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The theory of quantum chromodynamics (QCD) predicts the existence of a new state of matter: the Quark-Gluon Plasma (QGP). The latter may have existed at the first moments of the Universe following the Big Bang and can be, in theory, reproduced under the extreme conditions of temperature and density reached in high energy heavy ion collisions (at the LHC for instance). One of the QGP observables is the suppression of the quarkonia (heavy quark/antiquark bound states), characterised by a smaller production of these states in heavy ion collisions in comparison to proton-proton collisions, in which no QGP production would be possible. This suppression has indeed been observed experimentally, but the puzzling evolution of its trend from RHIC to LHC energies requires a better theoretical understanding. The present thesis aims at studying the real-time dynamics of correlated heavy quark/antiquark pairs described as open quantum systems which permanently interact with a cooling QGP. More explicitly, the continuous interaction between the medium and the pair internal degrees of freedom is obtained through 1) a temperature dependent color screening (Debye like) due to color charges in their vicinity and 2) some fluctuation/dissipation mechanisms reflecting the continuous collisions. It leads to a dynamical and continuous picture of the dissociation, recombination and possible transitions to other bound states. This investigation is at the crossroads of different theoretical frameworks: semi-classic, quantum and quantum fields. The deduced predictions are compared to experimental data and to the results of other theoretical models.

Résumé

La chromodynamique quantique (QCD) prédit l'existence d'un nouvel état de la matière: le plasma de quarks et de gluons (PQG). Celui-ci aurait existé dans les premiers instants suivant le Big Bang et peut en principe être produit sous les conditions extrêmes de température et de densité atteintes lors de collisions d'ions lourds à haute énergie (au LHC par exemple). Un des marqueurs de sa présence est la suppression des quarkonia (états liés de quark/antiquark lourds), caractérisée par une production inférieure de ces états dans les collisions d'ions lourds relativement aux collisions proton-proton où le PQG ne pourrait être créé. Cette suppression a bien été observée expérimentalement, mais l'évolution de ses tendances aux énergies du RHIC et du LHC est un véritable défi qui requiert une meilleure compréhension théorique. La présente thèse a pour but d'étudier la dynamique en temps réel de paires corrélées de quark/antiquark lourds considérées comme des systèmes quantiques ouverts en interaction permanente avec un PQG en refroidissement. Explicitement, l'interaction continue entre le milieu et les degrés de liberté internes de la paire est obtenue par 1) un écrantage de couleur dit de Debye dû à la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les collisions permanentes. Cela mène à une image dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des transitions entre états liés. L'étude est transversale à différents cadres théoriques: semi-classique, quantique et quantique des champs. Les prédictions du modèle sont comparées aux résultats expérimentaux et aux résultats d'autres modèles théoriques.

Mots clés : Plasma de quarks et gluons, suppression des quarkonia, approche dynamique, système quantique ouvert, équation de Schrödinger-Langevin Introduction Has Schrödinger's Katz nine lives ? ... According to the Big Bang theory, the elementary particles which compose our Universe have passed through a very hot ( 10 12 K) and dense stage of Quark-Gluon Plasma (QGP), some < 10 -5 s after the Big Bang, before gathering into nucleons, atoms, molecules, living things, stars, galaxies, superclusters... It might be one of the key stages to understand how an initially homogeneous distribution of matter has become inhomogeneous, leading to the current structures of matter observed in space. The QGP consists in a dense and deconfined state of quarks and gluons (together called partons). The latter are the elementary components of the nuclear matter and are, in normal conditions, confined as composite systems (hadrons) such as protons and neutrons. Since the 80's, an intense experimental and theoretical investigation has been carried out to prove the existence of such a state of matter and to characterise its properties. A possible way to reproduce the extreme conditions required to obtain a QGP, is to collide ultra-relativistic heavy ions in gigantic colliders like the RHIC 1 or the LHC 2 . It possibly results in incredibly small (∼ 10 -14 m) and short-lived (∼ 10 -21 s) "drops" of QGP whose study is a great challenge. Indeed, one can only consider indirect observables resulting from their expansion and cooling, i.e. the final produced hadrons. One of the QGP observables is the so-called "quarkonia suppression". It corresponds to a smaller production of heavy quark/antiquark (Q Q) bound states in heavy ion collisions in comparison to protonproton collisions, in which no QGP production would be possible. This suppression has indeed been observed experimentally, but does not systematically correspond to the expected picture. Matsui and Satz [START_REF] Matsui | J/ψ suppression by Quark-Gluon Plasma Formation[END_REF] indeed predicted the different quarkonium states to behave like a thermometer for the initial maximal temperature of the produced QGP. However, the puzzling evolutions of the suppression trends at RHIC and LHC depict a more complex picture which requires a better theoretical understanding. In the present thesis, we propose a dynamical description of the quarkonia suppression leading to the picture of a continuous thermometer. Explicitly, the correlated Q Q pairs are described as open quantum systems in continuous interaction with the deconfined medium. To this end, c The first part (I) progressively introduces all the basic concepts of particle and ultra-relativistic heavy ion physics. We first focus on quarks, gluons and the properties of their strong interaction. We then discuss their confined states with a main emphasis on quarkonia physics. We explore the phase transition to deconfined states and discuss the phase diagram of partonic and hadronic 1 Relativistic Heavy Ion Collider 2 Large Hadron Collider matter. We finally describe an ultra-relativistic heavy ion collision to introduce the physics of the QGP and review its possible observables. c To motivate the present work, part II gives an experimental and theoretical overview of quarkonia suppression in high energy heavy ion collisions. To this end, the relevance of the quarkonia as probes of the QGP is first discussed. We then review the various phenomena likely to interfere with the quarkonia yield and the most common models. We discuss the puzzling evolutions of the experimental data with the collision energy and point out their irregular descriptions. Finally, as an answer to the model assumptions, we motivate our quantum dynamical approach.

c In part III, as a first application to quantum dynamical approaches, we study the dynamics of a correlated Q Q pair subject to color screening from color charges in its vicinity while neglecting the effect of direct collisions with the medium.

c To find how these direct collisions can be included, we present in part IV the basic concepts of open quantum systems and review the common approaches. Then, we briefly discuss the existing literature on quarkonia seen as dynamical systems and motivate our so-called Langevin-like approach.

c As a first attempt to implement this approach, we explore in part V a semiclassical framework based on classical Langevin evolution of Wigner distributions, initially proposed by Young and Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. Its limitations are discussed.

c The part VI is devoted to the properties and solutions of a Langevin-like extension of the fundamental Schrödinger equation, the so-called Schrödinger-Langevin (SL) equation, initially proposed by Kostin [3] to study the quantum Brownian motion in a thermal environment. We investigate the thermal relaxation given by the SL equation with different potentials and noises. c In the last part (VII), we apply the SL equation to a correlated Q Q pair immersed in a QGP bath within a simple model. We then carry out the study within a more realistic collision framework extracted from the stateof-the-art EPOS event generator: finite volume, inhomogeneous temperature and quarkonia position-momentum distributions. The predictions are finally compared to experimental data (in some extent) and other models. All the matter inside and around us from the tiniest grain of sand to the biggest star in space, is composed of a large amount of atoms. For around a century now, the atom (size ∼ 10 -10 m) is known to be composed of electrons "orbiting" via the electromagnetic force around a nucleus of protons and neutrons (see figure I.1). In the 60s [4], it was discovered that proton and neutron (∼ 10 -15 m = 1 fm) were not elementary particles but composite systems made of three quarks interacting via the strong interaction (which also holds the protons and neutrons together). As summed up in figure I.2, the electrons and the quarks are not the only elementary particles that build up our universe. From the joint effort of experiment and theory, was indeed discovered twelve elementary "matter" particles (fermions) and their associated anti-particles 3 , the force carriers (gauge bosons) which mediate the fundamental interactions, and the Higgs boson which gives them masses. The photon -which composes the light for instance -, the Z and W ± bosons -which are observed in the beta decay -and the eight gluons -which hold the quarks together -are respectively the force carriers of the electromagnetic, electroweak and strong interactions. There are six quarks in total (or six "flavours": N f = 6) from the lightest "up" quark to the hundred thousand times heavier "top" quark. The quark family is distinguished from the leptonic family (which includes the electron) because the quarks carry a color charge, an intrinsic property at the root of the strong interaction. The color charge for the latter is the equivalent of the electric charge for Quantum Electrodynamics (QED) (electromagnetism) and allows the emission of the corresponding gauge bosons, called the gluons (the photon for QED). Unlike the photon which does not carry an electric charge, the gluons carry a color charge which allows them to interact among themselves.

IV Quarkonia and open quantum systems

All these particles have been directly or indirectly observed in particle accelerators and colliders, such as the gigantic LHC, where "natural" particles are accel- On the theoretical side, the Standard Model of particle physics describes the particles properties, interactions and productions to a high precision. It has even predicted the existence of previously unobserved particles such as the quarks (discovered between 1968 and 1995), the gluons (1978), the W and Z bosons (1983), the tau neutrino (2000) and the Higgs Boson (2013). In a few words, the Standard Model is a relativistic quantum field theory [START_REF] Peskin | An introduction to quantum field theory[END_REF] where the particles are described as dynamical fields that fill space-time. The field gauge symmetries 4 give rise to the fundamental interactions. Their dynamics and interactions are described by the Lagrangian of the Standard Model (which has more than a hundred terms !). In practice, the Lagrangian can be used through the Feynman path integral formalism. Quantities like the S-matrix and the propagators are then developed in perturbative expansions in powers of the coupling constants 5 , where each term can be schemed by a Feynman diagram. A term in power of n gives a Feynman diagram with n interactions ("vertices"). A process can then be seen as the sum of all possible Feynman diagrams (all the quantum mechanically possible and indistinguishable paths) as shown for instance in figure I.4. The total amplitude6 of the process is then given by the sum of each Feynman diagram amplitude. As the number of terms/diagrams is infinite, this sum is computable when the coupling constants are small compared to 1. Then, only the first orders of these expansions are necessary to obtain high precision predictions. Despite its successes, some important open questions remain, e.g. how to treat properly nonperturbative phenomena (i.e. when the coupling constant is larger than -or of the order of -1) ? What are the dark matter and energy that appear in cosmological observations ? ...

I.1.2 Quantum Chromodynamics

As part of the Standard Model, Quantum Chromodynamics (QCD) [START_REF] Greiner | Quantum Chromodynamics[END_REF] focuses on the dynamics of the color charged particles (the quarks and gluons, together called partons) and on their interactions through gluon exchange. Quark fields ψ i=1,...Nc j=1,...N f , where j is the quark flavour, can have three possible colors (N c = 3) commonly called red, blue and green. The Lagrangian of the free quark field,

ψ j =     ψ 1 j ψ 2 j ψ 3 j     , (I.1) writes L free = ψ j (iγ µ ∂ µ -m j )ψ j . (I.2)
In QCD, the Lagrangian is invariant under the color gauge symmetry SU(3) transformation:

ψ j (x) -→ ψj (x) = e -iθa(x)Ta ψ j (x), (I. [START_REF] Kostin | On the Schrödinger-Langevin equation[END_REF] where the group generators 2 T a=1,...8 are the Gell-Mann matrices and θ a=1,...8 real functions. To obtain this invariance, the usual derivative ∂ µ (µ and ν are Lorentz indices) is replaced by the covariant derivative

D µ = ∂ µ -ig s T a G a µ , (I.4)
where g s = √ 4πα s is the gauge coupling parameter and G a=1,...8 µ are the eight gauge fields which quanta are the gluons. The gauge invariance requirement therefore leads to the introduction of the quark interactions with the gluons. To obtain the QCD Lagrangian, one finally needs to add the gauge invariant Lagrangian for the gluonic fields,

L g = - 1 4
F a µν (x)F µν a (x), (I. [START_REF] Peskin | An introduction to quantum field theory[END_REF] where the gluonic field tensor F is

F a µν = ∂ µ G a ν -∂ ν G a µ -g s f abc G b µ G c ν . (I.6)
The first two terms of the gluonic field strength tensor give the gluon dynamics whereas the third term translates the gluon self-interactions. The latter originates from the non-abelian 7 nature of the SU(3) group, i.e. the constants f abc , defined by [T a , T b ] = if abc T c , (I. [START_REF] Bethke | Experimental tests of asymptotic freedom[END_REF] are not all null. Finally, the QCD Lagrangian writes

L QCD = N f j=1 ψ j (iγ µ D µ -m j )ψ j - 1 4 F a µν F µν a . (I.8)
As a unique property in the standard model, the gluon self-interaction has important consequences on the strong interaction properties. Indeed, when two colored particles interact through a gluon exchange, the QCD predicts the possibility that the exchanged gluon splits into a loop of quarks or self-interacts at the next-toleading order (NLO) of the perturbative expansion (see figure I.5). Qualitatively, whereas the former 8 is the source of screening effects between the two interacting partons, the gluon self-interaction is the source of dominant antiscreening effects. The screening (antiscreening) effects lead to a decrease (increase) of the interaction coupling with an increasing distance between the interacting particles. Therefore, unlike the electromagnetic interaction, the strong interaction coupling -and thus the value of the QCD renormalised coupling "constant" α s -increases with the distance or equivalently decreases with larger transfered energy (see I.6).

The typical energy scale Λ QCD ∼ 200 MeV separates the regime (Q Λ QCD ) where perturbative QCD can be applied (α s 1) from the one (Q Λ QCD ) where the strong interaction becomes highly nonlinear and non-perturbative methods are required (α s 1). This "running" of the coupling constant leads to noticeable features at the limits: the asymptotic freedom and the confinement. The so-called asymptotic freedom regime corresponds to the high energy scales Q Λ QCD where the interaction becomes relatively weaker. At the low energy scales Q Λ QCD (relatively large distances 1 fm), the confinement corresponds to the phenomenon which makes (a priori) impossible to observe an individual particle carrying a color charge. Indeed, in normal conditions, they are always observed to be confined into composite systems (see next section) such as to be in a color singlet (or "color neutral" or "white") global state. As a non-perturbative effect, the confinement is still poorly understood. The most famous model, the phenomelogical Lund string model [START_REF] Andersson | Parton fragmentation and string dynamics[END_REF], describes the confinement as a consequence of a gluonic string breaking into a quark/antiquark pair as the colored particles move away from each other. Indeed, as the interaction becomes stronger and stronger between the colored particles, the creation of a pair from the gluonic field becomes energetically favorable (it reduces the gluon field energy [START_REF] Nambu | The confinement of quarks[END_REF]) and leads to new independent composite systems (see figure I.7). 

I.1.3 Hadrons and quark masses

Probed at intermediate momentum transfer, the proton (p) and neutron (n) can be understood as composed of three "valence" quarks (and some strings of gluons): two up and one down quarks (uud) for the proton, and one up and two down quarks (udd) for the neutron. When one probes them deeper, one also observes some individual gluons and "sea" quarks (mainly u, d and s quarks) originating from pair production and individual gluons. Of course, many other composite systems, called hadrons, can be formed with quarks. For now, only systems of quark/antiquark (called mesons), e.g. the pion π + (u d), and of three quarks or antiquarks (called baryons), e.g. the charmed sigma Σ 0 c (ddc), have been observed. Exception made of the proton and neutron, all hadrons are unstable under ordinary conditions and decay within short life times ( 10 -8 s). Moreover, each hadron can exist under different possible energy states (called resonances), with the excited states having extremely short life time ( 10 -24 s), e.g. the ground state Λ 0 (m = 1115 MeV/c 2 ) (uds) and its exited states Λ 0 (1405), Λ 0 (1520)... where m is the resonance mass.

The mass of a hadron is usually quite different from the sum of its constituent free masses (e.g. m u + m d + m s = 102 MeV/c 2 for the Λ 0 ) because most of its mass originates from the large amount of energy involved in the QCD dynamics (massenergy equivalence). Reciprocally, because the confinement prevents the unbinding of hadrons and makes impossible the isolation of a colored particle, the mass of the free quarks (as written in the renormalised QCD Lagrangian) cannot be measured directly. The free quark masses 9 are indirectly determined ( [11] and ref. therein) from the combinations of experimental values (a set of hadron masses usually), a renormalisation 10 scheme and chosen scales, lattice QCD calculation and effective theories such as the Chiral Perturbation Theory (for light quarks) or Heavy Quark Effective Theories. The commonly chosen MS renormalisation scheme and scales leads to the masses given in Tab. I.1. Table I.1: Quarks masses given by the common MS renormalisation scheme and scales (µ = 2 GeV for light quarks and µ = m Q=c,b,t for heavy quarks). We note that another calculation (the so-called 1S scheme) using B meson decay measurements leads to m b = 4.66 ± 0.03 GeV/c I.2: Some interesting charmonium states and decays. [11] 9 Also called "current" masses. 10 In the perturbative regime, for the Feynman diagrams at the NLO (and higher orders), the integrals over the 4-momenta -of arbitrary energies as a quantum effect -of the loop constituents diverge at high energies. The renormalisation method proposes that the parameters, such as the particle masses or the coupling constants (see figure I.6 with µ = Q), depend on the interaction scale µ at stake ("bare" parameters corresponds to free particles and "renormalised" parameters to interacting ones) such as to introduce counter-terms that cancel out the divergences.

In the present thesis, we will mainly focus on heavy quark/antiquark "Q Q" mesons, called quarkonia, and more especially on the charm/anticharm "cc" bound states, called charmonia (see table I.2 for some interesting states), and the bottom/antibottom "b b" bound states, called bottomonia (see table I.3). From a Quantum Mechanics point of view, a quarkonium can be considered as a quantum oscillator. Its states are then denoted by n 2S+1 L J where n is the main quantum number, S the intrinsic angular momentum, L the orbital angular momentum (its value 0 defined the "S" state, 1 ↔ "P ", 2 ↔ "D"...) and J the total angular momentum (such that |L -S| ≤ J ≤ L + S) 11 .

-Bottomonia -Quantum state Name Mass (MeV/c 2 )

Interesting decays I.1.4.2 Quarkonia production One of the basic ideas of QCD is the factorisation of short ("hard scale") and long ("soft scale") distance interactions. For quarkonia, this concept is realised both in the initial and final states of their production mechanism. The initial state factorisation separates the initial soft scale physics, which describes the parent (colliding) hadrons through their phenomenological parton distribution functions (PDFs) 12 , and the hard scale physics, which describes the Q Q production from parton scatterings with the perturbative QCD. In high energy hadron-hadron collisions, the Q Q pairs are mainly produced in the interaction and/or fragmentation of energetic gluons emitted by the parent partons. The final state factorisation, in turn, assumes that the latter hard scale process is independent of the hadronisation 13 of the Q Q pair into a specific bound state. The hadronisation is usually described by effective theories such as the Lund string model or a non-perturbative QCD approximation. For the quarkonia, the Non-Relativistic QCD framework14 [12], based on an expansion over the small Q Q relative velocity (due to their heavy mass), is commonly used. As an example of a global production scheme, the J/ψ indirect production from gluon fusion through χ c radiative decay is shown in figure I.8. The hard process gg → cc writes as a superposition of different perturbative QCD interactions schematised by Feynman diagrams. At the leading order of the perturbative expansion, there are three possible interactions: the so-called t, u and s channels shown in figure I.9. In this way, the Q Q pair is created either in a color singlet state from the t and u channels, which means i = k, or in a color octet state (i = k) from any channel, where i and k are the color indices of the quarks. Hadrons being usually color neutrals, only the color singlet state contribution was first thought to hadronise into a bound state (color singlet model [13,[START_REF] Guberina | Rare Decays Of The Z0[END_REF]), but the predictions underestimated the data [START_REF] Cho | Color octet quarkonia production[END_REF]. The proposed solution for this discrepancy was to add the color octet model contribution [16,17], by turning the color octet states into a color singlet by soft gluon exchanges with hadron remnants. The sum of the color singlet and color octet contributions is in good agreement with the data [START_REF] Cho | Color octet quarkonia production[END_REF], but the color octet model introduces incalculable non-perturbative parameters, the color octet matrix elements describing the transitions, which are determined by a fit to the data. Furthermore, it does not give a good description of polarised charmonium production data [START_REF] Butenschoen | J/ψ polarisation at Tevatron and LHC: Nonrelativistic-QCD factorisation at the crossroads[END_REF]. To conclude, the models for quarkonia production in p-p collisions lead to rather good predictions of the p T spectra, but important uncertainties remain on the actual mechanism (especially concerning the hadronisation). In section II.1, we will discuss the typical times related to this production mechanism.

1 3 S 1 Υ ( 
There are two major experimentally distinguishable ways to produce inclusive 15charmonia in high energy hadron collisions: the non-prompt production going indirectly through the decays of produced B-mesons and bottomonia, and the prompt production which goes either directly to the considered charmonia states -from a charm/anti-charm quark pair produced in a gluon-gluon fusion subprocess -, or indirectly through decays ("feed-downs") of more excited charmonia states. In figure I.10, the contributions of the different feed-downs to the J/ψ and Υ(1S) states are summed up. 

I.1.4.3 The relevance of quarkonia in proton-proton collisions

For a few decades by now, the quarkonia (and the J/ψ in particular) have been one of the most important sources of information about both perturbative and nonperturbative QCD, as well as relevant probes for the hadronic matter formed in ultra-relativistic heavy ion collisions (see section II.1). They are especially relevant for the study of high energy collisions, or in other words in the low x regime 16 , where only 17 the quarkonia can be used [START_REF] Del Valle | Quarkonium production in high energy proton-proton and proton-nucleus collisions[END_REF] to study the unintegrated PDFs and to distinguish among the equations of evolution (such as DGLAP 18 [21], BFKL 19 [22]...) towards the hard scales.

The theoretical treatment of the quarkonia is indeed simplified by the large mass of their constituents (m c ∼ 1.3 GeV and m b ∼ 4.2 GeV) and their symmetry. First, quarkonia are simple symmetrical two body systems in comparison to the three body baryons or asymmetrical open mesons 20 . The theoretical determination of their binding potentials and states are then more attainable. Second, the large mass of their constituent quarks (m Q Λ QCD ) might guarantee the factorisations of the different scales and the use of the Non-Relativistic QCD framework in their production mechanism.

I.2 A deconfined state of matter: the quark-gluon plasma

As explained in section I.1.2, in ordinary conditions the color charged particles (quarks and gluons) are confined "within hadrons". At extremely high temperatures and/or density, the theory of QCD however predicts [START_REF] Collins | Superdense Matter: neutrons or asymptotically free quarks ?[END_REF][START_REF] Shuryak | Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Pions[END_REF] the existence of a "deconfined" state of the nuclear matter, the Quark-Gluon Plasma 21 (QGP). The idea is that when the density of partons becomes really large, they have no distinguishable partners for a specific hadron: they become unbound. Moreover, as the coupling becomes relatively weak (asymptotic freedom regime) they can move "freely" inside the QGP area. Besides the interest of studying a new state of matter in itself, the QGP (and the phase transition to hadrons) may have played a crucial role at the first moments of the Universe (up to a fraction of second after the Big Bang) and may compose the core of dense neutron stars. The description of its properties and behaviour may thus improve our understanding of the Universe history, of the QCD dynamics in general and of strongly coupled many-body systems. Though (a priori) impossible to observe directly in Nature, small droplets of QGP can be, in theory, re-produced in heavy ion collisions at high energy colliders (e.g. the LHC). 16 Small longitudinal momentum fraction carried by the initial-state partons, given by x ≡ 2p z / √ s in the center-of-mass frame, where p z is the longitudinal momentum of the considered parton and s is the initial hadron energy. 17 Their large masses might ensure the factorisations of perturbative and non-perturbative mechanisms. 18 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi. Also called collinear factorisation. 19 Balitskii-Fadin-Kuraev-Lipatov. Also called k T factorisation. 20 Open mesons are mesons with a quark and antiquark of a different flavour, e.g. the pion π + (u d). 21 Named by analogy with the electromagnetic plasma where the positive and negative electric charges are unbound from each other.

I.2.1 The QCD phase diagram from the lattice

The physical states of matter and the transitions between them, under the different conditions of temperature and density are usually summarised in graphical representation called phase diagrams. Part of the phase diagram of partonic matter can be theoretically determined from lattice QCD (lQCD) calculations.

As a discrete formulation of QCD, lQCD [START_REF] Wiese | Lecture: An introduction to lattice field theory[END_REF] is a powerful effective tool to investigate non-perturbative phenomena, among which QCD thermodynamics, hardly accessible to analytical theories. The lQCD is based on the formal analogy between Quantum Field Theory (path integrals in Euclidean space 22 ) and Statistical Mechanics (partition functions). The QCD partition function [START_REF] Karsch | Lattice QCD at High Temperature and Density[END_REF],

Z(V, T, µ B ) = DA ν D ψ Dψ e -S E (V,T,µ B ) , (I.9)
indeed writes as a Euclidean path integral over gauge A ν , quark (ψ, ψ) fields. The QCD thermodynamic variables are here the volume V , the temperature T and the baryon chemical potential µ B (associated to the baryon number density 23 ). The Euclidean action S E = S G + S F can be decomposed into a gluonic contribution,

S G (V, T ) = T -1 0 dx 0 V d 3 x 1 2 Tr(F µν F µν ), (I.10)
and a fermionic contribution S F ,

S F (V, T, µ B ) = T -1 0 dx 0 V d 3 x N f f =1 ψf (γ µ [∂ µ -ig s A µ ] + m f -µγ 0 ) ψ f , (I.11)
which couples the gauge and the fermion fields (N f flavours). The system under consideration is then discretised and reduced to a 4D lattice (V = (N space a) 3 and

T -1 = N τ a)
, where the quark and gluon degrees of freedom are respectively on the lattice sites and the links connecting the sites. The number of these degrees of freedom is then finite and the path integral ultraviolet divergences are naturally regularised by the lattice spacing a. The path integrals are then computed over the most relevant system configurations and extrapolated to the continuum limit a → 0 while keeping some observables constant (e.g. some hadron masses). Finally, the QCD equation of state can be obtained through the determination of thermodynamic observables from the partition function such as the energy density , the pressure p, 22 Which includes the imaginary time τ dimension, stemming from the Wick rotation τ = it, in order to obtain the formal connection between Quantum Mechanics and Statistical Mechanics. 23 The baryon number B is a conserved quantity defined as the difference 1/3(n q -n q ) between the number of quarks n q and antiquarks n q . To the corresponding baryon density can then be associated a baryochemical potential µ B which translates the change of free energy with respect to a change in baryon number composition. Finally, note that the more energetic the heavy ion collisions are, the smaller the stopping of the initial baryons gets, the smaller the baryon density/chemical potential is.

the free energy density f or the entropy density s: directly related to the effective number of degrees of freedom d (d ∝ /T 4 [START_REF] Beutler | Workshop on Quark-Gluon-Plasma and Cold Atomic Physics -SS[END_REF]), the large variation around T = 190 MeV can be understood as a transition between a hadronic gas (small d) at lower temperatures to a deconfined partonic phase (very large d) at larger temperatures. At larger temperatures, the energy density increases slowly but does not reach the Stefan-Boltzmann limit value SB , which corresponds to a perfect gas, indicating some remaining partonic interactions in the deconfined phase. This is a first indication that the deconfined medium found for temperatures T ∈ [200,500] MeV might be a strongly-coupled QGP (sQGP) where some correlations could survive. From the non-singular behaviour of the observables, one might conclude to a cross-over transition between the two phases, i.e. a fast but continuous transition where both hadron and parton degrees of freedom coexist. At positive baryon density (i.e. when there are more quarks than antiquarks), one can gather the results from lQCD -where new methods are required with larger uncertainties as µ B increases -and other models (MIT bag [START_REF] Chodos | A new extended model of hadrons[END_REF], NJL [START_REF] Nambu | Dynamical model of elementary particles based on an analogy with superconductivity I (and II)[END_REF]...) to suggest a phase diagram for the partonic matter as shown in figure I.12. It shows a crossover in a region between 0 ≤ µ B ≤ µ crit B , a critical point [START_REF] Stephanov | QCD phase diagram and the critical point[END_REF] at µ crit B , and beyond a first order transition [START_REF] Fodor | Lattice QCD results at finite temperature and density[END_REF]. During a first order transition (discontinuity in the first derivative of the free energy), the temperature of the system remains constant while the released energy is used to transform a phase into the other (mixed-phase regime). Other parameters such as the susceptibilities and the quark condensate 0|ψ f ψf |0 can be studied to describe the properties of the transitions such as the transition order (see figure 8 in [START_REF] Satz | The Thermodynamics of Quarks and Gluons[END_REF] for instance) or the modifications of the light quark masses (restoration of the chiral symmetry in the deconfined phase). Last, note that though the equation of state is rather well understood from lQCD calculations, the latter leads to more fluctuating predictions concerning other important parameters and properties of the deconfined matter obtained in heavy ion collisions (such as the actual temperature, the viscosity, the transport coefficients...) to which heavy flavours could be relevant probes (see II.1). 

p = -f = T V ln Z(V, T, µ B ) (I.12) -3p T 4 = T d dT p T 4 s T 3 = + p T 4

I.2.2 High energy heavy ion collisions.

For now, the unique way to reach such extremely high temperatures and/or densities is to collide heavy ions (U-U, Cu-Cu, In-In, Pb-Pb...) in high energy colliders such as the SPS 24 , RHIC or the LHC. Indeed, their numerous nucleons and their high energy (ultra-relativistic velocity) ensure a high level of energetic particle production within a relatively small volume (called fireball), that may lead to a deconfined state if the conditions required by the phase diagram I.12 are reached.

As schemed in figure I.13, a heavy ion collision can be decomposed into few successive stages from the two initial ions to the many hadrons observed in the detectors. These stages corresponds to the Shuryak-Bjorken model where the QGP is assumed to be produced. The next three subsections (I. 

I.2.2.1

The initial ions and the first fm/c following the impact Due to their relativistic kinematics, the geometry of the initial ions is Lorentz contracted along the beam axis, making them look like two "pancakes" in the laboratory frame (instead of "spheres"). In parallel, all their internal timescales such as the gluon lifetimes or the interaction times are dilated. As the collision energy increases, gluons with smaller and smaller longitudinal momentum fraction x can interact to produce particles of matter. Then, the amount of visible gluons increases continuously with the collision energy and becomes much larger than the amounts of valence and sea quarks (the latter being smaller by one power of the coupling constant as they are produced by gluon splittings) [START_REF] Aaron | H1 and ZEUS Collaborations[END_REF]. The description of the initial parton compositions is usually realised through nuclear-PDFs (nPDFs) f A g,u,d... such as EPS09, DSSZ... [START_REF] Eskola | Global analysis of nuclear PDFs -latest developments[END_REF] They are not the simple sums of the nucleon PDFs f N g,u,d... : they take into account the modifications caused by the interactions between nucleons. In particular, these interactions can lead to a decrease (shadowing) or an increase (anti-shadowing) of the gluon density in the initial nuclei relatively to the one in nucleon collisions [START_REF] Armesto | Nuclear shadowing[END_REF]. This modification is usually quantified through the nuclear modification ratio,

R A g (x, Q 2 ) = f A g (x, Q 2 ) A f N g (x, Q 2 ) , (I.13)
where A is the number of nucleons of the considered nucleus. For instance in figure I.14, one can see the evolution of the R A g (x, Q 2 ) factor with the longitudinal momentum fraction x, at some fixed energy scales Q 2 , obtained with the lead nucleus within the EKS98 nPDF model [START_REF] Eskola | Scale evolution of nuclear parton distributions[END_REF]. The shadowing effects are dominant at LHC energies (R A g < 1) whereas the anti-shadowing effects are predicted at SPS (lower) energies (R A g > 1). Note however that the anti-shadowing effect has never been observed at SPS.

Unfortunately, the very large gluon density at high energies leads to processes with multiple interactions inside the initial ions and shortly after the collision (as shown in figure I.15), which should be described by highly nonperturbative methods even if the couplings are weak [START_REF] Gelis | Color Glass Condensate and Glasma[END_REF]. In this regime, the nPDFs are no more relevant (needs for "multigluon" states) and alternative methods should be used. The Color (solid lines), 5.39 GeV 2 (dotted), 14.7 GeV 2 (dashed), 39.9 GeV 2 (dotteddashed), 108 GeV 2 (double-dashed) and 10000 GeV 2 (dashed). [START_REF] Eskola | Scale evolution of nuclear parton distributions[END_REF] Figure I.15: The many gluon scatterings in the dense regime lead to an infinite number of Feynman diagrams at each order [START_REF] Gelis | Color Glass Condensate and Glasma[END_REF].

Glass Condensate (CGC) model proposes an effective description of the initial ions in a "saturated" regime. Indeed, the gluon density enhancement should saturate from a certain energy scale, thanks to non-linear gluon recombinations [START_REF] Mueller | Gluon recombination and shadowing at small values of x[END_REF], and weak coupling methods could still be used. Shortly after the collision, the CGC model leads to the formation of a non-equilibrated medium (the "Glasma"). The Glasma is composed of the initial interacting partons and the newly produced particles (light and heavy quarks, direct photons...) originating mainly from gluon scatterings. In a very short time, the particle density and the system temperature increase dramatically. The system then locally equilibrates to form the QGP phase after a ∼ 1 fm/c (∼ 10 -24 s) lifetime [START_REF] Mc Lerran | A brief introduction to the Color Glass Condensate and the Glasma[END_REF], but this equilibration is still poorly understood within the CGC model.

I.2.2.2 The Quark Gluon Plasma stage

If the conditions are reached, the Glasma leads to a deconfined phase of the partonic matter (the QGP) which should thermalise 25 locally at LHC energies. The QGP fireball has an initial spatial size of ∼ 10 -20 fm and might survive ≈ 5 -10 fm/c . The QGP lifetime depends on the spatial expansion of its constituent. As the medium expands, its average temperature should decrease from a few T c to T c , around which the parton degrees of freedom are thought to coalesce into hadrons (see the freeze-out section below).

QGP properties are expected to depend on its temperature. Naïvely, at very high temperatures (T T c ), the coupling becomes very weak α s (T Λ QCD ) 1, and the QGP may behave like a gas of relatively weakly interacting partons. In this case, the QGP has a large viscosity 26 , its evolution follows a viscous hydrodynamic expansion, and its parameters obey approximatively Stefan-Boltzmann equation of state: at µ B = 0 its pressure and density are proportional to T 4 and its entropy to T 3 [START_REF] Satz | The Thermodynamics of Quarks and Gluons[END_REF]. For temperatures T c T 5T c (the region of current interest), the theoretical expectations are more ambiguous. As shown in figure I. 16, lQCD calculations predict a deconfined medium with a low viscosity quite far from pQCD results [START_REF] Arnold | Transport coefficients in high temperature gauge theories. 2. Beyond leading log[END_REF]. The parton degrees of freedom may therefore interact relatively strongly, leading to the so-called strongly interacting QGP (sQGP). The sQGP may behave like an almost perfect fluid with very low viscosity which can be described by a quasi ideal hydrodynamics.

Figure I.16:

A compilation of lQCD predictions for the shear viscosity to entropy density ratio as a function of temperature [START_REF] Ratti | Lattice QCD: bulk and transport properties of QCD matter[END_REF].

I.2.2.3 Hadronisation, physical and chemical freeze out

When the medium temperature decreases to the crossover region (figure I.12), the parton degrees of freedom progressively hadronise into hadrons. These hadrons may still interact inelastically with each other and with the nucleons that did not interact initially ("nuclear absorption"). The so-called chemical freeze-out occurs when the number and the nature of the hadrons gets fixed, i.e. when the hadronisation and the inelastic scatterings stop. The medium then forms an expanding hadron gas (with additional leptonic particles), which behaviour can be described by kinetic theory. The so-called kinetic freeze-out occurs when the particle kinematics get fixed, i.e. when the elastic collisions stop. Finally, the hadrons or their decay products and the other particles expand spatially toward the detectors where they can be characterised (see figure I.17 for instance).

I.2.3 Experimental observables, observations and analysis.

The experimental quest for the production of a QGP, for the proof of its existence and the characterisation of its properties has started in the 80s. Since then, several accelerators have focused on heavy ion collisions, progressively increasing their energy from few GeV at the Alternating Gradient Synchrotron (fixed target) to few thousands GeV at the LHC. A heavy ion collision is usually defined by:

• The nature of the chosen ions: Pb-Pb or S-U at SPS, Au-Au, Cu-Cu or U-U at RHIC and so far Pb-Pb at LHC for instance. It can mainly have an influence on the cold nuclear matter and initial state effects (see part II).

• Its energy through the center-of-mass energy per nucleon pair √ s N N . The center of mass referential is the laboratory referential in symmetric collisions. Alternatively, one can use the beam energy per nucleon AGeV.

• Its centrality through the impact parameters b or the number of participants N part . The latter is the number of nucleons participating in the collision (see figure I.18). It can be evaluated from the number of particles observed in the detectors (called multiplicity) while using a simple geometrical picture for the initial ions (e.g. the Glauber model [START_REF] Glauber | High-energy scattering of protons by nuclei[END_REF]) [START_REF] Petro | Charged particle multiplicity, centrality and the Glauber model in Pb-pb collisions at √ s N N = 2.76 TeV with Alice[END_REF]. The centrality can also be expressed in terms of a percentage through the cumulative distribution function, where 0% means that all the nucleons interact (central collision) and 100% means that no nucleon collides (ultra-peripheral collision).

As only an incredibly small (∼ 10 -14 m) and short-lived (∼ 10 -21 s) "bubble" of QGP may be produced in these collisions, its experimental study is a great challenge. In order to prove its existence and to describe its properties, one can only consider indirect observables, i.e. the final hadrons. An observable is relevant if one can distinguish the different medium effects (initial state, cold nuclear matter, hadronic and/or partonic hot media, final state effects...). Quite generally, observables can be divided into two categories: the soft and hard probes.

The soft probes are particles produced all along the process (they form the bulk) and are used to describe the collective behaviours or thermodynamical properties. They correspond mainly to the light quarks and gluons which form the fireball. The related observables are for instance the corresponding low p T hadrons which can be used to determine the flow [START_REF] Alver | Elliptic Flow, Initial Eccentricity and Elliptic Flow fluctuations in Heavy Ion Collisions at RHIC[END_REF][START_REF] Aamodt | Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV[END_REF] and the critical temperature. But also the thermal photons 27 and dileptons [START_REF] Th | Direct photons from relativistic heavy-ion collisions[END_REF][START_REF] Shahoyan | NA60 results on charm and intermediate mass dimuons production in In-In 158 GeV/A collisions[END_REF] which may be used to evaluate the average temperature of the medium. In parallel, strangeness enhancement [START_REF] Koch | Strangeness in relativistic heavy ion collisions[END_REF][START_REF] Takahashi | Strangeness production in STAR[END_REF][START_REF] Abelev | Strangeness with ALICE: from pp to Pb-Pb[END_REF] could be a sign of chiral symmetry restoration28 (a possible consequence of QGP production).

Hard probes are produced from pQCD processes in the first moments of the collision (before the QGP phase) and can perform a "tomography" of the medium if they propagate through it. For instance, high p T particles and open heavy meson spectra can be used to probe the achieved densities as well as to evaluate transport coefficients and test pQCD in a thermal medium. The quarkonia suppression could be used to evaluate the medium temperature and probe the color deconfinement (see part II). In parallel, as they do not interact strongly with the produced medium, weakly interacting bosons (W ± and Z) and prompt photons29 can help to constrain the nPDFs [START_REF] Lee | nPDF sensitive observables in CMS[END_REF][START_REF] Florent | Production of W and Z bosons in heavy-ion collisions with CMS," Hard Probes 2013 proceeding[END_REF] and test the Glauber model [START_REF] Beraudo | Heavy-ion collisions: theory review[END_REF].

Although these observables have been intensively studied both experimentally and theoretically, it is not obvious to find an experimental signature of the QGP production consisting in a unique observable. Indeed, most of the experiments may pass through the crossover region (see figure I.12 for multiplicities at the chemical freeze-out), leading to no plateau or sharp behaviors of the thermodynamic variables.

One should thus look for experimental results which cannot be explained by hadronic models only, or alternatively one can determine some medium properties which are consistent with the QGP formation (high energy density...). Though there is no absolute proof for now (no net transition observed), the comparisons between data and partonic and/or hadronic models tend to confirm the formation of a QGP from SPS/RHIC/LHC energies. The community is now investigating its properties.

I.2.3.1 Light hadron multiplicity and hydrodynamic flow

Individually, light hadrons (formed by the light quarks u, d, and s) cannot be used as probes of the QGP. Indeed, if the medium is deconfined, they cannot exist inside the QGP and will only form at the phase boundary (between the QGP and the vacuum) where the physics of hadronisation at the critical temperature is independent of the interior properties [START_REF] Satz | The Thermodynamics of Quarks and Gluons[END_REF]. Collectively however, these light hadrons can bring insights into the produced medium through their integrated and azimuthal multiplicity.

Thanks to its "independence", hadronisation should always lead to a similar "thermal" distribution of the light hadron multiplicities (see figure I. [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]), which can be used in its turn to evaluate the critical temperature. Reciprocally, the presence of such a hadronisation temperature can be seen as an indirect proof that the medium was deconfined: if the hot medium was purely hadronic, the inelastic interactions would not stop at such a high temperature and would a priori lead to distributions corresponding to much lower temperatures. [START_REF] Andronic | The statistical model in Pb-Pb collisions at the LHC[END_REF][START_REF] Stachel | Confronting LHC data with the statistical hadronization model[END_REF] According to the hydrodynamic model, the collective expansion (or "flow") of the light hadrons can be correlated to the QGP initial energy density, centrality and medium viscosity [START_REF] Heinz | Anisotropic transverse flow and the quark-hadron phase transition[END_REF]. The flow can be studied through the multiplicity (N ) distribution at the kinetic freeze-out over the azimuthal angle φ in the transverse plane (relatively to the beam axis) at different rapidity 30 windows. Some azimuthal flow parameters v n can then be defined by a Fourier decomposition of the distribution,

dN dφ = N 2π (1 + 2v 1 cos(φ -ψ 1 ) + 2v 2 cos(2(φ -ψ 2 )) + 2v 3 cos(3(φ -ψ 3 )) + ...)
The first term corresponds to an isotropic radial flow, v 1 to an anisotropic flow called directed flow 31 , v 2 to an elliptic flow with an "elliptic-like" shape, v 3 to a triangular flow with a "triangular-like" shape [START_REF] Voloshin | Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions[END_REF]... In the case of a noncentral collision, the fireball should have an "almond" like shape in the transverse plane (see schematic situation in figure I.20). Then, if the medium quickly thermalises (at least partially), the radial pressure should vary with the direction and one should observe an anisotropic transverse flow which is mainly radial and elliptic (following the fireball shape).

Figure I.20:

A noncentral collision leads to a fireball with an almond like shape in the transverse planes (left). If the medium thermalises quickly, the pressure (and thus the particle momenta) will be larger along the minor axis x, resulting in a mainly elliptic anisotropic flow (right).

As shown in figure I.21, average (radial and) elliptic flows have indeed been observed in heavy ion collisions, confirming the existence of collective effects in the medium. The fits with hydrodynamic models (left panel) depict a medium which behaves like a perfect fluid with a very low viscosity (shear viscosity to entropy density ratio η/s ∼ 0.2 at LHC energies) [START_REF] Heinz | Collective flow and viscosity in relativistic heavyion collisions[END_REF][START_REF] Gyulassy | New forms of QCD matter discovered at RHIC[END_REF]. The elliptic flow evolution with the collision energy (right) exhibits no transition, which can correspond to a continuous transition (crossover) between the confined and deconfined phases. These elements are consistent with the production of a sQGP as described in section I.2.2.2. 30 The rapidity of a particle quantifies the boost along the beam axis required to go from the laboratory frame to the frame where the particle has only a transverse momentum. It is computed from the particle's energy and longitudinal momentum with y = 1 2 ln E+p L E-p L . 31 A shift of the isotropic flow toward the direction of the azimuthal angle ψ 1 and of strength v 1 

I.2.3.2 Light hadron suppression and jet quenching

The amounts of particles produced in heavy ion (AB or AA) 32 collisions are usually compared to the ones produced in proton-proton (pp) collisions. The latter can indeed be seen as a "reference" where no cold or hot medium effects can modify the particle production. More precisely, one commonly studies the nuclear modification factor R AA , i.e. the ratio of the cross section (or multiplicity N) in AA collisions to the one in pp scaled by the total number of binary nucleon-nucleon collisions N coll evaluated from the Glauber model [START_REF] Glauber | High-energy scattering of protons by nuclei[END_REF] as a function of the centrality,

R AA (p T , η) = dN AA /d 2 p T dη N coll dN pp /d 2 p T dη , (I.14)
where the standard variables are the transverse momentum p T and the (pseudo-) rapidity 33 η. If an AA collision is the simple superposition of nucleon-nucleon collisions then the ratio R AA is equal to unity. On the contrary, if the particle production and/or kinetics is modified by the cold and hot medium effects and is not the simple superposition of nucleon-nucleon collisions, one obtains an R AA = 1. One usually speaks of a production enhancement if R AA > 1 and suppression if R AA < 1.

To investigate the cold and hot media it can thus be interesting to study how they change particle production and/or kinetics. For instance, one can focus on the dependence of the R AA on the transverse momentum obtained for charged hadrons h ± or for specific hadrons.

• One can first observe that for the low p T hadrons (1 < p T < 5 GeV), the suppression increases (the R AA decreases) with the collision energy and the 32 Denoted AA (AB) if the ion A collides with a similar ion A (with a different type of ion B). 33 The pseudorapidity is related to the angle θ of a particle relative to the beam axis and is defined by η ≡ -ln tan θ 2 = 1 2 ln |p|+pz |p|-pz . The pseudorapidity is used instead of the angle θ because its differences do not depend on the frame (Lorentz invariant). centrality (see figures I.22 and I.23). The energy dependence is consistent with the evolution of the gluon shadowing as the collision energy increases (see figure I.14): a relative lower gluon density leads to smaller production cross sections. The centrality dependence is also expected from the increase of the hot medium density and size which might lead to a higher average number of scatterings and radiations per parton and to a larger pseudorapidity broadening (the measurement is here limited to |η| < 1). The complete characterisation of this suppression may thus be given by a complex mix of shadowing, medium density and size, parton scatterings and radiations, flow, hadronisation processes and final (in)elastic hadronic scatterings. Including more or less of these ingredients, hydrodynamic [START_REF] Kolb | Hydrodynamic description of ultrarelativistic heavy ion collisions[END_REF] and microscopic transport (Ultra relativistic Quantum Molecular Dynamics [START_REF] Bass | Microscopic models for ultrarelativistic heavy ion collisions[END_REF], Parton Hadron String Dynamics [START_REF] Bratkovskaya | Parton-Hadron-String Dynamics at Relativistic Collider Energies[END_REF]...) models attempt to describe the fireball behaviour and lead to rather good experimental fits 34 . suppressions for high p T final hadrons. Furthermore, the independence of the high p T suppression upon specific light hadrons (see figure I.24) suggests that the main energy loss mechanism (see below) acts at the partonic level [START_REF] Van Leeuwen | High-p T results from ALICE[END_REF]. Indeed, at the hadronic level the different hadrons would have different interaction cross sections with the medium and would therefore be affected differently. The high p T suppression can therefore be seen as a signature of QGP production. A high energy parton should loose part of its kinetic energy through radiation and elastic collisions as it propagates in the hot medium. The radiative energy loss originates from medium stimulated gluon emissions ("Bremsstrahlung") and depends mainly on the parton momentum, its propagation length within the medium and a transport coefficient. It is predicted to dominate the collisional energy loss at high energies (see [START_REF] Zakharov | Parton energy loss in an expanding quark-gluon plasma: Radiative versus collisional[END_REF] and references therein). Common models of radiative energy loss, such as BDMPS 35 [67], lead to a weak dependence of the energy loss ∆E on the parton energy E. A decrease of the ∆E/E ratio (e.g. ∆E/E ∝ ln(E)/E) as p T increases, can qualitatively lead to the R AA rise from p T > 10 GeV and flattening from p T > 40 GeV. The dependence of radiative energy loss on the propagation length might explain that the overall suppression at high p T increases with the centrality, i.e. as the partonic medium size increases. Finally, it is interesting to emphasise that all this complex physics of energy loss interactions can be reduced to a single transport coefficient. The very high p T suppression results in spectacular and relatively rare effects such as jet quenching and monojet. A jet is a set of energetic final hadrons situated in a narrow "cone" that come from the fragmentations of a very energetic parton. The latter is usually produced in a back-to-back hard process together with another equally energetic particle (parton, photon...) which can also result in a jet in the opposite direction ("dijet"). If one of these partons interacts with the hot medium (through energy losses), one observes the attenuation of the corresponding final jet ("jet quenching") or even its full suppression (leading to a "monojet" if the second parton interacts weakly) [START_REF] Adler | Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at √ s N N = 200-GeV[END_REF]. The photon-parton ("gamma jet") situation is especially interesting because the photon does not interact strongly with the hot medium and gives access to the initial parton energy. Gamma jet are then relevant experimental probes to energy loss and initial hot medium models [START_REF] Chatrchyan | Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at √ s N N = 2[END_REF]. 

Main ideas and transition

To conclude, the experimental results and phenomenological models that we have presented so far seem 36 to confirm the production of a Quark-Gluon plasma in high energy heavy ion collisions. The QGP is now pictured as a strongly (or at least not very weakly) interacting, nearly perfect, quark-gluon fluid with a very low viscosity, interesting collective behavior and at least partial thermalisation. It is quite different from the initial expectations of a gas of very weakly interacting quarks and gluons at high temperature. Based on this conclusion, the production of a QGP in these collisions will be taken for granted in the next parts. We have seen that the light hadron multiplicity (chemical abundance) allows the measurement of the temperature at the boundary between the deconfined and confined phases and sketched that jet quenching is a convenient way to access density profiles along the path length. They are, however, not directly sensitive to the temperature. In the next part, we will discuss another observable, "the suppression of quarkonia", that might allow one to measure the temperature beyond the phase boundary, i.e. of the QGP itself.

Part II

Review on quarkonia suppression

We now focus on the suppression of the quarkonia, a possible observable of the quark-gluon plasma. The quarkonia are said to be suppressed when their amounts detected per binary nucleon-nucleon collisions in heavy ion collisions are smaller to the ones in proton-proton collisions. This is usually quantified by the nuclear modification factor R AA defined in section I.2.3.2. In this part, after a discussion on the relevance of heavy flavours in heavy ion collisions (section II.1), we discuss the different possible phenomena which might play a role in quarkonia suppression according to the standard wisdom, and describe the different approaches developed with or without the presence of a QGP (section II.2). Then, we give an overview of the experimental data and their puzzling evolution with the collision energy and other kinematics (section II.3), and compare them to model predictions. Finally, we expose the resulting problematics and the motivations for the present work (section II.4).

II.1 The relevance of heavy flavours in heavy ion collisions

As introduced in the last part, quarkonia are an interesting probe to perform a "tomography" of the hot nuclear medium. The heavy quarks indeed enjoy many qualities [START_REF] Gossiaux | Tomographie du Plasma de Quarks et de Gluons Grâce aux Saveurs Lourdes: Eléments de Théorie, Phénoménologie et Applications[END_REF].

1) The heavy quarks are produced at the very beginning of the collision in a rather well mastered amount from hard gluon fusion 37 and are mainly distributed within the core of the fireball. Indeed, thanks to their large mass, the typical time to produce a Q Q pair -the so-called "coherence" time -given by τ c ∼ /(2m Q ) in the Q Q frame (τ c ∼ 0.08 fm/c for the charm and ∼ 0.02 fm/c for the bottom quark) is much smaller than the QGP formation time ( 1 fm/c) and the medium life-time (∼ 10 fm/c). Furthermore, their thermal production during the evolution should be negligible [START_REF] Braun-Munzinger | Charmonium production from the secondary collisions at LHC energy[END_REF]. Spatially, according to calculations derived from the Glauber model [START_REF] Jeon | Linear Extrapolation of Ultrarelativistic Nucleon-Nucleon Scattering to Nucleus-Nucleus Collisions[END_REF][START_REF] Abelev | Systematic Measurements of Identified Particle Spectra in pp, d + Au and Au+Au Collisions from STAR[END_REF], their production density is favoured in the central part of the overlapping area. The typical times required for the Q Q pair to bound into quarkonium states, the so-called formation times in the vacuum, should be much larger than τ c but are subject to debate [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. They might correspond to the time interval required for the quarkonium wave functions to develop. In the Q Q frame, it might be related to the difference of mass between the 1S and 2S states for instance, i.e. τ f ∼ /(m 2S -m 1S ) ∼ 0.3 -0.4 fm/c, or to the QCD scale, i.e. τ f ∼ 1/ 2m Q Λ QCD ∼ 0.1 and 0.4 fm/c for bottomonia and charmonia respectively. For higher excited states, the formation times are correspondingly larger. Note that these estimations are assumed to be independent of the surrounding medium, which could seem curious if the states form inside a very dynamic and dense preequilibrium phase. It is therefore not obvious whether the states form before, during or at the end of the deconfined medium stage. Last, note that radiative decays of excited states (the feed-downs) occur far outside the medium, so that the feed-down calculations can be realised independently of the considered model and produced medium. The Q Q pairs or their bound states can thus propagate inside the high temperature nuclear media and probe its properties all along its evolution.

2) The influence of the heavy quarks on the hot medium is negligible, but not vice versa. Indeed, as they are produced in a quite small amount as compared to the light quarks, they might not influence the global dynamics of the QGP and might not modify its properties. Reciprocally, the observations of an elliptic flow for the open heavy flavours [START_REF] Bailhache | Heavy-flavour elliptic flow measured in PbPb collisions at √ s N N = 2.76 TeV with ALICE[END_REF][START_REF] Adare | Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √ s N N = 200 GeV[END_REF], the quenching of open mesons with high transverse momentum [START_REF] Abelev | Suppression of high transverse momentum D mesons in central Pb-Pb collisions at √ s N N = 2.76 TeV[END_REF] and the quarkonia suppression (see below), showed that the heavy flavours quite strongly couple with the medium [START_REF] Adare | Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √ s N N = 200GeV[END_REF] and thermalise at least partially with a probable delay due to their important inertia. For the single heavy quark and unlike the light quarks, the radiative energy losses could not explain alone this strong coupling at intermediate/high transverse momentum [START_REF] Dokshitzer | Heavy quark colorimetry of QCD matter[END_REF][START_REF] Armesto | Medium-Induced Gluon Radiation off Massive Quarks Fills the Dead Cone[END_REF][START_REF] Djordjevic | Heavy Quark Radiative Energy Loss in QCD Matter[END_REF]. A non-negligible contribution of the collisional energy loss -from diffusion on light partons -was then reconsidered [START_REF] Bjorken | Energy loss of energetic partons in quark gluon plasma: possible extinction of hight pT jets in hadron-hadron collisions[END_REF][START_REF] Braaten | Energy loss of a heavy quark in the quarkgluon plasma[END_REF][START_REF] Peigné | Collisional energy loss of a fast heavy quark in a quark-gluon plasma[END_REF]. At low transverse momentum, radiative energy losses become negligible and the contribution of the collisional energy loss dominates [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. For the quarkonia, as we will see in this part, the influence of the medium manifest itself in a different way.

3) The quarkonia are thought to deconfine at larger temperatures than the critical temperature T c , leading to a possible evaluation of the medium temperature above T c [START_REF] Matsui | J/ψ suppression by Quark-Gluon Plasma Formation[END_REF] (see section II.2.1.2). To this end, the bottomonia offer several advantages over the charmonia [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. Firstly, in the µ + µ -decay channel, the relative abundances of the Υ(1S), Υ(2S) and Υ(3S) states are 7 : 2 : 1, respectively, while it is 50 : 1 for the J/ψ and ψ states. Bottomonia excited states are therefore more accessible to R AA experimental measurement. Secondly, Υ(1S) is the most strongly bound state, allowing to probe a wider range of QGP temperature. Finally, the picture gets simplified thanks to their larger mass, the absence of non-prompt production channels, the small probability for uncorrelated b b pairs to recombine at the phase boundary38 (see II.2.1.4), their small nuclear absorption, comover cross sections and expected shadowing (see II.2.1.1). However, the bottomonia initial production rate is around 200 times smaller than the one of the J/ψ, making their statistic only accessible from RHIC/LHC energies. 4) At the end of the evolution, heavy quarks hadronise to heavy mesons or baryons. These heavy hadrons have a large inertia and might therefore be not so sensitive to the elastic and inelastic collisions of the freeze-out stages. The heavy hadrons are thus only weakly affected by the final hadronic phase and the information about the heavy quark kinematics inside the QGP is not lost. The open heavy flavours go even further in this way: according to fragmentation models [85,86] and unlike light quarks, their kinematics is very close to the one of the original heavy quarks.

II.2 Common approaches to quarkonia suppression

In this section, we will first briefly discuss the different possible phenomena which might play a role in the quarkonia suppression/enhancement in heavy ion collisions as compared to pp collisions. They include partonic and hadronic aspects from the initial to the final stage. Next, we will describe the different typical models, using more or less of these ingredients, developed to predict or postdict the experimental observations. A more extensive analysis of the theoretical approaches to quarkonia suppression can be found in the literature [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF].

II.2.1 The different possible aspects of quarkonia suppression/enhancement in heavy ion collisions II.2.1.1 Cold nuclear matter effects

These effects were initially studied to explain the observed quarkonia suppression and strangeness enhancement while assuming a pure hadronic phase (i.e. without QGP formation). However, they have been shown repeatedly to be insufficient to describe the data ( [START_REF] Becattini | Correlating strangeness enhancement and J/ψ suppression in heavy ion collisions at √ s N N = 17.2 GeV[END_REF] and references below). Nevertheless, even with the formation of a QGP they might still play an important role in the quarkonia suppression during the initial and final hadronic phases.

Shadowing

As the Q Q pairs mainly originate from gluon fusion, their production rate depends on the initial gluon density. As already discussed in section I.2.2.1, the physics of parton saturation at small x is described by the nPDFs or the CGC model. Within the former, the gluon density of colliding nuclei is modified by the interactions between nucleons, leading to a possible decrease (shadowing) or increase (anti-shadowing) of the initial heavy quark production depending on the collision energy (see figure I.14). The nPDFs have been mainly studied in p-A collision experiments and can be used for A-A collisions resorting to the factorisation theorem [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. As illustrated in figure II.1, the quarkonia suppression obtained from the different shadowing models (nPDFs) have mainly in common:

-The suppression decreases with increasing transverse momentum p T and becomes small at high p T .

-The suppression decreases with increasing rapidity.

-The suppression is smaller with bottomonia.

-The shadowing can lead to a suppression of maximum ∼ 30%.

These effects can be understood from the expressions of the longitudinal momentum fractions of the fusing gluons as functions of these parameters (p T , y, m Φ ) and from the general shadowing pattern in a single nucleus 39 .

Cronin effect

During the first moments of the collision, the initial partons (among which the fusing gluons) may undergo multiple elastic scatterings on the colliding nuclei leading to a p T broadening known as the Cronin effect. Indeed, at each elastic collision the partons acquire some transverse momentum -their initial momentum being almost only longitudinal -and lead to a broadening of the quarkonia p T distributions in p-A and A-A collisions as compared to p-p collisions.

Parton energy losses

The propagation of the initial partons and newly produced color octet Q Q pairs inside the two colliding nuclei leads to collisional and coherent medium-induced radiative energy losses 40 and quarkonia suppression. The energy loss models are based on the ideas that 1) the heavy flavours are produced before any hot medium, 2) τ f in any of the nucleus frames is much larger41 than the nuclear size at LHC and 3) the Q Q pairs propagate with a high kinetic energy inside each of the colliding nuclei. Thanks to the model success in describing the quarkonia suppression in p-A collisions [START_REF] Arleo | J/ψ suppression in p-A collisions from parton energy loss in cold QCD matter[END_REF][START_REF] Leoncino | J/ψ and ψ(2S) production in p-Pb collisions with ALICE at the LHC[END_REF], parton energy loss might be seen as the leading effect in these collisions (and the shadowing effect as a simple correction). However, it has failed to reproduce alone the observed suppression in A-A collisions, especially at RHIC and for the Υ(1S) state [START_REF] Arleo | Quarkonium suppression in heavy-ion collisions from coherent energy loss in cold nuclear matter[END_REF]. One can nevertheless note a quite remarkable description of the J/ψ suppression dependence on N part in Pb-Pb collisions at LHC and that the predicted quarkonia suppressions are up to ∼ 20% at RHIC (200 GeV) and to ∼ 40% at LHC (2.76 TeV) and should therefore be taken into account in addition to the QGP effects (especially at forward rapidities).

Nuclear absorption

According to this model, the Q Q pair or its bound states can interact inelastically with the nuclei right after its formation and dissociate. This is the so-called nuclear absorption, which have presumably led to the "normal" suppression of the quarkonia observed at SPS (see section II.3.1). The nuclear absorption has been especially studied in p-A collisions in order to quantify its effects. Within the usual nuclear absorption framework, the quarkonia survival probability S abs inside a nucleus is Figure II.2: The cross section σ abs for the J/ψ shows a strong dependence on the collision energy. Here, its estimated values at SPS and RHIC are compared to the EKS98 and CTEQ6 nPDFs prediction at midrapidity [START_REF] Eskola | The Scale dependent nuclear effects in parton distributions for practical applications[END_REF][START_REF] Lourenco | Energy dependence of J/ψ absorption in proton-nucleus collisions[END_REF].

expressed as an exponential decay,

S abs = exp(-ρ A σ abs L) (II.15)
where ρ A is the nuclear density, L the mean propagation length and σ abs an "effective break-up" cross section, which is the inelastic cross section of a quarkonium with a nucleon. The latter can be estimated from the analysis of p-A collisions and be extrapolated to A-A collisions thanks to the Glauber model. The cross section σ abs was observed to decrease with the collision energy (see figure II.2) and its extrapolation to LHC energies leads to a negligibly small cross section.

Comovers

The Comovers model was introduced in the 90s to explain the "abnormal" suppression observed at SPS. It describes the quarkonium dissociation (or recombination) by inelastic interactions with the produced "comoving" hadrons h co of the medium, leading to new open heavy mesons through the process

Q Q + h co → D/B + D/B + X or to quarkonia through D/B + D/B → Q Q + X.
Similarly to nuclear absorption, a corresponding approximate survival probability S co can be derived from the gain and loss differential equation in transport theory for the quarkonium state Φ = J/ψ, ψ , Υ(1S)... ,

S co = exp -σ co N co - N Q N Q N Φ ln N co N f (II.16)
where N Q (N Φ ) the density of the considered heavy quark (quarkonium state) and σ co is the cross section of the quarkonium dissociation with the comoving medium of density N co . Thanks to the term ln[N co /N f ], the interaction stops when the comoving medium density reaches its freeze-out value N f . As N co is proportional to the medium energy density, the quarkonia suppression is then continuously dependent on the medium energy density. Without assuming any QGP, the comovers model (including the shadowing) leads to a reasonable agreement (but limited) with the data at RHIC and LHC [94,[START_REF] Ferreiro | Charmonium dissociation and recombination at LHC: Revisiting comovers[END_REF]. With the presence of a QGP, the comover contributions could therefore occur during the mixed phase and the following hadronic stage. Note finally that, thanks to the large gluon density in the QGP and to the large cross section of quarkonium dissociation by gluons, an equivalent comoving process might also occur in the partonic deconfined medium [96]. The latter will be further discussed in section II.2.1.3.

II.2.1.2 Sequential suppression

In 1986, Matsui and Satz [START_REF] Matsui | J/ψ suppression by Quark-Gluon Plasma Formation[END_REF] were the first to predict that the quarkonia suppression could be a sign of QGP production. Their so-called sequential suppression model is based on the idea that quarkonium states could be melted by color screening effects. More explicitly, inside the QGP, the range of the strong interaction binding the Q Q pair tends to be reduced by the presence of color charges in its vicinity. The range of the screened force is usually described by the Debye screening radius -by analogy with the electromagnetic plasma -and is inversely proportional to the color charge density ε in the deconfined medium. Consequently, the higher the temperature of the QGP, the smaller the Debye screening radius. Within its dualistic description, the sequential suppression assumes that a quarkonium state is melted if its radius is larger than the Debye radius while nothing happens if not. To each state then corresponds a dissociation temperature T d above which the state is completely melted, i.e. if T QGP > T d . Indeed, the heavy quarks of the melted state are then assumed to move freely inside the QGP until the hadronisation, where it is most probable that they hadronise as open heavy mesons. Hence, if this scenario is correct, one should observe for the J/ψ a suppression by "steps" as the different higher excited states (and their feed-downs) melt with increasing medium density (see figure II.3). As the whole sequential suppression occurs in the very early QGP where the temperature is maximal, one can thus see the quarkonia suppression as an early QGP thermometer.

To "calibrate" the quarkonia thermometer, the different dissociation temperatures T d need to be estimated. Unfortunately, this evaluation is far from being obvious: several approaches have been developed and have led to a wide range of results as shown in figure II.4. The most common approaches are the use of potential models [START_REF] Alberico | Heavy quark bound states above Tc[END_REF][START_REF] Mocsy | Can quarkonia survive deconfinement ?[END_REF][START_REF] Riek | Quarkonia and Heavy-Quark Relaxation Times in the Quark-Gluon Plasma[END_REF] or the evaluation of correlators and spectral functions in finite temperature lQCD [START_REF] Jakovac | Quarkonium correlators and spectral functions at zero and finite temperature[END_REF][START_REF] Aarts | Charmonium at high temperature in two-flavor QCD[END_REF]. Within the spectral function approach, the bound states manifest themselves as peaks which are characterised by their mass and spectral width (formation/destruction rate). One can then determine the dissociation temperature when the spectral peak disappears while increasing the temperature of the lattice (see figure II.5). Within the potential model framework 42 , the potential possible shapes and temperature dependences are determined either from "old" approaches and calculations: Lattice QCD, QCD sum rules, AdS/QCD , effective field theories and potential models. One should note that these evaluations are performed assuming different T c values and that the horizontal bar corresponds to the temperature extension where the state undergoes a mass/size evolution until it completely melts at the right end of the bar (see [START_REF] Adare | Measurement of Υ(1S + 2S + 3S) production in p + p and Au+Au collisions at √ s N N = 200 GeV[END_REF] and references therein for more details).

effective models or more recent lQCD results. The energy and state spectra are first determined with the time independent Schrödinger equation. The dissociation temperature of a state Φ is then given by the cancellation of its dissociation energy,

E diss (T ) = V Q Q(r → ∞, T ) -(E Φ -2m Q ).
(II.17

)
where r is the distance between the two heavy quarks. For instance, the dissociation temperatures obtained with the Q Q internal energy (evaluated from a fit to lattice results [START_REF] Kaczmarek | Quark antiquark energies and the screening mass in a quark-gluon plasma at low and high temperatures[END_REF]) are summed up in figure II.6. 

II.2.1.3 Elastic and inelastic collisions with hard probes: the cross sections approach

Another important contribution to the quarkonia suppression in the QGP could originate from inelastic collisions with the medium gluons and light quarks, which cross section calculations can be treated with pQCD [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. In the QGP, for a tightly bound state (dissociation energy E diss > T or very small size), the dominant inelastic process is the hard gluo-dissociation of the quarkonium Φ introduced by Bhanot and Peskin [START_REF] Bhanot | Short Distance Analysis for Heavy Quark Systems: 2. Applications[END_REF][START_REF] Lee | Charmonium hadron interactions from QCD[END_REF][START_REF] Kharzeev | On the sum rule approach to quarkonium -hadron interactions[END_REF][START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF], g + Φ → Q + Q, so that a sufficiently energetic gluon can break the binding. The gluo-dissociation cross section calculation carried out within the dipole approximation and operator product expansion [START_REF] Bhanot | Short Distance Analysis for Heavy Quark Systems: 2. Applications[END_REF] yields

σ g-Φ ∼ 1 m 2 Q (k/E B -1) 3/2 (k/E B ) 5 , (II.18)
where k is the gluon momentum in the Φ rest frame and E B = 2m Q -m Φ the binding energy. In a formulation where the color screening is taken into account, σ g-Φ depends on a temperature dependent dissociation energy which can be evaluated from the screened potential models as in section II.2.1.2. The gluo-dissociation is only expected to be efficient in a hot deconfined medium because the gluons coming from hadrons are too soft to allow this process [START_REF] Satz | Colour deconfinement and quarkonium binding[END_REF] (see figure II.7). The J/ψ suppression obtained with the gluo-dissociation process is illustrated in figure II.8. For loosely bound states (E diss < T , i.e. for excited and partially screened states), the phase space for gluo-dissociation rapidly shuts off, rendering the parton dissociation p + Φ → Q + Q + p (where p = q, q or g) the dominant process [START_REF] Grandchamp | Thermal versus direct J/ψ production in ultrarelativistic heavy-ion collisions[END_REF].

Of course, the reciprocal recombination process p + Q + Q → Φ + p is also possible. The knowledge of the inelastic cross sections leads to the evaluation of one of the key transport coefficients -the inelastic reaction rates for dissociation and formation -commonly used by transport models to continuously flip between quarkonia and "free" Q + Q (see section II.2.2.2).

Figure II.7:

Comparison between gluon and hadron cross-sections for J/ψ dissociation [START_REF] Bhanot | Short Distance Analysis for Heavy Quark Systems: 2. Applications[END_REF]. In a deconfined medium, the typical thermal gluon momentum of ∼ 1 GeV corresponds to a large dissociation cross-section. Whereas in a confined medium, hadron typical thermal momenta (up to 2 -3 GeV) lead to vanishingly small cross-sections [START_REF] Satz | Colour deconfinement and quarkonium binding[END_REF]. The calculations of the quarkonia and heavy quarks elastic cross sections for the processes Φ/Q + p → Φ /Q + p (where Φ can be Φ or another state) have also been carried out to study their diffusion in the medium [START_REF] Bhanot | Short Distance Analysis for Heavy Quark Systems: 2. Applications[END_REF][START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF][START_REF] Kharzeev | Quarkonium interactions in hadronic matter[END_REF]. They have received recently a renewed attention [START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF] with the perspective of explaining the "suppression of the suppression" observed at RHIC and LHC (see section II.3). From the elastic cross sections, one can evaluate the collisional energy loss and the diffusion coefficients used by kinetic equations (Fokker-Planck, Boltzmann...) for the evolution of the quarkonium center-of-mass motion [START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF][START_REF] Rapp | Heavy Quarks in the Quark-Gluon Plasma[END_REF].

II.2.1.4 Recombinations

The recombination was first introduced to explain the observed "suppression of the suppression". It predicts an enhancement of the quarkonium production from a recombination of uncorrelated Q and Q at the phase boundary [START_REF] Thews | Quarkonium formation at high-energy[END_REF]. The idea of a recombination mechanism at the phase boundary is commonly used within the statistical hadronisation and transport approaches, and will be further discussed in section II.2.2.

II.2.2 The different models II.2.2.1 Statistical hadronisation models

Driven by its successful description of light hadrons multiplicity (see figure I. [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]), the statistical hadronisation model has also been applied to the quarkonia yield. This model is based on the possible secondary production of quarkonia from recombinations of uncorrelated Q and Q at the phase boundary [START_REF] Thews | Quarkonium formation at high-energy[END_REF][START_REF] Braun-Munzinger | On charm production near the phase boundary[END_REF][START_REF] Braun-Munzinger | Charmonium from Statistical Hadronization of Heavy Quarks: A Probe for Deconfinement in the Quark-Gluon Plasma[END_REF]. This secondary production might occur only if the number of uncorrelated heavy quarks N Q in the medium is statistically non-negligible in comparison to the light quarks. N Q is directly proportional to the number of heavy quark pairs produced from the primary production (from gluon fusions), and should therefore increase with the centrality. It also increases with the collision energy: one expects the production of a hundred Q Q pairs at LHC and around ten times less at RHIC [START_REF]ALICE : Physics Performance Report, Volume II[END_REF][START_REF] Adler | Centrality dependence of charm production from a measurement of single electrons in Au+Au collisions at √ s N N = 200 GeV[END_REF]. The recombination is expected to increase quadratically with N Q , so that at high energy density (which increases with N part and √ s N N ) it becomes the dominant production mechanism (see figure II.9). Furthermore, it should be favoured at mid rapiditythe phase space region where the charm yield is the more important -and should be observed dominantly at small p T because single heavy quarks are expected to thermalise at least partially with the medium [START_REF] Moore | How much do heavy quarks thermalize in a heavy ion collision ?[END_REF]. Then, its contribution might be important at LHC, moderate at RHIC and negligible at SPS. Some hints that the recombination process would occur are the enhancement of the closed to open heavy hadrons ratio with the density energy or the observation of quarkonia elliptic flow (which should be negligible with only neutral primary quarkonia). Finally, note that it could be a deal breaker for the idea of a quarkonia thermometer.

Within the statistical hadronisation models, the initial Q Q pairs get first fully color screened in the deconfined QGP as the other partons. Then, assuming that Figure II.9: Comparison between the expected R AA from screening only and from statistical recombinations [START_REF] Satz | Quarkonium analysis of nuclear collisions[END_REF].

the QGP reaches a thermal and chemical equilibrium at hadronisation, the single heavy quarks hadronise with light or heavy quarks at the phase boundary to form open hadrons or quarkonia according to their statistical weights and masses. The statistical weight of the different states is given by the corresponding statistical distribution at the hadronisation temperature (which is already fitted to the light hadron multiplicities). The ψ /J/ψ ratio measurement should then be a crucial test for its predictions. The only uncertainties of the model are the initial Q Q pair yield, which is usually calculated using the nPDFs and the values of the baryon chemical potential, temperature and medium volume (the fireball decay is considered as a grand canonical ensemble).

II.2.2.2 Transport models

As already introduced in the introduction I.2.3.2, the transport models are the necessary almost "all-included" simulations which attempt to describe the dynamic behaviour of the fireball from the initial colliding hadrons to the final freeze-out [START_REF] Rapp | Heavy Quarks in the Quark-Gluon Plasma[END_REF][START_REF] Bass | Microscopic models for ultrarelativistic heavy ion collisions[END_REF][START_REF] Bratkovskaya | Parton-Hadron-String Dynamics at Relativistic Collider Energies[END_REF]. They are usually based on more or less of the following ingredients [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]:

-Primordial productions of light and heavy quarks from pQCD and nPDFs (including the shadowing).

-The initial cold nuclear matter effects such as the nuclear absorption and the Cronin effect.

-The quarkonium formation times τ f which affect quarkonium suppression at high p T [START_REF] Zhao | Charmonium Production at High p(t) at RHIC[END_REF].

-An initial sequential-like suppression of the quarkonia in the early QGP: if T (τ f ) > T d the state melts, otherwise forms.

-An isotropically expanding fireball model, with local temperatures, reproducing the measured hadron yields and phase space spectra, or alternatively an hydrodynamic description.

-For the quarkonia in the deconfined matter, a space-time evolution of the phase-space distributions f Φ described by classical kinetic equations 43 such as the relativistic Boltzmann equation (or the rate equation),

p µ ∂ µ f Φ ( r, p, τ ) = -E p Γ Φ ( r, p, τ )f Φ ( r, p, τ ) + E p β Φ ( r, p, τ ), (II.19)
where

p 0 = E p = ( p 2 + m 2 i ) 1/2
, r is the spatial coordinate, τ the proper time, Γ Φ the dissociation rate and β Φ the formation rate which depends on the single heavy quark phase-space distributions. The quarkonia then propagate along straight lines until their possible dissociation into two single heavy quarks. The dissociation and formations rates are evaluated from the inelastic cross sections of the Φ + p Q + Q + p processes (see II.2.1.3). The latter depend on the quarkonium dissociation energies which are determined from simple or color screened potentials (see III.1.1). The dissociation rate can also be evaluated from the finite widths of the states while using imaginary potentials from lQCD [START_REF] Laine | Real-time static potential in hot QCD[END_REF]122,[START_REF] Rothkopf | Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD[END_REF]. The single heavy quarks are evolved with an equivalent Boltzmann equation but with an additional diffusive term determined from the elastic cross sections of the process Q+p → Q+p (see II.2.1.3). In practice, one can also use the Fokker-Planck equation 44 (or relativistic Langevin simulations [START_REF] Rapp | Heavy Quarks in the Quark-Gluon Plasma[END_REF]) which drag and diffusive coefficients are derived from the elastic cross sections. The theoretical advantage of the Fokker-Planck equation over the Boltzmann equation -which assumes a diluted medium -is that it can be used without making any assumption on the medium density.

-A secondary quarkonia production from recombinations at the phase boundary.

-The final elastic and inelastic scattering from cross sections calculations.

-Quarkonia feed-downs from excited states and non-prompt productions.

The most widespread transport simulations treating of the quarkonia are the TAMU by Zhao et al. [START_REF] Zhao | Medium modifications and production of charmonia at LHC[END_REF][START_REF] Emerick | Bottomonia in the Quark-Gluon Plasma and their Production at RHIC and LHC[END_REF] and THU by Liu et al. [START_REF] Yan | J/ψ production in quark-gluon plasma[END_REF][START_REF] Liu | J/ψ Transverse Momentum Distribution in High Energy Nuclear Collisions at RHIC[END_REF] models, which differs mainly on their ratio of primary/secondary quarkonia productions and on details of the implementation (potential model...).

II.3 Experimental observations: from SPS to LHC

Since the 80s, the production of quarkonia in heavy ion collisions -and especially of the J/ψ -has been intensively investigated experimentally. The p-A collisions have allowed the study of the (anti-)shadowing effect and the propagation of heavy hadrons inside the cold nuclear matter. In AA collisions, the formation of a QGP was expected to be obtained from SPS energies and with larger and larger life-times and temperatures as the collision energy increases at RHIC and LHC. As many extensive reviews can be found in the literature [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF][START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF][START_REF] Brambilla | Heavy quarkonium : progress, puzzles, and opportunities[END_REF], we will only focus on the main experimental data relevant to the present work. GeV) in S-U collisions and 400 AGeV in pA collisions (where A is either a Be, Al, Cu, Ag, W or Pb ion). To get rid of the systematic errors 45 and to give a reference measurement 46 , the quarkonia cross sections are normalised by the medium-independent cross sections of the Drell-Yan (DY) process (q + q → γ/Z → µ + µ -). The first indication of QGP production came from the observation of an abrupt "abnormal" suppression of the J/ψ from semi-peripheral Pb-Pb collisions (see figure II.10 -left and right panels).

II.3.1 SPS

Figure II.10:

The ratio cross sections J/ψ/DY (left panel) and ψ /DY as a function of L (center panel). L is the penetration length inside the nuclear matter, determined from the Glauber model and the geometry of the collision. The same ratios divided by the expected values from cold nuclear matter effects deduced from p-A collisions (right panel). [START_REF] Borges | Charmonia production at the CERN/SPS[END_REF] By abnormal suppression, one means that the suppression does not follow the expected linear behaviour of the cold nuclear matter suppression which corresponds to the solid lines. In the right panel (where the expected suppression from cold nuclear matter effects is subtracted), the flattish part of the Pb-Pb collision spectrum confirms that the abnormal suppression is not due to the mere transition from pA to AA collisions. This first indication with the J/ψ was soon followed by an even more revealing measurement: the ψ abnormal suppression (see the central and right panels). One can indeed observe that its abnormal suppression begins from a smaller penetration length and is higher by a factor ∼ 2.5. Such behaviours might correspond to the sequential suppression by color screening predicted by Matsui and Satz [START_REF] Matsui | J/ψ suppression by Quark-Gluon Plasma Formation[END_REF] but . Comparison of the J/ψ suppression between SPS and RHIC energies at mid rapidity and low p T [START_REF] Adare | J/ψ Production vs Centrality, Transverse Momentum, and Rapidity in Au+Au Collisions at √ s N N = 200 GeV[END_REF][START_REF] Granier De Cassagnac | Heavy flavour and quarkonium experimental overview[END_REF].

II.3.2 RHIC

With a maximum collision energy (

√ s N N = 200 GeV) more than ten times larger than at the SPS, the Relativistic Heavy Ion Collider (RHIC) and its PHENIX and STAR detectors are almost only dedicated to heavy ion collisions (p-p, d-Au, Cu-Cu, Au-Au, U-U and Cu-Au). At this energy, the theory predicts the production of a QGP with a maximum initial temperature well above the critical temperature T c and a much larger production of Q Q pairs (which improves the statistics that was lacking at SPS).

Whereas a larger suppression of the quarkonia was expected at RHIC due to a higher QGP initial temperature and density, the data actually led to a surprising equivalent J/ψ suppression at RHIC and SPS for mid rapidities (see figure II.11). This was the first observation of the so-called "suppression of the suppression" 47 . The popular explanation is the balance at RHIC between an initially larger suppression and a final statistical recombination. In figure II.12, one can see a comparison between different kinematic regions for the J/ψ suppression at RHIC. As expected from recombinations but not from the shadowing, the J/ψ states measured at forward rapidity are more suppressed than at mid-rapidity (see left panel). The trans-port models quite well describe both these suppressions (as shown in figure II.15). The J/ψ states measured at low transverse momentum p T are more suppressed than at high p T (see right panel). At first sight, this could seem a bit curious as one would expect less suppression at low p T from the statistical recombinations. The high p T data (red dots) are not well described by transport models whereas the low p T data (black open circles) are reasonably well described by the statistical hadronisation model [START_REF] Andronic | Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions[END_REF]. At high p T , the observed plateau for 170 N part 320 can be seen as a sign of sequential suppression. The suppression difference between the low and high p T regions could be explained by the more important screening, shadowing and cold energy loss effects expected at low p T , assuming that the recombination is negligible. Finally, note that there is not yet data at RHIC for other charmonium states (such as the ψ ).

Figure II.12: R AA data for the J/ψ as a function of centrality. Left: Comparison between mid and forward rapidities for low p T inclusive J/ψ suppression [133]. Right: Comparison between low p T < 5 GeV/c (black open circles) and high 5 < p T < 14 GeV/c (red dots) inclusive J/ψ suppression at mid rapidity (|y| < 0.35 and |y| < 1 respectively). The high p T J/ψ suppression is compared with TAMU and THU transport models [134].

In figure II.13, the elliptic flow v 2 of the J/ψ is compared with the v 2 of lighter hadrons and various theoretical models. It is compatible with zero for p T > 2 GeV/c, showing that intermediate p T J/ψ do not thermalise with the medium, whereas very low p T J/ψ shows some signs of thermalisation. The agreement between the data and the different model calculations is quite poor, and tends to show that the final recombination should be moderate (but nevertheless finite) to be compatible with a non flow situation for p T > 2 GeV/c. For bottomonium states, the R AA of the Υ(1S) state as a function of centrality are shown in figure II.14. The Υ(1S) is quite strongly suppressed for central collisions but less than the J/ψ. Furthermore, its suppression starts at higher centralities than the J/ψ (i.e. at higher densities and temperatures). Both these observations support the sequential suppression point of view. Nevertheless, none of the theoretical models presented here fits the data. The Υ(2S + 3S) data are unfortunately not yet exploitable due to large systematic errors [START_REF] Vertesi | Bottomonium production in heavy-ion collisions at STAR[END_REF]. [START_REF] Satz | The Thermodynamics of Quarks and Gluons[END_REF] are from THU transport model; [START_REF] Nambu | Dynamical model of elementary particles based on an analogy with superconductivity I (and II)[END_REF] and [START_REF] Fodor | Lattice QCD results at finite temperature and density[END_REF] from TAMU transport model) [START_REF] Adamczyk | Measurement of J/ψ Azimuthal Anisotropy in Au+Au Collisions at √ s N N = 200 GeV[END_REF].

Figure II.14: R AA data for the Υ(1S) as a function of centrality compared to various theoretical models [START_REF] Vertesi | Bottomonium production in heavy-ion collisions at STAR[END_REF].

II.3.3 LHC

With a collision energy (

√ s N N = 2.76 TeV) more than ten times larger than at the RHIC (history repeats itself...), the Large Hadron Collider (LHC) and its AL-ICE and CMS detectors study heavy ion collisions (Pb-Pb). At this energy, theory predicts the production of a QGP with a maximum initial temperature of few times the critical temperature T c , a longer life-time and a larger production of Q Q pairs with a better access to bottomonia than at RHIC.

As shown in figure II.15, the J/ψ states with low transverse momentum p T are less suppressed at LHC than at RHIC for both mid and forward rapidities. This is once again a "suppression of the suppression". Its most probable explanation is once again the statistical recombination, leaving open the question whether all cc pairs melt at the LHC. Transport models which include a significant recombination component indeed give a reasonable agreement with the forward rapidity data but overestimate the suppression at mid rapidity. At the opposite, the J/ψ states with high transverse momentum p T are more suppressed at LHC than at RHIC and more suppressed than at low p T (see left panel in figure II. 16). One observes a smooth increase of the suppression towards a probable plateau at R AA ∼ 0.2 for most central collisions. It does not correspond to any sequentially suppressed feed-downs contributions. This is nevertheless compatible with a more important color screening due to higher temperatures/densities and a negligible recombination contribution (which is less and less probable with increasing p T ). With these ingredients, the transport model shown in the right panel roughly describes the data. In contrast, the shadowing or energy loss calculations 48 alone have led to a clear disagreement with the data [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF].

Figure II.17: Left: Comparison of the elliptic flow v 2 of the J/ψ at LHC for forward rapidity and at RHIC for mid rapidity [START_REF] Abbas | J/Psi Elliptic Flow in Pb-Pb Collisions at √ s NN = 2.76 TeV[END_REF]. One can note that an equivalent elliptic flow is also observed by CMS at mid-rapidity [140]. Right: To compare, the elliptic flow v 2 of the charged hadrons at LHC for mid rapidity [START_REF] Abelev | Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at √ s N N =2.76 TeV[END_REF].

The J/ψ elliptic flow v 2 at forward rapidity is shown in figure II.17 (left panel) and compared to transport models, and charged hadrons v 2 at mid rapidity (right panel). Whereas the elliptic flow was consistent with zero at RHIC, a positive v 2 is obtained at LHC for intermediate 2 < p T < 6 GeV/c. This elliptic flow might result from a partial thermalisation of both recombined (p T 2.5 GeV/c) and primordial (p T 2.5 GeV/c) J/ψ contributions. It favours scenarios with an important fraction of J/ψ coming from recombination (as single heavy quarks interact much more that "neutral" bound states) or with a partial thermalisation of the cc pairs in the medium. Both transport models -which include a significant fraction of recombination -shown here give a reasonable agreement with the data.

The comparison between the ratio of ψ to J/ψ in Pb-Pb collisions and the one in p-p collisions is shown in figure II.18 (left panel). An important difference appears between two kinematic regions. As one could expect from sequential suppression (ψ more suppressed than J/ψ), at midrapidity and high p T the ratio of ψ to J/ψ in Pb-Pb collisions is smaller than in p-p collisions. However, at forward rapidity and intermediate/high p T , the ψ to J/ψ ratio is surprisingly larger in Pb-Pb than in pp, i.e the ψ is less suppressed than J/ψ, which is in total contradiction with the sequential suppression and other effects too ! Neither the statistical hadronisation nor the transport models are able to explain such a behaviour (right panel) [START_REF] Andronic | Experimental results and phenomenology of quarkonium production in relativistic nuclear collisions[END_REF]. This effect is not observed in pA collisions [START_REF] Leoncino | J/ψ and ψ(2S) production in p-Pb collisions with ALICE at the LHC[END_REF] and should therefore not originate from shadowing or energy loss. For now, the only model which seems to be able to give such an inversion is the comover model (with dissociation and recombination) [START_REF] Ferreiro | News from quarkonia[END_REF].

Figure II.18:

Left:

Double ratio of measured prompt yields (N ψ /N J/ψ ) P bP b / (N ψ /N J/ψ ) pp as a function of centrality, for the mid rapidity (blue squares) and forward rapidity (red circles) [START_REF] Khachatryan | Measurement of Prompt ψ(2S) → J/ψ Yield Ratios in Pb-Pb and p-p Collisions at √ s N N = 2.76TeV[END_REF]. Right: Transport and statistical hadronisation models corresponding predictions. [START_REF] Andronic | Experimental results and phenomenology of quarkonium production in relativistic nuclear collisions[END_REF] As shown in figure II.19, the bottomonia are more suppressed at LHC than at RHIC. In the vein of the sequential suppression, the Υ(2S) state is more suppressed than Υ(1S) and gets almost entirely melted starting from a certain centrality. Moreover, both states seem to reach a plateau from a certain centrality. Finally, the Υ(3S) state is so strongly suppressed that only an upper limit of R AA (Υ(3S)) < 0.10 with a 95% confidence level could be estimated [145]. As shown in figure II.20, the transport models (with a small recombination contribution) and the anisotropic hydrodynamics 49 can describe pretty well Υ(1S) data, but fail for Υ(2S). Moreover, the statistical hadronisation model clearly underestimates the suppression (figure II.21). The R AA dependence on transverse momentum (and rapidity) is interestingly flat for both states (see the right panel of figure II. [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF]. It shows that their suppression process is not quite sensitive to their velocity and direction of propagation. 

II.4 Problematics, motivations and perspectives

We now wish to discuss the motivations for the present work. To this end, we first briefly sum up the irregular description of the data given by the common models and point out their questionable assumptions. As an answer, we then introduce the basic ideas of our model and its perspectives.

II.4.1 The main models: an irregular description of the data and criticisms

We have seen in section II.3 that the different models suffer from an irregular description of the data...

1)

The sequential suppression is a priori not observed for the charmonia R AA -exception made of some light "plateaus" -but may be masked by other effects such as recombination and cold nuclear matter effects. Furthermore, the observation of a ratio "R AA (ψ /J/ψ)" > 1 at forward rapidity is in total contradiction with its predictions. Nevertheless, a sequential like suppression is observed for the bottomonia, which are much less sensitive to other effects. Indeed, at RHIC the suppression of the Υ(1S) begins from a relatively large centrality. At LHC, a plateau at R AA ∼ 0.4 indicates that only the direct Υ(1S) survive and that the excited states (and their feed-downs) are almost entirely melted (as confirmed by the Υ(2S) and Υ(3S) data which are small but not null).

2) The statistical hadronisation model leads to a rather good description of the J/ψ suppressions at SPS, RHIC and LHC, nevertheless tarnished by large uncertainty bands. At the opposite, there is a clear disagreement between its predictions and the observed R AA for the ψ /J/ψ ratio and the Υ(1S) at LHC.

3) The transport models are irregular with the J/ψ suppression in the different kinematic ranges at RHIC and LHC. Moreover, they are unable to describe the ψ /J/ψ ratio at forward rapidity. Finally, the bottomonia suppression is correctly described at LHC but not at RHIC.

... which still leaves room for theoretical improvements. Furthermore, these models are based on some questionable assumptions:

1) The sequential suppression assumes that the fate of the quarkonia is entirely decided in a very early stationary QGP. If a state is melted (T max QGP > T d ), the corresponding Q and Q are assumed to move freely inside the QGP until the hadronisation where they hadronise into open mesons. In other words, the Q Q pair is assumed to decorrelate very quickly and entirely, which might only be valid in a weakly-coupled QGP. It is nevertheless far from being obvious in a strongly-coupled QGP -as it is nowadays pictured -where their propagation should be very different. At the opposite, if a state can form (T max QGP < T d ), the evolution of the corresponding quarkonia in the medium is assumed to be completely adiabatic: no dissociation nor transitions to other states are possible. Though, the evaluation of the dissociation and formation rates from hard inelastic scatterings (see II.2.1.3) and the recent lQCD studies on the finite life time of bound states in a deconfined medium [START_REF] Laine | Real-time static potential in hot QCD[END_REF]122,[START_REF] Rothkopf | Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD[END_REF] tend to show the nonadiabaticity of the evolution. Furthermore, the J/ψ elliptic flow measurement suggests that both recombined (p T 2.5 GeV/c) and primordial (p T 2.5 GeV/c) J/ψ partially thermalise [START_REF] Abbas | J/Psi Elliptic Flow in Pb-Pb Collisions at √ s NN = 2.76 TeV[END_REF]. In a "quasi-stationary" version of the sequential pattern, the formation time of the states in the vacuum are taken into account by comparing the dissociation temperature with the local temperature T QGP (τ f , x). Unfortunately, as already discussed, both the determinations of the dissociation temperatures and of the formation times are not obvious (see figure II.4 and section II.1 respectively).

2) The statistical hadronisation model assumes on the contrary that the fate of the quarkonia is entirely decided at a quasi-stationary phase boundary. Indeed, the initial Q Q pairs are first assumed to be fully dissociated in the deconfined QGP, then to equilibrate with the medium and finally to hadronise into open hadrons or quarkonia according to their statistical weight and mass. However, the full decorrelation of the initial Q Q pairs is far from being obvious according to lQCD calculations (static potentials and spectral functions) and especially if the tight and small bound states (such as J/ψ and Υ(1S)) form before the deconfinement. Furthermore, because of their large inertia and small cross sections with the medium [START_REF] Cao | Thermalization of charm quarks in infinite and finite QGP matter[END_REF], it is not obvious that the heavy flavours get thermally equilibrated (and without any delay) with the very dynamic QGP created in heavy ion collisions. Moreover, the elliptic flow measurement of the J/ψ rather shows a partial thermalisation only.

3) The transport models correspond to a more dynamical view of the dissociation/formation processes. As in the quasi-stationary sequential suppression model, a state is initially melted if T medium (τ f ) > T d and the corresponding Q Q pairs fully decorrelated. But if a state is initially formed, the corresponding Q Q pairs can still be dissociated or recombined during the evolution through inelastic collisions. As discussed in sections II.2.1.3 and II.2.2.2, the dissociation/formation rates are evaluated from inelastic cross section calculations. Though the criticism of the transport models is beyond the scope of this thesis, at first sight it could seem curious i) to use a cross section approach in a situation where one cannot assume the in and out states to be defined asymptotically, though one of its basic postulate [START_REF] Peskin | An introduction to quantum field theory[END_REF]; ii) to use a perturbative approximation [START_REF] Bhanot | Short Distance Analysis for Heavy Quark Systems: 2. Applications[END_REF] for a non perturbative problem; iii) that the multipartonic effect is neglected during a single q/g + Φ interaction ("stationary" assumption).

II.4.2 The need for a real-time quantum treatment

As shown in the previous section, there is not yet a perfect theoretical description of the observables and some of the basic assumptions of the models are unjustified (or might be even ruled out by the observations). Furthermore, some observables can not be easily explained by the models, e.g. the suppression of the J/ψ suppression or the ψ /J/ψ ratio at forward rapidity. Instead of assuming any (quasi-)stationary media/quarkonia, formation times, full decorrelation, or adiabaticity... one can go back to the "reality": nothing is instantaneous, nothing is stationary, nothing is adiabatic and nothing is fully (de)coupled. Basically, one can say that the Q Q pairs are produced before the QGP formation, propagate and interact continuously inside a deconfined and dense medium which is expanding and cooling down very rapidly. Whether the Q Q pairs emerge as bound quarkonia or as open hadrons is only resolved at the end of the evolution, and one should then beware of the quantum coherence/correlation during the whole evolution (see figure II.22 for illustration) [START_REF] Blaizot | On the fate of a J/ψ produced in a nucleusnucleus collision[END_REF]149,[START_REF] Cugnon | J/ψ, ψ , and χ c suppression in nucleus-nuceus collisions at SPS energies[END_REF]. In simpler words, as Young and Shuryak write [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]: "In a nutshell, the main issue is how small is the separation in the [Q Q] pair when the QGP is over, not in which particular states they have been during this time". Unfortunately, the description of this real-time dynamics requires to solve a very complicated quantum field theory problem at finite temperature T (t). Even if solving this full problem is out of reach of the present theoretical methods, one can identify some effective models preserving most of the quantum features. They should lead to a dynamical and continuous picture of the dissociation, recombination, energy exchanges and possible transitions to other bound states, instead of the usual "coupled or decoupled" binary picture. To do so, the basic idea of our approach is to study the Q Q pairs as open quantum systems continuously interacting with a thermal QGP background. More explicitly, the continuous interaction between the medium and the internal degrees of freedom of a Q Q dipole is obtained through 1) a Q Q mutual interaction screened by color charges in its vicinity and 2) a fluctuation/dissipation mechanism reflecting the continuous hard elastic collisions

Q Q + p ↔ (Q Q) * + p.
Both ingredients possibly lead to transitions between bound quantum states or between bound and free states. The basic ideas of our approach are illustrated in the figure II.23.

The study has been proposed with the implicit hopes and perspectives to:

-Study the relative motion of the correlated heavy quark and antiquark in a cooling deconfined medium and deduce the real-time quarkonia content of the Q Q pair (in the quantum mechanical sense).

-Observe if the "suppression of the suppression" could be explained by a thermal effect. Indeed, the diffusive evolution of the relative distance between the Q and Q in a thermal medium is proportional to √ D S t for Brownian particles [START_REF] Pottier | Physique statistique hors d'équilibre[END_REF] (where D S is the spatial diffusion coefficient). It is expected to be slower than its ballistic evolution in the vacuum, which is ∝ t for the free spreading of a gaussian wavepacket [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF]. Furthermore, because D S is expected to be inversely proportional to the QGP temperature (see sections IV.1.1 and V.2.1 for more details), the diffusive evolution should be slower as the medium temperature increases with the collision energy. A smaller inter-quark distance could then lead to an enhancement of the J/ψ population.

-Make a phenomenological use of the drag and diffusion coefficients calculated for single heavy quarks -obtained from either microscopic calculations or lQCD results (see section V.2.1) -while insuring the quantum nature of the

Q Q system.
-Find a connection between the main ideas of the sequential suppression (i.e.

the decorrelation from a T-dependent color screening) and the statistical hadronisation (i.e. the thermalisation of the states) without making any of their unjustified assumptions. See the schematic view of the quarkonia suppression/enhancement models in hot media in figure II.24.

-Measure the medium temperatures above the critical temperature T c , and not only the initial temperature (sequential suppression) or T c (statistical hadronisation). The quarkonia could then be seen as a quantum continuous thermometer.

-Find a formalism which is effective enough to be introduced in a transport code in order to make phenomenological predictions. We have therefore shown the limits of the common models in both their data description and assumptions. We have also discussed the puzzling evolution of the experimental observations from SPS to LHC energies and highlighted some tricky issues such as the saturation of quarkonia suppression, the elliptic flow and the ψ /J/ψ ratio. As an answer to some of these issues, we have proposed to deal with the quarkonia as open quantum systems in continuous interaction with the deconfined medium. Before focusing on the possible fluctuation/dissipation mechanisms (in part IV), we study in the next part the "ballistic" dynamics of a Q Q pair with a color screened self-interaction only.

Part III

Mean field dynamics

In this part, we focus on the quantum dynamics of the internal degrees of freedom (d.o.f.) of a non-relativistic Q Q pair, self-interacting via the strong interaction and color screened by color charges in its vicinity. The pair is assumed to be immersed in an infinite homogeneous QGP at thermal equilibrium and the motion of its center-of-mass is not considered. By exploring the "ballistic" evolution of the relative Q Q motion without the effects of the direct collisions with the medium, we aim to evaluate the evolution of their relative distance and their transitions to free and other bound states. It is a first attempt to measure in what extent the assumptions of fast/full decorrelation or adiabatic evolution made by the sequential suppression (and statistical hadronisation model for the former) are justified. To this end, we therefore study the actual Q Q dynamics and do not just assume one. Our approach within this part is illustrated in figure III.1.

For a start, we progressively introduce in section III.1 the basic concepts and ingredients of the mean field approach, such as the screened potentials, temperature evolutions, possible initial states, equation of evolution and observables. To distinguish among the different components of the model, in section III.2 we focus on the basic evolutions of the Q Q pair obtained with the free and vacuum potentials corresponding respectively to the limit T → ∞ and T = 0. Including the color screening effects, we then study the evolutions obtained with the weak (section III.3) and strong potentials (section III.4) at constant temperatures and with RHIC and LHC temperature scenarios. Finally, in section III.5 we discuss these evolutions regarding to other models, sum up the values obtained at the chemical freeze out and compare them to some extent to the data. 

III.1 The ingredients of the mean field model

All along this part, the quantum state of the considered Q Q pair is described by a wavefunction ψ( r, t), where r is the relative three-vector between the two particles. The evolution of the Q Q wavefunction is given by the time dependent non-relativistic Schrödinger equation. We focus only on the S states allowing to reduce the full 3D analysis to a 1D radial situation without any approximation. Indeed, the evolution given by the Schrödinger equation in spherical coordinates does not lead to any transitions between states of different orbital momenta [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF].

III.1.1 Color potentials and eigenstates III.1.1.1 Justification of the potential approach

Because of their color charges, the heavy quark and antiquark of a pair interact with each other via the strong interaction (the so called self/mutual interaction). Unlike the light quarks, a simplified description of this interaction through a binding potential is possible in place of the unsolvable non-perturbative quantum field theory framework [START_REF] Eichten | [END_REF][START_REF] Kaczmarek | Heavy quark free energies and the renormalized Polyakov loop in full QCD[END_REF][START_REF] Mocsy | Can quarkonia survive deconfinement?[END_REF]. Indeed, because the heavy quark masses are much larger than the typical QCD scale Λ QCD ∼ 200 MeV 1) their renormalised and current masses are almost equivalent implying that their running masses can be replaced by fixed masses, and 2) the binding energies are much smaller than their rest masses implying that relativistic corrections and sea quarks can be neglected.

III.1.1.2 The vacuum potential

In the vacuum, the usual basic binding potential is the so-called Cornell potential [START_REF] Eichten | [END_REF] which writes as a sum of two terms:

V (r) = σ r - α r (III.20)
where the first term σ r describes the long distance non-perturbative confinement whereas the second term -α r a short distance, perturbative, Coulombian like interaction. As in [START_REF] Mocsy | Can quarkonia survive deconfinement?[END_REF], one can use the string tension coefficient σ = (1.65 -π/12)/r 2 0 (where r 0 = 0.5 fm) and the "Coulombian" coefficient α = π/12 that were determined by [157] through a fit to lattice results. Additionally, one can include a third term -0.8σ/(m 2 Q r) which originates from independent relativistic effects of the quark spins [START_REF] Bali | Complete O (v**2) corrections to the static interquark potential from SU(3) gauge theory[END_REF]. Finally, to obtain a more complete description of the binding, one should also take care of the quarkonium instabilities through strong decays [START_REF] Satz | Colour deconfinement and quarkonium binding[END_REF], also called string breaking. Indeed, as discussed in I.1.2, the gluonic flux tube can break into a quark/antiquark pair as the heavy quark/antiquark move away from each other. This fragmentation occurs spontaneously for charmonium states whose energies are above ∼ 3.7 GeV (the cc threshold) and for bottomonium states above ∼ 10.35 GeV (the b b threshold). A possible way to translate this instability in a potential model, is to saturate the potential to a certain value V sat , in order to "free" the Q Q pairs with higher energies. The saturation value should correspond to the energy difference between the maximum quarkonium energies and the bare mass of two quarks: V sat = 3.7 -2 * 1.25 = 10.35 -2 * 4.575 = 1.2 GeV for charmonia and bottomonia. The resulting binding potential for a cc pair is shown in figure III.2. Note that this potential is close to what is obtained from lQCD calculations at the limit T → 0 (see sections III.1.1.5 and III.1.1.5). It corresponds to the Cornell potential given by III.20 plus a term for the relativistic spin effects and a possibility of string breaking.

III.1.1.3 Basics of color screened potentials

In this part, the only interaction between the deconfined medium and the Q Q pair is the "Debye-like" color screening of the Q Q mutual interaction due to the presence of color charges in its vicinity. Within the potential approach, the mutual interaction and the Debye screening of the Q Q pair can be described through a modified potential. Historically, the basic ideas on screened potentials came from the study of electrically ionized fluids by Debye and Hückel [START_REF] Debye | Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen[END_REF]. They found that the usual Coulomb potential ∝ -1/r between two electrical charges was modified by the screening through an exponential damping term exp(-r/λ D ), where λ D is the Debye-Hückel length. Hence, the interaction between two charges gets weaker at shorter distances. For color charges, the behaviour of the color screening is pretty much equivalent and leads to a temperature dependent lowering of the potential asymptotic value V (r → ∞). In this way, the decrease of the Q Q binding energy facilitates its access to free quantum states.

The potential of a Q Q pair in a deconfined medium at temperature T is usually derived from lQCD calculations. Actually, there are different possible potentials corresponding to different thermodynamic situations. From the lattice, one can directly evaluate the free energy F (r, T ), which corresponds to a static situation where the Q Q pair has an infinite time to exchange a maximum of reversible and irreversible (heat) energy with the medium. In parallel, one can also evaluate the entropy term T S which corresponds to the maximum amount of irreversible energy that can be dissipated during this process. Then, if one considers an "adiabatically slow" evolution of the Q Q pair corresponding to a maximum heat exchange, its screened potential should be taken as the free energy F (r, T ). At the opposite "fast" limit, the internal energy U (r, T ) is defined by the process where no irreversible energy is exchanged with the environment. In practice, the internal energy is evaluated indirectly by "giving back" to the free energy F the maximum dissipated energy T S, i.e. with the thermodynamic relation U (r, T ) = F (r, T ) + T S(r, T ). To sum up, the free energy corresponds to a maximum heat exchange between the Q Q pair and the medium whereas the internal energy to no heat exchange.

To choose whether a Q Q pair should exchange a maximum, an intermediate or a null amount of irreversible energy with the medium is not obvious. Within our model, we will consider two kinds of potential: an intermediate heat exchange situation F < V < U and the internal energy U . Below, we will see that they lead respectively to a weak and strong binding of the Q Q pair and their corresponding potentials are subsequently called weak and strong. In principle, the use of the weak potential F < V < U might be more consistent in this part, where we do not consider any other energy exchange mechanism. At the opposite, the use of the strong potential U might be more consistent in the parts V and VII in order to avoid redundancies between energy exchange mechanisms. Below, we briefly overview the weak and strong potentials and corresponding state spectra that we use in practice, but note that an extensive discussion of their features can be found in [START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF].

III.1.1.4 Color singlet and color octet

The screened interaction also depends on the color state of the Q Q pair. As discussed in I.1.4.2, before potentially binding into a color neutral quarkonium state, a Q Q pair is initially produced either as a color singlet or octet state with a statistical ratio of the order of 1:8. It is thus most probable that in the deconfined medium the Q Q pair exists alternatively as a color singlet state or a color octet state in the course of its color exchanges with the medium. As shown in figure III.3, the binding potentials obtained from lQCD for the color singlet and octet channels are very different: while the singlet potential "V 1 " is quite attractive over the typical quarkonia size ( 1 fm), the octet potential "V 8 " is almost independent of | r| indicating a weak attraction/repulsion. Note also that they become equal beyond the typical quarkonia size. If one assumes the color states to be at thermal equilibrium, the probability to be in a color octet state is given by ∝ exp(-(V 8 -V 1 )/T ). Young and Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF] then pointed out that as the ratio (V 8 -V 1 )/T is quite large (∼ 10) over the typical quarkonia size, the color octet channel is suppressed by an order of magnitude and its contribution to the full dynamics is consequently almost negligible. All along the present work, we will therefore not consider the color octet contribution and assume the Q Q to be in a color singlet state. The "weak" potential F < V (T ) < U considered here has been evaluated by Mocsy and Petreczky [START_REF] Mocsy | Can quarkonia survive deconfinement?[END_REF] from lQCD calculations, as an intermediate potential between the color singlet free energy F (r, T ) and the color singlet internal energy U (r, T ). As explained above, it corresponds to a screened situation where the pair exchanges some heat with the medium. In practice, we use a version of the weak potential which has been reparametrised by Gossiaux as follows. It is divided into three areas: the short distance potential V 0 that coincides with the zero temperature potential (III.20), the intermediate distance potential V int taken with the parametrisation proposed in [START_REF] Marin | Gossiaux Suppression of the J/ψ suppression[END_REF], and the exponentially damped long distance potential V 1 . The weak potential then writes

V weak (r, T ) =        V 0 (r) for r < 0.43 fm T red = r 0 V int (r, T ) for r 0 < r < r 1 V 1 (r, T ) for r > 1.25 fm T red = r 1 with (III.21) V 0 (r) = - α r + σr -0.8 σ m 2 Q r , (III.22) V int (r, T ) = V0 + g 1 (r -r 0 ) + g 2 (r -r 0 ) 2 1 + g 3 (r -r 0 ) + g 4 (r -r 0 ) 2 , where V0 = V 0 (r 0 ), V 1 (r, T ) = V ∞ - 4 3 α 1 r e -4π α1 T r , where V ∞ = σr 0 .
The running coupling parameters α 1 (T red ) and α1 (T red ) are determined in [START_REF] Kaczmarek | Static quark antiquark free energy and the running coupling at finite temperature[END_REF] from lattice results. The T-dependent parameters g 1 , g 2 , g 3 and g 4 permit to achieve a smooth connection between V 0 and V 1 for each T red . The reduced temperature is defined by T red ≡ T /T c where the QGP critical temperature is taken to T c = 0.165 As an alternative at finite temperatures, we will also consider the "strong" potential U (T ), i.e. the color singlet internal energy, which has been evaluated from the lattice by Kaczmarek and Zantow in [START_REF] Kaczmarek | Quark antiquark energies and the screening mass in a quark-gluon plasma at low and high temperatures[END_REF]. Once again, we use in practice a version coming from a reparametrisation by Gossiaux:

V strong ≡ U (r, T ) = - α r + σr - 0.8σ m 2 Q r × e -(µr) 2 + V 0 × 1 -e -(µr) 2 , (III.23)
where the parameters σ, µ and V 0 have been determined to fit the results of [START_REF] Kaczmarek | Quark antiquark energies and the screening mass in a quark-gluon plasma at low and high temperatures[END_REF].

The corresponding potential is shown in figure III.5 for different values of the temperature. As one can already notice from figures III.4 and III.5, the weak and strong potentials exhibit a very different behaviour near the critical temperature T c . As shown in figure III.6, whereas the asymptotic value of the weak potential is smoothly decreasing with T (one has V weak (r → ∞, T ) ∝ 1/T ), the asymptotic value of the strong potential exhibits an important peak around T c and is generally larger when T > T c . Therefore, it requires more energy to dissociate a Q Q pair in the strong potential than in the weak. Moreover, the charmonium states melt at larger temperatures (see table III.5). 

III.1.1.7 Eigenstates and dissociation temperatures

To obtain the state {ψ n,l } n=0... l=0... and energy {E n,l } n=0... l=0... spectra of these potentials, one needs to solve the time independent Schrödinger equation:

Hψ n,l = E n,l ψ n,l , (III.24)
where the Hamiltonian of a two particle system in the Q Q pair center of mass frame is given by [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF] 

H = 2m Q - ( c) 2 m Q ∇ 2 + V (r, T red ). (III.25)
In spherical coordinates, the Schrödinger equation (III.24) and the decomposition of the wavefunction in radial R(r) and angular Y (θ, φ) components lead to an independent equation for the radial part,

∂ 2 ∂r 2 - l(l + 1) r 2 + m Q ( c) 2 (E n,l -V (r) -2m Q ) u n,l (r) = 0, (III.26)
where one has introduced the reduced radial wavefunction u n,l (r) ≡ r R n,l (r) to simplify the calculation of the radial part of the nabla operator in spherical coordinates:

∇ 2 R n,l (r, t) = 1 r ∂ 2 u n,l (r, t) ∂r 2 . (III.27)
This differential equation (III.26) can be solved numerically from an iterative method described in [START_REF] Marin | Gossiaux Suppression of the J/ψ suppression[END_REF]. In figure III.7, one can see for instance the vacuum charmonium radial wavefunctions obtained with the binding potential at the zero temperature limit (or equivalently with the finite temperature potentials at T red ≤ 0.4). The corresponding energy spectra of the charmonia and bottomonia (table III.4) are close to the experimental values. At larger temperatures, these states are modified by the potential variations: they tend to spread with increasing temperature (see for instance figure III.8) while their dissociation energies

E diss (T ) = V (r → ∞, T ) -(E n,l (T ) -2m Q ) get reduced (see figure III.9
). Finally, the dissociation temperatures of the quarkonium states, given by E diss (T diss ) = 0, are summed up in table III.5 and clearly show that the strong potential implies a stronger binding. -Dissociation temperatures -

State F < V < U V = U Charmonia J/ψ 1.45 T c 1.85 T c χ c 0.48 T c 1.2 T c ψ 0.4 T c 1.1 T c Bottomonia Υ(1S) 3.55 T c 4.45 T c Υ(2S) 0.8 T c 1.45 T c Υ(3S) 0.5 T c 1.2 T c
Table III.5: Temperature of dissociations of the charmonium and bottomonium states obtained with the weak F < V < U and strong V = U potentials [START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF]. The heavy quark masses are taken to m c = 1.25 GeV and m b = 4.575 GeV.

III.1.2 Medium temperature evolutions

In section I.2.2, we have discussed the typical pattern of heavy-ion collisions. In a few words, 1) a pre-equilibrated anisotropic medium, with a quickly increasing temperature, promptly forms from the initial and successive parton scatterings and rapidly thermalises to a QGP after t 1 fm/c, 2) the QGP phase cools down (T > T c ) and expands during 1 t 5 -10 fm/c, 3) once the crossover reached (T ∼ T c ), the QGP turns into a mixed phase where the partons hadronise gradually 4) the resulting hadrons scatter inelastically until the chemical freeze out and the medium keeps expanding (T < T c ), 5) the final hadrons scatter elastically until the kinetic freeze out.

In this first approach, we choose the space-time temperature distribution derived by Kolb and Heinz [START_REF] Kolb | Hydrodynamic description of ultrarelativistic heavy ion collisions[END_REF]. It corresponds to a hydrodynamic evolution of an initial thermalised state. The ideal hydrodynamic theory of the QGP tells us that the evolution of the transverse temperature distribution T ( r T , τ ) may be computed from the conservation of total entropy as the ideal fluid expands radially driven by transverse pressure gradients. On one hand, as the volume of QGP first grows linearly with time (Bjorken like expansion), the initial evolution of the entropy density s is inversely proportional to time: s ∝ τ -α , where α = 1. As time increases, the volume of ideal fluid grows faster, such that the parameter α increases smoothly from 1 to 3 (see figure III.10). On another hand, as the QGP is described by an ideal gas of massless particles, its entropy density is also proportional to the cube of the temperature: s ∝ T 3 . Consequently, above the critical temperature, the temperature evolution is T ∝ τ -α/3 . TeV (right). When T red > 1 the medium is a QGP phase, at T red = 1 the medium is a mixed parton/hadron phase and when T red < 1 the medium is a hadron gas.

As the pre-equilibrium phase is still poorly understood, the choice of the initial thermalised state is not obvious. Nevertheless, the initial transverse temperature distribution T ini ( r T , τ ) can be derived from the density distributions of participating nuclei, given by the Glauber model [START_REF] Glauber | High-energy scattering of protons by nuclei[END_REF]. The lapse of time required to reach a thermalized initial state, from which the hydrodynamic evolution takes place, is given by τ ini ∼ c/T ini (τ ini ≈ 0.6 fm/c at RHIC and τ ini ≈ 0.5 fm/c at LHC, in practice both taken to τ ini = 0.6 fm/c). The temperature distribution of the QGP phase is then given by:

T ( r T , τ ) ≈ T ini ( r T ) × τ ini ( r T ) τ α/3 , for τ ≥ τ ini . (III.28)
In this hydrodynamic model, the phase transition between the QGP and the final hadronic phase is a strong first order transition at T = T c = 165 MeV where the medium is a mixed parton/hadron phase until the chemical freeze out. It contradicts the lattice QCD results (illustrated in the QCD phase diagram I.11) which rather show either a very weakly first order transition or a crossover. Nevertheless, the impact of this sharp transition on our dynamic should be small. After this transition, the temperature evolution corresponds to the hydrodynamics of a noninteracting hadron gas. Finally, the evolution ends at the kinetic freeze out (T ∼ 100 MeV) when the hadron medium becomes so diluted that local thermal equilibrium can no longer be assumed.

Although in this hydrodynamic model the temperature distribution is spatially dependent, the Q Q pair will be assumed, for the purpose of simplification, to be immersed in a homogeneous medium whose temperature evolution is taken at the center of the fireball and for a central collision. 

III.1.3 Initial states

As discussed in section II.1, the Q Q pairs are produced at the very beginning of the collision and clearly before the formation of any deconfined medium. However, to know if their bound states form before the deconfined medium is not obvious and is subject to debate (especially for the charmonia). Within our model, we make few assumptions on the initial medium and Q Q states. First, we assume the evolution of the Q Q system to begin with the hydrodynamic QGP phase, i.e. we do not consider the strongly anisotropic pre-equilibrium phase. Consequently, note that the initial time t = 0 of the Q Q evolution corresponds to τ ini of the medium evolution. Second, we assume the Q Q system at t = 0 to be either in a compact state (option 1) or already formed as a bound state (option 2).

If the pair is assumed to be in a compact state at the time of QGP formation (option 1), i.e. as it would be right after its production from the hard process, the initial radial wavefunction is chosen to be a general Gaussian wavepacket:

R(r, t = 0) = √ 4π 1 πa 2 3/4 e - r 2 2a 2 (III.29)
where a is the initial Gaussian parameter taken to be equal to a c = 0.165 fm and a b = 0.045 fm for a cc and b b pair respectively. We normalise the radial wavefunction to unity, i.e. |R(r)| 2 r 2 d r = 1 as Y (θ, φ) = 1// √ 4π for S states. The initial Gaussian parameter can be estimated by applying the uncertainty principle to the intermediate quark of the Feynman diagrams for the Q Q production (leading order u or t channel, see figure I.9): ∆r ∼ c/m Q . These values can also be fixed from experimental results in pp collisions: by analyzing open charmed p T distributions or ratio of the direct ψ to J/ψ cross-sections. The value σ D ψ /σ D J/ψ ∼ 0.21 in pp experiments [163,[START_REF] Aaltonen | Production of psi(2S) Mesons in p anti-p Collisions at 1.96-TeV[END_REF] is indeed close to the ratio of the corresponding initial populations W ψ (t = 0)/W J/ψ (t = 0) = 0.12/0.46 = 0.26 in our model (see section III.2.1). Option 1 corresponds to the view that the Q Q pair interacts with the medium constituents as soon as it is created. The issue is then to determine in what extent the pairs form bound states when the plasma cools down and not whether the bound states "survive".

If the pair is assumed to be already formed as a bound state at the time of QGP formation (option 2), the initial radial wavefunction is chosen to be one of the vacuum radial eigenstates determined from the binding potential at T = 0.

III.1.4 Evolution with the Schrödinger equation and numerical resolution

As m Q Λ QCD , the Q Q system can be studied within the frame of non relativistic dynamics with the time dependent Schrödinger equation to describe their relative motion. The Q Q pair is described by the (reduced) radial wavefunction

R Q Q(r, t) (u Q Q(r, t) ≡ rR Q Q(r, t))
. For numerical purposes, the time dependent Schrödinger equation for the radial part can easily be re-written as:

R Q Q(r, t + ∆t) = e -i H ∆t R Q Q(r, t), (III.30)
and then expanded to the first order to the Crank-Nicolson scheme:

O + 1 R Q Q(r, t + ∆t) = O - 1 R Q Q(r, t), where O ± 1 ≡ I ± i H 2 ∆t (III.31)
where I is the identity operator and ∆t is the numerical time step. Because the O ± 1 operators are tridiagonal matrices in a discretised space approximation, equation III.31 can be numerically solved with the Thomas algorithm. The boundary conditions are given by: finite

R Q Q(0) , R Q Q(L) = 0 ←→ u Q Q(0) = 0 , u Q Q(L) = 0 .(III.32)

III.1.5 Weight and survivance observables

The real-time dynamics of the Q Q pair can be studied through different possible observables, such as the mean square position

r 2 = ψ Q Q|r 2 |ψ Q Q and momentum p 2 = ψ Q Q| p2 |ψ Q Q , the probability density ρ(r) = |ψ Q Q(r)| 2
, the quarkonium state occupation weights (see below), the mean energy of the pair

E = ψ Q Q|H |ψ Q Q ...
In the present work, we will mainly focus on the quarkonia content of a Q Q pair to study the quarkonia suppression. In our model, the population/weight W i of a S state i at t is defined as the projection of the Q Q wavefunction at t on the vacuum quarkonium states:

W i (t) ≡ | ψ n=i,l=0 |ψ Q Q(t) | 2 = ∞ 0 u Q Q(r, t) × u * i,0 (r, T red ≤ 0.4) dr 2 .(III.33)
The weight W i (t) can be seen as the real-time population of a vacuum quarkonium state i at t, or in other words to the proportion of the Q Q pair that would instantaneously hadronise into a vacuum quarkonium state i if the QGP would extinguish at time t. At a temperature T > 0.4, there is then a mismatch between the Hamiltonian states (the instantaneous eigenstates at T ) and the projection basis. Nevertheless, defined with the vacuum states, the quarkonia content allows us to study the real-time dynamics of a Q Q pair in a fixed basis all along its evolution (and especially of its bound component). As we assume an instantaneous transition between the Q Q components and the vacuum states at the chemical freeze-out (see below), it is only at this stage that the quarkonia content recovers all its physical meaning. We also define the normed weight or "survivance" S i of a state i by

S i ≡ W i (t) W i (t = 0) . (III.34)
If the initial state of the Q Q pair is chosen to be a quarkonium state i (option 2), the survivance S i (which is then equal to W i ) represents the probability for the state i to survive in the medium relatively to pp collision. In this case, one has S i (t) ≤ 1 and one really deals with the usual suppression. However, if one wishes to obtain the actual content on a state i, one would need to sum over its contributions from the different initial quarkonium states (weighted by their initial abundances). If the initial state is a Gaussian wavepacket (option 1), the initial Q Q pair can be seen as a weighted mix of quarkonium states and one can really probe its quarkonia content from t = 0 through the weights W i (t). Indeed, each W i (t) already includes the contributions obtained from the different initial bound states, i.e. the transitions between quarkonium states. The survivance S i (t), which is now possibly larger than unity, represents the gain or loss of this content inside the medium relatively to pp collision. Indeed, in pp collisions, the Q Q pair undergoes the vacuum potential. Then, the weights remain constant over the evolution and the survivances are equal to unity (as will be confirmed in section III.2.2). The survivance values in our model are therefore given relatively to pp collisions. Furthermore, as in the vacuum case the quarkonia content is fixed from t = 0, one can note that option 1 contradicts the common belief that some "formation times" are required for the quarkonia to emerge out of the Q Q pair.

III.1.6 Freeze out

To give the final predictions of our model, one needs to stop the evolution of the Q Q pair at some point. At first sight, the hydrodynamic evolution stops at the kinetic freeze out and the lQCD potentials have been evaluated down to T = 0. However, the particle abundance is usually thought to be fixed at the chemical freeze out (see section I.2.3.1). In Kolb and Heinz's hydrodynamic model, the chemical freeze out occurs at the end of the first order transition, i.e. at time t = 9.4 fm/c at RHIC and t = 10.4 fm/c at LHC, at a temperature T = T c . The latter reasonably agrees with numerous studies which evaluate the temperature of the chemical freeze out to be close to the critical temperature [START_REF] Cleymans | Comparison of chemical freeze-out criteria in heavy-ion collisions[END_REF][START_REF] Becattini | Hadron Formation in Relativistic Nuclear Collisions and the QCD Phase Diagram[END_REF]. As transitions between bound states are still possible in our model between the chemical and kinetic freeze-out, we therefore need to assume the inner dynamics of the Q Q pair to stop at the chemical freeze-out and assume an instantaneous transition to the vacuum states. The former assumption is also motivated by the future use of a drag parameter for dissipative evolutions, which has been calculated from partonic microscopic calculations and is therefore not valid if the quarkonia are in a hadron gas. The quarkonia content of the Q Q pair is thus fixed at the chemical freeze-out for our predictions (summed up in tables in section III.5) and we neglect the state formation times.

III.2 Evolutions with the free and vacuum potentials

III.2.1 Free case: V (r) = 0 III.2.1.1 Evolution of the Q Q pair
The free case can be seen in a first approximation to an evolution of the Q Q pair in a very weakly coupled QGP where the partons are fully deconfined (i.e. the T → ∞ limit). The Q Q pair is then free of its binding potential, i.e. V (r) = 0, and one can consider the free expansion of its wavefunction. In this situation, the analytic solution of the Schrödinger equation can easily be derived by applying the time evolution operator to the initial Gaussian wavepacket in momentum space (V.60):

R Q Q(p r , t) = R Q Q(p r , 0) e -i H ∆t , H = 2m q + ( c) 2 m q p 2 r (III.35)
which inverse Fourier transform yields the time dependent Gaussian wavepacket:

R Q Q(r, t) = √ 4π a 2 π 3/4 1 a 2 + 2i c 2 t/m Q 3/2 e - 2ia 2 m Q t/ -4c 2 t 2 + r 2 /2 a 2 + 2i c 2 t/m Q (III.36)
r and t are respectively studied in fm and fm/c, and the unit factor is c = 0.197 GeV fm.

In this section, we focus on the evolution of a cc pair but the ideas for a b b pair are the same. As one can see in figure III.12 (left panel), the Gaussian probability density spreads out over space as time increases. The heavy quarks move therefore away from each other. As shown in figure III.12 (right panel), the relative motion follows a "ballistic" evolution, i.e. r 2 ∝ t after a transient phase. As expected, the more narrow is the initial state in position space, the larger it is in momentum space, the higher is the ballistic velocity. To probe the accuracy of the numerical solver, one can compare the numerical and analytical results. We observe a difference proportional to ∆t and ∆r 2 , i.e. less than 1% with the chosen grid. This difference is expected from the numerical scheme: the first order time expansion in (III.31) gives a first order accuracy and the spatial second derivative in (III.27) gives a second order accuracy with the use of the central difference approximation.

III.2.1.2 Projection on S states

The evolution of the charmonium (S state) weights 50 from an initial Gaussian state (option 1) and initial S states (option 2) are shown in figures III.13 and III.14, respectively.

For an initial Gaussian wavepacket (option 1), note that the initial weights are ∼ 0.46 and ∼ 0.12 for the J/ψ and ψ state, respectively. For the bottomonia (not shown here), the initial weights are ∼ 0.085, ∼ 0.06 and ∼ 0.04 for the Υ(1S), Υ(2S) and Υ(3S), respectively. As explained in section III.1.5, within our model these initial weights are the proportion of the cc pair that would promptly hadronise into the corresponding bound states in pp collisions. The ballistic evolution of the relative cc motion leads to strong suppressions of the bound components. Less than 1% (7%) of the J/ψ (ψ ) survives after 3 fm/c, which is consistent with the suppression picture. Furthermore, from any initial state the ψ component gets relatively less suppressed than the J/ψ component at some fixed time. This is a first indication that even though the bound states are fully melted for a certain time, the continuous consideration of the Q Q correlations could lead to a smaller 50 As defined by relation III.33. suppression for ψ than for J/ψ at the phase boundary. This might provide some hint for a possible explanation of the experimental "R AA (ψ /J/ψ) > 1" ratio observed by the CMS collaboration at forward rapidity (see II.3.3). As expected, the suppression values and decreasing rates depend on the initial state: the narrower the latter is, the larger are the decreasing rates, the smaller the weights are at some fixed time. As a consequence, from an initial ψ state, the survival probability of the ψ state only slowly evolves and remains quite large over the typical QGP lifetime. Note finally, that the decorrelation of a state tends to populate the other states for a certain time. This effect is not considered in the sequential suppression picture.

Considering the quantum correlations of a Q Q pair immersed in a fully deconfined medium leads thus to some suppression patterns which are already quite far from the fast and full decorrelation picture.

III.2.2 Color potential in the zero temperature limit

We now consider the evolution of a Q Q pair self-interacting through its vacuum potential (as defined in III.1.1.2), i.e. at the limit T = 0. As shown in figure III.15 (left panel), the relative motion follows once again a ballistic evolution but logically with a smaller velocity than in the free case as the bound component of the cc wavefunction remains inside the potential well. As shown in the right panel, the charmonium weights remain constant. It is an obvious property of a hermitian Hamiltonian when the basis of projection {ψ i } i=1... corresponds to the potential and is mainly provided as a check of the numerical accuracy. 

III.3 Evolution with the weak potential V weak

To offer an actual alternative to the sequential suppression picture and verify its assumptions, one needs to study the Q Q correlation with a more realistic color screened self-interaction. To this end, we now focus on the weak potential V weak , defined in section III.1.1.5, which includes a temperature dependent color screening. We first observe the behaviour of a Q Q pair immersed in a stationary medium at some constant temperatures. Then, to get closer to the heavy-ion collisions at RHIC and LHC, we include the temperature scenarios that we discussed in section III.1.2. They correspond to the temperature evolutions at the center of the fireball in a central collision obtained from an ideal hydrodynamic model.

III.3.1 At constant temperatures

We first consider for the initial state the Gaussian wavepacket (option 1). As shown in figure III.16, the evolution of the Q Q pair and of the charmonium weights strongly depends on the medium temperature. For the J/ψ component, the typical decorrelation time from its initial weight to its approximative final weight is relatively small ( 4 fm/c) but not negligible. Furthermore, as shown in figure III.18, one can observe a smooth transition between the situation where the J/ψ component is not suppressed (T red 0.6) and the one where it is almost fully suppressed (T red 1.4 ≈ T J/ψ diss ). It contrasts with the sequential suppression model which assumes an instantaneous and sharp transition at the dissociation temperature (see table III.5 for the dissociation temperatures corresponding to the weak potential).The picture is quite different for the ψ component. Firstly, its decorrelation time varies from 4 to more than 30 fm/c (see figures III.16 and III.17). Secondly, it first undergoes a sharp transition to its "full" suppression at the dissociation temperature T red ∼ 0.4 ≈ T ψ diss , but then gets repopulated at higher temperatures 0.6 < T red < 1.7. The latter originates from the depopulation of the J/ψ component. The behaviour of the ψ component is therefore in strong disagreement with the sequential suppression picture and shows the importance of the possible transitions between bound states even if T red > T diss . We now consider for the initial states the corresponding S states (option 2). First, one can notice that the evolutions of the J/ψ component from an initial Gaussian wavepacket and from an initial J/ψ state are quite close after the transient phase for this range of temperatures (see figure III.17). At the opposite, the ψ component is clearly more suppressed from an initial ψ state, which supports the idea that the ψ component can get repopulated from the J/ψ depopulation in our model.

For the bottomonium states, one observes the same kind of evolutions with an even more progressive transition toward full suppression for the Υ(1S) state (see figure III.18 (right panel)). We have therefore observed that our dynamical picture of the Q Q evolution leads to important differences with the sequential suppression: 1) the typical decorrelation times are not negligible (as compared to the QGP lifetime) and vary much with the situation, 2) for the 1S states the transition from null to full suppressions are not sharp but progressive, and 3) the excited components can be repopulated from the lower state depopulations.

III.3.2 At RHIC

To get closer to reality, we now include the hydrodynamic cooling obtained for RHIC heavy ion collisions, as defined in III.1.2. The evolution of the charmonium and bottomonium weights from initial Gaussian wavepackets (left panels) or corresponding quarkonium states (right panels) are shown in figures III. [START_REF] Andronic | Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions[END_REF] and III.20 respectively. One can first notice than the typical time for the weights to decorrelate is ∼ 3 -6 fm/c. In a more realistic scenario (i.e. including the motion of the Q Q center of mass and an inhomogeneous temperature), it would lead to an important difference in the suppressions of Q Q pairs reaching the phase boundary at different times.

As the variation of the weak potential is relatively small for T red ≥ 1.4, the main evolution of the weights, which occurs for t < 4 fm/c, is logically close to the results at T red = 1.4 in figures III. 16 and III.17. For 4 t 10 fm/c, i.e. during the phase transition where T ∼ T c , the potential and the weights vary only a little. After the chemical freeze-out t 10 fm/c, we recall that the evolutions obtained with the potential approach make less sense as the quarkonium content should be fixed at the chemical freeze-out.

When the initial state is a Gaussian wavepacket, the excited states get partially repopulated (at least for a certain time) from the depopulation of the 1S states. It results in a smaller suppression of the ψ component relatively to the J/ψ, whereas it does not affect the bottomonia for t > 4 fm/c. Furthermore, one can observe that the 1S components are clearly less suppressed if they are the initial state. As in the free case, it should be due to the smaller size of the quarkonium initial wavefunctions in momentum space, resulting to slower ballistic evolutions. The values of the normed weights at the chemical freeze-out (t = 9.4 fm/c) are summed up in table III.6 and show 1) an intermediate suppression of the J/ψ and ψ states with a possible enhancement of the ψ /J/ψ ratio in heavy ion collision, 2) a partial suppression of the Υ(1S) state and strong suppressions of the Υ(2S) and Υ(3S) states.

III.3.3 At LHC

Despite of the ∼ 80 MeV difference in the initial temperature, the evolution of the weights are quite similar at RHIC and LHC, especially for the bottomonia. The charmonia are slightly more suppressed at LHC and the ratio ψ /J/ψ is clearly above or close to unity at the chemical freeze-out (t = 10.4 fm/c). We have thus observed that at RHIC and LHC there is no early coupling/decoupling for the evolution of various quarkonia in the equilibrated medium. In the preequilibium phase, as the potential should vary very quickly from its vacuum to its high temperature form, option 1 should then be privileged until one provides a strong argument in favor of the coherence at very early times.

III.4 Evolutions with the strong potential U (T )

We now focus on the strong potential V = U , equal to the internal energy. As discussed in section III.1.1.6, the strong potential exhibits an important peak of its asymptotic values U (r → ∞, T ) centered on T c . If one does not include any additional thermal mechanisms, the strong potential corresponds to a fully adiabatic evolution of the Q Q pair in the deconfined medium. As expected from the previous section, the general evolution of the weights is a smooth decrease until the medium temperature reaches T ∼ T c at t ∼ 4 fm/c. The weights then oscillates until T red 0.8, i.e. for 4 t 11 fm/c. As expected from a stronger binding, the different quarkonium states are less suppressed than with the weak potential, exception made of the ψ component. With the strong potential, the latter is indeed less repopulated from the smaller J/ψ depopulation. At the chemical freeze-out (t = 9.4 fm/c), the fully adiabatic evolution of the Q Q pair at RHIC leads to intermediate and relatively strong suppressions of the J/ψ and ψ states, respectively, a very small suppression of the Υ(1S) state and relatively strong suppressions of the Υ(2S) and Υ(3S) states. There is therefore a quite strong influence of the potential, as in other approaches. Like in the weak potential case, RHIC and LHC temperature scenarios lead to equivalent evolutions of the weights, with a little more suppression at LHC (see figures III.27).

III.4.1 At constant temperatures

III.4.3 At LHC

III.5 Values at the chemical freeze-out and discussion

The values of the J/ψ, ψ , Υ(1S) and Υ(2S) survivances at the chemical freezeout at RHIC (t = 9.4 fm/c) and LHC (t = 10.4 fm/c) are summed up respectively in table III.6 and III.7. However, note that to remove the strong influence of the upper limit on t in the strong potential case, we perform instead an averaging over the oscillations during the phase transition T = T c .

For the charmonia, contrasting with the sequential suppression picture, one obtains rich suppression patterns which lead to intermediate suppressions at both RHIC and LHC. Furthermore, as a possible explanation of the (N ψ /N J/ψ ) P bP b / (N ψ /N J/ψ ) pp > 1 ratio observed at LHC at forward rapidity, our model can lead to larger survivances of the ψ component than the J/ψ. It originates from important transitions between the two components which are completely untreated within common suppression models.

For the bottomonia, the Υ(1S) state is only weakly suppressed whereas the Υ(2S) and Υ(3S) states are strongly suppressed. At these energies, our "ordered" [134] (inclusive (prompt and non prompt) J/ψ, 5 < p T < 14 GeV/c, |y| < 1 and 0-10% centrality) and 2) low p T PHENIX data [133] (inclusive J/ψ, p T < 5 GeV/c, |y| < 0.35 and 0-5% centrality). The non prompt contribution is estimated to 10-25% of the inclusive production. For the Υ(1S): STAR data [START_REF] Adamczyk | Suppression of Υ production in d+Au and Au+Au collisions at √ s N N =200 GeV[END_REF] (p T > 0 GeV/c, |y| < 1 and 0-10% centrality). [START_REF] Chatrchyan | Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at √ s N N = 2.76 TeV[END_REF] (prompt J/ψ, 6.5 < p T < 30 GeV/c, |y| < 2.4 and 0-10% centrality) (inclusive J/ψ: R AA = 0.24±0.03) and 2) low p T ALICE data [START_REF] Maire | Measurements of inclusive J/ψ production in Pb-Pb collisions at √ s N N = 2.76 TeV with the ALICE experiment[END_REF] (inclusive J/ψ, 0 < p T < 8 GeV/c, |y| < 0.9 and 0-10% centrality). For the ψ : high p T CMS data [START_REF] Khachatryan | Measurement of Prompt ψ(2S) → J/ψ Yield Ratios in Pb-Pb and p-p Collisions at √ s N N = 2.76TeV[END_REF] (prompt ψ , 6.5 < p T < 30 GeV/c, |y| < 1.6 and integrated centrality). For the Υ(1S) and Υ(2S): CMS data [START_REF] Chatrchyan | Observation of sequential Upsilon suppression in PbPb collisions[END_REF] (p T > 0 GeV/c, |y| < 2.4 and 0-5% centrality).

State survivance at

results for the bottomonia are thus in a better agreement with the sequential suppression scheme. Furthermore, note that we obtain only a little more suppression at LHC than at RHIC and that the energy dissipation -which is implicitly included in the weak potential -tends to increase the suppression.

The corresponding experimental data for most central collisions -where the effects of the deconfined matter are maximal -are given on an indicative basis. A correct result-data comparison would require to refine our model with initial cold nuclear matter effects, statistical recombinations, feed downs from excited states (see table I.2 and figure I.10) and a more realistic heavy ion collision scenario (e.g. spatial distributions of the quarkonia and temperature). Because the bottomonia are much less subject to recombinations and initial cold nuclear matter effects (see section II.2.1), our results for the Υ(1S) state can reasonably be compared to the experimental data if one considers the feed down contributions. Like other particles, the Υ(1S) p T spectrum is dominated by its low p T range, so that one can assume the indirect production of Υ(1S) to be ∼ 30 -40% of its inclusive production in pp collisions (see figure I.10). As the excited states are strongly suppressed, their contribution is very small and one can thus reduce our predictions for the Υ(1S) state to ∼ 60 -70% of their values. If one reasonably assume that the Υ(1S) states form before the deconfined medium (see section II.1) and that the weak potential is more realistic, the values S(Υ(1S)) = 0.88 at RHIC and S(Υ(1S)) = 0.80 at LHC are the most probable. Then our actual prediction within this model should be around R AA ∼ 0.6 at RHIC and R AA ∼ 0.5 at LHC. These values should lead to a rather good agreement with the data by including the shadowing/antishadowing effects.

Main ideas and transition

Limiting our dynamical model to the effects of the Debye screening on the Q Q binding, we have studied its real-time dynamics and quarkonia content. We have observed some important transitions between bound quantum states and between bound and free states. As a result and especially for the charmonia, we have obtained rich suppression patterns, even at the high temperature limit, which already rule out the simple melting picture assumed by the sequential suppression. In particular, the evolution of the Q Q pair in a dynamic medium leads to neither full nor fast decorrelation of the "melted" states and to possible repopulation of excited states from lower states. We have also pointed out the strong influence of the Q Q initial state and of the potential. Nevertheless, a full description of the Q Q dynamics should also include the effects of the direct collisions between the heavy quarks and the thermal medium. Including them should lead to a diffusive evolution of the Q Q pair which might strongly modify the suppression patterns. To this end, we introduce in the next part the open quantum system framework and motivate our approach for the Q Q/QGP direct interaction.

Part IV

Quarkonia and open quantum systems

Inside the deconfined matter, the Q Q pairs are subject to screening effects due to color charges in their vicinity and to multiple hard collisions with the medium particles. In this part, we discuss how these multiple collisions can be accounted for in general and how they could affect the internal degrees of freedom of a Q Q pair. To this end, we first introduce the general frameworks of classical and quantum open systems in section IV.1. These frameworks separate a global system into a relevant small subsystem (the Q Q pair) and an irrelevant large environment (QGP) whose detailed dynamics is insignificant. It results in some energy and momentum exchanges between the two systems without significantly affecting the environment. We then briefly review how these effects are described in the literature for the Q Q/QGP system IV.2.1 and motivate our approach IV.2.2. 

IV.1 Introduction to open quantum systems IV.1.1 Classical Brownian motion

The Brownian motion refers to the erratic motion of Brownian particles -characterised by a heavy mass m -immersed in a thermal fluid and subject to permanent collisions with the fluid lighter particles (of mass m f ). The study of the Brownian motion usually assumes a clear separation between the different typical scales. The first time scale τ coll corresponds to the typical microscopic interaction time between the bath components and the Brownian particle and leads to the fluctuations of the latter velocity. The second time scale corresponds to the typical time of the relaxation τ relax of its average velocity. The mass hierarchy m m f causes the relaxation to be much slower than the process of collisions, i.e. τ coll τ relax . The dynamics of the Brownian motion is then usually considered on a time interval ∆t in between these two time scales, i.e. τ coll ∆t τ relax , in order to study its relaxation to equilibrium without focusing on each collision.

In classical mechanics, the Brownian motion is well described by the phenomenological Langevin equation within the Newtonian framework [START_REF] Pottier | Physique statistique hors d'équilibre[END_REF]. The subsystem evolution is obtained through the balance of two forces which generate irreversible energy exchanges between the two systems. These two forces, namely the friction force and the stochastic force, translate the two aspects of the collisions at the two described time scales. The Langevin equation in 1D writes,

m d 2 x dt 2 = -mAv + F R (t) + F ext (IV.37)
where x is the subsystem position, v its velocity, A the drag coefficient corresponding to the inverse relaxation time (1/τ relax ), F R (t) the random/stochastic force and F ext a possible external force. The first term of the RHS is the friction force proportional to the Brownian particle velocity. It translates its reduction in speed due the collisions if it propagates with a higher velocity than the medium particle. The second term is a fluctuating force which simulates the permanent collisions. This fluctuating force is generally taken as a homogeneous Gaussian noise, independent of the subsystem position and described by its mean and covariance function. As the direction of the collisions are completely random, the mean value of the noise is zero over many collisions: F R (t) = 0. The classical Langevin equation usually assumes no correlation between the successive collisions, so that the white noise covariance writes,

F R (t)F R (t + τ ) = Bδ(τ ), (IV.38)
where δ is the Dirac distribution and B the correlation strength. The classical fluctuation-dissipation relation,

B = 2mkT bath A, (IV.39)
where k is the Boltzmann factor and T bath the bath temperature, gives the balance between the two forces (i.e. between the energy gain and loss). If the subsystem is initially at a given velocity, the Brownian motion is characterised by a linear rise of the velocity variance

σ 2 v = [v(t) -v ] 2 ≈ 2D v t (when t τ relax )
, where D v = B/(2m 2 ) is the diffusion coefficient in velocity space, before saturating to v 2 ≈ D v /A at thermal equilibrium (t τ relax ). Furthermore, at thermal equilibrium the variance of the position is given by x 2 ≈ 2D S t, where D S = D v /A 2 is the spatial diffusion coefficient.

The Brownian motion can be equivalently described by the Fokker-Planck equation which focuses on the time evolution of the velocity density distribution f (v, t) [START_REF] Pottier | Physique statistique hors d'équilibre[END_REF]. Without external force, the Fokker-Planck equation writes

∂f ∂t = ∂ ∂v (Avf ) + ∂ 2 ∂v 2 (D v f ). (IV.40)
The Fokker-Planck equation is usually derived from the Boltzmann equation51 by expanding its collisional term to small momentum transfers (which is a consequence of the mass hierarchy). It can also be derived from the Kramers-Moyal expansion for stochastic process.

IV.1.2 Overview

The search for the description of quantum subsystems in contact with a heat bath has appeared to be crucial for the understanding of quantum fundamentals and in many branches of applied physics (where the quantum systems can never be isolated), such as in quantum diffusion and transport [START_REF] Weiner | Rate theory for solids. V. Quantum Brownian-motion model[END_REF][START_REF] Bhattacharya | Schrodinger-Langevin Equation and Ion Transport at Nano Scale[END_REF][START_REF] Jardine | Determination of the Quantum Contribution to the Activated Motion of Hydrogen on a Metal Surface: H/Pt(111)[END_REF], quantum optics [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF][START_REF] Degman | Effects of thermalisation on Qswitched laser properties[END_REF][START_REF] Horowitz | Quantum Trajectory Approach to the Stochastic Thermodynamics of a Forced Harmonic Oscillator[END_REF], low energy heavy ion scattering [START_REF] Gross | Friction model of heavy ion collisions[END_REF][START_REF] Hamdouni | On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions[END_REF], quantum computers and devices [START_REF] Yasue | Quantum mechanics of Non-Conservative systems[END_REF][START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF][START_REF] Pekola | Towards quantum thermodynamics in electronic circuits[END_REF][START_REF] Henriet | Quantum Dynamics of the Driven and Dissipative Rabi Model[END_REF], and of course high energy heavy ion collisions... Unfortunately, the Langevin dynamics -or more generally energy dissipation -cannot be introduced easily in the common quantum formalism, as no direct canonical quantization of an Hamiltonian can describe irreversible phenomena [START_REF] Lindblad | Brownian Motion of a Quantum Harmonic Oscillator[END_REF].

To solve this long standing problem, two main approaches have been proposed and have led to a description of quantum dissipation far from being unique.

1) In the most common approach, the subsystem plus bath is considered as a whole conservative system. By integrating out the bath degrees of freedom, one obtains the dissipative evolution of the subsystem only, given by a quantum master equation (QME) or equivalent [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF][START_REF] Mølmer | [END_REF] (section IV.1.4). In a number of complex applications defining the bath and calculating the QME operators is rather complicated and some effective approaches are necessary [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF]. A simple model of the bath [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF][START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF][START_REF] Caldeira | Path Integral Approach to Quantum Brownian Motion[END_REF] -a thermal ensemble of oscillators linearly coupled to the subsystem -has proven to be a suitable framework to study Brownian motion (section IV.1.5).

2) Within the second category, many non-standard quantization procedures [187,[START_REF] Yasue | Quantum mechanics of Non-Conservative systems[END_REF]188,[START_REF] Dekker | Quantization of the linearly damped harmonic oscillator[END_REF] or new frameworks [190,191,192,[START_REF] Bolivar | Quantization of non-Hamiltonian physical systems[END_REF]194,[START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF][START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF] have been suggested to overcome the initial subsystem quantization difficulty (briefly discussed in section IV.1.6).

Generally, these evolutions are expected to lead the subsystem to a thermal equilibrium where the energy spectrum components of the subsystem are "Lamb" shifted and broadened [START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF] (see section IV.1.7). These spectrum modifications are negligible at the weak coupling limit and one expects the thermal equilibrium predicted by statistical mechanics (the Gibbs state), i.e. Boltzmann distributions of the uncoupled subsystem energy states. One is at the weak coupling limit when the subsystem relaxation time τ relax is much larger than the typical microscopic interaction time τ coll and than the subsystem natural oscillation time. A Brownian subsystem usually corresponds to this situation.

IV.1.3 Pure and mixed states

In common quantum mechanics, one focuses on isolated systems with no interactions with their environment. The whole information about the system is encoded in a well defined state that evolves in a deterministic manner. The only probabilistic notion enters when one considers the result of an observable measurement such as the position, momentum... The state is then described by a pure normed vector |ψ , a single wavefunction or a Wigner distribution for instance.

In open quantum systems as in classical statistical mechanics, the study of the evolution and interactions of the whole system (subsystem of interest plus bath) is usually impossible and one needs to give a statistical nature to the bath-subsystem interaction. The subsystem must then be described by a mixed state, which includes not only the probabilistic information about the observable measurements but also about the state itself [START_REF] Cappellaro | Course: Quantum Theory of Radiation Interactions[END_REF]. The common tool to describe a mixed state is the density matrix operator,

ρ(t) = N n,m=1 ρ nm (t)|ψ n ψ m | , with N n=1 ρ nn (t) = 1, (IV.41)
where {ρ nn (t)} n=1,...N is the distribution of the weights of the accessible pure eigenstates {|ψ n } n=1,...N . Note that a diagonal term ρ nn = p n is the probability -also called population or weight -for the system to be in a state |ψ n , whereas the off-diagonal terms give information about the "coherences", i.e. the possible phase interferences between the different components of the system state. The expectation value of an observable operator Ô is then given by Ô = tr(ρ Ô).

(IV.42)

The evolution of the density matrix is deterministic and commonly given by a QME (see below).

If one considers instead a stochastic equation based on a pure state evolution 52 , one needs to perform an average over a large sample of initially identical subsys-tems to recover the statistical notion implied by the mixed state [START_REF] Mølmer | [END_REF][START_REF] Gisin | [END_REF]. The expectation value of an observable operator Ô is then be given by

ψ(t)| Ô|ψ(t) stat = lim nstat→∞ 1 n stat nstat r=1 ψ (r) (t)| Ô|ψ (r) (t) , (IV.43)
where the pure state |ψ (r) (t) is given by the r th realisation of the stochastic evolution. Finally, a Wigner transform of the density matrix can also be used to describe mixed states.

IV.1.4 Quantum Master equations and equivalent

IV.1.4.1 Quantum Master equations

In the most common approach to open quantum systems [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF], the subsystem plus bath is considered as a whole conservative system, in order to overcome the difficulty to treat the subsystem dissipation directly. The evolution of the density matrix operator ρ tot of the global system in the total Hilbert space H tot = H S ⊗H env is then given by the Liouville -von Neumann equation of motion

, ρtot = - i [H tot , ρ tot ] ≡ L tot ρ tot (IV.44)
where H tot is the Hamiltonian of the global system and L tot is defined as the corresponding Liouville operator. Next, it is assumed that the global Hamiltonian and Liouvillian operators can be decomposed as:

H tot = H S + H int + H B ; L tot = L S + L int + L B , (IV.45)
where H S is the "isolated" subsystem Hamiltonian (when the subsystem is not coupled with the bath), H int the Hamiltonian describing the interactions between the bath and the environment and H B the bath Hamiltonian. As one is only interested in the dynamics of the subsystem, one needs to trace out the bath degrees of freedom from the global density operator to obtain the "reduced" density operator ρ S corresponding to the subsystem variables. To this end, one should employ a certain projection operator P , which contains the trace operation over the bath coordinates:

ρ S = tr B (ρ tot ) ≡ P ρ tot . (IV.46)
Applying these projections and decompositions to the equation of motion (IV.44) yields

ρS (t) = P (L S + L int )ρ S (t) + t 0 dt P L int e (1-P )Ltott (1 -P )L int ρ S (t -t ). (IV.47)
The latter is the general time-retarded Nakajima-Zwanzig equation. The first term of the RHS describes the reversible unitary dynamics of the subsystem. The second term describes the possible transitions that the subsystem may undergo due to the interactions with the bath and corresponds to an irreversible non-unitary relaxation.

The second term is still too complicated for explicit evaluations, as it contains any power of L int and depends on the whole history of ρ S . To simplify it, one can perform the Born approximation, i.e. a truncation to the second order in L int corresponding to a weak coupling, and assumes the process to be Markovian (local in time), i.e. the bath has no memory of past events so that ρ S (t -t ) can be replaced by ρ S (t), to derive from IV.47 the Born-Markov quantum master equation:

ρS (t) = P (L S + L int )ρ S (t) + t 0 dt P L int e (1-P )(L S +L B )t (1 -P )L int ρ S (t). (IV.48)
In practice, the Born-Markov QME (IV.48) is transformed either into the Redeld equation in the eigenstate basis of H S ,

ρnm (t) = -iω nm ρ nm (t) - k,l R nmkl ρ kl (t), (IV.49)
where ω nm are the transition frequencies and R the Redeld relaxation tensor, or into a QME with the Lindblad form [200],

ρS (t) = - i [H S + H LS , ρ S (t)] + 1 2 j [L j ρ S (t), L † j ] + [L † j , ρ S (t)L j ] , (IV.50)
where H LS is the Lamb-Stark Hamiltonian (discussed in IV.1.7) and L j are the Lindblad operators which depend on the bath, subsystem and their coupling. These QME have been successfully applied in different branches of applied physics such as in nuclear magnetic resonance [START_REF] Slichter | Principles of Magnetic Resonance[END_REF] and optical spectroscopy [START_REF] Shen | The Principles of Nonlinear Optics[END_REF].

IV.1.4.2 Stochastic Schrödinger equations

If N is the dimension of the subsystem Hilbert space, the computation of a QME scales with N 2 for the density matrix (see its definition IV.41) and N 4 for the relaxation tensor. As the dimension N is possibly very large, the numerical calculation can become rapidly nontrivial. As an alternative to QME when N is too large, one can use the so-called stochastic Schrödinger equations (SSE) [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF][START_REF] Mølmer | [END_REF][START_REF] Gisin | [END_REF][START_REF] Diósi | Non-Markovian Quantum State Diffusion[END_REF]. Because they are based on the evolution of the subsystem wavefunction |ψ , which scales to N , their calculation is considerably more favorable. The basic idea underlying these equations is a Markovian stochastic process designed such as to obtain ρ QME S (t) = |ψ ψ| (t). Two main classes of SSE have been developed: the quantum state diffusion [START_REF] Gisin | [END_REF] and the quantum jump method [START_REF] Mølmer | [END_REF][START_REF] Diósi | Non-Markovian Quantum State Diffusion[END_REF]. The first one is based on the solution of a nonlinear stochastic Schrödinger equation which includes the Lindblad operators. Within the second, the wavefunction is evolved step by step from the combination of a non-Hermitian Schrödinger equation (which also includes the Lindblad operators) and some random jumps to the other accessible states triggered by a Monte Carlo process. For both methods, there is in most cases 53 a direct correspondence between their solution and the solution of the QME (IV.50). Like the QME, they have been successfully applied in the last decade to simple model of systems [START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF][START_REF] Horowitz | Quantum Trajectory Approach to the Stochastic Thermodynamics of a Forced Harmonic Oscillator[END_REF][START_REF] Diósi | Non-Markovian Quantum State Diffusion[END_REF].

IV.1.5 Heisenberg-Langevin equation from a bath of oscillators

Unfortunately, in a number of complex applications, defining the bath/interaction Hamiltonians and calculating the Lindblad operators is rather complicated. To disentangle the situation, some effective approaches are necessary [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF][START_REF] Breuer | The theory of open quantum systems[END_REF]. A simple model of the bath [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF][START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF][START_REF] Caldeira | Path Integral Approach to Quantum Brownian Motion[END_REF] -a thermal ensemble of harmonic oscillators linearly coupled to the subsystem -have proven to be a suitable framework to study Brownian motion.

The so-called Caldeira-Leggett model [START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF][START_REF] Caldeira | Path Integral Approach to Quantum Brownian Motion[END_REF][START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF]] consists of a Brownian particle linearly coupled to a large number of independent quantum oscillators. The Hamiltonian of the global system then writes,

H = p 2 2m + V (x) + 1 2 N n p 2 n m n + k n (x n -x) 2 , (IV.51)
where (x, p) and (x n , p n ) are the position and momentum operators in the Heisenberg picture of the Brownian particle and the n th bath oscillator respectively, and k n = m n ω 2 n the n th spring constant. The variables are required to obey the Heisenberg commutations

[x, p] = i and [x j , p k ] = i δ jk . (IV.52)
Using the Heisenberg equations of motion, performing a statistical average over the initial bath variables assumed to be at thermal equilibrium and going to the continuum for the oscillator frequencies lead to the so-called Heisenberg-Langevin (HL) equation for Heisenberg operators at the weak coupling limit:

ṗ = F (x) -A p + F R (t), (IV.53)
where -A p is an Ohmic friction operator (A is then a Drag coefficient) and F R (t) a non-commutating stochastic operator satisfying the correlation

F R (t)F R (t + τ ) = m π ∞ 0 ω coth ω 2kT bath cos(ωτ ) + i sin(ωτ ) A dω.(IV.54)
The real part of the noise spectrum (IV.54) corresponds to the quantum fluctuationdissipation theorem and is therefore independent of the bath model [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF]. Furthermore, at the classical limit ( → 0) and at the high temperature limit (T bath → ∞) relation (IV.54) leads to the classical fluctuation-dissipation relation IV.39. Hence, the HL equation reduces to the classical Langevin equation at the classical limit.

The properties of the quantum noise (IV.54) will be further discussed in part VI. Within this model, notice that even in the quantum realm the dynamics of a subsystem in interaction with a bath can be reduced to two straightforward "classical" parameters: the drag A (inverse relaxation time) and the bath temperature T bath .

In general, the practical application of the HL equation is limited by its noncommutating operator nature. Although questionable [START_REF] Hänggii | Fundamental Aspects of Quantum Brownian Motion[END_REF], a common approximation [205,206,207,208,[START_REF] Eckern | The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations[END_REF][START_REF] Banerjee | A numerical method for generation of quantum noise and solution of generalized c-number quantum Langevin equation[END_REF][START_REF] Banerjee | Solution of quantum Langevin equation: Approximations, theoretical and numerical aspects[END_REF] is to abandon its operator character and to replace the non-commutating q-number noise by a c-number noise while matching its covariance to the real part of the noise spectrum (IV.54):

F R (t)F R (t + τ ) = m π ∞ 0 ω coth ω 2kT bath cos(ωτ )A dω. (IV.55)
One then obtains the quasiclassical Langevin equation which leads to a reasonable description for subsystems which are nearly harmonic [205,[START_REF] Eckern | The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations[END_REF] and to possible violations of the Heisenberg principle [START_REF] Hänggii | Fundamental Aspects of Quantum Brownian Motion[END_REF].

In part VI, we will explore in detail a possible counterpart of the Heisenberg-Langevin equation in the Schrödinger representation, the so-called Schrödinger-Langevin equation, which is more suited for our analysis.

IV.1.6 Other frameworks

Numerous other frameworks and non-standard quantization procedures have been proposed to overcome the initial subsystem quantization difficulty without considering the whole system. It includes for instance effective time dependent Hamiltonians [190,191], stochastic mechanics quantization [START_REF] Yasue | Quantum mechanics of Non-Conservative systems[END_REF]187], new variational principle for dissipative system [192], complex Hamiltonian [START_REF] Dekker | Quantization of the linearly damped harmonic oscillator[END_REF], fluid interpretation of the Schrödinger equation54 (Bohmian mechanics) [START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF][START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF]... Though connections exist between them and with the QME, they have led to different equations of dissipative evolution...

IV.1.7 Long time behaviour and equilibrium

Generally, the equations of evolution that we have introduced in the previous sections IV.1.1, IV.1.4 and IV.1.5 are expected to bring the subsystem in thermal equilibrium with the heat bath.

In the classical realm, it can be shown that for a general potential the classical Langevin equation (IV.37) and equivalent Fokker-Planck equation lead the probability density for the subsystem position and momentum to the canonical (Maxwell-) Boltzmann density distribution55 [212,[START_REF] Gardiner | Quantum Noise, A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics[END_REF],

F (x, p, T bath ) = 1 Z exp - H(x, p) kT bath , (IV.56)
where H(x, p) = p 2 /2m + V (x) is the subsystem classical Hamiltonian and Z the partition function (a normalisation factor).

In the quantum realm where the energy states are quantified, the open quantum system framework predicts that the system-reservoir coupling can modify the energy spectrum of H S [START_REF] Breuer | The theory of open quantum systems[END_REF][START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF][START_REF] Gardiner | Quantum Noise, A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics[END_REF]. Indeed, in equation (IV.50), the Lamb-Stark Hamiltonian H LS induces small shifts of the unperturbed energy levels and the dissipative part induces a broadening of the spectral lines indicating a finite lifetime for the excited states due to the dissipation. At the weak coupling limit, these spectrum modifications are negligible and the subsystem density matrix at thermal equilibrium is expected to be,

lim t→∞ ρ S = 1 Z exp - H S kT bath = 1 Z N n=1 exp -E n kT bath |ψ n ψ n |, (IV.57)
where the {E n } n=1...N and {ψ n } n=1...N are the usual eigenenergies and states of the unperturbed subsystem Hamiltonian H S . The equilibrium density matrix (IV.57) is the general stationary solution of the quantum master equations at the weak coupling limit [START_REF] Breuer | The theory of open quantum systems[END_REF]. On its side, the ability of the Heisenberg-Langevin equation to bring a subsystem to the equilibrium distribution (IV.57) has only been demonstrated for the free and harmonic potential V (x) [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF]212].

To conclude this brief discussion on open quantum systems, there is no universal description of quantum subsystems in interaction with a heat bath and the formalism should be adapted to each situation. If the interaction/bath can be defined and the trace operation performed without too many approximations, the framework of quantum master equations or stochastic Schrödinger equations should be the most rigorous. If not, more effective approaches are required and one can explore for instance the Heisenberg-Langevin framework.

IV.2 Quarkonia as classical and quantum dynamical systems

IV.2.1 Dynamical quarkonia suppression in the literature

The multiple direct interactions between the Q Q pairs and the medium particles are usually described through either a cross-section, an imaginary potential, a semiclassical or an open quantum system framework.

IV.2.1.1 Cross section and imaginary potential approaches

As already discussed in sections II.2.1.3 and II.4.2, the cross-section approach is based on the hard gluo-dissociation of the quarkonium states. The knowledge of the corresponding inelastic cross sections leads to the evaluation of the reaction rates for dissociation and formation which are commonly used by transport models to continuously flip between quarkonia and "free" Q + Q (see section II.2.2.2). However, the effects of the multiple (non-dissociative) interactions with the medium are not considered.

From thermal field theory, Laine et al. [START_REF] Laine | Real-time static potential in hot QCD[END_REF] have derived a Schrödinger-type equation for the correlator of a decaying Q Q pair that takes into account the medium direct interaction with the quarkonia states. This Schrödinger-type equation exhibits an effective potential with a real part, for the usual Debye screening, and an imaginary part which translates the thermal effects. The temperature dependent imaginary part generates finite widths for the quarkonium states and thus their thermal decay in the plasma. An imaginary contribution to the potential has also been derived within other frameworks, such as non relativistic heavy quark effective theories (NRQCD at finite temperature) [START_REF] Brambilla | Static quark-antiquark pairs at finite temperature[END_REF][START_REF] Brambilla | Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature[END_REF] and lattice QCD [START_REF] Burnier | Static quark-antiquark potential in the quark-gluon plasma from lattice QCD[END_REF]. The real and imaginary potential is commonly used within the anisotropic hydrodynamics model (aHYDRO) to describe quarkonia suppression [START_REF] Strickland | Thermal υ 1S and χ b1 suppression in √ s N N = 2.76 TeV Pb-Pb collisions at the LHC[END_REF][START_REF] Strickland | Thermal Bottomonium Suppression[END_REF]. In this model, the quarkonia are assumed to be mainly influenced during their formation time (< 1 fm/c) and one therefore focuses on their propagation in the early-time strongly anisotropic QGP. In practice, the stationary 3D Schrödinger equation is solved to obtain the real and imaginary parts of the binding energy for each state. One then integrates the corresponding non-equilibrium decay rate over the lifetime of the state in the plasma as a function of its position and transverse momentum. Some aHY-DRO predictions have already been presented in section II.3. Nevertheless, note that it assumes the bound states to be already formed, which is not obvious in such an early stage of the collision.

For both cross-section and imaginary approaches, the possible transitions between bound states are not considered although they might play a significant role as demonstrated in part III. Furthermore, as in the sequential suppression picture, the evolution of the quarkonia is assumed to be adiabatically slow, such that the Q Q pair remains in the corresponding bound state at whole time. This assumption may not hold if the binding potential evolves rapidly with the cooling QGP, leading to possible transitions between eigenstates [START_REF] Dutta | Sequential suppression of quarkonia and highenergy nucleus-nucleus collisions[END_REF]. In our view, a full dynamical description of the Q Q evolution -and not only of its bound states -is preferable. Finally, note that the imaginary part of the potential cannot be introduced in the Hamiltonian of our mean field model developed in part III. It would indeed lead to a non-unitary evolution of a pure state, i.e. to the disappearance of the Q Q pair.

IV.2.1.2 Semi-classic approaches

Because of their large mass, the heavy quark and antiquark of the pair can be seen as non-relativistic classical Brownian particles. Indeed, their typical De Broglie wavelength at thermal equilibrium, λ ∼

1 √ M Q T
, is smaller (but not much smaller) than the typical inter particle distance of the medium particles ∼ 1/T . The heavy quarks might therefore be seen as classical particles. Furthermore, as M Q

T a collision between one of the heavy quarks and a medium particle leads to a change of its momentum ∆p Q ∼ T momentum, so that its change of velocity is ∆v Q ∼ T /M Q 1. Hence, many collisions are required to change significantly its velocity. It guarantees that the heavy quark relaxation time is much larger than the typical collision time and the clear separation between the different typical time scales required by the Langevin framework is satisfied (see IV.1.1). Finally, because the correlation length in the medium should be much smaller than the distance between the heavy quarks, the collisions on each heavy quark can be treated as uncorrelated [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. One of the main difficulties that arises from the classical treatment of the Q Q pair is the connection between point-like Q and Q particles and the quantum nature of their bound states. In other words, how to translate the quantum properties of a bound state in a (semi-)classical formalism ?

To get around this problem, Young and Shuryak first proposed a semi-classical framework based on Wigner distributions [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. In this framework, a collection of "test" particles is initially distributed according to a phase-space distribution given by the Wigner transformation of the Q Q initial state. The test particles are then evolved with the usual Langevin dynamics. Finally, to obtain the real-time population of the different bound states, the distribution of test particles is convoluted with the phase-space distributions of the bound states. This approach will be further discussed in part V and applied to our model. Very recently, Blaizot et al. have proposed a more elaborated Langevin dynamics where the friction and stochastic force depend explicitly on the configuration of the Q Q pair [START_REF] Blaizot | Heavy quark bound states in a quark-gluon plasma: dissociation and recombination[END_REF]. This dependence is derived from a subsystem plus reservoir development where the coupling between plasma light quark/antiquark fields (reservoir) and with the heavy quarks (subsystems) are Coulombic. The plasma degrees of freedom at thermal equilibrium are traced out through a path integral technique and some approximations at the weak coupling limit. One can note however that in this exploratory work, the connection between the classical particles and the quantum states is less sophisticated than in [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF], i.e. restricted to some simple and imprecise criteria on binding energy and relative distance. As a possible pitfall for these semi-classical approaches, in part V we will see that the thermalisation of classical particles (given by IV.56) does not necessarily imply the thermalisation of quantum states (as given by IV.57).

IV.2.1.3 Open quantum systems

Because of the deep quantum nature of the Q Q states, one should look for a more appropriate framework. A correlated Q Q pair can be seen as a small quantum subsystem in interaction with the surrounding medium made of light quarks and gluons at thermal equilibrium. The latter can transfer energy and momentum to the Q Q pairs without being affected too significantly: it can be seen as a heat bath whose detailed dynamics is irrelevant. The open quantum systems, discussed in section IV.1, then provides a natural framework. Several approaches have been explored so far, namely 1) the reduced density matrix in path integral [START_REF] Young | Quarkonium above deconfinement as an open quantum system[END_REF][START_REF] Akamatsu | Real-time quantum dynamics of heavy quark systems at high temperature[END_REF], 2) the Pauli rate equation [START_REF] Borghini | Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach[END_REF] and 3) the stochastic potential [START_REF] Akamatsu | Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma[END_REF]. 1) Young and Dusling have first used the Caldeira-Leggett Hamiltonian (IV. [START_REF] Abelev | Strangeness with ALICE: from pp to Pb-Pb[END_REF] to determine the propagation of heavy quark/antiquark system coupled to a bath of harmonic oscillators [START_REF] Young | Quarkonium above deconfinement as an open quantum system[END_REF]. It leads to a reduced density matrix for the Q Q pair expressed as an imaginary-time path integral. Using the Cornell potential for the Q Q binding, the integral is solved numerically to show how dissipative effects could affect the correlators of quarkonium spectroscopy. However, the dynamics of the pair internal d.o.f is hardly accessible through this method. Recently, Akamatsu has proposed a more refined model based on first principles [START_REF] Akamatsu | Real-time quantum dynamics of heavy quark systems at high temperature[END_REF]. Similarly to Blaizot et al., the derivation of the reduced density matrix is carried out within a closed-time path integral formalism. He applies this formalism to thermal QCD at the leading-order in the nonrelativistic and weak coupling limits. A correlator is derived and leads to the imaginary potential found by Laine et al. (see section IV.2.1.1). A master equation with the Lindblad form (IV.50) can also be derived [START_REF] Akamatsu | Master equation of quarkonia in the Lindblad form[END_REF]. The qualities of this work are undeniable (derivation from first principles, rigorous open quantum system framework...) but its actual application to quarkonia suppression seems entangled and might still require a lot of work (not tangible terms, large rank density matrix...). 2) Borghini and Gombeaud [START_REF] Borghini | Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach[END_REF] have proposed an alternative phenomenological approach based on the Pauli (or Einstein) master equation,

dρ S ii d t (t) = - k =i Γ i→k ρ S ii (t) + k =i Γ k→i ρ S kk (t) (IV.58)
where ρ S ii is the population of the i th quarkonium and Γ i→k the transition rate from the state i to k. The set of transition rates is evaluated from Fermi's golden rule and a dipolar interaction between the Q Q and a gluonic vector field seen as a bath of oscillator at thermal equilibrium. The Q Q pair mutual interaction is taken as a vacuum Coulombic potential. At constant temperatures and after a transient phase, the populations are observed to decrease exponentially with a common decay rate (see left panel on figure IV.2). Furthermore, as shown in the right panel, the quasi-equilibrium distributions obtained at some time t after the transient phase are not Boltzmann distributed (relation IV.57). This discrepancy originates from their difficulty in modeling the continuum of free states, whereas the correct transitions between bound and free states are necessary.

3) Akamatsu and Rothkopf have proposed a stochastic potential approach [START_REF] Akamatsu | Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma[END_REF].

By including a white stochastic term in the usual unitary evolution operator, they derive a tractable master equation in which the spatial correlation of the stochastic term shows up as an imaginary potential. The presence of the noise term leads to spatial decoherence and exponential suppression of the ground states (see figure IV.3). Unfortunately, due to the absence of a friction term, this model is unable to thermalise the states and leads to a linearly increasing energy and to uniform state populations after a transient phase. The descriptions of quarkonia as open quantum systems developed so far are thus either rigorous but hardly applicable to phenomenology or more effective but unable to thermalise the inner dynamics. This quest is therefore quite recent and still open to new ideas.

IV.2.2 Langevin-like approaches and overview of the next parts

In this section, we wish to justify and discuss the approach that we have chosen to follow in the next parts. Because of the quantum nature of the bound states, a quantum description of the Q Q pair is necessary in our view. The open quantum system framework should then be appropriate to study its real-time dynamics. Unfortunately, its rigorous derivation within the subsystem plus bath approach is quite entangled 56 -due to the complexity of the QGP/quarkonia interaction and of the dynamic QGP itself -and hardly applicable to the quarkonia phenomenology. As a result, we have looked instead for an effective approach suitable for phenomenology: easy to implement in a realistic collision scenario, which guaranties the transitions between bound states and with the free states, and capable to thermalise the Q Q internal d.o.f. Motivated by the non-relativistic Brownian nature of the heavy quarks in a pair 57 and by the availability of Drag coefficients for single heavy quarks diffusion 58 (see section V.2.1), we have headed toward some semi-classical and quantum Langevin-like approaches at the weak coupling limit. One could then obtain a unified description of the Q Q pair inner dynamics and single heavy quarks propagation. The quantum Q Q pair can then be seen as subject to three forces: i) the drag force which accounts for energy dissipation, (ii) the stochastic force which mocks the dense collisions with the medium and (iii) the screened mutual interaction of the Q Q pair as in part III. Inspired by Young and Shuryak work IV.2.1.2, we have first focused on a semi-classical approach based on classical Langevin evolution of Wigner distributions (next part V). Nevertheless, its severe limitations urged us to look for a full dynamical quantum approach. We have then focused on a Langevin-like extension of the fundamental Schrödinger equation, the so-called Schrödinger-Langevin equation, which can be seen as the counterpart of the Heisenberg-Langevin equation (see section IV.1.5) in the Schrödinger representation. We have first studied its general properties as a sanity check (part VI) and then applied it to the Q Q/QGP system within a simplified model (part VII).

Part V Semi-classic approach

As a first attempt to assess the effects of direct thermal forces, we investigate a semi-classical framework initially proposed by Young and Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. It is based on a Wigner description of the correlated Q Q pair and the classical Langevin dynamics. As for the mean field case (part III), we only consider the internal degrees of freedom of the Q Q pair immersed in a homogeneous and infinite thermal QGP. Our approach within this part is illustrated in figure V.1. The semi-classical approach is first introduced without Langevin dynamics in section V.1.1. The related results are discussed in section V.1.2 and compared to the quantum results of part III. Next, in section V.2, the semi-classical approach with Langevin dynamics is introduced and the related results on direct J/ψ suppression at constant temperatures, or with RHIC and LHC scenarios, are presented. Note that these results have been published in a conference proceeding [START_REF] Katz | Semi-classical approach to J/ψ suppression in high energy heavy-ion collisions[END_REF]. However, in section VI.1.2, we discuss their veracity through a critical review of the semi-classical formalism. Finally, in section V.3, we briefly discuss a related formalism that we have also explored, namely the Wigner-Moyal equations with quantum Fokker-Planck terms. "Only the one who does not question is safe from making a mistake."

-Albert Einstein 59 - 59 From a letter to Gustav Bucky, 1945. AEA 037462

V.1 The semi-classical model without Langevin dynamics V.1.1 Wigner transformation and Wigner-Moyal equation

In usual quantum mechanics, the Q Q pair probabilistic information is described by a wavefunction Ψ, whose evolution is given by the Schrödinger equation. Equivalently the Q Q pair can be described by a phase space distribution called the Wigner distribution F Q Q ( r, p, t), derived from the Wigner transformation of the wavefunction [START_REF] Liboff | Kinetic Theory: Classical, Quantum, and Relativistic Descriptions[END_REF]:

F Q Q ( r, p, t) = e i p • r ψ * Q Q r + r 2 ψ Q Q r - r 2 d r . (V.59)
For instance, the radial Gaussian wavefunction

R Q Q(r, t = 0) = 1 πσ 2 3/4 e - r 2 2σ 2 , (V.60)
becomes the Gaussian Wigner distribution in both radial position and radial momentum space, The evolution of the Wigner distribution is given by the Wigner transformation of the Schrödinger equation called the Wigner-Moyal equation (in relative coordinates) [START_REF] Liboff | Kinetic Theory: Classical, Quantum, and Relativistic Descriptions[END_REF]:

F Q Q(r, p, t = 0) ∝ e - r 2 2( σ √ 2 ) 2 e - p 2 2( c √ 2 σ ) 2 (V.
∂ ∂t + p m • ∂ ∂ r - 2 sin 2 ∂ ∂ p • ∂ ∂ r V ( r) F Q Q ( r, p, t) = 0, (V.62)
where m is the reduced mass and the spatial derivative in the sine term acts only on the mean field potential V ( r) only. The Wigner-Moyal equation has two main advantages over the usual Schrödinger equation. First, one can easily include some thermal terms by analogy with the Fokker-Planck equation (see section V.2). Second, the connection between classical and quantum mechanics is more comprehensible. Indeed at the (semi-)classical limit, i.e. → 0, one obtains the classical Wigner Moyal equation (V.63), equivalent to the Liouville equation, by expanding the sine term to the first order in .

∂ ∂t + p m ∂ ∂ r - ∂ ∂ p ∂ ∂ r V ( r) F Q Q ( r, p, t) = 0. (V.63)
To evaluate the probability of the Q Q pair to bind as a specific quarkonium state at hadronisation, one needs to project its Wigner distribution onto the corresponding quarkonium Wigner distribution. For instance, in the case of the J/ψ state, the projection writes:

W J/ψ (t) = F Q Q ( r, p, t) F J/ψ ( r, p) d 3 pd 3 r ( c) 3 ., (V.64)
with both distributions normalized to unity.

The semi-classical formalism therefore includes the quantum Wigner distribution (equation V.59) of the Q Q pair, which is evolved with the classical Wigner-Moyal equation (V.63), and projected onto the vacuum quarkonium states at hadronisation (equation V.64). This semi-classical approach allows an easy access to numerical simulations through the practical use of the test particles method. In the latter, one reproduces the 3D Wigner distribution with a large set of N test particles which are sampled according to equation (V.61) at initial time and which are then evolved with Newton's laws (see [START_REF] Marin | Suppression de la suppression du J/ψ[END_REF] for more details). The projection on the vacuum quarkonium states is then given by

P J/Ψ (t) = 1 N N i=1 F J/Ψ (r i (t), p i (t)) , (V.65)
the test particles version of (V.64), where r i (t) and p i (t) are, respectively, the instantaneous position and momentum of the i th test particle. In the following sections, we focus on the normed weight P J/Ψ (t)/P J/Ψ (0), equal to the survivance defined in the mean field part III (which corresponds to a R AA -like value at hadronisation).

For the numerical resolution, we use the Runge-Kutta fourth-order method which has proven to be reliable for these evolutions.

Because in this study we are only interested in S states, the ψ Q Q( r, 0) initial wave-function can be reduced to its radial part. As in part III, the initial radial wave-function is taken as a Gaussian wavepacket with Gaussian parameter σ = 0.165 fm. The corresponding parameters for the initial Wigner distribution are σ W T r = 0.1167 fm and σ W T p = 0.844 GeV/c. For the screened Q Q mutual interaction, we mainly choose the strong potential U ( r, T ) (see section III.1.1 for more details). The internal energy is indeed better suited for this study as it does not include any energy exchange between the pair and the medium: a redundancy with the thermal forces is thus avoided. The results with the weak potential V weak are also given for comparison.

V.1.2 Mean field evolutions with the semi-classical and quantum models

In order to check the limits of the semi-classical approximation without Langevin dynamics (i.e. only with color screened binding potentials), we compare the evolutions obtained from the semi-classical approach and the time-dependent Schrödinger equation (which leads to the correct evolutions already described in part III). As shown in figure V.2, in the free case (i.e. V = 0), the J/ψ weights are identical.

It is expected from the Erhenfest theorem which states that classical and quantum observables are similar when the potential changes slowly in comparison to the wavefunction size [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF]. However, as illustrated in figures V.2 and V.3, and expected from the Erhenfest theorem statement, important discrepancies appear with a binding potential: With the semi-classical approach, one observes some overshoot for t < 1 fm/c and a difficulty to reach the continuum (the J/ψ normed weight remains close to unity) at larger times. Note that in [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF], the overshoot was explained by a rapid narrowing of the distribution in momentum space due to 1) a drag coefficient larger than the diffusion coefficient and 2) an initial momentum distribution larger than the thermal momentum distribution 60 . Because it is also observed without Langevin dynamics, their explanation is partly mistaken. The observation of the test particle paths in phase space rather shows that it is due to their momentum loss while climbing the potential barrier (which makes some of them enter the "J/ψ phase space zone"). As a positive point, note also that the semi-classical formalism partly reproduces the oscillations between eigenstates observed with the quantum formalism 61 . Note 60 In other words, because the drag is much larger than the diffusion coefficient, the test particles are first slowed down to reach thermal velocities, which increases the J/ψ weight, and then diffuse spatially, which decreases the J/ψ weight. 61 These oscillations are due to the high asymptotic values of the potential when 5 t 12 fm/c. See section III.4 for more details.

Tred 1.8 V U F V U V 0 Σ in 0.
123 finally that despite a difference of temperature of around 80 MeV between RHIC and LHC scenarios, the semi-classical formalism gives similar results for both. Consequently, if the Langevin dynamics does not drive the evolution, the validity of the semi-classical results with Langevin dynamics (section V.2 and [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]) is clearly questionable.

V.2 The semi-classical model with Langevin dynamics V.2.1 Additional Fokker-Planck terms

A phenomenological way to take into account the thermalisation of the Q Q pair in this dynamical model is to consider the random interactions between the Q Q pair and the QGP constituents. By analogy with the Fokker-Planck equation of motion in momentum space (equivalent to Langevin forces), we introduce additional stochastic terms in the Wigner Moyal equation:

∂ ∂t + p m • ∂ ∂ r - 2 sin 2 ∂ ∂ p • ∂ ∂ r V ( r) F Q Q ( r, p, t) = ∇ p A pF Q Q + ∇ p (D v F Q Q) ,
(V.66) where A and D v are parameters described below. In the limit → 0, this equation is equivalent to the approach adopted in [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. Within the frame of the test particle method, the right-hand side of equation (V.66) is then equivalent to additional Langevin forces introduced in Newton's equation of motion:

d p dt = -∇V ( r) -A p + ξ ( r, t) (V.67)
The stochastic force ξ is defined by ξ =0 and ξ i (t)ξ j (t ) = Bδ i,j δ(t-t') (fluctuations are uncorrelated over time). The friction/dissipative term is -A p where A is the well known drag coefficient. The Einstein relation can then be deduced from quadratic and average momentum calculations [START_REF] Risken | Springer Series in Synergistics[END_REF], and the momentum diffusion coefficient D v related to B (see section IV.1.1):

D v = B 2 = mT A (V.68)
For the purpose of comparison, we present the results obtained from equation (V.66) in the → 0 limit, both with the drags for single heavy quarks propagation from Gossiaux and Aichelin A[c/fm] ∼ = 2(1.5T [GeV] + 1.25T 2 ) [START_REF] Gossiaux | Towards an understanding of the RHIC single electron data[END_REF] and from Young and Shuryak A = 4πT 2 /(3 cm) [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF][START_REF] Moore | How much do heavy quarks thermalize in a heavy ion collision ?[END_REF] (see figure V.4). They originate from calculations of collisional energy loss of a single heavy quark in a partonic medium. The former drag has been evaluated through microscopic 2 → 2 processes and a fit to experimental D-meson R AA and v 2 data (which gives the factor 2). Note that diffusion coefficients have also been evaluated from lQCD [START_REF] Ding | Charmonium properties in hot quenched lattice QCD[END_REF][START_REF] Banerjee | Heavy Quark Momentum Diffusion Coefficient from Lattice QCD[END_REF] and DQPM 62 [START_REF] Berrehrah | Transport coefficients of heavy quarks around T c at finite quark chemical potential[END_REF]. As shown in Fig. V.5, the additional Langevin dynamics leads to an actual evolution of the J/ψ weights that was missing in section V.1.2. On the one hand, one observes an enhancement of the overshoot for t < 1 fm/c, indeed explained this time by the rapid "thermalisation" of the distribution in momentum space (see explanation provided in section V.1.2). On the other hand, it helps the test particles to reach the continuum, i.e. to escape the range of the binding potential. The J/ψ weight indeed decreases exponentially from t 1 fm/c on, showing the continuous decay of the bound component 63 of the cc pair. The continuous decay originates from the spatial diffusion of the distribution towards large distances due to the Langevin dynamics. The decay rate is observed to increase with the temperature and is logically larger with the weak potential than with the strong potential (for which the binding energy is larger). 

V.2.2 Evolutions at constant temperatures

V.2.3 Evolutions at RHIC and LHC

We now include in the model the hydrodynamic scenarios of temperature at RHIC and LHC as described in section III.1.2. The evolutions of the J/ψ weight with the weak and strong potentials are shown in figures V.6 and V.7 respectively. The first thing to notice is that one obtains an actual dynamical evolution: The cc pair is clearly not decorrelated instantaneously and the evolution is strongly non-adiabatic. One can then observe that the suppression is more important at LHC than at RHIC. The higher temperature at LHC indeed leads to a larger diffusion coefficient and to a more important screening. Next, one can note that from t 5 fm/c, the light J/ψ weight variations follow the important variations of the strong potential asymptotic value U (r → ∞, t) (see figure III.6): high asymptotic values lead to a narrowing of the spatial distribution whereas low asymptotic values to its spatial diffusion. The features of the weak potential screening logically induces a larger diffusion of the cc distribution resulting to a continuously shrinking exponential decay rate as the QGP cools down. Last, the two drag coefficients give similar evolutions with a difference of ∼ 0.1 at the freeze out with the strong potential and negligible with the weak potential. As a robustness test, a variation of the initial wavepacket parameter of ±0.01 fm/c (12%) leads to a maximum normed J/ψ weight deviation of 0.03 (8%) at the freeze out.

All together, this shows that the stochastic forces have a significant role both for stationary and for dynamical QGP.

V.2.4 Comparison with data

The survivances of the J/ψ component at the chemical freeze out with the semiclassical formalism and strong potential are summed up in table V.8, and compared to some extent to pure quantum results and experimental data. Of course the comparison to data may not be taken too seriously as we have not considered other effects such as cold nuclear matter effects (see II.2.1.1), feed downs from other quarkonia (see figure I.10)... Because of a small possible statistical recombination at RHIC (see II.3), the color-screening effects for charmonia are expected to be relatively more important there. Then, at RHIC our predicted value (0.5) should be compared to the low p T data (0.26) where most of the charmonia are detected. Including the other effects would mostly lower our results in general and have thus a rather positive impact on our prediction at RHIC as we overestimate it. Note that Young and Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF] also found a suppression of 0.5 with a different parametrisation. At LHC, as the statistical recombination should be important at low p T one should compare our result (0.32) to the high p T data (0.20). Once again, including the other effects should therefore have a positive impact on our prediction at LHC. -RHIC AuAu √ S N N = 200 GeV collisions: 1) high p T STAR data [134] (inclusive (prompt and non prompt) J/ψ, 5 < p T < 14 GeV/c, |y| < 1 and 0-10% centrality) and 2) low p T PHENIX data [133] (inclusive J/ψ, p T < 5 GeV/c, |y| < 0.35 and 0-5% centrality). The non prompt contribution is estimated to 10-25% of the inclusive production. -LHC PbPb √ S N N = 2.76 TeV collisions: 1) high p T CMS data [START_REF] Chatrchyan | Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at √ s N N = 2.76 TeV[END_REF] (prompt J/ψ, 6.5 < p T < 30 GeV/c, |y| < 2.4 and 0-10% centrality) (inclusive J/ψ: R AA = 0.24±0.03) and 2) low p T ALICE data [START_REF] Maire | Measurements of inclusive J/ψ production in Pb-Pb collisions at √ s N N = 2.76 TeV with the ALICE experiment[END_REF] (inclusive J/ψ, 0 < p T < 8 GeV/c, |y| < 0.9 and 0-10% centrality).

Semi-classical

V.2.5 A critical post-review of the semi-classical results

We would like now to discuss the reliability of the results obtained with the semiclassical formalism as done so far by [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF] and us (in [START_REF] Katz | Semi-classical approach to J/ψ suppression in high energy heavy-ion collisions[END_REF] as well as in this manuscript).

In section V.1.2, we first pointed out that the "ballistic" evolutions given by the semi-classical formalism without the Langevin dynamics and the Schrödinger equation are very different. Nevertheless, if the diffusion is the leading ingredient of the full evolution (what seems to be the case for the cc pairs), it is likely that the effects of these discrepancies are finally small. However, later investigations brought us to question the semi-classical formalism even more:

• It is important to note that we have never tested whether the bound components of the cc pair actually thermalises with the bath. To do so, one should perform an evolution of the cc pair distribution at constant temperature T , project at a certain t τ relax the distribution onto several bound states (J/ψ, ψ , ψ ...) and check if the resulting distribution of weights corresponds to a Boltzmann distribution with the bath temperature T . In their paper [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF], Young and Shuryak did not investigate this question either. In order to add the feed-down contributions to the J/ψ yield, they just assumed (from experimental observations at SPS) that the ratio between bound states is proportional to exp(-∆m/T ), where ∆m is the mass difference between considered states.

• We have nevertheless investigated the properties of the semi-classical formalism in a simpler situation: the 1D harmonic oscillator. In this case, one can actually show [START_REF] Gossiaux | Some notes on suppression of suppression[END_REF] that the Wigner-Moyal equation (V.62) is identical to the classical Wigner-Moyal equation (V.63). For this specific potential, one has thus the possibility to test the "exact" equation (V.66) by applying the semi-classical method obtained by taking the → 0 limit in this equation. We have investigated this model in figure V.8 (left panel). In most cases we have observed the thermal relaxation of the subsystem toward a certain equilibrium. The distributions of eigenstate weights p n at equilibrium were roughly Boltzmannian (i.e. p n (t τ relax ) ∝ exp(-E n /T sub )) but the subsystem temperatures T sub did not correspond to the bath temperatures T . This shows that equation (V.66) does not lead to the expected thermalisation of the cc bound states. Furthermore, as shown in figures V.9, we have observed an important violation of the Heisenberg principle when B A (i.e. T E 0 )64 , which in turn mechanically induces negative eigenstates weights for odd states (see the right panel of figure V.8).

To conclude: As the LHS of (V.66) corresponds to a genuine quantum evolution, this violation can only result from the classical Fokker-Planck/Langevin terms (RHS). Note that similar behaviours can be found within other semi-classical approaches, such as the quasi-classical Heisenberg-Langevin equation (see section IV.1.5). It is then quite likely that, for arbitrary potentials, both equation (V.66) as well as its → 0 limit used previously in this section as well as in [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF] are not appropriate to deal with the quantum evolution of cc pairs, especially at T ∼ T c E J/ψ ∼ 600 MeV (where B/A ∼ 0.4). A possible way to solve these issues -at least for the 1D harmonic oscillator -might be to add permanently the contribution of the quantum zero-point fluctuations through the use of a temperature dependent force correlation (such as relation VI.101) instead of the classical correlation (V.68) (see section VI.2.2.1). 

V.3 Brief discussion on quantum Fokker-Planck terms

To circumvent the violation of the Heisenberg principle, brought by the classical Fokker-Planck terms, we have also investigated a quantum version of the Fokker-Planck equation ( [START_REF] Sparber | On the Long-Time Behavior of the Quantum Fokker-Planck Equation[END_REF] and references therein). The latter has been derived from the Caldeira-Leggett model (IV.1.5) in the limit that 2kT ω 0 , where ω 0 is the frequency of the fundamental state. The RHS of (V.66) becomes (in the general case):

B∆ p F + ∇ p A pF Q Q + 2D px ∇ x • ∇ p F Q Q + D xx ∆ x F Q Q (V.69)
where B, A are the classical coefficients, and D px (Ω, T, A) and D xx (T, A) are new coefficients. Ω is the cut-off frequency of the reservoir oscillators. The effect of this new RHS has been studied in the harmonic potential frame and shows no violation of the Heisenberg Principle at low temperatures (and therefore no negative state weights). However, at low temperatures T ≤ ω 0 , the equilibrium state (distribution (3.21) in [START_REF] Sparber | On the Long-Time Behavior of the Quantum Fokker-Planck Equation[END_REF]) tends to spread over the phase space. As a result, the state weights become none Boltzmannian (see the solid curves of the figure V.10). the harmonic states (in natural units). The solid curves correspond to the results obtained from the quantum Fokker-Planck approach [START_REF] Sparber | On the Long-Time Behavior of the Quantum Fokker-Planck Equation[END_REF] and are compared to what is expected from statistical quantum mechanics (dashed lines) [START_REF] Tannor | Introduction to Quantum Mechanics: A Time-Dependent Perspective[END_REF]. The uppest curve correspond to the fundamental harmonic state, the one below to the first excited state...

The latter behavior at low temperature is incompatible with what is expected from quantum thermal theory. Indeed statistical quantum mechanics [START_REF] Tannor | Introduction to Quantum Mechanics: A Time-Dependent Perspective[END_REF] shows that the thermal Wigner distribution for an harmonic oscillator should be (see the dashed curves of the figure V.10):

F (p, r) = 2 tanh(R) e -2/( ω 0 ) tanh(R) H (V.70)
where

H = p 2 2m + mω 2 0 r 2 2
is the harmonic Hamiltonian and R = ω/2 kT the ratio between the ground state energy and the thermal energy. Roughly, when kT ω 0 /2 then tanh(R)

1 and one gets the harmonic ground state as an asymptote. Whereas, when kT ≥ ω 0 /2 then tanh(R) ∝ 1/T and one gets Boltzmann distributions.

Because T ∼ T c E J/ψ ∼ 600 MeV, the Wigner-Moyal equation plus quantum Fokker-Planck terms is thus not suited for our quantum study of the Q Q system.

Main ideas and transition

As a first attempt to observe the effects of direct thermal forces, we have investigated a semi-classical framework initially proposed by Young and Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. The formalism, i.e. the classical Langevin evolution of a Q Q quantum Wigner distribution, has been chosen as a convenient way to introduce a classical thermalisation process -which reflects the permanent collisions between the pair and the medium -while keeping accessible the full 3D situation without approximation. We focused exclusively on the J/ψ weight. We have first compared the evolutions given by the quantum and semi-classical equations without Langevin dynamics and observed important (expected) discrepancies. But these discrepancies might have a relatively small impact on the full evolution if the Langevin dynamics is the leading ingredient of the evolution (which seems to be the case here). We have then explored the full formalism and first observed relevant exponential decays of the J/ψ weight at constant temperatures after some transient phase. Including RHIC and LHC temperature scenarios (from hydrodynamics calculations), led to rich suppression patterns that might rule out the unjustified assumption of the fast/full decorrelation of Q Q pairs originating from melted states (made by both sequential suppression and statistical hadronisation models (see II.2.1.2 and II.2.2.1)). Finally, we severely questioned the accuracy of these results -and more generally the ones given by classical Fokker-Planck terms -by pointing out two important pitfalls: the violation of the Heisenberg principle at low temperatures T E 0 and the actual "wrong" thermalisation of the eigenstate weights. All these faults urged us to look for a full dynamical quantum approach.

VI.1 Introduction

In the last part, we have observed the limits of the semi-classical framework. To obtain a description of the Q Q pair which is compatible with quantum mechanics, one needs instead a "full" quantum treatment. To this end, in this part we introduce and study the general properties of a possible Langevin-like extension of the fundamental Schrödinger equation, the so called Schrödinger-Langevin ("SL") equation. After this general sanity check, the SL framework will be applied to the Q Q/QGP system in the next part VII. Explicitly, the SL equation writes

i ∂ψ( x, t) ∂t = H 0 + A S( x, t) -ψ * S( x, t) ψ d 3 x -x. F R (t) ψ , (VI.71)
where A is a drag coefficient (inverse relaxation time), S the real phase of the wavefunction and F R a stochastic force. The right hand side of the SL equation includes 1) the usual isolated Hamiltonian operator,

H 0 = -( 2 /2m)∇ 2 + V ( x, t), (VI.72)
where V ( x, t) is the mean field potential, 2) a nonlinear dissipative potential,

A(S -S x ) (VI.73)
and 3) a fluctuating operator,

x. F R (t).

(VI.74)

The dissipative and fluctuating terms are discussed respectively in sections VI.2.1 and VI.2.2. Because of its phenomenological aspect -only the drag A and bath temperature T bath are necessary -and its numerical simplicity, the SL equation can be considered as a solid candidate for effective description of complex open quantum systems hardly accessible to quantum master equations or equivalent. In section VI.1.1, we first discuss two of its various derivations from the different approaches introduced in part IV. We then describe its basic properties in section VI.1.2. Before considering any actual applications to phenomenology, we show in section VI.1.3 that some questions and issues remain to be explored about its solutions and thermal relaxation. Finally, in sections VI.3 and VI.4, the thermal relaxation given by the SL equation will be studied with the harmonic and linear 1D potentials and with white and colored noises. The harmonic potential is a well-known base to study the properties of an open quantum system formalism, whereas the linear potential allows us to test an anharmonic situation which is closer to the Q Q binding potential.

N.B.:

This part aims thus to study the properties of the SL equation within the general context of open quantum systems and is mostly inspired by the paper "The Schrödinger-Langevin equation with and without thermal fluctuations" written by Katz and Gossiaux (which should be published in 2016 [START_REF] Katz | The Schrödinger-Langevin equation with and without thermal fluctuations[END_REF]).

VI.1.1 Derivations

The SL equation can be derived in many ways within the different approaches developed in sections IV.1.5 and IV.1.6. Within the common open quantum system framework, the SL equation has first been introduced by Kostin [3] from an identification with the Heisenberg-Langevin equation (see section VI.1.1.1 below). With or without its fluctuating term, the SL equation has also been derived within many other frameworks such as the Schrödinger method of quantisation to the generalized Hamilton-Jacobi equation [188], the fluid interpretation of the Schrödinger equation [START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF][START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF] (see section VI.1.1.2 below), nonlinear gauge transformations [START_REF] Doebner | Gauge transformations in quantum mechanics and the unification of nonlinear Schrodinger equations[END_REF], the quantisation through stochastic mechanics [START_REF] Yasue | Quantum mechanics of Non-Conservative systems[END_REF], the diagonal limit of the quantisation of general non-Hamiltonian system [START_REF] Bolivar | Quantization of non-Hamiltonian physical systems[END_REF] and others [240,241,242]... For now, there is no established connection between the SL equation and the standard quantum master equations, which makes it a different type of stochastic Schrödinger equation than other stochastic Schrödinger equations existing in the literature [START_REF] Mølmer | [END_REF][START_REF] Gisin | [END_REF] (see section IV.1.4.2).

VI.1.1.1 From the Heisenberg-Langevin equation [3]

One wishes to identify some dissipative V Diss and random V R potentials in the Schrödinger equation, We first limit ourselves to the 1D case. The random potential directly corresponds to the random force through the usual derivation,

i ∂ψ( x, t) ∂t = H 0 ψ + V Diss ψ + V R ψ, (VI.
F R (t) = -∂V R (x, t)/∂x, (VI.77)
and as F R (t) is independent of the position one obtains,

V R (x, t) = -xF R (t). (VI.78)
Less straightforward, the dissipative potential can be obtained from an expectation value analysis. One first needs to express the momentum operator (in Heisenberg representation) expectation value in terms of the momentum operator and wavefunction (in Schrödinger representation): 

P (t) = ψ|P |ψ = ψ|P ψ = P ψ|ψ = ψ|P ψ + P ψ|ψ /
∂V Diss ∂x = A 2i [ψ(x, t)] -1 ∂ψ(x, t) ∂x -[ψ * (x, t)] -1 ∂ψ * (x, t) ∂x (VI.83) = A 2i ∂ ∂x ln[ψ/ψ * ].
Integrating (VI.83) and choosing the integration constant such as to obtain an expectation value of the total energy equal to the one of the subsystem, one finally obtains the dissipative potential:

V Diss = A 2i ln[ψ/ψ * ] -ψ * ln[ψ/ψ * ] ψ dx (VI.84)
In equation (VI.84), the dissipative term is written under its "logarithmic" formulation. One can obtain the equivalent "hydrodynamic" formulation back (equation V I.71) by employing the polar/Madelung transformation of the wavefunction,

ψ(x, t) = R(x, t)e iS(x,t) ⇒ ln[ψ/ψ * ] = 2iS (VI.85)
where R(x, t) and S(x, t) are respectively the real amplitude and phase. The generalisation to a three dimensional space is straightforward.

VI.1.1.2 From the quantum trajectory point of view [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF] The fluid dynamical (or quantum trajectories) interpretation of the Schrödinger equation is the easiest way to introduce and apprehend the dissipative term of the SL equation. Using the polar/Madelung transformation (VI.85) of the wavefunction, one can indeed re-write the Schrödinger equation as a system of two equations (real and imaginary part respectively):

∂S ∂t = - 2 2m ∂S ∂x 2 -V (x, t) + 2 2mR ∂ 2 R ∂x 2 (VI.86) ∂R ∂t = - m ∂R ∂x ∂S ∂x - 2m R ∂ 2 S ∂x 2 . (VI.87)
Relation (VI.87) is an equation of continuity for the wavefunction probability density, whereas relation (VI.86) makes the connection between quantum and classical mechanics when the phase S is associated with the quantum trajectory velocity:

p = ∂S ∂x . (VI.88)
This momentum can be seen as a hydrodynamic-like momentum in the probability space. The differentiation of equation (VI.86) yields:

∂p ∂t = - p m ∂p ∂x - ∂ ∂x V (x, t) - 2 2mR ∂ 2 R ∂x 2 (VI.89)
By analogy with Langevin forces in the classical Newtonian picture, one can introduce a friction term65 that will act on the wavefunction "fluid":

∂p ∂t = - p m ∂p ∂x - ∂ ∂x V (x, t) - 2 2mR ∂ 2 R ∂x 2 -Ap (VI.90)
Finally, one obtains back the new Schrödinger equation with the new dissipative term:

i ∂ψ(x, t) ∂t = - 1 2m ∂ 2 ∂x 2 + V (x, t) + A S(x, t) -S(x, t) x ψ(x, t) (VI.91)
where the total overall phase S(x, t) x is subtracted for the evolution in order to ensure gauge invariance of the total energy.

VI.1.2 Properties

The SL equation exhibits some interesting properties:

• Unitarity is preserved at all times for the pure state [START_REF] Kostin | On the Schrödinger-Langevin equation[END_REF][START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF], i.e. the norm of the wavefunction remains constant. For a two particles system, like the quarkonia, unitarity means that the two particles and their correlations always exist and do not vanish while spreading over space. This feature is very different from what can be obtained with imaginary potentials (see IV.2.1.1) where the wavefunction, interpreted as the correlation between the two particles, vanishes during the evolution.

• The uncertainty principle is always satisfied [START_REF] Sanin | Computer simulation of quantum systems with friction and feedback[END_REF]245], i.e. the wavefunction always obeys the uncertainty inequality ∆x∆p ≥ /2. It can be opposed to other models such as the Caldirola-Kanai equation [190] without fluctuations (based on an effective time dependent Hamiltonian), the quasiclassical HL equation (see section IV.1.5) or the Wigner-Moyal equation with classical Fokker-Planck terms (see section ) where the uncertainty principle can be violated. Within the SL equation framework, the "narrowest" possible state is the fundamental state (also called zeropoint state) whatever the value of the dissipation strength A. Moreover, the thermal fluctuations (F R ) do not need to generate the quantum zeropoint fluctuations (which are required in other models like the Caldirola-Kanai equation).

• The superposition principle is violated due to the (logarithmic) nonlinear dependence of the dissipation upon the wavefunction. As we will see all along this part, this violation does not appear to be a problem per se for dissipative equations (as also advocated in [START_REF] Tsekov | Nonlinear theory of quantum Brownian motion[END_REF]247]).

• Even though the dissipation is nonlinearly dependent on the wavefunction, it still corresponds to an ohmic friction, i.e. proportional to the particle velocity.

A nonlinear friction can still be obtained by extending the approach developed in section IV.1.5 to a nonlinear coupling [START_REF] Bargueño | The generalized SchrdingerLangevin equation[END_REF][START_REF] Vargas | A Bohmian approach to the non-Markovian non-linear SchrdingerLangevin equation[END_REF].

• As in the HL framework (IV.1.5), the thermal dynamics is mainly based on two straightforward "classical" parameters: the drag A and the bath temperature T bath . This simplicity makes the SL equation a solid candidate for effective description of complex open quantum systems hardly accessible to quantum master equations or equivalent.

• The use of wavefunctions is convenient as compared to density matrices, Wigner distributions or Heisenberg operators. Moreover, the evaluation of the state populations/weights is straightforward.

• The SL equation can easily be implemented numerically and especially in Monte-Carlo generator (used in some QGP transport codes). The numerical cost is proportional to the space-time grid size and to the number of realisations, i.e. to n space × n time × n stat (where typically n space is of the order of the hundreds, n time and n stat of the thousands). It remains quite reasonable in comparison to the common density matrix and quantum master equation approach where the numerical costs are highly expensive when the Hilbert space of the subsystem is large (see section IV.1.4). The mixed state observables are similarly defined within the SSE framework [START_REF] Mølmer | [END_REF][START_REF] Gisin | [END_REF].

VI.1.3 Solutions

The study of the solutions of the SL equation without its stochastic term has been carried in many specific cases. Analytically for a free particle [250,251] and in uniform and harmonic potentials [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF]251,[START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF]245,252,[START_REF] Brüll | The Schrödinger-Langevin equation: Special solutions and nonexistence of solitary waves[END_REF]; numerically for the double well potential [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF]254], for interpenetrating waves and barrier penetration [250,255] and for scattering and trapping [256]. The dissipation term is observed to decelerate and reduce the system toward its lowest energy state with an energy loss proportional to its classical kinetic energy [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF]:

dE dt = -A p 2 m (VI.92)
Along these analysis, it has been advocated that the stationary eigenstates of H 0 are also stationary states of the equation [START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF]252,[START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF]. At first sight, this behaviour is in contradiction with what is expected from damped quantum systems [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF][START_REF] Lindblad | Brownian Motion of a Quantum Harmonic Oscillator[END_REF][START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF][START_REF] Caldeira | Path Integral Approach to Quantum Brownian Motion[END_REF]. As an answer to this expectation, we will show in section VI.2.1 how to obtain damping even with these states. The purely dissipative SL equation has already been applied in quantum chemistry [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF] and heavy ion scattering [START_REF] Sandulescu | On the dynamics of charge equilibration in deep inelastic reactions[END_REF][START_REF] Hernandez | Quantal dynamics of charge equilibration in damped nuclear collisions[END_REF] Very few studies of the SL equation solutions have however been carried with an additional driving or stochastic term. Kostin [START_REF] Kostin | On the Schrödinger-Langevin equation[END_REF] first observed that for a free particle plane wave, the SL and HL equations lead to the same solution. Then, Messer [259] studied the evolution of a Gaussian wavefunction in the free and harmonic potentials. In the free case, he showed that the evolution differs from the Heisenberg-Langevin solution, highlighting that the SL and Heisenberg-Langevin equations are not strictly equivalent. In his calculation, Messer assumed that the SL equation led to the thermal equilibrium of statistical mechanics -which was not proven or tested -and used a white quantum noise for the stochastic force, which is questionable. The SL equation with the same assumptions has also been applied to atomic diffusion in solids [START_REF] Weiner | Rate theory for solids. V. Quantum Brownian-motion model[END_REF]. On the numerical side, Sanin et al. [START_REF] Sanin | Computer simulation of quantum systems with friction and feedback[END_REF][START_REF] Sanin | Oscillatory motion in conned potential systems with dissipation in the context of the SchrödingerLangevinKostin equation[END_REF] extensively studied the evolution of an initial gaussian wavefunction in the harmonic and double well potentials, confined within infinite walls (the limits of the grid), and driven by non stochastic forces (sinusoidal, periodic pulses...).

In order to apply the full SL equation to phenomenology, a better understanding of its solutions and an exploration of its ability to lead a subsystem to thermal equilibrium are necessary. In sections VI.3 and VI.4, we study analytically and numerically the ability of the SL equation to bring different 1D subsystems to the thermal equilibrium of statistical mechanics using either a white or colored noise. To do so, we first introduce the dimensionless SL equation in section VI.1.4 and then discuss in more details the friction term and the quantum fluctuations in section VI.2.

VI.1.4 Dimensionless Schrödinger-Langevin equation

The behaviour of the SL equation will especially be studied with two external potentials: the harmonic V = 1/2mω 2 0 x 2 and the linear V = 1/2K l |x|. In all the following numerical studies, we use the SL equation with natural units, i.e. = m = ω 0 = K l = k (B) = 1, and dimensionless variables x, t,. . . 66 Then, the characteristic energies are E 0 = ω 0 /2 = 0.5 and ∆E = E 1 -E 0 = 1 (E 0 0.509 and ∆E = E 1 -E 0 0.66) for the harmonic (linear) external potential. The dimensionless SL 66 The dimensioned values of x, t, A, F R and H 0 can be obtained by multiplying our dimensionless values respectively by /mω 0 , 1/ω 0 , ω 0 , m ω 3 0 and ω 0 in the harmonic case or ( 2 /mK l )

1 3 , (m /K 2 l ) 1 3 , (K 2 l /m ) 1 3 , K l and ( 2 K 2 l /m)
1 3 in the linear potential case.

equation, with the hydrodynamic formulation of the dissipative term, writes

i ∂ψ(x, t) ∂t = 1 2 ∇ 2 ψ + V (x) + A S(x, t) -S(x, t) -xF R (t) ψ, (VI.93)
where the external potential is V (x) = 1/2 x 2 or V (x) = 1/2 |x| within this study.

The drag A and the stochastic process are thus the only parameters governing the generic evolution.

VI.2 Friction and quantum noises VI.2.1 The friction non-linear term: a well defined prescription to obtain eigenstates damping

Though theoretically the fluctuation and dissipation aspects cannot be dissociated, it appears that in some specific studies only the damping is considered (quantum chemistry [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF] and nuclear collisions [START_REF] Sandulescu | On the dynamics of charge equilibration in deep inelastic reactions[END_REF][START_REF] Hernandez | Quantal dynamics of charge equilibration in damped nuclear collisions[END_REF]). Unfortunately, the dissipative part of the SL equation (VI.71) suffers from ambiguities and needs some prescription to be defined properly. Its main non-linear term is the real phase S(x, t), defined by the wavefunction decomposition ψ(x, t) = R(x, t)e iS(x,t) , (VI. 94) where R(x, t) is the real amplitude. S(x, t) is indeterminate at the wavefunction nodes and multivalued (defined to a 2π modulo).

In the literature [START_REF] Garashchuk | The Schrödinger equation with friction from the quantum trajectory perspective[END_REF][START_REF] Kan | Quantized friction and the correspondence principle: single particle with friction[END_REF]252,[START_REF] Van | Stability of stationary solutions of the Schrödinger-Langevin equation[END_REF], the phase S(ψ) for real ψ corresponding to eigenstates is commonly prescribed to be zero (and thus continuous at the nodes of ψ) while R(ψ) is taken as a real -positive or negative -function. This prescription has led to the conclusion that the stationary eigenstates of H 0 are also stationary states of the SL equation, as the dissipation term identically vanishes. For the sake of describing time-dependent situations, a corresponding prescription has however to be adopted for complex ψ as well. It is easily seen that such an analytical continuation unavoidably has one branch cut in each half complex-plane, both of them starting from the origin. Taking those branch cuts along the imaginary axis leads for instance to S(ψ) = arctan( (ψ)/ (ψ)).

(VI. [START_REF] Ferreiro | Charmonium dissociation and recombination at LHC: Revisiting comovers[END_REF] with finite damping term in the SL equation. Therefore, a small modification of ψ (from real axis to complex plane) leads to a large variation of the associated damping of the quantum state, which is the sign of an ill-defined model.

We have proposed to use instead the "polar" or "Madelung" prescription, where one defines R(x, t) as the module of the wavefunction, i.e. a real positive function. In practice, one could use the local argument of the wavefunction, Arg(ψ) = atan2( (ψ), (ψ)), (VI. 96) to determine S(x, t), but the limitation of its values to a 2π interval illustrated in figure VI.1, would lead to discontinuities of the dissipative term with unphysical effects67 . To avoid these, we build the phase S(x, t) on a spacial grid of step dx following the recursive law S(x + dx) = S(x) + dS(x) where dS(x) = Arg[ψ(x + dx)/ψ(x)], (VI.97)

starting from an arbitrary space point of reference "0" and get

S(j × dx) = S(0) + j k=1 dS(k × dx). (VI.98)
The chosen value of the multivalued S(0) is of no importance thanks to the regulator -S , and can therefore be taken to Arg[ψ(0)].

Ψ x exp ix The dissipative term S(x) -S corresponding to the plane wave ψ(x) = e ix obtained with the argument function (dashed line) and with the recursive method (solid line). The real ψ 3 harmonic eigenstate (solid line, magnified for the plot sake) and its corresponding phase S(x) -S (dashed line) with the recursive method in the polar π prescription.

The polar prescription leads to singular phase shifts +π at the wavefunction nodes as shown for instance in figure VI.2. Not only are these discontinuities theoretically allowed (thanks to the phase indeterminacy at the nodes), but they also have a convenient physical consequence: the stationary eigenstates of H 0 are not stationary states of the SL equation anymore. Indeed, for the excited eigenstates {ψ n } n≥1 of H 0 the friction term becomes a step potential which generates correlations between eigenstates and results in damping. To show the latter assertions, let us assume that an initial wavefunction ψ = c n (0) ψ n is equal to an eigenstate ψ m≥1 , i.e. with c n (0) = δ nm . The SL equation without the thermal fluctuation term yields,

ċn = - i ψ n |H 0 |ψ -iA ψ n |(S -S )|ψ = - i E n c n -iA k c k (S -S )ψ * n ψ k dx . (VI.99)
For symmetric external potentials for instance, one can show that if ψ k=m has an odd (even) parity, then the integral is finite and thus the transition c m → c n is allowed at very small times for all ψ n with even (odd) parities. Moreover, the smaller the difference |n -m|, the larger the transition rate, which is consistent with the Fermi Golden Rule. Last but not least, the transition rate to n = m -1 is larger than to n = m + 1, which is consistent with damping. At larger times, these transitions and the damping can be observed numerically (see for instance figure VI.3). Both the "arctan" and "polar" prescriptions are mathematically correct and the choice between them should be physically motivated. Unfortunately, though intuitively we expect the dissipation to act on any excited state, the stationarity of the H 0 eigenstates in the corresponding dissipative situation remains an open question within the open quantum system framework [START_REF] Tarasov | Stationary States of Dissipative Quantum Systems[END_REF]. As illustrated in figure VI.3, thanks to the two prescriptions, the SL equation can reproduce both situations. From the common perspective of the quantum master equation [START_REF] Breuer | The theory of open quantum systems[END_REF], the Lamb shifted energy levels acquire finite lifetimes (finite widths), implying that the polar prescription is better suited for robust phenomenological studies. Let us finally stress that the choice of the prescription is of little importance when the fluctuations are considered, as they drive the state away from any given eigenstate.
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VI.2.2 Thermal fluctuations and numerical implementation VI.2.2.1 Quantum noises

All the Langevin-like equations include a noise term which simulates the many collisions (or couplings) that the subsystem undergoes with the particles of the bath. This noise is generally taken as a homogeneous Gaussian random process, independent of the subsystem position, and described by its average and covariance function. The random direction of the many collisions always yields a zero average. As seen in section IV.1.1, the classical Langevin equation usually assumes no correlation between these collisions, and the white noise covariance writes,

F R (t)F R (t + τ ) = 2mkT bath A δ(τ ), (VI.100)
where δ is the Dirac distribution and T bath the bath temperature (input of the noise). The asymptotic solution of the (classical) Langevin equation is then the corresponding Boltzmann distribution of statistical mechanics.

In the quantum realm, the noise operator is built from the initial bath position and momentum operators whose non-commutative property leads to the main differences with the classical case. Senitzky [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF] first proposed an HL equation -for a general bath linearly acting on a harmonic subsystem (with natural frequency ω 0 )where the noise operator is also described by a white noise covariance,

F R (t)F R (t + τ ) = 2mA ω 0 2 + ω 0 exp( ω 0 /kT bath ) -1 δ(τ ), (VI.101)
leading to a markovian process. This covariance has been used by Messer [259] in its analytic comparison of the HL and SL solutions. The first term of the RHS bracket corresponds to the zero point fluctuations of the subsystem. This term is required within the HL framework for canonical commutations to hold at T bath = 0, as shown by equation ( 52) in [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF]. However, within the SL framework, the zero point fluctuations appear naturally in the wavefunction such that they do not need to be included in the noise operator for the the canonical commutations to hold. Therefore, this term becomes unnecessary and the white quantum noise writes,

F R (t)F R (t + τ ) = B δ(τ ), (VI.102)
where

B = 2mA E 0 coth E 0 kT bath -1 , (VI.103)
with E 0 = ω 0 /2, the zero point energy. In section VI.3, we will show that the fluctuation-dissipation relation (VI.103) indeed allows to reach an asymptotic thermal distribution of states when one uses a white noise and a harmonic external potential. However, Li et al. [264] pointed out an important weakness in the derivation of (VI.101). They also claimed that the colored quantum noise (non-Markovian),

F R (t)F R (t + τ ) = m π ∞ 0 ω coth ω 2kT bath cos(ωτ ) + i sin(ωτ ) A dω,(VI.104)
first derived by Ford et al. [START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF], is the only one able to drive a general subsystem to the correct thermal equilibrium via the HL equation. For now, the latter assertion has only been demonstrated in a limited form [212,[START_REF] Gardiner | Quantum Noise, A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics[END_REF]. Actually, in order to get rid of the bath zero point fluctuations contributionthat was first judged physically unjustified -, Ford et al. first derived a quantum noise under the form of the normal product 

N [F R (t)F R (t + τ )] = 2mA π

VI.4 (left)

. As pointed out by Gardiner [START_REF] Gardiner | Quantum Noise, A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics[END_REF], the correct choice of spectrum depends on what is actually measured to find it: e.g. in absorption measurements one gets the black body radiation Planck spectrum corresponding to (VI.105), whereas in Josephson junction noise current measurements [265] one gets the linearly rising spectrum at high frequencies corresponding to (VI.104). Within the SSE framework, the choice between white and colored noises is also intensively discussed, for instance to obtain the correct thermal equilibrium of a non-Markovian master equation [START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF] or the correct positivity property for the Bloch-Redfield master equation [266].

To use these correlations within the SL framework, one needs to assume that the noise operator can be taken as a commutating c-number (whereas it is a noncommutating q-number within the HL framework). Although questionable, this assumption was actually already implied in Kostin's derivation of the SL random potential [START_REF] Kostin | On the Schrödinger-Langevin equation[END_REF] and is commonly made within the quasiclassical HL equation framework (see section IV.1.5). It does not lead to any violation of the Heisenberg relations [START_REF] Sanin | Computer simulation of quantum systems with friction and feedback[END_REF]245] as one obtains with the quasiclassical HL equation [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF].

Though they are not fully justified (as explained above), we have focused on the white (VI.102) and colored (VI.105) noise correlations, in order to observe their ability to lead the subsystem toward the thermal equilibrium of statistical mechanics. Our choice not to explore (VI.104) within this work was motivated by the additional complications brought by the required high frequency cut-off and by the practical/conceptual problem arising from the correlation imaginary part. Indeed, as shown in figure VI.4 (right), the noise correlation (VI.104) strongly depends on the value of the high frequency cut-off -which evaluation is specific to each system -and on the choice of the cut-off shape (Lorentzian, exponential, sharp...).

Finally, whereas the white noise (VI.102) leads to an uncorrelated stochastic force, the colored quantum noise (VI.105) gives a stochastic force with a strong temperature dependence of its correlation time. The latter becomes really large at low temperatures (∝ 1/T ) and the Brownian hierarchy/weak coupling limit -the typical relaxation time (∝ 1/A) should be much larger than the stochastic force correlation time -is broken when A T .

VI.2.2.2 Numerical implementation

Here we describe a numerical method to generate stochastic stationary Gaussian variables characterized by an autocorrelation F R (t)F R (t + τ ) = C(τ ). To build these variables numerically, we first define a set of uncorrelated Gaussian random variables rj with zero average and correlation rj rj = ∆t δ jj , where ∆t is the time step of the numerical scheme. We build the Gaussian random force F at a time t iand assumed to be constant over the time step [t i , t i + ∆t] -from the weighted sum

Fi = +∞ j=-∞ W i-j rj , (VI.106)
where the weights W i-j depend only on the difference i -j to guarantee the stationarity of the process. Then, the average of Fi is null and its covariance is given by

Fi Fi = +∞ j,j =-∞ W i-j W i -j rj rj = +∞ j=-∞ W i-j W i -j ∆t , (VI.107) 
which, in the continuous limit ∆t → 0, becomes

F R (t)F R (t ) = +∞ -∞ W(t -t ) W(t -t ) dt , (VI.108) 
with W i = W(t i ) for a given time step ∆t. Then, one easily shows that the Fourier transform of W is just the square root of the power spectrum P (ω) of the retained noises, i.e.

P (ω) = | W(ω)| 2 (VI .109) 
with

P (ω) = 2mA ω exp( ω/kT bath ) -1 , (VI.110)
for the colored quantum noise (VI.105) and

P (ω) = lim σ→0 B exp - 1 2 σ 2 ω 2 , (VI.111)
for the white quantum noise (VI.102). For the latter, the flat spectrum is obtained when σ → 0, but in practice it is sufficient to take σ τ , where τ is the typical time of the subsystem evolution. Then, one gets explicitly and then the stochastic variables { Fi } through equation (VI.106). In figure VI.5 (left), an example of a colored noise (VI.105) realisation obtained with the described numerical method is shown. In figure VI.5 (right), the corresponding numerical time correlation is successfully compared to the analytical expectation,

W(τ ) = 1 π ∞ 0 P ( 
F R (t)F R (t + τ ) = A π 1 τ 2 -π 2 T 2 bath Csch 2 [πT bath τ ] . (VI.113)
Besides, one can easily show that the variables defined in this way are Gaussian. Similar algorithms can be found in the literature and have been successfully used in SSE and other formalisms (see [START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF] and references therein). 

VI.3 Equilibration with a harmonic potential

VI.3.1

Analytic solutions with a white noise and Gaussian wavepackets as initial conditions (and asymptotic states)

We first assume a general Gaussian wavepacket,

ψ(x, t) = e i α(t)[x-x cl (t)] 2 +p cl (t)[x-x cl (t)]+γ(t) , (VI.114) 
where α(t) is a complex number related to the wavepacket width (Im(α(t = 0)) > 0), γ(t) a complex phase, and x cl and p cl are the position and momentum Gaussian centroids (central values). Inserting (VI.114) in the SL equation leads to four ordinary differential equations for α, x cl , p cl and γ, including:

α + ARe(α) + 2 m α 2 + mω 2 0 2 = 0 (VI.115) and ṗcl = -mω 2 0 x cl -Ap cl + F R , ẋcl = p cl m (VI.116)
From any Im(α(t = 0)) > 0, the solution of equation (VI.115) tends asymptotically to α(t → ∞) = imω 0 /2, which corresponds to the width of the ground state /mω 0 . After some initial relaxation, the general solution from any initial state (VI.114) is thus the ground state displaced in space with a trajectory obeying the classical equations of motion (VI.116). For a free wavepacket, the solution of equation (VI.116) is then p cl (t) = p cl (t = 0) exp(-At) showing that A is indeed the drag coefficient.

We now want to show that the distribution of the eigenstate weights is the Boltzmann distribution ∝ e -En/T sub with T sub = T bath (where T sub is the subsystem temperature) provided that the fluctuation-dissipation relation (VI.103) is satisfied. In other terms, the subsystem equilibrates with the medium if (VI.103) is satisfied. In the following sections VI.3.2 and VI.3.3.2, we will show numerically that these results are universal, i.e. independent of the chosen initial state, drag and temperature.

As determined above, for asymptotic times the wavefunction writes,

ψ ∝ e -(x-x cl (t)) 2 2a 2 +ip cl (t)x , (VI.117)
where the square width is a 2 = 1 mω 0 . We would like to know what is the weight of the different H 0 eigenstates

ψ n = H n (ξ)e -ξ 2 2 2 n n! √ π , (VI.118) 
where ξ = x a . We first reformulate (VI.117) as

ψ ∝ e -ξ 2 2 +2µξ- (x cl /a) 2 2 , (VI.119) 
where we have set µ =

x cl a +ip cl a 2

. Using the identity

e 2µξ-µ 2 = +∞ n=0 µ n n! H n (ξ) , (VI.120) then yields ψ ∝ e -(x cl /a) 2 4 - (p cl a) 2 4 +i p cl x cl 2 +∞ n=0 √ 2 n µ n √ n! ψ n (ξ). (VI.121)
We thus deduce that the eigenstate weight p n (x cl , p cl ) for a given realisation of the stochastic noise is given by

p n (x cl , p cl ) ∝ 2 n |µ| 2n n! e -(x cl /a) 2 2 - (p cl a) 2 2 ∝ ((x cl /a) 2 + (p cl a) 2 ) n 2 n n! e -(x cl /a) 2 2 - (p cl a) 2 2 
(VI.122) and one has exactly p n = 1. Above, we showed that the position x cl and momentum p cl centroïds satisfy the classical stochastic equation of motion (VI.116). When the stochastic force correlation is of the form F R (t)F R (t + τ ) = B δ(τ ) (white noise) it is known that the distribution of the trajectories (x cl , p cl ) is

W (x cl , p cl ) ∝ e - mω 2 0 x 2 cl 2 + p 2 cl 2m kT cl , (VI.123) 
where T cl := B 2mA , A is the drag and B the force autocorrelation. The eigenstate weight, averaged over the fluctuations, will then be given by

p n = W (x cl , p cl )p n (x cl , p cl )dx cl dp cl .
(VI.124)

To determine (VI.124), we use the relation

p n (x cl , p cl ) = (-1) n n! ∂ n ∂η n e -η (x cl /a) 2 2 + (p cl a) 2 2 η=1 . (VI.125)
After some trivial integration on x cl and p cl , one gets that

W (x cl , p cl )e -η (x cl /a) 2 2 + (p cl a) 2 2 dx cl dp cl = ω 0 kT cl η + ω 0 kT cl , (VI.126)
where the numerators guarantees that for η = 0, one has W (x cl , p cl )dx cl dp cl = 1.

Differentiating n times (VI.126) with respect to η yields kT sub which shows that the distribution of states follows a Boltzmann distribution with a temperature T sub . Recalling the expression of T cl in terms of A and B, one gets the condition relating A, B and T sub :

p n = ω 0 kT cl 1 + ω 0 kT cl n (VI.
B 2mA = ω 0 2 coth ω 0 2kT sub -1 , (VI.130)
which is the relation (VI.103) for the white quantum noise and shows that T sub = T bath the bath temperature. Reciprocally, we have proven that the distribution of the state weights is Boltzmannian if one uses a white noise with the relation (VI.103). This reasoning can be easily extended to three dimensions.

VI.3.2 Wavefunction pattern during one stochastic realisation

From numerical observations, we first confirm that after some initial relaxation, the general solution from initial state is the ground state displaced in space with a stochastic trajectory. Indeed with any noises, drags, potentials and initial states, a common wavefunction evolution pattern emerges during a noise realisation (see for instance figure VI.7 and VI.8). First, as in section VI.3.1, the shape of the wavefunction evolves toward the ground state shape. In parallel, if one starts from an initial excited eigenstate, the phase "breaks" at the nodes and evolves toward a linear phase in the region where the wavefunction takes non negligible values (see the t = 17 panel in figure VI.8 for instance). In parallel and until the end of the evolution, the centroïd oscillates around the potential minimum following a stochastic trajectory along the space axis. Some discrepancies to this pattern, coming from numerical instabilities, appear when A T and when T 1. 

VI.3.3 With the white noise

We now want to generalise numerically the results we obtained in section VI.3.1 for any initial states, drags and temperatures. 

VI.3.3.1 Energy and weight evolutions

To illustrate the SL equation ability to bring a subsystem to thermal equilibrium, we choose to evolve the initial ground state ψ 0 in a bath at temperature T bath = 1. The noise parameter is taken to σ = 0.03 and the grid steps as ∆x = 0.1, ∆t = 0.01. We first focus on the average energy H 0 stat as given by (IV.43); we will just write H 0 for simplification. Three average energy evolutions with drags corresponding to weak A = 0.1, intermediate A = 0.5 and strong A = 1 couplings (weak coupling if A ω 0 = 1 and A σ -1 ) are shown in figure VI.9. The theoretical asymptotic value for a thermal quantum harmonic oscillator is given by,
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H 0 (t → ∞) = E 0 coth E 0 kT bath , (VI.131)
and corresponds to our value H 0 (t → ∞) 1.07 when T bath 1. The average energy evolution rate predicted by Senitzsky [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF] within the HL equation framework,

H 0 (t) = E 0 e -At + H 0 (t → ∞) 1 -e -At , (VI.132) 
fits our numerical evolution in the weak coupling case (where Senitzsky's HL equation actually applies) as shown in figure VI.9.

The second interesting observable is the distribution of the eigenstate weights (populations) p n (t), as given by (IV.43) with the projection operator As shown in figure VI.10, their evolutions during the transient phase follow the general expectation that the main transitions occur between neighbouring energy levels, a feature also found in the transition elements of the Fermi Golden Rule. Moreover, they lead to a reshuffling of the weights, such as p n > p n+1 , reached after a lapse of time proportional to the relaxation time 1/A.

O n = |ψ n ψ n |. White noise Harmonic V ext Ψ t 0 Ψ 0 A 0.5

VI.3.3.2 Asymptotic behaviour

As shown for instance in figure VI.11, the asymptotic distribution of the weights is independent of the chosen initial state and perfectly fits a Boltzmann like distribution. One can determine the actual temperature reached by the subsystem, called T sub , by fitting the Boltzmann line ∝ e -E/T sub to the asymptotic p n=0,...10 (E n ) values. For the previous example, one finds that T sub = 0.99 T bath .

In figure VI.12, we compare the temperature actually reached by our subsystem T sub to the bath temperature T bath used as input of the noise. For a large range of temperatures and independently of the drag A and initial state, we observe that T sub T bath and that the asymptotic distributions of the weights are Boltzmannian. One can thus conclude that the subsystem correctly thermalises when one uses the white noise (VI.102) with (VI.103).

The total uncertainty on the asymptotic values, for a statistic of a few thousands of realisations, grows with the temperature from ∼ 2% at T bath = 0.1 to ∼ 10% at T bath = 5. Indeed, a higher temperature implies larger wavefunction oscillations along the space axis and numerical instabilities, which imply larger weight oscillations at each noise realisation and for the mixed state observables. An additional averaging over a time range ∆t once the equilibrium is reached, leads to more reliable results. The accuracy then follows the common statistical law ∝ 1/ √ n stat × ∆t . When T bath 1, the distributions exhibit an alternating pattern at really small weights (∼ 10 -20 ). It is most probably due to numerical issues, associated for instance to the discretization scheme or the spectrum approximation (partly due to the "infinite walls" at the grid limits [START_REF] Sanin | Oscillatory motion in conned potential systems with dissipation in the context of the SchrödingerLangevinKostin equation[END_REF]).

We have therefore generalised the analytic results obtained in section VI.3.1 with an initial Gaussian wavepacket to some other initial states. We can thus conjecture that the SL equation, within the case of a harmonic external potential and the white noise (VI.102 and VI.103), universally leads to the thermal equilibrium of statistical mechanics. Moreover, though only expected at the weak coupling limit (as explained in the introduction), it is also reached in the intermediate and strong regimes. Finally, the observed behaviour fits Senitzky's point of view that initial correlations should be suppressed and replaced by some universal thermal correlations.
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VI.3.3.3 Decoherence of the reconstructed density matrix

If a coherent quantum system undergoes many "classical" collisions, it is commonly thought to loose its coherences towards a reduced "classical" state [START_REF] Zurek | Decoherence, einselection, and the quantum origins of the classica[END_REF]. In our study, one can explicitly check the decoherence from the coherent state to the classical correlations. The coherences correspond to the off-diagonal terms of the density matrix, as seen in section IV.1.3. The density matrix can be reconstructed from the statistical mixed state through

ρ mn (t) = lim nstat→∞ 1 n stat nstat r=1 ψ m |ψ (r) (t) ψ (r) (t)|ψ n . (VI.133)
For instance, starting from the full coherent state ψ(t = 0) = (ψ 0 + ψ 1 + ψ 2 )/ √ 3, i.e. from the density matrix, 134) in the orthogonal basis (ψ 0 , ψ 1 , ψ 2 ), one obtains at equilibrium (for A = 1 and T bath = 0.9),

ρ(t = 0) =     1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3     , (VI.
ρ(t τ relax ) =    
0.675 0.001 -0.004i 0.004 + 0.0008i 0.001 + 0.004i 0.222 -0.0007 -0.001i 0.004 -0.0008i -0.0007 + 0.001i 0.071

    .
(VI.135)

At equilibrium, the off-diagonal terms (coherences) get much smaller than the diagonal terms, proof that some decoherence has occurred, and that the diagonal terms (weights or populations) get thermally distributed. One therefore obtains statistical "classical" correlations from a purely coherent state.

VI.3.4 With the colored noise

Colored noise Harmonic V ext A 0.5 T bath 1 T sub 0.99 The asymptotic distribution of the eigenstate weights p n=0,...10 (red dots), obtained with {A = 0.5, T bath = 1}, function of the eigenenergies E n=0,...10 , in comparison to the Boltzmann distribution (∝ e -E/T sub ) at T sub = 0.99 (dashed line). The evolution of the H 0 average energy is close to the one obtained with the white noise (figure VI.9) and fits Senitzky's law (VI.132) in the weak coupling limit. The evolutions of the eigenstate weights are also close to the ones obtained with the white noise (figure VI.10). As illustrated in figure VI.13, the asymptotic distributions of the weights are Boltzmannian independently of the drag A and initial state, and all the observations made in section VI.3.3.2 apply here too. In figure VI.14, we compare the temperature actually reached by our subsystem T sub to the bath temperature T bath used as input of the noise. When T bath 0.5, the subsystem correctly thermalises in a good approximation (we note a light drag dependence: The larger A the smaller T sub ). At lower temperatures, some important discrepancies (T sub "saturates") appear when A T bath . These weight discrepancies must therefore originate from the Brownian hierarchy breaking as described in section VI.2.2.1. 

VI.4 Equilibration with a linear potential

E 0 E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8

VI.4.1 With the white noise

As explained in section VI.2.2.1, the white quantum noise (VI.102) and (VI.103) was initially derived for a harmonic potential. In this section, we test its ability to be extended to other types of potentials through the example of the linear potential68 V = 1/2 |x|. In the white quantum noise expression (VI.103), we set E 0 to the value 0.509 equal to the ground state energy. As shown in figure VI.16, the asymptotic value of the H 0 average energy exhibits a strong A-dependence and is not equal to the expected statistical average
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H 0 (t → ∞) = i E i e -E i /T bath i e -E i /T bath 1.52 . (VI.136)
At small drags (A < 1), the average energy evolutions are nevertheless in good agreement with the exponential rate (VI.132) when one takes the measured H 0 (t → ∞) and effective A eff A/2 values. Therefore, the energy variation remains proportional to the drag for both types of potentials in the weak coupling regime. Independent of the initial state, the asymptotic distributions of the weights p n=0,...10 are close to the Boltzmann distributions ∝ e -E/T bath only when 1 T bath 3 at weak couplings (see figure VI.17). At low temperatures strong discrepancies are observed: The higher excited states exceed the Boltzmann law, exhibit a alternating pattern and saturate at low weights. Moreover, a dependence on the drag value is observed from the 2 nd (4 th ) excited state at low (medium) temperatures. The latter explains the H 0 dependence on the drag observed in figure VI.16: a smaller drag is observed to generate higher populations for the excited eigenstates and thus a higher average energy. At large temperatures T 5, the subsystem temperature T sub , is difficult to evaluate because of statistical fluctuations and numerical scheme imperfections.

Given that the SL equation does not lead to proper Boltzmann distributions in this case, using the previous definition of the subsystem temperature T sub could appear rather unjustified. Nevertheless, as one is often interested in the low lying eigenstates in phenomenology (the fundamental and few lower excited eigenstates), a T sub can be defined for these states by tracing the effective Boltzmann lines ∝ e -E/T sub between the two first weights (p 0 and p 1 ) as a minimum. The numbers of low lying eigenstates which are then close to the effective Boltzmann lines are summed up in Tab. VI.9. The evaluation of T sub vs. T bath , showed in figure VI.18, exhibits clear discrepancies to the "ideal" T sub = T bath line at low and high temperatures and for any drag value. At high temperatures our accuracy on T sub is low due to a very large time required to reach the asymptotes and a large uncertainty as in section VI.3.3.2 (e.g. for A = 0.1, T sub ∈ [4.3, 8.3] with an average of ∼ 6.5).

-Number of weights close to ∝ e -E/T sub ? -

T bath \ Coupling Weak Intermediate Strong Low (T bath < 0.5) 3 2 2 Medium (0.5 < T bath < 2) 5 5 4 
High (T bath > 2) 10 9 8

Table VI.9: Approximate number of weights close to the corresponding Boltzmannian ∝ e -E/T sub . One can consider the agreement to be poor from 2 to 4 weights, good from 5 to 7 and very good from 8 to 11. A better agreement is obtained toward the weak coupling and/or high temperature regimes.

In view of these elements, we conclude that the white quantum noise (VI.102) is not quite suitable to obtain an acceptable thermal equilibrium (in the sense of p n ∝ e -En/T bath ) with other external potentials than the harmonic one. Nevertheless, if one is interested in a limited number of low lying eigenstates (see Tab. VI.9), this formalism could be used for phenomenological purposes by performing a rescaling in the noise expression (VI.103): either by changing the value of E 0 (to 0.33 here) or by choosing the input Tbath such as to obtain the desired T sub = T bath . Conversely, this study confirms the very specific nature of the harmonic potential upon which general conclusions should not be drawn as regards the applicability of any scheme aiming at describing the thermalisation of quantum subsystem.

VI.4.2 With the colored noise

Unlike the white noise, the colored noise (VI.105) was derived without assumptions on the external potential. In this section, we test its ability to be extended to other potentials through the example of the linear potential. As shown in figure VI. 19 (left), the H 0 average energies are similar to the ones obtained with the white noise (figure VI.16). As shown in figure VI.20, the asymptotic distributions of the weights are observed to be independent of the initial state and close to the Boltzmann distributions ∝ e -E/T bath for a limited numbers of low lying eigenstates at the weak coupling limit and at strong couplings when T bath A. At intermediate couplings, the distributions are observed to be "perfectly" Boltzmannian when T bath A. When T bath < 0.2, we observe a similar alternating pattern behaviour than in the white quantum noise case (see figure VI.17 (figure VI.21), obtained by focusing on the lowest excited states, is interestingly close to the one obtained with the harmonic potential, with the exception of the high temperature regime where one naturally recovers the white quantum noise results (T sub > T bath ). These observations confirm the rather general nature of the colored noise (VI.105), which might thus be combined with a wider class of potentials and used in a good approximation for thermalisation studies in the weak coupling case.
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Main ideas and transition

For the purpose of finding an effective formalism suitable to the thermalisation of quarkonia in a QGP, we have focused on the Schrödinger-Langevin (SL) equation (VI.71). It is a stochastic and non-linear quantum equation which allows a gradual evolution from pure to mixed states through statistic forces.

Its nonlinear friction term is commonly believed to maintain the stationarity of the excited states of the uncoupled Hamiltonian H 0 . We have shown in Sec. VI.2.1 that the Madelung/polar transformation of the wavefunction leads to a nonzero damping for these states. In this way, we have reconciled the SL equation with the intuitive expectation that the dissipation process should act on any state in order to bring the subsystem to its ground state. We have then focused on the solutions of the SL equation with two different noise operators taken as c-numbers: the quantum noise (VI.102, VI.103) -which has been derived by Senitzky [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF] and subtracted by its term of ground state fluctuations -and the colored noise (VI.105) derived by Ford, Kac and Mazur [START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF]. When the subsystem undergoes a harmonic potential, the SL equation has demonstrated its ability to bring any initial state to the thermal equilibrium of statistical mechanics (i.e. Boltzmann distributions of the uncoupled subsystem energy states) in the weak coupling limit with either noise, confirming the assumption made by Messer [259]. Though only expected at this limit (as explained in the introduction), the intermediate and strong regimes have also led to the same equilibrium with the white quantum noise and partially with the colored quantum noise. For this case, some disagreements between the subsystem temperature T sub and the bath temperature T bath (input of the noise) have been observed at low temperatures and attributed to the breaking of the Brownian hierarchy. When the subsystem is submitted to a linear potential, non-Boltzmannian behaviours and stronger drag dependences have been observed at low and medium temperatures for both kind of noises. Nevertheless, the colored quantum noise has led to better results in the sense of statistical mechanics (provided that the Brownian hierarchy is preserved), confirming its rather universal nature.

We have therefore observed that within our assumptions (semi-classical noise and negligible shifts of the energy spectrum), the SL equation does not universally lead a subsystem to the thermal equilibrium of statistical mechanics. The SL equation and the quasiclassical Langevin equation seem therefore to have a common difficulty in the description of dissipative evolutions outside the nearly harmonic, free potential cases and classical high temperature limit [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF][START_REF] Eckern | The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations[END_REF][START_REF] Hänggii | Fundamental Aspects of Quantum Brownian Motion[END_REF]. Nevertheless, if one focuses on phenomenological applications where only the lower states are considered (e.g. the quarkonia), the SL equation can be used in a good approximation as an effective open quantum system formalism. Dealing with the full hierarchy of states in the general case would possibly require either the use of the colored noise correlation (VI.104), of a q-number noise operator or of a more refined quantum treatment of the subsystem interactions with the heat bath. Another possibility would be to determine a fluctuation-dissipation theorem inherent to the SL equation (probably hardly accessible because of its non-linear nature).

To use the SL equation in practice, one must perform a rescaling of the noisesuited to each mean field potential -to rectify the observed differences between T sub and T bath . One can indeed choose an effective heat-bath temperature Tbath such as to reach the desired subsystem temperature T sub = T bath . It just requires the proper knowledge of the T bath (T sub ) function as displayed for instance in It should be noted that our analysis relies on the hypothesis that the asymptotic distribution of subsystem-eigenstates weights p n must be Boltzmannian whatever the potential and the coupling strength to the rest of the system (the heat bath). To our knowledge, such an assumption has not been universally established from fundamental principles (i.e. starting from the distribution of the full-system eigenstates and tracing out the heat-bath degrees of freedom).

In the next part, we apply this formalism to the correlated Q Q pair immersed in a QGP bath at thermal equilibrium within a simplified model. Note finally that, as the drag coefficient for heavy quarks is proportional to T c with c ∈ [1, 2], we are a priori safe from the Brownian hierarchy breaking identified for the colored noise.

Part VII

The Schrödinger-Langevin approach to quarkonia suppression

In the previous part VI, we have studied the thermal relaxation -and its limitations -given by the Schrödinger-Langevin (SL) equation for various simple potentials and noises. In the present part, we apply this formalism to the correlated Q Q pair subsystem immersed in a QGP bath at thermal equilibrium. In the SL scheme, the time-dependent real potential implements the Debye-screening while the stochastic and dissipative terms express the (hard) interactions between the QGP and the Q Q pair, possibly leading to dissociation. The SL equation preserves unitarity and enables to treat the transitions between bound states and with the open states. It allows to consider a realistic compact initial state, made of a linear superposition of quarkonium eigenstates and to preserve the quantum nature of the Q Q pair in its time-evolution. The basic ingredients of this model -temperature dependent color screened potentials, temperature scenarios and initial states -are presented in the mean field section III.1. In the latter, the 3D Schrödinger equation in spherical coordinates was reduced to its radial part as transitions only occurred between states of equal orbital quantum number l (we studied there the S states given by l = 0). In section VII.1, we first show that the dissipative and fluctuating terms of the SL equation induce transitions between states of different l. A complete treatment of the Q Q pair subsystem in a QGP bath hence requires the full 3D SL equation in spherical coordinates. Unfortunately, this complete treatment is not easily accessible and some approximations are required. In the present part, we explore a simplified model where the situation is approximated to a 1D symmetrical linear screened potential (section VII.2). This model should contain the essential physics but is not aimed to reproduce the experimental data; we just wish to grasp the global trends. In section VII.3, we first study the Q Q pair dynamics in a QGP at constant temperatures and with the temperature evolutions at RHIC and LHC from Kolb and Heinz "reduced" model 69 . As in the previous parts, we mainly focus on its real-time quarkonia content. In section VII.4, we then carry out this study within a more realistic collision framework extracted from the state-of-the-art EPOS event generator: finite volume, inhomogeneous temperature and quarkonia position-momentum distributions. The predictions are finally compared to experimental data (to some extent) and other models. 69 In this part, the pre-equilibrium phase before the QGP is considered and assumed to be at T = T (τ ini ) (see section III.1.2). As τ ini τ relax , this modification does not lead to any significant change in the dynamics.

VII.1 The Schrödinger-Langevin equation in 3D spherical coordinates

The SL equation in spherical coordinates writes i ∂ψ( r, t) ∂t = H 0 + A S( r, t) -ψ * ( r , t)S( r , t) ψ( r , t) d 3 r -r. F R (t) ψ , (VII. [START_REF] Maire | Measurements of inclusive J/ψ production in Pb-Pb collisions at √ s N N = 2.76 TeV with the ALICE experiment[END_REF] where the mean field Hamiltonian H 0 is

H 0 = -( 2 /2m) ∇ 2 + V ( r), (VII.138)
m is the reduced mass and r the vector between the origin and the point of coordinates (r, θ, φ). The wavefunction can be decomposed in the (orthonormal) spherical harmonics basis [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF], In the latter basis, the stochastic force writes

Y l,m (θ, φ) = (-
F R (t) = F x -iF y √ 2 e -1 + F z e 0 - F x + iF y √ 2 e 1 ≡ F -1 e -1 + F 0 e 0 + F 1 e 1 . (VII.146)
The projected stochastic term is then

l,m 2π φ=0 π θ=0 Y * l ,m (θ, φ) r. F R (t) R l,m Y l,m sin(θ)dθdφ (VII.147) = 4π 3 r l,m 1 m =-1 R l,m e m . F R (t) 2π φ=0 π θ=0 Y * l ,m Y 1,m Y l,m sin(θ)dθdφ = 4π 3 r l,m Ξ l,m,l ,m (r, t)R l,m
where Ξ is a tensor. In appendix A (page 195), an explicit expression of the matrix resulting from the sum in equation (VII.147) is given in the limited case L = 2.

The projection of the dissipative term is As S(ψ) is non-linear, it cannot be decomposed in the spherical harmonics basis. Hence, one should determine the phase of the wavefunction numerically on each sphere of radius r and proceed to the integration both in the entire space for the regulator S(ψ) and on each sphere of radius r for the integral in (VII.148). If one calls c l,m the results of the main integrals in equation (VII.148), one should obtain a dissipative term of the form:

A l,m R l,m 2π 
A l,m c l,m (r, t) R l,m . (VII.149)
In the limited case L = 2, one finally obtains a set of 9 crossed equations as illustrated in appendix A (page 195). Each crossed equation includes terms with different values of l and m: the dissipative and fluctuating terms of the SL equation induce transitions between states of different orbital and magnetic quantum numbers. A complete treatment of the Q Q pair subsystem in a QGP bath hence requires the resolution of the 3D SL equation and cannot be reduced to its radial part as in part III. Unfortunately, the numerical resolution of a system of numerous crossed equations is not easily accessible (though feasible for L = 2). For now, we will rather explore a limited simplified 1D model.

VII.2 Generalities: simplified potential and noise rescaling VII.2.1 1D simplified potentials

Within this simplified model, we approximate the Q Q self interaction in the vacuum to a 1D symmetrical linear potential 1/2 K|x| saturated 70 at V max = 1.2 GeV, i.e.

V lin (x, T = 0) = 1/2 K|x| when 1/2 K|x| < 1.2 GeV 1.2 when 1/2 K|x| ≥ 1.2 GeV (VII.150)
The color self binding potentials are indeed mainly linear around the considered eigenenergies. The string parameter K is chosen such as to obtain an energy difference between the first two even states given by E 2 -E 0 = E(ψ ) -E(J/ψ) = 589 MeV for charmonia and E 2 -E 0 = E(Υ ) -E(Υ) = 563 MeV for bottomonia. It leads 71 to K = 1.54 for charmonia and K = 2.75 for bottomonia.

The effect of the T-dependent Debye screening is taken into account by saturating the linear potential V lin to the value of the weak or strong color potentials at large distances 72 V (r → ∞, T ), i.e. 2). As discussed in section III.1.1, the strong potential is determined without irreversible exchange of energy between the quarkonia and the bath, as opposed to the weak potential. The saturation given by the strong potential might therefore be more suited to a formalism, such as the SL equation, where the thermal exchanges are provided explicitly 73 . Within the V weak lin model especially, the Υ(3S)-like state is not bound (E 4 > 1.2 GeV) whereas it should be in reality. We therefore do not expect relevant results for this state and its results are given on an indicative basis. Finally, one should note that, as in the previous parts, we only consider the vacuum eigenstates to evaluate the quarkonia content of a Q Q pair and not the instantaneous eigenstates (at T ). There is therefore a mismatch between the Hamiltonian states and the projection basis. Nevertheless, as defined here, the quarkonia content allows us to study in a fixed basis the real-time dynamics of a Q Q pair all along its evolution (and especially of its bound component). As we assume an instantaneous transition to the vacuum states at the chemical freeze-out, it is only at this stage that the quarkonia content recovers all its physical meaning.

VII.2.2 Equilibration and rescaling

Conceptually, the effects of a thermal bath on the Q Q pair should be both a partial dissociation and a thermalisation of the bound component. Within our wavefunction approach, the dissociation is related to the continuous "leakage" of the wavefunction out of the potential well due to the color screening/saturation and the thermal forces. The thermalisation of the bound component (i.e. what remains inside the potential well) is brought by a combination of dissipative and stochastic forces, and should lead to a re-equilibration of the populations as given by the Boltzmann distribution (IV.57).

As was observed and discussed in section VI.4 for the linear potential, the temperature of the subsystem 74 T sub at equilibrium does not corresponds in most situations to the bath temperature 75 T bath within the SL framework. One then needs to perform a rescaling of the noise correlation to obtain a better agreement between T sub and T bath at equilibrium. If one would choose to perform such a rescaling with the linear potential that includes the saturation/screening, most of the eigenstates would be unbound for the typical range of QGP temperatures, and one would not obtain the required Boltzmann-like distributions even for the lowest states. Therefore, we consider instead the linear potential without the saturation/screening (i.e. with V max = ∞) to deduce the rescaling law. We will see in the next section that one then obtains the correct thermalisation of the bound components even when the saturation/screening is turned back on. bath here) (dashed curve). The dot-dashed line corresponds to the ideal case T bath = T sub . The vertical lines correspond to the minimum and maximum temperatures in Kolb and Heinz model at LHC (see III.1.2). The red diamonds correspond to three T sub measured at equilibrium while using the noise rescaling: the subsystem now correctly thermalises for the states of interest.

As introduced in section VI.4.2, the rescaling consists in the use of an effective bath temperature Tbath as input of the noise correlation such as to reach the desired subsystem temperature T sub = T bath . It just requires to fit the T bath (T sub ) function, obtained with the drag A(T bath ), with a polynomial function as illustrated in figure VII.3 for bottomonia and the white noise. Then, if one desires to obtain the subsystem temperature T sub = T bath at equilibrium, one chooses the corresponding Tbath (T bath ) value, given by the fit, as the new input of the noise correlation. Note that the color noise rescaling should be only weakly affected by the "saturation" effect observed in part VI (which appeared when the Brownian hierarchy was strongly broken) as A(T ) ∝ T for the quarkonia. Once rescaled, one should wonder whether the white or the colored noise is better suited for this model. As shown for instance in figure VII.4 for the charmonia, the equilibrium distributions of the weights obtained with the white and colored noises show no important differences for the typical temperature range of the QGP. Furthermore, for the lower states of main interest (J/ψ, χ c and ψ -like states for charmonia and Υ(1S), χ b , Υ(2S) and Υ(3S)-like states for bottomonia), the distributions are close to Boltzmannian. Finally, as the colored noise is more expensive numerically and as the white noise rescaling is independent of the drag value, the latter will be used preferentially for this model. To simplify the notations, in the following we will write T for T bath (exception made with notation V weak lin (T = 0) which only means that we use the vacuum potential and not that the bath is at T = 0).

VII.3

Evolutions at constant temperatures and with Kolb and Heinz model

VII.3.1 Charmonia results and analysis

We recall that for a cc pair in a QGP at temperature T , we use the drag coefficient given by A(T )[c/fm] ∼ = 3T [GeV] + 2.5T 2 (see section V.2.1). Different initial states are considered for the cc pair: the J/ψ-like and ψ -like states if one considers that the quarkonia form before the deconfined phase or a Gaussian compact state of parameter a = 0.165 fm if not (see section III.1.3). This will allow to evaluate the effect of the initial state on the survivances.

VII.3.1.1 At constant temperatures

In this section, we focus on the overall dynamics of the cc pair at some fixed temperatures. Several models are investigated to better observe the contributions of the mean field and thermal forces: the mean field only model "V lin (T )", the vacuum potential plus thermal forces model "V lin (T = 0) + stocha" and the screened potential plus thermal forces model "V lin (T ) + stocha". a) Evolution of the charmonium-like weights.

The evolutions of the charmonium weights obtained with V weak lin for different bath temperatures, initial states and models are shown in figures VII.6 and VII.7. First of all, one should notice that the evolutions obtained with the 1D linear mean field only (thin curves) are quantitatively very different from what we obtained with the 3D radial mean field in part III (compare figures III.17 and VII.6 for instance). With the mean field only, the 1D linear potentials lead to smaller suppressions than the 3D radial potentials.

We now focus on the models which include the thermal forces (thick or dashed curves). One first observes a re-equilibration of the charmonium weights during a transient phase t τ relax ∼ 5 fm/c towards a "thermal" hierarchy (i.e. W i > W i+1 ). After this transient phase, the continuous leakage of the wavefunction out of the potential well leads to a universal decay of the cc pair system. The exponential decay rate Γ at large times is indeed common to all weights and is independent of the initial state (see example at T = 0.3 GeV). Qualitatively, the rate Γ is observed to increase with the temperature when there is no screening (dashed curves), whereas it saturates for intermediate temperatures T 0.2 GeV with the screening (thick curves). At large times t τ relax , note finally that the weights become al- for different bath temperatures and initial states. The thin curves are obtained with the color screening but without thermal forces (i.e. the "mean field" situation), the dashed curves with the thermal forces but without screening (i.e. the vacuum potential V weak lin (T = 0) which saturates at V max = 1.2 GeV) and the thick curves with both features. See numerical version for colors. most independent of the initial state (compare for instance the thick curves for the weights W i at T = 0.3 GeV from the initial J/ψ-like, ψ -like and Gaussian states in figures VII.6 and VII.7). For the models including the thermal forces, the initial coherences are thus suppressed and replaced by locally equilibrated correlations 76 . One can qualitatively compare the evolutions of the J/ψ component obtained with the present 1D thermal model and the ones obtained within the 3D semi-classical framework of part V (compare for instance the J/ψ survivance S i in figure VII.7 at T = 0.3 and the one in V.5). They have in common the exponential decay after a transient phase. However, the transient phases are very different: we obtained an important "overshoot" in the semi-classical framework whereas it is very small or inexistent here (see J/ψ-like curves in figure VII.8). Furthermore, the decay rates were clearly larger in the semi-classical framework.

As expected, the comparison between the models with and without color screen- 76 As also discussed in section VI.3.3.3. ing (thick and dashed curves respectively) shows that the screening leads to larger decay rates and suppressions at large times t τ relax . At intermediate times and especially at low temperatures, the ψ component can be less suppressed with the screening (see T = 0.2 in figure VII.6 for instance), repopulated transiently by the diffusion of the wavefunction. The comparison between the models with and without thermal forces (thick and thin curves, respectively) highlights the effect of the thermal forces on the wavefunction trajectory and on the weight distributions. Whereas the mean field situation is driven by ballistic trajectories, which lead to a strong dependence on the initial state, the thermal situation is driven by a thermal diffusion which suppresses this dependence at large times (see also figure VII.11). Including thermal forces can then lead to relatively more or less suppression than the pure mean field situation, depending on the initial state, the bath temperature and the considered component. Even so, we note that the thermal forces lead to larger decay rates and suppressions for the J/ψ component from an initial J/ψ-like state (figure VII.6), and to smaller suppressions at large temperatures (T 0.5 GeV) from an initial Gaussian state (figure VII.7 (top)). At high temperatures (and therefore large drags), the relative motion of the heavy quarks could therefore be slowed down in the diffusive regime relatively to its ballistic counterpart. Furthermore, from an initial Gaussian state, the survivance S i (t) = W i (t)/W i (t = 0) of the ψ -like component is larger than the J/ψ-like one for temperatures above T 0.25 GeV (see figures VII.7 (bottom)). As we will see with the LHC temperature scenario, this effect could explain the puzzling observation made by the CMS collaboration that the ψ is less suppressed than the J/ψ for certain kinematics 77 . In our opinion, this observation can only be fully understood by considering the quantum nature of the cc pair.

One of the main assumption of the sequential suppression model (see II.2.1.2) is the very fast and full decorrelation of melted states (a state for which the dissociation temperature is smaller than the bath temperature). Within our framework, this assumption is ruled out for several reasons. First, the evolution of the cc pair can lead to non-vanishing weights 78 at large times even for "melted" states (see figures for T = 0.6 GeV for instance). Second, thanks to the quantum correlations, the survivance of a state can strongly depend on the initial state, whereas within the sequential suppression model one should obtain the full suppression of the melted components whatever the initial state. Concrete consequence of these effects is illustrated in figure VII.8. Note finally in this figure the interest of the survivance evolutions obtained from the Gaussian initial state (which can be seen as a mix of quarkonium states): each component is a mix of contributions from its own depopulation (as obtained with the quarkonium initial state) and from its regeneration from the depopulations of other components. The survivance of a state i from the quarkonium initial state i gives thus only a partial information on its actual survivance 79 .

77 See section II.3.3. 78 Assuming an instantaneous transition from the state of the pair at some large time to the quarkonium vacuum states. 79 One should sum over the contributions obtained from each initial quarkonium states, to obtain its actual value.

b) Local equilibriums.

Because of the wavefunction continuous leakage out of the potential well, the system cannot reach a stable equilibrium -as obtained in part VI -but only local equilibriums at each t τ relax . The true equilibrium corresponds to the complete dissolution of the cc pair over infinite space 80 . As illustrated in figure VII.9 (left panel), even though the noise rescaling was performed without saturation and screening, one still obtains the correct thermal equilibrium for the relative weights of the bound and almost bound states despite the presence of the saturation/screening. Here we define a state i to be bound or almost bound if its energy is E i V lin (x → ∞, T ). Note that the overall normalisation of these thermal distributions continuously shrinks with the wavefunction continuous leakage towards large distances. For the unbound states (i.e. E i > V lin (x → ∞, T )), one does not expect any thermalisation and the weights only reflect the density of the free Q Q component in the vicinity of the potential well (which overlaps with the unbound state wavefunctions). As shown in figure VII.9 (right panel), within our model, its leads to quite flat distributions of the unbound state weights. 

W i t Τ relax Charmonia 1D linear V lin weak T
Figure VII.9: Left: The distributions of the charmonium weights when the subsystem is locally equilibrated at some t τ relax (solid lines) obtained with the vacuum potential V weak lin (T = 0) (i.e. with four bound states and one "almost" bound (Υ(3S))) and for different bath temperatures. The dashed lines show the corresponding Boltzmann distributions. Right: Same but with the screened potential V weak lin (T ). One has zero, two and three bound (or almost bound) states at T = 0.6, T = 0.2 and T = 0.12 GeV respectively. The unbound states (for which one does expect a thermalisation) are indicated by squares.

In a stationary QGP, the SL equation therefore naturally leads to local distributions of the quarkonium states following correct relative statistical weights, which allows to make the connection with models based on the hypothesis of statistical recombination. This sanity check is a unique feature of our approach. c) Mean squared position and probability density.

One can check the relative motion of the heavy quarks through the mean square position x 2 (see figure VII.10). As expected, with the thermal forces one obtain a diffusive evolution, i.e. x 2 ∝ t after a transient phase [START_REF] Pottier | Physique statistique hors d'équilibre[END_REF], which contrasts with the ballistic evolution obtained with the mean field only (see part III). Another interesting observable is the probability density ρ(x, t) = |ψ(x, t)| 2 stat . Three different regimes of wavefunction leakage can be observed in figure VII.11: a ballistic one when there is no thermal forces, a weakly diffusive one with the thermal forces and the vacuum potential, and a strongly diffusive one with the thermal forces and the screened potential. The ballistic regime is clearly converted into a diffusive regime with the thermal forces. The three regimes have in common that part of the cc subsystem remains trapped inside the potential "well" and populates the eigenstate weights. The observation of the probability density at large distances is an excellent test to check the effect of the grid size. Indeed, if the latter is not large enough, one can observe important density oscillations and a lump near the grid limits. The latter occur when the wavefunction reflections on the grid wall are too important, which may also compromise the relevant central area.

d) Conclusion.

A similar dynamics is obtained with the "strong" potential V U lin and the discussions are equivalent to the one developed so far for the V weak lin potential. We have therefore already observed non-trivial evolutions with a stationary medium at constant temperatures and showed that both the screening and the thermal forces have a strong influence. Moreover, the thermal diffusion replaces the ballistic evolution obtained with the mean fields only.

VII.3.1.2 At RHIC

We now include in the model the hydrodynamic temperature scenario at RHIC from Kolb and Heinz model as described in section III.1.2. The drag coefficient being only valid in the deconfined phase, the evolution for T < T c is given on an indicative basis. As shown in figure VII.12, one first observes a thermal re-equilibration of the eigenstate weights during a transient phase (t τ relax ∼ 5 fm/c), along with an initial suppression due to the screening. Whereas this transient phase is similar to what we observed at constant temperatures, the evolution then behaves quite differently from the previous "universal" decay: the J/ψ component gets continuously repopulated whereas the χ c and ψ components keep on depopulating. These opposite tendencies originate in the the two main aspects of the thermal dynamics: 1) wavefunction diffusion toward large distances following the variations of the color screening and drag (∝ T ) especially due to the stochastic term and 2) cooling toward lower states while the bath temperature decreases thanks to the friction term.

The comparison between the dashed and thick curves (i.e. without and with color screening) shows that the screening leads to larger suppressions (by a factor 2 or less) for the J/ψ component and smaller suppressions for the ψ component. Similarly, the comparison between the thin and thick curves (i.e. without and with thermal forces) shows that the thermal forces mainly lead to larger or equivalent suppressions for the J/ψ component and to smaller suppressions for the ψ component. The evolutions obtained with the weak and strong linear potentials are roughly similar, but the latter logically leads to less suppression for the typical QGP lifetime (∼ 10 fm/c). Note that the strong linear potential does not reproduce the weight oscillations that we have observed with the genuine strong potential V = U (see sections III.4 and V.1.2). From the different initial states, one obtains the same kind of evolutions after the transient phase and only a little difference for the weight values at large times (but not for the survivances). Indeed, while only ∼ 2 -6% of the ψ survives from an initial ψ state, more than ∼ 20 -30% does from an initial Gaussian state (see comparisons in figure VII.13). It shows that the ψ found at the end of the QGP evolution are mostly the ones regenerated from J/ψ. One can finally notice that the J/ψ component gets also a contribution from the suppression of other higher components.

After the re-equilibration phase, the cc subsystem is not instantaneously at ther- mal equilibrium with the bath (see example in figure VII.14 (left)). There is a certain latency period for the subsystem to relax to the bath equilibrium. This latency can be observed for instance when the QGP temperature remains constant at T = T c (between 5 and 9.6 fm/c in the RHIC scenario): after few fm/c the subsystem equilibrates with the bath as shown in figures VII.14 (right). This latency highlights that, as a Brownian particle, the typical cc relaxation time is larger than any of the typical QGP times.

VII.3.1.3 At LHC

As shown in figures VII.27 (in appendix B) and VII.15, the evolutions obtained with the temperature scenario at LHC are quite similar to the ones at RHIC. One obtains more suppression for the J/ψ component at LHC than at RHIC with both potentials, and less suppression for the ψ component. Furthermore, at intermediate times (∼ 1 -4 fm/c) the ψ component can be less suppressed that the J/ψ The main conclusions for the cc evolution within this simplified 1D model are 1) both the color screening and the thermal forces cannot be neglected, 2) the thermal diffusion replaces the ballistic evolution, 3) the temperature difference between RHIC and LHC has little influence on the evolution, 4) relatively to the pure mean field situation, the thermal forces rather tend to increase the J/ψ suppression from a J/ψ initial state or have no effect from a gaussian initial state, and 5) decrease the ψ suppression. So far, our study shows that the survivance of a state depends on the initial population, the deconfined medium life-time and temperature. We have observed the important contribution of the state regenerations from transitions between states. We have shown that for charmonia there is no fast decorrelation of the "melted states" as assumed by the sequential suppression model. Furthermore, we have observed a clear difference of time scales between the cc relaxation and the temperature evolution. In a more realistic scenario (with a crossover), it suggests that the thermal distribution of the cc components at the chemical freeze-out could not reflect the chemical freeze-out temperature. With our model, one could then extract the effective temperatures of the chemical freeze-out for quarkonia. As in the mean field part III, our framework possibly leads to a smaller suppression of the ψ component relatively to the J/ψ at intermediate times at LHC but not at RHIC and therefore the recent result at LHC at forward rapidity81 seems feasible. Finally, we have noticed that with this 1D linear model of the potential, the evolutions without thermal forces are very different from what we obtained with the radial charmonia potentials. Moreover, with the 1D linear potentials, the usual Gaussian parameters (for the initial Gaussian wavepacket) do not strictly lead to the same initial ratios as with the radial charmonia potentials. The 3D study seems necessary to obtain more reliable predictions.

The values of the state survivances at the chemical freeze-out 82 at RHIC and LHC are summed up in tables VII.10 and VII.11 respectively. We obtain for the J/ψ component a moderate suppression which increases slightly with the collision energy. The ψ component is more strongly suppressed (but still finite !) and its suppression decreases slightly with the collision energy. [134] (inclusive (prompt and non prompt) J/ψ, 5 < p T < 14 GeV/c, |y| < 1 and 0-10% centrality) and 2) low p T PHENIX data [133] (inclusive J/ψ, p T < 5 GeV/c, |y| < 0.35 and 0-5% centrality). The non prompt contribution is estimated to 10-25% of the inclusive production. Experimental R AA data at LHC in PbPb √ S N N = 2.76 TeV collisions. For the J/ψ: 1) high p T CMS data [START_REF] Chatrchyan | Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at √ s N N = 2.76 TeV[END_REF] (prompt J/ψ, 6.5 < p T < 30 GeV/c, |y| < 2.4 and 0-10% centrality) (inclusive J/ψ (prompt and non-prompt): R AA = 0.24±0.03) and 2) low p T ALICE data [START_REF] Maire | Measurements of inclusive J/ψ production in Pb-Pb collisions at √ s N N = 2.76 TeV with the ALICE experiment[END_REF] (inclusive J/ψ, 0 < p T < 8 GeV/c, |y| < 0.9 and 0-10% centrality). For the ψ : high p T CMS data [START_REF] Khachatryan | Measurement of Prompt ψ(2S) → J/ψ Yield Ratios in Pb-Pb and p-p Collisions at √ s N N = 2.76TeV[END_REF] (prompt ψ , 6.5 < p T < 30 GeV/c, |y| < 1.6 and integrated centrality).

The corresponding experimental data for most central collisions -where the effects of the thermal deconfined matter are maximal -are given on an indicative basis. As in the mean field part III, a correct result-data comparison would require to refine our model with initial cold nuclear matter effects, feed downs from excited 82 See section III.1.6.

states 83 , recombinations from uncorrelated pairs and a more realistic heavy ion collision scenario (e.g. spatial distributions of the quarkonia and temperature). In the low p T regime, we clearly underestimate the charmonia suppression at RHIC (but the mean field discrepancy might possibly explain it). At LHC, where the low p T data might be dominated by uncorrelated pair recombinations, our results go in the right direction by overestimating the suppression. Finally, this simple dynamical model does not give an explanation of the J/ψ ordering (the "suppression of the suppression") at low p T between RHIC and LHC.

VII.3.2 Bottomonia results and analysis

The study of the bottomonia suppression is also of a great interest for our analysis. Indeed, as they are much less subject to the recombination process -much fewer b b in the medium -and to shadowing effects -b b pairs are produced from gluons with larger momentum fraction x -, their experimental data are cleaner for a direct comparison with our dynamical model. For a b b pair in a QGP at temperature T , we use the drag coefficient given by A(T )[c/fm] ∼ = 0.92 T [GeV] + 0.64 T 2 [START_REF] Gossiaux | Towards an understanding of the RHIC single electron data[END_REF].

VII.3.2.1 At constant temperatures

For the bottomonia, we now focus on the three lower S states -i.e. the Υ(1S)like, Υ(2S)-like and Υ(3S)-like states -but as the latter is always an unbound state with the V weak lin potential (see figure VII.2) it is more given on an indicative basis in this case. As shown in figures VII.16, the behaviours of the b b and cc pairs are quite similar within this model (see section VII.3.1.1 for the discussion). There are nevertheless two main differences: a larger relaxation time and the thermal distributions are shifted toward smaller weights. Both originate from the smaller value of the drag parameter, which implies a larger relaxation time and a larger thermal diffusion fr bottomonia. These evolutions can be roughly 84 compared to Borghini and Gombeaud's results from Einstein master equation (see figure IV.2). Both formalisms lead to a "universal" exponential decay of the bottomonium populations after a transient phase during which the populations get re-equilibrated. However, whereas they seem unable 85 to obtain a thermalisation of the bound states at local (in time) equilibriums, the Schrödinger-Langevin framework can within this simple model (as shown in figure VII.9). for different bath temperatures and initial states. The thin curves are obtained with the color screening but without thermal forces (i.e. the "mean field" situation), the dashed curves with the thermal forces but without screening (i.e. the vacuum potential V weak lin (T = 0) which saturates at V max = 1.2 GeV) and the thick curves with both features. See numerical version for colors.

VII.3.2.2 At RHIC

By comparing figures VII.18 and VII.17 with VII.13 and VII.12, the behaviours of the b b and cc pairs are also very similar with an additional temperature scenario (see section VII.3.1.2 for the discussion). The comparison between the dashed and thick curves (i.e. without and with color screening) shows that the screening leads to equal or less suppressions for the Υ(3S) component (at the opposite from the Υ(1S) and Υ(2S) states). The additional diffusion coming from the screening indeed benefits to higher excited states. This effect becomes so strong with the weak potential V weak lin that one can even observe a population inversion between the Υ(2S) and Υ(3S) components at intermediate times. Further investigations would be required to explain this effect. 

VII.3.2.3 At LHC

As shown in figures VII.28 (in appendix B) and VII.19, the evolutions obtained with the temperature scenario at LHC are very similar to the ones at RHIC. One obtains more suppression for the Υ(1S) component at LHC than at RHIC with both potentials, and less suppression for the Υ(2S) and Υ(3S) components. 

VII.3.2.4 Values at the chemical freeze-out and data

The bottomonium survivances at the chemical freeze-out at RHIC and LHC are summed up in tables VII.12 and VII.13 respectively. Similarly to the charmonia, we obtain for the Υ(1S) component a moderate suppression which increases with the collision energy and a more strongly suppressed Υ(2S) component which suppression decreases slightly with the collision energy. These results can reasonably be compared to the experimental data as both the recombination and the effect of shadowing are small (see section II.2.1). At first sight, both the Υ(1S) and Υ(2S) components are overestimated. However, adding the contributions of the suppressed feed downs from excited states (see figure I.10) should reduce these values (as done for instance in section III.5). The population inversion between the Υ(2S) and Υ(3S) components obtained with the V weak lin seems unphysical, and does not appear a priori in the data (in which Υ(3S) is the most suppressed of the three states [START_REF] Chatrchyan | Observation of sequential Upsilon suppression in PbPb collisions[END_REF]). 

VII.4 Evolutions with a more realistic collision framework from EPOS generator

In the previous sections, we have considered Q Q pairs standing at the center of a cooling fireball, i.e. of zero momentum. We now carry out the study for the bottomonia within a more realistic collision framework at LHC extracted from the "state-of-the-art" EPOS event generator. These more realistic collisions include a finite volume, an inhomogeneous temperature and some position-momentum distributions of the b b pairs. Figure VII.20: Illustration of our approach within this section through its basic ingredients and interactions between the Q Q and QGP systems.

VII.4.1 New ingredients

The temperature background T ( x, t) is extracted from the EPOS2 event generator [269,270]. It is a state of the art framework which attempts to describe pp, pA and AA collisions. In AA collisions, the initial 3D QGP state is generated from a Gribov-Regge multiple scattering approach where the particle production originates from cut pomerons (parton ladders). It leads to inhomogeneous density and temperature distributions (see figure VII.21). The evolution of the produced medium is then described by an ideal hydrodynamic expansion which is fitted to a lQCD equation of state [START_REF] Borsanyi | Transition temperature and the equation of state from lattice QCD, Wuppertal-Budapest results[END_REF]. Hence, the time evolution of the temperature at the phase transition corresponds to a crossover and not to a 1st order transition like in Kolb and Heinz model86 (see figure VII.22). EPOS has proven to provide a good description of the light quark sector and is therefore suited for our analyses [START_REF] Abelev | Centrality dependence of π, K, p production in Pb-Pb collisions at √ s N N = 2.76 TeV[END_REF].

Within our model, the initial color singlet b b pairs are spatially distributed87 in the QGP volume according to the Glauber model [START_REF] Glauber | High-energy scattering of protons by nuclei[END_REF]. To each pair is then randomly associated a momentum value with an even probability for simplification. In section VII.4.2, we will see that the R AA distributions are almost independent of p T , so this simplification only has a negligible impact on our results. The pairs (centerof-mass) are then assumed to propagate along straight lines with no energy loss as in transport models. We assume that the static potentials evaluated from lQCD at zero momentum, that we have used so far, does not depend on the b b centerof-mass momentum. For their inner dynamics, each b b pair is evolved according to the Schrödinger-Langevin framework with one of the simplified linear 1D potentials (V weak lin or V U lin ). At each time step t i , the temperature T of the Debye-screening and fluctuation/dissipation mechanisms, is taken accordingly to the j th pair position x j in the EPOS background, i.e. T = T ( x j , t i ). 

VII.4.2 Preliminary results and discussion

If not indicated, the initial state of the pairs is taken to be the Gaussian compact wavepacket. With this initial state, the survivances S i (t) = W i (t)/W i (t = 0) can be seen as the experimental R AA . Indeed, in this case all the transitions between bound states are included (see section VII.3), whereas one needs to sum over the different contributions if one starts from the initial bound states. As we do not implement the cold nuclear matter effects and the feed-downs, our R AA results do not aim to reproduce experimental data, but just grasp the global trends. Our results are given for the full rapidity range. As one can see in figure VII.24, this very weak dependence on p T is also true for semi-peripheral and peripheral collisions, with the exception of Υ(2S) in peripheral collisions. This flat p T -dependence of the R AA is a very promising result of our model as it perfectly agrees with the experimental observation at LHC shown in figure 88 VII.25. In figure VII.26, we show the results for the R AA dependence on the number of participants (i.e. the centrality). At first sight, the distributions obtained with the weak linear potential seem in a better agreement with the experimental data (in figure VII.25), but including the feed down and cold nuclear matter contributions might rather indicate that the strong linear potential is in a better agreement. This analysis will be performed in a near future. 

Main ideas

In the Schrödinger-Langevin (SL) scheme, the time-dependent real potential implements the Debye-screening while the stochastic/dissipative forces express the (hard) interactions between the QGP and the Q Q pairs through two simple parameters (the drag and the temperature). It possibly leads to transitions between bound states and between bound and open quantum states, which are treated with more or less success resorting to master equations or imaginary potentials in other frameworks. The SL equation preserves unitarity for the pure state and leads for the mixed state to a correct thermalisation of the bound components within simple models. We have studied the real-time dynamics of Q Q pairs immersed in a QGP and bound by a simple 1D screened linear interaction. This model does not aim to reproduce the data but rather gives insights on the dynamics. We have mainly focused on the quarkonia content of the pairs and obtained rich suppression patterns. They rule out the basic assumptions of the sequential suppression model: there is no fast and full decorrelation of "melted" states and no adiabatic evolution of "formed" states. Furthermore, we have observed interesting transitions between bound states possibly leading to their regeneration (especially for the excited states). Our dynamical model creates a bridge between the main ideas of the sequential suppression model (the partial screening) and the statistical hadronisation model (thermalisation of the states). Our results suggest that the thermal distribution of the Q Q components at hadronisation may not reflect the QGP hadronisation temperature (due to its large inertia). Finally, we have applied our model to a more realistic collision framework at LHC. The resulting R AA dependence89 on p T and N part reasonably describes the data trends.

General conclusion

We have investigated the quarkonia suppression in a Quark Gluon Plasma from a dynamical point of view. Our approach is based on the real-time evolution of non-relativistic correlated Q Q pairs described as open quantum systems continuously interacting with a cooling QGP. This analysis implicitly aimed to 1) study the effects of the color screening and permanent collisions on the Q Q separation and quarkonia content, 2) observe if the ordering of the J/ψ suppression at RHIC and LHC could be explained by a thermal effect, 3) give a dynamical and continuous picture of the dissociation, recombination, energy exchange and possible transitions to other bound states, 4) create a connection between the sequential suppression and statistical hadronisation models which would permit to justify some of their assumptions, 5) measure the medium temperature above the critical temperature T c , 6) describe the quarkonia nuclear modification factor at RHIC and LHC.

To this end, we have explored three approaches which combine the following ingredients: i) a correlated Q Q pair seen as a dipole in its center-of-mass frame and described by a pure wavefunction, a pure Wigner distribution or a mixed state, ii) a mutual interaction between the Q and Q partly screened by color charges in their vicinity iii) a cooling QGP either described by the hydrodynamic model from Kolb and Heinz or by the state-of-the-art EPOS2 event generator, iv) some classical or quantum Langevin-like mechanisms reflecting the continuous collisions between the Brownian Q Q pair and the thermal medium. We have first investigated a "ballistic" evolution of the Q Q pair based on the Schrödinger equation including the mean field potential only. We focused on the S state weights allowing to reduce the full 3D analysis to a radial 1D situation without approximations. Then, as a first attempt to include a thermal mechanism to obtain a "diffusive" evolution, we have explored a semi-classical approach where the Q Q pair was described by the Wigner-Moyal equation supplemented by a classical Langevin dynamics. We have finally investigated the full quantum evolution given by the so-called Schrödinger-Langevin equation within a simplified 1D model.

Through the results of various simulations we have shown that:

-The basic assumptions of the sequential suppression model are unjustified.

-The semi-classical frameworks exhibit important pitfalls and might not be suited for this analysis.

-The Schrödinger-Langevin equation leads to thermal relaxation, with however some limitations.

-It is mandatory to consider both the screening and thermal effects.

-Transitions between bound and open quantum states and between bound quantum states play a crucial role. The former lead to dissociation and recombination phenomena, whereas the second to significant regeneration of quarkonium states.

-The system exhibits different time scales between the Q Q relaxation and the evolution of the QGP temperature. It suggests that the possible thermal distribution of the quarkonium states at the end of the evolution might not reflect the chemical freeze out temperature.

-This framework may provide a possible explanation for the unusual ψ /J/ψ ratio measured by the CMS collaboration at LHC.

-Within our models, the thermal effect cannot explain the ordering of the J/ψ suppression at RHIC and LHC. To take into account the recombinations of uncorrelated pairs at low p T seems therefore necessary.

In further investigations, one could extend the Schrödinger-Langevin framework to the realistic 3D situation, include the color octet channels and implement important phenomena such as the feed downs, cold nuclear matter effects and recombinations of uncorrelated pairs. The results could then be compared to experimental data. One could then also proceed to a more systematic comparison with lQCD observables and other open quantum system approaches. It might allow to distinguish between the possible binding potentials, to obtain a relevant thermometer for the QGP and to unify the description of single and bound heavy flavours in a deconfined medium. An alternative approach might be the use of Stochastic Schrödinger equations to unravel the recently proposed master equations from first principles. Finally, we remain convinced that a dynamical approach of the "open quantum system" kind is the only framework which might provide an accurate description of quarkonia production in heavy-ion collisions.

Appendix A

The 3D Schrödinger-Langevin equation decomposed in the spherical harmonics basis for the limited case L=2

In the limited case of L = 2, the sum in VII.147 for the stochastic term is given by:

l,m Ξ l,m,l ,m (r, t)R l,m =     0 A 1 0 A 2 0 A 3 0 A 4 0     ,
where the matrices A 1 , A 2 , A 3 and A 4 are:

A 1 = -F 1 R 0,0 √ π F 0 R 0,0 2 √ π -F -1 R 0,0 √ π , A 2 =     F -1 R 1,-1 √ π F 0 R 1,0 2 √ π F 1 R 1,1 √ π     , A 3 =      -6 5π F 1 R 1,-1 3 5π F 0 R 1,-1 2 -F -1 R 1,-1 √ 5π 0 0 0 -3 5π F 1 R 1,0 F 0 R 1,0 √ 5π -3 5π F -1 R 1,0 0 0 0 -F 1 R 1,1 √ 5π 3 5π F 0 R 1,1 2 -6 5π F -1 R 1,1     
and

A 4 =            6 5π F -1 R 2,-2 0 0 3 5π F 0 R 2,-1 2 3 5π F -1 R 2,-1 0 F 1 R 2,0 √ 5π F 0 R 2,0 √ 5π 
F -1 R 2,0 √ 5π 0 3 5π F 1 R 2,1 3 5π F 0 R 2,1 2 
0 0 6 5π F 1 R 2,2            .
Finally, from the 3D Schrödinger-Langevin equation VII.137 one thus obtain a system of 9 crossed equations. Fore instance, the crossed equations for l = 0 and l = 1 are:

-l = 0, m = 0 : i ∂R 0,0 (r, t) ∂t = -

2 2m 1 r 2 ∂ ∂r r
2 ∂R 0,0 ∂r + V (r)R 0,0 (VII.153)

- 1 3 r 2F -1 R 1,-1 + F 0 R 1,0 + 2F 1 R 1,1 + A l,m
c l,m (r, t) R l,m .

-l = 1, m = -1 :

i ∂R 1,-1 (r, t) ∂t = - 2 2m 1 r 2 ∂ ∂r r 2 ∂R 1,-1 ∂r - 2 r 2 R 1,-1 + V (r)R 1,-1 (VII.154) - 1 3 r -2F 1 R 0,0 + 2 6 5 F -1 R 2,-2 + 3 5 F 0 R 2,-1 + 2 F 1 R 2,0 √ 5 + A l,m
c l,m (r, t) R l,m .

-l = 1, m = 0 : -l = 1, m = 1 : (left) and V U lin (right) potentials for the LHC temperature scenario (Kolb and Heinz). The thin curves corresponds to the mean field situation, the dashed curves is obtained with the thermal forces and the vacuum potential, and the thick curves with the thermal forces and the color screened potentials. See numerical version for colors.

i ∂R 1,1 (r, t) ∂t = - 2 2m 1 r 2 ∂ ∂r r 2 ∂R 1,1 ∂r - 2 r 2 R 1,1 + V (r)R 1,1 (VII.156) - 1 3 r -2F -1 R 0,0 + 2 F -1 R 2,0 √ 5 + 3 5 F 0 R 2,1 + 2 6 5 F 1 R 2,2 + A l,m

Résumé en français

Selon la théorie du Big Bang, les particules élémentaires qui composent notre univers seraient passées par un état extrêmement chaud ( 10 12 K) et dense de Plasma de Quark et Gluon (PQG), avant de former des nucléons, des atomes, des molécules... Le PQG devrait être une étape clé pour comprendre comment la distribution homogène de matière originelle est devenue inhomogène, menant aux structures de matière actuellement observées dans l'espace. Le PQG consiste en un état dense et déconfiné de quarks et de gluons (appelés ensemble partons). Ces derniers sont les composants élémentaires de la matière nucléaire et sont, en conditions normales, confinés dans des systèmes composites (les "hadrons") tels que les protons et neutrons. Depuis les années 80, le PQG est au centre d'une intense investigation expérimentale et théorique ayant pour but de prouver son existence et de déterminer ses propriétés. Pour reproduire sur Terre les conditions extrêmes nécessaires à son obtention, une possibilité est de collisionner des ions lourds ultrarelativistes dans des collisionneurs géants tels que le RHIC et le LHC. Ainsi, on peut potentiellement produire de très petites (∼ 10 -14 m) "bulles" de PQG aux durées de vie extrêmement courtes (∼ 10 -21 s) et dont l'étude est un véritable défi. On ne peut en effet considérer que des observables indirectes résultantes de l'expansion et du refroidissement de ces bulles, c'est-à-dire les hadrons finalement produits. Une des observables possibles du PQG et de sa température est la "suppression des quarkonia". Cette observable correspond à une production inférieure d'états liés de quark/antiquark lourds (Q Q) dans les collisions d'ions lourds relativement aux collisions proton-proton où le PQG ne peut être à priori créé. Cette suppression a en effet été observé expérimentalement mais ses intrigantes évolutions avec l'énergie de collision et les paramètres cinématiques ne correspondent pas systématiquement à ce qui était attendu, rendant nécessaire une meilleur compréhension théorique. Dans cette thèse, nous proposons une description dynamique des paires Q Q décrites comme des systèmes quantiques ouverts en interaction continue avec les partons du milieu déconfiné. expérimentales du PQG est donnée: la multiplicité des hadrons légers, le flot hydrodynamique, la suppression des hadrons légers aux grands moments transverses... Le second chapitre, intitulé "Une revue de la suppression des quarkonia", est une revue des modèles théoriques et des résultats expérimentaux concernant la suppression des quarkonia, l'observable sur laquelle cette thèse se concentre. L'intérêt des quarks lourds dans les collisions d'ions lourds est tout d'abord justifié. Étant produit dans les premiers instants de la collision en quantité plutôt bien maitrisée, les quarks lourds permettent en effet de sonder le milieu crée tout au long de son évolution. En particulier, les paires Q Q corrélées devraient être sensibles à la température du milieu déconfiné. Les différents modèles décrivant la production des quarkonia dans les collisions d'ions lourds sont ensuite revus en détail. Sont décrits par exemple les effets de la matière nucléaire froide, le modèle de suppression séquentielle propos par Matsui et Satz [START_REF] Matsui | J/ψ suppression by Quark-Gluon Plasma Formation[END_REF], les modèles d'hadronisation statistique [START_REF] Thews | Quarkonium formation at high-energy[END_REF][START_REF] Braun-Munzinger | On charm production near the phase boundary[END_REF][START_REF] Braun-Munzinger | Charmonium from Statistical Hadronization of Heavy Quarks: A Probe for Deconfinement in the Quark-Gluon Plasma[END_REF] et de transport [START_REF] Rapp | Heavy Quarks in the Quark-Gluon Plasma[END_REF][START_REF] Bass | Microscopic models for ultrarelativistic heavy ion collisions[END_REF][START_REF] Bratkovskaya | Parton-Hadron-String Dynamics at Relativistic Collider Energies[END_REF][START_REF] Zhao | Medium modifications and production of charmonia at LHC[END_REF][START_REF] Emerick | Bottomonia in the Quark-Gluon Plasma and their Production at RHIC and LHC[END_REF][START_REF] Yan | J/ψ production in quark-gluon plasma[END_REF][START_REF] Liu | J/ψ Transverse Momentum Distribution in High Energy Nuclear Collisions at RHIC[END_REF]. En particulier, le modèle de suppression séquentielle se base sur les températures de dissociation des quarkonia: si la température maximale du PQG T PQG est supérieure à la température de dissociation d'un état T d , celui-ci est assumé dissocié pour toujours, à l'opposé si T PQG < T d , l'état est supposé survivre sans être perturbé. Les résultats expérimentaux obtenus auprès du SPS, RHIC et LHC, à des énergies de collision allant de quelques dizaines de MeV à quelques TeV, sont ensuite discutés. Les limites et l'irrégularité de la description de ces données par les principaux modèles sont pointées. Une revue critique des hypothèses des principaux modèles nous permet enfin de justifier l'approche développée dans la présente thèse: étudier la dynamique en temps réel des paires Q Q corrélées, considérées comme des systèmes quantiques ouverts en interaction permanente avec un PQG en refroidissement. Explicitement, l'interaction continue entre le milieu et les degrés de liberté internes de la paire doit se manifester par 1) un écrantage de couleur dit "de Debye" dû à la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les collisions permanentes avec les partons du milieu. Cette description devrait mener à une image dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des transitions entre états liés. Les perspectives d'un tel modèle sont finalement explicitées. Le troisième chapitre, intitulé "Dynamique de champ moyen", est consacré à l'évolution d'une paire Q Q fixée au centre de la boule de feu et évoluant dans un potentiel de liaison écranté par le champ de couleur environnant (l'aspect 1) ci-dessus). Dans un premier temps, sont présentés les différents ingrédients du modèle. Pour l'interaction mutuelle et écrantée des deux quarks lourds est considéré soit un potentiel "faiblement" liant déterminé par Mocsy et Petreczky [START_REF] Mocsy | Can quarkonia survive deconfinement?[END_REF] (voir figure VII.31) soit un potentiel "fortement" liant déterminé par Kaczmarek et Zantow [START_REF] Kaczmarek | Quark antiquark energies and the screening mass in a quark-gluon plasma at low and high temperatures[END_REF]. Dérivés de résultats de QCD sur réseau (lQCD), ces deux potentiels correspondent à des régimes thermodynamiques différents: le premier à un régime intermédiaire entre énergie libre F (T ) et énergie interne U (T ) et le second à l'énergie interne. Les caractéristiques de leur dépendance en température et de leurs états propres sont ensuite présentées (formes des fonctions d'onde, énergies propres, températures de dissociation...). Les évolutions de la température du centre de la boule de feu au RHIC et au LHC sont données par le modèle d'évolution hydrodynamique de Kolb et Heinz [START_REF] Kolb | Hydrodynamic description of ultrarelativistic heavy ion collisions[END_REF] (voir par exemple figure VII.32). L'évolution "balistique" de la paire Q Q est déterminée avec l'équation de Schrödinger non relativiste en partant soit d'un paquet d'onde gaussien initial (hypothèse que la paire vient d'être produite) soit d'un état de quarkonium (hypothèse que l'état lié a eu le temps de se former). Ce choix d'état initial est motivé par la méconnaissance des temps de formation des états liés. Afin d'observer le "contenu" en quarkonia (charmonia ou bottomonia) de la paire Q Q (cc ou b b respectivement), sa fonction d'onde est projetée à chaque instant sur les états propres du vide (déterminés avec les potentiels à T = 0). On obtient alors les évolutions des poids W i des différents quarkonia, qui sont données et discutées pour les différentes configurations de potentiel et d'état initial pour différentes températures constantes ou pour les scénarios d'évolution de température du RHIC et du LHC (voir par exemple figure VII.33). La richesse des évolutions obtenues montre que le problème ne peut être réduit à de simples états couplés/découplés, que les temps de décorrélation ne sont pas petits comparés aux temps typiques du PQG et que d'importantes transitions entre états liés sont possibles (en particulier, l'état ψ peut être fortement repeuplé lors de la décorrélation du J/ψ). Toutes ces observations tendent à écarter les hypothèses des modèles de suppression séquentielle et d'hadronisation statistique (rapide et complète décorrélation des paires provenant d'états dissociés ou de tous les états respectivement).

Le quatrième chapitre, intitulé "Quarkonia et systèmes quantiques ouverts", aborde l'aspect lié aux collisions multiples que subit la paire Q Q avec les partons du milieu. L'objectif de ce chapitre est d'identifier un (ou des) formalisme(s) per- mettant d'aborder ces collisions dans le cadre de la thèorie des systèmes quantiques ouverts. Ce chapitre est divisé en deux parties: la première est une introduction à la théorie des systèmes classiques et quantiques ouverts et la seconde une revue de la littérature sur les applications de cette théorie au cas des quarkonia. Puisque les quarks lourds de la paire peuvent être vus dans le PQG comme des particules "brownienne", la première partie cherche en particulier à introduire les différentes approches envisagées dans la littérature pour des dynamiques de type brownienne, c'est-à-dire lorsque le temps de relaxation du sous-système d'intérêt est long par rapport aux temps typiques de collision et d'étude. Du coté classique [START_REF] Pottier | Physique statistique hors d'équilibre[END_REF], l'équation de Langevin (ou de façon équivalente l'équation de Fokker-Planck) permet de décrire la dynamique d'une particule brownienne classique à l'aide d'un terme de friction, inversement proportionnel à la vitesse de la particule et paramétré par le coefficient de friction, et d'une force stochastique simulant les multiples collisions avec le milieu. La balance de ces deux aspects, obtenue grâce à la relation d'Einstein, permet au sous-système d'intérêt d'atteindre l'équilibre thermique déterminé par la physique statistique (distributions de Boltzmann). Du coté quantique [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF], la dynamique de Langevin ne peut être introduite trivialement dans le formalisme quantique commun (aucune quantification d'un Hamiltonien ne peut mener à des phénomènes irréversibles). Différentes approches ont été proposées pour surmonter cette difficulté, mais il n'existe pas de description universelle. L'approche la plus commune est de considérer le sous-système d'intérêt et le bain thermique comme un système global conservatif, puis en intégrant les degrés de liberté du bain et en procédant à quelques approximations, il est possible d'obtenir l'évolution dissipative du sous-système seule. Habituellement, l'équation d'évolution qui en dérive à la limite brownienne ("de faible couplage"), se présente sous la forme d'une équation maîtresse quantique [START_REF] Weiss | Quantum dissipative systems, chap 2[END_REF]200] pour la matrice densité ou alternativement d'une équation de Schrödinger stochastique [START_REF] Mølmer | [END_REF][START_REF] Gisin | [END_REF][START_REF] Diósi | Non-Markovian Quantum State Diffusion[END_REF]. Dans le cas d'applications complexes où il est difficile de définir l'hamiltonien d'interaction/du bain ou de calculer les opérateurs de Lindblad sans trop d'approximations, des approches effectives sont nécessaires (du type de Langevin par exemple). Un modèle simple de bain [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF][START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF][START_REF] Caldeira | Path Integral Approach to Quantum Brownian Motion[END_REF] -un ensemble d'oscillateurs harmoniques couplé linéairement au sous-système -a prouvé être un cadre pertinent. Celui-ci mène, à la limite de faible couplage, à une équation de Langevin pour les opérateurs de Heisenberg, dénommée équation de Heisenberg-Langevin. L'application pratique de celle-ci est cependant limitée par la nature non-commutative de ces opérateurs. Comme pour le cas classique, l'équilibre thermal attendu à la limite de faible couplage est donné par les distributions de Boltzmann. Différentes approches ont été proposées afin de traiter des interactions multiples entre les quarkonia et le PQG: approches de type section efficace et potentiel imaginaire, approches semi-classiques et systèmes quantiques ouverts. L'approche semi-classique de Young et Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF] est explorée dans le chapitre 5. Les approches de types systèmes quantiques ouverts développées jusqu'à présent semblent être soit rigoureuses [START_REF] Akamatsu | Real-time quantum dynamics of heavy quark systems at high temperature[END_REF], mais difficilement applicables à la phénoménologie, ou plus effectives [START_REF] Akamatsu | Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma[END_REF][START_REF] Borghini | Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach[END_REF], mais incapables d'amener à la thermalisation de la dynamique interne des paires Q Q. Le cinquième chapitre, intitulé "Une approche semi-classique", explore un cadre semi-classique initialement proposé par Young et Shuryak [START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF]. C'est une première tentative de notre part d'introduire les effets directs d'un PQG thermal sur les paires Q Q. Le formalisme, c'est-à-dire l'évolution classique de Langevin de la distribution de Wigner d'une paire Q Q, a été choisi comme moyen commode d'introduire un processus classique de thermalisation -qui reflète les collisions permanentes entre la paire et les partons du milieu -tout en gardant accessible l'analyse en 3D sans approximation. Nous nous sommes exclusivement concentrés sur l'évolution du poids en J/ψ. Nous avons tout d'abord comparé les évolutions obtenues avec les formalismes quantique et semi-classique sans dynamique de Langevin, et avons observé d'importantes différences (qui étaient attendues). Ces différences peuvent sembler problématiques au premier abord mais pourraient être en fait négligeables une fois la dynamique de Langevin incluse si cette dernière dominait l'évolution (ce qui semble être le cas ici). Nous avons ensuite exploré le formalisme complet et observé de pertinentes décroissances exponentielles du poids en J/ψ, après une période transitoire, à différentes températures constantes. Incluant les scénarios de température du RHIC et du LHC, nous avons obtenu de riches schémas de sup-pression (voir figure VII.34 par exemple) qui semblent écarter, encore une fois, les hypothèses injustifiées des modèles de suppression séquentielle et d'hadronisation statistique. Ces résultats ont été publiés dans un compte-rendu de conférence [START_REF] Katz | Semi-classical approach to J/ψ suppression in high energy heavy-ion collisions[END_REF]. Finalement, nous avons sévèrement questionné la pertinence des résultats obtenus avec les méthodes semi-classiques (dont la notre), en pointant deux écueils important observés dans le cas trivial du potentiel harmonique: une violation du principe d'incertitude d'Heisenberg à basse température (T E 0 ) et une mauvaise thermalisation des états propres. Tous ces défauts nous ont incité à chercher une approche entièrement quantique.

Dans le but de trouver un formalisme quantique effectif adapté à la thermalisation des quarkonia dans le PQG, dans le sixième chapitre, intitulé "L'équation de Schrödinger-Langevin: généralités et équilibration", nous nous sommes concentrés sur les propriétés de l'équation de Schrödinger-Langevin ("SL"). Explicitement, l'équation de SL s'écrit i ∂ψ( x, t) ∂t = H 0 + A S( x, t) -ψ * S( x, t) ψ d 3 x -x. F R (t) ψ, où A est le coefficient de friction (inverse du temps de relaxation), S la phase réelle de la fonction d'onde et F R une force stochastique. Grâce à son aspect phénoménologique -seuls les paramètres de friction et de température sont nécessaires -et à sa simplicité numérique, l'équation de SL peut en effet être considérée comme un solide candidat pour des descriptions effectives de systèmes quantiques ouverts difficilement accessibles aux équations maîtresses ou équivalents. C'est une équation stochastique et non-linéaire qui permet une évolution graduelle d'un état pur à un état mixte grâce à une force stochastique (et donc à de larges statistiques) et à un terme dissipatif non-linéaire. Dans un premier temps, deux de ses dérivations possibles sont données: par identification avec l'équation de Heisenberg-Langevin [START_REF] Kostin | On the Schrödinger-Langevin equation[END_REF] et dans le cadre de la théorie des trajectoires quantiques. Ses propriétés basiques sont ensuite discutées: l'unitarité est préservée pour l'état pur, le principe d'incertitude d'Heisenberg est toujours satisfait, le principe de superposition est violé par la non-linéarité... Afin de nous assurer de la pertinence de l'équation de SL (en vue d'applications phénoménologiques), il était nécessaire de répondre à certaines questions ouvertes relatives à ses solutions: la stationnarité des états excités de l'hamiltonien non couplé et la relaxation thermal. Il est communément pensé que le terme non-linéaire de friction maintient la stationnarité des états excités de l'hamiltonien non couplé. Au contraire, nous avons montré que la transformé de Madelung (ou polaire) de la fonction d'onde mène à une friction non nulle pour ces états. De cette manière, nous avons réconcilié l'équation de SL avec l'idée intuitive que la dissipation doit pouvoir agir sur n'importe quel état pour amener le sous-système à son état fondamental. Afin d'tudier la relaxation thermal, nous avons ensuite étudié les solutions de l'équation de SL en testant deux opérateurs de bruit pour la force stochastique (prise comme un nombre classique): un bruit blanc (VI.102, VI.103) [START_REF] Senitzky | Dissipation in Quantum Mechanics[END_REF] et un bruit coloré (VI.105) [START_REF] Ford | Statistical Mechanics of Assemblies of Coupled Oscillators[END_REF] inspirés de la littérature. L'analyse détaillée des évolutions du sous-système soumis à un potentiel harmonique ou linéaire 1D, montre que sous certaines conditions l'équation de SL permet de conduire à l'équilibre thermique. Nous avons conclu que l'équation de SL peut être utilisée en phénoménologie lorsque seuls les états de basse énergie sont considérés (ce qui inclus les quarkonia). L'ensemble de ces résultats fait l'objet d'une publication [START_REF] Katz | The Schrödinger-Langevin equation with and without thermal fluctuations[END_REF].

Dans le septième et dernier chapitre, intitulé " Étude de la suppression des quarkonia avec l'approche de Schrödinger-Langevin", l'équation de SL est appliquée à l'évolution d'une paire Q Q corrélée plongée dans un PQG. Dans un premier temps, il est montré que l'équation de SL en coordonnées sphériques induit des transitions entre états de moments orbitaux différents. L'analyse ne peut alors plus se réduire à la partie radiale comme dans le troisième chapitre et requière un traitement complet en coordonnées sphériques 3D, qui est malheureusement difficilement accessible. Certaines approximations étant alors nécessaires, nous avons exploré pour cette thèse un modèle simplifié où la situation est approximée à un potentiel 1D linaire et symétrique. Ce modèle devrait contenir l'essentiel de la physique mais n'a pas pour but de reproduire les données expérimentales. Comme dans le troisième chapitre, la dynamique de la paire Q Q et de son contenu en quarkonia est tout d'abord étudiée à diverses températures constantes, où nous avons observ une thermalisation correcte des états et le caractère diffusif de l'évolution. Nous avons ensuite inclus les scénarios d'évolution hydrodynamique de la température au centre de la boule de feu au RHIC et au LHC. Nous avons obtenu de riches schémas de suppression (voir par exemple figure VII.35) qui, de même que dans les modèles précédent, tendent à écarter les hypothèses des modèles de suppression séquentielle et d'hadronisation statistique. De plus, nous avons observé d'intéressantes transitions entre états menant en particulier à une régénération du ψ s'amplifiant avec l'énergie de collision. Ceci pourrait donner une piste d'explication à la surprenante et inexpliquée mesure, de la collaboration de CMS, d'un ratio de suppression ψ /J/ψ supérieur à 1 à grande rapidité. La comparaison des évolutions obtenues avec et sans forces thermales et avec et sans écrantage, montre qu'aucun de ces deux aspects ne peut être négligé. Enfin, nous avons appliqué notre modèle aux bottomonia dans un cadre plus réaliste de collision au LHC extrait du générateur d'événement EPOS: volume fini, distribution de température inhomogène et distributions des paires en position et moment. Les dépendances des R AA obtenues en p T et N part (voir par exemple figure VII.36) décrivent raisonnablement les tendances des données. Ces premiers résultats sont présentés dans un compte-rendu de conférence [START_REF] Gossiaux | Upsilon suppression in the Schrödinger-Langevin approach[END_REF]. 

Résumé

La chromodynamique quantique (QCD) prédit l'existence d'un nouvel état de la matière: le plasma de quarks et de gluons (PQG). Celui-ci aurait existé dans les premiers instants suivant le Big Bang et peut en principe être produit sous les conditions extrêmes de température et de densité atteintes lors de collisions d'ions lourds à haute énergie (au LHC par exemple). Un des marqueurs de sa présence est la suppression des quarkonia (états liés de quark/antiquark lourds), caractérisée par une production inférieure de ces états dans les collisions d'ions lourds relativement aux collisions proton-proton où le PQG ne pourrait être créé. Cette suppression a bien été observée expérimentalement, mais l'évolution de ses tendances aux énergies du RHIC et du LHC est un véritable défi qui requiert une meilleure compréhension théorique. La présente thèse a pour but d'étudier l'évolution en temps réel de paires corrélées de quark/antiquark lourds considérées comme des systèmes quantiques ouverts en interaction permanente avec un PQG en refroidissement. Explicitement, l'interaction continue entre le milieu et les degrés de liberté internes de la paire est obtenue par 1) un écrantage de couleur dit « de Debye » dû à la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les collisions permanentes. Cela mène à une image dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des transitions entre états liés. L'étude est transversale à différents cadres théoriques: semi-classique, quantique et quantique des champs. Les prédictions du modèle sont comparées aux résultats expérimentaux et aux résultats d'autres modèles théoriques.

Mots clés Plasma de quarks et gluons, suppression des quarkonia, approche dynamique, système quantique ouvert, équation de Schrödinger-Langevin

Abstract

The theory of quantum chromodynamics (QCD) predicts the existence of a new state of matter: the Quark-Gluon Plasma (QGP). The latter may have existed at the first moments of the Universe following the Big Bang and can be, in theory, re-produced under the extreme conditions of temperature and density reached in high energy heavy ion collisions (at the LHC for instance). One of the QGP observables is the suppression of the quarkonia (heavy quark/antiquark bound states), characterised by a smaller production of these states in heavy ion collisions in comparison to proton-proton collisions, in which no QGP production would be possible. This suppression has indeed been observed experimentally, but the puzzling evolution of its trend from RHIC to LHC energies requires a better theoretical understanding. The present thesis aims at studying the real-time evolution of correlated heavy quark/antiquark pairs described as open quantum systems which permanently interact with a cooling QGP. More explicitly, the continuous interaction between the medium and the pair internal degrees of freedom is obtained through 1) a temperature dependent color screening ("Debye" like) due to color charges in their vicinity and 2) some fluctuation/dissipation mechanisms reflecting the continuous collisions. It leads to a dynamical and continuous picture of the dissociation, recombination and possible transitions to other bound states. This investigation is at the crossroads of different theoretical frameworks: semi-classic, quantum and quantum fields. The deduced predictions are compared to experimental data and to the results of other theoretical models. Key Words Quark-Gluon Plasma, quarkonia suppression, dynamical approach, open quantum system, Schrödinger-Langevin equation L4u L'Université Nantes Angers Le Mans

Une approche quantique de la suppression dynamique des quarkonia dans les collisions d'ions lourds à haute énergie

Roland KATZ

A quantum approach to dynamical quarkonia suppression in high energy heavy ion collisions de thèse (11) 
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Figure I. 1 :

 1 Figure I.1: From the atom to quarks and gluons.

Figure I. 2 :

 2 Figure I.2: The 12 matter particles (fermions), 12 force carriers (gauge bosons) and the Higgs boson.

Figure I. 3 :

 3 Figure I.3: Left: A small portion of the LHC circular pipe. Right: An LHC event in the ALICE detector. Each line corresponds to a "new" particle track in the detector.

Figure I. 4 :

 4 Figure I.4: In perturbative QCD, a 2 → 2 process can be seen as the sum of all possible Feynman diagrams.

Figure I. 5 :

 5 Figure I.5: Whereas the gluon splitting into a loop of quarks (left) leads to screening effects between the two initial partons, the gluon self-interaction (right) leads to antiscreening effects.

Figure I. 6 :

 6 Figure I.6: The QCD coupling "constant" α s function of the transfered energy Q between the two color charges [7].

Figure I. 7 :

 7 Figure I.7:As the quarks move away from each other, the gluonic field energy increases until it breaks into a quark/antiquark pair. It finally leads to two new independent composite systems.[10] 
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Figure I. 8 :Figure I. 9 :

 89 Figure I.8: The QCD mechanism leading to the inclusive indirect J/ψ production in a hadron-hadron collision going through the intermediate radiative decay of the χ c state.

Figure I. 10 :

 10 Figure I.10: Feed-downs from excited states: typical sources of prompt J/ψ (left panel) and Υ(1S) (right panel) at low (top figures) and high (bottom figures) p T determined from experiments ([19] and references therein).

Figure I. 11

 11 Figure I.11 shows the energy density and pressure variations with the temperature obtained at zero baryon density (or chemical potential). As the energy density is

Figure I. 12 :

 12 Figure I.12: A schematic phase diagram of QCD as a function of temperature and baryon chemical potential µ B . The critical temperature (inflexion point) is evaluated to T c 170 ± 25 MeV (∼ 10 12 Kelvin !) at µ B 0 [34].

Figure I. 13 :

 13 Figure I.13: Schematic representation of the successive stages of a high energy heavy ion collision from the initial ions to the many hadrons observed in the detectors.

Figure I. 14 :

 14 Figure I.14: Evolution of the ratio R A g as a function of longitudinal momentum fraction x for fixed energy scales Q 2 for a lead nucleus (A = 208). The energy scales are respectively Q 2 = 2.25 GeV 2 (solid lines), 5.39 GeV 2 (dotted), 14.7 GeV 2 (dashed), 39.9 GeV 2 (dotteddashed), 108 GeV 2 (double-dashed) and 10000 GeV 2 (dashed).[START_REF] Eskola | Scale evolution of nuclear parton distributions[END_REF] 

Figure I. 17 :

 17 Figure I.17: Example of spatial expansion of the final particles produced in a high energy ion collision (from ALICE detector at the LHC).

Figure I. 18 :

 18 Figure I.18: Schematic view of a noncentral (b = 0 or N part < N max part ) high energy heavy ion collision. Spectator nucleons (which do not collide -in grey) continue their trajectories along the beam axis whereas participant nucleons (in the region where the ions overlap) interact and produce many new particles (colored).

Figure I. 19 :

 19 Figure I.19: Comparison of thermal model predictions with RHIC (left) and LHC (right) data. It is consistent with hadrons being produced at T c ≈ 160 MeV.[START_REF] Andronic | The statistical model in Pb-Pb collisions at the LHC[END_REF][START_REF] Stachel | Confronting LHC data with the statistical hadronization model[END_REF] 

Figure I. 21 :

 21 Figure I.21: Left: The centrality dependence of average v n in √ s N N = 2.76 TeV Pb+Pb collisions measured by ALICE compared to viscous hydrodynamic model calculations [59]. Right: Average elliptic flow v 2 dependence on the collision energy √ s N N .

Figure I. 22 :•

 22 Figure I.22: Left: For most central collisions, nuclear modification factors R AA of the pion π 0 and of the charged hadrons h ± as a function of their transverse momentum at SPS ( √ s N N = 17.3GeV ), RHIC ( √ s N N = 200GeV ) and LHC ( √ s N N = 2.76T eV ) collisionenergies.[START_REF] Chatrchyan | Study of high-pT charged particle suppression in PbPb compared to pp collisions at √ s N N = 2.76 TeV[END_REF] 

Figure I. 24 :

 24 Figure I.24: At LHC energy and for most central collisions, the R AA (p T ) for different light hadrons. [65]

Figure II. 1 :

 1 Figure II.1: Shadowing effect on J/ψ suppression obtained with EKS98 LO and nDSg LO nPDFs in PbPb collisions at √ s N N = 2.76 TeV [88, 89].

Figure II. 3 :

 3 Figure II.3: Illustration of the J/ψ sequential suppression as a function of the QGP color charge density ε. ε(Φ) is the dissociation density of a state Φ. [97].

Figure II. 4 :

 4 Figure II.4: Compilation of state dissociation temperatures T d evaluated from different

Figure II. 5 :

 5 Figure II.5: The sequential suppression and the disappearance of the spectral components as the QGP temperature increases [105].

Figure II. 6 :

 6 Figure II.6: Reduced quarkonium dissociation temperatures as obtained with a potential model [97].

Figure II. 8 :

 8 Figure II.8: Illustration of the J/ψ suppression obtained from gluo-dissociation as a function of the medium density [97].

The

  Super Proton Synchrotron (SPS) and its various experiments (NA38, NA50, NA51, NA60...) have explored different kinds of ions and energies: 158 AGeV ( √ s N N = 17.3 GeV) in In-In and Pb-Pb collisions, 200 AGeV ( √ s N N = 19.4

Figure II. 11 :

 11 Figure II.11: Nuclear modification factor R AA data for the J/ψ as a function of centrality.

Figure II. 13 :

 13 Figure II.13: Left: Elliptic flow v 2 of the J/ψ and charged hadrons at mid rapidity in 0-80% central events. Right: Elliptic flow v 2 of the J/ψ compared with different theoretical model calculations ([29] and[START_REF] Satz | The Thermodynamics of Quarks and Gluons[END_REF] are from THU transport model;[START_REF] Nambu | Dynamical model of elementary particles based on an analogy with superconductivity I (and II)[END_REF] and[START_REF] Fodor | Lattice QCD results at finite temperature and density[END_REF] from TAMU transport model)[START_REF] Adamczyk | Measurement of J/ψ Azimuthal Anisotropy in Au+Au Collisions at √ s N N = 200 GeV[END_REF].

Figure II. 15 :

 15 Figure II.15: R AA data for the inclusive low p T J/ψ as a function of centrality, compared with various model calculations [137]. Left: Comparison between RHIC and LHC results at mid rapidity and p T > 0 (dominated by low p T J/ψ). Right: Comparison between RHIC and LHC results at forward rapidity and for p T > 0 and 0 < p T < 8 GeV/c respectively.

Figure II. 16 :

 16 Figure II.16: Left: R AA data for the high p T J/ψ at mid rapidity as a function of centrality. Comparison between RHIC and LHC results for inclusive and prompt J/ψ respectively (no big differences between prompt and inclusive R AA ) [138]. Right: Comparison with TAMU transport model predictions.

Figure II. 19 :

 19 Figure II.19: R AA data for the Υ(1S) and Υ(2S) as a function of centrality (left) and transverse momentum (right) [145].

Figure II. 20 :

 20 Figure II.20: R AA data for the Υ(1S) and Υ(2S) as a function of the centrality compared with TAMU transport model (left) and aHYDRO model calculations (see section IV.2.1.1) (right) [19].

Figure II. 21 :

 21 Figure II.21: R AA data for the Υ(1S) as a function of the centrality compared with statistical hadronisation model [146].

Figure II. 22 :

 22 Figure II.22: Schematic drawing of the Q Q life and propagation inside the fireball.

Figure II. 23 :

 23 Figure II.23: Illustration of our approach through its basic ingredients and interactions between the Q Q and QGP systems.

Figure II. 24 :

 24 Figure II.24: Schematic view of quarkonia suppression/enhancement models in hot media. The dynamical models (among which the transport models) attempt to connect the ideas of the sequential suppression with the ones of the statistical hadronisation model. A thin arrow from a first model to another model means that some of the ideas of the first model are used by the other model.

Figure III. 1 :

 1 Figure III.1: Illustration of our approach within this part through its basic ingredients and interactions between the Q Q and QGP systems.

Figure III. 2 :

 2 Figure III.2:The binding potential of a cc pair in the vacuum from strong interaction.

Figure III. 3 :

 3 Figure III.3: Comparison between the color singlet V 1 = F 1 and color octet V 8 = F 8 free energies as a function of the relative distance at two different temperatures [155].

Figure III. 4 :

 4 Figure III.4:The weak potential at different finite temperatures in the charmonium case[START_REF] Berrehrah | Propagation et collectivité des quarkonia dans le plasma de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes températures[END_REF].

Figure III. 5 :Figure III. 6 :

 56 Figure III.5: The strong potential at different finite temperatures below (top panel) and above (bottom panel) T c in the charmonium case [109].

Figure III. 7 :

 7 Figure III.7:The reduced radial wavefunctions for the charmonia in the "vacuum" obtained with either the vacuum, weak or strong potential at T red < 0.4[START_REF] Marin | Gossiaux Suppression of the J/ψ suppression[END_REF].

4 JFigure III. 8 :

 48 Figure III.8:The reduced radial wavefunctions of the J/ψ obtained with the weak potential F < V < U at different temperatures. The thick curve corresponds to T red ≤ 0.4, the thick dashed curve to T red = 0.8, the thick dot-dashed curve to T red = 1.2, the thin curve to T red = 1.4 (at the limit of dissociation).

Figure III. 9 :

 9 Figure III.9: The dissociation energies of the charmonium (left panel) and bottomonium (right panel) states as a function of the temperature obtained with the weak potential (left panel) or with the weak and strong potentials (right panel) [109].

Figure III. 10 :

 10 Figure III.10: Evolution of the entropy density as a function of time at three different distances from the center of the fireball (0, 3 and 5 fm) [62].

Figure III. 11 :

 11 Figure III.11: Time evolution of the reduced temperature T red (t) = T /T c at the center of the hydrodynamic fireball at RHIC √ s N N = 200 GeV (left) and LHC √ s N N = 2.76

  The corresponding temperature evolutions at RHIC ( √ s N N = 200 GeV) and LHC ( √ s N N = 2.76 TeV) are shown in figure III.11.

Figure III. 12 :

 12 Figure III.12: Left : Evolution of the probability density for the cc pair in the free case from an initial Gaussian state. Right : Evolution of the root mean square radius from initial Gaussian (a c = 0.165 fm), J/ψ and ψ states: one obtains r 2 ∝ t after a transient phase.

Figure III. 13 :Figure III. 14 :

 1314 Figure III.13: Time evolution of the J/ψ and ψ weights W i (left) and survivances S i (right) in the free case from an initial Gaussian wavepacket a c = 0.165 fm (option 1).

Figure III. 15 :

 15 Figure III.15: From an initial Gaussian wavepacket; Left : Evolution of the root mean square radius for the cc pair with the vaccum potential: one obtains r 2 ∝ t. Right : The J/ψ and ψ weights as a function of time.

Figure III. 16 :

 16 Figure III.16: Left: The evolution of the J/ψ survivance S 1 at different reduced temperatures T red from the initial Gaussian wavepacket. Right: Same for the ψ component.

Figure III. 17 :

 17 Figure III.17: Left: The evolution of the J/ψ survivance S 1 at different reduced temperatures T red from an initial J/ψ state. Right: Same for the ψ component from an initial ψ state.

Figure III. 18 :

 18 Figure III.18: From the initial Gaussian wavepackets. Left: The J/ψ (T diss = 1.45 T c ) and ψ (T diss = 0.4 T c ) survivance values at t → ∞ as a function of the reduced temperature. Right: Same for the bottomonium components Υ(1S) (T diss = 3.55 T c ), Υ(2S) (T diss = 0.8 T c ) and Υ(3S) (T diss = 0.5 T c ).

Figure III. 19 :

 19 Figure III.19: Left: The evolution of the J/ψ and ψ survivances S i at RHIC from the initial Gaussian wavepacket (with a c = 0.165). Right: Same but from initial J/ψ and ψ states respectively.

Figure III. 20 :

 20 Figure III.20: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances S i at RHIC from the initial Gaussian wavepacket (with a b = 0.045). Right: Same but from corresponding initial bottomonium states.

Figure III. 21 :

 21 Figure III.21: Left: The evolution of the J/ψ and ψ survivances S i at LHC from the initial Gaussian wavepacket (with a c = 0.165). Right: Same but from initial J/ψ and ψ states respectively..

Figure III. 22 :

 22 Figure III.22: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances S i at LHC from the initial Gaussian wavepacket (with a b = 0.045). Right: Same but from corresponding initial bottomonium states.

Figure III. 23 :Figure III. 24 :

 2324 Figure III.23: Left: The evolution of the J/ψ weight at different reduced temperatures T red from the initial Gaussian wavepacket. Right: Same but from J/ψ initial state.

III. 4 . 2

 42 At RHICWe now include the hydrodynamic cooling at RHIC energy as defined in III.1.2. The evolutions of the charmonium and bottomonium weights from the initial Gaussian wavepackets (left panels) or corresponding quarkonium states (right panels) are shown in figures III.25 and III.26 respectively.

Figure III. 25 :

 25 Figure III.25: Left: The evolution of the J/ψ and ψ survivances S i at RHIC from the initial Gaussian wavepacket (with a c = 0.165). Right: Same but from J/ψ and ψ initial bound states respectively.

Figure III. 26 :

 26 Figure III.26: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances S i at RHIC from the initial Gaussian wavepacket (with a b = 0.045). Right: Same but from corresponding initial bound states.

Figure III. 27 :

 27 Figure III.27: Left: The evolution of the J/ψ and ψ survivances S i at LHC from the initial Gaussian wavepacket (with a c = 0.165). Right: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances at LHC from the corresponding initial bound states.

Figure IV. 1 :

 1 Figure IV.1: In this part, we discuss how to take into account the multiple direct interactions between the Q Q and QGP systems.

Figure IV. 2 :

 2 Figure IV.2: Left: Evolution of the bottomonium populations obtained with Borghini and Gombeau's Einstein master equation IV.58 in a thermal bath at T = 5T c with T c = 170 MeV. Right: Comparison between the ratios of bottomomium populations as a function of temperature obtained with master equation IV.58 (symbols) and with expected Boltzmann behaviour (lines) [223].

Figure IV. 3 :

 3 Figure IV.3: Populations of quarkonium states (c v nn ) obtained with the vacuum potential and the stochastic model based on lattice QCD parameters [224].

Figure V. 1 :

 1 Figure V.1: Illustration of our approach within this part through its basic ingredients and interactions between the Q Q and QGP systems.
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 61 where one can define the Gaussian parameters of the Wigner distribution: σ

Figure V. 2 : 2 JFigure V. 3 :

 223 Figure V.2: Left: Semi-classical results for the J/ψ weights function of time at a fixed temperature T red = 1.8 (T = 297 MeV). Right: Quantum results for the same situation.

Figure V. 4 :

 4 Figure V.4:Comparison between Gossiaux and Aichelin[START_REF] Gossiaux | Towards an understanding of the RHIC single electron data[END_REF] and Young and Shuryak[START_REF] Young | Charmonium in strongly coupled quark-gluon plasma[END_REF][START_REF] Moore | How much do heavy quarks thermalize in a heavy ion collision ?[END_REF] drag dependences on the temperature.

Figure V. 5 :

 5 Figure V.5: Semi-classical results for the J/ψ weights function of time at a fixed temperature T red = 1.36 (T = 225 MeV) with the Langevin dynamics (drag coefficient from Gossiaux and Aichelin). Left: with the weak potential F < V < U and right: with the strong potential V = U . Dashed lines: results without Langevin dynamics.

Figure V. 6 :Figure V. 7 :

 67 Figure V.6: Left: Semi-classical results for the J/ψ weights function of time with RHIC temperature scenario, V = U , and Langevin dynamics (plain lines); dashed line: same without Langevin dynamics. Right: Same but with LHC temperature scenario.

Harmonic state weights p n T 1 Figure V. 8 :

 18 Figure V.8: Evolutions of the eigenstate weights with a 1D harmonic potential and a bath at T E 0 (left) and T E 0 (right).

Figure V. 9 :

 9 Figure V.9: Phase space distributions of the test particles with a 1D harmonic potential and a bath at T E 0 . Left: initial fundamental state (equal to the squeezed state for which ∆r ∆p = /2). Right: The final state distribution is peaked and therefore the Heisenberg principle is violated (∆r ∆p < /2).

Figure V. 10 :

 10 Figure V.10: Temperature dependence of the projection of the equilibrium state onto

  [START_REF] Bailhache | Heavy-flavour elliptic flow measured in PbPb collisions at √ s N N = 2.76 TeV with ALICE[END_REF] that would correspond to the dissipative and random operators of the Langevin equation for Heisenberg operators Ṗ = F 0 (X) -A P + F R (t) and Ẋ = P/m . (VI.76)

  Figure VI.1:
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 23 Figure VI.2:

Figure VI. 3 :

 3 Figure VI.3: Evolution of the eigenstate weights p n=0,1,2 = | ψ n |ψ(t) | 2 with the dimensionless SL equation (relation (VI.93) without fluctuating term) from an initial first excited state, with the "polar" prescription (solid lines) and the "arctan" prescription (dashed lines).

∞ 0 ω 1 ΩFigure VI. 4 :

 014 Figure VI.4: Left: The rising spectrum of the colored noise (VI.104) -which requires a frequency cut-off to be integrated -and the decreasing spectrum of (VI.105) at T bath = 1.Right: The noise correlation (VI.104) strongly depends on the value of the frequency cut-off. The cut-off is here evaluated with a Lorentzian shape.

FFigure VI. 5 :

 5 Figure VI.5: Left: Example of one colored quantum noise (VI.105) realisation obtained with the described numerical method. Right: Corresponding analytical (dashed black curve) vs. numerical (orange dots) covariances over time.

Figure VI. 6 :

 6 Figure VI.6: Left: The harmonic potential under study (thick line) and its corresponding eigenenergies (dashed lines). Right: The corresponding three lower eigenstates.

127 )

 127 We thus havep n ∝ e-n ln 1+

25 Ψ t 10 2 Figure VI. 7 :

 2527 Figure VI.7: Typical wavefunction shape/module evolution toward the ground state shape/module during one noise realisation.

Figure VI. 8 :

 8 Figure VI.8: Typical wavefunction phase evolution towards linearity (where the wavefunction takes significant values) during one noise realisation.

Figure VI. 9 :

 9 Figure VI.9: Solid curves: Numerical H 0 average energy evolutions for different drags A. Dashed horizontal line: Corresponding theoretical asymptotic value given by the exact relation (VI.131). Dashed curves: Corresponding theoretical evolutions given by (VI.132).
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Figure VI. 11 :

 11 Figure VI.11: The asymptotic distribution of the eigenstate weights p n=0,...10 (red dots), obtained with A = 0.5 and T bath = 1, function of the corresponding eigenenergies E n=0,...10 . It fits the Boltzmann distribution (∝ e -E/T sub ) with T sub = 0.99 (dashed line).

  Figure VI.13:

  Figure VI.14: Asymptotic subsystem temperature T sub as a function of the bath temperature T bath for three different drags: A = 0.05 (red circles), A = 0.5 (green diamonds) and A = 1.5 (blue crosses) corresponding respectively to a weak, intermediate and strong coupling. The dashed line corresponds to the ideal case T sub = T bath .

Figure VI. 15 :

 15 Figure VI.15: Left: The linear potential under study (thick line) and its corresponding eigenenergies (dashed lines). Right: The corresponding three lower eigenstates.

Figure VI. 16 :

 16 Figure VI.16: Numerical average energy H 0 evolutions for different drags A (solid curves) and the theoretical evolution given by (VI.132) with {T bath = 1, H 0 (t → ∞) = 1.52, A = 0.1} (dashed curve).

Figure VI. 17 :

 17 Figure VI.17:The asymptotic distributions of the eigenstate weights p n=0,...10 (joined by lines) function of the eigenenergies E n=0,...10 (vertical lines), obtained with different drags A = 0.1 (solid lines), A = 0.5 (dashed lines) and A = 1.5 (dot-dashed lines) and temperatures T bath = 0.2 (left), T bath = 0.5 and 1 (right). They are compared to the corresponding "ideal" Boltzmann distributions ∝ e -E/T bath (thin lines).

Figure VI. 18 :

 18 Figure VI.18: Asymptotic subsystem temperature T sub as a function of the bath temperature T bath for two different drags A = 0.1 (red circles) and A = 1.5 (blue crosses) corresponding respectively to weak and strong couplings. The dashed line corresponds to the ideal case T sub = T bath .
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Figure VI. 19 :Figure VI. 20 :

 1920 Figure VI.19: Numerical average energy H 0 evolutions for different drags A (solid curves) and the theoretical evolution given by (VI.132) with {T bath = 1, H 0 (t → ∞) = 1.52, A = 0.1} (dashed curve).

Figure VI. 21 :

 21 Figure VI.21: Asymptotic subsystem temperature T sub as a function of the bath temperature T bath for three different drags: A = 0.05 (red circles), A = 0.5 (green diamonds) and A = 1.5 (blue crosses) corresponding respectively to a weak, intermediate and strong coupling. The dashed line corresponds to the ideal case T sub = T bath .

  Fig. VI.18 and VI.21.
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 2212 1) m (2l + 1) 4π (l -m)! (l + m)! P m l (cos θ) e imφ , (VII.[START_REF] Abbas | J/Psi Elliptic Flow in Pb-Pb Collisions at √ s NN = 2.76 TeV[END_REF] where the P m l are the associated Legendre polynomials. In this basis, the wavefunction then writesψ(r, θ, φ) = R l,m (r, t) Y l,m (θ, φ).(VII.140) where L should be infinite, but can be taken to L = 2 in practice to obtain from the equation (VII.137) a resolvable set of equations for the coefficients R l,m . To do so, one projects equation (VII.137) onto each Y l ;m : l ,m (θ, φ) [equation (VII.137)] sin(θ)dθdφ. l ,m (θ, φ) Y l,m (θ, φ) sin(θ)dθdφ = δ ll δ mm , (VII.142) the equation (VII.137) with a radial potential and without the fluctuation/dissipation terms yields i ∂R l ,m (r, l ,m + V (r)R l ,m . (VII.143) The projection of the stochastic term requires to write the vector r in terms of the spherical harmonics, r = r sin θ cos φ e x + r sin θ sin φ e y + r cos θ e z (VII.144) = 4π 3 r (Y 1,-1 e -1 + Y 1,0 e 0 + Y 1,1 e 1 ), where e -1 = e x + i e y √ (VII.145)

  (θ, φ) S(ψ) -S(ψ) Y l,m sin(θ)dθdφ (VII.[START_REF] Blaizot | On the fate of a J/ψ produced in a nucleusnucleus collision[END_REF] 
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 212 K|x| when 1/2 K|x| < V weak (r → ∞, T )V weak (r → ∞, T ) when 1/2 K|x| ≥ V weak (r → ∞, T ) (VII.151)andV U lin (x, T ) = K|x| when 1/2 K|x| < U (r → ∞, T ) U (r → ∞, T ) when 1/2 K|x| ≥ U (r → ∞, T ) (VII.152) At T = 0, note that V weak lin and V U lin are both equivalent to the vacuum linear potential, i.e. V weak lin (T = 0) = V U lin (T = 0) = V lin (T = 0). The potential V weak lin is illustrated in figure VII.1 for different temperatures. The number of bound states (i.e. such as E n ≤ V (r → ∞, T )) as a function of the temperature then follows the evolution of the much different weak and strong saturations (see figure III.6 and VII.

70

  For the string breaking; see section III.1.1. 71 With m c = 1.25 GeV and m b = 4.575 GeV. 72 See figure III.6 and section III.1.1. 73 Though it remains an open question, as one could say that with the thermal forces we rather reproduce the imaginary part of the potential.

Figure VII. 1 :Figure VII. 2 :

 12 Figure VII.1: The 1D symmetrical linear potential V weak lin (x, T ) for a b b pair (solid lines) and the weak potential V weak (dashed lines) at four different reduced temperatures (T red = T /T c where T c = 0.165 GeV). The eigenenergies of the vacuum potential V lin are represented by dot-dashed horizontal lines: E 0 , E 1 , E 2 , E 3 respectively correspond to the Υ(1S)-like, χ b -like, Υ(2S)-like, χ b -like states. Obtained by removing the saturation, the eigenenergy E 4 ∼ 1.22 GeV corresponds to the Υ(3S)-like state.

TFigure VII. 3 :

 3 Figure VII.3:To obtain a rescaling of the white noise correlation for bottomonia, the measured T bath (T sub ) distribution (circle points) is fitted to a polynomial function Tbath (T bath ) (= 0.100266 -2.89439T bath + 28.9901T 2 bath -103.683T 3 bath + 170.61T 4 bath -104.392T5 bath here) (dashed curve). The dot-dashed line corresponds to the ideal case T bath = T sub . The vertical lines correspond to the minimum and maximum temperatures in Kolb and Heinz model at LHC (see III.1.2). The red diamonds correspond to three T sub measured at equilibrium while using the noise rescaling: the subsystem now correctly thermalises for the states of interest.

T bath 0. 103 TFigure VII. 4 :

 1034 Figure VII.4: Comparison of the equilibrium distributions given by the rescaled white (dashed lines) and colored (solid lines) noises for three different bath temperatures [GeV].

Figure VII. 5 :

 5 Figure VII.5: Illustration of our approach within the following section VII.3 through its basic ingredients and interactions between the Q Q and QGP systems.

Figure VII. 6 :

 6 Figure VII.6: Evolutions of the charmonium weights obtained with V weak lin

Figure VII. 7 :Figure VII. 8 :

 78 Figure VII.7: Evolutions of the charmonium weights (top) survivances (bottom) obtained with V weak lin (T ) from an initial Gaussian state for different bath temperatures. The thin curves are obtained with the color screening but without thermal forces (i.e. the mean field situation) and the thick curves with both features.

x 2 fm 2 Figure VII. 10 :Figure VII. 11 :

 21011 Figure VII.10: Evolution of the mean square radius from an initial J/ψ-like state with V weak lin and the thermal forces at T = 0.2 GeV. One obtains x 2 ∝ t after a transient phase.

Ψ 0 JFigure VII. 12 :

 012 Figure VII.12: Evolutions of the charmonium weights from an initial J/ψ-like (top), ψ -like (center) and gaussian (bottom) initial states, obtained with the V weak lin (left) and V U lin (right) potentials for the RHIC temperature scenario. The thin curves corresponds to the mean field situation, the dashed curves is obtained with the thermal forces and the vacuum potential, and the thick curves with the thermal forces and the color screened potentials. See numerical version for colors.

Figure VII. 14 :

 14 Figure VII.14: The distributions of the charmonium weights measured at t = 5 (left) and t = 9.6 fm/c (right) with the vacuum potential V weak lin (T = 0) (blue) and the screened potential V weak lin (T ) (red) at RHIC. The dashed lines show the corresponding Boltzmann distributions at T = T c .

Figure VII. 19 :

 19 Figure VII.19: Evolutions of the bottomonium survivances obtained with V weak lin (T ) (left) and V U lin (T ) (right) from different initial states for the LHC temperature scenario. The thick curves correspond to an initial Gaussian state and the dashed curves from an initial Υ(1S)-like and Υ(2S)-like states for the Υ(1S)-like and Υ(2S)-like survivances respectively.

Figure VII. 21 :Figure VII. 22 :

 2122 Figure VII.21: Spatial distributions of the energy density in a transverse plane obtained from Kolb and Heinz model (left) and from a realisation of EPOS2 (right) in most central collisions. Beware that the color scales are different.

Figure VII. 23 :

 23 Figure VII.23: Evolutions of the bottomonium weights from the Gaussian state, obtained with the V weak lin (left) and V U lin (right) potentials for the space-time temperature distributions from EPOS2 in central collisions (b=0) at LHC.

Figure VII. 24 :

 24 Figure VII.24: The p T -dependence of the bottomonium survivances for three different impact parameters b, obtained with the initial Gaussian state, the V weak lin

Figure VII. 25 :

 25 Figure VII.25: R AA data for the Υ(1S) and Υ(2S) as a function of centrality (left) and transverse momentum (right) [145].

Figure VII. 26 :

 26 Figure VII.26: The N part -dependence of the bottomonium survivances, integrated on the impact parameter b and obtained with the initial Gaussian state, the V weak lin (left) and V U lin (right) potentials, and the space-time temperature distributions from EPOS2 at LHC.
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 2728 Figure VII.27: Evolutions of the charmonium weights from an initial J/ψ-like (top) and ψ -like (bottom) states, obtained with the V weak lin (left) and V U lin (right) potentials for the LHC temperature scenario(Kolb and Heinz). The thin curves corresponds to the mean field situation, the dashed curves is obtained with the thermal forces and the vacuum potential, and the thick curves with the thermal forces and the color screened potentials. See numerical version for colors.

Figure VII. 29 :

 29 Figure VII.29: Schéma du diagramme de phase de la QCD présenté en fonction de la température et du potentiel chimique baryonique µ B . La température critique entre matière hadronique et partonique est évaluée à T c 170 ± 25 MeV (∼ 10 12 Kelvin !) à µ B 0 [34].

Figure VII. 30 :

 30 Figure VII.30: Représentation schématique des différentes étapes d'une collision d'ions lourds, des ions initiaux jusqu'aux nombreux hadrons observés au final dans les détecteurs.
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 3132 Figure VII.31: Le potentiel "faiblement" liant des charmonia à différentes températures [109].

Figure VII. 33 :

 33 Figure VII.33: Évolution des poids normés S i = W i (t)/W i (t = 0) des états de J/ψ et ψ au RHIC à partir d'un état initial gaussien (de paramètre a c = 0.165).

5 J

 5 Figure VII.34: Left: Résultats du modèle semi-classique pour les poids du J/ψ en fonction du temps avec les scénarios de température du RHIC (gauche) et du LHC (droite), V = U et la dynamique de Langevin (lignes pleines). Lignes pointillées: même cas mais sans dynamique de Langevin.
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 035 Figure VII.35: Évolutions des poids des charmonia en partant d'un état initial similaire au J/ψ, obtenues avec les potentiels V weak lin (gauche) et V U lin (droite) pour le scénario de température du LHC (de Kolb et Heinz). Les courbes fines correspondent à la situation de champ moyen, les courbes pointillées sont obtenues avec les forces thermales et le potentiel du vide, et les courbes épaisses avec les forces thermales et les potentiels écrantés de couleur.

Figure VII. 36 :

 36 Figure VII.36: Dépendances en N part (gauche) et p T (droite) des poids normés des bottomonia pour trois paramètres d'impact b (droite) ou intégrées en b (gauche), obtenues avec l'état gaussien initial, le potentiel V weak lin et les distributions spatio-temporelles en température données par EPOS2 au LHC.
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Table III . 4 :

 III4 Root mean square radius r 2 1/2 [fm] and energy spectrum E n,l [MeV] for the quarkonium states obtained with the vacuum potential. The latter are compared with the experimental data for quarkonium energies (masses); see tables I.2 and I.3. The heavy quark masses are taken to m c = 1.25 GeV and m b = 4.575 GeV.

		State	r 2 1/2 [fm] E n,l [MeV] Experimental energies [MeV]
		J/ψ	0.46	3062	3097
	Charmonia	χ c	0.74	3480	3511
		ψ	0.96	3674	3686
		Υ(1S)	0.27	9396	9460
	Bottomonia	Υ(2S)	0.54	9869	10023
		Υ(3S)	0.78	10211	10355

Table III . 6 :

 III6 Values of the J/ψ, ψ , Υ(1S) and Υ(2S) survivances at the chemical freezeout at RHIC. Experimental most central R AA data at RHIC in AuAu √ S N N = 200 GeV collisions: 1) high p T STAR data

	State survivance at RHIC		R AA data
	State \ Potential	V weak	V=U	Low p T	High p T
	J/ψ from initial J/ψ	0.24	0.52	0.26 ± 0.05 0.64 ± 0.14
	J/ψ from init. Gauss(0.165)	0.09	0.30		
	ψ from initial ψ	0.14	0.03	None	None
	ψ from init. Gauss(0.165)	0.26	0.17		
	Υ(1S) from initial Υ(1S)	0.88	0.93	0.66 ± 0.13
	Υ(1S) from init. Gauss(0.045)	0.49	0.91		
	Υ(2S) from initial Υ(2S)	0.005	0.16	None	
	Υ(2S) from init. Gauss(0.045)	0.02	0.15		

Table V .

 V 

				Quantum	Experimental R AA
	Langevin dynamics ? → No	Yes	No Yes	high p T	low p T
	RHIC	0.83	0.52	0.3	?	0.64 ±0.14 0.26 ±0.05
	LHC	0.81	0.32	0.19	?	0.20 ±0.03 0.83 ±0.14

8: J/ψ normed weights at the chemical freeze out (or average over the mixed phase if weight oscillations) obtained at RHIC and LHC with the strong potential V = U .

  T bath 1 Figure VI.10: Evolutions of the eigenstate weights p n=0,...6 (t) from the initial ground state (left) and 2 nd excited state (right) for a drag corresponding to an intermediate coupling.
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  Evolutions of the charmonium survivances obtained with V weak lin (T ) (left) and V U lin (T ) (right) from different initial states for the RHIC temperature scenario. The thick curves correspond to an initial Gaussian state and the dashed curves from an initial J/ψ-like and ψ -like states for the J/ψ-like and ψ -like survivances respectively.

				V lin weak T RHIC t stocha						V lin U T RHIC t stocha		
	1.2 S i t					Ψ 0 Gaussian 0.165		S i t				Ψ 0 Gaussian 0.165
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  Same than figure VII.13 but with LHC temperature scenario. component at LHC but not at RHIC (compare the left panels of figures VII.15 and ??). These simple potentials combined with the SL equation seems therefore only weakly affected by the difference between RHIC and LHC scenarios. VII.3.1.4 Sum up, values at the chemical freeze-out and data
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	Figure VII.15:													

Table VII .

 VII 

	State survivance at RHIC		R AA data
	State \ Potential	V weak lin	V U lin	Low p T	High p T
	J/ψ from initial J/ψ	0.55	0.80	0.26 ± 0.05 0.64 ± 0.14
	J/ψ from initial Gauss(0.165)	0.67	1.03		
	ψ from initial ψ	0.028	0.06	None	None
	ψ from initial Gauss(0.165)	0.21	0.29		

10: J/ψ and ψ survivances S i (t) = W i (t)/W i (t = 0) at the chemical freezeout at RHIC (t ≈ 10 fm/c). Experimental most central R AA data at RHIC in AuAu √ S N N = 200 GeV collisions: 1) high p T STAR data

Table VII .

 VII 11: J/ψ and ψ survivances at the chemical freeze-out at LHC (t ≈ 11 fm/c).

	State survivance at LHC		R AA data
	State \ Potential	V weak lin	V U lin	Low p T	High p T
	J/ψ from initial J/ψ	0.47	0.72	0.83 ± 0.14 0.20 ± 0.03
	J/ψ from initial Gauss(0.165)	0.60	0.97		
	ψ from initial ψ	0.022	0.06	None	0.13 ± 0.04
	ψ from initial Gauss(0.165)	0.27	0.37		

  Evolutions of the bottomonium survivances obtained with V weak lin (T ) (left) and V U lin (T ) (right) from different initial states for the RHIC temperature scenario. The thick curves correspond to an initial Gaussian state and the dashed curves from an initial Υ(1S)-like and Υ(2S)-like states for the Υ(1S)-like and Υ(2S)-like survivances respectively.
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	Figure VII.17: Evolutions of the bottomonium weights from the Υ(1S)-like (top), Υ(2S)-
	like (center) and gaussian (bottom) initial states, obtained with the V weak lin	(left) and V U lin
	(right) potentials for the RHIC temperature scenario. The thin curves corresponds to the
	mean field situation, the dashed curves is obtained with the thermal forces and the vacuum
	potential, and the thick curves with the thermal forces and the color screened potentials.
	See numerical version for colors.											

Anti-particles are thought to have the same masses than their associated particles but opposite charges.

The physics which describes the field dynamics is invariant under some internal transformations called gauge symmetries.

A coupling constant, which is directly related to the conserved particle charges, defines the strength of an interaction.

The probability of a process is given by the squared modulus of its amplitude.

A group is abelian if its generators commute.

Which is similar to QED where the photon splits into a loop of charged particles

It is an effective theory that disentangles physics at the scale of the heavy quark of mass m Q , relevant to the production of a heavy quark pair, from physics at the scale given by the bound state's binding energy m Q v 2 , relevant to the formation of the quarkonium (where v is the relative quark-antiquark velocity).

The inclusive production means that the initial colliding hadrons may be destroyed during the scattering process and create a multitude of extra hadronic products that are not measured.

Super Proton Synchrotron

A medium is thermalised when the spatial fluctuations of the temperature are small compared to its average value.

The (shear) viscosity quantifies the transverse momentum diffusion and is inversely proportional to the fluid inter-particle cross section (or coupling). The larger the coupling, the smaller the mean free path, the smaller the transverse energy diffusion and the viscosity.

Photons are said to be "thermal" when they are produced by the thermalised medium.

The chiral symmetry is the invariance of the QCD Lagrangian with respect to the quark spin orientation. It is spontaneously broken by the quark masses and is predicted to be restored at high temperatures.

Prompt photons are produced during the hard initial collisions.

The hot nuclear medium created in these collisions is such a dynamical and complex medium that its description requires the use of all-included simulation codes.

Baier-Dokshitzer-Mueller-Peigné-Schiff model for induced gluon radiation.

As no undeniable proof of net transition nor deconfinement has been observed for now, one should remain cautious before coming to a final conclusion.

As discussed in section I.1.4.2, one should however keep in mind that there are still doubts about the actual production mechanism for the quarkonia and especially about their hadronisation. Then, it is not obvious to evaluate physical quantities such as the time required for a quarkonium state to be formed.

The number of produced b b pairs is indeed much smaller than cc, diminishing the probability for uncorrelated b b pairs to recombine at the hadronisation stage.

See figure I.14.

See section I.2.3.2.

In the nucleus frame, one needs to apply a Lorentz factor to the τ f computed in the quarkonia rest frame.

See section III.1.1.

The kinetic equations describe the time evolution of a system consisting of a large number of particles.

The Fokker-Planck equation is derived from an expansion of the Boltzmann equation within the Brownian approximation. See part IV for more details.

The systematic errors are related to the detection efficiency, the beam intensity and luminosity... and are too important at SPS to obtain correct quarkonia cross sections.

[START_REF] Alver | Elliptic Flow, Initial Eccentricity and Elliptic Flow fluctuations in Heavy Ion Collisions at RHIC[END_REF] The reference measurement (which is not influenced by the medium effects) at RHIC and LHC is played by the quarkonia cross sections in pp collisions.

When one observes less suppression than expected.

Note that as the R AA (p T ) distributions of the heavy flavours[START_REF] Maire | Measurements of inclusive J/ψ production in Pb-Pb collisions at √ s N N = 2.76 TeV with the ALICE experiment[END_REF][START_REF] Chatrchyan | Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at √ s N N = 2.76 TeV[END_REF] are really different from light flavours (discussed in the introduction I.2.3.2), it shows that the energy loss processes act very differently on quarkonia if they undergo any.

The Boltzmann equation is a kinetic equation which describes the dynamics of a particle in a classical diluted gas. It assumes that the time of one collision is much smaller than the typical time between two successive collisions.

As for instance the Heisenberg-Langevin equation, the Schrödinger-Langevin equation or the stochastic Schrödinger equations as discussed later.

Some differences have been observed[START_REF] Biele | Application of a time-convolutionless stochastic Schrdinger equation to energy transport and thermal relaxation[END_REF].

Discussed in part VI

If the process (x(t),p(t)) is Markovian and the probability density distribution f (x, p, t) satisfies the Kramers equation, the unique stationary solution is the Maxwell Boltzmann distribution.

The recent developments from Akamatsu discussed in IV.2.1.3 could nevertheless rule against this opinion.

See section IV.2.1.2.

The knowledge of the Drag -for single heavy quarks diffusion in the QGP -allows to reduce the dissipative dynamics at a mesoscopic scale into a single parameter.

By bound component of the cc pair we mean the component of the distribution that remains inside the phase space area of the bound states

This can be explained noticing that the asymptotic distribution of equation (V.66) in the → 0 limit is ∝ exp(-H cl ( r, p)/T ), where H cl is the classical Hamiltonian, implying that ∆r ∆p can be arbitrarily small.

Usually the friction is well approximated by a linear and cubic forces. At low hydrodynamic velocity and not very far from the equilibrium, the cubic term becomes negligible[START_REF] Tsekov | Nonlinear theory of quantum Brownian motion[END_REF].

The invariance under the multiplication of the wavefunction by a simple phase factor would be broken.

The linear potential is close to the linearly rising quarkonia potential.

T sub is measured by tracing the effective Boltzmann lines ∝ e -E/T sub between the two lowest weights.

The bath temperature is used as an input of the noise correlation.

The grid size has to be chosen such as the wavefunction reflexions on the grid boundaries to be small.

See section II.3.3 

The model of Kolb and Heinz is described in section III.1.2 

Note that in EPOS3 the production of charm quarks has been implemented and one could use the corresponding position-momentum distributions as the initial state.

Already shown in part II.

These results have been recently discussed in a conference proceeding[START_REF] Gossiaux | Upsilon suppression in the Schrödinger-Langevin approach[END_REF].

Le premier chapitre, intitulé "Du modèle standard aux collisions d'ions lourds", présente le cadre global dans lequel s'inscrit ce travail. Les bases du Modèle Standard de la physique des particules et de la chromodynamique quantique (QCD), la théorie de l'interaction forte, sont tout d'abord présentées. Les notions de constante de couplage, de liberté asymptotique, de confinement et d'hadron sont discutées. Une attention particulière est donnée à la physique des quarkonia: leurs propriétés, états excités, désintégrations et mécanismes de production sont décrits, ainsi que l'intérêt de leur étude en collisions proton-proton. Dans un second temps, le diagramme de phase de la matière nucléaire VII.29 et la nature des transitions entre matière hadronique et PQG sont discutés. Par la suite, les différentes étapes attendues lors d'une collision d'ions lourds sont détaillées (voir figure VII.30): des ions initiaux, en passant par l'évolution du PQG formant la boule de feu, jusqu'aux hadrons finaux. Les paramètres permettant de caractériser une collision d'ions lourds, tels que l'énergie dans le centre de masse √ s N N et le nombre de nucléons participants à la collision N part , sont définis. Pour finir, une brève revue des différentes observables
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Part VI

The Schrödinger-Langevin equation: generalities and equilibration