
NNT : 2016SACLN008

THÈSE DE DOCTORAT
DE L’UNIVERSITÉ PARIS-SACLAY,

préparée à l’École Normale Supérieure de Cachan

ÉCOLE DOCTORALE N◦580
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

Par

Monsieur Rémy Chrétien

Analyse automatique de propriétés d’équivalence pour les protocoles cryptographiques

Thèse soutenue à Cachan, le 11 janvier 2016 :

Composition du Jury :

M David Basin Professeur, ETH Zürich Rapporteur
M Bruno Blanchet Directeur de Recherche, INRIA Rapporteur
Mme Véronique Cortier Directrice de Recherche, CNRS Directrice de thèse
Mme Stéphanie Delaune Chargée de Recherche, CNRS Directrice de thèse
M Thomas Jensen Directeur de Recherche, INRIA Président du Jury
M David Pointcheval Directeur de Recherche, CNRS Examinateur
M Géraud Sénizergues Professeur, Université Bordeaux Examinateur
M Dominique Unruh Professeur, University of Tartu Examinateur

Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan, UMR 8643 du CNRS
61 avenue du Président Wilson,
94235 Cachan Cedex, France

Résumé

À mesure que le nombre d’objets capables de communiquer croît, le besoin de sécuriser leurs interactions également.
La conception des protocoles cryptographiques nécessaires pour cela est une tâche notoirement complexe et fréquem-
ment sujette aux erreurs humaines. La vérification formelle de protocoles entend offrir des méthodes automatiques et
exactes pour s’assurer de leur sécurité.

Nous nous intéressons en particulier aux méthodes de vérification automatique des propriétés d’équivalence pour
de tels protocoles dans le modèle symbolique et pour un nombre non borné de sessions. Les propriétés d’équivalence
sont naturellement employées pour s’assurer, par exemple, de l’anonymat du vote électronique ou de la non-traçabilité
des passeports électroniques.

Parce que la vérification de propriétés d’équivalence est un problème complexe, nous proposons dans un premier
temps deux méthodes pour en simplifier la vérification : tout d’abord une méthode pour supprimer l’utilisation des
nonces dans un protocole tout en préservant la correction de la vérification automatique; puis nous démontrons un
résultat de typage qui permet de restreindre l’espace de recherche d’attaques sans pour autant affecter le pouvoir de
l’attaquant.

Dans un second temps nous exposons trois classes de protocoles pour lesquelles la vérification de l’équivalence
dans le modèle symbolique est décidable. Ces classes bénéficient des méthodes de simplification présentées plus
tôt et permettent d’étudier automatiquement des protocoles taggués, avec ou sans nonces, ou encore des protocoles
ping-pong.

2

Acknowledgements

I would first like to thank my advisors, Véronique Cortier and Stéphanie Delaune, for offering me such a wonderful
opportunity. These years have been excellent and working with you was a real pleasure.

I am very grateful to David Basin and Bruno Blanchet who kindly accepted to review this manuscript. I also thank
Thomas Jensen, David Pointcheval and Dominique Unruh and who accepted to be part of the jury. I would also like
to thank Géraud Sénizergues for his collaboration and presence for my defense.

I also thank all the members of LSV for making this thesis such an enjoyable experience. Thank you for the
stimulating discussions and the help throughout these years. Thank you in particular to the PhD students for making
the laboratory far more than just a work place.

I want to give special thanks to all my family, who has always supported me and believed in me. Thank you for
blessing me with such a nurturing home and helping me become a better person.

Finally, I would like to thank Marie for her unwavering support. Thank you for brightening up my days, even
when your own plate was full too. Thank you so much.

3

Contents

Résumé 2

Acknowledgements 3

1 Introduction 7

1.1 Protocols and attacks . 7
1.2 Security and the symbolic model . 8
1.3 Security properties . 9
1.4 Automation of security proofs . 10

1.4.1 (Un)decidability of reachability properties . 10
1.4.2 Proof techniques for reachability properties . 11
1.4.3 The case of equivalence . 11

1.5 Existing tools . 12
1.6 Contributions . 12

1.6.1 Simplifying equivalence checking . 13
1.6.2 Decidable classes . 13

1.7 Outline . 14
1.8 Publications . 15

I Simplifying equivalence checking 16

2 Model for general protocols 17

2.1 Term algebra . 17
2.2 Process algebra . 18
2.3 Semantics . 19
2.4 Trace equivalence . 20

2.4.1 Determinate protocols . 22
2.4.2 Simple protocols . 22

2.5 Type-compliant protocols . 22
2.5.1 Typing systems . 23
2.5.2 Type compliance . 24
2.5.3 Tagged protocols . 25

2.6 Conclusion . 27

4

3 How to get rid of nonces 28

3.1 Our hypotheses . 29
3.2 Getting rid of nonces . 31

3.2.1 Our transformation . 31
3.2.2 Main result . 32
3.2.3 Proof . 32

3.3 Scope of our result . 36
3.3.1 Simple processes . 36
3.3.2 Adequate theories . 37
3.3.3 Is our abstraction precise enough? . 38

3.4 Conclusion . 39

4 Well-typed executions 40

4.1 Existence of a well-typed witness of non-equivalence . 40
4.1.1 Well-typed trace . 41
4.1.2 Main result . 42

4.2 A type preserving decision algorithm for bounded processes . 43
4.2.1 Reachability blackbox . 43
4.2.2 Our algorithm for trace equivalence . 44
4.2.3 Termination, soundness, and completeness . 45
4.2.4 Type-preservation . 46

4.3 Conclusion . 47

II Decidables classes 48

5 Decidability of trace equivalence for simple protocols without nonces 49

5.1 Decidability result . 49
5.1.1 Main result . 50

5.2 A sound procedure for simple protocols with nonces . 50
5.3 Proof of Theorem 5.1.1 . 51
5.4 Proof of Corollary 5.1.1 . 54
5.5 Conclusion . 54

6 Decidability of trace equivalence for acyclic simple protocols with nonces 55

6.1 Annotated model for security protocols . 56
6.2 A first decidability result . 57

6.2.1 Dependency graph . 58
6.2.2 Our result . 60

6.3 An improved version of our decidability result . 60
6.3.1 Motivating example . 60
6.3.2 Appropriate marking . 61
6.3.3 Refined dependency graph . 63

6.4 Results . 63
6.4.1 Scenario with corruption . 64
6.4.2 Review of symmetric key protocols . 65
6.4.3 Detailed comparison with [47] . 69

6.5 Proof of our decidability results . 70
6.5.1 Reducing equivalence . 70

5

6.5.2 Exploiting the dependency graph . 72
6.5.3 Bounding the length of a minimal witness . 78

6.6 Conclusion . 80

7 Decidability of trace equivalence for ping-pong protocols 81

7.1 Ping-pong protocols . 82
7.1.1 Term algebra . 82
7.1.2 Class Cpp . 85
7.1.3 Main results . 86

7.2 Getting rid of the full attacker . 87
7.2.1 Forwarder semantics . 88
7.2.2 Towards a forwarder attacker . 88

7.3 Encoding protocols into real-time GPDAs . 92
7.3.1 Generalised pushdown automata . 93
7.3.2 Characterisation of trace equivalence . 95
7.3.3 From trace equivalence to language equivalence . 97

7.4 From language equivalence to trace equivalence . 101
7.5 Implementation . 104

7.5.1 Encoding pairs . 104
7.5.2 Biometric passport . 105
7.5.3 Experiments . 105

7.6 Conclusion . 106

8 Conclusion and perspectives 108

Bibliography 115

Appendices 116

A Well-typed executions 116

A.1 Proof of Proposition 4.2.3 . 116
A.1.1 Simplifying recipes . 116
A.1.2 Decision for bounded protocols . 122

A.2 Proofs of Theorem 4.1.1 and Proposition 4.1.1 . 128

B Decidability of trace equivalence for ping-pong protocols 130

B.1 Undecidability of trace inclusion . 130
B.2 Getting rid of the attacker . 133
B.3 Encoding a protocol into a real-time GPDA . 137

B.3.1 Characterisation of trace equivalence . 137
B.3.2 From trace equivalence to language equivalence . 139

6

Chapter 1

Introduction

1.1 Protocols and attacks

As technology becomes ubiquitous and software is embedded into each and every device around us, the amount of
communication among connected objects and computers grows substantially. Communication protocols are designed
to govern these communications. These are small programs whose goal is to allow a number of agents to transmit
information between each other. They define sets of rules to properly communicate, such as for instance the format
of messages that agents send and receive, their timings or error messages. Examples of protocols can be found within
the Internet Protocol suite, with HTTP, TCP, UDP and many others. Protocols also appear when using RFID tags
and readers to transmit data about the nature or price of a product. Cryptographic protocols consist of a subset of
communication protocols using cryptography to achieve their objective. Cryptographic primitives like symmetric or
asymmetric encryption, hash functions or zero-knowledge proofs can indeed enable properties such as secret data
transmission or the establishment of secret keys for further applications. These cryptographic protocols can be found
in a large number of applications. Credit cards, with or without contact, need to ensure that a payment can legitimately
be made by checking the credentials and the account balance of its user. E-passports convey RFID chips which transmit
to an authenticated reader, e.g. at a border checkpoint, the identification data (name, nationality, digitised picture) of
its owner to facilitate the verification of her identity. Electronic voting, either over the internet or via electronic voting
machines, make heavy use of cryptography to ensure the anonymity of voters and the validity of the ballot result.

As protocols, cryptographic or not, have to perform a large variety of tasks, we need to specify the properties they
provide to their users. In the case of cryptographic protocols, we will be naturally interested in security properties.
One of the simplest and most natural security property is the notion of secrecy: if two agents are transmitting data
over some channel, can an attacker learn part or all of this data? In the credit card example, one can hope the banking
account information is kept secret to avoid later frauds. Another property is authentication, describing the ability for
agents to be convinced they are interacting with one another, and in the case of the credit card reader, that the card is
an authentic one. For the e-passport, untraceability of a user, the impossibility for an attacker to relate two different
sessions of the protocol to the same user, is often seen as desirable for the sake of privacy. In the case of electronic
voting, anonymity of the voters and the verifiability of the results are two fundamental features of a good design. But
to speak more precisely about security properties, we need both to make clear what our threat model is, i.e. what are
the abilities of the attacker and the features of the network and agents, as well as explicitly state our definitions for
such properties. The former will be considered in Section 1.2 and the latter in Section 1.3.

Unfortunately, even with appropriate definitions, the secure design of cryptographic protocols is a difficult task.
The Needham-Schroeder protocol [58] is an authentication protocol between two agents using asymmetric crypto-
graphy and designed in 1978. Seventeen years later, Lowe discovered an attack [53] allowing a malicious agent on
the network to impersonate an honest participant. More recently, an attack on the Google Single Sign-On protocol

7

was found by Armando et al. [7] in 2008. The original protocol can be schematically described in the following way,
where A denotes an agent willing to authenticate to an Identity Provider IP to gain access to the services offered by
the Service Provider SP :

A ! SP : A,SP , url
SP ! A : A, IP ,AuthReq(id , SP), url
A ! IP : A, IP ,AuthReq(id , SP), url
IP ! A : sign(AuthAssert(A, IP), skIP), url
A ! SP : sign(AuthAssert(A, IP), skIP), url

In this informal specification, url denotes the address of the resource A is trying to access from SP , id is a unique
identifier generated by SP . AuthReq builds an authentication request for IP to process, to which IP answers using
the authentication assertion AuthAssert, itself signed with the private key skIP of IP . Note that the inner working of
AuthReq and AuthAssert are not important to the attack itself, and one can just assume these to be secure primitives
which guarantee authentication in a successful execution of the protocol. The core of the attack instead relies on the
fact that the authentication assertion does not actually depend on url, id and SP : the target address from A, the unique
identifier id generated by SP and the identity of the service provider SP are not taken into account when building
the authentication token sign(AuthAssert(A, IP), skIP) that A sends to SP in her last message to gain access to her
resources. Intuitively, if able to recover such a token sign(AuthAssert(A, IP), skIP) from A, an attacker could then use
it to impersonate A and gain access to any of her resources, for any service provider using the same identity provider.
This design flaw naturally leads to a man-in-the-middle attack where an attacker I , posing as a service provider and
able to make A start a session with her, can gain access to this token, and hence authenticate as A to any service
provider.

I(A) ! SP : A,SP , url
SP ! I(A) : A, IP ,AuthReq(id , SP), url
I(A) ! SP : sign(AuthAssert(A, IP), skIP), url

Here I(A) denotes the intruder when impersonating agent A. In this attack, we assume I got a copy of the token
sign(AuthAssert(A, IP), skIP) in a previous session, for instance by luring A into connecting to a service she controls.
Then I starts a session with SP impersonating A to gain access to authenticate and gain access to url. Instead of
forwarding the authentication request of SP to IP (AuthReq(id , SP)), the attacker just uses the authentication token
she already possess, along with the address of the new resource url.

This attack is actually reminiscent of the earlier attack on the Needham-Schroeder protocol, and other similar
high-level attacks can also be found for other applications such as the French version of the electronic passport prior
to 2010. These attacks on deployed systems highlight how error-prone the design and analysis of security protocols
is. To address this difficulty, automated tools for the verification of security properties of cryptographic protocols can
be designed to automatically find attacks on protocols or prove their security within a particular model.

1.2 Security and the symbolic model

In order to properly specify the security goals for our protocols, and hope to prevent attacks that would compromise
these goals, we need to define a threat model. In particular, this model must explicit what are the precise capabilities of
the attacker, what she can learn, what she controls and what are her objectives. The choice of this model is highly de-
pendent on the nature of attacks we are interested in and the trust we have in the components of the system. A classical
way of classifying attacks, and therefore the type of attacker, is the following one. We can first consider computational
attacks on the cryptography itself: by finding flaws in the algorithms used by the cryptographic primitives, from the en-
cryption algorithms to the pseudo-random number generators, an attacker could be able to, partially or totally, nullify
the security brought by these primitives. In another type of attacks, focus is put on the low-level details of the security
system. Errors or deviations from the specifications, for instance the seeding of a pseudo-random number generator

8

of the Debian OpenSSL package in May 2008, are found in the implementation of the protocol, leading to attacks on
the program itself, rather than the specification of the protocol. A third way of modelling attacks, and the one we will
be the most interested in, is to focus on the high-level specification of the protocol. In this case, the attacker is looking
for logical flaws, related to the formats of the messages, leading for instance to man-in-the-middle attacks. Finally,
we may consider side-channel attacks: the attacker then relies on information which was not modelled in any of the
previous steps. From the power consumption of a device running the protocol to the timing used to compute some
cryptographic primitives, the attacker can gain an advantage and ruin the security goals of the protocol.

In this thesis, we consider a high-level view of the cryptographic protocol. More specifically, we focus here on the
symbolic Dolev-Yao model [43]. In this model, cryptographic primitives are modelled as abstract function symbols,
and operations such as encryption or decryption as applications of rewriting rules or equalities modulo an equational
theory. Messages are themselves built on a term algebra and exchanged on the network, which is under the control
of the attacker. Even though it assumes perfect cryptography, this model gives a lot of power to the attacker and is
effective in finding logical attacks in the specification of many cryptographic protocols. Flaws mentioned in Section
1.1 indeed fall into this category. This model is moreover expressive enough to express a large variety of security
properties which we will classify in the next section.

1.3 Security properties

Symbolic models allow many security properties to be expressed. To do so, we can rely on the notion of knowledge
of the attacker and her deduction powers. Intuitively, an attacker knowing both the encryption of a plaintext by some
public key and the associated private key would be able to deduce the plaintext. Here we informally state a number of
security properties.

• Secrecy of a message, a key or some secret data, can be stated as the inability for the attacker and for any
execution of the protocol, to deduce this message.

• Authentication states that, for every execution of the protocol, any honest agent believing it is finishing a session
with another honest agent should indeed be finishing a session with this agent. Or, in other words, no attacker is
impersonating an honest agent.

• Temporary secrecy states that if an information is secret at some point in an execution, it will remain secret at
any point in the future. In particular, all temporary secrets are permanent secrets.

Secrecy, temporary or not, and authentication all belong to a class of security properties that can be stated as follows:
for any execution (also called trace) of the protocol, a property on the execution must hold. These properties are
commonly referred as trace properties or reachability properties. But some properties cannot be expressed along
this line. Consider the case of the anonymity of the user of some anonymous application. The possible values for
the identity of the user may already be known to the attacker, as the list of user names may be public information.
Unknown to her, on the other hand, are the identities of the users for a specific session.

• Anonymity of the said user identity can thus be modelled as the inability for the attacker to distinguish between
a situation where an agent is using some identity id1 and a situation where the same agent would be using
identity id2. Slightly more formally, if we let P be a formal specification of the anonymous application under
investigation, P [id1/id] the variant of P where our agent’s identity is id1 and P [id2/id] when the value is id2,
the anonymity of the identity can be stated as P [id1/id] ⇡ P [id2/id] where ⇡ denotes some equivalence relation
between protocols, representing the inability for the attacker to distinguish between two protocols.

• Untraceability is another property related to the ability for an attacker to link together messages from the same
execution of a protocol. It models an attacker trying to trace an agent by trying to recognise the sessions which
generated particular messages. It is a desirable property in the case of e-passports, where an attacker should not

9

be able to link messages together and thus track the movements of its bearer. More formally, for untraceability
to hold, an attacker should think than each session she observes has been generated by a new distinct e-passport.
If Pmulti is the original version of the e-passport protocol where each passport can take part into any number of
sessions, and Psingle is an ideal version where each passport can only execute one session, then the equivalence
Pmulti ⇡ Psingle should hold.

An alternative interpretation of these equivalences is the inability for an attacker, given two protocols, to accurately
guess for any execution (or trace) of one of those two, which protocol produced it. Properties which can be expressed
as such are usually referred as equivalence properties. Most properties relevant to privacy are actually modelled as
equivalences, e.g. in voting protocols, as well as more exotic properties, for example in mobile ad-hoc routing [28].

1.4 Automation of security proofs

Abstraction of the messages and the underlying cryptography in the symbolic models opens up the possibility of
efficiently automating the process of attack discovery and, conversely, the verification of the system security. This
formalisation indeed allows to benefit from classical models and techniques in theoretical computer science, ranging
from model-checking to resolution and rewriting systems. Tools, as further described in Section 1.5, are for instance
able to catch the attacks mentioned in Section 1.1. Still, automatically verifying a security property remains a difficult
task, whose complexity is directly related to the power which is given to the attacker as well as the intricacy of the
security property considered. In the following sections, we give a panorama of these difficulties and the techniques
employed to deal with different kind of properties.

1.4.1 (Un)decidability of reachability properties

We first consider reachability properties, such as secrecy and authentication, and the existing decidability or unde-
cidability results associated. In the most general setting, reachability properties can already be shown to be undecid-
able [45, 57] with minimal cryptographic primitives such as symmetric encryption and pairs. A simple encoding relies
on the arbitrary size of messages to store the words needed to encode the Post Correspondence Problem, encrypted to
avoid unwanted alterations by the attackers. But even if the unbounded size of messages can be seen as an undesirable
property, undecidability of secrecy can still be proven with messages of bounded size [4], by using nonces, fresh val-
ues generated by the protocol and attacker, as pointers to encode, once again, an instance of the Post Correspondence
Problem.

For this reason, in order to achieve decidability, one needs to consider restrictions, either on the protocols or on the
power given to the attacker when verifying a security property. One of the most classical ones consists in bounding

the number of sessions in the verification. This limitation practically forbids any agent to execute a protocol more
than a fixed number of times, number set a priori. Although this restriction manages to achieve decidability for
reachability properties [55, 11, 35], it fails to be entirely acceptable. The bound on the number of sessions being
arbitrary, it provides no guarantee on the security of the protocol if no attack were to be found for a given number of
sessions. Moreover, existing tools are only able to handle a low number of sessions, barring the practical verification
of a protocol for an increasing large number of sessions.

These obstacles are thus incentive to focus on verification for an unbounded number of sessions. Another line
of restrictions in that direction is to restrict the ability of the agents to blindly copy portions of messages they re-
ceived. More formally, by limiting the amount of information an agent can forward, secrecy can again be proven
decidable [31]. Another way of achieving decidability is to consider tagged protocols. Tagging can be first considered
from a practical implementation perspective as a way of making messages unambiguous, a good practice in protocol
design [54]. By adding a specific constant, the tag, to the beginning of any encrypted plaintext, an agent can easily
deduce from which stage of the protocol this message originate. For this reason, it prevents a number of type-flaw

10

attacks where a message being parsed as another resulted in unwanted behaviours, for instance in the Otway-Rees
protocol [59]. On top of that, tagging schemes can also lead to decidability for secrecy [60] or temporary secrecy [47].

1.4.2 Proof techniques for reachability properties

As we have seen earlier, reachability properties are undecidable in general without tight restrictions. But some tech-
niques can still be used to reduce the difficulty of the verification of reachability properties. Tagging schemes, as
mentioned previously in Section 1.4.1, are also able to greatly reduce the space of traces to consider when checking
for secrecy thanks to typing results [6]. Well-typed traces indeed constrain the size and shape of the messages which
can be exchanged by both the honest agents and the attacker.

Another way of easing verification is to prevent agents from generating new nonces. The infinite number of
nonces to consider is a difficult point to address as it leads to consider infinitely many messages of any size and causes
undecidability [4] as already discussed. Fortunately, when checking for secrecy, removing nonce generation from the
specification of a protocol without else branches is sound. Which is to say that if P is a version of a protocol P with
its nonce generation removed and P preserves the secret of some value s, then P also preserves the secrecy of s. Even
if the converse is not true in general, it still provides a safe way to prove secrecy properties for protocols with nonces
when using only procedures designed for protocols without nonces. More generally, approximations on nonces enable
tools such as ProVerif [13] to soundly prove security properties.

1.4.3 The case of equivalence

Verifying trace equivalence is, unfortunately, more difficult in general than verifying reachability properties. A prop-
erty like secrecy can for instance very easily be encoded as an equivalence between two processes which differ only
if the secret data is disclosed. Indeed, on top of the existing difficulties for reachability properties, equivalence it-
self adds a new layer of complexity as even when considering substantially simpler process algebra without terms to
model protocols, such as CCS or the ⇡-calculus, equivalence is known to be very hard and in most cases an undecidable
problem [48].

Specific to the verification of equivalence properties, there is actually some leeway in the precise definition of the
equivalence of protocols we consider. Several notions have been described in the literature, such as trace equival-
ence, may-testing equivalence or observational equivalence [17, 2, 1]. In this thesis we consider trace equivalence

as our core notion of equivalence. Other notions still coexist and can provide alternate methods for checking equi-
valence. Labeled bisimilarity for instance offers a tighter notion of equivalence between processes, and differ from
trace equivalence in the same way as for process algebra without terms, which is in particular helpful in providing
proofs of equivalence [65], instead of providing attacks i.e. witnesses of non-equivalence, as is usually done by tools.
Diff-equivalence [14] offers another example of a tighter notion of equivalence whose verification can be encoded
within the tool ProVerif and leads to a sound non-terminating procedure for checking equivalence, albeit prone to false
negatives. Nevertheless, when dealing with "deterministic protocols" such as determinate protocols, a number of these
equivalences actually collapse [19].

As mentioned before, verifying equivalence is a difficult problem and there exist very few decidability results. In
particular, they all consider equivalence for a bounded number of sessions [12, 35] and are thus subject to the same
limitations as discussed in Section 1.4.1. One way to limit the number of traces that can be produced in response to
the actions of the attacker is to restrict the branching behaviour of protocols. The use of if/then conditional statements
is invaluable for providing agents with the ability to test values, such as signatures or keys, before proceeding to the
remaining of the protocol. Unfortunately, else branches in these conditional statements tend to make equivalence
checking much more difficult as they require to analyse any path that can be taken through all the conditionals in
an execution. For this reason, removing else is often used as a restriction. A common restriction on protocols for
proving equivalence is to consider "deterministic protocols". During an execution, a protocol can be presented with
non-deterministic choices. In most process algebras, when presented with a message from the network which can be

11

received by two agents, e.g. when the same channel is used, a choice must be made to decide which of the two agents
should capture the message and proceed. More directly, some algebras contain a non-deterministic choice operator
(usually "+") which can force an agent to make such a choice. These choices impact the number of interleavings of
actions to consider, and similarly to the else branches, it is a natural hypothesis to remove any occurrences of such
choices. This leads to notions of determinism, for which only one behaviour is possible in response to the given actions
of the attacker. This determinism can take the form of determinate protocols [19] or simple protocols [33].

1.5 Existing tools

To fill the need for the automated verification of protocols, a number of tools were developed to find attacks and prove
security properties about cryptographic protocols. Each of them relies on a number of assumptions on the protocols,
properties and equivalence to consider in order to obtain sound verification procedures. In what follows, we focus
on tools which are either devoted or contain features to prove the equivalence of protocols. Some are full decision
procedures whereas other do not always provide termination in every case.

• Spec [65]: Implemented on top of the Bedwyr logical framework [9], Spec verifies open bisimulation for pro-
tocols modelled in a version of the spi-calculus. It relies on a fixed set of cryptographic primitives and only
handles a bounded number of sessions, while guaranteeing termination. Thanks to the open bisimulation, the
tool is able to provide proofs of equivalence, in the form of the bisimulation relation.

• Akiss [19]: Akiss is another tool which verifies equivalence for a bounded number of sessions. It uses an
encoding as Horn clauses and focuses on trace equivalence. It does not support else branches and may not
terminate but it can deal with large number of primitives and equational theories, as well as provide witness of
non-equivalence.

• Apte [20]: Apte deals with the verification of trace equivalence for a bounded number of sessions and for
standard primitives. It guarantees termination and supports both else branches and private channels.

• ProVerif [13]: Initially developed for reachability properties, it was extended to prove a stronger notion of
equivalence: the diff-equivalence of bi-processes [14]. Like the original version, termination is not guaranteed
when proving equivalence. ProVerif uses an encoding as Horn clauses and supports private channels and a
large number of equational theories. Contrary to the previous tools, ProVerif consider an unbounded number of
sessions but can produces false negatives, despite recent improvements [21, 40].

• Maude-NPA [61]: Maude-NPA is an analysis tool based on multiset-rewriting. As ProVerif, it handles an
unbounded number of sessions and proves a tighter version of protocol equivalence. It also puts an emphasis on
algebraic properties of primitives to deal, in particular, with Associative-Commutative equational theories, even
though it currently handles rather simple protocols.

• Tamarin [10]: As ProVerif and Maude-NPA, Tamarin deals with an equivalence stronger than trace equivalence
and can handle an unbounded number of sessions. It also uses multiset rewriting and can either produce attacks
or prove equivalence, at the cost of potential non-termination, for a large number of primitives and theories. It
moreover provides an interactive mode for proving properties.

1.6 Contributions

The main objective of my thesis is to prove decidability results for checking trace equivalence of protocols, as well
as to provide new proof methods to ease the automated verification of protocol equivalence. My contributions can be
split into five main points, which are summarised here. The two first aspects are related to ways of making equivalence

12

checking easier, by soundly removing some of its complexity or by sharply restricting the search spaces to consider.
The last three consists of new classes of protocols such that trace equivalence are decidable. Combined with the
facilitating methods described earlier, they further enlarge the classes of protocols for which equivalence properties
can be proven.

1.6.1 Simplifying equivalence checking

Sound removal of nonces for checking protocol equivalence As mentioned in Section 1.4, the existence of an
unbounded number of nonces that the agents and the attacker can use is an important source of complexity for the
verification of security properties for an unbounded number of sessions. In the case of secrecy, this difficulty can
be partially avoided by the soundness of direct removal of any nonce generation in the specification of the protocol
(see Section 1.4.2), i.e. if no attack is found when nonces are removed, then no attack whatsoever can be found.
This implication is unfortunately false in the case of equivalence. Our first contribution, presented in Chapter 3,
consists then in a new transformation defined on protocols which removes nonce generation while remaining a sound
abstraction for the equivalence with a unbounded number of sessions. Hence, if P and Q are two protocols, with
arbitrary name generation, we algorithmically define two transformed versions of these, P and Q without nonces,
such that P ⇡ Q) P ⇡ Q. This transformation works for a large number of cryptographic primitives and rewriting
systems, namely adequate theories, which encompass traditional symmetric or asymmetric encryption, signatures or
zero-knowledge proofs and simple protocols. Compared to the naive nonce deletion used to deal with secrecy, this
transformation considers an additional copy of each nonce before deleting it. This result allows to directly turn a
decision procedure for trace equivalence of protocols without nonces but for an unbounded number of sessions, such
as the one presented in Chapter 5, into a terminating and sound procedure to verify trace equivalence of protocols with

nonces and for an unbounded number of sessions.

Search space restriction through typing Section 1.4 described the use of tagging as a good and reasonable design
practice. It also introduced the role of typing in the decidability results obtained for the weak secrecy within tagged
protocols. Our second contribution, presented in Chapter 4 offers a generalisation of both tagging and typing to the
case of trace equivalence for determinate protocols and an unbounded number of sessions. While focusing on the
theory of symmetric encryption, it offers an important reduction in the set of traces searched for proving equivalence.
It happens to be instrumental for the decidability results presented in Chapters 5 and 6. Intuitively, the notion of type-

compliance, introduced to generalise the idea of tagging, constrains protocols to avoid ambiguity in the interpretation
of the origin of any message sent on the network and therefore drastically limit the shape and size of messages
which can be exchanged between honest agents. The typing result ensures that limiting the attacker to abide by these
constrained shapes and sizes of messages does not reduce her power at all. More formally, we prove that if an attacker
is able to produce a witness of non-equivalence between two type-compliant protocols, then she is also able to produce
a well-typed witness of non-equivalence between those two protocols, i.e. an attack such that any message sent on the
network by the agents and the attacker fits a particular format defined by the specification of the protocol. To achieve
this result, we designed a decision procedure for trace equivalence with a bounded number of sessions which produces,
in case of non-equivalence, only well-typed witnesses.

1.6.2 Decidable classes

Decidability of equivalence for simple protocols without nonces Decidability results for equivalence for an un-
bounded number of sessions are difficult to obtain, due to the inherent complexity of protocol equivalence as dis-
cussed in Section 1.4. Chapter 5 presents one of the first decidability results for trace equivalence between simple
type-compliant protocols without nonces. This result deeply relies on the typing theorem from Chapter 4 to bound the
search space for attacks with such protocols. The additional restriction on nonces allows us to further bound the total
number of messages which can be exchanged on the network, either by honest agents or the attacker. This bound can

13

then be translated into an upper bound on the length of any minimal witness of non-equivalence, if it exists. Moreover,
even though it does not deal directly with nonces, this class is compatible with the abstraction presented in Chapter 3
to produce a sound procedure for checking equivalence for simple type-compliant protocols with nonces.

Decidability of equivalence for tagged protocols with nonces Chapter 6 introduces the first result of decidability
for an unbounded number of sessions and tagged protocols with nonces. The typing result introduced in Chapter 4
offered a reduction in the search space when proving equivalence. This work pursues it by refining the typing systems
considered to obtain structure-preserving typing systems, a notion closely related to tagging schemes in the literature.
It also develops the notion, independently presented in [47] for the restricted case of temporary secrecy, of dependency

graph which formally abstracts the dependencies between the actions in a protocol specification. It allows to define
acyclic protocols, intuitively related to protocols without loops in their natural executions. Focusing on simple acyclic
type-compliant protocols using symmetric encryption, we provide a decidability result for an unbounded number of
sessions as well as an unbounded number of nonces. This result also provides a computable upper bound on the length
of any potential minimal witness of non-equivalence between such protocols.

Decidability of equivalence for ping-pong protocols The last contribution of this thesis, detailed in Chapter 7,
presents another decidability result for trace equivalence of protocols for an unbounded number of sessions. It focuses
on a class of ping-pong protocols, reminiscent of the class studied in the seminal work of Dolev and Yao [43] with
cryptographic primitives such as symmetric and asymmetric encryption, signature and hash functions, but without
pairing or nonces. It provides a two-way reduction between trace equivalence of ping-pong protocols and language
equivalence of deterministic pushdown automata [63] as well as a decidability result for ping-pong protocols for an
unbounded number of sessions. As a side result, it also produces a new undecidability result for trace equivalence
with very elementary protocols too, further highlighting the difficulty of this task. Based on the complexity of the
reductions between protocols and deterministic pushdown automata [62, 64], it also sheds some light on the inherent
complexity of trace equivalence. Focusing on trace equivalence for an unbounded number of sessions without nonces,
this result appears to be a prime candidate for the application of the abstraction discussed in Chapter 3.

1.7 Outline

The remainder of this thesis is articulated into two main parts, focusing first on easing the verification of trace equival-
ence mainly through nonce removal and typing and then on describing classes of protocols for which trace equivalence
is decidable.

Part I is made of three chapters. Chapter 2 aims at defining a unified formal model for protocols and equivalence
checking which will be used throughout this thesis, facilitating the application of the subsequent results. Following
that, Chapter 3 proposes a first method to simplify equivalence checking by removing nonces and effectively reducing
the equivalence checking of protocols with an unbounded number of nonces to protocols with a bounded number of
nonces. Chapter 4 then proposes a new practical restriction on protocols and executions in order to reduce equivalence
checking to the verification of well-typed equivalence.

Part II compiles three classes of protocols for which trace equivalence can be proven decidable with an unbounded
number of sessions. Chapter 5 describes a decidable class of protocols with a bounded number of nonces naturally
formed from the restrictions introduced in Chapter 4 and which easily interfaces itself with the result from Chapter 3.
Then Chapter 6 introduces a novel notion of acyclic protocols and dependency graph to define a practical class of
protocols with an unbounded number of nonces and sessions for which equivalence is decidable. Finally, Chapter 7
describes a final class of protocols, ping-pong protocols, whose equivalence is reduced to the equivalence of language
between deterministic pushdown automata and hence decidable.

Appendix A and B ultimately contain proofs from Chapters 4 and 7, respectively, which were not included into the
body of this thesis.

14

1.8 Publications

• The results from Chapter 3 led to a conference article presented at the 20th European Symposium On Research
In Computer Science (ESORICS) in 2015 [25].

• The results from Chapter 4 and 5 led to a conference article presented at the 25th Conference on Concurrency
Theory (CONCUR) in 2014 [24].

• The results from Chapter 7 led to a conference article presented at the 40th International Colloquium on Auto-
mata, Languages and Programming (ICALP) in 2013 [23], as well as a journal version in Transactions on
Computational Logic in 2015 [27].

• The results from Chapter 6 finally led to a conference article presented at the 28th IEEE Computer Security
Foundations Symposium (CSF) in 2015 [26].

15

Part I

Simplifying equivalence checking

16

Chapter 2

Model for general protocols

In this chapter, we present the model we will use through this thesis to model protocols and their properties. Security
protocols are modelled through a process algebra inspired from the applied pi-caculus [1] that manipulates terms.
Still, we consider a variant with several differences: we do not consider else branches in conditional expressions, nor
do we allow private channels. We also introduce several classes of protocols which convey the idea of determinism
as mentioned in introduction: determinate and simple protocols. Section 2.5 finally describes the core notion of
type-compliant protocols, related to the tagging introduced in [15]. This idea on protocols will constitute the central
hypothesis of the results of Chapters 4 and 6.

2.1 Term algebra

We assume an infinite set N of names, which are used to represent keys and nonces and an infinite set X of variables.
We assume a signature Σ, i.e. a set of function symbols together with their arity, and we make a distinction between
constructor symbols and destructor symbols: Σ = Σc] Σd. Given a signature Σ, we denote by T (Σ,A) the set of
terms built from symbols in Σ and atomic data in A. Terms without variables are called ground. The set T (Σc,X [N)
is the set of constructor terms. Then among the terms in T (Σc,N) we distinguish a special subset of terms called
messages and noted MΣ, and that is stable under renaming of names: a message does not contain any destructor
symbol, and m 2 MΣ implies that m⇢ 2 MΣ for any renaming ⇢ (not necessarily a bijective one).

In addition to the set of variables X , we consider an infinite disjoint set of variables W . Variables in W intuitively
refer to variables used to store messages learnt by the attacker. We denote vars(u) the set of variables that occur in a
term u. The application of a substitution σ to a term u is written uσ, and we denote dom(σ) its domain. The positions

of a term are defined as usual. Two terms u and v are unifiable if there is a substitution σ such that uσ = vσ.

The properties of the primitives are expressed using rewriting rules of the form g(t1, . . . , tn) ! t where g is a
destructor, that is g 2 Σd, and t1, . . . , tn, t are constructor terms. A rewriting rule can only be applied to constructor
terms. Formally, we say that u can be rewritten into v if there is a position p and a rule g(t1, . . . , tn) ! t such that
u at position p is equal to g(t1, . . . , tn)✓ and v = u[t✓]p (that is u where the term at position p has been replaced by
t✓) for some substitution ✓ such that t1✓, . . . , tn✓, t✓ are messages. We only consider sets of rewriting rules that yield
convergent rewrite systems. We denote by u# the normal form of a given term u. We refer the reader to [42] for the
precise definitions of rewriting systems, convergence, and normal forms.

Example 2.1.1. A typical signature for representing symmetric encryption and pair is

Σ = {senc, sdec, h i, proj1, proj2}] Σ0

where Σ0 is a set of atomic data. The set Σ0 typically contains the public constants known to the attacker (e.g. agent
names a, b, . . .). The symbols senc and sdec of arity 2 represent symmetric encryption and decryption. Pairing

17

is modelled using h i of arity 2, whereas projection functions are denoted proj1 and proj2 (both of arity 1). The
relations between encryption/decryption and pairing/projections are represented through the following convergent
rewrite system:

sdec(senc(x, y), y) ! x, and proji(hx1, x2i) ! xi with i 2 {1, 2}.

We have that proj1(sdec(senc(hs1, s2i, k), k))# = s1. Note that, since a destructor can only be applied on mes-
sages, no rewriting rule can be applied on the term sdec(senc(s, proj1(s)), proj1(s)) which is thus in normal form
(but not a message). This signature Σ is split into two parts as follows: Σc = {senc, h i}] Σ0 and Σd =
{sdec, proj1, proj2}. Then, we may consider MΣ to be Mc = T (Σc,N) the set of all ground constructor terms.
We may also restrict MΣ to be Matomic, the set of ground constructor terms that only use atomic data in key position.

Finally, we assume Σ to be split into two parts, and this distinction is orthogonal the one made between destructor
and constructor symbols. We denote by Σpub the set of function symbols that are public, i.e. available to the attacker,
and Σpriv for those that are private. Actually, an attacker builds his own messages by applying public function symbols
to terms he already knows. Formally, a computation done by the attacker is modelled by a term in T (Σpub,Σ0 [W),
called a recipe. Note that such a term does not contain any name. Indeed, all names are initially unknown to the
attacker.

2.2 Process algebra

Let Ch be an infinite set of channels. We consider processes built using the grammar below where u 2 T (Σc,N [X),
v 2 T (Σ,N [X), n 2 N , and c, c0 2 Ch:

P,Q := 0 null

| in(c, u).P input

| out(c, u).P output

| let x = v in P evaluation

| (P | Q) parallel

| !P replication

| new n.P restriction

| new c0.out(c, c0).P channel generation

The process 0 does nothing. The process “in(c, u).P ” expects a message m of the form u on channel c and then
behaves like Pσ where σ is a substitution such that m = uσ. The process “out(c, u).P ” emits u on channel c, and
then behaves like P . The variables that occur in u are instantiated when the evaluation takes place. The process
“let x = v in P ” tries to evaluate v and in case of success the process P is executed; otherwise the process is blocked.
The process “P | Q” runs P and Q in parallel. The process “!P ” executes P some arbitrary number of times. The
restriction “new n” is used to model the creation of a fresh random number (e.g., a nonce or a key) whereas channel
generation “new c0.out(c, c0).P ” is used to model the creation of a fresh channel name that shall immediately be made
public. Note that we consider only public channels. It is still useful to generate fresh channel names to let the attacker
identify the different sessions (as it is often the case in practice through sessions identifiers).

Note that our calculus allows both message filtering as well as explicit application of destructor symbols. For
example, to represent a process that waits for a message, decrypts it with a key k, and sends the plaintext in clear, we
may write P = in(c, senc(x, k)).out(c, x) as well as Q = in(c, y).let x = sdec(y, k) in out(c, x). However, the
choice of filtering or let yields a slightly different behaviour since a message will be received in P only if it matches
the expected format while any message will be received in Q (and then the format is checked).

We write fv(P) for the set of free variables that occur in P , i.e. the set of variables that are not in the scope of
an input or a let construction. We assume Ch = Ch0] Chfresh where Ch0 and Chfresh are two infinite sets of channels.
Intuitively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be used in the semantics to instantiate the channels
generated during the execution of a protocol. They shall not be part of its specification.

18

Definition 2.2.1. A protocol P is a process such that P is ground, i.e. fv(P) = ;; and P does not use channel names
from Chfresh.

Example 2.2.1. The Denning Sacco protocol [30] (without timestamps) is a key distribution protocol using symmetric
encryption and a trusted server. It can be described informally as follows:

1. A ! S : A,B
2. S ! A : {B,Kab, {Kab, A}Kbs

}Kas

3. A ! B : {Kab, A}Kbs

where {m}k denotes the symmetric encryption of a message m with key k. The agents A and B aim at authenticating
each other and establishing a session key Kab through a trusted server S. The key Kas (resp. Kbs) is a long term key
shared between A and S (resp. B and S).

We model the Denning Sacco protocol in our formalism. Below, kas, kbs, kab are names, whereas a and b are
constants from Σ0. We denote by hx1, . . . , xn−1, xni the term hx1, h. . . hxn−1, xniii. The protocol is modelled by the
parallel composition of three processes PA, PB , and PS , corresponding to the roles of A, B, and S.

PDS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB
| ! new c3.out(cS , c3).PS

The processes PA, PB , and PS are given below.

PA = out(c1, ha, bi).
in(c1, enc(hb, xAB , xBi, kas)).
out(c1, xB)

PB = in(c2, enc(hyAB , ai, kbs))

PS = in(c3, ha, bi). new kab.
out(c3, enc(hb, kab, enc(hkab, ai, kbs)i, kas))

2.3 Semantics

The operational semantics of a process is defined using a relation over configurations. A configuration is a pair (P;φ)
where:

• P is a multiset of ground processes.

• φ = {w1 . m1, . . . ,wn . mn} is a frame, i.e. a substitution where w1, . . . ,wn are variables in W , and
m1, . . . ,mn are messages, i.e. terms in MΣ.

We often write P instead of ({P}; ;), and P [P or P | P instead of {P} [P . The terms in φ represent the
messages that are known by the attacker.

The frame φ represents the messages the attacker has learnt so far. He may deduce new messages from his
knowledge. This is formalised through the deducibility notion.

Definition 2.3.1. A message u is deducible from a frame φ, denoted φ ` u, if there exists a recipe R such that
Rφ# = u.

The operational semantics of a process is induced by the relation
↵
−! as defined in Figure 2.1.

The first rule allows the attacker to send to some process a term built from publicly available terms and symbols.
The second rule corresponds to the output of a term: the corresponding term is added to the frame of the current
configuration, which means that the attacker can now access the sent term. Note that the term is outputted provided

19

(in(c, u).P [P;φ)
in(c,R)
−−−−! (Pσ [P;φ) where R is a recipe such that Rφ#

is a message and Rφ# = uσ for some σ with dom(σ) = vars(u)

(out(c, u).P [P;φ)
out(c,wi+1)
−−−−−−−! (P [P;φ [{wi+1 . u})

where u is a message and i is the number of elements in φ

(new c0.out(c, c0).P [P;φ)
out(c,chi)
−−−−−−! (P{chi/c0} [P;φ)

where chi is the “next” fresh channel name available in Chfresh

(let x = v in P [P;φ)
⌧
−! (P{v#/x} [P φ) where v# is a message

(new n.P [P;φ)
⌧
−! (P{n

0

/n} [P;φ) where n0 is a fresh name in N

(!P [P;φ)
⌧
−! (P [!P [P;φ)

Figure 2.1: Semantics of protocols

that it is a message. The third rule corresponds to the special case of an output of a freshly generated channel name. In
such a case, the channel is not added to the frame but it is implicitly assumed known to the attacker, as all the channel
names. These three rules are the only observable actions. The fourth rule corresponds to the evaluation of the term
v; if this succeeds, i.e. if v# is a message then x is bound to the result and P is executed; otherwise the process is
blocked. The two remaining rules are quite standard and are unobservable by the attacker.

The relation
↵1...↵n−−−−−! between configurations (where ↵1 . . . ↵n is a sequence of actions) is defined as the transitive

closure of
↵
−!. Given a sequence of observable actions tr, we write K

tr
==) K 0 when there exists a sequence ↵1 . . . ↵n

such that K
↵1...↵n−−−−−! K 0 and tr is obtained from ↵1 . . . ↵n by erasing all occurrences of ⌧ . For every protocol P , we

define its set of traces as follows:

trace(P) = {(tr, φ) | P
tr
==) (P;φ) for some configuration (P;φ)}.

Example 2.3.1. From Example 2.2.1, consider the following sequence tr:

tr = out(cA, ch1).out(cB , ch2).out(cS , ch3).
out(ch1,w1).in(ch3,w1).out(ch3,w2).
in(ch1,w2).out(ch1,w3).in(ch2,w3)

This sequence tr allows one to reach the frame:

φ = {w1 . ha, bi,w2 . enc(hb, kab, enc(hkab, ai, kbs)i, kas),w3 . enc(hkab, ai, kbs)}.
We have that (tr, φ) 2 trace(PDS). This trace corresponds to a normal execution of the protocol. Moreover we have
that, for instance, a is deducible, as proj1(w1)φ# = a.

2.4 Trace equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker. Trace equivalence can be
used to formalise many interesting security properties, in particular privacy-type properties, such as those studied for
instance in [18, 39]. We first define indistinguishability of sequences of messages, called static equivalence.

Definition 2.4.1. Two frames φ1 and φ2 are statically equivalent, φ1 ⇠ φ2, when we have that dom(φ1) = dom(φ2),
and:

• for any recipe R, Rφ1# 2 MΣ if, and only if, Rφ2# 2 MΣ; and

• for all recipes R1 and R2 such that R1φ1#, R2φ1# 2 MΣ, we have that

R1φ1# = R2φ1# if, and only if, R1φ2# = R2φ2#.

20

Intuitively, two frames are equivalent if an attacker cannot see the difference between the two situations they
represent. If some computation fails in φ1 for some recipe R, i.e. Rφ1# is not a message, it should fail in φ2 as
well. Moreover, the frames φ1 and φ2 should satisfy the same equalities. In other words, the ability of the attacker to
distinguish whether a recipe R produces a message, or whether two recipes R1, R2 produce the same message should
not depend on the frame.

Example 2.4.1. Consider φ1 = {w1 .senc(m1, ki)}, and φ2 = {w1 .senc(m2, ki)}. Assuming that m1, m2 and ki are
public constants from Σ0, we have that φ1 6⇠ φ2. An attacker can observe that decrypting the message of φ1 with the
public constant ki leads to the public constant m1. This is not the case in φ2. Consider the recipes R1 = sdec(w1, ki)
and R2 = m1. We have that R1φ1# = R2φ1# whereas R1φ2# 6= R2φ2#.

Intuitively, two protocols are trace equivalent if, however they behave, the resulting sequences of messages ob-
served by the attacker are in static equivalence.

Definition 2.4.2. Let P and Q be two protocols. We have that P v Q if for every (tr, φ) 2 trace(P), there ex-
ists (tr0, φ0) 2 trace(Q) such that tr = tr0 and φ ⇠ φ0. They are in trace equivalence, written P ⇡ Q, if P v Q
and Q v P .

The choice of MΣ as well as the choice of public symbols allow to fine-tune what an attacker can observe. The
set of public function symbols tell exactly which functions the attacker may use. Then the choice MΣ defines when
computations fail. For example, if MΣ represents the set of terms with atomic keys only, then an attacker may
potentially observe that some computation fails because he was able to inject a non atomic key.

Example 2.4.2. Let n, k 2 N and consider the protocol P = in(c, x).out(c, enc(n, k)) as well as the protocol
Q = in(c, x).out(c, enc(enc(n, x), k)). An attacker may distinguish between P and Q by sending a non atomic data
and observing whether the process can emit. Q will not be able to emit since its first encryption will fail. This attack
would not have been detected if arbitrary terms were allowed in key position.

Example 2.4.3. The process PDS presented in Example 2.2.1 models the Denning Sacco protocol. Assume now that
we wish to check strong secrecy of the exchanged key, as received by the agent B. As discussed in Introduction, this
can be expressed by checking whether P 1

DS ⇡ P 2
DS where:

• P 1
DS is as PDS but we add “β2 : out(c2, enc(m1, yAB))” at the end of the process PB ;

• P 2
DS is as the protocol PDS but we add at the end of PB the instruction

“new k.β2 : out(c2, enc(m2, k))”.

The terms m1 and m2 are two public constants from Σ0.

While the key received by B cannot be learnt by an attacker, strong secrecy of this key is not guaranteed. Indeed,
due to the lack of freshness, the same key can be sent several times to B, and this can be observed by an attacker.
Formally, the attack is as follows. Consider the sequence

tr0 = tr.out(ch2,w4).out(cB , ch4).in(ch4,w3).out(ch4,w5)

where tr has been defined in Example 2.3.1. The attacker simply replays an old session. The resulting (unique) frames
are

• φ0
1 = φ [{w4 . enc(m1, kab), w5 . enc(m1, kab)}; and

• φ0
2 = φ [{w4 . enc(m2, k), w5 . enc(m2, k

0)}.

Then (tr0, φ0
1) 2 trace(P 1

DS) and (tr0, φ0
2) 2 trace(P 2

DS). However, we have that φ0
1 6⇠ φ0

2 since w4 = w5 in φ0
1 but

not in φ0
2. Thus P 1

DS and P 2
DS are not in trace equivalence. To avoid this attack, the messages of the Denning-Sacco

protocol shall include timestamps.

21

2.4.1 Determinate protocols

We consider determinate protocols as defined in [19], i.e., we consider protocols in which the attacker knowledge is
completely determined (up to static equivalence) by its past interaction with the protocol participants.

Definition 2.4.3. A protocol P is determinate if for any tr, and for any (P1, φ1), (P2, φ2) such that P
tr
==) (P1, φ1),

and P
tr
==) (P2, φ2), we have that φ1 ⇠ φ2.

Determinate protocols are useful for the analysis of trace equivalence. Definition 2.4.2 can indeed be equivalently
rewritten (see [19]) as:

Definition 2.4.4. Let P and Q be two determinate protocols. We have that P v Q if:

• for every (tr, φ) 2 trace(P) and for every recipe R such that Rφ# is a message, there exists (tr0, φ0) 2 trace(Q)
such that tr = tr0 and Rφ0# is a message.

• for every (tr, φ) 2 trace(P) and for every recipes R and R0 such that Rφ#, R0φ# are messages and Rφ# =
R0φ#, there exists (tr0, φ0) 2 trace(Q) such that tr = tr0 and Rφ0# = Rφ0#.

They are in trace equivalence, written P ⇡ Q, if P v Q and Q v P .

This allows us to get rid of an alternation between quantifiers in the original definitions and makes possible the
algorithms and proofs we describe in the next chapters.

2.4.2 Simple protocols

We then introduce the class of simple protocols, similar to the one introduced e.g. in [33].

Definition 2.4.5. A simple protocol P is a protocol of the form:

!new c01.out(c1, c
0
1).B1 | ... | !new c0m.out(cm, c0m).Bm | Bm+1 | . . . | Bm+p

where each Bi with 1  i  m+p is a basic process on ci, that is a ground process built using the following grammar:

B := 0 | in(ci, u).B | out(ci, u).B | let x = v in B | new n.B

where u 2 T (Σc,N [X), v 2 T (Σ,N [X), and n 2 N . Moreover, we assume that c1, . . . , cm, cm+1, . . . , cm+p

are pairwise distinct.

Even if considering simple processes may seem to be restricted, in practice it is often the case that an attacker
may identify processes through e.g. IP addresses and even sessions using sessions identifiers. Therefore, encoding
protocols in such a class may be considered as a good practice since it allows to potentially discover more flaws.
Indeed, it gives more power to the attacker and allows him to know from which agent he receives a message.

Lemma 2.4.1. A simple protocol is determinate.

Intuitively, as simple protocols use fresh channels on each of their branches, given a trace of that simple protocol,
only one execution is possible, which then leads to a uniquely defined frame, up to renamings of nonces.

2.5 Type-compliant protocols

We describe several classes of protocols which will be used for our later results. They introduce the notion of typing
system and type-compliance. These ideas are at the core of the results from Chapter 4 onward.

22

2.5.1 Typing systems

We now introduce the notion of type-compliance for protocols w.r.t. typing systems. In these protocols, terms are
given a particular type and we require that types are preserved by unification and application of substitutions. These
operations are indeed routinely used in decision procedures.

The type given to any term is defined by a typing system whose definition we give below.

Definition 2.5.1. A typing system is a pair (T , δ) where T is a set of elements called types, and δ is a function mapping
terms t 2 T (Σc,Σ0 [N [X) to types ⌧ in T such that:

• if t is a term of type ⌧ and σ is a well-typed substitution, i.e. 8x 2 dom(σ), δ(x) = δ(xσ), then tσ is of type ⌧ ,

• for any terms t and t0 with the same type, i.e. δ(t) = δ(t0) and which are unifiable, their most general unifier
(mgu(t, t0)) is well-typed.

We further assume the existence of an infinite number of constants in Σ0 (resp. variables in X , names in N) of any
type.

A straightforward typing system is when all terms are of a unique type, say Msg. Of course, our typing result
would then be useless to reduce the search space for attacks. Which typing system shall be used typically depends on
the protocols under study.

Structure-preserving typing systems are example of useful typing systems, as it will be demonstrated in depth in
Chapter 6. These more precise typing systems preserve the structure of terms and are defined as follows:

Definition 2.5.2. A structure-preserving typing system is a pair (T0, δ0) where T0 is a set of elements called atomic

types, and δ0 is a function mapping atomic terms in Σ0 [N [X to types ⌧ generated using the following grammar:

⌧, ⌧1, . . . , ⌧n = ⌧0 with ⌧0 2 T0
| f(⌧1, . . . , ⌧n) with f 2 Σc

We further assume the existence of an infinite number of constants in Σ0 (resp. variables in X , names in N) of any
type. Then, δ0 is extended to constructor terms as follows:

δ0(f(t1, . . . , tn)) = f(δ0(t1), . . . , δ0(tn)) with f 2 Σc.

Note that a structure-preserving typing system is a special case of typing system, whose types are defined only
slightly differently. Lemma 2.5.1 formally links the two definitions.

Lemma 2.5.1. If (T0, δ0) is a structure-preserving typing system, (img(δ0), δ0) is a typing system, where img(δ0) is
the image of the extension of δ0 to arbitrary constructor terms.

Proof. Note that in Definition 2.5.1, T is the set of all types, whereas T0, as defined in Definition 2.5.2, only contains
atomic types. The set of all types from T0 is obtained by looking at the image of the typing function extended to
arbitrary types by induction on their structure: we set T = img(δ0) and δ = δ0. Let us then verify that the two items
of Definition 2.5.1 apply to (T , δ):

• if t is a term, δP (t) = ⌧ and σ a well-typed substitution: let us reason by induction on t:

– if t is a constant, name or variable such that t /2 dom(σ), t = tσ, and then δ(tσ) = ⌧ ,

– if t is a variable and t 2 dom(σ): as σ is well-typed, δP (x) = δP (xσ) which amounts to δP (t) =
δP (tσ) = ⌧ ,

– if t = f(t1, . . . , tn) and for any i, δP (ti) = δP (tiσ), then δP (f(t1, . . . , tn)) = f(δP (t1), . . . , δP (tn))
by Definition 2.5.2, which is equal to, by induction hypothesis, f(δP (t1σ), . . . , δP (tnσ)) and the same as
δP (f(t1σ, . . . , tnσ)), by Definition 2.5.2 once again, leading to the result, δP (t) = δP (tσ).

23

• for any terms t, t0 such that δP (t) = δP (t
0), mgu(t, t0) is well-typed: there again we prove the result by

induction on the computation of the mgu(t, t0), as done e.g. in [6, Lemma 1].

2.5.2 Type compliance

The class of protocols we consider here is the class of protocols type-compliant w.r.t. some typing system. Their
defining characteristic is that any two unifiable encrypted subterms are of the same type. The goal of this part is to
state this hypothesis formally.

Due to the presence of replication, we need to consider two copies of protocols in order to consider different
instances of the variables. Given a protocol P with replication, we define its 2-unfolding unfold2(P) to be the protocol
such that every occurrence of a process !R in P is replaced by R | R, and some ↵-renaming is performed on one copy
to ensure names and variables distinctness of the resulting process. Note that if P is a protocol that does not contain
any replication, we have that unfold2(P) = P .

Example 2.5.1. Let P1 = in(c, x).!new k. in(c, enc(hx, yi, k)). We have that:

unfold2(P1) = in(c, x).(new k1.in(c, enc(hx, y1i, k1)) | new k2.in(c, enc(hx, y2i, k2)))

We write St(t) for the set of (syntactic) subterms of a term t, and ESt(t) the set of its encrypted subterms,
i.e. ESt(t) = {u 2 St(t) | u is of the form enc(u1, u2)}. We extend this notion to sets/sequences of terms, and to
protocols as expected.

Definition 2.5.3. A protocol P is type-compliant w.r.t. a typing system (T , δ) if for every t, t0 2 ESt(unfold2(P))
we have that: t and t0 unifiable implies that δ(t) = δ(t0).

Example 2.5.2. Going back to the protocols of Example 2.2.1 and 2.4.3, we consider the structure-preserving typing
system generated from the set of atomic types

TDS = {⌧a, ⌧b, ⌧m, ⌧kas, ⌧kbs, ⌧kab}

and the function δDS that associates the expected type to each constant/name, and the following type to variables:

• δDS(xAB) = δDS(yAB) = ⌧kab; and

• δDS(xB) = enc(h⌧kab, ⌧ai, ⌧kbs).

Example 2.5.3. The protocol P 1
DS (resp. P 2

DS) is type-compliant w.r.t. the typing system given in Example 2.5.2.
Indeed, the encrypted subterms of unfold2(P 1

DS) are:

1. tA = enc(hb, xAB , xBi, kas);

2. tB1 = enc(hyAB , ai, kbs);

3. tB2 = enc(m1, yAB);

4. tS1 = enc(hb, kab, enc(hkab, ai, kbs)i, kas); and

5. tS2 = enc(hkab, ai, kbs)

as well as the renaming of these terms obtained by replacing kab, xAB , yAB , and xB with fresh names/variables of the
same type.

It is easy to check that the type-compliance condition is satisfied for any pair of terms. For instance, we have that
tA and tS1 are unifiable, and they have indeed the same type:

δDS(tA) = enc(h⌧b, ⌧kab, enc(h⌧kab, ⌧ai, ⌧kbs)i, ⌧kas)
= δDS(tS1).

24

As shown in the following example, not all protocols are type-compliant w.r.t. a structure-preserving typing system.

Example 2.5.4. For instance, consider the following protocol:

P = ! new c.out(c, c0). in(c0, enc(x, k)). out(c0, enc(hx, xi, k)

We have that t1 = enc(x, k) and t2 = enc(hx, xi, k) are both in ESt(unfold2(P)) as well as the terms t01 and t02
obtained from t1 and t2 by simply renaming x with another variable, say x0, having the same type as x. The two terms
t1 and t02 are unifiable, and thus should receive the same type, but this would imply that δ(x) = hδ(x0), δ(x0)i, and
thus x can not receive the same type as x0.

2.5.3 Tagged protocols

Finally, as an instance of our definitions, we consider tagged protocols, for a notion of tagging similar to one introduced
by Blanchet and Podelski [15]. They form an interesting particular case of type-compliant protocols. Assume given a
protocol P and an unfolding P 0 of it (remember that when computing unfold2(P) names and variables are renamed
to avoid clashes). Let u be a term in T (Σc,ΣP [N 0

P [X 0
P) where ΣP , N 0

P , X 0
P are the constants, names, and

variables occurring in P 0, we denote by u the transformation that replaces any name and variable occurring in u by its
antecedent in NP and XP where NP and XP are the names and variables occurring in P .

Definition 2.5.4. A protocol P is tagged if there exists a substitution σP such that for any s1, s2 2 ESt(unfold2(P))
with s1 and s2 unifiable, we have that s1σP = s2σP .

The protocols introduced in Example 2.4.3 are example of tagged protocols. If a protocol is not naturally tagged,
tagging can easily be enforced by labelling encrypted terms, as proposed in [15].

Definition 2.5.5. A protocol P is strongly tagged if:

1. any term in ESt(P) is of the form enc(hc,mi, k) for some c 2 Σ0; and

2. there exists σP such that for any s, t 2 ESt(P) with s = enc(hc0, s1i, s2) and t = enc(hc0, t1i, t2) for some
c0 2 Σ0, we have that sσP = tσP .

The second condition requires that there is a substitution that unifies any two tagged terms unless their tags differ.
This condition is easy to achieve for executable protocols. More precisely, assume a protocol admits an execution
where each protocol step (in and out) is executed once (i.e. there is one honest execution). This protocol can be easily
strongly tagged by adding a distinct tag in each encrypted term.

Lemma 2.5.2. Let P be a protocol. If P is strongly tagged then P is tagged.

Proof. Let us assume P is a strongly tagged protocol and σP be the substitution as in Definition 2.5.5. Let s1, s2 2
ESt(unfold2(P)) such that there exists σ with s1σ = s2σ. As both terms are of the form enc(hc, uii, vi) for some ui
and vi and are unifiable, they share the same tagging constant c. Then s1σP = s2σP by Definition 2.5.5, and thus, a

fortiori, s1σ1 = s2σ2.

Example 2.5.5. The Otway-Rees protocol [30] is a key distribution protocol using symmetric encryption and a trusted
server. It can be described informally as follows:

1. A ! B : M,A,B, {Na,M,A,B}Kas

2. B ! S : M,A,B, {Na,M,A,B}Kas
, {Nb,M,A,B}Kbs

3. S ! B : M, {Na,Kab}Kas
, {Nb,Kab}Kbs

4. B ! A : M, {Na,Kab}Kas

25

where {m}k denotes the symmetric encryption of a message m with key k, A and B are agents trying to authenticate
each other, S is a trusted server, Kas (resp. Kbs) is a long term key shared between A and S (resp. B and S), Na

and Nb are nonces generated by A and B, Kab is a session key generated by S, and M is a session identifier.
We propose a modelling of the Otway-Rees protocol in our formalism. We use restricted channels to model the

use of unique session identifiers used along an execution of the protocol. Below, kas, kbs, m, na, nb, kab are names,
whereas a and b are constants from Σ0. We denote by hx1, . . . , xn−1, xni the term hx1, h. . . hxn−1, xniii.

POR =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB are given below, and PS can be defined in a similar way.

PA = new m.new na. out(c1, hm, a, b, enc(hna,m, a, bi, kas)i).
in(c1, hm, enc(hna, xabi, kas)i);

PB = in(c2, hym, a, b, yasi).new nb.out(c2, hym, a, b, yas, enc(hnb, ym, a, bi, kbs)i).
in(c2, hym, zas, enc(hnb, yabi, kbs)i).out(c2, hym, zasi)

In our modelling, POR is not tagged. For instance, let us consider the two terms s1 = enc(hna,m, a, bi, kas) and
s2 = enc(hna, xabi, kas). Both are encrypted subterms of PA (and thus of unfold2(POR)) and s1 and s2 are unifiable.
Now, consider s3 = enc(hza, kabi, kas). Actually, s3 is an encrypted subterm of PS which is unifiable with s2.
However, there exists no substitution σ such that s1σ = s2σ = s3σ.

We can consider a strongly tagged, and safer, version of the Otway-Rees protocol by introducing 4 different tags,
denoted 1,2,3 and 4, that are modelled using constants from Σ0.

P 0
OR =! new c1.out(cA, c1).P

0
A | ! new c2.out(cB , c2).P

0
B | ! new c3.out(cS , c3).P

0
S

P 0
A = new m.new na. out(c1, hm, a, b, enc(h1, na,m, a, bi, kas)i).

in(c1, hm, enc(h2, na, xabi, kas)i)

P 0
B = in(c2, hym, a, b, yasi).

new nb. out(c2, hym, a, b, yas, enc(h3, nb, ym, a, bi, kbs)i).
in(c2, hym, zas, enc(h4, nb, yabi, kbs)i).out(c2, hym, zasi)

P 0
S = in(c3, hzm, a, b, enc(h1, za, zm, a, bi, kas), enc(h3, zb, zm, a, bi, kbs)i).

new kab. out(c3, hzm, enc(h2, za, kabi, kas), enc(h4, zb, kabi, kbs)i)

We can show that P 0
OR is strongly tagged: consider the natural execution of P 0

OR, matching inputs and outputs as
intended. From this execution we can define:

σP = {xab . kab, ym . m, yas . enc(h1, na,m, a, bi, kas)i,
zas . enc(h2, na, kabi, kas), zm . m, za . na, zb . nb}.

It is then easy to check that for any two terms s1 and s2 that are unifiable, their instances by σP are actually identical.

For any tagged protocol, we can infer a finite typing system, and show the type-compliance of the tagged protocol
w.r.t. this typing system.

Definition 2.5.6. Let P be a tagged protocol, and σP the substitution witnessing this fact. Let ΣP , NP , XP be
respectively the constants, names, and variables occurring in P . We consider the function δP , inductively defined on
T (Σc,ΣP [NP [XP) as follows:

• δP (x) = xσP for any variable that occurs in P ;

• δP (a) = a for any name, constant that occurs in P .

• δ(f(t1, t2)) = f(δ(t1), δ(t2)) for f 2 {enc, h i}.

The image of δP is a set of types, denoted Tp. The function δP is then extended arbitrarily to the remaining names,
variables, constants such that there is an infinite set of names, variables, constants of each type in Tp. This extends δP
on T (Σc,Σ0 [N [X) using the recursive definition: δ(f(t1, t2)) = f(δ(t1), δ(t2)) when f 2 {enc, h i}.

26

Any tagged protocol is actually type-compliant w.r.t. its induced typing system.

Proposition 2.5.1. Let P be a tagged protocol and let (TP , δP) as defined in Definition 2.5.6.

1. (TP , δP) is a typing system. We say that it is the typing system induced by P .

2. P is type-compliant w.r.t. (TP , δP).

Proof. First we prove by induction on terms t and t0 in Definition 2.5.1 that (TP , δP) as introduced in Definition 2.5.6
is a typing system. Then we prove that if P is tagged then P is type-compliant w.r.t. (TP , δP). Indeed, let s, t 2
ESt(unfold2(P)) and a substitution σ such that sσ = tσ. We need to prove that δP (s) = δP (t). Because P is tagged,
sσP = tσP . Moreover, δP (s) = δP (sσP) and δP (t) = δ1(tσP). Hence δP (s) = δP (sσP) = δP (tσP) = δP (t).

2.6 Conclusion

This chapter presented the general model needed to efficiently state the results from the following chapters. It also
introduces the general classes of protocols, determinate, simple and type-compliant protocols, which are needed hy-
potheses to prove our main results. Determinate and simple protocols are both incarnations of the intuitive need for
"deterministic" protocols explained in introduction as they limit, up to some equivalence, the number of executions
for a given trace and thus constrain the branching nature of the search space when hoping to check trace equivalence.
Type-compliant protocols on the other hand are related to tagging schemes, of which they form a generalisation and
will allow us in Chapter 4 to state our typing result to greatly reduce the said search space.

27

Chapter 3

How to get rid of nonces

When proving security properties, it is important to obtain guarantees for an unlimited number of sessions. Unfortu-
nately, it is well known that even secrecy is undecidable [44] in this context. Therefore, a standard restriction consists
in bounding the number of nonces (and keys). Under this assumption, several decidability results have been established
for secrecy [44, 15, 31], and other will be for trace equivalence in Chapters 5 and 7.

Replacing nonces by constants is sound in the context of secrecy properties. More precisely, assuming that P is
obtained from the security protocol P by replacing nonces (and keys) by constants, whenever P is secure (w.r.t. a trace
property such as secrecy) then P is secure as well. Indeed, replacing nonces by constants may only introduce more
attacks, since it may only create more equalities, as long as the protocol P under study does not have else branches.
Therefore, the decidability results developed for secrecy (e.g. [44, 15, 31]) may be seen as proof techniques: if P
falls in a decidable class and can be shown to be secure then the protocol P is secure as well. Unfortunately, such an
approach is no longer valid in the context of equivalence properties. Indeed, consider the processes:

P = ! new n.out(c, {n}k) and Q = ! out(c, {n}k).

Intuitively, both processes send out an arbitrary number of messages on the public channel c. The process P sends out
each time a fresh nonce n encrypted by a (secret) key k while Q always sends the same message. We assume here
that encryption is not randomised. Clearly, the processes P and Q are not in equivalence (denoted P 6⇡ Q) since an
attacker can easily notice that P sends distinct messages while Q sends identical messages. However, abstracting away
fresh names with constants, the resulting equivalence holds (denoted P ⇡ Q). Indeed, the two resulting processes are
actually identical: P = Q = ! out(c, {n}k). This illustrates that P ⇡ Q 6) P ⇡ Q.

In this chapter, we identify a technique to (soundly) get rid of freshly generated data (e.g. nonces, keys). The main
idea consists in introducing an additional copy of each replicated nonce. More precisely, we show that:

!P | P ? ⇡ !Q | Q?) !P ⇡ !Q
where P ? is obtained from P by renaming all fresh nonces and keys to distinct (fresh) constants. Our result holds
for simple processes, a notion described in Section 2.4.2. We consider a large family of primitives, provided that they
can be described by a destructor/constructor theory with no critical pair. In particular, our technique allows one to
deal with standard primitives (asymmetric and symmetric encryption, hash, signatures, MACs) as well as e.g. blind
signatures and zero-knowledge proofs. In Chapters 5 and 7 we will present decidability results developed for protocols
without nonces which could be applied to study the security of protocols with nonces thanks to this result.

Related work. Abstracting nonces and keys by constants is known to be sound for secrecy properties as part of the
“folklore”. We did not find a precise reference for this result. A related result is a reduction to two agents [32] for
trace properties. Reducing the number of nonces can be obtained in a similar way.

The tool ProVerif [13, 14] also makes use of an abstraction for fresh data. In case of secrecy, nonces are abstracted
by functions applied to the process inputs. In case of equivalence properties, nonces are additionally given a counter

28

(termination is of course not guaranteed). The abstraction technique is therefore more precise than using only constants
but seems dedicated to the internal behaviour of the ProVerif tool.

3.1 Our hypotheses

Our technique soundly abstracts nonces and keys for trace equivalence, for simple protocols and for a large family of
security primitives, namely adequate theories, that we define in this section.

In order to establish our result, we have to ensure that considering two distinct constants instead of fresh nonces is
sufficient. We need this property to hold on terms first. Intuitively, when a term cannot be reduced further, it should
be possible to isolate two nonces that cause the reduction to fail. This is indeed the case for a large class of primitives.
We formalise this notion as follows:

Definition 3.1.1. Given a signature Σ = Σc] Σd, a convergent rewriting system R, and a set of messages MΣ, we
say that the theory (Σ,R) is adequate w.r.t. MΣ when for any term t 2 T (Σ,N)rMΣ in normal form, there exist
n1, n2 2 N such that for any renaming ⇢ with ⇢(n1) 6= ⇢(n2) then t⇢# 62 MΣ.

Intuitively, we require that whenever a term t is not a message, it is possible to fix two names of t such that any
renaming of t (preserving these two names) is still not a message. We could generalise our criterion to n-adequate
theories where the number of names that need to fixed is bounded by n but two names are actually sufficient to deal
with most of the theories.

Example 3.1.1. The theory described in Example 2.1.1 is adequate w.r.t. to the two notions of messages Mc and
Matomic that have been introduced. Intuitively, when a term is not a message, either this property is actually stable
for any renaming (e.g. sdec(n, k)) or is due to the failure of a decryption (e.g. sdec(senc(n, k), k0)). In such a case,
maintaining the disequality between the terms modelling the encryption and the decryption keys is sufficient to ensure
that the resulting term will not become a message.

Since the adequacy hypothesis might be cumbersome to prove by hand for each theory, we exhibit a simple criterion
that ensures adequacy: the absence of critical pair.

Definition 3.1.2. Given a signature Σ = Σc] Σd, and a rewriting system R, we say that the theory (Σ,R) has no

critical pair if `1 and `2 are not unifiable for any distinct rules `1 ! r1, and `2 ! r2 in R.

Our notion of critical pairs actually coincide with the usual one for the theories we consider. Indeed, rewrite rules
are all of the form ` ! r such that the head symbol of ` is a destructor symbol and destructors may not appear
anywhere else in ` nor r. Theories without critical pairs are convergent and adequate.

Lemma 3.1.1. Given a signature Σ = Σc]Σd, a rewriting system R, and a set of messages MΣ such that T (Σc,N)r
MΣ is stable by renaming. If the theory (Σ,R) has no critical pair, then (Σ,R) is convergent and adequate w.r.t. MΣ.

Proof. To prove the convergence of R, we need to show R is both terminating and confluent. Because each rewrite
rule strictly decreases the number of destructors in a term, the termination is trivial. Confluence then stems from local
confluence (Newman’s lemma), which comes from the fact that, at any given position in a term, only one rule of R
can be applied (as R has no critical pair) and reductions have to follow an innermost strategy (because rules can only
be applied on arguments without destructors).

Let t 2 T (Σ,N) r MΣ be a term in normal form. We want to prove there exist n1, n2 2 N such that for any
renaming ⇢ with ⇢(n1) 6= ⇢(n2), t⇢# /2 MΣ. If t 2 T (Σc,N)rMΣ, then the result directly holds as T (Σc,N)rMΣ

is stable by renaming. Now, t must then contain at least one destructor. Let p be one of the lowest positions such that
t = C[g(t1, . . . , tk)]p where g 2 Σd and for any position q > p (we note q > p when p is a prefix of q), the symbol at
position q in t is a constructor. In particular, t1, . . . , tk 2 T (Σc,N).

29

We consider the case where there exists a renaming ⇢ such that g(t1, . . . , tk)⇢ ! s using some linear rule R 2 R.
Because rules in R start with a destructor, this rewrite rule can only be applied at position ✏ in g(t1, . . . , tk)⇢. Because
R is linear, we also have that g(t1, . . . , tk) ! s0 using the same rule R and s = s0⇢, and thus t would not be in normal
form. Hence we can assume that for any renaming ⇢, no linear rule can be applied on g(t1, . . . , tn)⇢.

Let n0 2 N and ⇢n0
the renaming such that ⇢n0

(n) = n0 for any n 2 N . Let ⇢n (resp. ⇢m) be a renaming such
that there exists n1, n2 2 N (resp. m1,m2 2 N) such that ⇢n(n1) 6= ⇢n(n2) (resp. ⇢m(m1) 6= ⇢m(m2)). Let us
further assume there exists some non-linear rule Rn 2 R such that g(t1, . . . , tk)⇢n ! sn (resp. some non-linear rule
Rm 2 R such that g(t1, . . . , tk)⇢m ! sm). We want to prove first that Rn = Rm. By definition of ⇢n0

and ⇢n (resp.
⇢m), there exists a renaming δn (resp. δm) such that ⇢nδn = ⇢n0

(resp. ⇢mδm = ⇢n0
) and g(t1, . . . , tk)⇢nδn ! snδn

using Rn (resp. g(t1, . . . , tk)⇢mδm !Rm
smδm using Rm). So we get that g(t1, . . . , tk)⇢n0

! snδn using Rn and
g(t1, . . . , tk)⇢n0

! smδm using Rm. Thus, this means that the left-hand side of Rn and Rm are unifiable. Because R
contains no critical pair, we necessarily have that Rn = Rm. Thus there exist exactly one (non-linear) rule R which can
reduce g(t1, . . . , tk)⇢n for any such ⇢n. Let R = g(u1, . . . , uk) ! r that rule. As g(t1, . . . , tk) is in normal form (and
thus R cannot be applied) while g(t1, . . . , tk)⇢n ! sn using R for every ⇢n, we know that there exist two positions p1
and p2, two indices i and j, and a variable x such that ui|p1 = uj |p2 = x. Actually, we can even assume there exist
two leaf positions q1 > p1 and q2 > p2 such that ti|q1 6= tj |q2 but ti⇢n|q1 = tj⇢n|q2 . Note that ti and ti⇢n (resp. tj
and tj⇢n) share the same leaf positions. Necessarily ti|q1 , tj |q2 2 N , as otherwise ti⇢n|q1 6= tj⇢n|q2 . We have that
ti|q1 6= tj |q2 and both are names. Let ⇢r be a renaming such that ⇢r(ti|q1) 6= ⇢r(tj |q2). We have that ti|q1⇢r = ti|q1
and ti|q1⇢r 6= tj |q2⇢r. The latter implies that ti|p1⇢r 6= tj |p2⇢r, and as such g(t1, . . . , tk)⇢r cannot reduce with rule
R, and consequently cannot reduce with any rule of R. Thereby, g(t1, . . . , tk)# = g(t1, . . . , tk) /2 T (Σc,N).

Finally g(t1, . . . , tk) is in normal form and not a message, which ensures for any position q < p, t|q /2 MΣ

(because tq would contain the destructor g) and t|q cannot reduce with any rule of R, as reduction requires that any
variable must be instantiated with a message and one of its subterm is not a message (the rules themselves contain
exactly one destructor in top-level position).

This lemma allows us to conclude that many theories used in practice to model security protocols are actually
adequate. This is the case of the theory given in Example 2.1.1, and the theories that are presented below.

Standard cryptographic primitives. We may enrich the theory described in Example 2.1.1 with function symbols
to model asymmetric encryption, and digital signatures.

Σ+ = Σ [{aenc, adec, sign, checksign, getmsg, pub, priv, ok}.

Symbols adec/aenc and sign/checksign of arity 2 are used to model asymmetric encryption and signature, whereas
pub/priv of arity 1 will be used to model key pairs, and the symbol priv will be part of the signature Σpriv. The symbol
getmsg may be used in case we want to consider a signature algorithm that does not protect the signed message. The
corresponding rewrite rules are defined as follows:

checksign(sign(x, priv(y)), pub(y)) ! ok

getmsg(sign(x, priv(y)) ! x
adec(aenc(x, pub(y)), priv(y)) ! x

Regarding the notion of messages, a reasonable choice for MΣ+ is to consider M+
c = T (Σc]{aenc, sign, pub, priv, ok},N)

the set of all ground constructor terms. We may also restrict MΣ+
in various ways to only allow some specific terms

in key positions.

Blind signatures. The following theory is often used to model blind signatures (see e.g. [39]), checksign and unblind

are the only destructor symbols.

checksign(sign(x, priv(y)), pub(y)) ! x
unblind(blind(x, y), y) ! x

unblind(sign(blind(x, y), priv(z)), y) ! sign(x, priv(z))

30

Zero-knowledge proofs. A typical signature for representing zero-knowledge proofs is ΣZKP = {Verify,ZKP, ok}
where ZKP represents a zero-knowledge proof and Verify models the verification of the proof. To ease the presentation,
we present how to model the proof of a particular statement, namely the fact that a ciphertext is the encryption of either
0 or 1. Such proofs are thoroughly used for example in the context of e-voting protocols such as Helios. In particular,
the theory we consider here has been introduced in [37]. Specifically, let Σ+

ZKP = ΣZKP]{raenc, radec, pub, priv, 0, 1}
and consider the following rewrite rules.

radec(raenc(x, z, pub(y)), priv(y)) ! x
Verify(ZKP(x, raenc(0, x, pub(y)), pub(y)), raenc(0, x, pub(y)), pub(y)) ! ok

Verify(ZKP(x, raenc(1, x, pub(y)), pub(y)), raenc(1, x, pub(y)), pub(y)) ! ok

The symbol raenc represents randomised asymmetric encryption as reflected by the first rewrite rule. The two last
rules ensure that a proof is valid only if the corresponding ciphertext contains either 0 or 1 and nothing else. Many
variants of zero-knowledge proofs can be modelled in a very similar way.

3.2 Getting rid of nonces

As explained in introduction, our main contribution is to provide a transformation that soundly abstracts nonces.
Informally, we prove an implication of the following form:

!P | P ? ⇡ !Q | Q?) !P ⇡ !Q

where P is obtained from P by replacing nonces by constants, and P ? is a copy of P . Before defining formally this
transformation in Section 3.2.1, we introduce in Section 3.1 which hypotheses are required for the soundness of our
transformation.

3.2.1 Our transformation

We now explain how to formally get rid of nonces. Our transformation is actually modular w.r.t. which nonces shall
be abstracted. Let P be a simple process in which any name is bound at most once. This means that any name that
does not occur explicitly in the scope of a restriction is distinct from those introduced by the new operator. Moreover,
a same name can not be introduced twice by the operator new. Our transformation is parametrised by a set of names
N which correspond to the new instructions that we want to remove (typically those under a replication).

We denote by P
N

(or simply P when N is clear from the context) the process obtained from P by removing every
instruction new n for any n 2 N. Given B(c) a basic process built on channel c, we denote by B?(c?) the process
obtained from B by applying a bijective alpha-renaming on each name bound by a new instruction and replacing each
occurrence of the channel c with the channel c? (that is assumed to be fresh).

Example 3.2.1. Consider the process P = !new c0.out(c, c0).B where B is a basic process built on channel c0. Let
B = new n.out(c0, senc(n, k)), and N = {n}. We have that:

1. P = !new c0.out(c, c0).out(c0, senc(n, k)), and

2. B?(c?) = new n?.out(c?, senc(n?, k)).

Note that B and B?(c?) are identical up to the fact that they proceed on different channel. The transformation ?
applied on the basic process is just here to emphasise the fact that bound names are renamed to avoid some confusion
due to name clashes.

Now, our transformation consists of combining these two building blocks. When removing fresh names from a
process P , we keep a copy of one of the replicated basic processes of P , identified by its channel c. More formally,

given a simple process P of the form P = ! new c0.out(c, c0).B | P 0, and a set of names N, the resulting process P
N,c

is defined as follows:

31

P
N,c def

= P
N
| B?(c?).

Sometimes we simply write P
c

instead of P
N,c

when N is clear from the context.

Example 3.2.2. Continuing Example 3.2.1, we have that:

P
N,c

= ! new c0.out(c, c0).out(c0, senc(n, k)) | new n?.out(c?, senc(n?, k)).

3.2.2 Main result

We are now able to state our main result. We consider a signature Σ = Σc] Σd together with a convergent rewriting
system R, and a notion of messages MΣ such that the theory (Σ,R) is adequate w.r.t. MΣ. Given a simple process
P , we note Ch(P) the set of public channel names occurring under a replication in P .

Theorem 3.2.1. Let P and Q be two simple protocols such that Ch(P) = Ch(Q), and N be a set of names (intuitively
those that we want to abstract away). We have that:

[8c 2 Ch(P). P
N,c

⇡ Q
N,c

]) P ⇡ Q

Note that, in case Ch(P) 6= Ch(Q), we trivially have that P 6⇡ Q since one process is able to emit on a channel
whereas the other is not.

This theorem shows that whenever two processes are not in trace equivalence, then it is possible to find a witness
of non-equivalence when nonces are replaced by constants provided that one basic process under a replication has
been duplicated.

Example 3.2.3. Continuing the example developed in introduction of this chapter and pursued in Section 3.2.1, we
consider

1. P = !new c0.out(c, c0).new nP .out(c
0, senc(nP , k)), and

2. Q = !new c0.out(c, c0).out(c0, senc(nQ, k)).

Let N = {nP }. We have that:

1. P
c
= !new c0.out(c, c0).out(c0, senc(nP , k)) | new n?P .out(c

?, senc(n?P , k)), and

2. Q
c
= !new c0.out(c, c0).out(c0, senc(nQ, k)) | out(c?, senc(nQ, k)).

Clearly P
c
6⇡ Q

c
since an attacker can observe that P

c
may send two distinct messages while Q

c
cannot. Intuitively,

the attack reflecting that P 6⇡ Q can be reflected in P
c
6⇡ Q

c
. Another choice for N is to consider the set {nP , nQ}

but this would lead exactly to the same result.

3.2.3 Proof

To establish our result, we first establish how to map traces from P to P
N

. Given a simple process P , and a trace
(tr, φ) 2 trace(P), we denote by ⇢P,N(tr,φ) the replacement that associates to each name r 2 N generated during the
execution under study and occurring in the frame φ, the name n 2 N that occurs in the instruction new n of P and
that is responsible of the generation of this fresh name. This amounts in losing freshness of all the new n instructions
with n 2 N. Indeed all nonces induced by such an instruction are collapsed into a single nonce n. Our transformation
is parametric in N: we may replace all new instructions or simply part of them. Note that, for simple processes, once
(tr, φ) is fixed, this replacement is uniquely defined.

Lemma 3.2.1. Let P be a simple protocol, N be a set of names, and (tr, φ) 2 trace(P). We have that (tr, φ⇢P,N(tr,φ)) 2

trace(P
N
).

32

Lemma 3.2.1 is a direct corollary of Lemma 3.2.2 which we state below. In the following, we will only consider
theories adequate w.r.t. MΣ. Given a frame φ (resp.) and a name r in φ (resp.), let n(r) be the nonce in P (resp.
Q) such that r is an instance of n(r) and let c(r) be the channel of the protocol’s branch which generated it. Actually,
it can be computed as the channel on which r appeared first in trφ# (resp. tr #). We note Dφ = {r 2 φ | n(r) 2 N}
and, by extension, n(A) = {r 7! n(r) | r 2 A} for any A ✓ Dφ. To each nonce n 2 N, we can associate a
new name n?: we can then define the function n?(·) to be the function mapping any r 2 Dφ to (n(r))?. Similarly,
n?(A) = {r 7! (n(r))? | r 2 A} for A ✓ Dφ.

Lemma 3.2.2. We have the two following properties.

1. Let (tr,φ) 2 trace(P), Dφ = {r 2 φ | n(r) 2 N} and ⇢0 = n(Dφ). Then (tr,φ⇢0) 2 trace(P
N
).

2. Moreover, let ch be a channel such that tr = tr1.out(c, ch).tr2, D̃φ = {r 2 φ | n(r) 2 N ^ c(r) = ch} and

⇢ = n(Dφ r D̃φ) [n?(D̃φ). Then (tr?,φ⇢) 2 trace(P
N,c

), where tr? = tr1.tr2{
c?/ch}.

Proof. We first prove the second item. For any trace tr = tr1.out(c, ch).tr2, we note tr? = tr1.tr2{
c?/ch}. We define

⇢0 as:
⇢0 = {n 7! n? | n 2 N ^ ”new n” occurs in B}

where B is described in the definition of the transformation. We want to prove that if P
⌧.s
−−! (P [M,φ) then

P
N,c s̄

−! (P̄⇢ [M̄?⇢⇢0,φ⇢) where s is a sequence of actions (visible and invisible), s̄ is a subsequence of s with the
same visible actions (i.e. only ⌧ -actions can be deleted) except for one action out(c, ch) deleted and ch is substituted
by c?, P̄ is P expurgated of the new n elements for n 2 N, M is either new c0.out(c, c0).B, a process on channel
ch (which results from the execution of new c0.out(c, c0).B) or the 0 process; and M̄? is M expurgated of the new n
elements for n 2 N; and ch replaced by c?. We proceed by induction on s.

Base case: if s = ✏: it holds by definition of P
N,c

and ⇢0 (φ = ; and nonces are not instantiated yet). We require
one ⌧ -action to unfold the branch !new c0.out(c, c0).B once in P .

Induction cases: now we consider the cases where s = s0.a for some action a. We have that

P
⌧.s0
−−! (P 0 [M 0,φ0)

a
−! (P [M,φ).

By induction hypothesis, P
N,c s̄0

−! (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢). We want to prove that in P
N,c

:

(P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)
ā
−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = ⌧ and a corresponds to a replication: if there exists a process !R in P 0 on which to apply the replication
unfolding, then !R̄⇢ 2 P̄ 0⇢, which directly leads to (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)

⌧
−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = ⌧ and a corresponds to the restriction of a name n 2 N which does not occur in M 0: then there exists Q
such that new n.Q 2 P 0 and thus Q̄⇢ 2 P̄ 0⇢ as n 2 N and there exists r such that n is replaced by r in Q. As
r 2 Dφr D̃φ (new n does not occur in M 0 and thus c(r) 6= ch), r⇢ = n and thus P̄ 0⇢ = P̄⇢. Hence we get that
(P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)

✏
−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = ⌧ and a corresponds to the restriction of a name n 2 N which occurs in M 0: then there exists Q such
that new n.Q = M 0 and thus Q̄?⇢⇢0 = M̄ 0?⇢⇢0 as n 2 N and there exists r such that n is replaced by r in Q.
As r 2 D̃φ (new n occurs in M 0 and thus c(r) = ch), r⇢ = n?. Then P 0 = P and M̄ 0?⇢⇢0 = M̄?⇢⇢0 (as
M̄ 0?⇢ = M̄?⇢). Hence we get that (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)

✏
−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = ⌧ and a corresponds to the restriction of a name n /2 N: in this case, new n appears in both P 0 and P̄ 0⇢ (or
both M 0 and M̄ 0?⇢) and is replaced by a nonce r /2 Dφ, leading to (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)

⌧
−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

33

• If a = out(ch0,w) for some ch0 6= ch: out(ch0, u).Q 2 P 0 for some term u and process Q implies out(ch0, u⇢).Q̄⇢ 2

P̄ 0⇢ which ensures that (P̄ 0⇢ [M̄ 0?⇢⇢0, φ0⇢)
out(ch0,w)
−−−−−−! (P̄⇢ [M̄?⇢⇢0, φ⇢).

• If a = out(ch,w): M 0 = out(ch, u).Q for some term u and process Q implies M̄ 0?⇢⇢0 = out(c?, u⇢⇢0).Q̄?⇢⇢0

(as communications occur on c? instead of ch in M̄ 0?). As u cannot contain any non-instantiated nonce, u⇢0 = u

and u⇢⇢0 = u⇢ (as ⇢ and ⇢0 commute). Which leads us to (P̄ 0⇢ [M̄ 0?⇢⇢0, φ0⇢)
out(c?,w)
−−−−−−! (P̄⇢ [M̄?⇢⇢0, φ⇢).

• If a = in(ch0, R) for some ch0 6= ch and recipe R. Note that (Rφ0#)⇢ = R(φ0⇢)# as Rφ0# reduces to a
message and thus contains no destructors. Then in(ch0, u).Q 2 P 0, for some term u and process Q, implies
in(ch0, u⇢).Q̄⇢ 2 P̄ 0⇢ which ensures that, because there exists σ such that Rφ0# = uσ, R 0#⇢ = R(⇢)# =
(uσ)(σ⇢) = (uσ)⇢ and thus the pattern matching is successful in P 0. Then, as in the case where a = out(ch0,w)

for some ch0 6= ch, we get that (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)
in(ch0,R)
−−−−−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = in(ch,R) for some recipe R. Here note that (Rφ0#)⇢⇢0 = R(φ0⇢⇢0)# as Rφ0# reduces to a mes-
sage and thus contains no destructors. Then, as in the case where a = out(ch,w), we get that (P̄ 0⇢ [

M̄ 0?⇢⇢0,φ0⇢)
in(c?,R)
−−−−−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = out(c, ch): M 0 = new c0.out(c, c0).Q for some process Q implies M̄ 0?⇢⇢0 = Q̄?⇢⇢0 and then M̄?⇢⇢0 =

Q̄?⇢⇢0. Hence (P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)
✏
−! (P̄⇢ [M̄?⇢⇢0,φ⇢). Note that this action can only occur once in s, as

channels are freshly generated and ch is thus unique.

• If a = out(c, ch0) for some ch0 6= ch: new c0.out(c, c0).Q 2 P 0 for some process Q implies new c0.out(c, c0).Q̄⇢ 2
P̄ 0⇢, which leads us to

(P̄ 0⇢ [M̄ 0?⇢⇢0,φ0⇢)
out(c,ch)
−−−−−! (P̄⇢ [M̄?⇢⇢0,φ⇢).

• If a = out(c00, ch0) for some c00 6= c and some ch0 (necessarily ch0 6= ch as generated channels are fresh): this
case is treated as the previous one.

• If a = ⌧ and a corresponds to a term evaluation let x = v in P , whether in a process in P 0 or in M 0, as messages
are stable by renaming, we get the result, in the same way as for the inputs.

Thus we managed to prove that P
N,c s̄

−! (P̄⇢ [M̄?⇢⇢0,φ⇢), which, by definition of s̄ translate to P
N,c tr?

==) (P̄⇢ [

M̄?⇢⇢0,φ⇢) and proves that (tr?,φ⇢) 2 trace(P
N,c

).
The first item of the lemma can be seen as a special case of the previous proof where no action out(c, ch) ever

occurs and we do not need to split the multiset of processes between P and M . Hence the lemma.

Now, it remains to ensure that the disequality that is needed to witness the non-equivalence still remains, and this
is the purpose of considering a fresh copy, namely B?(c?).

The idea is to show that a witness of non-equivalence for P 6⇡ Q can be converted into a witness of non-equivalence
for P

c
6⇡ Q

c
for at least one c 2 Ch(P) = Ch(Q). Due to the fact that we consider simple processes, three main cases

may occur (the three other symmetric cases can be handled similarly). We have that (tr,φ) 2 trace(P), and

1. there exists such that (tr,) 2 trace(Q) and two recipes R1, R2 such that R1φ#, R2φ#, R1 # and R2 # are
messages; R1φ# = R2φ# and R1 # 6= R2 #; or

2. there exists such that (tr,) 2 trace(Q) and a recipe R such that Rφ# is a message but R # is not; or

3. there exists no frame such that (tr,) 2 trace(Q).

34

Each case is proved separately, following the same lines. First, we easily conclude thanks to Lemma 3.2.1, in case
(tr, φ⇢P,N(tr,φ)) is still a witness of non-equivalence. This roughly means that we do not even need the fresh copy to
exhibit the non-equivalence. Otherwise, we need to maintain a disequality to ensure that the distinguishing test will
not hold on the Q side. Since we consider adequate theories, we know that this disequality can be maintained through
the use of two distinct names. This is exactly why a fresh copy is needed. The other cases can be handled similarly.

Theorem 3.2.1. Let P and Q be two simple protocols such that Ch(P) = Ch(Q), and N be a set of names (intuitively
those that we want to abstract away). We have that:

[8c 2 Ch(P). P
N,c

⇡ Q
N,c

]) P ⇡ Q

Proof. Let us assume there exists a witness of non-equivalence (tr, φ) 2 trace(P). Three main cases can occur:

1. there exists such that (tr,) 2 trace(Q) and two recipes R1, R2 such that R1φ#, R2φ#, R1 # and R2 # are
messages; R1φ# = R2φ# and R1 # 6= R2 #;

2. or there exists such that (tr,) 2 trace(Q) and a recipe R such that Rφ# is a message but R # is not;

3. or, finally, there exists no frame such that (tr,) 2 trace(Q).

Note that the remaining symmetric cases are handled by considering a witness (tr,) 2 trace(Q) instead, as P and Q
are both simple. We will deal with each case separately, with the same intermediate goal: define a renaming ⇢ on D

such that any test failing in still fails ⇢ while the successful tests in φ remain so; then translate it into a valid trace

of P
N,c

for some c 2 Ch(P).
Case 1: Let us examine R1 # and R2 #. If the two terms do not share the same constructors, then for any

renaming ⇢, R1(⇢)# 6= R2(⇢)#, while for any renaming ⇢0, R1(φ⇢
0)# = R2(φ⇢

0)# (as the constructors are left
unchanged, because every term is a message). Now, if the two terms share the same constructors, there must exist a
leaf position p in them such that R1 #|p 6= R2 #|p. Let us call t and s these terms respectively. If s or t is not an
element of D , then s⇢ 6= t⇢ for any ⇢ with dom(⇢) = D . As in the previous case, we get that R1(⇢)# 6= R2(⇢)#,
while R1(φ⇢

0)# = R2(φ⇢
0)# for any renaming ⇢0. Else, assume s = r1 and t = r2 are two nonces of D such that

n(r1) = n1 2 N (resp. n(r2) = n2 2 N). If n1 6= n2, consider the renaming ⇢Q0 = {r 7! n(r)|r 2 D }.

Then s⇢Q0 6= t⇢Q0 and we get that R1(⇢
Q
0)# 6= R2(⇢

Q
0)#. By Lemma 3.2.2, (tr, ⇢Q0) 2 trace(Q

N
). Similarly,

by defining ⇢P0 = {r 7! n(r) | r 2 Dφ}, (tr,φ⇢P0) 2 trace(P
N
). and R1(φ⇢

P
0)# = R2(φ⇢

P
0)#. Hence we get a

witness of non-equivalence between P
N

and Q
N

, which can translate into a witness between P
N,c

and Q
N,c

for any
c 2 Ch(P).

Else, if n(r1) = n(r2) = n, we need to be more precise to define a proper ⇢. Let out(c, ch) be the action of
tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ = {r 2 | n(r) 2 N ^ c(r) = ch} and D̃φ =

{r 2 φ | n(r) 2 N ^ c(r) = ch}. r1 2 D r D̃ but r2 2 D̃ Consider now ⇢Q = n(D r D̃) [n?(D̃). In
particular, r1⇢Q = n while r2⇢Q = n?. Then s⇢Q 6= t⇢Q and we get that R1(⇢Q)# 6= R2(⇢Q)# and Lemma 3.2.2

ensures (tr?, ⇢Q) 2 trace(Q
N,c

). Similarly, by defining ⇢P = n(Dφ r D̃φ) [n?(D̃φ), Lemma 3.2.2 ensures

(tr?,φ⇢P) 2 trace(P
N,c

) and R1(φ⇢P)# = R2(φ⇢P)# (only equalities have been introduced by removing the name

restriction in P). Hence we get a witness of non-equivalence between P
N,c

and Q
N,c

Case 2: Because R # is not a message and our signature is adequate (see Definition 3.1.1), there must exist
a, b 2 N such that a 6= b and for any renaming σ : N ! N , aσ 6= bσ) tσ# /2 MΣ. If a /2 D or b /2 D , consider
the renaming ⇢Q0 = {r 7! n(r) | r 2 D }: as a⇢Q0 = a and n(r) 6= a for any r 2 D , R(⇢Q0)# is still not a message.
On the other hand, if ⇢P0 = {r 7! n(r) | r 2 Dφ}, as Rφ# is a message, Rφ#⇢P0 = R(φ⇢P0)# is a message. Hence,

Lemma 3.2.2 ensures (tr,φ⇢P0) 2 trace(P
N
) while (tr, ⇢Q0) /2 trace(Q

N
), leading to a witness of non-equivalence

between P
N

and Q
N

.

35

Else, assume a = r1 and b = r2 are two nonces in D . If n(r1) 6= n(r2), r1⇢
Q
0 6= r2⇢

Q
0 and we can apply

the same exact reasoning as before. So let us consider the case where n(r1) = n(r2) = n. Let out(c, ch) be the
action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ = {r 2 | n(r) 2 N ^ c(r) = ch} and
D̃φ = {r 2 φ | n(r) 2 N^ c(r) = ch}. r1 2 D r D̃ but r2 2 D̃ Consider now ⇢Q = n(D r D̃) [n?(D̃). In
particular, r1⇢Q = n while r2⇢Q = n?. Definition 3.1.1 ensures R(⇢Q0)# is still not a message. On the other hand, if
⇢P = n(Dφ r D̃φ) [n?(D̃φ), as Rφ# is a message, Rφ#⇢P = R(φ⇢P)# is a message. Hence, Lemma 3.2.2 ensures

(tr?,φ⇢P) 2 trace(P
N,c

) while (tr?, ⇢Q) 2 trace(Q
N,c

), leading to a witness of non-equivalence between P
N,c

and

Q
N,c

.
Case 3: if tr ends with an output out(c,w) such that w is not a message, we can define ⇢Q and ⇢P as in case 2 and

obtain a witness of non-equivalence. Similarly, if tr ends with an input or output out(c,w) which cannot be executed
in Q because a let action did not reduce to a message, we can define ⇢Q and ⇢P as in case 2 and obtain a witness of
non-equivalence. Consider now the subcase where tr = tr0.in(c, R) for some tr0 such that (tr0,φ) 2 trace(P) and
(tr0,) 2 trace(Q) for some frame . Because P and Q are both simple protocols, there exists a unique term uP (resp.
at most one term uQ) in the multiset P (resp. Q) of processes from the execution of tr0 in P (resp. in Q) such that
in(c, uP).M 2 P for some M (resp. in(c, uQ).N 2 Q for some N). Moreover, there exists σP such that Rφ# = uPσP
while there is no σ such that R # = uQσ. As before, we consider the renamings ⇢Q0 = n(D) and ⇢P0 = n(Dφ). As

(tr,φ⇢P0) 2 trace(P
N
) and (tr, ⇢Q0) 2 trace(Q

N
) by Lemma 3.2.2, if there exists no σ such that uQ⇢

Q
0 σ = R #⇢Q0 ,

tr is a witness of non-equivalence between P
N

and Q
N

and we are done. So let us then assume there exists σ0 such
that uQ⇢

Q
0 σ0 = R #⇢Q0 while uQσ 6= R # for every σ. There exist two leaves with positions p1 and p2 in R #

which correspond to positions below variables in uQ such that R #|p1 6= R #|p2 but R(⇢Q0)#|p1 = R(⇢Q0)#|p2
and R #|p1 = r1 and R #|p2 = r2 such that n(r1) = n(r2) = n 2 N. As repeatedly before, let out(c, ch) be the
action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ = {r 2 | n(r) 2 N ^ c(r) = ch} and
D̃φ = {r 2 φ | n(r) 2 N^ c(r) = ch}. r1 2 D r D̃ but r2 2 D̃ Consider now ⇢Q = n(D r D̃) [n?(D̃). In
particular, r1⇢Q = n while r2⇢Q = n?. As R # is a message (by virtue of our semantics), R #⇢Q = R(⇢Q)# and
now R(⇢Q)#|p1 6= R(⇢Q)#|p2 . As such, uQ⇢Qσ 6= R ⇢Q# for any σ. By defining ⇢P = n(Dφ r D̃φ) [n?(D̃φ),

as Rφ# is a message, Rφ#⇢P = R(φ⇢P)# is a message. Hence, Lemma 3.2.2 ensures (tr?,φ⇢P) 2 trace(P
N,c

) while

(tr?,) /2 trace(Q
N,c

) for any , leading to a witness of non-equivalence between P
N,c

and Q
N,c

.

3.3 Scope of our result

In this section, we explain why we need to assume simple processes and adequate theories and we discuss which class
of protocols and primitives can be covered.

3.3.1 Simple processes

Simple processes are really necessary for our simplification result to hold. We provide below a small counter example
to our result for non simple processes.

Example 3.3.1. We consider symmetric encryption and pairs as in Example 2.1.1 with ok 2 Σ0. We define the two
following processes.

P = ! new c.out(c1, c).new n.out(c, senc(n, k)) (1)
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(x, k), senc(y, k)i).out(c, ok) (2)
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(y, k), senc(x, k)i).out(c, ok) (3)
| ! new c.out(c2, c).in(c, hsenc(y, k), senc(x, k), senc(x, k)i).out(c, ok) (4)

Q = ! new c.out(c1, c).new n.out(c, senc(n, k))
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(y, k), senc(z, k)i).out(c, ok).

36

Intuitively P expects a list of three ciphertexts among which two must be identical, while Q expects any three cipher-
texts. The process Q is simple but P is not since several processes in parallel proceed on channel c2. We have that
P 6⇡ Q: it is possible using (1) to generate distinct ciphertexts, concatenate them, and send the resulting message on
c2. This message will not be accepted in P , but it will be accepted in Q.

Now, consider the process P
c1 and Q

c1 with N = {n}, that is the processes obtained by applying our transforma-
tion on channel c1 (the only branch that contains nonce generation) with the goal of getting rid of the instruction new n
on both sides. We obtain:

P
c1

= ! new c.out(c1, c).out(c, senc(n, k))
| new n?. out(c?, senc(n?, k))
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(x, k), senc(y, k)i).out(c, ok)
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(y, k), senc(x, k)i).out(c, ok)
| ! new c.out(c2, c).in(c, hsenc(y, k), senc(x, k), senc(x, k)i).out(c, ok)

Q
c1

= ! new c.out(c1, c).out(c, senc(n, k))
| new n?. out(c?, senc(n?, k))
| ! new c.out(c2, c).in(c, hsenc(x, k), senc(y, k), senc(z, k)i).out(c, ok).

It is quite easy to see that the witness of non-equivalence given above is not a valid one anymore. Actually, we
have that P

c1 and Q
c1 are in trace equivalence since only two distinct ciphertexts may be produced.

Note that it is easy to express standard protocols as simple processes. As explained previously, encoding security
protocols as simple processes is a good practice, and gives power to the attacker. However, it prevents the modelling
of unlinkability properties.

3.3.2 Adequate theories

The fact that we consider adequate theories may seem to be a proof artefact. We could probably go beyond adequate
theories, but this would be at the price of considering a more complex transformation, and in particular additional
constants. We provide below an example of a theory that reflects the same kind of issues as the ones illustrated by the
processes presented in Example 3.3.1.

Example 3.3.2. In addition to the signature introduced in Example 2.1.1, we consider an additional destructor symbol
g together with the following rewriting rules:

g(hsenc(x, z), senc(x, z), senc(y, z)i) ! ok

g(hsenc(x, z), senc(y, z), senc(x, z)i) ! ok

g(hsenc(y, z), senc(x, z), senc(x, z)i) ! ok

Assume for instance that MΣ is Mc = T (Σc,N) the set of all ground constructor terms. The resulting theory is not
adequate. For instance, we have that the term t = g(hsenc(n1, k), senc(n2, k), senc(n3, k)i) is in normal form and not
a message. However, any renaming ⇢ that preserves distinctness between only two names among n1, n2, n3, will be
such that t⇢# 2 MΣ. This yields a counter-example to our result, illustrated by the two following processes.

P 0 = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, hsenc(x1, k), senc(x2, k), senc(x3, k)i).

let y = g(hsenc(x1, k), senc(x2, k), senc(x3, k)i) in out(c2, y).

Q0 = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, hsenc(x1, k), senc(x2, k), senc(x3, k)i).out(c2, ok).

The process P 0 expects three ciphertexts and returns the result of applying g to them while Q0 directly returns ok. For
the same reasons as those explained in Example 3.3.1, we have that P 0 6⇡ Q0 whereas P 0c1 ⇡ Q0c1 .

The equational theory above is contrived, and actually most of the equational theories useful to model crypto-
graphic protocols can be shown to be adequate. An example of a non-adequate theory is tdcommit as described
in [39] for modeling trapdoor commitment schemes, which does not fit the structure of our rules.

37

3.3.3 Is our abstraction precise enough?

Abstracting nonces with constants (as done in Theorem 3.2.1) may introduce false attacks. A typical case is when
protocols make use of temporary secrets.

Example 3.3.3. Consider the signature described in Example 2.1.1. Let P and Q be:

P = ! new c0.out(c, c0).in(c0, x).new n.out(c0, senc(ok, n)).
let y = sdec(x, n) in out(c0, y);

Q = ! new c0.out(c, c0).in(c0, x).new n.out(c0, n).

The two processes are in equivalence: P ⇡ Q. Now, consider the processes P
c

and Q
c

with N = {n}, that is, the
processes obtained by applying our transformation on channel c to get rid of the fresh nonces.

P
c

= ! new c0.out(c, c0).in(c0, x).out(c0, senc(ok, n)).
let y = sdec(x, n) in out(c0, y)

| in(c?, x).out(c?, senc(ok, n?)).let y = sdec(x, n?) in out(c?, y)

Q
c

is defined similarly. It is easy to notice that the output of the constant ok is now reachable, yielding P
c
6⇡ Q

c
.

Our transformation may in theory also introduce false attacks for protocols without temporary secrets. In this
section, we review several (secure) protocols of the literature and study whether a false attack is introduced by our
transformation. To perform this analysis we rely on the ProVerif tool. For each protocol, we first consider a scenario
with honest agents only as for the Denning-Sacco protocol (Chapter 2). We then consider a richer scenario where
honest agents are also willing to engage communications with a dishonest agent. In each case, we check whether
ProVerif is able to establish:

1. the equivalence between the original processes (left column);

2. all the equivalences obtained after getting rid of all the nonces using our transformation (right column).

The results are reported on the table below: aX means that ProVerif succeeded and a 7 means that it failed. Actually,
on most of the protocols/scenarios we have considered, our abstraction does not introduce any false attack. ProVerif
models of our experiments are available online at http://www.lsv.ens-cachan.fr/~chretien/prot.tar.

Protocol name original
(with nonces)

our transformation
(no nonce)

YAHALOM (corrected version)
- simple scenario X X
- with a dishonest agent X X

OTWAY-REES

- simple scenario X X
- with a dishonest agent X X

KAO-CHOW (tagged version)
- simple scenario X X
- with a dishonest agent X X

NEEDHAM-SCHROEDER-LOWE

- simple scenario (secrecy of Na) X 7
- simple scenario (secrecy of Nb) X X
- with a dishonest agent (secrecy of Nb) X X

DENNING-SACCO (asymmetric)
- simple scenario X X
- with a dishonest agent X X

Needham Schroeder Lowe protocol. We briefly comment on the false attack introduced by our transformation on
the Needham Schroeder Lowe protocol.

38

http://www.lsv.ens-cachan.fr/~chretien/prot.tar

1. A ! B : {A,Na}pub(B)

2. B ! A : {Na, Nb, B}pub(A)

3. A ! B : {Nb}pub(B)

1. I(A) ! B : {A,Ni}pub(B)

2. B ! I(A) : {Ni, Nb, B}pub(A)

3. I(A) ! B : {Nb}pub(B)

The protocol is given on the left, and the (false) attack depicted on the right. This attack scenario (and more
precisely step 3 of this scenario) is only possible when nonces are abstracted away with constants. Indeed, the attacker
will not be able to decrypt the message {Ni, Nb, B}pub(A) he has received to retrieve the nonce Nb. Instead he will
simply replay an old message coming from a previous honest session between A and B. Since nonces have been
replaced by constants, B will accept this old message, and will assume that Ni is a secret shared between A and B,
while Ni is known by the attacker. Unfortunately, this abstraction does not seem to help ProVerif prove the security
of new protocols. Nonetheless it can still be used as a proof technique to prove the security of protocols in classes
defined in [23] and [24].

3.4 Conclusion

Our simplification result allows to soundly reduce the equivalence of processes with nonces to the equivalence of pro-
cesses without nonces. This can be seen as a proof technique which removes a source of unboundedness problematic
when trying to automatically check for trace equivalence. For example for tagged simple protocols with symmetric
encryption, the resulting protocols fall in the decidable class of Chapter 4. Similarly, we could use the decidability
result of Chapter 7 for ping-pong protocols with one variable per transition.

Our result assumes protocols to be simple processes. Otherwise, to prevent some transition, it could be necessary
to maintain several disequalities. We plan to go slightly beyond simple processes and simply require some form of
determinacy. More generally, we plan to study whether such a reduction result can be obtained for more general
processes which include else branches to output errors messages, that is, study whether it is possible to compute a
bound on the number of fresh copies from the structure of the processes.

Regarding adequate theories, we believe that our criterion is general enough to capture even more theories like
exclusive or, or other theories with an associative and commutative operator. This would however require to extend
our formalism to arbitrary terms (not just destructor/constructor theories).

39

Chapter 4

Well-typed executions

The subject of this chapter is a simplification result, that reduces the search space for attacks: if there is an attack, then
there exists a well-typed attack. More formally, we show that if there is a witness (i.e. a trace) that P 6⇡ Q then there
exists a witness which is well-typed w.r.t. P or Q, provided that P and Q are determinate processes (see Definition
2.4.3). This typing result holds for an unbounded number of sessions and an unbounded number of nonces, that is, it
holds even if P and Q contain arbitrary replications and NEW operations. It holds for any typing system provided that
any two unifiable encrypted subterms of P (or Q) are of the same type. It is then up to the user to adjust the typing
system such that this hypothesis holds for the protocols under consideration.

As an application, we consider the class of tagged protocols introduced by Blanchet and Podelski [15] and defined
in Chapter 2. An easy way to achieve this in practice is by labelling encryption and is actually a good protocol design
principle [3, 49].

Interestingly, the proof of our main typing result involves providing a new decision procedure for trace equivalence
in the case of a bounded number of sessions. This is a key intermediate result of our proof. Trace equivalence was
already shown to be decidable for a bounded number of sessions (e.g. [65, 22]) but we propose a novel decision
procedure that further provides a well-typed witness whenever the two processes are not in trace equivalence.

Our proof technique is inspired from the approach developed by Arapinis et al [6] for bounding the size of messages
of an attack for the reachability case. Specifically, they show for some class of tagged protocols, that whenever there
is an attack, there is a well-typed attack (for a particular typing system). We somehow extend their approach to trace
equivalence and more general typing systems for symmetric encryption only, but without asymmetric encryption,
signatures or hash functions.

4.1 Existence of a well-typed witness of non-equivalence

We consider the formal model defined in Chapter 2 with a restricted signature. More precisely, from this chapter
onward, we will consider the signature

Σ = {senc, sdec, h i, proj1, proj2}] Σ0

where Σ0 is a set of atomic data, representing pairing and symmetric encryption as defined in Example 2.1.1. We
also do not use evaluation in our processes, i.e. no let, and instead rely only on input filtering to model decryption
operations. Moreover, we will consider only encryption with atomic keys, meaning that the set M of messages will be
defined by M = Matomic. Note that this decision increases the power of the attacker as it lets her distinguish between
situations she could not before, as described in Example 2.4.2.

We can now present our first main contribution: a typing result that reduces the search space for attacks. We
first explain these hypotheses and then we state our general simplification result (see Theorem 4.1.1). The proof of

40

in(c, u).P [P
in(c,u)
−−−−!s P [P !P [P

⌧
−!s P 0 [!P [P

out(c, u).P [P
out(c,u)
−−−−−!s P [P new n.P [P

⌧
−!s P{n

0

/n} [P

new c0.out(c, c0).P [P
out(c,chi)
−−−−−−!s P{chi/c0} [P

Figure 4.1: Symbolic semantics of protocols

this simplification result involves providing a novel decision procedure for trace equivalence in the case of a bounded
number of sessions. The novelty of this decision procedure, in comparison to the existing ones, is to provide a
well-typed witness whenever the two processes are not in trace equivalence. This key intermediate result is stated in
Proposition 4.1.1.

4.1.1 Well-typed trace

Whether or not a trace is well-typed is defined w.r.t. the set of symbolic traces of a protocol. Formally, we define
trs−−!s

to be the transitive closure of the relation
↵s−!s defined between processes in Figure 4.1.1: where P 0 is equal to P up

to renaming of variables that do not occur yet in the trace with fresh ones (of the same type), n0 is a fresh name (of the
same type as n), and chi is the “next” fresh channel name available in Chfresh.

Then, the set of symbolic traces traces(P) of a protocol P is defined as follows:

traces(P) = {trs | P
trs−!s Q for some Q }.

Intuitively, the symbolic traces are simply all possible traces before instantiation of the variables, with some re-
naming to avoid unwanted captures.

Example 4.1.1. Let P1 = in(c, x).!new k. in(c, enc(hx, yi, k)). We have that:

trs = in(c, x).in(c, enc(hx, y1i, k1)).in(c, enc(hx, y2i), k2) 2 traces(P1)

Indeed, the variable x is bound before replication.

As stated in the lemma below, any concrete trace is the instance of a symbolic trace.

Lemma 4.1.1. Let P be a protocol and (tr, φ) 2 trace(P). We have that trφ# = trsσ for some trs 2 traces(P) and
some substitution σ.

A well-typed trace is simply a trace that is well-typed w.r.t. one of the symbolic traces. Since keys are atomic,
some executions may fail when a protocol is about to output a term that contains an encryption with a non atomic
key. To detect these behaviours, we need to consider slightly ill-typed traces. Formally, we consider a special constant
! 2 Σ0. Its usefulness is illustrated in Example 4.1.2.

Definition 4.1.1. A first-order trace of P is a sequence tr = trsσ where trs 2 traces(P) and σ is a substitution such
that for any io(c, u) that occurs in trs with io 2 {in, out} and u not a channel, then uσ 2 T0(Σc,Σ0 [N [X). The
trace tr is said to be:

• well-typed w.r.t. a typing system (T , δ) if there exists such a σ that is well-typed;

• pseudo-well-typed w.r.t. a typing system (T , δ) if there exists such σ, as well as c0 2 Σ0 and σ0 such that
σ = σ0{h!,!i/c0} with σ0 well-typed.

Then a trace (tr,φ) 2 trace(P) is well-typed (resp. pseudo-well-typed) if trφ# is well-typed (resp. pseudo-well-

typed).

41

Note that Lemma 4.1.1 ensures that trφ# is a first-order trace of P , and a well-typed trace is also pseudo-well-
typed.

Example 4.1.2. Going back to Example 2.4.2, let tr = in(c, h!,!i).out(c,w1). We have that (tr, {w1 . enc(n, k)}) 2
trace(P) while there exists no frame such that (tr,) 2 trace(Q). Consider the typing system (T , δ) such that
δ(t) = atom for any atom or variable t and δ(t) = ¬atom if t is not an atom. We can see there exists no well-
typed witness of P 6⇡ Q (while P and Q are type-compliant as defined in Definition 2.5.3). However, the witness
(tr, {w1 . enc(n, k)}) of P 6v Q is pseudo-well-typed (note that h!,!i occurs in tr). Intuitively, pseudo-well-typed
traces harness the ability for the attacker to use the protocol as an oracle to test if some terms (when used in a key
position) are atomic.

4.1.2 Main result

We are now ready to state our first main contribution: if there is an attack, then there is a pseudo-well-typed attack.
This result holds for protocols with replications and nonces.

Theorem 4.1.1. Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1) and (T2, δ2) respectively.
We have that P 6⇡ Q if, and only if, there exists a witness of non-equivalence tr such that:

• either (tr,φ) 2 trace(P) for some φ and (tr,φ) is pseudo-well-typed w.r.t. (T1, δ1);

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (T2, δ2).

The key step for proving Theorem 4.1.1 is to provide a decision procedure, in the bounded case (i.e. processes
without replication), that returns a pseudo-well-typed witness of non-equivalence.

Proposition 4.1.1. Let P and Q be two determinate protocols without replication. There exists an algorithm that
decides whether P ⇡ Q and if not, returns a witness tr of non-equivalence. Moreover, if P and Q are type-compliant
w.r.t. (T1, δ1) and (T2, δ2) respectively, the witness tr of non-equivalence returned by the algorithm is such that:

• either (tr,φ) 2 trace(P) for some φ and (tr,φ) is pseudo-well-typed w.r.t. (T1, δ1);

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (T2, δ2).

The main idea is to assume given a decision procedure (for a bounded number of sessions) for reachability prop-
erties such as those proposed in [56, 34, 66] and to built on top of it a decision procedure for trace equivalence. Our
procedure is carefully designed to only allow unification between encrypted subterms. To achieve this,

1. we use as a reachability blackbox one that satisfies this requirement. Most of the existing algorithms (e.g. [56,
34, 66]) were not designed with such a goal in mind. However, in the case of the algorithm given in [34], it has
already been shown how it can be turned into one that satisfies this requirement [36].

2. we design carefully the remaining of our algorithm to only consider unification between encrypted subterms.

This design allows us to provide a pseudo-well-typed witness when the protocols under study are type-compliant
and not trace equivalent.

Then, relying on Proposition 4.1.1, the proof of Theorem 4.1.1 is almost immediate. Indeed, whenever two de-
terminate type-compliant protocols P and Q are not in trace equivalence, there exists a witness of non-inclusion for
P v Q (or Q v P) for a bounded version of P and Q (unfolding the replications).

42

4.2 A type preserving decision algorithm for bounded processes

In this section, we provide a new decision procedure for trace equivalence in the case of a bounded number of sessions
to prove Proposition 4.1.1, and is thus pivotal in proving Theorem 4.1.1. The novelty of this procedure is to provide
a well-typed witness whenever the two protocols are not in trace equivalence. A bounded number of sessions means
formally that we consider the case of bounded protocols, namely determinate protocols without replication and thus
without name restriction.

4.2.1 Reachability blackbox

The main idea is to assume given a decision procedure (for a bounded number of sessions) for reachability properties.
Several decision procedures have already been proposed [56, 34, 66]. They are based on constraint solving techniques
and even if they differ on the way the constraints are solved, the basic ideas are actually the same. These decision
procedures actually do not simply say whether some state is reachable or not. They also provide a finite representation
of all possible executions. More precisely, these algorithms compute a finite set of first-order (symbolic) traces that
are in solved form, i.e. such that these traces are actually valid first-order traces when the variables are interpreted as
constants.

Definition 4.2.1. Let trs = io1(c1, u1) . . . ion(cn, un) be a first-order trace of P (see Definition 4.1.1). Its associated

frame is

φs = {w1 . ui1 , . . . ,w` . ui`}.
where i1 . . . i` is the increasing sequence of indices that captures all the outputs of terms of the trace trs, i.e. such that
{i1, . . . , i`} = {j | ioj = out and uj is not a channel}

Definition 4.2.2. A first-order trace trs = io1, . . . , ion is valid if for all 1  i  n, whenever, ioi = in(ci, ui), we
have that Rφs# = ui for some R 2 T (Σ,Σ0 [W [X) where φs is the frame associated to the first-order trace
io1 . . . ioi (i.e. trs up to the index i).

Executions, i.e. traces of trace(P), are exactly valid instances of symbolic traces (i.e., valid instances of traces(P)).

Lemma 4.2.1. Let P be a bounded protocol. We have that:

{trsσ | trs 2 traces(P), σ ground and trsσ is valid}
=

{trφ# | (tr, φ) 2 trace(P)}

Proof. The inclusion

{trφ# | (tr, φ) 2 trace(P)} ✓ {trσ | trs 2 traces(P), σ ground and trsσ is valid}

comes from Lemma 4.1.1 which is recalled and proven below. We need to prove that σ is ground, which can be seen
in its proof, as ✓ is ground; and moreover trsσ is valid as trσ = trφ#.

Next, we need to show that {trsσ | trs 2 traces(P), σ ground and trsσ is valid} ✓ {trφ# | (tr, φ) 2 trace(P)}.
Once again a similar induction as the one performed in the proof of Lemma 4.1.1 defines a trace (tr, φ) 2 trace(P),
the validity hypothesis ensuring that each transition in the concrete semantics is indeed possible.

Lemma 4.1.1. Let P be a protocol and (tr, φ) 2 trace(P). We have that trφ# = trsσ for some trs 2 traces(P) and
some substitution σ.

43

Proof. To prove this result, we consider a concrete execution (P ; ;)
u1...un

! (Pn;φn) of P and prove there exists an

execution (P ; ;)
u1
s...u

n
s!s (Pns ;φ

n
s) where u1

s . . . u
n
s is a sequence of symbolic transition and such that there exists a

substitution σn with (Pn;φn) = (Pns ;φ
n
s)σn. To do so, we proceed by induction on u = u1 . . . un and first note that

if u is the empty sequence, the result trivially holds.
Assuming we defined u1

s . . . u
n
s and σn, we define un+1

s and σn+1 as follows:

• if un+1 is a ⌧ -action (replication or name restriction), the rules, concrete and symbolic, are identical. Note that
⌧ -transitions in this setting (without let) only depend on the structure of the protocol, ensuring that this transition
is enabled in Pns : we can fire un+1

s = ⌧ (either a replication or a name restriction, like un+1). We can then
define σn+1 = σn and still (Pn+1;φn+1) = (Pn+1

s ;φn+1
s)σn+1.

• if un+1 is out(c, chi), Pns can fire with un+1
s = out(c, chi): then σn+1 = σn, as both rules, concrete and

symbolic, are identical as in the previous case. Still (Pn+1;φn+1) = (Pn+1
s ;φn+1

s)σn+1.

• if un+1 is in(c, R), we can set un+1
s = in(c, v) where in(c, v) is the action in P which was executed as in(c, R)

in u (which can be fired, as Pns σn = Pn implies there exists such a process in(c, v).Q in Pns for some process
Q): there exists a substitution ✓ such that Rφ# = vσn✓ as Pn = Pns σn and u1 . . . un is a valid execution of P .
Then σn+1 = σn[✓ and Pn+1 = Pn+1

s σn+1. As the frames are left unchanged, φn+1 = φn+1
s σn+1. Note that

because variables are always assumed to be independently renamed, if v binds a variable x for the first time in
P , x /2 dom(σn). We moreover have that Rφ# = vσn+1.

• if un+1 is out(c,w), we can set un+1
s = out(c, v) where out(c, v) is the action in P which was executed

as out(c,w) in u (which can be fired, as Pns σn = Pn implies there exists such a process out(c, v).Q in Pns
for some process Q): then σn+1 = σn. wφn = vσn is a consequence of Pn = Pns σn; which leads to
φn] {w . vσn+1} = (φns] {w . v})σn+1 and Pn+1 = Pn+1

s σn+1.

The result then holds by considering only observable action in u and us.

Definition 4.2.3. An algorithm B is a reachability blackbox if it takes as input a first-order trace tr (issued from a
bounded protocol P), and returns as output a finite set of substitutions σ1, ..., σn (with dom(σi) ✓ vars(tr)) such
that:

• for each i, the first-order trace trσi is valid; and

• if σ is such that trσ is a valid first-order trace of P then there exists i, and a substitution ⌧ such that (i) trσ =
trσi⌧ , and (ii) for every x 2 vars(trσi) there exists Rx 2 T (Σ,Σ0 [{w1, ...,windx}) such that Rxφ# = x⌧
where φ is the frame associated to trσ and indx is the number of outputs that occur in trsσi before the first
occurrence of an input that contains the variable x.

All the three decision procedures proposed in [56, 34, 66] are actually reachability blackboxes.

4.2.2 Our algorithm for trace equivalence

Our algorithm AB makes use of a reachability blackbox B. It takes as input two bounded protocols P and Q and
returns yes when P ⇡ Q; and a minimal (in term of number of actions) witness tr of non-equivalence otherwise.

Our algorithm AB(P,Q) It consists of the following steps starting at level 1 until ` where ` denotes the maximal
length (i.e. number of actions) of a trace in traces(P) or traces(Q). Note that since P and Q are bounded, traces(P)
and traces(Q) are finite. If nothing has been returned yet (i.e. when the iteration steps for level ` has been done), then
it returns yes, i.e. P and Q are trace equivalent.

Iteration steps for level n:

44

1. Consider every symbolic trace tr0 in traces(P) of length n and apply B to it. Consider any substitution σ0

returned by B. We have that tr1 = tr0σ0 is a valid first-order trace.

2. For any s, t 2 ESt(tr1) that are unifiable and such that tr1σ1 is a first-order trace of P where σ1 = mgu(s, t),
apply B to tr2 = tr1σ1. Consider any substitution σ2 returned by B: tr2σ2 is a valid first-order trace.

3. Consider a bijective renaming ⇢ from vars(tr2σ2) towards “fresh” public constants. Build a trace (tr, φ) 2
trace(P) such that trφ# = (tr2σ2)⇢. Its existence is ensured by Lemma 4.2.1

4. Check whether there exists such that (tr,) 2 trace(Q). If such a frame does not exist, then return tr.
Otherwise, let be a resulting frame.

5. Let Kφ (resp. K) be the subset of img(⇢) of constants occurring in key position in φ (resp.). Check whether
K ✓ Kφ. If there exists c0 2 K rKφ then return tr{h!,!i/c0}. Otherwise, perform step 6.

6. Check whether φ ⇠ . If the frames are not in static equivalence then return tr. Otherwise, perform steps 1 to
6 by swapping the role of P and Q.

4.2.3 Termination, soundness, and completeness

Deducibility and static equivalence are well known to be decidable for standard primitives.These two decidability
results can easily be adapted in our setting. It is therefore easy to establish termination.

Proposition 4.2.1 (termination). Let P and Q be two bounded protocols. The algorithm AB applied on P and Q
terminates.

Proof. Termination is ensured by the termination of the blackbox and the decidability of static equivalence.

A trace returned by our algorithm is indeed a witness of non-equivalence.

Proposition 4.2.2 (soundness). Let P and Q be two bounded protocols. If the algorithm AB applied on P and Q
returns a witness tr of non-equivalence, then we have that P 6⇡ Q.

Proof. Step 4 clearly returns a witness of non equivalence. At step 5, AB returns a trace that is executable in P but
which fails in Q since some key becomes non atomic, which yields again a witness of non equivalence. For step 6,
note that checking static equivalence for only one resulting frame is actually sufficient thanks to the determinacy
hypothesis.

Establishing completeness is more involved. The main difficulty is to ensure that unification performed at step 2
of the algorithm is sufficient to produce all possible relevant equalities. In particular, to capture static equivalence, we
have to ensure that this is sufficient to consider tests R, R0 that reduce to some encrypted subterms. The fact that we
consider only unification between encrypted subterms is a key element for proving that our algorithm indeed returns a
well-typed witness when P and Q are non-equivalent (cf. Section 4.2.4).

Proposition 4.2.3 (completeness). Let P and Q be two bounded protocols such that P 6⇡ Q. The algorithm AB

applied on P and Q returns a minimal (in term of number of actions) witness tr of non-equivalence.

Proof. (Sketch) Since protocols are determinate, it is sufficient to check the alternative definition given in Definition
2.4.4 inclusion instead of static equivalence. Static inclusion, denoted φ vs , is when satisfies all the equalities
of φ, and R # is a message as soon as Rφ# is a message. So if P 6⇡ Q, there exists a witness trace tr such that
(tr,φ) 2 trace(P) for some φ and

1. either (tr,) 62 trace(Q) for any ;

45

2. or for every such that (tr,) 2 trace(Q), we have that φ 6vs .

(or the contrary swapping the role of P and Q.)
In the first case, using Lemma 4.2.1, the procedure B would output a valid trace tr0 such that trφ# = tr0σ for

some σ. We can then play tr0 in Q and show that if it were a valid trace in Q, tr would also be a valid trace in Q,
contradiction. We deduce that AB would output tr0 (at step 4 or 5), a witness of non-equivalence.

In the second case, following the notation of the previous case, we have that (tr0, 0) 2 trace(Q) for some 0 (the
choice of the frame is not relevant since they are all in static equivalence due to determinacy of Q). The proof then
involves a fine analysis of the relevant equalities that may yield to non static equivalence. We show that whenever there
is a witness of non static inclusion for tr (this witness can be an equality test or a test checking whether a given recipe
yields a message or not), then there is indeed a trace tr considered at step 2 for which we can exhibit a transformed
test that witnesses non static inclusion for tr0.

The full proof is provided in Section A.1.2.

4.2.4 Type-preservation

The specificity of the algorithm we proposed in the previous section is that it further provides a pseudo-well-typed wit-
ness whenever the two processes are not in trace equivalence. This can not be achieved using any arbitrary blackbox B.
We have to require that the blackbox B is type-preserving.

Definition 4.2.4. A reachability blackbox B is type-preserving if: for any typing system (T , δ), for any protocol P
type-compliant w.r.t. (T , δ), for any well-typed first-order trace trs of P given as input, it outputs well-typed substitu-
tions σ1, . . . ,σn such that:

ESt(trsσi) ✓ ESt(trs)σi for any i 2 {1, . . . , n}.

Lemma 4.2.2. A type-preserving reachability blackbox exists.

Most of the existing algorithms (e.g. [56, 34, 66]) are actually not type-preserving (since they were not designed
with such a goal in mind). However, in the case of the algorithm given in [34], it has already been shown how it can
be turned into a type-preserving reachability blackbox [36].

Theorem 4.2.1. Let P and Q be two bounded protocols type-compliant w.r.t. (T1, δ1) and (T2, δ2) respectively, and
such that P 6⇡ Q. Assume the algorithm AB uses a type-preserving reachability blackbox B and a well-typed renaming
⇢ at step 3. Then AB(P,Q) returns a trace tr such that

• either (tr,φ) 2 trace(P) for some φ and (tr,φ) is pseudo-well-typed w.r.t. (T1, δ1);

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (T2, δ2).

The proof of Theorem 4.2.1 follows from the fact that AB(P,Q) only manipulates well-typed traces. Indeed, it
starts from traces provided by B, which are well-typed since B is type-preserving. Then AB considers only unification
between encrypted subterms (which are instances of the encrypted subterms of the protocols). Since P are Q are
type-compliant, the resulting traces are well-typed. Actually, AB will output a well-typed trace when a failure occurs
at step 4 or at step 6, and a pseudo-well-typed trace when failure occurs at step 5. The complete proof is provided in
Section A.2.

46

4.3 Conclusion

We have proposed a general typing result that reduces the search space for attacks. For simplicity, we proved this
typing result for the case of symmetric encryption and concatenation but we believe that our result could be extended
to the other standard cryptographic primitives such asymmetric encryption, signatures and hash functions.

Our main typing result relies on the design of a new procedure in the case of a bounded number of sessions, that
preserves typing. Specifically, we show that it is sufficient to consider only unification between encrypted (sub)terms.
We think that this result can be applied to existing decision procedures (in particular SPEC [65] and also APTE [22],
with some more work) to speed up their corresponding tools. As future work, we plan to implement this optimisation
and measure its benefit.

Our typing result finally lays the foundation for new decidability results for trace equivalence, discussed in
Chapters 5 and 6.

47

Part II

Decidables classes

48

Chapter 5

Decidability of trace equivalence for simple

protocols without nonces

In this chapter, we investigate a new class of protocols for which trace equivalence is decidable for an unbounded
number of sessions. Decidability results for unbounded nonces are rare and complex, even in the reachability case.
One of them has been established by Ramanujam and Suresh [60] for reachability, assuming a particular tagging
scheme (which itself involves nonces). More recently, Fröschle [47] proposed a procedure to decide the leakiness
property, a kind of reachability property, for a tagged protocols too. Chapter 4 introduced a notion typing system
as well as a typing result aiming at greatly reducing the search space when trying to check trace equivalence. The
finer the typing system is, the more our typing result restricts the attack search. But in general, our typing result does
not yield directly a decidability result since even the simple property of reachability is undecidable for an unbounded
number of sessions and arbitrary nonces, even if the messages are of bounded size (e.g. [4]). Indeed, our typing
system ensures the existence of a well-typed attack (if any) but the number of well-typed traces may remain infinite.
To obtain decidability, we further assume a finite number of terms of each type (i.e. in particular a finite number of
nonces). Decidability of trace equivalence for an unbounded number of sessions then follows from our main typing
result, for a class of simple protocols where each subprocess uses a distinct channel (intuitively, a session identifiers)
and no nonce generation. These restrictions indeed allow us to bound the number of messages of any type, given a
finite typing system, which leads to a bound on the length of a minimal witness of non-equivalence (if it exists) when
combined with the typing result from Chapter 4. As a corollary, we also prove decidability of trace equivalence for
simple tagged protocols without nonces.

5.1 Decidability result

We consider the formal model defined in Chapter 2 with a restricted signature. We consider the signature

Σ = {senc, sdec, h i, proj1, proj2}] Σ0

where Σ0 is a set of atomic data, representing pairing and symmetric encryption as defined in Example 2.1.1. We
also do not use evaluation in our processes, i.e. no let, and instead rely only on input filtering to model decryption
operations. Moreover, we will consider only encryption with atomic keys, meaning that the set M of messages will
be defined by M = Matomic.

Now, assuming finitely many terms of each type, and in particular finitely many nonces, we obtain a new decidab-
ility result for trace equivalence, for an unbounded number of sessions.

49

5.1.1 Main result

Our decidability result relies on the assumption that there are finitely many terms of each type (of the protocol), once
the number of constants is bound for each type.

Formally, we say that a typing system (T , δ) is finite if, for any set A ✓ N [Σ0 such that there is a finite number
of names/constants of each type, then there are finitely many terms of each type, that is, for any ⌧ 2 T , the following
set is finite and computable:

{t 2 T (Σc,A) | δ(t) = ⌧}.

Structure-preserving typing systems, as described in Definition 2.5.2 as well as the typing systems derived from tagged
protocols (see Definition 2.5.6) are examples of finite typing systems.

Then, in that section, we restrict our attention to simple protocols without nonces, meaning protocols containing
no instruction new n for any name n. Even though this limitation appears unrealistic, it is actually mitigated by the
soundness result from Chapter 3, and will be later improved in Chapter 6. Note that channels names are not concerned
by this restriction and instructions of the form new c0.out(c, c0) are still used in these protocols.

Our main theorem states that trace equivalence for simple protocols without nonces and type-compliant w.r.t. some
finite typing systems is actually decidable.

Theorem 5.1.1. The problem of deciding whether two simple protocols without nonces P and Q, type-compliant
w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent (i.e. P ⇡ Q) is decidable.

Proof. (Sketch) Since simple protocols are determinate (see Lemma 2.4.1), we obtain, thanks to our typing result
(Theorem 4.1.1), the existence of well-typed witness of non-equivalence when such a witness exists. We further show
that we can bound the number of useful constants in the witness trace (Proposition 5.3.1). We then derive from the
finiteness of the typing system that the witness trace uses finitely many distinct terms. Therefore any trace ultimately
reproduces already existing transitions. Using the form of simple protocols, we can then show how to shorten the
length of the witness trace.

We deduce then decidability of trace equivalence for simple tagged protocols without nonces.

Corollary 5.1.1. The problem of deciding whether two simple and tagged protocols without nonces P and Q are trace
equivalent (i.e. P ⇡ Q) is decidable.

Proof. (Sketch) The first step of the proof consists in associating to a tagged protocol P , a typing system (TP , δP)
such that P is type-compliant w.r.t. (TP , δP). Intuitively, (TP , δP) is simply induced by σP , the substitution ensuring
the tagged condition in Definition 2.5.4. For example, the type of a closed term t is t itself while the type of a variable
x in P is simply xσP . This definition is then propagated to any term. With such typing systems, we can show that
the size of a term (i.e. number of function symbols) is smaller than the size “indicated” by its type (i.e. the size of the
type, viewed as a term). Thus the typing system (TP , δP) is finite. We then conclude by applying Theorem 5.1.1.

Example 5.1.1. Consider the protocol P 0
OR obtained from the protocol P 0

OR defined in Example 2.5.5 by removing
the instructions corresponding to a name restriction. These protocols are still strongly tagged and are now simple
without nonces. Thus, our algorithm can be used to check whether these two protocols are in trace equivalence or not.
This equivalence actually models a notion of strong secrecy of the key received by A. Since we have bounded the
number of nonces, this equivalence does not require that the key is renewed at each session but it requires the key to
be indistinguishable from a (private) name, n in our setting.

5.2 A sound procedure for simple protocols with nonces

Our result can be used as a proof technique to show that two simple protocols are in trace equivalence. In particular,
we have that the transformation detailed in Chapter 3 can be applied to our class of protocols. Applying this to a
simple, type-compliant protocol yields a process that belongs to our class to apply Theorem 5.1.1.

50

Proposition 5.2.1. Let (Σ,R) be the theory given in Example 2.1.1 with MΣ = Matomic. Let P and Q be two simple
and type-compliant protocols built on (Σ,R), and such that Ch(P) = Ch(Q). Let N be the set of names that occur in
P or Q.

The problem of deciding whether P
N,c

and Q
N,c

are in trace equivalence is decidable (for any c 2 Ch(P)).

5.3 Proof of Theorem 5.1.1

In this section, we provide a proof of Theorem 5.1.1.
The first proposition we prove aims at ensuring it is always possible, for simple protocols without nonces which

are type-compliant w.r.t. some finite typing systems, to find a witness of non-equivalence which only uses finitely
many elements of any type, which is necessary to bound the number of useful constants in said witness.

Proposition 5.3.1. There exists a set of constants and names with finitely many elements of any type such that if P
and Q are simple protocols without nonces and type-compliant w.r.t. some finite typing systems (T1, δ1) and (T2, δ2)
and P 6⇡t Q then there exists a pseudo-well-typed witness tr of non-equivalence which uses only those constants and
names.

Proof. The proof here relies first on the fact that the blackbox algorithm we have described in Chapter 4 does not
introduce constants or variables which were not initially in the protocol’s specification. Then, as we need to cast any
variable as a new constants in our algorithm to obtain a pseudo-well-typed witness of non-equivalence, we prove that
we only need to preserve the difference between at most two constants of the same type. Then, by Lemma 2.4.1 and
Theorem 4.1.1, we can conclude there exists a well-typed witness ¯tr1 of non-equivalence.

In the following, we assume that t̄r1 has been discovered when applying the equivalence algorithm AB(P,Q)
described in Section 4.2.1. The symmetric case is handled in the same fashion. Moreover, we can also assume the
blackbox B used does not introduce new variables or constants as the procedure described [36], so that we can also
assume that any constant in t̄r1φ0# (where (t̄r1, φ0) 2 trace(P)) is either an element of ΣP0 [NP (the constants
and names in P) or a constant introduced at step 3 of our algorithm. Let A = {↵1, . . . , ↵n} be the set of such
constants. We also consider a set of special constant C =

S

⌧2T P

C⌧ where C⌧ = {c⌧1 , c
⌧
2 , c

⌧
3} and δ1(c

⌧
i) = ⌧ . Note that

T0(Σc,[Σ
P
0 [NP [

S

⌧
C⌧) is such that there are only finitely many terms of any given type.

Claim: there exists a (total) renaming ⇢ from A to
S

⌧
C⌧ such that t̄r1⇢ is a well-typed witness of P 6⇡ Q and for

any term t of t̄r1⇢φ0#, t 2 T0(Σc,[Σ
P
0 [NP [

S

⌧
C⌧); where φ0 is such that (t̄r1, φ0) 2 trace(P).

Let ⇢0 be the special renaming such that for any i, if δ1(↵i) = ⌧i, ↵i⇢0 = c⌧i1 .
t̄r1 being a witness of P̄ 6⇡ Q̄, several cases can occur:

• There exists φ and such that (t̄r1,φ) 2 trace(P) and (t̄r1,) 2 trace(Q); φ 6⇠ and, for instance, there
exist two recipes R1 and R2 such that R1φ# = R2φ# but R1 # 6= R2 # and all of them are messages. Let us
examine R1 # and R2 #. If the two terms do not share the same constructors, then R1(⇢0)# 6= R2(⇢0)#,
but R1(φ⇢0)# = R2(φ⇢0)# (as the collapsing of variables only add equalities to the frame). Now, if the two
terms share the same constructors, there must exist a leaf position p in them such that R1 #|p 6= R2 #|p. Let
us call t and s these terms respectively. If s or t is not an ↵i for some i, then s⇢0 6= t⇢0 as the constants
in

S

⌧
C⌧ are fresh. As in the previous case, we get that R1(⇢0)# 6= R2(⇢0)#, but R1(φ⇢0)# = R2(φ⇢0)#.

Else, assume s = ↵1 and t = ↵2, consider the renaming ⇢ such that, if for any i, δ1(↵i) = ⌧i, ↵1⇢ = c⌧11 ,
↵2⇢ = c⌧22 and ↵j⇢ = c

⌧j
3 for any j > 2. Thus s⇢ 6= t⇢ as the constants in

S

⌧
C⌧ are fresh, and finally we get that

R1(⇢)# 6= R2(⇢)#, but R1(φ⇢)# = R2(φ⇢)#.

51

• Or there exists φ and such that (t̄r1,φ) 2 trace(P) and (t̄r1,) 2 trace(Q); φ 6⇠ and there exists a
minimal (in term of size) recipe R such that, for instance, Rφ# is message while R # is not. If R # contains
a element dec(hs, ti) or proji(enc(s, t)), then R(⇢0)# is not a message either, while R(φ⇢0)# still is. Else,
R # = dec(enc(u, v), w) for some terms u, v and w (by minimality) with v 6= w: as keys are atomic, v and w
are atoms. As in the case with equalities, we can define ⇢ such that v⇢ 6= w⇢, and thus R(⇢)# is not a message,
while R(φ⇢)# is (as ⇢ only introduces new equalities).

• Or, finally, there exists φ such that (t̄r1,φ) 2 trace(P) but for every , (t̄r1,) /2 trace(Q) (the symmetric
case is handled identically). If t̄r1 end with an output, the renaming ⇢0 is adequate. So let us assume that the
last action of t̄r1 is in(c, R). Because protocols are simple, there exists at most one term uP in the execution
of t̄r1 in P , and at most one term uQ in the same execution in Q such that there exists 9✓(Rφ# = uP ✓), but
8✓0(R # 6= uQ✓

0). As uQ may contain several occurrences of variables, we need to be careful to define a
renaming ⇢. If there exists a position p in uQ which is not a leaf such that uQ|p 6= R #|p, then R(⇢0)# and
uQ⇢0 are not unifiable (they disagree on already present constructors). Else if there exists a position p in uQ
which is a leaf but not a variable such that uQ|p 6= R #|p: we define ⇢ as in the first subcase when dealing
with an inequality without variable. Finally, if mgu(R(⇢0)#, uQ) = ? we are done and can just take ⇢ = ⇢0;
else, i.e. mgu(R #, uQ) = ? and mgu(R(⇢0)#, uQ) 6= ?, there exist two leaves with positions p1 and p2
in R # which corresponds to positions below variables in uQ such that R #|p1 6= R #|p2 but R(⇢0)#|p1 =
R(⇢0)#|p2 : thus we can assume R #|p1 = ↵1 and R #|p2 = ↵2. We can now define ⇢ such that, if for any
i, δ1(↵i) = ⌧i, ↵1⇢ = c⌧11 , ↵2⇢ = c⌧22 and ↵j⇢ = c

⌧j
3 for any j > 2. Then R(⇢)#|p1 6= R(⇢)#|p2 and

mgu(R(⇢)#, uQ) = ?, while mgu(R(φ⇢)#, uQ) 6= ? as ⇢ only introduces new equalities.

In every case, t̄r1⇢ is valid trace of P̄ , and t̄r1⇢ is a trace of P with frame φ0 which is well-typed (⇢ is well-typed) and
for any term t of t̄r1⇢φ0#, t 2 T0(Σc,[Σ

P
0 [NP [

S

⌧
C⌧).

We are now able to complete the proof of Theorem 5.1.1 by making sure any pseudo-well-typed witness of non-
equivalence as discussed in Proposition 5.3.1 ultimately reproduces already existing transitions.

Theorem 5.1.1. The problem of deciding whether two simple protocols without nonces P and Q, type-compliant
w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent (i.e. P ⇡ Q) is decidable.

Proof. By Proposition 5.3.1, if P 6⇡t Q there exists a well-typed witness of this non-equivalence built on a special set
of terms. Let for instance (tr0,φ0) 2 trace(P) be a minimal such witness and define tr = tr0−1, where tr0−1 denotes
tr0 minus its last element, and φ the frame such that (tr,φ) 2 trace(P). The minimality of tr0 implies there exists
such that (tr,) 2 trace(Q) and φ ⇠s .

P = !new c01.out(c1, c
0
1).B1 | ... | !new c0m.out(cm, c0m).Bm

| Bm+1 | . . . | Bm+n

Q = !new c01.out(c1, c
0
1).B

0
1 | ... | !new c0m.out(cm, c0m).B0

m

| B0
m+1 | . . . | B0

m+n0

(We can safely assume the same number of restricted channels (m) in P and Q, as non-equivalence would trivially
hold otherwise.) We define a function projP which takes a channel ci and returns {tr|ci,c0i}c0i the set of subtraces of
tr corresponding of actions on channel c0i and the action new c0i.out(ci, c

0
i) which originated it. It can be extended

naturally to channels cm+1 to cm+n (in that case, in absence of replication, each set is a singleton, which, for the sake
of uniformity, we will denote by {tr|ci,c0i}c0i for i 2 {m+1, . . . ,m+n} too). We can similarly define projQ. We now
claim:
Claim 1: (tr,) 2 trace(Q)) projP = projQ, as subprocesses Bi and B0

i use public fresh channels such that each
c0i is spawned from a unique channel ci which is visible in tr.

Moreover we define a relation RP on elements of img(projP). We say that tr|ci,c0i 8P tr|ci,c00i if, and only

if, tr|ci,c0iφ# is a prefix of (tr|ci,c00i φ#){
c0i/c00i }. RP is then defined as 8P \ 8−1

P ; and is an equivalence relation.

52

Symmetrically, we can define a relation RQ with and make the following claim:
Claim 2: RP = RQ = R, as tr0 is a minimal witness of P 6⇡ Q. Indeed, if there are two elements tr|ci,c0i and
tr|ci,c00i such that tr|ci,c0i RP tr|ci,c00i but tr|ci,c0i and tr|ci,c00i are not RQ-equivalent (or the other way around), then

tr|ci,c0i # is not a prefix of (tr|ci,c00i #){
c0i/c00i } (or, once again, the other way around). Thus there exists an action

a(c0i, R) (a 2 {in, out}) of tr|ci,c0i and an action a(c00i , R
0) of tr|ci,c00i (these actions must be two inputs or two outputs

as tr|ci,c0i RP tr|ci,c00i) such that R # 6= R0 # while Rφ# = R0φ# (as tr|ci,c0i RP tr|ci,c00i), which would contradict
the minimality of tr0.

Intuitively, two subtraces are in equivalence w.r.t. the relation R if they are identical, modulo the name of the
fresh channel they use. The general idea to then bound the length of tr is to observe that if tr contains two equivalent
subtraces, then one of them, the one occurring "later" can be safely removed as it adds no new branch or new terms to
the execution. That way, we will prove that because tr0 is a minimal witness, tr can only contain one representative of
each class, otherwise we could obtain a shorter witness by eliminating this extra element. To do so, we define which
actions should be kept during this elimination and how to generate the new trace.

Given an action ↵ we map it to β(↵) its occurrence index in tr. Consequently we can define min(↵,↵0) as the
action with the lowest occurrence index; and lift it to sequences of actions:

min(↵1 . . .↵n,↵
0
1 . . .↵

0
n) = min(↵1,↵

0
1).min(↵n,↵

0
n).

Similarly, we can define max(↵,↵0) as the action with the highest occurrence index in tr and lift it to sequence of
actions.

max(↵1 . . .↵n,↵
0
1 . . .↵

0
n) = max(↵1,↵

0
1).max(↵n,↵

0
n).

We define an operation merge(tr, tr|cj ,c0j , tr|cj ,c00j) where tr|cj ,c0j R tr|cj ,c00j , tr|cj ,c0j = ↵1 . . .↵n and tr|cj ,c00j =

↵0
1 . . .↵

0
n. Note that if two subtraces are equivalent w.r.t. R they must have the same length as they must each be

a prefix of the other. For each i 2 {1, . . . , n}, we want to delete from tr the later action max(↵i,↵
0
i), while renaming

the channel used by the earlier action min(↵i,↵
0
i) to c0j (we assume that min(↵1,↵

0
1) = ↵1 = new c0j .out(cj , c

0
j),

without loss of generality) and rename in tr all the occurrences of deleted output variables. We denote by wmax
i

the variable used by max(↵i,↵
0
i) if it is an output, i.e. if max(↵i,↵

0
i) = out(c,wmax) for some c and w; and by

wmin
i the variable used by min(↵i,↵

0
i) if it is an output, i.e. if min(↵i,↵

0
i) = out(c,wmin) for some c and w. Be-

cause ↵1 . . .↵n R ↵0
1 . . .↵

0
n, wmax

i φ# = wmin
i φ# and wmax

i # = wmin
i # for any i 2 {1, . . . , n}. We denote

by σ the substitution that maps wmax
i to wmin

i for any i 2 {1, . . . , n}. Let then tr− be tr minus any action in
max(↵1 . . .↵n,↵

0
1 . . .↵

0
n): we define merge(tr, tr|cj ,c0j , tr|cj ,c00j) = tr−σ{c

0

j/c00j }.
In particular, there exist φ0 and 0 such that (merge(tr, tr|cj ,c0j , tr|cj ,c00j),φ

0) 2 trace(P), (merge(tr, tr|cj ,c0j , tr|cj ,c00j),
0) 2

trace(Q). merge(tr, tr|cj ,c0j , tr|cj ,c00j) is indeed a valid trace in both P and Q: the actions of min(tr|cj ,c0j , tr|cj ,c00j) oc-

cur on the same channel c0j , as min(↵1,↵
0
1) = ↵1 = new c0j .out(cj , c

0
j) and because wmax

i is renamed to wmin
i

for any i 2 {1, . . . , n}, for any recipe R in tr, Rφ# = (Rσ)φ# (and R # = (Rσ) #) and for any transition

(Pk,φk)
in(c,R)
−−−−! (Pk+1,φk+1) in tr, vars(Rσ) ✓ dom(φk) as we kept the first occurrence of any output with

min(↵i,↵
0
i). Moreover we get that φ0 ⇡ 0. Indeed, merge(tr, tr|cj ,c0j , tr|cj ,c00j)φ

0# is a subtrace of tr{c
0

j/c00j }φ#, and

merge(tr, tr|cj ,c0j , tr|cj ,c00j)
0# is a subtrace of tr{c

0

j/c00j } #.

Let [tr1], . . . , [trM] be the equivalence classes of R, then, by minimality of tr0, each class has at exactly one
element. If some class [tri] were to have two elements tr|cj ,c0j and tr|cj ,c00j , merge(tr, tr|cj ,c0j , tr|cj ,c0j).(↵σ{

c0j/c00j })

would provide a shorter witness of P 6⇡ Q, where ↵ is the last action of tr0 (which was excluded in tr).
From Proposition 5.3.1, we know there exists a set of atoms such that there exists only finitely element of the same

type and such that any pseudo-well-typed trace only uses those. As the type systems we consider are finite, there exists
only finitely many terms of each type. And finally, as the trace is pseudo-well-typed, each type in tr0φ0# appears in
P . Hence there are only finitely types and finitely many terms that can occur in any pseudo-well-typed trace of P : let

T be that number. Thus we claim that M  (n + m) ⇥
B
P

i=0

T i where B is the maximal length (in terms of number

53

of actions) of a parallel branch in P , i.e. maxk |trk|. Indeed a class is defined by its sequence of actions (bounded by
the maximum number of actions in any branch of P) and the first-order terms it contains (which is bounded by the
total number of existing eligible terms). As there are n + m branches in P , of length at most B, there are at most
(n +m)T i different first-order sequences of length i 2 [0, B] in P . Then, as |tr|  M ⇥ B (tr contains at most one

representative for each equivalence class, each being of length at most B), we finally get |tr|  (n+m)⇥B⇥
B
P

i=0

T i.

Hence, an upper bound on the length of a well-typed witness of P 6⇡t Q is N = (n+m)B
B
P

i=0

T i+1, and the number

of such traces in trace(P) is bounded by (2T)N as each element of a trace is either an input or an output of a term,
which provides a straightforward algorithm to decide trace equivalence.

5.4 Proof of Corollary 5.1.1

For every tagged protocol, we can define a induced typing system as shown in Definition 2.5.6 which is finite, assuming
a bounded number of nonces, to prove Corollary 5.1.1. We recall that any tagged protocol is actually type-compliant
w.r.t. its induced typing system, as per Proposition 2.5.1.

Corollary 5.1.1. The problem of deciding whether two simple and tagged protocols without nonces P and Q are trace
equivalent (i.e. P ⇡ Q) is decidable.

Proof. Since P (resp. Q) is tagged, thanks to Proposition 2.5.1, we know that P (resp. Q) is type-compliant w.r.t.
(TP , δP) (resp. (TQ, δQ)), the typing system associated to P (resp. Q) as defined in Definition 2.5.6. With such typing
systems, we have that the size of a term (i.e. number of function symbols) is smaller that the size “indicated” by its
type (i.e. the size of the type, viewed as a term). Thus, it is then easy to see that the set:

{t 2 T (Σc,A) | δ(t) = ⌧}

is finite for any ⌧ 2 TP (and similarly for Q) as soon as A is a set of names and constants that contains only a finite
number of names/constants of each type. We conclude by applying Theorem 5.1.1.

5.5 Conclusion

From a general typing result that reduces the search space for attacks described in Chapter 4, we derive decidability for
an unbounded number of sessions and simple protocols, assuming a finite number of nonces. This result can naturally
be applied to simple tagged protocols without nonces as well. Even though limiting the number of nonces seems
quite impractical, Chapter 3 offers a sound approach to lift this decidability result to a sound terminating procedure for
checking trace equivalence with arbitrary nonces. Because our proof method to achieve decidability relies on bounding
the number of terms occurring in a minimal witness of non-equivalence, it suggests further results could be obtained
from existing decidability for equivalence in process algebra without terms, such as the processes described in [29].

54

Chapter 6

Decidability of trace equivalence for acyclic

simple protocols with nonces

We propose in this chapter the first decidability result for trace equivalence, for an unbounded number of sessions and
with nonces. Since even simple reachability properties are undecidable in this context, we make some assumptions.

Simple processes. This notion has been introduced in [33] and is defined in Chapter 2. Intuitively, we assume that
each process communicates on a distinct channel. In practice, each machine has its own IP address and each session
is characterised by some session identifier. We also assume that each process consists of a sequence of inputs and
outputs (with some tests). This models very well standard security protocols (with no else branches).

Type compliant protocols. Intuitively, we assume that ciphertexts cannot be confused. A similar notion has been
formally introduced in [15] and developed in Chapters 2 and 4 and was shown to ensure termination of ProVerif
(without nonces). This condition is part of the good design practices and is easy to enforce by adding some identifier
(a tag) in each ciphertext. Of course the same tags are re-used in all sessions.

Acyclic dependency graph. Considering constructions used in undecidability results, one can notice that the en-
codings rely on some form of cyclicity. Typically, the last message of the protocol is re-injected at the first step of
the protocol, forming an infinite loop. We therefore introduce the notion of dependency graph, with two notions of
dependencies:

• sequential dependency: some action can only be taken after some other actions;

• data dependency: some message can only be built once some information is learnt from another message.

This graph can be computed (automatically) from the protocol’s specification. To detect data dependencies, we actually
consider a particular typed instantiation of the protocol. Therefore, the definition of a dependency graph relies itself
on the typing system. Moreover, finer typing systems are more likely to yield acyclic dependency graphs.

The objective of this chapter is to show that the equivalence between simple and type-compliant protocols with
an acyclic dependency graph is decidable, for protocols using symmetric encryption, concatenation, and nonces. Our
class encompasses most symmetric key protocols we considered, including Needham-Schroeder with symmetric key,
Otway-Rees, Denning-Sacco, or Wide-Mouthed-Frog. For some of these protocols, we had to consider an explicitly
tagged version.

Proof technique. We show decidability in two main steps. First, thanks to the type-compliance assumption, we
show that we can apply the typing result from Chapter 4, yielding a bound on the size of the messages: if there is
a witness of non-equivalence then there is a well-typed witness, and this induces a strict format for the messages
occurring in such a witness. Note that the number of distinct messages remains unbounded due to nonces.

55

The second step of the proof relies on the dependency graph. We show that any well-typed execution trace com-
plies with the execution order induced by the dependency graph, which allows to split well-typed traces into small
independent traces, which in turn yields decidability.

Scope. The scope of our result depends on how often protocols induce an acyclic dependency graph. For the sake
of clarity, we first provide a generic definition of a dependency graph (Definition 6.2.2). However, some interesting
protocols such as the Needham-Schroeder symmetric key protocol are cyclic with this definition. In a second step,
we provide a criterion that safely allows to remove edges in the dependency graph, yielding acyclicity for most of
the protocols we considered. This more flexible notion of dependency graph is called refined dependency graph

(Definition 6.3.4). Contemporaneously to our work, Sybille Fröschle [47] has proposed a new decidability result for
the “leakiness” property and the class of “well-founded protocols”. We provide in Section 6.4.3 a detailed comparison
with our result. In brief, our result are incomparable since [47] considers a larger class of primitives but a less accurate
security property and more restriction on the protocols (e.g. ciphertext forwarding is again prohibited and as in [54] a
typed model is considered). We believe that our approach provides a good level of flexibility. In case some protocols
were found to be cyclic with our current definition of a dependency graph, it should be possible to develop other
criteria that soundly remove edges.

6.1 Annotated model for security protocols

In addition to the model we already introduced in Chapter 2 and precised in Chapter 4, we assume annotations in our
protocols. These annotations are meant to make it easier to pinpoint a particular action in the protocol specification
and are completely invisible to the attacker.

More precisely, we assume an infinite set L used to name input and output actions of processes. Protocols are now
modelled through processes built by the following grammar:

P,Q := 0
| ↵ : in(c, u).P
| ↵ : out(c, u).P
| (P | Q)
| !P
| new n.P
| new c0.out(c, c0).P

where u 2 T (Σc,Σ0 [N [X), n 2 N , c, c0 2 Ch, and ↵ 2 L. The only difference with the process algebra defined
in Section 2.1 is the presence of a label ↵ in ↵ : in(c, u).P and ↵ : out(c, u).P , to serve as an easy way to later refer
to these actions.

Example 6.1.1. The Denning Sacco protocol described in Example 2.2.1 can be rewritten with labels as follows. kas,
kbs, kab are names, whereas a and b are constants from Σ0. The protocol is modelled by the parallel composition of
three processes PA, PB , and PS , corresponding to the roles of A, B, and S.

PDS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB
| ! new c3.out(cS , c3).PS

56

The processes PA, PB , and PS are given below.

PA = ↵1 : out(c1, ha, bi).
↵2 : in(c1, enc(hb, xAB , xBi, kas)).
↵3 : out(c1, xB)

PB = β1 : in(c2, enc(hyAB , ai, kbs))

PS = γ1 : in(c3, ha, bi). new kab.
γ2 : out(c3, enc(hb, kab, enc(hkab, ai, kbs)i, kas))

The semantics are left virtually unchanged by the annotations, which lets us use the same definitions as in Chapter
2. Figure 6.1 has the same transitions rules as Figure 2.1, leading to the same semantics as in Section 2.3. Note in
particular that labels are absent from the transitions in Figure 6.1, which leaves them unobservable for the attacker and
leads to the same set of traces as the un-annotated version of the protocol.

(↵ : in(c, u).P [P;φ)
in(c,R)
−−−−! (Pσ [P;φ) where R is a recipe such that Rφ#

is a message and Rφ# = uσ for some σ with dom(σ) = vars(u)

(↵ : out(c, u).P [P;φ)
out(c,wi+1)
−−−−−−−! (P [P;φ [{wi+1 . u})

where u is a message and i is the number of elements in φ

(new c0.out(c, c0).P [P;φ)
out(c,chi)
−−−−−−! (P{chi/c0} [P;φ)

where chi is the “next” fresh channel name available in Chfresh

(new n.P [P;φ)
⌧
−! (P{n

0

/n} [P;φ) where n0 is a fresh name in N

(!P [P;φ)
⌧
−! (P [!P [P;φ)

Figure 6.1: Annotated semantics of the processes

The definition of simple processes has to be slightly adapted too, to account for the new labels.

Definition 6.1.1. A simple protocol P is a protocol of the form

!new c01.out(c1, c
0
1).B1 | ... | !new c0m.out(cm, c0m).Bm
| Bm+1 | . . . | Bm+n

where each Bi with 1  i  m (resp. m < i  m + n) is a ground process on channel c0i (resp. ci) built using the
following grammar:

B := 0 | ↵ : in(c0i, u).B | ↵ : out(c0i, u).B | new n.B

where u 2 T0(Σc,Σ0 [N [X). Moreover, we assume that c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct, as well
as the labels for each action.

Given a simple protocol P , and ↵, β 2 L(P), we say that β directly follows ↵ in P if both actions are in sequence
in the description of P , with β after ↵, and no other visible action in between. When some other visible actions occur
between ↵ and β, we simply say that β follows ↵.

6.2 A first decidability result

Trace equivalence is undecidable in general for an unbounded number of sessions, inheriting undecidability from the
standard secrecy case (see e.g. [44]). We present here our two main assumptions for obtaining decidability: type-

compliance and acyclic dependency graph. For the clarity of the presentation, we present in this section a rather
coarse definition of dependency graph. In the next section, we provide a sound criterion to remove some of its edges.

57

6.2.1 Dependency graph

We consider a protocol P which is type-compliant w.r.t. a structure-preserving typing system (TP , δP). To define our
dependency graph, we first define public and honest types. Terms of public type are always deducible for an adversary,
whereas terms of honest type will be guaranteed to be secret (except those built using public constants only).

A type ⌧p is public if δP (n) 62 St(⌧p) for any name n occurring in P . Intuitively, in a well-typed execution, a
term having a public type is a term built using public constant only, and is thus deducible from the beginning of any
execution.

An atomic type ⌧h is honest if (i) ⌧h does not appear in plaintext position in uδP for any term u occurring in P ; (ii)

⌧h 6= δP (a) for any constant/variable a occurring in P . Intuitively, this ensures that, in a well-typed execution, terms
of type ⌧h will never occur in plaintext position, and no public constant of this type will be used in key position.

Example 6.2.1. Going back to Example 6.1.1, we have that ⌧a, ⌧b, ⌧m are public types while ⌧kas and ⌧kbs are honest
types. In contrast, ⌧kab is neither a public nor an honest type. Indeed, ⌧kab = δP (yAB) and the variable yAB occurs in
P .

We define inductively a function ⇢io that inspects a type ⌧ and returns its set of deducible subterms (where ⌧ is
viewed as a term) together with the set of keys needed to access each subterm. For this, we introduce a new syntactic
symbol #.

Definition 6.2.1. Given a type ⌧ , a position p and a set S of types, the function ⇢io is inductively defined as follows:

• ⇢io(⌧0, p, S) = {(⌧0, p)#S} for any atomic type ⌧0;

• ⇢io(h⌧1, ⌧2i, p, S) = ⇢io(⌧1, p.1, S) [⇢io(⌧2, p.2, S);

• ⇢io(enc(⌧1, ⌧2), p, S) =
(

{(enc(⌧1, ⌧2), p)#S} if ⌧2 is an honest type;

{(enc(⌧1, ⌧2), p)#S} [⇢io(⌧1, p.1, S [{⌧2}) otherwise.

Given a type ⌧ , the function ⇢io(⌧, ✏, ;) computes a set of elements of the form (⌧i, pi)#Si. Intuitively, it means
that the term of type ⌧i at position pi in ⌧ is accessible from the term ⌧ after some decryptions using keys occurring in
the set Si.

We also define two functions ⇢out and ⇢in that help us to define the flows that may happen during a protocol
execution.

⇢out(⌧
0) = {(⌧, p) | (⌧, p)#S 2 ⇢io(⌧

0, ✏, ;)}; and

⇢in(⌧
0) = {⌧, ⌧1, . . . , ⌧k | (⌧, p)#{⌧1, . . . , ⌧k} 2 ⇢io(⌧

0, ✏, ;)}.

Intuitively, ⇢out(⌧ 0) returns the types of the terms that may be deducible by the attacker once a term of type ⌧ 0 is
outputted, whereas ⇢in(⌧ 0) returns all the types that may be used by the attacker to fill an input of type ⌧ 0. In case of
an output, we also return the position at which the type occurred. This information will be added in our dependency
graph, and used in Section 6.3 to present our refined dependency graph.

Example 6.2.2. Continuing our running example, we have that:

⇢out(h⌧a, ⌧bi) = {(⌧a, 1), (⌧b, 2)} and ⇢in(h⌧a, ⌧bi) = {⌧a, ⌧b};
⇢out(enc(hyABδP , ⌧ai, ⌧kbs)) = {(enc(h⌧kab, ⌧ai, ⌧kbs), ✏)};
⇢in(enc(hyABδP , ⌧ai, ⌧kbs)) = {enc(h⌧kab, ⌧ai, ⌧kbs)}.

since ⌧kbs is an honest type.

58

We are now ready to define the dependency graph. It captures two main sources of dependencies: sequential
dependencies, when an action may only occur after another one, and data dependencies, when the production of a
term depends on other sent terms.

Definition 6.2.2. The dependency graph associated to a type-compliant, simple protocol P (w.r.t. a structure-preserving
typing system (TP , δP)) is a graph having L(P) as vertices and that are connected as follows:

1. for every action with label ↵ in P that directly follows an action with label β in P , there is an edge ↵ ! β;

2. for every “↵ : in(c, u)” and “β : out(d, v)” in P , there is an edge ↵ !p β if there exists ⌧ 2 ⇢in(uδP) such that

(⌧, p) 2 ⇢out(vδP)

and ⌧ is not a public type.

3. for every “↵ : out(c, u)” and “β : out(d, v)” in P , there is an edge ↵ !p β if (⌧, q)#(S[{⌧k}) 2 ⇢io(uδP , ✏, ;)
for some ⌧ , q, S, and ⌧k such that

(⌧k, p) 2 ⇢out(vδP)

and ⌧k is not a public type.

Intuitively, if there exists an edge from ↵ to β, it implies that the action ↵ may depend on action β. More precisely,
item 1 captures sequential dependencies, whereas items 2 and 3 are about data dependencies. Item 2 captures depend-
encies that occur due to the fact that the attacker need to produce a term to comply with the given input. For this,
all the needed pieces may come from different outputs (but at a plaintext position). Now, item 3 is needed because,
when such a piece occurs at a plaintext position (for instance under an encryption with k), it may be important for the
attacker to learn the key k, and this generates new dependencies.

Example 6.2.3. The dependency graph for the protocol P 1
DS defined in Example 2.4.3 w.r.t. the typing system

(TDS, δDS) given in Example 2.5.2 is depicted in Figure 6.2. The vertical arrows correspond to sequential depend-
encies (item 1) whereas all the other arrows are actually due to item 2. In this example, item 3 does not produce any
arrow.

Intuitively, these arrows mean that the input ↵2 (resp. β1) may depend on the output γ2 (resp. ↵3). In other
words the outputted term may be (partially) used to fill the input. The relevant parts of the output are indicated by the
position p on top of the arrows.

Note that for P 2
DS (also defined in Example 2.4.3), we can introduce an additional atomic type ⌧k for name k (or

reuse the atomic type ⌧kab. In both cases, the dependency graph of P 2
DS will be exactly the same as the one obtained

for P 1
DS.

Example 6.2.4. Let P be the protocol

P = ↵ : in(c1, k1)|β : out(c2, enc(k1, k2))|γ : out(c3, k2)

Consider the typing system (T , δ) where T = {⌧1, ⌧2}; δ(k1) = ⌧1 and δ(k2) = ⌧2. Its dependency graph is
shown in Figure 6.3. The edge from β to γ is an edge introduced by the third item in Definition 6.2.2. Indeed,
⇢io(enc(⌧1, ⌧2), ✏, ;) = {(enc(⌧1, ⌧2), ✏)#;, (⌧1, 1)#{⌧2}} and ⇢out(⌧2) = {(⌧2, ✏)}.

59

↵3

↵2

↵1

β2

β1

γ2

γ1

✏

✏

Figure 6.2: Dependency graph for P 1
DS w.r.t. (TDS, δDS)

↵ β γ
1 ✏

Figure 6.3: Dependency graph for P w.r.t. (T , δ)

6.2.2 Our result

Trace equivalence is decidable for simple, type-compliant, acyclic protocols.

Theorem 6.2.1. Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems
(TP , δP) and (TQ, δQ), and with acyclic dependency graphs. The problem of deciding whether P and Q are in trace
equivalence (i.e. P ⇡ Q) is decidable.

Theorem 6.2.1 will be proved in Section 6.5 in a more general setting.

Example 6.2.5. The protocols P 1
DS and P 2

DS given in Example 2.4.3 are simple, type-compliant w.r.t. (TDS, δDS) and
their respective dependency graph is acyclic. Thus these protocols fall into our decidable class.

6.3 An improved version of our decidability result

In the previous section we have presented a first decidability result for trace equivalence of simple, type-compliant,
acyclic protocols. The Denning-Sacco protocol satisfies these hypotheses. However, some reasonable protocols do not
fall in our class. In the next paragraph, we explain why the Needham-Schroeder protocol induces a cyclic dependency
graph. However, in that case, the cycle is created by a false dependency. Therefore, in the subsequent paragraphs, we
devise a criterion to remove some edges of the dependency graph.

6.3.1 Motivating example

We consider a corrected version of the well-known Needham Schroeder key establishment protocol [58]. It can be
described informally as follows:

1. A ! S : A,B,Na

2. S ! A : {Na, B,Kab, {Kab, A}Kbs
}Kas

3. A ! B : {Kab, A}Kbs

4. B ! A : {req, Nb}Kab

5. A ! B : {rep, Nb}Kab

60

We propose a modelling of this protocol in our formalism. Below, kas, kbs, kab, na, nb, and k are names, whereas
a, b, req, rep, m1 and m2 are constants from Σ0.

PNS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB
| ! new c3.out(cS , c3).PS

where the processes PA, PB , and PS are given below.

PA = new na.
↵1 : out(c1, ha, b, nai).
↵2 : in(c1, enc(hna, b, xAB , xBi, kas)).
↵3 : out(c1, xB).
↵4 : in(c1, enc(hreq, xNB i, xAB)).
↵5 : out(c1, enc(hrep, xNB i, xAB))

PB = β1 : in(c2, enc(hyAB , ai, kbs)).new nb.
β2 : out(c2, enc(hreq, nbi, yAB)).
β3 : in(c2, enc(hrep, nbi, yAB))

PS = γ1 : in(c3, ha, b, zNAi).new kab.
γ2 : out(c3, enc(hzNA, b, kab, enc(hkab, ai, kbs)i, kas))

As in Example 2.4.3, we model the security of the exchanged key by requiring that P 1
NS ⇡ P 2

NS whereP 1
NS and P 2

NS

are defined as follows:

• P 1
NS is as the protocol PNS but we add the instruction “β4 : out(c2, enc(m1, yAB))” at the end of PB ;

• P 2
NS is as the protocol PNS but we add the instruction “new k.β4 : out(c2, enc(m2, k))” at the end of PB .

As for the Denning Sacco protocol (see Example 2.5.3), type-compliance is satisfied. We only have to introduce
some new atomic types: ⌧na, ⌧nb, ⌧req, ⌧rep and we type each constant (resp. name and variable) as expected. We
denote (TNS, δNS) the resulting structure-preserving typing system.

The resulting dependency graph is depicted in Figure 6.4 (and the dashed arrow is part of the dependency graph).
There is no arrow due to item 3 (dependencies between outputs). As in the Denning Sacco protocol, ⌧kas and ⌧kbs are
honest types whereas ⌧a, ⌧b, ⌧m, ⌧req, and ⌧rep are public types. Due to the fact that ⌧kab can not be considered as an
honest type, many arrows (those that are labelled with 1.2) are added to the dependency graph. This reflects executions
that will build ciphertexts with such a key.

The dependency graph is cyclic. Intuitively, this is due to the fact that the subterm at position 1.2 (the nonce Nb)
outputted in ↵5 may be used in input at ↵4. However, if the attacker is able to access this subterm at position 1.2 in ↵5,
it necessarily means that he already knew this subterm already. Thus, intuitively, this dependency is not necessary. We
formalise this notion in the next section. This will lead to a notion of refined dependency graph which is a dependency
graph in which some arrows have been removed.

6.3.2 Appropriate marking

We first devise a general criterion to remove some of the edges of the dependency graph. We proceed by marking

some of the positions of the graph.

Definition 6.3.1. A marked position of a protocol P is a pair (↵, p) where ↵ : out(c, u) is an output action occurring
in P , and p is a position of the term u. A marking of a protocol P is a set of marked positions of P .

61

↵5

↵4

↵3

↵2

↵1

β4

β3

β2

β1

γ2

γ1

✏

✏

✏

✏

1.2

2.2

1.2
1.2

1.2

Figure 6.4: Dependency graph for P iNS w.r.t. (TNS, δNS)

This notion of marking is very general. We consider that a marking strategy is appropriate for our dependency
graph if it indicates subterms that, if deducible, must be deducible earlier using a smaller set of keys.

We define a function ⇢io on terms very similar to the function ⇢io defined on types in Section 6.2.

Definition 6.3.2. Given a term t, a position p and a multiset of terms S, the function ⇢io is inductively defined for
terms as follows:

• ⇢io(t0, p, S) = {(t0, p)#S} for any atomic term t0 (name, constant or variable);

• ⇢io(ht1, t2i, p, S) = ⇢io(t1, p.1, S) [⇢io(t2, p.2, S);

• ⇢io(enc(t1, t2), p, S) =
(

{(enc(t1, t2), p)#S} if δ0(t2) is an honest type;

{(enc(t1, t2), p)#S} [⇢io(t1, p.1, S [{t2}) otherwise.

Intuitively, (u0, p)#S 2 ⇢io(u, ✏, ;) if the multiset S of keys suffices to access the subterm u0 = u|p.

We show that it is always appropriate to mark a position if the corresponding subterm appears earlier in the
protocol, protected by a smaller set of keys.

Definition 6.3.3. Let (↵, p) be a marked position in P . (↵, p) is an appropriate marked position for P if there exists
an input action β : in(d, v) (or an output action β : out(d, v)) in P such that:

1. ↵ : out(c, u) follows β in P ;

2. (u0, p)#S 2 ⇢io(u, ✏, ;) for some u0, and some S; and

3. (u0, q)#S0 2 ⇢io(v, ✏, ;) for some q, and some S0 ✓mul S.

A marking M of P is appropriate if all the pairs in M are appropriate marked positions.

62

Example 6.3.1. We pursue our example started in Section 6.3.1. We may set (↵5, 1.2) to be a marked position of P 1
NS

(resp. P 2
NS). Intuitively, it is an appropriate marked position since the message xNBσ sent by the process PA cannot

be learnt at the step ↵5: either xNBσ remains secret or it was learnt earlier using fewer keys. Definition 6.3.3 allows
us to state that (↵5, 1.2) is an appropriate marked position for P 1

NS (resp. P 2
NS). Indeed, we have that:

1. ↵5 : out(c1, enc(hrep, xNB i, xAB)) follows ↵4 in P 1
NS;

2. (xNB , 1.2)#{xAB} 2 ⇢io(enc(hrep, xNB i, xAB)); and

3. (xNB , 1.2)#{xAB} 2 ⇢io(enc(hreq, xNB i, xAB)).

Definition 6.3.3 provides a simple criterion for choosing which position to mark in a protocol.

6.3.3 Refined dependency graph

We refine our dependency graph by simply removing any arrow that points towards an appropriate marked position.

Definition 6.3.4. Let P be a type-compliant protocol P (w.r.t. a structure-preserving typing system (TP , δP)) and M
be a marking of P . The refined dependency graph associated to P and M is obtained from the dependency graph of P
by simply removing any arrow of the form ↵ !p β for which

(β, q) 2 M and q is a prefix of p.

Example 6.3.2. The refined dependency graph associated to P 1
NS (resp. P 2

NS) and M = {(↵5, 1.2)} is the graph
depicted in Figure 6.4, when removing the dashed arrow. This dashed arrow is removed thanks to the (appropriate)
marking.

Then trace equivalence is decidable for simple, type-compliant protocols, as soon as their corresponding refined
dependency graph is acyclic.

Theorem 6.3.1. The problem of deciding whether two simple protocols P and Q, type-compliant w.r.t. some structure-
preserving typing systems (TP , δP) and (TQ, δQ), and with acyclic refined dependency graphs obtained relying on
appropriate markings MP and MQ are trace equivalence (i.e. P ⇡ Q) is decidable.

The proof of this theorem will be the object of Section 6.5. Theorem 6.2.1 is actually a direct consequence of
Theorem 6.3.1. The proof can be summarised in three steps: we first use our type-compliance assumption to focus on
well-typed traces such that every message is computed as soon as possible. Then we show that every dependency is
such a trace appears on the refined dependency graph of the protocols, allowing us to bound the width and depth of
such a witness. Finally, we manage to bound the length of a minimal witness of non-equivalence.

6.4 Results

We review several protocols of the literature and identify whether they fall in our decidable class. We first discuss
which corruption scenario is considered.

63

↵3

↵2

↵1

β2

β1

γ2

γ1

✏

✏ ↵0
3

↵0
2

↵0
1

γ02

γ01

✏

β00
1

γ002

γ001

1.2.2

Figure 6.5: Dependency graph for P+
DS w.r.t. (T +

DS, δ
+
DS)

6.4.1 Scenario with corruption

The scenario we considered so far for the Denning-Sacco protocol (as well as the Needham-Schroeder protocol)
is quite simple. We only consider sessions between two honest agents a and b. Such a scenario is known to be
too simplistic and some attacks may be missed, such as the well-known man-in-the-middle attack on the Needham-
Schroeder public key protocol [53].

We therefore consider a scenario where honest agents are also willing to engage communications with a dishonest
agent c. Let us develop this corruption scenario on the Denning-Sacco protocol. Formally, we consider P i+DS obtained
from P iDS by adding P 0

DS as well as P 00
DS in parallel. The purpose of P 0

DS is to consider that the agent a may be involved
in some other sessions with a corrupted agent c, and the server S is ready to answer requests coming from them.
Similarly P 00

DS models the fact that the agent b may be involved in some sessions where the role of A is played by the
corrupted agent c. Thus, we consider

P 0
DS =! new c1.out(c

0
A, c1).P

0
A | ! new c3.out(c

0
S , c3).P

0
S

where P 0
A and P 0

S are as follows:

P 0
A = ↵0

1 : out(c1, ha, ci).
↵0
2 : in(c1, enc(hb, x

0
AB , x

0
Bi, kas)).

↵0
3 : out(c1, x

0
B)

P 0
S = γ01 : in(c3, ha, ci). new k0ab.

γ02 : out(c3, enc(hc, k
0
ab, enc(hk

0
ab, ai, kcs)i, kas))

We consider also:
P 00
DS =! new c2.out(c

00
B , c2).P

00
B | ! new c3.out(c

00
S , c3).P

00
S

where P 00
B and P 00

S are as follows:

P 00
B = β00

1 : in(c2, enc(hy
00
AB , ci, kbs))

P 00
S = γ001 : in(c3, hc, bi). new k00ab.

γ002 : out(c3, enc(hb, k
00
ab, enc(hk

00
ab, ci, kbs)i, kcs))

The resulting protocols P 1+
DS and P 2+

DS are simple protocols. They are also type-compliant w.r.t. (T +
DS, δ

+
DS) where

T +
DS is an enriched version of TDS with new atomic types: ⌧c, ⌧kcs, ⌧kab0 , and ⌧kab00 . In particular, we have type-

compliance for a notion of type that gives different types to kab, k0ab, and k00ab. The type ⌧c is public.

64

The resulting dependency graph remains acyclic and is depicted in Figure 6.5. Note that there is an arrow from β00
1

to γ00
2 for the following reason. We have that

(enc(h⌧kab00 , ⌧ci, ⌧kbs), 1.2.2) 2 ⇢out(u
00
2δ

+
DS)

where u00
2 is the term occurring in the action labelled γ00

2 . Intuitively, this is because the output labelled γ00
2 is an

encryption with a compromised key kcs, and thus the attacker could analyse this term and learn a term of type
enc(h⌧kab00 , ⌧ci, ⌧kbs). A term of such a type could be used to fill the input β00

1 . This possible dependency is rep-
resented by an arrow from β00

1 to γ00
2 . The label indicates the position at which such a term is available in the output.

The resulting dependency graph is composed of three components that are completely disconnected. This reflects
the fact that the protocol ensures that there is no interaction between a session involving honest participants, and
sessions that may involve some dishonest participants. Also there is no confusion between messages used at the
different stages of the protocol.

For a complete corruption scenario, we then need to consider the cases where the role A is played by the agent b
and the role B is played by the agent a. The resulting dependency graph is obtained by symmetry from the one
displayed in Figure 6.5. It remains acyclic and is composed of six disjoint components.

In the remaining of the section, we study several symmetric key protocols of the literature and discuss whether
they fall in our decidable class. For all of them, we consider the complete corruption scenario as described above on
the Denning-Sacco protocol.

6.4.2 Review of symmetric key protocols

Most of the protocols we considered from [30] actually fall in our decidable class. We sometimes need them to include
some explicit tags. For some of them, we need to consider a refined version of our typing graph, and we consider the
one obtained using Definition 6.3.3 to mark position appropriately. Our findings are summarised in Figure 6.6. We
discuss below each protocol individually.

Dependency graph In our
Normal Refined class

Denning-Sacco X X yes
Needham-Schroeder X yes
Otway-Rees X yes
Yahalom (Paulson) X yes
Wide-Mouthed-Frog X X yes
Yahalom no
Kao-Chow (modified) X yes

Figure 6.6: A X means that the corresponding dependency graph is acyclic.

Denning-Sacco This protocol forms our running example and its dependency graph is acyclic, without any tagging
(see Example 6.2.5).

Needham-Schroeder As discussed in Section 6.3.1, its dependency graph is not acyclic but its refined dependency
graph is, even when considering the complete corruption scenario. We do not need to add explicit tags. However,
contrary to what happens in the Denning-Sacco protocol, the resulting dependency graph is more complex. It is
composed of six components connected with several arrows. This is due to the fact that to get type-compliance we
have to give the same type to all the names that play the role of the key Kab (resp. Nb) with no distinction between
those involved in an honest or a dishonest session.

65

This can be done as follows: agents a and b are both willing to start sessions with a malicious agent c. Below, kas,
kbs, kcs, kab, k0ab, k

00
ab, na, n0

a, nb, n00
b , and k are names, whereas a, b, c, req, rep, m1 and m2 are constants from Σ0.

As in Example 2.4.3, we model the security of the exchanged key by requiring that P 1+
NS ⇡ P 2+

NS whereP 1+
NS and P 2+

NS

are defined as follows:

• P 1+
NS is as the protocol P+

NS (see below) but we add the instruction “β4 : out(c2, enc(m1, yAB))” at the end of
PB ;

• P 2+
NS is as the protocol P+

NS but we add the instruction “new k.β4 : out(c2, enc(m2, k))” at the end of PB .

P+
NS = ! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB

| ! new c3.out(cS , c3).PS
| ! new c1.out(c

0
A, c1).P

0
A | ! new c3.out(c

0
S , c3).P

0
S

| ! new c2.out(c
00
B , c2).P

00
B | ! new c3.out(c

00
S , c3).P

00
S

where processes PA, P 0
A, PB , P 00

B , PS , P 0
S , P 00

S are as follows.

PA = new na.
↵1 : out(c1, ha, b, nai).
↵2 : in(c1, enc(hna, b, xAB , xBi, kas)).
↵3 : out(c1, xB).
↵4 : in(c1, enc(hreq, xNB i, xAB)).
↵5 : out(c1, enc(hrep, xNB i, xAB))

P 0
A = new n0

a.
↵0
1 : out(c1, ha, c, n

0
ai).

↵0
2 : in(c1, enc(hn

0
a, c, x

0
AB , x

0
Bi, kas)).

↵0
3 : out(c1, x

0
B).

↵0
4 : in(c1, enc(hreq, x

0
NB

i, x0
AB)).

↵0
5 : out(c1, enc(hrep, x

0
NB

i, x0
AB))

PB = β1 : in(c2, enc(hyAB , ai, kbs)).new nb.
β2 : out(c2, enc(hreq, nbi, yAB)).
β3 : in(c2, enc(hrep, nbi, yAB))

P 00
B = β00

1 : in(c2, enc(hy
00
AB , ci, kbs)).new n00

b .
β00
2 : out(c2, enc(hreq, n

00
b i, y

00
AB)).

β00
3 : in(c2, enc(hrep, n

00
b i, y

00
AB))

PS = γ1 : in(c3, ha, b, zNAi).new kab.
γ2 : out(c3, enc(hzNA, b, kab, enc(hkab, ai, kbs)i, kas))

P 0
S = γ0

1 : in(c3, ha, c, z
0
NA

i).new k0ab.
γ0
2 : out(c3, enc(hz

0
NA

, c, k0ab, enc(hk
0
ab, ai, kcs)i, kas))

P 00
S = γ00

1 : in(c3, hc, b, z
00
NA

i).new k00ab.
γ00
2 : out(c3, enc(hz

00
NA

, b, k00ab, enc(hk
00
ab, ci, kbs)i, kcs))

To ensure the protocol is type-compliant, we need to consider a typing system (T +
NS, δ

+
NS) such that xNB , x0

NB
, nb

and n00
b share the same type, ⌧nb; xAB , x0

AB , yAB , y00AB , kab, k0ab, k
00
ab, k have all type ⌧kab; and both na and zNA (resp.

n0
a and z0NA) have type ⌧na. Which implies that δ+NS(xB) = enc(h⌧kab, ⌧ai, ⌧kbs), δ

+
NS(x

0
B) = enc(h⌧kab, ⌧ai, ⌧kcs)

and both m1 and m2 must have type ⌧m. Moreover, ⌧kas and ⌧kbs are honest types whereas ⌧a, ⌧b, ⌧c, ⌧m, ⌧req, and ⌧rep
are public types.

66

The dependency graph for P i+NS (for any i 2 {1, 2}) w.r.t. this scenario is then given in Figure 6.7, split into three
graphs displaying edges of type 1, 2 and 3 respectively. Applying Definition 6.3.3 enables us to consider (↵5, 1.2) and
(↵0

5, 1.2) as appropriate marked position in P 1+
NS and P 2+

NS , which allows us to discard type 2 arrows from ↵4, β3, ↵0
4

and β00
3 towards ↵5 and ↵0

5 with label 1.2.
Edges towards ↵0

3 (resp. γ00
2) are all with label 1.1 (resp. 1.2.2.1) and exist because both labels correspond to

outputs of keys known to the agent c (encrypted by kcs). As all keys generated by the server share the same type ⌧kab,
any use of such a key create an edge towards those two nodes. Similarly, as nonces created by b and outputted at labels
β2 and β00

2 share the same type ⌧nb and are encrypted by keys of (non-honest) type ⌧kab, inputs using such nonces all
point towards these nodes. Finally, arrows with label ✏ correspond to regular executions of the protocol, albeit with
some collision between messages because of the previously detailed equal types.

Otway-Rees The tagged version of the Otway-Rees protocol can be informally described as follows.

A ! B : M,A,B, {1, Na,M,A,B}Kas

B ! S : M,A,B, {1, Na,M,A,B}Kas
, {2, Nb,M,A,B}Kbs

S ! B : M, {3, Na,Kab}Kas
, {4, Nb,Kab}Kbs

B ! A : M, {3, Na,Kab}Kas

Note that, considering a scenario with no corruption, its untagged version can be shown to be simple and type-
compliant by typing kab with the same type as hm, a, bi. However, its dependency graph would be cyclic (a cycle
will appear between the two actions of the role S). We therefore consider the tagged version of the Otway-Rees pro-
tocol. Its dependency graph is still cyclic but becomes acyclic when marking several positions. In particular, we have
to mark

1. all the positions (in roles B and S) where M appears in plaintext position;

2. the positions (in roles A and B) at which the variables modelling ciphertext forwarding occur; and

3. the positions in roles S (only those that involve the dishonest agent c) that correspond to Na (in case c plays the
role A) and Nb (in case c plays the role B).

The fact that this marking strategy is appropriate is a direct consequence of Definition 6.3.3.

Similarly, the Wide-Mouthed-Frog and the Yahalom (Paulson version) protocols need to be explicitly tagged. Their
refined dependency graphs are acyclic. Actually the normal dependency graph of the Wide-Mouthed-Frog protocol is
already acyclic.

Yahalom Consider now the original Yahalom protocol. Its tagged version can be informally described as follows.

1. A ! B : A,Na

2. B ! S : B, {1, A,Na, Nb}Kbs

3. S ! A : {2, B,Kab, Na, Nb}Kas
, {3, A,Kab}Kbs

4. A ! B : {3, A,Kab}Kbs
, {4, Nb}Kab

When considering only honest sessions, the corresponding dependency graph is acyclic. However, cycles appear if
sessions with dishonest agents are considered. Intuitively, this is due to the fact that the nonce Nb sent at the final
step is encrypted under the key Kab which secrecy cannot be statically guaranteed. Therefore, the nonce Nb could
potentially be learnt at step 4 and be reused earlier (at Step 2 for example). Note that such a protocol would be declared
leaky in [47].

67

↵5

↵4

↵3

↵2

↵1

β4

β3

β2

β1

γ2

γ1

↵0
5

↵0
4

↵0
3

↵0
2

↵0
1

γ0
2

γ0
1

β00
3

β00
2

β00
1

γ00
2

γ00
1

↵5

↵4

↵3

↵2

↵1

β4

β3

β2

β1

γ2

γ1

↵0
5

↵0
4

↵0
3

↵0
2

↵0
1

γ0
2

γ0
1

β00
3

β00
2

β00
1

γ00
2

γ00
1

✏

✏, 1.2
✏, 1.2

✏

✏
✏

1.2

1.2

2.2

✏

✏, 1.2

✏, 1.2

1.1

2.2

✏

✏

1.2
1.2

1.2.2.1

↵5

↵4

↵3

↵2

↵1

β4

β3

β2

β1

γ2

γ1

↵0
5

↵0
4

↵0
3

↵0
2

↵0
1

γ02

γ01

β00
3

β00
2

β00
1

γ002

γ001

1.2.2.1

1.1

Figure 6.7: Dependency graph for P i+NS w.r.t. (T +
NS, δ

+
NS)

68

Kao-Chow Again, it is necessary to tag this protocol to obtain type-compliance w.r.t. a relatively fine-grained typing
system, and to avoid some cycles in the dependency graph.

1. A ! S : A,B,Na

2. S ! B : {1, A,B,Na,Kab}Kas
, {2, A,B,Na,Kab}Kbs

3. B ! A : {1, A,B,Na,Kab}Kas
, {3, Na}Kab

, Nb

4. A ! B : {4, Nb}Kab

Even with explicit tags, the resulting dependency graph contains a cycle due to the fact that, at the third step, B sends
the nonce Na under Kab, which security cannot be statically asserted. However, Na is intuitively public. We therefore
slightly modify this protocol, assuming that S also sends Na in clear at the second step, which suffices to obtained an
acyclic (refined) dependency graph using Definition 6.3.3. This is a typical example where another marking strategy
could be applied to (soundly) obtain an acyclic graph.

6.4.3 Detailed comparison with [47]

Sibylle Fröschle has recently obtained [47] a decidability result for an unbounded number of sessions, for the property
of “leakiness”. Our decidability result differs from Fröschle’s result on several general points, in particular in terms
of primitives and properties that can be handled. Strictly speaking the two results are incomparable since we study
trace equivalence while [47] analyses “leakiness”, a specially designed property that implies secrecy. In this section,
we highlight the main similarities and differences of the two approaches.

Primitives. Fröschle’s result applies to all standard cryptographic primitives (concatenation, symmetric and asym-
metric encryption, hash, and signatures) while we only consider concatenation and symmetric encryption. This is due
to the fact that our decidability result builds upon [24] (to limit ourselves to well-typed traces), which scope is limited
to concatenation and symmetric encryption.

Properties. We consider more general security properties since we can decide any equivalence-based property
(provided the processes fall into our class), while [47] only applies to the particular leakiness property. Leakiness
enforces that a data (a nonce or a key) is either immediately deducible or secret. Note that leakiness is strictly stronger
than secrecy. It disallows protocols with temporary secrets but it also discards some very reasonable protocols such
as the Needham-Schroeder symmetric key protocol, due to parallel sessions between honest and dishonest agents.
Indeed, assume A initiates (honestly) a session with C. Then the key Kac generated by the server is not immediately
deducible to the attacker since it is protected by Kas but will be deducible as soon as A forwards it to C under the key
Kcs. The protocol will be declared leaky although no one cares about the secrecy of Kac.

Dependency graph. One important common point between [47] and our result is the notion of dependency graph
that should be acyclic. The graph defined in [47] reflects sequential dependencies similarly to our dependency graph.
Regarding data dependencies, there is an edge between two actions as soon as their corresponding terms can be
instantiated such that they share a common ciphertext as subterm. As a consequence, acyclicity can only be satisfied
in a typed model. Therefore, [47] assumes that agents can recognise the type of a data, e.g. do not confuse a nonce with
a ciphertext or a pair of nonces. Fröschle’s result cannot consider protocols with ciphertext forwarding. In some cases
where ciphertexts are just appended to the rest of the message, [47] devises a simple transformation. However, this
transformation does not apply to protocols including more involved ciphertext forwarding such as the Denning-Sacco
and the Needham-Schroeder protocols.

The graph considered in [47] is somewhat simpler (i.e. contains less arrows). In particular, this graph does not
consider key dependencies (item 3 of Definition 6.2.2). This is due to the leakiness property: there is no temporary
secret thus a key is either secret or public.

69

6.5 Proof of our decidability results

We prove our decidability results (Theorems 6.2.1 and 6.3.1) in three main steps. In both cases, we bound the length
of a witness of non-equivalence, and then conclude by invoking a decidability result for a bounded number of sessions
(e.g. [24]).

Given two simple protocols P and Q, a witness of non-inclusion for P 6v Q is a trace tr for which there exists φ
such that (tr, φ) 2 trace(P) and:

• either there does not exist such that (tr,) 2 trace(Q),

• or such a exists and φ 6⇠ .

A witness of non-equivalence is a trace tr that is a witness for P 6v Q or Q 6v P .
Note that for a simple protocol, once the sequence tr is fixed, all the frames reachable through tr are actually in

static equivalence, which ensures the unicity of , if it exists, up-to static equivalence.

The three main steps of our proof can be summarised as follows:

1. We first rely on our type-compliance assumption. We show that we can restrict our attention to witnesses that
are well-typed and we further show that each message occurring in such a trace can be computed as soon as

possible (asap) (see Lemmas 6.5.1 and 6.5.2). Intuitively, recipes should refer to messages that occur as early as
possible.

2. Then, we show that all the dependencies occurring in such a well-typed and asap trace comply with the depend-
ency graph. Hence, we bound the width (Lemma 6.5.7) as well as the depth (Corollary 6.5.1) of such a witness
exploiting the acyclicity of our dependency graph.

3. Lastly, we explain how to bound the length of a minimal witness (Lemma 6.5.9).

6.5.1 Reducing equivalence

We first show that we may focus on pseudo-well-typed witnesses of attacks. Formally, we cast Theorem 4.1.1 in our
framework.

Theorem 6.5.1 (Theorem 4.1.1 revisited). Let P and Q be two simple protocols type-compliant w.r.t. some structure-
preserving typing systems (TP , δP) and (TQ, δQ). We have that P 6⇡ Q if, and only if, there exists a witness of
non-equivalence tr such that:

• either (tr,φ) 2 trace(P) for some φ and (tr,φ) is pseudo-well-typed w.r.t. (TP , δP).

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (TQ, δQ).

Moreover, there is no c 2 Σ0 having an honest type occurring in key position in tr.

Proof. Compared to Theorem 4.1.1, we consider structure-preserving typing system, instead of typing systems, and
we moreover need to make sure that there exists no constant with an honest type occurring in key position in a
pseudo-well-typed witness of non-equivalence. Lemma 2.5.1 ensures that (TP , δP) and (TQ, δQ) are typing systems.
Then Theorem 4.1.1 ensures that if there exists a witness of non-equivalence tr of P 6⇡ Q, the first two items of
Definition 4.1.1 hold. We still need to show that for any c 2 Σ0 such that δ(c) is honest, c does not appear in
key position in trφ#. From Lemma 4.1.1, trφ# = trsσ for some first-order trace trs and substitution σ well-typed
(by Definition 4.1.1). The proof of Theorem 4.2.1 ensures ESt(trφ#) ✓ ESt(trs)σ where ESt denotes the set of
encrypted subterms of its argument (defined for terms and naturally extended to traces). Let enc(u, v) 2 ESt(trφ#).
There exists enc(u0, v0) 2 ESt(trs) such that enc(u, v) = enc(u0, v0)σ = enc(u0σ, v0σ). Because keys are atomic

70

in our model, v and v0 are atoms. Suppose ad absurdum v 2 Σ0 and δP (v) is honest. Because σ is well-typed,
δP (v

0) = δP (v). If v0 were a variable or a constant in Σ0, δP (v0) cannot be honest, it would be in contradiction
with item (ii) of the definition of honest type. Then v0 has to be a name, causing v = v0σ = v0 to be a name too;
contradiction once again. Thus no term in a key position in trφ# can be an element of Σ0 and of an honest type. Hence
(tr, φ) is indeed pseudo-well-typed.

To bound the length of a witness, it is important to avoid some unnecessary detours, and this is the purpose of
computing messages as soon as possible.

Definition 6.5.1. Given a trace (tr, φ) 2 trace(P) and a message m such that φ ` m. We say that R is an asap recipe

of m if:

• Rφ# = m,

• R = C[R1, . . . , Rn] where C contains only constructors, for any i, Ri contains only destructors and Riφ# is
not a pair,

• R is the minimal recipe satisfying those conditions, w.r.t. to the following order: for any w,w0 2 dom(φ),
w < w0 if w occurs before w0 in φ, and for any recipe R, R0, R < R0 if vars#(R) <mul vars

#(R0); where
<mul is the multiset extension of < and vars#(R) denotes the multiset of variables in R.

We say that a trace (tr, φ) of a protocol P is an asap trace if for any input recipe R occurring in tr, we have that R
is an asap recipe of Rφ# w.r.t. (tr, φ).

Example 6.5.1. The trace (tr, φ) given in Example 2.3.1 is not an asap trace. Indeed, in(ch3,w1) occurs in tr and
w1φ# = ha, bi. Thus w1 is a recipe of ha, bi. However, it is not an asap recipe since ha, bi is deducible from the empty
frame (remember that a and b are public constants from Σ0). For the same reason, (tr0, φ0

1) and (tr0, φ0
2) are not asap

traces.

In the following lemma, we prove it is always possible to find an asap recipe which reduces to a deducible term in
any given frame.

Lemma 6.5.1. Given a trace (tr, φ) 2 trace(P) and a message t such that φ ` t, there exists an asap recipe R of t.

Proof. As φ ` t, there exists a recipe R such that Rφ# = t. Let us consider the rewriting rules

dec(enc(x, y), z)) x
proji(hx1, x2i)) xi

and for any recipe R, let R+ be the normal form for the) rewriting. As t is a message, from Lemma A.1.2, we get that
R+φ# = t. R+ is of the form C[R1, . . . , Rn] where C contains only constructors and for any i, Ri only destructors
(without being asap at this point) as keys are atomic in our model. At this point, we proved that given a frame φ and t
such that φ ` t, there exists a recipe R of t such that R = C[R1, . . . , Rn] where C contains only constructors; for any
i, Ri contains only destructors.

Furthermore, to ensure Riφ# is not a pair, for any recipe M = C[R1, . . . , Rn] such that C is constructor-only, Ri
destructor-only, consider the following induction on

Pn
i=1 |Riφ#|; where |t| denotes the size of the term t:

• if Riφ# is an atom or encryption for any i: we have the final result.

• if Riφ# = hs, ti for some i: applying the already proven result on proj1(Ri) (resp. proj2(Ri)) gives a recipe
R0
i = C 0

i[R
0
1, . . . , R

0
p] (resp. R00

i = C 00
i [R

00
1 , . . . , R

00
q]) such that C 0

i (resp. C 00
i) is constructor-only and each R0

j

(resp. R00
j) contains only destructors. M 0 = C[R1, . . . , hR

0
i, R

00
i i, . . . , Rn] is made of constructor on top of

destructors and
P

j 6=i |Rjφ#|+ |R0
iφ#|+ |R00

i φ#| <
Pn
i=1 |Riφ#|.

71

An asap recipe is hence obtained by considering a minimal element among the recipes satisfying those properties.

Trace equivalence can be equivalently redefined by considering only asap recipes in Definition 2.4.2. We expose
here a definition for well-typed asap trace equivalence and prove in Lemma 6.5.2, its equivalence with traditional trace
equivalence for the protocols we consider. The intuition behind asap traces is to consider only input messages that
are built as soon as they can be deducible. In particular, with asap recipes, the attacker cannot take detours to deduce
a particular message. Yet it does not hinder the power of the attacker as static equivalence still ensures that recipes
leading to the same term in one frame must do the same in the other frame.

Definition 6.5.2 (well-typed asap trace equivalence). Two protocols P and Q type-compliant w.r.t. their respective
structure-preserving typing systems (TP , δP) and (TQ, δQ) are in well-typed asap trace equivalence, denoted P ⇡0 Q
if, and only if:

• for every asap trace (tr, φ) 2 trace(P) which is pseudo-well-typed w.r.t. (P, δP) there exists a trace (tr,) 2
trace(Q) such that φ ⇠ ,

• for every asap trace (tr,) 2 trace(Q) which is pseudo-well-typed w.r.t. (Q, δQ) there exists a trace (tr,φ) 2
trace(P) such that ⇠ φ.

We now prove that this variant of trace equivalence matches, for our class of protocols, to the original definition
of trace equivalence. To do so, we use Theorem 6.5.1 to focus only on pseudo-well-typed trace and then show that
considering only asap trace does not affect the ability for the attacker to distinguish between two protocols.

Lemma 6.5.2. Let P and Q be two protocols type-compliant w.r.t. their respective structure-preserving typing systems
(TP , δP) and (TQ, δQ). Then P ⇡ Q if, and only if, P ⇡0 Q.

Proof. The direct implication is direct. Let us then assume that P 6⇡ Q and prove that P 6⇡0 Q. Theorem 6.5.1
enables us to only consider a pseudo-well-typed witness of non-equivalence. The proof is then carried by induction
on the length of the minimal witness of non-equivalence. Note that making a trace asap does not change its first-order
values.

We are then able to show that, when looking for an attack, i.e. a witness of non-equivalence, we can further restrict
our attention to consider pseudo-well-typed witnesses that are also asap.

6.5.2 Exploiting the dependency graph

Given an asap and pseudo-well-typed execution trace (tr,φ) of a simple protocol P , we can see it as a dag D (directed
acyclic graph) whose vertices are actions of tr, and edges represent sequential dependencies and data dependencies.
Note that such a dag can be computed simply from tr since sequential dependencies may be inferred from the channel
names occurring in tr, and data dependencies are inferred from input recipes that occur in tr.

Our ultimate goal is to bound the length of tr, and thus the number of vertices in D. We first show that we are able
to bound its depth and its width.

The first lemma links the actions of any trace of the protocol with the actions of the protocol themselves.

Lemma 6.5.3. Given a simple protocol P , (tr,φ) 2 trace(P), and an action a appearing in tr, there exists a unique
action in P which corresponds to the execution of a in tr.

Proof. Direct consequence of our semantics and the use of fresh channel names which identify actions in the trace.

We can now define an execution graph and ensure that, for simple protocols, any trace corresponds to a unique
execution graph.

72

a5

a4

a2

a3

a1

Figure 6.8: Execution graph D of tr w.r.t. PDS

Definition 6.5.3. Let P be a protocol, (tr, φ) 2 trace(P). An execution graph of tr w.r.t. P is a directed acyclic
graph D whose vertices are the actions of tr and whose edges are defined as follows:

• there is an edge from in(c, R) to an action out(d,w) if w 2 vars(R);

• there is an edge from an action a2 to an other action a1 if the action corresponding to a2 in P directly follows
the action corresponding to a1 in P .

Note that such an action is uniquely defined thanks to Lemma 6.5.3.

Example 6.5.2. Consider the trace

tr = out(cA, ch1).out(cS , ch3).out(ch1,w1).in(ch3,w1).out(ch3,w2)

and
φ = {w1 . ha, bi,w2 . enc(hb, kab, enc(hkab, ai, kbs)i, kas), }.

We have that (tr, φ) 2 trace(PDS) (see Example 6.1.1). For the sake of clarity, let us define ai to be the i-th action of
tr. Then tr = a1.a2.a3.a4.a5. Let D be the directed acyclic graph defined in Figure 6.8: D is an execution graph D of
tr w.r.t. PDS. Similarly to what we did with dependency graphs, we drew in in red edges of the first kind, corresponding
to data dependencies and drew in blue edges of the second kind, corresponding the sequential dependencies.

Lemma 6.5.4. If P is a simple protocol and (tr, φ) 2 trace(P), then there exists a unique execution graph of tr w.r.t.
P . Moreover, if Q is a simple protocol and there exists such that (tr,) 2 trace(Q), then the execution graph of tr
w.r.t. Q is equal to the execution graph of tr w.r.t. P .

Proof. We prove that we can build the execution graph by looking solely at tr in the case of simple protocols: data
dependencies are explicit through the recipes, while sequential dependencies can be deduced from the channel c0 of
an action, new c0.out(c, c0) the action that created it, and the position of this action in the sequence of all actions on
channel c0. Hence, we have that tr completely and uniquely defines an execution graph for tr w.r.t. P . Moreover, as
the dependencies depend on tr alone, the graph does not vary depending on whether tr is a trace of P or Q.

Bounding the depth of D

Intuitively, any sequential and data dependency occurring in a well-typed and asap trace is already present in the
dependency graph. This is obvious regarding sequential dependencies since all these dependencies have been added in
the dependency graph. However, regarding data dependencies, this result strongly relies on the fact that we consider
well-typed and asap traces.

In this first lemma we justify the appellations of honest and public by their consequences in terms of deducibility
for terms of such a type.

73

Lemma 6.5.5. Let P be a protocol type-compliant w.r.t. a structure-preserving typing system (T , δ).

• If ⌧ is an honest type, n a name such that δ(n) = ⌧ , then for any well-typed trace (tr, φ) 2 trace(P), we have
that φ 6` n.

• If ⌧ is a public type, t a term such that δ(t) = ⌧ , then for any well-typed (tr, φ) 2 trace(P), φ ` t implies
φ0 ` t; where φ0 denotes the empty frame.

Proof. We consider the two items separately:

• As ⌧ is honest, ⌧ does not appear in plaintext position in uδP for any u in P . Suppose ad absurdum there
exists (tr, φ) 2 trace(P) pseudo-well-typed such that φ ` n. There exists a recipe R with only destructors (see
Lemma 6.5.1; as n is atomic, the context C is empty) such that Rφ# = n. Let w be the leaf of R at the leftmost
position (i.e. at the longest position p = 11 . . . 1 such that R|p is defined): n appears in plaintext position of wφ.
Because φ is well-typed, δP (wφ) = uδP for some output u in P . But then, as n is a subterm of wφ in plaintext
position, δP (n) is a subterm of uδP in plaintext position: thus ⌧ appears in plaintext position in some uδP with
u in P . Contradiction with ⌧ being an honest type. Hence φ 6` n.

• Suppose (tr, φ) 2 trace(P) is a well-typed trace such that φ ` t. Let a be a leaf of t: a is an atom and can be
an element of Σ0 (constant) or N (name). Let us consider the latter: because names are initially unknown to
the attacker, φ0 6` a and δP (a) = δP (n) for some name n in P . The name a being a subterm of t, δP (n) is a
subterm of δP (t) = ⌧ and thus ⌧ would not be public. Hence every leaf of t is a constant in Σ0 and so φ0 ` t.

As we did after Definition 6.2.1, from Definition 6.3.2, we extend the definition of ⇢in and ⇢out to terms.

⇢out(t
0) = {(t, p) | (t, p)#S 2 ⇢io(t

0, ✏, ;)}; and
⇢in(t

0) = {t, t1, . . . , tk | (t, p)#{t1, . . . , tk} 2 ⇢io(t
0, ✏, ;)}.

Intuitively, ⇢out(t0) returns the terms that may be deducible by the attacker once t0 is outputted, whereas ⇢in(t0)
returns all the terms that may be used by the attacker to fill an input with term t0. Next, Lemma 6.5.6 ensures these
definitions are consistent with Definition 6.2.1 when considering the type δ(t) of any term t.

Lemma 6.5.6. Let P be a protocol type-compliant w.r.t. a structure-preserving typing system (T , δ). For any u, t 2
T0(Σc,Σ0 [N) such that no c 2 Σ0 occurs in key position in t and for any position p:

• (u, p)#S 2 ⇢io(t, ✏, ;)) (δ(u), p)#δ(S) 2 ⇢io(δ(t), ✏, ;); where δ(S) = {δ(s)|s 2 S}

• (u, p) 2 ⇢out(t)) (δ(u), p) 2 ⇢out(δ(t))

• u 2 ⇢in(t)) δ(u) 2 ⇢in(δ(t))

Proof. The typing function of a structure-preserving typing system (T , δ) behaves like a substitution and therefore
the two definitions of ⇢io, defined through inductions on terms are compatible. t (resp. u) and δ(t) (resp. δ(u)) share
a similar structure (any position defined in t is defined in δ(t)) and any key used to open an encryption in t, and
thus deducible, cannot be a constant by hypothesis nor be honest (as per Lemma 6.5.5) and thus the corresponding
encryption in δ(t) is also opened.

The next proposition is one of our key results. It requires to control data dependencies and in particular data
dependencies that may occur due to keys: it may be necessary to decrypt to obtain a new key that in turn will be
used to learn another key and so on. We show that our dependency graph actually captures all dependencies. When
refining the dependency graph with appropriate marking, the main idea is that edges that are removed correspond to
dependencies that can not happen in any asap trace.

74

Proposition 6.5.1. Let P be a simple protocol type-compliant w.r.t. some structure-preserving typing systems (TP , δP).
Let (tr, φ) 2 trace(P) be an asap and pseudo-well-typed trace w.r.t. (TP , δP).

For any pair of actions in(d,R) / out(c,w) occurring in tr with w 2 vars(R), we have that ↵ !+
G β where:

• ↵, β 2 L(P) are the labels associated to the actions in(d,R) and out(c,w) respectively;

• !+
G is the transitive closure of the relation ! in the dependency graph G associated to P .

Proof. Let a/b be such a pair of actions in tr: b corresponds to an output action out(c,w) and a to an input action
in(d,R) in tr with w 2 vars(R).

As tr is asap, R = C[R1, . . . , Rn] for some C which contains only pairs and encryption and such that for every
i 2 {1, . . . , n}, Ri is made of projections and decryption only; and moreover Riφ# is either an atom or an encrypted
subterm. As such, for every w 2 dom(φ), either w appears at the leftmost position of Ri for some i; or w is used as a
decryption key (i.e. w always appears as the second argument of some decryption).

Let us consider the first case for w: because Riφ# is a subterm of wφ and w occurs as a plaintext operand in Ri,
Riφ# 2 ⇢out(wφ); and similarly Riφ# is a subterm of Rφ# (as C is constructor-only), leading to Riφ# 2 ⇢in(Rφ#)
(see Lemma 6.5.5: φ does not contain any constant of Σ0 in key position, deducible keys have then to be nonces,
which cannot be honestly typed if deducible). As such there exist two positions p, q such that wφ|p = Rφ#|q = t for
some i and some term t which is either an encrypted term, a name or a constant. .

Let u (resp. v) be the term occurring at label β (resp. ↵) in P . There exist two ground substitutions σu, σv such
that uσu|p = t = vσv|q . Because (tr, φ) is well-typed, δP (Rφ#) = δP (v) as they share the same type, and similarly,
δP (wφ) = δP (u). Because a structure-preserving typing system is a substitution (whose domain is extended to
elements of Σ0 [N) and thus compatible with subterms (i.e. δP (u|p) = δP (u)|p for any term u and position p which
is defined for u), we get that δP (Rφ#|q) = δP (v)|q and δ(wφ|p) = δP (u)|p. Thus δP (u)|p = δP (v)|q , which can
be rewritten as uδP |p = vδP |q (using the traditional substitution notation). From Lemma 6.5.6, uδP |p 2 ⇢out(uδP)
and vδP |q 2 ⇢in(vδP). It follows then, by Definitions 6.2.2 and 6.3.4, that an edge could exist from ↵ to β. If it is
the case, we are done. If uδP |p is public type, Lemma 6.5.5 ensures φ0 ` uσu|p, which contradicts the fact that R
is an asap recipe (as one of its subterms is not asap). Otherwise there exists a appropriate marked position (β, p0)
such that p0 is a prefix of p. As such, because there exists i 2 {1, . . . , n} such that Riφ# = uσu|p, there exists a
subterm R0

i of Ri such that R0
iφ# = uσu|p0 (as p0 is a prefix of p and Ri is made of destructors only). According to

Definition 6.3.3, there exists an action γ : in(d, u0) (or γ : out(d, u0)) such that β follows γ, (u|p0 , p0)#S 2 ⇢io(u, ✏, ;)
for some multiset S; and (u|p0 , q)#S0 2 ⇢io(u

0, ✏, ;) for some q, and some S0 ✓mul S. Note that because marked
positions are defined on the specification of the protocol P , u|p0 is well-defined and u|p0σu = uσu|p0 . In particular,
φ ` uσu|p0 using a destructor-only recipe R0

i with w in its leftmost position implies that for every k 2 S, there exists
a subterm Rk of R0

i such that Rkφ# = k. As γ occurs before β in P , let R00 be the recipe used with this action
γ : in(d, u0) (or γ : out(d, u0)) in tr. As tr is asap, R00 is asap and R00φ# = u0σu. As (u|p0 , q)#S0 2 ⇢io(u

0, ✏, ;), there
exists a destructor-only context R00

1 [_] with a hole in its leftmost leaf position such that R00
1 [R

00]φ# = u0|qσu = u|p0σu
and vars#(R00

1) =
S

k2S0

vars#(Rk) ✓
S

k2S

vars#(Rk) as S0 ✓mul S and by using the Rk as decryption keys when

needed. Note that in this context vars(R) denotes the multiset of variables occurring in R. As R00 is asap and R00φ#
is a message, R00

1 [R
00]+ is a recipe made of a context of constructors on top of destructor-only recipes too (see the

definition of + in the proof of Lemma 6.5.1). Lemma A.1.2 ensures R00
1 [R

00]+φ# = u|p0σu. Because γ occurred before
β, vars#(R00) <mul {w}, which leads to vars#(R00

1 [R
00]+) < vars#(R0

i) and implies that R0
i is not minimal. R0

i not
being minimal implies Ri is not either. Then R would not be asap; and hence ↵! β.

Now consider the second case for w. Let w0 be the variable at the leftmost position in Ri (i.e. Ri|p0 = w0 where
p0 is the longest position 1k such that Ri|p0 is defined). Note that w0 6= w as otherwise we would be in the first case.
For position p, we define wp to be the leaf of Ri at position p.1 . . . 1, ↵P the label at which the output of wp took place,
up the output term at label ↵p in (the specification) P and σp the substitution such that wpφ = upσp. As Ri|pφ# is a
subterm of wpφ, there exists a position p̃ such that Ri|pφ# = upσp|p̃. We then define a number of sets of positions as

75

follows: for any j 2 N
⇤

Kj = {p s.t. Ri|p is defined and
9m1, . . .mj 2 N, p = 1m1 .2 . . . 1mj .2}

Note that because Ri is finite, there exits j0 2 N such that 8j > j0,Kj = ;. In particular, for any p 2 K1, Ri|pφ#
corresponds to a subterm of wpφ and an atom (as keys are atomic) used to decrypt the first layers of encryption of
w0φ. It implies that Riφ# appears as a plaintext (or subterm of plaintext) of encryptions by Ri|pφ# for any p 2 K1.
Similarly, for any p 2 Kj+1, Ri|pφ# is a subterm of wpφ# and an atomic key used to decrypt some Ri|qφ# where
q 2 Kj .

More formally, for any j and any p 2 Kj+1, there exists q 2 Kj and a multiset of terms S such that

(Ri|qφ#, q̃)#(S [{Ri|pφ#}) 2 ⇢io(wqφ, ✏, ;).

For short, ⇢io(t, ✏, ;) will be written as ⇢io(t). This can be rewritten using up and uq as:

(uqσq|q̃, q̃) # (S [{upσp|p̃}) 2 ⇢io(uqσq)

Moreover, if s#S 2 ⇢io(t) then δP (s)#δP (S) 2 ⇢io(δP (t)) thanks to Lemma 6.5.6, it translates to

(δP (uqσq|q̃), q̃) #(δP (S) [{δP (uqσp|p̃)}) 2 ⇢io(δP (uqσq))

and as δP (u|p) = δP (u)|p for any term u and position p:

(δP (uqσq)|q̃, q̃) #(δP (S) [{δP (uqσp)|p̃}) 2 ⇢io(δP (uqσq))

where δP (S) is just {δP (s)|s 2 S}. Because (tr,φ) is well-typed, σp and σq are well-typed substitutions and we get

(δP (uq)|q̃, q̃) #(δP (S) [{δP (uq)|p̃}) 2 ⇢io(δP (uq))

which we rewrite to use the substitution-style notation for δP , to be:

(uqδP |q̃, q̃) #(δP (S) [{uqδP |p̃}) 2 ⇢io(uqδP).

It corresponds to an edge ↵q !p̃ ↵p in the (unrefined) dependency graph of P as uqδP |q̃ 2 ⇢out(uqδP) and
uqδP |p̃ 2 ⇢out(uqδP) (see Lemma 6.5.5: φ does not contain any constant of Σ0 in key position, deducible keys have
then to be nonces, which cannot be honestly typed if deducible). If ↵q !p̃ ↵p is absent from the refined dependency
graph, uqδP |q̃ could be public type, Lemma 6.5.5 ensures then φ0 ` uqσq|q̃ , which contradicts the fact that Ri is an
asap recipe (as one of its subterms is not asap).

Otherwise, there exists a marked subterm (↵p, p
0) such that p0 is a prefix of p̃. uqσq|q̃ was deduced with the recipe

Ri|q and so, because Ri contains only destructors, there exists a prefix q00 of q such that Ri|q00φ# = uqσq|q0 . As such,
similarly to the previous case and using Definition 6.3.3 for appropriate marked positions, uqσq|q0 is not deduced
with an asap recipe, and neither is uqσq|q , which contradicts the asap hypothesis on (tr,φ), and let us conclude that
↵q !p̃ ↵p. Consequently, for any p 2

S

j≥1

Kj , ↵0 !+ ↵p. In particular, by considering the position p such that

↵p = β and the previous case, be get that ↵! ↵0 and ↵0 !+ β, which leads to ↵!+ β.
To conclude, we finally need to address the case where (tr,φ) is only pseudo well-typed, without being well-

typed. In that case, there exists a public constant d 2 Σ0, a substitution γ = {d 7! h!,!i} and a well-typed trace
(tr0,φ0) 2 trace(P) such that tr = tr0γ. Because (tr0,φ0) is well-typed, the result proved so far can be applied, and
because P is a simple protocol, the sequential dependencies of tr0 and tr are identical. As tr and tr0 are asap traces,
and both d and ! are in the initial knowledge of the attacker, the execution graph of tr and tr0 are identical, hence
ensuring that the execution graph of (tr,φ) is respectful.

76

Note that, in the class of simple process, once the trace tr is fixed, the label ↵ 2 L(P) of an action occurring in tr

is uniquely defined.

As Proposition 6.5.1 ensures paths from the execution graph of a trace can be mapped to paths of the dependency
graph of a protocol, Corollary 6.5.1 enables us to then derive a bound on the depth of such an execution graph, thus
providing us the first step to bound the length of the trace itself.

Corollary 6.5.1. Let P be a simple protocol type-compliant w.r.t. some structure-preserving typing systems (TP , δP)
and with an acyclic (possibly refined) dependency graph G. Let (tr, φ) 2 trace(P) be an asap and pseudo-well-typed
trace w.r.t. (TP , δP), and D its corresponding execution graph. We have that:

depth(D)  depth(G) + 1.

Proof. Let a and b be actions of tr, a ! b be an edge of D. Let ↵ (resp. β) be the label of action a (resp. b). As P is
simple, any action out(c, c0) for two channels c and c0 appears without outgoing edge in D. As such the depth of D is
the length of a maximal path in D between actions which are not outputs of fresh channels plus one. Suppose now a
and b corresponds to actions which are not outputs of fresh channels.

Now, we need to prove that ↵ !+ β. By Definition 6.5.3, this arrow can either correspond to a sequential
dependency or a data dependency (for an input). In the first case, by Definition 6.2.2, the same arrow exists in the
refined dependency graph if b is not an action out(c, c0) for some channels c and c0; and in the latter, Proposition 6.5.1
ensures also ↵ !+ β. As the relation !+ if finite with depth depth(G), we finally get (taking into account the
additional edge for the output of a fresh channel):

depth(D)  depth(G) + 1.

Bounding the width of D

The width of D is the maximal number of outgoing edges of any vertex of D. Actually, any recipe involved in an asap
and pseudo-well-typed trace is of the form C[R1, . . . , Rn] where C contains only constructors and each Ri contains
only destructors. Since messages stored in the frame are well-typed, we can not stack more than koutP k (maximal
size of an outputted term in a well-typed trace) destructors in such a recipe. Note that some key chains may be needed
to deduce a message, but the length of such a chain is bounded by depth(G). Hence, we have that each Ri involves
no more than (1 + koutP k)

depth(G)+1 recipe variables, and we have also that n  kinP k where kinP k denotes the
maximal size of any input term in a well-typed trace. Thus, we have that:

width(D)  1 + (1 + koutP k)
depth(G)+1 ⇥ kinP k.

To prove that, Corollary 6.5.2 first aims at bounding the size of any destructor-only asap recipe used in a well-typed
witness of equivalence. It relies on the fact that chains of keys that may appear in such a recipe are necessarily bounded
thanks to Proposition 6.5.1.

Corollary 6.5.2. Let P be a simple protocol type-compliant w.r.t. a structure-preserving typing system (TP , δP) with
refined dependency graph G, (tr, φ) 2 trace(P) a pseudo-well-typed trace of P . Then if R is an asap recipe with M
leaves of Rφ# and contains only destructors, then M  (1 + koutP k)

depth(G)+1.

Proof. Uses proof of Proposition 6.5.1. Using the same notations, M = |
S

j2N

Ki|. Note that there exists j0 such

that 8j > j0,Kj = ;, and as such this union is indeed finite. Moreover, for any j 2 {1, . . . , j0} and p 2 Kj ,
there exists q 2 Kj−1 such that ↵q !p̃ ↵q . As such, the labels of the elements of

S

j2N

Kj form a subtree of G

77

of root ↵0, and of depth lesser or equal than depth(G). The degree of this subtree is bounded by the number of
constructors (and thus the number of encryption layers) in any term of a pseudo-well-typed frame, which is it self

bounded by koutP k. Hence its degree is at most koutP k, leading to a subtree of size at most
depth(G)
P

k=0

koutP k
k and thus

M  (1 + koutP k)
depth(G)+1.

Having bounded the size of recipes used in our witness of non-equivalence, we can translate it into a bound on
the width of the execution graph of this witness, as the maximal size of recipes corresponds to the maximal arity of
such a graph; thus providing us with the second step towards the final bound on the length of a minimal witness of
non-equivalence.

Lemma 6.5.7. Let P and Q be two simple protocol type-compliant w.r.t. their respective structure-preserving typing
systems (TP , δP) and (TQ, δQ); and (tr, φ) 2 trace(P) a witness of P 6⇡0 Q (i.e. the witness is a trace of P without
necessarily being a trace of Q) with execution graph D. Then

width(D)  1 + (1 + koutP k)
depth(G)+1 ⇥ kinP k

Proof. The bound comes from Corollary 6.5.2: any term can have at most one sequential predecessor and any asap
input recipe of tr is of the form C[R1, . . . , Rn] where C contains only constructors and for any i, Ri has Mi leaves
and contains only destructors and as such Mi  koutP k

depth(G). Because (tr, φ) is pseudo-well-typed, each input
from the protocol has at most kinP k leaves. Hence any action of D can have at most 1 predecessor (for the sequential
dependency) and koutP k

depth(G) ⇥ kinP k other predecessors for the data dependencies, leading to the desired result.

6.5.3 Bounding the length of a minimal witness

To conclude, we need to bound the length of a minimal witness of non-equivalence. We have already seen that we can
consider a witness that is asap and pseudo-well-typed, and we have bound the depth and the width of its associated
dag. Still, the length of such a trace may be arbitrary long. We now show that we can bound the number of roots
(vertices with no ingoing edge) in a minimal witness of non-equivalence.

To do so, we introduce the notion of pruning of a graph w.r.t. some vertices. It intuitively corresponds, for an
execution graph, to the retrieving of the causal dependencies required to fire some action.

Definition 6.5.4 (pruning). Given an execution graph D = (V,E) and a set R of roots of D, we define the pruning

DR = (VR, ER) of D w.r.t. R as follows:

• VR = {v 2 V |9r 2 R, r !⇤ v}

• ER = {(u, v) 2 E|u, v 2 VR}

where !⇤ denotes the transitive closure of the relation induced by E.

Lemma 6.5.8 (properties of pruning). Let P be a simple protocol, (tr, φ) 2 trace(P) and D the execution graph
of tr w.r.t. P . Let R = {v1, . . . , vp} be a set of nodes of D and DR the pruning of D w.r.t. R. Then there exits
(trR, φR) 2 trace(P) such that:

• DR is the execution graph of trR w.r.t. P ,

• trR is a subtrace of tr and φR is a subframe of φ,

Proof. Intuitively, the execution graph captures all the dependencies to execute any vertex/action in the corresponding
trace. The closure of DR ensures that any action occurring in trR has the needed predecessors.

78

Lemma 6.5.9. Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems
(TP , δP) and (TQ, δQ), and such that P 6v Q. Let (tr, φ) be a witness of non-inclusion which is asap, pseudo-well-
typed and with minimal length, and D be its corresponding execution graph. We have that:

nbroot(D)  2⇥ (1 + koutP k)
depth(G)+1.

Proof. There are two main reasons of non inclusion.

• Either Q is not able to mimic the last action of the trace tr. In that case, we prune D by selecting only the last
action of tr and its (successive) sons.

• Or the resulting frames are not in static equivalence. Consider an equality test R1 = R2 that witnesses non
static equivalence. We show that R1 and R2 can be chosen to be destructor-only, and we bound the number of
recipe variables involved in R1 and R2 by (1 + koutP k)

depth(G)+1. Thus, in this case, we prune D by selecting
the actions producing these variables and their successive sons.

More formally, (tr, φ) can be of two forms:

• If there exists such that (tr,) 2 trace(Q) and φ 6⇠ . From Lemma A.1.13, any meaningful test to
distinguish between two frames is always made of two destructor-only recipes R and R0 such that, for instance,
Rφ# = R0φ# while R # 6= R0 #. Thus only twice as many variables as the number of leaves in such a
recipe are needed in the frames to distinguish between them. Such recipes have at most (1+ koutP k)

depth(G)+1

leaves as per Corollary 6.5.2. Thus by selecting those 2 ⇥ (1 + koutP k)
depth(G)+1 variables (as there are two

recipes) in φ and pruning D w.r.t. these, we obtain (tr0,φ0) which is both a trace of P and Q (by Lemma 6.5.8)
and such that φ0 (resp 0) is a subframe of φ (resp.) such that dom(R) [dom(R0) ✓ dom(φ0) (resp.
dom(R) [dom(R0) ✓ dom(0)). Thus Rφ# = Rφ0#, R0φ# = R0φ0#, R # = R 0# and R0 # = R0 0#,
leading to Rφ0# = R0φ0# and R 0# 6= R0 0#, and witnessing φ0 6⇠ 0.

• Or (tr,) /2 trace(Q) for any . There exists an action a of tr which cannot be executed in Q. Let us prune tr

w.r.t. this single action. We obtain (tr0,φ0) which is a trace of P (by Lemma 6.5.8) and such that for any 0,
(tr, 0) /2 trace(Q) as Lemma 6.5.8 ensures the execution steps of tr0 through are unchanged compared to the
corresponding actions in tr. Consequently, in this case, we need only to consider only one root.

Putting the two bounds together, we need at most 2⇥(1+koutP k)
depth(G)+1 roots in D to get a witness of P 6v Q.

In conclusion, we have bound the (minimal) length of a witness of non equivalence. This, in turn, bounds the
number of sessions. We then conclude using e.g. Chapter 5 since trace equivalence is decidable for a bounded number
of sessions. Since trace equivalence is NP for a bounded number of sessions [12], we deduce decidability in triple
exponential time, in the size of the protocols.

Theorem 6.3.1. The problem of deciding whether two simple protocols P and Q, type-compliant w.r.t. some structure-
preserving typing systems (TP , δP) and (TQ, δQ), and with acyclic refined dependency graphs obtained relying on
appropriate markings MP and MQ are trace equivalence (i.e. P ⇡ Q) is decidable.

Proof. Suppose P 6⇡ Q. By Lemma 6.5.2, P 6⇡0 Q. Two cases occur, depending on whether the witness of non-
equivalence is a trace of P or Q (see Definition 6.5.2). In the first case, as the witness is asap and pseudo-well-typed,
we can apply Corollary 6.5.1, Lemma 6.5.7 and Lemma 6.5.9 to respectively obtain a bound on the depth, the width
and the number of roots for the execution graph corresponding to this witness. Let GP (resp. GQ) be the (refined)
dependency graph of P (resp. GQ). Thus, we get a bound on the length A of such a minimal witness:

2(1 + koutP k)
depth(GP)+1(1 + kinP k(1 + koutP k)

depth(GP)+1)depth(GP)+1.

79

The second case is handled symmetrically, leading to a bound B on the size of a witness in trace(Q):

2(1 + koutQk)
depth(GQ)+1(1 + kinQk(1 + koutQk)

depth(GQ)+1)depth(GQ)+1.

Hence a witness of P 6⇡ Q has length at most max(A,B). We conclude by invoking a decidability result for a bounded
number of sessions such as Theorem 5.1.1.

6.6 Conclusion

We have obtained the first decidability result for trace equivalence, for an unbounded number of sessions and unres-
tricted nonces.

Generating a structure-preserving typing system (actually the more fine-grained one) for which type-compliance
is satisfied, and checking acyclicity of the resulting dependency graph is not difficult but rather cumbersome. We plan
to devise a script to perform these steps automatically. We also plan to study how to relax some of our assumptions.
First, we think that the “simple protocols” assumption could be relaxed to consider action-determinate protocols.
Second, we plan to investigate other criteria to soundly remove edges in the dependency graph, in order to get rid of
meaningless cycles. Lastly, our result applies only to protocols with concatenation and symmetric encryption. We
inherit this restriction from Chapter 4. We believe that once the typing result of Chapter 4 is extended to all standard
primitives then our decidability result will extend as well.

The current complexity of our result is too high to use existing tools that decide trace equivalence for a bounded
number of sessions (they typically handle up to 2-3 sessions). However, since our result bounds quite precisely the
form of a minimal attack, it seems possible to improve its complexity and to use model-checkers instead.

Our decidability result intuitively encompasses decidability of secrecy, expressed as a trace property, since secrecy
can be encoded using trace equivalence. We believe that our proof technique could be applied to decide authentication
properties as well, for which we are not aware of any decidability result. The main difficulty induced by authentication
properties is that authentication implicitly introduces disequalities (there might be an attack because agent B received a
message different from the one sent by agent A). However, deciding trace equivalence also requires a careful treatment
of disequalities. As future work, we plan to formally apply our technique to obtain decidability of a fragment of trace
properties that encompasses secrecy and authentication.

80

Chapter 7

Decidability of trace equivalence for

ping-pong protocols

In this chapter, we study the decidability of a class of protocols for which trace equivalence is decidable. As secrecy
is already undecidable in general, we therefore focus on a class of protocols for which secrecy is decidable [31]. This
class, called ping-pong protocols, typically assumes that each protocol rule manipulates at most one variable and that
the protocol is formed of a set of independent in/out rules. Intuitively, this corresponds to the assumption that, at each
step of the protocol, upon receiving a message there is at most one part of it that is unknown to the agent (typically a
key, a nonce, or an encrypted packet).

Surprisingly, while this class is decidable for reachability, even a fragment of it (with only symmetric encryption)
turns out to be undecidable for equivalence properties. We consequently further assume our protocols to be determ-
inistic (that is, given an input, there is at most one possible output). We show that equivalence is decidable for an
unbounded number of sessions and for protocols with randomised symmetric and asymmetric encryption, and signa-
tures. Since we need to assume our constructors to be randomised and since we assume “at most one variable”, we
can only handle a very limited notion of (randomised) concatenation that appends atomic values.

Interestingly, we show that checking for equivalence of protocols actually amounts into checking equality of lan-
guages of deterministic pushdown automata. The decidability of equality of languages of deterministic pushdown
automata is a difficult problem, shown to be decidable [62]. We actually characterise equivalence of protocols in terms
of equivalence of deterministic generalised real-time pushdown automata, that is deterministic pushdown automata
with no epsilon-transition but such that the automata may unstack several symbols at a time. More precisely, we show
how to associate to a process P an automata AP such that two processes are equivalent if, and only if, their corres-
ponding automata yield the same language and, reciprocally, we show how to associate to an automata A a process PA

such that two automata yield the same language if, and only if, their corresponding processes are equivalent, that is:

P ⇡ Q , L(AP) = L(AQ) and L(A) = L(B) , PA ⇡ PB.

Therefore, checking for equivalence of protocols is as difficult as checking equivalence of deterministic generalised
real-time pushdown automata.

To transform equivalence of processes into equivalence of pushdown automata, we first show how to get rid of an
active attacker. More precisely, we show that

P ⇡ Q , P 0 ⇡fwd Q
0

where ⇡fwd intuitively represents equivalence of processes when the attacker may only forward messages. This equi-
valence is obtained by partially encoding the attacker in P 0 and Q0, still preserving equivalence.

81

The decision procedure for checking equivalence of deterministic pushdown automata has been recently imple-
mented by G. Sénizergues [50]. We have therefore implemented our transformation from processes to pushdown
automata, yielding the first tool that decides equivalence of (some class of) protocols for an unbounded number of
sessions. As an application, we have analysed several protocols of the literature, including a simplified version of the
basic access control protocol (BAC) of the biometric passport [52].

We characterise the notion of ping-pong protocols in Section 7.1 and state our main results. Sections 7.2 and 7.3
are devoted to decidability. More precisely, we show in Section 7.2 how to get rid of an active attacker by encoding
it directly in the process. Next, we show in Section 7.3 how to encode equivalence between processes (in presence
of a forwarder attacker) into equivalence of pushdown automata, characterising further which cases may result in
non equivalence. Finally, we study in Section 7.4 the converse translation and show that equivalence of pushdown
automata can be reduced to equivalence of protocols. We present our implementation and its application to protocols
in Section 7.5. Concluding remarks can be found in Section 7.6.

7.1 Ping-pong protocols

We aim at providing a decidability result for the problem of trace equivalence between protocols in presence of
replication. However, it is well-known that replication leads to undecidability even for the simple case of reachability
properties. Thus, we consider a class of protocols, called Cpp, for which (in a slightly different setting), reachability
has already been proved decidable [31].

7.1.1 Term algebra

In order to express the results of the chapter, we introduce a variation of our term algebra, compared to one detailed
in Chapter 2. In particular, we consider a signature which can be seen as an instance of our original one, with sorts

attached to terms. Moreover, we do not consider pairing, and focus on randomised encryption with atomic keys. Other
definitions, such as the process algebra and semantics, stay as described in Chapter 2.

As usual, messages are represented by terms. More specifically, we consider a sorted signature with six sorts rand,
key, msg, SymKey, PrivKey and PubKey that represent respectively random numbers, keys, messages, symmetric
keys, private keys and public keys. We assume that msg subsumes the five other sorts, key subsumes SymKey,
PrivKey and PubKey. We consider six function symbols senc and sdec, raenc and radec, sign and check that represent
symmetric, asymmetric encryption and decryption as well as signatures. Since we are interested in the analysis of
indistinguishability properties, we consider a randomised encryption scheme:

senc : msg ⇥ SymKey ⇥ rand ! msg sdec : msg ⇥ SymKey ! msg

raenc : msg ⇥ PubKey ⇥ rand ! msg radec : msg ⇥ PrivKey ! msg

sign : msg ⇥ PrivKey ⇥ rand ! msg check : msg ⇥ PubKey ! msg

We discuss in Section 7.5 how we can handle a limited notion of (randomised) concatenation.
We further assume an infinite set Σ0 of constant symbols of sort key or msg, an infinite set Ch of constant symbols

of sort channel, two infinite sets of variables X ,W , and an infinite set of names N = Npub] Npriv of names of
sort rand: Npub represents the random numbers drawn by the attacker while Npriv represents the random numbers
drawn by the protocol’s participants.

As usual, terms are defined as names, variables, and function symbols applied to other terms. We denote by
T (F ,N ,X) the set of terms built on function symbols in F , names in N , and variables in X . We simply write
T (F ,N) when X = ;. We consider three particular signatures:

Σpub = {senc, sdec, raenc, radec, sign, check, start}

Σ+ = Σpub [Σ0 Σ = {senc, raenc, sign, start} [Σ0

82

where start /2 Σ0 is a constant symbol of sort msg. The signature Σpub represents the functions/data available to
the attacker, including a constant start used to start sessions of the protocols. The signature Σ+ is the most general
signature, while Σ models actual messages (with no failed computation). We assume a bijection between elements of
sort PrivKey and PubKey. If k is a constant of sort PrivKey, k−1 will denotes its image by this function, called inverse.
The inverse of the inverse function is also denoted by _−1, so that (k−1)−1 = k. To keep homogeneous notations, we
extend this function to symmetric keys: if k is of sort SymKey, then k−1 = k. The relation between encryption and
decryption is represented through the following rewriting rules, yielding a convergent rewrite system:

sdec(senc(x, k1, z), k1) ! x

radec(raenc(x, k2, z), k2
−1) ! x check(sign(x, k3, z), k3

−1) ! x

with k1 of sort SymKey, k2 of sort PubKey, and k3 of sort PrivKey. For instance, the first rule models the fact that the
decryption of a ciphertext will return the associated plaintext when the right key is used to perform decryption. The
two last rules are used to model asymmetric encryption and signatures. We denote by t# the normal form of a term
t 2 T (Σ+,N ,X).

Example 7.1.1. We consider a simplified version of the protocol presented in [41]. The purpose of this protocol
informally described below is to establish a key kAB between two participants A and B using public key encryption
and signature.

1. A ! B : raenc(sign(kAB , skA, r
1
A), pkB , r

2
A)

2. B ! A : ack

The agent A sends a symmetric key kAB signed with A’s private key skA (using a fresh random number r1A), and the
resulting ciphertext is encrypted with B’s public key pkB (using a fresh random number r2A). The agent B answers
to this request by decrypting this message, and verifying the signature. If all checks succeed, B informs the agent A
by sending an acknowledgement, i.e. the constant ack. The agents A and B can now use the symmetric key kAB to
communicate.

The role of agent A is modelled by a process PA while the role of agent B is modelled by PB . We have that:

PA
def
= ! in(cA, start).new r1A.new r2A.out(cA, raenc(sign(kAB , skA, r

1
A), pkB , r

2
A)) (1)

| ! in(c0A, start).new r1A.new r2A.out(c
0
A, raenc(sign(kAC , skA, r

1
A), pkC , r

2
A)) (2)

PB
def
= ! in(cB , raenc(sign(x, skA, z1), pkB , z2)).out(cB , ack) (3)

The constants cA, c
0
A and cB are constants of sort channel, ack is a constant of sort msg, whereas the constants

kAB , kAC , skA, skB , skC , pkA, pkB , pkC which are in Σ0 are such that:

• kAB , kAC are of sort SymKey,

• skA, skB , skC are of sort PrivKey, and

• pkA, pkB , pkC of sort PubKey.

Moreover, we have that sk−1
X = pkX for X 2 {A,B,C} whereas k−1

AB = kAB and k−1
AC = kAC . Finally, r1A, r

2
A are

names of sort rand, and x (resp. z1, z2) is a variable of sort msg (resp. rand).

Intuitively, PA sends kAB signed with skA and encrypted with pkB to the agent B (branch 1). More generally, the
agent A can start different sessions with different agents. Thus, the process PA models the agent A initiating a session
with B (branch 1) as well as with C (branch 2). The process PB models the agent B answering a request from A. We
could also consider the scenario where the agent B is also willing to talk to C or where the initiator, here played by A,
is also played by other agents such as B. We consider here only a simpler case to keep the example reasonably short.

83

To model the whole protocol, we sent the public key pkA, pkB , pkC in clear, as well as the private key skC , to
model the fact that the attacker may learn the private keys of some corrupted agents. This is modelled through the
following process Pkey:

Pkey
def
= ! in(c1, start).out(c1, pkA) | ! in(c2, start).out(c1, pkB) |

! in(c3, start).out(c3, pkC) | ! in(c4, start).out(c4, skC)

Then, the whole protocol is given by P , where PA, PB , and Pkey evolve in parallel:

P
def
= PA | PB | Pkey

This protocol is actually insecure as demonstrated by the following attack:

1. A ! C : raenc(sign(kAC , skA, r
1
A), pkC , r

2
A)

2. C(A) ! B : raenc(sign(kAC , skA, r
1
A), pkB , r

1
C)

3. B ! A : ack

A initiates a session with a malicious user C sending him a key kAC . This malicious user then legally learns kAC but
also its signature sign(kAC , skA, r

1
A) under the signing key of A. He may then resend this key to B in the name of A.

The agent B accepts the key kAC as being a secret key between A and B.
This attack can be formalised in our model as follows:

1. The public keys of all the participants are disclosed as well as the secret key skC of the corrupted agent C.

Formally, let K0
def
= (P ; ;), we have that:

K0
in(c1,start).out(c1,w1).in(c2,start).out(c2,w2).in(c3,start).out(c3,w3)
===)

in(c4,start).out(c4,w4)
==============) (P ;σ0)

where σ0 = {w1 . pkA, w2 . pkB , w3 . pkC , w4 . skC}.

2. The agent A initiates a session with C and sends the corresponding encrypted message. More formally, we have
that:

(P ;σ0)
in(c0A,start).out(c

0

A,w5)
==============) (P ;σ)

where σ = σ0 [{w5 . raenc(sign(kAC , skA, r
1
A), pkC , r

2
A)} and r1A, r

2
A are (fresh) names in Npriv.

Hence, we have that (tr, σ) 2 trace(K0) where:

tr = in(c1, start).out(c1,w1).in(c2, start).out(c2,w2).in(c3, start).out(c3,w3).
in(c4, start).out(c4,w4).in(c

0
A, start).out(c

0
A,w5).

In this execution trace, first the keys pkA, pkB , pkC and skC are sent after having called the corresponding process.
Then, branch (2) of P is triggered. Going further, our naive protocol is secure if the key received by B remains private.
To model this, we modify the process PB as follows:

P lB
def
= ! in(cB , raenc(sign(x, skA, z1), pkB , z2)).out(cB , x)

P rB
def
= ! in(cB , raenc(sign(x, skA, z1), pkB , z2)).out(cB , k)

Then, to model secrecy of the key received by B, we consider the following equivalence: PA | P lB | Pkey ⇡ PA | P rB |
Pkey. An attacker should not distinguish between two instances of the protocol, one where B used the key established
through the protocol and one where a magic key k is used instead.

84

However, our protocol is insecure. An attacker may easily learn kAC , and sends to B a message of the expected
form (as if it was issued by A) and that will contain this corrupted key instead of kAB . Formally, we have that:

PA | P lB | Pkey 6⇡ PA | P rB | Pkey.

This is reflected by the trace tr0 described below:

tr0
def
= tr.in(cB , raenc(radec(w5, skC),w2, rC)).out(cB ,w6)

where rC is a name in Npub.
We have that (tr0, σ1) 2 trace(K0) with K0 = (PA | P lB | Pkey; σ1) where σ1 is defined below. Because of

the existence of only one branch using each channel, there is only one possible execution of PA | P rB | Pkey (up to a
bijective renaming of the private names of sort rand) matching the labels in tr0, and the corresponding execution will
allow us to reach the frame σ2 as described below:

1. σ1
def
= σ0 [{w5 . raenc(sign(kAC , skA, r

1
A), pkC , r

2
A), w6 . kAC},

2. σ2
def
= σ0 [{w5 . raenc(sign(kAC , skA, r

1
A), pkC , r

2
A), w6 . k}.

where k is a (private) constant in Σ0. We have that σ1 6⇠ σ2. Indeed, consider the recipes R1 = check(radec(w5,w4),w1)
and R2 = w6. We have that R1σ1# = R2σ1# = kAC , whereas R1σ2# = kAC and R2σ2# = k thus R1σ2# 6= R2σ2#.
Hence σ1 6⇠ σ2 and PA | P lB | Pkey 6⇡ PA | P rB | Pkey.

7.1.2 Class Cpp

We basically consider ping-pong protocols (an output is computed using only the message previously received in
input), and we assume a kind of determinism. Moreover, we restrict the terms that are manipulated throughout the
protocols: only one unknown message (modelled by the use of a variable of sort msg) can be received at each step.

We fix a variable x 2 X of sort msg. An input term (resp. output term) is a term defined by the grammars given
below:

u := x | s | f(u, k, z) v := x | s | f(v, k, r)

where s, k 2 Σ0 [{start}, z 2 X , f 2 {senc, raenc, sign} and r 2 N . Intuitively, no destructor should be used
explicitly. Moreover, we assume that each variable (resp. name) occurs at most once in u (resp. v).

Definition 7.1.1. Cpp is the class of protocol of the form:

P =
n

|
i=1

pi

|
j=1

!in(ci, u
j
i).new r1.new rkij . out(ci, v

j
i)

such that:

1. for all i 2 {1, . . . , n}, and j 2 {1, . . . , pi}, kji 2 N, uji is an input term, and vji is an output term where names
occurring in vji are included in {r1, . . . , rkji

};

2. for all i 2 {1, . . . , n}, and j1, j2 2 {1, . . . , pi}, if j1 6= j2 then for any renaming of variables, uj1i and uj2i are
not unifiable1.

Each subprocess in(ci, u
j
i).new r1.new rkij . out(ci, v

j
i) is called a branch of P .

1i.e. there does not exist θ such that uj1
i θ = u

j2
i θ.

85

Item 1 holds for any process representing a protocol: the variables of the output should be bound by the input. Item
2 enforces a deterministic behaviour: a particular input action can only be accepted by one branch of the protocol. This
is a natural restriction since most of the protocols are indeed deterministic: an agent should usually know exactly what
to do once he has received a message. Actually, the main limitations of the class Cpp is that we consider a restricted
signature (e.g. no pair, no hash function), and names can only be used to produce randomised ciphertexts.

Example 7.1.2. The protocols described in Example 7.1.1 are in Cpp. For instance, we can check that:

• raenc(sign(x, skA, z1), pkB , z2) is an input term, and

• raenc(sign(kAB , skA, r
1
A), pkB , r

2
A) is an output term.

Moreover, the determinism condition (item 2) is clearly satisfied: each branch of the protocol PA | P lB | Pkey (resp.
PA | P rB | Pkey) uses a different channel.

When studying trace equivalence (or even trace inclusion) we can even safely force a process to perform an input
action followed directly by its associated output action.

We consider a set of “big-step” traces, defined as follows.

traceio⇤(K) =

⇢

(tr, σ)
K

tr
==) (P;σ) for some configuration (P;σ)
with tr sequence of input-output blocks.

}

The notion of trace inclusion (resp. trace equivalence) w.r.t. big-step traces is defined accordingly.

Definition 7.1.2. Let P and Q be two protocols. We have that P vio⇤ Q if for every (tr, σ) 2 traceio⇤(P), there
exists (tr0, σ0) 2 traceio⇤(Q) such that tr = tr0 and σ ⇠ σ0. They are trace equivalent, written P ⇡io⇤ Q, if P vio⇤ Q
and Q vio⇤ P .

Due to the form of protocols in Cpp, any trace made up of inputs and outputs actions can be first completed with
all the available output actions, and then be mapped to a trace that is made up of input-output blocks only. Thus, we
have that the two notions of trace equivalence coincide.

Proposition 7.1.1. Let P and Q be two protocols in Cpp. We have that P vio⇤ Q if, and only if, P v Q.

This proposition easily follows from that fact that for any process of Cpp, any input is immediately followed by an
output.

7.1.3 Main results

Our first main contribution is a decision procedure for trace equivalence of processes in Cpp.

Theorem 7.1.1. Let P and Q be two protocols in Cpp. The problem whether P and Q are trace equivalent, i.e. P ⇡ Q,
is decidable.

Deciding trace equivalence is done in two main steps.

1. First, we show how to reduce trace equivalence between protocols in Cpp, to the problem of deciding trace
equivalence (still between protocols in Cpp) when the attacker acts as a forwarder, that is, when the attacker may
only forward messages obtained through the protocol. This step is detailed in Section 7.2.

2. Then, we encode the problem of deciding trace equivalence for forwarding attackers into the problem of lan-
guage equivalence for real-time generalised pushdown deterministic automata (GPDA), that is, deterministic
pushdown automata with no epsilon-transition but such that the automata may unstack several symbols at a
time. This step is detailed in Section 7.3

86

We also provide an implementation of our translation from protocols to pushdown automata, yielding a tool for
automatically checking equivalence of security protocols, for an unbounded number of sessions. This contribution is
described in Section 7.5.

Actually, we characterise equivalence of protocols in terms of equivalence of GPDA. Indeed, Step (2) above
shows how to associate to a process P an automata AP such that two processes are equivalent if, and only if, their
corresponding automata yield the same language. Conversely, we also show how to associate to an automata A
a process PA such that two automata yield the same language if, and only if, their corresponding processes are
equivalent. This reverse encoding, from pushdown automata to protocols is explained in Section 7.4.

Our second contribution is an undecidability result. The class Cpp is somewhat limited but extending Cpp to non
deterministic processes immediately yields undecidability of trace equivalence. More precisely, we have that trace
inclusion of processes in Cpp is undecidable.

Theorem 7.1.2. The following problem is undecidable.

Input P and Q two protocols in Cpp.

Output Whether P is trace included in Q, i.e. P v Q.

A direct encoding of the Post Correspondence Problem (PCP) into an inclusion of two protocols of this class is
given in Appendix B.1. Alternatively, this undecidability result is also a consequence of the reduction result estab-
lished in Section 7.4 and the undecidability result established in [46]. Nonetheless, we present in Appendix B.1 the
direct encoding of PCP into protocol equivalence since some ideas might be reused to show undecidability of trace
equivalence for some other classes whereas the alternative proof required a first encoding to transform a protocol into
a pushdown automaton.

Undecidability of trace inclusion actually implies undecidability of trace equivalence as soon as processes are non
deterministic. Indeed consider the choice operator + whose (standard) semantics is given by the following rules:

({P +Q} [P;σ)
⌧
−! (P [P;σ) ({P +Q} [P;σ)

⌧
−! (Q [P;σ)

Corollary 7.1.1. Let P , Q1, and Q2 be three protocols in Cpp. The problem whether P is equivalent to Q1 +Q2, i.e.
P ⇡ Q1 +Q2, is undecidable.

Indeed, consider P and Q1, for which trace inclusion encodes PCP, and let Q2 = P . Trivially, P v Q1 + Q2.
Thus P ⇡ Q1 +Q2 if, and only if, Q1 +Q2 v P , i.e. if, and only if, Q1 v P , hence the undecidability result.

7.2 Getting rid of the full attacker

We show in this section how to reduce trace equivalence between protocols in Cpp to the problem of deciding trace
equivalence (still between protocols in Cpp) when the attacker acts as a forwarder, that is, when the attacker may only
forward messages obtained through the protocols. This new semantics induced a new notion of trace equivalence,
denoted ⇡fwd, which is formally defined in Section 7.2.1.

To counterbalance the effects of this simple forwarder semantics, the key idea consists in modifying the protocols
under study by adding new rules that encrypt and decrypt messages on demand for the forwarder. Formally, we define
a transformation Tfwd (see Section 7.2.2) that associates to a pair of protocols in Cpp a finite set of pairs of protocols
(still in Cpp), and we show the following result:

Proposition 7.2.1. Let P and Q be two protocols in Cpp. We have that:

P ⇡ Q if, and only if, P 0 ⇡fwd Q
0 for some (P 0, Q0) 2 Tfwd(P,Q).

87

(in(c, u).P [P;σ)
in(c,R)
−−−−!fwd (P✓ [P;σ)

where R 2 {start} [W and Rσ# = u✓ for some ✓

(out(c, u).P [P;σ)
out(c,wi+1)
−−−−−−−!fwd (P [P;σ [{wi+1 . u})

where i is the number of elements in σ

(!P [P;σ)
⌧
−!fwd (P [!P [P;σ)

(new n.P [P;σ)
⌧
−!fwd (P{n

0

/n} [P;σ) where n0 is a fresh name in Npriv

Figure 7.1: Semantics for a forwarder attacker.

7.2.1 Forwarder semantics

We first define the actions of a forwarder by modifying our semantics. Roughly, we restrict the recipes R,R1, and
R2 that are used in the IN rule and in static equivalence (Definition 2.4.1) to be either the public constant start or a
variable in W . Intuitively, this corresponds to the fact that the forwarder attacker should no longer build a message on
his own. This leads us to consider a new relation −!fwd between configurations which is the relation induced by the
rules described in Figure 7.1.

The relations
tr
−!fwd and

tr
==)fwd between configurations where tr is a sequence of actions (resp. observable actions)

are defined as expected. For every configuration K, we define its set of traces w.r.t. the forwarder semantics as follows:

tracefwd(K) =

⇢

(tr, σ)
K

tr
==)fwd (P;σ) for some configuration (P;σ)
with tr sequence of input-output blocks.

}

We need also to adapt our notion of static equivalence.

Definition 7.2.1. Two frames σ1 and σ2 are statically equivalent w.r.t. the forwarder semantics, denoted σ1 ⇠fwd σ2,
when we have that dom(σ1) = dom(σ2), and for all recipes R1 and R2 in {start} [W , we have that R1σ1 = R2σ1

if, and only if, R1σ2 = R2σ2.

This induces a new notion of trace equivalence which is formally defined as follows:

Definition 7.2.2. Let P and Q be two protocols. We have that P vfwd Q if for every (tr, σ) 2 tracefwd(P), there exists
(tr0, σ0) 2 tracefwd(Q) such that tr = tr0 and σ ⇠fwd σ

0. They are trace equivalent w.r.t. the forwarder semantics,
written P ⇡fwd Q, if P vfwd Q and Q vfwd P .

Example 7.2.1. The trace exhibited in Example 7.1.1 is still a valid one according to the forwarder semantics, but the
frames σ1 and σ2 are now in equivalence w.r.t. ⇠fwd. Actually, we have that PA | P lB | Pkey ⇡fwd PA | P rB | Pkey.
Indeed, the fact that a forwarder simply acts as a relay prevents him to mount the aforementioned attack.

7.2.2 Towards a forwarder attacker

As illustrated in Example 7.2.1, the forwarder semantics is very restrictive: a forwarder cannot rely on his deduction
capabilities to mount an attack. We show however that we can still restrict ourselves to trace equivalence w.r.t. a
forwarder.

Intuitively, we transform any two processes P , Q into processes P̄ , Q̄ such that P ⇡ Q if and only if P̄ ⇡fwd Q̄.
Roughly this transformation consists in two steps.

1. First, we guess among the keys of the protocols P and the keys of the protocols Q those that are deducible by
the attacker, as well as a bijection ↵ between these two sets. We can show that such a bijection necessarily exists
when P ⇡ Q.

88

2. Then, to compensate the fact that the attacker is a simple forwarder, we give him access to encryption/decryption
oracles for any deducible key k, adding branches in the processes.

To maintain the equivalence, we do a similar transformation in both P and Q relying on the bijection ↵. We ensure
that the set of deducible keys has been correctly guessed by adding of some extra processes. Then the main step of the
proof consists of showing that the forwarder has now the same power as a full attacker, even though he cannot reuse
the same randomness in two distinct encryptions, as a real attacker could.

Example 7.2.2. To better illustrate this section, we consider a variant of the processes introduced in Section 7.1.,
where agent A is now willing to talk only to B.

P
def
= P 0

A | P lB | Pkey Q
def
= P 0

A | P rB | Pkey

where P lB , P rB are defined in Example 7.1.1 and Pkey is defined in Example 7.1.1, whereas P 0
A is defined as follows

(only the first branch of PA)

P 0
A

def
= ! in(cA, start).new r1A.new r2A.out(cA, raenc(sign(kAB , skA, r

1
A), pkB , r

2
A))

This scenario excludes the aforementioned attack and we have that P ⇡ Q. This has been formally checked using our
prototype (see Section 7.5).

Guessing deducible keys

The purpose of this section is to restrict our attention to protocols that explicitly disclose their deducible keys KP and
KQ. Since we do not want to rely on a particular procedure for computing these two sets, the idea is to guess a possibly
superset of each set, namely K and K 0, and then ensure that these sets K and K 0 contain at least the deducible keys.

Definition 7.2.3. Let P be a protocol in Cpp. A term t is deducible in P if there exists a trace (tr, φ) 2 trace(P) and
a recipe R (i.e. a term in T (Σpub,Npub,W)) such that Rφ# = t.

Example 7.2.3. Continuing Example 7.2.2, we have that P and Q are in Cpp. It is easy to notice that kAB is deducible
in P whereas k is deducible in Q since these keys are revealed at the end of B’s execution. For both P and Q, the
trace tr = in(cA, start).out(cA,w1).in(cB ,w1).out(cB , w2) and the recipe R = w2 is a witness of this fact.

Two equivalent processes have the same set of deducible keys, up to some bijective renaming.

Lemma 7.2.1. Let P and Q be two protocols in Cpp, KP (resp. KQ) be the set of deducible constants of sort key
that occur in P (resp. Q), if P ⇡ Q then there exists a unique bijection ↵ from KP to KQ such that for every trace
(tr, φ) 2 trace(P) there exists a trace (tr,) 2 trace(Q) such that for any recipe R and any k 2 KP :

• Rφ# is of sort s if, and only if, R # is of sort s;
where s 2 {SymKey,PubKey,PrivKey}.

• Rφ# = k if, and only if, R # = ↵(k);

• Rφ# = k−1 if, and only if, R # = (↵(k))−1;

and conversely, for every (tr,) 2 trace(Q) there exists a trace (tr,φ) 2 trace(P) satisfying the same properties.

Proof. (sketch) The relation ↵ is defined as follows:

for every k 2 KP of sort s, and every trace (tr,φ) 2 trace(P) and recipe R such that Rφ# = k, we define
↵(k) = R # where is the only frame such that (tr,) 2 trace(Q).

89

The existence of such a frame comes from the fact that P ⇡ Q, whereas its unicity is a consequence of the determinism
of protocols in Cpp.

Then, we show that this relation ↵ is uniquely defined and satisfied all the requirements exploiting the strong
relationship between P and Q through the relation P ⇡ Q.

Example 7.2.4. Continuing Example 7.2.2, we have KP = {pkA, pkB , pkC , skC , kAB} whereas KQ = {pkA, pkB , pkC , skC , k}.
The unique bijection ↵ mentioned in the previous lemma is defined as follows: ↵(kAB) = k, and ↵(k0) = k0 otherwise.

Definition 7.2.4. Let P be a protocol in Cpp, K be a set of constants of sort key that occur in P . If for every k 2 K
there exist a channel name ck and a branch !in(ck, start).out(ck, k) in P , then P is said to disclose K.

Example 7.2.5. Continuing our running example, P and Q clearly disclose K = {pkA, pkB , pkC , skC}.

Lemma 7.2.2. Let P and Q be two protocols in Cpp, S (resp. S0) the set of keys of P (resp. Q). Then P ⇡ Q if, and
only if, there exist two sets K ✓ S and K 0 ✓ S0 and a bijection ↵ : K ! K 0 such that P̄ ⇡ Q̄ where:

P̄ = P | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| |
k2K

!in(ck,↵(k), start).out(ck,↵(k), k)| |
k2SrK

!in(c, k).out(c, 0)

Q̄ = Q | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| |
k2K

!in(ck,↵(k), start).out(ck,↵(k), ↵(k))| |
k2S0rK0

!in(c, k).out(c, 1)

and 0, 1 are new constants, c0, c1, the ck,↵(k) and c are fresh channels.
Moreover, assuming the existence of such sets and bijection such that P̄ ⇡ Q̄, the two protocols are disclosing

their deducible keys.
We call Tkey(P,Q) the set of such pairs (P̄ , Q̄) of modified protocols.

Proof. Let KP (resp. KQ) be the set of deducible constants of sort key that occur in P (resp. Q). We prove the two
directions separately.

()) If P ⇡ Q, by Lemma 7.2.1, for K = KP and K 0 = KQ, we get the existence of such a bijection ↵. Because
keys in S r KP and S0

r KQ are not deducible, the branches on channel c can never be triggered. Moreover, as
P ⇡ Q, any trace of P (resp. Q) inputting or outputting on a channel ck,↵(k) for k in KP can be matched in Q (resp.
P). Indeed, for every couple (k, k−1) of deducible keys and for any recipe reducing to k (resp. k−1) in P , the same
recipe reduces to ↵(k) (resp. ↵(k)−1) in Q, thanks to the properties of ↵ described in Lemma 7.2.1.

(() For the converse implication, we first remark that necessarily we have that KP ✓ K and KQ ✓ K 0. Indeed,
suppose there exists, for instance, k 2 KP r K. Since k is deducible, there exists a trace (tr, φ) 2 trace(P) and a
recipe R such that Rφ# = k. Since (tr, φ) is also a trace of P̄ , we consider the trace:

tr0 = tr.in(c, R).out(c,w|φ|+1).in(c
0, start).out(c0,w|φ|+2).in(c

1, start).out(c1,w|φ|+3)

along with its frame φ0 = φ[{w|φ|+1 .0,w|φ|+2 .0,w|φ|+3 .1}. If P̄ ⇡ Q̄, then there exists (tr0, 0) 2 trace(Q̄) such
that φ and are statically equivalent. But any output on c in Q leads to the constant 1, breaking static equivalence.
We conclude in a similar way in case k 2 KQ rK 0.

Finally we need to prove that P̄ ⇡ Q̄ implies P ⇡ Q. For every trace (tr,φ) 2 trace(P), (tr,φ) 2 trace(P̄), and
as P̄ ⇡ Q̄, there exists a trace (tr,) 2 trace(Q̄) such that φ is statically equivalent to . Because c0, c1, c and the
ck,↵(k) are new channels, tr does not use transitions on those, thus (tr,) 2 trace(Q). The same goes for any trace of
Q, hence showing the trace equivalence of P and Q.

90

Example 7.2.6. Continuing our example, let K = KP and K 0 = KQ, and ↵ the bijection defined in Example 7.2.4.
Checking equivalence of P ⇡ Q amounts into checking whether P̄ ⇡ Q̄ where P̄ and Q̄ are defined as follows.

P̄ = P | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| !in(ckAB ,k, start).out(ckAB ,k, kAB)

| !in(c, skA).out(c, 0) | !in(c, skB).out(c, 0)

Q̄ = Q | !in(c0, start).out(c0, 0)|!in(c1, start).out(c1, 1)

| !in(ckAB ,k, start).out(ckAB ,k, k)

| !in(c, skA).out(c, 1) | !in(c, skB).out(c, 1)

If P̄ ⇡ Q̄, then skA and skB cannot be deducible thus P̄ and Q̄ disclose their set of deducible keys.

Adding oracles

To compensate the fact that the attacker is a simple forwarder, we give him access to encryption/decryption oracles for
any deducible key k, adding branches in the processes. We rely on the bijection ↵ computed in the previous section to
do this in a compatible way on both sides of the equivalence.

Lemma 7.2.3. Let P and Q be two protocols in Cpp respectively disclosing two sets of keys K and K 0 as in Lemma
7.2.2. Then P ⇡ Q if, and only if, P̄ ⇡fwd Q̄ where:

P̄ = P | |
k2KSymKey

!in(csenc
k,↵(k), x).new n.out(ck,↵(k), senc(x, k, n))

| |
k2KSymKey

!in(csdec
k,↵(k), senc(x, k, y)).out(c

sdec
k,↵(k), x)

| |
k2KPubKey

!in(craenc
k,↵(k), x).new n.out(craenc

k,↵(k), raenc(x, k, n))

| |
k2KPrivKey

!in(cradec
k,↵(k), raenc(x, k, y)).out(c

radec
k,↵(k), x)

| |
k2KPrivKey

!in(csign
k,↵(k), x).new n.out(csign

k,↵(k), sign(x, k, n))

| |
k2KPubKey

!in(ccheck
k,↵(k), sign(x, k, y)).out(c

check
k,↵(k), x)

Q̄ = Q | |
k2KSymKey

!in(csenc
k,↵(k), x).new n.out(csenc

k,↵(k), senc(x, ↵(k), n))

| |
k2KSymKey

!in(csdec
k,↵(k), senc(x, ↵(k), y)).out(c

sdec
k,↵(k), x)

| |
k2KPubKey

!in(craenc
k,↵(k), x).new n.out(craenc

k,↵(k), raenc(x, ↵(k), n))

| |
k2KPrivKey

!in(cradec
k,↵(k), raenc(x, ↵(k), y)).out(c

radec
k,↵(k), x)

| |
k2KPrivKey

!in(csign
k,↵(k), x).new n.out(csign

k,↵(k), sign(x, ↵(k), n))

| |
k2KPubKey

!in(ccheck
k,↵(k), check(x, ↵(k), y)).out(c

check
k,↵(k), x)

where Ks denotes the keys of sort s of K. We call Toracle the transformation taking a pair of protocols (P,Q) satisfying
the aforementioned condition and returning the pair (P̄ , Q̄) presently defined.

Proof. (sketch) First, thanks to Lemma 7.2.2, we know that P , P̄ , Q and Q̄ disclose all their deducible keys.
()) Given a witness of non-equivalence for P̄ ⇡fwd Q̄, it is quite easy to build a witness of non-equivalence

for P 6⇡ Q replacing the use of the oracle by the corresponding attacker construction. This yields a witness of
non-equivalence for P ⇡ Q.

91

(() This direction is actually more involved. The idea is to replace the use of an attacker construction, e.g. an
encryption with a deducible key, by the corresponding oracle. However, the attacker has the ability to use the same
random seed more than once whereas this is impossible when using the oracles to perform those computations. Thus,
we first show that this additional ability does not give any power to the attacker. Then, we do the replacement as
expected in order to conclude.

The full proof is provided in Appendix B.2.

Example 7.2.7. Continuing our example, this last transformation will add 10 branches (2 per deducible key). For
instance, regarding the key kAB , the two following branches will be be added:

For process P :
!in(csenckAB ,k

, x).new n.out(ckAB ,k, senc(x, kAB , n))

| !in(csdeckAB ,k
, senc(x, kAB , y)).out(c

sdec
kAB ,k

, x)

For process Q:
!in(csenckAB ,k

, x).new n.out(ckAB ,k, senc(x, k, n))

| !in(csdeckAB ,k
, senc(x, k, y)).out(csdeckAB ,k

, x)

Regarding the keys pkA, pkB , pkC and skC , since ↵(k0) = k0 for each of these keys, we add the following branches
on both sides:

| !in(craencpkA,pkA
, x).new n.out(craencpkA,pkA

, raenc(x, pkA, n))

| !in(craencpkB ,pkB
, x).new n.out(craencpkB ,pkB

, raenc(x, pkB , n))

| !in(craencpkC ,pkC
, x).new n.out(craencpkC ,pkC

, raenc(x, pkC , n))

| !in(cradecskC ,skC
, raenc(x, pkC , y)).out(c

radec
skC ,skC

, x)

| !in(csignskC ,skC
, x).new n.out(csignskC ,skC

, sign(x, skC , n))

| !in(ccheckpkA,pkA
, sign(x, skA, y)).out(c

check
pkA,pkA

, x)

| !in(ccheckpkB ,pkB
, sign(x, skB , y)).out(c

check
pkB ,pkB

, x)

| !in(ccheckpkC ,pkC
, sign(x, skC , y)).out(c

check
pkC ,pkC

, x)

Transformation Tfwd

Thanks to Lemmas 7.2.2 and 7.2.3, we are now able to formally define our transformation that gets rid of a fully active
attacker. For every pair of protocols (P,Q) in Cpp, we consider

Tfwd(P,Q) = {Toracle(P
0, Q0) | (P 0, Q0) 2 Tkey(P,Q)}

Combination of the two previous results yields to the desired result.

Proposition 7.2.1. Let P and Q be two protocols in Cpp. We have that:

P ⇡ Q if, and only if, P 0 ⇡fwd Q
0 for some (P 0, Q0) 2 Tfwd(P,Q).

7.3 Encoding protocols into real-time GPDAs

We first introduce the notion of real-time generalised pushdown automaton (GPDA) (see Section 7.3.1) before explain-
ing in details (see Sections 7.3.2 and 7.3.3) our encoding from protocols to real-time generalised pushdown automata.

92

More precisely, for any process P 2 Cpp, we show that it is possible to define a polynomial-sized real-time gener-
alised pushdown automaton AP such that trace equivalence w.r.t. the forwarder semantics coincides with language
equivalence of the two corresponding automata.

Theorem 7.3.1. Let P and Q in Cpp, we have that:

P ⇡fwd Q () L(AP) = L(AQ).

The proof of this theorem consists of three main steps.

1. First, we provide a new characterisation of trace equivalence w.r.t. the forwarder semantics. Intuitively, we show
that it is not necessary to consider all possible tests (when checking static equivalence). Indeed, our Lemma 7.3.1
states that it is sufficient to check for constant tests (that is, tests of the form x = c where c is a constant) and
some specific class of tests that we call guarded and pulled-up.

2. Then we associate to processes P,Q 2 Cpp real-time GPDAs that check whether they satisfy the same constant
tests (Lemma 7.3.2).

3. And we associate to processes P,Q 2 Cpp real-time GPDAs that check whether they satisfy the same guarded
tests (Lemma 7.3.3).

All along this section, we illustrate the definitions with the protocol displayed in Figure 7.2. This example should
be read step by step, when reading the examples of this section.

7.3.1 Generalised pushdown automata

Language equivalence of deterministic pushdown automata (DPA) is known to be decidable [63]. We actually encode
equivalence of protocols into a fragment of DPA: real-time GPDA with final-state acceptance. GPDA differ from
deterministic pushdown automata (DPA) as they can unstack several symbols at a time. Real-time automata are
automata that do not include epsilon-transitions. Formally, the class of real-time GPDA is defined as follows.

Definition 7.3.1. A real-time GPDA is a 7-tuple A = (Q,Π,Γ, q0,!, Qf , δ) where Q is a finite set of states, q0 2 Q
is an initial state, Qf ✓ Q is a set of accepting states, Π is a finite input-alphabet, Γ is a finite stack-alphabet, ! is the
initial stack symbol, and δ : (Q⇥Π⇥ Γ0) ! Q⇥ Γ0 is a partial transition function such that:

• Γ0 is a finite subset of Γ⇤; and

• for any (q, a, x) 2 dom(δ) and y suffix strict of x, we have that (q, a, y) 62 dom(δ).

Let q, q0 2 Q, u, u0, γ 2 Γ⇤, m 2 Π⇤, a 2 Π; we note (quγ, am) A (q0uu0,m) if (q0, u0) = δ(q, a, γ).
The relation ⇤

A is the reflexive and transitive closure of A. For every qu, q0u0 in QΓ⇤ and m 2 Π⇤, we note
qu

m
−!A q0u0 if, and only if, (qu,m) ⇤

A (q0u0, ✏). For sake of clarity, a transition from q to q0 reading a, popping γ

from the stack and pushing u0 will be denoted by q
a;γ/u0

−−−−! q0.

Let A be a GPDA. The language recognised by A is defined by:

L(A) = {m 2 Π⇤ | q0!start
m
−!A qfu for some qf 2 Qf and u 2 Γ⇤}.

Note that the language is defined starting with the word !start in the stack.
A real-time GPDA can easily be converted into a DPA by adding new states and ✏-transitions. Thus, the problem

of language equivalence for two real-time GPDA A1 and A2, i.e. deciding whether L(A1) = L(A2) is decidable [63].
Whether deciding equivalence of real-time GPDA could be easier than deciding equivalence of DPA is an open ques-
tion.

93

We illustrate the different steps of our translation of protocols to automata using a (mock) ping-pong protocol Ptoy.

We define io(c, R,w)
def
= in(c, R).out(c,w).

Ptoy =
| ! in(c1, start).new r1.out(c1, senc(a, k2, r1))
| ! in(c2, senc(x, k2, z1)).new r1.out(c2, senc(x, k1, r1))
| ! in(c3, x).new r1.out(c3, senc(x, k2, r1))
| ! in(c4, senc(senc(x, k1, z1), k2, z2)).new r1, r2.out(c4, senc(senc(x, k2, r1), k1, r2))
| ! in(c5, senc(senc(x, k2, z1), k1, z2)).out(c5, x)

For illustrative purpose, we consider different execution traces of this protocol. For instance, we have that (tr1, σ1) 2
tracefwd(Ptoy) where:

• tr1 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c5,w4,w5), and

• σ1 = {w1 . senc(a, k2, r1), w2 . senc(a, k1, r2), w3 . senc(senc(a, k1, r2), k2, r3),
w4 . senc(senc(a, k2, r4), k1, r5), w5 . a}.

This execution may be continued as follows:

• tr2 = io(c3,w1,w6).io(c2,w6,w7).io(c5,w7,w8), and

• σ2 = {w6 . senc(senc(a, k2, r1), k2, r6), w7 . senc(senc(a, k2, r1), k1, r7),
w8 . a}.

Let σ1/2 = σ1 [σ2. We have that (tr1.tr2, σ1/2) is a trace of Ptoy w.r.t. the forwarder semantics. We have that the test
w5 = w8 is valid in σ1/2. Indeed w5σ1/2# = w8σ1/2# = a.

We have also that (tr01, σ
0
1) 2 tracefwd(Ptoy) with:

• tr01 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c3,w4,w5), and

• σ0
1 = {w1 . senc(a, k2, r1), w2 . senc(a, k1, r2),

w3 . senc(senc(a, k1, r2), k2, r3), w4 . senc(senc(a, k2, r4), k1, r5),
w5 . senc(senc(senc(a, k2, r4), k1, r5), k2, r6)}.

This execution may be continued as follows:

• tr02 = io(c4,w5,w6).io(c5,w6,w7).io(c4,w5,w8).io(c5,w8.w9),

• σ0
2 = {w6 . senc(senc(senc(a, k2, r4), k2, r7), k1, r8), w7 . senc(a, k2, r4),

w8 . senc(senc(senc(a, k2, r4), k2, r
0
7), k1, r

0
8), w9 . senc(a, k2, r4)}.

Let σ0
1/2 = σ0

1 [σ0
2. We have that (tr01.tr

0
2, σ

0
1/2) is a trace of Ptoy w.r.t. the forwarder semantics. We have that the test

w7 = w9 is valid in σ0
1/2.

Figure 7.2: Running example.

94

7.3.2 Characterisation of trace equivalence

To construct the automaton associated to a process P 2 Cpp, we need to construct an automaton that recognises any
execution of P and the corresponding valid tests.

We first propose a new characterisation of trace equivalence allowing us to restrict our attention to executions of P
and valid tests that have a special form.

Given a trace (tr, σ) and an element w of a frame σ, we can extract from tr the sequence of actions that conducted
to the production of this element w.

Definition 7.3.2. Let P be a protocol in Cpp, tr be a trace of P w.r.t. the forwarder semantics, i.e. such that (tr, σ) 2
tracefwd(P) for some σ, and w be a variable that occurs in tr. The sequence associated to w in tr, denoted seqtr(w), is
the subsequence of tr of the following form:

seqtr(w) = io(ci0 , start,wj0).io(ci1 ,wj0 ,wj1) . . . io(cip ,wjp−1
,w).

Example 7.3.1. Consider the protocol defined in Figure 7.2. Then,

• seqtr1.tr2(w5) = tr1;

• seqtr1.tr2(w8) = io(c1, start,w1).tr2;

• seqtr0
1
.tr0

2
(w7) = tr01.io(c4,w5.w6).io(c5,w6,w7);

• seqtr0
1
.tr0

2
(w9) = tr01.io(c4,w5,w8).io(c5,w8,w9).

We consider some particular class of tests, called pulled-up tests.

Definition 7.3.3. Let P be a protocol in Cpp, (tr, σ) 2 tracefwd(P), and w,w0 2 dom(σ) such that:

1. the test w = w0 is σ-valid, i.e. wσ = w0σ; and

2. the test w = w0 is σ-guarded, i.e. the head symbol of wσ (or equivalently w0σ) is in {senc, raenc, sign}.

Let io(ci0 , start,wj0) . . . io(cip ,wjp−1
,wjp) be the maximal common prefix of seqtr(w) and seqtr(w

0). The test w = w0

is said to be pulled-up in (tr, σ) if p = 0, or p ≥ 1 and wσ does not occur as a subterm in wj0σ, . . . ,wjp−1
σ.

Intuitively, to perform a test w = w0, the attacker (who acts as a forwarder) relies on the protocol rules to produce
successive outputs, and ultimately the ones stored in w and w0. The attacker may produce w and w0 independently
(the common prefix of seqtr(w) and seqtr(w

0) is empty), and in such a case the test is pulled-up by definition. This is
not, of course, always possible. In particular, a test w = w0 satisfying conditions (1) and (2) of the previous definition
is necessarily a “forked” test, i.e. a test for which the common prefix of seqtr(w) and seqtr(w

0) is not reduced to the
empty sequence, and thus p ≥ 1. Indeed, wσ is a term of the form f(u, k, r) with some random r. Since nonces
are uniquely generated, the variables wi that generates it, i.e. the smallest i such that r occurs in wiσ, occurs both
in seqtr(w) and seqtr(w

0). For this kind of “forked” test, we can restrict the attacker to consider tests that are pulled-
up, i.e. we consider tests for which the size of the common prefix between seqtr(w) and seqtr(w

0) is reduced to the
minimum. This can be done by duplicating some execution steps since all the branches are under a replication.

Example 7.3.2. Continuing our running example, we have that w5 = w8 is a test that is σ1/2-valid but it is not
σ1/2-guarded since w5σ1/2 = w8σ1/2 = a.

The test w7 = w9 is a test that is σ0
1/2-valid and σ0

1/2-guarded. Indeed, we have that w7σ
0
1/2 = w9σ

0
1/2 =

senc(a, k2, r4). The maximal common prefix of seqtr0
1
.tr0

2
(w7) and seqtr0

1
.tr0

2
(w9) is actually

tr01 = io(c1, start,w1).io(c2,w1,w2).io(c3,w2,w3).io(c4,w3,w4).io(c3,w4,w5).

Actually, w7σ
0
1/2 occurs as a subterm in w4σ

0
1/2, thus the test w7 = w9 is not pulled-up in (tr01.tr

0
2, σ

0
1/2).

95

We are now able to state our characterisation lemma. Intuitively, we show that for tests that are valid and guarded,
it is sufficient to consider pulled-up tests. We first illustrate through an example how a test that is valid and guarded
can be converted into a pulled-up one.

Example 7.3.3. Continuing Example 7.3.1, we consider the test w7 = w9 which is not pulled-up in (tr01.tr
0
2, σ

0
1/2).

Consider the execution

tr0 = tr01.io(c4,w5,w6).io(c5,w6,w7).io(c3,w4,w8).io(c4,w8,w9).io(c5,w9,w10).

This execution is almost similar to tr01.tr
0
2. The main difference is that the computation performed at the end of tr01

using channel c3 with input w4 is duplicated. Both io(c3,w4,w5) and io(c3,w4,w8) occur in tr0. The resulting frame
is:

σ0
1 [{w6 . senc(senc(senc(a, k2, r4), k2, r7), k1, r8), w7 . senc(a, k2, r4),

w8 . senc(senc(senc(a, k2, r4), k1, r5), k2, r
0
6),

w9 . senc(senc(senc(a, k2, r4), k2, r
0
7), k1, r

0
8), w10 . senc(a, k2, r4)}.

The terms stored in w5 and w8 differ by their random seeds:

senc(senc(senc(a, k2, r4), k1, r5), k2, r6) and senc(senc(senc(a, k2, r4), k1, r5), k2, r
0
6)

This frame is almost the same as σ0
1/2 with an additional element (w8). The term stored in w8 is the same as the one

stored in w5 up to the choice of some random seeds (r6 is replaced by the fresh random r06). Moreover, the presence
of this additional element leads us to reindex the following elements of the frame, and to replace some occurrences
of r6 with r06. It is important to note that the introduced randoms r06 and r08 could potentially break equality tests. They
however do not appear anymore in the last outputted term stored in w10 that is checked for equality.

This example shows that when considering the trace (tr01.tr
0
2, σ

0
1/2), we may have to consider the test w7 = w9

which is not pulled-up. However, this test is essentially the same than the pulled-up test w7 = w10 issued from the
trace given above.

The transformation explained in the previous example can be generalised to any protocol.

Lemma 7.3.1. Let P and Q be two protocols in Cpp, then P ⇡fwd Q if, and only if, the following four conditions are
satisfied:

• CONSTP : For all (tr, σP) 2 tracefwd(P), there exists a frame σQ such that (tr, σQ) 2 tracefwd(Q) and for
every w,w0 2 dom(σP) and for every constant c 2 Σ0 [{start}, wσP = w0σQ = c if, and only if, there exists
a constant c0 2 Σ0 [{start} such that wσQ = w0σQ = c0.

• CONSTQ: Similarly swapping the roles of P and Q.

• GUARDEDP : For all (tr, σP) 2 tracefwd(P), there exists a frame σQ such that (tr, σQ) 2 tracefwd(Q) and
every test that is σP -valid, σP -guarded, and pulled-up in (tr, σP) is also σQ-valid, σQ-guarded, and pulled-up
in (tr, σQ).

• GUARDEDQ: Similarly swapping the roles of P and Q.

Proof. (sketch)

()) For this direction, when considering CONSTP , the only difficulty is to show that the test wσQ = w0σQ leads
to a constant c0. Actually, such a test can not lead to a guarded test since otherwise a replay of the entire sequence (this
replay is possible since we consider a class of protocol that allows this) will lead to a different guarded term in Q and
not in P (due to the presence of fresh randoms in guarded terms).

When considering GUARDEDP , the difficulty is to show that the test w = w0 is necessarily pulled-up in (tr, σQ).
Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1

,wjp) be the maximal common prefix of seqtr(w) and seqtr(w
0). Since

96

w = w0 is pulled-up in (tr, σP), we know that the first occurrence of wσP in prefσP (if any) is at the very end of the
sequence. We can easily show that w = w0 is σQ-valid and σQ-guarded, and thus wσQ occurs also as a subterm in
prefσQ. The only problem is if wσQ occurs in prefσQ but not at the very end of this sequence. The idea is that in such
a case, we can modify the trace (tr, σQ) and the test w = w0 to build (tr⇤, σ⇤

Q) and a new test w⇤ = w0
⇤ which will be

pulled-up in (tr⇤, σ⇤
Q). The idea is to split the two sequences seqtr(w) and seqtr(w

0) earlier without compromising the
fact that the test will be valid in the resulting frame. This corresponds to the construction illustrated in Example 7.3.3.
This trace tr⇤ is actually a witness of non-equivalence. Actually, the test w⇤ = w0

⇤ is a fortiori not valid on the P side,
and this contradicts our hypothesis P ⇡fwd Q.

(() Actually, for this direction, assume that we have a witness of the fact that P 6⇡ Q, i.e. a trace (tr, σP) 2
tracefwd(P), a trace (tr, σQ) 2 tracefwd(Q), and a test w = w0 that is σP -valid but not σQ-valid. In case the resulting
term is a constant, we easily conclude that CONSTP fails. Otherwise, it means that w = w0 is σP -guarded. In order
to show that GUARDEDP fails, we have to ensure that the test w = w0 is pulled-up w.r.t. (tr, σP). Since, this is
not necessarily the case, we have to build another trace (tr⇤, σ⇤

P) that will lead us to a pulled-up test. Roughly, the
transformation consists in splitting the two sequences seqtr(w) and seqtr(w

0) earlier without compromising the fact
that the test will be valid in the resulting frame. Actually, such a transformation can not transform a test that was not
valid in a valid one, thus this test is still not valid for Q and it is still a witness of non-equivalence, but a pulled-up one
allowing us to conclude.

The detailed proof can be found in Appendix B.3.1.

7.3.3 From trace equivalence to language equivalence

Our goal is to associate an automaton AP to a protocol P such that AP recognises the words (a sequence of channels)
that correspond to a possible execution of the protocol. The stack of the automaton AP is used to store a (partial)
representation of the last outputted term. This first requires to convert a term into a word.

Given an input term or an output term u (see Section 7.1.2), we define inductively ū in the following way:
8

<

:

ū = v̄.k if u = f(v, k, r) and f 2 {senc, raenc, sign}
c̄ = !c for any constant c 2 Σ0 [{start}
x̄ = ✏ for any variable x

where ✏ denotes the empty word. Note that, using this representation, random seeds are not part of the encoding. We
denote by ||u|| the height of the term u which is equal to the number of occurrence of senc, raenc, and sign in u.

We now consider an arbitrary ping-pong protocol P (using the same notation as the one introduced in Section 7.1):

P
def
=

n

|
i=1

pi

|
j=1

!in(ci, u
j
i).new r1.new rkji

. out(ci, v
j
i) (⇤)

In the remaining of the section, we denote by ΣP0 the finite set of constants of Σ0 [{start} that actually occur in
the protocol P .

Encoding of the conditions CONSTP and CONSTQ

We first build an automaton that recognises tests of the form w = w0 such that the corresponding term is actually a
constant. We define AP

CONST as follows:

AP
CONST = ({q0, qf} [{qc | c 2 ΣP0 }, {c1, . . . , cn} [{ctest, cend},Σ

P
0 , q0,!, {q0, qf}, δ)

where the transition function δ is defined as follows:

97

q0

qc1

qc`

qf

...

...

qck

ci;u
j
i/v

j
i

ci;u
j
i/v

j
i

ci;u
j
i/v

j
i

ci;u
j
i/v

j
i

ctest
;! c1

/! s
tart

ctest;! ck/! start

ctest ;! c`/! start

cend ;! c1/!

cend;! ck/!

cend;
! c`/!

Figure 7.3: Automaton AP
CONST

1. for every q 2 {q0} [{qc | c 2 ΣP0 }, for every i 2 {1, . . . , n}, for every j 2 {1, . . . , pi}, there is a transition

q
ci; ū

i
j/v

i
j

−−−−−! q;

2. for every constant c, there is a transition q0
ctest;! c/! start
−−−−−−−−−! qc;

3. for every constant c, there is a transition qc
cend;! c/!
−−−−−−! qf .

The automaton is depicted in Figure 7.3. Intuitively, the basic building blocks (e.g. q0 with the transitions from q0
to itself) mimic an execution of P where each input is fed with the last outputted term. Then, to recognise the tests
of the form w = w0 that are true in such an execution, it is sufficient to memorise the constant c that is associated
to w (adding a new state qc), and to see whether it is possible to reach a state where the stack contains c again. More
formally, we have the following result.

Lemma 7.3.2. Let P and Q be two protocols in Cpp, the two real-time GPDA AP
CONST and AQCONST are such that:

P and Q satisfy conditions CONSTP and CONSTQ iff L(AP
CONST) = L(AQ

CONST).

The proof can be found in Appendix B.3.2.

Example 7.3.4. Going back to our running example, i.e. the protocol P described in Figure 7.2, the automaton AP
CONST

is depicted below:
The word that represents the trace (tr1.tr2,σ1/2) and the test w5 = w8 as given in Figure 7.2 is: c1c2c3c4c5ctestc1c3c2c5cend.

The fact that this test is a valid one that leads to a constant a means that the word will be accepted by the automaton
given above. The corresponding run goes through the state qa and halts in state qf .

AP
CONST has a number of states polynomial in the number of constants in P , and for each state a number of trans-

itions linear in the number of branches in P . Thus, AP
CONST is of size polynomial with respect to the size of P .

Encoding of the conditions GUARDEDP and GUARDEDQ

Capturing tests that lead to non-constant symbols (i.e. terms of the form f(u, k, r) with f 2 {senc, raenc, sign}) is
more tricky for several reasons. First, it is not possible anymore to memorise the resulting term in a state of the
automaton. Second, names of sort rand play a role in such a test, while they are forgotten in our encoding. We rely on

98

q0

qa

qk1

qk2

qstart

qf

R

R

R

R

R =

8

>

>

>

>

<

>

>

>

>

:

c1; start/a k2
c2; k2/k1
c3; "/k2
c4; k1k2/k2k1
c5; k2k1/"

ctest
;!

a/!
sta

rt

ctest;!
k1/! start

ctest;! k2/! start

ctest ;! start/! start

cend ;! a/!

cend;! k1/!

cend;! k2/!

cend
;! s

tart
/!

our characterisation introduced in Section 7.3.2 and we construct a more complex automaton that uses some special
track symbols to encode when randomised ciphertexts may be reused.

More precisely, we consider:

• Π = {c1, . . . , cn, ctest, cend} [{cifork | 1  i  n}, and

• Γ = ΣP0 [{test} [{(forkji , k) | 1  i  n, 1  j  pi, and 1  k  ||uji ||}.

Note that n and pi are induced by the definition of protocol P (see equation (⇤)). The input alphabet contains the
channel names c1, . . . , cn, plus some additional symbols, denoted c1fork, . . . , c

n
fork, that will be used once and whose

purpose will be to mark the end of the common prefix between seqtr(w) and seqtr(w
0).

The stack-alphabet is more involved. We still have one symbol per constant in ΣP0 , and a special symbol test that
will be put on top of the stack when the stack contains the target term (i.e. wσ). In such an automaton, the idea is to
consider pulled-up tests only. The tile (forkji , k) is placed on the stack when the automaton has finished to build the
term corresponding to the left hand side of a pulled-up test.

The transition function δ is defined as follows:

1. for q 2 {q0, q1, q2}, for every i 2 {1, . . . , n} and j 2 {1, . . . , pi}, there is a transition q
ci;u

j
i/v

j
i−−−−−! q;

2. for every i 2 {1, . . . , n} and j 2 {1, . . . , pi} such that ||vji || ≥ 1, there is a transition

q0
cifork;u

j
i/! v

j
i (forkji ,||v

j
i ||)−−−−−−−−−−−−−−−! q1

3. for every i 2 {1, . . . , n} and j 2 {1, . . . , pi}, for every i0 2 {1, . . . , n} and j0 2 {1, . . . , pi0}, for every m such

that 1 < m  ||vj
0

i0 ||, and for every subterm u0 of uji of height k 2 {1, . . . ,m − 1} such that uji = u0.s
0 there

is a transition

q1
ci;u0.(fork

j0

i0
,m).s0/(forkj

0

i0
,m−k)vji

−−−−−−−−−−−−−−−−−−−−−−! q1.

4. for every i 2 {1, . . . , n} and j 2 {1, . . . , pi}, for every m such that 1  m  ||vji ||, there is a transition

q1
ctest; (fork

j
i ,m)/test sji,m

−−−−−−−−−−−−−−! q2 where sji,m is the suffix of length ||vji || −m of vji .

5. there is a transition q2
cend; test/✏
−−−−−−! qf .

99

q0 q1 q2

qf

ci;u
j
i/v

j
i

cifork;u
j
i/! vji (fork

j
i , ||v

j
i ||)

ci; s
j
i/s

0j
i

ci;u
j
i/v

j
i

ctest; (fork
j
i ,m)/test sji,m

ci;u
j
i/v

j
i

cend; test/✏

Figure 7.4: Automaton AP
GUARDED

The loop in q0 (item 1) represents the regular execution of the protocol by the attacker: through unstacking and

stacking, she builds a term on the stack along a particular trace. The transitions q0
cifork; z/z

0

−−−−−! q1 (item 2) enable her to
mark a fork when building a test in her frame with a particular stack symbol forkji , enriched with some information.
Intuitively, the part of the execution that is performed until here should correspond to the maximal prefix shared
between the sequences seqtr(w) and seqtr(w

0). By looping in q1, the attacker can continue building the first term of an
equality, following the usual execution of the protocol, if it were for the presence of the stack symbol (forkji , k) which
can only go down on the stack for at most k − 1 times. When the symbol (forkji , k) appears on top of the stack, the
attacker may decide that she has built the first part of a pulled-up test. Then test will be put on the top of the stack and
a part of the stack (following the instructions memorised in the symbol (forkji , k)) will be regenerated. The idea is that
the stack has to contain the same term as the one stored just after forking. Then the attacker tries to build the second
member of the test. If this second term manages to end up exactly as the previous one (the position in the stack is
marked using the tile test), an equality is reached and the word is recognised by the automata, witnessing the equality
induced by the pulled-up test.

What remains now is to prove that P and Q satisfy conditions GUARDEDP and GUARDEDQ if, and only if,
L(AP

GUARDED) = L(AQ
GUARDED). This is formally stated in the following lemma.

Lemma 7.3.3. Let P and Q be two protocols in Cpp, the two real-time GPDA AP
GUARDED and AQGUARDED are such that:

P and Q satisfy conditions GUARDEDP and GUARDEDQ iff L(AP
GUARDED) = L(AQ

GUARDED).

The proof can be found in Appendix B.3.2.

Example 7.3.5. Going back to our running example, i.e. the protocol P described in Figure 7.2, the automaton
AP

GUARDED is depicted below.

100

q0 q1 q2

qf

R

c1fork; start/! a k2 (fork
1
1, 1)

c2fork; k2/! k1 (fork
1
2, 1)

c3fork; "/! k2 (fork
1
3, 1)

c4fork; k1k2/! k2k1 (fork
1
4, 2)

R

c2; k2 (fork
1
4, 2)/(fork

1
4, 1) k1

c4; k1 (fork
1
4, 2) k2/(fork

1
4, 1) k2 k1

c5; k2 (fork
1
4, 2) k1/(fork

1
4, 1)

ctest; (fork
1
1, 1)/test

ctest; (fork
1
2, 1)/test

ctest; (fork
1
3, 1)/test

ctest; (fork
1
4, 1)/test k1

ctest; (fork
1
4, 2)/test

R

cend; test/✏

The set of transitions R is the one defined in Example 7.3.4. The situation where the stack symbol (forkji , k)
goes down occurs for instance when considering the word c1 c2 c3 c

4
fork c3 c4 c5 ctest c3 c4 c5. The evolution of the stack

during the run of the automaton is depicted below. On the second line, we can see that this symbol goes down and k
goes from 2 to 1.

start

!

c1c2c3−−−−! k2
k1
a

!

c4fork−−!

(fork14, 2)
k1
k2
!

a

!

c3−!

k2
(fork14, 2)

k1
k2
!

a

!

c4−!

k1
k2

(fork14, 1)
k2
!

a

!

c5−!
(fork14, 1)

k2
!

a

!

ctest−−!

k1
test

k2
!

a

!

c3−!

k2
k1
test

k2
!

a

!

c4−!

k1
k2
test

k2
!

a

!

c5−!
test

k2
!

a

!

cend−−! k2
!

a

!

The trace (tr,σ) 2 tracefwd(P) and the pulled-up test w = w0 that correspond to this execution is the ones
introduced in Example 7.3.3, i.e. tr0 together with the test w7 = w10.

We can notice that up to the special stack-symbols, namely test and (forkji , k), the contents of the stack after
reading cifork (here i = 4) and ctest are the same. The stack actually represents the term obtained after executing the
common prefix shared between seqtr0(w7) and seqtr0(w10), i.e. senc(senc(a, k2, r4), k1, r5) stored in w4. We have also
that the contents of the stack before reading ctest and after reading cend are also the same (up to some special stack
symbols). They actually represent the terms stored respectively in w7 and w10.

Note that AP
GUARDED has a fixed number of states, and a polynomial number of transitions : transitions are added

for each branch and suffix of any input term. Thus, AP
GUARDED is of size polynomial with respect to the size of P .

7.4 From language equivalence to trace equivalence

We have seen how to encode trace equivalence between processes in Cpp into language equivalence between real-time
GPDA. The two problems are actually equivalent. Indeed, in this section, we show that we can conversely encode any

101

real-time GPDA A into a process PA in Cpp such that L(A) ✓ L(B) implies PA v PB.

Consider an automaton A = (Q,Π,Γ, q0,!, Qf , δ). The process PA associated to A is built using symmetric
encryption only. For the purpose of the encoding, we consider the following constants of sort SymKey:

• for each q 2 Q, we denote q its counterpart in Σ0;

• for each ↵ 2 Γ, we denote k↵ its counterpart in Σ0;

• a constant kwell.

Let also c0, ca, cf with a 2 Π be constant symbols of sort channel in Ch. Words in Γ⇤, i.e. stacks, will be represented
through nested encryptions with keys representing their counterparts in Γ. For the sake of brevity, given a word
u = ↵1 . . .↵p of Γ⇤, we denote by x.u:

• either the term senc(. . . senc(x, k↵1
, z1) . . . , k↵p

, zp) where z1 through zp are variables used for nonces when
x.u is used in as an input pattern;

• or the term senc(. . . senc(x, k↵1
, r1) . . . , k↵p

, rp) where r1 through rp are fresh randoms when x.u is used as an
output pattern.

Below, we use new r̃ as shortcut for new r1. . . . new rp such that the sequence will bind every nonce occurring in the
following output.

The stack of the automaton A is encoded as a pile of encryptions (where each key encodes a letter of the stack).
Then, upon receiving such a pile of encryptions encrypted by q on channel ca, the process PA will mimic the transition
of A that is triggered when the automaton is at state q upon reading a with the stack corresponding to that pile of
encryptions.

More formally, the process PA is defined as follows:

PA
def
= ! in(c0, start).new r̃.out(c0, enc(enc(start, k!, r1), kstart, r2), q0, r3)) (0)

| ! in(ca, enc(x.u, q, z)).new r̃.out(ca, enc(x.v, q
0, r)) (1)

| ! in(ca, enc(x.u0, q, z)).new r.out(ca, enc(start, kwell, r)) (1a)

| ! in(ca, enc(start, kwell, z)).new r.out(ca, enc(start, kwell, r)) (1b)

| ! in(cf , enc(x, qf , z)).new r.out(cf , enc(start, qf , r)) (2)

where a quantifies over Π, q over Q, u over words in Γ⇤ such that (q, a, u) 2 dom(δ), qf over Qf , and (q0, v) =

δ(q, a, u). Lastly, u0 ranges over U 0
q,a

def
= ↵ · SSq,a r Sq,a where Sq,a (resp. SSq,a) is the set that contains suffixes

(resp. strict suffixes) of some u with (q, a, u) 2 dom(δ). This set U 0
q,a corresponds intuitively to the set of shortest

words which are not suffixes of any word in {u | (q, a, u) 2 dom(δ)}, and, thus the shortest words to unstack to be
sure that no transition from q reading a is possible in the automaton.

Example 7.4.1. Consider a real-time GPDA such that Γ = {↵,β, γ,!}, q 2 Q, and a 2 Π. Assume that {u | (q, a, u) 2
dom(δ)} = {β↵, β↵↵}. We have SSq,a = {✏,↵,↵↵}, and Sq,a = SSq,a [{β↵,β↵↵}. Thus, we have that:

U 0
q,a = {!,β, γ,!↵, γ↵,!↵↵,↵↵↵, γ↵↵}.

In the encoding above, the branches (0) and (1) mimic the behaviour of the automaton A. Branch (2) is triggered
in case a final state qf is reached. In case we are considering a behaviour that is not authorised by the automaton, we
obtain a message encrypted with kwell through branches (1a). Then branches (1b) allow to pursue the execution of the
protocol outputting messages that look fresh.

102

Lemma 7.4.1. The protocol PA described above is in Cpp and of size polynomial w.r.t. A.

Proof. First, note that because dom(δ) is finite, as the automaton is finitely described, the sets {u | (q, a, u) 2 dom(δ)}
and U 0

q,a are also finite for any a 2 Π and q 2 Q. Moreover, the automaton being deterministic, given q 2 Q and
a 2 Π, for every word s 2 Γ⇤:

• either there exists a unique suffix u of s such that (q, a, u) 2 dom(δ);

• or there exists a unique suffix u0 of s such that u0 2 U 0
q,a,

and this disjunction is exclusive. This allows us to ensure that condition (2) of Definition 7.1.1 is satisfied, and thus
PA belongs to Cpp.

Regarding the size of the protocol, the only non-trivial point is to check that the number of branches (1a) is
polynomially bounded. Let q 2 Q, and a 2 Π, and assume that the maximal length of a word u in a transition

q
a;u/v
−−−! q0 of the automaton is `q,a, we have that the number of branches (1a) for state q and letter a is bounded by

`q,a ⇥#Γ⇥#{u | (q, a, u) 2 dom(δ)} where #S is the cardinality of set S. This allows us to conclude.

This polynomial encoding preserves inclusion.

Proposition 7.4.1. Let A and B be two real-time GPDA. We have that:

L(A) ✓ L(B) () PA v PB.

Proof. Let A = (Q,Π,Γ, q0,!, Qf , δ) and B = (Q0,Π,Γ0, q00,!, Q
0
f , δ

0). We show the two implications separately.
(() Assume that there exists a word t 2 L(A)rL(B). We will build a trace (tr,φ) 2 trace(PA) such that there exists
no trace (tr,) 2 trace(PB) allowing us to conclude that PA 6v PB. To build (tr,φ), we will mimic the behaviour of
A when reading t. The first branch to use is (0), enabling the attacker to activate other branches of the process PA. As
t 2 L(A) and A is deterministic, there exists a unique sequence of transitions leading to an accepting state qf 2 Qf .
For every such transition the attacker will activate the corresponding branch (1) in PA. If t = a1 . . . an, we define
(tr,φ) as follows:

tr = io(c0, start,w1).io(ca1 ,w1,w2) . . . io(can ,wn,wn+1).io(cf ,wn+1,wn+2)

and φ is defined as expected given our semantics. Because of the definition of the branch (1), the inputs on the channels
cai are possible, the stack of the automaton upon reading ai and its current state being faithfully represented by the
term wiφ. Thus, (tr,φ) is indeed a trace of PA. When reaching qf , the attacker can use the branch (2) and output the
message senc(start, qf , r). As t 62 L(B), the corresponding sequence of transitions in B does not lead to any accepting
state:

• either at some point of the execution of the automaton a transition from state q reading a is not possible with the
current stack s. This means that there does not exist a suffix u of s such that (q, a, u) 2 dom(δ0), and thus, by
definition of U 0

q,a, there exists a suffix u0 of s such that u0 2 U 0
q,a, enabling a transition (1a) on channel ca for

the attacker, and every subsequent transition is done using branches (1b),

• or the state reached in B after reading t is not an accepting state, i.e. not in Q0
f : the sequence in(cf ,wn+1).out(cf ,wn+2)

cannot occur in PB.

Consequently, there exists no trace (tr,) 2 trace(PB) (for any), thus PA 6v PB.

()) First note that, for every frame φ (resp) such that (tr,φ) 2 trace(PA) (resp. (tr,) 2 trace(PB)), we have that
φ (resp.) is of the form

{w1 . senc(m1, k1, r1), . . . ,wn . senc(mn, kn, rn)}

103

where the ki are non deducible and the ri are “fresh” in the sense that they are all distinct and non deducible. This
means that no equality (but the trivial ones) holds in such a frame. Now consider the shortest trace (tr, φ) 2 trace(PA),
in terms of number of transitions, such that there exists no equivalent frame (tr,) 2 trace(PB). Since keys are non-
deducible, we may assume w.l.o.g that (tr,φ) 2 tracefwd(PA). Because of the branches (1), (1a) and (1b) and in
particular of the definition of U 0

q,a, for any q 2 Q, for any a 2 Π, a transition of channel ca is always possible, and
we have seen that the resulting frames are necessarily in static equivalence. Thus, the only shortest trace where PB

will not be able to follow is when tr ends with an input/output on channel cf . Let w 2 dom(φ) be the corresponding
variable in the frame φ. Consider the subsequence seqtr(w) of tr and more precisely the sequence of channels that
occurs in this subsequence. Such a sequence is of the form: c0.ca1 . . . can .cf .

Let v = a1 . . . an. We have that v is a word of Π⇤, and, in particular,

• v 2 L(A): indeed, branches (1) in PA faithfully represent transitions (q, a, u) 2 dom(δ) and a branch (2) can
only be fired if qf 2 Qf .

• v /2 L(B): indeed branch (2) could not be fired, either B cannot read v or, after reading v, B is not in any state
of Q0

f .

Hence v 2 L(A)r L(B), proving that L(A) 6✓ L(B).

Therefore, checking for equivalence of protocols is as difficult as checking equivalence of real-time generalised
pushdown deterministic automata.

7.5 Implementation

In this section, we detail our tool Cpp2dpa to convert protocols in Cpp into GDPA, available online at

http://www.lsv.ens-cachan.fr/~chretien/cpp2dpa.php.

This tool takes two protocols in Cpp as input, turn them into GDPA and, through the tool lAlBlC [51], outputs
whether the two protocols were in equivalence, yielding a witness of non-equivalence in the negative case in the form
of a sequence of channels leading to an attack. The tool focuses on the encoding as described in Section 7.3. In
particular, we assume the prior steps of Section 7.2 were successfully applied to the pair of protocols; namely the
bijection ↵ as in Lemma 7.2.2 was successfully guessed and the oracles of Section 7.2.2 correctly added.

The tool Cpp2dpa is written in Python 3. From pairs of protocols in Cpp, it generates three pairs of normalised

deterministic pushdown automaton, instead of directly two pairs of GPDA (as described in Section 7.3). This was
necessary so as to interface with lAlBlC, and involves no loss of generality, as the former are more expressive than
our GDPA. The normalisation process still has the inconvenient, in order to preserve the determinacy of the result, to
output automata that may duplicate actions. More specifically, when necessary, the channels appearing in the potential
witness of non-equivalence may be doubled. This technical detail does not impair the ability for the combined tool to
prove equivalence or find witnesses, nevertheless.

7.5.1 Encoding pairs

Most protocols use pairs. While our formalism does not directly support pairs, we may encode a restricted kind of
pairing, when there are only constants (such as identities) on the right. Formally, this amounts into encoding a pair
ht, ai, where t is a term and a some constant, by an encryption senc(t, a, r) for some random seed r. Provided constants
used in concatenation are disjoint from constants used as keys, this encoding does not introduce any confusion. Note
that since encryption is randomised, this pairing operator also differs as it is randomised.

104

http://www.lsv.ens-cachan.fr/~chretien/cpp2dpa.php

7.5.2 Biometric passport

We are interested here in proving the unlinkability of the electronic passport protocol. A detailed specification of it can
be found in [5]. Here, we only consider the passport’s role and forget about the reader. The first case we consider is the
flawed version corresponding to the French implementation of the passport, in which an attack arises from the ability
for the attacker to observe whether a MAC check succeeds or not. As our framework does not directly enables us to
deal with pairs of messages with their MAC, we model it by a signature: the attacker is able to obtain the plaintext of
it (which amounts to retrieving the first component of the real pair) but cannot forge it (the attacker is not a priori able
to forge a valid MAC). The resulting process is defined as follows.

PA
def
= ! in(c1, start).new r̃0.

out(c1, sign(senc(senc(senc(nr, kr, r
0
1), np, r

0
2), kE , r

0
3),mackm , r04)) (1)

| ! in(c2, sign(senc(x, kE , z1),mackm , z2)).new r5.out(c2, sign(x,macok, r5)) (2a)

| ! in(c02, sign(senc(x, np, z1),macok, z2)).new r̃00.
out(c02, sign(senc(senc(x, np, r

00
1), kp, r

00
2),mackm , r003)) (2b)

where new r̃ is a shortcut of new r1.new r2.new r3.new r4 (and similarly for new r̃0 and new r̃00). The protocol is
modelled through three rules. Branch (1) corresponds to a message from the current session, emitted by the reader.
While the original protocol can check the authenticity of the MAC and the value of the nonce sent to the passport,
our formalism requires us to separate this into two steps: branches (2a) and (2b). Branch (2a) checks the validity of
the MAC: if it is, it send a message signed with macok. On the other hand, branch (2b) checks the value of the nonce
(i.e. np) and finally emits the last message of the protocol. To retrieve the attack, we introduce the message sent by the
reader from a previous session with a new branch denoted (0):

! in(c0, start).new r̃.
out(c0, sign(senc(senc(senc(n

0
r, k

0
r, r1), n

0
p, r2), kE , r3),mackm , r4)) (0)

Another protocol PB is obtained by replacing mackm by mack0m in branches (1), (2a) and (2b). Our tool Cpp2dpa
can automatically check that PA 6⇡ PB .

Another version P 0
A is obtained by replacing branches (2a) and (2b) by the branch

! in(c2, sign(senc(senc(x, np, z1), kE , z2),mackm , z3)).new r̃00.
out(c2, sign(senc(senc(x, np, r

00
1), kE , r

00
2),mackm , r003)) (2)

The protocol P 0
B is similarly defined, with mack0m instead of mackm in this branch (2). This version models the safe

implementation of the protocol, where the success or failure of the MAC check is invisible to the attacker. Our tool
Cpp2dpa can automatically prove that P 0

A ⇡ P 0
B .

7.5.3 Experiments

We have tested our tool Cpp2dpa on the running example as defined in Example 7.1.1 and Example 7.2.2; as well as
on an encoding of the electronic passport protocol, described in Section 7.5.2 in two versions, unsafe and safe (see [5]
for more details).

Automata (in ms) Grammars (in s) Equivalence (in s)
Example 7.1.1 7.1 9.2 3462 (attack)
Example 7.2.2 7.0 3.1 9788 (proof)
Unsafe passport 7.1 23.2 4.89 (attack)
Safe passport 8.1 15.0 76.1 (proof)

105

NL

real-time DPA

GPDA

DPA ping-pong protocols

primitive-recursive

Figure 7.5: Complexity bounds for equivalence of ping-pong protocols.

The experiments were conducted on a Intel(R) Xeon(R) CPU X5650 @ 2.67GHz with 47 Go of RAM, using one
core only. The first column corresponds to the cumulative time required to produce the different automata; the second
one the time needed to convert the automata into grammars to be processed by lAlBlC and the third one to the status
of the equivalence (proof or witness of non-equivalence) and the cumulative time spent to prove the equivalence (when
it is the case) or the execution time to find a witness of non-equivalence, when possible. There is non-equivalence as
soon as one of our three pairs of automata are not in equivalence. Since we execute lAlBlC in parallel for each of
these three pairs, the execution time corresponds to the first pair that is found to be not in equivalence. Converting the
automata to grammars required an optimisation of the built-in functionality in lAlBlC in order to reach reasonable
execution times. Other protocols were considered, namely variants of the Wide Mouthed Frog, Denning-Sacco and
Private Authentication protocols. Unfortunately, for these ones, albeit the generation of automata was quick, it was
impossible to prove (non-)equivalence in reasonable time with lAlBlC.

7.6 Conclusion

We have shown a first decidability result for equivalence of (deterministic) ping-pong protocols for an unbounded
number of sessions by reducing it to the equality of languages of deterministic, generalised, real-time pushdown
automata (GPDA). We further show that deciding equivalence of ping-pong protocols is actually at least as hard as
deciding equality of languages of GPDA. Complexity-wise, the situation is slightly less clear. While the reduction
from GPDA to ping-pong protocols is polynomial, the reduction from ping-pong protocols to GPDA requires an
exponential blow-up. Indeed, to get rid of the attacker, we guess a correspondence between the keys of P and Q, and
exponentially many such correspondences should be checked. In addition, the complexity of equivalence of various
classes of pushdown automata are not very well-known. It follows that the exact complexity of checking equivalence
of protocols is unknown. The only upper bound is that equivalence is at most primitive recursive. This bound comes
from the algorithm proposed by C. Stirling for equivalence of DPA [64]. The lower bound comes from the fact that
real-time deterministic pushdown automata are at least NL-hard [16]. Whether equivalence of DPA (or even real-time
GPDA) is e.g. at least NP-hard is unknown. The complexity hierarchy known so far for equivalence of ping-pong
protocols is displayed in Figure 7.5.

Note that the complexity of GPDA and ping-pong protocols is actually quite close since the reduction from ping-
pong protocols to GPDA is “just” exponential. Moreover, assume now that we consider only procedures that return a
witness of non equivalence (if any). Then the complexity classes of GPDA and ping-pong protocols should actually
coincide. Indeed, assume that there is a procedure for checking equivalence of GPDA that ends in time f(n) where
n is the size of the inputs, and that returns a witness when two automata are not in equivalence. This witness must
be of size at most f(n). Then given two ping-pong protocols P and Q, we would construct P̄ and Q̄ as defined in
Lemma 7.2.2 step by step.

Instead of guessing the sets K and K 0, we would start from the empty sets K = K 0 = ;. If P̄ 6⇡ Q̄, that is if

106

AP̄ 6⇡ AQ̄, we consider a witness of non equivalence. Either it is a witness of P 6⇡ Q (and we are done), or there
must exist a key k that is deducible in P and a corresponding key k0 deducible with the same actions in Q. We start
over with K = {k} and K 0 = {k0}.

This algorithm has at most n steps and each step involve a call to the GPDA procedure (AP̄ ⇡ AQ̄) and involves
replaying a witness of size f(n). This yields a procedure of complexity O(f(n)).

Our class of security protocols handles only randomised primitives, namely symmetric/asymmetric encryptions
and signatures. Our decidability result could be extended to handle deterministic primitives instead of the randomised
one (the reverse encoding - from real-time GPDAs to processes with deterministic encryption - may not hold anymore).
Due to the use of pushdown automata, extending our decidability result to protocols with pairing is not straightforward.
A direction is to use pushdown automata for which stacks are terms.

Our tool Cpp2dpa in combination with lAlBlC yields the first implementation of a decidability procedure for
equivalence of protocols, for an unbounded number of sessions. However, the number of protocols covered so far is
limited. A first reason yields in the limitations of the class of ping-pong protocols. However, another reason is the
(too long) time needed to check for equivalence. Our transformation from protocols to automata using Cpp2dpa

remains reasonably fast. Most of the execution time comes from lAlBlC. Since this tool is still in its early stage of
development, we may hope for significant improvement of lAlBlC’ performance in the next years.

107

Chapter 8

Conclusion and perspectives

This thesis reports my contributions to the automated verification of trace equivalence for cryptographic protocols. In
particular, we focused our efforts on the issue of deciding trace equivalence for an unbounded number of sessions.
Doing so, we propose two ways of easing equivalence checking in general and several classes of cryptographic proto-
cols for which trace equivalence can be decided. We recall here our main contributions to this topic and open further
perspectives.

Easing trace equivalence with nonce deletion

Chapter 3 is devoted to the definition of a transformation on simple protocols using a broad variety of cryptographic
primitives which allows us to soundly check for trace equivalence without nonces. By making sure any equivalence
between such transformed protocols leads to an equivalence between the original protocols with nonces, we turn
decidability results for trace equivalence for an unbounded number of sessions but without nonces, such as the one de-
scribed in Chapter 5, into a sound terminating procedure to prove protocols with nonces. Even though the hypothesis
on simple protocols is still practical, it may be possible to extend it further to encompass more semantic definitions of
determinism, such as action-determinism [8]. Similarly, our definition of adequate theories focuses on theories with
destructors and constructors but can potentially be extended to more arbitrary theories, to the cost of a slight general-
isation of our transformation. More specifically, our transformation introduces one extra copy of each deleted nonce
to account for the simple structure of the rewriting rules which describe adequate theories such as encryption. When
dealing with more complex theories, adding more copies of the said nonce could allow us to extend our soundness
result. The most promising extension to this work yet lies into its application to bounds of different natures. In the
same way we bound the number of nonces to use when soundly checking trace equivalence, quantities like the number
of agents interacting in a protocol may also be soundly bounded with our approach [38].

Easing trace equivalence with typing

Chapter 4 offers a new typing result for trace equivalence of determinate protocols with symmetric encryption. Akin
to a previous result for reachability properties [6], it can be seen as an extension to trace equivalence with more
general typing systems, although for a smaller set of primitives. This typing result offers an important reduction in
the size of the search space to consider when checking for trace equivalence and provides the corner stone to the
decidability results of both Chapter 5 and Chapter 6. As this result is proven by designing a new decision procedure
to check equivalence for a bounded number of sessions which limits the amount of unification between terms by only
considering terms of the exact same type, a further application would be to apply this optimisation to existing tools
such as Apte [20] or Spec [65] to improve their performances. Another natural improvement is to extend the rewriting
rules we considered to include other standard primitives like asymmetric encryption, signatures or hashes. To do so,

108

we need to redefine the procedure we designed for a bounded number of sessions. In particular, while symmetric
encryption offers inversibility (as the encryption and decryption keys are identical) which greatly limits the amount of
unification to do in our algorithm, other primitives such as asymmetric encryption or signatures lack it, forcing us to
adapt this step of the algorithm. This extension would also most likely provide an extension to the decidability results
in Chapters 5 and 6.

A new decidable class: simple type-compliant protocols without nonces

Chapter 5 presents one of the first class of protocols for which trace equivalence is decidable for an unbounded number
of sessions. This class is made of simple, type-compliant protocols without nonces using symmetric encryption.
Simple tagged protocols without nonces form an interesting subclass of these. Although forbidding arbitrary nonces
seems unpractical, the result from Chapter 3 offers a practical and sound extension of this result to checking trace
equivalence for an unbounded number of sessions with nonces. As mentioned earlier, this result relies deeply on the
typing result from Chapter 4 and any extension of the original signature would likely carry over to the decidability
result. Another axis of research is more closely related to our proof method: by bounding the nonces and bounding
the size of terms thanks to typing, we were able to bound the total number of messages which can be generated in
a minimal witness of non-equivalence. This limitation seems to bring our process algebra closer to process algebra
without terms, such as CCS, for which some (unbounded) equivalences such as bisimulation are decidable [48] and
could constitute an interesting new approach to decidability if a tight bound on the number of terms can be computed.

A new decidable class: simple type-compliant acyclic protocols with nonces

Chapter 6 describes the first decidability result for trace equivalence for an unbounded number of sessions with nonces.
It does so by defining a practical class of simple type-compliant acyclic protocols, which can be thought as simple
acyclic tagged protocols. It introduces the notion of dependency graph to statically evaluate the high-level information
flow of a type-compliant protocol based on its specification to define acyclic protocols. This notion was independently
described in [47] to decide leakiness for tagged protocols. Relying on the typing result from Chapter 4, it supports only
symmetric encryption but still deals with a large number of protocols from the literature, and is likely to be extended at
the same time as the typing result. The notion of dependency graph is also prone to improvements: as it fundamentally
describes an over-approximation in the causal dependencies between actions in the specification of a protocol, and
introduces more edges than needed as a result, it can be refined, and pruned, by considering additional sources of
information, such as already proved security properties to refine the abstraction. This would for instance be profitable
when dealing with protocols using temporary secrets, which are currently considered cyclic. As secrecy properties can
be expressed as equivalence properties, this result also provides a new decidable class of tagged protocols for these
properties. Finally, Chapter 6 exposes an upper bound on the length of any minimal witness of non-equivalence (if
existing) and thus could be useful to turn existing tools for bounded trace equivalence into tools able to check for full
unbounded trace equivalence.

A new decidable class: ping-pong protocols without nonces

Chapter 7 also details one of the first class of protocols for which trace equivalence is decidable for an unbounded
number of sessions. It focuses on ping-pong protocols without nonces and without pairing to provide a two-way re-
duction between cryptographic protocols and generalised deterministic pushdown automata, linking trace equivalence
to the language equivalence of deterministic pushdown automata, proven to be decidable [63]. The reduction from
automata to protocols moreover offers a very general undecidability result for trace inclusion and equivalence, un-
derlying the inherent difficulty of finding interesting decidable classes. Looking at the complexity of the reductions
between these models, it offers some insight on the complexity of trace equivalence for ping-pong protocols. The
results from Chapter 7 also lead to a tool, Cpp2dpa, interfacing with the tool lAlBlC [51] for language equivalence
checking, to automatically check for trace equivalence between such protocols. Improvements can be made to offer

109

more efficient verification. A more theoretical approach to extend the class of protocols we consider would be to move
from traditional pushdown automata to automata with stacks of stacks or terms, for which deciding equivalence would
likely be more difficult.

Existing decidability results for equivalence for an unbounded number of sessions, including those presented in this
thesis, all rely on some determinism hypothesis, e.g. determinate or simple protocols, to be proven. These hypotheses
also constrain the process algebra which is considered, for instance frequently barring else branches. Unfortunately,
properties like untraceability rely on non-determinism in the protocol modelling to hold, as they are inherently related
to the ability for protocols to conceal their actions. To be able to prove this property, as well as a number of other
interesting properties for privacy, one would need to design new classes, and new proof methods, for the equivalence
of non-deterministic protocols.

Despite the new decidability results offered by this thesis, their direct application to fully deployed cryptographic
protocols still suffers from the high complexity cost of all the procedures designed so far. Even when accounting
for the increase in raw computing performance of computers, scalability is a deep issue for protocol verification.
Composition results [36] offer a possible approach, and, in general, considering modelling and proof frameworks with
built-in composability seems like a fruitful direction.

In the process of designing and proving new classes of protocols for which equivalence is decidable, one crucial
point lies in the choice of the restrictions to use. They should be practical enough to include as many realistic protocols
and still provide a theoretical edge to prove decidability. Tagging schemes, and the generalisation we proposed with
type-compliant protocols, along with typing results offer a great example of such a combination and lead to power-
ful results for both reachability and equivalence properties. To obtain more comprehensive decidability results, and
possibly results effectively compatible with tool support, a promising approach would be to deepen our understanding
of the structure of protocols and translate it into structures which enable powerful methods to be applied on them.
Dependency graphs as described in Chapter 6 and [47] are probably a first step in that direction.

110

Bibliography

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th Symposium on

Principles of Programming Languages (POPL’01). ACM Press, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and Compu-

tation, 148(1):1 – 70, 1999.

[3] M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic protocols. IEEE Trans. Software

Eng., 22(1):6–15, 1996.

[4] R. Amadio and W. Charatonik. On name generation and set-based analysis in the Dolev-Yao model. In 13th Int.

Conference on Concurrency Theory (CONCUR’02), 2002.

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity using the applied pi
calculus. In 23rd Computer Security Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society
Press, 2010.

[6] M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In 27th Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS’07), 2007.

[7] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal analysis of SAML 2.0 web
browser single sign-on: breaking the saml-based single sign-on for google apps. In Proceedings of the 6th ACM

Workshop on Formal Methods in Security Engineering, FMSE 2008, Alexandria, VA, USA, October 27, 2008,
pages 1–10, 2008.

[8] D. Baelde, S. Delaune, and L. Hirschi. Partial order reduction for security protocols. In L. Aceto and D. de Frutos-
Escrig, editors, Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of Leibniz International Proceedings in Informatics, pages 497–510, Madrid, Spain, Sept. 2015.
Leibniz-Zentrum für Informatik.

[9] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The bedwyr system for model checking over syntactic
expressions. CoRR, abs/cs/0702116, 2007.

[10] D. Basin, J. Dreier, and R. Sasse. Automated symbolic proofs of observational equivalence. In ACM CCS, page ?
ACM, 2015.

[11] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proceedings of the 12th ACM

Conference on Computer and Communications Security, CCS ’05, pages 16–25, New York, NY, USA, 2005.
ACM.

[12] M. Baudet. Deciding security of protocols against off-line guessing attacks. In 12th ACM Conference on Com-

puter and Communications Security (CCS’05). ACM Press, 2005.

111

[13] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In 14th Computer Security

Foundations Workshop (CSFW’01). IEEE Computer Society Press, 2001.

[14] B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equivalences for Security Protocols.
In 20th Symposium on Logic in Computer Science, 2005.

[15] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination. In Founda-

tions of Software Science and Computation Structures (FoSSaCS’03).

[16] S. Boehm and S. Goeller. Language equivalence of deterministic real-time one-counter automata is nl-
complete. In Proceedings of the 36th International Symposium on Mathematical Foundations of Computer

Science (MFCS’11), volume 6907 of LNCS, pages 194–205, 2011.

[17] M. Boreale, R. D. Nicola, and R. Pugliese. Proof techniques for cryptographic processes. SIAM Journal on

Computing, 31(3):947–986, 2001.

[18] M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for RFID systems. In 23rd

Computer Security Foundations Symposium (CSF’10), 2010.

[19] R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of cryptographic pro-
tocols. In 21th European Symposium on Programming (ESOP’12), LNCS.

[20] V. Cheval. APTE: an algorithm for proving trace equivalence. In Tools and Algorithms for the Construction

and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings,
pages 587–592, 2014.

[21] V. Cheval and B. Blanchet. Proving more observational equivalences with proverif. In D. Basin and J. Mitchell,
editors, Proceedings of the 2nd International Conference on Principles of Security and Trust (POST’13), volume
7796 of Lecture Notes in Computer Science, pages 226–246, Roma, Italy, Mar. 2013. Springer Berlin Heidelberg.

[22] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests and non-determinism.
In 18th ACM Conference on Computer and Communications Security.

[23] R. Chrétien, V. Cortier, and S. Delaune. From security protocols to pushdown automata. In 40th Int. Colloquium

on Automata, Languages and Programming (ICALP’13), 2013.

[24] R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free in security protocols: the case of equivalence
properties. In Proceedings of the 25th International Conference on Concurrency Theory (CONCUR’14), volume
8704 of LNCS, pages 372–386, Rome, Italy, Sept. 2014. Springer.

[25] R. Chrétien, V. Cortier, and S. Delaune. Checking trace equivalence: How to get rid of nonces? In P. Ryan
and E. Weippl, editors, Proceedings of the 20th European Symposium on Research in Computer Security (ESOR-

ICS’15), Lecture Notes in Computer Science, Vienna, Austria, Sept. 2015. Springer. To appear.

[26] R. Chrétien, V. Cortier, and S. Delaune. Decidability of trace equivalence for protocols with nonces. In Pro-

ceedings of the 28th IEEE Computer Security Foundations Symposium (CSF’15). IEEE Computer Society Press,
June 2015. To appear.

[27] R. Chrétien, V. Cortier, and S. Delaune. From security protocols to pushdown automata. ACM Transactions on

Computational Logic, 2015. To appear.

112

[28] R. Chrétien and S. Delaune. Formal analysis of privacy for routing protocols in mobile ad hoc networks. In
D. Basin and J. Mitchell, editors, Proceedings of the 2nd International Conference on Principles of Security

and Trust (POST’13), volume 7796 of Lecture Notes in Computer Science, pages 1–20, Rome, Italy, Mar. 2013.
Springer.

[29] S. Christensen, H. Huttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free processes.
Information and Computation, 121(2):143 – 148, 1995.

[30] J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0, 1997.

[31] H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic and applica-
tion to cryptographic protocols. In 14th International Conference on Rewriting Techniques and Applications

(RTA’2003), volume 2706 of LNCS. Springer, 2003.

[32] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proc. of the 12th European

Symposium On Programming (ESOP’03), volume 2618 of LNCS, pages 99–113. Springer Verlag, April 2003.

[33] H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence. In 15th ACM Confer-

ence on Computer and Communications Security (CCS’08). ACM Press, 2008.

[34] H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for cryptographic protocols. Ap-
plication to key cycles. ACM Transactions on Computational Logic (TOCL), 11(4), 2010.

[35] V. Cortier and S. Delaune. A method for proving observational equivalence. In 22nd IEEE Computer Security

Foundations Symposium (CSF’09). IEEE Computer Society Press, 2009.

[36] V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System Design, 34(1):1–36,
Feb. 2009.

[37] V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of ballot secrecy. Journal of Computer

Security, 21(1):89–148, 2013.

[38] A. Dallon. Reducing the number of agents in equivalence properties. Rapport de Master, 2015.

[39] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic voting protocols. Journal

of Computer Security, (4):435–487, July 2008.

[40] S. Delaune, M. D. Ryan, and B. Smyth. Automatic verification of privacy properties in the applied pi-calculus.
In IFIPTM’08: 2nd Joint iTrust and PST Conferences on Privacy, Trust Management and Security, volume 263
of International Federation for Information Processing (IFIP), pages 263–278. Springer, 2008.

[41] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communication of the ACM,
24(8):533–536, 1981.

[42] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science. Elsevier, 1990.

[43] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information Theory,
29(2):198–207, 1983.

[44] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security protocols. In Workshop

on Formal Methods and Security Protocols, Trento, Italia, 1999.

[45] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In 24th Annual Symposium on

Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 34–39, 1983.

113

[46] E. P. Friedman. The inclusion problem for simple languages. Theor. Comput. Sci., 1(4):297–316, 1976.

[47] S. Fröschle. Leakiness is decidable for well-founded protocols? In Proceedings of the 4th Conference on Prin-

ciples of Security and Trust (POST’15), Lecture Notes in Computer Science, London, UK, Apr. 2015. Springer.

[48] J. F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra. Information and Computation,
115:354–371, 1991.

[49] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In 13th Computer Security

Foundations Workshop (CSFW’00). IEEE Comp. Soc. Press, 2000.

[50] P. Henry and G. Sénizergues. Lalblc a program testing the equivalence of dpda’s. In 18th International Confer-

ence on Implementation and Application of Automata (CIAA 2013), volume 7982 of Lecture Notes in Computer

Science, pages 169–180, Halifax, NS, Canada, 2013. Springer.

[51] P. Henry and G. Sénizergues. Lalblc a program testing the equivalence of dpda’s. In CIAA, pages 169–180, 2013.

[52] ICAO. Machine readable travel document. Technical Report 9303, International Civil Aviation Organization,
2008.

[53] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In T. Margaria and
B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume
1055 of LNCS, pages 147–166. Springer-Verlag, march 1996.

[54] G. Lowe. Towards a completeness result for model checking of security protocols. In Proc. of the 11th Computer

Security Foundations Workshop (CSFW’98). IEEE Computer Society Press, 1998.

[55] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In Pro-

ceedings of the 8th ACM Conference on Computer and Communications Security, CCS ’01, pages 166–175, New
York, NY, USA, 2001. ACM.

[56] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In 8th ACM

Conference on Computer and Communications Security, 2001.

[57] D. L. Mitchell, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. 1999.

[58] R. Needham and M. Schroeder. Using encryption for authentification in large networks of computers. Commu-

nications of the ACM, 21(12):993–999, 1978.

[59] D. J. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems Review, 21(1):8–10,
1987.

[60] R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with unbounded nonces as well. In 23rd

Conference of Foundations of Software Technology and Theoretical Computer Science (FSTTCS’03), LNCS,
pages 363–374. Springer, 2003.

[61] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer. A formal definition of protocol indistinguishability and
its verification using Maude-NPA. In Security and Trust Management - 10th International Workshop, STM 2014,

Wroclaw, Poland, September 10-11, 2014. Proceedings, pages 162–177, 2014.

[62] G. Sénizergues. The equivalence problem for deterministic pushdown automata is decidable. In 24th Int. Coll.

on Automata, Languages and Programming (ICALP’97), LNCS, 1997.

114

[63] G. Sénizergues. L(A)=L(B)? Decidability results from complete formal systems. Theor. Comput. Sci., 251(1-
2):1–166, 2001.

[64] C. Stirling. Deciding DPDA equivalence is primitive recursive. In 29th International Colloquium on Automata,

Languages and Programming ICALP’02, LNCS. Springer, 2002.

[65] A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi calculus. In 23rd IEEE Computer

Security Foundations Symposium (CSF’10), pages 307–321, 2010.

[66] A. Tiu, R. Goré, and J. E. Dawson. A proof theoretic analysis of intruder theories. Logical Methods in Computer

Science, 6(3), 2010.

115

Appendix A

Well-typed executions

Section A.1 will focus on the proof of completeness of the said procedure, as stated in Proposition 4.2.3 later in the
appendix. Section A.2 will provide the complete proofs of Proposition 4.1.1 and Theorem 4.1.1.

A.1 Proof of Proposition 4.2.3

The proof of Proposition 4.2.3 requires a number of technicalities so as to reduce a concrete witness of non-equivalence
between two protocols into a valid output of the algorithm described in Section 4.2. In particular, recipes used by the
attacker to discriminate between two frames need to be modified to be proper tests in the symbolic frames introduced by
the said algorithm. Section A.1.1 will deal with this aspect; while Section A.1.2 will define a more operational notion
of static equivalence and formally link symbolic traces from the algorithm to concrete executions of the protocols,
which will be needed to finally prove Proposition 4.2.3.

A.1.1 Simplifying recipes

In this section, we present how equalities between arbitrary recipes can be transformed into a set of equalities between
recipes sharing interesting properties, defined in the next definitions. In the following, φ and represent two (concrete)
frames, while φS and S are two symbolic frames such that φ = φSλP and = SλQ, where λP = (✓φ)# and
λQ = (✓)# and ✓ is a substitution such that (vars(φS)[vars(S)) ✓ dom(✓) and img(✓) ✓ T0(Σ,Σ0[W). These
relations are justified later by Lemmas A.1.14 and A.1.16 in Section A.1.2.

The notions of precompact and compact recipes restrict the tests that can be made by the attacker when trying to
distinguish between two frames. Lemma A.1.13 in Section A.1.2 will prove later this is not, in our setting, an actual
restriction.

Definition A.1.1 (precompact recipe). Given a frame φ, a recipe R is said to be φ-precompact if:

• Rφ# is a message

• R contains only destructors

• Rφ# is neither a pair nor an encryption by a key deducible in φ

We now introduce the notion of symbolic second-order trace, which is helpful to reason on the objects generated
in the decision algorithm of Section 4.2.

Definition A.1.2. (trS ,φS) is a symbolic second-order trace of a protocol P if there exists a bijective renaming ⇢ from
vars(trSφS#) such that (trS⇢,φS⇢) 2 trace(P). In that case, φS is called a symbolic frame.

116

Definition A.1.3 (compact recipe). Given a symbolic frame φS , R is said to be φS-compact if R is φS-precompact
and RφS# is not a variable.

A recipe R is said to be destructor-only if R 2 T (Σd,Σ0 [W [X), i.e. contains no constructor.
We introduce a new predicate on recipe, msg, with the natural semantics: φ |= msg(R) if Rφ# is a message (with

or without variables, i.e. an element of T0(Σc,Σ0 [N [X)). Given a term, we introduce a rightmost-first order on
its positions, which corresponds to the anti-lexicographic order on positions in a term, denoted by <. ⌧ denotes the
order on positions such that p ⌧ q iff q is a strict prefix of p. Note that: p ⌧ q) p < q. We will sometimes refer to
a term as the rightmost term verifying a property, i.e. the term verifying this property whose position is the lowest by
the < order.

Definition A.1.4 (transformation of concrete recipes for φ). Given φ, a destructor-only recipe R, φS and ✓ as intro-
duced earlier, we define this transformation T as follows:

• if there exists R0 2 st(R) such that R = C[R0] and R0 is the rightmost recipe verifying one the following two
conditions:

1. if R0 = dec(R1, R2) and there exists a variable x such that R1φS# = enc(t, x) and R2 6= x for some term
t, then T (R,R) = (C[dec(R1, x)],R [{msg(dec(R1, x))})

2. else, and if there exists a variable y such that R0φS# = y and R0 6= y, then T (R,R) = (C[y✓]+,R[{R0 =
y})

• if no such recipe exists, T (R,R) = (R,R);

where + is the normal form associated to the rewriting rules ⇡i(hx1, x2i) ! xi and dec(enc(x, y), z) ! x.

We denote the iterated application of T to (R, ;) by T ⇤(R) or T m(R) (when iterated m times).
The iterated transformation T ⇤ aims at transforming a φ-precompact recipe (which is still a quite general class

of recipes) into a φS-compact recipe, i.e. a recipe which can reduce properly in a symbolic frame and will satisfy
somewhat similar equalities. The next lemmas will gradually prove the properties we need for T ⇤, ultimately ending
with Lemmas A.1.10, A.1.11 and A.1.12.

Lemma A.1.1 (consistency of R). Let R be a destructor-only recipe, T ⇤(R) = (R⇤,R): if Rφ# is a message,
φS |= R.

Proof. A test msg(dec(R, x)) or R = x is added to R in Definition A.1.4 only if RφS# = enc(t, x) where t is a term
(in the first case) or if RφS# = x (in the second case). As φS only contains symbolic messages in its image; t has to
be a symbolic message.

This lemma witnesses the fact that the equalities we insert in R, which correspond to equalities holding in the
concrete frame, actually hold in its symbolic version. Lemmas A.1.2 and A.1.3 witness rather general properties of
destructor-only recipes and of the + reduction.

Lemma A.1.2. If R is a recipe such that Rφ# is a message, then R+φ# = Rφ#

Proof. If Rφ# is a message, every reduction step of the form dec(enc(x, y), z)) x in an innermost derivation in R+
happens with yφ = zφ and is then actually a reduction step of the form dec(enc(x, y), y) ! x in Rφ.

Lemma A.1.3. If R is a destructor-only recipe and φ a frame such that Rφ# is a message, then for every subterm R0

of R, R0φ# is a message.

Proof. Suppose there exists a highest (in terms of position, i.e. closest to the root) subterm R0 of R such that R0φ#
is not a message and R = C[R0] (and C is linear). Let us proceed by induction on C to show that C[R0]φ# is not a
message either. Note that, because R is destructor-only, we only consider C to be destructor-only.

117

• C = _: then R = R0 and Rφ# is not a message.

• C = proji(C
0) and C 0[R0]φ# is not a message: then proji(C

0[R0])φ# will not be a message either.

• C = dec(R00, C 0), C 0[R0]φ# and C 0[R0]φ# is not a message. For C[R0]φ# to be a message, it would require
R00φ# = enc(s, C 0[R0]φ#) for some message s. As φ only contains messages in its image and enc(s, C 0[R0]φ#)
is not one (C 0[R0]φ# is not a message) the enc function symbol would need to appear in C, which is destructor-
only: contradiction. Hence C[R0]φ# is not a message.

• C = dec(C 0, R00), C 0[R0]φ# is not a message: C[R0]φ# being a message would imply C 0[R0]φ# = enc(s,R00φ#)
for some term s. As before, because φ contains only messages in its image and C 0[R0]φ# is not, the enc symbol
need to occur in C 0[R0] which is destructor-only, as a subterm of R.

Thus every subterm R0 of R is such that R0φ# is a message.

Lemma A.1.4 (preservation of normal forms). If R is a destructor-only recipe, (R✓)φ# is a message, (R̄,R) = T (R),
then (R✓)φ# = (R̄✓)φ#.

Proof. Using the notations introduced in Definition A.1.4, R = C[R0], R0 is the rightmost subterm of R verifying one
of the two conditions of T .

1. if R0 = dec(R1, R2), R1φS# = enc(t, x) and R2 6= x: R̄ = C[dec(R1, x)]. We have that R̄✓ = C[dec(R1✓, x✓)]✓.
And thus (R̄✓)φ# = (C[dec(R1✓, x✓)]✓)φ# = (C[t✓]✓)φ#. As R1φS# = enc(t, x) and (R✓)φ# is a message,
(R0✓)φ# is a message too (Lemma A.1.3) and (R0✓)φ# = (R1✓φ)# = t✓φ. Hence (C[t✓]✓)φ# = (C[R0]✓)φ# =
(R✓)φ#, giving the result.

2. else, and if R0φS# = y and R0 6= y: R̄ = C[y✓]+. We have y✓φ# = (R0✓)φ#. Indeed, as R0φS# =
y, R0φS#✓φ# = y✓φ#. Then (R0✓)φ# = y✓φ#, as φ = φSλP (works with = SλQ too, thanks to
Lemma A.1.16). To conclude, we show that (R✓)φ# = (C[(R0✓)φ#]✓)φ#, and as (R✓)φ# is a message and
by Lemma sA.1.2, this is equal to (C[y✓φ#]✓)φ# = (C[y✓]✓)φ# = (C[y✓]+✓)φ# = (R̄✓)φ#.

This lemma proves that the transformation T , from the point of view of the concrete frame, does not alter the
normal form of tests (up to a particular substitution ✓). Previous lemmas are stated with φ and φS , but can be symmet-
rically applied with and S . When the context is not obvious, we will denote by Tφ the transformation introduced
at Definition A.1.4 when applied with φS , and T when applied with S .

Lemma A.1.5 (termination of T ⇤). T is deterministic and T ⇤(R) is well-defined.

Proof. Introduce an ordering on variables based on how soon they appear in the trace (trS ,φS) and consider the
induced multi-set order <var. The second item in Definition A.1.4 strictly reduces this measure. Now consider the
number of destructor of a (destructor-only) recipe R, plus the number of variables in dom(φ) (without counting
the variables in dom(✓)). Let <size be the order induced by this measure. The first item in Definition A.1.4 strictly
reduces this measure. Finally, let < be the lexicographical order built on (<var, <size). The transformation T decreases
its induced measure.

Lemmas A.1.6, A.1.7 and Corollary A.1.1 provide the general invariants for the transformation T : mostly that it
operates locally, does not introduce new constructors and preserves the fact for a subterm of being a message.

Lemma A.1.6. If R is φ-precompact, then for every n 2 N, T n
φ (R) is destructor-only.

Proof. Suppose there exists n0 2 N such that Rn0
= T n0(R) contains a constructor c at position p. Let us further

assume p is the highest position where a constructor occurs.

118

• if p = ✏: as (Rn0
✓)φ# = Rφ# by Lemma A.1.4, R cannot be φ-precompact,

• if p > ✏ and c = h_, _i: c occurs below a destructor d (as p is the highest position a constructor can appear).

– If d = proji for i 2 {1, 2}: as R is destructor-only, c is introduced by a replacement C[y✓]+ and because
proji(hx1, x2i)) xi, c would have been reduced.

– If d = dec and c is in plaintext position of d: if c is not reduced, (Rn0
✓)φ# is not a message, then

(Rn0
✓)φ# = Rφ#, by Lemma A.1.4, implies Rφ# is not a message either, and thus not φ-precompact.

– Else, if d = dec and c is in key position of d: the key is not atomic, and similarly Rφ# is not a message,
and thus not φ-precompact.

• if p > ✏ and c = enc(_, _): the same reasoning as the previous case can be applied (interverting the first two
subcases).

Hence Rn0
cannot contain constructors if R is φ-precompact.

Lemma A.1.7. Let Rinit be a destructor-only recipe and R = T n
φ (Rinit). If R = C[R0]p, R is destructor-only, (R0✓)φ#

is a message and p is lesser w.r.t. < than the next position where Tφ is applied on R, then R|qφS# is a message for any
q ⌧ p or q = p.

Proof. We prove by induction that R|qφS# is a message.

• if R|q = w, wφS is a message,

• if R|q = x, xφS = x is a message,

• if R|q = enc(R1, R2) or R|q = hR1, R2i, R1φS# and R2φS# are messages by induction hypothesis, then
R|qφS# is a message too,

• if R|q = proji(R
00) and R00φS# is a message:

– if R00φS# = x for some variable x: a variable in R00 can only be introduced in key position of a dec, not a
proji, impossible.

– if R00φS# = hR1, R2i: then proji(hR1, R2i)φS# is a message,

– if R00φS# = enc(u, v): as (R00✓)(φSλP)# = (R00✓)φ#, there exist u0, v0 two terms such that (R00✓)φ# =
enc(u0, v0). Thus (proji(R

00)✓)φ# is not a message, and (R0✓)φ# is not a message either, by Lemma A.1.3
as R is destructor-only. Contradiction.

• if R|q = dec(R1, R2), R1φS# and R2φS# are messages:

– if R1φS# = x for some variable x: a variable can only occur in a key position, impossible. Either R1 = x,
which can only occur in a key position, impossible; or R1 6= x and R1φS# = x, in which case T would
be applied at position q.1 < p

– if R1φS# = hu, vi: see the third point of the previous case.

– if R1φS# = enc(u, x) for some term u and some variable x. By Definition A.1.4, as T was applied at
position q, R2 = x and dec(R1, x)φS# is a message.

– if R1φS# = enc(u, k) for some term u and some non-variable atom k: then R2φS# 6= x for any variable x,
as R2 is a position lesser than p. Thus R2φS# = k0 for some atom k0, and R2φ# = k0 as k0 is not a variable.
Similarly R1φ# = enc(u0, k) for some term u0. (R✓)φ# is a message implies (as R is destructor-only and
by Lemma A.1.3) k = k0 and that dec(R1, R2)φS# is a message too.

119

Corollary A.1.1. Let Rinit be a destructor-only recipe and R = T n
φ (Rinit). If R = C[R0]p, R is destructor-only,

(R0✓)φ# is a message and Tφ(R) = (R,R) then R|qφS# is a message for any q ⌧ p or q = p.

Proof. Same proof as Lemma A.1.7, except we invoke the fact the transformation does not alter R any more in cases
where we derive an impossibility.

The following lemma intends to show that equalities between transformed test T ⇤(R) actually correspond to the
unification performed by the algorithm at step 2. Indeed, the normal forms of φS-compact recipes are encrypted
subterms that can be unified in this step.

Lemma A.1.8 (compacification effect of T ⇤). With previous notations, if T ⇤(R) = (R⇤,R): if R is φ-precompact
then R⇤ is φS-compact.

Proof. As R is φ-precompact, by Lemma A.1.6, any (iterated) application of Tφ to R yields a destructor-only recipe.
We then use Lemma A.1.7 repeatedly and finally Corollary A.1.1 with p = ✏ (the root position) and for q = p to
conclude R⇤φS# is a message. Invoking Lemma A.1.4 at each step finally gets us Rφ# = (R⇤✓)φ#. As (R⇤✓)φ# =
R⇤φS#λP , we can conclude that R⇤φS# is not a pair nor an encryption with a deducible key (for the latter, consider
the case where R⇤φS# = enc(u1, u2): as R is φ-precompact, u2λP is not deducible in φ; but if u2 were deducible in
φS , u2λP would be in φ [λP , and thus in φ. Contradiction).

Lemma A.1.9 (uniformity of T). Let φ, φS , , S be as introduced, R be a destructor-only recipe, T ⇤
φ (R) = (R⇤

1,R1)
and T ⇤

 (R) = (R⇤
2,R2). If S |= R1 and φS |= R2, then R⇤

1 = R⇤
2.

Proof. Let (Rk1 ,R
k
1) = T k

φ (R) and (Rk2 ,R
k
2) = T k

 (R) be the iterated application of T with both symbolic frames.
We will prove inductively that Rk1 = Rk2 and Rk

1 = Rk
2 .

• for k = 0, the initial recipe, R, is identical in both cases and R0
1 = ; = R0

2.

• Let us assume we obtained the result up to some k: Rk1 = Rk2 = Rk. Note that Rk
i ✓ Ri for i 2 {1, 2} implies

φS |= Rk
2 and S |= Rk

1 . Suppose now that Rk = C[R0]|p and p is the lowest position w.r.t. < such that any of
the two rules in Definition A.1.4 can apply with either φS or S . For instance, suppose it is true for φS :

1. if R0 = dec(R1, R2), there exist a variable x and a term t such that R1φS# = enc(t, x), R2 6= x,
then Rk+1

1 = C[dec(R1, x)]p and Rk+1
1 = Rk [{msg(dec(R1, x))}. As S |= R1 and Rk+1

1 ✓ R1,
 S |= msg(dec(R1, x)). Hence R1 S# = enc(s, x) for some term s and the same rule of T can be
applied at the same position, and will, as p is the lowest position where a rule of T is applicable for both
symbolic frames, and then: Rk+1

2 = Rk+1
1 and Rk+1

2 = Rk+1
1 .

2. If there exists a variable y such that R0φS# = y and R0 6= y, then Rk+1
1 = C[y✓]+ and Rk+1

1 =
Rk [{R0 = y}. As S |= R1 and Rk+1

1 ✓ R1, S |= R0 = y, i.e. R0 S# = y. The same rule of T can
thus be applied at the same position, and will, as p is the lowest position where a rule of T is applicable
for both symbolic frames, and then: Rk+1

2 = Rk+1
1 and Rk+1

2 = Rk+1
1 .

The case where p corresponds to a position w.r.t. S is handled symmetrically.

Applying that result for n such that T ⇤
φ (R) = T n

φ (R) leads to the final result.

The next two lemmas finally ensure T ⇤ does not alter the equalities in any nefarious way. Together they demon-
strate that if a test holds in a concrete concrete frame, the transformed equality, up to a unification performed at step 2
of the algorithm, will hold in the symbolic frame.

120

Lemma A.1.10 (soundness of T ⇤). Let R1, R2 be two destructor-only recipes, , S , λQ be as expected, (R⇤
1,R1) =

T ⇤
 (R1) and (R⇤

2,R2) = T ⇤
 (R2). Then, for any i 2 {1, 2}, Ri # = R⇤

i SλQ#; and thus R⇤
1 S# = R⇤

2 S# implies
R1 # = R2 #.

Proof. Iteration of Lemma A.1.4 gives Ri # = (R⇤
i ✓) #; and we assumed = SλQ with λQ = (✓)#. Hence,

R⇤
i SλQ# = (R⇤

i ✓) S(✓)# = (R⇤
i ✓) # = Ri #.

Lemma A.1.11 (completeness of T ⇤). Let R1, R2 be two φ-precompact recipes, φ, φS , λP be as expected, (R⇤
1,R1) =

T ⇤
φ (R1) and (R⇤

2,R2) = T ⇤
φ (R2). Then: R1φ# = R2φ# implies there exists σ which is a mgu of two φS-compact

recipes in φS such that R⇤
1φSσ# = R⇤

2φSσ#.

Proof. Iteration of Lemma A.1.4 gives Riφ# = R⇤
i φ#; and we assumed that φ = φSλP . Then, R1φ# = R2φ# is the

same as R⇤
1φSλP # = R⇤

2φSλP #. Thus σ = mgu(R⇤
1φS , R

⇤
2φS) 6= ?. As R⇤

1 and R⇤
2 are φS-compact (Lemma A.1.8),

we are done.

Unfortunately, the transformation T may, in some cases, transform a recipe reducing to a term which was not a
message into a new recipe reducing to a symbolic message. The next lemma ensures these special case can be handled
in the main proof of completeness of the algorithm.

Lemma A.1.12 (preservation of messages). Let φ, φS , , S be as expected, R a φ-precompact recipe such that
T ⇤
φ (R) = (R⇤,R1), S |= R1, T ⇤

 (R) = (R⇤,R2) and φS |= R2. If Rφ#, R⇤φS#, R⇤ S# are messages but R # is
not, then there either exist R0

1 and R0
2 two φ-precompact recipes such that R0

1φ# = R0
2φ# and R0

1 # 6= R0
2 # or there

exists a φS-compact recipe R0 such that R0φS# is a message but R0 S# is not.

Proof. Let p be the minimal position in R of a destructor d which is not reduced in R #. Suppose T ⇤(R) = T n(R)
(note that Lemma A.1.9 guarantees that T = Tφ when applied on R). Let Ri be a shortcut for the first argument of
T i(R). Let q1, q2, . . . , qn be the successive positions where T is applied; and i0 2 {1, . . . , n} such that 80  j <
i0, (Rj✓) # contains d at position p and (Ri0✓) # does not. Let P be the set of positions in R. We define a partition
of P as follows:

P = {p} [P1 [P2 [P3 [P4 [P5

where:

• P1 is the set of positions on the "plaintext line" of p (always-leftmost children of p),

• P2 is the set of positions q such that q < p and q /2 P1,

• P3 is the set of strict parents of p,

• P4 is the set of always-leftmost children of elements of P3 which are not in P3 [P1 [{p},

• P5 is the set of positions greater than p w.r.t. < which are not in P3 nor P4.

The core argument of this proof relies on a disjunction on the nature of qi0 :

• if qi0 2 P2 [P5: impossible, as any transformation by T at these positions cannot affect anything at position p.
Indeed all these elements appears below a key position, i.e. a position which is the key of some dec.

• qi0 = p: impossible, as if T were applied at this position, it would require Ri0−1|p S# to be some variable x,
and thus (Ri0−1✓) # would not contain d (as = SλQ).

• qi0 2 P1: by definition of i0, (Ri0−1✓) # contains d at position p while (Ri0✓) # does not and qi0 < p (by
definition of P1). Let Ri0−1 = C[R0]qi0 . Because T is applied at qi0 and d deleted at this step, necessarily
R0 S# = x for some variable x and Ri0 = C[x✓]qi0+; and d is deleted through the +-reduction. Two cases can
occur a priori:

121

– d = proji. In that case, the same reductions appear with φ: hence x✓ has to contain the pair which is
deleted by d, and as recipes are the same no matter the frame we consider, the same reduction could occur
in , hence d would not occur in R # (We use Lemma A.1.4 to get the preservation of normal forms
through the process). Impossibility.

– d = dec. Then there exists a recipe in the key position of d at position p.2 < p: R00
2 . Because (R00

2 ✓) #
is a message (minimality of p) and Lemma A.1.7 (third item, p.2 < qi0), R00

2 S# is a message. As R
is φ-precompact and by Lemma A.1.6, R00

2 is destructor-only. Note that R00
2 may contain variables in

key positions, due to the first item of Definition A.1.4. Because keys are atomic, for each variable in key
position x, xλP and xλQ are atomic, thus there exist destructor-only recipe Rx for each of them. So
we define R0

2 = R00
2 [Rx/x]. R0

2 is now φ-precompact, (R00
2 ✓) # = R0

2# and (R00
2 ✓)φ# = R0

2#φ. As
+-reduction only occurs at recipe level, there also exists a recipe R0

1 for the encryption key used by the
constructor reduced by d. Because keys are atomic, we also can always assume R0

1 to be φ-precompact in
this setting. We now show that R0

1 # 6= R0
2 # and R0

1φ# = R0
2φ#. These equalities are derived from the

fact that R # still contains d but Rφ# is a message. Hence we obtain two recipes as in the statement of
the lemma.

• qi0 2 P3: then Ri0−1|qi0 .1 S# = enc(t, x) for some term t and variable x, and p ⌧ qi0 .2 (or else Ri0−1|qi0 .1 S#
would not reduce if it included d). We get that Ri0 = C[dec(Ri0−1|qi0 .1, x)]qi0 . Let R0 = Ri0−1|qi0 .2.
In particular, p is a position of R0. As qi0 .2 < qi0 , R0 is φS-compact (Lemmas A.1.6 and A.1.7). We
now want to show that R0 S# is not a message: as (R0✓) # contains d by definition, if R0 S# did not,
R0 S#λQ# = (R0✓) # would not either, which contradicts our hypothesis. Hence we get our recipe R0 as in
the second case of the statement of the lemma.

• qi0 2 P4: we apply the same reasoning as if qi0 2 P3, except for the fact it is now the second rule of
Definition A.1.4 which is applied at qj0 , where qj0 the longest common prefix of qi0 and p, and necessarily
Ri0−1|qj0 = dec(Rl, Rr). If it were a proji, j0 would not be the longest common prefix.

Thus the result for any position qi0 , and the existence of such recipes in general.

A.1.2 Decision for bounded protocols

Here we detail how symbolic traces can be formally linked to the concrete executions of the protocol so as to properly
prove Proposition 4.2.3.

First, rather than deal with the usual notion of static equivalence or inclusion (i.e. only the direct implications in
Definition 2.4.1), we use a variation which we prove to be equivalent in the next lemma.

Lemma A.1.13 (alternative definition of static inclusion). We say that φ1 v0 φ2 if:

• for every φ1-precompact recipe M , if Mφ1# is an atom, then Mφ2# is an atom,

• for every φ1-precompact recipe M , Mφ2# is a message,

• for every φ1-precompact recipe M and N , if Mφ1# = Nφ1# then Mφ2# = Nφ2#.

and similarly, φ1 ⇠0 φ2 if φ1 v0 φ2 and φ2 v0 φ1.
Then φS v φ2 if, and only if, φ1 v0 φ2.

Proof. We need to show that φ1 v φ2 if, and only if, φ1 v0 φ2, where v denotes the static inclusion, i.e. only the
direct implications in Definition 2.4.1. The implication φ1 v φ2) φ1 v0 φ2 is direct, as this definition only examine
fewer tests than the original one and the ability for the attacker to test whether a recipe R reduces to an atom is already
ensured by tests of the form dec(enc(w1, R)) = w1. So let us consider the converse implication, and assume that

122

φ1 v0 φ2 and suppose φ1 6v φ2. We proceed by induction on recipes, proving our transformation of a single recipe or
a pair of recipes strictly decreases the number of constructors (in the single recipe or the sum for pairs). We claim that
if we have a witness of static non-inclusion, there is a recipe or a pair of recipes which are destructor-only witnessing
that. In the following, M will denote a recipe such that Mφ1# is a message but Mφ2# is not; M1 and M2 will denote
two recipes such that Miφj# is a message for i, j 2 {1, 2}, M1φ1# = M2φ2# but M1φ2# 6= M2φ2#; and C will be a
linear destructor-only context. Let n be the number of constructors in M or the sum of the number of constructors in
M1 and M2.

• If n = 0: M (resp. M1 and M2) is destructor-only,

• M contains pairing:

1. M = C[dec(hM0
1 ,M

0
2 i,M

0
3)]: impossible, as Mφ1# would not be a message,

2. M = C[proji(hM
0
1 ,M

0
2 i)]: then M 0 = C[M0

i] has strictly less than n constructors, is a message in φ1 but
still not in φ2,

3. M = hM0
1 ,M

0
2 i: then there exists i 2 {1, 2} such that M0

i is a message in φ1 while not in φ2; and M0
i

contains strictly less than n constructors,

• M contains encryption:

1. M = enc(M0
1 ,M

0
2): three subcases must be examined:

(a) if M0
2φ2# is a message and is not an atom: then M0

2 contains strictly less than n constructors; and
M0

2φ1# is an atom (as M reduces to a message in φ1),
(b) else, if M0

2φ2# is not a message: M0
2 contains strictly less than that n constructors,

(c) else, if M0
2φ2# is an atom: then M0

1 is a message in φ1 but not in φ2 and contains strictly less than n
constructors,

2. M = C[proji(enc(M
0
1 ,M

0
2))]: impossible, as Mφ1# would not be a message,

3. M = C[dec(enc(M0
1 ,M

0
2),M

0
3)]: in particular, M0

2φ1# = M0
3φ1#. If M0

2 and M0
3 are both messages

in φ2 and M0
2φ2# 6= M0

2φ2#: the pair (M0
2 ,M

0
3) contains n − 1 constructors and is a witness of non-

inclusion. Else, if M0
i φ2# is not a message for some i 2 {2, 3}, then it contains strictly less than n

constructors. In the remaining case, M0
1φ2# is not a message, and contains strictly less than n constructors,

• M1 contains pairing (or symmetrically, M2 contains pairing), using the same numbering as the case where M
did contain pairing:

1. this case cannot happen,

2. C[M0
i]φj# = M1φj# for j 2 {1, 2}, and C[M0

i] contains strictly less than n constructors,

3. M0
i φ2# = proji(M1)φ2# and M1φ2# 6= M2φ2# implies that either proji(M2)φ2# is not a message, or

M0
i φ2# 6= proji(M2)φ2#; which in both cases counts strictly less than n constructors,

• M1 contains encryption (or symmetrically, M2 contains encryption), using the same numbering as the case
where M did contain encryption:

1. M0
2φ1# and M0

2φ2# are both messages and atom and M1φ2# 6= M2φ2# implies that either dec(M2,M
0
2)φ2#

is not a message or that M0
1φ2# 6= dec(M2,M

0
2)φ2#; which in both cases counts strictly less than n con-

structors,

2. this case cannot happen,

3. M1φ2# is a message implies M0
2φ2# = M0

3φ2# and M0
1φ2# is a message. Then M0

1 contains strictly less
constructors than M1, and we get M0

1φ1# = M2φ1# while M0
1φ2# 6= M2φ2#.

123

At this point, we proved that we can only consider destructor-only witnesses of φ1 6v φ2. Suppose now M , M1 and
M2 are destructor-only: we need to prove they are φ1-precompact, i.e. we show they do not reduce to a pair or an
encryption with a deducible key.

• if Mφ1# = hs, ti: there exists i 2 {1, 2} such that proji(M) is still a message in φ1 but not in φ2,

• if Mφ1# = enc(s, k) and k is deducible in φ1, which implies there exists a destructor-only recipe R such that
Rφ1# = k (consider the + normalisation of any recipe reducing to k). dec(M,R) is a message in φ1 while not
in φ2,

• if M1φ1# = hs, ti = M2φ1#: there exists i 2 {1, 2} such that proji(M1)φ1# = proji(M2)φ1# but proji(M1)φ2# 6=
proji(M2)φ2# or proji(Mj)φ2# is not a message for some j 2 {1, 2}.

• if M1φ1# = enc(s, k) = M2φ1#, and k is deducible: as previously, there exists a destructor-only recipe R such
that Rφ1# = k. In that case dec(M1, R)φ1# = dec(M2, R)φ1#. Then either dec(Mi, R)φ2# is not a message
for some i 2 {1, 2} or dec(M1, R)φ2# 6= dec(M2, R)φ2#.

Note that this last transformation does not introduce any constructor and strictly decreases the normal forms of M ,
M1 and M2 in φ1. Hence, if φ1 6v φ2, then φ1 6v0 φ2.

Lemmas A.1.14 and A.1.16 provide the link between any concrete second-order trace, as the attacker can build,
and the second-order traces which are generated at step 3 of our algorithm. They also provide the relations between
concrete and symbolic frames we needed at the beginning of Section A.1.1.

Step 3 in the algorithm induces a renaming ⇢. As this renaming is bijective, and only meant to provide concrete
traces of P and Q, in the following statements and proofs, we will omit it and refer to the non-renamed trace in the
algorithm by (trS , φS), which will then by symbolic.

Lemma A.1.14 (existence of a symbolic trace). For any (tr, φ) 2 trace(P), there exists a symbolic second-order
trace (trS , φS) of P generated by AB(P,Q), a first-order substitution λP and a second-order substitution ✓ such that
trφ# = trSφSλP # (in particular: φ = φSλP), trS✓φ# = trφ# (the first-order input terms are identical), and such that
for every x 7! Rx 2 ✓, Rx is built from the initial knowledge of the attacker and the outputs which preceded the
introduction of x in trS , RxφS# is a message and for every variable x occurring in key position in trSφS#, RxφS# is
an atom,

Proof. For (tr, φ) we can derive the existence of tr0 2 traces(P) and a substitution σ such that trφ# = tr0σ
(Lemma 4.1.1). Using Definition 4.2.3 we get there exists a first-order substitution σ1 generated by B applied to
tr0 and a first-order substitution ⌧ such that tr0σ = tr1⌧ , where tr1 = tr0σ1. (trS , φS) is obtained by lifting tr1 to
second-order with arbitrary valid recipes (i.e progressively constructible by the attacker) and storing the outputs of
tr1 in φS . A fortiori then, φS⌧ = φ. Let λP = ⌧ . To define ✓ we choose for every x 2 vars(trS) a recipe Rx of
xλP , then ✓ = {x 7! Rx for x 2 vars(trS)}. Finding such a recipe is always possible thanks to Definition 4.2.3.
We can moreover assume RxφS# is a symbolic message and if x appears in key position inside trSφS#, then x✓φS#
is an atom. Indeed, let us order variables in trS with their order of apparition (variables introduced simultaneously
in an input can be ordered arbitrarily) in trS , and define ✓k inductively. If no variables was introduced, ✓0 = id . By
induction, suppose ✓k defined up to the k first variables in trS such that y✓kφS# is a message if y is one of these k
first variables. Let us prove that RxφS# can be chosen so that RxφS# is a message. Without loss of generality, as keys
are atomic, we can choose a recipe R of xλP such that R = C[R1, . . . , Rm], C is a constructor-only context and for
every i 2 {1, . . . ,m}, Ri is destructor-only. As both #-reduction and +-reduction contain only rules with destructors
on top, we get that T ⇤

φ (R) = C[T ⇤
φ (R1), . . . , T

⇤
φ (Rm)]. As Rφ# and C is constructor-only, for any i, Riφ# is a

message. By Lemmas A.1.4 and A.1.7 and Corollary A.1.1, if T ⇤
φ (Ri) = (R⇤

i ,Ri), Riφ# = (R⇤
i ✓k)φ# and R⇤

i φS#
is a message. By induction hypothesis, we deduce (R⇤

i ✓k)φS# is a message. Taking Rx = C[R⇤
1✓k, . . . , R

⇤
m✓k] en-

sures the result, and ✓k+1 = ✓k [{x 7! Rx}. Then, suppose x appears in a key position inside trSφS# but x✓φS#

124

is not an atom. As φ = φSλP , we would get that xλP would appear in key position inside trφ# and xλP would
not be atomic, absurd as (tr, φ) 2 trace(P) and keys are atomic. Finally: (trS✓)φ# = (trSφ)#λP #, as trSφ = tr1,
(trS✓)φ# = tr1λP = tr1⌧ = tr0σ and finally (trS✓)φ# = trφ#.

Lemma A.1.14 aimed at linking any concrete second-order trace of P to the valid second-order trace generated by
the algorithm. The next ones, Lemmas A.1.15 and A.1.16 ensure similar properties for (trS , S) when it exists.

Lemma A.1.15 (instances of valid symbolic traces). If (trS , S) is a symbolic second-order trace of Q, then for every
valid second-order substitution ✓, i.e. such that for every x 7! Rx 2 ✓, Rx is built from the initial knowledge of
the attacker and the outputs which preceded the introduction of x in trS , Rx S# is a message and for every variable
x occurring in key position in trS S#, Rx S# is an atom, then there exists 0 such that (trS✓, 0) 2 trace(Q) and
trS✓

0# = trS S#(✓
0)# and 0 = S(✓

0)#.

Proof. Let us proceed by induction on n the length of trnS and prove the following statements: (trnS✓,
n) 2 trace(Q),

trnS✓
n# = trnS

n
S#(✓

n)#, n = nS(✓
n)# (which is a particular case of the previous item) and σn = σnS(✓

n)#;
where

σn = mgu((R1✓
n−1#, u1⇢1), . . . , (Rm✓

n−1#, um⇢m))
σnS = mgu((R1

n−1
S #, u1⇢1) . . . , (Rm

n−1
S #, um⇢m))

and:

• trn denotes the truncation of tr at length n, m corresponds to the number of inputs in trn and n is the adequate
subframe of .

• the ui are the input patterns of Q filtering the inputs of trS ,

• ⇢i is the substitution applied to the remaining process after an input (✓ in the description of our semantics rules).
In particular, ⇢1 = id and

⇢k+1 = mgu((R1✓
n−1#, u1⇢1), . . . , (Rk✓

n−1#, uk⇢k))

We can first note that
σn = mgu((R1✓

n−1#, u1⇢1), . . . , (Rm✓
n−1#, um⇢m))

= mgu((R1✓
n−1#, u1), . . . , (Rm✓

n−1#, um))

by defining of the ⇢i and the unification algorithms for sets of pairs. Similarly,

σnS = mgu((R1
n−1
S #, u1⇢1) . . . , (Rm

n−1
S #, um⇢m))

= mgu((R1
n−1
S #, u1) . . . , (Rm

n−1
S #, um))

The induction itself:

• n=0: We consider only the initial knowledge of the attacker. As initial frames contain no variables, 0 = 0
S ;

because no input has been made, σ0 = σ0
S = ;; tr0S✓

0# = tr0S
0
S#(✓

0)#; and finally, (tr0✓, 0) 2 trace(Q)
as it has length zero.

• Suppose we get the result up to some n: we make a disjunction on the n+ 1-th action in trS .

– If trn+1
S ends by an output w (stored in n+1

S) on some channel c. As trS is a valid symbolic trace,
any variable occurring in w nS was first introduced in former inputs. (trnS✓,

n) 2 trace(Q) by induc-
tion hypothesis; σn+1 = σn and σn+1

S = σnS as there is no new input; and finally, according to the
input rule in our semantics, if vn+1 is the output pattern of the protocol specification being instantiated,
w n+1

S = vn+1σ
n
S and w n+1 = vn+1σ

n. Hence w n+1
S (✓ n#) = w n+1, and n+1 = n+1

S (✓ n)# =
 n+1
S (✓ n+1)# by induction hypothesis (and as the output does not introduce new variables in n+1).

And thus trn+1
S ✓ n+1# = trn+1

S n+1
S #(✓ n+1)#, as the new action of the trace is the output for which

the equality has been proved with the new frames n+1
S and n+1.

125

– If trn+1
S ends by an output of a channel c: c does not contain any variable and its value only depends

on the number of channel outputted so far. As trnS✓
n# = trnS

n
S#(✓

n)# by induction hypothesis,
no substitution is computed in the semantics nor any element added to the frame, we directly derive
trn+1
S ✓ n+1# = trn+1

S n+1
S #(✓ n+1)#, n+1 = n, σn+1 = σn (and similarly with their symbolic

counterparts).

– If trn+1
S ends by an input with recipe Rn+1 on some channel c. According to the input rule semantics, let

um+1 be the pattern to be match against Rm+1 (in trn+1
S) and against Rm+1✓ (in trn+1

S ✓). Let σn+1
S (resp.

σn+1) be the substitution introduced by the rule for trn+1
S (resp. trn+1

S ✓). We have that:

σn+1
S = mgu((R1

n
S#, u1) . . . , (Rm

n
S#, um),

(Rm+1
n
S#, um+1))

σn+1 = mgu((R1✓
n#, u1) . . . , (Rm✓

n#, um),
(Rm+1✓

n#, um+1))

These equalities can be rewritten as:

σn+1
S = mgu(mgu((R1

n
S#, u1) . . . ,

(Rm
n
S#, um)), (Rm+1

n
S#, um+1))

σn+1 = mgu(mgu((R1✓
n#, u1) . . . ,

(Rm✓
n#, um)), (Rm+1✓

n#, um+1))

Note that n is actually equal to n−1 on their common domain. Hence we get:

σn+1
S = mgu(σnS ,mgu(Rm+1

n
S#, um+1))

σn+1 = mgu(σn,mgu(Rm+1✓
n#, um+1))

We now need to show that:

mgu(Rm+1✓
n#, um+1) = mgu(Rm+1

n
S#, um+1)(✓

n#)

Indeed, Rm+1✓
n# = (Rm+1

n)#(✓ n)# and as dom(um+1) \ dom(✓) = ;:

mgu((Rm+1
n
S)#(✓

n)#, um+1)
= mgu(Rm+1

n
S#, um+1)(✓

n#)

Hence, as σn = σnS(✓
n)#, we end up with σn+1 = σn+1

S (✓ n)#, and because the last action of trS
is an input, n = n+1, we get that σn+1 = σn+1

S (✓ n+1)#, as intended. Thus trn+1
S ✓ n+1# =

trn+1
S n+1

S #(✓ n+1)#. In particular, mgu(Rm+1✓
n#, um+1) 6= ?, so (trn+1

S ✓, n+1) 2 trace(Q) and
 n+1 = n+1

S (✓ n+1)#.

Thus our induction is complete, and for n equal to the length of trS , naming 0 = n, we prove the desired result.

Let vk denotes the trace inclusion up to length k i.e.: P vk Q if for any trace (tr,φ) 2 trace(P) of length (in
term of number of actions) lesser than or equal to k, there exits (tr,) 2 trace(Q) such that φ ⇠0 .

Lemma A.1.16 (from φ to). Let n 2 N
⇤. If P vn−1 Q, given (tr,φ) 2 trace(P) of length k  n, (tr,) 2

trace(Q), trS and ✓ as defined in Lemma A.1.14 and S such that (trS , S) is a symbolic second-order trace, then
tr # = trS SλQ# and = SλQ where λQ = (✓)#.

Proof. By definition of ✓, for every recipe R of tr and its corresponding recipe RS in trS , Rφ# = RS✓φ#. As
P vn−1 Q, it implies R # = RS✓ # (if the last action is an output of a term, the variables are identical, if the last
action is an input, their recipes are built on recipes from the frame generated from tr minus its last action, if the last

126

action is the output of a channel, the channels are identical). By induction on tr and trS , we show both traces can share
the same execution, thus leading to trS✓ # = tr #. From Lemma A.1.15, as there exists 0 such that (trS✓, 0) is
also a second-order trace of Q and by induction on tr and trS , we show both traces can share the same execution, thus
leading to = 0; and setting λQ = ✓ #, we get that = SλQ. Hence we finally get that tr # = trS SλQ#.

We are now able to prove Proposition 4.2.3 as stated in Section 4.2.3.

Proposition 4.2.3 (completeness). Let P and Q be two bounded protocols such that P 6⇡ Q. The algorithm AB

applied on P and Q returns a minimal (in term of number of actions) witness tr of non-equivalence.

Proof. The proof is by induction on the length of traces. We suppose trace equivalence has been proved up to some
length n − 1 and consider a witness (tr,φ) 2 trace(P) of P 6⇡t Q of length n. Then we consider for instance the
case where P 6vt Q, i.e. (tr,) cannot belong in trace(Q) and the case where φ 6⇠0 . The other cases are handled
symmetrically.

From Lemma A.1.14, we get the existence of (trS ,φS) a symbolic second-order trace of P along with their
substitutions λP and ✓.

In the first case, suppose that (tr,) /2 trace(Q). If for every frame S , (trS , S) is not a symbolic trace of Q
we have a witness. Otherwise let us assume that there exists S such that (trS , S) is a valid second-order symbolic
trace of Q. For every x 2 dom(✓), x✓φS# is a message implies that x✓ S# is a message, as equivalence between
P and Q has been proved up to length n − 1 (and x✓ must be a recipe built from the frame after tr−1

S). Now, if ✓
does not satisfy the property that for every variable x occurring in key position in trS S#, x✓ S# is an atom and thus
there would exist a variable x such that x appears in key position in trS S# while x✓ S# is not an atom. Equivalence
up to length n − 1 ensures x✓φS# is not an atom. Thus, x should not occur in a key position in trSφS#, meaning
x 2 K S

rKφS
. Step 5 in the algorithm would then ensures that if λ = {h!,!i/x}, trSλ is a witness of P 6v Q, as

(trSλ,φSλ) is valid symbolic trace of P but not of Q, as h!,!i would appear in key position in (trSλ)(Sλ)#. In the
following we will then assume ✓ satisfy this property. Using Lemma A.1.15, we get that (trS✓, 0) 2 trace(Q) and
trS✓

0# = trS S#(✓
0#). Because P vn−1 Q, there exists 00 such that (tr−1, 00) 2 trace(Q) and tr−1

S ✓ 00# =
tr−1 00#. Indeed, by definition of ✓, for every recipe R of tr and its corresponding recipe RS in trS , Rφ# = RS✓φ#.
As P vn−1 Q, it implies R 00# = RS✓

00# (if the last action is an output of a term, the variables are identical, if
the last action is an input, their recipes are built on recipes from the frame generated from tr minus its last action, if
the last action is the output of a channel, the channels are identical). By induction on tr−1 and tr−1

S , we show both
traces can share the same execution, thus leading to tr−1

S ✓ 00# = tr−1 00#. Moreover after executing tr−1
S ✓ and tr−1,

Q ends up in the same configuration (by following the same execution). Then, if tr’s last action is an output of a term,
because (trS✓,

0) 2 trace(Q), there exists such that (tr,) 2 trace(Q), contradiction. If its last action is an input
on some channel c with a recipe R, as we already established that RS✓ 00# = R 00# and their configurations are
identical, there exists such that (tr,) 2 trace(Q), also reaching a contradiction. If the last action is an output of
channel, (trS , ✓0) 2 trace(Q) directly implies (tr, 00) 2 trace(Q), which is also a contradiction. Hence (trS , S) is
not a valid second-order trace of Q if (tr,) /2 trace(Q) for any frame .

Assume (tr,) 2 trace(Q) for some and φ 6⇠0 for any such . In the second case, we need to prove either that
if there is a recipe leading to a message in P but not in Q the algorithm will yield an attack; or that if an equality holds
in P but not in Q, the algorithm can derive two equalities which will hold in P and not in Q; or that if a recipe leads
to an atom in φ but not in , the algorithm witnesses it. As (trS , S) 2 trace(Q) in this case, from Lemma A.1.16
and because Q is determinate, we can derive the existence of λQ such that = SλQ, which is a required hypothesis
of Lemma A.1.10.

In the first subcase, let R be a φ-precompact recipe such that Rφ# is a message but R # is not. Let us then define
(R⇤,R1) = T ⇤

φ (R) and (R0⇤,R2) = T ⇤
 (R). We operate the following disjunction:

1. S 6|= R1 or φS 6|= R2. By Lemma A.1.1, φS |= R1. Consider for example an equality in R1 witnessing
 S 6|= R1: this equality is captured by the algorithm at step 6, hence leading to a witness of non-equivalence.
The other case is treated symmetrically.

127

2. else, if S |= R1 and φS |= R2: we can apply Lemma A.1.9, thus R⇤ = R0⇤. If R⇤ S# is not a message,
as R⇤ is φS-compact (because R is φ-precompact and of Lemma A.1.8), we have a witness of non-inclusion
provided by the algorithm. So let us assume that R⇤ S# is a message. We can now apply Lemma A.1.12. With
the same notations, either there exists a φS-compact recipe R0 such that R0φS# is a message while R0 S# is
not, in which case we directly get a witness of non-inclusion; or we can consider the next case.

We now deal with the subcase where an equality holds in φ but not in . Let R1 and R2 be two φ-precompact
recipes such that R1φ# = R2φ# and R1 # 6= R2 #. Let us define (R⇤

1,R1) = T ⇤
φ (R1), (R⇤

2,R2) = T ⇤
φ (R2),

(R0⇤
1 ,R

0
1) = T ⇤

 (R1) and (R0⇤
2 ,R

0
2) = T ⇤

 (R2). As previously, we can operate the following disjunction:

1. S 6|= R1 or S 6|= R2 or φS 6|= R0
1 or φS 6|= R0

2: see the previous subcase, we can directly create a witness of
non-equivalence.

2. S |= R1, S |= R2, φS |= R0
1 and φS |= R0

2: we can now apply Lemma A.1.9 twice and get that R0⇤
1 = R⇤

1

and R0⇤
2 = R⇤

2. From that we apply Lemma A.1.11 and get that there exists σ mgu of two φS-compact recipes
such that such that R⇤

1φSσ# = R⇤
2φSσ#. Thus we can choose σ1 = σ at step 2 in the algorithm. And if, for the

sake of clarity, we name trE , φE and E the trace and frames (respectively) introduced at step 3 of the algorithm,
it ensures that R⇤

1φE# = R⇤
2φE#. From Lemmas A.1.14 and A.1.16, we get new first-order substitutions λ0P

(for (trE ,φE)) and λ0Q (for (trE , E)). From there, we apply the same reasoning as before, as an equality still
holds in φ but not in , using T ⇤ and making three separate cases. The first two are identical. In the third one,
we now have that we can once again apply Lemma A.1.9, followed by Lemma A.1.11. In this case, σ = id (by
construction of φE), and thus we get an equality R⇤

1 = R⇤
2 of compact recipes in φE and an inequality in E

(Lemma A.1.10).

We finally deal with the case of testing atomicity of a term: suppose there exists R a φ-precompact recipe such
that Rφ# is an atom while R # is not. Let (R⇤,R1) = T ⇤

φ (R) and (R0⇤,R2) = T ⇤
 (R).

• if φS 6|= R2 or S 6|= R1: as before, we get a witness of non-equivalence in our algorithm,

• else, if φS |= R2 and S |= R1, by Lemma A.1.9, R⇤ = R0⇤. As R⇤ is φS-compact (Lemma A.1.8), RφS# is
not a variable, and in particular R⇤φS# = Rφ# (by Lemma A.1.4). Hence R⇤φS# is an atom. Now, if R⇤ S# is
a variable, R⇤ = x holds in S for some variable x but not in φS , yielding a witness of non static equivalence.
Else, if R⇤ S# is a composed term, we get a witness of non static inclusion as R⇤ S# would not be an atom.
Finally, if R S# is an ground atom, as in that case R⇤ S# = R # (by Lemma A.1.4), but R # is not an atom
which cannot happen as it would contradict our hypothesis.

In conclusion, we found a witness of length n of P 6⇡t Q assuming trace equivalence up to length n − 1: hence
we the algorithm derived a shortest witness in terms of number of actions.

A.2 Proofs of Theorem 4.1.1 and Proposition 4.1.1

In Section A.1, we proved the completeness of the procedure described in Section 4.2. To prove Theorem 4.2.1, and
thus Proposition 4.1.1, we still need to prove this algorithm actually preserves types. Once done, we will be able to
finally prove Theorem 4.1.1.

A stronger version of Proposition 4.1.1 is actually proven with Theorem 4.2.1: not only there exists such an
algorithm, but the algorithm described in Section 4.2.2 does satisfy all the necessary conditions.

Theorem 4.2.1. Let P and Q be two bounded protocols type-compliant w.r.t. (T1, δ1) and (T2, δ2) respectively, and
such that P 6⇡ Q. Assume the algorithm AB uses a type-preserving reachability blackbox B and a well-typed renaming
⇢ at step 3. Then AB(P,Q) returns a trace tr such that

128

• either (tr, φ) 2 trace(P) for some φ and (tr, φ) is pseudo-well-typed w.r.t. (T1, δ1);

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (T2, δ2).

Proof. Assume here the witness of non-equivalence is a trace of P . Because the reachability blackbox preserves types,
the trace tr1 at step 1 is well-typed. At step 2, unification can only happen on a pair (s, t) of ciphertexts with variables:
s, t 2 ESt(tr1) ✓ ESt(tr)σ1. Thus there exists two terms s0, t0 2 ESt(P) such that s = s0σ1 and t = t0σ1. Since
P is type-compliant w.r.t. (T1, δ1), δ1(s0) = δ1(t

0). By definition of a typing system, σ1 is well-typed and then
δ1(t) = δ1(s) and thus their unifier is well-typed. Hence tr1σ1 is well-typed, and applying the reachability blackbox
and a well-typed renaming leads to (tr,φ) being well-typed. If AB(P,Q) outputs a witness tr at step 5 and c0 is the
constant replaced by h!,!i, as (tr,φ) is well-typed and thus (trλ,φλ) 2 trace(P), where λ = {h!,!i/c0} is pseudo-
well-typed. The symmetric case with traces of Q is handled similarly, as Q is type-compliant w.r.t. (T2, δ2).

The proof of Proposition 4.1.1 is then a direct consequence of Theorem 4.2.1.

Theorem 4.1.1. Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1) and (T2, δ2) respectively.
We have that P 6⇡ Q if, and only if, there exists a witness of non-equivalence tr such that:

• either (tr,φ) 2 trace(P) for some φ and (tr,φ) is pseudo-well-typed w.r.t. (T1, δ1);

• or (tr,) 2 trace(Q) for some and (tr,) is pseudo-well-typed w.r.t. (T2, δ2).

Proof. If P or Q contain replication and P 6⇡t Q, there exists a minimal witness tr of length n of this non-equivalence.
Consider P 0 (resp. Q0) the unfolding of P where every occurrence of a subprocess !R is replaced by R| . . . |R (n+ 1
times), with ↵-renaming to avoid name and variable capture. Because tr is of length n, A(P 0, Q0) or A(Q0, P 0) would
yield a witness of P 0 6⇡t Q0 of length lesser than n, as Proposition 4.2.3 ensures the algorithm returns the shortest
witness of non-equivalence. Then, as P 0 and Q0 were unfolded n+ 1 times, this witness is also a witness of P 6⇡t Q.
We now need to prove that P 0 is type-compliant w.r.t. (T1, δ1) and Q0 is type-compliant w.r.t. (T2, δ2). For instance, let
s0, t0 2 ESt(P 0) and σ0 such that t0σ0 = s0σ0. Because P 0 can be ↵-renamed so as to use common variable and names
with unfold2(P), there exist s, t 2 ESt(unfold2(P)), renamings of s0 and t0 respectively, and σ, renaming of σ0, such
that sσ = tσ, δ1(s) = δ1(s

0) and δ1(t) = δ1(t
0) (as ↵-renaming preserves types). By definition of type-compliant

we can conclude that δ1(t) = δ1(s) and thus P 0 is type-compliant w.r.t. (T1, δ1). The same reasoning also applies
to Q0 w.r.t. (T2, δ2). Hence P 0 and Q0 are both type-compliant w.r.t. to their respective typing systems and without
replication. Hence we only need to deal with the case where P and Q do not use replication. Theorem 4.2.2 and
Proposition 4.2.3 ensure that P 6⇡t Q if, and only if, A(P,Q) yields a witness, which is well-typed for at least one of
these protocols according to Theorem 4.2.1.

129

Appendix B

Decidability of trace equivalence for

ping-pong protocols

B.1 Undecidability of trace inclusion

The purpose of this section is to establish the following result.

Theorem 7.1.2. The following problem is undecidable.

Input P and Q two protocols in Cpp.

Output Whether P is trace included in Q, i.e. P v Q.

An instance of the PCP over the alphabet A is given by two sets of tiles U = {ui | 1  i  n} and V = {vi | 1 
i  n} where ui, vi 2 A⇤. The problem consists of deciding whether there exists a non-empty sequence i1, . . . , ip
over {1, . . . , n} such that ui1 . . . uip = vi1 . . . vip .

To prove the undecidability of trace inclusion in Cpp, we show it is possible to encode the Post Correspondence
Problem into an inclusion of two protocols of this class. Given a word, one protocol will be meant to unstack the first
set of tiles while the other will try as much as possible to unstack the second set of tiles. While an empty word is
not “simultaneously” reached by the two processes, their traces appear to be equivalent. Conversely, if a solution to
the Post Correspondence Problem does exit, it will lead the second process to react in a distinct way (by stopping its
execution), breaking the trace inclusion property.

For each i 2 {1, . . . , n}, we define two (possibly empty) sets of words over A, namely Wi
def
= A|vi| r {vi}, and

W 0
i
def
= A0 [A1 [. . . [A|vi|−1 where |vi| denote the length of the word vi.

Example B.1.1. Let A = {a, b} and consider the following pairs of tiles (b, ✏), (b, a), and (a, ba). This instance
of PCP admits a solution. Indeed, the non-empty sequence 13 leads to the word u1u3 = v1v3 = ba. We have
W1 = W 0

1 = ;, W2 = {b} and W 0
2 = {✏}, and lastly W3 = {aa, ab, bb} and W 0

3 = {a, b, ✏}.

Words in A⇤ will be represented through nested symmetric encryption with private keys representing their coun-
terparts in A. For the sake of brevity, given a word u = ↵1 . . .↵p of A⇤, we denote by:

• u the term senc(. . . senc(✏,↵1, z1) . . . ,↵p, zp); and

• x.u the term senc(. . . senc(x,↵1, z1) . . . ,↵p, zp)

130

where z1, . . . , zp are variables of sort rand. Note that if u = ✏ then u = ✏, and x.u = x.

Below, ki, k0i with i 2 {0, 1, 2, 3} are constants in Σ0 of sort SymKey, and for each ↵ 2 A, we denote also by ↵ its
counterpart in Σ0 (constants of sort SymKey). We denote ✏ a constant in Σ0 of sort msg. These constants are initially
unknown by the attacker and actually it is quite easy to see that they will be never revealed. Lastly, c, c↵, ci, c0 with
↵ 2 A and i 2 {1, . . . , n} are constant symbols of sort channel in Ch.

Let PU and PV be the following protocols.

PU := ! in(c, start).new r.out(c, senc(✏, k0, r)) (start)

| ! in(c↵, senc(x, k0, z)).new r1, r2. out(c↵, senc(senc(x,↵, r2), k0, r1)) (1)

| ! in(ci, senc(x.ui, k0, z)).new r.out(ci, senc(x, k1, r)) (2)

| ! in(ci, senc(x.ui, k1, z)).new r.out(ci, senc(x, k1, r)) (3)

| ! in(c0, senc(✏, k1, z)).new r.out(c0, senc(✏, k2, r)) (4)

where i ranges in {1, . . . , n} and ↵ in A.
The branch (start) is the only way to start an execution, then branches (1) are used to build a word ↵1 . . .↵n (that

could be a Post word in case we consider a positive instance of PCP). This word will be represented through the term
senc(. . . senc(✏,↵1, r1), . . . ,↵n, rn) up to the choice of randoms. Then, branches (2) and (3) are used to unstack the
different tiles u1, . . . , un. Note that the purpose of having two similar branches (but using different keys) for this task
is to ensure that we will unstack at least one tile, and thus the sequence i1 . . . ip of indices is not empty. Then, reaching
the empty word when unstacking these tiles will allow us to perform input/output on channel c0 (branch (4)).

PV := ! in(c, start).new r.out(c, senc(✏, k00, r)) (start)

| ! in(c↵, senc(x, k
0
0, z)).new r1, r2. out(c↵, senc(senc(x,↵, r2), k

0
0, r1)) (1)

| ! in(ci, senc(x.vi, k
0
0, z)).new r.out(ci, senc(x, k

0
1, r)) (20)

| ! in(ci, senc(x.w, k
0
0, z)).new r.out(ci, senc(✏, k

0
3, r)) (20a)

| ! in(ci, senc(w0, k00, z)).new r.out(ci, senc(✏, k
0
3, r)) (20b)

| ! in(ci, senc(x.vi, k
0
1, z)).new r.out(ci, senc(x, k

0
1, r)) (30)

| ! in(ci, senc(x.w, k
0
1, z)).new r.out(ci, senc(✏, k

0
3, r)) (30a)

| ! in(ci, senc(w0, k01, z)).new r.out(ci, senc(✏, k
0
3, r)) (30b)

| ! in(c0, senc(x.β, k01, z)).new r.out(c0, senc(✏, k02, r)) (40a)

| ! in(c0, senc(✏, k03, z)).new r.out(c0, senc(✏, k02, r)) (40b)

| ! in(ci, senc(✏, k
0
3, z)).new r.out(ci, senc(✏, k

0
3, r)) (50)

where i ranges in {1, . . . , n}, ↵ and β in A, and for each i 2 {1, . . . , n}, w in Wi and w0 in W 0
i .

The protocol PV has the same structure as PU . However, it is more complex since we want PV to follow the
execution of PU as soon as the execution does not correspond to a solution of the PCP problem. In particular, we
do not want PV to block in case it is not able to unstack a tile vi. To achieve this, some additional branches are
added (namely (20a) and (20b), as well as (30a) and (30b)). Intuitively, those branches are triggered when (20) and
(30) can not, and the resulting term is encrypted with a special key k03 that will allow PV to mimic the remaining of
the execution using branch (50). Now, regarding the branches on channel c0, the idea is to allow PV to mimic the
behaviour of PU only when the trace tr does not correspond to a solution of the PCP. To achieve this, we allow PV to
follow PU only when the term given in input on channel c0 is not a legal encoding of the empty word. Such a term will
go through (40a) or (40b).

Note that, on both protocols, the terms that are outputted look like fresh random numbers due to fresh nonces
occurring in every output and ignorance of the keys. In other words, the two frames resulting from the execution

131

of respectively PU and PV always remain in static equivalence. Therefore, checking trace equivalence amounts into
checking that any execution trace of PU is a trace of PV , and conversely.

Lemma B.1.1. The protocols PU and PV described above are in Cpp.

Proof. The only non-trivial point is to ensure that condition (2) stated in Definition 7.1.1 is satisfied, i.e. to ensure that
pattern matching operated by inputs taking place on the same channel is exclusive. Regarding protocol PU , when two
inputs occur on the same channel ci, we have that the outermost key is different. Regarding protocol PV , the result
also holds thanks to the exclusivity of the pattern matching obtained through a careful definition of sets Wi and W 0

i .
For instance, note that when vi = ✏, Wi = W 0

i = ;, and thus there is no branch (20a)/(20b) (resp. (30a)/(30b)).

Proposition B.1.1. Let U/V be an instance of PCP. We have that PU v PV if, and only if, U/V is a negative instance
of PCP (i.e. an instance with no solution).

Proof. We prove successively the two implications.

()) If U/V is a positive instance of PCP then PU 6v PV . If U/V is a positive instance of PCP, there exists a
non-empty sequence i1 . . . ip over {1, . . . , n} such that ui1 · . . . · uip = vi1 · . . . · vip .

Let u = ↵1.↵m be the resulting word over A. From this word and the sequence i1, . . . , ip, the attacker playing
with Pu can build the term senc(u, k0, r) representing the word u with branches (1) and then remove one by one the
tiles uip to ui1 using (2) and (3). Let tr be the resulting trace of the protocol PU :

tr
def
= io(c, start,w1).io(c↵1

,w1,w2). . . . io(c↵m
,wm,wm+1)

io(cip ,wm+1,wm+2) . . . io(ci1 ,wp+m,wp+m+1).in(c
0,wm+p+1)

where io(c, R,w)
def
= in(c, R).out(c,w).

The trace tr models the fact that, given senc(u, k0, r) (stored in wm+1), PU can remove one by one the tiles uip to
ui1 to reach the empty word and hence output the message senc(✏, k1, r) (stored in wm+p+1) that can then be accepted
as input on c0. In this execution, no equality holds in the resulting frame φ, as the attacker ignores the keys that are
used to encrypt, and all outputted message use different random seeds; thus all messages look fresh.

We claim that this trace does exist in PV , i.e. there exists no such that (tr,) 2 trace(PV). Indeed, the pattern
matching operated by PV is exclusive once the term and the channel is fixed. Thus, PV has no choice but to remove
tiles vip to vi1 using (20) and (30) leading to the term senc(✏, k01, r) (stored in wm+p+1) as ↵1 . . .↵m is a Post word.
Any other trace would either lead to a mismatch on the channels or an improper filtering in PV . Then the action
in(c0,wm+p+1) will have no counterpart on PV . So (tr,φ) has no equivalent trace in PV , i.e. PU 6v PV .

(() If U/V is a negative instance of PCP then PU v PV . Let (tr,φ) 2 trace(PU), we aim at showing that there
exists an equivalent trace (tr,) 2 trace(PV). Actually, since terms that are outputted by PU and PV look like fresh
random numbers, we simply have to show that there exists such that (tr,) 2 trace(PV). Two cases can occur for
any trace (tr,φ) 2 trace(PU):

• tr contains no input on channel c0. In such a case, by construction of PV , the frame can be built by following
the sequence of channels used in tr and choosing the adequate filtering. It is always possible to do so, as the
definition of sets Wi and W 0

i ensure that every term built by the attacker can be handled on any channel ci. Note
that when the term given in input is of the form senc(✏, k03, r) for some r, it would be accepted on any channel.

• tr contains an input on channel c0. In such a case, this means that the associated term senc(↵1 . . .↵m, k0, r) that
has been built using channels c↵ with ↵ 2 A is a word made of tiles in {u1, . . . , un}. Indeed, the only way to
activate an input on c0 is to go through the branches (2) and (3) by unstacking the said tiles. Then, because this
particular instance of PCP has no solution, such a word ↵1 . . .↵m cannot be a Post word and thus it cannot

132

be decomposed using tiles in {v1, . . . , vn} following the same sequence of indices: because the filtering in PV
is also exhaustive, messages outputted by PV from a certain point will be either encrypted by k03 or will reach
the end of the sequence with a term of the form senc(u, k01, r) with u different from the constant ✏. Thanks to
branches (40a), (40b), and (50), PV will be able to follow PU .

Hence, for any trace (tr,φ) 2 trace(PU) there exists a trace (tr,) 2 trace(PV). It remains to show that φ ⇠ .
This is due to the fact that both φ and are of the form {w1 . senc(m1, k1, r1), . . . ,wn . senc(mn, kn, rn)} where
the ki are non deducible and the ri are “fresh” in the sense that they are all distinct and non deducible. We therefore
conclude that PU v PV .

Theorem 7.1.2 directly follows from Proposition B.1.1 and the undecidability of the Post Correspondence Problem.

B.2 Getting rid of the attacker

Lemma 7.2.1. Let P and Q be two protocols in Cpp, KP (resp. KQ) be the set of deducible constants of sort key
that occur in P (resp. Q), if P ⇡ Q then there exists a unique bijection ↵ from KP to KQ such that for every trace
(tr,φ) 2 trace(P) there exists a trace (tr,) 2 trace(Q) such that for any recipe R and any k 2 KP :

• Rφ# is of sort s if, and only if, R # is of sort s;
where s 2 {SymKey,PubKey,PrivKey}.

• Rφ# = k if, and only if, R # = ↵(k);

• Rφ# = k−1 if, and only if, R # = (↵(k))−1;

and conversely, for every (tr,) 2 trace(Q) there exists a trace (tr,φ) 2 trace(P) satisfying the same properties.

Proof. We can describe ↵ as a relation in the following way:

for every k 2 KP of sort s, and every trace (tr,φ) 2 trace(P) and recipe R such that Rφ# = k, we define
↵(k) = R # where is the only frame such that (tr,) 2 trace(Q).

The existence of such a frame comes from the fact that P ⇡ Q, whereas its unicity is a consequence of the determinism
of protocols in Cpp.

We now need to prove that our definition of ↵ is sound and unambiguous. To do so, we show that:

• R # is a constant of sort s. We have that there exists a trace (tr,φ) 2 trace(P) such that Rφ# = k 2 KP .
Since P ⇡ Q and Q is in Cpp, we consider the trace (tr,) 2 trace(Q). By definition of static equivalence, we
have that R # is a constant of sort s. Otherwise, we would have that senc(start, R, ri)φ 2 T (Σ,N) whereas
senc(start, R, ri) 62 T (Σ,N) if s = SymKey (the resulting term is not properly sorted). The same argument
applies with raenc and sign for s equal to PubKey and PrivKey respectively.

• We have that |KP | = |KQ|. Suppose ad absurdum that, for instance, |KP | < |KQ|. Since every element of KQ
is deducible (and due to the shape of the protocols under study), there exists (tr,) 2 trace(Q) such that for all
k 2 KQ, there exists a recipe Rk such that Rk # = k. In particular, when k 6= k0, we have that Rk # 6= Rk0 #.
Since P ⇡ Q, there exists a frame φ such that (tr,φ) 2 trace(P). Thanks to previous item, we know that Rkφ#
(resp Rk0φ#) has the same sort as Rk # (resp. Rk0 #), i.e. sort key. As |KP | < |KQ|, there exist two distinct
keys k and k0 such that Rkφ# = Rk0φ#. Hence φ and are not statically equivalent, contradicting the fact that
P ⇡ Q. The case where |KQ| < |KP | can be handle similarly.

133

• ↵ is a function. Suppose there exist a trace (tr, φ) 2 trace(P), a recipe Ri and a corresponding equivalence
trace (tr,) 2 trace(Q) such that Riφ# = k and Ri # = k0; a trace (tr0,φ0) 2 trace(P), a recipe Rj and
a corresponding equivalence trace (tr0, 0) 2 trace(Q) such that Rjφ0# = k but Rj 0# = k00 with k0 6= k00.
Considering the trace made up of the trace tr followed by tr0, it is then possible to exhibit a witness of non-
equivalence. More precisely, relying on Ri and Rj we can build a test that holds in the resulting frame when
executing P , whereas this test will not hold on the frame resulting from the execution of Q.

Now we show that ↵ is an injection, i.e. ↵(k) 6= ↵(k0) as soon as k, k0 are two distinct elements of KP . Suppose, as
previously, there exist a trace (tr,φ) 2 trace(P), a recipe Ri and a corresponding equivalence trace (tr,) 2 trace(Q)
such that Riφ# = k and Ri # = ↵(k); a trace (tr0,φ0) 2 trace(P), a recipe Rj and a corresponding equivalence trace
(tr0, 0) 2 trace(Q) such that Rjφ0# = k0 but Rj 0# = ↵(k) with k 6= k0. Considering the trace made up of the trace
tr followed by tr0, it is then possible to exhibit a witness of non-equivalence. More precisely, relying on Ri and Rj
we can build a test that holds in the frame resulting from the execution of P and that does not hold when executing Q.
Thus, we have now prove that ↵ is a bijection.

Note that we have already proved that: Rφ# = k if, and only, if R # = ↵(k).

To show that ↵ satisfies the last condition (item 3), suppose that k 2 KP , and Rφ# = k−1. As previously shown,
R # = ↵(k−1). We want to prove that ↵(k−1) = (↵(k))−1. If k is of sort SymKey, the result is obvious as k−1 = k

for any such key. Suppose k is of sort PubKey. We have now that there exists a trace (tr,φ) 2 trace(P) and a recipe
R0 such that R0φ# = k 2 KP . Since P ⇡ Q, consider the corresponding equivalence trace (tr,) 2 trace(Q).
Consider the recipes R1 = raenc(start, R0, n) and R2 = radec(R1, R). Then R2φ# = start and R2 # = start if,
and only if, R # = (R0)−1. As we have already proved that ↵ preserves sorts, we get that R2 # is of sort msg if,
and only if, ↵(k−1) = R # = (R0 #)−1 = (↵(k))−1. Hence ↵ is compatible with the inverse function. The same
argument can be used if k is of sort PrivKey with sign and check.

Finally we prove the unicity of such a bijection: suppose there were ↵0 an adequate bijection and k 2 KP such
that ↵(k) 6= ↵0(k). By definition of ↵, for every trace (tr,φ) 2 trace(P) and every recipe R such that Rφ# = k,
↵(k) = R #. But as ↵0 satisfy a similar property, we get that R # = ↵0(k), contradicting our hypothesis. Hence
↵ is unique. Determinism of P and Q then ensures that traces of P and Q are uniquely matched (as P ⇡ Q), thus
guaranteeing the converse part of the Lemma.

Lemma 7.2.3. Let P and Q be two protocols in Cpp respectively disclosing two sets of keys K and K 0 as in Lemma
7.2.2. Then P ⇡ Q if, and only if, P̄ ⇡fwd Q̄ where:

P̄ = P | |
k2KSymKey

!in(csenc
k,↵(k), x).new n.out(ck,↵(k), senc(x, k, n))

| |
k2KSymKey

!in(csdec
k,↵(k), senc(x, k, y)).out(c

sdec
k,↵(k), x)

| |
k2KPubKey

!in(craenc
k,↵(k), x).new n.out(craenc

k,↵(k), raenc(x, k, n))

| |
k2KPrivKey

!in(cradec
k,↵(k), raenc(x, k, y)).out(c

radec
k,↵(k), x)

| |
k2KPrivKey

!in(csign
k,↵(k), x).new n.out(csign

k,↵(k), sign(x, k, n))

| |
k2KPubKey

!in(ccheck
k,↵(k), sign(x, k, y)).out(c

check
k,↵(k), x)

134

Q̄ = Q | |
k2KSymKey

!in(csenc
k,↵(k), x).new n.out(csenc

k,↵(k), senc(x, ↵(k), n))

| |
k2KSymKey

!in(csdec
k,↵(k), senc(x, ↵(k), y)).out(c

sdec
k,↵(k), x)

| |
k2KPubKey

!in(craenc
k,↵(k), x).new n.out(craenc

k,↵(k), raenc(x, ↵(k), n))

| |
k2KPrivKey

!in(cradec
k,↵(k), raenc(x, ↵(k), y)).out(c

radec
k,↵(k), x)

| |
k2KPrivKey

!in(csign
k,↵(k), x).new n.out(csign

k,↵(k), sign(x, ↵(k), n))

| |
k2KPubKey

!in(ccheckk,↵(k), check(x, ↵(k), y)).out(c
check
k,↵(k), x)

where Ks denotes the keys of sort s of K. We call Toracle the transformation taking a pair of protocols (P,Q) satisfying
the aforementioned condition and returning the pair (P̄ , Q̄) presently defined.

Proof. Let KP (resp. KQ) be the set of deducible constants of sort key that occur in P (resp. Q). We recall, that, as a
consequence of Lemma 7.2.2, we necessarily have that KP ✓ K and KQ ✓ K 0. Because protocols P and P̄ (resp. Q
and Q̄) disclose all their deducible keys, their exists a trace (tr0, φ0) of P and P̄ (resp. (tr0, 0) a trace of Q and Q̄)
defined as follows:

tr0 = in(ck1,↵(k1), start).out(ck1,↵(k1),w
0
1) . . . in(ckn,↵(kn), start).out(ckn,↵(kn),w

0
n)

for k1, . . . , kn 2 KP , and φ0 = {w0
1 . k1, . . .w

0
n . kn}, and symmetrically for Q and Q̄. In the following, we will

assume that a trace of P or P̄ (resp. of Q or Q̄) starts with the prefix tr0 and contains the frame φ0.

For sake of clarity of the construction explained below, we actually show that:

P̄ ⇡fwd Q̄ if, and only if P+ ⇡ Q+

where P+ = P | !in(c, x).out(c, x) and Q+ = Q | !in(c, x).out(c, x) for some fresh channel name c. Then, it is easy
to conclude at the expected result relying on the fact that P ⇡ Q is equivalent to P+ ⇡ Q+.

()) First, suppose P̄ 6⇡fwd Q̄. Assume that there exists (tr,φ) 2 tracefwd(P̄) such that there is no equivalent
frame such that (tr,) 2 tracefwd(Q̄). We define (tr0,φ) 2 trace(P+) as follows:

• every sequence in(csenc
k,↵(k), R).out(csenc

k,↵(k),w
0) in tr is replaced by the sequence

in(c, senc(R,w0
k, n)).out(c,w

0) in tr0 where n is a fresh name.

• every sequence in(csdec
k,↵(k), R).out(csdec

k,↵(k),w
0) in tr is replaced by the sequence

in(c, sdec(R,w0
k)).out(c,w

0) in tr0.

• every sequence in(craenc
k,↵(k), R).out(craenc

k,↵(k),w
0) in tr is replaced by the sequence

in(c, raenc(R,w0
k, n)).out(c,w

0) in tr0 where n is a fresh name.

• every sequence in(cradec
k,↵(k), R).out(cradec

k,↵(k),w
0) in tr is replaced by the sequence

in(c, radec(R,w0
k)).out(c,w

0) in tr0.

• every sequence in(csign
k,↵(k), R).out(csign

k,↵(k),w
0) in tr is replaced by the sequence

in(c, sign(R,w0
k, n)).out(c,w

0) in tr0 where n is a fresh name.

• every sequence in(ccheck
k,↵(k), R).out(ccheck

k,↵(k),w
0) in tr is replaced by the sequence

in(c, check(R,w0
k)).out(c,w

0) in tr0.

135

Note that by definition of a trace being in tracefwd(P̄), we have that R is either a variable w or the constant start. We
claim that there exists no frame such that (tr0,) 2 trace(Q+) with φ ⇠ . Indeed, because the frame are left
unchanged, the input recipes match the same input patterns, and recipes holding true and false keep their truth values.
So if such a frame existed, (tr,) would belong to tracefwd(Q̄) and be equivalent to (tr,φ).

(() Now, suppose P 6⇡ Q. We have that P+ 6⇡ Q+, and we can even assume that P+ 6⇡io⇤ Q+. We consider a
witness of this non-equivalence, i.e. a trace tr such that (tr,φ) 2 traceio⇤(P+) and for which there exists no equivalent
frame such that (tr,) 2 traceio⇤(Q+). Actually, we can even assume w.l.o.g. that:

• every input recipe in tr on a channel different from c is either a variable w or the constant start;

• every input recipe in tr on channel c involves at most one function symbol in Σpub;

• φ 6⇠fwd , i.e. we consider recipes that are either variables or the constant start.

We consider the shortest trace (tr,φ) 2 traceio⇤(P), in terms of number of transitions, such that there is no equivalent
frame satisfying (tr,) 2 traceio⇤(Q), and for which all the requirements listed above are satisfied.

Through recipes of the form senc(u, v, w) on channel c, the attacker has the ability to use the same random seed
more that once. Let us first show that we can always assume tr uses nonces at most once. If it is not the case, we build
a new trace (t̃r, φ̃), such that φ is statically equivalent to φ̃ for which it is the case.

First, if we consider the case where there exists no such that (tr,) /2 traceio⇤(Q). Because random seeds are
not filtered in protocols of Cpp (every input pattern contains distinct variables as third argument), we can rename some
occurrences of the random seeds of the attacker (i.e. the random seeds appearing in the recipes on channel c) by fresh
random seeds without changing the status of the trace (i.e. the fact that the trace is executable or not). Given tr⇢ such a
trace obtained by renaming, we have that (tr⇢,φ⇢) 2 traceio⇤(P) for some frame φ⇢ whereas (tr⇢, ⇢) /2 traceio⇤(Q)
for any frame ⇢. And it particular, if we choose tr⇢ such that there are no two identical nonces in its image, we get a
witness of non-equivalence with pairwise distinct random seeds for the attacker.

Now, we consider the case where (tr,) 2 traceio⇤(Q) but φ 6⇠fwd . Suppose r is a random seed which appears
twice in tr, in two contexts f(wi,wj , r) and f(w0

i,w
0
j , r) for some f 2 Σpub with wiφ = w0

iφ and wjφ = w0
jφ. Because

tr is a minimal witness of non-equivalence, φ−1 ⇠fwd −1 where φ−1 (resp. −1) denotes φ (resp.) minus its last
element. Consequently we also have that wi = w0

i and wj = w0
j , as wi,wj ,w0

i,w
0
j 2 dom(φ−1) (they are used

in input recipes). Let w and w0 be the corresponding outputs of the recipes f(wi,wj , r) and f(w0
i,w

0
j , r) and assume w

appears before w0 in tr: we now have that w = w0 in both φ and , and we can safely replace any occurrence of w0 in
tr by w. The resulting trace is still a witness of non-equivalence as the substitution replace identical terms in .

Thus, it remains only to consider the case where a random seed appears twice in tr but such that either the function
symbol, the plaintext or the keys are different. Formally, consider the two contexts f(wi,wj , r) and g(w0

i,w
0
j , r) with

f, g 2 Σpub, w and w0 their respective outputs variables as before; and either wiφ 6= w0
iφ, wjφ 6= w0

jφ or f 6= g.
Following the same reasoning as before, as φ−1 ⇠fwd −1, the same inequality has to hold in . Consider the
test wk = w0

k which distinguishes between φ and : suppose wkφ = w0
kφ but wk 6= w0

k . Replacing r by r0

in g(w0
i,w

0
j , r) will still lead to wk 6= w0

k (after replacement) as no equality between subterms is added. But if
wkφ 6= w0

kφ (after replacement), it would imply that there were two subterms which became different, and were
identical before: but, because the first step already took care of recipes introducing the same random seed twice in the
same context, and the protocols in Cpp cannot use a random seed from an input to use it in another encryption, it is
impossible.

Hence, we showed that modifying tr into t̃r is a symmetric operation which preserves equalities in the two proto-
cols: identical plaintexts and keys in (tr,φ) correspond to identical plaintexts and keys in (tr,), whereas adding fresh
nonces does not create any equality in φ̃ or ̃. If (tr,φ) does not have any equivalent trace in Q, neither has (t̃r, φ̃).
If there exists no frame such that (tr,) 2 trace(Q), then there will exist no frame ̃ such that (t̃r, ̃) 2 trace(Q)
as input filtering is not affected by our transformation. Else, if there exists such that (tr,) 2 trace(Q) but φ and
 are not statically equivalent, because our transformation preserves the terms in the frame, any pair of recipes which

136

distinguishes between the two of them, will distinguish φ̃ and ̃. So we can always assume than the random seeds
occurring in the recipes f(u, v, w) in (tr,φ) are distinct.

Let us now define a corresponding trace (t̄r, φ̄) 2 tracefwd(P̄).

• each sequence in(ci, R).out(ci,w
0), where ci 6= c, is left unchanged;

• each sequence in(c, f(R,Rk, n)).out(c,w
0), where Rkφ# = k and f 2 {senc, raenc, sign}, is replaced by

in(cf
k,↵(k), R).out(cf

k,↵(k),w
0);

• each sequence in(c, g(R,Rk)).out(c,w
0), where Rkφ# = k and g 2 {sdec, radec, check}, is replaced by

in(cg
k,↵(k), R).out(cg

k,↵(k),w
0).

Note that each recipe R and Rk above is a variable w or the constant start. The corresponding frame φ̄ is then defined
according to our semantics. Since we have assume that the random seed occurring in the recipes in tr are distinct, we
have that φ̄ = φ.

Finally, because (tr,φ) 2 traceio⇤(P) has no equivalent in Q, and the definition of (t̄r, φ̄) does not alter the filtering
on inputs nor equalities between terms in the frame, (t̄r, φ̄) 2 tracefwd(P̄) has no equivalent in Q̄.

B.3 Encoding a protocol into a real-time GPDA

B.3.1 Characterisation of trace equivalence

Lemma B.3.1. Let P and Q be two protocols in Cpp, if P ⇡fwd Q then for every trace (tr,σP) 2 tracefwd(P) and
every w,w0 2 dom(σP), if wσP = w0σP = c for some constant c, then wσQ = w0σQ = c0 for some constant c0

where σQ is the frame such that (tr,σQ) 2 trace(Q).

Proof. First, note that the frame σQ mentioned in the lemma is unique up to some alpha-renaming of the randoms that
occur in σP . Thus, the choice of the frame σQ does not change anything regarding the result that we want to prove.

Actually, the only non-trivial point to prove is that if wσP = c, then wσQ is necessarily a constant too. Since
protocols in Cpp have a replication for every branch, consider the trace obtained by “playing twice” the trace tr in P
and Q, i.e. given (tr,σP) 2 tracefwd(P) with

tr = in(ci1 , start).out(ci1 ,w1) . . . in(cil ,wl−1).out(cil ,wl)

build (tr0,σ0
P) 2 tracefwd(P) where:

(

tr0
def
= tr.t̄r

t̄r
def
= in(ci1 , start).out(ci1 ,w|φ|+1) . . . in(cil ,w|φ|+l).out(cil ,w|φ|+l)

where every occurrence of start in tr is kept in t̄r but occurrences of wk are replaced by w|σP |+k, |σP | being the
cardinal of dom(σP); and tr.t̄r denotes the concatenation of the two sequences of labels, which is a valid trace, i.e.

(tr0,σ0
P) 2 tracefwd(P). We get symmetrically (tr0,σ0

Q) 2 tracefwd(Q). In particular, there exists w⇤ 2 dom(σ0
P)

with l < ⇤ such that wσ0
P = w⇤σ

0
P = c and the test w = w⇤ is disjoint, i.e. seqtr0(w) and seqtr0(w⇤) share no common

prefix. As P ⇡fwd Q, necessarily wσ0
Q = w⇤σ

0
Q. Now, because the test is disjoint, wσ0

Q and w⇤σ
0
Q could not share

any random nonces. Hence, wσQ is a constant.

Lemma B.3.2. Let P and Q be two protocols in Cpp such that P ⇡fwd Q. For every trace (tr,σP) 2 tracefwd(P),
every w,w0 2 dom(σP) such that the test w = w0 is σP -valid, σP -guarded, and pulled-up in (tr,σP), we have that
w = w0 is σQ-valid, σQ-guarded, and pulled-up in (tr,σQ) where σQ is the frame such that (tr,σQ) 2 tracefwd(Q)

137

Proof. First, note that the frame σQ mentioned in the lemma is unique up to some alpha-renaming of the randoms that
occur in σP . Thus, the choice of the frame σQ does not change anything regarding the result that we want to prove.

The only non-trivial point to prove is that if the test w = w0 is σP -valid, σP -guarded, and pulled-up in (tr, σP)
then it is also σQ-guarded and pulled-up in (tr, σQ). Note that it is necessarily σQ-valid since P ⇡fwd Q. Actually,
we can still assume that the test w = w0 is σQ-guarded (it would otherwise contradict Lemma B.3.1).

Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1
,wjp) be the maximal common prefix of seqtr(w) and seqtr(w

0).
Now, it remains to show that w = w0 is pulled-up in (tr, σQ), i.e. wσQ does not occur as a subterm in wj−1

σQ,wj0σQ, . . .wjp−1
σQ

where wj−1
σQ = start.

Assume that this is not the case, we will show that there exists a trace (tr⇤, σ⇤
Q) 2 tracefwd(Q), w⇤,w

0
⇤ 2 dom(σ⇤

Q)
such that w⇤σ

⇤
Q = w0

⇤σ
⇤
Q whereas w⇤σ

⇤
P 6= w0

⇤σ
⇤
P , where σ⇤

P is the frame such that (tr⇤, σ⇤
P) 2 tracefwd(P). Note that

such a frame necessarily exists since otherwise it trivially contradicts our hypothesis.
Let p0 2 {0, . . . , p− 1} be the smallest index such that wσQ occurs as a subterm in wjp0σQ. We have that:

pref = s1.io(cip0 ,wjp0−1
,wjp0).s2 and

⇢

seqtr(w) = pref.s3
seqtr(w

0) = pref.s03

for some sequence s1, s2, s3, and s03.
From these sequences we can define (tr⇤, σ⇤

Q) with tr⇤ = tr.t̄r. Intuitively, the trace t̄r is obtained relying on
the sequence of channels as indicated in the sequence s2.s

0
3 using systematically the last generated recipe to feed the

following input, and wjp0 to start. More precisely, assuming that

seqtr(w
0) = s1.io(cip0 ,wjp0−1

,wjp0).io(ck1 ,wjp0 ,wl1).io(ck2 ,wl1 ,wl2) . . . io(ck` ,wl`−1
,wl`)

we have that:

t̄r = io(ck1 ,wjp0 ,w|σP |+1).io(ck2 ,w|σP |+1,w|σP |+2) . . . io(ck` ,w|σP |+l−1,w|σP |+`)

and σ⇤
Q defined as expected relying on our semantics. Let w⇤ = w and w0

⇤ = w|σP |+`. We can now show that:

1. The test w⇤ = w0
⇤ is σ⇤

Q-valid and σ⇤
Q-guarded. Indeed, by definition of tr⇤, w0

⇤σ
⇤
Q and w0σQ are already

equal up to a renaming of random seeds, as the channel components of seqtr(w
0) and seqtr⇤(w

0
⇤) match. As

w⇤σ
⇤
Q = wσQ = w0σQ, w⇤σ

⇤
Q and w0

⇤σ
⇤
Q are equal up to a renaming of their random seeds. Lastly, we have that

w⇤σ
⇤
Q and w0

⇤σ
⇤
Q are both subterms of wjp0σ

⇤
Q, hence w⇤σ

⇤
Q = w0

⇤σ
⇤
Q.

2. The test w⇤ = w0
⇤ is pulled-up in (tr⇤, σ⇤

Q). This is by construction of tr⇤.

Finally, as P ⇡fwd Q, there exists σ⇤
P such that (tr⇤, σ⇤

P) 2 tracefwd(P). But now w⇤ = w0
⇤ is σ⇤

Q-valid, σ⇤
Q-guarded

and pulled-up in (tr⇤, σ⇤
Q). Moreover, we are now in a situation where the top-level random seeds of w⇤σ

⇤
P and

w0
⇤σ

⇤
P are generated outside the common prefix of seqtr⇤(w⇤) and seqtr⇤(w

0
⇤), and thus it implies that w⇤σ

⇤
P 6= w0

⇤σ
⇤
P ,

contradicting the equivalence P ⇡fwd Q.

Lemma 7.3.1. Let P and Q be two protocols in Cpp, then P ⇡fwd Q if, and only if, the following four conditions are
satisfied:

• CONSTP : For all (tr, σP) 2 tracefwd(P), there exists a frame σQ such that (tr, σQ) 2 tracefwd(Q) and for
every w,w0 2 dom(σP) and for every constant c 2 Σ0 [{start}, wσP = w0σQ = c if, and only if, there exists
a constant c0 2 Σ0 [{start} such that wσQ = w0σQ = c0.

• CONSTQ: Similarly swapping the roles of P and Q.

• GUARDEDP : For all (tr, σP) 2 tracefwd(P), there exists a frame σQ such that (tr, σQ) 2 tracefwd(Q) and
every test that is σP -valid, σP -guarded, and pulled-up in (tr, σP) is also σQ-valid, σQ-guarded, and pulled-up
in (tr, σQ).

138

• GUARDEDQ: Similarly swapping the roles of P and Q.

Proof. We prove the two directions separately.
()) This implication is a direct consequence of Lemma B.3.1 and Lemma B.3.2.

(() Suppose that P 6⇡fwd Q. This means that there exists for instance (tr, σP) 2 tracefwd(P) such that either
there exists no frame σQ such that (tr, σQ) 2 tracefwd(Q), in which case conditions CONSTP and GUARDEDP fail,
or σQ is indeed defined and there exists a test w = w0 such that wσP = w0σP but wσQ 6= w0σQ (or the converse). Let
us assume that wσP = w0σP but wσQ 6= w0σQ.

If wσP = w0σP = c for some constant c, then condition CONSTP is false.
Otherwise, we have that the test w = w0 is σP -valid and σP -guarded. From tr and w = w0, we will build a new

trace (tr⇤, σ⇤
P) and a new test w⇤ = w0

⇤ which is σ⇤
P -valid, σ⇤

P -guarded, and also pulled-up in (tr⇤, σ⇤
P). Actually, we

proceed as in the proof of the previous lemma.
Let pref = io(ci0 , start,wj0) . . . io(cip ,wjp−1

,wjp) be the maximal common prefix of seqtr(w) and seqtr(w
0). Let

p0 2 {0, . . . , p − 1} be the smallest index such that wσP occurs as a subterm in wjp0σP . Note that if this index does
not exist then the test w = w0 is already pulled-up in (tr, σP) and we are done.

We have that:

pref = s1.io(cip0 ,wjp0−1
,wjp0).s2 and

⇢

seqtr(w) = pref.s3
seqtr(w

0) = pref.s03

for some sequence s1, s2, s3, and s03.
From these sequences, we can define (tr⇤, σ⇤

P) with tr⇤ = tr, t̄r. Intuitively, the trace t̄r is obtained relying on
the sequence of channels as indicated in the sequence s2.s

0
3 using systematically the last generated recipe to feed the

following input, and wjp0 to start. More precisely, assuming that

seqtr(w
0) = s1.io(cip0 ,wjp0−1

,wjp0).io(ck1 ,wjp0 ,wl1).io(ck2 ,wl1 ,wl2) . . . io(ck` ,wl`−1
,wl`)

we have that:

t̄r = io(ck1 ,wjp0 ,w|σP |+1).io(ck2 ,w|σP |+1,w|σP |+2) . . . io(ck` ,w|σP |+l−1,w|σP |+`)

and σ⇤
P defined as expected relying on our semantics. Let w⇤ = w and w0

⇤ = w|σP |+`.
Now, either there exists no frame σ⇤

Q such that (tr⇤, σ⇤
Q) 2 trace(Q), in which case condition GUARDEDP fails

obviously, or such a frame exists. In this case, by construction of tr⇤, we have that the test w⇤ = w0
⇤ is σ⇤

P -valid,
σ⇤
P -guarded, and pulled-up in (tr⇤, σ⇤

P).
In order to conclude, it remains to show that w⇤σ

⇤
Q 6= w0

⇤σ
⇤
Q. We already know that wσQ = w⇤σ

⇤
Q. Suppose ad

absurdum that w⇤σ
⇤
Q = w0

⇤σ
⇤
Q. Because the sequences of channels that occur in seqtr(w

0) and seqtr⇤(w
0
⇤) are the same,

w0σQ and w0
⇤σ

⇤
Q are either constant and equal or of the form f(u, k, r) with f 2 {senc, raenc, sign} and equal up to a

renaming of their random seeds. In the first case, it is enough to conclude that wσQ = w0σQ, which is absurd. In the
second case, w⇤σ

⇤
Q and w0

⇤σ
⇤
Q being randomised, must have equal top-level random seeds, implying that this nonce

was introduced before io(cip0 ,wjp0−1
,wjp0) in the common prefix of their respective sequences. As the said prefix is

also common to w and w0 in tr, wσQ and w0σQ share the same top-level random seed and are thus equal, contradicting
our hypothesis. Therefore: w⇤σ

⇤
Q 6= w0

⇤σ
⇤
Q. Hence GUARDEDP is false.

Finally, if wσQ = w0σQ but wσP 6= w0σP , conditions CONSTQ and GUARDEDQ will similarly fail.

B.3.2 From trace equivalence to language equivalence

Lemma 7.3.2. Let P and Q be two protocols in Cpp, the two real-time GPDA AP
CONST and AQCONST are such that:

P and Q satisfy conditions CONSTP and CONSTQ iff L(AP
CONST) = L(AQ

CONST).

139

Proof. We prove the two implications separately.
()) Assume that L(AP

CONST) 6= L(AQ
CONST), and consider w.l.o.g. a word u 2 L(AP

CONST) r L(AQ
CONST). We

distinguish two cases depending on whether u is accepted in state q0 or qf .

Case u = ci1 .ci2 . . . cil is accepted in q0: In such a case, we built (tr, σP) as follows:

tr = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cil ,wl−1,wl)

with σP the substitution defined uniquely as expected from our semantics. We have that (tr, σP) 2 tracefwd(P) as the
transition function δ fully captures input filtering and output of terms for protocols in Cpp. Since u 62 L(AQ

CONST), we
have that (tr, σQ) 62 tracefwd(Q) for any substitution σQ, and thus the condition CONSTP fails.

Case u is accepted in qf : In such a case, we also build a trace (tr, σP) 2 tracefwd(P) "corresponding" to u. The
construction is a bit more involved. We have that u is of the form ci1ci2 . . . cikctestcj1cj2 . . . cjlcend. Let tr = tr1.tr2
with tr1 and tr2 defined as follows:

• tr1 = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cik ,wk−1,wk);

• tr2 = io(cj1 , start,wk+1).io(cj2 ,wk+1,wk+2) . . . io(cjl ,wk+l−1,wk+l);

and σP is defined uniquely as expected from our semantics, as P is deterministic. We have that (tr, σP) 2 tracefwd(P)
as the transition function δ fully captures input filtering and output of terms for protocols in Cpp. We can now define
w = wk and w0 = wk+l. Because the transitions from q0 to qc and then from qc to qf for some constant c were possible,
we get that wσP = w0σP = c.

We know that u = u1ctestu2cend /2 L(AQ
CONST), and we may assume that u1 and u2 are both in L(AQ

CONST). Indeed,
otherwise, this means that there exists no substitution σQ such that (tr, σQ) 2 tracefwd(Q), and thus CONSTP fails,
and the result holds. From now one, we assume that there exists σQ such that (tr, σQ) 2 tracefwd(Q).

Now, let q
c;↵/β
−−−! q0 be the first failing transition in the run of u in AQ

CONST. We distinguish several cases:

1. Case q = q0 and q0 = qc for some constant c. In such a case wσQ 6= c for any constant c, and wσQ is thus a
guarded term. The condition CONSTP fails.

2. Case q = qc and q0 = qf for some constant c. In such a case wσQ = c but wσ 6= c, making CONSTP fail once
again.

Hence P and Q do not satisfy CONSTP . Symmetrically, if u 2 L(AQ
CONST)r L(AP

CONST), the condition CONSTQ will
fail.

(() If P and Q do not satisfy CONSTP (or CONSTQ), i.e. there exists a trace (tr, σP) 2 tracefwd(P) such that:

1. either there exists no σQ such that (tr, σQ) 2 tracefwd(Q);

2. or there exist w,w0 2 dom(σP) and a constant c such that wσP = w0σP = c but: either wσQ is not a constant,
or wσQ is a constant but wσQ 6= w0σQ.

We consider such a trace of minimal length `.
In the first case, thanks to minimality, we have that seqtr(w`) = tr. From tr we build a word u 2 L(AP

CONST)
by extracting the channels that occur in tr keeping the order. Since there does not exist σQ such that (tr, σQ) 2
tracefwd(Q), and the transition function δ of the automaton fully captures input filtering and output of terms for
protocols in Cpp, we have that u 62 L(AQ

CONST).
In the second case, thanks to minimality, we have that tr is actually made up of all the actions that occur in seqtr(w)

and seqtr(w
0) (note that these two sequences may share some actions). From tr, we built a word u = u1ctestu2cend 2

L(AP
CONST) as follows:

140

• u1 is obtained by extracting the channels that occur in seqtr(w) preserving the order; and

• u2 is obtained by extracting the channels that occur in seqtr(w
0) preserving the order;.

As the transition function δ fully captures input filtering and output of terms for protocols in Cpp, we get that upon

reading ctest, AP
CONST is in q0, the transition q0

ctest;!c/!
−−−−−−! qc is indeed possible as wσP = c; and similarly upon reading

the cend, AP
CONST is in qc, the transition qc

cend;!c/!
−−−−−−! qf is indeed possible as w0σP = c, hence u 2 L(AP

CONST). What
remains to show is that u /2 L(AQ

CONST). We distinguish two cases:

• Case wσQ is not a constant. In such a case, no transition q0
ctest;!c/!
−−−−−−! qc will be possible after u1

• Case wσQ is a constant c but wσQ 6= w0σQ. In such a case, the transition q0
cend;!c/!
−−−−−−! qc will not be possible

after u2.

Hence u cannot belong to L(AQ
c). This allows us to conclude.

Lemma 7.3.3. Let P and Q be two protocols in Cpp, the two real-time GPDA AP
GUARDED and AQGUARDED are such that:

P and Q satisfy conditions GUARDEDP and GUARDEDQ iff L(AP
GUARDED) = L(AQ

GUARDED).

Proof. We prove the two directions separately.

()) Assume that L(AP
GUARDED) 6= L(AQ

GUARDED), and consider w.l.o.g. a word u 2 L(AP
GUARDED)r L(AQ

GUARDED).
We distinguish two cases depending on whether the word u is accepted in state q0 or qf .

Case u = ci1ci2 . . . cil is accepted in q0: In such a case, we built (tr, σP) as follows:

tr = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cil ,wl−1,wl)

with σP the substitution defined uniquely as expected from our semantics. We have that (tr, σP) 2 tracefwd(P) as the
transition function δ fully captures input filtering and output of terms for protocols in Cpp. Since u 62 L(AQ

CONST), we
have that (tr, σQ) 62 tracefwd(Q) for any substitution σQ, and thus the condition GUARDEDP fails.

Case u is accepted in qf : In such a case, we also build a trace (tr, σP) 2 tracefwd(P) “corresponding” to u. The
construction is a bit more involved. We have that u is of the form: ci1ci2 . . . cikc

i0
forkcj1cj2 . . . cjlctestcp1cp2 . . . cpmcend.

Let tr = tr0.tr1.tr2 with tr0, tr1 and tr2 defined as follows:

• tr0 = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cik ,wk−1,wk).io(ci0 ,wk,wk+1);

• tr1 = io(cj1 ,wk+1,wk+2).io(cj2 ,wk+2,wk+3) . . . io(cjl ,wk+l,wk+l+1);

• tr2 = io(cp1 ,wk+1,wk+l+2).io(cp2 ,wk+l+2,wk+l+3) . . . io(cpm ,wk+l+m,wk+l+m+1).

and σP is uniquely defined as expected from our semantics, as P is deterministic. We have that (tr, σP) 2 tracefwd(P)
as the transition function fully captures input filtering and output of terms for protocols in Cpp. We can now define
w = wk+l+1 and w0 = wk+l+m+1. The test is σP -guarded (the index k associated to the stack symbol (fork, k)
is indeed strictly positive), σP -valid (since the last transition from q2 to qf requires the stack to be identical to the
stack before reading ctest), and pulled-up in (tr, σP) (since the fork tiles allow us to control the first time the top-level
random seed of wσP appears in the frame).

We know that u = u0c
i0
forku1ctestu2cend 62 L(AQ

GUARDED), and we may assume w.l.o.g. that u0ci0u1 and u0ci0u2 are
both in L(AQ

GUARDED). Indeed, otherwise this means that there exists no frame σQ such that (tr, σQ) 2 tracefwd(Q),
and thus GUARDEDP fails, and the result holds. From now on, we assume that there exists σQ such that (tr, σQ) 2
tracefwd(Q).

Now, let q
c;↵/β
−−−! q0 be the first failing transition in the run of u in AQ

GUARDED. We distinguish several cases:

141

1. Case q = q0 and q0 = q1. Since we have already assume that u0ci0u1 is in L(AQ
GUARDED), this means that the

required transition does not exist because ||vji || = 0. In such a case, the test w = w0 (even if it was σQ-valid and
σQ-guarded) can not be a pulled-up one in (tr, σQ). Thus the condition GUARDEDP fails.

2. Case q = q1 and q0 = q1. In such a case, this means that a fork tile cannot be unstacked, meaning that the
corresponding test (even if it was σQ-valid and σQ-guarded) will not be pulled-up in (tr, σQ), and GUARDEDP
is false.

3. Case q = q1 and q0 = q2. In such a case, the problem occurs due to the fact that the fork tile is not at the top
of the stack upon becoming test. The corresponding test w = w0 will not be σQ-valid since wσQ will contain a
random seed that has been generated after the “forking point”, and thus this random seed can not occur in w0σQ.
Thus, the condition GUARDEDP fails.

4. Case q = q2 and q0 = qf . In such a case, the test tile is not at the top of the stack upon reading the last letter
of the word. The test is not σQ-valid. The stack at this point, without the test tile, is not identical to the stack
before the fork tile turning test, making GUARDEDQ fail.

Hence GUARDEDQ fails as soon as u /2 L(AQ
GUARDED).

(() If P and Q do not satisfy conditions GUARDEDP (or GUARDEDQ), i.e. there exists a trace (tr, σP) 2
tracefwd(P) such that:

1. either there exists no σQ such that (tr, σQ) 2 tracefwd(Q);

2. or (such a σQ exists) and there exists w,w0 2 dom(σP) such that the test w = w0 is σP -guarded and σP -valid,
and pulled-up in (tr, σP), and

• either w = w0 is not σQ-valid,

• or w = w0 is not σQ-guarded,

• or w = w0 is not pulled-up in (tr, σQ).

We consider such a trace of minimal length `.
In the first case, thanks to the minimality, we have that seqtr(w`) = tr. From tr we build a word u 2 L(AP

GUARDED)
by extracting the channels that occur in tr keeping the order. Since there does not exist σQ such that (tr, σQ) 2
tracefwd(Q), and the transition function δ of the automaton fully captures input filtering and output of terms for
protocols in Cpp, we have that u 62 L(AQ

GUARDED).
In the second case, thanks to minimality, we have that tr is actually made up of all the actions that occur in seqtr(w)

and seqtr(w
0). These two sequences have a maximal common prefix pref that is not empty. Actually, we have that:

pref = io(ci1 , start,w1).io(ci2 ,w1,w2) . . . io(cip ,wp−1,wp) for some p ≥ 1.

From tr, we build a word u = ci1ci2 . . . cip−1
c
ip
forku1ctestu2cend 2 L(AP

GUARDED) as follows:

• u1 is obtained by extracting the channels that occur in seqtr(w) after the prefix ci1ci2 . . . cip−1
cip ; and

• u2 is obtained by extracting the channels that occur in seqtr(w
0) after the prefix ci1ci2 . . . cip−1

cip .

As the transition function δ fully captures input filtering and output of terms for protocols in Cpp, and since w = w0 is
a test that is σP -guarded, σP -valid and pulled-up in (tr, σP), we get that u 2 L(AP

GUARDED). What remains to show is
that u 62 L(AQ

GUARDED). We distinguish two cases:

• Case w = w0 is not σQ-valid. In such a case, even if after reading the first part of u, i.e. ci1ci2 . . . cip−1
c
ip
forku1ctest,

we reach q2, then we will fail to read the remaining of the word to end in qf .

142

• Case w = w0 is σQ-valid but w = w0 is not σQ-guarded. In such a case, this means that wσQ is a constant, and
the run will stop in q0 after reading ci1ci2 . . . cip−1

. This comes from the fact that it is not possible to go from

q0 to q1 adding a tile (forkji , k) with k = 0.

• Case w = w0 is σQ-valid, σQ-guarded, but not pulled-up in (tr, σQ). The fact that the test is σQ-valid but not
pulled-up means that the run will stop in q1 after reading because of the presence of a tile (forkji , k) in the stack
that can not go down anymore.

Hence u cannot belong to L(AQ
GUARDED). This allows us to conclude.

143

Titre : Analyse automatique de propriétés d’équivalence pour les protocoles cryptographiques

Mots-clefs : sécurité, vérification, protocoles, équivalence, décidabilité

Résumé : À mesure que le nombre d’objets capables de
communiquer croît, le besoin de sécuriser leurs interactions
également. La conception des protocoles cryptographiques
nécessaires pour cela est une tâche notoirement complexe
et fréquemment sujette aux erreurs humaines. La vérifica-
tion formelle de protocoles entend offrir des méthodes auto-
matiques et exactes pour s’assurer de leur sécurité.

Nous nous intéressons en particulier aux méthodes de
vérification automatique des propriétés d’équivalence pour
de tels protocoles dans le modèle symbolique et pour un
nombre non borné de sessions. Les propriétés d’équivalence
sont naturellement employées pour s’assurer, par exemple, de
l’anonymat du vote électronique ou de la non-traçabilité des
passeports électroniques.

Parce que la vérification de propriétés d’équivalence est
un problème complexe, nous proposons dans un premier
temps deux méthodes pour en simplifier la vérification :
tout d’abord une méthode pour supprimer l’utilisation des
nonces dans un protocole tout en préservant la correction de
la vérification automatique; puis nous démontrons un résultat
de typage qui permet de restreindre l’espace de recherche
d’attaques sans pour autant affecter le pouvoir de l’attaquant.

Dans un second temps nous exposons trois classes de pro-
tocoles pour lesquelles la vérification de l’équivalence dans le
modèle symbolique est décidable. Ces classes bénéficient des
méthodes de simplification présentées plus tôt et permettent
d’étudier automatiquement des protocoles taggués, avec ou
sans nonces, ou encore des protocoles ping-pong.

Title : Automated analysis of equivalence properties for cryptographic protocols

Keywords : security, verification, protocols, equivalence, decidability

Abstract : As the number of devices able to communicate
grows, so does the need to secure their interactions. The
design of cryptographic protocols is a difficult task and prone
to human errors. Formal verification of such protocols offers
a way to automatically and exactly prove their security.

In particular, we focus on automated verification methods
to prove the equivalence of cryptographic protocols for a un-
bounded number of sessions. This kind of property naturally
arises when dealing with the anonymity of electronic voting
or the untracability of electronic passports.

Because the verification of equivalence properties is a

complex issue, we first propose two methods to simplify it:
first we design a transformation on protocols to delete any
nonce while maintaining the soundness of equivalence check-
ing; then we prove a typing result which decreases the search
space for attacks without affecting the power of the attacker.

Finally, we describe three classes of protocols for which
equivalence is decidable in the symbolic model. These classes
benefit from the simplication results stated earlier and enable
us to automatically analyse tagged protocols with or without
nonces, as well as ping-pong protocols.

	Résumé
	Acknowledgements
	Introduction
	Protocols and attacks
	Security and the symbolic model
	Security properties
	Automation of security proofs
	(Un)decidability of reachability properties
	Proof techniques for reachability properties
	The case of equivalence

	Existing tools
	Contributions
	Simplifying equivalence checking
	Decidable classes

	Outline
	Publications

	I Simplifying equivalence checking
	Model for general protocols
	Term algebra
	Process algebra
	Semantics
	Trace equivalence
	Determinate protocols
	Simple protocols

	Type-compliant protocols
	Typing systems
	Type compliance
	Tagged protocols

	Conclusion

	How to get rid of nonces
	Our hypotheses
	Getting rid of nonces
	Our transformation
	Main result
	Proof

	Scope of our result
	Simple processes
	Adequate theories
	Is our abstraction precise enough?

	Conclusion

	Well-typed executions
	Existence of a well-typed witness of non-equivalence
	Well-typed trace
	Main result

	A type preserving decision algorithm for bounded processes
	Reachability blackbox
	Our algorithm for trace equivalence
	Termination, soundness, and completeness
	Type-preservation

	Conclusion

	II Decidables classes
	Decidability of trace equivalence for simple protocols without nonces
	Decidability result
	Main result

	A sound procedure for simple protocols with nonces
	Proof of Theorem 5.1.1
	Proof of Corollary 5.1.1
	Conclusion

	Decidability of trace equivalence for acyclic simple protocols with nonces
	Annotated model for security protocols
	A first decidability result
	Dependency graph
	Our result

	An improved version of our decidability result
	Motivating example
	Appropriate marking
	Refined dependency graph

	Results
	Scenario with corruption
	Review of symmetric key protocols
	Detailed comparison with post15-sybille

	Proof of our decidability results
	Reducing equivalence
	Exploiting the dependency graph
	Bounding the length of a minimal witness

	Conclusion

	Decidability of trace equivalence for ping-pong protocols
	Ping-pong protocols
	Term algebra
	Class Cpp
	Main results

	Getting rid of the full attacker
	Forwarder semantics
	Towards a forwarder attacker

	Encoding protocols into real-time GPDAs
	Generalised pushdown automata
	Characterisation of trace equivalence
	From trace equivalence to language equivalence

	From language equivalence to trace equivalence
	Implementation
	Encoding pairs
	Biometric passport
	Experiments

	Conclusion

	Conclusion and perspectives
	Bibliography
	Appendices
	Well-typed executions
	Proof of Proposition 4.2.3
	Simplifying recipes
	Decision for bounded protocols

	Proofs of Theorem 4.1.1 and Proposition 4.1.1

	Decidability of trace equivalence for ping-pong protocols
	Undecidability of trace inclusion
	Getting rid of the attacker
	Encoding a protocol into a real-time GPDA
	Characterisation of trace equivalence
	From trace equivalence to language equivalence

