′)124(W 1

21)34), ω ∈ B(H21)∗, ω′ ∈ B(H11)∗.

Since δ1
21(s) = (W 1

21)∗(1⊗ s)W 1
21 for all s ∈ S21, we have

(W 1
21)∗34δ

(2)
A1 (a′)124(W 1

21)34 = (idA1 ⊗ idS12 ⊗ δ1
21)δ(2)

A1 (a′).

Since (idS12 ⊗ δ1
21)δ2

11 = (δ2
11 ⊗ idS11)δ1

11 and (idA1 ⊗ δ1
11)δA1(a′) = (δA1 ⊗ idS11)δA1(a′), we have

(idA1 ⊗ idS12 ⊗ δ1
21)δ(2)

A1 (a′) = (δ(2)
A1 ⊗ idS11)δA1(a′).

Hence,
y = (idA1 ⊗ idS12 ⊗ ω ⊗ ω′)(δ

(2)
A1 (a)123(δ(2)

A1 ⊗ idS11)δA1(a′)).

Let us write ω′ = sω′′, where s ∈ S11 and ω′′ ∈ B(H11)∗. By using the continuity of the action
δA1 , y = (idA1 ⊗ idS12 ⊗ ω ⊗ ω′′)( δ

(2)
A1 (a)123(δ(2)

A1 ⊗ idS11)(δA1(a′)(1A1 ⊗ s)) ) is the norm limit of
finite sums of the form∑

i

(idA1 ⊗ idS12 ⊗ ω ⊗ ω′)(δ
(2)
A1 (a)123(δ(2)

A1 (ai)⊗ si)) =
∑
i

ω′(si)(idA1 ⊗ idS12 ⊗ ω)δ(2)
A1 (aai),

where si ∈ S11, ai ∈ A1. The result is then proved.
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Remarks 6.1.3. 1. Actually, we have even proved that for all ω, ω′ ∈ B(H21)∗ we have:

(idA1 ⊗ idS12 ⊗ ω ⊗ ω′)(δ
(2)
A1 (m)123δ

(2)
A1 (a)124) ∈ IndG2

G1(A1), m ∈M(A1), a ∈ A1.

This remark will be used several times.

2. Proposition 6.1.2 holds true for strongly continuous actions of semi-regular locally compact
quantum groups.

3. The idea of the proof of Proposition 6.1.2 is the same as that of Proposition 5.8 of [4].

Proposition 6.1.4. Let us denote A2 := IndG2
G1(A1) ⊂M(A1 ⊗ S12). We have:

1. [A2(1A1⊗S12)] = A1⊗S12 = [(1A1⊗S12)A2]. In particular, the inclusion A2 ⊂M(A1⊗S12)
defines a faithful non-degenerate *-homomorphism and we haveM(A2) ⊂M(A1 ⊗ S12).

2. Let us denote δA2 := (idA1 ⊗ δ2
12)�A2. We have δA2(A2) ⊂ M(A2 ⊗ S22) and δA2 is a

continuous action of G2 on A2.

3. The correspondence IndG2
G1 : G1-C∗-Alg→ G2-C∗-Alg is functorial.

Proof. 1. Let us prove the inclusion [A2(1A1 ⊗ S12)] ⊂ A1 ⊗ S12. Let ω ∈ B(H21)∗, a ∈ A1 and
s ∈ S12. Let us denote x = (idA1 ⊗ idS12 ⊗ ω)δ(2)

A1 (a). Let us show that x(1A1 ⊗ s) ∈ A1 ⊗ S12.
Let us write ω = s′ω′, where s′ ∈ S21 and ω′ ∈ B(H21)∗. We have

x(1A1 ⊗ s) = (idA1 ⊗ idS12 ⊗ ω′)(δ
(2)
A1 (a)(1A1 ⊗ s⊗ s′)).

Since S12 ⊗ S21 = [δ2
11(S11)(S12 ⊗ 1S21)] (see Proposition 2.5.7) and s⊗ s′ ∈ S12 ⊗ S21, it follows

that x(1A1 ⊗ s) is the norm limit of finite sums of elements of the form

z = (idA1 ⊗ idS12 ⊗ ω′)(δ
(2)
A1 (a)(1A1 ⊗ δ2

11(y))(1A1 ⊗ y′ ⊗ 1S21))
= (idA1 ⊗ idS12 ⊗ ω′)( (idA1 ⊗ δ2

11)(δA1(a)(1A1 ⊗ y)) )(1A1 ⊗ y′),

where y ∈ S11 and y′ ∈ S12. By continuity of the action δA1 , z is the norm limit of finite sums
of the form: ∑

i

ai ⊗ (idS12 ⊗ ω′)(δ2
11(yi))y′, ai ∈ A1, yi ∈ S11.

Hence, x(1A1 ⊗ s) ∈ A1 ⊗ S12 since (idS12 ⊗ ω′)(δ2
11(yi)) ∈M(S12). In a similar way, we obtain

the converse inclusion by applying successively the following formulas (cf. Proposition 2.5.7 3):

S12 = [(idS12 ⊗ ω)(δ2
11(s)) ; s ∈ S11, ω ∈ B(H21)∗], A1 ⊗ S11 = [δA1(A1)(1A1 ⊗ S11)],

[δ2
11(S11)(1S12 ⊗ S21)] = S12 ⊗ S21.

2. It is clear that δA2 is a faithful *-homomorphism. Let us prove that δA2 takes its values in
M(A2 ⊗ S22). Let a ∈ A1 and ω ∈ B(H21)∗. Let us denote x = (idA1 ⊗ idS12 ⊗ ω)δ(2)

A1 (a). Let
us prove that (idA1 ⊗ δ2

12)(x) ∈ M(A2 ⊗ S22) ⊂ M(A1 ⊗ S12 ⊗ S21). By using the formulas
(δ2

12 ⊗ idS21)δ2
11 = (idS12 ⊗ δ2

21)δ2
11 and δ2

21(s) = (W 1
22)∗(1⊗ s)W 1

22 for s ∈ S21, we have

(idA1 ⊗ δ2
12 ⊗ idS21)δ(2)

A1 (a) = (idA1 ⊗ δ2
12 ⊗ idS21)(idA1 ⊗ δ2

11)δA1(a)
= (idA1 ⊗ idS12 ⊗ δ2

21)(idA1 ⊗ δ2
11)δA1(a)

= (W 1
22)∗34δ

(2)
A1 (a)124(W 1

22)34.
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Since W 1
22 ∈M(S22 ⊗K(H21)), we have

(idA1 ⊗ δ2
12)(x) = (idA1 ⊗ idS12 ⊗ idS22 ⊗ ω)((W 1

22)∗34δ
(2)
A1 (a)124(W 1

22)34) ∈M(A1 ⊗ S12 ⊗ S22).

Let s ∈ S22 and let us write ω = ω′u, where u ∈ K(H21) and ω′ ∈ B(H21)∗. By using again the
fact that W 1

22 ∈M(S22 ⊗K(H21)), it follows that

(1A2 ⊗ s)(idA1 ⊗ δ2
12)(x) = (idA1 ⊗ idS12 ⊗ idS22 ⊗ ω′)( ((s⊗ u)(W 1

22)∗)34δ
(2)
A1 (a)124(W 1

22)34 )

is the norm limit of finite sums of elements of the form

y = (idA1 ⊗ idS12 ⊗ idS22 ⊗ ω′′)(δ
(2)
A1 (a)124((s′ ⊗ 1H21)W 1

22(1S22 ⊗ v))34),

where s′ ∈ S22, v ∈ K(H21), ω′′ ∈ B(H21)∗. Since G2 is regular, we have (cf. (2.5.1) and
Proposition 1.3.11):

[(S22 ⊗ 1H21)W 1
22(1S22 ⊗K(H21))] = S22 ⊗K(H21). (6.1.1)

Hence, (1A1⊗S12 ⊗ s)(idA1 ⊗ δ2
12)(x) ∈ A2 ⊗ S22. We then have (1A2 ⊗ S22)δA2(A2) ⊂ A2 ⊗ S22.

Then, we also have δA2(A2)(1A2 ⊗ S22) ⊂ A2⊗ S22 since δA2 is involutive. In particular, we have
δA2(A2) ⊂M(A2 ⊗ S22).
Let us prove that [(1A2 ⊗ S22)δA2(A2)] = A2 ⊗ S22. It only remains to prove the inclusion
A2 ⊗ S22 ⊂ [(1A2 ⊗ S22)δA2(A2)]. To do so, we have to follow backward the above argument.
Let a ∈ A1, ω ∈ B(H21)∗, s ∈ S22 and let us denote x = (idA1 ⊗ idS12 ⊗ ω)δ(2)

A1 (a). Let us write
ω = vω′u with u, v ∈ K(H21) and ω′ ∈ B(H21)∗. We have

x⊗ s = (idA1⊗S12 ⊗ idS22 ⊗ ω′)((1A1⊗S12 ⊗ 1S22 ⊗ u)δ(2)
A1 (a)124(1A1⊗S12 ⊗ s⊗ v)).

By using again the fact that W 1
22 ∈M(S22 ⊗K(H21)) and (6.1.1), we obtain that x⊗ s is the

norm limit of finite sums of elements of the form

y = (idA1 ⊗ idS12 ⊗ idS22 ⊗ φ)((1A1⊗S12 ⊗ s′ ⊗ u′)(W 1
22)∗34δ

(2)
A1 (a)124(W 1

22)34)
= (1A1 ⊗ 1S12 ⊗ s′)(idA1 ⊗ idS12 ⊗ idS22 ⊗ φu′)((W 1

22)∗34δ
(2)
A1 (a)124(W 1

22)34),

where s′ ∈ S22, u′ ∈ K(H21) and φ ∈ B(H21)∗. We recall (see above) that we have

(idA1 ⊗ δ2
12 ⊗ idS21)δ(2)

A1 (a) = (W 1
22)∗34δ

(2)
A1 (a)124(W 1

22)34.

Therefore, we have

y = (1A1 ⊗ 1S12 ⊗ s′)(idA1 ⊗ δ2
12)((idA1 ⊗ idS12 ⊗ φu′)δ

(2)
A1 (a)),

which proves that x⊗ s ∈ [(1A2 ⊗ S22)δA2(A2)].

In particular, δA2 is non-degenerate. By using (idS12 ⊗ δ2
22)δ2

12 = (δ2
12 ⊗ idS22)δ2

12, we have
(idA1 ⊗ idS12 ⊗ δ2

22)(idA1 ⊗ δ2
12)(m) = (idA1 ⊗ δ2

12⊗ idS22)(idA1 ⊗ δ2
12)(m) for all m ∈M(A1⊗S12).

In particular, we obtain the coassociativity of δA2 , that is (idA2 ⊗ δ2
22)δA2 = (δA2 ⊗ idS22)δA2 .

3. Let us consider (A1, δA1) and (B1, δB1) two G1-C∗-algebras. Let us denote A2 = IndG2
G1(A1)

and B2 = IndG2
G1(B1). Let f1 ∈ MorG1(A1, B2) and let f1⊗ idS12 be the unital strictly continuous
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extension toM(A1⊗S12) of the *-homomorphism A1⊗S12 →M(B1⊗S12) ; x 7→ (f1⊗idS12)(x).
Let a ∈ A1, b ∈ B1 and ω, φ ∈ B(H21)∗. Since f1 is G1-equivariant, it is clear that

(f1 ⊗ idS12 ⊗ idS21)δ(2)
A1 = δ

(2)
B1 ◦ f1. (6.1.2)

Let us denote x = (idA1 ⊗ idS12 ⊗ω)δ(2)
A1 (a) and y = (idB1 ⊗ idS12 ⊗φ)δ(2)

B1 (b). By (6.1.2), we have

(f1 ⊗ idS12)(x)y = (idB1 ⊗ idS12 ⊗ ω ⊗ φ)( ((f1 ⊗ idS12 ⊗ idS21)δ(2)
A1 (a))123δ

(2)
B1 (b)124 )

= (idB1 ⊗ idS12 ⊗ ω ⊗ φ)(δ(2)
B1 (f1(a))123δ

(2)
B1 (b)124).

In virtue of Remark 6.1.3 1, we have (f1 ⊗ idS12)(x)y ∈ B2. Hence, (f1 ⊗ idS12)(A2)B2 ⊂ B2.
However, we also have the inclusion B2(f1 ⊗ idS12)(A2) ⊂ B2 since f1 is stable by the involution.
We then obtain (f1 ⊗ idS12)(A2) ⊂M(B2). Therefore, f1 ⊗ idS12 restricts to a *-homomorphism
f2 : A2 →M(B2). Moreover, it is clear that f2 is non-degenerate. In particular, f2 extends to
a unital strictly continuous *-homomorphism f2 :M(A2)→M(B2). Now, the fact that f2 is
G2-equivariant is straightforward. Indeed, if x ∈ A2 we have

(f2⊗ idS12)δA2(x) = (f1⊗ idS12⊗ idS21)(idA1⊗ δ2
12)(x) = (idB1⊗ δ2

12)(f1⊗ idS12)(x) = δB2(f2(x)).

Starting from a continuous action of G2 on a C∗-algebra A2, we define mutatis mutandis the
following faithful non-degenerate *-homomorphisms:

δ2
A2 := δA2 , δ

(1)
A2 := (idA2 ⊗ δ1

22)δA2 : A2 →M(A2 ⊗ S21 ⊗ S12).

By identifying S12 with L12(S12) ⊂ B(H12), we define

IndG1
G2(A2) := [(idA2 ⊗ idS21 ⊗ ω)δ(1)

A2 (a) ; a ∈ A2, ω ∈ B(H12)∗] ⊂M(A2 ⊗ S21).

We have the following result:

Proposition 6.1.5. Let us denote A1 := IndG1
G2(A2) ⊂M(A2 ⊗ S21). We have:

1. A1 is a C∗-subalgebra ofM(A2 ⊗ S21).

2. [A1(1A2⊗S21)] = A2⊗S21 = [(1A2⊗S21)A1]. In particular, the inclusion A1 ⊂M(A2⊗S21)
defines a faithful non-degenerate *-homomorphism and we haveM(A1) ⊂M(A2 ⊗ S21).

3. Let us denote δA1 := (idA2 ⊗ δ1
21)�A1. We have δA1(A1) ⊂ M(A1 ⊗ S11) and δA1 is a

continuous action of G1 on A1.

4. The correspondence IndG1
G2 : G2-C∗-Alg→ G1-C∗-Alg is functorial.

In the following propositions, we investigate the compositions of induction functors:

G1-C∗-Alg→ G2-C∗-Alg→ G1-C∗-Alg, G2-C∗-Alg→ G1-C∗-Alg→ G2-C∗-Alg.

Proposition 6.1.6. Let (A1, δA1) be a G1-C∗-algebra. Let us denote A2 = IndG2
G1(A1) endowed

with the continuous action δA2 = (idA1 ⊗ δ2
12)�A2. Let us consider C = IndG1

G2(A2) ⊂M(A2⊗S21)
endowed with the continuous action δC = (idA2 ⊗ δ1

21)�C. Then, we have:

1. C ⊂M(A2 ⊗ S21) ⊂M(A1 ⊗ S12 ⊗ S21) and C = δ
(2)
A1 (A1).
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2. The map
π1 : (A1, δA1) −→ (C, δC)

x 7−→ δ
(2)
A1 (x) := (idA1 ⊗ δ2

11)δA1(x)
is a G1-equivariant *-isomorphism.

3. The map
δ2
A1 : A1 −→ M(A2 ⊗ S21)

a 7−→ δ
(2)
A1 (a) := (idA1 ⊗ δ2

11)δA1(x)
is a faithful non-degenerate *-homomorphism such that [δ2

A1(A1)(1A2 ⊗ S21)] = A2 ⊗ S21
and (δA2 ⊗ idS21)δ2

A1 = (idA2 ⊗ δ2
21)δ2

A1.

Proof. By unfolding the C∗-algebra C, we obtain

C = [(idA1 ⊗ idS12 ⊗ idS21 ⊗ ω ⊗ φ)(idA1 ⊗ idS12 ⊗ δ1
22 ⊗ idS21)(idA1 ⊗ δ2

12 ⊗ idS21)δ(2)
A1 (a) ;

a ∈ A1, ω ∈ B(H12)∗, φ ∈ B(H21)∗].

In particular, we have C ⊂M(A1 ⊗ S12 ⊗ S21). Moreover, by using coassociativity formulas we
obtain

(idA1 ⊗ idS12 ⊗ δ1
22⊗idS21)(idA1 ⊗ δ2

12 ⊗ idS21)δ(2)
A1 (a)

= (idA1 ⊗ δ2
11 ⊗ idS12 ⊗ idS21)(idA1 ⊗ δ1

12 ⊗ idS21)(idA1 ⊗ δ2
11)δA1(a)

= (idA1 ⊗ δ2
11 ⊗ idS12 ⊗ idS21)(idA1 ⊗ idS11 ⊗ δ2

11)(idA1 ⊗ δ1
11)δA1(a)

= (idA1 ⊗ δ2
11 ⊗ idS12 ⊗ idS21)(idA1 ⊗ idS11 ⊗ δ2

11)(δA1 ⊗ idS11)δA1(a)
= ((idA1 ⊗ δ2

11)δA1 ⊗ idS12 ⊗ idS21)(idA1 ⊗ δ2
11)δA1(a)

= (δ(2)
A1 ⊗ idS12 ⊗ idS21)δ(2)

A1 (a),

for all a ∈ A1. Therefore, we have

C = [δ(2)
A1 (idA1 ⊗ ω ⊗ φ)δ(2)

A1 (a) ; a ∈ A1, ω ∈ B(H12)∗, φ ∈ B(H21)∗].

Since δ2
11(s) = (W 1

12)∗(1⊗ s)W 1
12 for all s ∈ S11, we have δ(2)

A1 (a) = (W 1
12)∗23δA1(a)13(W 1

12)23 for all
a ∈ A1. If ω ∈ B(H12)∗, φ ∈ B(H21)∗ and a ∈ A1, we have

(idA1 ⊗ ω ⊗ φ)δ(2)
A1 (a) = (idA1 ⊗W 1

12(ω ⊗ φ)(W 1
12)∗)(δA1(a)13).

Since W 1
12 : H12 ⊗H21 →H12 ⊗H11 is unitary, we obtain

[(idA1 ⊗ ω ⊗ φ)δ(2)
A1 (a) ; a ∈A1, ω ∈ B(H12)∗, φ ∈ B(H21)∗]

= [(idA1 ⊗ ω ⊗ φ)(δA1(a)13) ; a ∈ A1, ω ∈ B(H12)∗, φ ∈ B(H21)∗]
= [(idA1 ⊗ φ)δA1(a) ; a ∈ A1, φ ∈ B(H21)∗] = A1.

In particular, C = δ
(2)
A1 (A1). Since the *-homomorphism δ

(2)
A1 is faithful, we obtain that π1 is a

*-isomorphism. Let us prove that π1 is G1-equivariant. Let a ∈ A1, we have

δC(π1(a)) = (idA1 ⊗ idS12 ⊗ δ1
21)(idA1 ⊗ δ2

11)δA1(a) = (idA1 ⊗ δ2
11 ⊗ idS11)(idA1 ⊗ δ1

11)δA1(a)
= (idA1 ⊗ δ2

11 ⊗ idS11)(δA1 ⊗ idS11)δA1(a) = (δ(2)
A1 ⊗ idS11)δA1(a) = (π1 ⊗ idS11)δA1(a).

The statements 1 and 2 are proved. The last statement follows from the first one, Proposition
6.1.5 2 ([C(1A2 ⊗ S21)] = A2 ⊗ S21) and the formula (δ2

12 ⊗ idS21)δ2
11 = (idS12 ⊗ δ2

21)δ2
11.
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Starting from a continuous action of G2 on a C∗-algebra A2, we obtain mutatis mutandis the
following result:

Proposition 6.1.7. Let (A2, δA2) be a G2-C∗-algebra. Let us denote A1 = IndG1
G2(A2) endowed

with the continuous action δA1 = (idA2 ⊗ δ1
21)�A1. Let us consider D = IndG2

G1(A1) ⊂M(A1⊗S12)
endowed with the continuous action δD = (idA1 ⊗ δ2

12)�D. Then, we have:

1. D ⊂M(A1 ⊗ S12) ⊂M(A2 ⊗ S21 ⊗ S12) and D = δ
(1)
A2 (A2).

2. The map
π2 : (A2, δA2) −→ (D, δD)

a 7−→ δ
(1)
A2 (a) := (idA2 ⊗ δ1

22)δA2(a)
is a G2-equivariant *-isomorphism.

3. The map
δ1
A2 : A2 −→ M(A1 ⊗ S12)

a 7−→ δ
(1)
A2 (a) := (idA2 ⊗ δ1

22)δA2(a)

is a faithful non-degenerate *-homomorphism such that [δ1
A2(A2)(1A1 ⊗ S12)] = A1 ⊗ S12

and (δA1 ⊗ idS12)δ1
A2 = (idA1 ⊗ δ1

12)δ1
A2.

Therefore, we have established the following result:

Theorem 6.1.8. Let G be a colinking measured quantum groupoid between two regular locally
compact quantum groups G1 and G2. The induction functors

IndG2
G1 : G1-C∗-Alg→ G2-C∗-Alg ; (A1, δA1) 7→ (A2 = IndG2

G1(A1), δA2 = (idA1 ⊗ δ2
12)�A2),

IndG1
G2 : G2-C∗-Alg→ G1-C∗-Alg ; (A2, δA2) 7→ (A1 = IndG1

G2(A2), δA1 = (idA2 ⊗ δ1
21)�A1)

are inverse of each other.

Proof. This follows from Propositions 6.1.6 and 6.1.7. It only remains to verify the naturality.
Let (A1, δA1) and (A′1, δA′1) be two G1-C∗-algebras. Let us denote (A2, δA2) = IndG2

G1(A1, δA1),
(A′2, δA′2) = IndG2

G1(A′1, δA′1), (C, δC) = IndG1
G2(A2, δA2) and (C ′, δC′) = IndG1

G2(A′2, δA′2). Let us
then consider π1 : A1 → C and π′1 : A′1 → C ′ the G1-equivariant *-isomorphisms defined in
Proposition 6.1.6 1. Let f ∈ MorG1(A1, A

′
1), we denote f∗ = (f ⊗ idS12)�A2∈ MorG2(A2, A

′
2) and

f∗∗ = (f∗ ⊗ idS21)�C ∈ MorG1(C,C ′) (see proof of Propositions 6.1.4 3 and 6.1.5 4). We have

f∗∗ ◦ π1 = (f∗ ⊗ idS21)π1 = (f ⊗ idS12 ⊗ idS21)δ(2)
A1 = (f ⊗ idS12 ⊗ idS21)(idA1 ⊗ δ2

11)δA1

= (idA′1 ⊗ δ
2
11)(f ⊗ idS11)δA1 = (idA′1 ⊗ δ

2
11) ◦ δA′1 ◦ f = δ

(2)
A′1
◦ f = π′1 ◦ f.

Proposition 6.1.9. Let j, k = 1, 2, j 6= k. We have:

1. If y ∈ Sjk, we have δjjk(y) ∈ IndGk
Gj (Sjj). Moreover, the map

(Sjk, δkjk) −→ IndGk
Gj (Sjj, δ

j
jj)

y 7−→ δjjk(y)

is a Gk-equivariant *-isomorphism.
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2. If y ∈ Sjj, we have δkjj(y) ∈ IndGj
Gk(Sjk). Moreover, the map

(Sjj, δjjj) −→ IndGj
Gk(Sjk, δ

k
jk)

y 7−→ δkjj(y)

is a Gj-equivariant *-isomorphism.

Proof. 1. By definition, we have

IndGk
Gj (Sjj) = [(idSjj ⊗ idSjk ⊗ ω)δj(k)

jj (s) ; s ∈ Sjj, ω ∈ B(Hkj)∗].

However, δj(k)
jj := (idSjj ⊗ δkjj)δ

j
jj = (δjjk ⊗ idSkj)δkjj. Hence,

(idSjj ⊗ idSjk ⊗ ω)δj(k)
jj (s) = δjjk(idSjk ⊗ ω)δkjj(s), s ∈ Sjj, ω ∈ B(Hkj)∗.

Moreover, we have Sjk = [(idSjk ⊗ ω)δkjj(s) ; s ∈ Sjj, ω ∈ B(Hkj)∗] (see Proposition 2.5.7
3). Therefore, if y ∈ Sjk we have δjjk(y) ∈ IndGk

Gj (Sjj). Actually, we have even proved that
IndGk

Gj (Sjj) = δjjk(Sjk). Since δjjk is faithful, the map Sjk → IndGk
Gj (Sjj) ; y 7→ δjjk(y) is a *-

isomorphism, which is also Gj-equivariant in virtue of (idSjj ⊗ δkjk)δ
j
jk = (δjjk ⊗ idSkk)δkjk.

2. In a similar way, we prove the second statement by using the formulas:

(idSjk ⊗ δ
j
kk)δkjk = (δkjj ⊗ idSjk)δ

j
jk, Sjj = [(idSjj ⊗ ω)δjjk(y) ; y ∈ Sjk, ω ∈ B(Hjk)∗],

(idSjk ⊗ δ
j
kj)δkjj = (δkjj ⊗ idSjj)δ

j
jj.

By applying the induction procedure established above and Lemma 5.1.9, we will define a
correspondence G1-C∗-Alg→ G-C∗-Alg inverse of G-C∗-Alg→ G1-C∗-Alg (see Corollary 5.1.8).

Notations 6.1.10. Let (B1, δB1) be a G1-C∗-algebra. Let (B2, δB2) be the induced G2-C∗-
algebra, that is to say B2 = IndG2

G1(B1) and δB2 = (idB1 ⊗ δ2
12)�B2 . In virtue of Propositions 6.1.6

and 6.1.7, we have four *-homomorphisms:

δkBj : Bj →M(Bk ⊗ Skj), j, k = 1, 2.

Let us give a precise description of them. We have denoted δ1
B1 := δB1 and δ2

B2 := δB2 . The
*-homomorphism δ2

B1 : B1 →M(B2 ⊗ S21) is given by

b ∈ B1 7→ δ2
B1(b) := δ

(2)
B1 (b) ∈M(B2 ⊗ S21) ; δ

(2)
B1 (b) := (idB1 ⊗ δ2

11)δ1
B1(b), b ∈ B1,

whereas the *-homomorphism δ1
B2 : B2 →M(B1 ⊗ S12) is defined by the formula

(π1 ⊗ idS12)δ1
B2(b) = δ

(1)
B2 (b), b ∈ B2,

where
δ

(1)
B2 := (idB2 ⊗ δ1

22)δ2
B2 , π1 : B1 → IndG1

G2(B2) ; b 7→ δ
(2)
B1 (b).

Lemma 6.1.11. For j, k, l = 1, 2, we have:

1. (δlBk ⊗ idSkj)δkBj = (idBl ⊗ δklj)δlBj .

2. [δlBk(Bk)(1Bl ⊗ Slk)] = Bl ⊗ Slk.
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3. Bl = [(idBl ⊗ ω)δlBk(Bk) ; ω ∈ B(Hlk)∗].

Proof. 1. We have already proved the coassociativity formulas corresponding to the cases
(j, k, l) = (1, 1, 1), (j, k, l) = (2, 2, 2) (Proposition 6.1.4 2) and (j, k, l) = (1, 2, 2) (Proposition
6.1.6 3). The cases (j, k, l) = (1, 1, 2) and (j, k, l) = (2, 1, 2) holds by definition of the *-
homomorphisms δ2

B1 and δ1
B2 . Indeed, for the first case we have

(δ2
B1 ⊗ idS11)δ1

B1 = (idB1 ⊗ δ2
11 ⊗ idS11)(δ1

B1 ⊗ idS11)δ1
B1 = (idB1 ⊗ δ2

11 ⊗ idS11)(idB1 ⊗ δ1
11)δ1

B1

= (idB1 ⊗ idS12 ⊗ δ1
21)(idB1 ⊗ δ2

11)δ1
B1 = (idB2 ⊗ δ1

21)δ2
B1 .

For the second one, since δ2
B1(b) = δ

(2)
B1 (b) = π1(b) ∈ IndG1

G2(B2) ⊂M(B2 ⊗ S21) for b ∈ B1, we
have

(δ2
B1 ⊗ idS12)δ1

B2 = (π1 ⊗ idS12)δ1
B2 = δ

(1)
B2 = (idB2 ⊗ δ1

22)δ2
B2 .

The remaining cases, i.e. (j, k, l) = (1, 2, 1) and (j, k, l) = (2, 1, 1), are not immediate. In order
to check out the first case, we compose by δ2

B1⊗ idS12⊗ idS21 and we use some already established
coassociativity formulas as follows:

(δ2
B1 ⊗ idS12 ⊗ idS21)(δ1

B2 ⊗ idS21)δ2
B1 = (idB2 ⊗ δ1

22 ⊗ idS21)(δ2
B2 ⊗ idS21)δ2

B1 , (j, k, l) = (2, 1, 2)
= (idB2 ⊗ δ1

22 ⊗ idS21)(idB2 ⊗ δ2
21)δ2

B1 , (j, k, l) = (1, 2, 2)
= (idB2 ⊗ idS21 ⊗ δ2

11)(idB2 ⊗ δ1
21)δ2

B1

= (idB2 ⊗ idS21 ⊗ δ2
11)(δ2

B1 ⊗ idS11)δ1
B1 , (j, k, l) = (1, 1, 2)

= (δ2
B1 ⊗ idS12 ⊗ idS21)(idB1 ⊗ δ2

11)δ1
B1 .

Hence, (δ1
B2 ⊗ idS21)δ2

B1 = (idB1 ⊗ δ2
11)δ1

B1 by faithfulness of δ2
B1 . We prove in a similar way the

last case by composing by δ2
B1 ⊗ idS11 ⊗ idS12 .

2. In virtue of Proposition 6.1.4 2 and Proposition 6.1.6 3, it only remains to prove that
[δ1
B2(B2)(1B1 ⊗ S12)] = B1 ⊗ S12. Let us denote C = IndG1

G2(B2) and D = IndG2
G1(C). In virtue

of Proposition 6.1.4 1, we have [D(1C ⊗ S12)] = C ⊗ S12. Note that (π−1
1 ⊗ idS12)δ(1)

B2 = δ1
B2 ,

D = δ
(1)
B2 (B2) (see Proposition 6.1.7 1) and C = π1(B1) (see Proposition 6.1.6 2). Then, we

obtain the result by composing by the *-isomorphism π−1
1 ⊗ idS12 .

3. This is a straightforward consequence of the previous statement.

Therefore, we have the following result:

Theorem 6.1.12. Let (B1, δB1) be a G1-C∗-algebra. Let B2 = IndG2
G1(B1) be the induced G2-

C∗-algebra. Let us denote B = B1 ⊕B2 and let πkj :M(Bk ⊗ Skj)→M(B ⊗ S) be the strictly
continuous *-homomorphism extending the canonical injection Bk ⊗ Skj → B ⊗ S. Let us
consider the *-homomorphisms δB : B →M(B ⊗ S) and βB : C2 →M(B) defined by:

δB(b) :=
∑

k,j=1,2
πkj ◦ δkBj(bj), b = (b1, b2) ∈ B ; βB(λ, µ) :=

(
λ 0
0 µ

)
, (λ, µ) ∈ C2.

Therefore, we have:

1. (δB, βB) is a continuous action of G on B.

2. The correspondence G1-C∗-Alg→ G-C∗-Alg ; (B1, δB1) 7→ (B, δB, βB) is functorial.

Proof. The first statement is an immediate consequence of Lemmas 5.1.9 and 6.1.11. The second
one follows from Proposition 6.1.4 3 and Lemma 5.1.7 2.
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Theorem 6.1.13. The functors

G-C∗-Alg −→ G1-C∗-Alg,
(A, δA, βA) 7−→ (A1, δ

1
A1)

G1-C∗-Alg −→ G-C∗-Alg
(B1, δB1) 7−→ (B, δB, βB)

are inverse of each other.

For the proof, we will need the following result:

Proposition 6.1.14. Let (A, δA, βA) be a G-C∗-algebra. With the notations of Proposition
5.1.3, we denote:

(Ã2, δÃ2
) = IndG2

G1(A1, δ
1
A1), (Ã1, δÃ1

) = IndG1
G2(A2, δ

2
A2).

Then, we have:

1. If x ∈ A2, we have δ1
A2(x) ∈ Ã2 ⊂M(A1 ⊗ S12) and the map

π̃2 : (A2, δ
2
A2) −→ (Ã2, δÃ2

)
x 7−→ δ1

A2(x)

is a G2-equivariant *-isomorphism.

2. If x ∈ A1, we have δ2
A1(x) ∈ Ã1 ⊂M(A2 ⊗ S21) and the map

π̃1 : (A1, δ
1
A1) −→ (Ã1, δÃ1

)
x 7−→ δ2

A1(x)

is a G1-equivariant *-isomorphism.

Proof. Let us prove the first statement since that of the second one is similar. In virtue of
Proposition 5.1.3 3, we have A2 = [(idA2 ⊗ ω)δ2

A1(a) ; a ∈ A1, ω ∈ B(H21)∗]. Let a ∈ A1 and
ω ∈ B(H21)∗. By using Proposition 5.1.3 2, we have

δ1
A2(idA2 ⊗ ω)δ2

A1(a) = (idA1 ⊗ idS12 ⊗ ω)(δ1
A2 ⊗ idS21)δ2

A1(a)
= (idA1 ⊗ idS12 ⊗ ω)(idA1 ⊗ δ2

11)δ1
A1(a)

= (idA1 ⊗ idS12 ⊗ ω)δ(2)
A1 (a).

This proves that δ1
A2(x) ∈ Ã2 for all x ∈ A2. Actually, we even have

δ1
A2(A2) = [δ1

A2(idA2 ⊗ ω)δ2
A1(a) ; a ∈ A1, ω ∈ B(H21)∗]

= [(idA1 ⊗ idS12 ⊗ ω)δ(2)
A1 (a) ; a ∈ A1, ω ∈ B(H21)∗] =: Ã2.

Moreover, δ1
A2 is a faithful *-homomorphism, then π̃2 is a *-isomorphism. Finally, the fact that

π̃2 is G2-equivariant is just a restatement of (idA1 ⊗ δ2
12)δ1

A2 = (δ1
A2 ⊗ idS22)δ2

A2 (see Proposition
5.1.3 2).

Proof of Theorem 6.1.13. It is clear that the composition of functors

G1-C∗-Alg −→ G-C∗-Alg −→ G1-C∗-Alg

is isomorphic to the identity functor via the G1-equivariant *-isomorphism

A1 → A1 ⊕ {0} ; a 7→ (a, 0),
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for each G1-C∗-algebra (A1, δA1). Let us prove that the composition of functors

G-C∗-Alg −→ G1-C∗-Alg −→ G-C∗-Alg

is isomorphic to the identity functor. Let (A, δA, βA) be a G-C∗-algebra. Let us use the
notations of §5.1, for j = 1, 2 we denote Aj = qjA, where qj = βA(εj). Let us consider the
*-homomorphisms δkAj : Aj →M(Ak ⊗ Skj) for j, k = 1, 2 defined in Proposition 5.1.3. Let us
denote:

(B1, δB1) := (A1, δ
1
A1), (B2, δB2) := IndG2

G1(B1, δB1).

Let (B, δB, βB) be the G-C∗-algebra associated with the G1-C∗-algebra (B1, δB1) (see Theorem
6.1.12). Let π̃2 : A2 → B2 be the G2-equivariant *-isomorphism defined in Proposition 6.1.14 1.
Let us consider the map τ : A→ B given by

τ(a) = (q1a, π̃2(q2a)), a ∈ A.

By proposition 6.1.14 1, it is clear that τ is a *-isomorphism. It it also immediate that we have
τ ◦βA = βB. Hence, τ(Aj) ⊂ Bj for j = 1, 2. Then, let us denote τj := τ�Aj= Aj → Bj , j = 1, 2.
Note that τ1 : A1 → B1 ; a 7→ a and τ2 = π̃2. Let us prove that (τ ⊗ idS)δA = δB ◦ τ . It then
amounts to proving that

(τk ⊗ idSkj)δkAj = δkBj ◦ τj, j, k = 1, 2.

Let us proceed by disjunction elimination. If (j, k) = (1, 1) there is nothing to prove. Assume
that (j, k) = (1, 2). We have

δ2
B1 ◦ τ1 = δ

(2)
B1 ◦ τ1 = δ

(2)
A1 = (idA1 ⊗ δ2

11)δ1
A1 = (δ1

A2 ⊗ idS21)δ2
A1 = (π̃2⊗ idS21)δ2

A1 = (τ2⊗ idS21)δ2
A1 .

The formula corresponding to the case (j, k) = (2, 2) is just the G2-equivariance of π̃2. Let
us look at the case (j, k) = (2, 1). We have to prove that δ1

B2 ◦ π̃2 = δ1
A2 . By composing by

π1 ⊗ idS12 (see Notations 6.1.10), we have

(π1 ⊗ idS12) ◦ δ1
B2 ◦ π̃2 = δ

(1)
B2 ◦ π̃2 = (idB2 ⊗ δ1

22) ◦ δ2
B2 ◦ π̃2 = (idB2 ⊗ δ1

22)(π̃2 ⊗ idS22)δ2
A2

= (π̃2 ⊗ idS21 ⊗ idS12)(idA2 ⊗ δ1
22)δ2

A2 = (π̃2 ⊗ idS21 ⊗ idS12)(δ2
A1 ⊗ idS12)δ1

A2

and (π̃2 ⊗ idS21)δ2
A1 = (δ1

A2 ⊗ idS21)δ2
A1 = (idA1 ⊗ δ2

11)δ1
A1 = δ

(2)
A1 = π1. Therefore, we have

(π1 ⊗ idS12) ◦ δ1
B2 ◦ π̃2 = (π1 ⊗ idS12)δ1

A2 . We conclude that δ1
B2 ◦ π̃2 = δ1

A2 by faithfuless of π1.

Let us verify the naturality of the isomorphism τ . We keep the previous notations and we
introduce analogous notations associated with a second G-C∗-algebra (A′, δA′ , βA′). Let us
consider f : A→M(A′) a G-equivariant non-degenerate *-homomorphism. Let

f1 ∈ MorG1(A1, A
′
1), f2 ∈ MorG2(A2, A

′
2) (see Lemma 5.1.7 1)

be the images of f by the functors

G-C∗-Alg −→ G1-C∗-Alg, G-C∗-Alg −→ G2-C∗-Alg.

Moreover, let us denote IndG2
G1f1 ∈ MorG2(B2, B

′
2) (see proof of Proposition 6.1.4 3, we recall that

B1 = A1 and B′1 = A′1) the image of f1 by the functor IndG2
G1 . Finally, let f∗ : B →M(B′) be
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the G-equivariant non-degenerate *-homomorphism associated with f1 and IndG2
G1f1 (see Lemma

5.1.7 2), that is the image of f by the functor

G-C∗-Alg −→ G1-C∗-Alg −→ G-C∗-Alg.

Let ιB′j : M(B′j) → M(B′) (resp. ιA′j : M(A′j) → M(A′)) be the strictly continuous *-
homomorphism extending the canonical injection B′j → B′ (resp. A′j → A′), j = 1, 2. We
have

f∗(b) = ιB′1 ◦ f1(b1) + ιB′2 ◦ IndG2
G1f1(b2), b = (b1, b2) ∈ B.

In particular,
f∗(τ(a)) = ιB′1 ◦ f1(q1a) + ιB′2 ◦ IndG2

G1f1(π̃2(q2a)), a ∈ A.

However, in virtue of Lemma 5.1.7 1, we have

IndG2
G1f1(π̃2(q2a)) = (f1 ⊗ idS12)δ1

A2(q2a) = δ1
A′2
◦ f2(q2a) = π̃′2(f2(q2a)), a ∈ A.

Hence, we have
IndG2

G1f1 ◦ π̃2 = π̃′2 ◦ f2.

By definition of τ ′ : A′ → B′, we have ιB′2 ◦ π̃
′
2 = τ ′ ◦ ιA′2 and ιB′1 = τ ′ ◦ ιA′1 . Hence,

ιB′1 ◦ f1(q1a) = τ ′(ιA′1 ◦ f1(q1a)), ιB′2 ◦ IndG2
G1f1(π̃2(q2a)) = τ ′(ιA′2(f2(q2a))), a ∈ A.

But f(a) = ιA′1 ◦ f1(q1a) + ιA′2 ◦ f2(q2a) for all a ∈ A. Then, we conclude that f∗ ◦ τ = τ ′ ◦ f .�

6.2 Induction and Morita equivalence

In this paragraph, we will prove that the equivalences of categories

G-C∗-Alg→ G1-C∗-Alg, G1-C∗-Alg→ G2-C∗-Alg, G-C∗-Alg→ G2-C∗-Alg

exchange the equivariant Morita equivalences.

Let us introduce the following general definition:

Definition 6.2.1. Let G be a measured quantum groupoid on a finite basis and (S, δ) the
associated weak Hopf-C∗-algebra. A linking G-C∗-algebra (or a G-equivariant Morita equivalence)
is a quintuple

(J, δJ , βJ , e1, e2)

consisting of a G-C∗-algebra (J, δJ , βJ) and nonzero self-adjoint projections e1, e2 ∈M(J) such
that:

1. e1 + e2 = 1J .

2. [JeiJ ] = J , i = 1, 2.

3. δJ(ei) = qβJ ,α(ei ⊗ 1S), i = 1, 2.
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Remark 6.2.2. As a consequence, we have [ei, βJ(no)] = 0 for all n ∈ N and i = 1, 2. In
particular, we have [qβJ ,α, ei ⊗ 1S] = 0. Indeed, if n ∈ N and i = 1, 2 we have

δJ(βJ(no)ei) = δJ(βJ(no))δJ(ei) = qβJ ,α(1J ⊗ β(no))qβJ ,α(ei ⊗ 1S) = qβJ ,α(ei ⊗ 1S)(1J ⊗ β(no)).

Therefore, since δJ(1J) = qβJ ,α we obtain

δJ(βJ(no)ei) = qβJ ,α(ei ⊗ 1S)(1J ⊗ β(no))qβJ ,α = δJ(eiβJ(no)).

The result follows by faithfulness of δJ .

Let (J, δJ , βJ , e1, e2) be a linking G-C∗-algebra. Let us use the notations of §5.1:

qj = βJ(εj), Jj = qjJ, δkJj : Jj →M(Jk ⊗ Skj).

Let ιj :M(Jj)→M(J) be the strictly continuous extension of the inclusion map Jj ⊂ J such
that ιj(1J) = qj. For all i, j = 1, 2 we have [ei, qj] = 0, then eiqj is a self-adjoint projection
ofM(J). Besides, we have eiqj ∈ qjM(J) = ιj(M(Jj)). Then, there exists a unique nonzero
self-adjoint projection ei,j ∈M(Jj) such that ιj(ei,j) = eiqj.

Lemma 6.2.3. With the above notations, for all i, j, k = 1, 2 we have:

1. e1,j + e2,j = 1Jj , [Jjei,jJj] = Jj.

2. δkJj(ei,j) = ei,k ⊗ 1Skj .

In particular, (Jj, δjJj , e1,j, e2,j) is a linking Gj-C∗-algebra.

Proof. 1. ιj(e1,j + e2,j) = e1qj + e2qj = qj = ιj(1Jj). Hence, e1,j + e2,j = 1Jj .
2. We have [Jjei,jJj] ⊂ Jj since ei,j ∈ M(Jj). If x ∈ Jj ⊂ J , x is the norm limit of finite
sums of elements of the form yeiz, where y, z ∈ J . Then, x = qjxqj is the norm limit of
finite sums of elements of the form qjyeizqj = (qjy)eiqj(qjz) = ιj(yjei,jzj), where y, z ∈ J and
yj = qjy, zj = qjz ∈ Jj. Then, x ∈ [Jjei,jJj] and the result is proved.
3. We have δJ(eiqj) = eiq1⊗p1j+eiq2⊗p2j . Hence, (qk⊗1S)δJ(eiqj) = eiqk⊗pkj = πkj (ei,k⊗1Skj ),
where πkj :M(Jk ⊗ Skj)→M(J ⊗ S) is the strictly continuous extension of the inclusion map
Jk ⊗ Skj ⊂ J ⊗ S. However, we have (qk ⊗ 1S)δJ(ιj(m)) = πkj ◦ δkJj(m) for all m ∈M(Jj) (see
Proposition 5.1.3). Hence, δkJj(ei,j) = ei,k ⊗ 1Skj as πkj is faithful.

We have proved that the image of a G-equivariant Morita equivalence by the functor

G-C∗-Alg→ Gj-C∗-Alg ; (J, δJ , βJ) 7→ (Jj, δjJj)

is a linking Gj-C∗-algebra. Conversely, let (J1, δJ1 , e1,1, e2,1) be a linking G1-C∗-algebra. Let
(J, δJ , βJ) be the image of (J1, δJ1) by the functor

G1-C∗-Alg→ G-C∗-Alg.

We recall that we have J = J1 ⊕ J2, where J2 = IndG2
G1(J1) is endowed with the continuous

action δJ2 = (idJ1 ⊗ δ2
12)�J2 of G2. The coproduct is given by the formula:

δJ(x) =
∑

k,j=1,2
πkj ◦ δkJj(xj), x = (x1, x2) ∈ J,

where πkj :M(Jk ⊗ Skj)→M(J ⊗ S) are the strictly continuous extensions of the canonical
injections Jk ⊗ Skj → J ⊗ S and δkJj : Jj →M(Jk ⊗ Skj) are the *-homomorphisms defined in
Notations 6.1.10, j, k = 1, 2.
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Notation 6.2.4. Let us consider the nonzero self-adjoint projections

ei,2 := ei,1 ⊗ 1S12 ∈M(J1 ⊗ S12), i = 1, 2.

Proposition 6.2.5. With the above notations, (J2, δ
2
J2 , e1,2, e2,2) is a linking G2-C∗-algebra.

Moreover, for all i, j, k = 1, 2 we have

δkJj(ei,j) = ei,k ⊗ 1Skj .

Proof. Let i = 1, 2. Since δJ1(ei,1) = ei,1 ⊗ 1S12 , we have:

ei,2(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (x) = (idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (ei,1x),

(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (x)ei,2 = (idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (xei,1),
for all x ∈ J1 and ω ∈ B(H21)∗. In particular, it follows that ei,2 ∈M(J2) (since ei,1 ∈M(J1))
and e1,2 + e2,2 = 1J2 (since e1,1 + e2,1 = 1J1). It is clear that

δ2
Jj

(ei,j) = ei,2 ⊗ 1S2j , j = 1, 2. (6.2.1)

Let us prove that [J2ei,2J2] = J2. In virtue of the formulas

J2 = [(idJ2 ⊗ ω)δ2
J1(x) ; x ∈ J1, ω ∈ B(H21)∗], J1 = [J1ei,1J1],

it amounts to proving that (idJ2 ⊗ ω)δ2
J1(aei,1b) ∈ [J2ei,2J2] for all a, b ∈ J1 and ω ∈ B(H21)∗.

Let us fix a, b ∈ J1 and ω ∈ B(H21)∗. Let us write ω = sω′ with s ∈ S21 and ω′ ∈ B(H21)∗. By
Lemma 6.1.11 2, we have [δ2

J1(J1)(1J2 ⊗ S21)] = J2 ⊗ S21. Therefore,

(idJ2 ⊗ ω)δ2
J1(aei,1b) = (idJ2 ⊗ ω′)(δ2

J1(a)(ei,2 ⊗ 1S21)δ2
J1(b)(1J2 ⊗ s))

is the norm limit of finite sums of elements of the form

(idJ2 ⊗ ω′)(δ2
J1(a)(ei,2 ⊗ 1S21)(y ⊗ s′)) = (idJ2 ⊗ s′ω′)δ2

J1(a)ei,2y ∈ J2ei,2J2, y ∈ J2, s
′ ∈ S21.

Finally, we also have
δ1
Jj

(ei,j) = ei,1 ⊗ 1S1j , j = 1, 2.
For j = 1, there is nothing to prove. For j = 2, we compose by the *-isomorphism π1 ⊗ idS12 ,
where π1 : J1 → IndG1

G2(J2) ; x 7→ δ
(2)
J1 (x) (see Notations 6.1.10). By using the formulas (6.2.1),

we have

(π1⊗ idS12)δ1
J2(ei,2) = δ

(1)
J2 (ei,2) = (idJ2⊗δ1

22)δ2
J2(ei,2) = ei,2⊗1S21⊗1S12 = (π1⊗ idS12)(ei,1⊗1S12).

Hence, δ1
J2(ei,2) = ei,1 ⊗ 1S12 and the proposition is proved.

Notation 6.2.6. Let us denote

ei := (ei,1, ei,2) ∈M(J), i = 1, 2.

The following result is then an immediate consequence of Proposition 6.2.5.

Corollary 6.2.7. With the above notations, the quintuple (J, δJ , βJ , e1, e2) is a linking G-C∗-
algebra.

Therefore, we have proved that the image of a linking G1-C∗-algebra by the functor

G1-C∗-Alg→ G-C∗-Alg ; (J1, δJ1) 7→ (J, δJ , βJ)

is a linking G-C∗-algebra.
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6.3 Induction of equivariant Hilbert modules

In order to extend the induction procedure to equivariant Hilbert C∗-modules (see [3]), we will
need to induce degenerate equivariant *-homomorphisms. We begin with the following technical
lemma:

Lemma 6.3.1. Let (B1, δB1) and (J1, δJ1) be G1-C∗-algebras. Let f1 : B1 → M(J1) be a
*-homomorphism such that:

(a ) For some approximate unit (uλ) of B1, we have f1(uλ)→ e1 ∈M(J1) with respect to the
strict topology.

(b ) (f1 ⊗ idS11)δB1 = δJ1 ◦ f1.

Then, we have:

1. e1 is a self-adjoint projection, which does not depend on the approximate unit. More
precisely, for all approximate unit (vµ)µ of B1 we have f1(vµ)→ e1.

2. δJ1(e1) = e1 ⊗ 1S11.

3. For all T ∈M(B1 ⊗ S12), we have

(f1 ⊗ idS12)(T ) = (e1 ⊗ 1S12)(f1 ⊗ idS12)(T )(e1 ⊗ 1S12).

Proof. The assertion 1 and the fact that (b) makes sense follow from (a) and Lemma 4.1.1. In
particular, f1 extends uniquely to a strictly continuous *-homomorphism f1 :M(B1)→M(J1)
such that f1(1B1) = e1. Moreover, f1 ⊗ idS12 extends uniquely to a strictly continuous *-
homomorphism f1 ⊗ idS12 :M(B1 ⊗ S12)→M(J1 ⊗ S12), which verifies

(f1 ⊗ idS12)(1B1⊗S12) = e1 ⊗ 1S12 .

It then follows immediately that:

(f1 ⊗ idS12)(T ) = (e1 ⊗ 1S12)(f1 ⊗ idS12)(T )(e1 ⊗ 1S12), T ∈M(B1 ⊗ S12).

We have (f1⊗ idS11)δB1(1B1) = e1⊗ 1S11 . Besides, if (uλ)λ is an approximate unit of B1 we have
(f1 ⊗ idS11)δB1(uλ) = δJ1(f1(uλ))→ δJ1(e1). Hence, δJ1(e1) = e1 ⊗ 1S11 .

Proposition 6.3.2. With the hypotheses and notations of Lemma 6.3.1, we denote:

(B2, δB2) := IndG2
G1(B1, δB1), (J2, δJ2) := IndG2

G1(J1, δJ1), e2 := e1 ⊗ 1S12 .

Then, we have:

1. e2 is a self-adjoint projection ofM(J2) and (f1 ⊗ idS12)(B2) ⊂ e2M(J2)e2.

Therefore, we consider the *-homomorphism IndG2
G1f1 : B2 →M(J2) defined by

IndG2
G1f1(b) = (f1 ⊗ idS12)(b), b ∈ B2.

We will denote f2 = IndG2
G1f1 for short.

2. For all approximate unit (vµ)µ of B2, we have f2(vµ) → e2 with respect to the strict
topology.
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3. (f2 ⊗ idS22)δB2 = δJ2 ◦ f2.

4. Let F1 ∈ e1M(J1)e1 such that:

• δJ1(F1) = F1 ⊗ 1S11.
• ∀b ∈ B1, [F1, f1(b)] ∈ e1J1e1, f1(b)(F1 − F ∗1 ) ∈ e1J1e1, f1(b)(F 2

1 − 1) ∈ e1J1e1.

We consider F2 := F1 ⊗ 1S12 ∈ e2M(J2)e2. Then, we have:

• δJ2(F2) = F2 ⊗ 1S22.
• ∀b ∈ B2, [F2, f2(b)] ∈ e2J2e2, f2(b)(F2 − F ∗2 ) ∈ e2J2e2, f2(b)(F 2

2 − 1) ∈ e2J2e2.

Proof. 1. It is clear that e2 is a self-adjoint projection of M(J1 ⊗ S12). By Lemma 6.3.1 2,
we have δ(2)

J1 (e1) = e1 ⊗ 1S12 ⊗ 1S21 . Let us take a normal state φ on B(H21). Let x ∈ J1 and
ω ∈ B(H21)∗, we have

e2(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (x) = (idJ1 ⊗ idS12 ⊗ φ⊗ ω)(δ(2)

J1 (e1)123δ
(2)
J1 (x)124).

Since e1 ∈M(J1) we have e2(idJ1⊗ idS12⊗ω)δ(2)
J1 (x) ∈ J2 by Remarks 6.1.3 1. Hence, e2J2 ⊂ J2.

But J2 is stable by the involution and e2 is self-adjoint. It then follows that J2e2 ⊂ J2 and
e2 ∈M(J2).
Let us prove that (f1 ⊗ idS12)(B2) ⊂ e2M(J2)e2. By Lemma 6.3.1 2, it is enough to prove
that (f1 ⊗ idS12)(B2) ⊂M(J2). But it also suffices to prove that (f1 ⊗ idS12)(B2)J2 ⊂ J2 since
f1 ⊗ idS12 is a *-homomorphism and B2 and J2 are stable by the involution. Finally, it then
amounts to proving that

(f1 ⊗ idS12)((idB1 ⊗ idS12 ⊗ ω)δ(2)
B1 (b))(idJ1 ⊗ idS12 ⊗ ω′)δ

(2)
J1 (x) ∈ J2,

for all ω, ω′ ∈ B(H21)∗, b ∈ B1, x ∈ J1. Let us fix ω, ω′ ∈ B(H21)∗, b ∈ B1 and x ∈ J1. We
have

(f1 ⊗ idS12)((idB1 ⊗ idS12 ⊗ ω)δ(2)
B1 (b))(idJ1 ⊗ idS12 ⊗ ω′)δ

(2)
J1 (x)

= (idJ1 ⊗ idS12 ⊗ ω ⊗ ω′)( ((f1 ⊗ idS12 ⊗ idS21)δ(2)
B1 (b))123δ

(2)
J1 (x)124 ).

Since (f1 ⊗ idS11)δB1 = δJ1 ◦ f1, we have (f1 ⊗ idS12 ⊗ idS21)δ(2)
B1 = δ

(2)
J1 ◦ f1. Then, it follows from

the fact that f1(b) ∈M(J1) and Remarks 6.1.3 1 that

(f1 ⊗ idS12)((idB1 ⊗ idS12 ⊗ ω)δ(2)
B1 (b))(idJ1 ⊗ idS12 ⊗ ω′)δ

(2)
J1 (x)

= (idJ1 ⊗ idS12 ⊗ ω ⊗ ω′)(δ
(2)
J1 (f1(b))123δ

(2)
J1 (x)124) ∈ J2.

2. Note that we have e2f2(b) = f2(b) = f2(b)e2 for all b ∈ B2. By Lemma 4.1.1, we have to
prove that e2J2 = [f2(B2)J2]. The inclusion [f2(B2)J2] ⊂ e2J2 is given. Conversely, note that
we have

e2J2 = [(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b)x) ; b ∈ B1, x ∈ J1, ω ∈ B(H21)∗].

Indeed, let us fix x ∈ J1 and ω ∈ B(H21)∗. Since δ(2)
J1 (e1) = e2 ⊗ 1S21 , we have

(idJ1 ⊗ idS12 ⊗ω)δ(2)
J1 (f1(b)x) = (idJ1 ⊗ idS12 ⊗ω)δ(2)

J1 (e1f1(b)x) = e2(idJ1 ⊗ idS12 ⊗ω)δ(2)
J1 (f1(b)x).

In particular, we have [(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b)x) ; b ∈ B1, x ∈ J1, ω ∈ B(H21)∗] ⊂ e2J2.

Conversely, let us fix x ∈ J1 and ω ∈ B(H21)∗. Let us recall that by assumption we have
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f1(uλ)→ e1 with respect to the strict topology. Hence, f1(uλ)x→ e1x with respect to the norm
topology. Therefore,
e2(idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (x) = (idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (e1x) = lim

λ
(idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (f1(uλ)x),

with respect to the norm topology and the equality is proved. It only remains to show that
(idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (f1(b)x) ∈ [f2(B2)J2], x ∈ J1, b ∈ B1, ω ∈ B(H21)∗.
Let us fix x ∈ J1, b ∈ B1 and ω ∈ B(H21)∗. Let us denote ω = sω′ with s ∈ S21 and
ω′ ∈ B(H21)∗. Since (f1 ⊗ idS12 ⊗ idS21)δ(2)

B1 = δ
(2)
J1 ◦ f1, we have

(idJ1⊗ idS12⊗ω)δ(2)
J1 (f1(b)x) = (idJ1⊗ idS12⊗ω′)( (f1⊗ idS12⊗ idS21)(δ(2)

B1 (b))δ(2)
J1 (x)(1J1⊗S12⊗s) ).

But, we know that [δ(2)
J1 (J1)(1J1⊗S12 ⊗ S21)] = J2 ⊗ S21 (see Proposition 6.1.6 3). As a result,

(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b)x) is the norm limit of finite sums of elements of the form

(idJ1 ⊗ idS12 ⊗ ω′)((f1 ⊗ idS12 ⊗ idS21)(δ(2)
B1 (b))(x′ ⊗ s′))

= (idJ1 ⊗ idS12 ⊗ s′ω′)((f1 ⊗ idS12 ⊗ idS21)δ(2)
B1 (b))x′

= (f1 ⊗ idS12)(idB1 ⊗ idS12 ⊗ s′ω′)(δ
(2)
B1 (b))x′

= f2((idB1 ⊗ idS12 ⊗ s′ω′)δ
(2)
B1 (b))x′ ∈ f2(B2)J2,

where x′ ∈ J2 and s′ ∈ S21.
3. The formula (f2 ⊗ idS22)δB2 = δJ2 ◦ f2 is just a straightforward consequence of the definitions
of f2 and the actions δB2 and δJ2 .
4. Let us prove that F2J2 ⊂ J2. Let x ∈ J1, ω ∈ B(H21)∗ and φ a normal state on B(H21).
Since δ(2)

J1 (F1) = F1 ⊗ 1S12 ⊗ 1S21 , we have

F2(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (x) = (idJ1 ⊗ idS12 ⊗ φ⊗ ω)(δ(2)

J1 (F1)123δ
(2)
J1 (x)124) ∈ J2

by applying Remark 6.1.3 1 to F1 ∈ M(J1). Similarly, we prove that F ∗2 J2 ⊂ J2 by applying
Remark 6.1.3 1 to F ∗1 ∈M(J1). Therefore, we have J2F2 ⊂ J2 and F2 ∈M(J2). We then have
F2 = e2F2e2 ∈ e2M(J2)e2. Now, let us prove that [F2, f2(b)] ∈ e2J2e2 for all b ∈ B2. It follows
from (f2 ⊗ idS21)δ2

B1 = δ2
J1 ◦ f1 that

f2(B2) = [(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b)) ; b ∈ B1, ω ∈ B(H21)∗].

Then, if we fix b ∈ B1 and ω ∈ B(H21)∗ we have to prove that

[F2, (idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b))] ∈ e2J2e2.

However, since δ(2)
J1 (F1) = F1 ⊗ 1S12 ⊗ 1S21 we have

[F2, (idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b))] = (idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 ([F1, f1(b)]).
Moreover, we also have

e2J2e2 = [(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (e1xe1) ; x ∈ J1, ω ∈ B(H21)∗].

Indeed, this follows from the fact that, since δ(2)
J1 (e1) = e1 ⊗ 1S12 ⊗ 1S21 , we have

e2(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (x)e2 = (idJ1 ⊗ idS12 ⊗ ω)δ(2)

J1 (e1xe1), x ∈ J1, ω ∈ B(H21)∗.

Therefore, we obtain [F2, (idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (f1(b))] ∈ e2J2e2 as we have [F1, f1(b)] ∈ e1J1e1

by assumption. The formula δJ2(F2) = F2 ⊗ 1S22 is an immediate consequence of the definitions
of F2 and the action δJ2 . The remaining formulas are proved in a similar way.
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Remark 6.3.3. With the notations and hypotheses of Proposition 6.3.2 4, if for all b ∈ B1 we
have:

[F1, f1(b)] = 0, f1(b)(F1 − F ∗1 ) = 0, f1(b)(F 2
1 − 1) = 0,

then for all b ∈ B2 we have:
[F2, f2(b)] = 0, f2(b)(F2 − F ∗2 ) = 0, f2(b)(F 2

2 − 1) = 0.

Let (B1, δB1) be a G1-C∗-algebra. Let (E1, δE1) be a G1-equivariant Hilbert B1-module (see §1.6).
Let us equip J1 := K(E1⊕B1) with the continuous action δJ1 of G1 compatible with the actions
δE1 and δB1 of G1 on E1 and B1. Let us consider the following self-adjoint projections:

e1,1 =
(

1E1 0
0 0

)
, e2,1 =

(
0 0
0 1B1

)
∈ L(E1 ⊕B1) =M(J1).

We recall that (J1, δJ1 , e1,1, e2,1) is a linking G1-C∗-algebra. In virtue of Proposition 6.2.5, the
quintuple (J2, δJ2 , e1,2, e2,2) where

(J2, δJ2) := IndG2
G1(J1, δJ1), el,2 := el,1 ⊗ 1S12 ∈M(J2), l = 1, 2,

is a linking G2-C∗-algebra. In particular, the C∗-subalgebra el,2J2el,2 of J2, endowed with the
restriction of the action δJ2 , is a G2-C∗-algebra (see Remark 1.6.2).

By definition of the action δJ1 , the canonical *-homomorphism ιB1 : B1 → J1 satisfies the
conditions (a) and (b) of Lemma 6.3.1. We have the following result:
Proposition 6.3.4. Let us denote (B2, δB2) = IndG2

G1(B1, δB1). Then, for all b ∈ B2 we have
IndG2

G1ιB1(b) ∈ e2,2J2e2,2. Furthermore, the map

B2 −→ e2,2J2e2,2
b 7−→ IndG2

G1ιB1(b)
is a G2-equivariant *-isomorphism.
Proof. Since ιB1 is faithful so is IndG2

G1ιB1 . The *-homomorphism IndG2
G1ιB1 takes its values in

M(J2) (and even in e2,2M(J2)e2,2), we will show that its range actually lies in e2,2J2e2,2. Note
that we have

e2,2J2e2,2 = [(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (e2,1xe2,1) ; x ∈ J1, ω ∈ B(H21)∗]

(see proof of Proposition 6.3.2 4). Moreover, we have ιB1(B1) = e2,1J1e2,1. Let us fix b ∈ B1 and
ω ∈ B(H21)∗. Since δJ1 ◦ ιB1 = (ιB1 ⊗ idS11)δB1 , we have

(idJ1 ⊗ idS12 ⊗ ω)δ(2)
J1 (ιB1(b)) = (idJ1 ⊗ idS12 ⊗ ω)(ιB1 ⊗ idS12 ⊗ idS21)δ(2)

B1 (b)
= IndG2

G1ιB1(idB1 ⊗ idS12 ⊗ ω)δ(2)
B1 (b).

Therefore, we have even proved that IndG2
G1ιB1(B2) = e2,2J2e2,2. It then follows that the map

b ∈ B2 7→ IndG2
G1ιB1(b) ∈ e2,2J2e2,2 is a *-isomorphism and is also G2-equivariant in virtue of

Proposition 6.3.2 3.

From now on, we will identify the G2-C∗-algebras:
B2 = IndG2

G1(B1), e2,2J2e2,2 = e2,2IndG2
G1(J1)e2,2.

Then, by restriction of the continuous action δJ2 of G2 (see Remark 1.6.2), we obtain:
Definition 6.3.5. We call the induced Hilbert module of the G1-equivariant Hilbert B1-module
E1, the G2-equivariant Hilbert B2-module IndG2

G1(E1) := e1,2IndG2
G1(J1)e2,2.
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6.4 Induction and duality

Let us fix a G1-C∗-algebra (A1, δA1). Let us denote (A2, δA2) = IndG2
G1(A1, δA1), the induced

G2-C∗-algebra. In this paragraph, we will prove that the G2-C∗-algebras IndG2
G1(A1 oG1 o Ĝ1)

and A2 oG2 × Ĝ2 are canonically G2-equivariantly Morita equivalent. This result will appear
as a consequence of Theorem 4.4.15 applied to the double crossed product Ao G o Ĝ, where
(A, δA, βA) is the image of (A1, δA1) by the functor G1-C∗-Alg→ G-C∗-Alg. This result will then
be applied to the case of a linking G1-C∗-algebra.

In what follows, we identify the G-C∗-algebras Ao G o Ĝ and (D, βD, δD) (see Theorem 4.4.15
and we use the notations of §5.3 and in particular those of Notations 5.3.7. Let us recall the
main results of §5.3.

By identification of the Gj-equivariant Hilbert bimodules

Dll′,j := el,jDjel′,j, Bll′,j := Aj ⊗K(Hl′j,Hlj), j, l, l′ = 1, 2,

we have for all j, l, l′ = 1, 2, l 6= l′:

• The Hilbert Aj ⊗ K(Hlj)-Aj ⊗ K(Hl′j)-bimodule Aj ⊗ K(Hl′j,Hlj) is a Gj-equivariant
Morita equivalence between the Gj-C∗-algebras Aj ⊗K(Hlj) and Aj ⊗K(Hl′j).

• The action of Gj on Aj ⊗K(Hjj) coincide with the bidual action on the double crossed
product AjoGjoĜj up to the identification given by the Baaj-Skandalis duality theorem.

• Endowed with the action

δjll′,k : E jll′,k −→ L(δkBl′,j(Bl′,j)⊗ Sjj, E
j
ll′,k ⊗ Sjj),

ξ 7−→ (V k
jj)23ξ12(V k

jj)∗23

E jll′,k := δkBll′,j(Bll′,j) is a Gj-equivariant Hilbert δkBl,j(Bl,j)-δ
k
Bl′,j(Bl′,j)-bimodule.

Theorem 6.4.1. Let j, k, l, l′ = 1, 2, j 6= k. We have:

1. E jll′,k := δkBll′,j(Bll′,j) = IndGj
Gk(Bll′,k). In particular, δkBl,j(Bl,j) = IndGj

Gk(Bl,k).

2. The action δjll′,k of Gj on the bimodule E jll′,k coincides with the action of Gj induced by
that of Gk on Bll′,k.

3. The linear map
Bll′,j −→ IndGj

Gk(Bll′,k)
ξ 7−→ δkBll′,j(ξ)

is an isomorphism of Gj-equivariant Hilbert bimodules over the isomorphisms of Gj-C∗-
algebras:

Bl,j −→ IndGj
Gk(Bl,k),

x 7−→ δkBl,j(x)
Bl′,j −→ IndGj

Gk(Bl′,k).
x 7−→ δkBl′,j(x)

Proof. By restriction of the Gj-equivariant *-isomorphism

π̃j : Dj −→ IndGj
Gk(Dk) (see Proposition 6.1.14),

x 7−→ δkDj(x)
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we obtain the isomorphisms

π̃ll′,j : Dll′,j → IndGj
Gk(Dll′,k), l, l′ = 1, 2,

of Gj-equivariant Hilbert bimodules over the isomorphisms of Gj-C∗-algebras

π̃ll,j : Dl,j → IndGj
Gk(Dl,k), π̃l′l′,j : Dl′,j → IndGj

Gk(Dl′,k).

Indeed, this follows from the fact that δkDj(el,j) = el,k ⊗ 1Skj and δkDj(el′,j) = el′,k ⊗ 1Skj (see
Lemma 5.3.4 4). We then have

π̃ll′,j(Dll′,j) = (el,k ⊗ 1Skj)IndGj
Gk(Dk)(el′,k ⊗ 1Skj) = IndGj

Gk(Dll′,k).

Therefore, the first assertion is proved via the identification of the Gj-C∗-algebras Dj and
Bj := Aj ⊗K(H1j ⊕H2j). Moreover, we have

δjll′,k(π̃ll′,j(x)) = (V k
jj)23π̃ll′,j(x)12(V k

jj)∗23 = (id⊗ δjkj)π̃ll′,j(x), x ∈ Dll′,j,

which proves that the action δjll′,k of Gj on the Hilbert IndGj
Gk(Bl′,k)-module E jll′,k is the action of

Gj induced by that of Gk on the Hilbert Bl′,k-module Bll′,k. The last statement is a consequence
of 1, 2 and Proposition 5.3.15 2.

Corollary 6.4.2. Let j, k, l, l′ = 1, 2 with j 6= k, we have:

1. The Gj-C∗-algebras Aj ⊗ K(Hlj) and IndGj
Gk(Ak ⊗ K(Hlk)) are canonically isomorphic.

In particular, the Gj-C∗-algebras Aj ⊗K(Hjj) and IndGj
Gk(Ak ⊗K(Hjk)) are canonically

isomorphic.

2. The Gj-equivariant Hilbert Aj ⊗K(Hlj)-Aj ⊗K(Hl′j)-bimodules Aj ⊗K(Hl′j,Hlj) and
IndGj

Gk(Ak ⊗K(Hl′k,Hlk)) are canonically isomorphic.

3. The G2-C∗-algebras A2oG2oĜ2 and IndG2
G1(A1oG1oĜ1) are canonically G2-equivariantly

Morita equivalent.

Proof. The first two statements are immediate consequences of Theorem 6.4.1 3. By applying
Proposition 5.3.9 3 with j = 2, l = 2 and l′ = 1, we obtain that the G2-C∗-algebras A2⊗K(H22)
and A2 ⊗K(H12) are canonically G2-equivariantly Morita equivalent. Moreover, the latter is
canonically isomorphic to IndG2

G1(A1 ⊗K(H11)) (the first statement with j = 2 and k = 1 = l).
As a result, the last statement is proved in virtue of the Baaj-Skandalis duality theorem.

The case of a linking G1-C∗-algebra. Let (J1, δJ1 , e
1
1, e

2
1) be a linking G1-C∗-algebra. Let

(J2, δJ2) = IndG2
G1(J1, δJ1) be the induced G2-C∗-algebra. By Proposition 6.2.5, the quintuple

(J2, δJ2 , e
1
2, e

2
2), where

e1
2 := e1

1 ⊗ 1S12 , e2
2 := e2

1 ⊗ 1S12 ,

is a linking G2-C∗-algebra. Let (J, δJ , βJ , e1, e2) be the associated linking G-C∗-algebra, where
(J, δJ , βJ) is the image of (J1, δJ1) by the functor G1-C∗-Alg → G-C∗-Alg and the self-adjoint
projections e1 and e2 are defined by

e1 := (e1
1, e

1
2), e2 := (e2

1, e
2
2) (see Corollary 6.2.7).

In what follows, we investigate the structure of linking G-C∗-algebra of the double crossed
product J o G o Ĝ corresponding to the projections e1 and e2. We will use the notations of
§5.3 in which we replace everywhere A by J . We also identify J o G o Ĝ with the C∗-algebra
D ⊂ L(J ⊗H ).
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Lemma 6.4.3. Let i = 1, 2, there exists a unique nonzero self-adjoint projection eiD ∈M(D)
such that

jD(eiD) = qβJ ,α̂(ei ⊗ 1H ) ∈ L(J ⊗H ) (α̂ = β).

Then, (D, δD, βD, e1
D, e

2
D) is a linking G-C∗-algebra, that is:

1. e1
D + e2

D = 1D, [DeiDD] = D, i = 1, 2.

2. δD(eiD) = δD(1D)(eiD ⊗ 1S), i = 1, 2.

Proof. We recall that we denote πR := (idJ ⊗ R)δJ : J → L(J ⊗H ). We also recall that the
C∗-algebra D is given by:

D = [πR(a)(1J ⊗ λ(x)L(y)) ; a ∈ J, x ∈ Ŝ, y ∈ S] ⊂ L(J ⊗H ).

We have πR(m) = (idJ ⊗R)δJ(m) ∈M(D) for all m ∈M(J). However, by the equality

jD(M(D)) = {T ∈ L(J ⊗H ) ; TD ⊂ D, DT ⊂ D, TjD(1D) = T = jD(1D)T}

and the fact that jD(1D) = πR(1J), we have πR(m) ∈ jD(M(D)) for all m ∈ M(J). In
particular, we have

qβJ ,α̂(ei ⊗ 1H ) = πR(ei) := (idJ ⊗R)δJ(ei) ∈ jD(M(D)), i = 1, 2.

By the faithfulness of jD, there exists a unique eiD ∈M(D) such that jD(eiD) = qβJ ,α̂(ei ⊗ 1H ),
for i = 1, 2. It is also clear that e1

D and e2
D are nonzero self-adjoint projections. Now, we have

jD(e1
D + e2

D) = qβJ ,α̂ = jD(1D). Hence, e1
D + e2

D = 1D. Let us fix i = 1, 2 and let us prove that
[DeiDD] = D. Let d ∈ D, since D is a C∗-algebra we can assume that

d = (1J ⊗ L(y′)λ(x′))πR(a)(1J ⊗ λ(x)L(y)), a ∈ J, x, x′ ∈ Ŝ, y, y′ ∈ S.

However, we have [JeiJ ] = J . Therefore, d is the norm limit of finite sums of elements of the
form

(1J⊗L(y′)λ(x′))πR(beib′)(1J⊗λ(x)L(y)) = (1J⊗L(y′)λ(x′))πR(b)jD(eiD)πR(b′)(1J⊗λ(x)L(y)),

where b, b′ ∈ J . Hence, d ∈ [DeiDD]. By Remark 4.4.14, we have

(jD ⊗ idS)δD(eiD) = δJ⊗K(jD(eiD)) = δJ⊗K(πR(ei)).

We recall that δJ⊗K(πR(m)) = qβJ ,α̂12 qβ,α23 (πR(m)⊗ 1S), for all m ∈M(J) (see Proposition 4.4.12
2). Furthermore, we have πR(ei) = jD(eiD) and (jD ⊗ idS)(qβD,α) = qβJ ,α̂12 qβ,α23 . Hence,

(jD ⊗ idS)δD(eiD) = (jD ⊗ idS)(qβD,α(eiD ⊗ 1S)).

It should be noted that the G-C∗-algebra D has two compatible structures of linking algebras.
The first structure is given by the previous lemma whereas the second one is given by the
compatible structure of linking algebra on Dj defined by the projections el,j , l = 1, 2 (see Lemma
5.3.4 1). More precisely, we have:
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Lemma 6.4.4. For all s, j, l = 1, 2, let esl,j ∈M(Dj) be the unique self-adjoint projection such
that

ιj(esl,j) = esDιj(el,j),

where ιj : M(Dj) → M(D) is the unique strictly continuous extension of the inclusion map
Dj ⊂ D such that ιj(1Dj) = βD(εj). For all s, j, k, l = 1, 2, we have

δkDj(e
s
l,j) = esl,k ⊗ 1Skj .

Proof. By composing with jD, it follows immediately from the definitions of the projections
that we have the formulas:

[esD, ιj(el,j)] = 0, esDιj(el,j)βD(εj) = esDιj(el,j)

and this proves the existence and uniqueness of the self-adjoint projections esl,j. Now, let us
denote πkj :M(Dk ⊗ Skj)→M(D ⊗ S) the strictly continuous extension of the inclusion map
Dk ⊗ Skj ⊂ D ⊗ S such that πkj (1Dk⊗Skj) = βD(εk)⊗ pkj. By using the faithfulness of πkj and
the fact that πkj (esl,k ⊗ 1Skj) = ιk(esl,k)⊗ pkj = esDιk(el,k)⊗ pkj, it suffices to prove that

πkj δ
k
Dj

(esl,j) = esDιk(el,k)⊗ pkj.

We have

πkj δ
k
Dj

(esl,j) = δD(ιj(esl,j))(βD(εk)⊗ pkj) (Proposition 5.1.3)
= δD(esDιj(el,j))(βD(εk)⊗ pkj)
= δD(1D)(esD ⊗ 1S)δD(ιj(el,j))(βD(εk)⊗ pkj) (Lemma 6.4.3 2)
= δD(1D)(βD(εk)⊗ pkj)(esD ⊗ 1S)δD(ιj(el,j))(βD(εk)⊗ pkj)
= (βD(εk)⊗ pkj)(esD ⊗ 1S)δD(ιj(el,j))(βD(εk)⊗ pkj)
= (βD(εk)⊗ pkj)(esD ⊗ 1S)πkj δkDj(el,j).

However, by Lemma 5.3.4 4, we have πkj δkDj(el,j) = πkj (el,k ⊗ 1Skj) = ιk(el,k)⊗ pkj. Hence,

πkj δ
k
Dj

(esl,j) = (βD(εk)⊗ pkj)(esDιk(el,k)⊗ pkj)
= (βD(εk)⊗ pkj)(ιk(esl,k)⊗ pkj)
= ιk(esl,k)⊗ pkj
= esDιk(el,k)⊗ pkj.

Notations 6.4.5. For j, l, l′, s, s′ = 1, 2, we denote:

Dss′

ll′,j := esl,jDje
s′

l′,j, Ds
l,j := Dss

ll,j.

Note that Dss′
ll′,j = esDDll′,je

s′
D, Ds

l,j = esDDl,je
s
D.

In virtue of Lemma 6.4.4, we have that Dss′
ll′,j is a Gj-equivariant Hilbert Ds

l,j-Ds′
l′,j-bimodule by

restriction of the structure of Gj-C∗-algebra on Dj. Moreover, we have the following result:
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Proposition 6.4.6. Let j, k = 1, 2 with j 6= k. By restriction of the isomorphism of Gj-C∗-
algebras

π̃j : Dj → IndGj
Gk(Dk) ; x 7→ δkDj(x),

we obtain the isomorphisms

Dss′

ll′,j → IndGj
Gk(D

ss′

ll′,k), l, l′, s, s′ = 1, 2,

of Gj-equivariant Hilbert bimodules over the isomorphisms of Gj-C∗-algebras

Ds
l,j → IndGj

Gk(D
s
l,k), Ds′

l′,j → IndGj
Gk(D

s′

l′,k).

Proof. It follows from the formulas δkDj(e
s
l,j) = esl,k ⊗ 1Skj and δkDj(e

s′
l′,j) = es

′
l′,k ⊗ 1Skj (Lemma

6.4.4) that
δkDj(D

ss′

ll′,j) = (esl,k ⊗ 1Skj)IndGj
Gk(Dk)(es

′

l′,k ⊗ 1Skj) = IndGj
Gk(D

ss′

ll′,k).

In particular, we have δkDj(D
s
l,j) = IndGj

Gk(D
s
l,k).

In the following, we will obtain the applications of Proposition 6.4.6 to an equivariant Morita
equivalence corresponding to an equivariant Hilbert module.

Let (A1, δA1) and (B1, δB1) be two G1-C∗-algebras and (E1, δE1) a G1-equivariant Hilbert A1-B1-
bimodule. Let us denote:

(A2, δA2) := IndG2
G1(A1, δA1), (B2, δB2) := IndG2

G1(B1, δB1), (E2, δE2) := IndG2
G1(E1, δE1).

Let us denote:
J1 := K(E1 ⊕B1) =

(
K(E1) E1

E ∗1 B1

)
endowed with the continuous action δJ1 , which defines the structure of G1-equivariant Hilbert
B1-module on E1. We have

J2 := IndG2
G1(J1) = K(E2 ⊕B2) =

(
K(E2) E2

E ∗2 B2

)
.

Let us consider the G-C∗-algebra (J, δJ , βJ) with J = J1⊕J2 defined by J1 and J2 (see Corollary
6.2.7). We identify the G-C∗-algebras J o G o Ĝ and (D, δD, βD) as in Theorem 4.4.15 and we
use all the notations of §5.3 and in particular those of Notations 5.3.7.

For j = 1, 2, we identify

Dj = Bj := Jj ⊗K(H1j ⊕H2j) = K((Ej ⊕Bj)⊗ (H1j ⊕H2j)).

Note that for all l, l′ = 1, 2 we have:

• For (s, s′) = (1, 1), the Gj-C∗-algebra D1
l,j is identified to the Gj-C∗-algebra K(Ej)⊗K(Hlj)

and the action is given by:

x 7→ (V l
jj)23(idK(Ej) ⊗ σ)(δjK(Ej) ⊗ idK(Hlj))(x)(V l

jj)∗23, x ∈ K(Ej)⊗K(Hlj),
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• For (s, s′) = (2, 2), the Gj-C∗-algebra D2
l,j is identified to the Gj-C∗-algebra Bj ⊗K(Hlj)

and the action is given by:

x 7→ (V l
jj)23(idBj ⊗ σ)(δjBj ⊗ idK(Hlj))(x)(V l

jj)∗23, x ∈ Bj ⊗K(Hlj),

• For (s, s′) = (1, 2), the Gj-equivariant Hilbert D1
l,j-D2

l′,j-bimodule D12
ll′,j is identified with

the Gj-equivariant Hilbert K(Ej)⊗K(Hlj)-Bj ⊗K(Hl′j)-bimodule Ej ⊗K(Hl′j,Hlj) and
the action is given by:

ξ 7→ (V l
jj)23(idEj ⊗ σ)(δjEj ⊗ idK(Hl′j ,Hlj))(ξ)(V l′

jj)∗23, ξ ∈ Ej ⊗K(Hl′j,Hlj),

where σ denotes an appropriate flip map.

Theorem 6.4.7. Let (A1, δA1) and (B1, δB1) be two G1-C∗-algebras and (E1, δE1) a G1-equiva-
riant Hilbert A1-B1-bimodule such that the left action of A1 on E1 is non-degenerate. Let us
denote:

(A2, δA2) = IndG2
G1(A1, δA1), (B2, δB2) = IndG2

G1(B1, δB1), (E2, δE2) = IndG2
G1(E1, δE1).

For all j, k, l, l′ = 1, 2 with j 6= k, the linear map

δkll′,j : Ej ⊗K(Hl′j,Hlj) −→ IndGj
Gk(Ek ⊗K(Hl′k,Hlk))

ξ 7−→ (V l
kj)23(idEk ⊗ σ)(δkEj ⊗ idK(Hl′j ,Hlj))(ξ)(V l′

kj)∗23

is an isomorphism of Gj-equivariant Hilbert bimodules over the isomorphisms of C∗-algebras:

Aj ⊗K(Hlj)→ IndGj
Gk(Ak ⊗K(Hlk)) ; x 7→ (V l

kj)23(idAk ⊗ σ)(δkAj ⊗ idK(Hlj))(x)(V l
kj)∗23,

Bj ⊗K(Hl′j)→ IndGj
Gk(Bk ⊗K(Hl′k)) ; x 7→ (V l′

kj)23(idBk ⊗ σ)(δkBj ⊗ idK(Hl′j))(x)(V l′

kj)∗23,

where σ denotes an appropriate flip map.

Proof. It follows from Proposition 6.4.6 that the theorem is already established if we take K(Ej)
for the Gj-C∗-algebra Aj. More precisely, we have an isomorphism of Gj-equivariant Hilbert
bimodules

δkll′,j : Ej ⊗K(Hl′j,Hlj) −→ IndGj
Gk(Ek ⊗K(Hl′k,Hlk))

over the isomorphisms of C∗-algebras

K(Ej)⊗K(Hlj)→ IndGj
Gk(K(Ek)⊗K(Hlk)), Bj ⊗K(Hl′j)→ IndGj

Gk(Bk ⊗K(Hl′k)).

Let us consider the G1-C∗-algebra K(E1), we then have K(E2) = IndG2
G1K(E1). By taking the

image of the non-degenerate *-representation A1 → L(E1) by the induction functor, we obtain
a non-degenerate *-representation A2 → L(E2) (cf. §6.3). It then follows that we have a
non-degenerate G-equivariant *-homomorphism A → L(E1 ⊕ E2), where A = A1 ⊕ A2. By
composing with the canonical degenerate *-homomorphism L(E1 ⊕ E2)→M(J), we obtain a *-
homomorphism A→M(J), which extends to a non unital strictly continuous *-homomorphism
M(A)→M(J). By the compatibility of the actions, the *-homomorphism L(E1⊕E2)→M(J)
is G-equivariant and so is A→M(J). By using the functoriality of the correspondence −oGoĜ
(see Theorems 4.3.3 2, 4.3.6 2 and Remark 4.3.4), we obtain a G-equivariant *-homomorphism

Ao G o Ĝ → M(J o G o Ĝ).
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For j = 1, 2, let us denote Aj := Aj ⊗K(H1j ⊕H2j) (cf. Notations 5.3.7). By identifying the
G-C∗-algebras A o G o Ĝ and A1 ⊕ A2, the above equivariant *-homomorphism restricts to
*-homomorphisms:

fj : Aj →M(Bj), Bj := Jj ⊗K(H1j ⊕H2j), j = 1, 2,

which satisfy (fk ⊗ idSkj)δkAj = δkBj ◦ fj for all j, k = 1, 2. By restriction of fj, we finally obtain
non-degenerate Gj-equivariant *-homomorphims

Aj ⊗K(Hlj)→ L(Ej ⊗K(Hl′j,Hlj)), l, l′ = 1, 2.

Therefore, the equivariance of δkll′,j : Ej ⊗K(Hl′j,Hlj)→ IndGj
Gk(Ek ⊗K(Hl′k,Hlk)) follows from

Proposition 6.4.6 and the formula (fk ⊗ idSkj)δkAj = δkBj ◦ fj.

In order to define an equivalence of category between KKG1 and KKG2 in the next chapter, we
will need to specify some notations and give a useful lemma.

Notations 6.4.8. Let us fix j, k, l, l′ = 1, 2 with j 6= k. We have:

1. Bl,j := Jj ⊗K(Hlj) =
(
K(Ej)⊗K(Hlj) Ej ⊗K(Hlj)
(Ej ⊗K(Hlj))∗ Bj ⊗K(Hlj)

)
.

2. The Hilbert Bl,j-Bl′,j-bimodule Bll′,j := Jj ⊗K(Hl′j,Hlj) is of the form:

Bll′,j =
(
K(Ej)⊗K(Hl′j,Hlj) Ej ⊗K(Hl′j,Hlj)
(Ej ⊗K(Hl′j,Hlj))∗ Bj ⊗K(Hl′j,Hlj)

)
.

3. By restriction of δkBj , we have the following Gj-equivariant isomorphisms:

δkll′,j : K(Ej)⊗K(Hl′j,Hlj) −→ IndGj
Gk(K(Ek)⊗K(Hl′k,Hlk))

x 7−→ (V l
kj)23(idK(Ek) ⊗ σ)(δkK(Ej) ⊗ idK(Hl′j ,Hlj))(x)(V l′

kj)∗23,

δkll′,j : Ej ⊗K(Hl′j,Hlj) −→ IndGj
Gk(Ek ⊗K(Hl′k,Hlk))

ξ 7−→ (V l
kj)23(idEk ⊗ σ)(δkEj ⊗ idK(Hl′j ,Hlj))(ξ)(V l′

kj)∗23,

δkll′,j : Bj ⊗K(Hl′j,Hlj) −→ IndGj
Gk(Bk ⊗K(Hl′k,Hlk))

x 7−→ (V l
kj)23(idBk ⊗ σ)(δkBj ⊗ idK(Hl′j ,Hlj))(x)(V l′

kj)∗23,

where σ denotes an appropriate flip map.

Lemma 6.4.9. For all j, k, l = 1, 2 and T ∈M(K(El)), we have

δkll,j(idK(Ej) ⊗Rjl)δjK(El)(T ) = (idK(Ek) ⊗Rkl)δkK(El)(T )⊗ 1Skj .

Proof. This follows immediately from Proposition 4.4.12 2 for the action of G on J .
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Chapter 7

Application to equivariant KK-theory

In [28], Voigt has established a canonical equivalence of the categories KKG1 and KKG2 for
two monoidally equivalent compact quantum groups G1 and G2. In this chapter, we gener-
alize this result to the case of two monoidally equivalent regular locally compact quantum groups.

Let G1 and G2 be two monoidally equivalent regular locally compact quantum groups. If
(A1, δA1) and (B1, δB1) are two G1-C∗-algebras, we consider

(A2, δA2) := IndG2
G1(A1, δA1), (B2, δB2) := IndG2

G1(B1, δB1),

the induced G2-C∗-algebras (see §6.1 and Propositions 6.1.2 and 6.1.4). In this chapter, to any
G1-equivariant Kasparov A1-B1-bimodule (E1, F1) we associate canonically a G2-equivariant
Kasparov A2-B2-bimodule (E2, F2) and we define an isomorphism of abelian groups

JG2,G1 : KKG1(A1, B1) −→ KKG2(A2, B2)
x = [(E1, F1)] 7−→ JG2,G1(x) := [(E2, F2)],

whose inverse isomorphism JG1,G2 : KKG2(A2, B2)→ KKG1(A1, B1) is obtained in a similar way
by exchanging the roles of G1 and G2.

First, let us recall briefly some results and notations of [3] concerning the equivariant KK-theory
for actions of locally compact quantum groups. For more precise information and further details,
we refer the reader to [3] and the references therein [16, 17]. Let us fix a regular locally compact
quantum group G:

• To any pair of G-C∗-algebra (A,B), we associate the set denoted KKG(A,B) consisting of
all classes of G-equivariant Kasparov A-B-bimodule (E , F ), that is E is an G-equivariant
A-B-bimodule and F ∈ L(E ) verifies:

[F, a] ∈ K(E ), a(F − F ∗) ∈ K(E ), a(F 2 − 1) ∈ K(E ), a ∈ A,

x(δK(E )(F )− F ⊗ 1C0(G)) ∈ K(E )⊗ C0(G), x ∈ A⊗ C0(G).

Note that KKG(A,B) becomes an abelian group, with addition given by the direct sum of
equivariant Kasparov bimodules.

• Note that if E is a G-equivariant Hilbert A-B-bimodule and F0, F1 ∈ L(E ) such that
(E , F0) and (E , F1) are G-equivariant Kasparov A-B-bimodules and a(F1 − F0) ∈ K(E )
for all a ∈ A, then we have [(E , F0)] = [(E , F1)].
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• If A,D,B are G-C∗-algebras, we have the product (internal Kasparov product):

KKG(A,D)× KKG(D,B)→ KKG(A,B) ; (x, y) 7→ x⊗D y.

• Let A be a G-C∗-algebra. Then, (A, 0) is a G-equivariant Kasparov A-A-bimodule. We
denote:

1A := [(A, 0)] ∈ KKG(A,A).
If x ∈ KKG(A,B), we have 1A ⊗A x = x and x⊗B 1B = x.

• Let A be a G-C∗-algebra. We identify the G-C∗-algebra A⊗K(L2(G)) with AoGo Ĝ.
Let us denote:

βA := [(A⊗ L2(G), 0)] ∈ KKG(A⊗K(L2(G)), A),
αA := [((A⊗ L2(G))∗, 0)] ∈ KKG(A,A⊗K(L2(G))).

We have βA ⊗A αA = 1A⊗K(L2(G)) and αA ⊗A⊗K(L2(G)) βA = 1A.

• If A and B are G-C∗-algebras, for all x = [(E , F )] ∈ KKG(A,B) we have

βA⊗x⊗αB = [(E ⊗K(L2(G)), (idK(E )⊗R)δK(E )(F ))] ∈ KKG(A⊗K(L2(G)), B⊗K(L2(G)))

and the operator (idK(E ) ⊗R)δK(E )(F ) is invariant with respect to the bidual action of G
on K(E )⊗K(L2(G)). Moreover, the map

KKG(A,B) −→ KKG(A⊗K(L2(G)), B ⊗K(L2(G)))
x 7−→ βA ⊗A x⊗B αB

is an isomorphism of abelian groups.

• If x = [(E , F )] ∈ KKG(A,B), we can assume that the left action A→ L(E ) of A on E is
non-degenerate by replacing x with 1A ⊗A x if necessary.

• If A1, A2, B are G-C∗-algebras, a G-equivariant *-homomorphism f : A1 → A2 induces a
homomorphism of abelian groups f ∗ : KKG(A2, B)→ KKG(A1, B).

• If A,B1, B2 are G-C∗-algebras, a G-equivariant *-homomorphism g : B1 → B2 induces a
homomorphism of abelian groups

g∗ : KKG(A,B1) −→ KKG(A,B2)
[(E , F )] 7−→ [(E ⊗g B2, F ⊗g 1B2)].

• Let A,B be G-C∗-algebras and f : A→ B a G-equivariant *-homomorphism. Then, the
pair (B, 0) is a Kasparov A-B-bimodule. By abuse of notation, we will denote

f := f ∗(1B) = [(B, 0)] ∈ KKG(A,B).

Let C,D be G-C∗-algebras. We have the formulas:

f ⊗B x = f ∗(x), x ∈ KKG(B,C) ; y ⊗A f = f∗(y), y ∈ KKG(D,A).

In particular, if A, Ã, B, B̃ are G-C∗-algebras, f : A→ Ã and g : B → B̃ are G-equivariant
*-homomorphisms and x := [(E , F )] ∈ KKG(Ã, B̃), we have

f ⊗
Ã
x⊗

B̃
g−1 = [(E ⊗g−1 B,F ⊗g−1 1B)] ∈ KKG(A,B),

where the left action of A on E ⊗g−1 B is given by a(ξ ⊗g−1 b) = f(a)ξ ⊗g−1 b for a ∈ A,
ξ ∈ E and b ∈ B.
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Let us recall the following result:

Lemma 7.1. Let A, B and D be C∗-algebras. Let E1 and E2 be respectively a Hilbert D-
module and a Hilbert B-module. Let π : D → L(E2) be a *-homomorphism. Let us denote
π̃ : L(E1)→ L(E1 ⊗π E2) the *-homomorphism defined by:

π̃(T ) = T ⊗π 1E2 , T ∈ L(E1).

If π(D) ⊂ K(E2), then we have π̃(K(E1)) ⊂ K(E1 ⊗π E2).

Since we could not find a proper reference, we also recall the proof:

Proof. For ξ ∈ E1, we denote Tξ ∈ L(E2,E1 ⊗π E2) the operator defined by Tξ(η) = ξ ⊗π η, for
all η ∈ E2. Then, we have

T ∗ξ (ζ1 ⊗π ζ2) = π(〈ξ, ζ1〉)ζ2, ζ1 ∈ E1, ζ2 ∈ E2.

A straightforward computation gives

Tξπ(x)T ∗η = π̃(θξ,ηx∗), ξ, η ∈ E1, x ∈ D.

By assumption, we then have π̃(θξ,ηx∗) ∈ K(E1 ⊗π E2), for all ξ, η ∈ E1 and x ∈ D. By Cohen-
Hewitt factorization theorem, we have E1D = E1. Hence, π̃(θξ,η) ∈ K(E1 ⊗π E2) for all ξ, η ∈ E1.
Therefore, we have π̃(K(E1)) ⊂ K(E1 ⊗π E2).

Let us give two technical lemmas:

Lemma 7.2. Let G be a locally compact quantum group. Let A, B and D be G-C∗-algebras. Let
(E1, F1) be a G-equivariant Kasparov A-D-bimodule and E2 a G-equivariant Hilbert D-B-bimodule.
If the left action D → L(E2) takes its values in K(E2), then the pair (E1 ⊗D E2, F1 ⊗D 1E2) is a
G-equivariant Kasparov A-B-bimodule and we have

[(E1, F1)]⊗D [(E2, 0)] = [(E1 ⊗D E2, F1 ⊗D 1E2)] ∈ KKG(A,B).

Proof. Let us denote π : D → L(E2) the left action of D on E2, E = E1⊗πE2 and S = C0(G). By
Lemma 7.1, the hypothesis implies that the *-homomorphism L(E1)→ L(E1⊗π E2) ; x 7→ x⊗π 1
restricts to a *-homomorphism K(E1)→ K(E1 ⊗π E2). Therefore, we obtain immediately that
the pair (E , F1 ⊗π 1) is a Kasparov A-B-bimodule. In the following, we will recall some of the
notations and identifications used in Proposition 2.10 of [3] and in its proof. Let

V1 ∈ L(E1 ⊗δD (D ⊗ S),E1 ⊗ S), V2 ∈ L(E2 ⊗δB (B ⊗ S),E2 ⊗ S)

be the unitaries associated with the actions δE1 and δE2 respectively. We recall that there exists
a unitary Ṽ2 ∈ L(E ⊗δB (B ⊗ S),E1 ⊗(π⊗idS)δD (E2 ⊗ S)) such that

Ṽ2((ξ1 ⊗π ξ2)⊗δB x) = ξ1 ⊗(π⊗idS)δD V2(ξ2 ⊗δB x), ξ1 ∈ E1, ξ2 ∈ E2, x ∈ B ⊗ S.

We also recall the following identifications:

E ⊗ S = (E1 ⊗ S)⊗π⊗idS (E2 ⊗ S),

E1 ⊗(π⊗idS)δD (E2 ⊗ S) = (E1 ⊗δD (D ⊗ S))⊗π⊗idS (E2 ⊗ S).
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Finally, we recall that the unitary associated with the action of G on E is

V := (V1 ⊗π⊗idS 1)Ṽ2 ∈ L(E ⊗δB (D ⊗ S),E ⊗ S).

Let us recall that the action of G on K(E ) (resp. K(E1)) is given by:

δK(E )(k) = V (k ⊗δB 1)V ∗, k ∈ K(E ) (resp. δK(E1)(k) = V1(k ⊗δD 1)V ∗1 , k ∈ K(E1))

(see Remarque 2.8 (a) in [3]). It is clear that we have

Ṽ2((F1⊗π 1)⊗δB 1) = (F1⊗(π⊗idS)δD 1)Ṽ2, (V1⊗π⊗idS 1)(F1⊗(π⊗idS)δD 1) = V1(F1⊗δD 1)⊗π⊗idS 1.

However, since Ṽ2 is unitary we then have δK(E )(F1⊗π1) = δK(E1)(F1)⊗π⊗idS 1. By the assumption
and the fact that the Kasparov A-D-bimodule (E1, F1) is G-equivariant, we obtain that the
Kasparov A-B-bimodule (E , F1 ⊗π 1) is G-equivariant.
By the assumption, the pair (E2, 0) is a G-equivariant Kasparov D-B-bimodule. The positivity
condition is trivially satisfied by the operator F1 ⊗π 1. Therefore, it only remains to show that
F1 ⊗π 1 is a 0-connection in E2. However, in virtue of the assumption it is clear that we have
(x⊗π 1)(F1 ⊗π 1) ∈ K(E ) and (F1 ⊗π 1)(x⊗π 1) ∈ K(E ) for all x ∈ K(E1).

Lemma 7.3. Let G be a locally compact quantum group and A and B two G-C∗-algebras. Let
H and K be two nonzero Hilbert spaces and E a G-equivariant Hilbert A-B-bimodule. We
assume that there exists an operator F ∈ L(E ⊗K(K )) such that the pair (E ⊗K(K ), F ) is a
G-equivariant Kasparov bimodule. Let us denote1:

x := [(E ⊗K(K ), F )] ∈ KKG(A⊗K(K ), B ⊗K(K )),
γg := [(A⊗K(K ,H ), 0)] ∈ KKG(A⊗K(H ), A⊗K(K )),
γd := [(B ⊗K(H ,K ), 0)] ∈ KKG(B ⊗K(K ), B ⊗K(H )).

Let us denote F̃ ∈ L(E ⊗K(H ,K )) the operator acting on E ⊗K(H ,K ) by factorization as
follows:

F̃ (ξ ⊗ kT ) = [F (ξ ⊗ k)](1E ⊗ T ), ξ ∈ E , k ∈ K(K ), T ∈ K(H ,K ).

Then, the pair (E ⊗K(H ,K ), F̃ ) is a G-equivariant Kasparov bimodule and we have

x⊗B⊗K(K ) γd = [(E ⊗K(H ,K ), F̃ )] ∈ KKG(A⊗K(K ), B ⊗K(H )).

Henceforth, we assume that the left action of A on E is non-degegerate and that there exists
an operator F ′ ∈ L(E ) such that F = F ′ ⊗ 1K and (E , F ′) and (E ⊗ K(H ), F ′ ⊗ 1H ) are
G-equivariant Kasparov bimodules. Then, we have

γg ⊗A⊗K(K ) [(E ⊗K(H ,K ), F̃ )] = [(E ⊗K(H ), F ′ ⊗ 1H )].

In particular, we have

γg ⊗A⊗K(K ) x⊗B⊗K(K ) γd = [(E ⊗K(H ), F ′ ⊗ 1H )].
1The index “g” (resp. “d”) stands for “gauche” (resp. “droite”), the french words for “left” (resp. “right”) and

refers to the left (resp. right) action.
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Proof. Let us show that F̃ is well defined. Let us consider an approximate unit (uλ)λ of K(K ).
For all ξ ∈ E , k ∈ K(K ) and T ∈ K(H ,K ), we have

[F (ξ ⊗ k)](1E ⊗ T ) = lim
λ

[F (ξ ⊗ uλk)](1E2 ⊗ T ) = lim
λ

[F (ξ ⊗ uλ)](1E ⊗ kT ).

Therefore, if k, k′ ∈ K(K ) and T, T ′ ∈ K(H ,K ) are such that kT = k′T ′, then we have

[F (ξ ⊗ k)](1E ⊗ T ) = [F (ξ ⊗ k′)](1E ⊗ T ′).

Let us denote π : B ⊗ K(K ) → L(B ⊗ K(H ,K )) the left action on B ⊗ K(H ,K ). Note
that π actually takes its values in K(B ⊗K(H ,K )). Indeed, let a ∈ B and k ∈ K(K ). Since
H 6= {0}, we have K(K ) = [K(H ,K )K(K ,H )]. Then, k is the norm limit of finite sums
of the form ∑

i TiSi, where Ti ∈ K(H ,K ) and Si ∈ K(K ,H ). We also write a = a1a2 with
a1, a2 ∈ B. For all b ∈ B and T ∈ K(H ,K ), we have that π(a⊗ k)(b⊗ T ) = ab⊗ kT is the
norm limit of finite sums of the form∑

i

a1a2b⊗ TiSiT =
∑
i

(a1 ⊗ Ti)〈a∗2 ⊗ S∗i , b⊗ T 〉.

By Lemma 7.2, the pair ((E ⊗K(K ))⊗B⊗K(K ) (B⊗K(H ,K )), F⊗B⊗K(K ) 1) is a G-equivariant
Kasparov A⊗K(K )-B ⊗K(H )-bimodule. We also have a G-equivariant unitary equivalence
of Hilbert A⊗K(K )-B ⊗K(H )-bimodules:

Ω : (E ⊗K(K ))⊗B⊗K(K ) (B ⊗K(H ,K )) −→ E ⊗K(H ,K )
(ξ ⊗ k)⊗B⊗K(K ) (b⊗ T ) 7−→ ξb⊗ kT.

Moreover, we have F̃ = Ω(F ⊗B⊗K(K ) 1)Ω∗. Therefore, the pair (E ⊗ K(H ,K ), F̃ ) is a
G-equivariant Kasparov A⊗K(K )-B ⊗K(H )-bimodule and we have

[(E ⊗K(H ,K ), F̃ )] = [((E ⊗K(K ))⊗B⊗K(K ) (B ⊗K(H ,K )), F ⊗B⊗K(K ) 1)].

Hence, x⊗B⊗K(K ) γd = [(E ⊗K(H ,K ), F̃ )] by Lemma 7.2.

Now, let us assume that the left action of A on E is non-degegerate and that there exists
an operator F ′ ∈ L(E ) such that F = F ′ ⊗ 1K and (E , F ′) and (E ⊗ K(H ), F ′ ⊗ 1H ) are
G-equivariant Kasparov bimodules. Let us prove that

γg ⊗A⊗K(K ) [(E ⊗K(H ,K ), F̃ )] = [(E ⊗K(H ), F ′ ⊗ 1H )].

Note that F̃ = F ′ ⊗ 1K(H ,K ). Since the left action of A on E is non-degenerate, we have a
G-equivariant unitary equivalence of bimodules:

Ξ : (A⊗K(K ,H ))⊗A⊗K(K ) (E ⊗K(H ,K )) −→ E ⊗K(H )
(a⊗ S)⊗A⊗K(K ) (ξ ⊗ T ) 7−→ aξ ⊗ ST.

The positivity condition is trivially satisfied. We then have to prove that the operator F ′ ⊗ 1H

can be interpreted (via the identification Ξ) as a F̃ -connection in the Kasparov product
γg ⊗A⊗K(K ) [(E ⊗K(H ,K ), F̃ )]. For x ∈ A⊗K(K ,H ), we denote

Tx ∈ L(E ⊗K(H ,K ), (A⊗K(K ,H ))⊗A⊗K(K ) (E ⊗K(H ,K )))
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the operator defined by Txξ = x ⊗A⊗K(K ) ξ for all ξ ∈ E ⊗ K(H ,K ). Now, we denote
T ′x = ΞTx ∈ L(E ⊗K(H ,K ),E ⊗K(H )), x ∈ A⊗K(K ,H ). For a ∈ A and S ∈ K(K ,H ),
we have

T ′a⊗S(ξ ⊗ T ) = aξ ⊗ ST, ξ ∈ E , T ∈ K(H ,K ).
Let a ∈ A and S ∈ K(K ,H ), we have

(F ′ ⊗ 1H )T ′a⊗S − T ′a⊗SF̃ = [F ′, a]⊗ S.

Let us recall that we have [F ′, a] ∈ K(E ) by assumption. Moreover, since S ∈ K(K ,H )
and K(K ,H ) = [K(H )K(K ,H )] we have S ∈ K(K(H ,K ),K(H )). Therefore, we have
(F ′ ⊗ 1H )T ′a⊗S − T ′a⊗SF̃ ∈ K(E ⊗K(H ,K ),E ⊗K(H )). We also prove in a similar way that
(F ′∗ ⊗ 1H )T ′a⊗S − T ′a⊗SF̃ ∗ ∈ K(E ⊗K(H ,K ),E ⊗K(H )).

Let us fix a colinking measured quantum groupoid G := GG1,G2 between two monoidally equi-
valent regular locally compact quantum groups G1 and G2. Let (A1, δA1) and (B1, δB1) be two
G1-C∗-algebras, we denote

(A2, δA2) := IndG2
G1(A1, δA1), (B2, δB2) := IndG2

G1(B1, δB1),

the induced G2-C∗-algebras. Let (E1, F1) be a G1-equivariant Kasparov A1-B1-bimodule and we
assume the left action A1 → L(E1) of A1 on E1 to be non-degenerate. Let us denote

(E2, δE2) := IndG2
G1(E1, δE1),

the induced G2-equivariant Hilbert A2-B2-bimodule. We also consider the linking G1-C∗-algebra
J1 := K(E1 ⊕ A1). With the notations of the previous chapter, we have:

Proposition 7.4. The pair (E2⊗K(H12), (idK(E2)⊗R21)δ2
K(E1)(F1)) is a G2-equivariant Kasparov

A2 ⊗K(H12)-B2 ⊗K(H12)-bimodule.

Proof. The operator (idK(E1)⊗R11)δK(E1)(F1) ∈ L(E1⊗K(H11)) is invariant for the bidual action
of G1 on K(E1)⊗K(H11). Let us denote

F ′ := (idK(E1) ⊗R11)δK(E1)(F1)⊗ 1S12 ∈ L(E1 ⊗K(H11)⊗ S12).

It is clear that the Kasparov A1 ⊗K(H11)-B1 ⊗K(H11)-bimodule

(E1 ⊗K(H11), (idE1 ⊗R11)δK(E1)(F1))

satisfies the conditions of Proposition 6.3.2 4. It then follows that the pair

(IndG2
G1(E1 ⊗K(H11)), F ′)

is a G2-equivariant Kasparov IndG2
G1(A1 ⊗K(H11))-IndG2

G1(B1 ⊗K(H11))-bimodule. However, by
Theorem 6.4.7 and Lemma 6.4.9, we have that (IndG2

G1(E1⊗K(H11)), F ′) is the image of the pair
(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2

K(E1)(F1)) by the G2-equivariant isomorphism δ1
11,2.

Notations 7.5. For j, l, l′ = 1, 2, we denote γll′,j,g (resp. γll′,j,d) the Gj-equivariant Morita
equivalence γll′,j defined in Notations 5.3.10 corresponding to the G-C∗-algebra A := A1 ⊕ A2
(resp. B := B1 ⊕ B2). By abuse of notation, we will also denote γll′,j,g (resp. γll′,j,d) the
corresponding element of the Kasparov group. More precisely, we have:

γll′,j,g = [(Aj ⊗K(Hl′j,Hlj), 0)] ∈ KKGj(Aj ⊗K(Hlj), Aj ⊗K(Hl′j)),
γll′,j,d = [(Bj ⊗K(Hl′j,Hlj), 0)] ∈ KKGj(Bj ⊗K(Hlj), Bj ⊗K(Hl′j)).
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Proposition 7.6. With the hypotheses and notations of Proposition 7.4, there exists an operator
F2 ∈ L(E2) such that:

a) (E2, F2) is a G2-equivariant Kasparov A2-B2-bimodule.

b) βA2 ⊗A2 [(E2, F2)]⊗B2 αB2 = γ21,2,g ⊗ [(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2
K(E1)(F1))]⊗ γ12,2,d.

Moreover, if F2, F
′
2 ∈ L(E2) satisfy the conditions a) and b) above, then we have:

[(E2, F2)] = [(E2, F
′
2)] ∈ KKG2(A2, B2).

Proof. We have:

γ21,2,g = [(A2 ⊗K(H12,H22), 0)] ∈ KKG2(A2 ⊗K(H22), A2 ⊗K(H12)),
γ12,2,d = [(B2 ⊗K(H22,H12), 0)] ∈ KKG2(B2 ⊗K(H12), B2 ⊗K(H22)).

We have the following G2-equivariant unitary equivalences of bimodules:

(A2 ⊗K(H12,H22))⊗A2⊗K(H12) (E2 ⊗K(H12)) = E2 ⊗K(H12,H22),
(E2 ⊗K(H12,H22))⊗B2⊗K(H12) (B2 ⊗K(H22,H12)) = E2 ⊗K(H22),

which we combine to obtain:

(A2 ⊗K(H12,H22))⊗A2⊗K(H12) (E2 ⊗K(H12))⊗B2⊗K(H12) (B2 ⊗K(H22,H12)) = E2 ⊗K(H22).

Then, let us denote T2 ∈ L(E2) an operator such that (E2 ⊗ K(H22), T2) is a G2-equivariant
Kasparov A2 ⊗K(H22)-B2 ⊗K(H22)-bimodule satisfying

γ21,2,g⊗A2⊗K(H12) [(E2⊗K(H12), (idK(E2)⊗R21)δ2
K(E1)(F1))]⊗B2⊗K(H12)γ12,2,d = [(E2⊗K(H22), T2)].

By using the isomorphism of abelian groups

KKG2(A2, B2) −→ KKG2(A2 ⊗K(H22), B2 ⊗K(H22)),
x 7−→ βA2 ⊗A2 x⊗B2 αB2

(♦)

we obtain an operator F2 ∈ L(E2) satisfying the conditions a) and b). If F ′2 ∈ L(E2) satisfies
the conditions a) and b), then we have

βA2 ⊗A2 [(E2, F2)]⊗B2 αB2 = βA2 ⊗A2 [(E2, F
′
2)]⊗B2 αB2 .

Hence, [(E2, F2)] = [(E2, F
′
2)] in virtue of the isomorphism (♦).

As a corollary, we obtain:

Proposition-Definition 7.7. For all x = [(E1, F1)] (with a non-degenerate left action), let us
denote JG2,G1(x) ∈ KKG2(A2, B2) the unique element of KKG2(A2, B2) satisfying

βA2 ⊗A2 JG2,G1(x)⊗B2 αB2 = γ21,2,g ⊗ [(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2
K(E1)(F1))]⊗ γ12,2,d.

Then, JG2,G1 : KKG1(A1, B1)→ KKG2(A2, B2) is a homomorphism of abelian groups.
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Proof. We have to prove that the following map is well defined:

KKG1(A1, B1) −→ KKG2(A2 ⊗K(H12), B2 ⊗K(H12))
[(E1, F1)] 7−→ [(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2

K(E1)(F1))],

i.e. for all G1-equivariant Kasparov A1-B1-bimodule (E1, F1) with a non-degenerate left action,
[(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2

K(E1)(F1))] ∈ KKG2(A2 ⊗K(H12), B2 ⊗K(H12)) only depends on
the class of (E1, F1) in KKG1(A1, B1). It amounts to proving that the map

KKG1(A1, B1) −→ KKG2( IndG2
G1(A1 ⊗K(H11)), IndG2

G1(B1 ⊗K(H11)) )
[(E1, F1)] 7−→ [(IndG2

G1(E1 ⊗K(H11)), (idK(E1) ⊗R11)δK(E1)(F1)⊗ 1S12)]

is well defined (see proof of Proposition 7.4). However, it follows from Remark 6.3.3 that if
(E1, F1) is degenerate then so is (IndG2

G1(E1⊗K(H11)), (idK(E1)⊗R11)δK(E1)(F1)⊗1S12). Moreover, if
we consider an operatorial homotopy (E1, Ft)t∈[0,1] of G1-equivariant Kasparov A1-B1-bimodules,
then it is clear that (IndG2

G1(E1⊗K(H11)), (idK(E1)⊗R11)δK(E1)(Ft)⊗1S12)t∈[0,1] is also an operatorial
homotopy. Finally, it is clear that the induction procedure is compatible with the direct sum.
Hence, JG2,G1 is a homomorphism of abelian groups.

Proposition 7.8. Let (E1, F1) be a G1-equivariant Kasparov A1-B1-bimodule such that the left
action is non-degenerate and the operator F1 is invariant. Then, we have

JG2,G1([(E1, F1)]) = [(IndG2
G1(E1), F1 ⊗ 1S12)].

Proof. By Proposition 6.3.2 4, the pair (E2, F2), where E2 := IndG2
G1(E1) and F2 := F1⊗ 1S12 , is a

G2-equivariant Kasparov A2-B2-bimodule and the operator F2 is invariant. In particular, we
have (idK(E2) ⊗R21)δ2

K(E1)(F1) = F2 ⊗ 1H12 . By definition of JG2,G1 , we have to prove that

βA2 ⊗A2 [(E2, F2)]⊗B2 αB2 = γ21,2,g ⊗ [(E2 ⊗K(H12), F2 ⊗ 1H12)]⊗ γ12,2,d.

However, by Lemma 7.3 we have

γ21,2,g ⊗ [(E2 ⊗K(H12), F2 ⊗ 1H12)]⊗ γ12,2,d = [(E2 ⊗K(H22), F2 ⊗ 1H22)].

Moreover, since F2 is invariant, we have βA2 ⊗A2 [(E2, F2)]⊗B2 αB2 = [(E2 ⊗K(H22), F2 ⊗ 1H22)]
and the proposition is proved.

Let us prove that we have a homomorphism of abelian groups:

JG1,G2 : KKG2(A2, B2)→ KKG1(A1, B1).

For all G2-equivariant Kasparov A2-B2-bimodule (E2, F2), we set:

Ã1 := IndG1
G2(A2), B̃1 := IndG1

G2(B2), Ẽ1 := IndG1
G2(E2), J2 := IndG2

G1(J1), J̃1 := IndG1
G2(J2).

In addition to the G-C∗-algebras A = A1 ⊕A2 and B = B1 ⊕B2, we also consider the following
G-C∗-algebras:

Ã := Ã1 ⊕ A2, B̃ := B̃1 ⊕B2, J̃ := J̃1 ⊕ J2.

First, let us define an auxiliary homomorphism of abelian groups:

J̃G1,G2 : KKG2(A2, B2)→ KKG1(Ã1 ⊗K(H21), B̃1 ⊗K(H21)).
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By applying Theorem 6.1.12 (and exchanging the roles of G1 and G2) and Corollary 6.4.2,
we note that the action of G1 on Ã1 ⊗K(H21) (resp. B̃1 ⊗K(H21)) is obtained by restriction
of that of G on Ã o G o Ĝ (resp. B̃ o G o Ĝ) which also provides a G1-equivariant isomor-
phism from Ã1⊗K(H21) (resp. B̃1⊗K(H21)) to IndG1

G2(A2⊗K(H22)) (resp. IndG1
G2(B2⊗K(H22))).

By exchanging the roles of G1 and G2 and by applying an adaptation of Theorem 6.4.7 and
Lemma 6.4.9 to the linking G-C∗-algebra J̃ , we prove:

Proposition 7.9. For all G2-equivariant Kasparov A2-B2-bimodule (E2, F2) with a non-degenerate
left action of A2 on E2, the pair

(Ẽ1 ⊗K(H21), (idK(Ẽ1) ⊗R12)δ1
K(E2)(F2))

is a G1-equivariant Kasparov Ã1 ⊗K(H21)-B̃1 ⊗K(H21)-bimodule.

By applying Proposition 6.1.6 2 and as in the proof of Theorem 6.1.13 (by exchanging the roles
of G1 and G2), we obtain two G-equivariant *-isomorphisms:

f : A→ Ã ; (a1, a2) 7→ (δ(2)
A1 (a1), a2) ; g : B → B̃ ; (b1, b2) 7→ (δ(2)

B1 (b1), b2).

Note that f (resp. g) acts identically on A2 (resp. B2). By using the functoriality of the crossed
product (see Theorems 4.3.3 2 and 4.3.6 2), we obtain two G-equivariant *-isomorphisms:

f : Ao G o Ĝ → Ão G o Ĝ ; g : B o G o Ĝ → B̃ o G o Ĝ

still denoted f and g. We use Proposition 5.3.3 to obtain G1-equivariant *-isomorphisms:

fl,1 : A1 ⊗K(Hl1)→ Ã1 ⊗K(Hl1) ; gl,1 : B1 ⊗K(Hl1)→ B̃1 ⊗K(Hl1), l = 1, 2.

As for Proposition-Definition 7.7 and by using Proposition 7.9, we obtain:

Proposition-Definition 7.10. For y = [(E2, F2)] ∈ KKG2(A2, B2) (with a non-degenerate left
action), we denote JG1,G2(y) ∈ KKG1(A1, B1) the unique element of the group KKG1(A1, B1)
satisfying

βA1⊗A1JG1,G2(y)⊗B1αB1 = γ12,1,g⊗f2,1⊗[(Ẽ1⊗K(H21), (idK(Ẽ1)⊗R12)δ1
K(E2)(F2))]⊗g−1

2,1⊗γ21,1,d.

Then, JG1,G2 : KKG2(A2, B2)→ KKG1(A1, B1) is a homomorphism of abelian groups.

Proof. It is clear that

J̃G1,G2 : KKG2(A2, B2) −→ KKG1(Ã1 ⊗K(H21), B̃1 ⊗K(H21))
y = [(E2, F2)] 7−→ [(Ẽ1 ⊗K(H21), (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2))]

is a well-defined homomorphism of abelian groups and for all y ∈ KKG2(A2, B2) we have

βA1 ⊗A1 JG1,G2(y)⊗B1 αB1 = γ12,1,g ⊗ f2,1 ⊗ J̃G1,G2(y)⊗ g−1
2,1 ⊗ γ21,1,d.

Therefore, JG1,G2 is also a well-defined homomorphism of abelian groups.

We can state the main result of this chapter:
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Theorem 7.11. JG2,G1 : KKG1(A1, B1) → KKG2(A2, B2) is an isomorphism of abelian groups
and we have JG1,G2 = (JG2,G1)−1.

Proof. Let us prove that JG1,G2◦JG2,G1 = idKKG1 (A1,B1). Let (E1, F1) be a G1-equivariant Kasparov
A1-B1-bimodule (with a non-degenerate left action) and let us denote E2 := IndG2

G1(E1), the
induced G2-equivariant Hilbert A2-B2-bimodule. Let us denote:

x1 := [(E1, F1)], y2 := JG2,G1(x1), x′1 := JG1,G2(y2).

By Proposition 7.6, there exists an operator F2 ∈ L(E2) such that y2 = [(E2, F2)] and by
Proposition-Definition 7.10 we have

βA1 ⊗A1 x
′
1 ⊗B1 αB1 = γ12,1,g ⊗ f2,1 ⊗ [(Ẽ1 ⊗K(H21), (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2))]⊗ g−1
2,1 ⊗ γ21,1,d.

In order to understand x′1 := JG1,G2(y2), let us denote:

J1 := K(E1 ⊕B1), J2 := K(E2 ⊕B2), J̃1 := IndG1
G2(J2) = K(Ẽ1 ⊕ B̃1).

By applying again Proposition 6.1.6 2, we have a G-equivariant *-isomorphism between the
G-C∗-algebras J := J1 ⊕ J2 and J̃ := J̃1 ⊕ J2 (acting identically on J2) given by

h : J → J̃ ; (x1, x2) 7→ (δ(2)
J1 (x1), x2),

which induces a G-equivariant *-isomorphism

h : J o G o Ĝ → J̃ o G o Ĝ

still denoted h, compatible with the G-equivariant *-isomorphisms f and g. By applying
Theorem 4.4.15 and Proposition 5.3.3 to h, we obtain

f2,1⊗ [(Ẽ1⊗K(H21), (idK(Ẽ1)⊗R12)δ1
K(E2)(F2))]⊗g−1

2,1 = [(E1⊗K(H21), (idK(E1)⊗R12)δ1
K(E2)(F2))].

(7.1)
Indeed, we first have

f2,1 ⊗ [(Ẽ1 ⊗K(H21), (idK(Ẽ1) ⊗R12)δ1
K(E2)(F2))]⊗ g−1

2,1

= [( (Ẽ1 ⊗K(H21))⊗g−1
2,1

(B1 ⊗K(H21)), (idK(Ẽ1) ⊗R12)δ1
K(E2)(F2)⊗g−1

2,1
1B1⊗K(H21) )]

in KKG1(A1 ⊗K(H21), B1 ⊗K(H21)), where the left action is given by:

a(ξ ⊗g−1
2,1
b) = f2,1(a)ξ ⊗g−1

2,1
b, a ∈ A1 ⊗K(H21), ξ ∈ Ẽ1 ⊗K(H21), b ∈ B1 ⊗K(H21).

We now have the following G1-equivariant unitary equivalence of bimodules:

Ξ : (Ẽ1 ⊗K(H21))⊗g−1
2,1

(B1 ⊗K(H21))→ E1 ⊗K(H21) ; ξ ⊗g−1
2,1
b 7→ h−1(ξ)b.

We also have

Ξ((idK(Ẽ1) ⊗R12)δ1
K(E2)(F2)⊗g−1

2,1
1B1⊗K(H21))Ξ∗ = h−1(idK(Ẽ1) ⊗R12)δ1

K(E2)(F2).

By applying Theorem 4.4.15, we identify the G-C∗-algebras J o G o Ĝ (resp. J̃ o G o Ĝ) and
D (resp. D̃). We recall that we have h(idJ ⊗ R)δJ(x) = (id

J̃
⊗ R)δ

J̃
(h(x)) for all x ∈ J (cf.

Remark 4.4.18). It then follows from Proposition 5.3.3 that we have

h(idJj ⊗Rjl)δjJl(βD(εl)x) = (id
J̃j
⊗Rjl)δj

J̃l
(β

D̃
(εl)h(x)), x ∈ J, j, l = 1, 2.
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Moreover, since h acts identically on J2 we have

h(idJ1 ⊗R12)δ1
J2(x) = (id

J̃1
⊗R12)δ1

J2(x), x ∈ J2.

In particular, we obtain h(idK(E1) ⊗R12)δ1
K(E2)(F2) = (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2). Hence,

Ξ((idK(Ẽ1) ⊗R12)δ1
K(E2)(F2)⊗g−1

2,1
1B1⊗K(H21))Ξ∗ = (idK(E1) ⊗R12)δ1

K(E2)(F2)

and (7.1) is proved. In particular, we have

γ12,1,g ⊗ f2,1 ⊗ [(Ẽ1 ⊗K(H21), (idK(Ẽ1) ⊗R12)δ1
K(E2)(F2))]⊗ g−1

2,1 ⊗ γ21,1,d

= γ12,1,g ⊗ [(E1 ⊗K(H21), (idK(E1) ⊗R12)δ1
K(E2)(F2))]⊗ γ21,1,d.

We have the following G1-equivariant unitary equivalence of bimodules:

(A1 ⊗K(H21,H11))⊗A1⊗K(H21) (E1 ⊗K(H21))⊗B1⊗K(H21) (B1 ⊗K(H11,H21)) = E1 ⊗K(H11).

Hence, there exists an operator T1 ∈ L(E1 ⊗K(H11)) such that

γ12,1,g ⊗ [(E1 ⊗K(H21), (idK(E1) ⊗R12)δ1
K(E2)(F2))]⊗ γ21,1,d = [(E1 ⊗K(H11), T1)].

Hence, βA1 ⊗A1 x
′
1 ⊗B1 αB1 = [(E1 ⊗K(H11), T1)]. It then follows that there exists an operator

F ′1 ∈ L(E1) such that x′1 = [(E1, F
′
1)]. We have to prove that x1 := [(E1, F1)] = [(E1, F

′
1)] =: x′1.

By composing with the isomorphism of abelian groups

βA1 ⊗A1 − ⊗B1 αB1 : KKG1(A1, B1)→ KKG1(A1 ⊗K(H11), B1 ⊗K(H11)),

it amounts to proving that

[(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1
K(E1)(F1))] = [(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1

K(E1)(F ′1))]

in KKG1(A1 ⊗K(H11), B1 ⊗K(H11)). Let us recall that:

x1 = [(E1, F1)], y2 = [(E2, F2)], x′1 = [(E1, F
′
1)].

We have
βA2 ⊗A2 y2 ⊗B2 αB2 = γ21,2,g ⊗A2⊗K(H12) x2 ⊗B2⊗K(H12) γ12,2,d, (1)

where x2 := [(E2 ⊗K(H12), (idK(E2) ⊗R21)δ2
K(E1)(F1))] (see Proposition-Definition 7.7). We also

have
βA1 ⊗A1 x

′
1 ⊗B1 αB1 = γ12,1,g ⊗A1⊗K(H11) y1 ⊗A1⊗K(H11) γ21,1,d, (2)

where y1 := [(E1⊗K(H21), (idK(E1)⊗R12)δ1
K(E2)(F2))] (see (7.1) and Proposition-Definition 7.10).

We recall that we have:

βA2 ⊗A2 y2 ⊗B2 αB2 = [(E2 ⊗K(H22), (idK(E2) ⊗R22)δ2
K(E2)(F2))], (7.2)

βA1 ⊗A1 x
′
1 ⊗B1 αB1 = [(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1

K(E1)(F ′1))]. (7.3)

Moreover, in virtue of Proposition 5.3.11, we have

γ12,2,d ⊗B2⊗K(H22) γ21,2,d = γ11,2,d = 1B2⊗K(H12).
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Therefore, by taking the Kasparov product with γ21,2,d on the right in (1) and by using (7.2),
we obtain:

[(E2 ⊗K(H22), (idK(E2) ⊗R22)δ2
K(E2)(F2))]⊗B2⊗K(H22) γ21,2,d = γ21,2,g ⊗A2⊗K(H22) x2. (1′)

Actually, (1′) is equivalent to (1) since we also have

γ21,2,d ⊗B2⊗K(H12) γ12,2,d = γ22,2,d = 1B2⊗K(H22).

Similarly, we prove by using (7.3) that (2) is equivalent to:

γ21,1,g ⊗A1⊗K(H11) [(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1
K(E1)(F ′1))] = y1 ⊗B1⊗K(H21) γ21,1,d. (2′)

By applying Lemma 7.3 with G := G2 (resp. G1), E := E2 (resp. E1), H := H12 (resp. H11),
K := H22 (resp. H21), A := A2 (resp. A1), B := B2 (resp. B1), F := (idK(E2) ⊗R22)δ2

K(E2)(F2)
(resp. (idK(E1) ⊗R12)δ1

K(E2)(F2)), we obtain:

[(E2 ⊗K(H22), (idK(E2) ⊗R22)δ2
K(E2)(F2))]⊗B2⊗K(H22) γ21,2,d

= [(E2 ⊗K(H12,H22), (idK(E2) ⊗R22)δ2
K(E2)(F2))] (1′′)

and
[(E1 ⊗K(H11,H21), (idK(E1) ⊗R12)δ1

K(E2)(F2))] = y1 ⊗B1⊗K(H21) γ21,1,d (2′′)

respectively, where we still denote (idK(E2) ⊗R22)δ2
K(E2)(F2) (resp. (idK(E1) ⊗R12)δ1

K(E2)(F2)) the
same operator but acting on E2 ⊗K(H12,H22) (resp. E1 ⊗K(H11,H21)) by factorization. For
j = 1, 2, we use again

fj : Aj →M(Bj), Aj := Aj ⊗K(H1j ⊕H2j), Bj := Jj ⊗K(H1j ⊕H2j),

the Gj-equivariant *-homomorphism defined by the action of Aj on Ej (see proof of Theorem
6.4.7). By combining (1′) and (1′′), it then follows that (idK(E2)⊗R22)δ2

K(E2)(F2) can be interpreted
as a (idK(E2) ⊗ R21)δ2

K(E1)(F1)-connection in the Kasparov product γ21,2,g ⊗A2⊗K(H22) x2, which
means that for all a ∈ A21,2 := A2 ⊗K(H12,H22), we have

(idK(E2)⊗R22)δ2
K(E2)(F2)f2(a)−f2(a)(idK(E2)⊗R21)δ2

K(E1)(F1) ∈ K(E2⊗K(H12),E2⊗K(H12,H22))
(C1)

where f2(a) ∈ B21,2 := J2 ⊗K(H12,H22). Let us fix a ∈ A2 ⊗K(H12,H22) and let us denote

d := (idK(E2) ⊗R22)δ2
K(E2)(F2)f2(a)− f2(a)(idK(E2) ⊗R21)δ2

K(E1)(F1).

We then have:

• d ∈M(B2) and defines an element d′ ∈ L(E2 ⊗K(H12),E2 ⊗K(H12,H22)).

• (C1) means that d ∈ B2, more precisely d′ ∈ K(E2 ⊗K(H12),E2 ⊗K(H12,H22)).

Let us denote c = δ1
B2(d) ∈M(B1 ⊗ S12). By Lemma 6.4.9, we have

c = ((idK(E1) ⊗R12)δ1
K(E2)(F2)⊗ 1S12)(f1 ⊗ idS12)δ1

A2(a)
− (f1 ⊗ idS12)δ1

A2(a)((idK(E1) ⊗R11)δ1
K(E1)(F1)⊗ 1S12).
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However, note that we have B1 = [(idB1 ⊗ ω)δ1
B2(b) ; b ∈ B2, ω ∈ B(H12)∗]. Therefore, for all

a ∈ A2 ⊗K(H12,H22) and ω ∈ B(H12)∗ we have

(idK(E1) ⊗R12)δ1
K(E2)(F2)f1(idA1 ⊗ ω)δ1

A2(a)− f1(idA1 ⊗ ω)δ1
A2(a)(idK(E1) ⊗R11)δ1

K(E1)(F1) ∈ B1.

However, it follows from Proposition 5.1.3 3 and Theorem 6.4.1 3 that

A1 ⊗K(H11,H21) = [(idA1 ⊗ ω)δ1
A2(a) ; a ∈ A2 ⊗K(H12,H22), ω ∈ B(H12)∗].

As a result, for all b ∈ A1 ⊗K(H11,H21) we have

(idK(E1)⊗R12)δ1
K(E2)(F2)f1(b)−f1(b)(idK(E1)⊗R11)δ1

K(E1)(F1) ∈ K(E1⊗K(H11),E1⊗K(H11,H21)).
(C′1)

In a similar way, it follows from (2′) and (2′′) that the operator (idK(E1) ⊗R12)δ1
K(E2)(F2) can be

interpreted as a (idK(E1) ⊗R11)δ1
K(E1)(F ′1)-connection in the Kasparov product

γ21,1,g ⊗A1⊗K(H11) [(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1
K(E1)(F ′1))].

We then obtain similarly that for all b ∈ A21,1 := A1 ⊗K(H11,H21), we have:

(idK(E1)⊗R12)δ1
K(E2)(F2)f1(b)−f1(b)(idK(E1)⊗R11)δ1

K(E1)(F ′1) ∈ K(E1⊗K(H11),E1⊗K(H11,H21)),
(C2)

where f1(b) ∈ B21,1 := J1 ⊗K(H11,H21). By subtracting (C2) from (C′1), we obtain that for all
b ∈ A1 ⊗K(H11,H21):

f1(b)(idK(E1)⊗R11)δ1
K(E1)(F ′1)−f1(b)(idK(E1)⊗R11)δ1

K(E1)(F1) ∈ K(E1⊗K(H11),E1⊗K(H11,H21)).
(C′1 − C2)

Since H21 6= {0}, it then follows that for all b ∈ A1 ⊗K(H11) we have:

f1(b)(idK(E1) ⊗R11)δ1
K(E1)(F ′1)− f1(b)(idK(E1) ⊗R11)δ1

K(E1)(F1) ∈ K(E1 ⊗K(H11)). (?)

Indeed, we have K(H11) = [K(H21,H11)K(H11,H21)]. We can then assume that b = (1A1⊗k)x,
with k ∈ K(H21,H11) and x ∈ A1 ⊗K(H11,H21). Therefore, we have

f1(b)(idK(E1) ⊗R11)δ1
K(E1)(F1)− f1(b)(idK(E1) ⊗R11)δ1

K(E1)(F1)
= (1E1 ⊗ k)(f1(x)(idK(E1) ⊗R11)δ1

K(E1)(F1)− f1(x)(idK(E1) ⊗R11)δ1
K(E1)(F1)),

where 1E1 ⊗ k ∈ L(E1 ⊗K(H11,H21),E1 ⊗K(H11)) and (?) follows from (C′1 − C2). We then
have proved that

[(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1
K(E1)(F ′1))] = [(E1 ⊗K(H11), (idK(E1) ⊗R11)δ1

K(E1)(F1))]

in KKG1(A1 ⊗K(H11), B1 ⊗K(H11)). We have proved that JG1,G2 ◦ JG2,G1 = idKKG1 (A1,B1). This
proves that JG1,G2 is surjective and JG2,G1 is injective. In order to prove directly that JG1,G2

is injective, we first note that by Proposition-Definition 7.10 (see also its proof), we have a
homomorphism of abelian groups

J̃G1,G2 : KKG2(A2, B2)→ KKG1(Ã1 ⊗K(H21), B̃1 ⊗K(H21)).

It is enough to prove that J̃G1,G2 is injective. Actually, by composing with the (injective)
homomorphism of abelian groups

J ′G2,G1 : KKG1(Ã1 ⊗K(H21), B̃1 ⊗K(H21))→ KKG2(IndG2
G1(Ã1 ⊗K(H21)), IndG2

G1(B̃1 ⊗K(H21)))
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and by identifying the G2-C∗-algebras IndG2
G1(Ã1 ⊗ K(H21)) (resp. IndG2

G1(B̃1 ⊗ K(H21))) and
A2 ⊗K(H22) (resp. B2 ⊗K(H22)), we will prove that the homomorphism J ′G2,G1 ◦ J̃G1,G2 is the
isomorphism (♦) of [3]:

KKG2(A2, B2)→ KKG2(A2 ⊗K(H22), B2 ⊗K(H22)).

Let (E2, F2) be a G2-equivariant Kasparov A2-B2-bimodule (with a non-degenerate left action).
We recall that we have J̃G1,G2([E2, F2)]) = [(Ẽ1 ⊗ K(H21), (idK(Ẽ1) ⊗ R12)δ1

K(E2)(F2))] and the
operator (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2) is invariant. By Proposition 7.8, we have

J ′G2,G1 ◦ J̃G1,G2([(E2, F2)]) = [(IndG2
G1(Ẽ1 ⊗K(H21)), (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2)⊗ 1S12)].

However, by Theorem 6.4.7 and Lemma 6.4.9, we have that the pair

(IndG2
G1(Ẽ1 ⊗K(H21)), (idK(Ẽ1) ⊗R12)δ1

K(E2)(F2)⊗ 1S12)

is the image of (E2 ⊗K(H22), (idK(E2) ⊗R22)δK(E2)(F2)) by the G2-equivariant isomorphism δ1
22,2.

By making the identifications

IndG2
G1(Ã1 ⊗K(H21)) = A2 ⊗K(H22), IndG2

G1(B̃1 ⊗K(H21)) = B2 ⊗K(H22),

it then follows that

J ′G2,G1 ◦ J̃G1,G2([(E2, F2)]) = [(E2⊗K(H22), (idK(E2)⊗R22)δK(E2)(F2)] = βA2⊗A2 [(E2, F2)]⊗B2 αB2 .

Therefore, J ′G2,G1 ◦ J̃G1,G2 is the isomorphism of abelian groups

βA2 ⊗A2 −⊗B2 αB2 : KKG2(A2, B2)→ KKG2(A2 ⊗K(H22), B2 ⊗K(H22)).

Hence, J̃G1,G2 is injective and then so is JG1,G2 . Therefore, JG1,G2 is bijective and we have
(JG1,G2)−1 = JG2,G1 .
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Chapter 8

Equivariant Hilbert C*-modules

In this chapter, we require that any action (δB, βB) of a measured quantum groupoid G on a
finite basis on a C∗-algebra B satisfies δB(B) ⊂ M̃(B ⊗ S) (see the notations at page 1), that
is δB(B)(1B ⊗ S) ⊂ B ⊗ S. Note that this condition is necessarily satisfied if the action (δB, βB)
is continuous.

8.1 Preliminaries

Let us recall some classical notations and elementary facts. Let B be a C∗-algebra and E a
Hilbert B-module.

Proposition-Definition 8.1.1. Let us consider the following maps:

• ιB : B → K(E ⊕B), the *-homomorphism given by ιB(b)(ξ ⊕ a) = 0⊕ ba for all a, b ∈ B
and ξ ∈ E .

• ιE : E → K(E ⊕B), the bounded linear map given by ιE (ξ)(η ⊕ b) = ξb⊕ 0 for all b ∈ B
and ξ, η ∈ E .

• ιE ∗ : E ∗ → K(E ⊕ B), the bounded linear map given by ιE ∗(ξ∗)(η ⊕ b) = 0 ⊕ ξ∗η for all
ξ, η ∈ E and b ∈ B.

• ιK(E ) : K(E )→ K(E ⊕B), the *-homomorphism given by ιK(E )(k)(η ⊕ b) = kη ⊕ 0 for all
k ∈ K(E ), η ∈ E and b ∈ B.

We have the following statements:

1. ιE (ξb) = ιE (ξ)ιB(b) and ιB(b)ιE ∗(ξ∗) = ιE ∗(bξ∗) for all ξ ∈ E and b ∈ B.

2. ιE ∗(ξ∗) = ιE (ξ)∗ and ιK(E )(θξ,η) = ιE (ξ)ιE (η)∗ for all ξ, η ∈ E .

3. K(E ⊕B) is the C∗-algebra generated by the set ιB(B) ∪ ιE (E ).

Remarks 8.1.2. 1. For b ∈ B, ξ ∈ E and k ∈ K(E ), the operators ιB(b), ιE (ξ), ιE ∗(ξ∗) and
ιK(E )(k) can be denoted as 2-by-2 matrices acting on E ⊕B as follows:

ιB(b) =
(

0 0
0 b

)
, ιE (ξ) =

(
0 ξ
0 0

)
, ιE ∗(ξ∗) =

(
0 0
ξ∗ 0

)
, ιK(E )(k) =

(
k 0
0 0

)
.

Moreover, any operator x ∈ K(E ⊕B) can be written in a unique way as follows:

x =
(
k ξ
η∗ b

)
, where k ∈ K(E ), ξ, η ∈ E , b ∈ B.
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2. Note that ιB and ιK(E ) extend uniquely to strictly continuous unital *-homomorphisms
ιM(B) :M(B) → L(E ⊕ B) and ιL(E ) : L(E ) → L(E ⊕ B). Besides, ιM(B) and ιL(E ) are
given by

ιM(B)(m)(ξ ⊕ b) = 0⊕mb, ιL(E )(T )(ξ ⊕ b) = Tξ ⊕ 0,

for all m ∈M(B), T ∈ L(E ), ξ ∈ E and b ∈ B.

3. ιE ∗ admits an extension to a bounded linear map ιL(E ,B) : L(E , B) → L(E ⊕ B) in a
straightforward way. Similarly, up to the identification E = K(B,E ), we can also extend
ιE to a bounded linear map ιL(B,E ).

4. As in 1, we can denote ιM(B)(m), ιL(E )(T ), ιL(B,E )(S) and ιL(E ,B)(S∗), for m ∈ M(B),
T ∈ L(E ) and S ∈ L(B,E ), as 2-by-2 matrices. Moreover, any operator x ∈ L(E ⊕ B)
can be written in a unique way as follows:

x =
(
T S ′

S∗ m

)
, where T ∈ L(E ), S, S ′ ∈ L(B,E ), m ∈M(B).

By using the matrix notations described above, we derive easily the following useful technical
lemma:

Lemma 8.1.3. Let x ∈ L(E ⊕B) (resp. x ∈ K(E ⊕B)). We have the following statements:

1. x ∈ ιL(B,E )(L(B,E )) (resp. ιE (E )) if and only if xιE (ξ) = 0 for all ξ ∈ E and ιB(b)x = 0
for all b ∈ B. In that case, we have ιM(B)(m)x = 0 for all m ∈M(B).

2. x ∈ ιL(E )(L(E )) (resp. ιK(E )(K(E ))) if and only if xιB(b) = 0 and ιB(b)x = 0 for all b ∈ B.
In that case, we have xιM(B)(m) = ιM(B)(m)x = 0 for all m ∈M(B).

Notation 8.1.4. Let F be a Hilbert B-module. Let q ∈ L(E ) a self-adjoint projection and
T ∈ L(qE , F ). Let T̃ : E → F be the map defined by T̃ ξ := Tqξ, for all ξ ∈ E . Therefore,
T̃ ∈ L(E ,F ) and T̃ ∗ = qT ∗. By abuse of notation, we will still denote T the adjointable
operator T̃ .

Let us recall the following definition introduced in [3]:

Definition 8.1.5. Let B and D be two C∗-algebras and let E be a Hilbert C∗-module over B.
Up to the identification E ⊗D = K(B ⊗D,E ⊗D), we define M̃(E ⊗D) to be the following
subspace of L(B ⊗D,E ⊗D)

{T ∈ L(B ⊗D,E ⊗D) ; ∀x ∈ D, (1E ⊗ x)T ∈ E ⊗D and T (1B ⊗ x) ∈ E ⊗D}.

Note that M̃(E ⊗D) is a Hilbert C∗-module over M̃(B ⊗D), whose M̃(B ⊗D)-valued inner
product is given by:

〈ξ, η〉 = ξ∗η, ξ, η ∈ M̃(E ⊗D) ⊂ L(B ⊗D,E ⊗D).

We have K(M̃(E ⊗D)) ⊂ M̃(K(E )⊗D).
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8.2 The three pictures

In this paragraph, we introduce a notion of G-equivariant Hilbert C∗-module for a measured
quantum groupoid G on a finite basis in the spirit of [3]. Following [3], if (A, δA, βA) is a
G-C∗-algebra, an action of G on a Hilbert A-module E will be defined by three equivalent data.

The proof of the following is straightforward.

Proposition-Definition 8.2.1. Let A1 and A2 be two C∗-algebras. Let E1 and E2 be two Hilbert
C∗-modules over A1 and A2 respectively. Assume that π : A1 → L(E2) is a *-homomorphism
and p ∈ L(E2) is a self-adjoint projection such that for some approximate unit (uλ)λ∈Λ of A1
the net (π(uλ))λ∈Λ converges stricly towards p. We consider the π-invariant Hilbert submodule
Ẽ2 = pE2 of E2. Therefore, we have a non-degenerate *-homomorphism π̃ : A1 → L(Ẽ2). There
exists a unique unitary u ∈ L(E1 ⊗π E2,E1 ⊗π̃ Ẽ2) such that

u(ξ1 ⊗π ξ2) = ξ1 ⊗π̃ pξ2, ξ1 ∈ E1, ξ2 ∈ E2.

Let G be a measured quantum groupoid on the finite basis N = ⊕
16l6k Mnl(C). Let (S, δ) be

the weak Hopf-C∗-algebra associated with G. Let us fix a G-C∗-algebra (A, δA, βA).

Remarks 8.2.2. With the above notations (with E1 = A1), we have the following composition
of unitary equivalences of Hilbert modules:

A1 ⊗π E2 −→ A1 ⊗π̃ Ẽ2 −→ Ẽ2
a1 ⊗π ξ2 7−→ a1 ⊗π̃ pξ2 7−→ π̃(a1)pξ2 = π(a1)ξ2.

In particular, we have the following unitary equivalences of Hilbert modules:

A⊗δA (A⊗ S) −→ qβA,α(A⊗ S)
a⊗δA x 7−→ δA(a)x, (8.2.1)

(A⊗ S)⊗δA⊗idS (A⊗ S ⊗ S) −→ qβA,α12 (A⊗ S ⊗ S)
x⊗δA⊗idS y 7−→ (δA ⊗ idS)(x)y, (8.2.2)

(A⊗ S)⊗idA⊗δ (A⊗ S ⊗ S) −→ qβ,α23 (A⊗ S ⊗ S)
x⊗idA⊗δ y 7−→ (idA ⊗ δ)(x)y. (8.2.3)

Since the ranges of α and β commute pointwise, we have [qβA,α12 , qβ,α23 ] = 0. In particular,
qβA,α12 qβ,α23 ∈ L(A⊗ S ⊗ S) is a self-adjoint projection.

Definition 8.2.3. A G-equivariant Hilbert A-module is a triple (E , δE , βE ), which consists of a
Hilbert A-module E , a linear map δE : E → M̃(E ⊗ S) and a non-degenerate *-homomorphism
βE : No → L(E ) such that:

1. For all a ∈ A and ξ, η ∈ E , we have

δE (ξa) = δE (ξ)δA(a), δA(〈ξ, η〉) = 〈δE (ξ), δE (η)〉.

2. [δE (E )(A⊗ S)] = qβE ,α(E ⊗ S).

3. For all ξ ∈ E and n ∈ N , we have δE (βE (no)ξ) = (1E ⊗ β(no))δE (ξ).

147



4. The linear maps δE ⊗ idS and idE ⊗ δ extend to linear maps from L(A ⊗ S,E ⊗ S) to
L(A⊗ S ⊗ S,E ⊗ S ⊗ S). Moreover, we have

(δE ⊗ idS)δE (ξ) = (idE ⊗ δ)δE (ξ) ∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S), ξ ∈ E .

Remarks 8.2.4. • If the second formula of the condition 1 holds, then δE is isometric
(cf. [3]). Indeed, we have ‖〈δE (ξ), δE (η)〉‖ = ‖δA(〈ξ, η〉)‖ = ‖〈ξ, η〉‖ for all ξ, η ∈ E . In
particular, we have

‖δE (ξ)‖2 = ‖〈δE (ξ), δE (ξ)〉‖ = ‖〈ξ, ξ〉‖ = ‖ξ‖2, ξ ∈ E .

• If the condition 1 holds, then the condition 2 is equivalent to:

[δE (E )(1A ⊗ S)] = qβE ,α(E ⊗ S).

Indeed, if (uλ)λ is an approximate unit of A we have

δE (ξ) = lim
λ
δE (ξuλ) = lim

λ
δE (ξ)δA(uλ) = δE (ξ)qβA,α, ξ ∈ E .

By continuity of the action (δA, βA), the condition 1 of Definition 8.2.3 and the equality
EA = E , we then have [δE (E )(A⊗ S)] = [δE (E )(1A ⊗ S)] and the equivalence follows.

• We will prove (see Remarks 8.2.8) that if δE satisfies the conditions 1 and 2 of Definition
8.2.3, then the extensions of δE ⊗ idS and idE ⊗ δ always exist and satisfy the formulas:

(idE ⊗ δ)(T )(idA⊗ δ)(x) = (idE ⊗ δ)(Tx), (δE ⊗ idS)(T )(δA⊗ idS)(x) = (δE ⊗ idS)(Tx),

for all x ∈ A⊗ S and T ∈ L(A⊗ S,E ⊗ S).

Notation 8.2.5. For ξ ∈ E , let Tξ ∈ L(A⊗ S,E ⊗δA (A⊗ S)) defined by

Tξ(x) = ξ ⊗δA x, x ∈ A⊗ S.

In the following, we fix a Hilbert A-module E .

Definition 8.2.6. Let V ∈ L(E ⊗δA (A ⊗ S),E ⊗ S) be an isometry and βE : No → L(E ) a
non-degenerate *-homomorphism such that:

1. V V ∗ = qβE ,α.

2. V (βE (no)⊗δA 1) = (1E ⊗ β(no))V for all n ∈ N .

Then, V is said to be admissible if we further have:

3. V Tξ ∈ M̃(E ⊗ S) for all ξ ∈ E .

4. (V ⊗C idS)(V ⊗δA⊗idS 1) = V ⊗idA⊗δ 1 ∈ L(E ⊗δ2
A

(A⊗ S ⊗ S),E ⊗ S ⊗ S),

where δ2
A := (δA ⊗ idS)δA = (idA ⊗ δ)δA : A→M(A⊗ S ⊗ S).
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The fourth statement in the previous definition makes sense since we have used the canonical
identifications thereafter. It follows from the associativity of the internal tensor product,
Proposition-Definition 8.2.1, and Remark 8.2.2 that we have the unitary equivalences of Hilbert
modules:

(E ⊗δA (A⊗ S))⊗δA⊗idS (A⊗ S ⊗ S) −→ E ⊗δ2
A

(A⊗ S ⊗ S)
(ξ ⊗δA x)⊗δA⊗idS y 7−→ ξ ⊗δ2

A
(δA ⊗ idS)(x)y, (8.2.4)

(E ⊗δA (A⊗ S))⊗idA⊗δ (A⊗ S ⊗ S) −→ E ⊗δ2
A

(A⊗ S ⊗ S)
(ξ ⊗δA x)⊗idA⊗δ y 7−→ ξ ⊗δ2

A
(idA ⊗ δ)(x)y. (8.2.5)

We also have:

(E ⊗ S)⊗δA⊗idS (A⊗ S ⊗ S) −→ (E ⊗δA (A⊗ S))⊗ S
(ξ ⊗ s)⊗δA⊗idS (x⊗ t) 7−→ (ξ ⊗δA x)⊗ st, (8.2.6)

(E ⊗ S)⊗idA⊗δ (A⊗ S ⊗ S) −→ qβ,α23 (E ⊗ S ⊗ S) ⊂ E ⊗ S ⊗ S
ξ ⊗idA⊗δ y 7−→ (idE ⊗ δ)(ξ)y.

(8.2.7)

In particular, we have V ⊗δA⊗idS 1 ∈ L(E ⊗δ2
A

(A⊗ S ⊗ S), (E ⊗ S)⊗δA⊗idS (A⊗ S ⊗ S)) and
V ⊗C idS ∈ L((E ⊗ S)⊗δA⊗idS (A⊗ S ⊗ S),E ⊗ S ⊗ S).

The next result provides an equivalence of the definitions 8.2.3 and 8.2.6. Basically, the proof of
the following proposition is based on that of Proposition 2.4 of [3].

Proposition 8.2.7. a) Let δE : E → M̃(E ⊗ S) be a linear map and βE : No → L(E ) a
non-degenerate *-homomorphism which satisfy the conditions 1, 2, and 3 of Definition 8.2.3.
Then, there exists a unique isometry V ∈ L(E ⊗δA (A⊗S),E ⊗S) such that δE (ξ) = V Tξ for
all ξ ∈ E . Moreover, the pair (V , βE ) satisfies the conditions 1, 2, and 3 of Definition 8.2.6.

b) Conversely, let V ∈ L(E ⊗δA (A ⊗ S),E ⊗ S) be an isometry and βE : No → L(E ) a
non-degenerate *-homomorphism, which satisfy the conditions 1, 2, and 3 of Definition 8.2.6.
We consider the map δE : E → M̃(E ⊗ S) given by δE (ξ) = V Tξ for all ξ ∈ E . Then, the
pair (δE , βE ) satisfies the conditions 1, 2 and 3 of Definition 8.2.3.

c) Let us assume that the above statements hold, the triple (E , δE , βE ) is a G-equivariant Hilbert
A-module if and only if V is admissible.

Proof. a) As in the proof of Proposition 2.4 in [3], there exists a unique isometric (A⊗S)-linear
map V : E ⊗δA (A⊗ S)→ E ⊗ S such that

V (ξ ⊗δA x) = δE (ξ)(x), ξ ∈ E , x ∈ A⊗ S.

In other words, we have V Tξ = δE (ξ) for all ξ ∈ E . Now, it follows from the second condition
of Definition 8.2.3 that the ranges of V and qβE ,α are equal. Then, let us consider the range
restriction v of V . Therefore, the map v−1qβE ,α is an adjoint for V . Indeed, for all x ∈ E ⊗ S
and y ∈ E ⊗δA (A⊗ S) we have

〈v−1qβE ,αx, y〉 = 〈V v−1(qβE ,αx),V y〉 = 〈qβE ,αx,V y〉 = 〈x,V y〉−〈(1−qβE ,α)(x),V y〉 = 〈x,V y〉,

where we used the fact that V is isometric in the first equality and the fact that V y ∈ Ran(qβE ,α)
in the last one. As a result, we have V ∈ L(E ⊗δA (A ⊗ S),E ⊗ S) and then V ∗V = 1 and
V V ∗ = V v−1qβE ,α = qβE ,α.
The conditions 1 and 3 of Definition 8.2.6 are then fulfilled. Now, we have
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V (βE (no)⊗δA 1)(ξ ⊗δA x) = δE (βE (no)ξ)(x) = (1E ⊗ β(no))δE (ξ)(x) = (1E ⊗ β(no))V (ξ ⊗δA x),
for all ξ ∈ E , x ∈ A⊗ S, and n ∈ N . Hence, the condition 2 of Definition 8.2.6 holds.
b) is straightforward.
c) Let T ∈ L(A⊗ S,E ⊗ S). By using the identifications (8.2.3) and (8.2.7) and Notation 8.1.4,
we have T ⊗idA⊗δ 1 ∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S). Now, we can define the extension of idE ⊗ δ,

idE ⊗ δ : L(A⊗ S,E ⊗ S)→ L(A⊗ S ⊗ S,E ⊗ S ⊗ S)

by setting
(idE ⊗ δ)(T ) := T ⊗idA⊗δ 1, T ∈ L(A⊗ S,E ⊗ S).

We also have T ⊗δA⊗idS 1 ∈ L(A ⊗ S ⊗ S, (E ⊗δA (A ⊗ S)) ⊗ S) by using the identifications
(8.2.2) and (8.2.6) and Notation 8.1.4. Let us define the extension of δE ⊗ idS,

δE ⊗ idS : L(A⊗ S,E ⊗ S)→ L(A⊗ S ⊗ S,E ⊗ S ⊗ S)

by setting

(δE ⊗ idS)(T ) := (V ⊗C 1S)(T ⊗δA⊗idS 1), T ∈ L(A⊗ S,E ⊗ S).

Therefore, we have

(δE ⊗ idS)δE (ξ) = (V ⊗C 1S)(V ⊗δA⊗idS 1)(Tξ ⊗δA⊗idS 1)∈L(A⊗ S ⊗ S,E ⊗ S ⊗ S),

(idE ⊗ δ)δE (ξ) = (V ⊗idA⊗δ 1)(Tξ ⊗idA⊗δ 1) ∈ L(A⊗ S ⊗ S,E ⊗ S ⊗ S),

for all ξ ∈ E , where

Tξ ⊗δA⊗idS 1 ∈ L(A⊗ S ⊗ S,E ⊗δ2
A

(A⊗ S ⊗ S)),

Tξ ⊗idA⊗δ 1 ∈ L(A⊗ S ⊗ S,E ⊗δ2
A

(A⊗ S ⊗ S)),

by using (8.2.2)-(8.2.4) and (8.2.3)-(8.2.5) respectively and Notation 8.1.4. In particular, if V is
admissible the condition 4 of Definition 8.2.3 holds.
Conversely, let us assume that the aforementioned condition is satisfied. In order to show that
V is admissible, we only have to prove that the restrictions of Tξ ⊗δA⊗idS 1 and Tξ ⊗idA⊗δ 1 to
the Hilbert submodule qβA,α12 qβ,α23 (A⊗ S ⊗ S) are surjective.
Let a ∈ A, x ∈ A ⊗ S and y ∈ A ⊗ S ⊗ S, we set z = (δA ⊗ idS)(δA(a)x)y. It is clear that
z ∈ qβA,α12 (A⊗ S ⊗ S). Moreover, we have

z = (δA ⊗ idS)δA(a)(δA ⊗ idS)(x)y = (idA ⊗ δ)(δA(a))(δA ⊗ idS)(x)y
and then z also belongs to qβ,α23 (A⊗ S ⊗ S). Hence, z ∈ qβA,α12 qβ,α23 (A⊗ S ⊗ S). Now, we have

(Tξ ⊗δA⊗idS 1)(δA(a)x⊗δA⊗idS y) = (ξ ⊗δA δA(a)x)⊗δA⊗idS y = (ξa⊗δA x)⊗δA⊗idS y.
Therefore, we have (Tξ⊗δA⊗idS 1)(z) = ξa⊗δ2

A
(δA⊗ idS)(x)y. Thus, the restriction of Tξ⊗δA⊗idS 1

to qβA,α12 qβ,α23 (A ⊗ S ⊗ S) is surjective thanks to (8.2.4) and the fact that EA = E . The same
statement is obviously true for Tξ ⊗idA⊗δ 1.
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Remarks 8.2.8. In the proof of Proposition 8.2.7, we have shown that:

• By using the identifications (8.2.3) and (8.2.7) and Notation 8.1.4, we have that the linear
map idE ⊗ δ : L(A⊗ S,E ⊗ S)→ L(A⊗ S ⊗ S,E ⊗ S ⊗ S) is defined by:

(idE ⊗ δ)(T ) := T ⊗idA⊗δ 1, T ∈ L(A⊗ S,E ⊗ S).

• If δE satisfies the conditions 1 and 2 of Definition 8.2.3, let V be the isometry associated
with δE (see Proposition 8.2.7 a)). By using the identifications (8.2.2) and (8.2.6) and
Notation 8.1.4, the linear map δE ⊗ idS : L(A⊗ S,E ⊗ S)→ L(A⊗ S ⊗ S,E ⊗ S ⊗ S) is
defined by:

(δE ⊗ idS)(T ) := (V ⊗C 1S)(T ⊗δA⊗idS 1), T ∈ L(A⊗ S,E ⊗ S).

Note that the extensions idE ⊗ δ and δE ⊗ idS satisfy the following formulas:

(idE ⊗ δ)(T )(idA ⊗ δ)(x) = (idE ⊗ δ)(Tx), (δE ⊗ idS)(T )(δA ⊗ idS)(x) = (δE ⊗ idS)(Tx),

for all x ∈ A⊗ S and T ∈ L(A⊗ S,E ⊗ S).

Let us denote J := K(E ⊕ A) the linking C∗-algebra associated with E .

Definition 8.2.9. An action (δJ , βJ) of G on J is said to be compatible with the action (δA, βA)
if we have:

1. δJ : J →M(J ⊗ S) is compatible with δA, that is to say

ιM(A⊗S) ◦ δA = δJ ◦ ιA.

2. the fibration map βJ is compatible with βA, that is to say

ιA(βA(no)a) = βJ(no)ιA(a), n ∈ N, a ∈ A.

Proposition 8.2.10. Let (δJ , βJ) be a compatible action of G on J . There exists a unique
non-degenerate *-homomorphism βE : No → L(E ) such that

βJ(no) =
(
βE (no) 0

0 βA(no)

)
, n ∈ N.

Moreover, we have

qβJ ,α =
(
qβE , α 0

0 qβA, α

)
.

Proof. Note that since ιA, βA and βJ are *-homomorphisms, the condition 2 of Definition 8.2.9
is equivalent to:

ιA(aβA(no)) = ιA(a)βJ(no), a ∈ A, n ∈ N.
Therefore, there exists a map βE : No → L(E ) necessarily unique such that

βJ(no) =
(
βE (no) 0

0 βA(no)

)
,

for all n ∈ N . Then, it is clear that βE is a non-degenerate *-homomorphism and the last
statement is then an immediate consequence.
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Remarks 8.2.11. Note that if βA is injective then so is βJ . We also have

ιK(E )(βE (no)k) = βJ(no)ιK(E )(k), n ∈ N, k ∈ K(E ).

The proof of Proposition 2.7 of [3] is adapted to the needs of our setting.

Proposition 8.2.12. a) Let us assume that the C∗-algebra J is endowed with a compatible
action (δJ , βJ) of G. Then, we have the following statements:

• There exists a unique linear map δE : E → M̃(E ⊗ S) such that

ιL(A⊗S,E⊗S) ◦ δE = δJ ◦ ιE .

Moreover, (E , δE , βE ) is a G-equivariant Hilbert A-module, where βE : No → L(E ) is the
*-homomorphism defined in Proposition 8.2.10.

• There exists a unique faithful *-homomorphism δK(E ) : K(E )→ M̃(K(E )⊗ S) such that

ιL(E⊗S) ◦ δK(E ) = δJ ◦ ιK(E ).

Moreover, the pair (δK(E ), βE ) is an action of G on K(E ).

b) Conversely, let (E , δE , βE ) be a G-equivariant Hilbert A-module. Then, there exists a faithful
*-homomorphism δJ : J → M̃(J ⊗ S) such that

ιL(A⊗S,E⊗S) ◦ δE = δJ ◦ ιE .

Moreover, we define a unique action (δJ , βJ) of G on J compatible with (δA, βA) by setting

βJ(no) =
(
βE (no) 0

0 βA(no)

)
, n ∈ N.

Proof. a) Let us assume that the C∗-algebra J is endowed with a compatible action (δJ , βJ) of
G. Let βE : No → L(E ) be the *-homomorphism defined in Proposition 8.2.10. First, let us
prove that there exists a unique linear map

δE : E → L(A⊗ S,E ⊗ S)

such that ιL(A⊗S,E⊗S) ◦ δE = δJ ◦ ιE . For all ξ ∈ E , we have

ιL(E )(1E )ιE (ξ) = ιE (ξ), ιE (ξ)ιL(E )(1E ) = 0.

By the second statement of Proposition 8.2.10, we have

δJ(1J) = qβJ ,α = ιL(E⊗S)(qβE ,α) + ιM(A⊗S)(δA(1A))

We also have
δJ(1J) = δJ(ιL(E )(1E )) + δJ(ιM(A⊗S)(1A)).

Moreover, we have ιM(A⊗S) ◦ δA = δJ ◦ ιM(A) since the right-hand and left-hand sides are both
strictly continuous *-homomorphisms, which coincide on A. Hence,

δJ(ιL(E )(1E )) = ιL(E⊗S)(qβE ,α).

Therefore, for all ξ ∈ E we have

ιL(E⊗S)(qβE ,α)δJ(ιE (ξ)) = δJ(ιE (ξ)), δJ(ιE (ξ))ιL(E⊗S)(qβE ,α) = 0.

Fix any ξ ∈ E , then by Lemma 8.1.3 2 we have
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ιA⊗S(x)δJ(ιE (ξ)) = ιA⊗S(x)ιL(E⊗S)(qβE ,α)δJ(ιE (ξ)) = 0,
for all x ∈ A⊗ S. Now, let (uλ)λ be an approximate unit of A. We have

δJ(ιE (ξ)) = lim
λ

δJ(ιE (ξuλ)) = lim
λ

δJ(ιE (ξ))ιM(A⊗S)(δA(uλ)).

Hence, δJ(ιE (ξ))ιE⊗S(η) = 0 for all η ∈ E ⊗ S by Lemma 8.1.3 1, which proves the statement.
Moreover, δE actually takes its values in the subspace M̃(E ⊗ S) of L(E ⊗ S). Indeed, fix any
ξ ∈ E . For all s ∈ S, we have that

ιL(A⊗S,E⊗S)((1E ⊗ s)δE (ξ)) = (1J ⊗ s)δJ(ιE (ξ)), ιL(A⊗S,E⊗S)(δE (ξ)(1A⊗ s)) = δJ(ιE (ξ))(1J ⊗ s)

belong to K((E ⊗S)⊕(A⊗S)) = K(E ⊕A)⊗S as the range of δJ lies in M̃(J⊗S). Consequently,
we have (1E ⊗ s)δE (ξ), δE (ξ)(1A ⊗ s) ∈ E ⊗ S. The condition 1 of Definition 8.2.3 derives easily
from the compatibility of δJ while the condition 4 is a straightforward consequence of the
coassociativity of δJ .
The vector subspace of δJ(1J)((E ⊕ A)⊗ S) spanned by the elements of the form

δJ(θξ⊕a,η⊕b)(ζ), ξ, η ∈ E , a, b ∈ A, ζ ∈ (E ⊕ A)⊗ S,

is dense. However, we have

δJ(θξ⊕a,η⊕b)(ζ) = (δE (ξ)⊕ δA(a))(δE (η)⊕ δA(b))∗(ζ),

where δE (ξ) ⊕ δA(a), δE (η) ⊕ δA(b) ∈ L(A ⊗ S,E ⊗ S) ⊕ L(A ⊗ S) = L(A ⊗ S, (E ⊕ A) ⊗ S).
Therefore, this vector space is in particular spanned by the elements of the form

(δE (ξ)⊕ δA(a))(x) = δE (ξ)x⊕ δA(a)x, ξ ∈ E , a ∈ A, x ∈ A⊗ S.

Then, the condition 2 follows since we have

δJ(1J)((E ⊕ A)⊗ S) = qβE ,α(E ⊗ S)⊕ qβA,α(A⊗ S).

Now, let us prove that there exists a unique *-homomorphism

δL(E ) : L(E )→ L(E ⊗ S) =M(K(E )⊗ S)

such that ιL(E⊗S) ◦ δL(E ) = δJ ◦ ιL(E ). We recall that

δJ(ιL(E )(1E )) = ιL(E⊗S)(qβE ,α).

In addition, we have

ιA⊗S(x)ιL(E⊗S)(qβE ,α) = 0, ιL(E⊗S)(qβE ,α)ιA⊗S(x) = 0, x ∈ A⊗ S.

As a result, it follows that

ιA⊗S(x)δJ(ιL(E )(T )) = 0, δJ(ιL(E )(T ))ιA⊗S(x) = 0, T ∈ L(E ), x ∈ A⊗ S,

which means that δJ(ιL(E )(T )) belongs to ιL(E⊗S)(L(E ⊗ S)) according to Lemma 8.1.3. Finally,
the statement is proved since ιL(E⊗S) is faithful. Since ιL(E⊗S) is isometric and δJ ◦ ιL(E ) is
strictly continuous, we have that δL(E ) is strictly continuous. Let us denote δK(E ) the restriction
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of δL(E ) to K(E ) so that (δK(E ), βE ) turns out to be an action of G on K(E ). Moreover, the map
δK(E ) does take its values in M̃(K(E )⊗ S) since we have

δK(E )(θξ,η) = δE (ξ)δE (η)∗ = θδE (ξ),δE (η) ∈ K(M̃(E ⊗ S)) ⊂ M̃(K(E )⊗ S),

for all ξ, η ∈ E , which follows from the fact that ιK(E )(θξ,η) = ιE (ξ)ιE (η)∗.

b) First, it is clear that βJ is a non-degenerate *-homomorphism. It is also clear that βJ is
compatible with the fibration map βA, that is to say βJ(no)ιA(a) = ιA(βA(no)a), for all a ∈ A
and n ∈ N . Let V ∈ L(E ⊗δA (A⊗S),E ⊗S) be the isometry associated with the action δE . Let
ı : qβA,α(A⊗ S)→ A⊗ S be the inclusion map. We easily check out that ı is an (A⊗ S)-linear
adjointable map and ı∗ = qβA,α. In particular, ı is an isometry as ı∗ı(x) = qβA,αx = x for all
x ∈ qβA,α(A⊗ S). Now, let us denote

W = V ⊕ ı ∈ L((E ⊗δA (A⊗ S))⊕ qβA,α(A⊗ S), (E ⊗ S)⊕ (A⊗ S)).

We have W ∗W = 1 and then W is an isometry. Henceforth, we will use the following identification
(see (8.2.1)):

(E ⊗δA (A⊗ S))⊕ qβA,α(A⊗ S) = (E ⊗δA (A⊗ S))⊕ (A⊗δA (A⊗ S)) = (E ⊕ A)⊗δA (A⊗ S).

(E ⊗ S)⊕ (A⊗ S) = (E ⊕ A)⊗ S.

Hence, W ∈ L((E ⊕ A)⊗δA (A⊗ S), (E ⊕ A)⊗ S). Then, let us define

δL(E⊕A)(T ) := W (T ⊗δA 1)W ∗ ∈ L((E ⊕ A)⊗ S), T ∈ L(E ⊕ A).

In that way, we define a *-homomorphism δL(E⊕A) : L(E ⊕ A) → L((E ⊕ A) ⊗ S), which is
obviously strictly continuous and verifies δL(E⊕A)(1) = W W ∗ = qβE ,α ⊕ qβA,α = qβJ ,α. Let us
denote δJ the restriction of δL(E⊕A) to J := K(E ⊕ A).

Let us prove that for all a ∈ A, we have ιM(A⊗S)(δA(a)) = δJ(ιA(a)). It amounts to proving that

ιM(A⊗S)(δA(a))W = δJ(ιA(a))W , a ∈ A,

since we have:

ιM(A⊗S)(δA(a))W W ∗ = ιM(A⊗S)(δA(a))(ιL(E⊗S)(qβE ,α) + ιM(A⊗S)(qβA,α))
= ιM(A⊗S)(δA(a)qβA,α) (Lemma 8.1.3 2)
= ιM(A⊗S)(δA(a)) and

δJ(ιA(a))W W ∗ = δJ(ιA(a))δJ(1J) = δJ(ιA(a)),

for all a ∈ A. Therefore, it is enough to prove that ιM(A⊗S)(δA(a))W = W (ιA(a)⊗δA 1) for all
a ∈ A because of W ∗W = 1. But, we have

W ((η ⊕ b)⊗δA x) = V (η ⊗δA x)⊕ δA(b)x = δE (η)x⊕ δA(b)x, η ∈ E , b ∈ A, x ∈ A⊗ S.

Now, we finally get

W (ιA(a)⊗δA 1)((η ⊕ b)⊗δA x) = W ((0⊕ ab)⊗δA x)
= (V ⊕ ı)(0⊕ δA(ab)x)
= 0⊕ δA(ab)x
= ιM(A⊗S)(δA(a))(δE (η)x⊕ δA(b)x)
= ιM(A⊗S)(δA(a))W ((η ⊕ b)⊗δA x),
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for all η ∈ E , a, b ∈ A and x ∈ A ⊗ S. By using similar arguments, we can prove that
ιL(A⊗S,E⊗S)(δE (ξ)) = δJ(ιE (ξ)) for all ξ ∈ E .

By strict continuity, we obtain

(δJ ⊗ idS)ιM(A⊗S)(m) = (ιM(A⊗S) ⊗ idS)(δA ⊗ idS)(m),

(idJ ⊗ δ)ιM(A⊗S)(m) = (ιM(A) ⊗ idS ⊗ idS)(idA ⊗ δ)(m),

for all m ∈M(A⊗ S). By compatibility of δJ with δA and coassociativity of δA, we then obtain

(δJ ⊗ idS)δJ(ιA(a)) = (idJ ⊗ δ)δJ(ιA(a)), a ∈ A.

By using the coassociativity of δE and the formula δJ ◦ ιE = ιL(A⊗S,E⊗S) ◦ δE , we prove in a
similar way that (δJ ⊗ idS)δJ(ιE (ξ)) = (idJ ⊗ δ)δJ(ιE (ξ)), for all ξ ∈ E . But since J := K(E ⊕A)
is generated by ιE (E ) ∪ ιA(A) as a C∗-algebra, the coassociativity condition holds.

Now, for all η ∈ E , b ∈ A, x ∈ A⊗ S and n ∈ N , we have

δJ(βJ(no))W ((η ⊕ b)⊗δA x) = W (βJ(no)(η ⊕ b)⊗δA x)
= W ((βE (no)η ⊕ βA(no)b)⊗δA x)
= δE (βE (no)η)x⊕ δA(βA(no)b)x
= (1J ⊗ β(no))(δE (η)x⊕ δA(b)x)
= (1J ⊗ β(no))W ((η ⊕ b)⊗δA x),

Then, for all n ∈ N we have

δJ(βJ(no)) = δJ(βJ(no))δJ(1J) = δJ(βJ(no))W W ∗ = (1J ⊗ β(no))W W ∗ = (1J ⊗ β(no))δJ(1J).

Therefore, (δJ , βJ) is an action of G on J , compatible with (δA, βA). Finally, the uniqueness of
δJ follows from the formulas

ιM(A⊗S)(δA(a)) = δJ(ιA(a)), ιL(A⊗S,E⊗S)(δE (ξ)) = δJ(ιE (ξ)), a ∈ A, ξ ∈ E ,

and the fact that J := K(E ⊕ A) is generated by ιE (E ) ∪ ιA(A) as a C∗-algebra.

As in [3] (see Définition 2.9), we have:

Definition 8.2.13. Let A and B be two G-C∗-algebras, E a G-equivariant Hilbert B-module
and π : A→ L(E ) a *-representation. We say that π is G-equivariant if we have:

1. δE (π(a)ξ) = (π ⊗ idS)(δA(a)) ◦ δE (ξ), for all a ∈ A, ξ ∈ E .

2. βE (no) ◦ π(a) = π(βA(no)a), for all n ∈ N , a ∈ A.

Moreover, if E is a countably generated B-module, we say that (E , π) (or simply E if π is
understood) is a G-equivariant Hilbert A-B-bimodule.

Remark 8.2.14. Note that a *-homomorphism π : A → L(E ) defines a *-homomorphism
π ⊗ idS : M̃(A⊗ S)→ L(E ⊗ S) (see [3] §1). Indeed, let us denote Ã the C∗-algebra obtained
from A by adjunction of a unit element. Then, π induces a unital *-homomorphism π̃ : Ã→ L(E )
defined by π̃(a + λ) = π(a) + λ1E , for all a ∈ A and λ ∈ C. In particular, we have a non-
degenerate *-homomorphism π̃ ⊗ idS : Ã⊗ S → L(E ⊗ S), which then extends toM(Ã⊗ S).
By restriction to M̃(A⊗ S), we obtain a *-homomorphism which extends π ⊗ idS.
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If π is non-degenerate and satisfies the condition 1 of Definition 8.2.13, then we prove in the
following proposition that the condition 2 is necessarily satisfied.

Proposition 8.2.15. Let A and B be two G-C∗-algebras, E a G-equivariant Hilbert B-module
and π : A→ L(E ) a non-degenerate *-representation such that

δE (π(a)ξ) = (π ⊗ idS)(δA(a)) ◦ δE (ξ), for all a ∈ A, ξ ∈ E .

Therefore, we have βE (no) ◦ π(a) = π(βA(no)a) for all n ∈ N , a ∈ A.

Proof. In virtue of the non-degeneracy of π, π ⊗ idS extends to a unital strictly continuous
*-homomorphism π ⊗ idS :M(A⊗ S)→ L(E ⊗ S). Let n ∈ N , a ∈ A. For all ξ ∈ E , we have

δE (βE (no)π(a)ξ) = (1E ⊗ β(no)) ◦ δE (π(a)ξ) (8.2.3 3)
= (1E ⊗ β(no)) ◦ (π ⊗ idS)(δA(a)) ◦ δE (ξ) (8.2.13 1)
= (π ⊗ idS)((1A ⊗ β(no))δA(a)) ◦ δE (ξ)
= (π ⊗ idS)(δA(βA(no)a)) ◦ δE (ξ) (4.1.2 3)
= δE (π(βA(no)a)ξ).

Since δE is injective (isometric), we have βE (no)π(a)ξ = π(βA(no)a)ξ for all ξ ∈ E . Hence,
βE (no) ◦ π(a) = π(βA(no)a).

If (E , δE , βE ) is a G-equivariant Hilbert A-module then the action (δK(E⊕A), βK(E⊕A)) of G on
K(E ⊕ A) and the action (δK(E ), βE ) of G on K(E ) are not necessarily continuous. In the
following, we provide a necessary and sufficient condition on (E , δE , βE ) so that the triples
(K(E ⊕ A), δK(E⊕A), βK(E⊕A)) and (K(E ), δK(E ), βE ) become G-C∗-algebras.

Proposition 8.2.16. Let (E , δE , βE ) be a G-equivariant Hilbert A-module and let us denote
J = K(E ⊕ A). Let us assume further that

[(1E ⊗ S)δE (E )] = (E ⊗ S)qβA,α. (8.2.8)

Therefore, the actions (δJ , βJ) and (δK(E ), βE ) are continuous, that is to say:

[δJ(J)(1J ⊗ S)] = qβJ ,α(J ⊗ S), (8.2.9)
[δK(E )(K(E ))(1E ⊗ S)] = qβE ,α(K(E )⊗ S). (8.2.10)

Conversely, let us assume that the action (δJ , βJ) is continuous. Then, the formulas (8.2.8) and
(8.2.10) hold.

Proof. Let us assume that [(1E ⊗ S)δE (E )] = (E ⊗ S)qβA,α. First, let us prove that the action
(δK(E ), βE ) is continuous. We have

[δK(E )(K(E ))(1E ⊗ S)] = [δK(E )(θξ,η)(1E ⊗ y) ; ξ, η ∈ E , y ∈ S].

However, we have

δK(E )(θξ,η)(1E ⊗ y) = δE (ξ)δE (η)∗(1E ⊗ y) = δE (ξ)((1E ⊗ y∗)δE (η))∗, ξ, η ∈ E , y ∈ S.

In virtue of the assumption and the fact that δE (ξ)qβA,α = δE (ξ) for all ξ ∈ E , we obtain

[δK(E )(K(E ))(1E ⊗ S)] = [δE (E )(E ∗ ⊗ S)] = [δE (E )(1E ⊗ S)(E ∗ ⊗ S)] = qβE ,α(K(E )⊗ S),
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where we have used [δE (E )(1E ⊗ S)] = qβE ,α(E ⊗ S), K(E ) = [E E ∗] and the fact that any
element of S can be written as a product of two elements of S.
Now, let us prove that (δJ , βJ) is continuous. Let x ∈ J and y ∈ S. Let us write:

x =
(
k ξ
η∗ a

)
, where a ∈ A, k ∈ K(E ), ξ, η ∈ E .

Then, we have

δJ(x)(1J ⊗ y) = δJ(ιK(E )(k))(1J ⊗ y) + δJ(ιE (ξ))(1J ⊗ y)
+ δJ(ιE ∗(η∗))(1J ⊗ y) + δJ(ιA(a))(1J ⊗ y)

= ιL(E⊗S)(δK(E )(k))(1J ⊗ y) + ιL(A⊗S,E⊗S)(δE (ξ))(1J ⊗ y)
+ ιL(E⊗S,A⊗S)(δE (η)∗)(1J ⊗ y) + ιM(A⊗S)(δA(a))(1J ⊗ y)

= ιK(E )⊗S(δK(E )(k)(1E ⊗ y)) + ιE⊗S(δE (ξ)(1A ⊗ y))
+ ιE⊗S((1E ⊗ y∗)δE (η))∗ + ιA⊗S(δA(a)(1A ⊗ y)),

Then, (8.2.9) follows from (8.2.10), the condition 2 of Definition 8.2.3, the assumption (8.2.8)
and the continuity of the action (δA, βA).

Definition 8.2.17. We say that a G-equivariant Hilbert A-module (E , δE ) is a G-A-module if
it satisfies:

[(1E ⊗ S)δE (E )] = (E ⊗ S)qβA,α.

We finish this paragraph with some examples:

1) Let G be a measured quantum groupoid on a finite basis. Let (J, δJ , e1, e2) be a linking
G-C∗-algebra (see Definition 6.2.1). Let us denote:

A := e2Je2, E := e1Je2.

By restriction of the continuous action (δJ , βJ) of G on J , we obtain a continuous action (δA, βA)
of G on A and a structure of G-A-module on E .

2) Let us fix a regular colinking measured quantum groupoid G. Let us consider the trivial
action of G on N := C2. Let us fix i = 1, 2, we then consider the following Hilbert N -module:

E := Hi1 ⊕Hi2.

Let us consider the isometry V ∈ L(E ⊗δN (N ⊗ S),E ⊗ S) and the non-degenerate *-
homomorphism βE : N → L(E ) given by:

V (ξij ⊗ 1) =
∑
k=1,2

V i
kj(ξij ⊗ 1) ; βE (εj) = pij, j = 1, 2.

Then, the pair (V , βE ) defines a structure of G-N -module on E .

3) Let G := GG1,G2 be a colinking measured quantum groupoid between two monoidally equivalent
regular locally compact quantum groups G1 and G2. Let us fix a G1-C∗-algebra A1 and its
induced G2-C∗-algebra A2 := IndG2

G1(A1). Now, we also consider the G-C∗-algebra A := A1 ⊕ A2.
Let us fix E1 a G1-equivariant Hilbert A1-module. We denote E2 := IndG2

G1(E1), the induced
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G2-equivariant Hilbert A2-module. We have the following linking G1-C∗-algebra (resp G2-C∗-
algebra):

J1 := K(E1 ⊕ A1) (resp. J2 := K(E2 ⊕ A2)).

Let J := J1 ⊕ J2 be the associated G-C∗-algebra. Let us define E the Hilbert A-module
E := E1 ⊕ E2. By the previous argument, we have proved that E is a G-A-module. Conversely,
we can prove that any G-A-module is of this form.

8.3 The equivariant Hilbert module EA,R

Let G = (N,M,∆, α, β, T, T ′, ε) be a regular measured quantum groupoid on the finite dimen-
sional basis N =

⊕
16l6k

Mnl(C). Let (S, δ) and (Ŝ, δ̂) be the associated weak Hopf-C∗-algebras.

Let us fix a G-C∗-algebra (A, δA, βA).

Notation 8.3.1. We consider the Hilbert A-modules E0 = A⊗H and EA,R = qβA,α̂E0. Let us
denote V0 ∈M(Ŝ⊗S) such that V = (ρ⊗L)(V0). We then define V = (ρ⊗ idS)(V0) ∈ L(H ⊗S)
(cf. Notations 4.4.6 3).

Proposition 8.3.2. There exists a unique linear map δE0 : E0 → L(A⊗ S,E0 ⊗ S) such that

δE0(a⊗ ξ) = V23δA(a)13(1A ⊗ ξ ⊗ 1S),

for all a ∈ A and ξ ∈H .

Remark 8.3.3. We have V23 and δA(a)13 ∈ L(A⊗H ⊗ S). Moreover, for ξ ∈ E , the operator
1A ⊗ ξ ⊗ 1S ∈ L(A⊗ S,A⊗H ⊗ S) is defined by (1A ⊗ ξ ⊗ 1S)(a⊗ s) = a⊗ ξ ⊗ s, a ∈ A and
s ∈ S. We have (1A ⊗ ξ ⊗ 1S)∗ = 1A ⊗ ξ∗ ⊗ 1S, where ξ∗ ∈H ∗ is defined by ξ∗(η) = 〈ξ, η〉.

Proof. If B is a C∗-algebra and K a Hilbert space, we will identifyM(B)⊗K with a closed
vector subspace of L(B,B ⊗K ) by denoting (m⊗ ξ)(b) = mb⊗ ξ where m ∈M(B), ξ ∈ K
and b ∈ B. For ξ0 ∈ E0, we then have (δA ⊗ idH )(ξ0) ∈ L(A ⊗ S,A ⊗ S ⊗H ) and we have
(δA⊗ idH )(ξ0)∗ = (δA⊗ idH ∗)(ξ∗0) (E ∗0 = A⊗H ∗). Let σ ∈ L(S ⊗H ,H ⊗ S) be the flip map
σ(s⊗ ξ) = ξ ⊗ s, s ∈ S and ξ ∈H . In particular, we have σ23 ∈ L(A⊗ S ⊗H ,E0 ⊗ S). Now,
let us define:

δE0(ξ0) = V23σ23(δA ⊗ idH )(ξ0) ∈ L(A⊗ S,E0 ⊗ S), ξ0 ∈ E0.

Therefore, we have a well-defined linear map δE0 : E0 → L(A⊗S,E0⊗S) such that for all a ∈ A
and ξ ∈H , δE0(a⊗ ξ) = V23δA(a)13(1A ⊗ ξ ⊗ 1S). The uniqueness follows from the continuity
of δE0 .

Proposition 8.3.4. We have the following statements:

1. δE0(η0)∗δE0(ξ0) = δA(〈qβA,α̂η0, q
βA,α̂ξ0〉), for all ξ0, η0 ∈ E0.

2. δE0(ξ0a) = δE0(ξ0)δA(a), for all ξ0 ∈ E0, a ∈ A.

3. δE0(qβA,α̂ξ0) = δE0(ξ0), for all ξ0 ∈ E0.

4. δE0(E0)(A⊗ S) ⊂ EA,R ⊗ S.
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Proof. 1. Let ξ0, η0 ∈ E0, we have

δE0(η0)∗δE0(ξ0) = (δA ⊗ id)(η∗0)σ∗23V∗23V23σ23(δA ⊗ id)(ξ0).

However, we have
V∗V =

∑
16l6k

n−1
l

∑
16i,j6nl

ρ(α̂(e(l)
ij ))⊗ β(e(l)o

ji ).

Therefore, we have
σ∗V∗Vσ =

∑
16l6k

n−1
l

∑
16i,j6nl

β(e(l)o
ij )⊗ ρ(α̂(e(l)

ji )).

For all n, n′ ∈ N , we have

(1A ⊗ β(no)⊗ ρ(α̂(n′)))(δA ⊗ idH )(a⊗ ξ) = (1A ⊗ β(no))δA(a)⊗ ρ(α̂(n′))ξ
= δA(βA(no)a)⊗ ρ(α̂(n′))ξ
= (δA ⊗ idH )((βA(no)⊗ ρ(α̂(n′)))(a⊗ ξ)),

for all a ∈ A, ξ ∈H . Hence,

(1A ⊗ β(no)⊗ ρ(α̂(n′)))(δA ⊗ idH )(ξ0) = (δA ⊗ idH )((βA(no)⊗ ρ(α̂(n′)))ξ0), n, n′ ∈ N.

It then follows that

σ∗23V∗23V23σ23(δA ⊗ idH )(ξ0) = (δA ⊗ idH )(qβA,α̂ξ0).

As a result, we finally have

δE0(η0)∗δE0(ξ0) = (δA ⊗ idH ∗)(η∗0)(δA ⊗ idH )(qβA,α̂ξ0)
= δA(〈η0, q

βA,α̂ξ0〉)
= δA(〈qβA,α̂η0, q

βA,α̂ξ0〉),

where the last equality follows from the fact that qβA,α̂ ∈ L(E0) is a self-adjoint projection.

2. Let a, b ∈ A and ξ ∈H , we have

δE0((b⊗ ξ)a) = δE0(ba⊗ ξ)
= V23δA(ba)13(1A ⊗ ξ ⊗ 1S)
= V23δA(b)13δA(a)13(1A ⊗ ξ ⊗ 1S)
= V23δA(b)13(1A ⊗ ξ ⊗ 1S)δA(a),

where δA(a) is looked at as an element of L(A⊗ S) in the last equality. It then follows that

δE0((b⊗ ξ)a) = δE0(b⊗ ξ)δA(a), a, b ∈ A, ξ ∈H ,

and the statement is proved.

3. For all b ∈ A and η ∈H , we have δE0(b⊗η) = V23(1A⊗ ξ⊗1S)δA(b) = (1A⊗V(η⊗1S))δA(b).
We recall that

V(1H ⊗ β(no)) = V(ρ(α̂(n))⊗ 1S), n ∈ N
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(see Proposition 2.3.6 2). Let a ∈ A and ξ ∈H , we have

δE0(qβA,α̂(a⊗ ξ)) =
∑

16l6k
n−1
l

∑
16i,j6nl

δE0(βA(e(l)o
ij )a⊗ α̂(e(l)

ji )ξ)

=
∑

16l6k
n−1
l

∑
16i,j6nl

(1A ⊗ V(α̂(e(l)
ji )ξ ⊗ 1S))δA(βA(e(l)o

ij )a)

=
∑

16l6k
n−1
l

∑
16i,j6nl

(1A ⊗ V(ξ ⊗ β(e(l)o
ji )))(1A ⊗ β(e(l)o

ij ))δA(a)

=
∑

16l6k

∑
16i6nl

(1A ⊗ V(ξ ⊗ β(e(l)o
ii )))δA(a) e

(l)
ij e

(l)
ji = e

(l)
ii

=
∑

16l6k
(1A ⊗ V(ξ ⊗ β(e(l)o)))δA(a) e(l) =

∑
16i6nl

e
(l)
ii

= δE0(a⊗ ξ).
∑

16l6k
e(l) = 1N

4. It suffices to show that qβA,α̂12 δE0(ξ0)x = δE0(ξ0)x for all ξ0 ∈ E0 and x ∈ A⊗ S. Let us recall
that (α̂(n)⊗ 1S)V = V(1H ⊗ α(n)), for all n ∈ N (see the first formula of Proposition 2.3.5 3).
It then follows that qβA,α̂12 V23 = V23q

βA,α
13 . Let a, b ∈ A, ξ ∈H and s ∈ S. Since qβA,α = δA(1A),

we have

qβA,α̂12 δE0(a⊗ ξ)(b⊗ s) = qβA,α̂12 V23δA(a)13(b⊗ ξ ⊗ s)
= V23q

βA,α
13 δA(a)13(b⊗ ξ ⊗ s)

= δE0(a⊗ ξ)(b⊗ s)

and we are done.

Notation 8.3.5. According to the previous proposition, δE0 restricts to a linear map

δEA,R : EA,R → L(A⊗ S,EA,R ⊗ S),

which satisfies the following statements:

• δEA,R(η0)∗δEA,R(ξ0) = δA(〈η0, ξ0〉), for all η0, ξ0 ∈ EA,R.

• δEA,R(η0a) = δEA,R(η0)δA(a), for all η0 ∈ EA,R and a ∈ A.

Proposition 8.3.6. We have δEA,R(EA,R) ⊂ M̃(EA,R ⊗ S).

Proof. To begin with, let us prove that δEA,R(ξ0)(1A⊗ y) ∈ EA,R ⊗ S for all ξ0 ∈ EA,R and y ∈ S.
It amounts to proving that δE0(ξ0)(1A ⊗ y) ∈ E0 ⊗ S for all ξ0 ∈ E0 and y ∈ S thanks to the
statements 3 and 4 of Proposition 8.3.4. Let a ∈ A and ξ ∈H , since δA(a)(1A ⊗ y) ∈ A⊗ S,
δE0(a ⊗ ξ)(1A ⊗ y) = (1A ⊗ V(ξ ⊗ 1S))δA(a)(1A ⊗ y) is the limit, with respect to the norm
topology, of finite sums of the form:∑

i

ai ⊗ V(ξ ⊗ si) ∈ A⊗H ⊗ S = E0 ⊗ S, ai ∈ A, si ∈ S.

Hence, δE0(a⊗ ξ)(1A ⊗ y) ∈ E0 ⊗ S.
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Now, let us prove that (1EA,R ⊗ y)δEA,R(ξ0) ∈ EA,R ⊗ S for all ξ0 ∈ EA,R and y ∈ S. This also
amounts to proving that (1E0 ⊗ y)δE0(ξ0) ∈ E0 ⊗ S for all ξ0 ∈ E0 and y ∈ S. Let a ∈ A, ξ ∈H
and y ∈ S, we have

(1E0 ⊗ y)δE0(a⊗ ξ) = (1A ⊗ (1H ⊗ y)V(ξ ⊗ 1S))δA(a).

There exist x ∈ Ŝ and η ∈H such that ξ = ρ(x)η. Hence,

(1H ⊗ y)V(ξ ⊗ 1S) = (ρ⊗ idS)((1
Ŝ
⊗ y)V0(x⊗ 1S))(η ⊗ 1S).

If (1
Ŝ
⊗ y)V0(x⊗ 1S) ∈ Ŝ ⊗ S for all y ∈ S and x ∈ Ŝ, then we are done. Indeed, if this was

true (1H ⊗ y)V(ξ ⊗ 1S) would belong to H ⊗ S. In particular, it would exist X ∈H ⊗ S and
s ∈ S such that (1H ⊗ x)V(ξ ⊗ 1S) = Xs. But since (1A ⊗ s)δA(a) ∈ A⊗ S, (1E0 ⊗ x)δE0(a⊗ ξ)
would be the norm limit of finite sums of the form:∑

i

ai ⊗Xsi, ai ∈ A, si ∈ S.

Hence, (1E0 ⊗ y)δE0(a⊗ ξ) ∈ E0 ⊗ S. Let us prove that (1
Ŝ
⊗ y)V (x⊗ 1S) ∈ Ŝ ⊗ S for all y ∈ S

and x ∈ Ŝ (for the sake of convenience we identify V0 and V ). It is equivalent to showing that
(y ⊗ 1)W (1⊗ λ(x)) ∈ S ⊗ λ(Ŝ) or else (x⊗ 1S)V (1

Ŝ
⊗ y) ∈ Ŝ ⊗ S at the risk of switching W

with V . It suffices to see that (id⊗ ω ⊗ id)(V12V13(1H ⊗ 1H ⊗ y)) ∈ Ŝ ⊗ S for all ω ∈ B(H )∗
(x := ρ(ω), for ω ∈ B(H )∗). Let ω ∈ B(H )∗ and let us write ω = xω′, where x ∈ Ŝ and
ω′ ∈ B(H )∗. Since V12V13 = V23V12V

∗
23, we have

(id⊗ ω ⊗ id)(V12V13(1H ⊗ 1H ⊗ y)) = (id⊗ ω′ ⊗ id)(V23V12V
∗

23(1H ⊗ x⊗ y))
= (id⊗ ω′ ⊗ id)(V23V12(1H ⊗ V (x⊗ y))).

But V (x⊗ y) ∈ Ŝ ⊗ S, therefore (id⊗ ω ⊗ id)(V12V13(1H ⊗ 1H ⊗ y)) is the norm limit of finite
sums of the form∑

i

(id⊗ ω′ ⊗ id)(V23V12(1H ⊗ xi ⊗ yi)) =
∑
i

(id⊗ ω′i ⊗ id)(V23(1H ⊗ 1H ⊗ yi)V12),

where xi ∈ Ŝ, yi ∈ S and ω′i := xiω
′ ∈ B(H )∗. Now let us write ω′i = R(y′i)ω′′i λ(x′i), with x′i ∈ Ŝ,

y′i ∈ S and ω′′i ∈ B(H )∗. Then, since V ∈ M̂ ′ ⊗M , λ(Ŝ) ⊂ M̂ and R(S) ⊂M ′, we have

(id⊗ ω′i ⊗ id)(V23(1H ⊗ 1H ⊗ yi)V12) = (id⊗ ω′′i ⊗ id)((1H ⊗ V (λ(x′i)R(y′i)⊗ yi))V12)
= (id⊗ ω′′i ⊗ id)((1H ⊗ V (U∗ρ(x′i)L(y′i)U ⊗ yi))V12)

However, we have the inclusion [ŜS] ⊂ K(H ) (Corollary 3.2.9) and V ∈ M(K(H ) ⊗ S).
Consequently, we have V (U∗ρ(x′i)L(y′i)U ⊗ yi) ∈ K(H ) ⊗ S. Now, if k ∈ K(H ), s ∈ S and
ψ ∈ B(H )∗, we have

(id⊗ ψ ⊗ id)((1H ⊗ k ⊗ s)V12) = (id⊗ ψ)((1H ⊗ k)V )⊗ s = (id⊗ ψk)(V )⊗ s ∈ Ŝ ⊗ S

and we are done.
Notation 8.3.7. Let βE0 : No → L(E0) be the injective *-homomorphism given by

βE0(no) = 1A ⊗ ρ(β(no)), n ∈ N.

Since α̂(n′)β(no) = β(no)α̂(n′) for all n, n′ ∈ N , we have [βE0(no), qβA,α̂] = 0 for all n ∈ N .
Therefore, βE0 restricts to a non-degenerate faithful *-homomorphism βEA,R : No → L(EA,R).
Since (α̂(n) ⊗ 1S)V = V(1H ⊗ α(n)) for all n ∈ N , we have V23q

βA,α
13 = qβA,α̂12 V23. Thus,

[V23V∗23, q
βA,α̂
12 ] = 0 and the operator V23V∗23 ∈ L(E0 ⊗ S) restricts to a self-adjoint projection

pEA,R of L(EA,R ⊗ S).
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Proposition 8.3.8. We have the following statements:

1. [δEA,R(EA,R)(A⊗ S)] = pEA,R(EA,R ⊗ S).

2. pEA,R = qβEA,R
,α.

3. δEA,R(βEA,R(no)η) = (1EA,R ⊗ β(no))δEA,R(η), for all η ∈ EA,R and n ∈ N .

Proof. 1. Since VV∗V = V , we have V23V∗23δE0(ξ0) = δE0(ξ0), for all ξ0 ∈ E0. It then follows that
pEA,RδEA,R(ξ) = δEA,R(ξ), for all ξ ∈ EA,R. Thus, we have

δEA,R(EA,R)(A⊗ S) ⊂ pEA,R(EA,R ⊗ S).

Conversely, let a ∈ A, ξ ∈H and s ∈ S. Since V23q
βA,α
13 = qβA,α̂12 V23, we have

pEA,R(qβA,α̂(a⊗ ξ)⊗ s) = V23V∗23q
βA,α̂
12 (a⊗ ξ ⊗ s) = V23q

βA,α
13 (a⊗ V∗(ξ ⊗ s))

and V∗(ξ ⊗ s) ∈H ⊗ S. In particular, pEA,R(qβA,α̂(a⊗ ξ)⊗ s) is the norm limit of finite sums
of elements of the form:

V23q
βA,α
13 (a⊗ ξ′ ⊗ s′), ξ′ ∈H , s ∈ S.

By continuity of (δA, βA), V23q
βA,α
13 (a⊗ ξ′ ⊗ s′) is the norm limit of finite sums of the form:∑

i

V23δA(ai)13(1A ⊗ ξ′ ⊗ si) =
∑
i

δEA,R(qβA,α̂(ai ⊗ ξ′))(1A ⊗ si), ai ∈ A, si ∈ S.

As a result, pEA,R(qβA,α̂(a ⊗ ξ) ⊗ s) ∈ [δEA,R(EA,R)(A ⊗ S)], for all a ∈ A, ξ ∈ H and s ∈ S.
Hence, pEA,R(EA,R ⊗ S) ⊂ [δEA,R(EA,R)(A⊗ S)] and the first statement is proved.

2. The statement is a straightforward consequence of the definitions.

3. Let η = qβA,α̂(a⊗ ξ), with a ∈ A and ξ ∈H . We have

βEA,R(no)η = (1A ⊗ ρ(β(no)))qβA,α̂(a⊗ ξ) = qβA,α̂(a⊗ ρ(β(no))ξ).

Moreover, we have V(ρ(β(no))⊗ 1S) = (1H ⊗ β(no))V for all n ∈ N (see the second formula of
Proposition 2.3.5 3). It then follows that

δEA,R(βEA,R(no)η) = δE0(a⊗ ρ(β(no))ξ)
= V23δA(a)13(1A ⊗ ρ(β(no))ξ ⊗ 1S)
= (1A ⊗ V(ρ(β(no))⊗ 1S))δA(a)13(1A ⊗ ξ ⊗ 1S)
= (1A ⊗ 1H ⊗ β(no))δE0(a⊗ ξ)
= (1EA,R ⊗ β(no))δEA,R(η)

and we are done.

Consequently, δEA,R ⊗ idS and idEA,R ⊗ δ extend to linear maps from L(A ⊗ S,EA,R ⊗ S) to
L(A⊗ S ⊗ S,EA,R ⊗ S ⊗ S) (cf. Remarks 8.2.8) and we have:

(δEA,R ⊗ idS)(T )(δA ⊗ idS)(x) = (δEA,R ⊗ idS)(Tx),

(idEA,R ⊗ δ)(T )(idA ⊗ δ)(x) = (idEA,R ⊗ δ)(Tx)

for all x ∈ A⊗ S and T ∈ L(A⊗ S,EA,R ⊗ S).
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Proposition 8.3.9. The linear map δEA,R is coassociative, that is to say

(δEA,R ⊗ idS)δEA,R(ξ) = (idEA,R ⊗ δ)δEA,R(ξ), ξ ∈ EA,R.

Proof. Let a ∈ A, η ∈H , x ∈ A⊗ S and y ∈ A⊗ S ⊗ S, we have

(δEA,R ⊗ idS)(δEA,R(qβA,α̂(a⊗ η)))(δA ⊗ idS)(x)y = (δEA,R ⊗ idS)(δEA,R(qβA,α̂(a⊗ η))x)y
= (δE0 ⊗ idS)(δE0(a⊗ η)x)y
= (δE0 ⊗ idS)(V23(δA(a)x)13(1A ⊗ η ⊗ 1S))y.

Now since δA(a)x ∈ A⊗ S, if b ∈ A and s ∈ S we have

(δE0 ⊗ idS)(V23(b⊗ η ⊗ s)) = (δE0 ⊗ idS)(b⊗ V(η ⊗ s)).

Let η′ ∈H and s′ ∈ S, we have

(δE0 ⊗ idS)(b⊗ η′ ⊗ s′) = δE0(b⊗ η′)⊗ s′ = V23δA(b)13(1A ⊗ η′ ⊗ 1S ⊗ s′).

Consequently, we have (δE0⊗idS)(b⊗X) = V23δA(b)13X24 ∈ L(A⊗H ⊗S⊗S) for allX ∈H ⊗S.
In particular, we have

(δE0 ⊗ idS)(b⊗ V(η ⊗ s)) = V23δA(b)13V24(1A ⊗ η ⊗ 1S ⊗ s)
= V23V24δA(b)13(1A ⊗ η ⊗ 1S ⊗ s).

However, we have (idH ⊗ δ)(V) = V12V13. Hence, V23V24 = (idE0 ⊗ δ)(V23). Moreover, we have

δA(b)13(1A ⊗ η ⊗ 1S ⊗ s) = (δA(b)13 ⊗ s)(1A ⊗ η ⊗ 1S ⊗ 1S)
= (δA,13 ⊗ idS)(b⊗ s)(1A ⊗ η ⊗ 1S ⊗ 1S),

for all b ∈ A and s ∈ S, where δA,13 : A→ L(A⊗H ⊗ S) is the *-homomorphism defined by
δA,13(a) = δA(a)13 for all a ∈ A. As a result, we have

(δE0 ⊗ idS)(V23Y13(1A ⊗ η ⊗ 1S)) = (idE0 ⊗ δ)(V23)(δA,13 ⊗ idS)(Y )(1A ⊗ η ⊗ 1S ⊗ 1S)

for all Y ∈ A⊗ S. In particular, we have

(δE0 ⊗ idS)(δE0(a⊗ η)x)y = (idE0 ⊗ δ)(V23)(δA,13 ⊗ idS)(δA(a)x)(1A ⊗ η ⊗ 1S ⊗ 1S)y
= (idE0 ⊗ δ)(V23)(δA,13 ⊗ idS)δA(a)(1A ⊗ η ⊗ 1S ⊗ 1S)(δA ⊗ idS)(x)y.

Besides, we have (δA,13 ⊗ idS)(δA(a)) = (idE0 ⊗ δ)(δA(a)13). Hence,

(δEA,R ⊗ idS)(δEA,R(qβA,α̂(a⊗ η)))z = (idE0 ⊗ δ)(V23δA(a)13)(1A ⊗ η ⊗ 1S ⊗ 1S)z,

for all z ∈ qβA,α12 (A⊗ S ⊗ S). In particular, if z ∈ qβA,α12 qβ,α23 (A⊗ S ⊗ S) we have

(δEA,R ⊗ idS)(δEA,R(qβA,α̂(a⊗ η)))z = (idE0 ⊗ δ)(V23δA(a)13)(1A ⊗ η ⊗ qβ,α)z
= (idE0 ⊗ δ)(δE0(a⊗ η))z
= (idEA,R ⊗ δ)(δEA,R(qβA,α̂(a⊗ η)))z,

since for all x ∈ A⊗ S and y ∈ A⊗ S ⊗ S we have

(idEA,R ⊗ δ)(δEA,R(qβA,α̂(a⊗ η)))(idA ⊗ δ)(x)y = (idEA,R ⊗ δ)(δEA,R(qβA,α̂(a⊗ η))x)y
= (idE0 ⊗ δ)(δE0(a⊗ η)x)y.

Therefore, we have (δEA,R ⊗ idS)(δEA,R(qβA,α̂(a⊗ η))) = (idEA,R ⊗ δ)(δEA,R(qβA,α̂(a⊗ η))) for all
a ∈ A and η ∈H and then the coassociativity condition holds.
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Now, we can assemble the previous results in the following theorem:

Theorem 8.3.10. The triple (EA,R, δEA,R , βEA,R) is a G-equivariant Hilbert A-module.

In the following, we identify the G-C∗-algebras Ao G o Ĝ and (D, δD, βD) (see Theorem 4.4.15).
We also denote jD : D → L(EA,R) the canonical non-degenerate faithful *-homomorphism (see
Proposition-Definition 4.4.1 and also Remark 4.4.2).

Proposition 8.3.11. The couple (EA,R, jD) is a G-equivariant Hilbert D-A-bimodule.

Proof. By Proposition 8.2.15, we have to prove that jD satisfies the following statement (see
Definition 8.2.13):

δEA,R(jD(d)ξ) = (jD ⊗ idS)(δD(d)) ◦ δEA,R(ξ), for all ξ ∈ EA,R, d ∈ D.

Let us prove it in three steps:

• Let b ∈ A, x ∈ Ŝ and η ∈H , we have

δE0(b⊗ λ(x)η) = V23δA(b)13(1A ⊗ λ(x)η ⊗ 1S) = (1A ⊗ V(λ(x)⊗ 1S))δA(b)13(1A ⊗ η ⊗ 1S).

However, V(λ(x)⊗ 1S) = (λ(x)⊗ 1S)V (as λ(Ŝ) ⊂ M̂ and V ∈ M̂ ′ ⊗M). Hence,

δE0(b⊗ λ(x)η) = (1A ⊗ λ(x)⊗ 1S)δE0(b⊗ η),

and then δE0((1A ⊗ λ(x))η0) = (1A ⊗ λ(x)⊗ 1S)δE0(η0), for all x ∈ Ŝ and η0 ∈ E0.

• Let y ∈ S, we have V(L(y)⊗ 1S) = Vqα̂,β(L(y)⊗ 1S). Since α̂(N) ⊂ M ′ and L(y) ∈ M , we
have

V(L(y)⊗ 1S) = V(L(y)⊗ 1S)qα̂,β = V(L(y)⊗ 1S)V∗V = (L⊗ idS)(δ(y))V .
Let b ∈ A and η ∈H , we have

δE0((1A ⊗ L(y))(b⊗ η)) = (1A ⊗ V(L(y)⊗ 1S))δA(b)13(1A ⊗ η ⊗ 1S)
= (1A ⊗ (L⊗ idS)δ(y))δE0(b⊗ η).

Hence, δE0((1A ⊗ L(y))η0) = (1A ⊗ (L⊗ idS)δ(y))δE0(η0) for all y ∈ S and η0 ∈ E0.

Thanks to the first two steps, we have

δEA,R((1A ⊗ λ(x)L(y))η0) = (1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y))δEA,R(η0), η0 ∈ EA,R.

• Let s ∈ S, we have

(R(s)⊗ 1)V = (U ⊗ 1)Σ(1⊗ L(s))Σ(U∗ ⊗ 1)V = (U ⊗ 1)Σ(1⊗ L(s))WΣ(U∗ ⊗ 1).

Besides, (1 ⊗ L(s))W = (1 ⊗ L(s))WW ∗W = WW ∗(1 ⊗ L(s))W = Wδ(s) since we have
WW ∗ = qα,β̂ and L(s) ∈M ⊂ β̂(No)′. Therefore, since (U ⊗ 1)ΣW = V (U ⊗ 1)Σ we have

(R(s)⊗ 1)V = V Σ(1⊗ U)δ(s)(1⊗ U∗)Σ.

Thus, we have
(R(s)⊗ 1S)V = Vσ(idS ⊗R)(δ(s))σ∗, for all s ∈ S.

164



We then have that ((idA⊗R)(x)⊗1S)V23 = V23σ23(idA⊗S⊗R)((idA⊗δ)(x))σ∗23, for all x ∈ A⊗S.
But, since R and δ are strictly continuous this equality also holds for all x ∈ M(A ⊗ S). In
particular, we have

πR(a)12V23 = V23σ23(idA⊗S ⊗R)(δ2
A(a))σ∗23, for all a ∈ A,

where δ2
A(a) = (idA ⊗ δ)δA(a). Now, since δ2

A(a) = (δA ⊗ idS)δA(a) we obtain

πR(a)12V23 = V23σ23(δA ⊗ idK(H ))(πR(a))σ∗23, for all a ∈ A.

It then follows that

πR(a)12δE0(ξ0) = V23σ23(δA ⊗ idK(H ))(πR(a))(δA ⊗ idH )(ξ0)
= V23σ23(δA ⊗ idH )(πR(a)ξ0)
= δE0(πR(a)ξ0),

for all a ∈ A and ξ0 ∈ E0. In particular, πR(a)12δEA,R(ξ0) = δEA,R(πR(a)ξ0) for all a ∈ A and
ξ0 ∈ EA,R.

We have proved that for all a ∈ A, x ∈ Ŝ, y ∈ S and ξ0 ∈ E0, we have

δE0(πR(a)(1A ⊗ λ(x)L(y))ξ0) = πR(a)12(1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y))δE0(ξ0).

However, for all a ∈ A, x ∈ Ŝ and y ∈ S we have

(jD ⊗ idS)δD(πR(a)(1A ⊗ λ(x)L(y))) = πR(a)12(1A ⊗ λ(x)⊗ 1S)(1A ⊗ (L⊗ idS)δ(y))

(see Proposition 4.4.5 1). Therefore, if d = πR(a)(1A ⊗ λ(x)L(y)) ∈ D, where a ∈ A, x ∈ Ŝ
and y ∈ S, we have δEA,R(jD(d)ξ) = (jD ⊗ idS)(δD(d)) ◦ δEA,R(ξ), for all ξ ∈ EA,R. Thus, the
statement is proved since D = [πR(a)(1A ⊗ λ(x)L(y)) ; a ∈ A, x ∈ Ŝ, y ∈ S].

Proposition 8.3.12. Let (δK(EA,R⊕A), βK(EA,R⊕A)) be the action of G on K(EA,R ⊕A) associated
with the G-equivariant Hilbert A-module (EA,R, δEA,R , βEA,R). Then, the following statements are
equivalent:

1. (δK(EA,R⊕A), βK(EA,R⊕A)) is continuous,

2. [(1EA,R ⊗ S)δEA,R(EA,R)] = (EA,R ⊗ S)qβA,α,

3. [(1A ⊗ (1
Ŝ
⊗ y)V0(x⊗ 1S))qβA,α13 ; y ∈ S, x ∈ Ŝ] = qβA,α̂12 (1A ⊗ Ŝ ⊗ S)qβA,α13 .

Note that (1A ⊗ (1
Ŝ
⊗ y)V0(x⊗ 1S))qβA,α13 = qβA,α̂12 (1A ⊗ (1

Ŝ
⊗ y)V0(x⊗ 1S)), for all y ∈ S and

x ∈ Ŝ.

Proof. The equivalence of the statements 1 and 2 is given by Proposition 8.2.16. Let us prove
that the statements 2 and 3 are equivalent. Note that the statement 2 is equivalent to

[(1E0 ⊗ S)δE0(E0)] = qβA,α̂12 (E0 ⊗ S)qβA,α,

since we have δEA,R(qβA,α̂ξ0) = δE0(ξ0), for all ξ0 ∈ E0. Actually, we already have the inclusion
[(1E0 ⊗ S)δE0(E0)] ⊂ qβA,α̂12 (E0 ⊗ S)qβA,α. Let y ∈ S, a ∈ A and ξ ∈ H . Let x ∈ Ŝ and η ∈ H
such that ξ = ρ(x)η. We have

(1E0 ⊗ y)δE0(a⊗ ξ) = (1A ⊗ (1H ⊗ y)V(ξ ⊗ 1S))δA(a)
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and (1H ⊗ y)V(ξ ⊗ 1S) = (ρ ⊗ idS)((1
Ŝ
⊗ y)V0(x ⊗ 1S))(η ⊗ 1S). Hence, [(1E0 ⊗ S)δE0(E0)] is

equal to

[(1A ⊗ (ρ⊗ idS)((1
Ŝ
⊗ y)V0(x⊗ 1S)))δA(a)13(1A ⊗ η ⊗ 1S) ; a ∈ A, x ∈ Ŝ, y ∈ S, η ∈H ].

Now, let a ∈ A, ξ ∈H and y ∈ S. We have

qβA,α̂12 (a⊗ ξ ⊗ y)qβA,α = qβA,α̂12 ((a⊗ y)qβA,α)13(1A ⊗ ξ ⊗ 1S).

Therefore, by continuity of (δA, βA), qβA,α̂12 (a⊗ ξ ⊗ y)qβA,α is the norm limit of finite sums of the
form ∑

i

qβA,α̂12 (1E0 ⊗ yi)δA(ai)13(1A ⊗ ξ ⊗ 1S)

=
∑
i

(idA ⊗ ρ⊗ idS)(qβA,α̂12 (1A ⊗ x⊗ yi)qβA,α13 )δA(ai)13(1A ⊗ η ⊗ 1S),

where ai ∈ A, yi ∈ S and x ∈ Ŝ, η ∈H are such that ξ = ρ(x)η. Therefore, qβA,α̂12 (E0 ⊗ S)qβA,α
is equal to

[(idA ⊗ ρ⊗ idS)(qβA,α̂12 (1A ⊗ x⊗ y)qβA,α13 )δA(a)13(1A ⊗ η ⊗ 1S) ; x ∈ Ŝ, y ∈ S, η ∈H ].
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