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Introduction

The demand for energy generation has increased dramatically over the last few years, as well as the need to reduce its impact on the environment. Fuel cell systems are one of the most promising technologies that can help achieve these objectives. A fuel cell unit is an electrochemical device that combines a gaseous fuel (e.g. hydrogen) and an oxidizing gas (e.g. oxygen) to produce electricity, with water and heat as its by-product.

The main characteristics of fuel cells are its lower pollutant emission and its higher energy conversion efficiency (40% and higher) compared to most conventional thermomechanicalbased power generation processes (only 25% to 30% at best). However, due to the high manufacturing costs and low-reliability of fuel cells, major developments are still required to reach the performance where fuel cells can be widely commercialized. The energy conversion efficiency and life expectancy optimization remain as the major challenging issues regarding the design and manufacturing of fuel cells.

Background

Among the existing fuel cell systems, planar Solid Oxide Fuel Cell (SOFC) is a promising technology that offers a clean alternative to fossil fuels due to its several potential benefits.

Being operated at a high temperature of around 873K -1273K, SOFCs have a high kinetic activity, which results in a relatively high power density and high energy conversion efficiency. Also the high operating temperature allows the fuel reforming within the unit cell, which enables the utilization of various fuels, such as methane, propane, butane, biomass, coal gas ... etc. Further, the heat produced by the SOFC's electrochemical reactions can be used in applications where a combined heat and power (CHP) is needed such as in residential area. Thanks to its high kinetic activity, its fuel flexibility and the possibility of internal reforming, SOFCs can be used extensively in large and small 1 Chapter 1 stationary, and even non-stationary power generations to replace conventional fossil fuel.

Besides, SOFCs are identified as a potential candidate to be used as auxiliary power units of vehicles and aircrafts, as well as for propelling force in heavy transportations.

(a) (b)ewrrrwtwtwt A SOFC unit consists of a solid dense gas-tight electrolyte sandwiched between two electrodes, an anode and a cathode, that present sufficient porosity to allow for the flow of fuel and oxygen to the fuel cell active sites (Fig. 1.1). In-service, oxygen is fed to the cathode/electrolyte interface via the flow channel which is adjacent to the cathode; and hydrogen is fed to the anode/electrolyte interface via the flow channel adjacent to the anode. On the cathode/electrolyte and anode/electrolyte interfaces, there are catalyst layers where the electrochemical reactions take place. At the cathodic catalyst layer, oxygen ions are formed by combining the oxygen molecules with electrons (oxygen reduction reaction):

1 2 O 2 + 2e -→ O 2- (1.1)
Then oxygen ions migrate through the ion-conducting electrolyte to the anode/electrolyte interface where they react with the hydrogen, producing water while releasing electrons 2 1.1 Background (hydrogen reduction reaction):

H 2 + O 2-→ H 2 O + 2e - (1.
2)

The electrons produced at the anodic catalyst layer are transported to the cathodic catalyst layer via an external circuit, which also used to harvest the produced energy.

Meanwhile, the water produced by the electrochemical reaction is transported out of the cell through the flow channels together with the unreacted hydrogen and oxygen.

To ensure the working conditions of the SOFC, the material of the electrolyte should be dense and gas-tight, so that the fuel at the anode and the oxidant at the cathode can be separated spatially to avoid any fuel crossover. Also the electrolyte should be nonconductive for electrons, but allows sufficient ionic conductivity at an operating temperature between 873K -1273K. To fulfill these characteristics, a dense ceramic called yttriastabilized-zirconia (YSZ) is usually used as electrolyte for SOFCs. The anode material can be made of porous nickel/yttria-stabilized-zirconia (Ni/YSZ) cermet that has similar thermal and mechanical properties as the ones of the YSZ electrolyte. This anode material contains yttria-stabilized-zirconia (YSZ) that is conductive for ions, and nickel (Ni) which provides an effective conductivity for electrons and sufficient catalytic activity for electrochemical reactions. In YSZ-based SOFCs, Strontium-doped-lanthanummanganite (LSM) is commonly used as a material for the cathode. This material is electronically conductive and also provides relatively stable physical and chemical properties at high operating temperature.

To guarantee the mechanical stability of each SOFC unit and that of the whole SOFC stack, supported configurations (design) are usually used in planar SOFC, which can be either anode-supported, cathode-supported or electrolyte-supported. In an electrolytesupported SOFC, the anode and cathode are thin, while the electrolyte is the thickest component and works as the supporting structure. This design works preferably at high operating temperatures (around 1273K), where the large Ohmic losses can be reduced [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF]. In an electrode-supported SOFC (anode-/cathode-supported SOFC), the electrode is thick enough to serve as the supporting structure and substrate for the cell fabrication. This supported configuration is used preferably for low operating temperature SOFCs due to the low Ohmic losses of the thin electrolyte.

Problem Statement

As mentioned in the previous section, the particularity of SOFC is its high operating temperature that has numerous advantages. For instance, at high operating temperature, the kinetic activity is high and nickel is a sufficiently good catalyst, eliminating the need to use costly precious metals [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF][START_REF] Recknagle | Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks[END_REF]. However, the high operating temperature can lead to complex material problems. The temperature gradients in SOFC unit and the different thermal expansion coefficients of cell components (anode/electrolyte/cathode) lead to a built-up of residual stresses in the vicinity of the cell interfaces, which contribute to the cell degradation [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF][START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF]. Also, the cooling and heating processes, involved during the SOFC service, result in residual stresses and possible crack nucleation in the vicinity of the anode/electrolyte and electrolyte/cathode interfaces [START_REF] Qu | FY 2006 annual report[END_REF]. Due to the thermo-mechanical loading during SOFC service, these cracks can further propagate to either deflect at the electrodes/electrolyte interfaces or penetrate into the electrolyte [START_REF] Joulaee | Prediction of crack propagation paths in the unit cell of SOFC stacks[END_REF].

As consequences, on one hand, the presence of cracks in the SOFC stack generates heat due to the Ohmic resistance at the crack tips, which in turn affects dramatically the electrochemical performances of the SOFC unit. On the other hand, cracks that penetrate into the electrolyte allow for fuel leakage from the anode side to the cathode side, which can deteriorate the SOFC unit. Further, cracks propagation paths depend not only on the multilayered nature of the SOFC structure, but also on the microstructure of the porous electrodes. Indeed, microstructure inhomogeneities introduced by pores spatial distribution contribute to crack propagation paths.

State of the Art

Experimental Research

Experimental research dealing with the control of the porous microstructure is being carried out to avoid cracks and improve the mechanical and the electrochemical performances of SOFC. Literature reviews (see for instance, [START_REF] Peng | Preparation of mesoporous La0. 85Sr0. 15MnO3 using a surfactant-templated sol-gel process[END_REF][START_REF] Boaro | Synthesis of Highly Porous Yttria-Stabilized Zirconia by Tape-Casting Methods[END_REF] showed that most experimental methods used to fabricate optimized porous SOFC components (anode and cathode) are based on a templating method, i.e. mixing a ceramic powder with pores formers (e.g. PMMA microspheres). Then the pores formers can be removed by heat treatment. The main difficulties for making porous materials for SOFC technology are the poor interconnection between pores and the collapse of the porous structure (walls) during the calcination of porous SOFC components (1273K -1673K).

High porosity in SOFC is a required condition to transport the gas (fuel and oxygen) effectively and also to avoid important Ohmic losses in the SOFC unit. These limitations are now being overcome through the use of novel techniques to control the porosity in SOFC components. For instance, [START_REF] Ruiz-Morales | Microstructural optimisation of materials for SOFC applications using PMMA microspheres[END_REF] and [START_REF] Lashtabeg | Synthesis and characterisation of macroporous Yttria Stabilised Zirconia (YSZ) using polystyrene spheres as templates[END_REF] proposed novel processing routes to produce SOFC materials with long range periodic pores ordering, and showed that homogeneous porosity of the anode and the cathode improves the electrochemical performance of the SOFC.

Further research is being also carried out to develop new materials that improve SOFCs energy conversation efficiency and can use directly the natural gas (methane) instead of hydrogen as a fuel. Barnett and co-workers (Tsai and Barnett, 1997; Perry Murray and [START_REF] Perry Murray | La, Sr) MnO 3 -(Ce, Gd) O 2-x composite cathodes for solid oxide fuel cells[END_REF] showed that the addition of YSZ to LMS improves significantly the cathode performance. In fact, the addition of YSZ, which is an ion-conducting material to LMS leads to a broad zone of active sites deep in the cathode electrode. Further, [START_REF] Chen | High-performance (La, Sr)(Cr, Mn) O 3 /(Gd, Ce) O 2-δ composite anode for direct oxidation of methane[END_REF] used Sm 0.2 Ce 0.8 O 1.9 -impregnated LMS to make composites cathodes with high electrochemical performance. In case of pure hydrogen ( fuel ), Ni/YSZ anodes can provide excellent catalytic properties and stability. While in case of using natural gases as a fuel, [START_REF] Jiang | La 0.75 Sr 0.25)(Cr 0.5 Mn 0.5) O 3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[END_REF] found that the addition of YSZ to (La 0.75 Sr 0.25 )(Cr 0.5 Mn 0.5 )O 3 makes good alternative anodes for a direct utilization of methane instead of Ni/YSZ anodes.

Modeling of SOFCs

Along with the experimental investigations, different modeling efforts are being developed to validate an optimal design of SOFCs. Internal processes taking place within SOFCs in-service are complex and strongly dependent on the processing parameters such as temperature, gases flow rate, cell pressure and flow configuration (cross-flow, co-flow and counter-flow). The modeling of SOFCs is usually performed by combining multi-physics Chapter 1 phenomena taking place during SOFC service, which include fluid flow, energy and mass transfer, and electrochemical reactions. On what follow we will recall different existing modeling strategies and assumptions used to predict the energy conversion efficiency and failure modes in SOFCs unit:

Multiphysics modeling and investigation of process parameters: flow configurations [START_REF] Achenbach | Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[END_REF] presented a 3-D time-dependent model to investigate the energy conversion performance of a planar SOFC with internal methane-steam reforming. The model considers temperature-dependent Ohmic resistances and activation polarizations. The mass flow distribution is assumed uniform across all channels. The species concentration, current density and temperature variation within the cell are investigated using different flow configurations (cross-flow, co-flow and counter-flow). It was found that the counterflow configuration results in the highest cell efficiency; the co-flow leads to the most uniform current density distribution in the cell; and the cross-flow results in the largest temperature gradients in the SOFC structure. [START_REF] Ferguson | Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[END_REF] developed a 3-D model for the simulation of both SOFC unit and SOFC stack using the finite volume method. The model predicts the potential, temperature and current distributions at the unit (cell) level. In this numerical model, the heat and mass transfer are considered purely conductive and diffusive in the PEN (positive-electrolyte-negative: cathode/electrolyte/anode) structure. While in the flow channels, the thermal and molar flux are dominated by convection phenomenon in the flow direction. The heat conduction and species diffusion between the flow channels and the solid parts are taken into account using interface boundary conditions. With this model, the authors compared cross-, counter-and co-flow designs for a planar SOFC and concluded that the counter-flow configuration is the most efficient with the hydrogen as fuel. [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF] presented an anode-supported intermediate-temperature planar 1-D SOFC stack model with direct internal reforming at steady and transient states. The model includes mass and energy balances, as well as an electrochemical model. The molar/heat flux is assumed convective in the flow channels, and pure diffusive/conductive in the PEN (positive-electrolyte-negative) structure. It was shown in the simulated results that, at the same operating conditions, counter-flow configuration leads to high temperature gradients and uneven current density distributions compared to the co-flow case.

Multiphysics modeling based on commercial finite element codes Further, significant multi-physics models mostly based on commercial finite element codes are introduced to simulate SOFCs in service. For instance, [START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF] proposed a simulation tool which combines a commercial computational fluid dynamics (CFD) simulation code (STAR-CD) and a validated electrochemistry module for 3-D modeling of planar SOFC.

Navier-stokes equation is used to model the fluid flow. However, the PEN structure is considered as a monolithic structure containing only one element in the stack direction.

Effects of three different cell flow configurations on the distribution of temperature, current density and fuel species were investigated. It was concluded that the co-flow case results in the most uniform temperature distribution and the smallest thermal gradients.

Similarly, with the help of a commercial CFD code "Fluent", [START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF] developed a finite volume model for simulation of the tubular SOFC based on a detailed electrochemical model and a thermal analysis of the internal heat exchange. The evaluations of Ohmic, activation and diffusion losses as well as a kinetic model of hydrocarbon reactions were included in the electrochemical analysis. [START_REF] Khaleel | A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[END_REF] proposed a 3-D simulation tool for the modeling of the SOFC, which combines the commercial finite element code MARC with an in-house developed electrochemical module. In this model, MARC is used to perform the fluid flow and thermal analyses. Using the temperature profile provided by MARC , the electrochemical module is used to calculate the current density distribution, heat generation and species concentrations. The authors highlighted that the tool offers significant advantages in terms of stability and computational efficiency over other existing CFD codes. [START_REF] Wang | 3-D model of thermo-fluid and electrochemical for planar SOFC[END_REF] coupled an electrochemical module with a commercial CFD code (ANSYS-CFX code) to investigate the thermo-fluid and electrochemical performances for planar SOFC. Distributions of temperature, species concentration, current density and overpotentials were calculated in a single SOFC unit cell using co-flow and counterflow configurations. The authors concluded that the co-flow case offers thermostructural advantages compared to the counter-flow case, as the former leads to more uniform current density and smaller temperature gradient within the cell.

Chapter 1

More recently, [START_REF] Xia | Effects of operations and structural parameters on the one-cell stack performance of planar solid oxide fuel cell[END_REF] proposed a 3-D mathematical model coupling an electrochemical module with the commercial CFD code "Fluent". The distributions of temperature, current density and overpotential losses were calculated. They stated that the counter-flow case results in a more uniform current density, lower temperature gradient and higher fuel efficiency than the co-flow case. This statement is contradictory to the conclusions of [START_REF] Achenbach | Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[END_REF], [START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF] and [START_REF] Wang | 3-D model of thermo-fluid and electrochemical for planar SOFC[END_REF], where the co-flow results in the most uniform current density and the smallest thermal gradient.

Simplified models intended for real time simulation

Besides, some researchers put efforts on the validation of SOFC performances by using simplified numerical models. They study the accuracy, the stability and the computational speed of the proposed models. For instance, in [START_REF] Costamagna | Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC)[END_REF], the electrochemical modeling of Integrated Planar SOFC (IP-SOFC) is studied, where they assumed an isothermal SOFC model and the gases flow only in the direction along the fuel/air channel, without any transversal flows. The comparison between the model predicted results and the experimental data shows a good agreement under a reasonably wide range of operating conditions. [START_REF] Xue | Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects[END_REF] developed a dynamic model of a single tubular SOFC unit using the control volume (CV) approach. In this model, the unit cell is divided into four CVs, including the thermal insulator, the cathode channel, PEN and the anode channel. Within each control volume, uniform physical properties are assumed. They show that this simplified model is capable of simulating the heat, mass transfer and electrochemical reactions at steady and transient states. The predicted results are compared to the experimental ones such as the polarization curve and power density to verify the model and to explore the underlying dynamic behavior. [START_REF] Cheddie | A dynamic 1D model of a solid oxide fuel cell for real time simulation[END_REF] used SIMULINK commercial code to solve the mass and heat transfer in a 1-D SOFC model in real time system simulation. In this work, the flow channel and interconnect are treated as one integrated domain; while the anode, cathode and electrolyte are similarly integrated into one region. The current density distribution is assumed uniform in the cell, and the cell current or voltage is not calculated iteratively, which greatly enhance the computational speed. The authors argued that this model is able to more accurately predict the transport phenomena than other existing real time models. [START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF] constructed a mathematical model to solve the fluid flow, heat and mass transfer regimes in SOFC using a unified finite element-based approach. The fuel cell is divided into three computational domains, including the anodic compartment, the electrolyte domain and the cathodic compartment, which are linked by imposing appropriate interface boundary conditions. The model is able to calculate the local variation in current density, which improves the solution of SOFC. A good agreement was found when comparing the numerical results with the experimental data that are available in literature. [START_REF] Kang | A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research[END_REF] proposed a reduced 1-D dynamic model for a planar direct internal reforming SOFC by introducing two simplifications, which are similar to that introduced by [START_REF] Cheddie | A dynamic 1D model of a solid oxide fuel cell for real time simulation[END_REF]. The first assumption is that the PEN, interconnects and flow channels are integrated together along the perpendicular direction. Therefore the SOFC is considered to have only one temperature layer. And the second one is the current density distribution is considered to be uniform within the SOFC, and the cell voltage is determined by the average gas molar fractions and cell temperature. The authors concluded in this paper that the accuracy of the reduced model is not significantly compromised by the two simplifications, while its computational time is significantly decreased.

Modeling of SOFC failure

The modeling of mechanical degradation and fracture prediction in SOFC has also drawn some attention in the past few years. [START_REF] Laurencin | A numerical approach to predict the SOFC fracture: The case of an anode supported cell[END_REF] conducted a study on the calculation of stress field inside anode-supported planar SOFCs. A failure statistical approach was used to estimate the fracture in SOFC. In service SOFC demonstrate a high residual compressive stress in the electrolyte and a slight tensile stress in the anode close to the anode/electrolyte interface. They highlighted that the cathode is damaged when the anodic expansion reaches values between 0.05-0.09%, whereas the electrolyte fracture occurs for the anodic strain ranging between 0.l2-0.15%. [START_REF] Laurencin | A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration[END_REF] then extended this work to the electrolyte-supported planar SOFC. Unlike the anode-supported cell, the elaboration of electrolyte-supported cell leads to the anode layer cracking. Also when the anodic strain is high, the cermet re-oxidation induces a risk of anode/electrolyte delamination.

A further study focusing on the effect of Ni-YSZ cermet re-oxidation on anode-supported SOFC damage was also conducted by [START_REF] Laurencin | Solid oxide fuel cells damage mechanisms due to Ni-YSZ re-oxidation: case of the anode supported cell[END_REF]. The failure mode is modeled considering both the bulk expansion of the cermet induced by the transformation of the Ni phase and the change of mechanical stresses in the multilayered cell.

Objectives

Although the existing investigations in the literature have shown a real progress on the modeling of SOFC during service, a general comprehensive numerical model is still at its early stage of development. In fact, most of these computational tools are based on commercial finite element codes or homemade simplified codes, where the multiphysics within the SOFC unit is not fully solved, mostly ignoring the porous zones [START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF][START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF]). Further the existing numerical tools do not take into account the correlation between the SOFC microstructure components, the energy conversion performance and the degradation (failure) that can affect significantly the SOFC unit outputs. In fact, pores concentration and distribution affects the resistance to fracture of the porous SOFC materials [START_REF] Joulaee | Fracture toughness and crack deflection in porous multilayered ceramics: application to NiO-YSZ[END_REF]. Further, pores orientation within a porous materials leads to higher pores connectivity and higher thermal and electrical conductivities in the pores orientation direction (Mikdam et al., 2013a;b), which improves gases transfer to the active sites and reduces thermal gradients within the SOFC unit.

The objective of this thesis is to develop a numerical tool based on a combination of Finite Element (FEM) and eXtended Finite Element (XFEM) Methods that deal with the multiphysics problem governing equations in SOFC unit's free flow/porous zones, and also to predict onset and propagation path of an existing crack within the SOFC porous electrodes. Advanced FEM will be considered to solve the problem governing equations in the SOFC unit free flow/porous zones. XFEM will be introduced to deal with discontinuities through a crack and singularities at the crack-tip. Also effect of microstructure porosity (pores volume fraction) and anisotropy on the crack's onset and propagation path will be investigated during SOFC in-service. Finally the capability of the developed FEM based model on predicting the SOFC energy conversion performance will be demonstrated and validated.

Overview of the Thesis

To achieve these objectives, the thesis is organized in seven chapters: the first chapter introduces the thesis objectives and a short literature review on the recent advances in SOFC experiments and modeling. The second chapter deals with the development of a numerical tool based on the Finite Element Method (FEM) for coupling the fluid flow, heat and mass transfer in porous media. Validation is conducted by comparing the FEM solution with the Fourier Galerkin (FG) solution, considering fluid flow, heat and mass transfer in a square porous cavity. The third chapter is devoted to the modeling and simulation of fluid flow and heat transfer in a cracked porous media where the eXtended Finite Element Method (XFEM) is used to deal with the material discontinuity induced by the crack. In the fourth chapter, the influence of heat transfer and fluid flow on crack growth in SOFC-like multilayered porous/dense isotropic materials is investigated. In the fifth chapter, the effect of the microstructure anisotropy on crack propagation within a SOFC unit is studied. In the sixth chapter, the developed numerical tool is used to predict the energy conversion performance of a SOFC. Finally, concluding remarks as well as some future perspectives are introduced in chapter seven. Here below a summary of the second to the sixth chapters:

Second chapter:

In this chapter, fluid flow, heat and mass transfer in porous materials are investigated. To this aim, the coupled Navier-Stokes flow/heat transfer model developed by [START_REF] Younes | A combination of Crouzeix-Raviart, Discontinuous Galerkin and MPFA methods for buoyancy-driven flows[END_REF] is extended to include both heat and mass buoyancy effects on Darcy-Brinkman flow. In this DB model, the fluid flow which is governed by Darcy-Brinkman equation is solved by the nonconforming Crouzeix-Raviart (CR) finiteelement method with an upstream scheme for the nonlinear convective term [START_REF] Djadel | A non-conforming finite volume element method of weighted upstream type for the two-dimensional stationary Navier-Stokes system[END_REF]. A combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods is used to solve the convection-diffusion heat and mass equations [START_REF] Younes | Solving the advection-dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes[END_REF]. The DB model is used to investigate a doublediffusive natural convection in a square porous cavity with different Rayleigh, Darcy, Lewis and Buoyancy numbers. For validation, a steady state semi-analytical solution based on the spectral Fourier-Galerkin (FG) method is also developed for this problem. In the FG model, the governing equations are firstly reformulated in terms of stream function, temperature and mass concentration. Then, these unknowns are expanded in an infinite Chapter 1

Fourier series truncated at a given order. Finally, the substitution of the expansions in the governing equations leads to a highly nonlinear system of algebraic equations that is solved using an efficient nonlinear algorithm based on the modified Powell hybrid method. To reduce the computational effort of the nonlinear algorithm, the Jacobian matrix is evaluated analytically instead of its finite-difference approximation. The performance of the DB numerical model is studied by comparing the obtained results to the FG reference solutions. The comparison shows that the combined advanced numerical methods (CR, DG, MPFA) used to build the DB numerical model provide accurate results for high nonlinear coupling of fluid flow, heat and mass transfer problems in porous media.

Third chapter:

In this chapter, the influence of fluid flow and heat transfer on the thermo-mechanical response of a cracked isotropic porous media is investigated. To this aim, a numerical model is developed (Darcy-XFEM model) where FEM and XFEM are combined to solve the Darcy flow, heat transfer and thermo-mechanical problem in the cracked porous media. In this model, the fluid flow, governed by the Darcy's law, is discretized with the nonconforming finite element method. Time splitting scheme is used with the energy conservation equation to solve the heat transfer in two steps. A combination of DG, MPFA and XFEM methods is used to solve the advection-diffusion heat transfer equation in the porous media to better handle the influence of cracks on temperature distribution. Further, the resulted temperature is used as body force to solve the thermo-mechanical problem with XFEM. In the post processing stage, the thermal Stress Intensity Factor (SIF) is computed using the interaction integral technique at each time step and used to validate the obtained results [START_REF] Bouhala | Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method[END_REF].

Fourth chapter:

In this chapter, the influence of heat transfer, fluid flow and material properties on crack propagation in the SOFC-like multilayered porous materials is investigated, where the porous SOFC electrodes microstructures are taken isotropic. To this aim, the DB model (chapter-1) is combined with XFEM to solve the fluid flow, heat transfer and thermo-mechanical problem in the multilayered structure. In this DB-XFEM model, the fluid flow is governed by Navier-Stokes in the SOFC flow channels and Darcy-Brinkman in the porous media (anode and cathode). The presence of cracks is assumed to affect the heat diffusion within the porous material. It also induces a discontinuity of the displacement at the crack surfaces and a singularity of the stress at the crack tip. Thus, the XFEM is used to solve the thermo-mechanical problem and to track the crack propagation. The multi-physics model is implemented and then validated for the transient regime; this called for a post processing treatment in which, the SIFs are computed for each time step. The SIFs are then used in the crack propagation criterion and the calculation of crack orientation angle [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. Finally, a parametric study is carried out to investigate the effect of the fluid flow, heat transfer and material properties on the crack propagation path.

Fifth chapter: In this chapter, the effect of the porous material microstructural anisotropy on crack propagation in multilayered SOFC unit is investigated using the DB-XFEM model (chapter-4). To this aim, porous material with different anisotropic thermal and mechanical properties is constructed using an existing in-house code. At each degree of anisotropy of the anode and cathode SOFC electrodes, simulations are conducted to investigate the effect of fluid flow and heat transfer on crack propagation path within the SOFC unit. Therefore the DB-XFEM model developed in the fourth chapter for the isotropic case is upgraded to take into account the anisotropy through the effective properties of the anode and cathode electrodes. To compute the crack propagation in the anisotropic material, the enrichment functions and interaction integral equation which are different from those in the isotropic material are used. Further, in contrast with the isotropic case where the analytical solution of the crack orientation angle exists, the crack propagation direction in case of anisotropic material is calculated numerically [START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]. Numerical results show a strong influence of the material anisotropy on crack propagation path in the multilayered SOFC structure.

Sixth chapter:

In this chapter, energy conversion performances of a SOFC unit is investigated by taking into account the heat generated by electrochemical reactions. Thereby the DB model (chapter-1) that deals with fluid flow, heat and mass transport is extended to include the electrochemical (EC) reactions taking place at anode/electrolyte and cathode/electrolyte interfaces of the SOFC unit. In what follow this model will be called DB-EC model. In this model, the fluid flow is governed by Darcy-Brinkman equation in the porous electrodes and Navier-Stokes in the channels. Heat transfer in the Chapter 1 channels, the porous electrodes and the solid dense electrolyte is governed by conduction and convection in both the fluid and solid phases. Mass transfer occurs in the channels and in the porous electrodes by advection and dispersion phenomena in the fluid phase. Heat generation and species consumption/production due to the electrochemical reactions are taken into account in heat and mass transport equations. The electrochemical model considers the Ohmic, activation and concentration losses. The model governing equations are solved without any special treatment for transition between flow-channel/porous electrodes interfaces. This reduces numerical schemes constraints on the cell interfaces, which are the origin of the solution errors. The results are validated using laboratory experiments performed at different constant temperatures (973K -1123K). After validation, the DB-EC model is used to investigate the temperature variation along the cell due to the heat generation by the electrochemical reactions.

Coupled Fluid Flow, Heat and Mass

Transfer in Porous Media: Model Development and Validation

Introduction

The SOFC is an energy conversion device that combines fuel (e.g. hydrogen) and oxidant (oxygen) to produce electricity, with water and heat as its by-product. The SOFC consists of a gas-tight electrode and two porous electrodes (an anode and a cathode), to which two flow channels are adjacent. During service of a SOFC, the gases (fuel and oxidant) flow into the channels at constant velocity and temperature, then diffuse into the porous anode and cathode to reach the electrolyte interfaces where the electrochemical reactions take place. The distributions of species concentration and temperature in the SOFC components (anode/electrolyte/cathode) have a significant influence on both the mechanical integrity and energy conversion efficiency of a SOFC unit. Therefore an accurate and efficient numerical model is required, to better understand the effects and contributions of the multi-physics phenomenon on the mechanical response and the electrochemical performance of the SOFC unit during service.

In the planar SOFC, the fluid flow regime in porous electrodes was demonstrated to be laminar on both the fuel side and the air side [START_REF] Autissier | CFD simulation tool for solid oxide fuel cells[END_REF]). Darcy's law is used to model the gases flow by many researchers, due to its simplicity [START_REF] Berning | Three-dimensional computational analysis of transport phenomena in a PEM fuel cell[END_REF][START_REF] Larrain | Generalized model of planar SOFC repeat element for design optimization[END_REF][START_REF] Lin | Performance predictions in solid oxide fuel cells[END_REF]. However, It neglects the viscous effect and the inertial forces of the flow, which play an important role when the velocity is not small. To get a more accurate fluid flow solution in the porous media, [START_REF] Shi | Comparison of Darcy's Law, the Brinkman Equation, the Modified NS Equation and the Pure Diffusion Equation in PEM Fuel Cell Modeling[END_REF] suggested the use of Brinkman equation. This equation considers the viscous effect of the flow by adding the viscous term to the Darcy's equation. Other researchers proposed the use of a more general equation by adding the Darcy's term to the Navier-Stokes equation to correct the velocity in porous media [START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF]. In the present model, the Darcy-Brinkman equation including viscous, inertial forces and Darcy terms, is used to guarantee an accurate flow velocity. To solve this equation, the non-conforming Crouzeix-Raviart (CR) finite element method is used with the nonlinear convection term being treated by an upstream approach. For the heat and mass transfer problem, energy and species conservation equations are commonly used in the numerical models. Here we take into account the heat transport by convection phenomena in the fluid phase, and by conduction in both the fluid and solid phases. While the mass transport takes place only in the fluid phase by advection and diffusion phenomenon. The same numerical approach is used to solve the advection-diffusion heat and mass equations, where a combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods is used. Besides, to reduce the computational time of the coupled problem, a non-iterative time stepping scheme is used to adapt the time step length.

To verify the accuracy and reliability of the developed numerical model, a double-diffusive natural convection problem in a square porous cavity is studied and the results are compared to a reference semi-analytical solution developed using the Fourier Galerkin (FG) method. The FG method is one of the spectral methods used for solving partial differential equations [START_REF] Costa | Spectral methods for partial differential equations[END_REF][START_REF] Canuto | Spectral methods[END_REF][START_REF] Kopriva | Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers[END_REF], which have been extensively used during the last decades due to their greater accuracy when compared to finite difference and finite element (FE) methods. Indeed, the only error generated by these methods is due to the truncation to a finite set of trial functions/coefficients [START_REF] Durran | Numerical methods for wave equations in geophysical fluid dynamics[END_REF][START_REF] Fahs | A High-Accurate Fourier-Galerkin Solution for Buoyancy-Driven Flow in a Square Cavity[END_REF]. Their rate of convergence depends only on the smoothness of the solution, yielding the ability to achieve high precision with a relatively small number of degrees of freedom [START_REF] Costa | Spectral methods for partial differential equations[END_REF]. For complex solutions with relatively steeper profiles, high truncation orders, leading to large systems of nonlinear equations, are required to ensure the stability and the high accuracy of the FG solution. In this work, the obtained nonlinear systems are solved using the modified Powell hybrid algorithm [START_REF] Powell | On the calculation of orthogonal vectors[END_REF]. Besides, the Jacobian matrix is evaluated analytically instead of its finite difference approximation, which saves dramatically the computational time and provides the possibility of using large number of Fourier coefficients.

The present chapter is organized as follows: In Section 2.2, the governing equations of fluid flow, heat and mass transfer are introduced. Section 2.3 is devoted to the description of the finite element numerical model (DB model), where each numerical method and the discretization of the equation is detailed. In Section 2.4, in sake of validation, a doublediffusive natural convection problem in a porous cavity is simulated by using the proposed DB model. The performance of the model is studied by comparing the obtained results with a semi-analytical solution performed by the FG method.

Problem Formulation

Fluid Flow

A planar SOFC unit consists of the air and fuel channels, the porous cathode and anode, as well as the solid electrolyte. During service of a SOFC, the gas species flow into the channels, then penetrate into the porous anode and cathode to reach the electrolyte interfaces where the electrochemical reactions take place. The major difficulty of the simulation for gas flow in the SOFC unit lies in the coupling between the pure liquid flow in the channel and the flow in the porous media.

A classical approach to model such a problem is to solve the Navier-Stokes equation in the channel and the Darcy's equation in the porous medium. However, the main limitation of this approach is that in Darcy's equation, the no-slip boundary condition can not be imposed. Thus the use of appropriate boundary conditions at the interface between the two domains is required [START_REF] Ehrhardt | An Introduction to Fluid-Porous Interface, Coupling[END_REF][START_REF] Le Bars | Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification[END_REF]. Work published by [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] was one of the first attempts to study the fluid flow boundary conditions at the fluid/porous interface. They performed several experiments in a fluid channel with a porous media and detected a slip in the velocity at the interface, which allows for a discontinuity in the tangential velocity. Later on [START_REF] Saffman | Boundary condition at surface of a porous medium[END_REF] gave an analytical justification of the Beavers-Joseph interfacial condition. He found out that the Beavers-Joseph slip coefficient depends on the interfacial location and the tangential velocity at the interface is proportional to the shear stress. In the following years, the proposed Beavers-Joseph interface condition was further improved and justified by many other studies, such as Taylor (1971); [START_REF] Richardson | A model for the boundary condition of a porous material. Part 2[END_REF]; [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF]; [START_REF] Payne | Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions[END_REF]; [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF]; [START_REF] Jäger | On the roughness-induced effective boundary conditions for an incompressible viscous flow[END_REF], etc. Although it is difficult to determine the slip coefficient, the Beavers-Joseph condition is found to be widely used in practical computations for coupled fluid/porous flow problems, for instance, [START_REF] Discacciati | Mathematical and numerical models for coupling surface and groundwater flows[END_REF]; [START_REF] Layton | Coupling fluid flow with porous media flow[END_REF]; [START_REF] Miglio | Coupling of free surface and groundwater flows[END_REF]; [START_REF] Riviére | Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems[END_REF]; [START_REF] Chang | Instability of Poiseuille flow in a fluid overlying a porous layer[END_REF]; [START_REF] Urquiza | Coupling stokes and darcy equations[END_REF], etc. Besides, other types of interfacial boundary conditions have been proposed in the past few decades as well. [START_REF] Ene | Equations et phénomenes de surface pour l'écoulement dans un modele de milieu poreux[END_REF] investigated on the pressure jump across the interface. Ochoa-Tapia and Whitaker (1995a;b) assumed the continuity of velocity with a jump in the shear stress at the interface region. This condition was used in [START_REF] Kuznetsov | Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium[END_REF][START_REF] Kuznetsov | Influence of the stress jump condition at the porous-medium/clearfluid interface on a flow at a porous wall[END_REF]1998a;b;1999) to compute the coupled fluid/porous flow problems. Further, [START_REF] Cieszko | Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid[END_REF] proposed an interfacial condition with the discontinuity of both the tangential velocity and the tangential shear stress.

Instead of using Darcy's equation in the porous region, Neale and [START_REF] Nader | Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium[END_REF] suggested the use of Brinkman extension to the Darcy model. Since the Brinkman and Navier-Stokes equations are of the same order, the continuity of the velocity and stress at the interface can be invoked by using the effective viscosity. Due to its simplicity, this approach is widely used in most commercial CFD software, such as the STAR-CD, FLUENT and so on [START_REF] Ehrhardt | An Introduction to Fluid-Porous Interface Coupling[END_REF]. Then this single-domain approach was used to analytically study the fluid flow and heat transfer at three different types of interfaces in [START_REF] Vafai | Analysis of flow and heat transfer at the interface region of a porous medium[END_REF]. [START_REF] Vafai | Fluid mechanics of the interface region between a porous medium and a fluid layer -an exact solution[END_REF] adopted this approach to compute the exact solution for the fluid flow at the interface between a porous medium and a fluid layer. [START_REF] Sahraoui | Slip and no-slip velocity boundary conditions at interface of porous, plain media[END_REF] found that the Darcy-Brinkman model predicts the correct slip velocity but does not satisfactorily model the flow field in the porous region near the interface. However, this shortcoming can be overcome using a variable effective viscosity in the porous medium.

Another popular approach to deal with the interfacial problem is to define a transition zone between the channel and porous region. In [START_REF] Nield | The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation[END_REF], the transition region between the fluid layer and the porous medium was modeled by the Brinkman equation. The fluid flow in the channel and the porous region were computed by Navier-Stokes and Darcy equations, respectively. This approach was then validated in [START_REF] Goharzadeh | Transition layer thickness at a fluid-porous interface[END_REF] by experiments. Further, [START_REF] Goyeau | Momentum transport at a fluid-porous interface[END_REF] introduced a continuously varying transition zone between the fluid layer and the porous medium with a stress jump at the interface.

Le [START_REF] Le Bars | Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification[END_REF] defined a viscous transition zone inside the porous medium, where the Stokes equation still applies and the continuity of pressure and velocities is imposed. Investigations on some analytically tractable flows through the fluid/porous domain reveal that the Darcy-Brinkman and Beavers-Joseph can result in exactly equal velocity in the fluid layer and deep in the porous layer. Some disparities can be found in the viscous transition zone, where the exponential decay in Darcy-Brinkman formulation is replaced by a sharp jump in Beavers-Joseph.

In this work, a single-domain, Darcy-Brinkman model is used to compute the fluid flow in the SOFC structure, where the conditions of continuous velocity and continuity of the normal component of the stress tensor would naturally arise [START_REF] Ehrhardt | An Introduction to Fluid-Porous Interface Coupling[END_REF].

Heat Transfer

To describe the heat transfer process in the porous media, two approaches are commonly used in the literatures. One approach called local thermal non-equilibrium (LTNE) assumes a temperature difference between the solid and fluid phases. It has been studies in [START_REF] Vortmeyer | Equivalence of one-and two-phase models for heat transfer processes in packed beds: one dimensional theory[END_REF]; [START_REF] Vortmeyer | Axial heat dispersion in packed beds[END_REF]; [START_REF] Schlünder | Equivalence of one-and two-phase models for heat transfer processes in packed beds: one dimensional theory [1[END_REF]; [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF]; Zanotti and Carbonell (1984a;c;b); Levec and Carbonell (1985b;a); [START_REF] Glatzmaier | Use of volume averaging for the modeling of thermal properties of porous materials[END_REF]; [START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF], etc. Accordingly, the other approach named local thermal equilibrium (LTE) assumes the same temperature for the moving fluid phase and the solid phase in the porous medium. This hypothesis has also been investigated by many researchers, such as Truong and Zinsmeister (1978); [START_REF] Whitaker | Improved constraints for the principle of local thermal equilibrium[END_REF]; [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF]; [START_REF] Gobbe | Macroscopic description of unsteady heat transfer in heterogeneous media[END_REF]; [START_REF] Quintard | Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[END_REF]1996a;b); [START_REF] Nield | Convection in porous media[END_REF] and so on.

In the LTNE model, two co-existing temperature fields associated respectively with the solid and fluid phases are used to characterize the internal thermal state of the porous media [START_REF] Amhalhel | Problems of modeling flow and heat transfer in porous media[END_REF]. Due to the presence of two different temperatures, the heat exchange between the two phases can take place during the heat transfer in the porous media. According to [START_REF] Wakao | Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers[END_REF], the LTNE models can be classified to three categories. In the first category, the heat conduction in both fluid and solid phases is neglected in the heat transfer model, which is simple to analyze. In the second category, the models are based on the concept of two macroscopic continua, one for the fluid phase and the other for the solid phase, where the heat conduction in each phase is taken into account separately. The resulting macroscopic model is a two-equation heat transfer model such as in [START_REF] Vortmeyer | Equivalence of one-and two-phase models for heat transfer processes in packed beds: one dimensional theory[END_REF]; [START_REF] Schlünder | Equivalence of one-and two-phase models for heat transfer processes in packed beds: one dimensional theory [1[END_REF]; [START_REF] Vortmeyer | Axial heat dispersion in packed beds[END_REF]; [START_REF] Glatzmaier | Use of volume averaging for the modeling of thermal properties of porous materials[END_REF], etc. In the third category, on the basis of local volume averaging, the authors treat the porous medium as periodic arrays of spheres or cylinders. By considering the relation between the pore-scale structure and the macroscopic description of the porous medium, a two-equation system can be obtained as described in [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF]; Zanotti and Carbonell (1984a;c;b); Levec and Carbonell (1985b;a); [START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF]; [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF].

We define the response time for the local heat transfer between the fluid and the solid phases as t r , the characteristic time for variation of the mean temperature of the system as t c . If t r ≪ t c , the temperature difference between the two phases dies away with the increase of time [START_REF] Amhalhel | Problems of modeling flow and heat transfer in porous media[END_REF]. Under this condition, the LTE model can be used, where only one single temperature is utilized to describe the heat transfer process in the multiphase system. [START_REF] Wong | An experimental study of thermal equilibrium in liquid saturated porous media[END_REF] conducted an experimental study of the LTE in liquid saturated porous media for different boundary conditions. They found that the LTE is satisfied for flow rate where the Reynolds number is smaller than 10. [START_REF] Amiri | Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[END_REF] pointed out that the Darcy number (defined as the ratio of the permeability to the characteristic length squared), had a significant influence on the validity of the LTE. With the increase of the Darcy number, the LTE becomes less pronounced. Besides, regarding the validity of the LTE, [START_REF] Whitaker | Local thermal equilibrium: an application to packed bed catalytic reactor design[END_REF] reported that some additional constraints must be fulfilled for the LTE to be valid for the heat transfer in a two-phase system. Then [START_REF] Quintard | Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[END_REF] improved the prior studies and developed two constraints that must be satisfied in order that the principle of LTE can be used with confidence.

Concerning the heat transfer at the fluid/porous interface, different assumptions have been made to consider the thermal state at the interface region. [START_REF] Vafai | Analysis of flow and heat transfer at the interface region of a porous medium[END_REF] simply assumed that the temperature and heat flux are continuous across the interface. Such interfacial boundary conditions are very widely used, such as in [START_REF] Poulikakos | Forced convection in a duct partially filled with a porous material[END_REF]; [START_REF] Vafai | Fluid mechanics of the interface region between a porous medium and a fluid layer -an exact solution[END_REF]; [START_REF] Kim | Convective heat transfer in porous and overlying fluid layers heated from below[END_REF]; Ochoa-Tapia and Whitaker (1997) and so on. However, [START_REF] Sahraoui | Slip and no-slip velocity boundary conditions at interface of porous, plain media[END_REF] introduced a slip condition for the temperature with the continuity of the heat flux at the interface. Later on, Ochoa-Tapia and Whitaker (1998) took into account the possible excess in the heat flux and proposed a jump condition for the heat flux at the interface. [START_REF] Alazmi | Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer[END_REF] conducted a comprehensive comparative study on different types of heat transfer interfacial conditions between a porous medium and a fluid layer. They reported that the temperature fields and Nusselt numbers, generated from different interfacial conditions, are quite close to each other for most practical applications.

In this work, a hypothesis of local thermal equilibrium is used to describe the heat transfer process in the SOFC electrodes. For the fluid/porous interface, a continuity of temperature and heat flux at the interface is assumed to match the energy equations in the fluid and the porous medium.

Governing Equations

We assume an isotropic and homogeneous porous media saturated with viscous, incompressible and Newtonian fluid. The Boussinesq approximation is assumed valid for the fluid density such that

ρ (T, C) = ρ 0 [1 -β T (T -T 0 ) -β C (C -C 0 )] (2.1)
where T and C are temperature and species concentration; ρ 0 , T 0 and C 0 are the reference fluid density, temperature and species concentration, respectively. β T and β C are the thermal and solutal expansion coefficients, respectively.

The Darcy-Brinkman formulation is used to represent the fluid flow in the porous media. The advection-diffusion heat and mass equations are used to simulate the heat and mass transfer in the model. The mass, momentum, energy and species conservation equations are given by

∇.v = 0 (2.2) ρ 0 ε ∂v ∂t + µ K v + ρ 0 ε 2 (v.∇) v -µ e ∇. (∇v) + ∇p = -ρg∇y (2.3) (ρc) P M ∂T ∂t + ρ f c f v.∇T -∇. (k P M ∇T ) = 0 (2.4) ε ∂C ∂t + v.∇C -∇. (D e ∇C) = 0 (2.5)
p and v are the fluid pressure and the velocity vector, respectively; ε, K, µ and µ e are the medium porosity, the medium permeability, the fluid dynamic viscosity and the effective viscosity (i.e. the viscosity in the Brinkman model); c is the specific heat capacity;

D e is the effective species diffusivity through the fluid-saturated porous matrix; and g is gravitational acceleration. The volumetric heat capacity (ρc) P M and the effective thermal conductivity tensor k P M of the porous medium are calculated from the medium porosity and the corresponding properties of the fluid and solid phases as follow [START_REF] Quintard | Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[END_REF][START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF] (ρc

) P M = ερ f c f + (1 -ε) ρ s c s (2.6
)

k P M = (εk f + (1 -ε) k s ) I + k f -k s V ˆAfs n f s b f dA -ρ f c f ṽf b f (2.7)
ρ f c f , ρ s c s and k f , k s are the volumetric heat capacity and thermal conductivity of the fluid phase and the solid phase, respectively. The tensor ´Afs n f s b f dA represents the tortuosity of the porous medium [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF], which is related to the topology of the porous matrix. However, this term is very difficult to be measured and calculated. Thereby, in this study the tortuosity term is neglected. -ρ f c f ṽf b f is the dispersive term, which is normally assumed to be equal to the diffusion tensor k d , with the expression of its components given by [START_REF] Bear | Dynamics of fluids in porous media[END_REF][START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF])

k d ij = ρ f c f α T |q| δ ij + (α L -α T ) q i q j |q| (2.8)
where α L and α T are the longitudinal and transverse thermal dispersivities, δ ij is the Kronecker delta function.

The Finite-Element Numerical Model

In this work, accurate numerical methods are used to solve the coupled system of partial differential Eq. (2.2)-Eq. (2.5) on a general triangular mesh. The Darcy-Brinkman Eq. (2.3) is solved using the nonconforming Crouzeix-Raviart (CR) method. This mixed finite element method employs different basis functions for the pressure and the velocity approximations. Normally, the drawback of general mixed finite elements (for instance the Taylor-Hood finite elements) is that, with the degrees of freedom of both pressure and velocity being the unknowns, they lead to a large final system to solve. However, the CR finite element method avoids this drawback by taking advantages of the lowest order P0-P1 method with linear velocity and constant pressure in each element. This approximation also satisfies the Babuska-Brezzi condition [START_REF] Fortin | Mixed and hybrid finite element methods[END_REF][START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF][START_REF] Gresho | Incompressible flow and the finite element method: advection-diffusion and isothermal laminar flow[END_REF], which is essential to ensure a final non-singular linear system to solve without resorting to any stabilization technique. Moreover, the CR finite element method can be used for both steady-state and transient flows, and it is able to avoid artificial sources and sinks, due to the local mass conservation property [START_REF] Gresho | Incompressible flow and the finite element method: advection-diffusion and isothermal laminar flow[END_REF]. In order to ensure a stable solution of the flow equation, an appropriate upstream scheme is used to deal with the nonlinear convection term.

For the heat and mass transfer Eq. (2.4) and Eq. (2.5), a combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods are used in this work. Indeed, standard numerical methods, such as Finite Element Method (FEM) or Finite Volume Method (FVM), usually result in numerical diffusion and/or non-physical oscillations in advection dominated heat or mass transfer problems. The use of the DG method for the discretization of the advective term can avoid this numerical diffusion/nonphysical oscillation and lead to a high-resolution scheme for advection, which is clearly superior to the already existing finite element methods [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF]. Besides, the DG method satisfies the local conservation property as in finite volume, and allows high-order approximations to enter through a variational formulation rather than by some hybridized difference or functional reconstruction [START_REF] Kirby | A posteriori error estimates and local time-stepping for flow and transport problems in porous media[END_REF]. Moreover, the DG method deals with the advective fluxes by solving a Riemann problem at the interface of two elements, where the solution is found to be total variation diminishing [START_REF] Gowda | A discontinuous finite element method for scalar nonlinear conservation laws[END_REF].
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Note that, in elliptic and parabolic systems, the DG method cannot provide numerical results that are significantly superior to the existing finite element methods as in hyperbolic systems [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF]. Therefore, the diffusive term in the heat/mass transfer equation is discretized by the MPFA method, which uses more than two elements to compute the fluxes across edges [START_REF] Aavatsmark | Discretization on nonorthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF]. Similar to the mixed finite element method, the MPFA method is locally conservative, and is able to handle general irregular grids on anisotropic heterogeneous domains. Moreover, the MPFA method uses the same type of unknowns as the DG method. Thereby the discretizations of the advective term and the diffusive term in the heat/mass equation can be assembled into one matrix system, which avoids the operator splitting errors [START_REF] Younes | Solving the advection-dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes[END_REF].

In order to couple the fluid flow, heat and mass transfer Eq. (2.2)-Eq. (2.5), the Picard method is usually used for the linearization of the coupled system at each time step. The flow, heat and mass equations are solved sequentially, which enables the utilization of different temporal discretization to guarantee a high accuracy for each equation. In this model, an implicit time discretization is used for the flow system equations (Eq. (2.2) and Eq. (2.3)) and for the diffusion terms in Eq. (2.4) and Eq. (2.5). However, the convective terms in Eq. (2.4) and Eq. (2.5) are treated explicitly to reduce numerical diffusion.

Time stepping schemes are used to reduce the computational cost by optimizing the time step size. Time stepping schemes with embedded error control have been developed in many non-linear problems like density-driven flow in porous media [START_REF] Diersch | Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems[END_REF], incompressible Navier-Stokes problems [START_REF] Turek | A comparative study of some time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit nonlinear schemes to semiimplicit projection methods[END_REF], unsaturated flow [START_REF] Williams | An evaluation of temporally adaptive transformation approaches for solving Richards' equation[END_REF][START_REF] Kavetski | Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation[END_REF], elastoplastic consolidation in geomechanics [START_REF] Sloan | Biot consolidation analysis with automatic time stepping and error control Part 1: theory and implementation[END_REF], reactive transport problems [START_REF] Saaltink | Mass balance errors when solving the convective form of the transport equation in transient flow problems[END_REF]. In the present work, the non-iterative time stepping scheme of [START_REF] Younes | Empirical versus time stepping with embedded error control for density-driven flow in porous media[END_REF], based on local truncation error control, is used to solve the fluid flow, the heat transfer and the mass transfer equations sequentially.

The Darcy-Brinkman Flow Discretization

Due to stability conditions, the flow system Eq. (2.2)-Eq. (2.3) cannot be discretized with the same order for pressure and velocity approximations. Otherwise, some sort of stabilization has to be added to the mixed formulation [START_REF] Li | A new local stabilized nonconforming finite element method for the Stokes equations[END_REF]). To avoid these difficulties, non-conforming CR elements for the velocity approximation in combination with constant pressure per element are used. The CR method has been used in to solve several problems such as the Darcy-Stokes problem [START_REF] Burman | Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem[END_REF], the Stokes problem [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[END_REF] and the elasticity problem [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF]. It results in a simple, stable and optimal order approximation of the Stokes equations [START_REF] Arnold | On nonconforming linear-constant elements for some variants of the Stokes equations[END_REF].

In the following, the main steps for the discretization of the Darcy-Brinkman Eq. (2.2) and Eq. ( 2.3) with the CR triangular elements are detailed. The nonlinear convective term is treated using an upstream approach with weight function as in [START_REF] Schieweck | A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation[END_REF]; [START_REF] Djadel | A non-conforming finite volume element method of weighted upstream type for the two-dimensional stationary Navier-Stokes system[END_REF].

With the non-conforming finite element method, the velocity (v) degrees of freedom are the two component (v x i , v y i ) at the mid-edge i facing the node i (see Fig. The interpolation function ϕ i is non-zero only inside the element E and its adjacent element E ′ that shares the edge i. Inside the element E, a linear variation of the velocity

v E (v x E , v y E ) is assumed: v x E = v x i ϕ E i + v x j ϕ E j + v x k ϕ E k , v y E = v y i ϕ E i + v y j ϕ E j + v y k ϕ E k (2.9)
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For an interior edge i, the linear interpolation function ϕ i is given by:

ϕ E i = 1 |E| x (y k -y j ) + y (x j -x k ) + 1 2 (y j x k + y j x i -y k x i -y k x j -y i x j + y i x k ) (2.10)
where |E| is the area of the element E; x i and y i are the coordinates of the vertex i of the triangular element E. The interpolation function ϕ E i equals 1 on the mid-edge i and zero on the mid-edges j and k of E (see Fig. 2.1). The gradient components of the interpolation function Eq. (2.10) are

∇ϕ E i = 1 |E|   y k -y j x j -x k   = 1 |E|   ∆y i ∆x i   (2.11)
with ∆y i = y k -y j and ∆x i = x j -x k .

Discretization of the Momentum Conservation Equation

Using the test function ϕ i over the domain Ω, we can write the variational formulation of the flow Eq. (2.3) as

ˆΩ ρ 0 ε ∂v ∂t + µ K v + ρ 0 ε 2 (v.∇) v -µ e ∇. (∇v) + ∇p ϕ i = ˆΩ -ρg∇yϕ i (2.12)
Mass and Darcy terms Using an implicit time discretization, the mass and Darcy terms for an interior edge i sharing two adjacent elements E and E ′ can be written as follows:

ˆΩ ρ 0 ε ∂v ∂t + µ K v ϕ i = ρ 0 3ε∆t (|E| + |E ′ |)      (v x i ) n+1 -(v x i ) n (v y i ) n+1 -(v y i ) n      + µ 3K (|E| + |E ′ |)      (v x i ) n+1 (v y i ) n+1     
(2.13)

The convective term The nonlinear convective term can lead to unstable scheme for problems with high Rayleigh numbers. Therefore an upwind technique introduced in Schieweck and Tobiska (1989) is used for the discretization of the convective term. In this technique, a lumping region R i assigned to the edge i is defined as shown in the hatched area in Fig. 2.2. The lumping area R i is formed by two simplex regions S E i and S E ′ i for an inner edge i and by the sole simplex region S E i for a boundary edge. The simplex region S E i is a triangular area formed by the centroid point G with two nodes j and k of the element E (see Fig. We use the lumping operator which transforms a given function into a piecewise constant function. Denoting ω = v, the variational formulation of the convective term writes:

ˆΩ ρ 0 ε 2 (v.∇) vϕ i = ˆΩ ρ 0 ε 2 (ω.∇) vϕ i ≈ ρ 0 ε 2 ˆRi (ω.∇) v (2.14)
Using Green's formula leads to

ρ 0 ε 2 ˆRi (ω.∇) v = ρ 0 ε 2      ´Ri ∇. (ωv x ) -´Ri v x ∇.ω ´Ri ∇. (ωv y ) -´Ri v y ∇.ω     
(2.15)

Use the upwind scheme for the first term and the lumping operator for the second integral Chapter 2 of Eq. (2.15), we can write

ˆRi ∇. (ωv x ) - ˆRi v x ∇.ω ≈ l v il x ˆΓil ω.η il -v x i l ˆΓil ω.η il (2.16)
where v il x is the upwind value given by

v il x = v upw x = y il v x i + (1 -y il ) v x l
(2.17)

If we denote Q il = ´Γil ω.η il , we obtain ˆRi ∇. (ωv x ) - ˆRi v x ∇.ω = l Q il (1 -y il ) (v x l -v x i ) (2.18)
Two functions can be used for y il = f (t) (see [START_REF] Schieweck | A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation[END_REF]:

f 1 (t) =            1 if t ≥ 0 0 else or f 2 (t) =                1/2 + t 1 + t if t ≥ 0 1 2 -2t else (2.19) with t = Q il e .
Finally, the convective term writes

ρ 0 ε 2 ˆRi (ω.∇) v = ρ 0 ε 2      l Q il (1 -y il ) (v x l -v x i ) l Q il (1 -y il ) (v y l -v y i )   E +   l Q il (1 -y il ) (v x l -v x i ) l Q il (1 -y il ) (v y l -v y i )   E ′    (2.20) with Q ij = ´Γij ω.η ij = 1 9 2v x i + 2v x j -v x k (∆z j -∆z i ) + 2v y i + 2v y j -v y k (∆x j -∆x i ) .
The viscous and pressure terms The pressure is assumed to be piecewise constant with degrees of freedom located in the center of triangular elements. Therefore, the viscous and pressure terms in Eq. (2.12) write ˆΩ (-µ e ∇. (∇v) + ∇p)

ϕ i = ˆΩ ∇. (-µ e ∇v + pId) ϕ i = ˆΩ -∇.ςϕ i (2.21)
with ς = µ e ∇v -pId and Id the 2 × 2 identity matrix.

For an interior edge i sharing two elements E and E ′ , using Green's formula, the previous integral can be reduced to

ˆΩ -∇.ςϕ i = ˆE ς∇ϕ i + ˆE′ ς∇ϕ i (2.22)
Therefore, using Eq. (2.11), we obtain the final form of the viscous and pressure terms

ˆΩ (-µ e ∇. (∇v) + ∇p) ϕ i =          µ e |E|      3 j=1 (∆x i ∆x j + ∆y i ∆y j ) v x j 3 j=1 (∆x i ∆x j + ∆y i ∆y j ) v y j      -      ∆y i ∆x i      p E          E +          µ e |E ′ |      3 j=1 (∆x i ∆x j + ∆y i ∆y j ) v x j 3 j=1 (∆x i ∆x j + ∆y i ∆y j ) v y j      -      ∆y i ∆x i      p E ′          E ′
(2.23)

The buoyancy term Use Green's formula, the variational form of the buoyancy term gives

-ˆΩ ρg∇yϕ i = -ρ E g   j ˆEj yϕ i .η Ej -ˆE y∇ϕ i   -ρ E ′ g   j ˆEj ′ yϕ i .η Ej ′ - ˆE′ y∇ϕ i   (2.24)
The integrations in the above equation are calculated numerically based on the values on the mid-edges and the triangular centroids respectively. Thus we obtain

j ˆEj yϕ i .η Ej -ˆE y∇ϕ i = ȳEi   ∆y i ∆x i   -ȳE   ∆y i ∆x i   (2.25)
where ȳEi and ȳE are the altitude of the mid-edge and the center of the element E, respectively. Therefore, combining Eq. (2.24) and Eq. (2.25), the buoyancy term writes

-ˆΩ ρg∇yϕ i =    ρ E g (ȳ E -ȳEi )   ∆y i ∆x i      E +    ρ E ′ g (ȳ E -ȳEi ′ )   ∆y i ∆x i      E ′
(2.26)

Discretization of the Mass Conservation Equation

The mass conservation equation is discretized for each element E as

ˆE ∂v x ∂x + ∂v y ∂y = 0 (2.27)
Using the velocity approximation Eq. (2.9), we obtain

ˆE j v x j ∂ϕ j ∂x + v y j ∂ϕ j ∂y = 0 (2.28) which writes j ∆y j v x j + ∆x j v y j = 0 (2.29)
The final flow system is obtained by substituting Eq. (2.13), Eq. (2.20), Eq. (2.23), Eq. (2.26) and Eq. (2.29) into Eq. (2.12).

The Heat and Mass Transfer Discretization

For the heat and mass transfer Eq. (2.4) and Eq. (2.5), the explicit DG method, where fluxes are upwinded using a Riemann solver is used to solve the advection equation and combined with the symmetric MPFA method for the diffusion equation. [START_REF] Konz | Twodimensional stable-layered laboratory-scale experiments for testing density-coupled flow models[END_REF] used the DG method for the simulation of density-driven flow experiments in porous media, where a very good matching between the DG and the experimental results for all concentration isolines was obtained. The MPFA method was also studied by many researchers [START_REF] Edwards | Finite volume discretization with imposed flux continuity for the general tensor pressure equation[END_REF][START_REF] Klausen | Relationships among some locally conservative discretization methods which handle discontinuous coefficients[END_REF]Younes and Fontaine, 2008a;b). It provides flow fluxes at the element interfaces explicitly by weighted sums of discrete element values.

In the following, we summarize the main developments for the discretization of the heat transfer Eq. (2.4). Similar developments can be applied for the discretization of the mass transfer Eq. (2.5).

The heat equation can be written in the following mixed form:

               d ∂T ∂t + v.∇T + 1 ρ f c f ∇.q cd = 0 q cd = -k P M ∇T (2.30)
where d is the heat capacities ratio; q cd is the conduction-diffusion flux, assumed to vary linearly inside the element E, therefore,

d = (ρc) P M ρ f c f (2.31) ∇.q cd = 1 |E| i Q cd ∂Ei (2.32)
where Q cd ∂Ei is the conduction-diffusion heat flux across the edge i of the element E.

We use the P 1 DG method where the approximated solution T h (x, t) is expressed with Chapter 2 linear basis functions ψ E i on each element E by:

T h (x, t) | E = 3 i=1 T E i (t) ψ E i (x) (2.33)
T E i (t) (i = 1, 2, 3) are the three degrees of freedom in element E, which are the average value of the temperature defined at the triangle centroid (x E , ȳE ) and its deviations in each space direction [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[END_REF] with the corresponding interpolation functions:

ψ E 1 (x, y) = 1, ψ E 2 (x, y) = x -xE , ψ E 3 (x, y) = y -ȳE (2.34)
Thus the variational formulation of the heat transport Eq. (2.30) over the element E using ψ E i as test functions leads to [START_REF] Younes | Empirical versus time stepping with embedded error control for density-driven flow in porous media[END_REF])

ˆE d ∂T ∂t ψ E i + ˆE (v.∇T ) ψ E i + 1 ρ f c f . |E| ˆE   j Q cd ∂Ej   ψ E i = 0 (2.35)
Using Green's formula, Eq. (2.35) becomes:

ˆE d ∂T ∂t ψ E i + ˆ∂E T ψ E i v • η ∂E -ˆE T v • ∇ψ E i + 1 ρ f c f j Q cd ∂Ej |E| ˆE ψ E i = 0 (2.36)
Substituting the approximated temperature Eq. (2.33) into the equation and applying an upwind scheme to the advective term of the equation results in

[G]                dT E 1 dt dT E 2 dt dT E 3 dt                = H -M 0            T E 1 T E 2 T E 3            - 3 l=1 M l            T El 1 T El 2 T El 3            +            ∂Ej Q cd j 0 0           
(2.37) with,

G ij = ´E ψ E j ψ E i , H ij = ´E ψ E j v.∇ψ E i M 0 ij = N E l=1 λ E ∂El Q E ∂El |∂El| ˆ∂El ψ E i ψ E j , M l ij = 1 -λ E ∂El Q E ∂El |∂El| ˆ∂El ψ E i ψ El j (l = 1, ..., 3)
where El is the adjacent element to element E with ∂El as the common edge. Q E ∂El is the fluid flux across edge ∂El with the expression Q E ∂El = ´∂El v.η ∂El . The upwind parameter λ E ∂El is defined by

λ E ∂El =      1 0 if v.η ∂El 0 if v.η ∂El < 0 (2.38)
To reduce numerical diffusion, an explicit scheme is used for the temporal discretization of advection in Eq. (2.37).

The heat fluxes Q cd j across edges are approximated at the new time level using the MPFA method. The basic idea of this method is to divide each triangle into three sub-cells as in Fig. 2.3. allelogram. Therefore, half-edge heat fluxes

Q 1 i = ´F1 i -k P M ∇T and Q 2 i = ´F2 i -k P M ∇T can be simplified to (outflow is taken positive):      Q 1 i Q 2 i      = 3k P M |E|      - -→ iF 1 . -→ iF 1 -→ iF 1 . -→ iF 2 -→ iF 1 . -→ iF 2 - -→ iF 2 . -→ iF 2           T f 1 -T E T f 2 -T E     
(2.39) An interaction region is defined by gathering all the sub-cells that share the vertex i (see Fig. 2.4). Eq. (2.39) is written for each sub-cell in the interaction region. Then by writing continuity of heat fluxes across half-edges and continuity of temperature at continuity points, we obtain a local system [A] (T f ) = [B] (T ). This local system is solved to obtain the temperature at the continuity points (T f i ) as function of the temperature at all elements sharing the vertex i. The obtained relation is then substituted to Eq. (2.39) to obtain half-edge heat fluxes explicitly as a weighted sum of the temperature at cells forming the interaction volume. Finally, the summation of these heat fluxes is written using an implicit time discretization and substituted into Eq. (2.37).

Coupling Darcy-Brinkman Flow, Heat and Mass Transfer

With the Boussinesq approximation, the density differences are confined to the buoyancy term. Due to the high order of nonlinearities, the simulations can be excessively timeconsuming. To reduce the computational cost while maintaining accuracy of the model, a non-iterative time stepping scheme based on local truncation error control [START_REF] Younes | Empirical versus time stepping with embedded error control for density-driven flow in porous media[END_REF] is used. The main stages of the scheme are recalled in the following.

The local time truncation errors of the temperature and mass are evaluated using two approximations of adjacent order of accuracy

e n+1 C ≈ 1 2 C n+1 -C n + ∆t n+1 ∆t n C n -C n-1 (2.40) e n+1 T ≈ 1 2 T n+1 -T n + ∆t n+1 ∆t n T n -T n-1 (2.41)
The time step is accepted if the absolute error criterion is verified (2.43)

If the error criterion is not satisfied, the current time step is repeated using the latest error estimate

∆t n+1 j+1 = ∆t n+1 j × max   s a γ e max e n+1 C , e n+1 T , r min    (2.44)
where j indexes the recursive step size reduction, r max and r min are used to limit multiplication and reduction factors. They are set equal to 1.05 and 0.1 in this work, respectively.

Chapter 2 s a is a safe factor [START_REF] Sloan | Biot consolidation analysis with automatic time stepping and error control Part 1: theory and implementation[END_REF], taken as 0.4. All the simulations in this chapter are performed with a temporal truncation error tolerance γ e = 0.03.

Note that the time step size should also satisfy the Courant-Friedrichs-Lewy condition (CFL<1). Unphysical oscillations appearing near sharp fronts are avoided using an efficient geometric slope limiter [START_REF] Younes | Empirical versus time stepping with embedded error control for density-driven flow in porous media[END_REF].

Validation of the Coupled Flow-Heat-Mass Problem

To validate the developed DB model, a double-diffusive natural convection problem in the porous cavity is studied. A lot of studies have been documented by the book of [START_REF] Nield | Convection in porous media[END_REF]. Trevisan and Bejan (1985) have performed a numerical study of the doublediffusive natural convection in porous media on the basis of Darcy model by considering a square cavity submitted to horizontal temperature and concentration gradients. [START_REF] Lin | Transient binary mixture natural convection in square enclosures[END_REF] and [START_REF] Lin | Unsteady natural convection heat and mass transfer in a saturated porous enclosure[END_REF] have studied numerically the effects of buoyancy ratio on the transient thermosolutal natural convection in a square enclosure. [START_REF] Rosenberg | Thermohalin convection in a porous medium heated from below[END_REF] investigated the influence of Rayleigh, Lewis and buoyancy numbers on fluid flow in a saturated porous cavity, under various boundary conditions. [START_REF] Malashetty | Anisotropic thermoconvective effects on the onset of double diffusive convection in a porous medium[END_REF] and [START_REF] Bennacer | Double diffusive convection in a vertical enclosure filled with anisotropic porous media[END_REF] considered the anisotropy of the porous medium in the simulation. [START_REF] Alavyoon | On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries[END_REF] and [START_REF] Alavyoon | On natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls[END_REF] performed analysis based on Darcy's law in a rectangular fluid-saturated vertical porous enclosure subject to opposing heat and mass fluxes. [START_REF] Goyeau | Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation[END_REF] carried out a numerical study on natural convection in a porous cavity, driven by cooperating thermal and solutal buoyancy forces, making use of the Darcy-Brinkman formulation. The non-Darcy effects on flow, heat and mass transfer within a rectangular porous enclosure have been studied by [START_REF] Nithiarasu | Double-diffusive natural convection in an enclosure filled with fluid-saturated porous medium: a generalized non-Darcy approach[END_REF]. [START_REF] Angirasa | Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium[END_REF] reported a numerical study of natural convection in a fluidsaturated porous media with opposing buoyancy effects of the same order and unequal thermal and species diffusion coefficients. [START_REF] Kramer | Boundary domain integral method for the study of double diffusive natural convection in porous media[END_REF] presented a boundary domain integral method for the solution of thermosolutal natural convection in porous media. Recently, [START_REF] Khadiri | Two-and threedimensional multiple steady states in a porous cavity heated and salted from below[END_REF] analyzed the double-diffusive natural convection in homogeneous and isotropic porous media heated and salted from below in two-and threedimensions, with the flow through the medium governed by Darcy's law. [START_REF] Mchirgui | Entropy generation in double-diffusive convection in a square porous cavity using Darcy-Brinkman formulation[END_REF] carried out a numerical study of entropy generation in double-diffusive convection in a square porous cavity. In this study, a non-dimensional form of the flow, heat and mass equations for the double-diffusive natural convection problem is introduced, based on which the semi-analytical solutions for this problem are developed by using the FG method. Then the numerical results are compared with the semi-analytical solutions with different Rayleigh, Darcy, Lewis and buoyancy numbers to investigate the accuracy and sensitivity of the proposed numerical model.

The Test Problem and Non-Dimensional Form of Governing Equations

The double-diffusive problem considers natural convection of a fluid composed by gas mixture in a differentially heated square cavity (Fig. 2.5), saturated by a porous medium.

The left and right vertical walls are maintained at constant temperatures and concentrations (T h , C h ) and (T c , C c ), respectively. The horizontal surfaces are assumed to be adiabatic and insulted. Slip velocity boundary conditions are proposed on all walls and surfaces in this work.

The non-dimensional form of mass, momentum, energy and species conservation equations can be written as follows 

∂V X ∂X + ∂V Y ∂Y = 0 (2.45) 1 ε ∂V X ∂τ + 1 ε 2 V X ∂V X ∂X + V Y ∂V X ∂Y = - 1 D A V X - ∂P ∂X + Λ ∂ 2 V X ∂ 2 X + ∂ 2 V X ∂ 2 Y (2.46) 1 ε ∂V Y ∂τ + 1 ε 2 V X ∂V Y ∂X + V Y ∂V Y ∂Y = - 1 D A V Y - ∂P ∂Y + Λ ∂ 2 V Y ∂ 2 X + ∂ 2 V Y ∂ 2 Y + Gr T (θ + N φ) (2.47) d ∂θ ∂τ + V X ∂θ ∂X + V Y ∂θ ∂Y = R k P r ∂ 2 θ ∂X 2 + ∂ 2 θ ∂Y 2 (2.48)
ε ∂φ ∂τ + V X ∂φ ∂X + V Y ∂φ ∂Y = λ Le.P r ∂ 2 φ ∂X 2 + ∂ 2 φ ∂Y 2
(2.49)

The governing equations are written using the following scales and parameters:

V X = v x L γ ; V Y = v y L γ ; X = x L ; Y = y L ; τ = tγ L 2 (2.50) P = (p -p 0 ) L 2 ρ 0 γ 2 ; θ = T -T c T h -T c ; φ = C -C c C h -C c (2.51) P r = γ α ; Λ = µ e µ ; R k = k P M k f ; λ = D e D ; Le = α f D ; D A = K L 2 (2.52) Gr T = gβ T (T h -T c ) L 3 γ 2 ; Gr S = gβ C (C h -C c ) L 3 γ 2 ; N = Gr S Gr T (2.53)
where L is the length of the square side; γ, α f are the kinematic viscosity and thermal diffusivity in the fluid; Λ is the ratio of the viscosity in the Brinkman term to the fluid viscosity; R k and λ are the ratio of the effective thermal conductivity in the porous matrix to the thermal conductivity in the fluid and species diffusivity in porous medium to species molecular diffusivity through the fluid mixture (D), respectively; P r, Le, D A , Gr T , Gr S are the Prandtl, Lewis, Darcy, the thermal and solutal Grashof numbers, respectively; and N is the buoyancy ratio. The kinematic viscosity and thermal diffusivity in the fluid γ and α f are given by

γ = µ ρ 0 , α f = k f ρ f c f (2.54)
In the analysis, the thermal porous Rayleigh number is used instead of the Grashof number. It is defined as At the left wall:

Ra * = P rD A Gr T (2.
v x = 0, T = T h , C = C h At the right wall: v x = 0, T = T c , C = C c
On horizontal surfaces:

v y = 0, ∂T ∂y = 0, ∂C ∂y = 0.

The Semi-Analytical FG Solution

A high-accurate steady-state solution of the double-diffusive natural convection problem is investigated using the FG method. In this work, the FG method is chosen because of its simplicity in implementation in comparison with other spectral methods [START_REF] Christou | Interacting localized waves for the regularized long wave equation via a Galerkin spectral method[END_REF]. The method is carried out as follows. First, the governing equations are reformulated in terms of stream function and temperature. Then, these unknowns are expanded in an infinite Fourier series truncated at a given order. Finally, the substitution of the expansions in the governing equations leads to a highly nonlinear system of algebraic equations that is solved using an efficient nonlinear algorithm based on the modified Powell hybrid method [START_REF] Powell | An efficient method for finding the minimum of a function of several variables without calculating derivatives[END_REF][START_REF] Powell | On the calculation of orthogonal vectors[END_REF][START_REF] Press | Numerical recipes 3rd edition: The art of scientific computing[END_REF]. The major drawback of the FG method is its impractical use in the presence of nonlinearity, which induces fairly complex summations that resemble a convolution [START_REF] Costa | Spectral methods for partial differential equations[END_REF]. This difficulty is avoided here since terms involving four overlapped summations are reduced to only double sums as in [START_REF] Fahs | A High-Accurate Fourier-Galerkin Solution for Buoyancy-Driven Flow in a Square Cavity[END_REF]. The main stages of FG method are recalled as follows.

The divergence-free condition, given by Eq. (2.45), implies the existence of a stream function Ψ that is defined as follows:

V X = ∂Ψ ∂Y , V Y = - ∂Ψ ∂X (2.56)
Differentiating Eq. ( 2.46) with respect to Y and Eq. ( 2.47) with respect to X, subtracting them to eliminate the pressure and then substituting Eq. (2.56), gives in the case of steady-state flow:

1

ε 2 ∂Ψ ∂Y ∂ 3 Ψ ∂Y 2 ∂X - ∂Ψ ∂X ∂ 3 Ψ ∂Y 3 + ∂Ψ ∂Y ∂ 3 Ψ ∂X 3 - ∂Ψ ∂X ∂ 3 Ψ ∂X 2 ∂Y + 1 D A ∂ 2 Ψ ∂Y 2 + ∂ 2 Ψ ∂X 2 -Λ ∂ 4 Ψ ∂X 4 + 2 ∂ 4 Ψ ∂X 2 ∂Y 2 + ∂ 4 Ψ ∂Y 4 + Ra * P r.D A ∂θ ∂X + N ∂φ ∂X = 0(2.57)
Using Eq. (2.56), the steady state thermal and species conservation equations simplify to

R k P r ∂ 2 θ ∂X 2 + ∂ 2 θ ∂Y 2 - ∂Ψ ∂Y ∂θ ∂X + ∂Ψ ∂X ∂θ ∂Y = 0 (2.58) λ Le.P r ∂ 2 φ ∂X 2 + ∂ 2 φ ∂Y 2 - ∂Ψ ∂Y ∂φ ∂X + ∂Ψ ∂X ∂φ ∂Y = 0 (2.59)
Eq. (2.57), Eq. (2.58) and Eq. (2.59) are subject to homogeneous Neumann boundary conditions for the stream function on the walls and surfaces. The temperature and species concentration boundary conditions are homogenized using the following changes of variables:

Θ = θ + X -1 (2.60) Φ = φ + X -1 (2.61)
Substituting Eq. (2.60) and Eq. ( 2.61) into Eq. (2.57), Eq. (2.58) and Eq. (2.59) leads to the following system:

1

ε 2 ∂Ψ ∂Y ∂ 3 Ψ ∂Y 2 ∂X - ∂Ψ ∂X ∂ 3 Ψ ∂Y 3 + ∂Ψ ∂Y ∂ 3 Ψ ∂X 3 - ∂Ψ ∂X ∂ 3 Ψ ∂X 2 ∂Y + 1 D A ∂ 2 Ψ ∂Y 2 + ∂ 2 Ψ ∂X 2 -Λ ∂ 4 Ψ ∂X 4 + 2 ∂ 4 Ψ ∂X 2 ∂Y 2 + ∂ 4 Ψ ∂Y 4 + Ra * P r.D A ∂Θ ∂X + N ∂Φ ∂X - Ra * P r.D A (1 + N ) = 0 (2.62) R k P r ∂ 2 Θ ∂X 2 + ∂ 2 Θ ∂Y 2 - ∂Ψ ∂Y ∂Θ ∂X + ∂Ψ ∂Y + ∂Ψ ∂X ∂Θ ∂Y = 0 (2.63) λ Le.P r ∂ 2 Φ ∂X 2 + ∂ 2 Φ ∂Y 2 - ∂Ψ ∂Y ∂Φ ∂X + ∂Ψ ∂Y + ∂Ψ ∂X ∂Φ ∂Y = 0 (2.64)
This system of equations is subject to the following homogeneous boundary conditions:

At X = 0 and X = 1, Θ = Φ = 0, ∂Ψ ∂Y = ∂ 2 Ψ ∂X 2 = 0 (2.65) At Y = 0 and Y = 1, ∂Θ ∂Y = ∂Φ ∂Y = 0, ∂Ψ ∂X = ∂ 2 Ψ ∂Y 2 = 0 (2.66)
The FG method consists of expanding the stream function Ψ , the temperature Θ and the Chapter 2 species concentration Φ in infinite double Fourier series, truncated at given orders:

Ψ = N m m=1 N n n=1 A m,n sin (mπY ) sin (nπX) (2.67) Θ = N r r=0 N s s=1 B r,s cos (rπY ) sin (sπX) (2.68) Φ = N r r=0 N s s=1 F r,s cos (rπY ) sin (sπX) (2.69)
where N m and N n (N r and N s) are the truncation orders for the stream function (temperature and concentration) in the X and Y directions, respectively. Note that the boundary conditions, Eq. (2.65) and Eq. (2.66), are identically verified by Eq. (2.67), Eq. (2.68) and Eq. (2.69).

Eq. (2.67), Eq. (2.68) and Eq. (2.69) are then substituted into Eq. (2.62), Eq. (2.63) and Eq. (2.64), and the resulting equations are multiplied respectively by Ψ g,h = 4 sin (gπY ) sin (hπX) for (g = 1...N m, h = 1...N n), Θ g,h = 4 cos (gπY ) sin (hπX) for (g = 0...N r, h = 1...N s) and Φ g,h = 4 cos (gπY ) sin (hπX) for (g = 0...N r, h = 1...N s) and integrate over the square domain. This leads to the following set of nonlinear algebraic equations with A g,h , B g,h and F g,h as unknowns:

RF g,h = Λπ 4 A g,h g 2 + h 2 2 - Ra * π.P r.D A N r r=0 N s s=1 s. (B r,s + N.F r,s ) Γ g,r Γ h,s + Ra * π 2 .P r.D A (1 + N ) Γ g,0 Γ h,0 + 1 D A π 2 A g,h g 2 + h 2 + π 4 4ε 2 N m m=1 N n n=1 N m e=1 N n f =1 A e,f A m,n m.f e 2 + f 2 ξ e,g,m ǫ f,h,n -n.e f 2 + e 2 η e,g,m κ f,h,n = 0 for (g = 1...N m, h = 1...N n) (2.70) RT g,h = - R k P r ε g π 2 g 2 + h 2 F g,h + πgΠ g,h - π 2 4 N m m=1 N n n=1 N r r=0 N s s=1 A m,n B r,s (m.s.υ g,m,r ζ h,n,s + n.r.χ g,m,r ω h,n,s ) = 0 for (g = 0...N r, h = 1...N s) (2.71) RH g,h = - λ Le.P r ε g π 2 g 2 + h 2 F g,h + πgΠ g,h - π 2 4 N m m=1 N n n=1 N r r=0 N s s=1 A m,n F r,s (m.s.υ g,m,r ζ h,n,s + n.r.χ g,m,r ω h,n,s ) = 0 for (g = 0...N r, h = 1...N s) (2.72)
The coefficients ξ, ǫ, η, κ, υ, ζ, χ, ω and ε g in Eq. (2.70), Eq. (2.71) and Eq. ( 2.72) are given by

ξ e,g,m = δ e,g-m + δ e,g+m -δ e,m-g ǫ f,h,n = δ f,h-n -δ f,h+n + δ f,n-h (2.73) η e,g,m = δ e,g-m -δ e,g+m + δ e,m-g κ f,h,n = δ f,h-n + δ f,h+n -δ f,n-h (2.74) υ g,m,r = δ g,m-r + δ g,r-m + δ g,m+r ζ h,n,s = δ h,n+s + δ h,n-s -δ h,s-n (2.75) χ g,m,r = δ g,r-m + δ g,m-r -δ g,m+r ω h,n,s = δ h,n+s -δ h,n-s + δ h,s-n (2.76) ε g =      1 if g = 0 2 if g = 0 (2.77)
The matrices Γ and Π in Eq. (2.70), Eq. (2.71) and Eq. (2.72) are given by

Γ i,j = 1 -(-1) i+j i + j + 1 -(-1) i-j i -j (2.78) Chapter 2 Π i,j =      A i,j 1 ≤ i ≤ N m and 1 ≤ j ≤ N n 0 elsewhere (2.79)
where δ i,j is the Kronecker delta function.

The terms involving four overlapped summations in Eq. (2.70), Eq. (2.71) and Eq. (2.72

) require O (N m 2 × N n 2 ), O (N m × N n × N r × N s) and O (N m × N n × N r × N s)
operations, respectively. Therefore, their evaluation can be highly CPU-consuming, making the FG method impractical for a relatively large number of Fourier coefficients. However, a closer look reveals that after substituting Eq. (2.73)-Eq. (2.76), the terms involving four overlapped summations in Eq. (2.70)-Eq. (2.72) reduce to only two overlapped summations requiring

O (N m × N n), O (N r × N s) and O (N r × N s) operations, respectively.
The rank of the nonlinear system formed by Eq. (2.70)-Eq. (2.72) is N m×N n+(N r + 1)× N s × 2. To solve the nonlinear system, we used an efficient nonlinear solver included in the IMSL library. The solver is based on the modified Powell hybrid algorithm which is alternative to the Newton's method. This algorithm improves the rate of convergence and ensures better convergence for starting point far from the solution, by estimating the correction using a convex combination of the Newton and scaled gradient directions. The algorithm uses the approach of a generalized trust region. Initially, a standard Newton step is performed. If the new position of solution falls within the trust region, it is used as a trial step in the next iteration. If not, a linear combination of the Newton method and gradient directions is used to predict a new position inside the trust region. The predicted step is then tested by evaluating the residual at the new position. If the norm of the residual is reduced sufficiently, then the step is accepted and the diameter of the trust region is increased; otherwise, the size of the trust region is decreased and another trial step is computed.

To reduce the computational effort of the algorithm, the Jacobian matrix in the algorithm is approximated from iteration to iteration by the rank one method. With this technique, the entire Jacobian is calculated at the first iteration only, or when two successive attempts have failed to reduce the residual. The solver allows for an analytical supply or a numerical (finite difference) calculation of the Jacobian matrix. In this work, an analytical calculation of the Jacobian matrix is used instead of the finite-difference approximation to improve the convergence of the Powell algorithm and to reduce the computational effort, especially for problems involving a large number of Fourier coefficients. For this purpose, the residuals RF , RT and RH are differentiated with respect to the coefficients A i,j , B i,j and F i,j as follows:

∂RF g,h ∂A i,j = Λπ 4 h 2 + g 2 2 δ g,i δ h,j + 1 D A π 2 h 2 + g 2 δ g,i δ h,j + π 4 4ε 2 N m m=1 N n n=1 A m,n i.n m 2 + n 2 ξ m,g,i ǫ n,h,j + m.j i 2 + j 2 ξ i,g,m ǫ j,h,n -j.m m 2 + n 2 η m,g,i κ n,h,j -n.i i 2 + j 2 η i,g,m κ j,h,n (2.80) ∂RF g,h ∂B i,j = - Ra * π.P r.D A j.Γ g,i Γ h,j (2.81) ∂RF g,h ∂F i,j = - Ra * π.P r.D A j.N.Γ g,i Γ h,j (2.82) ∂RT g,h ∂A i,j = πgδ i,g δ j,h - π 2 4 N r r=0 N s s=1 B r,s (i.s.υ g,i,r ζ h,j,s + j.r.χ g,m,i ω h,n,j ) (2.83) ∂RT g,h ∂B i,j = - R k P r ε g π 2 h 2 + g 2 δ i,g δ j,h - π 2 4 N m m=1 N n n=1 A m,n (m.j.υ g,m,i ζ h,n,j + n.i.χ g,m,i ω h,n,j ) (2.84) ∂RH g,h ∂A i,j = πgδ i,g δ j,h - π 2 4 N r r=0 N s s=1 B r,s (i.s.υ g,i,r ζ h,j,s + j.r.χ g,i,r ω h,j,s ) (2.85) ∂RH g,h ∂F i,j = - λ Le.P r ε g π 2 h 2 + g 2 δ i,g δ j,h - π 2 4 N m m=1 N n n=1 A m,n (m.j.υ g,m,i ζ h,n,j + n.i.χ g,m,i ω h,n,j ) (2.86)
Note that all double sums in Eq. (2.80)-Eq. (2.86) can be reduced to one term when substituting the expressions of the coefficients ξ, ǫ, η, κ, υ, ζ, χ, ω given in Eq. (2.73)-Eq. (2.76).

As a consequence, the Jacobian matrix can be calculated without any summation.

Results and Discussion

In this section, the solution is investigated using the FG and the finite-element model (FEM) for double diffusive natural convection in homogeneous and isotropic porous media.

The range of parameters that is examined in this study concerns the N = 0, 5 and 10, in which N = 0 is the pure thermal natural convection and N = 5, 10 are cooperating buoyancy forces. Relatively high values of Lewis number are used: Le = 10 and 100. The thermal Rayleigh number is taken as Ra * = 100 and 200 and Darcy number D A = 10 -1 , 10 -3 and 10 -5 . The other parameters are kept constant: the Prandtl number of fluid P r = 0.71, the porosity ε = 0.5, the heat conductivity ratio, heat capacity ratio, species diffusivity ratio and viscosity ratio

R k = d = λ = Λ = 1.0.
The porous cavity test problem is simulated using a uniform triangular mesh obtained by subdividing square elements into four equal triangles (by connecting the center of the square to its four nodes). Several levels of grid refinement are used to study the sensitivity of the numerical solution to the grid size. For a given grid level n, the number of squares is (25 × 2 n-1 ) 2 . Four grid levels are used with n ranging from 1 to 4, which corresponds to a total number of triangles from 2500 (level 1) to 160000 (level 4). Transient simulations are performed until a long non-dimensional time to ensure steady solutions.

The only error introduced by the FG method is due to the truncation of the Fourier series. Hence these truncations should be sufficiently large to guarantee the stability and accuracy of the obtained solution. In this work, 12 levels of truncation orders (see Tab. 2.1) are used for the computation of the FG solution. These levels correspond to a total number of coefficients ranging from 36 (level 1) to 27000 (level 12). In Tab. 2.1, the truncation orders in the Y direction are greater than those in the X direction and the ratio between them is less than 4. These constraints are fixed empirically after several observations to ensure a significant improvement of the FG solution when going from a truncation level to the next higher one. For all the investigated truncation levels, the same number of Fourier coefficients is used for the stream, temperature and concentration functions. This is obtained by imposing N m = N r + 1 and N n = N s. For each test case, the FEM and FG solutions are calculated using different grid and truncation levels, respectively. The accuracy of the solution is assessed on the basis of streamlines, temperature distribution, concentration contours as well as the average Nusselt and Sherwood numbers. The Nusselt and Sherwood numbers represent the rate of heat and mass transfer across the enclosure, respectively. The average Nusselt and Sherwood numbers are defined in dimensionless terms as follows

N u = ˆ1 0 ∂Θ ∂X X=0 dY ; Sh = ˆ1 0 ∂Φ ∂X X=0 dY (2.87)
The first simulation results show that the average Nusselt and Sherwood numbers are much more sensitive than the isotherm and concentration contours when varying the level of grid refinement in the FEM solution or when varying the level of truncation orders in the FG solution. Therefore, the value of the average Nusselt and Sherwood numbers are used to check the convergence of both FEM and FG solutions. In the following, we consider that the convergence of the FEM and FG solution is achieved when the average Nusselt and Sherwood numbers N u, Sh, calculated with a grid or truncation level, vary by less than 2.0% compared with those calculated with the next grid or truncation level.

The Sensitivity of the FEM Solutions to the Grid Size

In this section, the Rayleigh number is taken Ra * = 100 and Darcy number D A = 10 -1 . For these Rayleigh and Darcy numbers, the finite-element numerical solutions are calculated with grid levels 1 to 4 at Lewis numbers Le =10, 100 and buoyancy ratio N =0, 5 and 10. The obtained values of average Nusselt and Sherwood numbers are given in Tab. 2.2. This table shows that both Nusselt and Sherwood numbers are weakly dependent on the grid levels. It is only between level 1 and level 2 that some of the results vary a bit more than 2.0%. For the other levels, the relative differences are always below 2.0%. For instance, in the case of Le = 100 and N = 10, the relative difference between N u calculated using grid level 3 and that obtained using grid level 4 is approximately 0.22% and the corresponding variation for Sh is 0.38%. For all the cases shown in Tab. 2.2, the convergence of the FEM solutions are reached at grid level 2 since both values of N u and Sh vary by less than 2.0% compared with the results of grid level 3. The temperature and concentration contours obtained with all grid levels for (Ra * = 100; D A = 10 -1 ; Le = 10, 100; N = 0, 5 and 10) are shown in Fig. 2.6 and Fig. 2.7. These figures show that except grid level 1, the contours obtained with levels 2, 3 and 4 are all quite similar, which suggest that convergence of the FEM solution is reached at grid level 2. This behavior is the same as that observed from the Nusselt and Sherwood numbers in Tab. 2.2. Besides, results in Fig. 2.6 and Fig. 2.7 show that with the increasing of Lewis number and buoyancy ratio, the sensitivity of the temperature and concentration contours to the grid size becomes a bit more significant.

Comparison between the FEM and FG Solutions

With the converged FEM solutions obtained from section 2.4.3.1, we compare them with the converged FG solutions (truncation level 6 for Le = 10 and truncation level 8 for Le = 100) to study the accuracy of the proposed finite-element model. The results are compared in terms of streamlines, temperature and concentration contours as shown in Fig. 2.8 and Fig. 2.9. The figures show that the streamlines, temperature and concentration contours of the converged finite-element solutions are in excellent agreement with those of the converged FG solutions for all the cases with Ra * = 100 and D A = 10 -1 . In Fig. 2.8 (i) and Fig. 2.9 (i), when the buoyancy ratio N = 0 (the pure thermal case), the fluid circulates in a clockwise direction, forming a central vortex with a relatively slow motion in the central region, and the mass transfer is induced by the thermally driven flow. With the increasing of the buoyancy ratio N , due to the cooperating of thermal and solutal buoyancy forces, the central vortex starts to become distorted. For N = 5, the central vortex takes an elliptic shape (see Fig. 2.8 (ii) and Fig. 2.9 (ii)). And for N = 10, the vortex tends to break up into two vortices in the center of the cavity (Fig. 2.8 (iii)).

The values of N u and Sh obtained with the FEM and the FG solutions are given in Tab. 2.3. Good agreement is found when comparing the Nusselt and Sherwood numbers between the FEM and FG solutions, where the relative difference is in the range of 0.08% -0.9% for each case listed in Tab. 2.3. The results in Tab. 2.3 show that the increasing of Lewis number increases significantly the value of Sherwood number, while contrarily, it decreases a little bit the Nusselt number except in the pure thermal case (N = 0).

Further, in order to validate the proposed numerical model in different parameter conditions, more calculations with Rayleigh number Ra * = 200 and Darcy number D A = 10 -3 , 10 -5 are conducted using both the FEM and the FG methods. The obtained average In this table, most of the relative differences between the FEM and FG solutions are between 0.1% and 2.0%. For instance, at Ra * = 200, D A = 10 -1 , Le = 100 and N = 10, the relative difference between N u obtained from FEM and FG solutions is 0.38%, and the variation for Sh is 0.40%. With the decrease of Darcy number and the increase of Rayleigh, Lewis numbers and the buoyancy ratio, the relative difference becomes larger.

The maximum relative difference in Tab. 2.4 is 5.59%, which is between the value of Sh calculated with FEM and that obtained with FG solutions at Ra * = 100, D A = 10 -5 , Le = 10 and N = 10. Some of the results are plotted and compared between the FEM and FG solutions in terms of streamlines, temperature and concentration contours. The cases with Ra * = 100 are shown in Fig. 2.10 and Fig. 2.11, while those with Ra * = 200 are shown in Fig. 2.12 and Fig. 2.13. For all the cases, the temperature contours from the FEM and FG solutions are almost superimposed. The concentration contours are also very close between the FEM and FG solutions in most of the cases. However, slight disparities can be observed in the concentration contours for example in Fig. 2.10 (i), when Ra * = 100, D A = 10 -3 , Le = 10 and N = 10 and in Fig. 2.13 (i) with Ra * = 200, D A = 10 -3 , Le = 10 and N = 10. 

Conclusions

An efficient model (called DB model) based on advanced numerical methods is developed for the coupled flow-heat-mass problem in the porous media. The fluid flow, governed by Darcy-Brinkman equation, is solved using the locally mass conservative CR finite element method with an upstream approach for the nonlinear convective term. A combination of DG and MPFA methods is used to solve the advection-diffusion heat/mass transfer equation. A non-iterative time stepping scheme is used to control the time step length during calculation.

The developed DB model is used to simulate the double-diffusive natural convection in the porous cavity. Four different grid levels are used in the calculations to study the sensitivity of the solution to the grid size. Then a semi analytical solution using the FG method is developed for the problem. Calculations have been done with different Rayleigh, Darcy, Lewis and Buoyancy numbers using both the numerical model and the FG method, to validate the proposed model in different parameter conditions. Some conclusions can be drawn as follows:

1. With parameters Ra * = 100 and D A = 10 -1 , the resulted Nusselt and Sherwood numbers as well as the temperature and concentration contours at different grid levels show that the solutions are weakly dependent on the grid size.

2. Good agreement is observed between the numerical and semi analytical solutions when using different parameters, where most of the relative errors for Nusselt and Sherwood numbers are below 2.0%; and the maximum relative error in the all the calculations is 5.59%. In SOFC porous electrodes (anode and cathode), the nucleation and propagation of cracks usually result from the local temperature gradients, which are induced by different interconnected physical phenomena: flow of gases (hydrogen and oxygen) and electrochemical reactions. Meanwhile, the presences of cracks in the porous electrodes affect the local temperature distributions and the thermal stress concentrations in the vicinity of cracks.

To study the fluid flow and heat transfer in a cracked isotropic porous electrode, as well as their effects on the thermal-mechanical response of the porous media, the modeling of the cracks under thermo-mechanical loadings is required. The standard Finite Element Method (FEM) has been successfully used to model static cracks where the mesh has to be conforming to the crack surface. Once the crack starts to evolve, re-meshing and mesh refinement at the crack tip are required. To overcome this drawback, the eXtended Finite Element Method (XFEM) was developed to model more efficiently the cracked media, where discontinuities and singularities within materials can be handled by only using appropriate enrichment functions [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF].

During the last two decades, XFEM was used successfully to solve problems with evolving material discontinuities under mechanical and thermo-mechanical loading [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]2003;Sukumar and Prévost, 2003). Crack propagation along interface between dissimilar materials was treated using XFEM in Sukumar et al. ( 2004); [START_REF] Huang | Initiation and arrest of an interfacial crack in a four-point bend test[END_REF]; [START_REF] Hettich | Interface material failure modeled by the extended finite-element method and level sets[END_REF]; [START_REF] Hettich | Modeling of failure in composites by X-FEM and level sets within a multiscale framework[END_REF].

In the present chapter, we consider the effect of fluid flow and heat transport on the stress state at the vicinity of the crack-tip in cracked porous media. To this aim, a numerical model is developed (Darcy-XFEM model) where XFEM is used to solve the thermo-mechanical problem and FEM is used to solve the Darcy fluid flow. The heat transfer in the cracked porous media is solved by a combination of FEM and XFEM. Due to the small openings of cracks in the porous media, we assume that the cracks have no influence on the fluid flow (no preferential fluid flow within the fractures). Thereby the nonconforming FEM is used to solve the fluid flow equation, which is represented by the Darcy's law in the porous media. Heat transport in the porous media is described by heat conduction in the solid phase as well as heat convection and diffusion in the fluid phase.

Different numerical methods are used to solve the heat transfer equations in the fluid and solid phases. A combination of the DG, MPFA and XFEM is used to discretize the convection-diffusion heat equation. While the thermo-mechanical response of the cracked porous media are solved by means of XFEM. Using this scheme one obtains throughout the structure the following outputs: pressure, flow velocity, temperature, displacement, deformation and stress. Finally, the impact of the fluid flow and the heat transfer on the stress state at the crack tip is evaluated by calculating the Stress Intensity Factor (SIF) evolution.

The chapter is organized as follows: In Section 3.2, the problem is formulated and the Darcy-XFEM model is introduced. This concerns the fluid flow equation, the energy conservation equation and the thermo-mechanical problem. In Section 3.3, heat transfer in cracked porous media is described and modeled. In Section 3.4, all the introduced schemes are discretized and the resolution algorithms are detailed. Then the post processing stage is recalled and the SIF calculation is presented. In Section 3.5, the method is benchmarked and validated by simulating several numerical examples and comparing the results to existing literature solutions. Conclusions are drawn in Section 3.6.

Governing Equations

The methodology pursued for the solution of the fluid flow, heat transfer and thermomechanical response in the cracked isotropic porous media is summarized as follows:

• Darcy's law is used to simulate the fluid flow in cracked porous media. The equation is solved using the nonconforming finite element method.

• A combined FEM/XFEM scheme is used to solve the heat transfer equation in the cracked porous media where the hypothesis of local thermal equilibrium holds.

• Using the obtained temperature as body force, the thermo-mechanical problem in the cracked porous media is solved with XFEM. Then, the stress intensity factors (SIF) are calculated by using the J-integral technique at each time step.

Darcy Flow

Equations describing the flow in a porous medium are given by the mass balance equation and Darcy's law:

     s ∂p ∂t + ∇.q = Q f q = -K∇p (3.1)
Where s is the specific storativity of the porous material, K is the so called hydraulic conductivity, Q f is the source or sink term per unit area, p is the pressure head and q the Darcy's velocity.

Combining mass balance equation with Darcy's equation leads to diffusivity equation:

s ∂p ∂t + ∇. (-K∇p) = Q f (3.2)

Heat transfer

Heat transfer in porous media is governed by heat conduction in the solid phase and heat transport in the fluid phase. At the Representative Elementary Volume (REV), under the assumption of thermal equilibrium between the fluid and solid phases and neglecting all the density variations, the temperature T of the porous medium is governed by the following total energy conservation equation:

(ρc) P M ∂T ∂t + ∇. (ρ f c f qT ) -∇. (k P M ∇T ) = Q T (3.3)
where Q T represents heat source/sink function in the porous medium. In the presence of cracks, the tensor k P M , which includes thermal dispersion in the fluid phase and thermal conduction in both fluid and solid phases, is defined as following:

k P M =      k f inside the crack k f + k s other parts (3.4)
where k f includes the thermal dispersion and heat conduction in the fluid phase, and k s is the heat conduction in the solid phase, with the expression of their components given by:

k f ij = ρ f c f α T |q| δ ij + (α L -α T ) q i q j |q| dispersive + εk f δ ij conductive (3.5) k s ij = (1 -ε) k s δ ij (3.6)
where α L and α T are the longitudinal and transverse thermal dispersivities, δ ij is the Kronecker delta function. k f and k s are the thermal conductivity of the fluid phase and the solid phase, respectively.

Thermo-mechanical Model

The equilibrium equation and the boundary conditions of a 2D domain Ω bounded by Γ are given by:

∇ s σ + b = 0 in Ω u = ū on Γ u σ • n = t on Γ t (3.7)
where, σ is the Cauchy stress tensor, ∇ s is the symmetrical part of the divergence operator, b is the body force per unit volume, u is the displacement vector, n is the unit outward normal, ū and t are prescribed displacements and traction respectively at boundaries Γ u , Γ t .

The constitutive relation for thermal elastic problems is given by the generalized Hooke's law:

σ = C : D -(β * ∆T ) I (3.8)
where C is the material stiffness tensor, D = ∇ s u is the strain tensor, ∆T = T -T 0 is the change of temperature between the initial and the current step in the domain,

β * = β T E m / (1 -2ν
) is the material constant related in the plain strain conditions to Young's modulus E m , Poisson's ratio ν and thermal expansion coefficient β T , I is the identity tensor.

The weak form of equilibrium equation can be written as:

ˆΩ δD : σdΩ = ˆΩ δu • bdΩ + ˆΓt δu • tdΓ t (3.9)
Substituting equation Eq. (3.8) to equation Eq. (3.9), the weak form writes:

ˆΩ D (δu) : (C : D (u) -(β * ∆T ) I) dΩ = ˆΩ δu • bdΩ + ˆΓt δu • tdΓ t (3.10)

Heat Transfer in Cracked Porous Media

The heat transfer in the porous medium is due to the heat convection by the movement of the fluid and heat conduction in both fluids and solids. At a molecular level, the conduction occurs with the collisions of molecules in fluids. While for solids, the heat conduction takes place between systems in physical contact through the vibrations of particles and free electrons [START_REF] Lampe | Modelling Fluid Flow and Heat Transport in Fractured Porous Media[END_REF]. With the existance of the crack in the porous medium, the physical contact of the solid skeleton on the crack surface is lost, which affects the heat transfer process in the porous matrix.

To study the heat transfer in cracked porous media, the standard FEM has been widely used. For instance, [START_REF] Noorishad | Coupled thermal-hydraulicmechanical phenomena in saturated fractured porous rocks: Numerical approach[END_REF] developed a numerical approach to study the coupled thermal-hydraulic-mechanical behavior of the saturated fractured porous rocks. [START_REF] Schrefler | On adaptive refinement techniques in multi-field problems including cohesive fracture[END_REF] and [START_REF] Secchi | Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials[END_REF] presented a FEM model with an adaptive refinement technique to calculate the nucleation and propagation of cohesive cracks in porous media under thermal and hydraulic loads. However, in these standard FEM models, the cracks are restricted to the inter-element boundaries. The mesh refinement and adaptation are required when dealing with the evolving cracks, which makes the computation quite expensive. Instead, this difficulty can be avoid with XFEM, where the discontinuities in the porous medium are handled by locally enriching the conventional finite element approximations with an appropriate enrichment function [START_REF] Khoei | Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique[END_REF]. During the last two decades, XFEM was used successfully to solve problems with evolving material discontinuities under mechanical and thermo-mechanical loadings [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]2003;Sukumar and Prévost, 2003). The technique was then adopted to model the coupled problems in fractured porous media [START_REF] De Borst | A numerical approach for arbitrary cracks in a fluid-saturated medium[END_REF][START_REF] Rethore | A two-scale approach for fluid flow in fractured porous media[END_REF][START_REF] Ren | Numerical modeling of concrete hydraulic fracturing with extended finite element method[END_REF][START_REF] Lecampion | An extended finite element method for hydraulic fracture problems[END_REF][START_REF] Khoei | Extended finite element modeling of deformable porous media with arbitrary interfaces[END_REF][START_REF] Mohammadnejad | Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method[END_REF][START_REF] Khoei | Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique[END_REF][START_REF] Mohammadnejad | An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies[END_REF]. In addition, XFEM was also found to be used in modeling heat transfer in cracked solids [START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF][START_REF] Zamani | Implementation of the extended finite element method for dynamic thermoelastic fracture initiation[END_REF]. Indeed, in this case, the crack is considered adiabatic which corresponds to a zero heat flux at the crack interface. Consequently its thickness does not affect the heat transfer through the crack. However, this does not hold if both fluid and solid heat transfers are taken into account in the porous medium as considered in this work. Hence, to take advantage of XFEM in this context, we develop and evaluate in this section a time splitting procedure for solving heat transfer in a cracked porous medium.

In the following, a one-dimensional problem is considered to investigate (i) the validity of the time splitting procedure, (ii) the effect of convection on the temperature distribution, (iii) the effect of the thickness of the crack, and (iv) to search for the adequate mesh discretization of the crack. To this aim, we consider a one-dimensional horizontal column of dimension L = 1 m which is formed by saturated porous medium. The porous medium contains a crack at x = 0.5 m. The column is subjected to a temperature T = 1 on the left boundary and T = 0 on the right boundary.

To simplify the problem, the dispersion/diffusion in the fluid is neglected and only convection and conduction are considered. The porosity of the porous medium is taken ε = 0.2. The thermal conductions in the fluid and the solid phases are taken into account by using

k f = 0.1 W/(m °C) and k s = 2.0 W/(m °C).
The volumetric heat capacities of the fluid and solid areρ f c f = 1.6 × 10 3 J/(m 3 °C) and ρ s c s = 2.1 × 10 5 J/(m 3 °C), respectively. The final simulation time is t max = 100000 s.

To test the validity of the time splitting procedure, two numerical Finite Volume models are developed: the first one solves the full heat equation (Eq. (3.3)) in the whole column where the thermal conductivity in the crack is reduced to k f whereas in the rest of the column it equals k f + k s ; in the second scheme, a time splitting technique is used to allow different numerical treatment for the processes included in the heat Eq. (3.3) as follows:

At each time step ∆t, the heat transport equation is firstly solved to calculate T n+1, * , the temperature caused by heat transfer in the fluid phase:

(ρc) P M T n+1, * -T n ∆t + ∇. (ρ f c f qT ) -∇. k f ∇T = Q f T (3.11)
Then, the final temperature T n+1 is obtained by taking into account heat transfer in the solid phase using T n+1, * as initial temperature:

(ρc) P M T n+1 -T n+1, * ∆t -∇. (k s ∇T ) = Q s T (3.12)
Imitating the XFEM resolution, Eq. (3.12) is solved for the porous medium (not the crack region) with a zero heat flux at the porous/crack interface. Note that to reduce time splitting errors, small time steps are used with the splitting scheme. After calculation, we plot the temperature profiles along the column resulted from the full procedure and the time splitting in Fig. 3.1 (i). Then, to show the effect of convection, two values of the velocity are used corresponding to q = 0.0625 mm/s (low convection) and q = 3.125 mm/s (high convection). The resulted temperature profiles are plotted in Fig. 3.1 (ii). Further, to investigate the effect of the crack thickness on the temperature distribution, two thickness of the crack are studied corresponding to h f = 2.0 mm and h f = 0.5 mm. The comparison of the temperature values from Fig. 3. 1 (i) show that the time splitting is a purely numerical procedure which does not introduce significant numerical errors. In Fig. 3.1 (ii), we can find that the ratio of thermal convection and conduction can influence dramatically the temperature distribution in the cracked porous medium. Moreover, the thickness of the crack also has an important effect on the temperature field (see Fig. 3.1 (iii)). From the comparison of temperature in Fig. 3.1 (iv), we can conclude that one single element is adequate for the discretization of crack.

In the following studies, heat transfer in the cracked porous medium is solved with a FEM/XFEM scheme using the time splitting procedure where FEM is used for the solution of Eq. (3.11) and XFEM is used for the solution of Eq. (3.12). We consider that all the cracks have a constant thickness which does not vary when the cracks evolve. Moreover, the mesh is adapted to the thickness of the crack and the latter is discretized with a single element.

Numerical Methods

The Darcy's Eq. (3.2) is solved with the nonconforming FEM. This method can provide continuous fluid fluxes at element boundaries. It also satisfies the mass balance locally at the element level, which is essential to avoid artificial sources and sinks. For the advection-diffusion heat transfer Eq. (3.11), a combination of DG and MPFA methods is used as mentioned in Chapter 2. The DG method is used for the advection part of the heat transport equation to reduce numerical diffusion [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF], whereas, the diffusion part is solved using the MPFA method [START_REF] Aavatsmark | Discretization on nonorthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF]Younes and Fontaine, 2008a). Regarding the heat conduction Eq. (3.12), the XFEM is introduced to better handle the presence of cracks. The resulted temperature field from the heat transfer equation is used as a body force to solve the thermo-mechanical problem by means of XFEM, where appropriate enrichment functions are introduced to enforce the discontinuity of the displacement field at the crack surface and the stress singularity at the crack tip. Finally, to evaluate the fluid flow and the heat transport effects on the stress state at the crack-tip, the interaction integral [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF][START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF], is used to calculate the Stress Intensity Factor (SIF) evolution. In the following, details on the discretization of the heat transport equation in the sold phase will be given. However, the discretization of the heat transport in the fluid phase will be recalled briefly, the reader might refer to Chapter 2 for more details.

Discretization of the Flow Equation

The nonconforming FEM is used to solve the fluid flow equation because of its simplicity and mass conservation properties. The main steps of the flow discretization on linear triangular elements are recalled in this section.

The pressure is assumed to vary linearly inside each triangular element E:

p E = p i ϕ E i + p j ϕ E j + p k ϕ E k (3.13)
where the degrees of freedom of the pressure are located at the mid-edges.

Note that p i , the unknown pressure at the mid-edge i, is located facing the node i and ϕ E i is the interpolation function, which is nonzero only inside the two adjacent elements E and E ′ sharing the edge i. The interpolation function ϕ E i is the same as Eq. (2.10) in Chapter 2.

The variational formulation of the flow equation Eq. (3.2) using the test function ϕ i writes:

ˆΩ s ∂p ∂t ϕ i + ˆΩ ∇. (-K∇p) ϕ i = ˆΩ Q f ϕ i (3.14)
The first term for an interior edge i leads to

ˆΩ s ∂p ∂t ϕ i = 1 3 ∂p i ∂t (s E |E| + s E ′ |E ′ |) (3.15)
In the same way, the source/sink term leads to:

ˆΩ Q f ϕ i = Q E f |E| 3 + Q E ′ f |E ′ | 3 (3.16)
Using Green's formula, the second term in equation Eq. (3.14) writes,

ˆΩ ∇. (-K∇p) ϕ i = ˆΩ (K∇p) ∇ϕ i -ˆΓ ϕ i (K∇p) η Γ dΓ (3.17)
In the case of an interior edge i, it simplifies to

ˆΩ ∇. (-K∇p) ϕ i = 1 |E| 3 j=1 p E,j ∇ϕ T E,j K E ∇ϕ E,i + 1 |E ′ | 3 j=1 p E ′ ,j ∇ϕ T E ′ ,j K E ′ ∇ϕ E ′ ,i (3.18)
Using an implicit time discretization, the final form gives:

s E |E| + s E ′ |E ′ | 3 p n+1 i -p n i △t - 1 |E| 3 j=1 p n+1 E,j ∇ϕ T E,j K E ∇ϕ E,i - 1 |E ′ | 3 j=1 p n+1 E,j ∇ϕ T E ′ ,j K E ′ ∇ϕ E ′ ,i = Q E f |E| 3 + Q E ′ f |E ′ | 3 (3.19)
This leads to a final system to solve with a symmetric positive definite matrix.

Once this system is solved, the Darcy's velocity q E at the element E and the fluid flux

Q E i
on each edge of element E can be calculated using the local values of the pressure p n+1 E,j .

Discretization of the Heat Transfer Equation (3.12)

The XFEM is used for the discretization of the heat 3.12 to take into account the effects of the cracks on the temperature distribution. Indeed, the concept of XFEM uses the partition of unity principle to enrich the set of nodes located in the vicinity of the crack by adding some additional degrees of freedom. The temperature is approximated by a continuous term in the whole domain, a discontinuous term near the crack surface and a singular term in the crack tip region, which is given by:

T h (x) = i∈N Ω Υ i (x) T i + i∈N Γ Υ i (x) H T (x) a i + i∈N Λ Υ i (x) br T (x) b i (3.20)
where Υ i is the shape function of the node i. It is equal to 1 at node i, and zero on all the other nodes. In a triangular element, it is defined as:

Υ i = 1 2 |E| [x j y k -x k y j + (y j -y k ) x + (x k -x j ) y] (3.21)
N Ω is the set of nodes in the whole domain, N Γ the set of nodes of the elements crossed by the crack surface, and N Λ the set of nodes of the crack tip zone, as shown in Fig. 3.2. In the case of adiabatic crack (no flux normal to the crack surface), the signed distance function is used as enrichment function to model the jump in the temperature field at the crack surface:

           H T (x) = sign [n • (x -x i )] sign (x) =      1 if x > 0 -1 if x < 0 (3.22)
The singular enrichment in the crack tip region is given by: br

T (r, ϑ) = √ r sin ϑ 2 (3.23)
where r and ϑ are the polar coordinates of the considered point in a local system based on the crack tip, as shown in Fig. 3.3. By multiplying the heat transfer Eq. (3.12) with shape function (Eq. (3.21)) and using Green's formula, the variational form of the heat equation in the solid phase can be written as:

ˆΩ (ρc) P M ∂T ∂t Υ i + ˆΩ (k s ∇T ) • ∇Υ i - ˆ∂Ω Υ i (k s ∇T • n ∂Ω ) = ˆΩ Q s T • Υ i (3.24)
Substituting the approximated temperature (Eq. (3.20)) in the variational form of the heat transport (Eq. (3.24)), the following system can be obtained:

(ρc) P M            R T T ij R T a ij R T b ij R aT ij R aa ij R ab ij R bT ij R ba ij R bb ij                          ∂T j ∂t ∂a j ∂t ∂b j ∂t               + k s            G T T ij G T a ij G T b ij G aT ij G aa ij G ab ij G bT ij G ba ij G bb ij                       T j a j b j            = Q s T • |E| + k s (∇T • n ∂Ω ) |∂El| 2 (3.25)
where k s (∇T • n ∂Ω ) |∂El| /2 is the boundary condition with a prescribed heat flux. The elements of the global matrices [R] and [G] are detailed as follows

                           R T T ij = ´E Υ j Υ i R T a ij = ´E H T (x) Υ j Υ i R T b ij = ´E br T (x) Υ j Υ i (3.26)                            R aT ij = ´E Υ j H T (x) Υ i R aa ij = ´E H T (x) Υ j H T (x) Υ i R ab ij = ´E br T (x) Υ j H T (x) Υ i (3.27)                            R bT ij = ´E Υ j br T (x) Υ i R ba ij = ´E H T (x) Υ j br T (x) Υ i R bb ij = ´E br T (x) Υ j br T (x) Υ i (3.28)                                        G T T ij = ´E ∂Υ j ∂x ∂Υ i ∂x + ∂Υ j ∂y ∂Υ i ∂y G T a ij = ´E   ∂ H T (x) Υ j ∂x ∂Υ i ∂x + ∂ H T (x) Υ j ∂y ∂Υ i ∂y   G T b ij = ´E   ∂ br T (x) Υ j ∂x ∂Υ i ∂x + ∂ br T (x) Υ j ∂y ∂Υ i ∂y   (3.29)                                            G aT ij = ´E   ∂Υ j ∂x ∂ H T (x) Υ i ∂x + ∂Υ j ∂y H T (x) Υ i ∂y   G aa ij = ´E   ∂ H T (x) Υ j ∂x H T (x) Υ i ∂x + ∂ H T (x) Υ j ∂y H T (x) Υ i ∂y   G ab ij = ´E   ∂ br T (x) Υ j ∂x H T (x) Υ i ∂x + ∂ br T (x) Υ j ∂y H T (x) Υ i ∂y   (3.30)                                            G bT ij = ´E   ∂Υ j ∂x ∂ br T (x) Υ i ∂x + ∂Υ j ∂y br T (x) Υ i ∂y   G ba ij = ´E   ∂ H T (x) Υ j ∂x br T (x) Υ i ∂x + ∂ H T (x) Υ j ∂y br T (x) Υ i ∂y   G bb ij = ´E   ∂ br T (x) Υ j ∂x br T (x) Υ i ∂x + ∂ br T (x) Υ j ∂y br T (x) Υ i ∂y   (3.31)

Discretization of the Thermo-mechanical Equilibrium Equation

Using the XFEM, the displacement approximation is assumed to have a continuous term in the whole domain, with two enrichment functions augmented for the nodes on crack surfaces and crack tips. Suppose that N is the set of nodes in the whole domain; N Γ the nodes whose supports are cut by the crack surface; andN Λ the nodes which are in the vicinity of the crack tip. The displacement can be approximated by:

u h (x) = i∈N Υ i u i + i∈N Γ Υ i H (x) c i + i∈N Λ Υ i k br k (x) d k i (3.32)
where c i and d k i are added degrees of freedom vectors. The jump function H (x) is the same as in Eq. (3.22) which is used in temperature field approximation. The singular functions br k (x) given in the local system centered at the crack tip (Fig. 3.3) are defined as:

br 1-4 (r, ϑ) = √ r sin ϑ 2 , √ r cos ϑ 2 , √ r sin ϑ 2 sin ϑ, √ r cos ϑ 2 sin ϑ (3.33)
By substituting the approximated displacement in the variational form of Eq. (3.9), the following system to solve can be obtained:

KU = F (3.34)
where K, U and F are global stiffness matrix, global unknowns vector and global loading vector respectively, with:

K ij = ˆΩ B T i CB j dΩ (3.35
)

f i = ˆΩ B T i (β * △T ) IdΩ + ˆΩ Υ T i bdΩ + ˆΓt Υ T i tdΓ t (3.36)
B i is the matrix of shape function derivatives on node i. When the node is not enriched it reads:

B i =            Υ i,x 0 0 Υ i,y Υ i,y Υ i,x            (3.37)
where Υ i,x and Υ i,y are the derivatives of the shape function Υ i on x and y directions, respectively,

Υ i,x = ∂Υ i ∂x , Υ i,y = ∂Υ i ∂y (3.38)
When the node is enriched by the Heaviside function (near the crack surface), B i reads:

B i =            Υ i,x 0 Υ i,x H (x) 0 0 Υ i,y 0 Υ i,y H (x) Υ i,y Υ i,x Υ i,y H (x) Υ i,x H (x)            (3.39) Chapter 3
When the node i is enriched by the crack-tip enrichment functions, B i becomes:

B i =            Υ i,x 0 X i 1,x 0 X i 2,x 0 X i 3,x 0 X i 4,x 0 0 Υ i,y 0 X i 1,y 0 X i 2,y 0 X i 3,y 0 X i 4,y Υ i,y Υ i,x X i 1,y X i 1,x X i 2,y X i 2,x X i 3,y X i 3,x X i 4,y X i 4,x            (3.40)
where

X i k,x = Υ i,x br k (x) + Υ i br k,x (x) and X i k,y = Υ i,y br k (x) + Υ i br k,y (x), with k = 1...4.

Thermal Stress Intensity Factors

The Stress Intensity Factors (SIFs) are computed using the interaction integral which is derived from the path independent J-integral technique. The technique assumes the existence of an auxiliary mode σ

(2) ij , D (2) ij , u
(2) i associated to the real mode σ

(1) ij , D (1) ij , u (1) i 
. By using the superposition principle, Green's theory and separating terms, the interaction integral between state (1) and state ( 2) is [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF][START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF][START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF]:

I (1,2) = ˆA   σ (1) ij ∂u (2) i ∂x 1 + σ (2) ij ∂u (1) i ∂x 1 -W (1,2) δ 1j   ∂q A ∂x j dA + ˆA β * trace D (2) ∂T ∂x 1 q A dA (3.41)
where A is an integral domain surrounding the crack tip, as shown in Fig. 3.4. q A is the weighting function, i.e. a smooth function defined over the integral domain A which takes a value of unity at the crack tip and zero on the contour Γ (Fig. 3.4).

The interaction strain energy W (1,2) is calculated in thermo-mechanical problems as

W (1,2) = 1 2 σ (1) ij D (2) ij + σ (2) ij D (1) ij -β * D (2) ij ∆T (3.42)
Note that the interaction integral is a function of the SIFs of the two aforementioned 

I (1,2) = 2 E * m K (1)
I K

(2)

I + K (1)
II K

(2) II

(3.43)

where K I and K II are the SIFs for mode I and mode II respectively, with E * m = E m / (1 -ν 2 ) when plane strain is assumed and E * m = E m for plane stress.

Combining Eq. (3.41) and Eq. (3.43), the SIFs can be calculated by choosing the adequate auxiliary mode. For instance, to compute K I , we choose pure mode one as auxiliary mode with unitary SIF. This choice leads to K

(2) I = 1, K

(2) II = 0, thus Eq. (3.43) is reduced to I (1,2) = 2K

(1)

I /E * m , with which K (1)
I can be obtained. For this pure opening mode one, the exact stress and displacement fields are given in terms of local polar coordinates around the crack tip (see Fig. 3.3) as:

σ xx = K I √ 2πr cos ϑ 2 1 -sin ϑ 2 sin 3ϑ 2 (3.44) σ yy = K I √ 2πr cos ϑ 2 1 + sin ϑ 2 sin 3ϑ 2 (3.45) σ xy = K I √ 2πr sin ϑ 2 cos ϑ 2 cos 3ϑ 2 (3.46) u x = K I 2µ r 2π cos ϑ 2 κ -1 + 2 sin 2 ϑ 2 (3.47) u y = K I 2µ r 2π sin ϑ 2 κ + 1 -2 cos 2 ϑ 2 (3.48)
Similarly, K II can be obtained by choosing a pure mode two as auxiliary mode with unitary SIF (K

(2)

I = 0, K (2) II = 1)
. And the exact solutions of stress and displacement for shearing mode are given by:

σ xx = - K II √ 2πr sin ϑ 2 2 + cos ϑ 2 cos 3ϑ 2 (3.49) σ yy = K II √ 2πr sin ϑ 2 cos ϑ 2 cos 3ϑ 2 (3.50) σ xy = K II √ 2πr cos ϑ 2 1 -sin ϑ 2 sin 3ϑ 2 (3.51) u x = K II 2µ r 2π sin ϑ 2 κ + 1 + 2 cos 2 ϑ 2 (3.52) u y = - K II 2µ r 2π cos ϑ 2 κ -1 -2 sin 2 ϑ 2 (3.53)
Here the shear modulus µ m and Kolosov constant κ are defined in terms of Young's modulus and Poisson's ratio by:

µ m = E m 2 (1 + ν) , κ = 3 -4ν (3.54)

Numerical Results

In this section, the theory and the numerical techniques mentioned in the previous sections are implemented and validated. We consider three numerical examples; the objective of the first one is to verify the solution of the transient flow coupled to the heat transfer in the porous media. Another interest of this example is to check the accuracy and the robustness of the time splitting procedure used to solve separately heat transfer in the solid and fluid phases. The second example is dedicated to the validation of thermomechanical problem considering a cracked medium without fluid flow, by comparing the resulted SIFs at the steady state to existing ones from the literature. Further, the time evolution of the stress state at the crack-tip is investigated by reporting the evolution of SIFs at the transient state. The third example concerns a mixture of the two previous ones, where the fluid flow and the heat transfer problems are coupled to the thermomechanical model to investigate the stress concentration generated by cracks within a porous media. A parametric study is conducted to demonstrate the effect of the crack on the temperature distribution and the stress concentration. The first and the last examples are carried out using an unstructured mesh of 8174 triangular elements corresponding to 4187 nodes, whereas an unstructured mesh of 9380 triangular elements corresponding to 4793 nodes is used in the second example.

Heat Transfer and Fluid Flow in Porous Media

In this example, a transient heat transfer equation is coupled to the fluid flow and solved in a rectangular shaped porous medium of dimensions 2.0 × 1.0 m 2 (see Fig. 3.5). The material parameters and boundary conditions are respectively reported in Tab. 3.1 and Tab. 3.2. The fluid flow in the porous medium is solved using Darcy's law, while the energy conservation equation is solved using both the operator splitting (OS) procedure and the total energy conservation (TEC) equation. The accuracy of the OS procedure is verified by comparing the OS solution to that resulted from the TEC. To do the comparison, four points (A1, A2, A3 and A4) located randomly within the porous medium are designated as shown in Fig. 3.5. Then the temperature evolutions obtained from the OS solution and the TEC solution at points A1, A2, A3 and A4 are plotted in Fig. 3.6, where good agreements are found between the two schemes on all the four points. These results demonstrate that the time splitting of heat transfer equation doesn't lead to any significant error that reduces the accuracy the computation. 

Thermo-Mechanical Problem

In the SOFC electrode, the presence of crack has a significant effect on the heat conduction in the solid medium. The temperature gradient at the vicinity of the crack contributes to the stress concentration at the crack tip, which leads to possible crack propagation within the medium. In this example, we consider a cracked medium without fluid flow, where the heat transfer at the transient state and the mechanical response of the medium under thermal loading are studied.

A rectangular plate with dimensions (W = 1 m, L = 0.5 m) and boundary conditions (see Fig. 3.7) as those used in the literature [START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF][START_REF] Murakami | Stress intensity factors handbook[END_REF]Prasad et al., 1994a), is considered in this work. An inclined crack is assumed to locate in the center of the plate. As boundary conditions, the bottom of the plate is maintained to a temperature T = -T 0 , and the top of the plate has a prescribed temperature T = T 0 (T 0 = 100°C in this example). The left and right boundaries as well as the crack are supposed to be adiabatic. The material properties of the plate are reported in Tab. 3.3. The simulation is conducted using a crack length 2a that vary from 0.4 m to 1.2 m with a step of 0.2 m, while the crack angle ζ varies from 0°to 90°with a step of 15°. 

Conclusions

Fluid flow, heat transfer and thermo-mechanical problems are coupled to study the effect of fluid flow and heat transfer in cracked isotropic porous media at the transient state using the Darcy-XFEM model. The nonconforming FEM is used to solve the Darcy's flow.

The heat transfer equation in the cracked porous medium is solved with a FEM/XFEM scheme using a time splitting procedure. With this model, the mesh has to be adapted to the thickness of the crack which can be discretized with a single element. The FEM scheme is based on the DG and MPFA methods for the solution of the advection and dispersion fluid heat transfer. The XFEM is used to better handle the influence of cracks on solid heat transfer. The thermo-mechanical problem is solved using the XFEM and the SIFs are calculated with the interaction integral technique. All these advanced methods are implemented and solved sequentially in the same time step. After some numerical applications, several conclusions have been raised:

1. Time splitting allows to solve heat transfer in two steps and therefore to use different numerical techniques while maintaining the accuracy of the results.

2. Good agreement is found when comparing the calculated SIFs with the existing results of the steady state in the literature.

3. The computation of the SIFs in the transient state reveals that they can be maximum or negative before the steady state. This can be crucial to decide whether the crack would propagate or not and in which direction.

4. The crack angle influences significantly the temperature distribution and stress concentration in all cases but the crack length influences them in some cases only The SIFs are influenced directly by the temperature gradient which is varying with time. This could explain the peak in their amplitude before reaching a constant value corresponding to the steady state.

After these parametric studies, it is found that the combination of these advanced numerical methods can model accurately the transient fluid flow and heat transfer which allows studying the thermo-mechanical behavior of cracked porous media. The introduction of the XFEM to enrich the temperature field and then the displacement field near discontinuities and singularities could increase significantly the accuracy and be very useful when the crack grows.

Crack Propagation in Solid

Dense/Porous Multilayered Structure: Application to SOFC

Introduction

A planar Solid Oxide Fuel Cell (SOFC) unit consists of a solid dense gas-tight electrolyte sandwiched between two porous electrodes (anode and cathode) that present sufficient porosity to allow for the flow of air and fuel into the porous electrodes through flow channels. The major drawback of this technology is the high operating temperature that can lead to complex material problems, including residual stresses due to different thermal expansion coefficients of the unit cell components [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF]. The cooling and heating process, involved during SOFC service, result in residual stresses and possible crack nucleation and propagation in the porous electrodes [START_REF] Qu | FY 2006 annual report[END_REF].

In the last decade, crack propagation has become the center of interest of lot of studies where advanced numerical methods such as mesh-less methods and the eXtended Finite Element Method (XFEM) are widely used, see [START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF]; [START_REF] Zi | New crack-tip elements for XFEM and applications to cohesive cracks[END_REF] et al. (2013). Further, XFEM is used to model interfaces between different materials by using appropriate enrichment functions that guaranty the continuity of fields (such as temperature and displacement) and discontinuity of their gradients (heat flux and stresses) [START_REF] Belytschko | Arbitrary discontinuities in finite elements[END_REF][START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF].

In the previous chapter (Chapter 3), we modeled the response of a cracked porous media under multi-physics loading by using FEM/XFEM. The study was limited to a porous medium with static cracks, where the fluid flow was described by Darcy's equation. The present chapter (Chapter 4) is devoted to crack propagation in porous material layer located between a flow channel and dense materials layer (see Fig. 4.1). This structural staking (flow channel/porous layer/dense layer) is typical to the SOFC technology, where the fluid (air and fuel) enters the multilayered structure, with constant flow rate and temperature, through the flow channel then diffuses into the porous layer. In this chapter, the influence of heat transfer, fluid flow and material properties on crack propagation in the SOFC-like multilayered porous materials is investigated, where the porous SOFC electrodes microstructures are taken isotropic. This work is a continuation of the study introduced in Chapter 3, the novelty here lies in the modeling of a multilayered structure with the resolution of the Navier-Stokes and Darcy-Brinkman equations which provide distributions of pressure and velocity in the flow channels and porous media respectively. In addition, the possibility of crack propagation can be triggered by the complex multi-physics loading. Indeed, this study deals with the fluid flow and heat transfer effects on the crack propagation during the transient regime.

The crack propagation path is tracked and studied under different scenarii. The XFEM is introduced to solve the thermo-mechanical problem within the porous media (solid phase) in order to avoid re-meshing when the crack propagates and also to enhance the accuracy by adopting the partition of unity principle.

This chapter is organized as follows: Section 4.2 is devoted to the governing equations and solving procedures of the coupled multi-physics problem. In Sections 4.3, the effective thermal and mechanical properties of the porous material are computed using statistical continuum theory (existing code) and experimental data conducted for this purpose. In Section 4.4, the multi-physics model is validated, then used to investigate effects of fluid flow and heat transfer on crack propagation in SOFC like multi-layered material. Finally, some concluding remarks are drawn in Section 4.5.

Problem Formulation

A DB-XFEM model described in Chapter 2 and Chapter 3, is used here to solve the fluid flow, heat transfer, thermo-mechanical response and crack propagation in the multilayered structure. The pursued methodology is summarized as follows:

• Navier-Stokes and Darcy-Brinkman equations are solved respectively in the flow channel and in the porous media using the nonconforming Crouzeix-Raviart method.

• The heat transfer is split into two equations and then solved with different numerical methods: one is calculated with a combination of DG and MPFA methods, the other is solved with XFEM to take into account the impact of cracks.

• Using the temperature field resulted from the heat transport equation as a body force, the thermo-mechanical problem in the multilayered structure is solved with the XFEM.

• The stress intensity factors (SIFs) are calculated for each step to decide whether the crack propagates or not.

• The maximum principal stress criterion is used to determine crack propagation orientation (crack propagation path).

Governing Equations

The fluid flow in the channel and the porous media are described by Navier-Stokes and Darcy-Brinkman equations, respectively. the fluid flow in the porous layer, governed by Darcy-Brinkman Eq. ( 2.3), is discretized with the nonconforming Crouzeix-Raviart (CR) finite element method, as mentioned in Chapter 2. While, the Navier-Stokes equation, which is used to simulate the free flow in the channel, can be derived from the Darcy-Brinkman equation by taking the parameters ε = 1.0 and K → ∞ (see Chapter 2, Section 2.2, 2.3). Therefore, the same equation (Darcy-Brinkman) and method can be used to deal with the fluid flow in both the flow channel and the porous media.

Due to the small opening of the crack in the brittle material, the crack is assumed to affect the heat diffusion within the porous layer. A combination of DG, MPFA and XFEM methods is used to solve the advection-diffusion heat transfer equation in the flow channel and in the porous material to better handle the influence of cracks. The XFEM is also used to solve the thermo-mechanical problem and to track the crack propagation. The governing equations and discretizations of fluid flow, heat transfer and thermo-mechanical problem are detailed in Chapter 2 and Chapter 3.

The multi-physics model is implemented for the transient regime. In the post processing stage, the SIFs are calculated for each time step by using the J-integral technique (See Chapter 3, Section 3.3.4). Once the SIFs are computed, the crack orientation angle can be deduced using the maximum principal hoop stress by solving the equation: τ rϑ = 0, where τ rϑ is the shear stress derived from the asymptotic displacement expression at the crack-tip

τ rϑ = 1 √ 2πr cos ϑ 2 1 2 K I sin ϑ + 1 2 K II (3 cos ϑ -1) = 0 (4.1)
Then, the crack growth direction ϑ p is given by:

ϑ p = 2 arctan   K I ± K 2 I + 8K 2 II 4K II   (4.2)
The initial existing crack is considered to grow instantaneously once the equivalent SIF (K Ieq ) overcomes the material toughness (K Ic ). The equivalent stress intensity factor is given by

K Ieq = K I cos 2 ϑ p 2 -3K II cos 2 ϑ p 2 sin ϑ p 2 (4.3)

Solving Procedures

In this multi-physics problem, the fluid flow, heat transfer, thermo-mechanical response as well as the crack propagation are coupled and solved sequentially at each time step, which allows the use of different temporal discretization and therefore, allows achieving high accuracy for each equation. In this work, the flow system Eq. (2.2) and Eq. (2.3) is solved using an implicit time discretization whereas an explicit time discretization is preferred for the advective part of the heat Eq. (3.11). The unknowns are progressed from the time increment t n to t n+1 as follows:

Step 1: Darcy-Brinkman Eq. (2.3) is solved and fluid flow velocity for the current time step v n+1 is obtained.

Step 2: The heat transfer Eq. (3.11) is solved using the flow velocity v n+1 to get T n+1, * .

Step 3: The thermal conductivity in the solid phase is updated: (k s ) n+1 = F (T n ) (the updating function is fitted from experimental results).

Step 4: The heat transfer Eq. (3.12) is computed with the presence of cracks using T n+1, * as the initial temperature field and (k s ) n+1 as the thermal conductivity, then the final temperature at the current time step T n+1 is obtained.

Step 5: The temperature T n+1 is injected as a body force in the thermal-mechanical problem Eq. (3.9) then the displacements, stresses, stress intensity factors as well as the direction of crack propagation are calculated.

Step 6: The equivalent SIF K Ieq is compared with the fracture toughness K Ic to decide whether the crack propagates or not. If the crack criterion is not satisfied K Ieq < K Ic , go back to step 1 and start a new cycle from t n+1 to t n+2 . If the crack propagation criterion is satisfied then go to step 7.

Step 7: The crack is extended by one increment along the growing direction computed in step 5.

Step 8:

The step 5 and step 7 are repeated until the threshold number of crack extension increments is reached.

Effective Properties of SOFC Components

Before investigating fluid flow and heat transfer effects on crack growth in the SOFC unit, the effective thermal and mechanical properties of the SOFC components are determined. To this aim experiments are conducted to measure the thermal and mechanical properties of the SOFC components dense material then a homogenization method is used to derive the effective properties of the corresponding porous anode and cathode materials.

Solid dense electrolyte thermal and mechanical properties are measured directly on prepared electrolyte specimens. However, due to the difficulty preparing porous samples with the required dimensions for the measurement equipment, the cathode and the anode electrodes properties are estimated using a homogenization method.

Experiments of Solid Dense Materials

Within a collaboration project between LIST and La Laguna University, the experiments are conducted by R. Fernández-González (PhD student) and Professor Núñez from La Laguna University, Spain. Commercially available chemicals are used to prepare solid dense specimens from SOFC electrodes: electrolyte, cathode and anode. For preparing electrolyte specimens, YSZ powder TZ8YS (8 mol % Y 2 O 3 , Tosoh, Tokyo, Japan) with an average particle size of ~1.3 µm was used. In order to fabricate the cathode specimens La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 , LSCF (Fuel cell materials, Ohio, OH, USA) with an average particle size of ~1 µm was utilized. And for the anode specimens, a handled mix of 30 wt% of NiO (Sigma-Aldrich, St. Louis, MO, USA) with an average particle size of ~44 µm, and 70 wt% of TZ8YS was used for making the pellets.

Cylindrical shaped specimens with specific sizes are prepared for the measurement of the thermal diffusivity, thermal expansion, density and Young's modulus. Due to the sample size requirement for each used measurement's equipment, specifically for the thermal diffusivity and thermal expansion, dies with different size are used. For instance the measurement of diffusivity requires specimens with a diameter between 7.3 and 8.2 mm and a height between 2 and 3 mm. To this end uniaxial die with 10 mm diameter is used and the specimens are pressed twice during 30 seconds at 1 metric ton. Regarding the measurement of the thermal expansion, the used cylindrical specimens should be less than 12 mm diameter with a length between 20 and 25 mm. This was achieved by using an isotactic press, where the specimen is pressed during 10 min at 7.5 metric ton.

The different obtained specimens were calcined at high temperatures to obtain well sintered samples: the electrolyte was heated for 2 hours at 1500 °C, the cathode was heated for 3 hours at 1250 °C and the anode was heated for 2 hours at 1400 °C. The Young's modulus is deduced from Dynamic mechanical analysis (DMA) measurements conducted on a DMA242C apparatus. Since the Young's moduli of the studied materials are relatively not sensitive to the temperature variation, the DMA measurements are conducted at room temperature and assumed independent of the temperature. The measured Young's moduli of the three SOFC materials are summarized in Tab. 4.1.

Regarding the thermal properties, the measurements were performed in a range of 200 °C between 1000 °C and 200 °C. The thermal conductivity is deduced from the measured thermal diffusivity α (T ), specific heat c (T ) and bulk density ρ (T ) according to the following equation k s (T ) = ρ (T ) c (T ) α (T ). The thermal diffusivity of the sintered specimens was measured by a LFA 457 laser flash thermal diffusivity apparatus. The thermal expansion coefficient was obtained thanks to a DIL 402 C dilatometer. The specific heat capacity was acquired thanks to the differential scanning calorimetry of a DSC F1 Phoenix calorimeter. All the instruments were supplied by Netzch Group, Germany.

The measured thermal properties versus the temperature are summarized in Tab. 4.2 for the electrolyte, cathode and anode.

Effective Thermal and Mechanical Properties

The effective thermal expansion coefficient of ceramic porous material is independent of the pores volume fraction variation and remains equal to the one of the ceramic matrix [START_REF] Boey | Porous AlN ceramic substrates by reaction sintering[END_REF]Tummala and Friedberg, 1970a;b). Therefore, cathode and anode effective thermal expansion coefficients are taken equal to those measured from their corresponding matrices (see Tab. 4.2).

However, the effective mechanical properties and the effective thermal conductivity of porous materials depend on the pores volume fraction, and can be estimated using homogenization methods appropriate for composite materials with a strong-contrast between the individual properties of its constituents [START_REF] Koutsawa | Automatic differentiation of micromechanics incremental schemes for coupled fields composite materials: Effective properties and their sensitivities[END_REF]Mikdam et al., 2013a;b;[START_REF] Azoti | Mean-field constitutive modeling of elasto-plastic composites using two (2) incremental formulations[END_REF].

To this aim, the effective thermal conductivities and mechanical properties of the anode and cathode porous materials are calculated using the strong-contrast version of the statistical continuum theory (Torquato, 2002). The porous material is assumed to be isotropic and represented by micrographs (Fig. 4.2) with different pores volume fraction (ε = 0.2, 0.3, 0.4 and 0.5) which are computer-generated using a statistical continuum theory based algorithm (Mikdam et al., 2013a). Within the statistical continuum theory, the microstructure morphology (Fig. 4.2) of the porous materials is represented by statistical correlation functions that take into account the shape, orientation and distribution of pores. The details on mathematical formulation of the effective properties are discussed in [START_REF] Mikdam | Effective conductivity in isotropic heterogeneous media using a strong-contrast statistical continuum theory[END_REF]2013a).

The calculated isotropic effective conductivity for cathode and anode are reported in Tab. 4.3, respectively. Regarding the mechanical properties, the cathode and anode dense matrix Young's modulus (see Tab. 4.1) are combined with a Poisson coefficient of ν = 0.32 [START_REF] Selcuk | Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC)[END_REF] to compute the effective shear modulus and bulk modulus, which are summarized in Tab. 4.4 as functions of the pores volume fraction. considering the benchmarking test of the cruciform shaped plate (Prasad et al., 1994b). The geometry of the plate is depicted in Fig. 4.3. The initial crack notch length is set to a = 0.2L and is tilted by 135°from the horizontal axis. The simulation of the crack propagation is conducted for: (1) pure thermal loading; (2) pure mechanical loading and

(3) mixed loading. The three boundary condition sets (BC sets) are given in Tab. 4.5.

The domain is discretized with unstructured triangular elements in three different levels: 4188 elements, 7830 elements and 10438 elements. We calculated the heat transfer at the transient regime until the steady state is attained then the crack propagation is tracked. The SIFs are computed using Eq. (3.41) and Eq. (3.43). Then Eq. (4.2) is used to determine the crack growth angle at each iteration. Fig. 4.4 shows that the crack changes its propagation direction and moves towards the right side of the plate under pure thermal loading (BC set 1). While under pure mechanical loading (BC set 2), the crack propagates in a completely different direction comparing to the case with BC set 1. The mixed loading leads to a crack propagation path in between of the two former cases, growing to the corner in the diagonal direction of the initial crack. In Fig. 4.4, crack propagation paths at different mesh levels are also plotted, where we can find that the number of elements has little influence on the calculation. Moreover, these crack paths at different BC sets are found in good agreement with those reported in Prasad et al. (1994b), where the authors obtained the fields using the dual boundary element method combined with a general thermo-elastic analysis. The SIFs are also computed in this reference using the J-integral technique and the maximum principal stress is used as the crack propagation criterion.

Application to Planar SOFC Multi-layered Structure

SOFC unit consists of a solid dense electrolyte sandwiched between a porous anode and a porous cathode, with two flow channels adjacent to the porous layers. During the working process of a SOFC unit, the flow enters the multilayered structure through the flow channel, with a constant inflow temperature and flow rate, and then diffuses into the adjacent porous cracked layer (see Fig. 4.5). A horizontal crack of thickness 0.25 mm and length 6 mm is assumed to locate in the porous cathode. The crack starts to grow when the equivalent SIF overcomes the material toughness. During the propagation, the crack is assumed to keep a constant thickness.

Figure 4.5.: A SOFC unit

The crack propagation path versus the material porosity in the cathode porous layer is investigated for two different fluid inflow configurations. In the first configuration (configuration-1), the air enters into the flow channel adjacent to the cathode from the right side while the fuel enters into the channel adjacent to the anode from the left side, and in the second configuration (configuration-2) both fluids (air and fuel) are assumed to enter the SOFC unit channels from the same side (left side, see Fig. 4.5). The crack is assumed to propagate instantaneously once the equivalent SIF at each crack-tip overcomes the critical one. Note that the toughness of the porous material K Ic is calculated from the toughness of the dense material K Ic0 and the porosity ε through the following equation [START_REF] Joulaee | Fracture toughness and crack deflection in porous multilayered ceramics: application to NiO-YSZ[END_REF])

K Ic (ε) = K Ic0 (1 -ε) 2 1 + b e ε 1 -π 3ε 4π 2 3 1 2 (4.4)
The onset of the crack propagation is due to residual stresses resulting from the properties' mismatch of the cell components and the spatial variation of the temperature during the heating process (transient state). For both configurations the initial cell temperature is taken equal to 25°C and the temperature at the channels inflow is of 800°C. The cell components dimensions and the material properties are given in Tab. 4. [START_REF]The global Cartesian coordinate (X 1 , X 2 ) and the local polar coordinate (r, ϑ) with the origin at crack tip[END_REF]Tab. 4.2,Tab. 4.3,Tab. 4.4,Tab. 4.6,Tab. 4.7. 
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Toughness parameter b e = 0.46 Fig. 4.6 shows the crack propagation path corresponding to the configuration-1 for different material porosities of the anode and the cathode. For all considered material porosities, the propagation starts at the crack-tip1 (tip on the left) then followed by the crack-tip2 (tip on the right). Further, the crack propagation onset time increases with the decrease of the porosity. Due to the complex loading induced by the variation of temperature spatial distribution, the crack-tip1 propagates towards the cathode/electrolyte interface while the crack-tip2 propagates towards the free channel/cathode interface. Once close to the cathode/electrolyte interface, the crack deviates because of the mismatch of the mechanical proprieties between the cathode and the electrolyte. stresses at the vicinity of the electrodes/electrolyte interfaces are higher at the left side of the cell due to the small thickness of anode that allows for higher temperature diffusion.
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The residual stresses magnitudes vary with the material porosity then in turn affect the crack propagation paths.

For configuration-2, the propagation path of the crack-tip2 (Fig. 4.8) is less affected by the stresses resulting from the mismatch of the thermal expansion coefficient. Therefore, the propagation path variation is more dominated by the mismatch of the mechanical properties between the cathode and the electrolyte [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF]. Note that, we consider in this parametric study that the material parameters are temperature independent (see Tab. 4.8).

a) -Young's modulus ratio effect:

In this test, we restricted the variation of the parameters governing the current problem on the mismatch between Young's modulus of the dense and the porous layers. Fig. 4.9 shows the crack propagation path, the vertical displacement and stress components contours at propagating iteration steps 1, 8 and 15. Note that the crack propagation path is indicated by the enriched elements during crack growth.

The SIFs are calculated at both crack-tips: crack-tip1 on the left side of the crack (see Fig. 4.1) and crack-tip2 on the right side. The thermal load leads to a growth of the crack-tip2 first, and then crack-tip1 starts to grow after the 5th crack propagation step of crack-tip2. The deflection of the crack-tip2 far from the bi-material interface is due to the high mechanical properties of the solid dense material. The interface effect on the crack-tip2 orientation is reported in Fig. 4.10 for different combinations of the dense/porous materials Young's modulus. During the first growth steps, the crack is driven by the developed stress state and does not feel the interface effect until it approaches the interface.

b) -Solid thermal conductivity effect:

Another parameter crucial for heat transfer we investigated is the thermal conductivity of the solid, which definitely influences the temperature distribution. Except for the temperature, the impact of thermal conductivity on the rest of the problem, especially on crack propagation is studied here.

The non-linear effect of the solid phase thermal conductivity on the crack propagation path is demonstrated in Fig. 4.11 and Fig. 4.12. The case where k s = 1.5 W/(m°C) and E m1 = E m2 ×50 MPa (see Fig. 4.10) is taken as a reference then the thermal conductivity is varied to illustrate its effect on the crack propagation path. Fig. 4.11 shows the temperature and the vertical component of the displacement and stress contours for different thermal conductivities (k s = 0.5; 3.0; 5.0 W/(m°C)). The temperature conduction in the porous material is enhanced by the increase of the thermal conductivity. However due to the presence of crack, the heat flux is blocked at the crack surface, which leads to an increase of the temperature.

Fig. 4.12 shows the shift of the crack propagation path when the solid thermal conductivity changes. Relative to the crack propagation reference curve (k s = 1.5 W/(m°C)), the decrease of the thermal conductivity decreases the temperature diffusion and increases the temperature gradient in the vicinity of the initial crack. More the temperature gradient is high more the amplitude of stresses is high too, which explains the shift of the crack path orientation.

Enriched elements

Vertical displacements (mm)

Vertical stresses (MPa) The variation of the permeability influences the crack propagation path in the same manner as the thermal conductivity of the solid phase, but with different amplitudes. In fact the increase of the permeability enhances the fluid flow in porous media, which in turn increases the heat transport by advection within the porous material and decreases the temperature gradient. Fig. 4.13 illustrates the temperature and the vertical displacement and stress components contours resulting from three fluid permeabilities (K = K 0 /10, K 0 × 50, K 0 × 500) with K 0 = 15.13 × 10 -13 m 2 , solid phase thermal conductivity k s = 1.5 W/(m°C), and Young modulus E m1 = E m2 ×50 MPa.

For the same simulation time (t = 0.02 s), the increase of the permeability increases the fluid flow in porous layer and decreases the temperature gradient in the vicinity of the crack. The decrease of the temperature gradient tends to homogenize the stresses around the crack-tip and decreases the crack orientation amplitude once it starts to propagate. This behavior is illustrated in Fig. 4.14. 

Conclusions

In this chapter, the multi-physics DB-XFEM model, developed is Chapter 2 and Chapter 3, is used to study crack propagation dependence on fluid flow and heat transfer in porous/dense materials. The fluid flow is governed by the Navier-Stokes equations in the channel and the Darcy-Brinkman equations in the porous material. The temperature distribution within the porous material results from thermal conduction in the solid phase and convection-conduction by means of the fluid flow within the pores. The crack is assumed to affect the heat conduction. The fluid flow, heat transfer and thermomechanical equations are coupled and solved using advanced numerical methods, where the XFEM is used to avoid burdens related to re-meshing. A post processing treatment is needed at each time-step to monitor the crack propagation. To calculate the crack growth direction, the maximum principal stress criterion is used. The implemented method is proved to be robust and costly efficient due to advantages imported by the XFEM. It is found in the study that: The crack propagation is due to the built up of residual stresses resulting from the temperature gradient and the mismatch of the layer's physical properties.

2. More the mismatch between layer's stiffness is high, more the crack deviates from the interface.

3. The temperature gradient in the vicinity of the crack tip influences directly the crack orientation amplitude.

4. The increase of the permeability and solid thermal conductivity both lead to the decreasing of crack orientation amplitude by enhancing the heat transfer within the porous media. The former increases the heat transfer by advection phenomena, while the latter by conduction.

5. The parameters studies show the influence of each material and process parameter on the crack propagation. This parametric study revealed a complex dependence of In a SOFC unit, the nucleation of cracks in the vicinity of the anode/electrolyte and cathode/electrolyte interfaces results usually from the cooling and heating processes. These cracks can propagate to deflect at the cell interfaces or penetrate in the electrolyte due to the thermo-mechanical loading during SOFC service. As consequences, the presence of cracks in the SOFC generates heat due to the Ohmic resistance at the crack tips which in turn dramatically affect the electrochemical performances of the SOFC unit. Further, cracks that penetrate in the electrolyte allow for fuel leakage from the anode side to the cathode side, which can deteriorate the SOFC unit. As we already know, due to the porous nature of the SOFC components (anode and cathode), pores concentration and distribution affect significantly the resistance to fracture of the porous SOFC materials.

To preserve the mechanical integrity and to decrease the Ohmic losses of SOFC unit, we believe that by optimizing the orientation of pores, the porous media can be more resistant to crack propagation and also capable to diffuse heat in preferential directions to avoid temperature gradients. Therefore, porous material with different anisotropic thermal and mechanical properties is constructed using an existing in-house code. Then, the DB-XFEM code is used to investigate the effect of porous material anisotropy on crack propagation in the multilayered SOFC.

Crack analysis in anisotropic materials has been studied both analytically and numerically in the recent decades. Early researches were mainly focusing on analytical investigations of fracture behavior and mechanical response of cracked anisotropic materials, such as [START_REF] Sih | On cracks in rectilinearly anisotropic bodies[END_REF], [START_REF] Bogy | The plane solution for anisotropic elastic wedges under normal and shear loading[END_REF], [START_REF] Bowie | Central crack in plane orthotropic rectangular sheet[END_REF], [START_REF] Barnett | The fracture mechanics of slit-like cracks in anisotropic elastic media[END_REF], [START_REF] Kuo | Plane solutions for the displacement and tractiondisplacement problems for anisotropic elastic wedges[END_REF], [START_REF] Tupholme | A study of cracks in orthotropic crystals using dislocation layers[END_REF], [START_REF] Viola | Crack propagation in an orthotropic medium under general loading[END_REF], to set only few. With the development of computational technology, the modeling of crack propagation in anisotropic materials based on numerical methods has drawn more attention. Boundary element and dual boundary element methods were used to perform the analysis of cracks in anisotropic materials in Sollero and Aliabadi (1993);Sollero et al. (1994); Sollero and Aliabadi (1995). Then [START_REF] Aliabadi | Crack growth analysis in homogeneous orthotropic laminates[END_REF] extended this work to the crack growth analysis in orthotropic materials, where the boundary element formulation was utilized. In [START_REF] García | Traction boundary elements for cracks in anisotropic solids[END_REF], a general mixed traction boundary element approach was proposed to simulate cracks in anisotropic solids. Moreover, cracks in 2-D anisotropic material under thermal loading were studied by [START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF]. XFEM was also widely used in fracture analysis of anisotropic materials, due to the feature that it enables the utilization of nonconforming meshes by introducing enrichment functions. For instance, Asadpoure et al. (2006a;b); [START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF] developed new XFEM enrichment functions to model crack in orthotropic media. Further time-independent and dynamic analysis of both static crack and crack propagation in orthotropic material using XFEM were found in Motamedi and Mohammadi (2010a;b;[START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF].

In Chapter 4, we combined FEM and XFEM to investigate the effect of fluid flow and heat transfer on crack propagation in isotropic porous/dense bi-material. The present chapter concerns crack propagation in multilayered SOFC-like material where an existing crack is assumed to lie within anisotropic porous SOFC electrodes. The novelty here lies in the modeling of the multi-physics problem taking into account the anisotropy of SOFC electrodes (anode and cathode). The DB-XFEM model developed in the fourth chapter for the isotropic case is upgraded to take into account the anisotropy through the effective properties of the anode and cathode electrodes. In this model, three sub-models within the SOFC unit: the fluid flow, heat transfer and thermo-mechanical problems, are derived taking into account the anisotropy and solved iteratively till convergence for each time step. To compute the crack propagation in the anisotropic material, the enrichment functions and interaction integral equation which are different from those in the isotropic material are used.

The present chapter is organized as follows: In Section 5.2, the multi-physics governing equations in the DB-XFEM model are recalled. In Section 5.3, an optimization algorithm (existing code) to construct anisotropic porous microstructures with different desired effective thermal and mechanical properties is recalled. Then in-service simulations of SOFC are conducted for each porous material anisotropy to investigate effects of anisotropy on crack propagation path within a SOFC unit in Section 5.4. Finally some concluding remarks are drawn in Section 5.5.

Governing Equations

The fluid flow, governed by Navier-Stokes in the flow channel and Darcy-Brinkman in the porous media, is discretized with the nonconforming CR method. The heat transfer equation is solved with a combination of DG, MPFA and XFEM methods considering the presence of cracks. The thermal conductivity is described by a tensor in the solid phase due to the anisotropy of the porous media. The temperature field resulting from the heat equation is used as body force for solving the thermo-mechanical response, where the XFEM is used with different asymptotic enrichment functions as in the isotropic material. Part of these equations and discretizations were detailed in Chapter 2 and Chapter 3. However, due to the introduction of anisotropy, a description will be dedicated to the heat transfer, the thermo-mechanical problem and the crack propagation in the following section.

Heat Transfer

Heat transfer in the flow channel, the porous media and the solid dense material is governed by heat conduction in the solid phase and heat transport in the fluid phase.

In the anisotropic material, the thermal conductivity k P M becomes a tensor of equivalent thermal conductivity of the system k P M . The total energy conservation equation in anisotropic media writes:

(ρc

) P M ∂T ∂t + ρ f c f v.∇T -∇. (k P M ∇T ) = Q T (5.1)
By considering thermal dispersion in the fluid phase and heat conduction in both solid and fluid phases, the expression of k P M components is

k P M,ij = k disp f ij + k cond f ij + k conds ij = ρ f c f α T |v| δ ij + (α L -α T ) v i v j |v| dispersive + [(1 -ε) k s + εk f ] δ ij conductive (5.2) with k disp f ij = ρ f c f α T |v| δ ij + (α L -α T ) v i v j |v| (5.3) k cond f ij = εk f δ ij (5.4) k conds ij = (1 -ε) k s δ ij (5.5)
where α L and α T are the longitudinal and transverse thermal dispersivities, δ ij is the Kronecker delta function, k f and k s are the thermal conductivities of the fluid and solid phases. Crack within the porous SOFC electrodes is assumed to affect the thermal conduction part of the heat transfer. A time splitting is used to allow different treatments of heat transfer equations. At each time step ∆t,the heat transport equation is firstly solved to calculate T n+1, * , the temperature caused by heat transfer in the fluid phase:

(ρc) P M T n+1, * -T n ∆t + ρ f c f v.∇T -∇. k f ∇T = Q f T (5.6)
where

k f = k cond f + k disp f is the conduction-dispersion tensor in the fluid phase.
Then, the final temperature T n+1 is obtained by taking into account heat transfer in the solid phase using T n+1, * as initial temperature:

(ρc

) P M T n+1 -T n+1, * ∆t -∇. k conds ∇T = Q s T (5.7)
where k conds is the thermal conduction tensor of the solid phase in anisotropic porous medium.

Thermo-Mechanical Problem

Governing Equation and Discretization

Equilibrium equation under prescribed boundary conditions of a 2-D domain Ω is given by Eq. (3.7), as mentioned in Chapter 3. In anisotropic material, the constitutive relation for thermal elastic problems is given by the generalized Hooke's law

σ = C : D -(β * ∆T ) (5.8)
where β * is a material tensor that relates material stiffness tensor to thermal expansion tensor, with the expression of components given by

β * ij = C ijkl β T kl (5.9)
Substituting the constitutive relation in the weak form of equilibrium Eq. (3.9) leads to

ˆΩ D (δu) : (C : D (u) -(β * ∆T )) dΩ = ˆΩ δu • bdΩ + ˆΓt δu • tdΓ t (5.10)
The displacement is approximated using XFEM by

u h (x) = i∈N Υ i u i + i∈N Γ Υ i H (x) c i + i∈N Λ Υ i k br k (x) d k i (5.11)
To get the expressions of these function bases in 2D linear elastic anisotropic materials, consider the stress-strain relation 5.12) where S is the compliance tensor of the material. ( 5.15) with the assumption that X 1 , X 2 are Global Cartesian coordinate system (see Fig. To accurately reproduce the singularity of the stress field, the crack tip region has to be enriched according to Eq. (5.11). Using the partition of unity principle, this asymptotic behavior is introduced in the finite element space. This is performed by adding extra degrees of freedom at the concerned nodes and removing the unknowns such as the SIFs. Applying this principle, the enrichment in the crack tip region can be drawn using the following four bases (Asadpoure et al., 2006a;[START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]:

{D} = [S] {σ} ( 
{br k (r, ϑ)} 4 k=1 =    √ r cos ϑ 1 2 f 1 (ϑ), √ r cos ϑ 2 2 f 2 (ϑ), √ r sin ϑ 1 2 f 1 (ϑ), √ r sin ϑ 2 2 f 2 (ϑ)    (5.16)
where ϑ i and f i (ϑ) (i = 1, 2) are related to local polar coordinates at the crack tip as in Fig. 5.1. The detailed expression of the branch enrichment bases is given by Asadpoure et al. (2006a); [START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]. Firstly, they assumed some definitions:

m 1 = s 33 s 11 , m 2 = s 22 s 33 , n 1 = s 12 + s 33 2s 11
, n 2 = s 12 + s 33 2s 33 (5.17)

a 1 = (m 1 + m 2 -4n 1 n 2 ) 2 , a 2 = m 1 m 2 (5.18)
If a 1 > √ a 2 , the first category is defined as (Asadpoure et al., 2006a;[START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]:

f i (ϑ) = cos 2 ϑ + sin 2 ϑ B 2 i 1 2 , i = 1, 2 (5.19) ϑ i = arctan tan ϑ B i (5.20)
where s 11 s 33 (5.22) If |a 1 | < √ a 2 , the second category writes (Asadpoure et al., 2006a;[START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]: 5.23)

B i = A + (-1) i A 2 - s 22 s 11 1 
f i (ϑ) = cos 2 ϑ + B sin 2 ϑ + (-1) i B sin 2ϑ 1 2 , i = 1, 2 ( 
ϑ i = arctan A 2 B sin ϑ cos ϑ + (-1) i A 1 B sin ϑ (5.24)
where

B = A 2 1 + A 2 2 -1
(5.25)

A 1 = 1 2 ( √ a 2 + a 1 ) 1 2 , A 2 = 1 2 + ( √ a 2 -a 1 )
1 2

(5.26)

By substituting the approximated displacement in the variational form of equilibrium 5.10, the following system to solve can be obtained

ˆΩ B T i CB j dΩ.U = ˆΩ B T i (β * ∆T ) dΩ + ˆΩ Υ T i bdΩ + ˆΓt Υ T i tdΓ t (5.27)
where B is the matrix of shape function derivatives, with its expression detailed in Chapter 3.

Stress Intensity Factors Computation

J-integral is one of the efficient existing techniques to compute the SIFs. It is a path independent integral over a contour centered at the crack tip. The contour integral was transformed to surface integral, implemented and used in many studies of isotropic media.

Hereafter, we give a short recall of the methodology of SIFs computation in anisotropic media based on the interaction integral which is derived from the J-integral.

The expression of the J-integral for thermo-mechanical problems over a domain A is obtained over the contour enclosing A by using the divergence theory and it is given by

J = ˆA σ ij ∂u i ∂x 1 -Wδ 1j ∂q A ∂x j dA + ˆA β * ij D ij ∂T ∂x 1 q A dA (5.28)
where q A is the weighting function, and the summation convention over repeated indices holds i, j = 1, 2 for two dimensional problems.

To derive the expression of the interaction integral, assume the existence of an auxiliary mode σ

(2) ij , D

(2) ij , u

(2) i associated to the real mode σ

(1) ij , D (1) ij , u
(1) i

. By using the superposition principle, Green's theory and separating terms, the interaction integral between state (1) and state ( 2) is [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF][START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF][START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF][START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF]:

I (1,2) = ˆA   σ (1) ij ∂u (2) i ∂x 1 + σ (2) ij ∂u (1) i ∂x 1 -W (1,2) δ 1j   ∂q A ∂x j dA + ˆA trace β * D (2) ∂T ∂x 1 q A dA (5.29)
The interaction strain energy W (1,2) is calculated in thermo-mechanical problems as (5.30) On the other hand, according to [START_REF] Asadpoure | Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[END_REF], the expression that relates the interaction integral to the SIFs is given by the following equation

W (1,2) = 1 2 σ (1) ij D (2) ij + σ (2) ij D (1) ij -β * ij D (2) ij ∆T
I (1,2) = 2a 11 K (1)
I K

(2)

I + a 12 K (1)
I K

(2)

II + K (2) I K (1) II + 2a 22 K (1)
II K

(2) II (5.31) with

a 11 = - s 22 2 ℑ z 1 + z 2 z 1 z 2 (5.32) 125
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a 12 = - s 22 2 ℑ 1 z 1 z 2 + s 11 2 ℑ (z 1 z 2 ) (5.33) a 22 = s 11 2 ℑ (z 1 + z 2 ) (5.34)
where ℑ (.) stands for the imaginary part of the complex number between the brackets.

K I , K II are the opening and the shearing SIFs respectively. The complex numbers z 1 and z 2 are resulted from the following characteristic equation

s 11 z 4 -2s 13 z 3 + (2s 12 + s 33 ) z 2 -2s 23 z + s 22 = 0 (5.35)
which is obtained using equilibrium and compatibility conditions [START_REF] Lekhnitskii | Theory of elasticity of an anisotropic elastic body[END_REF]. This characteristic equation admits two pairs of conjugate complex roots z k , zk (k = 1, 2) but only the roots with positive imaginary part are used in the calculation [START_REF] Sih | On cracks in rectilinearly anisotropic bodies[END_REF].

By choosing the pure opening mode with unitary SIFs as auxiliary mode K

(2)

I = 1, K
(2) II = 0 then the pure shearing one with unitary SIFs K

(2)

I = 0, K (2)
II = 1 , one can obtain the following system to solve

           I (1,I) = 2a 11 K (1) I + a 12 K (1) II I (1,II) = a 12 K (1) I + 2a 22 K
(1) II (5.36) For pure opening mode and pure shearing mode, the analytical formulation of displacement and stress expressions in the vicinity of the crack tip were derived by [START_REF] Sih | On cracks in rectilinearly anisotropic bodies[END_REF]. Thus, in the local coordinates centered at the crack tip (Fig. 5.1), the stress and displacement expressions for pure mode one are given by

σ 11 = K I √ 2πr ℜ z 1 z 2 z 1 -z 2 z 2 ω 2 - z 1 ω 1 (5.37) σ 22 = K I √ 2πr ℜ 1 z 1 -z 2 z 1 ω 2 - z 2 ω 1 (5.38) σ 12 = K I √ 2πr ℜ z 1 z 2 z 1 -z 2 1 ω 1 - 1 ω 2 (5.39) u 1 = K I 2r π ℜ 1 z 1 -z 2 (z 1 p 2 ω 2 -z 2 p 1 ω 1 )
(5.40)

u 2 = K I 2r π ℜ 1 z 1 -z 2 (z 1 q 2 ω 2 -z 2 q 1 ω 1 ) (5.41)
Similarly, the exact solutions of stress and displacement for pure mode two are given by

σ 11 = K II √ 2πr ℜ 1 z 1 -z 2 z 2 2 ω 2 - z 2 1 ω 1 (5.42) σ 22 = K II √ 2πr ℜ 1 z 1 -z 2 1 ω 2 - 1 ω 1 (5.43) σ 12 = K II √ 2πr ℜ 1 z 1 -z 2 z 1 ω 1 - z 2 ω 2 (5.44) u 1 = K II 2r π ℜ 1 z 1 -z 2 (p 2 ω 2 -p 1 ω 1 ) (5.45) u 2 = K II 2r π ℜ 1 z 1 -z 2 (q 2 ω 2 -q 1 ω 1 ) (5.46)
where ℜ (.) stands for the real part of the complex number between the brackets. ω k , p k and q k (k = 1, 2) are defined by 5.48)

ω k = cos ϑ + z k sin ϑ (5.47) p k = s 11 z 2 k -s 13 z k + s 12 ( 
q k = s 12 z k + s 22 z k -s 23 (5.49)
To get the values of the SIFs expressions the resulting system of equations has to be simultaneously solved.

Crack Growth Criterion

The stress intensity factors intervene in the crack growth criterion and in the crack orientation angle calculation. The crack orientation angle is determined using the maximum principal hoop stress; this can be achieved by rewriting the asymptotic stresses solution at the crack tip. The asymptotic analytical formulation of stresses in the local coordinates centered at the crack tip, for the mixed mode is given by [START_REF] Sih | On cracks in rectilinearly anisotropic bodies[END_REF].

                                 σ 11 = 1 √ 2πr K I ℜ z 1 z 2 z 1 -z 2 z 2 ω 2 - z 1 ω 1 + K II ℜ 1 z 1 -z 2 z 2 2 ω 2 - z 2 1 ω 1 σ 22 = 1 √ 2πr K I ℜ 1 z 1 -z 2 z 1 ω 2 - z 2 ω 1 + K II ℜ 1 z 1 -z 2 1 ω 2 - 1 ω 1 σ 12 = 1 √ 2πr K I ℜ z 1 z 2 z 1 -z 2 1 ω 1 - 1 ω 2 + K II ℜ 1 z 1 -z 2 z 1 ω 1 - z 2 ω 2 (5.50)
Then the crack growth direction is given by

ϑ p = ϑ [-π/2,π/2] , max (σ ϑϑ ) (5.51)
The initial existing crack is considered to grow instantaneously once the equivalent SIF (K Ieq ) overcomes the material toughness (K Ic ). The equivalent stress intensity factor is given by Eq. (4.3).

Anisotropic Material Properties

Before investigating the effect of fluid flow and heat transfer on crack propagation in SOFC unit, effective thermal and mechanical properties of SOFC electrodes are determined for different degrees of anisotropy of the porous electrodes (anode and cathode). To this aim, starting from an isotropic porous microstructure, a Monte Carlo based optimization tool is used to construct porous microstructure with desired anisotropic effective thermal properties. Then the mechanical properties of the optimized porous microstructure are computed. The resulted thermal and mechanical properties of the anisotropic porous electrodes are used for further analysis of fluid flow and heat transfer in SOFC unit.

Microstructure Construction

An optimization tool based on statistical continuum theory is used to construct optimized porous isotropic and anisotropic microstructure with desired effective thermal conductivity (see Fig. 5.2).

The inputs of the algorithm are: volume fraction of the porous phase (ε i ), number of initial cells (N ) and the desired second order effective thermal conductivity tensor k conds d . Note that, the 3-D numerical integration within the statistical continuum theory using 2-D microstructure results in an axisymmetric homogenized material. The 3-D second order thermal conductivity tensor k conds The algorithm consists of two optimization steps. On the first step of the algorithm, N cells are distributed randomly then grown iteratively, by adding n pixels at each iteration on a randomly chosen cell, among the existing N cells, to reach the desired pores volume fraction ε i . On the second step, a reorganization procedure is used to reach the desired effective thermal conductivity k conds d , keeping the pores volume fraction ε i constant. To this aim, an iterative loop is considered where at each iteration n pixels are removed from the external contour of a randomly chosen cell, and added on the external contour of another randomly chosen cell. Then the effective thermal conductivity is calculated using the statistical continuum theory that takes into account the distribution, shape and orientation of the material components [START_REF] Mikdam | Effective conductivity in isotropic heterogeneous media using a strong-contrast statistical continuum theory[END_REF]2013b). At each step, the n pixels reorganization is accepted if the objective function (F n < F n-1 ) is verified otherwise this operation is rejected. The objective function is defined as follows:

F n = k conds z n -k conds z,d (5.52) 
Note that the algorithm allows two neighboring cells to merge and become one cell once the added pixels bridge the gap between the two cells. Further the removed pixels might lead to a split of a cell into two cells. The value of "n" depends on the resolution of the constructed microstructure (image). Indeed, more the size of the image is large more its resolution (number of pixels) is high. In the present work the size of the constructed microstructure (image) is taken (1000 × 1000) and the reorganization parameter n is taken equal 5.

Effective Thermal and Mechanical Properties

The optimization algorithm is used to construct anisotropic porous microstructures with volume fractions ε i =0.2, 0.3, 0.4, 0.5. For instance, Fig. The effective mechanical properties of the SOFC anode and cathode electrodes are computed for each pores volume fraction ε i =0.2, 0.3, 0.4, 0.5 and their corresponding degree of anisotropy reported in Tab. 5.1 ((a), (b), (c), (d)). For each pores volume fraction (ε i =0.2, 0.3, 0.4, 0.5) and degree of anisotropy ((a), (b), (c), (d)), the optimized 2-D microstructure is used in conjunction with the statistical continuum theory to compute the porous material effective elastic tensor. To this aim, a measured Young's modulus of the anode and cathode dense material (see Tab. 4.1 in Section 4.3) and a Poisson coefficient of ν = 0.32 [START_REF] Selcuk | Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC)[END_REF] are used. Since the constructed porous material is transversely isotropic, only five independent components of the effective elasticity tensor are reported in Tab. 5.2. The fourth-order effective elasticity tensor might be written in Voigt notation as 

C e =               C e 11 C e 12 C e
             
(5.53)

Numerical Results

Validation of Developed Multi-Physics Model

Partial validation regarding the fracture analysis in 2-D anisotropic thermoelasticity is conducted due to the difficulty finding literature benchmark examples to validate the developed multi-physics model. Note that part of validations have been conducted in the previous chapters regarding the thermo-fluid coupling problem (Chapter 2, Section 2.4), the thermo-mechanical response (Chapter 3, Section 3.4.2), where the computed SIFs are compared with those found in literature, and the benchmark test of the cruciform shaped plate (Chapter 4, Section 4.4.1), where the crack propagates in an isotropic material. In this section, the thermo-mechanical part of the multi-physics model is validated considering an inclined crack in a rectangular anisotropic plate [START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF]) (see Fig. 5.4). √ πa and then reported in Tab. 5.3. These values are compared to those from the literature using the Boundary Element Method (BEM) [START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF][START_REF] Shiah | Fracture mechanics analysis in 2-D anisotropic thermoelasticity using BEM[END_REF], where a good agreement is found.

Application to Planar SOFC Unit

During service, the fuel and air flow into SOFC unit through the flow channels (see Fig. 5.5) with a constant inflow temperature and flow rate, then diffuse within the porous electrodes to reach the electrodes/electrolyte interfaces where the electrochemistry reactions take place. The mismatch of the mechanical properties of the unit cell electrodes (anode, cathode and electrolyte) as well as the variation of the temperature during service might lead to cracks nucleation and propagation within the cell unit [START_REF] Qu | FY 2006 annual report[END_REF]. Considering an isotropic porous SOFC electrodes and a pre-existing crack in the SOFC cathode, previous study in Chapter 4 showed the strong dependence of the crack propagation path on both the process and material parameters. The present study focuses on effects of the porous material anisotropy (anode and cathode) on crack propagation path for different pores volume fraction. Previous investigations show a strong dependence of the SOFC unit mechanical response on the gases inflow configuration such as the inflow position (same side or opposite side) and the flow direction (parallel or perpendicular) [START_REF] Achenbach | Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[END_REF][START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF][START_REF] Wang | 3-D model of thermo-fluid and electrochemical for planar SOFC[END_REF]. In the present study, the fuel and the air are assumed to flow into the SOFC unit from its left side. The SOFC unit dimension and the gases material parameters are given in Tab. 5.4. The pre-existing crack of 0.1 mm thickness and 6 mm length is assumed to lie horizontally in the cathode electrode, where the left crack tip denoted crack tip-P and the right one denoted crack tip-Q. The crack grows when the equivalent SIF overcomes the material toughness K Ic , which depends on the pores volume fraction and the solid dense material toughness K Ic0 (see Tab. 5.4) through Eq. (4.4). Fig. 5.6 shows the temperature and the vertical displacement contours for an anode and cathode of porosity ε = 0.3 at the end of simulation: once the crack tip-Q crosses the border of the cathode electrode. Even if the time of simulation is not the same for the four cases, these contours show an increase of heat diffusion with the increase of the porous material anisotropy. Further the displacement discontinuity shows the deviation of the crack which is affected by both the electrolyte/cathode stiffness ratio and the anisotropy of the porous material: more the anisotropy is higher more the deviation far from the interface is important. Fig. 5.7 shows the equivalent SIFs at the crack tip-Q as functions of the pores volume fractions (ε =0.2, 0.3, 0.4, 0.5) at different porous material degrees of anisotropy ((a), (b), (c), (d)). Note that the curves (a), (b), (c) and (d) correspond to the degrees of the porous material anisotropy reported in Tab. 5.1. These investigations lead to the conclusion that the anisotropy delays the onset of the crack propagation. Moreover the decrease of the pores volume fraction leads to stronger porous material that also delays the onset of the crack propagation. Fig. 5.8 shows the variation of the SIFs at the crack tip-P and crack tip-Q for a material porosity of ε = 0.3 and porous material anisotropies (a), (b), (c), (d). Even the crack tip-P is closer to the fuel inflow at a temperature of 800°C, the crack propagates earlier at the crack tip-Q then the crack tip-P. At small simulation time the SIFs at the crack tip-P reach a maximum far from the porous material toughness. Therefore, it seems that the developed residual stresses due to the variation of the temperature at crack tip-P are not high enough to propagate the crack. Curves in Fig. 5.8 show that, for each material anisotropy, the onset of crack propagation at the crack tip-Q triggers the increase of the SIF at the crack tip-P until it reaches the porous material toughness. Fig. 5.9, Fig. 5.10, Fig. 5.11 and Fig. 5.12 show crack propagation paths as the function of the porous material anisotropy for pores volume fractions ε =0.2, 0.3, 0.4 and 0.5, respectively. Due to temperature induced residual stresses, after propagation the crack tip-Q propagates towards the cathode/electrolyte interface while the tip-P propagates towards the cathode free surface between the flow channel and the cathode. [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF] showed in a previous work that in case of isotropic bi-material (material-1, material-2), where a crack lies in the material-1, the crack propagates towards the bi-material interface if the material-1 is stiffer than the material-2. However in case where the material-1 is softer than the material-2, once the crack-tip approaches the interface the crack deviates to propagate far from the interface. This phenomenon is also observed in the present work in the case of isotropic porous material (curves corresponding to anisotropy (a)). Further, the increase of the pores volume fraction of the isotropic porous cathode results in weaker mechanical properties that lead to early crack deviation by the electrolyte/cathode interface.

Once the porous material becomes anisotropic (curves (b), (c), (d)) the crack deviates further far from the interface compared to the isotropic case. This predicted behavior might be due partly to the decrease of the stiffness of the porous material with the increase of the anisotropy in the direction perpendicular to the cathode/electrolyte interface. In fact at constant pores volume fraction, the increase of the anisotropy leads to a decrease of the stiffness tensor component C e 11 (see Tab. 5.2) and an increase of the stiffness gap through and perpendicular to the cathode and the electrolyte.

It can be also noted that in case of isotropic porous cathode the deviation of the crack by the interface is due only to the difference of the mechanical properties. However, in case of the anisotropic cathode, from the shape of the propagation curves it can be concluded that the crack deviation is not only due to the difference of the mechanical properties but also to the anisotropy of the porous material. Further the increase of anisotropy leads to zig-zag phenomena of the crack propagation.

Conclusions

The DB-XFEM model is upgraded and used to study the effect of fluid flow and heat transfer on crack propagation in anisotropic porous/isotropic dense SOFC like material. This investigation focuses on the dependence of the onset and the path of crack propagation on the porous material anisotropy. To this aim porous material for the SOFC anode and cathode with isotropic and anisotropic desired effective thermal and mechanical properties are constructed using an optimization tool on the basis of statistical continuum theory. Then these porous materials with different degrees of anisotropy are used to study the effect of material anisotropy on crack propagation path in SOFC like structure. The fluid flow, heat transfer and the thermo-mechanical problem are coupled and solved using the DB-XFEM model. The crack propagation was monitored by a post-processing computation of the SIFs. Relative to isotropic porous material, results show that:

1. Once the porous media becomes anisotropic, the onset of crack propagation is delayed.

2. The decrease of the pores volume fraction leads to a stiffer porous material that increases the fracture toughness of the material, which in turn delays the onset of crack propagation.

3. The increase of the material anisotropy leads to a larger deviation of the crack path from the porous media/dense media interface. During service of SOFCs, the heat is generated within the cell due to the electrochemical reactions taking place at the electrodes/electrolyte interfaces, which results in the increase of the cell temperature. As previously stated, the high operating temperature of the SOFC can lead to complex material problems. On one hand, the temperature gradient in the cell and the different thermal expansion coefficients of cell components result in residual mechanical stresses and possible crack nucleation in the vicinity of electrodes/electrolyte interfaces [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF][START_REF] Qu | FY 2006 annual report[END_REF], which was studied in Chapter 3, Chapter 4 and Chapter 5. On the other hand, the temperature distribution has also a significant effect on the electronic and ionic conductions of the cell components as well as the cell electrochemical performance. The increase of the local temperature at electrodes/electrolyte interfaces yields faster reaction rate; in reverse, the lower local temperature results in a slower reaction rate and a lower fuel utilization [START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF]. To better understand physical processes within SOFC cell, significant models are proposed to simulate the multi-physics phenomenon taking place during SOFC service. For instance, [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF] presented a model for mass and heat transfer and an electrochemical model by neglecting the flow field in the porous electrodes. Thereby the species transfer was considered pure diffusive in the porous media. This assumption was also used in the model of [START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF]. Other researchers assumed that the gas flow in the porous anode and cathode is governed by Darcy's law [START_REF] Larrain | Generalized model of planar SOFC repeat element for design optimization[END_REF][START_REF] Lin | Performance predictions in solid oxide fuel cells[END_REF]. [START_REF] Hussain | Mathematical modeling of planar solid oxide fuel cells[END_REF] developed a mathematical model to predict SOFC energy conversion performance considering isothermal cell. [START_REF] Cheddie | A dynamic 1D model of a solid oxide fuel cell for real time simulation[END_REF]; [START_REF] Kang | A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research[END_REF] proposed 1-D dynamic models for SOFCs by integrating the anode/electrolyte/cathode structure and flow channels as one temperature layer and considering current density as a uniform field within the cell. A more sophisticated and robust model was introduced by [START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF] to deal with gas flow, heat and mass transfer regimes, and electrochemical reactions in SOFCs by dividing the SOFC unit into three computational domains (anodic compartment, electrolyte domain and cathodic compartment). Most of the models cited above are used to predict the flow and distribution of gases in the anode and the cathode, as well as the temperature and the current distributions.

In the present work, an EC model that considers the electrochemical reactions with Ohmic, activation and concentration losses is developed. Then the EC model is combined with the DB model that was introduced in Chapter 2 to solve the multi-physics phenomenon taking place during SOFC service. Investigations are focused on the cell energy conversion performances taking into account the heat generated by electrochemical reactions. The fluid flow, heat transfer and mass transport equations as well as the electrochemical reactions within the SOFC unit are solved in the DB-EC model as following:

• Navier-Stokes and Darcy-Brinkman equations are solved respectively in the flow channel and in the porous electrodes (anode and cathode) using the nonconforming Crouzeix-Raviart (CR) finite element method [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[END_REF], with the nonlinear convective term being treated by an upstream approach with weight as in the previous work of [START_REF] Schieweck | A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation[END_REF].

• Heat generation due to the electrochemical reactions and Ohmic resistance is included in the energy conservation equation. The heat transport equation is solved within the SOFC (flow channels, porous electrodes and solid dense electrolyte) using a combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods [START_REF] Younes | Solving the advection-dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes[END_REF].

• The consumption and production of species due to the electrochemical reactions are considered in the species transfer within the SOFC. A combination of DG and MPFA methods is also used to solve the species transport equation in the flow channels and the porous electrodes.

• The temperature and species concentration resulted from the solution of heat transport and species transport equations are used to solve the electrochemical problem. The current density in the cell is obtained at a given operating voltage.

The present chapter is organized as follows: In Section 6.2, the governing equations in the DB-EC model and the solving procedure of the multi-physics problem are detailed. Numerical validations of the developed model on existing literature results as well as the experiments with a constant temperature are reported in Section 6.3. In Section 6.4, the numerical simulations of in-service SOFC unit are conducted to highlight the effect of temperature generated by electrochemical reactions on the I-V curves. Finally some concluding remarks are drawn in Section 6.5.

Governing Equations

In the following sections we recall briefly the fluid flow, energy transfer and mass transport equations. The corresponding discretizations of these equations are detailed in Chapter 2. The electrochemistry equations used to compute the cell energy efficiency are introduced and solved.

Heat and Mass Transfer Problems

The flow of gases in SOFC on both the fuel and the air sides is laminar [START_REF] Autissier | CFD simulation tool for solid oxide fuel cells[END_REF][START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF]. In the flow channels, the free flow is governed by Navier-Stokes equation. Regarding fluid flow in the porous SOFC electrodes, literature review shows that Darcy's law is commonly used to simulate the flow in the porous material, which is not accurate when the flow velocity is not small. Also, with Darcy's law, appropriate interfacial boundary condition between the channel and the porous electrodes should be specified [START_REF] Vafai | Fluid mechanics of the interface region between a porous medium and a fluid layer -an exact solution[END_REF][START_REF] Vafai | Handbook of Porous Media[END_REF]. To overcome these drawbacks, the Darcy-Brinkman equation is used to describe the fluid flow in the porous electrodes. The mass, momentum, energy and species conservation equations are given by ∇.v = 0 (6.1)

ρ f ε ∂v ∂t + µ K v + ρ f ε 2 (v.∇) v - µ ε ∇. (∇v) + ∇p = 0 (6.2) (ρc) P M ∂T ∂t + ρ f c f v.∇T -∇. (k P M ∇T ) = Q T (6.3) ε ∂C ∂t + v.∇C -∇. (D e ∇C) = Q S (6.4)
Note that the same momentum conservation Eq. ( 6.2) is used for the calculation of fluid flow both in the channel and in the porous electrodes by changing the material properties. Indeed, the Navier-Stokes equation, used to model the free flow in the flow channels, can be derived from the Darcy-Brinkman Eq. ( 6.2) by taking the porosity ε = 1.0 and the permeability K → ∞. In the porous medium, Darcy-Brinkman equation is used with porosity 0 < ε < 1 and permeability 0 < K < ∞, thereby no interfacial condition between the channel and the porous electrodes has to be specified.

Heat transfer in the channels, the porous electrodes and the solid dense electrolyte is governed by heat conduction in the solid phase and heat conduction and convection in the fluid phase. Mass transfer occurs in the channels and the porous electrodes by advection and dispersion phenomena in the fluid phase. The heat and species source/sink terms Q T and Q S in energy and species conservation equations are derived from the electrochemical reactions. The heat generation within the cell is due to the electrochemical reactions at the anode/electrolyte and cathode/electrolyte interfaces, as well as the activation and Ohmic losses (η act , η Ohm ). Thus, the heat source can be described as a heat flux at the catalyst layer as follows

QT = T • j 4F (2S H 2 O -2S H 2 -S O 2 ) + j (η Ohm + η act ) (6.5)
The species source term which is related to the current density can be expressed by the species fluxes at the electrodes/electrolyte interfaces according to Faraday's law [START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF] QS,i = j n e F (6.6)

Here j is the current density, F is Faraday constant (96487 C/mol), n e is the number of electrons transferred in the single elementary rate-limiting reaction step. According to [START_REF] Lu | The modeling of a standalone solid-oxide fuel cell auxiliary power unit[END_REF] Species effective diffusion coefficient (D e ) evaluation is crucial for an accurate estimation of species concentrations. In the absence of experimental data, several models have been proposed in the literature for the evaluation of binary species diffusion coefficients, where the Fuller-Schettler-Giddings equation is mostly used. Suppose we have a gas mixture of A and B, the bulk diffusivity of the binary species writes

D bulk,AB = 10 -3 T 1.75 1 M A + 1 M B 1 2 p ( V A ) 1 3 + ( V B ) 1 3 2 (6.7)
where M A and M B are species molecular weight, V A and V B are the sum of the diffusion volume for component A and B, respectively [START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF].

In Eq. (6.7), the effect of the presence of the porous electrode on diffusion coefficient of species A is taken into account through Knudsen diffusion coefficient [START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF], which is given by

D knudsen,A = 4 3 r p 8RT πM A (6.8)
Therefore, the effective diffusion coefficient of species A in a binary gas mixture in porous media is given by 1

D e,A = τ g ε 1 D bulk,A + 1
D knudsen,A (6.9)

In above Eq. (6.8) and Eq. (6.9), r p is the average pore size of the porous electrode. τ g is the tortuosity factor which depends on the pores' tortuous nature and pore constrictions.

R is universal gas constant with the value 8.314 J/(K.mol) .

Electrochemistry

The energy conversion within a SOFC unit is based on electrochemical reactions at electrodes/electrolyte interfaces, called also the three phase boundaries (TPB). The ideal electromotive force or Open-circuit potential (OCP), assuming a unit cell supplied with pure hydrogen and oxygen, is given by the Nernst equation [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF][START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF])

U OCP T P B = U 0 H 2 - RT 2F ln     p H2O,f uel p H 2 ,f uel p O 2, air 1 2     (6.10)
Here p H 2 O,f uel , p H 2 ,f uel and p O 2 ,air are the partial pressures of water, hydrogen and oxygen, respectively, at the fuel and air channels. The partial pressures p k are related to the species [START_REF] Khaleel | A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[END_REF]. U 0 H 2 is the standard cell potential that depends on the change of Gibb's free energy when all of the species are at a pressure of 1.0 atm [START_REF] Khaleel | A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[END_REF]. The dependence on the temperature of U 0 H 2 (T ) is given by the following equation [START_REF] Lu | The modeling of a standalone solid-oxide fuel cell auxiliary power unit[END_REF])

(k = H 2 , O 2 , H 2 O) molar concentration C k , by p k = C k RT (
U 0 H 2 (T ) = U 0 H 2 ref + (∆S) ref 4F (T -1023) (6.11)
where U 0 In-service the output voltage of a SOFC unit is lower than the ideal electromotive force given by Eq. (6.10) due to mainly Ohmic (η Ohm ), concentration (η conc ) and activation (η act ) losses [START_REF] Colpan | Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas[END_REF][START_REF] Lee | Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling[END_REF]. Thus the cell voltage is given by the following equation U = U OCP T P B -(η Ohm + η conc,anode + η conc,cathode + η act,anode + η act,cathode ) (6.12)

H 2 ref = 0.9915V and (∆S) ref = 2S H 2 O -2S H 2 -S O

Ohmic Overpotentials

The Ohmic overpotential represents the resistance to the flow of ions through the electrolyte and flow of the electrons through the cell's anode and cathode. This voltage drop is important in SOFC and is dependent linearly on the current density according to Ohm's law:

η Ohm = jR Ohm (6.13)
Here the overall resistance of the cell R Ohm , which includes electronic and ionic resistances, is given function of the thicknesses of cell components (anode/electrolyte/cathode), and the ionic and electronic conductivities of cell components [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF].

R Ohm = τ anode σ anode + τ electrolyte σ electrolyte + τ cathode σ cathode (6.14)
where τ anode , τ electrolyte and τ cathode stand for the thickness of the anode, electrolyte and cathode layers, respectively. σ anode and σ cathode are the electronic conductivity of the anode and cathode. And σ electrolyte is the ionic conductivity of the electrolyte.

Concentration Overpotentials

The concentration overpotential represents the resistance to mass transport through the cell porous electrodes that leads to species concentration gradient. Physical processes that contribute to the occurrence of concentration overpotentials include gas species molecular transport through the electrode pores to/from the reaction sites, as well as the consumption of reactants and production of water at the TPB [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF].

When the fuel cell is under no load (open-circuit), the reactant and product concentrations at the reaction sites are the same as those in the bulk channel flow. However, when the fuel cell is under normal operating conditions (closed-circuit), the fuel and oxidant consumption at the reaction site leads to a concentration gradient across the anode and cathode. Therefore, the species concentrations at TPB are different from those in the bulk and the channels. These losses can be evaluated by the following relation [START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF][START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF][START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF]) where α A and α C are the charge transfer coefficients for the anode and the cathode respectively. The exchange current density j 0,electrode , which depends on not only on the operating temperature and material properties, but also on the kinetic activity of the electrochemical reaction and the species concentrations [START_REF] Celik | Theoretical calculation of the electrical potential at the electrode/electrolyte interfaces of solid oxide fuel cells[END_REF], is expressed as Here p 0 is the reference pressure, γ anode and γ cathode the anode and cathode pre-exponential coefficients, E anode and E cathode the anode and cathode activation energy respectively.

η conc = RT 2F
j 0,
The partial pressures at the TPB are calculated from the molar concentration along the anode/electrolyte and cathode/electrolyte interfaces, only on triangular elements in contact with these interfaces such as in Fig. 6.2. Further the partial pressures at the fuel and air channels are calculated on triangular elements in contact with the channels/electrodes interfaces (see Fig. 6.2). Finally the electrochemical equations are solved along the cell using the calculated partial pressures at TPB and channels on elements at the same position from the left of the cell (dashed line in Fig. 6.2).

To solve the above nonlinear system, we used an efficient nonlinear solver included in the , 1994). The solver is based on the modified Powell hybrid algorithm which is alternative to the Newton's method.

Solving Procedure of the Multi-Physics Problem

Flow, heat and mass equations are solved sequentially which allows the use of different temporal discretization and therefore, allows achieving high accuracy for each equation. In this work, the fluid flow Eq. (6.2) is solved using an implicit time discretization whereas an explicit time discretization is preferred for the advective part of the heat transfer Eq. ( 6.3) and mass transfer Eq. (6.4). The unknowns are progressed from the time increment t n to t n+1 as follows:

Step 1: With proposed flow velocities at the inlets of channels as boundary conditions, Darcy-Brinkman Eq. (6.2) is solved to obtain the fluid flow velocity v n+1 for the current time step.

Step 2: Update the heat and species fluxes at the anode/electrolyte and cathode/electrolyte interfaces where the electrochemical reactions take place. The updating equations are:

Qn+1 T = T n • j n 4F (2S H 2 O -2S H 2 -S O 2 ) + j n (η n Ohm + η n act ) (6.21) Qn+1 S,H 2 = - j n 2F , Qn+1 S,H 2 O = j n 2F and Qn+1 S,O 2 = - j n 4F (6.22)
Step 3: The heat and mass transfer Eq. ( 6.3) and Eq. ( 6.4) are solved using the flow velocity v n+1 and the fluxes Qn+1 T , Qn+1 Step 4: The temperature and species concentrations are used to compute the local current density j n+1 in each element at the anode/electrolyte interface by solving Eq. ( 6.12) with a given operating potential. The Ohmic, activation and concentration overpotentials η n+1 Ohm , η n+1 act and η n+1 conc are obtained as well.

Step 5: Repeat step 1 to step 4 until the whole SOFC system gets steady state.

Validation

The validation of the mathematical model is conducted on existing SOFC current-voltage (I-V) curves from [START_REF] Rogers | Validation and application of a CFD-based model for solid oxide fuel cells and stacks[END_REF] as well experimental results from [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF]. Note that these experiments were conducted at constant temperature; therefore in the numerical simulation the heat transfer equation is omitted.

Validation on Rogers et al. (2003) Results

The experimental results of [START_REF] Rogers | Validation and application of a CFD-based model for solid oxide fuel cells and stacks[END_REF] were used by [START_REF] Hussain | Mathematical modeling of planar solid oxide fuel cells[END_REF] and Tseronis et al. (2012) to validate their respective SOFC mathematical models. In these experiments the SOFC unit is supplied with 95% hydrogen and 5% water as fuel. While on the cathode side, the SOFC cell is supplied with air containing 21% oxygen and 79% nitrogen. The used model parameters and cell dimensions to predict the I-V curve is reported in Tab. 6.1. 

Electrolyte conductivity

σ electrolyte = 0.64 Sm -1 Anode pre-exponential coefficient γ anode = 7.0 × 10 9 Am -2 Cathode pre-exponential coefficient γ cathode = 7.0 × 10 9 Am -2 Anode activation energy E anode = 1.1 × 10 5 J.mol -1 Cathode activation energy E cathode = 1.2 × 10 5 J.mol -1

In Fig. 6.3, the predicted results are compared to the experimental ones and good agreement is found, except at low cell voltage where the I-V curve seems to drop toward zero voltage faster than the predictions of [START_REF] Hussain | Mathematical modeling of planar solid oxide fuel cells[END_REF] and Tseronis et al. (2012). Indeed their I-V curves seem to stabilize approximately at the operating voltage of 0.4V, while experiments usually show a drop of the operating voltage to zero at low operating voltages [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF]. However the drop of our predicted I-V curve seems to be not enough to match the experiment for low operating voltage, such as will be seen on the validation of the model on the experiment of [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF] in Fig. 6.5. 

Validation on Fernandez Gonzalez et al. (2014) Results

The SOFC cell tested for obtaining the current-voltage curves (I-V) at different temperatures (Fig. 6.5) is a planar SOFC, where the electrolyte is yttria (8 mol%) stabilized 40% wt% YSZ (Ruiz-Morales et al., 2008;[START_REF] Zhu | A review on the status of anode materials for solid oxide fuel cells[END_REF]. The cathode used is platinum paste (Metalor, Birmingham, UK). The electrolyte and the anode material are sintered at 1523K during 4 hours, under reducing conditions. A high temperature ceramic adhesive, Ceramabond™ 552 (Aremco Products, Inc. Valley Cottage, NY, USA), was used for fixing the SOFC cell to the electrochemical measurement setup. The detailed procedure used for preparing this cell is published in [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF].

The current-voltage curves (I-V) of the manufactured SOFC, were recorded on Zahner elektrick IM6 ex FRA (ZAHNER-Elektrik GmbH & Co.KG, Kronach, Germany) in pure, humidified hydrogen for the anode and pure dry oxygen for the cathode, in the 100 mHz to 300 kHz frequency range with an a.c signal of 50 mV. The I-V curves were obtained in the range of 1123K to 973K, controlling the temperature of the experiment with a thermocouple close to the sample, keeping constant temperature during the tests.

The model parameters and the cell dimensions used to predict the cell energy efficiency are reported in Tab. 6.2. The predicted I-V curves are compared to the experimental results in [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF] and reported in Fig. 6.5. At high cell voltage the predict I-V curves are in good agreement with the experiments. At low cell voltage the experimental I-V curves slop change leading to a decrease of the current density. This discrepancy becomes important at low cell operating temperatures. A comparison of the predicted power density to the experimental one is illustrated in Fig. 6.6 at temperature of 1123K. Since the power density is deduced from the I-V curve, the agreement of experimental and prediction I-V curves is reflected on the power density curves. Cathode electrode conductivity

σ cathode = 4.2 × 10 7 T exp - 1200 T Ω -1 m -1
Electrolyte conductivity σ electrolyte = 3.34 × 10 4 exp -10300

T Ω -1 m -1
Anode pre-exponential coefficient γ anode = 7.0 × 10 9 Am -2 Cathode pre-exponential coefficient γ cathode = 7.0 × 10 9 Am -2 Anode activation energy E anode = 1.2 × 10 5 J.mol -1 Cathode activation energy E cathode = 1.1 × 10 5 J.mol -1 

In-service SOFC Simulation

In this section, simulations are conducted to investigate the effect of the heat generation due to the electrochemical reactions on the cell energy conversion. To this aim simulations are conducted at constant inlet fuel and air temperatures using the model parameters reported in Tab. 6.2, corresponding to the experiments in [START_REF] Fernández-González | A novel microstructured metal-supported solid oxide fuel cell[END_REF]. The parameters regarding the heat transfer equation are listed in Tab. 6.3.

The heat source (Eq. (6.5)), due to the heat generation of the electrochemical reactions, is considered on electrolyte/anode interface. Fig. 6.7 shows the temperature distribution within the cell at inlet temperature of 1123K and operating voltage of 0.6V. Note that the two bold horizontal lines within Fig. 6.7 are used to separate the three zones of the cell: Volumetric heat capacity (ρc) hydrogen = 0.3395 × 10 3 J/(m 3 K) (ρc) oxygen = 0.3741 × 10 3 J/(m 3 K) (ρc) anode = 8.811 × 10 5 J/(m 3 K) (ρc) cathode = 3.634 × 10 6 J/(m 3 K) (ρc) electrolyte = 3.318 × 10 6 J/(m 3 K) Thermal conductivity k hydrogen = 0.450 J/(s m K) k oxygen = 0.0692 J/(s m K) k anode = 0.60 J/(s m K) k cathode = 2.26 J/(s m K) k electrolyte = 1.55 J/(s m K) Fig. 6.9 shows the cell energy efficiency in the isothermal and non-isothermal cases, where the inlet temperature is of 1123K. The low current density at high operating voltage results in weak source term (Eq. (6.5)) in the heat transfer equation, which in turn leads to low electrochemical heat generation and low variation of the cell temperature. Indeed the temperature along the cell at the electrolyte/anode interface is reported in Fig. 6.10, where the maximum variation of the temperature is 6K at 0.9V and 13.5K at 0.8V. Therefore the isothermal and non-isothermal I-V curves are comparable. However, below the operating voltage of 0.7V the high current density results in a high source term and high heat generation that shift the I-V curve towards higher operating voltages. This trend is observed in Fig. 6.10 where the decrease of the cell operating voltage leads to an increase of the heat generation by the electrochemical reactions.

Conclusions

The multi-physics phenomena taking place in SOFC during service are solved successfully using the DB-EC model. The coupled fluid flow, energy transfer and mass transport are solved at a transient regime using finite element based numerical schemes that deal with the transition between flow-channel/porous electrodes interfaces without any special treatment. The heat generation, as well as the species consumption and production due to the electrochemical reactions are considered on the electrodes/electrolyte interfaces in the energy and mass balance equations. The electrochemistry equations are solved at each 1123K). Further, simulations are conducted to investigate the effect of the electrochemical generated heat on the cell overall temperature and energy conversion, taking a constant inlet fuel and air temperatures of 1123K. After these validations and applications, several conclusions can be drawn:

1. The model better reproduces the experiment at high operating voltage and temperature. In general the model matches the experiments at operating voltages above 0.4V.

2. The resulted temperature distributions from the in-service SOFC simulation show that the electrochemical generated heat is weak at high operating voltage.

3. The decrease of the cell operating voltage results in an increase of the heat generated by the electrochemical reaction, which in turn leads to an increase of gases consumption and then current density. 

Conclusion

Due to their complex temperature profile during service, ceramic based SOFC components undergo severe thermal and mechanical loading that lead to cracks nucleation and propagation. In this thesis, attempts are made to model the multi-physical phenomenon taking place in a SOFC unit in presence of a crack. To this aim, several numerical models are implemented and used to study the sensitivity of the processing and material parameters on crack propagation paths within a SOFC unit.

In Chapter 1, a short literature review on existing experiments and modeling related to energy efficiency and mechanical reliability of SOFCs is introduced, and the objectives of the thesis are addressed.

Chapter 2 is devoted to the model development and validation of coupled fluid flow, heat and mass transfer in porous media. A DB model including both heat and mass buoyancy effects on Darcy-Brinkman flow is implemented on the basis of the NS code developed by [START_REF] Younes | A combination of Crouzeix-Raviart, Discontinuous Galerkin and MPFA methods for buoyancy-driven flows[END_REF]. In the DB model, Darcy-Brinkman equation is solved with the nonconforming CR method. While the convection-diffusion heat and mass transport equations are discretized using a combination of DG and MPFA methods. Besides, to reduce the computational time of the coupled problem, a non-iterative time stepping scheme is used to adapt the time step length. For validation, the DB model is used to calculate the double-diffusive natural convection in a square porous cavity with different mesh sizes. In parallel, a steady state semi-analytical solution is developed for this problem using the FG method, to verify the performance of the numerical DB model. Comparison between the numerical and semi-analytical solutions shows that the numerical solutions are weakly dependent on the grid size and in good agreement with the FG solutions.

In the third chapter, we consider the existence of static cracks in the SOFC electrodes to study the effect of fluid flow and heat transport on the stress state at the vicinity of cracks. To this aim, the Darcy-XFEM model is developed, where the FEM and XFEM are combined to solve the multi-physical problem in cracked porous media. It bears emphasizing that the heat transfer equation is solved using a time splitting procedure. The fluid convection-diffusion heat equation is solved using DG and MPFA methods. In the meantime, to better handle the presence of cracks, the solid heat conduction is discretized using the XFEM. Then the XFEM is also adopted to solve the thermo-mechanical problem by using the temperature resulted from the heat equations as body forces. The impact of the fluid flow and heat transfer on the stress state at the crack tip is evaluated using the SIF evolution. After validation, the model is used to study the effect of fluid flow and heat transfer on the thermo-mechanical behavior of the cracked porous media. It is found that on one side, the temperature distribution and stress concentration are significantly influenced by the variation of the crack angle. On the other side, the SIFs at the crack tips are affected directly by the temperature gradient in the vicinity of the crack.

The fourth chapter is devoted to the crack propagation in the SOFC-like multilayered structure, where a cracked porous material layer is located between a flow channel and a dense material layer. The DB-XFEM model is used to investigate the influence of heat transfer, fluid flow and material properties on the crack propagation. The porous electrodes are taken isotropic. The same governing equations and numerical methods as in Darcy-XFEM model are considered, except that in the DB-XFEM model, the fluid flow is governed by Navier-Stokes in the SOFC flow channels and Darcy-Brinkman in the porous media (anode and cathode), which avoids the interfacial conditions between the channel and porous media. The maximum principle stress criterion is used to determine the crack growth direction (crack orientation angle). After validation, the impact of the flow configurations and electrodes porosities on crack propagation within the SOFC unit are investigated. The effects of other material properties on crack propagation, including the permeability, thermal conductivity and Young's modulus of the porous electrode, are also studied. These parametric studies reveal that the crack propagation has a complex dependence on the material and process parameters within a SOFC unit. Firstly, the crack propagation is due to the built up of residual stresses resulting from the temperature gradient and the mismatch of the layer's physical properties. Secondly, the temperature gradient and the mismatch of the layer's physical properties influence directly the crack orientation amplitude and the deviation from the interface. Finally, the increase of the permeability and thermal conductivity of the porous electrode results in a decrease of crack orientation amplitude.

In the fifth chapter, the DB-XFEM code is used to investigate the effect of the porous material anisotropy on crack propagation in multilayered SOFC unit. Hence, to take into account the anisotropy, the DB-XFEM model developed in the fourth chapter for the isotropic case is upgraded by using different enrichment functions. Porous material with anisotropic thermal and mechanical properties is constructed using an existing optimization tool based on the statistical continuum theory. Different anisotropies and porosities of the SOFC electrodes are used to investigate their effects on the crack propagation.

Studies on the SIFs and crack propagation paths show that, on one hand, the onset of the crack propagation can be delayed either by increasing the anisotropy degree or by decreasing the pores volume fraction of the electrode. On the other hand, the increase of the porous electrodes anisotropy degrees and the pores volume fraction both result in a decrease of crack orientation amplitude and lead to larger deviation of the crack path from the porous media/dense media interface.

Finally, in the sixth chapter, the energy conversion performance of a SOFC unit is investigated by considering the electrochemical reactions taking place at anode/electrolyte and cathode/electrolyte interfaces. An EC model which takes into account the Ohmic, activation and concentration losses is implemented to calculate the current density and the cell potential. The temperature field and species concentrations in the cell are obtained by solving the gas flow, heat and mass transfer equations, with adoption of the DB model introduced in Chapter 2. The heat generation and species consumption/production due to the electrochemical reactions are taken into account as source terms in the heat and mass transfer equations. The governing equations in the DB-EC model are coupled and solved without any special treatment for transition between flow-channel/porous electrodes interfaces. The DB-EC model is validated by comparing the predicted SOFC I-V curves to experimental ones from the literature at different constant temperatures. Results show that the model matches the experiments at operating voltages above 0.4V. Further, simulations are conducted to investigate the effect of the electrochemical generated heat on the cell overall temperature and energy conversion efficiency, taking a constant inlet fuel and air temperatures of 1123K. Regarding the energy conversion performance of the SOFC unit, the decrease of the operating voltage leads to a higher heat generation by the 

A. Résumé en Français

A.1. Introduction

La particularité de pile à combustible à oxyde solide est sa haute température de fonctionnement qui présente de nombreux avantages. Par exemple, à haut température, l'activité cinétique est élevée et le nickel est suffisant comme catalyseur, ce qui élimine la nécessité d'utiliser des métaux coûteux [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF][START_REF] Recknagle | Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks[END_REF]. Cependant, la haute température peut conduire à des dégradations des matériaux de la pile. En effet, le gradient thermique et les différents coefficients de dilatation thermique des composants de la pile (Anode/électrolyte/cathode) peuvent conduire à la formation des contraintes résiduelles dans le voisinage des interfaces de la pile, ce qui contribuent à sa dégradation [START_REF] Yakabe | Evaluation of the residual stress for anode-supported SOFCs[END_REF][START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF]. En outre, les processus de refroidissement et de chauffage, impliquées pendant le fonctionnement de la pile, peuvent conduire à la formation des contraintes résiduelles et possible nucléation des fissures dans le voisinage des interfaces: anode/électrolyte et électrolyte/cathode [START_REF] Qu | FY 2006 annual report[END_REF]. Les chargements thermomécanique pendant le fonctionnement de la pile conduisent au propagation de ces fissures qui peuvent être dévier par les interface de la pile (électrodes/électrolytes) ou pénétrer dans l'électrolyte [START_REF] Joulaee | Prediction of crack propagation paths in the unit cell of SOFC stacks[END_REF]. En conséquence, d'une part, la présence de fissures dans la pile génère de la chaleur en raison de la résistance ohmique à la pointe de la fissure, qui à son tour affecte considérablement les performances électrochimiques de la pile. D'autre part, les fissures qui pénètrent dans l'électrolyte permettent la fuite du carburant de l'anode à la cathode, ce qui détériore la pile. De plus, les chemins de propagation de fissures dépendent non seulement de la nature de la structure multicouche de la pile, mais également de la microstructure poreuses de ces électrodes. En effet, des défauts d'homogénéité de la microstructure introduits par la distribution spatiale des pores affectent les chemins de propagation des fissures.

A.2. Objectifs

Bien que des études antérieures aient montré un réel progrès sur la modélisation des piles à combustible à oxyde solide, un modèle numérique complet est encore à son stade précoce de développement. En effet, la plupart de ces outils informatiques sont basés sur des codes commerciaux d'éléments finis ou codes simplifiés maison, où les phénomènes multiphysique dans la pile ne sont pas entièrement résolu, en ignorant la plupart du temps les zones poreuses [START_REF] Recknagle | Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[END_REF][START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF]. En outre, les outils numériques actuels ne prennent pas compte de la corrélation entre la microstructure des électrodes, la performance en conversion d'énergie et la dégradation. En fait, la concentration et la distribution des pores affecte la résistance à la fracture des matériaux poreux [START_REF] Joulaee | Fracture toughness and crack deflection in porous multilayered ceramics: application to NiO-YSZ[END_REF]. En outre, l'orientation des pores conduit à une connectivité élevée et aussi a une conductivité thermique et électrique élevés dans la direction d'orientation des pores (Mikdam et al., 2013a;b), ce qui améliore le transfert des gaz aux sites actifs et réduit les gradients thermiques à l'intérieur de la pile.

L'objectif de cette thèse est de développer un outil numérique basé sur une combinaison de la méthode éléments finis (FEM) et la méthode élément finis étendu (XFEM), pour résoudre le problème multiphysique dans la pile et prédire l'amorcement et le chemin de propagation d'une fissure existante dans la pile. Des schémas de la méthode élément finis avancés vont être considérés pour résoudre le problème multiphysique. La méthode élément finis étendu va être utilisée pour décrire la discontinuité induite par la fissure et la singularité à la pointe de la fissure. Aussi l'effet de la microstructure des électrodes poreuses et l'anisotropie sur l'amorcement et le chemin de propagation sera étudiée. Enfin, la capacité du modèle numérique développé à prédire le rendement de la conversion énergétique de la pile sera démontré et validés.

A.3. Réponse thermomécanique d'un matériau poreux fissuré: effet de l'écoulement du fluide et transfert de la chaleur

La méthodologie suivie pour la résolution de l'écoulement du fluide, le transfert de chaleur et la réponse thermomécanique dans un milieu poreux isotrope fissuré, se résume comme suit:

• La loi de Darcy est utilisée pour décrire l'écoulement du fluide dans le milieu poreux fissuré. L'équation est résolue en utilisant la méthode des éléments finis non conforme.

• Un schéma combinant FEM/XFEM est utilisé pour résoudre l'équation de transfert de chaleur dans le milieu poreux fissuré.

• La température obtenue est utilisée pour résoudre le problème thermomécanique dans le milieu poreux fissuré en utilisant la méthode élément finis étendu. Ensuite, les facteurs d'intensité de contrainte (FIC) sont calculés en utilisant la technique J-intégral à chaque incrément de temps.

A.3.1. Ecoulement dans un milieu poreux: équation de Darcy

Les équations décrivant l'écoulement dans un milieu poreux sont données par l'équation du bilan de masse et la loi de Darcy:

     s ∂p ∂t + ∇.q = Q f q = -K∇p (A.1)
Où s est l'emmagasinement spécifique de la matière poreuse, K est la conductivité hydraulique, Q f est le terme source par unité de surface, p est la pression et q la vitesse de Darcy.

Combinant l'équation du bilan de masse avec l'équation de Darcy conduit à l'équation de diffusivité:

s ∂p ∂t + ∇. (-K∇p) = Q f (A.2)
La méthode élément finis non-conforme est utilisée pour résoudre l'équation de l'écoulement du fluide en raison de sa simplicité et ces propriétés de conservation de masse. L'équation de l'écoulement est discrétisée en utilisant des éléments triangulaire linéaire (Fig. A.1).

La pression est supposée varier de façon linéaire à l'intérieur de chaque élément triangulaire

E: p E = p i ϕ E i + p j ϕ E j + p k ϕ E k (A.3)
Où les degrés de liberté de la pression sont situés au milieu des arrêtes de l'élément. La pression p i est inconnue au milieu de l'arête i, qui est situé en face du noeud i. La fonction d'interpolation ϕ E i est différente de zéro uniquement à l'intérieur des deux éléments adjacents E et E ′ partageant l'arête i. La fonction est donné par:

ϕ E i = 1 |E| x (y k -y j ) + y (x j -x k ) + 1 2 (y j x k + y j x i -y k x i -y k x j -y i x j + y i x k ) (A.4)
La formulation variationnelle de l'équation (A.2) en utilisant la fonction de test ϕ i s'écrit:

ˆΩ s ∂p ∂t ϕ i + ˆΩ ∇. (-K∇p) ϕ i = ˆΩ Q f ϕ i (A.5)
Le premier terme pour un arête intérieur i conduit à:

ˆΩ s ∂p ∂t ϕ i = 1 3 ∂p i ∂t (s E |E| + s E ′ |E ′ |) (A.6)
De la même manière, le terme source conduit à:

ˆΩ Q f ϕ i = Q E f |E| 3 + Q E ′ f |E ′ | 3 (A.7)
En utilisant la formule de Green, le deuxième terme de l'équation (A.5) s'écrit,

ˆΩ ∇. (-K∇p) ϕ i = ˆΩ (K∇p) ∇ϕ i -ˆΓ ϕ i (K∇p) η Γ dΓ (A.8)
Dans le cas d'une arête intérieur i, elle se simplifie à:

ˆΩ ∇. (-K∇p) ϕ i = 1 |E| 3 j=1 p E,j ∇ϕ T E,j K E ∇ϕ E,i + 1 |E ′ | 3 j=1 p E ′ ,j ∇ϕ T E ′ ,j K E ′ ∇ϕ E ′ ,i (A.9)
Utilisation une discrétisation implicite en temps, la forme finale est donnée par:

s E |E| + s E ′ |E ′ | 3 p n+1 i -p n i △t - 1 |E| 3 j=1 p n+1 E,j ∇ϕ T E,j K E ∇ϕ E,i - 1 |E ′ | 3 j=1 p n+1 E,j ∇ϕ T E ′ ,j K E ′ ∇ϕ E ′ ,i = Q E f |E| 3 + Q E ′ f |E ′ | 3 (A.10)
Cela conduit à un système final à résoudre avec une matrice symétrique définie positive.

Une fois que ce système est résolu, la vitesse de q E du Darcy dans l'élément E et le flux Q E i sur chaque arête de l'élément E peut être calculée en utilisant les valeurs locales de la pression p n+1 E,j .

A.3.2. Transfert de chaleur

Le transfert de chaleur en milieu poreux est régi par conduction de chaleur dans la phase solide et du transport de chaleur dans la phase liquide. Sous l'hypothèse de l'équilibre thermique entre le fluide et les phases solides et négligeant toutes les variations de densité, la température T du milieu poreux est régie par l'équation suivante de conservation de l'énergie totale:

(ρc

) P M ∂T ∂t + ∇. (ρ f c f qT ) -∇. (k P M ∇T ) = Q T (A.11)
Où Q T représente une terme source dans le milieu poreux. En présence de fissures, le tenseur k P M , qui comprend la dispersion thermique dans la phase liquide et la conduction thermique dans les deux phases liquides et solides, est défini comme suit:

k P M =      k f inside the crack k f + k s other parts (A.12)
Où k f comprend la dispersion thermique et la conduction thermique dans la phase liquide, et k s est la conduction thermique dans la phase solide. k f et k s sont donné par:

k f ij = ρ f c f α T |q| δ ij + (α L -α T ) q i q j |q| dispersive + εk f δ ij conductive (A.13) k s ij = (1 -ε) k s δ ij (A.14)
où α L et α T sont respectivement les dispersivities thermique longitudinale et transversale, δ ij est la fonction delta de Kronecker. k f et k s sont les conductibilités thermique de la phase liquide et la phase solide, respectivement.

Pour tenir compte de l'existence d'une fissure, nous supposons que la fissure est fines qui n'influencent pas l'écoulement du fluide. Par conséquent, la pression et la distribution de la température dans la phase liquide reste continue même en présence de cracks. Par contre, la conduction de chaleur dans la phase solide est affectée par la fissure ce qui conduit à une discontinuité et singularité du champ de température et du flux respectivement.

Le fractionnement du temps est utilisé pour permettre différents traitements du transfert de chaleur dans les phases solide et fluide. A chaque pas de temps ∆t, l'équation de transport de chaleur est d'abord résolu pour calculer T n+1, * , la température causé par le transfert thermique dans la phase fluide:

(ρc) P M T n+1, * -T n ∆t + ∇. (ρ f c f qT ) -∇. k f ∇T = Q f T (A.15)
Ensuite, la température finale de est obtenue en prenant en compte le transfert de chaleur Chapter A dans la phase solide en utilisant comme température initiale:

(ρc) P M T n+1 -T n+1, * ∆t -∇. (k s ∇T ) = Q s T (A.16)
Discrétisation de l'équation de la chaleur dans la phase fluide Une combinaison de méthodes DG et MPFA sont utilisée pour résoudre le terme d'advection-dispersion dans la phase fluide [START_REF] Bear | Dynamics of fluids in porous media[END_REF]. La méthode DG est utilisée pour la discrétisation de la partie advection. La partie de diffusion est résolue en utilisant la méthode MPFA (Younes and Fontaine, 2008a;[START_REF] Aavatsmark | Discretization on nonorthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF]. La méthode MPFA utilise plus de deux éléments pour calculer les flux à travers les arêtes d'élément. La méthode est localement conservatrice et peut gérer des maillages irréguliers sur des domaines hétérogènes anisotropes. L'équation de la chaleur peut être écrite sous la forme mixte suivante:

             (ρc) P M ∂T ∂t + ∇. (ρ f c f qT ) + ∇.q cd = Q f T q cd = -k f ∇T (A.17)
Où q cd est le flux de conduction diffusion, qui est supposé de varier linéairement à l'intérieur de l'élément E, donc:

∇.q cd = 1 |E| i Q cd ∂Ei (A.18)
Où Q cd ∂Ei est le flux de chaleur par conduction diffusion à travers le l'arête i de l'élément E. Nous utilisons la méthode DG où la solution approchée T (x, t) est exprimée avec des fonctions de base linéaire ψ E i sur chaque élément:

T h (x, t) | E = 3 i=1 T E i (t) ψ E i (x) (A.19)
ou T E i (t) (i = 1, 2, 3) sont les trois inconnues coefficients correspondant aux degrés de liberté qui sont la valeur moyenne de la température définie au centre de gravité de triangle (x E , ȳE ) et ses écarts dans chaque directions d'espace [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[END_REF]. Ainsi dérivant la formulation variationnelle de l'équation de transport de chaleur et en utilisant la formule de Green, résulte en:

ˆE(ρc) P M ∂T ∂t ψ E i + ˆ∂E ρ f c f T ψ E i q •η ∂E -ˆE ρ f c f T q • ∇ψ E i + j Q cd ∂Ej |E| ˆE ψ E i = ˆE Q T ψ E i (A.20)
Discrétisation de l'équation de la chaleur dans la phase solide La méthode élément finis étendu est utilisée pour discrétiser l'équation de la chaleur dans la phase solide en prenant en compte l'effet de la fissure sur la distribution température:

T h (x) = i∈N Ω Υ i (x) T i + i∈N Γ Υ i (x) H T (x) a i + i∈N Λ Υ i (x) br T (x) b i (A.21)
Υ i est la fonction de forme sur le noeud i, N Ω l'ensemble des noeuds de domaine, N Γ le nombre des noeuds des éléments traversés par la surface de la fissure, N Λ le nombre des noeuds dans la zone de pointe de la fissure, T i température au noeud i, a i , b i des degrés de liberté correspondant au noeud enrichis, H T (x) et br T (x) les fonctions d'enrichissement de la discontinuité et la singularité.

Substituant la température approchée dans la forme variationnelle de équation de transport de la chaleur, multipliant l'équation par la fonction de la forme et en utilisant la formule de Green le système suivant est obtenu:

(ρc

) P M            R T T ij R T a ij R T b ij R aT ij R aa ij R ab ij R bT ij R ba ij R bb ij                          ∂T j ∂t ∂a j ∂t ∂b j ∂t               + k s ij            G T T ij G T a ij G T b ij G aT ij G aa ij G ab ij G bT ij G ba ij G bb ij                       T j a j b j            = Q s T • |E| + k s ij (∇T • n ∂Ω ) |∂El| 2 (A.22)
Les éléments [R] et [G] dans les matrices de l'équation (A.22) sont donnés par: pas enrichi la matrice B i est donnée par:

                           R T T ij = ´E Υ j Υ i R T a ij = ´E H T (x) Υ j Υ i R T b ij = ´E br T (x) Υ j Υ i (A.23)                            R aT ij = ´E Υ j H T (x) Υ i R aa ij = ´E H T (x) Υ j H T (x) Υ i R ab ij = ´E br T (x) Υ j H T (x) Υ i (A.24)                            R bT ij = ´E Υ j br T (x) Υ i R ba ij = ´E H T (x) Υ j br T (x) Υ i R bb ij = ´E br T (x) Υ j br T (x) Υ i (A.25)                                        G T T ij = ´E ∂Υ j ∂x ∂Υ i ∂x + ∂Υ j ∂y ∂Υ i ∂y G T a ij = ´E   ∂ H T (x) Υ j ∂x ∂Υ i ∂x + ∂ H T (x) Υ j
B i =            Υ i,x 0 0 Υ i,y Υ i,y Υ i,x            (A.38)
Où Υ i,x et Υ i,y sont les dérivés de des fonctions de forme:

Υ i,x = ∂Υ i ∂x , Υ i,y = ∂Υ i ∂y (A.39)
Quand le noeud est enrichi et sur la surface de la fissure, la matrice B i est donnée par:

B i =            Υ i,x 0 Υ i,x H (x) 0 0 Υ i,y 0 Υ i,y H (x) Υ i,y Υ i,x Υ i,y H (x) Υ i,x H (x)            (A.40)
Quand le noeud est enrichi et sur la surface la pointe de la fissure, la matrice B i est donnée par:

B i =            Υ i,x 0 X i 1,x 0 X i 2,x 0 X i 3,x 0 X i 4,x 0 0 Υ i,y 0 X i 1,y 0 X i 2,y 0 X i 3,y 0 X i 4,y Υ i,y Υ i,x X i 1,y X i 1,x X i 2,y X i 2,x X i 3,y X i 3,x X i 4,y X i 4,x            (A.41)
Où X i k,x = Υ i,x br k (x) + Υ i br k,x (x) et X i k,y = Υ i,y br k (x) + Υ i br k,y (x), avec k = 1...4.

A.3.4. Facteurs d'intensité de contrainte

Les facteurs d'intensité de contrainte (FIC) sont calculés en utilisant l'interaction intégrale qui est dérivé de la technique J-intégral. Cette technique suppose l'existence d'un mode auxiliaire σ

(2) ij , D

(2) ij , u

(2) i associé au mode réel σ

(1) ij , D

(1) ij , u

(1) i

. En utilisant le principe de superposition et la théorie de Green, l'intégrale d'interaction entre l'État (1) et l'État (2) est définit par [START_REF] Bouhala | Study of interface influence on crack growth: Application to Solid Oxide Fuel Cell like materials design[END_REF][START_REF] Pasternak | Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity[END_REF][START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF])

I (1,2) = ˆA   σ (1) ij ∂u (2) i ∂x 1 + σ
(2) ij ∂u

(1) i ∂x 1 -W (1,2) I (1,2) = 2

E * m K (1)
I K

(2)

I + K (1)
II K

(2) II 

K

(2) II = 0, donc Eq. (A.44) est réduite à I (1,2) = 2K

(1)

I /E * m . Pour cette pur mode I, les champs de contrainte et de déplacement sont donnés en termes de coordonnées polaires locales autour de la pointe de la fissure par: l'angle de la fissure varie de 0°à 90°avec un pas de 15°. Pour étudier l'état de contrainte à la pointe de la fissure, les FIC sont calculés à partir des solutions de déplacements et des contraintes à chaque pas de temps. Les FIC obtenus à l'état transitoire sont normalisées par: ) 0,2 0,0022 0,0020 0,002 0,002 0,0306 0,0302 0,030 0,030 0,3 0,0064 0,0068 0,006 0,008 0,0488 0,0489 0,048 0,048 0,4 0,0149 0,0149 0,014 0,015 0,0641 0,0650 0,064 0,064 0,5 0,0262 0,0265 0,026 0,027 0,0769 0,0774 0,076 0,076 0,6 0,0406 0,0407 0,040 0,041 0,0872 0,0878 0,087 0,086 • Le transfert de chaleur est divisé en deux équations et ensuite résolu avec des méthodes numérique différent: une équation est résolution par une combinaison des méthodes DG et MPFA, l'autre équation est résolu avec XFEM pour tenir compte de la fissure.

σ xx = K I √
• Le champ de la température résultant de l'équation de transport de chaleur est utilisé comme une force interne, et le problème thermomécanique dans la structure multicouche est résolu avec XFEM.

• Les facteurs d'intensité de contrainte sont calculés pour chaque incrément de temps durant la simulation pour décider si la fissure se propage ou non.

• Le critère de maximum de contrainte principale est utilisé pour déterminer l'orientation de la propagation des fissures. A.9 montre le trajet de propagation de la fissure pour différentes porosités du matériau de l'anode et la cathode. Pour tous les porosités considéré, la propagation de la fissure commence pointe gauche de la fissure, puis suivie par la pointe de la fissure droite. En outre, le temps de début de propagation de la fissure augmente avec la diminution de la porosité. En raison de la charge complexe induit par la variation de la répartition spatiale de la température, la pointe gauche de la fissure se propage vers l'interface électrolyte/cathode tandis que la pointe droite de la fissure se propage vers l'interface canal/cathode. Une fois à proximité de l'interface électrolyte/cathode, la fissure se dévie due au rapport des propriétés mécaniques entre la cathode et l'électrolyte. La conversion de l'énergie dans une unité de pile à combustible a oxyde solide est basées sur les réactions électrochimiques au interfaces électrodes/d'électrolyte. La force électromotrice ou potentiel en circuit ouvert, en supposant une cellule alimentée en hydrogène et en l'oxygène pur, est donnée par l'équation de Nernst [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF][START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF]) [START_REF] Khaleel | A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[END_REF]. U 0 H 2 est le potentiel standard de la cellule qui dépend de la variation de l'énergie libre de Gibbs lorsque toutes les espèces sont à une pression de 1,0 atm [START_REF] Khaleel | A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC[END_REF]. La dépendance de la température de U 0 H 2 (T ) est donné par l'équation suivante [START_REF] Lu | The modeling of a standalone solid-oxide fuel cell auxiliary power unit[END_REF]) En service la tension de sortie d'une unité de pile à combustible à oxyde solide est inférieure à la force électromotrice idéale donnée par Eq. (A.57), en raison principalement aux pertes ohmique (η Ohm ), du concentration (η conc ) et de l'activation (η act ) [START_REF] Colpan | Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas[END_REF][START_REF] Lee | Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling[END_REF]. Ainsi, la tension de cellule est donnée par l'équation suivante: U = U OCP T P B -(η Ohm + η conc,anode + η conc,cathode + η act,anode + η act,cathode ) (A.59)

A.4.2. Application et validation

U
U 0 H 2 (T ) = U 0

A.5.1. Résistance Ohmic

La résistance ohmique représente la résistance au transport d'ions à travers l'électrolyte et le flux des électrons à travers l'anode et la cathode de la cellule. Cette perte de tension dépend linéairement de la densité de courant selon la loi d'Ohm:

η Ohm = jR Ohm (A.60) la résistance globale de la cellule R Ohm , qui comprend des résistances électroniques et ioniques, est donnée en fonction de l'épaisseur des composants de la cellule (anode/électrolyte /cathode), et les conductivités ioniques et électroniques des composants cellulaires [START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF]. 

R

A.5.2. Perte de concentration

La perte de concentration représente la résistance de transport de masse à travers les électrodes poreuses de la cellule qui conduit à un gradient de concentration. Lorsque la pile à combustible n'est soumise à aucune charge (circuit ouvert), les concentrations de réactif et de produit sur les sites de réaction sont les mêmes que ceux dans le canal. Toutefois, lorsque la pile à combustible est dans des conditions normales de fonctionnement (circuitfermé), la consommation de carburant et de l'oxydant au niveau du site de réaction conduit à un gradient de concentration à travers l'anode et la cathode. Par conséquent, les concentrations des espèces au site de réactions sont différentes de ceux dans les électrodes poreuses et les canaux. Ces pertes peuvent être évaluées par la relation suivante [START_REF] Campanari | Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[END_REF][START_REF] Aguiar | Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[END_REF][START_REF] Arpino | A robust model and numerical approach for solving solid oxide fuel cell (SOFC) problems[END_REF]: 

η conc = RT 2F

A.5.3. Perte d'activation

Perte d'activation, qui sont liés à l'énergie d'activation requise par les réactions chimiques, représentent la cinétique de la réaction au niveau des sites actifs de la cellule. Perte d'activation dépendent fortement de la température de fonctionnement de pile. A une température de fonctionnement élevée, l'activité cinétique élevée au niveau des sites de réaction se traduit généralement par de faible perte d'activation. Cependant, avec la diminution de la température de fonctionnement, le potentiel d'activation peuvent devenir la contribution la plus significative à la baisse de la tension de cellule. La perte d'activation est reliés à la densité de courant par l'équation non-linéaire de Butler-Volmer: 

j = j 0,

A.5.4. Validation

Pour la validation les équations électrochimiques sont combinés avec les celles de l'écoulement du fluide, transfert de chaleur et transport de masse. La validation du modèle mathématique est effectuée en comparant les courbes courant-tension (I-V) expérimental [START_REF] Rogers | Validation and application of a CFD-based model for solid oxide fuel cells and stacks[END_REF] à celles prédit par le modèle.

Dans la Fig. A.11, les résultats prédits sont comparés aux valeurs expérimentales. Les prédictions sont proches de l'expérience sauf à basse tension où la courbe I-V semble se rapprocher de la tension zéro plus rapidement que les prévisions de Hussain et al. (2006) et Tseronis et al. (2012). En effet leurs courbes I-V semblent stabiliser à peu près à la tension de fonctionnement de 0,4 V, tandis que les expériences montrent habituellement une chute de la tension de fonctionnement à zéro des basses tensions de fonctionnement. 
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 25 Figure 2.5.: Domain and boundary conditions for the double-diffusive natural convection problem in a porous cavity

  55) Eq. (2.45)-Eq. (2.49) are subjected to slip boundary conditions, Dirichlet boundary conditions for the temperature and concentration at the vertical walls, and Neumann boundary conditions on the horizontal surfaces. The initial and boundary conditions corresponding to the problem are:
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 33 Figure 3.10.: Normalized SIF evolution from the transient to the steady state for a/W = 0.3 and various crack angles ζ
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 51 Figure 4.2.: Micrographs of a porous (heterogeneous) material with different pores volume fraction (black phase): (a) ε = 0.2; (b) ε = 0.3; (c) ε = 0.4; (d) ε = 0.5
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  Figure 4.3.: The cruciform shaped plate
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 4 Figure 4.4.: Crack tip positions for three BC sets

  Effective porosity of porous media ε = 0.2 ∼ 0.5 Fluid density ρ air = 0.3236 kg/m 3 ρ f uel = 0.0224 kg/m 3 Dynamic viscosity µ air = 3.48 × 10 -5 Pa.s µ f uel = 2.65 × 10 -5 Pa.s Permeability K = 15.13 × 10 -12 m 2 Volumetric heat capacity (ρC) air = 0.3741 × 10 3 J/(m 3 °C) (ρC) f uel = 0.3395 × 10 3 J/(m 3 °C) Thermal conductivity k air = 0.0692 J/(sm°C) k f uel = 0.450 J/(sm°C)
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 4 Fig. 4.7 illustrates the displacements, temperature and stress components contours at the end of the simulation for the case where the electrodes porosity is 0.2. The residual
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 4 Figure 4.6.: Crack-tip positions corresponding to flow configuration-1, for different porosities
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 49 Figure 4.9.: Crack path, displacement and stress fields at different simulation time for E m1 = E m2 × 100
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 4 Figure 4.11.: Temperature, displacement and stress fields for different thermal conductivities of the solid
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 4 Figure 4.14.: Crack tip position in a three-layered structure for different permeability values of the porous layer
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 51 Figure 5.1.: The global Cartesian coordinate (X 1 , X 2 ) and the local polar coordinate (r, ϑ) with the origin at crack tip
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  computed from 2-D microstructure has two equal components and an anisotropy along the third material axis. In what follows, we consider the 2-D microstructure lies in (x, z) plane k conds x = k conds y , and the anisotropy is along
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 5 Figure 5.2.: Microstructure construction flow chart diagram
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 5 Figure 5.3.: Porous material with 50% porosity (black phase) and different anisotropy (see Tab. 5.1)

  5.3 shows constructed porous microstructures with a volume fraction ε = 0.5 and different degrees of anisotropy (a), (b), (c) and (d). Tab. 5.1 shows the evolution, for each volume fraction, of the normalized effective thermal conductivity components k conds x,d and k conds z,d for different desired (constrained) thermal conductivities k conds z,d along the z-direction. Note that the microstructure corresponding to anisotropy (a) is isotropic. The effective thermal conductivity (without normalization) of the porous SOFC anode and cathode electrodes can be computed by multiplying the normalized components by the measured values of the dense material thermal conductivity given in Tab. 4.2 in Section 4.3 at different temperatures.
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 555555 Figure 5.6.: Temperature and displacement fields for a porosity of 30%

  2 are the standard cell potential and the change of entropy at a reference temperature T = 1023K.
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  2 O, H 2 and O 2 at three-phase boundaries, respectively, as shown in Fig. 6.1.
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 61 Figure 6.1.: Partial pressures at flow channels and TPB in SOFC
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 6 Figure 6.2.: Mesh elements at the cell interfaces
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 6 Figure 6.3.: Comparison between the model predictions and experimental results

  Figure 6.4.: Molar fraction of (a) hydrogen, (b) oxygen, (c) water with operating voltage 0.4V
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 65 Figure 6.5.: Cell voltage versus current density over the temperature range 973K-1123K
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 6 Figure 6.6.: Cell voltage and power density versus current density at 1123K
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 6 Figure 6.7.: Temperature distribution in SOFC at operating voltage 0.6V and flow inlet temperature 1123K
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 6 Figure 6.8.: Temperature variations at interfaces with operating voltage 0.6V and flow inlet temperature 1123K
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 6 Figure 6.9.: Cell voltage versus current density with temperature 1123K at the flow inlet

  Figure A.1.: La fonction d'interpolation linéaire du champ de pression

  d'équilibre et les conditions aux limites d'un domaine 2D délimité par Γ sont données par: ∇ s σ + b = 0 in Ω est le tenseur de Cauchy, ∇ s est la partie symétrique de l'opérateur divergence, b est la force de volumique par unité de volume, u est le vecteur de déplacement, n est la normale unitaire extérieure, ū et t sont respectivement les déplacements et tractions prescrites au limites Γ u et Γ t . La loi de comportement pour un problème thermoélastique est donnée par la loi de Hooke généralisée: σ = C : D -(β * ∆T ) I (A.30) Où C est le tenseur de rigidité, D = ∇ s u est le tenseur de déformation, ∆T = T -T 0 est la variation de température entre les étapes actuelle et initiale, β * = β T E m / (1 -2ν) est une constante dépendant des propriétés thermomécanique du matériau.

  un domaine intégration entourant la pointe de la fissure, comme le montre la Fig. A.2. q A est la fonction de pondération définie sur le domaine intégration A qui prend une valeur de l'unité à la pointe de la fissure et de zéro sur le contour Γ (Fig. A.2).
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 2 Figure A.2.: Le domaine intégration A et le contour Γ entourant la pointe de la fissure

K

  I et K II sont les FIC pour mode I et II respectivement, avec E * m = E m / (1 -ν 2 ) dans le cas d'un problème à déformation plane et E * m = E m dans le cas d'un problème à contrainte plane. Combinant Eq. (A.42) et Eq. (A.44), les FIC peuvent être calculées en choisissant le mode auxiliaire adéquate. Par exemple, pour calculer K I , nous choisissons le mode I pur comme un mode auxiliaire avec un FIC unitaire. Ce choix conduit à K
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 3 Figure A.3.: Plaque rectangulaire avec une fissure inclinée adiabatique
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  Figure A.4.: Le contour de température et les contraintes aux différents temps de simulation (a/W = 0, 3, ζ = 45°)

  Figure A.6.: L'évolution des FIC normalisées en fonction du temps pour a/W = 0, 3 et angle de la fissure ζ varié Table A.3.: FIC normalisées pour la fissure inclinée adiabatique, a/W = 0, 3 et ζ varié
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 7 Figure A.7.: Demi-structure avec trois couches et une fissure interne

  Unité d'une pile à combustible d'oxyde solide est constituée par un électrolyte solide dense situé entre une anode et une cathode poreuse, et deux canaux d'écoulement adjacents aux couches poreuses. Au cours du fonctionnement, l'écoulement pénètre dans la structure multicouche à travers le canal d'écoulement, avec une température et un dedit d'entrée constante, puis diffuse dans la couche poreuse adjacent(voir Fig. A.8). Une fissure horizontale d'une épaisseur de 0,25 mm et longueur de 6 mm est supposée localiser dans la cathode poreuse. La fissure commence à se propager lorsque la FIC équivalent surmonte la ténacité des matériaux. Au cours de la propagation, la fissure est supposée garder une épaisseur constante.
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  Figure A.8.: Une unité de SOFC
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 95 Figure A.9.: Positions de pointes de la fissure pour différentes porosités du matériau

  et (∆S) ref = 2S H 2 O -2S H 2 -S O 2 sont le potentiel standard de la cellule et le changement d'entropie à une température de référence T = 1023K.
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 11 Figure A.11.: Comparison entre les prédictions du modèle et les résultats expérimentaux

  

  

  

  

  

  

  

  

  

Table 2 .1.:

 2 Truncation levels used for the computation of the FG solution (N c is the total number of Fourier coefficients)

	Level	N c	N m N n N r N s
	1	36	3	4	2	4
	2	75	5	5	4	5
	3	150	5	10	4	10
	4	540	9	20	8	20
	5	750	10	25	9	25
	6	1530	17	30 16 30
	7	2970	15	66 14 66
	8	4500	20	75 19 75
	9	8100	30	90 29 90
	10	12075 35 115 34 115
	11	18000 60 100 59 100
	12	27000 75 120 74 120

Table 2

 2 

			N = 0	N = 5	N = 10
		Grid level N u	Sh	N u	Sh	N u	Sh
	Le = 10	1	1.465 5.333	1.663 7.489	1.662 8.755
		2	1.494 5.451	1.686 7.639	1.679 8.957
		3	1.510 5.509	1.696 7.714	1.687 9.058
		4	1.517 5.538	1.701 7.750	1.691 9.108
	Le = 100	1	1.465 16.800	1.527 19.332	1.197 19.832
		2	1.494 17.190	1.558 19.709	1.171 20.158
		3	1.510 17.408	1.576 19.959	1.165 20.348
		4	1.517 17.508	1.585 20.071	1.163 20.426

.2.: Average Nusselt and Sherwood numbers with Ra = 100 and Da = 10 -1 at four grid levels

Table 2 .

 2 3.: FEM and FG solutions for average Nusselt and Sherwood numbers with Ra = 100 and Da = 10 -1Nusselt and Sherwood numbers are listed in Tab. 2.4. Note that with the same Rayleigh, Darcy and Lewis numbers, the truncation levels used for the FG solutions at different buoyancy ratios are the same. And all the FEM solutions in the table are with grid level 4. The values of N u and Sh in Tab. 2.3 and Tab. 2.4 show that when Rayleigh number increases or Darcy number decreases, both of N u and Sh increase. While in most cases, with the increasing of Lewis number, the corresponding N u decreases, and Sh increases.

			N = 0	N = 5	N = 10
		level N u	Sh	N u	Sh	N u	Sh
	Le = 10 FEM	4	1.517 5.538	1.701 7.750	1.691 9.108
	FG	6	1.525 5.565	1.705 7.785	1.695 9.151
	Le = 100 FEM	4	1.517 17.508	1.585 20.071	1.163 20.426
	FG	8	1.525 17.622	1.597 20.241	1.162 20.488

Table 2 .

 2 4.: FEM and FG solutions for average Nusselt and Sherwood numbers

			Truncation		FEM	FG	
	Ra * D A	Le N	level	N u	Sh	N u	Sh
	100 10 -3 10 0	8	2.956 12.288	2.960 12.339
		5		3.370 22.988	3.349 23.269
		10		3.863 27.649	3.831 27.997
		100 0	11	2.956 39.091	2.960 38.930
		5		2.377 53.147	2.431 52.216
		10		1.750 62.125	1.746 59.813
	10 -5 10 0	12	3.252 13.935	3.110 13.398
		5		5.057 35.965	4.947 34.215
		10		6.464 47.631	6.405 45.109
	200 10 -1 10 0	7	2.057 7.269	2.075 7.322
		5		2.066 9.473	2.070 9.535
		10		2.004 11.106	2.010 11.187
		100 0	9	2.057 22.982	2.074 23.168
		5		2.147 25.540	2.170 25.775
		10		1.336 24.782	1.331 24.882
	10 -3 10 0	9	4.420 17.411	4.433 17.579
		5		4.456 28.851	4.395 29.537
		10		4.973 34.009	4.906 34.969
		100 0	12	4.420 55.104	4.433 55.039
		5		3.711 67.061	3.799 65.632
		10		2.484 76.134	2.475 73.100

Table 3 .4.: Normalized

 3 

		F I		F II
	a/W	This Duflot Prasad Murakami	This Duflot Prasad Murakami
		study (2008) (1994)	(1987)	study (2008) (1994)	(1987)
	0.2 0.0022 0.0020 0.002	0.002	0.0306 0.0302 0.030	0.030
	0.3 0.0064 0.0068 0.006	0.008	0.0488 0.0489 0.048	0.048
	0.4 0.0149 0.0149 0.014	0.015	0.0641 0.0650 0.064	0.064
	0.5 0.0262 0.0265 0.026	0.027	0.0769 0.0774 0.076	0.076
	0.6 0.0406 0.0407 0.040	0.041	0.0872 0.0878 0.087	0.086

SIFs for the inclined adiabatic crack, ζ = 30°and various a/W

Table 4 .

 4 

	1.: SOFC electrode mechanical properties	
	Electrode	Electrolyte	Cathode	Anode
	Young's Modulus (MPa)	3530	1680	2448

Table 4 .2.:

 4 Thermal properties versus the temperature of SOFC dense materials

	Electrode T (°C) Specific heat Diffusivity	Density	Conductivity
			J/(g.°C)	mm 2 /s	g/cm 3	W/(m°C)
	Electrolyte	200	0.55	0.52	5.84	1.67
		400	0.57	0.49	5.80	1.62
		600	0.57	0.47	5.73	1.53
		800	0.59	0.46	5.69	1.55
		1000	0.61	0.43	5.65	1.47
		Measured thermal expansion coefficient	
	Cathode	[200 °C-1000 °C] = 11.5 × 10 -6 /°C 200 0.55 0.55	6.12	1.84
		400	0.59	0.58	6.05	2.08
		600	0.60	0.64	5.99	2.29
		800	0.66	0.60	5.68	2.26
		1000	0.70	0.51	5.56	1.99
		Measured thermal expansion coefficient	
	Anode	[200 °C-600 °C] = 18.0 × 10 -6 /°C [600 °C-1000 °C] = 37.7 × 10 -6 /°C 200 0.60 0.96	1.45	0.84
		400	0.65	0.84	1.44	0.78
		600	0.66	0.75	1.43	0.71
		800	0.62	0.69	1.42	0.60
		1000	0.55	0.64	1.41	0.49
		Measured thermal expansion coefficient	
		[200 °C-1000 °C] = 12.7 × 10 -6 /°C		

Table 4

 4 

		.3.: Effective thermal conductivity of SOFC components
	Electrode T(°C)	Dense matrix	k e at 20% k e at 30% k e at 40% k e at 50% of pores of pores of pores of pores
			W/(m°C) W/(m°C) W/(m°C) W/(m°C) W/(m°C)
	Cathode	200	1.84	1.3229	1.1065	0.9082	0.7263
		400	2.08	1.4953	1.2508	1.0269	0.8211
		600	2.29	1.6463	1.3771	1.1305	0.9039
		800	2.26	1.6247	1.3591	1.1157	0.8921
		1000	1.99	1.4306	1.1967	0.9824	0.7855
	Anode	200	0.84	0.6039	0.5051	0.4149	0.3316
		400	0.78	0.5607	0.4690	0.3851	0.3079
		600	0.71	0.5104	0.4269	0.3505	0.2803
		800	0.60	0.4313	0.3608	0.2962	0.2368
		1000	0.49	0.3522	0.2946	0.2419	0.1934
	Table 4.4.: Effective mechanical properties of SOFC components
	Electrode Shear modulus (MPa) Bulk modulus (MPa) Pores volume fraction
	Anode	585.451		1062.171		20%
		458.755		747.256		30%
		352.346		521.945		40%
		264.326		363.951		50%
	Cathode	401.780		728.941		20%
		314.832		512.823		30%
		241.806		358.197		40%
		181.400		249.770		50%

Table 4
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		.7.: Coefficients for thermal conductivities	
	Porosity	0.2	0.3	0.4	0.5
	Cathode m 1				

Table 4 .8.:

 4 Geometry dimensions and material parameters

	Width	w = 2.0 mm
	Height Effective porosity of porous media ε = 0.4 h 1 = 0.2 mm h 2 = 0.6 mm h 3 = 0.2 mm
	Fluid density Dynamic viscosity Permeability Volumetric heat capacity Thermal conductivity Young's modulus Poisson's ratio Thermal expansion coefficient Porous material toughness	ρ f = 1.0 × 10 3 kg/m 3 µ = 8.9 × 10 -4 Pa.s K 0 = 15.13 × 10 -13 m 2 (ρc) f = 4.2 × 10 6 J/(m 3 °C) (ρc) s = 2.3 × 10 6 J/(m 3 °C) k f = 0.65 J/(sm°C) k s = 1.50 J/(sm°C) E m2 = 7.40 × 10 4 MPa ν 1 = ν 2 = 0.3 β T = 1.67 × 10 -5 /°C 1 K Ic = 0.8 MPa.mm 2

  Using the contracted form, one can write

	{D} = (D 11 D 22 2D 12 ) T	(5.13)
	{σ} = (σ 11 σ 22 σ 12 ) T	(5.14)
		
	[S] =	  
		

s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33     

Table 5 .1.:

 5 Predicted normalized thermal conductivity for different anisotropy and pores volume fraction

	ε i anisotropy	k conds x,d (normalized) (normalized) k conds z,d
	0.2	(a)	0.72726	0.72726
		(b)	0.71428	0.75
		(c)	0.69014	0.78
		(d)	0.67503	0.79365
	0.3	(a)	0.60872	0.60872
		(b)	0.59714	0.63
		(c)	0.57681	0.66
		(d)	0.55969	0.68
	0.4	(a)	0.50003	0.50003
		(b)	0.48359	0.53
		(c)	0.4635	0.56
		(d)	0.44754	0.58
	0.5	(a)	0.40004	0.40004
		(b)	0.38387	0.43
		(c)	0.36481	0.46
		(d)	0.35014	0.48

Table 5
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	.2.: Predicted effective mechanical properties of SOFC electrodes
	ε i Anode 0.2 (a) 1.802149 C e 11 (GPa) C e 33 (GPa) C e 12 (GPa) C e 13 (GPa) C e 44 (GPa) 1.802149 0.665875 0.665875 0.576402
	(b) 1.700476	1.995736	0.619483	0.678706	0.585208
	(c) 1.510178	2.242232	0.532095	0.647065	0.577957
	(d) 1.400515	2.332719	0.482745	0.604715	0.563882
	0.3 (a) 1.293266	1.293266	0.429857	0.429857	0.440052
	(b) 1.211902	1.449276	0.398717	0.441581	0.449842
	(c) 1.070907	1.675997	0.344219	0.435139	0.453402
	(d) 0.956325	1.820035	0.394469	0.40833	0.444758
	0.4 (a) 0.915205	0.915205	0.275039	0.275039	0.326295
	(b) 0.812751	1.10765	0.241604	0.286729	0.339413
	(c) 0.691103	1.311844	0.203683	0.278698	0.341385
	(d) 0.600913	1.42682	0.186149	0.263043	0.337044
	0.5 (a) 0.632252	0.632252	0.172872	0.172872	0.234232
	(b) 0.542610	0.82984	0.147888	0.181592	0.246474
	(c) 0.441242	0.984474	0.122340	0.176306	0.249698
	(d) 0.373484	1.089831	0.112035	0.167239	0.248998
	Cathode 0.2 (a) 1.236769	1.236769	0.456973	0.456973	0.39557
	(b) 1.165535	1.369623	0.425136	0.465779	0.401613
	(c) 1.036397	1.538787	0.365163	0.444064	0.396637
	(d) 0.961138	1.600886	0.331296	0.415001	0.386978
	0.3 (a) 0.887536	0.887536	0.295000	0.295000	0.301996
	(b) 0.831698	0.994601	0.273629	0.303046	0.308715
	(c) 0.734937	1.150193	0.236229	0.298625	0.311158
	(d) 0.656301	1.249043	0.20895	0.280227	0.305226
	0.4 (a) 0.628082	0.628082	0.188752	0.188752	0.223928
	(b) 0.557770	0.760152	0.165806	0.196775	0.232931
	(c) 0.474287	0.900286	0.139782	0.191263	0.234284
	(d) 0.412392	0.979191	0.127749	0.180519	0.231305
	0.5 (a) 0.433898	0.433898	0.118638	0.118638	0.160747
	(b) 0.372380	0.551067	0.101491	0.124622	0.169149
	(c) 0.302813	0.675619	0.083959	0.120994	0.171361
	(d) 0.256313	0.747923	0.076887	0.114772	0.170881

Table 5 .

 5 3.: SIFs of inclined crack in anisotropic rectangular plate (a/W = 0.5)

	Angle of crack	K I /K 0 Shiah Iaroslav Present	K II /K 0 Shiah Iaroslav Present
		(2000) (2012)	study	(2000) (2012)	study
	0°tip P 0.379	0.376	0.376	0.002	0.002	0.001
		tip Q 0.379	0.376	0.376	0.002	-0.002	-0.001
	15°tip P 0.361	0.359	0.358	0.082	0.081	0.081
		tip Q 0.360	0.358	0.357	0.078	0.077	0.078
	30°tip P 0.305	0.303	0.303	0.150	0.149	0.148
		tip Q 0.303	0.301	0.301	0.145	0.144	0.144
	45°tip P 0.209	0.214	0.214	0.197	0.186	0.185
		tip Q 0.190	0.213	0.213	0.183	0.180	0.181

Table 5 .
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  , the entropies S H 2 O , S H 2 and S O 2 have the values 233.71 J/(K.mol), 166.88 J/(K.mol) and 244.35 J/(K.mol), respectively.

  H 2 O,f uel , p H 2 ,f uel and p O 2 ,air are the partial pressures of water, hydrogen and oxygen at the fuel and air channel, while p H 2 O,T P B , p H 2 ,T P B and p O 2 ,T P B are the partial pressures of

		ln	p H 2 O,T P B p H 2 ,f uel p H 2 O,f uel p H 2 ,T P B	+	RT 4F	ln	p O 2 ,air p O 2 ,T P B	(6.15)
	The first term on the right hand side of Eq. (6.15) represents the anodic overpotential,
	η conc,anode :						
	η conc,anode =	RT 2F	ln	p H 2 O,T P B p H 2 ,f uel p H 2 O,f uel p H 2 ,T P B	(6.16)
	The second term refers to the cathodic overpotential, η conc,cathode :
	η conc,cathode =	RT 4F	ln	p O 2 ,air p O 2 ,T P B		(6.17)

p

  S,H 2 , Qn+1 S,H 2 O and Qn+1 S,O 2 on interfaces to get the temperature T n+1 as well as species concentration C n+1 H 2 , C n+1 H 2 O and C n+1 O 2 at t n+1 , respectively.

Table 6 .
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	1.: Parameters used for SOFC model validation on Rogers et al. (2003)
	experiments	
	Operating temperature	T = 1073.0 K
	Operating pressure	p = 1.0 atm
	Fuel channel inlet velocity Air channel inlet velocity Fuel composition Air composition Porosity of anode and cathode	v f uel = 0.4 m/s v air = 1.0 m/s x H 2 : x H 2 O = 0.95 : 0.05 x O 2 : x N 2 = 0.21 : 0.79 ε = 0.375
	Tortuosity of anode and cathode Average pore radius Fuel cell length	τ g = 1.0 r p = 2.6 × 10 -6 m L = 0.016 m
	Anode electrode layer thickness Cathode electrode layer thickness Electrolyte thickness Anode electrode conductivity Cathode electrode conductivity	τ anode = 0.001 m τ cathode = 0.00005 m τ electrolyte = 0.00001 m σ anode = 71428.57 Sm -1 σ cathode = 5376.34 Sm -1

Table 6
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	.2.: Parameters used for SOFC model validation on Fernández-González et al.
	(2014) experiments

Table 6 .3.:

 6 Heat transfer parameters used for in-service SOFC simulation

  Au cours des dernières décennies, les piles à combustible à oxyde solide (SOFC) sont devenues un dispositif prometteur de conversion d'énergie. Ceci est dû principalement à leur efficacité de conversion d'énergie, leur flexibilité du choix du carburant et leurs faibles émissions de polluants. Cependant, la température de fonctionnement élevée de cette variante de piles à combustible induit divers problèmes d'endommagement et de fissuration. Par conséquent, l'optimisation de leur durée de vie reste un problème à résoudre. Dans cette thèse, une approche numérique combinant la méthode des éléments finis (FEM) et la méthode des éléments finis étendus (XFEM) est développée. Le but est de modéliser le problème multiphysique comportant : l'écoulement du fluide, le transfert de la chaleur, le transfert de masse, les réactions électrochimiques et thermomécanique dans une unité de pile à combustible. Dans un premier temps, pour prédire la distribution de la température et des espèces dans le milieu poreux des électrodes, un modèle de Darcy-Brinkman (DB) couplant l'écoulement du gaz, le transfert de chaleur et le transport de masse est développé. Ensuite, la méthode XFEM est introduite pour modéliser la présence des fissures dans les électrodes. Le modèle DB-XFEM combiné est utilisé par la suite pour étudier l'effet de l'écoulement du fluide, le transfert de chaleur et des propriétés thermomécaniques du matériau sur la nucléation et la propagation des fissures. Enfin, un modèle électrochimique (EC) est développé et combiné avec le modèle DB pour étudier les performances de conversion d'énergie dans la cellule de la pile à combustible. Il s'est avéré à l'issue de cette thèse que le modèle proposé est robuste et précis pour résoudre les problèmes multi-physiques dans une unité de la pile à combustible à oxyde solide. Les méthodes numériques avancées utilisées permettent d'obtenir des calculs précis et un cout réduit. Enfin, les études paramétriques menées durant cette thèse révèlent la dépendance de la propagation des fissures et des performances électrochimiques, des propriétés thermomécaniques du matériau poreux de la pile.

  De même, K II peut être obtenue en choisissant un mode II pur comme mode auxiliaire avec SIC unitaire (K II = 1). Les solutions exactes de contraintes et de déplacements pour le mode de cisaillement sont données par:

				2πr	cos	ϑ 2		1 -sin	ϑ 2	sin	3ϑ 2	(A.45)
	σ yy =		K I √ 2πr	cos	ϑ 2		1 + sin	ϑ 2	sin	3ϑ 2	(A.46)
	σ xy =	K I √ 2πr	sin	ϑ 2	cos	ϑ 2	cos	3ϑ 2	(A.47)
	u x =		K I 2µ	r 2π	cos	ϑ 2	κ -1 + 2 sin 2 ϑ 2	(A.48)
	u y =	K I 2µ	r 2π	sin	ϑ 2	κ + 1 -2 cos 2 ϑ 2	(A.49)
							(2) I	= 0, K	(2)
	σ xx = -	K II √ 2πr	sin		ϑ 2	2 + cos	ϑ 2	cos	3ϑ 2	(A.50)

Table A .2.: FIC

 A normalisées pour la fissure inclinée adiabatique, ζ = 30°et a/W varié

		F I		F II
	a/W	Cette Duflot Prasad Murakami	Cette Duflot Prasad Murakami
		étude (2008) (1994)	(1987)	étude (2008) (1994)	(1987

  Ou p H 2 O,f uel , p H 2 ,f uel , et p O 2 ,air sont les pressions partielles de l'eau, de l'hydrogène et de l'oxygènedans canaux de combustible et de l'air, respectivement. Les pressions partiellesp k sont liées aux concentration molaire des espèces C k (k = H 2 , O 2 , H 2 O), par p k = C k RT

								
	OCP T P B = U 0 H 2 -	RT 2F	ln	  	p H2O,f uel p H 2 ,f uel p O 2, air	1 2	  	(A.57)

  Où τ anode , τ electrolyte , et τ cathode représentent l'épaisseur des couches d'anode, d'électrolyte et de cathode, respectivement. σ anode et σ cathode sont la conductivité électronique de l'anode et de la cathode. σ electrolyte est la conductivité ionique de l'électrolyte.

	Ohm =	τ anode σ anode	+	τ electrolyte σ electrolyte	+	τ cathode σ cathode	(A.61)

  ln p H 2 O,T P B p H 2 ,f uel p H 2 O,f uel p H 2 ,T P B Le premier terme du côté droit de Eq. (A.62) représente la perte anodique, η conc,anode : O,T P B p H 2 ,f uel p H 2 O,f uel p H 2 ,T P B (A.63) Le second terme se réfère à la perte cathodique, η conc,cathode : O,f uel , p H 2 ,f uel et p O 2 ,air sont les pressions partielles de l'eau, de l'hydrogène et de l'oxygène au niveau du canal de carburant et d'air, tandis que p H 2 O,T P B , p H 2 ,T P B et p O 2 ,T P B sont les pressions partielles de H 2 O, H 2 et O 2 aux site de réactions électrochimiques, respectivement.

	p H 2	η conc,anode = RT 4F p H 2 η conc,cathode = RT 2F ln ln p O 2 ,air p O 2 ,T P B	+	RT 4F	ln	p O 2 ,air p O 2 ,T P B	(A.62) (A.64)

  electrode exp α A n e F RT η act,electrode -expα C n e F RT η act,electrode , electrode ∈ {anode, cathode} (A.65) où α A et α C sont les coefficients de transfert de charge pour l'anode et la cathode respectivement. La densité de courant d'échange j 0,electrode , qui dépend non seulement de température de fonctionnement et les propriétés du matériaux, mais également de l'activité cinétique de la réaction électrochimique et les concentrations d'espèces[START_REF] Celik | Theoretical calculation of the electrical potential at the electrode/electrolyte interfaces of solid oxide fuel cells[END_REF], est exprimée par:

	j 0,cathode = γ cathode	p O 2 ,T P B p 0	0.25	exp -	E cathode RT	(A.67)
	j 0,anode = γ anode	p H 2 ,T P B p 0	p H 2 O,T P B p 0	exp -	E anode RT	(A.66)

In anisotropic-porous/isotropic dense bi-material, the crack deviation depends not only on the difference of the mechanical properties, but also on the anisotropy degrees of the porous materials.
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F II Cette Duflot Prasad Murakami Cette Duflot Prasad Murakami étude (2008) (1994) (1987) étude (2008) (1994) (1987) 0°0,0000 0,0000 0,0000 0,0000 0,0541 0,0546 0,054 0,054 15°0,0034 0,0038 0,0036 0,0038 0,0523 0,0533 0,054 0,054 30°0,0064 0,0068 0,0064 0,0071 0,0488 0,0489 0,048 0,048 45°0,0072 0,0076 0,0071 0,0077 0,0418 0,0420 0,041 0,042 60°0,0055 0,0054 0,0049 0,0053 0,0319 0,0322 0,032 0,032 75°0,0018 0,0017 0,0010 0,0023 0,0178 0,0180 0,018 0,018 90°0,0000 0,0000 0,0003 0,0000 0,0000 0,0000 0,000 0,000

Parametric Study

To further investigate the effects of different material parameters on crack propagation, a half SOFC structure made of a flow channel, porous and solid dense materials is considered in the parametric study. The structure contains a horizontal crack of thickness 0.025 mm and length 0.6 mm located in the porous layer. The geometry, dimensions and boundary conditions are reported in Fig. 4.1, while the corresponding material parameters are given in Tab. 4.8. The input flow velocity, within the interval (x = 0, y ∈ [0, 0.2 mm]), is taken zero in the y direction and follows the equation v x = 1000 × y (0.2 -y) mm/s in the x direction. Further the flow enters the channel with a constant temperature T = 25°C.

Chapter 4

Temperature (°C)

Vertical displacements (mm) Vertical stresses (MPa) 

Perspectives

In this work, we have developed an effective model to simulate fluid flow, heat and mass transfer, crack propagation and electrochemical reactions in a planar SOFC unit.

Parametric studies have been done to investigate the effect of the process and material parameters on crack propagation as well as the energy conversion performance in SOFC unit.

Further study might be conducted to highlight the effect of microstructure anisotropy on the energy conversion performances of SOFCs. In fact, microstructure anisotropy enhances the thermal conductivity in preferential direction, which in turn avoids temperature gradient that results in cracks nucleation within the electrodes. Further, enhancing the thermal conductivity in preferential direction will also accelerate the SOFC heating during the heating process, and then reduces the SOFC start-up time.

La forme faible de l'équation d'équilibre peut être écrite comme:

En substituant Eq. (A.30) dans Eq. (A.31), la forme faible, écrit:

Utilisation de la méthode d'élément finis étendu le déplacement peut être approximée comme suivant:

Où c i et d k i sont degrés de la liberté sur la surface et la pointe de la fissure. Les fonctions br k (x) décrivant la singularité a la pointe de la fissure sont donées par:

En substutuant Eq. (A.33) dans Eq. (A.31), conduit au le système d'équation suivant: .36) 

Le module de cisaillement µ m et la constante de Kolosov κ sont définis en termes du module de Young et le coefficient de Poisson par:

, κ = 3 -4ν (A.55)

A.3.5. Application et validation

Une plaque rectangulaire avec des dimensions (W = 1 m, L = 0, 5 m) et des conditions aux limites (voir la Fig. A.3) Que ceux utilisés dans la littérature [START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF][START_REF] Murakami | Stress intensity factors handbook[END_REF]Prasad et al., 1994a), est considéré dans ce travail. Une fissure inclinée est positionnée dans le centre de la plaque. Comme conditions aux limites, le fond de la plaque est maintenue à une température T = -T 0 , et la partie supérieure de la plaque présente une température de T = T 0 (T 0 = 100°C dans cet exemple). Les limites gauche et droite ainsi que la fissure sont considérées adiabatique. Les propriétés du matériau de la plaque sont rapportées dans la Tab. A.1. La simulation est effectuée en utilisant une longueur de fissure 2a qui varient de 0,4 m à 1,2 m avec un pas de 0,2 m, tandis que 

Gr

Grashof number I (1,2) Interaction integral between state (1) and state (2) (MPa m)