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Résumé

Une limitation fondamentale du problème inverse acoustique est déterminée par la
taille et la densité de l’antenne de microphones. Une solution pour atteindre un grande
antenne et / ou à forte densité de microphones est de scanner l’objet d’intérêt en déplaçant
séquentiellement une antenne de petites dimensions (mesures dites séquentielles). La dif-
férence entre des mesures séquentielle et une mesure simultanée en tous points est que dans
ce dernier cas, l’intégralité de la matrice interpectrale peut être estimée, contrairement
au cas des mesures séquentielles qui ne permettent l’estimation que d’une partie réduite
de cette matrice ; les éléments croisés (interspectres) entre deux points de mesures n’ap-
partenant pas à la même séquence ne sont pas estimés. Néanmoins, ces données restent
nécessaires pour la reconstruction acoustique. Dans l’approche classique, une ou plusieurs
références sont utilisées pour retrouver les données manquantes.

L’objet de cette thèse est de récupérer les éléments manquants de la matrice inter-
spectrale sans capteurs de référence, dans le cas où le champ acoustique est suffisamment
cohérent pour mettre en ouvre les mesures séquentielles. Deux modèles de spectre de
valeurs propres parcimonieux sont proposés pour résoudre ce problème, le premier impose
une valeur faible de rang, tandis que le second repose sur la minimisation de la norme
nucléaire (recherche d’une solution faiblement parcimonieuse).

Les modèles proposés sont construits sur deux fondements physiques : le faible rang de
matrice spectrale et la continuité du champ acoustique. Le premier modèle, appelé struc-
tured low rank model, (modèle de rang réduit sous contrainte) se résume à la recherche
d’une matrice interspectrale de rang réduit, conforme aux données mesurées, observant
une certaine continuité spatiale du champ de pression, et conservant les propriétés fonda-
mentales de symétrie hermitienne et de positivité. Un algorithme de Projection Cyclique
(CP- cyclic projection) est proposé dans ce travail pour trouver une solution optimale
à l’intersection entre trois ensembles prédéfinis. Le second modèle, appelé weakly sparse
eigenvalue spectrum (spectre de valeurs propres faiblement parcimonieux) se résume à
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minimiser la norme nucléaire de la matrice spectrale soumise aux données mesurées, ob-
servant une certaine continuité spatiale du champ de pression, et conservant les propriétés
fondamentales de symétrie hermitienne et de positivité. Un algorithme iteratif rapide de
seuillage-troncature (Fast iterative shrinkage thresholding algorithm - FISTA) est proposé
pour résoudre ce problème de minimisation de norme nucléaire.

Les méthodes proposées sont analysées et comparées par des simulations numériques
de diverses configurations et sont également validées expérimentalement. Trois principaux
résultats sont obtenus dans cette thèse :

(1) CP et FISTA peuvent être à la fois utilisés dans le cas de mesures séquentielles avec
ou sans références ; (2) CP et FISTA peuvent être considérés potentiellement comme une
meilleure alternative à l’approche classique (avec références) ; (3) CP est proposé pour
être utilisé dans les cas de faible RSB (rapport signal à bruit), et un petit nombre de
sources, tandis que FISTA est proposé pour être utilisé dans le cas d’un RSB élevé et un
grand nombre de sources.

Mots clés : reconstruction inverse acoustique, mesures séquentielles sans référence,
modèles de spectre de valeurs propres parcimonieux, projection cyclique,
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Abstract

A fundamental limitation of the inverse acoustic problem is determined by the size
of the array and the microphone density. A solution to achieve large array and/or high
microphone density is to scan the object of interest by moving sequentially a small pro-
totype array, which is referred to as sequential measurements. In comparison to a large
array and/or high microphone density array that can acquire simultaneously all the in-
formation of the spectral matrix, in particular all cross-spectra, sequential measurements
can only acquire a block diagonal spectral matrix, while the cross-spectra between the
sequential measurements remain unknown due to the missing phase relationships between
consecutive positions. Nevertheless, these unknown cross-spectra are necessary for acous-
tic reconstruction. The object of this thesis is to recover the missing elements of the
spectral matrix in the case that the acoustical field is highly coherent so as to implement
the sequential measurements. Sparse eigenvalue spectrum are assumed to solve this prob-
lem, which lead to a structured low rank model and a weakly sparse eigenvalue spectrum
model. The proposed models are constructed upon two physical pillars : the low rank of
the spectral matrix and the continuity of the acoustical field. Structured low rank model
is shown to boil down to finding a full spectral matrix subject to reduced rank, measure-
ments fitting, spatial continuity of the sound field, and constraint of hermitian symmetry.
A Cyclic Projection (CP) algorithm is proposed in this work to find an optimal solution at
the intersection between three predefined sets. Weakly sparse eigenvalue spectrum model
is shown to boil down to minimizing the nuclear norm of the spectral matrix subject
to measurements fitting, hermitian symmetry and spatial continuity of the sound field.
A Fast Iterative Shrinkage Thresholding Algorithm (FISTA) is proposed to solve this
nuclear norm minimization problem. The proposed methods are analysed and compared
through numerical simulations under diverse setups and are also validated experimentally.
Three main results are obtained in this thesis : (1) CP and FISTA can be both used to
realize sequential measurements without and with few references ; (2) CP and FISTA can
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be considered as a better alternative to the classical referenced methods when the number
of references is insufficient or references are of poor quality ; (3) CP is suggested to be
used in cases with low SNRs and relatively small numbers of sources, while FISTA is
suggested to be used in cases with high SNRs and relatively large numbers of sources.

Keywords : inverse acoustic problem, sequential measurements without reference,
sparse eigenvalue spectrum models, cyclic projection
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1
Introduction

1.1 Problem statement

(c)

(b)

(a)

Figure 1.1 – (a) Measurement with a prototype array, (b) Sequential measurements for
making the array denser, (c) Sequential measurements for making the array larger.

Inverse acoustic reconstruction consists in measuring the acoustic quantity in the field
by a sensor array (forward problem) and reconstructing the image of noise sources by
back-propagation algorithms (inverse problem), which has a wide range of applications in
machine fault diagnosis and noise control of mechanical equipments etc. A fundamental
limitation of inverse acoustic reconstruction is determined by the size of the array and the
microphone density. Specifically, the minimum spatial resolution hinges on the size of the
array and the maximum spatial resolution depends on the maximum distance between
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the microphones. Thus the working frequency range is

c

min{Lx, Ly}
≤ f ≤ c

2max{dx, dy}
, (1.1)

where c is the sound speed and Lx, Ly, dx, dy are shown in Fig. (1.1) (a). For the sake
of improving the spatial resolution of inverse acoustic reconstruction, sequential measure-
ments are investigated in this thesis, which is a solution to achieve large array and/or
high microphone density by moving sequentially a small prototype array to scan the ob-
ject of interest. For instance, Fig. 1.1 (a) shows a prototype array that is optimized to
a given configuration as compared with the source dimensions, Fig. 1.1 (b) shows how
to use sequential measurements to make the array denser, and Fig. 1.1 (c) how to make
the array larger. It is defined that the spectral matrix is a matrix whose element is the
covariance between the measured pressures (a vector concatenate either with finite or
infinite number of snapshots) at corresponding two measurement positions in an array for
a given frequency. In comparison to a large array and/or high microphone density array
that can acquire simultaneously all the information of the spectral matrix, in particu-
lar all cross-spectra, sequential measurements can only acquire a block diagonal spectral
matrix, while the cross-spectra between the sequential measurements remain unknown
due to the missing phase relationships between consecutive positions. Nevertheless, these
unknown cross-spectra are necessary for acoustic reconstruction. The object of this thesis
is to propose methods to recover the missing elements of the spectral matrix (as would be
measured by simultaneous measurement). It assumes only the knowledge of the spectral
sub-matrices Ŝ(i)

pp , i = 1, ..., P with size M ×M , where P is number of measurements and
M is number of microphones in the array. Let Ŝmpp be the spectral matrix constructed by
rearranging all spectral sub-matrices Ŝ(i)

pp , i = 1, ..., P methodically in block diagonal posi-
tions and by padding the remaining positions with zeros (as shown on the left side of Fig.
1.2 ; the spectral matrix returned by sequential measurements Ŝmpp (with size MP ×MP )
is related to the unknown spectral matrix S (with size MP ×MP , and which is shown on
the right side of Fig. 1.2 as follows

A (S) +E = Ŝmpp, (1.2)

where the sampling operator A ∶ CMP×MP →CMP×MP extracts the elements from diago-
nal block matrix parts, and the error E is composed of estimation error and measurement
error. Then the problem can be formulated generally as searching for a full spectral matrix
S given the partial spectral matrices Ŝmpp, which is a matrix completion problem.

The assumption of a sparse eigenvalue spectrum(sparsity implies that only a few
components in eigenvalue spectrum are non-zero and the rest are zero) is proposed to
solve this problem, which leads to a structured low rank model and a weakly sparse
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Figure 1.2 – Spectral matrix Ŝmpp (left, data missing matrix), unknown full spectral matrix
to be searched (right, full matrix).

eigenvalue spectrum model. The physical basis underlaying this approach is founded
upon two properties : the low rank of the spectral matrix and the continuity of acoustic
field.

1. Low rank spectral matrix. The high correlation of the acoustical field implies a low
rank of the spectral matrix. The rank of the spectral matrix measures the stochas-
tic model complexity of the acoustic field, which is consistent with the number of
“virtual sources”(equivalent uncorrelated sources that compose the acoustical field)
required to produce the pressure measurement. For instance, a rank one spectral
matrix corresponds to a fully coherent field (the measurement in one position can
be easily predicted from other positions in the field), whereas a spectral matrix with
infinite rank corresponds to a diffuse field [1] in general.

2. Spatial continuity of the acoustic field. The position coordinates of sequential mea-
surements reflect the acoustic field correlation due to the continuity of the acoustic
field. For example, when the distance between two consecutive measurements are
very close to each other, the sensed fields will be very similar which indicates the
high correlation between the sequential measurements. Unfortunately, the informa-
tion on position coordinates is not explicated in the spectral matrix, which will have
to be introduced by other means.

These two specific properties imply the high correlation of the acoustical field which is
considered as the fundamental physical assumption to formulate the problem.

1.2 Organization of the thesis
The contributions and contents of each chapter of this thesis are explained separately

as follows, and a big picture about this thesis is shown in Fig. 1.3.
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Figure 1.3 – A big picture about this thesis.

In chapter 2, entitled “Literature survey”, a review of the various techniques that
have been proposed to solve the inverse acoustic problem is made ; three categories of
methods are surveyed in this thesis, namely : (1) Single measurement, (2) Sequential
measurements with references, (3) Sequential measurements without reference. In partic-
ular, methods based on assumptions of band-limitation or sparsity are explained, which
both imply a high correlation of the acoustical filed. The perspectives for each category
and their connections with the methods proposed in this thesis are also discussed.

In chapter 3, entitled “Structured low rank model and Cyclic Projection”,
the problem of recovering the missing elements in the spectral matrix is formulated as a
structured low rank model, and is shown to boil down to finding a spectral matrix subject
to a given constraint of hermitian symmetry, measurements fitting, reduced rank, and
spatial continuity of the acoustic field. A Cyclic Projection (CP) algorithm is proposed
correspondingly to find an optimal solution at the intersection between three predefined
sets in order to solve this structured low rank problem.

In chapter 4, entitled “Weakly sparse eigenvalue spectrum model and fast
iterative shrinkage thresholding algorithm”, the eigenvalue spectrum of the spectral
matrix is assumed to be weakly sparse which means the spectral matrix is allowed to be
of full rank but with only a few dominant eigenvalues. Thus, the nuclear norm is used
as a measure of a weakly sparse eigenvalues spectrum (i.e. the sum of eigenvalues). Not
only is this assumption more general than the previous one, but it also avoid the difficulty
of a priori determining the actual rank of the spectral matrix. Fast iterative shrinkage
thresholding algorithm (FISTA) is proposed correspondingly to solve this weakly sparse
eigenvalue spectrum problem.
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In chapter 5, entitled “Simulation and experimental validation”, a common simu-
lation platform is constructed with various simulation setups, which is used to separately
test CP and FISTA. The different simulation scenarios are constructed as follows : se-
quential measurements without reference, sequential measurements with various SNRs,
sequential measurements with different shift distances, and sequential measurements with
references.

In chapter 6, entitled “Exploring the difference between CP and FISTA”, some
simulation scenarios are constructed to illustrate the different mechanisms between CP
and FISTA with various SNRs and numbers of sources in order to simulate different
eigenvalue spectra. The performance analysis is conducted both from the theoretical and
practical viewpoints. The differences between the two proposed algorithms are investigated
and a guideline to choose the algorithm is given.
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2
Literature Survey

Inverse acoustic problem

Helmholtz Equation Least Squares (HELS)

Near-field Acoustic Holography (NAH)

Inverse Boundary Element Method (IBEM)

Equivalent Source Method (ESM)

Wave Superposition Algorithm (WSA)

Statistically Optimal Near-field Acoustical Holography (SONAH) 

Acoustic source
Different methods lead to 

different choices of basis

Suffer from spatial resolution limitation 

Methods to increase spatial resolution

Single measurement Sequential measurements

Methods based on Band-limited assumption

Methods based on Sparsity assumption

Sequential measurements with references

Sequential measurements

without reference non-intrusive approach

(proposed in this thesis)

intrusive approach

Figure 2.1 – Illustration of the position of the approach proposed in this thesis with
respect to the state-of-the-art.

Acoustical reconstruction aims at characterizing acoustical sources that radiate at
certain distance from partial measurements of the pressure field, which is considered as an
inverse problem [2] [3]. Classical methods consist in interpolating the measurements onto
some spatial basis, implicitly or explicitly, and then the source field is reconstructed by
back-propagation that relies on the principle of Least Square (LS), Maximum Likelihood
(ML), Maximum a Posteriori (MAP). The choice of a spatial basis varies with the topology
of the source surface, the a priori spatial distribution of the sources, the geometry of the
array, the type of propagation (near-field or far-field, free field or scattering), and the
frequency range of interest etc [4]. Beamforming [5] assumes that the discrete sound
field has a sparse distribution of well-separated monopoles (note that beamforming is
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generally a localization method rather than a reconstruction method). The Equivalent
source methods (ESM) [6] [7] [8] assumes the sources are modeled by a dense distribution
of monopoles. The Near-field acoustical holography (NAH) [9] assumes that the sources
can be expanded as the Fourier basis. Steiner and Hald [10] [11] proposed a statistically
optimal near-field acoustical holography (SONAH), which the sound field is expressed as
a linear superposition of plane waves and evanescent wave (without using the Fast Fourier
Transform (FFT) as in NAH). The Inverse boundary element method (IBEM) [12] [13] [14]
[15] is based on numerical transfer function obtained by the boundary element method
(BEM). The Helmholtz equation-least-squares method (HELS) [16] [17] represents the
pressure field as an expansion of spherical harmonics. The Wave superposition algorithms
(WSA) [18] [19] [20] [21] [22] use a simple source (monopole, dipole, etc.) as the equivalent
sources to get the source strength density (weighting factor). The spatial bases used by
different methods are listed in table 2.1. These classic methods measure the complex
sound pressure field that is located near the radiation source, and are able to reconstruct
the entire three-dimensional acoustic space (such as sound pressure, particle velocity and
sound intensity). When measurements are close to the sound source in the near-field
region, they can capture evanescent waves whose amplitudes decay exponentially with the
propagation distance and which contains a wealth of sound source details, thus breaking
Rayleigh’s limit [23] as encountered in earlier holography techniques [24] [25]. The upper
plot in Fig. 2.2 shows the spatial sampling in NAH : if the array aperture covers the whole
acoustical field, then the spatial signal can be perfectly reconstructed according to the
Nyquist-Shannon sampling theorem provided that ks ≥ 2km [5], where ks is the spatial
sampling frequency and km is the acoustic field bandwidth as shown in the left figure of
Fig. 2.3.

Approach Spatial basis

NAH plane waves/cylindrical harmonics/spherical harmonic (regu-
lar spatial sampling)

IBEM generalized spherical harmonics (or “acoustical modes” in gen-
eral)

ESM dense distribution of monopoles
WSA monopoles and/or dipoles (inside the object)
HELS spherical harmonic
SONAH plane waves/cylindrical harmonics/spherical harmonic

Table 2.1 – Classic methods and their corresponding basis to be used

Nevertheless, the measurements in the above methods are taken with a microphone
array whose dimensions and density are circumscribed due to obvious cost and technical
reasons ; this brings about strong limitations on the reconstruction capability in terms of
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spatial resolution and magnitude quantification. Take as an example in Near-field acousti-
cal holography (NAH) [26] where it is assumed that the measurement aperture is infinite
in theory for the purpose of guaranteeing the reconstruction quality ; however, a limited
measurement aperture is only available to cover a partial radiating region as shown in the
middle figure of Fig. 2.2, which results in truncation effects, wrap-around errors and other
errors due to the discontinuity of the aperture edge and finite aperture effects [26]. In order
to reduce the errors resulting from the finite aperture effects and to ensure the accuracy
of the holographic reconstruction, NAH places a strong restriction on the measurements
aperture size, such that the holographic aperture should be at least four times as large
as the size of the sound source, so that the sound pressure outside of the measurement
aperture is allowed to reach a negligible level. This is possible for small size (with respect
to the array) sources, however it is unrealistic for sound sources with large dimensions
(with respect to the array) such as vehicle, submarine and machinery etc. The second
issue is spatial resolution, which is determined by the density of the sensors in the array.
Thus, spatial resolution is one of the most important index criteria of acoustic imaging,
which determines the amount of information an image can provide.

In order to breakthrough these crucial limitations, different techniques have been pro-
posed to ameliorate the reconstruction quality, which can be categorised in three groups
based on the setup of measurements, namely : Single measurement, Sequential mea-
surements with references, Sequential measurements without reference. Our
goal in this chapter is to survey the state-of-the-art of acoustic imaging techniques de-
voted to pushing the aforementioned limits, and their relation with the methods proposed
in this thesis as illustrated in Fig. 2.1.

2.1 Single measurement

Single measurement is defined as the configuration where all the measurements are
captured at once and simultaneously. Two categories of techniques are surveyed : (1)
Patch near-field acoustical holography (Patch NAH) and (2) Sparsity induced
acoustical source reconstruction.

2.1.1 Patch near-field acoustical holography

As a result of the limited aperture, conventional NAH will generally produce recon-
struction error which may be detrimental in practice. The Patch NAH employs numerical
method to extrapolate the sound pressure data outside the measurements aperture, so as
to simulate a larger measurement aperture, and this indirectly increases the measurement
aperture size and reduces the finite aperture effect. The measured sound pressure is forced
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Figure 2.2 – Illustration of the conceptions of different acoustical imaging techniques :
NAH, Patch NAH, Compressed sensing NAH.

Figure 2.3 – Illustration of the assumptions underlying different acoustical imaging tech-
niques : NAH, Patch NAH, Compressed sensing NAH.

12
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0023/these.pdf 
© [L. Yu], [2015], INSA de Lyon, tous droits réservés



to be continuous at the edge of the aperture which may considerably reduce reconstruc-
tion errors. Patch NAH breaks the limitation of the aperture size to some degree and
reduces somewhat the amount of measurements. Saijyou and Yoshikawa [27] investigated
two kinds of extrapolation method, namely k-space data extrapolation and real-space data
extrapolation. The k-space data extrapolation is implemented by zeros-padding hologram
surface and iteratively filtering in the wave-number domain ; real-space data extrapola-
tion is implemented by zeros-padding the hologram surface and iteratively forward and
back propagation the acoustical field. Williams [28] reformulated this extrapolation pro-
cess as an inverse problem and a modified Tikhonov regularization step was developed.
It assumes that the coherence of the pressure field enables the extension of the measured
field into the region that lies outside the measured aperture, as a “continuation” of the
acoustical field. At the same time, a Fast Fourier Transform (FFT) based and singular
value decomposition based patch NAH [29] were proposed to deal with planar surfaces
and general shapes. Subsequently, Lee and Bolton [30] generalized the FFT based patch
NAH from planar surfaces to cylindrical geometry. It was found that the zero-padding
processes in cylinder patch NAH and planar patch NAH are different since a cylindrical
sound source is circumferentially closed and thus the circumferential pressure field should
also be periodic. The FFT based patch NAH has an advantage of simplicity and rapidity
in extrapolation algorithms, nevertheless it is only applicable to the case of uniform and
regular surfaces of orthogonal coordinate system, thus Saijyou and Uchida [31] proposed
a boundary element method (BEM) based patch NAH which is applicable to the ob-
jects with any structured shape. Correspondingly, Sarkissian [32] proposed the equivalent
source methods (ESM) based patch NAH and Pascal et al. [33] introduced the statistically
optimized methods based patch NAH. Zhang et al. [34] investigated patch NAH based on
particle velocity measurements and claimed that it can achieve better performance since
the particle velocity decays faster toward the edges of the measurements aperture than
pressure. Lee and Bolton [35] proposed an alternating orthogonal projection algorithm
implemented as a “smooth-and-replace” two step iteration. The theoretic analysis of the
algorithm was given in [36] and a multi-patch holography procedure was proposed corre-
spondingly to generalize the previous work. Scholte et al. [37] extrapolated the pressure
fields by a linear predictive filter using the measured pressures ; then a linear predictive
border-padding method was used as an extrapolation technique that greatly reduced the
leakage and spatial truncation errors in planar NAH. Reference [38] investigated the violin
f-hole contribution of the far-field radiation by FFT based patch NAH, and it is proved
that patch NAH has a good local characterization ability which can separate the f-hole
contribution from the surface motion contributions to the total radiation of the corpus
below 2.6kHz.

Discussion : Patch NAH consists in extrapolating the acoustic field outside the aper-
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ture from the hologram data that is measured within the aperture relying on the band-
limited assumption of the spatial spectrum. In sparsity induced acoustical source recon-
struction, the acoustical source is modeled as a combination of a few elements taken in an
over-completed dictionary ; the assumption of sparsity permits to have a more compact
representation than usually allowed by a predefined basis. Patch NAH can be recognized as
the application of band-limited extrapolation methods in acoustic. This is a classic signal
processing problem which has been addressed since a long time, connected with reconstruct-
ing the whole signal from only partial signal measurements [39] [40]. Popular solutions
are given by the Papoulis-Gerchberg algorithm [41] and its enhanced versions [42]. A basic
assumption of patch NAH is that the acoustic field is band limited in the wave-number
space (K-space) as shown by the red curve in the middle of the Fig. 2.3. This assumption
implies the high coherence of the acoustical field. In the practical case where the measured
signal has a non-finite spatial spectrum as shown by the black curve in the middle of Fig.
2.3, Patch NAH can only recover a low pass version of actual signal.

2.1.2 Sparsity induced acoustical source reconstruction

In Ref [43], the sparse assumption for the spectrum is investigated instead of the band-
limited assumption, which provides another perspective for extrapolating the acoustical
field. The acoustical field was firstly approximated by an expansion on a few plane waves,
then the field interpolation problem was formulated as a constrained l1 norm optimization
which was solved by CVX (it is a Matlab-based modeling system for convex optimiza-
tion). Furthermore, a robust Bayesian super-resolution approach was proposed by Chu et
al. [44] : an improved forward model of aeroacoustic power propagation was introduced,
which accounts for both background noise and forward model uncertainty ; then a sparse
prior for source powers was enforced by means of a double exponential distribution. The
Bayesian framework allows both the hyper-parameters and the source powers to be es-
timated by the joint Maximum A Priori (MAP). Near-field acoustical holography using
sparse regularization and compressive sampling principles was proposed by Chardon et
al. [45]. An over-complete dictionary was built for convex homogeneous plates with ar-
bitrary boundary conditions, then the source normal velocities was decomposed as the
sum of a few atoms in the dictionary ; by using the compressed sensing framework, the
sparse signals could be reconstructed with significantly less measurements than conven-
tional methods. Suzuki [46] [47] proposed the Generalized Inverse Beamforming (GIB)
that aims at identifying coherent or incoherent, distributed or compact, monopole or
multipole sources. The source identification problem was formulated as a l1 norm mini-
mization problem where the source distribution is modeled as a linear combination of a
series of monopoles and dipoles. The GIB method was also used in the test of air jets [48],
where rectangular jets can have asymmetric radiation patterns. In the context of acous-
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tic measurements of enclosed spaces, Pereira [49] [50] proposed an iterative Equivalent
Source Method (iESM), based on iterative weighted least squares, which also promotes
the sparsity of the source in some sense. Malioutov et al. [51] proposed a source localization
method based on sparsity-enforcing regularization ; the approach involves reformulating
the source location problem in a constrained optimization by using an overcomplete basis
and sparsifying regularization, which results in focusing the signal energy an an increase
of the resolution. Co-sparse signal model (analysis model) can be seen as an analytical
version of the classic sparse-land model (synthesis model) [52], and it has also been used
in sound source localization [53]. Kitic [54] has compared several state-of-the-art methods
for co-sparse signal recovery in the context of sound source localization.

Discussion : In sparsity induced acoustical source reconstruction, it is assumed that
the measured spatial acoustic signal can be expanded with a few atoms in an over-completed
dictionary as shown in the right part of Fig. 2.3, A sparse representation also implies
a high correlation of the acoustical field, yet it is more general than the band-imitated
assumption which is a particular case. Thus it provides a powerful approach to address
the reconstruction of a acoustical sources with limited (missing) measurements.

2.2 Sequential measurements with references

A solution to achieve large array and/or high microphone density is to scan the object
of interest by moving sequentially a small prototype array, which is referred to as sequential
measurements. A small prototype array is moved along different locations in front of or
around the radiating object to augment the microphone density or the measurement
aperture size. For instance, Fig. 2.2 (a) shows a prototype array that is optimized to a
given configuration as compared with the source dimensions, Fig. 2.2 (b) shows how to use
sequential measurements to make the array denser, and Fig. 2.2 (c) how to make the array
larger. Contrary to simultaneous measurements, sequential measurements are faced with
the difficulty that phase relationships are lost between consecutive measurements, yet such
information is however vital to signal reconstruction in general [55]. One strategy is to use a
set of fixed reference microphones located in the acoustical field which are fully correlated
with the sources so as to indirectly measure phase relationships between consecutive
positions of the array ; then phases that are lost can be reconstructed by spectral analysis
based methods [56] [57] : Conditioned spectral analysis (CSA) and virtual source analysis
(VSA) are used, which are based on the average over all passes of a set of reference
channels and on the correction of cross-spectral quantities by using transfer functions and
averaged reference spectra. A related method that is based on a linear prediction technique
is proposed based on the same “fixed references” strategy in Ref [58]. In Ref [58], the
concept of the rank of a matrix has been employed as the theoretical development. It is
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proved that the rank of the full cross-spectral matrix equals to the number of uncorrelated
acoustic sources and it is used to determine the number of reference microphones.

Discussion : The effectiveness of these approaches is strongly dependent on the avail-
ability of high-quality references (high signal-to-noise ratios and high coherence with the
source field) in sufficient number to capture the stochastic dimension of the source field
(the number of uncorrelated sources it is composed of) ; in particular the number of refer-
ences should be greater than or equal to the number of uncorrelated sources. Unfortunately,
the provision of references incurs an extra cost and precludes some microphones to be used
when the user has to face a limited number of tracks in the acquisition system.

2.3 Sequential measurements without reference

Kwon and Kim [59] [60] proposed Moving frame acoustic holography (MFAH) to virtu-
ally increase the hologram size and the spatial resolution of the hologram by continuously
sweeping the sound field with a line array of microphones. They proposed a procedure to
handle the Doppler effects on acoustic holograms. Loyau et al. [61] proposed broadband
acoustical holography from intensity measurement (BAHIM) to reconstruct the sources
by using near-field acoustical intensity measurement. These quadratic values are mea-
sured independently at each point on the hologram and therefore do not require a phase
reference signal corresponding to the source. The geometry of the source surface is taken
into consideration for an analysis of the phase gradient function on the basis of the el-
ementary orthogonal components associated with this geometry, which is integrated to
obtain the pressure field phase. Antoni [62] proposed a solution to reconstruct the full
source field of the radiating object from sequential measurements, yet without the need
for fixed references and without the edge effects of the patch approach. Under the station-
ary assumption, the problem is shown to boil down to the factorization of a structured
covariance matrix. This is undertaken within a Bayesian probabilistic approach, where
the source field is encoded by unobservable latent variables which are iteratively recon-
structed by using an Expected-Maximization (EM) algorithm. The method is shown to
return virtually similar results as if all data were captured simultaneously instead of se-
quentially. In addition, it is ultimately able to simulate statistically equivalent realizations
of the source field. A solution is also provided for automatically setting the regularization
parameter, an important issue of inverse acoustics. The proposed method does not require
any external reference (although it may easily be extended to account for such a possibil-
ity) and does not assume the radiated field to be entirely covered by the array. The only
assumption it relies on is the stationarity of the source field. This is probably a rather
weak assumption, but fundamental for measurements taken at different times to give dif-
ferent images of the same source distribution. Indeed, under the stationary assumption,
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the problem is shown to boil down to the factorization of a structured covariance matrix.
The latent variable model is not only efficient from a computational point of view, but
it also enjoys a physical interpretation : the latent variables are “modal coordinates”of
underlying virtual incoherent sources that produce the sound field.

Discussion : The above EM method directly solves the inverse problem with the in-
complete spectral matrix, and this can be seen as an intrusive method, which is a different
approach than that followed in this thesis. The methods proposed in this thesis aims to
complete a spectral matrix, then feed it to a classic inverse algorithm, which can be un-
derstood as non-intrusive. The difference between the two methods are shown in Fig. 2.4.

Sequential measurements

Sequential measurements

Data missing spectral matrix

Data missing spectral matrix Completed spectral matrix

directly solve

an inverse problem

feed it to to classic

inverse problem

algorithm

Intrusive method

Non-intrusive method

proposed

in this thesis

Reconstured sources

Reconstured sources

Figure 2.4 – Illustration the difference between intrusive and non-intrusive methods.

2.4 Conclusion of the chapter
Three categories methods were surveyed in this chapter : Single measurement, Se-

quential measurements with references, and Sequential measurements without
reference. A representative approach for Single measurement is Patch NAH, based on
the assumption that the measured signal is band-limited which in turn implies a high cor-
relation of the acoustical field. This is an efficient and easy-to-implement method, however,
it suffers from residual prediction errors that increased with the area of the extrapola-
tion surface ; another representative approach for Single measurement is compressed
sensing NAH, based on the assumption that the measured signal is sparse under some
over-complete dictionary. This method is theoretically guaranteed to be successful with
a high probability, however, it is limited to specific surfaces. A representative approach
for Sequential measurements with references is based on minimum mean square
error linear prediction, based on the assumption that the measured signal is stationary.
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This is an efficient method but it is strongly dependent on the availability of high-quality
references and it also incurs extra costs. Two approaches may be identified for sequential
measurements without references. The first one is intrusive, which requires reformulating
the inverse problem to account for missing entries in the spectral matrix. The second one
is non-intrusive, which is proposed in this thesis. Non intrusive methods aims at directly
completing the spectral matrix and then feed it to a classic inverse method.

Setup Representative Ap-
proaches Assumption Advantages / Dis-

advantages

Single measure-
ment

Patch NAH [27] [28]
[29] [35] [33] Band-limitation

Easy to implement /
Errors increase with
the extrapolation sur-
face

Single measure-
ment

Compressed Sensing
NAH [45] [44] [46] [47] Sparsity

Rooted on strong
mathematical theory
/ Limited application
due to the dictionary
design

Sequential mea-
surements with
references

with references meth-
ods [56] [57] [58]

Stationary of the
acoustical field

Very efficient / Incur
extra cost

Sequential mea-
surements with-
out reference

EM [62]

Stationary and
high correlation
of the acoustical
field

Very efficient / Intru-
sive method

Table 2.2 – Conclusion of the current methods.
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3
Structured low rank model and Cyclic Projection

In this chapter, a structured low rank model and its corresponding algorithm “Cyclic
Projection” are introduced. First, forward problems with sequential and simultaneous
measurements are introduced in section 3.1 by discretizing Fredholm integral equations of
the first kind. The difference between sequential and simultaneous measurements is then
explained as a problem with missing entries in the spectral matrix. In section 3.2, this
problem is formulated by means of a structured low rank model : the aim is to find a full
spectral matrix subject to given constraint of hermitian symmetry, measurements fitting,
reduced rank, and spatial continuity of the sound field ; its ingredients are explained in
separate subsections. A Cyclic Projection algorithm with predefined sets and projection
operators is proposed to solve the problem in section 3.3.

3.1 Stochastic modeling of the forward problem

3.1.1 Stochastic modeling of sequential measurements

Let s(r, ω; ζ), r ∈ Γ be the normal velocity or acoustic pressure on the source surface
Γ enclosing the radiating object D, at a given frequency ω. The fundamental premise is
that the acoustic source distribution is considered as a stationary stochastic field (only
the temporal stationarity is assumed), thus the acoustic sources produce outcomes whose
realizations depend on the events ζ in sample space Ω. From a practical point of view, an
outcome of the source distribution will simply correspond to a snapshot of the measured
signal (i.e. the Fourier transform of a short-time segment possibly tapered with a smooth
data window) at a given position of the array.

The acoustic field that is produced by the radiating body D is measured at some
discrete locations rm,i, where rm,i denotes the position of m-th microphone in the array,
m = 1, ...,M at the i-th position of the array, i = 1, ..., P (an array of M microphones
with P measurements), and p(rm,i, ω; ζ) is the acoustic pressure measured at this point
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Sequential Measurements Simultaneous Measurement

1

P

i

Figure 3.1 – Sequential measurements versus simultaneous measurement (measurement
mode).

as shown in Fig. 3.1, which denotes the short time Fourier transform of the pressure
signal from the m-th channel of the array at i-th position with frequency ω and datum
ζ. Figure 3.2 illustrate the conception how to generate the snapshots of sound pressure
signal, see Ref [63] [64] [65] [66] for technique details to choose the parameters and some
applications in related works. Note that for a given array position i, M measurements
are taken simultaneously. Similarly, for a given microphone m, the P measurements that
result from moving the array at different positions are sequential ; this implies that phase
relationships between measurements at points p(rm,i, ω; ζ) and p(rn,j, ω; ζ), ∀(n,m), i ≠ j
are necessarily lost.

Having defined the measured pressures and the source field, the direct problem typi-
cally relates them through an integral equation of the form

p(rm,i, ω; ζ) = ∫
Γ
G(rm,i, ω∣r)s(r, ω; ζ)dΓ(r) + n(rm,i, ω; ζ), (3.1)

where G(rm,i, ω∣r) denotes the Green function (provided in analytical or numerical form)
between r and rm,i, and where n(rm,i, ω; ζ) stands for additive measurement noise statis-
tically independent of s(r, ω; ζ). In order to discretize the problem, let us project it onto
a basis of spatial functions {φk(r, ω)}Kk=1 whose choice may be either arbitrary or optimal
given the object and array geometries :

s(r, ω; ζ) =
K

∑
k=1

ck(ζ)φk(r, ω). (3.2)
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For a given frequency ω, coefficients ck(ζ) assigned to the basis functions φk(r, ω) are
to be interpreted as K random variables that produce the stochastic field s(r, ω; ζ). The
basis of spatial functions can be chosen differently with the various practical setups, and
this has been surveyed in previous chapter. One optimal basis is constructed in Ref [4] :
it declares the optimal basis functions are the eigen-functions of a specific continuous-
discrete propagation operator, with the number equals to the number of microphones in
the array, which is used in this thesis. Equation (3.1) then becomes

p(rm,i, ω; ζ) =
K

∑
k=1

Hm,i,kck(ζ) + n(rm,i, ω; ζ), (3.3)

where

Hm,i,k = ∫
Γ
G(rm,i, ω∣r)φk(r, ω)dΓ(r)

is interpreted as a transfer function. Equation (3.3) can be recast into a more compact
form. let Ni be the number of snapshots available at position i , pij ∈ CM the col-
umn vector containing the M pressures {p(rm,i, ω; ζ)}Mm=1 measured at the j-th snap-
shot and i-th position of the array, cij ∈ CK the column vector containing the K coeffi-
cients {ck(ζij)}Kk=1,nij ∈ CM the column vector of additive noises {n(rm,i, ω; ζij)}Mm=1 and
Hi ∈ CM×K the matrix with elements [Hi]mk = Hm,i,k. The matrix version of Eq. (3.3)
then reads

pij = Hicij + nij, m = 1, ...,M, i = 1, ..., P, (3.4)

where nij has covariance matrix βi2Ωi with assumed spatial coherence Ωi normalized such
that its trace tr{Ωi} =M and where the noise power β2

i is an unknown hyper-parameter.
Let us define the expected value of any function f (i), evaluated at the i-th position of

the array, as

E{f (i)} = lim
N→∞

1
N

N

∑
j=1
f (i)(ζij). (3.5)

Next, let S(i)
pp ≐ E{pijp∗

ij} (with ∗ the transpose-conjugate operator) define the spectral
matrix of the measurements at position i, whose diagonal (resp. off-diagonal) elements
contain the auto (resp. cross) spectra of the measured pressures. Similarly, let Scc ≐
E{cijc∗ij} be the covariance matrix of the unknown coefficients, which does not depend
on index i by definition of the source field stationarity. Let us also introduce

Ŝ(i)
pp = 1

Ni

Ni

∑
j=1

pijp∗
ij, (3.6)
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an estimate of the theoretical spectral matrix S(i)
pp obtained by averaging the outer-product

of measured pressure vectors over a finite number of snapshots. Therefore, it results from
Eq. (3.6) that

Ŝ(i)
pp ≃ HiSccH∗

i + βi2Ωi, i = 1, ..., P, (3.7)

with exact equality when the number of snapshots tends to infinity, Ni →∞, and Scc is a
K ×K matrix. These covariance equations physically reflect transfer of energy from the
source field to the microphones.

FFT FFT FFT

…

…

…

Figure 3.2 – illusion of the conception of snapshots that are calculated by Short Time
Fourier Transform (STFT) tapered with a smooth data window.

3.1.2 Stochastic modeling of simultaneous measurement

In the simultaneous measurement, Eq. (3.4) can be directly written as follows (without
subscript i since measurements are captured simultaneously) in a vector form :

pj = Hcj + nj. (3.8)

The theoretic spectral matrix Spp of simultaneous measurement is then Spp ≐ E{pjp∗
j } =

HE{cjc∗j }H∗ + E{njn∗
j }, where E{njn∗

j } = σ2
nΩ and the definition of Scc ≐ E{cijc∗ij} =

E{cjc∗j } remains the same as in the sequential measurements owing to the stationarity
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assumption of source field. Similar to sequential measurements, Ŝpp = 1
N ∑

N
j=1 pjp∗

j ; then
Eq. (3.8) can be written as :

Ŝpp ≃ SLpp + σ2
nΩ = HSccH∗ + σ2

nΩ, (3.9)

where σ2
n is the noise power in simultaneous measurements, trace(Ω) = MP , and Ω is

a diagonal matrix by assuming that the noise in different channel is uncorrelated. The
equality is exact when the number of snapshotsN tends to infinity. It is assumed that SLpp =
HSccH∗ is a low rank matrix, where H ∈ CMP×K is full row rank and rank(HSccH∗) =
rank(Scc).

3.1.3 Problem statement

An essential question to be addressed now is the difference between sequential mea-
surements and simultaneous measurement from the spectral matrix perspective. With se-
quential measurements, an incomplete spectral matrix Ŝmpp is constructed by rearranging
all spectral sub-matrices Ŝ(i)

pp , i = 1, ..., P in Eq. (3.7) (each with size M ×M) methodi-
cally in block diagonal positions and the remaining positions are padded by zero elements
(see left graph in Fig. 3.3, it is noted that zero padding is a just a way to visualize the
measured matrix and it is in fact a unknown part). Contrary to sequential measurements,
Ŝpp in Eq. (3.9) is a complete matrix as shown in the right graph of Fig. 3.3. With the pur-
pose of using sequential measurements for acoustic source reconstruction, the problem is
formally stated as to attain an full spectral matrix from the data missing spectral matrix
Ŝmpp. In fact, the spectral matrix in sequential measurements with references is also a data
missing matrix but with known cross-spectra between the references and each sequential
measurements, which is shown as a narrow band in the middle graph of Fig. 3.3. Thus,
when the problem is formulated as matrix completion, it is general enough to cover the
two cases with or without references.

3.2 Structured low rank model

In order to solve the matrix completion problem, the following structured low rank
model is proposed :

find S ∈ CMP×MP such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Rank(S) = r
∥A (S) − Ŝmpp∥F ≤ ε
∥ΨSΨ∗ − S∥F ≤ ε
S∗ = S ⪰ 0.

(3.10)
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Figure 3.3 – left : Sequential measurements spectral matrix Ŝmpp without reference (data
missing matrix), middle : Sequential measurements spectral matrix Ŝmpp with references
(data missing matrix), right : Simultaneous measurement spectral matrix Ŝpp (full matrix).

A full spectral matrix S is sought under four constraints which are explained separately
hereafter.

1) Low rank spectral matrix : one wants to find matrix S with given rank r which
estimates the low rank SLpp = HSccH∗ matrix in Eq. (3.9). This is explained in
section 3.2.1.

2) System equation : the system equation A (S) +E = Ŝmpp represents the data fitting
relation, where the unknown spectral matrix S to be searched is linked to the partial
measurements Ŝmpp by the sampling operator A ∶ CMP×MP →CMP×MP that extracts
the elements from diagonal blocks, and where E is composed of estimation and mea-
surement errors. This system equation is imposed as a constraint ∥A (S)− Ŝmpp∥F ≤ ε
in the model (3.10), where the difference between A (S) and Ŝmpp in Frobenius norm
is less than a given tolerance ε.

3) Spatial continuity of the acoustic field : in order to ensure spatial continuity of
the acoustic field, the information on microphone positions must be encoded in the
spectral matrix : ∥ΨSΨ∗ −S∥F ≤ ε, where Ψ is a projection basis ; this is explained
in section 3.2.2.

4) Hermitian property and positive semi-definiteness of the spectral matrix : S∗ = S ⪰
0, where ⪰ denotes positive semi-definite. The hermitian property is an inherent
characteristic of spectral matrices, as well as the fact that its eigenvalues are non-
negative.

It is noted that the third constraint makes the problem at hand rather different than
other matrix completion problems found in the literature [67] [68], which is the reason
why the proposed model is named as “structured low rank” model. The low rank prior
and spatial continuity of the acoustic field are explained in the following subsections.
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3.2.1 Low rank spectral matrix

3.2.1.1 Low rank in acoustics
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Figure 3.4 – (a) Full spectral matrix SLpp, (b) Eigenvalues distribution of full spectral
matrix SLpp, (c) Measured spectral matrix Ŝmpp, (d) Eigenvalues distribution of measured
spectral matrix Ŝmpp.

In acoustics, the rank of the spectral matrix has its specific physical implications.
The rank of SLpp measures the stochastic model complexity of the acoustic field that is
the number of latent variables (uncorrelated sources) required to produce the pressure
measurement p [69]. The conception of latent variables are introduced : the independent
variables with independent and identically distribution (iid), standardized complex ran-
dom variables εl, l = 1, ..., ns, ns < K are used to represent the coefficients ck(ζ) in Eq.
(3.3) as

ck(ζ) =
ns

∑
l=1
λklεl(ζ), k = 1, ...,K, (3.11)

and its matrix form is

cj = Λεj, j = 1, ...,Nj, (3.12)

where Λ ∈ CK×ns and εj ∈ Cns . With this matrix form equation, the Eq. (3.8) is reformu-
lated as

pj = HΛεj + nj, j = 1, ...,Nj, (3.13)

and the corresponding spectral matrix SLpp can be represented as

SLpp = HSccH∗ = HE{cjc∗j }H∗ = HΛE{εjεj∗}Λ∗H∗ = HΛΛ∗H∗, (3.14)

where H ∈ CMP×K , and E{εjεj∗} = Ins . It is obvious that the rank of matrix SLpp and Scc
is equal to number of latent variables ns which is physically interpreted as the number of
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acoustic sources. Furthermore, the rank of the spectral matrix indicates the correlation
of the acoustical field. For instance, a rank one spectral matrix corresponds to a fully
coherent field, whereas a spectral matrix with full rank corresponds to a diffuse field in
general. When the spectral matrix SLpp is low rank, there exists a hidden low dimension
structure in the spectral matrix : Fig. 3.4 shows an example of a spectral matrix SLpp
under a setup with 3 sources. The full spectral matrix SLpp is shown in Fig. 3.4 (a) with
corresponding eigenvalues in Fig. 3.4 (b) ; all the energy is concentrated in the first 3
eigenvalues which indicate the number of sources ; the spectral matrix Ŝmpp from sequential
measurements is shown in Fig. 3.4 (c) which is made only of diagonal blocks (unmeasured
parts are filled with zeros to show the image) with corresponding eigenvalues in Fig. 3.4
(d), and the energy is nearly scattered over the whole eigenvalues axis.

3.2.1.2 A Naive solution

The low rank assumption can be seen as an a priori information to be imposed to solve
the inverse problem from a Bayesian perspective [70] [71] [72]. Thus, it shrinks the space
of solution by adding a constraint. Accordingly, the spectral matrix completion problem
can be formulated as fitting a low rank spectral matrix S to the partial measurements
Ŝmpp, i.e.

find S ∈ CMP×MP such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Rank(S) = r
∥A (S) − Ŝmpp∥F ≤ ε
S∗ = S ⪰ 0.

(3.15)

Problem (3.15) can be solved by Alternating Projection [68] or other methods [67] [73]
under some conditions on the number and the distribution of the elements in the matrix,
the coherence of the eigenvectors, etc. Unfortunately, it has no unique solution for block
diagonal matrices of the type Ŝmpp. An example is given here to illustrate this fact (see [67]
for a proof). Assume that the measured matrix Ŝmpp is a 2-by-2 complex hermitian matrix
⎛
⎝

1 a−1

a 1
⎞
⎠

, where a = ∥a∥ejϕ is an unknown complex element and the diagonal elements

are known measurements without error. By definition the objective matrix S is a rank-1
matrix and it is straightforward to find that ∥a∥ejϕ = ∥a∥−1e−jϕ as a result of hermitian
symmetry. Therefore, the solution of Eq. (3.15) is non-unique since it can be written
{a ∶ ∥a∥ = 1,∀ϕ}. Thus, another constraint is needed as explained in the next section.

3.2.2 Enforcing spatial continuity of the acoustic field

The spectral matrix SLpp reflects the correlation between the Fourier coefficients of the
measurements, however, it does not contain information on the position of the micro-
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phones. For example, two adjacent columns in the spectral matrix must become equal
if the corresponding microphones are infinitely close to each other (nearly overlapping)
due to the spatial continuity of the acoustic field ; accordingly, this information must be
incorporated in the current problem. In this work, the spatial position of the microphones
is encoded in the matrix completion problem by introducing an additional constraint. It
is assumed that the measured pressure p with size MP × 1 can be decomposed onto a
dimension reduced spatial basis Φ ∈ CMP×Kp (Kp < MP ) with coefficients ϑ ∈ CKp×1 as
follows :

p =
Kp

∑
i=1
φi(r)ϑi = Φϑ, (3.16)

where φi(r) is the i-th column of matrix Φ and ϑi is the i-th entry of vector ϑ. In this
thesis, the Fourier basis is chosen, meaning that the acoustical field is decomposed as a
sum of “acoustical modes” [13] (details as how to construct this basis are given in chapter
5). In other words, a spatial structure is encoded. The coefficients ϑ are related to the
measurements as :

ϑ = Φ†p, (3.17)

where † denotes the pseudoinverse of a matrix as a result Φ is generally not invertible.
Then the smoothed pressure p̃ can be represented as [33]

p̃ = ΦΦ†p = Ψp, (3.18)

where Ψ = ΦΦ† is defined as a projection operator. Now, let S ≐ E{pp∗} and S̃ ≐ E{p̃p̃∗}.
Therefore,

S̃ = ΨSΨ∗. (3.19)

Equation (3.19) may be rewritten as ∥ΨSΨ∗ −S∥F ≤ ε where ε is the representation error
between ΨSΨ∗ and S owing to the Φ truncation. It is important that Ψ imposes a specific
structure that encodes the information on microphone positions into the matrix S. This
can be seen as another constraint to be added to Eq. (3.15). It is noted that the Ψ is

an orthogonal projection operator, which can be decomposed as U
⎛
⎝

IKp 0
0 0

⎞
⎠
U∗, where

UU∗ = I, IKp is the identity matrix with n elements, and U is the modal matrix in the
eigenvalue decomposition (EVD) of Φ. Then Eq. (3.18) can be written as

p̃ = Ψp =
Kp

∑
i=1

(p∗ui)∗ui. (3.20)
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This means that only the p∗ui i = 1...Kp part corresponding to the eigenvalues equal to
one are kept by this projection operator, and this is exactly the property of orthogonal
projection operator. It is important to emphasize that the role of the orthogonal projection
operator Ψ is to smooth the spectral matrix and to ensure the spatial continuity of the
acoustical field.

3.3 Cyclic Projection

This section now discusses as how to solve problem (3.10) by Cyclic Projection.

3.3.1 From Alternating Projection to Cyclic Projection

Alternating Projection is a method to find a point at the intersection of two closed
convex sets by using a sequence of projections from one set to the other [68]. The iteration
procedure can be defined sequentially as follows. Suppose that C and D are two closed
convex sets (every point on the line segment connecting every pair of points within the
set) in RN , and define PC and PD the projections on C and D respectively. The algorithm
starts with an arbitrary value xk ∈ C and then generates the iteration sequence :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yk = PD(xk)
xk+1 = PC(yk), k = 0,1,2...

where xk ∈ C and yk ∈ D. In words, xk ∈ C is projected onto yk ∈ D first, and second
yk ∈ D is projected back onto set C, and so forth. One of the simplest cases is when C
and D are closed convex sets and C⋂D ≠ ∅ (the intersection is non-empty), in which
case the convergence rate of the iterations is proven to be linear [74]. When C⋂D = ∅
(the intersection is empty), alternating projections yields a pair of points in C and D that
have minimum distance ∥x⋆ − y⋆∥2 = dist(C,D), where xk converges to x⋆ in C and yk

converges to y⋆ in D [75]. When C or D is not a convex set, alternating projection has no
convergence proof in general (despite local linear convergence when the strong regularity
condition holds [76]), yet it is still a popular heuristic to solve the optimization problem.
Cyclic projection (CP) is an extension of the basic alternating projection algorithm that
generalizes the number of sets to more than 2. Specifically, it can find a point at the
intersection of k > 2 sets by projecting alternatively onto C1, then C2, . . . , and then Ck.
In order to use CP to solve the current problem in this thesis, the sets and the projection
operators should be defined separately, which this is the objective of the next section.
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3.3.2 Predefined sets and operators

3.3.2.1 Sampling operator

The sampling operator and its corresponding set are early defined according to the
specific structure of the spectral matrix resulting from the sequential measurements mode.
Sequential measurements produce a block diagonal spectral matrix, thus C1 is defined as
a (affine) set in the set of n × n Hermitian matrices Sn with specified block entries and
the sampling operator PC1 is defined such that

B = PC1(A) with Bij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[Ŝmpp]ij ij ∈ Υ

[A]ij ij ∉ Υ,
(3.21)

where []ij denotes the (i, j) element of a matrix and Υ denotes the positions of fixed
block diagonal entries. The sampling operator forces the actual measurements to be kept
unchanged in each iteration step.

3.3.2.2 Eigenvalue truncation operator

C2 = Sn+ is defined as the set of Hermitian positive semidefinite n × n matrices with
reduced rank. Note this is a non-convex set [77] and the corresponding projection B =
PC2(A) is defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = ∑n
i=1 σ

2
i uiu∗

i = ∑r
i=1 σ

2
i uiu∗

i +∑n
i=r+1 σ

2
i uiu∗

i

B = ∑r
i=1 σ

2
i uiu∗

i .

First, matrix A is factorized into n eigen-elements, then only the first r largest eigenvalues
(σ2

i where i from 1 to r) and their corresponding eigenvectors (ui where i from 1 to r) are
preserved. The eigenvalue truncation operator can be recognized as a hard threshold [78]
[79] to fulfill the low rank matrix approximation of the spectral matrix.

3.3.2.3 Spatial continuity enforcing operator

The last closed convex set is defined as C3 = {B ∈ CMP×MP ∶ B = ΨAΨ∗,∀A = A∗}.
The corresponding projection PC3(A) denotes an operator that maps the elements A onto
set C3 by B = ΨAΨ∗. The introduction of this operator is to endow the spectral matrix
with information on spatial positions of the microphones, meanwhile enforcing the spatial
continuity of acoustic field.
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3.3.3 Cyclic Projection

The solution of problem (3.10) is assumed to be located at the intersection of the three
sets C1,C2, and C3, and is solved by CP. First, the initial value Ŝ{0} is given (for example,
a full zeros matrix) ; in each step, the measurements are assigned by projecting Ŝ{k} onto
set C1 to produce S̃{k}. Subsequently, matrix S̃{k} is decomposed into eigen-elements, and
a low rank approximation is proceeded by truncation : this projects S̃{k} onto set C2 to
produce Š{k}. Last, spatial continuity is enforced by projecting Š{k} onto set C3 to produce
Ŝ{k+1}. In CP, the order of the cycles is not important, thus the procedure that is described
here is only one possibility. For instance, it could also be written as C3 →C2 →C1 and so
on. The iteration will be stopped when ∥[Ŝm]ij−[Š{k}]ij∥F

∥[Ŝm]ij∥F
≤ SC, ij ∈ Υ (SC is a constant

value that is chosen by user) after projecting onto C1 and C2, then forcing the final
solution to be low rank. The proposed CP has only three parameters to tune : the first
one is the maximum iteration number Mmax, the second one is the stopping criterion SC
which usually depends on the measurement environments and noise level, and the third
one is the rank r which reflects the number of uncorrelated sources in the field.

Algorithm 1: Cyclic Projection (CP)/(the Matlab codes are attached in the ap-
pendix section)

1: Starts with Ŝ{0} ∈ CMP×MP .
2: While Iteration number <Mmax do
3: S̃{k} = PC1(Ŝ{k}). see Eq.(3.21) for calculation

(Keep the measurements unchanged in diagonal blocks : project from set C3
onto set C1)

4: S̃{k} = ∑n
i=1 σ

2
i uiu∗

i .

5: Š{k} = PC2(S̃{k}) = ∑r
i=1 σ

2
i uiu∗

i .
(Eigenvalues truncation : project from set C1 onto set C2)

6: If Stopping criteria ≤ SC, break
7: Ŝ{k+1} = PC3(Š{k}) = ΨŠ{k}Ψ∗.

(Enforcing spatial continuity : project from set C2 onto set C3)
8: go to step 3.

3.3.4 Error analysis of the results

Four kinds of errors are considered : (1) background noise, (2) estimation errors of the
spectral matrix, (3) model errors (for example the calibration error of the microphones,
the position error of the array etc), and (4) representation errors caused by the smoothing
operator in Eq.(3.18). The operator PC1 and PC2 bring about the errors (1)(2) and (1)
separately, and PC3 brings about the errors (3)(4). The structured low rank model (3.10)
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can be reformulated as the projection representation with errors terms (ξ, ε, ε).

find S ∈ CMP×MP such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥PC2(S) − S∥F ≤ ξ (errors (1))
∥PC1(S) − S∥F ≤ ε (errors (1)(2))
∥PC3(S) − S∥F ≤ ε (errors (3)(4)).

(3.22)

This projection representation with error terms may provide more flexibility to apply the
CP algorithm in practice. For example, when the errors (1)(2) are too large and errors
(3)(4) are acceptable, then the user may choose the stopping criteria according to the
constraint ∥PC3(S{k}) − S{k+1}∥F ≤ ε.

3.4 Conclusion of the chapter
The problem of sequential measurements without or with limited number of references

has been investigated in this chapter. The main issue is that the phase relationships
between consecutive snapshots are missing and result in missing entries in the spectral
matrix. The approach proposed in this chapter boils down to a spectral matrix completion
problem which is modeled by a structured low rank model and solved by Cyclic Projection.
In particular, two of the ingredients : (1) the low rank property of the spectral matrix
and (2) the continuity of the acoustic field are highlighted.

• Low rank spectral matrix. The high correlation of the acoustical field implies a low
rank of the spectral matrix. The rank of the spectral matrix is consistent with the
number of “virtual source”, i.e. the number of equivalent uncorrelated sources the
acoustical field comprises.

• Continuity of the acoustic field. The high correlation of the acoustical field implies
that two columns of the spectral matrix tend to become identical as the correspond-
ing microphone positions become arbitrarily close to each other.
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4
Weakly sparse eigenvalue spectrum model and Fast

Iterative Shrinkage Thresholding Algorithm

In the structured low rank model of the previous chapter, the rank of the spectral
matrix was considered to be fixed and known (or at least estimated). This is equivalent
to assuming that the number of incoherent sources of the sound field is known. However,
this information is rarely available in practice and the estimation of the rank of a matrix
is a difficult problem in general. Thus, an alternative model is proposed to tackle this
difficulty : the eigenvalue spectrum is assumed to be weakly sparse instead of “exactly
sparse”, which means that the corresponding spectral matrix is of full rank but with
a few dominant eigenvalues. The nuclear norm is then minimized instead of imposing
a fixed reduced rank. A Fast Iterative Shrinkage Thresholding Algorithm (FISTA) is
proposed to solve the problem. Section 4.1 gives a very short introduction to sparse and low
rank constraints before we get into our practical problem. The weakly sparse eigenvalue
spectrum model is described in section 4.2. Then, a general mathematical formulation of
FISTA is introduced as a preparation to solve the current problem in section 4.3. The
FISTA algorithm is finally explained in section 4.4.

4.1 A very short introduction to sparse and low rank con-
straints

This section introduces the basic definitions and conceptions about sparsity and low
rank models. With the explosion of massive amounts of high-dimensional data in science
and engineering, new tools are required to extract intrinsic structure in high-dimensional
data so as to alleviate the curse of dimensionality [80] [81]. Sparse representation is a
rapidly evolving field of research [52], with several applications in acoustics [44] [45] [82]
[51]. A structured signal can be decomposed with a few elements in an over-complete
dictionary that reflects the low dimensional structure of the original signal. First, a un-
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derdetermined system of equations is considered :

y = Ax, (4.1)

where A is a m × n matrix with m ≪ n and x ∈ Rn, y ∈ Rm. Assume x is k-sparse
meaning that the number of nonzeros in the vector x is k, where k = ∥x∥l0 ≪ n and
∥x∥l0 ∶= #{i ∶ xi ≠ 0} denotes the number of nonzeros in vector x ; then a sparse solution
x can be obtained by solving the l0 norm optimization problem as follows,

minimize
x

∥x∥l0 subject to y = Ax. (4.2)

To solve problem (4.2) straightly is hopeless since it is a NP-hard problem [83]. However
it can be relaxed and solved by l1 norm minimization, which is a smooth approximation
(convex envelope) of l0. Thus, problem (4.2) can be reformulated as a convex optimization
problem [52],

minimize
x

∥x∥l1 subject to y = Ax, (4.3)

where ∥x∥l1 ∶= ∑n
i=1 ∣xi∣ which is the sum of the absolute values of all components of x. It

is noted that if y is contaminated by noise, then Eq. (4.3) is reformulated as [84]

minimize
x

∥x∥l1 subject to ∥Ax − y∥l2 ≤ ε, (4.4)

or its Lagrangian version

minimize
x

λ ∥x∥l1 + ∥Ax − y∥l2 , (4.5)

where l2 is the Euclidean norm of a vector , ∥x∥l2 ∶= ∑n
i=1 ∣xi∣2, ε is a parameter reflecting

the level of noise, and λ is a regularization parameter. The model (4.3) can be transformed
into a linear programming (LP) problem [85] as follows.

minimize
x,d

n

∑
i=1

di

subject to − di ≤ xi ≤ di
y = Ax,

(4.6)

and (4.4) can be represented as a second order cone programming (SOCP) problem [85]
(in fact, the linear programming problem is a subset of the SOCP problem), which are
currently both solved by the interior point method. In order to compute the Newton direc-
tion in the interior point method, a linear equation must be solved, which is problematic
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when the dimension of the coefficient vector and matrix A is large and results in high
computational complexity. Thus, one usually resorts to first order methods (i.e. methods
that have at most linear local error) to solve the l1 norm minimization. The Bregman iter-
ative algorithm and iteration shrinkage thresholding (IST) algorithm are two efficient first
order iteration methods to solve this problem. Firstly, Bregman iterative algorithm [86]
is inductively defined as follows, starting with x0 = p0 = 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk+1 = arg min
x∈Rn

{Dpk

J (x,xk) + 1
2∥Ax − y∥l2}

pk+1 = pk −AT (Axk+1 − y),
(4.7)

where the Bregman distance Dpk

J based on a convex functional J(⋅) between points x and
xk is defined as Dp

J (x,xk) = J(x)−J(xk)−⟨p,x−xk⟩, where p = ∇J(xk) denotes gradient
of function and here the function J(⋅) is specifically ∥x∥l1 . This Bregman iteration can
also be writen in a “adding back the residual” way as follows.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk+1 = arg min
x∈Rn

{(λ∥x∥l1 + 1
2∥Ax − yk∥l2}

yk+1 = yk + y −Axk+1.
(4.8)

The above iteration can be further written as the linearized bregman iteration [87] by
introducing the idea of fixed point iteration,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk = shrink(vk−1, τ)
vk = vk−1 + δkAT (y −Axk),

(4.9)

where the shrink operation is defined as shrink(vk, τ) = max{∣vki ∣ − τ,0}sgn(vki ), δk is
the step size, τ is the shrinkage parameter and sgn is sign function. Another iterative
shrinkage thresholding (IST) [88] [89] algorithm can be alternatively to solve the problem
(4.4) as follows,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk = shrink(vk−1, τδk−1)
vk = xk + δkAT (y −Axk).

(4.10)

It is obvious that the IST algorithm is obtained by replacing the vk in the second it-
eration step of linearized bregman iteration using the xk and the shrinkage parameter
are adjusted properly. Further theory about uniqueness of the sparsest solution and per-
formance analysis can be found in Ref. [52], and other algorithms for finding a sparse
solution can be found in [90] [86] [91].

A “low rank model” can be seen as an extension of sparse representation : the low
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rank property of a matrix is a natural generalization of the sparsity of a vector [92] [93],
which is defined as a matrix with only a few non zero singular values. The low rank model
assumes that the information of interest has a compact structure embedded in a high
dimensional space [81] [72], and it has some typical applications in system identification,
machine learning, and signal processing [94] [95] [96] [97] [98]. The conceptions of a low
rank constraint can be correspondingly represented as follows. First, Eq. (4.1) can be
generalized to a matrix equation as follows,

Y = A (X), (4.11)

with the linear map A ∶ Rm×n → Rm×n and X ∈ Rm×n, Y ∈ Rm×n. Assume X is a rank-r
matrix (where r ≪ min{m,n}), then the low rank solution to the matrix equation (4.11)
can be written as

minimize
X

Rank (X) subject to Y = A (X), (4.12)

Note that Rank(X) is the number of nonzero singular values of X, which is equivalent to
the l0 norm of the singular values vector σ(X) with σ1(X) ≥ σ2(X) ≥ ... ≥ σr(X) > 0 =
σr+1(X) = ... = σmin{m,n}(X). Thus (4.12) can be rewritten as

minimize
X

∥σ(X)∥l0 subject to Y = A (X). (4.13)

Relaxing the l0 norm to the l1 norm as before, the problem can be reformulated as

minimize
X

∥σ(X)∥l1 subject to Y = A (X). (4.14)

Let ∥X∥
∗
∶= ∑min{m,n}

k=1 σk(X) = ∥σ(X)∥l1 define the nuclear norm, with σk(X) the kth
singular value of X ; then the nuclear norm minimization problem can be written as [99]
[77]

minimize
X

∥X∥
∗

subject to Y = A (X). (4.15)

similarly to (4.4) and (4.5), its version accounted for the presence of additive noise can
be separately written as

minimize
X

∥X∥
∗

subject to ∥A (X) −Y∥F ≤ ε, (4.16)

and in Lagrangian form,

minimize
X

λ ∥X∥
∗
+ ∥A (X) −Y∥F , (4.17)
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where F is the Frobenius norm of a matrix, ε is a parameter reflecting the level of noise,
and λ is a regularization parameter. Further theory can be found in Ref. [67] [100]. Nuclear
norm heuristics can be formulated in terms of Semidefinite Programming (SDP) [101] :

minimize
X,W1,W2

trace(W1) + trace(W2)

subject to Y = A (X)
⎛
⎝

W1 X
X∗ W2

⎞
⎠
⪰ 0

(4.18)

where “trace” denotes the trace of a matrix and ⪰ 0 denotes positive semidefiniteness of
a matrix, which can be solved by interior point methods [102]. The interior point based
methods are problematic with the increase of the size of matrix since huge systems of
equations need to be solved to calculate the Newton direction. First order methods were
proposed to handle this problem. One kind of first order method is the Singular Value
Thresholding (SVT) [99] algorithm, which is inductively defined as follows, starting with
G0 = 0 ∈ Rm×n.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xk = shrink(Gk−1, τ)
Gk = Gk−1 + δk(Y −A (Xk)),

(4.19)

where δk is the step size, τ is the shrinkage parameter, the shrinkage operation is defined
as

shrink(Gk−1, τ) ∶= Udiag(max{σi − τ,0}sgn(σi))V∗, (4.20)

with U, diag(σi), V the SVD elements of matrix Gk−1. This iteration can be under-
stood as the linearized Bregman iteration [86] as explained above. Another kind of first
order method, the “iterative shrinkage thresholding” (IST), is proposed in [84], which is
inductively defined as follows,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xk = shrink(Gk−1, δkτ)
Gk = Xk + δk(Y −A (Xk)),

(4.21)

This is slightly different from the previous SVT algorithm, but it can be used to deduce
an acceleration version. The algorithm used in this chapter is the acceleration version of
this IST algorithm. Besides, other algorithms to solve the above nuclear minimization
problem can be found in [79] [78] [103] [104].
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4.2 Weakly sparse eigenvalue spectrum model and nuclear
norm minimization
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Figure 4.1 – (a) Eigenvalues distribution of spectral matrix with SNR = 30 dB and 3
sources, (b) Eigenvalues distribution of spectral matrix with SNR = 30 dB and 25 sources.
(the simulation setup in this example is explained in Fig. 5.1 (b).)

In the previous chapter, the proposed structured low rank model was formulated as
follows :

find S ∈ CMP×MP such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Rank(S) = r
∥A (S) − Ŝmpp∥F ≤ ε
∥ΨSΨ∗ − S∥F ≤ ε
S∗ = S ⪰ 0.

(4.22)

The rank of the spectral matrix was considered as a fixed truncation parameter r, which is
known a priori or can be estimated with sophisticated statistical method [105] [106]. It is
noted that the estimation of the rank is an arduous task in general. Figure 4.1 (a) shows the
eigenvalues distribution of the spectral matrix in the case of SNR = 30 dB and 3 sources,
the rank r = 3 is clearly identifiable. Figure 4.1 (b) shows the eigenvalues distribution of
the spectral matrix in the case of SNR = 30 dB and 25 sources, the determination of the
rank is less obvious. In order to overcome this difficulty, the structured low rank model
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can be reformulated as a weakly sparse eigenvalue spectrum model as follows :

minimize
S

∥S∥∗

subject to ∥A (S) − Ŝmpp∥F ≤ ε
∥ΨSΨ∗ − S∥F ≤ ε
S∗ = S ⪰ 0,

(4.23)

where ∥S∥∗ ∶= ∑MP
k=1 σ

2
k(S) is the nuclear norm [92] of matrix S computed on the eigen-

values σ2
1(S) ≥ σ2

2(S) ≥ ... ≥ σ2
MP (S). In the structured low rank model of the previous

chapter, the spectral matrix was assumed to be low rank which implied a sparse eigenvalue
spectrum ; a weakly sparse eigenvalue spectrum model assumes the eigenvalue spectrum
to be weakly sparse, which involves the l1 norm of the eigenvalues vector of the spectral
matrix.

4.3 Fast Iterative Shrinkage Thresholding Algorithm

In this section, a fast iterative shrinkage thresholding algorithm (FISTA) [107] [108]
is introduced to solve Eq. (4.23). First, the general FISTA is introduced.

4.3.1 From projection to proximity operators

The proposed structured low rank model can be generally formulated as a problem to
find a point in the intersection of several sets,

find x ∈
m

⋂
i=1
Ci where Ci is a closed convex set. (4.24)

To find a point x in the intersection of several sets C1 ... Cm ; CP activates each set
Ci, i = 1, ...,m individually by means of its projection operator PCi

, and its iteration
update rule can be written as

xk+1 = PC1 ...PCm(xk). (4.25)

Each projection PC(x) = y means that y is attained by projecting x ∈ Rn onto the
nonempty closed convex set C. It can be interpreted as the solution of the following
optimization problem

minimize
y

IC(y) + ∥x − y∥2
2, (4.26)
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where IC(y) is defined as IC(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if y ∈ C
∞, if y ∉ C

. The projection operator actually

finds a point y in C and meanwhile it has minimum distance to x. The sought weakly
sparse eigenvalue spectrum will be seen to minimize a combination of objective functions,

minimize
x

f1(x) + f2(x) + ...fm(x), (4.27)

with respect to some optimization variable x. A major challenge that arises in solving
this problem stems from some of the functions not being differentiable, which excludes
conventional smooth optimization techniques. In order to deal with this difficulty, the
functions f1, ..., fm are considered individually so as to yield an easily implementable
algorithm for each nonsmooth function, by proximity operators. Proximity operator proxf
is an extension of a projection operator from sets to functions. proxf(x) = y implies finding
y in the domain of f which renders f(y) + ∥x − y∥2

2 minimum, i.e,

minimize
y

f(y) + ∥x − y∥2
2. (4.28)

As compared with the projection operator in Eq. (4.26), the funtion IC(y) is replaced by
an arbitrary function f(y). Then the problem can be correspondingly solved by iterations
as follows

xk+1 = proxf1 ...proxfm
(xk). (4.29)

4.3.2 Fast Iterative Shrinkage Thresholding Algorithm in gen-
eral

An unconstrained continuously differentiable function minimization problem is con-
sidered, and it can be formulated as follows,

minimize
x∈R

f(x), (4.30)

where function f ∶ Rn → R is smooth convex function with Lipschitz gradient,

∥∇f(x) − ∇f(y)∥2 ≤ Lf∥x − y∥ for every x,y ∈ Rn, (4.31)

where ∇f(x) denotes gradient of function f(x) and Lf is Lipschitz gradient constant. It
is well known that a smooth convex function f(x) satisfies the following inequality,

f(x) ≥ f(y) + ⟨∇f(y),x − y⟩, (4.32)
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where the inner product ⟨∇f(y),x−y⟩ is calculated as ∇f(y)T (x−y). This inequality im-
plies geometrically that the tangent lines of the function denoted by f(y)+⟨∇f(y),x−y⟩
are underneath the function curve denoted by f(x). Since the function f(x) is assumed
with Lipschitz gradient, f(x) is also bounded by a family of local convex quadratic func-
tions with Hessain matrix LfI and thus,

f(y) + ⟨∇f(y),x − y⟩ ≤ f(x) ≤ f(y) + ⟨∇f(y),x − y⟩ + Lf2 ∥x − y∥2
2, (4.33)

where f(y) + ⟨∇f(y),x − y⟩ is the linear part of function f at point y and the quadratic
proximal term Lf

2 ∥x−y∥2
2 measures the local approximation error. Let consider an iteration

sequence xk generated by a basic gradient descent algorithm,

xk = xk−1 − µ∇f(xk−1), (4.34)

where µ is a step size. According to Eq. (4.33), this gradient iteration can be further
viewed as a proximal regularization of the linearized function f at xk−1 as follows,

xk = arg min
x

{f(xk−1) + ⟨∇f(xk−1),x − xk−1⟩ +
Lf
2 ∥x − xk−1∥2

2}. (4.35)

Thus, Eq. (4.30) is solved by reformulating problem (4.35). Based on the above analysis,
a more generic unconstrained convex optimization problem with two separated terms is
now considered :

minimize
x∈R

F (x) = f(x) + λg(x), (4.36)

where g(x) is a continuous convex function which is possibly non-smooth and λ is a
regularization parameter. Let the scalar step size be µ = 1

Lf
which is constant in each

iteration ; then the solution of Eq. (4.36) can be written iteratively as follows according
to Eq. (4.35).

xk = arg min
x

{f(xk−1) + ⟨∇f(xk−1),x − xk−1⟩ +
1

2µ∥x − xk−1∥2
2 + λg(x)}. (4.37)

Let’s complete the square and neglect constant terms ; Eq. (4.37) can then be converted
to a square form

xk = arg min
x

{ 1
2µ∥x − (xk−1 − µ∇f(xk−1))∥2

2 + λg(x)}. (4.38)
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The solution of Eq. (4.38) can be written as a proximal-gradient algorithm (as contrasted
to classic gradient algorithm),

xk = proxλµ(xk−1 − µ∇f(xk−1)), (4.39)

where proxλµ stands for the proximity operator with parameters (λ,µ) and the definition
of proximity operator depends on the function g(x). A list of proximity operator for its
corresponding function can be found in Ref. [109]. It is noted that Eq. (4.39) reduces to
the gradient descent

xk = xk−1 − µ∇f(xk−1) (4.40)

when g(x) = 0 and Eq. (4.39) reduces to proximal point algorithm when f(x) = 0,

xk = proxλµ(xk−1). (4.41)

Equation (4.36) can be further generalized as

minimize
x∈R

F (x) = f(x) + λg(x)

subject to x ∈ C,
(4.42)

where C is assumed to be a nonempty closed convex set ; then the iterative solution can
be correspondingly written as

xk = PC(proxλµ(xk−1 − µ∇f(xk−1))), (4.43)

where PC is the projection onto set C. Equation (4.43) shares a sublinear global rate of
convergence (the convergence speed of sequence {xk} to the optimal solution x⋆)

F (xk) − F (x⋆) ≃ O(1/k). (4.44)

A fast algorithm to accelerate the convergence was first investigated by Nesterov [110] and
later rediscovered by Beck and Teboulle [111] [107]. Therefore, the fast Iterative algorithm
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can be formulated as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = yk−1 − µ∇f(yk−1)
x̂k = proxλµ(yk) ≜ shrink(yk, λkµ)
xk = PC(x̂k)
tk+1 = 1

2(1 +
√

1 + 4t2k)
yk+1 = xk + tk−1

tk+1
(xk − xk−1),

(4.45)

where tk is introduced as an instrumental parameter to accelerate the iteration. When the
proximity operator proxλµ is calculated as a shrinkage operator proxλµ(yk) ≜ shrink(yk, λkµ)
which is one kind of proximity operator corresponding to a category of functions g(x),
the algorithm is named Fast Iterative Shrinkage Thresholding Algorithm (FISTA) and its
convergence rate is shown to be

F (xk) − F (x⋆) ≃ O(1/k2). (4.46)

4.4 Weakly sparse eigenvalue spectrum model solved by
FISTA

Figure 4.2 – Illustration the iterations of FISTA.

The weakly sparse eigenvalue spectrum model of section 4.2 can be further rewritten
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in a penalized form as follows :

minimize
S

∥A (S) − Ŝmpp∥2
F + λ∥S∥∗

subject to ∥ΨSΨ∗ − S∥F ≤ ε
S∗ = S ⪰ 0.

(4.47)

It is noted that ∥ΨSΨ∗ − S∥F is a small quantity that reflects the representation error
between ΨSΨ∗ and S ; thus this term can be simply enforced by setting ΨSΨ∗ = S in
each iteration. This can be further written as

minimize
S

∥A (S) − Ŝmpp∥2
F + λ∥S∥∗

subject to x ∈ C3,
(4.48)

where C3 = {B ∈ CMP×MP ∶ B = ΨAΨ∗,∀A = A∗}. The corresponding projection PC3(A)
denotes an operator that maps the elements (A) onto set C3 by B = ΨAΨ∗. As compared
with the generic model (4.36), it is found that ∥A (S) − Ŝmpp∥2

F is a convex function with
Lipschiz gradient Lf and this term can be recognized as f(x) in the generic model. ∥S∥∗
is a non-smooth convex function that can be recognized as g(x) in the generic model.
Thus the solution can be written as follows according to Eq. (4.39),

Sk = shrink(Sk−1 − µ∇f(Sk−1), λµ), (4.49)

where µ = 1
Lf

and the gradient [99] (to be more accurate, subgradient [112] here) of the
function f(S) = ∥A (S) − Ŝmpp∥2

F is given by

∇f(Sk−1) = A (S) − Ŝm
pp. (4.50)

Let Gk = Sk−1−µ∇f(Sk−1) ; the soft thresholding operater shrink(Gk, λkµ) can be defined
as the following optimization problem,

shrink(Gk, λkµ) = arg min
Y

1
2∥Y −Gk∥2

F + λkµ∥Y∥∗. (4.51)

The soft thresholding operater tries to find a matrix Y as close as possible to Gk with
minimum nuclear norm, which is calculated as Udiag(max{σ2

i −λkµ,0})U∗, where U nad
diag(σ2

i ) are the elements of the Eigenvalue Decomposition (EVD) of matrix Gk, and
max{σ2

i − λkµ,0} takes the maximum value between 0 and σ2
i − λkµ. Thus, according to

Eq. (4.45) and with the definition of Eqs. (4.50) and (4.51), the FISTA iteration can be
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finally formulated as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gk = Gk−1 − µ(A (Gk−1) − Ŝmpp)
S̃k = shrink(Gk, λkµ)
Sk = ΨS̃kΨ∗

tk+1 = 1
2(1 +

√
1 + 4t2k)

Gk+1 = Sk + tk−1
tk+1

(Sk − Sk−1).

(4.52)

Continuation technique [86] is used here to tune the regularization parameter λ [91] [84]
[113]. It can be seen as a method to solve a sequence of problems (4.36) defined by
an increasing sequence {λk} : λ0 as an initial regularization parameter and λd as final
regularization parameter are chosen firstly ; a high starting value of λ implies stronger
regularization and the optimal manifold [114] has lower dimension and is easier identify ;
by decreasing the regularization parameter λ step by step (with a ratio η) ; a coarse to fine
search is achieved in the solution space. It is noted that only a heuristic understanding
is given here since there is not much analysis of this approach in the literature. The full
algorithm is illustrated in Fig. 4.2 and the whole procedure of FISTA is listed in Algorithm
2. The algorithm is stopped by the following criterion :

∥Ŝmpp{ij} −Gk+1{ij}∥F
∥Ŝmpp{ij}∥F

≤ SC, ij ∈ Υ, (4.53)

where SC is a constant value that is chosen by user.

4.5 Conclusion of the chapter
The problem of sequential measurements without reference suffers from the issue that

the phase relationships between consecutive snapshots are missing and result in missing
entries of the spectral matrix. A Weakly sparse eigenvalue spectrum model has been
proposed to solve this problem, which is shown to boil down to minimizing the nuclear
norm of a spectral matrix subject to measurements fitting, hermitian symmetry, and
spatial continuity of the sound field. A Fast iterative shrinkage thresholding algorithm
(FISTA) has been proposed to solve this nuclear norm minimization problem. The method
benefits from “weakly sparse” eigenvalue spectrum assumption, which has no requirement
of a “fixed rank” as in previous structured low rank model.
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Algorithm 2: Nuclear Norm minimization by FISTA (the Matlab codes are attached
in the appendix section)

1: Starts with G0 = S0 = 0 ∈ CMP×MP , t1 = 1 ; µ is step size, λ0 is a initial regularization
parameter and λd is the final regularization parameter, and η is the radio to be
decreased for λk−1 in each step.

2: While λk ≥ λd do
3: For 1 ∶ Nm

4: Gk = Gk−1 − µ(A (Gk−1) − Ŝmpp)
5: S̃k = shrink(Gk, λkµ)
6: Sk = ΨS̃kΨ∗

7: tk+1 = 1
2(1 +

√
1 + 4t2k)

8: Gk+1 = Sk + tk−1
tk+1

(Sk − Sk−1)
9: End

10: If Stopping criteria ≤ SC,
11: break
12: End for if
13: λk = max(ηλk−1, λd)
14: Go to step 2.
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5
Simulation and experimental validation

The structured low rank model and its corresponding algorithm, Cyclic Projection
(CP), as well as the weakly sparse eigenvalue spectrum model and its corresponding al-
gorithm, Fast Iterative shrinkage thresholding algorithm (FISTA), have been explained
in Chapter 2 and Chapter 3, respectively. The objective of this chapter is to test CP and
FISTA in diverse simulation and experimental setups. A common simulation platform
with five kinds of setups is constructed in section 5.1, simulation results about sequential
measurements without reference are given in section 5.2, sequential measurements per-
formance analysis with various SNRs is investigated in section 5.2.2, simulation results
about sequential measurements with different shift distances are illustrated in section 5.3,
results of sequential measurements with references are given in section 5.4, and finally,
CP and FISTA are validated with experimental data in section 5.5.

5.1 Simulation setups and parameters

In this section, several simulations are constructed to test the sequential measurements
algorithms with and without references under various scenarios. Three point sources with
equivalent unit magnitudes located separately at (0.2701,−0.0084), (−0.1613,0.2348),
(0.0641,0.1573) (meters) are simulated to generate the acoustic field. In order to compare
the errors of acoustical sources reconstruction hereafter, the source plane is discretized
uniformely by a 41× 41 grid with distance 0.025 m, length 1 m and width 1 m, and these
three point sources are expanded in a B-spline basis [4] to produce a smoothed velocity
distribution ; an example of simulated sources is given in Fig. 5.2. The air mass density
is 1.2 kg/m3 and the sound velocity is 341 m/s. The measurement plane is located at 0.1
m away from the source plane : the microphones are uniformly distributed with spacing
0.1 m in a square array with side length 0.4 m ; the total number of microphones in the
array is 25. Complex Gaussian noise is added to 100 snapshots to produce the measured
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Figure 5.1 – Simulation setups : (a) A prototype array with 25 microphones (center
microphone position is marked with red cross), (b) Setup 1, (c) Setup 2, (d) Setup 3 (the
references microphones are marked with red point), (e) Setup 4, (f) Setup 5 (only the
case without reference is shown in setups 3, 4, and 5, and center microphone position in
prototype array is shifted 9 times sequentially which is marked with red crosses in setups
1, 2, 3, 4 and 5).

Figure 5.2 – Velocity distribution of simulated sources.
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pressures (in frequency domain), and simultaneous measurement spectral matrix (full ma-
trix) and sequential measurements spectral matrix Ŝmpp are separately simulated. All the
simulations in this thesis are based upon five setups.

• Setup 1 : simulation of sequential measurements without reference (see Fig. 5.1
(b)). The prototype array is shifted 9 times sequentially at positions (−0.16,−0.16),
(−0.16,0.08), (−0.16,0.16), (0.08,−0.16), (0.08,0.08), (0.08,0.16), (0.16,−0.16),
(0.16,0.08), (0.16,0.16) (meters). This setup is mainly used to verify and test the
CP/FISTA algorithm under diverse choices of bases and SNRs in the case without
reference.

• Setup 2 : simulation of sequential measurements with references. The sequential
measurements are carried out as in Setup 1, but different numbers of references are
considered :
– 4 references (see Fig. 5.1 (c)) at positions (−0.20,0.25), (−0.20,0.15), (−0.20,0.05),

(−0.20,−0.05).
– 3 references at positions (−0.20,0.25), (−0.20,0.15), (−0.20,0.05).
– 2 references at positions (−0.20,0.25), (−0.20,0.15).
– 1 reference at positions (−0.20,0.25) (meters).
A performance comparison with the classic method [58] is provided by using this
setup.

Setup 3, 4 and 5 are used to investigate the performance of algorithms with respect to
different relative distances between consecutive measurements. The positions of references
are as in Setup 2.

• Setup 3 : simulation of sequential measurements without and with references (see
Fig. 5.1 (d)) : the prototype array is shifted 9 times sequentially at positions
(−0.42,−0.42), (−0.42,0.08), (−0.42,0.43), (0.08,−0.42), (0.08,0.08), (0.08,0.43),
(0.43,−0.42), (0.43,0.08), (0.43,0.43) (meters).

• Setup 4 : simulation of sequential measurements without and with references (see
Fig. 5.1 (e)) : the prototype array is shifted 9 times sequentially at positions
(−0.3,−0.3), (−0.3,0.08), (−0.3,0.3), (0.08,−0.3), (0.08,0.08), (0.08,0.3), (0.3,−0.3),
(0.3,0.08), (0.3,0.3) (meters).

• Setup 5 : simulation of sequential measurements without and with references (see
Fig. 5.1 (f)) : the prototype array is moved 9 times sequentially at positions
(−0.22,−0.22), (−0.22,0.08), (−0.22,0.22), (0.08,−0.22), (0.08,0.08), (0.08,0.22),
(0.22,−0.22), (0.22,0.08), (0.22,0.22) (meters).

The parameters of the CP algorithm are chosen as follows : maximum iteration number
Mmax = 6000, stopping criteria SC = 10−3, rank r = 3. The parameters of the FISTA are
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chosen as follows : maximum iteration for each regularization step Nm = 10, stopping crite-
ria SC = 10−3, initial regularization parameter λ0 = ∥Ŝmpp∥F , final regularization parameter
λd = 1e−16λ0, ratio η = 0.7 and step size µ = 1.2. Two figures of merit are considered : (1)
the spectral matrix completion error (MCE) calculated as

MCE = ∥S{sim}
pp − S{com}

pp ∥F
∥S{sim}

pp ∥F
, (5.1)

where S{sim}
pp is the simulated spectral matrix and S{com}

pp is the completed spectral matrix
and (2) the acoustic source reconstruction error (ARE) calculated as

ARE = ∥S{sim} − S{rec}∥F
∥S{sim}∥F

, (5.2)

where S{sim} is the simulated source and S{rec} is the reconstructed one using the method
of Ref [4] based on the completed spectral matrix.

5.2 Sequential measurements without reference

5.2.1 Choice of spatial basis

The purpose of this subsection is to give the guideline to construct the basis, and only
CP is used here to verify the results since the basis that are used in CP and FISTA is
same. First, the spectral matrix completion results are investigated with the Fourier basis
in Setup 1 and the SNR is fixed to 60 dB. The basis functions of the Fourier basis are
Φ(x, y) = ei(kxx+kyy) where x, y are the coordinates of the microphones in the array and kx
and ky the wavenumbers along the x and y directions respectively (note that Fourier basis
is non-regular sampled). The wavenumbers are discretized as knx = n∆kx (resp. kny = n∆ky)
n = −N, ...,N where the maximum spatial frequency kmax = N∆kx = π

∆x (resp.N∆ky = π
∆y)

is related to the minimum spatial resolution ∆x (resp. ∆y) and ∆kx = 2π
Lx

(resp. ∆ky = 2π
Ly

)
is the spatial resolution related to the aperture Lx (resp. Ly). The first group of bases
is constructed with Lx = Ly = 1 m and ∆x (= ∆y) is set to 0.12, 0.11, 0.10, 0.09, 0.08
(meters), resulting in dimensions of 225×64, 225×81, 225×100, 225×121, 225×144 respec-
tively. The corresponding MCE curves up to 3 kHz are shown in Fig. 5.3 (a). When more
and more basis components are introduced up to a certain point about 144 components
corresponding to ∆x = 0.08 m, the MCE decreases. However, this increase can not be
unlimited (the guideline and the safe bound to construct the basis will be explained later
in this section) . The second group of spatial bases is constructed with a measurement
aperture Lx = Ly = 2 m and ∆x is set to 0.24, 0.22, 0.20, 0.18, 0.16 (meters), resulting to
basis dimensions of 225 × 64, 225 × 81, 225 × 100, 225 × 121, 225 × 144 respectively. The
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Figure 5.3 – Sequential measurements with different spatial bases : (a) Lx = Ly = 1 m,
(b) Lx = Ly = 2 m (spatial bases are indicated by their dimensions 225 × 64, 225 × 81,
225 × 100, 225 × 121, 225 × 144), (c) 64 × 64 Fourier basis with parameters Lx = Ly = 1
m and ∆x = ∆y = 0.12 m, (d) 64 × 64 Fourier basis with parameters Lx = Ly = 2 m and
∆x = ∆y = 0.24 m.
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corresponding MCE curves are shown in Fig. 5.3 (b). Similar phenomena can be observed
as in the previous case, yet the performance is slightly inferior in general : the aperture
is chosen large, resulting in fewer high frequency components. This is illustrated in Fig.
5.3 (c)(d), where two bases with identical dimensions 64 × 64 are compared.

Spatial position

Correlation

correlation length

Spatial Fourier basis

Spatial position

minimum spatial resolution of the Fourier basis

average distance between the microphones 

of sequential measurements

A guideline to construct the basis

Figure 5.4 – Basic rule to construct the spatial Fourier basis. lc denotes the correlation
length of the acoustic correlation function (which relates to the bandwidth of the acoustic
field signal) ; dc is the average distance between the microphones of sequential measure-
ments ; ∆x(resp.∆y) is minimum spatial resolution of the Fourier basis in x coordinate
(y coordinate).

It is noted that one fundamental assumption in this thesis is that the acoustical field
is highly correlated, this assumption implies the correlation length lc of the acoustic
field must be larger than the average distance dc between the microphones of sequential
measurements : lc > dc (one example is that two sequential measurements can not be
carried out too far from each other). Thus, the basic guideline to construct the Fourier
basis is as follows : ∆x(∆y) should be larger than the correlation length lc of the acoustic
field. Besides, the Nyquist-Shannon sampling theorem requires that ∆x(∆y) should be
at least twice as large as the average distance dc between the microphones of sequential
measurements. Thus, the rule ∆x(∆y) ≥ min{lc,2dc} may be used as illustrated in Fig.
5.4. In the following, the basis is constructed with settings ∆x = 0.08 m and Lx = Ly = 1
m (the corresponding dimension is 225 × 144), although this choice may not be optimal
for all the setups.

Discussion : another way to construct the basis is by introducing the analytical Green
function, yet this requires certain information about the a priori source distribution ;
Therefore the Fourier basis makes the methods proposed in this thesis truly flexible in
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the context of a non-intrusive approach.

5.2.2 Sequential measurements performance analysis with vari-
ous SNRs
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Figure 5.5 – Sequential measurements without reference (Setup 1) : (a) MCE without
reference by CP, (b) ARE without reference by CP.
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Figure 5.6 – Sequential measurements without reference (Setup 1) : (a) MCE without
reference by FISTA, (b) ARE without reference by FISTA.

Setup 1 is used here to verify the performance of spectral matrix completion with
respect to various values of SNR. Figure 5.5 (a) illustrates the spectral matrix completion
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results by CP. It is seen that the MCE decreases with the SNR ; although the perfor-
mance of CP is influenced by noise, the MCE in the whole range is less than 0.12. The
phenomenon that MCE in 30 dB are lower than in 60 dB at some frequency range is ob-
served in the simulation is caused mainly by the non optimal choice of the basis function :
when the SNR is high (for example SNR = 60 dB and 30 dB), the model errors may play
a key role in the final results (the basis here may be a better basis for 30 dB than 60 dB,
thus 30 dB case has less model errors) ; when the SNR is relatively low (for example SNR
= 20 dB and 10 dB), the noise may play a key role in the final results. The completed
spectral matrix is further used to reconstruct the sources by back-propagation [4]. Figure
5.5 (b) illustrates the acoustic source reconstruction results. It is remarked that the ARE
decreases with frequency in general. The spatial aliasing frequency of the prototype array
is 1700 Hz, and the ARE by using sequential measurements is far less than 0.01 even at
3000 Hz, which greatly improves the maximum working frequency. It is also observed that
the ARE can be quite low even with a relatively high MCE of the spectral matrix ; take
for example 3000 Hz with SNR = 10 dB : the MCE is 0.1081, whereas the ARE is 0.0399.
This can be explained as a result of regularization which acts as a low pass filter that
filtrates errors existing at high frequencies.

Similar results by FISTA are given in Fig. 5.6, which is competitive with CP. Note
that the ARE returned by FISTA in Fig. 5.6 (b) is slightly different from the ARE
returned by CP in Fig. 5.5 (b) since matrix completion and source reconstruction are two
independent inverse problems as mentioned before ; when the regularization parameters
used in source reconstruction based on the spectral matrix completed by CP and FISTA
are set identically, then similar results are obtained in Fig. 5.5 (b) and 5.6 (b).

5.3 Sequential measurements with different shift distances

The simulation of this section are based on Setup 1 to 5 without reference. Figure
5.7 (a) and Fig. 5.7 (b) show the MCE and ARE respectively, with the shift distances
increased from Setup 5 to Setup 4 to Setup 3. It is seen that the MCE decreases with
the shift distance. Small shift can capture more correlation of the acoustical field ; on the
contrary, if sequential measurements are carried out far from each other, spatial correlation
is lost which renders the spectral matrix harder to be completed. Thus, a good spectral
matrix completion and acoustical source reconstruction performance depends on the shifts
between sequential measurements. Figure 5.7 (c)(d) shows the MCE and ARE in the case
of one reference. When the shift is too large, both the MCE and the ARE are affected.
Similar facts can be also observed when the number of references is increased in Fig. 5.7
(e)(f) and Fig. 5.8 (a)(b)(c)(d). Figures 5.9 and 5.10 show the results of FISTA, which
appear similar to the results of CP shown in Fig. 5.7 and Fig. 5.8. FISTA has a numerical
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Figure 5.7 – Reconstruction results analysis with CP : (a) MCE without reference, (b)
ARE without reference. MCE and ARE : (c)(d) with 1 reference, (e)(f) with 2 references.
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Figure 5.8 – Reconstruction results analysis with CP, MCE and ARE : (a)(b) with 3
reference, (c)(d) with 4 references.
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Figure 5.9 – Reconstruction results analysis with FISTA : (a) MCE without reference, (b)
ARE without reference. MCE and ARE : (c)(d) with 1 reference, (e)(f) with 2 references.
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Figure 5.10 – Reconstruction results analysis with FISTA, MCE and ARE : (a)(b) with
3 reference, (c)(d) with 4 references.
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problem in setup 3 with the current parameters, where the SVD does not seem to converge
after certain steps (this can however be fixed by modifying the parameters).

5.4 Sequential measurements with references
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Figure 5.11 – Reconstruction error with different SNRs and different numbers of refer-
ences : (a) MCE with SNR = 60 dB, (b) ARE with SNR = 60 dB, (c) MCE with SNR
= 30 dB, (d) ARE with SNR = 30 dB. (CP results are shown in black (as the legend
in (b)) : with 1 reference case by upward-pointing triangle ; with 2 references case by
downward-pointing triangle ; with 3 references case by diamond ; with 4 references case
by circle. MS results are shown in gray (as the legend in (b)) : with 1 reference case by
square ; with 2 references case by right-pointing triangle ; with 3 references case by cross ;
with 4 references case by asterisk.)

In this section, the simulation based on Setup 1 to 5 with references are firstly inves-
tigated. CP and FISTA are also investigated in the case of references under setup 2 and
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Figure 5.12 – Reconstruction error with different SNRs : (a) MCE with SNR = 20 dB,
(b) ARE with SNR = 20 dB, (c) MCE with SNR = 10 dB, (d) ARE with SNR = 10 dB.
(CP results are shown in black (as the legend in (b)) : with 1 reference case by upward-
pointing triangle ; with 2 references case by downward-pointing triangle ; with 3 references
case by diamond ; with 4 references case by circle. MS results are shown in gray (as the
legend in (b)) : with 1 reference case by square ; with 2 references case by right-pointing
triangle ; with 3 references case by cross ; with 4 references case by asterisk.)
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Figure 5.13 – Reconstruction error analysis with different SNRs and different number of
references with FISTA : (a) MCE with SNR = 60 dB, (b) ARE with SNR = 60 dB, (c)
MCE with SNR = 30 dB, (d) ARE with SNR = 30 dB. (FISTA results are shown in black
(as the legend in (b)) : with 1 reference case by upward-pointing triangle ; with 2 references
case by downward-pointing triangle ; with 3 references case by diamond ; with 4 references
case by circle. MS results are shown in gray (as the legend in (b)) : with 1 reference case
by square ; with 2 references case by right-pointing triangle ; with 3 references case by
cross ; with 4 references case by asterisk.)
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Figure 5.14 – Reconstruction error analysis with different SNRs with FISTA : (a) MCE
with SNR = 20 dB, (b) ARE with SNR = 20 dB, (c) MCE with SNR = 10 dB, (d) ARE
with SNR = 10 dB. (FISTA results are shown in black (as the legend in (b)) : with 1
reference case by upward-pointing triangle ; with 2 references case by downward-pointing
triangle ; with 3 references case by diamond ; with 4 references case by circle. MS results
are shown in gray (as the legend in (b)) : with 1 reference case by square ; with 2 references
case by right-pointing triangle ; with 3 references case by cross ; with 4 references case by
asterisk.)
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Figure 5.15 – Mean error of the MCE and ARE of all the frequencies (300 - 3000 Hz)
and SNRs (60dB, 30dB, 20dB, 10dB) with respect to the number of references : (a) Mean
MCE, (b) Mean ARE.

compared with the classical reference-based which is optimal in the mean square sense
(Mean Square, MS) method [58]. The following cases are identified :

1) The number of references is larger than the number of sources (i.e 4 references).
When SNR = 60 dB, the spectral matrix completion error by MS is far less than
by CP/FISTA (see Fig. 5.11 (a) and Fig. 5.13 (a)) ; when SNR = 30 dB, CP and
FISTA are comparable with MS (see Fig. 5.11 (c) and Fig. 5.13 (c)) ; CP/FISTA
outperforms MS when SNR ≤ 20 dB (see Fig. 5.12 (a), Fig. 5.12 (c), Fig. 5.14 (a) and
Fig. 5.14 (c)). When the number of references is greater than or equal to the number
of sources in the absence of noise and the MS method is optimal (in the mean square
sense) ; the reference signals then provide enough information on correlation between
sequential measurements. However the performance of MS rapidly deteriorates when
the level of noise increases.

2) The number of references is equal to the number of sources (i.e 3 references). When
SNR = 60 dB, the spectral matrix completion error by MS is still far less than by
CP/FISTA (see Fig. 5.11 (a) and Fig. 5.13 (a)) ; CP/FISTA outperforms MS when
the SNR ≤ 30 dB(see Fig. 5.11 (c), Fig. 5.12 (a), Fig. 5.12 (c), Fig. 5.13 (c), Fig.
5.14 (a) and Fig. 5.14 (c)). Similar conclusion holds as in the previous case, yet with
increased sensitivity to noise.

3) The number of references is less than the number of sources (i.e 2 references or 1
reference). The MS generally fails to deal with this case, whereas CP and FISTA
still work very well. The MCE is illustrated in Fig. 5.11 (a), Fig. 5.11 (c), Fig. 5.12
(a), Fig. 5.12 (c), Fig. 5.13 (a), Fig. 5.13 (c), Fig. 5.14 (a) and Fig. 5.14 (c).
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In conclusion, it is seen that CP/FISTA returns reasonably low errors in all investigated
scenarios, contrary to MS which rapidly fails when the number of references is insufficient
or becomes noisy. It is remarkable that CP/FISTA achieves more or less the same figure of
merit independently of the number of references. Since the CP/FISTA is designed to solve
a matrix completion problem, and the matrix completion performance mainly depends
on the number of known elements (the more the better) and the rank of the matrix (the
small the better) ; and when the rank is small enough (rank equal to three as compared the
dimension of matrix is 225 in the simulation), each reference only increase 2 lines known
elements about the matrix (as in Fig. 3.3), this insignificantly increased known elements
may be difficult to enhance the matrix completion performance significantly. Lastly, a
mean MCE and ARE of all the frequencies and SNRs (it calculates the mean of all the
curve in Fig. 5.11, 5.12, 5.13 and Fig. 5.14 along the frequency and SNRs, which returns
one element for each of number of references) with respect to the increase of number
of references are shown in Fig. 5.15, providing a global perspective to the performance
of CP/FISTA and MS (note that there exists huge mean error difference between the
CP/FISTA and MS since MS is too sensitive to the noise especially when SNR = 10dB).
As an endnote to this section, it should be highlighted that spectral matrix completion
and acoustical source reconstruction reflect two different problems. ARE in Fig. 5.11 (b),
Fig. 5.11 (d), Fig. 5.12 (b), Fig. 5.12 (d), Fig. 5.13 (b), Fig. 5.13 (d), Fig. 5.14 (b) and
Fig. 5.14 (d) is not only influenced by the spectral matrix completion errors but also the
regularization. The spectral matrix completion errors are not always positively correlated
with the acoustical source reconstruction error : ARE could be low with a high MCE due
to the results of regularization.

5.5 Experimental validation

This section now illustrates the methodology on measurements made in a semi-anechoic
chamber. The experimental setup is shown in Fig. 5.16 (a). The sources are 3 Fostex 6301B
speakers with 0.1 m diameter and working frequency is from 80 Hz to 13 kHz, plates with
absorbent material are placed on the ground in order to limit the reflections of the ground.
A rectangular plane array is used with 5 × 6 GRAS microphones PQ40 regularly spaced
every 0.1 m. A data acquisition system OROS with 32 channels associated with the soft-
ware NVgate is used. The proposed experiment makes use of 3 independent sources. Two
are generated with the software NVgate (OROS), and the third one is generated exter-
nally. The three sources are placed in a plane parallel to the array. The height of the
center of the array is 1.17 m. The centers of the two bottom sources are aligned with the
center of the array in the initial setup. The center point of the array is considered as the
origin of coordinates (0,0) m. The distance between the source plane and array is 0.73
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Figure 5.16 – (left) Experimental setup, (right) Spectral matrix completion error and
acoustical source reconstruction error between CP/FISTA and MS methods.

m and the array is moved at (0,0), (−0.08,0), (0.08,0), (0.08,−0.08), (0,−0.08), (0,0),
(−0.08,−0.08), (−0.08,0.08), (0,−0.08), (0.08,0.08) (meters). The sampling frequency is
Fs = 25.6 kHz. The signals generated for the three sources are independent white noises
with frequency bandwidth between 50 Hz and 10 kHz. Two reference signals are acquired
directly by two fixed microphones and the third one is taken directly from one signal
generator. This provides ideal references with a very high signal to noise ratio. A data
file that contains 32 signals (29 microphones and 3 references) are recorded, each with an
acquisition time of 10 seconds.

The parameters of CP and FISTA are chosen as same as in the simulation part. The
Fourier basis is discretized with ∆x = ∆y = 0.1 m over a surface with length Lx = 1 m and
width Ly = 1 m (the dimension of the basis Φ is 225×100). First, the CP/FISTA and MS
methods are used to complete the spectral matrix in the frequency range from 3000 Hz to
6000 Hz with steps of 100 Hz ; CP is applied without reference and MS is applied with 3
references. The MS results are as a point of comparison to validate the CP/FISTA method,
yet with no guarantee that they will return the true values, as shown in the simulation
section. The relative completion errors between CP/FISTA and MS methods are shown
in Fig. 5.16 (b). It is seen that MCE increases with frequency, while the relative error
of acoustical sources reconstruction is lower than 0.3151 in the whole frequency range.
The results show that CP/FISTA without reference can achieve comparable performance
as the MS (with three references) for acoustical source reconstruction even though the
matrix completion results may differ. Figures 5.17, 5.18, 5.19 and 5.20 show the acoustical
source reconstruction results at 3000 Hz, 4000 Hz, 5000 Hz, 6000 Hz, respectively. It is
seen that for a fixed position of the array, the reconstructed sources suffer from limited
spatial resolution at low frequencies and their magnitudes are seriously underestimated
at high frequencies. Incidentally, the allowable maximum frequency resolution is 1700 Hz.
The (k) in Fig. 5.17 − 5.20 shows the source reconstruction result by CP. The (l) in Fig.
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5.17 − 5.20 shows the source reconstruction result by FISTA ; it is seen that at least two
sources are well reconstructed even at a high frequency 6000 Hz which greatly extend
the maximum working frequency for a fixed position of the array by CP and FISTA.
The results are comparable with the MS method. Figure 5.21 shows the spectral matrix
completion results at different frequencies with the different methods. Figure 5.21 shows
the spectral matrix completion results at different frequencies with different methods : (a)
Spectral matrix completion result at 3000 Hz by CP, (b) FISTA and (c) MS ; (d) Spectral
matrix completion result at 4000 Hz by CP, (e) FISTA and (f) MS ; (g) Spectral matrix
completion result at 5000 Hz by CP, (h) FISTA and (i) MS ; (j) Spectral matrix completion
result at 6000 Hz by CP, (k) FISTA and (l) MS. All these experimental results demonstrate
that both CP and FISTA can be successfully applied to realize sequential measurements
without references, and they can obtain very competitive results as compared with MS
method in the setup of with references, which incurs the extra cost for the acquisition
system. Thus, CP and FISTA may be considered as a better alternative to MS in practice.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.17 – (a)-(i) Acoustical source reconstruction at 3000 Hz for a fixed position of
the array, (j) with the MS method, (k) the CP method, and (l) FISTA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.18 – (a)-(i) Acoustical source reconstruction at 4000 Hz for a fixed position of
the array, (j) with the MS method, (k) the CP method, and (l) FISTA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.19 – (a)-(i) Acoustical source reconstruction at 5000 Hz for a fixed position of
the array, (j) with the MS method, (k) the CP method, and (l) FISTA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.20 – (a)-(i) Acoustical source reconstruction at 6000 Hz for a fixed position of
the array, (j) with the MS method, (k) the CP method, and (l) FISTA.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.21 – (a) Spectral matrix completion result at 3000 Hz by CP, (b) FISTA and (c)
MS ; (d) Spectral matrix completion result at 4000 Hz by CP, (e) FISTA and (f) MS ; (g)
Spectral matrix completion result at 5000 Hz by CP, (h) FISTA and (i) MS ; (j) Spectral
matrix completion result at 6000 Hz by CP, (k) FISTA and (l) MS.
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5.6 Conclusion of the chapter
CP and FISTA have been validated both by simulation and experimental data, the

main results obtained are highlighted hereafter :

1) CP and FISTA can be both used to realize sequential measurements without and
with references.

2) CP and FISTA can be considered as a better alternative to MS in general.
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6
Exploring the differences between CP and FISTA

In this thesis, CP and FISTA are investigated for the common goal of completing the
spectral matrix ; this can be understood in an uniform way from a signal reconstruction
perspective as described in section 6.1. The differences between CP and FISTA are then
explored in section 6.2, and eventually simulation and parameter analysis are given in
section 6.3.

6.1 Understanding CP/FISTA from a signal reconstruc-
tion perspective

The upper graph in Fig. 6.1 shows the case where the spatial signal is measured
simultaneously without losing the phase information, with the black dots indicating the
positions of the microphones. The middle graph shows two sequential measurements, with
the black dots indicating the first measurement and the red dots the second measurement ;
it is observed that the phase information is lost between the two consecutive measure-
ments. Nuclear norm minimization (or fixed low rank) plays a role to correct the phase
of the two consecutive measurements. However, phase connection is still not enough to
guarantee uniqueness, the reason why the signal is expanded onto a predefined basis of
functions as shown by the blue curve in the bottom-right of Fig. 6.1 : information on the
array position is thus encoded and the signal is further corrected and smoothed by the
projection operator ΨSΨ∗ ≈ S.
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Figure 6.1 – Understanding CP/FISTA from a signal reconstruction perspective.
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Figure 6.2 – Comparison between CP and FISTA (eigenvalue spectrum perspective).
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6.2 Comparison between CP and FISTA

Let S be the spectral matrix to recoverer ; it can be decomposed into two parts as
follows

S = Slowrank + σ2
nI, (6.1)

where I is the identity matrix and rank(Slowrank) = r. Then the EVD (Eigenvalue De-
composition) of the S can be written as

S = UΛU∗ + σ2
nI = U(Λ + σ2

nI)U∗ = UΠU∗, (6.2)

where Π = Λ + σ2
nI = diag(σ2

1 + σ2
n,⋯, σ2

r + σ2
n, σ

2
n,⋯, σ2

n) and Λ = diag(σ2
1,⋯, σ2

r ,0,⋯,0),
σ2

1 ≥ σ2
2 ≥ ⋯σ2

r , U = [u1, u2, ..., uMP ] is an unitary matrix. The spectra of eigenvalues are
illustrated in Fig. 6.2. If the SNR is assumed high enough so that σ2

r ≥ σ2
n, then the first

r principal eigenvalues λ1 = σ2
1 + σ2

n, λ2 = σ2
2 + σ2

n,⋯, λr = σ2
r + σ2

n dominate the remaining
MP − r eigenvalues λr+1 = σ2

n, λr+2 = σ2
n,⋯, λMP = σ2

n ; therefore spectral matrix S can be
rewritten as

S = (Us,Un)
⎛
⎝

Λs 0
0 Λn

⎞
⎠
⎛
⎝

U∗
s

U∗
n

⎞
⎠
= UsΛsU∗

s +UnΛnU∗
n (6.3)

where Λs = diag(λ1,⋯, λr) and Λn = diag(λr+1,⋯, λMP ), Us = [u1,⋯,ur] spans the signal
subspace and Un = [ur+1,⋯,uMP ] spans the noise subspace. It is found that the rank
of the spectral matrix is “approximately low”, which means the first r eigenvalues are
prominent. CP returns an estimate Ŝcp of the signal subspace part,

Ŝcp ≈ UsΛsU∗
s , (6.4)

which is illustrated at the lower left corner of Fig. 6.2. FISTA assumes that the eigenvalues
of matrix S are weakly sparse, which returns an estimate Ŝfista with minimum sum of the
eigenvalues,

Ŝfista ≈ UsΛsU∗
s − Sr + Sb, (6.5)

where Sr is subtracted by virtue of the part that suppresses the noise in UsΛsU∗
s , and

Sb represents the noise part that is introduced by UnΛnU∗
n. This is illustrated in the

lower right corner of Fig. 6.2. The performance of CP and FISTA can be considered by
distinguishing the following cases.

• ∥Sr∥F = ∥Sb∥F indicates that the suppression of noise is equal to the introduction of
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noise : FISTA will achieve the comparable performance with CP.

• ∥Sb∥F > ∥Sr∥F indicates that the introduction of noise is larger than the suppression
of noise : CP will outperform FISTA in this case.

• ∥Sb∥F < ∥Sr∥F indicates that the suppression of noise is larger than the introduction
of noise : FISTA will outperform CP in this case.

Although the above analysis provides an intuition to understand CP and FISTA, since
Sr and Sb are influenced by the parameters of the algorithms, and it is hard to conclude
whether CP or FISTA is better in general. However, a guideline will be discussed in the
next section about as how to choose between CP and FISTA in practice based on the
heuristic analysis of this section.

Table 6.1 provides a list of the characteristics of CP and FISTA which may help the
reader to choose an algorithm in practice. In a nutshell, CP is based on three simple
iterations and is quite easy to implement. However it has no guarantee to find the global
minimum and the number of acoustic sources needs to be known a priori or estimated.
The converge rate is linear [74] (see more discussions in section 3.3). On the other hand,
FISTA is a more sophisticated algorithm that converges faster, like O(1/k2), to the global
minimum (convex cost function), yet it has many parameters to tune ; it is not necessary
to know the number of sources.

characteristics CP FISTA
number of parameters 3 6
global minimum guarantee NO YES
number of sources known unknown
convergence rate linear convergence O(1/k2)
basic operator projection operator proximity operator
implementation easy sophisticated

Table 6.1 – Comparison between CP and FISTA.

Finally, the rank truncation operator (for fixed rank in the structured low rank model)
and shrink operator (for minimization of the nuclear norm) can be understood as eigenval-
ues filter 1 and 2 which is illustrated in Fig. 6.3. Rank truncation operator truncates the
eigenvalues spectrum by only keeping the principal eigenvalues (a truncation with hard
cut off), while shrink operator can be seen as an eigenvalues filter with smooth transition
zone.
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Figure 6.3 – Understanding the projection operator and rank truncation operator by
eigenvalues filter perspective.

6.3 Simulation and parameter analysis

6.3.1 Convergence and computational cost

The numerical convergence and computation cost of CP and FISTA are investigated
in this section. The simulation is carried out with Setup 1 and the measurements are
simulated without noise at a given frequency 1200 Hz, using the workstation with an Intel
core i3 cpu 530 (2.93Ghz,4G memory), Windows 7 and Matlab R2013b. The parameters
of the CP algorithm are chosen as follows : maximum iteration number Mmax = 1680,
stopping criteria SC = 10−4, rank r = 3. The parameters of the FISTA are chosen as
follows : maximum iteration for each regularization step Nm = 10, stopping criteria SC =
10−4, initial regularization parameter λ0 = ∥Ŝmpp∥F , final regularization parameter λd =
1e−26λ0, ratio η = 0.7 and step size µ = 1.2 (the maximum iteration numberMmax = 1680 for
the given parameters). Figure 6.5 (a) shows a numerical example that the MCE decreases
with the number of iteration, and the MCE of FISTA iteration decreases faster than the
CP. Figure 6.5 (b) shows the computational time ([s] : second unit) increases with the
number of sequential measurements from 9, to 16, to 25, to 36, and the corresponding
spectral matrix size to complete is 225 × 225, 400 × 400, 625 × 625, 900 × 900. Figure
6.5 (c) shows the MCE for CP and FISTA with the increase of the number of sequential
measurements. In Figs. 6.5(b)(c), the CP and FISTA use up all the 1680 iterations (with
the same number of iteration used), it is found that FISTA can achieve better MCE and
expend less computational times with the number of sequential measurements increases.
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Figure 6.4 – A prototype array with 25 microphones (shown in previous chapter) are
shifted (a) 16 times, (b) 25 times, (c) 36 times sequentially which is marked with red
crosses.
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Figure 6.5 – Numerical example of convergence and computational cost for CP and
FISTA : (a) the MCE decreases with the number of iteration, (b) computational time
increases with the number of sequential measurements from 9, to 16, to 25, to 36, (c)
MCE for CP and FISTA with the increase of the number of sequential measurements.
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6.3.2 CP and FISTA with different numbers of sources and
SNRs

The objective of this subsection is to investigate CP and FISTA results with different
numbers of sources and SNRs. Setup 1 in chapter 4 is used here to simulate sequential
measurements with 3, 9, 16, 25, and 36 sources separately. The parameter settings of the
algorithm remain unchanged as in chapter 4 for CP and FISTA, and the analysis of the
results is given hereafter.

• Number of sources is 3 : when SNR = 60 dB, CP outperforms FISTA in the frequency
range above 1600 Hz and FISTA outperforms CP in the frequency range below 1600
Hz. CP outperforms FISTA when SNR = 30 dB, SNR = 20 dB, SNR = 10 dB as
seen in Fig. 6.6 (a), which implies that the introduction of noise is larger than the
suppression of noise for FISTA in this situation. Thus, CP may be a better choice
when the number of sources is small (CP enforces the rank to be equal to the number
of sources) and this number can be estimated by trial and error cheaply, even though
the performance of FISTA is also absolutely acceptable in this situation.

• Number of sources is 9 : FISTA outperforms CP for SNR = 60 dB and SNR =
30 dB as seen in Fig. 6.6 (b), which implies that the introduction of noise is less
than the suppression of noise for FISTA in this situation. When SNR = 20 dB, CP
outperforms FISTA in the frequency range below 1600 Hz and FISTA outperforms
CP in the frequency range above 1600 Hz. Similar results are obtained with SNR =
10 dB : CP outperforms FISTA in the frequency range below 2000 Hz and FISTA
outperforms CP in the frequency range that is greater than 2000 Hz.

• Number of sources is 16 : FISTA outperforms CP when SNR = 60 dB and SNR =
30 dB as seen in Fig. 6.6 (c) ; when SNR = 20 dB, CP outperforms FISTA in the
frequency range below 700 Hz and FISTA outperforms CP in the frequency range
above 700 Hz ; when SNR = 10 dB, CP outperforms FISTA in all the frequency
band which it implies that the introduction of noise is larger than the suppression
of noise for FISTA in this situation. This suggests using CP instead of FISTA when
the SNR is small. It will also be found in the next section that the CP performance
is not influenced too much by the underestimation and overestimation of sources.

• Number of sources is 25 : when SNR = 60 dB and 30 dB, FISTA outperforms CP
in the frequency range below 2000 Hz and CP outperforms FISTA in the frequency
range above 2000 Hz. When SNR = 20 dB, FISTA is comparable with CP. When
SNR = 10 dB, CP outperforms FISTA.

• Number of sources is 36 : FISTA outperforms CP when SNR = 60 dB and SNR =
30 dB as seen in Fig. 6.6 (d) ; when SNR = 20 dB, FISTA is comparable with CP.
When when SNR = 10 dB, CP outperforms FISTA.
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To sum up, some empirical guidelines to choose the algorithm are listed in Table
6.2. When the SNR is high, it is ealier to have the introduction of noise less than the
suppression of noise for FISTA, and vice versa for CP when the SNR is low. When the
number of sources is small, CP seems to outperform FISTA. For large numbers of sources,
FISTA seems preferable.

criteria algorithm
high SNRs FISTA
low SNRs CP
number of sources is large FISTA
number of sources is small CP

Table 6.2 – Guideline to choose the algorithms

6.3.3 Parameter analysis for CP

The above analysis have been carried out by assuming that the number of sources
is correctly known/estimated, which implies that best results of CP are compared with
FISTA. In the subsequent subsection, the effects of overestimation and underestimation
of the number of sources in CP are investigated.

6.3.3.1 Overestimation of the number of sources

Figure 6.7 investigates the overestimation by 3 sources (denoted by CP+3) and com-
pares it to correct case (denoted by CP). When the number of sources is 9, CP is better
than CP+3. When the number of sources is increased to 16, 25 and 36, the results of CP
is comparable with CP+3 since the 3 extra sources that are accounted for corresponds
to small eigenvalues. Figure 6.8 compares the overestimation by 3 sources (denoted by
CP+3) and 6 sources (denoted by CP+6). It is found that all the results are comparable,
which means that CP is robust to the overestimation of the number of sources.

6.3.3.2 Underestimation of the number of sources

Figure 6.9 compares the underestimation by 3 sources (denoted by CP−3) and com-
pares it to the correct case (denoted by CP). When the number of sources is 9, CP−3 is
better than CP, which implies that the introduction of noise is less than the suppression
of noise for CP. When the number of sources increased to 16, 25 and 36, the results of
CP is comparable with CP−3 since the 3 sources that are underestimated corresponds
to small eigenvalues. Figure 6.10 compares the underestimation by 3 sources (denoted by
CP−3) and 6 sources (denoted by CP−6). It is found that all the results are comparable,
which means that CP is robust to underestimation of the number of sources.
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Figure 6.6 – MCE with different SNRs and numbers of sources : (a) MCE with 3 sources,
(b) MCE with 9 sources, (c) MCE with 16 sources, (d) MCE with 25 sources, (e) MCE
with 25 sources. (CP results are shown in black (as the legend in (b)) : SNR = 60 dB ○ ;
SNR = 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △. FISTA results are shown in gray
(as the legend in (b)) : SNR = 60 dB ○ ; SNR = 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10
dB △.)
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Figure 6.7 – MCE with different SNRs and numbers of sources : (a) MCE with 3 sources,
(b) MCE with 9 sources, (c) MCE with 16 sources, (d) MCE with 25 sources, (e) MCE
with 25 sources. (overestimate 3 source (CP+3) results are shown in black (as the legend
in (b)) : SNR = 60 dB ○ ; SNR = 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △. Correct
estimation (CP) results are shown in gray (as the legend in (b)) : SNR = 60 dB ○ ; SNR
= 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △.)
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Figure 6.8 – MCE with different SNRs and numbers of sources : (a) MCE with 3 sources,
(b) MCE with 9 sources, (c) MCE with 16 sources, (d) MCE with 25 sources, (e) MCE
with 25 sources. (overestimate 3 source (CP+3) results are shown in black (as the legend
in (b)) : SNR = 60 dB ○ ; SNR = 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △. overestimate
6 source (CP+6) results are shown in gray (as the legend in (b)) : SNR = 60 dB ○ ; SNR
= 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △.)
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Figure 6.9 – MCE with different SNRs and numbers of sources : (a) MCE with 3 sources,
(b) MCE with 9 sources, (c) MCE with 16 sources, (d) MCE with 25 sources, (e) MCE
with 25 sources. (underestimate 3 source (CP-3) results are shown in black (as the legend
in (b)) : SNR = 60 dB ○ ; SNR = 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △. Correct
estimation (CP) results are shown in gray (as the legend in (b)) : SNR = 60 dB ○ ; SNR
= 30 dB ◇ ; SNR = 20 dB ▽ ; SNR = 10 dB △.)
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Figure 6.10 – MCE with different SNR and number of sources : (a) MCE with 3 sources,
(b) MCE with 9 sources, (c) MCE with 16 sources, (d) MCE with 25 sources, (e) MCE
with 25 sources. (underestimate 3 source (CP-3) results are shown in black (as the legend
in (b)) : with SNR = 60 dB case by ○ ; with SNR = 30 dB case by ◇ ; with SNR = 20
dB case by ▽ ; with SNR = 10 dB case by △. underestimate 6 source (CP-6) results are
shown in gray (as the legend in (b)) : with SNR = 60 dB case by ○ ; with SNR = 30 dB
case by ◇ ; with SNR = 20 dB case by ▽ ; with SNR = 10 dB case by △.)
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6.4 Conclusion of the chapter
CP and FISTA have been compared from different perspectives. First, CP and FISTA

can be understood in an uniform way from a signal reconstruction perspective. From
the practical choice of an algorithm, it is suggested to use CP in cases with low SNRs
and small numbers of sources, while FISTA is suggested in cases with high SNRs and
large numbers of sources. In this chapter, it is also concluded that CP is robust to the
underestimation and overestimation of the numbers of sources.
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7
Conclusion and future works

7.1 Summary of the contribution

The problem of sequential measurements without reference has been investigated in
this thesis. Compared with simultaneous measurement, the phase relationships between
consecutive positions is missing and results in missing entries of the spectral matrix.
Thus, the problem boils down to a spectral matrix completion problem of which a unique
solution can exist only by providing additional constraints. Here, the realistic assumption
of a sparse eigenvalue spectrum has been considered. Firstly, a structured low rank model
has been formulated to find a full spectral matrix subject to reduced rank, measurements
fitting, constraints of hermitian symmetry, and the spatial continuity of the sound field :

find S ∈ CMP×MP such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Rank(S) = r (reduced rank)
∥A (S) − Ŝmpp∥F ≤ ε (measurements fitting)
∥ΨSΨ∗ − S∥F ≤ ε (spatial continuity of the sound field)
S∗ = S ⪰ 0, (hermitian symmetry and positive semi-definiteness)

(7.1)

which can be iteratively solved by CP as

Sk = PC1PC2PC3(Sk−1). (7.2)

The CP algorithm has been proposed based on the idea of iterations between three
predefined sets. The algorithm is easy to implement, yet it has no guarantee to find
the global minimum and the number of acoustic sources needs to be known a priori or
estimated. The rate of convergence of CP is linear. It has been found to perform very well
in scenario with low SNRs and a relatively small number of sources.

Besides, a weakly sparse eigenvalue spectrum model was formulated which led to the
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minimization of the nuclear norm of the spectral matrix subject to data missing of spectral
matrix, given constraints of hermitian symmetry and spatial continuity of the sound field :

minimize
S

∥S∥∗

subject to ∥A (S) − Ŝmpp∥F ≤ ε (measurements fitting)
∥ΨSΨ∗ − S∥F ≤ ε (spatial continuity of the sound field)
S∗ = S ⪰ 0, (hermitian symmetry and positive semi-definiteness)

(7.3)

which can be iteratively solved by FISTA as (acceleration steps are omitted in this con-
clusion)

Sk = PC3(shrink(Sk−1 − µ∇f(Sk−1), λµ)). (7.4)

The FISTA has been proposed to solve the nuclear norm minimization, which is recog-
nized as convex optimization with global minimum in guarantee. It has many parameters
to tune and the number of sources is not necessary known. The rate of convergence of
FISTA is O(1/k2) which places it in the family of fast methods. It has been found that
FISTA performs well in scenario with high SNRs and relatively large numbers of sources.
CP and FISTA have been validated in different simulation scenarios : sequential measure-
ments without and with references, with various SNRs, with different shift distances, and
shown to achieve comparable performance as the MS method. Thus, CP and FISTA may
be considered as alternative methods to MS in the configuration of with references. Both
CP and FISTA are based on the following two physical assumptions :

1) Low rank spectral matrix. The high correlation of the acoustical field implies a low
rank of the spectral matrix. The rank of the spectral matrix is consistent with the
number of “virtual sources”, i.e. the number of equivalent uncorrelated sources the
acoustical field is composed of.

2) Continuity of the acoustic field. The high correlation of the acoustical field implies
that two columns of the spectral matrix tend to become identical as the correspond-
ing microphone positions become arbitrarily close to each other.

A big picture about the conclusion of thesis is depicted in Fig. 7.1. Finally, the three main
results obtained in this thesis are highlighted hereafter :

• CP and FISTA can be both used to realize sequential measurements without and
with references ;

• CP and FISTA can be considered as a better alternative to MS when the number
of references is insufficient or when references are of poor quality ;
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• CP is suggested to be used in cases with low SNRs and relatively small numbers of
sources, while FISTA is suggested to be used in cases with high SNRs and relatively
large numbers of sources.

Problem: spectral matrix completion

Methodology: sparse eigenvalue spectrum models

Research Background: sequential measurements

Formulation

Structured low rank model

Weakly sparse eigenvalue spectrum model

CP

FISTA

Solved by 

Solved by 

3 parameters to be set

no global minimum in guarantee

number of acoustic sources known

linear convergence

projection operator

use with low SNRs/ small numbers of sources 

6 parameters to be set
global minimum in guarantee
number of acoustic sources unknown

proximity operator

use with high SNRs/ large number of sources 

fast than linear convergence 

Figure 7.1 – Conclusion of the thesis.

7.2 Future works
Three main orientations will be considered in future works : Noise modeling, More

complicated measurements setups, Model parameters optimization.
Noise modeling : In the current work, measurement noise has not been explicitly

modelled so that it results in estimation errors which are spread in the final recovered
matrix S. In future work, measurement noise could be modelled as a diagonal matrix D
and the weakly sparse eigenvalue spectrum model reformulated as follows.

minimize
S,D

∥S∥∗ + ∥D∥l1

subject to ∥A (S) − Ŝmpp∥F ≤ ε (measurements fitting)
∥ΨSΨ∗ − S∥F ≤ ε (spatial continuity of the sound field)
S∗ = S ⪰ 0 (hermitian symmetry and positive semi-definiteness)
di,j = 0 if i ≠ j, (noise modeling)

(7.5)

with di,j, i, j = 1, ...MP the elements of D. The noise modeling can be also considered
in the Bayesian framework : by means of a Wishart likelihood function with structured
covariance matrix and solved by Variational Bayes (VB) or Markov Chain Monte Carlo
(MCMC) methods.
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Generalize current methods to more complicated measurements setup : in this thesis,
the sequential measurements have been carried out in the same plane. Assuming that
the acoustic sources are located inside a 3D closed object, sequential measurements would
rather be performed in a way to enclose the object of interest. This is illustrated in Fig. 7.2,
where sequential measurements are implemented so as to cover completely a 3D object.
In order to adapt the proposed approaches to such configurations, other spatial basis need
to be investigated that are better suited to the 3D case.

Figure 7.2 – Generalize current methods to more complicated measurements setup.

Model parameters optimization : In acoustical reconstruction, the sequential measure-
ments was formulated as the physical model with different physical parameters, e.g. the
topology of the source surface, the a priori spatial distribution of the sources, the geometry
of the array, the relative shift distances between the sequential measurements etc. When
the sequential measurements was formulated as the spectral matrix completion and solved
by the proposed methods in this thesis, which is the data model. The relations between
the optimal algorithm parameters and a given physical parameters setup are complex, and
How to choose the optimal parameters in the algorithms for a given physical parameters
setup will be an interesting topic in the future, which the idea is illustrated in Fig. 7.3.
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Figure 7.3 – Model parameters optimization.
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A
Glossary

A.1 List of Acronyms

ARE Acoustical Source Reconstruction Error
CP Cyclic Projection

EVD Eigenvalue Decomposition
EM Expectation Maximization algorithm

ESM Equivalent Source Method
FISTA Fast Iterative Shrinkage Thresholding Algorithm
HELS Helmholtz Equation Least-Squares
iBEM inverse Boundary Element Method
MS Mean Square method

MAP Maximum a Posteriori
NAH Near-field Acoustical Holography
MCE Matrix Completion Error
SNR Signal-to-Noise Ratio

SONAH Statistically Optimized Near-field Acoustic Holography
SVD Singular Value Decomposition
WSA Wave Superposition Algorithm
GIB Generalized Inverse Beamforming
FFT Fast Fourier Transform
SC Stopping Criterion
IST Iterative Shrinkage Thresholding
CSA Conditioned Spectral Analysis
VSA Virtual Source Analysis
iESM iterative Equivalent Source Method
MFAH Moving frame acoustic holography
BAHIM Broadband Acoustical Holography from Intensity Measurement
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A.2 Mathematical Notation

Rn n-dimensional Euclidean real space
Rm×n Euclidean space for real matrices of size m × n
Cn n-dimensional complex space

Cm×n complex space for complex matrices of size m × n
x scalar quantity
x vector quantity
X matrix quantity
∗ transpose-conjugate operator
E mathematical expectation

∥x∥l0 l0 norm of x
∥x∥l1 l1 norm of x
∥x∥l2 l2 norm of x
∥X∥∗ nuclear norm of matrix X
∥X∥F Frobenius norm of matrix X
⟨x, y⟩ inner product

diag(X) diagonal values of matrix X
Rank(X) rank of matrix X
trace(X) trace of the matrix X

prox proximity operator
shrink shrinkage operator
∇f(x) gradient of function f(x)
X ⪰ 0 matrix X is positive semidefinite

PC(x) = y y is attained by projecting x onto the set C.
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Matlab codes of CP and FISTA 

Cyclic Projection  

function [R_matrix,para_AP]  = CP(Hard_Th,D_measured,psi_B,max_it,SC); 

 

% Cyclic Projection (CP) Algorithm: find a solution in three predefined sets 

% input parameters: 

% Hard_Th: estimated rank of the spectral matrix 

% D_measured: data missing spectral matrix 

% psi_B: reduced spatial basis 

% max_it: maximum iteration steps 

% SC: stop criteria 

% output parameters: 

% R_matrix: completed spectral matrix  

% para_AP: output parameters of the results  

 

k = Hard_Th; 

psiB_T = psi_B'; 

PRDmatrix  = find(D_measured~=0); % take the positions of the matrix 

 

% smoothing intilization 

matrixdataX = psi_B*D_measured*psiB_T ; 

matrixdataX(PRDmatrix) = D_measured(PRDmatrix); 

 

c = 0; 

tic 

while(c < max_it) 

c = c + 1; 
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% projection onto C2 by EVD 

% [V,D]= eig(matrixdataX); 

% [Y,I]= sort(diag(D),'descend'); 

% D = diag(Y); 

% V = V(:,I); 

% matrixdataX = V(:,1:k)*D(1:k,1:k)*V(:,1:k)'; 

 

% projection onto C2 by SVD 

matrixdataX = (matrixdataX + matrixdataX')/2; 

[U,D,V] = svd(matrixdataX); 

matrixdataX = U(:,1:k)*D(1:k,1:k)*V(:,1:k)'; 

 

% projection onto C1 

matrixdataX(PRDmatrix) = D_measured(PRDmatrix); 

 

% projection onto C3 

matrixdataX = psi_B*matrixdataX*psiB_T ; 

 

err = norm(matrixdataX(PRDmatrix) - 

D_measured(PRDmatrix),'fro')/norm(D_measured(PRDmatrix),'fro'); 

if  err < SC % check the stop criteria 

    matrixdataX(PRDmatrix) = D_measured(PRDmatrix); 

    break 

end 

end 

 

R_matrix = matrixdataX; % completed matrix 

para_AP.tElapsed = toc; % cost time 

para_AP.max_it = c; % number of iterations 
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para_AP.S_valk1 = D(k,k); % kth eigenvalue 

para_AP.S_valk2 = D(k+1,k+1); % (k+1)th eigenvalue 

para_AP.err = err; % residual error 

 

Fast Iterative Shrinkage Thresholding Algorithm  

function [R_matrix, para_val]  = FISTA(Li,N_iter,D_measured,SC,mu_final,mu,psi_B); 

 

% Fast iterative shrinkage thresholding algorithm (FISTA) 

% input parameters: 

% Li is the step size 

% N_iter is maximum iteration for each regularization step 

% D_measured is measured spectral matrix 

% SC is stopping criterion 

% mu is initial regularization parameter 

% mu_final is final regularization parameter 

% psi_B is the constructed Fourier basis 

% output parameters: 

% R_matrix: completed spectral matrix  

% para_val: output parameters of the results   

 

 

D_datamissing = D_measured; % take the measurements data which is a data missing matrix 

D_measured(find(D_measured~=0)) = 1; 

PRDmatrix = D_measured;  % the positions which the measurements are nonzeros 

 

% initial parameters 

Xk = zeros(size(D_measured,1),size(D_measured,2)); % completed matrix 

Yk = Xk; % 

tk = 1; 
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outer_iter = 1; 

psiB_T = psi_B'; 

 

% start the iterations 

tic 

while mu > mu_final 

    mu = max(mu * 0.7, mu_final); 

for i = 1:N_iter 

    Gk = Yk + Li.* (D_datamissing - Yk.*PRDmatrix); % gradient descent  

 

    Gk = psi_B*Gk*psiB_T; % smooth the spectral matrix 

 

    % low rank estimation by SVD 

    % Gk = (Gk + Gk')/2; 

    % [U,S,V] = svd(Gk); 

    % Xkk = U*diag(max(diag(S) - mu*Li,0))*V'; 

 

    % low rank estimation by EVD 

    Gk = (Gk + Gk')/2; 

    [V,S]= eig(Gk); 

    [Y,I]= sort(diag(S),'descend'); 

    S = diag(Y); 

    V = V(:,I); 

    Xkk = V*diag(max(diag(S) - mu*Li,0))*V'; 

 

    tk1 = 0.5 + 0.5*sqrt(1+4*tk^2); 

    Yk = Xkk + ((tk - 1)/tk1)*(Xkk - Xk); % low rank matrix update 

    Xk = Xkk; 

    tk = tk1; 
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end 

 

    err = norm(D_datamissing - Yk.*PRDmatrix,'fro')/norm(D_datamissing,'fro'); 

    if  err < SC; 

        break 

    end 

 

    total_iter = N_iter * outer_iter; 

    outer_iter = outer_iter + 1; 

end 

 

R_matrix = Xk; % completed spectral matrix 

para_val.cost_time = toc; % cost time 

para_val.mu = mu; % final mu 

para_val.err = err; % residual error 

para_val.total_iter = total_iter; % total iteration steps 
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