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Introduction

Understanding innovation is important as it is identified to what makes societies thrive.
Indeed, innovation and the generation of new ideas are central elements in the theory of
endogenous economic growth (Romer, 1990; Aghion and Howitt, 1992) and are viewed as
a key driver of prosperity. As a corollary, innovation is deeply etched in political agendas:
for instance the EU programme HORIZON 2020 underlines that “investment in research

and innovation is essential for Europe’s future” European Commission (2014, p. 5).

A main characteristic of innovation is that the production of innovation is one of the
most geographically concentrated of economic activities (e.g., Glaeser, 2011; Carlino et al.,
2012). This feature, that innovation tend “naturally” to be geographically clustered, has
attracted a significant amount of attention from scholars, to investigate what kind of role
co-location did play in the innovation process (see e.g. Audretsch and Feldman, 2004;
Feldman and Kogler, 2010; Carlino and Kerr, 2015, for a review).

An important rationale leading to this geographical concentration was identified by
agglomeration economies (Marshall, 1890). The spatial agglomeration of economic activ-
ity is usually associated to three main benefits: economies of scales in the provision of
intermediate inputs, job market pooling, and knowledge spillovers (Carlino and Kerr,
2015). The first and second elements are delineated by the market, and benefit in general
to every firm by raising their productivity (see for instance Duranton and Puga, 2004,
for micro economic rationales). The last element, knowledge spillovers, is more specific
to innovation as it concerns the generation and diffusion of ideas. Yet, the meaning of,
and mechanisms involved in, knowledge spillovers are more elusive than for the two other

agglomeration economies.

The term “knowledge spillover” was coined in reference to what Marshall described
as a situation in which “[t]he mysteries of the trade become no mysteries; but are as it
were in the air, and children may learn them unconsciously” Marshall (1890, p. 271).
Knowledge spillovers can then be summarized by the idea that the knowledge produced
by firms is akin to non-rival and non-excludable goods available to other firms in their
geographical vicinity. Geographical distance here plays a critical role, as the benefits from
these spillovers is assumed to decay with distance. Using the analogy of a firm’s production
function F'(A, K, L), the presence of knowledge spillovers mean that the productivity A

is increasing in the firm’s geographical proximity to other firms, and for no other reason



than geographical distance. The underlying rationale to knowledge spillovers is that
geographical proximity allows the workers to capture the knowledge produced from other

workers thanks to non-market related social interactions.

One major difficulty of identifying knowledge spillovers is that they should mostly
be the consequences of human interactions and influence, and therefore do not “leave a
paper trail” (Krugman, 1991b, p. 53). Challenging this puzzling issue, Jaffe et al. (1993)
remarked that one specific kind of interaction did leave a paper trail for legal reasons:
citations in patent documents. Indeed, in the patent application process, inventors are
required to reference the previous pieces of existing knowledge upon which is built their
novel idea. This is therefore equivalent to a disclosure of the inspirations that led to
their invention, inspirations that could have been triggered by interactions in the local
environment. Hence, Jaffe et al. (1993) did use patent citations as a proxy for knowledge
flows and as a means of identifying localized knowledge spillovers. They then employ
a case-control methodology to control for the distribution of the patenting activity per
sector. Their study evidenced that patent citations were disproportionately localized:
inventors tend to cite patents originating from the same area at a higher frequency than
what the spatial distribution of the industry would predict. This work is considered as
the earliest evidence of localized knowledge spillovers. Despite the methodological issues
raised by Thompson and Fox-Kean (2005), the main results from Jaffe et al. (1993) were
later confirmed by Murata et al. (2014) who did implement a more general methodology,

which includes the two former ones as special cases.

Patent citations tend to be more localized, but what does it really means, is it evid-
ence that knowledge flows are “in the air”? Following the work from Jaffe et al. (1993),
later studies criticized the interpretation of this result as a sign of localized knowledge
spillovers, and questioned the extent to which such “spillovers” were external to market-
based mechanisms (Zucker et al., 1998; Breschi and Lissoni, 2001). The principal suspect
leading to this possibly erroneous interpretation is an essential factor in knowledge cre-
ation: social networks. Indeed, Breschi and Lissoni (2005, 2009) and Singh (2005) have
demonstrated that once the social network of inventors, measured by co-inventions, was
controlled for as a channel for diffusion, there were no remaining sign of localized know-
ledge spillovers as measured a la Jaffe et al. (1993). It is a sign that inventors do not
cite randomly the other patents produced in the area, but rather cite the ones produced
by inventors in their social network. If localized knowledge spillovers were in fact the
consequence of the diffusion of knowledge through connections in the co-patent network,
it would no longer be “in the air”, i.e. available to all actors in the area. Rather, it would
pertain to market interactions, since co-patents are formal relation which can be shaped

by the market (for instance via job mobility, or inter-firm collaborations).

Although these studies challenge the concept of knowledge spillovers as being a channel
external to the market, they do not rule out the possibility that agglomeration is beneficial

for innovation, thanks to the development of the inventors network. The key element
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here is that the driver of innovation could be the information the inventors can draw
from their social network. Thus these studies rather evidence that social interactions are
predominantly localized. Yet, to understand why would these social interactions matter
for innovation, one has go beyond the economies of agglomeration and to delve more

specifically into the knowledge creation process.

Why would the network, defined by the collaborations between knowledge workers,
matter for generating new knowledge? To the importance of collaborations in the innova-
tion process, Jones (2009) provides an appealing thesis. His starting point is the upward
increase over time in the age of first invention, in specialization and in the size of teams
in science (see, e.g., Royal Society Science Policy Centre, 2011) and innovation (Jones,
2009). He then argues that these observations are evidence that knowledge is getting
harder to produce. The central element of his argument is that, since new knowledge
is continuously produced, the time devoted to learning in order to reach the frontier of
existing knowledge necessarily augments over time. Therefore, to overcome this problem
innovators can either: increase the time devoted to education, or narrow their domain of
expertise. The consequence is that innovation is getting harder to produce and teamwork

is increasingly required to produce new knowledge.

This explanation provides a compelling rationale for the increase of team size over
time, and hence underlines the increasing need to collaborate to produce innovation. In
addition, beyond Jones’ argument, collaborations provide many benefits which increases
research output. For instance, teamwork allows researchers to quicken the trial and errors
process, allow to better sift which are the good ideas, etc (see e.g., Katz and Martin, 1997;
Singh and Fleming, 2010; Freeman et al., 2014).* However, focusing on collaboration alone
as the main vector of knowledge creation would neglect another perspective on innovation,
which is the diffusion of information and ideas. This perspective requires to take a broader
look onto collaborations, to step back and consider the whole network of inventors and

how they are embedded in their social connections.

To illustrate that team size is not equivalent to the concept of network, Figure 1
represents the co-evolution of both the average number of inventors per patents (i.e. team
size) and the average degree per inventor for French patents. Team size is characterized
by a slow, but steady, increase over time: it starts from 1.79 in 1985 to reach an average
of 2 in 2002. What the figure emphasizes is that the connectedness of inventors over time
clearly outpaces the increase in team size. One inventor had an average of 1.8 different
collaborators in 1985, this number rose to more than 2.5 in 2002. In this 17 years period,
while team size grew only by 12%, inventors connections grew by more than 45%. Thus
there is not a direct connection between the two, and inventors have a higher number of

different collaborators over time.

4Pointing to the importance of collaboration for creation, the motto of the prolific Hungarian math-
ematician Paul Erdos was “another roof, another proof” (Baker et al., 1990, p. ix), emphasizing for him
the importance to move to new places and work with new collaborators.

10
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Figure 1 — Evolution of the number of inventors per patents (team size) and of the number
of connections per inventor (degree).

Sources and notes: The patent data on French inventors stems from Patstat, and is described in Chapter 3.
The inventors’ degree is computed using a 5-years-window, i.e., for each time period, the co-patent network
is constructed from ¢ —4 to ¢t. The degree is then defined as the number of different collaborators an
inventor has.

Why would the network, beyond the scope of teamwork, matter for knowledge cre-
ation? Burt (1992, 2005) has emphasized that the position of agents within communic-
ation networks in organizations can have a great impact on their performance. Specific
positions in the network enables to gather a broader set of information and to make better
decisions. In a study on micro-finance in Indian villages, Banerjee et al. (2013) show that
the network-position of agents who initially participate to a loan program is critical to
the diffusion of the adoption of this loan program to other inhabitants of the village.

Does this diffusion pattern is similar for knowledge networks? Theoretically, if know-
ledge could freely flow through social connections, this diffusion property of social network
could enhance increase knowledge creation. In particular, some kind of knowledge is not
codified and is specific to a particular firm or worker. Collaboration can provide an access
to this specific, tacit, knowledge (e.g., Cowan and Foray, 1997; Cowan et al., 2000). Once
an agent dispose of it, he/she can also disseminate it through hi/her contacts. Non only
some particular set of knowledge but also ideas can circulate.

In this line of thought, the distribution of network connections could be critical to
favour knowledge to diffuse, and therefore be pivotal for the whole performance of the
network. For instance, in networks in which agents are at a very short distance, a good
idea generated by one agent could quickly reach all other agents. On the contrary, in
sparse networks, in which most agents are far apart from each other in the network, good
ideas could be very difficult to diffuse through the network connections.

Cowan and Jonard (2004) theoretically investigate this issue by the means of an agent-

based model. They show that the diffusion of innovation is facilitated when the network
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structure is characterized by a short average network-distance between the agents of
the network. There are tantalizing explanations linking the network structure to the
production of innovation. However, there is only limited empirical evidence supporting
this view. For instance, studying US inventors Fleming et al. (2007) and Lobo and
Strumsky (2008) find only inconclusive results regarding the network structure of inventors

and the production of innovation.

Thesis purpose and outline. This thesis aims at clarifying the mechanisms involved
in knowledge creation, by specifically investigating the role of social networks in this
process. This investigation requires to better define the position of agents in networks as
well as to shed light on the the link between network position and performance in terms
of knowledge creation. Furthermore, since the actors of knowledge creation are highly
concentrated in space, this thesis also aims at better understanding the interplay between
geography and social networks. The three chapters will cover these issues, each with a

specific focus.

The first question that is addressed concerns the determinants of new collaborations.
Collaborations plays an significant role in the knowledge creation process and also shape
the structure of the network. Therefore, it is important to understand what does determ-
ine future collaborations. The first chapter will cover this issue by investigating whether
the network of past collaborations can explain the pattern of future collaborations. In
particular, the chapter will assess the interplay between the social network and geography

as determinants of collaborations.

The second question regards the position of regions in innovation networks. Knowledge
creation depends on the combination of different sets of knowledge (Fleming, 2001). To
create and combine new sets of knowledge, collaborations with other regions can be critical
to renew the local pool of knowledge (Owen-Smith and Powell, 2004). The connections
between agents from a given region with agents from other regions form an inter-regional
network of collaborations. Furthermore, regions are the locus of policies and there is
an increasing need of understanding ‘the position of region[s] within the European and
global economy’ (European Commission, 2012b, p. 18). Therefore, it is important to
know whether some regions are well positioned or not in the network. In the second
chapter, we will discuss critically how to characterize the position of regions in innovation

networks.

Last, we look at whether, and how, the network structure can enhance the innovative
outcome. As emphasized earlier, the position of inventors in the network can have an
influence on the diffusion of information and ideas. The third chapter then aims at
assessing how the position of inventors in the network can influence regional innovation

performance.

The remainder of this introduction describes the precise purpose of the three chapters,

12



along with the methodology they employ and their main findings.

Chapter 1. The first chapter provides an assessment of the influence, and interplay, of
both geography and social networks on the formation of scientific collaborations. First,
the chapter provides a theoretical discussion of the causes rooting scientific collabora-
tions, with a special emphasis on network-based mechanisms. In particular, the possible
consequences of the interaction between social proximity and geography are examined,
focusing on the conditions in which they can be substitute or complement. We argue that
social proximity should positively influence network formation, but we remain agnostic
on whether it substitutes or complements geographic proximity.

Second, an empirical analysis is set up to test the hypotheses laid out by the theoretical
discussion. To this end, we use data on scientific collaborations in chemistry, in five EU
countries (France, United Kingdom, Germany, Italy, Spain) between 2000 and 2005. A
gravity model is used to assess the determinants of inter-regional collaboration flows. Due
to the lack of existing measures to assess the inter-regional social proximity, this chapter
also contributes methodologically to the literature by introducing such a measure. The
measure of inter-regional social proximity we introduce is theoretically grounded and
based on micro-level determinants.

The results depict a clear substitutability pattern between geographic proximity and
social proximity. Social proximity does positively influence the formation of new collab-
orations, but its effect is mediated by geography. While being non-significant for the
regions most close geographically, the positive effect of social proximity is increasing with

geographic distance.

Chapter 2. The second chapter looks at how to cope, in a meaningful way, with the
notion of network centrality in the context of inter-regional R&D networks. We provide a
theoretical discussion of the notion of network centrality in the context of inter-regional
networks. This discussion is complemented with a specific focus on the context of R&D
collaboration. We lay out the possible applications of existing network centrality measures
to regional networks. We then analyse critically the meaning of these centrality measures
in this context. We show that most of the time they cannot be applied to inter-regional
R&D networks without suffering from important flaws to their interpretation. From this
theoretical context, we then introduce a new measurement whose definition is suited to
the context of inter-regional R&D networks. Finally, we use data on the EU co-invention
network to illustrate this new centrality measure, and to compare it to other well-known
existing measures. Despite some similarities between the different measures, we point to,

and comment on, significant differences.

Chapter 3. The third chapter aims at unveiling what kind of network structure favours
the most regional innovation. To this end, we first introduce a simple model linking

inventors’ productivity to their network of collaborators. This model contains three key
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parameters. One, referred to as connectivity, which scales the network benefits, and two
others which rule the network structure: complementary (an inventor may benefit more
the partner’s effort to produce knowledge), and rivalry (an inventor may benefit less
from his/her partner if the partner has more connections). The model predicts that at
equilibrium, the network-related production of the agents are dependent on the square of a
measure of their position in the network. This measure of network position is a new form of
network centrality which depends on the three elements of connectivity, complementarity
and rivalry. Furthermore, this network centrality can be seen as a generalized form of
network centrality, since it which encompasses, as special cases, several well known forms
of centrality (Bonacich, Page-Rank, degree).

Following this insight, regions disposing of inventors better positioned in the network
should perform better. Yet, the network’s position which will provide the highest central-
ity will depend on the parameters of complementarity and rivalry. The empirical analysis
will then consist in 1) estimating whether inventors’ centrality affect regional innovation
performance, and 2) which parameters of the model best fit the data. The estimates of
complementarity and rivalry would then provide what kind of network structure favours
the most regional innovation. We estimate the model’s parameters with Poisson regres-
sions including a various set of fixed-effects. The empirical evidence is based on patent
co-authorships between French inventors for the period 1981-2003. We provide two main
findings.

The main outcome of this chapter is that, while there is only a slight sign of com-
plementarity, the empirical results strongly evidence that there is no rivalry effect at
play: this means that any new network connection between two previously unconnected

inventors is always beneficial for regional innovation.
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Chapter 1

Network proximity in the geography

of research collaboration®

1.1 Introduction

The production of new knowledge is largely viewed as essential in enhancing compet-
itiveness and producing long-term growth (Aghion and Howitt, 1992; Jones, 1995). It
is therefore no wonder that it is a central issue for policy makers, at the regional, na-
tional and even supra-national scale. This in turn puts at the forefront policies that deal
with collaboration in science: indeed, as knowledge becomes more complex and harder
to produce (Jones, 2009), scientific activity turns out to be increasingly reliant on col-
laboration (see, e.g., Wuchty et al. 2007; Jones et al. 2008; Adams 2013 or the Royal
Society Science Policy Centre, 2011 for a recent report). In the European Union (EU),
the political will towards knowledge creation is being supported by the recent Horizon
2020 programme, which ‘should be implemented primarily through transnational collab-
orative projects’ (European Commission, 2013, Article 23). This policy tool aims at
developing a European research area (ERA) where collaborations do not suffer from the
impediments of distance or national borders, so that EU researchers can act as if they
were all working in one and the same country. Such policies are backed by a large EU
budget: yet is funding long-distance collaboration efficient? To comprehend this issue,
one needs a clear understanding of the determinants of collaboration, and in particular,
the factors that help bypass geography.

Despite the trumpeted ‘death of distance’, due recent developments in the means of
communication and in transportation technologies (Castells; 1996), an understanding of
geography is still important in explaining collaboration. Co-location facilitates face-to-
face contact, eases the sharing of tacit knowledge (e.g., Gertler, 1995; Storper and Ven-
ables; 2004) and enhances the likelihood of serendipitous, fruitful collaborations (Catalini,
2012). Furthermore, national borders, a by-product of geography, also play an important

role, as differences in national systems render collaboration more difficult (Lundvall, 1992).

*This chapter is based on a single authored article.
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A recent stream of literature has shown that geographical distance and national borders
are indeed strong impediments to collaboration (e.g., Hoekman et al., 2009; Scherngell
and Barber, 2009; Singh and Marx, 2013). Temporal analyses even add that their hinder-
ing effects have not decreased over time (e.g., Hoekman et al., 2010; Morescalchi et al.,
2015). Returning to the ERA; it seems like the EU’s policies have failed to develop an
integrated area, in which distant collaborations are eased. However, geography is not the
sole determinant of collaboration (Boschma, 2005; Torre and Rallet, 2005; Frenken et al.,
2009a; Giuliani et al., 2010). Collaboration is a social process and entails the creation of
bonds between researchers (Katz and Martin, 1997; Freeman et al., 2014). Those bonds
in turn form a social network, and one salient fact about social networks is that they are a
driver of their own evolution (Jackson and Rogers; 2007). Consequently, analyses should
not fail to consider potential network effects influencing the collaboration process.

This chapter is a step toward a better understanding of the role of networks in the
geography of research collaboration. While the question concerning the determinants of
network formation and its link with the notion of proximity has attracted a growing in-
terest over the recent years (e.g., Balland et al., 2013; Boschma et al., 2014a; Balland
et al., 2015b), studies focusing on the determinants of research collaboration have mostly
been descriptive, a-geographic, or otherwise failed to weld the network together with
geography (e.g., Newman, 2001; Barabasi et al., 2002; Wagner and Leydesdorff, 2005; Al-
mendral et al., 2007; Balland, 2012; Fafchamps et al., 2010; Autant-Bernard et al., 2007a;
Maggioni et al., 2007). Thus, the question of substitutability /complementarity between
geography and the network has been set aside. There is some evidence on this question
provided in other contexts (e.g., Bathelt et al., 2004; Boschma, 2005; Montobbio et al.,
2015), but empirical findings on this issue remain scarce. Yet, the answer to this question
is important policy-wise. If geographic and network proximity really are substitutable,
then heightening the network proximity of distant agents would in turn help them in
creating new long-distance links, since network proximity would partly compensate for
the loss of geographic proximity. On the contrary, in the case of complementarity, ‘for-
cing’ distant collaborations may be inefficient since distant agents would be those who
benefit the least from network proximity. Only the former case would support current
EU policies, and that is assuming that the network matters at all.

This chapter also contributes to the literature by introducing a new measure of inter-
regional network proximity. This measure is defined for each regional dyad and reflects the
intensity of indirect linkages between regions. Moreover, this measure can be interpreted
from a micro perspective as it can be derived from a simple model of random matching.
For a given regional pair, this measure can then be related to the expected number of
indirect linkages between the agents of the two regions. This kind of measure is in line
with the increasing need to understand ‘the position of region[s| within the European and
global economy’ (European Commission, 2012b, p. 18).

To assess empirically how network proximity affects collaboration, I then make use
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of European co-publication data. These data relate to co-publications stemming from
five European Union countries (France, Germany, Italy, Spain, the United Kingdom),
from the field of chemistry, published between 2001 and 2005. The analysis consists
of an estimation of the determinants of flows of collaboration between 17,292 regional
dyads from 132 NUTS 2! regions, by means of a gravity model (Picci, 2010; Cassi et al.,
2015). The results demonstrate an interplay between geography and network proximity:
while being negligible or only weakly beneficial to regions located in close proximity, the
importance of network proximity grows with distance, reaching an elasticity of 0.24 for
a distance of 900 km. In other words, network proximity mainly benefits international
collaborations. Thus, these results support the claims of EU policy.

The remainder of this chapter is organized as follows: in Section 1.2 the determin-
ants of inter-regional collaborations are discussed, focusing on the role of network-based
mechanisms and their possible interplay with non-network forms of proximity; Section 1.3
then presents the estimation methodology and describes the measure of network proximity
used in this chapter, along with the model from which it can be retrieved; in Section 1.4,
the data set is presented, as well as the econometric strategy; the empirical findings are

reported and discussed in Section 1.5; and Section 1.6 concludes the chapter.

1.2 The determinants of inter-regional collaborations

In this section I describe the determinants of scientific collaboration. First, I discuss
the static ones, which depend on the characteristics of the researchers, i.e., the nodes of
the network, and do not evolve over time. Second, I present the micro-determinants of
collaboration stemming from the network. Finally, I discuss the relation between network

proximity and geography.

1.2.1 Static determinants of collaboration

When it comes to analysing the determinants of collaboration, the concept of proximity
proves to be a very useful framework (Boschma, 2005; Torre and Rallet, 2005; Kirat and
Lung, 1999). By distinguishing several types of proximity between agents (such as geo-
graphical, institutional, cognitive or organizational), this framework allows one to analyse
each of them and to easily assess their interplay. One can distinguish two mechanisms
through which proximity, in whatever form, favours collaboration: 1) proximity aug-
ments the probability of potential partners to meet and 2) reduces the costs involved in
collaboration. In this way, it simultaneously increases the expected net benefits of the
collaboration and the likelihood of its success.

The effect of geographical proximity on collaboration can be deconstructed in such a

'The Nomenclature of Territorial Units for Statistics (NUTS is the French acronym) refers to EU
geographical units whose definition attempts to provide comparable statistical areas across countries.
The exhaustive list of regions used in this study is given in Appendix 1.7.4.
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way, as follows. First, the context of collaborative production of knowledge may require
that the partners share and understand complex ideas, concepts or methods; the collab-
oration may then involve a certain level of transfer of tacit knowledge. Consequently,
face-to-face contact may be important to the effective conducting of the research, as a
way of overcoming the problem of sharing tacit knowledge (Gertler, 1995; Collins, 2001;
Gertler, 2003). Moreover, face-to-face contact allows direct feedback, eases communica-
tion and the mitigation of problems, and facilitates coordination (Beaver, 2001; Freeman
et al.; 2014). All these elements heighten the probability of the success of a collaboration.
Thus, geographical distance, by incurring greater travel costs and fewer opportunities to
exchange knowledge by means of face-to-face contact, reduces the likelihood of a successful
collaboration (Katz and Martin, 1997; Katz, 1994).

Second, being closer in space enhances the likelihood of potential partners to meet in
the first place. Indeed, attendance of social events where researchers meet to share ideas,
such as conferences, seminars or even informal meetings, is linked to geographical distance,
and thus heightens the chances of finding a research partner at a local scale. For instance,
by analysing data on participants at the congresses of the European Regional Science
Association, van Dijk and Maier (2006) have shown that a greater distance to the event
negatively affects the likelihood of attending it. In addition, the social embeddedness of
researchers and inventors has been shown to decay with geographical distance (Breschi
and Lissoni, 2009), meaning they will have a better knowledge of potential partners at a
closer distance.

Consequently, the effect of geographical distance should be understood as negative.
This fact has been evidenced by various recent studies, in different contexts: in the case
of co-authorship in scientific publications (Frenken et al., 2009b; Hoekman et al., 2010,
2009), in co-patenting (Hoekman et al., 2009; Maggioni et al., 2007; Morescalchi et al.,
2015), and in the case of cooperation among firms and research institutions within the
European Framework Programme (Scherngell and Barber, 2009).

Another impediment relating to geography is the effects of national borders. In the
context of inter-regional collaboration, national borders are often linked to the notion
of institutional proximity (Hoekman et al., 2009). Institutional proximity relates to the
fact that ‘interactions between players are influenced, shaped and constrained by the
institutional environment’ (Boschma, 2005, p. 63). Indeed, several features affecting
knowledge flows can be perceived at the national level (Banchoff, 2002; Glanzel, 2001).
For instance, funding schemes are more likely to exist at a national scale, thus, facilitating
collaborations within a single country. In the same vein, workers are more mobile within
a country than across countries, and since they may maintain ties with their former
partners, their social networks appear to be more developed at the national level (Miguélez
and Moreno, 2014). Norms, values and language are also likely to be shared within a
country, facilitating collaboration. As a consequence, the literature provides evidence

that belonging to the same country significantly eases the collaboration process (e.g.,
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Hoekman et al., 2010; Morescalchi et al., 2015).

1.2.2 The role of networks in the process of collaboration

This section discusses a number of network-related mechanisms that help trigger collabor-
ation. The first mechanism playing a role in network evolution is triadic closure, defined as
the propensity of two nodes that are indirectly connected to form a link (Carayol et al.,
2014). It may be the case that triadic closure occurs because triads, in opposition to
dyads, have certain advantages. By reducing individual power, triads can help mitigate
conflicts and enhance trust among the individuals (Krackhardt, 1999). The possibility of
negative behaviour on the part of one of the agents is more limited, since it can be pun-
ished by the third agent, who can sever the relation. These structural benefits offered by a
closed triad may in turn lead to triadic closure. This can be an advantage particularly for
international collaborations, in which the reliability of different partners may be difficult
to assess. In such circumstances,relying on the network and forming a triad — that is
to collaborate with a partner of a partner — can be desirable, as it limits opportunistic
behaviours, thus reducing the risks associated with the sunk costs of engaging in a col-
laboration. In a recent study on the German biotechnology industry, ter Wal (2014) has
shown that triadic closure among German inventors has become increasingly important
over time, as the technological regime has changed and more trust has been needed among
partners. In adiition, by examining the behaviour of researchers at Stanford University,
Dahlander and McFarland (2013) have shown that having an indirect partner significantly
increases the probability of a collaboration.

Another feature of social networks that may influence their evolution is homophily.
Homophily can be identified as a compelling feature of social networks; it can be portrayed
as ‘the positive relationship between the similarity of two nodes in a network and the prob-
ability of a tie between them’ (McPherson et al., 2001, p. 416). This characteristic has
been analysed by sociologists in various contexts — for example, in friendships at school
or in working relationships — and it has been shown that similarity among individuals is
a force driving the creation of ties. As McPherson et al. (2001, p. 429) put it: ‘Homo-
phily characterizes network systems, and homogeneity characterizes personal networks’.
Science is no exception: for instance, Blau (1974) has studied the relationships among
theoretical high energy physicists, and shown that the similarity of their specialized re-
search interests as well as their personal characteristics, are important factors determining
research relationships.

Homophily is not specific to network-related effects. Indeed, the importance of the
static determinants of collaboration also rely on homophily. Yet, once the problem is
reversed, one can see that the network can influence new connections via homophily.
Indeed, take any two agents already connected: they are likely to share at least some
similarities that helped them succeed in collaboration. This might, for instance, involve

sharing a similar research topic, having the same approach to research questions or simply
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being compatible in terms of teamwork (i.e., they are a good match with respect to their
own idiosyncratic characteristics). Therefore, if two agents are connected to the same
partner, they are likely to be in some way similar to their common collaborator, and
consequently to share some similarities themselves. These similarities may in turn favour
their future collaboration.

Finally, the network can be seen as a provider of externalities of information, and thus
be decisive in determining future collaborations. Indeed, as the need for collaboration be-
comes more and more acute (Jones; 2009), finding the right partners becomes absolutely
critical, but may also be time-consuming. Katz and Martin (1997) point out that time
is one of the most important resources for researchers, even before funding. As a con-
sequence, the network can act as a reliable repository of information in which researchers
can find their future collaborators (Gulati and Gargiulo, 1999). The role of networks
might then best be viewed by analogy to optimization problems: despite not giving the
best global match, the network helps to provide the best local match. Researchers are
time constrained and are not fully rational, in the sense that they do not dispose of all the
required information nor of the ability to gauge all potential matches in order to select
the best one. In this situation, ‘picking’ the best partner in the network vicinity may
be a rational and efficient choice. In this vein, Fafchamps et al. (2010) have developed a
model describing how researchers obtain information on each other through the network
of social connections. They show that the probability to access information on a specific
researcher decreases with the network distance. They also find empirically, using data on
co-authorship among economists, that being ‘closer’ in the network positively affects the
likelihood of collaboration.

To summarize, the network regroups various mechanisms which favour collaboration,

thus affecting its evolution. This yields the following hypothesis:

Hypothesis 1 Network proximity positively affects the creation of new collaborations.

Some precision needs to be applied to the notion of network proximity that will be
used throughout this chapter. Although the notion of triadic closure applies specifically
to agents who are very ‘close’ in the network (i.e., they have a common partner), other
mechanisms, such as information externalities provided by the network, do not require
such proximity and could apply at a greater distance. Thus the notion of network prox-
imity here concerns being connected by indirect social ties. Various distances separate
the pairs of agents in the network, and the hypothesis states that the ‘closer’ the agents
are with respect to network distance, the more likely they are to engage in collaboration,
as a result of the discussed mechanisms.

However, while network proximity may influence the formation of new collaborations,
can its effect be regulated by other factors, like geographical distance or national borders?
Or is the effect of network proximity merely independent of these other determinants?

This question needs to be investigated in order to unravel the precise mechanism shaping

20



the landscape of collaboration networks. The next subsection discusses how network

proximity and other forms of proximity may be intermingled.

1.2.3 The interplay between the network and other forms of
proximity

This section aims to link network proximity to other forms of proximity and to understand
their interplay in the collaboration process. For the sake of readability, in this section I
will compare network proximity only to geographic proximity. That is to say, geographic
proximity is here intended as a shorthand for non-network forms of proximity.

If both network and geographic proximity influence the creation of new collaborations,
what might be the net outcome of these two effects? The first case one could consider
would be that network proximity benefits homogeneously all prospective partners, mean-
ing an independence between the effects of network and geographical proximity. In other
words, the greater the network proximity, the higher the likelihood of a collaboration,
at a magnitude independent from geography. However, this independence could only
occur if geographical proximity and network proximity functioned at two completely dif-
ferent levels: that is, if the very mechanisms through which they affected collaboration
were unrelated. As soon as they are influencing collaboration through the same common
mechanisms (like enhancing trust, or facilitating the search for prospective partners), their
interplay will not be independent. So if one departs from the hypothesis of independence,
one is left with two opposing standpoints in competition.

On the one hand, network proximity can reinforce the benefits of being geographically
close. Particularly in cases where agents have a ‘taste for similarity’, network proximity
can foster collaborations in situations in which agents already benefit from geographical
proximity. This taste for similarity can be seen as a need to be close in different respects
in order to conduct effective research. For instance, in a case where the research is highly
subject to opportunistic behaviour, several forms of proximity may function complement-
arily to mitigate it.

On the other hand, the benefits of proximity may suffer from decreasing returns. In
this case, network proximity would be a substitute for other forms of proximity. Take the
case in which two prospective partners are geographically far apart: for them, network
proximity will be crucial to engage in a successful collaboration, as it will be their sole
source of proximity. On the contrary, if they are already close to each other then, as a
result of the decreasing returns, having close network proximity would matter less, and
would therefore not be decisive in triggering effective collaboration. Such effects would
depict a pattern of substitutability. Another possible interpretation yielding the same
conclusion might be that the net rewards of collaboration may increase with distance
(this view is supported by, e.g., Narin et al., 1991; Glanzel, 2001; Frenken et al., 2010;
Adams, 2013). In this case, and if the probability of success is still tied to the level of

proximity between the agents, this would increase the marginal value of network proximity
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for distant collaborations. Thus, this would also depict a substitutability pattern.
The preceding argument then yields these two following competing hypotheses:

Hypothesis 2.a Network proximity is a complement to other forms of proximity.

Hypothesis 2.b Network proximity is a substitute for other forms of proximity.

The interplay between network and non-network proximity has not been completely
dealt with in the literature. There have been studies focusing on the role of networks
and the role of geography, but few that unravel their interplay. For instance, Maggioni
et al. (2007) have compared the effect of network ties (as opposed to purely geographical
linkages) as determinants of the regional production of patents. Another example is
Autant-Bernard et al. (2007a) who focus on collaborations among firms in the EU’s 6"
Framework Programme. They asses the effect of network proximity and geographical
proximity on the probability of collaboration. Both studies find positive effect for both
geographic and network proximity.

In the same vein, other studies have tried to reveal the dependences among different
forms of proximity, but not specifically the network form. For instance, Ponds et al. (2007)
and d’Este et al. (2013) have studied the relation between organizational proximity and
geography. While the former study analyses co-publications in the Netherlands and finds
a substitutability pattern, the latter focuses on university-industry research partnerships
in the UK and finds no interaction between the two.

This study departs from the previous literature by specifically focusing on network
proximity and, more importantly, its relation to geography. In line with previous studies,
the focus will be on inter-regional flows of collaborations in Europe (e.g., Scherngell and
Barber, 2009; Hoekman et al., 2009; Morescalchi et al.; 2015). Yet before outlining the
data, I will first present the modelling strategy and spend some time describing the

measure used to approximate the notion of network proximity in this paper.

1.3 Empirical strategy and the measure of network
proximity

This section introduces the empirical model used in the econometric analysis and then
develops the measure that will be used to assess network proximity. As will be shown, the
measure can be derived from a model of random matching between agents, thus reflecting

the idea of a micro-level measure.

1.3.1 Gravity model

The object of this study is to analyse the determinants of inter-regional collaboration

flows. Thus, in line with previous research on this topic, the methodology used will
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be the gravity model.? The gravity model is a common methodological tool used when
assessing spatial interactions in various contexts, such as trade flows or migration flows
(Roy and Thill, 2004; Anderson, 2011), and has been recently applied to the context
of collaboration (e.g., Maggioni et al., 2007; Autant-Bernard et al., 2007a; Maggioni and
Uberti, 2009; Hoekman et al., 2013). In a nutshell, the gravity model reflects the idea that
economic interactions between two areas can be explained in terms of the combinations
of centripetal and centrifugal forces: while the masses of the regional entities act as
attractors, the distance separating them hampers the attraction. This can be written as

follows:

Interaction;j = Mass]' Mass?F'(Distances;;), (1.1)

with F'(.) being a decreasing function of the distances. The distance functions are usually
of the form F(z) =1/z7 or F(z) = exp(—~z), depending on the nature of the distance
variable z (Roy and Thill, 2004). Traditionally, Mass; and Mass; are respectively called
‘mass of origin’ and ‘mass of destination’ In the context of this study, Interaction;; will
represent collaboration flows. Within the gravity framework network proximity acts as a
centrifugal force.

This study focuses specifically on the role of network proximity and then questions
how the position of a particular pair of regions in the network may influence their future
linkages. Various studies have applied network analysis tools to assess the position of
regions within a network. Some studies cope with the position of regions within the
network by making use of centrality measures (see, e.g., Sebestyén and Varga, 2013a,b;
Wanzenbock et al., 2015, 2014). Other studies make use of the network, by linking the
performance of a given region to the performance of the regions connected to it, in a
fashion similar to that of spatial econometrics (see, e.g., Maggioni et al., 2007; Hazir
et al., 2014).

To fit into the gravity model framework, and later into the econometric analysis, a
measure of inter-regional network proximity should have two properties: first, it should
be defined for each pair of region; and second, for the sake of coping with potential
endogeneity problems, it should be independent of direct collaborations. Thus, before

describing the data and the empirical model, I will first introduce such a measure.

1.3.2 A new measure of inter-regional network proximity

This section introduces a new measure aiming to capture the effect of network proximity
in the context of inter-regional collaborations, in line with the gravity model framework.
The measure being introduced depends only on inter-regional collaboration flows and
functions by asking the following question: How much agents from two different regions

are connected to the same agents in other regions? Although defined at the regional level,

2For a discussion of the different methodologies used to empirically assess the determinants of know-
ledge networks at the regional level, see for instance Broekel et al. (2013).
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Figure 1.1 — Tlustration of a regional network of collaboration and of the notion of bridging
paths.

Notes: The figure depicts three bridging paths formed by the following pairs of links: (L, L; k) (L%j, L?k)

and (L?j,Lik). So the regional dyads (i, j), (i,k) and (j,k) have respectively 1, 2 and 0 bridging paths.

For instance, the pair of links (Lilk:L}k) forms a bridging path between regions i and j via the bridging
region k because these links are both connected to the same agent in region k, thus creating an indirect
connection between agents from 7 and j. Note that although regions j and k have three direct links, there
is no bridging path between them since they have no agent indirectly connected.

the measure actually reflects a micro-level notion, that of ‘bridging paths’ (i.e., inter-
regional indirect connections at the micro level). This measure is referred to as TENB
(standing for ‘total expected number of bridging paths’).

In the remainder of this section, the notion of bridging paths is first introduced,
followed by a description of the model from which the measure is derived. Then, I show
that the measure is robust to some variation in the model’s assumption. Finally, the last
subsection discusses the link between the measure as defined at the meso-level and the

notion of network proximity.

1.3.2.1 The notion of bridging paths and some notations

First some notations, as they will be useful for defining the concept of bridging paths and
will be used in the model in the next subsection. Consider N regions, each populated with
n; researchers. A link between two regions can be defined as a collaboration occurring
between two researchers, one from each of those regions. Let g;; be the total number of
links between regions i and j. The set of regions to which i is connected (i.e., that have at
least one link with i), also called the neighbours of i, is represented by N; = {k|g;z > 0}.
Finally, let L{; represent the at? link, a € {1,..., gij }, between agents from regions ¢ and
j, and let L?‘k be the bt? link, b e {1,...,9;x}, between agents from regions j and k.
Using these notations, a bridging path between region 7 and j via the bridging region
k is defined as a set of two links (L%, L?k), such that both links are connected to the same
agent in region k. Stated differently, a bridging path exists when one agent from region

1 and one from j have a common collaborator in region k. The concept is illustrated by
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Figure 1.1 which depicts a regional network of collaboration. In this example, the pair of
links (Lzlk:L;k) forms a bridging path, while others like the pair (L}, L?k) do not.
Bridging paths are seen as being a medium for network proximity. The main driver
of the idea is that the more two regions have bridging paths, the closer their agents
will be with respect to the network, and, in fine, they will be more likely to engage in

collaboration, thanks to network-based mechanisms.

1.3.2.2 Deriving the measure from a model of random matching

This subsection shows how, by assuming that collaboration between agents stems from
a simple random matching process, the expected number of bridging paths between two

regions can be derived.

A random matching process. The random matching process used is based on two
mild assumptions: 1) a collaboration consists of a match between two agents only; and 2)
whenever a collaboration occurs between two regions, the two agents involved are matched
at random.

This first assumption is rather functional and is used to make the model simple without
being too restrictive. Indeed, the term ‘agent’ here is intended to be taken as a broad
term: it could be either a lone researcher or a team of researchers, since teams can be
fairly considered to behave like unique entities (see, e.g., Beaver, 2001; Dahlander and
McFarland, 2013). The second assumption is in line with intuition, as it simply implies
that for two regions, say 7 and j, the more observed collaborations there are between 7
and j, the more likely a randomly picked agent from 7 will have collaborated with one

from j.3

Expected number of bridging paths (ENB). Using the information contained in
the flows of inter-regional collaborations (i.e., all the g;;) along with the random matching
process assumptions previously defined, the expected number of bridging paths between

two regions via another one (known as the bridging region) can now be derived.

Proposition 1. Under the random matching process, the expected number of bridging

paths between regions i and j via the bridging region £ is:

k 9ik9jk
ENB%‘I,}' — 73 (12)

ng

Proof. See Appendix 1.7.1.

Proposition 1 relates to the expected number of bridging paths stemming from a

specific bridging region. However, two regions can have more than just one common

3For instance, consider the network in Figure 1.1: if one selects one agent randomly from region 4, it
is more likely that she/he has collaborated with another agent from j than one from %k (because there are
two links with the former and only one with the later).
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neighbour. The total expected number of bridging paths between two regions ¢ and j is
therefore the sum of the bridging paths stemming from all other regions to which i and j

are both connected:

TENB;= Y 2ok (1.3)
keNinN; Tk

The measure of network proximity that will be used in this study is the total expected
number of bridging paths (TENB). The link between the TENB and the notion of network
proximity is discussed in Subsection 1.3.2.4; however before that, the next subsection will
elaborate upon the consequences of a variation in the random matching assumption and

show that this would imply only a trivial variation.

1.3.2.3 Robustness of the random matching assumption: the case of prefer-

ential attachment

Formally deriving the TENB in the previous section required an assumption of random
matching: yet what if another kind of mechanism had been considered, like preferential
attachment?

Preferential attachment is a feature of social networks that was first evidenced and
modelled by Barabasi and Albert (1999). It states that, as the network evolves, the new
nodes that enter the network tend to link themselves to already well-connected nodes. In
actuality, the distribution of the number of links per node in social networks is usually
very skewed. The mechanism of preferential attachment, as developed in the model of
Barabési and Albert (1999), yields an equilibrium distribution of links similar to real
social networks: a power law distribution.* As a variation on the previously defined ran-
dom matching process, I investigate the case of a matching process based on preferential

attachment.

A form of preferential attachment. In this case, the matching is not done at random
anymore; instead some nodes (researchers) are more likely to create links than others.
Formally, the matching mechanism is defined as follows. There are n agents in a given
region and they are assumed to be sorted according to their productivity level, so that
Agent 1 has the highest productivity level and Agent n the lowest. Let the Greek letter
t, t€{1,...,n}, be their label. The probability that a new link involves agent ¢ is defined
by 705/ with T = >y =05 For instance, consider a region populated by 10 agents,
the probability of being tied to an incoming link is 20% for Agent 1, 14% for Agent 2, etc,
and 6% for Agent 10. This can be compared to the random matching process, whereby
each agent had the same likelihood of being connected: 10%.

This so-defined mechanism is very similar to the preferential attachment mechanism,

except that the probability of creating a new link is exogenous instead of being dependent

4The distribution of the number of links per node, i.e., the degree, is assumed to follow a power law
of parameter + if the probability of having a degree k is equal to f(k) = ¢ x k=7 with ¢ being a constant.
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on the number of links an agent already has. Notably, as shown in Appendix 1.7.2.1, the
expected distribution of the agents’ degrees as a result of this process follows a power law
of parameter 7 = 3, as in Barabéasi and Albert (1999).

Now I turn to the derivation of the ENB through such a process, and analyse the
difference between this measure and the measure obtained through the random matching

process in equation (1.2).

Proposition 2. Under the random matching with preferential attachment, and for large
enough values of ng, the expected number of bridging paths between regions 7 and j via

the bridging region k is as follows:

ENBEFrS o~ ENijxnglnk).

Proof. See Appendix 1.7.2.2.

This result implies that, even when a more complex matching mechanism is used, the

result is very similar to Proposition 1. Indeed, EN ij’Pref

is merely an inflation of EN ij
Certainly there are some variations as log(ng) varies, but the logarithmic form flattens
most of these, meaning that the correlation between £ N ij’Pref and EN ij is very high.

This goes to show that the measure is robust to such variation in its assumptions.

1.3.2.4 The link between the TENB and the notion of network proximity

This subsection discusses the link between the notion of network proximity and the meas-
ure used to approximate it: the TENB. In particular, two points are addressed: an

aggregation issue and a truncation issue.

The aggregation issue. In Section 2, the benefits of network proximity were discussed
at the individual level. However, the measure created to approximate this notion, the
TENB, is actually defined at the meso level. How do our inferences concerning the
benefits of network proximity hold up when the concept of the TENB is used, which
considers only inter-regional information?

In fact, the inter-regional network is only an aggregated view of micro-economic de-
cisions. Regions do not collaborate with each other, only the agents within them do.
Thus, it is conceptually difficult to consider regions simply as individual agents (see, e.g.,
ter Wal, 2011; Brenner and Broekel, 2011). Yet it would also be inexact to assume that
the aggregate flows of collaboration do not convey any information about their micro-
structure.

Following this line of thought, the TENB has a particular meaning as it is not simply
an aggregate measure but rather can be interpreted as the expected number of indirect

ties at the micro level, under mild assumptions. The measure is interpreted as follows:
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TENB;; > TEN Bjr means that the agents from the regions i and j are likely to be
closer, with respect to indirect connections, than the agents from the regions j and k.
Thus, the measure actually reflects the likelihood of a pattern at the micro level, in line
with the idea of network proximity. Stated differently, a high TENB value between two
regions is likely to reflect a high level of network proximity between the agents of these
two regions. Consequently, if the network proximity, as measured by the TENB, has any
effect on the inter-regional flows of collaboration, the interpretation should be that this

is due to micro-level mechanisms.

The truncation issue. By construction, the measure of the TENB between two regions
is based only on the indirect collaborations between them, and is completely independent
from any direct collaboration. This implies that the network proximity reflected by the
TENB is partial, as it is based on a truncated network. The purpose of this truncation is
to avoid a reverse causality issue.

One could argue that the network proximity originating from the direct connections
between agents from two regions may also be important in triggering new collaborations.
Yet, since the identification of network proximity is based on network connections, direct
collaborations between the two regions would directly influence their level of network
proximity. As the question is about explaining collaborations, this would create a problem
of reverse causality. In consequence, using the TENB means this problem is avoided at

the cost of neglecting a possible network proximity originating from direct linkages.

1.4 Data and methodology

This section first explains the construction of the data set and all the variables; Subsec-
tion 1.4.3 then goes on to present the full model to be estimated, as well as the estimation

procedure. Finally, some descriptive statistics are given.

1.4.1 Data

To measure the intensity of collaboration between two regions, I will make use of co-
publication data.® Collaboration is here approximated by co-publications as in other
studies (e.g., Hoekman et al., 2009; Ponds et al., 2007).

I extracted the information on co-publications from the Thomson-Reuters Web of
Science database. This database contains information on the papers published in the ma-
jority of international scientific journals, with, for each article, a list of all the participating

authors along with their institutions.

5Publications can be seen as the result of successful collaborations and therefore by definition they do
not reflect all collaborations occurring within a given period. Nonetheless, as Dahlander and McFarland
(2013, p. 99) put it, in a study that used extensive data from research collaborations at Stanford
University, ‘published papers afford a visible trail of research collaboration’
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The data were extracted for a time period ranging from 2001 to 2005, and the geo-
graphical scale was restricted to five European Union countries (henceforth EU5): Italy,
France, Germany, Spain and the United Kingdom, as in Maggioni et al. (2007). In
addition, to avoid the problems that can arise when mixing several disciplines, due to
researcher behaviour and publishing schemes that may differ between fields, the analysis
has been restricted to one specific field, chemistry, for which some characteristics are
presented at the end of this subsection.

For each paper, this database reports the authors’ institutions in their by-lines. As
there is an address assigned to each institution, it is possible to geographically pinpoint
each of them. This localization was mainly done using the postcodes available in the
addresses, which should be a very reliable determinant of location. More than 85% of the
sample could be assigned a location using the postcodes; the remaining 15% were located
using an online map service, based on the name of the city and the country.® In the
end, 99.6% of the sample was located.” Once located, each institution was assigned to a
NUTS 2 region with respect to their latitude/longitude coordinates. Across all the EU5
countries, there were 132 NUTS 2 regions in which at least one publication in the field of
chemistry has been published.

While this study concentrates on inter-regional collaborations, about half of the art-
icles (64,044) were produced within a single NUTS 2 region. Focusing on the distribution
of inter-regional collaborations, there were 23,356 articles produced by institutions loc-
ated exclusively within the EU5. The articles involving at least one non-EU5 institution
amounted to 30% of the sample (37,770 articles), with the country contributing most to
these non-EU5 collaborations being the United States (with 7,602 papers). To complete
the picture, 6,859 articles involved at least two EU5 institutions as well as at least one
non-EUb5 institution. In the remaining of this study, while all articles are included, only
the links within the EU5 regions are retained, meaning that the links to non-EUb5 regions
are ignored.®

To sum up, the database consisted of all articles from chemistry journals of which at
least one author was affiliated to an institution based in the EU5, giving a total of 125,170
publications distributed among 132 NUTS 2 regions and over five years. The analysis will
consist of determining the level of collaboration between each pair of these 132 NUTS 2

regions.

6The online map service used was Google Maps ©.

"Despite its simplicity, the accuracy of the localization based only on the name of the city and the
country was quite high. Indeed, I located all the addresses using just these two methods: city/country
and postcodes. When comparing the two methods, one can see that less than 1.5% of the NUTS3
codes differed between the two methodologies. This number falls to less than 0.4% when considering the
NUTS 2 codes.

8This treatment — the deletion of non-EUS5 links — affects the network proximity variable (the TENB).
The consequences of this treatment are examined later (in Section 1.4.2), where the empirical construction

of the TENB is described.
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Some characteristics of the field of chemistry. In this study, I focus on the field
of chemistry for several reasons. Firstly, [ want to model collaborations through the use of
publication data. For such an approximation to be robust, the link between the outcome
of chemistry research and publications should be high. As Defazio et al. (2009) mention,
‘international refereed journals [in chemistry] play an important role in communicating
results’ meaning most of the scientific activities in chemistry that provide any kind of
result, including collaborations, should leave a paper trail. Thus, scientific articles in this
field should allow the bulk of collaborations to be tracked down.

Another particularity I was interested in concerns the productivity of the researchers.
Indeed, a researcher’s production should be high enough so that new publications can be
explained by the behaviour of existing researchers, rather than by the actions of newly
active ones. Put differently, as the focus here is on modelling new flows of collaboration
with respect to past states of the network, these newly created links should emanate
from existing researchers. In the sample I use, the median number of publications per
researcher is five in the period 2001-2005, which seems high enough to fit this purpose.’

Authors affiliated to multiple institutions could constitute a bias in this study, as
some papers could be perceived as inter-regional collaborations while actually involving
only one author active in several regions. To appraise the extent to which this could be
an issue, I randomly selected 100 articles from the sample and looked, by hand, at the
multi-affiliation status of each author. It appeared that multi-affiliations are somewhat
rare, as only 12% of the papers had a multi-affiliated author. In addition, the cases of
multi-affiliation that would alter the specification of this study would be multi-affiliations
within the EU5 (where the inter-regional collaborations are to be measured), and this
pattern is even more unusual, as only 1% of the papers were affected.

Lastly, most of the inter-regional papers involved researchers from only two regions
from the EU5 countries. As Figure 1.2 shows, two-regions papers account for 82% of
the sample while three-regions papers represent a share of 15%. This propensity for two-
regions collaborations in chemistry is in line with our random matching process hypothesis

that considered matches between agents from two regions only.

1.4.2 Variables

Year range of the variables. As the analysis is cross-sectional, I have constructed
the explanatory and dependent variables separately, to avoid any simultaneity bias. The
period used to construct the explanatory variables is 2001-2003. This three-year span

is used in order to collect enough information on collaboration patterns. The period

9n order to infer some statistics relating to the number of publications per researcher, I considered
only the researchers who had published an article in 2001, and then counted their publications in the
range 2001-2005. To ensure the researchers were working in EU5 institutions, I only selected the ones
who had at least one article whose institutions were exclusively within the EU5. Finally, the researchers
were identified using their surnames and the initials of their first names. Despite the rough identification
of the researchers, this methodology provides an insight into the question of researchers’ productivity in
chemistry.
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Figure 1.2 — Distribution of the number of regions (from the EU5 countries) per inter-
regional article in chemistry.

2004-2005 is then used to build the dependent variable.

Dependent variable. Copub;; is defined as the number of co-publications involving
authors from both regions 7 and 7, from the time period 2004-2005. Several methods could
have been used to build this variable: most significantly the ‘full count’ and the ‘fractional
count’ methodologies. The former gives a unitary value for any dyad participating in a
publication, while the latter weights each publication by the number of participants, such
that the higher the number of participants, the lower the value each dyad receives (for
instance if there are n participants, each dyad receives 1/n). As in other studies (Frenken
et al., 2009b; Hoekman et al., 2010), I make use of the full count methodology, since it
relates to the idea of participation in knowledge production, rather than net contribution
to knowledge production (OST, 2010, p. 541).1°

Network proximity. The main explanatory variable captures the idea of inter-regional
network proximity. Network proximity between two regions is here approximated by the
TENB developed in Section 1.3.2 which relates to the number of indirect connections
between researchers of different regions. This variable is expected to positively influence
future collaborations.

Let TEN B;; be the empirical counterpart of the TENB as defined in equation (1.3).
As the measure is transposed from the theoretical model to real data, two comments
must be made. First, the theoretical model assumes that each collaboration involves only
two agents. However, in the data, some articles involve more than two regions from the

EU5 countries. To stick to the philosophy of the model, I therefore use only bilateral

0Using the fractional count instead of the full count methodology does not alter the results. The
results with fractional count are reported on Table 1.5 in appendix.
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co-publications, i.e., two-regions articles, to construct TE'N Bg-j.ll This in turn implies
that TEN B;; will be independent from any direct collaborations between regions 7 and j
as it then depends only on the structure of their indirect bilateral collaborations. Second,
the model uses the number of agents in each region, yet this information is not directly
available in the data.!> As an alternative, I chose the total number of publications of
a given region as a way of approximating its number of researchers. Indeed, according
to the law of large numbers and for large enough regions, these two values should be
proportional. Thus, in the case where the number of researchers is proportional to the
number of publications, we would have Researchers; = a X total publicationsy. for each
region k, with a being the coefficient of proportionality. This approximation circumvents
the problem of researchers’ identification and will still yield a reliable measure for the

TENB, as it should only be proportional to the theoretical value.

2001—2003

B be the
number of bilateral publications (i.e., articles involving agents from only two EU5 re-

Finally, the empirical variable can be defined. Let bilateral copub

gions) between regions i and j, published between 2001 and 2003. In addition, let
total_publication%om_2003 be the total number of articles produced by researchers in
region k. More precisely, it can be defined as the number of articles published between

2001 and 2003 that have at least one author who is affiliated to an institution in region
k. The empirical TENB can then be defined as follows:

bilaterai_copub?,?m_mm X bﬂate’ral_copub?gm_mm

TENB;; =
Z ke}%]Nj tOth_pUbl’icationszom_mm

(1.4)

Because of the empirical specification, this variable is best interpreted as a measure of
the intensity of network proximity, rather than an exact measure of the number of bridging
paths. It is worth noting that the approximation of the number of researchers with the
regional mass has no effect on the interpretation of the variable. This is because the
interpretation of the coefficients associated with the variable T E'N B;; in the econometric
analysis is done in terms of elasticity, meaning that it is unaffected by a (the coefficient
of proportionality).

Furthermore, another advantage of the TENB is that its variation can easily be in-
terpreted. Taking the case of two regions, 7 and j, from equation (1.4), we can see that
an increase of 1% in the number of collaborations between two regions and their common

neighbours leads to an increase of 2% in the TENB measure.”® Conversely, an increase

"URemember that the links with regions that are not within the EU5 are ignored. Here, bilateral
collaboration means articles involving institutions from two — and only two — NUTS 2 regions of the EU5
(regardless of whether there were also institutions from non-EU5 countries involved in the article).

12The information provided by Web of Science does not allow the retrieval of the affiliation of research-
ers. Although each article record does contain all the institutions and researchers who participated in it,
researchers and institutions are not matched. Therefore, whenever two or more institutions appear in an
article, it is not possible to identify to which institution each researcher belongs.

13 This footnote shows how to derive this result. Using the notations from Section 1.3.2.1, let g;;
represent the collaborations between regions i and j (as the variable bilateral copub;j), and let ny be
the number of researchers in region k (as the variable total_publicationsy). The TENB between regions i
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of 1% in the TENB can then be seen as the outcome of a 0.5% increase in collaborations
with common neighbours.

Finally, a word on the scope of the measure: the TENB is constructed using informa-
tion restricted to intra-EUS5 collaborations and not accounting for non-EU5 collaborations
implies a downward bias on the measure. The TENB reflects the extent to which research-
ers from two regions share common collaborators in another region. Thus, by deleting
non-EUbS links, potential common collaborators from non-EU5 regions are not taken into
account: this in turn may lead to a possible underestimation of the TENB for some pairs
of regions. So it should be remembered that the inter-regional network proximity meas-
ured in this study is somewhat partial, as it stems only from inter-regional collaborations

occurring within the EU5 countries.!4

Other covariates. The variable GeoDist;; was created to capture the impeding effect of
geographical distance. It is equal to the ‘as the crow flies’ distance between the geographic
centres (centroids) of the regions, in kilometres. The variable CountryBorder;; is a
dummy variable of value ‘1’ when the regions i and j are from different countries and ‘0’
otherwise. To further take into account the notion of geographical proximity, a variable
of regional contiguity was created. This variable is aimed at capturing the effects of
geography that are not seized by geographical distance alone. The variable notContig;;
is then of value ‘1’ when two regions are not contiguous and of value ‘0’ otherwise.

As with any scientific discipline, the field of chemistry is not homogeneous and con-
tains many sub-fields. Thus, two researchers may face difficulty in collaborating if they
are from regions specializing in two different sub-fields that differ in various aspects, such
as in methodology or research question. (For instance, some regions may specialize in
analytical chemistry and others in physical chemistry.) Such differences in sub-field spe-
cialization can imply significant differences in terms of collaborative patterns between
regional pairs. Consequently, the model includes a cognitive distance variable, which
refers to the distance in terms of ‘knowledge base and expertise’ (Boschma, 2005, p. 63)
between the two regions. This variable is intended to account for the distance between
the research portfolios of each pair of regions. The sub-fields are identified by the 75
keywords appearing in the chemistry articles of the sample.!® Let s;; be the share of art-
icles produced by region ¢ containing the keyword k, so that the vector s; = (s; 1,...,5i75)

characterizes region i’s research portfolio.!® The cognitive distance variable is defined

and j is then defined as TEN B;; = EkeN,;r\Nj (gik X gjk/nk). Now assume that there is, ceteris paribus, a
1% increase in all collaborations between regions i and j and all their common neighbours, so that gi€* =

new

1.01 x gix and g;g"™ =1.01 X g, for any common neighbour k. Thus, the new TENB between regions i
and jis TEN B =5 1NN, (g?kew X g;.‘f‘”/nk) =2 ken;nn, (101X gix) X (101X gix)/m) > 1.02 %
Yken,nn, (9ik % gjk/nk) =1.02x TENB;;.

4The extent of this effect is limited by the fact that the bulk of inter-regional collaborations occur
internally to the EUS5.

15 A list of all keywords, along with their frequency, is given in Appendix 1.7.5.

16Note that, as several keywords can appear in one single article, the sum of the shares, >k Sik, May

be greater than 1.
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as: CogDist;j = 1— cor(s;,s;), where cor(s;,s;) is the correlation between the research
portfolios of regions 7 and j. This cognitive distance measure is built similarly to the
technological distance employed in Jaffe (1986).

Finally, collaborations between researchers from top regions may display different
collaborative patterns from the rest of the sample. Presumably, they may display a
higher likelihood of collaboration (Hoekman et al., 2009). To control for this, the in-
dicator variable T'opRegions;; is included and takes value ‘1’ when both regions i and

j are from the top 20 regions in terms of publication (i.e., with respect to the variable
2001 —20{]3)

total__publications;
The importance of regional dummies. In the gravity model, regional masses
are one essential factor determining the flows of inter-regional interaction. However, the
types of regional mass affecting the level of inter-regional collaboration can be numerous.
The most obvious one is regional size, as in trade models, here measured in terms of
the number of publications. At the same time, relevant masses could also include the
number of academic ‘stars’ in the region, the number of graduate students in chemistry,
the quality of research facilities, etc. It is difficult to control for all the relevant regional
masses because of their great variety and the limited availability of some of the data.
Not properly controlling for them could lead to the model being misspecified as suffering
from an omitted variable problem. One convenient way to cope with this problem is to
include regional dummies: these dummies would control for any characteristic specific to
the region affecting the dependant variable. Consequently, the model includes regional

dummies which are able to encompass any kind of regional mass.

1.4.3 Model and estimation procedure

As the dependent variable C'opub;; is a count variable, a natural way to estimate equa-
tion (1.5) would be via a Poisson regression as in other recent studies (e.g., Agrawal
et al., 2014; Belderbos et al., 2014). In the Poisson regression, the dependent variable
is assumed to follow a Poisson law whose mean is determined by the explanatory vari-
ables. An interesting feature of this estimation is that the conditional variance is equal
to the conditional mean. Hence, greater dispersion is allowed as the conditional mean
increases, thus hampering potential problems of heteroskedasticity. Furthermore, San-
tos Silva and Tenreyro (2006) have shown that Poisson regression performs better than
other estimation techniques, such as the log-log OLS regression. In particular, they show
using simulations, that the estimates obtained in Poisson regressions suffer from less bias
than those obtained using other methods.

The structure of the data set, like that of trade models, is dyadic. This means that the
statistical unit, i.e., the regions, are both on the left side and on the right side, i.e., can be
either the origin or the destination of the flow. When it comes to properly estimating the

standard errors of the estimators, this dyadic structure is problematic. Indeed, in most
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econometric models, not controlling for the structure of correlation can lead to erroneous
standard errors that overstate the precision of the estimators (Cameron and Miller, 2015).
As Cameron et al. (2011) demonstrate, by means of a Monte Carlo study, using White’s
heteroskedasticity-robust covariance matrix may be unreliable, as it can lead to standard
errors several times lower than the properly clustered ones. Therefore, in this econometric
analysis, the standard errors will be two-way clustered, with respect to the natural clusters
of this dataset: the regions of origin and the regions of destination.

Based on the gravity model and on the previously defined variables, the model I will

estimate has the following form:

E(CO}YLL?)%JIXZJ) = d._;; X dj X (TENBW —I—OO].)QI X GBODB'St%Z (15)
x exp (agnotContig;j + ayCountryBorder;; + asCogDist;; + agTopRegions;j)

where X;; represents the set of all explanatory variables, while d; and d; are the regional
dummies of regions i and j. Note that 0.01 is added to the variable TEN B;; as its value
may be equal to 0.7 Furthermore, unlike most gravity models, the masses do not appear

as they are specific to each region and therefore absorbed by the regional dummies.

1.4.4 Descriptive statistics

The data set is composed of all the bilateral relations between the 132 NUTS 2 regions,
which amounts to 17,292 (= 132 x 131) observations or regional pairs. Table 1.1 shows
some descriptive statistics on the data set and the main constructs. Looking at the
number of collaborations, one can see that the distribution is uneven, with a coefficient
of variation of 3.2. Figure 1.3 depicts the distribution of the collaborations and confirms
the skewness of this variable. The maximum of 229 is between the regions Ile de France
and Rhoéne-Alpes. The TENB, defined by equation (1.4), is also unevenly distributed,
but less so than the number of co-publications, with a coefficient of variation of 2.3. Its
maximum value, 28.4, is also obtained between the French regions of Ile-de-France and
Rhéne-Alpes. When considering international dyads only, the maximum is for Cataluna
and Ile-de-France, with an expected number of bridging paths of 11.5. Table 1.2 shows
the correlations among the explanatory variables. The highest correlation is between the

geographical distance and national border variables.

1.5 Results

The results are reported in Table 1.3. First, I will focus on model (1), the gravity model
which includes all variables but that of network proximity. Consistent with the previous
literature (e.g., Hoekman et al.; 2009, 2010; Scherngell and Barber, 2009), geography

ITA low value, 0.01, is added to allow the interpretation in terms of elasticity to hold (as in Fleming
et al., 2007). Adding other values imply no qualitative change in the results.
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Table 1.1 — Descriptive statistics of the main variables.

Min Median 75 percentile Max Mean SD

Co-publications 0 0 1 229 221 7.01
Total Publications 1 521.0 909.2 5560 713.35 T751.4
TENB 0 0.13 0.45 2842 049 1.13
Geographical Distance 1.09  868.1 1213.3 2595.5 8944 476.9
Non-Contiguity 0 1 1 1 0.97 0.18
Different Country 0 1 1 1 0.78 041
Cognitive Distance 0.01  0.16 0.29 1.06 0.23  0.20
Top 20 Regions 0 0 0 1 0.02 0.15

Notes: Co-publications are based on the period 2004-2005 while all other variables are computed using
the period 2001-2003.

Table 1.2 — Correlation matrix of the covariates.

1 2 3 4 5 6
1 TENB (In) 1.00

2 Geographical Distance (In) -0.33" 1.00

3 Non-Contiguity -0.15° 0.49" 1.00

4 Different Country -0.39" 0.73" 032" 1.00

5 Cognitive Distance -0.59" 0.07° 0.04° 0.05° 1.00

6 Top 20 Regions 026" -0.00 0.00 0.02 -0.11" 1.00

*

: statistically significant at the 1% level (Pearson correlation).
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Figure 1.3 — Distribution of EU5 inter-regional collaborations in chemistry for the period
2004-2005.
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greatly affects collaboration. The most impeding effect is the national border effect. All
else being equal, if two regions are from different countries, their collaboration flows will
suffer a decrease of 83% (1 —exp(—1.801)). Although the effect of national borders is
very strong, the order of magnitude is in line with other estimates in the literature (e.g.,
Maggioni et al., 2007; Hoekman et al., 2009). Geographical distance is also a hindrance
to collaboration: with an elasticity of —0.35, the estimates show that increasing the
distance between two regions by 1% decreases their level of collaboration by 0.35%. Seen
with a larger variation, when the geographic distance doubles, collaboration decreases
by 22% (1 —2793%). Turning to the contiguity effect, as with other distances, it has
a non-negligible effect on collaborations: being non-contiguous rather than contiguous
reduces the expected number of collaborations by 17%. The cognitive distance exerts
a significant negative effect with an estimated elasticity of —1%, meaning regions with
different research portfolios will be less likely to collaborate. Finally, contrary to the
results on co-publishing in the study of Hoekman et al. (2009), researchers belonging to
the top 20 regions do not engage in more collaborations. This may be due to the fact
that this model takes better account of the regional masses, thanks to the use of regional
dummies.

Now I will turn to the analysis of the results provided by models (2) to (4), where
the variable TENB (approximating network proximity) is introduced, along with its in-
teraction with geographical distance. In model (2), only the TENB is introduced in the
regression. Its estimated coefficient is 0.244, positive and significant, meaning a 10% in-
crease in the TENB would imply a 2.4% increase in collaboration.'® This result shows
that network proximity does seem to influence network formation in general. However,
this positive effect may not be homogeneous and could be mediated by geography.

To test whether network proximity interacts with geography, the interaction with the
geographical distance is introduced in models (3) and (4), respectively in a simple and
a quadratic form. In these models, the elasticity of the TENB depends on the distance
separating the regions. The results of model (3) depict significant estimates for both
network proximity and its interaction with geographical distance, with a positive sign for
the interaction. Model (4) shows that the coefficient of the interaction with the squared
logarithm of the distance is negative. These estimates would seem to imply that the
effect of network proximity increases with distance, and possibly decreases after a certain
threshold. However, those coefficients cannot be straightforwardly interpreted because
they do not represent the total effect of the interaction (see Brambor et al., 2006). The
interpretation is helped by Figure 1.4, which represents the estimated elasticity of network
proximity with respect to the distance, along with its 95% confidence interval. While
network proximity can have a negative impact on co-publications for regions located close
to each other, its benefits grow with distance, favouring the most distant regions. As the

figure shows, despite a negative coefficient for the quadratic term, the elasticity of the

18From Section 1.4.2, a 10% increase in the TENB between two regions can be implied by a 5% increase
in collaboration flows between these two regions and their common neighbours.
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Figure 1.4 — Graph of the interaction between network proximity and geographical distance.
Notes: The graph represents the estimated elasticity of the TENB on co-publications with respect to
geographical distance (solid line) along with its 95% confidence interval (dashed lines). This graph is
based on the estimates from model (4) of Table 1.3.

TENRB strictly increases for distances in the range of those in the sample. The estimates
indicate that the effect is even negative for regions located at distances of below 110 km,
while the elasticity of the TENB is positive for regions further apart. For instance, the
effect starts to be significantly positive at the 5% level for regions at a distance of 233
km. For regions separated by the median distance, 900 km, the elasticity is 0.24, meaning
that a 10% increase in the TENB would lead to an increase in co-publications of 2.4%.
This result is in line with the hypothesis of substitutability between network proximity
and geographical proximity.

As geographical distance per se does not seize all characteristics induced by geography,
I will now decompose the effects of the TENB with respect to the national border dummy
and the contiguity dummy. The first dummy captures whether regions located in different
countries benefit more from network proximity, along with the substitution hypothesis.
In addition, in the case of substitution, the effect of network proximity should be greater
for non-contiguous regions. The results of these regressions are reported in Table 1.4.

Model (5) considers the sole decomposition with respect to national borders: it shows
that network proximity influences international collaborations with an elasticity of 0.23
(significant at the 0.001 level), but does not seem to influence national ones as the coeffi-
cient is not statistically significant. Adding the interaction with contiguity yields a more
complete picture of the interactions, particularly at the intra-national level. Model (6)
reveals that the effect of network proximity on collaborations strictly increases with the
loss of other forms of proximity: all else being equal, the elasticity of the TENB is higher

when two regions are from different countries instead of from the same country, and when
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Table 1.4 — Results of the Poisson regression in which the TENB is interacted with national
borders and contiguity.

Model: (5) (6)
Dependent variable: Co-publications Co-publications
TENB (111) * ]l{SameCountry} 0.0731
(0.0488)
TENB (111) * ]l{Dt‘f ferent Countries} 0.239***
(0.0413)
TENB (111) * ]l{Same Country} * H{Cmtéguous} -0.0749
(0.0532)
TENB (111) * ]l{Same Country} * ]l{N ot Contiguous} 0.1315***
(0.0443)
TENB (111) * ]l{Dt‘f_ferenthmntries}*]I{Contiguous} 0.0456
(0.1412)
TENB (111) * ]l{Dt‘f_ferenthmntries} *]I{Not Contiguous} 0.2504***
(0.0417)
Geographical Distance (In) -0.3191*** -0.3035***
(0.029) (0.0285)
]]-{Not Cmtigms} -0.2115%** -0.4193***
(0.0461) (0.049)
1 {Dif ferent Countries} -1.6324*** -1.5885%**
(0.0905) (0.0889)
Cognitive Distance -1.089*** -1.0124***
(0.2389) (0.2394)
Top 20 Regions 0.0465 0.0369
(0.0448) (0.0347)
Regional dummies (Origin & Destination) yes yes
Number of Observations 17292 17292
Adj-Pseudo- R? 0.71438 0.71581
BIC 45447917 45246.692

Notes: The dependent variable is the number of co-publications between pairs of NUTS 2 regions for the
period 2004-2005. The explanatory variables are built on 2001-2003. The function 1y is the indicator
function and is used to represent the variables notContig and CountryBorder defined in Section 1.4.2.
The variable TENB approximates network proximity and is defined as a measure of the strength of indirect
connections between regions (see Section 1.3.2). Two-way clustered standard errors in parenthesis (see
e.g. Cameron et al., 2011). Level of statistical significance: * 10%, ** 5%, *** 1%.
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Figure 1.5 — Graph of the link between network proximity and geography-induced proximity.
Notes: The graph reports the elasticity of the TENB on co-publications with respect to different degrees
of geography-induced proximity. Both the estimates of the elasticities, as well as their 95% confidence
intervals, are represented. This graph is based on the estimates from model (6) of Table 1.4. The linear
fit of the estimates represented by the dashed line, depicting an increase of the elasticity with the loss of
proximity, is only for visual purpose.

they are non-contiguous instead of contiguous.'® Figure 1.5 represents these estimates
with their 95% confidence intervals. For the most favourable case — that is, when two
regions are from the same country and are contiguous — the estimated elasticity is negative
(—0.07) but not statistically different from 0. When the two regions lose the benefits of
contiguity, the elasticity of the TENB becomes positive, rising to 0.13, while becoming
significant at the 1% level. For contiguous regions from different countries the estimated
coefficient is low, 0.04, with a large standard error. However, the poor precision of this
estimator is possibly due to the very small number of regional pairs in this category (only
30). Finally, in the case of least geographically-induced proximity, namely when two re-
gions are from different countries and are not contiguous either, the benefits induced by
network proximity are the highest, with an estimated elasticity of 0.25. These results
confirm Hypothesis 2.b, predicting substitutability.

Hence, the main conclusions that can be drawn from the results are twofold. First,
the estimates show that network proximity does not have an overall homogeneous effect,
but rather acts as a substitute to geographic proximity: the effect of network proximity
becomes stronger with distance, whether this be pure geographic distance or another form
of geographical distance (namely national borders and non-contiguity). This fact validates
Hypothesis 2.b, predicting substitutability. Second, for the regional pairs that benefit

most from the forms of proximity induced by geography, the effect is non-significant:

ATl coefficients of model (6) are significantly different from each other with respect to the t-test.
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network proximity is not always beneficial, so Hypothesis 1 is only partially validated.
Finally, the TENB used here is a measure of network proximity that is rather conservative,
as it neglects direct linkages and is based only on intra-EUb5 collaborations: consequently,

the effects found in this chapter regarding network proximity are likely to be a lower

bound.

1.6 Conclusion

This chapter has investigated the role of networks in the formation of inter-regional re-
search collaborations, as well as its interplay with geography. To this end, a new measure
of network proximity was introduced and an empirical study was carried out using a
gravity framework.

The first step was to create a measure of network proximity at the inter-regional level.
Such a measure, referred to as the TENB, was proposed in Section 1.3.2. This measure
fits the gravity framework well as it is independent from direct linkage (preventing any
endogeneity issue), and is defined for each dyad of regions. Furthermore, the strength of
this measure is that it can be interpreted, under mild conditions, as the expected number
of bridging paths between two regions (a bridging path being an inter-regional indirect
connection at the micro level).

Next, I empirically assessed the influence of network proximity on network formation
using data on co-publications from 132 NUTS2 regions in the field of chemistry. To
that purpose, the TENB variable was embedded within a gravity model estimated using
Poisson regressions. Consistent with the existing literature, I found a significant, negative
effect of separation variables, such as geographical distance and national borders. The
cognitive distance was also found to have a significant hampering effect on collaboration.

Notably, a clear substitutability pattern with geography was revealed: the strength of
network proximity rises when the benefits induced by geographic proximity wane. This
suggests that network proximity alleviates the impeding effects of distance. In partic-
ular, this result underscores the importance of network-related effects in international
collaborations. This fact bears great significance in the context of policy making. In-
deed, an important characteristic of long-distance collaborations, such as international
ones, is that they provide a higher quality of research production (see, e.g., Narin et al.,
1991; Adams et al., 2005; Adams, 2013). From this viewpoint, the EU policies aiming at
fostering international collaborations could have a sustained positive effect on knowledge
production and ease future knowledge flows. As new international connections arise, the
network proximity of regions located in different countries increases.2’ This in turn may

trigger new international collaborations as a result of network effects, implying that more

20Consider two regions in different countries: i and j. If these two were to have a new collaboration,
new indirect connections (measured with the TENB) would consequently arise between i and all regions
connected to j from j’s country, and vice versa. Thus, new international collaborations do indeed increase
the network proximity between regions in the two countries.
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distant /more yielding collaborations are more likely to be established.

This study has focused on the scientific field of chemistry and has been geographically
circumscribed to the EU5, two elements that limit its scope. Thus, natural extensions
include the application to other fields of science, to assess whether they display the same
pattern of substitutability between geography and the network. Extensions to other geo-
graphical areas could also be valuable. In particular, a comparison with US data may be
worthwhile to better understand the interplay between network proximity and geograph-
ical distance: as there should be no country-border effect for intra-US collaborations, do
distance and network proximity still interact there? It might also be interesting to test
whether the network-creation force of indirect connections has evolved over time. This
dynamic analysis could shed some light on the question of whether the improvement of
communication techniques has enforced the ‘network proximity’ channel for the creation

of new links.

1.7 Appendix

1.7.1 Proof of proposition 1

Let L, represent the at® link, a € {1,...,g;x}, between agents from regions i and k,
and L?‘k to be the b** link, b e {1,...,gjk}, between agents from regions j and k. By
definition, the pair of links (L;-‘k,L?k) forms a bridging path if and only if they are both
connected to the same agent in region k (as depicted by figure 1.1). Let the Greek letter
t, t € {1,...,nt}, designate agent ¢ from region k. Hence, from the random matching
process, we know that the probability that agent ¢ is connected to any incoming link is
p. = 1/ny. Thus, the probability that agent ¢ is connected to both links L and L?k is
p? =1/n3. Therefore, the pair (L%, L?‘k) is a bridging path with probability p=Y"""*, p? =
1/ny (summing over all the agents of region k, because each agent can be connected to
both links). Let X, be the binary random variable relating the event that the pair of
links ( %k,Lbk) is a bridging path. This random variable has value 1 with probability
p and 0 otherwise, so that its mean is E(Xg) = p. The random variable giving the
number of bridging paths between regions i and j via region k is then the sum of all
variables X3, a and b ranging over {1,...,g;x} and {1, . ,gjk}, that is ranging over all
possible bridging paths. It follows that the expected number of bridging paths is EN ij =

E(y 9% 12“%’“ ab)- From the property of the mean operator; it can be rewritten as:

ENB% _ ka Egﬂf ( ) szleJk p= Zguc S*Jk (1/7’3!:) (Qékgjk)/nk- 0

1.7.2 Preferential attachment

In this section I consider the matching mechanism described in section 1.3.2.3. This is
a simple matching mechanism where the probability that agents get a new link is based

on their productivity level that is exogenous. Consider a region with n agents, all sorted
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with respect to their productivity level, then the probability that agent ¢ connects to an
incoming link is p, = ¢=%5/T" with T' =", =93, In this appendix, I investigate: 1) the
distribution of the expected degree of each agent and 2) the derivation of the expected
number of bridging paths based on this matching mechanism.

Of course the following analysis can be extended to the case where the probability of
connection is more generally defined as: +=%/T'(a) with T'(a) = X7 1+~ %. I focus on the
case a = 0.5 as the expected degree distribution corresponds to a power law of parameter

v =3 as in Barabasi and Albert (1999), which is proven in next section.

1.7.2.1 The expected distribution of the matching mechanism follows a power

law

In order to understand what law follows the expected distribution of links along this
matching mechanism, I will derive the cumulative distribution function. Say that there are
L incoming links, then the expected degree of any agent is simply its probability to get a
link times the number of links L. The expected degree of agent ¢ is then (5_0'5 / F) x L. To
get the cumulative distribution function of the expected degree, F(k) = P(z < k), one has
to count the number of agents whose degree is inferior to k, i.e. # {Ll (L_0'5/F) x L < k}.
As agents are sorted with respect to their productivity level, one has simply to find out
the label ¢ such that (L_0'5 / F) x L =k. Indeed, agents having a degree inferior to k should

respect the following condition:

(5_0'5/I‘)XL < k

kI’
—05 Kl
L < I
L\2
— ) . 1.6
Lz (kf‘) (16)

Let ¢(k) = (L/T)*k~2, then the number of agents having a degree inferior to k is equal to
n— (k) as agents such that ¢ < 1(k) do not respect the inequality defined by equation (1.6).
The share of agents having a degree lesser than k is then:2!

F) = — (n—u(o))

= 1—%(%)21:—2. (1.7)

21More precisely, the value of the swinging agent is ¢(k) = {(L /T)? k‘QJ where |z | is the largest integer
not greater than . The number of agents with a degree inferior to k is not exactly n— ¢(k), rather, as
this number cannot be negative, its value is max (n— ¢(k),0). Now let k* be such that :(k*) =n, then it
follows that for each k < k* the cumulative is P(z < k| k < k*) =0. The cumulative distribution function
defined by equation (1.7) is defined only for k > k* and is 0 otherwise. All these details were skipped for

readability.
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From the cumulative distribution, one can then derive the distribution by differentiating

with respect to k, which yields:

This result shows that from a simple connection mechanism based on exogenous probab-

ilities, the expected distribution of links follows a power law of parameter v = 3.

A bit of generalization. In the same vein as previously, if one considers that the
probability of connection is defined by ¢:=*/T'(a) with T'(a) =37 {¢~* and a > 0, the
distribution of the expected degree of the nodes is then:

00— 1 () i

Expressing the probabilities of connection with respect to the power law parameter, v =
1 1
ITT“, yields: +=7=1 /Ty (y) with I, (y) =31-; ¢~ 7T; and the distribution function is then:

The distribution of the degrees follows a power law of parameter ~.

1.7.2.2 The derivation of the expected number of bridging paths with pref-

erential attachment

This section strives to derive the expected number of bridging paths between regions
from the matching mechanism with preferential attachment. The derivation of the result
is based upon a variation of the proof of proposition 1 of section 1.3.2.2. Consider a region
k with nj agents. The number of links between k and regions i and j are g;; and gj;
respectively.

Let LY be the a? link, a € {1,...,g;1}, between agents from regions i and k, and L?k
to be the b** link, b e {1,...,gjk}, between agents from regions j and k. By definition,
the pair of links (L%, L?‘k) forms a bridging path if and only if they are both connected
to the same agent in region k. Let the Greek letter ¢ designate the agent ¢ from region k.
Hence, the probability that L and L?‘k are both connected to agent ¢ is pf = (L_0'5 / F)Q.
Then the pair (L:-‘k,L?k) is a bridging path with probability p = >"1"*, p?. Let X be the
binary random variable relating whether the pair ( :-‘k,L?k) is a bridging path. It takes
value 1 with probability p and value 0 otherwise, so that its mean is E(X,,) =p. The
random variable giving the number of bridging paths is the sum of all variables X3, a
and b ranging over {1,...,g;x} and {1,...,gjk}, that is ranging over all possible bridging
paths. Then, the expected number of bridging paths is EN B?J-’Pref = E(X9*, 7% Xap).

a=1
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From the property of the mean, it can be rewritten as:

k,Pref g Tk
a=1b=1
= 0ik9jk X D-

Now, let us rewrite p, the probability for a pair of links to be a bridging path:

ng
p = >.p’
i=1

Further, notice that ' = 3.7, ;0 ~ i z79%dz = 2 x (,/ng — 1), and that Y} /1 ~

[{* z71dz = log(ny.). Therefore p can be rewritten as:

1 log(m)

L(ym—1)"
1log(ng)
4 np

providing ny, is sufficiently high. From this it follows that the expected number of bridging

paths with preferential attachment is approximately equal to:

ENBEPref o 9ikdik log(n)
J g 4

log(n4)
k
ENBz‘j X T.

12

which ends the proof of proposition 2. O

1.7.3 Estimation with fractional counting

See Table 1.5.

1.7.4 List of the 132 NUTS 2 regions used in the statistical ana-

lysis

CODE NAME CODE NAME CODE NAME

DE11 | Stuttgart ES24 | Aragbn ITH2 | Provincia Autonoma di
Trento

DE12 | Karlsruhe ES30 | Comunidad de Madrid ITH3 | Veneto

DE13 | Freiburg ES41 | Castilla y Lebn ITH4 | Friuli-Venezia Giulia

DE14 | Tibingen ES42 | Castilla-La Mancha ITH5 | Emilia-Romagna

DE21 | Oberbayern ES43 | Extremadura ITI1 | Toscana

DE22 | Niederbayern ES51 | Catalufia ITI2 | Umbria

DE23 | Oberpfalz ES52 | Comunidad Valenciana ITI3 | Marche
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CODE NAME CODE NAME CODE NAME

DE24 | Oberfranken ES53 | Illes Balears ITI4 | Lazio

DE25 | Mittelfranken ES61 | Andalucfa UKC1| Tees Valley and Durham

DE26 | Unterfranken ES62 | Regién de Murcia UKC2| Northumberland and Tyne
and Wear

DE27 | Schwaben FR10 | Ile de France UKD1| Cumbria

DE30 | Berlin FR21 | Champagne-Ardenne UKD3| Greater Manchester

DE40 | Brandenburg FR22 | Picardie UKD4| Lancashire

DES50 | Bremen FR23 | Haute-Normandie UKD6| Cheshire

DE60 | Hamburg FR24 | Centre UKD7| Merseyside

DE71 | Darmstadt FR25 | Basse-Normandie UKE1| East Yorkshire and
Northern Lincolnshire

DE72 | Gieflen FR26 | Bourgogne UKE2| North Yorkshire

DE73 | Kassel FR30 | Nord - Pas-de-Calais UKE3| South Yorkshire

DEB80 | Mecklenburg-Vorpommern FR41 | Lorraine UKE4| West Yorkshire

DE91 | Braunschweig FR42 | Alsace UKF1| Derbyshire and
Nottinghamshire

DE92 | Hannover FR43 | Franche-Comté UKF2| Leicestershire, Rutland and
Northamptonshire

DE93 | Liineburg FR51 | Pays de la Loire UKF3| Lincolnshire

DE94 | Weser-Ems FR52 | Bretagne UKG1| Herefordshire,
Worcestershire and
Warwickshire

DEA1| Diisseldorf FR53 | Poitou-Charentes UKG2| Shropshire and
Staffordshire

DEA2| Koln FR61 | Aquitaine UKG3| West Midlands

DEA3| Miinster FR62 | Midi-Pyrénées UKH1| East Anglia

DEA4| Detmold FR63 | Limousin UKH2| Bedfordshire and
Hertfordshire

DEAS5| Arnsberg FR71 | Rhone-Alpes UKH3| Essex

DEB1| Koblenz FR72 | Auvergne UKI1 | Inner London

DEB2| Trier FR81 | Languedoc-Roussillon UKI2 | Outer London

DEB3| Rheinhessen-Pfalz FRR2 | Provence-Alpes-Cote UKJ1 | Berkshire, Buckinghamshire

d’Azur and Oxfordshire

DECO0| Saarland FR83 | Corse UKJ2 | Surrey, East and West
Sussex

DED2| Dresden ITC1 | Piemonte UKJ3 | Hampshire and Isle of
Wight

DED4| Chemnitz ITC3 | Liguria UKJ4| Kent

DED5| Leipzig ITC4 | Lombardia UKK1| Gloucestershire, Wiltshire
and Bristol/Bath area

DEEO| Sachsen-Anhalt ITF1 | Abruzzo UKK2| Dorset and Somerset

DEFO0| Schleswig-Holstein ITF2 | Molise UKK3| Cornwall and Isles of Scilly

DEGO| Thiiringen ITF3 | Campania UKK4| Devon

ES11 | Galicia ITF4 | Puglia UKL1| West Wales and The
Valleys

ES12 | Principado de Asturias ITF5 | Basilicata UKL2| East Wales

ES13 | Cantabria ITF6 | Calabria UKMZ Eastern Scotland

ES21 | Pais Vasco ITG1 | Sicilia UKM3 South Western Scotland

ES22 | Comunidad Foral de ITG2 | Sardegna UKM35 North Eastern Scotland

Navarra
ES23 | La Rioja ITH1 | Provincia Autonoma di UKMS¢ Highlands and Islands
Bolzano/Bozen

1.7.5 List of the keywords used to assess cognitive proximity

The table lists the keywords appearing in the chemistry papers published between 2001

and 2003 as well as their frequency (example of reading: there has been 11,114 papers

categorized as ‘chemistry, inorganic & nuclear’).
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Keyword Count|| Keyword Count|| Keyword Count
Chemistry, Physical 24721 || Crystallography 743 || Computer Science, 109
Artificial Intelligence
Chemistry, Organic 15243 || Biophysics 721 || Statistics & Probability 109
Chemistry, 15089 || Plant Sciences 711 Education, Scientific 90
Multidisciplinary Disciplines
Chemistry, Inorganic & 11114 || Nuclear Science & 606 || Agronomy 84
Nuclear Technology
Chemistry, Analytical 10892 || Thermodynamics 502 || Acoustics 68
Materials Science, 5889 || Toxicology 498 || Oceanography 66
Multidisciplinary
Chemistry, Applied 5250 Biotechnology &, Applied 495 Materials Science, Ceramics 65
Microbiology
Physics, Atomic, Molecular 5191 Mathematics, 404 || Biology 56
& Chemical Interdisciplinary
Applications
Chemistry, Medicinal 4089 Geosciences, 398 Mathematical & 56
Multidisciplinary Computational
Physics, Condensed Matter 3957 Computer Science, 384 Physics, Nuclear 41
Interdisciplinary
Applications
Biochemical Research 3626 || Nutrition & Dietetics 289 || Dermatology 30
Methods
Food Science & Technology 2833 || Archaeology 268 || Materials Science, 28
Characterization & Testing
Pharmacology & Pharmacy 2650 || Engineering, Environmental 236 || Immunology 27
Biochemistry & Molecular 2632 || Mineralogy 234 || Optics 22
Biology
Engineering, Chemical 2501 Materials Science, Textiles 222 || Oncology 14
Physics, Applied 2007 || Soil Science 191 Engineering, Manufacturing 5
Spectroscopy 1530 Computer Science, 179 Geochemistry & Geophysics 5
Information Systems
Agriculture, 1493 || Integrative & 176 || Medicine, Legal 4
Multidisciplinary Complementary Medicine
Electrochemistry 1389 || Art 169 || Medicine, Research 4
Experimental
Nanoscience & 1107 || Radiology, Nuclear 155 || Engineering, Electrical & 2
Nanotechnology Medicine & Medical Electronic
Imaging
Environmental Sciences 1055 || Energy & Fuels 143 || Engineering, Petroleum 2
Metallurgy & Metallurgical 1017 || Physics, Multidisciplinary 143 || Genetics & Heredity 2
Engineering
Materials Science, Coatings 961 Materials Science, 117 Materials Science, Paper & 2
& Films Biomaterials Wood
Polymer Science 926 || Mechanics 113 || Fisheries 1
Instruments & 770 || Automation & Control 109 || Marine & Freshwater 1

Instrumentation

Systems

Biology
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Chapter 2

Centrality of regions in R&D
networks: Conceptual clarifications

and a new measure!

2.1 Introduction

Today it is widely recognized that external knowledge sources have become an essential
component for innovating organisations. Both theoretical and empirical literature over
the past decade provide evidence for the increasing importance of R&D networks for
successful innovation (see, e.g., Powell and Grodal, 2005; Wuchty et al., 2007). Up to now,
most studies have emphasized the crucial role of the ability to adopt external knowledge
in the form of learning capabilities, such as technical or methodological skills, enabling
innovating organisations to apply the externally tapped knowledge in the organisational
innovation process. However, recently the importance of a particular relative network
positioning to access external knowledge has been highlighted and attracted increasing
attention (see, e.g., Ahuja, 2000; Owen-Smith and Powell, 2004). It is assumed that not
only the ability to learn, but also a favourable position for a more efficient access to
external knowledge is crucial.

From a network theoretical perspective, such a favourable positioning is referred to as
centrality of network vertices (Borgatti, 2005), where — in terms of R&D — these vertices
represent knowledge producing actors interlinked via edges representing knowledge flows.
Actors showing a more central network position will more likely benefit from network
advantages. This argument has been taken up at the regional level in recent regional
science literature, where regions — constituting the aggregate of its knowledge producing
organisations — are treated as relevant units of observation. In this context, the notion of
inter-regional R&D collaboration networks has come into use (see, e.g., Autant-Bernard
et al., 2007b) where regions are the network nodes representing distinct pools of know-

ledge, which are assumed to get into motion via the R&D relations between these regions,

TThis chapter is based on a paper co-authored with Iris Wanzenbock and Thomas Scherngell.
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constituting the edges in the network. Such a network representation has developed to
an analytical vehicle that has been applied to investigate the geography of R&D networks
(Scherngell, 2013), in particular how knowledge diffuses in a multi-regional system (see,
e.g., Maggioni et al.; 2007; Ponds et al., 2010).

Given this recent focus on regional R&D networks, network analytic measures have
been increasingly applied at the regional level in order to characterize the inter-regional
connectedness and centrality of a region, by capturing also the structural properties of the
network (see, e.g., Sebestyén and Varga, 2013b; Wanzenbock et al., 2015). For observing
a region’s centrality, up to now the most common analytical approaches from Social
Network Analysis (SNA) have been utilized, such as degree centrality or betweenness
centrality (Wanzenbock et al.; 2014). However, these studies somehow neglect conceptual
problems that arise for networks defined at the aggregate level of regions. In particular,
such problems are related with the loss of information regarding the structure of network
relations and with that, information on the real channels through which knowledge flows.
In this context, the question of how to adequately reflect regions in weighted network
structures such as R&D networks become even more important.

As we argue in this chapter, the specific characteristics of regions — regarded as ag-
gregate units — have to be taken into account and reflected in some way when designing
analytical measurement approaches for regional centrality. Relevant questions in this con-
text are (i) how can we conceive the centrality of regions in a network that is composed
of several research actors in its underlying structure, and (ii) what are then the main
building blocks that might characterize the centrality of regions, in particular when we
talk about R&D networks?

This study is one of the first that deals explicitly with the drawbacks and insufficiencies
related with conventional approaches to represent networks and measure centrality at the
level of regions. Against this background, the objective is to propose a new measurement,
approach of regional centrality that is explicitly designed for aggregated networks at the
regional level, based on the concept of inter-regional bridging paths. Here a bridging path
is defined as an indirect connection between two regions via a third ‘bridging region’. From
a simple random matching process that models the collaborations among the micro-level
actors based on the information provided at the aggregated level, we derive a closed form
of the expected number of bridges between two regions stemming from a specific bridging
region. On this basis we are able to define a new measure of regional centrality that
not only depends on the number of links one region has, but also on the structure and
intensity of its cross-regional collaborations.

In its fundamentals, our measure of regional bridging centrality builds upon several
network-and knowledge-related arguments, referring to the role of bridges and the relev-
ance of bridging path between network actors, or the general importance of diversified
knowledge sourcing and technological recombinations (see, e.g., Kogut and Zander, 1992;

Fleming, 2001; Singh, 2005). Moreover, we show how such a measure defined for aggreg-
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ated networks can be meaningfully related to the regional dimension. We demonstrate
how our measure of bridging centrality of a region can be easily interpreted as a function
of (i) the participation intensity of a region in inter-regional R&D collaborations, (ii) the
relative outward orientation in terms of all established network links, and (iii) the diversi-
fication of the network-partner-regions and knowledge relations to them. Hence, it views
network centrality as a multidimensional problem, and integrates different region-specific
aspects of the regional linking structure that might only together determine the visibility
and importance of regions in R&D networks.

To illustrate our regional centrality measure we use a large-scale dataset on the
European co-patent network in the year 2006 at the NUTS2 level. The comparative
analysis with three common SNA-based measures (degree, betweenness and eigenvector
centrality) is based on basic statistics on distribution and correlations between the four
centrality measures observed for the regional network. Despite striking similarities in
correlations and distributional aspects on a more general level, the in-depth analysis of
regional ranks reveals interesting differences which emphasize the advantages of the re-
gional bridging centrality measure, in particular in terms of its interpretative power for
region-level analyses.

The remainder of this study is structured as follows: Section 2 discusses in some detail
the conventional approach to measure the centrality of regions in R&D networks. Section
3 introduces the concept of bridging paths, constituting the main essence of the meas-
urement approach proposed in this study, before Section 4 formally derives the bridging
centrality measure for regions. Section 5 shifts attention to the illustrative example,
applying our measure to the European co-patent network and comparing results with
conventional measures, before Section 6 concludes with a summary of the main results

and some ideas for future research.

2.2 The conventional measurement approach

The notion of the centrality of regions in regional R&D networks has come into use
just recently. It is argued that the knowledge creation ability within a region depends
to a large extent on the ability of the region-specifc actors to efficiently access region-
external knowledge (see, e.g., Bathelt et al., 2004; Graf, 2011). In this regard, inter-
regional R&D networks are regarded as effective means, since network links can represent
direct channels to a specific (region-external) source of knowledge that actors otherwise
would not have access to. Against this background, need has been expressed to derive
analytical approaches to measure a region’s centrality in such networks, enabling the
empirical researcher to characterize whether a region has a favourable position in the
network, whether it takes a specific — for instance ‘brokering’ — role from a global network
perspective, or how a region’s network positioning changes over time.

However, the concept of network centrality was originally defined at the individual
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level in human communication networks and the implications of using this concept at
the regional level remain unclear. Therefore, this section intends to clarify the concept
of network centrality as applied to inter-regional knowledge networks. We start with
examining the origin, meaning, and purpose of network centrality (Subsection 2.2.1),
and then lay out the major hurdles facing its transposition to regional R&D networks
(Subsection 2.2.2). Finally, the two last subsections provide different ways to adapt well
known centrality measures to the regional case, while at the same time keeping focus on

their interpretation in the R&D context and pointing out their conceptual limitations.

2.2.1 A short introduction to the notion and context of central-

ity measures in social networks

The inception of the use of the concept of centrality in social network analysis (SNA) lies
on the impetus of Bavelas’ early researches (Bavelas, 1948). He was interested in link-
ing the relational position of individuals within working-groups — namely their network-
centrality — to their performance and influence over the group. Many empirical studies
have followed to investigate if such a link existed in these types of networks, i.e., human
communication networks (e.g., Bavelas, 1950; Leavitt, 1951; Faucheux and Moscovici,
1960; Burgess, 1969). The consequence of this line of work was to unveil the potential of
the concept of network centrality in SNA.

As the representation of interactions in a network-form is not limited to human com-
munication networks, the notion of centrality was soon extended and applied to various
other types of networks. Indeed, this idea of investigating the influence of structural po-
sition within networks was promising and has triggered many studies in which the unit
of analysis took different forms. Such studies include the application of the notion of
centrality on: inter-personal networks within organizations (Beauchamp, 1965), cities in
transportation networks (Pitts, 1965), the diffusion of innovation in inter-firm informal
communication networks (Czepiel, 1974), the spread of diseases in infection networks (Bell
et al., 1999), crime networks (Calv6-Armengol and Zenou, 2004), etc.

Along with these studies, a set of centrality measures has also emerged. Indeed,
numerous measures have spawned either to refine existing measures or to adapt them to
the networks under scrutiny. Those centrality measures include: the degree centrality, the
betweenness (Freeman, 1977), the closeness (Freeman, 1979); the eigenvector (Bonacich,
1972), Katz’s prestige (Katz, 1953), Bonacich’s measure of power (Bonacich, 1987), etc.

Consequently, as a wide variety of centrality measures has been developed, one should
expect that they differ in the meaning they purport and in the contexts they can be
applied to. These differences are in fact tied to the very definition of network centrality.

The goal of a centrality measure is to assign to each agent of a network a value related
to her/his position within the network. The variety of centrality measures then comes
from the fact that each favours a particular network-pattern over others and each carries

a ‘view’ of what being central should be. Thus, centrality measures are not neutral: they
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rank the agents along some — often hidden — normative viewpoint which should support
the aim of the study itself. In other words, different notions of centrality imply different
‘competing "theories" of how centrality may affect group process’ (Freeman, 1979, p. 238).

Then, the choice of a centrality measure should be dictated by the purpose it is
aimed to serve (Borgatti, 2005). This purpose is brought about by the researcher and
his research study and is of course highly context dependent. For instance, the kind of
centrality measure used in the study of infection networks should be different from the one
used in inter-firm cooperation networks.! This very idea is also, albeit slightly differently,
formulated by Bonacich (1987, p. 1181):

There are different types of centrality, depending on the degrees to which
local and global structures should be weighted in a particular study and
whether that weight should be positive or negative. [...] There is no point

in subsuming all these situations under one measure.

Therefore, there is no unique and ‘best’ measure of centrality, no ‘one size fits all’ centrality
measure. One then should remember the implicit choices underlying centrality measures
and the context to which they can be applied. Therefore, we are now going to discuss the
particular context of regional R&D networks and question whether centrality measures

can be applied to it.

2.2.2 Can the concept of network-centrality be applied to R&D

networks?

We now delineate two key elements impeding the straightforward application of network-
centrality measures to regional R&D networks. First, regions are not single entities.
Indeed, while being at the centre of the analysis, regions are not the ‘actors’ taking part
to the action of the network. Only the agents that compose the regions are involved
in R&D networks (and any kind of inter-regional network more generally). Centrality
measures are best suited for situations where the unit of analysis is also the actor of the
network. In fact, in the case of regional centrality, there is a strong duality between the
micro strata, where lie the actors of the network, and the meso strata, where lies the focus
of the centrality measure. Indeed, to assimilate regions as ‘actors’ would imply to assume
that all agents within them would act as one and only one entity; it would require to do
‘as if’ the region was a single agent, like for instance a single researcher. If this ‘as if’
hypothesis may be reliable when studying small groups in which information is quickly

shared and without depreciation, such as research teams or even — under some conditions

'In the study of spreading disease in infection networks, the notion of eigenvector centrality catches
best the idea that the central agent, if infected, would spread the fastest the disease across the network
(Borgatti, 1995). When studying flows of information in inter-firm communication networks, the closeness
centrality reports the best the idea that the central agent would be the first to ‘know’ the novelties and
by then have a technological edge over its competitors (Czepiel, 1974; Freeman, 1979).
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— organizations, it no longer holds when looking at complex structures such as regions
which are often composed of heterogeneous, non necessarily interacting, agents.?

Second, the links in R&D networks involve a particular kind of flow. For instance, in
collaboration networks, a link may be the medium of various types of exchanges and could
then be interpreted in different ways. If we focus specifically on the notion of knowledge
production, the links can represent the access to a specific source of knowledge that agents
would have otherwise not have access to, like the possibility to share tacit knowledge with
a partner (Collins, 2001). If the focus is more on the dynamics of the collaboration
network, links can be seen as vehicles of information, on who would be a suitable and a
reliable partner to collaborate with, particularly across regional borders (see, e.g., Gulati
and Gargiulo, 1999; Cassi and Plunket, 2015). These two simple different perspectives on
how to interpret network links have different implications. In the first case, in which we
consider flows of knowledge, the benefits from network-distant agents may decay much
more steeply than for the case of flows of information which is acquired and shared more
easily. These differences in flows’ nature and behaviour are not innocuous regarding the
interpretation of centrality measures, as Borgatti (2005, p. 69) has pointed out: ‘the
importance of a node in a network cannot be determined without reference to how traffic
flows through the network’ He has also shown that different centrality measures each
carry an implicit different assumption about the kind of flow it is suited for, so that they
cannot be applied to any network.

With these details in mind, the next subsection considers the case in which regional
R&D networks are seen as weighted networks. Some widely used centrality measures are
described as well as: 1) their classic interpretation in the context in which they were
originally defined and 2) their interpretation when applied to regional R&D networks.
Finally, the last subsection investigates the case in which a region’s centrality is inferred

by its agents centralities.

2.2.3 Regional R&D networks as weighted networks

The first manner to adapt existing centrality measures to regional R&D networks is to
consider the regions as the nodes of the network. Accordingly, the inter-regional R&D
collaboration network can be depicted by the matrix G of typical element g;; which
represents the number of links between the agents from regions i and j. As collaborations
are bilateral and their flow can be higher than one, it yields an undirected weighted matrix
G of typical element g;; € RT.

We discuss three conventional measurement in this case: the degree-, the eigenvector-
and the betweenness-centrality. The properties of these centrality measures are discussed
in light of the context of R&D networks.

The first centrality measure, is the degree-centrality. The notion of degree-centrality in

21t is to note that Everett and Borgatti (1999) propose an extension of centrality measures to groups
but where within-group homogeneity is required to provide a proper interpretation.
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SNA was primarily defined as the number of connections an agent had in communications
networks and is reviewed in Freeman (1979). As Freeman mentions, early researchers in
SNA even considered it as the sole centrality measure, able to summarize the importance
of a node in a network. In the case of regional networks, the links between two nodes
are typically weighted, the degree of a node can then be defined as the sum of all the
links stemming from it.? Let d; be the degree of node i, it is formally defined as follows:
d; =3, 9ij 4 Depending on the kind of network under study, the degree can be interpreted
as the probability to be reached in a network by a random walk or the ability to infect other
agents in a one time period (Borgatti, 2005). However, these two interpretations hardly
make sense in the case of R&D networks. Another simple and unambiguous interpretation
of the degree is just the dominance of a given region over other regions in terms of
R&D collaborations. Depending on the purpose of the study, this interpretation may be
relevant. However, in any case, this measure suffers from a major flaw: it does not convey

any information on the structure of the network.

Another centrality measure widely used in SNA is the eigenvector centrality. This
measure was introduced by Bonacich (1972) and states that the importance of a node is
related to the importance of the nodes it is connected to. Contrary to the degree-centrality,
the eigenvector-centrality of a given node depends on the information on all the links of the
network, meaning the position of the nodes within the global network has an influence on
their centrality. Therefore, two nodes with the same degree can have different eigenvector
centralities. Formally, the eigenvector-centrality of a node, €;, is defined by the relation:
Ae; =Y ; gijej, with A > 0 a proportionality factor. This centrality is self-referential and

can be solved by writing it in a matrix-form:
e = Ge, (2.1)

where e is the vector of all centralities. The vector e that solves equation (2.1) is the
eigenvector of the matrix G associated to the eigenvalue A\.> The very idea reflected by
this measure is related to node influence. The main driver is that a node will be more
influential if it has influence on very influential nodes (the influence being measured by
the links between the nodes). While being an appealing feature for studies on individual’s
influence, this interpretation is strongly impeded by the problem of the micro/meso duality
of the regional network. Indeed, assume a region is central thanks to connections to
important regions, do its agents — who are the actors of the network — really benefit

from their region’s centrality? It would imply that every agent within a region would

3In the case where the network is directed, like for instance in a patent-citations network, the number
of links emanating from a node (e.g., references made to other patents) is called the out-degree while the
number of links received (e.g., the number of citations received from other patents) is called in-degree.
For undirected networks, such as collaboration networks, the in-degree is equal to the out-degree.

4There is a generalization of the degree centrality for weighted networks given by Opsahl et al. (2010)
but whose interpretation in this context remains unclear.

5By convention, it is standard to use the eigenvector associated to the largest eigenvalue (Bonacich,
1987; Jackson, 2010).
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homogeneously benefit from the influence of all other agents of the region, which seems
hardly the case. It then happens that this measure is hardly transposable to the regional

level.

A third measure commonly applied in SNA is the betweenness-centrality. To define
it, we first introduce the notion of network path and shortest path. A path between two
nodes i and j is a sequence of K distinct nodes {ny,...,ng} starting from i (i.e., ny =1),
ending with j (i.e., ng = j) and such that each consecutive pair of nodes is connected in
the network.® The length of a path is the number of nodes composing the path. Then, a
shortest path between i and j is a path that has minimal length. Now, let SP(jk) to be
the number of shortest paths between nodes j and k, and SP;(jk) the number of shortest
paths between 7 and k where node i appears. Then the betweenness-centrality of 7 is

defined by the following equation:

SP;(jk)
SP(jk)’

B=Y 3

jF k#{i,j}

the term in the double sum depicting the share of shortest paths between j and k where
i lies on.

This form of centrality was originally defined in the context of communication net-
works, where links between agents represent information flows. When Freeman introduced
this measure, he defined central agents as ‘structurally central to the degree that they
stand between others and can therefore facilitate, impede or bias the transmission of mes-
sages’ (Freeman, 1977, p. 36). Alternatively, betweenness-centrality can be seen as how
much a node is necessary for flows to connect all other nodes in the network. Despite
being computationally easy to apply at the regional level, this measure suffers from major
flaws when applied to regional R&D networks. Indeed, for the importance of being in
the ‘shortest path’ to hold, two assumptions are necessary. The first is that the flows
necessarily follow the shortest path (which makes the ‘central agent’ able to retain in-
formation and exert some influence). If information (or the adequate flow) does not pass
only through shortest paths, this measure becomes much less relevant. In R&D networks,
this may not be the case: for instance, when considering information over potential part-
ners obtained via collaboration, that information may not be limited to flow only through
shortest paths, just because of the nature of information. The second assumption is that
flows do not suffer from any decay. Indeed, at the moment where the relevance of network-
flows are reduced with the network-distance, then what is the use of being in the middle
of network-paths between agents? In this case, the betweenness of a region, beyond its
first or second circle of connections, may be of little use. For instance, if connections
materialize access to knowledge sources, it is quite unlikely that agents far apart with

respect to the network-distance influence each other. Last, beyond these two limiting

6Mathematically, {n1,...,nk } is a path between i and j if Inpngy, > 0forall ke{l,...,K -1}, with
n1 =1t and nx = J.
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Figure 2.1 — Illustration of a regional network in which a region has a strong internal
structure yet no link with the outside.

assumptions, the betweenness measure happens to be much better suited for networks
composed of individuals (be it firms or inventors). Similarly to the eigenvector centrality,
its interpretation hardly fits the regional scale, since a region with a high betweenness

does not necessarily translate into its agents being on shortest paths.

As we have shown, existing measures can be applied to regional R&D networks, when
taking regions as the nodes of a weighted network. But the interpretation of the measures
and their conceptual meaning is far from being straightforward, if applicable at all. In

the next section we show and discuss another way of accounting for regional centrality.

2.2.4 Regions as the aggregate centrality of their actors

A different way to measure regional centrality is to assume that a region’s centrality
actually refers to the centrality of its agents. Indeed, since regional networks can be seen
as the aggregate interactions of the agents from these regions, a natural way to assess a
region’s centrality could be to link it to the centrality of its agents.

In doing so, the first step is to find the relevant actor of the network. In co-patenting
networks, it can either be firms or inventors. The choice depends on whether we believe
that the information and knowledge pool of firms is shared among all its inventors. If
so, then firms can be considered as the real actors of the network. We will call ‘agent’
the entity resulting of this choice. Thus, the regional network can then be depicted by a
micro-level network formed of the links between the agents, each of them belonging to a
region. To build the regional centrality, one has to choose the relevant centrality measure

and compute it at the agent’s level. Let ¢; be the centrality of agent 7 and let S, be the
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Figure 2.2 — Sample of an inter-regional network. Illustration of two regions with external
links, differentiated with respect to their internal links.

set of agents belonging to region r. Then, the centrality of region r, C;, can be defined

merely as the sum of the centrality of its agents, as follows:

Cr:Zc,;.

1ESy

Beyond the problems inherent to the centrality measures discussed earlier (e.g., linked
to the nature of the flows), this methodology — aggregation of micro-level network cent-
ralities — also involves drawbacks. The main problem stems from the links occurring
internally to regions. Indeed, should intra-regional links be counted in the micro-level
network? An example of a problematic case is illustrated by Figure 2.1. In this figure, a
network of three regions is represented: region A has many agents that are all connected
to each other but have not any link with other regions; conversely, the agents from regions
B and C have no intra-regional link but do have cross-regional collaborations. Actually, if
the network is computed at the micro-level, whatever the measure, region A will have the
higher centrality, despite having no inter-regional link whatsoever. This is fundamentally
problematic: a measure of regional centrality should not be able to give a high ranking to
regions having no external links, simply because it should somewhat relate to the position
within the interregional network which is not the case here.

A straightforward solution to this problem would be to ‘cut’ all intra-regional links:
the centrality would then be computed using a network where all internal links would be
severed. Yet, this adjustment would also lead to conceptual problems. Take for instance
the example illustrated by Figure 2.2. This figure depicts a network of two regions, A and

B, that are very similar. They both are composed of four agents and each has a link with
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another region. Region A has a strong internal structure: all its agents are connected.
On the contrary, no agent from region B has a link within the region. Despite that, the
agents of the two regions have different positions in the global network, if all internal links
are cut to compute the centralities, then the two regions would be equivalent. Cutting
internal links would involve a distortion in the network structure.

Consequently, the major problem raised by the aggregation of micro-level centralities
is that intra-regional links cannot either be kept or removed without posing conceptual

problems.

As developed in this section, the centrality measures discussed so far all suffer from
conceptual drawbacks when applied at the regional level. Given these considerations,
there is a need for developing alternative centrality measures applicable for regional R&D
networks and resting on more robust conceptual grounds. In what follows, we provide a
first attempt for the development of novel measurement approaches that explicitly address
the conceptual problems discussed above by taking into account the underlying micro

structure of regional R&D networks.

2.3 The concept of bridging paths

There is a strong need for overcoming the duality in analyses of R&D networks of regions
concerning the micro level which encompasses the actors participating in R&D collabor-
ations, and the aggregate, i.e. regional, level where the analysis focuses on. As has been
discussed in the previous section, major problems arise in applying and interpreting con-
ventional SNA-based centrality measures. The purpose of this section is to provide a new
concept that is meaningful in the context of inter-regional R&D networks. We introduce
the notion of a bridging path denoting a form of indirect connection between regions,
i.e. regions are indirectly connected in the network thanks to their micro-level actors.
We first define this concept before providing an approach to derive the expected number
of bridging paths from aggregate flows of R&D interactions. The expected number of
bridging paths between regions will be the major building block of the regional centrality
measure we introduce in the next section.

To introduce the concept of bridging paths, consider a network where the nodes are the
regions and the connections between the regions represent the R&D interactions between
their agents. This represents a weighted network where we define g;; as the number of
R&D interactions (i.e. micro-level links) between regions i and j. Further, each micro-
level link between two regions is denoted by Yis» where Y;; represents the a*? link between
regions ¢ and j with @ € {1,...,g;;}. A bridging path is then regarded as a set of two
links at the micro level connecting three agents from three different regions. Speaking
in social network analytical terms, the micro-level agent in one region act as a ‘broker’
(Burt, 1992) for two other not directly connected actors; he/she has a bridging role in

the network of regions linking indirectly the micro-level agents of two other regions. This
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triangulation between actors located in three different regions leads to the notion of an
inter-regional bridging path. Formally, a bridging path is defined as a set of two links
from two different regions, say 7 and j, with a third one, say k, so that the agents from 7
and j are both connected to the same agent in k. This means that a pair of links (y5%,, y;?k)
forms a bridging path if, and only if, y%, and y;?k are connected to the same agent in region
k. In other words, agents i and j are indirectly connected thanks to one agent of region
k.

This notion is depicted by figure 1 which represents a regional network of three regions.
In this figure, the pair of links (y?k,y}k) is a bridging path between regions i and j
stemming from k because the agent from k& maintains both links yfk and y}k. Although
both regions j and k do have links with region i, there is no bridging path between them
because the agents from ¢ of the links yz-lk and y?k are neither connected to y@-lj, y% nor
y% Hence, region i provide not any bridging path between regions j and k in this set-up.
We see that the notion of bridging path is about indirect connections. Accordingly, the
region with most bridging paths is region j, as it provides two bridging paths between

regions i and k.

Agent

Region k Region
Ré&D interactions

Bridging Path

Region i

Figure 2.3 — Illustration of the notion of bridging paths

Notes: The figure depicts three bridging paths formed by the following pairs of links: (y,, y} £)s (ygj,y?-k)
and (y?j,y?k). So the regional dyads (j,k), (z,k) and (7,7) have respectively 0, 2 and 1 bridging paths
stemming from regions ¢, j and k, respectively.

The relevance of the bridging paths concept can be quite directly underlined by means
of basic theoretical considerations in innovation research. The creation of new knowledge is
often viewed as a recombination of existing knowledge (see, e.g., Kogut and Zander, 1992;
Fleming, 2001; Cassiman and Veugelers, 2006). It implies that the source from which the
agents draw their knowledge will have an impact on their ability to generate interesting
ideas and new knowledge. In the case where a region is isolated, where collaborations
occur mainly within the region, the knowledge pool may become redundant and even
lead to lock-in situations (see, e.g., David, 1985; Arthur, 1989). Collaborations with
agents from other regions allow to benefit from different knowledge bases (see, e.g., Singh,

2005; Berliant and Fujita, 2012), help moderate the problem of redundancy and generate

61



more radical innovations. From this viewpoint, bridging paths provide better knowledge
opportunities to regions. Then regions from which stem many bridging paths could be seen
as key players in the network with actors potentially benefiting from a more diversified
knowledge pool.

Moreover, bridging paths may also be of significance when we consider network form-
ation processes. Indeed, several recent studies have put at the forefront the consideration
that the structure of network links plays an important role in explaining future states of
the network (see, e.g., Barabasi et al., 2002; Jackson and Rogers, 2007). Recent research
in the context of R&D networks has shown that two actors are more likely to collaborate
together if they share a common collaborator (that is if they are indirectly linked in the
network, see, e.g., Fafchamps et al., 2010; ter Wal, 2014). Hence, bridging path create
network proximity and opportunity for (triadic) closure so that there are good reasons
to assume that bridging paths matter for the evolution of the whole network. Indeed,
if bridging paths represent indirect connections between agents from different regions,
then we can assume that those regions which provide the bridging paths are in a position
to facilitate the connectivity between other regions in the network. Bridging paths can
then be seen as important for regions not only in the context of accessing a diversified
knowledge pool, but also in a network formation perspective as it helps the formation of

inter-regional connections and with that inter-regional diffusion of knowledge.

2.4 A new measure of regional centrality

Proposing the significance of the bridging path concept for measuring regional centrality
in regional R&D networks, the question arises at this point how this concept can be in-
corporated into regional centrality measures. Usually, empirical researchers focusing on
regions as units of observations, and by this, on regional R&D networks, face the problem
that the underlying micro structure of the network may be either undefined or unobserv-
able. Concerning the latter, one may consider the example of co-patenting networks (see,
e.g., Lata et al., 2015), for which the relevant actors are individual persons (inventors)
that are hardly identifiable as homogeneous nodes over time. Thus, we introduce a model
of random matching. It allows us to approximate the underlying micro-structure by de-
riving an expected number of bridging paths (ENB) between two regions, using only the
aggregate flows of collaborations between regions.”

Our random matching process relies on two basic assumptions: (i) collaborations occur
between two agents, and (ii) when a collaboration occurs, the two agents are matched at
random. By this, it reflects the ex post probability to be matched, i.e. the probability
that two agents for two particular regions have been matched conditional to the structure

of the inter-regional flows of collaborations. The very intention is to give a baseline for

"This model is an adaptation of the one in Bergé (2015). In fact, the methodology is very similar to
the one used by Bloom et al. (2013), which provides a measure of technological similarity between firms’
patenting activity introducing a model which considers random encounters between pairs of scientists.
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a micro-network that was likely to occur, with respect to what is observable at the meso
level. Thus, random matching is used to infer the structure of the micro network by using
only the information included the links between the regions.

On this basis, it is now possible to derive the expected number of bridging paths
stemming from a given region by using directly the aggregate flows of collaborations
occurring between regions. First, denote by n; the number of actors active in R&D
collaboration in region i. Then the expected number of bridging paths, EN Bj‘k: between
the two regions j and k stemming from the bridging region 7 along the random matching

process is:8

ENB, = %%k (2.2)

n’f.

The expression related by equation (2.2) simply states that the more connections two
regions, j and k, have with a third common region, i, the more likely they will have
indirect connections at the micro level (bridging paths) thanks to the actors located in .

Based on this, we are able to construct a new measure of the centrality of regions
in R&D networks, denoted as regional bridging centrality (BC). The BC is defined as
the number of bridging paths stemming from a region between all dyads of the network.

Formally, this means that the BC of region 7 is equal to:

BC; = Y Y ENBj, (2.3)
J#1 k#ij
where EN Bj‘k is defined by equation (2.2).

The interesting point of our measure is that its definition can be pretty much simplified
and interpreted meaningfully in a regional context. Assume that the number of agents
(n;) is proportional to the number of projects (g;); then equation (2.3) decomposes to a
notion of centrality of a region that entails a combination of three different components,
reflecting i) a region’s participation intensity, ii) a region’s relative outward orientation

and iii) a region’s diversification of network links.® It is defined as
BC; = g s; (1—h;), (2.4)

where

g; s the number of outer collaborations (i.e. outer degree, that is g; = g; — g;; which is
the total number of collaborations of ¢, noted g;, excluding the internal ones, noted
gi;)- It refers to a region’s participation intensity in inter-regional collaborations,
which affects positively the centrality of the region. It is a general measure of how

well a region is embedded in the particular R&D network. Note that a region’s

8For a formal proof, see Bergé (2015).
9The formal proof is given in Appendix 2.7.1.
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size will amplify the probability of yielding more bridges between other regions.
The participation intensity could therefore be interpreted as a broad measure of
the relational capacity of the regional network nodes, which should be taken into

account.

s; is the share of outer collaborations with s; = g;/g;. It can be related to the relative
outward orientation of all established network linkages, i.e. the relative degree of
external R&D interactions. It refers to the openness of a region with respect to know-
ledge sourcing strategies. Given the fact that the BC focuses on the capacity of one
region to link other regions, a high number of region-internal collaborations would
have a negative influence as it potentially reduces the number of actors connecting

different regions.

h; refers to the Herfindahl-Hischman (HH) index of the distribution of i’s outer col-
laborations defined as h; = 3=, .;(9:;/ g;)> . The term 1 — h; varies between 0 and
1 according to the degree of diversification of network links to other regions, and
indicates how a region’s collaborations are distributed along its neighboring regions
in the network. In this case, the more the collaborations are concentrated, the less
the region is central. This is because concentration offsets the benefits of outer con-
nections as it reduces the actors’ possibility to build bridges among different regions.
Also it relates to the fact that the more the outer collaboration pool is diversified
over different regions, the more the region can draw its knowledge from different

sources.

One central promising property of the measure is that it takes account of the peculiar
characteristics of regional networks. Indeed, regional networks are characterised by the
structure of region-internal and region-external links and this feature cannot be dealt
with adequately by using a single (a-spatial) SNA centrality measure. A region’s ability
to benefit from new ties in the R&D network or exploit external knowledge sources via
the links may be determined by all three components together. Outward orientation and
higher diversification in particular may help a region to develop and renew the regional
knowledge base faster, or prevent lock-in situations in certain technologies (see, e.g.,
Breschi and Lenzi, 2015).

2.5 An illustrative example: an application to the

European co-patent network

Given the promising features of the regional bridging centrality (BC) measure as defined
in the previous section, an application to empirical regional R&D networks is required in
order to illustrate the behaviour of the measure as compared to the conventional ones.

To this end, we will employ co-patent data, comparing the regional BC with three other
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commonly used centrality measures, that is degree, eigenvector and betweenness cent-
rality. ! We use the European co-patent network, a network of inter- and intra-regional
collaborations in patent production observed at the regional level. A co-patent, that is a
collaboration issuing a patent grant, is a visible trail of a successful R&D collaboration
and is defined as an invention implying at least two inventors. This data are extracted
from the REGPAT database (Maraut et al., 2008) and consist of all patents applied for
at the European patent office (EPO) in the year 2006. We make use of the information
contained in each patent record to build the co-patent network. Particularly, we use the
address contained in each inventor’s byline to map every patent to a set of NUTS 2 regions.
That is, the NUTS 2 regions represent the place of residence of the inventors when they
applied the patent. We consider that the flow of inter-regional collaborations between two
regions consists of all patents having at least one inventor from each of these two regions.
Collaborations occurring strictly within the regions are counted as intra-regional patent.

The network consists of collaboration flows between 245 NUTS 2 regions. This cross-
regional co-patenting network is based on a total of 40,142 patents, of which 16,661 are
inter-regional collaborations linking the 245 NUTS2 regions. As a starting point, the
three components of the BC are described by table 2.1a. The participation intensity is
on average 237, which means that the regions show on average 237 co-patent links to
other regions in the network. This is much higher than the median of 100, confirming the
right-skewed distribution of the number of co-patent links the individual regions hold to
other regions.

More interestingly is the relative outward orientation. Here, the median is 71%, mean-
ing that for half the regions, more than 71% of their patents are of inter-regional nature,
being invented with at least one partner outside the regions. Also diversification is rel-
atively high, with an average at 85%, meaning that the co-patents are rather distributed
along several regions. Hence, the regions resort — on average — to a rich portfolio of
partner regions leading to a diversified structure of inter-regional knowledge exchanges
in patenting. In contrast to the participation intensity, the other two components, the
relative outward orientation and the structure, are slightly left skewed, and can be seen
as moderators of the scale of a region. Indeed, being a large region with a high network
participation intensity does not necessarily lead to a high centrality value, if either the
share of intra-regional collaborations is very large or inter-regional links are concentrated
among only a few regions.

Table 2.1 reports some statistics on the BC measure as compared to the conventional

measures, and the correlations among them. Note that all measures are normalized so

0The degree is here calculated as the number of unique projects the agents of a region are involved
in. The eigenvector and the betweenness centrality are computed using the package igraph available in
the statistical software R. Both these two measures are based on the weighted regional co-patent network
where the nodes are the regions and where the linkages between any two regions are the number of patents
co-invented by agents from these two regions. Due to the nature of the network, we used the weighted
version of both the betweenness and the eigenvector centrality.
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that the highest value is one and the lowest zero.!! While there is no large difference in
the summary statistics provided by table 2.1b, it can still be noted that the eigenvector-
centrality is clearly the more skewed of the four measures. Table 2.1c¢ further shows that
the correlation between the bridging centrality and the other measures ranges from 70%
to 93%. Those high levels are reassuring as they show that the BC does not completely
reorder the regional positioning. The difference in the distribution of the four centrality
measures compared is also illustrated by figure 2 which reports the cumulative distribution
of each measure. We can see that the eigenvector-centrality, except at the very beginning
of the distribution, is on the top of all other measures while the BC lies between the
degree and the betweenness. The differences in distribution are higher at the beginning of
the distribution (below 0.50) than at the end where the distribution of the BC, the degree
and the betweenness are much closer. Yet, the differences with existing measurements
are real and it is worthwhile to point out to changes occurring to some particular regions.
Moreover, it becomes obvious from this basic statistics that the bridging centrality is a
combination of three components. It depends not only the scale of a region, like it might
be the case for the degree centrality, or the quality of partners, i.e. whether they are
located at the very core of the network, as for the eigenvector centrality. Therefore, it
might be of particular interest how differently the three components are distributed across

the individual regions.

11Forrl:ta]]y, the transformation applied to each centrality measure is: (£ — Zmin)/(Tmaz — Tmin)-
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Table 2.2 — Centralities of the top 30 regions for the co-patent network, ranked by bridging
centrality.

NUTS 2 Bridging Degree Eigenvector Betweenness
Centrality Centrality Centrality Centrality
value (rank) value (rank) value (rank)  value (rank)
Karlsruhe DE12  1.00 (1) 0.0 ( 3) 1.00 (1) 0.46 (7)
Darmstadt DE71  0.85 ( 2) 0.86 ( 5) 0.79 ( 3) 0.53 ( 5)
Rheinhessen-Pfalz DEB3  0.80 ( 3) 0.66 ( 8) 0.89 ( 2) 0.25 (12)
Diisseldorf DEA1  0.80 ( 4) 0.82 ( 6) 0.62 (4) 0.51 ( 6)
Kéln DEA2  0.78 ( 5) 0.73 ( 7) 0.59 ( 6) 0.55 ( 4)
Oberbayern DE21  0.57 ( 6) 0.93 ( 2) 0.39 (7) 0.93 ( 2)
Stuttgart DE11 051 (7) 0.87 ( 4) 0.59 ( 5) 0.34 ( 8)
Northwestern Switzerland CHO03 0.50 ( 8) 0.44 (13) 0.18 (16) 0.24 (14)
Freiburg DE13  0.48 (9) 0.55 ( 9) 0.35 (9) 0.20 (20)
Arnsberg  DEA5  0.42 (10) 0.39 (17) 0.31 (10) 0.06 (62)
Berlin DE30  0.40 (11) 0.42 (14) 0.22 (13) 0.18 (22)
Tibingen DE14  0.38 (12) 0.47 (12) 0.35 ( 8) 0.15 (31)
fle de France FR10  0.34 (13) 1.00 ( 1) 0.06 (36) 1.00 ( 1)
Miinster DEA3 0.3 (14) 0.29 (19) 0.22 (12) 0.16 (28)
Mittelfranken DE25  0.33 (15) 0.40 (16) 0.16 (18) 0.11 (37)
Alsace FR42  0.30 (16) 0.26 (26) 0.13 (19) 0.22 (16)
Zurich CHO4  0.30 (17) 0.32 (18) 0.11 (22) 0.18 (23)
Schwaben DE27  0.29 (18) 0.28 (20) 0.21 (14) 0.06 (58)
Brandenburg DE40  0.28 (19) 0.23 (29) 0.16 (17) 0.03 (92)
Hannover DE92  0.25 (20) 0.25 (27) 0.12 (21) 0.08 (50)
Unterfranken DE26  0.24 (21) 0.26 (24) 0.23 (11) 0.05 (64)
Rhéne-Alpes FR71  0.24 (22) 0.54 (10) 0.06 (37) 0.32 (10)
Hamburg DE60  0.24 (23) 0.21 (35) 0.10 (25) 0.09 (47)
Prov. Vlaams-Brabant BE24  0.23 (24) 0.19 (38) 0.04 (44) 0.13 (33)
Espace Mittelland CH02  0.22 (25) 0.26 (25) 0.09 (26) 0.06 (60)
Koblenz DEB1  0.22 (26) 0.18 (40) 0.19 (15) 0.07 (57)
Schleswig-Holstein DEF0  0.22 (27) 0.22 (32) 0.10 (23) 0.04 (72)
Prov. Antwerpen BE21 0.21 (28) 0.21 (34) 0.04 (42) 0.19 (21)
Lineburg DE93  0.20 (29) 0.17 (43) 0.07 (34) 0.10 (44)
Région de Bruxelles,
Brussels Hoofdstede BE10 0.20 (30) 0.14 (61) 0.02 (56) 0.06 (59)
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Figure 2.4 — Spatial distribution of the four centrality measures among the 242 NUTS 2 regions.
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Figure 2.5 — Cumulative distributions of the centrality measures in log-log.

Table 2.2 represents the top 30 centralities ordered by the bridging centrality. We focus
on commenting the most salient differences. As highlighted by Figure 2.4, the ranking is
clearly dominated by German regions which rank highest for most measures. Interestingly,
we find 13 German regions among the 15 best ranked regions for the bridging centrality.
This results from the fact that they show both a high participation intensity as well as
high openness from an inter-regional perspective; they show a high absolute as well as
relative number of inter-regional co-patents. However, the concentration tendency and
high clustering of co-patenting activities at the national level of Germany may point to
the fact that economic linkages at the national level prevail. Likely explanations are low
language / cultural barriers as well as lower transaction costs. These factors seem to
promote the high regional bridging centrality in German regions.

Another interesting case is the region of Ile de France (FR10) which ranks at the 13
position for the bridging centrality, while being ranked first with respect to its degree
centrality. We see that the measure of degree centrality may overstate its position in the
inter-regional co-patent network. Despite its highly distributed structure of collaborations
(it has a low HH index of 0.04), this region is highly reliant on internal collaborations (the
outer share of collaborations is only 45%) that it fails to provide much bridging paths to
the inter-regional R&D network. By contrast, the eigenvector centrality may understate
the importance of FR10; it ranks only 36 as it is linked to the network core regions at

a lower degree. For the same reason as for FR10, some regions that are ranked high in
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the degree centrality end up much lower in the BC; i.e. they show high embeddedness in
the inter-regional R&D network but are less open and diversified in the structure of their
inter-regional collaboration, thus receiving lower values of bridging centrality.

Following the criteria of openness and diversification, interesting is also the case of
Brussels (BE10) which ranks after the 56!* place for all centrality measures other than
the bridging centrality. With the BC, BE10 ranks 30t", gaining at least 26 places com-
pared to other measures. Yet, the SNA-based centrality measures may underestimate its
positioning in the inter-regional co-patent network: due to its very high outward orienta-
tion (its outer share is 94%) and a highly distributed structure of collaborations (it has a
low HH index of 0.07), this region is likely to provide many bridging paths to the network
and may therefore be an important bridge for the whole network and for inter-regional

knowledge diffusion.

Figure 2.6 — The European co-patent network

Notes: Node size corresponds to the relative outward orientation of a region, line width corresponds to
the number of co-patents between two region.

Figure 3 illustrates the European co-patent network for the European NUTS 2 regions,
with the node size corresponding to the relative outward orientation of a region. It
confirms the very dense network structure between core regions clustered in Germany,
which hold intensive connections among each other. From a regional perspective, the
bridging centrality is high for these regions, i.e. they yield high values for all three

components, despite the fact that most of the links are confined at the national level.
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Furthermore, we observe a high relative outward orientation of some South and Eastern
European regions. In terms of established co-patent links they seem to be highly open,
which could be explained by the lack of internal collaboration structures. Nevertheless,

inter-regional linkages are generally weak for these regions.

2.6 Concluding remarks

The notion of centrality is ubiquitous in debates on the role of regions in R&D net-
works. Quantitative approaches to measure regional centrality, however, are often based
on micro-level centrality measures as introduced in social network analysis (SNA). Empir-
ical analysis of regional networks requires accounting for the network structure originally
defined at the micro level or by the linkages between different organisations, which often
limits the usefulness and conclusive identification of regions in the network. A further
unavoidable problem relates to the considerable loss of information regarding network
structure and meaning when regions are regarded only as aggregate units. In this study
we address this micro / meso-level duality in how we view regional networks and the
region’s structural network positioning is usually defined, questioning the conventional
measurement approaches for region-level analysis.

By introducing the notion of regional bridging centrality we suggest a new approach
for assessing the centrality of regions in R&D networks that is able to cope with the re-
gional dimension in measuring the centrality. Based on the concept of bridging paths, i.e.
a set of two links connecting three actors in three different regions, we develop a measure
of centrality that satisfies the requirements of both R&D networks and region-level applic-
ations: A bridging path between regions characterizes a situation where regional actors
represent bridges or brokers in the network of regions as they connect indirectly the actors
located in two other regions. Such a triangulation in regional networks, as we argue, is a
key issue for knowledge recombinations and the extension of a region’s knowledge base.

We further show that centrality in terms of bridging centrality can be viewed as a
function of (i) the participation intensity in inter-regional collaborations, (ii) its openness
to other regions (i.e. the relative outward orientation of network links), and iii) the
diversification of links to other regions. With these three components — which are both
intuitive and computationally simple — we argue that regional network centrality has to
be viewed from a multidimensional perspective. Only with such an integrative perspective
we can achieve a better understanding of the role of certain regions in inter-regional R&D
networks.

The comparative analysis with three standard SNA-centrality measures confirms the
performance and usefulness of our measure of regional bridging centrality. We chose the
inter-regional co-patent network for European regions as illustrative example. Despite
observing similar patterns in basic statistics like correlations of the centralities or the

skewness, we were able to show striking and interesting differences in the structure of the
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inter-regional co-patent linkages across regions. The results reveal that thinking only of
the degree of participation is not enough. Rather, the most central regions show simultan-
eously high embeddedness, high relative outward orientation and high diversification of
their network links (e.g. Karlsruhe). In contrast, regions that may be strongly embedded
(i.e. high participation intensity) may show low openness and diversification of links, thus
yielding lower centrality values (e.g. Ile de France). Hence, a region’s outward orientation
and the diversification of its network links moderates the influence of regional scale on
network centrality. This is a major strength of the measure proposed in this study, and
it paves the way for future studies to examine the role of certain regions in networks of
inter-regional knowledge flows. Viewing network positioning of regions in terms of re-
gional bridging centrality might further elevate our understanding of which regions are
the most central, show high visibility and at the same time are most important for the
network and the inter-regional diffusion of knowledge.

Furthermore, the bridging centrality measure may contribute to the development of
a multi-dimensional typology of regions, based on structural network criteria according
to their levels of embeddedness, openness and diversification of links in inter-regional
networks. Such a typology might enhance our understanding of how different the roles of
regions in networks might be, and how they contribute to the arrangement and evolution of
the inter-regional structure. This is one of our main points for a future research agenda.
Moreover, it seems natural that an application of the bridging centrality measure on
other types of knowledge networks according to different technological fields might reveal
interesting patterns of the most central network nodes. Hence, the measure of bridging
centrality is not limited to the context of R&D collaborations but may prove to be useful
also for the application in other types of network structures, such as inter-regional trade

flows or inter-regional economic value chains, also regarding their evolution over time.

2.7 Appendix

2.7.1 Obtaining the Bridging Centrality

Assume that the number of agents of region i, n;, and the number of projects of that region,
gi, are proportional so that n; = ag;. Then the bridging centrality can be rewritten as

follows:
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Further, as the a is common to all regions, we lose no generality to setting it to a = 1.
Which yields the result. a
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Chapter 3

How does the structure of the
inventors network affect regional
inventive performance? Evidence

from France?

3.1 Introduction

Social and economic networks are involved in numerous mechanisms susceptible to ground
agglomeration economies, and their role appears to be reinforced when related to innov-
ation. The literature suggests they are at play in the three types of mechanisms that
ground agglomeration economies (sharing, matching and knowledge spillovers, according
to the classification developed by Duranton and Puga (2004)). Sharing: Local companies
are likely to benefit not only from sharing larger local production factor markets, but also
from sharing denser social connections between agents on the factor supply side. Social
networks are known to facilitate the circulation of information on the availability of jobs
(Granovetter, 1973; Calv6-Armengol and Zenou, 2004), in particular for finding highly
qualified jobs (Granovetter, 1995). Concerning the capital market factor, inter-individual
networks are also known to be crucial determinants of the syndication behaviour in the
venture capital business (Sorenson and Stuart, 2001). Matching: Job search models
suggest that interpersonal relations may reduce the costs of acquiring information on
potential matches and increase the quality of matches. Hanaki et al. (2010) show that
inventors who had professional relations with the employees of his/her new employer are
more productive and have longer tenure. Intermediaries in the network may also play
the role of reference persons thereby mitigating information asymmetry problems prior
to the matches (Montgomery, 1991). Knowledge spillovers: It is probably the mechan-
ism in which social networks have the most prominent role. Marshall (1890) explained

how locally generated ideas can be diffused through social and professional interactions

!This chapter is based on an article co-authored with Nicolas Carayol and Pascale Roux.
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and thereby gain in being improved and combined with other suggestions. Knowledge
spillovers in local environments nearly always involve non-market social relations through

which knowledge actually diffuses.!

However, Carlino and Kerr (2015), who review studies on agglomeration and innov-
ation, argue that “there is very little insight into how knowledge is transmitted among
individuals living in close geographic proximity. Presumably this occurs through both
professional and social networks, but this has not been confirmed” (Carlino and Kerr,
2015). Though many case studies have emphasized that social networks ground the per-
formance of clusters (Saxenian, 1991; Porter, 1998) and are likely to sustain knowledge
spillovers (cf. Singh, 2005; Agrawal et al., 2006; Breschi and Lissoni, 2009), only a few
large empirical studies have investigated the role of social networks on local innovation
using explicit social network data. To our knowledge the only exceptions are (Fleming
et al., 2007) and (Lobo and Strumsky, 2008), based on nearly identical US patent data
from the late seventies to 2002. They regress, at the MSA level, patents counts against
network variables built using co-invention patterns and other controls. Both studies find-
ings are somewhat negative concerning the influence of professional networks on regional
innovative performance while more traditional agglomeration features prove to be much

more related to innovation.

In this study, we aim at reassessing whether inventors networks do favour regional
innovation, and if so, how. Building on the literature on network centrality (Katz, 1953;
Bonacich, 1972; Brin and Page, 1998; Ballester et al., 2006), we propose simple and
flexible micro-foundations, conceptualizing how inventors productivity can be affected
by their network of social connections. This model contains three key ingredients that
will be tested in the empirical part of the chapter: connectivity, complementarity and
rivalry. Connectivity is the most basic assumption. It states that inventors productivity
is (hypothetically positively) affected by connections to other inventors. Complementarity
posits that an inventor efforts’ productivity depends positively on the efforts that his/her
partners put into knowledge production. This assumption captures the idea that all part-
ners are not the same: more active neighbours are contributing more to ego’s inventive
productivity. Rivalry posits that the benefit one can draw from each collaboration is in-
versely related to the number of connections of that partner. This captures the idea that
incoming knowledge or information flows are reduced when partners are more connected.
Consequently, rivalry implies that new connections incur some local negative externality.
As we will show in this chapter, this very simple set-up implies that, at the equilibrium,
inventors produce efforts that are proportional to their centrality in the network (as in
Ballester et al., 2006). The form of network centrality implied by the model is new and en-
compasses existing centrality measures as specific cases, such as the Degree, the Bonacich

and the Page-Rank. The main characteristic of this centrality measure is that it is ruled

LOtherwise, knowledge may also be transferred through market transactions (e.g. lobar mobility,
specialized business services), but then networks are back into the picture through matching mechanisms

(Porter, 1990).
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by the chosen levels of connectivity, complementarity and rivalry, which will estimated
in our empirical exercise, highlighting how networks presumably affect innovation. In
particular, complementarity increases the importance of being directly connected to more
central agents in the network and therefore captures the positive effect of being connected

to stars in the network.

Our empirical evidence is based on panel data of nearly one hundred thousand French
inventors and their collaborations for the period 1981-2003 previously cleaned, disam-
biguated and matched with company mandatory surveys data (Carayol et al., 2015).
The analysis is carried out at the regional level, identified by French employment areas
(EAs), combined to seven technological fields. Our micro-founded methodology allows
us to refrain from regressing regional performance on several network statistics (often
highly correlated) in an ad-hoc manner. We estimate a model in which the future patent
production of a given employment areax technology is a function of the average network
centrality of the inventors of this EA-technology. The structure of the data allows us to

include a various set of controls such as EA-technology and time-technology fixed effects.

The results show that, first of all, the inventors productivity are indeed positively
affected by their connections in the network (connectivity): inventors’ centrality has a
positive influence on regional innovation. This first result demonstrates that the collab-
oration network of inventors are not just equilibrium properties that would be shaped by
other physical, social or economic conditions. This is for instance implicitly assumed in
economic geography models such as the one developed by Helsley and Strange (2004), in
which agents meet randomly in cities and these meetings in turn support learning oppor-
tunities with some probability or knowledge exchanges. For them, the architecture of the
connections is not relevant, neither for meeting probabilities nor for the expected benefits
of these meetings. Our results show instead that the architecture of the professional col-
laboration networks of inventors are not just a by-product of agglomeration but relevant

state variables explaining future innovation.

Our second main empirical result is negative, in that we find no evidence of rivalry
in the way networks sustain innovation. This finding, which is robust to a long list or
robustness checks, is in support of an interpretation of the network benefits in terms of
diffusion and contact rather than in terms of shared time and efforts in common projects
(which are rival). One implication is that network connections do not imply any negative
externality on neighbours. The third main result, although less systematic, supports that
there is some complementarity effect at play in the network. This complementarity effect
is verified only when either: the most prolific inventors are excluded as recipients of these
effects (top-five or top-one percent), only the most innovative EA-fields are considered,
only intra-regional networks are accounted for, or larger spatial units of analysis are
used (NUTS3 instead of EA). Lastly, we also show that the efforts-based view of our
microeconomic model, which sustains the complementarity of efforts interpretation of

previous result, is justified. Indeed, a slight modification of the model, not retaining this
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feature, predicts a relation between the network and invention which is not supported by
the data.

The next section reviews the literature on collaboration and the benefits provided from
the network at the inventor and at the regional level. Section 3.3 presents the model which
links inventors’ productivity to their network. The data, variables and the econometric
strategy are described in Section 3.4. The results are presented in Section 3.5. The last

section provides concluding remarks.

3.2 Why would inventors networks matter for re-

gional innovation

In this section, our objective is to explain why and how inventors network should matter
for regional innovativeness. Researchers have highlighted the importance of localized
knowledge flows as crucial drivers of local inventivity. This is also consistent with a
strong assumption made in economic geography according to which knowledge spillovers
ground the formation of industrial and innovative clusters (Section 3.2.1). Knowledge
flows through (various) interpersonal relations of researchers and/or engineers; which are
essentially tied nearby (Section 3.2.2). Finally, there are many reasons to think that, as an
"invisible college" of academic researchers exist, communities of inventors would account
for inventiveness. Paradoxically, the few studies that have sought to reveal this influence

are not conclusive (Section 3.2.3).

3.2.1 Agglomeration, knowledge spillovers and regional innova-
tion

What explains the innovativeness of a region? A first response can be indirectly found
in Marshall (1890), followed by Jacobs (1961) and Jaffe (1986), who described three
reasons for which productive activities tend to cluster in space: the proximity to dedicated
suppliers and services, the presence of a lobar market pooling and the existence of localized
knowledge spillovers. Those benefits to agglomeration seem to play fully for innovation
activities since it has been proved in many ways and in different contexts (national,
sectoral) that innovative (R&D) activities and innovations are even more concentrated
than are manufacturing industries (e.g., Audretsch and Feldman, 1996; Carrincazeaux

et al., 2001; Buzard and Carlino, 2013).

Recently, Carlino and Kerr (2015) survey theoretical models examining how these
mechanisms could operate for innovation. Using Duranton and Puga (2004) taxonomy,
they set the reasons why sharing common inputs (such as skilled labour, specialized
business services, entrepreneurial finance), benefiting from labour market pooling (which

improves the quality of matches and the mobility of workers) and from learning (thanks to
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local information diffusion) are each relevant for innovative activities. Unfortunately, the
empirical identification of the outcome of each of these mechanisms in terms of knowledge
generation is problematic and indeed, there is a severe lack of empirical evidence on these

issues (Carlino and Kerr, 2015).

Among those mechanisms, knowledge spillovers are of critical importance in explaining
local creativity and innovation. This has been also pointed out in New Growth Theory
models, which emphasize the role of knowledge flows as crucial drivers of economic growth
(e.g. Lucas, 1988; Romer, 1990). In parallel, abundant empirical evidences, mostly relying
on knowledge production functions, highlight that such knowledge spillovers are spatially
and technologically bounded (see Jaffe, 1986; Anselin et al., 1997; Orlando, 2000; Autant-
Bernard, 2001; Feldman, 1999, for a review). Jaffe et al. (1993) or Almeida and Kogut
(1997) have taken a different route to examine how knowledge flows in space, using patents
data. They use patent citations to trace the flows of knowledge from one invention to
another. They compute and compare the probabilities of patents citing prior patents with
inventors from the same metropolitan area against a randomly drawn control sample of
cited patents. They show that citations are (according to samples) two, three or even six

times more likely to come from the same area than control patents.

3.2.2 Inventors’ relationships vs. co-location

If knowledge spillovers mainly occur locally, ideas are not circulating “in the air”. Es-
pecially when complex, tacit or advanced, their diffusion impose interpersonal relations
between researchers and/or engineers which may span firm or institutions boundaries
(Fleming and Marx, 2006). According to Saxenian (1996), those relations are often in-
formal. Moreover, the Silicon Valley was characterized by a high mobility of workers
across companies. This led, at least partly, to a superior and lasting innovative perform-
ance of this region, contrasting with the decline of the Boston-Route 128 cluster. Thus
co-location is only part of the story: this has been proven more systematically thanks
to the availability of patents and publications data which make (at least in part) vis-
ible both these flows of information, through citations, and of collaborations between
inventors, through co-patenting or co-publication. Breschi and Lissoni (2003) and Singh
(2005), respectively for US and European inventors, show that interpersonal connections
are the support of such knowledge spillovers and that knowledge flow decreases sharply
with social distance. These authors found that being located in the same area has little
or not supplementary impact on the probability of knowledge flow between inventors that
already have close network ties. The importance of relations between inventors as support
of knowledge transmission was also evidenced by Fleming and Marx (2006) on the basis

of interviews of a representative sample of U.S. patent inventors.

Indeed, it turns out that inventors’ relationships are mainly tied locally. Using European

patent data, Carayol and Roux (2007) analyse the geographic distance separating invent-
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ors who co-invent a patent. They found that more than 75% of such connections are
achieved between inventors that live at less than 50 km from each other while less than
4% of the connections are formed between agents who live at more than 550 km from each
other?. One explanation is linked to the costs of maintaining connections which would
increase with distance: closely located agents incur lower costs to establish communica-
tions and to coordinate, in terms of transporting costs and time. Another explanation is
the fact that geographic proximity between inventors and their agglomeration favour the
chance of meeting and matching. Thus, geographic proximity or co-location seem to be
imperfect proxies of local relationships which generate knowledge spillovers. On the other
hand, geographic space is non neutral for the process of relations formation. In sociology
and other professional contexts, there is evidence of a positive effects of geographical
proximity on inter-organizational relations formation (Powell and Grodal, 2005; Sorenson

and Stuart, 2008). Thus relationships and geography are likely to overlap.

There are various channels through which the relations between inventors foster their
productivity. Innovation consists fundamentally in a recombination of existing knowledge
that eventually leads to a new device or knowledge (e.g. Nelson and Winter, 1982; Basalla,
1988; Henderson and Clark, 1990; Sorenson and Fleming, 2004; Sorenson et al., 2006).
Fleming (2002, p. 1072) considers an innovation as any new “combination or rearrange-
ment of components |[...], regardless of [...] its success”, where the term ‘component’ is
meant to have a broad meaning, encompassing abstract ideas and physical objects. Thus,
the role of collaboration can be underlined by this need of recombination. As the set of
knowledge a researcher masters is bounded, collaboration makes possible, by combining
different knowledge sets, to extend the set of knowledge that is accessible for the team and

would have not been attainable alone (see e.g., Arora and Gambardella, 1994; Weitzman,
1998; Fleming, 2002; Jones, 2009; Lee et al., 2015).

In addition, collaboration may have a lasting effect on inventors’ productivity. In the
collaboration process, inventors can learn new skills or benefit from the specific knowledge
possessed by their collaborators (Bercovitz and Feldman, 2011). For instance, in a survey
on scientists’ incentives to collaborate, Freeman et al. (2014, table 4) report that, for
more than 85% of the sample, “learning from each other” was an essential motivation to
collaborate. Furthermore, social interactions, mainly in the form of face to face contacts,
are the only medium to allow the sharing of tacit knowledge embodied in scientists and not
existing in a codified form (Dasgupta and David, 1994; Cowan and Foray, 1997). Thus,
only such interactions allow to draw from a specific, not available to all, set of knowledge.
This echoes to the idea that some specific sets of tacit knowledge are akin to ‘club goods’
so that the only possible way to access this knowledge would be from collaboration with

scientists from this club (Breschi and Lissoni, 2003).

Furthermore, while there are immense possibilities of knowledge recombinations, only

2They also found that most geographically mobile inventors remain in the same area: nearly 86% of
mobile inventors have a maximal distance between their different locations which is less than 50 km.
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a few may yield any important commercial outcome. From the inventor’s or firm’s view-
points, as research is costly, it is then essential to efficiently identify which idea may lead
to a valuable innovation. In this situation, interactions plays a critical role since they al-
low the individuals to enter a process of quick exchange and assessment of ideas implying
that low value ideas are more efficiently spotted and sifted out (e.g., Fleming et al., 2007;
Singh and Fleming, 2010; Lee et al., 2015). Stated differently, inventors must steer their
talent and energy to the right direction, otherwise, their efforts could lead to dead ends
or new knowledge that is not valuable (Singh and Fleming, 2010).

Learning effects combined with a better selection of ideas brought about by collab-
oration imply that inventors benefiting from many social connections can have a better
knowledge of which ideas or future research paths can be valuable. In other words, social
connections also allow the inventors to be more aware of which direction to sail in the
“uncharted sea of technological possibilities” (Schumpeter, 1943, p. 103). These effects

may be lasting beyond the collaboration term.

Finally, the social connections may also foster the inventors’ future productivity through
another channel: they also constitute a repository of information in which individuals can
draw information on possible partners (e.g., Gulati and Gargiulo, 1999; ter Wal, 2014).
This in turn may help them in finding future partners that are likely to be good matches,

and subsequently increase the productivity of their future collaboration.

3.2.3 Inventors networks and regional innovation

Some authors have started to investigate theoretically the impact of the full network of
research relations on the innovation within regions or systems. They aim to identify which
network characteristics are most relevant to explain firms’ or regional innovative perform-
ance, looking at both their local and global structural properties. Some of them focused
on the “small-world” property of social networks (Watts and Strogatz, 1998), which is
the coincidence of high local clustering and short global social distance separating agents.
Cowan and Jonard (2004) model knowledge diffusion between agents who barter differ-
ent types of knowledge. They examine the relationship between the knowledge network
architecture and diffusion performance. They found that the efficiency of knowledge
transmission is affected by the global architecture of connections among agents: diffusion
performance is maximal when the network exhibits both high local clustering while some
few relationships are long distance. It is generally argued that this tension between in
the one hand, local clustering which fosters communication and enforces cooperation, and
on the other hand, distant connections which bring non-redundant connections, is at the

core of the creative outcomes of small worlds (e.g., Fleming and Marx, 2006).

Using the analogy of innovation as a recombination process helps us to see this point.
Inventors of a given region develop inventions based on their set of existing knowledge. If

they do collaborate only internally to the region, the set of knowledge to be recombined
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may end up to be redundant, and this in turn may exhaust the set of possible valuable
innovations (Berliant and Fujita, 2008, 2012). The network can compensate this lack of
renewal of existing knowledge if some agents do collaborate with other regions (Bathelt
et al., 2004). These external (to the region) connections can bring in new possibilities
of innovation, as the knowledge available in other regions is likely to be differentiated.
Berliant and Fujita (2012) theoretically studied the development of knowledge embodied
in scientists across regions. They show that inter-regional connections are critical to
enhance the productivity of the economy by combining different knowledge sets. Thus,
the inventors network matter to regional productivity as linkages to other regions may

renew the knowledge base of the region and benefit regional innovation.

Furthermore, the density of the regional network is important since it can help ideas
to flow more easily across the connections of the network, increasing regional productivity.
Indeed, collaborations allow the inventors to be more efficient to select valuable ideas and
to be more aware of the valuable directions of research. These two benefits of collaboration
can diffuse along social connections (Sorenson and Fleming, 2004; Sorenson et al., 2006)
and make the whole network more productive. All the more, social connections can help
the scientists to be more aware of who could be a good partner for them. In this vein,
the denser the network, the more each scientist can draw information on their possible
partners. Therefore, the allocation of inventors across teams may be more efficient overall

in regions with dense networks, consequently increasing future regional productivity.

Though we have good reasons to expect that the whole web of relations matters for
regional innovation. Paradoxically, the few empirical studies examining this link have not
been conclusive. Fleming et al. (2007) have investigated whether regions whose internal
inventors network displayed a “small-world” structure are more inventive than others.
They rely on US patent data from the late seventies to 2002 and regress, at the metro-
politan statistical area (MSA) level, patents counts against network variables and other
controls. They find no evidence of such pattern: social average distance is negatively
correlated with innovation while clustering and the interaction between the two variables
are not significant. On nearly identical data, (Lobo and Strumsky, 2008) more explicitly
study the separate effects of inventors agglomeration and of their collaboration networks
on local patenting behaviour. They find that when agglomerative features of the MSA are
controlled for, structural characteristics of the network have small effects on metropol-
itan patenting. Moreover, they find a slightly significant negative effect of density of the
inventors network on regional innovation. Different studies in other contexts (scientific
or artistic productions for instance) are not more conclusive (e.g., Uzzi and Spiro, 2005;
Guimera et al., 2005; Smith, 2006).

Those puzzling results challenge the way social networks and their outcomes for indi-
viduals are apprehended. In the following section, we thus propose a model allowing us
to go inside the black box of social networks and to examine how they matter for local

innovation. These micro-foundations will guide our empirical investigations.
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3.3 A model of patent production at the inventor

level

This section intends to provide a simple view of how inventors’ productivity may be af-
fected by their social connections, and hence how the network structure may influence
innovation. First Section 3.3.1 describes the model and Section 3.3.2 illustrates its im-

plications.

3.3.1 The model

The model developed in this section is close to the one in Ballester et al. (2006), in which
each agent’s productivity is linked to his/her network. It is stylized and integrates only
network-related characteristics. We implicitly assume that the effect the network has on
inventors’ productivity is independent from any other determinant of productivity and
are thus discarded from the present analysis.® Later on, in the empirical section, other

factors that may affect inventor’s productivity will be controlled for.

Consider a network of n nodes, where the nodes represent inventors and the connec-
tions linking the nodes are interactions between inventors. These interactions can be seen
as professional connections based on past or present collaborations. The set of all nodes
and links can be represented by the symmetric matrix g, which ith line and jth column
entry gi;; = 1 if inventors 7 and j are linked, and g;; = 0 otherwise. Self-relations are
excluded (g;; =0). Further, if g;; =1, then inventors i and j are referred to as neighbours
and N; = {j|gi;; = 1} represents the set of all i’s neighbours. Further, the number of links

of an inventor is noted d; = E?:l gij = #N; and is referred to as i’s degree.

Let y; be the inventive productivity of agent i, also considered as equal to i’s gross
payoffs. It is modelled in a simple fashion, relying on the one hand upon the efforts he/she
exerts to produce inventions, noted e;, and, on the other hand, upon the productivity of
these efforts, noted ;. We consider the most simple and intuitive form to combine these

two components into y;, a multiplicative form, so that:

Yi = €; - ;. (3.1)

Turning to the utility function, we assume, as in Ballester et al. (2006), that the
amount of effort exerted has a negative and convex effect on utility.* This leads to the

following utility function:

e2
u(ei, ;) = ei; — Eﬁ (3.2)

3This approach is comparable to the one developed by Calvé-Armengol et al. (2009), who, studying
peer-effects at school, assumed that pupils could produce two kind of efforts: network-related effort and
non-network-related effort. Similarly, we are interested in network-related efforts only.

4Note that including a parameter in the utility function which sets the negative effect of effort would
imply no change in the results, as shown in Appendix 3.7.2.
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The main ingredient of the model is the productivity component, which rely upon the
inventor’s network. As seen in the previous section, network connections are beneficial to
producing innovation through various mechanisms. The way we conceptualize productiv-
ity is based on two main ideas. First, productivity can be increasing with the efforts
of the connected agents. Whatever the type of spillover involved — be it the learning,
diffusion or selection of ideas — the increase in the connected agents’ efforts in invention
generation enhances the returns from one’s own efforts. This implies that efforts would
be complementary. Second, the benefits gained from collaboration can be decreasing with
the partner’s degree. This idea is very similar to the one in the co-author model of Jackson
and Wolinsky (1996). In their model, because of time constraint, each author efforts are
divided among all the projects he/she is involved in. Thus each new connection involves

a negative externality on partners. We associate this idea to the notion of rivalry.

Finally, we integrate those mechanisms in this following simple expression for pro-
ductivity:
P
bilg,e) =142 Y L, (33)
JEN; %5
where e is the vector of all efforts, and A, @ and § are parameters. We suppose that,
when not connected to anyone in the network, any inventor has the same productivity
level, normalized to the unity.” The parameters A, a and 3 each has an influence on
inventors’ productivity and each carry a different meaning. We hereby summarize the

three parameters with the perspective of which kind of network structure they underlie:

A (Connectivity): scales the benefits to productivity stemming from the network. If
A =0, the inventor’s network has no effect on his/her productivity. The higher A,
the higher the benefits drawn from the network as compared to the autonomous

part normalized to one.

a (Complementarity): scales the benefits to productivity stemming from the comple-
mentarity of efforts. The higher it is, the more one will benefit from the partner’s
effort. It should be noted that the effort of one agent may ‘spread’ its external bene-
fits further than his/her direct connections. Indeed, an increase in the effort of one
inventor will rise the productivity of his direct connections, which will lead them to
increase their efforts which will in turn rise the productivity of their neighbours, etc.
If « =0, then the partner’s position in the network does not matter whatsoever. It

would imply that the benefit stemming from any partner would be identical.

B (Rivalry): scales how much the access to one’s effort is rival. A high value of this
parameter means that the benefits stemming from the network are in fact rival, so
that highly connected agents will only slightly benefit to their colleagues. On the

contrary, in the case where 3 is low, for instance § = 0, then there is no rival effect:

5Note that setting the default productivity level to any other value has not implication on the results,
as shown in Appendix 3.7.2.
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the external effect will fully benefit to each of his/her collaborators. In this line of
thought, a low value of 8 could be interpreted as if the flows involved in network
connections were more related to the diffusion of information and contact processes

than really involving shared time spent together.

We now look at the equilibrium efforts and subsequent inventors’ productivity. If each in-
ventor maximizes his/her utility while taking the effort of all other inventors as given, then
the Nash equilibrium yields the following equilibrium: e} = 1; (g,e*),Vi, and network-
related production y; thus equals yf = 1,/)3 (g,e*). It turns out that®

y:(g:)\;aaﬁ)zcg(g:)\;a:ﬁ): (34)

where ¢; (g, A\, o, 8) is a centrality measure that depends only on the position of the inventor
within the network and on the three parameters A, a and . This network centrality is

defined by the following relation:

c$(g9,\a,p)
ci(g,\a,B)=1+A Z Jd—ﬁ (3.5)
JEN; 7

This form of centrality links the centrality of i to the centrality of his/her partners in a
fashion closely related to the Bonacich centrality. In fact, the centrality measure defined
by Equation (3.5) is a generalized form of centrality that includes various forms of classical
centrality measures. Depending on a and f, this centrality relates to either the degree
centrality (Bavelas, 1948), the Bonacich centrality (Bonacich, 1987) or the Page-Rank
centrality (Katz, 1953; Brin and Page, 1998). The relation with the existing forms of
centrality is given by Table 3.1. These existing centrality measures can be obtained for
different values of parameters a and 3: for instance, the degree centrality can be seen as a
situation in which there is no complementarity nor rivalry at play, while at the other end
the Page-Rank centrality refers to a situation in which both complementarity and rivalry

OcCcur.

Finally, an interesting property of the centrality defined by Equation (3.5) is that,
contrary to the Bonacich or the Page-Rank which are defined only for a limited set of \,”
whenever o < 1, this centrality is defined for any A > 0.8

The main insight stemming from the model is that, if there is any effect from the
network (A > 0), inventors should be influenced by their network centrality. This centrality
in turn can favour different kinds of network positioning depending on the parameters «

and . The main endeavour of the remaining of the chapter will be to use these model’s

6The proof is given in Appendix 3.7.1.

"More details on the restriction on A are given in Section 3.4.3, describing the empirical construction
of the variable.

8The proof is given in Appendix 3.7.3.

85



Table 3.1 — Summary of the existing centrality measures to which the centrality depicted
by Equation (3.5) is equivalent, depending on the values of the parameters a and 5. The
last column provides the formula of the centrality when the parameters a and S are set
as in the first column.

(o, B) Centrality name Related formula

(0,0) Degree centrality ci=1+Md;, Vi
(1,0) Bonacich centrality ¢ =1+AY ¢;, Vi
JEN;
:

(1,1) Page-Rank centrality ¢, =1+ -,
JEN; dj

Vi

results to test: 1) if the inventors network affect regional innovation and if so 2) which

kind of network structure most favours innovation.

Next subsection illustrates the link between «, 3, and network position.

3.3.2 Illustrations

In this section we first illustrate which type of individual network-position is ranked
highest along different types of centrality. Then, using data on co-inventions, the centrality

of regional networks is illustrated.

To illustrate the differences in network structure implied by the parameters, we now
compare the centrality values of the agents of the network represented in Figure 3.1. This
figure depicts a network consisting of 7 agents, four of which are fully connected with each
others (agents 2, 3, 4 and 5) and two of which have only one connection (nodes 6 and 7).

Agent 1 is connected to these two groups.

We now discuss the centrality measures with respect to the values of o and 3, consid-
ering the four types of agents: 1, 2, 3 and 6. The centralities are computed with A = 0.2
and are reported in Table 3.2a. Assume (a, ) = (0,0), so that there is no complementarity
nor rivalry in the network, i.e., the benefits stemming from any connection is the same.
The centrality of the agents then rely only on their number of connections. In this case,
agents 1 and 2 have four connections and therefore have the highest centrality, followed

by agents 3 and 6.

Now consider the case of complementarity with no rivalry: (a,8) = (1,0). In this

situation, one’s productivity depends positively on the partner’s effort, and as the rise
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Figure 3.1 — Stylized example of an inventor network.

in productivity spurs one’s effort, this new effort will in turn increase the partner’s pro-
ductivity, which will increase the partner’s effort, etc. Therefore, complementarity implies
that interconnected agents are the ones who benefit the more from this type of centrality.
This means that, despite having the same number of connections as Agent 1, Agent 2 will

have the highest centrality because he/she lies in a clique (a fully connected subnetwork).

Finally, take the case in which both complementarity and rivalry occurs: («,f) =
(1,1). Although there is complementarity, the rival effect means that the benefit from the
network decreases with the degree of the partner. Thus, rivalry implies that connections
to isolated agents are more beneficial than connections to agents in a clique. Hence, Agent

1 will have the highest centrality in this situation.

So, as the example shows, the network position which provides the highest benefit
from the network is ruled by the parameters a and 5. The question we will ask in this
study therefore is: What is the type of position which favours the most innovation? The
idea is to assess whether a region which has more inventors in a given network-position

performs better than others.

Let us now concretely illustrate this point with Figure 3.2, which depicts three regional
innovation networks. These network are based on co-inventions in the technological field of
‘chemicals’ for the period 1991-1995.° The inventors are the nodes of the network; the ones
from the region are coloured in red. All the links to the inventors of the area-technology
are represented. Inventors from other technological fields are pictured as triangles.

In the simple model we introduced earlier, the network-related production of each
inventor was equal to their squared centrality. Thus, for each geographic area, we compute

the average squared centrality of their inventors. This centrality refers to the position of

9For more information on the data, see Section 3.4.1.
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Figure 3.2 — Illustration of three regional networks.
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Table 3.2 — Centrality measures.

(a) Centrality measures, as defined by Equation (3.5), for
the nodes depicted in Figure 3.1. The value of A is set to
0.2.

Agent Type Degree Bonacich Page-Rank

1 1.8 3.05 1.56
2 1.8 3.51 1.30
3 1.6 3.00 1.21
6 1.2 1.61 1.07

(b) Average squared centrality of the regional networks depicted in Fig-
ure 3.2. The value of X is set to 0.04.

Region Inventors Degree Bonacich Page-Rank
Poissy 40 1.69 2.86 1.10
Nantes 33 1.45 3.44 1.07
Bethune Bruay 31 1.51 1.81 1.11

the regional inventors in the global network, when all the links between all inventors are

taken into account. The centrality for the three regions are given in Table 3.2b.

As shown by the table, each of these areas favours a different type of centrality. The
area of ‘Poissy’ has the highest degree, the highest Bonacich is found in ‘Nantes’ while
inventors from ‘Bethune Bruay’ have the highest Page-Rank centrality.

3.4 Data and econometric strategy

3.4.1 Data

Our empirical evidence is based on the French co-invention network. The data consist
of all European patent applications of which at least one inventor declared an address
in France, and which were first applied for between January 1981 and December 2003.
Using patent data raises a cleaning issue due to homonymy problems on inventors’ names
or to spelling errors. Indeed, the proper identification of inventors cannot be neglected
since small identity errors are likely to imply significant changes in network measures. For
instance, homonymy errors leading to consider that two different persons are the same can
lead to erroneously link different communities of inventors. Several matching algorithms
have been developed to cope with the problem of inventors’ identification (for a review,
see Miguélez and Gomez-Miguélez, 2011). The inventors’ disambiguation is done using

the methodology developed by Carayol and Cassi (2009). They introduced a Bayesian
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methodology for estimating the probability that two inventors are the same given a series
of observables provided by the data, and then calibrated their model using a benchmark

of inventors surveyed one by one.

Network from patents. The model of patent production is based on interactions
between knowledge workers. However, these interactions cannot be directly observed.
Instead, as routinely done in network studies using patent data (see e.g., Singh, 2005;
Agrawal et al., 2006; Carayol and Roux, 2007; Fleming et al., 2007; Lobo and Strumsky,
2008; Breschi and Lissoni, 2009), the network of social interactions is indirectly drawn
from the patent records. The underlying assumption is that all inventors appearing in a
patent record did interact with each other; or stated differently, co-inventions necessarily
imply interactions. Thus, two inventors will be connected in the network if they both
appear in a patent record. The two drawbacks of this assumption are: 1) false negatives:
interactions occurring with knowledge workers that are not in the patent document are
ignored and 2) false positives: two inventors may appear in a patent document without
having significantly interacted. In particular, the case of very large patenting teams is a
concern for the second problem. While assuming ‘interactions from co-inventions’ seems
a plausible stance for inventions involving a few inventors, this is much more problematic
for patents involving large teams. Because the number of connections evolves with the
square of the team size (as every pair of inventor of the team is connected), then large
teams imply a very large number of connections, and by then is likely to introduce many
false positive relations. In consequence, large teams may artificially (and wrongly) inflate
the density of the network. To deal with this problem, we decided to withdraw from
the sample every patent having strictly more than 8 inventors. All the more, very large
teams is a peculiar pattern in our sample: by doing so, we exclude less than 0.2% of all
patents.! Finally, the patents database consists of 124,825 patents and 97,287 unique

inventors.

Spatial unit. As we are interested in investigating local inventive performance, the spa-
tial unit requires to be defined. The most accurate regional aggregation unit is the French
‘zones d’emploi’ which corresponds to employment areas (EA). These areas are statistical
constructs and are not limited by administrative boundaries. They are constructed such
as to maximize the share of inhabitants who live and work in companies located in the
same EA.1! They usually take the form of an area surrounding large towns and can be
related to U.S. metropolitan statistical areas, although being much smaller in terms of
geographical area and population.!? As inventors personal addresses are given in patent

data, we were able to associate to each inventor in each patent a metropolitan French

10Ty total, only 227 patents had more than 8 inventors and were thus excluded.

" Continental France is split in 297 ‘zones d’emploi’. In 2012, the average share of inhabitants working
in the same area as defined by the ‘zone d’emploi’ was 77.5%. More information on those statistical areas
can be found in Jayet (1985). In this chapter we use the 2010 definition of the ‘zones d’emploi’.

12The average area of the EAs is 1,818 km?, and the average population is 82,05.(INSEE, 2010)
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town, and then to an employment area. Though some inventors are geographically mo-
bile (about twelve thousand), they however mostly remain in the same areas: nearly 79%
of mobile inventors have a maximal distance between their different locations of less than
20 km. When inventors are mobile across EAs, they are assumed to be fully associated

to each area.

Technological fields. In order to account for specific patenting schemes depending on
the technological field, the empirical analysis will be carried out controlling for technolo-
gical fields. When filing a patent to the EPO, the patent holder has to assign it to one
or several technological classes which correspond to an international patent classification
(IPC) code. The IPC codes are then transformed into 7 aggregate technological fields
according to the Observatoire des Sciences et Techniques (OST).!3

The statistical unit of analysis is the area-field, i.e. the EA combined to the techno-
logical field.

3.4.2 Empirical model and estimation procedure
3.4.2.1 An aggregated area-field production function approach

The production of innovations of each area-field is assumed to follow similar patterns. As
in standard regional knowledge production function approaches, the innovative outcomes
are obtained from a common production function with similar elasticities across units of
observation (Fleming et al., 2007; Lobo and Strumsky, 2008). The main input considered
here is the contribution of inventors which is assumed to constitute the backbone of
innovation production. The basic relation describing the area-field innovation production

is thus given by the following equation:
Ya:f = Aarf ’ Ez,f’ (3‘6)

in which Y, ; is the area-field innovation output, A, s contains all specific factors affecting
regional production and [, ; is the sum of the contributions of all inventors associated to
the area-field. ~ is a positive parameter.

If we let invSet, s (vesp. Inv,f) denote the set (resp. the number) of inventors
associated to area a and technological field f, we are able to introduce the individual

inventive contributions of local inventors as defined in the previous section, as follows:

= Y,  evi(g.e). (3.7)

i€invSet, ¢

The efforts agents exert and the direct influence of their neighbours are however typically

13The 7 categories, referred to as OST7, are: ‘Electronics’, ‘Instruments’, ‘Chemicals‘, ‘Drugs, Medi-
cine', ‘Industrial process‘, ‘Machinery, Transport‘, ‘Consumer goods, Construction’. More information on
the transition between IPC to OSTT can be found in OST (2010).
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not observable in the data. Our micro-foundations suggest that they are affected by
their network so that, in the equilibrium, they are equal to the square of agents network
centrality (cf. Equation 3.4), which depends on the inventors network and on the three
parameters of connectivity, complementarity and rivalry. In the equilibrium, we thus

have:

= Y d(g)\ap) (3.8)

i€invSet, ¢

In this equation, it is clear that variable [, ¢ is in fact the combination of two elements:
1) a size effect, since it is the sum over all inventors associated to the are-field, and 2)
a network effect, since the production of each inventor is assumed to depend on their
network position. However, as Bettencourt et al. (2007) have shown, the number of
inventors is a major determinant of patent production and is tightly linked to regional
size. If one wants to identify the network effect, it should be separated from the size effect.
In consequence, the variable [, ; is broken down as the product of the number of inventors
in the area-field Inv,  and their average equilibrium contribution, noted cg, F (g,\,, ),
and both are assumed to have distinct exponents in the area-field innovation production

function, as follows:

T

Yo =Aay-Invg ;- (2 (9,0 0,5)) (3.9)

3.4.2.2 Estimation procedure

As described in the next section, regional production will be measured in terms of patent-
citations, which is a count variable. A natural way to estimate the model is to use a Poisson
model. Indeed, contrary to linear models which lead to biased coefficient estimates when
dealing with count data, a Poisson model copes suitably with this issue and also allows
dealing with over-dispersion issues (see e.g., Santos Silva and Tenreyro, 2006). Further, to
limit the problem of omitted variables and so as to fully exploit the panel data structure
of our evidence, we employ a fixed effect Poisson estimation where the unit of observation
is the area-field, so that every unobservable effect specific to the area and the technology
will be controlled for. Further, time-field dummies are also accounted for to cope with
systematic time changes in the production patterns of each technological field over time.
To avoid endogeneity issues, the dependent variable is in ¢+ 1 so that the explanatory
variables explain the production of the subsequent year (as in Fleming et al., 2007).

Finally, the equation that will be estimated is:

T
b

E(Yafp+1) =dayg-dps-Controls, gy - Invg s, (2 1 (g1, M\, B)) (3.10)

where Y, r; is the dependent variable, and d, ; and dy; are area-field and time-field dum-
mies for the EA a, the technological field f and the year . The dummies allow us to
control for any effect specific to the area-field and for any yearly variation related to the

technological fields (see Agrawal et al., 2014; Menon, 2015). The variables in Controls, s,
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are all other determinants of regional patent production, and include agglomeration eco-
nomies variables as well as other network-related controls. As the explanatory variables of
the model enter the Poisson regression in a logarithmic form, we add 0.01 to the variables

whose value is 0 (similarly to Fleming et al.; 2007). We have introduced the time refer-

ence in regressors Inv, 5; and CE, 7 (g, A, a, B) which effects are estimated separately. The

precise empirical construction of these variables is detailed further in the next subsection.

3.4.3 Variables

First, a foreword on some general features of the dataset. The dependent variable is
created such as to not occur simultaneously to the explanatory variables. Indeed, in this
study, the aim will be to predict the future regional innovation production based on past
characteristics. Turning to the explanatory variables, the network-based variables will
be constructed using a five-year-window, from ¢ —4 to ¢. This period of time is used
to gather enough information on the network patterns of the area-fields, as patenting
can be considered as a rare event (Lobo and Strumsky, 2008). Last, the dataset will be
composed of all area-fields and all years. For some area-fields, it is possible that there
is no patent produced in the five-year-window, such that some network-based variables

cannot be created. When this occurs, we set these variables to 0 (see Fleming et al.,

2007).

Dependent variable. The measure of a region’s innovation output will be drawn from
patent data. However, patent count alone may not be sufficient to account for innovation
as the value of patents is of great variability (see e.g., Trajtenberg, 1990; Lanjouw et al.,
1998; Hall et al., 2005). A way to account for patent quality is to measure how much the
knowledge embodied in a patent has been used in later innovations. When a patent is
applied for, it has to reference the sources of knowledge that were necessary to produce this
innovation (see e.g., Criscuolo and Verspagen, 2008, for a review). In consequence, those
references to earlier work (citations) reveal which patent has been useful in generating
new innovations. Further, the positive relationship between patent value and citations
received has been demonstrated in various studies (see e.g., Trajtenberg, 1990; Harhoff
et al.; 1999; Hall et al., 2005). Thus, in order to have a finer grained measure of innovation,
each patent will be weighted by 1 plus the number of citations it receives, in line with

various studies dealing with regional innovation (e.g., Agrawal et al., 2014; Kaiser et al.,

2015b).

A five years window is used to construct the number of citations a patent receives,
allowing this number to be comparable across patents from different years. As the most
recent patents from our sample are from 2003, we need information on citing-patents until
2008. Further, as the aim is to depict a patent’s quality, the citing-patents should not

be restricted to French patents only. The citations-related data is drawn from another
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data set: the CRIOS-Patstat database which compiles data on all EPO-filed patents (see
Coffano and Tarasconi, 2014, for a description of the database).

The number of citations a patent filed in year ¢ receives (the cited-patent) is defined as
the number of EPO-patents whose application-date lies between t and ¢+ 5 and that cites
the application number of the cited-patent.!* Further, in order to avoid citations that do
not stem from the ‘usefulness’ of the patent but rather from other factors unrelated to
quality, we withdraw every citation coming from patents either from the same inventor
or from the same company.!® The location of the patents is based on the inventors’
addresses, so that the dependent variable for area a and technological field f will be the
number of citation-weighted patents filed in year t+ 1 in technological field f that have

at least one inventor located in area a.

Centrality. In the model, the equilibrium production of the inventors depend on their
squared centrality. This centrality in turn depends on three parameters which provide
information on how the network influence inventors’ productivity. Regional centrality
measures will be computed for different values of those parameters to unveil which network

pattern most favours innovation in the area-field.

The variables of centrality at the regional level are built in two steps. In the first step,
the centrality of all inventors is computed by using the whole co-invention network on a
5 years window. This defines g+ the network between all the inventors having patented
between year ¢t —4 and t, no matter the technological class they patented in, built by
assigning a link between two of these inventors if the patented together during that period.
Then, from this network and after setting the parameters a, § and A, we compute the

centrality of each inventor ¢; (g¢, @, 8,A) according to Equation (3.5).

Depending on the value of o, we use two different methods to compute the centrality.

When a =1, the centrality has a closed-form and can be obtained as:

C(g:)\:a = I:ﬁ) = (I_)\é(ﬁ))_l 1,

where 1 is a n vector of ones, n being the number of inventors; c¢(g,A\,a=1,0) is the
vector of all centralities; and g (/) is the matrix of typical element g;; (5) = g;;5/ df , where
gij equals 1 if i and j are connected and 0 otherwise. For instance, §(3) is equal to
the adjacency matrix for the Bonacich centrality and the column standardized adjacency
matrix for the Page-Rank centrality. Further, when a = 1, there is a restriction on A, as

the centrality is not defined when A is greater than the inverse of the largest eigenvalue

4The 5 years window is accurate to the day. As the day, month and year of application are available
for each patent, we are able to keep only the citing-patents which were filed no later than 1,825 (365 x 5)
days after the cited-patents.

15 Thanks to the algorithm from Pezzoni et al. (2014), each patent of the CRIOS-Patstat database has
an identification number for the inventors who filed it and the companies which own it. The ‘self-citations’
were cleaned thanks to those identification numbers.
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of the matrix §(3).16

When «a € [0,1], the centralities are computed using an iterative algorithm. Let cf to
denote the centrality of inventor i at iteration k (the parameters o, § and A are omitted
for readability). Each centrality is first initialized to 1, such that ¢? =1, Vi. Then the

following calculus is performed until numerical convergence:!”

Ck-; @
oy @)

JEN; 7
At the end of the process, each inventor’s centrality respects the definition of Equa-
tion (3.5) up to a negligible numerical error. Contrary to the previous case, the only

restriction on A is that A is only required to be positive.

The second step is to aggregate these inventors’ centralities at the regional level. Each
inventor is assumed to contribute to the centrality of each area-field he/she has patented
in. So the equilibrium ‘network-related production’ produced by the inventors of an area-
field will be equal to the average squared centrality of every inventor having patented at
least once over the 5-years-window period. Formally, the regional average ‘network-related

production’ is given by:

1
Cg,f(gt:a:ﬁ:)‘)zix Z c?(gt:a:ﬁ:)\):

Invazfrt ieénvSeta,f,t

where invSet, s, (resp. Inv, s,) be the set (resp. number) of inventors having patented
in area a, technological field f and year t. Note that for area-fields with no inventor,
the centrality is not defined. We thus assign the centrality to the value of 1 for these

area-fields, as 1 is the minimal value possibly attained by the centrality.

Covariates.  The main input of patent generation is creative individuals, and in this
subset of the population, the inventors themselves. The variable inventors is the number
of unique inventors having patented at least one patent in the area-field over the 5 years
period (Inv, 5,). This variable aims also at capturing the pure agglomeration of innovative

activity effects.

Patents are not locally bounded, they can be the outcome of inter-regional collabor-
ations. If so, the number of inventors of a region as a control may be not sufficient to
capture the inputs to knowledge creation as it would neglect the inventors outside the

region who have also contributed to produce the patents of the area. To control for this,

6The centrality measure makes sense only if every centrality is positive. Further, the matrix
(I- G (,8))_1 is non-negative (implying that its product with 1 is positive) only if A < 1/s where s
is the largest eigenvalue of the non-negative matrix GG(3) (remind that this matrix contains only positive
elements as it is a variation of the adjacency matrix). See theorem III* of Debreu and Herstein (1953)
for a formal proof.

ITThe algorithm stops when the maximum absolute difference between two successive centralities
(ma.xi{c}:_"l — cf}) is smaller than 0.0001.
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we include the share of outside collaborators which is the number of external (to the area)
inventors divided by the total number of inventors having participated to the patents of

the area.

The distribution of the patent resources along different technologies may influence the
efficiency of knowledge production. If agglomeration economies are at work, the concen-
tration of patents in some particular technological fields may enhance the productivity of
research in those fields. Thus we include the variable technology Herfindahl, defined as
the Herfindahl index of the patents produced in the area distributed among 30 technolo-
gical classes.!® This variable is defined at the area-year level and its formal definition is

230:1 s2, where s, is the share of patents in the 30-categories-technological-class c.

The econometric analysis will control for the specificity of the technological fields with
area-field dummies. Yet, even when controlling for a technology, some regions may still
be specialized in domains within this technology which are more recent and more fertile
in new ideas, and thus in new patents. Those technologies are possibly less likely to
cite old knowledge (Lobo and Strumsky, 2008). To control for this effect, we include the
technology age variable, which is the average number of references cited by the patents

produced in the area-field.

One important issue that needs to be controlled for stems from the nature of the
collaboration network. The collaboration network is based on a bipartite graph: only
the connections between inventors and patents are observed while connections between
inventors are not directly available. Inter-inventor connections are then reconstructed
from this bipartite graph, where two inventors will be connected whenever they co-author
a patent. In this context, team size has a large influence on the network structure because
all inventors within a team are connected. Even though the inventors network structure
and team sizes are two different concepts, the increase in team size may still rise inventors’
average centrality by increasing their number of connections. In consequence, if larger
teams produce more patents, and if larger teams also implies more centrality, then the
effect captured by the centrality variable may be spurious. What aims to be unveiled in
this study is the effect of individual networks on regional innovation and not the mere
pooling of inputs as characterized by large team sizes. Therefore, the model includes the
average team size, defined as the average number of inventors per patent produced in the

area-field-year.

Finally ,we also integrate economic variables. To do so, we use plant-level data stem-
ming from French annual business surveys over the period 1985-2003.19 These mandatory
surveys provide information regarding employment for all manufacturing firms of more

than 20 employees. All the more, it reports the precise location along with the level of

18The classification leading to 30 technological classes, referred to as OST30, is based on the IPC
code of the patents and is a finer grained version of the OST7 classification. See OST (2010) for more
information.

19The sources are the data from the ‘enquetes annuelles d’entreprises’, which are collected by the French
ministry of industry jointly with the French institute for national statistics (INSEE).
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employment of each French plant of these firms. We create, for each EA, the variables
of the number of workers and of the number of plants of more than 200 employees. At
last, we create an index of employment diversity in the EA. This index of employment
diversity is based on an Herfindahl index at the 3-digits sectoral level (noted s). It is
defined by the following equation:

s,ay 2
[ )
Employment_diversityy =In (1/2: (#emp oyees; ) )

#employees

with #employees;’ the number of employees in sector s, area a and year ¢, and #employees] =

> s #employees; ™.

3.4.4 Descriptive statistics

The data is composed of 297 EAs, 7 technological fields and 18 years (1985-2002 for the
explanatory variables and 1986-2003 for the dependent variables). Some area-fields do
not have any patent whatsoever during the whole time period and are therefore discarded
from the sample.?? The sample ends up consisting of 1,940 area-fields. Table 3.3a presents
the summary statistics for the main variables. The average area-field is rather small, as
it produces 4 patents a year and contains an average of 16 unique inventors in a 5-years-
window. We can notice that the distribution is skewed as the median area-field produces
only 1 patent per year and includes only 3 inventors in a 5-years-window. Looking at
the spatial distribution of collaborations, we see that inter-regional collaborations is a
common feature since the share of non-regional inventors participating to the regional
patents is on average 28%. The teams of inventors producing innovations are rather small

as the average team size is of 1.75 on average at the area-field level.

The correlation between the variables are reported in Table 3.3b. The highest correla-
tion, of 98%, is between the number of workers and the number of large plants. As these

variables are simply used as controls, we keep them both in the sample.

3.5 Results

Does the network influence regional performance, and if so, how? The simple model
developed in Section 3.3 provides a rationale for such an effect motivated by a micro
level perspective. As inventors collaborate to produce patents, they exert an influence on
their collaborators, influence that will shift their partners’ productivity. The model then
predicts that the productivity shifts will depend on a form of network centrality. This
centrality is ruled by three parameters each of which carries a specific meaning on how
the network may influence innovation. We provide, in a first subsection, an investigation

assessing the influence of social networks on inventors’ productivity assuming different

20Note that due to the presence of area-field fixed-effects, they would have been dropped in the estim-
ation.
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typical forms of influence (different types of centralities). Secondly, we introduce a non-
linear estimation procedure allowing us to investigate the issue of how inventors networks

are affecting invention.

3.5.1 Assessing the influence of network centrality on regional

patenting

The first step of this study is to test whether network centrality has any effect on local
innovation. As this centrality varies with its parameters, the analysis will first be con-
ducted by setting these parameters to ad-hoc values. Three well know forms of centrality
will be used: the Degree, the Bonacich and the Page-Rank. These forms of centrality
are encompassed by the general form stemming from the model and can be considered as
limiting cases: no complementarity nor rivalry (o =0, 8 = 0); complementarity but no
rivalry (e« =1, 8 =0); and complementarity and rivalry (¢ =1, 8 =1). For the Bonacich
and the Page-Rank centralities, there is a restriction on A, because when a =1 the com-
plementarity effect can be explosive when A is too high. The most restrictive case is the
Bonacich centrality as it is not defined when A is greater than the inverse of the highest
eigenvalue of the adjacency matrix. In the collaboration network defined by our sample
the maximum value for A is A™%* = 0.05. For the sake of comparability, we then set A to
0.04 for the three measures. After creating these variables, whose summary statistics are

reported in Table 3.3a, we estimate Poisson regressions with fixed-effects.

The results of the Poisson estimation are reported in Table 3.4. We first focus on
Model (1) which is a benchmark model excluding network centrality variables, before
going on to comment the main results in Models (2) to (4) on the network centrality
variables. As usual in studies on regional patenting, the number of inventors has a strong
positive effect. We find that a 10% increase of the number of inventors leads to a 2.7%
increase in the number patents (plus the number of citations they have received). More
intriguing is the negative effect of the average patenting team size. The estimates suggest
that a 10% increase of the average team size in the EA-field would imply a decrease of
1.8% in patenting. This result is nonetheless in line with other estimates in the literature
(e.g., Lobo and Strumsky, 2008 find a negative effect, Breschi and Lenzi, 2012 find a non
significant effect). Having access to knowledge from outside the region should be valuable
since it creates new possibilities of knowledge combination. Accordingly, the share of non-
regional inventors taking part to regional patents has a positive and significant coefficient.
Regional specialization, as measured by the technology Herfindahl, has a positive and
significant effect on regional innovation. The age of the technology developed in the
EA-field, as measured by average number of references to older patents, has a negative
and significant effect. This means that EA-fields that become specialized into ‘younger’
technologies are likely to produce more innovations. Economic variables such as the

number of large plants or the diversity index of the workforce seem not to influence
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regional patenting. On the other hand, the number of workers within the EA does foster
regional patenting (as the number workers is highly correlated to the number of large
plants, the interpretation is limited).

Turning to the centrality measures, in Models (2) to (4), the network centrality of
regional inventors seems to positively influence regional patent production as the three
have a positive and significant coefficient. The only difference between the three measures
is that they are based on different values of @ and . For instance, the Page-Rank
centrality is the only one of the three measures which accounts for rivalry among inventors’
connections. Based on the models’ fit statistics, such as the BIC, this form of centrality
(in Model (4)) is the one which is the least well-fitted to the data, as compared to Models
(2) and (3). This hints that there is possibly no rivalry effect occurring, but needs to be

further investigated, as it will be in the next subsection.

To conclude the first part of the empirical study, those results tell us that the position-
ing of regional inventors in the global network matters for regional innovation. However,
these different forms of network centrality tell different stories about how the network

may benefit to inventors.

3.5.2 How does network structure affect innovation?

In this section, we first introduce a methodology to estimate the structural parameters of
the model, i.e. A, @ and 3. The basic results obtained are then provided in Section 3.5.2.2,

complemented with extensions and robustness checks in Section 3.5.2.3.

3.5.2.1 Estimation procedure

As seen in the previous section, local inventors’ network centrality positively influences
innovation. Now, our goal is to estimate the parameters which tell the story behind the
network (a, B, A). Unfortunately, these parameters cannot be obtained by traditional
linear techniques. Indeed, changing the value of any of these parameters imply non trivial
changes on every inventor’s network centrality. Stated differently, the network centrality
variable cannot be expressed as a linear combination of its parameters with some other
exogenous variables. To cope with this problem, we then apply non-linear estimation

techniques.

Similarly to models with linear right-hand sides, the estimated coefficients are simply
the set of parameters that maximizes the likelihood as follows:

arg max L(Y|X,0,\a,f),

¥ Ial‘

where L is the likelihood of the Poisson distribution, X is the set of all controls (including
the dummies) and 6 their coefficients. The main difference with linear estimations lies on

the relation the three parameters A, a and 8 have together. This can be seen by writing
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Table 3.4 — Poisson estimations at the EA level.

Dependent Variable Citations-Weighted Number Of Patents (t+1)
Model: (1) (2) (3) (4)
Area-Field-Specific Variables
# Inventors (In) 0.2684*** 0.2692*** 0.2709*** 0.2671**
(0.0205)  (0.0204)  (0.0204)  (0.0205)
Average Team Size (In) -0.1774%*  -0.2446™*  -0.2189***  -0.2092***
(0.0341)  (0.0359)  (0.0352)  (0.0351)
Share of Outside Collaborators 0.1393* 0.0931 0.1139 0.1181
(0.0756)  (0.0769)  (0.0763)  (0.0763)
Technology Age (In) -0.0666*** -0.0314 -0.0454** -0.0532**

(0.0204) (0.0215) (0.0211) (0.0208)
Area-Specific Variables

Technology Herfindahl (OST30) 0.2975** 0.2448* 0.258* 0.2854**
(0.1352)  (0.136)  (0.1356)  (0.1366)
# Plants of 200+ Employees (In) -0.011 -0.0128 -0.0126 -0.0114
(0.0259)  (0.0257)  (0.0258)  (0.0258)
# Workers (In) 0.3551*** 0.3537** 0.3566*** 0.3558***
(0.0561)  (0.056) (0.056) (0.056)
Employment Diversity (3-digits) -0.0259 -0.0277 -0.0351 -0.023

(0.036) (0.0359) (0.0359) (0.0359)
Network Centrality Variables

Squared Degree Centrality (In) 0.6767***
(0.1246)
Squared Bonacich Centrality (In) 0.3033***
(0.0715)
Squared Page-Rank Centrality (In) 1.333***
(0.4166)
Dummies
EA x Tech YES YES YES YES
Time xTech YES YES YES YES
Fit statistics
Observations 34920 34920 34920 34920
Adj-pseudo R? 0.87339 0.87353 0.87348 0.87343
BIC 177240.109 177072.242 177136.811 177192.555

Notes: Fixed-effects Poisson estimation. The dependent variable is in £+ 1 while the variables based on
patent data are built using a 5 years window from ¢ —4 to t. The three squared centrality variables:
Degree, Bonacich and Page-Rank refer, respectively, to the following general-form centrality variables
cg,f,t(}\,a =0,8=0), cg,f,t(}\,a =1,8=0) and Cz,f,t(’\:a =1,8=1). They are the average squared
centrality of the inventors of the area-field and were computed along the methodology described in
Section 3.4.3 and using A = 0.04. White heteroskedasticity-robust standard-errors in parenthesis. Level

of statistical significance: *** ** * means significance at the 1%, 5% and 10% level.
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the relation between the dependent and the explanatory variables, as follows:

E(Ya,f,t) = exp (ngln (Xé;,f,t) +1H(C§,f (gt:)\:a:ﬁ))) )
k

where, contrary to any 6, the centrality parameters are not linearly associated to a
variable. As usual for maximum likelihood models, the estimates are obtained by using a

maximization algorithm. In this context, different from any exogenous variable X f £ the

variable cz f (gt, A, o, B) needs to be computed anew at each iteration of the maximization

process. Note that to avoid estimation issues, the elasticity of Cﬁ, 7 (ge, A, B) is set to 1.21
Indeed, we are not interested in estimating the precise elasticity of the network effect,
but rather in the value of the structural coefficients. The identification of the network
effect does not suffer from the constraint on the elasticity, since the key element A\, which
represents connectivity, can be properly estimated. The statistical significance of A is
crucial as if A is equal to 0, then there is no effect whatsoever of the network and the

other two parameters, a and 3, cannot be interpreted.

The interpretation of the parameters along the model defined in Section 3.3 is valid
only for positive values of these parameters. Further, the value of a cannot be greater
than 1, since when a > 1 the centrality is not defined for any positive A. Consequently,

the estimation will be run with the following constraints: A > 0, « € [0;0.99], 8 > 0.

Finally, even though these parameters enter the model in a non-linear form, they
end up to be asymptotically normally distributed (see Wooldridge, 2010, theorem 12.3,
p. 407) and their heteroskedasticity-robust covariance is defined as the Huber-White
sandwich variance estimator (Wooldridge, 2010, p. 416). To make this estimation, we
used the statistical software R in combination with the package ‘FENmlm’ which estimates

maximum likelihood models with fixed-effects and allows for non-linear right hand sides.?2

21This is rather a purely technical point and lies on the approximation In(1+¢€) & € when € is low. In
the case in which A has a low value, the approximation applies and yields an identification issue if there is
also a coefficient of elasticity in the model. For instance, assume for simplicity that we are only interested
in estimating A, so that a and 3 are given. Further, take the case of a region with only one inventor, then
the squared centrality of this region can be written as 1+2Aé(A) + A2&(X)2, with &(A) = > jeNCi ()\)Q/df
an N the set of collaborators of this inventor. For A low enough, we have In[1 +2)&(\) + A2E(A\)?] =
A[28(A) + A&(N)?2] = 2A&(A). Now assume we include «y, an elasticity coefficient, to the network centrality
variable. The relation to be estimated becomes E(ya,r¢) = exp{D_; O hl(Xak,f,t) +71In[éq,7.:(2)?]} which

can be simplified, when A is low enough, to E(ya,f.¢) = exp{d_ bk ln(Xff,f,t) +29Aéa,7,t(A)]}. Thus the
two parameters cannot be properly identified, as for any estimated set of parameter (,A), there exists
another set (7/,)") yielding — at least numerically — the same fit. Indeed, take \’ = A+, for 7 not too
large. Noting that ¢q f¢(A+7)— €a,ft(A) is increasing with A (thus is lower for lower values of A), then
setting 7/ =~yA/\ such that vA =+’ would yield the same likelihood up to a negligible numerical error.
To conclude, if the ‘real’ A (the one to be found by the estimation) is close to 0, then the numerical
estimation faces an identification issue when combined with an elasticity coefficient «.

22This package is available in the comprehensive R archive network (CRAN), at the following link:

https://cran.r-project.org/web/packages/FENmlm/.
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3.5.2.2 Results

The basic results of this estimation on our data are reported in Table 3.5. We expect to
find a positive coefficient of the connectivity, A, as the first results have shown that both
the Degree and the Bonacich centrality have a positive and significant effect. Indeed, the
general effect of the network is positive and significant, with the estimated value of A
being close to 2%. This first result means that the level of interaction of the inventors
in the global network does increase regional innovation. Now, what about the structural

parameters, ruling the network shape?

First, the results tend to suggest that there is no rivalry effect at play. The estimated
coefficient of rivalry 3, is at its lower bound: 0, even if not significant. This suggests
that connections in the network inflict no negative externality. Stated differently, the
interactions are not more beneficial when more exclusive. Turning to the estimated value
of complementarity «, it is positive, yet the precision of the parameter is weak as the
standard-error is high and fails to be significant. This tells us that complementarity is

not significantly affecting invention.

All in all, it appears that it matters for invention that agents are connected to other
agents (A is positive and significant), but it does not matter whether they have to share
these connections with others (S is null), nor that are connected to more central agents
or not («a is positive but not significant). This result tends to suggest that the network-
position of the inventors in the global network does matter for innovation. What is most
important is just how many connections they have. Up to this point, to whom in particular
inventors are connected, including how many and which connection their partners have

seems to be much less important.
3.5.2.3 Robustness checks and extensions

We now propose several extensions of these first investigations aiming at:

« checking the robustness of the first two results obtained so far (network connectivity

effect and no rivalry),
« testing whether the absence of complementarity effect is always verified,

+ checking whether the efforts-based model we introduced is justified.

Other dependent variables To ensure that the results do not rest upon the choice
of the citations-weighted number of patents as the dependent variable, we run the eco-
nometric analysis on other measures of regional innovation. In fact, we break down the
measure of the citations-weighted number of patents in two: 1) the number of patents and
2) the citations-only-weighted number of patents, so that patents with no citations have a
null weight. While the former variable reflects the idea of quantity of regional innovation

production, the latter seizes more the idea of quality while the original dependent variable
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Table 3.5 — Non-linear Poisson estimations to determine the value of the centrality para-
meters. Three different dependent variables.

Dependent Variables: Citations-Weighted =~ Number Of  Citations-Only-Weighted

Number Of Patents (t+1) Number Of
Patents (t+1) Patents (t+1)
Model: (5) (6) (7)
Network Centrality Parameters
A (Connectivity) 0.024*** 0.0215*** 0.0271**
(0.0089) (0.007) (0.0134)
a (Complementarity) 0.4166 0.1061 0.5738
(0.4637) (0.3142) (0.4715)
B (Rivalry) 0 0 0
(0.2294) (0.1916) (0.2958)
Area-Field-Specific Variables
# Inventors (In) 0.2701*** 0.2771*** 0.2617***
(0.0205) (0.0173) (0.0299)
Average Team Size (In) -0.2436™** -0.2686*** -0.2194***
(0.0355) (0.0285) (0.0561)
Share of Outside Collaborators 0.097 0.1844*** -0.0132
(0.0767) (0.0595) (0.1228)
Technology Age (In) -0.0322 -0.0182 -0.0479
(0.0213) (0.0173) (0.0332)
Area-Specific Variables
Technology Herfindahl (OST30) 0.2452* 0.3604*** 0.1589
(0.1357) (0.1142) (0.1954)
# Plants of 200+ Employees (In) -0.0128 -0.0163 -0.0108
(0.0257) (0.0201) (0.0407)
# Workers (In) 0.3546*** 0.3998*** 0.2856***
(0.0559) (0.0456) (0.0827)
Employment Diversity (3-digits) -0.0276 -0.0325 -0.0385
(0.0358) (0.0298) (0.0517)
Dummies
EA x Tech YES YES YES
Time xTech YES YES YES
Fit statistics
Observations 34920 34920 31230
Adj-pseudo R? 0.87353 0.84427 0.82428
BIC 177086.341 118655.115 129716.266

Notes: Fixed-effects Poisson estimation. There is only 31,230 observations in Model (7) since the fixed-
effects strategy implies that area-fields for which the dependent variable is 0 for the whole period 1985-
2002 are dropped. The dependent variable is in £+ 1 while the variables based on patent data are built
using a 5 years window from ¢ —4 to t. White heteroskedasticity-robust standard-errors in parenthesis.
Level of statistical significance: *** ** * means significance at the 1%, 5% and 10% level.
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was a mix of the two. The results of these estimations are reported in the Models (6) and

(7) of Table 3.5.

For both dependent variables the coefficient of connectivity, A, is positive and the
coefficient of rivalry, 3, remains equal to 0. The main difference is that in Model (6),
for patent counts, the complementarity coefficient is equal to 0 while the coefficient of
complementarity in Model (7) is equal to 0.5. Although the coefficient is not significant
in Model (7), it suggests that complementarity may be more relevant when looking at

more qualitative measures of innovations such as the pure number of citations.

Dynamic model The level of regional innovation can be lasting over time so that
past levels of the dependent variable may influence future outcomes. To cope with this
possible issue, we introduce a dynamic component in the model (see e.g., Windmeijer,
2008). Let Y, 7+ to represent the lag of the dependent variable for area a and technological
field f (remind that the dependent variable in the estimation is Y, s;11). Following the
methodology in Crépon and Duguet (1997), we assume two separate effects of Y, s, on
later outcomes. Namely, when Y, s; is equal to 0, the effect on Y, f;;1 is supposed to
be different than when Y, ;; is strictly positive. Accordingly, we include In(Y, ;;) as a
regressor when Y, ¢ is strictly positive and include a dummy taking value 1 when Y, ¢;
is zero. The results are provided in Model (8) of Table 3.6 and present no important
difference with the main results. The auto-regressive terms both have a positive effect

and the coefficient of connectivity is lower even though still statistically significant.

Spatial dependence Now we consider the possibility that the production of patents
may be spatially autocorrelated across EAs. Spatial dependence would imply that the
patenting in one EA is correlated to the patenting in the neighbouring EAs. Thus we
performed a Moran [I’s test for each year-technology in the sample. The coefficient of
spatial correlation is 0.2, although not high, it is yet statistically different from 0. A
closer look to the data shows that the small sign of spatial correlation pattern is driven
by the French region of Ile de France (IDF). When withdrawing the EAs contained in the

region of IDF, the coefficient of spatial correlation drops to .06 and is no longer significant.

Ideally, the analysis should take care of this spatial auto-correlation pattern in the
estimation framework. However, because of the specific functional form to estimate, this
is not possible. Therefore, we redo the econometric analysis when omitting the EAs
contained in the region of IDF, leaving a sample free of any spatial correlation.?> The
results of this estimation are reported in Model (17) of Table 3.9. The results present no
difference with the baseline model. This is a sign that the initial results are not driven

by this small spatial auto-correlation pattern.

23The region of Ile de France contains the following EAs: Cergy, Coulommiers, Créteil, Etampes, Evry,
Meaux, Melun, Nemours, Orly, Paris, Poissy, Provins, Rambouillet, Saclay, Versailles.

105



Table 3.6 — Robustness checks:
changing the sample.

introducing a dynamic component in the model and

Dependent Variable (Y 7741):

Citations-Weighted Number Of Patents (t+1)

Sample: Full Mean (#Inventors Mean (#Inventors
per year) > 5 per year) > 10

Model: (8) (9) (10)

Network Centrality Parameters

A (Connectivity) 0.0168** 0.019*** 0.0252***
(0.008) (0.005) (0.0064)

o (Complementarity) 0.4621 0.9481*** 0.9423***
(0.5681) (0.2621) (0.1493)

B (Rivalry) 0 0 0
(0.2782) (0.1362) (0.1125)

Area-Field-Specific Variables

# Inventors (In) 0.153*** 0.4901*** 0.5952***
(0.0211) (0.034) (0.046)

Average Team Size (In) -0.1069*** -0.3276*** -0.3585**
(0.0356) (0.105) (0.1472)

Share of Outside Collaborators -0.0567 0.404** 0.7213***
(0.0763) (0.1597) (0.2409)

Technology Age (In) -0.041** 0.0356 -0.0183
(0.0206) (0.0569) (0.0794)

Area-Specific Variables

Technology Herfindahl (OST30) 0.0859 1.0892*** 1.1898**
(0.1327) (0.3935) (0.5024)

# Plants of 2004+ Employees (In)  -0.0107 0.0346 0.1117
(0.0256) (0.0608) (0.0743)

# Workers (In) 0.3348*** 0.2351*** 0.1784*
(0.0545) (0.081) (0.0942)

Employment Diversity (3-digits) -0.0296 0.0076 -0.0209
(0.0347) (0.045) (0.054)

Dynamic Component

log (Ya.f.) 0.1496***
(0.0108)

1y, , o 0.0611**
(0.0272)

Dummies

EA x Tech YES YES YES

Time xTech YES YES YES

Fit statistics

Observations 34920 5346 2682

Adj-pseudo R? 0.87446 0.89573 0.91419

BIC 175935.457 54812.618 31357.63

Notes: Fixed-effects Poisson estimation. The dependent variable is in £+ 1 while the variables based on
patent data are built using a 5 years window from ¢ —4 to ¢t. White heteroskedasticity-robust standard-
errors in parenthesis. Level of statistical significance:

10% level.
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Restricting to most active area-fields In the econometric model, we estimate the
network effect by looking at the average squared regional centrality. Small regions, in
terms of number of inventors, may suffer from a higher variability of the network centrality
variable as each inventor has a higher influence on the regional variable. To stymie this
possible problem, we run the analysis on the sample of area-fields which are the most

innovative and thus suffer much less from this ‘limited number of inventors’ problem.

In the restricted samples, we want to keep more active area-fields, the ones having
a sufficient number of inventors per year. The selection of these area-fields is based on
their yearly average number of inventors. Table 3.6 reports the results when the sample is
restricted to area-fields with a yearly average of, in Model (9), more than 5 inventors (192
area-fields), and, in Model (10), more than 10 inventors (149 area-fields). Consistently
with the previous results, the network effect is positive and the rivalry coefficient is equal
to 0. However, the coefficient of complementarity, in both estimations, is now close to
1 (.95 and .94 respectively) and is statistically significant. Thus, in the most innovative
area-fields, it seems that there is a complementarity effect at play so that the inventors

benefit of being connected to more central partners.

Further, these two restricted samples are much less subject to the high variability in
terms of average squared centrality brought about by small area-fields, in which there is
only a handful of inventors over the whole period of analysis. Therefore, the results may

be more robust with these restricted samples than with the full sample.

Controlling for stars With the type of centrality indexes we are using, the distribution
of centrality in the population might be very skewed. We are worried that the results could
be driven by a specific set of inventors: star inventors that would also be outliers in terms
of centrality. While this is not a problem per se, it would raise an issue in terms of
interpretation of the results. Indeed, we here assess the shape of the regional network and
the interpretation is done in terms of the overall productivity of regional inventors. Thus,
if only the centrality of stars led the results, this would partly flaw this interpretation. To
control for this, we run a new analysis in which the average network centrality is computed

excluding star inventors.?*

More precisely, the new centrality variable is obtained in two steps. In the first step,
the centrality of all inventors is computed using the whole network, stars included. The
difference with the original variable lies on the second step where we average the squared

no_Star

centrality of only non-stars inventors at the area-field level. Formally, let [ nUSeta’ i

be the set of inventors of the area-field that are not defined as stars. Then the non-stars

24The ‘average squared centrality’ for area-fields in which only star-inventors reside is set to 1 (which
is the minimum value for this variable), as for area-fields in which there is no inventor at all.
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regional average network centrality is defined as:

2 1
no_Star\< _ E 2
(Ca:f t ) _ I no_ Star X Cit

Ua:fzt 1€ Iﬂvsdgff_ggtar

Star inventors are defined anew for each year ¢, based on their production between ¢ — 4
and t. An inventor is designated as a ‘star’ if the number of patents he/she produced in a
given 5-years-window is strictly greater than the top 5% percentile, Model (11), or top 1%
percentile, Model (12).25 The results of these estimations are reported in Table 3.7. We
find that the estimated connectivity A, is still positive and significant and the estimated
rivalry is still equal to 0. Interestingly, the estimated complementarity becomes positive
and significant in the two estimations. This coefficient is now, in both estimations, close
to 1 (.89 and .94 respectively). These values are very close to what we have obtained
when excluding less active area-fields. It implies that being connected to central agents

is beneficial to the non-star inventors.

A different spatial aggregation unit A common issue arising when dealing with
discrete geographical units is the moving areal unit problem (MAUP). Because space
is continuous and geographical units are discrete per nature, the results can be reliant
on the choice of these geographical units. To limit this issue and assure the robustness
of our results, the econometric analysis of the baseline model is replicated using NUTS 3
geographical units. In France, the NUTS 3 regions correspond to the ‘départements’ which
were defined by the French administration. They are larger aggregates than the EA: there
are 94 continental France NUTS 3 regions as opposed to 297 EA .26

The estimates for this geographical unit are reported in Model (16) of Table 3.9. The
results are similar to the main results at the EA level. The coefficient of connectivity,
A, is positive and significant with an order of magnitude almost identical to the baseline
model. Similarly, the coefficient of rivalry is found to be equal to 0. The main difference
with the baseline results concerns again the complementarity coefficient, «, which has a

value of 0.92 and is statistically significant.

Restricting to regional networks The previous investigations have focused on the
inventors positions in the global network and shown that inventors’ network connections
are indeed beneficial to local innovation. Now we tackle a slightly different question: Does

the internal regional network structure affects innovation performance?

To address this question, we employ the same methodology as previously. The only

difference is that the inventors’ centrality will be computed using the intra-regional links

25The cut-off for being in the top 5% inventors is 4 patents for the period 1985-1988, 5 patents for
1989-1999 and 6 patents for 2000-2002. The cut-off for being in the top 1% inventors increases gradually
from 8 patents in 1985 to 12 patents in 2002.

26The average areas in squared kilometres are: 5,745 for the NUTS 3 regions and 1,818 for the EA.
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Table 3.7 — Robustness check: average squared network centrality of non-stars only.

Dependent Variable:

Star Definition:

Citations-Weighted Number Of Patents (t+1)

Top 5% Inventors

Top 1% Inventors

Model: (11) (12)

Network Centrality Parameters

(Regional Squared Centrality Of

Non-Stars Only)

A (Connectivity) 0.0251*** 0.0201***
(0.0079) (0.0062)

a (Complementarity) 0.8908*** 0.944***
(0.2694) (0.3415)

B (Rivalry) 0 0
(0.1678) (0.1738)

Area-Field-Specific Variables

# Inventors (In) 0.2659*** 0.2677***
(0.0204) (0.0204)

Average Team Size (In) -0.2409*** -0.2331***
(0.0366) (0.0361)

Share of Outside Collaborators 0.0861 0.1001
(0.0774) (0.0769)

Technology Age (In) -0.0297 -0.0355
(0.022) (0.0216)

Area-Specific Variables

Technology Herfindahl (OST30) 0.2733** 0.2716™*
(0.1352) (0.1355)

# Plants of 200+ Employees (In) -0.0135 -0.0128
(0.0257) (0.0257)

# Workers (In) 0.3606*** 0.3625***
(0.056) (0.0559)

Employment Diversity -0.0274 -0.0269
(0.0357) (0.0358)

Dummies

EA x Tech YES YES

Time xTech YES YES

Fit statistics

Observations 34920 34920

Adj-pseudo R? 0.87348 0.87347

BIC 177149.191 177165.616

Notes: Fixed-effects Poisson estimation. The dependent variable is in £+ 1 while the variables based on
patent data are built using a 5 years window from ¢ —4 to ¢t. White heteroskedasticity-robust standard-
errors in parenthesis. Level of statistical significance: *** ** * means significance at the 1%, 5% and

10% level.
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only. This means that, to be connected in the intra-regional network, two inventors must
appear at least in one patent record in which they both have their addresses in the same
EA. For instance, if an inventor has only collaborated with inventors outside of his/her

region, he/she will be considered as isolated in the intra-regional network.

Table 3.8 presents the results with the intra-regional network. Model (13) reports the
main regression, Model (14) restricts the sample to the most innovative area-fields, and
Model (15) excludes the top 5% inventors from the calculation of the average regional
centrality. Consistently across all three estimations, connectivity is found to be signific-
antly positive and rivalry coefficient is null, as in the main model. It should be noted
that, in all three estimations, the complementarity coefficient is now equal to its maximal

value (.99) and it is significant.

3.5.2.4 An alternative model without efforts

We would now like to test the dependency of our results to one important assumption
of the model which is not directly tested empirically. In the simple model introduced in
Section 3.3, agents are assumed to exert efforts, the returns of which are affected by their
network connections. However, these efforts are not observable in the data. We thus here
propose a simple and alternative model without such efforts. Let us rather assume that
the inventive contribution of agent i is directly equal to his/her productivity: y; = 1;, and
let us assume that productivity has an autonomous and a network based component (in

a very similar fashion as in the main model), given by the following equation:

vilg) =142 Y T G.1)
JEN; 7

Now « receives a slightly different interpretation: it scales the extent to which an agent’s
productivity increases with the one of her/his partners. Without any form of maximiz-
ation, agents’ productivities are again obtained as fixed-point, solution of the system of
equations induced by Equation 3.11, for all 7. It turns out that, as in the main model, we

obtain:

bi(g) =ci(g,Aa,5), (3.12)

where ¢; is a centrality measure that depends only on the position of the inventor within
the network and on the three parameters A, a and . In this simple model without efforts,
agents’ productivities are equal to their outcomes y;. Therefore, we obtain that the only
difference between the main model, based on efforts, and this one, is that here inventors’
productivities are equal to their centrality whereas in the main model, they are equal to
the square of their centrality. We have thus tested, in Model (18) (Table 3.9), the same
model as Model (5) but using the average centrality in the area-field instead of the average
squared centralities. We find that none of the parameters are significant, thus justifying

the use of the full model based on agents’ efforts.
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Table 3.8 — Poisson regression.

The centrality is based on the intra-regional network only.

Dependent Variable:
Sample:

Other information:

Citations-Weighted Number Of Patents (t+1)
Full Mean(#Inventors Full
per year)> 10

Top 5% Inventors

Are Excluded

Model: (13) (14) (15)
Network Centrality Parameters
A (Connectivity) 0.0387*** 0.041*** 0.0401***
(0.0103) (0.0138) (0.0106)
a (Complementarity) 0.99*** 0.99*** 0.99***
(0.0674) (0.0087) (0.0661)
A (Rivalry) 0 0 0
(0.0939) (0.0661) (0.0594)
Area-Field-Specific Variables
# Inventors (In) 0.2502*** 0.5733*** 0.2516™**
(0.0203) (0.0462) (0.0206)
Average Team Size (In) -0.2466*** -0.4347** -0.2411***
(0.0373) (0.1754) (0.0391)
Share of Outside Collaborators 0.3204*** 1.0637*** 0.3042***
(0.0824) (0.3036) (0.087)
Technology Age (In) -0.0198 -0.002 -0.0228
(0.0225) (0.0789) (0.0239)
Area-Specific Variables
Technology Herfindahl (OST30) 0.2436* 1.2165%* 0.2765%*
(0.1355) (0.4932) (0.1359)
# Plants of 200+ Employees (In) -0.0148 0.0938 -0.0128
(0.0256) (0.0742) (0.0256)
# Workers (In) 0.3739*** 0.2108** 0.3691***
(0.0555) (0.0928) (0.056)
Employment Diversity (3-digits) -0.0262 -0.0001 -0.0264
(0.0356) (0.0537) (0.0358)
Dummies
EA x Tech YES YES YES
Time xTech YES YES YES
Fit statistics
Observations 34920 2682 34920
Adj-pseudo R? 0.87354 0.91419 0.87348
BIC 177069.361 31357.643 177150.686

Notes: Fixed-effects Poisson estimation. The dependent variable is in £+ 1 while the variables based on
patent data are built using a 5 years window from ¢ —4 to ¢t. White heteroskedasticity-robust standard-
errors in parenthesis. Level of statistical significance: *** ** * means significance at the 1%, 5% and

10% level.
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Table 3.9 — Other robustness checks.

Dependent Variable:

Citations-Weighted Number Of Patents (t+1)

Information: NUTS3  EAs From IDF  Centrality Is
Are Excluded Not Squared
Model: (16) a7 (18)
Network Centrality Parameters
A (Connectivity) 0.025%** 0.0234** 0.0572
(0.0054) (0.0102) (0.0501)
a (Complementarity) 0.9291*** 0.5501 0.4893
(0.1377) (0.5219) (0.6833)
B (Rivalry) 0 0 0
(0.1008) (0.2618) (0.5836)
Area-Field-Specific Variables
# Inventors (In) 0.3699*** 0.2428*** 0.2693***
(0.0288) (0.0215) (0.0205)
Average Team Size (In) -0.3612*** -0.2153*** -0.2553***
(0.0553) (0.0369) (0.0366)
Share of Outside Collaborators 0.0501 0.0456 0.0875
(0.1058) (0.0791) (0.0776)
Technology Age (In) -0.0077 -0.0335 -0.0253
(0.0336) (0.0219) (0.0217)
Area-Specific Variables
Technology Herfindahl (OST30) 1.2874%** 0.3132** 0.2374*
(0.3392) (0.1354) (0.1355)
# Plants of 200+ Employees (In)  -0.0009 -0.0337 -0.0134
(0.0707) (0.0256) (0.0257)
# Workers (In) 0.271%** 0.1478* 0.358***
(0.0909) (0.078) (0.0558)
Employment Diversity (3-digits) -0.0597 -0.1184*** -0.0272
(0.0367) (0.0457) (0.0357)
Dummies
EA x Tech YES YES YES
Time x Tech YES YES YES
Fit statistics
Observations 11772 33030 34920
Adj-pseudo R? 0.88406 0.75243 0.87355
BIC 92206.806 160704.023 177062.564

Notes: Fixed-effects Poisson estimation. The dependent variable is in £+ 1 while the variables based on
patent data are built using a 5 years window from ¢ —4 to ¢t. White heteroskedasticity-robust standard-

errors in parenthesis. Level of statistical significance:

10% level.
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3.6 Conclusion

This study aims to unveil whether the inventor’s network has an influence on local in-
novation and, most of all, how does network structure affect inventivity. Departing form
the existing literature, we introduced a stylized model linking an inventor’s productivity
to his/her network connections which associates inventors’ productivity to the square of
their centrality in the network. Centrality is formulated generically so that the network
can affect inventivity in different ways. These forms have been empirically estimated on
longitudinal French inventors and company data over twenty years. Thanks to fixed ef-
fect panel Poisson regressions at the employment area — technological domain level and
to non-linear regression techniques, we show that network connections do indeed matter
for regional innovation. We also show that direct connections benefit agents in a non rival
manner. Therefore, it seems that the benefits provided by network connections are likely
to be similar in nature to information. That is to say, they are relatively easily transfer-
able without impairing the use of other neighbours. For instance, such information-related
network-benefit could consist in the transfer of valuable ideas and of promising research
paths. Moreover, we find some form of complementarity so that agents are more innovat-
ive when connected to more central partners. This complementarity effect is empirically
verified when the most prolific inventors are excluded as recipients of these effects (top-
five or top-one percent), when only the most innovative EA-fields are considered, when
only intra-regional networks are accounted for, or when larger spatial units of analysis are
used (NUTS 3 instead of EA). Non-rivalry of connections and complementarity in net-
works provide a new, network-based, justification for knowledge spillovers. It also tends
to highlight the role of star inventors since their numerous partners benefit, in a non rival

manner, from their central position.

This study has limitations. First of all, the empirical analysis is carried out using
data on French inventors only. It is possible that the patterns of collaborations and
the nature of the exchanges involved in collaborations vary across countries. Natural
extensions of this work include the application to other countries and geographical scales.
In addition, the model introduced in this chapter is very stylized and considers only
the benefits an inventor can gain from the network. Therefore it neglects other relevant
determinants to regional innovation that are later controlled for in the econometric study.
Further theoretical work could integrate in the model other, non network-related, factors

of inventors’ productivity.

3.7 Appendix

3.7.1 Network-related production at the Nash equilibrium

This section shows how to derive the main result of Section 3.3.1, being that the equilib-

rium network-related production of inventors are equal to their squared centrality. At the
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Nash equilibrium, each inventor maximizes his/her utility taking the behaviour of other

inventors as given. They set their effort such as to maximize their utility, as follows:
e;
5:

argmax e;; (g,€;) —

with e_; the vector of all efforts except that of i. At equilibrium, the first order condition

must hold, yielding the following equations:

Vi(g,e_i)—e; =0, Vi,

e

J L ;

@1+)&_§ ~3 e; =0, Vi,
JEN;; 7

which provides the formula specifying the effort at equilibrium:

=142y (832 Vi
JEN; 7

This equilibrium effort is exactly the definition of the centrality defined by Equation (3.5):

Now that we have the equilibrium effort, we look at the equilibrium network-related

production. The first order condition holds at equilibrium, implying the following equality:

6:-( = TP: (g:eii) ) Vi.

That is to say, at equilibrium, an inventor’s effort equals his/her productivity. Thus,
the network-related production is equal to the squared centrality, from the following

equivalences (and dropping the indices):
2 2 .
yi =€ (9’;9*_1‘) = (ej)" =¢;, Vi.

3.7.2 A more general form of the model

This section follows the model developed in Section 3.3.1 and shows that the introduction
of new parameters in this model imply no significant change to the results.

Consider the following new productivity and utility functions:
.t
vi=mn+A ) 5,
JEN; d;

72
U = €3 — 5812;

where 7 is the inventor’s own productivity without any collaborator and -5 is a parameter
scaling the disutility of the effort. Those modifications imply no significant change to the

result.
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Indeed, with those new parameters, the equilibrium effort of each inventor, €} (g, A, e, 8,71,72),

must respect the following system of equations:

* N A «\% ;P .
= —+— ) d. ", Vi
=t jEZNi (ej) ;. Vi

Denoting v = 71 /72 and dividing by v yields:

$ A e\«
P R L A > (—J) dj_’s.
vy FYQjENi vy

Note that by writing & = e} /7, &’ respects the centrality defined by Equation (3.5) and
thus can be written as €] =¢; (g,"y_(l_“))\/*yg,a, ﬁ) This shows that we have the following

equivalence:
* —(1-a) A
€; (9, a,8,7,72) =7ci | 9,7 %}a’}ﬁ :

Thus including the two parameters, 71 and 79, to the productivity and the utility functions
would merely lead to the introduction of a proportionality coefficient to the centrality

measure at equilibrium without providing any distributional change.

3.7.3 Existence of the centrality when a € [0;1]

In this section we demonstrate the following proposition:

Proposition 1. When a € [0;1], the centrality defined by Equation (3.5) has a
positive solution for any A > 0. That is to say, there exists a strictly positive vector
ce ([R‘H)n, such that Equation (3.5) holds.

As when A =0, and when a =0, the proof is trivial, in what follows we consider only

A >0 and a €]0;1[. The demonstration of the proposition is based on three lemmas.

Definition 1. Let the function f: R™ — R™ be defined by
f(z) =1+ Gz,

where z € R™, 1 is a n-vector of ones, A >0 and a € ]0;1[ are fixed scalars, and G is a
n X n matrix of typical element g;; such that g;; > 0, Vi,j. Finally, ¢ is defined as the

vector whose elements are (z%), = z¢.

Definition 2. Let ¢; € R™ be the sequence such that ¢o =1 and ¢i+1 = f(cr).
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To prove Proposition 1, we just need to show that the function f has a positive fixed
point, i.e., there exists 2* > 0 (with 0 the n-vector of zeros) such that f(z*) =z*.2” And
showing that f has a fixed point is similar to showing that the sequence ¢ is increasing

and convergent.
Lemma 1. The sequence ¢ is increasing,

Proof of Lemma 1. We denote z; the it* element of z and f;(z) the i** element of

f(z). Let us look at the fist derivative of f:

Ofi(zx)
Ox;

= argijz; 7Y, Vi, 4. (3.13)

As a, A and g;; are positive, then alg;; > 0. Consequently, for any = > 0, the function f
is increasing (as any partial derivative defined in Equation (3.13) is positive). Further, the
first element of the sequence, cp, is strictly positive by definition. Thus, ¢1 = f(cp) > co.
By mathematical induction, we have ¢;11 = f(¢) > ¢;, Vt. Hence, the sequence ¢; is

increasing.]

Now let J =11" be the n x n matrix of ones, § = max{g;;} and G =§-J. That is
to say, the matrix G is the n x n matrix composed only of the maximum element of G.
Thus, by definition G>G2 In addition, by the definition of é, we have G-z = ng-r-1
where ng is a scalar and z =3, z; /n is the mean of the vector z.

Let the function h: R™ — R™ be defined by

h(z) = 1+AGz®
= 1+Ang-z>-1,

with z& =¥, 2% /n.
The function h is defined such that for any z > 0, h(z) > f(z). Indeed, note that

h(z)— f(z) = (1+AGz*)—(1+AGz®)
= \G-G)a®
> 0.

Lemma 2. For any A > 0, the sequence defined by sp =1 and s;,1 = h(s;) converges
to a fixed point of h. That is to say, there exists s* > 1 such that s* = h(s*).

2"The comparison z > y, = and y two vectors , means: x; > y;, Vi.
28The comparison A > B, with A and B two matrices, means: Aij > By, Vi, 5.
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Proof of Lemma 2. The vector s is a fixed point of A if and only if:

s = h(s)
= 14+)G-s*
= 1+Ang-s>-1.

Assume s is a fixed point of h. Let us look at the i* element of s:

s;i = 1+Ang-s®
= 14+Ang-> s¥/n
J

= 1+)&§-Zs?, Vi.
J

As this equation is true for all i, it implies that all elements of s are equal (as each element
of s is identically defined). Assume the fixed point exists and let y be the unique element

of s (i.e., s; =y, Vi), the previous equation simplifies to:
y=1+Ang-y“~. (3.14)

Thus, proving that s is a fixed point of h is equivalent to show that Equation (3.14) has
a solution.

Let g(y) =y — Ang-y® — 1, the first and second derivatives of g are:

6%@) =1—akng-y~ (=%,
Y
2
aagT(y) =a(l—a)Ang-y~ ).
Y

Remind that a € ]0;1], and A, n, § are positives. As g(1) < 0, to show that there is a
solution, we just need to show that there exists values of y such that g(y) > 0. Note
that the first derivative of g is positive whenever y > (an)\)l/ (1=2) and is increasing as
the second derivative of g is strictly positive. This implies that g crosses the x-axis just
once in R*. (Similarly, note that lim,_, . g(y) = +00.) So, necessarily, there exists one
unique y* such that g(y*) =0 and g(y) > 0, Yy > y*. Hence, the vector s*, defined by
st =y*, Vi, is a fixed point of k.00

The two first lemmas are used to prove Lemma 3.

Lemma 3. The function f has a positive fixed point. That is to say, there exists
x > 0 such that f(z)==.

Proof of Lemma 3. By the definition of s¢, we have sy > ¢;, Vt. Indeed, so=cp=1
and (h(sp) =)s1 > ¢1(= f(cp)) because h(z) > f(z), Vz > 0, so that s; > ¢, Vt follows by
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mathematical induction. From Lemma 2, the sequence s; converges to the fixed point s*
of h. It implies that s* is an upper bound of ¢;.
The sequence ¢ is increasing (Lemma 1) and is upper bounded by s*; therefore it is

convergent. Let ¢* be the point to which the sequence ¢; converges. The vector ¢* is a

fixed point of f.O0

We can now turn back to the proof of the proposition.

Proof of Proposition 1. The centrality, as defined by Equation (3.5), is equal to:

%(g,\
Gl haf) =142 Y, TEA0) 1y,
JEN; dj

Let G () be the matrix of typical element ((}' (/3))ZJ =d~P if nodes i and j are connected
in the network and ((N? (5))3} =0 otherwise. Dropping the parameters, the centrality can

be rewritten in matrix form:

c=1+\G(B)c, (3.15)

with ¢ the vector of all centralities. Define the function f. such that f.(z) =1+ G (8) z°.
Since A > 0, a € ]0;1[, and every element of G (3) is greater than or equal to 0, the function
fe respects the definition of the function f given in Definition 1. Therefore, from Lemma 3,
the function f. has a positive fixed point. It implies that there exists ¢ > 0 that solves
Equation (3.15), ¢ is the centrality.0J
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Conclusion

The main objective of this thesis is to clarify the mechanisms involved in knowledge cre-
ation, by specifically investigating the role of social networks in this process. To this end,
the literature on social networks is combined to the broad literature on the determinants
of innovation and on the sociology, and determinants, of collaboration. The social network
under scrutiny is the network based on formal collaborations for knowledge production,
be it patents or scientific articles.

Although this thesis focuses on a specific determinant of knowledge creation, social
networks, it also considers the role of geography. Indeed, since the actors of knowledge
production are highly concentrated in space, we then try to further understand the inter-
play between geography and social networks. In this vein, social networks are a means to
get into the mechanisms involved in “knowledge spillovers”.

We argue that social networks are a vector of diffusion of information and ideas, and
a strong factor influencing knowledge creation and the formation of new collaborations.
Tools originating from social networks theory are drawn to help to define new measures

and to assess the role of social networks as drivers of knowledge creation.

The three chapters of this thesis contribute to: i) better understand the determin-
ants of collaboration in knowledge production, ii) provide a thorough assessment of the
network-position of regions in knowledge networks, and i) investigate the link between

an inventor’s position within a network and the production of new knowledge.

Each of these chapters provide methodological contributions, and two include an em-
pirical study to cope with these questions. We first detail the contribution, limitation and
follow-up research contained in each chapter. In the end of this conclusion, some future

paths of research relating to this thesis are sketched.

Main results, limitations and follow-up research

Chapter 1. The first chapter assesses the role of the social network as a determinant
of inter-regional collaborations. As geography is also a competing element driving collab-
orations, this chapter evaluates the interplay between the social network and geography
in driving new collaborations. This chapter is a contribution to the literature on the
determinants of collaborations (Maggioni et al., 2007; Maggioni and Uberti, 2009). In

particular, it is anchored in the debate opposing geography versus social networks (e.g.,
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Bathelt et al., 2004; Boschma, 2005; Rodriguez-Pose and Crescenzi, 2008). To empir-
ically evaluate the relation between geography and social networks as determinants of
new collaborations, we employ data on scientific collaboration in chemistry in the period
2000-2005. To answer to this question, we first introduce a new measure of inter-regional
network proximity. This measure is used to approximate the level of social proximity
between regions. We then estimate the number of collaborations between regions with
respect to geographical factors and this measure of social proximity. First of all, the
results show that social proximity positively affects the creation of new collaborations.
Furthermore, the results depict a clear substitutability pattern between social proximity
and geographical proximity. This means that the benefits to social proximity do increase
with geographical distance. Concretely, the elasticity of the social proximity variable in-
creases with the geographical distance separating the regions. This is evidence that social
proximity helps to bypass the barrier of geography.

This study has been limited in scope. First, it has focused on scientific collaborations in
the specific field of chemistry. Therefore, it is an open question to know if the results hold
for other kind of scientific fields. However, the pattern of substitutability seems strong
enough to be robust to other fields, provided the collaboration behaviour in these fields
is not too different from the one in chemistry. Therefore, a natural extension would be to
apply the methodology of this study to other scientific fields. Second, the empirical study
was geographically circumscribed to 5 countries of the European Union. Natural extension
of this study includes the application of the methodology to larger geographical zones. In
particular, it can be worthwhile to extend the analysis to the US, to assess the interplay
between geographical distance and social networks in a large area which does not suffer
from country border effect. Third, the empirical analysis is based on one point in time.
Therefore, it does not cope with the evolution of the substitutability /complementarity
pattern between social and geographic proximity. Further research can use the same
methodology to investigate whether the substitutability between network and geography

has evolved over time due to the development in the means of communication.

Chapter 2. The second chapter intends to clarify the notion of network position of re-
gions in social networks. There is a growing interest to characterize the position of regions
in inter-regional networks (Maggioni and Uberti, 2011; Scherngell, 2013). However, the
question of how to measure the relative position of regions in networks remains unclear.
Therefore, this chapter critically assesses the question of the measurement of regional
network centrality in the context of R&D networks. It demonstrates the drawbacks of
existing centrality measures to cope in a meaningful way with inter-regional R&D net-
works, after describing how to apply them in this context. Mainly, there are two ways
to apply existing network centrality measures to regional R&D networks. Either consider
the inter-regional network as a weighted network (i.e. a network in which links between
the nodes can be valued more than one) in which the regions are the actors of the network,

and then apply existing centrality measures suited for weighted networks. Or compute
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the network centrality of each micro-level agent (e.g., the firms or the researchers) and
then aggregate these centralities at the regional level. These two methodologies suffer
from the drawback driven by the links internal to the regions. We further evidence the
problem of the duality between the meso-level, for which the centrality is to be computed,
and the micro-level, in which are the actors of the network.

After this discussion, a new measure, the bridging centrality, is introduced. This
measure is based on how much a region does indirectly connects other regions. In the
context of R&D networks, this kind of position is important for two reasons. For the
region itself, as it is the sign that the agents from this region are connected to a variety
of other regions which can diversify the regional pool of knowledge (Bathelt et al., 2004;
Berliant and Fujita, 2012). Secondly, in a network formation perspective, regions which
are in the middle of others can be seen as some repository of information and can facilitate
future connections between these regions. Another advantage of the measure we introduce
is that it was specifically designed for regional R&D networks.

We then use data on co-patents in the EU to compare the new centrality measure
with the existing ones. Despite some similar patterns between the various centrality
measures, the bridging centrality shows some differences. For instance, the region “Ile de
France” has a lower rank with the bridging centrality than with other measures because
the share of connections which are internal to the region is very high, thus providing less
interconnections between other regions.

This new measure is an attempt to incorporate meaningfully the notion of centrality
in this context. However, it is only a first step towards integrating a multi-dimensional
approach to characterize the position of regions in knowledge networks. A next step would
be to complement this approach by including other regional characteristics, such as, for
instance, to define how much a region is a bridge between other national and non-national

regions.

Chapter 3. The third chapter investigates the link between the production of know-
ledge and the position of inventors in the co-patent network. Following the literature on
knowledge production, the network structure should have an influence on the diffusion of
ideas and on the productivity of inventors (Cowan and Jonard, 2004; Singh and Fleming,
2010). We introduce a simple model in which the productivity of inventors is assumed
to be dependent on their collaborator’s behaviour. This model contains three elements:
connectivity, complementarity and rivalry. The first element, connectivity, simply states
that there is a positive relation between an inventor’s productivity and her/his network
of collaborators (i.e. without connectivity, the productivity of inventors is independent
of their network). The two other elements relate to how the inventor’s network affect
their productivity. Inventors are assumed to exert efforts to produce new knowledge. The
complementarity states that an inventor can be more productive if his collaborators exert
more efforts. Finally, rivalry means that an inventor may benefit less from very connected

collaborators, as they would have less time to devote to their collaboration. The model
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predicts that at equilibrium, the network-related production of the agents would be de-
pendent on a measure of their position in the network. This measure of network position
is a new form of network centrality which depends on the three elements of connectivity,
complementarity and rivalry.

To empirically assess if the network influences regional innovation, we use data on the
French co-patent network for the period 1981-2003. We estimate a region’s production
of innovation with respect to regional determinants, a various set of fixed effects and
the average network centrality of the agents in the region. The aim is to estimate the
parameters of the network centrality, these parameters tell whether the network has any
influence on regional production, and what kind of structure favours most innovation.

The results first show that the connectivity of inventors affects positively the regional
production of innovation. Moreover, we find a significant sign of complementary, meaning
that connections to inventors better positioned in the network increase the performance
of agents. Finally, the results depict, consistently across all estimations, no sign of rivalry
occurring in the network. This absence of rivalry means that new network connections
are always beneficial.

The main policy recommendation stemming from these results aim at increasing the
network connectivity of inventors. One way to attain such a goal is to enable/facilitate
more movement of inventors across firms, since they will therefore be able to access
new sets of possible partners to collaborate with. This recommendation is very in line
with recent works on non-compete agreements in the US which demonstrate the counter-
productive effect of non-compete agreements on regional innovation (e.g., Marx et al.,
2009, 2015).

Although this study is a step towards a better understanding of how the social network
can affect innovation performance, it suffers from limitations. The first limitation is its
scope. Indeed, the empirical evidence is only based on data on French inventors. Therefore
the implications of the results are not universal and must be taken with care. A next
step is to implement this methodology to other geographical areas. In particular, the US
could provide a nice point of comparison, which the network of inventors has been the
subject of many (if not most) innovation studies.

Another limitation is that the network is taken as given and the question of network
formation is not dealt with. Indeed, the formation of the inventors network may be
endogenous, so that collaborations are not random but may rather be the outcome of a
selection (see e.g., Carayol et al., 2015). In this case, the fact that there is consistently no
sign of rivalry in the results may be in part driven by this selection process. An avenue
of investigation would be to integrate the notion of network formation to the study of the

network-related determinants of innovation.
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Research paths

One essential mechanism taking part in the production of new knowledge is the diffusion
of information and ideas, in which the social network plays a critical role. However, the
causal effect of diffusion on the creation of innovation is challenging to single out. The
evidence on this issue are mostly indirect: some articles document that inventors tend to
cite other patents based on their social network (Breschi and Lissoni, 2005, 2009; Singh,
2005), but what remains unclear is whether the knowledge diffusion mechanism is pivotal
to the generation of innovations.

An avenue for further research concerns the integration of the notion of causality
to the question of diffusion in innovation networks, based on the very recent work of
Athey et al. (2015). Athey et al. (2015) describe how to implement tests of causality in
networks. The type of question for which it is suited is: How the access of one agent to a
treatment (e.g., some specific information) can causally affect its partners behaviour (e.g.,
the collaborators)? This kind of methodology can then be used to infer the causal effect
between the access of some agent to some knowledge and how it can propagate through

its network.

Another promising area of research on innovation lies on the combination of different
levels of innovation networks by taking advantage of the ftwo-modes network nature of
innovation networks. For instance, in the case of patent data, one patent provides inform-
ation on the authors, the technological class, the assignee, etc, which are possible nodes
of the network. These nodes can be connected in a network perspective in which the
‘network-link’ is identified with the patent. Since the breakthrough research of Hidalgo
and Hausmann (2009), there is growing research on this issue, with a large set of applic-
ations. For instance, recently Balland and Rigby (2014) apply Hidalgo and Hausmann’s
methodology to characterize the technological specialization of cities. There is room for

interesting research on innovation using this perspective.
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Summary in French — Résumé en

francais

Le but principal de cette these est de clarifier les mécanismes impliqués dans la création
de connaissance, en s’intéressant particulierement au réle des réseaux sociaux dans ce
processus. A cette fin, la littérature sur les réseaux sociaux est combinée a la littérature
sur les déterminants des collaborations, et sur la sociologie, et déterminants, des collabo-
rations. Le réseau social considéré ici est celui basé sur le réseau formel de collaborations

pour la production de connaissance (par exemple les brevets ou les articles scientifiques).

Bien que cette these porte spécifiquement sur un déterminant de la création de connais-
sance, le réseau social, elle prend aussi en compte le role de la géographie. En effet, comme
les acteurs de la création de connaissance sont tres concentrés dans I’espace, cette these
propose de mieux comprendre l'interaction entre la géographie et les réseaux sociaux.
Ainsi, le réseau social est un moyen d’investiguer les les mécanismes impliqués dans les

“externalités de connaissances localisées”.

Le point de vue porté par cette theése est que les réseaux sont un vecteur de diffusion
d’information et d’idées, et est un vecteur important de la création de connaissance et de
la formation de collaborations. La question de recherche requiert d’évaluer précisément
la position des agents dans le réseau. De fait, des outils issus de la théorie des réseaux
sociaux sont utilisés pour définir de nouvelles mesures et afin d’évaluer le réle du réseau

social comme un vecteur de création de connaissance.

Les trois chapitres de cette thése contribuent a : 7) mieux comprendre les déterminants
des collaborations dans la création de connaissances en mettant en avant la relation entre
réseau social et géographie, i7) apporter une évaluation critique de la position des régions
dans les réseaux de R&D, et i) étudier le lien entre la position des inventeurs dans le

réseau et la production régionale de connaissance.

Chacun de ces chapitres apporte des contributions théoriques et méthodologiques, et
deux incluent une étude empirique. La suite décrit les questions posées par chaque chapitre

ainsi que leurs méthodologies et résultats.

Chapitre 1. Dans le premier chapitre il est question d’évaluer le role conjoint du réseau

social et de la géographie dans la formation des collaborations scientifiques. Ce chapitre
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s’inscrit a la fois dans la littérature sur les déterminants de collaborations (Maggioni
et al., 2007; Hoekman et al., 2010; Morescalchi et al., 2015) et dans le débat opposant
la géographie au réseau social (Bathelt et al., 2004; Boschma, 2005; Rodriguez-Pose and
Crescenzi, 2008). Dans un premier temps, ce chapitre discute de fagon théorique des
causes affectant la collaboration entre chercheurs, en focalisant principalement sur les
mécanismes impliqués par le réseau social. En particulier, les possibles conséquences de
I'interaction entre la proximité de réseau et la proximité géographique sont discutées, en
mettant en avant dans quelles conditions elles peuvent étre complémentaires ou substituts.
Dans ce chapitre, nous soutenons l'idée que la proximité de réseau affecte positivement les
collaborations. Par contre, nous restons agnostiques sur la question de la complémentarité
/ substituabilité de Deffet des proximités géographique et de réseau.

Dans un deuxiéme temps, une analyse empirique est mise en place afin de tester
les hypothéses développées dans la discussion théorique. A cette fin, nous employons
des données sur les collaborations scientifiques dans le domaine de la chimie, ayant lieu
dans cinq pays Européens (France, Allemagne, Royaume-Uni, Espagne et Italie), entre
2000 et 2005. Un modele gravitaire est employé pour évaluer les déterminants des flux
de collaborations inter-régionales. De par I’absence de mesure existante pour évaluer la
proximité sociale entre régions, ce chapitre fait aussi une contribution méthodologique
en introduisant une telle mesure. Cette mesure de proximité sociale inter-régionale se
base sur les connexions indirectes entre chercheurs et s’appuie sur des fondements micro-
économiques.

Les résultats démontrent un effet positif de la proximité sociale comme déterminant
des collaborations. De plus, la substituabilité entre les proximités sociale et géographique
est clairement mise en évidence. Cela veut dire que la probabilité de collaboration due
a la proximité sociale croit avec la distance géographique séparant les régions. C’est une

mise en avant que la proximité sociale permet de passer les barrieres liées a la géographie.

Chapitre 2. Le deuxiéme chapitre se propose de caractériser le positionnement des
régions dans les réseaux sociaux, en particulier les réseaux d’innovation. En effet, il y a
une importance croissante est donnée a ’évaluation la position des régions dans les réseaux
inter-régionaux (Maggioni and Uberti, 2011; Scherngell, 2013). Néanmoins, la question de
la mesure de la position relative des régions dans les réseaux n’a toujours pas de réponse
claire. Le but de ce chapitre est donc d’évaluer de facon critique de la notion de centralité
de réseau dans le contexte de réseau inter-régional de R&D.

Tout d’abord, ce chapitre met en avant les possibilités d’appliquer a ce contexte les
centralité de réseau existantes. Principalement, il existe deux approches. La premiere
possibilité est de considérer le réseau inter-régional comme un réseau pondéré. Les noeuds
composants le réseau représentent alors chaque région et les liens entre chaque noeud
mesurent l'intensité des flux de collaborations entre régions. Dans ce cas, il suffit alors
d’employer les versions pondérées des mesures de centralité existantes. La deuxieme ap-

proche consiste a considérer la centralité régionale comme la somme des centralités de ses
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agents. Dans ce cas, il faut calculer les centralités au niveau individuel (i.e. au niveau du
réseau des chercheurs ou des firmes), puis agréger les centralités au niveau régional. La
discussion théorique portant sur ces méthodes met en avant des limites claires en termes
d’interprétation. En effet, les mesures de centralité sont en premier lieu définies a ’échelle
des réseaux individuels, or nous montrons dans ce chapitre que ces derniéres perdent I’es-
sentiel de le pouvoir explicatif lorsque 1’on passe a un niveau agrégé. Un probléme majeur
réside dans la dualité entre le niveau meso (i.e., régional) pour lequel la centralité doit
étre calculée, et le niveau micro, ou interviennent les vrais acteurs du réseaux (i.e., les
chercheurs ou les firmes).

A la suite de cette discussion, une nouvelle mesure, que 'on nommera bridging-
centrality, est introduite. Cette derniere est basée sur la propension des agents d’une
région a étre des “ponts” entre agents d’autres régions, i.e. a étre des agents connectés a
plusieurs régions différentes. Dans le contexte des réseaux de R&D, ce type de position
revét un réle important pour deux raisons. Dans un premier temps, cela joue un role
important pour la région en soi. En effet, il s’agit d’un signe que ses agents sont connectés
a une variété d’autre régions, ce qui permet de diversifier le fonds de connaissance régio-
nal (e.g., Bathelt et al., 2004; Berliant and Fujita, 2012) Ensuite, cette position est aussi
bénéfique pour les autres régions. En effet, dans un contexte de formation de réseau, une
régions qui en interconnecte d’autres peut étre vue comme un répertoire d’information, et
ainsi peut faciliter les connexions futures entre ces autres régions. Finalement, un autre
avantage de cette mesure est qu’elle a été créée spécifiquement pour les réseaux régionaux
et prend en compte la dualité des niveaux micro/meso.

Pour illustrer cette mesure et la comparer avec d’autres mesures existantes, des don-
nées sur les dépots de brevet Européens ont été utilisées. Malgré des similarités entre les
différentes mesures de centralité, la bridging-centrality montre des différences significatives
avec les autres. Par exemple, pour le cas de la région Ile de France, le rang que lui donne
la bridging-centrality est inférieur a celui calculé par les mesures standard car la part des
connexions internes a la région est si grande qu’au final les agents interconnectent peu les

autres régions.

Chapitre 3. Le troisieme chapitre s’intéresse a la relation existante entre la position
des agents dans le réseau d’inventeur et la production régionale d’innovation. Selon la
littérature sur la production de connaissance, la structure du réseau devrait influencer la
diffusion d’idée et la productivité des inventeurs (e.g., Cowan and Jonard, 2004; Fleming
et al., 2007; Singh and Fleming, 2010). Ce chapitre propose de tester cette assertion avec
une méthodologie originale. Pour cela, un modele est introduit dans lequel la productivité
des inventeurs est reliée au comportement de leur collaborateurs. Ce modéele contient trois
éléments : connectivité, complémentarité et rivalité. Le premier élément, la connectivité,
relate simplement qu’il y a un lien entre la productivité d’un inventeur et son réseau.
Les deux autres éléments rendent compte de comment le réseau affecte la production des

inventeurs. La complémentarité stipule que la productivité d’un inventeur sera augmentée
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s'il collaborent avec d’autres inventeurs qui sont plus productifs. Enfin, la rivalité relate
I'idée qu’un inventeur peut bénéficier moins d’un collaborateur qui est trés connecté, car
il pourra moins consacrer de temps a la collaboration (see e.g., Jackson and Wolinsky,
1996). Ce simple modele stylisé prédit qu’a ’équilibre, la production des inventeurs est
dépendante de leur position dans le réseau. Cette position dans le réseau correspond a
une nouvelle forme de centralité de réseau qui est basée sur les valeur de : connectivité,
complémentarité et rivalité.

Pour évaluer empiriquement si I'influence du réseau sur la production régionale d’in-
novation, des données sur le réseau de brevets francais sont utilisées, de 1981 a 2003.
La production régionale d’innovation est estimée en fonction de déterminants régionaux,
d’effets fixes pour contréler pour les variations temporelles et inter-régionales, et de la
centralité de réseau des agents de ces régions francaises. Le but étant d’estimer les pa-
rametres du modele. Ces derniers permettent d’appréhender quelle type de structure de
réseau est la plus favorable a 'innovation régionale.

Dans un premier temps, les résultats montrent que le réseau d’inventeur influence
positivement la production d’innovations (i.e., la connectivité est positive). Il y a aussi
des signes de complémentarité dans le réseau, ce qui signifie que les inventeurs sont plus
productifs quand ils collaborent avec des individus biens placés dans le réseau. Ce résultat
corrobore 'importance accordée par la littérature au "star-inventors" dans la diffusion
des idées au sein d'un réseau (Zucker et al., 1998; Menon, 2015). Enfin, les résultats ne
permettent pas de montrer des signes de rivalité au sein du réseau. Ainsi, chaque nouvelle
connexion entre deux inventeurs qui n’étaient pas déja connectés reste toujours bénéfique

pour l'innovation régionale.
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Le role des réseaux sociaux dans la géographie de I'innovation et de la
collaboration: Trois essais

Resumé : Cette these porte sur la création de connaissances scientifiques et tech-
nologiques, et son lien avec la géographie et le réseau social. En ce sens la theése s’attache
a mieux identifier le réle du réseau social dans la production de connaissance, et a éclairer
le lien entre réseau social et géographie dans la formation des collaborations, en mettant
en avant dans quelles conditions le réseau permet de s’affranchir de cette derniere. A
cet égard, cette these apporte plusieurs contributions théoriques, méthodologiques et em-
piriques. L’essentiel de la these s’applique a assembler les mécanismes qui lient le réseau
social a la production de connaissances. La discussion théorique est ensuite appuyée par
une analyse empirique dans deux contextes liés la création de connaissances. D’ une part
la theése analyse la formation du réseau des collaborations scientifiques en Europe dans
le domaine de la chimie, mettant en avant l'interaction réseau wversus géographie dans
la formation des collaborations. D’autre part, elle évalue le réle du réseau d’inventeur
dans la performance des zones d’emploi francaises en termes de production d’innovation,
en se focalisant sur le type de structure de réseau qui favorise le plus I'innovation. Les
résultats principaux sont que ’expansion du réseau social — mesuré par la connectivité
des inventeurs — a un effet bénéfique sur I'innovation. De plus, il est montré que le réseau
social permet en partie de s’affranchir de la barriere géographique pour collaborer. Ces
résultats apportent des éclairages sur le role du réseau dans 'ogranisation spatiale des
activités scientifiques et technologiques.

Mots-clefs : innovation ; collaboration ; formation de réseau ; économie géographique

Social networks and the geography of innovation and research collaboration:
Three essays

This thesis pertains to understanding how social networks and geography affect the
creation of new knowledge. More precisely, this thesis will question how the social network
of collaboration can influence the production of knowledge, how do geography and the
social network interact, and whether the social network can help to bypass geography. An-
swering these questions required to make some theoretical, methodological and empirical
contributions. One part of the thesis gathers the mechanisms linking the social network to
knowledge creation, while another focuses on the interplay of geography and the network
into the collaboration process. Following this theoretical discussion, two empirical studies
are laid out. First, it assesses the formation of scientific collaborations in Europe in the
field of chemistry. This study focus on the competing role between the social network and
geography to shaping new collaborations. Then, the thesis comes to evaluate how the
network of inventors influence the innovation performance of French employment areas.
In particular, a specific methodology is set up to address what kind of network structure
favours the most collaboration. The main results of this thesis are that an increase in
the connectedness of inventors is always beneficial to urban innovation performance. We
also show that social network act as a substitute to geographic distance, so that social
network allows to alleviate the burden of distance. These results shed light on the role of
the network in shaping the spatial distribution of the scientific and technological activity.

Keywords: innovation; research collaboration; network formation,; economic geography
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