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Abstract

The theory of quantum chromodynamics (QCD) predicts the existence of a new
state of matter: the Quark-Gluon Plasma (QGP). The latter may have existed at
the first moments of the Universe following the Big Bang and can be, in theory, re-
produced under the extreme conditions of temperature and density reached in high
energy heavy ion collisions (at the LHC for instance). One of the QGP observables
is the suppression of the quarkonia (heavy quark/antiquark bound states), charac-
terised by a smaller production of these states in heavy ion collisions in comparison
to proton-proton collisions, in which no QGP production would be possible. This
suppression has indeed been observed experimentally, but the puzzling evolution
of its trend from RHIC to LHC energies requires a better theoretical understand-
ing. The present thesis aims at studying the real-time dynamics of correlated heavy
quark/antiquark pairs described as open quantum systems which permanently in-
teract with a cooling QGP. More explicitly, the continuous interaction between the
medium and the pair internal degrees of freedom is obtained through 1) a tempera-
ture dependent color screening (Debye like) due to color charges in their vicinity and
2) some fluctuation/dissipation mechanisms reflecting the continuous collisions. It
leads to a dynamical and continuous picture of the dissociation, recombination and
possible transitions to other bound states. This investigation is at the crossroads
of different theoretical frameworks: semi-classic, quantum and quantum fields. The
deduced predictions are compared to experimental data and to the results of other
theoretical models.

Keywords : Quark-Gluon Plasma, quarkonia suppression, dynamical approach,
open quantum system, Schrödinger-Langevin equation
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Résumé

La chromodynamique quantique (QCD) prédit l’existence d’un nouvel état de
la matière: le plasma de quarks et de gluons (PQG). Celui-ci aurait existé dans
les premiers instants suivant le Big Bang et peut en principe être produit sous les
conditions extrêmes de température et de densité atteintes lors de collisions d’ions
lourds à haute énergie (au LHC par exemple). Un des marqueurs de sa présence
est la suppression des quarkonia (états liés de quark/antiquark lourds), caractérisée
par une production inférieure de ces états dans les collisions d’ions lourds relative-
ment aux collisions proton-proton où le PQG ne pourrait être créé. Cette sup-
pression a bien été observée expérimentalement, mais l’évolution de ses tendances
aux énergies du RHIC et du LHC est un véritable défi qui requiert une meilleure
compréhension théorique. La présente thèse a pour but d’étudier la dynamique en
temps réel de paires corrélées de quark/antiquark lourds considérées comme des
systèmes quantiques ouverts en interaction permanente avec un PQG en refroidisse-
ment. Explicitement, l’interaction continue entre le milieu et les degrés de liberté
internes de la paire est obtenue par 1) un écrantage de couleur dit de Debye dû à
la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluc-
tuation/dissipation qui reflètent les collisions permanentes. Cela mène à une image
dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des
transitions entre états liés. L’étude est transversale à différents cadres théoriques:
semi-classique, quantique et quantique des champs. Les prédictions du modèle sont
comparées aux résultats expérimentaux et aux résultats d’autres modèles théoriques.

Mots clés : Plasma de quarks et gluons, suppression des quarkonia, approche
dynamique, système quantique ouvert, équation de Schrödinger-Langevin
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Introduction

Has Schrödinger’s Katz nine lives ? ...

According to the Big Bang theory, the elementary particles which compose our
Universe have passed through a very hot (& 1012 K) and dense stage of Quark-Gluon
Plasma (QGP), some < 10−5 s after the Big Bang, before gathering into nucleons,
atoms, molecules, living things, stars, galaxies, superclusters... It might be one of
the key stages to understand how an initially homogeneous distribution of matter
has become inhomogeneous, leading to the current structures of matter observed
in space. The QGP consists in a dense and deconfined state of quarks and gluons
(together called partons). The latter are the elementary components of the nuclear
matter and are, in normal conditions, confined as composite systems (hadrons) such
as protons and neutrons. Since the 80’s, an intense experimental and theoretical
investigation has been carried out to prove the existence of such a state of matter
and to characterise its properties. A possible way to reproduce the extreme condi-
tions required to obtain a QGP, is to collide ultra-relativistic heavy ions in gigantic
colliders like the RHIC1 or the LHC2. It possibly results in incredibly small (∼ 10−14

m) and short-lived (∼ 10−21 s) “drops” of QGP whose study is a great challenge.
Indeed, one can only consider indirect observables resulting from their expansion
and cooling, i.e. the final produced hadrons. One of the QGP observables is the
so-called “quarkonia suppression”. It corresponds to a smaller production of heavy
quark/antiquark (QQ̄) bound states in heavy ion collisions in comparison to proton-
proton collisions, in which no QGP production would be possible. This suppression
has indeed been observed experimentally, but does not systematically correspond
to the expected picture. Matsui and Satz [1] indeed predicted the different quarko-
nium states to behave like a thermometer for the initial maximal temperature of
the produced QGP. However, the puzzling evolutions of the suppression trends at
RHIC and LHC depict a more complex picture which requires a better theoretical
understanding. In the present thesis, we propose a dynamical description of the
quarkonia suppression leading to the picture of a continuous thermometer. Explic-
itly, the correlated QQ̄ pairs are described as open quantum systems in continuous
interaction with the deconfined medium. To this end,

c The first part (I) progressively introduces all the basic concepts of particle and
ultra-relativistic heavy ion physics. We first focus on quarks, gluons and the
properties of their strong interaction. We then discuss their confined states
with a main emphasis on quarkonia physics. We explore the phase transition
to deconfined states and discuss the phase diagram of partonic and hadronic

1Relativistic Heavy Ion Collider
2Large Hadron Collider
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matter. We finally describe an ultra-relativistic heavy ion collision to introduce
the physics of the QGP and review its possible observables.

c To motivate the present work, part II gives an experimental and theoretical
overview of quarkonia suppression in high energy heavy ion collisions. To this
end, the relevance of the quarkonia as probes of the QGP is first discussed.
We then review the various phenomena likely to interfere with the quarkonia
yield and the most common models. We discuss the puzzling evolutions of
the experimental data with the collision energy and point out their irregular
descriptions. Finally, as an answer to the model assumptions, we motivate our
quantum dynamical approach.

c In part III, as a first application to quantum dynamical approaches, we study
the dynamics of a correlated QQ̄ pair subject to color screening from color
charges in its vicinity while neglecting the effect of direct collisions with the
medium.

c To find how these direct collisions can be included, we present in part IV the
basic concepts of open quantum systems and review the common approaches.
Then, we briefly discuss the existing literature on quarkonia seen as dynamical
systems and motivate our so-called Langevin-like approach.

c As a first attempt to implement this approach, we explore in part V a semi-
classical framework based on classical Langevin evolution of Wigner distribu-
tions, initially proposed by Young and Shuryak [2]. Its limitations are dis-
cussed.

c The part VI is devoted to the properties and solutions of a Langevin-like
extension of the fundamental Schrödinger equation, the so-called Schrödinger-
Langevin (SL) equation, initially proposed by Kostin [3] to study the quantum
Brownian motion in a thermal environment. We investigate the thermal re-
laxation given by the SL equation with different potentials and noises.

c In the last part (VII), we apply the SL equation to a correlated QQ̄ pair
immersed in a QGP bath within a simple model. We then carry out the
study within a more realistic collision framework extracted from the state-
of-the-art EPOS event generator: finite volume, inhomogeneous temperature
and quarkonia position-momentum distributions. The predictions are finally
compared to experimental data (in some extent) and other models.

... No, only seven !
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Part I

From the standard model to heavy
ion collisions
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I.1 Quarks, gluons and confined states

I.1.1 Particle physics

All the matter inside and around us from the tiniest grain of sand to the biggest
star in space, is composed of a large amount of atoms. For around a century now,
the atom (size ∼ 10−10 m) is known to be composed of electrons “orbiting” via the
electromagnetic force around a nucleus of protons and neutrons (see figure I.1). In
the 60s [4], it was discovered that proton and neutron (∼ 10−15 m = 1 fm) were not
elementary particles but composite systems made of three quarks interacting via the
strong interaction (which also holds the protons and neutrons together).

Figure I.1: From the atom to quarks and gluons.

As summed up in figure I.2, the electrons and the quarks are not the only ele-
mentary particles that build up our universe. From the joint effort of experiment
and theory, was indeed discovered twelve elementary “matter” particles (fermions)
and their associated anti-particles3, the force carriers (gauge bosons) which mediate
the fundamental interactions, and the Higgs boson which gives them masses. The
photon - which composes the light for instance -, the Z and W± bosons - which are
observed in the beta decay - and the eight gluons - which hold the quarks together
- are respectively the force carriers of the electromagnetic, electroweak and strong
interactions. There are six quarks in total (or six “flavours”: Nf = 6) from the
lightest “up” quark to the hundred thousand times heavier “top” quark. The quark
family is distinguished from the leptonic family (which includes the electron) be-
cause the quarks carry a color charge, an intrinsic property at the root of the strong
interaction. The color charge for the latter is the equivalent of the electric charge
for Quantum Electrodynamics (QED) (electromagnetism) and allows the emission
of the corresponding gauge bosons, called the gluons (the photon for QED). Unlike
the photon which does not carry an electric charge, the gluons carry a color charge
which allows them to interact among themselves.

All these particles have been directly or indirectly observed in particle acceler-
ators and colliders, such as the gigantic LHC, where “natural” particles are accel-

3Anti-particles are thought to have the same masses than their associated particles but opposite
charges.
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Figure I.2: The 12 matter particles (fermions), 12 force carriers (gauge bosons) and the
Higgs boson.

erated near light-speed and collided to transform their energy into “new” particles
following Einstein’s famous relation “E ↔ mc2” (mass-energy equivalence). The
properties of these new particles, e.g. their energy, mass and spin, are studied by
large detectors around the collision area(s) (such as ALICE at the LHC: see figure
I.3).

Figure I.3: Left: A small portion of the LHC circular pipe. Right: An LHC event in the
ALICE detector. Each line corresponds to a “new” particle track in the detector.

On the theoretical side, the Standard Model of particle physics describes the
particles properties, interactions and productions to a high precision. It has even
predicted the existence of previously unobserved particles such as the quarks (dis-
covered between 1968 and 1995), the gluons (1978), the W and Z bosons (1983),
the tau neutrino (2000) and the Higgs Boson (2013). In a few words, the Standard
Model is a relativistic quantum field theory [5] where the particles are described
as dynamical fields that fill space-time. The field gauge symmetries4 give rise to

4The physics which describes the field dynamics is invariant under some internal transformations
called gauge symmetries.
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the fundamental interactions. Their dynamics and interactions are described by the
Lagrangian of the Standard Model (which has more than a hundred terms !). In
practice, the Lagrangian can be used through the Feynman path integral formalism.
Quantities like the S-matrix and the propagators are then developed in perturbative
expansions in powers of the coupling constants5, where each term can be schemed by
a Feynman diagram. A term in power of n gives a Feynman diagram with n inter-
actions (“vertices”). A process can then be seen as the sum of all possible Feynman
diagrams (all the quantum mechanically possible and indistinguishable paths) as
shown for instance in figure I.4.

Figure I.4: In perturbative QCD, a 2→ 2 process can be seen as the sum of all possible
Feynman diagrams.

The total amplitude6 of the process is then given by the sum of each Feynman
diagram amplitude. As the number of terms/diagrams is infinite, this sum is com-
putable when the coupling constants are small compared to 1. Then, only the first
orders of these expansions are necessary to obtain high precision predictions. De-
spite its successes, some important open questions remain, e.g. how to treat properly
nonperturbative phenomena (i.e. when the coupling constant is larger than - or of
the order of - 1) ? What are the dark matter and energy that appear in cosmological
observations ? ...

I.1.2 Quantum Chromodynamics

As part of the Standard Model, Quantum Chromodynamics (QCD) [6] focuses on
the dynamics of the color charged particles (the quarks and gluons, together called
partons) and on their interactions through gluon exchange. Quark fields ψi=1,...Nc

j=1,...Nf
,

where j is the quark flavour, can have three possible colors (Nc = 3) commonly
called red, blue and green. The Lagrangian of the free quark field,

ψj =


ψ1
j

ψ2
j

ψ3
j

 , (I.1)

writes
Lfree = ψj(iγ

µ∂µ −mj)ψj. (I.2)

5A coupling constant, which is directly related to the conserved particle charges, defines the
strength of an interaction.

6The probability of a process is given by the squared modulus of its amplitude.
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In QCD, the Lagrangian is invariant under the color gauge symmetry SU(3) trans-
formation:

ψj(x) −→ ψ̃j(x) = e−iθa(x)Taψj(x), (I.3)

where the group generators 2Ta=1,...8 are the Gell-Mann matrices and θa=1,...8 real
functions. To obtain this invariance, the usual derivative ∂µ (µ and ν are Lorentz
indices) is replaced by the covariant derivative

Dµ = ∂µ − igsTaGa
µ, (I.4)

where gs =
√

4παs is the gauge coupling parameter and Ga=1,...8
µ are the eight gauge

fields which quanta are the gluons. The gauge invariance requirement therefore leads
to the introduction of the quark interactions with the gluons. To obtain the QCD
Lagrangian, one finally needs to add the gauge invariant Lagrangian for the gluonic
fields,

Lg = −1

4
F a
µν(x)F µν

a (x), (I.5)

where the gluonic field tensor F is

F a
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν . (I.6)

The first two terms of the gluonic field strength tensor give the gluon dynamics
whereas the third term translates the gluon self-interactions. The latter originates
from the non-abelian7 nature of the SU(3) group, i.e. the constants fabc, defined by

[Ta, Tb] = ifabcTc, (I.7)

are not all null. Finally, the QCD Lagrangian writes

LQCD =

Nf∑
j=1

ψj(iγ
µDµ −mj)ψj −

1

4
F a
µνF

µν
a . (I.8)

As a unique property in the standard model, the gluon self-interaction has im-
portant consequences on the strong interaction properties. Indeed, when two colored
particles interact through a gluon exchange, the QCD predicts the possibility that
the exchanged gluon splits into a loop of quarks or self-interacts at the next-to-
leading order (NLO) of the perturbative expansion (see figure I.5). Qualitatively,
whereas the former8 is the source of screening effects between the two interacting
partons, the gluon self-interaction is the source of dominant antiscreening effects.
The screening (antiscreening) effects lead to a decrease (increase) of the interaction
coupling with an increasing distance between the interacting particles. Therefore,
unlike the electromagnetic interaction, the strong interaction coupling - and thus the
value of the QCD renormalised coupling “constant” αs - increases with the distance
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Figure I.5: Whereas the gluon splitting into a loop of quarks (left) leads to screening
effects between the two initial partons, the gluon self-interaction (right) leads to antis-
creening effects.

Figure I.6: The QCD coupling “constant” αs function of the transfered energy Q between
the two color charges [7].

or equivalently decreases with larger transfered energy (see I.6).

The typical energy scale ΛQCD ∼ 200 MeV separates the regime (Q & ΛQCD)
where perturbative QCD can be applied (αs . 1) from the one (Q . ΛQCD) where
the strong interaction becomes highly nonlinear and non-perturbative methods are
required (αs & 1). This “running” of the coupling constant leads to noticeable
features at the limits: the asymptotic freedom and the confinement. The so-called
asymptotic freedom regime corresponds to the high energy scales Q� ΛQCD where

7A group is abelian if its generators commute.
8Which is similar to QED where the photon splits into a loop of charged particles
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the interaction becomes relatively weaker. At the low energy scales Q . ΛQCD (rel-
atively large distances & 1 fm), the confinement corresponds to the phenomenon
which makes (a priori) impossible to observe an individual particle carrying a color
charge. Indeed, in normal conditions, they are always observed to be confined into
composite systems (see next section) such as to be in a color singlet (or “color neu-
tral” or “white”) global state. As a non-perturbative effect, the confinement is still
poorly understood. The most famous model, the phenomelogical Lund string model
[8], describes the confinement as a consequence of a gluonic string breaking into a
quark/antiquark pair as the colored particles move away from each other. Indeed,
as the interaction becomes stronger and stronger between the colored particles, the
creation of a pair from the gluonic field becomes energetically favorable (it reduces
the gluon field energy [9]) and leads to new independent composite systems (see
figure I.7).

Figure I.7: As the quarks move away from each other, the gluonic field energy increases
until it breaks into a quark/antiquark pair. It finally leads to two new independent com-
posite systems. [10]

I.1.3 Hadrons and quark masses

Probed at intermediate momentum transfer, the proton (p) and neutron (n) can
be understood as composed of three “valence” quarks (and some strings of gluons):
two up and one down quarks (uud) for the proton, and one up and two down quarks
(udd) for the neutron. When one probes them deeper, one also observes some in-
dividual gluons and “sea” quarks (mainly u, d and s quarks) originating from pair
production and individual gluons. Of course, many other composite systems, called
hadrons, can be formed with quarks. For now, only systems of quark/antiquark
(called mesons), e.g. the pion π+ (ud̄), and of three quarks or antiquarks (called
baryons), e.g. the charmed sigma Σ0

c (ddc), have been observed. Exception made
of the proton and neutron, all hadrons are unstable under ordinary conditions and
decay within short life times (. 10−8 s). Moreover, each hadron can exist under
different possible energy states (called resonances), with the excited states having
extremely short life time (. 10−24 s), e.g. the ground state Λ0(m = 1115 MeV/c2)
(uds) and its exited states Λ0(1405), Λ0(1520)... where m is the resonance mass.

The mass of a hadron is usually quite different from the sum of its constituent
free masses (e.g. mu +md +ms = 102 MeV/c2 for the Λ0) because most of its mass
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originates from the large amount of energy involved in the QCD dynamics (mass-
energy equivalence). Reciprocally, because the confinement prevents the unbinding
of hadrons and makes impossible the isolation of a colored particle, the mass of the
free quarks (as written in the renormalised QCD Lagrangian) cannot be measured
directly. The free quark masses9 are indirectly determined ([11] and ref. therein)
from the combinations of experimental values (a set of hadron masses usually), a
renormalisation10 scheme and chosen scales, lattice QCD calculation and effective
theories such as the Chiral Perturbation Theory (for light quarks) or Heavy Quark
Effective Theories. The commonly chosen MS renormalisation scheme and scales
leads to the masses given in Tab. I.1.

Light quark flavour Up (u) Down (d) Strange (s)

Mass (MeV/c2) 2.3+0.7
−0.5 4.8+0.5

−0.3 95± 5

Heavy quark flavour Charm (c) Bottom (b) Top (t)

Mass (GeV/c2) 1.275± 0.025 4.180± 0.030 160± 5

Table I.1: Quarks masses given by the common MS renormalisation scheme and scales
(µ = 2 GeV for light quarks and µ = mQ=c,b,t for heavy quarks). We note that another
calculation (the so-called 1S scheme) using B meson decay measurements leads to mb =
4.66± 0.03 GeV/c2. [11]

I.1.4 Quarkonia

I.1.4.1 Characterisation and decay

— Charmonia —

Quantum state Name Mass (MeV/c2) Interesting decays

13S1 J/ψ or ψ(1S) 3097 leptonic (12.8 %)

13P0 χc0 3415 γJ/ψ (1.17 %)

13P1 χc1 3511 γJ/ψ (34.4 %)

13P2 χc2 3556 γJ/ψ (19.5 %)

23S1 ψ′ or ψ(2S) 3686 J/ψ anything (59.5 %)

Table I.2: Some interesting charmonium states and decays. [11]

9Also called “current” masses.
10In the perturbative regime, for the Feynman diagrams at the NLO (and higher orders), the

integrals over the 4-momenta - of arbitrary energies as a quantum effect - of the loop constituents
diverge at high energies. The renormalisation method proposes that the parameters, such as the
particle masses or the coupling constants (see figure I.6 with µ = Q), depend on the interaction
scale µ at stake (“bare” parameters corresponds to free particles and “renormalised” parameters
to interacting ones) such as to introduce counter-terms that cancel out the divergences.

22



In the present thesis, we will mainly focus on heavy quark/antiquark “QQ̄”
mesons, called quarkonia, and more especially on the charm/anticharm “cc̄” bound
states, called charmonia (see table I.2 for some interesting states), and the bot-
tom/antibottom “bb̄” bound states, called bottomonia (see table I.3). From a Quan-
tum Mechanics point of view, a quarkonium can be considered as a quantum oscil-
lator. Its states are then denoted by n2S+1LJ where n is the main quantum number,
S the intrinsic angular momentum, L the orbital angular momentum (its value 0
defined the “S” state, 1 ↔ “P”, 2 ↔ “D”...) and J the total angular momentum
(such that |L− S| ≤ J ≤ L+ S)11.

— Bottomonia —

Quantum state Name Mass (MeV/c2) Interesting decays

13S1 Υ(1S) 9460 leptonic (7.5 %)

13P0 χb0 9859 γΥ(1S) (1.76 %)

13P1 χb1 9893 γΥ(1S) (33.9 %)

13P2 χb2 9912 γΥ(1S) (19.1 %)

23S1 Υ(2S) 10023 Υ(1S) pions (26.5 %)

33S1 Υ(3S) 10355 Υ(1S) pions (6.6 %)

Υ(2S) anything (10.6 %)

Table I.3: Some interesting bottomonium states and decays. [11]

I.1.4.2 Quarkonia production

One of the basic ideas of QCD is the factorisation of short (“hard scale”) and long
(“soft scale”) distance interactions. For quarkonia, this concept is realised both in
the initial and final states of their production mechanism. The initial state factori-
sation separates the initial soft scale physics, which describes the parent (colliding)
hadrons through their phenomenological parton distribution functions (PDFs)12, and
the hard scale physics, which describes the QQ̄ production from parton scatterings
with the perturbative QCD. In high energy hadron-hadron collisions, the QQ̄ pairs
are mainly produced in the interaction and/or fragmentation of energetic gluons
emitted by the parent partons. The final state factorisation, in turn, assumes that
the latter hard scale process is independent of the hadronisation13 of the QQ̄ pair

11S, L and J are multiple of the quantum angular momentum action ~, the reduced Planck
constant.

12This is essentially the probability density to find a parton at a scale Q2 carrying a fraction
x of the initial momentum of the parent/colliding hadron. A PDF can be decomposed into an
unintegrated PDF, which is purely nonperturbative (at a soft scale Q2

0), and its evolution towards
the considered hard scale Q2, given by an equation of evolution based on pQCD.

13The formation of a specific hadron out of the produced quarks and gluons.
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into a specific bound state. The hadronisation is usually described by effective the-
ories such as the Lund string model or a non-perturbative QCD approximation. For
the quarkonia, the Non-Relativistic QCD framework14 [12], based on an expansion
over the small QQ̄ relative velocity (due to their heavy mass), is commonly used.

Figure I.8: The QCD mechanism leading to the inclusive indirect J/ψ production in a
hadron-hadron collision going through the intermediate radiative decay of the χc state.

t-channel u-channel s-channel

Figure I.9: The three Feynman diagrams (t, u and s channels) of gg → cc̄ at tree level
(leading order of the perturbative expansion).

As an example of a global production scheme, the J/ψ indirect production from
gluon fusion through χc radiative decay is shown in figure I.8. The hard process
gg → cc̄ writes as a superposition of different perturbative QCD interactions schema-
tised by Feynman diagrams. At the leading order of the perturbative expansion,
there are three possible interactions: the so-called t, u and s channels shown in
figure I.9. In this way, the QQ̄ pair is created either in a color singlet state from the
t and u channels, which means i = k̄, or in a color octet state (i 6= k̄) from any chan-
nel, where i and k are the color indices of the quarks. Hadrons being usually color
neutrals, only the color singlet state contribution was first thought to hadronise into
a bound state (color singlet model [13, 14]), but the predictions underestimated the
data [15]. The proposed solution for this discrepancy was to add the color octet

14It is an effective theory that disentangles physics at the scale of the heavy quark of mass mQ,
relevant to the production of a heavy quark pair, from physics at the scale given by the bound
state’s binding energy mQv

2, relevant to the formation of the quarkonium (where v is the relative
quark-antiquark velocity).
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model contribution [16, 17], by turning the color octet states into a color singlet
by soft gluon exchanges with hadron remnants. The sum of the color singlet and
color octet contributions is in good agreement with the data [15], but the color octet
model introduces incalculable non-perturbative parameters, the color octet matrix
elements describing the transitions, which are determined by a fit to the data. Fur-
thermore, it does not give a good description of polarised charmonium production
data [18]. To conclude, the models for quarkonia production in p-p collisions lead
to rather good predictions of the pT spectra, but important uncertainties remain on
the actual mechanism (especially concerning the hadronisation). In section II.1, we
will discuss the typical times related to this production mechanism.

There are two major experimentally distinguishable ways to produce inclusive15

charmonia in high energy hadron collisions: the non-prompt production going indi-
rectly through the decays of produced B-mesons and bottomonia, and the prompt
production which goes either directly to the considered charmonia states - from a
charm/anti-charm quark pair produced in a gluon-gluon fusion subprocess -, or in-
directly through decays (”feed-downs”) of more excited charmonia states. In figure
I.10, the contributions of the different feed-downs to the J/ψ and Υ(1S) states are
summed up.

Figure I.10: Feed-downs from excited states: typical sources of prompt J/ψ (left panel)
and Υ(1S) (right panel) at low (top figures) and high (bottom figures) pT determined from
experiments ([19] and references therein).

I.1.4.3 The relevance of quarkonia in proton-proton collisions

For a few decades by now, the quarkonia (and the J/ψ in particular) have been
one of the most important sources of information about both perturbative and non-
perturbative QCD, as well as relevant probes for the hadronic matter formed in

15The inclusive production means that the initial colliding hadrons may be destroyed during the
scattering process and create a multitude of extra hadronic products that are not measured.
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ultra-relativistic heavy ion collisions (see section II.1). They are especially relevant
for the study of high energy collisions, or in other words in the low x regime16,
where only17 the quarkonia can be used [20] to study the unintegrated PDFs and to
distinguish among the equations of evolution (such as DGLAP18[21], BFKL19 [22]...)
towards the hard scales.

The theoretical treatment of the quarkonia is indeed simplified by the large mass
of their constituents (mc ∼ 1.3 GeV and mb ∼ 4.2 GeV) and their symmetry. First,
quarkonia are simple symmetrical two body systems in comparison to the three
body baryons or asymmetrical open mesons20. The theoretical determination of
their binding potentials and states are then more attainable. Second, the large mass
of their constituent quarks (mQ � ΛQCD) might guarantee the factorisations of the
different scales and the use of the Non-Relativistic QCD framework in their produc-
tion mechanism.

I.2 A deconfined state of matter: the quark-gluon

plasma

As explained in section I.1.2, in ordinary conditions the color charged particles
(quarks and gluons) are confined “within hadrons”. At extremely high temperatures
and/or density, the theory of QCD however predicts [23, 24] the existence of a “de-
confined” state of the nuclear matter, the Quark-Gluon Plasma21 (QGP). The idea is
that when the density of partons becomes really large, they have no distinguishable
partners for a specific hadron: they become unbound. Moreover, as the coupling
becomes relatively weak (asymptotic freedom regime) they can move “freely” inside
the QGP area. Besides the interest of studying a new state of matter in itself, the
QGP (and the phase transition to hadrons) may have played a crucial role at the
first moments of the Universe (up to a fraction of second after the Big Bang) and
may compose the core of dense neutron stars. The description of its properties and
behaviour may thus improve our understanding of the Universe history, of the QCD
dynamics in general and of strongly coupled many-body systems. Though (a priori)
impossible to observe directly in Nature, small droplets of QGP can be, in theory,
re-produced in heavy ion collisions at high energy colliders (e.g. the LHC).

16Small longitudinal momentum fraction carried by the initial-state partons, given by x ≡
2pz/
√
s in the center-of-mass frame, where pz is the longitudinal momentum of the considered

parton and s is the initial hadron energy.
17Their large masses might ensure the factorisations of perturbative and non-perturbative mech-

anisms.
18Dokshitzer-Gribov-Lipatov-Altarelli-Parisi. Also called collinear factorisation.
19Balitskii-Fadin-Kuraev-Lipatov. Also called kT factorisation.
20Open mesons are mesons with a quark and antiquark of a different flavour, e.g. the pion π+

(ud̄).
21Named by analogy with the electromagnetic plasma where the positive and negative electric

charges are unbound from each other.
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I.2.1 The QCD phase diagram from the lattice

The physical states of matter and the transitions between them, under the dif-
ferent conditions of temperature and density are usually summarised in graphical
representation called phase diagrams. Part of the phase diagram of partonic matter
can be theoretically determined from lattice QCD (lQCD) calculations.

As a discrete formulation of QCD, lQCD [25] is a powerful effective tool to in-
vestigate non-perturbative phenomena, among which QCD thermodynamics, hardly
accessible to analytical theories. The lQCD is based on the formal analogy between
Quantum Field Theory (path integrals in Euclidean space22) and Statistical Me-
chanics (partition functions). The QCD partition function [26],

Z(V, T, µB) =

∫
DAν Dψ̄Dψ e−SE(V,T,µB), (I.9)

indeed writes as a Euclidean path integral over gauge Aν , quark (ψ, ψ̄) fields. The
QCD thermodynamic variables are here the volume V , the temperature T and the
baryon chemical potential µB (associated to the baryon number density23). The
Euclidean action SE = SG + SF can be decomposed into a gluonic contribution,

SG(V, T ) =

∫ T−1

0

dx0

∫
V

d3x
1

2
Tr(FµνFµν), (I.10)

and a fermionic contribution SF ,

SF (V, T, µB) =

∫ T−1

0

dx0

∫
V

d3x

Nf∑
f=1

ψ̄f (γµ[∂µ − igsAµ] +mf − µγ0)ψf , (I.11)

which couples the gauge and the fermion fields (Nf flavours). The system under
consideration is then discretised and reduced to a 4D lattice (V = (Nspacea)3 and
T−1 = Nτa), where the quark and gluon degrees of freedom are respectively on
the lattice sites and the links connecting the sites. The number of these degrees
of freedom is then finite and the path integral ultraviolet divergences are naturally
regularised by the lattice spacing a. The path integrals are then computed over the
most relevant system configurations and extrapolated to the continuum limit a→ 0
while keeping some observables constant (e.g. some hadron masses). Finally, the
QCD equation of state can be obtained through the determination of thermodynamic
observables from the partition function such as the energy density ε, the pressure p,

22Which includes the imaginary time τ dimension, stemming from the Wick rotation τ = it, in
order to obtain the formal connection between Quantum Mechanics and Statistical Mechanics.

23The baryon number B is a conserved quantity defined as the difference 1/3(nq − nq̄) between
the number of quarks nq and antiquarks nq̄. To the corresponding baryon density can then be
associated a baryochemical potential µB which translates the change of free energy with respect
to a change in baryon number composition. Finally, note that the more energetic the heavy
ion collisions are, the smaller the stopping of the initial baryons gets, the smaller the baryon
density/chemical potential is.
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the free energy density f or the entropy density s:

p = −f =
T

V
lnZ(V, T, µB) (I.12)

ε− 3p

T 4
= T

d

dT

(
p

T 4

)
s

T 3
=
ε+ p

T 4

Figure I.11 shows the energy density and pressure variations with the temperature
obtained at zero baryon density (or chemical potential). As the energy density is

Figure I.11: Energy density and pressure calculated with the lQCD (3 light flavours,
µB = 0) with two different fermionic actions. The bars indicate the transition region
185 < T < 195 MeV. [27]

directly related to the effective number of degrees of freedom d (d ∝ ε/T 4 [28]), the
large variation around T = 190 MeV can be understood as a transition between a
hadronic gas (small d) at lower temperatures to a deconfined partonic phase (very
large d) at larger temperatures. At larger temperatures, the energy density increases
slowly but does not reach the Stefan-Boltzmann limit value εSB, which corresponds
to a perfect gas, indicating some remaining partonic interactions in the deconfined
phase. This is a first indication that the deconfined medium found for tempera-
tures T ∈ [200, 500] MeV might be a strongly-coupled QGP (sQGP) where some
correlations could survive. From the non-singular behaviour of the observables, one
might conclude to a cross-over transition between the two phases, i.e. a fast but
continuous transition where both hadron and parton degrees of freedom coexist.

At positive baryon density (i.e. when there are more quarks than antiquarks),
one can gather the results from lQCD - where new methods are required with larger
uncertainties as µB increases - and other models (MIT bag [29], NJL [30]...) to
suggest a phase diagram for the partonic matter as shown in figure I.12. It shows
a crossover in a region between 0 ≤ µB ≤ µcrit

B , a critical point [31] at µcrit
B , and be-

yond a first order transition [32]. During a first order transition (discontinuity in the
first derivative of the free energy), the temperature of the system remains constant
while the released energy is used to transform a phase into the other (mixed-phase
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regime). Other parameters such as the susceptibilities and the quark condensate
〈0|ψf ψ̄f |0〉 can be studied to describe the properties of the transitions such as the
transition order (see figure 8 in [33] for instance) or the modifications of the light
quark masses (restoration of the chiral symmetry in the deconfined phase). Last,
note that though the equation of state is rather well understood from lQCD calcu-
lations, the latter leads to more fluctuating predictions concerning other important
parameters and properties of the deconfined matter obtained in heavy ion collisions
(such as the actual temperature, the viscosity, the transport coefficients...) to which
heavy flavours could be relevant probes (see II.1).

Figure I.12: A schematic phase diagram of QCD as a function of temperature and
baryon chemical potential µB. The critical temperature (inflexion point) is evaluated to
Tc ' 170± 25 MeV (∼ 1012 Kelvin !) at µB ' 0 [34].

I.2.2 High energy heavy ion collisions.

For now, the unique way to reach such extremely high temperatures and/or
densities is to collide heavy ions (U-U, Cu-Cu, In-In, Pb-Pb...) in high energy
colliders such as the SPS24, RHIC or the LHC. Indeed, their numerous nucleons and
their high energy (ultra-relativistic velocity) ensure a high level of energetic particle
production within a relatively small volume (called fireball), that may lead to a
deconfined state if the conditions required by the phase diagram I.12 are reached.

As schemed in figure I.13, a heavy ion collision can be decomposed into few
successive stages from the two initial ions to the many hadrons observed in the
detectors. These stages corresponds to the Shuryak-Bjorken model where the QGP
is assumed to be produced. The next three subsections (I.2.2.1, I.2.2.2 and I.2.2.3)
describe this scenario.

24Super Proton Synchrotron
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Figure I.13: Schematic representation of the successive stages of a high energy heavy
ion collision from the initial ions to the many hadrons observed in the detectors.

I.2.2.1 The initial ions and the first fm/c following the impact

Due to their relativistic kinematics, the geometry of the initial ions is Lorentz
contracted along the beam axis, making them look like two “pancakes” in the lab-
oratory frame (instead of “spheres”). In parallel, all their internal timescales such
as the gluon lifetimes or the interaction times are dilated. As the collision energy
increases, gluons with smaller and smaller longitudinal momentum fraction x can
interact to produce particles of matter. Then, the amount of visible gluons increases
continuously with the collision energy and becomes much larger than the amounts
of valence and sea quarks (the latter being smaller by one power of the coupling
constant as they are produced by gluon splittings) [35]. The description of the ini-
tial parton compositions is usually realised through nuclear-PDFs (nPDFs) fAg,u,d...
such as EPS09, DSSZ... [36] They are not the simple sums of the nucleon PDFs
fNg,u,d...: they take into account the modifications caused by the interactions between
nucleons. In particular, these interactions can lead to a decrease (shadowing) or an
increase (anti-shadowing) of the gluon density in the initial nuclei relatively to the
one in nucleon collisions [37]. This modification is usually quantified through the
nuclear modification ratio,

RA
g (x,Q2) =

fAg (x,Q2)

AfNg (x,Q2)
, (I.13)

where A is the number of nucleons of the considered nucleus. For instance in figure
I.14, one can see the evolution of the RA

g (x,Q2) factor with the longitudinal mo-
mentum fraction x, at some fixed energy scales Q2, obtained with the lead nucleus
within the EKS98 nPDF model [38]. The shadowing effects are dominant at LHC
energies (RA

g < 1) whereas the anti-shadowing effects are predicted at SPS (lower)
energies (RA

g > 1). Note however that the anti-shadowing effect has never been
observed at SPS.

Unfortunately, the very large gluon density at high energies leads to processes
with multiple interactions inside the initial ions and shortly after the collision (as
shown in figure I.15), which should be described by highly nonperturbative methods
even if the couplings are weak [39]. In this regime, the nPDFs are no more relevant
(needs for “multigluon” states) and alternative methods should be used. The Color
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Figure I.14: Evolution of the ratio RAg as a function of longitudinal momentum fraction x
for fixed energy scales Q2 for a lead nucleus (A = 208). The energy scales are respectively
Q2 = 2.25 GeV2 (solid lines), 5.39 GeV2 (dotted), 14.7 GeV2 (dashed), 39.9 GeV2 (dotted-
dashed), 108 GeV2 (double-dashed) and 10000 GeV2 (dashed). [38]

Figure I.15: The many gluon scatterings in the dense regime lead to an infinite number
of Feynman diagrams at each order [39].

Glass Condensate (CGC) model proposes an effective description of the initial ions in
a “saturated” regime. Indeed, the gluon density enhancement should saturate from
a certain energy scale, thanks to non-linear gluon recombinations [40], and weak
coupling methods could still be used. Shortly after the collision, the CGC model
leads to the formation of a non-equilibrated medium (the “Glasma”). The Glasma is
composed of the initial interacting partons and the newly produced particles (light
and heavy quarks, direct photons...) originating mainly from gluon scatterings.
In a very short time, the particle density and the system temperature increase
dramatically. The system then locally equilibrates to form the QGP phase after a
∼ 1 fm/c (∼ 10−24 s) lifetime [41], but this equilibration is still poorly understood
within the CGC model.

I.2.2.2 The Quark Gluon Plasma stage

If the conditions are reached, the Glasma leads to a deconfined phase of the
partonic matter (the QGP) which should thermalise25 locally at LHC energies. The

25A medium is thermalised when the spatial fluctuations of the temperature are small compared
to its average value.
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QGP fireball has an initial spatial size of ∼ 10− 20 fm and might survive ≈ 5− 10
fm/c . The QGP lifetime depends on the spatial expansion of its constituent. As
the medium expands, its average temperature should decrease from a few Tc to Tc,
around which the parton degrees of freedom are thought to coalesce into hadrons
(see the freeze-out section below).

QGP properties are expected to depend on its temperature. Näıvely, at very
high temperatures (T � Tc), the coupling becomes very weak αs(T � ΛQCD)� 1,
and the QGP may behave like a gas of relatively weakly interacting partons. In this
case, the QGP has a large viscosity26, its evolution follows a viscous hydrodynamic
expansion, and its parameters obey approximatively Stefan-Boltzmann equation of
state: at µB = 0 its pressure and density are proportional to T 4 and its entropy to
T 3 [33]. For temperatures Tc . T . 5Tc (the region of current interest), the theoret-
ical expectations are more ambiguous. As shown in figure I.16, lQCD calculations
predict a deconfined medium with a low viscosity quite far from pQCD results [42].
The parton degrees of freedom may therefore interact relatively strongly, leading
to the so-called strongly interacting QGP (sQGP). The sQGP may behave like an
almost perfect fluid with very low viscosity which can be described by a quasi ideal
hydrodynamics.

Figure I.16: A compilation of lQCD predictions for the shear viscosity to entropy density
ratio as a function of temperature [43].

I.2.2.3 Hadronisation, physical and chemical freeze out

When the medium temperature decreases to the crossover region (figure I.12),
the parton degrees of freedom progressively hadronise into hadrons. These hadrons
may still interact inelastically with each other and with the nucleons that did not
interact initially (“nuclear absorption”). The so-called chemical freeze-out occurs
when the number and the nature of the hadrons gets fixed, i.e. when the hadro-
nisation and the inelastic scatterings stop. The medium then forms an expanding
hadron gas (with additional leptonic particles), which behaviour can be described by
kinetic theory. The so-called kinetic freeze-out occurs when the particle kinematics

26The (shear) viscosity quantifies the transverse momentum diffusion and is inversely propor-
tional to the fluid inter-particle cross section (or coupling). The larger the coupling, the smaller
the mean free path, the smaller the transverse energy diffusion and the viscosity.
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Figure I.17: Example of spatial expansion of the final particles produced in a high energy
ion collision (from ALICE detector at the LHC).

get fixed, i.e. when the elastic collisions stop. Finally, the hadrons or their decay
products and the other particles expand spatially toward the detectors where they
can be characterised (see figure I.17 for instance).

I.2.3 Experimental observables, observations and analysis.

The experimental quest for the production of a QGP, for the proof of its exis-
tence and the characterisation of its properties has started in the 80s. Since then,
several accelerators have focused on heavy ion collisions, progressively increasing
their energy from few GeV at the Alternating Gradient Synchrotron (fixed target)
to few thousands GeV at the LHC. A heavy ion collision is usually defined by:

• The nature of the chosen ions: Pb-Pb or S-U at SPS, Au-Au, Cu-Cu or U-U at
RHIC and so far Pb-Pb at LHC for instance. It can mainly have an influence
on the cold nuclear matter and initial state effects (see part II).

• Its energy through the center-of-mass energy per nucleon pair
√
sNN . The

center of mass referential is the laboratory referential in symmetric collisions.
Alternatively, one can use the beam energy per nucleon AGeV.

• Its centrality through the impact parameters b or the number of participants
〈Npart〉. The latter is the number of nucleons participating in the collision
(see figure I.18). It can be evaluated from the number of particles observed
in the detectors (called multiplicity) while using a simple geometrical picture
for the initial ions (e.g. the Glauber model [44]) [45]. The centrality can also
be expressed in terms of a percentage through the cumulative distribution
function, where 0% means that all the nucleons interact (central collision) and
100% means that no nucleon collides (ultra-peripheral collision).

As only an incredibly small (∼ 10−14 m) and short-lived (∼ 10−21 s) “bubble” of
QGP may be produced in these collisions, its experimental study is a great challenge.
In order to prove its existence and to describe its properties, one can only consider
indirect observables, i.e. the final hadrons. An observable is relevant if one can
distinguish the different medium effects (initial state, cold nuclear matter, hadronic
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Figure I.18: Schematic view of a noncentral (b 6= 0 or 〈Npart〉 < 〈Nmax
part 〉) high energy

heavy ion collision. Spectator nucleons (which do not collide - in grey) continue their
trajectories along the beam axis whereas participant nucleons (in the region where the
ions overlap) interact and produce many new particles (colored).

and/or partonic hot media, final state effects...). Quite generally, observables can
be divided into two categories: the soft and hard probes.

The soft probes are particles produced all along the process (they form the bulk)
and are used to describe the collective behaviours or thermodynamical properties.
They correspond mainly to the light quarks and gluons which form the fireball.
The related observables are for instance the corresponding low pT hadrons which
can be used to determine the flow [46, 47] and the critical temperature. But also
the thermal photons27 and dileptons [48, 49] which may be used to evaluate the
average temperature of the medium. In parallel, strangeness enhancement [50, 51,
52] could be a sign of chiral symmetry restoration28 (a possible consequence of QGP
production).

Hard probes are produced from pQCD processes in the first moments of the
collision (before the QGP phase) and can perform a “tomography” of the medium
if they propagate through it. For instance, high pT particles and open heavy meson
spectra can be used to probe the achieved densities as well as to evaluate transport
coefficients and test pQCD in a thermal medium. The quarkonia suppression could
be used to evaluate the medium temperature and probe the color deconfinement (see
part II). In parallel, as they do not interact strongly with the produced medium,
weakly interacting bosons (W± and Z) and prompt photons29 can help to constrain
the nPDFs [53, 54] and test the Glauber model [55].

Although these observables have been intensively studied both experimentally
and theoretically, it is not obvious to find an experimental signature of the QGP
production consisting in a unique observable. Indeed, most of the experiments may
pass through the crossover region (see figure I.12 for multiplicities at the chemical
freeze-out), leading to no plateau or sharp behaviors of the thermodynamic variables.

27Photons are said to be “thermal” when they are produced by the thermalised medium.
28The chiral symmetry is the invariance of the QCD Lagrangian with respect to the quark spin

orientation. It is spontaneously broken by the quark masses and is predicted to be restored at high
temperatures.

29Prompt photons are produced during the hard initial collisions.
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One should thus look for experimental results which cannot be explained by hadronic
models only, or alternatively one can determine some medium properties which are
consistent with the QGP formation (high energy density...). Though there is no
absolute proof for now (no net transition observed), the comparisons between data
and partonic and/or hadronic models tend to confirm the formation of a QGP from
SPS/RHIC/LHC energies. The community is now investigating its properties.

I.2.3.1 Light hadron multiplicity and hydrodynamic flow

Individually, light hadrons (formed by the light quarks u, d, and s) cannot be
used as probes of the QGP. Indeed, if the medium is deconfined, they cannot exist
inside the QGP and will only form at the phase boundary (between the QGP and
the vacuum) where the physics of hadronisation at the critical temperature is inde-
pendent of the interior properties [33]. Collectively however, these light hadrons can
bring insights into the produced medium through their integrated and azimuthal
multiplicity.

Thanks to its “independence”, hadronisation should always lead to a similar
“thermal” distribution of the light hadron multiplicities (see figure I.19), which can
be used in its turn to evaluate the critical temperature. Reciprocally, the presence of
such a hadronisation temperature can be seen as an indirect proof that the medium
was deconfined: if the hot medium was purely hadronic, the inelastic interactions
would not stop at such a high temperature and would a priori lead to distributions
corresponding to much lower temperatures.

Figure I.19: Comparison of thermal model predictions with RHIC (left) and LHC (right)
data. It is consistent with hadrons being produced at Tc ≈ 160 MeV. [56, 57]

According to the hydrodynamic model, the collective expansion (or “flow”) of
the light hadrons can be correlated to the QGP initial energy density, centrality and
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medium viscosity [58]. The flow can be studied through the multiplicity (N) distri-
bution at the kinetic freeze-out over the azimuthal angle φ in the transverse plane
(relatively to the beam axis) at different rapidity 30 windows. Some azimuthal flow
parameters vn can then be defined by a Fourier decomposition of the distribution,

dN

dφ
=
N

2π
(1 + 2v1 cos(φ− ψ1) + 2v2 cos(2(φ− ψ2)) + 2v3 cos(3(φ− ψ3)) + ...)

The first term corresponds to an isotropic radial flow, v1 to an anisotropic flow
called directed flow31, v2 to an elliptic flow with an “elliptic-like” shape, v3 to a
triangular flow with a “triangular-like” shape [60]... In the case of a noncentral
collision, the fireball should have an “almond” like shape in the transverse plane
(see schematic situation in figure I.20). Then, if the medium quickly thermalises (at
least partially), the radial pressure should vary with the direction and one should
observe an anisotropic transverse flow which is mainly radial and elliptic (following
the fireball shape).

Figure I.20: A noncentral collision leads to a fireball with an almond like shape in the
transverse planes (left). If the medium thermalises quickly, the pressure (and thus the
particle momenta) will be larger along the minor axis x, resulting in a mainly elliptic
anisotropic flow (right).

As shown in figure I.21, average (radial and) elliptic flows have indeed been
observed in heavy ion collisions, confirming the existence of collective effects in the
medium. The fits with hydrodynamic models (left panel) depict a medium which
behaves like a perfect fluid with a very low viscosity (shear viscosity to entropy
density ratio η/s ∼ 0.2 at LHC energies) [59, 61]. The elliptic flow evolution with the
collision energy (right) exhibits no transition, which can correspond to a continuous
transition (crossover) between the confined and deconfined phases. These elements
are consistent with the production of a sQGP as described in section I.2.2.2.

30The rapidity of a particle quantifies the boost along the beam axis required to go from the
laboratory frame to the frame where the particle has only a transverse momentum. It is computed
from the particle’s energy and longitudinal momentum with y = 1

2 ln E+pL
E−pL .

31A shift of the isotropic flow toward the direction of the azimuthal angle ψ1 and of strength v1
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Figure I.21: Left: The centrality dependence of average vn in
√
sNN = 2.76 TeV Pb+Pb

collisions measured by ALICE compared to viscous hydrodynamic model calculations [59].
Right: Average elliptic flow v2 dependence on the collision energy

√
sNN .

I.2.3.2 Light hadron suppression and jet quenching

The amounts of particles produced in heavy ion (AB or AA)32 collisions are usu-
ally compared to the ones produced in proton-proton (pp) collisions. The latter can
indeed be seen as a “reference” where no cold or hot medium effects can modify the
particle production. More precisely, one commonly studies the nuclear modification
factor RAA, i.e. the ratio of the cross section (or multiplicity N) in AA collisions to
the one in pp scaled by the total number of binary nucleon-nucleon collisions 〈Ncoll〉
evaluated from the Glauber model [44] as a function of the centrality,

RAA(pT, η) =
dNAA/d2pTdη

〈Ncoll〉 dNpp/d2pTdη
, (I.14)

where the standard variables are the transverse momentum pT and the (pseudo-)
rapidity33 η. If an AA collision is the simple superposition of nucleon-nucleon colli-
sions then the ratio RAA is equal to unity. On the contrary, if the particle production
and/or kinetics is modified by the cold and hot medium effects and is not the simple
superposition of nucleon-nucleon collisions, one obtains an RAA 6= 1. One usually
speaks of a production enhancement if RAA > 1 and suppression if RAA < 1.

To investigate the cold and hot media it can thus be interesting to study how
they change particle production and/or kinetics. For instance, one can focus on the
dependence of the RAA on the transverse momentum obtained for charged hadrons
h± or for specific hadrons.

• One can first observe that for the low pT hadrons (1 < pT < 5 GeV), the
suppression increases (the RAA decreases) with the collision energy and the

32Denoted AA (AB) if the ion A collides with a similar ion A (with a different type of ion B).
33The pseudorapidity is related to the angle θ of a particle relative to the beam axis and is

defined by η ≡ − ln
[
tan

(
θ
2

)]
= 1

2 ln
(
|p|+pz
|p|−pz

)
. The pseudorapidity is used instead of the angle θ

because its differences do not depend on the frame (Lorentz invariant).
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centrality (see figures I.22 and I.23). The energy dependence is consistent
with the evolution of the gluon shadowing as the collision energy increases
(see figure I.14): a relative lower gluon density leads to smaller production
cross sections. The centrality dependence is also expected from the increase
of the hot medium density and size which might lead to a higher average
number of scatterings and radiations per parton and to a larger pseudorapid-
ity broadening (the measurement is here limited to |η| < 1). The complete
characterisation of this suppression may thus be given by a complex mix of
shadowing, medium density and size, parton scatterings and radiations, flow,
hadronisation processes and final (in)elastic hadronic scatterings. Including
more or less of these ingredients, hydrodynamic [62] and microscopic trans-
port (Ultra relativistic Quantum Molecular Dynamics [63], Parton Hadron
String Dynamics [64]...) models attempt to describe the fireball behaviour
and lead to rather good experimental fits34.

Figure I.22: Left: For most central collisions, nuclear modification factors RAA of the
pion π0 and of the charged hadrons h± as a function of their transverse momentum at SPS
(
√
sNN = 17.3GeV ), RHIC (

√
sNN = 200GeV ) and LHC (

√
sNN = 2.76TeV ) collision

energies. [70]

• For central collisions at both RHIC and LHC (figure I.22), one can observe an
important suppression of the hadrons for 5 < pT < 10 GeV, followed by a linear
rise of the RAA for high pT hadrons (pT > 10 GeV) which levels off from ∼ 40
GeV at the LHC. The evolution of this suppression with the centrality (figures
I.22 and I.23) first shows that the productions of a hot and cold medium, in
most central and peripheral collisions respectively, result on very different

34The hot nuclear medium created in these collisions is such a dynamical and complex medium
that its description requires the use of all-included simulation codes.
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Figure I.23: At LHC energy, the nuclear modification factors RAA of the charged hadrons
h± as a function of their transverse momentum and for two different centrality ranges (left:
most peripheral and center: peripheral). See figure I.22 for the central situation. [70]

suppressions for high pT final hadrons. Furthermore, the independence of
the high pT suppression upon specific light hadrons (see figure I.24) suggests
that the main energy loss mechanism (see below) acts at the partonic level
[65]. Indeed, at the hadronic level the different hadrons would have different
interaction cross sections with the medium and would therefore be affected
differently. The high pT suppression can therefore be seen as a signature
of QGP production. A high energy parton should loose part of its kinetic
energy through radiation and elastic collisions as it propagates in the hot
medium. The radiative energy loss originates from medium stimulated gluon
emissions (“Bremsstrahlung”) and depends mainly on the parton momentum,
its propagation length within the medium and a transport coefficient. It is
predicted to dominate the collisional energy loss at high energies (see [66]
and references therein). Common models of radiative energy loss, such as
BDMPS35 [67], lead to a weak dependence of the energy loss ∆E on the
parton energy E. A decrease of the ∆E/E ratio (e.g. ∆E/E ∝ ln(E)/E)
as pT increases, can qualitatively lead to the RAA rise from pT > 10 GeV
and flattening from pT > 40 GeV. The dependence of radiative energy loss
on the propagation length might explain that the overall suppression at high
pT increases with the centrality, i.e. as the partonic medium size increases.
Finally, it is interesting to emphasise that all this complex physics of energy
loss interactions can be reduced to a single transport coefficient. The very
high pT suppression results in spectacular and relatively rare effects such as
jet quenching and monojet. A jet is a set of energetic final hadrons situated in
a narrow “cone” that come from the fragmentations of a very energetic parton.
The latter is usually produced in a back-to-back hard process together with
another equally energetic particle (parton, photon...) which can also result in
a jet in the opposite direction (“dijet”). If one of these partons interacts with
the hot medium (through energy losses), one observes the attenuation of the
corresponding final jet (“jet quenching”) or even its full suppression (leading
to a “monojet” if the second parton interacts weakly) [68]. The photon-parton
(“gamma jet”) situation is especially interesting because the photon does not

35Baier-Dokshitzer-Mueller-Peigné-Schiff model for induced gluon radiation.
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interact strongly with the hot medium and gives access to the initial parton
energy. Gamma jet are then relevant experimental probes to energy loss and
initial hot medium models [69].

Figure I.24: At LHC energy and for most central collisions, the RAA(pT) for different
light hadrons. [65]
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Main ideas and transition

To conclude, the experimental results and phenomenological models that we
have presented so far seem36 to confirm the production of a Quark-Gluon plasma
in high energy heavy ion collisions. The QGP is now pictured as a strongly (or
at least not very weakly) interacting, nearly perfect, quark-gluon fluid with a very
low viscosity, interesting collective behavior and at least partial thermalisation. It
is quite different from the initial expectations of a gas of very weakly interacting
quarks and gluons at high temperature. Based on this conclusion, the production of
a QGP in these collisions will be taken for granted in the next parts. We have seen
that the light hadron multiplicity (chemical abundance) allows the measurement of
the temperature at the boundary between the deconfined and confined phases and
sketched that jet quenching is a convenient way to access density profiles along the
path length. They are, however, not directly sensitive to the temperature. In the
next part, we will discuss another observable, “the suppression of quarkonia”, that
might allow one to measure the temperature beyond the phase boundary, i.e. of the
QGP itself.

36As no undeniable proof of net transition nor deconfinement has been observed for now, one
should remain cautious before coming to a final conclusion.
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Part II

Review on quarkonia suppression
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We now focus on the suppression of the quarkonia, a possible observable of the
quark-gluon plasma. The quarkonia are said to be suppressed when their amounts
detected per binary nucleon-nucleon collisions in heavy ion collisions are smaller
to the ones in proton-proton collisions. This is usually quantified by the nuclear
modification factor RAA defined in section I.2.3.2. In this part, after a discussion
on the relevance of heavy flavours in heavy ion collisions (section II.1), we discuss
the different possible phenomena which might play a role in quarkonia suppression
according to the standard wisdom, and describe the different approaches developed
with or without the presence of a QGP (section II.2). Then, we give an overview
of the experimental data and their puzzling evolution with the collision energy and
other kinematics (section II.3), and compare them to model predictions. Finally, we
expose the resulting problematics and the motivations for the present work (section
II.4).
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II.1 The relevance of heavy flavours in heavy ion

collisions

As introduced in the last part, quarkonia are an interesting probe to perform
a “tomography” of the hot nuclear medium. The heavy quarks indeed enjoy many
qualities [71].

1) The heavy quarks are produced at the very beginning of the collision in a
rather well mastered amount from hard gluon fusion37 and are mainly distributed
within the core of the fireball. Indeed, thanks to their large mass, the typical time
to produce a QQ̄ pair - the so-called “coherence” time - given by τc ∼ ~/(2mQ)
in the QQ̄ frame (τc ∼ 0.08 fm/c for the charm and ∼ 0.02 fm/c for the bottom
quark) is much smaller than the QGP formation time (. 1 fm/c) and the medium
life-time (∼ 10 fm/c). Furthermore, their thermal production during the evolu-
tion should be negligible [72]. Spatially, according to calculations derived from the
Glauber model [73, 74], their production density is favoured in the central part of
the overlapping area. The typical times required for the QQ̄ pair to bound into
quarkonium states, the so-called formation times in the vacuum, should be much
larger than τc but are subject to debate [19]. They might correspond to the time
interval required for the quarkonium wave functions to develop. In the QQ̄ frame,
it might be related to the difference of mass between the 1S and 2S states for
instance, i.e. τf ∼ ~/(m2S − m1S) ∼ 0.3 − 0.4 fm/c, or to the QCD scale, i.e.
τf ∼ 1/

√
2mQΛQCD ∼ 0.1 and 0.4 fm/c for bottomonia and charmonia respectively.

For higher excited states, the formation times are correspondingly larger. Note
that these estimations are assumed to be independent of the surrounding medium,
which could seem curious if the states form inside a very dynamic and dense pre-
equilibrium phase. It is therefore not obvious whether the states form before, during
or at the end of the deconfined medium stage. Last, note that radiative decays of
excited states (the feed-downs) occur far outside the medium, so that the feed-down
calculations can be realised independently of the considered model and produced
medium. The QQ̄ pairs or their bound states can thus propagate inside the high
temperature nuclear media and probe its properties all along its evolution.

2) The influence of the heavy quarks on the hot medium is negligible, but not
vice versa. Indeed, as they are produced in a quite small amount as compared to the
light quarks, they might not influence the global dynamics of the QGP and might
not modify its properties. Reciprocally, the observations of an elliptic flow for the
open heavy flavours [75, 76], the quenching of open mesons with high transverse
momentum [77] and the quarkonia suppression (see below), showed that the heavy
flavours quite strongly couple with the medium [78] and thermalise at least partially
with a probable delay due to their important inertia. For the single heavy quark and
unlike the light quarks, the radiative energy losses could not explain alone this strong

37As discussed in section I.1.4.2, one should however keep in mind that there are still doubts
about the actual production mechanism for the quarkonia and especially about their hadronisation.
Then, it is not obvious to evaluate physical quantities such as the time required for a quarkonium
state to be formed.
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coupling at intermediate/high transverse momentum [79, 80, 81]. A non-negligible
contribution of the collisional energy loss - from diffusion on light partons - was
then reconsidered [82, 83, 84]. At low transverse momentum, radiative energy losses
become negligible and the contribution of the collisional energy loss dominates [19].
For the quarkonia, as we will see in this part, the influence of the medium manifest
itself in a different way.

3) The quarkonia are thought to deconfine at larger temperatures than the critical
temperature Tc, leading to a possible evaluation of the medium temperature above
Tc [1] (see section II.2.1.2). To this end, the bottomonia offer several advantages
over the charmonia [19]. Firstly, in the µ+µ− decay channel, the relative abundances
of the Υ(1S), Υ(2S) and Υ(3S) states are 7 : 2 : 1, respectively, while it is 50 : 1
for the J/ψ and ψ′ states. Bottomonia excited states are therefore more accessible
to RAA experimental measurement. Secondly, Υ(1S) is the most strongly bound
state, allowing to probe a wider range of QGP temperature. Finally, the picture
gets simplified thanks to their larger mass, the absence of non-prompt production
channels, the small probability for uncorrelated bb̄ pairs to recombine at the phase
boundary38 (see II.2.1.4), their small nuclear absorption, comover cross sections and
expected shadowing (see II.2.1.1). However, the bottomonia initial production rate
is around 200 times smaller than the one of the J/ψ, making their statistic only
accessible from RHIC/LHC energies.

4) At the end of the evolution, heavy quarks hadronise to heavy mesons or
baryons. These heavy hadrons have a large inertia and might therefore be not so
sensitive to the elastic and inelastic collisions of the freeze-out stages. The heavy
hadrons are thus only weakly affected by the final hadronic phase and the informa-
tion about the heavy quark kinematics inside the QGP is not lost. The open heavy
flavours go even further in this way: according to fragmentation models [85, 86] and
unlike light quarks, their kinematics is very close to the one of the original heavy
quarks.

II.2 Common approaches to quarkonia suppres-

sion

In this section, we will first briefly discuss the different possible phenomena which
might play a role in the quarkonia suppression/enhancement in heavy ion collisions
as compared to pp collisions. They include partonic and hadronic aspects from the
initial to the final stage. Next, we will describe the different typical models, using
more or less of these ingredients, developed to predict or postdict the experimental
observations. A more extensive analysis of the theoretical approaches to quarkonia
suppression can be found in the literature [19].

38The number of produced bb̄ pairs is indeed much smaller than cc̄, diminishing the probability
for uncorrelated bb̄ pairs to recombine at the hadronisation stage.
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II.2.1 The different possible aspects of quarkonia suppres-
sion/enhancement in heavy ion collisions

II.2.1.1 Cold nuclear matter effects

These effects were initially studied to explain the observed quarkonia suppression
and strangeness enhancement while assuming a pure hadronic phase (i.e. without
QGP formation). However, they have been shown repeatedly to be insufficient to
describe the data ([87] and references below). Nevertheless, even with the forma-
tion of a QGP they might still play an important role in the quarkonia suppression
during the initial and final hadronic phases.

Shadowing

As the QQ̄ pairs mainly originate from gluon fusion, their production rate de-
pends on the initial gluon density. As already discussed in section I.2.2.1, the physics
of parton saturation at small x is described by the nPDFs or the CGC model.
Within the former, the gluon density of colliding nuclei is modified by the inter-
actions between nucleons, leading to a possible decrease (shadowing) or increase
(anti-shadowing) of the initial heavy quark production depending on the collision
energy (see figure I.14). The nPDFs have been mainly studied in p-A collision ex-
periments and can be used for A-A collisions resorting to the factorisation theorem
[19].

Figure II.1: Shadowing effect on J/ψ suppression obtained with EKS98 LO and nDSg
LO nPDFs in PbPb collisions at

√
sNN = 2.76 TeV [88, 89].

As illustrated in figure II.1, the quarkonia suppression obtained from the different
shadowing models (nPDFs) have mainly in common:

– The suppression decreases with increasing transverse momentum pT and be-
comes small at high pT .

– The suppression decreases with increasing rapidity.
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– The suppression is smaller with bottomonia.

– The shadowing can lead to a suppression of maximum ∼ 30%.

These effects can be understood from the expressions of the longitudinal mo-
mentum fractions of the fusing gluons as functions of these parameters (pT , y, mΦ)
and from the general shadowing pattern in a single nucleus39.

Cronin effect

During the first moments of the collision, the initial partons (among which the
fusing gluons) may undergo multiple elastic scatterings on the colliding nuclei leading
to a pT broadening known as the Cronin effect. Indeed, at each elastic collision the
partons acquire some transverse momentum - their initial momentum being almost
only longitudinal - and lead to a broadening of the quarkonia pT distributions in
p-A and A-A collisions as compared to p-p collisions.

Parton energy losses

The propagation of the initial partons and newly produced color octet QQ̄ pairs
inside the two colliding nuclei leads to collisional and coherent medium-induced
radiative energy losses40 and quarkonia suppression. The energy loss models are
based on the ideas that 1) the heavy flavours are produced before any hot medium,
2) τf in any of the nucleus frames is much larger41 than the nuclear size at LHC and
3) the QQ̄ pairs propagate with a high kinetic energy inside each of the colliding
nuclei. Thanks to the model success in describing the quarkonia suppression in p-A
collisions [90, 91], parton energy loss might be seen as the leading effect in these
collisions (and the shadowing effect as a simple correction). However, it has failed to
reproduce alone the observed suppression in A-A collisions, especially at RHIC and
for the Υ(1S) state [92]. One can nevertheless note a quite remarkable description
of the J/ψ suppression dependence on Npart in Pb-Pb collisions at LHC and that
the predicted quarkonia suppressions are up to ∼ 20% at RHIC (200 GeV) and to
∼ 40% at LHC (2.76 TeV) and should therefore be taken into account in addition
to the QGP effects (especially at forward rapidities).

Nuclear absorption

According to this model, the QQ̄ pair or its bound states can interact inelastically
with the nuclei right after its formation and dissociate. This is the so-called nuclear
absorption, which have presumably led to the “normal” suppression of the quarkonia
observed at SPS (see section II.3.1). The nuclear absorption has been especially
studied in p-A collisions in order to quantify its effects. Within the usual nuclear
absorption framework, the quarkonia survival probability Sabs inside a nucleus is

39See figure I.14.
40See section I.2.3.2.
41In the nucleus frame, one needs to apply a Lorentz factor to the τf computed in the quarkonia

rest frame.
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Figure II.2: The cross section σabs for the J/ψ shows a strong dependence on the
collision energy. Here, its estimated values at SPS and RHIC are compared to the EKS98
and CTEQ6 nPDFs prediction at midrapidity [88, 93].

expressed as an exponential decay,

Sabs = exp(−ρAσabsL) (II.15)

where ρA is the nuclear density, L the mean propagation length and σabs an “ef-
fective break-up” cross section, which is the inelastic cross section of a quarkonium
with a nucleon. The latter can be estimated from the analysis of p-A collisions and
be extrapolated to A-A collisions thanks to the Glauber model. The cross section
σabs was observed to decrease with the collision energy (see figure II.2) and its ex-
trapolation to LHC energies leads to a negligibly small cross section.

Comovers

The Comovers model was introduced in the 90s to explain the “abnormal” sup-
pression observed at SPS. It describes the quarkonium dissociation (or recombina-
tion) by inelastic interactions with the produced “comoving” hadrons hco of the
medium, leading to new open heavy mesons through the process QQ̄ + hco →
D/B + D/B + X or to quarkonia through D/B + D/B → QQ̄ + X. Similarly
to nuclear absorption, a corresponding approximate survival probability Sco can
be derived from the gain and loss differential equation in transport theory for the
quarkonium state Φ = J/ψ, ψ′,Υ(1S)... ,

Sco = exp

(
− σco

(
Nco −

NQNQ̄

NΦ

)
ln

[
Nco

Nf

])
(II.16)

where NQ (NΦ) the density of the considered heavy quark (quarkonium state) and
σco is the cross section of the quarkonium dissociation with the comoving medium of
density Nco. Thanks to the term ln[Nco/Nf ], the interaction stops when the comov-
ing medium density reaches its freeze-out value Nf . As Nco is proportional to the
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medium energy density, the quarkonia suppression is then continuously dependent
on the medium energy density. Without assuming any QGP, the comovers model
(including the shadowing) leads to a reasonable agreement (but limited) with the
data at RHIC and LHC [94, 95]. With the presence of a QGP, the comover con-
tributions could therefore occur during the mixed phase and the following hadronic
stage. Note finally that, thanks to the large gluon density in the QGP and to the
large cross section of quarkonium dissociation by gluons, an equivalent comoving
process might also occur in the partonic deconfined medium [96]. The latter will be
further discussed in section II.2.1.3.

II.2.1.2 Sequential suppression

In 1986, Matsui and Satz [1] were the first to predict that the quarkonia sup-
pression could be a sign of QGP production. Their so-called sequential suppression
model is based on the idea that quarkonium states could be melted by color screen-
ing effects. More explicitly, inside the QGP, the range of the strong interaction
binding the QQ̄ pair tends to be reduced by the presence of color charges in its
vicinity. The range of the screened force is usually described by the Debye screening
radius - by analogy with the electromagnetic plasma - and is inversely proportional
to the color charge density ε in the deconfined medium. Consequently, the higher
the temperature of the QGP, the smaller the Debye screening radius. Within its
dualistic description, the sequential suppression assumes that a quarkonium state is
melted if its radius is larger than the Debye radius while nothing happens if not. To
each state then corresponds a dissociation temperature Td above which the state is
completely melted, i.e. if TQGP > Td. Indeed, the heavy quarks of the melted state
are then assumed to move freely inside the QGP until the hadronisation, where it
is most probable that they hadronise as open heavy mesons. Hence, if this scenario
is correct, one should observe for the J/ψ a suppression by “steps” as the different
higher excited states (and their feed-downs) melt with increasing medium density
(see figure II.3). As the whole sequential suppression occurs in the very early QGP
where the temperature is maximal, one can thus see the quarkonia suppression as
an early QGP thermometer.

To “calibrate” the quarkonia thermometer, the different dissociation tempera-
tures Td need to be estimated. Unfortunately, this evaluation is far from being
obvious: several approaches have been developed and have led to a wide range of
results as shown in figure II.4. The most common approaches are the use of potential
models [99, 100, 101] or the evaluation of correlators and spectral functions in finite
temperature lQCD [102, 103]. Within the spectral function approach, the bound
states manifest themselves as peaks which are characterised by their mass and spec-
tral width (formation/destruction rate). One can then determine the dissociation
temperature when the spectral peak disappears while increasing the temperature
of the lattice (see figure II.5). Within the potential model framework42, the poten-
tial possible shapes and temperature dependences are determined either from “old”

42See section III.1.1.

50



Figure II.3: Illustration of the J/ψ sequential suppression as a function of the QGP
color charge density ε. ε(Φ) is the dissociation density of a state Φ. [97].

Figure II.4: Compilation of state dissociation temperatures Td evaluated from different
approaches and calculations: Lattice QCD, QCD sum rules, AdS/QCD , effective field
theories and potential models. One should note that these evaluations are performed
assuming different Tc values and that the horizontal bar corresponds to the temperature
extension where the state undergoes a mass/size evolution until it completely melts at the
right end of the bar (see [98] and references therein for more details).

effective models or more recent lQCD results. The energy and state spectra are
first determined with the time independent Schrödinger equation. The dissociation
temperature of a state Φ is then given by the cancellation of its dissociation energy,

Ediss(T ) = VQQ̄(r →∞, T )− (EΦ − 2mQ). (II.17)

where r is the distance between the two heavy quarks. For instance, the dissociation
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temperatures obtained with the QQ̄ internal energy (evaluated from a fit to lattice
results [104]) are summed up in figure II.6.

Figure II.5: The sequential suppression and the disappearance of the spectral compo-
nents as the QGP temperature increases [105].

Figure II.6: Reduced quarkonium dissociation temperatures as obtained with a potential
model [97].

II.2.1.3 Elastic and inelastic collisions with hard probes: the cross sec-
tions approach

Another important contribution to the quarkonia suppression in the QGP could
originate from inelastic collisions with the medium gluons and light quarks, which
cross section calculations can be treated with pQCD [19]. In the QGP, for a tightly
bound state (dissociation energy Ediss > T or very small size), the dominant inelastic
process is the hard gluo-dissociation of the quarkonium Φ introduced by Bhanot and
Peskin [106, 107, 108, 109], g + Φ → Q + Q̄, so that a sufficiently energetic gluon
can break the binding. The gluo-dissociation cross section calculation carried out
within the dipole approximation and operator product expansion [106] yields

σg−Φ ∼
1

m2
Q

(k/EB − 1)3/2

(k/EB)5
, (II.18)

where k is the gluon momentum in the Φ rest frame and EB = 2mQ−mΦ the binding
energy. In a formulation where the color screening is taken into account, σg−Φ

depends on a temperature dependent dissociation energy which can be evaluated
from the screened potential models as in section II.2.1.2. The gluo-dissociation
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is only expected to be efficient in a hot deconfined medium because the gluons
coming from hadrons are too soft to allow this process [97] (see figure II.7). The
J/ψ suppression obtained with the gluo-dissociation process is illustrated in figure
II.8. For loosely bound states (Ediss < T , i.e. for excited and partially screened
states), the phase space for gluo-dissociation rapidly shuts off, rendering the parton
dissociation p + Φ → Q + Q̄ + p (where p = q, q̄ or g) the dominant process [110].
Of course, the reciprocal recombination process p+Q+ Q̄→ Φ + p is also possible.
The knowledge of the inelastic cross sections leads to the evaluation of one of the
key transport coefficients - the inelastic reaction rates for dissociation and formation
- commonly used by transport models to continuously flip between quarkonia and
“free” Q+ Q̄ (see section II.2.2.2).

Figure II.7: Comparison between gluon and hadron cross-sections for J/ψ dissociation
[106]. In a deconfined medium, the typical thermal gluon momentum of ∼ 1 GeV cor-
responds to a large dissociation cross-section. Whereas in a confined medium, hadron
typical thermal momenta (up to 2 - 3 GeV) lead to vanishingly small cross-sections [97].

Figure II.8: Illustration of the J/ψ suppression obtained from gluo-dissociation as a
function of the medium density [97].

The calculations of the quarkonia and heavy quarks elastic cross sections for
the processes Φ/Q + p → Φ′/Q + p (where Φ′ can be Φ or another state) have
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also been carried out to study their diffusion in the medium [106, 109, 111]. They
have received recently a renewed attention [109] with the perspective of explaining
the “suppression of the suppression” observed at RHIC and LHC (see section II.3).
From the elastic cross sections, one can evaluate the collisional energy loss and the
diffusion coefficients used by kinetic equations (Fokker-Planck, Boltzmann...) for
the evolution of the quarkonium center-of-mass motion [109, 112].

II.2.1.4 Recombinations

The recombination was first introduced to explain the observed “suppression of
the suppression”. It predicts an enhancement of the quarkonium production from
a recombination of uncorrelated Q and Q̄ at the phase boundary [113]. The idea
of a recombination mechanism at the phase boundary is commonly used within the
statistical hadronisation and transport approaches, and will be further discussed in
section II.2.2.

II.2.2 The different models

II.2.2.1 Statistical hadronisation models

Driven by its successful description of light hadrons multiplicity (see figure I.19),
the statistical hadronisation model has also been applied to the quarkonia yield.
This model is based on the possible secondary production of quarkonia from recom-
binations of uncorrelated Q and Q̄ at the phase boundary [113, 114, 115]. This
secondary production might occur only if the number of uncorrelated heavy quarks
NQ in the medium is statistically non-negligible in comparison to the light quarks.
NQ is directly proportional to the number of heavy quark pairs produced from the
primary production (from gluon fusions), and should therefore increase with the
centrality. It also increases with the collision energy: one expects the production of
a hundred QQ̄ pairs at LHC and around ten times less at RHIC [116, 117]. The
recombination is expected to increase quadratically with NQ, so that at high energy
density (which increases with Npart and

√
sNN) it becomes the dominant production

mechanism (see figure II.9). Furthermore, it should be favoured at mid rapidity -
the phase space region where the charm yield is the more important - and should
be observed dominantly at small pT because single heavy quarks are expected to
thermalise at least partially with the medium [118]. Then, its contribution might
be important at LHC, moderate at RHIC and negligible at SPS. Some hints that
the recombination process would occur are the enhancement of the closed to open
heavy hadrons ratio with the density energy or the observation of quarkonia elliptic
flow (which should be negligible with only neutral primary quarkonia). Finally, note
that it could be a deal breaker for the idea of a quarkonia thermometer.

Within the statistical hadronisation models, the initial QQ̄ pairs get first fully
color screened in the deconfined QGP as the other partons. Then, assuming that
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Figure II.9: Comparison between the expected RAA from screening only and from
statistical recombinations [119].

the QGP reaches a thermal and chemical equilibrium at hadronisation, the single
heavy quarks hadronise with light or heavy quarks at the phase boundary to form
open hadrons or quarkonia according to their statistical weights and masses. The
statistical weight of the different states is given by the corresponding statistical
distribution at the hadronisation temperature (which is already fitted to the light
hadron multiplicities). The ψ′/J/ψ ratio measurement should then be a crucial test
for its predictions. The only uncertainties of the model are the initial QQ̄ pair yield,
which is usually calculated using the nPDFs and the values of the baryon chemical
potential, temperature and medium volume (the fireball decay is considered as a
grand canonical ensemble).

II.2.2.2 Transport models

As already introduced in the introduction I.2.3.2, the transport models are the
necessary almost “all-included” simulations which attempt to describe the dynamic
behaviour of the fireball from the initial colliding hadrons to the final freeze-out
[112, 63, 64]. They are usually based on more or less of the following ingredients
[19]:

– Primordial productions of light and heavy quarks from pQCD and nPDFs
(including the shadowing).

– The initial cold nuclear matter effects such as the nuclear absorption and the
Cronin effect.

– The quarkonium formation times τf which affect quarkonium suppression at
high pT [120].

– An initial sequential-like suppression of the quarkonia in the early QGP: if
T (τf ) > Td the state melts, otherwise forms.
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– An isotropically expanding fireball model, with local temperatures, reproduc-
ing the measured hadron yields and phase space spectra, or alternatively an
hydrodynamic description.

– For the quarkonia in the deconfined matter, a space-time evolution of the
phase-space distributions fΦ described by classical kinetic equations43 such as
the relativistic Boltzmann equation (or the rate equation),

pµ∂µfΦ(~r, ~p, τ) = −EpΓΦ(~r, ~p, τ)fΦ(~r, ~p, τ) + EpβΦ(~r, ~p, τ), (II.19)

where p0 = Ep = (~p 2 + m2
i )

1/2, ~r is the spatial coordinate, τ the proper time,
ΓΦ the dissociation rate and βΦ the formation rate which depends on the single
heavy quark phase-space distributions. The quarkonia then propagate along
straight lines until their possible dissociation into two single heavy quarks. The
dissociation and formations rates are evaluated from the inelastic cross sections
of the Φ + p � Q + Q̄ + p processes (see II.2.1.3). The latter depend on the
quarkonium dissociation energies which are determined from simple or color
screened potentials (see III.1.1). The dissociation rate can also be evaluated
from the finite widths of the states while using imaginary potentials from
lQCD [121, 122, 123]. The single heavy quarks are evolved with an equivalent
Boltzmann equation but with an additional diffusive term determined from the
elastic cross sections of the process Q+p→ Q+p (see II.2.1.3). In practice, one
can also use the Fokker-Planck equation44 (or relativistic Langevin simulations
[112]) which drag and diffusive coefficients are derived from the elastic cross
sections. The theoretical advantage of the Fokker-Planck equation over the
Boltzmann equation - which assumes a diluted medium - is that it can be used
without making any assumption on the medium density.

– A secondary quarkonia production from recombinations at the phase boundary.

– The final elastic and inelastic scattering from cross sections calculations.

– Quarkonia feed-downs from excited states and non-prompt productions.

The most widespread transport simulations treating of the quarkonia are the
TAMU by Zhao et al. [124, 125] and THU by Liu et al. [126, 127] models, which
differs mainly on their ratio of primary/secondary quarkonia productions and on
details of the implementation (potential model...).

II.3 Experimental observations: from SPS to LHC

Since the 80s, the production of quarkonia in heavy ion collisions - and especially
of the J/ψ - has been intensively investigated experimentally. The p-A collisions
have allowed the study of the (anti-)shadowing effect and the propagation of heavy

43The kinetic equations describe the time evolution of a system consisting of a large number of
particles.

44The Fokker-Planck equation is derived from an expansion of the Boltzmann equation within
the Brownian approximation. See part IV for more details.
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hadrons inside the cold nuclear matter. In AA collisions, the formation of a QGP
was expected to be obtained from SPS energies and with larger and larger life-times
and temperatures as the collision energy increases at RHIC and LHC. As many
extensive reviews can be found in the literature [19, 109, 128], we will only focus on
the main experimental data relevant to the present work.

II.3.1 SPS

The Super Proton Synchrotron (SPS) and its various experiments (NA38, NA50,
NA51, NA60...) have explored different kinds of ions and energies: 158 AGeV
(
√
sNN = 17.3 GeV) in In-In and Pb-Pb collisions, 200 AGeV (

√
sNN = 19.4 GeV)

in S-U collisions and 400 AGeV in pA collisions (where A is either a Be, Al, Cu,
Ag, W or Pb ion). To get rid of the systematic errors45 and to give a reference mea-
surement46, the quarkonia cross sections are normalised by the medium-independent
cross sections of the Drell-Yan (DY) process (q + q̄ → γ/Z → µ+µ−). The first in-
dication of QGP production came from the observation of an abrupt “abnormal”
suppression of the J/ψ from semi-peripheral Pb-Pb collisions (see figure II.10 - left
and right panels).

Figure II.10: The ratio cross sections J/ψ/DY (left panel) and ψ′/DY as a function of L
(center panel). L is the penetration length inside the nuclear matter, determined from the
Glauber model and the geometry of the collision. The same ratios divided by the expected
values from cold nuclear matter effects deduced from p-A collisions (right panel).[129]

By abnormal suppression, one means that the suppression does not follow the
expected linear behaviour of the cold nuclear matter suppression which corresponds
to the solid lines. In the right panel (where the expected suppression from cold
nuclear matter effects is subtracted), the flattish part of the Pb-Pb collision spectrum
confirms that the abnormal suppression is not due to the mere transition from pA
to AA collisions. This first indication with the J/ψ was soon followed by an even
more revealing measurement: the ψ′ abnormal suppression (see the central and

45The systematic errors are related to the detection efficiency, the beam intensity and luminos-
ity... and are too important at SPS to obtain correct quarkonia cross sections.

46The reference measurement (which is not influenced by the medium effects) at RHIC and LHC
is played by the quarkonia cross sections in pp collisions.
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right panels). One can indeed observe that its abnormal suppression begins from a
smaller penetration length and is higher by a factor ∼ 2.5. Such behaviours might
correspond to the sequential suppression by color screening predicted by Matsui and
Satz [1] but .

II.3.2 RHIC

Figure II.11: Nuclear modification factorRAA data for the J/ψ as a function of centrality.
Comparison of the J/ψ suppression between SPS and RHIC energies at mid rapidity and
low pT [130, 131].

With a maximum collision energy (
√
sNN = 200 GeV) more than ten times larger

than at the SPS, the Relativistic Heavy Ion Collider (RHIC) and its PHENIX and
STAR detectors are almost only dedicated to heavy ion collisions (p-p, d-Au, Cu-
Cu, Au-Au, U-U and Cu-Au). At this energy, the theory predicts the production of
a QGP with a maximum initial temperature well above the critical temperature Tc
and a much larger production of QQ̄ pairs (which improves the statistics that was
lacking at SPS).

Whereas a larger suppression of the quarkonia was expected at RHIC due to a
higher QGP initial temperature and density, the data actually led to a surprising
equivalent J/ψ suppression at RHIC and SPS for mid rapidities (see figure II.11).
This was the first observation of the so-called “suppression of the suppression”47.
The popular explanation is the balance at RHIC between an initially larger suppres-
sion and a final statistical recombination. In figure II.12, one can see a comparison
between different kinematic regions for the J/ψ suppression at RHIC. As expected
from recombinations but not from the shadowing, the J/ψ states measured at for-
ward rapidity are more suppressed than at mid-rapidity (see left panel). The trans-

47When one observes less suppression than expected.

58



port models quite well describe both these suppressions (as shown in figure II.15).
The J/ψ states measured at low transverse momentum pT are more suppressed than
at high pT (see right panel). At first sight, this could seem a bit curious as one would
expect less suppression at low pT from the statistical recombinations. The high pT
data (red dots) are not well described by transport models whereas the low pT data
(black open circles) are reasonably well described by the statistical hadronisation
model [132]. At high pT , the observed plateau for 170 . Npart . 320 can be seen
as a sign of sequential suppression. The suppression difference between the low and
high pT regions could be explained by the more important screening, shadowing
and cold energy loss effects expected at low pT , assuming that the recombination is
negligible. Finally, note that there is not yet data at RHIC for other charmonium
states (such as the ψ′).

Figure II.12: RAA data for the J/ψ as a function of centrality. Left: Comparison between
mid and forward rapidities for low pT inclusive J/ψ suppression [133]. Right: Comparison
between low pT < 5 GeV/c (black open circles) and high 5 < pT < 14 GeV/c (red dots)
inclusive J/ψ suppression at mid rapidity (|y| < 0.35 and |y| < 1 respectively). The high
pT J/ψ suppression is compared with TAMU and THU transport models [134].

In figure II.13, the elliptic flow v2 of the J/ψ is compared with the v2 of lighter
hadrons and various theoretical models. It is compatible with zero for pT > 2 GeV/c,
showing that intermediate pT J/ψ do not thermalise with the medium, whereas very
low pT J/ψ shows some signs of thermalisation. The agreement between the data
and the different model calculations is quite poor, and tends to show that the final
recombination should be moderate (but nevertheless finite) to be compatible with
a non flow situation for pT > 2 GeV/c.

For bottomonium states, the RAA of the Υ(1S) state as a function of centrality
are shown in figure II.14. The Υ(1S) is quite strongly suppressed for central colli-
sions but less than the J/ψ. Furthermore, its suppression starts at higher centralities
than the J/ψ (i.e. at higher densities and temperatures). Both these observations
support the sequential suppression point of view. Nevertheless, none of the theo-
retical models presented here fits the data. The Υ(2S + 3S) data are unfortunately
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not yet exploitable due to large systematic errors [135].

Figure II.13: Left: Elliptic flow v2 of the J/ψ and charged hadrons at mid rapidity in 0-
80% central events. Right: Elliptic flow v2 of the J/ψ compared with different theoretical
model calculations ([29] and [33] are from THU transport model; [30] and [32] from TAMU
transport model) [136].

Figure II.14: RAA data for the Υ(1S) as a function of centrality compared to various
theoretical models [135].

II.3.3 LHC

With a collision energy (
√
sNN = 2.76 TeV) more than ten times larger than at

the RHIC (history repeats itself...), the Large Hadron Collider (LHC) and its AL-
ICE and CMS detectors study heavy ion collisions (Pb-Pb). At this energy, theory
predicts the production of a QGP with a maximum initial temperature of few times
the critical temperature Tc, a longer life-time and a larger production of QQ̄ pairs
with a better access to bottomonia than at RHIC.

As shown in figure II.15, the J/ψ states with low transverse momentum pT are
less suppressed at LHC than at RHIC for both mid and forward rapidities. This
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Figure II.15: RAA data for the inclusive low pT J/ψ as a function of centrality, compared
with various model calculations [137]. Left: Comparison between RHIC and LHC results
at mid rapidity and pT > 0 (dominated by low pT J/ψ). Right: Comparison between
RHIC and LHC results at forward rapidity and for pT > 0 and 0 < pT < 8 GeV/c
respectively.

Figure II.16: Left: RAA data for the high pT J/ψ at mid rapidity as a function of
centrality. Comparison between RHIC and LHC results for inclusive and prompt J/ψ
respectively (no big differences between prompt and inclusive RAA) [138]. Right: Com-
parison with TAMU transport model predictions.

is once again a “suppression of the suppression”. Its most probable explanation is
once again the statistical recombination, leaving open the question whether all cc̄
pairs melt at the LHC. Transport models which include a significant recombination
component indeed give a reasonable agreement with the forward rapidity data but
overestimate the suppression at mid rapidity. At the opposite, the J/ψ states with
high transverse momentum pT are more suppressed at LHC than at RHIC and more
suppressed than at low pT (see left panel in figure II.16). One observes a smooth
increase of the suppression towards a probable plateau at RAA ∼ 0.2 for most central
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collisions. It does not correspond to any sequentially suppressed feed-downs con-
tributions. This is nevertheless compatible with a more important color screening
due to higher temperatures/densities and a negligible recombination contribution
(which is less and less probable with increasing pT ). With these ingredients, the
transport model shown in the right panel roughly describes the data. In contrast,
the shadowing or energy loss calculations48 alone have led to a clear disagreement
with the data [19].

Figure II.17: Left: Comparison of the elliptic flow v2 of the J/ψ at LHC for forward
rapidity and at RHIC for mid rapidity [139]. One can note that an equivalent elliptic flow
is also observed by CMS at mid-rapidity [140]. Right: To compare, the elliptic flow v2 of
the charged hadrons at LHC for mid rapidity [141].

The J/ψ elliptic flow v2 at forward rapidity is shown in figure II.17 (left panel)
and compared to transport models, and charged hadrons v2 at mid rapidity (right
panel). Whereas the elliptic flow was consistent with zero at RHIC, a positive v2 is
obtained at LHC for intermediate 2 < pT < 6 GeV/c. This elliptic flow might result
from a partial thermalisation of both recombined (pT . 2.5 GeV/c) and primordial
(pT & 2.5 GeV/c) J/ψ contributions. It favours scenarios with an important frac-
tion of J/ψ coming from recombination (as single heavy quarks interact much more
that “neutral” bound states) or with a partial thermalisation of the cc̄ pairs in the
medium. Both transport models - which include a significant fraction of recombina-
tion - shown here give a reasonable agreement with the data.

The comparison between the ratio of ψ′ to J/ψ in Pb-Pb collisions and the one in
p-p collisions is shown in figure II.18 (left panel). An important difference appears
between two kinematic regions. As one could expect from sequential suppression
(ψ′ more suppressed than J/ψ), at midrapidity and high pT the ratio of ψ′ to J/ψ
in Pb-Pb collisions is smaller than in p-p collisions. However, at forward rapidity
and intermediate/high pT , the ψ′ to J/ψ ratio is surprisingly larger in Pb-Pb than
in pp, i.e the ψ′ is less suppressed than J/ψ, which is in total contradiction with the

48Note that as the RAA(pT ) distributions of the heavy flavours [137, 138] are really different
from light flavours (discussed in the introduction I.2.3.2), it shows that the energy loss processes
act very differently on quarkonia if they undergo any.
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sequential suppression and other effects too ! Neither the statistical hadronisation
nor the transport models are able to explain such a behaviour (right panel) [142].
This effect is not observed in pA collisions [91] and should therefore not originate
from shadowing or energy loss. For now, the only model which seems to be able to
give such an inversion is the comover model (with dissociation and recombination)
[143].

Figure II.18: Left: Double ratio of measured prompt yields
(Nψ′/NJ/ψ)PbPb / (Nψ′/NJ/ψ)pp as a function of centrality, for the mid rapidity
(blue squares) and forward rapidity (red circles) [144]. Right: Transport and statistical
hadronisation models corresponding predictions.[142]

Figure II.19: RAA data for the Υ(1S) and Υ(2S) as a function of centrality (left) and
transverse momentum (right) [145].

As shown in figure II.19, the bottomonia are more suppressed at LHC than at
RHIC. In the vein of the sequential suppression, the Υ(2S) state is more suppressed
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than Υ(1S) and gets almost entirely melted starting from a certain centrality. More-
over, both states seem to reach a plateau from a certain centrality. Finally, the Υ(3S)
state is so strongly suppressed that only an upper limit of RAA(Υ(3S)) < 0.10 with
a 95% confidence level could be estimated [145]. As shown in figure II.20, the trans-
port models (with a small recombination contribution) and the anisotropic hydro-
dynamics49 can describe pretty well Υ(1S) data, but fail for Υ(2S). Moreover, the
statistical hadronisation model clearly underestimates the suppression (figure II.21).
The RAA dependence on transverse momentum (and rapidity) is interestingly flat
for both states (see the right panel of figure II.19). It shows that their suppression
process is not quite sensitive to their velocity and direction of propagation.

Figure II.20: RAA data for the Υ(1S) and Υ(2S) as a function of the centrality compared
with TAMU transport model (left) and aHYDRO model calculations (see section IV.2.1.1)
(right) [19].

Figure II.21: RAA data for the Υ(1S) as a function of the centrality compared with
statistical hadronisation model [146].

49See section IV.2.1.1
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II.4 Problematics, motivations and perspectives

We now wish to discuss the motivations for the present work. To this end, we
first briefly sum up the irregular description of the data given by the common models
and point out their questionable assumptions. As an answer, we then introduce the
basic ideas of our model and its perspectives.

II.4.1 The main models: an irregular description of the data
and criticisms

We have seen in section II.3 that the different models suffer from an irregular
description of the data...

1) The sequential suppression is a priori not observed for the charmonia RAA

- exception made of some light “plateaus” - but may be masked by other
effects such as recombination and cold nuclear matter effects. Furthermore,
the observation of a ratio “RAA(ψ′/J/ψ)” > 1 at forward rapidity is in total
contradiction with its predictions. Nevertheless, a sequential like suppression
is observed for the bottomonia, which are much less sensitive to other effects.
Indeed, at RHIC the suppression of the Υ(1S) begins from a relatively large
centrality. At LHC, a plateau at RAA ∼ 0.4 indicates that only the direct
Υ(1S) survive and that the excited states (and their feed-downs) are almost
entirely melted (as confirmed by the Υ(2S) and Υ(3S) data which are small
but not null).

2) The statistical hadronisation model leads to a rather good description of the
J/ψ suppressions at SPS, RHIC and LHC, nevertheless tarnished by large
uncertainty bands. At the opposite, there is a clear disagreement between its
predictions and the observed RAA for the ψ′/J/ψ ratio and the Υ(1S) at LHC.

3) The transport models are irregular with the J/ψ suppression in the different
kinematic ranges at RHIC and LHC. Moreover, they are unable to describe
the ψ′/J/ψ ratio at forward rapidity. Finally, the bottomonia suppression is
correctly described at LHC but not at RHIC.

... which still leaves room for theoretical improvements. Furthermore, these models
are based on some questionable assumptions:

1) The sequential suppression assumes that the fate of the quarkonia is entirely
decided in a very early stationary QGP. If a state is melted (Tmax

QGP > Td), the
corresponding Q and Q̄ are assumed to move freely inside the QGP until the
hadronisation where they hadronise into open mesons. In other words, the QQ̄
pair is assumed to decorrelate very quickly and entirely, which might only be
valid in a weakly-coupled QGP. It is nevertheless far from being obvious in a
strongly-coupled QGP - as it is nowadays pictured - where their propagation
should be very different. At the opposite, if a state can form (Tmax

QGP < Td),
the evolution of the corresponding quarkonia in the medium is assumed to
be completely adiabatic: no dissociation nor transitions to other states are
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possible. Though, the evaluation of the dissociation and formation rates from
hard inelastic scatterings (see II.2.1.3) and the recent lQCD studies on the
finite life time of bound states in a deconfined medium [121, 122, 123] tend to
show the nonadiabaticity of the evolution. Furthermore, the J/ψ elliptic flow
measurement suggests that both recombined (pT . 2.5 GeV/c) and primordial
(pT & 2.5 GeV/c) J/ψ partially thermalise [139]. In a “quasi-stationary” ver-
sion of the sequential pattern, the formation time of the states in the vacuum
are taken into account by comparing the dissociation temperature with the
local temperature TQGP(τf , ~x). Unfortunately, as already discussed, both the
determinations of the dissociation temperatures and of the formation times
are not obvious (see figure II.4 and section II.1 respectively).

2) The statistical hadronisation model assumes on the contrary that the fate of
the quarkonia is entirely decided at a quasi-stationary phase boundary. Indeed,
the initial QQ̄ pairs are first assumed to be fully dissociated in the deconfined
QGP, then to equilibrate with the medium and finally to hadronise into open
hadrons or quarkonia according to their statistical weight and mass. However,
the full decorrelation of the initial QQ̄ pairs is far from being obvious according
to lQCD calculations (static potentials and spectral functions) and especially
if the tight and small bound states (such as J/ψ and Υ(1S)) form before the
deconfinement. Furthermore, because of their large inertia and small cross
sections with the medium [147], it is not obvious that the heavy flavours get
thermally equilibrated (and without any delay) with the very dynamic QGP
created in heavy ion collisions. Moreover, the elliptic flow measurement of the
J/ψ rather shows a partial thermalisation only.

3) The transport models correspond to a more dynamical view of the dissoci-
ation/formation processes. As in the quasi-stationary sequential suppression
model, a state is initially melted if Tmedium(τf ) > Td and the corresponding QQ̄
pairs fully decorrelated. But if a state is initially formed, the corresponding
QQ̄ pairs can still be dissociated or recombined during the evolution through
inelastic collisions. As discussed in sections II.2.1.3 and II.2.2.2, the dissoci-
ation/formation rates are evaluated from inelastic cross section calculations.
Though the criticism of the transport models is beyond the scope of this the-
sis, at first sight it could seem curious i) to use a cross section approach in a
situation where one cannot assume the in and out states to be defined asymp-
totically, though one of its basic postulate [5]; ii) to use a perturbative approx-
imation [106] for a non perturbative problem; iii) that the multipartonic effect
is neglected during a single q/g + Φ interaction (“stationary” assumption).

II.4.2 The need for a real-time quantum treatment

As shown in the previous section, there is not yet a perfect theoretical description
of the observables and some of the basic assumptions of the models are unjustified (or
might be even ruled out by the observations). Furthermore, some observables can not
be easily explained by the models, e.g. the suppression of the J/ψ suppression or the
ψ′/J/ψ ratio at forward rapidity. Instead of assuming any (quasi-)stationary
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media/quarkonia, formation times, full decorrelation, or adiabaticity...
one can go back to the “reality”: nothing is instantaneous, nothing is
stationary, nothing is adiabatic and nothing is fully (de)coupled. Basically,
one can say that the QQ̄ pairs are produced before the QGP formation, propagate
and interact continuously inside a deconfined and dense medium which is expanding
and cooling down very rapidly. Whether the QQ̄ pairs emerge as bound quarkonia or
as open hadrons is only resolved at the end of the evolution, and one should then
beware of the quantum coherence/correlation during the whole evolution
(see figure II.22 for illustration) [148, 149, 150]. In simpler words, as Young and
Shuryak write [2]: “In a nutshell, the main issue is how small is the separation in
the [QQ̄] pair when the QGP is over, not in which particular states they have been
during this time”. Unfortunately, the description of this real-time dynamics requires
to solve a very complicated quantum field theory problem at finite temperature
T (t). Even if solving this full problem is out of reach of the present theoretical
methods, one can identify some effective models preserving most of the quantum
features. They should lead to a dynamical and continuous picture of the dissociation,
recombination, energy exchanges and possible transitions to other bound states,
instead of the usual “coupled or decoupled” binary picture.

Figure II.22: Schematic drawing of the QQ̄ life and propagation inside the fireball.

To do so, the basic idea of our approach is to study the QQ̄ pairs as open
quantum systems continuously interacting with a thermal QGP back-
ground. More explicitly, the continuous interaction between the medium and the
internal degrees of freedom of a QQ̄ dipole is obtained through 1) a QQ̄ mutual
interaction screened by color charges in its vicinity and 2) a fluctuation/dissipation
mechanism reflecting the continuous hard elastic collisions QQ̄ + p ↔ (QQ̄)∗ + p.
Both ingredients possibly lead to transitions between bound quantum states or be-
tween bound and free states. The basic ideas of our approach are illustrated in the
figure II.23.

The study has been proposed with the implicit hopes and perspectives to:

– Study the relative motion of the correlated heavy quark and antiquark in a
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Figure II.23: Illustration of our approach through its basic ingredients and interactions
between the QQ̄ and QGP systems.

cooling deconfined medium and deduce the real-time quarkonia content of the
QQ̄ pair (in the quantum mechanical sense).

– Observe if the “suppression of the suppression” could be explained by a ther-
mal effect. Indeed, the diffusive evolution of the relative distance between the
Q and Q̄ in a thermal medium is proportional to

√
DSt for Brownian particles

[151] (where DS is the spatial diffusion coefficient). It is expected to be slower
than its ballistic evolution in the vacuum, which is ∝ t for the free spreading
of a gaussian wavepacket [152]. Furthermore, because DS is expected to be
inversely proportional to the QGP temperature (see sections IV.1.1 and V.2.1
for more details), the diffusive evolution should be slower as the medium tem-
perature increases with the collision energy. A smaller inter-quark distance
could then lead to an enhancement of the J/ψ population.

– Make a phenomenological use of the drag and diffusion coefficients calculated
for single heavy quarks - obtained from either microscopic calculations or lQCD
results (see section V.2.1) - while insuring the quantum nature of the QQ̄
system.

– Find a connection between the main ideas of the sequential suppression (i.e.
the decorrelation from a T-dependent color screening) and the statistical hadro-
nisation (i.e. the thermalisation of the states) without making any of their
unjustified assumptions. See the schematic view of the quarkonia suppres-
sion/enhancement models in hot media in figure II.24.

– Measure the medium temperatures above the critical temperature Tc, and not
only the initial temperature (sequential suppression) or Tc (statistical hadro-
nisation). The quarkonia could then be seen as a quantum continuous ther-
mometer.

– Find a formalism which is effective enough to be introduced in a transport
code in order to make phenomenological predictions.

68



Figure II.24: Schematic view of quarkonia suppression/enhancement models in hot
media. The dynamical models (among which the transport models) attempt to connect
the ideas of the sequential suppression with the ones of the statistical hadronisation model.
A thin arrow from a first model to another model means that some of the ideas of the first
model are used by the other model.
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Main ideas and transition

We have therefore shown the limits of the common models in both their data
description and assumptions. We have also discussed the puzzling evolution of the
experimental observations from SPS to LHC energies and highlighted some tricky
issues such as the saturation of quarkonia suppression, the elliptic flow and the
ψ′/J/ψ ratio. As an answer to some of these issues, we have proposed to deal with
the quarkonia as open quantum systems in continuous interaction with the decon-
fined medium. Before focusing on the possible fluctuation/dissipation mechanisms
(in part IV), we study in the next part the “ballistic” dynamics of a QQ̄ pair with
a color screened self-interaction only.
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Part III

Mean field dynamics
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In this part, we focus on the quantum dynamics of the internal degrees of free-
dom (d.o.f.) of a non-relativistic QQ̄ pair, self-interacting via the strong interaction
and color screened by color charges in its vicinity. The pair is assumed to be im-
mersed in an infinite homogeneous QGP at thermal equilibrium and the motion of
its center-of-mass is not considered. By exploring the “ballistic” evolution of the
relative QQ̄ motion without the effects of the direct collisions with the medium,
we aim to evaluate the evolution of their relative distance and their transitions to
free and other bound states. It is a first attempt to measure in what extent the
assumptions of fast/full decorrelation or adiabatic evolution made by the sequential
suppression (and statistical hadronisation model for the former) are justified. To
this end, we therefore study the actual QQ̄ dynamics and do not just assume one.
Our approach within this part is illustrated in figure III.1.

For a start, we progressively introduce in section III.1 the basic concepts and
ingredients of the mean field approach, such as the screened potentials, temperature
evolutions, possible initial states, equation of evolution and observables. To distin-
guish among the different components of the model, in section III.2 we focus on the
basic evolutions of the QQ̄ pair obtained with the free and vacuum potentials corre-
sponding respectively to the limit T →∞ and T = 0. Including the color screening
effects, we then study the evolutions obtained with the weak (section III.3) and
strong potentials (section III.4) at constant temperatures and with RHIC and LHC
temperature scenarios. Finally, in section III.5 we discuss these evolutions regarding
to other models, sum up the values obtained at the chemical freeze out and compare
them to some extent to the data.

Figure III.1: Illustration of our approach within this part through its basic ingredients
and interactions between the QQ̄ and QGP systems.
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III.1 The ingredients of the mean field model

All along this part, the quantum state of the considered QQ̄ pair is described by
a wavefunction ψ(~r, t), where ~r is the relative three-vector between the two particles.
The evolution of theQQ̄ wavefunction is given by the time dependent non-relativistic
Schrödinger equation. We focus only on the S states allowing to reduce the full 3D
analysis to a 1D radial situation without any approximation. Indeed, the evolution
given by the Schrödinger equation in spherical coordinates does not lead to any
transitions between states of different orbital momenta [153].

III.1.1 Color potentials and eigenstates

III.1.1.1 Justification of the potential approach

Because of their color charges, the heavy quark and antiquark of a pair interact
with each other via the strong interaction (the so called self/mutual interaction).
Unlike the light quarks, a simplified description of this interaction through a binding
potential is possible in place of the unsolvable non-perturbative quantum field theory
framework [154, 155, 156]. Indeed, because the heavy quark masses are much larger
than the typical QCD scale ΛQCD ∼ 200 MeV 1) their renormalised and current
masses are almost equivalent implying that their running masses can be replaced by
fixed masses, and 2) the binding energies are much smaller than their rest masses
implying that relativistic corrections and sea quarks can be neglected.

III.1.1.2 The vacuum potential

In the vacuum, the usual basic binding potential is the so-called Cornell potential
[154] which writes as a sum of two terms:

V (r) = σ r − α

r
(III.20)

where the first term σ r describes the long distance non-perturbative confinement
whereas the second term −α

r
a short distance, perturbative, Coulombian like inter-

action. As in [156], one can use the string tension coefficient σ = (1.65 − π/12)/r2
0

(where r0 = 0.5 fm) and the ”Coulombian” coefficient α = π/12 that were de-
termined by [157] through a fit to lattice results. Additionally, one can include a
third term −0.8σ/(m2

Qr) which originates from independent relativistic effects of the
quark spins [158]. Finally, to obtain a more complete description of the binding, one
should also take care of the quarkonium instabilities through strong decays [159],
also called string breaking. Indeed, as discussed in I.1.2, the gluonic flux tube can
break into a quark/antiquark pair as the heavy quark/antiquark move away from
each other. This fragmentation occurs spontaneously for charmonium states whose
energies are above ∼ 3.7 GeV (the cc̄ threshold) and for bottomonium states above
∼ 10.35 GeV (the bb̄ threshold). A possible way to translate this instability in a
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potential model, is to saturate the potential to a certain value Vsat, in order to “free”
the QQ̄ pairs with higher energies. The saturation value should correspond to the
energy difference between the maximum quarkonium energies and the bare mass of
two quarks: Vsat = 3.7− 2 ∗ 1.25 = 10.35− 2 ∗ 4.575 = 1.2 GeV for charmonia and
bottomonia. The resulting binding potential for a cc̄ pair is shown in figure III.2.
Note that this potential is close to what is obtained from lQCD calculations at the
limit T → 0 (see sections III.1.1.5 and III.1.1.5).
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Figure III.2: The binding potential of a cc̄ pair in the vacuum from strong interaction.
It corresponds to the Cornell potential given by III.20 plus a term for the relativistic spin
effects and a possibility of string breaking.

III.1.1.3 Basics of color screened potentials

In this part, the only interaction between the deconfined medium and the QQ̄
pair is the “Debye-like” color screening of the QQ̄ mutual interaction due to the
presence of color charges in its vicinity. Within the potential approach, the mutual
interaction and the Debye screening of the QQ̄ pair can be described through a
modified potential. Historically, the basic ideas on screened potentials came from
the study of electrically ionized fluids by Debye and Hückel [160]. They found that
the usual Coulomb potential ∝ −1/r between two electrical charges was modified
by the screening through an exponential damping term exp(−r/λD), where λD is
the Debye-Hückel length. Hence, the interaction between two charges gets weaker at
shorter distances. For color charges, the behaviour of the color screening is pretty
much equivalent and leads to a temperature dependent lowering of the potential
asymptotic value V (r → ∞). In this way, the decrease of the QQ̄ binding energy
facilitates its access to free quantum states.

The potential of a QQ̄ pair in a deconfined medium at temperature T is usually
derived from lQCD calculations. Actually, there are different possible potentials cor-
responding to different thermodynamic situations. From the lattice, one can directly
evaluate the free energy F (r, T ), which corresponds to a static situation where the
QQ̄ pair has an infinite time to exchange a maximum of reversible and irreversible
(heat) energy with the medium. In parallel, one can also evaluate the entropy term
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TS which corresponds to the maximum amount of irreversible energy that can be
dissipated during this process. Then, if one considers an “adiabatically slow” evo-
lution of the QQ̄ pair corresponding to a maximum heat exchange, its screened
potential should be taken as the free energy F (r, T ). At the opposite “fast” limit,
the internal energy U(r, T ) is defined by the process where no irreversible energy
is exchanged with the environment. In practice, the internal energy is evaluated
indirectly by “giving back” to the free energy F the maximum dissipated energy
TS, i.e. with the thermodynamic relation U(r, T ) = F (r, T ) + TS(r, T ). To sum
up, the free energy corresponds to a maximum heat exchange between the QQ̄ pair
and the medium whereas the internal energy to no heat exchange.

To choose whether a QQ̄ pair should exchange a maximum, an intermediate
or a null amount of irreversible energy with the medium is not obvious. Within
our model, we will consider two kinds of potential: an intermediate heat exchange
situation F < V < U and the internal energy U . Below, we will see that they lead
respectively to a weak and strong binding of the QQ̄ pair and their corresponding
potentials are subsequently called weak and strong. In principle, the use of the
weak potential F < V < U might be more consistent in this part, where we do
not consider any other energy exchange mechanism. At the opposite, the use of the
strong potential U might be more consistent in the parts V and VII in order to avoid
redundancies between energy exchange mechanisms. Below, we briefly overview the
weak and strong potentials and corresponding state spectra that we use in practice,
but note that an extensive discussion of their features can be found in [109].

III.1.1.4 Color singlet and color octet

The screened interaction also depends on the color state of the QQ̄ pair. As dis-
cussed in I.1.4.2, before potentially binding into a color neutral quarkonium state, a
QQ̄ pair is initially produced either as a color singlet or octet state with a statistical
ratio of the order of 1:8. It is thus most probable that in the deconfined medium
the QQ̄ pair exists alternatively as a color singlet state or a color octet state in
the course of its color exchanges with the medium. As shown in figure III.3, the
binding potentials obtained from lQCD for the color singlet and octet channels are
very different: while the singlet potential “V1” is quite attractive over the typical
quarkonia size (. 1 fm), the octet potential “V8” is almost independent of |~r| indi-
cating a weak attraction/repulsion. Note also that they become equal beyond the
typical quarkonia size. If one assumes the color states to be at thermal equilibrium,
the probability to be in a color octet state is given by ∝ exp(−(V8−V1)/T ). Young
and Shuryak [2] then pointed out that as the ratio (V8−V1)/T is quite large (∼ 10)
over the typical quarkonia size, the color octet channel is suppressed by an order
of magnitude and its contribution to the full dynamics is consequently almost neg-
ligible. All along the present work, we will therefore not consider the color octet
contribution and assume the QQ̄ to be in a color singlet state.

77



Figure III.3: Comparison between the color singlet V1 = F1 and color octet V8 = F8 free
energies as a function of the relative distance at two different temperatures [155].

III.1.1.5 At finite T : the weak potential F < V (T ) < U

The “weak” potential F < V (T ) < U considered here has been evaluated by
Mocsy and Petreczky [156] from lQCD calculations, as an intermediate potential
between the color singlet free energy F (r, T ) and the color singlet internal energy
U(r, T ). As explained above, it corresponds to a screened situation where the pair
exchanges some heat with the medium. In practice, we use a version of the weak
potential which has been reparametrised by Gossiaux as follows. It is divided into
three areas: the short distance potential V0 that coincides with the zero temperature
potential (III.20), the intermediate distance potential Vint taken with the parametri-
sation proposed in [161], and the exponentially damped long distance potential V1.
The weak potential then writes

Vweak(r, T ) =


V0(r) for r < 0.43 fm

Tred
= r0

Vint(r, T ) for r0 < r < r1

V1(r, T ) for r > 1.25 fm
Tred

= r1

with (III.21)

V0(r) = −α
r

+ σr − 0.8
σ

m2
Qr
, (III.22)

Vint(r, T ) =
V0 + g1(r − r0) + g2(r − r0)2

1 + g3(r − r0) + g4(r − r0)2
, where V0 = V0(r0),

V1(r, T ) = V∞ −
4

3

α1

r
e−
√

4π α̃1Tr, where V∞ = σr0.

The running coupling parameters α1(Tred) and α̃1(Tred) are determined in [162] from
lattice results. The T-dependent parameters g1, g2, g3 and g4 permit to achieve a
smooth connection between V0 and V1 for each Tred. The reduced temperature is
defined by Tred ≡ T/Tc where the QGP critical temperature is taken to Tc = 0.165
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Gev. The corresponding potential is shown in figure III.4 for different values of the
temperature.

Figure III.4: The weak potential at different finite temperatures in the charmonium case
[109].

III.1.1.6 At finite T : the strong potential U(T )

As an alternative at finite temperatures, we will also consider the “strong” po-
tential U(T ), i.e. the color singlet internal energy, which has been evaluated from
the lattice by Kaczmarek and Zantow in [104]. Once again, we use in practice a
version coming from a reparametrisation by Gossiaux:

Vstrong ≡ U(r, T ) =
(
− α

r
+ σr − 0.8σ

m2
Qr

)
× e−(µr)2

+ V0 ×
(

1− e−(µr)2)
,(III.23)

where the parameters σ, µ and V0 have been determined to fit the results of [104].
The corresponding potential is shown in figure III.5 for different values of the tem-
perature. As one can already notice from figures III.4 and III.5, the weak and
strong potentials exhibit a very different behaviour near the critical temperature
Tc. As shown in figure III.6, whereas the asymptotic value of the weak potential
is smoothly decreasing with T (one has Vweak(r → ∞, T ) ∝ 1/T ), the asymptotic
value of the strong potential exhibits an important peak around Tc and is generally
larger when T > Tc. Therefore, it requires more energy to dissociate a QQ̄ pair in
the strong potential than in the weak. Moreover, the charmonium states melt at
larger temperatures (see table III.5).
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Figure III.5: The strong potential at different finite temperatures below (top panel) and
above (bottom panel) Tc in the charmonium case [109].
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Figure III.6: A comparison of the asymptotic values of the weak and strong potentials
V (r →∞) as a function of temperature.
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III.1.1.7 Eigenstates and dissociation temperatures

To obtain the state {ψn,l}n=0...
l=0... and energy {En,l}n=0...

l=0... spectra of these potentials,
one needs to solve the time independent Schrödinger equation:

Hψn,l = En,l ψn,l, (III.24)

where the Hamiltonian of a two particle system in the QQ̄ pair center of mass frame
is given by [153]

H = 2mQ −
(~c)2

mQ

∇2 + V (r, Tred). (III.25)

In spherical coordinates, the Schrödinger equation (III.24) and the decomposition
of the wavefunction in radial R(r) and angular Y (θ, φ) components lead to an inde-
pendent equation for the radial part,{

∂2

∂r2
− l(l + 1)

r2
+

mQ

(~c)2 (En,l − V (r)− 2mQ)

}
un,l(r) = 0, (III.26)

where one has introduced the reduced radial wavefunction un,l(r) ≡ r Rn,l(r) to sim-
plify the calculation of the radial part of the nabla operator in spherical coordinates:

∇2Rn,l(r, t) =
1

r

∂2un,l(r, t)

∂r2
. (III.27)

This differential equation (III.26) can be solved numerically from an iterative method
described in [161]. In figure III.7, one can see for instance the vacuum charmonium
radial wavefunctions obtained with the binding potential at the zero temperature
limit (or equivalently with the finite temperature potentials at Tred ≤ 0.4). The
corresponding energy spectra of the charmonia and bottomonia (table III.4) are
close to the experimental values.

Figure III.7: The reduced radial wavefunctions for the charmonia in the “vacuum”
obtained with either the vacuum, weak or strong potential at Tred < 0.4 [161].
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State 〈r2〉1/2 [fm] En,l [MeV] Experimental energies [MeV]

Charmonia

J/ψ 0.46 3062 3097

χc 0.74 3480 3511

ψ′ 0.96 3674 3686

Bottomonia

Υ(1S) 0.27 9396 9460

Υ(2S) 0.54 9869 10023

Υ(3S) 0.78 10211 10355

Table III.4: Root mean square radius 〈r2〉1/2 [fm] and energy spectrum En,l [MeV] for
the quarkonium states obtained with the vacuum potential. The latter are compared with
the experimental data for quarkonium energies (masses); see tables I.2 and I.3. The heavy
quark masses are taken to mc = 1.25 GeV and mb = 4.575 GeV.

At larger temperatures, these states are modified by the potential variations:
they tend to spread with increasing temperature (see for instance figure III.8) while
their dissociation energies Ediss(T ) = V (r → ∞, T ) − (En,l(T ) − 2mQ) get reduced
(see figure III.9). Finally, the dissociation temperatures of the quarkonium states,
given by Ediss(Tdiss) = 0, are summed up in table III.5 and clearly show that the
strong potential implies a stronger binding.

Tred£0.4
Tred=0.8
Tred=1.2
Tred=1.4
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r @fmD

0.2

0.4

0.6

0.8

1.0

1.2

1.4

J�Ψ reduced radial wavefunctions

Figure III.8: The reduced radial wavefunctions of the J/ψ obtained with the weak
potential F < V < U at different temperatures. The thick curve corresponds to Tred ≤ 0.4,
the thick dashed curve to Tred = 0.8, the thick dot-dashed curve to Tred = 1.2, the thin
curve to Tred = 1.4 (at the limit of dissociation).
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Figure III.9: The dissociation energies of the charmonium (left panel) and bottomonium
(right panel) states as a function of the temperature obtained with the weak potential (left
panel) or with the weak and strong potentials (right panel) [109].

— Dissociation temperatures —

State F < V < U V = U

Charmonia

J/ψ 1.45 Tc 1.85 Tc

χc 0.48 Tc 1.2 Tc

ψ′ 0.4 Tc 1.1 Tc

Bottomonia

Υ(1S) 3.55 Tc 4.45 Tc

Υ(2S) 0.8 Tc 1.45 Tc

Υ(3S) 0.5 Tc 1.2 Tc

Table III.5: Temperature of dissociations of the charmonium and bottomonium states
obtained with the weak F < V < U and strong V = U potentials [109]. The heavy quark
masses are taken to mc = 1.25 GeV and mb = 4.575 GeV.

III.1.2 Medium temperature evolutions

In section I.2.2, we have discussed the typical pattern of heavy-ion collisions.
In a few words, 1) a pre-equilibrated anisotropic medium, with a quickly increas-
ing temperature, promptly forms from the initial and successive parton scatterings
and rapidly thermalises to a QGP after t . 1 fm/c, 2) the QGP phase cools down
(T > Tc) and expands during 1 . t . 5 − 10 fm/c, 3) once the crossover reached
(T ∼ Tc), the QGP turns into a mixed phase where the partons hadronise gradually
4) the resulting hadrons scatter inelastically until the chemical freeze out and the
medium keeps expanding (T < Tc), 5) the final hadrons scatter elastically until the
kinetic freeze out.

In this first approach, we choose the space-time temperature distribution derived
by Kolb and Heinz [62]. It corresponds to a hydrodynamic evolution of an initial
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thermalised state. The ideal hydrodynamic theory of the QGP tells us that the evo-
lution of the transverse temperature distribution T (~rT , τ) may be computed from
the conservation of total entropy as the ideal fluid expands radially driven by trans-
verse pressure gradients. On one hand, as the volume of QGP first grows linearly
with time (Bjorken like expansion), the initial evolution of the entropy density s is
inversely proportional to time: s ∝ τ−α, where α = 1. As time increases, the volume
of ideal fluid grows faster, such that the parameter α increases smoothly from 1 to
3 (see figure III.10). On another hand, as the QGP is described by an ideal gas of
massless particles, its entropy density is also proportional to the cube of the tem-
perature: s ∝ T 3. Consequently, above the critical temperature, the temperature
evolution is T ∝ τ−α/3.

Figure III.10: Evolution of the entropy density as a function of time at three different
distances from the center of the fireball (0, 3 and 5 fm) [62].
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Figure III.11: Time evolution of the reduced temperature Tred(t) = T/Tc at the center
of the hydrodynamic fireball at RHIC

√
sNN = 200 GeV (left) and LHC

√
sNN = 2.76

TeV (right). When Tred > 1 the medium is a QGP phase, at Tred = 1 the medium is a
mixed parton/hadron phase and when Tred < 1 the medium is a hadron gas.

As the pre-equilibrium phase is still poorly understood, the choice of the initial
thermalised state is not obvious. Nevertheless, the initial transverse temperature
distribution Tini(~rT , τ) can be derived from the density distributions of participating
nuclei, given by the Glauber model [44]. The lapse of time required to reach a
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thermalized initial state, from which the hydrodynamic evolution takes place, is
given by τini ∼ ~c/Tini (τini ≈ 0.6 fm/c at RHIC and τini ≈ 0.5 fm/c at LHC, in
practice both taken to τini = 0.6 fm/c). The temperature distribution of the QGP
phase is then given by:

T (~rT , τ) ≈ Tini(~rT )×

(
τini(~rT )

τ

)α/3

, for τ ≥ τini. (III.28)

In this hydrodynamic model, the phase transition between the QGP and the final
hadronic phase is a strong first order transition at T = Tc = 165 MeV where the
medium is a mixed parton/hadron phase until the chemical freeze out. It contradicts
the lattice QCD results (illustrated in the QCD phase diagram I.11) which rather
show either a very weakly first order transition or a crossover. Nevertheless, the im-
pact of this sharp transition on our dynamic should be small. After this transition,
the temperature evolution corresponds to the hydrodynamics of a noninteracting
hadron gas. Finally, the evolution ends at the kinetic freeze out (T ∼ 100 MeV)
when the hadron medium becomes so diluted that local thermal equilibrium can no
longer be assumed.

Although in this hydrodynamic model the temperature distribution is spatially
dependent, the QQ̄ pair will be assumed, for the purpose of simplification, to be
immersed in a homogeneous medium whose temperature evolution is taken at the
center of the fireball and for a central collision. The corresponding temperature
evolutions at RHIC (

√
sNN = 200 GeV) and LHC (

√
sNN = 2.76 TeV) are shown

in figure III.11.

III.1.3 Initial states

As discussed in section II.1, the QQ̄ pairs are produced at the very beginning of
the collision and clearly before the formation of any deconfined medium. However,
to know if their bound states form before the deconfined medium is not obvious and
is subject to debate (especially for the charmonia). Within our model, we make few
assumptions on the initial medium and QQ̄ states. First, we assume the evolution of
the QQ̄ system to begin with the hydrodynamic QGP phase, i.e. we do not consider
the strongly anisotropic pre-equilibrium phase. Consequently, note that the initial
time t = 0 of the QQ̄ evolution corresponds to τini of the medium evolution. Second,
we assume the QQ̄ system at t = 0 to be either in a compact state (option 1) or
already formed as a bound state (option 2).

If the pair is assumed to be in a compact state at the time of QGP formation
(option 1), i.e. as it would be right after its production from the hard process, the
initial radial wavefunction is chosen to be a general Gaussian wavepacket:

R(r, t = 0) =
√

4π

(
1

πa2

)3/4

e
− r2

2a2 (III.29)

where a is the initial Gaussian parameter taken to be equal to ac = 0.165 fm and
ab = 0.045 fm for a cc̄ and bb̄ pair respectively. We normalise the radial wavefunc-
tion to unity, i.e.

∫
|R(r)|2r2d r = 1 as Y (θ, φ) = 1//

√
4π for S states. The initial
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Gaussian parameter can be estimated by applying the uncertainty principle to the
intermediate quark of the Feynman diagrams for the QQ̄ production (leading order
u or t channel, see figure I.9): ∆r ∼ ~c/mQ. These values can also be fixed from
experimental results in pp collisions: by analyzing open charmed pT distributions or
ratio of the direct ψ′ to J/ψ cross-sections. The value σDψ′/σ

D
J/ψ ∼ 0.21 in pp experi-

ments [163, 164] is indeed close to the ratio of the corresponding initial populations
Wψ′(t = 0)/WJ/ψ(t = 0) = 0.12/0.46 = 0.26 in our model (see section III.2.1).
Option 1 corresponds to the view that the QQ̄ pair interacts with the medium con-
stituents as soon as it is created. The issue is then to determine in what extent the
pairs form bound states when the plasma cools down and not whether the bound
states “survive”.

If the pair is assumed to be already formed as a bound state at the time of
QGP formation (option 2), the initial radial wavefunction is chosen to be one of the
vacuum radial eigenstates determined from the binding potential at T = 0.

III.1.4 Evolution with the Schrödinger equation and numer-
ical resolution

As mQ � ΛQCD, the QQ̄ system can be studied within the frame of non relativis-
tic dynamics with the time dependent Schrödinger equation to describe their relative
motion. The QQ̄ pair is described by the (reduced) radial wavefunction RQQ̄(r, t)
(uQQ̄(r, t) ≡ rRQQ̄(r, t)). For numerical purposes, the time dependent Schrödinger
equation for the radial part can easily be re-written as:

RQQ̄(r, t+ ∆t) = e
−iH

~
∆t

RQQ̄(r, t), (III.30)

and then expanded to the first order to the Crank-Nicolson scheme:

O+
1 RQQ̄(r, t+ ∆t) = O−1 RQQ̄(r, t), where O±1 ≡ I ± iH

2~
∆t (III.31)

where I is the identity operator and ∆t is the numerical time step. Because the
O±1 operators are tridiagonal matrices in a discretised space approximation, equa-
tion III.31 can be numerically solved with the Thomas algorithm. The boundary
conditions are given by:(

finiteRQQ̄(0) , RQQ̄(L) = 0
)

←→
(
uQQ̄(0) = 0 , uQQ̄(L) = 0

)
.(III.32)

III.1.5 Weight and survivance observables

The real-time dynamics of the QQ̄ pair can be studied through different possible
observables, such as the mean square position 〈r2〉 = 〈ψQQ̄|r̂2|ψQQ̄〉 and momentum
〈p2〉 = 〈ψQQ̄|p̂2|ψQQ̄〉, the probability density ρ(r) = |ψQQ̄(r)|2, the quarkonium state
occupation weights (see below), the mean energy of the pair 〈E〉 = 〈ψQQ̄|H|ψQQ̄〉...

In the present work, we will mainly focus on the quarkonia content of a QQ̄ pair
to study the quarkonia suppression. In our model, the population/weight Wi of a S
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state i at t is defined as the projection of the QQ̄ wavefunction at t on the vacuum
quarkonium states:

Wi(t) ≡ |〈ψn=i,l=0|ψQQ̄(t)〉|2 =

(∫ ∞
0

uQQ̄(r, t)× u∗i,0(r, Tred ≤ 0.4) dr

)2

.(III.33)

The weight Wi(t) can be seen as the real-time population of a vacuum quarko-
nium state i at t, or in other words to the proportion of the QQ̄ pair that would
instantaneously hadronise into a vacuum quarkonium state i if the QGP would ex-
tinguish at time t. At a temperature T > 0.4, there is then a mismatch between the
Hamiltonian states (the instantaneous eigenstates at T ) and the projection basis.
Nevertheless, defined with the vacuum states, the quarkonia content allows us to
study the real-time dynamics of a QQ̄ pair in a fixed basis all along its evolution
(and especially of its bound component). As we assume an instantaneous transition
between the QQ̄ components and the vacuum states at the chemical freeze-out (see
below), it is only at this stage that the quarkonia content recovers all its physical
meaning. We also define the normed weight or “survivance” Si of a state i by

Si ≡
Wi(t)

Wi(t = 0)
. (III.34)

If the initial state of the QQ̄ pair is chosen to be a quarkonium state i (option
2), the survivance Si (which is then equal to Wi) represents the probability for the
state i to survive in the medium relatively to pp collision. In this case, one has
Si(t) ≤ 1 and one really deals with the usual suppression. However, if one wishes to
obtain the actual content on a state i, one would need to sum over its contributions
from the different initial quarkonium states (weighted by their initial abundances).
If the initial state is a Gaussian wavepacket (option 1), the initial QQ̄ pair can be
seen as a weighted mix of quarkonium states and one can really probe its quarkonia
content from t = 0 through the weights Wi(t). Indeed, each Wi(t) already includes
the contributions obtained from the different initial bound states, i.e. the transitions
between quarkonium states. The survivance Si(t), which is now possibly larger than
unity, represents the gain or loss of this content inside the medium relatively to pp
collision. Indeed, in pp collisions, the QQ̄ pair undergoes the vacuum potential.
Then, the weights remain constant over the evolution and the survivances are equal
to unity (as will be confirmed in section III.2.2). The survivance values in our model
are therefore given relatively to pp collisions. Furthermore, as in the vacuum case
the quarkonia content is fixed from t = 0, one can note that option 1 contradicts
the common belief that some “formation times” are required for the quarkonia to
emerge out of the QQ̄ pair.

III.1.6 Freeze out

To give the final predictions of our model, one needs to stop the evolution of
the QQ̄ pair at some point. At first sight, the hydrodynamic evolution stops at
the kinetic freeze out and the lQCD potentials have been evaluated down to T = 0.
However, the particle abundance is usually thought to be fixed at the chemical freeze
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out (see section I.2.3.1). In Kolb and Heinz’s hydrodynamic model, the chemical
freeze out occurs at the end of the first order transition, i.e. at time t = 9.4 fm/c at
RHIC and t = 10.4 fm/c at LHC, at a temperature T = Tc. The latter reasonably
agrees with numerous studies which evaluate the temperature of the chemical freeze
out to be close to the critical temperature [165, 166]. As transitions between bound
states are still possible in our model between the chemical and kinetic freeze-out, we
therefore need to assume the inner dynamics of the QQ̄ pair to stop at the chemical
freeze-out and assume an instantaneous transition to the vacuum states. The former
assumption is also motivated by the future use of a drag parameter for dissipative
evolutions, which has been calculated from partonic microscopic calculations and is
therefore not valid if the quarkonia are in a hadron gas. The quarkonia content of
the QQ̄ pair is thus fixed at the chemical freeze-out for our predictions (summed up
in tables in section III.5) and we neglect the state formation times.

III.2 Evolutions with the free and vacuum poten-

tials

III.2.1 Free case: V (r) = 0

III.2.1.1 Evolution of the QQ̄ pair

The free case can be seen in a first approximation to an evolution of the QQ̄
pair in a very weakly coupled QGP where the partons are fully deconfined (i.e. the
T → ∞ limit). The QQ̄ pair is then free of its binding potential, i.e. V (r) = 0,
and one can consider the free expansion of its wavefunction. In this situation, the
analytic solution of the Schrödinger equation can easily be derived by applying the
time evolution operator to the initial Gaussian wavepacket in momentum space
(V.60):

RQQ̄(pr, t) = RQQ̄(pr, 0) e
−iH

~
∆t
, H = 2mq +

(~c)2

mq

p2
r (III.35)

which inverse Fourier transform yields the time dependent Gaussian wavepacket:

RQQ̄(r, t) =
√

4π

(
a2

π

)3/4
(

1

a2 + 2i~c2t/mQ

)3/2

e
−2ia2mQt/~− 4c2t2 + r2/2

a2 + 2i~c2t/mQ (III.36)

r and t are respectively studied in fm and fm/c, and the unit factor is ~c = 0.197
GeV fm.

In this section, we focus on the evolution of a cc̄ pair but the ideas for a bb̄ pair
are the same. As one can see in figure III.12 (left panel), the Gaussian probability
density spreads out over space as time increases. The heavy quarks move therefore
away from each other. As shown in figure III.12 (right panel), the relative motion
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follows a “ballistic” evolution, i.e.
√
〈r2〉 ∝ t after a transient phase. As expected,

the more narrow is the initial state in position space, the larger it is in momentum
space, the higher is the ballistic velocity.
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Figure III.12: Left : Evolution of the probability density for the cc̄ pair in the free
case from an initial Gaussian state. Right : Evolution of the root mean square radius
from initial Gaussian (ac = 0.165 fm), J/ψ and ψ′ states: one obtains

√
〈r2〉 ∝ t after a

transient phase.

To probe the accuracy of the numerical solver, one can compare the numerical
and analytical results. We observe a difference proportional to ∆t and ∆r2, i.e.
less than 1% with the chosen grid. This difference is expected from the numerical
scheme: the first order time expansion in (III.31) gives a first order accuracy and
the spatial second derivative in (III.27) gives a second order accuracy with the use
of the central difference approximation.

III.2.1.2 Projection on S states

The evolution of the charmonium (S state) weights50 from an initial Gaussian
state (option 1) and initial S states (option 2) are shown in figures III.13 and III.14,
respectively.

For an initial Gaussian wavepacket (option 1), note that the initial weights are
∼ 0.46 and ∼ 0.12 for the J/ψ and ψ′ state, respectively. For the bottomonia (not
shown here), the initial weights are ∼ 0.085, ∼ 0.06 and ∼ 0.04 for the Υ(1S),
Υ(2S) and Υ(3S), respectively. As explained in section III.1.5, within our model
these initial weights are the proportion of the cc̄ pair that would promptly hadronise
into the corresponding bound states in pp collisions. The ballistic evolution of the
relative cc̄ motion leads to strong suppressions of the bound components. Less
than 1% (7%) of the J/ψ (ψ′) survives after 3 fm/c, which is consistent with the
suppression picture. Furthermore, from any initial state the ψ′ component gets
relatively less suppressed than the J/ψ component at some fixed time. This is a
first indication that even though the bound states are fully melted for a certain
time, the continuous consideration of the QQ̄ correlations could lead to a smaller

50As defined by relation III.33.
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Figure III.13: Time evolution of the J/ψ and ψ′ weights Wi (left) and survivances Si
(right) in the free case from an initial Gaussian wavepacket ac = 0.165 fm (option 1).
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Figure III.14: Time evolution of the J/ψ and ψ′ weights Wi in the free case from an
initial J/ψ (left) and ψ′ (right) state.

suppression for ψ′ than for J/ψ at the phase boundary. This might provide some hint
for a possible explanation of the experimental “RAA(ψ′/J/ψ) > 1” ratio observed by
the CMS collaboration at forward rapidity (see II.3.3). As expected, the suppression
values and decreasing rates depend on the initial state: the narrower the latter is,
the larger are the decreasing rates, the smaller the weights are at some fixed time.
As a consequence, from an initial ψ′ state, the survival probability of the ψ′ state
only slowly evolves and remains quite large over the typical QGP lifetime. Note
finally, that the decorrelation of a state tends to populate the other states for a
certain time. This effect is not considered in the sequential suppression picture.

Considering the quantum correlations of a QQ̄ pair immersed in a fully decon-
fined medium leads thus to some suppression patterns which are already quite far
from the fast and full decorrelation picture.

III.2.2 Color potential in the zero temperature limit

We now consider the evolution of a QQ̄ pair self-interacting through its vacuum
potential (as defined in III.1.1.2), i.e. at the limit T = 0. As shown in figure
III.15 (left panel), the relative motion follows once again a ballistic evolution but
logically with a smaller velocity than in the free case as the bound component of
the cc̄ wavefunction remains inside the potential well. As shown in the right panel,
the charmonium weights remain constant. It is an obvious property of a hermitian
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Hamiltonian when the basis of projection {ψi}i=1... corresponds to the potential and
is mainly provided as a check of the numerical accuracy.
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Figure III.15: From an initial Gaussian wavepacket; Left : Evolution of the root mean
square radius for the cc̄ pair with the vaccum potential: one obtains

√
〈r2〉 ∝ t. Right :

The J/ψ and ψ′ weights as a function of time.

III.3 Evolution with the weak potential Vweak

To offer an actual alternative to the sequential suppression picture and verify
its assumptions, one needs to study the QQ̄ correlation with a more realistic color
screened self-interaction. To this end, we now focus on the weak potential Vweak,
defined in section III.1.1.5, which includes a temperature dependent color screening.
We first observe the behaviour of a QQ̄ pair immersed in a stationary medium at
some constant temperatures. Then, to get closer to the heavy-ion collisions at RHIC
and LHC, we include the temperature scenarios that we discussed in section III.1.2.
They correspond to the temperature evolutions at the center of the fireball in a
central collision obtained from an ideal hydrodynamic model.

III.3.1 At constant temperatures

We first consider for the initial state the Gaussian wavepacket (option 1). As
shown in figure III.16, the evolution of the QQ̄ pair and of the charmonium weights
strongly depends on the medium temperature. For the J/ψ component, the typ-
ical decorrelation time from its initial weight to its approximative final weight is
relatively small (. 4 fm/c) but not negligible. Furthermore, as shown in figure
III.18, one can observe a smooth transition between the situation where the J/ψ
component is not suppressed (Tred . 0.6) and the one where it is almost fully sup-

pressed (Tred & 1.4 ≈ T
J/ψ
diss ). It contrasts with the sequential suppression model

which assumes an instantaneous and sharp transition at the dissociation temper-
ature (see table III.5 for the dissociation temperatures corresponding to the weak
potential).The picture is quite different for the ψ′ component. Firstly, its decor-
relation time varies from 4 to more than 30 fm/c (see figures III.16 and III.17).
Secondly, it first undergoes a sharp transition to its “full” suppression at the dis-
sociation temperature Tred ∼ 0.4 ≈ Tψ

′

diss, but then gets repopulated at higher tem-
peratures 0.6 < Tred < 1.7. The latter originates from the depopulation of the J/ψ
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component. The behaviour of the ψ′ component is therefore in strong disagreement
with the sequential suppression picture and shows the importance of the possible
transitions between bound states even if Tred > Tdiss.

Figure III.16: Left: The evolution of the J/ψ survivance S1 at different reduced tem-
peratures Tred from the initial Gaussian wavepacket. Right: Same for the ψ′ component.

Figure III.17: Left: The evolution of the J/ψ survivance S1 at different reduced temper-
atures Tred from an initial J/ψ state. Right: Same for the ψ′ component from an initial
ψ′ state.

We now consider for the initial states the corresponding S states (option 2). First,
one can notice that the evolutions of the J/ψ component from an initial Gaussian
wavepacket and from an initial J/ψ state are quite close after the transient phase
for this range of temperatures (see figure III.17). At the opposite, the ψ′ com-
ponent is clearly more suppressed from an initial ψ′ state, which supports the idea
that the ψ′ component can get repopulated from the J/ψ depopulation in our model.

For the bottomonium states, one observes the same kind of evolutions with an
even more progressive transition toward full suppression for the Υ(1S) state (see
figure III.18 (right panel)).
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Figure III.18: From the initial Gaussian wavepackets. Left: The J/ψ (Tdiss = 1.45Tc)
and ψ′ (Tdiss = 0.4Tc) survivance values at t → ∞ as a function of the reduced tem-
perature. Right: Same for the bottomonium components Υ(1S) (Tdiss = 3.55Tc), Υ(2S)
(Tdiss = 0.8Tc) and Υ(3S) (Tdiss = 0.5Tc).

We have therefore observed that our dynamical picture of the QQ̄ evolution leads
to important differences with the sequential suppression: 1) the typical decorrelation
times are not negligible (as compared to the QGP lifetime) and vary much with the
situation, 2) for the 1S states the transition from null to full suppressions are not
sharp but progressive, and 3) the excited components can be repopulated from the
lower state depopulations.

III.3.2 At RHIC

To get closer to reality, we now include the hydrodynamic cooling obtained for
RHIC heavy ion collisions, as defined in III.1.2. The evolution of the charmonium
and bottomonium weights from initial Gaussian wavepackets (left panels) or cor-
responding quarkonium states (right panels) are shown in figures III.19 and III.20
respectively. One can first notice than the typical time for the weights to decorrelate
is ∼ 3 − 6 fm/c. In a more realistic scenario (i.e. including the motion of the QQ̄
center of mass and an inhomogeneous temperature), it would lead to an important
difference in the suppressions of QQ̄ pairs reaching the phase boundary at different
times.

As the variation of the weak potential is relatively small for Tred ≥ 1.4, the main
evolution of the weights, which occurs for t < 4 fm/c, is logically close to the results
at Tred = 1.4 in figures III.16 and III.17. For 4 . t . 10 fm/c, i.e. during the phase
transition where T ∼ Tc, the potential and the weights vary only a little. After the
chemical freeze-out t & 10 fm/c, we recall that the evolutions obtained with the
potential approach make less sense as the quarkonium content should be fixed at
the chemical freeze-out.

When the initial state is a Gaussian wavepacket, the excited states get partially
repopulated (at least for a certain time) from the depopulation of the 1S states. It
results in a smaller suppression of the ψ′ component relatively to the J/ψ, whereas it
does not affect the bottomonia for t > 4 fm/c. Furthermore, one can observe that the
1S components are clearly less suppressed if they are the initial state. As in the free
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Figure III.19: Left: The evolution of the J/ψ and ψ′ survivances Si at RHIC from the
initial Gaussian wavepacket (with ac = 0.165). Right: Same but from initial J/ψ and ψ′

states respectively.

Figure III.20: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances Si at
RHIC from the initial Gaussian wavepacket (with ab = 0.045). Right: Same but from
corresponding initial bottomonium states.

case, it should be due to the smaller size of the quarkonium initial wavefunctions in
momentum space, resulting to slower ballistic evolutions. The values of the normed
weights at the chemical freeze-out (t = 9.4 fm/c) are summed up in table III.6
and show 1) an intermediate suppression of the J/ψ and ψ′ states with a possible
enhancement of the ψ′/J/ψ ratio in heavy ion collision, 2) a partial suppression of
the Υ(1S) state and strong suppressions of the Υ(2S) and Υ(3S) states.

III.3.3 At LHC

Despite of the ∼ 80 MeV difference in the initial temperature, the evolution
of the weights are quite similar at RHIC and LHC, especially for the bottomonia.
The charmonia are slightly more suppressed at LHC and the ratio ψ′/J/ψ is clearly
above or close to unity at the chemical freeze-out (t = 10.4 fm/c).
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Figure III.21: Left: The evolution of the J/ψ and ψ′ survivances Si at LHC from the
initial Gaussian wavepacket (with ac = 0.165). Right: Same but from initial J/ψ and ψ′

states respectively..

Figure III.22: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances Si at
LHC from the initial Gaussian wavepacket (with ab = 0.045). Right: Same but from
corresponding initial bottomonium states.

We have thus observed that at RHIC and LHC there is no early coupling/decoupling
for the evolution of various quarkonia in the equilibrated medium. In the pre-
equilibium phase, as the potential should vary very quickly from its vacuum to its
high temperature form, option 1 should then be privileged until one provides a
strong argument in favor of the coherence at very early times.

III.4 Evolutions with the strong potential U(T )

We now focus on the strong potential V = U , equal to the internal energy.
As discussed in section III.1.1.6, the strong potential exhibits an important peak
of its asymptotic values U(r → ∞, T ) centered on Tc. If one does not include any
additional thermal mechanisms, the strong potential corresponds to a fully adiabatic
evolution of the QQ̄ pair in the deconfined medium.
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III.4.1 At constant temperatures

Figure III.23: Left: The evolution of the J/ψ weight at different reduced temperatures
Tred from the initial Gaussian wavepacket. Right: Same but from J/ψ initial state.
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Figure III.24: From the initial Gaussian wavepacket. Left: Evolution of the average
position [fm] for the cc̄ pair. Right: The J/ψ (Tdiss = 1.85Tc) and ψ′ (Tdiss = 1.1Tc)
survivance values at t→∞ as a function of the reduced temperature.

As shown in figures III.23, the evolution of the quarkonium weights at constant
temperatures are quite different with the strong potential when T ∼ Tc. One ob-
serves strong oscillations of the weights with some repeated patterns. In figure III.24
(left panel), the oscillations of the mean radius around the usual ballistic evolution
reveal the oscillatory motion of the wavepacket trapped in the potential. This motion
is caused by the important change in the potential features when T ∼ Tc. Outside
of this temperature range, the evolutions are similar to the weak potential case but
with smaller suppressions (as expected from U(r →∞, T ) > V weak(r →∞, T )). Be-
cause of the weight oscillations, it is difficult to define a large time behaviour when
T ∼ Tc. Even so, outside T ∼ Tc, note that the suppression at large time shows
similar behaviours to what we discussed in section III.3 (see III.24 right panel).
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III.4.2 At RHIC

We now include the hydrodynamic cooling at RHIC energy as defined in III.1.2.
The evolutions of the charmonium and bottomonium weights from the initial Gaus-
sian wavepackets (left panels) or corresponding quarkonium states (right panels) are
shown in figures III.25 and III.26 respectively.

Figure III.25: Left: The evolution of the J/ψ and ψ′ survivances Si at RHIC from the
initial Gaussian wavepacket (with ac = 0.165). Right: Same but from J/ψ and ψ′ initial
bound states respectively.

Figure III.26: Left: The evolution of the Υ(1S), Υ(2S) and Υ(3S) survivances Si at
RHIC from the initial Gaussian wavepacket (with ab = 0.045). Right: Same but from
corresponding initial bound states.

As expected from the previous section, the general evolution of the weights is a
smooth decrease until the medium temperature reaches T ∼ Tc at t ∼ 4 fm/c. The
weights then oscillates until Tred . 0.8, i.e. for 4 . t . 11 fm/c. As expected from a
stronger binding, the different quarkonium states are less suppressed than with the
weak potential, exception made of the ψ′ component. With the strong potential,
the latter is indeed less repopulated from the smaller J/ψ depopulation. At the
chemical freeze-out (t = 9.4 fm/c), the fully adiabatic evolution of the QQ̄ pair
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at RHIC leads to intermediate and relatively strong suppressions of the J/ψ and
ψ′ states, respectively, a very small suppression of the Υ(1S) state and relatively
strong suppressions of the Υ(2S) and Υ(3S) states. There is therefore a quite strong
influence of the potential, as in other approaches.

III.4.3 At LHC

Figure III.27: Left: The evolution of the J/ψ and ψ′ survivances Si at LHC from the
initial Gaussian wavepacket (with ac = 0.165). Right: The evolution of the Υ(1S), Υ(2S)
and Υ(3S) survivances at LHC from the corresponding initial bound states.

Like in the weak potential case, RHIC and LHC temperature scenarios lead to
equivalent evolutions of the weights, with a little more suppression at LHC (see
figures III.27).

III.5 Values at the chemical freeze-out and dis-

cussion

The values of the J/ψ, ψ′, Υ(1S) and Υ(2S) survivances at the chemical freeze-
out at RHIC (t = 9.4 fm/c) and LHC (t = 10.4 fm/c) are summed up respectively
in table III.6 and III.7. However, note that to remove the strong influence of the
upper limit on t in the strong potential case, we perform instead an averaging over
the oscillations during the phase transition T = Tc.

For the charmonia, contrasting with the sequential suppression picture, one ob-
tains rich suppression patterns which lead to intermediate suppressions at both
RHIC and LHC. Furthermore, as a possible explanation of the (Nψ′/NJ/ψ)PbPb /
(Nψ′/NJ/ψ)pp > 1 ratio observed at LHC at forward rapidity, our model can lead
to larger survivances of the ψ′ component than the J/ψ. It originates from impor-
tant transitions between the two components which are completely untreated within
common suppression models.

For the bottomonia, the Υ(1S) state is only weakly suppressed whereas the
Υ(2S) and Υ(3S) states are strongly suppressed. At these energies, our “ordered”
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State survivance at RHIC RAA data

State \ Potential Vweak V=U Low pT High pT

J/ψ from initial J/ψ 0.24 0.52
0.26± 0.05 0.64± 0.14

J/ψ from init. Gauss(0.165) 0.09 0.30

ψ′ from initial ψ′ 0.14 0.03
None None

ψ′ from init. Gauss(0.165) 0.26 0.17

Υ(1S) from initial Υ(1S) 0.88 0.93
0.66± 0.13

Υ(1S) from init. Gauss(0.045) 0.49 0.91

Υ(2S) from initial Υ(2S) 0.005 0.16
None

Υ(2S) from init. Gauss(0.045) 0.02 0.15

Table III.6: Values of the J/ψ, ψ′, Υ(1S) and Υ(2S) survivances at the chemical freeze-
out at RHIC. Experimental most central RAA data at RHIC in AuAu

√
SNN = 200 GeV

collisions: 1) high pT STAR data [134] (inclusive (prompt and non prompt) J/ψ, 5 < pT <
14 GeV/c, |y| < 1 and 0-10% centrality) and 2) low pT PHENIX data [133] (inclusive J/ψ,
pT < 5 GeV/c, |y| < 0.35 and 0-5% centrality). The non prompt contribution is estimated
to 10-25% of the inclusive production. For the Υ(1S): STAR data [167] (pT > 0 GeV/c,
|y| < 1 and 0-10% centrality).

State survivance at LHC RAA data

State \ Potential Vweak V=U Low pT High pT

J/ψ from initial J/ψ 0.17 0.40
0.83± 0.14 0.20± 0.03

J/ψ from init. Gauss(0.165) 0.06 0.20

ψ′ from initial ψ′ 0.16 0.03
None 0.13± 0.04

ψ′ from init. Gauss(0.165) 0.18 0.10

Υ(1S) from initial Υ(1S) 0.80 0.90
0.41± 0.06

Υ(1S) from init. Gauss(0.045) 0.49 0.84

Υ(2S) from initial Υ(2S) 0.001 0.07
0.11± 0.06

Υ(2S) from init. Gauss(0.045) 0.03 0.17

Table III.7: Values of the J/ψ, ψ′, Υ(1S) and Υ(2S) survivances at the chemical freeze-
out at LHC. Experimental RAA data at LHC in PbPb

√
SNN = 2.76 TeV collisions. For

the J/ψ: 1) high pT CMS data [138] (prompt J/ψ, 6.5 < pT < 30 GeV/c, |y| < 2.4 and
0-10% centrality) (inclusive J/ψ: RAA = 0.24±0.03) and 2) low pT ALICE data [137]
(inclusive J/ψ, 0 < pT < 8 GeV/c, |y| < 0.9 and 0-10% centrality). For the ψ′: high pT
CMS data [144] (prompt ψ′, 6.5 < pT < 30 GeV/c, |y| < 1.6 and integrated centrality).
For the Υ(1S) and Υ(2S): CMS data [168] (pT > 0 GeV/c, |y| < 2.4 and 0-5% centrality).
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results for the bottomonia are thus in a better agreement with the sequential sup-
pression scheme. Furthermore, note that we obtain only a little more suppression
at LHC than at RHIC and that the energy dissipation - which is implicitly included
in the weak potential - tends to increase the suppression.

The corresponding experimental data for most central collisions - where the
effects of the deconfined matter are maximal - are given on an indicative basis. A
correct result-data comparison would require to refine our model with initial cold
nuclear matter effects, statistical recombinations, feed downs from excited states
(see table I.2 and figure I.10) and a more realistic heavy ion collision scenario (e.g.
spatial distributions of the quarkonia and temperature). Because the bottomonia
are much less subject to recombinations and initial cold nuclear matter effects (see
section II.2.1), our results for the Υ(1S) state can reasonably be compared to the
experimental data if one considers the feed down contributions. Like other particles,
the Υ(1S) pT spectrum is dominated by its low pT range, so that one can assume
the indirect production of Υ(1S) to be ∼ 30 − 40% of its inclusive production in
pp collisions (see figure I.10). As the excited states are strongly suppressed, their
contribution is very small and one can thus reduce our predictions for the Υ(1S)
state to ∼ 60− 70% of their values. If one reasonably assume that the Υ(1S) states
form before the deconfined medium (see section II.1) and that the weak potential
is more realistic, the values S(Υ(1S)) = 0.88 at RHIC and S(Υ(1S)) = 0.80 at
LHC are the most probable. Then our actual prediction within this model should
be around RAA ∼ 0.6 at RHIC and RAA ∼ 0.5 at LHC. These values should lead to
a rather good agreement with the data by including the shadowing/antishadowing
effects.
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Main ideas and transition

Limiting our dynamical model to the effects of the Debye screening on the QQ̄
binding, we have studied its real-time dynamics and quarkonia content. We have
observed some important transitions between bound quantum states and between
bound and free states. As a result and especially for the charmonia, we have obtained
rich suppression patterns, even at the high temperature limit, which already rule
out the simple melting picture assumed by the sequential suppression. In particular,
the evolution of the QQ̄ pair in a dynamic medium leads to neither full nor fast
decorrelation of the “melted” states and to possible repopulation of excited states
from lower states. We have also pointed out the strong influence of the QQ̄ initial
state and of the potential. Nevertheless, a full description of the QQ̄ dynamics
should also include the effects of the direct collisions between the heavy quarks and
the thermal medium. Including them should lead to a diffusive evolution of the
QQ̄ pair which might strongly modify the suppression patterns. To this end, we
introduce in the next part the open quantum system framework and motivate our
approach for the QQ̄/QGP direct interaction.
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Part IV

Quarkonia and open quantum
systems

103



Inside the deconfined matter, the QQ̄ pairs are subject to screening effects due
to color charges in their vicinity and to multiple hard collisions with the medium
particles. In this part, we discuss how these multiple collisions can be accounted for
in general and how they could affect the internal degrees of freedom of a QQ̄ pair.
To this end, we first introduce the general frameworks of classical and quantum open
systems in section IV.1. These frameworks separate a global system into a relevant
small subsystem (the QQ̄ pair) and an irrelevant large environment (QGP) whose de-
tailed dynamics is insignificant. It results in some energy and momentum exchanges
between the two systems without significantly affecting the environment. We then
briefly review how these effects are described in the literature for the QQ̄/QGP
system IV.2.1 and motivate our approach IV.2.2.

Figure IV.1: In this part, we discuss how to take into account the multiple direct
interactions between the QQ̄ and QGP systems.
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IV.1 Introduction to open quantum systems

IV.1.1 Classical Brownian motion

The Brownian motion refers to the erratic motion of Brownian particles - charac-
terised by a heavy mass m - immersed in a thermal fluid and subject to permanent
collisions with the fluid lighter particles (of mass mf ). The study of the Brownian
motion usually assumes a clear separation between the different typical scales. The
first time scale τcoll corresponds to the typical microscopic interaction time between
the bath components and the Brownian particle and leads to the fluctuations of the
latter velocity. The second time scale corresponds to the typical time of the relax-
ation τrelax of its average velocity. The mass hierarchy m� mf causes the relaxation
to be much slower than the process of collisions, i.e. τcoll � τrelax. The dynamics of
the Brownian motion is then usually considered on a time interval ∆t in between
these two time scales, i.e. τcoll � ∆t � τrelax, in order to study its relaxation to
equilibrium without focusing on each collision.

In classical mechanics, the Brownian motion is well described by the phenomeno-
logical Langevin equation within the Newtonian framework [151]. The subsystem
evolution is obtained through the balance of two forces which generate irreversible
energy exchanges between the two systems. These two forces, namely the friction
force and the stochastic force, translate the two aspects of the collisions at the two
described time scales. The Langevin equation in 1D writes,

m
d2x

dt2
= −mAv + FR(t) + Fext (IV.37)

where x is the subsystem position, v its velocity, A the drag coefficient correspond-
ing to the inverse relaxation time (1/τrelax), FR(t) the random/stochastic force and
Fext a possible external force. The first term of the RHS is the friction force pro-
portional to the Brownian particle velocity. It translates its reduction in speed due
the collisions if it propagates with a higher velocity than the medium particle. The
second term is a fluctuating force which simulates the permanent collisions. This
fluctuating force is generally taken as a homogeneous Gaussian noise, independent
of the subsystem position and described by its mean and covariance function. As the
direction of the collisions are completely random, the mean value of the noise is zero
over many collisions: 〈FR(t)〉 = 0. The classical Langevin equation usually assumes
no correlation between the successive collisions, so that the white noise covariance
writes,

〈FR(t)FR(t+ τ)〉 = Bδ(τ), (IV.38)

where δ is the Dirac distribution and B the correlation strength. The classical
fluctuation-dissipation relation,

B = 2mkTbathA, (IV.39)

where k is the Boltzmann factor and Tbath the bath temperature, gives the balance
between the two forces (i.e. between the energy gain and loss). If the subsystem
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is initially at a given velocity, the Brownian motion is characterised by a linear
rise of the velocity variance σ2

v = 〈[v(t) − 〈v〉]2〉 ≈ 2Dvt (when t � τrelax), where
Dv = B/(2m2) is the diffusion coefficient in velocity space, before saturating to
〈v2〉 ≈ Dv/A at thermal equilibrium (t � τrelax). Furthermore, at thermal equilib-
rium the variance of the position is given by 〈x2〉 ≈ 2DSt, where DS = Dv/A

2 is the
spatial diffusion coefficient.

The Brownian motion can be equivalently described by the Fokker-Planck equa-
tion which focuses on the time evolution of the velocity density distribution f(v, t)
[151]. Without external force, the Fokker-Planck equation writes

∂f

∂t
=

∂

∂v
(Avf) +

∂2

∂v2
(Dvf). (IV.40)

The Fokker-Planck equation is usually derived from the Boltzmann equation51 by
expanding its collisional term to small momentum transfers (which is a consequence
of the mass hierarchy). It can also be derived from the Kramers-Moyal expansion
for stochastic process.

IV.1.2 Overview

The search for the description of quantum subsystems in contact with a heat
bath has appeared to be crucial for the understanding of quantum fundamentals
and in many branches of applied physics (where the quantum systems can never be
isolated), such as in quantum diffusion and transport [169, 170, 171], quantum op-
tics [172, 173, 174], low energy heavy ion scattering [175, 176], quantum computers
and devices [177, 178, 179, 180], and of course high energy heavy ion collisions...
Unfortunately, the Langevin dynamics - or more generally energy dissipation - can-
not be introduced easily in the common quantum formalism, as no direct canonical
quantization of an Hamiltonian can describe irreversible phenomena [181].

To solve this long standing problem, two main approaches have been proposed
and have led to a description of quantum dissipation far from being unique.

1) In the most common approach, the subsystem plus bath is considered as a
whole conservative system. By integrating out the bath degrees of freedom, one
obtains the dissipative evolution of the subsystem only, given by a quantum master
equation (QME) or equivalent [182, 183] (section IV.1.4). In a number of complex
applications defining the bath and calculating the QME operators is rather com-
plicated and some effective approaches are necessary [182, 184]. A simple model
of the bath [172, 185, 186] - a thermal ensemble of oscillators linearly coupled to
the subsystem - has proven to be a suitable framework to study Brownian motion
(section IV.1.5).

2) Within the second category, many non-standard quantization procedures
[187, 177, 188, 189] or new frameworks [190, 191, 192, 193, 194, 195, 196] have

51The Boltzmann equation is a kinetic equation which describes the dynamics of a particle in
a classical diluted gas. It assumes that the time of one collision is much smaller than the typical
time between two successive collisions.
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been suggested to overcome the initial subsystem quantization difficulty (briefly dis-
cussed in section IV.1.6).

Generally, these evolutions are expected to lead the subsystem to a thermal
equilibrium where the energy spectrum components of the subsystem are “Lamb”
shifted and broadened [184, 197] (see section IV.1.7). These spectrum modifications
are negligible at the weak coupling limit and one expects the thermal equilibrium
predicted by statistical mechanics (the Gibbs state), i.e. Boltzmann distributions
of the uncoupled subsystem energy states. One is at the weak coupling limit when
the subsystem relaxation time τrelax is much larger than the typical microscopic
interaction time τcoll and than the subsystem natural oscillation time. A Brownian
subsystem usually corresponds to this situation.

IV.1.3 Pure and mixed states

In common quantum mechanics, one focuses on isolated systems with no inter-
actions with their environment. The whole information about the system is encoded
in a well defined state that evolves in a deterministic manner. The only probabilistic
notion enters when one considers the result of an observable measurement such as
the position, momentum... The state is then described by a pure normed vector |ψ〉,
a single wavefunction or a Wigner distribution for instance.

In open quantum systems as in classical statistical mechanics, the study of the
evolution and interactions of the whole system (subsystem of interest plus bath) is
usually impossible and one needs to give a statistical nature to the bath-subsystem
interaction. The subsystem must then be described by a mixed state, which includes
not only the probabilistic information about the observable measurements but also
about the state itself [198]. The common tool to describe a mixed state is the density
matrix operator,

ρ(t) =
N∑

n,m=1

ρnm(t)|ψn〉〈ψm| , with
N∑
n=1

ρnn(t) = 1, (IV.41)

where {ρnn(t)}n=1,...N is the distribution of the weights of the accessible pure eigen-
states {|ψn〉}n=1,...N . Note that a diagonal term ρnn = pn is the probability - also
called population or weight - for the system to be in a state |ψn〉, whereas the
off-diagonal terms give information about the “coherences”, i.e. the possible phase
interferences between the different components of the system state. The expectation
value of an observable operator Ô is then given by

〈Ô〉 = tr(ρ Ô). (IV.42)

The evolution of the density matrix is deterministic and commonly given by a QME
(see below).

If one considers instead a stochastic equation based on a pure state evolution52,
one needs to perform an average over a large sample of initially identical subsys-

52As for instance the Heisenberg-Langevin equation, the Schrödinger-Langevin equation or the
stochastic Schrödinger equations as discussed later.
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tems to recover the statistical notion implied by the mixed state [183, 199]. The
expectation value of an observable operator Ô is then be given by〈

〈ψ(t)|Ô|ψ(t)〉
〉

stat
= lim

nstat→∞

1

nstat

nstat∑
r=1

〈ψ(r)(t)|Ô|ψ(r)(t)〉 , (IV.43)

where the pure state |ψ(r)(t)〉 is given by the rth realisation of the stochastic evolu-
tion. Finally, a Wigner transform of the density matrix can also be used to describe
mixed states.

IV.1.4 Quantum Master equations and equivalent

IV.1.4.1 Quantum Master equations

In the most common approach to open quantum systems [182], the subsystem
plus bath is considered as a whole conservative system, in order to overcome the
difficulty to treat the subsystem dissipation directly. The evolution of the density
matrix operator ρtot of the global system in the total Hilbert space Htot = HS⊗Henv

is then given by the Liouville - von Neumann equation of motion,

ρ̇tot = − i
~

[Htot, ρtot] ≡ Ltot ρtot (IV.44)

where Htot is the Hamiltonian of the global system and Ltot is defined as the corre-
sponding Liouville operator. Next, it is assumed that the global Hamiltonian and
Liouvillian operators can be decomposed as:

Htot = HS +Hint +HB; Ltot = LS + Lint + LB, (IV.45)

where HS is the “isolated” subsystem Hamiltonian (when the subsystem is not cou-
pled with the bath), Hint the Hamiltonian describing the interactions between the
bath and the environment and HB the bath Hamiltonian. As one is only interested
in the dynamics of the subsystem, one needs to trace out the bath degrees of free-
dom from the global density operator to obtain the “reduced” density operator ρS

corresponding to the subsystem variables. To this end, one should employ a certain
projection operator P , which contains the trace operation over the bath coordinates:

ρS = trB(ρtot) ≡ Pρtot. (IV.46)

Applying these projections and decompositions to the equation of motion (IV.44)
yields

ρ̇S(t) = P (LS + Lint)ρS(t) +

∫ t

0

dt′PLinte
(1−P )Ltott′(1− P )Lint ρS(t− t′). (IV.47)

The latter is the general time-retarded Nakajima-Zwanzig equation. The first term
of the RHS describes the reversible unitary dynamics of the subsystem. The second
term describes the possible transitions that the subsystem may undergo due to the
interactions with the bath and corresponds to an irreversible non-unitary relaxation.
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The second term is still too complicated for explicit evaluations, as it contains any
power of Lint and depends on the whole history of ρS. To simplify it, one can perform
the Born approximation, i.e. a truncation to the second order in Lint corresponding
to a weak coupling, and assumes the process to be Markovian (local in time), i.e. the
bath has no memory of past events so that ρS(t − t′) can be replaced by ρS(t), to
derive from IV.47 the Born-Markov quantum master equation:

ρ̇S(t) = P (LS + Lint)ρS(t) +

∫ t

0

dt′PLinte
(1−P )(LS+LB)t′(1− P )LintρS(t). (IV.48)

In practice, the Born-Markov QME (IV.48) is transformed either into the Redeld
equation in the eigenstate basis of HS,

ρ̇nm(t) = −iωnm ρnm(t)−
∑
k,l

Rnmklρkl(t), (IV.49)

where ωnm are the transition frequencies and R the Redeld relaxation tensor, or into
a QME with the Lindblad form [200],

ρ̇S(t) = − i
~

[HS +HLS, ρS(t)] +
1

2

∑
j

(
[LjρS(t), L†j] + [L†j, ρS(t)Lj]

)
, (IV.50)

where HLS is the Lamb-Stark Hamiltonian (discussed in IV.1.7) and Lj are the
Lindblad operators which depend on the bath, subsystem and their coupling.

These QME have been successfully applied in different branches of applied physics
such as in nuclear magnetic resonance [201] and optical spectroscopy [202].

IV.1.4.2 Stochastic Schrödinger equations

If N is the dimension of the subsystem Hilbert space, the computation of a
QME scales with N2 for the density matrix (see its definition IV.41) and N4 for
the relaxation tensor. As the dimension N is possibly very large, the numerical
calculation can become rapidly nontrivial. As an alternative to QME when N is too
large, one can use the so-called stochastic Schrödinger equations (SSE) [182, 183,
199, 203]. Because they are based on the evolution of the subsystem wavefunction
|ψ〉, which scales to N , their calculation is considerably more favorable. The basic
idea underlying these equations is a Markovian stochastic process designed such as
to obtain ρQME

S (t) = 〈|ψ〉〈ψ|〉(t). Two main classes of SSE have been developed:
the quantum state diffusion [199] and the quantum jump method [183, 203]. The
first one is based on the solution of a nonlinear stochastic Schrödinger equation
which includes the Lindblad operators. Within the second, the wavefunction is
evolved step by step from the combination of a non-Hermitian Schrödinger equation
(which also includes the Lindblad operators) and some random jumps to the other
accessible states triggered by a Monte Carlo process. For both methods, there is in
most cases53 a direct correspondence between their solution and the solution of the
QME (IV.50). Like the QME, they have been successfully applied in the last decade
to simple model of systems [184, 197, 174, 203].

53Some differences have been observed [197].
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IV.1.5 Heisenberg-Langevin equation from a bath of oscil-
lators

Unfortunately, in a number of complex applications, defining the bath/interaction
Hamiltonians and calculating the Lindblad operators is rather complicated. To dis-
entangle the situation, some effective approaches are necessary [182, 184]. A simple
model of the bath [172, 185, 186] - a thermal ensemble of harmonic oscillators lin-
early coupled to the subsystem - have proven to be a suitable framework to study
Brownian motion.

The so-called Caldeira-Leggett model [185, 186, 182] consists of a Brownian
particle linearly coupled to a large number of independent quantum oscillators. The
Hamiltonian of the global system then writes,

H =
p2

2m
+ V (x) +

1

2

N∑
n

(
p2
n

mn

+ kn(xn − x)2

)
, (IV.51)

where (x, p) and (xn, pn) are the position and momentum operators in the Heisen-
berg picture of the Brownian particle and the nth bath oscillator respectively, and
kn = mnω

2
n the nth spring constant. The variables are required to obey the Heisen-

berg commutations

[x, p] = i~ and [xj, pk] = i~δjk. (IV.52)

Using the Heisenberg equations of motion, performing a statistical average over
the initial bath variables assumed to be at thermal equilibrium and going to the
continuum for the oscillator frequencies lead to the so-called Heisenberg-Langevin
(HL) equation for Heisenberg operators at the weak coupling limit:

ṗ = F (x)− Ap+ FR(t), (IV.53)

where −Ap is an Ohmic friction operator (A is then a Drag coefficient) and FR(t)
a non-commutating stochastic operator satisfying the correlation

〈FR(t)FR(t+ τ)〉 =
m

π

∫ ∞
0

~ω
[

coth

(
~ω

2kTbath

)
cos(ωτ) + i sin(ωτ)

]
Adω.(IV.54)

The real part of the noise spectrum (IV.54) corresponds to the quantum fluctuation-
dissipation theorem and is therefore independent of the bath model [182]. Further-
more, at the classical limit (~→ 0) and at the high temperature limit (Tbath →∞)
relation (IV.54) leads to the classical fluctuation-dissipation relation IV.39. Hence,
the HL equation reduces to the classical Langevin equation at the classical limit.
The properties of the quantum noise (IV.54) will be further discussed in part VI.
Within this model, notice that even in the quantum realm the dynamics of a sub-
system in interaction with a bath can be reduced to two straightforward “classical”
parameters: the drag A (inverse relaxation time) and the bath temperature Tbath.

110



In general, the practical application of the HL equation is limited by its non-
commutating operator nature. Although questionable [204], a common approxima-
tion [205, 206, 207, 208, 209, 210, 211] is to abandon its operator character and to
replace the non-commutating q-number noise by a c-number noise while matching
its covariance to the real part of the noise spectrum (IV.54):

〈FR(t)FR(t+ τ)〉 =
m

π

∫ ∞
0

~ω coth

(
~ω

2kTbath

)
cos(ωτ)Adω. (IV.55)

One then obtains the quasiclassical Langevin equation which leads to a reasonable
description for subsystems which are nearly harmonic [205, 209] and to possible vi-
olations of the Heisenberg principle [204].

In part VI, we will explore in detail a possible counterpart of the Heisenberg-
Langevin equation in the Schrödinger representation, the so-called Schrödinger-
Langevin equation, which is more suited for our analysis.

IV.1.6 Other frameworks

Numerous other frameworks and non-standard quantization procedures have
been proposed to overcome the initial subsystem quantization difficulty without
considering the whole system. It includes for instance effective time dependent
Hamiltonians [190, 191], stochastic mechanics quantization [177, 187], new varia-
tional principle for dissipative system [192], complex Hamiltonian [189], fluid inter-
pretation of the Schrödinger equation54 (Bohmian mechanics) [195, 196]... Though
connections exist between them and with the QME, they have led to different equa-
tions of dissipative evolution...

IV.1.7 Long time behaviour and equilibrium

Generally, the equations of evolution that we have introduced in the previous
sections IV.1.1, IV.1.4 and IV.1.5 are expected to bring the subsystem in thermal
equilibrium with the heat bath.

In the classical realm, it can be shown that for a general potential the classical
Langevin equation (IV.37) and equivalent Fokker-Planck equation lead the probabil-
ity density for the subsystem position and momentum to the canonical (Maxwell-)
Boltzmann density distribution55 [212, 213],

F (x, p, Tbath) =
1

Z
exp

(
−H(x, p)

kTbath

)
, (IV.56)

where H(x, p) = p2/2m + V (x) is the subsystem classical Hamiltonian and Z the
partition function (a normalisation factor).

54Discussed in part VI
55If the process (x(t),p(t)) is Markovian and the probability density distribution f(x, p, t) satisfies

the Kramers equation, the unique stationary solution is the Maxwell Boltzmann distribution.
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In the quantum realm where the energy states are quantified, the open quantum
system framework predicts that the system-reservoir coupling can modify the en-
ergy spectrum of HS [184, 197, 213]. Indeed, in equation (IV.50), the Lamb-Stark
Hamiltonian HLS induces small shifts of the unperturbed energy levels and the dis-
sipative part induces a broadening of the spectral lines indicating a finite lifetime
for the excited states due to the dissipation. At the weak coupling limit, these
spectrum modifications are negligible and the subsystem density matrix at thermal
equilibrium is expected to be,

lim
t→∞

ρS =
1

Z
exp

(
− HS

kTbath

)
=

1

Z

N∑
n=1

exp

(
−En
kTbath

)
|ψn〉〈ψn|, (IV.57)

where the {En}n=1...N and {ψn}n=1...N are the usual eigenenergies and states of the
unperturbed subsystem Hamiltonian HS. The equilibrium density matrix (IV.57)
is the general stationary solution of the quantum master equations at the weak
coupling limit [184]. On its side, the ability of the Heisenberg-Langevin equation
to bring a subsystem to the equilibrium distribution (IV.57) has only been demon-
strated for the free and harmonic potential V (x) [172, 212].

To conclude this brief discussion on open quantum systems, there is no universal
description of quantum subsystems in interaction with a heat bath and the formalism
should be adapted to each situation. If the interaction/bath can be defined and
the trace operation performed without too many approximations, the framework of
quantum master equations or stochastic Schrödinger equations should be the most
rigorous. If not, more effective approaches are required and one can explore for
instance the Heisenberg-Langevin framework.

IV.2 Quarkonia as classical and quantum dynam-

ical systems

IV.2.1 Dynamical quarkonia suppression in the literature

The multiple direct interactions between the QQ̄ pairs and the medium particles
are usually described through either a cross-section, an imaginary potential, a semi-
classical or an open quantum system framework.

IV.2.1.1 Cross section and imaginary potential approaches

As already discussed in sections II.2.1.3 and II.4.2, the cross-section approach is
based on the hard gluo-dissociation of the quarkonium states. The knowledge of the
corresponding inelastic cross sections leads to the evaluation of the reaction rates for
dissociation and formation which are commonly used by transport models to con-
tinuously flip between quarkonia and “free” Q + Q̄ (see section II.2.2.2). However,
the effects of the multiple (non-dissociative) interactions with the medium are not
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considered.

From thermal field theory, Laine et al. [121] have derived a Schrödinger-type
equation for the correlator of a decaying QQ̄ pair that takes into account the medium
direct interaction with the quarkonia states. This Schrödinger-type equation ex-
hibits an effective potential with a real part, for the usual Debye screening, and an
imaginary part which translates the thermal effects. The temperature dependent
imaginary part generates finite widths for the quarkonium states and thus their
thermal decay in the plasma. An imaginary contribution to the potential has also
been derived within other frameworks, such as non relativistic heavy quark effective
theories (NRQCD at finite temperature) [214, 215] and lattice QCD [216]. The real
and imaginary potential is commonly used within the anisotropic hydrodynamics
model (aHYDRO) to describe quarkonia suppression [217, 218]. In this model, the
quarkonia are assumed to be mainly influenced during their formation time (< 1
fm/c) and one therefore focuses on their propagation in the early-time strongly
anisotropic QGP. In practice, the stationary 3D Schrödinger equation is solved to
obtain the real and imaginary parts of the binding energy for each state. One then
integrates the corresponding non-equilibrium decay rate over the lifetime of the state
in the plasma as a function of its position and transverse momentum. Some aHY-
DRO predictions have already been presented in section II.3. Nevertheless, note
that it assumes the bound states to be already formed, which is not obvious in such
an early stage of the collision.

For both cross-section and imaginary approaches, the possible transitions be-
tween bound states are not considered although they might play a significant role
as demonstrated in part III. Furthermore, as in the sequential suppression picture,
the evolution of the quarkonia is assumed to be adiabatically slow, such that the
QQ̄ pair remains in the corresponding bound state at whole time. This assumption
may not hold if the binding potential evolves rapidly with the cooling QGP, lead-
ing to possible transitions between eigenstates [219]. In our view, a full dynamical
description of the QQ̄ evolution - and not only of its bound states - is preferable.
Finally, note that the imaginary part of the potential cannot be introduced in the
Hamiltonian of our mean field model developed in part III. It would indeed lead to
a non-unitary evolution of a pure state, i.e. to the disappearance of the QQ̄ pair.

IV.2.1.2 Semi-classic approaches

Because of their large mass, the heavy quark and antiquark of the pair can
be seen as non-relativistic classical Brownian particles. Indeed, their typical De
Broglie wavelength at thermal equilibrium, λ ∼ 1√

MQT
, is smaller (but not much

smaller) than the typical inter particle distance of the medium particles ∼ 1/T .
The heavy quarks might therefore be seen as classical particles. Furthermore, as
MQ � T a collision between one of the heavy quarks and a medium particle leads
to a change of its momentum ∆pQ ∼ T momentum, so that its change of velocity
is ∆vQ ∼ T/MQ � 1. Hence, many collisions are required to change significantly
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its velocity. It guarantees that the heavy quark relaxation time is much larger than
the typical collision time and the clear separation between the different typical time
scales required by the Langevin framework is satisfied (see IV.1.1). Finally, because
the correlation length in the medium should be much smaller than the distance
between the heavy quarks, the collisions on each heavy quark can be treated as
uncorrelated [2]. One of the main difficulties that arises from the classical treatment
of the QQ̄ pair is the connection between point-like Q and Q̄ particles and the quan-
tum nature of their bound states. In other words, how to translate the quantum
properties of a bound state in a (semi-)classical formalism ?

To get around this problem, Young and Shuryak first proposed a semi-classical
framework based on Wigner distributions [2]. In this framework, a collection of
“test” particles is initially distributed according to a phase-space distribution given
by the Wigner transformation of the QQ̄ initial state. The test particles are then
evolved with the usual Langevin dynamics. Finally, to obtain the real-time popu-
lation of the different bound states, the distribution of test particles is convoluted
with the phase-space distributions of the bound states. This approach will be fur-
ther discussed in part V and applied to our model. Very recently, Blaizot et al. have
proposed a more elaborated Langevin dynamics where the friction and stochastic
force depend explicitly on the configuration of the QQ̄ pair [220]. This dependence
is derived from a subsystem plus reservoir development where the coupling between
plasma light quark/antiquark fields (reservoir) and with the heavy quarks (subsys-
tems) are Coulombic. The plasma degrees of freedom at thermal equilibrium are
traced out through a path integral technique and some approximations at the weak
coupling limit. One can note however that in this exploratory work, the connection
between the classical particles and the quantum states is less sophisticated than
in [2], i.e. restricted to some simple and imprecise criteria on binding energy and
relative distance. As a possible pitfall for these semi-classical approaches, in part V
we will see that the thermalisation of classical particles (given by IV.56) does not
necessarily imply the thermalisation of quantum states (as given by IV.57).

IV.2.1.3 Open quantum systems

Because of the deep quantum nature of the QQ̄ states, one should look for a
more appropriate framework. A correlated QQ̄ pair can be seen as a small quantum
subsystem in interaction with the surrounding medium made of light quarks and
gluons at thermal equilibrium. The latter can transfer energy and momentum to
the QQ̄ pairs without being affected too significantly: it can be seen as a heat
bath whose detailed dynamics is irrelevant. The open quantum systems, discussed
in section IV.1, then provides a natural framework. Several approaches have been
explored so far, namely 1) the reduced density matrix in path integral [221, 222], 2)
the Pauli rate equation [223] and 3) the stochastic potential [224].

1) Young and Dusling have first used the Caldeira-Leggett Hamiltonian (IV.52)
to determine the propagation of heavy quark/antiquark system coupled to a

114



bath of harmonic oscillators [221]. It leads to a reduced density matrix for
the QQ̄ pair expressed as an imaginary-time path integral. Using the Cor-
nell potential for the QQ̄ binding, the integral is solved numerically to show
how dissipative effects could affect the correlators of quarkonium spectroscopy.
However, the dynamics of the pair internal d.o.f is hardly accessible through
this method. Recently, Akamatsu has proposed a more refined model based on
first principles [222]. Similarly to Blaizot et al., the derivation of the reduced
density matrix is carried out within a closed-time path integral formalism.
He applies this formalism to thermal QCD at the leading-order in the non-
relativistic and weak coupling limits. A correlator is derived and leads to the
imaginary potential found by Laine et al. (see section IV.2.1.1). A master
equation with the Lindblad form (IV.50) can also be derived [225]. The quali-
ties of this work are undeniable (derivation from first principles, rigorous open
quantum system framework...) but its actual application to quarkonia sup-
pression seems entangled and might still require a lot of work (not tangible
terms, large rank density matrix...).

Figure IV.2: Left: Evolution of the bottomonium populations obtained with Borghini
and Gombeau’s Einstein master equation IV.58 in a thermal bath at T = 5Tc with Tc = 170
MeV. Right: Comparison between the ratios of bottomomium populations as a function of
temperature obtained with master equation IV.58 (symbols) and with expected Boltzmann
behaviour (lines) [223].

2) Borghini and Gombeaud [223] have proposed an alternative phenomenological
approach based on the Pauli (or Einstein) master equation,

dρSii
d t

(t) = −
∑
k 6=i

Γi→k ρ
S
ii(t) +

∑
k 6=i

Γk→i ρ
S
kk(t) (IV.58)

where ρSii is the population of the ith quarkonium and Γi→k the transition rate
from the state i to k. The set of transition rates is evaluated from Fermi’s
golden rule and a dipolar interaction between the QQ̄ and a gluonic vector field
seen as a bath of oscillator at thermal equilibrium. The QQ̄ pair mutual inter-
action is taken as a vacuum Coulombic potential. At constant temperatures
and after a transient phase, the populations are observed to decrease exponen-
tially with a common decay rate (see left panel on figure IV.2). Furthermore,

115



as shown in the right panel, the quasi-equilibrium distributions obtained at
some time t after the transient phase are not Boltzmann distributed (relation
IV.57). This discrepancy originates from their difficulty in modeling the con-
tinuum of free states, whereas the correct transitions between bound and free
states are necessary.

3) Akamatsu and Rothkopf have proposed a stochastic potential approach [224].
By including a white stochastic term in the usual unitary evolution operator,
they derive a tractable master equation in which the spatial correlation of the
stochastic term shows up as an imaginary potential. The presence of the noise
term leads to spatial decoherence and exponential suppression of the ground
states (see figure IV.3). Unfortunately, due to the absence of a friction term,
this model is unable to thermalise the states and leads to a linearly increasing
energy and to uniform state populations after a transient phase.

Figure IV.3: Populations of quarkonium states (cvnn) obtained with the vacuum potential
and the stochastic model based on lattice QCD parameters [224].

The descriptions of quarkonia as open quantum systems developed so far are
thus either rigorous but hardly applicable to phenomenology or more effective but
unable to thermalise the inner dynamics. This quest is therefore quite recent and
still open to new ideas.

IV.2.2 Langevin-like approaches and overview of the next
parts

In this section, we wish to justify and discuss the approach that we have chosen
to follow in the next parts. Because of the quantum nature of the bound states, a
quantum description of the QQ̄ pair is necessary in our view. The open quantum
system framework should then be appropriate to study its real-time dynamics. Un-
fortunately, its rigorous derivation within the subsystem plus bath approach is quite
entangled56 - due to the complexity of the QGP/quarkonia interaction and of the
dynamic QGP itself - and hardly applicable to the quarkonia phenomenology. As a
result, we have looked instead for an effective approach suitable for phenomenology:
easy to implement in a realistic collision scenario, which guaranties the transitions

56The recent developments from Akamatsu discussed in IV.2.1.3 could nevertheless rule against
this opinion.
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between bound states and with the free states, and capable to thermalise the QQ̄ in-
ternal d.o.f. Motivated by the non-relativistic Brownian nature of the heavy quarks
in a pair57 and by the availability of Drag coefficients for single heavy quarks diffu-
sion58 (see section V.2.1), we have headed toward some semi-classical and quantum
Langevin-like approaches at the weak coupling limit. One could then obtain a uni-
fied description of the QQ̄ pair inner dynamics and single heavy quarks propagation.
The quantum QQ̄ pair can then be seen as subject to three forces: i) the drag force
which accounts for energy dissipation, (ii) the stochastic force which mocks the dense
collisions with the medium and (iii) the screened mutual interaction of the QQ̄ pair
as in part III. Inspired by Young and Shuryak work IV.2.1.2, we have first focused
on a semi-classical approach based on classical Langevin evolution of Wigner distri-
butions (next part V). Nevertheless, its severe limitations urged us to look for a full
dynamical quantum approach. We have then focused on a Langevin-like extension
of the fundamental Schrödinger equation, the so-called Schrödinger-Langevin equa-
tion, which can be seen as the counterpart of the Heisenberg-Langevin equation (see
section IV.1.5) in the Schrödinger representation. We have first studied its general
properties as a sanity check (part VI) and then applied it to the QQ̄/QGP system
within a simplified model (part VII).

57See section IV.2.1.2.
58The knowledge of the Drag - for single heavy quarks diffusion in the QGP - allows to reduce

the dissipative dynamics at a mesoscopic scale into a single parameter.
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Part V

Semi-classic approach
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As a first attempt to assess the effects of direct thermal forces, we investigate a
semi-classical framework initially proposed by Young and Shuryak [2]. It is based on
a Wigner description of the correlated QQ̄ pair and the classical Langevin dynam-
ics. As for the mean field case (part III), we only consider the internal degrees of
freedom of the QQ̄ pair immersed in a homogeneous and infinite thermal QGP. Our
approach within this part is illustrated in figure V.1. The semi-classical approach is
first introduced without Langevin dynamics in section V.1.1. The related results are
discussed in section V.1.2 and compared to the quantum results of part III. Next,
in section V.2, the semi-classical approach with Langevin dynamics is introduced
and the related results on direct J/ψ suppression at constant temperatures, or with
RHIC and LHC scenarios, are presented. Note that these results have been pub-
lished in a conference proceeding [226]. However, in section VI.1.2, we discuss their
veracity through a critical review of the semi-classical formalism. Finally, in section
V.3, we briefly discuss a related formalism that we have also explored, namely the
Wigner-Moyal equations with quantum Fokker-Planck terms.

Figure V.1: Illustration of our approach within this part through its basic ingredients
and interactions between the QQ̄ and QGP systems.

“Only the one who does not question is safe from making a mistake.”
— Albert Einstein59 —

59From a letter to Gustav Bucky, 1945. AEA 037462
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V.1 The semi-classical model without Langevin

dynamics

V.1.1 Wigner transformation and Wigner-Moyal equation

In usual quantum mechanics, the QQ̄ pair probabilistic information is described
by a wavefunction Ψ, whose evolution is given by the Schrödinger equation. Equiva-
lently the QQ̄ pair can be described by a phase space distribution called the Wigner
distribution FQQ̄ (~r, ~p, t), derived from the Wigner transformation of the wavefunc-
tion [227]:

FQQ̄ (~r, ~p, t) =

∫
e

i~p · ~r′
~ ψ∗QQ̄

(
~r +

~r′

2

)
ψQQ̄

(
~r −

~r′

2

)
d~r′. (V.59)

For instance, the radial Gaussian wavefunction

RQQ̄(r, t = 0) =

(
1

πσ2

)3/4

e
− r2

2σ2 , (V.60)

becomes the Gaussian Wigner distribution in both radial position and radial mo-
mentum space,

FQQ̄(r, p, t = 0) ∝ e

− r2

2( σ√
2
)2

e

− p2

2( ~c√
2σ

)2

(V.61)

where one can define the Gaussian parameters of the Wigner distribution: σWT
r =

σ√
2

for the position part and σWT
p =

~c√
2σ

for the momentum part.

The evolution of the Wigner distribution is given by the Wigner transformation of
the Schrödinger equation called the Wigner-Moyal equation (in relative coordinates)
[227]: [(

∂

∂t
+
~p

m
· ∂
∂~r

)
− 2

~
sin

(
~
2

∂

∂~p
· ∂
∂~r

)
V (~r)

]
FQQ̄ (~r, ~p, t) = 0, (V.62)

where m is the reduced mass and the spatial derivative in the sine term acts only
on the mean field potential V (~r) only. The Wigner-Moyal equation has two main
advantages over the usual Schrödinger equation. First, one can easily include some
thermal terms by analogy with the Fokker-Planck equation (see section V.2). Sec-
ond, the connection between classical and quantum mechanics is more comprehensi-
ble. Indeed at the (semi-)classical limit, i.e. ~→ 0, one obtains the classical Wigner
Moyal equation (V.63), equivalent to the Liouville equation, by expanding the sine
term to the first order in ~.[(

∂

∂t
+
~p

m

∂

∂~r

)
− ∂

∂~p

∂

∂~r
V (~r)

]
FQQ̄ (~r, ~p, t) = 0. (V.63)

To evaluate the probability of the QQ̄ pair to bind as a specific quarkonium state
at hadronisation, one needs to project its Wigner distribution onto the corresponding
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quarkonium Wigner distribution. For instance, in the case of the J/ψ state, the
projection writes:

WJ/ψ(t) =

∫
FQQ̄ (~r, ~p, t)FJ/ψ (~r, ~p)

d3~pd3~r

(~c)3 ., (V.64)

with both distributions normalized to unity.

The semi-classical formalism therefore includes the quantum Wigner distribution
(equation V.59) of the QQ̄ pair, which is evolved with the classical Wigner-Moyal
equation (V.63), and projected onto the vacuum quarkonium states at hadronisation
(equation V.64). This semi-classical approach allows an easy access to numerical
simulations through the practical use of the test particles method. In the latter, one
reproduces the 3D Wigner distribution with a large set of N test particles which
are sampled according to equation (V.61) at initial time and which are then evolved
with Newton’s laws (see [228] for more details). The projection on the vacuum
quarkonium states is then given by

PJ/Ψ(t) =
1

N

N∑
i=1

FJ/Ψ (ri(t), pi(t)) , (V.65)

the test particles version of (V.64), where ri(t) and pi(t) are, respectively, the instan-
taneous position and momentum of the ith test particle. In the following sections,
we focus on the normed weight PJ/Ψ(t)/PJ/Ψ(0), equal to the survivance defined in
the mean field part III (which corresponds to a RAA-like value at hadronisation).
For the numerical resolution, we use the Runge-Kutta fourth-order method which
has proven to be reliable for these evolutions.

Because in this study we are only interested in S states, the ψQQ̄(~r, 0) initial
wave-function can be reduced to its radial part. As in part III, the initial radial
wave-function is taken as a Gaussian wavepacket with Gaussian parameter σ = 0.165
fm. The corresponding parameters for the initial Wigner distribution are σWT

r =
0.1167 fm and σWT

p = 0.844 GeV/c. For the screened QQ̄ mutual interaction, we
mainly choose the strong potential U(~r, T ) (see section III.1.1 for more details).
The internal energy is indeed better suited for this study as it does not include any
energy exchange between the pair and the medium: a redundancy with the thermal
forces is thus avoided. The results with the weak potential Vweak are also given for
comparison.

V.1.2 Mean field evolutions with the semi-classical and quan-
tum models

In order to check the limits of the semi-classical approximation without Langevin
dynamics (i.e. only with color screened binding potentials), we compare the evolu-
tions obtained from the semi-classical approach and the time-dependent Schrödinger
equation (which leads to the correct evolutions already described in part III). As
shown in figure V.2, in the free case (i.e. V = 0), the J/ψ weights are identical.
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It is expected from the Erhenfest theorem which states that classical and quan-
tum observables are similar when the potential changes slowly in comparison to the
wavefunction size [229].
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Figure V.2: Left: Semi-classical results for the J/ψ weights function of time at a fixed
temperature Tred = 1.8 (T = 297 MeV). Right: Quantum results for the same situation.
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Figure V.3: Semi-classical and quantum results for the J/ψ weights function of time
with RHIC (left) and LHC (right) temperature scenarios (see III.1.2).

However, as illustrated in figures V.2 and V.3, and expected from the Erhenfest
theorem statement, important discrepancies appear with a binding potential: With
the semi-classical approach, one observes some overshoot for t < 1 fm/c and a dif-
ficulty to reach the continuum (the J/ψ normed weight remains close to unity) at
larger times. Note that in [2], the overshoot was explained by a rapid narrowing
of the distribution in momentum space due to 1) a drag coefficient larger than the
diffusion coefficient and 2) an initial momentum distribution larger than the thermal
momentum distribution60. Because it is also observed without Langevin dynamics,
their explanation is partly mistaken. The observation of the test particle paths in
phase space rather shows that it is due to their momentum loss while climbing the
potential barrier (which makes some of them enter the “J/ψ phase space zone”).
As a positive point, note also that the semi-classical formalism partly reproduces
the oscillations between eigenstates observed with the quantum formalism61. Note

60In other words, because the drag is much larger than the diffusion coefficient, the test particles
are first slowed down to reach thermal velocities, which increases the J/ψ weight, and then diffuse
spatially, which decreases the J/ψ weight.

61These oscillations are due to the high asymptotic values of the potential when 5 . t . 12
fm/c. See section III.4 for more details.
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finally that despite a difference of temperature of around 80 MeV between RHIC
and LHC scenarios, the semi-classical formalism gives similar results for both. Con-
sequently, if the Langevin dynamics does not drive the evolution, the validity of
the semi-classical results with Langevin dynamics (section V.2 and [2]) is clearly
questionable.

V.2 The semi-classical model with Langevin dy-

namics

V.2.1 Additional Fokker-Planck terms

A phenomenological way to take into account the thermalisation of the QQ̄ pair
in this dynamical model is to consider the random interactions between the QQ̄ pair
and the QGP constituents. By analogy with the Fokker-Planck equation of motion in
momentum space (equivalent to Langevin forces), we introduce additional stochastic
terms in the Wigner Moyal equation:[(

∂

∂t
+
~p

m
· ∂
∂~r

)
− 2

~
sin

(
~
2

∂

∂~p
· ∂
∂~r

)
V (~r)

]
FQQ̄ (~r, ~p, t) = ~∇p

(
A~pFQQ̄ + ~∇p(DvFQQ̄)

)
,

(V.66)
where A and Dv are parameters described below. In the limit ~→ 0, this equation
is equivalent to the approach adopted in [2]. Within the frame of the test particle
method, the right-hand side of equation (V.66) is then equivalent to additional
Langevin forces introduced in Newton’s equation of motion:

d~p

dt
= −~∇V (~r)− A~p+ ~ξ (~r, t) (V.67)

The stochastic force ~ξ is defined by 〈 ~ξ 〉=0 and 〈ξi(t)ξj(t′)〉 = Bδi,jδ(t-t’) (fluctu-
ations are uncorrelated over time). The friction/dissipative term is −A~p where A
is the well known drag coefficient. The Einstein relation can then be deduced from
quadratic and average momentum calculations [230], and the momentum diffusion
coefficient Dv related to B (see section IV.1.1):

Dv =
B

2
= mTA (V.68)

For the purpose of comparison, we present the results obtained from equation
(V.66) in the ~→ 0 limit, both with the drags for single heavy quarks propagation
from Gossiaux and Aichelin A[c/fm] ∼= 2(1.5T [GeV]+1.25T 2) [231] and from Young
and Shuryak A = 4πT 2/(3~cm) [2, 118] (see figure V.4). They originate from
calculations of collisional energy loss of a single heavy quark in a partonic medium.
The former drag has been evaluated through microscopic 2→ 2 processes and a fit
to experimental D-meson RAA and v2 data (which gives the factor 2). Note that
diffusion coefficients have also been evaluated from lQCD [232, 233] and DQPM62

[234].

62Dynamical Quasiparticle Model.
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Figure V.4: Comparison between Gossiaux and Aichelin [231] and Young and Shuryak
[2, 118] drag dependences on the temperature.

V.2.2 Evolutions at constant temperatures
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Figure V.5: Semi-classical results for the J/ψ weights function of time at a fixed tem-
perature Tred = 1.36 (T = 225 MeV) with the Langevin dynamics (drag coefficient from
Gossiaux and Aichelin). Left: with the weak potential F < V < U and right: with the
strong potential V = U . Dashed lines: results without Langevin dynamics.

As shown in Fig.V.5, the additional Langevin dynamics leads to an actual evo-
lution of the J/ψ weights that was missing in section V.1.2. On the one hand, one
observes an enhancement of the overshoot for t < 1 fm/c, indeed explained this
time by the rapid “thermalisation” of the distribution in momentum space (see ex-
planation provided in section V.1.2). On the other hand, it helps the test particles
to reach the continuum, i.e. to escape the range of the binding potential. The J/ψ
weight indeed decreases exponentially from t & 1 fm/c on, showing the continuous
decay of the bound component63 of the cc̄ pair. The continuous decay originates
from the spatial diffusion of the distribution towards large distances due to the
Langevin dynamics. The decay rate is observed to increase with the temperature
and is logically larger with the weak potential than with the strong potential (for
which the binding energy is larger).
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Figure V.6: Left: Semi-classical results for the J/ψ weights function of time with RHIC
temperature scenario, V = U , and Langevin dynamics (plain lines); dashed line: same
without Langevin dynamics. Right: Same but with LHC temperature scenario.
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Figure V.7: Left: Semi-classical results for the J/ψ weights function of time with RHIC
temperature scenario, F < VWeak < U , and Langevin dynamics (plain lines); dashed
line: same without Langevin dynamics. Right: Same but with LHC temperature scenario
(semi-log plot).

V.2.3 Evolutions at RHIC and LHC

We now include in the model the hydrodynamic scenarios of temperature at
RHIC and LHC as described in section III.1.2. The evolutions of the J/ψ weight with
the weak and strong potentials are shown in figures V.6 and V.7 respectively. The
first thing to notice is that one obtains an actual dynamical evolution: The cc̄ pair is
clearly not decorrelated instantaneously and the evolution is strongly non-adiabatic.
One can then observe that the suppression is more important at LHC than at RHIC.
The higher temperature at LHC indeed leads to a larger diffusion coefficient and to
a more important screening. Next, one can note that from t & 5 fm/c, the light J/ψ
weight variations follow the important variations of the strong potential asymptotic
value U(r →∞, t) (see figure III.6): high asymptotic values lead to a narrowing of
the spatial distribution whereas low asymptotic values to its spatial diffusion. The
features of the weak potential screening logically induces a larger diffusion of the cc̄
distribution resulting to a continuously shrinking exponential decay rate as the QGP
cools down. Last, the two drag coefficients give similar evolutions with a difference

63By bound component of the cc̄ pair we mean the component of the distribution that remains
inside the phase space area of the bound states
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of ∼ 0.1 at the freeze out with the strong potential and negligible with the weak
potential. As a robustness test, a variation of the initial wavepacket parameter of
±0.01 fm/c (12%) leads to a maximum normed J/ψ weight deviation of 0.03 (8%)
at the freeze out.

All together, this shows that the stochastic forces have a significant role both for
stationary and for dynamical QGP.

V.2.4 Comparison with data

The survivances of the J/ψ component at the chemical freeze out with the semi-
classical formalism and strong potential are summed up in table V.8, and compared
to some extent to pure quantum results and experimental data. Of course the com-
parison to data may not be taken too seriously as we have not considered other effects
such as cold nuclear matter effects (see II.2.1.1), feed downs from other quarkonia
(see figure I.10)... Because of a small possible statistical recombination at RHIC (see
II.3), the color-screening effects for charmonia are expected to be relatively more
important there. Then, at RHIC our predicted value (0.5) should be compared to
the low pT data (0.26) where most of the charmonia are detected. Including the
other effects would mostly lower our results in general and have thus a rather pos-
itive impact on our prediction at RHIC as we overestimate it. Note that Young
and Shuryak [2] also found a suppression of 0.5 with a different parametrisation.
At LHC, as the statistical recombination should be important at low pT one should
compare our result (0.32) to the high pT data (0.20). Once again, including the
other effects should therefore have a positive impact on our prediction at LHC.

Semi-classical Quantum Experimental RAA

Langevin dynamics ? → No Yes No Yes high pT low pT

RHIC 0.83 0.52 0.3 ? 0.64 ±0.14 0.26 ±0.05

LHC 0.81 0.32 0.19 ? 0.20 ±0.03 0.83 ±0.14

Table V.8: J/ψ normed weights at the chemical freeze out (or average over the mixed
phase if weight oscillations) obtained at RHIC and LHC with the strong potential V = U .
— RHIC AuAu

√
SNN = 200 GeV collisions: 1) high pT STAR data [134] (inclusive

(prompt and non prompt) J/ψ, 5 < pT < 14 GeV/c, |y| < 1 and 0-10% centrality)
and 2) low pT PHENIX data [133] (inclusive J/ψ, pT < 5 GeV/c, |y| < 0.35 and 0-
5% centrality). The non prompt contribution is estimated to 10-25% of the inclusive
production. — LHC PbPb

√
SNN = 2.76 TeV collisions: 1) high pT CMS data [138]

(prompt J/ψ, 6.5 < pT < 30 GeV/c, |y| < 2.4 and 0-10% centrality) (inclusive J/ψ:
RAA = 0.24±0.03) and 2) low pT ALICE data [137] (inclusive J/ψ, 0 < pT < 8 GeV/c,
|y| < 0.9 and 0-10% centrality).

V.2.5 A critical post-review of the semi-classical results

We would like now to discuss the reliability of the results obtained with the semi-
classical formalism as done so far by [2] and us (in [226] as well as in this manuscript).

127



In section V.1.2, we first pointed out that the “ballistic” evolutions given by the
semi-classical formalism without the Langevin dynamics and the Schrödinger equa-
tion are very different. Nevertheless, if the diffusion is the leading ingredient of the
full evolution (what seems to be the case for the cc̄ pairs), it is likely that the effects
of these discrepancies are finally small. However, later investigations brought us to
question the semi-classical formalism even more:

• It is important to note that we have never tested whether the bound com-
ponents of the cc̄ pair actually thermalises with the bath. To do so, one should
perform an evolution of the cc̄ pair distribution at constant temperature T , project
at a certain t � τrelax the distribution onto several bound states (J/ψ, ψ′, ψ′′...)
and check if the resulting distribution of weights corresponds to a Boltzmann dis-
tribution with the bath temperature T . In their paper [2], Young and Shuryak did
not investigate this question either. In order to add the feed-down contributions to
the J/ψ yield, they just assumed (from experimental observations at SPS) that the
ratio between bound states is proportional to exp(−∆m/T ), where ∆m is the mass
difference between considered states.

• We have nevertheless investigated the properties of the semi-classical formal-
ism in a simpler situation: the 1D harmonic oscillator. In this case, one can actu-
ally show [235] that the Wigner-Moyal equation (V.62) is identical to the classical
Wigner-Moyal equation (V.63). For this specific potential, one has thus the pos-
sibility to test the ”exact” equation (V.66) by applying the semi-classical method
obtained by taking the ~→ 0 limit in this equation. We have investigated this model
in figure V.8 (left panel). In most cases we have observed the thermal relaxation of
the subsystem toward a certain equilibrium. The distributions of eigenstate weights
pn at equilibrium were roughly Boltzmannian (i.e. pn(t� τrelax) ∝ exp(−En/Tsub))
but the subsystem temperatures Tsub did not correspond to the bath temperatures
T . This shows that equation (V.66) does not lead to the expected thermalisation
of the cc̄ bound states. Furthermore, as shown in figures V.9, we have observed
an important violation of the Heisenberg principle when B � A (i.e. T � E0)64,
which in turn mechanically induces negative eigenstates weights for odd states (see
the right panel of figure V.8).

To conclude: As the LHS of (V.66) corresponds to a genuine quantum evo-
lution, this violation can only result from the classical Fokker-Planck/Langevin
terms (RHS). Note that similar behaviours can be found within other semi-classical
approaches, such as the quasi-classical Heisenberg-Langevin equation (see section
IV.1.5). It is then quite likely that, for arbitrary potentials, both equation (V.66)
as well as its ~ → 0 limit used previously in this section as well as in [2] are not
appropriate to deal with the quantum evolution of cc̄ pairs, especially at T ∼ Tc �
EJ/ψ ∼ 600 MeV (where B/A ∼ 0.4). A possible way to solve these issues - at least
for the 1D harmonic oscillator - might be to add permanently the contribution of

64This can be explained noticing that the asymptotic distribution of equation (V.66) in the
~ → 0 limit is ∝ exp(−Hcl(~r, ~p)/T ), where Hcl is the classical Hamiltonian, implying that ∆r∆p
can be arbitrarily small.
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the quantum zero-point fluctuations through the use of a temperature dependent
force correlation (such as relation VI.101) instead of the classical correlation (V.68)
(see section VI.2.2.1).
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Figure V.8: Evolutions of the eigenstate weights with a 1D harmonic potential and a
bath at T & E0 (left) and T � E0 (right).

Figure V.9: Phase space distributions of the test particles with a 1D harmonic potential
and a bath at T � E0. Left: initial fundamental state (equal to the squeezed state for
which ∆r∆p = ~/2). Right: The final state distribution is peaked and therefore the
Heisenberg principle is violated (∆r∆p < ~/2).

V.3 Brief discussion on quantum Fokker-Planck

terms

To circumvent the violation of the Heisenberg principle, brought by the classical
Fokker-Planck terms, we have also investigated a quantum version of the Fokker-
Planck equation ([236] and references therein). The latter has been derived from
the Caldeira-Leggett model (IV.1.5) in the limit that 2kT & ~ω0, where ω0 is the
frequency of the fundamental state. The RHS of (V.66) becomes (in the general
case):

B∆pF + ~∇pA~pFQQ̄ + 2Dpx
~∇x · ~∇pFQQ̄ +Dxx∆xFQQ̄ (V.69)

where B, A are the classical coefficients, and Dpx(Ω, T, A) and Dxx(T,A) are new
coefficients. Ω is the cut-off frequency of the reservoir oscillators. The effect of this
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new RHS has been studied in the harmonic potential frame and shows no violation
of the Heisenberg Principle at low temperatures (and therefore no negative state
weights). However, at low temperatures T ≤ ~ω0, the equilibrium state (distribution
(3.21) in [236]) tends to spread over the phase space. As a result, the state weights
become none Boltzmannian (see the solid curves of the figure V.10).
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Figure V.10: Temperature dependence of the projection of the equilibrium state onto
the harmonic states (in natural units). The solid curves correspond to the results obtained
from the quantum Fokker-Planck approach [236] and are compared to what is expected
from statistical quantum mechanics (dashed lines) [237]. The uppest curve correspond to
the fundamental harmonic state, the one below to the first excited state...

The latter behavior at low temperature is incompatible with what is expected
from quantum thermal theory. Indeed statistical quantum mechanics [237] shows
that the thermal Wigner distribution for an harmonic oscillator should be (see the
dashed curves of the figure V.10):

F (p, r) = 2 tanh(R) e−2/(~ω0) tanh(R)H (V.70)

where H = p2

2m
+

mω2
0 r

2

2
is the harmonic Hamiltonian and R = ~ω/2

kT
the ratio between

the ground state energy and the thermal energy. Roughly, when kT � ~ω0/2 then
tanh(R) ' 1 and one gets the harmonic ground state as an asymptote. Whereas,
when kT ≥ ~ω0/2 then tanh(R) ∝ 1/T and one gets Boltzmann distributions.

Because T ∼ Tc � EJ/ψ ∼ 600 MeV, the Wigner-Moyal equation plus quantum
Fokker-Planck terms is thus not suited for our quantum study of the QQ̄ system.
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Main ideas and transition

As a first attempt to observe the effects of direct thermal forces, we have investi-
gated a semi-classical framework initially proposed by Young and Shuryak [2]. The
formalism, i.e. the classical Langevin evolution of a QQ̄ quantum Wigner distribu-
tion, has been chosen as a convenient way to introduce a classical thermalisation
process - which reflects the permanent collisions between the pair and the medium
- while keeping accessible the full 3D situation without approximation. We focused
exclusively on the J/ψ weight. We have first compared the evolutions given by the
quantum and semi-classical equations without Langevin dynamics and observed im-
portant (expected) discrepancies. But these discrepancies might have a relatively
small impact on the full evolution if the Langevin dynamics is the leading ingre-
dient of the evolution (which seems to be the case here). We have then explored
the full formalism and first observed relevant exponential decays of the J/ψ weight
at constant temperatures after some transient phase. Including RHIC and LHC
temperature scenarios (from hydrodynamics calculations), led to rich suppression
patterns that might rule out the unjustified assumption of the fast/full decorrelation
of QQ̄ pairs originating from melted states (made by both sequential suppression
and statistical hadronisation models (see II.2.1.2 and II.2.2.1)). Finally, we severely
questioned the accuracy of these results - and more generally the ones given by
classical Fokker-Planck terms - by pointing out two important pitfalls: the violation
of the Heisenberg principle at low temperatures T � E0 and the actual “wrong”
thermalisation of the eigenstate weights. All these faults urged us to look for a full
dynamical quantum approach.
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Part VI

The Schrödinger-Langevin
equation: generalities and

equilibration
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VI.1 Introduction

In the last part, we have observed the limits of the semi-classical framework. To
obtain a description of the QQ̄ pair which is compatible with quantum mechanics,
one needs instead a “full” quantum treatment. To this end, in this part we introduce
and study the general properties of a possible Langevin-like extension of the funda-
mental Schrödinger equation, the so called Schrödinger-Langevin (“SL”) equation.
After this general sanity check, the SL framework will be applied to the QQ̄/QGP
system in the next part VII. Explicitly, the SL equation writes

i~
∂ψ(~x, t)

∂t
=

[
H0 + ~A

(
S(~x, t)−

∫
ψ∗S(~x, t)ψ d3x

)
− ~x. ~FR(t)

]
ψ ,(VI.71)

where A is a drag coefficient (inverse relaxation time), S the real phase of the

wavefunction and ~FR a stochastic force. The right hand side of the SL equation
includes 1) the usual isolated Hamiltonian operator,

H0 = −(~2/2m)∇2 + V (~x, t), (VI.72)

where V (~x, t) is the mean field potential, 2) a nonlinear dissipative potential,

~A(S − 〈S〉~x) (VI.73)

and 3) a fluctuating operator,

~x. ~FR(t). (VI.74)

The dissipative and fluctuating terms are discussed respectively in sections VI.2.1
and VI.2.2. Because of its phenomenological aspect - only the drag A and bath tem-
perature Tbath are necessary - and its numerical simplicity, the SL equation can be
considered as a solid candidate for effective description of complex open quantum
systems hardly accessible to quantum master equations or equivalent. In section
VI.1.1, we first discuss two of its various derivations from the different approaches
introduced in part IV. We then describe its basic properties in section VI.1.2. Be-
fore considering any actual applications to phenomenology, we show in section VI.1.3
that some questions and issues remain to be explored about its solutions and thermal
relaxation. Finally, in sections VI.3 and VI.4, the thermal relaxation given by the
SL equation will be studied with the harmonic and linear 1D potentials and with
white and colored noises. The harmonic potential is a well-known base to study
the properties of an open quantum system formalism, whereas the linear potential
allows us to test an anharmonic situation which is closer to the QQ̄ binding potential.

N.B.: This part aims thus to study the properties of the SL equation within the
general context of open quantum systems and is mostly inspired by the paper “The
Schrödinger-Langevin equation with and without thermal fluctuations” written by
Katz and Gossiaux (which should be published in 2016 [238]).

134



VI.1.1 Derivations

The SL equation can be derived in many ways within the different approaches
developed in sections IV.1.5 and IV.1.6. Within the common open quantum system
framework, the SL equation has first been introduced by Kostin [3] from an identi-
fication with the Heisenberg-Langevin equation (see section VI.1.1.1 below). With
or without its fluctuating term, the SL equation has also been derived within many
other frameworks such as the Schrödinger method of quantisation to the generalized
Hamilton-Jacobi equation [188], the fluid interpretation of the Schrödinger equation
[195, 196] (see section VI.1.1.2 below), nonlinear gauge transformations [239], the
quantisation through stochastic mechanics [177], the diagonal limit of the quantisa-
tion of general non-Hamiltonian system [193] and others [240, 241, 242]...

For now, there is no established connection between the SL equation and the
standard quantum master equations, which makes it a different type of stochastic
Schrödinger equation than other stochastic Schrödinger equations existing in the
literature [183, 199] (see section IV.1.4.2).

VI.1.1.1 From the Heisenberg-Langevin equation [3]

One wishes to identify some dissipative VDiss and random VR potentials in the
Schrödinger equation,

i~
∂ψ(~x, t)

∂t
= H0 ψ + VDiss ψ + VR ψ, (VI.75)

that would correspond to the dissipative and random operators of the Langevin
equation for Heisenberg operators

Ṗ = F0(X)− AP + FR(t) and Ẋ = P/m . (VI.76)

We first limit ourselves to the 1D case. The random potential directly corre-
sponds to the random force through the usual derivation,

FR(t) = −∂VR(x, t)/∂x, (VI.77)

and as FR(t) is independent of the position one obtains,

VR(x, t) = −xFR(t). (VI.78)

Less straightforward, the dissipative potential can be obtained from an expecta-
tion value analysis. One first needs to express the momentum operator (in Heisen-
berg representation) expectation value in terms of the momentum operator and
wavefunction (in Schrödinger representation):

〈P (t)〉 = 〈ψ|P |ψ〉 = 〈ψ|Pψ〉 = 〈Pψ|ψ〉 =
(
〈ψ|Pψ〉+ 〈Pψ|ψ〉

)
/2 (VI.79)

=
~
2i

∫ [∂ψ(x, t)

∂x
ψ∗(x, t)− ∂ψ∗(x, t)

∂x
ψ(x, t)

]
. (VI.80)
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as P is self-adjoint. Differentiating with respect to time yields,

d 〈P (t)〉
dt

= 〈∂ψ/∂t|Pψ〉+ 〈ψ|P∂ψ/∂t〉 (VI.81)

Then, substituting the Schrödinger equation (VI.75) into (VI.81) and combining
with the expectation value of equation (VI.76) leads to,

〈∂VDiss/∂x〉 = A 〈P (t)〉 (VI.82)

The relation obtained for 〈∂VDiss/∂x〉 from inserting equation (VI.80) into equa-
tion (VI.82) is satisfied for all wavefunctions if

∂VDiss

∂x
=

~A
2i

(
[ψ(x, t)]−1∂ψ(x, t)

∂x
− [ψ∗(x, t)]−1∂ψ

∗(x, t)

∂x

)
(VI.83)

=
~A
2i

∂

∂x
ln[ψ/ψ∗].

Integrating (VI.83) and choosing the integration constant such as to obtain an
expectation value of the total energy equal to the one of the subsystem, one finally
obtains the dissipative potential:

VDiss =
~A
2i

(
ln[ψ/ψ∗]−

∫
ψ∗ ln[ψ/ψ∗]ψ dx

)
(VI.84)

In equation (VI.84), the dissipative term is written under its “logarithmic” formu-
lation. One can obtain the equivalent “hydrodynamic” formulation back (equation
V I.71) by employing the polar/Madelung transformation of the wavefunction,

ψ(x, t) = R(x, t)eiS(x,t) ⇒ ln[ψ/ψ∗] = 2iS (VI.85)

where R(x, t) and S(x, t) are respectively the real amplitude and phase.
The generalisation to a three dimensional space is straightforward.

VI.1.1.2 From the quantum trajectory point of view [196]

The fluid dynamical (or quantum trajectories) interpretation of the Schrödinger
equation is the easiest way to introduce and apprehend the dissipative term of the
SL equation. Using the polar/Madelung transformation (VI.85) of the wavefunction,
one can indeed re-write the Schrödinger equation as a system of two equations (real
and imaginary part respectively):

~
∂S

∂t
= − ~2

2m

(
∂S

∂x

)2

− V (x, t) +
~2

2mR

∂2R

∂x2
(VI.86)

∂R

∂t
= − ~

m

∂R

∂x

∂S

∂x
− ~

2m
R
∂2S

∂x2
. (VI.87)
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Relation (VI.87) is an equation of continuity for the wavefunction probability den-
sity, whereas relation (VI.86) makes the connection between quantum and classical
mechanics when the phase S is associated with the quantum trajectory velocity:

p = ~
∂S

∂x
. (VI.88)

This momentum can be seen as a hydrodynamic-like momentum in the probability
space. The differentiation of equation (VI.86) yields:

∂p

∂t
= − p

m

∂p

∂x
− ∂

∂x

(
V (x, t)− ~2

2mR

∂2R

∂x2

)
(VI.89)

By analogy with Langevin forces in the classical Newtonian picture, one can intro-
duce a friction term65 that will act on the wavefunction “fluid”:

∂p

∂t
= − p

m

∂p

∂x
− ∂

∂x

(
V (x, t)− ~2

2mR

∂2R

∂x2

)
− Ap (VI.90)

Finally, one obtains back the new Schrödinger equation with the new dissipative
term:

i~
∂ψ(x, t)

∂t
=

(
− 1

2m

∂2

∂x2
+ V (x, t) + ~A

(
S(x, t)− 〈S(x, t)〉x

))
ψ(x, t) (VI.91)

where the total overall phase 〈S(x, t)〉x is subtracted for the evolution in order to
ensure gauge invariance of the total energy.

VI.1.2 Properties

The SL equation exhibits some interesting properties:

• Unitarity is preserved at all times for the pure state [3, 196], i.e. the norm
of the wavefunction remains constant. For a two particles system, like the
quarkonia, unitarity means that the two particles and their correlations al-
ways exist and do not vanish while spreading over space. This feature is very
different from what can be obtained with imaginary potentials (see IV.2.1.1)
where the wavefunction, interpreted as the correlation between the two parti-
cles, vanishes during the evolution.

• The uncertainty principle is always satisfied [244, 245], i.e. the wavefunction
always obeys the uncertainty inequality ∆x∆p ≥ ~/2. It can be opposed
to other models such as the Caldirola-Kanai equation [190] without fluctua-
tions (based on an effective time dependent Hamiltonian), the quasiclassical
HL equation (see section IV.1.5) or the Wigner-Moyal equation with classical

65Usually the friction is well approximated by a linear and cubic forces. At low hydrodynamic
velocity and not very far from the equilibrium, the cubic term becomes negligible [243].
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Fokker-Planck terms (see section ) where the uncertainty principle can be vi-
olated. Within the SL equation framework, the “narrowest” possible state is
the fundamental state (also called zeropoint state) whatever the value of the
dissipation strength A. Moreover, the thermal fluctuations (FR) do not need
to generate the quantum zeropoint fluctuations (which are required in other
models like the Caldirola-Kanai equation).

• The superposition principle is violated due to the (logarithmic) nonlinear de-
pendence of the dissipation upon the wavefunction. As we will see all along
this part, this violation does not appear to be a problem per se for dissipative
equations (as also advocated in [246, 247]).

• Even though the dissipation is nonlinearly dependent on the wavefunction, it
still corresponds to an ohmic friction, i.e. proportional to the particle velocity.
A nonlinear friction can still be obtained by extending the approach developed
in section IV.1.5 to a nonlinear coupling [248, 249].

• As in the HL framework (IV.1.5), the thermal dynamics is mainly based on two
straightforward “classical” parameters: the drag A and the bath temperature
Tbath. This simplicity makes the SL equation a solid candidate for effective
description of complex open quantum systems hardly accessible to quantum
master equations or equivalent.

• The use of wavefunctions is convenient as compared to density matrices, Wigner
distributions or Heisenberg operators. Moreover, the evaluation of the state
populations/weights is straightforward.

• The SL equation can easily be implemented numerically and especially in
Monte-Carlo generator (used in some QGP transport codes). The numerical
cost is proportional to the space-time grid size and to the number of realisa-
tions, i.e. to nspace × ntime × nstat (where typically nspace is of the order of the
hundreds, ntime and nstat of the thousands). It remains quite reasonable in
comparison to the common density matrix and quantum master equation ap-
proach where the numerical costs are highly expensive when the Hilbert space
of the subsystem is large (see section IV.1.4). The mixed state observables are
similarly defined within the SSE framework [183, 199].

VI.1.3 Solutions

The study of the solutions of the SL equation without its stochastic term has
been carried in many specific cases. Analytically for a free particle [250, 251] and in
uniform and harmonic potentials [196, 251, 195, 245, 252, 253]; numerically for the
double well potential [196, 254], for interpenetrating waves and barrier penetration
[250, 255] and for scattering and trapping [256]. The dissipation term is observed
to decelerate and reduce the system toward its lowest energy state with an energy
loss proportional to its classical kinetic energy [196]:

dE

dt
= −A〈p

2〉
m

(VI.92)
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Along these analysis, it has been advocated that the stationary eigenstates of
H0 are also stationary states of the equation [195, 252, 196]. At first sight, this
behaviour is in contradiction with what is expected from damped quantum systems
[172, 181, 185, 186]. As an answer to this expectation, we will show in section
VI.2.1 how to obtain damping even with these states. The purely dissipative SL
equation has already been applied in quantum chemistry [196] and heavy ion scat-
tering [257, 258]

Very few studies of the SL equation solutions have however been carried with
an additional driving or stochastic term. Kostin [3] first observed that for a free
particle plane wave, the SL and HL equations lead to the same solution. Then,
Messer [259] studied the evolution of a Gaussian wavefunction in the free and har-
monic potentials. In the free case, he showed that the evolution differs from the
Heisenberg-Langevin solution, highlighting that the SL and Heisenberg-Langevin
equations are not strictly equivalent. In his calculation, Messer assumed that the
SL equation led to the thermal equilibrium of statistical mechanics - which was not
proven or tested - and used a white quantum noise for the stochastic force, which
is questionable. The SL equation with the same assumptions has also been applied
to atomic diffusion in solids [260]. On the numerical side, Sanin et al. [244, 261]
extensively studied the evolution of an initial gaussian wavefunction in the harmonic
and double well potentials, confined within infinite walls (the limits of the grid), and
driven by non stochastic forces (sinusoidal, periodic pulses...).

In order to apply the full SL equation to phenomenology, a better understanding
of its solutions and an exploration of its ability to lead a subsystem to thermal
equilibrium are necessary. In sections VI.3 and VI.4, we study analytically and
numerically the ability of the SL equation to bring different 1D subsystems to the
thermal equilibrium of statistical mechanics using either a white or colored noise. To
do so, we first introduce the dimensionless SL equation in section VI.1.4 and then
discuss in more details the friction term and the quantum fluctuations in section
VI.2.

VI.1.4 Dimensionless Schrödinger-Langevin equation

The behaviour of the SL equation will especially be studied with two external
potentials: the harmonic V = 1/2mω2

0 x
2 and the linear V = 1/2Kl |x|. In all the

following numerical studies, we use the SL equation with natural units, i.e. ~ = m =
ω0 = Kl = k(B) = 1, and dimensionless variables x, t,. . . 66 Then, the characteristic
energies are E0 = ~ω0/2 = 0.5 and ∆E = E1 − E0 = 1 (E0 ' 0.509 and ∆E =
E1−E0 ' 0.66) for the harmonic (linear) external potential. The dimensionless SL

66The dimensioned values of x, t, A, FR and H0 can be obtained by multiplying our dimensionless
values respectively by

√
~/mω0, 1/ω0, ω0,

√
m~ω3

0 and ~ω0 in the harmonic case or (~2/mKl)
1
3 ,

(m~/K2
l )

1
3 , (K2

l /m~)
1
3 , Kl and (~2K2

l /m)
1
3 in the linear potential case.
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equation, with the hydrodynamic formulation of the dissipative term, writes

i
∂ψ(x, t)

∂t
=

[
1

2
∇2ψ + V (x) + A

(
S(x, t)− 〈S(x, t)〉

)
− xFR(t)

]
ψ, (VI.93)

where the external potential is V (x) = 1/2x2 or V (x) = 1/2 |x| within this study.
The drag A and the stochastic process are thus the only parameters governing the
generic evolution.

VI.2 Friction and quantum noises

VI.2.1 The friction non-linear term: a well defined prescrip-
tion to obtain eigenstates damping

Though theoretically the fluctuation and dissipation aspects cannot be dissoci-
ated, it appears that in some specific studies only the damping is considered (quan-
tum chemistry [196] and nuclear collisions [257, 258]). Unfortunately, the dissipative
part of the SL equation (VI.71) suffers from ambiguities and needs some prescription
to be defined properly. Its main non-linear term is the real phase S(x, t), defined by
the wavefunction decomposition

ψ(x, t) = R(x, t)eiS(x,t) , (VI.94)

where R(x, t) is the real amplitude. S(x, t) is indeterminate at the wavefunction
nodes and multivalued (defined to a 2π modulo).

In the literature [196, 195, 252, 262], the phase S(ψ) for real ψ corresponding to
eigenstates is commonly prescribed to be zero (and thus continuous at the nodes of
ψ) while R(ψ) is taken as a real - positive or negative - function. This prescription
has led to the conclusion that the stationary eigenstates of H0 are also stationary
states of the SL equation, as the dissipation term identically vanishes. For the sake
of describing time-dependent situations, a corresponding prescription has however
to be adopted for complex ψ as well. It is easily seen that such an analytical
continuation unavoidably has one branch cut in each half complex-plane, both of
them starting from the origin. Taking those branch cuts along the imaginary axis
leads for instance to

S(ψ) = arctan(=(ψ)/<(ψ)). (VI.95)

with finite damping term in the SL equation. Therefore, a small modification of ψ
(from real axis to complex plane) leads to a large variation of the associated damping
of the quantum state, which is the sign of an ill-defined model.

We have proposed to use instead the “polar” or “Madelung” prescription, where
one defines R(x, t) as the module of the wavefunction, i.e. a real positive function.
In practice, one could use the local argument of the wavefunction,

Arg(ψ) = atan2(=(ψ),<(ψ)), (VI.96)

to determine S(x, t), but the limitation of its values to a 2π interval illustrated in
figure VI.1, would lead to discontinuities of the dissipative term with unphysical
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effects67. To avoid these, we build the phase S(x, t) on a spacial grid of step dx
following the recursive law

S(x+ dx) = S(x) + dS(x) where dS(x) = Arg[ψ(x+ dx)/ψ(x)], (VI.97)

starting from an arbitrary space point of reference “0” and get

S(j × dx) = S(0) +

j∑
k=1

dS(k × dx). (VI.98)

The chosen value of the multivalued S(0) is of no importance thanks to the regulator
−〈S〉, and can therefore be taken to Arg[ψ(0)].
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Figure VI.1: The dissipative term
S(x) − 〈S〉 corresponding to the plane
wave ψ(x) = eix obtained with the ar-
gument function (dashed line) and with
the recursive method (solid line).
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Figure VI.2: The real ψ3 harmonic
eigenstate (solid line, magnified for the
plot sake) and its corresponding phase
S(x)− 〈S〉 (dashed line) with the recur-
sive method in the polar π prescription.

The polar prescription leads to singular phase shifts +π at the wavefunction
nodes as shown for instance in figure VI.2. Not only are these discontinuities the-
oretically allowed (thanks to the phase indeterminacy at the nodes), but they also
have a convenient physical consequence: the stationary eigenstates of H0 are not
stationary states of the SL equation anymore. Indeed, for the excited eigenstates
{ψn}n≥1 of H0 the friction term becomes a step potential which generates correla-
tions between eigenstates and results in damping. To show the latter assertions, let
us assume that an initial wavefunction ψ =

∑
cn(0)ψn is equal to an eigenstate

ψm≥1, i.e. with cn(0) = δnm. The SL equation without the thermal fluctuation term
yields,

ċn = − i
~
〈ψn|H0|ψ〉 − iA 〈ψn|(S − 〈S〉)|ψ〉

= − i
~
En cn − iA

∑
k

ck

∫
(S − 〈S〉)ψ∗n ψk dx . (VI.99)

For symmetric external potentials for instance, one can show that if ψk=m has an odd
(even) parity, then the integral is finite and thus the transition cm → cn is allowed

67The invariance under the multiplication of the wavefunction by a simple phase factor would
be broken.
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at very small times for all ψn with even (odd) parities. Moreover, the smaller the
difference |n−m|, the larger the transition rate, which is consistent with the Fermi
Golden Rule. Last but not least, the transition rate to n = m− 1 is larger than to
n = m+ 1, which is consistent with damping. At larger times, these transitions and
the damping can be observed numerically (see for instance figure VI.3).
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Figure VI.3: Evolution of the eigenstate weights pn=0,1,2 = |〈ψn|ψ(t)〉|2 with the di-
mensionless SL equation (relation (VI.93) without fluctuating term) from an initial first
excited state, with the “polar” prescription (solid lines) and the “arctan” prescription
(dashed lines).

Both the “arctan” and “polar” prescriptions are mathematically correct and
the choice between them should be physically motivated. Unfortunately, though
intuitively we expect the dissipation to act on any excited state, the stationarity
of the H0 eigenstates in the corresponding dissipative situation remains an open
question within the open quantum system framework [263]. As illustrated in figure
VI.3, thanks to the two prescriptions, the SL equation can reproduce both situations.
From the common perspective of the quantum master equation [184], the Lamb
shifted energy levels acquire finite lifetimes (finite widths), implying that the polar
prescription is better suited for robust phenomenological studies. Let us finally stress
that the choice of the prescription is of little importance when the fluctuations are
considered, as they drive the state away from any given eigenstate.

VI.2.2 Thermal fluctuations and numerical implementation

VI.2.2.1 Quantum noises

All the Langevin-like equations include a noise term which simulates the many
collisions (or couplings) that the subsystem undergoes with the particles of the bath.
This noise is generally taken as a homogeneous Gaussian random process, indepen-
dent of the subsystem position, and described by its average and covariance function.
The random direction of the many collisions always yields a zero average. As seen
in section IV.1.1, the classical Langevin equation usually assumes no correlation
between these collisions, and the white noise covariance writes,

〈FR(t)FR(t+ τ)〉 = 2mkTbathAδ(τ), (VI.100)

142



where δ is the Dirac distribution and Tbath the bath temperature (input of the
noise). The asymptotic solution of the (classical) Langevin equation is then the
corresponding Boltzmann distribution of statistical mechanics.

In the quantum realm, the noise operator is built from the initial bath position
and momentum operators whose non-commutative property leads to the main dif-
ferences with the classical case. Senitzky [172] first proposed an HL equation - for a
general bath linearly acting on a harmonic subsystem (with natural frequency ω0) -
where the noise operator is also described by a white noise covariance,

〈FR(t)FR(t+ τ)〉 = 2mA

[
~ω0

2
+

~ω0

exp(~ω0/kTbath)− 1

]
δ(τ), (VI.101)

leading to a markovian process. This covariance has been used by Messer [259] in
its analytic comparison of the HL and SL solutions. The first term of the RHS
bracket corresponds to the zero point fluctuations of the subsystem. This term is
required within the HL framework for canonical commutations to hold at Tbath = 0,
as shown by equation (52) in [172]. However, within the SL framework, the zero
point fluctuations appear naturally in the wavefunction such that they do not need
to be included in the noise operator for the the canonical commutations to hold.
Therefore, this term becomes unnecessary and the white quantum noise writes,

〈FR(t)FR(t+ τ)〉 = B δ(τ), (VI.102)

where

B = 2mAE0

[
coth

(
E0

kTbath

)
− 1

]
, (VI.103)

with E0 = ~ω0/2, the zero point energy. In section VI.3, we will show that the
fluctuation-dissipation relation (VI.103) indeed allows to reach an asymptotic ther-
mal distribution of states when one uses a white noise and a harmonic external
potential.

However, Li et al. [264] pointed out an important weakness in the derivation of
(VI.101). They also claimed that the colored quantum noise (non-Markovian),

〈FR(t)FR(t+ τ)〉 =
m

π

∫ ∞
0

~ω
[

coth

(
~ω

2kTbath

)
cos(ωτ) + i sin(ωτ)

]
Adω,(VI.104)

first derived by Ford et al. [185], is the only one able to drive a general subsystem to
the correct thermal equilibrium via the HL equation. For now, the latter assertion
has only been demonstrated in a limited form [212, 213].

Actually, in order to get rid of the bath zero point fluctuations contribution -
that was first judged physically unjustified -, Ford et al. first derived a quantum
noise under the form of the normal product

〈N [FR(t)FR(t+ τ)]〉 =
2mA

π

∫ ∞
0

~ω
exp(~ω/kTbath)− 1

cos(ωτ) dω. (VI.105)

Both colored noises lead to a non-Markovian process even if the friction is memory-
less. The spectra corresponding to these two colored noises, are shown in figure
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Figure VI.4: Left: The rising spectrum of the colored noise (VI.104) – which requires a
frequency cut-off to be integrated – and the decreasing spectrum of (VI.105) at Tbath = 1.
Right: The noise correlation (VI.104) strongly depends on the value of the frequency
cut-off. The cut-off is here evaluated with a Lorentzian shape.

VI.4 (left). As pointed out by Gardiner [213], the correct choice of spectrum de-
pends on what is actually measured to find it: e.g. in absorption measurements one
gets the black body radiation Planck spectrum corresponding to (VI.105), whereas
in Josephson junction noise current measurements [265] one gets the linearly rising
spectrum at high frequencies corresponding to (VI.104). Within the SSE framework,
the choice between white and colored noises is also intensively discussed, for instance
to obtain the correct thermal equilibrium of a non-Markovian master equation [197]
or the correct positivity property for the Bloch-Redfield master equation [266].

To use these correlations within the SL framework, one needs to assume that
the noise operator can be taken as a commutating c-number (whereas it is a non-
commutating q-number within the HL framework). Although questionable, this
assumption was actually already implied in Kostin’s derivation of the SL random
potential [3] and is commonly made within the quasiclassical HL equation framework
(see section IV.1.5). It does not lead to any violation of the Heisenberg relations
[244, 245] as one obtains with the quasiclassical HL equation [182].

Though they are not fully justified (as explained above), we have focused on
the white (VI.102) and colored (VI.105) noise correlations, in order to observe their
ability to lead the subsystem toward the thermal equilibrium of statistical mechan-
ics. Our choice not to explore (VI.104) within this work was motivated by the
additional complications brought by the required high frequency cut-off and by the
practical/conceptual problem arising from the correlation imaginary part. Indeed,
as shown in figure VI.4 (right), the noise correlation (VI.104) strongly depends on
the value of the high frequency cut-off - which evaluation is specific to each system
- and on the choice of the cut-off shape (Lorentzian, exponential, sharp...).

Finally, whereas the white noise (VI.102) leads to an uncorrelated stochastic
force, the colored quantum noise (VI.105) gives a stochastic force with a strong
temperature dependence of its correlation time. The latter becomes really large at
low temperatures (∝ 1/T ) and the Brownian hierarchy/weak coupling limit - the

144



typical relaxation time (∝ 1/A) should be much larger than the stochastic force
correlation time - is broken when A & T .

VI.2.2.2 Numerical implementation

Here we describe a numerical method to generate stochastic stationary Gaussian
variables characterized by an autocorrelation 〈FR(t)FR(t + τ)〉 = C(τ). To build
these variables numerically, we first define a set of uncorrelated Gaussian random
variables r̂j with zero average and correlation 〈r̂j r̂j′〉 = ∆t δjj′ , where ∆t is the time

step of the numerical scheme. We build the Gaussian random force F̂ at a time ti –
and assumed to be constant over the time step [ti, ti + ∆t] – from the weighted sum

F̂i =
+∞∑
j=−∞

Wi−j r̂j , (VI.106)

where the weights Wi−j depend only on the difference i − j to guarantee the sta-

tionarity of the process. Then, the average of F̂i is null and its covariance is given
by 〈

F̂i F̂i′
〉

=
+∞∑

j,j′=−∞

Wi−jWi′−j′〈r̂j r̂j′〉 =
+∞∑
j=−∞

Wi−jWi′−j∆t , (VI.107)

which, in the continuous limit ∆t→ 0, becomes

〈FR(t)FR(t′)〉 =

∫ +∞

−∞
W(t− t′′)W(t′ − t′′) dt′′ , (VI.108)

with Wi =W(ti) for a given time step ∆t. Then, one easily shows that the Fourier
transform of W is just the square root of the power spectrum P (ω) of the retained
noises, i.e.

P (ω) = |W̃(ω)|2 (VI.109)

with

P (ω) = 2mA
~ω

exp(~ω/kTbath)− 1
, (VI.110)

for the colored quantum noise (VI.105) and

P (ω) = lim
σ→0

B exp

(
− 1

2
σ2ω2

)
, (VI.111)

for the white quantum noise (VI.102). For the latter, the flat spectrum is obtained
when σ → 0, but in practice it is sufficient to take σ � τ , where τ is the typical
time of the subsystem evolution. Then, one gets explicitly

W(τ) =
1

π

∫ ∞
0

√
P (ω) cos(ωτ)dω . (VI.112)
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Figure VI.5: Left: Example of one colored quantum noise (VI.105) realisation obtained
with the described numerical method. Right: Corresponding analytical (dashed black
curve) vs. numerical (orange dots) covariances over time.

and then the stochastic variables {F̂i} through equation (VI.106).
In figure VI.5 (left), an example of a colored noise (VI.105) realisation obtained

with the described numerical method is shown. In figure VI.5 (right), the cor-
responding numerical time correlation is successfully compared to the analytical
expectation,

〈FR(t)FR(t+ τ)〉 =
A

π

(
1

τ 2
− π2T 2

bath Csch2[πTbathτ ]

)
. (VI.113)

Besides, one can easily show that the variables defined in this way are Gaussian.
Similar algorithms can be found in the literature and have been successfully used in
SSE and other formalisms (see [197] and references therein).

VI.3 Equilibration with a harmonic potential
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Figure VI.6: Left: The harmonic potential under study (thick line) and its corresponding
eigenenergies (dashed lines). Right: The corresponding three lower eigenstates.
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VI.3.1 Analytic solutions with a white noise and Gaus-
sian wavepackets as initial conditions (and asymp-
totic states)

We first assume a general Gaussian wavepacket,

ψ(x, t) = e
i
~

(
α(t)[x−xcl(t)]2+pcl(t)[x−xcl(t)]+γ(t)

)
, (VI.114)

where α(t) is a complex number related to the wavepacket width (Im(α(t = 0)) > 0),
γ(t) a complex phase, and xcl and pcl are the position and momentum Gaussian cen-
troids (central values). Inserting (VI.114) in the SL equation leads to four ordinary
differential equations for α, xcl, pcl and γ, including:

α̇ + ARe(α) +
2

m
α2 +

mω2
0

2
= 0 (VI.115)

and

ṗcl = −mω2
0 xcl − Apcl + FR , ẋcl =

pcl

m
(VI.116)

From any Im(α(t = 0)) > 0, the solution of equation (VI.115) tends asymptoti-
cally to α(t → ∞) = imω0/2, which corresponds to the width of the ground state√

~/mω0 . After some initial relaxation, the general solution from any initial state
(VI.114) is thus the ground state displaced in space with a trajectory obeying the
classical equations of motion (VI.116). For a free wavepacket, the solution of equa-
tion (VI.116) is then pcl(t) = pcl(t = 0) exp(−At) showing that A is indeed the drag
coefficient.

We now want to show that the distribution of the eigenstate weights is the
Boltzmann distribution ∝ e−En/Tsub with Tsub = Tbath (where Tsub is the subsystem
temperature) provided that the fluctuation-dissipation relation (VI.103) is satisfied.
In other terms, the subsystem equilibrates with the medium if (VI.103) is satisfied.
In the following sections VI.3.2 and VI.3.3.2, we will show numerically that these re-
sults are universal, i.e. independent of the chosen initial state, drag and temperature.

As determined above, for asymptotic times the wavefunction writes,

ψ ∝ e−
(x−xcl(t))

2

2a2
+ipcl(t)x , (VI.117)

where the square width is a2 = 1
mω0

. We would like to know what is the weight of
the different H0 eigenstates

ψn =
Hn(ξ)e−

ξ2

2√
2nn!
√
π
, (VI.118)

where ξ = x
a
. We first reformulate (VI.117) as

ψ ∝ e−
ξ2

2
+2µξ− (xcl/a)

2

2 , (VI.119)
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where we have set µ =
xcl
a

+ipcla

2
. Using the identity

e2µξ−µ2 =
+∞∑
n=0

µn

n!
Hn(ξ) , (VI.120)

then yields

ψ ∝ e−
(xcl/a)

2

4
− (pcla)

2

4
+i

pclxcl
2

+∞∑
n=0

√
2nµn√
n!

ψn(ξ). (VI.121)

We thus deduce that the eigenstate weight pn(xcl, pcl) for a given realisation of the
stochastic noise is given by

pn(xcl, pcl) ∝
2n|µ|2n

n!
e−

(xcl/a)
2

2
− (pcla)

2

2 ∝ ((xcl/a)2 + (pcla)2)
n

2nn!
e−

(xcl/a)
2

2
− (pcla)

2

2

(VI.122)
and one has exactly

∑
pn = 1. Above, we showed that the position xcl and momen-

tum pcl centröıds satisfy the classical stochastic equation of motion (VI.116). When
the stochastic force correlation is of the form 〈FR(t)FR(t+ τ)〉 = B δ(τ) (white
noise) it is known that the distribution of the trajectories (xcl, pcl) is

W (xcl, pcl) ∝ e
−
mω20x

2
cl

2 +
p2cl
2m

kTcl , (VI.123)

where Tcl := B
2mA

, A is the drag and B the force autocorrelation. The eigenstate
weight, averaged over the fluctuations, will then be given by

pn =

∫
W (xcl, pcl)pn(xcl, pcl)dxcldpcl . (VI.124)

To determine (VI.124), we use the relation

pn(xcl, pcl) =
(−1)n

n!

∂n

∂ηn
e
−η

(
(xcl/a)

2

2
+

(pcla)
2

2

)∣∣∣∣∣
η=1

. (VI.125)

After some trivial integration on xcl and pcl, one gets that∫
W (xcl, pcl)e

−η
(

(xcl/a)
2

2
+

(pcla)
2

2

)
dxcldpcl =

~ω0

kTcl

η + ~ω0

kTcl

, (VI.126)

where the numerators guarantees that for η = 0, one has
∫
W (xcl, pcl)dxcldpcl = 1.

Differentiating n times (VI.126) with respect to η yields

pn =

~ω0

kTcl(
1 + ~ω0

kTcl

)n (VI.127)

We thus have

pn ∝ e
−n ln

(
1+

~ω0
kTcl

)
. (VI.128)

148



Setting

ln

(
1 +

~ω0

kTcl

)
=

~ω0

kTsub

⇔ kTcl =
~ω0

e
~ω

kTsub − 1
, (VI.129)

one obtains pn ∝ e
−n ~ω0

kTsub which shows that the distribution of states follows a
Boltzmann distribution with a temperature Tsub. Recalling the expression of Tcl in
terms of A and B, one gets the condition relating A, B and Tsub:

B

2mA
=

~ω0

2

[
coth

(
~ω0

2kTsub

)
− 1

]
, (VI.130)

which is the relation (VI.103) for the white quantum noise and shows that Tsub =
Tbath the bath temperature. Reciprocally, we have proven that the distribution of the
state weights is Boltzmannian if one uses a white noise with the relation (VI.103).
This reasoning can be easily extended to three dimensions.

VI.3.2 Wavefunction pattern during one stochastic realisa-
tion

From numerical observations, we first confirm that after some initial relaxation,
the general solution from initial state is the ground state displaced in space with a
stochastic trajectory. Indeed with any noises, drags, potentials and initial states,
a common wavefunction evolution pattern emerges during a noise realisation (see
for instance figure VI.7 and VI.8). First, as in section VI.3.1, the shape of the
wavefunction evolves toward the ground state shape. In parallel, if one starts from
an initial excited eigenstate, the phase “breaks” at the nodes and evolves toward
a linear phase in the region where the wavefunction takes non negligible values
(see the t = 17 panel in figure VI.8 for instance). In parallel and until the end
of the evolution, the centröıd oscillates around the potential minimum following
a stochastic trajectory along the space axis. Some discrepancies to this pattern,
coming from numerical instabilities, appear when A� T and when T � 1.
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Figure VI.7: Typical wavefunction shape/module evolution toward the ground state
shape/module during one noise realisation.

VI.3.3 With the white noise

We now want to generalise numerically the results we obtained in section VI.3.1
for any initial states, drags and temperatures.
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Figure VI.8: Typical wavefunction phase evolution towards linearity (where the wave-
function takes significant values) during one noise realisation.

VI.3.3.1 Energy and weight evolutions

To illustrate the SL equation ability to bring a subsystem to thermal equilibrium,
we choose to evolve the initial ground state ψ0 in a bath at temperature Tbath = 1.
The noise parameter is taken to σ = 0.03 and the grid steps as ∆x = 0.1, ∆t = 0.01.
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Figure VI.9: Solid curves: Numerical 〈H0〉 average energy evolutions for different drags
A. Dashed horizontal line: Corresponding theoretical asymptotic value given by the exact
relation (VI.131). Dashed curves: Corresponding theoretical evolutions given by (VI.132).

We first focus on the average energy
〈
〈H0〉

〉
stat

as given by (IV.43); we will just
write 〈H0〉 for simplification. Three average energy evolutions with drags corre-
sponding to weak A = 0.1, intermediate A = 0.5 and strong A = 1 couplings (weak
coupling if A � ω0 = 1 and A � σ−1) are shown in figure VI.9. The theoretical
asymptotic value for a thermal quantum harmonic oscillator is given by,

〈H0〉(t→∞) = E0 coth

(
E0

kTbath

)
, (VI.131)

and corresponds to our value 〈H0〉(t→∞) ' 1.07 when Tbath ' 1. The average en-
ergy evolution rate predicted by Senitzsky [172] within the HL equation framework,

〈H0〉(t) = E0 e
−At + 〈H0〉(t→∞)

(
1− e−At

)
, (VI.132)

fits our numerical evolution in the weak coupling case (where Senitzsky’s HL equa-
tion actually applies) as shown in figure VI.9.

The second interesting observable is the distribution of the eigenstate weights
(populations) pn(t), as given by (IV.43) with the projection operator On = |ψn〉〈ψn|.
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Figure VI.10: Evolutions of the eigenstate weights pn=0,...6(t) from the initial ground
state (left) and 2nd excited state (right) for a drag corresponding to an intermediate cou-
pling.

As shown in figure VI.10, their evolutions during the transient phase follow the
general expectation that the main transitions occur between neighbouring energy
levels, a feature also found in the transition elements of the Fermi Golden Rule.
Moreover, they lead to a reshuffling of the weights, such as pn > pn+1, reached after
a lapse of time proportional to the relaxation time 1/A.

VI.3.3.2 Asymptotic behaviour

As shown for instance in figure VI.11, the asymptotic distribution of the weights
is independent of the chosen initial state and perfectly fits a Boltzmann like distri-
bution. One can determine the actual temperature reached by the subsystem, called
Tsub, by fitting the Boltzmann line ∝ e−E/Tsub to the asymptotic pn=0,...10(En) values.
For the previous example, one finds that Tsub = 0.99 ' Tbath.

In figure VI.12, we compare the temperature actually reached by our subsystem
Tsub to the bath temperature Tbath used as input of the noise. For a large range
of temperatures and independently of the drag A and initial state, we observe that
Tsub ' Tbath and that the asymptotic distributions of the weights are Boltzmannian.
One can thus conclude that the subsystem correctly thermalises when one uses the
white noise (VI.102) with (VI.103).

The total uncertainty on the asymptotic values, for a statistic of a few thousands
of realisations, grows with the temperature from ∼ 2% at Tbath = 0.1 to ∼ 10% at
Tbath = 5. Indeed, a higher temperature implies larger wavefunction oscillations
along the space axis and numerical instabilities, which imply larger weight oscilla-
tions at each noise realisation and for the mixed state observables. An additional av-
eraging over a time range ∆t′ once the equilibrium is reached, leads to more reliable
results. The accuracy then follows the common statistical law ∝ 1/

√
nstat ×∆t′.

When Tbath � 1, the distributions exhibit an alternating pattern at really small
weights (∼ 10−20). It is most probably due to numerical issues, associated for in-
stance to the discretization scheme or the spectrum approximation (partly due to
the “infinite walls” at the grid limits [261]).

We have therefore generalised the analytic results obtained in section VI.3.1
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Figure VI.11: The asymptotic distri-
bution of the eigenstate weights pn=0,...10

(red dots), obtained with A = 0.5 and
Tbath = 1, function of the corresponding
eigenenergies En=0,...10. It fits the Boltz-
mann distribution (∝ e−E/Tsub) with
Tsub = 0.99 (dashed line).
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Figure VI.12: Asymptotic subsystem
temperature Tsub as a function of the
bath temperature Tbath for two differ-
ent drags: A = 0.1 (red circles) and
A = 1.5 (blue crosses) corresponding re-
spectively to a weak and strong coupling.
The dashed line corresponds to the ideal
case Tsub = Tbath.

with an initial Gaussian wavepacket to some other initial states. We can thus
conjecture that the SL equation, within the case of a harmonic external potential and
the white noise (VI.102 and VI.103), universally leads to the thermal equilibrium
of statistical mechanics. Moreover, though only expected at the weak coupling
limit (as explained in the introduction), it is also reached in the intermediate and
strong regimes. Finally, the observed behaviour fits Senitzky’s point of view that
initial correlations should be suppressed and replaced by some universal thermal
correlations.

VI.3.3.3 Decoherence of the reconstructed density matrix

If a coherent quantum system undergoes many “classical” collisions, it is com-
monly thought to loose its coherences towards a reduced “classical” state [267]. In
our study, one can explicitly check the decoherence from the coherent state to the
classical correlations. The coherences correspond to the off-diagonal terms of the
density matrix, as seen in section IV.1.3. The density matrix can be reconstructed
from the statistical mixed state through

ρmn(t) = lim
nstat→∞

1

nstat

nstat∑
r=1

〈ψm|ψ(r)(t)〉〈ψ(r)(t)|ψn〉 . (VI.133)

For instance, starting from the full coherent state ψ(t = 0) = (ψ0 +ψ1 +ψ2)/
√

3,
i.e. from the density matrix,

ρ(t = 0) =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 , (VI.134)
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in the orthogonal basis (ψ0, ψ1, ψ2), one obtains at equilibrium (for A = 1 and
Tbath = 0.9),

ρ(t� τrelax) =


0.675 0.001− 0.004i 0.004 + 0.0008i

0.001 + 0.004i 0.222 −0.0007− 0.001i

0.004− 0.0008i −0.0007 + 0.001i 0.071

 .(VI.135)

At equilibrium, the off-diagonal terms (coherences) get much smaller than the diag-
onal terms, proof that some decoherence has occurred, and that the diagonal terms
(weights or populations) get thermally distributed. One therefore obtains statistical
“classical” correlations from a purely coherent state.

VI.3.4 With the colored noise
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Figure VI.13: The asymptotic
distribution of the eigenstate weights
pn=0,...10 (red dots), obtained with {A =
0.5, Tbath = 1}, function of the eigenen-
ergies En=0,...10, in comparison to the
Boltzmann distribution (∝ e−E/Tsub) at
Tsub = 0.99 (dashed line).
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Figure VI.14: Asymptotic subsystem
temperature Tsub as a function of the
bath temperature Tbath for three differ-
ent drags: A = 0.05 (red circles), A =
0.5 (green diamonds) and A = 1.5 (blue
crosses) corresponding respectively to a
weak, intermediate and strong coupling.
The dashed line corresponds to the ideal
case Tsub = Tbath.

The evolution of the 〈H0〉 average energy is close to the one obtained with the
white noise (figure VI.9) and fits Senitzky’s law (VI.132) in the weak coupling limit.
The evolutions of the eigenstate weights are also close to the ones obtained with the
white noise (figure VI.10). As illustrated in figure VI.13, the asymptotic distribu-
tions of the weights are Boltzmannian independently of the drag A and initial state,
and all the observations made in section VI.3.3.2 apply here too. In figure VI.14,
we compare the temperature actually reached by our subsystem Tsub to the bath
temperature Tbath used as input of the noise. When Tbath & 0.5, the subsystem cor-
rectly thermalises in a good approximation (we note a light drag dependence: The
larger A the smaller Tsub). At lower temperatures, some important discrepancies
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(Tsub “saturates”) appear when A & Tbath. These weight discrepancies must there-
fore originate from the Brownian hierarchy breaking as described in section VI.2.2.1.

VI.4 Equilibration with a linear potential
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Figure VI.15: Left: The linear potential under study (thick line) and its corresponding
eigenenergies (dashed lines). Right: The corresponding three lower eigenstates.

VI.4.1 With the white noise

As explained in section VI.2.2.1, the white quantum noise (VI.102) and (VI.103)
was initially derived for a harmonic potential. In this section, we test its ability to be
extended to other types of potentials through the example of the linear potential68

V = 1/2 |x|. In the white quantum noise expression (VI.103), we set E0 to the value
0.509 equal to the ground state energy.
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Figure VI.16: Numerical average energy 〈H0〉 evolutions for different drags A (solid
curves) and the theoretical evolution given by (VI.132) with {Tbath = 1, 〈H0〉(t→∞) =
1.52, A = 0.1} (dashed curve).

68The linear potential is close to the linearly rising quarkonia potential.
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As shown in figure VI.16, the asymptotic value of the 〈H0〉 average energy ex-
hibits a strong A-dependence and is not equal to the expected statistical average

〈H0〉(t→∞) =

∑
iEi e

−Ei/Tbath∑
i e
−Ei/Tbath

' 1.52 . (VI.136)

At small drags (A < 1), the average energy evolutions are nevertheless in good agree-
ment with the exponential rate (VI.132) when one takes the measured 〈H0〉(t→∞)
and effective Aeff ' A/2 values. Therefore, the energy variation remains propor-
tional to the drag for both types of potentials in the weak coupling regime.
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Figure VI.17: The asymptotic distributions of the eigenstate weights pn=0,...10 (joined
by lines) function of the eigenenergies En=0,...10 (vertical lines), obtained with different
drags A = 0.1 (solid lines), A = 0.5 (dashed lines) and A = 1.5 (dot-dashed lines) and
temperatures Tbath = 0.2 (left), Tbath = 0.5 and 1 (right). They are compared to the
corresponding “ideal” Boltzmann distributions ∝ e−E/Tbath (thin lines).

Independent of the initial state, the asymptotic distributions of the weights
pn=0,...10 are close to the Boltzmann distributions ∝ e−E/Tbath only when 1 . Tbath .
3 at weak couplings (see figure VI.17). At low temperatures strong discrepancies are
observed: The higher excited states exceed the Boltzmann law, exhibit a alternating
pattern and saturate at low weights. Moreover, a dependence on the drag value is
observed from the 2nd (4th) excited state at low (medium) temperatures. The latter
explains the 〈H0〉 dependence on the drag observed in figure VI.16: a smaller drag
is observed to generate higher populations for the excited eigenstates and thus a
higher average energy. At large temperatures T & 5, the subsystem temperature
Tsub, is difficult to evaluate because of statistical fluctuations and numerical scheme
imperfections.

Given that the SL equation does not lead to proper Boltzmann distributions in
this case, using the previous definition of the subsystem temperature Tsub could ap-
pear rather unjustified. Nevertheless, as one is often interested in the low lying eigen-
states in phenomenology (the fundamental and few lower excited eigenstates), a Tsub

can be defined for these states by tracing the effective Boltzmann lines ∝ e−E/Tsub

between the two first weights (p0 and p1) as a minimum. The numbers of low lying
eigenstates which are then close to the effective Boltzmann lines are summed up in
Tab. VI.9. The evaluation of Tsub vs. Tbath, showed in figure VI.18, exhibits clear
discrepancies to the “ideal” Tsub = Tbath line at low and high temperatures and for
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Figure VI.18: Asymptotic subsystem temperature Tsub as a function of the bath tem-
perature Tbath for two different drags A = 0.1 (red circles) and A = 1.5 (blue crosses)
corresponding respectively to weak and strong couplings. The dashed line corresponds to
the ideal case Tsub = Tbath.

any drag value. At high temperatures our accuracy on Tsub is low due to a very
large time required to reach the asymptotes and a large uncertainty as in section
VI.3.3.2 (e.g. for A = 0.1, Tsub ∈ [4.3, 8.3] with an average of ∼ 6.5).

— Number of weights close to ∝ e−E/Tsub ? —

Tbath \ Coupling Weak Intermediate Strong

Low (Tbath < 0.5) 3 2 2

Medium
(0.5 < Tbath < 2)

5 5 4

High (Tbath > 2) 10 9 8

Table VI.9: Approximate number of weights close to the corresponding Boltzmannian
∝ e−E/Tsub . One can consider the agreement to be poor from 2 to 4 weights, good from 5
to 7 and very good from 8 to 11. A better agreement is obtained toward the weak coupling
and/or high temperature regimes.

In view of these elements, we conclude that the white quantum noise (VI.102)
is not quite suitable to obtain an acceptable thermal equilibrium (in the sense of
pn ∝ e−En/Tbath) with other external potentials than the harmonic one. Nevertheless,
if one is interested in a limited number of low lying eigenstates (see Tab. VI.9), this
formalism could be used for phenomenological purposes by performing a rescaling
in the noise expression (VI.103): either by changing the value of E0 (to 0.33 here) or
by choosing the input T̃bath such as to obtain the desired Tsub = Tbath. Conversely,
this study confirms the very specific nature of the harmonic potential upon which
general conclusions should not be drawn as regards the applicability of any scheme
aiming at describing the thermalisation of quantum subsystem.
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VI.4.2 With the colored noise

Unlike the white noise, the colored noise (VI.105) was derived without assump-
tions on the external potential. In this section, we test its ability to be extended to
other potentials through the example of the linear potential.

Colored noise - Linear Vext

ΨHt=0L=Ψ0

A=0.5

A=1.5

A=0.1

Tbath =1
Tsub =0.99

0 20 40 60 80 100 120
t

0.5

1.0

1.5

2.0

XH0\

Figure VI.19: Numerical average energy 〈H0〉 evolutions for different drags A (solid
curves) and the theoretical evolution given by (VI.132) with {Tbath = 1, 〈H0〉(t→∞) =
1.52, A = 0.1} (dashed curve).
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Figure VI.20: The asymptotic distributions of the eigenstate weights pn=0,...10 (joined
by lines) function of the eigenenergies En=0,...10 (vertical lines), obtained with different
drags A = 0.1 (solid lines), A = 0.5 (dashed lines) and A = 1.5 (dot-dashed lines) and
temperatures Tbath = 0.2 (left), Tbath = 0.5 and 1 (right). They are compared to the
corresponding “ideal” Boltzmann distributions ∝ e−E/Tbath (thin lines).

As shown in figure VI.19 (left), the 〈H0〉 average energies are similar to the ones
obtained with the white noise (figure VI.16). As shown in figure VI.20, the asymp-
totic distributions of the weights are observed to be independent of the initial state
and close to the Boltzmann distributions ∝ e−E/Tbath for a limited numbers of low
lying eigenstates at the weak coupling limit and at strong couplings when Tbath & A.
At intermediate couplings, the distributions are observed to be “perfectly” Boltz-
mannian when Tbath & A. When Tbath < 0.2, we observe a similar alternating
pattern behaviour than in the white quantum noise case (see figure VI.17) with
however lighter oscillations. Despite these discrepancies, the relation Tsub vs. Tbath
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Figure VI.21: Asymptotic subsystem temperature Tsub as a function of the bath tem-
perature Tbath for three different drags: A = 0.05 (red circles), A = 0.5 (green diamonds)
and A = 1.5 (blue crosses) corresponding respectively to a weak, intermediate and strong
coupling. The dashed line corresponds to the ideal case Tsub = Tbath.

(figure VI.21), obtained by focusing on the lowest excited states, is interestingly
close to the one obtained with the harmonic potential, with the exception of the
high temperature regime where one naturally recovers the white quantum noise re-
sults (Tsub > Tbath). These observations confirm the rather general nature of the
colored noise (VI.105), which might thus be combined with a wider class of po-
tentials and used in a good approximation for thermalisation studies in the weak
coupling case.
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Main ideas and transition

For the purpose of finding an effective formalism suitable to the thermalisation
of quarkonia in a QGP, we have focused on the Schrödinger-Langevin (SL) equation
(VI.71). It is a stochastic and non-linear quantum equation which allows a gradual
evolution from pure to mixed states through statistic forces.

Its nonlinear friction term is commonly believed to maintain the stationarity of
the excited states of the uncoupled Hamiltonian H0. We have shown in Sec. VI.2.1
that the Madelung/polar transformation of the wavefunction leads to a nonzero
damping for these states. In this way, we have reconciled the SL equation with the
intuitive expectation that the dissipation process should act on any state in order to
bring the subsystem to its ground state. We have then focused on the solutions of
the SL equation with two different noise operators taken as c-numbers: the quantum
noise (VI.102, VI.103) - which has been derived by Senitzky [172] and subtracted
by its term of ground state fluctuations - and the colored noise (VI.105) derived by
Ford, Kac and Mazur [185]. When the subsystem undergoes a harmonic potential,
the SL equation has demonstrated its ability to bring any initial state to the thermal
equilibrium of statistical mechanics (i.e. Boltzmann distributions of the uncoupled
subsystem energy states) in the weak coupling limit with either noise, confirming
the assumption made by Messer [259]. Though only expected at this limit (as ex-
plained in the introduction), the intermediate and strong regimes have also led to
the same equilibrium with the white quantum noise and partially with the colored
quantum noise. For this case, some disagreements between the subsystem tempera-
ture Tsub and the bath temperature Tbath (input of the noise) have been observed at
low temperatures and attributed to the breaking of the Brownian hierarchy. When
the subsystem is submitted to a linear potential, non-Boltzmannian behaviours and
stronger drag dependences have been observed at low and medium temperatures
for both kind of noises. Nevertheless, the colored quantum noise has led to better
results in the sense of statistical mechanics (provided that the Brownian hierarchy
is preserved), confirming its rather universal nature.

We have therefore observed that within our assumptions (semi-classical noise and
negligible shifts of the energy spectrum), the SL equation does not universally lead a
subsystem to the thermal equilibrium of statistical mechanics. The SL equation and
the quasiclassical Langevin equation seem therefore to have a common difficulty in
the description of dissipative evolutions outside the nearly harmonic, free potential
cases and classical high temperature limit [182, 209, 204]. Nevertheless, if one focuses
on phenomenological applications where only the lower states are considered (e.g.
the quarkonia), the SL equation can be used in a good approximation as an effective
open quantum system formalism. Dealing with the full hierarchy of states in the
general case would possibly require either the use of the colored noise correlation
(VI.104), of a q-number noise operator or of a more refined quantum treatment of
the subsystem interactions with the heat bath. Another possibility would be to
determine a fluctuation-dissipation theorem inherent to the SL equation (probably
hardly accessible because of its non-linear nature).
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To use the SL equation in practice, one must perform a rescaling of the noise -
suited to each mean field potential - to rectify the observed differences between Tsub

and Tbath. One can indeed choose an effective heat-bath temperature T̃bath such as
to reach the desired subsystem temperature Tsub = Tbath. It just requires the proper
knowledge of the Tbath(Tsub) function as displayed for instance in Fig. VI.18 and
VI.21.

It should be noted that our analysis relies on the hypothesis that the asymptotic
distribution of subsystem-eigenstates weights pn must be Boltzmannian whatever
the potential and the coupling strength to the rest of the system (the heat bath).
To our knowledge, such an assumption has not been universally established from
fundamental principles (i.e. starting from the distribution of the full-system eigen-
states and tracing out the heat-bath degrees of freedom).

In the next part, we apply this formalism to the correlated QQ̄ pair immersed
in a QGP bath at thermal equilibrium within a simplified model. Note finally that,
as the drag coefficient for heavy quarks is proportional to T c with c ∈ [1, 2], we are
a priori safe from the Brownian hierarchy breaking identified for the colored noise.
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Part VII

The Schrödinger-Langevin
approach to quarkonia suppression
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In the previous part VI, we have studied the thermal relaxation - and its limita-
tions - given by the Schrödinger-Langevin (SL) equation for various simple potentials
and noises. In the present part, we apply this formalism to the correlated QQ̄ pair
subsystem immersed in a QGP bath at thermal equilibrium. In the SL scheme, the
time-dependent real potential implements the Debye-screening while the stochastic
and dissipative terms express the (hard) interactions between the QGP and the QQ̄
pair, possibly leading to dissociation. The SL equation preserves unitarity and en-
ables to treat the transitions between bound states and with the open states. It
allows to consider a realistic compact initial state, made of a linear superposition of
quarkonium eigenstates and to preserve the quantum nature of the QQ̄ pair in its
time-evolution. The basic ingredients of this model - temperature dependent color
screened potentials, temperature scenarios and initial states - are presented in the
mean field section III.1. In the latter, the 3D Schrödinger equation in spherical co-
ordinates was reduced to its radial part as transitions only occurred between states
of equal orbital quantum number l (we studied there the S states given by l = 0).
In section VII.1, we first show that the dissipative and fluctuating terms of the SL
equation induce transitions between states of different l. A complete treatment of
the QQ̄ pair subsystem in a QGP bath hence requires the full 3D SL equation in
spherical coordinates. Unfortunately, this complete treatment is not easily accessible
and some approximations are required. In the present part, we explore a simplified
model where the situation is approximated to a 1D symmetrical linear screened po-
tential (section VII.2). This model should contain the essential physics but is not
aimed to reproduce the experimental data; we just wish to grasp the global trends.
In section VII.3, we first study the QQ̄ pair dynamics in a QGP at constant tem-
peratures and with the temperature evolutions at RHIC and LHC from Kolb and
Heinz “reduced” model69. As in the previous parts, we mainly focus on its real-time
quarkonia content. In section VII.4, we then carry out this study within a more
realistic collision framework extracted from the state-of-the-art EPOS event genera-
tor: finite volume, inhomogeneous temperature and quarkonia position-momentum
distributions. The predictions are finally compared to experimental data (to some
extent) and other models.

69In this part, the pre-equilibrium phase before the QGP is considered and assumed to be at
T = T (τini) (see section III.1.2). As τini � τrelax, this modification does not lead to any significant
change in the dynamics.
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VII.1 The Schrödinger-Langevin equation in 3D

spherical coordinates

The SL equation in spherical coordinates writes

i~
∂ψ(~r, t)

∂t
=

[
H0 + ~A

(
S(~r, t)−

∫
ψ∗(~r′, t)S(~r′, t)ψ(~r′, t) d3~r′

)
− ~r. ~FR(t)

]
ψ , (VII.137)

where the mean field Hamiltonian H0 is

H0 = −(~2/2m)~∇2 + V (~r), (VII.138)

m is the reduced mass and ~r the vector between the origin and the point of coordi-
nates (r, θ, φ). The wavefunction can be decomposed in the (orthonormal) spherical
harmonics basis [153],

Yl,m(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ, (VII.139)

where the Pm
l are the associated Legendre polynomials. In this basis, the wavefunc-

tion then writes

ψ(r, θ, φ) =
L∑
l=0

l∑
m=−l

Rl,m(r, t)Yl,m(θ, φ). (VII.140)

where L should be infinite, but can be taken to L = 2 in practice to obtain from
the equation (VII.137) a resolvable set of equations for the coefficients Rl,m. To do
so, one projects equation (VII.137) onto each Yl′;m′ :∫ 2π

φ=0

∫ π

θ=0

Yl′,m′(θ, φ) [equation (VII.137)] sin(θ)dθdφ. (VII.141)

Using ∫ 2π

φ=0

∫ π

θ=0

Yl′,m′(θ, φ)Yl,m(θ, φ) sin(θ)dθdφ = δll′δmm′ , (VII.142)

the equation (VII.137) with a radial potential and without the fluctuation/dissipation
terms yields

i~
∂Rl′,m′(r, t)

∂t
= − ~2

2m

[
1

r2

∂

∂r

(
r2∂Rl′,m′

∂r

)
− l′(l′ + 1)

r2
Rl′,m′

]
+ V (r)Rl′,m′ . (VII.143)

The projection of the stochastic term requires to write the vector ~r in terms of
the spherical harmonics,

~r = r sin θ cosφ~ex + r sin θ sinφ~ey + r cos θ ~ez (VII.144)

=

√
4π

3
r (Y1,−1 ~e−1 + Y1,0 ~e0 + Y1,1 ~e1),
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where

~e−1 =
~ex + i~ey√

2
, ~e0 = ~ez and ~e1 =

−~ex + i~ey√
2

. (VII.145)

In the latter basis, the stochastic force writes

~FR(t) =
Fx − iFy√

2
~e−1 + Fz ~e0 −

Fx + iFy√
2

~e1 ≡ F−1 ~e−1 + F0 ~e0 + F1 ~e1. (VII.146)

The projected stochastic term is then∑
l,m

∫ 2π

φ=0

∫ π

θ=0

Y ∗l′,m′(θ, φ)~r. ~FR(t)Rl,mYl,m sin(θ)dθdφ (VII.147)

=

√
4π

3
r
∑
l,m

1∑
m′′=−1

Rl,m ~em′′ . ~FR(t)

∫ 2π

φ=0

∫ π

θ=0

Y ∗l′,m′Y1,m′′Yl,m sin(θ)dθdφ

=

√
4π

3
r
∑
l,m

Ξl,m,l′,m′(r, t)Rl,m

where Ξ is a tensor. In appendix A (page 195), an explicit expression of the matrix
resulting from the sum in equation (VII.147) is given in the limited case L = 2.

The projection of the dissipative term is

~A
∑
l,m

Rl,m

∫ 2π

φ=0

∫ π

θ=0

Y ∗l′,m′(θ, φ)
(
S(ψ)− 〈S(ψ)〉

)
Yl,m sin(θ)dθdφ (VII.148)

As S(ψ) is non-linear, it cannot be decomposed in the spherical harmonics basis.
Hence, one should determine the phase of the wavefunction numerically on each
sphere of radius r and proceed to the integration both in the entire space for the
regulator 〈S(ψ)〉 and on each sphere of radius r for the integral in (VII.148). If one
calls cl,m the results of the main integrals in equation (VII.148), one should obtain
a dissipative term of the form:

~A
∑
l,m

cl,m(r, t)Rl,m. (VII.149)

In the limited case L = 2, one finally obtains a set of 9 crossed equations as
illustrated in appendix A (page 195). Each crossed equation includes terms with
different values of l and m: the dissipative and fluctuating terms of the SL equa-
tion induce transitions between states of different orbital and magnetic quantum
numbers. A complete treatment of the QQ̄ pair subsystem in a QGP bath hence
requires the resolution of the 3D SL equation and cannot be reduced to its radial
part as in part III. Unfortunately, the numerical resolution of a system of numerous
crossed equations is not easily accessible (though feasible for L = 2). For now, we
will rather explore a limited simplified 1D model.
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VII.2 Generalities: simplified potential and noise

rescaling

VII.2.1 1D simplified potentials

Within this simplified model, we approximate the QQ̄ self interaction in the
vacuum to a 1D symmetrical linear potential 1/2K|x| saturated70 at Vmax = 1.2
GeV, i.e.

Vlin(x, T = 0) =

{
1/2K|x| when 1/2K|x| < 1.2 GeV

1.2 when 1/2K|x| ≥ 1.2 GeV
(VII.150)

The color self binding potentials are indeed mainly linear around the considered
eigenenergies. The string parameter K is chosen such as to obtain an energy differ-
ence between the first two even states given by E2 − E0 = E(ψ′) − E(J/ψ) = 589
MeV for charmonia and E2 − E0 = E(Υ′) − E(Υ) = 563 MeV for bottomonia. It
leads71 to K = 1.54 for charmonia and K = 2.75 for bottomonia.

The effect of the T-dependent Debye screening is taken into account by saturating
the linear potential Vlin to the value of the weak or strong color potentials at large
distances72 V (r →∞, T ), i.e.

V weak
lin (x, T ) =

{
1/2K|x| when 1/2K|x| < Vweak(r →∞, T )

Vweak(r →∞, T ) when 1/2K|x| ≥ Vweak(r →∞, T )
(VII.151)

and

V U
lin(x, T ) =

{
1/2K|x| when 1/2K|x| < U(r →∞, T )

U(r →∞, T ) when 1/2K|x| ≥ U(r →∞, T )
(VII.152)

At T = 0, note that V weak
lin and V U

lin are both equivalent to the vacuum linear
potential, i.e. V weak

lin (T = 0) = V U
lin(T = 0) = Vlin(T = 0). The potential V weak

lin is
illustrated in figure VII.1 for different temperatures. The number of bound states
(i.e. such as En ≤ V (r → ∞, T )) as a function of the temperature then follows
the evolution of the much different weak and strong saturations (see figure III.6 and
VII.2). As discussed in section III.1.1, the strong potential is determined without
irreversible exchange of energy between the quarkonia and the bath, as opposed to
the weak potential. The saturation given by the strong potential might therefore be
more suited to a formalism, such as the SL equation, where the thermal exchanges
are provided explicitly73. Within the V weak

lin model especially, the Υ(3S)-like state
is not bound (E4 > 1.2 GeV) whereas it should be in reality. We therefore do not
expect relevant results for this state and its results are given on an indicative basis.

70For the string breaking; see section III.1.1.
71With mc = 1.25 GeV and mb = 4.575 GeV.
72See figure III.6 and section III.1.1.
73Though it remains an open question, as one could say that with the thermal forces we rather

reproduce the imaginary part of the potential.
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Figure VII.1: The 1D symmetrical linear potential V weak
lin (x, T ) for a bb̄ pair (solid

lines) and the weak potential Vweak (dashed lines) at four different reduced temperatures
(Tred = T/Tc where Tc = 0.165 GeV). The eigenenergies of the vacuum potential Vlin are
represented by dot-dashed horizontal lines: E0, E1, E2, E3 respectively correspond to the
Υ(1S)-like, χb-like, Υ(2S)-like, χ′b-like states. Obtained by removing the saturation, the
eigenenergy E4 ∼ 1.22 GeV corresponds to the Υ(3S)-like state.
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Figure VII.2: The number of bottomonium bound states as a function of T for V weak
lin

and V U
lin. The temperatures Tmin and Tmax correspond to the minimum and maximum

values in Kolb and Heinz model at LHC.

Finally, one should note that, as in the previous parts, we only consider the
vacuum eigenstates to evaluate the quarkonia content of a QQ̄ pair and not the
instantaneous eigenstates (at T ). There is therefore a mismatch between the Hamil-
tonian states and the projection basis. Nevertheless, as defined here, the quarkonia
content allows us to study in a fixed basis the real-time dynamics of a QQ̄ pair
all along its evolution (and especially of its bound component). As we assume an
instantaneous transition to the vacuum states at the chemical freeze-out, it is only
at this stage that the quarkonia content recovers all its physical meaning.

VII.2.2 Equilibration and rescaling

Conceptually, the effects of a thermal bath on the QQ̄ pair should be both
a partial dissociation and a thermalisation of the bound component. Within our
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wavefunction approach, the dissociation is related to the continuous “leakage” of
the wavefunction out of the potential well due to the color screening/saturation and
the thermal forces. The thermalisation of the bound component (i.e. what remains
inside the potential well) is brought by a combination of dissipative and stochas-
tic forces, and should lead to a re-equilibration of the populations as given by the
Boltzmann distribution (IV.57).

As was observed and discussed in section VI.4 for the linear potential, the tem-
perature of the subsystem74 Tsub at equilibrium does not corresponds in most situa-
tions to the bath temperature75 Tbath within the SL framework. One then needs to
perform a rescaling of the noise correlation to obtain a better agreement between
Tsub and Tbath at equilibrium. If one would choose to perform such a rescaling with
the linear potential that includes the saturation/screening, most of the eigenstates
would be unbound for the typical range of QGP temperatures, and one would not
obtain the required Boltzmann-like distributions even for the lowest states. There-
fore, we consider instead the linear potential without the saturation/screening (i.e.
with Vmax = ∞) to deduce the rescaling law. We will see in the next section that
one then obtains the correct thermalisation of the bound components even when the
saturation/screening is turned back on.

ì

ì

ì
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Figure VII.3: To obtain a rescaling of the white noise correlation for bottomonia,
the measured Tbath(Tsub) distribution (circle points) is fitted to a polynomial function
T̃bath(Tbath) (= 0.100266 − 2.89439Tbath + 28.9901T 2

bath − 103.683T 3
bath + 170.61T 4

bath −
104.392T 5

bath here) (dashed curve). The dot-dashed line corresponds to the ideal case
Tbath = Tsub. The vertical lines correspond to the minimum and maximum temperatures
in Kolb and Heinz model at LHC (see III.1.2). The red diamonds correspond to three
Tsub measured at equilibrium while using the noise rescaling: the subsystem now correctly
thermalises for the states of interest.

As introduced in section VI.4.2, the rescaling consists in the use of an effective
bath temperature T̃bath as input of the noise correlation such as to reach the desired

74Tsub is measured by tracing the effective Boltzmann lines ∝ e−E/Tsub between the two lowest
weights.

75The bath temperature is used as an input of the noise correlation.
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subsystem temperature Tsub = Tbath. It just requires to fit the Tbath(Tsub) function,
obtained with the drag A(Tbath), with a polynomial function as illustrated in fig-
ure VII.3 for bottomonia and the white noise. Then, if one desires to obtain the
subsystem temperature Tsub = Tbath at equilibrium, one chooses the corresponding
T̃bath(Tbath) value, given by the fit, as the new input of the noise correlation. Note
that the color noise rescaling should be only weakly affected by the “saturation” ef-
fect observed in part VI (which appeared when the Brownian hierarchy was strongly
broken) as A(T ) ∝ T for the quarkonia.
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Figure VII.4: Comparison of the equilibrium distributions given by the rescaled white
(dashed lines) and colored (solid lines) noises for three different bath temperatures [GeV].

Once rescaled, one should wonder whether the white or the colored noise is bet-
ter suited for this model. As shown for instance in figure VII.4 for the charmonia,
the equilibrium distributions of the weights obtained with the white and colored
noises show no important differences for the typical temperature range of the QGP.
Furthermore, for the lower states of main interest (J/ψ, χc and ψ′-like states for
charmonia and Υ(1S), χb, Υ(2S) and Υ(3S)-like states for bottomonia), the distri-
butions are close to Boltzmannian. Finally, as the colored noise is more expensive
numerically and as the white noise rescaling is independent of the drag value, the
latter will be used preferentially for this model. To simplify the notations, in the fol-
lowing we will write T for Tbath (exception made with notation V weak

lin (T = 0) which
only means that we use the vacuum potential and not that the bath is at T = 0).

VII.3 Evolutions at constant temperatures and

with Kolb and Heinz model

VII.3.1 Charmonia results and analysis

We recall that for a cc̄ pair in a QGP at temperature T , we use the drag coefficient
given by A(T )[c/fm] ∼= 3T [GeV] + 2.5T 2 (see section V.2.1). Different initial states
are considered for the cc̄ pair: the J/ψ-like and ψ′-like states if one considers that
the quarkonia form before the deconfined phase or a Gaussian compact state of
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Figure VII.5: Illustration of our approach within the following section VII.3 through its
basic ingredients and interactions between the QQ̄ and QGP systems.

parameter a = 0.165 fm if not (see section III.1.3). This will allow to evaluate the
effect of the initial state on the survivances.

VII.3.1.1 At constant temperatures

In this section, we focus on the overall dynamics of the cc̄ pair at some fixed
temperatures. Several models are investigated to better observe the contributions
of the mean field and thermal forces: the mean field only model “Vlin(T )”, the vac-
uum potential plus thermal forces model “Vlin(T = 0) + stocha” and the screened
potential plus thermal forces model “Vlin(T ) + stocha”.

a) Evolution of the charmonium-like weights.

The evolutions of the charmonium weights obtained with V weak
lin for different bath

temperatures, initial states and models are shown in figures VII.6 and VII.7. First
of all, one should notice that the evolutions obtained with the 1D linear mean field
only (thin curves) are quantitatively very different from what we obtained with the
3D radial mean field in part III (compare figures III.17 and VII.6 for instance). With
the mean field only, the 1D linear potentials lead to smaller suppressions than the
3D radial potentials.

We now focus on the models which include the thermal forces (thick or dashed
curves). One first observes a re-equilibration of the charmonium weights during a
transient phase t . τrelax ∼ 5 fm/c towards a “thermal” hierarchy (i.e. Wi > Wi+1).
After this transient phase, the continuous leakage of the wavefunction out of the
potential well leads to a universal decay of the cc̄ pair system. The exponential
decay rate Γ at large times is indeed common to all weights and is independent
of the initial state (see example at T = 0.3 GeV). Qualitatively, the rate Γ is ob-
served to increase with the temperature when there is no screening (dashed curves),
whereas it saturates for intermediate temperatures T & 0.2 GeV with the screening
(thick curves). At large times t � τrelax, note finally that the weights become al-
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Figure VII.6: Evolutions of the charmonium weights obtained with V weak
lin for different

bath temperatures and initial states. The thin curves are obtained with the color screening
but without thermal forces (i.e. the “mean field” situation), the dashed curves with the
thermal forces but without screening (i.e. the vacuum potential V weak

lin (T = 0) which
saturates at Vmax = 1.2 GeV) and the thick curves with both features. See numerical
version for colors.

most independent of the initial state (compare for instance the thick curves for the
weights Wi at T = 0.3 GeV from the initial J/ψ-like, ψ′-like and Gaussian states
in figures VII.6 and VII.7). For the models including the thermal forces, the initial
coherences are thus suppressed and replaced by locally equilibrated correlations76.
One can qualitatively compare the evolutions of the J/ψ component obtained with
the present 1D thermal model and the ones obtained within the 3D semi-classical
framework of part V (compare for instance the J/ψ survivance Si in figure VII.7 at
T = 0.3 and the one in V.5). They have in common the exponential decay after a
transient phase. However, the transient phases are very different: we obtained an
important “overshoot” in the semi-classical framework whereas it is very small or
inexistent here (see J/ψ-like curves in figure VII.8). Furthermore, the decay rates
were clearly larger in the semi-classical framework.

As expected, the comparison between the models with and without color screen-

76As also discussed in section VI.3.3.3.
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Figure VII.8: Evolutions of the charmonium survivances obtained with V weak
lin (T ) (left)

and V U
lin(T ) (right) from different initial states at a bath temperature T = 0.3 GeV. The

thick curves correspond to an initial Gaussian state and the dashed curves from an initial
J/ψ-like and ψ′-like states for the J/ψ-like and ψ′-like survivances respectively.

ing (thick and dashed curves respectively) shows that the screening leads to larger
decay rates and suppressions at large times t � τrelax. At intermediate times and
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especially at low temperatures, the ψ′ component can be less suppressed with the
screening (see T = 0.2 in figure VII.6 for instance), repopulated transiently by the
diffusion of the wavefunction. The comparison between the models with and without
thermal forces (thick and thin curves, respectively) highlights the effect of the ther-
mal forces on the wavefunction trajectory and on the weight distributions. Whereas
the mean field situation is driven by ballistic trajectories, which lead to a strong de-
pendence on the initial state, the thermal situation is driven by a thermal diffusion
which suppresses this dependence at large times (see also figure VII.11). Including
thermal forces can then lead to relatively more or less suppression than the pure
mean field situation, depending on the initial state, the bath temperature and the
considered component. Even so, we note that the thermal forces lead to larger decay
rates and suppressions for the J/ψ component from an initial J/ψ-like state (fig-
ure VII.6), and to smaller suppressions at large temperatures (T & 0.5 GeV) from
an initial Gaussian state (figure VII.7 (top)). At high temperatures (and therefore
large drags), the relative motion of the heavy quarks could therefore be slowed down
in the diffusive regime relatively to its ballistic counterpart. Furthermore, from an
initial Gaussian state, the survivance Si(t) = Wi(t)/Wi(t = 0) of the ψ′-like com-
ponent is larger than the J/ψ-like one for temperatures above T & 0.25 GeV (see
figures VII.7 (bottom)). As we will see with the LHC temperature scenario, this
effect could explain the puzzling observation made by the CMS collaboration that
the ψ′ is less suppressed than the J/ψ for certain kinematics77. In our opinion, this
observation can only be fully understood by considering the quantum nature of the
cc̄ pair.

One of the main assumption of the sequential suppression model (see II.2.1.2) is
the very fast and full decorrelation of melted states (a state for which the dissocia-
tion temperature is smaller than the bath temperature). Within our framework, this
assumption is ruled out for several reasons. First, the evolution of the cc̄ pair can
lead to non-vanishing weights78 at large times even for “melted” states (see figures
for T = 0.6 GeV for instance). Second, thanks to the quantum correlations, the
survivance of a state can strongly depend on the initial state, whereas within the
sequential suppression model one should obtain the full suppression of the melted
components whatever the initial state. Concrete consequence of these effects is il-
lustrated in figure VII.8. Note finally in this figure the interest of the survivance
evolutions obtained from the Gaussian initial state (which can be seen as a mix of
quarkonium states): each component is a mix of contributions from its own depop-
ulation (as obtained with the quarkonium initial state) and from its regeneration
from the depopulations of other components. The survivance of a state i from the
quarkonium initial state i gives thus only a partial information on its actual sur-
vivance79.

77See section II.3.3.
78Assuming an instantaneous transition from the state of the pair at some large time to the

quarkonium vacuum states.
79One should sum over the contributions obtained from each initial quarkonium states, to obtain

its actual value.

172



b) Local equilibriums.

Because of the wavefunction continuous leakage out of the potential well, the sys-
tem cannot reach a stable equilibrium - as obtained in part VI - but only local equi-
libriums at each t� τrelax. The true equilibrium corresponds to the complete disso-
lution of the cc̄ pair over infinite space80. As illustrated in figure VII.9 (left panel),
even though the noise rescaling was performed without saturation and screening, one
still obtains the correct thermal equilibrium for the relative weights of the bound and
almost bound states despite the presence of the saturation/screening. Here we define
a state i to be bound or almost bound if its energy is Ei . Vlin(x → ∞, T ). Note
that the overall normalisation of these thermal distributions continuously shrinks
with the wavefunction continuous leakage towards large distances. For the unbound
states (i.e. Ei > Vlin(x → ∞, T )), one does not expect any thermalisation and the
weights only reflect the density of the free QQ̄ component in the vicinity of the
potential well (which overlaps with the unbound state wavefunctions). As shown in
figure VII.9 (right panel), within our model, its leads to quite flat distributions of
the unbound state weights.
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Figure VII.9: Left: The distributions of the charmonium weights when the subsystem
is locally equilibrated at some t� τrelax (solid lines) obtained with the vacuum potential
V weak

lin (T = 0) (i.e. with four bound states and one “almost” bound (Υ(3S))) and for
different bath temperatures. The dashed lines show the corresponding Boltzmann distri-
butions. Right: Same but with the screened potential V weak

lin (T ). One has zero, two and
three bound (or almost bound) states at T = 0.6, T = 0.2 and T = 0.12 GeV respectively.
The unbound states (for which one does expect a thermalisation) are indicated by squares.

In a stationary QGP, the SL equation therefore naturally leads to local distribu-
tions of the quarkonium states following correct relative statistical weights, which
allows to make the connection with models based on the hypothesis of statistical
recombination. This sanity check is a unique feature of our approach.

80The grid size has to be chosen such as the wavefunction reflexions on the grid boundaries to
be small.

173



c) Mean squared position and probability density.

One can check the relative motion of the heavy quarks through the mean square
position 〈x2〉 (see figure VII.10). As expected, with the thermal forces one obtain a
diffusive evolution, i.e. 〈x2〉 ∝ t after a transient phase [151], which contrasts with
the ballistic evolution obtained with the mean field only (see part III).
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Figure VII.10: Evolution of the mean square radius from an initial J/ψ-like state with
V weak

lin and the thermal forces at T = 0.2 GeV. One obtains 〈x2〉 ∝ t after a transient
phase.
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Figure VII.11: Probability density ρ(x, t) = 〈|ψ(x, t)|2〉stat of the cc̄ subsystem at local
equilibrium (at a certain time t� τrelax) in a bath at T = 0.2 GeV.

Another interesting observable is the probability density ρ(x, t) = 〈|ψ(x, t)|2〉stat.
Three different regimes of wavefunction leakage can be observed in figure VII.11: a
ballistic one when there is no thermal forces, a weakly diffusive one with the ther-
mal forces and the vacuum potential, and a strongly diffusive one with the thermal
forces and the screened potential. The ballistic regime is clearly converted into a
diffusive regime with the thermal forces. The three regimes have in common that
part of the cc̄ subsystem remains trapped inside the potential “well” and populates
the eigenstate weights. The observation of the probability density at large distances
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is an excellent test to check the effect of the grid size. Indeed, if the latter is not
large enough, one can observe important density oscillations and a lump near the
grid limits. The latter occur when the wavefunction reflections on the grid wall are
too important, which may also compromise the relevant central area.

d) Conclusion.

A similar dynamics is obtained with the “strong” potential V U
lin and the discus-

sions are equivalent to the one developed so far for the V weak
lin potential. We have

therefore already observed non-trivial evolutions with a stationary medium at con-
stant temperatures and showed that both the screening and the thermal forces have
a strong influence. Moreover, the thermal diffusion replaces the ballistic evolution
obtained with the mean fields only.

VII.3.1.2 At RHIC

We now include in the model the hydrodynamic temperature scenario at RHIC
from Kolb and Heinz model as described in section III.1.2. The drag coefficient being
only valid in the deconfined phase, the evolution for T < Tc is given on an indicative
basis. As shown in figure VII.12, one first observes a thermal re-equilibration of
the eigenstate weights during a transient phase (t . τrelax ∼ 5 fm/c), along with
an initial suppression due to the screening. Whereas this transient phase is similar
to what we observed at constant temperatures, the evolution then behaves quite
differently from the previous “universal” decay: the J/ψ component gets continu-
ously repopulated whereas the χc and ψ′ components keep on depopulating. These
opposite tendencies originate in the the two main aspects of the thermal dynam-
ics: 1) wavefunction diffusion toward large distances following the variations of the
color screening and drag (∝ T ) especially due to the stochastic term and 2) cooling
toward lower states while the bath temperature decreases thanks to the friction term.

The comparison between the dashed and thick curves (i.e. without and with
color screening) shows that the screening leads to larger suppressions (by a factor
2 or less) for the J/ψ component and smaller suppressions for the ψ′ component.
Similarly, the comparison between the thin and thick curves (i.e. without and with
thermal forces) shows that the thermal forces mainly lead to larger or equivalent
suppressions for the J/ψ component and to smaller suppressions for the ψ′ compo-
nent. The evolutions obtained with the weak and strong linear potentials are roughly
similar, but the latter logically leads to less suppression for the typical QGP lifetime
(∼ 10 fm/c). Note that the strong linear potential does not reproduce the weight
oscillations that we have observed with the genuine strong potential V = U (see
sections III.4 and V.1.2). From the different initial states, one obtains the same
kind of evolutions after the transient phase and only a little difference for the weight
values at large times (but not for the survivances). Indeed, while only ∼ 2− 6% of
the ψ′ survives from an initial ψ′ state, more than ∼ 20− 30% does from an initial
Gaussian state (see comparisons in figure VII.13). It shows that the ψ′ found at
the end of the QGP evolution are mostly the ones regenerated from J/ψ. One can
finally notice that the J/ψ component gets also a contribution from the suppression
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Figure VII.12: Evolutions of the charmonium weights from an initial J/ψ-like (top),
ψ′-like (center) and gaussian (bottom) initial states, obtained with the V weak

lin (left) and
V U

lin (right) potentials for the RHIC temperature scenario. The thin curves corresponds to
the mean field situation, the dashed curves is obtained with the thermal forces and the
vacuum potential, and the thick curves with the thermal forces and the color screened
potentials. See numerical version for colors.

of other higher components.

After the re-equilibration phase, the cc̄ subsystem is not instantaneously at ther-

176



ΨH0L=GaussianH0.165L
ΨH0L=J�Ψ or Ψ'-like

J�Ψ-like

Ψ'-like

t @fm�cDT=TcT>Tc T<Tc
5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2
Si HtL

Vlin
weakHTRHICHtLL+stocha

ΨH0L=GaussianH0.165L
ΨH0L=J�Ψ or Ψ'-like

J�Ψ-like

Ψ'-like

t @fm�cDT=TcT>Tc T<Tc5 10 15 20

0.5

1.0

1.5

Si HtL
Vlin

U HTRHICHtLL+stocha

Figure VII.13: Evolutions of the charmonium survivances obtained with V weak
lin (T ) (left)

and V U
lin(T ) (right) from different initial states for the RHIC temperature scenario. The

thick curves correspond to an initial Gaussian state and the dashed curves from an initial
J/ψ-like and ψ′-like states for the J/ψ-like and ψ′-like survivances respectively.
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Figure VII.14: The distributions of the charmonium weights measured at t = 5 (left)
and t = 9.6 fm/c (right) with the vacuum potential V weak

lin (T = 0) (blue) and the screened
potential V weak

lin (T ) (red) at RHIC. The dashed lines show the corresponding Boltzmann
distributions at T = Tc.

mal equilibrium with the bath (see example in figure VII.14 (left)). There is a certain
latency period for the subsystem to relax to the bath equilibrium. This latency can
be observed for instance when the QGP temperature remains constant at T = Tc
(between 5 and 9.6 fm/c in the RHIC scenario): after few fm/c the subsystem equi-
librates with the bath as shown in figures VII.14 (right). This latency highlights
that, as a Brownian particle, the typical cc̄ relaxation time is larger than any of the
typical QGP times.

VII.3.1.3 At LHC

As shown in figures VII.27 (in appendix B) and VII.15, the evolutions obtained
with the temperature scenario at LHC are quite similar to the ones at RHIC. One
obtains more suppression for the J/ψ component at LHC than at RHIC with both
potentials, and less suppression for the ψ′ component. Furthermore, at intermedi-
ate times (∼ 1 − 4 fm/c) the ψ′ component can be less suppressed that the J/ψ

177



ΨH0L=GaussianH0.165L
ΨH0L=J�Ψ or Ψ'-like

J�Ψ-like

Ψ'-like

t @fm�cDT=TcT>Tc T<Tc
5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2
Si HtL

Vlin
weakHTLHCHtLL+stocha

ΨH0L=GaussianH0.165L
ΨH0L=J�Ψ or Ψ'-like

J�Ψ-like

Ψ'-like

t @fm�cDT=TcT>Tc T<Tc5 10 15 20

0.5

1.0

1.5

Si HtL
Vlin

U HTLHCHtLL+stocha

Figure VII.15: Same than figure VII.13 but with LHC temperature scenario.

component at LHC but not at RHIC (compare the left panels of figures VII.15 and
??). These simple potentials combined with the SL equation seems therefore only
weakly affected by the difference between RHIC and LHC scenarios.

VII.3.1.4 Sum up, values at the chemical freeze-out and data

The main conclusions for the cc̄ evolution within this simplified 1D model are
1) both the color screening and the thermal forces cannot be neglected, 2) the ther-
mal diffusion replaces the ballistic evolution, 3) the temperature difference between
RHIC and LHC has little influence on the evolution, 4) relatively to the pure mean
field situation, the thermal forces rather tend to increase the J/ψ suppression from
a J/ψ initial state or have no effect from a gaussian initial state, and 5) decrease the
ψ′ suppression. So far, our study shows that the survivance of a state depends on
the initial population, the deconfined medium life-time and temperature. We have
observed the important contribution of the state regenerations from transitions be-
tween states. We have shown that for charmonia there is no fast decorrelation of
the “melted states” as assumed by the sequential suppression model. Furthermore,
we have observed a clear difference of time scales between the cc̄ relaxation and the
temperature evolution. In a more realistic scenario (with a crossover), it suggests
that the thermal distribution of the cc̄ components at the chemical freeze-out could
not reflect the chemical freeze-out temperature. With our model, one could then
extract the effective temperatures of the chemical freeze-out for quarkonia. As in the
mean field part III, our framework possibly leads to a smaller suppression of the ψ′

component relatively to the J/ψ at intermediate times at LHC but not at RHIC and
therefore the recent result at LHC at forward rapidity81 seems feasible. Finally, we
have noticed that with this 1D linear model of the potential, the evolutions without
thermal forces are very different from what we obtained with the radial charmonia
potentials. Moreover, with the 1D linear potentials, the usual Gaussian parameters
(for the initial Gaussian wavepacket) do not strictly lead to the same initial ratios
as with the radial charmonia potentials. The 3D study seems necessary to obtain
more reliable predictions.

81See section II.3.3
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The values of the state survivances at the chemical freeze-out82 at RHIC and
LHC are summed up in tables VII.10 and VII.11 respectively. We obtain for the
J/ψ component a moderate suppression which increases slightly with the collision
energy. The ψ′ component is more strongly suppressed (but still finite !) and its
suppression decreases slightly with the collision energy.

State survivance at RHIC RAA data

State \ Potential V weak
lin V U

lin Low pT High pT

J/ψ from initial J/ψ 0.55 0.80
0.26± 0.05 0.64± 0.14

J/ψ from initial Gauss(0.165) 0.67 1.03

ψ′ from initial ψ′ 0.028 0.06
None None

ψ′ from initial Gauss(0.165) 0.21 0.29

Table VII.10: J/ψ and ψ′ survivances Si(t) = Wi(t)/Wi(t = 0) at the chemical freeze-
out at RHIC (t ≈ 10 fm/c). Experimental most central RAA data at RHIC in AuAu√
SNN = 200 GeV collisions: 1) high pT STAR data [134] (inclusive (prompt and non

prompt) J/ψ, 5 < pT < 14 GeV/c, |y| < 1 and 0-10% centrality) and 2) low pT PHENIX
data [133] (inclusive J/ψ, pT < 5 GeV/c, |y| < 0.35 and 0-5% centrality). The non prompt
contribution is estimated to 10-25% of the inclusive production.

State survivance at LHC RAA data

State \ Potential V weak
lin V U

lin Low pT High pT

J/ψ from initial J/ψ 0.47 0.72
0.83± 0.14 0.20± 0.03

J/ψ from initial Gauss(0.165) 0.60 0.97

ψ′ from initial ψ′ 0.022 0.06
None 0.13± 0.04

ψ′ from initial Gauss(0.165) 0.27 0.37

Table VII.11: J/ψ and ψ′ survivances at the chemical freeze-out at LHC (t ≈ 11 fm/c).
Experimental RAA data at LHC in PbPb

√
SNN = 2.76 TeV collisions. For the J/ψ:

1) high pT CMS data [138] (prompt J/ψ, 6.5 < pT < 30 GeV/c, |y| < 2.4 and 0-10%
centrality) (inclusive J/ψ (prompt and non-prompt): RAA = 0.24±0.03) and 2) low pT
ALICE data [137] (inclusive J/ψ, 0 < pT < 8 GeV/c, |y| < 0.9 and 0-10% centrality).
For the ψ′: high pT CMS data [144] (prompt ψ′, 6.5 < pT < 30 GeV/c, |y| < 1.6 and
integrated centrality).

The corresponding experimental data for most central collisions - where the ef-
fects of the thermal deconfined matter are maximal - are given on an indicative
basis. As in the mean field part III, a correct result-data comparison would require
to refine our model with initial cold nuclear matter effects, feed downs from excited

82See section III.1.6.
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states83, recombinations from uncorrelated pairs and a more realistic heavy ion col-
lision scenario (e.g. spatial distributions of the quarkonia and temperature). In the
low pT regime, we clearly underestimate the charmonia suppression at RHIC (but
the mean field discrepancy might possibly explain it). At LHC, where the low pT
data might be dominated by uncorrelated pair recombinations, our results go in the
right direction by overestimating the suppression. Finally, this simple dynamical
model does not give an explanation of the J/ψ ordering (the “suppression of the
suppression”) at low pT between RHIC and LHC.

VII.3.2 Bottomonia results and analysis

The study of the bottomonia suppression is also of a great interest for our analy-
sis. Indeed, as they are much less subject to the recombination process - much fewer
bb̄ in the medium - and to shadowing effects - bb̄ pairs are produced from gluons
with larger momentum fraction x -, their experimental data are cleaner for a direct
comparison with our dynamical model. For a bb̄ pair in a QGP at temperature T ,
we use the drag coefficient given by A(T )[c/fm] ∼= 0.92T [GeV] + 0.64T 2 [231].

VII.3.2.1 At constant temperatures

For the bottomonia, we now focus on the three lower S states - i.e. the Υ(1S)-
like, Υ(2S)-like and Υ(3S)-like states - but as the latter is always an unbound state
with the V weak

lin potential (see figure VII.2) it is more given on an indicative basis
in this case. As shown in figures VII.16, the behaviours of the bb̄ and cc̄ pairs are
quite similar within this model (see section VII.3.1.1 for the discussion). There are
nevertheless two main differences: a larger relaxation time and the thermal distri-
butions are shifted toward smaller weights. Both originate from the smaller value
of the drag parameter, which implies a larger relaxation time and a larger thermal
diffusion fr bottomonia.

These evolutions can be roughly84 compared to Borghini and Gombeaud’s results
from Einstein master equation (see figure IV.2). Both formalisms lead to a “uni-
versal” exponential decay of the bottomonium populations after a transient phase
during which the populations get re-equilibrated. However, whereas they seem un-
able85 to obtain a thermalisation of the bound states at local (in time) equilibriums,
the Schrödinger-Langevin framework can within this simple model (as shown in
figure VII.9).

83See table I.2 and I.10
84They study a 3D situation with a coulomb potential whereas we study a 1D situation with a

screened linear potential.
85Because of some missing transitions between bound and open states (see section IV.2.1.3).
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Figure VII.16: Evolutions of the bottomonium weights obtained with V weak
lin for different

bath temperatures and initial states. The thin curves are obtained with the color screening
but without thermal forces (i.e. the “mean field” situation), the dashed curves with the
thermal forces but without screening (i.e. the vacuum potential V weak

lin (T = 0) which
saturates at Vmax = 1.2 GeV) and the thick curves with both features. See numerical
version for colors.

VII.3.2.2 At RHIC

By comparing figures VII.18 and VII.17 with VII.13 and VII.12, the behaviours of
the bb̄ and cc̄ pairs are also very similar with an additional temperature scenario (see
section VII.3.1.2 for the discussion). The comparison between the dashed and thick
curves (i.e. without and with color screening) shows that the screening leads to equal
or less suppressions for the Υ(3S) component (at the opposite from the Υ(1S) and
Υ(2S) states). The additional diffusion coming from the screening indeed benefits
to higher excited states. This effect becomes so strong with the weak potential
V weak

lin that one can even observe a population inversion between the Υ(2S) and
Υ(3S) components at intermediate times. Further investigations would be required
to explain this effect.
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Figure VII.17: Evolutions of the bottomonium weights from the Υ(1S)-like (top), Υ(2S)-
like (center) and gaussian (bottom) initial states, obtained with the V weak

lin (left) and V U
lin

(right) potentials for the RHIC temperature scenario. The thin curves corresponds to the
mean field situation, the dashed curves is obtained with the thermal forces and the vacuum
potential, and the thick curves with the thermal forces and the color screened potentials.
See numerical version for colors.

182



ΨH0L=GaussianH0.045L
ΨH0L=UH1SL or UH2SL-like

UH1SL-like

UH2SL-like

t @fm�cDT=TcT>Tc T<Tc
5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2
Si HtL

Vlin
weakHTRHICHtLL+stocha

ΨH0L=GaussianH0.045L
ΨH0L=UH1SL or UH2SL-like

UH1SL-like

UH2SL-like

t @fm�cDT=TcT>Tc T<Tc
5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Si HtL

Vlin
U HTRHICHtLL+stocha

Figure VII.18: Evolutions of the bottomonium survivances obtained with V weak
lin (T )

(left) and V U
lin(T ) (right) from different initial states for the RHIC temperature scenario.

The thick curves correspond to an initial Gaussian state and the dashed curves from
an initial Υ(1S)-like and Υ(2S)-like states for the Υ(1S)-like and Υ(2S)-like survivances
respectively.

VII.3.2.3 At LHC

As shown in figures VII.28 (in appendix B) and VII.19, the evolutions obtained
with the temperature scenario at LHC are very similar to the ones at RHIC. One
obtains more suppression for the Υ(1S) component at LHC than at RHIC with both
potentials, and less suppression for the Υ(2S) and Υ(3S) components.
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Figure VII.19: Evolutions of the bottomonium survivances obtained with V weak
lin (T )

(left) and V U
lin(T ) (right) from different initial states for the LHC temperature scenario.

The thick curves correspond to an initial Gaussian state and the dashed curves from
an initial Υ(1S)-like and Υ(2S)-like states for the Υ(1S)-like and Υ(2S)-like survivances
respectively.
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VII.3.2.4 Values at the chemical freeze-out and data

The bottomonium survivances at the chemical freeze-out at RHIC and LHC are
summed up in tables VII.12 and VII.13 respectively. Similarly to the charmonia,
we obtain for the Υ(1S) component a moderate suppression which increases with
the collision energy and a more strongly suppressed Υ(2S) component which sup-
pression decreases slightly with the collision energy. These results can reasonably
be compared to the experimental data as both the recombination and the effect of
shadowing are small (see section II.2.1). At first sight, both the Υ(1S) and Υ(2S)
components are overestimated. However, adding the contributions of the suppressed
feed downs from excited states (see figure I.10) should reduce these values (as done
for instance in section III.5). The population inversion between the Υ(2S) and
Υ(3S) components obtained with the V weak

lin seems unphysical, and does not appear
a priori in the data (in which Υ(3S) is the most suppressed of the three states [168]).

State survivance at RHIC RAA data

State \ Potential V weak
lin V U

lin

Υ(1S) from initial Υ(1S) 0.57 0.76
0.66± 0.13

Υ(1S) from initial Gauss(0.045) 0.58 0.92

Υ(2S) from initial Υ(2S) 0.02 0.08
None

Υ(2S) from initial Gauss(0.045) 0.09 0.20

Table VII.12: Υ(1S) and Υ(2S) survivances at the chemical freeze-out at RHIC (t ≈
10 fm/c). Experimental most central RAA data at RHIC in AuAu

√
SNN = 200 GeV

collisions: STAR data [167] (pT > 0 GeV/c, |y| < 1 and 0-10% centrality).

State survivance at LHC RAA data

State \ Potential V weak
lin V U

lin Mid y Forward y

Υ(1S) from initial Υ(1S) 0.43 0.64
0.41± 0.06 0.22± 0.05

Υ(1S) from initial Gauss(0.045) 0.48 0.83

Υ(2S) from initial Υ(2S) 0.02 0.05
0.11± 0.06 None

Υ(2S) from initial Gauss(0.045) 0.13 0.22

Table VII.13: Υ(1S) and Υ(2S) survivances at the chemical freeze-out at LHC (t ≈ 11
fm/c). Experimental RAA data at LHC in PbPb

√
SNN = 2.76 TeV collisions. For the mid

rapidity: CMS data [168] (pT > 0 GeV/c (one can note that the bottomonia suppression
is almost independent of pT [145]), |y| < 2.4 and 0-5% centrality) and for the forward
rapidity: ALICE data [268] (pT > 0 GeV/c, 2.5 < |y| < 4 and 0-20% centrality).
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VII.4 Evolutions with a more realistic collision

framework from EPOS generator

In the previous sections, we have considered QQ̄ pairs standing at the center
of a cooling fireball, i.e. of zero momentum. We now carry out the study for the
bottomonia within a more realistic collision framework at LHC extracted from the
“state-of-the-art” EPOS event generator. These more realistic collisions include a
finite volume, an inhomogeneous temperature and some position-momentum distri-
butions of the bb̄ pairs.

Figure VII.20: Illustration of our approach within this section through its basic ingre-
dients and interactions between the QQ̄ and QGP systems.

VII.4.1 New ingredients

The temperature background T (~x, t) is extracted from the EPOS2 event gen-
erator [269, 270]. It is a state of the art framework which attempts to describe
pp, pA and AA collisions. In AA collisions, the initial 3D QGP state is generated
from a Gribov-Regge multiple scattering approach where the particle production
originates from cut pomerons (parton ladders). It leads to inhomogeneous density
and temperature distributions (see figure VII.21). The evolution of the produced
medium is then described by an ideal hydrodynamic expansion which is fitted to a
lQCD equation of state [271]. Hence, the time evolution of the temperature at the
phase transition corresponds to a crossover and not to a 1st order transition like in
Kolb and Heinz model86 (see figure VII.22). EPOS has proven to provide a good
description of the light quark sector and is therefore suited for our analyses [272].

Within our model, the initial color singlet bb̄ pairs are spatially distributed87 in
the QGP volume according to the Glauber model [44]. To each pair is then randomly
associated a momentum value with an even probability for simplification. In section

86The model of Kolb and Heinz is described in section III.1.2
87Note that in EPOS3 the production of charm quarks has been implemented and one could use

the corresponding position-momentum distributions as the initial state.
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VII.4.2, we will see that the RAA distributions are almost independent of pT , so
this simplification only has a negligible impact on our results. The pairs (center-
of-mass) are then assumed to propagate along straight lines with no energy loss as
in transport models. We assume that the static potentials evaluated from lQCD
at zero momentum, that we have used so far, does not depend on the bb̄ center-
of-mass momentum. For their inner dynamics, each bb̄ pair is evolved according to
the Schrödinger-Langevin framework with one of the simplified linear 1D potentials
(V weak

lin or V U
lin). At each time step ti, the temperature T of the Debye-screening and

fluctuation/dissipation mechanisms, is taken accordingly to the jth pair position ~xj
in the EPOS background, i.e. T = T (~xj, ti).

Figure VII.21: Spatial distributions of the energy density in a transverse plane obtained
from Kolb and Heinz model (left) and from a realisation of EPOS2 (right) in most central
collisions. Beware that the color scales are different.
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Figure VII.22: Time evolution of the temperature at the center of the fireball obtained
from Kolb and Heinz model (black curve) and from a statistical average of EPOS2 pre-
dictions (red curve). The band corresponds to the typical fluctuations around the average
value.
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VII.4.2 Preliminary results and discussion

If not indicated, the initial state of the pairs is taken to be the Gaussian compact
wavepacket. With this initial state, the survivances Si(t) = Wi(t)/Wi(t = 0) can be
seen as the experimental RAA. Indeed, in this case all the transitions between bound
states are included (see section VII.3), whereas one needs to sum over the different
contributions if one starts from the initial bound states. As we do not implement
the cold nuclear matter effects and the feed-downs, our RAA results do not aim to
reproduce experimental data, but just grasp the global trends. Our results are given
for the full rapidity range.

Figure VII.23: Evolutions of the bottomonium weights from the Gaussian state, ob-
tained with the V weak

lin (left) and V U
lin (right) potentials for the space-time temperature

distributions from EPOS2 in central collisions (b=0) at LHC.

In figure VII.23, we show the evolutions of the bottomonium weights obtained in
central collisions (b=0) for two different transverse momenta pT . First, one should
note that these evolutions are very similar to what we obtained with Kolb and Heinz
model at LHC (see figure VII.28). Second, we observe almost no dependence on the
transverse momentum. Whatever their momentum, the bb̄ pairs remain thus long
enough in the medium to behave almost like they were standing at the center of
the fireball. Kolb and Heinz model for a bb̄ pair fixed at the center of the fireball
(section VII.3) was therefore a good approximation for central collisions.

As one can see in figure VII.24, this very weak dependence on pT is also true for
semi-peripheral and peripheral collisions, with the exception of Υ(2S) in peripheral
collisions. This flat pT -dependence of the RAA is a very promising result of our model
as it perfectly agrees with the experimental observation at LHC shown in figure88

VII.25. In figure VII.26, we show the results for the RAA dependence on the number
of participants (i.e. the centrality). At first sight, the distributions obtained with
the weak linear potential seem in a better agreement with the experimental data (in
figure VII.25), but including the feed down and cold nuclear matter contributions
might rather indicate that the strong linear potential is in a better agreement. This
analysis will be performed in a near future.

88Already shown in part II.
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Figure VII.24: The pT -dependence of the bottomonium survivances for three different
impact parameters b, obtained with the initial Gaussian state, the V weak

lin (left) and V U
lin

(right) potentials, and the space-time temperature distributions from EPOS2 at LHC.

Figure VII.25: RAA data for the Υ(1S) and Υ(2S) as a function of centrality (left) and
transverse momentum (right) [145].

Figure VII.26: The Npart-dependence of the bottomonium survivances, integrated on
the impact parameter b and obtained with the initial Gaussian state, the V weak

lin (left) and
V U

lin (right) potentials, and the space-time temperature distributions from EPOS2 at LHC.
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Main ideas

In the Schrödinger-Langevin (SL) scheme, the time-dependent real potential im-
plements the Debye-screening while the stochastic/dissipative forces express the
(hard) interactions between the QGP and the QQ̄ pairs through two simple pa-
rameters (the drag and the temperature). It possibly leads to transitions between
bound states and between bound and open quantum states, which are treated with
more or less success resorting to master equations or imaginary potentials in other
frameworks. The SL equation preserves unitarity for the pure state and leads for
the mixed state to a correct thermalisation of the bound components within simple
models. We have studied the real-time dynamics of QQ̄ pairs immersed in a QGP
and bound by a simple 1D screened linear interaction. This model does not aim to
reproduce the data but rather gives insights on the dynamics. We have mainly fo-
cused on the quarkonia content of the pairs and obtained rich suppression patterns.
They rule out the basic assumptions of the sequential suppression model: there is no
fast and full decorrelation of “melted” states and no adiabatic evolution of “formed”
states. Furthermore, we have observed interesting transitions between bound states
possibly leading to their regeneration (especially for the excited states). Our dy-
namical model creates a bridge between the main ideas of the sequential suppression
model (the partial screening) and the statistical hadronisation model (thermalisation
of the states). Our results suggest that the thermal distribution of the QQ̄ com-
ponents at hadronisation may not reflect the QGP hadronisation temperature (due
to its large inertia). Finally, we have applied our model to a more realistic collision
framework at LHC. The resulting RAA dependence89 on pT and Npart reasonably
describes the data trends.

89These results have been recently discussed in a conference proceeding [273].
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General conclusion

We have investigated the quarkonia suppression in a Quark Gluon Plasma from
a dynamical point of view. Our approach is based on the real-time evolution of
non-relativistic correlated QQ̄ pairs described as open quantum systems continu-
ously interacting with a cooling QGP. This analysis implicitly aimed to 1) study the
effects of the color screening and permanent collisions on the QQ̄ separation and
quarkonia content, 2) observe if the ordering of the J/ψ suppression at RHIC and
LHC could be explained by a thermal effect, 3) give a dynamical and continuous
picture of the dissociation, recombination, energy exchange and possible transitions
to other bound states, 4) create a connection between the sequential suppression
and statistical hadronisation models which would permit to justify some of their
assumptions, 5) measure the medium temperature above the critical temperature
Tc, 6) describe the quarkonia nuclear modification factor at RHIC and LHC.

To this end, we have explored three approaches which combine the following
ingredients: i) a correlated QQ̄ pair seen as a dipole in its center-of-mass frame and
described by a pure wavefunction, a pure Wigner distribution or a mixed state, ii)
a mutual interaction between the Q and Q̄ partly screened by color charges in their
vicinity iii) a cooling QGP either described by the hydrodynamic model from Kolb
and Heinz or by the state-of-the-art EPOS2 event generator, iv) some classical or
quantum Langevin-like mechanisms reflecting the continuous collisions between the
Brownian QQ̄ pair and the thermal medium. We have first investigated a “ballistic”
evolution of the QQ̄ pair based on the Schrödinger equation including the mean
field potential only. We focused on the S state weights allowing to reduce the full
3D analysis to a radial 1D situation without approximations. Then, as a first at-
tempt to include a thermal mechanism to obtain a “diffusive” evolution, we have
explored a semi-classical approach where the QQ̄ pair was described by the Wigner-
Moyal equation supplemented by a classical Langevin dynamics. We have finally
investigated the full quantum evolution given by the so-called Schrödinger-Langevin
equation within a simplified 1D model.

Through the results of various simulations we have shown that:

– The basic assumptions of the sequential suppression model are unjustified.

– The semi-classical frameworks exhibit important pitfalls and might not be
suited for this analysis.

– The Schrödinger-Langevin equation leads to thermal relaxation, with however
some limitations.

– It is mandatory to consider both the screening and thermal effects.

– Transitions between bound and open quantum states and between bound
quantum states play a crucial role. The former lead to dissociation and re-
combination phenomena, whereas the second to significant regeneration of
quarkonium states.
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– The system exhibits different time scales between the QQ̄ relaxation and the
evolution of the QGP temperature. It suggests that the possible thermal
distribution of the quarkonium states at the end of the evolution might not
reflect the chemical freeze out temperature.

– This framework may provide a possible explanation for the unusual ψ′/J/ψ
ratio measured by the CMS collaboration at LHC.

– Within our models, the thermal effect cannot explain the ordering of the J/ψ
suppression at RHIC and LHC. To take into account the recombinations of
uncorrelated pairs at low pT seems therefore necessary.

In further investigations, one could extend the Schrödinger-Langevin framework
to the realistic 3D situation, include the color octet channels and implement impor-
tant phenomena such as the feed downs, cold nuclear matter effects and recombi-
nations of uncorrelated pairs. The results could then be compared to experimental
data. One could then also proceed to a more systematic comparison with lQCD ob-
servables and other open quantum system approaches. It might allow to distinguish
between the possible binding potentials, to obtain a relevant thermometer for the
QGP and to unify the description of single and bound heavy flavours in a decon-
fined medium. An alternative approach might be the use of Stochastic Schrödinger
equations to unravel the recently proposed master equations from first principles.
Finally, we remain convinced that a dynamical approach of the “open quantum sys-
tem” kind is the only framework which might provide an accurate description of
quarkonia production in heavy-ion collisions.
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Appendix A

The 3D Schrödinger-Langevin equation decomposed in the
spherical harmonics basis for the limited case L=2

In the limited case of L = 2, the sum in VII.147 for the stochastic term is given
by:

∑
l,m

Ξl,m,l′,m′(r, t)Rl,m =


0 A1 0

A2 0 A3

0 A4 0

 ,
where the matrices A1, A2, A3 and A4 are:

A1 =
[

−F1R0,0√
π

F0R0,0

2
√
π

−F−1R0,0√
π

]
,

A2 =


F−1R1,−1√

π
F0R1,0

2
√
π

F1R1,1√
π

 ,

A3 =


−
√

6
5π
F1R1,−1

√
3

5π

F0R1,−1

2
−F−1R1,−1√

5π
0 0

0 −
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3
5π
F1R1,0

F0R1,0√
5π

−
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3
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2
−
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6
5π
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and

A4 =



√
6

5π
F−1R2,−2 0 0√
3

5π

F0R2,−1

2

√
3

5π
F−1R2,−1 0
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0
√

3
5π
F1R2,1

√
3
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2

0 0
√

6
5π
F1R2,2


.

Finally, from the 3D Schrödinger-Langevin equation VII.137 one thus obtain a
system of 9 crossed equations. Fore instance, the crossed equations for l′ = 0 and
l′ = 1 are:
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- l′ = 0,m′ = 0 :

i~
∂R0,0(r, t)

∂t
= − ~2
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1

r2

∂

∂r

(
r2∂R0,0
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+ V (r)R0,0 (VII.153)
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Appendix B
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Figure VII.27: Evolutions of the charmonium weights from an initial J/ψ-like (top) and
ψ′-like (bottom) states, obtained with the V weak

lin (left) and V U
lin (right) potentials for the

LHC temperature scenario (Kolb and Heinz). The thin curves corresponds to the mean
field situation, the dashed curves is obtained with the thermal forces and the vacuum
potential, and the thick curves with the thermal forces and the color screened potentials.
See numerical version for colors.
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Figure VII.28: Evolutions of the bottomonium weights from different initial states,
obtained with the V weak

lin (left) and V U
lin (right) potentials for the LHC temperature scenario

(Kolb and Heinz). The thin curves corresponds to the mean field situation, the dashed
curves is obtained with the thermal forces and the vacuum potential, and the thick curves
with the thermal forces and the color screened potentials. See numerical version for colors.
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Résumé en français

Selon la théorie du Big Bang, les particules élémentaires qui composent notre
univers seraient passées par un état extrêmement chaud (& 1012 K) et dense de
Plasma de Quark et Gluon (PQG), avant de former des nucléons, des atomes, des
molécules... Le PQG devrait être une étape clé pour comprendre comment la distri-
bution homogène de matière originelle est devenue inhomogène, menant aux struc-
tures de matière actuellement observées dans l’espace. Le PQG consiste en un
état dense et déconfiné de quarks et de gluons (appelés ensemble partons). Ces
derniers sont les composants élémentaires de la matière nucléaire et sont, en con-
ditions normales, confinés dans des systèmes composites (les ”hadrons”) tels que
les protons et neutrons. Depuis les années 80, le PQG est au centre d’une intense
investigation expérimentale et théorique ayant pour but de prouver son existence
et de déterminer ses propriétés. Pour reproduire sur Terre les conditions extrêmes
nécessaires à son obtention, une possibilité est de collisionner des ions lourds ultra-
relativistes dans des collisionneurs géants tels que le RHIC et le LHC. Ainsi, on peut
potentiellement produire de très petites (∼ 10−14 m) “bulles” de PQG aux durées
de vie extrêmement courtes (∼ 10−21 s) et dont l’étude est un véritable défi. On ne
peut en effet considérer que des observables indirectes résultantes de l’expansion et
du refroidissement de ces bulles, c’est-à-dire les hadrons finalement produits. Une
des observables possibles du PQG et de sa température est la “suppression des
quarkonia”. Cette observable correspond à une production inférieure d’états liés
de quark/antiquark lourds (QQ̄) dans les collisions d’ions lourds relativement aux
collisions proton-proton où le PQG ne peut être à priori créé. Cette suppression a
en effet été observé expérimentalement mais ses intrigantes évolutions avec l’énergie
de collision et les paramètres cinématiques ne correspondent pas systématiquement
à ce qui était attendu, rendant nécessaire une meilleur compréhension théorique.
Dans cette thèse, nous proposons une description dynamique des paires QQ̄ décrites
comme des systèmes quantiques ouverts en interaction continue avec les partons du
milieu déconfiné.

Le premier chapitre, intitulé “Du modèle standard aux collisions d’ions lourds”,
présente le cadre global dans lequel s’inscrit ce travail. Les bases du Modèle Standard
de la physique des particules et de la chromodynamique quantique (QCD), la théorie
de l’interaction forte, sont tout d’abord présentées. Les notions de constante de
couplage, de liberté asymptotique, de confinement et d’hadron sont discutées. Une
attention particulière est donnée à la physique des quarkonia: leurs propriétés, états
excités, désintégrations et mécanismes de production sont décrits, ainsi que l’intérêt
de leur étude en collisions proton-proton. Dans un second temps, le diagramme
de phase de la matière nucléaire VII.29 et la nature des transitions entre matière
hadronique et PQG sont discutés. Par la suite, les différentes étapes attendues lors
d’une collision d’ions lourds sont détaillées (voir figure VII.30): des ions initiaux,
en passant par l’évolution du PQG formant la boule de feu, jusqu’aux hadrons fin-
aux. Les paramètres permettant de caractériser une collision d’ions lourds, tels que
l’énergie dans le centre de masse

√
sNN et le nombre de nucléons participants à la

collision 〈Npart〉, sont définis. Pour finir, une brève revue des différentes observables
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expérimentales du PQG est donnée: la multiplicité des hadrons légers, le flot hydro-
dynamique, la suppression des hadrons légers aux grands moments transverses...

Figure VII.29: Schéma du diagramme de phase de la QCD présenté en fonction de
la température et du potentiel chimique baryonique µB. La température critique entre
matière hadronique et partonique est évaluée à Tc ' 170 ± 25 MeV (∼ 1012 Kelvin !) à
µB ' 0 [34].

Figure VII.30: Représentation schématique des différentes étapes d’une collision d’ions
lourds, des ions initiaux jusqu’aux nombreux hadrons observés au final dans les détecteurs.

Le second chapitre, intitulé “Une revue de la suppression des quarkonia”, est une
revue des modèles théoriques et des résultats expérimentaux concernant la suppres-
sion des quarkonia, l’observable sur laquelle cette thèse se concentre. L’intérêt des
quarks lourds dans les collisions d’ions lourds est tout d’abord justifié. Étant produit
dans les premiers instants de la collision en quantité plutôt bien maitrisée, les quarks
lourds permettent en effet de sonder le milieu crée tout au long de son évolution.
En particulier, les paires QQ̄ corrélées devraient être sensibles à la température du
milieu déconfiné. Les différents modèles décrivant la production des quarkonia dans
les collisions d’ions lourds sont ensuite revus en détail. Sont décrits par exemple les
effets de la matière nucléaire froide, le modèle de suppression séquentielle propos
par Matsui et Satz [1], les modèles d’hadronisation statistique [113, 114, 115] et de
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transport [112, 63, 64, 124, 125, 126, 127]. En particulier, le modèle de suppres-
sion séquentielle se base sur les températures de dissociation des quarkonia: si la
température maximale du PQG TPQG est supérieure à la température de dissociation
d’un état Td, celui-ci est assumé dissocié pour toujours, à l’opposé si TPQG < Td,
l’état est supposé survivre sans être perturbé. Les résultats expérimentaux obtenus
auprès du SPS, RHIC et LHC, à des énergies de collision allant de quelques dizaines
de MeV à quelques TeV, sont ensuite discutés. Les limites et l’irrégularité de la
description de ces données par les principaux modèles sont pointées. Une revue cri-
tique des hypothèses des principaux modèles nous permet enfin de justifier l’approche
développée dans la présente thèse: étudier la dynamique en temps réel des paires
QQ̄ corrélées, considérées comme des systèmes quantiques ouverts en interaction
permanente avec un PQG en refroidissement. Explicitement, l’interaction continue
entre le milieu et les degrés de liberté internes de la paire doit se manifester par
1) un écrantage de couleur dit “de Debye” dû à la présence de charges de couleur
dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les
collisions permanentes avec les partons du milieu. Cette description devrait mener
à une image dynamique et continue de la dissociation des quarkonia, de leur recom-
binaison et des transitions entre états liés. Les perspectives d’un tel modèle sont
finalement explicitées.

Le troisième chapitre, intitulé “Dynamique de champ moyen”, est consacré à
l’évolution d’une paire QQ̄ fixée au centre de la boule de feu et évoluant dans
un potentiel de liaison écranté par le champ de couleur environnant (l’aspect 1)
ci-dessus). Dans un premier temps, sont présentés les différents ingrédients du
modèle. Pour l’interaction mutuelle et écrantée des deux quarks lourds est con-
sidéré soit un potentiel ”faiblement” liant déterminé par Mocsy et Petreczky [156]
(voir figure VII.31) soit un potentiel “fortement” liant déterminé par Kaczmarek
et Zantow [104]. Dérivés de résultats de QCD sur réseau (lQCD), ces deux po-
tentiels correspondent à des régimes thermodynamiques différents: le premier à un
régime intermédiaire entre énergie libre F (T ) et énergie interne U(T ) et le second
à l’énergie interne. Les caractéristiques de leur dépendance en température et de
leurs états propres sont ensuite présentées (formes des fonctions d’onde, énergies
propres, températures de dissociation...). Les évolutions de la température du cen-
tre de la boule de feu au RHIC et au LHC sont données par le modèle d’évolution
hydrodynamique de Kolb et Heinz [62] (voir par exemple figure VII.32). L’évolution
“balistique” de la paire QQ̄ est déterminée avec l’équation de Schrödinger non rel-
ativiste en partant soit d’un paquet d’onde gaussien initial (hypothèse que la paire
vient d’être produite) soit d’un état de quarkonium (hypothèse que l’état lié a eu le
temps de se former). Ce choix d’état initial est motivé par la méconnaissance des
temps de formation des états liés.

Afin d’observer le “contenu” en quarkonia (charmonia ou bottomonia) de la paire
QQ̄ (cc̄ ou bb̄ respectivement), sa fonction d’onde est projetée à chaque instant sur
les états propres du vide (déterminés avec les potentiels à T = 0). On obtient
alors les évolutions des poids Wi des différents quarkonia, qui sont données et dis-
cutées pour les différentes configurations de potentiel et d’état initial pour différentes
températures constantes ou pour les scénarios d’évolution de température du RHIC
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Figure VII.31: Le potentiel ”faiblement” liant des charmonia à différentes températures
[109].
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Figure VII.32: Évolution hydrodynamique de la température réduite Tred(t) = T/Tc au
centre de la “boule de feu” au RHIC

√
sNN = 200 GeV. Quand Tred > 1 le milieu est un

PQG, à Tred = 1 le mileu est une phase mixte parton/hadron et un gaz de hadron quand
Tred < 1.

et du LHC (voir par exemple figure VII.33). La richesse des évolutions obtenues
montre que le problème ne peut être réduit à de simples états couplés/découplés,
que les temps de décorrélation ne sont pas petits comparés aux temps typiques du
PQG et que d’importantes transitions entre états liés sont possibles (en particulier,
l’état ψ′ peut être fortement repeuplé lors de la décorrélation du J/ψ). Toutes ces
observations tendent à écarter les hypothèses des modèles de suppression séquentielle
et d’hadronisation statistique (rapide et complète décorrélation des paires provenant
d’états dissociés ou de tous les états respectivement).

Le quatrième chapitre, intitulé “Quarkonia et systèmes quantiques ouverts”,
aborde l’aspect lié aux collisions multiples que subit la paire QQ̄ avec les partons
du milieu. L’objectif de ce chapitre est d’identifier un (ou des) formalisme(s) per-
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Figure VII.33: Évolution des poids normés Si = Wi(t)/Wi(t = 0) des états de J/ψ et
ψ′ au RHIC à partir d’un état initial gaussien (de paramètre ac = 0.165).

mettant d’aborder ces collisions dans le cadre de la thèorie des systèmes quantiques
ouverts. Ce chapitre est divisé en deux parties: la première est une introduction
à la théorie des systèmes classiques et quantiques ouverts et la seconde une revue
de la littérature sur les applications de cette théorie au cas des quarkonia. Puisque
les quarks lourds de la paire peuvent être vus dans le PQG comme des particules
“brownienne”, la première partie cherche en particulier à introduire les différentes
approches envisagées dans la littérature pour des dynamiques de type brownienne,
c’est-à-dire lorsque le temps de relaxation du sous-système d’intérêt est long par rap-
port aux temps typiques de collision et d’étude. Du coté classique [151], l’équation
de Langevin (ou de façon équivalente l’équation de Fokker-Planck) permet de décrire
la dynamique d’une particule brownienne classique à l’aide d’un terme de friction,
inversement proportionnel à la vitesse de la particule et paramétré par le coeffi-
cient de friction, et d’une force stochastique simulant les multiples collisions avec
le milieu. La balance de ces deux aspects, obtenue grâce à la relation d’Einstein,
permet au sous-système d’intérêt d’atteindre l’équilibre thermique déterminé par
la physique statistique (distributions de Boltzmann). Du coté quantique [182], la
dynamique de Langevin ne peut être introduite trivialement dans le formalisme
quantique commun (aucune quantification d’un Hamiltonien ne peut mener à des
phénomènes irréversibles). Différentes approches ont été proposées pour surmonter
cette difficulté, mais il n’existe pas de description universelle. L’approche la plus
commune est de considérer le sous-système d’intérêt et le bain thermique comme
un système global conservatif, puis en intégrant les degrés de liberté du bain et en
procédant à quelques approximations, il est possible d’obtenir l’évolution dissipa-
tive du sous-système seule. Habituellement, l’équation d’évolution qui en dérive à la
limite brownienne (“de faible couplage”), se présente sous la forme d’une équation
mâıtresse quantique [182, 200] pour la matrice densité ou alternativement d’une
équation de Schrödinger stochastique [183, 199, 203]. Dans le cas d’applications
complexes où il est difficile de définir l’hamiltonien d’interaction/du bain ou de
calculer les opérateurs de Lindblad sans trop d’approximations, des approches ef-
fectives sont nécessaires (du type de Langevin par exemple). Un modèle simple de
bain [172, 185, 186] - un ensemble d’oscillateurs harmoniques couplé linéairement
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au sous-système - a prouvé être un cadre pertinent. Celui-ci mène, à la limite de
faible couplage, à une équation de Langevin pour les opérateurs de Heisenberg,
dénommée équation de Heisenberg-Langevin. L’application pratique de celle-ci est
cependant limitée par la nature non-commutative de ces opérateurs. Comme pour
le cas classique, l’équilibre thermal attendu à la limite de faible couplage est donné
par les distributions de Boltzmann. Différentes approches ont été proposées afin
de traiter des interactions multiples entre les quarkonia et le PQG: approches de
type section efficace et potentiel imaginaire, approches semi-classiques et systèmes
quantiques ouverts. L’approche semi-classique de Young et Shuryak [2] est explorée
dans le chapitre 5. Les approches de types systèmes quantiques ouverts développées
jusqu’à présent semblent être soit rigoureuses [222], mais difficilement applicables
à la phénoménologie, ou plus effectives [224, 223], mais incapables d’amener à la
thermalisation de la dynamique interne des paires QQ̄.

Le cinquième chapitre, intitulé “Une approche semi-classique”, explore un cadre
semi-classique initialement proposé par Young et Shuryak [2]. C’est une première
tentative de notre part d’introduire les effets directs d’un PQG thermal sur les paires
QQ̄. Le formalisme, c’est-à-dire l’évolution classique de Langevin de la distribution
de Wigner d’une paire QQ̄, a été choisi comme moyen commode d’introduire un
processus classique de thermalisation - qui reflète les collisions permanentes en-
tre la paire et les partons du milieu - tout en gardant accessible l’analyse en 3D
sans approximation. Nous nous sommes exclusivement concentrés sur l’évolution
du poids en J/ψ. Nous avons tout d’abord comparé les évolutions obtenues avec
les formalismes quantique et semi-classique sans dynamique de Langevin, et avons
observé d’importantes différences (qui étaient attendues). Ces différences peuvent
sembler problématiques au premier abord mais pourraient être en fait négligeables
une fois la dynamique de Langevin incluse si cette dernière dominait l’évolution
(ce qui semble être le cas ici). Nous avons ensuite exploré le formalisme complet
et observé de pertinentes décroissances exponentielles du poids en J/ψ, après une
période transitoire, à différentes températures constantes. Incluant les scénarios de
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Figure VII.34: Left: Résultats du modèle semi-classique pour les poids du J/ψ en
fonction du temps avec les scénarios de température du RHIC (gauche) et du LHC (droite),
V = U et la dynamique de Langevin (lignes pleines). Lignes pointillées: même cas mais
sans dynamique de Langevin.

température du RHIC et du LHC, nous avons obtenu de riches schémas de sup-
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pression (voir figure VII.34 par exemple) qui semblent écarter, encore une fois, les
hypothèses injustifiées des modèles de suppression séquentielle et d’hadronisation
statistique. Ces résultats ont été publiés dans un compte-rendu de conférence [226].
Finalement, nous avons sévèrement questionné la pertinence des résultats obtenus
avec les méthodes semi-classiques (dont la notre), en pointant deux écueils impor-
tant observés dans le cas trivial du potentiel harmonique: une violation du principe
d’incertitude d’Heisenberg à basse température (T � E0) et une mauvaise thermal-
isation des états propres. Tous ces défauts nous ont incité à chercher une approche
entièrement quantique.

Dans le but de trouver un formalisme quantique effectif adapté à la thermalisa-
tion des quarkonia dans le PQG, dans le sixième chapitre, intitulé “L’équation de
Schrödinger-Langevin: généralités et équilibration”, nous nous sommes concentrés
sur les propriétés de l’équation de Schrödinger-Langevin (“SL”). Explicitement,
l’équation de SL s’écrit

i~
∂ψ(~x, t)

∂t
=

[
H0 + ~A

(
S(~x, t)−

∫
ψ∗S(~x, t)ψ d3x

)
− ~x. ~FR(t)

]
ψ,

où A est le coefficient de friction (inverse du temps de relaxation), S la phase

réelle de la fonction d’onde et ~FR une force stochastique. Grâce à son aspect
phénoménologique - seuls les paramètres de friction et de température sont nécessaires
- et à sa simplicité numérique, l’équation de SL peut en effet être considérée comme
un solide candidat pour des descriptions effectives de systèmes quantiques ouverts
difficilement accessibles aux équations mâıtresses ou équivalents. C’est une équation
stochastique et non-linéaire qui permet une évolution graduelle d’un état pur à un
état mixte grâce à une force stochastique (et donc à de larges statistiques) et à un
terme dissipatif non-linéaire. Dans un premier temps, deux de ses dérivations pos-
sibles sont données: par identification avec l’équation de Heisenberg-Langevin [3] et
dans le cadre de la théorie des trajectoires quantiques. Ses propriétés basiques sont
ensuite discutées: l’unitarité est préservée pour l’état pur, le principe d’incertitude
d’Heisenberg est toujours satisfait, le principe de superposition est violé par la
non-linéarité... Afin de nous assurer de la pertinence de l’équation de SL (en
vue d’applications phénoménologiques), il était nécessaire de répondre à certaines
questions ouvertes relatives à ses solutions: la stationnarité des états excités de
l’hamiltonien non couplé et la relaxation thermal. Il est communément pensé que
le terme non-linéaire de friction maintient la stationnarité des états excités de
l’hamiltonien non couplé. Au contraire, nous avons montré que la transformé de
Madelung (ou polaire) de la fonction d’onde mène à une friction non nulle pour
ces états. De cette manière, nous avons réconcilié l’équation de SL avec l’idée in-
tuitive que la dissipation doit pouvoir agir sur n’importe quel état pour amener
le sous-système à son état fondamental. Afin d’tudier la relaxation thermal, nous
avons ensuite étudié les solutions de l’équation de SL en testant deux opérateurs de
bruit pour la force stochastique (prise comme un nombre classique): un bruit blanc
(VI.102, VI.103) [172] et un bruit coloré (VI.105) [185] inspirés de la littérature.
L’analyse détaillée des évolutions du sous-système soumis à un potentiel harmonique
ou linéaire 1D, montre que sous certaines conditions l’équation de SL permet de
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conduire à l’équilibre thermique. Nous avons conclu que l’équation de SL peut être
utilisée en phénoménologie lorsque seuls les états de basse énergie sont considérés (ce
qui inclus les quarkonia). L’ensemble de ces résultats fait l’objet d’une publication
[238].

Dans le septième et dernier chapitre, intitulé “Étude de la suppression des
quarkonia avec l’approche de Schrödinger-Langevin”, l’équation de SL est appliquée
à l’évolution d’une paire QQ̄ corrélée plongée dans un PQG. Dans un premier temps,
il est montré que l’équation de SL en coordonnées sphériques induit des transitions
entre états de moments orbitaux différents. L’analyse ne peut alors plus se réduire
à la partie radiale comme dans le troisième chapitre et requière un traitement com-
plet en coordonnées sphériques 3D, qui est malheureusement difficilement accessi-
ble. Certaines approximations étant alors nécessaires, nous avons exploré pour cette
thèse un modèle simplifié où la situation est approximée à un potentiel 1D linaire et
symétrique. Ce modèle devrait contenir l’essentiel de la physique mais n’a pas pour
but de reproduire les données expérimentales. Comme dans le troisième chapitre, la
dynamique de la paire QQ̄ et de son contenu en quarkonia est tout d’abord étudiée à
diverses températures constantes, où nous avons observ une thermalisation correcte
des états et le caractère diffusif de l’évolution. Nous avons ensuite inclus les scénarios
d’évolution hydrodynamique de la température au centre de la boule de feu au RHIC
et au LHC. Nous avons obtenu de riches schémas de suppression (voir par exemple
figure VII.35) qui, de même que dans les modèles précédent, tendent à écarter les
hypothèses des modèles de suppression séquentielle et d’hadronisation statistique.
De plus, nous avons observé d’intéressantes transitions entre états menant en parti-
culier à une régénération du ψ′ s’amplifiant avec l’énergie de collision. Ceci pourrait
donner une piste d’explication à la surprenante et inexpliquée mesure, de la collab-
oration de CMS, d’un ratio de suppression ψ′/J/ψ supérieur à 1 à grande rapidité.
La comparaison des évolutions obtenues avec et sans forces thermales et avec et
sans écrantage, montre qu’aucun de ces deux aspects ne peut être négligé. Enfin,
nous avons appliqué notre modèle aux bottomonia dans un cadre plus réaliste de
collision au LHC extrait du générateur d’événement EPOS: volume fini, distribu-
tion de température inhomogène et distributions des paires en position et moment.
Les dépendances des RAA obtenues en pT et Npart (voir par exemple figure VII.36)
décrivent raisonnablement les tendances des données. Ces premiers résultats sont
présentés dans un compte-rendu de conférence [273].
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Figure VII.35: Évolutions des poids des charmonia en partant d’un état initial similaire
au J/ψ, obtenues avec les potentiels V weak

lin (gauche) et V U
lin (droite) pour le scénario de

température du LHC (de Kolb et Heinz). Les courbes fines correspondent à la situation de
champ moyen, les courbes pointillées sont obtenues avec les forces thermales et le potentiel
du vide, et les courbes épaisses avec les forces thermales et les potentiels écrantés de
couleur.

Figure VII.36: Dépendances en Npart (gauche) et pT (droite) des poids normés des
bottomonia pour trois paramètres d’impact b (droite) ou intégrées en b (gauche), obtenues
avec l’état gaussien initial, le potentiel V weak

lin et les distributions spatio-temporelles en
température données par EPOS2 au LHC.
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de quarks et de gluons: vers la suppression de la suppression du J/ψ à hautes
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Résumé 

 

La chromodynamique quantique (QCD) prédit l'existence 
d'un nouvel état de la matière: le plasma de quarks et de 
gluons (PQG). Celui-ci aurait existé dans les premiers 
instants suivant le Big Bang et peut en principe être 
produit sous les conditions extrêmes de température et 
de densité atteintes lors de collisions d'ions lourds à 
haute énergie (au LHC par exemple).  Un des marqueurs 
de sa présence est la suppression des quarkonia (états 
liés de quark/antiquark lourds), caractérisée par une 
production inférieure de ces états dans les collisions 
d'ions lourds  relativement aux collisions proton-proton 
où le PQG ne pourrait être  créé. Cette suppression a 
bien été observée expérimentalement, mais l'évolution 
de ses tendances aux énergies du RHIC et du LHC est 
un véritable défi qui requiert une meilleure 
compréhension théorique. La présente thèse a pour but 
d’étudier l’évolution en temps réel de paires corrélées de 
quark/antiquark lourds considérées comme des 
systèmes quantiques ouverts en interaction permanente 
avec un PQG en refroidissement. Explicitement, 
l'interaction continue entre le milieu et les degrés de 
liberté internes de la paire est obtenue par 1) un 
écrantage de couleur dit « de Debye » dû à la présence 
de charges de couleur dans leur voisinage et 2) des 
mécanismes de fluctuation/dissipation qui reflètent les 
collisions permanentes. Cela mène à une image 
dynamique et continue de la dissociation des quarkonia, 
de leur recombinaison et des transitions entre états liés. 
L'étude est transversale à différents cadres théoriques: 
semi-classique, quantique et quantique des champs. Les 
prédictions du modèle sont comparées aux résultats 
expérimentaux et aux résultats d'autres modèles 
théoriques. 
Mots clés 
Plasma de quarks et gluons, suppression des 
quarkonia, approche dynamique, système quantique 

ouvert, équation de Schrödinger-Langevin 

Abstract 

 

The theory of quantum chromodynamics (QCD) predicts 
the existence of a new state of matter: the Quark-Gluon 
Plasma (QGP). The latter may have existed at the first 
moments of the Universe following the Big Bang and 
can be, in theory, re-produced under the extreme 
conditions of temperature and density reached in high 
energy heavy ion collisions (at the LHC for instance). 
One of the QGP observables is the suppression of the 
quarkonia (heavy quark/antiquark bound states), 
characterised by a smaller production of these states in 
heavy ion collisions in comparison to proton-proton 
collisions, in which no QGP production would be 
possible. This suppression has indeed been observed 
experimentally, but the puzzling evolution of its trend 
from RHIC to LHC energies requires a better theoretical 
understanding. The present thesis aims at studying the 
real-time evolution of correlated heavy quark/antiquark 
pairs described as open quantum systems which 
permanently interact with a cooling QGP. More 
explicitly, the continuous interaction between the 
medium and the pair internal degrees of freedom is 
obtained through 1) a temperature dependent color 
screening (“Debye” like) due to color charges in their 
vicinity and 2) some fluctuation/dissipation mechanisms 
reflecting the continuous collisions. It leads to a 
dynamical and continuous picture of the dissociation, 
recombination and possible transitions to other bound 
states. This investigation is at the crossroads of different 
theoretical frameworks: semi-classic, quantum and 
quantum fields. The deduced predictions are compared 
to experimental data and to the results of other 
theoretical models.                                          
Key Words 
Quark-Gluon Plasma, quarkonia suppression, 
dynamical approach, open quantum system,  
Schrödinger-Langevin equation 
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