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Abstract

This thesis focuses on sequential decision making in unknown environment, and

more particularly on the Multi-Armed Bandit (MAB) setting, defined by Lai and Rob-

bins in the 50s (Robbins, 1952; Lai and Robbins, 1985). During the last decade, many

theoretical and algorithmic studies have been aimed at the exploration vs exploitation

tradeoff at the core of MABs, where Exploitation is biased toward the best options

visited so far while Exploration is biased toward options rarely visited, to enforce the

discovery of the true best choices. MAB applications range from medicine (the elicita-

tion of the best prescriptions) to e-commerce (recommendations, advertisements)

and optimal policies (e.g., in the energy domain).

The contributions presented in this dissertation tackle the exploration vs exploitation

dilemma under two angles.

The first contribution is centered on risk avoidance. Exploration in unknown envi-

ronments often has adverse effects: for instance exploratory trajectories of a robot

can entail physical damages for the robot or its environment. We thus define the

exploration vs exploitation vs safety (EES) tradeoff, and propose three new algorithms

addressing the EES dilemma. Firstly and under strong assumptions, the MIN algo-

rithm provides a robust behavior with guarantees of logarithmic regret, matching

the state of the art with a high robustness w.r.t. hyper-parameter setting (as opposed

to, e.g. UCB (Auer et al., 2002)). Secondly, the MARAB algorithm aims at optimiz-

ing the cumulative "Conditional Value at Risk" (CVaR) rewards, originated from the

economics domain, with excellent empirical performances compared to (Sani et al.,

2012a), though without any theoretical guarantees. Finally, the MARABOUT algorithm

modifies the CVaR estimation and yields both theoretical guarantees and a good

empirical behavior.

The second contribution concerns the contextual bandit setting, where additional

informations are provided to support the decision making, such as the user details in

the content recommendation domain, or the patient history in the medical domain.

The study focuses on how to make a choice between two arms with different numbers

of samples. Traditionally, a confidence region is derived for each arm based on the

associated samples, and the ’Optimism in front of the unknown’ principle implements

the choice of the arm with maximal upper confidence bound. An alternative, pio-

1



List of Figures

neered by (Baransi et al., 2014), and called BESA, proceeds instead by subsampling

without replacement the larger sample set.

In this framework, we designed a contextual bandit algorithm based on sub-sampling

without replacement, relaxing the (unrealistic) assumption that all arm reward distri-

butions rely on the same parameter. The CL-BESA algorithm yields both theoretical

guarantees of logarithmic regret and good empirical behavior.

2
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Multi-armed bandits (MAB) (Robbins, 1952; Lai and Robbins, 1985) is a simple, generic

however rich framework constituting the theoretical and algorithmic background of

the work exposed in the present document.

1.1 Motivations

Originally, the term bandit (Thompson, 1933) refers to the casino slot machine as the

MAB problem can be interpreted as an optimal playing strategy problem: a player

enters a casino and is proposed a set of options or bandit arms with unknow associated

payoffs. Given a fixed number of trials or time horizon, his or her goal is to select arms

in order to collect the highest amount of money possible.

While present under a wide variety of different settings, each of them emphazing

specific learning aspects, the MAB framework is regarded as one of the most funda-

mental formalizations of the sequential decision making problem, and in particular

an illustration of the Exploration vs. Exploitation dilemma:
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• Exploration : The agent is assumed to have no prior information about the

machine payoffs. This assumption implies the need for the agent to play, i.e. to

explore, arms that were not or rarely tried.

• Exploitation : In order to gather the maximal amount of reward, the agent

should play as often as possible, or exploit, the arms with estimated best payoffs.

In this respect, the MAB framework fundamentally differs from the statistical evalu-

ation of the arm’s reward distribution. The goal is to discriminate the best options

along the play, evaluation and interaction being done simultaneously.

In particular, one focuses on the identification of the promising arms with the minimal

number of samples, rather than on a precise estimation of every arm distributions.

The latter approach indeed provides useless information (tight estimates of subopti-

mal arms) at the cost of a high number of trials of these arms and lower cumulative

rewards.

As said, the generic MAB framework allows many practical problems to be formalized

and addressed using solutions from the bandit literature. Formally, any situation

involving an agent repeatedly facing a choice between a given number of options with

a priori unknown returns can be seen as a MAB problem. As this chapter aims to

demonstrate, such situations occur frequently, explaining the rapidly growing body

of literature in the MAB field. The scientific interest is also motivated by an accurate

tradeoff between the expressivity and simplicity of the model allowing both a realistic

and practically useful formalization and an in-depth theoretical study.

This chapter will present a few examples of MAB applications, starting with some

definitions.

1.2 First problem statement

Standard notations are defined to introduce more formally some bandit applications.

The MAB setting considers a finite set of K actions or bandit arms. For i ∈ {1 . . .K }, the

i -th arm is associated with a reward distribution νi with expectation µi
def= E [νi ]. At

a given time step t , the agent choose, based on the previous observations, an arm

It ∈ {1 . . .K } and observes an instantaneous reward Yt ∼ νIt .

Letting T denote a finite time horizon (T ∈N?), the agent’s goal is to maximize the

cumulative sum of instantaneous rewards:

S =
T∑

t=1
Yt (1.1)
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1.3 Applications

This section presents some applications presented in the multi-armed bandit liter-

ature. This (far from exhaustive) list aims to illustrate the wide variety of successful

applications of the MAB framework and motivate its study in the present document.

These example applications will also serve to illustrate our contributions, as discussed

later on.

1.3.1 Clinical testing

Historically the introduction of the multi-armed bandit framework is due to Thomp-

son, firstly considering a two-armed bandit problem (Thompson, 1933), then an

arbitrary number of arms (Thompson, 1935). The studied problem considers a par-

ticular disease, with affected patients sequentially arriving. A (finite) set of drugs is

available but their efficiency is unknown.

For each patient arriving (at time t ), a drug is selected (It ) and a reward (Yt ) is gathered

depending on the efficiency of the treatment: Yt = 1 if the treatment was effective, and

0 otherwise. In this clinical context, the relevance of the MAB setting is clear: as health

and life are involved, it is vital to focus as quickly as possible on the best treatment

rather than precisely determining the efficiency of every drug.

1.3.2 Algorithm selection

MAB has been used for Algorithm Selection in (Gagliolo and Schmidhuber, 2010).

Let us consider a binary decision problem (e.g., SAT: for each problem instance, the

decision problem is to determine whether this instance is satisfiable). Given a set

B = {b1, . . . ,bM } of instances and a set A = {a1, . . . , aN } of algorithms/solvers1, the

goal is to iteratively pick an algorithm in order to minimize the time-to-solution.

By denoting l It the time spent (loss) by the algorithm aIt on the instance bt presented

at time t , a first formulation of this problem as a MAB problem is to consider the set of

algorithms as the set of arms and to define the instantaneous reward as Yt =−l It . This

approach aims at the "single-best" algorithm a? ∈A getting the best performance for

every instance bm .

A refined setting considers a different set of arms, defined as K time allocators T A j ,

mapping the history of collected performances of algorithms to a share s ∈ [0,1]N

with
N∑

i=1
si = 1. The purpose of these time allocators is to run every algorithm in A in

parallel on a single machine dividing the computational resource according to the

1The set A may include a same algorithm/solver with different hyper-parameter settings.
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share s. On a given amount of time τ, siτ is dedicated to algorithm i and the runtime

associated with the T A j is mini { ti
si

}, with ti runtime of algorithm i .

1.3.3 Motor-Task Selection for Brain Computer Interfaces

Brain-Computer Interfaces (BCI) are meant to provide a command law (e.g., of the

computer or a wheeling chair) based the direct measurement of the brain activity.

These measurements rely on electroencephalography (EEG) or magnetoencephalogra-

phy (MEG) technologies. One of the most promising applications of the BCI interfaces

is to provide severely handicapped patients with controllable tools (e.g. robotic arm

(Hochberg et al., 2012)).

Sensori-motor rhythms (SMR) are expressed and captured (via EEG) during the exe-

cution or imagination of a specific movement. SMRs thereby define a efficient way

of communicating through BCI. (Fruitet et al., 2012) considers the training of such a

SMR-based BCI to brain-control a single button when a given (imagined) movement

is detected.

The problem can be decomposed into two steps. First a motor task has to be selected.

Based on this task, a classifier is learned in order to discriminate periods of (imagi-

native) execution of the task and resting periods. One of the main challenges of this

setting is the high variability of best movements depending on the studied patient.

The purpose of the approach thus is to discriminate the best task while constituting

the classifier training sets.

The problem is defined by a number K of tasks and a total number of rounds T .

Note that these two quantities must be small in order to propose reasonable training

sessions: long (large N ) or complex (large K ) sessions are to be avoided. In a bandit

context, task are arms (in practice images to be displayed to ask the user to imagine a

given task) and T is the time horizon. Instantaneous rewards are Yt are defined by the

empirical classification rate associated to select task It ∈ {1, . . . ,K }.

The gain due to the MAB setting is explained by the early focus on useful discrimina-

tive tasks, through interaction with the user. Compared to the standard procedure

of uniform exploration, each task being presented an equal number of times, the

approach proposed by (Fruitet et al., 2012) and based on the MAB UCB algorithm (pre-

sented in chapter 4, (Auer et al., 2002)) showed benefits both in terms of classification

rates (up to 18%) and training times (lowered by up to 50%).
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1.3.4 Web applications

Document ranking

The MAB setting can be used to rank documents (Radlinski et al., 2008) and specifically

web pages. The goal is to improve a web search engine performance by increasing the

probability that users click on top-ranked results. This goal is formalized as follows. A

fixed search query and a set of documents D = {d1 . . .dn} is considered. At time t , an

user ut is proposed an ordered set of documents Bt = (b1(t ), . . . ,bk (t )) and clicks on

document di with probability pti
2.

The goal is to avoid as much as possible the abandonment phenomenon: no relevant

document is presented and the request is unsatisfied.The instantaneous reward Yt = 1

if the user selects (clicks on) a document di ∈ Bt and Yt = 0 otherwise.

A first naive adaptation to the bandit framework would be to associate an arm to every

possible ordered k−subset of D, leading to MAB instance with n!
(n−k)! number of arms.

The authors propose a more efficient method termed Ranked Bandits Algorithm
(RBA). The procedure relies on an preexisting MAB algorithm and runs k MAB in-

stances (one per rank), each of these instances presenting n arms (one per document).

The i -th MAB instance is in charge of choosing the document at rank i . In the case

where the i -th MAB instance proposes an already selected document j for j < i , the

choice is saved but another unpresented document is uniformly picked and presented.

After user clicks on document bi (t ), MAB instances receive a 1 (resp. 0) reward if bi (t )

was selected by the instance (resp. dismissed).

A key feature of this conception is its ability to produce diverse document rankings.

This property is desirable in such a context as methods assuming independent docu-

ment relevances tend to output rankings with redundant documents, lowering the

probability to present a relevant document to the user.

Content recommendation

MAB also is a natural framework for the recommendation and personalization of

content (articles, advertisements, songs, videos . . . ) over Internet, which has been

widely and intensively studed in the last decade (see for instance (Li et al., 2010;

Pandey and Olston, 2006; Babaioff et al., 2009; Agarwal et al., 2009; Kohli et al., 2013)),

boosted by the need of many companies to assess the quality of a web-service and/or

estimate the amount of advertising revenue.

The news article recommendation can be stated as follows. Visitors access a website

and are proposed a selection of articles. The goal is to select relevant articles in order

to maximize the probability to display at least an article of interest to the visitor. A

2Probability pti is conditioned by the user not clicking on documents ranked before document i .
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standard measure of performance in such problem is the Click-through rate (CTR)

defined as the ratio #cl i cks
#tr i al s .

A straightforward bandit adaptation would be to consider each possible pool of articles

as a bandit arm i and the reward Yt = 1 if an article is clicked at time t and 0 otherwise,

leading to a setting close to the clinical testing one; this formalization could also

be easily adapted to any other recommendation problem as it does not require any

specific assumption regarding the content.

Nevertheless, a key feature of this setting is the important quantity of available infor-

mation which can be used to efficiently improve the recommendations. Indeed, Web

services often benefit from a vast amount of data (regarding the user’s interests or

similar profiles) collected through over a long time and a large number of users.

This leads to the definition of the Contextual bandit framework, where side infor-

mation is revealed to support the MAB decision process (Li et al., 2010). Contextual

bandits will be further considered in Chapter 8, presenting the second contributions

of this thesis.

Another MAB extension motivated by this application is proposed by Gentile et al.

(2014), who maintain user clusters in parallel of the recommendations. The underlying

intuition is that similar users would have similar preferences, and information of

similarity should be shared among users to improve recommendation.

1.3.5 Monte-Carlo Tree Search

The MAB setting has been used to guide exploration in a tree structure, enabling to

extend their application to the selection of a (quasi-)optimal action in the broader

context of a Markov Decision Process (MDP).

MDP is the main formalization used in Reinforcement Learning (RL, (Sutton and

Barto, 1998; Szepesvári, 2010)), where an agent evolving in an unknown environment

learns how to perform well while interacting with it. MDP is formalized by a tuple(
S ,A ,P,R,γ

)
where:

1. S (resp. A ) is the state (resp. action) set.

2. P : S ×A ×S → [0,1] is the transition probability

3. R : S ×A ×S →R is the instantaneous reward function

4. γ ∈ [0,1] is the discount factor

The goal is to find a (deterministic) policy π : S → A , maximizing the cumulative

reward over T (possibly T =∞) V π defined by

V π(s)
def= E

[
T∑

t=0
γt R(st , at , at+1)|s0 = s, at =π(st )

]
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Note that a MAB defines an MDP problem with a single state (thus without any

dynamics), where the action set A is the (possibly large) set of arms.

The MAB setting was extended to the standard MDP setting, through a tree-structured

exploration of the state space (Kocsis and Szepesvári, 2006b; Gelly et al., 2006). The

approach makes the only assumption that a generative model of the MDP is available,

allowing the sampling of states, actions and rewards; the best known algorithm to

do so extends the Upper Confidence Bound (UCB, already mentioned (Auer et al.,

2002)) to tree-structured search, defining the Upper Confidence bound applied to Trees

(UCT) algorithm, where visited states are represented by tree nodes, and transitions

by edges. Each node is associated with the cumulative rewards obtained by visiting

the corresponding state.

Starting from the tree-root, UCT traverses the search tree in the following top-down

way:

1. Considering the current state (tree node) si , the associated available actions and

estimated rewards, the next action ai is selected thanks to a bandit algorithm

(UCB).

2. Next state si+1 is determined from (si , ai ) using the generative model.

3. If si+1 is a leaf, and the limit depth is not reached:

• a random action ai+1 is selected and the arrival si+2 state is provided by

the generative model. The edge (ai+1, si+2) is attached to si+1;

• a roll-out policy (e.g., uniformly random) selects next actions until a termi-

nation condition is met (usually, when reaching a fixed horizon T );

• The cumulative reward R associated with the whole state-action sequence

is computed;

• Information associated to visited nodes is updated thanks to R.

4. Otherwise, goto 1.

This procedure is repeated until reaching the prescribed number N (budget) of time

step; ultimately, it returns the action most visited at the top of the tree.

The MAB step achieves the iterative selection of actions (descendant nodes) at each

stage of the search tree, leading to a search tree biased toward the most promising

region of the search space. This feature offers a important double benefit, critical if

the MDP problem involves large state and/or action spaces: it implies an efficient

allocation of the computational resources and a reasonable memory usage.

(Kocsis and Szepesvári, 2006b) was the seminal work leading to the Monte-Carlo

Tree Search (MCTS) family of algorithms. These algorithms received a considerable
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scientific attention in the last decade due to their efficiency and genericity. Notable

successes have been obtained in Computer Games, famous examples are Computer

Go (Gelly et al., 2012) and Computer Hex (Hayward, 2009); in the latter game, artificial

players now defeat human experts. The approach has also been applied to active

learning (Rolet et al., 2009) or feature selection (Gaudel and Sebag, 2010) (among

many others).

The interested reader is referred to (Browne et al., 2012) for an extensive survey of

MCTS approaches and applications.

1.4 Risk consideration in Multi-Armed Bandits

As said, Multi-armed Bandits aim to discriminate and pull, as fast as possible, the arms

with highest quality. This raises the central question of the relevant quality criterion.

Most authors in the MAB community consider the maximization of the expected

payoff, where the goal is to identify and pull the arm with highest µi = E[νi ] value. In

some situations however, this criterion appears to be inappropriate. For instance in

the clinical testing problem, let us one consider the following situation:

• A treatment A providing good results on average with rare lethal side effects.

• A treatment B providing slightly lesser results on average without any known

side effect.

In such a situation, one would like to take into account another quality criterion,

enforcing a more cautious exploration, at the expense of a potentially lower cumulative

reward.

The general situation is even more critical as a large number of MAB algorithms are

optimistic: they maintain a confidence region for the arm expected rewards and

select the one with highest possible reward according to the information gathered so

far. In the case of high variance on the distribution of the best arms, this would lead to

a high number of pulls of arm with potentially low rewards.

In essence, in such a situation the usual tradeoff between exploration and exploitation

must be extended to consider also decision safety. The exploration vs exploitation vs

safety tradeoff will be further considered in Chapter 7, presenting the first contribu-

tions of this thesis.

12



Chapter 2

Overview of the contributions

The presented thesis proposes two main contributions to the Multi-Armed Bandits

state of the art, summarized in this chapter.

2.1 Risk-Aware Multi-armed Bandit

Considering K arms with unknown reward distributions νi , the mainstream MAB

research is interested in maximizing the expected cumulative payoffs obtained after

T trials. Equivalently, one is interested with minimizing the cumulative regret, sum

of losses encountered comparatively to an oracle player. This problem has been

extensively studied, both theoretically and empirically, leading to algorithms with

proved optimal regret bound.

The limitation of the approach, in safety-critical situations, is to only consider the

associated expected payoff µi of each arm. The associated theoretical guarantees

require a sufficiently precise estimation of the arms’ payoffs, implying exploration

efforts. In the case of high variances associated with the (best) arms, this leads to

occasionally obtain extremely low payoffs. In many critical situations, these low

payoffs must be avoided as they mean for instance the loss of expensive gears, the

deterioration of patient’s health or even the loss of human lives.

The work presented in this manuscript propose mainly three contributions to the

Risk-Aversion in the Multi-Armed Bandit setting, presented in Chapter 6:

• Two criteria have been proposed for taking risk into account: the minimal value

associated with each arm, and its Conditionnal Value at Risk (CVaR). The first

one is the lower bound of the distribution support, the second is defined as the

reward obtained in the α% worst cases, α being an user-defined parameter.

These criteria lead to designing three new algorithms: MIN, MARAB and MARABOUT.
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• The regret rates of MIN (Section 6.2) and MARABOUT (Section 6.6) have been

theoretically studied.

• An extensive empirical study based on artificial MAB instances has been pro-

posed, showing the benefits of MIN and MARAB (Section 6.5)

• A real-world benchmark of energy allocation has been considered, confirming

the gain obtained with risk aversion on moderate time horizons. (Section 6.5.4).

2.2 Sub-Sampling for Contextual Linear Bandits

The second contribution presented in the manuscript concerns the contextual linear

bandit setting.

Generalizing the stochastic MAB setting, Contextual Bandits consider K arms with

unknown reward distributions νi , where at each time t , a contextual information X t ∈
Rd is revealed to the learner and contributes to the computation of the instantaneous

reward. The Contextual Linear model further assumes a linear dependency between

X t and the instantaneous reward Yt . In the so-called disjoint model, one assumes

the existence of K vectors θi associated with each arm so that:

Yt = 〈X t ,θIt 〉+ηt

with It the chosen arm at time t and ηt an additive noise.

The contribution is to introduce the sub-sampling strategy first pioneered by (Baransi

et al., 2014) in this setting. Sub-sampling bases the choice between two arms on equal

quantities of information. Considering two arms denoted a and b with associated

sampling sets (rewards and contexts) of respective sizes na and nb , and assuming

without loss of generality that na É nb , na samples are uniformly drawn without re-

placement from the sampling set of arm b and the parameters θa and θb are estimated

based each on a set of same size na .

Although counterintuitive, this scheme has shown striking properties in the stochastic

case, motivating its extension. In this regard, the contributions are

• The redefinition of an algorithm, termed CL-BESA, for the contextual case (Sec-

tion 7.2).

• The non-trivial derivation of a regret bound for a refined notion of regret (Section

7.3).

• An experimental validation on synthetic problem, illustrating the good empirical

properties of the approach (Section 7.4).
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The manuscript is organized as follows. The formal background and algorithms

for the stochastic and contextual bandits are respectively presented in Chapters 3

and 4. Chapter 5 focuses on the notion of risk; it describes and discusses the state

of the art concerned with risk-averse bandit algorithms. Chapter 6 presents our

first contributions, and details algorithms based on the conditional value at risk,

together with their theoretical and empirical analysis. Chapter 7 presents our second

contributions, the extension of the sub-sampling technique to Contextual Linear

Bandits. Finally, Chapter 8 concludes this manuscript by discussing the presented

contributions, and describing future research directions.
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Chapter 3

Multi-armed bandits: Formal
background

Contents
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This chapter introduces the formal background of the presented work, that is, the

stochastic multi-armed bandit problem (MAB). After some definitions and notations,

the different goals tackled by MAB settings are presented together with the associated

evaluation criteria or loss functions known as regret. The chapter last presents the

contextual MAB framework, which will be further considered in the manuscript. While

there exists many other variants of the MAB setting, the chapter does not pretend to

exhaustivity due to the fast growing literature devoted to the MAB settings and their

extensions. The interested reader is referred to (Bubeck and Cesa-Bianchi, 2012) for a

more comprehensive presentation of the related literature.
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3.1 Position of the problem

Multi-armed Bandits (MAB), also referred to as K -armed bandit problem, consider

an agent facing K independent actions, or bandit arms. Each arm is associated with

an unknown, bounded, reward distribution. In each time step, the agent must select

one of these arms on the basis of her current information about the arms and the

associated distributions. Two main settings are studied:

• The best arm identification, where the agent is provided with a fixed budget

(number T of time steps) and must after T trials decide for the arm that will

be selected ever after. This setting is related to multipe hypothesis testing: the

agent must decide for the best arm on the basis of the available evidence, and

must select the evidence in order to do so with best confidence.

• The cumulative reward maximization, where in each time step the agent selects

an arm and gathers the associated reward, with the goal of maximizing the sum

of rewards gathered along time. In this second setting, the agent might know in

advance the time budget (number T of time steps, also called time horizon), or

might consider the anytime setting where the agent performance is assessed as

a function of T , going to infinity.

This setting models the situation of a gambler facing a row of slot machines

(also known as one-armed bandit), and deciding which arm he should pull in

each time step, in order to maximize his cumulative gains.

It is seen that both settings define a sequential decision problem1 with finite or infinite

time horizon, where the agent performance either is the sum of the rewards gathered

in each time step (cumulative reward maximization), or the reward gathered in the

final state (best arm identification). In particular, the Exploration vs Exploitation (EvE)

trade-off is at the core of both MAB and RL settings:

• Exploitation: In order to maximize its performance, the agent should focus on

the best options seen so far;

• Exploration: Still, focusing on the best options seen so far might miss some

better options, possibly discarded due to unlucky trials2.

1Accordingly, the MAB problem could be seen as a particular case of reinforcement learning (RL)
problem (Sutton and Barto, 1998). A first difference is that MABs involve a single state whereas the RL
decision takes into consideration the current state of the agent.

2A second difference between RL and MAB, and related to the fact that MABs involve a single state,
is that the MAB agent must simply explore the other options while the RL agent must plan to explore
(Roy and Wen, 2014). Typically, the RL agent must revisit known states as these can lead to other states,
which themselves need be explored. A comparative discussion between the specifics of the RL and
MAB settings is however outside the scope of this manuscript.
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As mentioned in Chapter 1, both MAB settings are relevant to a vast number of

applications, all related to optimal decision making under uncertainty and sequential

design of experiments (Robbins, 1952), where the agent must make decisions with the

antagonistic goals of optimizing its performance on the basis of the available evidence,

and gathering more evidence.

3.1.1 Notations

Let us introduce the notations which will be used in the rest of the document.

K denotes the number of arms or options (K ∈N?);

νi denotes the (unknown) bounded reward distribution associated with the i -arm

(for i = 1. . .K );

µi denotes the expectation of νi (µi
def= IE[νi ]);

µ? is the maximum expectation taken over all arms (µ?
def= max

i=1...K
µi );

i? is an index (possibly not unique) such that µi? =µ? (i? in 1. . .K );

∆i is the optimality gap of the i -th arm (∆i
def= µ?−µi );

T denotes the time horizon (T ∈N?), which might be finite or infinite;

t denotes the current time step;

It is the arm selected at time t ;

Yt is the reward obtained at time t ;

Xi ,t is the t-th selected reward drawn from distribution νi ;

Ni ,t is the number of times the i -th arm has been selected up to time t (Ni ,t =
t∑

s=1
1IIt=i ).

Without loss of generality, it is assumed that each reward distribution νi has its support

in [0,1]; it belongs to the set M ([0,1]) of probability measures on [0,1]. The main

three MAB settings involve:

• Stochastic MAB, where all distributions νi are stationary and the reward Yt

gathered at time step t upon selecting arm i = It is independently drawn from

distribution νi .
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• Adversarial MAB, where reward Yt is decided prior to the agent’s decision by the

adversary (Bubeck and Cesa-Bianchi, 2012). One distinguishes the case where

the adversary is independent from the agent’s past actions (oblivious adversary),

and the case where it depends on the past (non-oblivious adversary). The study

of the adversarial setting provides worst-case guarantees about the pessimistic

case where the environment plays against the agent (e.g. when considering

financial engineering problems3);

• Markovian MAB, where arm distributions νi evolve according to a on/off Markov

process. In Gittins et al. (2011), the distribution only evolves when the arm is

selected, and it is frozen otherwise; in restless bandits (Guha et al., 2010), the

state of the underlying Markov process controlling the evolution of the arm

distributions is only sparsely revealed to the agent. This setting, related to the

Partially Observable Markov Decision Process setting, is relevant for applications

in wireless scheduling and unmanned aerial vehicle (UAV) routing.

Only the stochastic and contextual MAB frameworks will be considered in the follow-

ing of the manuscript.

3.2 The stochastic MAB framework

The stochastic MAB framework considers stationary reward distributions. At each

time step t , the agent selects an arm It ∈ {1 . . .K }; the environment draws reward Yt

according to distribution νIt , independently from the past, and reveals it to the agent.

As said, the MAB setting tackles one out of two goals:

• Maximizing the cumulative gain gathered along time, defined as:∑
t

Yt

• Identify with a budget of T trials, the best arm. In the best arm identification

case, the agent selects arm IT based on the sample Y1 . . .YT−1 (with Yt ∼ νi , i =
It ), thus with the goal of maximizing µIt .

The agent strategy (selecting an arm in each time step on the basis of the available

evidence) is assessed in terms of regret compared to the optimal strategy. In the

cumulative gain maximization (respectively in the best arm identification) problem,

the optimal strategy, also called oracle strategy, selects in each time step (resp. at time

3Although empirical results suggest that the MAB strategies are too conservative, or equivalently,
that the environment might be only moderately adversarial in such contexts.
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3.2. The stochastic MAB framework

T ) the best arm i?. It is clear that maximizing the agent performance is equivalent to

minimizing its regret. One reason why the theoretical analysis considers the regret

minimization (as opposed to, e.g., the cumulative gain maximization) in the literature

is that the regret in some sense abstracts the difficulty of the problem per se and

focuses on the quality of the strategy. For more difficult problems, even the oracle

performance will be degraded; but the regret analysis only considers how much worse

the strategy does, comparatively to the oracle.

3.2.1 Regrets

Three definitions of regret are introduced in the cumulative gain maximization case,

respectively referred to as regret, pseudo-regret and empirical regret. In the last two

cases, the rewards associated to the oracle strategy are simply set to their expectation,

µ?.

Definition 3.2.1 (Cumulative regret). With same notations as above, the cumulative
regret of the agent at time t is defined as:

Rt
def= max

i∈{1...K }

t∑
s=1

Xi ,s −
t∑

s=1
Ys (3.1)

and the expected cumulative regret:

Eν1,...,νK [Rt ]
def= E

[
max

i∈{1...K }

t∑
s=1

Xi ,s −
t∑

s=1
Ys

]
(3.2)

Definition 3.2.2 (Cumulative pseudo-regret). With same notations as above, the

pseudo-cumulative regret of the agent at time t is defined as:

R t
def=

t∑
s=1

(
µ?−µIs

)= tµ?−
t∑

s=1
µIs =

K∑
i=1

∆i Ni ,t (3.3)

Definition 3.2.3 (Empirical cumulative regret). With same notations as above, the

empirical cumulative regret of the agent at time t is defined as:

R̂t
def=

t∑
s=1

(
µ?−Ys

)
(3.4)

Likewise, the regret defined for the best arm identification problem, called simple

regret, measures the difference between the expectation of the true best arm, and the

recommended arm:

Definition 3.2.4 (Simple regret). Letting Jt denote the recommended arm after t trials,
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the simple regret rt is defined as:

rt
def= µ?−µJt =∆Jt (3.5)

The significant difference between both goals, the cumulative gain maximization

and the best arm identification, concerns the related EvE tradeoffs, and the price of

exploration as manifested in the different regrets (see Stoltz et al. (2011)):

• When considering the maximization of the cumulative gain, the exploration

and the exploitation both take place during the T fixed trials; the role of explo-

ration is to discriminate the non-optimal arms. The optimal regret rate, that

is logarithmic in the budget T after Lai and Robbins (1985), requires that non

optimal arms are played at most a logarithmic number of times.

• On the other hand, the best arm identification involves two separated explo-

ration and exploitation phases. The simple regret (eq. 3.5) minimization in-

volves the pure exploitation of a single arm after a pure T -step exploration

phase, and no loss is encountered during the exploration phase. It is said that

the pure exploration phase is followed by a single exploitation phase, also called

recommendation. (Stoltz et al., 2011) show that optimal rates are here conversely

obtained for a linear number of suboptimal arm trials.

The regret is studied in the literature considering two main settings: the distribution-

free (where no assumption is done about e.g. the moments of the underlying distri-

butions) and the distribution-dependent settings. Typically, in the distribution-free

setting, the loss incurred by selecting n times the i -th arm cannot be higher than n∆i ,

whereas the (distribution-dependent) bounds on the regret depend on 1/∆i (since,

the lower ∆i the more easily one can mistake the i -th arm for the optimal arm).

3.2.2 Lower bounds

This section presents the main results on lower bound for the distribution-free and

the distribution-dependent cases.

Theorem 1 (Auer et al. (1995)). Let sup be the supremum over all stochastic bandit

bounded in [0,1] and inf the infimum over all forecasters, the following holds true:

infsup E[Rt ] Ê 1

20

p
tK (3.6)

Definition 3.2.5 (Kullback and Leibler (1951)). Let P ([0,1]) be the set of probability

distribution over [0,1]. The Kullback-Leibler divergence between two distributions P
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3.3. The contextual bandit case

and Q in P ([0,1]) is defined as:

K L(P,Q) =


∫
[0,1]

dP
dQ log dP

dQ dQ if P ¿Q

+∞ otherwise
(3.7)

A first version of the following theorem has been proposed by (Lai and Robbins, 1985)

and then extended by (Burnetas and Katehakis, 1996).

Theorem 2 (Burnetas and Katehakis (1996)). Let P ⊂M ([0,1) and a forecaster con-

sistent with P ,i.e. for any stochastic bandit, for any suboptimal arm i and any β> 0,

E[Ni ,t ] = o(T β). For any stochastic bandit with distribution in P , the following holds

true:

liminf
T→∞

E[Rt ]

log t
Ê ∑

i :∆i>0

∆i

Kinf(νi ,µ?)
(3.8)

with Kinf(νi ,µ?) = inf
{
K L(νa ,ν) : ν ∈P and E[ν] >µ?}

3.3 The contextual bandit case

3.3.1 Position of the problem

The contextual bandit differs from the canonical MAB setting as it is assumed that at

each time step a context is revealed to the agent. The agent strategy thus becomes

to associate with each context an arm, in order to minimize the so-called contextual

regret (below). The context, or side information, most naturally arises in some stan-

dard applications of MABs. For instance in the ads placement problem, the customer

comes with some characteristic features (e.g., gender, age, location). One could see

the contextual bandit as closer to the reinforcement learning setting, than the canoni-

cal MAB, by considering that the context corresponds to some extent to the state of

the agent. However the notion of dynamics in the state space, in relation with the

action selection of the agent, is not present in the contextual bandit setting; still, the

contextual bandit is a setting where the exploration / exploitation dilemma of the

agent must take into account the current context.

In practice, contextual bandits are most often handled as a classification problem,

associating with each context the arm yielding best reward for this context. Based on

the information gathered during an exploration phase, one constructs a set of triplets

(xt , It ,Yt ) which is used to learn how reward Yt depends on the context xt for the It -th

arm; this prediction is thereafter used to seek the arm yielding the maximum reward

for a given context.

With same MAB notations as in Section 3.1, let us introduce the notations related to

Contextual Bandits. The contextual bandit adds side information in the form of a
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context vector from a given set X ⊂Rd . At each time step t ∈N, a context X t ∈X is

drawn and revealed (e.g., in the case of a recommender system, X t may be a vector

summarizing the known information about the incoming user). Based on the infor-

mation provided by X t , the learner chooses an arm It and observes an instantaneous

reward Yt (e.g., in the recommender system case, the arm set represents the different

available contents, and Yt indicates whether the user clicks on the displayed contents).

3.3.2 Linear contextual bandit

In the linear contextual bandit case, one assumes that the i -th arm is associated with

a (hidden) weight vector θi , such that the instantaneous reward associated to the i -th

arm is the scalar product of the context and the weight vector, augmented with some

centered scalar noise ηt :

Yt = 〈X t ,θIt 〉+ηt (3.9)

with {θ1 . . .θK } a set of unknown vector parameters inΘ⊂Rd .

The following additional assumptions are made:

• Firstly, it is assumed that contexts X t are independently drawn by Nature.

• Secondly, it is assumed that the parameters θi associated with each arm (to be

estimated) are independent from each other. This scheme is called disjoint
linear model (see (Li et al., 2010)); it differs from the OFUL (Abbasi-Yadkori et al.,

2011) and Thompson sampling (Agrawal and Goyal, 2012a) setting, where a

common parameter is shared among the arms.

An algorithm based on sub-sampling for Linear Contextual bandit in the disjoint

linear model will be proposed in Chapter 7.
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Chapter 4. Multi-Armed Bandit Algorithms

4.1 Introduction

The many algorithms designed in the past decade to tackle the multi-armed bandit

problem, specifically addressing the stochastic and the contextual MAB settings, can

be divided into four categories:

1. Greedy algorithms are mostly based on the exploitation of the best arm evalu-

ated so far, with little to no exploration.

2. Optimistic algorithms: these algorithms rely on the optimism in face of uncer-

tainty principle. They use the reward samples to maintain a confidence region

for every arm reward expectation, where the mean lies with a high probability.

The optimistic strategy consists of selecting the arm with highest possible mean

reward based on the current knowledge.

3. Bayesian algorithms: These algorithms, mainly variants of Thompson sampling,

maintain an estimated payoff distribution for each arm. Given a prior distri-

bution on each arm, and the reward samples gathered every time the arm is

selected, the posterior arm distribution is computed using Bayesian inference

and the arm with maximal estimated expectation is selected.

4. Sub-Sampling based algorithm: Recently introduced in (Baransi et al., 2014),

this algorithm selects the arm with best average reward, where the average

estimate is based on an equal quantity of samples for each arm.

4.2 Greedy algorithms

This section is devoted to the presentation of some greedy MAB algorithms. After

introducing a pure greedy method, some methods achieving an exploitation / explo-

ration trade-off are presented and discussed. As will be seen in Chapters 5 and 6, the

simplicity of the greedy algorithms does not prevent them from being competitive in

some settings.

4.2.1 Pure Greedy

The simplest strategy for the MAB problem consists of trying once each arm and

greedily selecting the arm with best average reward ever after (Algorithm 1).

The greedy, exploitation-only, approach is likely to miss the best arm. Consider for

instance the 2-arm problem with Bernoulli distributions ν1 =B(0.2) and ν2 =B(0.8).

It is clear than i? = 2. However, if unfortunately the first trials yield Y1 = 1 and Y2 = 0,

the pure greedy algorithm is bound to select the 1st arm ever after, yielding a linear
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4.2. Greedy algorithms

Algorithm 1 Pure Greedy for K arms
Require: Time horizon T

1: for t = 1. . .K do
2: Select It = t and receive reward Yt

3: µ̂t = Yt

4: end for
5: for t = K +1. . .T do
6: Select

It ∈ argmax
i∈{1,...,K }

{
µ̂i

}
(4.1)

7: end for

(and maximal) pseudo-regret: Rt = (T −1)∆. This simple example shows the failure

of the pure greedy approach, and the fact that exploration is definitely required to

achieve logarithmic (pseudo-)regret rates guarantees.

4.2.2 ε- greedy algorithm

A simple way to achieve exploration is by mixing the above pure greedy strategy with

a uniformly random exploration strategy, where the exploration strategy is launched

with probability ε ∈ (0,1). This mixed strategy is referred to as ε-greedy algorithm

(Sutton and Barto, 1998; Watkins, 1989) (Algorithm 2).

Algorithm 2 ε-greedy for K arms
Require: Time horizon T , Parameter ε ∈ (0,1)

1: for t = 1. . .K do
2: Select It = t and receive reward Yt

3: µ̂t = Yt

4: end for
5: for t = K +1. . .T do
6: Select

It =
argmax

i∈{1...K }
{µ̂i } with probability 1−ε.

U ({1, . . . ,K }) with probability ε.
(4.2)

7: end for

While the exploration makes it more unlikely to miss the best arm, the ε-greedy

algorithm clearly yields a linear regret with constant ε.
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4.2.3 εt-greedy

As shown by Auer et al. (2002), the ε-greedy approach can be improved by allowing

the ε parameter to decrease with t , defining the εt -greedy algorithm (Algorithm 3),

and yielding a sublinear regret rate.

Algorithm 3 εt -greedy for K arms
Require: Time horizon T , Non-increasing parameter εt ∈ (0,1)

1: for t = 1. . .K do
2: Select It = t and receive reward Yt

3: µ̂t = Yt

4: end for
5: for t = K +1. . .T do
6: Select

It =
argmax

i∈{1...K }
{µ̂i } with probability 1−εt .

U ({1, . . . ,K }) with probability εt .
(4.3)

7: end for

Proposition 4.2.1 (Cesa-Bianchi and Fischer (1998); Auer et al. (2002)). Let c > 0 and

0 < d < 1 be two parameters.

By setting εt = min
{

1, cK
d 2t

}
, the pseudo-regret of εt -greedy is upper-bounded, for any

t > cK
d , as follows:

E[Rt ] É ∑
i :∆i>0

∆i

{
c

d 2t
+2

(
c

d 2
log

(
(t −1)d 2e1/2

cK

))(
cK

(t −1)d 2e1/2

) c
5d2

+ 4e

d

(
cK

(t −1)d 2e1/2

) c
2

}
(4.4)

Remark 4.2.1. The empirical study proposed by Vermorel and Mohri (2005) did not

show any practical gain of the εt -greedy over the ε-greedy algorithm, despite the better

guarantees on the regret of the former algorithm.

4.2.4 ε-first strategy

The ε-first strategy is another simple greedy algorithm (Algorithm 4).

This algorithm is a basis for the study of the Multi-Armed Bandit in the probably

approximately correct (PAC) framework (Even-dar et al., 2002; Mannor and Tsitsiklis,

2004).

Let an ε-optimal arm be defined as an arm with gap less than ε (a is ε-optimal iff

µ? Ê µa − ε). Then, with probability δ ∈ (0,1), it requires O( K
ε2 log 1

δ ) to discover an

ε-optimal arm.
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Algorithm 4 ε-first strategy for K arms
Require: Time horizon T , Parameter ε

1: for t = 1. . .dεT e do
2: Select (exploration phase)

It =U ([1, . . . ,K ]) (4.5)

3: end for
4: for t = dεT e+1. . .T do
5: Select (exploitation phase)

It ∈ argmax
i∈{1,...,K }

{
µ̂i

}
(4.6)

6: end for

Note that the idea of decoupling the bandit algorithm into two successive exploration

and exploitation phases will be used in the ExpExp algorithm (section 5.2.1).

4.3 Optimistic algorithms

This section is devoted to the presentation of optimistic algorithms, which proceed by

maintaining a confidence region for each arm expected payoff. Key ingredients in the

construction of these algorithms are the concentration inequalities, upper bounding

the error of estimation, that is the difference between the estimator and the quantity

of interest (here the reward expectation).

Let us first recall the Hoeffding inequality (Hoeffding, 1963), which plays a key role in

the optimistic algorithm design.

Theorem 3 (Hoeffding (1963)). Let ν be a probability distribution with E [ν] =µ and

x1, . . . , xn an i.i.d. sample of ν.

Let us further suppose that distribution ν is bounded, i.e. there exists (ai ,bi )n
i=1 such

that P (ai É xi É bi ) = 1.

Then, by denoting x̂n = 1
n

n∑
i=1

xi the empirical mean and for ε> 0, it comes:

P
(
x̂n −µÊ ε)Éexp

(
− 2ε2n2∑n

i=1 (bi −ai )

)
(4.7)

P
(
x̂n −µÉ−ε)Éexp

(
− 2ε2n2∑n

i=1 (bi −ai )

)
(4.8)

And, by combining Equation 4.7 and 4.8, it comes:

P
(|x̂n −µ| Ê ε)É 2exp

(
− 2ε2n2∑n

i=1 (bi −ai )

)
(4.9)
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4.3.1 Upper Confidence Bound and variants

Upper Confidence Bound

Introduced by Auer et al. (2002), the Upper Confidence Bound algorithm essentially

relies on the Hoeffding bound in Theorem 3 to derive an upper bound on the regret

(Algorithm 5). It derives for each arm a confidence interval on the associated expected

reward, and selects the arm with the highest confidence bound 1.

Algorithm 5 UCB for K arms (Auer et al., 2002)
Require: Time horizon T , parameter C > 1

1: for t = 1. . .T do
2: Select

It ∈ argmax
i∈{1,...,K }

{
µ̂i +

√
C log t

Ni ,t

}
(4.10)

3: end for

Theorem 4 (Auer et al. (2002)). For C = 2, the pseudo-regret of UCB is upper-bounded

by:

E
[

Rt

]
É ∑

i :µi<µ?

{
8log t

∆i
+1+ π2

3

}
(4.11)

Sketch of proof. Let us present the main ideas from the proof, as they will serve in

Chapter 6.

As the equality E
[
Rt

]
=

K∑
i=1

∆iE
[
Ni ,t

]
suggests, upper-bounding the expected number

E
[
Ni ,t

]
of sub-optimal arm pulls permits a direct pseudo-regret bounding.

Let us denote ct ,s
def=

√
2log t

s the exploratory term. Then, when a sub-optimal arm i is

selected at time t , one of the following conditions is verified:

áXi?,Ni?,t
Éµ?− ct ,Ni?,t

(4.12)�Xi ,Ni ,t Êµi + ct ,Ni ,t (4.13)

µ? <µi +2ct ,Ni ,t (4.14)

Informally, the selection of an under-optimal arm is explained as: i) the best arm

payoff is largely understimated (Equation 4.12); or ii) the suboptimal arm i is largely

overestimated (Equation 4.13); or iii) the gap ∆i is too small for the i -th arm to be

distinguishable from the best arm with only Ni ,t samples (Equation 4.14)

1In the original definition (Auer et al., 2002), the constant C = 2.

32



4.3. Optimistic algorithms

To conclude the proof, it suffices to assume that Ni ,t is large enough so that Equation

4.14 does not hold. In such condition, Equation 4.12 or 4.13 necessarily hold, and the

probability of the associated events are precisely controlled by the Hoeffding bound.

Variance estimates for Multi-Armed Bandit

Introduced by (Auer et al., 2002), the idea of exploiting the empirical variance of the

arm has been firstly used in the UCB-Tuned algorithm. Informally, everything else be-

ing equal, an arm with large variance should be explored more often than an arm with

small variance. In the general case, UCB-Tuned has been shown to empirically outper-

form UCB, encouraging the formal study of the variance estimation in UCB-like bandits

in (Audibert et al., 2009). The resulting algorithm, termed Upper confidence bound

with Variance (UCB-V), is described in Algorithm 6 with Vi = 1
Ni ,t

∑t
s=1

(
Xi ,s − µ̂i

)2 the

empirical variance of arm i .

Algorithm 6 UCB-V for K arms (Audibert et al., 2009)
Require: Time horizon T , exploration parameter C > 0

1: for t = 1. . .K do
2: Select It = t
3: end for
4: for t = K +1. . .T do
5: Select (arbitrary tie break)

It ∈ argmax
i∈{1,...,K }

{
µ̂i +

√
2CVi log(t )

Ni ,t
+3C

log(t )

Ni ,t

}
(4.15)

6: end for

Theorem 5 ((Audibert et al., 2009, 2010)). For α > 1 the expected regret of UCB-V is

upper bounded as follows:

E [Rt ] É 8α
∑

i :∆i>0

(
σ2

i

∆i
+2

)
log(t )+∆i

(
2+ 12

log(α+1)

(
α+1

α−1

)2)
(4.16)

Remark 4.3.1. The bound shows that the regret might be lower than the one of UCB,

especially in the case where the suboptimal arm has a small variance σ2.

Optimistic algorithm in the distribution-free case

As stated in the previous chapter, two types of bound are considered for the regret:

distribution-free or distribution-dependent. Most algorithms are concerned by the
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distribution-dependent setting, with regret bound depending of distribution parame-

ters such as ∆i .

In the distribution-free setting, Audibert and Bubeck (2010) derive an algorithm

termed (Minimax Optimal Strategy in the Stochastic case (MOSS) matching the lower-

bound from (Auer et al., 1995). The algorithm involves a modified penalization associ-

ated to each arm (Algorithm 7).

Algorithm 7 MOSS for K arms (Audibert and Bubeck, 2010)
Require: Time horizon T

1: for t = 1. . .K do
2: Select It = t
3: end for
4: for t = K +1. . .T do
5: Select

It ∈ argmax
i∈{1,...,K }

µ̂i +

√√√√max
(
log

(
n

K Ni ,t

)
,0

)
Ni ,t

 (4.17)

6: end for

Theorem 6 (Audibert and Bubeck (2010)). MOSS satisfies:

supE[Rt ] É 49
p

tK (4.18)

with the supremum taken over all K arm distributions in [0,1].

The following problem-dependent bound also holds:

E[Rt ] É 23K
∑

i :∆i>0

max

(
log

(
n∆2

i
K

)
,1

)
∆i

(4.19)

4.3.2 Kullback-Leibler based algorithms

Inspired by the seminal papers of (Lai and Robbins, 1985; Burnetas and Katehakis,

1996), new algorithms have been proposed based on the estimation of the whole

reward distribution, as opposed to estimating only its first (UCB) or first and second

(UCB-V) moments.

As stated by Maillard et al. (2011), the goal is to reach optimality guarantees in the

sense of (Burnetas and Katehakis, 1996), i.e., deriving algorithms such that:

E
[
Ni ,t

]É (
1

Ki n f (νi ,µ?)
+o(1)

)
logT (4.20)
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While UCB achieves the logarithmic regret rate, its constant depends on the quantity

∆2
i ; the above constant, in 1/Ki n f thus is improved as Ki n f might be greater than ∆2

i
due to Pinkser’s inequality (Maillard et al., 2011).

Deterministic Minimum Empirical Divergence

The Minimum Empirical Divergence (MED) and Deterministic Minimum Empirical

Divergence (DMED) algorithms are proposed by (Honda and Takemura, 2010, 2011).

Given a distribution ν and µ ∈R its expectation, let Dmi n be defined as:

Dmi n(ν,µ)
def= inf

{
K L(ν,ν′) : ν′ ∈A ,E [ν′] Êµ}

(4.21)

with A the set of distribution ν with Supp(ν) ⊂ [0,1].

Let ν̂i , t = 1
Ni ,t

Ni ,t∑
s=1

δXi ,s denote the empirical distribution of νi at time t , and �µ?(t ) =
maxi

{�µi (t )
}
. The authors are interested in the set of quasi-optimal arms, i.e. such

that:

Ni ,t Dmi n(ν̂i ,t ,�µ?(t ))) É logn − log Ni ,t (4.22)

The algorithm divides the time horizon in a sequence of loops. In each loop, arms

satisfying Equation 4.22 are played. This leads to an asymptotically optimal algorithm,

satisfying:

limsup
t→∞

E[Ni ,t ]

log t
É 1

Ki n f (νi ,µ?)

The algorithm requires to compute the quantity Dmi n (Equation 4.21) for each arm.

This computation can be done explicitly via a dual formulation. The interested reader

is referred to (Honda and Takemura, 2010) for further details.

Kullback-Leibler upper confidence bound

Kullback-Leibler upper confidence bound (KL-UCB) refers to a family of index-based

optimistic algorithms relying on the Kullback-Leibler divergence and inspired by Lai

and Robbins (1985). The idea and analysis simultaneously appeared in (Garivier, 2011)

and (Maillard et al., 2011) and are presented in an extended and unified way in (Cappé

et al., 2013). As for DMED, the aim is to provide optimal solutions, matching the lower

regret bound from (Burnetas and Katehakis, 1996). However, and in opposition to

DMED, these algorithms benefit from a finite-time analysis showing their optimality

even in the non-asymptotic case.

Following Cappé et al. (2013), two classes of algorithms can be considered:

1. kl-UCB in the case of one-parameter exponential reward distributions.

35



Chapter 4. Multi-Armed Bandit Algorithms

2. Empirical KL-UCB in the case of bounded distributions with finite support.

kl-UCB and Empirical KL-UCB are respectively described in Algorithms 8 and 9. By

considering I the open interval of all possible values of µ, kl-UCB selects the arm

maximizing the upper-bound Ui defined by Equation 4.23. In the case of Empirical
KL-UCB, the expectation is maximized on the space M1

(
Supp

(�νi (t )
)∪ {1}

)
defined as

the set of distributions with support Supp
(�νi (t )

)∪ {1} (Equation 4.24).

As shown by Cappé et al. (2013), both algorithms can be written in a generic form. The

Kullback-Leibler divergence of Eq. 4.24 is simplified in the exponential case, as these

distributions are characterized by their expected value and can be explicitly given by a

closed-form function d , depending on the considered family of reward distributions.

For instance, for Bernoulli arms, I = (01) and dBer (µ,µ′) =µ log µ
µ′ +

(
1−µ)

log 1−µ
1−µ′ .

For the considered cases, a finite-time analysis of E
[
Ni ,t

]
shows the optimality of the

approaches. In the more general bounded cases, Empirical KL-UCB is experimen-

tally validated on synthetic problems but deriving theoretical guarantees remains an

open problem.

Algorithm 8 kl-UCB for K arms (Cappé et al., 2013)
Require: Time horizon T , non-decreasing function f :N→R

1: for t = 1. . .K do
2: Select It = t
3: end for
4: for t = K +1. . .T do
5: Select

It ∈ argmax
i∈{1,...,K }

{Ui (t )}

with

Ui (t )
def= sup

{
µ ∈ I : d(µ̂i (t ),µ) É f (t )

Ni ,t

}
(4.23)

6: end for

4.4 Bayesian algorithms

Bayesian algorithms include the Thompson sampling algorithms, introduced by

Thompson (1933, 1935) simultaneously to the Multi-Armed Bandit problem. They

have since been extensively studied (see (Chapelle and Li, 2011; Agrawal and Goyal,

2012b; Kaufmann et al., 2012)).

4.4.1 Algorithm description

The algorithms are described in (Agrawal and Goyal, 2012b) (Algorithms 10 and 11).
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4.4. Bayesian algorithms

Algorithm 9 Empirical KL-UCB for K arms (Cappé et al., 2013)
Require: Time horizon T , non-decreasing function f :N→R

1: for t = 1. . .K do
2: Select It = t
3: end for
4: for t = K +1. . .T do
5: Select

It ∈ argmax
i∈{1,...,K }

{Ui (t )}

with

Ui (t )
def= sup

{
E(ν) : ν ∈M1

(
Supp

(�νi (t )
)∪ {1}

)
and K L(�νi (t ),ν) É f (t )

Ni ,t

}
(4.24)

6: end for

Algorithm 10 Thompson sampling for K Bernoulli arms (Agrawal and Goyal, 2012b)
Require: Time horizon T

1: for i = 1. . .K do
2: Si (1) = Fi (1) = 0
3: end for
4: for t = 1. . .T do
5: For each arm i , sample θi (t ) ∼β(Si (t )+1,Fi (t )+1)
6: Play

It ∈ argmax
i∈{1...K }

{θi (t )} (4.25)

7: Observe Yt , if Yt = 1, S It = S It +1, otherwise FIt = FIt +1
8: end for

Algorithm 11 Thompson sampling for K arms (Agrawal and Goyal, 2012b)
Require: Time horizon T

1: for i = 1. . .K do
2: Si (1) = Fi (1) = 0
3: end for
4: for t = 1. . .T do
5: For each arm i , sample θi (t ) ∼β(Si (t )+1,Fi (t )+1)
6: Play

It ∈ argmax
i∈{1...K }

{θi (t )} (4.26)

7: Observe Yt and sample X ∼ Ber (ŶIt ); if X = 1, S It = S It +1, otherwise FIt = FIt +1
8: end for
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Chapter 4. Multi-Armed Bandit Algorithms

Thompson sampling algorithms rely on a randomized strategy sampling. At each

time step t , after having observed Si (t ) successes and Fi (t ) failures, the distribution at-

tached to the i -th arm is estimated by a posterior Beta distribution (Line 5 in Algorithm

10 and 11).

The selected arm is (in expectation) the one with maximal expected reward respec-

tively to these distribution estimates (Line 6 in Algorithm 10 and Algorithm 11). The

posterior distributions are then updated, depending on the algorithm.

Algorithm 11 extends Algorithm 10 to the general case of any distribution, by sampling

an external binary random variable X in such a way that its expectation is the same as

the empirical average of the selected distribution; it thereafter updates Si and Fi as

done in Algorithm 10 for Bernoulli variables.

4.4.2 Discussion

The use of Bernoulli prior distribution is convenient as it is a conjugate distribution of

the Beta distribution. This allows easy computations of the posteriors distribution

after the observation of a Bernoulli realization. Also, β(1,1) is the uniform distribution;

initializing the estimated distributions to a uniform distribution seems reasonable.

Note that Thompson sampling defines a family of algorithms as the choice of the

priors is left to the user/designer (it is not necessarily uniform).

4.4.3 Historical study of Thompson sampling

Thompson sampling is the first algorithm proposed for the multi-armed bandit prob-

lem, as Thompson (1933) defined both the problem and the algorithm. However, the

interest around Thompson sampling has been revived only recently. First, Chapelle

and Li (2011) provided an extended empirical evaluation of the algorithm, emphaz-

ing its advantages. This paper concludes with the need of a theoretical study of the

algorithm to improve its popularity and usability.

An important first theoretical result is due to Agrawal and Goyal (2012b), who estab-

lished a logarithmic expected regret for the stochastic multi-armed bandit. More

recently, (Kaufmann et al., 2012) improved this result and showed than an optimal

finite time analysis can be achieved, matching the Lai and Robbins lower bound:

Theorem 7 (Kaufmann et al. (2012)). For every ε> 0,∃C =C (ε,µ1, . . . ,µK ), such that

the pseudo-regret of Thompson Sampling is upper-bounded as:

E[Rt ] É (1+ε)
∑

i∈{1,...,K }:µi<µ?
∆i

(
log(i )+ log

(
log(t )

))
K

(
µi ,µ?

) +C (4.27)
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4.5. The subsampling strategy

with K (p, q)
def= p log p

q + (1−p) log 1−p
1−q the Kullback-Leibler Divergence between B(p)

and B(q).

4.5 The subsampling strategy

4.5.1 Introduction

Recently, (Baransi et al., 2014) introduced an algorithm with a different approach,

based on a sub-sampling technique. Intuitively, comparisons between two arms

should be based on an equal quantity of information. To do so, the algorithm sub-

samples from the most played arm a number of samples equal to the number of

samples of the least-sampled arm (without replacement). The arm with maximal

empirical mean (taken over the sub-sample) is selected.

4.5.2 Definition

Two arm case

The standard notations are as follows:

• W r (n,m) is the subsampling distribution without replacement, with the con-

vention W r (n,m) = {1, . . . ,n} if m Ê n.

• For X1:n
def= (X1, . . . , Xn) an i.i.d sample of a random distribution, and I = {i1, . . . , im} ⊂

{1, . . . ,n}, X1:n(I ) = {Xi1 , . . . , Xim }.

• For a and b two arms, X a
1:Na (t ) and X b

1:Nb (t ) respectively denote the sample for

arm a and b up to time t .

With these notations, the Best Empirical Sampled Average (BESA) algorithm is de-

scribed in the two-arm case as follows (Alg. 12).

Algorithm 12 BESA (a,b) for two arms
Require: Current time t , Two arms a and b, Time horizon T

1: Sample I a
t ∼W r (Na(t ), Nb(t )) and I a

t ∼W r (Nb(t ), Na(t ))
2: Compute µ̂t ,a = µ̂(

X1:Nt (a)a
(
I a

t

))
and µ̂t ,b = µ̂(

X1:Nt (b)b

(
I b

t

))
3: Select (break ties by selecting the less played arm)

It = argmax
i∈{a,b}

{
µ̂t ,i

}
(4.28)
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K-arm case

The extension to any finite number K of arms is achieved using a tournament between

arms (Alg. 13). To avoid a bias due to a fixed comparison order among the arms, the

arm set A is shuffled in each time step.

Algorithm 13 BESA (A )
Require: Current time t , Arm set A of size K

1: if A = {a} then
2: It = a
3: else
4: It = BESA

(
BESA

({
1, . . . ,dK

2 e
})

,BESA
({bK

2 c, . . . ,K
}))

5: end if

4.5.3 Regret bound

Definition 4.5.1. For integers M, n and for λ ∈ [0,1], the balance function of the

distributions (νa , ν?) is defined as:

αλ(M ,n) = EZ∼ν?,n

[(
1−Fνa,n (Z )+λνa,n(Z )

)M
]

with νa,n is the distribution of
n∑

i=1
X a

i with X a
i ∼ νa and Fν the cumulative distribution

function of ν (i.e. Fν(x) =P(X É x) with X ∼ ν).

Theorem 8 (Baransi et al. (2014)). Let A = {?, a} be a two arm set with bounded

rewards in [0,1] and ∆=µ?−µa be the mean gap. If there exist two constants α ∈ (0,1)

and c > 0, such that α1/2(M ,1) < cαM , then the regret of BESA at time t is upper-

bounded as:

E[Rt ] É 11log t

∆
+Cνa ,ν? +O(1) (4.29)

Remark 4.5.1. This bound establishes the relevance of the sub-sampling idea for the

multi-armed bandit setting, although one might have thought intuitively that sub-

sampling entails a loss of information.

Remark 4.5.2. Together with this theoretical result, empirical results confirm the BESA
efficiency, besides other desirable properties such as implementation simplicity and

flexibility. The latter property is particularly appreciated as one can apply the same

algorithm for different distribution families while preserving the strong results, as

opposed to the fact that KL-UCB or Thompson sampling for instance require one to

know the family of reward distributions.
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4.6 Contextual MAB Algorithms

This section describes some contextual MAB algorithms.

4.6.1 OFUL

The Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm is due to

Abbasi-Yadkori et al. (2011). OFUL does not consider any contextual information

X t , nor does it looks for an unknown parameter per arm. Instead, it assumes that a

(possibly continuous) arm set At is provided at each time step and supposed perfectly

known.

The goal is to learn a shared unknown parameter β? such that

Yt = 〈β?,θIt 〉+ηt

with ηt a sub-Gaussian additive noise (Equation (7.2)).

Its pseudo-code for the K-armed bandit is presented in Algorithm 14. For clarity, the

original notations have been changed to correspond to the one provided in Chapter 3.

Algorithm 14 OFUL for K arms (Abbasi-Yadkori et al., 2011)
Require: Current time t , current confidence ellipsoid Ct−1, parameters ROFU L , SOFU L ,

λ, and confidence δ.
1: Compute

(It , β̃t ) = argmax
(i ,β)∈{1,...,K }×Ct−1

〈θi ,β〉 (4.30)

2: Play arm It and observe reward Yt

3: Update the confidence ellipsoid Ct thanks to Equation (4.31)

The confidence ellipsoid Ct is maintained, such that β? provably belongs to Ct with

probability at least 1−δ:

Ct
def=

β ∈Rd : ‖β− β̂t‖Vt
É ROFU L

√√√√2log

(
detVt

1/2
detλId

−1/2

δ

)
+λ1/2SOFU L


(4.31)

with:

• δ ∈ (0,1) a user-defined confidence level.

• Vt
def= λId +

t∑
s=1

θIsθ
T
Is

.
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• β̂t
def=

(
B T

[t ]B[t ] +λId

)−1
B T

[t ]Y[t ] with λ> 0 the least-squares estimate of β? with

B[t ]
def= (θT

I1
, . . . ,θT

It
)T ∈Rtd and Y[t ]

def= (Y1, . . . ,Yt )T ,.

• ROFU L a positive parameter such that ηt is ROFU L sub-Gaussian.

• SOFU L a positive parameter such that ‖β?‖2 É SOFU L .

In the general case (continuous bandit set), solving the optimization problem defined

in Equation (4.30) requires the use of a iterative procedure (for instance a Newton

method) at each time step, implying significant computational overhead in high

dimension.

However, in the case of a finite arm set, (Rusmevichientong and Tsitsiklis, 2010, Equa-

tions 6) provides a closed-form solution to this optimization problem, yielding faster

computations.

Here, for i ∈ {{1, . . . ,K }:

max
β∈Ct

〈θi ,β〉 =

ROFU L

√√√√2log

(
detVt

1/2
detλId

−1/2

δ

)
+λ1/2SOFU L

‖θi‖Vt
−1 + β̂t

T
θi ,

and the optimization problem in Equation(4.30) is solved by:

It = max
i∈{1,...,K }

{
max
β∈Ct

〈θi ,β〉
}

.

Finally, the authors proposed an alternative version of OFUL where β̂ is recomputed

only in the case where detVt is increased by a factor (1+C ) with C a user-defined

parameter. As showed by Abbasi-Yadkori et al. (2011), this variant exhibited both

theoretical and empirical benefits in addition to the reduction of the computational

cost. Note however that it requires the challenging tuning of the extra parameter C .

4.6.2 Thompson Sampling for contextual linear bandits

Thompson sampling is a family of (pseudo-)Bayesian algorithms. This section con-

siders the Thompson sampling as defined in (Agrawal and Goyal, 2012a) (Algorithm

15).

Thompson sampling and OFUL share the same setting; in particular they do not con-

sider any context X t , the vector θi associated to the i -th arm is assumed to be known,

and both algorithms aim at learning a single shared parameter β2.

2While Agrawal and Goyal (2012a) refer to θi as "context vectors", it must be noted that the notion of
context vector differs with the one considered in this manuscript.
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Algorithm 15 Contextual linear Thompson sampling for K arms . (Agrawal and Goyal,
2012a)
Require: Current time t , parameter v ∈R

1: if t = 1 then
2: Initialize B ← Id and β̂← 0d , f ← 0d

3: end if
4: Sample β̂t ∼N (β̂, v2B−1)
5: Play It = argmaxi∈{1,...,K }θ

T
i β̂t (arbitrary tie break) and observe reward Yt

6: Update B ← B +θItθ
T
It

, f ← f +YtθIt , µ̂← B−1 f .

Thompson sampling is built around the assumptions of Gaussian likelihood and

Gaussian prior:

• The likelihood of the instantaneous reward Yt is supposed drawn with respect

to N (θT
It
β?, v2) with v

def= RT S

√
24
ε

d log 1
δ

.

ε is a confidence parameter, δ a confidence level and RT S a positive value such

that ηt is a RT S sub-Gaussian noise.

• The prior distribution for β? is assumed to be N (β̂(t), v2B(t)−1) with B(t)
def=

Id +
t−1∑
s=1

θIsθ
T
Is

and β̂(t )
def= B(t )−1

(
t−1∑
s=1

θIs Ys

)
The assumptions are required for the computation of the posterior distribution and

the theoretical analysis. However, and as emphasized in the article, these assumptions

do not restrict the applicability of the approach. No further assumption on the reward

distribution is required apart of the sub-Gaussian noise.

4.6.3 LinUCB

Like OFUL, LinUCB is an optimistic algorithm inspired from UCB (Li et al., 2010) (Algo-

rithm 16).

Contrarily to OFUL and Thompson sampling, LinUCB (with disjoint linear models, see

Section 3.1 in (Li et al., 2010)) considers an unknown parameter θi per arm, which is

to be learned using the contextual information. Actually, Li et al. (2010) consider that

context vector Xi ,t can depend on the arm.

By denoting S = ((
Xi1 ,Yi1

)
. . .

(
XiS ,YiS

))
a context-reward sample of size S, X(S )

def=
(Xi1 , . . . , XiS )T the S ×d context matrix, Y(S )

def= (Yi1 , . . . ,YiS )T the corresponding re-

ward vector and Si ,t
def= {

(X t ′ ,Yt ′) , t ′ É t , It = i
}

the set of observations where i is

played, LinUCB estimates at time t the parameter θi by :

θ̂i (Si ,t )
def= (

X(Si ,t )T X(Si ,t )+ Id
)−1

X(Si ,t )T Y(Si ,t )
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Algorithm 16 LinUCB for K arms. (Li et al., 2010)
Require: Current time t , context X t , parameter δ ∈ (0,1)

1: if t = 1 then
2: Initialize B ← Id , µ̂← 0d , i ∈ {1, . . . ,K }
3: else
4: θ̂i ← A−1

i bi , i ∈ {1, . . . ,K }

5: pt ,i ← θ̂i
T

X t +α
√

X T
t A−1

i X t , i ∈ {1, . . . ,K } (α defined in Equation (4.32))

6: end if
7: Play It = argmaxi∈{1,...,K }{pi ,t } (arbitrary tie break) and observe reward Yt .
8: Update AIt ← AIt +X t X T

t and bIt ← bIt +Yt X t

(Line 4).

By Theorem 2.1 of (Walsh et al., 2009), it holds that, with probability at least 1−δ, for

every context vector X t and every arm i :

|X T
t θ̂i −X T

t θi | Éα
√

X T
t

(
X(Si ,t−1)T X(Si ,t−1)+ Id

)−1 X t ,

with

α
def= 1+

√
log(2/δ)

2
(4.32)

a constant parametrized by δ. By defining Ai ,t
def= (

X(Si ,t−1)T X(Si ,t−1)+ Id
)
, it implies

that pi ,t
def= θ̂i

T
X t+α

√
X T

t A−1
i ,t X t is an upper confidence bound on the expected payoff

θT
i X t of the arm i . In a UCB fashion, the arm with highest confidence bound is selected

(Line 7).

Finally, note that the authors do not provide a regret bound for LinUCB. However a vari-

ant termed SupLinUCB is studied in (Chu et al., 2011) with a O
(√

T d log3 (
K T logT /δ

))
high-probability problem-dependent regret bound.
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Risk-Aversion
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5.1 Introduction

The term risk is defined by the Oxford English dictionary as “the possibility of loss,

injury, or other adverse or unwelcome circumstance”. Regarding this definition, risk-

aversion would design any method including a protecting mechanism against unwel-

come outcomes. This definition hardly enables a statistical or computational analysis,

as the notion of “unwanted outcomes” does not accept a unique definition.

As firstly introduced in Section 1.4, there are situations where the standard expectation

maximization seems inappropriate. For instance, in the clinical testing example, one

can think of:

• A treatment A with constant and moderate expected efficiency µA = 0.4 and

small variability σA = 0.1.

• A treatment B with better expected efficiency µB = 0.5 and high variability

σB = 0.2.

• A treatment C with P
(
e f f = 0.4

)= 0.2 and P
(
e f f = 0.5

)= 0.8
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Depending on the medical context and physician’s preferences, one of the three treat-

ments can be favored. The usual player, interested in the best average outcome would

favor arm A. On the other hand, a player reluctant to high performance variability

may prefer the treatment B even at the cost of a slightly lower expected payoffs. Finally,

a player concerned with the performances in the worst case scenario would favor the

treatment C .

The purpose of this section is to present a few definitions of statistical tools to take risk

into account, notably the coherency notion in Section 5.1.1, formalizing the above

intuitions. Based on such risk measures, risk-averse algorithms will be presented in

the context of multi-armed bandit in Section 5.2. One of our contributions will be new

bandit algorithms based on a distinct coherent risk measure (Chapter 6).

5.1.1 Coherent risk measure

As illustrated in the previous section, the notion of risk is ambiguous and should be

adapted to the specific problem studied. However, certain properties of measures are

considered desirable and are the object of a consensus leading to the definition of

coherent risk measures. This definition is extracted from the financial literature where

the notion of risk emerges naturally.

Definition 5.1.1 (Rockafellar (2007)). Let L 2 def= {
X : E[X 2] <∞}

be the set of random

variables with finite moments of order 2.

A function R : L 2 → (−∞,∞] is a coherent risk measure if it satisfies the following

axioms:

• (A1) R(C ) =C for all constant C

• (A2) Convexity: ∀λ ∈ (0,1),R ((1−λ) X +λY ) É (1−λ)R(X )+λR(Y )

• (A3) Monotonicity: R(X ) ÉR(Y ) for X É Y

• (A4) Closedness: R(X ) É 0 when ‖Xk −X ‖2 → 0 with R(Xk ) É 0∀k.

Remark 5.1.1. Artzner et al. (1997, 1999) add the fifth axiom:

• (A5) Positive homogeneity: ∀λ> 0,R(λX ) =λR(X ).

The notion of coherency is coming from the financial literature, and the above axioms

have a intuitive interpretation within this realm. Notably:

• the monotonicity assumption states that, a portfolio Y with higher values on

almost every scenario than a portfolio X has a greater risk value.

• the combination of (A2) and (A5) leads to the subadditivity: R(X +Y ) ÉR(X )+
R(Y ). This corresponds to the diversity principle in investment: the risk is

lowered when the portfolio is diversified.
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Examples

• The conditional Value-at-Risk at level α, informally defined as the average over

theα% worst cases, is a coherent measure of risk (see (Acerbi and Tasche, 2002)).

It will serve as the basis of the proposed algorithms for risk-awareness (Chapter

6).

• The Value at risk at level α defined by V aRα(X ) = inf{s,P(X É s) Ê α} is not

a coherent risk measure as it is not sub-additive. Indeed, consider X and Y

i.i.d variables with X ∼ Ber (0.5). For α= 0.3, V aRα(X +Y ) = 1 > 0 =V aR(X )+
V aR(Y ).

Risk-Aversion for the multi-armed bandit can then be defined, by replacing the classi-

cal expectation with a risk measure.

5.2 Risk-Aversion for the multi-armed bandit

The purpose of this section is to present two families of risk-averse bandit algorithms.

First the MVLCB and ExpExp algorithms based on the Mean-Variance measure will be

presented in Section 5.2.1, then RA-UCB based on the log-Laplace measure will be

exposed in Section 5.2.2.

More remotely related is the work presented by Yu and Nikolova (2013), deriving PAC

lower bounds for three distinct risk measures, with the goal of identifying the arm

with lowest risk (pure exploration), as opposed to, minimizing a suitable regret.

5.2.1 Algorithms for the Mean-Variance

This section describes two algorithms proposed in (Sani et al., 2012a,b) based on a

standard risk measure introduced by (Markowitz, 1952).

Mean-Variance

Definition 5.2.1 (Mean-Variance Markowitz (1952)). Let X ∼ ν be a random variable

and ρ > 0 be a risk tolerance. By denoting, µ and σ2 respectively the expected value and

variance of X , the Mean-Variance of X with respect to ρ is defined as:

MVρ (X )
def= σ2 −ρµ (5.1)

Remark 5.2.1. Mean-Variance is not a coherent risk measure. Indeed, by considering a

constant C and ρ 6∈ {0,1}, it comes MV (C ) = ρC 6=C .

Remark 5.2.2. In a risk-averse setting, MV is to be minimized.
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Remark 5.2.3. This definition is an intuitive introduction to the risk management:

in this setting, the risk of a variable is defined by its variance. Between two random

variables X and Y with close expected payoffs, the one with smallest variance is favored.

Remark 5.2.4. Parameterρ controls the trade-off between the risk-minimization (small

ρ) and reward maximization (large ρ). In the extreme cases, MV minimization boils

down to variance minimization for ρ = 0 and to the classical expected payoff maxi-

mization for ρ→∞.

In a standard way, for ρ > 0: i) MVi denotes the mean-variance of the i -th arm with

distribution νi ; ii) the best arm is denoted i?
def= argmin

i∈{1...K }
{MVi }; and iii) the margin

∆MV ,i = MVi −MVi? .

Definition 5.2.2 (Estimator). Let x1, . . . , xn be a i.i.d. sample of a distribution ν and

X ∼ ν. The estimator of MVρ(X ) is defined by:

�MVρ(X )
def= σ̂n

2 −ρµ̂n (5.2)

with

µ̂n
def= 1

n

n∑
i=1

xi and σ̂n
2 def=

n∑
i=1

(
xi −µn

)2

For a fixed ρ > 0 (implicit in the following), the mean-variance of the rewards Y1, . . . ,Yt

gathered by an algorithm A up to time t is denoted M̂V t (A ). Similarly, M̂V i ,t denotes

the mean-variance estimate built on Xi ,1, . . . , Xi ,t .

The authors define in a classical way the notions of regret and pseudo-regret with

respect to Mean-Variance.

Definition 5.2.3 (Regret). The regret of an algorithm A at time t is defined by:

Rρ,t
def= M̂V t (A )− M̂V i?,t (5.3)

Remark 5.2.5. Two independent and distinct sets of samples are used for the computa-

tion of M̂V t (A ) and M̂V i?,t .

Remark 5.2.6. Contrarily to the usual cumulative regret, the mapping t 7→Rt is not

necessarily a non-decreasing mapping. Actually, any reasonable Mean-Variance sensi-

tive algorithm should present a decreasing regret with t .

Definition 5.2.4 (Pseudo-regret). The Mean-Variance pseudo-regret after t time step

is defined as:

Rρ,t
def= 1

t

K∑
i=1

Ni ,t∆i + 2

t 2

K∑
i=1

∑
j 6=i

Ni ,t N j ,tΓ
2
i , j (5.4)

with Γi , j
def= µi −µ j
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Sani et al. (2012a) propose the following notations for the two parts of the pseudo-

regret:

R
∆

ρ,t
def= 1

t

K∑
i=1

Ni ,t∆i (5.5)

R
Γ

ρ,t
def= 2

t 2

K∑
i=1

∑
j !=i

Ni ,t N j ,tΓ
2
i , j (5.6)

The following proposition establishes a relation between the regret upper bound, and

the pseudo-regret upper bound, as follows:

Proposition 5.2.1 (Sani et al. (2012a)). For ρ > 0 and with probability at least 1−δ,

Rρ,t É Rρ,t + (5+ρ)

√
2K log(6nK /δ)

t
+4

p
2

K log(6nK /δ)

t

Mean-Variance Lower Confidence Bound

A first algorithm, termed Mean-Variance Lower Confidence Bound (MVLCB), is pro-

posed to minimize R t and its pseudo-code is presented in Algorithm 17.

Algorithm 17 K -armed MVLCB
Require: Time horizon T , confidence δ ∈ (0,1)

1: for t = 1. . .K do
2: It = t ; gather Yt ; initialize �MVi (Xi ,1) =−ρYt

3: end for
4: for t = K +1. . .T do
5: Choose (arbitrary tie break)

It ∈ argmin
i∈{1,...,K }

{ áMVi ,Ni ,t − (5+ρ)

√
log(1/d)

2Ni ,t

}
. (5.7)

6: end for

The algorithm is designed in a classical fashion as an optimistic bandit approach. After

initialization (Line 2), a lower bound Bi ,Ni ,t

def= áMVi ,Ni ,t − (5+ρ)

√
log(1/d)

2Ni ,t
is updated

for each arm i and the arm with lowest lower bound is selected.

Note that MVLCB remains an optimistic algorithm as minimizing a lower bound is

equivalent to the maximization of an upper bound.

Thanks to that design, and to the applicability of the Hoeffding inequality (Hoeffding,

1963) to derive a high-probability confidence interval for the MVi , the following
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theorem ensures a logarithmic regret both in expectation and with high probability in

the case of a unique optimal arm.

Theorem 9 ((Sani et al., 2012a,b)). Under the assumption of a unique optimal arm

denoted i?, with b = 2(5+ρ), MVLCB pseudo regret is upper-bounded with probability

at least 1−6tKδ as:

Rρ,t É b2 log(1/δ)

n

( ∑
i 6=i?

1

∆MV ,i
+4

∑
i 6=i?

Γ2
i?,i

∆2
MV ,i

+ 2b2 log(1/δ)

t

∑
i 6=i?

∑
j 6∈{i ,i?}

Γ2
i , j

∆2
MV ,i∆

2
MV , j

)
+5K

t

(5.8)

For δ= 1
t 2 , the pseudo-regret is also bounded in expectation by:

E
[

Rρ,t

]
É 2b2 log t

t

( ∑
i 6=i?

1

∆MV ,i
+4

∑
i 6=i?

Γ2
i?,i

∆MV ,i
+ 4b2 log t

t

∑
i 6=i?

∑
j 6∈{i ,i?}

Γ2
i , j

∆2
MV ,i∆

2
MV , j

)
+(17+6ρ)

K

t

(5.9)

This result proves that Rρ,t =O( log2 t
t ) and the consistency of the approach. However,

and as pointed by (Sani et al., 2012a,b; Maillard, 2013) and by the Equations (5.5)

(5.6), the regret definition adds an extra penalization for the exploration of arms with

distinct means. In a worst case scenario (K = 2, ρ = 0, µ1 6= µ2), this would lead to a

constant regret. To overcome this difficulty, the authors propose a new algorithm,

decoupling exploration and exploitation and presented in the next section. Another

approach is described in 5.2.2).

Remark 5.2.7. The unicity assumption is essential. As shown in (Sani et al., 2012a,

Theorem 1, remark 2), if this hypothesis does not hold true, it is possible to exhibit an

environment where MVLCB suffers a constant regret as the regret increases by switching

from one arm to another.

Exploration-Exploitation algorithm

The Exploration-Exploitation (ExpExp) algorithm is described in Algorithm 18.

The scheme is extremely simple. For a given and parametrized budget τ ∈N, the algo-

rithm performs an uniform exploration (Equation 5.10). In a second phase, starting at

time t = τ+1 until the end, the best estimated arm is always selected.

The idea of stopping the exploration after a given budget overcomes the previously

identified problem in the worst case. More precisely, it yields the following, problem

independent, regret bound:

Theorem 10 (Sani et al. (2012a,b)). Let ExpExp be run with τ= K (t/14)2/3. Then for

any choice of distribution νi , the regret of ExpExp is bounded by:

E
[

Rρ,t

]
É 2

K

t 1/3
(5.12)
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Algorithm 18 K -armed ExpExp
Require: Time horizon T , τ ∈N

1: for t = 1. . .τ do
2: Choose (Exploration)

It = (t −1)%K +1 (5.10)

3: end for
4: for t = τ+1. . .T do
5: Choose (Exploitation)

It = argmin
i∈{1...K }

{
M̂V i ,t

}
(5.11)

6: end for

Also, experiments show (see Section 6.5 and (Sani et al., 2012b)) the excellent per-

formances of this approach. It is, however, important to emphasize the fact that the

knowledge of the time horizon T is critical, although it might be unavailable in quite a

few real-world applications.

5.2.2 Risk-Averse Upper Confidence Bound Algorithm

This section presents the algorithm Risk-Averse Upper Confidence Bound (RA-UCB)

algorithm due to Maillard (2013).

This algorithm takes its roots in the KL-UCB (Cappé et al., 2013) algorithm. The main

modification is the switch from a mean maximization framework to the maximization

of a coherent risk measure, able to control the lower tail (mass below the mean) of the

distributions.

log-Laplace

Definition 5.2.5 (Cumulant generating function). Let X be a real random variable.

The cumulant generating function of X , g is defined as the logarithm of the moment-

generating function of X :

g (t )
def= log

{
E
[
exp(t X )

]}
Proposition 5.2.2 (Maillard (2013)). Let X be a random variable with a finite cumulant-

generating function around 0 and δ ∈ (0,1) be a confidence level.

Then, the following inequality holds:

P

(
X É sup

λ>0

{
− 1

λ
log

(
E
[
exp(−λX )

])− log(1/δ)

λ

})
É δ (5.13)

Proof. The result follows from applications of the Markov and Jensen inequalities.
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This result demonstrates the key role played by the quantity − 1
λ

log
(
exp[−λX ]

)
as

it controls the probability that X is small. This quantity has thus been thoroughly

studied.

Definition 5.2.6 (log-Laplace Transform). Let X ∼ ν be a arbitrary random variable.

The (rescaled by λ) log-Laplace of X is defined, for λ 6= 0 as:

κλ,ν
def= 1

λ
log

(
E
[
exp(λX )

])
(5.14)

Proposition 5.2.3 (Rockafellar (2007)). For any distribution ν, κ−λ,ν is a coherent risk

measure (in the extended sense).

Remark 5.2.8. In the stricter and more classical coherency definition from (Artzner

et al., 1997, 1999), κ−λ,ν cannot be considered a coherent risk measure as it violates the

positive homogeneity: ∃γ> 0 and ν s.t. κ−λ,γν 6= γκ−λ,ν.

Remark 5.2.9. By supposing ν=N (µ,σ2), it comes κ−λ,ν = µ− λσ2

2 . In particular, in

the Gaussian case, the log-Laplace and the mean-variance criteria coincide.

The quantity κ−λ,ν satisfies by definition κ−λ,ν É Eν[X ]. Equation (5.13) indicates

that κ−λ,ν controls the probability that the random variable X is small. Therefore, it

has a specific interest in a risk-averse scenario. As a consequence, the design of the

proposed algorithm is to select the optimal arm(s) with maximal κ−λ,νi :

i? ∈ argmax
i∈{1...K }

{
κ−λ,νi

}
(5.15)

Algorithm

Let us denote:

• ν̂i ,t
def= 1

Ni ,t

t∑
s=1

δ(Xi ,s)I{It = i } the empirical cumulative distributive function of

the i -th arm;

• K L
(
ν,ν′

)
the Kullback-Leibler divergence between the distributions ν and ν′.

• M+
1 (RB ) the set of distribution defined on RB

def= (−∞,B).

Then the Risk-Averse Upper Confidence Bound Algorithm proposed by Maillard (2013)

is defined as follows (Alg. 19).

An optimistic algorithm maximizing a log-Laplace criterion, RA-UCB works in two

phases. First, an upper bound is associated with each arm (Line 1), then the arm

with a maximal upper bound is selected (Line 2). The algorithm also requires two
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Algorithm 19 RA-UCB (Maillard, 2013)
Require: Current time t , parameters λ, f function.

1: Compute

U (i )
def= sup

{
κ−λ,ν : K

(
ν̂i ,t ,κ−λ,ν

)É f (t )

Ni ,t

}
(5.16)

with
K

(
ν̂i ,t ,κ−λ,ν

) def= inf
{
K L

(
ν̂i ,t ,ν

)
: ν ∈M+

1 (RB ,κ−λ,ν Ê r
}

(5.17)

2: Select (arbitrary tie break)
It = argmax

i∈{1...K }
{U (i )} (5.18)

parameters: first a function f generally chosen so that f = O(log(t)) and λ > 0 a

confidence parameter.

For its successful application, RA-UCB relies on two important properties:

1. A concentration inequality can be derived for the estimator K (see Proposition 2

in Appendix of (Maillard, 2013)):

For a given λ> 0 and ε> 0:

P
(
K

(
νt ,κ−λ,nu

)> ε)É ε (t +2)exp(−tε)

As already stated, this is a critical point to upper-bound the number of sub-

optimal arm pulls and derive regret bounds.

2. On a practical side, the estimators K (ν̂t ,r ) are practically computable by a

dual formulation of the optimization program of Equation (5.17) thanks to the

Karush-Kuhn-Tucker optimality conditions (Boyd and Vandenberghe, 2004).

Regret analysis

Maillard (2013) naturally extends the pseudo-regret definition (Equation (3.3)) to its

risk-averse setting.

Definition 5.2.7. With same notations as in Section 3.1.1, denoting i? an optimal arm

defined in Equation (5.15), and considering a risk parameter λ > 0, the risk-averse
pseudo-regret Rt (λ) is defined by

R t (λ)
def=

K∑
i=1

(
κ−λ,i? −κ−λ,i

)
E
[
Ni ,t

]
(5.19)

Under assumptions regarding RA-UCB parametrization, the following proposition

demonstrates the logarithmic regret of the strategy.
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Proposition 5.2.4 (Maillard (2013)). By defining:

• f (t ) = log
(
2e(t +e)t 2/γ

)
with γ=Θ(T −1)

• εi > 0 a problem dependent constant characterizing the difficulty to assess if i is

close to optimal (see the paper for further details).

• Ki
def= inf

{
K L(νi ||ν) : ν ∈M+

1 (RB )κ−λ,ν > κ−λ,νi

}
• ∆κ,i

def= κ−λ,i? −κ−λ,i the quality gaps.

Then,

Rt (λ) É 5
∑

i 6=i?

(1+εi )∆κ,i

Ki
log(t )+O(1) (5.20)

This result confirms the ability of RA-UCB to reach a logarithmic regret rate even in

the challenging risk-averse setting. Moreover, Equation (5.20) extends the known

expected regret bound to the risk-averse case as the constant
∆κ,i
Ki

in front of the

logarithmic factor is closely related to the theoretical constants (Lai and Robbins,

1985; Burnetas and Katehakis, 1996) or to KL-UCB (Maillard et al., 2011; Cappé et al.,

2013) inequalities.
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6.7 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . . . . 84

This chapter presents our first contributions, focused on risk-awareness in multi-

armed bandits. The limit case, where the learner aims at maximizing its minimal

reward, is first introduced and it is shown that under mild hypotheses, an algorithm

with good guarantees can be obtained. The general case is then studied, where the

goal is to find the best arm in terms of conditional value at risk, and the MARAB algo-

rithm tackling this goal is presented. Its empirical behavior is comparatively assessed

to the state of the art, the MVLCB and ExpExp algorithms presented in chapter 5. These

contributions were first presented in (Chou et al., 2014) and (Galichet et al., 2013).

A refinement of MARAB called MARABOUT is finally described, together with its perfor-

mance guarantees.

6.1 Motivations

As said, the multi-armed bandit is a widely studied problem. This in-depth exami-

nation has led to the fruitful development of numerous algorithms able to handle

the exploration vs. exploitation dilemma efficiently, often associated with guarantees

of performance. However, the vast majority of these approaches assess the quality

of an arm with respect to its payoff value in expectation. Even though this criterion

is natural and successfully applicable to real world problems, it is inappropriate in

quite a few situations. A first, already discussed example is the medical testing. Other

examples come from real-world problems involving an environment with hazards and

risks. For instance, roboticists often face a problem termed Reality Gap (see (Nolfi and

Floreano, 2000)): controllers learned by simulation in silico are not able to reproduce

the desired behavior in situ. A common approach to solve this issue is to directly

learn a controller on a physical robot. Whenever the real-world environment is not

considered to be safe, and hazards may eventually lead to the destruction of the robot,

the need for a risk-aware learning process naturally emerges.

In such contexts, the focus shifts from the average reward associated to an arm, to

the average reward taken over the α% worst cases. The (domain and user-dependent)

parameter α is referred to as risk parameter in the rest of the chapter. We shall first

consider the limit case where α goes to 0 (section 6.2), before considering the general

case (section 6.3).

6.2 The max-min approach

This section presents an overview of the MIN algorithm, addressing the limit case when

risk parameter α goes to 0.
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6.2. The max-min approach

6.2.1 Algorithm definition

Let mi ,t denote the min empirical reward associated to the i -th arm up to the t-th

time step:

mi ,t
def= min{Yu s.t . Iu = i , u = 1. . . t }

The MIN algorithm (Algorithm 20) proceeds by initializing the empirical minimum of

all arms (Line 1); thereafter, it systematically selects the arm with maximal mi ,t (Line

2).

Algorithm 20 MIN for K arms
Require: Time horizon T

1: for i = 1. . .K do
2: Select the i -th arm, and observe the reward Yi ;
3: mi ,i = Yi

4: end for
5: for t = K +1. . .T do
6: Select (arbitrary tie break)

It ∈ argmax
i∈{1,...,K }

{
mi ,t

}
(6.1)

7: Update mIt ,t

8: end for

The most simple MIN algorithm allows for an online update of the mi ,t , which are the

only quantities that need to be stored.

6.2.2 Analysis

The goal of MIN is to find the best essential infimum of the arms, where the essential

infimum is defined as follows.

Definition 6.2.1. Let ν be a probability distribution and X ∼ ν a real random variable.

The essential infimum aν of ν is defined by

aν
def= max

a∈R
{P (X < a) = 0}

Let us make the mild assumption that distribution ν satisfies Equation 6.2, as illus-

trated in Fig. 6.1. Then, the empirical min taken over a uniform sampling according

to ν, converges exponentially fast toward the essential infimum.
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Lemma 6.2.1. Let ν be a bounded distribution with support in [0,1], with a its essential

infimum, and assume that ν satisfies:

∃A > 0,∀ε> 0,P(X É a +ε) Ê Aε with X ∼ ν (6.2)

Let x1 . . . xt be a t-sample independently drawn after ν. Then, the minimum value over

xu ,u = 1. . . t goes exponentially fast to a:

P( min
1ÉuÉt

xu Ê a +ε) É exp(−t Aε) (6.3)

Proof. As the xu are iid, it comes:

P( min
1ÉuÉt

xu Ê a +ε) = P(∀u ∈ {1, . . . , t }, xu Ê a +ε)

=
t∏

u=1
P(xu Ê a +ε) É (1− Aε)t É exp(−t Aε)

where the last inequality follows from (1− z) É exp(−z).

00
1

Figure 6.1: Illustration of an example of distribution satisfying the assumption of
Equation 6.2.

The assumption supporting the above result (Equation 6.2, illustrated in Figure 6.1)

does not require the positive constant A to be known; it only requires that there

is enough probability mass in the neighborhood of a. Equation 6.3 confirms the

exponential convergence toward a as a function of A.

A surprising result is that, under this assumption, the convergence toward the mini-

mum might be faster than the convergence toward the mean. Specifically, the Hoeffd-

ing bound on the convergence toward the mean decreases exponentially like −tε2,

whereas after Equation 6.3 the convergence toward the min decreases exponentially
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like −t Aε (as ε is going to 0, Aε>> ε2).

Under this assumption, it follows without difficulty that with high probability the

empirical min of each arm is exponentially close to its essential infimum after each

arm has been tried t times.

Lemma 6.2.2. Let ν1 . . .νK denote K distributions with bounded support in [0,1] with

ai their essential infimum.

Assume that νi satisfies Equation 6.2 for some constant A for i = 1. . .K .

Denoting xi ,u , u = 1. . . t , i = 1. . .K , t samples independently drawn after νi , one has:

P(∃i ∈ {1, . . . ,K }, min
1ÉuÉt

xi ,u Ê ai +ε) É K exp(−t Aε) (6.4)

Proof. After Lemma 6.2.1,

P(∃i ∈ {1, . . . ,K }, min
1ÉuÉt

xi ,u Ê ai +ε) É 1− (1− (1− Aε)t )K

É K (1− Aε)t

É K exp(−t Aε)

Where the first inequality follows from (1− z)y ≥ 1− y.z and the second inequality

from (1− z) ≤ exp(−z), which concludes the proof.

Let us consider the two distinct goals of finding the arm with best expectation, and

the arm with best essential infimum. If these goals are compatible (that is, the optimal

arm in terms of min value also is the optimal arm in terms of mean value), then the

MIN algorithm achieves a logarithmic regret under the above assumptions.

Proposition 6.2.1. Let ν1 . . .νK denote K distributions with bounded support in [0,1]

with µi (resp. ai ) their mean (resp. their essential infimum). Further assume that

νi satisfies Equation 6.2 for some constant A for i = 1. . .K , and that the arm with

best mean value µ? also is the arm with best min value a?. Let ∆µ,i = µ?−µi (resp.

∆a,i = a?−ai ) denote the mean-related (resp. essential infimum-related) margins.

Then, with probability at least 1−δ, the cumulative pseudo-regret is upper bounded as

follows:

Rt É K −1

A

∆µ,max

∆a,min
log

(
tK

δ

)
+ (K −1)∆µ,max (6.5)

with ∆a,min = min
i :∆a,i>0

∆a,i and ∆µ,max = max
i :∆µ,i>0

∆µ,i .

Furthermore, the expectation of the cumulative pseudo-regret is upper-bounded as

follows for t sufficiently large (t Ê K−1
A

∆a,min
∆µ,max

):

E[Rt ] É K −1

A

∆µ,max

∆a,min

(
log

(
t 2K A

K −1

∆a,min

∆µ,max

)
+1

)
+ (K −1)∆µ,max (6.6)
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Proof. Suppose that there exists a single optimal arm (this point will be discussed

below). Taking inspiration from (Sani et al., 2012a), let xi ,u be independent samples

drawn after νi , and define the event E as follows:

E =
{
∀i ∈ {1, . . . ,K },∀s ∈ {1, . . .u} minxi ,s −ai É ε

u

}
(6.7)

The probability of the complementary event E c is bounded after Lemma 6.2.2:

P(E c ) = P(∃i ∈ {1, . . . ,K },∃u ∈ {1, . . . , t }, min
1ÉsÉu

xi ,s −ai > ε

u
)

É
t∑

u=1
P(∃i ∈ {1, . . . ,K }, min

1ÉsÉu
xi ,s −ai > ε

u
)

É min(1, tK exp(−Aε))

Let t > 1 be an iteration where a sub-optimal arm i is selected; this implies that the

empirical min of the i -th arm is higher than that of the best arm i?:

min
1ÉuÉNi?,t−1

xi?,u < min
1ÉuÉNi ,t−1

xi ,u ⇔ min
1ÉuÉNi?,t−1

xi?,u −ai︸ ︷︷ ︸
Êai?−ai=∆a,i

< min
1ÉuÉNi ,t−1

xi ,u −ai︸ ︷︷ ︸
É ε

Ni ,t−1
(?)

where (?) holds if t belongs to the event set E , thus with probability at least 1−
tK exp(−Aε) after Lemma 6.2.2.

It follows that with probability at least 1− tK exp(−Aε)

ε

Ni ,t−1
Ê∆a,i hence Ni ,t É ε

∆a,i
+1

since Ni ,t ≤ Ni ,t−1 +1.

With probability at least 1− tK exp(−Aε), the cumulative regret Rt can thus be upper-

bounded:

Rt =
K∑

i=1
Ni ,t∆µ,i É

K∑
i=1

(
ε

∆a,i
+1)∆µ,i (6.8)

É (K −1)

(
∆µ,max

∆a,mi n
ε+∆µ,max

)
with ∆µ,max = max

1ÉiÉK
∆µ,i and ∆a,min = min

1ÉiÉK
∆a,i

Finally, by setting δ= min(1, tK exp(−Aε)), it follows that with probability 1−δ,

Rt É K −1

A

∆µ,max

∆a,mi n
log(

tK

δ
)+ (K −1)∆µ,max (6.9)

In the case where there exists k > 1 optimal arms, Eq. 6.9 still holds, by replacing K −1
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factor with K −k.

The expectation of the cumulative regret is similarly upper-bounded:

E[Rt ] = E[Rt IE ]+E[Rt IE c ]

É K −1

A

∆µ,max

∆a,mi n
log(

tK

δ
)+ (K −1)∆µ,max +δt by bounding Rt by t over E C .

For t sufficiently large (t Ê K−1
A

∆µ,max

∆a,mi n
), by setting δ= K−1

t A
∆µ,max

∆a,mi n
, it comes:

E[Rt ] É K −1

A

∆µ,max

∆a,mi n

(
log

(
t 2K A

(K −1)

∆a,min

∆µ,max

)
+1

)
+ (K −1)∆µ,max (6.10)

which concludes the proof.

Remark 6.2.1. This result can be compared to the regret bound derived for the UCB
algorithm, similarly achieving a logarithmic regret (Auer et al., 2002):

E[Rt ] É 8
∑

i 6=i?

log t

∆µ,i
+ (1+ π2

3
)

K∑
i=1

∆µ,i (6.11)

where i? stands for the index of the optimal arm. MIN and UCB thus both achieve a

logarithmic regret uniformly over t , where the regret rate involves the mean-related

margin in UCB (resp. the min-related margin in MIN, multiplied by the constant A).

A stronger result can be obtained for MIN, under an additional assumption on the

lower tails of the arm distributions.

Proposition 6.2.2. With same notations and assumptions as in Prop. 6.2.1, let us

further assume that for every i = 1. . .K ,∆µ,i =µ?−µi É a?−ai =∆a,i .

Then, with probability at least 1−δ,

Rt É K −1

A
log(

tK

δ
)+ (K −1)∆µ,max

with ∆µ,max = max
i
∆µ,i .

Furthermore, if t > K−1
A , the expectation of Rt is upper-bounded as follows:

E[Rt ] É K −1

A

(
log

(
t 2K A

K −1

)
+1

)
+ (K −1)∆µ,max (6.12)

Proof. The proof closely follows the one of Prop. 6.2.1, noting that in Eq. 6.8 ∆a,i is

now greater than ∆µ,i . Setting δ= (K−1)
t A concludes the proof of Eq. 6.12.
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Discussion. The comparison of UCB and MIN only makes sense when the two goals

are the same, naturally, that is, the same arm is optimal in terms of expectation and in

terms of essential infimum. When it is the case, Eq. 6.12 and Eq. 6.11 suggests that

MIN might outperform UCB when: i) margins ∆µ,i are small, ii) distributions νi are

not too thin in the neighborhood of the essential infimum (that is, A is not too small),

and iii) the assumption ∆a,i Ê∆µ,i holds.

Note that the latter assumption boils down to considering that better arms (in the

sense of their mean) also have a narrower support for their lower tail, thus a lower

risk. If this assumption does not hold however, then risk minimization and regret

minimization are likely to be conflicting objectives.

A last remark is that the assumptions done (lower bounded distribution density in the

neighborhood of the essential minimum and mean-related margin greater than the

minimum-related margin) yield a significant improvement compared to the continu-

ous distribution-free case, where the optimal regret is known to be O(
p

t ) (Audibert

and Bubeck, 2009, 2010).

6.3 Conditional Value At Risk: formal background

In the general case, the goal is, informally speaking, to maximize the average taken

over the α% worst . Let us first introduce some notations and definitions.

6.3.1 Definitions

Definition 6.3.1 (Value at risk). Let X be a real random variable and α ∈ (0,1].

The Value at Risk at levelα of X (or α-quantile) is defined as:

V aRα(X )
def= inf

ξ∈R
{P (X É ξ) Êα} (6.13)

Definition 6.3.2 (Conditional Value at Risk (Rockafellar and Uryasev, 2002; Pflug,

2000)). Let X be a real random variable and α ∈ (0,1].

The Conditional Value at Risk at level α of X is defined as:

CV aRα(X )
def= inf

ξ∈R

{
ξ+ 1

1−αE [(X −ξ)+]

}
(6.14)

where (x)+ denotes the positive part of x defined by:
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6.3. Conditional Value At Risk: formal background

(x)+ =
x x > 0

0 x É 0

Proposition 6.3.1. (Acerbi and Tasche (2002)) If there is no probability atom at V aRα(X )

(in particular, if X is a continuous random variable), it holds:

CV aRα(X ) = E [X |X >V aRα(X )] (6.15)

Remark 6.3.1. Intuitively, X is viewed as a loss, with CV aRα(X ) (the expected losses in

the α percent worst cases) to be minimized.

Remark 6.3.2. The Conditional Value at Risk terminology is justified by Eq. 6.15. CVaR

is also termed Average value-at-risk. Under restrictive assumptions (e.g. distribution

continuity), CVaR coincides with several other risk criteria like Expected shortfall (see

Acerbi and Tasche (2002)).

Remark 6.3.3. Definitions of V aR and CV aR may vary depending of the authors; this

might be confusing. For instance, (Acerbi and Tasche, 2002) denotes

CV aRβ(Y )
def= inf

ξ

{
E [(Y −ξ)−]

β
−ξ

}
=−E[

Y |Y ÉV aRβ(Y )
]

(if Y is continuous) (6.16)

with Y
def= −X , β

def= 1−α and (x)−
def= −(−x)+

These two definitions remain equivalent but a particular attention should be given to

determine if the "worst case" are represented by the left or right tail of the distribution.

As the bandit literature commonly considers the rewards as payoff to be maximized,

and by taking inspiration from Equation (6.16), the approach proposed is to maximize,

for a random variable X the quantity −CV aRα(−X )(= E [X |X <V aRα(X )]). This is

an equivalent procedure to the minimization of the conditional Value at Risk of −X .

Hence, the next definition provides a name and notation for this new quantity.

Definition 6.3.3 (Modified Conditional Value at Risk). Let X be a random variable and

α ∈ (0,1] a confidence parameter.

The modified Conditional Value at Risk at level α of X is defined by:

mCV aR
def= −CV aRα(−X ) (6.17)
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Chapter 6. Risk-Awareness for Multi-Armed Bandits

Figure 6.2: Value at risk and Conditional Value at Risk (from Rockafellar and Uryasev
(2002)).

6.3.2 Estimation of the Conditional Value at Risk

Definition 6.3.4. Let α ∈ (0,1] be a confidence level, and let x1, . . . , xn be a sample

of n i.i.d realizations of a distribution ν. Assuming without loss of generality that

x1 É x2 É . . . É xn , an estimator of mCV aRα(X ) with X ∼ ν is defined by:

ámCV aRα(x1, . . . , xn)
def= 1

dnαe
dnαe∑
i=1

xi (6.18)

where dnαe denotes the ceil integer of nα.

Remark 6.3.4. For α= 1, the estimator boils down to the empirical average of xi .

Remark 6.3.5. Under technical assumptions (weak dependency and bounded second

derivative of the density), (Chen, 2008) shows that:

p
αnσ−1

0 (α,n)( ámCV aRα(x1, . . . , xn)−mCV aRα(−ν))
d→N (0,1) (6.19)

In particular, this result states that ámCV aRα(x1, . . . , xn) is a consistent estimator and

converges to mCV aRα(X ) as
p
αn .
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6.4 The Multi-Armed Risk-Aware Bandit Algorithm

This section presents the MARAB algorithm, first described in (Galichet et al., 2013).

Letting Ni ,t be the number of pulls of arm i , we denote ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) =ámCV aRα(Xi ,1, . . . , Xi ,Ni ,t )

6.4.1 Description

The MARAB algorithm (Algorithm 21) starts by visiting once each arm, thus getting an

estimate of the payoff in theα% worst cases thanks to Equation (6.18) (Line 2). A lower

confidence bound associated with this estimate is derived, and MARAB selects the arm

with highest lower confidence bound (Line 5).

Algorithm 21 K -armed MARAB
Require: Time horizon T ; risk level α; exploration parameter C > 0.

1: for t = 1. . .K do
2: It = t ; gather Yt ; initialize ámCV aRα,t (X t ,1) = X t ,1 = Yt

3: end for
4: for t = K +1. . .T do
5: Choose (arbitrary tie break)

It ∈ argmax
i∈{1,...,K }

{ ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )−
√

C logdtαe
dαNi ,t e

}
. (6.20)

6: end for

6.4.2 Discussion

A key difference compared to the Optimism in front of the unknown motto at the core

of the UCB algorithm is that MARAB features a risk-averse or pessimistic behavior. The

exploratory term in Equation (6.20) comes with a negative coefficient: a larger C value

corresponds to higher bias toward exploitation, i.e. a more conservative behavior. In

other terms, when facing two arms with same ámCV aR value, MARAB will select the

most visited arm.

Note that such a behavior is representative of real-world behaviors, e.g. in the eco-

nomic realm, where a bias toward known partners is at the core of economic exchanges.

This bias is justified by the risk involved by choosing unknown partners.

According to the mCV aR estimate defined in Equation (6.18), MARAB involves two

successive phases:
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1. In a first initialization phase (Ni ,t < 1
α

and dNi ,t e = 1), one has

ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) = X(1) = min
s∈{1,...,Ni ,t }

{
Xi ,s

}
the quality of the arm is assessed from its minimal value (thus monotonically

decreasing along time).

Indeed, the duration of the initial phase increases as α decreases toward 0.

In this phase, the maximization of the ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) boils down

to a standard max-min optimization problem and the MARAB behavior must

resembles that of MIN (section 6.2, except for the negative exploratory term of

MARAB). In these early iterations, the only exploration achieved by MARAB is due

to the fact that ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) monotonically decreases with the

number of trials Ni ,t , possibly leading to revisit less visited arms.

However, the pessimistic nature of the approach prevents the algorithm from

visiting again an arm that provided poor rewards in the first trials.

2. In a second stabilization phase, the estimate ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) is com-

puted with an increasing precision, the approximation error converging to 0 as√
Ni ,t (Chen, 2008).

Only the most played arms enter this second phase (Ni ,t ≥ 1/α) and their em-

pirical ámCV aRα,i tends to stabilize with time. Note however that, due to the

lack of any exploration bonus, there is no guarantee that each arm is visited an

infinite number of times as t goes to infinity.

6.5 Experimental validation

This section presents the empirical validation of MIN and MARAB, comparatively to UCB
and to the risk-aware MVLCB and ExpExp algorithms (Sani et al., 2012a).

6.5.1 Experimental setting

The empirical validation considers three settings:

• MIN and MARAB are compared to UCB in the favorable case, satisfying the assump-

tions done in Prop 6.2.2 (Equation 6.2 satisfied, same arm ordering for the mean

and for the essential infimum values with decreasing margin).

• A relaxed problem generator, only satisfying the assumption of Equation 6.2,

is then considered to extensively compare MIN and MARAB to UCB, MVLCB and

ExpExp.
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• Last, a simplified real-world problem pertaining to the domain of energy man-

agement is considered (first presented in Chou et al. (2014)).

In all problems, the number K of arms is set to 20. The time horizon is set to T = K×100

and T = K ×200. For all problems, all results over (respectively the average result out

of) 40 runs are displayed.

The goal of experiments is to answer three questions:

• The first one regards the price to pay in terms of performance loss for a risk-

aware behavior (in the favorable case where there is same arm ordering w.r.t.

the mean and to the essential infimum criteria), and how the cumulative regret

increases with the number of iterations, specifically focussing on short time

horizons. Unless otherwise specified, only the empirical cumulative regret is

considered.

• The second question regards the robustness of the algorithms, and their sensi-

tivity w.r.t. parameters.

• The third question is whether MARAB, MVLCB and ExpExp do avoid exploring

risky arms; this question is investigated by inspecting the low tail of the gathered

rewards.

6.5.2 Proof of concept

The generator used in this experiment is meant to exactly satisfy the assumptions in

Prop. 6.2.2.

• The i -th arm distribution νi is uniform on a segment in [0,1], centered on its

mean µi with radius ri (νi =U ([µi − ri ,µi + ri ])).

• Mean µi decreases with i (µ? =µ1 >µ2 . . . >µK ):

µi =µ?− i −1

(K −1)
∆max

• Radius ri increases with i : denoting r1 =µ?−a?,

ri = r1 + i −1

K −1
rmax

The generator, controlled from hyper-parameters ∆max and rmax, thus enforces that

the mean-related margin∆µ,i is an increasing function of∆max ; furthermore, the min-

related margin ∆a,i is controlled from ∆max and rmax , in such a way that ∆a,i >∆µ,i .
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The experimental comparison of MIN, UCB and MARAB in this favorable case is displayed

on Fig. 6.3 (cumulative pseudo-regret averaged on 40 independent runs with µ? =
0.5, a? =µ?−10−3 and maximal radius 0.5). The risk parameter α ranges from .01 to

.1. The exploration coefficient C in MARAB ranges in {10−6, . . . ,103}.
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Figure 6.3: Cumulative pseudo-regret of UCB, MIN and MARAB under the assumptions
of Prop. 6.2.2, averaged out of 40 runs. Parameter C ranges in {10i , i =−6. . .3}. Risk
quantile level α ranges from .1% to 10%. Left: UCB regret increases logarithmically
with the number of iterations for well-tuned C ; MIN identifies the best arm after 50
iterations and its regret is constant thereafter. Right: zoom on the lower region of Left,
with MIN and MARAB regrets; MARAB regret is close to that of MIN, irrespective of the C
and α values in the considered ranges.

Indeed by construction (Prop. 6.2.2 and discussion), MIN is better suited to this

artificial problem than UCB. Note that since the νi s are uniform, constant A is set

to 1. In this most favorable case, the lessons learned are the following:

• UCB yields a logarithmic regret for a well tuned C . Its disappointing performance

comparatively to MIN and MARAB is blamed on the high variance of the worse

arms, slowing down their estimation (Fig. 6.3, left);

• MIN catches the best arm after 50 iterations, and its regret stops increasing at

this point due to the lack of exploration;

• MARAB interestingly yields the same behavior as MIN for a wide range of risk

values α (in [.01,1]), with almost no sensitivity with respect to the exploration

coefficient C (Fig. 6.3, right). Complementary experiments show that the MARAB
sensitivity w.r.t. C increases for higher values of α (α> .2).
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6.5.3 Artificial problems

A relaxed setting is considered, where the generator only satisfies the assumption of

Equation 6.2. The i -th arm distribution νi is a mixture of ni truncated Gaussians:

• ni is uniformly drawn in 1. . .4;

• for j = 1. . .ni the j -th Gaussian N (µi , j ,σi , j ), is defined by uniformly sampling

µi , j in [0,1] and σi , j in [.12, .5];

• probabilities pi , j , with 1 ≤ j ≤ ni are drawn such that
∑

j pi , j = 1;

• the minimum ai of the i -th arm is uniformly drawn in [0, .05].

Upon selecting the i -th arm, the reward is drawn by: i) selecting the j -th Gaussian

with probability pi , j ; ii) drawing a reward r from N (µi , j ,σi , j ); iii) going to i) if r < ai

or r > 1 (rejection-based truncation).

1,000 independent problem instances are generated. On these problems, UCB, MARAB,

MVLCB and ExpExp are launched, recording their empirical cumulative regrets for

time horizon T = 2,000 and T = 4,000, on the one hand, and the distribution of the

gathered rewards, on the other hand. These results are inspected to examine i) how

the cumulative regret is deteriorated by risk-awareness; and ii) whether the risk-aware

algorithms manage to avoid triggering risky arms.

Cumulative regrets: the cost of risk-awareness

Fig. 6.4 reports the cdf of the empirical cumulative regrets of UCB, MARAB, MVLCB and

ExpExp for time horizon T = 2,000 (Fig. 6.4, left) and T = 4,000 (Fig. 6.4, right),

plotting for each x = 1. . .1000 the value y such that x of the problem instances have

cumulative regret less than y . All algorithm hyper-parameters are set to their optimal

value after preliminary experiments. These experiments show that:

• As could have been expected, UCB yields the best cumulative regret overall

whenever C is well tuned.

• MARAB suffers an extra regret compared to UCB; this extra regret is bounded in the

considered experimental setting, and it seemingly does not increase as the time

horizon increases. As could have been expected this extra regret decreases as

α increases and the selection rule involves a better estimation of the empirical

means. Interestingly, MARAB shows a very low sensitivity w.r.t. C .

• MVLCB yields the worst regret of all strategies, with a very low sensitivity w.r.t.

parameter ρ on the considered problems.

71



Chapter 6. Risk-Awareness for Multi-Armed Bandits

• ExpExp yields very good results; the fact that it does never get very low cumu-

lative regret is explained from its initial exploratory phase; a caveat is that its

optimal setting used in the experiments requires the time horizon to be known

in advance.

Comparatively,

• ExpExp significantly improves on MVLCB with probability circa 90%; it even

improves on UCB with probability 10% (circa 20% for medium time horizon).

• MARAB improves on ExpExp with probability 70%, albeit with maximal cumula-

tive regrets (over the problem instances) higher than for ExpExp.

• Overall, MARAB with risk levelα= 20% and untuned C value yields results slightly

less than UCB with tuned C , for both short and medium time horizons. The

risk-aware MARAB suffers a low regret increase compared to risk-neutral UCB,

with a very low sensitivity w.r.t. C .

• Interestingly, a twice longer time horizon does not modify the performance

order of the algorithms.
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Figure 6.4: Distribution of empirical cumulative regret of UCB, MARAB, MVLCB and
ExpExp on 1,000 problem instances (independently sorted for each algorithm) for
time horizons T = 2,000 and T = 4,000. All algorithm parameters are optimally tuned
(C = 10−3 for UCB, C = 10−3 for MARAB, α= 20%,ρ = 2,δ= 1

T 2 ,τ= K ( T
14 )2/3).

Actual Risk Avoidance

The effective risk avoidance of UCB, MVLCB, ExpExp and MARAB is investigated by in-

specting the distribution of the gathered rewards. For clarity, Fig. 6.5 reports the cdf
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of the rewards on two problem instances, with respectively lowest (left) and highest

(right) variance of the best arm, out of the 1,000 artificial problems. For each problem

instance, 40 runs are launched with time horizon T = 2,000. For each run, instanta-

neous rewards are sorted in increasing order defining a cdf. Fig 6.5 plots the average

cdf : r̄i denotes the average over the 40 runs of the i -th ranked reward and for each

x = 1. . .T the value y = r x is plotted.

An efficient risk-avoiding behavior is seen as the reward cdf rises abruptly on the left,

indicating that the corresponding algorithm hardly tried poor arms. Fig. 6.5 confirms

previous results:

• UCB shows a high sensitivity w.r.t. parameter C , all the more so as the variance

of the best arm is high (Fig. 6.5, top row).

• The bad performance of MVLCB is confirmed; its sensitivity w.r.t. ρ increases

with the variance of the best arm (Fig. 6.5, second row), with a best performance

for medium values of ρ.

• ExpExp features an excellent risk avoidance as the risky trials only take place

during the exploratory phase (Fig. 6.5, third row).

• The general robustness of MARAB w.r.t. C is confirmed; moreover, its robustness

w.r.t. the risk level α on high variance problems is empirically shown (Fig. 6.5,

bottom row). It is seen that for low to medium risk (α < 20%), the empirical

distribution of the rewards rises faster for MARAB than for ExpExp, which is

explained again from the systematic exploratory phase in ExpExp.

6.5.4 Optimal energy management

The real-world problem motivating the presented approach is a battery management

problem, where the environment is described by the energy demand and the energy

cost in each time step. The decision to be taken in each time step is a real-value x,

determining how much energy is either used from the battery (if x > 0) or stored

in the battery (if x < 0). In each time step, one must meet the demand by buying

min(0,demand−x) energy; the instant reward is the opposite of the cost of the bought

energy if the demand exceeds the available energy. Additionally, the battery loses some

energy in each time step. A simplified setting is considered, where i) the energy cost is

constant, the random process only dictates the energy demand in each time step; ii)

20 arms, corresponding to pre-defined strategies are considered. The strategy reward

is drawn by uniform sampling with replacement from the 117 available realizations of

the strategy.

Same general trends as for the artificial problems are observed on this real-world

problem (Fig. 6.6): i) The cumulative regret is minimal for UCB with optimally tuned
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Figure 6.5: Comparative risk avoidance for time horizon T = 2,000 for two artificial
problems with low (left column) and high (right column) variance of the optimal arm.
Top: UCB; second row: MVLCB; third row: ExpExp; bottom: MARAB.
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C ; ii) MVLCB is dominated by all other algorithms w.r.t. both risk avoidance and

cumulative regret; iii) the ExpExp regret increases linearly during the exploration

phase and then reaches a plateau; iv) MARAB shows its good risk-avoidance ability

regardless of the C value, and MIN yields same results. Overall, MARAB offers a slightly

better reward cdf in the region of low rewards, at the expense of a slight regret increase

compared to UCB at its best.

6.6 MARABOUT: The Multi-Armed Risk-Aware Bandit OUT-

handled Algorithm

This section presents a modified version of MARAB, with a provably controlled regret.

This result relies on concentration inequalities for a new mCVaR estimator, presented

in Section 6.6.1.

6.6.1 Concentration inequalities

As stated in chapter 4, a key ingredient of UCB regret proof is the Hoeffding inequality,

allowing the control of the probability of approximation error of the mean. In a similar

fashion, the design and proof of the enhanced version of MARAB derived in this section

is based on deviations inequalities firstly proposed by (Brown, 2007) and further

improved in (Wang and Gao, 2010).

Definition 6.6.1. Let X be a real random variable with distribution ν and let α ∈ (0,1]

denote a risk level.

Let x1, . . . , xn be an i.i.d n-sample drawn according to ν. Assuming without loss of

generality that x1 É x2 É . . . É xn , the estimator derived by the method of moments of

mCV aR(X ) is defined as:

ãmCV aRα (x1, . . . , xn)
def= x(dnαe) + 1

nα

bnαc∑
i=1

(
x(i ) −x(dnαe)

)
(6.21)

Proposition 6.6.1 (Wang and Gao (2010)). Let X be a random variable with Supp(X ) ⊂
[a,b]. For any ε> 0

P
( ãmCV aRα (x1, . . . , xn) É mCV aRα(X )−ε)É3exp

(
− 1

11
α

( ε

b −a

)2
n

)
(6.22)

P
( ãmCV aRα (x1, . . . , xn) Ê mCV aRα(X )+ε)É3exp

(
−1

5
α

( ε

b −a

)2
n

)
É3exp

(
− 1

11
α

( ε

b −a

)2
n

)
(6.23)
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Figure 6.6: Comparative performance of UCB, MVLCB, ExpExp and MARAB on a real-
world energy management problem. Left: sorted instant rewards (truncated to the
37.5% worst cases for readability). Right: empirical cumulative regret with time
horizon T = 100K , averaged out of 40 runs.
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6.6.2 The MARABOUT Algorithm

Based on the above proposition, a refined version of the MARAB algorithm is defined,

called Multi-Armed Risk-Aware Bandit OUThandled (MARABOUT. Algorithm 22).

Algorithm 22 K -armed MARABOUT
Require: Time horizon T , risk level α, exploration coefficients C > 2 and β ∈ [0,1].

1: for t = 1. . .K do
2: It = t ; gather Yt ; initialize ãmCV aRα,i (Xi ,1) = Yt

3: end for
4: for t = K +1. . .T do
5: Choose (arbitrary tie break)

It ∈ argmax
i∈{1,...,K }

{ ãmCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )+
√

11(C log t +β log3)

αNi ,t

}
. (6.24)

6: end for

MARABOUT assesses the quality of each arm thanks to the estimator defined in Equation

(6.21) (Line 2). For each arm, a upper confidence bound is derived and the algorithm

selects an arm It maximizing this bound (Equation (6.24), Line 5)

A key difference between MARAB and MARABOUT is that the latter does involve some

exploration, the strength of which is controlled by parameters C and β (the larger

these parameters, the more exploration the algorithm achieves). In particular, the

optimistic assessment of the mCVaR (Equation (6.24)) leads to visit infinitely often

every arm as t goes to ∞.

The merit of this new algorithm is to allow for bounding its mCVaR-related pseudo-

regret in expectation. Let us first define this pseudo-regret.

Definition 6.6.2. Let a K -armed MAB problem with reward distributions νi , with

α ∈ (0,1] a risk level.

Let for brevity mCV aRi denote the mCV aRα(Xi ) with Xi ∼ νi , with mCV aR? the

optimal mCV aRi for i ranging in 1. . .K . Let ∆mCV aR,i denote the associated margin

(∆mCV aR,i
def= mCV aR?−mCV aRi ).

The mCVaR-related pseudo-regret of a MAB algorithm at time t , with same notations

as in section 3.1.1 is defined by:

RmCV aR,t
def= t ×mCV aR?−

t∑
s=1

mCV aRIt (6.25)

=
K∑

i=1
∆mCV aR,i Ni ,t (6.26)
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Proposition 6.6.2. With same notations as above, assume that the support of distribu-

tions νi is in [0,1] for i ranging in 1. . .K .

Then for C > 2 and β ∈ [0,1], the expected pseudo-regret of MARABOUT is upper-bounded

as:

E
[

RmCV aR,t

]
É ∑

i :∆mCV aR,i>0

{
44(C log(t )+β log(3))

α∆mCV aR,i
+∆mCV aR,i

(
1+ 2×31−β

C −2

)}
(6.27)

Proof. The proof is inspired from the UCB proof (Auer et al., 2002; Bubeck and Cesa-

Bianchi, 2012).

Let i? in 1. . .K be such that mCV aRi? = mCV aR? and ãmCV aRi ,Ni ,t

def= ãmCV aRi ,s
(
Xi ,1, . . . , Xi ,Ni ,t

)

Considering a time step τ where a suboptimal arm is selected

(Iτ = i 6∈ argmax
k∈{1,...,K }

mCV aRk ), we claim that at least one of the three following conditions

below is true:

ãmCV aR i?,Ni?,τ−1
+

√
11(C log(τ)+β log(3)

αNi?,τ−1
ÉmCV aR? (6.28)

ãmCV aR i ,Ni ,τ−1 >mCV aRi +
√

11(C log(τ)+β log(3))

αNi ,τ−1

(6.29)

Ni ,τ−1 <44(C log(t )+β log(3))

α∆2
mCV aR,i

(6.30)

By way of contradiction, assume that these three inequalities are false, it comes:

ãmCV aR i?,T (i ,τ−1) +
√

11(C log(τ)+β log(3))

αNi?,τ−1
> mCV aR? (Eq. 6.28)

= mCV aRi +∆mCV aR,i

Ê mCV aRi +2

√
11(C log(τ)+β log(3))

αNi ,τ−1
(Eq. 6.30)

Ê ãmCV aR i ,Ni ,t−1 +
√

11(C log(τ)+β log(3))

αNi ,τ−1

(Eq. 6.29)

which in turn implies It 6= i , a contradiction. The claim is therefore proven.
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One can write for u = d44(C log(t )+β log(3))
α∆2

CV aR,i
e:

E[Ni ,t ] = E
[ t∑
τ=1

I{Iτ = i }

]
É u +E

[ t∑
τ=u+1

I{Iτ = i and Eq. 6.30 is false}

]
É u +E

[ t∑
τ=u+1

I{Eq. 6.28 or Eq. 6.29 is true}

]
É u +

t∑
τ=u+1

{
P(Eq. 6.28 is true)+P(Eq. 6.29 is true)

}
Probability of the events of Equations 6.28 and 6.29 can be upper-bounded:

P(Eq. 6.28 is true) ÉP(∃s ∈ {1 . . .τ} : ãmCV aR i?,s +
√

11(C log(τ)+β log(3))

αs
É mCV aR?)

É
τ∑

s=1
P( ãmCV aR i?,s +

√
11(C log(τ)+β log(3))

αs
É mCV aR?)

É
τ∑

s=1
31−βτ−C = 31−βτ1−C by Prop. 6.6.1

The same upper bound holds for the event of Equation 6.29.

Finally,

E[Ni ,t ] É u +
t∑

τ=u+1
P(Eq. 6.28 is true)+P(Eq. 6.29 is true)

É 44(C log(t )+β log(3))

α∆2
mCV aR,i

+1+2×31−β t∑
τ=u+1

1

τC−1

É 44(C log(t )+β log(3))

α∆2
mCV aR,i

+2×31−β
{ t∑
τ=u+1

1

τC−1
+1

}
︸ ︷︷ ︸

ÉC−1
C−2 by

∞∑
k=1

1
kγ

< γ
γ−1 for γ>1

+1−2×31−β

É 44(C log(t )+β log(3))

α∆2
mCV aR,i

+1+ 2×31−β

C −2

By using the regret definition, the announced result is proved.

Remark 6.6.1. As said, the exploration strength of MARABOUT increases with β and C .

After the regret bound, it is seen that increasing β reduces the multiplicative factor of

term ∆mCV aR,i ; this extra-exploration thus might result in lowering the upper-bound
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on the regret. In practice however, it will be seen that β= 0 is a recommandable value.

This empirical finding is in agreement with the fact that risk-aversion is better served

by a conservative algorithmic behavior.

6.6.3 Experimental validation

Synthetic problems

MARABOUT is experimentally validated on three 2-armed artificial MAB problems,

reflecting the fact that the MAB difficulty in a risk-aware setting depends on three

factors. The most obvious one is the mCVaR margin ∆mCV aR ; a low mCVaR margin

adversely affects the estimation task like a low mean margin adversely affects the

classical MAB algorithm behaviors. A second factor is the risk level α, reflecting the

probability of undesirable events one would like to be protected from. For α close to

0, the unwanted events are extremely rare, and thus their impact is very difficult to

assess (e.g., only one sample out of 100 could be used for α= .01). The estimation task

is likewise made more hazardous when considering short time horizons: specifically,
T
K provides an indication of the average number of samples which can be expected to

compute the desired estimates.

Accordingly, the artificial three problems illustrate different types and levels of diffi-

culty:

• The first problem involves two arms with same mean and high mCVaR margin.

The first arm is a Bernoulli variable of parameter .5 and the second arm returns

a constant reward .5. The mCVaR margin ∆mCV aR thus is high (.5) while the

mean margin is 0.

• The second problem involves two arms with low mean margin and high mCVaR

margin. The first arm returns .5 with probability .01 and 1 otherwise; the second

arm is a Bernoulli variable of parameter .99. The mean margin ∆ thus is low

(5.10−3) while the mCVaR margin is high (∆mCV aR = .5).

• The third problem involves two arms with very low mean margin and low mCVaR

margin. The first arm returns .1 with probability .01 and 1 otherwise; the second

arm is a Bernoulli variable of parameter .99. The mean margin ∆ thus is very

low (10−3) and the mCVaR margin is low (∆mCV aR = .1).

The goal of experiments is to study: i) the performance in increasingly challenging

settings, in relation with the desired risk level α ; ii) the sensitivity with respect to the

parameter values, and in particular, in relation with the upper bound on the regret.

The first question is investigated by setting α= .5 for the first problem, and α= .01

for the second and third problems. The second question is investigated by setting the
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exploration coefficient C to two distincts values C = 3 and C = 10−4.

The CVaR regret, averaged over 100 independent runs, is displayed on Fig. 6.7.
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(c) Problem 2. α= 0.01. T = 2000
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(d) Problem 3. α= 0.01. T = 2000

Figure 6.7: mCV aR Pseudo-Regret for MARABOUT averaged out of 100 runs, on three
2-armed artificial MAB problems (see text) with C ∈ {

10−4,3
}

and β = 0. Top row:
problem 1 for time horizon T = 200 (left) and T = 2000 (right). Bottom line: problem 2
(left) and problem 3 (right).

The main lesson learned from the experimental results, depicted on Fig. 6.7 is that

MARABOUT can achieve a logarithmic regret on all three problems, albeit with a small

value of C (C = 10−4). This suggests that when dealing with such short time horizons,

the exploration strength must be limited; and that the theoretical lower bound for

C > 2 might be practically too large. In a more detailed way:

• The first problem corresponds to an easy setting, with a large mCVaR margin

(∆mCV aR = 0.5) and a high risk level α = .5, enabling to use a fair amount of

information. In this case, the mCV aR pseudo-regret is logarithmic even for

high values of C (C = 3) provided that the time horizon is sufficiently large

(Fig. 6.7, top row, right). In this problem, a standard MAB algorithm would
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equally select both arms since the mean margin is 0, leading to a high variance

of the rewards. In such situations, MARABOUT contributes to the stability of the

gathered rewards.

• For the second problem (Fig. 6.7(c)), the main challenge lies in the tiny value

of α= 0.01. Achieving a logarithmic regret rate in this challenging setting and

over such short time horizons is a encouraging result for the applicability of the

approach.

Actually, such a setting is ideally suited to the use of risk-aware approaches. On

the one hand, the low mean margin (∆= 5.10−3) adversely affects classical MAB

algorithms. On the other hand, since ∆mCV aR is large, the loss encountered in

worst cases is large, which is specifically what one wants to be protected from.

In the meanwhile, the large mCVaR margin makes it easier for MARABOUT.

Furthermore, the above does not depend on the value of α. The fact that loga-

rithmic regrets are attained for low α values thus also suggests a wide range of

successful application of the approach.

Note that the standard deviation is increased compared to Pb 1; a tentative

interpretation for this large standard deviation is that the estimate of mCV aRα,i

is very sensitive to the first samples; many trials might be required to revise the

(too optimistic) estimate.

• On the third problem, the most challenging one out of the three, MARABOUT
also successfully manages to reach a logarithmic regret. The same remarks as

above hold, where the higher variance of the results is explained by the smaller

∆mCV aR .

It must however be said that a practitionner might want to use a standard

MAB algorithm in such a setting, for the losses in the worst cases remain small

(∆mCV aR = 10−3) and optimistic MAB algorithms might make a more efficient

use of all the samples to compensate for the smaller margin ∆.

Comparison with MARAB

The purpose of this section is now to compare the behavior of MARAB and MARABOUT.

Figure 6.8 presents the regret after T = 2000 = 100K (left) and T = 4000 = 200K (right)

iterations. For a parameter C one order of magnitude lower than for MARAB, MARABOUT
is able to reach comparable level of performances on all the collection of 1000 artificial

problems. In the same manner, Figure 6.9 compares the average sorted rewards of

MARAB vs MARABOUT for the problem with the smallest (left) and largest (right) variance

on the optimal arm. Like previously, a larger sensitivity to the parameter tuning is

seen in the low variance case. However, MARABOUT is able to reach in both cases the
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performance of MARAB for α = 20%. Finally, Figure 6.10 is interested with the real-

world energy problem and shows the ability of the approach to gather good rewards

in the 37.5% worst cases when α is low (left). Fig. 6.10 also shows that, given a C value,

the MARABOUT performance is not sensitive to α. Secondly, MARABOUT performance is

optimal for very low values of C (C = 10−7). In the meanwhile, MARABOUT is dominated

by MARAB (with low sensitivity with respect to both α and C , Fig 6.6). This fact is

explained by the pessimistic and conservative strategy of MARAB; the lack of exploration

does not harm its performance in small time horizon.
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Figure 6.8: Comparative distribution of empirical cumulative regret of MARAB and
MARABOUT on 1,000 problem instances (independently sorted for each algorithm) for
time horizons T = 2,000 and T = 4,000.
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Figure 6.10: Comparative performance of MARAB and MARABOUT on a real-world energy
management problem. Left: sorted instant rewards (truncated to the 37.5% worst
cases for readability). Right: empirical cumulative regret with time horizon T = 100K ,
averaged out of 40 runs.

6.7 Discussion and perspectives

The first aim of our work is to extend the now standard Exploration vs Exploitation

trade-off to a more complex and very applicatively relevant trade-off: Exploration vs

Exploitation vs Safety.

The presented contributions are structured as follows:

• Under quite restrictive assumptions (about the arm distributions) and goals

(where the risk level α goes to 0), it has been shown that MIN yields surprisingly

good results, successfully competing with UCB.

• The MARAB algorithm was introduced to handle the general case of a risk level

α > 0; though with no provable guarantees, MARAB was found to outperform

MVLCB and ExpExp in the general case on artificial1 and real-world problems.

MARAB is dominated by UCB at its best, i.e. for an optimally tuned C parameter;

on the other hand, the sensitivity of UCB w.r.t. parameter C makes it ill-suited to

risk-sensitive contexts. Quite the contrary, MARAB displays a very low sensitivity

to parameter C , all the more appreciated as the burden of hyper-parameter

tuning (Aut, 2015) is increasingly acknowledged in the Machine Learning field.

• An improved version of MARAB, MARABOUT enjoys a provable guarantee of loga-

rithmic regret in term of the CVaR pseudo-regret, and experiments on artificial

problems illustrating the different difficulties of risk-aware MAB confirm that

1Though with deteriorated results in the worst 30% cases comparatively to ExpExp; but it is true to
say that ExpExp setting was optimally tuned, assuming that the time horizon is known.
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the logarithmic regret is achieve in all cases (although with a much lower C

value that the one considered in the analysis).

The research perspectives of this work are twofold. A medium term perspective, the

MARAB and MARABOUT algorithms will be extended to the context of tree-structured

search space to achieve safe sequential decision making, along the same lines as

(Moldovan and Abbeel, 2012). A longer term perspective is to extend the MAB ap-

proaches to the general case where the quantity to be maximized is a function of the

samples, following the pioneering work of (Neufeld et al., 2014).
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This chapter presents our second contributions, focused on the contextual linear

bandit problem. The contextual MAB setting extends the classical MAB setting by

supposing that, at each time step, additional side information is provided to the learner

and may be used to improve the arm choice. This situation holds true in various real

world problems where partial but relevant data is available and exploitable.

After introducing the motivations for contextual MABs, this chapter presents the BESA
algorithm (Baransi et al., 2014) and details our extension of the sub-sampling strategy
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of BESA to the contextual linear case, forming the Contextual Linear Best sub-Sampled

Arm (CL-BESA) algorithm.

7.1 Introduction

Like classical MABs, the contextual multi-armed bandit setting considers a finite set of

arms with unknown associated reward distributions. The difference is that the learner

is additionally provided with a context (or state) in each time step, knowing that this

reward associated to the selected arm depends on the context.

The contextual MAB setting, introduced in chapter 3, is relevant in all application

domains where some side information can be exploited about the current decision.

For instance, in the medical domain where arms are classically associated with various

treatments, data relative to the patient’s medical background may be of great interest.

Likewise, contextual bandits have also been used to customize online content delivery

(Li et al., 2010).

The performances of a bandit algorithm are mainly assessed according to their cumu-

lative regrets (chapter 3). Indeed, contextual MAB problems could likewise be handled

through standard MAB algorithms, offering the practitionner the benefit of the regret

guarantees associated with the state-of-the-art methods. Falling back on standard

MAB algorithms is however likely to be suboptimal as the information provided by the

context is dismissed. Different approaches have therefore been used for contextual

and context-free MAB settings.

As already said, the (context-less and contextual) non-greedy MAB algorithms belong

to two distinct categories:

1. The optimistic algorithms include: UCB (Auer et al., 2002), UCB-V (Audibert

et al., 2009), KL-UCB (Cappé et al., 2013; Maillard et al., 2011), DMED (Honda and

Takemura, 2010) and in the contextual case OFUL (Abbasi-Yadkori et al., 2011).

These algorithms compute for each possible arm a confidence region containing

an arm parameter (e.g. its value expectation) with high probability. Then, the

chosen arm is the one considered to be the most promising in the sense that it

maximizes the expected value augmented with an estimate of the confidence

on this expectation. In doing so, the algorithm applies the optimism in front of

the unknown principle.

2. The Bayesian algorithms essentially include the Thompson sampling in the

stochastic MAB case (Thompson, 1933; Agrawal and Goyal, 2012b) and the

linear contextual MAB (Agrawal and Goyal, 2012a) in the contextual case. This

approach relies on maintaining and updating, for each arm and at each time

step, a prior distribution over the best parameter (in term of mean reward
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maximization). This prior is used at each time step to sample a parameter value

and pick the corresponding best arm.

The work presented in this chapter proposes a third approach to the contextual

bandits, rooted in the BESA algorithm first presented by (Baransi et al., 2014). The

BESA algorithm proceeds by comparing any two arms using a subsampling strategy.

Formally, let us consider two arms associated with respectively n1 and n2 samples,

respectively denoted {X1,s , s = 1. . .n1} and {X2,s , s = 1. . .n2}. Let us further assume

with no loss of generality that n1 ≥ n2. The intuition is that the choice should be based

on comparing the two arms by using the same amount of information. Accordingly,

one extracts a n2-subsample from the 1st sample {X1,s , s = 1. . .n1}, using uniform

sampling without replacement, and compute its empirical average. Depending on

whether this empirical average is higher or lower than the empirical average of the

2nd sample {X2,s , s = 1. . .n2}, one selects the first or the second arm.

In the stochastic MAB case (Baransi et al., 2014), this sub-sampling strategy showed

state-of-the-art performances, with several practical benefits over the other approaches.

Compared to the UCB and Bayesian algorithms, it does not require any complex com-

putation (e.g. empirical confidence interval, posterior update or sampling from a

possibly complex distribution) and can be applied, as is, to a wide variety of arm

distributions, without requiring any prior knowledge contrary to KL-UCB or Thompson
sampling. Moreover, its great simplicity leads to a straigthforward implementation;

furthermore, it does not require any hyper-parameter to be tuned, which is a huge

advantage for practical applications, as already said. These properties motivated the

extension of the sub-sampling to the contextual case.

7.2 Sub-sampling Strategy for Contextual Linear Bandit

This section introduces the Contextual Linear Best sub-Sampled Arm (CL-BESA) algo-

rithm, in the K = 2 arms case. The extension to an arbitrary finite number of arms is

straightforward by considering a tournament among the arms, as in (Baransi et al.,

2014).

7.2.1 Notations

Let us use the same notations as in section 3.3, with the context space X and parame-

ter spaceΘ included in Rd . Some additional notations go as follows:

Let S = (
(Xi1 ,Yi1 ), . . . , (XiS ,YiS )

)
denote a context-reward sample set of size S. X(S ) =

(Xi1 , . . . , XiS )T is the S ×d context matrix and Y(S ) = (Yi1 , . . . ,YiS )T is the S reward

vector.
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One wants to estimate θ such that Y(S ) = X(S )θ.

The corresponding regularized least-square estimate θ̂ is then defined as:

θ̂λ(S )
def= (

X(S )T X(S )+λId
)−1

X(S )T Y(S ) (7.1)

with Id the d ×d identity matrix and λ> 0 a regularization parameter.

It can be showed that θ̂λ is the solution of the regularized least-squares problem

defined by:

θ̂λ = mi nθ‖Y(S )−X(S )θ‖2
2 +λ‖θ‖2

2

In particular, the regularization allows a unique closed-form estimation in the case of

a rank-deficient matrix X(S ).

Moreover, the following notations are introduced:

• Si ,t
def= {

(X t ′ ,Yt ′) : t ′ É t , It ′ = i )
}

denotes the subset of observations correspond-

ing to time steps when the arm i has been selected up to and including time

t .

• I ∼ Wr(n,m) denotes a random set of n indices drawn uniformly over the set

{1, . . . ,m}. By convention, I = {1, . . . ,m} if n Ê m.

• By noting S = {s1, . . . , sS} a finite set of observations, one defines the subsampled

set according to I by S (I )
def= {si , i ∈ I }.

• Nt (i ) =∑t
s=1 I{It = t } is the number of pulls of arm i until time t .

Technical assumptions

Some further technical assumptions are required in order to derive theoretical regret

bound.

First, both X andΘ are supposed to be convex, bounded and are known to the learner.

The noise ηt is supposed to be a i.i.d, centered and sub-Gaussian, i.e. there exists

some known Rη ∈R, such that, for all λ ∈R,

log
[
Eexp(ληt )

]É λ2R2
η

2
(7.2)

The context mean is noted µ and one writes X t = µ+ξt , where ξt is a centered i.i.d

noise, bounded almost surely by ‖ξt‖2
2 É σ2

2 for some constant σ2
X , and such that for

all λ ∈Rd :

log
[
Eexp(λT ξt )

]É ‖λ‖2
2σ

2
X

2
(7.3)

Finally, for convenience, one assumes that:
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1. ∀x ∈X ,∀θ ∈Θ, |〈x,θ〉| É 1

2. The radius of the parameter spaceΘ is bounded by some constant B :

max
θ∈Θ

‖θ‖2 É B (7.4)

3. All distributions have density with respect to the Lebesgue measure.

7.2.2 Contextual Linear Best Sub-Sampled Arm

The Contextual Linear Best Sub-Sampled Arm (CL-BESA) is introduced (Algorithm 23)

in the 2-arm case, where the two arms are respectively denoted a and b. As said, the

extension to any finite number of arms proceeds by considering a tournament among

the arms (Algorithm 24).

Algorithm 23 CL-BESA (a,b) for two arms
Require: Current time t , context X t , parameter λ.

1: Sample I a
t−1 ∼ Wr(Nt−1(b); Nt−1(a)) and I b

t−1 ∼ Wr(Nt−1(a); Nt−1(b)).

2: Compute the estimates θ̂a,t−1
def= θ̂λ(Sa,t−1(I a

t−1)) and θ̂b,t−1
def= θ̂λ(Sb,t−1(I b

t−1))
3: Choose (break ties by choosing the least sampled arm)

It = argmax
a′∈{a,b}

〈X t , θ̂a′,t−1〉 . (7.5)

Like BESA, CL-BESA focuses on comparing a and b based on an equal quantity of

information. To this aim, the algorithm uniformly sub-samples from the most-visited

arm a number of observations equals to the one of the least visited arm (Line 1). The

arm parameters θa and θb are estimated thanks to Equation 7.1 (Line 2) and the arm

with expected highest payoff is selected (Line 3).

Let us clarify the algorithm mechanism by rolling a simple example. Let us assume

that two arms a and b have been respectively visited Nt−1(a) = 10 and Nt−1(b) = 3

times at time t . Then:

• Line 1 sub-samples, uniformly and without replacement, a subset I a
t−1 of size 3

from the set {1, . . . ,10}.

• Line 2 computes the estimates θ̂a,t−1 and θ̂b,t−1 according to Eq. 7.1 and the

indice sets I a
t−1 and the whole set of indices {1,2,3} associated to arm b.

• Line 3 selects the most promising arm according to these estimates. Contrar-

ily to the optimistic algorithms, there is no penalization of the estimate by a

confidence bound.
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Discussion

Like in the stochastic case, the approach can seem counter-intuitive and sub-optimal.

Indeed, when interested in estimating a parameter, the intuition would suggest to

take profit of any available information whereas sub-sampling imply discarding ob-

servations. This is especially the case where observations are largely imbalanced, for

instance Na,t−1 À Nb,t−1. In the case of a single decision, it is clear that discarding

information will not provide any benefits.

However, as previously stated, MAB algorithms are rooted on faithfully enforcing

the Exploration vs. Exploitation trade-off, and MAB algorithms implement different

ways of balancing the exploration and exploitation efforts. In this perspective, sub-

sampling should be interpreted as yet another approach to enforce this balance. In

particular, it must be noted that:

1. Consecutive comparisons between two arms a and b compensates for the

discarded information as the subsampling of the most-visited arm sample yields

(almost) independent subsets of observations, supporting a tight comparison

between arms as detailled in (Baransi et al., 2014).

2. The linear reward structure assumption leads to estimate parameters θa and θb

in each time step through a simple regularized least squares.

Algorithm 24 CL-BESA (A )
Require: Current time t , context X t , parameter λ, arm set A

1: if A = {a} then
2: It = a
3: else
4: It = CL-BESA

(
CL-BESA

({
1, . . . ,dK

2 e
})

,CL-BESA
({bK

2 c, . . . ,K
}))

5: end if

As said, CL-BESA can be extended to an arbitrary number K of arms after (Baransi

et al., 2014), through a dichotomic process (Algorithm 24). The final choice of arm is

given by organizing a tournament between arms. The arm set A = {1, . . . ,K } is shuffled

thanks to a random permutation σt ∈ SK , thus preventing the apparition of learning

biases by comparing same arms in each time iteration.
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7.3 Contextual regret bound

7.3.1 Contextual regret

At each time step t , with context X t , the best arm is defined as:

θt ,?
def= argmax

i
〈X t ,θi 〉

Contrasting with the standard MAB context, the optimal arm is not fixed and it can

change at each time iteration depending on the context X t . A degenerate case is

when the perturbation of the context information, noted σX , is small enough and the

optimal arm becomes constant.

Given a time horizon T ∈N?, the contextual regret is thus defined as:

RX ,T =
T∑

t=1
〈X t ,θt ,?−θIt 〉 (7.6)

The definition of contextual regret emphasizes the influence of the context X t on

the reward. This feature, specific to the contextual bandit case, implies a non-trivial

contextual regret minimization.

7.3.2 Theoretical bound

Theorem 11 provides an upper-bound for the contextual regret of CL-BESA. Its proof

takes inspiration from the theoretical study of both BESA (Baransi et al., 2014) and OFUL
(Abbasi-Yadkori et al., 2011). However, contrarily to the case of OFUL, the least-squares

matrices defining the vector estimates may change a lot between two consecutive

time steps because of the sub-sampling, preventing the straightforward adaptation of

the previous proof. Another proof design is thus proposed to address this difficulty.

Theorem 11. Let Rη andσX be the sub-Gaussian parameters respectively defined by 7.2

and 7.3 and let B defined by Eq. 7.4. Run CL-BESA with non-decreasing regularization

parameter (Eq. 7.1) λÊ 6σ2
X log(T ). Assume that

∣∣〈µ,θa −θb〉
∣∣Ê 8σX B +2

p
2
‖θa‖2 +‖θb‖2√
λ−1 +‖µ‖−2

2

. (7.7)
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Then, the contextual regret of CL-BESA after T rounds is upper bounded by

E[RX ,T ] É(
max
t∈[T ]

∆t
) 64

mint∈[T ]∆
2
t

[
Rη

√
2d log

(
λ1/2T 2 + T 3(‖µ‖2 +σX )2

dλ1/2

)
+λ1/2B

]2

+ (
max
t∈[T ]

∆t
)24σ2

X log(T )−2λ

‖µ‖2
2

+
T∑

t=1
∆t I{min

t∈[T ]
∆t É τ}

)
+O(1) .

where the expectation is with respect to the internal randomness of the algorithm and

of the additive reward noise, and where

τ
def= 2σX

[
Rη

√
2d

λ
log

(
λ1/2T 2 + T 3(‖µ‖2 +σX )2

dλ1/2

)
+B

]
. (7.8)

When the context perturbation is σX = 0, then ∆t reduces to ∆
def= |〈µ,θa −θb〉

∣∣ and we

obtain

E[RX ,T ] É
128R2

ηd

∆
log(2T 3‖µ‖2

2/d)+O(1).

Algorithm Regret bound
CL-BESA O(d log(T 3))

OFUL (Abbasi-Yadkori et al., 2011) O(d log2(T ))
Confidence Bound (Dani et al., 2008) O(d 2 log3(T ))

Thompson sampling (Agrawal and Goyal, 2012a) O(d 2
p

T )

Table 7.1: Theoretical regret bounds for contextual bandit algorithms

Remark 7.3.1. For the sake of comparison, Table 7.1 lists the theoretical regret bounds

associated with state of the art algorithms, showing the merits of CL-BESA: the asso-

ciated regret scales linearly with the dimension d, and logarithmically with the time

horizon T . This result establishes the applicability of the sub-sampling technique to the

contextual multi-armed bandit problem.

Remark 7.3.2. The restriction regards the minimum gap mint∈[T ]∆t (see Eq. 7.8).

Note that a similar limitation is encountered in the distribution-dependent analysis

of OFUL. Additionally, the authors explicitly assume a constant optimal arm in the

distribution-dependent proof.

Remark 7.3.3. The assumption λÊ 6σ2
X log(T ) is mainly formulated due to technical

reasons. Also, experiments (see 7.4) suggest Equations 7.7 and 7.8 might be improved fur-

ther. In practice, λ=λt =Ω(σ2
X ) log(t ) is recommended, even though a good robustness

w.r.t. the choice of λ is observed in the experiments.
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Proof. Step 1: Let ?t be the optimal action at time t and ¬?t the other action (Recall

that there are only K = 2 arms A = {a,b}).

By definition of the contextual regret at time T ,

RX ,T =
T∑

t=1
〈X t ,θ?t −θIt 〉

=
T∑

t=1
〈X t ,θ?t −θ¬?t 〉I{It =¬?t }

=
T∑

t=1
∆t I{?t = a, It = b}+

T∑
t=1

∆t I{?t = b, It = a} ,

with ∆t = 〈X t ,θ?t −θ¬?t 〉 the instantaneous gap.

The event {It =¬?t } involves 〈X t , θ̂?t ,t−1 − θ̂¬?t ,t−1〉, thus the instantaneous gap can

be decomposed as

∆t =〈X t ,θ?t − θ̂?t ,t−1〉+〈X t , θ̂¬?t ,t−1 −θ¬?t 〉
+〈X t , θ̂?t ,t−1 − θ̂¬?t ,t−1〉 . (7.9)

Now, on the event {It =¬?t }, either 〈X t , θ̂?t ,t−1−θ̂¬?t ,t−1〉 < 0, or 〈X t , θ̂?t ,t−1−θ̂¬?t ,t−1〉 =
0 and Nt−1(¬?t ) < Nt−1(?t ), or 〈X t , θ̂?t ,t−1 − θ̂¬?t ,t−1〉 = 0 and Nt−1(¬?t ) = Nt−1(?t )

and a random coin ξt ∼ B(0.5) is tossed that gets value 1 (without loss of generality).

In any case, it holds that

〈X t , θ̂?t ,t−1 − θ̂¬?t ,t−1〉I{It =¬?t } É 0.

The parameter θ̂?t ,t−1 = θ̂λ(S?t ,t−1(I?t
t−1)) involves the samples S?t ,t−1 and the sub-

sampling index set I?t
t−1. For all deterministic x and constant δ ∈ (0,1), and for S =

S?t ,t−1, it holds by the proof of Theorem 2 from Abbasi-Yadkori et al. (2011) that with

probability higher than 1−δ (w.r.t. S ),∣∣∣〈x, θ̂λ(S )−θ?t 〉
∣∣∣É ‖x‖Vλ(S )−1 Bλ,?t (S ) where

Bλ,?t (S ) = Rη

√
2log

(det(Vλ(S ))

λd/2δ

)
+λ‖θ?t ‖Vλ(S )−1 ,

where Rη comes from the sub-Gaussian assumption on the noise (7.2), and Vλ(S ) =
X(S )>X(S )+λId . Since I?t

t−1 is chosen independently on S?t ,t−1, it is not difficult

to see that the same bound holds for S?t ,t−1(I?t
t−1), with respect to all sources of

randomness. Thus, combining this result together with the decomposition (7.9), and

using the assumption that X t is independent from
⋃

a∈A Sa,t−1, one deduces that with
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probability higher than 1−2δ

∆t I{It =¬?t } É
[ ∑

a′∈{?t ,¬?t }

‖X t‖V −1
a′,t−1

Ba′,t−1

]
I{It =¬?t } , (7.10)

where the short-hand notations Va,t−1
def= Vλt−1 (Sa,t−1(I a

t−1)) as well as Ba,t−1
def= Bλt−1,a(Sa,t−1(I a

t−1))

are introduced for convenience.

Step 2: Now, ‖X t‖V −1
a,t−1

appearing in Equation (7.10) is bounded. By definition of

Va,t−1, it holds that

‖X t‖2
V −1

a,t−1
= X >

t

(
λt−1Id + ∑

i∈I a
t−1

Xsi X >
si

)−1
X t .

This expression is decomposed by using the definition of Xs =µ+ξs for all s.

Thus, on the one hand:

‖X t‖V −1
a,t−1

É ‖µ‖V −1
a,t−1

+‖ξt‖2λ
−1/2
t−1 , (7.11)

where one used the fact that minimum eigenvalue of V −1
a,t−1 is lower-bounded by λt−1.

On the other hand, the following decomposition holds:

Va,t−1 =λt−1Id +|I a
t−1|µµ>+ ∑

i∈I a
t−1

ξsi ξ
>
si

+
( ∑

i∈I a
t−1

ξsi

)
µ>+µ

( ∑
i∈I a

t−1

ξ>si

)
=V +E +E1 +E2 ,

where the following four matrices are introduced:

V =λt−1Id +|I a
t−1|µµ>,

E = ∑
i∈I a

t−1

ξsi ξ
>
si

,

E1 =µ
( ∑

i∈I a
t−1

ξ>si

)
and

E2 =
( ∑

i∈I a
t−1

ξsi

)
µ> .

Now, µ is an eigenvector of the matrix V with associated eigenvalue λµ
def= λt−1 +

|I a
t−1|‖µ‖2

2. Thus, it holds that µ>V −1µ=µ>V −1 V µ
λµ

= ‖µ‖2
2

λµ
. The minimum eigenvalue

of E is non-negative. µ is also an eigenvector of the rank 1 matrix E1 with eigenvalue

λµ,2 =∑
i∈I a

t−1
〈ξsi ,µ〉. Finally, the only non-zero eigenvalue of the rank 1 matrix E2 is
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∑
i∈I a

t−1
〈ξsi ,µ〉 (associated to the vector

∑
i∈I a

t−1
ξsi ).

Thus one deduces that the matrix norm of the vector µ cannot increase too much

when V is perturbed by E +E1 +E2: λµ is shifted by at most λµ,2 +min{λµ,2,0}, which

leads to the bound

‖µ‖2
V −1

a,t−1
É ‖µ‖2

2

λt−1 +|I a
t−1|‖µ‖2

2 +2min{
∑

i∈I a
t−1

〈ξsi ,µ〉,0}
,

under the condition that λt−1 +|I a
t−1|‖µ‖2

2 +2min{
∑

i∈I a
t−1

〈ξsi ,µ〉,0} > 0.

This condition happens with high probability, provided that the noise is small enough.

Indeed, by the Chernoff method together with (7.3), it holds for all deterministic set I

of size n, and for δ ∈ (0,1) that

P
[∑

i∈I
〈ξsi ,µ〉 É−‖µ‖2σX

√
2n log(1/δ)

]
É δ .

Thus, since I a
t−1 is chosen independently on the samples, by a union bound over the

possible values of the random size |I a
t−1| É t −1 of the index set, it comes that on an

event of probability higher than 1−δ,

∑
i∈I a

t−1

〈ξsi ,µ〉 Ê−‖µ‖2σX

√
2|I a

t−1| log((t −1)/δ) .

Thus, solving the condition n‖µ‖2
2 +λt−1 −2‖µ‖2σX

√
2n log((t1)/δ) > 0 in n, one ob-

serves that when λt−1 > 2σ2
X log((t −1)/δ), the condition is satisfied for all n.

Step 3: Plug-in this result and the bound on ‖µ‖2
V −1

a,t−1
in (7.11), and combining this to-

gether with (7.10), one deduces that at time t such that It =¬?t , then with probability

higher than 1−6δ,

∆t É
√√√√√ ‖µ‖2

2B 2
¬?t ,t−1

λt−1 +nt−1‖µ‖2
2 −2‖µ‖2σX

√
2nt−1 log( t−1

δ
)

+
√√√√√ ‖µ‖2

2B 2
?t ,t−1

λt−1 +nt−1‖µ‖2
2 −2‖µ‖2σX

√
2nt−1 log( t−1

δ
)

+‖ξt‖2λ
−1/2
t−1 (B¬?t ,t−1 +B?t ,t−1) (7.12)

where nt−1
def= |I¬?t

t−1 | = |I?t
t−1| = min{Nt−1(¬?t ), Nt−1(?t )}.

The next step is to simplify this expression by upper bounding both B¬?t ,t−1 and

B?t ,t−1. To this end, one notes that on the one hand λt−1‖θ?t ‖V −1
¬?t ,t−1

É λ1/2
t−1‖θ?t ‖2,

and on the other hand, using the fact that ‖X t‖2 ÉC for all context vector X t , where
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C
def= ‖µ‖2 +σX ,

det(V¬?t ,t−1) É
( trace(V¬?t ,t−1)

d

)d

É
(λt−1d +nt−1C 2

d

)d

É(λt−1 + (t −1)C 2/d)d .

Thus, it holds for both I ′ =¬?t and I ′ =?t that

BI ′,t−1 É Rη

√√√√
2d log

(λ1/2
t−1 + (t−1)C 2

dλ1/2
t−1

δ

)
+λ1/2

t−1‖θI ′‖2 . (7.13)

For convenience, the first term on the left hand side in (7.13) is denoted bt−1 =

Rη

√
2d log

(λ1/2
t−1+ (t−1)C 2

dλ1/2
t−1

δ

)
. Combining (7.13) together with (7.12), so far, and using the

fact that ‖θ‖2 É B for all θ ∈ Θ, it is shown that for all t such that It = ¬?t , with

probability higher than 1−6δ, then

∆t É
[ 2‖µ‖2√

λt−1 +nt−1‖µ‖2
2 −2‖µ‖2σX

√
2nt−1 log( t−1

δ )

+‖ξt‖2λ
−1/2
t−1

][
bt−1 +λ1/2

t−1B
]

,

that is, after reorganizing the terms, and provided that the noise is not too large, i.e.

∆t Ê ‖ξt‖2(bt−1λ
−1/2
t−1 +B), then

nt−1 − 2σX

‖µ‖2

√
2nt−1 log(

t −1

δ
) É 4

(
bt−1 +λ1/2

t−1B

∆t −‖ξt‖2(bt−1λ
−1/2
t−1 +B)

)2

− λt−1

‖µ‖2
2

. (7.14)

By introducing the threshold τt = ‖ξt‖2(bt−1λ
−1/2
t−1 +B), the regret is decomposed into:

RX ,T É
T∑

t=1
∆t I{It =¬?t ,∆t Ê τt }+

T∑
t=1

∆t I{∆t < τt } .

Step 4: In this step, two cases are considered. First, the case when Nt−1(¬?t ) Ê
Nt−1(?t ). Second, when Nt−1(¬?t ) < Nt−1(?t ).

In the first situation, then nt−1 = Nt−1(?t ), and it comes from (7.14) that Nt−1(?t )

cannot be too large. Indeed, for positive constants A,B , the condition n − A
p

n É B

implies that n É B+A2/2
(
1+

p
1+4B/A2), which in this case leads to Nt−1(?t ) É uλ,t (δ)
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where

uλ,t (δ)
def= 4

(
bt−1 +λ1/2

t−1B

∆t −‖ξt‖2(bt−1λ
−1/2
t−1 +B)

)2

+ 4σ2
X log( t−1

δ )

‖µ‖2
2

+
4σX

√
2log( t−1

δ
)

‖µ‖2

(
bt−1 +λ1/2

t−1B

∆t −‖ξt‖2(bt−1λ
−1/2
t−1 +B)

)
− λt−1

‖µ‖2
2

.

Likewise, in the second case when Nt−1(¬?t ) É Nt−1(?t ), then one deduces that

necessarily Nt−1(¬?t ) É uλ,t (δ) with high probability, and thus a controlled regret.

From this point on, one can proceed similarly to the elementary proofs of the regret of

the UCB algorithm (Auer et al., 2002), as in (Maillard et al., 2011; Bubeck, 2010) or of

BESA (Baransi et al., 2014). More precisely, it holds, since |∆t | É 1 by assumption, that

RX ,T É
T∑

t=1
∆t I{It =¬?t ∩∆t Ê τt ∩Nt−1(?t ) > uλ,t (δt )}

+
T∑

t=1
I{Nt−1(?t ) É uλt (δt )}+

T∑
t=1

∆t I{∆t < τt }

É
T∑

t=1
∆t I{It =¬?t ∩∆t Ê τt ∩Nt−1(¬?t ) É uλ,t (δt )}

+6
T∑

t=1
δt +

T∑
t=1

I{Nt−1(?t ) É uλt (δt )}+
T∑

t=1
∆t I{∆t < τt } ,

for any choice of δt ∈ (0,1) for t ∈ {1, . . . ,T }. In particular, this holds for the choice

δt = t−2.

The first sum is splitted into the sum over the time steps for which ?t = a and the sum

over the time steps for which ?t = b. Note that ∆t is not independent from It . For the

sum such that ?t = b, it comes

T∑
t=1

∆t I{It = a ∩Nt−1(a) Éuλ,t (δt )}I{?t = b}

É(max
tÉT

∆t )
T∑

t=1
I{It = a ∩Nt−1(a) É max

tÉT
uλ,t (δt )}I{?t = b}

É(max
tÉT

∆t )(max
tÉT

uλ,t (δt )) .

Likewise, a similar control can be obtained for the sum corresponding to ?t = a.

In order to control the maximum terms, one uses the fact that ‖ξt‖2
2 É σ2

X . Thus, it

holds that
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max
tÉT

uλ,t (δt ) Éu where

u
def= 16

[Rη

√
2d log

(
λ1/2

T T 2 + T 3C 2

dλ1/2
T

)
+λ1/2

T B

mint∈[T ]∆t
+ σX

√
6log(T )

‖µ‖2

]2

− λT

‖µ‖2
2

,

provided that the context-noise is small enough that

min
t∈[T ]

∆t > τ def= 2σX

[
Rη

√
2d

λT
log

(
λ1/2

T T 2 + T 3C 2

dλ1/2
T

)
+B

]
.

To sum up this step, it has been shown so far that RX ,T is bounded as

RX ,T É2
(

max
tÉT

∆t
)
u +π2 +

T∑
t=1

I{Nt−1(?t ) É uλt (t−2)}

+
T∑

t=1
∆t I{min

t∈[T ]
∆t É τ} .

Step 5: In order to conclude this proof, the term that now needs to be controlled is

T∑
t=1

I{Nt−1(?t ) É uλt (δt )} = ∑
t∈Ta

I{Nt−1(a) É uλt (δt )}+ ∑
t∈Tb

I{Nt−1(b) É uλt (δt )} ,

where Ta
def= {t ∈ [T ] :?t = a} for a ∈A .

To this end, a procedure similar to that used in (Baransi et al., 2014) is employed. More

precisely, following the exact same steps as Steps 3 and 4 of the proof of Theorem 1 in

(Baransi et al., 2014), it comes that

∑
t∈Tb

P
[

Nt−1(b) É uλt (δt )
]
É c + ∑

t∈Tb ,tÊc

buλt (δt )c∑
j=1

αb,a(Mt , j )+O(1) ,

where c is a constant such that t Ê c implies t Ê uλt (δt )(uλt (δt )+1), Mt ∈N is such

that Mt =O(log(t )) and where the function αb,a(M , j ) is defined by1

αb,a(M , j ) = EZ b
1: j

[
PZ a

1: j ,X

(
〈X , θ̂(Z a

1: j )− θ̂(Z b
1: j )〉 > 0

)M]
.

Here, one used explicitly the stochastic nature of the context X t , to avoid having to

deal with much more complex expressions. This comes at the price of restricting to

1Indeed, the tie event 〈X , θ̂(Z a
1: j )− θ̂(Z b

1: j )〉 = 0 has probability 0, since the distributions are diffuse.
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cases when the noise it not too strong. Here, Z b
1: j denotes a set of j i.i.d. samples

Z b
j = (X j ,Y j ) generated from the model considered in the introduction, when arm b

is chosen (that is, such that Y j = 〈X j ,θb〉+ηi and X j =µ+ξ j ), Z a
1: j denotes a similar

set built using θa instead of θb , and X =µ+ξ is generated by Nature.

Step 6: The next step of the proof is to control the quantity αb,a(M , j ) for steps Tb

(and likewise αa,b(M , j ) for steps Ta). In the sequel, the notation b = ? is used to

clarify that b is the optimal arm in time-steps Tb . One wants to show that this decays

exponentially fast to 0 with either M or j , so that the contribution to the regret is

controlled. To begin with, the dot product is decomposed according to the different

random variables

〈X , θ̂(Z a
1: j )− θ̂(Z?

1: j )〉 =〈µ,θ?− θ̂(Z?
1: j )〉+〈µ, θ̂(Z a

1: j )−θa〉+〈ξ, θ̂(Z a
1: j )−θa〉

+〈ξ,θ?− θ̂(Z?
1: j )〉+〈ξ,θa −θ?〉−∆ ,

where ∆= 〈µ,θ?−θt 〉. Then, it holds for all ε> 0 that

PX

(
〈ξ,θa −θ?〉 Ê ε

)
É exp

(
− ε2

2‖θa −θ?‖2
2σ

2
X

)
. (7.15)

The term 〈ξ,θ?− θ̂(Z?
1: j )〉 is controlled a bit differently, by

PX

(
〈ξ,θ?− θ̂(Z?

1: j )〉 Ê ε
)
É exp

(
−

ε2λt j

2‖θ?− θ̂(Z?
1: j )‖2

V?,t j
σ2

X

)
, (7.16)

where t j Ê j corresponds to a time when arm a is sampled at least j times (note that

this is a probability with respect to X , not Z?
1: j ).

Likewise, 〈ξ, θ̂(Z a
1: j )−θa〉 is controlled by

PZ a
1: j ,X

(
〈ξ, θ̂(Z a

1: j )−θa〉 Ê ε
)
É

(
λ1/2

t j
+ jC 2

dλ1/2
t j

)
exp

(
−
λt j (ε−σX ‖θ?‖2)2

2σ2
X R2

)
, (7.17)

for all ε>σX ‖θ?‖2.

Finally, it has already been shown that, with probability higher than 1−δ−δ′ with

respect to Z a
1: j , then

〈µ,θa − θ̂(Z a
1: j )〉 É

‖µ‖2Rη

√√√√
2log

(λ1/2
t j

+ jC 2

dλ1/2
t j

δ

)
+λ1/2

t j
‖µ‖2‖θa‖2√

λt j + j‖µ‖2
2 −2‖µ‖2σX

√
2 j log(1/δ′)

. (7.18)
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Inverting this bound in δ, this gives for all εÊ ‖µ‖2√
j‖µ‖2

2+λt j

, and ε′ Êλ1/2
t j

‖θa‖2, that

PZ a
1: j

(
〈µ,θa − θ̂(Z a

1: j )〉 Ê εε′
)
É exp

(
−

(
j‖µ‖2

2 +λt j −‖µ‖2
2/ε2

)2

8‖µ‖2
2σ

2
X j

)

+
(
λ1/2

t j
+ jC 2

dλ1/2
t j

)
exp

(
−

(
ε′−λ1/2

t j
‖θa‖2

)2

2R2
η

)
. (7.19)

Thus, by combining equations (7.15), (7.16), (7.17) and (7.19) together it comes

PZ a
1: j ,X

(
〈X , θ̂(Z a

1: j )− θ̂(Z?
1: j )〉 > 0

)
ÉPZ a

1: j ,X

(
〈µ, θ̂(Z a

1: j )−θa〉+〈ξ, θ̂(Z a
1: j )−θa〉

+〈ξ,θ?− θ̂(Z?
1: j )〉+〈ξ,θa −θ?〉 >∆−〈µ,θ?− θ̂(Z?

1: j )〉
)

É inf
ε0,...,ε4

{
exp

(
−

(
j‖µ‖2

2 +λt j −‖µ‖2
2/ε2

0

)2

8‖µ‖2
2σ

2
X j

)

+
(
λ1/2

t j
+ jC 2

dλ1/2
t j

)
exp

(
−

(
ε1 −λ1/2

t j
‖θa‖2

)2

2R2
η

)

+
(
λ1/2

t j
+ jC 2

dλ1/2
t j

)
exp

(
−
λt j (ε2 −σX ‖θ?‖2)2

2σ2
X R2

η

)

+exp
(
−

ε2
3λt j

2‖θ?− θ̂(Z?
1: j )‖2

V?,t j
σ2

X

)
+exp

(
− ε2

4

2‖θa −θ?‖2
2σ

2
X

)
:

ε0ε1 +ε2 +ε3 +ε4 É∆−〈µ,θ?− θ̂(Z?
1: j )〉,

ε2 >σX ‖θ?‖2,ε0 Ê ‖µ‖2√
j‖µ‖2

2 +λt j

,ε1 Êλ1/2
t j

‖θa‖2

}
.

By choosing ε0 =
p

2‖µ‖2√
j‖µ‖2

2+λt j

, ε1 = 2λ1/2
t j

‖θa‖2, ε2 = 2σX ‖θ?‖2, ε3 =p
2σX ‖θ?‖2, and

ε4 =
p

2σX ‖θa −θ?‖2κ, for some positive κ, the previous expression can be simplified.

This way, and using the fact that λT Êλt j Êλ j , finally establishes the following bound
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on the quantity α?,a(Mt , j ) that has to be controlled:

α?,a(Mt , j ) É EZ?
1: j

[(
e−κ2 +e

−
(

j‖µ‖2
2+λ j

)2

32‖µ‖2
2σ

2
X j

+
(
λ1/2

T + jC 2

dλ1/2
j

)[
e−λ j ‖θa‖2

2
2R2 +e−λ j ‖θ?‖2

2
2R2

]

+e
− λ j ‖θ?‖2

2
‖θ?−θ̂(Z?

1: j
)‖2

V?,t j

)Mt

I{E }+ I{E c }
]

. (7.20)

For convenience, the event E has been introduced:

E
def=

{
〈µ,θ?− θ̂(Z?

1: j )〉 É∆− 2
p

2‖µ‖2‖θa‖2√
j‖µ‖2

2/λt j +1
−p

2σX B(1+p
2+2κ)

}
.

At this point, one notes that since λ j Ê 6σ2
X log( j ), all the exponential terms but e−κ2

decay polynomially fast to 0 with j , and that for Mt = O(log(t)), the first half of the

bound on α?,a(Mt , j ) decays polynomially fast to 0 with t , at a rate that can always be

adjusted to be t−(1+β) for some small β> 0. Thus, in order to control the regret term of

Step 5, one deduces from this observation and (7.20) that it only remains to show that

PZ?
1: j

(E c ) is small enough under our assumptions on the noise. From equation, (7.19),

it is not difficult to see that

PZ?
1: j

(E c ) É e
− ( j‖µ‖2

2+λ j )2

32‖µ‖2
2σ

2
X j +

(
λ1/2

T + jC 2

dλ1/2
j

)
e
−λ j ‖θ?‖2

2
2R2
η ,

provided that the following condition holds

2
p

2(‖θa‖2 +‖θ?‖2)√
j /λT +‖µ‖−2

2

É∆−p
2σX B(1+p

2+2κ) .

Finally, in order for term PZ?
1: j

(E c ) to decay fast enough with t (at least t−(1+β)), it is

enough to choose λt Ê c log(T ) for all t for some constant c, which leads to

∑
t∈Tb ,tÊc∆

buλt (δt )c∑
j=1

αb,a(Mt , j ) =O(1).

Step 7: Now that α?,a(Mt , j ) is controlled, αa,b(Mt , j ) can be treated similarly. Thus,

103



Chapter 7. Subsampling for contextual linear bandits

at the price of loosing a factor 2 (using Ta É T and Tb É T ), it has been shown that

E[RX ,T ] = (
max
t∈[T ]

∆t
)
U +

T∑
t=1

∆t I{min
t∈[T ]

∆t É τ}
)
+O(1) .

where

U
def= 64

mint∈[T ]∆
2
t

[
Rη

√
2d log

(
λ1/2

T T 2 + T 3C 2

dλ1/2
T

)
+λ1/2

T B

]2

+ 24σ2
X log(T )−2λT

‖µ‖2
2

and

τ
def= 2σX

[
Rη

√
2d

λT
log

(
λ1/2

T T 2 + T 3C 2

dλ1/2
T

)
+B

]
.

This concludes the proof after some cosmetic simplifications of U using (a +b)2 É
2(a2 +b2) for positive a,b.

7.4 Experimental study

This section presents numerical experiments illustrating the behavior of CL-BESA and

supporting the discussion of its performances comparatively to the state of the art.

7.4.1 Experimental setting

For the sake of comparison, the presentation will focus on the 2-arm bandit problem,

empirically comparing CL-BESA with the following baseline algorithms:

• OFUL, described in section 4.6.1, is a MAB algorithm which does not consider

the contextual information (Abbasi-Yadkori et al., 2011); it assumes that the

set of arms is known (with parameters θa and θb known), and learns a shared

unknown parameter β with

Yt = 〈β?,θIt 〉+ηt

The computational trick, which consists in sparsely recomputing βt is not

used in the experiments due to the difficulty of tuning the underlying hyper-

parameter C .

• Thompson sampling is a family of (pseudo-)Bayesian algorithms (Agrawal and

Goyal, 2012a); like OFUL, it does not consider the contextual information

(Abbasi-Yadkori et al., 2011); it assumes that the set of arms is known (with

parameters θa and θb known), and maintains a prior distribution on the param-

eter β?.
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• LinUCB is a linear contextual MAB algorithm, with same setting and same noise

model as CL-BESA. Note however that (Li et al., 2010) considers Xi ,t context

vector which can depend on the arm. This is a slightly more general framework

than CL-BESA, although CL-BESA is able to cope with it.

As said, these algorithms are divided in two categories:

• CL-BESA and LinUCB learn an unknown parameter θi governing the reward

gathered by the i -th arm.

• OFUL and Thompson sampling learn an unknown parameter β shared among

all arms.

For the sake of a fair comparison with CL-BESA, the OFUL and Thompson sampling
settings are adapted to match the CL-BESA setting. A straightforward scheme is

to concatenate the unknown parameters θa and θb into one unknown vector θ
def=

(θaθb) ∈RdK to be learned. The corresponding context vectors are X t ,a = (X T
t 0T

d )T ∈
RdK and X t ,b = (0T

d X T
t )T ∈RdK .

This adaptation enables to apply OFUL and Thompson sampling. Also, the resulting

comparison will be fair as every algorithm has to learn a distinct model and cannot

take advantage of any shared information. Indeed, Thompson sampling and OFUL in

their original setting use every sample of every arm up to time t to reach a decision,

leading to favor these algorithms especially in case of imbalanced trials among the

arms.

7.4.2 Illustrative problem

Algorithms are evaluated on the following bi-dimensional MAB problems with K = 2

arms defined by µ= (0.5,0.5)T , θa = (0.5,0)T and θb = (0,0.5)T +(0,2∆)T . The gap is set

to ∆= 10−1 and the time horizon to T = 1000. At each time t , a context X t is uniformly

drawn in the ball B(µ,σ2
X /2) and the immediate reward is given by Yt = 〈X t ,θIt 〉+ηt

with ηt ∼N (0,R2
η).

This problem will be refered to as the orthogonal problem in the sequel.

7.4.3 Sensitivity analysis w.r.t. parameters

Table 7.2 lists the parameters involved in all baseline algorithms and in CL-BESA.

Note that all four algorithms share one parameter governing the regularization of a

least-squares problem: λ (implicitly set to 1 for Thompson sampling and LinUCB).
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Table 7.2: Table of parameters

Algorithms Parameters
CL-BESA Regularization: λ ∈R?
OFUL (Abbasi-Yadkori et al., 2011) Regularization: λ ∈R?

Confidence level: δ ∈ (0,1)
Sub-Gaussian additive noise: ROFU L ∈R+
Parameter upper bound SOFU L =R+

LinUCB (Li et al., 2010) Confidence level: δ ∈ (0,1)
Thompson sampling (Agrawal and Goyal, 2012a) ε ∈ (0,1)

Confidence level: δ ∈ (0,1)
Sub-Gaussian additive noise: RT S ∈R+

CL-BESA

As said, CL-BESA features a single parameter, λ. This is an important feature for

both its implementation and its applications as parameter tuning often is a daunting

problem with potentially huge influence on the performances.
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Figure 7.1: Contextual regret, in logarithmic scale as a function of the number of
iterations on the orthogonal problem with ∆= 10−1,σX /

p
2 = ∆,Rη = ∆ of CL-BESA

for various choices of the regularization parameter λ. Results averaged over 1000 runs.

Fig. 7.1 shows the contextual regret of CL-BESA for various values of λ on the orthog-

onal problem with a noise level Rη and context perturbation σXp
2

equal to the gap ∆.

The curves illustrate the robustness of the algorithm with respect to the tuning of λ,

leading to a virtually parameter-free approach.
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OFUL

OFUL involves three parameters: ROFU L , SOFU L , and δ, all of them influencing the size

of the confidence ellipsoid. In the sequel, ROFU L and SOFU L will be set to their ideal

values, respectively to ROFU L = Rη and SOFU L = ‖θ‖2. δ= 10−4 as in the experimental

study of (Abbasi-Yadkori et al., 2011).

This setting corresponds to a favorable case for OFUL as the optimal parameter values

are not known in practice and may be difficult to estimate. Figure 7.4.3 shows the

sensitivity of OFUL w.r.t. the parameter values and their impact on the contextual

regret of OFUL. The same problem and the same noise and contextual perturbation

levels are considered. Influence of λ, ROFU L and SOFU L are individually exhibited by

fixing all the others parameter values.

Figure 7.2(a) illustrates the sensitivity of OFUL to parameter λ, as λ = 1
T leads to a

high regret level. Also, Figures 7.2(b) and 7.2(c) exhibit the large deterioration of

performances if ROFU L and/or SOFU L are one or two orders of magnitude too loosely

estimated. This case happens not infrequently as the user mostly have no prior

information about Rη or ‖θ‖2.

LinUCB

LinUCB requires a confidence parameter δ controlling the size of the confidence

interval. As discussed in (Li et al., 2010), LinUCB is sensitive to the value of δ, and α as

advised and defined in (4.32) generally provides an over-conservative bound.

Thompson Sampling

As for OFUL, Thompson sampling requires a confidence level δ ∈ (0,1) and bound RT S

on the sub-Gaussian noise level Rη and are respectively set to 10−4 and Rη. As advised

in (Agrawal and Goyal, 2012a), ε will be set as ε= 1
logT in the following experiments,

ensuring a Õ(d 2
p

T ) regret.

7.4.4 Influence of noise and perturbations levels

Figure 7.3 represents the contextual regret of CL-BESA, OFUL, LinUCB and Thompson
sampling on the orthogonal problem for different levels of additive noise Rη ∈ {∆,10∆}

and context perturbation σXp
2
∈ { ∆10 ,∆,10∆,100∆}. Algorithms are tuned as described in

the previous section and, in particular, OFUL and Thompson sampling are provided

with the exact values of ‖θ‖2 and Rη.
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Figure 7.2: Parameter influence on the contextual regret of OFUL on the orthogonal
problem with ∆ = 0.1, (σXp

2
,Rη) = (∆,∆) and λ = 1. Left: ROFU L ∈ {Rη,10Rη,100Rη},

SOFU L = ||θ̄||2. Right: SOFU L ∈ {||θ̄||2,10||θ̄||2,100||θ̄||2}, ROFU L = Rη. Results are aver-
aged over 1000 runs.

Expected contextual regrets

The plots confirm the good performances of CL-BESA in all considered settings. More

precisely, its expected contextual regret remains controlled, logarithmic and is quasi-

optimal: its rank is 2nd or 1st on all settings, and furthermore when it is ranked

second its regret is close to that of the first algorithm. More generally, the comparison

of the curves shows that the algorithm ranks widely vary depending on the setting.

For instance the third line (σXp
2
= 10∆) shows that OFUL outperforms CL-BESA slightly

and LinUCB significantly when Rη = ∆ (left) but is clearly outperforms by LinUCB
when Rη = 10∆ (right). The stability of CL-BESA and the general good level of its

performances thus make it a good choice for the practitionner in the general case of

unknown noise and/or perturbation level, ensuring a low if not optimal contextual
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regret.

The bad performances of Thompson sampling are coherent with the O(
p

T ) theoreti-

cal regret bound and are certainly due to over-conservative bounds and the known

difficulty of parameter tuning.

Stability

Figure 7.3 also illustrates the stability of the four studied algorithms. A first observation

is that, for each algorithm, the variance of the regret is increasing with the additive

noise level Rη (from left to right) and with the contextual perturbation σXp
2

(from top to

bottom), with an apparent higher sensitivy to Rη.

However, one can observe a larger instability for CL-BESA to a additive high noise Rη

(noise ten times larger than the gap ∆) compared to OFUL and LinUCB. Nevertheless,

the expected regret of CL-BESA remains competitive; this is explained (and confirmed

by inspection) by the presence of catastrophic and excellent runs for the same setting.

Finding a way of preventing the worst runs would lead to significant improvements of

the sub-Sampling technique, and will define a perspective for further research.

In such extreme (and practically unlikely) situations, a practitioner may favor an alter-

native to CL-BESA depending of his or her objectives and available prior knowledge.

For instance, in the case of risk-aversion, i.e. the user preferring reasonably high regret

in worst cases rather than optimal expected regret, and reliable estimations of Rη and

‖θ‖2 are known, then OFUL or LinUCB should be preferred to CL-BESA depending of

these estimates.

Otherwise, CL-BESA remains one of the best options. Note that in truly experimental

conditions, OFUL would not benefit from the optimal parameters values SOFU L and

ROFU L. In the considered benchmark, the exact knowledge of these (practically in-

accessible) quantities favors OFUL. In particular the exact value of the additive noise

level Rη, source of difficulty, is provided to the algorithm. As previously showed, im-

precisions in the setting of the parameters would certainly lead to an increase of the

expected contextual regret of OFUL. Likewise, LinUCB is a sub-optimal alternative for

Rη =∆.

7.4.5 Influence of the dimension

Lastly, the sensitivity of the algorithms with respect to the space dimension is exam-

ined, varying the dimension d in 2. . .200. For d Ê 2, one considers the d-dimensional

MAB orthognal problem with K = 2 arms defined by µ = ( 1p
2d

, . . . , 1p
2d

)>, θa,d =
(
p

2/d∆,0, . . . ,
p

2/d∆,0)> and θb,d = (0,−p2/d∆, . . . ,0,−p2/d∆)>. The margin is set

to ∆.
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Algorithms are parametrized in the same fashion as in the former bi-dimensional

problem case: ROFU L = RT S = Rη =∆, δ= 10−4 (OFUL and Thompson sampling) and

SOFU L,d = ‖θd‖2 with θd = (θT
a,dθ

T
b,d )T .

Figure 7.4 shows the contextual regret of OFUL, Thompson sampling, LinUCB and

CL-BESA for T = 1000, ∆= 0.1 when d varies from 1 to 200 (results are averaged over

20 runs).

LinUCB suffers from numerical instability in large dimensions, causing a high re-

gret and variance. For this reason, no results were obtained with LinUCB for d ≥ 40.

Thompson sampling and CL-BESA obtain a stable regret level and OFUL regret slightly

increases with the dimension.

As the problems as been normalized so that ∆ remains constant regardless of the

dimension, this results remains coherent with the regret bound derived in Theorem

11, scaling linearly with d .

As already said, the baseline algorithms have been parameterized using the optimal

parameters (in particular for Rη and ‖θd‖2), to get their performances at their best.

This makes it even more impressive that CL-BESA only requires parameter λ to be

tuned and still delivers best and stable results over all dimensions d ranging in 1. . .200.

7.5 Discussion and perspectives

In this chapter, the goal is to provide a virtual parameter-free approach to linear con-

textual bandits, extending the seminal work of (Baransi et al., 2014) to the contextual

setting. The contributions are structured as follows:

• Firstly, the performance of CL-BESA confirms that the subsampling approach

should be viewed as a third category of MAB algorithms, along with the opti-

mistic and (pseudo-)Bayesian approaches.

• On the theoretical side, the analysis of the contextual regret of CL-BESA is con-

ducted, showing a logarithmic scaling with the time horizon, demonstrating

the applicability of sub-sampling to contextual linear bandits. This result is

counter-intuitive as one may think that sub-sampling implies a detrimental loss

of information. Moreover, the proof of this regret bound requires non-trivial

adaptations of previous proofs due to the sub-sampling.

• On the practical side, CL-BESA offers an easy implementation, low computa-

tional cost comparatively to the optimistic (respectively Bayesian) approaches,

which require the maintenance of confidence sets (resp. of the posterior distri-

bution).

110



7.5. Discussion and perspectives

• Finally, the empirical validation of CL-BESA comparatively to the state of the art

confirms: i) the logarithmic regret scaling; ii) the robustness of CL-BESA w.r.t.

the tuning of its unique parameter λ; iii) the robustness w.r.t. the dimension

of the contextual problem; iv) last and not least, the stability of the CL-BESA
performances, ranking first or second in a wide range of artificial experimental

settings.

The research perspectives of this work are manifold. On the practical side, one would

like to improve the (currently naive) implementation of the sub-sampling scheme,

which might be very useful for high-dimensional contexts, and when the gap in ex-

pected payoff between arms is small (and thus there is significant overlap between sub-

samples at different rounds). Making efficient re-use of the regularized least-squares

solution across similar sub-samples in this situation would result in an appreciable

computational speed up.

On the theoretical side, it is seen that the regret has possibly high variance in diffi-

cult scenarios (large noise); a test, detecting unpromising runs, would significantly

improve the average results in such cases.

A longer term perspective of research is to address the general (non-linear) contextual

bandit problem and extend the subsampling approach to the general reinforcement

learning setting, where current decisions affect future outcomes.
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Figure 7.3: Context perturbation and additive noise level: Contextual regret as
a function of the number of iterations on the orthogonal problem with ∆ =
10−1 of CL-BESA, OFUL , LinUCB and Thompson sampling. δOFU L = δT S = 10−4,
ROFU L = RT S = Rη and SOFU L = ‖θ‖2 (optimal values). Top to bottom: σX /

p
2 ∈

{ ∆10 ,∆,10∆100∆}. Left: Rη =∆; Right: Rη = 10∆.
112



7.5. Discussion and perspectives

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200

C
o

n
te

x
tu

al
 R

eg
re

t

dimension

CL-BESA λ = 1
OFUL λ = 1

LinUCB δ = 1/t
2

TS ε = 1 / log(T)

Figure 7.4: Contextual regret of CL-BESA, OFUL, LinUCB and Thompson sampling
as a function of the dimension on an orthogonal problem with ∆ = 10−1,σX /

p
2 =

∆, Rη = ∆, T = 1000. δOFU L = δT S = 10−4, ROFU L = RT S = Rη and SOFU L,d = ‖θd‖2

(optimal values).

113





Part III

Conclusions

115





Chapter 8

Conclusions and perspectives

This final chapter summarizes our contributions and presents future work directions.

8.1 Contributions

Our contributions include both theoretical and algorithmic extensions of the Multi-

Armed Bandit setting:

1. Risk-awareness for the stochastic MAB (Chapter 6).

2. Sub-sampling for contextual linear bandits (Chapter 7).

8.1.1 Risk-Awareness for the stochastic Multi-Armed Bandits

In the Multi-Armed Bandit framework, the chosen definition of the risk is the possibil-

ity of getting low instantaneous rewards, potentially leading to hazards in real-world

situations (e.g., for clinical testing). More generally, risk avoidance is an essential

aspect in many applications; in such situations, it is suggested that one should focus

on a three component trade-off: Exploration vs Exploitation vs Safety, instead of the

classical two component trade-off.

While previous works focused on a mean-variance (Sani et al., 2012a) or a log-Laplace

(Maillard, 2013) criterion, we study two new criteria:

• the essential infimum of the arms, leading to the algorithm MIN.

• the (modified) conditional value at risk at level α ∈ (0,1](CV aRα), defined as

the average value of the arms in the α% worst cases. This led to the derivation

of two bandit algorithms termed Multi-Armed Risk-Aware Bandits (MARAB) and

Multi-Armed Risk-Aware Bandits Outhandled (MARABOUT).
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For MIN and MARABOUT, a theoretical analysis is proposed, based on concentration

inequalities. These studies show a logarithmic regret of MIN under restrictive assump-

tions (probability mass lower-bounded by A > 0 in the neighborhood of the minimum,

same optimal arms for min and expectation). For MARABOUT a logarithmic regret rate

is shown for a (modified) CVaR-related regret.

Moreover, experiments conducted on both synthetic and real-world problems show

the applicability of MARAB on short or moderate time horizons with low and stable

empirical regrets in comparison with state-of-the-art methods. Also, experiments

show the good performances of MARABOUT on challenging problems, even though

the exploration constant C should be below the theoretical threshold. The empirical

comparison between MARAB and MARABOUT shows a slightly lesser performance of

MARABOUT on synthetic problems and a larger regret on the real-world energy problem.

This performance loss is explained by the conservative (pessimistic) MARAB strategy,

better suited to short-term horizons.

8.1.2 Sub-Sampling for Contextual Linear Bandits

The Contextual Bandit setting extends the stochastic MAB setting by adding side

information available at each round and influencing the decision process. The Con-

textual Linear Bandits further add the assumption that the reward function is a linear

function of the selected arm. In this framework, we introduce Contextual Linear

Best Sub-Sampled Arm (CL-BESA), extending BESA (Baransi et al., 2014) and its sub-

sampling approach.

We consider the challenging problem of estimating one parameter per arm (disjoint
model) and derive an algorithm comparing two arms based on the same quantity of

information. In the same fashion than BESA, we sub-sample from the most played

arm as many observations as for the least sampled arm. This simple, though counter-

intuitive, idea shows strikingly good properties in the stochastic case (simplicity,

quasi-optimality, parameterlessness).

In the contextual linear case, the contextual regret is defined, encompassing the fact

that the optimal arm might change at every round depending on the context. A non-

trivial logarithmic bound for this regret is derived and empirical results are presented

on synthetic problems, in comparison with state-of-the-art methods. It shows the

excellent overall performances of the approach, under a wide variety of noise and

perturbation conditions as well as in high-dimension settings. Indeed, the algorithm is

the unique solution always ranked first or second in the worst case, without requiring

the fine-tuning of hyper-parameters. This result demonstrates the wide applicability

of the approach, providing the practitioner with best chances to obtain low contextual

regret in an unknown environment (noise/perturbation levels). However, it also shows

that CL-BESA seems more unstable (higher variance) than the competitors in the case
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of high additive noise on the reward.

8.2 Future Work

The purpose of this section is to present some of the new research directions extending

the work presented in this document.

8.2.1 Improvements of MARABOUT proof

The current proof is essentially similar to the one of UCB with distinct concentration

inequalities and confidence bound. Refined techniques like peeling (see for instance

(Bubeck, 2010)) or self-normalization (de la Peña et al., 2004; de la Peña et al., 2009)

might allow tighter regret bound for MARABOUT.

8.2.2 Risk-Aware Reinforcement Learning

As described in Chapter 1, bandits can be exploited to design planning algorithms

dealing with sequences of decisions in an unknown environment with varying states

(Markov Decision Processes).

The most famous example of such algorithm is Upper Confidence bound applied to

Trees (UCT, (Kocsis and Szepesvári, 2006b)) where UCB is used to navigate through the

search tree. However, a study of its regret in worst case show a Ω(exp(exp(D))) with

D being the tree depth (see (Coquelin and Munos, 2007)). Another approach is OLOP
(Bubeck and Munos, 2010) which is demonstrated to be minimax optimal in term of

simple regret.

Adapting one of these algorithms by replacing the UCB and mean-focused criterion by

a criterion with a suited risk measure will lead to a anytime risk-aware reinforcement

learning, able to provide a solution within a given computational budget.

These solutions will be compared to the one of (Moldovan and Abbeel, 2012) where

safety is defined in term of ergodicity, i.e. the ability to reach any (safe) state from the

current state with a suitable policy.

8.2.3 Extensions of CL-BESA

The CL-BESA algorithm and the sub-sampling strategy opens up new research direc-

tions:

• First, the higher noise sensitivity of CL-BESA in comparison to OFUL, Thompson
sampling or LinUCB (Chapter 7), will be further investigated. Indeed, the high

variance suggests room for improvement by mean of a characterization of the
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bad runs of CL-BESA. At least, one can expect theoretical insight into when not

to use CL-BESA.

• On a related way, it might be interesting to derive a risk-aware contextual linear

bandit algorithm as the need for a safe exploration remains important in this

setting.

• Finally, CL-BESA will be extended to the non-linear contextual setting.
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Appendix A

Résumé de la thèse

A.1 Introduction

Cette thèse s’intéresse au problème des bandits manchots stochastiques à bras multi-

ples (Multi-Armed Bandits Thompson (1933); Lai and Robbins (1985)), une formal-

isation à la fois simple et riche des problèmes de prise de décision séquentielle en

environnement inconnu et notamment du compromis exploration-exploitation.

Le problème se définit ainsi : un joueur entre dans une salle de casino équipée de K

machines à sous ou bras dont les récompenses suivent des lois de distribution {νi }iÉK

inconnues. Le but est alors de maximiser la somme des récompenses récoltées au

cours d’un horizon temporel (nombre d’essais) T fini. Le compromis exploration-

exploitation s’exprime sous la forme suivante :

• Exploration : le joueur entre sans connaissance a priori sur les distributions. Il

doit donc essayer des machines pas ou peu testées auparavant pour identifier

les meilleures.

• Exploitation : pour maximiser la somme des gains cumulés, il est indispensable

de tirer le plus souvent possible les bras identifiés comme les meilleurs.

Il est important de noter que l’objectif ici n’est pas d’obtenir une évaluation précise

des distributions associées à chaque bras mais de discriminer les meilleurs bras le

plus vite possible.

Historiquement, l’étude de ce problème a débuté avec les essais cliniques (Thomp-

son, 1933, 1935). T patients arrivent séquentiellement (un patient à chaque pas de

temps), et nous disposons de K médicaments (bras) dont les effets sont inconnus. Le

but étant de sauver le plus de patients possibles, le cadre des bandits manchots est

particulièrement adapté à ce genre de situations.

Dans le cadre des bandits manchots, ce manuscrit de thèse apporte des contributions

théoriques et algorithmiques selon deux axes principaux :
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1. Le premier axe est la prise en considération du risque et la définition d’un com-

promis à trois composantes : Exploration-Exploitation-Sécurité. En effet, si

l’objectif est de discriminer le plus rapidement possible les meilleurs bras, la

question du critère de qualité associée à chaque bras reste centrale. Classique-

ment, les bras sont jugés selon la récompense moyenne qui leur est associée. Si

ce critère se prête à beaucoup de domaines, il existe des situations où il sem-

ble inapproprié. Par exemple, dans le cadre d’une application médicale, on

préférera à un médicament bon en moyenne mais potentiellement dangereux

un médicament sûr en pire cas même au prix d’une légère dégradation des

performances moyennes. Cet axe est développé dans le chapitre 6.

2. Le second axe s’intéresse aux bandits linéaires contextuels qui enrichissent

le cadre stochastique de base en formulant deux hypothèses. Premièrement,

la récompense est une fonction linéaire des bras. Ensuite, on suppose révélé

à chaque instant t un contexte au joueur qui sert de support à sa prise de

décision. Ce cadre permet d’inclure une information additionnelle aidant le

joueur. Dans l’exemple des traitements médicaux, le contexte peut résumer les

informations relatives au patient arrivant à l’instant t . Dans cette configuration,

nous avons étendu un algorithme de bandit stochastique et basé sur le sous-

échantillonage appelé Best Estimated Subsampled Arm (BESA (Baransi et al.,

2014)). L’algorithme résultant, Contextual Linear Best Estimated Subsampled

Arm (CL-BESA), a fait l’objet d’une étude théorique et empirique développées

dans le chapitre 7

A.2 Regret

Nous notons :

• K ∈N? le nombre de bras.

• νi la distribution du bras i

• µi
def= E[νi ] l’espérance du bras i .

• µ?
def= max

i∈{1,...,K }
µi l’espérance du (ou des) meilleur(s) bras.

• i? un indice tel que : µi? =µ?.

• ∆i la marge du bras i définie par ∆i
def= µ?−µi .

• T ∈N∪ {∞} l’horizon temporel.
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• It ∈ {1, . . . ,K } le bras choisi à l’instant t .

• Xi ,s la récompense instantanée du bras i après s tirages.

• Ni ,t =
t∑

s=1
I{Is = i } le nombre de tirage du bras i jusqu’à l’instant t inclus.

• Yt = X It ,Ni ,t la récompense instantanée reçue à l’instant t .

A.2.1 Définitions

Avec ces notations, l’objectif est donc de trouver une politique maximisant la somme
T∑

t=1
Yt . De manière équivalente, on peut minimiser la perte engendrée par rapport à

un oracle tirant toujours le bras optimal.

Formellement, cette perte est appelée le regret cumulé de la politique.

Définition A.2.1 (Regret cumulé). Le regret cumulé d’un agent au temps t est défini

par :

Rt
def= max

i∈{1,...,K }

t∑
s=1

Xi ,s︸ ︷︷ ︸
Récompenses cumulées par un oracle

−
t∑

s=1
Ys︸ ︷︷ ︸

Récompenses cumulées par l’agent

. (A.1)

Définition A.2.2 (Pseudo-regret cumulé). Le pseudo-regret cumulé d’un agent au

temps t est défini par :

Rt
def=

t∑
s=1

(
µ?−µIs

)= K∑
i=1

∆i Ni ,t . (A.2)

A.2.2 Borne inférieure

Cette section donne une borne inférieure théorique sur le regret d’un agent. Cette

borne repose sur la divergence de Kullback-Leibler entre deux distributions.

Définition A.2.3 (Kullback and Leibler (1951)). Soit P ([0,1]) l’ensemble des distribu-

tions de probabilités sur [0,1]. La divergence de Kullback-Leibler entre deux distribu-

tions P et Q dans P ([0,1]) est définie par :

K L(P,Q) =


∫
[0,1]

dP
dQ log dP

dQ dQ si P ¿Q

+∞ sinon
(A.3)

Théorème A.2.1 (Burnetas and Katehakis (1996)). Soit P ⊂P ([0,1) et soit un joueur

consistent avec P , i.e. pour tout bras sous-optimal i et tout β> 0, E[Ni ,t ] = o(T β). Alors,
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pour tout bandit stochastique avec distributions dans P , on a :

liminf
T→∞

E[Rt ]

log t
Ê ∑

i :∆i>0

∆i

Kinf(νi ,µ?)
(A.4)

avec Kinf(νi ,µ?) = inf
{
K L(νa ,ν) : ν ∈P et E[ν] >µ?}

.

A.3 Prise en charge du risque

Cette section résume le premier jeu de contributions de cette thèse présenté dans le

chapitre 6. Elle consiste en la prise en charge du risque en bandits manchots; le risque

étant caractérisé par le tirage d’un bras aux récompenses très faibles.

A.3.1 Approche max-min

La première approche proposée est l’algorithme MIN tirant à chaque pas de temps un

bras avec le minimum empirique maximal : It ∈ argmax
i∈{1...,K }

{mi ,t } avec mi ,t
def= min

{
Yu t.q. Iu = i ,u = 1, . . . t

}
.

Le but de cet algorithme est de trouver le bras avec l’infimum essentiel défini comme

suit.

Définition A.3.1. Soit ν une distribution de probabilité et X ∼ ν une variable réelle.

L’infimum essentiel aν de ν est défini par :

aν
def= max

a∈R
{P (X < a) = 0}

Grâce à une inégalité de concentration explicitée dans le chapitre 6 (lemme 6.6), nous

pouvons, sous certaines hypothèses détaillées ci-dessous, établir une borne sur le

pseudo-regret de MIN.

Proposition A.3.1. Soient ν1, . . . ,νK les K distributions des bras avec un support borné

dans [0,1]. On dénote µi (respectivement ai ) les moyennes (respectivement les infima

essentiels) des νi . On suppose :

• Pour tout i ∈ {1, . . . ,K } et tout t ∈ {1, . . .T }, il existe une constante A > 0 telle que

pour tout ε> 0,

P
(
Xi ,t É ai +ε

)Ê Aε. (A.5)

• Les bras ayant une moyenne maximale µ? = max
i∈{1,...K }

{µi } ont aussi un infimum

essentiel maximal a? = max
i∈{1,...K }

{ai }.
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En notant ∆µ,i = µ? (respectivement ∆a,i = a?− ai ) la marge des moyennes (respec-

tivement des infima essentiels), le pseudo-regret cumulé est borné, avec probabilité au

moins 1−δ par :

Rt É K −1

A

∆µ,max

∆a,min
log

(
tK

δ

)
+ (K −1)∆µ,max (A.6)

avec∆a,min
def= min

i :∆a,i>0
∆a,i et∆µ,max

def= max
i :∆µ,i>0

∆µ,i . De plus, l’espérance du pseudo-regret

cumulé est bornée, pour t assez grand (t Ê K−1
A

∆a,min
∆µ,max

) par :

E[Rt ] É K −1

A

∆µ,max

∆a,min

(
log

(
t 2K A

K −1

∆a,min

∆µ,max

)
+1

)
+ (K −1)∆µ,max. (A.7)

Sous une condition supplémentaire concernant la queue gauche de la distribution,

un résultat plus fort peut être obtenu :

Proposition A.3.2. En reconsidérant les notations et hypothèses de la Proposition A.3.1,

et en supposant de plus que pour tout i ∈ {1, l dot s,K }, ∆µ,i É ∆a,i , alors, avec une

probabilité au moins 1−δ :

Rt É K −1

A
log

(
tK

δ

)
+ (K −1)∆µ,max

De plus, pour t > K−1
A , l’espérance de Rt est bornée par :

E
[

Rt

]
É K −1

A

(
log

(
t 2K A

K −1

)
+1

)
+ (K −1)∆µ,max (A.8)

Discussion
La comparaison de la borne obtenue avec celle de l’algorithme UCB (Auer et al., 2002)

montre que MIN obtient une meilleure borne de regret lorsque :

1. les deux objectifs coïncident, i.e. lorsque les bras avec la moyenne maximale

ont l’infimum essentiel maximal.

2. les marges ∆µ,i sont petites,

3. A est grand,

4. ∆a,i Ê∆µ,i .

Il est important de noter que la dernière condition revient à considérer que les

meilleurs bras (au sens de la moyenne) ont un support plus étroit et donc un risque

plus faible. En l’absence de cette hypothèse, les deux objectifs (maximisation de la

moyenne et minimisation du risque au sens du min) sont en conflit.
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A.3.2 Valeur à risque conditionnelle

Nous considérons dans cette partie une nouvelle mesure de risque correspondant

informellement à la moyenne obtenue dans les α% pires cas, avec α ∈ (0,1] un

paramètre. Cette notion intuitive fait l’objet d’une définition formelle issue de la

littérature économique et définie ci-dessous.

Définitions

Définition A.3.2 (Valeur à risque). Soit X une variable aléatoire et α ∈ (0,1] une vari-

able aléatoire réelle. La valeur à risque (Value at risk) ou quantile d’ordreα est définie

par :

V aRα
def= inf

ξ∈R
{P (X É ξ) Êα} (A.9)

Définition A.3.3 (Valeur à risque conditionnelle). Soit X une variable aléatoire réelle

et α ∈ (0,1]. La valeur à risque conditionnelle (Conditional Value at risk) d’ordre α

est définie par :

CV aRα
def= inf

ξ∈R

{
ξ+ 1

1−αE
[
(X −ξ)+

]}
(A.10)

avec (x)+ la partie positive de x définie par :

(x)+ =
x x > 0

0 x É 0

Proposition A.3.3. Soit X une variable aléatoire réelle. Si P (X =V aRα(X )) = 0 (en

particulier si X est une variable continue), on a :

CV aRα(X ) = E [X |X >V aRα(X )] (A.11)

Remarque A.3.1. Intuitivement, X représente une perte et CV aRα(X ) est l’espérance

de X dans les α% pires cas. CV aRα(X ) est une quantité que l’on souhaite minimiser.

Remarque A.3.2. La dénomination de "valeur à risque conditionnelle" est justifiée par

l’Équation A.11.

Il est habituel dans la littérature bandit de considérer un critère à maximiser. Pour cela,

nous nous intéressons, pour une variable X à la quantité mCV aR(X )
def= −CV aR(−X )

(= E [X |X <V aR(X )] si X est continue) que nous nommerons valeur à risque condi-
tionnelle modifiée.
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Estimation de la valeur à risque conditionnelle (modifiée)

Définition A.3.4. Soit α ∈ (0,1] un niveau de confiance, et soit x1, . . . , xn un échantillon

de n réalisation i.i.d. d’une distribution ν. En supposant, sans perte de généralité, que

x1 É xn , un estimateur de mCV aRα(X ) avec X ∼ ν est défini par :

ámCV aRα(x1, . . . , xn)
def= 1

dnαe
dnαe∑
i=1

xi (A.12)

avec dne la partie entière par excès de n.

Remarque A.3.3. Pour α= 1, l’estimateur est la moyenne empirique des xi .

Remarque A.3.4. D’après (Chen, 2008), ámCV aRα(X ) est un estimateur consistant de

mCV aRα(X ).

Algorithme MARAB

Le pseudo-code de l’algorithme MARAB (Multi-Armed Risk Aware Bandit, Galichet et al.

(2013)) est décrit dans l’Algorithme 25. Nous posons ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )
def=ámCV aRα(Xi ,1, . . . , Xi ,Ni ,t ).

Algorithm 25 MARAB pour K bras
Require: Horizon temporel T ; niveau de risque α; paramètre d’exploration C > 0.

1: for t = 1. . .K do
2: It = t ; récupérer Yt ; initialiser ámCV aRα,t (X t ,1) = X t ,1 = Yt

3: end for
4: for t = K +1. . .T do
5: Tirer (choix arbitraire en cas d’égalité)

It ∈ argmax
i∈{1,...,K }

{ ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )−
√

C logdtαe
dαNi ,t e

}
. (A.13)

6: end for

Discussion

L’algorithme UCB est basé sur le principe d’optimisme face à l’inconnu en sélection-

nant le bras avec uns borne de confiance supérieure sur la moyenne maximale. Ici,

MARAB fait preuve d’un comportement prudent et pessimiste dû au terme d’exploration

négatif. Ainsi, et en opposition à UCB, plus la valeur du paramètre C est grande et plus

l’algorithme se montre conservateur. De part la définition de l’estimateur en équation

A.12, l’algorithme MARAB se comporte en deux phases :
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1. Dans une première phase d’initialisation (Ni ,t < 1
α

et dNi ,t e = 1), on a :

ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) = X(1) = min
s∈{1,...,Ni ,t }

{
Xi ,s

}
et la qualité du bras est évaluée à partir de la valeur minimale obtenue (et décroit

donc avec le temps). La durée de cette phase est contrôlée par α et augmente

lorsque α décroit vers 0.

Dans cette phase, la maximisation de ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) se réduit à un

problème max-min et le comportement de MARAB se rapproche de celui de MIN
(à la seule différence que MIN n’a pas de terme d’exploration négatif). Dans

ces premières itérations, l’exploration est seulement dûe à la décroissance deámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) avec Ni ,t , qui peut induire la revisite de bras moins

essayés.

Cependant, la nature pessimiste de l’approche empêche la visite de bras ayant

procuré de mauvaises récompenses dans les premiers essais.

2. Une seconde phase de stabilisation, où l’estimée ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )

est calculée avec une précision acrrue, l’erreur d’approximation convergeant

vers 0 comme
√

Ni ,t (Chen, 2008). Seul les bras les plus joués entre dans cette

phase (Ni ,t Ê 1
α

) et la valeur empirique de ámCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t ) tend à se

stabiliser. Notons cependant qu’il n’y a pas de garantie de visiter chaque bras

un nombre infini de fois à cause du terme négatif d’exploration.

Validation expérimentale de MIN et MARAB

MIN et MARAB sont comparés à UCB et aux algorithmes MVLCB et ExpExp (Sani et al.,

2012a), conçus pour présenter également une aversion au risque. Trois configurations

sont envisagées :

• Premièrement un problème simple où MIN est placé dans des conditions favor-

ables (Équation A.5 satisfaite, ordre identique sur les bras pour la moyenne et

l’infimum essentiel avec ∆a,i >∆µ,i pour tout bras i ).

• 1000 problèmes aléatoirement générés satisfaisant uniquement Équation A.5.

• Un problème réel d’allocation énergétique simplifié.

On considère K = 20 bras pour toutes ces expériences et T = 100K ou T = 200K .

L’ensemble des figures présentant les résultats sont disponibles dans la Section 6.5.1.

Les conclusions des expérimentations sont les suivantes :
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• Sur un problème favorable, MIN est capable de tirer avantage de marges ∆a,i

supérieures à ∆µ,i et d’obtenir de meilleures performances que UCB dont les

performances sont également dégradées en cas de fortes variances sur les bras

sous-optimaux. MARAB est de façon intéressante capable d’avoir le même com-

portement que MIN pour une large plage de valeurα et avec une faible sensibilité

à son paramètre d’exploration C .

• Sur les 1000 problèmes artificiels, après paramétrisation optimale de tous les al-

gorithmes, UCB retourne les meilleurs résultats globaux. MARAB montre un regret

légèrement dégradé avec une sensibilité plus faible au paramètre C . ExpExp
domine MVLCB et est dominé par MARAB pour environ 70% des problèmes. De

manière intéressante, ces observations sont valides sur les deux horizons tem-

porels. De plus, en observant la distribution des récompenses instantanées

récoltées par les algorithmes sur les problèmes artificiels avec une forte et faible

variance, on observe une grande sensibilité au paramètre C d’UCB. MARAB et

ExpExp sont eux capables d’éviter les bras risqués et MVLCB a de faibles per-

formances. MARAB présente cependant les avantages de ne pas nécessiter la

connaissance a priori de l’horizon T et d’être robuste vis-à-vis de sa paramétri-

sation (C et α). Enfin, pour αÉ 0.2, les expériences montrent que MARAB obtient

de meilleurs résultats en pire cas que ExpExp.

• Ces tendances globales sont reproduites sur le problème d’énergie réel avec

un regret minimal pour UCB paramétré idéalement, MVLCB dominé par tous les

algorithmes, MARAB (et MIN) capable d’éviter les bras risqués pour une large

plage de valeurs de C .

A.3.3 Algorithme MARABOUT

Cette section présente une modification de l’algorithme MARAB basé sur un autre

estimateur avec un regret contrôlé.

Définitions

Définition A.3.5. Soit X une variable aléatoire réelle de distribution ν et soit α ∈ (0,1]

un niveau de risque.

Soit x1, . . . , xn un n échantillon i.i.d. de ν. En supposant, sans perte de généralité que

x1 É x2 É . . . É xn , l’estimateur de la méthode des moments de mCV aR(X ) est défini

par :

ãmCV aRα (x1, . . . , xn)
def= x(dnαe) + 1

nα

bnαc∑
i=1

(
x(i ) −x(dnαe)

)
(A.14)
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Le pseudo-code de l’algorithme MARABOUT est décrit dans l’Algorithme 26. D’une

façon analogue à UCB, l’algorithme calcule pour chaque bras i une borne supérieure

de confiance (pour mCV aRi ) et sélectionne le bras avec la borne supérieure maximale

(Équation A.15). Les paramètres C et β contrôlent la force de l’exploration (plus ces

paramètres sont grands et plus l’exploration est forte).

La différence clé entre MARAB et MARABOUT est le caractère optimiste de l’algorithme

MARABOUT qui assure que chaque bras sera visité asymptotiquement un nombre illim-

ité de fois.

Algorithm 26 MARABOUT pour K bras
Require: Horizon temporel T , niveau de risque α, coefficients d’exploration C > 2 et

β ∈ [0,1].
1: for t = 1. . .K do
2: It = t ; récupérer Yt ; Initialiser ãmCV aRα,i (Xi ,1) = Yt

3: end for
4: for t = K +1. . .T do
5: Tirer (choix arbitraire en cas d’égalité)

It ∈ argmax
i∈{1,...,K }

{ ãmCV aRα,i (Xi ,1, . . . , Xi ,Ni ,t )+
√

11(C log t +β log3)

αNi ,t

}
. (A.15)

6: end for

Proposition A.3.4 (Wang and Gao (2010)). Soit X une variable aléatoire avec Supp(X ) ⊂
[a,b]. Pour tout ε> 0

P
( ãmCV aRα (x1, . . . , xn) É mCV aRα(X )−ε)É3exp

(
− 1

11
α

( ε

b −a

)2
n

)
(A.16)

P
( ãmCV aRα (x1, . . . , xn) Ê mCV aRα(X )+ε)É3exp

(
−1

5
α

( ε

b −a

)2
n

)
É3exp

(
− 1

11
α

( ε

b −a

)2
n

)
(A.17)

La proposition A.3.4 permet d’établir sur le même modèle que UCB une borne pour le

pseudo-regret de MARABOUT. Pour établir cette borne, il faut adapter la définition de

pseudo-regret au cas du mCV aR comme suit.

Définition A.3.6. Soit un problème de bandits à K bras de distributions de récompenses

νi et soit α ∈ (0,1] un niveau de risque.

On note mCV aRi
def= mCV aRα(Xi ) avec Xi ∼ νi et mCV aR? def= max

i∈{1,...K }
mCV aRi . On

définit alors ∆mCV aR,i
def= mCV aR?−mCV aRi la marge associée au bras i .
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Le pseudo-regret mCVaR d’un algorithme au temps t est défini par :

RmCV aR,t
def= t ×mCV aR?−

t∑
s=1

mCV aRIt

=
K∑

i=1
∆mCV aR,i Ni ,t

Borne supérieure sur le regret

Proposition A.3.5. Avec les mêmes notations que plus haut, supposons que les supports

de νi soient dans [0,1] pour tout i . Alors pour C > 2 et β ∈ [0,1], le pseudo-regret de

MARABOUT est borné comme suit :

E
[

RmCV aR,t

]
É ∑

i :∆mCV aR,i>0

{
44(C log(t )+β log(3))

α∆mCV aR,i
+∆mCV aR,i

(
1+ 2×31−β

C −2

)}
(A.18)

Remarque A.3.5. Comme déjà dit, la force d’exploration de MARABOUT est contrôlée par

C et β. Pour β grand, le facteur de ∆mCV aR,i est petit, pouvant aboutir à une meilleure

borne théorique. Cependant, une valeur β= 0 est un bon choix pratique, puisque les

expériences montrent que l’aversion au risque est favorisée par des algorithmes au

comportement conservateur.

Validation expérimentale de MARABOUT

MARABOUT est évalué en deux temps :

1. Premièrement, son pseudo-regret mCVaR est évalué sur trois problèmes artifi-

ciels à deux bras de difficultés croissantes avec T = 1000K et sur 100 exécutions

indépendantes.

2. Ensuite, son comportement est comparé à celui de MARAB sur les 1000 problèmes

générés aléatoirement et sur le problème énergétique.

L’ensemble des figures présentant les résultats de ces expériences est disponible en

Section 6.6.3.

Tests synthétiques

Les trois problèmes artificiels sont caractérisés par :

• α= 0.5, ∆= 0 et ∆mCV aR = 0.5.

• α= 0.01, ∆= 5.10−3 et ∆mCV aR = 0.5
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• α= 0.01, ∆= 10−3 et ∆mCV aR = 0.1.

Les résultats montrent que dans les trois configurations et dès un horizon temporel

court, MARABOUT est capable d’obtenir un pseudo-regret mCVaR logarithmique, pour

C petit (C = 10−4, en dehors des valeurs admissibles pour la Proposition A.3.5) et β= 0.

Ces résultats sont encourageants notamment pour les deux derniers problèmes où la

petite valeur de α interdit une estimation précise de mCVaR avec peu d’échantillons

mais où l’algorithme conserve un regret logarithmique même en cas de marge∆mCV aR

petite.

Pour α petit, on observe une variance plus large, vraisemblablement dûe à la sensibil-

ité de l’estimation de mCVaR lors des premières itérations. Cette variance augmente

également lorsque la marge ∆mCV aR diminue.

Comparaison avec MARAB
Sur les 1000 problèmes aléatoires, α = 0.2 et C = 10−7 (un ordre de grandeur plus

petit), MARABOUT obtient des résultats légèrement dégradés mais comparables à ceux

obtenus par MARAB pour T = 100K = 2000 et T = 200K = 4000. En examinant les

récompenses instantanées obtenues, on observe comme précédemment une plus

grande sensibilité au paramétrage dans le cas où la variance est faible, même si

MARABOUT est capable d’atteindre des performances du niveau de celle de MARAB dans

les deux cas pour α= 20%. Finalement, sur le problème d’énergie réel, on observe

que MARABOUT est capable d’obtenir de bonnes récompenses en pire cas, mais souffre

d’un regret significativement supérieur à MARAB. Ces meilleurs résultats de MARAB sont

certainement conséquence du caractère pessimiste de l’algorithme.

A.4 Sous-échantillonage pour les bandit contextuels linéaires

Nous nous plaçons dans le cadre des bandits contextuels linéaires. Il s’agit d’un

problème classique de bandit stochastique auquel est ajouté deux hypothèses supplé-

mentaires. La première est, qu’à chaque instant t , un contexte est dévoilé au joueur

et permet d’inclure plus d’information pour la prise de décision. Deuxièmement, la

récompense instantanée est supposée être une fonction linéaire. On étend dans cette

section l’algorithme BESA (Baransi et al., 2014), basé sur le sous-échantillonage, à ce

cadre.

A.4.1 Algorithme CL-BESA

Nous introduisons maintenant formellement l’algorithme CL-BESA pour K = 2 bras

ainsi que son cadre d’utilisation.
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Notations et hypothèses

Nous notons d la dimension du problème, l’espace des contextes X ⊂Rd et un espace

de paramètres Θ⊂ Rd . Pour chaque bras i , nous faisons l’hypothèse qu’il existe un

paramètre θi ∈ Θ à apprendre et la récompense instantanée (associée au bras It )

s’écrit alors :

Yt = 〈X t ,θIt 〉+ηt (A.19)

avec ηt bruit additif centré. Ce modèle est appelé modèle linéaire disjoint et est

partagé par LinUCB (Li et al., 2010), mais ni par OFUL (Abbasi-Yadkori et al., 2011) ni par

Thompson sampling (Agrawal and Goyal, 2012a) qui eux considèrent un paramètre θ

partagé par tous les bras.

Nous faisons de plus les hypothèses suivantes :

• Les contextes X t ∈X sont tirés indépendemment par la Nature.

• Les paramètres θi ∈Θ sont deux à deux indépendants.

• Θ et X sont supposés convexes, bornés et connus du joueur.

• Le bruit ηt est sous-gaussien, i.e., il existe une constante Rη ∈R telle que, pour

tout λ ∈R :

log
[
Eexp

(
ληt

)]É λ2R2
η

2
(A.20)

• La moyenne des contextes est notée µ et on écrit X t = µ+ ξt , où les ξt sont

centrés et i.i.d, bornés presque sûrement par ‖ξt‖ É σ2
X

2 pour une constante σ2
X ,

et tels que, pout tout λ ∈Rd :

log
[
Eexp

(
λT ξt

)]É ‖λ‖2
2σ

2
X

2
(A.21)

• ∀x ∈X ,∀θ ∈Θ, |〈x,θ〉 É 1

• Le rayon de l’espace de paramètreΘ est borné par une constante B :

max
θ∈Θ

‖θ‖2 É B (A.22)

• Toutes les distributions ont une densité par rapport à la mesure de Lebesgue.

Nous considérons maintenant un ensemble de S échantillons contexte-récompense

S
def= {(

Xi1 ,Yi1

)
, . . . ,

(
XiS ,YiS

)}
, X(S )

def= (
Xi1 , . . . , XiS

)T la matrice S ×d de contextes et

Y (S )
def= (

Yi1 , . . . ,YiS

)T le vecteur de récompense de dimension S associés.
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Nous voulons estimer le vecteur θ tel que Y (S ) = X(S )θ. L’estimateur régularisé des

moindres carrés θ̂ est défini par :

θ̂λ(S )
def= (

X(S )T X(S )+λId
)−1

X(S )T Y(S ) (A.23)

avec Id la matrice identité d ×d et λ> 0 un paramètre de régularisation.

Finalement, nous introduisons les notations suivantes :

• Si ,t
def= {

(X t ′ ,Yt ′) : t ′ É t , It ′ = i
}

est le sous-ensemble d’observations où le bras i

est choisi.

• I ∼ W r (n,m) dénote un ensemble aléatoire de n indices tirés uniformément

sans remise sur l’ensemble {1, . . . ,m}. Par convention, I = {1, . . . ,m} si n Ê m.

• En notant S = {s1, . . . , sS} un ensemble fini d’observations, on défini l’ensemble

sous-échantillonne par rapport à I par S (I )
def= {si , i ∈ I }.

Algorithme

L’algorithme CL-BESA (Contextual Linear Best Sub-Sampled Arm) est introduit pour le

cas de K = 2 bras dénotés a et b (Algorithme 27).

Algorithm 27 CL-BESA (a,b) pour deux bras
Require: Itération courante t , contexte X t , paramètre λ.

1: Échantillonner I a
t−1 ∼ Wr(Nt−1(b); Nt−1(a)) et I b

t−1 ∼ Wr(Nt−1(a); Nt−1(b)).

2: Calculer θ̂a,t−1
def= θ̂λ(Sa,t−1(I a

t−1)) et θ̂b,t−1
def= θ̂λ(Sb,t−1(I b

t−1))
3: Tirer (choix du bras le moins tirés en cas d’égalité)

It = argmax
a′∈{a,b}

〈X t , θ̂a′,t−1〉 . (A.24)

Comme BESA, CL-BESA compare deux bras a et b sur la base de la même quantité

d’information. Pour ce faire, il sous-échantillonne parmi le bras le plus tirés un nom-

bre d’échantillons égal à celui du bras le moins tirés (Ligne 1) et calcule les estimateurs

sur ces sous-échantillons (Ligne 2). Le bras avec la récompense instantanée espérée

maximale est tiré selon l’Équation A.24.

A.4.2 Borne sur le regret contextuel

Regret contextuel

Contrairement au cas standard, le meilleur bras peut varier en fonction du contexte

instantané X t . Nous définissons alors une notion de regret contextuel de la façon
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A.4. Sous-échantillonage pour les bandit contextuels linéaires

suivante :

Définition A.4.1. Considérons un instant t et le contexte instantané X t associé. Le

meilleur bras est défini par :

θt ,?
def= argmax

i∈{a,b}
〈X t ,θi 〉 .

Étant donné un horizon temporel T ∈N?, le regret contextuel est défini par :

RX ,T =
T∑

t=1
〈X t ,θt ,?−θIt 〉 . (A.25)

Borne

Théorème A.4.1. Soit Rη et σX les paramètres de bruit sous-gaussiens repectivement

définis par les Équations A.20 et A.21 et soit B défini par Équation A.22. Soit λ un

paramètre croissant (Éq. A.23) tel que λÊ 6σ2
X log(T ). Supposons que

∣∣〈µ,θa −θb〉
∣∣Ê 8σX B +2

p
2
‖θa‖2 +‖θb‖2√
λ−1 +‖µ‖−2

2

. (A.26)

Alors, le regret contextuel de CL-BESA après T pas de temps est borné par :

E[RX ,T ] É(
max
t∈[T ]

∆t
) 64

mint∈[T ]∆
2
t

[
Rη

√
2d log

(
λ1/2T 2 + T 3(‖µ‖2 +σX )2

dλ1/2

)
+λ1/2B

]2

+ (
max
t∈[T ]

∆t
)24σ2

X log(T )−2λ

‖µ‖2
2

+
T∑

t=1
∆t I{min

t∈[T ]
∆t É τ}

)
+O(1) .

où

τ
def= 2σX

[
Rη

√
2d

λ
log

(
λ1/2T 2 + T 3(‖µ‖2 +σX )2

dλ1/2

)
+B

]
. (A.27)

Quand la perturbation sur le contexte σX = 0, alors ∆t devient ∆
def= |〈µ,θa −θb〉

∣∣ et

nous obtenons

E[RX ,T ] É
128R2

ηd

∆
log(2T 3‖µ‖2

2/d)+O(1).

A.4.3 Validation expérimentale

Cette section présente les résultats numériques de l’approche CL-BESA et la compare

à d’autres approches de l’état de l’art.
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Appendix A. Résumé de la thèse

A.4.4 Cadre expérimental

Nous comparons CL-BESA à trois algorithmes : Thompson sampling, OFUL et LinUCB.

LinUCB et CL-BESA partagent le même modèle et LinUCB peut donc être appliqué tel

que dans (Li et al., 2010). À l’inverse, OFUL et Thompson sampling font l’hypothèse

d’un paramètreβ partagé entre tous les bras et doivent donc être adaptés pour pouvoir

être appliqué à notre modèle. Une façon simple est de concaténer les deux paramètres

inconnus θa et θb en un seul paramètre à apprendre θ
def= (θaθb) ∈RdK et d’y associer

les vecteurs de contexte θt ,a
def= (X T

t 0T
d )T ∈ RdK et θt ,b

def= (0T
d X T

t )T . Cette adaptation

permet une comparaison juste des algorithmes car OFUL et Thompson sampling ne

pourront pas tirer parti d’information partagée entre les bras.

A.4.5 Résultats

L’objet de cette section est de résumer les résultats numériques obtenus. L’ensemble

des figures peut être consulté dans le chapitre 7.

Problème orthogonal

Les algorithmes sont évalués sur le problème suivant avec K = 2 bras définis par

µ= (0.5,0.5)T , θa = (0.5,0)T et θb = (0,0.5+2∆)T . La marge ∆ est fixée à ∆= 10−1 et

T = 1000. À chaque pas de temps, un context X t est tiré uniformément dans la boule

B(µ,
σ2

X
2 ) et la récompense est donnée par Yt = 〈X t ,θIt 〉+ηt avec ηt ∼N (0,R2

η)

Sensibilité au paramètre

Un avantage majeur en terme d’applicabilité et d’implémentation de CL-BESA est le

fait qu’il ne nécessite qu’un seul paramètre. De plus, les expériences montrent que le

regret contextuel est peu sensible à la valeur donnée à ce paramètre. Cette robustesse

est à mettre en comparaison avec, d’un part le grand nombre de paramètres et/ou

la sensibilité des autres algorithmes à leur paramétrage. Par exemple, il est montré

qu’OFUL est sensible aux paramètres ROFU L et SOFU L respectivement idéalement fixés

aux valeurs (en pratique inconnues) ROFU L = Rη et SOFU L = ‖θ‖2.

Sensibilité au bruit et à la perturbation du contexte

CL-BESA, OFUL, LinUCB et Thompson sampling sont testés sur le problème orthogo-

nal avec différent niveaux de bruit additif Rη ∈ {∆,10∆} et perturbation de contexte
σXp

2
∈ { ∆10 ,∆,10∆,100∆}. OFUL et Thompson sampling ont accès aux valeurs optimales

de R et S.
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A.5. Conclusion et perspectives

Les figures confirment les bonnes performances de CL-BESA dans toutes les con-

figurations. De manière plus précise, son regret reste contrôlé, logarithmique et

quasi-optimal : il est classé deuxième ou premier pour toutes les configurations, et

reste proche de la meilleure option lorsque classé second. Cette propriété est unique

parmi les algorithmes étudiés et fait de CL-BESA un bon choix en pratique en cas de

régime de bruit et/ou de perturbation sur le contexte inconnus.

Les figures permettent également une discussion sur la stabilité des divers algorithmes.

On remarque pour commencer que les courbes de regret présentent, de manière

logique, une variance supérieure lorsque Rη ou σX augmentent, avec une sensibilité

plus forte à Rη. Cependant, on peut observer dans ce dernier cas une sensibilité plus

forte pour CL-BESA que pour les autres algorithmes. Dans ces conditions extrêmes et

peu probables (bruit 100 fois supérieur à la marge), un autre algorithme que CL-BESA
comme OFUL peut être envisagé et fournir de meilleurs résultats. Il faut cependant

souligner que OFUL bénéficie alors de l’avantage de la connaissance exacte de Rη.

Influence de la dimension

Nous étudions finalement la sensibilité des algorithmes vis-à-vis de la dimension

d variant de 2 à 200. Pour d Ê 2, on considère le problème défini par K = 2, µ =
( 1p

2d
, . . . , 1p

2d
)T , θa,d = (

p
2/d∆,0 . . . ,

p
2/d∆,0)T et θb,d = (0,−p2/d∆, . . . ,0,−p2/d∆)T .

La marge est alors ∆.

LinUCB souffre d’instabilités numériques et ne peut être étudiés pour d Ê 40. Thompson
sampling et CL-BESA obtiennent un regret stable et celui d’OFUL croit légèrement

avec la dimension, celui de CL-BESA étant significativement le plus faible des quatre

algorithmes étudiés. Ce résultat s’explique en partie par la paramétrage facile de

CL-BESA qui lui permet d’avoir un bon comportement pour toutes les dimensions.

A.5 Conclusion et perspectives

Les contributions de cette thèse sont :

1. L’algorithme MIN et son étude théorique et pratique.

2. Les algorithmes MARAB et MARABOUT ainsi que l’étude comparative de ces deux

approches sur problèmes artificiels et réels.

3. La borne sur le regret de MARABOUT.

4. L’introduction du sous-échantillonnage pour les bandits contextuels et de

l’algorithme CL-BESA.
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5. L’étude théorique du regret contextuel de CL-BESA ainsi que l’étude comparative

numérique de l’algorithme sur différents niveaux de bruits et différents niveaux

de perturbation du contexte.

Les possibilités d’extensions du travail présenté sont multiples, on pourrait notam-

ment penser à :

1. Un raffinement de la preuve sur le regret de MARABOUT avec des techniques

d’auto-normalisation ou de pelage.

2. Une extension de la risque aversion au cas de décision séquentiel d’une manière

arborescente, en s’inspirant par exemple de l’extension d’UCB à UCT(Kocsis and

Szepesvári, 2006a) ou d’OLOP (Bubeck and Munos, 2010).

3. Un algorithme de bandit contextuel avec aversion au risque serait intéressant

car le besoin d’une exploration prudente demeure importante dans ce cadre.

4. L’extension de CL-BESA au cas du bandit contextuel non linéaire.
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