
HAL Id: tel-01278432
https://theses.hal.science/tel-01278432

Submitted on 24 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Dynamics of shallow magmatic intrusions: theory and
application to the detection of planetary intrusion.

Clement Thorey

To cite this version:
Clement Thorey. Dynamics of shallow magmatic intrusions: theory and application to the detection
of planetary intrusion.. Geophysics [physics.geo-ph]. Université Paris Diderot, 2015. English. �NNT :
�. �tel-01278432�

https://theses.hal.science/tel-01278432
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


UNIVERSITÉ SORBONNE PARIS CITÉ

Thèse préparée
à l’UNIVERSITÉ PARIS DIDEROT
École doctorale STEP’UP–ED N°560
IPGP – Équipe Planétologie et Sciences Spatiales

Dynamique des intrusions magmatiques
peu profondes :

théorie et application à la détection d’intrusions planétaires

par
Clément Thorey

présentée et soutenue publiquement le
6 Novembre 2015

Thèse de doctorat de Sciences de la Terre et de l’environnement

dirigée par Chloé Michaut
& Mark Wieczorek

devant un jury composé de :

Jerome A. Neufeld University Lecturer (DAMPT - UK) Rapporteur
Virginie Pinel Chargé de Recherche (ISTerre) Rapporteur

Oded Aharonson Professor (WIS - Israel) Examinateur
Édouard Kaminksi Professeur (IPGP) Examinateur

Chloé Michaut Maître de Conférences (IPGP) Directrice de thèse
Mark Wieczorek Directeur de Recherche (IPGP) Co-directeur de thèse





Remerciements

Cette thèse prend sûrement racine quelques années avant son début, sur
les flancs chauds et humides du volcan “El Fuego” au Mexique. En effet, c’est
sans doute ce volcan qui a piqué en premier ma curiosité pour les sciences de
la Terre. Je commencerais donc par remercier Nick Varley : sa passion sans
limites ainsi qu’une légère touche d’insouciance nous auront toutes deux per-
mis d’effleurer au plus près la beauté et la puissance de ce volcan capricieux.
À Colima, je ne puis aussi oublier Jannes, Irving, Pilar, Ana et toutes les per-
sonnes que j’ai pu croiser sur mon chemin. À tous, merci pour cette expérience
inoubliable.

Durant cette période, je remercie aussi mes parents d’avoir supporté ces
longs mois sans nouvelles. Merci à vous pour le soutien inconditionnel que
vous m’avez apporté durant toutes mes années d’études. Même si le fond
vous restera sans doute un peu nébuleux, sachez que cette thèse vous doit
beaucoup.

Ces travaux n’auraient pas non plus vu le jour sans Chloé Michaut, ma
directrice de thèse. Je ne peux que la remercier pour sa patience et son
accompagnement tout au long de ces trois ans, pour tout ce qu’elle m’a ap-
porté scientifiquement et personnellement. Une liste de remerciements non
exhaustive contiendrait sûrement la faculté de suivre l’évolution de ma pen-
sée souvent embrumée, de décrypter mes notes interminables, d’apprécier mes
figures colorées, de relire mes manuscrits pas finis et surtout, de m’avoir tou-
jours encouragé et de m’avoir laissé explorer à mon rythme sans me laisser
pour autant m’égarer.

Ce travail, et notamment la digression champ de gravité, doit aussi beau-
coup à Mark Wieczorek. Merci de m’avoir laissé triturer les dernières données
de la mission GRAIL, de m’avoir guidé tout au long de cette étude ainsi que
de m’avoir permis de présenter mes travaux dans le Colorado. Je remercie
également les membres de mon jury d’avoir accepté d’évaluer ce travail, car
j’imagine qu’il existe lectures plus agréables pour la rentrée : Jerome Neufeld,
Virginie Pinel, Oded Aharonson et Edouard Kaminksi.

Sous les auspices de Lamarck, je remercie toutes les personnes qui ont con-
tribué de près ou de loin au bon déroulement de ces trois années. Tout d’abord
Mathieu pour ses conseils, les bavardages lunaires et les sessions d’escalade
qui ont accompagné toute ma première année, Sebastiano et Karine pour leur
énergie et leur bonne humeur qui se chargèrent de la deuxième et enfin, Ali-
cia, Shang Xia, Claudine, Mélanie, Jean-François, Lucile, Sébastien, Yasuhiro,
Foivos, Virgile, Joana et toutes les personnes du laboratoire de planétologie
et sciences spatiales de l’IPGP et d’AIM que j’ai pu oublier devant l’explosion
démographique qui a eu lieu durant cette dernière année.



2

Sous la bienveillance de Jussieu, je remercie tout particulièrement Adrien
et Kenny, avec qui j’ai passé beaucoup de temps à procrastiner au Linnée. Je
remercie aussi l’intégralité de la TP team avec qui j’ai pris plaisir à enseigner
la physique. Je ne peux enfin oublier Malbec, le cluster qui, heure après heure,
jour après jour, s’est affairé aux tâches que je lui avais donné sans rechigner.
Merci à Alexandre de nous avoir présenté et au service informatique de l’IPGP
qui le bichonne et l’entretient depuis sa création.

Enfin, dans cette épopée parisienne, je remercie mes indénombrables colocs
de la rue Tolbiac, avec une pensée particulière pour M. Nicolas, et les gens
du swing et de l’escalade. Un merci tout particulier à Valentin et CamCam
qui ont aussi participé à mon équilibre parisien. Merci aussi à mon voisin du
dessus, rue des Gobelins, de m’avoir réveillé “délicatement” tous les matins,
c’est peut-être grâce à lui que j’ai pu finir ce travail à temps. Dans le camp
des anonymes, je remercie l’homme au marcel bleu avec qui j’ai partagé mes
séances de courses à pied. Bien qu’elles ne m’aient pas apporté d’idées révo-
lutionnaires, ces séances m’auront au moins permis de me vider la tête.

Je remercie également Clémentine, Fabian (Pura Vida), Amélie, Adrien,
Lucie, Simon, Mylène et compagnie qui m’accompagnent depuis nos écoles
lyonnaises, avec une pensée toute particulière pour Florian, qui m’a guidé
jusque là-bas.

Enfin, je remercie Marion, pour tout !



3

Abstract

Keywords: Magmatic intrusion, Elastic-plated gravity current, Ther-
mal processes, Rheology, Temperature-dependent viscosity, Elastic sheet,
Laccolith, Sill, Earth, Moon, Low-slope lunar dome, Floor-fractured crater,
Elastic-sheet thickness, Crater depression, Gravitational anomaly.

Intrusive magmatism plays a fundamental role in the accretionary pro-
cesses of terrestrial crust. Indeed, when magma is forced to the surface, only
a small amount of it actually reaches that level. Most of the magma is in-
truded into the crust where it solidifies into a wide range of features, from the
small scale sills and laccoliths to large scale batholiths (several hundred kilo-
meters in size). The topographic deformation that could be caused by shallow
intrusions can be constrained by observations of planetary surfaces; that is,
volume, shape and other dimensions of intrusions can be quantified. However,
such observations must be linked to dynamic models of magma emplacement
at depth in order to provide insights into magma physical properties, injection
rate, emplacement depth and the intrusion process itself.

In this thesis, we first investigate the relation between the morphology of
shallow intermediate-scale magmatic intrusions (sills and laccoliths) and their
cooling. We propose a model for the spreading of an elastic-plated gravity
current with a temperature-dependent viscosity that accounts for a realistic
magma rheology, melt crystallization and heating of the surrounding medium.
The mechanisms that drive the cooling of the intrusions vary from Earth to
the Moon and the ability of the model to reproduce the final morphologies
(aspect ratio) of terrestrial laccoliths and low-slope lunar domes is examined.

On the Moon, the emplacement of magmatic intrusions into the crust
has also been proposed as a possible mechanism for the formation of floor-
fractured craters. We propose a model for an elastic-plated gravity current
spreading beneath an elastic overburden of variable thickness. We find that
several characteristics of floor-fractured craters are indeed consistent with the
emplacement of large volumes of magma beneath their floor. In addition, using
the unprecedented resolution of the NASA’s Gravity Recovery and Interior
Laboratory (GRAIL) mission, in combination with topographic data obtained
from the Lunar Orbiter Laser Altimeter (LOLA) instrument, we show that
lunar floor-fractured craters present gravitational anomalies consistent with
magmatic intrusions intruding a crust characterized by a 12% porosity. The
implications in terms of lunar evolution are examined.
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Résumé

Mots-clés : Intrusion magmatique, Écoulement gravitaire sous une
plaque élastique, Refroidissement, Rhéologie, Viscosité dépendante de la
température, Fléchissement d’une plaque élastique, Laccolite, Sill, Terre,
Lune, Dômes à faible pente, Cratères d’ impacte, Cratère à sol fracturé,
Anomalie gravitaire.

Le magmatisme intrusif est une source masquée, mais potentiellement im-
portante du magmatisme planétaire. En effet, les magmas, formés au sein du
manteau, n’atteignent que rarement la surface. La grande majorité se met en
place et refroidit au sein de la croûte sous forme d’intrusions magmatiques. Le
volume ainsi que la morphologie de ces intrusions peuvent être contraints par
l’observation des surfaces planétaires. Cependant, en l’absence d’un modèle
capable de décrire la mise en place de telles intrusions, il est difficile de se faire
une idée des propriétés physiques de l’écoulement et des magmas eux même.

Dans cette thèse, nous commençons par nous intéresser à la relation qui
existe entre la morphologie finale des intrusions de tailles intermédiaires (sills
et laccolites) et l’écoulement lui-même. Nous proposons ainsi un modèle dy-
namique de la mise en place de l’intrusion qui prend en compte une rhéologie
réaliste pour le magma, l’énergie libérée par sa cristallisation ainsi que le
chauffage de l’encaissant. Les conditions varient de la Terre à la Lune; nous
examinons ainsi la capacité du modèle à reproduire la morphologie de ces
intrusions dans ces deux différents contextes planétaires.

Sur la Lune, la mise en place d’intrusions magmatiques au sein de la
croûte a aussi été proposée pour expliquer les déformations subites par certains
cratères après leurs formations. Pour tester cette hypothèse, nous proposons
un modèle d’étalement d’intrusion magmatique sous une dépression caractéris-
tique de l’impact. Nous montrons que les différentes déformations observées
au sein de ces cratères sont bien en accord avec la mise en place d’importants
volumes de magma sous leur sol. De plus, en utilisant la résolution sans
précédente du champ de gravité lunaire obtenue par la mission GRAIL, nous
montrons que la plupart de ces cratères montrent bien des anomalies de grav-
ité; anomalies impliquant notamment une importante porosité dans la croûte
lunaire. Les implications en terme d’évolution lunaire sont finalement évo-
quées.
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Dynamique des magmas à faible
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Chapter 1

Magmatisme intrusif

Contents
1.1 Formation, transport et stockage des magmas . . . . 3

1.1.1 Formation . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Transport . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Stockage . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Importance et multiples visages du magmatisme in-
trusif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Magmatisme intrusif sur Terre . . . . . . . . . . . . . 7

1.2.2 Magmatisme intrusif sur la Lune . . . . . . . . . . . . 11

1.3 Caractérisation de la mise en place d’une intrusion
magmatique à faible profondeur . . . . . . . . . . . . . 15

1.3.1 Modèle statique de déformation d’une couche élastique 15

1.3.2 Inférence sur la dynamique à partir de la géométrie . . 17

1.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Formation, transport et stockage des mag-
mas

1.1.1 Formation

Sur Terre, la majorité des magmas sont formés par fusion partielle des roches
du manteau supérieur. Dans les conditions normales de pression, la tempéra-
ture du manteau supérieur n’est pourtant pas suffisante pour provoquer leur
fusion (Figure 1.1) et d’autres mécanismes sont nécessaires pour amener les
roches du manteau à croiser leur liquidus. Au niveau des dorsales en contexte
océanique ou des rifts en contexte continental ou encore au sein des panaches
mantelliques, la fusion partielle est ainsi générée par décompression (Figure
1.1 b). Au niveau des zones de subduction, les mécanismes mis en jeu sont
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plus complexes et font intervenir la déshydratation par chauffage des roches,
la migration des fluides abaissant le liquidus et provoquant ainsi la fusion des
roches alentour (Figure 1.1 c).

a)

c)b)

Figure 1.1: a) Lien entre le magmatisme et la tectonique des plaques: produc-
tion de magma par décompression des roches au niveau des dorsales océaniques
ou des rifts en contexte continental ou par addition de volatiles au niveau des
zones de subduction. Schéma du diagramme de phase des roches du manteau
supérieur dans deux contextes différents: b) dorsale océanique ou panache
mantellique, c) zone de subduction.

1.1.2 Transport

Les liquides de fusions ainsi formés sont moins denses que les roches alentour
et s’élèvent donc, par compaction et percolation, au sein de la source (McKen-
zie, 1984, 1985). Au sein de la croûte, cependant, de nombreux affleurements
montrent que les magmas sont rapidement transportés au sein de conduits,
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appelés dykes, ou le long de failles préexistantes (Clemens and Mawer , 1992;
Petford et al., 1993; Rubin, 1995; Glazner et al., 2004). En effet, il est main-
tenant clair que les gros volumes de magmas solidifiés au sein de la croûte ce
sont mis en place par incréments successifs de petits volumes de magmas (An-
nen and Sparks , 2002; Glazner et al., 2004; Michaut , 2011) et non par la lente
remontée au sein de gros volumes diapiriques comme il a été historiquement
proposé (Miller and Paterson, 1999).

1.1.3 Stockage

Les travaux de Walker (1989) ont montré que les magmas remontent jusqu’à
rencontrer leur zone de flottabilité neutre, une région où la densité de la
roche encaissante est proche de celle du magma lui-même. Au-dessus de
cette couche, le magma est plus dense que la roche encaissante et sa flot-
tabilité l’entraîne vers le bas. De nombreux travaux, tant théoriques (Lister
and Kerr , 1991; Petford et al., 1993; Rubin, 1995) qu’expérimentaux (Taisne
and Tait , 2009; Taisne et al., 2011) ont en effet depuis montré que l’ascension
d’un dyke était contrôlée par la différence de densité entre la tête de celui-ci
et la roche encaissante. Lorsque le dyke entre dans une région de densité
inférieure, la surpression induite au sein de la tête du dyke peut, sous cer-
taines conditions, conduire à l’étalement du magma au niveau de la base de la
région de plus faible densité. Ceci permet notamment la formation de réser-
voirs magmatiques sous forme d’intrusions magmatiques au sein de la croûte
(Taisne et al., 2011).

Figure 1.2: a) Photographie de deux des expériences réalisées par Kavanagh
et al. (2006) sur le comportement d’un dyke à l’interface entre deux milieux
de rigidité différente. a) Le contraste de rigidité est très important et le dyke
s’étale sous la couche de rigidité importante. b) Le contraste de rigidité est
plus faible et, tout en s’étalant en dessous de la couche de rigidité supérieure,
le dyke continue sa progression dans le milieu plus rigide.
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Plus récemment, d’autres études ont montré que les contrastes de rigid-
ité entre les différentes couches crustales pourraient aussi jouer un rôle non
négligeable sur l’arrêt de l’ascension des dykes (Menand , 2011). En effet, des
expériences réalisées par Kavanagh et al. (2006) ont montré que la propaga-
tion d’un dyke peut être arrêtée quand celui-ci rencontre une interface qui
sépare un milieu plus rigide surplombant un milieu moins rigide (Figure 1.2).
Le dyke arrête ainsi son ascension verticale et s’étale horizontalement juste
en dessous de la couche de rigidité plus élevée. Ce mécanisme serait d’autant
plus efficace que le contraste de rigidité est important (Kavanagh et al., 2006).

Finalement, les contraintes, locales ou globales, peuvent aussi dévier la
trajectoire d’un dyke et influencer les trajets des magmas au sein de la croûte.
En effet, de nombreuses études ont montré que les chenaux par lesquels se
propage le magma tendent à s’orienter perpendiculairement à la contrainte
minimum de compression σ3 (Anderson, 1951; Watanabe et al., 2002). Les
dykes ont donc tendance à exister dans des situations dans lesquelles la con-
trainte minimum de compression est horizontale et à être déviés, voire s’étaler
horizontalement si la contrainte minimum de compression devient verticale
(Pinel and Jaupart , 2000, 2004; Maccaferri et al., 2014). Par exemple, un
édifice volcanique a tendance à dévier les dykes vers sa base (Watanabe et al.,
2002; Dahm, 2000; Maccaferri et al., 2011). À l’inverse, une dépression, un
graben en contexte de rift continental par exemple, tend à dévier les dykes vers
l’extérieur de la dépression (Maccaferri et al., 2014). Menand et al. (2010) ont
cependant montré que l’échelle de longueur sur laquelle le dyke répondait à
cette évolution du champ de contrainte dépendait de la flottabilité du magma.
Notamment, à l’échelle de la croûte, la propension d’un champ de contrainte à
dévier un dyke devient importante seulement si les contraintes de compression
dominent sur la flottabilité du magma (Menand et al., 2010).

En conclusion, même si ces différents facteurs jouent un rôle sur le contrôle
des trajets des magmas au sein de la croûte, la densité relative du magma et
de la roche encaissante et donc l’existence d’une zone de flottabilité neutre
est certainement le facteur déterminant dans la mise en place d’intrusions
magmatiques. Le magmatisme intrusif et la question du stockage des magmas
sont donc de manière générale étroitement liés à la structure en densité de la
croûte elle-même.
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1.2 Importance et multiples visages du magma-
tisme intrusif

1.2.1 Magmatisme intrusif sur Terre

Sur Terre, la composition de la croûte, et donc sa densité, est bimodale. Au
niveau des océans, la croûte océanique présente une nature essentiellement
basaltique avec une densité moyenne proche de 2900 kg m−3. Elle est formée
continuellement au niveau des dorsales océaniques et recyclée, environ 200

Ma d’année plus tard au niveau des zones de subduction. Elle est épaisse
en moyenne de 6 km et couvre à elle seule 70% de la surface du globe. Au
contraire, la croûte continentale, qui occupe les 30% restants, présente une
composition plus évoluée et globalement andésitique avec une densité moyenne
plus proche de 2700 kg m−3. Elle est beaucoup plus vieille que la croûte
océanique et est âgée en moyenne de 2.5 Ga, avec certaines roches d’environ 4

Ga d’années. Elle est aussi beaucoup plus épaisse; son épaisseur moyenne est
de 35 km et peut excéder les 70 kilomètres sous certaines chaînes de montagnes
comme l’Himalaya.

De par sa densité relativement basse, en particulier au niveau des conti-
nents, la croûte constitue un filtre efficace à la remontée des magmas en surface
qui sont donc préférentiellement stockés en profondeur sous forme d’intrusions
magmatiques. Crisp (1984) et White et al. (2006) estiment en effet que les
volumes de lave extrudés à la surface sont relativement faibles en comparaison
des volumes mis en place au sein de la croûte terrestre, i.e. 5 fois plus faibles
en contexte océanique et jusqu’à 10 fois plus faibles en contexte continental.
Le magmatisme intrusif apparaît donc comme un processus essentiel dans la
formation de la croûte. Sur Terre, les mouvements tectoniques en son sein
ainsi que l’érosion ont permis d’exposer certaines de ces intrusions à la sur-
face. Outre leur taille, qui peut varier de quelques mètres à des centaines de
kilomètres, la morphologie de ces intrusions présente une grande variabilité.

Les batholites sont de loin les plus imposants représentants de cette
famille d’intrusions magmatiques se mettant en place au sein de la partie
supérieure fragile de la croûte. Ils peuvent atteindre jusqu’à quelques kilo-
mètres d’épaisseur et s’étendre sur des centaines de kilomètres. Par exem-
ple, le batholite de la Sierra Nevada est une intrusion granitique qui s’étend
sur presque la totalité de la Sierra Nevada en Californie. Des données
géochronologiques sur certains de ces batholites ont montré que leur mise
en place peut s’échelonner sur quelques millions d’années, un temps beaucoup
plus grand que les temps raisonnables pour le refroidissement d’une chambre
magmatique dans la partie fragile de la croûte (Glazner et al., 2004). En ef-
fet, il est maintenant clair que la mise en place de ces gigantesques volumes
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de magmas se fait par incréments successifs de petits volumes de magma, se
solidifiant lors de leur mise en place, sur de longues échelles de temps, de 105 à
106 années (Petford et al., 2000; Glazner et al., 2004). Dans cette thèse, nous
nous focalisons sur les mécanismes de formation et de mise en place de vol-
umes intermédiaires de magma dans la partie fragile de la croûte continentale,
à des profondeurs inférieures à 10 km.

Des études géologiques de terrain ont montré la présence de quatre grandes
familles d’intrusions magmatiques de taille intermédiaire à faible profondeur.
Deux de ces familles, les dykes et les bysmalites, sont discordantes, c’est-à-dire
qu’elles se mettent en place perpendiculairement à la stratification naturelle
de l’encaissant et deux autres, les sills et les laccolites, sont concordantes, i.e.
elles se mettent en place parallèlement aux couches géologiques.

Batholith

Dyke

Sill

Sill

Dyke

Laccolith

Laccolith

Batholith

E
ro
si
o
n

a) b)

Figure 1.3: a) Différentes formes du magmatisme intrusif: batholite, dyke,
sill et laccolite. Dimensions typiques pour des laccolites, dykes et sills de
compositions et d’origines différentes d’après de Cruden et al. (2012).

• Les dykes, par lesquels remontent le magma à travers la lithosphère, sont
discordants et caractérisés par de faibles rapports d’aspects, de 0.0001−
0.01 (Figure 1.3, 1.4 a) (Rubin, 1995; Schultz et al., 2008; Kavanagh and
Sparks , 2011). Leur épaisseur peut varier de quelques mètres à quelques
centaines de mètres (Walker , 1989; Krumbholz et al., 2014), cependant,
l’épaisseur moyenne est de quelques dizaines de mètres. Les dykes de
compositions felsiques sont généralement plus épais et moins longs que
leurs équivalents mafiques (Rubin, 1995).

• Les sills, à la différence des dykes, sont concordants (Figure 1.3, 1.4
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b,f). Ils se mettent en place le long de discontinuités ou de failles préex-
istantes, à la jonction entre deux couches sédimentaires par exemple.
Les sills aux dimensions les plus importantes répertoriés sont mafiques
et peuvent attendre jusqu’à 100 km pour des épaisseurs de plusieurs
centaines de mètres (Cruden et al., 2012). Leurs homologues felsiques,
plus rares, sont souvent de dimensions plus faibles.

• Les laccolites ont été décrits premièrement par Gilbert (1877) suite à
son étude géologique des Henry Mountains, dans l’Utah aux États-Unis
(Figure 1.4 c, d, e). Ils se mettent en place principalement par flexion des
couches sédimentaires sus-jacentes, ce qui leur donne une forme de dôme
caractéristique. Certains d’entre eux peuvent aussi être caractérisés par
une forme un peu plus aplatie au centre (Koch et al., 1981). Corry
(1988) a répertorié à peu près 900 laccolites, principalement dans le
nord des États-Unis. Leurs épaisseurs varient de quelques dizaines à
quelques centaines de mètres et leurs rayons peuvent atteindre quelques
kilomètres pour les plus gros (Figure 1.3 b). Ces laccolites se sont parfois
mis en place les uns sur les autres formant une structure en forme de
sapin de Noël (Corry , 1988). Cette géométrie est aussi observée sur l’île
d’Elbe, en Italie, où un complexe de neuf laccolites, exceptionnellement
bien conservé, a été étudié en détail par Rocchi et al. (2002).

• Les bysmalites sont d’imposants volumes cylindriques, préférentielle-
ment composés de roche granitique, discordants (Figure 1.4 f). Ils sont
notamment bordés par d’importantes failles presque verticales et peu-
vent atteindre quelques centaines de mètres d’épaisseur (Johnson and
Pollard , 1973). Un exemple typique de ce type d’intrusion est le Black
Mesa Bysmalite dans les Henry Mountains (200 m d’épaisseur et 1 km
de large (Morgan et al., 2008)).

À l’instar des batholites, de nombreuses observations de terrains proposent
que ces intrusions de taille moyenne se forment aussi par incréments successifs
de petits volumes de magma (Habert and De Saint-Blanquat , 2004; Horsman
et al., 2005; Morgan et al., 2008; Michel et al., 2008; Leuthold et al., 2012)
(Figure 1.5). Cependant, les mêmes études montrent aussi que ces intrusions
se forment nécessairement sur de petites échelles de temps, des échelles assez
faibles pour pouvoir garder un corps chaud et liquide des premières étapes du
processus d’intrusion à la solidification. Au niveau du bysmalite de Black Mesa
par exemple (Figure 1.4 f), Habert and De Saint-Blanquat (2004) ont montré
l’absence de discontinuités entre les différentes couches ainsi que l’absence de
métamorphisme important dans l’encaissant indiquant un temps de mise en
place de moins de 100 ans. L’absence de discontinuité au sein des différents
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a) b)

c) d)

e)

f )

Bysmalith

Sill

5 m

2 m

Figure 1.4: a) Dyke traversant des couches sédimentaires dans le Makhtesh
Ramon, Israël; b) Sill basaltique au sein de sédiments, vallée de la Yellowstone
River, parc National du Yellowstone (USA). Photographie de Fabrice Pinchon.
c) Laccolite à l’érosion dans le Montana d) Schéma de l’emplacement d’un
laccolite réalisé par Gilbert (1877). e) Schéma simplifié de la structure en arbre
de Noël d’un complexe de laccolite sur l’île d’Elbe, en Italie, étudiée par Rocchi
et al. (2010). f) Intrusions à l’érosion aux alentour de la montagne Hillers, dans
les Henry Mountains. On peut distinguer le Black Mesa Bysmalite au centre
(200 m d’épaisseur et 1 km de large (Morgan et al., 2008)) et le Maiden Creek
sill en dessous (épaisseur: 30 à 40 m (Horsman et al., 2005)). Photographie
de Jack Share
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laccolites sur l’île d’Elbe supporte aussi leur formation rapide, i.e. à la suite
d’une seule injection où de plusieurs injections sur un temps assez court pour
que les magmas des différentes injections coalescent (Roni et al., 2014).

Figure 1.5: Ces diagrammes, réalisés par Horsman et al. (2009), montrent
la structure verticale en couche de trois intrusions à l’érosion dans les Henry
Mountains. De gauche à droite: le Maiden Creek Sill (Figure 1.4 f), le Tra-
chyte Mesa Laccolite et le Black Mesa Bysmalite (Figure 1.4 f).

1.2.2 Magmatisme intrusif sur la Lune

La lune s’est probablement formée suite à l’impact d’un corps de la taille de
Mars sur la proto Terre une centaine de millions d’années après la formation
de la Terre, le disque de débris produit se réaccrétant ensuite en moins d’un
millier d’années pour former notre satellite (Mizutani et al., 1972; Cameron
and Benz , 1991; Canup and Asphaug , 2001; Canup, 2012). Compte tenu des

Figure 1.6: Cristallisation fractionnée de l’océan de magma et formation de
la croûte primaire composé d’anorthosite. Source: LPI

quantités importantes d’énergie libérée durant le processus d’accrétion, on
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considère aujourd’hui que la Lune était partiellement fondue, sur une épais-
seur encore débattue, suite à sa formation (Elkins-Tanton et al., 2011). Le re-
froidissement et la lente cristallisation fractionnée de l’océan de magma lunaire
auraient ensuite conduit à la formation d’une croûte primaire par flottaison
des minéraux légers de plagioclase (en particulier du pôle calcique, l’anorthite)
à la surface de l’océan de magma. Les éléments les plus incompatibles, en par-
ticulier les éléments producteurs de chaleur, se seraient eux concentrés dans
les derniers liquides magmatiques résiduels pour former une couche enrichie
en Terres Rares (REE) mais aussi en minéraux riches en fer entre la croûte et
le manteau, formé, lui, principalement de cumulats d’olivine et de pyroxène
(Figure 1.6).

Les échantillons recueillis lors des missions Luna/Appolo ont permis de
préciser l’évolution postérieure à l’océan de magma. Ainsi, après la cristalli-
sation complète de l’océan magmatique, des instabilités gravitationnelles (les
cumulats étant plus dense que la roche sous-jacente) ont conduit à un re-
maniement du manteau lunaire. Ceci a certainement induit de la convection
solide au sein du manteau lunaire et a engendré de la fusion partielle formant
des magmas basaltiques se mettant en place en surface et des roches plu-
toniques plus en profondeur au sein de la croûte (riche en Terres Rares et en
magnésium selon la source subissant la fusion partielle) (Shearer , 2006) (Fig-
ure 1.7). Taylor (1982) ont estimé que ces roches riches en magnésium pour-

Figure 1.7: Schéma illustrant la complexité de la croûte lunaire. La par-
tie supérieure de la croûte est composée d’une mixture d’anorthosite (une
roche contenant plus de 90% de plagioclase) surplombant une couche com-
posée d’intrusions magmatiques riches en Magnésium. Source: Paul Spudis
(Applied Physics Laboratory, Johns Hopkins University).
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raient constituer 20% des 60 premiers kilomètres de la croûte, le reste étant
composé d’anorthosite. Cependant, de nombreuses études tendent maintenant
à minimiser ce nombre (Jolliff et al., 2000). Cette première phase du magma-
tisme lunaire prend vraisemblablement fin au début du grand bombardement
tardif pour laisser place à une seconde phase qui voit la mise en place des mers
lunaires (Figure 1.8). En effet, les mers lunaires sont probablement le produit
de la refonte de cumulats beaucoup plus profond au sein du manteau lunaire
(∼ 400 km) (Shearer , 2006). Les mers lunaires recouvrent aujourd’hui 17% de
la surface lunaire (Hiesinger , 2006). La datation des échantillons ramenés par
Appolo et le comptage des cratères soutiennent la formation des mers lunaires
entre 4 et 1 milliard d’années avec une phase d’activité maximum entre 3.9 et
3 milliard d’années (Hiesinger et al., 2010).

Étant donné sa composition et la porosité résultante de 4 milliards d’années
de bombardement météoritiques, la densité de la croûte lunaire est partic-
ulièrement faible (Huang and Wieczorek , 2012; Han et al., 2014). D’après
les dernières estimations, rendues possibles grâce aux mesures du champ de
gravité d’une résolution sans précédent obtenues par la mission GRAIL de la
NASA, la densité moyenne au niveau des terres hautes serait de 2550 kg m−3

(Wieczorek et al., 2013). Ces données ont aussi permis de réévaluer à la baisse
l’épaisseur de la croûte à entre 34 et 44 km en moyenne avec une tendance à
être moins épaisse au niveau des mers lunaires.

La faible densité de sa croûte et son épaisseur non négligeable ont cer-
tainement joué un rôle important sur le volcanisme lunaire. En effet, les
magmas formés par fusion du manteau lunaire sont particulièrement denses,
de l’ordre de 3000 kg m−3 (Kiefer et al., 2012) en lien avec leur composition
basaltique riche en oxyde métallique, en particulier en oxyde de Fer FeO et
de Titane TiO2. Ainsi, la croûte lunaire, composée on l’a vu principalement
d’anorthosite, étant très légère, elle a sans aucun doute aussi été un filtre puis-
sant à l’éruption des magmas sur la lune, leur flottabilité ne leur permettant
pas d’être transporté jusqu’à la surface.

De nombreuses observations sous-tendent cette hypothèse. Par exemple, le
volcanisme à la surface est généralement lié à l’extraction d’une partie de cette
croûte de faible densité comme c’est le cas par exemple des mers lunaires qui se
sont mises en place au sein de larges bassins d’impacts Wieczorek et al. (2001).
De nombreuses évidences d’un volcanisme associé a des magmas plus silicieux,
peut être différenciés au sein de réservoirs crustales, ont aussi été observées à
la surface de la Lune (Jolliff et al., 2011; Glotch et al., 2010, 2011). Head and
Wilson (1992) ont estimé à 50 fois plus importants les volumes de magma mis
en place en profondeur que les volumes éruptés en surface. Cependant, bien
que ce rapport puisse donner de précieuses indications sur l’évolution ther-
mique et magmatique de la lune elle-même, il est de fait très peu contraint et
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Figure 1.8: Distribution des principales structures d’origines volcaniques à la
surface lunaire. Les mers lunaires apparaissent en rouge. Les bassins d’impact
supérieurs à 300 km apparaissent en pointillé. Les cratères à sol fracturé sont
marqués d’un triangle jaune, les dépôts pyroclastiques d’un carré noir, les
dômes et cônes avec un triangle vert et les rides sinueuses à l’aide d’une
ligne verte. Les abréviations utilisées sont: Au, Australe; Co, Cognitum; Cr,
Crisium; Fe, Fecundidatis; Fr, Frigoris; Ho, Humorum; Hu, Humboldtianum;
Ig, Ingenii; Im, Imbrium; In, Insularum; Ma, Marginis; Mo, Moscoviense;
Ne, Nectaris; Nu, Nubium; Or, Orientale, Se, Serenitatis; Sm, Smythii; Tr,
Tranquillitatis; Va, Vaporum. Source: Platz et al. (2015)

la part intrusive du magmatisme lunaire est encore mal connue. La détection
des déformations de surface induites par la mise en place d’intrusions magma-
tiques au sein de la croûte apparaît donc comme une première étape visant à
la meilleure caractérisation du magmatisme intrusif lunaire.

Deux manifestations principales à la surface de la lune ont été proposées
comme potentiellement résultantes de la mise en place d’intrusions magma-
tiques au sein de la croûte lunaire : les dômes à faible pente et les cratères à
sol fracturé.

• Les dômes à faible pente sont localisés en bordure ou dans les mers
lunaires, principalement sur la face visible (Figure 1.8 et 1.9 a, b).
Une quinzaine de ces dômes, possiblement d’origine intrusive, ont été
récemment décrits par Wöhler et al. (2007). Bien que leur morphologie
s’apparente à celle des laccolites terrestres, ils sont de manière générale
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beaucoup plus étalés que ceux sur Terre; pour une même épaisseur,
l’équivalent lunaire peut ainsi être deux fois plus large que son homo-
logue terrestre.

• Les cratères à sol fracturé sont des cratères d’impacts ayant subi des dé-
formations suite à leur formation. À peu près 200 de ces cratères ont été
répertoriés par Schultz (1976a), principalement autour des mers lunaires
(Figure 1.8 et 1.9 c, d, e, f). La principale caractéristique de ces cratères
est leur faible profondeur par rapport à celles des cratères non déformés.
En effet, certains cratères à sol fracturé peuvent être jusqu’à 2 km moins
profonds que leurs homologues non déformés. Leur sol, soit en forme de
dôme, soit plat séparé des bords du cratère par un imposant fossé cir-
culaire, est systématiquement caractérisé par d’importants réseaux de
fractures radiales, concentriques ou encore pentagonales (Figure 1.9 c,
d, e, f). Sur la base de leur profondeur, leur topographie ainsi que
leur niveau de déformation, Schultz (1976a) a postulé l’existence de six
grandes classes de déformation. La proximité de ces cratères avec les
mers lunaires, ainsi que la présence de produits volcaniques au sein de
certains d’entre eux, suggèrent qu’ils ont été déformés suite à la mise en
place de magma en profondeur sous leur sol.

Finalement, de nombreux reliefs au sein des mers lunaires, associés pour
l’instant à des volcans boucliers (Spudis et al., 2013), pourraient aussi bien
être la déformation en surface produite par de larges intrusions magmatiques
en profondeur.

1.3 Caractérisation de la mise en place d’une
intrusion magmatique à faible profondeur

1.3.1 Modèle statique de déformation d’une couche élas-
tique

Bien que la morphologie et les volumes de magma puissent être récupérés, à
partir d’observations directes ou de méthodes de prospection géophysique sur
Terre ou via les déformations induites à la surface des autres corps telluriques
du système solaire, ces informations seules ne donnent que peu d’indications
sur les mécanismes de mise en place de ces intrusions magmatiques. De nom-
breux travaux ont ainsi été centrés sur la modélisation des processus don-
nant lieu à ces déformations, dans le but de mieux comprendre le mécanisme
d’intrusion d’une part, mais aussi, de déduire des observations des informa-
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Figure 1.9: a) Appolo image AS15-91-12372 du dôme Valentine V1 et le
dôme V2 b) Lunar Orbiter image IV-133-H2 du dôme M13. Source: Wöhler
et al. (2009) c) Cratère à sol fracture Humboldt (Classe 1, 207 km de di-
amètre, (27.2◦S, 80.9◦E)), d) Gassendi (Classe 3, 110 km de diamètre, (17.5◦S,
39.9◦W)), e) Von Braun (Classe 5, 60 km de diamètre, (41.1◦N, 78.0◦W)) et
f) Oppenheimer (Classe 6, 208 km de diamètre, (35.2◦S, 166.3◦W)). Source:
Jozwiak et al. (2015)



1.3. Caractérisation de la mise en place d’une intrusion
magmatique à faible profondeur 17

tions sur le magma, les paramètres mécaniques de l’encaissant ou encore la
profondeur de l’intrusion au moment de sa mise en place.

La propagation d’un dyke dans un milieu élastique a été beaucoup étudiée
(Lister and Kerr , 1991; Rubin, 1995). En particulier, Lister and Kerr (1991)
ont montré que, à l’exception de la tête du dyke où les contraintes élastiques
induites par les roches encaissantes jouent un rôle important, la dynamique du
magma au sein du dyke est contrôlée par un équilibre entre la flottabilité et les
pertes de charge associées aux frottements visqueux sur les parois du conduit.
On a vu qu’un dyke peut se transformer en sill si celui-ci rencontre sa zone de
flottabilité neutre. Bien que la dynamique des dykes et des sills soit compa-
rable à forte profondeur (Lister and Kerr , 1991; Cruden et al., 2012), à faible
profondeur, la forme des laccolites suppose que les intrusions magmatiques se
mettent en place principalement par flexion des couches sus-jacentes (Johnson
and Pollard , 1973). Une pratique, courante en science planétaire, consiste à
modéliser ces laccolites par la déformation d’une plaque mince élastique, de
longueur fixée et égale à la taille de l’intrusion, soumise à une pression donnée
(Pollard and Johnson, 1973). Dans ces modèles statiques, cette pression, don-
nant lieu à la déformation, est soit prise constante sur la taille de l’intrusion et
égale au poids du magma (Pollard and Johnson, 1973; Wichman and Schultz ,
1996; Jozwiak et al., 2012), soit imposée suivant un profil décrivant la perte
de charge associée à un écoulement visqueux (Kerr and Pollard , 1998; Wöhler
et al., 2009). Cependant, dans aucun des cas, cette pression n’est reliée aux
paramètres de l’écoulement lui-même, i.e. volume ou taux d’injection. De
plus, ces modèles ne fournissent pas un cadre théorique suffisant à la com-
préhension de la dynamique de l’intrusion et sont donc incapables d’expliquer
la diversité des formes et des tailles observées. Enfin, ils considèrent la flexion
de la couche sus-jacente comme unique pression motrice à l’écoulement, sans
considérer le poids du magma lui-même, qui doit pourtant nécessairement
jouer un rôle sur la mise en place de l’intrusion.

1.3.2 Inférence sur la dynamique à partir de la géométrie

En l’absence d’un modèle dynamique, la géométrie des intrusions répertoriées
a souvent été utilisée pour en déduire des indications sur les processus de mise
en place et de croissance de ces intrusions. Ainsi, en utilisant les données
répertoriées sur les laccolites par Corry (1988), McCaffrey and Petford (1997)
proposent une loi de puissance empirique pour l’épaisseur des intrusions h0 en
fonction de leur longueur R, h0 = bRa ou a est l’exposant de la loi de puissance
et b une constante. Un exposant supérieur à l’unité indique que l’intrusion
croit préférentiellement en s’épaississant tandis qu’un exposant inférieur à
l’unité indique qu’elle croit plutôt par étalement.
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a) b)

Figure 1.10: a) Schéma de la formation des laccolites en deux étapes par
McCaffrey and Petford (1997). Épaisseurs en fonction de leur longueur de
différents types d’intrusions magmatiques à différentes locations. Figure ex-
traite de Cruden et al. (2012).

Les laccolites répertoriées par Corry (1988) montrent un exposant a < 1

(0.88± 0.1), interprété comme reflétant l’étalement de l’intrusion sur une cer-
taine distance sous forme d’un sill avant son épaississement (Figure 1.10). Ce
modèle est cohérent avec le modèle en deux étapes couramment accepté pour
la mise en place des laccolites (Johnson and Pollard , 1973; McCaffrey and
Petford , 1997). Premièrement, le magma s’étale latéralement au niveau de sa
zone de flottabilité neutre , i.e. a < 1 jusqu’à ce qu’un sill, caractérisé par
un rapport d’aspect assez large, soit formé. Ensuite, lorsque le sill est assez
large, il s’épaissit par flexion des couches sus-jacentes pour former un laccolite
caractérisé par une valeur de a > 1 (Johnson and Pollard , 1973; Koch et al.,
1981). Si la roche sus-jacente est soumise à des contraintes trop importantes,
des failles se forment au niveau des bords du sill et celui-ci s’épaissit unifor-
mément sur toute sa surface formant un bysmalite (Corry , 1988). Dans la
continuité de l’étude de McCaffrey and Petford (1997), Rocchi et al. (2002)
ont réalisé une étude détaillée du complexe intrusif de l’île d’Elbe en Italie
et ont trouvé un exposant a supérieur à l’unité, i.e. ∼ 1.5, interprété comme
étant la preuve de l’existence d’une phase dominée par l’épaississement de
l’intrusion dans la croissance de ces laccolites.

Des modèles plus récents conçoivent plutôt la formation des laccolites par
empilements successifs de sills, de grand rapport d’aspect, plutôt que par
l’injection d’un seul volume de magma fini à un temps donné (Menand , 2011).
En effet, ces modèles sont étayés par les expériences de Kavanagh et al. (2006)
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(Section 1.1.3) où il est montré qu’un sill peut se mettre en place à l’interface
entre deux couches de rigidité différentes, la rigidité de la couche sus-jacente
étant plus importante que celle de la couche sous-jacente. Dès lors, la mise
en place d’un sill, en refroidissant, procure un environnement favorable à la
mise en place d’un nouveau sill, soit au-dessus si la rigidité du sill solidifié est
inférieure à celle de la roche sus-jacente, soit en dessous dans le cas contraire.
Ce modèle de croissance a aussi été suggéré par de récentes études structurales
et stratigraphiques, notamment au niveau des intrusions de tailles intermédi-
aires dans les Henry Mountains (Horsman et al., 2005; Morgan et al., 2008;
Horsman et al., 2009; Menand , 2011). Ce modèle, à la différence des modèles
statiques exposés plus haut, a aussi l’avantage de pouvoir expliquer la struc-
ture aplatie au niveau du centre de certains laccolites (Morgan et al., 2008).
Cependant, ce modèle ne fournit pas de mécanisme ni ne permet d’expliquer
l’origine de la loi de puissance caractéristique de la géométrie de ces intru-
sions. De plus, il ne permet pas de relier la géométrie finale de l’intrusion aux
propriétés physiques de l’écoulement (volume, taux d’injection).

D’autres travaux ont aussi essayé d’expliquer la relation entre l’épaisseur
et la longueur de ces intrusions dans le cadre plus large de la théorie de la
propagation de fracture hydraulique (Bunger , 2008; Cruden et al., 2012). En
effet, selon que la dissipation d’énergie au sein de l’écoulement soit dominée
par des effets de viscosités ou des effets liés à la fracturation de la roche au
front, ainsi que si la fracture interagit avec la surface ou non, différentes lois
d’échelles pour l’épaisseur de la fracture en fonction de sa longueur sont atten-
dues (Savitski and Detournay , 2002; Bunger et al., 2005). Pour les intrusions
magmatiques peu profondes, i.e. pour des fractures qui interagissent avec la
surface, il a ainsi été montré que a = 1 si la dissipation d’énergie est dominée
par des effets de viscosité et a = 2 si elle est dominée par la fracturation.
Cependant, bien que ces résultats soient plus ou moins en accord avec les ob-
servations, cette théorie de permet cependant pas d’expliquer les différentes
morphologies observées.

Finalement, Cruden and McCaffrey (2002) ont réuni des données sur une
plus grande plage de longueurs, de petits filons de quelques dizaines de mètres
à des batholites de quelques centaines de kilomètres (Figure 1.10) et proposent
que l’épaisseur en fonction de la longueur des intrusions magmatiques forme
une distribution en forme de sigmoïde (dans une échelle logarithmique), avec
une pente maximum de 1.5 caractéristique des laccolites. Cependant, aucune
théorie sous-jacente ne soutient cette observation. De plus, les données de
Cruden et al. (2012) sur les larges sills mafiques contredisent cette affirmation
(Figure 1.3).
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1.3.3 Discussion

Bien que de nombreux modèles ont été proposés pour essayer de rendre compte
des observations, peu d’entre eux s’intéressent à la dynamique de l’intrusion
qui permettrait pourtant de relier la morphologie de ces intrusions aux pro-
priétés physiques de l’écoulement (caractéristiques des magmas, profondeur de
l’intrusion, taux d’injection). Afin de comprendre la morphologie des intru-
sions peu profondes, il apparaît donc important de s’intéresser à la dynamique
d’un tel écoulement.

Michaut (2011) a ainsi proposé un modèle théorique d’étalement d’un
magma visqueux sous une couche élastique d’épaisseur constante continuelle-
ment nourrie par un conduit vertical en son centre. Ce modèle diffère des
précédents par sa capacité à traiter la dynamique même de l’intrusion ainsi
que le poids du magma comme un moteur de l’écoulement. Les résultats et
la capacité de ce modèle à reproduire les observations sont discutés dans le
chapitre suivant.
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Michaut (2011) proposed a model for the spreading of a shallow depth
intermediate-size intrusion, in which magma is continuously injected at the
center and is accommodated by the bending of the overlying strata. In partic-
ular, the model differs from previous ones by considering both the dynamics
of the emplacement itself, in a sense that the radius is self-consistently deter-
mined, and the driving force associated with the magma weight. Both were
neglected in previous models. In the original paper from Michaut (2011), the
model was derived in both Cartesian and axisymmetric geometry and the re-
sults were presented in 2D. A similar model in 2D with an additional fracture
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criterion at the tip of the intrusion has been derived by Bunger and Cruden
(2011) and Hewitt et al. (2015) discussed more precisely the dynamics at the
contact line and the case of an elastic-plated gravity current spreading over
an inclined plane. In this chapter, we present a summary of the model and
the results for the spreading of an isoviscous elastic-plated gravity current
over a rigid horizontal surface in an axisymmetrical geometry. Results in this
geometry have been thoroughly studied by Lister et al. (2013) and this will
constitute the reference for more elaborate models in the manuscript.

2.1 Theoretical model

The model considers an isoviscous elastic-plated gravity current, i.e. an iso-
viscous fluid of viscosity ηh and density ρm spreading beneath a thin elastic
sheet of thickness d0 and above a semi infinite rigid layer (Michaut , 2011;
Bunger and Cruden, 2011) (Figure 2.1). The fluid is injected continuously at
the base and center of the current at a rate Q0 through a cylindrical conduit
of diameter a.

Elastic layer

Rigid layer

Figure 2.1: Model geometry and parameters.

2.1.1 Governing equations

Driving pressure

The intrusion develops over a length scale Λ that is much larger than its
thickness H (ε = H/Λ � 1). In the laminar regime and in axisymmetrical
coordinates (r,z), the Navier-Stokes equations within the lubrication assump-
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tion are

−∂P
∂r

+
∂

∂z

(
ηh
∂u

∂z

)
= 0, (2.1)

−∂P
∂z
− ρmg = 0, (2.2)

where u(r, z, t) is the radial velocity, g is the standard acceleration due to
gravity and P (r, z, t) is the pressure within the fluid. Integration of (2.2)
thus gives the total pressure P (r, z, t) within the flow. When the vertical
deflection h(r, t) of the upper elastic layer is small compared to its thickness
d0, i.e h� d0, we can neglect stretching of the upper layer and only consider
bending stresses. Therefore, the total pressure P (r, z, t) at a level z in the
intrusion is the sum of four contributions: the weight of the magma and of
the upper layer, the bending pressure Pe and the atmospheric pressure P0

P = ρmg(h− z) + ρrgd0 + Pe + P0, (2.3)

where h(r, t) is the intrusion thickness and ρr the density of the surround-
ing rocks. The bending pressure is given by the force per unit area that is
necessary for a vertical displacement h of the thin elastic plate (Turcotte and
Schubert , 1982)

Pe = De∇4
rh, (2.4)

where De is the flexural rigidity of the thin elastic layer, that depends on the
Young’s modulus E, Poisson’s ratio ν∗ and on the elastic layer thickness d0

as De = Ed3
0/ (12(1− ν∗2)).

Velocity field

At the contact with the elastic sheet z = h(r, t), the no-slip boundary condi-
tion hold; the tangential velocity is zero and the normal velocity is the rate of
height change (∂h/∂t). With ~n the normal to the surface and ~t the tangent,
we have

~n · ~u =
∂h

∂t
, (2.5)

~t · ~u = 0. (2.6)

The tangent vector is ~t = (1, ∂h/∂r). However, within the lubrication as-
sumption, the vertical component of the tangent vector scales as ε and thus,
is negligible compared to the radial component. Therefore, the boundary con-
dition (2.6) reduces to u(r, z = h, t) = 0. At the base of the flow, the same
boundary condition holds and u(r, z = 0, t) = 0.
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Equation (2.1) is integrated twice as a function of z using these boundary
conditions and the horizontal velocity is

u(r, z, t) =
1

2ηh

∂P

∂r

(
z2 − hz

)
. (2.7)

Injection rate

Assuming a Poiseuille flow within the cylindrical feeding conduit, the vertical
injection velocity wi(r, t) and constant injection rate Q0 are given by

wi(r, t) =

{
∆P

4ηhZc
(a

2

4
− r2) r ≤ a

2

0 r > a
2

, (2.8)

Q0 =
π∆Pa4

128ηhZc
, (2.9)

where ∆P is the initial overpressure within the melt at z = Zc.

Mass conservation

The fluid is assumed incompressible and a global statement of mass conserva-
tion gives

∂h

∂t
+

1

r

∂

∂r

(
r

∫ h

0

udz

)
= wi. (2.10)

Injecting (2.7) into (2.10), we find that the equation for the evolution of the
thickness in time and space reads

∂h

∂t
=

ρmg

12ηhr

∂

∂r

(
rh3∂h

∂r

)
+

De

12ηhr

(
rh3 ∂

∂r
∇4
rh

)
+ wi. (2.11)

It is composed of three different terms on the right hand side. The first term
represents gravitational spreading, i.e. spreading of the current under its own
weight. The second term represents the squeezing of the flow by the bending
of the upper elastic layer. Both terms are negative and induce spreading. The
last term represents fluid injection and is positive.
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2.1.2 Dimensionless equations

Equation (2.11) is nondimensionalized using a horizontal scale Λ, a vertical
scale H and a time scale τ given by

Λ =

(
De

ρmg

)1/4

, (2.12)

H =

(
12ηhQ0

ρmgπ

) 1
4

, (2.13)

τ =
πΛ2H

Q0

, (2.14)

in which scales are chosen such that Q0 = πΛ2H/τ . The length scale Λ

represents the flexural wavelength of the upper elastic layer, i.e. the length
scale at which bending stresses and gravity equally contribute to flow. The
height scale H is the thickness of a typical gravity current and the time scale τ
is the characteristic time to fill up a cylindrical flow of radius Λ and thickness
H at constant rate Q0. In addition, we can define a horizontal velocity scale
U = Λ/τ = (ρmgH

3) / (12ηhΛ) and a pressure scale ρmgH.
The dimensionless equation is

∂h

∂t
=

1

r

∂

∂r

(
rh3∂h

∂r

)
+

1

r

(
rh3 ∂

∂r
∇4
rh

)
+ H(

γ

2
− r)32

γ2

(
1

4
− r2

γ2

)
, (2.15)

where H is the Heaviside function and γ = a/Λ.
The dimensionless number γ is the dimensionless radius of the conduit

and does not significantly influence the flow; it is set to 0.02 in the following
(Michaut and Bercovici , 2009; Michaut , 2011).

2.1.3 A need for regularization

One of the main mathematical difficulty in solving equation (2.15) arises at
the contact line between the rigid support and the elastic plate. Indeed,
the assumption that the thickness of the fluid tends to zero at the contact
line leads to divergent viscous stresses, i.e. ηh∂u/∂z → ∞ and hence, the
theoretical immobility of the blister (Flitton and King , 2004; Lister et al.,
2013; Hewitt et al., 2015). This problem, known as the contact-line paradox,
is a well know problem for surface-tension driven flow such as the spreading
of a water droplet (Bertozzi , 1998; Snoeijer and Andreotti , 2013).
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The formal proof has been given by Flitton and King (2004) and can be
derived as follows. Suppose that (2.15) has a solution and the solution near
the contact line has the form

h(r, t) ∼ A(t)(R(t)− r)α. (2.16)

As r → R(t), the bending term dominates the gravitational term and (2.15)
reduces to

∂h

∂t
=

1

r

∂

∂r

(
rh3 ∂

∂r
∇4
rh

)
. (2.17)

Injecting (2.16) into (2.17) and keeping only the leading powers of R− r gives
∂R

∂t
Aα (R− r)α−1 +

∂A

∂t
(R− r)α = A4α(α− 1)(α− 2)

(α− 3)(α− 4)(α− 5)(R− r)4α−6.

The time derivative is locally dominated by its convective part at the tip,
the second term on the left is small compared to the first and therefore, by
equating the exponent of R− r, we obtain α = 5/3 and then

∂R

∂r
= −280

243
A3. (2.18)

Given that A > 0, this shows that (2.15) can only have solutions with retreat-
ing contact line (dR/dt < 0) but not with advancing contact line (dR/dt > 0)
(Lister et al., 2013; Flitton and King , 2004).

To mitigate this problem, one common approach is to add a thin prewetting
film, with thickness hf such that h → hf as r → ∞ (Figure 2.1). While the
solution will depend upon the prewetting film thickness hf and will not show
any convergence properties when hf → 0, we will see that the dependence in
hf is weak and the difference between different values for hf will be relatively
small (Lister et al., 2013; Hewitt et al., 2015). Unless otherwise specified,
we will often consider hf = 5 × 10−3 in the manuscript which represents the
smallest length scale with physical meaning (Section 2.3.1).

2.2 Results

For a small prewetting film thickness, i.e. hf � 1, the numerical resolution
of the equation (2.15) shows two asymptotic spreading regimes: a bending
regime where gravity is negligible and a viscous gravity current regime where
bending is negligible (Michaut , 2011; Bunger and Cruden, 2011; Lister et al.,
2013). In the following, we present the shape of the flow as well as scaling
laws that predict the evolution of the thickness at the center h0(t) and the
radius R(t) in each regime.
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Figure 2.2: Shape of the flow, i.e. thickness h(r, t) as a function of the radial
axis r at five different times indicated on the plot. Variables are dimensionless
and one needs to multiply by the characteristic scales (thickness, length or
time given by (2.13), (2.12) or (2.14)) to obtain dimensional values. For
t < 10, the intrusion is in the bending regime whereas for t > 10 the intrusion
is in the gravity current regime.

2.2.1 Bending regime

At early times, when R � Λ, gravity is negligible and the dynamics of the
spreading is governed by the bending of the upper layer.

In that case, the spreading is very slow and the interior has uniform di-
mensionless pressure P = ∇4

rh. The flow is bell-shaped and its thickness is
given by

h(r, t) = h0(t)

(
1− r2

R2(t)

)2

, (2.19)

with h0(t) the thickness of the intrusion at the center (Figure 2.2, t < 10)
(Michaut , 2011; Lister et al., 2013). In this regime, Lister et al. (2013) have
shown that the spreading is controlled by the propagation of a peeling by
bending wave at the intrusion front with dimensionless velocity c

c =
∂R

∂t
= h

1/2
f

( κ

1.35

)5/2

, (2.20)

where κ = ∂2h/∂r2 is the dimensionless curvature of the interior solution.
Using the propagation law (2.20) and the form of the interior solution (2.19),
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they find that the radius and the height of the intrusion evolve following

R(t) = 2.2h
1/22
f t7/22, (2.21)

h0(t) = 0.7h
−1/11
f t8/22, (2.22)

where the numerical prefactors match our simulations as well as the results of
Lister et al. (2013) (Figure 2.3) . The bell-shaped morphology of the flow in
this regime is very close to the dome-shaped morphology of solidified laccoliths
(Figure 1.4 c, d, e) (Michaut , 2011).
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Figure 2.3: Left: Dimensionless thickness at the center h0 versus dimensionless
time t. The dashed-line represents the scaling law in the bending regime
h0(t) = 0.7h

−1/11
f t8/22 and the dotted line in the gravity regime h0(t) = 1.6.

Right: Dimensionless radius R versus dimensionless time t. The dashed-line
represents the scaling law in the bending regime R(t) = 2.2h

1/22
f t7/22 and the

dotted line in the gravity regime R(t) = 1.2t1/2.

2.2.2 Gravity current regime

In contrast, when the radius R becomes larger than ∼ 4Λ, the weight of
the intrusion becomes dominant over the bending terms. The dimensionless
pressure is given by the hydrostatic pressure P = h and the intrusion enters
a classical viscous gravity current regime where bending terms only affect
the solution near the intrusion edge (Figure 2.2, t > 10) (Huppert , 1982a;
Michaut , 2011; Lister et al., 2013). In this second regime, while the thickness
tends to be a constant, the radius evolves as t1/2 (Figure 2.3). The flow is
therefore characterized by a small aspect-ratio h0/R and a constant thickness
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disk-like morphology close to the one shown by large mafic sills (Figure 1.4
a).

In between the bending and gravity regime, Lister et al. (2013) also de-
scribe a short intermediate regime where the peeling by bending continues to
control the propagation but where, due to the increasing effect of gravity, the
flow shows an interior flat-topped region (Figure 2.2, t = 38). This flat-topped
morphology is also observed for many laccoliths (Koch et al., 1981; Bunger
and Cruden, 2011).

Therefore, the model is able to reproduce the variety of shapes of inter-
mediate scale magmatic intrusions: from the dome shape and flat topped
morphology of laccoliths to the disk-like morphology of large mafic sills. In
the following, we quantitatively compare the model predictions to some ob-
servations on terrestrial planets.

2.3 Application to the spreading of shallow
magmatic intrusions

2.3.1 Observations versus predictions on Earth

Observations

Corry (1988) has made an extensive catalog of 900 laccoliths across the world.
In particular, Corry (1988) provides the thickness and the radius of 168 lac-
coliths. For 40 of them, he gives an estimate for the intrusion depth. These
laccoliths, who are mainly felsic in composition, show thicknesses that range
from 100 meters to 1 km with radii in between 1 and 10 km (Figure 2.5 a).
While most of the data are located in the United State (∼ 90%), the different
laccoliths are widely spread among the territory and variations in the flow
parameters between different laccoliths are most likely to be important.

In addition to the data from Corry (1988), we also consider in this study
the data provided by Rocchi et al. (2002) on 9 laccoliths nested in a Christmas
tree structure at Elba Island, Italy (Figure 2.4). The detailed mapping and
reconstruction of tectonic history made by Rocchi et al. (2002) provides the
parameters of each intrusive layer in the laccolith complex. In addition, for
this dataset, each laccolith is part of a larger intrusive system. Hence, except
for the overlying elastic layer thickness, assumed to be the intrusion depth
in the model, whose variation between laccoliths is given by Rocchi et al.
(2002), variability of the model parameters should be limited. The dispersion
is much smaller for this dataset; the radius ranges from 800 m to 5 km and
the thickness from 50 m to 700 m (Figure 2.5 a).
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Modified from Rocchie et al 2002

a)

b) c)

Figure 2.4: a): Cross section of western and central Elba Island where we
can see the Christmas tree structure of the laccolith complex and the main
laccolith units visible at the surface. b) Thickness versus radius of the different
laccolith units. c) Sketch of the corresponding location of these laccoliths
within the Christmas tree structure shortly after their formations. Figure
modified from Rocchi et al. (2002).

Finally, we also show the morphology of 25 large mafic sills whose thick-
nesses and radii are given by Cruden et al. (2012) (Figure 2.5 a). In order to
account for the intrinsic scale of different settings for each intrusion and com-
pare them to the model, the data have first to be nondimensionalized using
characteristic values for each intrusion parameters and also their depth, when
absent from the catalog.

Range of values for the parameters

In terrestrial settings, magma density ρm mainly depends on its composition
and varies between 2500 kg m−3 for felsic magmas to 2900 kg m−3 for more
mafic magmas. Reported intrusion depths vary from 180 to 2200 m for lac-
coliths in Corry (1988) and from 1.9 to 3.7 km for laccoliths at Elba Island.
Hence, for a Young’s modulus value of 10 GPa, the characteristic length scale
Λ varies between ∼ 1 km and ∼ 7 km for laccoliths. The density does not
affect much the value of Λ and the characteristic length scale for large mafic
sills, whose depths are not reported in Cruden et al. (2012) and set to 1.5 km,
is equal to ∼ 3 km.
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Figure 2.5: a) Thickness at the center h0 (m) versus radius R (m) for magmatic
intrusions from different datasets indicated on the plot. b) Dimensionless
thickness as a function of dimensionless radius. Characteristic thickness and
length are calculated from (2.13) and (2.12). Dashed lines: best fit for the
power law h0 = aRb for each dataset obtained from a linear least-square
regression in log-log space. r2 is the squared of the correlation coefficient, i.e.
Pearson product-moment correlation coefficient which gives an indication on
the goodness of the fit; 1 is total positive correlation and 0 is no correlation.
Dotted lines: predicted scaling law from the simulations h0 = bR8/7 with
b = 0.63 (black); b = 10 and b = 800 (blue dotted lines) are the values
required to bracket the observations from Corry (1988). We use ρm = 2500

kg m−3, Q0 = 10 m3 s−1 and ηh = 106 Pa s for felsic laccoliths and ρm = 2900

kg m−3, Q0 = 10 m3 s−1 and ηh = 102 Pa s for large mafic sills. Unless the
intrusion depth is given by the dataset, we use d0 = 1500 m. g = 9.81 m
s−2. c) and d), same plots but where we compared the laccoliths from Rocchi
et al. (2002) to a set of low-slope lunar domes given by Wöhler et al. (2009).
Lunar domes are nondimensionalized using g = 1.62 m s−2, ρm = 2900 kg
m−3, Q0 = 10 m3 s−1, ηh = 1 Pa s and d0, which is not given in the dataset,
is set to 1500 m. Purple dots correspond to lunar domes whose morphology
has been reevaluated using the topography obtained by the LOLA instrument
and crosses to the original data. In all cases, the Poisson’s ratio is ν∗ = 0.25.
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On Earth, laccoliths are generally formed by relatively evolved lavas that
may have differentiated from primitive magma in deep crustal magma cham-
bers, located some 5 to 15 km below the surface. The overpressures driving
magma ascent are typically 20 to 50 MPa (Stasiuk et al., 1993; Barmin et al.,
2002), which gives overpressure gradients of ∼ 103 Pa m−1. Lava viscosity at
eruption temperature ηh mainly depends on its composition and water con-
tent; close to its liquidus temperature, it can vary from 102 Pa s for mafic lavas
to 106 Pa s for felsic lavas (Shaw , 1972; Giordano et al., 2008; Whittington
et al., 2009; Chevrel et al., 2013). However, Wada (1994) shows that the dyke
width tends to increase with viscosity to the power 1/4 (Kerr and Lister ,
1995) and overall, the injection rate Q0 should be similar for different magma
compositions. Based on common effusion rate for lava flows on Earth, we take
Q0 ∼ 0.1 − 100 m3 s−1 (Pieri and Baloga, 1986; Harris et al., 2000; Castro
et al., 2013; Tuffen et al., 2013). The height scale H thus varies between 1

and 10 m for felsic laccoliths and between 0.1 and 1 m for large mafic sills.

Table 2.1: Range of values for the model parameters
Parameters Symbol Earth Moon Unit

Depth of intrusion d0 0.2− 2.7 0.5− 1.5 km
Young’s Modulus E 10 10 GPa
Poisson’s ratio ν∗ 0.25 0.25

Gravity g 9.81 1.62 m s−2

Magma density ρm 2500− 2900 2900 kg m−3

Magma viscosity ηh 102 − 106 1− 10 Pa s
Feeder dyke width a 1− 100 10 m

Depth of the melt source Zc 1− 10 500 km
Initial overpressure ∆P 20− 50 50 MPa

Injection rate Q0 0.1− 100 1− 104 m3 s−1

Characteristic scales Symbol Earth Moon Unit

Height scale H 0.1− 10 0.5− 1.5 m
Length scale Λ 1− 7 2.2− 12 km
Time scale τ 10−3 − 100 10−3 − 10 years

The model also considers a thin prewetting film of thickness hf whose
meaning in the application to the spreading of laccoliths is unclear. In par-
ticular, the model shows no convergence when hf tends to zero (Lister et al.,
2013). Hence, the thickness hf might be linked to some structural length scale
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at the front of the laccolith or to the natural imperfection of the flow geometry.
For a millimeter to centimeter scale film, the dimensionless hf varies between
10−4 and 10−2. For the purpose of the application, we choose the same value
than for the simulations, i.e. hf = 5 × 10−3. Further details on the effect of
hf is described in Appendix C.

Dimensionless data and comparison with the model

Each magmatic intrusion unit is made dimensionless using its characteristic
length scale Λ, which depends on the intrusion depth, and its characteristic
height scale, which is taken as either H = 6 m for felsic laccoliths or H = 0.6

m for large mafic sills (Figure 2.5). When the intrusion depth is not provided,
we use d0 = 1.5 km.

First, the dimensionless radius of laccoliths at Elba Island and most of
those from Corry (1988) is smaller than 4 consistent with their arrest in the
bending regime. The prediction of the model for the evolution of the thickness
h0 of the current as a function of its radius R can be easily derived from the
scaling laws (2.22) and (2.21) and should follow

h0 ∼ 0.3h
−1/7
f R8/7, (2.23)

which is consistent with the power law relationship h0 = bRa initially proposed
by McCaffrey and Petford (1997) (Section 1.3.2). To characterize the mean
trend in each population, we use a linear least-square regression in log-log
space to obtain a value for the coefficient a and b that best fit the observations.

We found h0 = 86R1.22 for the laccoliths at Elba island which is very
close to R1.14 predicted by the model (Figure 2.5, r2 = 0.96). Actually, the
geometry of these laccoliths is not well known and probably not perfectly
axisymmetrical. Hewitt et al. (2015) found that for a two dimensional flow,
h0 ∝ h

−1/7
f L10/7 where L is the half-length of the flow (10/7 ∼ 1.43). The best

fit value for the coefficient a then nicely inserts between the expected values
for the two geometries as noted by Michaut (2011).

In contrast, the prediction for the coefficient b is much smaller than the
value derived from the observations. Even for hf = 10−2, which would be an
upper bound for this parameter, the model predict b = 0.6, which is three
orders of magnitude smaller than the observations (Figure 2.5). Matching the
data to the model will require using a viscosity ηh for the magma abnormally
high, i.e. ηh ∼ 1015 Pa s or unreasonable injection rate, i.e. Q0 ∼ 1 km3 s−1.

The best fit power law relationship for the laccoliths from Corry (1988)
is h0 = 69R0.46 (r2 = 0.2). In that case, the exponent a is smaller than one
and does not agree with the model. This value for a, slightly smaller than
the value calculated directly on the data by McCaffrey and Petford (1997),
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was interpreted as reflecting the two-stage growth process historically invoked
for the formation of laccoliths (Section 1.3.2). However, the dispersion is
much more important in this dataset and is not taken into account in the
nondimensionalization which assumes the same parameters for all the different
laccoliths. The model is indeed able to bracket the observations for b varying
between 10 and 800. While this range of values is also much larger than the
predicted value, the variations in the parameters at different intrusion sites
might thus be able to explain the discrepancy between the model prediction
and the observations in this example.

Half of the large mafic sills show a dimensionless radius smaller than R = 4,
not consistent with their arrest in the gravity current regime (Figure 2.5). It
might suggest that these mafic sills have intruded shallower into the crust; for
instance, for d0 = 250 m, the characteristic length scale for the mafic sill is
smaller Λ = 800 m and 95% of the population show a dimensionless radius
larger than 4.

Nevertheless, their dimensionless thickness, which should tend to a con-
stant of order O(1) according to the model, is much larger than the expected
value and increases with the radius R. For a gravity current in a two dimen-
sional geometry, the thickness is indeed expected to increase with the length
of the sill, but as L1/4 (Michaut , 2011), i.e. with an exponent much smaller
than the value of 0.76 found for the coefficient a for large mafic sills (Figure
2.5, r2 = 0.9). Therefore, the model predictions hardly reconcile with the
observations for large mafic sills.

2.3.2 Low-slope domes on the Moon

Observations

On the Moon, 13 elongated low-slope domes, located around the lunar maria,
have been recently identified as potentially intrusive domes (Wöhler et al.,
2007, 2009). Wöhler et al. (2009) used an image-based 3D reconstruction
approach which relies on a combination of photoclinometry and shape from
shading techniques to determine the morphometric properties of each of these
lunar domes which results in a 10% error estimate on the intrusion thickness.
These data have since been updated by Mélanie Thiriet, an under graduate
student in our laboratory, who used the high resolution of the topography
obtained from the 64 ppd, ∼ 450 m/pixel (Zuber et al., 2009), LOLA gridded
topography data to reevaluate the thickness and the radius of some of these
potentially intrusive lunar domes (Figure 2.5).
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Range of values for the parameters

Given the basalt composition of most lunar rocks brought back from the lunar
maria by the Apollo missions, the lunar magmas are more likely to be mafic
in composition and we use ρm = 2900 kg m−3 for the lava density. Intrusion
depths, which are not given by Wöhler et al. (2009), should vary between 500

m and 5 km and in the following, we set d0 = 1.5 km for all the lunar domes.
Therefore, on the Moon, the larger lava density and the smaller gravity leads
to length scales 1.5 times larger than terrestrial ones. For instance, using
E = 10 GPa and d0 = 1.5 km, the characteristic length scale for a lunar
intrusion is ∼ 5 km and 3.3 km for a terrestrial laccolith.

The source of magma in the lunar interior is poorly constrained and more
likely to be deeper than on Earth; most of the mare basalt are thought to
be a product of melting initiated deep in the lunar mantle, deeper than 400

km (Shearer , 2006). Using the same value for the initial driving pressure,
∆P = 50 MPa, unless lunar magmas are likely to be more mafic and contain
fewer volatiles implying smaller driving pressure, and a depth of 500 km for
the magma source region, the overpressure gradient is only of 100 Pa m−1.
However, reported run out distance for some lava flows in the lunar maria are
very large and implies higher effusion rate than on Earth, i.e. Q0 = 103− 108

m3 s−1 (Crisp and Baloga, 1990; Zimbelman, 1998). Mare basalts, which
have lower concentration in alkalies than terrestrial basalts, should also have
a lower viscosity (Zimbelman, 1998). We take ηh = 1 Pa s and for injection
rate between Q0 = 1 − 104 m3 s−1, the typical height scale for lunar domes
varies between 0.5 and 1.5 m.

Predictions versus observations

After nondimensionalization, the lunar low-slope domes show a dimensionless
radius smaller than 4 consistent with their arrest in the bending regime (Figure
2.5). In addition, if we use Q0 = 10 m3 s−1 and the values of the parameters
listed above to calculate the height scale H, they are almost perfectly aligned
with the terrestrial laccoliths from Elba Island (Figure 2.5) (Michaut , 2011).
Indeed, the best fit for the power law h0 = bR8/7 for all the observations,
lunar domes + Elba Island laccoliths, is h0 = 103R1.14 with a high correlation
coefficient r2 = 0.91. Given that the same intrusion depth has been arbitrarily
chosen for all intrusions, the fit is surprisingly accurate.

Therefore, the isoviscous elastic-plated gravity current model supports the
intrusive origin of the lunar domes described by Wöhler et al. (2009) and their
arrest in the bending regime. In addition, it is able to explain the difference
between Earth laccoliths and lunar intrusive domes (Michaut , 2011).
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2.3.3 What causes the arrest of a shallow magmatic in-
trusion?

The model shows promising results in reproducing the overall morphology of
terrestrial laccoliths but lacks of a predictive criterion for their arrest. Frac-
turation is generally considered as the limiting mechanism for the spreading
of magmatic intrusions and in the following, we consider fracturation as a
possible mechanism for the arrest of magmatic intrusions into the bending
regime.

As the flow length increases, the pressure in the intrusion eventually de-
creases to the critical value equal to the pressure necessary for fracturing the
tip. In that case, fracturing at the tip might limit spreading and trigger the
arrest of a laccolith in the bending regime. The stress intensity factor KI for
a mode I fracture and a uniformly loaded crack situated close to a bound-
ary (i.e., R ∼ d0) can be approximated by (Dyskin et al., 2000; Bunger and
Emmanuel , 2005)

KI = KMM0d
−3/2
0 , (2.24)

where KM = 1.932 is a constant and M0 is the bending moment at the crack
tip given by

M0 = −D
(
∂2h

∂r2
+
ν∗

r

∂h

∂r

)∣∣∣∣
r=R(t)

. (2.25)

OnceKI reaches the fracture toughness limitKc, which is in the range ∼ 1−10

MPa m1/2 for crustal rocks and a mode I fracture (Lister and Kerr , 1991),
fracturing at the tip will limit the lateral extent of the intrusion.

Injecting the dimensional scaling law for the thickness h0 as a function of
the radius R (2.23) into the predicted flow shape in the bending regime (2.19)
gives the flow shape as a function of the radius R(t) of the laccolith

h(r, t) = 0.6H8/7Λ−8/7R(t)8/7

(
1− r2

R2(t)

)2

. (2.26)

Injecting (2.26) into (2.25) and (2.24) and inverting for the radius, one can
then found that the critical dimensionless radius for a fractured-limited flow
in the bending regime is

Rcr ∼
0.4E7/6H4/3K

7/6
m

K
7/6
c Λ7/3

d7/4, (2.27)

which, in terms of the parameters, reads

Rcr ∼ 2.2E7/12K7/6
m Q

1/3
0 η

1/3
h g1/4ρ1/4

m K−7/6
c , (2.28)
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and therefore mainly depends on the fracture toughness of the encasing rocks.
On can calculate that for typical crustal and magma parameters for terrestrial
laccoliths (Section 2.3) and the largest experimental reported value for the
parameter Kc = 10 MPa m1/2, the dimensionless critical radius is equal to
∼ 60 and therefore, still much larger than the dimensionless transition radius
between the bending and gravity regime R = 4. Therefore, while fracturation
might explain the arrest for large mafic sills, it does not provide a sufficient
mechanism for the arrest of laccoliths.

2.3.4 Discussion

Historical models for intermediate scale magmatic intrusions consider that
the main phase of laccolith growth and spreading require a two-stage process:
horizontal spreading of a sill followed by vertical inflation when the sill has
grown horizontally enough so that the magma has enough leverage on the
overlying layer to begin to bend it upward (Johnson and Pollard , 1973; Koch
et al., 1981). More recent models instead proposed that these intrusions form
as a series of sub-horizontally staked magma sheets (Morgan et al., 2008;
Menand , 2011). While both models are able to account for several geological
observations, they both lack a physical description of the intrusion process
and are then not able to explain the solidified morphology of these magmatic
intrusions in terms of the flow parameters (the injection rate, the magma
parameters and the intrusion depth) at the time of emplacement.

Michaut (2011) has developed a new approach to model intermediate-scale
intrusions such as sills, laccoliths or bysmaliths through a dynamic elastic-
plated gravity current model that considers both the bending and the own
weight of the magma as driving the flow. This model shows promising results
in predicting the variety of shapes of intermediate scale magmatic intrusions;
from the dome shape of laccoliths to the disk-like morphology of large mafic
sills. It allows relating the laccolith morphology to the crustal and magma
physical properties, and more importantly, to the injection rate.

The prediction of the model, especially the exponent of the thickness to
radius power law relationship, also fits the variability in the laccolith units at
Elba Island, hence providing for a physical explanation for the observed lac-
colith morphology. In addition, the model is also consistent with a two-stage
growth process; first, the lateral growth of a sill and then, when the conditions
of applicability for the model are met, i.e. R > h0 and R & d0, spreading and
thickening occur simultaneously (Michaut , 2011). Finally, the model shows
promising results in explaining the discrepancy between terrestrial laccoliths
and low-slope lunar domes. Therefore, it can be used to assess the intrusive
origin of intrusive candidates on other terrestrial planets.
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However, other questions remain open. First, we have shown that the
model hardly accounts for the absolute final value for both the thickness and
the radius of these laccoliths and that reconciliating predictions and observa-
tions requires abnormally high magma viscosity. In addition, we show that the
model does not offer a satisfactory explanation for the increase in large mafic
sill thickness with their diameter. Finally, we also show that fracturation
is not likely to stop a magmatic intrusion in the bending regime. Therefore,
other mechanisms, not taken into account in the model of Michaut (2011), are
required to understand the final morphology of these magmatic intrusions.

2.4 Towards a more realistic model for shallow
magmatic intrusions

In this manuscript, we propose to explore two important mechanisms that
have been neglected until now and will certainly influence the emplacement
of shallow magmatic intrusions in the crust of terrestrial planets: the effect of
a temperature-dependent rheology for the magma and the effect of an over-
burden characterized by a non-constant thickness.

The former has already shown important implications for the cooling of
lava domes (Bercovici , 1994; Bercovici and Lin, 1996; Balmforth and Craster ,
2004; Garel et al., 2014). Indeed, the viscosity of magma can vary by several
orders of magnitude during cooling (Shaw , 1972; Lejeune and Richet , 1995).
As the fluid cools, its composition and crystal content change which, in turn,
modifies the viscosity and the dynamics of the flow itself. The first part of the
manuscript deals with this matter and try to better understand the dynamics
of a cooling elastic-plated gravity current. In particular, in chapter 3, we
propose a model for the cooling of an elastic-plated gravity current with a
temperature-dependent viscosity and isothermal boundary conditions. This
model is next further refined to account for the heating of the wall rocks and
compared to the observations in chapter 4.

The second part of the manuscript addresses the second point and in par-
ticular, the problem of crater-centered intrusions with application to the en-
dogenous deformations observed at lunar floor-fractured craters. Indeed, these
impact craters on the Moon show important deformations that might be re-
lated to the emplacement of a shallow magmatic intrusion below their floor
(Schultz , 1976a). Chapter 5 presents the theoretical model and its application
to the deformations observed at floor-fractured craters. Then, chapter 6 takes
the study of floor-fractured craters one step further by looking at the grav-
itational signature of lunar floor-fractured craters in the light of the model
predictions.
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This thesis, closely combining theoretical models and observations, ex-
pands and generalizes the model of Michaut (2011) exposed in this chapter,
and sheds light on the final morphology of shallow magmatic intrusions on
one side and on the origin of lunar floor-fractured craters on the other side.
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Résumé partie II

Michaut (2011) a développé un modèle d’écoulement gravitaire sous une
couche élastique et sur un plan rigide qui permet de relier la morphologie
finale des intrusions magmatiques aux propriétés de l’écoulement. En par-
ticulier, l’écoulement, contraint par la réponse élastique sus-jacente, montre
deux différents régimes. Dans un premier régime, la flexion de la couche élas-
tique contrôle l’écoulement; l’intrusion est convexe, l’épaisseur évolue comme
le rayon à la puissance 8/7. Quand l’intrusion devient grande par rapport à la
longueur d’onde de flexure naturelle de la couche élastique, l’écoulement entre
dans un régime gravitaire dans lequel le poids du magma contrôle l’écoulement;
l’intrusion devient tabulaire, son rayon augmente comme le temps à la puis-
sance 1/2 et son épaisseur tend vers une constante.

L’application de ce modèle à la morphologie d’une dizaine de laccolites
sur l’île d’Elbe ainsi que certains dômes à faible pente sur la Lune est très
encourageante. En particulier, leur morphologie est cohérente avec leur arrêt
dans le régime élastique. Cependant, ce modèle sous-estime les dimensions
de ces laccolites et n’est pas non plus capable d’expliquer l’augmentation de
l’épaisseur des sills avec leur taille. En outre, il n’offre pas un cadre théorique
suffisant permettant d’expliquer pourquoi ces laccolites se sont arrêtés dans
le régime élastique sans entrer dans le régime gravitaire.

L’une des hypothèses du modèle de Michaut (2011) est que l’écoulement
est suffisamment rapide pour négliger le refroidissement de l’intrusion. Cepen-
dant, les magmas sont des fluides dont les propriétés dépendent considérable-
ment de la température. Lorsqu’un magma refroidit, sa composition ainsi que
son taux de cristaux évoluent, ce qui en retour, modifie la viscosité et la dy-
namique de l’écoulement. De nombreuses études ont montré que dans le cas
d’un écoulement gravitaire, la prise en compte de la rhéologie du magma, et
donc du refroidissement de l’écoulement, exerce une influence importante sur
la dynamique de l’écoulement lui-même.

Ainsi, dans le chapitre 3, nous complexifions le modèle de Michaut (2011)
pour prendre en compte le refroidissement de l’intrusion. Nous proposons un
modèle de refroidissement basé sur la croissance de couches limites thermiques
au sein du fluide et au contact avec l’encaissant. Dans un premier temps, la
température de la roche est maintenue constante et égale au solidus. Ce
modèle intègre aussi une rhéologie simplifiée pour le magma, qui permet no-
tamment de coupler l’écoulement et le champ de température, ainsi que la
chaleur produite lors de la cristallisation. Nous étudions la dynamique qui
résulte de ce couplage dans chaque régime séparément pour ensuite étudier
l’évolution globale.

Dans le régime élastique, l’anomalie thermique croît en même temps que
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l’intrusion, mais un peu moins vite. Ceci entraîne la formation d’une ré-
gion « froide » au niveau du front de l’intrusion. Dans le régime gravitaire,
l’épaisseur de l’écoulement est constante, les pertes de chaleur par conduction
compensent rapidement l’injection de fluide chaud et l’anomalie thermique
atteint un régime stationnaire. Dans chaque cas, une étude quantitative du
transport de la chaleur au sein du fluide nous permet de prédire l’évolution
de l’anomalie thermique en fonction des paramètres de l’écoulement.

Le couplage entre l’anomalie thermique et l’écoulement entraîne la ramifi-
cation de chaque régime en trois phases distinctes. Dans une première phase,
le refroidissement n’a pas encore d’effet sur l’écoulement et la dynamique est
celle d’un fluide isovisqueux chaud. Dans une deuxième phase, la viscosité
effective de l’écoulement augmente, l’écoulement ralentit et s’épaissit. Finale-
ment, la dynamique redevient comparable à celle d’un fluide isovisqueux, mais
cette fois, un fluide entièrement froid. Bien que ces phases soient communes
aux deux régimes, nous montrons que la viscosité effective, qui contrôle le
passage d’une phase à l’autre, n’est pas la même dans les deux régimes. Elle
est la viscosité moyenne d’une petite région au front dans le régime élastique
et la viscosité moyenne de l’écoulement dans le régime gravitaire. Dans le
chapitre 4, nous montrons que cette dynamique n’est que peu affectée par (1)
le chauffage de l’encaissant et (2) une rhéologie plus réaliste pour le magma.
Cependant, ceci nous permet de quantifier au premier ordre sur quelle dis-
tance l’intrusion chauffe, et donc potentiellement induit du métamorphisme,
dans la roche encaissante.

Le refroidissement permet d’expliquer l’importante épaisseur des laccolites.
En effet, le modèle prédit que leur épaisseur augmente non seulement avec leur
rayon, mais aussi avec le contraste de viscosité entre le magma « chaud » et
le magma « froid ». Ainsi, les dimensions des laccolites de l’île d’Elbe sont en
accord avec leur composition felsique et leur arrêt dans la troisième phase du
régime élastique. Cependant, ni sur Terre ni sur la Lune, l’entrée dans cette
phase de l’écoulement, qui correspond à la formation d’une région de viscosité
importante au front, n’entraîne l’arrêt des laccolites. Ceux-ci se solidifient
plus tard dans cette phase de l’écoulement. Les sills se sont quant à eux
probablement arrêtés dans le second régime gravitaire.

En conclusion, bien que le refroidissement nous permette d’expliquer au
premier ordre la dimension de ces intrusions, il n’a probablement pas directe-
ment provoqué leur arrêt. Celui-ci est peut-être simplement lié au tarissement
de la source de magma en profondeur. En effet, le temps pour atteindre la
transition augmente avec le contraste de viscosité. Si celui-ci est faible et
l’injection suffisante pour atteindre le régime gravitaire, l’intrusion se solidifie
sous forme de sill. Dans le cas contraire, elle se solidifie sous forme de lacco-
lite. Ceci pourrait expliquer la prédominance des laccolites felsiques dans la
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nature, leur contraste de viscosité plus important les rendant moins à même
d’atteindre le régime gravitaire avant un éventuel tarissement de la source.
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Temperature-dependent elastic-plated gravity currents have numerous ap-
plications in nature, from shallow magmatic intrusions to the flow of melt-
water below an ice sheet. We develop the general equations for an elastic-
plated gravity current with a temperature-dependent viscosity for constant
influx conditions. We show that the coupling between the thermal structure
and the flow itself results in important deviations from the isoviscous case. In
particular, the bending and gravity asymptotic regimes, characteristic of the
isoviscous case, both split into three phases: a first ’hot’ isoviscous phase, a
second phase where the flow effective viscosity and thickness drastically in-
crease and a third ’cold’ isoviscous phase. These three phases are controlled
by the extent of the thermal anomaly, for which we develop analytical scaling
laws. The effective flow viscosity is governed by the local thermal state at the
current tip in the bending regime while it is the average flow viscosity in the
gravity regime. In the end, the complete evolution of such an elastic-plated
gravity current depends on its thermal state at the transition between the
bending and gravity regimes. We provide a phase diagram which predicts
the different evolution scenarios as a function of the flow Peclet number and
viscosity contrast.

3.1 Introduction

Elastic-plated gravity currents involve the spreading of viscous material be-
neath an elastic sheet. The applications range from the emplacement of lava in
the shallow crust (Michaut , 2011; Bunger and Cruden, 2011) and melt-water
drainage below ice sheet (Das et al., 2008; Tsai and Rice, 2010) in geological
setting to the manufacture of flexible electronics and microelectromechanical
systems (MEMS) in engineering (Hosoi and Mahadevan, 2004).

When the thickness of the flow is small compared to its extent, lubrica-
tion approximation applies and the study of elastic-plated gravity currents
resumes to the study of a sixth order, non-linear partial differential equation
(Michaut , 2011; Lister et al., 2013; Hewitt et al., 2015) . However, the as-
sumption that the thickness of the fluid tends to zero at the contact line leads
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to divergent viscous stresses, and hence, a regularization condition is needed
at the front (Flitton and King , 2004; Lister et al., 2013; Hewitt et al., 2015).
One common approach is to add a thin prewetting film of fluid, thus avoiding
the requirement for any boundary conditions at the contact line (Lister et al.,
2013; Hewitt et al., 2015).

The dynamics of the spreading has been described in an axisymmetric
geometry for a Newtonian fluid with constant viscosity (Michaut , 2011; Lister
et al., 2013; Thorey and Michaut , 2014) and show two distinct regimes of
evolution. First, gravity is negligible and the peeling of the front is driven by
bending of the overlying layer; the interior is bell-shaped, the radius evolves
as t8/22 and the thickness as t7/22. When the radius becomes larger than 4Λ,
where Λ is the flexural wavelength of the upper layer, the weight of the current
becomes dominant over the bending terms and the flow enters a gravity current
regime (Huppert , 1982a). In this regime, the thickness profile develops a flat
top with bent edges, the radius evolves as t1/2 while the thickness tends to
a constant. Different analogue experiments of isoviscous flows confirm these
theoretical results (Dixon and Simpson, 1987; Lister et al., 2013).

However, in many real geological settings, the isothermal/isoviscous as-
sumption are not valid. For instance, the viscosity of magmas, produced by
partial melting of the upper mantle, can vary by several orders of magnitude
(Shaw , 1972; Lejeune and Richet , 1995). Therefore, as the fluid flows, it cools
down, its composition and crystal content change which, in turn, modifies the
viscosity and the dynamics of the flow. Several studies have shown that, for
a gravity current, this coupling between the cooling and the flow itself results
in important deviations from the isoviscous case (Bercovici , 1994; Bercovici
and Lin, 1996; Balmforth and Craster , 2004; Garel et al., 2014).

In this paper, we examine how the spreading of an elastic-plated gravity
current is affected by the cooling itself. In particular, we consider the problem
of an elastic-plated gravity current whose viscosity depends on temperature
according to a prescribed rheology η(T ). This gives rise to a set of two coupled
non-linear equations that we solve numerically. We study the flow thermal
structure and its effect on the dynamics through the rheology in each regime
separately. In both regimes, we identify different “thermal” phases of prop-
agation that we characterize by different scaling laws. We then discuss the
implications of our results regarding the evolution with bending and gravity.
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3.2 Theory

3.2.1 Formulation

We model the axisymmetric flow of fluid below an elastic layer of constant
thickness d0 and above a semi infinite rigid layer (Figure 3.1). The assumption
that the thickness of the fluid h(r, t) tends to zero at the contact line leads
to divergent viscous stresses and to the theoretical immobility of the current
(Flitton and King , 2004). To avoid problem at the contact line, we consider
a thin prewetting film of thickness hf (Lister et al., 2013) (Figure 3.1).

The fluid is injected continuously at the base and center of the current at
a constant rate Q0 through a conduit of diameter a. The hot fluid is intruded
at temperature Ti and cools through the top and bottom by conduction in the
surrounding medium, whose temperature is considered constant and equal to
T0. In using a fixed temperature at the flow boundary, we essentially assume
that the fluid is bounded by a medium with infinite thermal conductivity.

Conductive cooling

Figure 3.1: Model geometry and parameters. The vertical scale is exaggerated.

As it cools, the viscosity of the fluid increases following a prescribed
temperature-dependent rheology η(T ) given by

η(T ) =
ηhηc(Ti − T0)

ηh(Ti − T0) + (ηc − ηh)(T − T0)
, (3.1)

where ηh and ηc are the viscosities of the hottest and coldest fluid at the
temperature Ti and T0 respectively (Bercovici , 1994). Although this rheology
is largely simplified, the inverse dependence of viscosity on temperature cap-
tures the essential behavior of a viscous fluid, i.e. the viscosity variations are
the largest where the temperature is the coldest (Shaw , 1972; Marsh, 1981;
Lejeune and Richet , 1995; Giordano et al., 2008).
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3.2.2 Pressure

The intrusion develops over a length scale Λ that is much larger than its thick-
ness H (H � Λ). In the laminar regime and in axisymmetrical coordinates
(r,z), the Navier-Stokes equations within the lubrication approximaton are

−∂P
∂r

+
∂

∂z

(
η(T )

∂u

∂z

)
= 0, (3.2)

−∂P
∂z
− ρmg = 0, (3.3)

where u(r, z, t) is the radial velocity, ρm the fluid density, g the standard accel-
eration due to gravity and P (r, z, t) the pressure within the fluid. Integration
of (3.3) gives the total pressure P (r, z, t) within the flow. When the vertical
deflection h(r, t) of the upper elastic layer is small compared to its thickness
d0, i.e h0 � d0, we can neglect stretching of the upper layer and only consider
bending stresses. Therefore, the total pressure P (r, z, t) at a level z in the
current is the sum of three contributions: the weight of the magma and of the
upper layer and the bending pressure

P = ρmg(h− z) + ρrgd0 +De∇4
rh, (3.4)

where h(r, t) is the flow thickness, ρr the density of the surrounding rocks
and De is the flexural rigidity of the thin elastic layer, that depends on the
Young’s modulus E, the Poisson’s ratio ν∗ and on the elastic layer thickness
d0 as De = Ed3

0/ (12(1− ν∗)).

3.2.3 Injection rate

Assuming a Poiseuille flow within the cylindrical feeding conduit, the vertical
injection velocity wi(r, t) and injection rate Q0 are given by

wi(r, t) =

{
∆P

4ηhZc
(a

2

4
− r2) r ≤ a

2

0 r > a
2

, (3.5)

Q0 =
π∆Pa4

128ηhZc
, (3.6)

where ∆P is the initial overpressure within the melt at z = Zc.
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3.2.4 Heat transport equation

Local energy conservation

In the laminar regime and in axisymmetrical coordinates (r,z), the local energy
conservation equation within the lubrication assumption is

D

Dt
(ρmCp,mT + ρmL(1− φ)) = km

∂2T

∂z2
, (3.7)

where T (r, z, t) is the fluid temperature and ρm, km and Cp,m are the density,
thermal conductivity and specific heat of the fluid. Here, we also account for
energy release by crystallization of the fluid, which is a non negligible source
of heat for magmas; φ(r, z, t) is the crystal fraction in the melt and L the
latent heat of crystallization. In this model, the crystals are considered only
as a source/sink of energy as they melt/form during flow emplacement. In
particular, the physical properties of the fluid are not modified by the presence
of crystals.

Following a common approximation, we assume that the crystal fraction
is a linear function of temperature over the melting interval

φ =
TL − T
TL − Ts

, (3.8)

where TS and TL are the solidus and liquidus temperatures of the magma
(Hort , 1997; Michaut and Jaupart , 2006). In addition, we assume that the
fluid is injected at its liquidus temperature , i.e. Ti = TL and, for simplicity,
that the surrounding rock temperature is constant and equal to the solidus
T0 = TS. With these approximations, the local energy equation (3.7) resumes
to

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
=

St

St+ 1
κm

∂2T

∂z2
, (3.9)

where u(r, z, t) and w(r, z, t) are the radial and vertical fluid velocities, St =

(Cp,m(Ti − T0)) /L is the Stefan number and κm is the fluid thermal diffusivity
κm = km/(ρmCp,m). We use an integral balance method to solve the heat
transport equation (3.9). This theory is based on the integral-balance method
of heat-transfer theory of Goodman (1958), in which the vertical structure
of the temperature field is represented by a known function of depth that
approximates the expected solution.

Integral balance solution for the temperature T (r, z, t)

Following Balmforth and Craster (2004), we model the cooling of the flow
through the growth of two thermal boundary layers: one growing downward
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from the top and a second growing upward from the base. As we consider
homogeneous thermal properties for the surrounding rocks, we assume that
the two thermal boundary layers grow symmetrically and have the same thick-
ness δ(r, t) (Figure 3.1). We use the following approximation for the vertical
temperature profile T (r, z, t)

T =


Tb − (Tb − T0)(1− z

δ
)2 0 ≤ z ≤ δ

Tb δ ≤ z ≤ h− δ
Tb − (Tb − T0)(1− h−z

δ
)2 h− δ ≤ z ≤ h

, (3.10)

where Tb(r, t) is the temperature at the center of the flow. The integral balance
solution in (3.10) assumes a symmetry around z = h/2 and a decrease of the
temperature in the two thermal boundary layers down to the surrounding
rock temperature T0 (Balmforth and Craster , 2004). In addition, it assumes a
uniform temperature Tb in between the thermal boundary layers. As the fluid
is injected at temperature Ti, we have Tb(r, t) = Ti as long as δ < h/2 (Figure
3.1). However, if the two thermal boundary layers connect, then δ = h/2 and
Tb ≤ Ti. This profile assures the continuity of the temperature and heat flux
within the flow.

Integral balance equation

We begin by integrating the local energy conservation equation (3.9) sepa-
rately over the two thermal boundary layers. The integration over the bottom
thermal layer, i.e. from the base, z = 0 to a level z = δ gives

∂

∂t

(
δ(T̄ − Tb)

)
+

1

r

∂

∂r

(
rδ(uT − ūTb)

)
+ δ

(
∂Tb
∂t

+ u
∂Tb
∂r

)
= − κm

1 + St

∂T

∂z

∣∣∣∣
z=0

+ wi(Ti − Tb), (3.11)

where the bars indicate the vertical average over the bottom thermal boundary
layer

f =
1

δ

∫ δ

0

fdz,

which will be determined once the horizontal flow velocity is derived, Tb(r, t)
is the temperature at z = δ, wi(r) is the vertical injection velocity and we
have used the nullity of the thermal gradient at z = δ and the local mass
conservation

1

r

∂ru

∂r
+
∂w

∂z
= 0. (3.12)
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The integration over the top thermal layer, i.e., from the level, z = h − δ to
the top z = h gives

∂

∂t

(
δ(T̄ − Tb)

)
+

1

r

∂

∂r

(
rδ(uT − ūTb)

)
+ δ

(
∂Tb
∂t

+ u
∂Tb
∂r

)
=

κm
1 + St−1

∂T

∂z

∣∣∣∣
z=h

, (3.13)

where, in addition to the local mass conservation (3.12) and the fact that the
thermal gradient at z = h − δ is equal to zero, we have used the kinematic
boundary condition in z = h(r, t)

∂h

∂t
+ u

∂h

∂r
= w. (3.14)

Therefore, the heat balance equation, i.e. the heat equation (3.9) inte-
grated over the flow thickness, is obtained by adding (3.11) and (3.13). Using
(3.10) to derive the conductive fluxes, we finally obtain

∂

∂t

(
δ(T̄ − Tb)

)
+

1

r

∂

∂r

(
rδ(uT − ūTb)

)
+ δ

(
∂Tb
∂t

+ u
∂Tb
∂r

)
= − 2κm

(1 + St−1)

(Tb − T0)

δ
+
wi
2

(Ti − Tb). (3.15)

3.2.5 Equation of motion

A global statement of mass conservation gives

∂h

∂t
+

1

r

∂

∂r

(
r

∫ h

0

udz

)
= wi. (3.16)

To obtain an equation for the flow thickness, we first note that the chosen
vertical structure of the temperature field (3.10) is symmetric around h/2,
and thus, because the boundary condition are the same at z = 0 and z = h,
the viscosity and velocity u possess the same symmetry. Taking advantage of
this symmetry, we integrate once (3.2) using ∂u

∂z

∣∣
z=h/2

= 0 to get

∂u

∂z
=

1

η(z)

∂P

∂r

(
z − h

2

)
. (3.17)

Using no-slip boundary conditions at the top and the bottom of the flow, i.e.
u(r, z = 0, t) = u(r, z = h, t) = 0, (3.16) can be rewritten as

∂h

∂t
=

1

r

∂

∂r

(
r

∫ h

0

∂u

∂z
zdz

)
+ wi. (3.18)
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Finally, injecting (3.17) into (3.18) gives the equation for the flow thickness
evolution in axisymmetric coordinates

∂h

∂t
=

1

r

∂

∂r

(
r

(
ρmg

∂h

∂r
+De

∂

∂r

(
∇4
rh
))(∫ h

0

1

η(y)

(
y − h

2

)
ydy

))
+wi. (3.19)

In addition, integration of (3.17) using the no-slip boundary condition at the
base of the flow gives

u(r, z, t) =
∂P

∂r

∫ z

0

1

η(y)

(
y − h

2

)
dy. (3.20)

where
1

η(y)
=

1

ηc
+
ηc − ηh
ηhηc

T (y)− T0

Ti − T0

. (3.21)

T (y) being a polynomial, integrals in (3.19), (3.20) as well as the averaged
quantities u and uT over the thermal boundary layer in (3.15) can easily be
calculated.

3.2.6 Dimensionless equations

We use the characteristic temperature interval ∆T = Ti−T0 to nondimension-
alize temperatures. The dimensionless integral balance approximation (3.10)
becomes

θ =


Θb

(
1− (1− z

δ
)2
)

0 ≤ z ≤ δ

Θb δ ≤ z ≤ h− δ
Θb

(
1− (1− h−z

δ
)2
)

h− δ ≤ z ≤ h

, (3.22)

where θ(r, z, t) is the dimensionless temperature and Θb = Tb−T0
Ti−T0 . Finally,

equations (3.15) and (3.19) are nondimensionalized using a horizontal scale
Λ, a vertical scale H and a time scale τ given by

Λ =

(
De

ρmg

)1/4

, (3.23)

H =

(
12ηhQ0

ρmgπ

)1/4

, (3.24)

τ =
πΛ2H

Q0

, (3.25)

where Λ represents the flexural wavelength of the upper elastic layer (Michaut ,
2011), H the characteristic thickness of an isoviscous constant flux gravity cur-
rent with viscosity ηh (Huppert , 1982b) and τ the characteristic time to fill up
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a cylindrical flow of radius Λ and thickness H at a constant rate Q0. In addi-
tion, we can define a horizontal velocity scale U = Λ/τ = (ρmgH

3) / (12ηhΛ)

and a pressure scale ρmgH.
The dimensionless equations are

∂h

∂t
=

12

r

∂

∂r

(
r

(
∂h

∂r
+

∂

∂r

(
∇4
rh
))

I1(h)

)
+ wi, (3.26)

∂

∂t

(
δ(θ̄ −Θb)

)
= −1

r

∂

∂r

(
rδ(uθ − ūΘb)

)
− δ

(
∂Θb

∂t
+ u

∂Θb

∂r

)
− 2Pe−1Stm

Θb

δ
+
wi
2

(1−Θb), (3.27)

wi = H(
γ

2
− r)32

γ2

(
1

4
− r2

γ2

)
, (3.28)

u(r, z, t) = 12

(
∂h

∂r
+

∂

∂r

(
∇4
rh
))

I0(z), (3.29)

with

I0(z) =

∫ z

0

(ν + (1− ν)θ(y))

(
y − h

2

)
dy, (3.30)

I1(z) =

∫ z

0

(ν + (1− ν)θ(y))

(
y − h

2

)
ydy. (3.31)

H is the Heaviside function and γ, Pe, Stm and ν are the four dimensionless
numbers that control the dynamics of the flow

γ =
a

Λ
, (3.32)

Pe =
H2

κmτ
, (3.33)

Stm =
Cp,m (Ti − T0)

Cp,m (Ti − T0) + L
, (3.34)

ν =
ηh
ηc
. (3.35)

γ is the dimensionless radius of the conduit, it does not significantly influence
the flow and is set to 0.02 in this study (Michaut and Bercovici , 2009;Michaut ,
2011); Pe is the Peclet number which compares the vertical diffusion of heat
to the horizontal advection in the interior; Stm is a modified Stefan number
which represents the ratio of sensible heat between solidus and liquidus to the
total energy of the fluid at the liquidus temperature and ν is the maximum
viscosity contrast, i.e. the ratio between the hottest and coldest viscosity.
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3.2.7 Further simplifications

3.2.7.1 Heat equation

In the end, the heat balance equation (3.27) can reduce to

∂

∂t

(
δ(θ̄ − 1)

)
+

1

r

∂

∂r

(
rδ(uθ − ū)

)
= −2Pe−1Stm

Θb

δ
. (3.36)

Indeed, if the thermal boundary layers exist, Θb = 1, δ is the variable quantity
and (3.27) directly reduces to (3.36). In contrast, if the thermal boundary
layers merge, δ = h/2 and the variable quantity is Θb. In this case, the heat
balance equation (3.27) reduces to

∂hθ̄

∂t
+

1

r

∂

∂r

(
rhuθ

)
−Θb

(
∂h

∂t
+

1

r

∂

∂r
(rhū)

)
= −8StmPe

−1 Θb

h

+wi(1−Θb), (3.37)

which, by using (3.16), rewrites

∂hθ̄

∂t
+

1

r

∂

∂r

(
rhuθ

)
= wi − 8StmPe

−1 Θb

h
. (3.38)

Equation (3.38) also corresponds to (3.36) when δ = h/2.
Following Balmforth and Craster (2004), we rewrite (3.36) using a new

variable ξ = δ(1− θ)

∂ξ

∂t
+

1

r

∂

∂r
(rūξ)− 1

r

∂

∂r

(
rδ(uθ − ūθ̄)

)
= 2Pe−1Stm

Θb

δ
, (3.39)

where our unknown Θb or δ can be calculated directly from the expression of
ξ using δ = h/2 or Θb = 1 respectively

Θb(r) =

{
1 if ξ ≤ ξt
3
2
− 3ξ

h
if ξ > ξt

, δ(r) =

{
3ξ if ξ ≤ ξt

h(r, t)/2 if ξ > ξt
,

with ξt = h/6.
The second term on the left hand side of (3.39) contains advection by the

vertically integrated radial velocity while the third term contains a correction
accounting for the vertical structure of the temperature field. The term on
the right is the loss of heat by conduction in the surrounding medium.
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3.2.7.2 Average quantities

The average velocity over a thermal boundary layer u reads

u =
1

δ

∫ δ

0

udz = u(r, δ, t)− 1

δ

∫ δ

0

∂u

∂z
zdz (3.40)

=
12

δ

∂P

∂r
(δI0(δ)− I1(δ)) , (3.41)

where P (r, z, t) = h+∇4
rh is the dimensionless dynamic pressure and we have

used (3.17) in (3.40). The average rate of heat advected uθ over a thermal
boundary layer reads

uθ =
1

δ

∫ δ

0

uθdz =
1

δ

(
[uG(z)]δ0 −

∫ δ

0

G(z)
∂u

∂z
dz

)
=

12

δ

∂P

∂r
(G(δ)I0(δ)− I2(δ)) , (3.42)

where

G(z) =
Θbz

2

3δ2
(3δ − z) (3.43)

is a primitive of θ when z < δ and

I2(z) =

∫ z

0

(ν + (1− ν)θ(y))G(y)

(
y − h

2

)
dy. (3.44)

Therefore, we have

uθ − uθ =
12

δ

∂P

∂r

(
I0(δ)

(
G(δ)− δθ

)
+ θI1(δ)− I2(δ)

)
, (3.45)

where the average temperature over a thermal boundary layer is θ = 2Θb/3.

3.2.8 Summary of the equations

In the end, the coupled equations governing the cooling of an elastic-plated
gravity current are

∂h

∂t
− 12

r

∂

∂r

(
rI1(h)

∂P

∂r

)
= H(

γ

2
− r)32

γ2

(
1

4
− r2

γ2

)
, (3.46)

∂ξ

∂t
+

1

r

∂

∂r
(r (ūξ − Σ)) = 2Pe−1Stm

Θb

δ
, (3.47)

with
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Θb(r) =

{
1 if ξ ≤ ξt
3
2
− 3ξ

h
if ξ > ξt

, δ(r) =

{
3ξ if ξ ≤ ξt

h(r, t)/2 if ξ > ξt
,

u =
12

δ

∂P

∂r
(δI0(δ)− I1(δ)) , (3.48)

Σ =
∂P

∂r
(8I1(δ)Θb − 12I2(δ)) , (3.49)

where P = h+∇4
rh is the dimensionless pressure andH the Heaviside function.

The expression of I0(δ), I1(h), I1(δ) and I2(δ) as well as the numerical scheme
used to solve equations (3.46) and (3.47) are given in Appendix A.1.

3.2.9 Preliminary results for an isothermal flow

For a constant injection rate, a small prewetting film thickness, i.e. hf � 1

and a viscosity contrast ν set to 1, numerical resolution of (3.46) shows two
asymptotic spreading regimes (Michaut , 2011; Lister et al., 2013).
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Figure 3.2: Left: Dimensionless thickness at the center h0 versus dimensionless
time t. Dotted-lines: scaling laws in the bending regime h0 = 0.7h

−1/11
f t8/22

and in the gravity regime where h0 tends to a constant. Right: Dimensionless
radius R versus dimensionless time t. Dotted-lines: scaling laws in the bending
regime R = 2.2h

1/22
f t7/22 and in the gravity current regime R ∝ t1/2.

At early times, when R � Λ, gravity is negligible and the spreading
dynamics is governed by the bending of the upper layer. The spreading is
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very slow and the interior has uniform pressure P = ∇4
rh. The flow is bell-

shaped and its thickness is given by

h(r, t) = h0(t)

(
1− r2

R2(t)

)2

, (3.50)

with h0(t) the thickness of the current at the center (Michaut , 2011; Lister
et al., 2013). In this regime, Lister et al. (2013) have shown that the spreading
is controlled by the propagation of a peeling by bending wave at the flow front
with dimensionless velocity c

c =
dR

dt
= h

1/2
f

( κ

1.35

)5/2

, (3.51)

where κ = ∂2h/∂r2 is the dimensionless curvature of the interior solution.
Using the propagation law (3.51) and the form of the interior solution (3.50),
Lister et al. (2013) predicted that, in this regime, the flow radius and height
evolve following

h0(t) = 0.7h
−1/11
f t8/22, (3.52)

R(t) = 2.2h
1/22
f t7/22, (3.53)

where the numerical pre-factor obtained in our simulations match those of
Lister et al. (2013) (Figure 3.2).

In contrast, when the radius R becomes larger than 4Λ (R >> Λ), the
weight of the current becomes dominant over the bending terms. The pressure
is given by the hydrostatic pressure P = h and the current enters a classical
gravity current regime where bending terms only affect the solution near the
edge of the current (Huppert , 1982a; Michaut , 2011; Lister et al., 2013). In
this second regime, the radius evolves as t1/2 and the thickness tends to a
constant (Figure 3.2).

In the following, we study the effect of the cooling on the flow dynamics
in both regimes separately. We first describe the thermal structure for an
isoviscous flow, i.e. ν = 1 and then study the effect of the temperature-
dependent viscosity on the flow dynamics without crystallization, i.e Stm = 1.
Finally, we introduce crystallization by setting Stm < 1. For simplicity, we
present the results for a given film thickness (hf = 5 × 10−3); results for
different film thicknesses are shown in Appendix C.

3.3 Evolution in the bending regime

We first concentrate on the case in which only bending contributes to the
dynamic pressure. The governing equations are thus (3.46) and (3.47) where
P = ∇4

rh.
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3.3.1 Thermal structure for an isoviscous flow, effect of
Pe

The current cools by conduction and thermal boundary layers form at the
contact with the surrounding medium. These boundary layers first connect
at the tip of the flow, where the small thickness induces an important cooling
(Figure 3.3). A region of cold fluid forms at the front.

As the current thickens with time, a balance between advection and diffu-
sion of heat is never reached in the interior of the current. The hot thermal
anomaly grows in extent with time but slower than the current itself and the
cold fluid region at the tip grows. For instance, for Pe = 100, while the region
of cold fluid extends over about 10% of the current at t = 0.5, it extends over
about 20% at t = 10 (Figure 3.3).

The smaller Pe, the more important the conductive cooling and the larger
the cold region (Figure 3.4 and 3.5). For instance, at t = 10, while the cold
region extends over about 20% of the current for Pe = 100, it extends over
more than 70% for Pe = 1 (Figure 3.4).
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Figure 3.3: Snapshots of the flow thermal structure θ(r, z, t) at different times
indicated on the plot. Dashed lines represent the thermal boundary layers.
Solid grey lines are isotherms for θ = 0.2, 0.4, 0.6 and 0.8. Here, ν = 1.0,
Pe = 100, Stm = 1.
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Figure 3.4: Snapshots of the flow thermal structure θ(r, z, t) for different sets
(ν,Pe) with ν = 1, 0.1, 0.01 and 0.001 and Pe = 1, 10, 100 and 1000 at
t = 10. While Pe controls the thermal structure of the flow, it has only a
small influence on the flow aspect ratio which is controlled by ν.

3.3.2 Thickness and temperature profile, effect of ν

When accounting for the temperature dependence of the viscosity, the region
of cold fluid at the tip is marked by a higher viscosity and enhances flow
thickening at the expense of spreading. The larger the viscosity contrast, the
larger the aspect ratio h0/R (Figure 3.4). For instance, for the same value
of Pe = 1, while the aspect ratio is 0.7 for ν = 1 at t = 10, it is 4.2 at
the same time for ν = 10−3 (Figure 3.4). Nevertheless, the shape of the flow
remains essentially self-similar, i.e. well described by (3.50) and cannot be
differentiated from the shape of an isoviscous current if the thickness and the
radial coordinates are rescaled by the thickness at the center h0(t) and radius
R(t) (Figure 3.5).
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Figure 3.5: Left: thickness normalized by the thickness at the center
h(r, t)/h0(t) versus radial axis normalized by the current radius r/R(t) at
different times indicated on the plot for Pe = 1.0 and ν = 1.0. Solid-lines
represent the thickness profiles. Dashed-lines represent the thermal boundary
layers. Right: Same plot but for ν = 10−3.

The flow thermal structure is similar to the isoviscous case (Figure 3.4),
the thermal anomaly rapidly detaches from the tip of the current and a region
of cold fluid develops at the front where heat loss is the largest. However,
the important thickening induced by the viscosity increase limits heat loss to
the surrounding. The larger the viscosity contrast ν, the more important the
thickening and the larger the thermal anomaly at a given time. For instance,
for Pe = 1, while the thermal anomaly extends over about 30% of the flow
for ν = 1 at t = 10, it extends over more than 50% for ν = 10−3 (Figure 3.4).

As expected, a larger Peclet number leads to a larger thermal anomaly
(Figure 3.4). However, although different Peclet numbers cause very different
thermal structures, the influence of the Peclet number on the flow morphology
is small, much smaller than the effect of the viscosity contrast ν (Figure 3.4).
For instance, for ν = 10−3 at t = 10, the thermal anomaly is still attached
to the tip of the current for Pe = 1000 whereas it makes about 50% of the
current for Pe = 1; but, the thickness h0 and the radius R in both cases differ
only by a few percents (Figure 3.4). This suggests that, in this regime, the
spreading of the flow is not controlled by the mean temperature or average
viscosity of the flow.

3.3.3 Evolution of the thickness and the radius

In this bending dominated regime, the dynamics shows three different spread-
ing phases. The thickness as well as the radius first follow the isoviscous
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scaling laws for a hot viscosity current h0 ∝ t8/22 (3.52) and R ∝ t7/22 (3.53)
(Figure 3.6). In the second phase, thickening occurs at the expense of spread-
ing because the thermal anomaly has detached from the current radius and
the viscous cold fluid region at the front slows down the spreading. Finally,
the dynamics enters a third phase where the thickness and radius follow the
scaling laws for the spreading of an isoviscous current characterized by a di-
mensionless cold viscosity 1/ν. These scaling laws are obtained from (3.52)
and (3.53) by rescaling the characteristic thickness and time by ν1/4 and read

h0 = 0.7ν−2/11h
−1/11
f t8/22, (3.54)

R = 2.2ν1/11h
1/22
f t7/22. (3.55)

The dependence on the viscosity contrast ν indeed fits very well the third
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Figure 3.6: Left: Dimensionless thickness at the center h0 versus dimensionless
time t for different sets (ν, Pe) indicated on the plot. Dotted-lines: scaling laws
h0 = 0.7h

−1/11
f ν−2/11t8/22 for ν = 1.0 and 0.001. Right: Dimensionless radius

R versus dimensionless time t for the same sets of values (ν, Pe). Dotted-lines:
scaling laws R = 2.2h
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phase of the flow observed in the numerical simulations (Figure 3.6). In the
end, the effective viscosity ηe of the flow evolves from the viscosity of the hot
fluid in the first phase to asymptotically tend to the one of the cold fluid in
the third phase.

The time the flow spends in each phase depends on the Peclet number Pe.
For instance, for ν = 10−3, while the current leaves the first phase at t ∼ 10−6

for Pe = 1.0, this transition happens only after t ∼ 10−2 for Pe = 103 (Figure
3.6). The larger the Peclet number, the less efficient the cooling and thus the
longer the flow remains in the first phase and the later it reaches the third
phase.
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3.3.4 Characterization of the thermal anomaly

Following Garel et al. (2012), we quantify the size of the thermal anomaly
through a critical thermal radius Rc(t) where the temperature at the center
of the flow Θb is 1% of the injection temperature, i.e. Θb(r = 0) − Θb(r =

Rc) = 0.99. The thermal anomaly is first advected at the same velocity as the
current itself, i.e. R(t) = Rc(t) (Figure 3.7 left). After a time that depends
on Pe and ν, the thermal anomaly detaches from the tip and R(t) − Rc(t)

increases with time (Figure 3.7) .
In the bending regime, the interior pressure is constant and the thickness

profile h(r) is given by (3.50) (Figure 3.5). The time evolution of the size of
the thermal anomaly Rc(t) is characterized by looking at the radius in the
flow where heat advection locally balances heat loss, i.e.

d

dt
(Θbh) ≈ Pe−1 Θb

h
. (3.56)

Using the thickness profile (3.50), (3.56) becomes

α2

(
1 +

Rc

R

)2(
Θb
dh0

dt
+ h0

dΘb

dt

)
+

4h0R
2
cΘb

R3

dR

dt
α

(
1 +

Rc

R

)
≈ Pe−1Θb

α2
(
1 + Rc

R

)2
h0

,

where α(t) = (R(t)−Rc(t)) /R(t) is the normalized region beyond r = Rc(t).
In the limit α � 1, i.e. Rc/R ∼ 1, the time derivative is locally dominated
by its advective part (∝ α) and we finally get

α3 ≈ Pe−1

h2
0(t)

R
∂R
∂t

. (3.57)

Substituting h0(t) and R(t) by their respective scaling laws (3.54) and (3.55),
the size evolution of the normalized cold front region α reads

α(t) ≈ Pe−1/3ν4/33h
2/33
f t1/11, (3.58)

which is equivalent to

R(t)−Rc(t) = 2.1Pe−1/3ν7/33h
7/66
f t9/22, (3.59)

where the numerical prefactor, which depends on the definition of the thermal
anomaly, has been chosen to fit the simulations.

The predicted scaling law for the evolution of the cold fluid region (3.59)
indeed closely fits the numerical simulations for ν < 1 and for different Peclet
numbers (Figure 3.7). For ν = 1 and Pe = 1, the condition R − Rc � R is
no more respected for t > 0.1, the thermal anomaly is much smaller than the
flow itself and the evolution of the cold fluid region diverges from (3.59).
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1/3ν−7/33 = 2.1h
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f t9/22.

3.3.5 Effective viscosity of the current

We use the predicted scaling law for the thickness h0(t) (3.54) to infer the
time evolution of the effective viscosity ηe(t). Substituting ν by ηh/ηe(t) in
(3.54) and inverting for ηe(t)/ηh, we get

ηe(t)/ηh =

(
h0(t)t−8/22

0.7h
−1/11
f

)11/2

, (3.60)

where h0(t) is given by the simulation.
As suggested by the results of Section 3.3.3, the effective viscosity is first

close to the hot viscosity ηh, i.e. ηe/ηh ∼ 1 (Figure 3.8 a). It rapidly increases
in the second phase of propagation and finally tends to the cold viscosity ηc
in the third phase, i.e. ηe/ηh ∼ 1/ν. The effective viscosity is however very
different from the average viscosity (Figure 3.8 a). Since the spreading is
controlled by the propagation of a peeling by bending wave at the tip of the
current (Lister et al., 2013), the evolution of the effective viscosity should be
linked to the rapid cooling of the front. We calculate the average viscosity
ηf (t) over a fixed front region of size L in between R(t)− L and R(t)

ηf/ηh =
1

Vf

∫ R

R−L

∫ h

0

rη(θ)drdz, (3.61)

where Vf (t) is the volume of this region. The numerical evaluation of ηf (t)
for a constant size L ∼ 0.1 fits relatively well the evolution of the effective



3.3. Evolution in the bending regime 65

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Dimensionless time t

100

101

102

103
D
im

e
n
si
o
n
le
ss
 v
is
co
si
ty
 η
/
η h

a)

(ν,Pe) =(0.001,100.0)

(ν,Pe) =(0.001,1.0)

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

Time t/tb2

100

101

102

103

D
im

e
n
si
o
n
le
ss
 v
is
co
si
ty
 η

e

b)

(ν,Pe) =(0.01,100.0)

(ν,Pe) =(0.01,1.0)

(ν,Pe) =(0.001,100.0)

(ν,Pe) =(0.001,1.0)

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Time t/tb3

10-3

10-2

10-1

100

S
ca
le
d
 v
is
co
si
ty
 η

e
ν

c)

(ν,Pe) =(0.01,100.0)

(ν,Pe) =(0.01,1.0)

(ν,Pe) =(0.001,100.0)

(ν,Pe) =(0.001,1.0)

Figure 3.8: a) Dimensionless viscosity η(t)/ηh versus dimensionless time t for
different combinations (ν, Pe) indicated on the plot. Solid lines: effective
viscosity ηe/ηh defined by (3.60). Dashed-lines: average flow viscosity defined
by ηa(t)/ηh = 1

V (t)

∫ R(t)

0

∫ h(r,t)

0
rη(θ)drdz where V (t) is the current volume.

Dotted-lines: average front viscosity ηf/ηh defined by (3.61). b) Dimensionless
effective viscosity ηe versus time where the time has been rescaled by the time
for the flow to enter the second phase tb2. c) Same as left but where the time
has been rescaled by the time for the flow to enter the third phase tb3.

viscosity ηe for the second phase of propagation (Figure 3.8 a). Therefore, the
effective viscosity, and thus the different phases of propagation, are controlled
by the average viscosity of a small region at the front of size L = O(0.1).

At the initiation of the flow, the prewetting film is composed by fluid at
the injection temperature, the thermal anomaly is attached to the front and
the current spreads with a hot viscosity ηh. Once the film has cooled by
conduction, which occurs over a time tb2 = 0.1Peh2

f , where the numerical
prefactor has been matched to the simulations, the thermal anomaly detaches
from the current tip and the effective viscosity starts to increase. Indeed,
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when rescaling the time of the simulations by tb2, the different simulations
enter the second phase simultaneously (Figure 3.8 b). Then, the size of the
cold fluid region at the front increases, the effective viscosity increases and the
flow finally behaves as an isoviscous current when its effective viscosity be-
comes close to its maximum value 1/ν. In the following, we use ηe = 0.9ηc to
determine the time tb3 the current enters this third phase which happens when
R(t)−Rc(t) . 0.5. Inverting (3.59) thus gives tb3 ∼ 0.03Pe22/27ν−14/27h

−7/27
f .

Indeed, when rescaling the time of the simulations by tb3, the different simu-
lations enter the third phase simultaneously (Figure 3.8 c).

3.3.6 Note on the effect of crystallization

Here, we examine the effect of crystallization on the flow dynamics and use
a value of Stm = 0.17 < 1, relevant for magmas. Crystallization induces a
release of latent heat in the fluid, increasing the amount of available energy at
a given time. When Stm < 1, the tip of the current remains hot for a longer
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Figure 3.9: Left: Dimensionless thickness at the center h0 versus dimensionless
time t for different values of Stm indicated on the plot, ν = 0.001 and Pe =

10.0. Dotted-line: scaling law h0 = 0.7h
−1/11
f ν−2/11t8/22 for ν = 0.001. Right:

Dimensionless radius R versus dimensionless time t for the same combinations
of dimensionless numbers. Dotted lines: scaling law R = 2.2h

1/22
f ν1/11t7/22 for

ν = 0.001.

time and the flow transitions to the second phase later than in the case where
Stm = 1 (Figure 3.9). As the crystallization acts only to reduce the cooling
term by a factor Stm in (3.47), one can easily rewrite (3.59) to acount for the
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effect of crystallization on the size of the cold fluid region

R(t)−Rc(t) = 2.1Pe−1/3St1/3m ν7/33h
7/66
f t9/22. (3.62)

Indeed, the dependence with the dimensionless number Stm is well described
by the scaling law (3.62) (Figure 3.10). Accordingly, the time tb2 and tb3 for
the current to enter the second and third phase of the flow are delayed when
accounting for crystallization and respectively read

tb2 ∼ 0.1PeSt−1
m h2

f , (3.63)

tb3 ∼ 0.03St−22/27
m Pe22/27ν−14/27h

−7/27
f . (3.64)
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3.4 Evolution in the gravity current regime

To study the late time behavior, we concentrate on the case where only the
weight of the fluid contributes to the pressure. The governing equations are
thus (3.46) and (3.47) where P = h. We follow the same framework as in
Section 3.3.
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3.4.1 Thermal structure for an isoviscous flow, effect of
Pe

As in the bending regime, the bulk of the fluid first expands at the injection
temperature and Rc(t) ∼ R(t). As the bottom and the top cool by conduction,
thermal boundary layers form at the contact with the surrounding medium
and connect at the tip of the current. However, in the gravity current regime,
the thickness of the current tends to a constant. Therefore, conduction in
the surrounding medium rapidly balances the input of heat at the center and
when the thermal anomaly detaches from the tip of the current, its extent
reaches a steady state (Figure 3.11).
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Figure 3.11: Snapshots of the flow thermal structure θ(r, z, t) at different times
indicated on the plot. Dashed lines: thermal boundary layers. Here, ν = 1,
Pe = 100 and Stm = 1.

The radius of the steady-state thermal anomaly Rc also largely depends on
Pe in this regime: the larger the number Pe, the larger the radius Rc (Figure
3.12). For instance, while the thermal anomaly Rc is less than 1 in the steady
state regime for Pe = 1, it is about 12 for Pe = 103 (Figure 3.12, ν = 1).
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Figure 3.12: Snapshots of the flow thermal structure θ(r, z, t) for different
sets (ν,Pe) with ν = 1 ,0.1 ,0.01 and 0.001 and Pe = 1, 10, 100 and 1000 at
t = 200.

3.4.2 Thickness and temperature profile, effect of ν

For a current with a viscosity that depends on temperature, as soon as the
thermal anomaly detaches from the current radius, the cold fluid at the front
tends to slow down the spreading and enhance the thickening of the flow
(Figure 3.12). For instance, for Pe = 1, while the aspect ratio h0/R is about
0.12 for ν = 1 at t = 200, it is ∼ 1 for ν = 10−3 (Figure 3.12). The shape of the
current is not self-similar and the front steepens when the viscosity increases
in comparison to the isoviscous case as noted by Bercovici (1994). However,
when the current becomes much larger than the thermal anomaly, the current
side slumps to become less steep (Figure 3.12) and recovers a shape similar
to the isoviscous flow with cold viscosity.

The thermal structure is similar to the isoviscous case. In particular,
after a time that depends on Pe, the thermal anomaly reaches a steady-state
profile (Figure 3.12). As in the bending regime, the thickening at the center
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limits heat loss to the surrounding for large values of the viscosity contrast ν.
Therefore, the extent of the thermal anomaly in the steady-state is slightly
larger for a larger viscosity contrast. For instance, for Pe = 10 at t = 200,
while the thermal anomaly extends over less than 2 for ν = 1, it reaches
Rc ∼ 3 for ν = 10−3.

The flow morphology is much more sensitive to Pe in the gravity current
regime than in the bending regime and different Pe lead to different current
morphologies for a given ν (Figure 3.12). For instance, for ν = 10−3 at t = 200,
the thermal anomaly is still attached to the tip for Pe = 103 and the aspect
ratio of the flow h0/R is close to 0.15. In contrast, for Pe = 1, the thermal
anomaly radius Rc is less than 30% of the current radius and the aspect ratio
of the flow is much larger h0/R = 1.15 (Figure 3.12).

3.4.3 Evolution of the thickness and radius

As in the bending regime, the dynamics in the gravity current regime shows
three different spreading phases. The thickness as well as the radius first
follow the isoviscous scaling laws for a given hot viscosity ηh, i.e. h0 tends
to a constant and R ∝ t1/2 (Figure 3.13). In a second phase, the thickness
rapidly increases and the spreading slows down. Finally, the thickness and
radius follow the isoviscous scaling laws but for a cold viscosity flow.

These dimensionless scaling laws read, as a function of ν
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Figure 3.13: Left: Dimensionless thickness at the center h0 versus dimen-
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h0 = 2.1ν−1/4, (3.65)
R(t) = 1.1ν1/8t1/2. (3.66)

They perfectly match our numerical simulations (Figure 3.13). Therefore,
the effective viscosity ηe that controls the flow dynamics is first close to the
viscosity of the hot fluid ηh; it then rapidly increases to asymptotically tend
to the viscosity of the cold fluid ηc in the third phase.

As in the bending regime, the time the current spends in each phase de-
pends on Pe (Figure 3.13). For instance, for ν = 10−2, while the current
leaves the first phase at t ∼ 10−1 for Pe = 1.0, the transition occurs after
t ∼ 101 for Pe = 102 (Figure 3.13). The larger the Pe, the longer the current
remains in the first phase and the later is reached the third phase.

3.4.4 Characterization of the thermal anomaly

The thermal anomaly is first advected at the same velocity as the current
itself, i.e. Rc(t)/R(t) ∼ 1 (Figure 3.14 left). After a time that depends on Pe
and ν, the thermal anomaly detaches from the front and reaches a steady-state
profile (Figure 3.12 and 3.14).
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We develop a simple thermal budget to predict the extent of the ther-
mal anomaly in the steady-state regime. At the steady state radius Rc of
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the thermal anomaly, a balance between heat advection and diffusion in the
surrounding medium in a dimensional form gives

ρmCp,mU0
∆T

Rc

≈ 8km∆T

h2
0

, (3.67)

where ∆T is a mean temperature contrast between the fluid and the surround-
ings and U0 is a mean velocity of advection. For a gravity current, and by
opposition to the bending regime, the thickness h0 reaches a constant. Taking
U0 as a horizontal redistribution of the injection rate at r = Rc, we write

U0 = Q0/(2πRch0), (3.68)

which gives

Rc ≈
1

4

√
h0Q0

πκm
. (3.69)

By non-dimensionalizing (3.69), we obtain the evolution of the steady-state
radius Rc ≈ Pe1/2ν−1/8 and hence

Rc

R(t)
= 0.7Pe1/2ν−1/4t−1/2, (3.70)

where we have used (3.66) and the numerical prefactor, which depends on the
definition of the thermal anomaly, has been chosen to fit the simulations.

The scaling law (3.70) closely fits the numerical simulations (Figure 3.14).
Indeed, when the thermal anomaly enters the steady state, the thermal
anomaly radius remains constant and the normalized thermal anomaly radius
Rc(t)/R(t) evolves as the inverse of the current radius, i.e. as t−1/2 (Figure
3.14). Furthermore, both the dependence with Pe and ν vanish when rescaling
Rc/R(t) by Pe1/2ν−1/4 in the steady state regime (Figure 3.14, right).

3.4.5 Effective viscosity of the current

Repeating the same exercise as in Section (3.3.5), we use the predicted scaling
law for the radius R(t) (3.66) to infer the effective viscosity ηe(t) of the current

ηe(t)/ηh =

(
R(t)t−1/2

1.1

)−8

, (3.71)

where R(t) is given by the simulation.
As expected, the effective viscosity in the gravity current regime represents

the average viscosity of the current and the different phases of propagation
reflect changes in the average viscosity of the flow (Figure 3.15 a).
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Figure 3.15: a) Dimensionless viscosity η(t)/ηh defined by (3.60) versus
dimensionless time t for different combinations (ν, Pe) indicated on the
plot. Black dotted-lines: average flow viscosity defined by ηa(t)/ηh =

1
V (t)

∫ R(t)

0

∫ h(r,t)

0
rη(θ)drdz where V (t) is the current volume. b) dimension-

less effective viscosity ηe versus time where the time has been rescaled by the
time tg2 (3.73). c) Same as left but where the time has been rescaled by tg3
(3.74).

At the flow initiation, the thermal anomaly is advected at the same velocity
as the current itself and the current spreads with hot viscosity ηh. When the
thermal anomaly detaches from the tip and enters a steady state, ηe increases.
The time tg2 to enter this second phase scales with the time to cool the current
by conduction, i.e. tg2 = 10−2Pe where the numerical pre-factor has been
matched to the simulations. Indeed, when rescaling the time by tg2, the
different simulations enter the second phase simultaneously (Figure 3.15 b).
Then, the size of the cold fluid region at the front increases, the effective
viscosity increases and the flow finally behaves as an isoviscous current when
its effective viscosity becomes close to its maximum value 1/ν. As in the
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bending regime, we use ηe = 0.9ηc to define the time tg3 the current enters the
third phase of the dynamics which happens when Rc(t)/R(t) . 0.3. Inverting
(3.70) thus gives tg3 = 5.2Peν−1/2. Indeed, when rescaling the time of the
simulations by tg3, the different combinations (ν, Pe) enter the third phase
simultaneously (Figure 3.15 c).

3.4.6 Note on the effect of crystallization

As in the bending regime, crystallization induces a release of latent heat,
increasing the amount of available energy at a given time. As a result, when
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Figure 3.16: Left: Dimensionless thickness at the center h0 versus dimension-
less time t for different sets (ν, Stm) indicated on the plot and Pe = 1. Right:
Dimensionless radius R versus dimensionless time t for the same sets (ν, Stm)

and Pe = 1.

Stm < 1, the current is hotter on average and it transitions to the second
phase later than in the case where Stm = 1 (Figure 3.16). As in Section
(3.3.6), one can easily rewrite (3.70) to account for the effect of crystallization
on the thermal anomaly evolution

Rc

R(t)
= 0.7St−1/2

m Pe1/2ν−1/4t−1/2. (3.72)

Indeed, the dependence with the dimensionless number Stm is well described
by the scaling law (3.72) (Figure 3.17). Accordingly, the time tg2 and tg3 for
the current to enter the second and third phase of the flow are both delayed
and respectively read

tg2 ∼ 10−2PeSt−1
m , (3.73)

tg3 ∼ 5.2PeSt−1
m ν−1/2. (3.74)
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3.5 Different evolutions with bending and grav-
ity

For an isoviscous flow with hf � h� d0, in between the bending and gravity
regime, Lister et al. (2013) also describe a short intermediate regime where the
peeling by bending continues to control the propagation but where the flow
shows an interior flat-topped region due to the increasing effect of gravity. For
simplicity, we only consider the two asymptotic regimes. At the transition, the
isoviscous current is characterized by R ∼ 4 and for hf = 0.005, h0 ∼ 2 and
t ∼ 10. In the following, we consider a modified Peclet number Pem = PeSt−1

m

which integrates the effect of crystallization for clarity.
For a current with a temperature-dependent viscosity, the transition be-

tween the bending regime and the gravity regime also occurs when the radius
of the current reaches R ∼ 4 (Figure 3.18). However, the current thickness
and time at the transition depend on the thermal state of the flow, i.e. on the
combination of (ν,Pem) considered (Figure 3.18). For instance, for ν = 0.01

and a small value of Pe, i.e. Pe = 1.0, the current transitions to the gravity
regime at t ∼ 50 with h0 ∼ 8 while in the third thermal phase of the bend-
ing regime. It is then characterized by a cold viscosity ηc = 100 and a large
aspect ratio. In contrast, for a larger value of Pe, i.e. Pe = 105, the current
remains longer in the first phase of the bending regime and it spreads with
hot viscosity ηh for a longer period. As a consequence, it reaches R ∼ 4 and
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enters the gravity regime sooner at t ∼ 30 while in the second phase of the
bending regime and hence characterized by a smaller thickness h0 ∼ 5 and
a smaller aspect ratio. For even larger Peclet number Pe, the current would
transition while in the first thermal phase of the bending regime at t ∼ 10

and with h0 ∼ 2, as in the isoviscous case with viscosity ηh.
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Figure 3.18: Left: Dimensionless thickness at the center h0 versus dimen-
sionless time for different sets (ν, Pe) indicated on the plot. The grey line
represents the isoviscous case ν = 1. Right: Same plot but for the dimension-
less radius R. Horizontal black dotted-line represents the transition radius
between the bending and the gravity regime.

Overall, the time for the current to reach the transition tt is the time
for its radius to reach R(t) = 4. Setting (3.55) equal to 4, we obtain tt =

6.5(ηe/ηh)
2/7h

−1/7
f where ηe is the effective viscosity of the current (see Section

3.3.5). In particular, it is bounded by two values corresponding to two end-
member cases: the case where the current transitions to the gravity regime
while in the first bending phase, i.e. when ηe = ηh and tht ∼ 6.5h

−1/7
f and

the case where the current transitions to the gravity regime while in the third
bending phase, i.e. ηe = ηc and tct ∼ 6.5ν−2/7h

−1/7
f . Indeed, when rescaling

the time of the simulation by tct , the different simulations, for which the third
thermal phase of the bending regime has been reached before the transition
to the gravity regime, collapse on the same curve (Figure 3.19, right).

The subsequent evolution in the gravity regime also depends on the combi-
nations (ν,Pem) considered. Indeed, in contrast to the bending regime where
the effective viscosity is that of a small region at the tip, the effective viscos-
ity is the average flow viscosity in the gravity regime. Therefore, the effective
viscosity of the flow can drastically decrease when entering the gravity regime
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Name From To Expression

tt Bending Gravity 6.5(ηe/ηh)
2/7h

−1/7
f

tht Bending Gravity 6.5h
−1/7
f

tct Bending Gravity 6.5ν−2/7h
−1/7
f

Bending regime
tb2 Phase 1 Phase 2 0.1PeSt−1

m h2
f

tb3 Phase 2 Phase 3 0.03St
−22/27
m Pe22/27ν−14/27h

−7/27
f

Gravity regime
tg2 Phase 1 Phase 2 10−2PeSt−1

m

tg3 Phase 2 Phase 3 5.2PeSt−1
m ν−1/2

Table 3.1: Summary of the different transition times. tt is the transition time
between bending and gravity which is bound by tht , when the current transi-
tions in the first bending thermal phase, and tct , when the current transitions
in the third bending thermal phase. tb2 (resp. tb3) represents the time to
transition from phase 1 to phase 2 (resp. from phase 2 to phase 3) in the
bending regime. tg2 (resp. tg3) represents the time to transition from phase 1
to phase 2 (resp. from phase 2 to phase 3) in the gravity regime.

and a flow in the ith thermal phase of the bending regime can transition in
the jth thermal phase of the gravity regime with i ≥ j which results in 6

possible scenarios. For instance, a current in the second thermal phase of the
bending regime can transition into the first or second thermal phase of the
gravity current regime. However, the case where a current in the third ther-
mal phase of the bending regime transitions to the first thermal phase of the
gravity regime is not possible since the thermal anomaly has already detached
from the tip (see Appendix B for a more formal discussion). In the following,
we detail the five remaining scenarios in order to build a phase diagram as a
function of the combination (ν, Pem) considered.

We first consider the case where the current transitions to the gravity
regime in the first thermal phase of the bending regime. In that case, the
time for the transition is tht ; it is less than the time for the second bending
thermal phase change tb2; comparing tht and tb2 gives Pe > 65h

−15/7
f (Figure

3.20, Table 3.1). For Pe > 65h
−15/7
f , as tht < tg2, the current transitions to the

first thermal phase of the gravity current regime (B1G1 in Figure 3.20).
If the current has already reached the third thermal bending phase, the

transition occurs at tct and is necessarily larger than tb3; comparing tct and
tb3 gives ν > 8.3 · 10−13Pe

7/2
m h

−1/2
f (Figure 3.20, Table 3.1). As tct > tg2 for
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Figure 3.19: Left: Dimensionless thickness at the center h0 versus time where
the time has been rescaled by the time tct the current transitions to the gravity
regime while it is in the third bending phase (Table 3.1). The grey line
represents the isoviscous case with given viscosity ηh. Right: Same plot but
for the dimensionless radius R. Horizontal black dotted-line represents the
transition radius between the bending and the gravity regime.

ν > 8.3 · 10−13Pe
7/2
m h

−1/2
f , the current can either transition to the second or

third thermal phase of the bending regime. If it transitions to the second
phase of the gravity regime, then comparing tct and tg3 gives ν < 0.3Pe

14/3
m h

2/3
f

(B3G2 on Figure 3.20) and if it transitions to the third phase of the gravity
current, then ν > 0.3Pe

14/3
m h

2/3
f (B3G3 on Figure 3.20).

In the case where the transition occurs when it is in the second bending
phase, the time for the transition is not exactly known. However, it is bounded
by tht and tct and we can therefore predict some evolution scenarios. Indeed,
the transition time is necessarily smaller than tct . Therefore, if tct < tg2, i.e.
ν > 7.0 · 109Pe

−7/2
m h

−1/2
f , the current transitions to the first gravity thermal

phase (B2G1 on Figure 3.20). Similarly, if tht > tg2, i.e. Pem < 650h
−1/7
f , the

current transitions to the second gravity current phase (B2G2 on Figure 3.20).

3.6 Summary and conclusion

Isothermal elastic-plated gravity currents show two asymptotic regimes. At
early times, the gravity is negligible and the peeling of the front is driven
by the bending of the overlying layer. In contrast, at late times, the own
flow weight becomes the driving pressure and the current evolves in a gravity
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Figure 3.20: Phase diagram for the evolution with bending and gravity for
different combinations (ν,Pem) and a given value of hf = 0.005. BiGj refers
to the case where the current transitions from the ith bending thermal phase
to the jth gravity thermal phase where i and j ∈ {1, 2, 3}.

current regime. In this study, we have developed a theory for the evolution of
an elastic-plated gravity current with a temperature dependent viscosity and
studied the response of the flow to its cooling in each regime separately.

In the bending regime, since the flow constantly thickens, the thermal
anomaly grows with time but slower than the flow itself and a region of cold
fluid rapidly forms at the front. In contrast, in the gravity current regime,
since the flow tends to a constant thickness, the temperature profile diffuses to
an almost stationary profile and the thermal anomaly reaches a steady-state.
The time to reach this steady-state also scales with the dimensionless numbers
of the system. Analyses of the heat transport equation in both regimes allowed
us to predict the time evolution of this thermal anomaly as a function of the
dimensionless numbers of the system (Pe,ν, Stm).

Numerical resolution of the equations show that the combine effect of
cooling and temperature-dependent viscosity result in important deviations
from the isoviscous case. In particular, each regime is split in three different
phases: a first phase where the flow behaves as an isoviscous flow with a hot
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viscosity, a second phase where the flow slows down and drastically thickens
and a last phase where the flow returns in an isoviscous flow but with a cold
viscosity. These three phases are linked to the coupling between the thermal
anomaly and the flow itself and in particular, the second phase of the flow is
triggered by the detachment of the thermal anomaly. However, we show that
the effective viscosity of the flow is drastically different in the two regimes.
While the dynamics is governed by the local thermal state of the front in the
bending regime, it is the average thermal structure of the current that controls
the flow in the gravity regime.

The final evolution of an elastic-plated gravity current therefore depends
on the relative phase change within each regime and on the transition be-
tween the bending and the gravity regime itself. We provide a general phase
diagram that predicts the different evolution scenarios as a function of the
dimensionless parameters.

In the end, this cooling elastic-plated gravity current model provides a
general basis to study the cooling of a magmatic intrusion. Nevertheless,
before analysing the observations discussed in Chapter 2 in the light of this
new model, we first relax the isothermal boundary condition and introduce
a more realistic rheology to be more consistent with the magmatic intrusion
application. The more realistic model and its application to the observations
are discussed in the next Chapter.
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The previous Chapter was a first step towards the understanding of the
coupling between the cooling and the spreading of an elastic-plated gravity
current. Hereafter, we investigate the changes in the dynamics caused by both
the heating of the wall rocks and a more realistic rheology for the magma.
We then compare the model predictions with the observations presented in
Chapter 2.

4.1 Motivation

Numerous geological studies demonstrate that magmatic intrusions affect
the host rock by developing contact-metamorphic aureoles (Jaeger , 1959;
Galushkin, 1997; Senger et al., 2014). For instance, the Leadville Limestone in
Colorado, USA, famous for preserving fossils dating back to the Carboniferous
period, was locally transformed into marble following the intrusion of the Trea-
sure Mountain Dome (Figure 4.1). The increase in the geothermal gradient in
sedimentary basins also tends to accelerate the thermal maturation of organic
matter in the surrounding, promoting hydrocarbon generation (Senger et al.,
2014). Release of CO2 during metamorphic processes has also been proposed
to help the formation of ore deposits in the vicinity of magmatic intrusions
(Sillitoe and Thompson, 1998; Ganino et al., 2008; Zhou et al., 2008).

The size of the contact aureole depends on the context and can reach more
than 100% of the intrusion thickness in many regions (Galushkin, 1997). This
contact aureole, by insulating the flow, may also affect the dynamics of the
magmatic intrusion itself. In the following, we relax the isothermal boundary
condition used in Chapter 3 to investigate its influence on the dynamics.

4.2 Theory

We consider the model of elastic-plated gravity current with temperature-
dependent viscosity described in Section 3.2 in which we relax the isothermal
boundary condition. In the following, we specify only the changes in the
theory that come from the new thermal boundary condition and we refer the
reader to Section 3.2 for more details about the derivation.
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a)

b c

50 m

Figure 4.1: a) Sketch of the granitic Treasure Mountain Laccolith intruded
roughly ∼ 20 Ma years ago in Colorado, USA. The Leadville Limestone (white
layer) was metamorphosed by the heat from the intrusion, and was trans-
formed into marble. During the last 10 Ma, the area was eroded, and the
marble as well as the laccolith are today exposed at the surface. b) Cross
section of the strata from the West flank of the Treasure Mountain dome. c)
Marble vein visible from the West flank of the Treasure Mountain. The qual-
ity of this Marble was selected to clad the exterior of the Lincoln Memorial
and a variety of building throughout the United States.

4.2.1 Thermal boundary condition

We now consider the heating of the surrounding medium by the flowing
magma. The vertical temperature profile respecting continuity writes

T =


Tb − (Tb − Ts)(1− z

δ
)2 0 ≤ z ≤ δ

Tb δ ≤ z ≤ h− δ
Tb − (Tb − Ts)(1− h−z

δ
)2 h− δ ≤ z ≤ h

, (4.1)

where δ(r, t) is the thermal boundary layer thickness, T (r, z, t) is the temper-
ature of the fluid, Tb(r, t) is the temperature at the center of the profile and
Ts(r, t) is now the temperature at the surface, i.e. T (r, z = 0, t) = T (r, z =

h, t) = Ts(r, t). As in Section 3.2, this profile assures the continuity of the
temperature and heat flux within the flow. In addition, continuity of the heat
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flux across the flow boundaries requires

km
∂T

∂z

∣∣∣∣
z=0

= kr
∂Tr
∂z

∣∣∣∣
z=0

, (4.2)

km
∂T

∂z

∣∣∣∣
z=h

= kr
∂Tr
∂z

∣∣∣∣
z=h

, (4.3)

where Tr(r, z) is the temperature in the surrounding medium and kr its ther-
mal conductivity. Assuming a semi infinite layer for the rigid layer below the
intrusion, Carslaw and Jaeger (1959) show that the temperature Tr in the
surrounding rocks can be approximated to a first order by

Tr(r, z, t)− T0 = (Ts − T0) erfc

(
−z

2
√
κrt

)
. (4.4)

The thickness of the upper layer is equal to the intrusion depth d0. However,
we assume that the depth d0 is large compared to the characteristic length
scale for conduction and we use the same approximation to derive Tr above
the intrusion

Tr(r, z, t)− T0 = (Ts − T0) erfc

(
z − h
2
√
κrt

)
. (4.5)

Therefore, the two thermal boundary conditions (4.2) and (4.3) become

km
∂T

∂z

∣∣∣∣
z=0

= kr
Ts − T0√
πκrt

, (4.6)

km
∂T

∂z

∣∣∣∣
z=h

= −kr
Ts − T0√
πκrt

. (4.7)

4.2.2 Dimensionless equations

Except for the conduction term, which now accounts for the dimensionless
surface temperature Θs, the coupled dimensionless equations governing the
cooling of the flow are very similar to (3.46) and (3.47) and read

∂h

∂t
− 12

r

∂

∂r

(
rI1(h)

∂P

∂r

)
= H(

γ

2
− r)32

γ2

(
1

4
− r2

γ2

)
, (4.8)

∂ξ

∂t
+

1

r

∂

∂r
(r (ūξ − Σ)) = 2Pe−1Stm

Θb −Θs

δ
, (4.9)

with

θ =
1

3
(2Θb + Θs) , (4.10)

u =
12

δ

∂P

∂r
(δI0(δ)− I1(δ)) , (4.11)

Σ =
12

δ

∂P

∂r

(
I0(δ)

(
G(δ)− δθ

)
+ θI1(δ)− I2(δ)

)
, (4.12)
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where G(z) denotes a primitive of θ(z) when z < δ. The rheology, which
couples equations (4.8) and (4.9), is contained in the three integrals I0(z),
I1(z) and I2(z) and is discussed in the next Section. The thermal boundary
conditions (4.6) and (4.7) reduce in a dimensionless form to

2
Θb −Θs

δ
= β(t)Θs, (4.13)

where

β(t) =
Ω1Ω

−1/2
2 Pe1/2

√
πt

. (4.14)

Ω1 and Ω2 are two new dimensionless numbers and read

Ω1 =
κr
κm

, (4.15)

Ω2 =
kr
km

. (4.16)

They represent the ratio of wall rocks to magma thermal diffusivity (4.15)
and thermal conductivity (4.16) respectively. While the former should be
close to 1, the latter could show small variations depending on the nature of
the surrounding rocks as well as its porosity content (Büttner et al., 1998).
However, variations of both dimensionless numbers will only affect the size of
the thermal aureole. In this Chapter, we focus mainly on the dynamics of the
flow itself and for a sake of simplicity, we rather consider only the combination
of both which we call Ω and reads

Ω = Ω1Ω
−1/2
2 (4.17)

=
κr
κm

(
km
kr

)1/2

. (4.18)

It represents the ratio between heat conduction at the contact with the en-
casing rocks and heat diffusion within the fluid and quantify how much heat
is transferred to the wall rocks.

As in the precedent Chapter, the heat transport equation (4.9) is written
in terms of ξ which represents our “thermal variable”. In that case, ξ writes

ξ =
δ

3
(−2Θb −Θs + 3) , (4.19)

where we have used (4.10) in (4.19). In addition, rewriting (4.13) in three
different ways, we can obtain an expression for Θs, δ and Θb as a function of
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the other variables

Θs =
2Θb

βδ + 2
, (4.20)

δ =
1

Θsβ
(2Θb − 2Θs) , (4.21)

Θb =
Θs

2
(βδ + 2) . (4.22)

When the thermal boundary layers have just merged, then Θb = 1, δ = h/2

and injecting (4.20) into (4.19) gives

ξt(t) =
β(t)h2(r, t)

6β(t)h(r, t) + 24
. (4.23)

Therefore, when ξ < ξt, the thermal boundary layers are not merged, Θb = 1

and injecting (4.21) into (4.19) and solving for Θs gives

Θs =
3β

4
ξ −
√

3

4

√
βξ (3βξ + 8) + 1. (4.24)

In contrast, when ξ > ξt, the thermal boundary layers have merged, δ = h/2

and injecting (4.22) into (4.19) and solving for Θs gives

Θs =
−12ξ + 6h

(βh+ 6)h
. (4.25)

In the end, we then have

Θs(r, t) =

{
3β
4
ξ −

√
3

4

√
βξ (3βξ + 8) + 1 if ξ ≤ ξt

−12ξ+6h(r,t)
(βh(r,t)+6)h(r,t)

if ξ > ξt
, (4.26)

and

Θb(r) =

{
1 if ξ ≤ ξt
Θs
4

(β(t)h(r, t) + 4) if ξ > ξt
, (4.27)

δ(r) =

{
1

Θsβ(t)
(−2Θs + 2) if ξ ≤ ξt

h(r, t)/2 if ξ > ξt
, (4.28)

with

ξt(t) =
β(t)h2(r, t)

6β(t)h(r, t) + 24
. (4.29)
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4.2.3 Rheology

The model derived in Section 4.2.2 does not assume a specific relation between
viscosity and temperature. The choice of the rheology η(T ), which is contained
in the integrals I0(z), I1(z) and I2(z), remains to be defined.

In Section 3.2, we assumed a viscosity inversely dependent on the temper-
ature which reads in a dimensional form

η1(T ) =
ηhηc(Ti − T0)

ηh(Ti − T0) + (ηc − ηh)(T − T0)
, (4.30)

where ηh and ηc are the viscosities of the hottest and coldest fluid at the tem-
perature Ti and T0 respectively (Bercovici , 1994). While this model possesses
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Figure 4.2: Dimensionless viscosity versus dimensionless temperature for both
rheologies η1 (4.32) and η2 (4.33) using ν = 0.001.

some nice simplification properties, it restricts the change in viscosity to a
very narrow range of temperatures close to T = T0, i.e. θ = 0 (Figure 4.2).
In contrast, the Arrhenius model (η ∼ exp(−k/T )), which is a more realistic
model to relate temperature and viscosity for silicate melt (Shaw , 1972; Blatt
et al., 2006; Crisp and Baloga, 1990; Costa and Macedonio, 2003), describes a
viscosity that increases over a much larger range of temperatures (Figure 4.2).
To get some insights into the effect of a more realistic temperature-dependent
viscosity, we thus also use a first-order approximation of the Arrhenius model
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as a second rheology η2(T ) (Diniega et al., 2013)

η2(T ) = ηh exp

(
− log

(
ηh
ηc

)(
1− T − T0

Ti − T0

))
. (4.31)

In a dimensionless form, they read

η1(θ)/ηh =
1

ν + (1− ν)θ
, (4.32)

η2(θ)/ηh = exp (− log(ν) (1− θ)) , (4.33)

where ν is the viscosity contrast which is described in Section 3.2 and rep-
resents the ratio between the hot viscosity ηh and the cold viscosity ηc. The
expression of I0(δ), I1(δ), I1(h) and I2(δ), necessary to close the model, are
given in Appendix A.1 for both rheologies.

4.2.4 Comparison with the isothermal model

We showed that relaxing the isothermal boundary condition introduces a new
dimensionless number Ω which controls how much heat can be transferred to
the surrounding rocks. In the limit Ω → ∞, the model should thus reduce
to the model described in Section 3.2. Indeed, when Ω → ∞, the coefficient
β → ∞ and then ξt → h/6 (Section 3.2.7.1). When ξ < ξt, injecting the
corresponding expression of Θs (4.26) in the corresponding expression of δ
(4.28) gives

δ =
3βξ +

√
3
√
βξ(3βξ + 8) + 8

2β
, (4.34)

which indeed tends to 3ξ when β → ∞ as in Section 3.2.7.1. When ξ >

ξt, injecting the corresponding expression of Θs (4.26) in the corresponding
expression of Θb (4.27) gives

Θb =
3(βh+ 4)(h− 2ξ)

2h(βh+ 6)
, (4.35)

which also tends to the expression previously found when β →∞, i.e. 3/2−
3ξ/h (Section 3.2.7.1). Finally, taking the limit of Θs for both ξ > ξt and
ξ < ξt show that Θs indeed tends to zero when Ω→∞.

For magmatic intrusions, the thermal parameters of the magma and the
encasing rocks are similar and the dimensionless number Ω would be close to
1. In the following, we study the effect of relaxing the isothermal boundary
condition on the dynamics by comparing Ω = 105 and Ω = 1 in both regimes
separately. We also investigate the effect of a more realistic rheology on the
flow dynamics.
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Figure 4.3: Snapshots of the flow thermal structure θ(r, z, t) for different sets
(Pe,Ω) with Pe = 1.0 ,10.0 ,100.0, Ω = 105 and 1.0 at t = 10 for ν = 0.001.
The thermal structure above the intrusion is given by (4.5) and reads in a
dimensionless form Θr(r, z, t) = Θs(r, t) erfc

(
Pe1/2Ω1

(z−h)

2
√
t

)
where Ω1 is set

to 1. The thermal structure below the intrusion is similar and not shown for
clarity.

4.3 Evolution in the bending regime

We follow the same approach as in the previous Chapter and first concentrate
on the case in which only bending contributes to the dynamic pressure. The
governing equations are thus (4.8) and (4.9) where P = ∇4

rh. For isothermal
boundary conditions, we show that the dynamics in the bending regime de-
pends on the average viscosity of a small region at the front of the current and
can be divided into three phases. Hereafter, we first describe how the thermal
boundary condition influences the timing for the phase transition by looking
at two values for the dimensionless number Ω, i.e. Ω = 1 and Ω = 105 and
η(θ) = η1(θ). We then investigate the effect of changing the rheology.
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4.3.1 Relaxing the thermal boundary condition, effect of
Ω

The heating of the surrounding medium insulates the flow. The thermal
anomaly is hence larger for Ω = 1 (Figure 4.3). For instance, for ν = 0.001

and Pe = 1.0, while the thermal anomaly extends over 50% of the current for
Ω = 105 at t = 10, it makes up more than 75% of the flow for Ω = 1 (Figure
4.3). Nevertheless, the tip of the current rapidly cools and a cold fluid region
also forms at the front when relaxing the thermal boundary condition.
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Figure 4.4: Left: Dimensionless thickness at the center h0 versus dimensionless
time t for different sets (Ω, P e) indicated on the plot. Dotted-line: scaling
law h0 = 0.7h

−1/11
f ν−2/11t8/22 for ν = 0.001. Right: Dimensionless radius R

versus dimensionless time t for the same sets (Ω, P e). Dotted-line: scaling
law R = 2.2h

1/22
f ν1/11t7/22 for ν = 0.001. In all simulations, ν = 0.001 and

η(θ) = η1(θ).

Hence, the dynamics for Ω = 1 also passes through three different phases.
The current first behaves as an isoviscous flow with hot viscosity, it then slows
down and thickens to finally behave again as an isoviscous flow but with a
cold viscosity (Figure 4.4). As the current tip remains hot for a longer period,
the transitions to the second and third bending regime are however delayed
relatively to the case where Ω = 105 (Figure 4.4). For instance, for ν = 10−3

and Pe = 1.0, while the transition to the second bending phase already begins
at t ∼ 10−6 for Ω = 105, it occurs only after t ∼ 10−5 for Ω = 1.0 (Figure 4.4).

In addition, the second phase of thickening shows two different stages for
Ω = 1.0 and Pe = 100.0, a first stage where the thickness drastically increases
and a second stage where it continues to increase but at a much slower rate
(Figure 4.4). This transition, enhanced by the new thermal boundary condi-



4.3. Evolution in the bending regime 91

tion, reflects the detachment of the thermal anomaly in the second bending
phase and is discussed in Appendix C.3.

4.3.2 Considering a more realistic rheology, effect of η(θ)

The first order Arrhenius rheology η2(θ) widens the range of temperature over
which significant viscosity variation occurs, i.e. ∼ 80% of the temperature
range against ∼ 10% for η1(θ) (Figure 4.2).
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Figure 4.5: Left: Dimensionless thickness at the center h0 versus dimensionless
time t for different sets (η, Pe) indicated on the plot. Dotted-line: scaling
law h0 = 0.7h
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Therefore, the effective flow viscosity starts to increase sooner and the
transition to the second bending phase occurs sooner than for the rheology
previously considered η1(θ) (Figure 4.5). For instance, for ν = 10−3 and
Pe = 1.0, while the second phase of the flow starts around t ∼ 10−5 for the
rheology η1(θ), it starts around t ∼ 10−6 for the rheology η2(θ) (Figure 4.5). In
particular, the change in rheology almost compensates for the delay caused by
the heating of the surrounding medium. For instance, the transition time for
the second bending phase for a flow characterized by η = η1(θ) and Ω = 105 is
almost the same than for a flow characterized by η = η2(θ) and Ω = 1 (Figure
4.4 and 4.5).
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4.3.3 Characterization of the thermal anomaly

As in Chapter 3, we quantify the size of the thermal anomaly through a critical
thermal radius Rc(t) where the temperature at the center of the flow Θb is
1% of the injection temperature, i.e. Θb(r = 0) − Θb(r = Rc) = 0.99. As
expected, the thermal anomaly is larger when relaxing the thermal boundary
condition and changing the rheology η(θ) has almost no effect on its evolution
(Figure 4.6).

In addition, the extent of the cold fluid region R(t) − Rc(t) is growing
slightly slower with time when considering Ω = 1 in comparison to the isother-
mal boundary case Ω = 105 (Figure 4.6). In the following, we characterize
the thermal anomaly evolution in the more realistic case where Ω = 1 and
η(θ) = η2(θ).
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As in Section 3.3.4, the size of the thermal anomaly Rc(t) is given by the
radius where advection of heat is equal to heat loss

d

dt
(θ(r = Rc, t)) ≈ Pe−1 ∂

2

∂z2
(θ(r = Rc, t)) , (4.36)

which, by integration over the thickness of the flow h, becomes

d

dt

(∫ h

0

θdz

)
−Θs

dh

dt
≈ Pe−1 Θb −Θs

h

θ
dh

dt
+ h

dθ

dt
−Θs

dh

dt
≈ Pe−1 Θb −Θs

h
2

3
(Θb −Θs)

dh

dt
+ h

dθ

dt
≈ Pe−1 Θb −Θs

h
, (4.37)
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where θ is equal to (
∫ h

0
θdz)/h here. Using the thickness profile (3.50), (4.37)

becomes

α2

(
1 +

Rc

R

)2(
2

3
(Θb −Θs)

dh0

dt
+ h0

dθ

dt

)
+

8h0R
2
c (Θb −Θs)

3R3

dR

dt
α

(
1 +

Rc

R

)
≈ Pe−1(Θb−Θs)

α2(1+Rc
R )

2
h0
, (4.38)

where α(t) is the normalized region beyond r = Rc(t), i.e. α(t) =

(R(t)−Rc(t)) /R(t).
In the limit α << 1, i.e. Rc/R ∼ 1, and neglecting the higher order terms

in (4.38) (∝ α2), we obtain the same scaling law for the size of the normalized
cold front region α than the one found in Section 3.3.4. However, it clearly
does not match the prediction when Ω = 1.0 (Figure 4.7) and the new thermal
anomaly evolution must be linked to a change in the heat advection rate, i.e.
the left hand side term in the balance (4.38).

Neglecting the advection term to keep only the inflation term instead in
(4.38) leads to

α2

(
1 +

Rc

R

)2
dh0

dt
≈ Pe−1

α2
(
1 + Rc

R

)2
h0

, (4.39)

which, in the limit α << 1, becomes

α4∂h0

∂t
≈ Pe−1

h0
∂h0
∂t

. (4.40)

Substituting h0(t) by its respective scaling law (3.54), the relative size of the
normalized cold front region α reads

α(t) ∝ h
1/22
f ν1/11Pe−1/4t7/44, (4.41)

which is equivalent to

R(t)−Rc(t) = 0.7h
1/11
f ν2/11Pe−1/4t17/44, (4.42)

where the numerical prefactor, which depends on the definition of the thermal
anomaly, has been chosen to fit the simulations.

This new scaling law for the evolution of the extent of the cold fluid region
(4.42) shows a much better fit with the simulations (Figure 4.7 b). Indeed,
in that case, the constant heating of the surrounding medium limits the ex-
pansion of the cold fluid region in comparison to the isothermal case. In
particular, the thermal anomaly reaches the third bending phase much later
and therefore, the scaling law corresponds to the evolution of the thermal
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Figure 4.7: a) Extent of the cold fluid region R(t) − Rc(t) rescaled by
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1/4ν−2/11 = 0.7h
1/11
f t17/44. In all simulations, Ω = 1.0 and η(θ) =

η2(θ).

anomaly in the second bending phase; a phase dominated by inflation. There-
fore, the evolution of the thermal anomaly is governed by the inflation rate at
the intrusion tip when relaxing the thermal boundary condition.

The cold fluid region grows effectively slightly slower, with a time exponent
equal to 17/44 instead of 9/22 (17/44 ∼ 0.38, 9/22 ∼ 0.40) and the depen-
dence in the Peclet number Pe is weaker, i.e. it changes from a power 1/3 to
1/4. Indeed, for small Pe, vertical diffusion is efficient on the emplacement
time scale and rapidly heats up the surrounding medium. The heat loss in
the interior is smaller and the thermal anomaly larger in comparison to the
case where Ω = 105. In contrast, for large values of Pe, advection dominates
and the saving of heat by insulation is less important decreasing the overall
difference between small and large values of Pe.

As we show in Section 4.3.2, the time tb2 for the current to enter the second
bending phase does not change much as the delay induced by the heating of
the surrounding medium is offset by the change in rheology. Accordingly, we
use the time tb2 (3.63) defined in Section 3.3.5 as the time to cool the thin
prewetting film to characterize the first bending transition (Figure 4.8 a). In
contrast, the time tb3 for the current to enter the third phase of the flow is
now larger. Processing as in Section 3.3.5 but using (4.42) for the evolution
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of the cold fluid region R(t)−Rc(t) instead of (3.59), we find that tb3 is given
by

tb3 = 0.4h
−4/17
f ν−8/17Pe11/17St−11/17

m . (4.43)

4.4 Evolution in the gravity regime

As in Chapter 3, we now consider the late time behavior in which only the
weight of the fluid contributes to the dynamic pressure P . The governing
equations are (4.8) and (4.9) where P = h. We follow the same framework as
in the previous Section.

4.4.1 Relaxing the thermal boundary condition, effect of
Ω

As in the bending regime, for a small value of Ω, the heating of the surrounding
medium insulates the current and the thermal anomaly is larger. For instance,
for Pe = 1 and ν = 0.01 at t = 100, while Rc ∼ 1 for Ω = 105, Rc is larger
than 5 for Ω = 1 (Figure 4.9).

In addition, after it detaches from the current tip, the thermal anomaly
does not reach a steady-state profile but keeps growing with time instead (Fig-
ure 4.10). Indeed, in contrast to the isothermal boundary case, the constant
increase of the surface temperature continuously decreases the heat loss in
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Figure 4.9: Snapshots of the flow thermal structure θ(r, z, t) for different sets
(Pe,Ω) with Pe = 1.0 ,10.0 ,100.0 and Ω = 105 and 1.0 at t = 100 for
ν = 0.01. The thermal structure above the intrusion is given by (4.5) and
reads in a dimensionless form Θr(r, z, t) = Θs(r, t) erfc

(
Pe1/2Ω1

(z−h)

2
√
t

)
where

Ω1 is set to 1. The thermal structure below the intrusion is similar and not
shown for clarity.

the central region of the current which allows an expansion of the thermal
anomaly.

For small values of Pe, the important heating of the surrounding medium
results in a flow that is almost vertically isothermal (Figure 4.9 and 4.10). In
contrast, for large values of Pe, the vertical diffusion of heat is less efficient,
the thermal aureole is restricted to a small region around the intrusion, the
thermal anomaly is larger and the vertical temperature gradients within the
flow are stronger (Figure 4.9).

While three phases also characterize the dynamics when Ω = 1.0, their
duration is modified by the new thermal boundary condition (Figure 4.11).
In particular, the current remains hot for a longer period and the second
phase is delayed in comparison to the case where Ω = 105. For instance, for
ν = 0.01 and Pe = 1.0, while the first transition occurs at t ≈ 0.1 for Ω = 105,
it happens only after t ≈ 1 for Ω = 1 (Figure 4.11).

As the thermal anomaly does not reach a steady state for Ω = 1, the
cooling of the current in the second gravity phase is also slower than for
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Figure 4.10: Snapshots of the flow thermal structure θ(r, z, t) at different
times indicated on the plot. Dashed lines represent the thermal boundary
layers. Solid grey lines are isotherms for θ = 0.2, 0.4, 0.6 and 0.8. Here,
ν = 0.01, Pe = 1.0 and Stm = 1. The thermal structure above the in-
trusion is given by (4.5) and reads in a dimensionless form Θr(r, z, t) =

Θs(r, t) erfc
(
Pe1/2Ω1

(z−h)

2
√
t

)
where Ω1 is set to 1. The thermal structure below

the intrusion is similar and not shown for clarity.

Ω = 105 and the current reaches the third phase also much later for Ω = 1

(Figure 4.11). In the next Section, we consider the effect of the first order
Arrhenius rheology on the dynamics for Ω = 1.0.

4.4.2 Considering a more realistic rheology, effect of η(θ)

As in the bending regime, the chosen rheology η(θ) also affects the timing for
the phase transition, and, in particular, these transitions occur sooner for the
first order Arrhenius rheology η2(θ) than for η = η1(θ). In particular, the de-
lay induced in the phase transitions by the heating of the surrounding medium
is almost offset by the first order Arrhenius rheology. For instance, the tran-
sition to the second gravity phase occurs around the same time for a current
characterized by η(θ) = η1 and Ω = 105 than for a current characterized by
η(θ) = η2 and Ω = 1.0 (Compare Figure 4.11 and 4.12).
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Figure 4.11: Left: Dimensionless thickness at the center h0 versus dimension-
less time t for different sets (Ω, P e) indicated on the plot. Dotted-line: scaling
law h0 = 0.7h

−1/11
f ν−2/11t8/22 for ν = 0.01. Right: Dimensionless radius R ver-

sus dimensionless time t for the same sets (Ω, P e). Dotted-line: scaling law
R = 2.2h

1/22
f ν1/11t7/22 for ν = 0.01. In all simulations, ν = 0.01 and η(θ) = η1.
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Figure 4.12: Left: Dimensionless thickness at the center h0 versus dimension-
less time t for different sets (η, Pe) indicated on the plot. Dotted-line: scaling
law h0 = 0.7h
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f ν−2/11t8/22 for ν = 0.01. Right: Dimensionless radius R

versus dimensionless time t for the same sets (η, Pe). Dotted-line: scaling law
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f ν1/11t7/22 for ν = 0.01. In all simulations, ν = 0.01 and Ω = 1.
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4.4.3 Characterization of the thermal anomaly

As in the bending regime, the thermal anomaly is first attached to the tip of
the current, i.e. Rc(t)/R(t) = 1. After a time that depends on Pe, as well as
ν, the thermal anomaly detaches from the tip and follows its own evolution.
However, in contrast to the isoviscous case, the thermal anomaly does not
reach a steady state and Rc/R does not evolve as t−1/2 anymore (Figure 4.13
a). We modify the thermal budget of Section 3.4.4 to account for the heating
of the surrounding medium.
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Figure 4.13: a) Normalized thermal anomaly radius Rc(t)/R(t) versus time for
different combinations (ν,Pe) indicated on the plot. Dotted-line: Scaling law
found in Section 3.4.4 Rc(t)/R(t) ∼ t−1/2 for comparison. b) Same plot but
where we rescale the normalized thermal anomaly by Pe1/4ν−1/8. Dotted-line:
scaling law (Rc(t)/R(t))Pe−1/4ν1/8 = 1.8t−1/4. In all simulations, Ω = 1.0 and
η(θ) = η1.

When the thermal anomaly has detached from the intrusion front, a bal-
ance between heat advection and diffusion in the surrounding medium in a
dimensional form reads

ρmCp,mU0
∆T

Rc

≈ km
∆T

h2
0

, (4.44)

where ∆T is the mean temperature contrast between the fluid and the sur-
roundings and U0 is a redistribution of the injection rate at r = Rc, i.e.
U0 = Q0/(2πRch0). In addition, the continuity of the heat flux at the bound-
ary (4.6) imposes

km
∆T

h0

≈ kr
∆T√
πκrt

. (4.45)
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Injecting (4.45) and the expression for the velocity U0 into (4.44) gives

Rc ≈

(
Q0κ

1/2
r

κmkr

)1/2

t1/4. (4.46)

By non-dimensionalizing (4.46), we obtain the evolution of the thermal
anomaly when it has detached from the tip Rc(t) ∼ Ω−2Pe1/4t1/4 and hence

Rc(t)

R(t)
= 1.8Ω−2Pe1/4ν−1/8t−1/4, (4.47)

where we have used the scaling law for R(t) given by (3.66) and the numerical
prefactor, which depends on the definition of the thermal anomaly, has been
chosen to fit the simulations. The scaling law, which is only valid for Ω = O(1),
indeed closely fits the simulations. In particular, both the dependence with
the Peclet number Pe and the viscosity contrast vanish when rescaling by
Pe1/4ν−1/8 (Figure 4.13 b).
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Figure 4.14: a) Dimensionless effective viscosity versus time where the time
has been rescaled by the time for the flow to enter the second phase tg2. b)
Same as left but where we rescale the viscosity by ν and the time by tg3. In
all simulations, Ω = 1.0 and η(θ) = η1.

The time tg2 for the current to enter the second gravity phase does not
change much as the delay induced by the heating of the surrounding medium
is offset by the change in rheology. Accordingly, we use the time tg2 (3.73) to
characterize the first gravity transition (Figure 4.14 a). In contrast, the time
tg3 for the current to enter the third phase of the flow is now larger. Processing
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as in Section 3.4.5 but using (4.47) for the evolution of the normalized thermal
anomaly Rc(t)/R(t) instead of (3.70), we find that tg3 is given by

tg3 = 1300Ω−8ν−1/2PeSt−1
m . (4.48)

Name From To Expression
tt Bending Gravity 6.5(ηe/ηh)

2/7h
−1/7
f

tht Bending Gravity 6.5h
−1/7
f

tct Bending Gravity 6.5ν−2/7h
−1/7
f

Bending regime
tb2 Phase 1 Phase 2 0.1PeSt−1

m h2
f

tb3 Phase 2 Phase 3 0.4h
−4/17
f St

−11/17
m Pe11/17ν−8/17

Gravity regime
tg2 Phase 1 Phase 2 10−2PeSt−1

m

tg3 Phase 2 Phase 3 1300PeSt−1
m ν−1/2

Table 4.1: Summary of the different transition times. tt is the transition time
between bending and gravity which is bound by tht , when the current transi-
tions in the first bending thermal phase, and tct , when the current transitions
in the third bending thermal phase. tb2 (resp. tb3) represents the time to
transition from phase 1 to phase 2 (resp. from phase 2 to phase 3) in the
bending regime. tg2 (resp. tg3) represents the time to transition from phase 1
to phase 2 (resp. from phase 2 to phase 3) in the gravity regime.

4.5 Evolution with bending and gravity in the
more realistic model

In the previous Chapter, we showed that the final evolution of an elastic-plated
gravity current depends on the relative phase changes within each regime and
the transition between the bending and the gravity regime itself. The Arrhe-
nius rheology tends to offset the delays caused by the heating of the surround-
ing medium and overall, the phase diagram presented in Section (3.5) shows
only minor modifications (Figure 4.15). Except for the transitions from the
third bending phase to the second and third gravity phases, which are shifted
to the left, the phase diagram is indeed not modified (Appendix B). Therefore,
in the framework of our more realistic model, the current is only more likely
to transition to the gravity regime before reaching the third bending phase.
In the following, we look at the observations discussed in Chapter 2 in the
light of our new model.



102 Chapter 4. Towards a more realistic model

10-310-210-1 100 101 102 103 104 105 106 107 108 109

Modified Peclet number Pem

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

V
is
co

si
ty
 c
o
n
tr
a
st
 ν

P
e m
∝h

−1
5
/7

f

ν
∝P

e
7/
2

m
h
−1

/2
f

ν
∝P

e
14
/3

m
h

2/
3

f

ν∝
P
e −

7/2

m
h −

1/2

f

P
e m
∝h

−1
/
7

f

B2G2

B
2 G

1 /B
2 G

2

B3G2 B2G1

B
3
G

3 B1G1

hf =5.0e−03

Figure 4.15: Phase diagram for the evolution with bending and gravity for
the more realistic case discussed in this Chapter for different combinations
(ν,Pem) and a given value of hf = 0.005. BiGj refers to the case where the
current transitions from the ith bending thermal phase to thew jth gravity
thermal phase where i and j ∈ {1, 2, 3}.

4.6 Application to the spreading of shallow
magmatic intrusions

4.6.1 Elba Island christmas-tree laccolith complex

The isoviscous elastic-plated gravity current model has been used in Chapter
2 to study the laccoliths at Elba Island (Michaut , 2011). It shows that,
while their final morphology is consistent with their arrest in the bending
regime, their dimensions require unreasonable magma viscosity to agree with
the isoviscous model (Chapter 2). In addition, given the fracture toughness of
rocks, their radius seems too small to be fractured controlled and their arrest
might be better explained by their cooling (Michaut , 2011).

In the following, we compare the new model predictions to the size of
laccoliths provided by Rocchi et al. (2002). To account for the intrinsic scale
of different settings for each intrusion and compare them to the model, the
data have first to be nondimensionalized using characteristic values for the
model parameters.
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Table 4.2: Range of values for the model parameters

Parameters Symbol Earth Moon Unit

Depth of intrusion d0 0.2− 2.7 0.5− 5 km
Young’s Modulus E 10 10 GPa
Poisson’s ratio ν∗ 0.25 0.25

Gravity g 9.81 1.62 m s−2

Magma density ρm 2500− 2900 2900 kg m−3

Liquidus magma viscosity ηh 102 − 106 1− 10 Pa s
Solidus magma viscosity ηc 106 − 1010 103 − 105 Pa s

Feeder dyke width a 1− 100 10 m
Depth of the melt source Zc 1− 10 500 km

Initial overpressure ∆P 20− 50 50 MPa
Injection rate Q0 0.1− 103 1− 104 m3 s−1

Magma thermal conductivity km 2.5 2.5 W K−1 m−1

Magma thermal diffusivity κm 10−6 10−6 m2 s−1

Magma liquidus temperature TL 900-1200 1200 ℃
Magma solidus temperature TS 700-1000 1000 ℃

Magma heat capacity Cp 4.18× 105 4.18× 105 J kg−1 K−1

Latent heat of crystallization L 4.18× 105 4.18× 105 J kg−1

Rock thermal diffusivity κr 10−6 10−6 m2 s−1

Characteristic scales Symbol Earth Moon Unit

Height scale H 0.1− 10 0.1− 1 m
Length scale Λ 1− 7 2.2− 12 km
Time scale τ 10−3 − 100 10−3 − 10 years

Dimensionless number Symbol Earth Moon

Peclet number Pe 10−4 − 500 10−3 − 104

Viscosity contrast ν 10−4 − 10−10 10−3 − 10−5

Modified Stefan number Stm 0.1− 0.5 0.1− 0.5

Ω 1 1

Range of values for the dimensionless numbers

The different parameters along with a discussion on the possible values for
hf have been provided in Chapter 2 and are summarized in Table 4.2. We
refer the reader to Section 2.3.1 for more details about their derivation. In the
following, we quantify the values of the new dimensionless numbers related to
the cooling of the flow for the case of the Elba Island laccoliths.

For a latent heat of crystallization L = 4.18 × 105 J kg−1, a difference
between solidus temperature TS and liquidus temperature TL between 100 K
and 300 K, the number Stm varies from 0.1 to 0.5. For a thermal diffusivity
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for the magma equal to κm = 10−6 m2 s−1, an injection rate Q0 between 0.1

and 100 m3 s−1 and an intrusion depth between 0.2 and 2.7 km, the Peclet
number varies from 10−3 to 100 and therefore, Pem varies from 0.01 to 1000.
The increase in viscosity upon cooling varies from 4 to 6 orders of magnitude
for mafic magmas and can be up to 10 orders of magnitude for felsic magmas
(Shaw , 1972; Lejeune and Richet , 1995; Giordano et al., 2008; Diniega et al.,
2013). We thus consider that the viscosity contrast ν ranges from 10−4 to
10−10.

Do laccoliths stop in the bending regime?

The dimensionless thickness h0 as a function of its dimensionless radius R
for a current that solidifies in the third phase of the bending regime can be
derived from the scaling laws (3.54) and (3.55) and should follow

h0 = 0.3h
−1/7
f ν−2/7R8/7. (4.49)

Using the parameters listed in Figure 4.16, the dimensionless observations
show a very good agreement with the model for a viscosity contrast close to
8 orders of magnitude (ν = 3.1 ± 1.0 × 10−8, r2 = 0.92), which is consistent
with the felsic composition of these laccoliths, and hf = 0.005 (Figure 4.16 a)
(Marsh, 1981; Diniega et al., 2013). Varying hf has only a minor effect on the
best fit viscosity contrast and is discussed in Appendix C.2. This value for the
viscosity contrast also depends on the chosen value for the intrusion parame-
ters, i.e. on the height scale H whose main uncertainties are on the liquidus
viscosity ηh and the injection rate Q0. Indeed, the larger these two parame-
ters, the larger the height scale, the smaller the dimensionless thicknesses and
therefore, the smaller the best fit viscosity contrast.

Nevertheless, introducing the cooling allows the model predictions to rec-
onciliate with the observations in the case of laccoliths (Chapter 2). The shape
and in particular, the large thickness of the laccoliths at Elba Island is now
entirely consistent with the model predictions and therefore with their arrest
in the bending regime. In the following, we use the phase diagram proposed
in Section 4.5 to better constrain the viscosity contrast along with ηh and Q0.

What can we learn from the phase diagram?

It is generally assumed that the magma stops spreading when its crystal con-
tent becomes close to its maximum packing, i.e. φ ∼ 60% (Pinkerton and
Stevenson, 1992). Beyond this point, crystal collisions dominate and the vis-
cosity jumps to much higher values (Lejeune and Richet , 1995; Giordano et al.,
2008). We assume that this is equivalent to ηe tending to ηc in our model.
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Figure 4.16: a) Dimensionless maximum thickness h0 versus radius R for
laccoliths from Elba Island and revised low-slope lunar domes. Parameters
for calculating Λ (3.23) and H (3.24) are E = 10 GPa, ν∗ = 0.25, ρm = 2500

kg m−3, g = 9.81 m s−2, ηh = 106 Pa s and Q0 = 10 m3 s−1 on Earth
and, everything else being equal, g = 1.62 m s−2, ηh = 1 Pa s on the Moon.
d0 is set to 1.5 km for all lunar domes. Dotted lines: best fit scaling laws
(4.49) with hf = 0.005 for laccoliths at Elba Island (red) and low-slope lunar
domes (purple). ν = 3.1 ± 1.0 · 10−8 (r2 = 0.92) and ν = 7.9 ± 1.9 · 10−9

(r2 = 0.89) represent the linear least square best fit for the data on Earth and
the Moon respectively. b) Dimensionless thickness ĥ0 versus R̂ where ĥ0 and
R̂ are given by (4.53) and (4.54) with hf = 0.005 for laccoliths at Elba Island.
Substituting (3.25) into (3.33), we obtain Pe = Q0H/(πκΛ2); the parameters
for calculating Pe for each laccolith are the same than those used for the
nondimensionalization, κ = 10−6 m s−2 and Stm is considered constant and
set to 0.5. The viscosity contrast is set to ν = 7.9 × 10−10 for all laccoliths.
Dotted line: scaling law ĥ0 ∼ 0.3R̂8/7.

With this assumption, the model thus predicts that a magmatic intrusion
would solidify as a laccolith upon reaching the third bending phase; the phase
diagram proposed in Section 4.5 simplifies (Figure 4.17).

It shows that sills and laccoliths are two specific end member regions as a
function of Pe and ν. Given the felsic composition of Elba island laccoliths,
this phase diagram can then be used to constrain their Peclet number, and
therefore Q0 and ηh, for them to fall in the laccolith region. In the following,
we use this approach to constrain the injection rate Q0 for these laccoliths.

We first compute a value for the Peclet number for each laccolith at Elba
Island. Injecting the scales (3.23), (3.24) and (3.25) in the expression of Pe
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Figure 4.17: Subset of the phase diagram proposed in Section 4.5 relevant for
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of values for ν and Pe for Elba Island laccoliths and low-slope lunar domes
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of parameters listed in table 4.2, the injection rate Q0 and the viscosity at
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corresponds to the minimum and maximum values for the viscosity contrast
obtain from (4.49) when hf = 0.005.

(3.33) gives
Pe ≈ 1.5Q

5/4
0 η

1/4
h ρ1/4

m g1/4E−1/2d
−3/2
0 κ−1

m (4.50)

where we set the Poisson’s ratio to ν∗ = 0.25. Except for Q0 ,that we want
to constrain, and d0, which is given and depends on the laccolith, we take the
parameter values listed in Figure 4.16. Therefore, Pe reads

Pe ≈ 5.9× 104d
−3/2
0 Q

5/4
0 (4.51)

For Stm = 0.5, the intrusion depths given by Rocchi et al. (2002) and Q0 = 10

m3 s−1, the modified Peclet number Pem ranges from 1 to 4. As the best fit
range of values for the viscosity contrast associated with Q0 = 10 m3 s−1 is
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ν = 3.1± 1.0× 10−8, as discussed in the previous Section, the phase diagram
thus predicts that these laccoliths should have stopped in the gravity regime
(Figure 4.17). Hence, we might have overestimated the injection rate. Indeed,
taking a smaller value for the injection rate of Q0 = 0.1 m3 s−1, reasonable for
viscous felsic magmas (Harris et al., 2000), the height scale H is smaller and
the dimensionless thicknesses are larger. The model thus predicts a larger
viscosity contrast ν = 5.5 ± 1.8 × 10−10, still consistent with the range of
expected values for felsic magmas, and weaker Peclet numbers. In the end,
the range of values for the dimensionless numbers now falls within the laccolith
region and is consistent with the observations (Figure 4.17).

Do laccoliths really stop upon reaching the third bending phase?

If the laccoliths stopped spreading as soon as they reached the third phase
of the bending regime, the variance in thickness and radius in between the
different intrusions should also be explained by variations in the Peclet num-
ber, most likely due to variations in intrusion depths in this example. Indeed,
the time tb3, necessary to reach the third bending phase, the thickness and
the radius of the current at this time all depend on the combination (ν,Pem)
considered (see Section 4.5).
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Figure 4.18: a) Dimensionless thickness at the center h0 versus dimensionless
radius R for different sets (ν, Pe) indicated on the plot (η(θ) = η2, Ω = 1.0).
Pentagons refer to the size where the effective viscosity of the current equal
70% of the maximum viscosity ηc, i.e. ηe = 0.7ηc. b) Dimensionless thickness
ĥ0 versus dimensionless radius R̂ where ĥ0 and R̂ are given by (4.53) and
(4.54) with hf = 0.005. As expected, after rescaling h0 and R, the sizes of the
solidified laccoliths should collapse almost on the same point.
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To test this hypothesis, we first rescale the time using the time tb3 (4.43)
as follows

t̂ = h
4/17
f Pe−11/17

m ν8/17t, (4.52)

where t̂ is the new variable. Injecting (4.52) into (3.54) and (3.55), we find
that the corresponding thickness ĥ0 and radius R̂ read

ĥ0 = h
3/17
f Pe−4/17

m ν6/17h0, (4.53)

R̂ = h
1/34
f Pe−7/34

m ν1/17R. (4.54)

In terms of ĥ0 and R̂, the scaling law (4.49) rewrites ĥ0 ∼ 0.3R̂8/7 and does not
depend on the dimensionless numbers anymore (Figure 4.18). For laccoliths
at Elba Island, we use a constant viscosity contrast equal to ν = 5.5 · 10−10,
hf = 0.005 and we compute a Peclet number for each laccolith according to
(4.51) with Q0 = 0.1 m3 s−1 and its reported intrusion depth.

However, the different laccoliths do not collapse on the same dot after
rescaling (Figure 4.16 b). In particular, the dependence in Pe of our scaling,
resulting from different intrusion depths, is not enough to explain the variabil-
ity in the size of terrestrial laccoliths. Assuming that they indeed stop upon
reaching the third bending phase, an additional cooling mechanism, amplify-
ing the effect of Pe, is required to explain the exact extent of these laccoliths.
This could be extraction of heat by circulation of fluid (Senger et al., 2014).
To test this hypothesis, we look at the low-slope domes on the Moon where
conduction is most likely the only source of cooling.

4.6.2 Low-slope lunar domes

Because the Moon is supposed to be depleted of volatiles, circulation of fluid
in the lunar crust is likely to be very limited and the model developed in this
Chapter should be appropriate for studying the cooling of low-slope lunar
domes. In this Section, we restrict our analysis to some specific domes whose
characteristics have been precisely revisited by Mélanie Thiriet (Purple dots
Figure 2.5, see Section 2.3.2). Their shapes and characteristics have already
been discussed in Chapter 2 and hereafter, we look at their dimension in the
light of the cooling elastic-plated gravity current model.

Range of values for the dimensionless numbers

Parameters for a lunar setting have been discussed in Chapter 2 and are
summarized in Table 4.2. In particular, for the same injection rate, the smaller
gravity, together with the higher density and the smaller viscosity of lunar
magmas, lead to smaller Peclet numbers. For instance, for an intrusion 1.5
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km deep, using g = 1.62 m s−2, ηh = 1 Pa s and ρm = 2900 kg m−3 instead of
g = 9.81 m s−2, ηh = 106 Pa s and ρm = 2500 kg m−3 leads to a Peclet number
two orders of magnitude smaller on the Moon than on Earth, i.e. Pe = 0.04

and Pe = 3.6 respectively.
However, injection rates on the Moon might be larger than on Earth (Crisp

and Baloga, 1990; Zimbelman, 1998) (See Section 2.3.2). For an injection rate
one to two orders of magnitude larger and d between 0.5 and 1.5 km, the range
of Peclet number is in fact very similar, i.e. from 10−3 to 104. Therefore,
taking Stm = 0.1, we have Pem that varies between 0.01 and 105 for low-slope
lunar domes. Finally, lunar basalts are mafic in composition and the viscosity
contrast ν should vary between 10−3 and 10−5 (Diniega et al., 2013).

Constraining the magma physical properties

For an injection rate of Q0 = 10 m3 s−1, a liquidus viscosity of ηh = 1 Pa
s and the parameters listed in Figure 4.16, the dimensionless thicknesses of
these domes are also consistent with a viscosity contrast close to 10−8 (best
fit: ν = 7.9± 1.8× 10−9) (Figure 4.16).

On the Moon, (4.51) becomes

Pe ≈ 125d
−3/2
0 Q

5/4
0 η

1/4
h , (4.55)

and assuming that the intrusion depth ranges from 500 m to 5 km, the Peclet
number ranges from 0.005 to 0.2 and, for Stm = 0.5, the range of values for the
dimensionless numbers thus falls at the boundary between the two domains
in the phase diagram (Figure 4.17). It is consistent with the radius of these
lunar domes being close to R = 4, i.e. close to the transition radius with the
gravity regime (Figure 4.16).

However, the estimate for the viscosity contrast is much larger than the
value expected for their mafic composition. For the same injection rate and a
“hot” viscosity ηh = 103 Pa s instead of ηh = 1 Pa s, the height scaleH is larger
and the dimensionless thicknesses smaller. The best fit viscosity contrast is
now close to 10−5 (ν = 3.3 ± 0.8 × 10−6), closer to the expected value, and
the Peclet numbers are slightly larger (Figure 4.17).

A similar value for the viscosity contrast can be obtained for ηh = 1 Pa s
and Q0 = 3000 m3 s−1. However, in that case, the Peclet numbers are much
larger and the range of values for the dimensionless numbers falls within the
sill region (Figure 4.17).

In the end, it suggests that the injection rates for these lunar domes were
smaller than 10 m3 s−1, and hence, several orders of magnitude smaller than
the effusion rates estimated from the runout distances of some lava flows in
the lunar maria i.e. Q0 ≥ 106 m3 s−1 (Gregg and Fink , 1996).
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4.6.2.1 Is conductive cooling enough to solidify a laccolith on the
Moon?

On the Moon, the dimensionless sizes of the domes vary by less than one order
of magnitude and might be explained only by the conductive cooling of the
magmatic intrusion (Figure 4.16). Because intrusion depths are not known
for these domes, we can not process as for Elba Island laccoliths to test this
hypothesis.

Instead, we estimate a range of intrusion depths that would produce a
collapse of the rescaled size of the domes on a reference dome size given by
R̂ref and ĥref0 . Indeed, using (4.54), R̂ = R̂ref implies that

Λ−1h
1/34
f Pe−7/34

m ν1/17R =
(
Λref)−1 (

hreff
)1/34 (

Perefm
)−7/34 (

νref
)1/17

Rref,

(4.56)
where the topscript ref denotes a reference dome and the radii R and Rref are
with dimension. Assuming that the different lunar domes differ only by their
intrusion depth, (4.56) simplifies and reads

d0 =
(
R/Rref)34/15

dref0 . (4.57)

We take the largest dome as a reference and we set its depth to the largest
reasonable value, i.e. d0 = 5 km, mainly to ensure that the dimensionless
radius of the other domes remains smaller than 4. Injecting the dome radii in
(4.57) then gives intrusion depths between 0.5 km and 5 km and Peclet num-
bers between 10−2 and 0.5, consistent with their expected values. However,
while these new parameters result in the collapse of R̂ for the different domes,
the variation in Peclet number can not account for the dispersion in the dome
thicknesses (Figure 4.19). In addition, the dimensionless thickness as a func-
tion of the dimensionless radius does not follow the scaling law (4.49) anymore
(Figure 4.19). The same conclusion is obtained using different reference domes
or by setting the constraint on the rescaled thickness instead of the radius,
i.e. ĥ0 = ĥref0 .

4.6.3 What causes the arrest of terrestrial laccoliths?

Together, Elba Island laccoliths and low-slope lunar domes suggest that the
highly viscous region, which composed the tip region at the beginning of the
third bending phase, does not stop terrestrial laccoliths as suggested initially.
Indeed, the data support their later arrest during the third bending phase.
Alternatively, we propose that the injection rate is responsible for the arrest
of terrestrial laccoliths.

Indeed, in reality, one may expect that the flow rate, which is consid-
ered constant in this model, wanes as the deep magma source gets exhausted
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Figure 4.19: a) Dimensionless thickness h0 versus dimensionless radius R
for some lunar low-slope domes. Purple dots: characteristics length scale Λ

(3.23) and thickness H (3.24) are calculated the same way as in Figure 4.16.
Colored diamonds: characteristics length scale Λ (3.23) and thicknessH (3.24)
are calculated the same way as in Figure 4.16 except for the intrusion depth,
taken from (4.57) with Rr = 36.6 km and dr0 = 5 km. b) Dimension thickness
ĥ0 versus dimensionless radius R̂. Colored polygons refers to the colors in a).

(Taisne and Jaupart , 2009; Rivalta, 2010). In this case, only a fixed volume of
magma is available, which may control the final size of the magmatic intrusion.

Michaut (2011) also suggests that the weight of the magma at the cen-
ter might compensate the initial overpressure ∆P ; when ∆P/(ρmgH) = h0

the flow is thick enough to accommodate the overpressure below and enters a
regime of lateral propagation (Michaut , 2011). The associated pressure drop
combined with the cooling could be enough to prevent lateral spreading and
solidify a laccolith. For the smaller overpressure ∆P and the typical param-
eters listed in Table 4.2, this would happen when h0 ∼ 200, which can be
reached for ν < 10−6 in the third bending regime.

Alternatively, the intrusion could also grow by the mean of multiple, yet
quickly coalescing pulses, i.e. several bursts separated by sufficiently short
rest periods such that a melted cored is maintained at the center of the flow.
This is suggested by numerous shallow intermediate scale intrusion geological
studies (Habert and De Saint-Blanquat , 2004; Horsman et al., 2005; Morgan
et al., 2008; Leuthold et al., 2012; Roni et al., 2014). In that case, the tip of
the intrusion would likely be “cold” for subsequent injections. Hence, the final
laccolith morphology, while following the “cold” viscosity scaling law (4.49),
would exhibit a somewhat random position on this scaling law depending on
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its feeding history.

4.6.4 Large mafic sills

As we discussed in Chapter 2, the thickness of the large mafic sills reported by
Cruden et al. (2012) increases with their diameter. This trend is apparently
in contradiction with the constant thickness predicted by the elastic-plated
gravity current model (Figure 2.5).

One possible explanation is that different sills are characterized by differ-
ent injection rates, i.e. by different height scales. Forcing the dimensionless
thicknesses of different sills to be constant imposes that

Q0 = (h0/h
ref
0 )4Qref

0 , (4.58)

where h0 is the sill thickness with dimension, Q0 its injection rate and href0 and
Qref

0 are reference values for these parameters. Taking the thickest sill as a
reference with Qref

0 = 104 m3 s−1, we find that in order to collapse all the data
on a constant thickness, the injection rate have to vary by at least 7 orders of
magnitude, i.e. from Q0 = 10−3 to Q0 = 104 m3 s−1. It is much larger than
the expected range of variation for this parameter and hence, these mafic sills
do not appear to have all stop in the third gravity regime.

Another possible explanation is that fracturation at the tip, instead of
cooling, have triggered the arrest of these magmatic intrusions in the second
gravity phase. Indeed, while fracturation is not sufficient to stop a magmatic
intrusion in the bending regime, it might be responsible for the arrest of large
mafic sills (Michaut , 2011). The increasing thickness with diameter would
thus be consistent with the thickness increase induced by the cooling of the
sill in the second gravity phase.

Alternatively, the solidification of the sill in the second gravity regime
could follow the decline of the injection rate before it gets to the third gravity
regime. Indeed, maintaining a constant injection over the period required to
reach the third gravity phase, which is enhanced by the insulation of the wall
rock, might be unrealistic. For instance, even for a constant injection rate of
Q0 ∼ 1 m3 s−1 and typical parameters for mafic sills, the time to reach the
third gravity regime tg3 is close to 10 k.y.

In both cases, the slope of h0(R) exhibits by the data could be linked to
the slope shown by the simulations in the second gravity regime. However,
more information about the intrusion depths and the relationship between
the different sill units, which are not given by Cruden et al. (2012), would be
required to precisely test this hypothesis.
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4.6.5 Contact aureole

Contact metamorphism often occurs in the vicinity of magmatic intrusions
(Jaeger , 1959; Sillitoe and Thompson, 1998; Senger et al., 2014). Metamor-
phism is a complex process and in the following, we discuss only the dimension
of the thermal aureole in the vicinity of laccoliths which have stopped in the
third bending regime.
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Figure 4.20: a) Snapshot of the flow thermal structure with its surrounding
thermal aureole at t = 10 for Pe = 1.0 and ν = 10−3. Isotherms are indicated
on the plot. b) Same plot but for Pe = 10.0.

We define the thickness of the thermal aureole Lh(t) by the region where
Θr > 0.1 above the center of the flow. Therefore, inverting (4.5) gives Lh(t),
the maximum thickness of the thermal aureole above the intrusion at r = 0

Lh(t) = erf−1

(
0.1

Θs(r = 0, t)

)
2Pe−1/2t1/2. (4.59)

Lh scales as Pe−1/2 and hence, is larger for small values of Pe (Figure 4.20).
Indeed, for large Pe, advection dominates on the emplacement time scale and
the thermal aureole is restricted to a small zone around the current (Figure
4.20). For instance, the thickness of the contact aureole Lh(t) at t = 10 is
almost equal to the current thickness h0 for Pe = 1 whereas it is only a few
percent of h0 for Pe = 10.0 (Figure 4.20).

The dimension of the thermal aureole also depends on the emplacement
time t; the longer the injection, the longer the heating and the larger the
thermal aureole. An upper limit for the emplacement time of laccoliths is
given by the time tt for the intrusion to transition in the gravity regime while
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it is in the third bending regime, i.e. tt = 6.5ν−2/7h
−1/7
f (See Section 3.5).

Injecting tt into (4.59) gives

Lmax
h = 5.0 erf−1

(
0.1

Θs(r = 0, tt)

)
h
−1/14
f ν−1/7Pe−1/2, (4.60)

and therefore, using (3.54), we get

Lmax
h /h0(tt) = 3.7 erf−1

(
0.1

Θs(r = 0, tt)

)
h

1/14
f ν1/7Pe−1/2. (4.61)

While the absolute size of the thermal aureole Lmax
h increases with decreasing

Pe and ν (4.60), the ratio Lmax
h /h0 is smaller for larger viscosity contrasts

(Figure 4.21).
For the felsic laccoliths at Elba Island, we estimated ν ∼ 10−9 and

Pe ∼ 10−3 (Figure 4.17) and thus, the thermal aureole should reach 400%

of the intrusion thickness at the center of the flow (Figure 4.21 a). Important
temperature variations however, i.e. Θr > 0.8, should be restricted to the
vicinity of the current, i.e. ∼ 60% of the intrusion thickness (Figure 4.21 b).
Theses estimates represent upper bound as the temperature at the surface
Θs(r = 0, t) might be smaller than 1 for Pe < 0.1. In addition, the model
neither accounts for horizontal thermal conduction, nor for circulation of fluid
in the wall rocks, both effects that should also limit the size of the thermal
aureole.
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4.7 Summary and discussion

In this Chapter, we discuss a more realistic model for the emplacement of
magmatic intrusions in the shallow crust of terrestrial planets. In particular,
we describe the dynamics of a magma characterized by an Arrhenius rheology
and heating the wall rocks as it spreads.

We show that relaxing the thermal boundary condition insulates the flow
and therefore, allows the intrusion to stay hot for a longer period. In particu-
lar, the thermal anomaly detaches slower from the tip of the intrusion. It also
does not reach a steady state anymore in the gravity regime as the heating of
the surrounding medium constantly decreases the heat loss in the central re-
gion. Nevertheless, the Arrhenius rheology largely compensates for the delay
in the transitions induced by the heating of the surrounding medium. In the
end, except for the third phase in both regimes which is reached slightly later,
the dynamics shows only small variations in comparison to the one described
in Chapter 3.

During the bending regime, the local thermal condition at the tip of the
current governs the effective flow viscosity. As the fluid is cooling by conduc-
tion, the thermal anomaly detaches from the tip and the flow effective viscosity
rapidly increases to stabilize when the front becomes entirely “cold”. Never-
theless, the formation of a highly viscous region at the front of the intrusion,
and therefore cooling, is probably not responsible for the arrest of terrestrial
laccoliths. Instead of a rigid plug arresting the intrusion, the tip region might
thus better represent a highly viscous region controlling the expansion of the
flow.

Alternatively, we propose that the injection rate is the limiting factor in
the growth of these magmatic intrusions in the third bending phase.

Available data for large mafic sills on Earth show less agreement with the
model predictions. Indeed, we show that sills should behave as “cold” isovis-
cous gravity current when the thermal anomaly is small compared to the flow
itself, i.e. in similar settings, their thickness should tend to a constant. The
increase in thickness with diameter recorded in the data might thus suggest
that they instead stop in the second gravity phase.

In the end, while the cooling appears as an important mechanism to un-
derstand the morphology of shallow magmatic intrusions, it might not be
responsible for their arrest. We discuss some possible extensions of this work
in the last part of this manuscript.





Part III

Cratères à sol fracturé : Témoins
du magmatisme intrusif lunaire



Introduction - Résumé

La Lune possède a priori une croûte très poreuse, sans doute du fait des im-
pacts, et très peu dense, de par son mode de formation (Chapitre 1). La forma-
tion d’intrusions magmatiques y serait donc favorisée. Nous avons déjà montré
dans la partie précédente, à l’aide d’un modèle de mise en place d’intrusion
sous une couche élastique d’épaisseur constante, que les dômes à faible pente
résultent probablement de la mise en place d’intrusions magmatiques au sein
de la croûte lunaire.

D’autres sites témoignant potentiellement de la présence d’intrusions mag-
matiques sur la Lune sont les cratères à sol fracturé. Schultz (1976a) a reporté
la présence de 200 de ces cratères, principalement situés sur le pourtour des
mers lunaires. Ces cratères montrent des signes évidents de déformations
postérieures à leur formation (Section 1.2.2). En particulier, leur faible pro-
fondeur ainsi que les importants réseaux de fractures en leur sein sous-tendent
un mécanisme capable de soulever leur sol, parfois sur quelques centaines de
mètres.

Les deux scénarios proposés pour expliquer ces déformations sont une in-
trusion magmatique centrée sous le cratère et la relaxation visqueuse de la
topographie du cratère après l’impact (Wichman and Schultz , 1996). Cepen-
dant, Dombard and Gillis (2001) ont montré que, sur la Lune, la relaxation
visqueuse des cratères est probablement trop faible pour générer les déforma-
tions observées. De plus, bien que la relaxation soit cohérente avec la forme
convexe du sol de certains de ces cratères, elle ne permet pas d’expliquer le
sol plat, séparé des murs du cratère par un fossé circulaire, aussi observé pour
de nombreux cratères à sol fracturé.

Le modèle statique de Pollard and Johnson (1973) a précédemment été
utilisé pour modéliser les déformations engendrées par une intrusion centrée
sous un cratère. Cependant, ces modèles ne prennent en compte ni le poids
du magma ni la dynamique de l’écoulement et sont donc incapables de faire
des prédictions réalistes (Section 1). En place de ces modèles statiques, nous
proposons dans le Chapitre 5 de modifier cette fois le modèle de Michaut
(2011) pour étudier l’influence de la dépression liée au cratère sur l’étalement
de l’intrusion. Bien que le refroidissement influence sûrement la dynamique
des intrusions lunaires, nous avons montré dans la partie précédente que celui-
ci ne conduit probablement pas directement à limiter leur étalement. De plus,
nous nous intéressons ici à décrire la déformation engendrée par l’intrusion
de manière qualitative et nous nous contentons ainsi de décrire l’écoulement
pour un fluide isovisqueux.

Ce modèle montre que l’augmentation de la pression lithostatique en bor-
dure du cratère empêche l’étalement horizontal de l’intrusion. Ceci conduit
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naturellement à son épaississement et donc au soulèvement du sol du cratère.
La morphologie finale du cratère dépend du rapport entre le rayon du cratère
et le rayon qui conduit à la transition de l’intrusion dans le régime gravitaire,
i.e R ∼ 4Λ.

Ainsi, si le rayon du cratère, noté C, est inférieur à 4Λ, comme c’est
vraisemblablement le cas pour de petits cratères où de profondes intrusions,
l’intrusion est dans le régime élastique quand elle atteint le bord du cratère.
Elle a donc une forme de cloche; le sol se soulève donc avec une forme convexe.
Si au contraire C > 4Λ, i.e. l’intrusion est peu profonde où le cratère est
grand, l’étalement est contrôlé par le poids du magma quand il atteint le bord
du cratère. Sa forme tabulaire engendre cette fois un soulèvement en bloc
du sol du cratère. De plus, dans ce cas, le modèle prédit aussi la présence
du fossé circulaire observé pour de nombreux cratères à sol fracturé au sol
plat. En effet, celui-ci, qui n’avait jamais été expliqué précédemment, résulte
de la flexion de la couche élastique sur les pourtours de l’intrusion dans le
régime gravitaire. La profondeur et la taille de ce fossé circulaire sont donc
d’autant plus importantes que la longueur d’onde de flexure Λ est importante,
i.e. que l’intrusion est profonde. Ce modèle est donc capable de reproduire
les déformations observées au sein de ces cratères et soutient ainsi l’hypothèse
d’intrusion magmatique.

De plus, en fonction de l’apparence du sol et/ou de la taille des fossés
bordant le cratère, le modèle permet de contraindre l’épaisseur élastique et
donc accéder à une estimation de la profondeur de l’intrusion. Finalement,
les déformations étant cantonnées à l’intérieur des cratères, ce modèle suggère
que la décompression engendrée par la formation du cratère a probablement
joué un rôle important dans leur formation.

La densité du magma augmente quand il se solidifie. En supposant que ces
intrusions se soient mises en place au niveau de leurs zones de flottabilité neu-
tre, elles devraient avoir laissé une signature dans le champ de gravité lunaire.
Dans le Chapitre 7, nous proposons donc d’étudier la signature gravitaire des
cratères à sol fracturé. La résolution du champ de gravité obtenue par la mis-
sion GRAIL de la NASA a permis de construire une carte du champ de gravité
lunaire d’une précision sans précédente, i.e ∼ 6 km à la surface (Zuber et al.,
2013). Ces données, associées avec les données topographiques obtenues par
l’instrument LOLA de la sonde spatiale LRO (Lunar Reconnaissance Orbiter)
permettent ainsi d’étudier les anomalies de densité de faible amplitude au sein
de la croûte lunaire.

Pour comparaison, la signature des cratères à sol fracturé est analysée en
parallèle de celles de nombreux cratères « normaux ». Nous montrons que
la signature gravitaire moyenne est négative pour les cratères «normaux» et
positive pour les cratères à sol fracturé. En particulier, la différence de ∼ 3
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mGal est statistiquement significative et en accord avec les signaux attendus.
Ces résultats soutiennent donc aussi l’idée que des intrusions se sont mises en
place sous le sol de ces cratères.

La différence moyenne de densité entre le magma et la croûte, obtenue en
comparant la signature observée et celle attendue, est proche de 900 kg m−3.
Étant donné la porosité importante de la croûte lunaire, i.e. ∼ 12%, une telle
différence de densité implique des intrusions magmatiques relativement peu
poreuses. En particulier, ceci suggère que ces intrusions sont suffisamment
jeunes pour avoir échappé aux périodes d’intenses bombardements météori-
tiques prévalents peu après la formation de la Lune.



Chapter 5

Floor-fractured craters

The two precedent Chapters explore the cooling of shallow magmatic intru-
sions. In this Chapter and the next, we discuss the effect of an overburden
characterized by a non-constant thickness with direct application to the defor-
mation observed at Floor-Fractured Craters on the Moon.

While the cooling surely influence the dynamics of lunar intrusions, we
have shown that it does not probably limit the extent of these magmatic in-
trusions. In addition, we are interested here in modeling the qualitative de-
formation produced by crater-centered intrusion. We then neglect the cooling
of the intrusion to concentrate on the effect of the crater depression on the
dynamics.

This Chapter is a reproduction of the paper published in Journal of Geo-
physical Research: Planets untitled: A model for the dynamics of crater-
centered intrusion: Application to lunar floor-fractured craters
(Thorey and Michaut , 2014). Only slight adjustments in the notations have
been made for the coherence of the whole manuscript.
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Lunar Floor-Fractured Craters (FFCs) are a class of craters modified by
post impact mechanisms. They are defined by distinctive shallow floors that
are convex or plate-like, sometimes with a wide floor moat bordering the wall
region. Radial, concentric and polygonal floor fractures suggest an endoge-
nous process of modification. Two mechanisms have been proposed to account
for such deformations: viscous relaxation and spreading of a magma intrusion
at depth below the crater. To test the second assumption and bring more
constraints on the intrusion process, we develop a model for the dynamics of
magma spreading below an elastic overlying layer with a crater-like topogra-
phy. As predicted in precedent more qualitative studies, the increase in litho-
static pressure at the crater wall zone prevents the intrusion from spreading
laterally, leading to the thickening of the intrusion. Additionally, our model
shows that the final crater floor appearance after the uplift, that could be con-
vex or flat, with or without a circular moat bordering the wall zone, depends
on the elastic thickness of the layer overlying the intrusion and on the crater
size. Our model provides a simple formula to derive the elastic thickness of
the overlying layer, and hence, a minimum estimate for the intrusion depth.
Finally, our model suggests that crust redistribution by cratering must have
controlled magma ascent below most of these craters.

5.1 Introduction

A large fraction of the magma produced by mantle melting never reaches the
surface as it intrudes the shallow layers of the planet. On Earth, the volume
of intrusive magma is estimated to be 10 times (resp. 5 times) the volume of
extrusive lava for the continental crust (resp. the oceanic crust) (Crisp, 1984).
Buoyancy is the main mechanism driving up the magma from the interior to
the shallow layers or the surface of the planets. It has been shown that dykes
stop their propagation when they become neutrally buoyant relative to their
surroundings (Walker , 1989; Rivalta et al., 2005; Taisne and Jaupart , 2009).
Therefore, the intrusive to extrusive ratio largely depends on the respective
density of the crust and magma.
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The density of the lunar crust is particularly low. The last estimate from
the GRAIL NASA mission provides for a mean density for the highlands
of 2550 kg.m−3, even lower than what was previously assumed (Wieczorek
et al., 2013). Both the light anorthite minerals that form the lunar crust
and impact induced fractures and brecciation contribute to its low density
(Wilhelms et al., 1987). Given the large density of magma inferred from the
composition of the mare basalts that are generally rich in FeO and TiO2

(Wieczorek et al., 2001), the intrusive to extrusive ratio on the Moon might
be even higher than on Earth (El-Baz , 1970; Wilson and Head III , 1981;
Hiesinger , 2006; Glotch et al., 2010). Head and Wilson (1992) estimated an
upper limit of 50 : 1 for this ratio. However, there are no solid constraints
supporting this estimate and although it is an important parameter in lunar
thermal evolution models (Laneuville et al., 2013), it is poorly constrained.

Extrusions of lava preferentially occurred within large impact basins on
the near side of the Moon where a large fraction of the low-density crust
has been removed. However, the trajectory of the magma from its source to
the surface is unknown. The magma could have ascended directly from the
source to the surface (Wieczorek et al., 2001); alternatively, it might have first
accumulated at the crust-mantle interface before erupting where the crust was
thinner (Wilson and Head III , 1981).

Possible sites for intrusions on the Moon are below floor-fractured craters
(FFCs). These craters have been identified by Schultz (1976a); they have shal-
low floors with a plate-like or convex appearance, wide floor moats and radial,
concentric and polygonal floor fractures. Schultz (1976a) has classified about
200 FFCs. Similar FFCs have been observed on Mercury (Head et al., 2008),
Mars (Schultz , 1978; Schultz and Glicken, 1979; Sato et al., 2010) and Venus
(Wichman and Schultz , 1995a). The database and classification proposed by
Schultz (1976a) have recently been updated by Jozwiak et al. (2012) who used
new data from the Lunar Orbiter Laser Altimeter (LOLA) and Lunar Recon-
naissance Orbiter Camera (LROC). The deformations affecting these craters
are contained within the crater interior. Two mechanisms have been proposed
to explain the features observed at FFCs: 1) spreading of a magmatic intru-
sion at depth below the crater floor (Schultz , 1976a; Wichman and Schultz ,
1993, 1995b, 1996; Jozwiak et al., 2012) and 2) viscous relaxation of the crater
floor induced by a local thermal gradient caused by the impact (Hall et al.,
1981). However, viscous relaxation of the crater floor has been modeled by
Dombard and Gillis (2001) but, for typical elastic parameters, the lunar crust
is too rigid and shallowing of craters smaller than 100 km is not significant.
Hence, if the deformations observed at FFCs resulted indeed from magmatic
intrusion, they might give us important constraints and clues on the process
of magmatic intrusion in the lunar crust.
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The classical, static, model of laccoliths of Pollard and Johnson (1973) has
previously been applied to the case of FFCs to deduce the intrusion depth and
magma pressure (Wichman and Schultz , 1993, 1996; Jozwiak et al., 2012). In
this static model, the intrusion radius is known a priori. The intrusion shape
is controlled by the elastic deformation of a thin elastic layer on top of the
laccolith and the elastic pressure necessary for deforming the overlying layer
is assumed to be equilibrated by magma weight. However, Michaut (2011)
and Bunger and Cruden (2011) have shown that, if the elastic deformation
of the overlying layer controls the flow shape and its dynamics during a first
spreading phase, the own weight of the flow becomes dominant during a second
phase where the flow shape shows a flat top. Furthermore, in all these models,
the possible effect of a thickening of the overlying layer has been ignored.

Here, we modify the model proposed by Michaut (2011) for the dynamics
of a magma intrusion below an elastic overlying layer in order to account for
the effects of the crater topography, i.e. for an overlying layer of variable
thickness. We show that different types of deformations of the crater floor
are expected, as initially predicted by Schultz (1976a), and that they mainly
depend on the elastic thickness of the layer overlying the intrusion and on the
crater size.

5.2 Floor-fractured craters

Floor-fractured craters are craters that have undergone endogenous deforma-
tions after the impact. About two hundreds FFCs have been observed on
the Moon and precisely described by Schultz (1976a) who studied their struc-
ture and geology using Lunar Orbiter and Apollo stereo sets. Schultz (1976a)
proposed a classification into 6 categories based on their sizes, morphological
features and degrees of modification; classification which has recently been
updated by Jozwiak et al. (2012) using the Lunar Orbiter Laser Altimeter
(LOLA) and Lunar Reconnaissance Orbiter Camera (LROC) (Table 5.1).

Radial and concentric fracture networks generally cross the floors of these
craters (Schultz , 1976a). Another striking feature of FFCs is their shallow
floors: except for class 1 FFCs, they all exhibit a significant shallowing of
their floors compared to fresh craters the same size (Schultz , 1976a; Jozwiak
et al., 2012).

Floor uplift mainly results in two different modes of crater floor appearance
(Schultz , 1976a). In particular, FFCs of classes 3 and 5 show a flat central
floor, characteristic of a piston-like uplift of the crater floor; additionally, a
large circular U-shaped moat adjacent to the wall zone borders the flat floor
of class 3 FFCs (Schultz , 1976a; Jozwiak et al., 2012). A typical example of a
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a) NW-SE topography pro�le

b) SW-NE topography pro�le
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Figure 5.1: a) Class 2 floor-fractured crater Briggs (26.5◦N,69.1◦W), 37 km in
diameter: Left, high resolution scan from USGS Lunar Orbiter Digitization
Project. Center, topographic map extracted from LOLA data. Latitudes and
longitudes are indicated on the figure. Color scale indicates the topography in
meters. The scale origin is given by the zero level of the geoid. Right, at the
top, Northwest-Southeast topographic profile extracted from line a) on the
central topographic map, at the bottom, Southwest-Northeast topographic
profile extracted from line b) on the central topographic map. b) Same plots
for the class 3 FFC Warner (4.0◦S,87.3◦E) that is 35 km in diameter.

class 3 FFC is the crater Warner, which is 35 km in diameter and is located
at 4.0◦S, 87.3◦E in the southern part of the Mare Smythii (Figure 5.1 b). In
contrast, the floors of craters of classes 2 and 4 appear convex, indicating
a different mechanism of crater floor uplift (Schultz , 1976a; Jozwiak et al.,
2012). Briggs is a good archetype of class 2 FFC, it is a crater of 37 km in
diameter and is located at 26.5◦N, 69.1◦W, in the western part of the Oceanus
Procellarum (Figure 5.1 a). Craters showing a convex floor may also exhibit
moats adjacent to their wall zone but these are V-shaped; this is the case for
classes 4a, 4b and 4c FFCs. In addition, craters of class 4b also exhibit an
inner wall zone.
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Table 5.1: A summary of Floor-Fractured Craters classification as proposed
by Jozwiak et al. (2012) following Schultz (1976a)

Class Description
1 Large craters: 50− 300 km (average 140 km)

Deep floor
Absence of moats

Radial or concentric fractures
2 Mid-size craters: 13− 75 km (mean 30 km)

Shallow convex floor
Absence of moats

Strong concentric fractures
3 12− 170 km (mean 50 km)

Shallow central flat floor
Wide U-Shaped moat

Radial or polygonal fractures
4a Small craters: 4− 38 km (mean 15km)

Shallow convex floor
Weak V-shaped moat

Strong radial and concentric fractures
4b Small craters: 7− 45 km (average:25km)

Shallow convex floor
Pronounced V-shaped moat + inner ridges

Subtle radial fractures
4c Small craters: average 15 km

Flat or concave up floor
V-shaped moats

Hummocky, lack of fracture
5 Large craters: 12− 177 km (average 70km)

Shallow old and degraded central flat floor
Absence of moats

Strong radial, concentric and/or polygonal fractures
6 Large craters: 50− 200km

Completely flooded by basalt
Absence of moats

Concentric fractures
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Finally, class 1 FFCs show only limited deformations while the floor of
class 6 FFCs has been flooded by mare lavas, illustrating the close relation-
ship between magmatism and deformations at these craters (Schultz , 1976a;
Jozwiak et al., 2012).

5.3 An axisymmetric model for a magmatic in-
trusion spreading below a crater-like topog-
raphy

In this model, we consider the spreading of an axisymmetric intrusion above
a rigid layer and below a thin overlying layer with a crater-like topography.

5.3.1 Crater topography and overlying layer character-
istics

On the Moon, fresh impact craters have been classified into three categories ac-
cording to their shapes following crater formation and collapse: simple craters,
complex craters and basins (Pike, 1974; Schultz , 1976b; Pike, 1980; Baker
et al., 2011). Simple craters are bowl-shaped craters that do not exhibit any
slope-break (Pike, 1980). With increasing diameter, impact craters transi-
tion to complex craters that are characterized by an inner flat floor, terraced
rims and a central peak. On the Moon, the transition from simple to com-
plex craters occurs at a diameter of ∼ 15 km (Pike, 1980; Hiesinger , 2006;
O’Keefe and Ahrens , 1999; Kalynn et al., 2013). Although not all do, most
craters larger than 100 km exhibit rings on their flat floors and are defined as
basins (Wilhelms et al., 1987; Schultz , 1988). In our model, we do not con-
sider basins and study the spreading of a magmatic intrusion at depth below
simple and complex craters.

In this model, we account for the effects of the crater topography on the
intrusion dynamics. The normalized sigmoid function ξ(r) is used to param-
eterize the crater topography

ξ(r) =
1

1 + e−
4α(r−C)

dc

− 1

1 + e
4αC
dc

, (5.1)

where dc is the crater depth, C the crater radius, defined as the distance from
the crater center to the center of the wall zone, and α the average slope of the
wall zone (Figure 5.2). The elevation in height relatively to the crater center,
i.e the crater topography, is then given by

Tp(r) = dcξ(r), (5.2)
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Figure 5.2: Here, we show the two normalized sigmoid function ξ(r) used to
parameterize the two end-member crater topographies (see Section 5.3.1). a)
The sigmoid function of a simple crater is modeled using dc/4αC = ζ = 0.25.
b) The sigmoid function of a complex crater is modeled using dc/4αC = ζ =

0.13.

and results in an increase in lithostatic pressure at the crater wall zone.

For simple craters, our definition of the crater radius C corresponds to half
of the observed crater radius. Pike (1980) shows that the average wall slope
α increases gradually from about 0.3 (19◦), for craters 0.5 km in diameter,
to 0.4 (25◦) for craters 15 km in diameter (Kalynn et al., 2013). To model a
simple crater, we thus use dc/4αC = 0.25 (Figure 5.2 a), which, for C = 2.5

km and α = 0.4 (25◦) gives a corresponding dc of 1 km in agreement with
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Pike (1980). For complex craters, the size of the central flat floor, relatively
to the crater radius, increases from 25%, for a crater 20 km in diameter, to
50%, for a crater that is 100 km crater in diameter. The wall of complex
craters exhibits walls at the angle of repose (∼ 30◦), terraces, and hilly toes
that combine to form a wall zone of effective slope value that decreases from
α = 0.5 (30◦) to α = 0.2 (12◦) as the crater diameter increases from 20 to 100

km (Pike, 1980; Bray et al., 2008; Kalynn et al., 2013). To model a complex
crater, we use a ratio dc/4αC = 0.13 (Figure 5.2 b) which, for C = 14 km and
α = 0.4, i.e. a crater that is 40 km in diameter, gives dc = 3 km in agreement
with Pike (1980) and Kalynn et al. (2013).

Impact induces fracture and brecciation beneath the crater floor (Wil-
helms et al., 1987; Melosh, 1989; Jolliff et al., 2000) and also causes melting
and compaction of the pores (Melosh, 1989; Schultz , 1976a). If the melt-
ing during impact is negligible and the neutral buoyancy zone of the magma
lies immediately beneath an impact brecciated lens, as is commonly assumed
(Schultz , 1976a; Wichman and Schultz , 1996; Jozwiak et al., 2012), the over-
lying layer would not respond elastically due to its lack of coherent structure.
We consider the case of a strengthless overlying layer with a crater like topog-
raphy given by (5.2) in Section 5.4.1. However, a coherent impact melt unit
commonly stands on top of the brecciated lens (Melosh, 1989; Schultz , 1976a).
The neutral buoyancy zone of the magma depends on the crust and magma
density and could also be situated deeper than the bottom of the brecciated
lens. As a result, the overlying layer would deform elastically above the in-
trusion. In our model, we thus consider the case of an overlying layer with an
elastic thickness d(r) that varies with radial coordinate r and thickens at the
crater wall zone (Figure 5.3). The elastic layer is characterized by a Young’s
modulus E and a Poisson’s ratio ν. For simplicity, the thickness of the elastic
layer, showing a simple or a complex crater topography, is considered to be
equal to the intrusion depth and is given by

d(r) = d0(1 + Ψξ(r)), (5.3)

where Ψ = dc/d0 is the ratio of the crater depth dc to the intrusion depth
at the center d0 and characterizes the thickening of the upper elastic layer
at the crater wall zone. As a result of this assumption, the intrusion depth
is underestimated in the model, but if a constant thickness brecciated layer
overlies the intrusion and underlies such an elastic layer, it does not have any
effect on the intrusion dynamics. The crater topography Tp is then given by

Tp(r) = d(r)− d0 = d0Ψξ(r) = dcξ(r). (5.4)

Central peaks are common features of complex craters. Their dimensions
depend on both projectile and target properties as well as on the impact angle
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(Schultz et al., 1994; Bray et al., 2008). However, their width can reach one
fourth of the crater floor and they can be as high as half of the crater depth;
hence such a structure could influence the intrusion dynamics. The effect of
a central peak on the spreading of an intrusion is examined in Appendix D.2.
Moreover, a raised rim, uplifted relative to the pre-impact surface, is usually
present at the exterior of the crater wall zone (Pike, 1976, 1980). Although,
for simplicity, we do not model the effect of this feature, we discuss its possible
influence on intrusion emplacement in Section 5.5.3.

5.3.2 Equations of motion

We assume that the flow spreads along a thin bedding plane and neglect
fracturing at the tip. The magma is considered to behave as a newtonian
fluid with a constant viscosity ηh and density ρm. The intrusion is fed at
a constant rate through a cylindrical conduit of diameter a. The vertical
coordinate z is oriented upward (Figure 5.3).

Figure 5.3: Sketch of the intrusion spreading below an impact crater topog-
raphy. dc (resp. C) represents the initial depth (resp. radius) of the im-
pact crater. The intrusion spreads above a rigid homogeneous and horizontal
bedrock at depth d(r) below the crater floor. At the center, the intrusion
depth is noted d0.
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5.3.2.1 Momentum equation

The dynamics of the flow is given by the solution of the Navier-Stokes equa-
tion in cylindrical geometry. The magma has a relatively large viscosity, hence
the flow is in a laminar regime and the inertia terms can be neglected. The
intrusion develops over a length scale comparable to the crater size that is
much larger than its thickness H (C � H), hence the lubrication assump-
tion allows further simplifications (Huppert , 1982a; Michaut and Bercovici ,
2009). The Navier-Stokes equations in the radial and vertical directions for
an axisymmetric, incompressible flow of newtonian fluid resume to

−∂P
∂r

+ ηh
∂2u

∂z2
= 0, (5.5)

−∂P
∂z
− ρmg = 0. (5.6)

Integration of (5.6) gives the pressure within the flow

P (r, t) = ρmg(h(r, t)− z) + ρrgd(r) + Pe(r, t), (5.7)

where h(r, t) is the intrusion thickness and ρr is the overlying layer density.
The pressure is the sum of three different contributions: the weight of the
magma and of the overlying layer and the elastic pressure Pe due to the
deformation of the overlying elastic layer. In the absence of radial forces
within the elastic plate, the elastic pressure required for bending the plate is
given by the force per unit area that is necessary for a vertical displacement
h of the thin elastic plate (Turcotte and Schubert , 1982)

Pe(r, t) = ∇2
r

(
De(r)∇2

rh(r)
)
, (5.8)

where
De(r) =

Ed3(r)

12(1− ν∗2)
, (5.9)

is the flexural rigidity of the plate which depends on the elastic layer thickness
d(r), Young’s modulus E and Poisson’s ratio ν∗.

Substituting (5.7) and (5.8) into (5.5) and integrating twice using no-slip
boundary conditions at the top and bottom of the intrusion, i.e. uz=0 =

uz=h = 0, we get the radial velocity within the flow

u(r, z, t) =
1

2ηh

(
ρmg

∂h(r, t)

∂r
+ ρrg

∂d(r)

∂r
+

∂

∂r

(
∇2
r(De(r)∇2

rh(r, t))
))

(z2−zh(r, t)).

(5.10)
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5.3.2.2 Injection rate

Assuming a Poiseuille flow within the cylindrical feeding conduit, the vertical
injection velocity wi(r, t) and injection rate Q0 are given by:

wi(r, t) =

{
∆P

4ηhZc
(a

2

4
− r2) r ≤ a

2

0 r > a
2

,

Q0 =
π∆Pa4

128ηhZc
, (5.11)

where ∆P is the initial overpressure within the melt at z = Zc.

5.3.2.3 Final equation

To obtain the final equation of motion, we write mass conservation integrated
over the flow thickness:

∂h(r, t)

∂t
= −1

r

∂

∂r

(
r

∫ h(r,t)

0

u(r, z, t)dz

)
+ wi(r, t). (5.12)

Injecting (5.3.2.1) into (5.12) and substituting d(r) by (5.3) gives the evolution
equation for the intrusion thickness h:

∂h

∂t
=

ρmg

12ηh

1

r

∂

∂r

(
rh3∂h

∂r

)
+
ρrgΨd0

12ηh

1

r

∂

∂r

(
rh3∂ξ(r)

∂r

)
+

Ed3
0

144ηh(1− ν∗2)

1

r

∂

∂r

(
rh3 ∂

∂r

(
∇2
r((1 + Ψξ(r))3∇2

rh)
))

+ wi(r, t). (5.13)

As expected, this evolution equation accounts for four different contributions.
The first term on the right hand side represents gravitational spreading of the
intrusion; except for a constant arising from a no-slip boundary at the top of
the flow, it is the same as for a gravity current (Huppert , 1982a). This term is
negative and induces magma spreading. The second term is associated with
the increase in lithostatic pressure at the crater wall zone and represents the
lithostatic barrier the flow has to face when spreading below the crater wall
zone; it is not present in the case of an overlying layer of constant thickness
(Michaut , 2011). This term is positive and opposes to the flow. The third
term represents squeezing of the flow in response to the elastic deformation of
the overlying layer. This term is negative and induces spreading in the case
of an elastic layer of constant thickness (Michaut , 2011). However, in the case
of a layer that thickens with r, it can become positive and oppose to the flow
if the thickening is rapid and important, i.e. at the crater wall zone. The last
term represents the injection rate.
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5.3.3 Nondimensionalization

Because the model depends on a large set of parameters (see Table 5.2), we
nondimensionalize the flow equation (5.13) using the crater radius C, as de-
fined in Section 5.3.1, as the characteristic length scale, as well as a height
scale H and a time scale τ given by

H =

(
12ηhQ0

ρmgπ

) 1
4

= a

(
3∆P

32ρmgZc

) 1
4

, (5.14)

τ =
πC2H

Q0

=

(
12ηh
ρmgπ

) 1
4

πC2Q
− 3

4
0 . (5.15)

The height scale and the time scale are defined by equating the nondimensional
group in front of the gravity current term to 1, i.e., (τρmgH

3)/(12ηhC
2) = 1.

The height scale H is the characteristic height scale of a gravity current flow
(Huppert , 1982a). τ is the time scale for a gravity current to fill in the crater;
it mainly depends on the injection rate. In the case of an upper layer with
constant thickness d0, a characteristic length scale for the flow is the flexural
parameter Λ, as defined by Turcotte and Schubert (1982), given by

Λ =

(
Ed3

0

12(1− ν∗2)ρmg

) 1
4

. (5.16)

It represents the wavelength over which the upper layer deforms elastically.
However, in this problem, the crater radius C imposes a horizontal length
scale to the flow, as the lithostatic barrier the flow faces at the wall zone
imposes a limitation to the intrusion spreading. The choice of C as the length
scale is then more relevant. Variables are then written as:

r = Cr∗ h = Hh∗ t = τt∗, (5.17)

where r∗, h∗ and t∗ are the dimensionless radius, thickness and time. Substi-
tuting (5.17) into (5.13) and dropping the stars, we finally get the dimension-
less equation for the flow:

∂h

∂t
=

1

r

∂

∂r

(
rh3∂h

∂r

)
+ Ξ

1

r

∂

∂r

(
rh3∂ξ(r)

∂r

)
+ Θ

1

r

∂

∂r

(
rh3 ∂

∂r
∇2
r

(
(1 + Ψξ(r))3∇2

rh
))

+
32

γ2

(
1

4
− r2

γ2

)
,(5.18)

where ξ(r) is also made dimensionless

ξ(r) =
1

1 + e−
(r−1)
ζ

− 1

1 + e
1
ζ

, (5.19)
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and where γ, ζ, Ξ, Ψ and Θ are five dimensionless numbers that control
the dynamics of the flow.

γ =
a

C
, (5.20)

ζ =
dc

4αC
, (5.21)

Ξ =

(
ρrgdc
ρmgH

)
, (5.22)

Ψ =
dc
d0

, (5.23)

Θ =

(
Λ

C

)4

. (5.24)

The number γ represents the dimensionless source width. The number ζ is
four times the normalized crater wall zone width; its range of values has been
discussed in Section 5.3.1. The number Ξ is the ratio between the lithostatic
pressure increase at the crater wall zone and the hydrostatic pressure due to a
magma column of thickness H. The number Ψ is the dimensionless thickening
of the upper elastic layer at the crater wall zone, as described in Section 5.3.1.
Finally, the number Θ is the dimensionless flexural wavelength of the upper
layer elevated to the power 4; it quantifies the length scale over which the
elastic deformation is effective relative to the crater radius.

Additionnally, we define a last dimensionless number N

N =
ρm
ρr
, (5.25)

which is the ratio between the magma and crust density. The value of N is
set equal to 1.2. The dimensionless topography is then given by

Tp(r) = ΞNξ(r). (5.26)

To obtain the crater floor appearance in the different figures, we add to the
dimensionless expression of the topography, the dimensionless thickness h(r)

of the intrusion.

5.3.4 Range of values for the dimensionless numbers

For a conduit diameter varying between 10 and 100 m and a crater radius
between 10 and 50 km, the normalized source width γ (5.20) varies between
10−5 and 10−2 (Table 5.3). Its variation does not significantly influence the
results and in particular, does not play on the shape of the intrusion (Michaut ,
2011) ; it is fixed at a value of 0.02 in this study.
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For a Young’s modulus between 1 and 10 GPa, a gravity of 1.62 m.s−2, a
magma density ρm between 2800 and 3200 kg.m−3 and an elastic thickness d0

ranging from 0.5 to 5 km, the flexural wavelength of the upper layer Λ, given
by (5.16), varies between 1 and 12 km (Table 5.2). Accordingly, for complex
craters between 20 and 100 km in diameter, our length scale C is between 6

km and 40 km and the number Θ takes values between 10−7 and 1 (Table
5.3). For simple craters between 10 and 20 km in diameter, the number Θ is
between 10−3 and 10.

Table 5.2: Range of values for the model parameters
Parameters Symbol Range of values

Depth of intrusion d0 0.5− 5 km
Young’s Modulus E 1− 10 GPa
Poisson’s ratio ν∗ 0.25

Gravity g 1.62 m.s−2

Magma density ρm 2800− 3200 kg m−3

Magma viscosity ηh 1− 104 Pa s -
Feeder dyke width a 10− 100 m

Depth of the melt source Zc 200− 500 km
Initial overpressure ∆P 1− 20 MPa

Injection rate Q0 0.1− 108 m3 s−1

Crust density ρr 2500 kg m−3

Crater depth dc 500− 4000 m

Characteristic scales Symbol Range of values

Height scale H 1− 35 m
Length scale C 1− 50 km
Time scale τ 10−3 − 1 years

Flexural wavelength Λ 1− 12 km

For complex craters, the crater depth ranges from 2 to 4 km and the
number Ψ varies between 0.3 and 8 for intrusions between 0.5 and 5 km
depth. For simple craters 1 to 2 km deep, this number is between 0.2 and 4

(Table 5.3). Additionally, we use ζ = 0.25 for simple craters and ζ = 0.13

for complex craters (see Section 3.1). Hence, we investigate the influence of
four dimensionless numbers on the flow dynamics: the number ζ, through the
effect of 2 end-member topographies (see Section 3.1), and the numbers Ξ, Θ

and Ψ.
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Table 5.3: Dimensionless numbers
Complex craters Simple craters

Symbol Description Range of values Range of values

γ Normalized source width 10−4 − 10−2 10−4 − 10−2

ζ Normalized wall zone width 0.05− 0.13 0.25

Ψ Thickening term 0.3− 8 0.2− 4

Ξ Hydrostatic term 20− 1000 1− 500

Θ Elastic term 10−7 − 0.1 10−3 − 10

N Density ratio 1.2 1.2

Φ Upper layer aspect ratio 4500 1200

σ Normalized pressure head 0.6− 100 0.6− 100

5.4 Results

Equation (5.18) is solved numerically using a fully implicit finite-volume
method detailed in Appendix A.2. In all solutions, we compute the mass
conservation as a test for the accuracy of the convergence. We first examine
the case of an intrusion below a strengthless overlying layer and a thickness
that varies radially according to (5.3). We then consider the case of an intru-
sion that lies beneath an elastic layer whose thickness is also given by (5.3).

5.4.1 Intrusion below a brecciated zone with no elastic
strength (effect of Ξ)

If the layer overlying the intrusion is highly fractured and brecciated, it is
strengthless and Θ = 0. In that case, we solve

∂h

∂t
=

1

r

∂

∂r

(
rh3∂h

∂r

)
+ Ξ

1

r

∂

∂r

(
rh3∂ξ(r)

∂r

)
+

32

γ2

(
1

4
− r2

γ2

)
, (5.27)

which corresponds to (5.18) without the elastic term.
We first consider an intrusion below a complex crater characterized by a

topography given by (5.19) using ζ = 0.13. In that case, at the crater wall, the
overlying layer thickens and the flow faces an increase in lithostatic pressure
which becomes more important as Ξ increases. To examine the effect of the
lithostatic pressure increase at the wall zone on the intrusion spreading, we
consider ζ = 0.13 and different values of Ξ = 20, 50 and 200 in (5.27).

Up to t = 1, the flow spreads as a classical gravity current below a flat floor
as the lithostastic term (i.e. second term on the right hand side of (5.27)) is
negligible. In this regime, the flow thickness goes toward a constant, notedHg,
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Figure 5.4: a) and b): Dimensionless thickness at the center h0 = h(0)

and edge radius R versus dimensionless time t for the case of an intrusion
below a strengthless layer, i.e. Θ = 0, with a complex crater topography
and for different values of Ξ indicated on the graph. Dimensional values
are obtained by multiplying the dimensionless ones by their characteristic
scales i.e. C, H (5.14) and τ (5.15). The vertical dashed line indicates t =

1, when the intrusion reaches the wall zone. Horizontal dotted lines on a)
represent asymptotical behaviors for the different values of Ξ. On b) The
dashed lines R ∝ t1/2 indicate the scaling law in the gravity current regime. c)
Dimensionless intrusion profiles for different times indicated on the plot using
Ξ = 20. For each time, a corresponding dimensionless 3D graph, showing the
dimensionless floor appearance Tp(r) + h(r), where Tp(r) is given by (5.26),
superimposed to the initial dimensionless floor appearance Tp(r) (low opacity),
is represented to see the deformation induced by the intrusion on the crater
floor. We use γ = 0.02, ζ = 0.13 and Θ = 0. d), e) and f) Same plots but
for an intrusion below a strengthless layer with a simple crater topography,
i.e. ζ = 0.25, using Ξ = 5.
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of order 1 (which depends on the source width (Michaut and Bercovici , 2009))
while the radius evolves as t1/2 as predicted by the gravity current theory
(Huppert , 1982a) (Figure 5.4 a, b). The intrusion shows a characteristic flat
top profile with a steep front (Figure 5.4 c). When the intrusion reaches the
wall zone, at t ∼ 1, the lithostatic pressure increase prevents the intrusion
from spreading laterally. The second term on the right of (5.27) is positive, it
increases with Ξ and causes the thickening of the intrusion (Figure 5.4 a, c).
In this thickening regime, the edge radius remains close to a constant (Figure
5.4 b). At the surface, the thickening of the flat top intrusion results in an
important piston-like uplift of the crater floor. However, no moat is formed
adjacent to the wall zone (Figure 5.4 c).

In contrast to complex craters, the topography of simple craters, and hence
the lithostatic pressure, gradually increases from the center to the exterior of
the crater wall zone. We use ζ = 0.25 and Ξ = 5 in (5.27). In that case,
there is no gravity current phase; the gradual lithostatic pressure increase
slows down the spreading from the beginning and induces a gradual thickening
phase (Figure 5.4 d, e, f). The intrusion shape almost accommodates the
topography (Figure 5.4 f). Indeed, because the overlying layer is less dense
than the magma, the crater floor appears slightly concave up, the concavity
increasing with the density difference between the overlying layer and the
magma, i.e. with N (Figure 5.4 f).

For both types of craters, the phase of thickening ends when the hydro-
static pressure due to the weight of the magma equals the lithostatic pressure
outside of the wall zone, i.e. h0 ∼ Ξ. When h0 becomes larger than Ξ, the
gravity current term compensates for the lithostatic term in (5.27) and the
intrusion can flow down the wall zone and return in a gravity current regime
(Figure 5.4 a, b, d, e). In the gravity current regime, the flow evolves toward a
constant value equal to Ξ +Hg. Thus, for a constant injection rate, the num-
ber Ξ mostly controls the final intrusion thickness and hence the shallowing
of the crater floor. However, the injection rate might decrease as the intrusion
grows, as the intrusion weight compensates for the overpressure at the origin
of magma ascent. This effect should control the final shallowing of the crater
floor and is discussed in Section 5.4.5.

5.4.2 Intrusion below an elastic layer of constant thick-
ness

In the previous section, we considered that the intrusion stalls beneath a
highly fractured and brecciated zone with no strength. However, an impact
melt unit might be present on top of the brecciated lens. Furthermore, the
intrusion might also emplace deeper than the brecciated lens; both cases imply
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the deformation of an upper coherent elastic layer during the spreading of the
intrusion. In Michaut (2011), the model was developed for an upper elastic
layer of constant thickness in a 2D Cartesian geometry and the behavior of
the flow was predicted for an axisymmetric geometry. Here, we first show
the results for an elastic layer with a constant thickness in an axisymmetric
geometry and verify the predictions of Michaut (2011). In the next sections,
we examine the case of an upper elastic layer with a crater-like topography
and a thickness that varies with the radius according to (5.3).
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Figure 5.5: a) and b): Dimensionless thickness at the center h0 = h(0) and
edge radius R versus dimensionless time t for the case of an intrusion below
a constant thickness elastic layer. For R < 4, the flow dynamics is controlled
by the elastic deformation of the overlying layer, while for a R > 4, it is
controlled by its own weight. In a), the dashed lines correspond to h0 ∝ t1/3

and h0 = Hg which provide for scaling laws for the elastic and gravity current
regimes. In b) the dashed lines R ∝ t1/3 and R ∝ t1/2 represent scaling
laws for the elastic and gravity current regimes (Michaut , 2011). The vertical
dashed line indicates the time when the intrusion reaches a radius of 4. The
intrusion shape is shown at different times in the elastic regime in c) and in
the gravity current regime in d). We use γ = 0.02, Ξ = 0, Ψ = 0 and Θ = 1.

We first solve Equation (5.18) using Θ = 1, Ξ = 0 and Ψ = 0, i.e. d(r) = d0

to model the case of a magma that flows beneath an upper elastic layer of
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constant thickness. Equation (5.18) becomes

∂h

∂t
=

1

r

∂

∂r

(
rh3∂h

∂r

)
+

1

r

∂

∂r

(
rh3 ∂

∂r

(
∇4
rh
))

+
32

γ2

(
1

4
− r2

γ2

)
. (5.28)

In this case, there is no limitation to the flow as both the gravity current
term and the elastic term, i.e. the first and second terms on the right side
of (5.28), cause spreading. As expected, the intrusion dynamics follows two
different spreading regimes (Michaut , 2011; Michaut et al., 2013; Bunger and
Cruden, 2011). During the first phase, the thickening is important and the
intrusion shows a bell-shaped profile (Figure 5.5 a, c). As shown by Michaut
(2011), the flow dynamics is controlled by the elastic deformation of the over-
lying layer up to a radius R = 4Λ. In this regime, the elastic pressure is dom-
inant over the pressure due to magma weight. In the magma, the pressure is
constant below the elastic layer, except at the tip (Bunger and Cruden, 2011;
Michaut , 2011), which explains the bell-shaped profile of the intrusion (Figure
5.5 c). Indeed, for a constant pressure Pd in the magma, Pe(r) = De∇4

rh = Pd
implies

h(r) =
PdR

4

64De

(
1−

( r
R

)2
)2

. (5.29)

De is the flexural rigidity of the upper layer of constant thickness as defined
by (5.9). Results show that the thickness and radius evolve with time with
an exponent close to 1/3, as predicted by Michaut (2011) when neglecting
the gravity current term and considering a constant injection rate (Figure 5.5
a, b). Beyond R = 4Λ, the size of the intrusion becomes much larger than
the flexural parameter and the gravitational term becomes prevalent in the
dynamics. The intrusion thus transitions to a gravity current regime charac-
terized by a flat top profile (Figure 5.5 d). In this regime, the flow thickness
evolves toward a constant Hg while the radius follows t1/2 as predicted by the
gravity current theory (Huppert , 1982a) (Figure 5.5 a, b). The elastic term
is negligible when considering the dynamics of the whole flow in this regime.
However, the overlying layer is unable to accommodate the steep front of a
typical gravity current flow (Huppert , 1982a) and the intrusion develops a
small scale bent edge whose width is equal to 4Λ (Figure 5.5 d).

5.4.3 Spreading beneath a complex crater topography

In this section, we consider an intrusion below an elastic overlying layer with
a complex crater topography, hence we use ζ = 0.13 in (5.19). We first
examine the effect of varying the dimensionless flexural parameter, i.e. the
dimensionless number Θ and then examine the influence of the thickening at
the wall by varying the number Ψ.
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5.4.3.1 Effect of the dimensionless flexural parameter (effect of Θ)

We consider equation (5.18) for which we set Ξ = 20 and Ψ = 0.3 and consider
two different values of the dimensionless flexural parameter Θ = 10−2 and
Θ = 10−5. Up to t ∼ 1, the central flat floor of the crater acts as a constant
thickness upper layer and the lithostatic term (second term on the right hand
side of (5.18)) is negligible.

For Θ = 10−2, the flexural wavelength is close to the crater size, i.e. 4Λ ∼
C. The intrusion spreads in an elastic regime below the crater flat floor, the
dimensionless radius and dimensionless thickness evolve close to t1/3 (Figure
5.6) and the intrusion shows a characteristic bell-shaped profile (Figure 5.7 a).
At t ∼ 1, the second term on the right hand side of (5.18), representing the
lithostatic pressure increase at the crater wall zone, becomes important and
opposes to the flow. The intrusion enters in a thickening dominated regime,
where the thickness increases significantly and the radius remains close to
constant (Figure 5.6 and 5.7 a), while it has not yet transitioned into a gravity
current regime and still shows a bell shape. The thickening of the bell-shaped
intrusion results in a convex uplift of the crater floor (Figure 5.7 a).

For Θ = 10−5, the intrusion first spreads in an elastic regime and the
dimensionless radius and thickness evolve as t1/3 (Figure 5.6). However, the
flexural wavelength is much smaller than the crater size in this case (i.e. 4Λ�
C). The flow transitions to a gravity current regime far in front of the wall
zone, at t = 0.06, which is evident as, beyond this time, the dimensionless
radius evolves as t1/2 while the dimensionless thickness goes toward a constant
(Figure 5.6 a and b). In consequence, the intrusion shows a flat top profile and
a small scale bent edge while reaching the crater wall zone (Figure 5.7 b). At
t ∼ 1, the lithostatic pressure increase prevents the intrusion from spreading
radially and the intrusion thickens. The thickening of the flat top intrusion
results in a piston-like uplift of the central part of the crater floor (Figure 5.6
a and 5.7 b) as in the previous case of a gravity current below a strengthless
overlying layer (Figure 5.4 c). However, the bending of the upper layer above
the intrusion at its edge leads to the formation of a circular moat, adjacent to
the wall zone, whose extent corresponds to the size of the intrusion edge and
is ∼ 4Λ (Figure 5.7 b).

The thickening rate of the intrusion, as it reaches the wall zone, depends
on its spreading regime (Figure 5.6 a, b) and hence on the value of Θ. For
larger values of Θ, the elastic pressure that squeezes the flow is more important
and it is easier for the magma to overcome the lithostatic barrier and spread
below the wall zone. In any case, when the sum of the pressures due to
elastic bending of the overlying layer and to magma weight compensates for
the hydrostatic pressure due to the crater wall zone weight, the flow passes
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Figure 5.6: Dimensionless thickness at the center h0 = h(0) and edge radius
R versus dimensionless time t for the case of an intrusion spreading below an
overlying elastic layer with a topography characteristic of a complex crater,
i.e. ζ = 0.13, and using a constant injection rate. Vertical dotted lines: di-
mensionless times when the intrusion enters and leaves the thickening regime.
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We use, γ = 0.02, ζ = 0.13, Ξ = 20 and Ψ = 0.3.
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Figure 5.7: a) Profiles for an intrusion spreading below an elastic overlying
layer with a complex crater topography at different times indicated on the plot
for Θ = 10−2, i.e. corresponding to a small crater and/or an intrusion below a
thick elastic layer. Units are dimensionless. For each time, a corresponding 3D
graph showing the dimensionless crater floor appearance given by Tp(r)+h(r)

where Tp(r) is given by (5.26), is represented. For each plot, the dimensionless
initial topography Tp(r) is superimposed in low opacity. b) Same plot but for a
large crater and/or a shallow intrusion, i.e. Θ = 10−5. Here, we use γ = 0.02,
ζ = 0.13, Ξ = 20 and Ψ = 0.3.

the wall zone. For both values of Θ, as it passes down the wall zone, the
intrusion is in a gravity current regime as R is or becomes larger than 4Λ:
the radius evolves as t1/2 and the thickness evolves toward the final value of
Ξ +Hg (Figure 5.6 a, b).

5.4.3.2 Effect of the local increase in the flexural parameter at the
wall zone (effect of Ψ)

Due to the elastic thickness increase at the crater wall zone, the flexural
wavelength of the overlying elastic layer increases from Λ at the crater center
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to a value equal to

Λb =

(
E(d0 + dc)

3

12(1− ν∗2)ρmg

) 1
4

= Λ(1 + Ψ)
3
4 , (5.30)

beyond the wall zone. To understand the effect of the local increase in flexural
wavelength at the wall zone, we consider a constant value of the number
Ξ = 20 and increasing values of the number Ψ = 0.3, 3, 6 for the two different
values of the number Θ = 10−2 and Θ = 10−5 used previously and representing
two possible end-member floor deformations.

For Θ = 10−2, the elastic term is dominant over the gravity current term
as the flow arrives to the wall zone and the effect of the local increase in
flexural wavelength of the overlying layer is to increase the thickening rate
with time (Figure 5.8 a). The increase in flexural wavelength enhances the
barrier effect of the lithostatic pressure increase at the crater wall zone and, in
response, the flow thickens rapidly in the center, where the bending is easier
(Figure 5.8 a and c). The elastic pressure increases with the bending and after
a time that increases with Ψ, it becomes important enough to compensate for
the lithostatic pressure increase at the wall zone and induce a squeezing of
the intrusion below the wall zone. For large values of Ψ, the local increase
in flexural wavelength is important at the wall zone and forces the flow to
extend and deform the overlying layer over a much larger distance, beyond
the crater, than for smaller values of Ψ (compare Ψ = 0.3 and 6 on Figure
5.8 a). As a result, for large values of Ψ, the intrusion profile relaxes, the
thickness at the center collapses (Figure 5.8 a and c) and the radius increases
quickly. After the relaxation of the profile, the intrusion is still in an elastic
regime but characterized by a flexural parameter Λb. Once the dimensionless
radius reaches r = 4Λb/C = 4Λ(1 + Ψ)3/4/C = 4Θ1/4(1 + Ψ)3/4, the intrusion
transitions to a gravity current regime where the thickness evolves toward a
constant and the radius grows as t1/2 (Figure 5.8 a). For instance, for Ψ = 3,
the transition to a gravity current regime occurs when R = 4Θ1/4(1 + Ψ)3/4 =

3.6 (Figure 5.8 a).
For Θ = 10−5, the gravity current term is dominant when the intrusion

reaches the wall zone and the elastic term only controls the shape of the front
(Figure 5.8 b and d). And hence, the thickening rate only increases by a few
percent between Ψ = 0.3 and Ψ = 6, while it increases by a factor of 3 in
the case of Θ = 10−2 (Figure 5.8 a and b). Nevertheless, the local increase in
the flexural wavelength below the wall zone tends to enlarge the size of the
intrusion edge and to result in a deeper circular moat at the surface (Figure
5.8 d and f).
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Figure 5.8: a) Dimensionless thickness at the center h0 = h(0) and edge
radius R versus dimensionless time t, for an intrusion spreading below an
overlying layer with a complex crater topography, for Θ = 10−2 and different
values of Ψ = 0.3, 3 and 6. The vertical dotted lines indicate t = 1, i.e. the
time at which the intrusion reaches the wall zone. c) Intrusion profiles for
different times indicated on the plot for Θ = 10−2, i.e. corresponding to a
small crater and/or a deep intrusion and Ψ = 6. Units are dimensionless. For
each time, the corresponding dimensionless crater floor appearance given by
Tp(r) + h(r), where Tp(r) is given by (5.26), is represented. For each plot,
the dimensionless initial topography Tp(r) is superimposed in low opacity. e)
Dimensionless crater floor appearance at t = 10 for Ψ = 6, Θ = 10−2. b),
d) and f) Same plots as a), c) and e) but for Θ = 10−5. We use γ = 0.02,
ζ = 0.13 and Ξ = 20.
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5.4.4 Spreading beneath a simple crater

In comparison to complex craters, the lithostatic pressure as well as the flex-
ural wavelength of the upper layer gradually increase from the center to the
exterior of the crater wall zone. Given the appropriate range of values for the
number Θ = 10−3−10, as discussed in Section 5.3.4, the flexural parameter is
between 0.2 and 1 times the crater radius C. The bending of the upper layer
thus controls the intrusion shape and dynamics during the whole flow and the
intrusion always shows a bell shaped geometry (Figure 5.9). To represent the
case of an intrusion below a bowl-shaped crater, we use ζ = 0.25, Ξ = 20,
Θ = 0.1 and we study the effect of the thickening at the wall zone by using
different values of Ψ = 0.1 and Ψ = 4.

For Ψ = 0.1, the thickening at the wall zone Ψξ(r) is negligible and the
elastic term is similar to that of a constant thickness layer. However, the
lithostatic pressure increase slows down the spreading and the evolution of
the radius with time is slower than for an elastic regime below a constant
thickness layer. The intrusion shows a bell-shaped profile with an important
curvature because the weight of the lithostatic barrier constrains the intrusion
edge (Figure 5.9 a). For Ψ = 4, the local flexural wavelength rapidly rises up
to Λb = Λ(1 + Ψ)3/4. As a consequence, the intrusion squeezes more rapidly
and thickens more slowly than for smaller values of Ψ (Figure 5.9 b). For a
larger value of Ψ, the deformation occurs over a larger wavelength and the
shallowing is smaller at a given time. However, the overall deformation at
the surface is very similar in both cases: the crater floor appears convex and
shows an important curvature which overlaps the initial bowl shape of the
crater (Figure 5.9 a, b).

5.4.5 Effect of a variable injection rate

So far, we have assumed a constant injection rate; and hence the intrusion
grows indefinitely in volume and the flow passes the crater wall zone. However,
the driving pressure in the feeder conduit should decrease as the intrusion
grows during the thickening phase. In particular, the increase in hydrostatic
pressure due to magma weight and in elastic pressure due to bending above the
dyke might finally compensate for the initial overpressure ∆P in the magma at
the origin of the flow. As the increase in lithostatic pressure at the crater wall
zone prevents the intrusion from spreading laterally, the intrusion might reach
a steady state profile such that no more magma can intrude. New expressions
for the vertical injection velocity and injection rate, taking into account the
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Figure 5.9: a) Dimensionless profiles, of an intrusion spreading below an
overlying elastic layer with a simple crater topography, i.e. ζ = 0.25, for
different dimensionless times indicated on the plot for Θ = 10−1 and Ψ = 0.1.
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floor appearance given by Tp(r) + h(r), where Tp(r) is given by (5.26), is
represented. For each plot, the initial topography Tp(r) is superimposed in
low opacity. b) Same plot but for Ψ = 4. We use, γ = 0.02 and Ξ = 20.
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increase in pressure in the magma at the top of the feeder dyke, are given by

w(r, t) =
32

γ2

(
1− 1

σ
(h0 + Pe,r=0)

)(
1

4
− r2

γ2

)
, (5.31)

and

Q0 =

(
1− 1

σ
(h0 + Pe,r=0)

)
, (5.32)

where
σ =

∆P

ρmgH
, (5.33)

and
Pe,r=0 = Θ∇2

r

(
(1 + Ψξ(r))3∇2

rh
)∣∣
r=0

. (5.34)

The dimensionless number σ represents the normalized pressure head, Pe,r=0

is the dimensionless elastic pressure at the center and Q0 the dimensionless
total injection rate. As discussed inMichaut (2011), the elastic pressure Pe,r=0

required to bend the upper layer tends to infinity as R → 0, but rapidly
decreases with the radius as Pe,r=0 scales with h0/R

4 (see (5.8)). However,
here we assume a large aspect ratio for the intrusion (lubrication assumption),
and this initial transient regime, where the flow is very narrow and Pe,r=0 is
very large, is thus not representative of the initiation phase of the intrusion.
Hence, to investigate the effect of the elastic pressure on the injection rate,
we neglect this initial transient phase.

Given that the deformations are limited to craters, it is possible that ex-
cavation of material during the impact has controlled the intrusion of magma.
In that case, the driving pressure ∆P at the origin of the flow should be
lower or equal to the weight of crust that has been removed by cratering, i.e.
∆P ≤ ρrgdc, which implies σ < Ξ (see (5.22) and (5.33)). Hence, given the
range of values for the parameters (Table 5.2), the value of the number σ
varies between 0.6 and 100 (Table 5.3). We consider a complex crater with
ζ = 0.13 and we set Ξ = 50, Ψ = 1, σ = 22 and two values of Θ, equal to
10−2 and 10−5, to consider the effect of a variable injection rate.

For Θ = 10−2, the elastic pressure governs the spreading of the intrusion
below the crater flat floor; as Pe,r=0 scales with h0/R

4, Pe,r=0 decreases as the
flow spreads and its radius increases (Figure 5.10 a) inducing an increase in
the total injection rate Q0 (5.32). Then, as the intrusion thickens, both the
pressure due to magma weight and the elastic pressure increases at the center,
in response (Figure 5.10 a). The total injection rate decreases and the system
reaches a steady state shape when Q0 → 0, i.e when the initial overpressure
is compensated by the sum of the elastic pressure and of the pressure due to
magma weight (Figure 5.10 a,b).
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Figure 5.10: a) Dimensionless pressure in the magma P normalized by the
value of σ versus dimensionless time t for Θ = 10−2, for an intrusion spreading
below an elastic overlying layer with a complex crater topography. The solid
line represents the dimensionless pressure at the center of the flow normalized
by σ, i.e Ptot/σ = (h0 +Pe,r=0)/σ, the dashed line indicates the magma weight
contribution Pm/σ = h0/σ and the dash-dotted line represents the elastic
pressure contribution Pe,r=0/σ. The vertical dotted line indicates the dimen-
sionless time when the intrusion reaches the wall zone. b) Initial (dashed
line) and final, i.e. steady state, (solid line) dimensionless topography of the
crater. c) and d) Same plots as a) and b) but for Θ = 10−5. In c), the dashed
line representing the magma weight contribution is not distinguishable from
the total pressure. For all plots, horizontal dotted lines represent asymptotic
behaviors. We use γ = 0.02, Ξ = 50, ζ = 0.13, Ψ = 1 and σ = 22.

For Θ = 10−5, the weight of the magma is the dominant contribution
to the pressure during the whole flow (Pm and Ptot are not distinguishable
on Figure 5.10 c) and the injection rate remains close to a constant while
the intrusion spreads below the crater flat floor in a gravity current regime
(Figure 5.10 c). As the intrusion thickens, the weight of magma increases
at the center (Figure 5.10 c) leading to a decrease in the total injection rate
(5.32). When, h0 = σ = 22, no more magma intrudes below the crater, the
intrusion thickness as well as the radius stabilized and the intrusion reaches
its steady state shape (Figure 5.10 c, d).

The normalized pressure head thus controls the amount of shallowing of
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the crater floor. If the pressure head is larger than the weight of the crust that
has been removed by cratering, the intrusion would pass the wall zone and
reach a constant thickness, but it would still continue to flow laterally beyond
the wall zone (see lateral spreading regime in Michaut (2011)). In contrast, if
the pressure head is less than the weight of the crust that has been removed
by cratering, the intrusion reaches a steady-state shape and deformations are
constrained within the crater. In that case, for small values of Θ, the amount
of shallowing is directly the normalized pressure head σ while for relatively
large values of Θ, the intrusion reaches a steady state profile for a thickness
h0 ≤ σ.

5.5 Discussion

5.5.1 Floor appearance

Viscous relaxation tends to relax large wavelength structures without affecting
or creating small-scale features. In particular, viscous relaxation is not able to
explain the presence of moats bordering the wall region observed in different
classes of FFCs (Schultz , 1976a; Jozwiak et al., 2012). Relaxation of the crater
floor also tends to produce a convex profile at the end of the deformation
(Dombard and Gillis , 2001) and cannot account for central flat floors observed
for FFCs of class 3 and 5 (Jozwiak et al., 2012).

In contrast, our model is able to reproduce the different kinds of floor
appearances observed at FFCs and thus confirms the predictions initially made
by Schultz (1976a). In particular, for a given crater size, the thickening caused
by the increase in lithostatic pressure at the crater wall zone induces either a
convex uplift of the crater floor, if the intrusion occurs below a thick elastic
layer, or a piston-like uplift of the crater floor if the intrusion occurs below
a strengthless and highly brecciated zone or below a thin elastic layer. This
piston-like uplift results in a large, shallowed plate like floor as predicted by
Schultz (1976a).

In addition, the model shows that the final appearance of the crater floor is
controlled by the ratio between the flexural wavelength of the overlying layer,
that mainly depends on the elastic layer thickness, and the crater size, i.e. on
the number Θ = (Λ/C)4. Indeed, because the deformation of the overlying
elastic layer is accommodated along a width of 4Λ, our model predicts a
transition between a flat floor and a convex floor when 4Λ ∼ C, i.e. at
Θ = 10−3. For large values of Θ > 10−3, i.e. small craters and/or a thick
elastic layer overlying the intrusion, the bending of the upper elastic layer
affects the whole crater width resulting in a convex crater floor (Figure 5.7
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a). On the contrary, for large craters and/or a thin elastic layer overlying
the intrusion, i.e. small values of Θ < 10−3, the thickening of the flat top
intrusion results in a flat central floor with a circular moat that borders the
interior of the wall zone (Figure 5.7 b). This circular moat results from the
elastic deformation of the overlying layer at the intrusion front and its size
is equal to 4Λ. Finally, if the overlying layer is strengthless and Θ = 0, the
crater floor appears flat or slightly concave up because of the density difference
between the magma and the overlying layer.

FFCs of classes 3 and 5 show a central uplifted flat floor; they generally
have a large diameter: the mean diameter is of 50 km for craters of class 3,
and 70 km for craters of class 5 (Table 5.1) (Schultz , 1976a; Jozwiak et al.,
2012). These large diameters are coherent with a small value of Θ (5.24), i.e.
with an intrusion in the gravity current regime as it reaches the wall zone and
a piston-like uplift of the central flat floor of the crater. A moat bordering
the wall region is observed for craters of class 3 in agreement with our results
for small values of Θ (see for instance the topography of FFC Warner Figure
5.1 b). Craters of class 5 have a central shallowed flat floor but do not show
a moat bordering the wall region (Table 5.1). One possibility is that the
intrusion has emplaced below a strengthless layer. Another possibility is that
these craters have been partially infilled before deformation by basin ejecta
(Schultz , 1976a); as a result, the thickening of the intrusion was limited and
not important enough to form a moat. Furthermore, for large craters and/or
intrusions below a thin elastic layer, our model predicts that the maximum
stresses are concentrated upon the intrusion edge within a crown bordering
the wall region (Figure D.1 c). This stress concentration in front of the crater
wall could induce new fractures or reactivate preliminary fractures caused by
the impact, providing privileged paths for the magma to rise to the surface
(Schultz , 1976a). Indeed, pyroclastic deposits have been observed in floor-
fractured craters of classes 3 and 5, preferentially located within fractures
adjacent to the wall zone (Schultz , 1976a).

Convex floors characterize FFCs of classes 2 and 4 (see for instance FFC
Briggs, Figure 5.1 a). Craters of classes 2 and 4 are in fact generally small;
their average diameters are 30 and 20 km respectively (Jozwiak et al., 2012)
with some of them being initially simple craters (Table 5.1); this is coherent
with large values of Θ and a final convex floor appearance according to our
model. In FFCs of class 4, a more or less pronounced narrow V-shaped moat
is observed adjacent to the wall zone as well as pronounced inner ridges for
FFCs of class 4 b. In the frame of our model, we can interpret these features
as resulting from the rupture of the upper layer during the thickening regime.
Indeed, our model predicts that the radial stress might not be maximum at the
crater center, even for a convex floor, but at a given radial coordinate rσmax
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such that 0 < rσmax < 1 (see Appendix D.1, Figure D.1 a, b) because the
intrusion might transition from an elastic to a gravity current shape before
the wall zone and because the elastic thickness increases towards the wall
zone. The location of rσmax depends on time and on the values of Θ and Ψ.
This location of maximum stress provides a preferred location for a concentric
failure of the upper elastic layer.

Furthermore, our model can also explain the variable characteristics of
central peaks of FFCs (Schultz , 1976a). In the case where an elastic layer is
present, our model predicts that the central peak would be leveled up during
the uplift and slightly smaller than initially (see Appendix D.2, Figure D.2
b,c). Schultz (1976a) indeed observed that there is a tendency for central
peaks of FFCs to be smaller than those for well-preserved impact craters.
Furthermore, a small circular moat borders the central peak if this elastic
layer is relatively thin, such 4Λ < C (see Appendix D.2, Figure D.2 b). The
build up of stress resulting from the flexure within this moat could be coherent
with the fracture pattern observed in the vicinity of central peaks at some
FFCs (Schultz , 1976a). Finally, if the layer overlying the intrusion is formed
by incoherent breccias, the central peak would be buried during the uplift, or
its initial size significantly reduced if the shallowing is smaller than the central
peak height, and could thus be absent from the uplifted floor, as observed in
a few cases (Schultz , 1976a) (see Appendix D.2, Figure D.2 a).

5.5.2 Depth of the intrusion

The deformation of a layer overlying a shallow magmatic intrusion such as a
laccolith has been classically modeled by the upward deflection of a thin elastic
layer submitted to the pressure Pd within the intrusion (5.29). In this kind of
static model, the internal pressure Pd within the intrusion is usually assumed
to be a constant and equal to the hydrostatic pressure due to the weight of
the magma at the center of the intrusion. The solution to this problem gives a
floor deflection, or maximum intrusion thickness h0, that varies with radius to
the fourth (5.29) (Johnson and Pollard , 1973; Pollard and Johnson, 1973). In
the case of an intrusion below the floor of a crater, the crater radius clamps the
elastic overlying layer and the intrusion radius can be considered equal to the
crater radius, if the deformation affects the whole crater floor. And hence,
this approach has motivated many previous studies to derive the intrusion
depth from the estimated uplift at a given floor-fractured crater (Wichman
and Schultz , 1996; Jozwiak et al., 2012).

However, there is an inconsistency in equating the pressure due to magma
weight and the elastic pressure deforming the overlying plate since both pres-
sures act in favor of flow spreading. Assuming that the final steady-state
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shape of the flow has been reached, i.e. that the intrusion has reached the
wall zone and that the pressure above the feeding conduit is equal to the initial
overpressure driving the flow in the conduit (see Section 4.4), and assuming
that the overlying elastic layer making the crater floor has a constant thick-
ness up to the wall zone, the function (5.29) may indeed describe the vertical
displacement of the overlying layer due to an elastic pressure Pe. But this is
true only in the case where the intrusion is in the elastic regime, i.e. if the
elastic pressure is dominant over the pressure due to magma weight and in this
case, the pressure necessary for deforming the overlying plate Pe is then not
supported by magma weight but by the driving pressure within the feeding
dyke (see (Michaut , 2011), Section 6.1). Furthermore, if the thickening at the
wall zone is significant, the curvature of the intrusion is accentuated by the
interaction with the wall zone and (5.29) is not accurate anymore. Moreover,
for large craters or shallow intrusions, i.e. 4Λ < C, the intrusion lies in the
gravity current regime when it reaches the crater wall zone. In that case, the
dominant pressure comes from magma weight and, assuming the intrusion has
reached the wall zone and its steady-state shape, then the overpressure driv-
ing the injection is compensated by magma weight and, Pd = ρmgh is a good
estimate of the pressure within the flow. However, in this case, the intrusion
is characterized by a flat top and its profile is very different from (5.29) (see
Section 4.2.2) (Bunger and Cruden, 2011; Michaut , 2011) and hence, (5.29)
is no longer accurate to derive the intrusion depth.

Finally, using (5.29) and equating Pd = ρmgh0 to derive the intrusion depth
d0 at FFCs leads to an intrusion depth that scales with the crater diameter to
the power four third, i.e. the larger the crater, the deeper the intrusion. But,
there is no reason to suppose that the intrusion depth scales with the crater
size.

In contrast, the model we develop provides a simple method to estimate
the elastic thickness of the layer overlying the intrusion from the floor appear-
ance. As discussed above, the floor of a crater appears convex if the flexural
wavelength of the layer overlying the intrusion is such that 4Λ ≥ C. As Λ

mainly depends on d0, and assuming the intrusion has reached the crater wall
zone, this inequality provides for a lower bound on the elastic thickness of the
upper layer

d0 ≥
(

12(1− ν∗2)ρmgC
4

44E

)1/3

. (5.35)

For instance, Briggs is a class 2 FFC of 37 km in diameter, it shows a large
convex floor (Figure 5.1 a). Hence, (5.35) applies and we estimate that the
intrusion lies beneath an elastic layer whose thickness is equal to or deeper
than 1.6 km for this specific crater, using parameter values listed in Table
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(5.2). This value is only a minimum value for the intrusion depth, as it does
not take into account the potential presence of a brecciated layer on top or
below the elastic layer.

In the case of a crater showing a flat floor with a circular moat, the in-
trusion should be in a gravity current regime, and, assuming it has reached
the wall zone (which is likely to be the case if the shallowing is significant),
then the width of the moat directly provides for an estimate of the flexural
wavelength of the overlying elastic layer, and hence for the elastic thickness.
Indeed, the size of the moats corresponds to the width of the intrusion edge,
i.e. to 4Λ (see Figure 5.5 d, Figure 5.7 b and Section 5.4.2). For instance, for
the class 3 FFC Warner, which is 35 km in diameter, the deformation shows a
plate-like central flat floor, with a moat bordering the wall region of about one
third of the crater radius (Figure 5.1 b). Hence, (4Λ)/C ∼ 1/3 and the elastic
thickness d0 varies between 300 and 600 m. Again, this estimate provides a
minimum value for the intrusion depth.

5.5.3 Injection rate and formation time scale

Precedent works have shown that, for craters smaller than 100 km in diameter,
the shallowing associated with viscous relaxation is small or almost inexistent
(Dombard and Gillis , 2001). In contrast, our model of magmatic intrusion
is able to reproduce the large discrepancy in crater floor shallowing observed
at FFCs. Two mechanisms might control the final amount of shallowing: the
injection rate and the cooling of the intrusion.

If the cooling time scale of the intrusion is large compared to its formation
time scale, then the intrusion reaches the wall zone and thickens. In that
case, assuming a constant injection rate, the maximum amount of shallowing
corresponds to the intrusion thickness that evolves toward a dimensionless
thickness of Ξ +Hg. However, as explained in Section 5.4.5, the injection rate
should decrease as the intrusion grows, in particular during the thickening
phase. Indeed, when the magma reaches the wall zone, the pressure due to
magma weight and to elastic deformation of the overlying layer increases as
the crater floor is uplifted and might finally compensate for the initial pressure
driving the flow in the melt source. An estimate of this initial overpressure can
be derived from our model in some cases. Indeed, for small values of Θ, i.e.
for craters that show a flat floor like those of classes 3 and 5, the overpressure
in the melt source might be estimated from the final thickness of the intrusion
at the center hf0 , i.e. ∆P = ρmgh

f
0 as proposed by Jozwiak et al. (2012)

(Figure 5.10 c, d). However, for large values of Θ, i.e. for craters that show a
convex floor, as craters of classes 2 and 4, this assumption is inappropriate as
both the pressure due to magma weight and the elastic pressure contribute to
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compensate for the initial overpressure ∆P , i.e. ∆P > ρmgh
f
0 (Figure 5.10 a

and b).
For most FFCs, the deformation is contained within the crater floor

(Schultz , 1976a) suggesting that the removal of material during the impact
controlled the initial overpressure in the melt source. However, impact craters
commonly show a raised rim, which is uplifted relative to the pre-impact sur-
face and this structure could also contribute to prevent the intrusion from
growing beyond the wall zone. Finally, in a few cases such as crater Haldane
(Schultz , 1976a), the deformations extend well beyond the wall zone and sug-
gest that the intrusion passed the wall zone, i.e. that the initial overpressure
might have been larger than ρrgdc + Pr where Pr is the lithostatic pressure
excess induced by the raised rim.

The deep floor of Class 1 FFCs suggests that these craters didn’t undergo
the thickening phase (Table 5.1). However, the network of fractures on their
floor is coherent with the spreading of an underlying intrusion that might be
an aborted sill that cooled before reaching the wall zone. In that case, the
time scale for the intrusion to reach the wall zone τ = (πC2H)/Q0 is larger
than the time scale for cooling of the intrusion. The time scale for cooling
can be estimated from the characteristic time for conductive cooling of an
intrusion of average thickness h̄

τc =
h̄2

πκm
, (5.36)

where κm = 10−6 m2.s−1 is the thermal diffusivity of basalt. For large craters
of class 1, the intrusion is more likely to be in a gravity current regime with an
average thickness close to h̄ ∼ 2H. The inequality τc ≤ τ ((5.15) and (5.36))
provides for an upper bound for the average injection rate

Q0 ≤ 408(C8κ4
mρmg)

1
5 . (5.37)

For instance, for the crater Atlas, which is 87 km in diameter and is located
at 46.7N, 44.4E in the southeast of Mare Frigoris, the injection rate should
be smaller than 10−2 m3.s−1, using parameter values listed in Table (5.2).
This value is for instance in agreement with the extrusion rate of lavas on the
Moon estimated at the end of the Imbrian and during the Eratosthenian period
by Head and Wilson (1992). However, most of the FFCs have undergone a
thickening stage and hence are such that τc ≥ τ , and this inequality provides
for a lower bound for the average injection rate for these craters.
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5.6 Conclusion

The model shows that the spreading of an intrusion at depth below a crater
is able to reproduce the deformations observed at FFCs and thus confirms
the different predictions made by Schultz (1976a). In particular, the increase
in lithostatic pressure and in flexural wavelength of the overlying layer at the
crater wall zone prevent the intrusion from spreading radially and induce a
thickening of the intrusion that leads to the shallowing of the crater floor.
When the time scale for conductive cooling of the intrusion is large compared
to the formation time scale, the amount of shallowing is controlled by the
initial overpressure in the melt source. The model predicts that the final ap-
pearance of the crater floor, including the presence/disappearance of a central
peak, is mainly controlled by the upper layer flexural wavelength Λ, i.e. its
structure and thickness, and the crater radius C.

For an overlying layer with no elastic strength, i.e. an intrusion emplaced
within or immediately beneath a brecciated lens, the crater floor is flat at the
end of the deformation. If an elastic layer lies on top of the intrusion, but is
sufficiently thin such that C ≥ 4Λ, the crater shows a central plate-like floor
separated from the wall zone by a circular moat. This moat results from the
deformation of the thin elastic overlying layer above the intrusion front and
its width is equal to 4Λ. The depth of the moat is controlled by the amount
of thickening of the overlying layer at the crater wall zone. Finally, if the
intrusion is emplaced beneath a thick elastic layer such that C < 4Λ, the
crater shows a convex floor.

Within the framework of this model, FFCs of class 1 would result from
aborted sills that have cooled before reaching the wall zone. Craters showing a
convex floor, such as those of classes 2 and 4, would result from the spreading
of an intrusion below a relatively thick elastic layer, such that Λ ≥ C/4.
On the contrary, craters showing a flat floor, such as those of classes 3 and
5, would result from the spreading of an intrusion beneath a relatively thin
elastic layer, such that Λ � C/4. The wide circular U-shaped moat of class
3 FFCs is well explained by the elastic deformation of the thin elastic layer
overlying the intrusion while the V-shaped moat of class 4 FFCs, showing a
convex floor, could be explained by the rupture of the overlying layer, which is
predicted to occur at a radial coordinate intermediate between the center and
the wall zone. The absence of a moat for craters of class 5 could suggest that
the intrusion develops immediately beneath or within a breccia lens and that
not sufficiently impact melt stands above the breccia to form an elastic layer.
Finally, class 6 FFCs are filled up by lavas that have reached the surface.

In addition, the model allows constraining the elastic thickness of the layer
lying on top of the intrusion, which provides a lower bound for the intrusion
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depth.





Chapter 6

Gravitationnal signature of lunar
floor-fractured craters

In this Chapter, we focus on the gravitational signature of lunar floor-fractured
craters. This Chapter is a reproduction of the paper published in Earth and
Planetary Science Letters (EPSL) untitled: Gravitational signatures of
lunar floor-fractured craters (Thorey et al., 2015). Only slight adjustments
in the notations have been made for the coherence in the whole manuscript
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Lunar floor-fractured craters are impact craters characterized by distinc-
tive shallow floors crossed by important networks of fractures. Different sce-
narios have been proposed to explain their formations but recent studies
showed that the intrusion of magma at depth below the crater floor is the
most plausible explanation. The intrusion of dense magma within the light
upper-most part of the lunar crust should have left a positive signature in
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the gravity field. This study takes advantage of the unprecedented resolu-
tion of the lunar gravity field obtained from the NASA’s Gravity Recovery
and Interior Laboratory (GRAIL) mission, in combination with topographic
data obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument,
to investigate the gravitational signatures of both normal and floor-fractured
craters. Despite the large variability in their gravitational signatures, the
floor-fractured and normal craters in the Highlands show significant differ-
ences: the gravitational anomalies are significantly larger at floor-fractured
craters. The anomaly amplitudes for floor-fractured craters are in agreement
with synthetic gravity anomalies based on the predicted intrusion shapes from
a theoretical flow model. Our results are consistent with magmatic intrusions
intruding a crust characterized by a 12% porosity and where the intrusion
has no porosity. Similar studies have been carried out in the lunar maria
and South Pole Aikten basin. Although the average gravitational signature of
floor-fractured craters is larger than at normal craters in these regions, they
cannot be distinguished statistically due to the small number of craters and
the large variability of the anomalies. In general, a better characterization
of the signal due solely to the initial impact crater is needed to isolate the
magmatic intrusion signal and characterize the density contrast between the
magma and crust.

6.1 Introduction

There are a class of impact craters on the Moon that are distinguished by hav-
ing uplifted floors and radially/concentric floor-fractured networks. About 200
of these floor-fractured craters (FFCs) have been identified by Schultz (1976a)
and these impact craters are interpreted to have undergone endogenous de-
formations after their formation. The most striking feature of these craters
is their shallow floors compared to normal craters of the same size, with the
uplift reaching 50% of the initial crater depth in some cases (Schultz , 1976a).
Due to this deformation, their floors show large networks of radial, concentric
and pentagonal fractures. Additionally, depending on local conditions, the
uplift results in either a convex floor or a flat plate-like floor, sometimes with
a wide circular moat just interior to the rim (Schultz , 1976a; Jozwiak et al.,
2012).

Intrusion of magma beneath the crater floor and viscous relaxation of the
crater topography after the impact are two proposed scenarios to explain these
deformations (Schultz , 1976a; Hall et al., 1981; Wichman and Schultz , 1995a;
Dombard and Gillis , 2001). The recent theoretical model for the dynamics of
crater-centered intrusions of Thorey and Michaut (2014) and recent morpho-
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logical and geological studies by Jozwiak et al. (2012) showed that intrusion
of magma beneath the crater floor is the most plausible scenario to produce
the morphological features observed at floor-fractured craters.

Magmatic intrusions should be emplaced at their level of neutral buoy-
ancy (Walker , 1989; Taisne and Tait , 2009; Wichman and Schultz , 1995a).
Upon cooling and solidification, however, their densities will be larger than
the surrounding crustal material and hence, leave a positive signature in the
gravity field. Schultz (1976a) looked at the gravitational signature of some
floor-fractured craters with gravity derived from radio tracking data acquired
during the Apollo 15 and 16 missions (Sjogren et al., 1972, 1974). Except at
the floor-fractured crater Taruntius, where a strong gravity anomaly was de-
tected, no pronounced gravity anomalies were observed at other floor-fractured
crater sites. However, the gravity data from these two experiments only cov-
ered a narrow swath along the equator and the resolution of the data used
in these studies were not able to detect gravity anomalies for objects smaller
than about 100 km in diameter (Schultz , 1976a; Sjogren et al., 1974), which
includes about 88% of the floor-fractured crater population.

Data from the NASA’s Gravity Recovery and Interior Laboratory
(GRAIL) mission have provided a global map of the Moon’s gravity field
with an unprecedented resolution. These data have been used to construct a
model of the gravity field to spherical harmonic degree and order 900, which
corresponds to a half-wavelength resolution of ∼ 6 km at the lunar surface
(Zuber et al., 2013; Konopliv et al., 2014). These data, used in combination
with the topographic data obtained from the Lunar Orbiter Laser Altimeter
(LOLA) instrument allow investigating mass anomalies located in the lunar
crust. In particular, these data allow resolving small-scale density variations
in the shallow crust (Besserer et al., 2014; Wieczorek et al., 2013) and they
have been used to detect ancient igneous intrusions (Andrews-Hanna et al.,
2013).

In this paper, after some theoretical considerations on the expected gravi-
tational signal at floor-fractured craters in section 6.2, we use GRAIL gravity
to detect the presence of magmatic intrusions at floor-fractured crater sites in
section 6.3. Then, we develop a method to derive the density contrast between
the magma and crust in section 6.4. We discuss its geological implications in
section 6.5 and conclude in section 6.6.

6.2 Theoretical considerations

The Bouguer anomaly associated with a magmatic intrusion beneath a crater
depends upon the intrusion characteristics, namely its density and shape. Re-
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cently, we showed that the morphology of crater-centered intrusions depends
mainly upon the thickness of the overlying elastic layer and on the crater size
(Thorey and Michaut , 2014). Guided by the results and predictions of our
model that is briefly summarized below, we here calculate and discuss the
expected gravitational signal at floor-fractured crater sites.

6.2.1 Constitutive equations

In our model, the intrusion is fed at a constant rate through a cylindrical
conduit located below the center of a crater floor and spreads horizontally
along a thin bedding plane (Figure 6.1). The magma makes room for itself by
lifting the overlying assumed elastic layer, which is characterized by a Young’s
modulus E, a Poisson’s ratio ν∗ and an elastic thickness d(r) given by

d(r) = d0 + dcξ(r) , with ξ(r) =
1

1 + e−
2α(2r−D)

dc

− 1

1 + e
2αD
dc

(6.1)

where d0 is the overlying layer thickness at the crater center, dc the crater
depth with respect to the pre-impact surface and ξ(r) a normalized sigmoid
function which reproduces a typical complex crater depression in terms of the
crater diameter D and wall slope α (Figure 6.1, top).

The thickness evolution equation in cylindrical coordinates for the flow of
a newtonian fluid is given by (Thorey and Michaut , 2014)
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where h(r, t) is the intrusion thickness, r is the radial coordinate, t is time, ρm
and ρr are the magma and crust density, ηh is the viscosity, Ψ = dc/d0 is the
thickening of the overlying layer at the wall, wi(r, t) is the injection velocity
and ∆P/Zc is the overpressure gradient driving magma ascent in the feeder
dyke.

The terms on the right side of (6.2) respectively represent, from left to
right, spreading due to magma weight, the lithostatic barrier the magma has to
face at the crater wall, squeezing of the flow in response to elastic deformation
of the overlying layer and injection rate. Equation (6.2) is non-dimensionalized
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Figure 6.1: Model geometry and parameters.

using the crater radius D/2 as a horizontal scale, a height scale H and a time
scale τ given by

H =

(
12ηhQ0

ρmgπ

) 1
4

(6.4)

τ =
πD2H

4Q0

(6.5)

whereH is the characteristic height scale of a gravity current (Huppert , 1982a)
and τ is the characteristic time to fill up the crater depression for a constant
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injection rate

Q0 =
π∆Pa4

128ηhZc
. (6.6)

Another useful lengthscale in the problem is the flexural wavelength Λ

(Michaut , 2011)
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(
Ed3

0

12(1− ν∗2)ρmg

) 1
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(6.7)

which represents the wavelength of deformation of the elastic layer.
Equation (6.2) made dimensionless becomes
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where ξ(r) is also made dimensionless
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1
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and where
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D
= 0.02 (6.10)
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Ψ =
dc
d0

= 1. (6.13)

γ is the dimensionless source width, ζ is four times the normalized crater
wall width and characterizes the crater geometry, Ξ is the ratio between the
lithostatic pressure increase at the crater wall and the hydrostatic pressure
due to a magma column of thickness H, which quantifies the importance of
the lithostatic barrier at the crater wall, and Ψ is the dimensionless thickening
of the upper elastic layer, which characterizes the elastic thickness increase at
the crater wall. These are dimensionless parameters that do not significantly
affect our results and are considered fixed in our analysis (Thorey and Michaut ,
2014). The dimensionless number Θ

Θ =

(
2Λ

D

)4

(6.14)
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is the dimensionless flexural wavelength of the upper layer raised to the power
4 that quantifies the length scale over which the elastic deformation is effective
relative to the crater radius. It varies between 10−5 and 10−1 and has a strong
influence on the intrusion shape and final floor appearance.

6.2.2 End-member modes of deformation

For a constant injection rate and no crater depression, i.e a constant upper
elastic layer (ξ(r) = 0 and d(r) = d0), the numerical resolution of the equations
shows two spreading regimes (Michaut , 2011; Michaut et al., 2013). The flow
is first driven by the bending of the upper elastic layer. The intrusion is bell-
shaped and both the radius and the thickness evolve close to t1/3. When the
radius becomes larger than 4Λ, the weight of the intrusion becomes dominant
over the bending terms and the intrusion enters a gravity current regime. In
this second regime, the intrusion shows a flat top with bent edges, the radius
evolves as t1/2 and the thickness tends to a constant (Huppert , 1982a;Michaut ,
2011).

For a constant injection rate and a crater-like topography for the upper
layer, i.e. d(r) given by (6.1), the spreading regimes are perturbed by the
presence of the crater wall. The central flat floor of the crater first acts as
a constant elastic upper layer and the intrusion spreads as described above.
However, when it reaches the crater wall, the important increase in lithostatic
pressure prevents the magma from spreading horizontally. The intrusion thick-
ens in response and the crater floor is uplifted (Thorey and Michaut , 2014).
Accordingly, the intrusion thickness can be estimated from the amount of
uplift of the crater floor at the center.

The final morphology of the crater floor depends mainly on the ratio be-
tween the flexural wavelength and the crater radius, i.e. on the dimensionless
number Θ (6.14). For a large value of Θ, i.e. a deep intrusion and/or a small
crater, the intrusion reaches the wall in the bending regime. The intrusion is
bell-shaped and the uplift of the crater floor leads to a shallowed convex floor
(Figure 6.2, left). In contrast, for a small value of Θ, i.e. a shallow intrusion
and/or a large crater, the intrusion is in a gravity current regime when it
reaches the crater wall. The thickening of the cylinder-like intrusion leads to
a piston-like uplift of the crater floor and to a shallowed central flat floor for
the crater (Figure 6.2, right).

Accordingly, this model results into two main types of floor-fractured
craters: craters with convex floors corresponding to bell-shaped intrusions
(Figure 6.2, left) and craters with plate-like floors corresponding to cylinder-
shaped intrusions (Figure 6.2, right). In the following, we consider craters of
classes 2 and 4 of Schultz (1976a) to represent manifestations of bell-shaped



166
Chapter 6. Gravitationnal signature of lunar floor-fractured

craters

Cylinder-like intrusion

D
im

en
si

on
le

ss
th

ic
kn

es
s

Dimensionless axis

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

D
im

en
si

on
le

ss
to

po
gr

ap
hy MoatMoat Flat floor

Dimensionless axis

Central flat crater floor

Bell shaped intrusion

Dimensionless axis

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

Dimensionless axis

Convex floor

Bell shaped crater floor

D
im

en
si

on
le

ss
to

po
gr

ap
hy

D
im

en
si

on
le

ss
th

ic
kn

es
s

Figure 6.2: Two end-member intrusion shapes producing the two end-member
floor deformations observed at FFC sites: convex floor (left) and plate-like
floor (right).

intrusions, and craters of classes 1, 3, 5 and 6 to be manifestations of cylinder-
shaped intrusions.

6.2.3 Gravitational signature of FFCs: two case studies

The Bouguer gravity is the gravity anomaly that remains after taking into ac-
count the gravitational signature of surface topography. Thus, if there are no
lateral variations in crustal density, the Bouguer anomaly of a floor-fractured
crater should be entirely the result of the magmatic intrusion. The Bouguer
anomaly associated with a magmatic intrusion depends upon the intrusion
morphology, the intrusion depth and the density contrast ∆ρ between the
intrusion and the surrounding crust.

We investigate the signal expected at floor-fractured craters as a function
of the intrusion shape, diameter and depth. In particular, for the bell and
cylinder shaped intrusion, we study the signal for an intrusion diameter that
varies between 20 and 180 km, i.e. the minimum and maximum diameter
of floor-fractured craters observed by Schultz (1976a) and two intrusion el-
evations Rm: at the mean lunar radius R0 and at a reasonable maximum
depth of 5 km below R0 (Thorey and Michaut , 2014). We set the intrusion
thickness H0 to a value of 2 km, which is the maximum uplift observed by
Schultz (1976a) and the density contrast between the magma and the crust
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to a value of ∆ρ = 600 kg m−3, the maximum density contrast between mafic
and crustal lunar rocks using the bulk densities of Kiefer et al. (2012).

The two end-member intrusion profiles are obtained by solving equation
(6.8) for two different values of the dimensionless number Θ (6.14), Θ = 10−2

for the bell-shaped intrusion and Θ = 10−5 for the cylinder-like intrusion
(Thorey and Michaut , 2014) . We stop the simulations when the uplift at
the center h0 is significant and such that the pressure due to the intrusion
weight at the center is about half the lithostatic pressure due to the crater
wall (h0 = 10). Finally, each profile is redimensionalized: the axial coordinate
of the dimensionless thickness profile is multiplied by D/2 and the dimension-
less thickness profile is multiplied by H0/h0, where h0 is the dimensionless
thickness of the intrusion at the end of the simulation.

We calculate the synthetic radial gravity anomaly (more precisely, the
gravity disturbance) δsg corresponding to each intrusion profile using the spher-
ical harmonics expansion

δsg(r, θ, φ) =
GM

r2

Lmax∑
l=0

l∑
m=−l

(
Ri

r

)l
(l + 1)ClmYlm(θ, φ) (6.15)

where r, θ and φ are the coordinates of observation, G is the gravitational
constant, M the mass of the Moon, Ri the reference radius of the spheri-
cal harmonic coefficients taken as the mean radius at the site of intrusion, i.e.
Ri = Rm+h where h is the mean intrusion thickness, Clm, and Ylm the spheri-
cal harmonic functions of degree l and orderm (Wieczorek and Phillips , 1998).
Gravitational accelerations are considered positive when directed downward
(see Appendix E.1 for the expression of the spherical harmonic coefficients
associated with the intrusion thickness profile and the calculation details).

The two different intrusion shapes result in two different types of anomaly
(Figure 6.3, left). For a bell-shaped intrusion, with a convex crater floor, the
gravity anomaly is also bell-shaped. It decreases gradually from the center to
the crater wall (Figure 6.3, top left). For an intrusion placed at Rm = R0,
the signal barely depends on the crater diameter. The mean gravity anomaly
measured interior to the crater wall is almost constant and about 15 mGal
(Figure 6.3, top right). Although an increased intrusion depth decreases the
mean value of the anomaly by a factor that is less than two for craters smaller
than 50 km, it barely affects the anomaly for craters larger than 50 km (Figure
6.3; top right).

For a cylinder-like intrusion and a plate-like crater floor, the gravity
anomaly is relatively uniform and sharply decreases at the crater wall (Fig-
ure 6.3, bottom left). Consequently, although the maximum amplitude of
the anomaly is similar to the one produced by a bell-shaped intrusion, the
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Figure 6.3: Top left: Calculated synthetic gravity anomaly at r = R0 for a
bell-shaped intrusion located at the same elevation Rm = R0 with H0 = 2

km, D = 180 km and ∆ρ = 600 kg m−3. Dotted red line represents the crater
rim. Top right: Mean synthetic gravity anomaly as a function of the crater
diameter D for a bell-shaped intrusion with H0 = 2 km and ∆ρ = 600 kg
m−3. Red solid line: the intrusion is at the mean lunar radius Rm = R0. Blue
dashed line: the intrusion is 5 km below R0, Rm = R0−5 km. Bottom: Same
as above, but for a cylinder-shaped intrusion.

mean gravity anomaly, measured interior to the crater wall, is twice larger
and about 30 mGal. Similar to bell-shaped intrusion, an increased intrusion
depth decreases the mean value of the anomaly by a factor that is less than
two for craters smaller than 50 km but barely affects the anomaly for craters
larger than 50 km (Figure 6.3, bottom right).

One important observation of our modeling is that even for an extreme case
of a 2 km thick and a 180 km diameter intrusion placed at the surface with a
large density contrast of 600 kg m−3, the expected signal is only of a few tens of
mGal. Though GRAIL can easily detect such small amplitude anomalies, this
gravity signals could be masked by both large-scale regional signals and short-
wavelength signals that are unrelated to our idealized model of Figure 6.1.
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Therefore, we need to filter out these other contributions to be able to detect
the potential presence of magmatic intrusions at floor-fractured craters. In the
following, we present the gravity model that we use and consider the remaining
expected signal after filtering the synthetics the same way the observed gravity
are filtered.

6.2.4 Filtered GRAIL gravity

The observed gravity field on the Moon is a result of several contributions,
including surface topography, relief along the crust-mantle interface and den-
sity heterogeneities in both the mantle and the crust. In order to detect the
presence of magmatic intrusions in the shallow crust, which have predicted
anomalies of only a few tens of mGal, we first remove all known signatures
from the observed gravity field in order to highlight those signals that remain.

To construct this model, we start with JGGRAIL 900C11A gravity field,
which is developed to spherical harmonic degree 900 and which is based on
all data obtained during the GRAIL primary and extended mission (Konopliv
et al., 2014). From the free-air gravity model, we first compute the Bouguer
anomaly by removing the gravitational contribution of surface topography
and the long-wavelength variations in crustal density that are predicted from
remote sensing data, as described in Wieczorek et al. (2013). The most promi-
nent signals that remain are either associated with large impact basins or are
anticorrelated with long-wavelength topography. We interpret the majority
of this signal as being the result of crustal thickness variations, and use the
Bouguer anomaly to invert for the gravitational signal of relief along the crust-
mantle interface, as described in Wieczorek et al. (2013).

Since the shortest wavelength signals in the Bouguer anomaly are unlikely
to be the result of crustal thickness variations, and since short-wavelength sig-
nals become highly amplified when extrapolated with depth below the surface,
we apply the low-pass filter of Wieczorek and Phillips (1998) to the Bouguer
anomaly before inverting for crustal thickness variations. This filter is param-
eterized by having a value of 0.5 at spherical harmonic degree λ. The choice of
λ is subjective, and λ is chosen such that the obtained crustal thickness map
does not contain excessive power at the shortest wavelengths. In Wieczorek
et al. (2013), λ was chosen to have a value of 80. Here, we test several values
for λ and find that λ = 80 is also a good trade-off between the removal of
regional trends and the removal of signals due to the magmatic intrusion itself
(see Figure E.1 for details on the effects of λ).

After removing the gravitational signal of the crustal-mantle interface from
the Bouguer anomaly, the remainder of the signal is attributed to lateral vari-
ations in density within the crust of the Moon. To remove short wavelength
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Figure 6.4: Power spectra for various gravity models. Black solid line: free-air
gravity from the GRAIL gravity model JGGRAIL 900C11A. Red solid line:
Bouguer gravity anomaly assuming a constant crustal density of 2550 kg m−3.
Blue solid line: Crustal gravity anomaly of our model CrustAnom with λ = 80

and which removes long-wavelength variations in crustal density as predicted
by remote sensing data.

noise in the gravitational field, we also apply a cosine filter to the spherical
harmonic coefficients between degree 550 and 650. It is from this map, here re-
ferred to as CrustAnom, that we search for gravitational anomalies associated
with floor-fractured craters. Our model CrustAnom is roughly equivalent to
a band-passed Bouguer anomaly, where both the shortest and longest wave-
length signals are removed (Figure 6.4).

Upon applying the same filtering to synthetic gravity anomalies, the ex-
pected signal at floor-fractured craters is reduced with respect to those con-
sidered in section (6.2.3) (Figure 6.5). The filtering, which affects mostly
large craters, leads to a drop in the amplitude of the gravity anomaly by a
factor larger than two for craters larger than about 80 km. As an example,
the mean anomaly for the extreme case of a 2 km thick and 180 km large
intrusion should only be of a few mGal in the model CrustAnom (Figure 6.5).

6.3 Gravitational signature of lunar craters

The gravitational signal associated with magmatic intrusions at floor-
fractured craters will be superimposed on the signal of a normal impact crater.
We use the model CrustAnom to first quantify the gravity signal at normal
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Figure 6.5: Top left: Calculated synthetic gravity anomaly at r = R0 filtered
the same way as the model CrustAnom for a bell-shaped intrusion at the
same elevation Rm = R0 with H0 = 2 km, D = 180 km and ∆ρ = 600 kg
m−3. Dotted red line represents the crater rim. Top right: Mean filtered
synthetic gravity anomaly as a function of the crater diameter D for a bell-
shaped intrusion with H0 = 2 km and ∆ρ = 600 kg m−3. Red solid line:
the intrusion is at the mean lunar radius Rm = R0. Blues dashed line: the
intrusion is 5 km below R0, i.e. Rm = R0 − 5 km. Bottom: Same as above,
but for a cylinder-shaped intrusion.

impact craters and then compare to the signal at found floor-fractured craters.

6.3.1 Normal and floor-fractured crater populations

We use the dataset of Head et al. (2010) as a reference catalog for normal
craters and the dataset of Jozwiak et al. (2012) as a reference catalog for
floor-fractured craters. We consider only complex craters and thus use a min-
imum crater diameter of 20 km, which is the transitional crater diameter
between simple and complex lunar craters (Pike, 1974, 1980). We use a max-
imum crater diameter of 180 km, because for larger craters, the mantle uplift
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associated with basin formation becomes apparent in the gravity data (Melosh
et al., 2013). These criteria result in a population of 116 floor-fractured and
5101 normal craters covering the whole lunar surface.

Highlands

Maria

SPA

Highlands

Maria

SPA

Figure 6.6: Top row) Left: All FFCs (red triangles) and normal craters
(light blue circles) in the highlands. Right: All FFCs (red triangles) and
normal craters that have the same spatial distribution as the FFCs (light blue
circles). Middle row) Same plots but for craters in the maria. Bottom
row) Same plots but for craters in South Pole Aikten basin (SPA).

The observed gravity field of an impact crater will depend upon the density
of the crust. GRAIL gravity data show that crustal density is not constant,
and that regional variations of ± 250 kg m−3 exist, primarily between the
highlands and the South Pole Aitken basin (SPA). In addition, surface den-
sities in the maria are considerably higher than in the highlands (Besserer
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et al., 2014). To minimize potential biases that might arise from regional
variations in crustal density or geologic evolution, we divide each crater pop-
ulation (normal and floor-fractured craters) into three sub-populations. The
first is constituted by craters that lie within the highlands, outside of both
the maria and South Pole-Aitken basin. We use the USGS geological maps
to define the mare borders and the SPA basin is defined using the best-fit
outer ellipse of Garrick-Bethell and Zuber (2009). In the highlands, there are
80 floor-fractured and 4054 normal craters (Figure 6.6, top left). The second
sub-population is constituted by craters that lie within the maria and outside
of SPA basin of which there are 22 floor-fractured and 306 normal craters
(Figure 6.6, middle left). The last sub-population is constituted by craters
within the SPA of which there are 14 floor-fractured and 603 normal craters
(Figure 6.6, bottom left).

In each region defined above, the spatial distribution of floor-fractured
and normal craters is different (Figure 6.6, left). To minimize any biases
that might result from different regional characteristics, we also consider, for
each region, a second sub-population of normal craters that shares the same
spatial distribution as floor-fractured craters (Figure 6.6, right). In this sub-
population, we consider all normal craters that are less than 150 km away
from a floor-fractured crater.

6.3.2 Crater gravitational signatures

In analyzing the gravitational signature of lunar impact craters, we make use
of a single number, the crater gravity anomaly, that is defined as the average
gravitational anomaly with respect to the regional value. In calculating this
number, we first calculate the average gravitational anomaly from our model
CrustAnom within the main crater rim, i.e. within a circular region defined by
its radius D/2 where D is the crater diameter reported by Head et al. (2010)
and Jozwiak et al. (2012). We then subtract from this value the average
value of the gravity field in an annulus extending from the crater rim to a
radius of one crater diameter D (Figure E.2). Both gravitational anomalies
are calculated at the average elevation of the crater.

6.3.2.1 Highlands

The magnitude of the gravity anomalies at normal crater sites shows an im-
portant variability (Figure 6.7). On average, the anomaly is positive at the
smallest craters, slowly decreases with increasing diameters, and approaches
a constant negative value near a diameter of about 100 km. For crater diam-
eters between 100 and 180 km, the mean magnitude of the gravity anomalies
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is independent of the diameter and close to −5 mGal. The mean of the grav-
ity anomalies for the whole population µδg is negative and equal to −0.71

mGal. This number is well constrained due to the large number of craters.
In particular, the uncertainty in the mean (the standard error, which is the
standard deviation divided by the square root of the number of observations)
is equal to 0.12 mGal. The population that shares the spatial distribution
of floor-fractured craters shows similar trends (Figure 6.7). A Kolmogorov-
Smirnov (KS) test was conducted to compare this population to the whole
population of normal craters. The test reports a value of p, which is the prob-
ability that the two population are drawn from the same distribution, larger
than 10%, which confirms that no significant differences exist between the two
populations (Table E.1).

Figure 6.7: Magnitude of the gravity anomaly δg versus diameter D for the
normal crater population (light blue dots), the normal crater population that
shares the FFC spatial distribution (blue dots) and the floor-fractured crater
population (red dots) in the highlands. Solid line: Mean of the gravity anoma-
lies binned in 15 km diameter intervals. Error bars correspond to the standard
error for each bin. Right plot: Corresponding gravity anomaly density distri-
bution for each population in frequency (%).

The magnitude of the gravity anomalies at floor-fractured craters shows
a different dependence with diameter than at normal craters (Figure 6.7).
Although the variance of the data with respect to the average is of the same
order, the gravity anomalies at floor-fractured craters are larger. In particular,
the mean of the floor-fractured crater gravity anomalies is positive and approx-
imately 2.7 mGal larger than the mean of the normal crater gravity anomalies.
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We made use of a t-test to determine the robustness of the difference between
the mean magnitude of the gravity anomalies of the two populations. This
test quantifies the significance of a difference between the means of two popu-
lations assuming the two populations have the same variance. We found that
there was only less than a 5% chance that the difference in the mean of the
two populations could have occurred by chance (Table E.1). The same result
holds for the comparison with the normal crater population that shares the
spatial distribution of floor-fractured craters (Table E.1).

6.3.2.2 Lunar maria and SPA

The magnitude of the gravity anomalies at the sites of complex craters in
the lunar maria shows a variability that is similar to craters in the highlands
(Figure 6.8, top). The gravity anomaly remains close to 0 mGal and is in-
dependent of the crater diameter (Figure 6.8, top). The mean of the whole
population µδg is positive and equal to 1.51 ± 0.68 mGal. A KS test shows
that there is no significant difference between the entire normal crater popula-
tion and the one that shares the spatial distribution of floor-fractured craters
(Figure 6.8, top, Table E.1).

The normal craters in the South Pole Aikten basin show gravity anomalies
that are somewhat more negative than in the highlands (Figure 6.8, bottom).
On average, the signal decreases with increasing diameter up to D ∼ 100−120

km (Figure 6.8, bottom) and increases somewhat again for crater diameters
between 120 and 180 km (Figure 6.8, bottom). A KS test shows that there is
no significant difference between the two populations of normal craters (Figure
6.8, bottom, Table E.1).

Although the mean magnitude of the gravity anomalies at FFC sites is
about 3 mGal larger than the mean value observed at normal craters in the
maria and SPA, the variability in the signal is large and there is no significant
statistical difference between the mean of the gravity anomalies of normal and
floor-fractured craters in those two different regions. Indeed, a t-test, realized
for both regions, shows that there was more than a 10% chance that these
differences in the mean of the two populations could have occurred by chance
(Table E.1). Nevertheless, the small number of FFCs in the maria and in the
SPA makes difficult to obtain a significant statistic due to the low accuracy
in measuring the FFC population mean (µδg = 4.43± 3.52 mGal in the maria
and µδg = −0.25± 2.52 mGal in SPA).
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Figure 6.8: Top: Magnitude of the gravity anomaly δg versus diameter D for
the normal crater population (light blue dots), the normal crater population
that shares the FFC spatial distribution (blue dots) and the floor-fractured
crater population (red dots) in the maria. Solid line: Mean of the gravity
anomalies binned in 15 km diameter intervals. Error bars correspond to the
standard error for each bin. Right plot: Corresponding gravity anomaly den-
sity distribution for each population in frequency (%). Bottom: Same plots
but in South Pole-Aikten basin.

6.4 Magmatic intrusion characteristics

Our results show that, on average, crustal gravity anomalies at floor-fractured
craters are larger than at normal craters, but also that this result is statisti-
cally significant only for the highlands. This is in agreement with the pres-
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ence of dense magmatic intrusions at depth below floor-fractured crater floors.
In addition, the amplitudes of the gravitational signatures at floor-fractured
craters are only of a few mGal, comparable to the predictions based on the
theoretical model of Thorey and Michaut (2014) (Figure 6.5). In the follow-
ing, we compare the observed gravity signals at each floor-fractured crater
to a synthetic gravity anomaly constructed based on the theoretical model of
Thorey and Michaut (2014) in order to derive the mean density contrast be-
tween the intrusion and the surrounding crust. To that purpose, the thickness
of each intrusion is needed and we use LOLA topographic data to estimate
this quantity for each floor-fractured crater.

6.4.1 Intrusion thickness

The intrusion thickness H0 at the center of the crater is taken as the amount
of shallowing of the crater floor with respect to the expected depth (Schultz ,
1976a; Jozwiak et al., 2012). Given the observed crater depth, the problem
is to estimate the original crater depth before the intrusion formed. In the
study of Jozwiak et al. (2012), the scaling law which gives the depth dc as
a function of the crater diameter D, derived by Pike (1974), was used as an
estimate for the initial crater depth. However, this scaling law was calculated
using only recent, Erastosthenian, and well preserved craters, and it is gen-
erally acknowledged that floor-fractured craters are generally older and more
degraded than this population. In the absence of information on the state of
degradation of lunar craters in the dataset of Head et al. (2010), we thus use
the characteristics of the normal craters that share the spatial distribution of
floor-fractured craters described in section 6.3.1 as a reference.

We characterize the depths of both normal and floor-fractured craters using
the 64 ppd (∼ 450 m/pixel) LOLA gridded topography data (Zuber et al.,
2009) obtained from the planetary data system geosciences node. We followed
the method described by Kalynn et al. (2013) to derive the crater depth dc
and its uncertainty σd (see Appendix E.4 for details). Our dc-D results for
normal craters show trends that are consistent with previous works in the
highlands, the lunar maria and the SPA (Figure 6.9). Indeed, the crater
depth of normal craters increases with increasing diameter and craters in the
maria are on average shallower than in the highlands or SPA (Figure 6.9)
(Pike, 1974, 1980; Kalynn et al., 2013). Nevertheless, the variability in the
degradation state of each crater results in an important variance in the crater
depth with diameter with respect to the mean trend.

The same variability holds for the floor-fractured crater population depth
(Figure 6.9). This variability makes the identification of the uplift difficult
at floor-fractured craters. Although the mean crater depth of floor-fractured
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Figure 6.9: Crater depth dc (km) versus diameter D (km) for floor-fractured
craters (red) and normal craters (blue) in the highlands, SPA and the maria.
The normal craters in the highlands reference to the populations close to
floor-fractured craters. Error bars are the uncertainties in the measurement
of the crater depth and for clarity, the uncertainties are not shown for normal
craters. Dashed lines: best fit using the equation dc = ADB for the floor-
fractured crater (red) and the normal crater (blue) populations in log-log
space. Values of the coefficient A, B as well as the dispersion around the best
fit line σfit are given in Table E.2.

craters in the highlands and SPA is slightly smaller than the mean of the nor-
mal crater population, the means of the two populations are not significantly
different in the three regions (t-test: p > 0.5, Table E.2). A detailed geological
study at each crater would be necessary to precisely identify the crater mor-
phological structures and decrease the uncertainty in the depth estimation,
but such a study is out of the scope of this article. We decided to estimate
the intrusion thickness at floor-fractured craters only to a first order by con-
sidering the difference in the mean trends between normal and floor-fractured
craters.

To characterize the mean trend of normal craters, we make use of a linear
least-squares regression in log-log space to obtain a power law relationship
of the form dc = ADB (Pike, 1974; Kalynn et al., 2013). We use the same
method to characterize the mean dependence of floor-fractured crater depth
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with crater diameter. In addition of determining the constant A and B,
we also calculated the root-mean-squared dispersion σfit around the best fit
(Table E.2). Subtracting the two best fit lines, we finally obtain a first-order
estimate for the intrusion thickness at the center H0 for each floor-fractured
crater of given diameter D to which we assign an error σH0 = (σ2

fit-FFC +

σ2
fit-Unmod. Crater)

1/2.

6.4.2 Density contrast ∆ρ of the intrusion

We consider two different shapes for the intrusions beneath floor-fractured
craters: a bell-shaped intrusion for craters that show a convex floor (class 2
and 4 in the classification of Schultz (1976a)) and a cylindrical-shaped intru-
sion for craters that show a plate-like floor (class 1, 3, 5 and 6 in the clas-
sification of Schultz (1976a)). The two dimensionless profiles are described
in section 6.2.2 and each profile is redimensionalized using the thickness of
the intrusion H0 and its radius D/2 (see section 6.4.1). The method used to
derive the synthetic gravity anomaly from the intrusion thickness profile is
detailed is section 6.2.3. We use a unit density contrast, i.e. ∆ρ = 1 kg m−3

and then filter the predicted gravity anomaly in exactly the same way than
the observed gravity is filtered (section 6.2.4). The synthetic gravity anomaly
δsg associated with each floor-fractured crater is defined as the mean of the
synthetic gravity anomaly measured interior to the crater rim.

Finally, the density contrast between the magma and the crust at a specific
floor-fractured crater location is given by the difference of the observed gravity
anomaly δobsg and the value of the gravity anomaly for normal craters δcg of the
same diameter, divided by the synthetic gravity anomaly for a unit density
contrast δsg

∆ρ =
δobsg − δcg

δsg
(6.16)

where ∆ρ is in kg m−3.
We find that the corrected gravity anomalies observed at floor-fractured

crater sites in the highlands are consistent with a mean density contrast be-
tween the magma and the crust of µ∆ρ = 913 ± 269 kg m−3 (Table E.4). In
the maria, the corrected gravity anomalies observed in the 22 floor-fractured
craters are consistent with a mean density contrast equal to µ∆ρ = 484± 669

kg m−3 (Table E.4). However, the difference between the mean density con-
trast in the highlands and the maria is not significant (a t-test gives a prob-
ability greater than 10% that this could occur by chance, p > 0.1). In the
South Pole Aikten basin, the corrected gravity anomalies observed in the 14

floor-fractured craters are consistent with a mean density contrast equal to
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µ∆ρ = 974 ± 846 kg m−3 (Table E.4). But, the difference between the mean
density contrast in the highlands and SPA is also not significant (a t test gives
a probability greater than 50% that this could occur by chance, p > 0.5).

6.5 Discussion

In this study, we used the gravity field obtained by the GRAIL mission in
combination with the topographic data obtained by the LOLA instrument to
resolve mass anomalies below floor-fractured craters. We studied separately
the craters in the farside highlands, South Pole-Aikten basin and maria to
prevent potential bias from regional effects.

We show that the average gravitational signature of normal craters in the
highlands is negative, whereas the average gravitational signature of floor-
fractured craters is positive. Although a large variability characterizes the
magnitude of gravity anomalies in both populations, the difference between
the mean of the two populations, equal to ∼ 3 mGal, is statistically signifi-
cant. In addition, the floor-fractured crater gravity anomalies do not follow
the same dependence with diameter as normal craters. Our results are con-
sistent with the emplacement of magmatic intrusions below floor-fractured
craters as originally proposed by Schultz (1976a). Furthermore, the observed
gravity anomalies (after filtering) of a few mGal are in agreement with the
values expected from the model of crater-centered intrusion of Thorey and
Michaut (2014). In particular, measured gravity anomalies at floor-fractured
craters imply an average density contrast between the magma and the sur-
rounding crust equal to µ∆ρ = 913 ± 269 kg m−3. Thermal annealing could
also participate to the measured gravity anomaly, which would then decrease
the estimated density contrast, though this effect should be limited to a few
percents (Michaut and Jaupart , 2011; Kiefer , 2013).

The grain density of lunar basalt can vary from 3270 kg m−3 for low Ti
basalt to 3450 kg m−3 for high Ti basalt (Kiefer et al., 2012). In contrast,
the lunar crust, which is mainly anorthositic, shows grain densities that vary
from 2800 kg m−3 to 2900 kg m−3. The grain density contrast between the
magma and the crust should thus be between 370 and 650 kg m−3, with an
average of 510 kg m−3. Impacts have induced fractures and created pore space
in the lunar rocks decreasing their bulk densities. GRAIL data are consistent
with an average porosity of about 12% in the crust (Wieczorek et al., 2013),
and this porosity could be present in either, or both, of the two units (the
surrounding crust and the magmatic intrusion).

First, the observed density contrast could be due to a pore-free magmatic
intrusion and a pore free highland crust. From the sample densities, this would
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give rise to a density contrast of about 510 kg m−3, which is smaller than the
observed 1-σ lower bound, and thus is probably too small to account for the
observations. Second, the density contrast could be the result of a fractured
intrusion and a surrounding fractured highland crust. If each had the same
level of porosity, this would give rise to an even smaller density contrast.
Lastly, if the intrusion were unfractured, but the surrounding highland crust
had a porosity of 12%, a density contrast of about 852 kg m−3 could be
achieved, which is close to the observed value.

The best scenario that can account for the observed density contrast at
floor-fractured craters in the highlands is an unfractured basaltic intrusion
that forms within a fractured highland crust. Overall, this implies that the
intrusion is sufficiently young to have escaped being fractured by subsequent
impact events. Given that most basaltic eruptions occurred between 3 and
4 billion years ago, this suggests that the majority of the lunar crust was
fractured before this date.

Our analyses of the gravity anomalies in the South Pole-Aikten basin and
in the maria are less conclusive and are associated with much larger uncer-
tainties. In regard to the SPA basin, although the mean magnitude of the
gravity anomalies for floor-fractured craters is larger than for normal craters,
we show that the difference between the two populations is not significant.
We note, however, that the average density contrast associated with floor-
fractured craters in the South Pole-Aitken basin is nearly identical to that
obtained for the highlands.

Concerning the mare regions, the corrected gravity anomalies for floor-
fractured craters are consistent with a mean value for the density contrast
that is considerably smaller than in the highlands. This is in fact consistent
with expectations. If the density contrast were the result of an unfractured
intrusion forming in a fractured basaltic crust (both having the same grain
density), the density contrast would be only about 403 kg m−3, which is nearly
identical to the mean value found from our analysis.

6.6 Conclusion

The gravitational signature of the floor-fractured crater population, first ob-
served by Schultz (1976a), has been investigated using the unprecedented
resolution of the global gravity model provided by the GRAIL’s mission. We
show that the signal at floor-fractured craters in the highlands is consistent
with the presence of a magmatic intrusion at depth below the crater floor.
Derived synthetic gravity anomalies at each FFC compared to observations
show that on average, the density contrast between the magma and the crust
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is about 913 kg m−3. This value is in agreement with the intrusion being com-
posed of unfractured basaltic material and forming in a pre-existing fractured
crust (Wieczorek et al., 2013)

Similar studies have been carried out for floor-fractured craters located
in the South Pole Aikten basin and in the lunar maria. However, the small
number of craters as well as the large variability in these two regions prevent
from clearly differentiating the signal due to magmatic intrusions from the
background. In general, two major questions need to be addressed before
carrying out further investigations at floor-fractured crater sites: 1) What is
the origin of the large variability in the magnitude of the gravity anomaly at
normal craters? And 2), how can we better quantify the intrusion thickness
at floor-fractured craters?

Indeed, our results suggest that the impact itself, combined with preex-
isting density variations within the crust, results in a wide range of Bouguer
anomalies at normal impact craters. Such density structures should also pre-
exist below floor-fractured craters before magma emplacement. To enhance
the intrusion signal, an estimate of the expected initial gravity signature is
desirable.

Additionally, we show that the large variability in the crater depth-
diameter relationship makes difficult the determination of the crater depth
itself, and by consequence, the thickness of the magmatic intrusion. This
variability comes from the degradation state of the crater. A quantification
of the degradation state of normal and floor-fractured craters might help to
reduce the uncertainty in the determination of the initial and current floor-
fractured crater depths and would result in a more accurate derivation of the
density contrast between the magmatic intrusion and the surrounding crust.
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7.1 Summary

Michaut (2011) originally provided a model describing the dynamics of shal-
low isoviscous magmatic intrusions. Depending mainly on the injection rate
and the intrusion depth, the model predicts two propagation regimes charac-
terized by specific morphologies and scaling laws for intrusion thickness versus
length and time. The model predicts the appropriate geometry for both ter-
restrial laccoliths and large mafic sills. However, we show in Chapter 2 that
it underestimates the absolute dimensions of these magmatic intrusions. In
particular, it requires abnormally high viscosity to reconcile both observations
and predictions.

To investigate the effective flow viscosity, we develop in chapter 3 and 4 an
extension of the model of Michaut (2011) accounting for the cooling. We show
that the resulting coupling between the temperature field and the flow itself
leads to the formation of a highly viscous region at the tip which slows down
the spreading in both regimes. The intrusions are predicted to be thicker and
their dimensions, especially in the bending regime, are now consistent with
the observations.

In Chapter 5, we neglect the cooling to relax another assumption of the
original model of Michaut (2011), i.e. the constant thickness of the upper
layer. In particular, we study the effect of a crater depression located on
top of the intrusion. We show that the lithostatic barrier imposed by the
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crater wall at the depression periphery prevents lateral spreading and enhances
vertical thickening. This second model shows predictions consistent with the
deformations observed at floor-fractured craters.

Promising comparison between predictions and observations such as these
should drive a methodical and rigorous improvement of the mathematical
model for the emplacement of shallow magmatic intrusions. Nevertheless, we
also show the limit of using field observations, whose parameters are poorly
constrained, to validate the model predictions. An alternative approach could
be to use analogue experiments designed to produce some features of the natu-
ral system at a laboratory scale. Indeed, such experiments could provide useful
benchmarks constraining the theoretical model. In addition, phenomenologi-
cal observations not predicted by the theory could guide further investigations
towards our understanding of shallow magmatic intrusions.

7.2 What limits the extent of magmatic intru-
sions?

While the crater depression clearly limits the flow expansion for crater-
centered intrusions, one can wonder about why laccoliths and sills stop their
propagation in the third bending phase and second gravity phase respectively.
Available data on terrestrial laccoliths, used in combination with the model,
show that terrestrial laccoliths probably do not stop following the formation
of the highly viscous region at the intrusion front (Section 4).

Instead, an alternative hypothesis is that the limited volume of magma ini-
tially available simply limits the extent of these intrusions. Indeed, one may
expect that the injection rate, which is considered constant in this model,
wanes as the deep magma source gets exhausted. Depending on the local
emplacement conditions, if the injection rate lasts sufficiently long for the in-
trusion to transition to the gravity regime, the intrusion solidifies as a sill.
Otherwise, the intrusion solidifies as a laccolith. The current thickness and
time at the transition depend on the magma composition. In particular, the
more evolved the magma composition, the larger the transition time and the
larger the volume required for the transition to occur. Together, it corrobo-
rates the predominance of felsic laccoliths and mafic sills in field observations.

In addition, in chapter 4, we show that a significant thermal aureole should
develop in the wall rocks above the central flow region. Apart from the plastic
rock deformation that might develop in the overburden, the thermal erosion
above the feeder dyke, where the temperature are expected to be maximum,
might also favor subsequent dyke propagation and limit the intrusion size.
This could also potentially explain the nested structure of several laccolith
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complexes reported in the literature (Corry , 1988; Rocchi et al., 2010).
Alternatively, fracturation at the front could limit the extent of some mag-

matic intrusions and trigger their arrest. Indeed, for a sake of simplicity,
we used a thin prewetting film at the tip to avoid the requirement of any
boundary condition at a genuine front in the models developed in this the-
sis. Nevertheless, a necessary extension of this work is the description of a
realistic boundary condition at the intrusion front which includes a realistic
fracturation criterion.

7.3 Rigorous treatment of the front

Fracturation

A first step would be to describe the tip in terms of a fluid driven fracture
instead of the thin prewetting film. As seen in Section 2.3.3, linear elastic
fracture mechanics requires that the mode I intensity factor KI equals a crit-
ical value, the fracture toughness of the wall rock Kc, for the propagation to
occur. This condition is usually expressed in term of an asymptotic condition
on the crack opening h(r, t) at r = R (Savitski and Detournay , 2002; Bunger
et al., 2005; Bunger and Detournay , 2007; Detournay and Peirce, 2014).

In such problem, the thickness equation is thus coupled to a description of
the fracture opening based on the linear elastic fracture mechanics. Bunger
and Cruden (2011) used this approach to solve the problem of isoviscous
shallow magmatic intrusions and found similar results than Michaut (2011).
Interestingly, they needed values for the fracture toughness Kc two or three
orders of magnitude larger than laboratory measurements to reproduce the
observations. In addition, they found that the apparent fracture toughness of
laccoliths is much larger than for large mafic sills, which they attribute to a
potentially crack blunting mechanism at the tip of laccoliths. This observation
is consistent with the rapid formation of a highly viscous region at the tip of
the magmatic intrusion described in Chapter 3 and 4. Nevertheless, this model
also falls short to reproduce the behavior of large mafic sills. In addition, more
realistic models should also consider the process zone, i.e. the region of plastic
rock deformation near the leading edge of the fracture (Bunger , 2008).

Finally, the large negative pressure that developed at the front might cause
dissolved gasses to exsolve from the magma (Lister et al., 2013). With the
formation and the evolution of a gap filled with gas at the current tip, the
fluid and the fracture front do not coincide with one another, thus requiring
the tracking of two moving boundaries.
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Fluid gap

Along with the prewetting film regularization, Hewitt et al. (2015) propose
a second regularization condition where the tip of the elastic-plated gravity
current consists of a lag region filled with gas at a constant negative pressure
(Figure 7.1). They show that the solution depends on the gas pressure in the
tip region in a similar fashion that the solution depends on the prewetting
film thickness in Chapter 2, 3 and 4. In particular, in a Cartesian geometry,

Fluid lag

Gas-filled region 

Thin filma) b)

Figure 7.1: Two different regularization condition at the front of the current:
a) thin prewetting film with thickness hf b) gas-filled region.

they show that

h0 ∝ h
−1/7
f ν−2/7L10/7 (Thin film) (7.1)

h0 ∝ σ1/9ν−2/9L14/9 (Fluid lag) (7.2)

where L is the half length of the flow, −σ is the constant negative pressure
in the fluid lag and we have rescaled the characteristic thickness and time
by ν1/4 in Hewitt et al. (2015). As expected, the two different regularization
conditions lead to only minor changes in the thickness to length relationship
(10/7 ∼ 1.4, 14/9 ∼ 1.5).

A rigorous treatment of the front can thus be taken to provide only higher-
order corrections to the leading order behavior captured by the models devel-
oped in this manuscript. Nevertheless, a complete description of the dynamics
of the cooling gas-filled region, where the pressure is not a parameter but self-
consistently determined, along with an appropriate fracture condition at the
tip would surely complete the description provided in this thesis.
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7.4 Further model improvements

Heat budget

The theoretical model for the cooling elastic-plated gravity current assumes
that the initial wall rock temperature is equal to the magma solidus, i.e.
∼ 700℃ for a felsic composition and ∼ 1000℃ for more mafic lavas. The
geothermal gradient is ∼ 30℃ km−1 in the upper crust and these tempera-
tures are large in comparison to the expected temperature for typical intrusion
depth; for instance, the temperature should be ∼ 150℃ initially for an intru-
sion 5 km deep. This effect might enhance the cooling and, especially in the
early bending regime, accelerate the phase transitions.

Viscous heating is another mechanism not taken into account in this study
that would participate to the global intrusion heat budget. Indeed, especially
for large values of Pe, where we have shown that the flow vertical tempera-
ture gradients are stronger (Section 4.3.1), the effect of viscous heating could
be important. Costa and Macedonio (2005) have already shown that viscous
heating plays an important role in the dynamics of fluids with a strongly
temperature-dependent viscosity. In particular, for lava tubes, they show
that the heat generated by viscous friction produces a local temperature in-
crease near the tube walls with a consequent decrease of the viscosity which
may dramatically change the temperature and velocity profiles (Costa and
Macedonio, 2002, 2003, 2005). The important gradients within the thermal
boundary layers or near the tip region could present favorable conditions for
the development of such instabilities.

Stretching of the upper layer

If the thickness of the intrusion h0 becomes large compared to the intrusion
depth d0, the analysis described in Chapter 3 and 4 is not valid anymore.
For a large injection rate, this could happen for very shallow felsic intrusions
(d0 ≤ 500 m). In such situation, the stretching of the upper layer can no
longer be neglected when calculating the elastic stresses which can be derived
using the Föppl-von Kármán equation.

A complete description of the flow in both axysimmetrical and cartesian
geometries, along with scaling laws for h0(t) and R(t), has already been de-
scribed by Lister et al. (2013) and Hewitt et al. (2015) respectively. While
the time dependence of the scaling laws are similar from those derived in the
bending dominated regime, the shape of the flow is not bell-shaped anymore
in the early time solution and shows somewhat steeper edges (Hewitt et al.,
2015). For instance, such model could potentially explain the shape of some
felsic laccoliths observed in Island by Gudmundsson et al. (2014) (Figure 7.2).
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Figure 7.2: Felsic laccolith, named Baula, in West Island. Modified from
Gudmundsson et al. (2014).

Topography

As shown in Chapter 5, the topography also imposes large constraints on the
final morphology of magmatic intrusions. One interesting avenue for research
could be to model the evolution of an intrusion intruding a volcanic edifice.
The model developed in Chapter 5 could indeed easily be adapted to account
for the presence of a conic volcanic edifice instead of a depression on top of
the magmatic intrusion. Such model, used in combination with the geode-
tic measurements such as Interferometric Synthetic Aperture Radar (InSAR)
imaging and GPS measurements used to monitor the deformation on active
volcanoes, could provide a useful framework to understand and constrain the
dynamics and the shape of the volcanic plumbing systems (Figure 7.3).

Figure 7.3: Radar interferograms of Sierra Negra volcano showing uplift during
three time periods. a, 1992. b, 1997. c, 1998. Each colour cycle represents 5
cm LOS displacement. Modified from Amelung et al. (2000).
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Similar studies could also be extended to caldera complexes which also
often record ground deformations. Towards more detailed studies of specific
area, it could also be interesting to generalize the model in 3D. This will allow
to account directly for the object topography one wants to study and hence,
make it easier the comparison with the available deformation measurements.
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The topographic deformations that could be caused by shallow intrusions
can be constrained by observations of planetary surfaces; that is, volume,
shape and other dimensions of intrusions can be quantified. In this thesis,
we show that these observations, used in combination with a model for the
intrusion dynamics, can provide the basis of an effective framework to study
and constrain intrusive magmatism on terrestrial planets.

8.1 Lunar intrusive magmatism

8.1.1 Summary

While it provides important constraints on the Moon’s thermal and petro-
genetic evolution, the total volume of melt produced into the Moon interior
is poorly known. Indeed, although the total extrusive volume is quantified
through analyses of the lunar maria, the volume of intrusive magma, which
should be large due to the low density of the lunar crust, remains unknown.
A first step in the quantification of the intrusive activity on the Moon is the
detection of shallow magmatic systems.

In this thesis, we focus on two proposed candidates for shallow lunar mag-
matic intrusions: low-slope domes and floor-fractured craters. In Chapter 4,
we first show that the morphology of low-slope domes is indeed consistent
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with their intrusive origin. Adapting the model of elastic-plated gravity cur-
rent model to account for the crater depression, we then show in Chapter 5
that the deformations observed at floor-fractured craters are also consistent
with the emplacement of magmatic intrusions below their floor.

Upon cooling and solidification, crater-centered intrusions should be denser
than the surrounding medium and leave a positive anomaly in the lunar grav-
ity field. Using the intrusion morphology deduced from the model, the lunar
gravity field obtained from the NASA’s GRAIL mission and topographic data
obtained from the LOLA instrument, we show in Chapter 7 that their gravi-
tational signature is indeed larger that the one of normal impact craters. In
particular, measured gravity anomalies at floor-fractured craters imply an av-
erage density contrast between the magma and the surrounding crust close to
900 kg m−3. Given the 12% porosity of the lunar crust revealed by GRAIL,
such density contrast implies relatively unfractured magmatic intrusions. In
particular, it suggests that these intrusions are sufficiently young to have es-
caped the period of intense bombardment following the Moon formation.

Around 10 low-slope lunar domes and about 200 floor-fractured craters
have been detected at the lunar surface, most of them located close or within
the lunar maria. While the total volume of these magmatic intrusions should
not exceed 1% of the lunar maria volume, it advocates the presence of numer-
ous shallow magmatic intrusions in the lunar crust.

8.1.2 The origin of magmas

In Chapter 5, we claim that the absence of deformations surrounding floor-
fractured craters suggests that the unload pressure associated with the crater
depression might have driven magma ascent below these craters. However, the
unload pressure associated with the depression should decrease rapidly with
depth on a length scale equal to the crater diameter, i.e. some tens of kilome-
ters (Pinel and Jaupart , 2000). Hence, the depression caused by the impact
can drive magma flow if the magma is already present on a similar length
scale, i.e. within the crust. The presence of numerous floor-fractured craters
thus raises the question of deeper and larger magmatic reservoirs within the
lunar crust at the time of their formation.

This idea is also supported by recent works on rift volcanism on Earth
showing that a depression can play a crucial role in the trajectory of magma
on the local scale (Maccaferri et al., 2014). Specifically, Maccaferri et al.
(2014) show that the graben depression favors the formation of a stress barrier
at depth which might prevent dyke propagation depending on its nucleation
depth. In particular, dykes nucleated deep below the graben will tend to
be deviated from their vertical trajectory and produce off-rift volcanism. A
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similar investigation in a lunar setting might also demonstrate that dykes
initiated deep within the lunar mantle should have been deviated off the crater
depression.

Together, it sustains the idea of shallower magma reservoirs within the
lunar crust feeding these intrusions. Such magmatic reservoirs might also have
let a signature in the lunar gravity field which might be detectable through
GRAIL.

In the end, a detailed analysis of the stress field below the crater depression
might be the natural extension of our work on lunar intrusive magmatism. In
addition, it might explain why these craters, apart from the underlying low
density breccia, provide a favorable environment for magmatic intrusions.

At a regional scale, it could also be fruitful to investigate the link between
the load of the lunar maria and the distribution of floor-fractured craters,
which are mainly located on its margin.

8.1.3 Constraining the thickness of the lunar maria

Approximately 16% of the Moon’s surface is covered by basaltic lava flows
that comprise the lunar maria. Although the total extent of these lava flows
is known, their thicknesses are more difficult to constrain (Thomson et al.,
2009). Many approaches, including indirect techniques such as gravity, seis-
mic or radar data, or direct measurements, through analyses of impact that
have completely penetrated the maria, have been proposed to estimate their
thicknesses. Numerous low-slope domes and floor-fractured craters are located
in the lunar maria. The underlying magmatic intrusions might have intruded
the base of the basalt layer, which is more likely to behave as a coherent elastic
layer. In such case, the model developed in this thesis can help put constraints
on the thickness of the maria in these locations as shown in Section 5.5.2. If
the intrusion has intruded the maria, it would at least provide a lower bound
estimate.

8.2 Probing intrusive magmatism on other ter-
restrial planets

Michaut et al. (2013) have already used the elastic-plated gravity current
model to assess the intrusive origin of several Martian domes. As proven
on the Moon, floor-fractured craters are also a good basis to study intrusive
processes. While they have first been observed and described on the Moon,
several pieces of evidence show that floor-fractured craters might be a common
landscape on terrestrial planets.
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Figure 8.1: a), b) and c) Samples from the Martian FFC population located
respectively at (0.0◦N,337.3◦E), (5.5◦S,322.6◦E) and (6.7◦S,333.4◦E). All are
THEMIS daytime IR image modified from Sato et al. (2010). d) Potential
FFC on Mercury reproduced from Schultz (1977). e) Barrymore crater, 50 km
diameter, located near Imdr Regio. f) Mona lisa Crater, 85 km in diameter,
located on the edge of Eistla Regio. Both are potential FFCs on Venus.
Reproduced from Wichman and Schultz (1995a).
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• Mars: On mars, almost 200 floor-fractured craters, located mostly along
a narrow band south of the dichotomy boundary in Arabia Terra, have
also been reported (Bamberg et al., 2014). The observed deformations
within these craters are very similar to those observed on the Moon,
though Martian floor-fractured craters tend to exhibit a more extensive
and wider fracture network (Figure 8.1 a, b and c). This is attributed
to complex interactions between the magmatic intrusion and potential
ice/water in the subsurface (Sato et al., 2010; Bamberg et al., 2014).
In particular, the melting of the water (or possibly CO2) trapped in
the subsurface would enhance erosion of the floor fractures (Sato et al.,
2010).

Interestingly, the deformations on Martian floor-fractured craters are
not localized within the crater wall but can also extend further the
crater rim (Figure 8.1 b,c). As opposed to the Moon, the overpressure
driving the intrusion might have been larger than the unloading pressure
associated with the depression. In addition, Martian magmas, at the
difference of their lunar counterparts, are most likely buoyant until the
surface and the mechanisms favoring crater-centered intrusions on Mars
are still debated. Again on Mars, studying the stress field associated
with the crater depression could provide a viable mechanism to trigger
magma spreading at depth below these craters.

• Mercury: Schultz (1977) propose several candidates searching for intra-
crater dark haloes or other color variations indicating post-impact em-
placement of mafic materials onto the floor. They revealed several crater
floors with contrasting deposits, and additionally a few rimmed moat-
like depressions (Figure 8.1 d). More recently, data from the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSEN-
GER) spacecraft have confirmed that vents and deposits attributed to
explosive volcanism occur within numerous impact craters on Mercury
(Gillis-Davis et al., 2009; Head et al., 2009; Kerber et al., 2009). While
these craters do not show any floor fractures, they might also witness
the presence of shallow magmatic intrusions in the crust of Mercury as
proposed by Thomas et al. (2015).

• Venus: Venus geologic records have been largely cut off by resurfacing
events constantly reworking the Venusian surface. Nevertheless, several
candidates for floor-fractured craters have also been proposed on Venus
by Wichman and Schultz (1995a).





Conclusion

Intrusive magmatism plays a fundamental role in the accretionary pro-
cesses of terrestrial crust. On Earth, tectonic displacements as well as erosion
have exposed numerous intrusions and geophysical sounding can provide in-
formation on their presence, morphology and growth even at depth. However,
such observations must be linked to models of magma intrusion dynamics to
provide insights into the magma physical properties, the injection rate and
the intrusion process itself.

In the first part of this thesis, we have developed a model for a cooling
magma spreading beneath an elastic layer. This model, which accounts for a
realistic magma rheology as well as the heating of the wall rocks, is able to
reproduce the geometry and the dimensions of several magmatic intrusions
to a first order. Especially, it shows the formation of a highly viscous region
at the front of the intrusion which rapidly constrains the flow. Nevertheless,
the formation of this region does not seem to coincide with the arrest of
these intrusions. A more rigorous treatment of the dynamics at the tip of the
intrusion, developed in combination with analogue experiments, might shed
light on the mechanism at the origin of their solidification.

On other terrestrial planets, the model allows the detection of intrusions
at depth within the crust. For instance, we have shown that low-slope lunar
domes have probably formed following the emplacement of shallow magmatic
intrusions. On the Moon, floor-fractured craters have also been proposed as
resulting from the emplacement of magma at depth below their floor. To test
this hypothesis, we develop a dynamical model of crater-centered intrusion.
We have shown that floor-fractured crater deformations, as well as their grav-
itational signatures, are indeed consistent with their intrusive origin. While
the total volume of these intrusions should not exceed 1% of the volume of
the maria, it confirms the presence of numerous shallow magmatic intrusions
in the lunar crust whose origin have yet to be discovered.

In conclusion, we have shown in this thesis that coupling models and ob-
servations can provide a robust framework for probing the importance of in-
trusive magmatism on terrestrial planets. In particular, it allows not only to
get insights into the flow physical properties but also on the intrusion process
itself as well as the geological history of the region surrounding the intrusion.



Conclusion

Le magmatisme intrusif représente une source cachée, mais souvent im-
portante du magmatisme planétaire. Sur Terre, les mouvements tectoniques
ainsi que l’érosion ont permis d’exposer de nombreuses intrusions à la sur-
face. De plus, les techniques d’explorations géophysiques peuvent fournir des
informations sur leur morphologie, leur taille ainsi que leur croissance même
en profondeur. Cependant, de telles informations ne peuvent être interprétées
qu’en association avec un modèle qui relie la déformation finale à l’écoulement
lui-même.

Ainsi, dans la première partie de cette thèse, nous avons développé un
modèle d’étalement du magma sous une couche élastique. Ce modèle, qui
prend en compte à la fois la rhéologie du magma et le chauffage de l’encaissant,
est capable de reproduire au premier ordre la morphologie et les dimensions
de nombreuses intrusions. Il prédit notamment la formation d’une région
très visqueuse au front qui rapidement contrôle l’écoulement. Cependant, la
formation de cette région ne semble pas coïncider avec l’arrêt des intrusions.
Une description plus fine du front, couplée avec des expériences de laboratoire,
pourrait sûrement permettre de mieux comprendre les mécanismes à l’origine
de leur solidification.

Sur les autres corps telluriques, ce modèle permet de détecter la présence
d’intrusions en profondeur au sein de la croûte. Ainsi, nous avons montré que
les dômes à faible pente lunaire avaient probablement une origine intrusive.
Sur la Lune, les cratères à sol fracturé ont aussi été proposés comme résultant
de la mise en place d’intrusions. Pour tester cette hypothèse, nous avons
adapté notre modèle pour prendre en compte la dépression engendrée par le
cratère. Nous avons montré que les déformations au sein de ces cratères, ainsi
que leur signature gravitaire, soutiennent toutes les deux une origine intrusive.
Bien que le volume réuni de ces intrusions soit assez faible en comparaison
du volume des laves au sein des mers lunaires, il confirme la présence de
nombreuses intrusions au sein de la croûte lunaire. Des études plus précises
du champ de contrainte associé à la dépression pourront sûrement apporter
de précieuses informations sur l’origine de ces magmas.

En conclusion, l’approche développée dans cette thèse, qui associe mod-
èles et observations, donne non seulement des informations sur les propriétés
physiques des intrusions et leurs profondeurs, mais aussi sur leurs conditions
de mise en place et sur l’histoire géologique de la région.
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Appendix A

Numerical schemes

A.1 Numerical scheme for a cooling elastic-
plated gravity current

In this section, we present the numerical scheme used to solve the coupled
nonlinear partial differential equations (4.8) and (4.9). The governing equa-
tions presented in Chapter 3 are just a particular case where Ω→∞ and can
be solved using Ω = 105 for instance.

A.1.1 General procedure

The coupled nonlinear partial differential equations (4.8) and (4.9) are solved
on a grid of sizeM defined by the relation ri = (i−0.5)∆r for i = 1, ..,M . The
grid is shifted at the center to avoid problem arising from the axisymmetrical
geometry. We index the grid point by the indice i and denote the solution
on this grid hi and ξi and the secondary variables Θb,i, Θs,i and δi. Both
equations can be expressed on the convenient form

∂ψ

∂t
− f = 0, (A.1)

where ψ is the function we want to integrate and f a non-linear function that
depends on ψ. We solve these equations by first discretizing all the spatial
derivatives using Finite Difference. The accuracy of the scheme is determined
by the higher order derivatives since their numerical approximation requires
the largest number of sample points. We then get two systems of M ordinary
differential equations with the form

∂ψi
∂t
− fi = 0 i = 1, ...,M. (A.2)

The time derivatives are first order and, since explicit schemes tend to be very
sensitive and unstable, we use a fully implicit backward Euler scheme to get

ψn+1
i − ψni

∆t
− fi(ψn+1

i ) = 0 i = 1, ...,M. (A.3)
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Since fi(ψn+1
i ) is not a linear function, the system above cannot be re-arranged

to solve ψn+1
i in term of ψni and an iterative method has to be employed

instead. Fixed point iteration method have shown poor results in converging
toward the solution and we finally apply second order Newton’s method to
obtain the solution at each time step. In particular, we first linearize ψn+1

around a guess of the solution by assuming ψn+1 = ψ∗ + δψn, where ψ∗ is a
guess, δψn is the error and we drop the i for clarity. Then, we expressed the
non-linear part using a Taylor’s expansion

fn+1 = f(ψn+1) = f(ψ∗ + δψn) = f(ψ∗) + Jψf (ψ∗)δψn, (A.4)

where Jψf (ψ∗) is the Jacobian matrix for the function f evaluated in ψ∗. In-
jecting (A.4) into (A.3) finally gives a system of M linear equations for the
correction term δψn which can be expressed as

(I −∆tJψf (ψ∗))δψn = ψn − ψ∗ + ∆tf(ψ∗), (A.5)

where I is the identity matrix. Therefore, each iteration solves for δψn and
we use ψn + δψn as a new guess ψ∗ in each iteration. This is repeated until
δψn becomes sufficiently small. Finally, since the equations (4.8) and (4.9)
are coupled, we use a fixed-point iteration method to converge toward the
solution (h, ξ) at each time step. In the end, the algorithm is the following at
each time step

• Start with a guess for the values of all variables.

• Solve the thickness equation (4.8) for hn+1 using Newton-Rhapsod
method.

• Solve the heat equation (4.9) for ξn+1 using hn+1 as a new guess for h∗

and Newton-Rhapsod method.

• Repeat step one until further iterations cease to produce any significant
changes in the values of both hn+1 and ξn+1.

Unless otherwise specified, we use Dr = 0.01 and Dt = 10−6 in the simula-
tions. The time step could appear very small but the stiffness of the equations
required such low value at the beginning when ν < 1. The computational
scheme is summarized in the following.

A.1.2 Thickness equation

The thickness equation (4.8) is written as

∂h

∂t
− f(h, ξ) = 0, (A.6)
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with

f =
1

r

∂

∂r

(
rφ

(
∂

∂r
(h+ Pe)

))
+ wi, (A.7)

φ = 12I1(h), (A.8)

and where Pe is the dimensionless bending pressure Pe = ∇4h.

Spatial discretization of f

The spatial discretization is obtained using a central difference scheme over
a sub-grid shifted by 0.5∆r from the main grid. Therefore, we have

fi =
1

ri∆r

(
ri+1/2φi+1/2

(
∂h

∂r
+
∂Pe
∂r

)∣∣∣∣
i+1/2

− ri−1/2φi−1/2

(
∂h

∂r
+
∂Pe
∂r

)∣∣∣∣
i−1/2

)
= Aiφi+1/2 (hi+1 − hi)−Biφi−1/2 (hi − hi−1)

+ Aiφi+1/2 (Pe,i+1 − Pe,i)−Biφi−1/2 (Pe,i − Pe,i−1)

+ wi, (A.9)

where Ai = ri+1/2/(ri∆
2
r) and Bi = ri−1/2/(ri∆

2
r). The bending pressure term

Pe is very stiff and needs a careful treatment. In particular, the fourth order
derivative requires a fourth order central difference scheme and therefore, Pe,i
is expressed over a seven point stencil on the main grid such that

Pe,i = αihi−3 + βihi−2 + γihi−1 + λihi + κihi+1 + δihi+2 + εihi+3, (A.10)

with

αi =
1

24∆r4
(−4 + 3p3∆r) ,

βi =
1

24∆r4

(
48− 24p3∆r − 2p2∆2

r + 2p1∆3
r

)
,

γi =
1

24∆r4

(
−156 + 39p3∆r + 32p2∆2

r − 16p1∆3
r

)
,

λi =
1

24∆r4

(
224− 60p2∆r2

)
,

κi =
1

24∆r4

(
−156− 39p3∆r + 32p2∆2

r + 16p1∆3
r

)
,

δi =
1

24∆r4

(
48 + 24p3∆r − 2p2∆2

r − 2p1∆3
r

)
,

εi =
1

24∆r4
(−4− 3p3∆r) ,

and where p1 = 1/r3
i , p2 = 1/r2

i and p3 = 2/ri. Finally, the term φi−1/2 and
φi−1/2, which depend on the variables Θs, Θb, δ as well as different powers of



206 Appendix A. Numerical schemes

h, are evaluated in i− 1/2 and i + 1/2 respectively. Different choices for the
value of the variables at the mid-cell grid point do not show any significant
differences and a simple average is taken such that the variable xi+1/2 is taken
as 0.5(xi + xi+1).

Expression of the Jacobian Jhf

The discretized function fi can be broken down in three parts, the grav-
itational part f gi which is expressed in term of the value of h on three grid
points {i− 1, i, i+ 1}, the bending part f bi which is expressed in term of the
value of h on nine grid points {i− 4, i− 3, ..., i+ 3, i+ 4} and the injection
term which depends only on the grid point i such that

fi = f gi + f bi + wi. (A.11)

Therefore, the Jacobian is nona-diagonal and its coefficient Jil are

Jil =


∂fbi
∂hl

l = {i− 4, i− 3, i− 2, i+ 2, i+ 3, i+ 4}
∂fgi
∂hl

+
∂fbi
∂hl

l = {i− 1, i, i+ 1}
0 otherwise

. (A.12)

The different terms can be easily derived from (A.9) and (A.10) with just
slight adjustment coming from the boundary conditions.

Boundary condition

We begin with hi = hf for i = 1, ..,M . Since the flow is symmetric in
r = 0, we require that

∂h

∂r

∣∣∣∣
r=0

=
∂P

∂r

∣∣∣∣
r=0

= 0, (A.13)

and therefore for i = 1, we have

fi = A1φi+1/2 (hi+1 − hi)
+ Aiφi+1/2 (Pi+1 − Pi)
+ wi. (A.14)

The expression of the bending pressure, evaluated over a 7 point stencils, is
problematic close to the boundary and reflection formula will be used in order
to accommodate the boundary conditions (Patankar , 1980). In particular, we
have h0 = h1, h−1 = h2 and h−2 = h3. Similarly, boundary condition at the
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end of the mesh is accounted by using a grid much larger than the flow itself
and requiring

∂h

∂r

∣∣∣∣
r=rM

=
∂P

∂r

∣∣∣∣
r=rM

= 0, (A.15)

which gives for i = M

fi = Biφi−1/2 (hi − hi−1)

+ Biφi−1/2 (Pi − Pi−1)

+ wi, (A.16)

with hi>=M = hf .

Newton-Rhapsod method

The Newton-Rhapsod method reads

(I −∆tJhf (h∗k))δh
n
k = hn − h∗k + ∆tf(h∗k), (A.17)

where the k refers to the k iterations, I is a M × M diagonal matrix and
Jhf (h∗) is a M ×M nona-diagonal matrix. This system of linear equations
can be solved using a nona-diagonal algorithm. At the first iteration, we use
h∗1 = hn as a first guess and then we iterate using h∗k = hn + δhnk−1 as a new
guess for each iterations until δhnk becomes sufficiently small. In particular,
we require that

δhnk/h
∗
k < ε, (A.18)

with ε = 10−4.

A.1.3 Heat equation

The heat equation (4.9) is written as

∂ξ

∂t
− g(h, ξ) = 0, (A.19)

with

g =
1

r

∂

∂r
(rΓξ) +

1

r

∂

∂r
(rΣ) + 2Pe−1Stm

(Θb −Θs)

δ
, (A.20)

θ =
1

3
(2Θb + Θs) , (A.21)

Γ = −12

δ

∂P

∂r
(δI0(δ)− I1(δ)) , (A.22)

Σ =
12

δ

∂P

∂r

(
I0(δ)

(
G(δ)− δθ

)
+ θI1(δ)− I2(δ)

)
. (A.23)
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Spatial discretization of g

As for the thickness equation, the spatial discretization is obtained using
a central difference scheme over a sub-grid shifted by 0.5∆r from the main
grid. Therefore, we have

gi =
(
CiΓi+1/2ξi+1/2 −DiΓi−1/2ξi−1/2

)
(A.24)

+
(
CiΣi+1/2 −DiΣi−1/2

)
(A.25)

+ 2Pe−1Stm
Θb,i −Θs,i

δi
, (A.26)

with Ci = ri+1/2/(ri∆r) and Di = ri−1/2/(ri∆r). We use the average between
the grid point i and i − 1 (resp. i + 1) to evaluate the quantity in Γ and Σ

at i − 1/2 (resp. i + 1/2). In addition, we use a classical upwind scheme to
handle ξ at the mid grid point which requires

ξi+1/2 = ξi, (A.27)
ξi−1/2 = ξi−1. (A.28)

Expression of the Jacobian Jξg

The expression of the Jacobian is straightforward in that case and its
coefficient Jil are

Jil =


−DiΓi−1/2 l = i− 1

CiΓi+1/2 l = i

0 otherwise
, (A.29)

with only slight adjustment coming from the boundary conditions.

Boundary conditions

We consider Θb = 1, Θs = 0 and δ = 10−4 in the film at t = 0. In this
way, we ensure that the average temperature across the film at t = 0 is close
to 1. By construction, D1 = 0 and therefore, for i = 1 we have

gi = CiΓi+1/2ξi + CiΣi+1/2 + 2Pe−1Stm
Θb,i −Θs,i

δi
. (A.30)

For i = M , we consider that Γi+1/2 = Γi and Σi+1/2 = Σi. However, the choice
for the boundary condition at the border of the grid i = M is not important
as we solve the problem over a grid much larger than the flow itself.

Newton-Rhapsod method
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The Newton-Rhapsod method reads

(I −∆tJξg (ξ∗k))δξ
n
k = ξn − ξ∗k + ∆tf(ξ∗k), (A.31)

where the k refers to the k iterations, I is a M × M diagonal matrix and
Jhf (ξ∗) is a M ×M tri-diagonal matrix. This system of linear equations can
be solved using a tri-diagonal algorithm. As for the thickness equation, at
the first iteration, we use ξ∗1 = ξn as a first guess and then we iterate using
ξ∗k = ξn+δξnk−1 as a new guess for each iterations until δξnk becomes sufficiently
small. In particular, we require that

δξnk /ξ
∗
k < ε, (A.32)

with ε = 10−4. In addition, at each iteration, the quantity Θ∗s,k, Θ∗b,k and δ∗k,
that are needed to evaluate Γ and Σ, are derived from the value of ξ∗k using
(4.26), (4.27) and (4.28).

A.1.4 Integral expressions

The model developed in Section 4.2 depends on the integrals

I0(z) =

∫ z

0

1

η(y)

(
y − h

2

)
dy, (A.33)

I1(z) =

∫ z

0

1

η(y)

(
y − h

2

)
ydy, (A.34)

I2(z) =

∫ y

0

1

η(y)

(
y − h

2

)
G(y)dy, (A.35)

where G(z) is a primitive of θ(z) where z < δ and is given by

G(z) =
z (3δ2Θs + 3δz(Θb −Θs) + z2(Θs −Θb))

3δ2
. (A.36)

In particular, the model requires the expression of I0(δ), I1(δ), I1(h) and I2(δ).

Rheology 1: η(θ) = η1(θ)
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In that case, the four integrals can be easily derived and read

I0(δ) =
δ

12
((6δ − 6h) ν + (1− ν) (α1 (−δ + 2h) + Θb (6δ − 6h)))) ,

I1(h) =
1

60

(
5h3ν + (1− ν)

(
α1

(
−4δ3 + 10δ2h− 10δh2

)
+ 5Θbh

3
))
,

I1(δ) =
δ2

120
((40δ − 30h) ν + (1− ν) (α1 (−4δ + 5h) + Θb (40δ − 30h))) ,

I2(δ) = − δ2

2520
ν (α1 (378δ − 315h) + Θb (−840δ + 630h))

− δ2

2520
(1− ν)

(
α2

1 (−50δ + 70h) + α1Θb (462δ − 420h)−Θ2
b (840δ + 630h)

)
,

where α1 = Θb −Θs has been introduced for clarity.

Rheology 2: η(θ) = η2(θ)

For cases where ν < 1, we have

I0(δ) = −
δν1−Θb

(√
π
√
α1(2δ − h)

√
−α2erf

(√
α1

√
−α2

)
+ 2δ (να1 − 1)

)
4α1α2

,

I1(δ) =
δ2ν1−Θb

(√
π erf

(√
α1

√
−α2

)
(α1(h− 2δ)α2 + δ)

)
4α

3/2
1 (−α2)3/2

+
δ2ν1−Θb

(√
α1

√
−α2 (2δ (να1 − 2)− hνα1 + h)

)
4α

3/2
1 (−α2)3/2

,

I1(h) =
ν1−Θb

(√
α1

√
−α2 (12δ2 (δ (να1 − 2)− hνα1 + h) + α1(2δ − h)3 log(ν)))

12α
3/2
1 (−α2)3/2

−
ν1−Θb

(
3
√
πδerf

(√
α1

√
−α2

)
(α1(h− 2δ)2α2 − 2δ2)

)
12α

3/2
1 (−α2)3/2

,

I2(δ) =
δ2ν1−Θb

(√
πerf

(√
α1

√
−α2

)
(−2α1(2δ − h)(α1 − 3Θb)α

2
2 − 6δΘbα2 − 3δ)

)
24α

3/2
1 (−α2)5/2

+
δ2ν1−Θb

(
2
√
α1ν

α1
√
−α2 (ν−α1(α2(−2δ(α1 − 6Θb)− 3hΘb) + 2δ − h))

)
24α

3/2
1 (−α2)5/2

+
δ2ν1−Θb

(
2
√
α1ν

α1
√
−α2 (2δα1α2 − 6δΘbα2 + δ − α1hα2 + 3hΘbα2 + h)

)
24α

3/2
1 (−α2)5/2

,

where in addition to α1, we also introduce α2 = log(ν) for clarity. In the case
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where ν = 1, the expression above simplify and read

I0(δ) =
1

2
δ(δ − h),

I1(δ) =
1

12
δ2(4δ − 3h),

I1(h) =
h3

12
,

I2(δ) = − 1

120
δ2(18δα1 − 40δΘb − 15α1h+ 30hΘb).

A.2 Numerical scheme for a crater-centered in-
trusion

We use a fully implicit finite-volume method to solve (5.18). The discretization
is obtained by integrating over a finite number of non overlapping control
volumes, each control volume surrounding one grid point (Patankar , 1980).
The grid is defined by the relation ri = (i−0.5)∆r in order to avoid problems at
the center. The point b and a define the face of the control volume surrounding
i such that ra = ri + ∆r/2 and rb = ri − ∆r/2. Because we are using an
axisymmetrical geometry, the control volume is an annulus of interior radius
rb and exterior radius ra and its surface is S = π(r2

a − r2
b ). Integration of

(5.18) over the control volume surrounding i during a time ∆t gives∫ t+∆t

t

∫ ra

rb

∂h∗

∂t
2πrdrdt =

∫ t+∆t

t

∫ a

b

Φ(r, t)2πr, drdt (A.37)

where Φ(r, t) stands for the right hand side of (5.18).
The classical second-order (∝ ∆r2) approximations is taken to derive the

successive space derivatives (i.e. ∂Φ(r)
∂r
|ra=

Φ(i+1)−Φ(i)
∆r

). In this way, we ensure
that our final scheme is of second-order. Moreover, for more precision, the
elastic pressure is calculated using a fourth-order scheme (see A.2.1.3) . In
the following, we derive each term of the right hand side of (5.18) separately,
h refers to the value of the thickness at a time t + ∆t and hn to the value at
a time t.

A.2.1 Discretization

1. Time derivative To discretize the time derivative, we shall consider
that the value of the grid point hi prevails throughout the control volume
such that ∫ t+∆t

t

∫ ra

rb

∂h∗

∂t
2πrdrdt = (hi − hni )S. (A.38)
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2. Gravitational term∫ t+∆t

t

∫ ra

rb

1

r∗
∂

∂r∗

(
r∗h3 ∂h

∂r∗

)
2πrdrdt (A.39)

= Agihi+1 +Bg
i hi−1 − (Agi +Bg

i )hi,

with Agi = A = (2π∆trah
3
a)/∆r and Bg

i = B = (2π∆trbh
3
b)/∆r where

the value of h3
a (resp. h3

b) is approximated by (h3
i+1 + h3

i )/2 (resp. (h3
i +

h3
i−1)/2).

3. Elastic term∫ t+∆t

t

∫ ra

rb

Θ
1

r∗
∂

∂r∗

(
r∗h3∂Pe

∂r∗

)
2πrdrdt (A.40)

= AeiPe,i+1 +Be
iPe,i−1 − (Aei +Be

i )Pe,i,

where Aei = ΘA, Be
i = ΘB and Pe = ∇2

r (Π(r)∇2
rh(r)), with Π(r) =

(1 + Ψξ(r))3, is the dimensionless elastic pressure which is discretized
using a fourth order finite difference scheme

Pe,i = αihi−3 + βihi−2 + γihi−1 + λihi + κihi+1 + δihi+2 + εihi+3, (A.41)

with

αi =
1

24∆r4
(−4p4 + 3p3∆r) ,

βi =
1

24∆r4

(
48p4 − 24p3∆r − 2p2∆2

r + 2p1∆3
r

)
,

γi =
1

24∆r4

(
−156p4 + 39p3∆r + 32p2∆2

r − 16p1∆3
r

)
,

λi =
1

24∆r4

(
224p4 − 60p2∆r2

)
,

κi =
1

24∆r4

(
−156p4 − 39p3∆r + 32p2∆2

r + 16p1∆3
r

)
,

δi =
1

24∆r4

(
48p4 + 24p3∆r − 2p2∆2

r − 2p1∆3
r

)
,

εi =
1

24∆r4
(−4p4 − 3p3∆r) ,

where

p1 =
Π′′i
ri
− Π′i
r2
i

+
Π

r3
i

,

p2 = Π′′i +
3Π′i
ri

+
Π

r2
i

,

p3 = 2Π′i +
2Πi

ri
,

p4 = Πi,
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and where Πi = (1 + Ψξi)
3 and Π′i and Π′′i are its first and second

derivatives with respect to the radial coordinate.

4. Hydrostatic term

Shi =

∫ t+∆t

t

∫ ra

rb

Ξ
1

r∗
∂

∂r∗

(
r∗h3∂ξ

∂r

)
2πrdr (A.42)

= Uh

(
rah

3
a

∂ξ

∂r

∣∣∣∣
a

− rbh3
b

∂ξ

∂r

∣∣∣∣
b

)
,

where Uh = 2πΞ∆t.

5. Injection term

Sii =

∫ t+∆t

t

∫ ra

rb

32

γ2
(
1

4
− r2

γ2
)2πrdrdt (A.43)

= U i(γ2 − 2(r2
a + r2

b )),

where U i = 8S∆t
γ4

.

6. Implicit scheme

Substituting (A.38), (A.39), (A.40), (A.42) and (A.43) in (A.37) and
injecting (A.41), we get the final scheme given by the following equation

aihi−4+bihi−3+cihi−2+dihi−1+eihi+fihi+1+gihi+2+kihi+3+lihi+4 = Ji,

(A.44)
where the different coefficients are defined by

ai = −Be
iαi−1, (A.45)

bi = (Be
i + Aei )αi −Be

i βi−1, (A.46)
ci = (Be

i + Aei )βi −Be
i γi−1 − Aeiαi+1, (A.47)

di = (Be
i + Aei )γi −Be

i λi−1 − Aeiβi+1 −Bg, (A.48)
ei = S + (Be

i + Aei )λi −Be
i κi−1 − Aeiγi+1 +Bg + Ag, (A.49)

fi = (Be
i + Aei )κi −Be

i δi−1 − Aeiλi+1 − Ag, (A.50)
gi = (Be

i + Aei )δi −Be
i εi−1 − Aeiκi+1, (A.51)

ki = (Be
i + Aei )εi − Aeiδi+1, (A.52)

li = −Aeiεi+1, (A.53)
Ji = (Shni + Sii + Shi ). (A.54)
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A.2.2 Boundary conditions

Since the flow is symmetric in r = 0, we require that

∂h

∂r

∣∣∣∣
r=0

= 0,
∂Pe
∂r

∣∣∣∣
r=0

= 0. (A.55)

Boundary conditions at the front of the intrusion are accounted for by
using a grid much larger than the intrusion where h = 0 beyond the
flow.

A.2.3 Algorithm

The fully implicit discretization (A.44) can be rewritten as a linear sys-
tem Ω(h3)h̄ = J̄ where h̄ is a vector containing the value of h a t + ∆t

and J̄ containing the right hand side of (A.44). The matrix Ω(h3) is a
nonadiagonal matrix and is solved by using a nonadiagonal algorithm.
However, due to the non-linearity of the problem (i.e. the coefficients
Ae, Be, Ag, Bg and Sh within the matrix Ω(h3

i ) and J̄ depend on h3
i ), we

first have to assume values for hi at each grid point to inverse for the
matrix and get the value of h at t+ ∆t.

We use the following iterative scheme

(a) Start with a guess at all grid-point for hi = hni .

(b) Calculate tentative values for the different coefficients of the system
(non linear terms).

(c) Apply the septadiagonal matrix algorithm to solve (A.44) and get
a new value of hi.

(d) With this new hi, we return to step 2 and repeat step 2 to 4 until
further repetitions cease to produce any significant change in hi
(i.e. | hnewi − hi |< ε where ε = 10−4).

The final unchanging state is considered as the solution for the thickness
of the flow at t+ ∆t.
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Details on the phase diagram

A current in the ith thermal phase can transition in the jth phase of
the gravity regime where i ≥ j. An informal indication of this result
is that the effective viscosity being that of a small region at the tip in
the bending regime and the average flow viscosity in the gravity regime,
it cannot increase during the transition. More formally, each evolution
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Figure B.1: a) Phase transitions reported in Table B.1 for the model described
in Chapter 3. Each scenario BiGj is defined by two or three conditions, each of
the transition defining a specific region in the phase diagram. The intersection
of the different regions have to be non-zero in the range of proposed dimension-
less number for a scenario to exist. For instance, B1G2 does not exist because
{(Pem, ν) : Pem > α1h

−15/7
f } ∩ {(Pem, ν) : Pem < α2h

−1/7
f } ∩ {(Pem, ν) : ν <

α3Pe
2
mh

2/7
f } = {}. Same plot but for the more realistic model described in

Chapter 4.

BiGj is defined by two or three conditions, each of the transition defining
a specific region in the phase diagram (Table B.1 and Figure B.1). The
intersection of the different regions has to be non-empty in the range of
dimensionless numbers for a scenario to exist. In particular, we have
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• B1G2 = {(Pem, ν) : tht < tb2} ∩ {(Pem, ν) : tht > tg2} ∩ {(Pem, ν) :

tht < tg3} = {}
• B1G3 = {(Pem, ν) : tht < tb2} ∩ {(Pem, ν) : tht > tg3} = {}
• B2G3 = {(Pem, ν) : tht > tb2} ∩ {(Pem, ν) : tct < tb3} ∩ {(Pem, ν) :

tht > tg3} = {}

Hence, B1G2, B1G3 and B2G3 are unfeasible (Table B.1 and Figure B.1
a). In addition, the transition from the third bending phase to the first
gravity phase implies that tct > tb3 and tct < tg2, which is not possible
(Table B.1 and Figure B.1 a). Therefore, the five possible sequences
that remain are B1G1, B2G1, B2G2, B3G2 and B3G3 (Table B.1 and
Figure B.1 a).

In the more realistic model described in Chapter 4, the time to enter
the third flow phase is delayed in both regimes. In particular, for the
current that has reached the third bending phase, tct > tb3 now implies
ν > 2.8 · 10−7Pe7/2hf−1/2 (Figure B.1 b). In addition, comparing tct and
tg3 now reads ν < 4.6 · 109Pe

14/3
m h

2/3
f (Figure B.1 b).
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Transition Condition 1 Condition 2 Condition 3 Output
Transition in the first bending thermal phase B1

tt = tht tht < tb2 tht < tg2 - B1G1

Pem > α1h
−15/7
f Pem > α2h

−1/7
f - Feasible

tt = tht tht < tb2 tht > tg2 tht < tg3 B1G2

Pem > α1h
−15/7
f Pem < α2h

−1/7
f ν < α3Pe

2
mh

2/7
f Unfeasible

tt = tht tht < tb2 tht > tg3 - B1G3

Pem > α1h
−15/7
f ν > α3Pe

2
mh

2/7
f - Unfeasible

Transition in the second bending thermal phase B2

tht < tt < tct tht > tb2 tct < tb3 tct < tg2 B2G1

Pem < α1h
−15/7
f ν < α4Pe

7/2
m h

−1/2
f ν > α5Pe

−7/2
m h

−1/2
f Feasible

tht < tt < tct tht > tb2 tct < tb3 tct < tg3 B2G2 or B2G1

Pem < α1h
−15/7
f ν < α4Pe

7/2
m h

−1/2
f ν < α6Pe

14/3
m h

2/3
f Feasible

tht < tt < tct tht > tb2 tct < tb3 tht > tg2 B2G2

Pem < α1h
−15/7
f ν < α4Pe

7/2
m h

−1/2
f Pem < α2h

−1/7
f Feasible

tht < tt < tct tht > tb2 tct < tb3 tht > tg3 B2G3

Pem < α1h
−15/7
f ν < α4Pe

7/2
m h

−1/2
f ν > α3Pe

2
mh

2/7
f Unfeasible

Transition in the third bending thermal phase B3

tt = tct tct > tb3 tct < tg2 - B3G1

ν > α4Pe
7/2
m h

−1/2
f ν > α5Pe

−7/2
m h

−1/2
f - Unfeasible

tt = tct tct < tb2 tct > tg2 tct < tg3 B3G2

ν > α4Pe
7/2
m h

−1/2
f ν < α5Pe

−7/2
m h

−1/2
f ν < α6Pe

14/3
m h

2/3
f Feasible

tt = tct tct < tb2 tct > tg3 - B3G3

ν > α4Pe
7/2
m h

−1/2
f ν > α6Pe

14/3
m h

2/3
f - Feasible

Table B.1: Parameter space analysis. All conditions have to be respected for a
scenario to be possible. For the model described in Chapter 3, the coefficients
are: α1 = 65, α2 = 650, α3 = 151, α4 = 8.3·10−13, α5 = 7.0·109, α6 = 0.3. For
the more realistic model derived in Chapter 4, the coefficients are: α1 = 65,
α2 = 650, α3 = 40000, α4 = 2.8 · 10−7, α5 = 7.0 · 109, α6 = 4.6 · 109.





Appendix C

Effect of the prewetting film
thickness

To mitigate the problem at the contact line, we introduce a thin prewet-
ting film, with thickness hf such that h(r, t) → hf as r → ∞ (Section
2.1.3). The meaning of a thin prewetting film in the application to the
spreading of magmatic intrusions is unclear. In particular, the model
shows no convergence when hf tends to zero (Lister et al., 2013) and
therefore, the thickness hf might be linked to some structural length
scale at the front of the laccolith or to the natural imperfection of the
flow geometry. Reasonable values for hf are values with physical signif-
icance for this structural length scale at the tip and should range from
a few centimeters to no less than 0.1 millimeter, i.e. 10−4 ≤ hf ≤ 10−2

. In this appendix, we discuss the effect of changing the prewetting film
thickness hf over this interval on some results presented in Chapter 3
and 4.

C.1 Scaling laws for the thickness and the
radius

The scaling laws for the thickness h0(t) (3.54) as well as for the ra-
dius R(t) (3.55) derived in Section 3.3 depend on the film thickness hf .
Accordingly, when rescaling the thickness by h−1/11

f and the radius by
h

1/22
f , the different simulations collapse on the same curve (Figure C.1).

Similarly, when rescaling the extent of the cold fluid region R(t)−Rc(t)

by h7/66
f , the different simulations also collapse on the same curve (Figure

C.2). Similar results can be obtained for R(t)−Rc(t) in the framework
of the more realistic model described in Chapter 4. These scaling laws
are thus able to account for the effect of the prewetting film thickness
hf which is, in general, rather weak.
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Figure C.1: Left: Dimensionless thickness at the center h0h
1/11
f versus dimen-

sionless time t for different sets (ν, hf ) indicated on the plot. Dashed-lines
represent the scaling laws h0h

1/11
f = 0.7ν−2/11t8/22 for ν = 1.0 and 0.001.

Right: Dimensionless radius R versus dimensionless time t for the same sets
(ν, hf ). Dashed-lines represent the scaling laws Rh−1/22

f = 2.2ν1/11t7/22 for
ν = 1.0 and 0.001. Here, Ω = 105 and η(θ) = η1(θ).
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Figure C.2: Left: Extent of the cold fluid region R(t) − Rc(t) versus dimen-
sionless time for different combinations (ν,hf ) indicated on the plot. Right:
Same plot but where we have rescaled the extent of the cold fluid region by
h

7/66
f . Dashed-line: scaling law (R(t)−Rc(t))h

−7/66
f = 2.1Pe−1/3ν7/33t9/22.

C.2 Phase diagram

The phase diagram presented in section 4.5 and its application to the
spreading of laccoliths also depends on the chosen value for hf . However,
as the dependence with hf is weak, a variation of 2 orders of magnitude
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does not change significantly the results (Figure C.3).
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Figure C.3: Phase diagram for the evolution with bending and gravity for
different combinations (ν,Pem) and different values for the film thickness hf =

10−2 and 10−4.

The same result hold when we look at the relation between the thickness
and the radius of the laccolith (4.49). Indeed, the best fit value for the
viscosity contrast scales as h−1/2

f and therefore, varying hf by two orders
of magnitude change the viscosity contrast by one order of magnitude
which is acceptable for our application. For instance, for the parameters
listed in Figure 4.16, the best fit value for the viscosity contrast scales
is νbest ≈ h

−1/2
f 2.59 10−10, i.e. νbest ≈ 2.6 × 10−9 for hf = 0.01 and

νbest ≈ 2.6× 10−8 for hf = 10−4.

C.3 Two stage growth in the second bending
phase

In Chapter 4, for some simulations, the second phase of important thick-
ening in the bending regime occurs in two stages: a first stage where
the thickness drastically increases and a second stage where it continues
increasing but much slower (Figure 4.4 and 4.5). To get some insights
into this transition, we run some simulations for Ω = 1.0 with a higher
spatial resolution, i.e. Dr = 0.005 instead of Dr = 0.01 (Figure C.4).
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Figure C.4: Dimensionless thickness h0 versus dimensionless time t for Pe =

100.0, ν = 0.001, Ω = 1.0 and the rheology η1(θ). Colors refer to the time
t. Dotted line: Scaling law h0 = 0.7h

−1/11
f ν−2/11t8/22. Vertical dashed-lines:

initial, intermediate and final times of the temperature profiles plotted in
c). b) Dimensionless radius R versus dimensionless time t for Pe = 100.0,
ν = 0.001 and the rheology η1(θ). Colors refer to the time t. Dotted line:
Scaling law R = 2.2h

1/22
f ν1/11t7/22. Vertical dashed-lines: same than in a).

c) Dimensionless average temperature over the flow thickness θ versus radial
axis r for times between t = 3.8 10−3 and t = 7.6 10−2. Dashed-line profiles:
profiles at the three different times underlined in a) and b). Colors also refer
to the time on the same scale than a) and b). d), e) and f), same plots than
a), b) and c) but for the Arrhenius rheology η2.

The simulations show that this transition corresponds to the detachment
of the thermal anomaly (Figure C.4). In particular, during the first
stage, the thermal anomaly is still attached to the tip and the prewetting
film, located beyond r = R(t), is still cooling. In contrast, during the
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second stage, which is characterized by a decrease in the thickening
rate, the prewetting film located beyond r = R(t) is entirely cold , i.e.
θ = 0 for r > R(t) and the thermal anomaly slowly gets away from
the tip (Figure C.4). For instance, for η1(θ), ν = 0.001 and Pe =

100.0, the transitions between the two stages occurs at t = 1.8 10−2 and
indeed coincide to the film becoming entirely cold (Figure C.4 a, b, c).
For the rheology η2(θ), the transition is smoother because the viscosity
increases on a wide range of temperature (Figure C.4 d, e, f). Even
if this transition should be present for all the simulations, the smaller
spatial resolution used in this Chapter 3 and 4 does not allow to resolve
this transition for all the combinations of the dimensionless numbers.





Appendix D

Floor-fractured craters

D.1 Elastic stresses in the upper elastic
layer

The stress conditions within the crater floor can be approximated using
the small displacement theory. In an axisymmetric geometry, the small
strain-displacement equations at the surface are

εrr =
∂ur
∂r

= −d(r)

2

∂2h

∂r2
, (D.1)

εθθ =
ur
r

= −d(r)

2r

∂h

∂r
. (D.2)

Hence, the stress conditions at the surface are given by Hooke’s laws for
a material under plane stress

σrr = − Ed(r)

2(1− ν∗2)

(
∂2h

∂r2
+
ν∗

r

∂h

∂r

)
, (D.3)

σθθ = − Ed(r)

2(1− ν∗2)

(
1

r

∂h

∂r
+ ν∗

∂2h

∂r2

)
. (D.4)

These equations are made dimensionless using the scaling of Section 3.5
where the pressure scale is ρmgH. Dimensionless radial and tangential
stresses become

σrr = −ΘΦ (1 + Ψξ(r))

(
∂2h

∂r2
+
ν∗

r

∂h

∂r

)
, (D.5)

σθθ = −ΘΦ (1 + Ψξ(r))

(
1

r

∂h

∂r
+ ν∗

∂2h

∂r2

)
, (D.6)

where ξ(r) is given by (5.19) and Φ is a dimensionless number given by

Φ =
6

(1− ν∗2)

(
C

d0

)2

. (D.7)

The locations of the maximum stresses, where the fractures are the most
likely to initiate, depend on the number Θ (Figure D.1 a). If the number
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Θ is such that 4Λ� C, i.e. Θ > 10−3 the intrusion reaches the wall zone
in an elastic regime and the maximum stresses are at the center. For
Θ ∼ 10−3, 4Λ ∼ C and the transition to a gravity current regime occurs
at the crater wall zone. In that case, the floor is still convex but the
area of maximum stress is located within a crown at a given coordinate,
intermediate between the center and the wall zone, i.e. 0 < rσmax < 1

(Figure D.1 b). Radial and tangential stresses are of the same order of
magnitude. For a large crater or a shallow intrusion, i.e. a small value
of the number Θ < 10−3, the maximum stresses are concentrated within
a crown adjacent to the wall zone upon the intrusion edge where the
elastic deformation is important (Figure D.1 c ). The radial stresses that
develop at the surface are generally larger than the tangential stresses
favoring a circular mode of fracturing.
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Figure D.1: Solid lines: Dimensionless radial stress σrr (top) and tangential
stress σθθ(bottom) at the crater floor in the case of an intrusion spreading
below an overlying elastic layer with a complex crater topography for Θ = 10−2

and Φ = 1100 (left), Θ = 10−3 and Φ = 2500 (center) and Θ = 10−5 and
Φ = 4500 (right) at t = 2. For all plots: the dotted lines represent the initial
dimensionless topography Tp(r) (5.26) and the dash-dotted lines represent
the floor appearance Tp(r) + h(r) at t = 2. Stress is considered positive in
extension. We use γ = 0.02, Ξ = 20, ζ = 0.13 and Ψ = 1.
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D.2 Central peak

Central peaks induce an increase in the lithostatic pressure as well as
an increase in the overlying layer elastic thickness directly above the
intrusion center. Herein, we consider an extreme case where the central
peak height is one third of the crater depth and its width is one fourth of
the crater size by introducing an extra gaussian function into the elastic
thickness expression:

d(r) = d0(1 + Ψ(ξ(r) + Cp(r))), (D.8)

with

Cp(r) = 50

(
0.07

4

)2

exp

(
− r2

2(0.07
4

)2

)
. (D.9)

For a strengthless overlying layer and Θ = 0 (Section 5.4.1 equation
(5.27)), the central peak only adds an excess in lithostatic pressure at
the center of the crater floor. In response, the intrusion preferentially
develops around the central peak and then spreads until it reaches the
crater wall (Figure D.2 a). At the crater wall, the lithostatic pressure
increase induces the thickening of the intrusion. However, due to the
excess of lithostatic pressure at the center, the center of the intrusion be-
low the central peak does not thickens and the thickening only concerns
an annulus located in between the central peak and the crater wall (Fig-
ure D.2 a). At the surface, the central peak height decreases until the
thickening is important enough to compensate for the initial excess in
lithostatic pressure. A balance between the two pressures gives the final
height of the central peak, equal to the initial height times (ρm−ρc)/ρm
(Figure D.2 a). Next, the resulting central peak is just leveled up with
the whole crater floor.

For an elastic overlying layer such that Θ = 10−5, the inner part of
the intrusion adjacent to the central peak is bent by the weight of the
central peak. As a consequence, during the thickening stage, a second
circular moat, whose size is 4Λ, arises and borders the central peak. As
previously, the central peak height decreases until the sum of the elastic
and hydrostatic pressure compensate for the initial excess of lithostatic
pressure due to the central peak and is then leveled up during floor
uplift.

Finally, in the case of a thick elastic overlying layer, i.e. a large value
of Θ, the flexural wavelength is almost not affected by the presence of
the central peak and the central peak is leveled up with the convex floor
during crater floor uplift (Figure D.2 c).
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Figure D.2: a) Dimensionless intrusion profiles for different dimensionless
times indicated on the plot for Ψ = 4 and for an intrusion spreading below a
strengthless overlying layer with a complex crater topography and a central
peak i.e. Θ = 0 and ζ = 0.13. For each time, a corresponding 3D graph,
showing the dimensionless crater floor appearance given by Tp(r)+h(r) where,
here, Tp(r) = ΞN(ξ(r) + Cp(r)), is represented. For each plot, the initial
topography given by Tp(r) = ΞN(ξ(r)+Cp(r)) is superimposed in low opacity.
b) Same plot but for an overlying elastic layer such that Θ = 10−5. c) Same
plot but for an elastic overlying layer such that Θ = 10−2. Here we use,
γ = 0.02, Ξ = 20 and Ψ = 4.



Appendix E

Gravitational signature of lunar
floor-fractured craters:

Supplementary material

E.1 Synthetic gravity anomaly

The spherical harmonic coefficients associated with the intrusion thick-
ness profile have the form

Clm =
4π∆ρ

M

R3
i

2l + 1

nmax∑
n=1

nhlm
Rn
i n!

∏n
j=1(l + 4− j)

l + 3
, (E.1)

where nhlm are the spherical harmonic coefficients of the expansion of
the powers of the thickness profile hntopo(θ, φ)

hntopo(θ, φ) =
Lmax∑
l=0

l∑
m=−l

nhlmYlm(θ, φ). (E.2)

These calculations were performed on grids that resolved spherical har-
monics up to degree 1000, which corresponds to a grid spacing of 2.7

km. When calculating the spherical harmonic coefficients Clm, nmax was
set equal to 9, which is more than sufficient given the small amplitudes
of the magmatic intrusions considered here. Gravity anomalies are pre-
sented in mGal, which is 10−5 m s−2 and calculated at a radius r = R0

where R0 is the mean lunar radius.

E.2 Effect of the downward continuation fil-
ter λ

We present the crustal gravity anomaly around two floor-fractured
craters using different values for the downward continuation filter pa-
rameter λ. For the FFC Beals, that is 48 km in diameter, the amplitude
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of the gravity anomaly within the crater increases somewhat with in-
creasing λ, due to the removing of regional negative trends, to reach a
maximum around λ = 80 (Figure E.1). For Taruntius, a floor-fractured
crater that is a 56 km in diameter, models characterized by a λ < 80

do not remove enough of the positive regional trend to clearly delin-
eate the central anomaly, while the models characterized by λ > 80 are
too restrictive and would remove too much signal at the intrusion scale
(Figure E.1).

Figure E.1: Top: Floor-fractured crater Beals, 48 km in diameter. Top left:
topography (km) obtained from LOLA (64 ppd). Following plots: The crustal
gravity anomaly using different values for the downward continuation filter
parameter λ. The gravity anomaly within the crater becomes more apparent
with increasing λ due to the removing of regional negative trends. Bottom:
same plots but for the floor-fractured crater Taruntius, 56 km in diameter.
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E.3 Definition of the gravity anomaly

Crater rim

1) 2)

Figure E.2: Definition of the gravity anomaly at a crater site. The gravity
anomaly δg associated to a crater is equal to the mean value of the gravity
anomaly measured interior to the crater rim (left) minus the mean gravity
anomaly measured within an annulus surrounding the crater and extending
from the outer flank of the rim to a circle of diameter 2D.

Table E.1: Gravity anomaly distribution characteristics for the two normal
crater populations and the FFC population in the lunar in the highlands,
maria and South Pole Aitken basin

t-test KS test
N µδg SEMδg SDδg t p D p

Lunar highlands
Unmod. Craters 4054 -0.71 0.12 7.44 3.24 0.00119 0.00 1.00000

Unmod. Crat. FFC 584 -0.39 0.33 7.91 2.49 0.01284 0.04 0.34231
FFC 80 2.03 1.07 9.57 0.00 1.00000 0.16 0.02923

Lunar maria
Unmod. Craters 306 1.51 0.68 11.85 1.08 0.27961 0.00 1.00000

Unmod. Crat. FFC 70 1.94 1.32 11.01 0.81 0.41745 0.08 0.89097
FFC 22 4.43 3.52 16.49 0.00 1.00000 0.17 0.58770

Lunar SPA
Unmod. Craters 603 -3.54 0.46 11.27 1.08 0.27939 0.00 1.00000

Unmod. Crat. FFC 148 -3.86 0.94 11.49 1.14 0.25632 0.05 0.89320
FFC 14 -0.25 2.52 9.42 0.00 1.00000 0.21 0.52995

∗ N is the size of the population, µδg is the mean of the gravity anomalies (mGal), SEMδg is the standard error of the
mean (mGal), SDδg is the standard deviation (mGal). t and p are the values of a Student’s t-test that compared the
gravity anomaly means of the different populations with the FFC gravity anomaly mean. D and p are the values of a
two-sample Kolmogorov-Smirnov test that compared the gravity anomaly distribution of the different populations with
the gravity anomaly distribution of the normal crater population. Unmod. Craters refers to the normal crater population
and Unmod. Crat. FFC refers to the normal crater population that shares the spatial distribution of FFCs.
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E.4 Crater depth

The crater depth, dc, is the difference in elevation between the crater
rim and the crater floor. Following Kalynn et al. (2013), we use the
gridded topographic data within a circular region of radius D to derive
the floor elevation and within an annulus bounded by 0.98D and 1.05D
to derive the rim elevation. We use the diameter reported by Head
et al. (2010) and Jozwiak et al. (2012) and assume these to be error-
free. We produce histograms of elevations, binned in 50 m intervals, and
examine the distributions. For the crater floor, the minimum elevation
hmin is affected by later crater deformation such as fractures, subsequent
cratering or in some cases, wall slump and moats. For this reason,
rather than considering the minimum hmin and the mode elevation hmod

to characterize the crater floor depth as in Kalynn et al. (2013), we
consider only the mode of the distribution hmod and we take its value as
the crater floor elevation hfloor. We assign to this value an uncertainty
σfloor equal to the width of the distribution mode. Concerning the rim
elevation, we follow Kalynn et al. (2013) and take the rim elevation to
be equal to the average of the modal hmode elevation and the maximum
hmax elevation within the crater rim region. We assign an uncertainty to
the rim elevation of σrim = (hmode − hmax)/2 (Kalynn et al., 2013). The
crater depth, dc, is the difference in elevation between the floor and the
rim, to which we assign an uncertainty equal to σd = (σ2

floor + σ2
rim)1/2.

Table E.2: Topographic analyses for the normal crater populations and the
FFC population in the highlands, maria and South Pole Aitken basin.

dc = ADB

N µdepth σdepth t p A B σfit
Lunar highlands

FFC 80 1.87 0.94 0.00000 1.00000 0.70 0.33 0.55
Unmod. Crat. FFC 584 1.93 1.07 -0.48457 0.62814 0.54 0.44 0.66

Lunar maria
FFC 22 1.16 0.59 0.00000 1.00000 0.18 0.62 0.67

Unmod. Crat. FFC 70 1.14 0.73 0.07832 0.93775 0.05 0.93 0.76
Lunar SPA basin

FFC 14 1.88 0.81 0.00000 1.00000 0.05 0.93 0.30
Unmod. Crat. FFC 148 2.09 1.10 -0.72867 0.46727 0.24 0.64 0.88

∗ N is the size of the population, µdepth is the mean of the population depth (km), σdepth is the mean of the uncertainties
in the depth estimation (km). t and p are the values of a Student’s t-test that compared the mean depth of the normal
craters that share the spatial distribution of FFC to the FFC mean depth itself. A and B are the coefficients for the
power law relationship dc = ADB and σfit is the dispersion around the power law best fit (km). Unmod. Crat. FFC
refers to the normal crater population that share the spatial distribution of FFCs.
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Table E.3: Derived FFC intrusion thickness (H0) distribution characteristics
in the highlands, maria and South Pole Aitken basin.

N µH0 σH0

Highlands 80.00 0.49 0.85
Maria 22.00 0.09 1.01
SPA 14.00 1.11 0.93

∗ N is the size of the population, µH0
is the mean of the population thickness

at the center (km) and σH0
is the mean of the uncertainties in the thickness

estimation (km).

Table E.4: Forward modeling for the density contrasts between the magmatic
intrusions and the crust at the sites of floor-fractured craters in the highlands,
maria and South Pole Aitken basin.

Observed gravity Synthetic gravity Density contrast t-test
N µδ∗g SEMδ∗g µSδg SEMδSg µ∆ρ SEM∆ρ t p

Highlands 80 3.48 0.98 4.71e-03 2.19e-04 913 269 0.00000 1.00000
Maria 22 2.48 2.93 4.68e-03 3.41e-04 484 669 0.69086 0.49125
SPA 14 3.22 1.65 1.44e-02 1.99e-03 974 846 -0.08425 0.93304

∗ N is the size of the population, µδ∗g is the mean of the corrected gravity anomalies, SEMδ∗g is the standard error
of the mean of the corrected gravity anomalies, µδSg is the mean of the synthetic gravity anomalies obtained for unit
density contrast ∆ρ = 1 kg m−3, SEMδSg

is the standard error of the mean of the synthetic gravity anomalies for

unit density, µ∆ρ is the mean value of the density contrast between the magma and the crust µ∆ρ =
∑i=N
i=0

δcg;i
δsg;i

/N ,
SEM∆ρ is the standard error of the mean density contrast. t and p are the values of a Student’s t-test that compared
the density contrast distribution of the different populations with the density contrast of the FFC population in the
highlands.
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Text abbreviations

FFC Floor-fractured crater
GRAIL Gravity Recovery and Interior Laboratory
LOLA Lunar Orbiter Laser Altimeter
LRO Lunar Reconnaissance Orbiter
MESSENGER MErcury Surface, Space ENvironment, GEochemistry,

and Ranging spacecraft
SPA South Pole-Aitken basin

Elastic-plated gravity current: Parameters, variables and
dimensionless numbers

∆ρ Density contrast kg m−3

∆P Initial overpressure Pa
∆T Mean temperature difference K
δ Thickness thermal boundary layer m
η Rheology Pa s
ηc Solidus magma viscosity Pa s
ηe Effective flow viscosity Pa s
ηh Liquidus magma viscosity Pa s
γ Dimensionless source width -
κ Curvature m−1

κm Magma thermal diffusivity m2s−1

κr Rock thermal diffusivity m2s−1

Λ Flexural wavelength m
ν Viscosity contrast -
ν∗ Poisson’s ratio -
Ω Efficiency of the heat transfert -
Ω1 Thermal diffusivity ratio -
Ω2 Thermal conductivity ratio -
φ Crustal fraction -
ρm Magma density kg m−3

ρr Crust density kg m−3

τ Time scale s
θ Dimensionless temperature -
Θb Dimensionless temperature at the center -
Θs Dimensionless surface temperature -
~u Velocity vector m s−1

ξ Heat transport variable m K
a Feeder dyke width m
Cp,m Magma heat capacity J kg−1 K−1
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d0 Depth of intrusion m
Dr Flexural rigidity Pa m3

E Young’s modulus Pa
g Gravity m s−2

H Height scale m
h Flow thickness m
h0 Flow thickness at the center m
hf Prewetting film thickness m
KC Rock fracture toughness Pa m1/2

KI Stress intencity factor Pa m1/2

km Magma thermal conductivity W K−1 m−1

kr Crust thermal conductivity W K−1 m−1

L Latent heat of crystallization J kg−1

M0 Bending moment in r = R N m
P Total pressure in the flow Pa
Pe Bending pressure Pa
Pe Peclet number -
Pem Modified Peclet number -
Q0 Injection rate m3 s−1

R Radius of the intrusion m
r Axial coordinate m
Stm Modified Stefan number -
T Temperature in the intrusion K
t Time s
T0 Ambient rock temperature K
Tb Temperature at the center of the flow K
Ti Injection temperature K
TL Liquidus temperature K
TS Solidus temperature K
Ts Surface temperature K
tt Transition time between bending and gravity s
tb2 Time to enter the second bending phase s
tb3 Time to enter the third bending phase s
tg2 Time to enter the second gravity phase s
tg3 Time to enter the second gravity phase s
U Velocity scale m s−1

u Horizontal velocity m s−1

U0 Mean advection velocity m s−1

w Vertical velocity m s−1

wi Injection velocity m s−1

z Vertical coordinate m
Zc Depth of the melt source m

Crater depression: Parameters, variables and dimensionless
numbers

Ψ Thickening of the upper elastic layer -
Θ Dimensionless flexural wavelength -
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Ξ Lithostatic barrier importance -
ξ Sigmoid function m
ζ Normalized wall width -
C Crater radius m
D Crater diameter m
dc Crater depth m
Tp Crater topography m

Gravitational signature: Parameters and variables

δg Gravity anomaly mGal
δcg Corrected gravity anomaly mGal
δsg Synthetic radial gravity anomaly mGal
λ Downward continuation filter parameter -
µg Mean gravity anomaly mGal
φ Longitude rad
θ Latitude rad
nhlm Power of the thickness coefficient -
Clm Gravity coefficient -
l Spherical harmonics degree -
M Mass of the Moon kg
m Spherical harmonics order -
R0 Mean lunar radius m
Ri Reference lunar radius for gravity calculations m
Rm Intrusion elevation m
Ylm Spherical harmonic function -
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