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Abstrait

Les systèmes multiprocesseurs sur puce (MPSoC) mis en œuvre dans les architec-
tures multi-tuiles fournissent des solutions prometteuses pour exécuter des appli-
cations sophistiquées et modernes. Une tuile contient au moins un processeur, une
mémoire principale privée et des périphériques nécessaires associés à un disposi-
tif chargé de la communication inter-tuile. Cependant, la fiabilité de ces systèmes
est toujours un problème. Une réponse possible à ce problème est la migration
de tâches. Le transfert de l’exécution d’une tâche d’une tuile à l’autre permet de
garder une fiabilité acceptable de ces systèmes. Nous proposons dans ce travail une
technique de migration de tâches basée sur des agents. Cette technique vise les
applications de flot de données en cours d’exécution sur des architectures multi-
tuiles. Une couche logicielle “middleware” est conçue pour supporter les agents
de migration. Cette couche rend la solution transparente pour les programmeurs
d’applications et facilite sa portabilité sur architectures multi-tuiles différentes. Afin
que cette solution soit évolutive, une chaîne d’outils de génération automatique est
conçue pour générer les agents de migration. Grâce à ces outils, ces informations
sont extraites automatiquement des graphes de tâches et du placement optimisé
sur les tuiles du système. L’algorithme de migration est aussi détaillé, en montrant
les phases successives et les transferts d’information nécessaires. La chaîne d’outils
est capable de générer du code pour les architectures ARM et x86. Cette tech-
nique de migration de tâche peut être déployée sur les systèmes d’exploitation qui
ne supportent ni chargement dynamique ni unité de gestion mémoire MMU. Les
résultats expérimentaux sur une plateforme x86 matérielle et une plateforme ARM
de simulation montrent peu de surcoût en terme de mémoire et de performance, ce
qui rend cette solution efficace.
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Abstract

Fully distributed memory multi-processors (MPSoC) implemented in multi-tiled ar-
chitectures are promising solutions to support modern sophisticated applications;
however, reliability of such systems is always an issue. As a result, a system-level
solution like task migration keeps its importance. Transferring the execution of a
task from one tile to another helps keep acceptable reliability of such systems. A
tile contains at least one processor, private main memory and associated periph-
erals with a communication device responsible for inter-tile communications. We
propose in this work an agent based task migration technique that targets data-flow
applications running on multi-tiled architectures. This technique uses a middleware
layer that makes it transparent to application programmers and eases its portability
over different multi-tiled architectures. In order for this solution to be scalable to
systems with more tiles, an automatic generation tool-chain is designed to generate
migration agents and provide them with necessary information enabling them to
execute migration processes properly. Such information is extracted automatically
from application(s) task graphs and mapping on the system tiles. We show how
agents are placed with applications and how such necessary information is gener-
ated and linked with them. The tool-chain is capable of generating code for ARM
and x86 architectures. This task migration technique can be deployed on small op-
erating systems that support neither MMU nor dynamic loading for task code. We
show that this technique is operational on x86 based real hardware platform as well
as on an ARM based simulation platform. Experimental results show low overhead
both in memory and performance. Performance overhead due to migration of a
task in a typical small application where it has one predecessor and one successor
is 18.25%.
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Le but de ce résumé long en français est de synthétiser le travail qui est décrit
en anglais dans les chapitres de ce mémoire. Ce résumé commence par une in-
troduction qui explique le contexte de ce travail et le problème ciblé, ainsi que la
solution proposée. L’état de l’art décrit des travaux qui concernent le même sujet.
Nous détaillons ensuite notre solution et la méthodologique, puis nous décrivons les
expériences qui sont réalisées pour valider notre solution. Nous finissons par une
conclusion et quelques perspectives.



2 Chapter 1. Résumé

1.1 Introduction

Les systèmes embarqués électroniques existent dans presque tous les aspects de
notre vie quotidienne. De nouveaux marchés sont ouverts presque tous les jours en
raison de leurs capacités croissantes, de leur puissance de calcul et de leur ubiquité.
Grâce aux progrès en cours dans le domaine de l’électronique, plus de transistors
peuvent être intégrés sur une seule puce, et par conséquent, des systèmes plus per-
formants peuvent être construits.

L’unité qui est responsable de réaliser toute la logique et les calculs arithmétiques
s’appelle un microprocesseur. Un microprocesseur est un circuit intégré numérique
qui est capable de lire les instructions stockées dans une mémoire et les exécuter
sur les données stockées et/ou d’entrée(s) et enfin à stocker le(s) résultat(s) dans
une mémoire. C’est un dispositif programmable. Les circuits intégrés (ou puces)
sont composés de dispositifs semi-conducteurs (transistors). Un circuit intégré a
besoin de nombreux transistors pour avoir plus de fonctionnalités et de capacités
de traitement, et la technologie permet l’intégration de toujours plus de transistors.

Le rythme avec lequel le nombre de transistors intégrés a augmenté sur une
seule puce, jusqu’à présent, avait été observé par Gordon Moore en 1965 [1]. Il
a remarqué que le nombre de transistors double tous les deux ans. Ceci, conduit
à la possibilité d’avoir des architectures de microprocesseurs qui peuvent fournir
des puissances de calcul de plus en plus élevées. Par conséquence, le domaine des
systèmes embarqués s’est enrichi. Un système embarqué est un système qui est ca-
pable d’effectuer une (des) fonction(s) dédiée(s) nécessitant une puissance de calcul
limitée.

Dans la section suivante, nous donnons un aperçu des architectures de micro-
processeurs, examinons brièvement les questions liées à la technologie, mentionnons
la migration des tâches et les définitions de base et pourquoi la migration de tâches
semble une bonne solution à la problématique de cette thèse.

1.2 Problématique

Pour bien comprendre certaines hypothèses et le raisonnement derrière les choix
de conception, il est nécessaire de mentionner que ce travail a été réalisé dans le
cadre d’un projet européen FP7 EURETILE. Ce travail est donc très lié à celui de
certains partenaires, et des décisions communes ont été prises pour développer un
démonstrateur.

Les calculs effectués par les unités de traitement des tuiles peuvent entraîner une
variation thermique importante et affecter l’intégrité des composants. La migration
de tâches pourrait être une solution à cette contrainte thermique. Mais d’autres
raisons pourraient bénéficier du support de la migration de tâches : équilibrage de



1.2. Problématique 3

charge entre tuiles, détection des problèmes de communication (congestion, rupture
de liens) et adaptation en déplaçant des traitements sur une autre tuile, adaptation
dynamique en fonction des applications pour une basse consommation (alimentation
réduite de certaines tuiles).

1.2.1 L’environnement logiciel

Dans le cadre du projet EURETILE, c’est l’aspect fiabilité, notamment par la dé-
tection des problèmes de communication (un composant matériel permettait de dé-
tecter ces problèmes), qui nous intéressait. La détection d’un problème entraînait
la migration d’un nombre réduit de tâches pour assurer la continuité de traitement
pour de grosses applications de calcul.

Les principales phases de l’environnement logiciel du projet sont illustrées sur la
figure 1.1. La première étape est le développement d’applications. Les applications
sont développées en langage C et peuvent s’exécuter en parallèle. Chaque applica-
tion est divisée en un certain nombre de tâches. Ces applications entrent dans un
processus de co-conception dans laquelle les spécifications de niveau système sont
analysées. Les applications sont simulées en couvrant plusieurs scénarios pour trou-
ver la meilleure réalisation en fonction des objectifs de conception spécifiés. Dans
cette phase, un modèle de programmation avancé est introduit. Il est appelé couche
d’application distribuée (DAL). DAL permet la programmation des applications dy-
namiques à grande échelle, l’introduction d’un modèle à deux niveaux de réseau de
processus, des mécanismes de contrôle, et une API complète. Tous ces modèles sont
raffinés pour produire du logiciel, et notre participation au projet EURETILE s’est
focalisée dans la couche logicielle de bas niveau (logiciel dépendant du matériel ou
HdS). Ainsi, DAL présente les premiers niveaux des mécanismes de tolérance aux
pannes qui nécessitent une prise en charge complète de la plateforme et du logiciel
de bas niveau.

1.2.2 Hypothéses pour une solution de migration de tâches

Plusieurs hypothèses sont envisagées pour la mise en œuvre de la migration de
tâches :

1. Les tâches qui migrent ne sont pas redémarrées à destination, mais reprises,
ce qui implique le transfert d’état de la tâche. Il faut donc garantir la mise
en pause d’une tâche sur la tuile source et sa reprise sur la tuile destination.

2. L’architecture du système doit être prise en considération. Les systèmes
multi-tuiles n’ont généralement pas d’espace d’adressage accessible dans une
mémoire partagée. Cela rend le transfert de l’état de la tâche effectué par
communication explicite entre la tuile.

3. La migration de tâche doit être capable de fonctionner sur des systèmes
d’exploitation légers, c’est à dire ne nécessitant pas des fonctionnalités spéci-
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Figure 1.1: Vue globale de l’environnement logiciel du projet EU-
RETILE.

fiques qui existent dans des systèmes d’exploitation plus sophistiques (MMU
ou chargement dynamique).

4. La solution de migration devrait être compatible avec le flot de conception de
DAL.

1.3 État de l’art

La migration de tâches a été mise en œuvre de manières différentes et dans des
couches logicielles différentes. Les techniques d’implémentation varient selon des
paramètres tels que l’architecture du système et les capacités du système d’exploitation.
En plus, il y a plusieurs difficultés qui rendent l’implémentation difficile. Le chapitre 4
est dédié à la description des implémentations pour des architectures différentes et
nous mentionnons les travaux de recherche correspondants. Cependant, dans cette
section, nous nous focalisons sur les solutions qui concernent la migration de tâche
dans des architectures multi-tuiles. Nous étudions ces solutions dans la section suiv-
ante en montrant comment elles se différencient de celle proposée dans ce travail.

1.3.1 Migration dans des architectures multi-tuiles

Les architectures des systèmes multi-tuiles sont des architectures NORMA, c’est à
dire qu’un processeur (élément de traitement) d’une tuile ne peut pas accéder à la
mémoire d’une autre tuile. Il existe des solutions récentes de migration de tâches
qui sont proposées dans [24, 25, 26, 27, 29]. Elles visent des architectures multi-
tuiles à base de NoC.
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Dans [24], un système d’exploitation est utilisé sur lequel un chargeur dynamique
est conçu pour soutenir le transfert du code de la tâche qui doit migrer. Toutefois,
la migration du contexte de tâche (l’état de la tâche) n’est pas pris en charge. Par
conséquence, cette technique est efficace seulement pour les tâches qui n’ont pas
d’état ou si l’application ou la tâche redémarre sur la tuile destination. La migra-
tion de tâches est appliquée dans le contexte de la reconfiguration dynamique et
pour une meilleure performance. Il est affirmé que le coût de la migration est amorti
par le gain de performances à cause du redéploiement de la tâche. Il n’est pas men-
tionné, cependant, comment la solution est transparente vis à vis de l’application.
Contrairement à cette solution, notre solution supporte les applications avec des
tâches qui ont un état, c’est à dire un ensemble d’information qui permet la pour-
suite du traitement sur la tâche destination. De plus, notre solution fonctionne sur
du matériel réel. [28] propose une solution assez similaire, mais sans transfert de
code.

Dans [25], les auteurs déploient une technique de migration de tâches ciblant des
MPSoCs basés sur une NoC qui ne comprend pas de transfert de code. En ce qui
concerne la communication, un message MPSoC Passing Interface MMPI est utilisé.
C’est un modèle de programmation parallèle qui rend le programme indépendant
du placement optimisé de la tâche. La solution est basée sur les agents (tâches)
maître (master) et esclaves (slaves) qui gèrent le processus de migration. Le maître
réside dans un élément de traitement (Processing element PE) séparé et fonctionne
sur le système d’exploitation Linux. Les esclaves sont exécutés sur MicroC/OS-II.
Il est indiqué que cette technique fonctionne sur une plateforme de simulation.

Dans [26], ce travail se préoccupe principalement de fournir des plates-formes
pour simuler la migration de tâches dans des architectures différentes. Par con-
séquent, le processus de migration n’est pas représenté du point de vue algorith-
mique ou méthodologique. Les plates-formes de simulation supportées sont des
architectures à accès mémoire uniforme et des clusters (UMA et NORMA). Pour
obtenir les résultats, des expériences de migration sont exécutés sur ces plates-
formes. Ils utilisent une couche logicielle «middleware» qui fournit des APIs pour
supporter la migration. Ils appliquent la réplication de tâches de sorte que toutes
les tâches pouvant migrer, un réplicat est déployé sur toutes les tâches. L’impact
pour répliquer toutes les tâches sur tous les éléments de traitement PE n’est pas
représenté et limite l’évolutivité de la solution. La migration de communication est
gérée par un composant qu’ils ont ajouté à la plateforme de simulation. Il s’agit
d’un ordonnanceur runtime de ressource RTR «RunTime Resource Scheduler». Ce
composant est responsable de la gestion de toutes les ressources matérielles et toutes
les communications. Les résultats expérimentaux sont présentés d’une manière rel-
ative entre les différentes techniques de décision de déploiement. Des applications
multimédias différentes sont exécutées. Les résultats montrent seulement l’impact
du redéploiement en ce qui concerne, par exemple, l’amélioration de la communica-



6 Chapter 1. Résumé

tion sur le NoC. Ce qui peut expliquer pourquoi il n’y a pas beaucoup de différence
entre certains cas où les décisions de déploiement peuvent conduire aux mêmes ré-
sultats.

Dans [27], les auteurs abordent le problème d’incohérence de la communica-
tion de la migration de tâches. Ils utilisent une solution basée sur des agents pour
gérer la communication avant, pendant et après le processus de migration. Ils
utilisent la méthode de commutation de protection «protection switching method»
pour résoudre le problème d’incohérence, via la retransmission sans arrêter la com-
munication. Contrairement à la solution proposée dans ce travail, aucun système
d’exploitation n’est utilisé dans ce travail. Cela signifie que l’ensemble des logiciels
de bas niveau est évidemment fait sur mesure comme notamment les pilotes de
communication qui supportent des fonctions spécifiques. La cohérence de la com-
munication est abordée ici, mais ce modèle ne semble pas pouvoir être générique
pour s’adapter à différentes plateformes. Aucun détail n’est donné sur la trans-
parence d’une telle solution vis à vis du programmeur.

Les travaux proposés dans [29] utilisent la migration de tâches pour améliorer
l’adaptabilité du système MPSoC. La solution cible des applications décrites dans
le modèle de calcul polyhédrique (Polyhedral Process Network PPN). Le modèle
PPN est un cas particulier des réseaux de Khan KPN). Chaque tâche est basée sur
une boucle avec deux compteurs. Les tâches ne peuvent pas avoir d’état, et par
conséquent, la migration de tâches peut être vue comme une migration de commu-
nication, c’est à dire un processus de transfert qui concerne le contenus des files
d’entrée et de sortie, et les deux compteurs de la boucle. La solution est basée sur
une couche logicielle intermédiaire «middleware» qui fournit les APIs. La communi-
cation est initiée coté récepteur. Quand les données d’entrée sont reçues, elles sont
stockées dans les files d’entrée correspondantes, et restent présentes même après
leur consommation par la tâche. Elles ne sont supprimées que quand les données
de sortie sont produites. Cette technique est utilisée car elle est simple à mettre
en œuvre. L’interface réseau (NI) est étendue pour produire une interruption à
la réception d’un message particulier, ce qui déclenche l’envoi d’un message par le
gestionnaire d’exécution vers la tuile source de la migration et interrompt la tâche.
La tuile source envoie ensuite aux tuiles voisines un message pour la migration.
L’interface réseau nécessite donc d’être modifiée, contrairement à notre solution. Il
n’est pas clairement indiqué dans l’article si une tâche peut avoir plusieurs canaux
en entrée ou en sortie, et ce qui se passe quand les tâches voisines (prédécesseur ou
successeur) sont sur la même tuile, ce qui suppose la mise en œuvre de communica-
tion inter-tuile. De plus, les opérations de lecture et écriture n’étant pas atomiques,
il n’est pas précisé comment on garantit de ne pas perdre de données quand une
interruption se produit pendant une lecture.

À notre connaissance, il n’y a pas de travail équivalent au notre dans la lit-
térature avec la mise en œuvre d’une solution complète, évolutive et qui génère
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automatiquement les ajouts (couche logicielle) pour une exécution sur une plate-
forme multi-tuiles existantes. En effet, presque toutes les implémentations et leurs
validations sont effectuées soit sur des plateformes de simulation ou des plateformes
ad-hoc basées sur des FPGA. Les mesures sont aussi données de manière relative et
sont rarement représentées de manière absolue. Cela rend les surcoûts pas très clairs
et une analyse comparative très difficile. Des questions telles que la transparence
pour les programmeurs d’applications et la portabilité sur différentes architectures
de base sont rarement expliquées, ce qui pose la question sur la façon dont la so-
lution est applicable à des applications existantes ou comment adapter la solution
de migration à différentes architectures. Enfin, il n’y a aucune technique qui étudie
l’influence de performance de migration en fonction du nombre de voisins dans
une architecture distribuée. Notre solution est expliquée avec des détails à la fois
méthodologiques et algorithmiques. Notre méthode est déployée dans un outil de
génération automatique, ce qui rend possible son utilisation pour différentes archi-
tectures et pour différentes applications.

1.4 Méthodologie de la solution

L’objectif de cette section est d’expliquer comment les problèmes de migration de
tâches sont gérés. Les détails qui sont données dans cette section répondent à la
question : Comment le processus de la migration de tâches a lieu ?
Les solutions sont expliquées selon les deux perspectives méthodologiques et algo-
rithmiques.

Ce travail décrit le processus de migration de la décision de migration de la tâche
jusqu’à sa reprise sur la tuile destination en se focalisant aussi sur l’aspect commu-
nication pour ne pas perdre de données. Les algorithmes utilisés pour prendre la
décision de migrer une tâche ne font pas partie de ce travail. Dans la spécification
initiale, on laisse le concepteur système indiquer les tâches critiques, qui pourront
subir une migration, ainsi que les tuiles qui seront en charge d’exécuter la solution
de déploiement de tâche initiale et la tuile destination qui accueillera la tâche après
migration.

Les architectures distribuées sont intrinsèquement décentralisées. La décentral-
isation est attribuée au fait que chaque tuile exécute sa propre copie du système
d’exploitation. C’est pourquoi, la solution de migration de tâches est basée sur des
agents répartis sur les tuiles de manière à décider et exécuter la migration. Afin de
permettre à ces agents d’exercer leurs rôles dans la migration, une couche logicielle
intermédiaire «middleware» (appelée Multi-Processing FrameWork MProcFW) est
développée pour fournir des APIs nécessaires qui facilitent l’exécution de la mi-
gration. Ces API sont invoquées par les agents, et font le lien entre le système
d’exploitation et la couche logicielle applicative. Par conséquent, cette caractéris-
tique offre une bonne portabilité sur différentes architectures et une transparence
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vis à vis des applications. La solution réside dans deux couches logicielles : la
couche application où les agents résident et la couche «middleware» où MProcFW
fournit les API nécessaires.

1.4.1 MProcFW

La couche MProcFW est conçue pour fournir des API nécessaires pas seulement
pour faciliter la migration, mais aussi pour permettre le contrôle des tâches des
applications. MProcFW se situe au-dessus de la couche de système d’exploitation
dans l’architecture logicielle (figure 1.2). Les APIs de MProcFW peuvent être
classés en deux catégories comme suit :

• Un catégorie qui contient toutes les APIs qui contrôlent les tâches, c’est à dire
création, démarrage, pause, arrêt ou migration. Ces APIs sont applelées dans
la couche d’application par des tâches spécifiques (ou agents).

• Un catégorie qui contient toutes les APIs qui contrôlent les canaux de com-
munication en créant, l’ouverture, l’envoi, la réception et la fermeture des
canaux. Ces APIs sont appelées par la couche d’application.

Figure 1.2: L’architecture logicielle du système. La couche MprocFW
réside directement au-dessus le système d’exploitation.

1.4.2 Transparence des points de migration

Notre technique de migration de tâches est basée sur des points de migration [9,
10, 32, 33]. Un point de migration est un point prédéfini dans le code applicatif
où une requête de migration est traitée. La tâche concernée doit être arrêtée en
toute sécurité et son exécution reprise à partir de ce point de migration. MProcFW
spécifie un modèle de tâches en boucle, et toutes les tâches doivent être conformes
à ce modèle.

Le modèle de tâche est présenté dans le code 1.1. La procédure INIT est prin-
cipalement responsable de l’allocation de mémoire pour l’état de la tâche et de
l’initialisation des variables nécessaires. L’initialisation est exécutée une seule fois
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au démarrage de chaque tâche de l’application. L’exécution principale est composée
d’itérations de la procédure FIRE. La procédure FIRE est composée de trois parties
pour la lecture des données (jetons) d’entrée, le traitement et l’écriture des données
en sortie. A la fin de l’application, la procédure FINISH est appelée pour nettoyer
la mémoire allouée par la procédure INIT. La communication via les canaux utilise
les procédures read et write.

procedure INIT(TaskStructure *t) // initialization
initialize();

end procedure
procedure FIRE(TaskStructure *t) // execution

Ch_FIFO->read(buf, size); // read i/p from fifo
process(); // processing data
Ch_FIFO->write(buf, size); // write o/p to fifo

end procedure
procedure FINISH(TaskStructure *t) // cleanup

cleanup();
end procedure

Listing 1.1: Le modèle d’une tâche de flux de données (Data-flow task model).
TaskStructure est une structure de données qui contient tous les paramètres d’une
tâche.

1.4.3 Gestion du problème d’incohérence de la communication

L’incohérence de communication provient du fait que les tâches qui migrent changent
de tuile d’exécution. Cela rend la reprise de la communication entre la tâche qui
vient de migrer et ses voisins impossible sans modification des canaux qui les relient.
En conséquence, ces canaux doivent être changés pour que la reprise de l’exécution
se fasse de façon correcte. Les tâches voisines doivent évidement être informées de
la migration. De plus, l’incohérence de communication peut aussi être attribuée à la
possibilité d’avoir des données non-traitées qui résident dans les files d’entrée de la
tâche qui migre et qui ne sont pas encore consommées. La reprise d’exécution doit
se faire en conservant ces données. Afin d’effectuer une migration avec succès, il
faut transférer toutes les données qui restent dans les files d’entrées à la tuile source
à la tuile de destination, mais, ce transfert doit être fait de manière transparente
vis à vis des développeurs d’applications et si possible sans utiliser des services ou
des dispositifs spécifiques de communication.

Nous proposons deux solutions pour résoudre les deux problèmes mentionnés
précédemment. La première concerne la modification des canaux d’une manière
transparente. Pour cela, nous proposons un nouveau type de canal appelé «canal
reconfigurable». Un canal configurable relie une tâche qui peut migrer et une tâche
voisine. Un tel canal possède trois extrémités dépendant du sens du canal : un canal
d’entrée de la tâche à migrer possède une seule extrémité pour recevoir des données
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et deux extrémités pour lire les données. Un canal de sortie de la tâche à migrer
possède deux extrémités d’entrée et une extrémité de sortie. Un canal configurable
est composé de deux branches, chaque branche étant un canal ordinaire mais un seul
canal est activé à la fois. Ceci facilite la connexion entre une tâche qui peut migrer
et son réplicat d’un côté, et un voisin d’un autre. Lorsque il y a une migration, tous
les canaux configurables sont mis à jour par la commutation entre leurs branches.
Ce processus de mise à jour est fait de manière transparente pour les tâches qui ne
détectent rien. En effet, le numéro de port (d’extrémité) reste fixe mais l’identifiant
du canal change. Ce changement est effectué par l’invocation de l’API spécifique
(Mproc_channel_update) pour faire la commutation entre les deux branches. La
figure 1.3 illustre ce principe avec un canal d’entrée de la tache qui peut migrer et
un canal de sortie (figure 1.3.a). On peut observer les deux branches de chaque
canal reconfigurable. La figure 1.3.b généralise ce concept par montrer les branches
de deux canaux configurables dans le cas où les deux tâches reliées peuvent migrer.

Figure 1.3: Canaux configurables. Tm est une tâche qui peut migrer,
Ti et To sont respectivement les prédécesseur et successeur. T ′

m est le
réplicat. (a) Seul Tm peut migrer. (b) T1 et T2 peuvent migrer.

La deuxième solution cible le problème des données non traitées dans une FIFO
liée à la tâche qui peut migrer. Le but est de proposer une méthode qui permet
le transfert des données après migration des données non consommées au début de
la migration. Cette solution doit être transparente pour le programmeur c’est à
dire sans devoir modifier le code de l’application. Nous ajoutons alors un protocole
pour la communication entre les tâches de l’application : chaque tâche qui transmet
les données à une autre, sauvegarde un copie des données transmises dans une file
qui s’appelle une file de copie (copy buffer CB). Côté réception, toutes les données
reçues par une tâche sont stockées dans une file qui s’appelle une file de réception
(receive buffer RB) (figure 1.4). Dès qu’une tâche consomme une donnée de la
file de réception, elle transmet au coté émetteur l’information de consommation,
ce qui permet supprimer la donnée correspondante dans CB. Ce protocole per-
met d’avoir toujours une copie de toutes les données non-traitées, par conséquence,
lorsque la migration est effectuée, les copies sauvegardées coté émetteur peuvent
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être retransmises à la tuile destination pour synchroniser les nouvelles files de ré-
ception. Cette synchronisation est effectuées par l’invocation de l’API de MprocFW
(MProc_channel_synchronize décrite dans l’annexe A).

Figure 1.4: Protocole "Write-with-copy"

1.4.4 Génération des agents de migration

Le nombre et le rôle des agents de migration sont déterminés en fonction de l’approche
choisie : entièrement distribuée, entièrement centralisée, semi-distribuée.

Entièrement distribuée : tous les agents ont le même rôle qui inclut à la
fois la décision de migration et son exécution. Cette approche correspond bien à
la nature de l’architecture dans le projet EURETILE. Cependant, cette approche
nécessite une conception complexe des agents de migration. Un autre inconvénient
de cette approche est que la décision de migration peut être prise par un certain
nombre de différents agents dans le même temps, qui peut conduire à de l’instabilité
ou un blocage si deux tâches adjacentes dans le même réseau de processus migrent
en même temps. En effet, l’incohérence des données et des canaux peut entraîner
un blocage avant la reprise.

Entièrement centralisée : Il existe un agent pour l’ensemble du système qui
est responsable à la fois de prendre la décision de migration et son exécution. Cela
évite la complexité de l’approche entièrement distribuée, car le développement d’un
agent centralisé est relativement facile. Mais cela peut aussi entraîner un nombre
important de communications et des difficultés de synchronisation.

Semi-distribué : deux types d’agents sont conçus avec des responsabilités dif-
férentes. Un agent de migration est centralisé et est chargé de prendre la décision
de migration et un autre agent est responsable de l’exécution des commandes de mi-
gration. La complexité du développement de cette approche est intermédiaire entre
les deux approches précédentes. Cette solution correspond bien à la nature décen-
tralisée de l’architecture du projet EURETILE par groupe de tuiles, constituant un
cluster. La complexité de la conception des agents est relativement atténuée, mais
au détriment de la communication nécessaire afin de coordonner tous les agents
nécessaire à la migration.
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La troisième approche est adoptée en raison de ses avantages par rapport aux
deux autres. Elle fournit une solution générique qui correspond à une architecture
multi-tuile distribuée. Avec une telle hiérarchie distribuée, les agents ont différentes
responsabilités. Un des agents (le maître) gère un groupe d’agents esclaves, ce qui
rend la migration a deux niveaux : la prise de décision est différent du niveau
d’exécution de la décision. Par conséquence, il existe deux types d’agents selon le
rôle de chacun d’eux :

i MigSup, C’est l’agent superviseur de la migration qui est chargé de prendre
les décisions de migration. Il initie la migration via l’envoi de commandes de
la tuile source à une tuile destination.

ii MigCtrl, C’est l’agent contrôleur de la migration qui est responsable de
l’exécution des commandes de migration envoyées par MigSup, en transférant
état de la tâche de sa tuile source vers la tuile destination, en prenant en charge
les communications avec les voisins, et en assurant la reprise d’exécution sur
la tuile destination. MigCtrl est capable d’exécuter des commandes de mi-
gration sur la tuile en raison de sa capacité à accéder à la mémoire principale
privée.

Le système est divisé en groupes de tuiles (clusters). La migration ne peut
se dérouler qu’à l’intérieur d’un même cluster. Il existe un seul agent MigSup
par cluster tandis qu’un MigCtrl existe sur chaque tuile. Les API fournies par
MProcFW ne sont suffisantes pour la gestion de la migration, il faut aussi que les
agents disposent des informations sur le placement des tâches sur les tuiles. Cette
information est maintenant disponible sous la forme de tables, ce qui permet aux
agents de connaître les tâches voisines et leur placement (déploiement) ainsi que les
destinations de migrations pour les taĉhes concernées. Deux tables sont nécessaires :

1. “Global View Table” GVT contient des informations sur toutes les tâches
qui peuvent migrer dans un cluster. GVT est composée d’un certain nom-
bre d’enregistrements correspondants au nombre de tuiles du cluster. Dans
un enregistrement, on retrouve la liste des tâches qui peuvent migrer, leur
tuile source et leur tuile destination. GVT est utilisée par MigSup, par con-
séquence, une seule GVT existe par cluster.

2. “Destination look-up table” DLT contient plus de détails sur les tâches qui
peuvent migrer tels que les emplacements de tous les voisins, et tous les iden-
tifiants de canaux reliés à cette même tâche. Ce tableau permet à MigCtrl
d’avoir toutes les informations pour gérer la suspension et la reprise correcte
de l’exécution après migration.

1.4.5 Principe de la migration

L’algorithme de migration est conçu en deux parties distinctes :

i La partie qui concerne la prise de la décision de migration.
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ii La partie qui concerne l’exécution de la migration.

La première partie, la prise de décision est faite par l’agent MigSup. Les critères
de décision, la méthode de décision, les valeurs ou paramètres des informations per-
mettant cette prise de décision ne font pas partie du travail de thèse. Néanmoins
à titre d’exemple, dans le contexte du projet EURETILE, un composant spécifique
permettait de récupérer des informations sur l’état du matériel de l’architecture
multi-tuile (température des unités de traitement, état des liens - opérationnel ,
défaillant - entre les routeurs du réseau sur puce connectant les tuiles au sein d’un
cluster), ce qui permettait de décider ou non d’initier une migration. La respons-
abilité de l’exécution de la migration est donnée à l’agent MigCtrl. MigSup initie
la migration en informant les agents MigCtrl des tuiles concernées, ce qui permet
de démarrer le processus de migration.

1.5 Expérimentations et résultats

La solution proposée dans ce travail a été implémentée, c’est à dire que le flot de
production de code initial a été modifié pour ajouter les agents, et la couche d’API
MprocFW. Le code ainsi obtenu peut alors être compilé pour obtenir un ensemble
de fichiers binaires à exécuter sur les différentes tuiles de l’architecture. Deux types
d’architectures distinctes sont visées : le domaine de l’embarqué avec des cœurs de
calcul ARM v7 dans une plateforme de simulation, et le domaine du calcul haute
performance avec une plateforme existante composée de 16 tuiles, chaque tuile in-
tégrant un cœur x86 (Xéon). L’exécution d’une application mettant en œuvre la
migration sur ces deux plateformes permet alors d’une part de valider la solution,
mais aussi de mesurer les coûts et les performances de la solution pour une analyse
de la méthode. Par exemple, nous étudierons l’impact sur la mémoire, sur le temps
d’exécution en cas de migration, mais aussi l’influence du nombre de canaux sur les
performances.

L’application de démonstration est une petite application, avec trois tâches. En
fait, cette application est dupliquée pour obtenir un ensemble d’applications à exé-
cuter. L’intérêt d’une petite application est d’une part sa facilité de mise en œuvre,
d’autre part, les résultats obtenus permettront de valider la méthode sur une appli-
cation défavorable. Le temps d’exécution ou la taille mémoire de l’application sont
petits, et le surcoût mémoire ou la perte de performance est plus significatif.

Les résultats les plus difficiles à obtenir sont ceux provenant des expérimenta-
tions faites sur l’architecture multi-tuile matérielle. En effet, l’accès (distant) à la
machine a été limité à quelques semaines dans le cadre du projet EURETILE, mais
aussi aucune solution de deboggage n’était disponible, car c’est le chargement des
binaires autour de DNA-OS n’offre pas cette possibilité. Les mises au point ont tou-
jours été faite dans un premier temps à l’aide de la plateforme de simulation ARM
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pour la vérification de la fonctionnalité (application et algorithme de migration).
La mise au point pour la plateforme matérielle a été plus délicate.

1.5.1 Description des plateformes

Si les deux plateformes matérielles diffèrent, le système d’exploitation utilisé pour
toutes les expérimentations est le même. Il s’agit de DNA-OS [14], un système
d’exploitation développé au TIMA et porté sur les deux architectures (en 32 bits).
DNA-OS est léger, et son mécanisme de génération n’inclut que les fonctionnalités
nécessaires à l’application. Il supporte les architectures SMP, possède un ordon-
nanceur coopératif, et la communication est basée sur un système de fichiers virtuel.
La libc est largement supportée. Néanmoins, il ne possède ni support MMU, ni
chargement dynamique.

1.5.1.1 Domaine de l’embarqué : plateforme de simulation ARM

La plateforme de simulation a été développée au TIMA en SystemC TLM [45].
Elle est composée de tous les composants ou périphériques nécessaires tels que
TTY, afficheurs. . . . Chaque cœur ARM cortex A9 utilise un émulateur QEMU.
Chaque tuile contient une mémoire privée, et un composant spécifique (composant
de communication) permettant l’interface avec le NoC. Ce composant spécifique est
proche du composant physique utilisé dans la seconde plateforme. Néanmoins, il
a nécessité une adaptation du pilote. L’instanciation de plusieurs tuiles permet de
créer un cluster à l’aide de scripts. Pour un temps de simulation raisonnable, on est
aujourd’hui limité à 128 tuiles. Chaque tuile exécute sa propre copie du système
d’exploitation.

1.5.1.2 Domaine du calcul haute performance : plateforme matérielle
x86

La plateforme matérielle, développée par l’INFN Rome (Italie) - coordinateur du
projet EURETILE, est basée sur les processeurs Intel (Xéon SMP) et fournit un
environnement pour du calcul scientifique haute performance [46]. Plusieurs mécan-
ismes spécifiques et performants permettent les communications entre tuiles (infini-
band, APEnet+). La plateforme est composée de 16 tuiles (figure 1.5). Tous les
composants à l’intérieur d’une tuile sont connectés via un bus PCIe. Une machine
serveur est installée pour faciliter les connexions à distance et le chargement des
binaires sur les tuiles.

1.5.2 Surcoût de performance

Le surcoût de performance à cause de la migration est le temps additionnel sur le
temps d’exécution d’une demande en raison de la migration. Le temps d’exécution
mesuré est le temps total écoulé depuis de départ de l’application jusqu’à la fin, y
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Figure 1.5: Plateforme matérielle 16 tuiles pour le calcul haute perfor-
mance.

compris la communication inter-tuile. De part notre solution basée sur des agents,
il y a deux composantes à ce surcoût :

a Le temps d’exécution normal des agents de migration.

b Le temps écoulé à cause de la migration.

Pour évaluer le surcoût de migration, nous avons effectuer la mesure dans trois
cas différents pour une même application :

1. Cas 1 (C1) : Aucun agent de migration existe. Le temps d’exécution de
l’application est mesurée.

2. Cas 2 (C2) : Les agents de migration existent et s’exécutent mais aucune
migration n’a lieu. Ce cas est évaluer pour les mesurer le surcoût introduit
par les agents de migration par rapport à cas 1.

3. Cas 3 (C3) : Les agents de migration s’exécutent et une migration est effectuée
à un moment arbitraire. Ce cas est conçu pour les mesurer le surcoût introduit
par les deux agents de migration et le processus de migration par rapport à
des cas 1 et 2.

Quatre tuiles sont utilisés sur lesquelles deux applications identiques s’exécutent,
chaque application contient trois tâches. Les tâches sont : la tâche du générateur,
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Table 1.1: Les temps d’exécutions et le surcoût à cause de migration.

Cas temps de départ temps de fin temp d’exécution Surcoût
(µs) (µs) (µs) (%)

Application 1
1 65 027 461 67 247 538 2 220 077 N/A
2 28 401 948 30 623 281 2 221 332 0.06
3 21 754 757 24 379 930 2 625 173 18.25

Application 2
1 33 163 108 35 387 392 2 224 284 N/A
2 28 687 143 30 911 856 2 224 713 0.02
3 40 811 884 43 358 217 2 546 333 14.49

la tâche de traitement et la tâche du consommateur. Toutes les tâches ont des états.
Le placement des agents et de l’application est représenté dans la figure 1.6. Les
résultats sont donnés dans tableau 1.1.

Figure 1.6: Le placement des agents et les applications sur les quatre
tuiles.

On remarque que les agents de migration ajoutent un surcoût négligeable car
l’augmentation du temps d’exécution pour les deux applications est de l’ordre de
0,02% - 0,06%. Sachant que dans les situations typiques, une migration n’est pas
un événement ordinaire qui a lieu régulièrement, il n’y a presque aucun coût de
déploiement des agents dans les applications.

Le surcoût du à la migration est d’environ 18% du temps d’exécution par rap-
port aux cas 1 de l’application 1, mais seulement de 14% pour l’application 2. La
différence vient de plusieurs facteurs : la tâche qui peut migrer n’est pas la même,
et le nombres de canaux connectés est différent. Pour l’application 1, APP1_square
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a deux voisins s’exécutant sur des tuiles différentes, ce qui augmente le temps no-
tamment pour la gestion des canaux, alors que l’application 2 où APP1_generator
est la tâche qui migre a un seul voisin et un seul canal (de sortie).

1.5.3 Le surcoût de la migration par rapport à la taille de l’état
de la tâche

L’objectif de cette série d’expériences est d’étudier le surcoût causé par la taille de
l’état de la tâche. L’impact est mesuré en faisant varier la taille de l’état (taille d’un
tableau). Les expériences sont effectuées sur la même plateforme 4-tuiles avec la
même application et le même placement donné dans la figure 1.6. La taille de l’état
de APP1_square est augmentée et le temps d’exécution incluant une migration est
mesuré. La charge utile “payload” de données dans chaque paquet du réseau est
limitée à 4 ko, c’est à dire que les tailles de l’état d’une tâche qui sont inférieures ou
égalent à 4 ko sont envoyés dans un seul paquet. Les paquets de taille supérieure à
4 ko sont divisés en plusieurs paquets de 4 ko. Le tableau 1.2 donne les différentes
tailles et les surcoûts de migration correspondants. La relation entre le surcoût et
la taille est montrée dans la figure 1.7. On observe un loi d’évolution linéaire.

Figure 1.7: Le surcoût de la migration (µs) vs. la taille de l’état de la
tâche (ko).

Table 1.2: Taille de l’état de la tâche vs. le surcoût de migration.

Taille (ko) Surcoût (µs) Pourcentage d’augmentation (%)
4 530 923 -
8 531 017 0.0176
12 531 021 0.0184
16 531 066 0.0268
20 531 099 0.033
28 531 191 0.0504
34 531 271 0.0654
40 531 360 0.0823



18 Chapter 1. Résumé

1.5.4 Variation du surcoût d’exécution de la migration

L’objectif de cette série d’expériences est d’étudier si le temps écoulé par la migra-
tion varie quand elle est répétée dans les mêmes conditions. Ceci permet d’évaluer
le déterminisme de l’algorithme de la migration. Avec cette information, nous pour-
rons prédire le temps de migration et offrir une certaine qualité de service.

Table 1.3: Variation du surcoût de migration en modifiant la date de
migration.

Expérience Temps de départ Temps de fin Temps d’exécution Surcoût
(µs) (µs) (µs) Cas 1 (µs)

1 27 801 647 30 425 029 2 623 382 402 057
2 45 614 455 48 237 843 2 623 387 402 062
3 78 243 189 80 866 640 2 623 450 402 125
4 36 361 808 38 987 310 2 625 503 404 177
5 121 649 077 124 273 322 2 624 246 402 920
6 24 258 600 26 884 037 2 625 437 404 111
7 56 529 629 59 154 948 2 625 319 403 994
8 69 221 222 71 844 467 2 623 245 401 920
9 31 294 232 33 919 547 2 625 315 403 990
10 88 779 483 91 402 913 2 623 430 402 105

Temps moyen (µs) 402 946
Temps maximum (µs) 404 177
Temps minimum (µs) 401 920
Écart-type (µs) 1 004
Différence (Max - Min) (µs) 2 258
Pourcentage de (Max-Min) à temps moyen 0.56%

Plusieurs expériences de migration sont répétées, avec chaque fois la même tâche
qui migre, mais à une date arbitraire. A chaque expérience, tout le système est ré-
initialisé, la machine doit redémarrer pour éviter l’influence de la mémoire cache.
La taille de l’état de la tâche est fixée dans toutes les expériences et ne dépasse pas
4 ko. Les résultats sont donnés dans le tableau 1.3. La gamme de variation des
surcoûts mesurés (différence entre maximum et minimum) est de 2.25 ms, comme
illustré dans la figure 1.8. Les chiffres montrent que la variation du surcoût due à
la migration est limitée (de l’ordre de 0,6%) avec un écart type très faible (environ
1 ms). Cela contribue à une bonne estimation du surcoût de la migration et surtout
rend les coûts de migration déterministes.

1.5.5 Le surcoût de migration par rapport au nombre de canaux

La méthode de migration proposée dans notre travail, est basée sur des agents dé-
ployés sur une architecture distribuée, ce qui implique un échange de commandes
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Figure 1.8: Variation du surcot de migration.

entre les différents agents et les tuiles impliquées dans la migration. Pour cette
raison, le temps de migration dépend du nombre de tuiles voisines impliquées, no-
tamment dans les communications avec la tâche qui doit migrer. L’objectif des
expériences décrites dans cette sous-section est d’étudier l’influence du nombre de
canaux sur le surcoût de migration. Le principe de l’application de calcul du carré
est reprise mais en modifiant le nombre de générateurs pour faire varier le nombre
de canaux.

Le graphe de tâches de l’application 1 a été modifié pour produire les deux
exemples suivants :

i Quatre générateurs comme indiqué (Figure 1.9.(a)). Ils sont répartis sur
tile_1 et tile_2.

ii Dix générateurs (Figure 1.9.(b)). Ils sont répartis sur les tuiles tile_1,
tile_2 et tile_3.

Les temps d’exécution sont mesurés dans le cas 2 (avec agents sans migration)
et 3 (avec agents et migration). Les résultats sont présentés dans le tableau 1.4.

Table 1.4: Surcoûts de la migration dans les cas de quatre générateurs
et dix générateurs.

Cas Temps de départ Temps de fin Temps d’exécution Surcoût
(µs) (µs) (µs) Cas 2 (%)

Quatre générateurs
2 17 482 080 19 565 805 2 083 724 N/A
3 24 940 435 27 628 979 2 688 544 29

Dix générateurs
2 30 300 077 32 434 774 2 134 697 N/A
3 33 822 369 37 231 950 3 409 580 59.7

Nous pouvons aussi étudier la relation entre le nombre de canaux et les surcoûts
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Figure 1.9: Placement optimisé de l’application modifiée sur un plate-
forme de trois tuiles. (a) Quatre générateurs. (b) Dix générateurs.

de performance due à la migration par la consolidation de toutes les mesures de
toutes les expériences présentées dans les sections précédentes. Nous avons listé
dans le tableau 1.5 toutes les expériences avec le nombre de canaux et de leurs
surcoûts de migration correspondants. La relation est linéaire entre le nombre de
canaux et le surcoût de performance comme présenté dans la figure 1.10.

Table 1.5: Nombre de canaux par rapport les surcoût de performance.

Expérience Nombre de canaux Surcot cause de migration (%)
(App2) in table 1.1 1 14.5
(App1) in table 1.1 2 18.3
In table 1.4 4 29
In table 1.4 10 59.7

Figure 1.10: Le surcoût de la migration (%) vs. nombre de canaux.
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1.6 Conclusion

Nous avons proposé une solution de migration de tâche basée sur des agents. Cette
solution cible les architectures multi-tuiles, et présente un faible impact en terme
de surcout de performance. La solution est expliquée à la fois de point de vue
méthodologique et algorithmique avec les détails de mise en œuvre. Un flot de
génération a été développé dans le cadre du projet européen FP7 EURETILE, ce
qui a permis de nombreuses expérimentation à la fois sur une architecture ARM en
simulation, mais aussi sur une architecture x86 existante en exécution.

La solution proposée présente plusieurs avantages. Elle est transparente pour
le programmeur d’applications. La solution est basée sur une couche logicielle
intermédiaire conforme à POSIX. Elle est donc portable sur d’autres architec-
tures et d’autres systèmes d’exploitation. Aucun service spécifique d’un système
d’exploitation n’est nécessaire (pas d’utilisation de la mémoire virtuelle ou de charge-
ment dynamique), et même un système d’exploitation léger supporte la méthode.
Dans ce contexte de système d’exploitation léger, on a montré que le cot était
déterministe.
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As computers are getting more and more pervasive, there is hardly an aspect
in our lives nowadays in which they do not exist. New markets are being opened to
computers almost everyday due to their increasing capabilities, computation power
and ubiquitousness. Their versatile functionalities are ranging from simple man-
agement of automatic garden watering to sophisticated robots that discover distant
planets’ surfaces. Thanks to ongoing and outstanding advancements in electronics,
more transistors can be integrated on a single chip, hence, better computers can be
built.

The unit that is responsible for undergoing all the logic and arithmetic com-
putations and incorporates all functions of Central Processing Unit CPU inside a
computer is called a microprocessor. A microprocessor is a digital integrated circuit
that is capable of reading instructions stored in a memory and executing them on
stored and/or input data and finally storing the outcome on a memory, i.e. it is a
re-programmable device. Integrated circuits (or chips) are made of semiconductor
devices (called transistors). The more features and capabilities an integrated circuit
has, the more transistor it needs. As a result, technology has been being more and
more developed and advanced to house bigger numbers of transistors.

The pace with which the number of transistors is being increased on a single
chip until now had been observed by Gordon Moore in 1965 [1]. He observed that
the number of transistors doubles every almost two years, as depicted in Fig 2.1.
This, consequently, leads to the possibility of better and more fledged microproces-
sor architectures that can deliver higher and higher computation powers. This, also
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Figure 2.1: Moore’s law, number of transistors doubles every two years.
The source of the photo is in [2]

leads to computers invading wider and wider aspects.

Computers, in time, not only do not need much space to exist but also they
are becoming more and more portable enriching the embedded systems field. An
embedded system is a system that is capable of performing dedicated function(s)
for specific purpose(s) with limited supply of power. These systems are classified
according to the manner with which they deliver their outputs; some must deliver
the output of their processing in predefined hard timed-deadlines as in hard real-
time systems, others are not constrained stringently by time, i.e. their outputs can
be accepted within a relatively acceptable delay from their deadlines like in soft
real-time systems.

In the following section, we give an overview of microprocessors architectures,
look briefly at technology-related issues, mention task migration basic definition and
how it proposes a good system-level solution for some of these issues and finally
mention how this work is planned.

2.1 Microprocessor architectures

A microprocessor is the unit that is responsible for performing computations and
processing digital data. This unit incorporates the functions of a Central Processing
Unit CPU. It is built on a single chip that sometimes houses other peripherals beside
the CPU rendering it to be micro-controller.

2.1.1 What is architecture?

Architecture is an assembly of disciplines that describe the design and implemen-
tation of a microprocessor. It covers three aspects of microprocessor design:
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i Instruction-set, it is the set of instructions visible to the programmer (com-
piler). They are the basic instructions that only can be executed by the
real hardware. They stand in the middle between software and hardware,
i.e. whatever the type of the software; it must be entirely converted to these
instructions.

ii Organization, it includes high-level aspects of the design like the memory
system, the memory interconnect, and the design of the internal processor
(like arithmetic, logic, branching, and data transfer are implemented).

iii Hardware design, it refers to the specifics of the microprocessors including
logic design, clock rates, transistor and packaging technology.

2.1.2 Towards parallel architectures

Microprocessor architectures have different impacts on the computer systems. They
affect performance, power consumption and how it can be programmed. Although
architectures keep getting more sophisticated, this cannot continue indefinitely.
This is due to the fact that higher attained speeds of microprocessors can no longer
increase the throughput of the whole computer systems that require not only CPUs
but also memories, networks and power. Because of the fact that developing all the
components (processor, memory, interconnect ... etc.) in a computer system cannot
result in the same speedup, latency of some components can dominate the speedup
of another. As a result, ongoing speed enhancements in processors are blocked by
the latencies of other components like memory. This makes further architecture de-
velopment in uniprocessor systems infeasible due to the diminishing returns. This
can be briefly explained as follows:

• Hitting memory wall: speed of memory access is not increasing with the same
rate as that of microprocessor. Consequently, ongoing increase in micropro-
cessor speed requires larger caches. Larger caches solution is not considered
to be free, i.e. its cost diminishes the benefit of the bigger size.

• Wire delay: wire delay does not scale well with transistor performance, i.e.
while transistors are getting smaller and more efficient, wire delays are be-
coming dominant. This makes wire delay a limitation in designing computers.

• Hitting power wall: since transistors are becoming more and more numer-
ous because they are smaller, power needs to be brought to and distributed
among the chip gates. Heat results from power distribution anomalies in a
filled area with transistors. That is why distributing the power, removing the
heat, and preventing hot spots have become increasingly difficult challenges.
Unlike in the past when area made the most important limitation in designing
integrated circuits in general, power now makes the major limitation to using
transistors.
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That is why the trend now is to have multiple microprocessors (or cores) in
single chip (or multiple processor system-on-chip MPSoC) and they are all there for
executing different parallelized applications where an application (it is, sometimes,
called job) is split into a number of processes and a process has a number of threads.
As a result parallel architectures emerged where every processor executes a thread so
that a number of threads are executed in a simultaneous manner. All microprocessor
architectures are categorized according to the taxonomy that was put by Michael
J. Flynn [3] in 1966. They are categorized such that an architecture must be one
of the following four ones:

1. Single Instruction Single Data SISD: This is the category in which a unipro-
cessor is used to execute instructions one by one.

2. Single Instruction Multiple Data SIMD: Same instruction is executed by a
number of a processors (or co-processors) all managed by a single control
unit such that every processor has its own data memory; however, only one
instruction memory is accessible by all of them. All processors access multiple
items of data in parallel. That is why SIMD computers exploit data-level
parallelism. Vector architecture is the largest class of SIMD architectures.

3. Multiple Instruction Single Data MISD: A number of processors are supposed
to perform different operation on the same data. Not many instances of this
architecture exist, as MIMD and SIMD are often more appropriate for com-
mon data parallel techniques, hence, no commercial multi-processor system
of this kind has ever been built.

4. Multiple Instruction Multiple Data MIMD: Each processor has its own instruc-
tion and data memories; therefore, each one fetches its own instructions and
operates on its own data. As a result MIMD computers exploit thread-level
parallelism, since multiple threads operate in parallel. In general, thread-level
parallelism is more flexible than data-level parallelism and thus more generally
applicable.

We classify MIMD multiprocessors according to their memory access times to
two categories as follows:

I Uniform Memory Access UMA architectures
The time the processors need to access a central the main memory is the same.
This is due to the fact that the main memory is central and shared among
all processors. This architecture is called also Shared memory architecture
or Symmetric multiprocessing SMP or centralized memory architecture, they
are expanded in chapter 3, section 3.1.1.

II Non Uniform Memory Access NUMA architectures
Every processor needs different time to access the main memory. The main
memory does not exist in a central entity; however, it is distributed among
all processors with different general accessible portions and private portions.
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Figure 2.2: Multi-tiled architecture.

They are also called distributed memory architecture, they are expanded in
chapter 3, section 3.1.2.

2.1.3 Multi-tiled architecture

Although centralized UMA architectures are able to house parallel applications and
show valid and satisfying parallelism levels, they do not show high degrees of scal-
ability. They cannot be getting bigger without solving the problem of having the
central shared memory as a bottleneck. That is why, distributed architectures are
being examined to be further applied in embedded systems as they have been being
used since considerable period of time in cluster computing. This is because they
have much potential to be scalable and support parallel applications.

Multi-tiled architecture combines a core or more with necessary peripherals and
a communication device in a modular element called a tile as depicted in Fig 2.2.
It is a distributed memory architecture where it is not allowed for a core in a tile
to access memory in another tile, hence, No Remote Memory Access NORMA ar-
chitecture. A multi-tiled architecture consists of a number of tiles connected by
a communication medium. A communication medium with high throughput and
scalability is required for such architectures. That is why, communication is usually
performed via Network-on-Chip NoC which is better compared to previous com-
munication architectures. MPSoCs with multi-tiled architectures are more capable
to accommodate parallel data-flow applications.

In this work, we focus on MPSoCs where there are still issues in their design and
operation. Reliability is one of those issues which still accompany deep sub-micron
technologies and makes a lot of concerns. Other issues come from the nature of
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applications themselves; they tend to exhibit time changing workloads which make
mapping decisions sub-optimal in number of scenarios. This is due to the large
variety of use cases which is, of course, directly proportional to the complexity of the
required applications and features. Offline approaches of tasks mapping paradigms
are no longer sufficient to cope with such dynamic change in workloads. This, in
fact, imposes a challenge of task re-mapping or re-distribution. This re-distribution
is usually demanded in a dynamic fashion i.e. task relocation/migration between
the cores has to be supported.

2.2 Task migration

A process is a key concept in operating systems [4]. It consists of data, a stack,
register contents, and the state specific to the underlying Operating System OS,
such as parameters related to process, memory, and file management as depicted
in Fig 2.3.(a). A process can also be referred to as a task and it can have one
thread or more. Thread is also called light-weight process and has its own stack
and register contents; however, it shares the process address space and some of the
OS signals as illustrated in Fig 2.3.(b). Every process, in short, has its own context.
The context of a task or a thread can be defined as the minimal set of data used
by this task/thread that must be saved to allow either task interruption and/or
migration at a given instant, and a continuation of this task at the point it has
been interrupted/stopped and at an arbitrary future instant (after returning from
interrupt service routine ISR or after migration process is completed).

Figure 2.3: Multi-thread process model

The main idea of task (process) migration is the transfer of a process state plus
its address space from the source core (referred to also as home or host node) to the
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destination one (referred to also as destination node). Its significant cost is coming
mainly from the process of transferring the address space. The address space is
usually composed of the task stack and heap. However, this is not the only task
attribute to be transferred. The whole task state including the address space and
the CPU registers, opened files and ports, has to be transferred to the destination
core to be eventually resumed/restarted properly.

The size of that address space varies from task/thread to another according to
several parameters, local variables size is one of them, for instance. Consequently,
the cost of the task migration becomes variant and hence the latency of the migra-
tion. The size of the address space is not only depending on the variables size but
also on the instant the task has to be migrated at which in turn makes the size of
variables and even their number depend on the execution path of the thread.

2.2.1 Motivation

There are different motivations that constitute the rationale behind adopting task
migration solution. The importance of such solution stems from the fact that it
can function either pro-actively or reactively to systems errors; it can prevent the
existence of thermal spots before their formation or depending on the architecture,
it can transfer tasks away from faulty links via other alternative ones, have they
existed by design in the architecture. In the following, we list different motivations
of using task migration:

2.2.1.1 Load Balancing

Substituting the workload among all cores evenly contribute to reducing the peak
temperature of the system. If the cores become hotter, this leads to increased
leakage power, transient errors that eventually lead to permanent physical damages
in the system.

2.2.1.2 Reliability

Increasing the reliability leads to increasing the durability of the whole system.
Measures must be taken according to the overall system condition detection like run-
time error checking, and on-chip communication fault statistics. These measures are
simply summarized in avoiding excessive use of certain cores. In order to respond
to such situations, tasks may need to get transferred between cores.

2.2.1.3 Power consumption

Task migration is a valid solution that is being adopted to reduce power consump-
tion by coupling dynamic voltage and frequency scaling DVFS as in [5]. In hetero-
geneous architectures, sometimes it is better to move away tasks even from not so
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hot cores to other ones just to avoid wasting much power by entering their power
down mode.

2.2.1.4 System adaptivity

As mentioned earlier, in more and more complex applications not all possible sce-
narios can be handled statically, therefore, task remapping is sometimes inevitable
to avoid links contention, use tiles with hardware accelerators or cores with power-
ful co-processors according to the system overall state. Task remapping demands
task migration facility supported.

2.2.1.5 Variability

As electronics technology gets more and more evolved and scaling is going deeper
and deeper, variability issue appears. In deep sub-micron (<22nm) integrated cir-
cuits of the same functionality on the same die show variable performances. This
variability is on the same die and pretty considerable to the extent that it can be
compared to die-to-die variability. Run-time adaptivity as shown before is quite
beneficial to reduce the problem of decreased predictability of exact functional,
electronic and thermal behavior of a system in pre-silicon phase [6]

2.3 Outline

This work is planned as follows: chapter 3 shows a necessary background before
it explains the problem statement of this work. Then chapter 4 comes to mention
related work in literature showing how they are different from this work, as well
as, showing main contributions. Chapter 5 explains the solution thoroughly from
both methodological and algorithmic points of view, it shows the solution design
in details and its practical application. Chapter 6 expands how the proposed task
migration capability is plugged into a working tool-chain in order to automatically
generate codes for multi-tiled systems. Then chapter 6 comes to show experimental
results after explaining the real hardware platform as well as the simulation platform
used.
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Basic background is always necessary before explaining task migration tech-
nique in details. This chapter explains task migration techniques in different archi-
tectures, expands the general approaches of task migration and shows the nature
of parallel applications and the adopted programming model. In addition to the
background this chapter ends with the explanation of the problem statement, as
well. Details about the nature of the programming model and applications used are
given.

3.1 Hardware/Software architecture

Task migration came with the appearance of multi-processing. Its research had
started long time ago regarding workstations and servers. However, now it has
recently regained high importance in the field of Multi-Processor System on Chip
MPSoC. The reason behind this is the fact that implementation of task migration
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is not an easily achievable goal, this is because the running OS are not usually full-
fledged like how they are on workstations and servers. Another important reason is
the constraints entailed by different types of the architectures of multi-processing
systems.

There are different architectures of multi-processors according to memory orga-
nization and interconnect strategy. This is because the number of cores (similar pro-
cessors) is varying according to the memory organization and interconnect. There
are two groups [7], centralized shared-memory architecture and distributed shared
memory DSM. The main motivation behind this difference in the architecture is
the number of cores versus the memory bandwidth. It is already well known that
the memory in case of centralized shared memory architecture as shown in Fig 3.1,
is the bottleneck, for that the memory bandwidth has to be enlarged to enable
more accesses simultaneously. On the other side, the DSM architecture integrates
higher number of cores. This integration, in turn, makes the memory partitioned
to be local to every core for speeding the computation with the ability to have a
shared memory for communications purpose. Sometimes the shared memory does
not exist and no core can access the private memory of another, this variant of that
kind of architecture is called No Remote Memory Access NORMA.

Figure 3.1: Centralized shared memory architecture

3.1.1 Centralized shared memory architecture

The main memory is shared among all the processors as shown in fig 3.1. The cost
of accessing the memory by all the processors is the same, for that this architec-
ture can be called also uniform memory access UMA. A common communication
medium links memory modules and cores (computational modules) having caches.
The communication between the cores is commonly undergone through memory
modules via reads and writes to the shared data stored in the shared memory. This
architecture is also called tightly coupled shared memory systems (also called sym-
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metric multi-processor SMP). In which all processors run the same copy of the
OS which also resides in the main memory. Synchronization takes place by cache-
coherent low latency shared-memory. Also the address spaces for the processes all
reside in the main memory. The context transfer is not a complex process since only
the registers values have to be transferred from the source core to the destination
one to resume the task execution. In fact, it shall be a lot easier if the task is to be
restarted in the destination core.

Figure 3.2: Distributed memory architecture, the shared memory is
margined in dotted line to show that it is optional. In case of its absence
the architecture is called NORMA

3.1.2 Distributed memory architecture

As obvious as its name, it is the architecture in which every core has got its own
main memory attached to it with the optional existence of cache. The memory is
distributed among all cores as illustrated in Fig 3.2. Sometimes called non-uniform
memory access NUMA. Access of all the memories could be granted to all cores,
the memory access cost is no more equal among the cores. That’s why it is called
non-uniform memory access. Every core runs its own copy of the OS. Communi-
cation in such architecture can take place by two methods; The first is like that
previously mentioned in the case of SMP which is by using distributed shared mem-
ories. The second method of communication occurs through a shared address space,
the physically separate memories can all be accessed as one logically shared address
space. This means that the address is translated by the core to a physical memory
location address to access the correct memory module. In short the data commu-
nication is done via load and store instructions.

If the address spaces are completely private to the cores which means that every
core is attached to its own local memory and no granted access to any other core
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and the optional shared memory is absent (NORMA case), the shared memory
method is no more useful, this is illustrated in Fig 3.2 but without the optional
dotted shared memory. Which leads us to the second method of communication
which has been being used in cluster computing CC, it is called message-passing
interface MPI. In which data (in our case data would be the task state in addition to
task address space) is transferred by messages between cores, this message-passing
multiprocessor is built on the fact that the processors share nothing.

Figure 3.3: Migration algorithm

3.2 General migration algorithm

There are a lot of implementations and designs. However, the main steps of task
migration all can be summarized in the following algorithm made in [3]. The al-
gorithm means all the steps included in the process of migration in addition to
the protocol-like communication between the source core and the destination one
regarding the transfer of the task attributes. For the sake of further clarification,
all the steps are depicted in Fig 3.3 and listed as follows:

(A) Migration request
The migration request is sent by the source node to the destination node after
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negotiation had been taking place between them. This negotiation can differ
from implementation to another according to the requirements.

(B) Process detachment
At the source node, the process execution is suspended declaring it to be in
migrating state as a preliminary step for redirecting its communication as
shown in next step.

(C) Temporary communication redirection
All messages arriving to the suspended migrating task shall be queued and
sent after migration ends. This step remains being executed in the background
in parallel with next steps 4, 5 and 6. After the end of step 7 the migration
will be known to all nodes.

(D) Task state extraction
Task state includes:

1. Processor state: register contents
2. Communication state: message channels and opened files
3. kernel state

(E) Destination task instance creation
A task (process) shall be created in the destination but deactivated and in
idle mode waiting for enough state to come until resumption.

(F) Task state transfer
Transfer and importing task state in the newly created destination idle one
as a preliminary step to start resumption.

(G) Forwarding references
In this step all the queued messages in the source (if any) shall be all forwarded
to the destination. This shall be done in addition to modifying the channels
to be with the destination node instead of the source one.

(H) New instance resumption
When sufficient state has been transferred and imported. With this step,
process migration completes. Once all of the state has been transferred from
the original instance, it may be deleted on the source node.

3.3 Address space transfer strategies

One of the main contributors in the communication cost in task migration is the
transfer of the address space of the task from source node to the destination. This,
in turn, impacts directly the performance. That is due to the fact that address
space size is variable not only among the tasks but also regarding one task. That’s
because not only the size changes according to the execution path of the task itself
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and even in the same path but in time course. This means that the address space
size depends on several parameters which in brief, are the task itself, execution
path and the instant of execution. This makes a difficulty in predicting task migra-
tion performance or in other words, the time of migration. This issue, in fact, had
been tackled extensively before in the domain of servers so it is worth mentioning
the strategies devised for task address space transfer. This is, of course, due to
the importance of opting for the most optimum one to be adopted in the embed-
ded domain which intrinsically imposes time constraints and suffers from limited
resources. The strategies, expanded in [8], are as follows:

(A) Eager (all)
It is a simple strategy which is based on copying all the contents of address
space and simply sending the whole address space. This strategy has a con-
siderable high initial cost due to the amount of memory but no run-time cost.
Initial cost is high obviously because of the time elapsed in transferring all the
task address space and no run-time cost is also attained because the trans-
ferred task will not suffer delays and can be resumed as soon as it is copied
in the memory. This strategy is implemented by Checkpoint1 /Restart.

(B) Eager (dirty)
This strategy can be deployed if there is remote paging2 support. This is a
variant of the eager (all) strategy that transfers only modified (dirty) pages
because they will be very likely the latest accessed and used part of the ad-
dress space according to temporal locality. Unmodified pages are paged in on
request from a backing store. They shall be lazily copied back on-demand.
This variant provides significantly better initial cost especially with tasks of
large address spaces but higher run-time costs. It also does not help much
in case the task migration is needed because the source core is getting faulty
because it does depend on the remaining of unmodified stored in the source
node and retrieved back on-demand.

(C) Copy-on-Reference (CoR)
This strategy also needs remote paging. It transfers pages on demand. It is
very much the same in performance compared to the previous; however, with
lower initial cost but much higher run-time one.

(D) Pre-Copy
This strategy needs remote paging support, as well. It is designed to reduce

1Checkpointing means that there are predefined task positions for migration, in other words
tasks cannot just be migrated at any instant of execution. Sometimes whole task states at these
predefined points are stored for prominent migrations.

2Memory paging is originally adopted in servers and workstations as it requires secondary storage
media (hard disk). However, it is actually called demand paging in embedded domain and it only
applies to code execution. It is the act of dynamically loading code pages from NAND flash
memory into main memory then onto instruction cache if existed. Demand paging in embedded is
also considered like prefetching.
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the “freeze” time of the migrating task. This can be achieved by letting the
task to continue execution while sending all its address space to the destination
core. Sending will take place so long as the number of dirty pages is smaller
than a fixed limit. Pages dirtied during pre-copy have to be re-sent after
migration.

3.4 Migration approaches

There are different layers [8] in which migration can be implemented, user applica-
tion layer or kernel layer are examples of these layers. The layer of implementation
does; however, impact some parameters like complexity, performance, transparency
and re-usability. Migration implemented in user application does provide the ap-
plication programmer a degree of freedom to derive better policies since migration
knowledge is provided. However, the one implemented in kernel space on contrary
does provide better performance and transparency. There are, of course, disadvan-
tages for each. The first option lacks performance while the second suffers from
relatively high complexity; the different layers are viewed in Fig 3.4. In embedded
systems, it has been preferred to implement task migration facility in middleware
like in [9, 10]. A scheme of different SW abstraction layers is depicted in Fig 3.4.
That is mainly because one of the crucial constraints in embedded is the perfor-
mance. That is in addition to reducing as much as possible development time to
cope with diminishing time-to-market which mandates high re-usability.

Figure 3.4: Migration levels differ in implementation complexity, per-
formance, transparency and re-usability.

Task migration can also be classified to two different methodologies according to
the way of implementation. They are task replication and task recreation. These
two methods are going to be explained in the next two subsections and then an
overview of different methodologies in implementing migration solutions taking into
consideration the architecture of the platform for each case.
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3.4.1 Task replication

It is considered the easiest way of task migration implementation. Its idea is about
having replicas of all tasks (that can be migrated from or to in the future) in the
system on all processors. There shall be a stack allocated in the main memory
of every processor while kernel-level task-related information are allocated by each
OS in the process control block PCB (i.e. an array of pointers). A task shall be
active and running on only one processor while reside in the suspended tasks queue
in all other processors. When a migration is needed, the task is suspended in its
source processor and resumed in the destination processor by bringing it from the
suspended queue to the ready one. The rationale behind adopting such alternative
is that transferring the whole task code and stack will imply allocating new memory
space for its stack in the main memory which in turn requires dynamic loading which
is not available in the majority of embedded operating systems.

3.4.2 Task recreation

This mechanism kills the process on its source processor and recreates it on the
destination processor. This mechanism requires the OS to be supporting dynamic
loading. Also if the destination processor does not have memory management unit
MMU which preforms address translations between physical and virtual memory,
a position independent code PIC3 will be needed as well.

Figure 3.5: Migration levels differ in implementation complexity, per-
formance, transparency, and re-usability.

3.4.3 Cost

In each method, there is, of course, a cost. However, the costs of both methods are
not equal. Time (in processor cycle) is here taken as the cost of the methodology.

3PIC is a body of machine code that is stored in the main memory. It is executed properly
regardless of its absolute address. PIC is commonly used for shared libraries, so that the same
library code can be loaded in a location in each task (process) address space where it will not
overlap with any other uses of memory (e.g. other shared libraries)
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In both cases, there is a contribution due to the amount of data transferred through
shared memory. Moreover, regarding task recreation, an additional overhead is al-
ways required due to the time elapsed to reload the task in the file system, which
gives the task replication a benefit over task recreation in terms of time but with
data loss due to replication. The cost for both methods of task migration versus
the task size is depicted in the Fig 3.5. The larger slope of the task recreation hence
explains that the reloading time increases linearly with the task size.

It is worth noting that the memory overhead in case of task replication is getting
quite considerable in time with increasing number of threads in massively parallel
architectures. This puts a limitation for the simplicity of having this solution in
future platforms with increasing number of nodes.

3.5 Parallel applications and dataflow programming model

As architectures are developed to be parallelized, programming models advance to
support such parallelism so that applications can be executed in the most efficient
manner. In order to benefit from the fact that multiple cores are running simul-
taneously, an application has to be split into different activities that are able to
be concurrently executed. This makes, as a result, the elapsed time to finish the
same application shorter compared to the case of its ordinary sequential execution.
This concurrency must not incur large overhead so as not to reduce the desired
efficiency. Splitting application into smaller concurrent activities results in an issue
which is the coordination of these concurrent activities and/or synchronization be-
tween them. Such coordination leads to sequencing of the parallelized application
activities, hence, diminishes the gain of the concurrency. In order to alleviate this,
speculative execution is adopted with the risk of misprediction that leads to not
only longer execution time but also more power consumption.

Dataflow model of computation presents a natural choice for achieving concur-
rency, synchronization and speculation. Activities in such model are enabled once
all necessary input data is available. Thus, all concurrent activities can be executed
concurrently and synchronization among them is undergone via the flow of data.
Dataflow model of computation is based on the use of graphs to represent compu-
tations and flow of information among the computations.

Dataflow applications are described in directed acyclic graphs DAGs that explic-
itly state the connections between nodes via arcs. Nodes (or activities) represent
units of computation that receive input data (or tokens) and process them and
produce output data. A token is a term that denotes data without any regard to
its value or type. Tokens are transferred via arcs. An arc is a unidirectional path
between two nodes through which tokens are transmitted. Every arc has one writer
and one reader. It can store data until the size of data reaches its maximum, this
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is called arcf capacity. Tokens are stored in first-in first-out FIFO buffers; hence,
each arc has a FIFO queue. A node is triggered to work when all required input
tokens are available in the input FIFOs.

3.5.0.1 KPN model

Before discussing Kahn Process network, it is worth mentioning the definition of a
process (task) network; it is the way by which an application is described in flow
based programming paradigm. Applications -in that paradigm- are referred to as
data factory where data travel through a series of sequential operations like black
boxes, each one is a process (task). This network of processes is called process
network.

Kahn Process Network KPN is one of the earliest and the most famous dataflow
models. An application in this model is composed of a set of processes (called nodes)
and channels (called arcs). Fig 3.6 depicts an example of an application in KPN
and its corresponding graphical representation whereas equations 3.1 represent the
data processing functions of each and every node. In KPN model the arc capacity
is infinite. Also, the tokens are not timed; i.e., no time stamps are maintained. It
is explicitly required that communication latency is finite.

When a node reads from a queue, the read operation is blocking. If the queue
is empty, then the process suspends until the availability of data. While reading
operation is blocking, write operation is a non-blocking because the size of FIFO
queue theoretically is infinite.

There is no finite duration of time within which KPN applications run as it is
designed so as to work whenever input tokens are available. That is why for a KPN
applications, it will be undecidable whether or not a Process Network terminates. It
is also undecidable whether or not a Process Network will require bounded memory.
However, since we are interested in Process Networks that run in infinite time, we
could decide to let the scheduler find a bounded memory solution using infinite time.

KPN programs are determinate; i.e., the history of tokens produced on the
communication channels do not depend on the execution order. They may be
executed sequentially or in parallel with the same outcome. These systems support
recurrence and recursion. Termination of KPN program does not depend on the
execution order, only on the program. It occurs when all processes are blocked
waiting for input tokens.
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Figure 3.6: Kahn Process Network, Ti: input tokens, Txy: tokens that
are produced by node x and sent to node y, Tox: tokens output by node
x.

Tfg = f(Ti, Thf )
Tgk = g1(Tfg)
Tgh = g2(Tfg)
Tkh = k1(Tgk)
Tok = k2(Tgk)

Toh = h2(Tgh, Tkh)
Thf = h1(Tgh, Tkh)

(3.1)

3.6 Problem statement

A brief explanation is necessarily given about the project. This is in order to
understand correctly the rationale behind the chosen design choices of task migra-
tion solution. This work has been held under the banner of EURETILE project,
EURETILE stands for European Reference Tiled Architecture Experiment. It is
funded by the European Community through the Seventh Framework Program
FP74.

The main aim of EURETILE project is to create a reference experimental plat-
form for brain inspired many-tile architectures. The main objectives of this project
are as follows:

4EURETILE project is under the Grant Agreement number 247846
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• Provide a hardware prototype integrating at a number of tiles.

• Provide a many-tile programming environment, where applications can be ex-
pressed as dynamic network of processes and can be dynamically and mapped
and controlled in an efficient and scalable manner on brain inspired architec-
ture.

• Implement many-tile fault tolerance at system-level and include the support
of all software and architecture layers.

Brain inspired architecture is a homogeneous distributed one. The processing
cores in this distributed architecture run as an application a model of neural net-
works that is designed to run on embedded systems efficiently. This neural network
model5 is an accurate and an accurate and computationally efficient model that
simulates human brain behavior. It is worth mentioning that details about the
brain model adopted to be used in EURETILE are out of the scope of this work. In
the following, project software environment is expanded, then, problem statement
is explained.

3.6.1 Software environment

The main phases of the software environment of the project are illustrated in Fig 3.7.
The first stage is the development of EURETILE applications that are parallel appli-
cations. Applications are developed in C languages. Every application is split into
a number of tasks. These applications, as well as, their process networks are then
input to hardware/software co-design process in which system level specification,
analysis and optimization take place. Applications tasks are simulated covering sev-
eral scenarios to find the best design point according to specified design objectives.
In this phase, an extended programming model is introduced. It is called distributed
application layer (DAL). DAL supports programming of large-scale dynamic appli-
cations, introducing a two-level process network model, control mechanisms, and a
complete API that are refined in the lower software layer of hardware dependent
software HdS. As well, DAL introduces the first levels of fault-tolerance mechanisms
that require full support of hardware, hardware-dependent software, and simulation
platform. This phase results in the mapping of applications tasks on the available
number of tiles in the system.

3.6.2 Distributed Application Layer (DAL)

Many-tile hardware architecture offers to application programmers a high potential
to exploit pipelining, parallelism, and concurrency in their applications at different
degrees of granularity. Targeting such a powerful architecture becomes manda-
tory for new applications from the domain of high performance computing, high

5The benchmark of Izhikevich model of Polychronous Neural Networks [11] is selected in this
project.
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Figure 3.7: Overview over EURETILE software environment.

performance digital signal processing, and control, which have highly demanding
computational needs, express a large degree of parallelism, and are increasingly dy-
namic. In order to execute efficiently these applications on a multi-layer complex
platform, an innovative programming model is being investigated that directly rep-
resents the three levels of concurrency and parallelism present in the brain-inspired
many-core paradigm.

DAL allows the application programmer to specify the concurrent execution
of several dynamically instantiated applications on the same hardware platform,
while still guaranteeing real-time constraints. Then a software tool-chain shall be
supplied. This tool-chain is supposed to integrate and support DAL as specification
and coordination language.

3.6.2.1 Basic conception

DAL is the more sophisticated version of distributed operation layer DOL, the lat-
ter is a programming model that is introduced in [12]. The difference between them
is that DOL only considers programming and mapping of a single and static ap-
plication on multi-core architecture. Mapping decisions are made at compile time
and the mapping never changes during run-time. In order to extend this concept
towards dynamic and large-scale multiple applications which is the scope of DAL
unlike DOL, we need to capture the possible dynamic behavior in the application
specification, as well as control mechanisms at system-level, all these concepts cor-
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responding to the third level of parallelism.

For the sake of clarification, dynamic behavior needs to be into classified into
two classes as follows:

• Behavioral dynamics only affects the behavior of the application. Introducing
new tasks to the system, as well as, destroying existent running tasks in
the system changes the actual behavior of the application(s). However, from
architectural viewpoint, neither introduction of new tasks nor destruction of
existent ones affects the architectural characteristics of the system.

• Architectural changes at run-time may necessitate adaptive task remapping
(or migration). Maximum temperature constraint violation in a computa-
tion core or permanent failure of some hardware can be seen as examples of
architectural dynamics.

A scenario is defined as a system state in which a predefined set of applications is
running, being paused, or being stopped simultaneously. Then the dynamic appli-
cation behavior can be seen as a transition between scenarios. Transitions between
scenarios model the dynamics of applications behavior, i.e., addition/deletion or
pausing/resuming applications. Such transitions between scenarios are described in
a finite state machine. They are triggered by run-time events that are emitted by
controlling tasks. These tasks are added to the number of desired applications in
order to control their execution.

An example of four applications (Application 1, Application 2, Application 3,
and Application 4) and their process networks are illustrated in Fig 3.8. Their
execution is described by three simple execution scenarios illustrated in Fig 3.9.
There are three possible operation scenarios (Scenario 1, Scenario 2, and Scenario
3). Application 4 is the interface that issues the events that, in turn, trigger the
transitions. All events are listed in table 3.1 whereas table 3.2 denotes the condition
and the desired action for each transition.

Table 3.1: Actions for each event.

Event Description
e1 run App1
e2 run App2
e3 run App3
e4 stop App1
e5 stop App2
e6 stop App3

In full behavioral dynamic, any application can be added or removed in any
system state without restrictions. Full behavioral dynamics can be allowed instead
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Table 3.2: Transition and events interaction.

Transition Condition Action
t1 e4 stop App1
t2 e2 start App1
t3 e3 & e4 & start App3, pause App1,

e5 pause App2
t4 e6 & e1 stop App3, resume App1,

e2 resume App2
t5 e3 & e2 stop App3, resume App2
t6 e6 & e5 pause App2, start App3

(a) Application 1 (b) Application 2

(c) Application 3 (d) Application 4 (Interface)

Figure 3.8: Example.

of predefining operation scenarios at design. This is a preferred alternative for more
complicated systems that have a large number of applications. However, the static
mapping is nearly impossible since the number of scenarios that must be consid-
ered at design time becomes infeasible. But typically unfeasible combinations of
applications are pruned to alleviate the burden paid in design time and to provide
a basis for predictability in design like the example given in Fig 3.9.

3.6.2.2 DAL-level control mechanism and implementation

Since transitions between scenarios are triggered by events that are issued by tasks
like interface task in the last example illustrated in Fig 3.8. Such interface task
is supposed to have information about the scenarios FSM. It also represents the
controlling task that is used in DAL programming model to control multiple appli-
cations execution. The control mechanisms are discussed here briefly so as to know
how DAL controllers are supposed to work.

There are different approaches that are used to deploy DAL controllers. They
are briefly expanded in the following:
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Figure 3.9: FSM of 3 scenarios combining 3 applications.

Fully-centralized: This approach is based on the existence of a central controller.
The role of such controller is to detect behavioral or architectural dynamics
and performs accordingly what is necessary to change the system scenario.
This is undergone totally by such single central controller all over the system.
The main advantage of the fully-centralized solution is that it is relatively
simple to implement. There should be a system management connection6

between such controller and every other tile. The controller should have global
knowledge about all the existing tiles and their relevant corresponding states.
The main disadvantage of this approach is its centralized nature which may
impose a performance bottleneck.

Fully-distributed: In this approach, each tile in the system is autonomous and
establishes system management connections to a subset of the tiles only. In
this case, if a tile fails the system does not break necessarily. One main
disadvantage of this policy is the expected complexity of the system control
architecture. Another considerable disadvantage is the number or manage-
ment connections between tiles, such number is very likely to be very large as
its relation with the number of tiles is not linear but exponential.

Semi-distributed: This approach is a hybrid solution that contains the previous
two. Its control policy is hierarchically centralized as there is a master DAL
controller and in a lower control level slave controller. One master controller
is responsible of issuing control commands to slave controllers. As a result
one slave controller exists in every tile while a single dedicated tile houses the

6An abstract reference to a means by which control commands can be exchanged. It can be a
channel when implemented.
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Table 3.3: DAL application control

Action Description
Start application Stop each task in the application and delete any context

(Context includes local state of tasks as well as data
stored in the connected FIFO queues).

Stop application Execute init method of each task in the application and
execute fire method repeatedly

Pause application Stop calling fire method (in the scheduler) of each task
in the application

Resume application Execute fire method repeatedly (without calling init method)

master controller. This approach actually takes into account system scalabil-
ity to arbitrarily large systems without any concern about increasing number
of management connection as in fully distributed approach.

The semi-distributed approach is adopted for EURETILE, hence DAL controller
are placed accordingly throughout the system. Because the mapping is dynamically
managed by the control FSM, all events should be delivered to the control FSM.
Events originate from controller tasks. Additional DAL Application Programming
Interface APIs for this purpose need to be defined for such purpose as listed in
table 3.3. Once an event is delivered to the controller, the proper action should be
taken to relocate the tasks in the system according to the selected state transition.

3.6.3 Fault-avoidance solution description

It is required that the system shall be equipped with task migration capability.
This is to enable the system to be responsive to thermal hot spots by reducing the
number of tasks running on hot tiles, hence, avoid thermal stresses. Several issues
have to be resolved by the design of task migration solution, they are as follows:

I Migrating tasks should not be restarted on their destinations but resumed; this
implies the transfer of task state guaranteeing the safe and correct pausing and
resumption of a migrating task on its source and its destination, respectively.

II System architecture has to be taken into consideration such that moving tasks
shall not depend on a globally accessible address space in a shared memory.
This makes the transfer of task state undergone by explicit inter-tile commu-
nication.

III Task migration solution should work on embedded operating systems without
the need of any of features that exist in full-fledged operating systems. Such
embedded operating systems tend to small and basic to have a small memory
footprint. They most probably do not support memory management unit
MMU or have dynamic loading.
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IV Applications code should not be modified to account for migration. In other
words, application developers should not care while they are writing their
codes about how tasks can be migrated dynamically in run-time.

V Task migration solution should fit DAL design flow.
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Task migration has been implemented in different ways and on different levels.
Not only do the implementation techniques vary but also there are several challenges
that do not make the implementation job as easy as it might be expected. This
chapter is dedicated for expanding such issues and stating the related work in
circumventing them. In addition to that, it lists the state-of-the-art in implementing
task migration in the literature.

4.1 Migration implementation

As explained in section 3.4, there are different levels of implementation of task
migration. Application, OS, and kernel level are all possible levels in which the
solution could reside. The implementation trade-off also has been explained.

In this section, some solutions will be expanded mentioning the architecture of
the platform, the level of the solution and whether the solution is for embedded
systems or servers.

4.1.1 Migration using shared memory

Implementing task migration in shared memory SMP is easy thanks to shared mem-
ory that provides quite easy communication means. It results in no need of any
data (task address space) transfer or task code. This is because of the fact that
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all processors are entitled to access every location in the shared memory, migrating
a task comes down to electing a different processor for execution. There are sev-
eral operating systems that support that such as Windows and Linux [13] and also
DNA-OS [14] which is chosen to be our OS for the rest of this work.

Task migration has been explored for MPSoCs as in [15] in which task migra-
tion is based on locality consideration for decreasing communication overhead or
power consumption. In [16], a migration case study that relies on the µClinux
and checkpointing mechanism had been presented. The system uses the MPARM
framework [17]. Also the whole system supports data coherency through the shared
memory.

In [18], scalable shared memory many-core architecture with global cache co-
herence implementation is presented. The architecture is built around 4096 cores
which makes use of a logically shared memory but physically distributed with cache
coherence enforced by hardware using a directory based protocol.

4.1.2 Migration using distributed memory

In the case of migration in distributed memory MPSoCs (NUMA architecture), task
state must be migrated from source node (processor) private memory to the desti-
nation one with the possibility of migrating the code too in case of not using task
replication as shown before in section 3.4.1. The manner of communication and
synchronization is determined by the architecture. Pure message passing interface
MPI takes place in case of NORMA, while exchange of messages could take place
via global shared memory in case of NUMA with shared memory.

There are several experiments done on distributed memory MPSoCs in literature
which use shared memory like [16, 10, 9, 19]. This is due to the fact that architec-
ture of embedded MPSoCs often uses memory organization of the type NUMA as
mentioned before. There are different solutions according to the provided NUMA
architecture.

In [10, 9], dynamic task migration has been implemented by checkpointing mech-
anism. A master daemon running on master processor is responsible of dispatching
the task to be migrated while one of slave daemons running on all other slave
processors receives the migrating task. This solution adopts task replication to
avoid the need of dynamic loading or PIC. It also provides task migration facility
in middleware layer. Shared memory is used as a communication means between
processors; however, every task resides in local memory. The architecture is sort
of similar to that depicted Fig 3.2. In [16], a migration case study is presented
and for MPSoCs with µClinux OS and checkpointing mechanism. In [20] MMU
does not exist, therefore PIC was used to implement dynamic task migration with
checkpointing. Another solution in [21] includes MMU-less homogeneous bus-based
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multi-processor system with three 32 bit RISC cores with a powerPC and shared
memory. In [22] task are frozen and recreated in the destination processor in a bus-
based with MMU-less multi-processor. Almost all the solutions proposed use task
replication due to the lack of dynamic loading to the majority of small embedded
operating systems.

In [19] another policy of migration is presented, it exploits the temperature
as well as workload information of streaming applications to define suitable run-
time thermal migration patterns. The approach depends on task replication too.
The source processor stops execution of the migrating task and the destination one
starts running its own replica without the migration of the task state. The proces-
sors communicate with each other via the shared memory.

In [23] dynamic task allocation strategy is proposed. In other words, migration
takes place at run-time in a manner that is based on bin-packing algorithms in the
context of MPSoCs. The whole context (code, data, stack, and contents of internal
registers) is migrated and there is no task execution during the transfer. The inter-
processor communication is based on MPI (send/receive primitives). However, in
this work neither explanation about the task migration protocol nor the impact in
term of performance of such mechanism is given.

It is worth noting that task replication is always simpler to be adopted but it has
considerable limitation due to memory bloating with increasing number of threads
and nodes as mentioned in section 3.4.3.

4.1.3 Migration in NORMA architecture

In the case of NORMA architectures, there are recent task migration solutions that
are proposed in [24, 25, 26, 27, 28, 29]. They are targeted to NoC-based distributed
memory architectures MPSoC. We investigate these solutions showing how they are
different from the one proposed in this work.

In [24], an OS is used on which a dynamic loader is developed to support task
code migration. However, task context migration is not supported. Consequently,
such technique is effective only in state-less tasks or the application would have to
be restarted from the beginning in the destination. Migration was applied in the
context of dynamic remapping for better performance; hence, it is not shown the
impact of the migration on performance. It is stated, instead, that migration cost
is amortized by performance gain due to remapping, this is premised on remapping
is always performed for better performance. It is not mentioned; however, how
transparent the solution is to the application. Unlike this solution, ours supports
state-machined applications as task state is migrated, runs on real hardware. Per-
formance overhead of migration is measured along with memory usage. In [28],
almost the same solution is proposed as in [24] but without code transfer.
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In [25], they deploy task migration technique aiming at NoC based MPSoC that
does not include code transfer. Regarding communication, MPSoC Message Pass-
ing Interface MMPI is used. It is a parallel programming pattern which makes the
parallel program independent of task mapping. The solution is based on master and
slaves tasks that manage the migration process. The master resides in a separate
processing element PE and runs on Linux OS while slaves run on microC/OS-II. It
is stated that this technique runs on a simulation platform.

In [26], research work is done mainly to provide simulation platforms of differ-
ent architectures for simulating task migration; therefore, migration is not shown
from either the algorithmic or the methodological point of view. Simulation plat-
forms for both UMA and NORMA architectures are described. To show results
migration experiments are run on those platforms. They use a middleware layer
that provides APIs to support migration. They apply task replication so that all
tasks are migrate-able and their replicas are everywhere. The impact on scalability
of replicating all tasks codes on all PEs is not shown. Communication migration
is handled by a component they added in the simulation platform called run-time
resource scheduler RRS. It is responsible of managing all HW resources and all com-
munication. Experimental results are shown in a relative manner between different
remapping decision techniques. They show the performance overhead of applying
random task remapping RTR versus applying energy-aware mapping versus no mi-
gration at all. Different multimedia applications are run. The results show the time
of processing per frame; however, jitter time which is introduced by the migration
is not shown but rather the impact of the remapping regarding the improvement
in the communication over NoC as an example. That is why there is not much dif-
ference between some cases where mapping decisions might lead to the same results.

In [27], they address communication inconsistency problem of task migration.
They use agent based solution to manage communication before, during and after
migration. They used protection switching method to resolve the inconsistency
problem. This is via forwarding without stopping the communication. Unlike the
solution proposed in this work, no OS is used; instead a bare metal run-time sys-
tem that handles the management of tasks is used. This means that the whole low
level software is customized for specific HW including communication drivers that
should allow the forwarding of messages. Although communication inconsistency is
addressed in their work, it may not be generic to fit different platforms. No details
are given on transparency or portability of such solution.

In [29], the proposed task migration solution targets polyhedral process net-
work PPN model of computation on a multi-tiled architecture. Task migration is
used for system adaptivity. PPN is a special case of KPN. The nature of appli-
cations used are static affine nested-loop programs SANLPs [30], they are nested
loop-based task models, each has two iterators where its loop boundaries, condi-
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tions, and variable indexing functions are affine functions of the loop iterators and
parameters. They use pn compiler [31] to convert SANLPs to parallel PPN specifi-
cations and determine the buffer size that guarantees deadlock-free execution. This
conversion imposes some restrictions on the specification of input application. Un-
like the adopted KPN model in this work that allows a task to have a state, PPN
model requires a stateless task. As a result, their task migration solution is almost
communication migration since the state of a PPN task is represented only by:

• Content of input and output FIFOs

• Task iterators.

Their task migration technique uses run-time task re-mapping. They use a mid-
dleware based solution where this middleware layer provides migration aiding APIs.
In this layer, a request-driven (R) communication approach is also implemented.
This communication approach is the one used due to its simple and easy implemen-
tation as it requires less synchronization points. In this approach, communication
is initiated by the receptor where it sends asking for data tokens to the sender and
once the sender receives this request, it sends required tokens to the receptor. Input
tokens remain in input FIFOs even if they got consumed, FIFOs are released later
after writing output ones. This also applies to writing tokens, hence, reading and
writing tokens, each is split into three actions (listening to the channel, copying from
HW FIFO to SW one or the contrary depending which action is being performed,
and consumed tokens release). They use an interrupt-based task migration where
a run-time manager sends a message to source tile that interrupts the migrating
task. In order to be able to interrupt a migrating task, the network interface NI is
extended to be able to generate interrupt once it receives a certain type of messages,
this makes it a special NI. Migration is disabled in some parts of the used PPN task
model, these parts are where task iterators get updated and in the parts where old
written or read tokens get deleted. Run-time manager sends to source tile migration
request which interrupts the migrating task and then source tile sends to other re-
lated tiles which are tiles that have successor and predecessor tasks. However, it is
not clear in the work whether there can be more than one successor or predecessor.
It is not clear either if this migration technique can function when a tile can run
more than one task using context switching. There is a corner communication case
where a migration interrupt can occur right after the migrating task sends a request
to read input token(s) from its predecessor task so that the predecessor task sends
the token(s) to an interrupted migrating task, this would lead to the loss of these
input tokens. They cover this case by making the predecessor tile able to sending
another interrupt to source tile to re-direct all tokens to destination tile. This, how-
ever, does not clarify what would happen if the input FIFO on the source tiles was
deleted before receiving tokens coming from predecessor tile or what would happen
if due to some congestion in the NoC, these tokens are delayed while the migrating
task already started running on the destination tile and sent for input tokens from
predecessor tile, this would lead to a possible out-of-order reception of tokens which
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may lead to abnormal outputs. There are also cases where a migration interrupt
can be generated right after the calculation of output tokens before writing. This
leads to the repetition of this iteration again at the destination lowering the benefit
of using an interrupt based migration.

To our best knowledge, there is no work in the literature that implemented a
full, scalable and automatically generated task migration solution to run on real
hardware with multi-tiled architecture. Almost all the implementations and their
validations are performed either on simulation platforms or FPGA based custom
HW platform. The measurements are usually performed in a relative manner and
are seldom shown in absolute manner. This makes migration overheads not very
clear to application execution time. Issues like transparency to application pro-
grammers and portability to different core architectures are rarely explained, this
poses question about how applicable the solution to legacy applications or how
possible the solution can adapt to different core architectures. Finally, there is no
technique that investigates how migration performance overhead changes regarding
the number of neighbors in a distributed architecture. Our solution is expanded
with details both from methodological and algorithmic points of views. It is plugged
into automatic generation tool-flow, this makes both generation for different core
architectures and use with different application easy thanks to its portability and
transparency, respectively.

4.1.4 Migration points

Some methodologies of implementing migration require that the process/thread has
some predefined points for migration, i.e. it is not allowed to migrate at any arbi-
trary instant while executing the code. The process/thread proceeds execution till
one predefined migration checkpoint in the code comes, at which the process/thread
checks if it is required to be migrated or not; in case of no requirement received the
execution proceeds normally till the next migration checkpoint and so on.

In [32, 33, 10, 9] migration points are used. In [32], for instance, the task code
looks like listing 4.1 in which the pseudo code illustrates the way the code is check-
pointed. In the same work, task replication which was expanded in section 3.4.1,
had been implemented in a NUMA with shared memory, i.e. offline code is deployed
on all the nodes CPUs and the migrating task shall be resumed just on the desti-
nation ones. Source node suspends the migrating task Tm after saving its context
and then it writes the saved context in the shared memory. Communication must
take place prior to task migration between source and destination nodes. After this
communication the destination node reads the context from the shared memory
and resumes the execution of the task without the need of code transfer. This is
further depicted in Fig 4.1.
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for (;;){
...
if (migr_point == FIRST_MIGR_POINT){

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// User's code
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
migr_point = SECOND_MIGR_POINT;
if (request_migration){

save_context(); //important data
tell Sys_T_data_is_ready();

}
if (migr_point == SECOND_MIGR_POINT){
...
}

}
}

Listing 4.1: Task migration checkpoints.

Figure 4.1: Task migration by replicas.

4.1.5 Dynamic loading

As mentioned before in section 3.4, task recreation is a task migration methodology
that requires the transfer of the task code. Task transfer requires, in turn, the OS
supporting dynamic loading which is a feature that is not easily found in embedded
operating systems since they are always designed to be as light as possible with
small memory footprint. There are a few embedded operating systems that support
dynamic loading that is required by their domains in which they are used like
Contiki [34]. Task code relocation is a research topic and found in the literature
like in [24, 35]. However, such solutions are mostly custom ones depending on some
parameters like the OS, the compiler used, and the linkers.
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4.2 Issues of migration

There are some challenges which hamper functioning of the task migration. They
are expanded in the following sub-sections. These challenges depend whether the
migration be among threads thread migration only or among whole processes task
migration.

Figure 4.2: Migration of threads with pointers

4.2.1 Address collision

This problem appears in both cases of migration, i.e. during thread migration and
task migration. It can be best explained as follows:

In case the migrating task (or thread) has pointer(s) pointing whether to lo-
cally declared variables or to dynamically allocated variables (i.e. stack or heap),
it will never be able to resume execution correctly in the destination core. This
is obviously because that the addresses values of the pointers have been updated
prior to resumption at the destination node. In fact, the memory part allocated
for the migrating task and/or thread is not guaranteed to reside in the same ex-
act range as it was in the source node memory range. Consequently, the pointer
values (which are the addresses of other variables and/or functions . . . etc.) which
remain the same even after migration will be pointing to illegal memory locations1

as depicted in Fig 4.2, in which p1 and p2 are pointing to a dynamically allocated
memory location residing in the heap and a local memory location residing in the

1Places in the memory that do not belong to the legal range of the process and/or thread.
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stack. They both point to different places in the memory after migration when the
whole stack and heap reside in different address range in the whole address space.
Therefore, without prior proper preparation to the migration, there is no guarantee
that the addresses will keep their consistency for proper continuation of execution.

This is also explained in the listing 4.2. In which the pointer ptr points to a
local variable x. When resuming execution after migration, any attempt to change
the value pointed to by the pointer ptr creates segmentation fault error.

void thread_function(){
int x; /∗local variable∗/
int *ptr = &x; /∗local pointer∗/
x = 1;
printf("x=%d\n",x);
*ptr ++; /∗causes segmentation fault∗/
printf("x=%d\n",*ptr);

}
Execution before migration (on source node):
x = 1
x = 2
Execution after migration (on destination node):
x = 1
segmentation fault

Listing 4.2: Thread migration in the presence of pointers.

There are solutions to circumvent address collision problem which can be cat-
egorized according to their approaches to three approaches as in [36]. The first
approach requires language and compiler support to maintain adequate type infor-
mation and identify pointers as in [37]. This is, of course to overcome the problem
of C language as it is not strictly type-safe2 language. This approach suffers poor
portability which is a quite drawback.

The second approach [38] scans the stack at run-time, i.e. dynamically after
compilation, to detect and consequently, translates and updates all pointer values
to fit the newly allocated memory portion. However, it is quite possible that some
pointer cannot be detected and resumed execution might go wrong and suffers from
any possible segmentation fault as seen before.

The third approach mandates the partitioning of the address space and reser-
vation of unique virtual address for the stack of each thread so that the internal

2Type-Safety is the extent to which a programming language can prevent or even warn type
errors. It is also meant by type error, the undesirable behavior of a program due to a discrepancy
between different data types of constants, variables and functions of that program, e.g. treating
integer values as floating point ones. C language, in fact, is type-safe in limited contexts; for
example, compilation errors pops up when any attempt is made to convert a pointer pointing to
structure to point to another one with explicit casting
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pointers remain the same values. A common solution adopted is to preallocate
memory space for threads on all machines and restrict each thread to migrate only
on its corresponding address on other machines. This is also called iso-address
methodology. This will be expanded in a separate following section.

In the following sections, two examples of the previous approaches are to be
expanded. The solutions are iso-address as an example of the third approach and
user-level migration support libraries as an example of the first approach. It is
believed in this work that the second approach is not completely feasible for the
previously mentioned reasons as well as the uncertainty in updating the implicit
pointers3.

Figure 4.3: Migration of threads stack + heap with pointers to exact
same address range in the destination node address space

4.2.1.1 Iso-address

One way to resolve this problem is by using iso-address method as in [39, 40, 41].
This approach had been used on cluster computing like the Parallel Multithreaded
Machine PM2 which adheres to single program multiple data SPMD programming
model. In SPMD, the code to be executed by the thread is replicated on each node
and is not part of the thread. This methodology does not deal with thread migra-
tion with shared data which is another issue that will be discussed in section 4.2.2.
The main idea of this methodology is that every node allocates storage area in a
system-wide locally (in its own private memory) which is globally consistent. The
allocation mechanism must guarantee that each range of virtual addresses at which
memory has been mapped at some node is kept free on all the other nodes. In other
words, the memory portion allocated on one memory belonging to some node must
be the same in the destination node memory in the sense that the task stack must
reside in the same address range so as to avoid any post-migration update of the
pointers as shown in Fig 4.3.

3pointers that are created implicitly by the compiler sometimes in order to chain the stack
frames, while explicit pointers are those which are declared explicitly in the application by the
programmer
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Figure 4.4: All the nodes have the same memory mapping

The implementation of this solution is mainly by devising new memory alloca-
tion mechanism by isomalloc (instead of the ordinary malloc) which circumvents
the problem of dynamic memory allocation. This allocation mechanism relies on
the architecture as well as some rules. This is to ensure that every node may use
its globally reserved memory without having to inform the other nodes. This is
to avoid the synchronization among the nodes. Those rules can be expanded as
follows:

I The physical execution environment in PM2 is homogeneous with the same
copy of OS run by all cores. Moreover, all nodes have the same memory
mapping: the same binary code is loaded on each of them (main characteristic
of SPMD as previously mentioned) at the same virtual address4. The (unique)
process stack is also located at the same virtual address on all nodes and this
will be further explained and shown later.

II All iso-address allocations take place within a special address range called
iso-address area, this is the case for every node. We have located it between
the process stack and the heap as shown in Fig 4.4. This zone corresponds to
the same virtual range on all nodes.

III The virtual iso-address range is chopped to equal partitions (slots). These
slots are globally reserved on each node. This is to ensure that only one node
uses a single slot at a time.

IV Any allocation in the memory is undergone locally, i.e. local memory to the
node.

Given the previously listed items which describe the environment and the rules,
the implementation approach is done by developing slot layer. This is for allocating

4No task and/or thread code needs to be transferred to the destination node during migration.
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and managing memory slots as previously explained to tasks/threads on the nodes.
This is to be done in global consistent way so as to avoid nodes synchronization. The
iso-address part shown in Fig 4.4 is divided to equal portions (slots) as explained
before. Not all the slots per local memory can be used freely by the owning node,
there will always be reserved slots for the other node. In an example of two nodes,
slots can be divided to even and odd slots in each node such that even slots in one
node is reserved for (owned by) the other node and exactly the inverse holds true
for the other node. In Fig 4.5, an example of slot management is depicted. Thread
A is created in Node 1/2 and acquires a slot owned by the node locally to store
its stack as in Step 1 quadrant. The thread data expands, hence acquires other
slots from the local node (it is noticed that they are not contiguous) for extra data
storage as in Step 2 quadrant, also another thread B is created on node 2 and it is
obviously clear that its slot reside in the first odd slot in the address space leaving
the even 0 slot reserved for probable future migration of thread A from node 1 to 2
as it will follow. Thread A then migrates along with its slots from node 1 to node
2 as in Step 3 quadrant, it is quite obvious that they rest in exactly the same place
in node 2 address space and these slots have become owned by node 1 thread A.
The threads die and their slots are acquired back by the corresponding nodes as in
Step 4 quadrant.

This solution has some advantages as stated in [39]. They are as follows:

Simplicity
The migration mechanism is simplified, because no post-migration pointer
update is necessary any longer.

Transparency
Applications may make free use of pointers without having to take into ac-
count possible problems related to thread migration. User-level pointers are
always guaranteed to be safe.

Portability
No compiler knowledge about the thread stack structure is required, since
the stack contents remains exactly the same after migration. In particular,
compiler-generated pointers are migration-safe, too. Consequently, any com-
piler may be used and compiler optimizations are allowed.

Preemptive-ness
Preemptive migration is possible, given that no assumption is made about the
thread state at migration time.

However, there are, of course, other disadvantages of this solution which can be
summarized in poor scalability and large address space requirement for implemen-
tation. To further explain that a simple equation must hold true, it is ns = w where
n is the number threads (or slots given that every thread requires only one slot), s

is the address space of the slot (allowed for one thread) and w is the whole global
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Figure 4.5: Example of slot management in this approach.

address space. More restrictions are to be added to the equation when reserving
spare slots for probable future migration. In brief, this solution consumes a lot of
memory.

4.2.1.2 User-level

As shown in the last section how the address collision was resolved by implementing
some sort of OS support for iso-address management, in this section a completely
user-level solution is expanded. In [36] application level libraries are to be devel-
oped to circumvent the problem of address collision by avoiding the conditions in
which C is not type-safe. In other words, this solution tries to make C language as
type-safe as possible. This is simply by inserting all variable and pointers (whether
locally pointing or pointing to a dynamically allocated memory location) in special
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void foo()
{

//local variable
int a;
//local variable
double b;
//local pointer
int *c;
//local pointer to pointer
double **d;
.
.
.

}

Listing 4.3: Original function

void Mth_foo() {
struct MThV_t {

void *MThP;
int stepno;
int a;
double b;

}MThV;
struct MThP_t {

int *c;
double **d;

}MThP;
MThV.MThP=(void *)&MThP;
\\Rest of code ...

}

Listing 4.4: Transformed function

structures.

The solution in [36] proposes user level stack/heap management package called
MigThread. It does not depend on special OS libraries, unlike the last solution
isomalloc. MigThread package consists of two parts: a preprocessor (which carries
out source code transformation) and a run-time support module. The preprocessor
is designed to transform the user-level (application) source code into a format from
which the run-time support module can construct the computation state precisely
and efficiently so as to be able to resume execution on the destination node.

The core of migration/checkpointing aimed in [36] is to be able to store and re-
construct process state. This is done majorly in pre-compile time via transforming
the code written by the programmer. The main reason why pre-compilation source
code transformation is done, is the recuperation of all information related to stack
variables, functions parameters, program counter and dynamically allocated mem-
ory regions. This information is collected into certain predefined data structure as
in [42] which relates to the same context of [36].

An example is taken to illustrate the methodology applied in this solution. In
the following two listings 4.3 and 4.4 the collection of data in predefined structures
are shown. In listing 4.3 a function foo is defined with four local variables. The
function is transformed by MigThread to be called MTh_foo instead and to look
as in listing 4.4 putting local variables in MthV_t structure and the pointers in
MThP_t. Within the latter there is an item MThV.MThP which is the only pointer to
the second structure MThP which may or may not exist. In stacks, each function
activation frame contains MThV and MThP to record the current function’s computa-
tion status. The overall stack status can be obtained by collecting all of these MThV
and MThP data structures spread in activation frames. The program counter PC is
the memory address of the current execution point within a program. It indicates
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the starting point after migration/checkpointing. When the PC is moved up to
the language level, it should be represented in a portable form. We represent the
PC as a series of integer values declared as MThV.stepno in each affected function,
as shown in listing 4.4. Since all possible adaptation points5 have been detected
at compile-time, different integer values of MThV.stepno correspond to different
adaptation points. In the transformed code, a switch statement is inserted to dis-
patch execution to each labeled point according to the value of MThV.stepno, and
executed after the function initialization. The switch and goto statements help
control jump to resumption points quickly.

It is worth noting that MigThread framework does propose a solution to reduce
the problem of address space dependence that will be expanded in next section 4.2.2
by introducing special data structure to deal with global variables but in the case
of whole process migration not just one thread.

There are also other application process interfaces APIs for dynamic memory
allocation. Also there are more details of state restoration and data conversion
prior to restoration and resumption. However, for the sake of brevity, it is sufficient
to clarify the idea about source transformation without expanding all the details
of construction and resumption. It is also noted that this solution suffers from
complexity and poor support in case of complex application. This is in addition
to the fact that this solution does not deal with implicit pointers generated by the
compiler.

4.2.2 Address space dependence

This problem appears only in the case of thread migration. Threads inside one
process share a single address space as shown earlier in Fig 2.3.(a), especially global
variables. Thus when one of the threads in the process migrates to another node,
the moment it gets resumed, it inevitably results in inconsistency due to the lack
of the global variables. However, even the migration of global variables will not
help. Furthermore, an application programmer cannot use the global variables as
he expects because they are actually shared with other threads in the same process.
Note that the application programmer cannot even know which threads are in the
same process because the framework should migrate the threads transparently.

As previously mentioned some frameworks tried to reduce the severity of the
problem like the previously mentioned MigThread framework in [42, 36, 43]. This
is also the case in PM2 architecture [39, 41] previously mentioned in this work at
section 4.2.1.1 as well as in [37]. All these frameworks do not resolve the problem
of the use of global variables in case of thread migration.

5Migration cannot occur in any instant, there are certain predefined states at which migra-
tion can be executed otherwise execution proceeds till an appropriate state comes which is called
adaptation point.
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In short, the use of global variables is not allowed in case of possibilities of thread
migration. Therefore, the solution is to avoid the use of them in applications, i.e.
coding guidelines do not allow them.

4.3 Conclusion

After mentioning different recent research work, we can conclude several points.
The aim of this section is to list these points.

There is still an interest in task migration as a research topic among different
research teams. Exploring different task migration solutions targeting different MP-
SoC architectures still requires some research work in order to assess their costs in
performance and memory.

The majority of the research works listed in this chapter is validated on simu-
lation platforms except few ones. Not enough details are always given about the
accuracy of measurements performed on such simulation platforms.

It is not easy to find numbers of performance overhead that are not relative,
i.e. we cannot find the increase in execution time added by task migration process.
Overheads in performance are always presented in a manner that depends on map-
ping as well as different parameters. Sometimes this increase is given as the extra
number of cycles added to the execution time but without showing how much the
application overall execution time is increased due to migration. Another parame-
ters that contribute to impacting performance overhead are rarely mentioned like
the impact of task state size.

In this chapter, the listed task migration solutions that target NORMA archi-
tectures rarely explain how communication inconsistency problem that results from
task migration process is resolved. Few research solutions are dedicated to resolve
such problem but such solutions are simplified, i.e. they do not address other issues
like the transfer of task state or functioning on operating systems. However, in the
other solutions, the resolution of the communication inconsistency problem is either
not detailed or depending on specific HW or SW components.

In this work, we are interested only in the solutions that target NORMA ar-
chitectures. This is because such solutions fit the NORMA nature of the multi-
tiled architecture of EURETILE project. In the following chapter, we expand the
methodology of our solution.
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The task migration solution is proposed in this work to fit distributed multi-
tiled MPSoCs. In order for this solution to be operational, different implementation
issues have to be resolved. In this chapter, we expand the adopted methodology of
the proposed solution. We show also how such issues are circumvented and show
rationales behind the design choices. We start by describing the overall solution.
Then we go into details of the solution.

5.1 Solution overall description

The solution can be best described by answering the three main questions that
accompany each and every task migration: what, where to and how

What to migrate?
Most suitable tasks should be migrated first, once reasons to migrate exist.
Suitability, in fact, is determined according to parameters that contribute to
producing heat like consumed CPU load.

Where shall the migrating task be migrated to?
The aim of this question is to determine the destination of the migrating task.
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How to migrate?
This question is mainly interested in the way migration is executed and how
its design is implemented after all its issues are circumvented.

This work is concerned with the way task migration is implemented from the
moment of migration decision till the safe resumption of migrating tasks at its des-
tination. Algorithms that are incorporated in order to take the decision to migrate
a task are not in the scope of this work. As a result, the question of when to migrate
is excluded from the list of the tackled questions. However, it is worth noting that
the system is supposed to migrate tasks from their hot source to another tile so as
to avoid the formation of hot spots in the system.

Answers of the first two questions are known in the hardware/software co-design
stage where spare tiles are determined in an off-line manner. Since all feasible sce-
narios are tested and simulated, designers know which task is better be migrated
when necessary and to where they shall be migrated to. The last question is an-
swered in details in this chapter and the next one, as well.

Distributed architectures are intrinsically decentralized. Its decentralization
stems from the fact that each tile runs its own copy of the OS. That is why task
migration solution is based on agents spread out on the tiles so as to decide and
execute migration.

In order to enable those agents to perform their roles in migration, a middle-
ware layer (called Multi-Processing FrameWork MProcFW) is developed to provide
necessary APIs that facilitate execution of task migration. Such APIs are invoked
by those agents while a migration process is taking place. Being middleware places
this layer between OS and applications layers. As a result, this characterizes the
solution by portability to different architectures as well as transparency to the ap-
plications. More details about these characteristics will be expanded later in this
section. The solution lies in two layers: Application layer where the agents reside
and function, Middleware layer where MProcFW provides necessary APIs.
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5.2 MProcFW layer

MProcFW layer is designed to provide necessary APIs not just for migration purpose
but also to enable controlling application(s) tasks. Fig 5.1 shows where MProcFW
resides in the SW architecture of the system. MProcFW APIs can be categorized into
two categories, they are as follows:

• Task-related category that contains all APIs that control tasks by creating,
starting, pausing, stopping, resuming or migrating them. These APIs are
invoked in Application layer by application controller task.

• Communication-related category that contains all APIs that control commu-
nication channels by creating, opening, sending, receiving and closing them.
These APIs are invoked by Application layer.

Figure 5.1: MProcFW layer is placed right above OS layer and over which
resides applications layer in addition to migration agents.

Controlling applications and implementing states of an overall FSM for the sys-
tem is possible by invoking necessary MProcFW APIs on its own without the necessity
to add other modules and/or layers. The Task-related category contains all APIs
that create, start or destroy tasks. The communication-related category provides
APIs that handle inter-task communications (e.g. open, close, read, write), these
APIs are compatible with Portable Operating System Interface POSIX. Both cat-
egories are expanded in Appendix A.

We show in the following, how MProcFW design makes tasks able to be migrated
without changing application codes and resolves communication inconsistency issue.
This is expanded in the following sections that explain how a migrate-able task
is stopped for migration when a migration request is issued and how inter-task
communication is migrated too.

5.2.1 Transparent migration points

Our task migration technique uses migration points [10, 9, 32, 33] to migrate tasks.
A migration point is a predefined point at the code where tasks check if a migration
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request exists. A task can be safely stopped and resumed from a migration point.
MProcFW specifies a data-flow loop-based task model, i.e. every task in every appli-
cation has to be compliant with this model.

The task model is shown in Listing 5.1. The INIT procedure is mainly respon-
sible for allocating memory for task state and initializing necessary variables. The
initialization is executed once at the startup of every application task. Afterwards,
core execution part of a task comes; it is split into individual executions of the FIRE
procedure, which is repeatedly invoked. Once an application task is stopped, the
FINISH procedure is called for cleanup. Communication is enabled by calling high-
level read and write procedures.
procedure INIT(TaskStructure *t) // initialization

initialize();
end procedure
procedure FIRE(TaskStructure *t) // execution

Ch_FIFO->read(buf, size); // read i/p from fifo
process(); // processing data
Ch_FIFO->write(buf, size); // write o/p to fifo

end procedure
procedure FINISH(TaskStructure *t) // cleanup

cleanup();
end procedure

Listing 5.1: Data-flow task model. TaskStructure contains data that identifies every
task.

Application tasks are supposed to be compatible with such model via coding
these procedures only. Then, the model is put into action under an API called
MProc_task_bootstrap, its C-like code is shown in Listing 5.2. A task is created
by filling a data structure called TaskStructure with its corresponding data like
task ID, pointers to INIT, FIRE and FINISH and task state. Then TaskStructure
is fed to MProc_task_bootstrap which acts as the task handler so that either OS
or system scheduler shall call.

There are commands that can affect tasks. Such commands modify flags that
are checked every iteration in MProc_task_bootstrap. One of these checks is the
migration point, at which tasks choose which branch they shall continue execution
in. In case of migration, the task does nothing waiting for new commands as it is
supposed to be destroyed shortly by MigCtrlsrc. MigCtrl is responsible for issuing
migration requests to tasks.

5.2.2 Overcoming communication inconsistency issue

Communication inconsistency arises from the fact that migrating tasks change their
locations in distributed architectures. This makes the resumption of communica-
tion between a migrating task and its neighbors impossible without changing these
channels. As a result, such channels that connect the migrating task with its neigh-
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void MProc_task_bootstrap (TaskStructure *t) {
t->init(); // INIT procedure
while (t->cmd != STOP) {

if (t->cmd == RUN) {
t->CURRENT_STATE=RUNNING; // normal exec
t->fire(); // FIRE procedure

}
else if (p->cmd == MIG_REQUEST) {

t->CURRENT_STATE=MIGRATING; // migrating
wait_new_cmd();

}
}
t->finish(); // FINISH procedure

}

Listing 5.2: C-like implementation of MProc_task_bootstrap that shows the migration
point every iteration.

boring tasks have to be changed and in order to resume the migrating task at its
destination properly, neighboring tasks have to be informed with the new channels.
This change and informing procedures have to be done in a transparent manner to
both the task and its neighbors.

Not only is channel change an issue, but also there exists another issue regarding
the left unprocessed tokens in FIFOs at the source tile where a migrating task used
to run. Without checking if there are left unprocessed tokens after a migrating task
is stopped for migration, consistent resumption of communication after migration is
impossible due to loss of data. This transfer must be done in a transparent manner
to the application and at the same time without requiring special services from
communication drivers.

In the following, we show in details how every issue is circumvented in our
design. We expand communication channel update issue as well as the problem of
the left unprocessed tokens.

5.2.2.1 Communication channel update

Inter-tile communications are undergone through unidirectional FIFO channels through
which messages are sent/received by communication drivers, such channels are re-
ferred to as external channels. Every unidirectional KPN channel has two ends; one
is for the input side and the other is for the output side. Every external channel
is distinguished by a unique ID. Since a scenario-based design flow is used where
application(s) mapping is done statically, all channels IDs are known in the pre-
compilation phase. As a result, if a channel is changed due to migration, then a
new ID has to be used to create another one connecting the migrating task in its
new tile with the same neighboring task.

We introduce the configurable channel that is used to enable changing the chan-
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Figure 5.2: Configurable channels. Tm, Ti and To are migrating, pre-
decessor and successor tasks, respectively. T ′

m refers to the replica. inp,
outp are input and output ports, respectively. Port inp: input port
inpi = inp′

i and outpo = outp′
o. (a) Tm is the migrate-able task. (b)

Both T1 and T2 are migrate-able.

nels during migration transparently to application tasks. A configurable channel,
as shown in different forms in Fig 5.2, is a two-branched channel that is composed
in reality of two unidirectional channels, i.e. it has three ends and every branch is
a unidirectional channel with a unique ID. Only one branch is activated at a time
as there is one branch connected to the running version of the migrating task and
the other one is connected to its code replica which is created to be a task only due
to migration. These two branches that result in three ends are as follows:

i A configurable output channel: there is one end at the input side and two ends
at the output ones. This is due to the fact that there are two receiving sides
only one of them is active and working. In Fig 5.2.(a), a configurable output
channel connects Ti from the sending side to both Tm (active) and its replica
T ′

m (inactive). The dashed arrow (Ti to T ′
m) is the alternative branch to the

current working on in this configurable channel.

ii A configurable input channel: there is one end at the output side and two
ends at the input ones. This is due to the fact that there are two sending
sides only one of them is active and working. In Fig 5.2.(b), a configurable
input channel connects both Tm (active) and its replica T ′

m (inactive) on the
sending side to To. The dashed arrow (T ′

m to To)is the alternative branch to
the current working in this configurable channel.

Changing the channel takes place during migration. The change process is just
the switching between the branches transparently to application tasks (migrating
and neighbors). We call this changing process communication channel update. This
update is undergone by the proper migration agent that is responsible for imple-
menting migration process, such agent invokes MProc_channel_update function
(listed in section A.2) with the proper argument. This function accesses the struc-
ture of the corresponding configurable channel where IDs of the branches exist,
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closes the current branch, releases its memory (like FIFO buffers) and opens the
alternative branch. Port numbers are kept the same in both sides the migrating
task side and its neighbor(s) side; therefore, channel change is transparent to ap-
plications.

Channels, from spatial perspective, are classified to two types: external channel
that connects two tasks in two different tiles and internal channel that connects two
tasks on the same tile via a buffer allocated in the private memory. On one side,
external channels, on the hardware side, is managed by the communication device
while, on the software side, it is managed by communication driver, hence, it has a
unique ID to be distinguished. Internal channel, on the other side, does not need
communication devices; hence, it does not have any ID.

During migration process, the branches inside configurable channels may be
switched from one type to another, the possible different scenarios are as follows:

1. Changing an internal channel to an external one. When a migrating task
migrates from the same tile where its neighboring task resides to another tile,
therefore, the channel between these tasks changes from internal to external.

2. Changing an external channel to an internal one. This scenario is the opposite
of the previous one, a migrating task migrates to a tile where its neighbor-
ing resides, therefore, the channel connecting them changes from external to
internal.

3. Changing an external channel to an external one. This takes place a migrating
task migrates from a tile to another, its neighboring task resides in none of
them.

Since MProcFW layer uses POSIX interface, external channels IDs are used when
calling open and sometimes ioctl, as well, to create the channel and return the
file descriptor fd. Every application task uses a port number to communicate
with its neighbors in the process network. There is obviously a port number ded-
icated for communicating with each neighboring task. To application side, port
number remains the same even when a migration takes place. This is due to the
channel update process takes place only between IDs1. IDs are determined in the
pre-compilation phase and they are stored in channel structures related to the
corresponding channels as there is a structure holding all information about both
ordinary channels and configurable ones in the system. Such structure is shown in
listing 5.3 written in C.
struct config_ch_str{

bool cfg; /∗true if configurable∗/
int16_t ID[N]; /∗N: number of branch IDs∗/

1We give all internal channels a single ID equals to -1 to distinguish them from the external
ones.
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int16_t tile_indexes[N];/∗N: tile indexes∗/
char ch_name[NAME]; /∗channel name∗/
uint16_t crnt_br_id; /∗ID of current branch∗/
int16_t fd[N]; /∗N file descriptors∗/
buffer_t * p_buf; /∗pointer to CB or RB∗/

};

Listing 5.3: Data structure of a configurable channel.

5.2.2.2 Unprocessed left tokens

The second root of communication inconsistency is the data loss after task migra-
tion. The possibility for this data loss stems from the considerable probability of
having unprocessed tokens left in one or more of the input buffers of the migrating
task. Consequently, resumption of the computation of such migrating task is im-
possible. Such unconsumed tokens must be transferred to the destination tile and
be stored in the newly allocated input FIFO(s) of the migrating task.

The unprocessed tokens have to be transferred to the destination tile without
having to modify application code, this is to have eventually a transparent task
migration solution. MProcFW layer is responsible for allocating input and output
FIFOs, hence, MProcFW holds control over them and their contents. As a result, we
can avoid the modification of communication drivers and implement a protocol that
helps circumventing this problem without needing to leave MProcFW layer. This is
to make the layer self-contained and able to work with POSIX interface without
the need of special drivers.

The protocol is called write-with-copy protocol and is shown in Fig 5.3, it is
applied in reading and writing. On one side, every sender keeps a copy of what it
sends in a local buffer called copy buffer CB. On the other side, a receiver sends
an acknowledgment ACK to the sender for every token consumption. All incoming
tokens to a receiver are stored in a local FIFO buffer called receiving buffer RB,
hence, receiving sides have to consume tokens from RB. Since a copy of unprocessed
tokens is still stored in the CBs of predecessors of a migrating task, they are all
resent to newly created task at its destination tile. This enables consistent and
transparent resumption of communication after migration of tasks state.

Figure 5.3: Write-with-copy protocol. T1 is the sending side while T2 is
the receiving one.
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In the following, we expand the protocol in details implemented in the high level
communication primitives read and write.

Figure 5.4: write flowchart.

Algorithm in write function: T1 is the sending side in Fig 5.3 and exists in
Tile A which sends to T2 in tile B. Every time T1 invokes write to send something to
T2, write function runs through the algorithm whose flowchart is shown in Fig 5.4.

After write function resolves the port number to the corresponding configurable
channel, it starts the algorithm. Firstly, it checks if the channel is internal or ex-
ternal, if it is internal, then token is stored in the FIFO without the need for using
communication driver. If it is an external channel then it accesses the corresponding
channel structure shown in listing 5.3 to determine the current branch ID and the
file descriptor fd. Secondly, it tries directly to write to the external channel but in
order for this to be accomplished, a check for vacant locations in CB is performed
first to store extra tokens. If there is room in CB, a copy of these tokens are stored
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in CB and written to the external channel then another check is performed for
ACKs sent from the receiver. If there are any, then the corresponding tokens are
deleted from CB in order to have room for future tokens.

When there is no enough room for storing tokens in CB, write function listens
on the external channel waiting for ACKs and if there is not any, it yields control
to the OS scheduler to elect another task to utilize the CPU. This avoids hanging
the system waiting for ACKs hindering other tasks from getting executed. This
behavior continues until enough room in CB is ready to store extra tokens, this
makes the sending side cope with the rate of consumption of the receiving side.

Figure 5.5: read function flowchart.

Algorithm in read function: T2 is the receiving side in Fig 5.3 and exists in
Tile B which receives tokens from T1 in tile A. Every time T2 invokes write to
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receive input from T1, read function runs through the algorithm whose flowchart is
shown in Fig 5.5.

After read function resolves the port number to the corresponding configurable
channel, it starts its algorithm. Firstly, it checks if the channel is internal or ex-
ternal, if it is internal, then token(s) are read from the FIFO without the need for
using communication driver. The function checks RB first if it has unconsumed
tokens, they are read and consumed from the buffer and a corresponding number of
ACKs are sent to the sending side. Then, a check is made listening to the external
channel for new tokens. The newly received tokens by the communication driver
need to be stored in RB.

If no new tokens were stored in RB to be consumed directly by read function,
it listens to the external channel for new tokens. If there is still no tokens received,
read function yields the control from this task to the scheduler in the OS to elect
another task to take control. This takes place until tokens are received from the
sending side.
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Figure 5.6: On the bottom left corner exists the process network of a
small application (3 tasks), the rest of the figure show the mapping of this
application on 3 tiles. Both T2 and T3 are migrate-able and their code
replicas reside in tiles 2 and 3, respectively. Continuous line channels are
the current working ones while dashed ones work after migration takes
place.

5.2.3 Whole example of communication consistency preservation
in a migration

In Fig 5.6, a process network of an application containing three tasks {T1, T2,
T3} along with their mapping on 3-tile system. There are two migrate-able tasks
{T2, T3} whose replicas reside in Tile 2 and Tile 3, respectively. We use this
example to show different configurable channels cases along with the buffers used
for write-with-copy protocol that lead to almost all scenarios of switching between
the branches of a configurable channel.

Every external channel is denoted by a symbol that represents its unique ID.
Every symbol has two parts; the first has the prefix CH_ and the second has an
ordered hyphen separated pair of source and destination, e.g. CHT 2−T 3 is the ID
of the external channels that connects T2 in Tile 1 with T3 in Tile 2. Tasks, as
well as, buffers in dashed line have not been allocated until there is a migration.

Configurable channels shown in Fig 5.6 are listed in the following:

1. Output channel connecting between T1 and {T2, T2′}. The two branches
are:
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• Internal buffer IBT 1−T 2 in Tile 1.
• External branch CHT 1−T 2′ between Tile 1 to Tile 2.

2. Output channel connecting between T1 and {T3, T3′}. The two branches
are:

• External branch CHT 1−T 3 connecting between Tile 1 to Tile 2.
• External branch CHT 1−T 3′ connecting between Tile 1 to Tile 3.

3. Input channel connecting T2 and {T3, T3′}. The two branches are:

• External branch CHT 2−T 3 connecting between Tile 1 to Tile 2.
• External branch CHT 2−T 3′ connecting between Tile 1 to Tile 3.

4. Input channel connecting T2′ and {T3, T3′}. The two branches are:

• Internal branch IBT 2′−T 3 in Tile 2.
• External branch CHT 2′−T 3′ connecting between Tile 2 to Tile 3.

5. Input channel connecting between T3 and {T2, T2′}. The two branches are:

• Internal buffer IBT 2′−T 3 in Tile 2.
• External branch CHT 2′−T 3′ connecting between Tile 2 to Tile 3.

6. Input channel connecting between T3′ and {T2, T2′}. The two branches are:

• External branch CHT 2−T 3′ connecting between Tile 1 to Tile 3.
• Internal buffer IBT 2′−T 3′ in Tile 2.

Suppose that we study the scenario in which T2 migrates from Tile 1 to Tile
2 then T3 migrates from Tile 2 to Tile 3, all configurable channels have to be
updated in all possible cases. Firstly, in order for T2 to resume communication with
T1 properly, external channel CHT 1−T 2′ has to be opened while buffer IBT 1−T 2 is
kept to work as CB for T1 which is the sending side. This keeps the unconsumed
tokens stored and ready to be sent to Tile 2 when RBT 1−T 2′ is allocated in its
memory. Secondly, external channel CHT 2−T 3 is closed and CBT 2−T 3 is freed from
the memory without caring about the unconsumed tokens. At Tile 2, RBT 2′−T 3
which has a copy of all unconsumed token in CBT 2−T 3 is kept as it is and continues
working as an internal channel between T2′ and T3. In short, RBT 2′−T 3 transforms
to internal buffer IBT 2′−T 3.

When T3 migrates from Tile 2 to Tile 3, firstly, external channel CHT 1−T 3
is closed and RBT 1−T 3 is freed from memory while the other branch of the con-
figurable channel is the external one CHT 1−T 3′ which is opened, while on Tile 3
RBT 1−T 3′ is allocated. Before communication is resumed normally between T1 and
T3′, all stored tokens in CBT 1−T 3′ are sent to Tile 3 and by this token loss is
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avoided. Secondly, internal buffer IBT 2′−T 3 acts as CBT 2′−T 3′ keeping all uncon-
sumed tokens for T2′ and external channel CHT 2′−T 3′ is opened to connect T2′

and T3′. RB is allocated in Tile 3 for T3′ which is RBT 2′−T 3′ that is supposed
to store all unconsumed tokens once sent from Tile2 to Tile3 to enable consistent
communication resumption.

5.3 Solution agents layer

Number and roles of migration agents are determined by the adopted approach in
the system. There are different approaches, they are listed in the following:

Fully distributed approach: agents are all performing the same role which in-
cludes both migration decision taking and its execution. This approach fits
well the nature of EURETILE architecture, this is considered to be an ad-
vantage. However, such approach requires a complex design of the migration
agents. Another disadvantage of this approach is that a migration decision
can be taken by a number of different agents at the same time, this may lead
to stop the system if two adjacent tasks in the same process network migrate
at the same time. This is because migration of one task is done without in-
forming agents that migrate its neighboring one, this makes communication
inconsistency between them after migration is almost inevitable.

Fully centralized approach: one agent exists for the whole system that is re-
sponsible of both taking migration decision and its execution. This avoids the
complexity of the fully distributed approach, i.e. development of such central
agent is relatively easy on one side. On the other side, such single centralized
agent is not able to execute commands on remote tiles like accessing a task
state stored in the private memory in a remote tile. This is due to the fact
that EURETILE architecture is NORMA.

Semi-distributed approach: two types of agents are devised with different re-
sponsibilities. One migration agent is responsible for taking the migration
decision and another agent is responsible for executing migration commands.
Development complexity of this approach is neither as low like in the full
centralized approach nor as high like in the fully distributed one. It fits the
decentralized nature of the architecture of EURETILE and also avoids other
approaches disadvantages. The design complexity of agents is relatively allevi-
ated, however, there still some complexity in the inter-agent communication
needed in order to make all of them working in a coordinated manner to
perform the migration.

The third approach is adopted due to its advantages over the other two ap-
proaches. It still provides a scalable solution that fits distributed multi-tiled archi-
tectures of bigger number of tiles. Because of the fact that agents are working in
a semi-distributed hierarchy, there are different responsibilities between them. One
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master agent manages a group of slave agents, this makes migration takes place in
different levels: decision taking level is different from decision execution level. As
a result, there are two types of agents according to the role of each. They are as
follows:

i MigSup It is migration supervisor which is responsible for taking migration de-
cisions for migrate-able tasks from their source locations to their destinations.
It initiates migration via sending commands to source tile of a migrating task
and its destination one.

ii MigCtrl It is migration controller which is responsible for executing migration
commands, sent by MigSup, by transferring task state from its source tile to
its destination one taking care of communications with the neighbors and
resumes the task at its destination. MigCtrl is able to execute migration
commands on tile due to its ability to access the private main memory.

The whole system is divided into clusters where every cluster is composed of
a number of tiles. Migration takes place inside a single cluster. There exists only
one MigSup per cluster while one MigCtrl exists per tile. Not only are the APIs
provided by MProcFW sufficient for migration but also necessary information about
mapping and platform must be provided to MigSup and MigCtrl. This information
exists in the form of tables linked with the agents, otherwise, they cannot know
which migrating tasks to migrate or to which destination they shall be migrated to.
This is in addition to the information about the neighbors of every migrating task
that is necessary for accomplishing migration. The tables are as follows:

i Global View Table GVT contains information about all migrating tasks found
in a cluster. GVT is composed of a number of records equal to the number
of tiles in the cluster such that each record corresponds to a tile. Inside a
record, all migrating tasks residing in the corresponding tile are listed along
with their destinations. GVT is the table linked with MigSup, hence, only
one exists per cluster. An example of GVT is in table 5.1, it is the GVT of
the example shown in Fig 5.6. Every record contains beside tile index, the
migrate-able tasks and their destination locations like in Tile 2, there are
two migrate-able tasks {T2′, T3}, however, only T3 can be migrated as it is
in Tile 2 while its replica in its destination tile (Tile 3) is not running. T2
is running on Tile 1 so it cannot be migrated from Tile 2, hence in Tile 1
record, migration possibility of T2 is TRUE.

ii Destination Look-up Table DLT contains more details about migrating tasks
such as all neighbors’ locations, all IDs of channels connecting a migrating task
with its neighbor(s) and its destination tile. This table is linked with MigCtrl.
It enables MigCtrlsrc

2 to know where a migrating task is destined to. This
is in addition to be capable of sending commands to right neighbor(s) to stop

2It is the MigCtrl that resides in the source tile of a migrating task.
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Table 5.1: GVT of the example shown in Fig 5.6.

Tile index Migrate-able Destination Neighbor(s) location(s) Migration
task(s) location Positionα location possibility

Tile 1 T2 Tile 2
Predecessor Tile 1 TRUESuccessor Tile 2

Tile 2
T2′ Tile 1

Predecessor Tile 1 FALSESuccessor Tile 2

T3 Tile 3
Predecessor Tile 1 TRUESuccessor N/A

Tile 3 T3′ Tile 2
Predecessor Tile 1 FALSESuccessor N/A

αA neighbor position is the corresponding relative position in the process network to the
migrating task.

Table 5.2: DLT of Tile 1 example shown in Fig 5.6.

Migrate-able Destination Neighbor(s)
task(s) location, Relative Task Tile Channel Port

task ID position ID ID ID number

T2 Tile 2, T2′ Predecessor T1 Tile 1 IBT 1−T 2 0
Successor T3 Tile 2 CHT 2−T 3 1

and/or resume communication during and after migration. An example of
DLT is in table 5.2, it is the DLT of Tile 1 in the example shown in Fig 5.6.
The difference between DLT and GVT can be best shown in the difference
between Tile 1 record in the GVT (table 5.1) and in the DLT of the same
tile. In DLT, much information is supplied about the channels connecting T2
and its neighboring tasks in application process network and their IDs.

In a typical migration case, MigSup takes a decision of migrating one of migrate-
able tasks in some tile. It inquires its GVT to retrieve information about its destina-
tion tile. Then it sends commands to both MigCtrldest

3 and MigCtrlsrc MIG_IN
and MIG_OUT, respectively. MIG_IN command makes MigCtrldest

4 prepares for
receiving the task state, this is by setting up necessary communication channels,
creating the task and waiting for task state that is sent by MigCtrlsrc so as to
resume execution of the migrating task. MigCtrlsrc, in turn, suspends neighbors of
the migrating task to stop communications temporarily, stops the migrating task,
collects its state and sends it to its destination. Then it resumes the neighbors after
the reception and loading of tasks state on destination side. In order to achieve
that MProcFW comes into play.

3It is the MigCtrl that exists in the destination tile of a migrating task.
4It is the migration controller that resides in the destination tile of a migrating task.
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Communications take place either among MigCtrls or between MigSup and
MigCtrls. That is why channels must exist between the agents. A star topology
is adopted where channels exist only between all MigCtrls and MigSup. MigSup
initiates migration by sending to corresponding MigCtrl, then it acts as a router
to redirect commands and messages sent by one MigCtrl to another, this is due to
the lack of direct channels between MigCtrls. MigSup starts routing after initiating
migration and returns back to its initial state when it receives MIG_OUT_DONE5

notification.

5.4 Migration principle

Migration algorithm is designed so that task migration functionality is split into
two parts:

i Task migration decision taking part.

ii Task migration execution part.

The decision part is the one where migration decision is taken in MigSup, however,
neither the algorithm of taking such decision nor its input(s) upon which the deci-
sion is taken is not in the scope of this work. The responsibility of the execution
of the migration is the one of MigCtrl. MigSup initiates migration by triggering
corresponding agents (MigCtrldest and MigCtrlsrc) to start executing migration
process. In this section, the connection of the agents in the system and migration al-
gorithm is expanded in details. We address how the design circumvents issues like
the blockage that might occur during migration takes place due to the transient
interruption in the execution of some tasks in the application process network.

5.5 Agents connection

The connection between MigSup and MigCtrls is depicted in Fig 5.7, between
MigSup and MigCtrl two KPN channels exist in both directions, both are depicted as
one bidirectional channel for brevity. Communication is inevitable between MigC-
trls as will be expanded in the algorithm details yet it is intended not to use any
channels between MigCtrls. This is chosen so as to enable the design to be scalable
since the inter-MigCtrls communication takes place between via dedicated chan-
nels. Their number will get higher when a cluster contains more and more tiles.
That is why MigSup initiates migration process and then works as a router to route
messages from one MigCtrl to another preventing bloating the number of channels
when more tiles exist in a cluster. The gain due to reduction of number of channels
amortizes the extra delay in communication introduced by this technique. This
gain of this choice can be shown as follows:

5MIG_OUT_DONE is a notification sent by MigCtrlsrc to MigSup to saying that migration
has been completed. MigSup consequently sends to all MigCtrls to update their tables.
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Figure 5.7: Communication channels between MigSup and MigCtrls,
dashed arrow shows an example of inter-MigCtrls communication that
passes through MigSup.

• If every pair of MigCtrls are connected by two unidirectional channels, num-
ber of channels equals 2

(n
2
)

+ 2n = n2 + n channels, where n is the number of
MigCtrls. Example: in Fig 5.7, n = 5 number of channels for inter-MigCtrls
communications equals 2

(5
2
)

= 20 while number of channels connecting MigC-
trls and MigSup equals 10 channels making total number of 30 channels.

• Using MigSup as a router, number of channels reduces to be linearly dependent
on the number of MigCtrls and equals to 2n channels. Example: in Fig 5.7,
just 10 channels are required for connection between MigCtrls and MigSup.

5.6 Blockage avoidance

Task migration process implies the pause of the neighboring tasks to the migrating
task in order to stop temporarily the input flow of tokens to the migrating task.
Such pausing interrupts the execution of the application tasks which might result
in blockage if not planned in the right manner. If the read function that is called
to receive tokens is synchronous6 which is the case in KPN, the order of pausing the
tasks can cause total halt in the system. In order to investigate that, we show in
Fig 5.9 a typical process network or a part of it and we study it. Tm is the migrating
task while Ti and To are its predecessor(s) and successor(s), respectively. Ti is one
or more tasks that produce the input tokens of Tm. To is like Ti but succeed Tm in
the process network.

If the order of pausing the tasks starts with pausing Ti task(s) then issues
migration request to Tm then pauses T0, Tm might hang waiting for tokens from Ti,
and hence, fire procedure (shown in Fig 5.8) never reaches its end of execution. As
a result, the pausing order is performed in counter direction of the token dependence,

6It means that task halts waiting to receive tokens.
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Figure 5.8: fire function consumes all input tokens from all channels,
processes the data and finally sends out the output ones every iteration.

Figure 5.9: Tm is the migrating task. Ti is the set of tasks that produce
input tokens to Tm. To is the set of tasks that consume output tokens
from Tm. CHsrc−dst is a unidirectional channel that connects Tsrc and
Tdst. NIT : Number of Input Tokens, NOT : Number of Output Tokens.

so To depends in consuming tokens on Tm and same applies to Tm but with respect
to Ti. In order to avoid blockage, To are first paused then a migration request is
issued to Tm then Ti is paused. After migration whatever the order of resumption
is does not impact the consistency of the execution of the application.

5.7 Migration algorithm

In this section, the algorithm of the migration process is expanded. The sequence
of commands and actions starting right after migration decision taking is explained
showing the interaction between agents (MigSup and MigCtrl). Commands are
classified into two types depending on their producers, they are as follows:
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1. CONTROL commands: they are the commands that are sent by MigSup to
MigCtrl, they are initiated by MigSup so they never require to be routed.

2. TRANSFERRED commands: they are the commands that are created
by MigCtrl and sent to another MigCtrl, they are most probably created
by MigCtrlsrc to either MigCtrldest or other MigCtrls which control tiles
containing neighboring tasks to Tm. As a result these commands always
require to be routed as they are sent firstly to MigSup that routs them to
their destinations.

CONTROL commands are listed as follows:

• MIG-IN, it is the command that informs MigCtrldest
7 that a migration is

occurring and it is in the process of receiving the task state of a migrating
task in this tile. This makes MigCtrldest create the task by activating its
code replica that resides in the memory.

• MIG-OUT, it is the command that informs MigCtrlsrc
8 to start sending

the migrating task with the index that is included in the arguments of the
command from its source tile to its destination one.

• UPDATE-DLT, it is the command that follows every migration process that
holds the updated information of the current locations for the migrating task,
it is sent to every MigCtrl.

TRANSFERRED commands are listed as follows:

i PAUSE-UPDATE: the aim of this command is to pause a neighboring task
and update the configurable channel connected between it and the migrating
task, i.e. switch the channel to the other branch.

ii SYNCH-RESUME: this command is sent only to predecessors of the migrating
task in the task graph to synchronize the contents in their CB with RB of the
migrating task at its destination before its resumption. This is meant so as
to preserve communication consistency.

iii RESUME: this command is sent to successors of migrating task in the task
graph to resume them after migrating task state successfully sent to its des-
tination.

iv LOAD-STATE: this command is sent to the destination of a migrating task
so as to receive the state sent from the source.

When migration decision is taken, MigSup looks into GVT to determine both
source and destination MigCtrls. Then firstly, it sends to MigCtrldest MIG_IN,
secondly, it sends to MigCtrlsrc MIG-OUT, thirdly, MigSup starts working as a

7The MigCtrl that resides in the destination tile of a migrating task.
8The MigCtrl that resides in the source tile of a migrating task.
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Figure 5.10: FSM of Migration controller. C: Control command, T:
Transferred command

router until it receives a MIG_OUT_DONE message from the MigCtrlsrc. Once
a MigCtrl receives a command whether it is a CONTROL or TRANSFERRED, it
changes its state of listening to a state that is corresponding to every command in
order to execute the corresponding functionality, this is shown in Fig 5.10.

Fig 5.11 shows simplified sequence of migration algorithm, it is made in a brief
way reducing implementation details to show how it works in theory. It starts right
after taking the decision by the MigSup. MigSup retrieves the correct data from
the GVT and determines its destination and locations of its neighbors Ti and To.
Then it starts the same sequence of control commands as explained before. For
the sake of brevity and clearness, we use MigCtrlneighbor to represent any MigCtrls
that control one or more neighboring task to Tm in this example.

After MigSup issues its control commands and sends them to MigCtrlsrc and
MigCtrldest. MigCtrlsrc starts the migration by pausing To by sending PAUSE-
UPDATE command to MigCtrlneighbor via MigSup to pause To task(s) and update
the channels connecting them with Tm. After pausing all To task(s), MigCtrlsrc

send LOAD-STATE command accompanied by the state of the migrating task to
MigCtrldest so as to make the latter able to resume the migrating task on its
tile. Once MigCtrldest finishes the resumption of Tm, it sends a MIG_IN_DONE
acknowledgement to MigCtrlsrc, this is to enable MigCtrlsrc to start pausing Ti

task(s) and updating all the channels that connect them with Tm. Afterwards,
MigCtrlsrc sends to MigCtrlneighbor SYNCH_RESUME to synchronize CB and
RB buffers, this is where, write-with-copy protocol (explained in 5.2.2.2) comes
into play, this synchronization takes place only with Ti task(s) that resend all stored
tokens in their CBs to T ′

m in its destination tile. Once synchronization is finished,
Ti are ready to resume their execution normally.
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Figure 5.11: Migration sequence diagram

5.8 MigSup routing algorithm

One of MigSup states is the routing state where TRANSFERRED commands are
routed. In order to have a functional routing, a unified header is devised. This
unified header can accommodate different commands by including its ID and have
their arguments along with its payload that is most probably is following command
header. This header is shown in Fig 5.12.

When MigCtrl wants to send a command to another MigCtrl, the former puts
the destination tile index in the command header. Once MigSup receives the com-
mand, it checks the command type CONTROL or TRANSFERRED and redirects
the command to its destination tile when it finds command type TRANSFERED.
Sometimes commands are followed by chunks of data like in sending task state, in
order to redirect these chunks correctly MigSup detects that by checking payload
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Figure 5.12: Unified header command with is payload.

size part in the header, when payload size is bigger than zero, this implies that
payload shall follow the received command.
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In this chapter, we show how task migration solution (MProcFW + migration
agents) is inserted in the software and automatically generated for the multi-tiled
system EURETILE. Then results of the experiments that are performed on task
migration are shown. Firstly, we show the platforms on which experiments are
running, there are two platforms where one of them is an ARM-based simulation
platform while the other one is an x86-based real hardware platform. Secondly,
we expand the existing design flow and the tool-chain for automatic generation.
Thirdly, we show how the task migration solution is inserted in the tool-chain in
order to eventually synthesize software with task migration capability. Finally, we
expand the results of the experiments that are run on both platforms. we evaluate
the overhead both in terms of code size and execution time, we give estimation
functions in order to predict the cost of migration to certain accuracy.
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6.1 Platforms

6.1.1 Simulation platform

The simulation platform used for our experiments is developed in systemc TLM. It
is composed of all components for a system such as peripherals (TTY, display ...
etc.). A QEMU [44] emulator wrapper is developed and is included in every tile
as a systemc component. This simulation platform developed in TIMA laboratory
is detailed in [45]. A systemc TLM model for network device has been integrated
in the platform. All components in a tile are connected by an abstract network-
on-chip developed in systemc. Every tile has a processor component of type ARM
cortexA9 architecture with its private memory.

This simulation platform is characterized by scalability so that tiles can be
instantiated before every simulation, it can instantiate from 2 tiles to 128 tiles.
Number and topology of tiles are specified and with the use of scripts, the platform
is instantiated and associated. Each tile runs its own copy of the OS.

6.1.2 Hardware platform

The hardware platform is an Intel based multi-tiled fault-aware platform. It is called
lattice QUantum chromodynamic ON Gpu QUonG, presented in [46]. It aims to
deploy a GPU-accelerated HPC hardware platform mainly devoted to theoretical
physics computations. The objective will be reached catalyzing the efforts of a com-
munity of physics researchers, delivering the applications computing requirements
and executing platform benchmark, in collaboration with computer scientists and
hardware and software experts in charge of design and develop the system itself.
The QUonG project will deliver a complete reference hardware platform tailored
for scientific computations leveraging on commodity devices (computing and control
part) and on a dedicated custom interconnection system APEnet+ [47] for inter-
node communication network.

The Hardware platform has 16 tiles, each has a Xeon SMP processor, private
memory and a network device. All components inside a tile are connected by
PCIe1. The platform rack, in reality, is shown in Fig 6.1. A server is installed and
used in order to facilitate remote connection and software loading to different tiles.
Since the platform is developed in Rome, Italy. As a result, remote connection is
inevitable.

1Peripheral Component Interconnect Express, it is a computer high-speed serial bus. It is the
successor of PCI and AGP.
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Figure 6.1: Hardware platform.

6.2 Operating System

We use a µkernel embedded OS coded in C99 called DNA-OS developed in TIMA
and is presented in [14]. It has been chosen because of its small memory footprint,
simplicity, small overhead and its layered structure. The base communication is run
through virtual file system VFS. The OS runs single threaded tasks. It incorporates
co-operative scheduling where a task has to yield in order for other tasks to take
control, this is by explicit corresponding call of OS API.

It is capable of supporting SMP as well as uni-processors. Libc is widely sup-
ported. However, neither MMU nor dynamic loading is supported as It targets
embedded systems domain. Its kernel follows the exokernel architecture [48]. It has
been ported on x86 for high performance computing. As a result, DNA-OS is used
as OS in the EURETILE software stack.

6.3 Design flow

The design flow developed in the context of the EURETILE project is based on
DAL presented in section 3.6.2. It is designed to map multiple streaming parallel
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applications on multi-tiled MPSoCs. It is a scenario-based design flow that supports
design, optimization, and simultaneous execution of multiple applications targeting
heterogeneous many-core systems. Applications are specified as KPNs. KPNs are
suitable for a general description of a high-level design flow as they are determi-
nate, provide asynchronous execution, and are capable to describe data-dependent
behavior. In case a higher predictability is required, the application model can be
restricted, e.g., to synchronous data flow SDF graphs [49]. To coordinate the execu-
tion of different applications, we use a FSM, where each scenario is represented by
a state. Transitions between scenarios are triggered by behavioral events generated
by either running applications or the run-time system.

Since this design flow is meant for embedded systems where number of scenarios
is restricted, hence, scenarios are known in design time. The proposed design flow
has to provide three key features to the system architect, they are as follows:

1. A high-level specification model that hides unnecessary implementation de-
tails but provides enough flexibility to specify dynamic interactions between
applications.

2. An optimal mapping of the application onto the architecture in a transparent
manner.

3. Run-time support to dynamically change the workload of the system.

Mappings are calculated off-line. Later, at run-time, the run-time manager
monitors behavioral events, and applies the pre-calculated mappings to start, stop,
resume, and pause applications according to the FSM. As the number of scenarios
is restricted, an optimal mapping could be calculated for each scenario. However,
assigning each scenario a different mapping might lead to bad performance due to
reconfiguration overhead. Therefore, processes are assumed resident, i.e., an appli-
cation has the same mapping in two connected scenarios. The result of this approach
is a scalable mapping solution where each application has assigned a set of mappings
that are individually valid for a subset of scenarios. The run-time manager is made
up of hierarchically organized controllers that follow the architectural structure
and handle the behavioral and architectural dynamism. In particular, behavioral
dynamism leads to transitions between scenarios, and architectural dynamism is
caused by temporary or permanent failures of the platform. The controllers mon-
itor the behavioral events, change the current scenario, and start, stop, resume,
or pause certain applications. Whenever they start an application, they select the
mapping assigned to the new scenario. To handle failures of the platform, spare
cores are allocated at design-time so that the run-time manager has the ability to
move all processes assigned to a faulty physical core to a spare core. As no addi-
tional design-time analysis is necessary, the approach leads to a high responsiveness
to faults.
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Figure 6.2: Whole design and synthesis flow. The feedback part in
Y-chart flow is removed for the sake of brevity.

Figure 6.3: Layers of software MProcFW.

The design flow adopts Y-chart paradigm and is shown in Fig 6.2. It is a
scenario-based one where all execution scenarios are combined into a global Finite
State Machine FSM, the states of the latter describe the states of all applications.
This design-flow supports design, optimization, and simultaneous execution of mul-
tiple distributed data-flow applications.

All execution scenarios are then checked via simulation so as to determine map-
ping according to quality of service. Although details of mapping phase are not
given since it is out of the scope of this work, it is worth noting that spare tiles are
chosen to be dedicated for migrating tasks in case of thermal spots. As a result,
task code replicas exist at the predefined destinations and linked with the code.
Those replicas are not executed until migration takes place.
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MProcFW is integrated with DAL programming environment as depicted in Fig 6.3.
Not a very big development effort has to be exerted in order to accomplish such
integration. This effort can be summarized in the following:

1 Task model shown in Listing 5.1 in the previous chapter is adopted. This
model (called MProc_task_bootstrap) forms a unified task handler that can
run whatever application task. This handler argument is a unified data struc-
ture TaskStructure which contains pointers to functions init, fire, and
finish.

2 Since there will be two kinds of channels: regular and configurable ones. High
level procedures read and write that are found in Listing 5.1 shall differen-
tiate between them and call the right corresponding API either from DAL
or from MProcFW. That is because write-with-copy protocol is only applicable
with configurable channels. As a result part of MProcFW layer is under DAL
layer.

Although mapping phase is not in the scope of the work depicted in dashed lines
in Fig 6.2, it is important to clarify the inputs and outputs of this phase. Basically,
application(s) tasks graphs along with description of platform architecture are the
inputs to mapping phase.

In order to clarify the flow, we show input and output files of a practical example.
A 4 tile platform is used to house a small application, it is composed of three tasks:
generator (gen), square (sq) and consumer (cons). Gen generates numbers in a
predefined range. These numbers are sent to sq to be squared, sq has to keep
track of the indexes of the inputs, hence, it is not a state-less task. Finally, cons
displays the result of sq. The task graph is depicted in Fig 6.4 showing that sq is
migrate-able and configurable channels connecting it with its neighbors.

Figure 6.4: Process network
sq: migrate-able, sq’: replica.

First input to mapping phase is the application(s) task-graphs files which are
described in Extensible Markup Language XML as shown in Listing 6.1. The pro-
cess network shown is that of the task graph depicted in Fig 6.4. It describes every
process by itself along with its connecting channels. It is worth noting the following:

i Tasks that can be migrated are specified by assigning “mig” value to type
attribute like in the case of sq task. Ordinary tasks that needn’t be migrated
are left with “io”.
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<processnetwork>
<process name="gen" type="io">

<port type="output" name="1"/>
<src type="c" location="gen.c"/>
<src type="h" location="gen.h"/>

</process>
<process name="sq" type="mig">

<port type="input" name="1"/>
<port type="output" name="2"/>
<src type="c" location="sq.c"/>
<src type="h" location="sq.h"/>

</process>
<process name="cons" type="io">

<port type="input" name="1"/>
<src type="c" location="cons.c"/>
<src type="h" location="cons.h"/>

</process>
<channel name="ch_gen_sq">

<send process="generator" port="1"/>
<rec process="square" port="1"/>

</channel>
<channel name="ch_sq_cons">

<send process="square" port="2"/>
<rec process="consumer" port="1"/>

</channel>
</processnetwork>

Listing 6.1: Task graph description of the application whose process network is shown
in Fig 6.4.

ii Configurable channels are not explicitly described. They have to be calculated
by the SW synthesis tool latter knowing the migrating task and the spare
tile(s). This is because Task migration insertion does not impact the design
phase like the SW synthesis phase.

The second input to mapping process is the description of the 4 tile platform is
shown in Listing 6.2. The tiles are connected by 3D torus NoC, tiles are found on
the Z -axis making 1 × 1 × 4 platform. Spare tile is chosen to be tile_3, this is by
putting a non-zero value in substitute attributed, for example, substitute=“1“ in
Listing 6.2. The whole 4 tiles are assembled in one cluster cluster_0.

The output of mapping phase is an XML file that describes where each tile shall
run on which tile, it is shown in Listing 6.3. This does not include the replicas
of migrating tasks, replicas placement are calculated latter by SW synthesis tool
latter.

All these mentioned inputs along with the output of mapping phase and appli-
cation(s) codes written in C language are all inputs to the SW synthesis tool as
expanded in the following section.
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<network x="1" y="1" z="4"/>
<tile name="tile_0" id="0" substitute="0">

<location x="0" y="0" z="0"/>
<port name="port0" />

</tile>
<tile name="tile_1" id="1" substitute="0">

<location x="0" y="0" z="1"/>
<port name="port0" />

</tile>
<tile name="tile_2" id="2" substitute="0">

<location x="0" y="0" z="2"/>
<port name="port0" />

</tile>
<tile name="tile_3" id="3" substitute="1">

<location x="0" y="0" z="3"/>
<port name="port0" />

</tile>
<shared name="cluster_0">

<port name="port0" />
<port name="port1" />
<port name="port2" />
<port name="port3" />

</shared>
</network>

Listing 6.2: XML description of 1 × 1 × 4 Platform.

<mapping>
<binding name="gen">

<process name="gen" />
<processor name="tile_1" />

</binding>
<binding name="cons">

<process name="cons" />
<processor name="tile_1" />

</binding>
<binding name="sq">

<process name="sq" />
<processor name="tile_2" />

</binding>
</mapping>

Listing 6.3: The mapping.

6.4 SW synthesis tool

A two-stage tool chain is developed to perform the software synthesis phase. The
software synthesis input consists of the application models, the code of the tasks,
the mapping, and the architecture specification. The role of the synthesis tool is
then to transform the input into binary code for platforms used. Two platforms
are used: ARM based simulation platform and x86 based real hardware one. The
tool is depicted in Fig 6.5. The tool is split into two parts, namely front-end and
back-end. The front-end transforms parallel data-flow applications into multiple
threads in C code. The back-end compiles and links the obtained code from the
front-end on top of the OS and generates binary code for the target platform. In
the following, the roles of both tool ends are expanded.
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Figure 6.5: Software synthesis tool with its input and outputs for both
platforms. The OS used is DNA-OS.

6.4.1 Front-end

After mapping phase is finished, we have the following input files for the front-end
of the tool, as shown in Fig 6.5:

i Platform architecture file contains information about the system. It lists
number of tiles, cluster(s) and spare tile(s). The file is called platform.xml.

ii The result of mapping phase. Mapping is described in a XML file called
mapping.xml.

iii All the possible scenarios of the system and their FSM are described in a
XML file called fsm.xml.

iv Application(s) codes with their process networks.

After parsing applications process networks, mapping, and FSM, the front-end part
generates C codes for DAL controllers. It modifies application codes without chang-
ing any of the code that is responsible of functionality. The modification in applica-
tions codes is limited in mingling tasks names with their corresponding tile as well
as names of their C files to be able to be instantiated several times. It, also, gen-
erates necessary code for FSM and mapping. This part of the tool, as well as, the
back-end part is developed in Ruby. On migration side, both MigSup and MigCtrl
codes are fixed, i.e. they need just to be placed in the correct tile.

6.4.2 Back-end

The main responsibility of the back-end is to provide two different tool chains
targeting x86 or ARM architecture. However it still takes platform architecture,
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task graphs (process networks) and mapping output. This is to generate GVT and
DLTs for MigSup and MigCtrls, respectively. It generates source codes for each
tile, a bootstrap file for each tile, and some specific files required to build the final
binaries such as a compilation and linking script for each tile. The main role of the
bootstrap file (main.c) is as follows:

1. allocates the threads

2. creates the channels

3. links the communication ports of every task to its corresponding channel.

4. starts the controllers on its corresponding tile.

Since this part of the tool chain supports two target platforms, it has specific parts
for every target including the Hardware Abstraction Layer HAL and the interfaces
to interact with the platform specific compilers and linkers.

MigSup and MigCtrls follow the same task model in Listing 5.1. Back-end part
generates two functions in separate files holding the same names: init_GVT() and
init_DLT(), these functions are invoked once in INIT procedure in MigSup and
MigCtrl, respectively.

Figure 6.6: Mapping of the agents and applications on all four tiles.

6.5 First experiments

In this section, we show the first experiments that are considered to be a proof-of-
concept of task migration. We illustrate the functionality of the task migration by
real screen shots that show different steps of migration. We show such experiments
on both platforms expanding the procedures performed in case of the HW one.
Same mapping example shown in Fig 6.6 is used for both experiments undergone
on both platforms. The three tasks are as follows: generator (App1_generator),
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square (App1_square), and consumer (App1_consumer). App1_square task is
migrate-able, the code of its replica is changed to be multiplying by ten. This is to
have a clear display of the effect of migration when it takes place.

Since the system is composed of tiles that are connected by 3D torus network-
on-chip, tiles are designated by their Cartesian coordinates, this is in the following
manner: Tile n shall be referred to as tile_X_Y _Z All four tiles are on Z-axis;
therefore, tiles which are shown in fig 6.6 are designated as follows:

i Tile 0 is referred to as tile_0_0_0

ii Tile 1 is referred to as tile_0_0_1

iii Tile 2 is referred to as tile_0_0_2

iv Tile 3 is referred to as tile_0_0_3

Figure 6.7: Screen shot of the output of tile_0_0_1.
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6.5.1 Simulation

We study only the first migration that takes place during the execution of applica-
tion 1. At an arbitrary point in time, App1_square migrates to tile_0_0_3 where
there exists its code replica. The sole difference in the screen output between the
one of simulation and the one of the real HW is the debug mode that is activated
in simulation only. As a result, Log messages are displayed on the screen in addi-
tion to the regular output of tasks App1_consumer (always starts with app1_cons)
and App1_generator (always starts with App1_gen), they show, in more details,
the steps that take place in the corresponding tile. Fig 6.7 depicts the output of
App1_consumer at tile_0_0_1 that records the period of time that starts almost
with last moment in the execution by App1_square at its source (tile_0_0_2) till
its resumption at its destination (tile_0_0_3).

There are seven migration marks that are added to show different steps in such
period. Before explaining those marks, we recall how migration starts according to
its algorithm. In order for App1_square to migrate, several different actions have to
be taken by migration agents beforehand. MigSup sends MIG_IN and MIG_OUT
to MigCtrl3 and MigCtrl2, respectively. Once MigCtrl2 receives MIG_OUT,
it pauses App1_consumer, issues migration request to App1_square, collect and
send task state to MigCtrl3 at tile_0_0_3, then pauses App1_generator. After-
wards, it sends SYNCH_RESUME command to MigCtrl1 to synchronize CB of
App1_generator and RB of App1_square at tile_0_0_3 and resume all paused
neighbors to App1_square. Fig 6.7 shows the period that contains the reception of
PAUSE_UPDATE and SYNCH_RESUME commands from MigCtrl2 that con-
cerns App1_generator and App1_consumer. The seven marks highlight commands
actions as well as their effects. They are explained in the following:

M1 It shows the last value displayed by App1_consumer before the reception of
PAUSE_UPDATE for the same task. Final value is 152 = 225.

M2 The reception of PAUSE_UPDATE commands to pause App1_consumer (as
shown in the figure, app. ID = 0, task ID = 1) and update the configurable
channel connecting it with App1_square.

M3 App1_generator is still running as it is still generating numbers 16, 17.

M4 The reception of two commands PAUSE_UPDATE and SYNCH_RESUME.
The first one is to pause App1_generator (as shown in the figure, app ID
= 0, task ID = 0) and update the configurable channel connecting it with
App1_square, no additional display that shows generations of App1_generator
appears. The second command is sent to synchronize and resume both paused
tasks. After synchronization takes place, resumption starts task by task. Re-
sumption takes place here for App1_generator.

M5 As a result of the resumption, App1_generator continues generating reaching
value 18.
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M6 Resumption of App1_consumer takes place.

M7 App1_consumer continues displaying results newly calculated (×10) by App1_square
in tile_0_0_3, Tokens are preserved as values carry on from 160.

Figure 6.8: Screen shot of the outputs of tiles tile_0_0_0, tile_0_0_2,
and tile_0_0_3.

In fig 6.8, outputs of tiles tile_0_0_0, tile_0_0_2, and tile_0_0_3 are shown for
the sake of comprehension. In tile_0_0_0, MigSup (referred to as Broker) sends
MIG_IN and MIG_OUT to MigCtrl3 and MigCtrl2, respectively. Afterwards,
it enters update mode in which it sends to MigCtrls for updating their DLT. In
tile_0_0_3, no task displays its output as App1_square does not display its pro-
cessing, hence, MIG_IN command reception is shown along with the creation of
the task and its connecting channels. In tile_0_0_2, we see the beginning of the
second migration that takes place in application 2 App2_generator, however, it is
not shown since the first migration process shows enough details.
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Figure 6.9: Screen shot of the outputs of QUonG platform: tile
tile_0_0_0 (left half) and tile tile_0_0_1 (upper right part). Server
output is shown in lower right part.

6.5.2 HW platform

In this section, we show the screen output of the real HW platform. Same ap-
plications with the same mapping shown in fig 6.6 are used for this experiment.
However, the number of tiles is 16. As a result, the first four tiles are having the
same mapping while the rest of them do not contain any application except that
each one has a MigCtrl with a void DLT. The screens output of some HW tiles are
shown in the right half of fig 6.9.

The HW platform is accessed remotely. A PXE2 server is used in order to be
able to run different SW on platform tiles. Firstly, a remote connection is estab-
lished to access the server via ssh session. Secondly, a set of different scripts are
used to reset, reboot tiles processors and connect terminals (using Linux screen
command) to different tiles so as to be able to view their output. Thirdly, software
is loaded from the local machine to remote tiles via another SW on the server, this
software shows the synchronization of the tiles after they are reset such that what
is shown in lower right part in fig 6.9 where the system contains 16 tiles which are
all shown that they are starting.

2A Preboot Execution Environment server supplied a standardized client-server environment
that boots software that is retrieved from network on PXE client with PXE capable network
interface card.
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Same explanation as previously shown in simulation in sec 6.5.1 can be given to
the output of tile_0_0_1 shown in upper left part in fig 6.9. Migration takes place
arbitrarily and calculation has changed from squaring to multiplying by ten as it is
obvious in the transition between 36 = 62 and 70 = 7 × 10. Output of right part
of fig 6.9 shows that of the MigSup in tile_0_0_0, it shows the end of the update
state where all DLTs of all MigCtrls on all tiles are updated.

Although we have our technique working on both platforms, we mention in the
following sections the figures outputted from experiments run on the HW platform.
This is because of the fact that they are more accurate and expressive than those
coming out from simulation one which is used for debug and validation.

6.6 Performance overhead

Performance overhead due to migration is the time added on the execution time
of an application due to migration. The measured execution time is the total time
elapsed from the application starting time to its ending time including inter-tile
communication. Since our solution is agent based, there shall be two components
of this overhead. They are:

i Time added due to normal execution of the agents without migration.

ii Time added due to the process of migration itself.

That is why, to have a good idea about the overhead, we perform the measure-
ment in three different cases for an application. They are as follows:

case 1 Migration agents do not exist. Hence migration cannot be performed. This
case is meant for measuring the time an application needs to finish without
any added overhead.

case 2 Migration agents exist but no migration is performed. This case is meant
for measuring the overhead introduced by migration agents compared to case
1.

case 3 Migration process is done. This case is meant for measuring the overhead
introduced by both migration agents and the migration process itself com-
pared to cases 1 and 2.

The time is measured in x86 by calling function that uses High Precision Event
Timer HPET to record the number of cycles from the beginning of execution. As
a result, time is measured by calling the function twice at the start and end of the
time required to be measured. Function call has negligible overhead.

Four tiles are used to accommodate two identical applications, each application
contains three tasks. The tasks are: generator task, processor task and consumer
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Table 6.1: Execution times of both applications and overheads.

Case Starting time Ending time Execution time Overhead
(µs) (µs) (µs) (%)

Application 1
1 65,027,461 67,247,538 2,220,077 N/A
2 28,401,948 30,623,281 2,221,332 0.06
3 21,754,757 24,379,930 2,625,173 18.25

Application 2
1 33,163,108 35,387,392 2,224,284 N/A
2 28,687,143 30,911,856 2,224,713 0.02
3 40,811,884 43,358,217 2,546,333 14.49

task. All of the three tasks are not state-less tasks, i.e. they are developed to have
states. The mapping of the application and migration agents is depicted in Fig 6.6.
In Table 6.1 execution times are shown for every case and every application.

It is noticed that the agents add negligible overhead to the execution time of
both applications as their increase is around 0.02% - 0.06%. Knowing that in typ-
ical situations migration is not an ordinary event that takes place regularly, there
is almost no cost for deploying the agents along with the applications regarding
performance.

The overhead due to migration increases the execution time by about 18% com-
pared to that of case 1 of application 1 whereas just by 14% in application 2. The
difference is due to the difference in the migrating task between both applications
and its placement regarding its predecessors and successors in task graph. In appli-
cation 1, APP1_square is the migrating task and it has two neighbors in different
tiles. This increases the messages between MigCtrls, this takes longer time com-
pared to application 2 where APP1_generator is the migrating task which has only
one local neighbor.

6.7 Migration overhead vs. task state size

The aim of this set of experiments is to investigate how much migration overhead
gets affected by changing task state size. This impacts the elapsed time taken in the
transfer of task state size. It is also desired to investigate if the migration algorithm
takes longer times when dealing with bigger sizes.

The experiments are executed on 4-tile platform with the same application and
mapping shown in Fig 6.6. Task state size of App1_square is increased every time
and migration time is measured. The data payload in each packet a network inter-
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Table 6.2: Task state size vs. overhead. Third column contains per-
centage increase normalized to overhead of 4kB.

Size Overhead Percentage increase
(kB) (µs) (%)

4 530,923 -
8 531,017 0.0176
12 531,021 0.0184
16 531,066 0.0268
20 531,099 0.033
28 531,191 0.0504
34 531,271 0.0654
40 531,360 0.0823

Figure 6.10: Performance overhead (in µs) vs. task state size (in kB).

face can send from its tile is limited to 4 kB, i.e. all tasks states that contain data
with sizes until 4 kB can be sent in one packet. Task states with sizes more than
4 kB can be split into a number of 4 kB packets. As a result, when overhead time
gets longer due to extra packets, it increases in ladder-like shape versus the state
size where every step width of this ladder equals 4 kB. Table 6.2 shows states sizes
with corresponding migration overheads.

There is a slight increase to the overall overhead due to the incremental state
size increase. In Fig 6.10, a graph is depicted to show the increase in overhead due
to the increases in state size. The scattered points show linear relation between
task state size and overhead due to migration. A straight line equation is deduced
by minimum sum of squared distances technique. Equation 6.1 can give good esti-
mates of migration overhead for bigger state sizes.
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y = 11.3x + 5.3 × 105 µs

where x = 4 ×
⌈

S

4

⌉
kB,

S is size in kB,
y is overhead in µs.

(6.1)

dy

dx
= 11.3 µs/kB or 45.2 µs/4kB (6.2)

This means that every new packet of 4 kB added to the communication, there are
approximately 45.2 µs added to the overhead. This can be observed in the numbers
supplied in the previous table, for example, the difference in overhead between the
two cases where state sizes are 16 kB and 12 kB respectively, is 44.7 µs and the
same applies to the two cases 20 kB and 28 kB respectively 92.52 µs. This linear
relation, however, is specific to several parameters like migrating task mapping.

6.8 Variation of migration overhead

The aim of this set of experiments is to investigate if the elapsed time due to mi-
gration varies even if it is repeated under almost the same conditions. This is to
test how deterministic the algorithm of migration is. With such information, we
can decide whether it is feasible to use predicted migration time with applications
that have to be executed with certain amount of quality of service QoS.

A number of migration experiments are repeated and every time the same task
is migrated in an arbitrary time. Every run, the machine has to reboot and that is
to avoid cache influence. Task state size is fixed in all the experiments and does not
exceed 4 kB, i.e. payload of one message is enough to transfer the task state. The
results are given in Table 6.3. The range of variation of the overheads measured is
2.25 ms as illustrated in Fig 6.11.

Figures show that the variation of the overhead due to migration is limited. This
is obvious as the whole range of variation between maximum and minimum of the
set of overhead results under study is approximately 0.6% of the average time and
the standard deviation is quite small (approximately 1 ms). This contributes to
calculating better estimates of migration overhead depending on application map-
ping, migrating task state size and OS used. This makes the proposed migration
solution able of introducing nearly deterministic migration costs for applications.

6.9 Overhead versus number of channels

Since task migration is performed in a distributed architecture via agents scattered
among a number of tiles in a cluster, migration procedure is undergone via exchange
of commands between tiles. That is why, elapsed time due to migration may depend
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Table 6.3: Variation of migration overhead.

Experiment Starting time Ending time Execution time Overhead to
(µs) (µs) (µs) Case 1 (µs)

1 27,801,647 30,425,029 2,623,382 402,057
2 45,614,455 48,237,843 2,623,387 402,062
3 78,243,189 80,866,640 2,623,450 402,125
4 36,361,808 38,987,310 2,625,503 404,177
5 121,649,077 124,273,322 2,624,246 402,920
6 24,258,600 26,884,037 2,625,437 404,111
7 56,529,629 59,154,948 2,625,319 403,994
8 69,221,222 71,844,467 2,623,245 401,920
9 31,294,232 33,919,547 2,625,315 403,990
10 88,779,483 91,402,913 2,623,430 402,105

Average time (µs) 402,946
Maximum time (µs) 404,177
Minimum time (µs) 401,920
Standard deviation (µs) 1,004
Difference (Max - Min) (µs) 2,258
Percentage of (Max-Min) to average time 0.56%

Figure 6.11: Migration overheads (in ms) variation.

on the number of neighboring tasks to the migrating one and how they are mapped.
Knowing that, the aim of these experiments is to investigate how much migration
performance overhead gets impacted when the number of neighbors for the same
migrating task increases. The obvious consequence of an increase in the number of
neighbors to a migrating task is the increase in the number of channels, hence, an
increase in the number of commands that deals with such channels. As a result,
longer time is supposed to be taken for migration.
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Figure 6.12: Mappings of the modified task graph on the three tiles
(tile_1 - tile_3). (a) mapping is for 4 generators. (b) mapping is for 10
generators.

Application 1 task graph has been modified to produce two examples where the
single generator is replaced by the following:

i Four generators as shown in Fig 6.12.(a). They are distributed on tile_1 and
tile_2.

ii Ten generators as shown in Fig 6.12.(b). They are distributed on tile_1,
tile_2 and tile_3.

The consumer and the migrating task, however, are kept as they were. Migrating
task accumulates the input data coming from the generators. MigSup still resides
in a separate tile (tile_0) as in Fig 6.6. The two examples are executed on the x86
based real hardware platform. Execution times are measured in case 2 and case
3. This is because it has already been shown that without migration, the overhead
added due to the agents is negligible. Execution tiles are shown in table 6.4.

The migration time obviously increases when the number of the neighbors of a
migrating task increases. This is due to the increase in number of necessary com-
mands sent by MigCtrlsrc to all MigCtrls found in neighbors’ tiles to execute the
migration.

We can further investigate the relation between the number of channels and
performance overhead due to migration by consolidating all the measurements from
all the experiments shown in the past sections. We list all experiments with the
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Table 6.4: Performance overhead with bigger number of generators.

Case Starting time Ending time Execution time Overhead
(µs) (µs) (µs) to C2 (%)

Four generators
2 17,482,080 19,565,805 2,083,724 N/A
3 24,940,435 27,628,979 2,688,544 29

Ten generators
2 30,300,077 32,434,774 2,134,697 N/A
3 33,822,369 37,231,950 3,409,580 59.7

Figure 6.13: A linear relation can be deduced from the points scattered
relating number of channels and migration overhead.

number of channels and their corresponding migration overhead in table 6.5. The
values of migration overhead we have are for numbers of channels 1, 2, 4, and 10.
The graph that is shown in Fig 6.13, shows that the relationship between the number
of channels and the migration overhead is linear. A straight line can be deduced from
the given points, the equation is shown in 6.3. This linear relationship can give us
good estimates of migration overhead knowing the number of channels between the
migrating task and its neighboring tasks. Starting, then, from equation 6.3 we can
calculate how much overhead added by an increase in the number of channels by one,
a simple differentiation outcome is shown in equation 6.4. Equation 6.4, migration
performance overhead increases by almost 5% when there is one increase in number
of channels. It is worth noting that the linear relation between number of channels
and migration performance overhead varies depending on some parameters such as
communication means, device and driver in the system. However, different platform
parameters like communication do not change the linearity of the relationship but
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Table 6.5: Number of channels vs. migration performance overhead.

Experiment Number of Migration
channels overhead (%)

(App2) in table 6.1 1 14.5
(App1) in table 6.1 2 18.3
In table 6.4 4 29
In table 6.4 10 59

the coefficients of equation 6.3.

OH = 4.466N + 8.987
OH : overhead %

N : number of channels
(6.3)

dOH

dN
= 4.466 (6.4)

6.10 Memory overhead

The aim of this set of experiments is to investigate how much memory increases
due to the insertion of task migration agents and the existence of migrating tasks
replicas. This takes place via comparing memory size between case 1 and case 3.

In table 6.6, memory overheads are shown. All the numbers are for text section
and all overheads are measured compared to just this section as this represents the
memory needed to be stored in flash memory. On x86 real HW platform, the over-
head ranges from 7.2% to 9.2% which is reasonable. On the simulation side, agents
and replicas add approximately the same amount of memory like on hardware but
since on real HW more architecture specific codes are needed to make it operational,
the part added by them is not significant compared to that on simulation. An ex-
ample of these specific codes are the PCIe driver, this is in addition to the ported
version of DNA-OS. That is why in table 6.6, the whole .text codes size of x86
are bigger than those of ARM. However, in table 6.7 the codes of both generated
functions init_GVT and init_DLT on x86 are smaller than that on ARM, this is
due to the difference in compiler options. GCC compiler is used in both cases with
the correct architecture compiler option but the main reasons why there is such
difference is that an optimization option O2 is used with the compilation in case
of x86 and the fact that RISC3 code is usually bigger than CISC4 because RISC
is load-store architecture. As a result, the whole codes of x86 are bigger in size
than that of ARM due to the added drivers and the difference between platforms,
however, when comparing similar codes, it is found that those compiled on x86 are

3Reduced Instruction Set Computers. ARM is RISC architecture
4Complex Instruction Set Computers. x86 is CISC.
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Table 6.6: Flash memory overhead (in bytes).

Section text section
Platform x86
Tile tile 0 tile 1 tile 2 tile 3
W/O agents 258,118 250,502 251,382 249,702
With agents 276,630 272,054 273,542 272,710
Overhead (%) 7.2 8.6 8.8 9.2
Platform ARM
Tile tile 0 tile 1 tile 2 tile 3
W/O agents 202,236 188,416 190,440 186,584
With agents 237,844 228,520 231,648 229,160
Overhead (%) 17.6 21.3 21.6 22.8

Table 6.7: Generated init_GVT() and init_DLT() code sizes on all
tiles (in bytes).

x86 ARM
init_GVT init_DLT init_GVT init_DLT
Tile 0 Tile 1 Tiles 2,3 Tile 0 Tile 1 Tile 2,3

564 99 615 1140 196 1272

smaller due to the optimization used during compilation.

In table 6.7, we investigate the generated code sizes of both functions init_GVT()
and init_DLT() used by both agents: MigSup and MigCtrl, respectively. Since mi-
grating tasks and their replicas reside only in tile 2,3, code size of init_DLT() in
tile 1 is significantly smaller than that of those found in tile 2,3. Since there are
two migrating tasks in tile 2 as well as in tile 3, init_DLT() has same code size
in both; however, the data put inside DLTs are different. init_GVT() contains 4
records corresponding to the 4-tiles, it has information about all migrating tasks
found in all tiles in the cluster. That is why it is close to the init_DLT() of tile
2,3.

We now investigate the size occupied in RAM by GVT and DLT. They both
are stored in the heap and occupy same memory on both architectures. GVT takes
240 bytes, both DLTs on tile 2 and 3 take the same memory size, each takes 152
bytes while that of tile 1 takes just 24 bytes.

We devise an equation 6.5 to calculate DLT size of memory occupied in RAM.
Since DLT contains data structures of migrating tasks and their neighbors, size can
be calculated easily. Equation terms are defined as follows:
SDLT : total DLT size (bytes). ScDLT : DLT header (ScDLT = 24 bytes). Nm: Num-
ber of migrating tasks. SmDLT : constant size added by each migrating task data
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structure (SmDLT = 28 bytes). Nni : Number of neighbors of a migrating task with
index i (bytes). SnDLT : constant size added by each neighbor structure pointed
to in the structure of migrating task (SnDLT = 24 bytes). By applying equa-
tion 6.5 on our case we have with Nm = 2 where Nn0 = 2 and Nn1 = 1, we get
SDLT = 24 + 2 × 28 + (2 × 24 + 1 × 24) = 152 bytes.

SDLT = ScDLT + NmSmDLT +
Nm−1∑

i=0
NniSnDLT (6.5)

Same applies to GVT size of memory occupied in RAM. In equation 6.6, GVT
size can be calculated. Terms are as follows:
ScGV T : GVT header (ScGV T = 8 bytes), StGV T : constant tile record header (StGV T =
20 bytes), N : number of tiles in the cluster. Nmi : number of migrating tasks in
tile i. SmGV T : migrating task structure size (SmGV T = 32 bytes), Nnij : number of
neighbors of a migrating task with index j on a tile with index i, SnGV T : neighbor
structure size (SnGV T = 4 bytes). In our case: N = 4, Nm0 = Nm1 = 0, Nm2 =
Nm3 = 2, Nn20 = Nn30 = 2, Nn21 = Nn31 = 1. By substituting: SGV T = 240 bytes

SGV T = ScGV T + NStGV T +
N−1∑
i=0

(
NmiSmGV T +

Nmi −1∑
j=0

Nnij SnGV T

)
(6.6)

These equations clarify the relation between the size in RAM occupied by either
DLT or GVT and different parameters like number of tile, migrating tasks or neigh-
bors for every migrating task.

6.11 Rationale

We summarize here the rationale behind our choices in this chapter. Regarding
the type of application used, we intentionally use a small application without much
need for processing as an unfavorable case. This is to show how significant task
migration performance overhead is to an already short execution time. This is also
to show that task migration is still feasible to be performed even when the applica-
tion is a small one, otherwise, it would be better to restart a migrating task at its
destination if its migration overhead dominates its execution time.

We would like also to address comparison(s) with related work. The results
given here cannot be compared to results given in the literature. This is because,
to the best of our knowledge, there is no work in the literature which gives direct
performance overhead numbers due to migration and investigates how this overhead
increases with the increase in the number of migrating task neighbors. This is in
addition to the fact that migration time depends on several different parameters,
they are as follows:

• Migration protocol, how migration is performed.
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• Platform architecture, processor architecture and communication means (network-
on-chip, bus ...)

• Application mapping, where every application task shall be running on the
system.

• Whenever an OS is used or bare metal.
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In this chapter, we conclude the presented work to show our contributions
and how this work is useful in the domain of multi-tiled architectures whether for
embedded or high performance computing systems. Then, we discuss the future
work that could extend our proposed solution. These extensions would increase our
solution’s features and abilities. The expanded work here is not yet implemented
or validated and this is why it is considered to be future work.

We discuss here two proposals for two problems mentioning the rationale behind
these proposals. In the second section, we discuss how with limited modification our
solution can be tolerant to intermittent link faults. In the third section, we explain
how address collision problem can be alleviated without impacting the nature of
our solution.

7.1 Conclusion

We have covered several task migration issues in different architectures. We have
proposed a light-weight agent based task migration solution targeting multi-tiled
architectures. The solution is explained from both methodological and algorithmic
point of view. We took into our consideration implementation issues and showed
implementation details of the majority of the solution.
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The given solution has several advantages. It is transparent to application
programmers. Also since it is based on middleware layer and its communication in-
terface is compliant with POSIX, it is portable to different core architectures. This
technique is operational on real hardware platform as well as simulations. It shows
low performance overhead (18% of the execution time of a typical small application
where migrating task has one predecessor and one successor). Its performance over-
head shows negligible variation when migration is repeated several times, hence, its
cost with respect to the application can be considered to be deterministic.

Since now systems are packing more and more cores into them thanks to ad-
vancements in scaling technology and the introduction of even new ones that goes
into Nano world, we did not ignore the scalability of a task migration solution and
how important it is. We also provide an implemented framework for automating
the insertion of the agents with different applications via an automatic generation
tool-chain. This is to place the agents (MigSup and MigCtrl) in correct tiles accord-
ing to application(s) mapping and more importantly generate their tables (GVT
and DLT respectively). As a result better scalability is attained.

Future work that is expanded here can be easily extended to our work to make
the solution more and more resilient to issues and tolerant to faults. This is achiev-
able without much effort and at the same time without losing the advantages of the
solution we propose.

7.2 Fault tolerance increase: link integrity issue

Until this point in this work, the task migration solution we have proposed cannot
function in the presence of broken data channels between the migrating task Tm

and one or more of its either predecessor (Ti) or successor (To). This is because of
the possibility that both CB and RB on both ends of a configurable channel may
not be synchronized, hence, tokens loss is inevitable. Another reason for not hav-
ing a functional migration with broken data channels is the possibility that FIRE
procedure is blocked waiting for incoming tokens from a faulty channel.

The given task migration solution uses migration point technique in order to
stop and migrate Tm. Tasks are loop based and a migration point is checked every
iteration which is the execution of FIRE procedure. A Migration point is not like an
interrupt, hence, the iteration has to be completed every time in order to reach the
migration point. The FIRE procedure is composed of three main parts which are:
reading input tokens, processing input tokens, and writing the outcome of the pro-
cessing part in the form of output tokens, if any1. As a result, data channels that
connect application tasks together have to be functional as reading from broken

1Sometimes tasks do not have to send any tokens as they do not have successors; however, no
task can exist without at least one predecessor.
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ones will prevent the iteration from being completed, hence, the migration point
would be unreachable. The same applies to the output data channels that are bro-
ken. Once Tm tries to write output tokens to To, a failure may be returned back by
the communication driver which detects the break. Consequently, migration agents
(especially MigCtrlsrc) would not be able to proceed with the migration algorithm.

In normal execution case a migration request is issued and after a response time2

it gets handled and migration starts. The worst case is when a migration request
arrives right after the migration point check took place, in this case, migration
response time (TrM ) becomes equal to the time elapsed for finishing the whole
iteration (or execution time to FIRE procedure) (TF IRE). The time taken by FIRE
to finish execution can be deduced to be the result of the summation of times taken
by the three main parts of FIRE procedure neglecting the time taken for checking
the migration point. As a result, TrM can be calculated from equation 7.1. A fault
in an input data Channel Chx, for instance, makes the time elapsed for reading
from that channel too long to finish normally the execution (RChx → ∞ units of
time).

TF IRE =
N∑

i=1
RChi

+ Tproc +
M∑

i=1
WChi

N, M : numbers of input and output channels, respectively.
RChi

: Time elapsed waiting for receiving tokens from Chi

Tproc: Time elapsed to process input tokens and produce output result
WChi

: Time elapsed for sending output tokens to Chi

(7.1)

7.2.1 Proposed solution

The aim of this section is to explain our proposed solution. The main aim of such so-
lution is to circumvent the two aforementioned issues that might result from broken
channels. It is just required that task migration still can function in the presence
of a physical defect and by that it becomes tolerant to broken channels faults.

In the provided MProcFW layer, the high level read function can detect migration
request if it is waiting for incoming tokens but no further action regarding migra-
tion can be taken. Migration request can also be detected by write function. As a
result, from the implementation perspective, migration detection in communication
primitives is possible and existent without proceeding in migration process so as to
avoid losing partially received tokens. At the writing part written output tokens
that can never reach To will be lost in case of migration, too.

The main idea of the solution can be explained in the following points:
2Response time is the time elapsed starting from the arrival of a migration request till actual

migration starts.
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1. In order to avoid losing input tokens, all received tokens would be stored in
RBs during the whole TF IRE and only those which were consumed should
be released from RBs after successful writing. This insures that tokens (even
consumed ones) are still stored in CBs at Ti side(s) which means they can be
redirected to destination tile when migration takes place and safe resumption
is still possible.

2. In order to avoid losing output tokens, there should be a notification from the
communication driver informing the writing function that a certain output
channel is down so all output tokens that are failed to be sent are tagged with
a special tag that informs MigCtrlsrc that these tokens need to be resent and
stored in CB tagged. MigCtrlsrc has to additionally check all CBs for similar
tags and all unsent tokens should accompany the state to MigCtrldest. As a
result, a limited modification in LOAD_STATE command is required so that it
can send both, each is preceded by an informing tag so that MigCtrldest can
differentiate and know the correct CB of the correct configurable channel and
resend the tokens from there to the correct To. A limited modification is done
also to the structure of CBs so as to store tags also as depicted in fig 7.1.

Figure 7.1: Modified CB with tags. A tag exists for every token stored.

The second point involves limited modifications in the code of MigCtrls, as well
as, in the code of write API provided by MProcFW. Unlike the first point which can
be achieved with a small modification in the task model in addition to another lim-
ited one in read function. We propose to separate both reading and writing parts
out of FIRE procedure leaving only the processing part inside. This leads to the
addition of READALL and WRITEALL procedures in the task model and application
developers have to provide them along with the other procedures. Inside READALL
a developer has to read all the input tokens required for the processing part and
the same applies to WRITEALL in which all output tokens should be written, reading
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and writing are done as usual by calling the same APIs from MProcFW.

In listing 7.1, the modified version of the task model is shown, the original used
task model was shown earlier in listing 5.1 in section 5.2.1. The added ack_rel_RB
function is responsible for releasing consumed tokens from RBs and it is called
after WRITEALL procedure by checking the received ACKs. ppINCh and ppOUTCh are
pointers to arrays of input and output channels, respectively. In READALL all tokens
are read from external channels and stored in RBs while in FIRE all tokens are read
from RBs to internal variables for processing. The same applies to WRITEALL but
with CBs instead of RBs.

procedure INIT(TaskStructure *t) // initialization
initialize();

end procedure
procedure READALL(Channel **ppCh ,TaskStructure *t)

read(ppINCh[0]->RB0, l0); // read l0 bytes from Ch0
.
.
read(ppINCh[n]->RBn, ln); // read ln bytes from Chn

end procedure
procedure FIRE(TaskStructure *t) // execution

fifo_get(ppINCh[0]->RB0, &inVAR0);
.
.
fifo_get(ppINCh[n]->RBn, &inVARn);
outVAR0 = process_0(inVAR1,inVAR2, ... inVARn);
.
.
outVARm = process_m(inVAR1,inVAR2, ... inVARn);
fifo_add(ppOUTCh[0]->CB0, &outVAR0); // write q0 bytes to CB0
.
.
fifo_add(ppOUTCh[m]->CBm, &outVARm); // write qm bytes to CBm

end procedure
procedure WRITEALL(Channel **ppCh ,TaskStructure *t)

write(ppOUTCh[0]->CB0, q0); // write q0 bytes to Ch0
.
.
write(ppOUTCh[m]->CBm, qm); // write qm bytes to Chm

end procedure
ack_rel_RB(ppINCh);
procedure FINISH(TaskStructure *t) // cleanup

cleanup();
end procedure

Listing 7.1: Modified task model.
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7.2.2 Example

We give here an example for the sake of further explanation. A five task application
exists where T3 is migrate-able. We show how the original task model would look
as if they are filled directly with developer’s code to show the communication part.
This is to show how without the proposed modifications in the task model blockage
is possible. We, then, inspect three scenarios; a normal execution one and the others
are faulty ones. One of the input channels is broken in one scenario while one of
the output channels is broken in the other.

Figure 7.2: Upper right part depicts the process network of the appli-
cation, the behavior and interaction of migration request are illustrated
on time axis. One token is consumed by T3 via every input channel Ch1
and Ch2 and one token is sent by T3 via channel Ch3 to T4.

Original task model in this example case is listed in listing 7.2. We inspect first
the normal execution scenario, both process network and normal execution scenario
timing are shown in fig 7.2. At time t units, T1 writes to T3 while at t + 2 units T2
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writes to T3, we neglect the time taken by the tokens in the means of communication.
Migration request is issued in between the two readings at t + 1 units. Even with
the original task model, migration can be handled and continued normally after a
certain response time (TrM = Tresponse).

procedure INIT(TaskStructure *t) // initialization
initialize();

end procedure
procedure FIRE(TaskStructure *t) // execution

read(Ch1->RB1, n); // read n bytes from RB1.
read(Ch2->RB2, m); // read m bytes from RB2.
l = process1(n,m); // processing i/p data.
q = process2(n,m); // processing i/p data.
write(Ch3->CB3, l); // write l bytes to CB3 & send.
write(Ch4->CB4, q); // write q bytes to CB4 & send.

end procedure
procedure FINISH(TaskStructure *t) // cleanup

cleanup();
end procedure

Listing 7.2: Original task model with details on reading and writing sections of T3.

Suppose that the second scenario has the same timing of the first except that
Ch2 is broken, hence, no reception can be fulfilled. With the original task model,
migration point cannot be reached. This highlights the difference between the
original and modified versions of the task model. Modified task model looks like
what is shown in listing 7.3. The second function call of read in READALL procedure
would detect the migration request that arrived at t + 1 units. Received tokens
remain stored in RBs until they get released in the function call ack_rel_RB()
which is never reached since T3 gets stopped at READALL.

procedure INIT(TaskStructure *t) // initialization
initialize();

end procedure
procedure READALL(Channel **ppCh ,TaskStructure *t)

read(ppINCh[0]->RB0, l0); // read l0 bytes from Ch1
read(ppINCh[1]->RB1, l1); // read l1 bytes from Ch2

end procedure
procedure FIRE(TaskStructure *t) // execution

inVAR0 = fifo_get(ppINCh[0]->RB0,l0);
inVAR1 = fifo_get(ppINCh[1]->RB1,l1);
outVAR0 = process_0(inVAR0,inVAR1);
outVAR1 = process_1(inVAR0,inVAR1);
fifo_add(ppOUTCh[0]->CB0, &outVAR0);
fifo_add(ppOUTCh[1]->CB1, &outVAR1);

end procedure
procedure WRITEALL(Channel **ppCh ,TaskStructure *t)

write(ppOUTCh[0]->CB0, q0); // q0 = sizeof(outVAR0)
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write(ppOUTCh[1]->CB1, q1); // q1 = sizeof(outVAR1)
end procedure
ack_rel_RB(ppINCh);
procedure FINISH(TaskStructure *t) // cleanup

cleanup();
end procedure

Listing 7.3: Modified task model. ppINCh[0] represents Ch1. ppINCh[1] represents
Ch2. ppOUTCh[0] represents Ch3. ppOUTCh[1] represents Ch4. Same notation
applies to RBs and CBs.

Suppose that the third scenario has a broken output channel which is Ch4.
The migration request arrives between the two writings in WRITEALL. As a result,
the second write detects the failure in sending output tokens to T5 hence it tags
them and stores them in ppOUTCh[1]->CB1 and then stops T3. When MigCtrlsrc

proceeds with the migration process, it checks both CBs for tagged tokens. Once it
finds tagged tokens, it sends them after the state to MigCtrldest. MigCtrldest, then,
resends the received tagged tokens and leaves an untagged copy in the corresponding
CB there. Finally, migration is done and safe resumption is possible, afterwards.

7.2.3 Conclusion

We have shown a solution that makes our task migration more tolerant to data
channels faults. It is assumed, however, that control channels which connect MigSup
and MigCtrls are reliable because the tile in which MigSup is run is a reliable piece
of HW. We investigate here the gained advantages from this solution as an extension
to our original one, they are as follows:

1. The required modifications in order to have an extended task migration solu-
tion would not lead to increase the time elapsed for migration, hence, perfor-
mance overhead almost remains as it is.

2. With the separation the main three parts of FIRE procedure, the migration
response time TrM depends only on Tproc which is not usually significantly
long. This leads to the effect of increasing migration points although only one
is used.

3. No memory overhead is introduced to obtain this feature.

4. Changing the task model may lead to lower re-usability as legacy codes would
need to be modified; however, transparency is still supported.

7.3 Address collision alleviation

We propose a solution for address collision issue. This solution can be added to our
task migration technique. In this section, we expand the solution with the aid of
an example for the sake of clarification.
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We have expanded earlier the problem of address collision in section 4.2.1. It
stems from the possibility that the state of the migrating task may contain point-
ers that are mostly dynamically allocated in RAM. Such state cannot be migrated
as it would create segmentation fault error at the destination once the task is
resumed. This is because pointers still have their old addresses which do not corre-
spond to dynamically allocated chunks of memory in the heap at the destination.

Our task migration solution is an agent based, i.e. agents exist in application
layer and are supported from a middleware layer beneath. As a result, any solution
to address collision issue to be as extension to our solution should be a user-level
solution. This extension should not violate the transparency of the whole task mi-
gration solution or any other of its characteristics.

This solution to address collision problem is like what is presented in [36] with
some modification that fit our case and requirements. The solution presented in [36]
is not transparent as application developers have to use specific library. A devel-
oper has to replace any ordinary pointer declaration with a specific structure, for
instance. This is, in addition to the use of specific functions that are supplied by
the aforementioned library instead of those supplied by libc.

The main objective of this solution is to enable MigCtrls to transfer states
that contain variables and dynamically allocated chunks of memory. This means
that MigCtrlsrc would be able to collect such state and send it in a format that
can be readable and re-constructible by MigCtrldest on the destination tile. After
reconstruction, the task would be able to resume its execution normally. We put this
proposed solution briefly in the following points then we expand them, afterwards:

1. MigCtrls are equipped with a way by which they can know where the point-
ers locations in the state are. MigCtrls require this information away from
the application developer. This information can be supplied to the MigCtrl
statically.

2. For every dynamic allocation process is performed, both the address and the
amount of allocated memory should be registered in a record. The table
that contains all records that correspond to all dynamic memory allocations
would be accessible by the MigCtrl. As a result, this table has to be filled
dynamically.

3. Introducing alternative functions (APIs) responsible for dynamic allocation
that replace those used by developers like (malloc, calloc, free and realloc).
Such alteration in developer’s code has to be performed automatically with
an aid from a tool so as not to violate the transparency and re-usability of
application codes. As a result, tools for performing code transformation be-
fore compilation and linking in order to replace functions used for dynamic
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allocation by the developer by new introduced ones that can fill the table
mentioned above.

7.3.1 Solution description

The proposed solution is based on the intervention in application codes after its de-
velopment away from their developers, in addition to adding some work to MigCtrls
to deal with dynamic allocation in almost all its case. In the following, we expand
how applications codes can be modified transparently without altering their behav-
ior in addition to the kind of modifications.

It is assumed that all pointers are supposed to be pointing at dynamically al-
located chunks of memory. MigCtrl is supposed to scan the migrating task state
looking for pointers. This requires static information about the state items as a
MigCtrl knows where a state begins in the memory buy it does not know what the
contents are. Consequently, there should be a sort of map that informs MigCtrlsrc

(responsible for collecting migrating state) what items a state has.

Such map can be extracted from application code without altering the code.
We call it state map. We propose it to be a string that is composed of tuples, every
tuple is a triplet that represents an item in the state structure by listing its data
type size, number if it is declared as an array, and if it is a pointer. A tuple is as
follows:(data type size, number, pointer). First two elements in a tuple are
self-explanatory unlike the third one that needs a bit more clarification, the aim
from the third element is to describe the pointer. Its value equals to zero if the
tuple describes a variable not a pointer whereas it equals to 1 or 2 if it is a pointer
or a pointer to pointer. These tuples are altogether listed in a series and supplied
to MigCtrl in a string format. During migration, once MigCtrlsrc is collecting the
state before sending LOAD_STATE command to MigCtrldest, it would use the infor-
mation supplied by the state map string to know where variables and pointers exist.

To this end, a MigCtrl can run through a state knowing the items in memory.
However, a MigCtrl is still incapable of collecting data in a dynamically allocated
memory in the heap. This is due to the fact that it does not have any information
except the beginning address starting from which it can collect data from the heap.
As a result, extra information about every dynamic allocation that takes place dur-
ing the execution has to be available to MigCtrl to know how much data it needs
to copy and send to MigCtrldest. This kind of information is known only during
run-time. As a result some code modification is inevitable. We propose a way to
fulfill that without having to violate the transparency of the task migration solution
we propose. In order to register run-time information about dynamic allocations,
we propose a format in which such information would exist, a means to store this
information, and a way to save this information after every dynamic allocation. We
assume that dynamic allocations are done by calling standard malloc, calloc, or
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realloc and that freeing space at the end of execution is done by calling standard
free, all are from libc.

We propose to save run-time information about these dynamic allocations in
a table accessible to MigCtrl. Addresses, size of data type, and number are all
saved in this table such that a record represents a dynamic allocation process, we
call this table Pointer Table. This enable the MigCtrl that once it finds a pointer
(which contains an address in the heap) in the state it can then search for it in
the aforementioned table and by finding its record, it can then collect the required
data from the heap. When MigCtrlsrc sends this data to MigCtrldest, it precedes
the collected data with a flag that represents a pointer without sending the value
of the pointer (address) found in the memory at source tile. This tag also contains
the information found in the corresponding record of the Pointer Table. With this
technique several kinds of pointers can exist in a state including a linked list.

To this end, we need to know how information related to dynamic allocations
can be stored. We propose a group of APIs that perform the same functionality
as malloc, calloc, realloc, and free, in addition to filling the information
entered by the application developer in the Pointer Table. Then, we propose that
these newly introduced APIs would replace the standard ones used by developers by
the aid of a tool that does code transformation. For example void *malloc(size_t
size);
is replaced by:
void *MALLOC(uint32_t n, uint32_t s, PointerTable_t *pPtrTbl);
uint32_t: is unsigned int PointerTable_t: is the data type of the Pointer Table
(listed in listing 7.4), it is a structure that contains records and each one is of a
PointerTableRec_t structure that is listed in listing 7.4: New arguments are as
follows: n: number of items if it is a table, s: data type size in bytes.

typedef struct _PointerTable_t {
PointerTable_record_t *table;
uint32_t size;
uint32_t full;

}PointerTable_t;
typedef struct _PointerTable_record_t{

uint32_t size; /∗ size of datatype in bytes∗/
uint32_t number; /∗number of items in a table∗/
void * p_add;

}PointerTable_record_t;

Listing 7.4: The structure of the table of pointers.

In order to automate this solution, we propose a transformation flow that is able
of transforming code with a parsing and code editing tool. The flow is depicted
in fig 7.3. We first start with application .c and .h files, they are inputted to a
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preprocessor that functions the same of preprocessing in the compiler, its output is
composed of the same files but with all names are resolved if any #define is used.
Then we would be having the state structure that is inputted to state map extraction
stage, the output of this stage is the string that is added to the corresponding task
files so that MigCtrl can access it.

Figure 7.3: Flow of code modification.

7.3.2 Example

We put here an example that contains a variety of pointers and pointer to point-
ers. It is in listing 7.5. A tuple that describes every item exists as a comment
in the same line of code. The state map string of such state is as follows: char
state_map=“(4,1,0)(1,1,1)(8,1,2)(0,1,1)(0,1,2)
((8,1,0)(4,1,0)(4,1,0),50,0)((4,1,0)(1,1,1)(L,1,1),1,1)
((1,40,0)(1,1,1),1,2)(8,2,1)”;

Symbol (L) is the value of the first element (size of data type) in a tuple that
represents a linked list. *pstrct2 is a linked list. Once MigCtrlsrc finds (L) in
a tuple while parsing the state map, it gets informed that this is a linked list and
then it has to start a specific routine to collect all linked items by checking next
pointer. More complex types of linked lists can be followed and collected with more
complicated algorithms; however, this is the scope of implementation choices.
typedef struct _sruct1
{

unsigned char l[40]; /∗(1, 40, 0)∗/
char *str; /∗(1, 1, 1)∗/

}struct1;
typedef struct _struct2
{

int a; /∗(4, 1, 0)∗/
char *p; /∗(1, 1, 1)∗/
struct _struct2 *next; /∗(L, 1, 1)∗/
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}struct2;
typedef struct _sruct3
{

double a; /∗(8, 1, 0)∗/
float b; /∗(4, 1, 0)∗/
int c; /∗(4, 1, 0)∗/

}struct3;
typedef struct _state_t /∗state structure∗/
{

int a; /∗(4, 1, 0)∗/
char *pstr; /∗(1, 1, 1)∗/
double **pp; /∗(8, 1, 2)∗/
void *p; /∗(0, 1, 1)∗/
void **genpp; /∗(0, 1, 2)∗/
strct3 A[50]; /∗((8, 1, 0)(4, 1, 0)(4, 1, 0), 50, 0)∗/
strct2 *pstrct2; /∗((4, 1, 0)(1, 1, 1)(L, 1, 1), 1, 1)∗/
strct1 **ppstrct1; /∗((1, 40, 0)(1, 1, 1), 1, 2)∗/
double *pdble[2]; /∗(8, 2, 1)∗/

}state_t;

Listing 7.5: The state structure.

7.3.3 Conclusion

We have proposed a solution for address collision issue that can be considered as a
doable extension to our original task migration solution or even similar agent based
solutions. We think that this solution will not be of negligible performance overhead,
though. The time of collecting data from the heap depends on some parameters
like the type of the data and its size. Collecting a linked list, for instance, is not
something trivial regarding the required time. Searching the Pointer Table should
be taken care of to avoid as much as possible the variance of searching time or to
minimize the searching time to the lowest possible extent. However, task migration
is not a common event which makes its performance overhead acceptable if the
penalty of not doing it is data loss.
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MProcFW details

In this section, more details are given about MProcFW

A.1 Tasks category

This category lists all functions that create, control and destroy processes in ta-
ble A.1.

API name Role

MProc_proc_create
fills in the channel structure and open the necessary
file descriptor for inter-tile communications.

MProc_proc_bootstrap
is responsible for non-blocking writing using write
and copy protocol.

MProc_proc_start
is responsible for non-blocking reading using write
and copy protocol.

MProc_proc_pause

is invoked when every application writes to another.
Internally, it polls over MProc_channel_write_nb.
Suffix ‘s‘ refers to synchronous write which is com-
patible to blocking writing in KPN applications.

MProc_proc_migrate

is invoked when every application writes to another.
Internally, it polls over MProc_channel_read_nb.
Suffix ‘s‘ refers to synchronous read which is com-
patible to blocking reading in KPN applications.

MProc_proc_stop

is invoked during migration process. Its role is to
update only configurable channels, i.e. to change
the branch of the configurable channel so as to con-
nect the migrating task in its new location to its
neighbors to keep the communication consistent af-
ter resumption

MProc_proc_delete

is invoked during migration process so as to avoid
losing unprocessed tokens by the migration task in
its original location. Thanks to write with copy
protocol used, the sender always keeps a copy of all
tokens that were sent and have not been consumed
yet by the receiving task. This facilitates synchro-
nization between the neighbor and the migrating
task after reaching its destination.
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Table A.1: APIs provided by MProcFW

A.2 Channels category

This category lists all functions that create, control and close channels in table A.2.

API name Role

MProc_channel_create
fills in the channel structure and open the nec-
essary file descriptor for inter-tile communica-
tions.

MProc_channel_write_nb
is responsible for non-blocking writing using
write and copy protocol.

MProc_channel_read_nb
is responsible for non-blocking reading using
write and copy protocol.

MProc_channel_write_s

is invoked when every application writes
to another. Internally, it polls over
MProc_channel_write_nb. Suffix ‘s‘ refers
to synchronous write which is compatible to
blocking writing in KPN applications.

MProc_channel_read_s

is invoked when every application writes
to another. Internally, it polls over
MProc_channel_read_nb. Suffix ‘s‘ refers
to synchronous read which is compatible to
blocking reading in KPN applications.

MProc_channel_update

is invoked during migration process. Its role is
to update only configurable channels, i.e. to
change the branch of the configurable channel
so as to connect the migrating task in its new
location to its neighbors to keep the communi-
cation consistent after resumption

MProc_channel_synch

is invoked during migration process so as to
avoid losing unprocessed tokens by the migra-
tion task in its original location. Thanks to write
with copy protocol used, the sender always keeps
a copy of all tokens that were sent and have not
been consumed yet by the receiving task. This
facilitates synchronization between the neighbor
and the migrating task after reaching its desti-
nation.

MProc_delete_channel
is invoked to close any file descriptor opened if
necessary.

Table A.2: APIs provided by MProcFW
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