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Abstract

Granular materials exhibit a wide spectrum of constitutive features under various
loading paths. Developing constitutive models which succeed to characterize these
features has been challenging scientists for decades. A promising direction of achieving
this can be the multi-scale approach. Through this approach the constitutive model is
formulated by relating material’s macroscopic properties to their corresponding micro-
structure properties.

A comprehensive investigation has been carried out on the basis of numerical biaxial
tests using a 2D discrete element method (DEM), in order to ascertain the micro-structure
characteristics of the granular material, the way they evolve along the loading path and
roles they play in the macroscopic behaviors. In a meso-scale, intermediate between the
single contact scale and the macro-scale, the force transmission network (force-chains)
and area element enclosed by contacts branches (meso-loops) are highlighted in terms of
their significant influences on material’s macro-scale behavior. Meso-loops herein are
tessellated from the whole area of the granular assembly by the contact network, and are
subsequently categorized according to their side number.

The development of meso-loops is observed to be intimately related to material’s
volumetric evolution, especially to the plastic part. Then, the interaction between force-
chains and meso-loops and the significance of this interaction to the global volumetric
behavior and the macroscopic strength are revealed. Meso-loops with 3 sides (L3) appear
to be indispensable for the force-chain stability, meanwhile, meso-loops with more than
or equal to 6 sides (L6+) contribute much to the volume expansion and accelerate the
buckling of the force-chain they confine. Otherwise, in the critical state, an identical
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meso-structure is found in the failure area of both localized and diffuse failure mode. To
this extent, L3 and L6+ are enormously important for the granular material to transmit
forces and to perform the volumetric variation.

A constitutive model has been developed by modifying the H-directional model
(Nicot and Darve, 2011b). In this model, the individual hexagons, the representatives
of L6+, construct the fabric as distributing along different directions in the space. A
homogenization approach is then used to relate macroscopic properties to local ones.
This model is then validated in different loading paths, and eventually proved satisfying.
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Résumé

Les matériaux granulaires exhibe un spectre très large de propriétés constitutives,
le long de chemins de chargement très divers. Développer des modèles constitutifs
permettant de reproduire ces caractéristiques a demeuré un réel challenge scientifique
au cours des dernières décennies. A cet égard, les approches multi-échelles constituent
aujourd’hui une voie très prometteuse. Elles permettent de relier les propriétés macro-
scopiques à celles observées à l’échelle microscopique.

Une investigation a été menée sur la base de simulations numériques discrètes (DEM)
d’essais biaxiaux, afin d’identifier les caractéristiques micro-structurelles du matériau
granulaire, la manière dont elles évoluent au cours d’un chemin de chargement, et le rôle
qu’elles jouent dans l’émergence du comportement macroscopique. A l’échelle méso-
scopique, le réseau de transmission de force (chaines de force) et les cellules définies par
les vecteurs branches (meso-cycles) apparaissent jouer un rôle de première importance.
Les meso-cycles, construits à partir du réseau de contact de l’assemblage, peuvent être
caractérisés en fonction du nombre de cotés qu’ils contiennent (topologie). Leur influence
sur le comportement volumique de l’échantillon est en effet étroitement liée à ce nombre
de contact. En outre, leur interaction avec les chaines de force est également fortement
dépendante de leur topologie. Ainsi, les cycles contenant 3 cotés (L3) participent active-
ment à la stabilisation des chaines de force, alors que les cycles contenants au moins
6 cotés (L6+) contribuent essentiellement au comportement dilatant de l’échantillon et
à l’effondrement des chaines de force. Enfin, l’existence d’une méso-structure unique
à l’état critique, au sein de la bande de cisaillement (rupture localisée) ou au sein de
l’échantillon (rupture diffuse), est clairement démontrée.
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Sur la base de ces résultats, un modèle constitutif a été développé à partir du mod-
èle H-directionnel (Nicot and Darve, 2011b). La structure du matériau granulaire est
décrite par un assemblage d’hexagones (modélisant les cycles L6), orientés dans toutes
les directions de l’espace. A partir d’opérations d’homogénéisation, les contraintes et les
déformations incrémentales peuvent être reliées à l’échelle de l’assemblage, donnant lieu
à un modèle de comportement dont la performance a pu être testée le long de chemins
de chargements variés.

Mots clés:

Rupture, Instabilité, micro-structure, modélisation constitutive, Multi-échelle, DEM
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Chapter 1

General Introduction

1.1 Background: micro-structure of the soil and multi-scale

approach

A vast majority of human activities, so far, are limited on the ground by the gravity,
and a vast majority of artificial structures are established with contacting to the earth. The
soil, covering an enormous proportion of the land surface on the earth, considered to be
the “skin of the earth”, is a kind of important material we should deal with in engineering
practices of various types, such as civil engineering, environmental engineering, mining
engineering, shore engineering and etc.

Being a big material class, the soil contains numerous members, classified according
to different criteria, such as the class of the parent material, the grain size distribution and
the consolidation history. Otherwise, as composed of gas, fluid and solid to be a three
phases system, the soil behaves sensitively to the initial states of three phases, and the
way three phases evolve along the loading path. The combination of these factors gives
rise to a wide variation of the mechanical properties of the soil, among not only different
kinds of soil but also different initial states and various applied loading paths. Up to
date, the knowledge on the soil is limited and insufficient, especially when compared
with the increasing need of human constructions and activities. Understanding soil’s
features in different conditions and circumstances and developing models to simulate its
behaviors, therefore, appear to be the fundamental topics for scientists and engineers in
the geomechanics community.
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The soil, consisting of soil grains, is basically a member of the granular material, which
is a more general family involving the snow, the coal, different kinds of powder and etc.
The constituents of granular materials, as what its name indicates, are discrete grains
varying in size and shape. The granular system is simply governed by the frictional
nature (with or without a cohesion) on the contact points and the given boundary
conditions. However, when it assembles a great number of grains together into a
complex system, a series of complex behaviors may consequently emerge, e.g. a highly
incrementally non-linear constitutive behavior (Darve, 1990; Darve et al., 1995b), the
existence of the non-associate flow rule, and the existence of a bifurcation domain within
the plastic limit (Darve et al., 2004; Nicot et al., 2009). Besides, considering the importance
of the granular material in application to diverse industries (Rhodes, 1990), such as civil
engineering, pharmaceutical industry and agriculture, it has evoked great interest in the
mechanics community in last decades. In this thesis, the soil, or called granular soil, is
investigated and discussed in the general framework of granular materials.

Benefiting from the advancing of the measurement technique toward the microscopy,
plentiful new techniques are introduced to observe the micro-structure of granular
materials, such as electron microscope, photoelastic material and X-ray. Researchers
are gradually capable of clarifying microscopic essences beneath macroscopic behaviors
of the granular material. In dedications to this way, numerous features in the micro-
scale are successively discovered, the fundamental roles played by different kinds of
micro-structures in the material’s mechanical behavior are successively recognized.

The material fabric and its decisive influence on the macroscopic mechanical proper-
ties have been a popular topic since the pioneering work of Oda (1972a,b,c). Considered
as the core of stress-strain relation, the material fabric exists to be the bridge between the
stress and strain. Furthermore, two kinds of self-organization of grains (or contacts), the
force-chain and the loop, are observed to be prevalent micro-scale structures in granular
materials and highlighted to be significant features with mechanical meanings. Force-
chains are quasi-linear chains formed by grains transmitting forces of magnitude larger
than the average value. It is the strong phase of the force network, as between these
chains are regions of the low force carriage, in which grains are shielded by their neigh-
bors vaulting or arching above (Kondic et al., 2012). The force-chain system, contributing
most in sustaining external loading, is largely responsible of the force transmission in the
specimen. The massive buckling of force-chains betoken a global loss of the material’s
sustainability against external loading, i.e. the instability of the material. Loops are the
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elementary cells of the granular assembly enclosed inside by contact branches. Since the
whole area of the granular assembly can be seamlessly tessellated into loops, they are
elementary entities of the material’s volume, therefore, strongly relating to the global
volumetric behavior.

Another important work in the geomechanics is to develop constitutive models,
which try to give mathematical relations for simulating the behavior of the material as
close to the reality as possible. Last decades have seen many phenomenological models,
which build constitutive relations by means of mathematically characterizing the dif-
ferent observed phenomena. This kind of model normally has to involve an exceeding
number of parameters, whereas most of these parameters lack the physical background.
With the advances in micro-scale investigations, more and more macroscopic phenomena
are attributed to the microscopic characteristics of the material. Many researchers then
turn to make the attempt of embedding the discovered micro-physics into the constitu-
tive relation. This naturally requires the technique for changing scales between micro
and macro, giving birth to the multi-scale approach. To this approach, problems of
the constitutive modeling turn from how to properly formulate observed macroscopic
phenomena to how to exactly characterize the basic micro-physics underlying the macro-
scopic phenomena and to sophisticatedly link them to macroscopic properties. This,
reversely, brings forward a higher demand on investigating the micro-structure of the
granular soil. Along the reasoning line of this approach, investigations and discussions
in this thesis unfold.

1.2 Constitutive modeling for granular material: knowl-

edge and problems

1.2.1 micro-structure investigation

The way and tool employed for implementing the experiment and measuring results
may vary from one research to another, whereas all independent information in a gran-
ular assembly is no more than the static properties on contacts, i.e. the contact force,
and kinematic properties on particles, i.e. the particles’ position and velocity. Various
analyses are then made on the basis of this information.
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1.2.1.1 Material fabric and its evolution

In the granular material subjected to the quasi-static loading, two fabric systems
are significant to the mechanical behavior: the material fabric and the force fabric. The
material fabric refers to the contact network composed of all contact branches, while
the force fabric is the network through which forces pass the material. In practice,
the material fabric is the basis of the force fabric and, reversely, the force fabric can
reconstruct the material fabric. The evolution and interaction of these two fabrics are
essential microscopic ingredients of the granular assembly.

Oda (1972a,b,c) in a succession of works first highlighted the importance of the mate-
rial fabric. By taking the tomography on sections of resin-glued sand sample subjected
to the drained triaxial loading path, he measured the material fabric and quantitatively
presented orientations of individual contacts into a density distribution E(θ, β), where θ

and β are two coordinates in the spherical coordinate system, determining the contact ori-
entation. E(θ, β) enabled the material fabric to be concisely characterized and compared
between different strain states. E(θ, β) was observed to increase its anisotropy with the
increasing axial strain, the direction of this anisotropy was coincident to that of the axial
strain. In his researches, the significant effect of the fabric anisotropy on the material’s
global mechanical properties was revealed in three aspects: (1) both the stress and the
volumetric performances of the material were sensitive to the initial fabric anisotropy; (2)
the stress anisotropy, i.e. the stress ratio, and stress-dilatancy was quantitatively related
to the fabric anisotropy; and (3) the strain localization domain was highly associated
with a localized value of the fabric anisotropy.

Hajime (1974) performed a special simple shear test, using cylindrical rods made
up of the photoelastic material. The density distribution E(θ) of contacts in preferred
orientation θ in 2D space and the contact forces were measured. By employing these
microscopic quantities, he proposed the relation between the shear resistance (τ/σN : the
ratio the shear stress over the normal stress) and the dilatancy ratio (dεN/dγ: the incre-
mental ratio the normal strain over the shear strain). In a similar test but employing oval
rods, Oda et al. (1982) observed that before stress peak, contacts were built preferentially
to the direction parallel to the major loading direction. A groundbreaking point which
has to be mentioned is that the role of particles’ rotation in granular material’s deforma-
tion was highlighted, the traditional assumption that attributes shear deformation to the
inter-particle sliding was doubted.
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The orientational density distribution of contacts in both 2D (E(θ, β)) and 3D space
(E(θ)) is not a function but a set of directional data in a finite length. This causes the
inconvenience in mathematically manipulating it, especially in deriving constitutive
relations. In the early 1980s, several solutions were proposed.

Oda et al. (1980) proposed to use the ellipsoid function approximating E(θ, β), by
adjusting three parameters indicating the length of ellipsoid’s axes. This function of the
quadratic form can be associated to a second order tensor with a clear physical meaning.
The reduction of the number of parameters was discussed in axis-symmetrical loading
case. Satake (1982) introduced a general method for characterizing cracks’ preferring
orientation in the geomaterial. The fabric tensor Hij was built by taking into account the
orientation of all cracks. It can be adopted in the granular material, if seeing the contact
as the crack. It was expressed as below,

Hij =
∫ 2π

0

∫ π

0
E(θ, β)ninj sinθ dθdβ, (1.1)

where~n is the contact normal, the unit vector along contact orientation. The deviator of
the fabric tensor and the inclination of the major principal axis respectively indicate the
degree of the fabric anisotropy and the fabric rotation. In the simple shear test, Oda et al.
(1982) discovered that the rotation of principal axes of stress tensor tended to be coaxial
to that of the fabric tensor Hij. Following the coaxiality between stress tensor and fabric
tensor, Mehrabadi et al. (1982) derived a stress-fabric relation by defining the stress in
terms of fabric invariants, expressed as below,

σij = α Hij + β Hkl Hlk, (1.2)

where α and β are material parameters. In the aspect of building the stress-fabric relation,
Bathurst and Rothenburg (1990); Ouadfel and Rothenburg (2001) proposed stress-fabric
formulas respectively in assemblies of spherical and ellipsoidal particles.

Ken-Ichi (1984) proposed to approximate the contact orientational density distribution
by the Fourier extension with items more than second order truncated. The formula for
3D data was expressed as below,

E(θ, β) =
1

4π
[1 +

a

4
(3 cos2θ + 1) + 3b sin2θ cos2β], (1.3)
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where a and b are two parameters. This formula can be alternatively written in a form
involving Cartesian tensor:

E(θ, β) = Dijninj,

D =
1

4π




1 + a 0 0
0 1 − a/2 + 3b 0
0 0 1 − a/2 − 3b


 ,

~n = cosθ~i + sinθcosβ~j + sinθsinβ~k,

(1.4)

where~n is the contact normal. The 2D data’s formula was also given,

E(θ) =
1

2π
(1 + a cos2θ), (1.5)

where a is an adjustable parameter. The associated tensor in Cartesian coordinate system
D were expressed as follows,

E(θ) = Dijninj,

D =
1

2π

[
1 + a 0

0 1 − a

]
,

~n = cosθ~i + sinθ~j,

(1.6)

This method is commonly adopted to approximate the contact orientational distribution,
because there are only a few number of parameters and the error is relatively small. In a
similar form, the contact force distribution (a characterization of force fabric) can be also
approximately characterized, such as in 2D case (Cambou, 1993),

fn(θ) = f̄ (1 + an cos2θ),

ft(θ) = − f̄ at sin2θ),
(1.7)

where fn(θ) and ft(θ) are respectively the normal and the tangential force on contacts
along the direction indicated by inclination θ, and f̄ is the mean normal force over all
contacts.
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Rothenburg and Bathurst (1989) investigated the evolution of the material fabric and
the force fabric in the 2D biaxial test, the material fabric parameter a and force parameters
an and at are traced during loading. A relation between deviatoric stress and these fabric
parameters was theoretically derived and then experimentally proven, as given below,

σ1 − σ2

σ1 + σ2
=

1
2
(a + an + at), (1.8)

where σ1 and σ2 are respectively the axial and the lateral stress eigenvalues. Azéma et al.
(2007), in the 2D numerical biaxial test on the pentagons assembly, also investigated the
evolution of a, an and at and examined the equation 1.8. Their Results supported the
equation 1.8.

In aforementioned investigations, interests were only placed on expressing the stress
quantities in terms of fabric parameters. The knowledge in the aspect of how the strain
is related to the fabric evolution remains limited. However, this is crucial for obtaining
sound constitutive relations. There are two questions needing to be answered: how the
global strain directs the fabric evolution; and how the global strain is derived from the
deformations on material fabric.

Calvetti et al. (1997) investigated the first point based on the results from the shear
test on 2D assemblies of rods. The evolution of the material fabric was investigated in
different kind of shear tests, with an emphasis on comparing the variations of contact
numbers in different directions. Results showed that contacts were preferentially created
in contractant directions and destructed in the dilatant ones. Then the following formula
was given,

δω(~n)

ω(~n)
= a(δε : ~n) ·~n, (1.9)

where a is an adjustable coefficient for different materials,~n is the contact normal indicat-
ing the contact direction.

However, all methods above in describing material fabric are incompetent of solving
the second point, because in these methods, contacts are considered independently
in the orientational distribution (or function), presenting no organization and relative
displacement among each other. Whereas the strain in granular assemblies is derived
from the relative displacement not only between contacting grains but also among
neighboring contacts. This means that the strain should be derived in a scale competent
of characterizing the organization among contacts, in the other word, a scale larger than
single contact scale. On the other side, as far as the force fabric was exploited, scientists
gradually realized that the force transmission in the granular material also presents an
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organization in a scale much larger than the single contact scale. This is the force-chains,
which will be mentioned in next subsection. It is far from possible to correctly formulate
the evolution of the force fabric only in a orientational function. Therefore, both material
and force fabric are required to be investigated in a scale larger than the single contact
scale but, of course, smaller than the macro-scale, i.e. the so-called meso-scale. In this
meso-scale, force-chains and meso-loops (will be introduced later) can be identified, as
ways of characterizing respectively the force fabric and the material fabric.

1.2.1.2 Structures in a meso-scale

Force-chains

Due to the disordered packing, forces in granular media are transmitted in a promi-
nent heterogeneity pattern (Cambou et al., 2009). This phenomenon was first noticed
in several investigations of the shearing test on the photoelastic material (Dantu, 1968;
Drescher and De Jong, 1972). In a similar scene as in Figure 1.1, forces were observed
not to distribute homogeneously in the material but to follow some column-like paths
which formed a structural network, showing a pronouncedly more heterogeneous and
anisotropic pattern than that of the material fabric. This material feature was not further
investigated until the middle of 1990s. Jaeger et al. (1996) investigated the forces particles
applied on the boundaries in a triaxial test through measuring prints of particles on the
carbon paper set on the boundaries. A decreasing exponential density distribution of
force magnitude was found.

Radjai and Roux (1995); Radjai et al. (1998) distinguished between strong force net-
work and weak one according to the average force, and investigated the organization
of these two networks. The exponential density distribution was observed to only exist
in strong network, while the weak network (complementary to strong network) dis-
tributed in a uniform or power-law shape (Radjai et al., 1996; Mueth et al., 1998). Further
researches confirmed the exponential density distribution to be a prevailing feature of
granular material subjected to the external loading, as properties of weak network were
shown to be sensitive to the grain size distribution and the initial state (Mueth et al., 1998;
Radjai et al., 1999; Antony, 2000; Blair et al., 2001; Erikson et al., 2002; Silbert et al., 2002;
Mueggenburg et al., 2002; Majmudar and Behringer, 2005; Azéma et al., 2007). More
generally saying, the existence of a persistent heterogeneous force distribution can be
the definition of the solid phase of the granular material, being distinct from the fluid
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Figure 1.1: Force fabric in the granular as-
sembly made up of photoelas-
tic material, in a simple shear
test. The brightness of light
lines presents the force magni-
tude (Zhang et al., 2008).

Figure 1.2: Contact network composed
of contact branches in the
2D granular assembly. Black
continuous lines are contact
branches, gray disks are
grains.

and gas phases, where heterogeneities cannot be long-lasting (Jaeger et al., 1996). In
later researches, the jamming transition, a concept similar to the phase transition, was
observed to be highly associated to the formation of the heterogeneous force distribution
(Behringer et al., 2008; Kondic et al., 2012).

In this context, the strong network is distinguished from the weak network, then
the concept of force-chain was prepared on the basis of the strong network to define
those quasi-linear columns, consisting of contacts of the force magnitude greater than
the average.

Further investigations have shown the significant role the force-chain plays in the
macroscopic behaviors of the granular material. Iwashita and Oda (2000); Oda and
Iwashita (2000), in numerical biaxial tests with the particle rolling resistance, investigated
micro-scale properties of granular assemblies with shear bands. They noticed the forma-
tion of shear bands strongly referred to the massive generation of force-chains during
the hardening process and their collapse in the softening process, accompanied with a
volumetric dilatancy. Based on results of the numerical biaxial test, Tordesillas (2007)
analyzed the evolution of the void ratio around force-chains and the damage pattern of
force-chain. Some evidences about the link between force-chains and stress-dilatancy
were found. This intriguing work shed a light to answer the question that how the volu-
metric variation on the material fabric influences the force fabric evolution. However, a
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reasonable answer requires a more precise investigation on how force-chains and their
surrounding structures interact with each other. A priori, force-chains’ surrounding
fabric should be characterized in a clear way with physical meanings. The meso-loop,
which will be introduced in the following, provides a promising way in this aspect.

Meso-loops

Satake (1992) introduced an approach to associate discrete mechanical properties
to the continuum-mechanical ones. In this approach, as shown in Figure 1.2, the contact
network seamlessly tessellates the material area into loops, which are enclosed by contact
branches and involve inside fan-shaped sections of particles and voids surround by
particles. Therefore, voids can be correctly quantified inside loops by local kinematical
properties. This approach gave a way of characterizing the material fabric by considering
the microscopic volumetric nature in the scale of the loop, namely a meso-scale. Then
the loop can be also called the meso-loop.

Bagi (1993, 1996); Nguyen et al. (2012) expressed the stress on the meso-scale as a
volume average of the tensorial product of the contact forces and the contact branches.
This way of defining the meso-scale stress was satisfying only in the static or quasi-static
state, otherwise, an inertial term should be involved according to the expression given by
Nicot et al. (2013). Bagi (1993, 1996); Kruyt and Rothenburg (1996); Cambou et al. (2000);
Kruyt (2003) proposed several approaches to derive the average strain of the material
from relative displacements on contacts and geometrical quantities of loops. Results
proved that the global strain can be well presented from the local kinematics of the
meso-loops. Nguyen et al. (2009, 2012) gave a definition of the strain on the meso-loop.
This meso-scale strain facilitates researchers to make the analysis on the meso-scale,
by characterizing the meso-scale kinematics into a continuum-mechanical form which
researchers are familiar with.

Problems in the meso-structure investigation

There are two problems on the fabric investigation in the meso-scale, which have
to be stated here and need to be investigated in this thesis:
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1. As a way of describing the material fabric, the meso-scale topology and its evolution
give important information of the granular system. Kruyt and Rothenburg (2014)
statistically analyzed the critical state features of meso-loops in several aspects.
Results showed that in critical state, the loops’ geometrical anisotropy was highly
depending on the side number and the orientation of loops. Arévalo et al. (2010)
investigated the evolution of the topology of a polydispersing granular assembly
subjected to an isotropic compression. The number of triangles, the meso-loop with
three sides, increased substantially at the transition point from the dynamic state to
the static state, and kept increasing afterwards. The result suggested that triangles
played a special role in the transition between the dynamic to the static state.

Meso-loops in different shapes or inclined in different orientations present the
prominently distinction on the micro-mechanical behavior. Therefore, data such
as the proportion of meso-loops in different shapes or the preferring inclination
of meso-loops are also physically meaningful to the granular system, and can be
strongly associated to the material’s macroscopic behavior. This is a promising way
to attribute material’s macroscopic behavior to the topology of its fabric. However,
only a few of researches has been dedicated to this direction (Arévalo et al., 2010;
Kruyt and Rothenburg, 2014).

2. In another aspect, a fundamental problem in the micro-structure investigation of
the granular material is how the force fabric (force-chains) and the material fabric
(meso-loops) interact with each other. When force-chains and meso-loops are corre-
spondingly the local static and kinematical elements in the granular material, the
interplay between them appears to be the basic ingredient of the local constitutive
behavior. The observation and formulation on this behavior will give birth to the
local constitutive relation. Tordesillas et al. (2010, 2014) investigated the evolution
of the surrounding meso-loops around force-chains. Triangles associated to force-
chains were observed to substantially depopulate and transform to meso-loops
with a larger side number. This may contribute to the volumetric dilatancy. The
way how triangles were transformed to other ones was discussed. However, even
though pioneering works have been done, knowledge on this aspect is still very
limited.
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1.2.2 Constitutive modeling based on the fabric

As the knowledge in terms of the micro-structure of the granular material was ap-
proaching the physical essence, scientists started to attempt building the constitutive
relation with micro-mechanical considerations. One kind of approach derives the con-
stitutive relation still in a phenomenological framework, such as in an elasto-plastic
framework, but with considering the role of the fabric by embedding fabric-related
parameters into the formulations. Li and Dafalias (2012) extended the critical state theory
(Schofield and Wroth, 1968) by an additional requirement to a constant fabric in the criti-
cal state, other than the conventional requirement to the constant stress and volumetric
strain. Following this way, several studies (Zhao and Guo, 2013; Guo and Zhao, 2013)
dedicated to investigate the critical state fabric anisotropy. The critical state relation be-
tween the fabric anisotropy parameters and the hydrostatic pressure was given. Several
constitutive relations (Gao and Zhao, 2012; Gao et al., 2014) were built on the basis of
this framework by involving fabric anisotropy parameters. This kind of approach only
adjusted the phenomenological framework by considering some parameters which have
micro-physical meaning. However, the macroscopic quantities were derived not from
their microscopic essences but still from empirical relations.

On the contrary, the multi-scale approach uses changing scale techniques to sophisti-
catedly relate the macroscopic quantities to the static and kinematic aspect of the fabric.
Chang and Misra (1989); Chang et al. (1992), in their pioneering work, built a constitutive
model for sand. In this model, incremental stress and strain are respectively connected to
the contact force and the contact relative displacement on the basis of the contact fabric
distribution E(θ, β), which was initially given. After that, various constitutive models
(Chang et al., 1990; Yin et al., 2011b,a; Chang, 2014) were born for different kinds of soil,
in similar methods as what was proposed by Chang and Misra (1989); Chang et al. (1992).
The difference only lied in the form of the initial density distribution for the contact fabric.
Nicot et al. (2005) adopted the fabric evolution law (equation 1.9) given by Calvetti et al.
(1997) into the constitutive relation, in order to solve the fabric evolution in terms of
the incremental strain during the loading path. Emeriault and Cambou (1996) clarified
the general framework of deriving the constitutive relation for the granular material,
involving three parts: the strain localization (or averaging) scheme, to determine the local
kinematical quantities from the global strain (or reverse); the local constitutive relation,
to give the local static quantities according to local kinematic quantities (or reverse);
and the stress averaging (or localization) scheme, to solve the global stress from local
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quantities (or reverse). In this work, representation theorem (Spencer, 1987) was applied
to formulate the relation between the local kinematics and the global strain. Combining
with the stress homogenization scheme, a micro-mechanical model was derived from a
non-linear elastic model, the Hertz-Mindlin model (R. D. Mindlin, 1953).

Problems in multi-scale constitutive modeling

As we already know, both the force and material fabric only exist in the meso-scale
and above, any smaller scale will blind us to capture intact force and material fabrics,
much less to completely characterize the local behavior between these two fabrics. This
means that the local constitutive relation can be only derived on the meso-scale. Given
that the techniques of obtaining the stress and the strain respectively from the force
fabric and loops’ kinematics are getting mature, to obtain a satisfying local constitutive
relation in the meso-scale is the only missing link to build a sound constitutive model.
Nicot and Darve (2011b) built a constitutive relation by introducing hexagons, instead of
individual contacts, as elements of the fabric. These hexagons, consisting of six contacts
symmetrically forming a loop, were an embodiment of the meso-loop, namely, an entity
in the meso-scale allowing the relative displacement among contacts to be presented.
However, this was only the first attempt to derive the constitutive relation from the
meso-scale, there were still numerous significant details missed, mainly in three aspects:
the symmetric layout of the hexagon disables the model to receive a shear strain; the
force fabric is not presented, any force-chain related element has not been considered;
and the evolution of the angular distribution of hexagons has not been fully considered.

1.3 Objectives

To build a constitutive model which is competent of simulating the complex behavior
of the soil requires a comprehensive observation, an accurate perception and then a
sophisticated formulation on the microscopic essence of the macroscopic appearance.
On one side, new observations on the fabric of the granular material have highlighted
the significance of the meso-scale and suggested a bright perspective of constitutive
modeling in the meso-scale. However, on the other side, progressing along this road
is largely hindered by the limited knowledge on the fabric behavior of the granular
material in the meso-scale. The aim of this thesis is to build a constitutive model on the
basis of the knowledge obtained from the investigation to the mesoscopic mechanical
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behavior of the granular material. This aim can be divided into two steps: based
on the results of the numerical simulation using DEM (discrete element method), to
investigate the mechanical behavior of force-chains and meso-loops (their evolution,
mutual interaction and their role in macroscopic mechanical behavior), as a cumulation
of the micro-mechanical knowledge for further constitutive modeling; and to develop a
constitutive model using multi-scale approach on the basis of the knowledge obtained
from the first step. These two steps are detailed as below.

Micro-structure analysis in 2D granular material

The objective of the micro-structure analysis can be subdivided into three parts. All
analysis is based on the results of numerical simulations using DEM.

The first part is to investigate the evolution of some significant features of meso-
loops along the drained biaxial test from different initial states. In this part, basic
evolutionary characteristics of the material fabric characterized by meso-loops will
be quantitatively investigated, the degree and the way the evolution of meso-loops
influences the macroscopic mechanical behavior of the granular material need to be
clarified.

The second part is to investigate the interaction between force-chains and their
confining meso-loops along drained biaxial loading path. The aim is to specify two
points: how the force-chains (the force fabric) rebuild their surrounding meso-loops (the
material fabric) during loading path; and how the latter influences the behavior of the
former.

The last part is to characterize the critical state fabric on the meso-scale of granular
material in both localized and diffuse failure modes. In this part, features of the meso-
structure in the critical state will be investigated, aiming to find an identical meso-
structure in the failure area of the granular assemblies, which are undergoing either
localized or diffuse failure.

Constitutive modeling using a multi-scale approach

In constitutive modeling, the objective lies in two sides: (1) to modify the H-directional
model (Nicot and Darve, 2011b) by breaking the axis-symmetric configuration of the
hexagon and enabling the model to work under the shear strain, and then testify this
extended model; (2) to give suggestions for further extending the model on the basis of
the knowledge obtained from the micro-structure investigations.
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1.4 Outline of this thesis

The work of the thesis is organized as below:

In the chapter 1, a general introduction is given for the thesis. The importance to study
the granular soil behavior and the necessity to make the micro-mechanical investigation
and to build the constitutive model for granular material are emphasized at the beginning.
Then the history of the micro-mechanical research and the constitutive modeling using
multi-scale approach is introduced by highlighting some important contributions in
these two aspects. The necessity to introduce the meso-scale and meso-structures in both
the micro-mechanical investigation and the constitutive modeling is claimed. Limitations
and problems in existing researches or methods are discussed. At the end, the objectives
and plan of this thesis are described

In the chapter 2, DEM is employed to implement numerical test of the granular
material. At first, a brief introduction to the discrete element method is given, involving
the key procedures in the computation of DEM and some basic formulas. Then as a
preparation for the micro-mechanical investigation of the granular material in the chapter
3, numerical biaxial tests using DEM are performed. The procedure and parameters of
these tests are specified.

In the chapter 3, the meso-structures and the role they play on the mechanical behavior
of the granular material are investigated. Three key questions are answered: how
force-chains and meso-loops evolve; how these two kinds of meso-structure interplay
with each other; how the evolution and interaction of meso-structures lead to some
significant behaviors on the macro-scale. At first, some basic micro-mechanical concepts
are described, involving the definition of two significant meso-structures, the meso-
loop and the force-chain. Then based on results of numerical tests, micro-structure
analyses are implemented from three aspects. A priori, the general evolution pattern
of the meso-loops and its connection to the volumetric behavior are investigated. Then
the interaction between the force-chains and the meso-loops and how it leads to the
volumetric dilatancy are investigated. Finally, the micro-structure basis of the critical state
mechanics in localized and diffuse failure modes is studied. All presented investigations
in this chapter are based on 2D simulations using DEM.

In the chapter 4, the modified H-directional model, a model developed in the frame-
work of multi-scale approaches, is proposed in extension of the H-directional model
(Nicot and Darve, 2011b). A review is first given on the H-directional model and its
predecessor, the micro-directional model (Nicot et al., 2005). The evolution of these two
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preceding constitutive models is described and their drawbacks are discussed. Then
the H-directional model is modified in terms of its shortcoming, giving birth to the
modified H-directional model. This modified model is, subsequently, validated. At the
end, several ways for further extending the H-directional model are suggested on the
basis of the knowledge obtained from chapter 3. The framework to insert the triangle
elements into the model is given.

In the last chapter, the main conclusions of this thesis are summarized, followed by
comments on open issues and prospectives for future developments.

1.5 Conclusion

In the discussion of this chapter, the importance on the topic of the thesis and the
necessity to investigate the meso-structures and build the constitutive model on the basis
of the meso-scale were explained. Then main objectives and the plan of the thesis are
described. Main points in this chapter are summarized as below.

Both the force and material fabric are highlighted, as playing a fundamental role in
material’s macroscopic behavior. Accurately characterizing and formulating these two
fabrics and the interaction between them are essential tasks to build a constitutive model
capable of simulating the complex behaviors of granular materials. Meanwhile, these
two fabrics exist in the meso-scale and can be respectively characterized in the form of
the force-chains and the meso-loops. The constitutive relation, therefore, should be only
derived on the meso-scale. This brings two objectives to which the thesis will dedicate:
to investigate the behavior of the granular material on the meso-scale, especially the
evolution of force-chains and meso-loops, the interaction between them and the roles
they play in the macroscopic mechanical properties of the granular material; and to
develop a constitutive relation accounting for the fabric evolution in the meso-scale.



Chapter 2

Numerical Modeling by Discrete

Element Method

All Materials in small enough scales are composed of discrete elements, which are
separated by space. For example, in gases, liquids and solids, as they are made up of
atoms, an atomic scale can be identified; the soil consists of soil grains, rock and con-
crete have fractures, then corresponding micro-scales can be distinguished with respect
to the scale of the discontinuity. In the application of simulating materials, to avoid
solving interactions and kinematic equations of every discrete element, a continuum
assumption should be made in a rational scale, over which the material can be seen
as continuous and a value can be measured representatively to the whole. This scale
is the representative elementary volume (REV), defined by the Hill-Mandel condition
(Hill, 1963; Ostoja-Starzewski, 2007). In a scale bigger than REV, called macro-scale,
representative mechanical quantities, such as the stress and the strain, can be measured
by the experiment and then correlated with each other by a constitutive model, while the
continuum mechanics is adopted. In a scale smaller than REV, the randomness, due to
the existence of the discontinuity, may come to an effect on the mechanical quantities.
Despite there is a random texture, however, a periodicity may be identified or statistical
homogeneity and ergodicity of the micro-structure may be valid, enabling a homoge-
nization from microscopic properties to macroscopic ones. This gives rise to a better
understanding the mechanisms beneath the constitutive behavior of the material, and
gives us the opportunity to build a constitutive model more realistic and more obedient
to the micro-mechanical essence.
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In this thesis, to build the constitutive model of the granular material on the micro-
mechanical basis requires scales smaller than REV, where the material is considered
as an assembly of discrete elements. Consequently, the discrete element method DEM

should be employed to calculate motions and interactions of discrete elements. In this
chapter, general knowledge and some key formulas in DEM are introduced in section 2.1.
As a preparation for the micro-mechanical investigation of the granular material, a
numerical biaxial test using DEM is mentioned in section 2.2 in terms of the procedure
and parameters used in the test.

2.1 Introduction of discrete element method

Discrete Element Method (DEM), developed by Cundall (1971) and later improved
by Cundall and Strack (1979), is a best known and well-developed numeral method
to calculate motions and interactions of a set of discrete elements. With increasingly
powerful computing capability, DEM becomes widely accepted as an effective and
efficient method to solve mechanical problems. Many extensions have been made in
order to tackle different mechanical situations: for calculating the continuum deformation
inside elements, methods couping with finite element method (DEM-FEM) have been
proposed Itasca and Code (2011); Mahabadi et al. (2012, 2014,?); in terms of fluid-solid
coupling, DEM has been coupled with Lattice Boltzmann Method (LBM) (Ladd, 1994a,b;
Ladd and Verberg, 2001; Feng and Michaelides, 2004; Feng et al., 2007, 2010; Leonardi
et al., 2012a,b) and Computational Fluid Dynamics (CFD) (Tsuji et al., 1993; Xu and Yu,
1997; Kawaguchi et al., 1998; Kafui et al., 2002). The range of the DEM application has
been expanded to involve more and more physical and engineering procedures, making
it a big family of methods and a reliable tool to simulate the reality.

In DEM, the entire information of a complex system is expressed by no more than
interaction and element motion quantities. Moreover, following a certain homogenization
scheme, these local quantities can be averaged, to link to corresponding macro-scale
quantities. In this way, the link between the micro-scale and the macro-scale behavior
is established. Then, how a macroscopic phenomena derives from microscopic events
or properties and how a microscopic parameter affects the macroscopic behavior can
be analytically investigated. Consequently, DEM becomes not only an engineering
simulator, but also a powerful scientific tool, allowing researchers to explore the micro-
mechanical characteristics of the material.
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Before adopting this method, it is necessary to be aware of its limitations, basically
existing in two aspects:

• Due to the contact detecting procedure, the simulation duration is almost expo-
nentially increasing with the number of elements, inducing a large limitation by
the power of the computational processor. Many attempts have achieved to cut
the computing duration, involving the improvement of the contact detecting al-
gorithm (Hubbard, 1996; Jung and Gupta, 1996; Klosowski et al., 1998; Munjiza
and Andrews, 1998), multi-processor parallel computation (Battenberg and Wes-
sel, 2009; Munjiza and Cleary, 2009; Shigeto and Sakai, 2011; Xu et al., 2012) and
Graphics Processing Unit (GPU) parallel computation (Nishiura and Sakaguchi,
2011; Washizawa and Nakahara, 2013). Even though there are achievements in this
aspect, it is far from being mature and widely spread;

• For a material simulated by DEM, global parameters of the material cannot directly
derive from local parameters of elements. This may turn to a time-consuming
calibration between the numerical and the experimental model.

Methods of solving the dynamics of discrete bodies involve two families: contact
dynamics (Jean, 1999; Brogliato and Acary, 2008; Brogliato, 2012) and molecular dynamics
(Streett et al., 1978; Tuckerman et al., 1992; Smith, 2005). In the contact dynamics, the
discrete system consists of rigid bodies, which is governed by the purely frictional
interactions on contacts and mathematically solved by the non-smooth mechanics theory.
In the molecular dynamics, the interaction among discrete bodies, either the rigid or
the soft ones, is defined by a force field constituted by contacting or non-contacting
forces (Cundall and Strack, 1979; Wei-Xin Ren, 1999; Debunne et al., 2000; Johnson and
Holzapfel, 2003; Heard, 2008). DEM belongs to the molecular dynamics where the force
field is constituted by contact forces, which have an elastic or elasto-plastic nature. It is
the application of the molecular dynamics to granular materials. In this thesis, DEM is
adopted, which will be introduced in the remaining part of this section.

2.1.1 Calculation cycle

For the molecular dynamics approach, the objective of DEM is to determine contact
forces and particle motions of each particle in a duration ∆t. At the initiation of a time
step t0, positions and velocities of all particles at time t0 are known. Contact forces
during time step [t0, t0 + ∆t] and positions and velocities of all particles at the end of this
time step t = t0 + ∆t are determined in following 4 steps:



20 2. Numerical Modeling by Discrete Element Method

Solving and updating 

particles information  

 

(positions and velocities)  

Updating contacts 

information 

 

(contact points and two 

particle indentations) 

Contact law 

 

Solving contact forces 

Newton’s first law 

 

Solving acceleration of 

particles 

Figure 2.1: Calculation cycle of DEM.

• Updating contacts and their corresponding indentations of particles at t0, according
to particle’s positions at t0;

• Calculating and storing all contact forces from the indentations calculated in step 1,
by applying the contact law;

• Integrating all applied contact forces of each particle, and calculating the accelera-
tion of them according to Newton’s second law;

• Calculating and updating positions and velocities of all particles by integrate the
acceleration during ∆t.

Then the particle positions and velocities at the end of this time step turn to the initial
variables of the next time step. The circulation therefore can repeat and continue under
control, as shown in Figure 2.1.
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2.1.2 Contact law

The macroscopic behavior of the medium modeled by DEM is largely dependent on
the local mechanical behavior of particles. The local behavior is described through the
contact law, a relation between the contact force and the relative displacement between
two particles in the contact.

The contact law can be abstracted as a function, in which the contact force (~F) is
determined by the relative position between two particles in the contact ~u and the
relative velocity between them ~̇u

~F = f (~u, ~̇u). (2.1)

For models uncoupling normal and tangential behaviors, normal and tangential
forces (Fn and Ft) are given by

Fn = fn(un, u̇n),

Ft = ft(ut, u̇t),
(2.2)

where subscripts n and t denote normal and tangential directions.

The most common contact law used in DEM is the elasto-frictional law, introduced by
Cundall and Strack (1979). It assumes that when a contact occurs, fictitious linear springs
with friction coming into effect, with one spring in the normal direction to the contact
plane (stiffness kn) and another spring in the tangential direction to the contact plane
(stiffness kt), as shown in Figure 2.2a. The friction is an ideal one of the friction angle
ϕ, the tangential behavior of the contact is plotted in Figure 2.2b. These components
maintain valid until two particles in the contact are apart. No tensile force is allowed in
the normal direction. As a result, this local elasto-frictional behavior will lead to a global
elasto-plastic behavior of the material.

The incremental form of normal and tangential behaviors is expressed by

dFn = kn · dun and Fn > 0,

dFt = kt · dut and |Ft| 6 Fn · tan(ϕ),
(2.3)

where kn and kt are respectively normal and tangential contact elastic moduli.

To maintain the condition |Ft| 6 Fn · tan(ϕ), there is a test scheme in every time step.
A correction will be added on Ft, once the condition is violated.
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Figure 2.2: Elasto-frictional contact law: (a) components in the contact; (b) elasto-frictional
behavior in the tangential direction.

Practically, contact elastic moduli are determined by the stiffness of two particles,

kn =
ki

nk
j
n

ki
n + k

j
n

,

kt =
ki

tk
j
t

ki
t + k

j
t

,

(2.4)

Superscript i and j denote the ID of particles.

2.1.3 Calculation of the particle displacement

When the integral force Fi and the integral moment Mi are known, the acceleration on
the particle center ẍ and the angular acceleration ω̈ are solved by the Newton’s second
law

ẍi =
Fi

m
,

ω̈i =
Mi

J
,

(2.5)

where m and J are respectively the mass and the moment of inertia of the particle. For
spherical element, the latter is equal to 2mR2/5.
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Following the mid-point loading scheme, ẍi and ω̈i are assumed to be constant during
the time interval [t − ∆t

2 , t + ∆t
2 ]. Then the translational and angular velocity ẋi and ω̇i

are determined by

ẋ
t+∆t

2
i = ẋ

t−∆t
2

i + ẍt
i ∆t,

ω̇
t+∆t

2
i = ω̇

t−∆t
2

i + ω̈t
i ∆t.

(2.6)

ẋi and ω̇i are assumed to be constant during the time interval [t, t + ∆t]. Then the
translational and angular displacement xi and ωi at time t + ∆t are given by

xt+∆t
i = xt

i + ẋ
t+∆t

2
i ∆t,

ωt+∆t
i = ωt

i + ω̇
t+∆t

2
i ∆t.

(2.7)

Then the particle position at time t + ∆t can be updated. Meanwhile, translational
and angular velocities at the middle time point t + ∆t

2 are stored for the calculation in the
next time step.

2.1.4 Computational stability condition

The computational stability is an important consideration in DEM simulation. In a
stable computation, the error is bounded and controlled, ensuring a stable result. On
the contrary, the non-stability leads to an unboundedly propagation of error, while
errors amplifyingly cumulate without control step by step, resulting in a strong unstable
outcome. In most algorithms of DEM, an explicit scheme is adopted, where the stability
of the computation is conditional to the length of the time step ∆t.

The admitted ∆t to a stable solution, called critical time step ∆tc, is dependent on the
time of the wave propagation in the medium. The granular system modeled in DEM

is comprised of finite elements and springs. For a particle, which has a mass m and is
connected with other particles via springs of the stiffness k, the characteristic oscillation

period T is equal to 2π
√

m
k . Then the critical time step ∆tc of the whole granular system

must be strictly less than the minimum characteristic period over all particles.
Taking the rotation into account, ∆tc is estimated to be proportional to the min value

between the translational time step ∆tT
c and rotational time step ∆tR

c , expressed as follow:

∆tc = Ct min(∆tT
c , ∆tR

c ) = 2πCt min(
√

m

kn
,

√
J

kr
), (2.8)
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where kn and kr are respectively the normal and the rotational stiffness of particles.

2.1.5 Yade-DEM software

The Yade-DEM software (Šmilauer and Chareyre, 2010; Šmilauer et al., 2010a,b) is
used to implement DEM numerical simulations in the work of this thesis.

Yade is a extensible open-source DEM code, developed in C++. This project is initiated
by Kozicki and Donzé (2008, 2009) and on the basis of the molecular dynamic code SDEC

(Spherical Discrete Element Code), (Donzé and Magnier, 1997). It is programmed in an
objective oriented platform allowing users to modify and extend.

Python is used as the operation environment in Yade. Gifted with advantages of
an interpreted language, Python environment features Yade a great facility in terms
of simulation control, post-processing, data mining and data analysis. Especially, the
convenience on inquiring particles and interactions relevant variables largely simplifies
the data mining process in this thesis.

2.2 Biaxial tests in DEM

In this section, a series of numerical drained biaxial tests using DEM are performed.
The drained biaxial test is an usual loading path engineers often come across in the
practice. In this loading path, the stress and the volume of the material can increase and
decrease, giving a diverse variation on the micro-structure. All tests are implemented by
the open-source DEM code Yade software. The protocol of the tests is introduced in the
following subsections.

2.2.1 Parameters

To clarify the basic evolution pattern of the micro-structure requires a simple model
with the number of factors constrained as few as possible. Then an elastic-friction law
is adopted; the interaction between two contacting particles incorporates normal and
tangential springs with respective stiffness kn and kt. Non-cohesive friction comes into
effect when slide occurs, ϕ denotes the inter-particle friction angle.
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Figure 2.3: Biaxial test model in DEM.

In granular assemblies, the occurrence of the crystallization compels particles to
form an uniform crystallizing pattern, dispelling the micro-structure diversity and the
disordered grains packing. To avoid it, particles are randomly generated, with radii
obeying an uniform distribution, dispersing from 0.75D50 to 1.25D50, where D50 is the
mean grain radius.

As illustrated in Figure 2.3, all particles are ranged in a frame of frictionless walls
as height h = 1.35 m, width w = 0.9 m. Axis-2 and axis-1 respectively refer to axial and
lateral directions. Relevant parameters are listed in table 2.1.

2.2.2 Applying confining load and Consolidating

Before applying the deviatoric loading, specimens need to be confined to the pre-
scribed initial pressure p0 (p0 = 100 kpa), and then to be consolidated into different
porosities with the fixed confining pressure. In DEM software, there are two schemes of
isotropically compressing the specimen. The first is the conventional scheme, which is
to impose a equivalent incremental strain on boundaries of both directions. The second
is a internal compacting scheme, which maintains the confining pressure and equally
grows the radii of all particles. It is worth noting that the incremental radius is equal for



26 2. Numerical Modeling by Discrete Element Method

Table 2.1: Parameters in the simulation.

Parameter Value
Particle number 25000

Model size 0.90 m × 1.35 m
Particles radii range [0.75 D50, 1.25 D50]

p0/kn 10−4

kt/kn 0.5
Particle density 2600.0 kg/m3

ϕ 30◦

Particle-wall friction 0◦

Confining pressure 100 kpa
Loading rate 0.01 s−1

damping coefficient 0.01 s/kg

every particle in a time step, being independent from any particle or interaction variable.
Practically, this does not change the shape of the distribution, but imposes an increment
in D50. In the thesis work, the internal compacting scheme is adopted. After reaching the
initial confining pressure p0, to install specimens with targeted porosities, the confining
pressure is maintained, while the friction angle gradually drops and the particle size
grows. Porosity φ and void ratio e are given by

φ =
Vvoid

Vt
,

e =
Vvoid

Vt − Vvoid
,

(2.9)

where Vvoid is the void volume and Vt is the total volume of specimen.

2.2.3 Drained biaxial loading

Then specimens are subjected to a biaxial test with a constant confining pressure (100
kpa) and an axial compression of a constant strain rate (0.01 s−1). The computation lasted
until 20% of axial strain to guarantee that specimens reached the steady state, i.e. the
“critical state” (Roscoe et al., 1958; Schofield and Wroth, 1968). Then on the basis of the
simulation results, micro-structure analyses in different aspects were carried out.

In micro-mechanical studies of chapter 3, according to different purposes, specific
specimens are chosen in terms of porosity or whether there is a strain localization. This
will be mentioned at the beginning of each specific investigation.
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2.3 Conclusion

This chapter gives a knowledge of the used code and experiment preparation for the
investigation in the chapter 3

An introduction on DEM is given in this chapter. The general concept and the
main classifications of DEM are presented. Main steps in the calculation of DEM and
fundamental equations in these steps are specified.

Test parameters and the protocol of the biaxial test on the 2D granular material,
implemented by Yade, are demonstrated, as the preparation for the micro-mechanical
investigation of the granular materials.



28 2. Numerical Modeling by Discrete Element Method



Chapter 3

Micro-structure Analysis in 2D Granular

Material

Granular assemblies exhibit a very complex spectrum of constitutive features, which
have drawn great attentions in the mechanical community in last few years: the strong
nonlinear constitutive response, the definitive non-associated flow rule, and the existence
of a bifurcation domain within the plastic limit surface, in which a variety of failure modes
can be encountered (Darve et al., 2004; Nicot et al., 2009). The mechanical behavior of the
granular material essentially originates from its micro-mechanical basis: the microscopic
topology, the fabric distribution and evolution, and development and conjugation of
intermediate clusters, etc. Especially, the intermediate clusters are observed to organize
several particles (or contacts) to become evolution “partners” (groups), in the sense of the
force transmission or the deformation. These clusters naturally appear in a scale being
different from either the micro-scale, a single contact scale, or the macro-scale, in which
the material can be considered as homogeneous. The word “intermediate” indicates
this intermediate scale between the macro and the micro scale, i.e. the mesoscopic scale,
called the meso-scale. Then the clusters in the meso-scale are generally designated the
“meso-structures”.

Two patterns of meso-structure can be grasped in 2D granular assemblies: (1) the
column-like cluster (called force-chain), which consists of grains (or contacts) carrying
major forces in the material, taking charge of force transmission in the assembly (Dantu,
1968; Drescher and De Jong, 1972; Radjai et al., 1996; Mueth et al., 1998; Howell et al.,
1999; Peters et al., 2005; Tordesillas, 2007); and (2) the loop-like cluster (hereafter called
meso-loop), composed of a set of contacting grains forming a closed loop (Satake, 1992;
Bagi, 1996; Kruyt and Rothenburg, 1996; Kuhn, 1999; Nguyen et al., 2009, 2012; Kruyt
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and Rothenburg, 2014). In a quasi-static condition, force-chains line up along the major
loading direction. Some of them may turn to a buckling configuration when subjected to
exceeding loading, that probably disables them to carry the loading, i.e. the force-chain
instability. Massive buckling events, as a result, correspond to a decrease of the material
sustainability or a so-called “stress softening”. In practice, force-chains are confined by
meso-loops. Stability of force-chains is therefore ensured by these confining structures
(Tordesillas et al., 2010, 2014). The close interaction between force-chains and meso-
loops is crucial for the mechanical response of granular material, and naturally, the
morphology of these two meso-structures determines the mechanical property of the
granular material.

In this chapter, the meso-structures and the rule they play on the mechanical behavior
of the granular material, will be highlighted. Endeavors are made to answer three key
questions: how meso-structures evolve? how two kinds of meso-structure interplay with
each other? how the meso-structure evolution leads to some significant behaviors in the
macro-scale? Some basic micro-mechanical measurements are described in section 3.1.
Concepts of two significant meso-structures, the meso-loop and the force-chain, are led
into the thesis in section 3.2. Then based on results of numerical tests, micro-structure
analyses are implemented from various aspects: in section 3.3, the general evolution
pattern of the meso-loops is presented; in section 3.4, the interaction between the force-
chains and the meso-loops is investigated; section 3.5 aims to clarify the micro-structure
basis of the critical state mechanics in localized and diffuse failure modes. All presented
investigations in this chapter are based on 2D simulations using DEM, with the test
procedure described in section 2.2.

3.1 Micromechanics of granular material

Granular body is an assembly of semi-rigid particles. The behavior of this assembly
is defined by the particles’ kinematics and the contact law between particles. In the
micro-scale, two-particle pairs, consisting of two contacting particles, are elements of
this system. The contact of each two-particle pair is characterized by the contact force as
the static variable and the relative displacement as the kinematic variable.
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Figure 3.1: Contact variables of a two-particle pair.

Figure 3.1 illustrates a two-particle pair and different contact variables in its contact.
~f is the contact force, the branch vector~l links centroids of the two particles, the unit
vector~n is the contact normal, being perpendicular to the contact plane π, two contact
vectors~c1 and~c2 link their respective grains centroid to the contact point. As spherical
particles are employed,~c1,~c2,~n and~l converge to lay on the same line, then:

~l = ~c1 −~c2,

~n =
~l

|~l|
.

(3.1)

3.1.1 Description of the fabric

The coordinate number Z is the average number of contact shared by one particle.
This quantity, evaluating the degree of the particles’ connectivity, is given by:

Z =
2Nc

Np
, (3.2)

where Nc and Np are respectively the number of contacts and particles in the assembly.
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Z refers to the compact degree of the material, closely related to the density and the
porosity of the material. Several empirical formulas have been found (Athanasiou-Grivas
and Harr, 1980; Chang et al., 1990). A group of dense packing grains has a relative high
Z, the contrast is in a loose material, a relative low Z will be observed. A sufficient Z is
necessary for a granular assembly to maintain the equilibrium; an assembly consisting of
particles insufficiently supported by their neighbors will turn to the dynamic state.

In the micro-scale, the granular fabric is basically a set of contacts oriented along
different directions. Finding a variable, which is able to quantify the distribution of
the contact orientations, is necessary to characterize the fabric. This variable can be a
distribution, the contact directional distribution ω(θ), or a tensor variable, the fabric
tensor H.

Contact directional distribution ω(θ) gives the probability density of contacts ori-
ented along the direction θ (θ ∈ [0, π)), such that the probability of a contact c oriented
along the interval [θ, θ + ∆θ] is given by

P(θ, ∆θ) = P(θ 6 θc 6 θ + ∆θ) = ω(θ)∆θ, (3.3)

then the corresponding probability density function ω(θ) is expressed as

ω(θ) = lim
∆θ→0

P(θ, ∆θ)

∆θ
, (3.4)

the number of contacts being in the sector [θ, θ + ∆θ] will be

N(θ, ∆θ) = Nc · P(θ, ∆θ) = Nc · ω(θ)∆θ. (3.5)

Fabric tensor H gathers the directional information in contacts into a tensor, enabling
it to be representative of the fabric anisotropy. Several kinds of fabric tensors can be built,
when considering different contact variables (Satake, 1982):

• contact fabric tensor
Hij =

∫

θ
ω(θ)ninjdθ =

〈
ninj

〉
, (3.6)

• branch fabric tensor
H′

ij =
∫

θ
ω(θ)liljdθ =

〈
lilj

〉
, (3.7)
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Figure 3.2: General homogenization scheme for multi-scale approaches of the granular material.

• combined fabric tensor

H′′
ij =

∫

θ
ω(θ)niljdθ =

〈
nilj

〉
, (3.8)

where ni and li are respectively the contact normal and the branch vector in the direction
θ, subscripts i (or j) represents the ith (or jth) component of the given vector.

Otherwise, since ni is a unit vector, nini = 1, given
∫

θ ω(θ)dθ = 1, thus tr(H) = Hii =

1.

3.1.2 Static and kinematic homogenization

The ultimate aim embedded in micro-mechanical research is to build a constitutive
model, being capable to describe significant mechanical features of the granular mate-
rial. Two macroscopic variables, stress and strain, are needed to be related by taking
microscopic variables (contact forces and particles’ movement) into account. This re-
quires a multi-scale approach to connect variables in both scales. The general changing
scale scheme of this approach is shown in Figure 3.2. In essence, micro-mechanical
researches offer knowledges on the local behavior, the homogeneity methods enables
the stress and the strain to be respectively expressed by the local static and kinematic
variables. Deriving macroscopic variables from corresponding microscopic ones, is called
“homogenization” procedure, and the contrast is “localization”.
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The static homogeneity refers to averaging the micro-scale variables into the stress, in
a volume larger than the representative elementary volume REV. It can be solved by the
Love formula (Love, 2013; Christoffersen et al., 1981; Mehrabadi et al., 1982):

σij =
1
V

Nc

∑
c=1

f c
i lc

j , (3.9)

where f c
i and lc

j are respectively the ith component of the contact force and the jth
component of the branch vector in the contact c, V is the volume of the analyzed domain.

The multi-scale approach of the constitutive modeling has to incorporate additional
assumptions, in order to avoid solving the dynamic equation of each particle. The
contact directional distribution and the fabric tensor describe the material fabric in
a way, following the assumption that contact is individual from each other. It is a
strong assumption in terms of the problem which will be mentioned in the kinematic
homogenization. However, the convenience of the Love formula lies in that it also allows
contacts to be considered separately, as there is not any information about the relative
positions among contacts in its expression. Therefore, it is a good match between Love
formula and the fabric description aforementioned.

The nature of the strain contains the relative displacement among points in the
medium (particles or contact points). In granular medium, this relative displacement
derives from two parts: (1) the displacement of contact branches or the relative displace-
ment between particles in contact; and (2) the relative displacement among contact points
or the relative displacement among neighboring particles without contact. Therefore,
the construction of the strain out of the micro-scale kinematic variables does not agree
with the assumption of individual contacts, as the contribution of latter part to the global
strain is neglected. More important is that the latter part is significant for the global
strain, as the fabric rearrangement is observed to prevail and persist in the material, even
during the phase seen as elastic (please find evidences in section 3.3). Hence, considering
contacts separately from each other probably leads to a large underestimation of the
global strain. With regard to this, for 2D, many kinematic homogenization methods have
been developed, involving two main streams: the best-fit methods (Cundall and Strack,
1979; Liao et al., 1997; Cambou et al., 2000) and equivalent continuum methods (Bagi,
1993, 1996; Kruyt and Rothenburg, 1996; Cambou et al., 2000), their details have been
comprehensively introduced in the book “Micromechanics of Granular Materials” by
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Cambou et al. (2009). Generally saying, the former obtains the strain in one geometrical
point by best fitting particles’ relative displacements in its neighborhood. According
to different tessellation schemes, the latter builds the strain on the basis of divided
elementary polygons, i.e. meso-loops, which will be introduced in section 3.2.

3.2 Meso-structure: force-chains and meso-loops

Two significant constitutive features of the granular material have been observed:
(1) a granular assembly can increase (hardening phase) or lose its strength (softening
phase) according to the initial state and the loading path. (2) The assembly volume can
contract or dilate according to the initial state and the loading path. Correspondingly, two
fundamental meso-scale features are recognized and connected to two aforementioned
macroscopic features: (1) column-like structures as the force transmission tunnels to
carry the most external loading, which form and buckle over the loading path and (2)
grain loops, in 2D case, composed of a set of contacting grains forming closed cell-like
loops. They are the aforementioned “meso-structures”: force-chains and meso-loops.
The concepts and methods to distinguish them will be presented in this section.

3.2.1 Force-chains

As a well-known feature of the granular material, due to the disordered packing,
the grain media presents a strong heterogeneity in terms of the force transmission,
when subjected to external loading (Cambou et al., 2009). The strongly inhomogeneous
distribution of contact forces was first observed in the shearing test on the photoelastic
material (Dantu, 1968; Drescher and De Jong, 1972; Howell et al., 1999). A decreasing
exponential density distribution of force magnitude was found by analyzing prints of
particles on the carbon paper set on the boundary (Jaeger et al., 1996). Later researchers,
taking the advantage of numerical simulations, reveal that this exponential distribution
only exists in the strong network, which consists of contacts with magnitude greater than
the average (Radjai and Roux, 1995), while the weak network (complementary to strong
network) is distributed in a uniform or power-law shape (Radjai et al., 1996; Mueth et al.,
1998). In this context, the strong network is distinguished from the weak network, then
the concept of force-chain was prepared on the basis of the strong network to define
those quasi-linear columns, consisting of contacts with force magnitude greater than the
average.
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Figure 3.3: The inflection angle θ in two configurations (θ0 in configuration 0 and θt in configu-
ration t). Continuous fold lines link two outer particle centers to the middle particle
center, dashed fold line in configuration t refers to the original position of the fold line
in configuration 0.

The concept of force-chain, herein, includes four characteristics which can be used to
identify force chains: (1) all contact forces stronger than the average; (2) a geometrical
linearity, that means column-like structure must exist; (3) a force transmition linearity,
the major force transmition path must be in an approximately identical direction with
the force-chain series; (4) at least three particles in the chain. One of the algorithms to
identify the force-chain from the whole sample was proposed by (Peters et al., 2005). The
particle stress tensor, which is in line with the wide accepted average scheme to build
the stress on discrete element basis, is introduced as follows.

σ̃
p
ij =

1
V

Nc

∑
c=1

f c
i cc

j , (3.10)

where Nc denotes the number of contacts imposed to the analyzed particle, f c
i is the ith

component of contact force in the contact c, cc
j is the jth component of the contact vector

from the particle center to the contact point in the contact c. The compression positive
convention is adopted. If σ̃

p
1 is the major eigenvalue of one particle, particles with σ̃

p
1

smaller than the average of major eigenvalue
〈
σ̃

p
1

〉
of the whole sample are deleted from

force-chain candidate list. For remaining particles, the direction of major eigenvalue θ̃
p
1 is

considered to be the main force transmission direction. Then several algorithms proceed
to seek force-chain particles satisfying qualifications (2), (3), (4). A complete detail can be
found in (Peters et al., 2005).
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Figure 3.4: The area tessellation by branch network.

How the buckling columns can be determined is another important consideration.
The force-chain is a priori subdivided in 3-particle sets, a series formed by three force-
chain particles linking head to end. The inflection angle θ of each 3-particle set (illustrated
in Figure 3.3) is defined as the opening angle of the fold line formed by segments linking
two outer particle centers to the middle particle center. During one considered time
interval, the inflection angle of current configuration θt of each 3-particle set is compared
with that of the last configuration θ0, to obtain the buckling angle θb such that θb = θ0 − θt.
The condition of a buckling event is given by θb > θc, where θc is a given threshold
(Tordesillas, 2007).

3.2.2 Meso-loops

At any quasi-static state of the loading path, in which the inertia of the system is
low enough to be omitted, the particles position and the contact data compose the
entire information of the transient state. Thus, there exists a convenient way to map
the granular assembly by the contact network linking the particle centers, where the
topological structure at the meso-scale can be described by the polygons enclosed by this
kind of contact network (Satake, 1992), as illustrated in Figure 3.4. Before tessellating the
area, particles with no contact or only one contact to their neighbors are excluded. By
using remaining contact branches, the assembly is discretized into sub-domains defined
inside closed polygonal lines, i.e. meso-loops. Following is the algorithm to detect cycles
in this thesis.
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Figure 3.5: One identified cycle Figure 3.6: Algorithm of detecting cycle

All information obtained from the simulation structure comprise numbered point
data and contact data. As shown in Figure 3.5, each point represents a particle center
denoted by alphabets and each segment represents a contact denoted by arabic numerals
linking two particles in contact. The data processing involves 4 steps (illustrated in
Figure 3.6): (1) orderly recording all clockwise angles in the format [head contact, end
contact, linking particle], for example particle C: [4, 8, C], [8, 9, C], [9, 1, C], [1, 2, C], [2, 3,
C], [3, 4, C]; (2) gathering angles over all particles to form a container of angle, for any
contact as a head contact, only two end contacts can be found belonging two different
particles, like 8 with [8, 9, C], [8, 7, D]; (3) picking up any angle in the container (like [4, 8,
C]) and matching head of another angle to its end (not sharing same particle, like[8, 7,
D]), then continuing until capturing the initial contact of this cycle, in the showing case,
the end-to-head angle lists are recorded [4, 8, C], [8, 7, D], [7, 6, E], [6, 5, A], [5, 4, B] to
finish the detection of this cycle, then it is presented by its boundary contact [4, 8, 7, 6, 5];
(4) deleting all discovered angles in the container, searching for another cycle until the
container to be empty.

3.3 Meso-loops evolution during biaxial loading

The main interests in the mesoscopic loops appear in three forms: (1) deriving
the macroscopic continuum mechanical properties from the local static and kinematic
quantities of an assembly of loops at a certain strain state; (2) the evolution of loops
in terms of different initial states and loading paths; (3) the interaction between loops
and the force-chain instability at the meso-scale. On the first point, the basic multi-scale
constitutive modeling scheme inevitably involves the homogenization process (Cambou
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et al., 1995), which is the way local variables (contact force and contact displacement,
correspondingly) are averaged into macro variables in continuum-mechanics context
(stress and strain). In this aspect, different schemes for approximating macroscopic stress
and strain on meso-scale basis have been developed. Nguyen et al. (2012) gave the
definition of the loop stress, Nguyen et al. (2009); Kruyt and Rothenburg (1996); Bagi
(1996) respectively proposed equivalent-continuum approach and best-fit approach for
approximating the global strain out of the local kinematics of loops. Even though loops’
quantities of granular assemblies on transient state have been well investigated, however,
how loops evolve during the loading path from different initial states remains unclear.
To understand this, a view on the evolution of loops over the loading path is required.

The aim of this section is to investigate the evolution of some significant features of
grain loops along the drained biaxial test from different initial states. In subsection 3.3.1,
mechanical responses of three drained biaxial tests are recalled. In subsection 3.3.2, loops
are a priori categorized into groups according to their side number. Geometrical features
of these categories are then investigated. The intimate relation between mesoscopic
structures evolution and macroscopic mechanical behavior of specimens is revealed.
At the end of subsection 3.3.2, an inconsistency is noticed between the macroscopic
volumetric evolution and the meso-loop evolution. The macroscopic volume contracts
in the early phase of test, while the evolution of loops on the meso-scale tends to be
dilatant, as small, dense loops are massively transformed to big, loose loops. Considering
that the evolution of loops is basically a kind of plastic process, in order to explain this
inconsistency, we should clarify the role the elastic phase plays on the total volume in the
early phase of test. In subsection 3.3.3, the elastic and plastic phases of granular material
are investigated in terms of the energy and the plastic volumetric strain.

3.3.1 Drained biaxial test and results

Specimens are prepared according to parameters given in subsection 2.2.1 and recalled
in table 3.1. Three specimens of different initial porosities φ0 (given by equation 2.9)
are chosen. They are initially dense, intermediate and loose, ordered according to their
respective φ0 in table 3.2. It is worth emphasizing that the so-called dense and loose
specimens have respectively the densest and loosest porosities, which the material can
reach in the sample preparation. In addition, another specimen neither too dense nor too
loose is chosen as an intermediate specimen.
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Table 3.1: Parameters in the simulation.

Parameter Value
Particle number 25000

Model size 0.90 m × 1.35 m
Particles radii range [0.75 D50, 1.25 D50]

kn p0/kn = 10−4

kt/kn 0.5
Particle density 2600.0 kg/m3

ϕ 30◦

Particle-wall friction 0◦

Confining pressure 100 kpa
Loading rate 0.01 s−1

Table 3.2: The initial porosity of three specimens.

Specimen φ0
Dense 0.148

Intermediate 0.171
Loose 0.187

Three specimens are then subjected to drained biaxial loading path. Evolutions
of the deviatoric stress ratio q/p0 of specimens in terms of axial strain ε2 is shown in
Figure 3.7a, where q = σ2 − σ1, σ1 and σ2 are correspondingly the axial stress and the
lateral stress. Figure 3.7b, Figure 3.7c and Figure 3.7d respectively illustrate evolutions
of the volumetric strain εv, the coordination number Z (determined by equation 3.5,
introduced in section 3.1) and the total number of loops Nl in terms of axial strain ε2,
where εv = −(ε1 + ε2).

In Figure 3.7a and 3.7b, specimens present a typical stress and strain response from
dense to loose ones. Stress peak and softening are found in both dense specimen φ0 =

0.148 and intermediate specimen φ0 = 0.171. The dense specimen has the highest stress
peak and largest stress softening, while loose specimen φ0 = 0.187 shows consistently
stress hardening until the steady stress. At the stress steady state, all samples gradually
turn to oscillate around roughly the same value. In terms of the volumetric strain, the
dense specimen has the lightest contractancy and the largest dilatancy, while the loose
specimen shows a continuous contractancy. The volumetric diagram exhibits a typical
disparity from dense to loose specimen. The different volumetric evolution may lead to
a different evolution pattern of the meso-loop, which is expected to be sensitive to the
volumetric variation. This will be investigated in subsection 3.3.2.
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(a) (b)

(c) (d)

Figure 3.7: Evolutions with respect to axial strain ε2 of (a) deviatoric stress ratio q/p0, (b)
volumetric strain εv, (c) coordination number Z (d) total number of loops Nl

It is shown in Figure 3.7c that Z in the dense specimen starts with a dramatic fall
from the beginning. The loose specimen has a more or less constant Z. In Figure 3.7d, the
evolution of total number of loops Nl shows a similar pattern to the evolution of Z. The
quantitative similarity between the total number of loops and coordination number Z, as
shown in Figure 3.7c and 3.7d, can be explained by the Euler’s relation for 2D topology.
If Np and Nc respectively denote the number of particles and the number of contacts, for
large homogeneous assemblies, the following relation Np + Nl − Nc

∼= 0 holds (Kruyt
and Rothenburg, 2001), which is equivalent to Nl

∼= Np(Z/2 − 1). As Np is given, Nl

therefore evolves similarly to Z.

In Figure 3.7c and Figure 3.7d, the non-convergent on both Z and Nl is observed.
There are not convergent mechanical responses in the critical state Roscoe et al. (1958);
Schofield and Wroth (1968), indicating that the inhomogeneity may exist in some speci-
mens. This will be discussed in the section 3.5.
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Figure 3.8: Four categories of loops.

The importance of loops lies in the fact that they can be the link between the strength
and the deformation of the granular material. On one hand, as media carrying contact
forces, loops sustain the external load transmitted to them. The material strength is
then highly dependent on the mesoscopic topology of loops. On the other hand, given
the granular assembly area is entirely tessellated into loops, the material macroscopic
deformation can be interpreted on the basis of the transformation of loops. Consequently,
the mechanical and geometrical features of loops should be investigated in a more
elaborate way.

3.3.2 Meso-loops evolution

The geometrical nature differentiates the mechanical property of one loop from
another. Amongst different properties of the loop, side number plays significant role
on its behavior. For example, when side number increases, with larger internal void
area and more freedom degree, loops tend to be looser and more deformable; the odd
side loop is self-locked to inter-particle rotation. Therefore, loops are categorized on the
basis of their side number, Li denote the loop category with side number being equal
to i (i = 3, 4, 5, · · · ). The proportion of 4 loop categories are calculated as ωi = N

Li
l /Nl,
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(a) (b)

(c)

Figure 3.9: Evolutions of ω6 and ω7+ against axial strain ε2 in specimen (a) φ0 = 0.148 (b)
φ0 = 0.171 (c) φ0 = 0.187.

where N
Li
l is the number of loops in Li. However, in order to limit our analysis to main

loops, it is convenient to define a side number i∗, from it onwards, ωi of larger loops
evolves in a similar pattern. Indeed, if we combine loops with side number greater than
or equal to 7 into one category, it can be shown that its proportion ω7+ is comparable
with ω6.

ω6 and ω7+ in specimens of different φ0 are shown in Figure 3.9 as function of axial
strain ε2. It is observed that ω7+ evolves in a similar pattern as ω6 in all specimens. To
simplify the forthcoming analysis presented in this manuscript, we combine the ratios of
L6 and L7+ into one category, hereafter called L6+. Consequently, there are 4 categories
of loops Li (i = 3, 4, 5, 6+), identified on the basis of their side number, as illustrated in
Figure 3.8.
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(a) (b)

Figure 3.10: Evolutions in specimen φ0 = 0.148 with respect to axial strain ε2 of (a) deviatoric
stress q/p0 and volumetric strain εv, (b) proportions of different loops compared
with the volumetric strain εv; the vertical dashed line is the guide line crossing the
volume minimum.

3.3.2.1 Proportional analysis of different loops

In this subsection, the proportions of four loop categories (ω3, ω4, ω5 and ω6+) in
three specimens are analyzed and compared with their stress and volumetric evolutions.
In practice, because of a progressive loading exerted on the granular assembly, its texture
keeps stirred. The evolution in loop categories just gives a sensible characterization,
state by state, on this kind of irreversible texture rearrangement. Therefore, it is worth
emphasizing that the discussion in this subsection is, in essence, in the scope of plastic
behavior of granular materials. The conception of elastic and plastic phases in meso-scale
will be discussed in section 3.3.3.

Figure 3.10b shows that in a dense specimen, ω3 and ω6+ display prominently
opposite ways of evolution during biaxial loading path. ω3 decreases and ω6+ increases
significantly at the early stage of the test and then turn to be constant at the (stress)
steady state. It is worth noting that the inflection points of both ω3 and ω6+ coincide
with the minimum volume. The dramatic dilatancy that follows is concurrent with a
remarkable decrease in ω3 and increase in ω6+. In other words, a massive conversion
from firm, dense structures to deformable, loose structure occurs. While the deviatoric
stress drastically drops after peaking, as shown in Figure 3.10a, ω3 and ω6+ present the
maximum curvatures (or second order derivatives) subsequently to reach steady values.
This indicates the subsiding of the meso-loop evolution. Moreover, ω4 and ω5 are more
or less constant, being independent to the stress and volumetric evolution.
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(a) (b)

Figure 3.11: Evolutions in specimen φ0 = 0.171 with respect to axial strain ε2 of (a) deviatoric
stress q/p0 and volumetric strain εv, (b) proportions of different loops compared
with the volumetric strain εv; the vertical dashed lines respectively cross the ω3
maximum and the volume minimum.

As shown in Figure 3.11, in the intermediate specimen, ω3 also reverses the evolution
pattern of ω6+ as in the dense specimen. ω3 and ω6+ experience respectively a slight rise
and drop at the very early phase of test and then subsequently decrease and increase
to their final values. Similar to the case of the dense specimen, the inflection points
of both decrease of ω3 and increase of ω6+ also appear to be simultaneous with the
volumetric minimum. After that, the specimen drastically dilates with ω3 decreasing
and ω6+ increasing gradually and consistently. Otherwise, ω5 is more active than that in
the dense specimen, decreasing smoothly over the loading path, while ω4 is more or less
constant in the test.

As shown in figure 3.12, in the loose specimen, similar to the case of intermediate
specimen, ω5 declines smoothly while ω3 and ω4 oscillate around the same level. ω6+

drops slightly at the beginning to a minimum point and then increases. Particularly,
ratios of all kinds of loop in the loose specimen evolve less pronouncedly than those in
denser specimens.

Before interpreting the results, let us recall the bond between meso-loops geometry
and their mechanical properties. In terms of density, amongst loops, L3 is the densest
kind in the granular assembly, while L6+ is the loosest one. In terms of sustainability,
L3 is the firmest among all kinds of loop, while L6+ is the most deformable one. With
respect to these two aspects, L4, L5 are in the middle. After being destroyed, L3 tends to
transform into loops with more sides and larger volume, leading to the dilatancy in the
meso-scale; meanwhile, L6+ has higher ability to lead to the contractancy.
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(a) (b)

Figure 3.12: Evolution in specimen φ0 = 0.187 with respect to axial strain ε2 of (a) deviatoric
stress q/p0 and volumetric strain εv, (b) ratio of different loops compared with the
volumetric strain εv.

Turning to the result, of the dense and intermediate specimens, two common features
of the meso-loop evolution should be highlighted. First, L3 and L6+ are the two most
active groups in terms of population variation. In fact, they form an evolutionary pair
with an entirely opposite (or negatively correlated) evolution pattern from each other.
This indicates that L3 and L6+ are closely bonded meso-loops, their mutual conversion
can be representative of fabric evolution on the meso-scale. And secondly, in dense
and intermediate specimens, L3 and L6+ are respectively continuously decreasing and
increasing in their populations, that is to say, there is an enormous conversion from
L3 to L6+. This results in two significant mechanical features on the macro-scale: (1)
a continuous and substantial conversion from firm elements to deformable elements
drains the sustainability of the material, leading to stress softening; and (2) a continuous
and substantial conversion from dense elements to loose elements, finally causes the
volumetric dilatancy. The meso-loop, to this degree, is the basis and the origin of the
stress and volumetric behavior of granular material. It can be the link between these two
fundamental mechanical features.

As a result, the creation of L6+ and the destruction of L3 potentially direct the speci-
men to dilate. The word “potential” means there is not a definitive macroscopic dilatancy
but an underlying tendency beneath the macroscopic phenomena, which is suggested by
the meso-loop evolution. Here we denote this potential dilatant tendency the “meso-scale
volumetric dilatancy” (MV-D). On the contrary, the creation of L3 and the destruction of
L6+, as what happens during ε2 = [0.000, 0.006] for the intermediate specimen, is denoted
by “meso-scale volumetric contractancy” (MV-C). The ensemble of MV-D and MV-C is
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called “meso-scale volumetric variation” (MV). During the major process of the biaxial
test in which we observe MV-D or MV-C, the macroscopic dilatancy or contractancy also
appear correspondingly. However, not all of the results seem to support this link between
macro and meso evolutions. In the dense specimen, an inconsistency arises, because
in the contractant phase (before grey line in Figure 3.10b), there are simultaneously
decreasing ω3 and increasing ω6+, i. e. MV-D. In intermediate specimen, there is also a
slot where MV-D and global contractancy occur simultaneously, between the ω3 peak
and volume minimum, the range between two vertical grey lines in Figure 3.11b. These
inconsistencies will be investigated in subsection 3.3.3.

The situation is different in the loose specimen, as there is not a substantial meso-loop
transformation. To note is that ω3 only rises slightly at the very beginning and keeps
constant afterwards. This indicates that, on one hand, it is difficult to massively build L3

along the biaxial loading path, even in a contractancy phase. A merely contractancy is
insufficient in bringing substantial L3 into the system. On the other hand, unlike what
occurs in dense and intermediate specimens, the system cannot additionally loose L3 in
a population being already low-leveled. This reveals that L3 is significant for a granular
system. The granular system needs a sufficient population of L3 to maintain its internal
strength. Otherwise, the quasi-static state can be hardly reached, when the system mainly
consists of deformable loops (L4, L5, L6+).

3.3.2.2 Area change of different loops

Another aspect of meso-loop evolution is expressed by the area change of loops with
the loading path. Here we trace the area ratio ai of the loop category Li, which is equal to
Ai/AT, where Ai is the total area of Li, AT is the total area of all loops. We note that the
area of a loop comes from the total area enclosed by its boundary formed by the contact
branches.

As shown in Figure 3.13, ai in different specimens presents more or less similar
patterns as their loop ratio (ωi) evolutions, as discussed in last subsection. In dense
and intermediate specimens, only a6+ increases the volume, while a3, a4, a5 experience
consistent drops, during the biaxial test. In the loose specimen, a3 and a4 are relatively
constant during the loading path.

Furthermore, we have to know the effect that the biaxial test has on the average area
of loop. Thus, the average area Ai of Li are plotted in Figure 3.14 as the function of axial
strain ε2. However, the quantitative descriptors of A6+ cannot be compared with the
values for the other loops. Because L6+ is not a loop kind with a given side number but a
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(a) (b)

(c)

Figure 3.13: Evolution of area ratio ai of different loops against axial strain ε2 in specimen (a)
φ0 = 0.148 (b) φ0 = 0.171 (c) φ0 = 0.187.

set of different kinds of loops, then A6+ turns to be highly dependent on the proportions
of sub-families in L6+. Considering that A3, A4 and A5 should be only compared to the
value of a category with comparably geometrical meaning, the difference of the average
area investigation from former ones is that L6+ can no longer be analyzed as a group.
Therefore, instead of A6+, we examine A6 as a representative of the large loops.

As shown in Figure 3.14, it is obvious that in all specimens, A3, A4, A5 are almost
constant during the biaxial test, A6 is the only category sensitive to the loading path. A6

in three specimens drops at the early stage of the test and keeps constant in the remainder,
hardly experiencing any rise. It is rational to speculate a same pattern in other kinds of
large loop.
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(a) (b)

(c)

Figure 3.14: Evolution of average area Ai of different loops against axial strain ε2 in specimen (a)
φ0 = 0.148 (b) φ0 = 0.171 (c) φ0 = 0.187.

When overviewing the area behavior of meso-structures, we can observe several
features: (1) the area ratio of different loops ai shows a similar pattern to the evolution
of ωi; (2) the L6+ is the most active structure in terms of total area variation (a6+), and
the average area of large loops is sensitive to the biaxial loading; (3) according to the
evolution of ai, only L6+ contributes to the global dilatancy in dense and intermediate
specimens.

According to the result of Ai evolution, L6 (probably the same for other large loops)
is the kind of loop geometrically sensitive to the external loading. This means that L3, L4,
L5, on average, keep geometrically independent to the biaxial loading path and initial
state. To this extent, the ratio variations of different loops (ωi) can be representative of
the global volumetric variation, given the average area of different loops mostly keeps
constant. Meanwhile, the evolution of ai in dense and intermediate specimens shows that
only L6+ experiences a volume increase during the loading path while the other kinds
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of loop contract. In fact, having more sides gives rise to L6+ the ability of transforming.
That results in two possibilities: shape fine-tuning or entirely changing to other loop
categories. The effect of the latter can be also seen in the variation of ω6+. Consequently,
we can conclude that L6+ exerts the strongest influence on global volumetric variation.

3.3.3 The existence of elastic and plastic phases in meso-scale

In Figure 3.7c, there is a rise in the number of contacts, which occurs in intermediate
and loose specimens with Z rising up from the outset. The additional contacts with
increasing Z, practically, can be explained by the volume contraction in specimens,
vice versa, most ranges of decreasing Z are also related to volumetric dilatancy. In
other words, increase in Z corresponds to contractancy and decrease in Z corresponds
to dilatancy. To this extent, the global volumetric evolution is in line with the micro-
structure evolution. However, we also capture some situations where Z decreases with
volume contracting in the meantime, such as ε2 = [0.000, 0.015] of dense specimen and
ε2 = [0.006, 0.016] of intermediate specimen (Figure 3.7c). Here the micro-structure
evolves against the tendency of the macroscopic volume variation. It is worth noting
that this kind of contradiction also occurs in the meso-loop analysis.

According to subsection 3.3.2, in dense and intermediate specimens between peak of
ω3 and volumetric minimum (the dash line in Figure 3.10b and Figure 3.11b), a drastic
drop in ω3 and a rise in ω6+ exist (ε2 = [0.000, 0.015] in Figure 3.10b, ε2 = [0.006, 0.016]
in Figure 3.11b) along with the volumetric contractancy. The acute creation of the loose
structure L6+ and loss of the dense structure L3 are supposed to lead to the dilatancy of
the material volume, however instead, we observe contractancy.

3.3.3.1 Elasticity and plasticity in the meso-scale

To investigate this inconsistency, we have to consider the elasto-plastic behavior of
the granular material from a mesoscopic viewpoint. In elasto-plasticity, εv is divided
into elastic part εe

v and plastic part ε
p
v. From a microscopic viewpoint, contact forces

are defined at particle level (scale of two contacting particles), so that εe
v and ε

p
v are

respectively derived from the particles penetration and the inter-particle sliding. This
viewpoint leads to an underestimation of ε

p
v, as in a granular assembly, ε

p
v originates not

only from the inter-particle sliding and particles rotation but also from the inter-contact
(or fabric) rearrangement. In the meso-scale, the volumetric variation can be properly
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defined: the penetrations between particles, which are able to rebound after loading, is
connected to the elastic phase; the micro-structure rearrangement, which is represented
by the evolution of different categories of loops and cannot rebound after loading, is
connected to the plastic phase of the granular assemblies.

Following this line of reasoning, the aforementioned paradoxical contractancy (re-
gardless of the dramatic ω3 drop and ω6+ rise) in dense and intermediate specimens, is
assumed to be largely induced by particles penetration, which diminishes the volume
of the specimen, even though loops evolution suggests dilating. In other words, in the
contractancy phase where macroscopic volume evolution is inconsistent with the meso-
loop evolution, particles penetration dominates the volumetric behavior of the material
over the meso-loop rearrangement, leading to a macroscopic contractancy. To verify this
hypothesis, an investigation on the evolution of the system energy, divided into elastic
and plastic parts, is carried out. The particles penetration is intimately connected to the
incremental elastic energy of the specimen, while loops rearrangement, to some degree,
is related to incremental plastic energy.

3.3.3.2 Elastic energy and plastic dissipation

The elastic energy Ee at a strain state is given by

Ee =
1
2 ∑

c

(
f c2
n

kn
+

f c2
t

kt
), (3.11)

Where f c
n and f c

t denote respectively the normal and tangential forces in local coordinate
system of each contact. The plastic energy in incremental form is given by





δEp = ∑c f c
t · δl

cp
t

δl
cp
t = δlc

t − δ f c
t /kt

δ f c
t = min
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f c
t + ktδlc
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n + knδlc

n)ξ
}
− f c

t

(3.12)

where δlc
t and δl

cp
t denote, respectively, increment and plastic increments of shearing

displacement, ϕg is the internal friction angle between particles, ξ is the sign of the value
f c
t + ktδlc

t .

In this subsection, the elastic energy and plastic dissipation of two specimens φ0 =

0.148 and φ0 = 0.171 are investigated. The increment of both elastic and plastic energy is
discussed in terms of their contributions to volumetric strain.



52 3. Micro-structure Analysis in 2D Granular Material

(a) (b)

Figure 3.15: Evolution of incremental elastic and plastic energy, compared with the evolution of
εv, in terms of the axial strain ε2, in specimen (a) φ0 = 0.148 (b) φ0 = 0.171.

The incremental elastic energy ∆Ee and plastic dissipation ∆Ep of dense specimen
φ0 = 0.148 and intermediate specimen φ0 = 0.171, compared with their volumetric strain
εv, as a function of axial strain ε2, are presented in Figure 3.15a and 3.15b respectively.
Both incremental energies are calculated during each axial strain step of ε2 = 0.001. The
scale of ε2 is zoomed into [0.000, 0.040] to avoid displaying the violent oscillation of the
energy.

Figure 3.15 shows that in both specimens, ∆Ee increases from the beginning and then
decreases consistently after a peak, while ∆Ep in two specimens increases gradually from
0 J. This is followed by a dramatic drop on ∆Ee and jump of ∆Ep. It is worthy to note that
the intersection points, where ∆Ee is equal to ∆Ep, coincide with the minimum volume
of both specimens. The range, in which ∆Ee overcomes ∆Ep, covers almost throughout
the volumetric contractancy.

These results support the assumption that in most contractant phase of dense and in-
termediate specimens, the elastic part (particle penetration) of micro-structure dominates
the global volumetric behavior against the plastic part (micro-structure rearrangement).
So in those elastic dominant phases, the effect of ε

p
v is erased and cannot be clearly

displayed.
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(a) (b)

Figure 3.16: Evolution of plastic volumetric strain ε
p
v and total volumetric strain εv in terms of

axial strain ε2 in specimen (a) φ0 = 0.152 (b) φ0 = 0.172.

3.3.3.3 Plastic volumetric strain in dense packed assemblies

To further understand the plastic volumetric behavior of dense and medium granular
assemblies in the contractant phase, we need to quantitatively distinguish the plastic
volumetric strain ε

p
v from its elastic counterpart εe

v. Then two new specimens under
drained biaxial loading path are performed (dense φ0 = 0.152 and intermediate φ0 =

0.172), prepared according to parameters in Table 3.1 but involving 10000 particles. At
the end of each stress increment, an elastic unloading is processed, in order to reach the
original stress state of this increment. The incremental plastic volumetric strain ∆ε

p
v is

herein assessed. ε
p
v is obtained by integrating ∆ε

p
v of all increments. Then the volumetric

strain εv is compared with its plastic part ε
p
v as below.

In dense and intermediate specimens, ε
p
v states almost null from the beginning and

starts to dilate when εv reaches its minimum. Returning to the interest of this subsection,
which is to identify ε

p
v on the contractant range, we find that almost no plastic volumetric

contractancy in dense and intermediate specimens is observed. That means that in
the contractant range there is scarcely any plastic volumetric component existing in εv.
Therefore, εv derives only from the elastic part.

The discussion of subsection 3.3.3.2 and 3.3.3.3 demonstrates that in the contractant
range of dense and intermediate specimens, the elastic volumetric strain, as the dominant
part of the total volumetric evolution, governs the volumetric behavior of the specimen.
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Figure 3.17: Evolution of volumetric strain εv of specimens with different elastic parameters with
respect to axial strain ε2.

3.3.3.4 Effect of elasticity on volumetric evolution

Since the amount of the inter-particle penetration, which dominantly affects the con-
tractancy process, is controlled by the elastic parameters kn and kt, we can expect lower
kn and kt will lead to the higher contractancy on the specimen. Following simulations
thereupon are carried out to verify this expectation.

In this subsection, four dense specimens with different kn and kt are subjected to
the drained biaxial test to compare their volumetric behavior. There are 10000 particles
involved, the kn values are set to kn = 1.5 × 109, 2.4 × 109, 3.3 × 109, 4.2 × 109 (N/m)
respectively. Other parameters follow the test protocol in Table 3.1.

The volumetric evolutions in terms of axial strain ε2 are shown in Figure 3.17, volu-
metric minima and their corresponding ε2 are summarized in Table 3.3. The results show
that as kn decreases (the ratio kt/kn being constant), volumetric strain εv of specimens
reaches its minimum lower and later. This means that the elastic parameters have strong
effect on the degree of the contractancy.

Table 3.3: Volumetric lowest values and their corresponding ε2 for different specimens.

kn (1 × 109 N/m) 1.5 2.4 3.3 4.2
lowest value (1 × 109) -1.775 -1.027 -0.757 -0.590

Corresponding ε2 0.029 0.019 0.014 0.012

These results meet the expectation that lower kn and kt will lead to the higher contrac-
tancy in the specimen. The contractancy phase at the beginning of the drained biaxial
test is essentially an elastic process.
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3.4 Force-chain interaction with meso-loop in biaxial load-

ing path

As propagating preferentially along the major loading direction, force-chains tend to
act as elastic elements in their stable configuration, constructing the sustaining part of the
grain media against the external loading. The buckling of a force-chain probably leads to
the loss of the sustainability in its axial direction. Practically, to be elements of the force
transmission, force-chains play an essential role on ensuring the strength of the medium.
The massive collapse (buckling) of force-chains, therefore, betokens the global instability
of the granular assembly. On the other hand, the ability of a force-chain to maintain its
linear configuration is guaranteed by the structure confining it. The degree of supporting
effect offered by these confining structures differs according to their topologies. The
stability of force-chains, as a result, is highly dependent on the geometrical character
of the confining structure. Consequently, finding a way of characterizing the lateral
structure around the force-chain is essential to understand the way force-chains interact
with their neighbors and the condition of their instability. One reasonable solution is to
describe the material texture into meso-loops.

The origin of the interest on the meso-loops dates back to the attempt to interpret
the local discrete quantities of grains into continuum-mechanical quantities, i.e. the
averaging process. The local static quantities can be conveniently linked to macroscopic
stress, according to Love formula proposed in 1927 (Love, 2013; Mehrabadi et al., 1982),
by holding a one-contact (or two-particle) scale. However, there is difficulty to derive the
global strain from local kinematics in this scale. One-contact (or two-particle) scale, which
considers contact kinematics independently from each other, is unable to completely
characterize the micro-structure deformation of the granular assembly. A meso-scale
is therefore introduced (Satake, 1992), on which loops are defined as enclosed inside
by contact branches. In this scale, the fabric rearrangement can be featured by the
geometrical evolution of loops. To date, main interests on the meso-loop stem from three
aspects: (1) finding an accurate way of approximating continuum quantities (strain and
stress) on the basis of the discrete static and kinematic quantities of loops (Bagi, 1996;
Kruyt and Rothenburg, 1996; Kuhn, 1999); (2) characterizing the evolution of the loops
in different initial states and loading paths (Kruyt and Rothenburg, 2014; Zhu et al.); (3)
clarifying the interaction between force-chains and loops (Tordesillas et al., 2010, 2014).
The third aspect (3) coincides with the aforementioned interest of characterizing the
confining structure of force-chains.
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Departing from interests in different stability-related phenomena, researches increas-
ingly converge to investigate mechanical and geometrical features of the force-chain
(Oda and Kazama, 1998; Oda and Iwashita, 2000; Iwashita and Oda, 2000; Muthuswamy
and Tordesillas, 2006; Tordesillas, 2007). However, the base of how force-chains impact
the material and how the confining structure, reversely, affects force-chains’ stability
are still mysterious. To this extent, clarifying the mechanism governing the interaction
between the force-chain and its surrounding structure is of a paramount importance and,
meanwhile, is a key to understand the underlying essence of stability-related phenomena
in granular materials.

The aim of this section is to investigate the interaction between force-chains and their
confining meso-loops along drained biaxial loading path. Numerical drained biaxial tests
are performed on specimens of different initial states. Then the evolution of the number
of force-chain buckling events (Nb) and the evolution of the meso-loops are compared
with macroscopic responses of each specimen, in subsection 3.4.1. In subsection 3.4.2, the
way force-chains affect their confining meso-loop is investigated. Meso-structures are
then distinguished into two parts: confining meso-loops (those surrounding force-chains)
and reminders (those without connection to force-chains). The evolution of the former
and the latter are separately statistically analyzed. In subsection 3.4.3, the confining effect
of surrounding structures on force-chains is investigated, by analyzing how the status of
the confining structure affects the force-chain movability. Moreover, the stress anisotropy
of force-chain confining structures is discussed.

3.4.1 Macroscopic responses and mesoscopic evolutions

The dense and the loose specimens, which have already been analyzed in section 3.3,
are also employed in this section, with their initial porosities recalled in table 3.4. The evo-
lution of meso-structure properties are then tested, compared with their corresponding
stress and strain responses.

Table 3.4: The initial porosity of specimens.

Specimen Initial porosity
Dense 0.148
Loose 0.187
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(a) (b)

Figure 3.18: Evolutions of the ratio of loops ωi, of the number of buckling events Nb (upper), of
the stress ratio q/p0 and of the volumetric strain εv (lower) with respect to axial
strain ε2, for dense (a) and loose (b) specimens.

The mechanical properties of different meso-loops diverge according to their geo-
metrical nature. Among different geometrical features of loops, the side number plays a
significant role on their behavior. Following the way loops are categorized in the last
section (section 3.3), 4 classes Li (i = 3, 4, 5, 6+) are identified by employing the side
number of loops. ωi (i = 3, 4, 5, 6+) is the proportion of Li over the number of all loops.
In dense (Figure 3.18a) and loose (Figure 3.18b) specimens, the evolutions of ωi and of
the number of buckling events Nb are shown with respect to axial strain ε2, compared
with the stress and the volumetric responses of specimens.

In dense specimen (Figure 3.18a), ω3 and ω6+ are the two most active categories
among all kinds, developing in exactly contrary ways. The force-chain buckling starts up
at the same place as the inflection point of the falling ω3 and the rising ω6+, a little before
the stress peak. Both consistent growth of L6+ and reduction of L3 are observed. This is
finally reflected on a strong volumetric dilatancy, as large structures are continuously
created with small structures perishing.
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Figure 3.19: Evolution of ω6+ and of buckling events number Nb (including fitting quartic
polynomial) with respect to ε2 in the loose specimen.

In the loose specimen (Figure 3.18b), ω6+ also increases its proportion among loops,
except a tiny drop at the beginning, while ω5, oppositely, has a steady decrease. ω3

is no longer sensitive to the biaxial loading path as in the dense specimen and keeps
more or less constant, similarly to ω4. Especially, the force-chain buckling blasts at
around ε2 = 0.002, when ω6+ also starts to increase coincidently. An intimate correlation
between ω6+ and the buckling number Nb can be seen, when ω6+ is compared with the
quartic fitted polynomial of Nb (Figure 3.19). Meanwhile, a similar situation to the dense
specimen is observed: force-chain buckling keeps a synchronous change with ω6+.

In the two above situations, the force-chain evolution is prominently dependent on
the meso-loop rearrangement. Namely, it is positively correlated with ω6+ and negatively
correlated with ω3. Two questions, therefore, arise:

• Is the evolution of force-chain causally related to the meso-loop development?

• How can they interplay?

To ascertain these two questions, a more elaborate analysis is required. In subsection 3.4.2,
we turn to focus on the loops close to force-chains - the area where the cross-effect
between force-chains and meso-loops originally occurs.
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Figure 3.20: Illustration of the force-chain loop (force-chains are in dark grey; reminding particles
are grey; FCL are highlighted by the transparent shadow).

3.4.2 Force-chain induced meso-loop differentiation

The granular assembly area is split into two parts, with one consisting of adjacent
meso-loops around force-chains, called “force-chain loops” (FCL), whereas the other
loops are called “not force-chain loops” (NFCL). As shown in Figure 3.20, FCL shares at
least one particle with force-chain. Then properties in these two parts are analyzed to
clarify whether and how (if positive) the force-chains build a special surrounding.

3.4.2.1 Evolution on FCL and NFCL

The evolution of the proportion of different kinds of FCL (ωFCL
i ) and the buckling

number Nb in terms of axial strain ε2, is shown in Figure 3.21a (the dense specimen)
and in Figure 3.21c (the loose specimen), compared with the evolution of ωNFCL

i in
Figure 3.21b (the dense specimen) and in Figure 3.21d (the loose specimen).
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(a) (b)

(c) (d)

Figure 3.21: Evolutions of the ratio of loops ωi and of the number of buckling events Nb (left)
with respect to axial strain ε2. FCL in dense specimen (a), NFCL in dense specimen
(b), FCL in loose specimen (c) and NFCL in loose specimen (d).

As shown in Figure 3.21a, the curves of ωFCL
i are in similar shape as those of ωi in

Figure 3.18a. In area around force-chains, ωFCL
3 and ωFCL

6+ are observed to decrease and
increase respectively with abrupt slopes, before approaching final values. On one hand,
a consistent loss of firm structures and a creation of deformable structures gradually
weaken the confinement of force-chains, leading to the force-chain buckling. On the
other hand, the conversion from LFCL

3 and LFCL
6+ may also induce a volumetric expansion

in the vicinity of force-chains, finally contributing to the global volumetric dilatancy.
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It is worth noting that in both dense and loose specimens, significantly less ω6+

and more ω3 are observed in NFCL area than in FCL area. In dense specimen, ωNFCL
6+

(Figure 3.21b) starts from a similar value to ωFCL
6+ , after a slight increase, ending up

at around 0.04. It is totally different from the evolution of ωFCL
6+ , which experiences a

substantial jump before stress steady state and finally stabilizes at about 0.18. There is
also a consistent gap (at around 0.07) between ωNFCL

3 and ωFCL
3 during the whole test.

In the loose specimen (Figure 3.21c and 3.21d), ωNFCL
6+ is always about 0.03 lower than

ωFCL
6+ , while ωNFCL

3 keeps the value 0.07 higher than ωFCL
3 .

Huge disparity on the meso-loop distribution between FCL and NFCL indicates
the existence of two absolutely different materials, diverging from the original homo-
geneity, under the effect of force-chains. It is prominent that in both specimens, the
force-chain dominant area contains less L3 and L4 and more L5 and L6+ than the remain-
ing area. Especially, LFCL

3 and LFCL
6+ show extremely different population levels from their

corresponding values of NFCL area. Force-chain adjacent region, therefore, can be pre-
liminarily considered as a locally meso-loop transformation area, where small structures
transform into large ones. However, what is the exact transition pattern between different
loop categories? To which extent can the variation of one kind of loop be correlated with
the variation of another kind? Does the conversion relationship observed at one place
(like the relation of ωFCL

3 vs. ωFCL
6+ at the beginning) keep consistently unchanged for the

whole loading path, or it depends on the strain state? These questions will be discussed
in subsection 3.4.2.2.

3.4.2.2 Conversion correlations amongst structures

The most confidential relationship between different categories observed with intu-
ition is given by ωFCL

3 and ωFCL
6+ , which present perfect negative linear linkage with the

slope being close to -1.0, see Figure 3.22. Nevertheless, merely an analysis on the total
value of ωi is not able to figure out the subtle conversing relationship amongst different
categories of loops, especially in the critical-state, when the total value of each category
oscillates around a constant value. An analysis on incremental value of ωi (dωi) is then
expected, in order to show more details on the conversion between loop categories in
different phases of the loading path.

In both FCL and NFCL areas of two specimens, the loss of L3 in the fabric is basically
significant and insistent over the biaxial test. According to this, the statistical analysis
is aiming to investigate how a lost fraction of L3 is converted to other kinds of loop, i.e.
the correlation between dω3 and dωi (i = 4, 5, 6+). The loading path is preliminarily
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Figure 3.22: ωFCL
3 varies as function of ωFCL

6+ , grey line is the linear fit of scalar points.

separated into several phases. In the dense specimen, three phases can be identified:
“elastic phase” (ε2 = [0.000, 0.015]), where the constitutive relation shows a pure elasticity
with nearly no buckling occurring; “buckling phase” (ε2 = [0.016, 0.060]), starting from
somewhere before stress peak, at which buckling events erupt, lasting until the outset
of next phase; “stable phase” (ε2 = [0.061, 0.150]), where stress, strain and buckling
events come to oscillate around a stable value. Concerning the loose specimen, as shown
in Figure 3.21c, force-chains buckle from the beginning of the test; there is therefore
only a small and negligible elastic initial phase. Thus, two phases “buckling phase”
(ε2 = [0.000, 0.070]) and “stable phase” (ε2 = [0.071, 0.150]) can be identified for the loose
specimen. The segmentation is shown in Figure 3.23.

Pearson’s correlation r (Pearson, 1895), commonly used to measure the degree of the
linear correlation between two variable series, is introduced to investigate the correlation
between dω3 and dωi (i = 4, 5, 6+), i.e. the conversing relation between ω3 and ωi. The
results are shown in bar plots (Figure 3.24a and 3.24b), in which bar height denotes the
correlation index r of an analytical pair and I-shaped arrow is the predictive interval of
r with 90% confidence. The sign of r denotes the inclination (negative or positive) of a
correlation. It is worth re-iterating that the index r discussed herein evaluates the degree
of the linear correlation between dω3 and dωi (i = 4, 5, 6+), explaining to what degree
the former is depending on (or explained by) the latter.
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(a) (b)

Figure 3.23: Phases on loading path for (a) dense specimen and (b) loose specimen.

(a) (b)

Figure 3.24: Pearson’s r between dω3 and dωi (i = 4, 5, 6+) in three phases of the dense specimen
for (a) FCL and (b) NFCL.

The results for the dense specimen, shown in Figure 3.24a, imply that in all phases,
dωFCL

3 are primarily dependent on dωFCL
6+ , with the most concentrated predictive in-

tervals. This is consistent with the observation in Figure 3.21a, where ωFCL
3 vs. ωFCL

6+

appears to be the most conspicuous pair, showing a clear, opposite way of evolution. In
these three phases, dωFCL

3 tends to be linked to bigger loops, as dωFCL
4 , dωFCL

5 and dωFCL
6+

demonstrate an orderly increasing significance of being correlated with dωFCL
3 . Mean-
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(a) (b)

Figure 3.25: Pearson’s r between dω3 and dωi (i = 4, 5, 6+) in two phases of the loose specimen
for (a) FCL and (b) NFCL.

while, in NFCL area (Figure 3.24b), the variation of dωNFCL
3 can be mainly explained by

the variation of dωNFCL
4 , with the most concentrated predictive intervals. Otherwise, in

“elastic phase” and “buckling phase”, the linkage between dωNFCL
3 and ωNFCL

6+ displays
some uncertainty, with wide confidential intervals.

In the loose specimen (Figure 3.25), in the “buckling phase”, the correlation patterns
in both FCL and NFCL areas are similar; as shown in Figure 3.25a and 3.25b, in the
“buckling phase”, dω3 vs. dω5 has the highest level of r (around 0.6) among pairs and the
corresponding values for dω3 vs. dω4 and dω3 vs. dω6+ are equivalently secondary. In
the “stable phase”, dωFCL

3 is mainly correlated with dωFCL
4 and dωFCL

5 , however, dωNFCL
3

is only dependent on dωNFCL
4 .

The correlation index r between dω3 and dωi (i = 4, 5, 6+) can be interpreted as
the conversion relationships between ω3 and the ratio of other loops. In the dense
specimen, FCL area tends to convert L3 to big loops, as we see a descending preference
on “L3 → L6+”, “L3 → L5” and “L3 → L4”, while NFCL exactly reverses this pattern,
to be apt to translate L3 to small loops; for the loose specimen, in the “buckling phase”,
the conversion patterns in both FCL and NFCL areas are similar. In the “stable phase”,
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transports from LFCL
3 to LFCL

4 and LFCL
5 are more or less equivalent. However, the loss of

LNFCL
3 in “stable phase” is almost only transferred into the LNFCL

4 . This is in line with
the case of the dense sample, where FCL area, compared with NFCL area, is inclined to
change L3 into bigger loops.

As a result, we confirm again that FCL and NFCL areas should be treated as two
different materials, with regard to the meso-loop evolution. The areas far from force-
chains lack the ability to generate big loops, compared with the force-chain surrounding
area. In the process of volumetric expansion directed by the loading path, the force-chain
acts as an intermediate agent of “sacrificing” small, firm structure (e.g. L3) and “creating”
big, flexible ones (e.g. L6+). FCL area has more instinct to expand its volume, i.e. the
meso-scale volumetric dilatancy (MV-D). Thus, the force-chain area can be seen as the
main source and the major contributor to the macroscopic dilatancy.

3.4.2.3 Volumetric behavior

Coming back to the analysis of the volumetric change, different patterns of meso-loop
evolution may lead to a density inhomogeneity inside and outside force-chain areas.
Therefore, the void ratio e (respectively inside, outside force-chain areas and in total area)
of specimens is plotted in Figure 3.27. It should be noted that the void ratio only concerns
the area enclosed by loops, given by e = (Vtotal − Vsolid)/Vsolid. In Figure 3.26, Vtotal

(inside ABCDEFG) corresponds to the total area of collective loops and Vsolid (shadowed
area) is the solid area encircled by the contact branches of these loops, where ABCDEFG

are respectively centers of particles.

The results show that in both dense and loose specimens, void ratio e in the force-
chain surrounding area is consistently higher than that in the total and in the NFCL area.
From a macro-scale viewpoint, this supports the conclusion that the force-chain area is
more inclined to create big loops than the remaining area, dilating more than remaining
area.

So far, the force-chain induced dilatancy can be treated as a kind of material self-
organization around force-chains. The original homogeneous material develops its
structure in close connection with the force-chains, which are congenitally heteroge-
neous and anisotropic. This small scale self-organization is significant, as it cumulates,
conjugates and finally leads to larger scale structuring phenomena, as for example the
formation of the shear band or more generally, the strain-localization (Alshibli and
Sture, 2000; Oda and Iwashita, 2000; Gu et al., 2014). Otherwise, the different dilatability
between the force-chain adjacent area and the area far from force-chain is assumed to
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Figure 3.26: An illustration of the total area and the solid area (shadowed) in a set of loops (inside
ABCDEFG).

(a) (b)

Figure 3.27: Evolutions of void ratio e of FCL, NFCL and total area in (a) dense and (b) loose
specimens with respect to ε2.

be attributed to the different moving pattern of these two areas. It is revealed by for-
mer researches that rotating pattern, instead of sliding, prevails in force-chain contacts
(Bardet, 1994; Oda, 1997; Oda and Kazama, 1998; Tordesillas, 2007). Of course, the casual
relation between moving pattern and ability of creating big structure is recommended to
be investigated in detail.
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Figure 3.28: Confining structures and force-chain movability.

3.4.3 Effect of confining structures on force-chains

The investigation above concerns the interest of how force-chain affects the meso-
loop. However, the meso-loop morphology may reversely play a role on the force-chain
evolution in a certain way. From here forwards, the analysis is led in this sense.

3.4.3.1 Confining structures and force-chain movability

The buckling angle θb, aforementioned in section 3.2, characterizes the deformation
of a 3-particle set, the force-chain element. We calculate θb of all 3-particle sets and mean-
while count the number of loops Li connected to each 3-particle set, Ni (i = 3, 4, 5, 6+).
Figure 3.28 gives an example of a 3-particle set and its connected loops, which are labeled
by polygonal symbols according to their shapes. In this case, as shown by symbols,
N3 = 2, N4 = 3, N5 = 1 and N6+ = 2.

Statistical analyses on the buckling angle θb for different levels of Ni (i = 3, 4, 5, 6+)
are then implemented and presented in Figure 3.29, in order to investigate how the
force-chain movability varies in terms of the composition of its surrounding meso-loops.
Two strain states are chosen to be analyzed: one state in the dense specimen at ε2 = 0.018,
short before stress peak; and another state in the loose specimen at ε2 = 0.050, when
the stress tends to be stable. Four subplots correspond to four different loop categories
Li (i = 3, 4, 5, 6+). In subplot of Li, θb of all 3-particle sets are statistically analyzed
with respect to their Ni. Taking L3 as an example, shown in the upper-left subplot of
Figure 3.29a and 3.29b, all 3-particle sets have their respective θb and N3, forming data
points in the space log(θb) − N3. Then at each level (data columns) of N3, different
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statistical quantities of log(θb), e.g. the median, are calculated. These statistical quantities
of log(θb) involve five elements in each level of N3: the first quartile Q1, the box downside;
the median quartile, the black cross-line; the third quartile Q3, the box upside; the inter-
quartile range IQR (I-shaped arrow); and the outer-quartile scattered points (Miller et al.,
1965). Among these five quantities, the median quartile is the most significant element,
which is the median of a data column, while other elements reflect the concentration
degree of this data set at different levels. Function log(θb) is prescribed instead of θb,
because the density function of θb distribution shapes too far from normal distribution to
be statistically analyzable.

Results from loose and dense specimens are extremely similar. This indicates that the
confining effect on force-chain, given by a certain surrounding meso-loop composition,
is independent from the strain state and the buckling degree. The movability of force-
chains tends to decrease, if they are more confined by L3. On the contrary, they become
movable, if there are more L6+ around them. On the whole, L3, as well as L4, imposes a
negative effect on force-chain movability, while L6+ and L5 give rise to a positive effect.

It is concluded that L3, a kind of dense, firm meso-loop, certainly locks force-chain’s
kinematical freedoms and handicaps its movement, whereas L6+ offers force-chain more
freedom degree and therefore more movability. It is in line with the results shown in
Figure 3.19 and 3.21a, where the evolution of ω3 and ω6+ is respectively negatively and
positively correlated with the degree of force-chain buckling. Basically, the movability of
force-chains is a crucial attribution, dictating the behavior of the force-chains and, even
further, the macroscopic behavior of the granular material. Even though the concept of
“movability” only belongs to the ambit of kinematics, force-chains with more movability
can evolve to a buckled configuration more easily and rapidly. This commonly causes a
loss of their sustainability, i.e. the force-chain instability.

Finally, the life-cycle of force-chains can be displayed as a history of interaction with
their confining meso-loops, as shown in Figure 3.30.

3.4.3.2 Stress anisotropy of confining loops

In order to measure the stress on the meso-scale, we introduce a stress tensor in the
meso-scale, called loop stress tensor, proposed by SAS (1997):

σ̃L
ij =

Nc

∑
c=1

f c
i lc

j

ṽc
(3.13)
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(a)

(b)

Figure 3.29: Quartiles of log(θb) of 3-particle sets for different levels of Ni (i = 3, 4, 5, 6+) for
(a) ε2 = 0.018 in the dense specimen and (b) ε2 = 0.050 in the loose specimen.
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Figure 3.30: Force-chain life-cycle.

where Nc denotes the number of contacts over the considered loop, f c
i and lc

j are respec-
tively the ith component of the contact force and the jth component of the contact branch
on contact c, ṽc is the combining area of two neighboring loops sharing the contact c. In
Figure 3.31, there is an illustration of calculating σ̃L

ij of the considered loop. ṽCD is the
total area of loop 0 and loop 1. To note is that this method of building the local mesoscopic
stress tensor is only one among different ways of characterizing the local stress (Nguyen
et al., 2012; Nicot et al., 2013). The normalized deviator of σ̃L

ij is given by:

Dmeso =
σ̃L

1 − σ̃L
2

σ̃L
1 + σ̃L

2
(3.14)

σ̃L
1 and σ̃L

2 are respectively the major and the minor eigenvalue of σ̃L
ij . Then Dmeso

i for
each kind of force-chain loop Li can be calculated. Its evolution as a function of ε2 is
illustrated in Figure 3.32.

In both specimens, Dmeso
3 and Dmeso

6+ respectively stay at the lowest and highest
values over the loading path. Dmeso

4 and Dmeso
5 behave extremely similarly and range

between Dmeso
3 and Dmeso

6+ . This indicates that the area of LFCL
3 could be considered

as in a quasi isotropically stressed environment, while the stress in LFCL
6+ structures is

more anisotropically distributed. Force-chains with more LFCL
3 , compared with those

with more LFCL
6+ , tend to transmit larger forces to their lateral environment. As a result,

in stress-controlled boundary conditions, the boundary movements depend on the
constitution of different kinds of meso-loops around force-chains. Specifically in drained
biaxial tests, when subjected to an incrementally axial loading, force-chains in dense
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Figure 3.31: An illustration of calculating the loop stress tensor σ̃L
ij . The loop considered here is

loop 0 (or loop ABCDE), ṽCD is the total area of loop 0 and loop 1.

(a) (b)

Figure 3.32: Evolutions of normalized deviatoric meso stress Dmeso with respect to ε2 in (a) dense
and (b) loose specimens.

specimens, mainly consisting of L3, impose stronger lateral forces on the side boundary
than looser specimens do. Then, for dense specimens, the lateral boundaries have to
move outward, in order to keep the lateral pressure constant. Whereas this is not true for
loose specimens, as the lateral forces directed by the force chains is much smaller. This
probably leads to a contractancy. Therefore, it is concluded that along the biaxial loading
path, LFCL

3 leads the assembly to dilate, and LFCL
6+ leads the assembly to contract.
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The mechanism described above has two significant consequences on the macro-scale:

1. According to the initial fabrics (related to the initial void ratio, together with the
deposit method), a loading path will direct dilatancy or contractancy. When a
dilatancy occurs, L3 loops are no longer compatible with the volume expansion,
leading to a transition from L3 to L6.

2. When the texture adjusts itself (in terms of L3 versus L6+), to match the global
volumetric variation induced by boundary adjustment, the movability of force-
chain also changes. When the ratio of L6+ increases (especially LFCL

6+ increases), the
stability of force chains is no longer insured. The number of buckling force-chains
increases dramatically, leading to a strength softening after stress peak.

Generally saying, there is an inherent “feedback-control” mechanism that can be
observed along the biaxial loading path. The anisotropy of the force-chain surrounding
area, which depends on the current composition of force-chain loops, determines the
boundary motion. Reversely, the boundary motion will also change the nature of force-
chain loops. As a consequence, the loading path and force-chain confining structures
mutually adjust themselves to converge towards a steady state, corresponding to a
certain fabric, where the proportion of different meso-loops comes to take a constant
value. This leads to a constant degree of stress anisotropy and a constant specimen
volume, as observed during the so-called “Critical State” (Roscoe et al., 1958; Schofield
and Wroth, 1968).

3.5 The critical state meso-structure in localized and dif-

fuse failure modes

Granular material has attracted great interest in recent decades, as an idealized
model of frictional material. Its behavior diverges sensitively according to the initial
state and the loading history, i.e. the initial state and a path dependence. It is also
well-known that despite the diversity of the response, in the large strain of biaxial
compression, the granular material evolves towards a steady state, in which a shear
distortion progresses without any change in the shear stress or the material volume. This
state, being independent of the initial state, is named Critical State. Since this concept
was introduced by Roscoe et al. (1958) and developed as Critical State Soil Mechanics
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(CSSM) by Schofield and Wroth (1968), it has been the corner stone of soil mechanics for
decades, allowing researchers to build the constitutive relation for the final state of soil,
as well as other granular materials (e.g. Roscoe and Purland, 1968; Wan et al., 2011; Li
and Dafalias, 2012; Zhao and Guo, 2013; Gao et al., 2014).

The critical state relation in p’-q-e space is called critical state line (CSL). As an
asymptotic state for granular assembly subjected to prescribed loading path, it gives a
trinary relation among void ratio e, the meaning effective stress p’ and the deviatoric
stress q. In the large strain, e becomes constant with p’ and q stopping increasing as
well. Basically, constant e is considered as the signature of the critical state. However,
two questions should be asked before accepting this concept: why is e so crucial among
different state quantities, and how can critical state e be related to the critical state stress?
The physical meaning behind it is of great interest for researchers. Given the critical
state concept is initiated on the basis of macro-scale observations, the answer should
be found on a smaller scale. Viewed in micro-scale, global stress response is attributed
to contact forces projected on different planes. As a result, the mechanical response
of granular materials basically depends on the contact fabric arrangement (Oda et al.,
1980; Rothenburg and Bathurst, 1989). Therefore, one possible answer to the former
two questions may be that in the critical state, there exists a characteristic fabric in the
micro-scale, which has a relatively constant void ratio and an unchanged mechanical
response, disregarding the persistent shear deformation. Many attempts have been
made to investigate fabric features in the shear deformation and its role in macroscopic
mechanical response of granular material (Cambou, 1993; Radjai et al., 2004; Cambou
et al., 2009).

In the classic critical state framework founded by Roscoe et al. (1958), the critical
state is featured as an isotropic deformation pattern, when structureless state quantity,
void ratio e, is introduced to characterize the material state. The pioneering work
of Oda (1972a,b,c) in statistically characterizing the directional contact distribution in
granular materials, highlights the existence of the shear induced anisotropic fabric in the
critical state. This compels the geo-mechanics community to recognize the foundation
of shearing deformation in a new way, a fabric viewpoint. Taking advantages of the
new numerical tool, the discrete-element method DEM (Cundall and Strack, 1979),
and the progress of experimental techniques, many later observations confirm that
the shear induced fabric anisotropy prevails during or even before the critical state,
acting as a signature of shear deformation (Thornton and Barnes, 1986; Rothenburg and
Bathurst, 1989; Calvetti et al., 1997; Thornton and Antony, 1998; Mueth et al., 2000; Fu
and Dafalias, 2011; Hasan and Alshibli, 2012; Zhao and Guo, 2013). While more fabric
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features are identified in shear deformation, the critical state is expected to be of fabric
dependence (Been and Jefferies, 1985). The physical essence of the shear deformation and
the critical state mechanical behavior should be investigated on the micro-mechanical
level, by considering the force and the material fabric of granular assemblies. In terms of
describing the fabric, the necessity of taking the meso-scale viewpoint has already been
explained and confirmed in previous sections. Behaviors of force-chains and meso-loops
should be characterized during the granular assembly develops the shear deformation
until reaching the critical state. How these behaviors on the meso-scale leads to the
critical state mechanics turns to be a challenging topic.

There is another concern in practicing critical state concept when considering the
material structurization. In some cases, failure occurs homogeneously without any
apparent and persistent strain concentration, called “diffuse failure mode” (Darve and
Roguiez, 1998; Darve et al., 1995a, 2004). It is also well-known that granular assembly
under shearing may experience a transition from a homogeneous deformation pattern
to a discontinuous one, with strain largely localizing into a system of bands, i.e. “shear

band”. As soon as that occurs, the material is structurized into two zones: shear band
domain, where strain concentrates; and remaining domain, where material undergoes an
elastic unloading to release its stored elastic energy (Nicot and Darve, 2011a). This failure
pattern is called “localized failure mode” (Rice, 1976; Bigoni and Hueckel, 1991; Bigoni, 2000;
Chambon and Caillerie, 1999; Petryk, 1993; Tejchman and Górski, 2008; Vardoulakis et al.,
1978; Vardoulakis and Sulem, 1995). In the presence of the structurization in specimen
scale, average state quantity of the whole material is no longer valid. Instead, the state
should be described separately in different parts. This notion is reminiscent of what Oda
(1972a) did in investigating deformation mechanism of dense specimens under triaxial
compression, where sample volume is subdivided into several parts with respect to their
void ratios. The shear deformation only occurs inside the shear band when the other
domain, as a whole, acts in a quasi-elastic behavior. Hence, the non-elastic property of
the material largely derives from the shear band domain, where shear deformation is
dominantly active. This means that the fabric base of the critical state should be discussed
more inside shear band (e.g. Fu and Dafalias, 2011).

The aim of this section is to characterize the critical state fabric on the meso-scale of
granular material in both localized and diffuse failure modes. 2D drained biaxial tests
were carried out in different initial states, as introduced in subsection 3.5.1. According to
the relative displacement fields and strain fields extracted from tests, in subsection 3.5.2,
the failure mode of each specimen was determined, shear band width of localized speci-
mens was assessed. In subsection 3.5.3, a convergent critical state void ratio is validated



3.5 The critical state meso-structure in localized and diffuse failure modes 75

in failure area of specimens instead of in whole specimen area. In subsection 3.5.4, two
kinds of meso-structure, meso-loop and force-chain, are taken into account. Their dif-
ferent mechanical properties are investigated to clarify, from different aspects, whether
there exists a convergent meso-structure in the failure area as the signature of critical
state.

3.5.1 Drained biaxial test and results

Four specimens, S1, S2, S3 and S4, with different initial void ratios e0 (given by
equation 2.9) are installed and subjected to the drained biaxial test, according to the
parameters and the test protocol prescribed in section 2.2. They are listed with their
corresponding e0 in table 3.5, where specimens are ascendingly ordered and numbered
according to e0. The method to assess the void ratio will be introduced in subsection 3.5.3.

Table 3.5: Specimens and corresponding initial void ratio.

Specimen e0
S1 0.185
S2 0.200
S3 0.246
S4 0.297

Macroscopic responses of four tested specimens are illustrated in Figure 3.33, in
which stress ratio q/p0, volumetric strain εv = −(ε1 + ε2) and void ratio e evolve as
function of axial strain ε2.

Results present typical stress and strain responses of drained biaxial test. When
initial e0 increases, the specimens’ stress turns from softening (specimen S1, S2 and
S3) to hardening (S4) and meanwhile from dilating (S1 and S2) to contracting (S3 and
S4). Densest specimen S1 sees the largest stress drop after peak, accompanied by the
strongest bulk dilatancy. Stress peaks fade gradually from S1 to S3 and vanish in S4.
To be the function of εv, the specimens’ void ratio resembles εv evolution. Around
after ε2 = 0.12, all these macroscopic quantities calm down to a steady state with small
oscillation. In agreement with what the critical state predicts, the stress ratios of four
specimens converge to fluctuate at about 0.8. However, the void ratios do not converge
in the end as expected. This is due to the structurization of material. As aforementioned,
when localization occurs, to treat the material as a whole is no longer valid in describing
mechanical state of the material. Thereupon, the localization patterns of 4 specimens will
be investigated in subsection 3.5.2.



76 3. Micro-structure Analysis in 2D Granular Material

S1
S2
S3
S4

St
re

ss
 ra

tio
  q

/p 0

0

0.5

1

1.5

2

Axial strain  ε2
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(a)

1 × 10-2

S1
S2

S3
S4

Ao
lu

m
et

ri
c s

tr
ai

n 
 ε v

−1

−0.5

0

0.5

1

1.5

Axial strain  ε2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(b)

S1
S2

S3
S4

Ao
id

 ra
tio

  e

0.175

0.2

0.225

0.25

0.275

0.3

Axial strain  ε2
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(c)

Figure 3.33: Evolutions of stress (a), strain (b) and void ratio e (c) with respect to axial strain ε2,
in specimens S1, S2, S3 and S4.

3.5.2 Failure modes and shear band width in specimens

The localized failure, according to its definition, refers to the state where the strain
largely concentrates in partial domain of material, on the contrary to the diffuse mode. In
this subsection, relative displacement between contact particles |∆u| (i.e. the increment
of the contact vector) is used to demonstrate the failure mode in specimens. Nephograms
of |∆u| field for all specimens are plotted in the strain state ε2 = 0.150 (see Figure 3.34),
when it is assumed to be already in the critical state.

In S1, S2 and S3 (Figure 3.34a 3.34b 3.34c respectively), relative displacement blasts
in a diagonal area transversing whole specimen to form a shear band. This is a typical
localization failure appearing after stress peak. In fact, for the purpose of obtaining a
diagonal pattern of localization linking corners of the specimen, the initial dimension
of the specimens are set to 0.90 m × 1.35 m, under the enlightenment of the parameters
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Figure 3.34: |∆u| nephogram (10−5 m) for specimen S1 (a), S2 (b), S3 (c) and S4 (d). Shear
bands are bounded by grey lines with width 2δ.

used in the work by Nguyen et al. (2009). S2 has the most concentrated shear area
within a narrow band, that also leads to the highest localized value of ∆u amongst
specimens, being equal to 3.9 mm. The deformation pattern in S4 (Figure 3.34d) is
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significantly different, as the displacement scatters over the material. Even though an
uneven displacement also exists in some banded domains, the trail of these domains is
blurry and complicated. This uneven displacement is also temporary and variable, as
it is found to change with different strain states. This failure pattern is quite far from
the localized mode where a clear and steady shear band can be figured out once being
formed. This mode is considered as a diffuse mode.

To decide the width of the shear band, the strain ε is calculated on the basis of the
relative displacement field ∆u

εij =
1
2
(

∆ui

∆xj
+

∆uj

∆xi
), (3.15)

where ∆xi denotes the increment of the ith global coordinate, ∆ui is the ith component of
relative displacement increment. The compressive deformation is consider to be positive.
As it is observed in Figure 3.34, we assume that the shear band extends symmetrically
from diagonal. The width of the shear band is indicated by 2δ, when δ is the distance from
the shear band upper or lower boundaries to the diagonal, as illustrated in Figure 3.35.

� 

� � 

1 

2 

Figure 3.35: The profile of diagonal shear band, framed between two dashed lines. The shear
band is assumed to extend symmetrically from diagonal (the continuous line from
left-bottom to right-top corner in this figure), and the extension distance is denoted
by δ. A coordinate α is set perpendicularly to the diagonal, as shear band lower and
upper boundaries respectively correspond to α = −δ and α = δ.
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Figure 3.36: For specimens S1 (a), S2 (b) and S3 (c), the variation of 〈ε11〉 (scattered points)
on reference line, which (being parallel with the specimen diagonal) moves along
coordinate α. Scattered point are fitted by the solid line. Vertical dashed lines denote
shear band boundaries.

A coordinate α is set perpendicular to the diagonal of the specimen. To ascertain the
shear band width 2δ, a reference line is drawn parallel to specimen diagonal and moves
along coordinate α. The evolutions of the average ε11, 〈ε11〉, around this reference line
are then plotted with respect to α (see Figure 3.36) and fitted by an unimodal function,

f (x) =
a

bπ · (1.0 + ( x
b )

2)
− c. (3.16)

Evolutions of 〈ε11〉 on the axis α display a prominent unimodal feature. Strain rises
dramatically in the center range and oscillates near 0.0 on either side, as the center
range refers to the shear band section. Furthermore, when the shear band domain
undergoes a loading process with a large positive (compressive) strain, the remaining
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area is rebounding as the strain is negative on average. Nevertheless, the deformation
in the outside shear band area is quasi-rigid, major deformation takes place inside the
shear band. Shear band boundaries are approximately determined at the place where
〈ε11〉 starts to jump. It is shown that the specimen S2 conceives the most concentrated
shear band (δ = 0.09, see Figure 3.34b and Figure 3.36b) and the highest localized strain,
giving rise to the sharpest stress softening amongst specimens (shown in Figure 3.33a).
On the contrary, S3 shapes a somewhat spreaded form with δ = 0.19 (Figure 3.34c and
Figure 3.36c). The shear band width in S1 is estimated at δ = 0.15 (Figure 3.34a and
Figure 3.36a).

The failure mode and shear band width for localized specimens have been determined;
three specimens encountering localized failure (S1, S2 and S3) and one with diffuse mode
(S4) are presented. As mentioned in the introduction, when material develops a non-
homogeneous strain field, more attention should be payed on the failure area instead
of the global area. The remaining part of this section aims to investigate the evolution
of meso-structure inside these failure areas, i.e. the shear band area in localized failure
specimens and the global area in the diffuse failure specimen.

3.5.3 Critical state void ratio e

A 

B 

C 

D 

Investigation 

boundaries 

Figure 3.37: Meso-loops inside prescribed boundaries (upper-left) and the illustration of the
total area (ABCD) and the solid area (shadowed) of one quadrilateral meso-loop
(lower-right).
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Before entering the meso-structure observation, void ratios inside the shear band
e∗ in specimens S1, S2 and S3 are tracked along the loading path and compared with
global void ratio e of each and S4. Here and after the asterisk symbol takes the meaning
of the shear band domain. e is calculated on the basis of the meso-loop, given by
e = (At − As)/As, At and As representatively denote total and solid area. As shown
in Figure 3.37, as soon as the investigation area is defined by boundaries (shear band
boundaries or specimen boundaries), meso-loops with vertices outside the boundaries are
excluded. Then At is equal to the sum of all loop areas, and As is the total enclosed solid
area by all loops. Figure 3.37 gives an example of the contribution from a quadrilateral
loop. At is the interior area of ABCD, each of these 4 points is the center of one component
particle enclosing this loop. Correspondingly, As is the shadowed area, composed of
four fans shaped from the particle center to its two contact points.

As already depicted in subsection 3.5.1, large differences exist amongst critical void
ratios of specimens. In Figure 3.38, S1, S2 and S3 present significantly lower final e than
the loosest specimen S4 which corresponds to a diffuse failure. However, when looking
at the situation inside the shear band, we see that the results are in agreement with
the critical state theory. e∗ of all S1, S2 and S3 diverges apart from global void ratios e

exactly at the stress peaks, from when the strain localization starts to accelerate (labeled
by vertical dashed line in Figure 3.38). Larger dilatancy takes place in the shear band
area than in the total area and in the outside shear band area. e∗ then gradually meets
e of S4 during the stress softening period and oscillates around it in the critical state.
The convergence of e in the critical state for all specimens is obedient to the assertion
of the critical state mechanics, as an absolute void ratio can be reached in large strain
independently from material initial state. However, our results suggest that in localized
failure mode, this critical state void ratio is valid only in strain localization domain.
Desrues et al. (1996) performed a parallel experiment, in which shear band porosity is
investigated by means of X-ray computed tomography (CT) and compared with the
porosity in loose samples (Bornert et al., 2010). The material porosity inside the shear
band was found approaching a same value in specimens of different initial porosities.
Moreover, this value also matched the steady (final) porosity of the loose specimen, in
which no clear strain localization was observed. This result supports our research. The
critical state e is then validated both in localized and diffuse failure modes, disregarding
the heterogeneity of the material. However, two questions arise from this: what is the
underlying physical meaning of the critical state void ratio, and is there any featured
structure in smaller scales as the basis of this featured void ratio? This will be investigated
in subsection 3.5.4.
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Figure 3.38: With respect to axial strain ε2, evolution of global void ratio e and void ratio inside
shear band e∗ for specimens S1 (a), S2 (b) and S3 (c), comparing with evolution of e
in specimen S4.

3.5.4 Meso-structure signature of the critical state

In the meso-scale, force-chains and meso-loops co-exist as two kinds of basic structure,
conducting the mechanical behavior of the granular material. In attempting to find a
characteristic meso-structure in the critical state, quantitative analyses are then carried
out in the meso-scale.
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Figure 3.39: With respect to axial strain ε2, evolutions of meso-loop ratios ω3 (a), ω6+ (b), ω4
(c) and ω5 (d) in area S1∗, S2∗, S3∗ and S4.

3.5.4.1 Meso-loops characteristics

With the same consideration as what we have already shown in the critical state void
ratio investigation in subsection 3.5.3, shear band area, instead of whole specimen area,
should be the interest area, where main shear deformation actually takes place. Then the
meso-structure analysis turns to focus only on the inside failure area. Evolutions of ωi (i
= 3, 4, 5, 6+) inside the shear band of specimens S1, S2 and S3 (labeled as S1∗, S2∗ and
S3∗) are tracked along biaxial test and compared with ωi in S4. They are then illustrated
in terms of axial strain ε2 in Figure 3.39.
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In S1∗, S2∗ and S3∗, both ω3 and ω6+ unambiguously converge around similar
values to those in S4. This can be also observed from the evolution of ω4 and ω5: all
specimens evolve to identical final values, as shown in Figure 3.39c and 3.39d. Significant
convergences of ω in all categories of meso-loop are observed in all specimens, in the
failure area rather than in the whole specimen area. Here, the failure area means the shear
band area in the specimen of localized failure mode, and the whole area in specimen of
diffuse failure mode. This convergence indicates the existence of a common critical state
topology on the meso-scale.

An opposite behavior is observed between ω3 and ω6+ in the phase preceding the
critical state. For the first three specimens S1∗, S2∗ and S3∗, ω3 shows exponential
decrease before their stress peaks. Simultaneously, ω6+ varies in a sophisticatedly
reversed pattern. Both ω3 and ω6+ of S1∗, S2∗ and S3∗ generally transit their slopes
at the stress peaks, and approach steady values in post-peak phases. Considering that
ω4 and ω5 do not dramatically change in all tests, shear band areas S1∗, S2∗ and S3∗

definitively experience strong conversions from L3 to L6+ before stress peaks, even in the
phases we classically consider to be elastic. This points out the fact that bulk dilatancy
cumulates potentially before the stress peak, as the big meso-loops are consistently
increasing their population. The wording “potentially” means that there may be not
a definitively ongoing dilatancy, but rather a dilating trend suggested by the meso-
structure. The reason why the material may not dilate immediately following the meso-
structure evolution, is because the dilating effect may be covered by the effect given by
inter-particle penetration, which also contributes to the bulk variation of the material
and normally tends to lead to a contractancy. To this extent, the dilatancy is prepared far
before the stress peak, and accelerates until the stress peak (Zhu et al.).

The meso-structure fabric is another aspect in close relation with the material me-
chanical behavior. In this section, the meso-structure fabric is quantified by a loop tensor
H, given in similar form as fabric tensor,

Hl
ij =

1
2

Nc

∑
c=1

nc
i rc

j , (3.17)

where l is the ID of one meso-loop, c is the contact in the meso-loop, Nc is the number
of contacts in the meso-loop, r and n are respectively the original and the normalized
contact branch, n = r/ |r|, and subscripts i, j denote the ith and the jth components of
contact branch. The coefficient 0.5 is attributed to the fact that each contact is shared by
two meso-loops. For a given meso-loop collection selected by boundaries, as shown in
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Figure 3.37, Hl over all meso-loops are summed up to obtain a total meso-loop tensor H.
In essence, H is exactly the fabric tensor, as all interior contacts in the considered area
have been completely taken into account. The normalized deviator of H, DH, is equal
to (H1 − H2)/IH, as IH is the spherical part of H, expressed as IH = H1 + H2, where H1

and H2 are respectively major and minor eigenvalues of H.
In all specimens, evolutions of DH and IH in both whole specimen and failure area

are displayed as function of axial strain ε2 in Figure 3.40. As shown in Figure 3.40a
and Figure 3.40c, both DH and IH in the failure area of specimens (S1∗, S2∗, S3∗ and
S4) converge to a final value. On the contrary, DH and IH in S1, S2, S3 and S4 stabilize
into different values at the end of the test. As long as material forms its internal self-
organization, accounting the material as a whole is no longer valid. This means that
the failure area, instead of the whole specimen area, of four tested specimens falls on
one unified fabric in the critical state. In other words, in S1, S2 and S3, values of DH

in the shear band area evolve around the value DH = 0.10 (horizontal dashed line in
Figure 3.40a) in the critical state. However, values of DH in the whole specimen state
at the level much less than the line DH = 0.10 (horizontal dashed line in Figure 3.40b).
This means that the fabric deviator in the whole specimen is always less than that in the
shear band area. A higher anisotropy in the fabric of the shear area gives the counter-
evidence against the isotropic flow assumption, which hypothesizes the material isotropy
under the shear deformation. This supports what Oda (1972a,b,c) has stated: the shear
deformation leads to the structure anisotropy of the granular material.

Departing from various initial states, fabrics converge in the critical state. This shows
a remarkable agreement with the result obtained from the investigation of meso-loop
categories proportion. It is concluded that in the failure area of granular materials, there
exists a unified critical state meso-structure with identical morphological characteristics.
This critical state meso-structure does not exist in the whole material area, but inside
the failure area, where mesoscopic geometry gradually converges with test processing.
This convergence is significant, because it makes critical state mechanical properties to
be of initial state independence. A convergent meso-structure from different initial states
sufficiently ensures the void ratio, deviatoric and mean effective stress to be independent
from initial state. On the other hand, this featured fabric can persist (or survive) in a given
loading path, after other possible structural patterns have disappeared. It gives rise to a
constant stress response and void ratio. Consequently, two fundamental properties of
the critical state - initial state independence, and constant stress and volumetric response
- can be simultaneously interpreted as deriving from one particular meso-structure. This
and only this can persist from a certain loading path. In other words, the critical state
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Figure 3.40: Evolution of DH as function of ε2 in analyzing area S1∗, S2∗, S3∗ and S4 (a); S1,
S2, S3 and S4 (b). Evolution of IH as function of ε2 in analyzing area S1∗, S2∗,
S3∗ and S4 (c); S1, S2, S3 and S4 (d).

meso-structure is the basis of the macroscopic critical state mechanical behavior of the
granular material. Further research should be devoted to investigate why only one
particular meso-structure can permanently exist under one given loading path. This will
answer two fundamental questions: why a granular system can evolve towards a critical
state? why mechanical properties in a critical state only depend on the loading path
rather than on the initial state?
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3.5.4.2 Force-chain characteristics

The force transmission is highly inhomogeneous in the granular material. Those
major transmission tunnels then construct another kind of meso-structure, i.e. the force-
chain, which directly takes charge of the stress response of the material. The material
constitutive relation is sensitively related to the evolution and the distribution of force-
chains. A massive buckling of force-chains probably leads to the stress peak and the
volumetric dilatancy. Consequently, the topology and the duration of the force-chain
system primarily decide the mechanical property of the granular material. In this section,
attempts are made to give both qualitative and quantitative descriptions on force-chain
characteristics in the critical state.

Force-chain distribution

Force-chain distribution and buckling events of S1, S2,S3 and S4 plotted in Figure 3.41
at the strain state of ε2 = 0.150, when the critical state is assumed to be already reached.
Buckling events in S1, S2 and S3 substantially arise in the shear band area. S2 displays
the most concentrated buckling band amongst specimens, while the buckling in S4 occurs
pervasively at places without any organization among each other, presenting a chaotic
pattern. These are entirely concurrent with the relative displacement field in Figure 3.34,
which indicates that displacement localizes into shear band in S1, S2 and S3 but diffuses
in S4. When roughly viewing on the force-chain texture of all specimens, we find that
inside shear band area or diffuse failure area, force-chains tend to be loosely distributed
and less straight ranged towards the major compressing direction than outside shear
band area. In a compact force-chain texture, force-chains are well supported by their
neighbors, significantly reducing the possibility of buckling, i.e. the health of force-
chains. Even if some of them buckle, the material can build new compensatory branches
with ease, i.e. the robustness of the force-chain. In a loose force-chain texture, however,
force-chains can hardly find neighboring support, so that they are probable of buckling
during the loading path. To this extent, the health and the robustness of the force-chain
texture are extremely crucial and directly related to the ability of a material to increase its
strength. In this section, we do not directly give a degree of health or robustness of the
force-chain texture. Alternatively, we survey the age composition over the force-chain
system. An age survey on force-chain is suggestive of the demographical age survey, to
give the percentages (or the density distribution) of the force-chain in various age ranges,
at one stress-strain state of the test. A healthy, robust force-chain environment should be
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Figure 3.41: Force-chain distribution (in light blue) and buckling particles (in red) for specimens
(a) S1, (b) S2, (c) S3 and (d) S4

composed of mainly old, or at least middle-aged, force-chains with a small proportion of
young force-chains. If a texture is mainly constructed by young force-chains, and hardly
builds any long-lasted force-chain, it can be considered as weak and fragile. This will be
investigated in the following.

Force-chain age composition in critical state

The age survey is not directly on force-chains but on 3-particle sets, the force-chain
subset, consisting of three particles in force-chain linked head-to-end (already introduced
in section 3.4). At the surveying time step, the age of one 3-particle set l is defined by



3.5 The critical state meso-structure in localized and diffuse failure modes 89

the number of time step it unremittingly goes through. l thus depends on the chosen
length of the time step. A normalized age lr is therefore introduced in a dimensionless
form to diminish this scale dependence, such that lr is equal to l/lt, lt is the number
of experienced time steps of the test to the surveying moment. lr belongs to the range
[0, 1]. lr < 0.1 indicates 3-particle sets (force-chains) created near the end of test, while
lr > 0.9 corresponds to those created near the start of the test. In biaxial test, the situation
becomes easier, as a fixed axial strain rate ε̇2 ensures ε2 to be proportional to the test time
as well as the number of time steps, Thus we have

lr =
εt

2 − εborn
2

εt
2

, (3.18)

where εt
2 is the value of the axial strain at surveying moment, εborn

2 is the value of the
axial strain at birth of the considering 3-particle set. Practically, we analyze the age
of all 3-particle sets at the end of test ε = 0.200. Choosing this time point rather than
somewhere in the middle of test is in order to grant force-chains a sufficient time to
evolve (to be born and to die) towards a realistic age distribution in the critical state.
Then the age density distribution of all 3-particle sets is plotted in histograms, shown in
Figure 3.42, in which the horizontal axis is the age lr and the vertical axis is the density
(the percentage divided by the length of the age range) of the 3-particle sets in a certain
range of age lr, denoted by p.

In histograms of Figure 3.42, we distinguish the contributions, given by inside shear
band area (denoted by asterisk superscript, p∗) and by outside shear band area (denoted
by superscript “osb”, posb), to the gross value of p. We herein briefly mention the way
of calculating p. At the surveying moment, the percentage of 3-particle sets with lr

dropping into age interval [x, x + ∆x) (x ∈ [0, 1)) and position simultaneously being
inside shear band area, named by P∗ (or outside shear band, named by Posb), can be
calculated as:

P∗(x 6 lr < x + ∆x) =
N∗(x 6 lr < x + ∆x)

N(0 6 lr 6 1)
,

Posb(x 6 lr < x + ∆x) =
Nosb(x 6 lr < x + ∆x)

N(0 6 lr 6 1)
,

(3.19)
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Figure 3.42: Age density distribution of all 3-particle sets in specimens (a) S1, (b) S2, (c) S3
and (d) S4 at strain state ε = 0.200. Distribution in S4 is exponentially fitted by a
continuous line. The value of p is divided into two parts: contributions given by
inside shear band area (denoted by asterisk superscript, p∗) and by outside shear
band area (denoted by superscript “osb”, posb).

where N∗(condition), Nosb(condition) and N(condition) respectively denote the number
of 3-particle set fulfilling the condition, in area of inside shear band, outside shear band
and whole specimen. N(0 6 lr 6 1) is equal to the total number of 3-particle sets in the
specimen. The density p∗(x) is then given by the percentage P∗(x, ∆x) divided by the
range length ∆x, as follow

p∗(x) =
P∗(x 6 lr < x + ∆x)

∆x
. (3.20)
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posb(x) is given likewise. Therefore, summing up p∗(x) and posb(x) gives the density of
the whole specimen p(x), making sure that

∫ 1
0 p(x)dx =

∫ 1
0 (p∗(x) + posb(x))dx = 1. To

reiterate, columns biasing lr = 0.0 include relatively newly created 3-particle sets, and
those biasing lr = 1.0 include relatively old ones. The word “relatively" indicates that
the degree of youngness or oldness is only discussed in comparison with the time span
of the test.

Similar shapes of p in S1, S2 and S3 are found in Figure 3.42a, 3.42b and 3.42c,
presenting concave outlines with two peaks on both sides, which exponentially drop to
the center basin. Distributions of p in specimens with localized failure reveal that the
force-chain system lacks middle age components, when consisting of either young or old
elements. Here we separate the lr axis into two parts, a young age group of 3-particle
sets formed in critical state, named of “Y-group”, and an old age group of 3-particle sets
formed before critical state phase, named of “O-group”. Start points of critical state εcs

2

are estimated at the reaching of the steady stress and the volumetric strain, as εcs
2 = 0.080

in S1, εcs
2 = 0.040 in S2 and εcs

2 = 0.040 in S3. They are translated to lcs
r by Eq. 3.18 and

labeled by dashed line in Figure 3.42.

In O-group, p of all specimens in localized failure mode presents similar trend to
exponentially grow as lr increases. Firstly, there are a large number of O-group force-
chains, which preserve to the end of test, and a vast majority of them belongs to outside
shear band area. That is because during the formation of the shear band, with the strain
concentrating into part of specimen, other areas are allowed to have a quasi-elastic
unloading. With nothing but this unloading, force-chains outside shear band can be
long-standing. However, it is still notable that force-chains built in early steps of the
compression show pronounced vitality in granular material. The longevity tends to
decrease for later created force-chains. It gives a significant indication that in drained
biaxial test, force-chains are continuously losing their durabilities and sustainabilities
with the evolutionary fabric on which they locate. In granular material under drained
biaxial test, as long as force-chains collapse, the system is incapable to build new force-
chains as robust as collapsed ones. This can be corroborated and explained, from another
side, by the consistent depopulation of L3 in S1, S2 and S3 (shown in Figure 3.39a).
The system is irreversibly losing its firm and sustainable members. In lack of reliable
carriers, force-chains cannot be long-standing. This is where the deficiency of middle
age force-chain comes from. Hence, in critical state there are only robust old force-chains,
mostly existing outside shear band, and vulnerable young ones.
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In Y-group, p exponentially drops as lr increases. In another word, new created force-
chains are dying out in a high rate, it is difficult for force-chains created in the critical state
to prolong life. When looking at the distribution of p∗ in localized specimens, we find
that p∗ occupies major proportion in p in interval lr = [0.0, 0.2] and presents significantly
exponential drop with increasing lr. This means that the exponentially decreasing
distribution of Y-group is therefore largely attributed to the force-chain evolution in the
failure area. Most new created force-chains in specimen are located inside shear band
and, meanwhile, these young age force-chains die out in high speed. Combining the
information from Y-group and O-group, a scene appears that in the critical state, with
the strain localization, the material separates into two domains with different force-chain
evolution patterns: the inside shear band area with a tremendously changeable fabric, in
which there are young and fleeting force-chains; and the outside shear band area with a
healthy and robust force-chain system, in which force-chains can be long-standing.

It is noteworthy that the distribution of p inside shear band highly resembles what
we observe in whole specimen of S4, where p presents exponentially descend without
any rise as lr varies from 0.0 to 1.0. The only difference is the gentler descending slope
of p in S4 (we will discuss this in the next paragraph). This indicates that in the critical
state, there is a common force-chain evolutionary pattern inside failure area, i.e., again,
the shear band area of the localized failure mode specimen and whole area of the diffuse
failure mode specimen. High birth and death rates of force-chains coexist inside the
failure area, making it a special place in granular materials. For one thing, it is unstable,
because the system cannot find enough prolonged force-chains to maintain its strength.
For another, it is sensitive. As shown by distribution of p∗, small strain increment can
lead to a massive creating and collapsing of force-chains, i.e. the redistribution of force-
chain. With this force-chain redistribution, the fabric must follow and change, then the
mechanical response of the granular assembly will vary accordingly.

Age distribution approximation

Basically, the age distribution of force-chains is dependent on the birth number A(0)
and the decaying (dying) rate φ of force-chains in each time step, where A(n) denotes the
number of remaining force-chains, which are created n time steps before (n = 0, 1, 2, · · · ).
In the other words, provided that there are A(0) newly created force-chains (as a group
named FCt0) in a certain time step t0, after n steps, the number of the remaining force-
chains in group FCt0 is A(n). Obviously, if φ is fixed (it is basically true in critical state),
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Figure 3.43: Age density distributions and their fitted lines of all 3-particle sets in shear band
area of specimens (a) S1, (b) S2 and (c) S3 at strain state ε = 0.200.

as the time passes step by step, the A(n) will decay exponentially

A(n) = A(0) · (1 − φ)n. (3.21)

In critical state, the number of new created force-chains A(0) in every time step is more
or less equal. Therefore, at the surveying moment, the approximating percentage of the
force-chains created n time steps before, Pa(n), is given by

Pa(n) =
A(n)

∑
+∞
i=0 A(i)

=
(1 − φ)n

∑
+∞
i=0(1 − φ)i

= φ(1 − φ)n. (3.22)
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This equation indicates that if A(0) and φ are fixed, at any time step, the force-chain
age follows an exponential distribution. Then age distributions of S1, S2, S3 and S4 in
ε = 0.200 are fitted in Figure 3.43 and Figure 3.42d.

In one given time step, the parameter φ is approximately equal to Nb/N3p, Nb and
N3p respectively denote in one time step, the number of buckling events and the number
of 3-particle set in the failure area. The mean value and standard deviation of Nb in one
time step in critical state (0.100 6 ε2 6 0.200) are listed in table 3.6. It is shown that
the number of force-chain buckling events Nb generally stays in the same level for all
specimens. φ therefore is inversely proportional to N3p. This is the reason why φ in S4 is
less than that in S1∗, S2∗ and S3∗, leading to a gentler decrease of p for S4.

Table 3.6: Mean value and standard deviation of buckling events Nb in critical state

Specimen 〈Nb〉 Std.
S1 327.8 70.6
S2 267.8 70.7
S3 307.6 80.9
S4 308.0 76.6

3.5.4.3 Discussion: the homology of localized and diffuse failure modes

The existence of critical state meso-structure provides an insight on the link between
localized and diffuse failure modes. Theoretical localized failure criterion was derived
by Rice (1976), expressed as the vanishing determinant of acoustic tensor n.D.n, i.e.

det(n · L
4
· n) = 0, (3.23)

where n is the normal vector of strain localization band and L
4

is the four-order tangential

constitutive tensor such that dσ = L
4

: dε. The vanishing second order work W2, once

proposed by Hill (1958) to signify material instability, was highlighted by Darve et al.
(1995a) as a sufficient condition of general diffuse failure, expressed as

W2 = dσ : dε = dε : D : dε = 0, (3.24)

where D denotes the second order tangential constitutive tensor.
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Later theoretical deduction revealed that the incremental strain inside localized
band, which leads to a vanishing of det(n · L

4
· n), also ensures the vanishing of W2.

Localized failure condition then proves to be a sufficient condition of vanishing W2.
Localized failure also referred to the loss of positiveness of D (Petryk, 1992) in shear
band. Consequently, localized failure mode belongs to a subset of general diffuse failure
and emerges inside the bifurcation domain defined by the second order work criterion
(equivalent to the loss of the positiveness of D) (Nicot and Darve, 2011a; Wan et al.,
2013). Even though the affiliating relation has been theoretically proven, experimental
background and mechanism behind this relation still need to be clarified. Convergent
void ratio in critical state (shown in subsection 3.5.3) gives an experimental glimpse on
the intrinsic connection between these two kinds of failure. The existence of a critical
state meso-structure definitely points out that localized and diffuse failure modes derive
from a same original texture. This is merely one basic structure appearing on different
scales. The localized failure is essentially one particular diffuse failure, what counts only
lies in the scale we choose. In the material where localized failure occurs, if the observing
scale is set to be smaller than the shear band width, a diffuse failure is observed.

Another notable point is that even in a diffuse failure area, we can also observe
localized failure, such as what we can observe in Figure 3.34d, where a blurry and
temporary localized band system fabricates a whole diffuse failure space. Given that a
same micro-scale topology and force transmission pattern have been captured coinciden-
tally inside shear band and in the whole diffuse failure area, it is reasonable to expect
that inside shear band, there is also a systematic localization, which exists in another
spatial and temporal scale. Here the spatial scale measures the average range of the
localization, which, for example, can be quantified by the average shear band widths
2δ over the mean particles radius D50; the temporal scale averagely measures the time
span of the localization process. It is recommended to investigate this scale-dependence
(spatially and temporally) of the localization. If it is true, when we continuously reduce
our observing scope from extremely large scale, two failure modes will alternatively
appear. The only limitation comes from the length of basic grain which constructs the
material. In another word, this is expected to be the "fractal" feature of failure in granular
materials.
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3.6 Conclusion

A meso-scale is introduced in this chapter, being different from the micro-scale, i.e.
the single contact scale, and the macro-scale, i.e. the scale of REV. Two featured structures
in the meso-scale, the force-chain and the meso-loop, are mentioned, giving rise to a
combining notion - meso-structure. The significance of this meso-structure is highlighted
in this chapter. Based on the numerical biaxial test using DEM, interests are held on three
aspects of granular materials: the evolution of the meso-loops; the interaction between
force-chains and meso-loops; the critical state meso-structure in different failure modes.
Main results are concluded in what follows.

3.6.1 Meso-loop evolution during biaxial loading

A series of drained biaxial tests were carried out based on a discrete element method,
to investigate the meso-loop evolution of the granular material in different initial states.

When the evolution of the proportions of meso loop categories (ω3, ω4, ω5, ω6+)
was plotted, it was found that L3 and L6+ were the two most active groups in terms
of population variation. Their proportions, ω3 and ω6+, evolve oppositely, showing a
highly negative evolutionary correlation. The mutual conversion between L3 and L6+ can
be representative of the fabric evolution on the meso-scale. Furthermore, in dense and
intermediate specimens, the conversion between L3 and L6+ was generally unidirectional
before the stress steady state, i.e. from L3 to L6+. Considering the different mechanical
characteristics of L3 and L6+, this unidirectional conversion before the stress steady state
significantly changes the macro-scale properties of the material, in terms of both stress
and strain performances. On one hand, the material loses its strength, as there was a
continuous conversion from firm elements to deformable elements, which underpins the
sustainability of the material. On the other hand, the material volume may increase, as a
result of the conversion from dense elements to loose elements. To this degree, the meso-
loop evolution is the basis of the stress and volumetric behavior of granular specimens.
It can be the link between these two fundamental mechanical features. Moreover, it
was observed that ω3 basically keeps constant in the loose specimen, even though the
specimen volume continuously contracts. This indicates that it is difficult to massively
build L3 along the biaxial loading path, a mere (too small) contractancy is insufficient in
bringing substantial L3 into the system.
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The total and average areas of different kinds of loop (Ai and Ai respectively) were
also investigated in this section. According to the result of Ai evolution, L6+ is the only
kind of loop geometrically sensitive to the external loading. Meanwhile, evolution of ai

in dense and intermediate specimens shows that only L6+ presents a volume increase
during the loading path while the other kinds of loop contract. The significance of L6+

was highlighted; L6+ exerts the strongest influence on global volumetric variation and is
the only contributor to the dilatancy of dense and intermediate specimens.

The concept of the meso-loop volumetric variation is introduced, based on the fact
that the creation of L6+ and the destruction of L3 are contributing to the meso-loop
dilatancy (MV-D); on the contrary, the creation of L3 and the destruction of L6+ point
to the meso-loop contractancy (MV-C). However, in contractancy phases of dense and
intermediate specimens, the meso-loop evolution was observed not to be consistent
with the evolution of the macroscopic volumetric strain. Then the elastic part of the
volumetric variation, which derives from particle penetrations, was assumed to be the
factor dominating the macroscopic contractancy in dense and medium-density granular
assemblies, over the plastic part which derives from the meso-loops rearrangement. This
assumption was then supported by the energy analysis and plastic strain investigation
of specimens. Following that, we have verified that particle elastic parameters could
impose a strong effect on the contractant behavior of dense granular materials.

3.6.2 Force-chain interaction with meso-loop along biaxial loading path

In a granular assembly, there are two kinds of grains organization on the meso-scale:
the linearly organized column-like grain series, which is highly inhomogeneous and
takes in charge the force transmission; and the grain loops, enclosed by contact branches,
which originally distribute relatively homogeneously. How the former interacts with
the latter is crucial to understand the mechanism of some macroscopic phenomena in
the granular material. Departing from the DEM simulation of drained biaxial tests,
meso-loops are grouped into 4 categories, according to their side numbers. Additionally,
the granular assembly is separated into two parts: loops connected to force-chains (FCL)
and loops far from force-chains (NFCL). Then the pattern and the process of force-chains
affecting (section 3.4.2) and being affected by (section 3.4.3) meso-loops are analyzed.
Main conclusions extracted from the results are depicted as follows.
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When the evolution of meso-loops in FCL area is compared with that in NFCL area,
it is found that under the effect of force-chains, the material is structurized into two
differently featured phases with distinct meso-structures and densities. The FCL area
contains a larger proportion of L3, L4 and a smaller proportion of L6+, L5 than the NFCL

area does. This trend is especially prominent for L3 and L6+. Evidences can also be
found that the FCL area is observed to constantly take higher void ratio e than remaining
area. From a volumetric change point of view, the FCL area has more instinct to extend
its volume, i.e. the meso-scale volumetric dilatancy (MV-D). Thus, force-chain area can
be seen as the main source and the primary contributor to the global dilatancy. The
discrepancy in the ability of dilating between force-chain area and outside force-chain
area, derives from the fact that the latter, compared with the former, lacks the ability to
generate big loops.

Other than the action force-chains have on their surrounding meso-loops, there also
exists a retroaction given by meso-loops. The existence of L3 proves to handicap the
movability of force-chains and to improve the stability of them, while L6+ enhances the
movability and alters the stability of force-chains. At the end, the life-cycle of force-chains
can be displayed as a history of interaction with its confining meso-loops.

Moreover, LFCL
6+ is observed to be more anisotropically stressed than others, while

LFCL
3 is the most isotropic one. This means that LFCL

3 , on average, tends to transfer
more subjected axial force to its lateral sides. This leads to a bulk expansion in those
granular assemblies, where L3 prevails, e.g. the dilatancy in dense specimens. Then the
meso-loops follow the bulk expansion to give rise to the transformation from LFCL

3 to
LFCL

6+ . When force-chains are no longer confined by as many as LFCL
3 such that its stability

can be ensured, they will buckle and collapse. Finally, this causes a drop on the material
strength. Therefore, two conclusions can be extracted: (1) according to the initial fabrics,
the loading path will direct dilatancy or contractancy; (2) the stability of force-chains
varies in accordance with the evolution of meso-structures, and the latter follows the
global volumetric change.
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3.6.3 The critical state meso-structure in localized and diffuse failure

modes

The critical state fabric of granular materials has been investigated in localized and
diffuse failure modes on a mesoscopic viewpoint, on the basis of the DEM simulation
results of a series of 2D drained biaxial tests, with specimens in different initial states.
Emphasis was placed on finding a convergent meso-structure as the signature of critical
state.

When the relative displacement fields are plotted, specimens S1, S2 and S3 present
clear diagonal shear bands, or localized failure modes, S4 undergoes a diffuse failure.
Through analyzing the strain field, shear band widths of S1, S2 and S3 are determined.

For each specimen of localized failure mode (S1, S2 and S3), the critical state void
ratio both in the whole specimen area e and in the shear band area e∗ are analyzed and
compared with e of S4. In all finally localized specimens, e∗ is found to diverge with e at
the stress peak and converge with e of S4 at the critical state. This definitively proves that
the critical state void ratio is only valid inside the failure area rather than in the whole
specimen area, i.e. the shear band domain of the localized failure, and the specimen
domain of diffuse failure.

We then attempted to find out if the identical void ratio originates from one common
meso-structure. Two kinds of meso-structure are counted: the meso-loop and the force-
chain. In 2D granular materials, the contact network tessellates the material area into
meso-loops, minimum polygons encompassed by contact branches. Meso-loops are
grouped into 4 categories according to their side number, L3, L4, L5 and L6+. Due to the
inhomogeneous force transmission in the granular assembly, the quasi-linear columns
consisting of particles transmitting a larger force than average are highlighted to form the
force-chain system. The element of this system is 3-particle set, involving 3 force-chain
particles connecting each other head to end.

Proportions of meso-loop categories ωi (i = 3, 4, 5, 6+) have been investigated in the
failure area, i.e. the shear band area of localized specimens S1∗, S2∗ and S3∗ and the
specimen area S4. For all 4 categories, without any exception, ωi in S1∗, S2∗, S3∗ and S4
meets at the critical state. This convergence indicates the existence of a single critical
state topology on the meso-scale. As hypothesized, it only appears in the failure area. ω3

and ω6+ present opposite behaviors before the stress peak. The shear band areas S1∗,
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S2∗ and S3∗ experience strong conversion from L3 to L6+ before the stress peaks, even in
the phases we classically consider as elastic. This conversion points to the fact that bulk
dilatancy cumulates potentially before stress peak, as big meso-loops are consistently
increasing its population.

To find more evidence on the existence of identical critical state fabric in the meso-
scale, the loop tensor H is analyzed in the failure area of specimens. H is found to have
the similar deviatoric part DH and spherical part IH in the critical state in areas S1∗, S2∗,
S3∗ and S4. This proves again that the failure area, instead of the whole specimen area,
of four tested specimens falls on one unified fabric in the critical state.

We plotted the force-chain texture and buckling 3-particle sets. Buckling events are
found to largely localize in the shear band area, S1∗, S2∗ and S3∗. As with a high buckling
rate, the force-chains inside the shear band tend to be loosely distributed and less straight
ranged towards the major compressing direction than the outside shear band area.
Moreover, this pattern resembles the force-chain distribution in S4. In roughly viewing
the force-chain distribution in the critical state, we discern a similar force transmission
pattern of the critical state in the failure area.

Then we investigated the force-chain age composition in the critical state. At the end
of the test, the age distribution p of all 3-particle sets in the considered domain is plotted.
Here, the age of a 3-particle set is the number of time steps it lives through. Force-chains
built in early steps of the test show prominent vitality in granular material. In drained
biaxial tests, force-chains are continuously losing their durabilities and sustainabilities
with the evolutionary fabric on which they are located.

Otherwise, we find that most newly created force-chains in specimens are located
inside the shear band, but these young age force-chains die out quickly. It is concluded
that while the material evolves into the critical state, there are only old, robust force-
chains, mainly located outside shear band, and young, fleeting force-chains, mainly
located inside shear band. Meanwhile, the force-chain evolution pattern inside shear
band highly resembles the force-chain behavior in S4. High birth and death rates of
force-chains coexist inside the failure area, making it an unstable and sensitive place
in granular materials. This is the common force-chain behavior for both localized and
diffuse failure, which can be approximated by an exponential decay law.

The existence of critical state meso-structure supports that localized and diffuse
failure modes derive from the same original structure. The localized failure is essentially
one particular diffuse failure, what counts only lies in the scale we choose.



Chapter 4

A Multi-scale Approach Constitutive

Model

A wide spectrum of complex constitutive characteristics has been observed and rec-
ognized in the granular materials, such as a highly incrementally non-linear constitutive
behavior (Darve, 1990; Darve et al., 1995b), the existence of the non-associate flow rule,
the existence of a bifurcation domain within the plastic limit (Darve et al., 2004; Nicot
et al., 2009). A fundamental task (or end) of the mechanics is to translate knowledges and
observations into the mathematical relation, which is capable of predicting or simulating
the reality. Thus, developing models that succeed in incorporating comprehensive con-
stitutive features of the granular materials becomes a challenging task to the mechanics
community.

A large number of phenomenological models have been built in recent decades. In
this kind of models, attempts are made to formulate different observed phenomena
into a mathematical framework. Different theories have been proposed: elasto-plastic
theories (Drucker D. C., 1952; Hill, 1967; Rice, 1970, 1975), endochronic models (Bażant
and others, 1978), hypo-plastic theories (Kolymbas, 1991), and non-linear incremental
models (Darve, 1990; Darve et al., 1995b). Phenomenological models normally have to
introduce an exceeding number of parameters, furthermore, most of these parameters
lack physical grounds.



102 4. A Multi-scale Approach Constitutive Model

Building a constitutive relation obedient to the material’s nature inevitably faces the
difficulty of taking into account the constitutive behavior of the material at smaller scales,
from which the macro-scale behavior originates. To this end, a multi-scale technique
is worthy of being developed. By sophisticatedly establishing links among quantities
in different scales, the multi-scale approach embeds the microscopic physical nature
into a macroscopic constitutive relation. This grants us a new prospective to formulate
relations for better matching the reality.

A prerequisite for applying the multi-scale approach is to seek an appropriate scale,
smaller than the macro-scale, to which macroscopic behaviors can be comprehensively
associated. A series of enlightenments have been given by the dedication of micro-
structure investigation in chapter 3, where characteristic geometrical elements, namely
the meso-loops and force-chains, are highlighted at a meso-scale. Such a scale is essential
in views of deriving a constitutive relation.

In this manuscript, the meso-loop is employed in building the constitutive model,
as the hexagon formed by 6 particles is considered as the basic element. There are two
advancing aspects in using meso-loops. In a static or quasi-static 2D granular system,
the whole material area can be seamlessly tessellated into meso-loops. This enables the
material’s volumetric variation to be intrinsically attributed to meso-loops. On the other
side, differing from the way considering contacts as mutually independent entities, the
meso-loop geometrically orders contacts into a group.

In this chapter, the modified H-directional model, a model developed in the frame-
work of multi-scale approaches, is proposed in extension of the H-directional model
proposed by Nicot and Darve (2011b). A review will be first given on the H-directional
model and its predecessor the micro-directional model (Nicot et al., 2005) in section 4.1.
Then the modified H-directional model is introduced and validated in section 4.2.

4.1 Reviews on the micro-directional model and the H-

directional model

Building the constitutive relation needs the stress and strain tensors to be related
to the macro-scale, that is to say the representative elementary volume (REV) scale.
Furthermore, the multi-scale approach indicates a smaller scale to be associated with
the macro-scale. This smaller scale is normally the grain scale (micro-scale) or the grain
cluster scale (meso-scale). Quantities in micro-scale or meso-scale involve static variables,
i.e. the contact force, and kinematic variables, which decide the geometrical variation
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Figure 4.1: General homogenization scheme for multi-scale approaches.

of the elementary entities at this scale. These two kinds of variables are related by the
local constitutive law, which defines the local behavior on the micro-scale. However,
the different scales can be bridged by mathematical procedure, in which quantities in
small scale can be related to macro-scale quantities: the stress averaging, and kinematic
localization. Then there are three relations should be formulated in the general multi-
scale scheme, as shown in Figure 4.1, exemplified by the case of solving stress from
known strain:

• kinematical localization: the local kinematic variables are estimated from the strain
tensor;

• local constitutive law: solving local kinematic variables with known local static
variables;

• stress averaging: the stress tensor is computed from the local static variables.

All constitutive models discussed in this chapter adopt the scheme departing from
incremental strain and returning incremental stress. Therefore the procedures presented
in Figure 4.1 will be the guide line for constitutive modeling in this chapter.

4.1.1 The micro-directional model

The micro-directional model, a 3D constitutive model using a multi-scale approach,
was first proposed in attempt of simulating the snow behavior (Nicot, 2003, 2004). It was
later generalized to apply to other granular materials (Nicot et al., 2005).
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At the particle scale, when an incremental strain is imposed to a granular assembly
on its boundary grains, relative displacements will take place between the boundary
grains and the neighboring grains. This simultaneously induces incremental forces on
these neighboring grains. According to Newton’s second law, imbalance forces spring on
the grains, which are originally in equilibrium, and drive them into an attempt to reach
a new equilibrium state. This, again but unavoidably, induces relative displacements
between grains in the vicinity. The disturbance caused by the load then propagates
throughout the material, the movement of particles transmits neighbors after neighbors.
This is the way the load progressively disturbs the granular material and leads to the
particles rearrangement and internal forces redistribution. The constitutive modeling of
the multi-scale approach, in essence, is little more than to quantify this procedure into an
analytical relation between the incremental strain and stress.

However, it is impossible to solve the enormous number of balance equations for
each particle in one single constitutive relation. Thus, the multi-scale approach cannot
bypass an introduction of additional assumptions, in order to reduce the number of
degree of freedom to be solved in the constitutive relation. In the micro-directional
model, the granular assembly consists of contacts distributing along different directions,
following a directional distribution ω(~n) in the physical space, with the unit vector ~n
denoting the contact direction. As an assumption in this model, contacts along different
directions evolve independently from each other. Another assumption is the purely
affine deformation in the material; this means that the relative displacement between
two particles pairing in contact c is expressed by projecting the global incremental strain
δε along the contact direction. The radius of all grains are set to the same value rg, the
penetration is neglected in this model. The strain localization is given as below,

δ~uc = 2rgδε : ~nc,

δ~uc
n = (δ~uc ·~nc)~nc,

δ~uc
t = δ~uc − δ~uc

n.

(4.1)

where δ~uc is the relative displacement between two particles forming the contact c,
oriented along the direction represented by unit vector~nc, δuc

n and δuc
t are normal and

tangential components of δ~uc.

As the granular assembly is modeled by individual contacts, the local behavior can be
as simple as the contact law of the single contact, which determines the incremental forces
(denoted by δ~Fc

n and δ~Fc
t ), when incremental deformations on the contact (denoted by δ~uc

n

and δ~uc
t ) is given. The choice of a contact law depends on the micro-physics we intend to
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describe behind the macro behavior of the material. The elasto-plastic performance of
the granular material largely stems from the elastic-frictional nature on the contact level.
In this manuscript, the elastic-frictional contact law is adopted, including an elastic and
a plastic law, the latter comes to effect when the tangential force reaches a pointed value
that depends on the magnitude of the normal force. It is expressed as follows:

δ~Fc
n = −knδ~uc

n,

δ~Fc
t = min

{∥∥∥~Fc
t + ktδ~u

c
t

∥∥∥ , tanϕg(
∥∥∥~Fc

n − knδ~uc
n

∥∥∥)
}
·~ξ − ~Fc

t ,

~ξ =
~Fc

t + ktδ~u
c
t∥∥∥~Fc

t + ktδ~uc
t

∥∥∥
,

(4.2)

where kn and kt are respectively normal and tangential stiffnesses on the contact, ~Fc
n

and ~Fc
t are normal and tangential contact forces, ϕg is the inter-particle friction angle.

The tension is not allowed on the contact; the contact force turns to zero, once a tension
occurs.

The strain averaging or localization scheme varies from one model to another, accord-
ing to different prescribed assumptions. In contract, the translation between micro and
macro static variables, the stress averaging scheme, is much more simplex, which widely
refers to Love formula (Love, 2013; Christoffersen et al., 1981; Mehrabadi et al., 1982),

σij =
1
V

Nc

∑
c=1

f c
i lc

j , (4.3)

where f c
i and lc

j are respectively the ith and jth coordinate of contact force and contact
branch on contact c, Nc is the number of contacts in the specimen with a volume V.

In multi-scale approach, when the status of contacts arranging along different direc-
tions is quantified by ω(~n), the frequency of contacts along direction~n, the equation 4.3
can be transformed into

σij =
2rg

V

∫∫

D
F̂injω(~n)dΩ, (4.4)

where dΩ is the infinitesimal solid angle, which varies in the integration surface D. F̂i is
the ith coordinate of average force of all contacts along the direction represented by the
unit vector nj. Differentiation of equation 4.4 gives,

δσij =
2rg

V
(
∫∫

D
δF̂injω(~n)dΩ +

∫∫

D
F̂injδω(~n)dΩ). (4.5)
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The material fabric in the assembly may evolve state by state. This evolution is
described by the change of the distribution ω(~n), indicating that the contact density
varies along each direction. When acting as a key function in the expression of the stress,
ω(~n) is significant in this model because it not only presents the arrangement of the
material texture, but also prominently controls the mechanical response of the material.
In fact, several empirical relations can be used to predict the value of ω(~n) by referring
to different mechanical properties of the material (Chang et al., 1990; Yin et al., 2010,
2011b,a; Chang, 2014). In this model, the relation reported by Oda (1972a); Oda et al.
(1980); Calvetti et al. (1997) is built inside, in order to calculate the number of contacts
along a given direction in each sept, on the basis of the incremental strain in last step.
This relation thinks of the contact number increasing in the contractant directions and
decreasing in the dilatant ones, expressed as below,

δω(~n)

ω(~n)
= a(δε : ~n) ·~n, (4.6)

where a is an adjustable coefficient for different materials. The meaning of this function
is that during a quasi-static loading, the fabric follows the variation of the strain, and
the stress response subsequently follows according to the fabric. Consequently, in the
implementation of this model, when an incremental strain is given, both fabric and stress
evolution can be also determined.

4.1.2 limitations of micro-directional model

To point out the limitation of the model, we have to go back to two assumptions
ordered in terms of strain localization: (1) there is an affine deformation inside material,
enabling the global strain to be projected into each direction of the space to obtain local
deformation; and (2) contacts in different directions develop independently from each
other. They are foundations of this model and where the convenience of this model
comes from, however, as well as where the limitation comes from.

The first assumption can be alternatively expressed as that: the inter-particle contacts
fabric is the only origination of the global strain. However, it is mostly paradoxical to
the reality. As highlighted in the section 3.3, the global strain derives not only from
the deformation between contacting particles, but also from the fabric rearrangement
inside the material. From a meso-scale viewpoint, three parts contribute to the global
volumetric strain: the relative displacement on the contact, the conversion between
different categories of meso-loops (represented by the conversion between L3 and L6+)
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Figure 4.2: Deviatoric stress and volumetric strain evolution in terms of axial strain, in the
calibration along a symmetric drained triaxial loading path, involving unloading and
reloading stages.

and the area variation of meso-loops caused by the shape changing (to which, L6 contri-
bution the most). Moreover, the latter two parts cannot recover during the unloading,
deriving the plastic volumetric strain. In fact, when there is an incremental strain in a
granular assembly, a part (may a large part) of it will be absorbed by the void inside
meso-loops, especially large meso-loops (such as L6), and by the conversion between dif-
ferent categories of meso-loops, especially the changing between L3 and L6+. the relative
displacement on the contact only correspond to the remaining part of the incremental
strain. The effect of the deformation at contact point only dominates in the case when
the material fabric has little way to rearrange, such as in the early stage of a drained
biaxial test, when the contractancy of the dense specimen is mainly attributed to the
inter-particle penetrations in contacts (demonstrated in subsection 3.3.3). Therefore, the
fabric rearrangement in the meso-scale should be considered in the constitutive model.

However, the fabric rearrangement in the meso-scale and its effect on the global
strain are ignored in this model, giving rise to two consequences: due to the ignorance
on the part of strain deriving from the fabric arrangement, there is an underestimation
toward the volumetric contractancy or, inversely, an overestimation toward the dilatancy;
the incremental strain is totally assigned on contact points, causing an overestimation
of the local contact deformation and, consequently, an over-calculated stress. There is
therefore an exceedingly higher stiffness than in reality. Figure 4.2 exemplifies these
unrealistic model responses (Nicot and Darve, 2011b), when the micro-directional model
is calibrated by experimental results under an antisymmetric drained triaxial loading
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path. Even though the performance of the model is quite satisfying, a higher stiffness can
be captured before ε1 = 1.5% in Figure 4.2a, as a little more sloped stress-strain curve
than experimental one is observed. This is because in the experiment, the existence of
meso-loops in the specimen weakens the stiffness of the material, whereas there is not
this kind of meso-structures in the numerical model. On the other side, in Figure 4.2b,
there is a notably smaller dilatancy in the experiment than in the numerical test after
about ε1 = 6.0%. Meso-loops in the experiment absorb a part of subjected strain, leading
to this smaller dilatancy.

To mention is that the fabric rearrangement here cannot be addressed by changing the
contact orientational distribution ω, formulated by equation 4.6, because ω is not relevant
with the strain localization but stress averaging, equation 4.6 just gives a prediction of
the contact distribution in next calculation step. To capture the fabric rearrangement in
the material requires to correctly describe the relative displacements among contacts.
However, the second assumption makes this point impossible to be reached in the model,
when contacts in different directions are set up to evolve independently from each other.

To overcome the limitation of this model, features in terms of the fabric rearrangement
in the meso-scale should be considered. In the other word, the constitutive model
should include two natures: (1) entities resembling meso-loops, which are competent of
describing relative displacements among contacts; and (2) the conversion among meso-
loop categories of different shape (different side number). The H-directional model,
proposed by Nicot and Darve (2011b), gave the first but a nice solution on the first point.

4.1.3 H-directional model

The idea of incorporating the meso-scale and meso-loops in the model cradles the
H-directional model, a 2D constitutive model using a multi-scale approach, proposed by
Nicot and Darve (2011b) in extension of the micro-directional model. The hexagon, a
entity as the embodiment of L6+, is introduced into this model.

The major difference of this model from its predecessor is that, the hexagon takes
the place of the single contact to be the directional element constituting the material
fabric. The hexagon, as shown in Figure 4.3, consists of six particles with same radius
contacting head to end to form a closed loop. This six pattern arranges axi-symmetrically
both around the axis ~n and~t, with ~n passing through two spheres. ~n, referring to the
direction of the hexagon θ, presents its preferring inclination in the global coordinate
system of the material (x1 − x2), when the tangential direction is~t.
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Figure 4.3: The hexagonal element of the H-directional model.

The local geometry of the hexagon is illustrated in Figure 4.4, in which numbers label
the particle centers. Its length along ~n and the width extending laterally, along~t, are
respectively denoted by l1 and l2. Due to an axi-symmetrical layout, the local kinematics
of one hexagon is described by only three independent variables: two branch lengths,
d1 and d2, which are originally equal to 2rg, and an opening angle α between branch~l21

and~n. α is a significant parameter, controlling the deformation and the void ratio inside
the hexagon, and therefore, used to calibrate the volumetric strain of the specimen. In
this model, the void ratio of a hexagon is assumed to be same as the void ratio inside it,
which is expressed as below,

e(~n) =
4sinα(1 + cosα)

π
− 1. (4.7)

In terms of local static variables, as shown in Figure 4.4, the symmetry and the
equilibrium of this system are ensured by external forces ~F1 and ~F2, exerted respectively
symmetrically in the directions of ~n and~t. Three independent variables in terms of
the contact force, which form the entire local static information, can be identified: N1

and T1, the normal and shear force between particle 1 and 2, and N2, the normal force
between particle 2 and 3. Held as an assumption is that to maintain the axi-symmetry
around the axis~t, the tangential displacement and force between particle 2 and 3 are
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Figure 4.4: local kinematic variables in a
hexagon
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Figure 4.5: local static variables in a
hexagon

eliminated. These internal static variables are related to three local kinematic variables in
an incremental form by the elasto-frictional law:

δN1 = −knδd1,

δN2 = −knδd2,

δT1 = min{|T1 + ktd1δα| , tanϕg(N1 − knδd1)}ξ − T1,

(4.8)

where ξ is the sign of T1 + ktd1δα, kn and kt are respectively normal and tangential contact
stiffness.

A series of hexagons, instead of single contacts in the microdirectional model, dis-
tribute along different orientations, also following a directional distribution ω(θ) in a
polar system, where θ is the inclination angle of~n, i.e. ~n = cosθ~x1 + sinθ~x2. An affinity
on the deformation is also assumed. The variation of the dimension on each hexagon,
presented by δl1 and δl2, is then related to the global incremental strain δεij based on its
orientation:

δl1 = −l1δεijninj = −l1(δε1n2
1 + δε2n2

2),

δl2 = −l2δεijtitj = −l2(δε1t2
1 + δε2t2

2),
(4.9)
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where, restrained by the symmetrical configuration, the material is assumed not to rotate,

alternatively saying, δε =

[
δε1 0
0 δε2

]
.

The local constitutive relation formulates the behavior of a individual hexagon,
determining incremental internal forces, when the variation of the dimension of the
hexagon, δl1 and δl2, is given. The local geometrical compatibility is expressed as:

l1 = d2 + 2d1cosα,

l2 = 2d1sinα.
(4.10)

Equations 4.10 transformed in incremental form give,

δl1 = δd2 + 2δd1cosα − 2d1sinαδα,

δl2 = 2δd1sinα + 2d1cosαδα.
(4.11)

Checking the balance condition on particle 2 along direction~n yields:

N2 = N1cosα + T1sinα, (4.12)

and its incremental form,

δN2 = δN1cosα − N1sinαδα + δT1sinα + T1cosαδα. (4.13)

The substitution of equations 4.8 into equation 4.13 gives the balance equation ex-
pressed by kinematic variables in a incremental form. Combining with incremental
compatibility equations 4.11 yields a linear system deriving δl1 and δl2 from incremental
internal kinematic variables, d1, d2 and α,




2cosα 1 −2d1sinα

2sinα 0 2d1cosα

cosα + A −1 (N1−B)sinα−T1cosα
kn







δd1

δd2

δα


 =




δl1

δl2

C


 , (4.14)

in the elastic regime, A = 0, B = ktd1 and C = 0, and in the plastic regime, A =

ξtanφgsinα, B = 0 and C = sinα(
ξtanφg N1−T1

kn
).



112 4. A Multi-scale Approach Constitutive Model

When the local kinematic and static variables are solved, the stress averaging process
will be used to obtain the global stress. According to the Love formula (equation 4.4), a
loop stress σ̃(θ) referring to local coordinate system~n −~t can be given for every hexagon,
as follows,

σ̃(θ) =

[
σ̃n(θ) 0

0 σ̃t(θ)

]
,

σ̃n(θ) = 4N1d1cos2α + 4T1d1sinαcosα + 2N2d2,

σ̃t(θ) = 4N1d1sin2α − 4T1d1sinαcosα.

(4.15)

An integration of the loop stress along all the orientations renders the global stress,

σ =
1
V

∫
ω(θ)P

−1
σ̃(θ)Pdθ, (4.16)

where P is the transport matrix, being equal to

[
cosθ sinθ

−sinθ cosθ

]
, V is the volume of the

specimen.

Under this framework, two assumptions propounded in micro-directional model
and their inducing consequences are invalided; contacts in the fabric will displace never
independently, but compatibly with other contacts in individual hexagons. This, however,
do not indicate a comprehensive compatibility among all contacts in the specimen, as it
is only satisfied on the scale of an individual hexagon.

4.2 Modified H-directional model

In the H-directional model, it is assumed that there is not any rotation of the spheres.
From a constitutive point of view, this assumption is at the origin of the impossibility
for this model to present the global shear behavior. The symmetrical configuration has
internal shear forces offsetting against each other, which in the end contribute nothing to
the shear components of the global strain. Consequently, a rotation on the principals of
both stress and strain is not practicable. This flaw narrows the extent to which the model
is to be applied, and causes the inflexibility of the model in different stress and strain
environments and loading paths, especially as would be implemented in numerical tools,
such as Finite element method (FEM), where different mechanical conditions can be
encountered.
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The hope of making an improvement lies on breaking the symmetry of the hexagon.
A series of modifications have been made along this way; a point-symmetrical hexagon
is introduced to replace the axi-symmetrical one, while the basic framework of the model
keeps unchanged.

4.2.1 Constitutive relations

In the modified model, a rotation of the central line 16, qualified by angle ψ (γ12 =

tanψ), is allowed from the element directional vector~n, as shown in Figure 4.6a (Arabic
numerals label six particles centers). Consequently, the system is symmetrical in terms
neither of~n nor~t, but of its geometrical centroid. Following a symmetry breaking, a series
of new degrees of freedom arises, which, subsequently, require more kinematic variables
to describe. Three couples of variables, d1 − α1, d2 − α2 and d3 − α3, are employed to
quantify the corresponding length and inclination of three geometrically independent
laterals, branches 13, 12 and 35. l1 and l2, projections of 16 on~n and 25 on~t, characterize
the size of the hexagon. Neglecting the penetration between particles, the void ratio of a
deformed hexagon e(~n), which also only calculates the internal void ratio enclosed by
branches, is given as below,

e(~n) =
2[sin(α1 + α2) + (sinα1 + sinα2)cosα3]

π
− 1. (4.17)

When the condition α1 = α2 and α3 = 0 are fulfilled, equation 4.17 will become equa-
tion 4.7.

The static information refers to three independent contacts, 13, 12 and 35, when
remainders can be mirrored with respect to the hexagon centroid. Thus, there are six
static variables, illustrated in Figure 4.6c, with normal and tangential forces for each
independent contacts. They are N1 − T1, N2 − T2 and N3 − T3, which can be incrementally
related to the kinematic variables by the elasto-plastic law,

δNi = −kn · δdi,

δTi = min{|Ti + ktdiδαi| , tanϕg(Ni − knδdi)}ξi − Ti,
(4.18)

where i = (1, 2, 3), ξi is the sign of Ti + ktdiδαi, kn and kt are respectively normal and
tangential contact stiffness. It is worthy of noting that a strong simplification in this
model is that the rotations on particles are fixed. This may lead to unbalanced banding
moment on particles or in the total configuration.
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Figure 4.6: Configuration of the hexagon with local kinematic and static variables. (a) local
kinematic variables; (b) layout of particles in the hexagon subjected to external forces;
(c) local static variables

The geometrical compatibility among local kinematic variables is ensured by the
compatibility equations:

l1 = d1cosα1 + d2cosα2 + d3cosα3,

l2 = d1sinα1 + d2sinα2 + d3sinα3,

γ12 =
d1sinα1 + d3sinα3 − d2sinα2

l1
.

(4.19)

The equilibrium of particles 1 and 2 along~n and particle 3 along~t yields three balance
equations,

N3cosα3 + T3sinα3 = N1cosα1 + T1sinα1,

N3cosα3 + T3sinα3 = N2cosα2 + T2sinα2,

N1sinα1 − T1cosα1 = N2sinα2 − T2cosα2.

(4.20)

Noteworthy is that all particles in the hexagon is assumed to be stationary in all cases.
The external forces then are dependent on the solved internal forces.

So far, when the deformation on the scale of the hexagon, i.e. δl1 and δl2, is pro-
vided, there are 12 unknowns of variational form waiting to be solved in the system,
incorporating 6 kinematic and 6 static variables. Solving 12 unknowns requires 12
equations, of which, 6 are the contact law equations 4.18, 3 are the variational form of
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compatibility equations 4.19 and remaining 3 are given by the variational form of balance
equations 4.20. Combining all these equations above generates 6 independent equations,

(−kncosα1 − sinα1 · A1)δd1 + (kncosα3 + sinα3 · A3)δd3+

(T1cosα1 − N1sinα1 + sinα1 · B1)δα1 + (N3sinα3 − T3cosα3 − sinα3 · B3)δα3

= −sinα1 · C1 + sinα3 · C3,

(−kncosα2 − sinα2 · A2)δd2 + (kncosα3 + sinα3 · A3)δd3+

(T1cosα2 − N2sinα2 + sinα2 · B2)δα2 + (N3sinα3 − T3cosα3 − sinα3 · B3)δα3

= −sinα2 · C2 + sinα3 · C3,

(−knsinα1 + cosα1 · A1)δd1 + (knsinα2 − cosα2 · A2)δd2+

(N1cosα1 − T1sinα1 − cosα1 · B1)δα1 + (−N2cosα2 − T2sinα2 + cosα2 · B2)δα2

= cosα1 · C1 − cosα2 · C2,

cosα1 · δd1 + cosα2 · δd2 + cosα3 · δd3

− sinα1 · d1 · δα1 − sinα2 · d2 · δα2 − sinα3 · d3 · δα3

= δl1,

sinα1 · δd1 + sinα2 · δd2 + sinα3 · δd3

+ cosα1 · d1 · δα1 + cosα2 · d2 · δα2 + cosα3 · d3 · δα3

= δl2,

[(sinα1 − cosα1 · γ12)/l1]δd1 + [−(sinα2 + cosα2 · γ12)/l1]δd2

+ [(sinα3 − cosα3 · γ12)/l1]δd3 + [d1(cosα1 + sinα1 · γ12)/l1]δα1

+ [d2(−cosα2 + sinα2 · γ12)/l1]δα2 + [d3(cosα3 + sinα3 · γ12)/l1]δα3

= δγ12,

(4.21)

where




Ai = Ipla(i) · ξi · kntanφg

Bi = Iela(i) · ktdi (i = 1, 2, 3)

Ci = Ipla(i) · [ξi · Nitanφg − Ti]

(4.22)
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in which, i (i = 1, 2, 3), for both the subscript and the input of the function, identifies
the contact, ξi is the sign of the shear direction on contact i (i.e. the sign of Ti + ktdiδαi),
Ipla(i) and Iela(i) are indicator functions of the contact state, expressed as below,

Ipla(i) =





1 if contact i is plastic

0 if contact i is elastic

Iela(i) = 1 − Ipla(i).

(4.23)

So far, the local constitutive model on an individual hexagon scale (the meso-scale)
is enclosed by the equations 4.21, taking into account the variation on the hexagon’s
dimension, together with the given internal state variables (static and kinematic). As a
special case, when an axi-symmetrical configuration is satisfied as for the H-directional
model (α1 = α2, α3 = 0, d1 = d2, N1 = N2, T1 = T2 and T3 = 0), the balance equations,
compatibility equations and contact constitutive equations will respectively degrade into
those operating for the H-directional model.

The stress averaging is also processed according to Love formula (equation 4.3).
The kinematic localization procedure in this modified version includes the shear strain,
expressed as follows,

δl1 = −l1δεijninj,

δl2 = −l2δεijtitj,

δγ12 = δεijnitj.

(4.24)

4.2.2 Model performances

In this subsection, the performance of the modified model will be examined along
different loading paths. It is worth noting that the aim of this subsection is not to
quantitatively validate the model, but to qualitatively test the ability of the model to
deliver a reasonable mechanical response.

Table 4.1: Simulation parameters

kn (N/m) kt/kn φg (◦) e0(~n) initial isotropic stress p0 (kPa)
0.356 × 106 0.42 20 − 33 0.35 − 0.63 100 − 300
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Figure 4.7: The stress and volumetric strain response along a drained biaxial loading path, using
the modified H-directional model with parameters setting as φg = 30◦, e0(~n) = 0.40
and p0 = 200kPa. line 1 - ε1 = 0.000, line 2 - ε1 = 0.125, line 3 - ε1 = 0.250, line
4 - ε1 = 0.500, line 5 - ε1 = 1.000, line 6 - ε1 = 2.000 and line 7 - ε1 = 4.250.

The specimen is installed with hexagons obeying a uniform distribution, laying along
different directions in the 2D space. The parameters are set according to Table 4.1, in
which only four parameters, kn, kt, φg and e0(~n) (normally dropping in [0.35 - 0.65]),
refer to microscopic properties. To note is that e0(~n), the initial value of the hexagon
internal void ratio, shortly called initial void ratio hereafter, is the local void ratio in the
meso-scale, as e0(~n) is strongly related to the initial shape of the hexagon (according to
equation 4.17, as α1|t=0 = α2|t=0 and α3|t=0 = 0) and associated much to the volumetric
behavior of the specimen. In this model, the initial global void ratio is assumed to be
equal to the average of the initial local void ratio.

Before the deviatoric load is imposed, a confining procedure operates on the specimen,
to prepare it a initial confining pressure, the value of which follows specific condition in
different tests. After that, different kinds of anisotropic loading path will be imposed on
the specimen to testify the model.

Drained biaxial test

Figure 4.7 presents the stress and volumetric response of the specimen, when it is
subjected to a drained biaxial test. The stress ratio q/p is the ratio of the deviatoric
stress q (q = σ1 − σ2) over the hydrostatic pressure p (p = (σ1 + σ2)/2). This ratio, in
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Figure 4.8: Angular distributions of local variables in strain states, corresponding to lines in
Figure 4.7. In each sub-figure, three figures are shown: the angular distribution of
the average local stress σ̃n(θ) and σ̃t(θ) (left); the plastic and tensional orientations
(center); the evolution of α3 in terms of orientations (right).

(a) ε1=0.000 % (line 1)

(b) ε1=0.125 % (line 2)

(c) ε1=0.250 % (line 3)
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(d) ε1=0.500 % (line 4)

(e) ε1=1.000 % (line 5)

(f) ε1=2.000 % (line 6)

(g) ε1=4.250 % (line 7)
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cohesionless granular material, is related to macroscopic friction degree φm as below,

q

p
= 2 sin φm. (4.25)

The stress peak, around q/p = 1.14, arrives at a small strain about ε1 = 3%, after a promi-
nent hardening phase and before a little stress softening. According to equation 4.25,
the stress peak corresponds a macro friction φm = 34.63◦. The volumetric strain evolves
toward a minimum value at about ε1 = 0.7% and turns to increase quickly afterwards
(dilate regime). Evolutions of the stress ratio and the volumetric strain are in agreement
with what is generally observed (experimentally, or numerically using a DEM code) from
a qualitative point of view.

The angular distributions of local variables in different strain states are illustrated in
Figure 4.8. Figure 4.8a presents that the average local stress σ̃n and σ̃t are homogeneous
at the beginning ε1 = 0.000, as α3 is equal to 0.0 in any direction. When ε1 = 0.125
(Figure 4.8b), σ̃n deceases around the lateral direction as growing in other directions. This
escalating anisotropy in local stress induces an escalating global stress ratio q/p. A small
plastic band is observed around 45◦ inclining to the lateral direction, corresponding to
the entering to none-elastic phase. α3 is increasing in a quadrimodal form. As the stress
hardening processes to ε1 = 0.250 (Figure 4.8c), the plastic zone extends to cover the
lateral direction. Both σ̃n and σ̃t near the lateral direction approach zero. As they reach
zero in the last part of the stress hardening phase, the tension failure zone appears and
extends symmetrically to the lateral direction. This is what is observed between the
strain state ε1 = 0.500 and ε1 = 1.000 (Figure 4.8d). Noteworthy is that loops aiming to
around the axial direction gradually loose its stress. The σ̃n around the axial direction
vanishes at the stress peak, accompanying with the appearance of the tension sector,
which extends afterwards leading to the stress softening (illustrated in Figure 4.8f and
4.8g). The vanishing local stress on the loops around the major loading principal presents
the instability of axial directing loops. It is a important feature of this model, which
enables it to simulate the persisting loss of contacts along axial direction, caused by the
force-chains buckling.

Drained biaxial test in various parameters

Then, drained biaxial tests are respectively implemented in various p0 (Figure 4.9a)
and various φg (Figure 4.9b), when keeping other parameters unchanged. As shown in
Figure 4.9a, with different stress hardening and softening regimes, specimens initialized
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Figure 4.9: In drained biaxial test, evolutions of stress ratio in terms of axial strain in specimens
of (a) be initialized with various p0 (φg = 30◦ and e0(~n) = 0.40); and (b) various φg

(e0(~n) = 0.60 and p0 = 200kPa).

in different p0 converge to a value around q/p = 1.32, corresponding to φm = 41.30. As
confining pressure decreases, the stress is observed to peak sooner with more soften-
ing. Figure 4.9b shows that as φg is increased in the model, stress ratio q/p also see a
increasing trend. However, the shape of the curves of the three specimens appears to be
globally similar.

Undrained biaxial test

The undrained biaxial test is then carried out on two specimens with different e0(~n)

but same other parameters, to testify whether the model is sensitive enough to the initial
density so that it can correctly simulate distinguished behaviors between loose and
dense media. The deviatoric stress q of two specimens is plotted in Figure 4.10 as a
function of the hydrostatic stress p. Two distinct curves can be captured in reminiscence
of typical stress paths of loose and dense materials; the dense specimen is able to keep
hardening its stress, whereas the loose specimen loses its stress continuously along a line
seemingly being at a distance from the plastic limit (Mohr-Coulomb line in Figure 4.10).
It is worthy of mentioning that the simulation becomes hard to process (or converge)
after the liquefaction, especially when approaching the zero stress, it is also the reason
why a section of stress path was missed on the last part to stress zero.
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Figure 4.10: A divergence on the stress response between a loose (e0(~n) = 0.50) and a dense
(e0(~n) = 0.63) specimen, subjected to undrained biaxial test. The gray dashed
line is the Mohr-Coulomb surface drawn by drained biaxial tests. φg = 33◦ and
p0 = 200kPa.

Proportional loading path

A proportional loading path is then considered. After the isotropic confining stage,
the specimen is subsequently subjected is a pure strain control loading, with δε1 being
constant and δε2 being prescribed to follow the relation δε2 = Rδε1, in which R can be
varied in different tests. In this simulation, four different R values are tested, as shown in
Figure 4.11. Most of the specimens can approach the plastic surface (Mohr-Coulomb line
in Figure 4.10) and continuously mount its stress to the critical state. As R decreases until
R = −1.4, a liquefaction is observed. The specimen continuously loses its stress and
seems hard to reach the plastic surface. This has also been encountered in Figure 4.11,
when the loose specimen undergoes the undrained biaxial test. The ability of the micro-
directional model and H-directional model to characterize the liquefaction has been
proved (Nicot and Darve, 2006, 2011b). As expected, this ability has been inherited by
the modified H-directional model.

Based on these results, it seems that the stress and the volumetric behavior of the
modified H-directional model are satisfying. In this model, the value of the initial
confining pressure and the inter-particle friction can basically and sensitively control
the corresponding macroscopic behavior of the material. And reversely, macroscopic
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Figure 4.11: The stress response of a specimen, when subjected to proportional loading path with
different R (ε2 = Rδε1). The gray dashed line is the Mohr-Coulomb surface drawn
by drained biaxial tests. φg = 30◦, e0(~n) = 0.55 and p0 = 200kPa.

behavior can be understandably associated with corresponding microscopic parameters.
The sensitivity of the granular material to the density is able to be correctly character-
ized. However, using this model, there can be a realistic simulation on the material’s
liquefaction.

4.2.3 Prospectives on improving the H-directional model

A promising direction for improving the H-directional model is to bring other kinds
of loop different from hexagons into the system. In chapter 3, two sets of loop were
shown to play a striking role in terms of the force transmission and volumetric evolution.
They are L6+ and L3. L6+ has a large size and flexible shape, and is often associated to
the volumetric behavior of the granular material. Comparably, L3, the firmest kind of
loop, plays an indispensable role in the force transmission, while it efficiently controls
the movability of the force-chains. The interplay between L6+ and L3 largely governs the
diversity of mechanical behaviors of the granular material. To this extent, a multi-scale
constitutive model, which is more competent for simulating the granular material, should
encompass more mechanical features of these two sets of loop. In the H-directional model
and its modified version, the hexagon is built as an embodiment of L6+ and is even
positioned at a fundamental place in constructing material’s fabric. However, a structure
resembling L3 is excluded. Thus, the future work for improving the model should
emphasize on adding a triangle pattern.



124 4. A Multi-scale Approach Constitutive Model

Φ0
* = 0.148
Φ0
* = 0.155
Φ0
* = 0.176
Φ0 = 0.187

L 6
+ 
/L

3

0.00

0.20

0.40

0.60

0.80

1.00

Void ratio e
0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325

Figure 4.12: The evolution of the ratio of the number of the L6+ over L3 in terms of the void ratio
e in the shear band area of S1, S2 and S3 and in the whole area of S4

The most difficult part may not be to give the local constitutive relation of the triangle
pattern, since it has much less degree of freedom than the hexagon. The real challenge
would be (1) the proportion between L6+ and L3 in each direction, and (2) how this
proportion evolves during loading.

In order to consider the “hexagon - triangle” proportion in the model, a framework
can be embedded into the stress averaging procedure. Two parameters, ω(θ) and RHT,
are respectively the directional distribution of all loop kinds and the ratio the hexagon
over the triangle (assuming that RHT is independent from θ). Provided that σ̃T(θ)

and σ̃H(θ) are loop tensors respectively for the triangle and the hexagon in the local
coordinate system~n−~t, σ̃H(θ) has been formulated by equations 4.15. σT, the integration
over all σ̃T(θ) along different orientations, can be obtained in the same way as σH be
solved by equation 4.16,

σT =
1
V

∫
ω(θ)P

−1
σ̃T(θ)Pdθ, (4.26)

where P is the transport matrix. Then the stress tensor can be finally built as following,

σ =
1

1 + RHT
(σT + RHTσH). (4.27)
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So far, all problems converge to how RHT can been solved according to the mechanical
state. The investigation in section 3.3 reveals the strong relation between the plastic
volumetric strain and the evolution of L3 and L6+. This provides a promising way of
solving RHT from time to time by attaching it to the volumetric strain. But before were
used to build the constitutive model, the relation between RHT and the volumetric strain
(total or plastic) should be characterized more quantitatively.

Following the results in the section 3.5, evolutions of the ratio of the number of the
L6+ over L3 (R63) are shown in terms of the void ratio e in the shear band area of S1, S2
and S3 and in the whole area of S4. The R63/e in all cases converges to around a same
value. This indicates a critical state relation between R63 and e. Therefore, the critical
state value of RHT can be given according to the global void ratio or the volumetric
strain. However, whether the critical state value of R63/e keeps stationary in various
hydrostatic pressure p is unclear. If it does, how does it evolve? These problems deserve
further investigations.

Another direction of developing the H-directional model is to extend it into a 3D
form. This comes from an application end, to embed the model into 3D numerical tools,
such as FEM codes. One more dimension is waiting to be involved, however, there are
much more things to do than just transferring the elementary body from the plane to
the 3D space. Two questions should be asked ahead of the modification: what kinds of
shape are representative enough of the reality so as to be employed as the basic element;
How does these kinds evolve along loading path. Any answer can be only given on the
basis of the knowledge on the micro-structure characteristics of 3D granular assemblies.

4.3 Conclusion

There are two sides to be considered in the constitutive modeling of the granular
materials using a multi-scale approach. Firstly, the constitutive relation of macroscopic
behaviors should be properly related to their microscopic essences, alternatively saying,
the local behaviors on the contact scale, from which the macroscopic behavior derives.
The more properly this point is achieved, the closer to reality the constitutive model’s
performance will be. Another concern is to decrease the computational complexity as
much as possible with reasonable assumptions, in order to avoid solving a exceeding
number of local balance equations, given by all particles. To most cases, involving more
mechanical details in the micro-scale and decreasing the computational complexity are
paradoxical. In recent decades, many researchers explore between these two ends, trying
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to find an optimized solution in favor of both two. However, an optimized solution can
only be gained after an accurate and deep understanding on the microscopic behavior of
the granular material. This chapter gives an example of the attempt to find this optimized
solution.

A review on the micro-directional model is first given. In this 3D constitutive model
using a multi-scale approach, the microscopic level of the material (the fabric) consists of
individual contacts independent from each other and laying along different directions.
As the incremental strain is affinely projected onto all individual contacts, incremental
forces are simultaneously generated according to the local constitutive relation, namely,
the contact law. Then the global stress can be obtained by integrating all contacts forces in
the way given by Love formula. This model succeeds to relate the macro-scale properties
to micro-scale ones by employing an assumed fabric. However, strong shortcoming has
still been captured. As revealed in the micro-structure investigation in chapter 3, the
global strain derives not only from the relative displacements between grains in contact,
but also from contacts rearrangement. This unfortunately denies the strain localization
scheme used in the micro-directional model: first, the total incremental strain cannot be
simply localized; more significantly, contacts are far from independent from each other,
but intimately cooperating with each other in terms of transmitting forces (force-chains)
or defining voids (meso-loops), in other words, there is a self-organization of contacts.

Then the H-directional model is introduced, which replaces individual contacts by
individual hexagonal elements. Also replaced is the local behavior from the contact law
to the local constitutive relation of the hexagon, in which contacts are never independent
but internally compatible with each other. However, the rotation (the shear deformation)
cannot be validated in the H-directional model, due to its symmetrical layout. Both stress
and strain cannot rotate from their original direction. This is not realistic, and strongly
weakens both the ability of the model to cope with complex stress and strain loading
paths and the adaptability to numerical methods, such as FEM.

A modified H-directional model is developed, in order to break the geometrical
symmetry of the hexagon. The new model allows a rotation on the former symmetrical
axis, while inducing three more variables to both local kinematics and statics. The
ability of this new model is then testified under different loading paths. The results
are quite satisfying, with reasons listed as follows: (1) both the evolution of stress
and volumetric strain are quite reasonable; (2) microscopic parameters are observed
to sensitively and correctly govern the corresponding macroscopic behavior of the
specimen; (3) the liquefaction and other instability-related phenomena can be captured
by this model.
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Finally, perspectives for improving the H-directional model are discussed. The
triangle is highlighted in chapter 3 as a significant kind of meso-loop in terms of both the
force transmission and the volumetric evolution of the material. This gives rise to the
necessity of involving a triangle element into the H-directional model. The triangle can
be inserted to the stress averaging procedure, by giving a ratio between the population
of the triangle and the hexagon. Finally an effort for extending the model into a 3D form
is also highly recommended.
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Chapter 5

General Conclusion

5.1 Conclusion

The basic line of reasoning of this manuscript is that (1) on the basis of the DEM sim-
ulation, to investigate the micro-structure’s evolutionary characteristics of the granular
material; and (2) taking the advantage of the knowledge from micro-structure inves-
tigation, using multi-scale approach technique, to develop the constitutive model for
granular material.

Along this line, several 2D numerical biaxial tests using DEM have been performed.
A series of micro-structure investigations are subsequently carried out. A meso-scale is
highlighted in the research, as an intermediate scale between the single contact scale,
in which contacts are considered independently from each other, and the macro-scale,
a scale large enough to be treated as a homogeneous material point. Scoping in this
scale enable us to capture diverse topological and mechanical features of the granular
material. Two mesoscopic organizations fundamental for material’s mechanical behavior
are stressed in the investigation. One is the force-chains, column-like structures, formed
by contacts linking head to end in a quasi-linear shape, carrying far more forces than
their surrounding domain, and, consequently, in charge of the force transmission of the
material. Another is the meso-loops, loop-like structures, consisting of contacts linking
each other to form a closed loop, by which the whole material area can be seamlessly
tessellated. Meso-loops are categorized according to their side number. Three aspects of
interest have been investigated in this manuscript: (1) the way of meso-loops evolving
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along biaxial loading path, and how they are related to the material’s volumetric behavior;
(2) the pattern in which force-chains interact with meso-loops, and the role this interaction
plays in global volumetric evolution and material instability; and (3) whether there exists
featured critical state meso-structures, and the extent of these meso-structures.

Principal results in the micro-structure analysis are summarized:

1. When the evolution of proportions of different kinds of meso-loop was plotted, it
was found that L3 and L6+ were two most active groups in terms of population
variation. Their proportions, ω3 and ω6+, evolved oppositely, showing a highly
negative evolutionary correlation. Furthermore, in dense and intermediate spec-
imens, with a continuous conversion from L3 (firm and dense structure) to L6+

(flexible and loose structure), the material consistently lost its strength and, mean-
while, increased its volume. To this degree, meso-loops can be the link between the
stress and volumetric behavior of the granular material.

The total and average areas of different kinds of loop (Ai and Ai respectively)
were also investigated in this section. According to the result of Ai evolution,
L6+ was the only kind of loop geometrically sensitive to the external loading.
Meanwhile, evolution of ai in dense and intermediate specimens showed that
only L6+ presented a volume increase during the loading path while the other
kinds of loop contracted. The significance of L6+ was highlighted; L6+ exerted the
strongest influence on global volumetric variation and was the only contributor to
the dilatancy of dense and intermediate specimens.

The evolution on the proportions of different kinds of meso-loop belongs to the
plastic deformation, which can not rebound during unloading. Correspondingly,
what is recoverable, belonging to the elastic deformation, is due to inter-particle
penetrations. The contractancy at the early stage of drained biaxial tests in dense
and intermediate specimens is attributed to the elastic penetrations among particles,
disregarding the dilatant trend indicated by a consistently significant conversion
from L3 to L6+. Following that, we had also verified that particle elastic parameters
could impose a strong effect on the contractant behavior of dense granular material.

2. On the basis of the DEM simulations of the drained biaxial test, the granular
assembly was separated into two parts: loops connected to force-chain (FCL) and
loops far from force-chain (NFCL). When the evolution of FCL was compared with
that in NFCL area, it was found that under the effect of force-chains, the material
was structurized into two differently featured phases with distinct meso-structure
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and density. The FCL area contained a prominently larger proportion of L3 and a
smaller proportion of L6+ than the NFCL area did. Meanwhile, the FCL area was
observed to have a constantly higher void ratio e than remaining area. Force-chain
area can be seen as the main source and the primary contributor to the global
dilatancy.

The evolutionary status of meso-loops, as a result of the fabric variation, also retro-
acted to the stability of the force-chain. The existence of L3 proved to improve
force-chains’ stability, whereas L6+ exacerbated force-chains in terms of the stability.
Consequently, the life-cycle of the force-chain can be displayed as a history of it
interacting with its confining meso-loops.

Moreover, LFCL
6+ was observed to be more anisotropically stressed than other cat-

egories, while LFCL
3 was the most isotropic one. This eventually gains two con-

clusions: (1) according to the initial fabrics, the loading path will direct dilatancy
or contractancy; and (2) the stability of force-chains varies in accordance with the
evolution of meso-structures, and the latter follows the global volumetric change.

3. The critical state fabric of granular material was investigated in localized and
diffuse failure modes from a mesoscopic viewpoint. Except with different initial
void ratio e0, all specimens were attributed to the same parameters and subjected
to the same loading path. Specimens undergoing a localized failure were divided
into two sub-domains: the shear band area and the outside shear band area.

The evolution of meso-structures were measured and compared respectively in
three domains of specimens: the shear band area and outside shear band area of
localized failure specimen and the whole area of diffuse failure specimen, where the
first and the third are the failure areas. Both the meso-scale topologies characterized
by meso-loops and the void ratios were found to converge in the critical state in the
failure areas of all specimens. Meanwhile, a similar force-chain evolution pattern
was also captured in the failure areas. All these results pointed to a conclusion: in
failure area, there exists an identical critical state meso-structure, only from which
does the material’s critical state derives.

When the force-chain age composition were investigated in the critical state, it
is revealed that force-chains built in early steps of the test showed a prominent
vitality in granular material. This means that in drained biaxial tests, force-chains
are continuously losing their durabilities and sustainabilities with the evolutionary
fabric on which they are located. Otherwise, most newly created force-chains
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in specimens were found to locate inside the shear band, but these young age
force-chains died out quickly. It is concluded that while the material evolves
into the critical state, there are only old, robust force-chains, mainly located out-
side shear band, and young, fleeting force-chains, mainly located inside shear band.

With the knowledge obtained from the micro-structure investigations, a 2D con-
stitutive model, using multi-scale approach, was developed in modification from the
H-directional model, proposed by Nicot and Darve (2011b). The developing history of
two predecessors of this modified model, micro-directional model and H-directional
model, was firstly reviewed. The strain localization procedure was emphasized, which
differs among models according to distinct assumptions, bringing in various drawbacks
and limitations. In the micro-directional model, contacts are assumed to be indepen-
dently from each other and to deform affinely following the global strain. H-directional
model advanced in the sense of being able to consider the inter-contact rearrangement in
the model, by employing a meso-loop, the hexagon, as its fabric element. On the heritage
of the merits from H-directional model, the modified H-directional model further broke
the assumed axis-symmetry on the configuration of the hexagonal element. A rotation
was allowed on the former symmetrical axis, inducing three more variables to both
local kinematics and statics. The evolution of local variables of this modified model was
traced and analyzed along a drained biaxial loading path. The development of several
important local variables was quite reasonable and can be linked to global mechanical
responses. The ability of this new model was also testified under different loading paths.
The results were quite satisfying, with reasons listed as follows: (1) both the evolution
of stress and volumetric strain were quite reasonable; (2) microscopic parameters was
observed to be able to sensitively and correctly influence corresponding macroscopic
behaviors of the specimen; (3) the liquefaction and other instability-related phenomena
can be simulated by this model.

5.2 Open issues and perspectives

To better understand and simulate the mechanical behaviors of granular materials, it
is necessary to have an insight in the fabric development on the meso-scale. However,
there are still many works to do.
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The investigation on meso-structures

In terms of the meso-structure investigation, several questions can be interesting
and need to be addressed: (1) how meso-structures can be defined and identified in
3D granular assemblies, and how they evolve along loading path? (2) how the meso-
structures distribute and evolve along loading paths other than the drained biaxial one?
(3) what is the relation between the spatial distribution of the meso-structures and the
strain localization; (4) how the mutual evolution between force-chains and meso-loops
leads to the material instability? and (5) what is the mechanism of the force-chains
intervening their surrounding meso-loops?

The multi-scale approach constitutive modeling

The fundamental role of force-chains to the mechanical properties of granular mate-
rials was confirmed by this thesis and previous studies. An element or a mechanism
resembling force-chain’s behavior should be incorporated in the constitutive model using
the multi-scale approach.

In terms of improving the H-directional model, the triangle was highlighted in
chapter 3 as a significant kind of meso-loop in aspects of both the force transmission and
the volumetric evolution of the material. This gives rise to the necessity of involving
a triangle element into the H-directional model. As discussed at the end of chapter 4
(the subsection 4.2.3), the triangle can be inserted to the stress averaging procedure, by
giving a ratio between the population of the triangle and the hexagon. However, the
evolutionary relation between the triangle and hexagon elements can be only given
on the basis of the further investigation on the meso-structures of granular materials.
Otherwise, a work of extending the model into a 3D form is also highly recommended.
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Z. Bażant and others. Endochronic inelasticity and incremental plasticity. International Journal of

Solids and Structures, 14(9):691–714, 1978.

K. Bagi. On the definition of stress and strain in granular assemblies through the relation between
micro-and macro-level characteristics. Powders & grains, 93:117–121, 1993.

K. Bagi. Stress and strain in granular assemblies. Mechanics of materials, 22(3):165–177, 1996.

J. P. Bardet. Observations on the effects of particle rotations on the failure of idealized granular
materials. Mechanics of materials, 18(2):159–182, 1994.

R. J. Bathurst and L. Rothenburg. Observations on stress-force-fabric relationships in idealized
granular materials. Mechanics of Materials, 9(1):65–80, 1990.

E. Battenberg and D. Wessel. Accelerating Non-Negative Matrix Factorization for Audio Source
Separation on Multi-Core and Many-Core Architectures. In ISMIR, pages 501–506, 2009.

K. Been and M. G. Jefferies. A state parameter for sands. Geotechnique, 35(2):99–112, 1985.



136 BIBLIOGRAPHY

R. Behringer, K. E. Daniels, T. S. Majmudar, and M. Sperl. Fluctuations, correlations and transitions
in granular materials: statistical mechanics for a non-conventional system. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1865):
493–504, Feb. 2008.

D. Bigoni. Bifurcation and instability of non-associative elastoplastic solids. Springer, 2000.

D. Bigoni and T. Hueckel. Uniqueness and localization—I. Associative and non-associative
elastoplasticity. International Journal of Solids and Structures, 28(2):197–213, 1991.

D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel. Force distributions
in three-dimensional granular assemblies: Effects of packing order and interparticle friction.
Physical Review E, 63(4):041304, 2001.

M. Bornert, N. Lenoir, P. BéSUELLE, Y. Pannier, S. Hall, G. Viggiani, and J. Desrues. Discrete and
continuum analysis of localised deformation in sand using X-ray CT and volumetric digital
image correlation. Géotechnique, 60(5):315–322, Jan. 2010.

B. Brogliato. Nonsmooth mechanics: models, dynamics and control. Springer Science & Business
Media, 2012.

B. Brogliato and V. Acary. Numerical methods for nonsmooth dynamical systems. Lecture Notes

in Applied and Computational Mechanics, 35, 2008.

F. Calvetti, G. Combe, and J. Lanier. Experimental micromechanical analysis of a 2d granular
material: relation between structure evolution and loading path. Mechanics of Cohesive-frictional

Materials, 2(2):121–163, 1997.

B. Cambou. From global to local variables in granular materials. Powders and grains, 93:73–86,
1993.

B. Cambou, P. Dubujet, F. Emeriault, and F. Sidoroff. Homogenization for granular materials.
European journal of mechanics. A. Solids, 14(2):255–276, 1995.

B. Cambou, M. Chaze, and F. Dedecker. Change of scale in granular materials. European Journal of

Mechanics-A/Solids, 19(6):999–1014, 2000.

B. Cambou, M. Jean, and F. Radjai, editors. Micromechanics of granular materials. ISTE ; Wiley,
London : Hoboken, NJ, 2009.

R. Chambon and D. Caillerie. Existence and uniqueness theorems for boundaryvalue problems
involving incrementally non linear models. International journal of solids and structures, 36(33):
5089–5099, 1999.

C. S. Chang. Micromechanical modelling of constitutive relations for granular material. 2014.



BIBLIOGRAPHY 137

C. S. Chang and A. Misra. Stress-strain behavior of sands-A microstructural approach. Proceedings,

Fourth International Symposium on Interaction of Non-Nuclear Ammunition with Structures, Panama

City Beach, Florida, pages 354–459, 1989.

C. S. Chang, A. Misra, and S. S. Sundaram. Micromechanical modelling of cemented sands under
low amplitude oscillations. Geotechnique, 40(2):251–263, 1990.

C. S. Chang, Y. Chang, and M. G. Kabir. Micromechanics modeling for stress-strain behavior of
granular soils. I: Theory. Journal of geotechnical engineering, 118(12):1959–1974, 1992.

J. Christoffersen, M. M. Mehrabadi, and S. Nemat-Nasser. A micromechanical description of
granular material behavior. Journal of Applied Mechanics, 48(2):339–344, 1981.

P. A. Cundall. A computer model for simulating progressive, large-scale movements in blocky
rock systems. 1971.

P. A. Cundall and O. D. Strack. A discrete numerical model for granular assemblies. Geotechnique,
29(1):47–65, 1979.

P. Dantu. Etude statistique des forces intergranulaires dans un milieu pulvérulent. Géotechnique,
18(1):50–55, 1968.

F. Darve. The expression of rheological laws in incremental form and the main classes of
constitutive equations. Geomaterials: Constitutive Equations and Modelling, pages 123–148, 1990.

F. Darve and X. Roguiez. Homogeneous bifurcation in soils. Adachi et al., editor, Localization and

Bifurcation Theory for Soils and Rocks, pages 43–50, 1998.

F. Darve, E. Flavigny, and M. Meghachou. Constitutive modelling and instabilities of soil
behaviour. Computers and Geotechnics, 17(2):203–224, 1995a.

F. Darve, E. Flavigny, and M. Meghachou. Yield surfaces and principle of superposition: revisit
through incrementally non-linear constitutive relations. International Journal of Plasticity, 11(8):
927–948, 1995b.

F. Darve, G. Servant, F. Laouafa, and H. D. V. Khoa. Failure in geomaterials: continuous and
discrete analyses. Computer methods in applied mechanics and engineering, 193(27):3057–3085,
2004.

G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. Adaptive simulation of soft bodies in
real-time. In Computer Animation 2000, pages 133–144, 2000.

J. Desrues, R. Chambon, M. Mokni, and F. Mazerolle. Void ratio evolution inside shear bands in
triaxial sand specimens studied by computed tomography. Géotechnique, 46(3):529–546, 1996.

F. V. Donzé and S. A. Magnier. Spherical discrete element code. Discrete element project report, 2,
1997.



138 BIBLIOGRAPHY

A. Drescher and G. D. J. De Jong. Photoelastic verification of a mechanical model for the flow of a
granular material. Journal of the Mechanics and Physics of Solids, 20(5):337–340, 1972.

P. W. Drucker D. C. Soil Mechanics and Plastic Analysis or Limit Design. Quaterly of applied

mathematics, 10(2):157–65, 1952.

F. Emeriault and B. Cambou. Micromechanical modelling of anisotropic non-linear elasticity of
granular medium. International Journal of Solids and Structures, 33(18):2591–2607, 1996.

J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, and S. R. Nagel. Force distributions in three-
dimensional compressible granular packs. Physical Review E, 66(4):040301, 2002.

Y. T. Feng, K. Han, and D. R. J. Owen. Coupled lattice Boltzmann method and discrete element
modelling of particle transport in turbulent fluid flows: Computational issues. International

Journal for Numerical Methods in Engineering, 72(9):1111, 2007.

Y. T. Feng, K. Han, and D. R. J. Owen. Combined three-dimensional lattice Boltzmann method and
discrete element method for modelling fluid-particle interactions with experimental assessment.
International journal for numerical methods in engineering, 81(2):229–245, 2010.

Z.-G. Feng and E. E. Michaelides. The immersed boundary-lattice Boltzmann method for solving
fluid-particles interaction problems. Journal of Computational Physics, 195(2):602–628, 2004.

P. Fu and Y. F. Dafalias. Fabric evolution within shear bands of granular materials and its relation
to critical state theory. International Journal for Numerical and Analytical Methods in Geomechanics,
35(18):1918–1948, Dec. 2011.

Z. Gao and J. Zhao. Constitutive modeling of artificially cemented sand by considering fabric
anisotropy. Computers and Geotechnics, 41:57–69, 2012.

Z. Gao, J. Zhao, X.-S. Li, and Y. F. Dafalias. A critical state sand plasticity model accounting for
fabric evolution: SAND MODEL ACCOUNTING FOR FABRIC EVOLUTION. International

Journal for Numerical and Analytical Methods in Geomechanics, 38(4):370–390, Mar. 2014.

X. Gu, M. Huang, and J. Qian. Discrete element modeling of shear band in granular materials.
Theoretical and Applied Fracture Mechanics, 72:37–49, Aug. 2014.

N. Guo and J. Zhao. The signature of shear-induced anisotropy in granular media. Computers and

Geotechnics, 47:1–15, 2013.

M. Hajime. A microscopic study on shear mechanism of granular materials. Soils and Foundations,
14(1):29–43, 1974.

A. Hasan and K. Alshibli. Three dimensional fabric evolution of sheared sand. Granular Matter,
14(4):469–482, 2012.



BIBLIOGRAPHY 139

W. B. Heard. Rigid body mechanics: mathematics, physics and applications. John Wiley & Sons, 2008.

R. Hill. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the

Mechanics and Physics of Solids, 6(3):236–249, 1958.

R. Hill. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics

and Physics of Solids, 11(5):357–372, 1963.

R. Hill. On the classical constitutive relations for elastic/plastic solids. Recent progress in applied

mechanics, 241, 1967.

D. Howell, R. P. Behringer, and C. Veje. Stress fluctuations in a 2d granular Couette experiment: a
continuous transition. Physical Review Letters, 82(26):5241, 1999.

P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection. ACM

Transactions on Graphics (TOG), 15(3):179–210, 1996.

U. Itasca and U. D. E. Code. Version 5.0. Itasca Consulting Group, Inc., Minneapolis, 2011.

K. Iwashita and M. Oda. Micro-deformation mechanism of shear banding process based on
modified distinct element method. Powder Technology, 109(1-3):192–205, Apr. 2000.

H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquids, and gases. Reviews of

Modern Physics, 68(4):1259, 1996.

M. Jean. The non-smooth contact dynamics method. Computer methods in applied mechanics and

engineering, 177(3):235–257, 1999.

A. F. Johnson and M. Holzapfel. Modelling soft body impact on composite structures. Composite

Structures, 61(1):103–113, 2003.

D. Jung and K. K. Gupta. Octree-based hierarchical distance maps for collision detection. In
Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, volume 1,
pages 454–459. IEEE, 1996.

K. D. Kafui, C. Thornton, and M. J. Adams. Discrete particle-continuum fluid modelling of
gas-solid fluidised beds. Chemical Engineering Science, 57(13):2395–2410, 2002.

T. Kawaguchi, T. Tanaka, and Y. Tsuji. Numerical simulation of two-dimensional fluidized
beds using the discrete element method (comparison between the two-and three-dimensional
models). Powder technology, 96(2):129–138, 1998.

K. Ken-Ichi. Distribution of directional data and fabric tensors. International Journal of Engineering

Science, 22(2):149–164, 1984.



140 BIBLIOGRAPHY

J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection
using bounding volume hierarchies of k-DOPs. Visualization and Computer Graphics, IEEE

Transactions on, 4(1):21–36, 1998.

D. Kolymbas. An outline of hypoplasticity. Archive of applied mechanics, 61(3):143–151, 1991.

L. Kondic, A. Goullet, C. S. O’Hern, M. Kramar, K. Mischaikow, and R. P. Behringer. Topology of
force networks in compressed granular media. EPL (Europhysics Letters), 97(5):54001, 2012.

J. Kozicki and F. V. Donzé. A new open-source software developed for numerical simulations
using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197
(49):4429–4443, 2008.

J. Kozicki and F. V. Donzé. Yade-open dem: an open-source software using a discrete element
method to simulate granular material. Engineering Computations, 26(7):786–805, 2009.

N. P. Kruyt. Statics and kinematics of discrete Cosserat-type granular materials. International

Journal of Solids and Structures, 40(3):511–534, Feb. 2003.

N. P. Kruyt and L. Rothenburg. Micromechanical definition of the strain tensor for granular
materials. Journal of applied mechanics, 63(3):706–711, 1996.

N. P. Kruyt and L. Rothenburg. Statistics of the elastic behaviour of granular materials. Interna-

tional Journal of Solids and Structures, 38(28):4879–4899, 2001.

N. P. Kruyt and L. Rothenburg. On micromechanical characteristics of the critical state of two-
dimensional granular materials. Acta Mechanica, 225(8):2301–2318, 2014.

M. R. Kuhn. Structured deformation in granular materials. Mechanics of materials, 31(6):407–429,
1999.

A. J. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann
equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271:285–309, 1994a.

A. J. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann
equation. Part 2. Numerical results. Journal of Fluid Mechanics, 271:311–339, 1994b.

A. J. C. Ladd and R. Verberg. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal

of Statistical Physics, 104(5-6):1191–1251, 2001.

C. R. Leonardi, D. R. J. Owen, and Y. T. Feng. Simulation of fines migration using a non-
Newtonian lattice Boltzmann-discrete element model: Part I: 2d implementation aspects.
Engineering Computations, 29(4):366–391, 2012a.

C. R. Leonardi, D. R. J. Owen, and Y. T. Feng. Simulation of fines migration using a non-Newtonian
lattice Boltzmann-discrete element model: Part II: 3d extension and applications. Engineering

Computations, 29(4):392–418, 2012b.



BIBLIOGRAPHY 141

X. S. Li and Y. F. Dafalias. Anisotropic Critical State Theory: Role of Fabric. Journal of Engineering

Mechanics, 138(3):263–275, Mar. 2012.

C.-L. Liao, T.-P. Chang, D.-H. Young, and C. S. Chang. Stress-strain relationship for granular
materials based on the hypothesis of best fit. International Journal of Solids and Structures, 34(31):
4087–4100, 1997.

A. E. H. Love. A treatise on the mathematical theory of elasticity, volume 1. Cambridge University
Press, 2013.

O. Mahabadi, P. Kaifosh, P. Marschall, and T. Vietor. Three-dimensional FDEM numerical
simulation of failure processes observed in Opalinus Clay laboratory samples. Journal of Rock

Mechanics and Geotechnical Engineering, 6(6):591–606, Dec. 2014.

O. K. Mahabadi, A. Lisjak, A. Munjiza, and G. Grasselli. Y-Geo: New combined finite-discrete
element numerical code for geomechanical applications. International Journal of Geomechanics,
2012.

T. S. Majmudar and R. P. Behringer. Contact force measurements and stress-induced anisotropy
in granular materials. Nature, 435(7045):1079–1082, 2005.

M. M. Mehrabadi, S. Nemat-Nasser, and M. Oda. On statistical description of stress and fabric in
granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 6
(1):95–108, 1982.

V. Šmilauer and B. Chareyre. Yade dem formulation. Yade Documentation, 2010.

V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese,
L. Scholtès, L. Sibille, and others. Yade documentation. The Yade Project.(http://yade-dem. org/doc/),
2010a.

V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese,
L. Scholtès, L. Sibille, and others. Yade reference documentation. Yade Documentation, 474,
2010b.

I. Miller, J. E. Freund, and R. A. Johnson. Probability and statistics for engineers, volume 1110.
Prentice-Hall Englewood Cliffs, NJ, 1965.

N. W. Mueggenburg, H. M. Jaeger, and S. R. Nagel. Stress transmission through three-dimensional
ordered granular arrays. Physical Review E, 66(3):031304, 2002.

D. M. Mueth, H. M. Jaeger, and S. R. Nagel. Force distribution in a granular medium. Physical

Review E, 57(3):3164–3169, Mar. 1998.

D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel, and H. M. Jaeger. Signatures
of granular microstructure in dense shear flows. Nature, 406(6794):385–389, July 2000.



142 BIBLIOGRAPHY

A. Munjiza and K. R. F. Andrews. NBS contact detection algorithm for bodies of similar size.
International Journal for Numerical Methods in Engineering, 43(1):131–149, 1998.

A. Munjiza and P. W. Cleary. Industrial particle flow modelling using discrete element method.
Engineering Computations, 26(6):698–743, 2009.

M. Muthuswamy and A. Tordesillas. How do interparticle contact friction, packing density and
degree of polydispersity affect force propagation in particulate assemblies? Journal of Statistical

Mechanics: Theory and Experiment, 2006(09):P09003, 2006.

N.-S. Nguyen, H. Magoariec, B. Cambou, and A. Danescu. Analysis of structure and strain at
the meso-scale in 2d granular materials. International Journal of Solids and Structures, 46(17):
3257–3271, 2009.

N.-S. Nguyen, H. Magoariec, and B. Cambou. Local stress analysis in granular materials at a
mesoscale. International Journal for Numerical and Analytical Methods in Geomechanics, 36(14):
1609–1635, 2012.

F. Nicot. Constitutive modelling of a snow cover with a change in scale. European Journal of

Mechanics-A/Solids, 22(3):325–340, 2003.

F. Nicot. From constitutive modelling of a snow cover to the design of flexible protective structures
Part I: Mechanical modelling. International Journal of Solids and Structures, 41(11):3317–3337,
2004.

F. Nicot and F. Darve. Micro-mechanical investigation of material instability in granular assem-
blies. International journal of solids and structures, 43(11):3569–3595, 2006.

F. Nicot and F. Darve. Diffuse and localized failure modes: Two competing mechanisms. In-

ternational Journal for Numerical and Analytical Methods in Geomechanics, 35(5):586–601, Apr.
2011a.

F. Nicot and F. Darve. The H-microdirectional model: accounting for a mesoscopic scale. Mechanics

of Materials, 43(12):918–929, 2011b.

F. Nicot, F. Darve, and R. Group. A multi-scale approach to granular materials. Mechanics of

materials, 37(9):980–1006, 2005.

F. Nicot, L. Sibille, and F. Darve. Bifurcation in granular materials: An attempt for a unified
framework. International Journal of Solids and Structures, 46(22-23):3938–3947, Nov. 2009.

F. Nicot, N. Hadda, M. Guessasma, J. Fortin, and O. Millet. On the definition of the stress tensor
in granular media. International Journal of Solids and Structures, 50(14):2508–2517, 2013.

D. Nishiura and H. Sakaguchi. Parallel-vector algorithms for particle simulations on shared-
memory multiprocessors. Journal of Computational Physics, 230(5):1923–1938, 2011.



BIBLIOGRAPHY 143

M. Oda. Deformation Mechanism of Sand in Triaxial Compression Tests. Soils and Foundations, 12
(4):45–63, 1972a.

M. Oda. Initial Fabrics and Their Relations to Mechanical Properties of Granular Material. Soils

and Foundations, 12(1):17–36, 1972b.

M. Oda. The Mechanism of Fabric Changes During Compressional Deformation of Sand. Soils

and Foundations, 12(2):1–18, 1972c.

M. Oda. A micro-deformation model for dilatancy of granular materials. In Mechanics of Deforma-

tion and Flow of Particulate Materials, pages 24–37. ASCE, 1997.

M. Oda and K. Iwashita. Study on couple stress and shear band development in granular media
based on numerical simulation analyses. International Journal of Engineering Science, 38(15):
1713–1740, Oct. 2000.

M. Oda and H. Kazama. Microstructure of shear bands and its relation to the mechanisms of
dilatancy and failure of dense granular soils. Geotechnique, 48(4):465–481, 1998.

M. Oda, J. Konishi, and S. Nemat-Nasser. Some experimentally based fundamental results on the
mechanical behaviour of granular materials. Geotechnique, 30(4):479–495, 1980.

M. Oda, J. Konishi, and S. Nemat-Nasser. Experimental micromechanical evaluation of strength
of granular materials: effects of particle rolling. Mechanics of materials, 1(4):269–283, 1982.

M. Ostoja-Starzewski. Microstructural randomness and scaling in mechanics of materials. CRC Press,
2007.

H. Ouadfel and L. Rothenburg. Stress–force–fabric’relationship for assemblies of ellipsoids.
Mechanics of Materials, 33(4):201–221, 2001.

K. Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the Royal

Society of London, pages 240–242, 1895.

J. F. Peters, M. Muthuswamy, J. Wibowo, and A. Tordesillas. Characterization of force chains in
granular material. Physical Review E, 72(4), Oct. 2005.

H. Petryk. Material instability and strain-rate discontinuities in incrementally nonlinear continua.
Journal of the Mechanics and Physics of Solids, 40(6):1227–1250, 1992.

H. Petryk. Theory of bifurcation and instability in time-independent plasticity. Springer, 1993.

H. D. R. D. Mindlin. Elastic Spheres in Contact Under Varying Oblique Forces. Journal of Applied

Mechanics, 20, 1953.

F. Radjai and S. Roux. Friction-induced self-organization of a one-dimensional array of particles.
Physical Review E, 51(6):6177, 1995.



144 BIBLIOGRAPHY

F. Radjai, M. Jean, J.-J. Moreau, and S. Roux. Force Distributions in Dense Two-Dimensional
Granular Systems. Physical Review Letters, 77(2):274–277, July 1996.

F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau. Bimodal character of stress transmission in
granular packings. Physical review letters, 80(1):61, 1998.

F. Radjai, S. Roux, and J. J. Moreau. Contact forces in a granular packing. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 9(3):544–550, 1999.

F. Radjai, H. Troadec, and S. Roux. Key features of granular plasticity. Granular materials:

fundamentals and applications, pages 157–184, 2004.

M. J. Rhodes. Principles of powder technology. 1990.

J. R. Rice. On the structure of stress-strain relations for time-dependent plastic deformation in
metals. Journal of applied mechanics, 37(3):728–737, 1970.

J. R. Rice. Continuum mechanics and thermodynamics of plasticity in relation to microscale
deformation mechanisms. Constitutive Equations in Plasticity. Massachusetts Institute of Technology

Press, Cambridge. 1975, 23-79, 1975.

J. R. Rice. The localization of plastic deformation. Division of Engineering, Brown University, 1976.

K. Roscoe and J. B. Purland. On the generalized stress-strain behaviour of wet clay. 1968.

K. H. Roscoe, A. Schofield, and C. P. Wroth. On the yielding of soils. Geotechnique, 8(1):22–53,
1958.

L. Rothenburg and R. J. Bathurst. Analytical study of induced anisotropy in idealized granular
materials. Géotechnique, 39(4):601–614, Jan. 1989.

K. SAS. Une nouvelle approche de l’homogénéisation des milieux granulaires. In Symposium

Saint-Venant, pages 597–603, 1997.

M. Satake. Fabric tensor in granular materials. In Proc., IUTAM Symp. on Deformation and Failure

of Granular materials, Delft, The Netherlands, 1982.

M. Satake. A discrete-mechanical approach to granular materials. International journal of engineer-

ing science, 30(10):1525–1533, 1992.

A. Schofield and P. Wroth. Critical state soil mechanics. 1968.

Y. Shigeto and M. Sakai. Parallel computing of discrete element method on multi-core processors.
Particuology, 9(4):398–405, 2011.

L. E. Silbert, G. S. Grest, and J. W. Landry. Statistics of the contact network in frictional and
frictionless granular packings. Physical Review E, 66(6):061303, 2002.



BIBLIOGRAPHY 145

R. Smith. Atomic and ion collisions in solids and at surfaces: theory, simulation and applications.
Cambridge University Press, 2005.

A. J. M. Spencer. Isotropic polynomial invariants and tensor functions. In Applications of tensor

functions in solid mechanics, pages 141–169. Springer, 1987.

W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time-step methods in molecular dynamics.
Molecular Physics, 35(3):639–648, 1978.

J. Tejchman and J. Górski. Deterministic and statistical size effect during shearing of granular layer
within a micro-polar hypoplasticity. International journal for numerical and analytical methods in

geomechanics, 32(1):81–107, 2008.

C. Thornton and S. J. Antony. Quasi-static deformation of particulate media. Philosophical

transactions-royal society of London series a mathematical physical and engineering sciences, pages
2763–2782, 1998.

C. Thornton and D. J. Barnes. Computer simulated deformation of compact granular assemblies.
Acta Mechanica, 64(1-2):45–61, 1986.

A. Tordesillas. Force chain buckling, unjamming transitions and shear banding in dense granular
assemblies. Philosophical Magazine, 87(32):4987–5016, 2007.

A. Tordesillas, D. M. Walker, and Q. Lin. Force cycles and force chains. Physical Review E, 81(1),
Jan. 2010.

A. Tordesillas, C. A. H. Steer, and D. M. Walker. Force chain and contact cycle evolution in a
dense granular material under shallow penetration. Nonlinear Processes in Geophysics, 21(2):
505–519, Apr. 2014.

Y. Tsuji, T. Kawaguchi, and T. Tanaka. Discrete particle simulation of two-dimensional fluidized
bed. Powder technology, 77(1):79–87, 1993.

M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics.
The Journal of chemical physics, 97(3):1990–2001, 1992.

I. Vardoulakis and J. Sulem. Bifurcation analysis in geomechanics. hapman & Hall. London, 1995.

I. Vardoulakis, M. Goldscheider, and G. Gudehus. Formation of shear bands in sand bodies as a
bifurcation problem. International Journal for numerical and analytical methods in Geomechanics, 2
(2):99–128, 1978.

R. Wan, M. Pinheiro, A. Daouadji, M. Jrad, and F. Darve. Diffuse instabilities with transition
to localization in loose granular materials: diffuse instabilities with transition to localization.
International Journal for Numerical and Analytical Methods in Geomechanics, 37(10):1292–1311, July
2013.



146 BIBLIOGRAPHY

R. G. Wan, M. Pinheiro, and P. J. Guo. Elastoplastic modelling of diffuse instability response of
geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 35(2):
140–160, Feb. 2011.

T. Washizawa and Y. Nakahara. Parallel Computing of Discrete Element Method on GPU. arXiv

preprint arXiv:1301.1714, 2013.

X. T. Wei-Xin Ren. Nonlinear analysis of plane frames using rigid body-spring discrete element
method. Computers &amp; Structures - COMPUT STRUCT, 71(1):105–119, 1999.

B. H. Xu and A. B. Yu. Numerical simulation of the gas-solid flow in a fluidized bed by combining
discrete particle method with computational fluid dynamics. Chemical Engineering Science, 52
(16):2785–2809, 1997.

M. Xu, F. Chen, X. Liu, W. Ge, and J. Li. Discrete particle simulation of gas-solid two-phase flows
with multi-scale CPU-GPU hybrid computation. Chemical Engineering Journal, 207:746–757,
2012.

Z.-Y. Yin, C. S. Chang, M. Karstunen, and P.-Y. Hicher. An anisotropic elastic-viscoplastic model
for soft clays. International Journal of Solids and Structures, 47(5):665–677, 2010.

Z.-Y. Yin, M. Hattab, and P.-Y. Hicher. Multiscale modeling of a sensitive marine clay. International

Journal for Numerical and Analytical Methods in Geomechanics, 35(15):1682–1702, 2011a.

Z.-Y. Yin, M. Karstunen, C. S. Chang, M. Koskinen, and M. Lojander. Modeling time-dependent
behavior of soft sensitive clay. Journal of geotechnical and geoenvironmental engineering, 137(11):
1103–1113, 2011b.

J. Zhang, T. Majmudar, and R. Behringer. Force chains in a two-dimensional granular pure shear
experiment. Chaos, 18(4):41107, 2008.

J. Zhao and N. Guo. Unique critical state characteristics in granular media considering fabric
anisotropy. Géotechnique, 63(8):695–704, 2013.

H. Zhu, F. Nicot, and F. Darve. Meso-structure evolution in a 2d granular material during biaxial
loading. Granular Matter.


	Abstract
	Résumé
	General Introduction
	Background: micro-structure of the soil and multi-scale approach
	Constitutive modeling for granular material: knowledge and problems
	micro-structure investigation
	Material fabric and its evolution
	Structures in a meso-scale

	Constitutive modeling based on the fabric

	Objectives
	Outline of this thesis
	Conclusion

	Numerical Modeling by Discrete Element Method
	Introduction of discrete element method
	Calculation cycle
	Contact law
	Calculation of the particle displacement
	Computational stability condition
	Yade-DEM software

	Biaxial tests in DEM
	Parameters
	Applying confining load and Consolidating
	Drained biaxial loading

	Conclusion

	Micro-structure Analysis in 2D Granular Material
	Micromechanics of granular material
	Description of the fabric
	Static and kinematic homogenization

	Meso-structure: force-chains and meso-loops
	Force-chains
	Meso-loops

	Meso-loops evolution during biaxial loading
	Drained biaxial test and results
	Meso-loops evolution
	Proportional analysis of different loops
	Area change of different loops

	The existence of elastic and plastic phases in meso-scale
	Elasticity and plasticity in the meso-scale
	Elastic energy and plastic dissipation
	Plastic volumetric strain in dense packed assemblies
	Effect of elasticity on volumetric evolution


	Force-chain interaction with meso-loop in biaxial loading path
	Macroscopic responses and mesoscopic evolutions
	Force-chain induced meso-loop differentiation
	Evolution on FCL and NFCL
	Conversion correlations amongst structures
	Volumetric behavior

	Effect of confining structures on force-chains
	Confining structures and force-chain movability
	Stress anisotropy of confining loops


	The critical state meso-structure in localized and diffuse failure modes
	Drained biaxial test and results
	Failure modes and shear band width in specimens
	Critical state void ratio e
	Meso-structure signature of the critical state
	Meso-loops characteristics
	Force-chain characteristics
	Discussion: the homology of localized and diffuse failure modes


	Conclusion
	Meso-loop evolution during biaxial loading
	Force-chain interaction with meso-loop along biaxial loading path
	The critical state meso-structure in localized and diffuse failure modes


	A Multi-scale Approach Constitutive Model
	Reviews on the micro-directional model and the H-directional model
	The micro-directional model
	limitations of micro-directional model
	H-directional model

	Modified H-directional model
	Constitutive relations
	Model performances
	Prospectives on improving the H-directional model

	Conclusion

	General Conclusion
	Conclusion
	Open issues and perspectives


