
HAL Id: tel-01279117
https://theses.hal.science/tel-01279117

Submitted on 25 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive space-time domain décomposition methods for
Euler and Navier-Stockes equations

Oana Alexandra Ciobanu

To cite this version:
Oana Alexandra Ciobanu. Adaptive space-time domain décomposition methods for Euler and Navier-
Stockes equations. Fluid mechanics [physics.class-ph]. Université Paris-Nord - Paris XIII, 2014. En-
glish. �NNT : 2014PA132052�. �tel-01279117�

https://theses.hal.science/tel-01279117
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS 13

No attribué par la bibliothèque

THÈSE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS 13

Discipline: Mathématiques Appliquées

Laboratoire d’accueil: ONERA - Le centre français de recherche

aérospatiale

Présentée et soutenue publiquement le 19 décembre 2014

par

Oana Alexandra CIOBANU

Titre

Méthode de décomposition de domaine avec adaptation de
maillage en espace-temps pour les équations d’Euler et de

Navier–Stokes

devant le jury composé de:

François Dubois Rapporteur
Laurence Halpern Directrice de thèse
Raphaèle Herbin Rapporteure
Xavier Juvigny Examinateur
Olivier Lafitte Examinateur
Juliette Ryan Encadrante

UNIVERSITY PARIS 13

THESIS

Presented for the degree of

DOCTEUR DE L’UNIVERSITÉ PARIS 13

In Applied Mathematics

Hosting laboratory: ONERA - The French Aerospace Lab

presented for public discussion on 19 decembre 2014

by

Oana Alexandra CIOBANU

Subject

Adaptive Space-Time Domain Decomposition Methods for
Euler and Navier–Stokes Equations

Jury:

François Dubois Reviewer
Laurence Halpern Supervisor
Raphaèle Herbin Reviewer
Xavier Juvigny Examiner
Olivier Lafitte Examiner
Juliette Ryan Supervisor

newpage

Remerciements

Tout d’abord, je remercie grandement Juliette Ryan pour avoir accepté d’être mon encad-
rante de stage puis mon encadrante de thèse. Pendant plus de trois ans, elle m’a fait découvrir
mon métier de jeune chercheuse avec beaucoup de patience et de professionnalisme. Elle m’a
soutenue, elle a été d’une disponibilité et d’une écoute extraordinaires, tout en sachant être
rigoureuse et exigeante avec moi comme avec elle-même. Humainement, j’ai beaucoup apprécié
la relation d’amitié que nous avons entretenue, le climat de confiance que nous avons maintenu
et les discussions extra-mathématiques que nous avons pu avoir et qui ont renforcé le lien que
nous avions. Je la remercie pour tout ça, et je sais que j’en oublie.

Je remercie sincèrement Raphaèle Herbin et François Dubois d’avoir accepté la lourde tâche
d’être mes rapporteurs, et je les remercie pour l’attention qu’ils ont porté à mon travail dans
un délai plus que raisonnable.

C’est un plaisir et un honneur pour moi d’avoir dans mon jury Olivier Lafitte. C’est grâce
à lui que je suis arrivée en MACS, et je suis très fière de le retrouver pour cette soutenance de
thèse, c’est une jolie manière de boucler la boucle.

Je remercie également mes collègues de l’Onera, pour les nombreuses discussions que nous
avons eues au cours de ces trois années et pour les moments sympathiques que nous avons
passés au laboratoire. En particulier je voudrais remercier Xavier Juvigny, tout d’abord parce
qu’il a suivi de très près l’avancée de mon travail, et surtout pour sa disponibilité et ses facultés
pour me dépatouiller de tous mes problèmes informatiques. J’ai eu énormément de plaisir à le
côtoyer durant ces trois années, à échanger avec lui sur la thèse, sur la vie, et sur plein de choses
en général. Sans lui, la thèse n’aurait pas été drôle du tout et je suis vraiment contente d’avoir
fait sa connaissance et de m’être lié d’amitié avec lui.

Je vais à présent remercier mes proches. Je remercie mes parents et mes frères pour leur
soutien et la confiance aveugle qu’ils ont eue envers ma réussite. Je remercie Mikael, Roxana,
Raluca, Luciana, Diana et Alina pour leur soutien moral. Je remercie Roxana pour avoir relu
une partie de ma thèse et pour leurs corrections, Alina pour l’aide qu’elle m’a apportée pour
préparer le pot, et Mikael pour les deux.

Je tiens à exprimer ma profonde reconnaissance à Laurence Halpern, qui m’a fait l’honneur
d’être ma directrice de thèse et pour toutes les discussions constructives et conseils autour mon
travail.

Ma thèse ne se serait sans doute jamais achevée sans leur soutien et je les remercie pour
tous les moments qu’on a passés ensemble.

Contents

Introduction iii

1 Numerical Methods for Euler and Navier–Stokes Equations 1

1.1 Fluid Dynamics Equations . 2

1.1.1 Compressible Navier–Stokes Equations . 4

1.1.2 Euler Equations . 5

1.2 Finite Volume (FV) Method . 5

1.2.1 Space discretisation . 7

1.2.2 Space-Time Boundary Conditions . 8

1.2.3 Development of the numerical Euler flux 16

1.2.4 Development of the numerical viscous flux 24

1.3 Explicit and Implicit Time Schemes . 25

1.3.1 First and Second order Explicit Methods 26

1.3.2 Second order Implicit Backward Differentiation Methods 28

2 Schwarz based Domain Decomposition Methods (DDMs) 39

2.1 Classical Schwarz domain decomposition methods 41

2.1.1 Alternating Schwarz Algorithm . 42

2.1.2 Parallel Schwarz Algorithm . 43

2.2 Schwarz Waveform Relaxation (SWR) Method 45

2.3 Adaptive Schwarz Waveform Relaxation (ASWR) Method 47

2.4 Schwarz Methods applied to implicit solvers . 50

2.5 Transmission conditions on artificial boundaries 51

2.5.1 Dirichlet type boundary conditions . 54

2.5.2 Mixed Dirichlet/Robin boundary conditions 55

2.5.3 Robin (Fourier) Boundary Condition . 58

2.6 Convergence and Stopping criteria . 61

3 CFD Code organisation and description 71

3.1 Code description and programming techniques 73

3.2 Parallelisation techniques . 77

3.2.1 Parallel computing inside loops (OpenMP) 78

3.2.2 Parallel computing via message passing (MPI) 80

3.2.3 Graphic Processor Unit (GPU) . 81

3.3 Parallelism efficiency evaluation . 87

4 Numerical results and discussions 91

4.1 Comparisons of numerical convective fluxes schemes 92

4.1.1 1D shock tube problem . 92

4.1.2 2D Forward Facing Step . 98

4.2 Applications of Domain Decomposition techniques 105

i

ii Contents

4.2.1 GPU versus CPU . 105
4.2.2 Exact solution for Euler equations: 2D isentropic vortex 106
4.2.3 Sound generation in a 2D low-Reynolds mixing layer 113

4.3 Vortex shedding from rectangles . 117

Conclusion and Perspectives 129

A Computation of diffusive Jacobians 133

B List of GPU libraries 141

C Example of CUDA programming. Minimum reduction 143

Nomenclature 149

Bibliography 151

Introduction

This work focuses on the research field of laminar flow of an ideal gas around solid bodies,
on the resolution of aerodynamic multi-scale problems that are costly and difficult to solve in
their original form. In the aerodynamic field, scientists are facing many different problems,
geometrical problems due to the complex design of civil aircraft, military aircraft, helicopters,
space transport, missile systems, launchers, air intakes, nozzles, propulsive jets and other bodies
in movement. Other problems are issued from the model used to describe the physical configu-
ration. Most of the models are robust only for particular cases, coefficients are established on
particular cases as well, for simplified models and small range data problems. Thus, phenomena
too complex to be reliably predicted by theory and too dangerous or expensive to be reproduced
in the laboratories must be simulated by computational scientists. A simulation with low range
precisions can lead to false results, unrealistic behaviour and even damages if used in experi-
mental work. At all levels, in order to better approach the geometry and to better validate a
model, for physical viability precision, large data systems must be solved. Several techniques
of parallel computing have been developed as they allow to solve large data systems of equa-
tions. They essentially depend on the chosen domain decomposition method, but convergence
problems may occur for large numbers of sub-domains.

In what concerns the numerical point of view on solving the Navier–Stokes system of equa-
tions, robust and fast methods are now available, which combine non-linear and linear solvers
requiring less memory capacity. In the context of long term simulations, the class of global
implicit approaches has proved its superiority as they are able to simulate a quasi-steady-state
behaviour without being restricted to short time steps to ensure convergence. However, in in-
dustrial applications explicit methods are preferred, as they are easy to compute and to adapt,
but very expensive since they are restricted to a small time step. Between the range of existing
algorithms the choice of an appropriate one is still uncertain. The performance of both, explicit
and implicit methods can be improved when combined with a domain decomposition method.

Domain decomposition methods split large problems into smaller sub-problems that can
be solved in parallel. Space domain decomposition method is used to provide high-performing
algorithms in many fields of numerical applications. Yet, the technology evolution towards
multi-cores, multi-processors, GPU and multi-GPUs is not completely exploited. To achieve
full performance on large clusters with up to 100 000 nodes (such as recently the IBM Sequoia,
or GPUs) the time dimension has to be taken into account. An essential gain to be obtained from
time-space domain decomposition is the ability to apply different time-space discretisations on
sub-domains thus improving efficiency and convergence of implicit schemes. The idea of domain
decomposition is quite old, it was proposed for the first time in 1869 by H.A. Schwarz [87] with
the purpose of solving a linear problem (Laplace equation) over a geometry, which it was
impossible to solve in its initial form. Schwarz splits the global problem into two overlapping
problems and solves them alternately by exchanging interface conditions. He manages in this
way to solve for the first time the Laplace equation for a complex geometry and gives the main
goal to the domain decomposition method, the one of managing complicated geometries. More
than one century later, in a series of papers [64, 65, 66], P.-L. Lions revitalises Schwarz idea
and proposes a parallel formulation of what is known today as Parallel Schwarz. He discusses

iii

iv Contents

overlapping and non-overlapping coincident domain decomposition methods and different types
of interface conditions, and this for linear systems of equations. Lions manages to completely
parallelise sequential problems, but some problems still diverge for large number of sub-domains.
Another technique developed in the same period by J.L. Steger and J.A. Benek [91, 90] is the
chimera overset grid methods. It is an additive Schwarz method (as shown in the paper of
Brezzi and co [10]) for overlapping domains to adapt body conforming structured grid methods
to complex geometries. It allows moving one body with respect to another or adding new bodies
into the domain without mesh reconstruction, by allowing meshes to move along with one body.
The connection between grids is usually made by interpolation.

Our attention focuses on the improvement of the Schwarz Waveform Relaxation (SWR)
method, introduced under this name by Gander [38] at the 10th Domain Decomposition Con-
ference to solve parabolic equations. The Waveform Relaxation method (Lelarasmee and al.
[62]) is an iterative method to solve time dependent problems. Each iteration produces a better
approximation of the solution over the whole time interval. This scheme was extended to a
multi-splitting formulation on overlapping sub-domains by Bjorhus [5], Jeltsch and Pohl [58]
and Gander and Stuart [46]. Originally applied to linear PDEs, the SWR algorithm was ex-
tended and optimised for the non-linear reactive transport equations by Haeberlein [49, 50] and
for the incompressible Navier–Stokes equations by Audusse and al [2]. With the SWR method
different time-space discretisations can be applied on sub-domains thus improving efficiency and
convergence of the schemes.

Schwarz based domain decomposition methods are proved to be efficient mostly for linear
problems. Yet, some convergence problems still appear for large number of sub-domains (for
example in Finite Element methods with over 100 sub-domains). For large number of sub-
domains of small size, some parallel simulations with elsA, the Onera’s software for aerodynamic,
lead to loss of solution accuracy. In this work we conduct a numerical study of Schwarz based
domain decomposition methods and especially the SWR method for the Euler and Navier–
Stokes system of equations. We aim to identify the loss of accuracy problem encountered
inside Onera and help eliminate their drawbacks. We propose an improved parallel time-space
method for steady/unsteady problems modelled by Euler and Navier-Stokes equations for a
direct numerical simulation that uses the SWR method. Within the SWR iterative process, we
propose an adaptive time stepping technique to improve the scheme consistency. By adaptivity
we mean that, for each SWR iteration, as we improve the coupling conditions we adapt the
time step to satisfy the CFL condition and ensure stability of our method, thus different time
steps in each sub-domain and inside each time window.

The main aim of this study is to build a parallel in space and in time CFD Finite Vol-
umes code for steady/unsteady problems modelled by Euler and Navier-Stokes equations based
on Schwarz/chimera method that improves consistency, accelerates convergence and decreases
computational cost. Another aim is to build this improvement in a modular form so as to be
easily integrated in elsA or any other platform.

This work is structured in four chapters as presented below.

Organisation of the Manuscript

Chapter 1

The first chapter is dedicated to the framework of this study. It begins with the presentation
of the Euler and Navier–Stokes equations, the solving of which will be the application of our
problem. We present and discuss the model, the time and space discretisation and the phys-
ical boundary treatment. A bibliographical study is made to help choosing the most adapted
numerical scheme to compute the numerical fluxes. Once the space discretisation is fixed we
continue with the presentation of the time discretisation via two different classes of methods:

Contents v

explicit and implicit. We discuss the choice of non-linear and linear solvers.

vi Contents

Chapter 2

In the second part of this work, we study numerical techniques and algorithms that apply
to parallelism on different possible architectures. We present the context of parallel computing
through a global and summarised review of different domain decomposition approaches. We
focus on domain decomposition methods based on Schwarz methods. We give formulations of
classical domain decomposition methods (alternating Schwarz method, parallel Schwarz method,
Schwarz Waveform Relaxation method) applied to the Navier–Stokes system of equations for
both explicit and implicit class of solvers. We then formulate the problem we are aiming to
solve: improvement of a domain decomposition method. We propose a new flexibility to the
SWR method aiming to improve the scheme consistency and accelerate its convergence.

In the last part of this chapter we discuss the different types of transmission conditions on
artificial boundaries issued by the domain decomposition. The implementation of a Robin type
boundary condition and values of different parameters are discussed.

Chapter 3

In the third chapter we discuss the means of parallel computing, how to understand, orga-
nize and tune the parallel methods. We talk about evolution of computer architecture (shared
memory, distributed memory and hybrid), how to exploit its capacities and make sure that the
algorithms are flexible and portable. When different architectures are possible, a developer must
reevaluate, rethink the problem and be able to appreciate its adaptivity to these architectures.
We briefly present the tools (OpenMP, MPI and GPU CUDA) that enable the parallel compu-
tation, their evolution, advantages and limits. Example of applications are shown for different
computer architectures. In the last section we discuss ways of measuring parallel efficiency.

Chapter 4

The last chapter of this manuscript is dedicated to the validation of the presented meth-
ods. Validations and comparisons of different numerical schemes to compute the Euler fluxes
are conducted. Then, we validate the domain decomposition methods applied to explicit and
implicit methods. A numerical convergence study and comparisons of different Schwarz based
decomposition methods is done over three main cases:

• The 2D isentropic vortex evolution based on Yee’s paper [99]. The problem of numerical
diffusion of vortices can appear when dealing with simulations of aircraft trailing vor-
tices, blade–vortex interaction of helicopter rotors, rotor–stator interaction of turbo-shaft
engines, aeroacoustic problems or weather forecasting. Moreover, this test is an exact
solution of the Euler equations and provides an accurate study of convergence.

• More often studied in the aeroacoustic fields, the sound generation in a 2D low Reynolds
mixing layer, based on [24, 55], is a very unsteady case that requires small time steps
simulations;

• The vortex shedding around rectangles [28, 80, 92, 9, 86] has applications such as the
aerodynamic drag reduction for air-planes, road vehicle, damage predictions for inclined
air-foils, ocean pipe line or risers, off- shore platform supports, suspension bridges, steel
towers or smoke stacks, etc.

Performance of the different parallel computing strategies (using OpenMP, MPI) are com-
pared for each test. A mono-domain application on GPU is also presented in this chapter.

Chapter 1

Numerical Methods for Euler and
Navier–Stokes Equations

Contents

1.1 Fluid Dynamics Equations . 2

1.1.1 Compressible Navier–Stokes Equations 4

1.1.2 Euler Equations . 5

1.2 Finite Volume (FV) Method . 5

1.2.1 Space discretisation . 7

1.2.2 Space-Time Boundary Conditions . 8

1.2.3 Development of the numerical Euler flux 16

1.2.4 Development of the numerical viscous flux 24

1.3 Explicit and Implicit Time Schemes 25

1.3.1 First and Second order Explicit Methods 26

1.3.2 Second order Implicit Backward Differentiation Methods 28

1

2 1.1. Fluid Dynamics Equations

In 1755, Leonhard Euler gives a set of equations governing inviscid flows and, in 1822 Henri
Navier, and independently George Stokes in 1845, formulates the central equations to model
the fluid dynamics adding the viscosity to the Euler system of equations. In the first part of
this chapter we introduce a general presentation of the fluid dynamics equations, then we set-up
the numerical frame. We present separately the space discretisation and the time discretisation
of the exact problem. The space discretisation is of Finite Volume type, thus it:

• allows to handle arbitrary geometries,

• is especially adaptable to Cartesian grids,

• requires no additional treatment on a composite grid,

• is also a common technique inside Onera and its main software.

The retained Finite Volume formulation for both compressible Euler and Navier–Stokes
equations is based on dimensionless variables. This step allows the reduction of the number
of parameters and facilitates the study of the fluid behaviour. Before discussing the numerical
schemes, a theoretical introduction is given together with the definition of the Riemann problem.
Next, a suitable numerical scheme for modelling the Euler fluxes has been chosen among the
literature. The motivation for this section is the need for accurate simulations of flows with
shocks which exist in many fields of physics. As Woodward mentions in [98] Much experience
indicates that the overall accuracy of such simulations is very closely related to the accuracy
with which flow discontinuities are represented.

The time integration is first done explicitly using a first order Euler Method and a second
order Runge-Kutta method, and second in an implicit manner using a second order multi-step
Backward Differentiation Method. The solving of the non-linear system of equations issued of
a Backward Differentiation Method is solved with an Inexact Newton method combined with
one of the three presented linear schemes. We add no new contribution to this chapter, however
the presentation of the numerical schemes choices is necessary. All main definitions, notations
and notions are going to be presented in this first chapter.

1.1 Fluid Dynamics Equations

We consider the time-dependent compressible Navier–Stokes equations, present the equa-
tions, different notions and notations that will be referred in the entire manuscript. Let p denote
the pressure, ρ the mass density, u, v, w the x, y, respectively z-component of velocity and E
the total energy per unit. We note ~u = (u, v, w)T , the velocity vector. The basic equations of
fluid dynamics can be written with the primitive variables ρ, u, v, w and p, and for an arbi-
trary domain Ω ⊂ R

d, d ∈ {1, 2, 3} and without any external forces as a set of three equations
describing mass conservation, momentum conservation and energy conservation :











∂ρ
∂t +∇ · (ρ~u) = 0
∂ρ~u
∂t +∇ · (~u⊗ (ρ~u)) +∇ · pI −∇ · τ = 0
∂ρE
∂t +∇ · (~u(ρE + p))−∇ · (τ~u− q)= 0

, (1.1)

where τ is the deformation tensor and q the heat flux. The conservation laws imply that
during the evolution of the fluid, at all times, mass, generalized momentum and energy are
conserved. These three conditions completely determine the behavior of the system. We still
have to add the specifications of the nature of the fluid that act on the momentum and energy
equations. In order to determine all terms of these equations, the sources influencing the
variation of the momentum must be defined. These forces are the external volume forces (not
considered in this work) and the internal forces that depend on the nature of the fluid considered.

We assume that the fluid is Newtonian (the time rate of change of the momentum in Ω is
equal to the total force acting on the volume Ω, the time rate of change of total energy is equal

1.1. Fluid Dynamics Equations 3

to the work done, per unit time, by all the forces acting on the volume plus the influx of energy
per unit time into the volume), then the viscous stress tensor of constraints is an isotropic linear
function depending on the deformation tensor given by:

τ = λ(∇ · ~u)I + 2µD,

where D = 1
2(∇~u+ (∇~u)T) is the deformation tensor, λ and µ are the viscosity coefficients

of the fluid that we suppose given by the Stokes hypothesis:

3λ+ 2µ = 0.

µ (measured in kg
m.s) is the dynamic viscosity. The total energy per unit, E is given by the

sum of the internal energy per unit mass e and the specific kinetic energy per unit mass 1
2u

2.

E =
1

2
u2 + e.

The heat flux is given by the Fourier law:

q = K⊤∇⊤,

where K⊤ = cp
µ

Pr
=
γrgas
γ − 1

µ

Pr
is the conductivity coefficient and Pr is the Prandtl number

(assumed to be constant), ⊤ = γ−1
rgas

e is the absolute temperature, γ =
cp
cv

is the specific heat
ratio between cp, the heat specific for a constant pressure and cv the specific heat for a constant
volume, rgas represents the ratio of the universal constant of perfect gases to the molar mass of
the gas considered. For an ideal gas with constant specific heats of ratio γ = 1.4, the universal
constant of ideal gases rgas equals 8.31, the molar mass of a perfect gas has the value 0.029 and
the conductivity coefficient Pr = 0.72.

In order to avoid rounding effects, we solve a non-dimensional form of the system which is
obtained by a division of the dimensional quantities by some reference factors. The reference
factors are issued from the normalization of the dimensional quantities.

ρ← ρ

ρref
, ~u← ~u

~uref
, p← p

ρref~u
2
ref

, E ← E

~u2ref
, µ← µ

µref
,

• ρref– fluid inflow density,

• ~uref– fluid inflow velocity,

• µref– fluid inflow dynamic viscosity.

From (1.1) we obtain the normalized Navier-Stokes system of equations:











∂ρ
∂t +∇ · (ρ~u) = 0,
∂ρ~u
∂t +∇ · (~u⊗ (ρ~u)) +∇ · pI − 1

Re∇ · τ = 0,
∂ρE
∂t +∇ · (~u(ρE + p))− 1

Re∇ · (τ~u− q)= 0,

(1.2)

where Re = ρuL
µ is the dimensionless Reynolds number, the ratio of inertial to viscous forces.

Here, L is the characteristic length. This study is focused on laminar flows (Re < 2300), where
no additional information is required. However, in computational fluid dynamics, most of the
flow situations occurring in nature enter into a form of instability, called turbulence. This
situation appears for some Reynolds numbers (Re > 4000) that are not going to be studied in
this work. The transition between laminar and turbulent flows is made by the transient flow
(2300 < Re < 4000).

In our study, when we refer to the Navier-Stokes system of equations we are implicitly
considering the normalised Navier-Stokes system of equations.

4 1.1. Fluid Dynamics Equations

1.1.1 Compressible Navier–Stokes Equations

In the absence of external forces, the dimensionless compressible Navier–Stokes system of
equations can be written under the conservative form and for an arbitrary volume Ω:

Ut + FEuler(U)x +GEuler(U)y +HEuler(U)z + Fvis(U)x +Gvis(U)y +Hvis(U)z = 0, (1.3)

where U is the column vector containing the conservatives variables:

U =













ρ
ρu
ρv
ρw
ρE













.

The amount of the quantity which crosses the boundary surface is called the flux and is
issued from two contributions. One from the convective transport, also mentioned as an Euler
flux of the fluid. The other is due to the the molecular motion, which is always present, even
if the fluid is at rest and acts as a diffusive effect and it is also called the viscous flux. The
convective or Euler fluxes FEuler(U), GEuler(U), HEuler(U) are:

FEuler(U) =













ρu
ρu2 + p
ρuv
ρuw

ρu(E + p)













, GEuler(U) =













ρv
ρuv

ρv2 + p
ρvw

ρv(E + p)













, HEuler(U) =













ρw
ρuw
ρvw

ρw2 + p
ρw(E + p)













.

The diffusive or viscous fluxes Fvis(U), Gvis(U), Hvis(U) are:

Fvis(U) =













0
τ11
τ21
τ31

uτ11 + vτ12 + wτ13 − q













, Gvis(U) =













0
τ12
τ22
τ32

uτ21 + vτ22 + wτ23 − q













,

Hvis(U) =













0
τ13
τ23
τ33

uτ31 + vτ32 + wτ33 − q













,

with τij , 1 ≤ i, j ≤ 3, the coefficients of the deformation tensor.































τ11 = µ(−2
3(ux + vy + wz) + 2ux),

τ12 = τ21 = µ(uy + vx),
τ13 = τ31 = µ(uz + wx),
τ23 = τ32 = µ(vz + wy),
τ22 = µ(−2

3(ux + vy + wz) + 2vy),
τ33 = µ(−2

3(ux + vy + wz) + 2wz).

We note that, under the previous form and with the described hypothesis, the system to
solve, 1.3, consists five equations associated to six unknowns (ρ, u, v, w,E, p). In the case of low
temperature variations, like the different phases a flying airplane passes through, a perfect gas
model can be used to complete the problem. For a perfect gas model the pressure is given by
the equation of state:

p = (γ − 1)ρ(E − 1

2
u2).

1.2. Finite Volume (FV) Method 5

We can separate the convective fluxes as first order derivative terms in space that lead
the transport properties of the flow and the diffusive fluxes given by second order derivative
terms in space which express the molecular diffusion of the flow. The unsteady Navier–Stokes
system of equations can be essentially parabolic in time and space or parabolic-hyperbolic.
The steady Navier–Stokes system of equations is elliptic-hyperbolic. Global existence theorems
for compressible Navier–Stokes equations exist for small initial data ([79]) and under certains
constraints (see [37] and references within).

1.1.2 Euler Equations

If we neglect the viscous term in the Navier–Stokes system of equations which thus becomes
the Euler equations, we get the most general flow model for a non viscous, non heat conducting
fluid. The system of equations is reduced from second order to first order. This important
property will determine the numerical approach. For the conservative variables U and for an
arbitrary domain Ω, the time-dependent Euler equations are given, in their condensed form by:

Ut + FEuler(U)x +GEuler(U)y +HEuler(U)z = 0. (1.4)

It is a system of conservation laws in differential form, a first-order partial differential equa-
tions purely hyperbolic in space and time, independently of the flow regime, subsonic or super-
sonic. We can describe a hyperbolic system as a system that describes convection phenomena.
Another important property is that Euler equations allow discontinuous solutions in certain
cases, as we will see further in the case of shock waves occurring in supersonic flows. In this
case, a local form of the conservation laws over a discontinuity, called the Rankine–Hugoniot
relations, needs to be respected.

In order to integrate in time, an initial and a boundary solution need to be imposed. The
first step from an initial mathematical model to a final numerical solution is to select the level
of approximation of the physical problem to be solved, as done previously. The second step is
the choice of the discretisation method with two sub choices: which space scheme?, which time
scheme?, selection between finite difference, finite element or finite volume methods, selection
of the order of accuracy of the spatial and the time discretisation. The third step is the selection
and the analysis of a resolution method of the non-linear system and for the associated linear
systems. Finally, analysis of the full scheme has to be made in terms of stability and convergence
properties. We will start by briefly presenting the steps to achieve the weak formulation of the
problem using a finite volume technique.

1.2 Finite Volume (FV) Method

Let us note:
Ψconv(U) =

(

FEuler(U), GEuler(U), HEuler(U)
)

, (1.5)

the total convective or Euler flux and

Ψvis(U,∇U) =
(

Fvis(U), Gvis(U), Hvis(U)
)

, (1.6)

the total viscous flux. Let us now rewrite the non-dimensional Navier–Stokes equations under
the following condensed form:

Ut +∇ ·Ψconv(U) +∇ ·Ψvis(U,∇U) = 0, (1.7)

on Ω, the computation domain, of boundary ∂Ω, moving in an absolute reference frame. We
discretise Ω into N non-overlapping cells:

Ω =
N
∪
i=1

Ωi.

6 1.2. Finite Volume (FV) Method

The retained space discretisation method is the second order finite volume method thus
it allows to handle arbitrary geometries and avoid possible metric singularities. The Finite
Volume method is especially adapted to Cartesian grids where, for conforming meshes, it is
equivalent to a central difference scheme. We refer to the work of Eymard and co., [36], for
comparisons with other discretisation techniques (finite difference schemes, mixed finite element
scheme). FV requires no additional treatment on a composite grid and it is also used in elsA,
the Onera’s software for aerodynamic simulations. In the finite volume method (McDonald
1971), the integral formulation of the conservation laws is discretised directly in the physical
space.

In our work, the term “finite volume” will be associated to a small volume surrounding
node points on a mesh. The unknowns are average values over the discretisation cells, which
are assigned to the centre of these cells. In one dimension (see fig.1.1), each cell Ωi is defined
as Ωi = [xi− 1

2
, xi+ 1

2
] where xi− 1

2
= xi−1+xi

2 and xi+ 1
2
= xi+xi+1

2 are the cell interfaces.

| ∗ | ∗ | ∗ |
i-32

i-1

i-12

i

i+1
2

i+1

i+3
2

Figure 1.1: Finite Volumes 1D

The integral formulation of the conservative system of equations (1.7) over the computational
domain Ω is:

∫

Ω
UtΦdΩ +

∫

Ω
(∇ ·Ψconv(U) +∇ ·Ψvis(U,∇U))dΩ = 0.

This is equivalent to solving on each cell Ωi:

∫

Ωi

UtdΩi +

∫

Ωi

(∇ ·Ψconv(U) +∇ ·Ψvis(U,∇U))dΩi = 0,

with the following condition of conservativity: the flux leaving the cell i equals the opposite
value of the flux entering in the next cell.

First, we consider a semi-discrete scheme. Applying the Stokes theorem, volume integrals
that contain a divergence term are converted to surface integrals:

d

dt

∫

Ωi

UdΩ +

∫

∂Ωi

(Ψconv(U) + Ψvis(U,∇U)).nΩid∂Ωi
= 0,

where nΩi is the unit outer normal to the cell Ωi. For a 2D representation, the computation
domain consists of a system of elementary cells.

Each basic cell Ωi is characterized by its volume ν(Ωi) and its surface ∂Ωi:

ν(Ωi) =

∫

Ωi

dΩi , ∂Ωi =
m
∪
j=1

Γj

where Γj represents the j-th face of the computational domain and m the number of domain
faces, considered in the structured mesh. The FV method can handle any type of mesh, but,
in this work only Cartesian meshes are considered, meaning that m = 4 for a 2D computation.
For a basic cell of the computation domain, the system can be written as:

d

dt

∫

Ωi

UdΩ +
∑

Γ∈∂Ωi

∫

Γ
(Ψconv(U) + Ψvis(U,∇U)).nΩi,ΓdΓ = 0 (1.8)

where nΩi,Γ is the unit normal of Γ external to Ωi. By defining successively:

1.2. Finite Volume (FV) Method 7

• the average value of the vector of conservative variables U in the cell Ωi:

ŪΩi(t) =
1

ν(Ωi)

∫

Ωi

U(t)dΩi ,

• the balance of the convective and diffusive fluxes through the interface Γ of the cell Ωi :

Ψ̄Γ(t) =

∫

Γ
(Ψconv(U) + Ψvis(U)).nΩi,ΓdΓ,

and applying the mean value theorem for integration, the system (1.8) can be written as a
semi-discretised in space system of ordinary differential equations:

d

dt
(ν(Ωi)ŪΩi(t)) = −

∑

Γ⊂∂Ωi

Ψ̄Γ(t), (1.9)

We introduce then a numerical flux function, ΨΓ as a numerical approximation of the exact
flux Ψ̄Γ, Ui the numerical approximation of the average value ŪΩi and νi the cell volume ν(Ωi).
After discretisation, the system to solve on a Cartesian mesh becomes a solvable system of
differential equations:

d

dt
(Ui(t)) = −

1

νi

m
∑

j=1

ΨΓj (t).nΓj . (1.10)

When applied to rectangular meshes, the FV formulation is close to the one found using a
finite difference method. The FV method is very flexible since it can be applied on an arbitrary
mesh.

1.2.1 Space discretisation

The space discretisation is achieved with finite volumes on Cartesian grids and its goal is
to approximate the physical fluxes by numerical fluxes. The three-dimensional computational
domain is discretised with N nodes xi in the x-direction (x0 < x1 < ... < xn−2 < xn−1),
M nodes in the y-direction (y0 < y1 < ... < ym−2 < ym−1) and P nodes in the z-direction
(z0 < z1 < ... < zp−2 < zp−1). The space steps are the cell lengths ∆xi = xi+ 1

2
−xi− 1

2
, 0 ≤ i < N ,

respectively ∆yj = yj+ 1
2
− yj− 1

2
, 0 ≤ j < M and ∆zk = zk+ 1

2
− zk− 1

2
, 0 ≤ k < P . The resulting

mesh can be uniform (equidistant space steps per direction) or non-uniform (space steps of
different sizes in one or more than one direction) which is more often found in practice.

The domain Ω is decomposed in elementary volumes denoted Ωi as follows:

Ω =

N×M×P
∑

i=1

Ωi.

We integrate the conservation laws on each elementary cell Ωi = [xi−1/2, xi+1/2] × [yi−1/2,
yi+1/2] ×[zi−1/2, zi+1/2]. Let U

n
i be the approximated value of ŪnΩi

on the cell at time t = n∆t.
For an explicit scheme, at each instant t, the system (1.10) becomes:

∂Uni
∂t

= − 1
νi

(FnEuleri+1/2
− FnEuleri−1/2

+GnEuleri+1/2
−GnEuleri−1/2

+Hn
Euleri+1/2

−Hn
Euleri−1/2

+Fnvisi+1/2
− Fnvisi−1/2

+Gnvisi+1/2
−Gnvisi−1/2

+Hn
visi+1/2

−Hn
visi−1/2

).

The quantity Fn∗i+1/2
(respectively Gn∗i+1/2

, Hn
∗i+1/2

) is an approximation of the physical flux

F∗(U) (respectively G∗(U), H∗(U)) on the interface xi+1/2 (respectively yi+1/2, zi+1/2) called the

8 1.2. Finite Volume (FV) Method

numerical flux on the interface. In the simplest case, the numerical flux on the interface depends
only on the neighbour values. The way of approximating the numerical flux as a function of
the discrete unknown gives the numerical scheme.

The space discretisation is the same as computing the flux balance on one elementary cell.
This computation involves summing the interface contributions surrounding the cell. For the
scheme to remain conservative, for any interface i + 1

2 , the flux leaving the cell i equals the
opposite value of the flux entering in the cell i+1. The accuracy of a numerical approximation
is directly dependent on the mesh size: the closer the discretised space is to the continuum, the
better the approximation of the numerical scheme. For complex geometries, the solution also
depends on the shape of the mesh. Another decisive factor in the choice of the size of the mesh
is the Reynolds number. It measures the ratio between the inertia terms and the viscous terms
that can be drawn into the truncation errors of the inertia terms.

The choice of the Cartesian mesh used in this study will influence the solution especially in
cases of shocks where two sub-domains split exactly in the shock region.

1.2.2 Space-Time Boundary Conditions

Solving the system requires the definition of the conservative variables at the initial time
(Cauchy problem) and on the boundary of the discrete domain in order to have a well-posed
problem. In our work, the computational domain Ω, seen on fig.1.2, comprises cells (denoted
fictitious cells) in which values are determined so as to satisfy boundary conditions. Note that
the equations are not solved in these fictitious cells. Thus, fictitious data values saved in fictitious
cells play the role of boundary conditions. These conditions should respect the fundamental
physical laws, the well-posedness of the resulting coupled problem and its consistency with the
original problem.

Figure 1.2: 2D Cartesian computational domain Ω. It contains fictitious cells (red) used to
save boundary conditions. One layer is sufficient in the case of the Euler system of equations.

When we are talking about the well-posedness of a problem we refer to it in the sense of
Hadamard. A problem is well-posed if it fulfils three fundamental properties:

• the problem admits a solution,

• the solution is unique,

• the solution behaviour changes continuously with the initial data.

In the continuous steady case, the time depending term ∂
∂t disappears and there is no need

for initial values. Yet, in order to simulate the steady case we solve a pseudo-unsteady problem,
meaning that we introduce a fictitious time term. In this case the convergence depends on the
choice of the initial solution: the closer this initial guess is to the final solution, the faster the
convergence.

1.2. Finite Volume (FV) Method 9

For the unsteady case we need the initial values of ρ, ρu, ρv, ρw and ρE at initial time and
in each cell of the field. Usually, the velocities u, v, w are deduced from a given vorticity. We
obtain a so-called Cauchy problem:

Find U, the solution of































(1.2)
ρ(x, y, z, 0) =ρ0(x, y, z)
(ρu)(x, y, z, 0) =(ρu)0(x, y, z)
(ρv)(x, y, z, 0) =(ρv)0(x, y, z)
(ρw)(x, y, z, 0)=(ρw)0(x, y, z)
(ρE)(x, y, z, 0)=(ρE)0(x, y, z)

, (1.11)

where ρ0, (ρu)0, (ρv)0, (ρw)0 and (ρE)0 are given functions from R
3 to R. Note that the

initial solution is defined only inside Ω. When seeking a solution in a bounded domain Ω, it
seems natural to add boundary conditions to the Cauchy problem, and then to change the
third property in the definition of a well-posed problem into: the solution behaviour changes
continuously with the initial and boundary conditions.

What are the associated initial and/or boundary conditions? and How many conditions are
to be imposed at a given boundary? become two of the most common questions one researcher
must investigate. In the case of Euler and Navier–Stokes systems of equations, one can find
answers in the book of Hirsch [57]. We answer briefly these questions before considering any
non-parallel or parallel implementation.

The number of boundary conditions depends on the type of the system to solve. The
unsteady Navier–Stokes system of equations can be essentially parabolic in time and space or
parabolic – hyperbolic. The steady Navier—Stokes system of equations is elliptic-hyperbolic,
elliptic for subsonic flows and hyperbolic for supersonic flows. The Euler system of equation
is always hyperbolic, independently of the flow regime. For a problem to be well-posed, the
boundary conditions need to be known at each time iteration. Thus, the total number of
boundary conditions to be imposed must be equal to the total number of eigenvalues or the
number of characteristics entering the domain. To fulfil the well-posedness condition beside
boundary conditions defined from outside the domain or physical boundary conditions, one
must add boundary conditions defined inside the numerical domain or numerical boundary
conditions. The number of physical conditions to be imposed is given by the number of negative
eigenvalues of the associated flux matrix, ΨEuler · n, where n is the outward normal vector.

During a computation we can deal with two main types of boundary: a) permeable or b)
wall boundary.

a) Permeable boundary

The inflow and outflow boundary conditions are imposed to model a permeable boundary.
We present very briefly the main lines of the conducted analysis to find out the number of
physical boundaries conditions necessary to find a unique solution for the 3D Euler system of
equations (see [57] for details).

The Euler system of equations (1.4) can be written in the following quasi-linear form:

Ut +A(U)Ux +B(U)Uy + C(U)Uz = 0, (1.12)

where A,B,C are the Jacobian matrices A(U) =
∂F

∂U
,B(U) =

∂G

∂U
,G(U) =

∂F

∂U
. The associated

eigenvalues to A(U)ṅx +B(U)ṅy + C(U)ṅz can be defined as follows:

• λ1 = ~u.~n− a,
• λ2 = ~u.~n,

• λ3 = ~u.~n,

10 1.2. Finite Volume (FV) Method

• λ4 = ~u.~n,

• λ5 = ~u.~n+ a,

where ~n is the unit normal vector, external to the computational domain and a the sound
speed. Since there are only three different eigenvalues in each direction, we study locally how
the propagation of information behaves at a boundary. We can identify three characteristic
relations:

• C− associated to λ1,

• C0 associated to λ2, λ3 and λ4,

• C+ associated to λ3.

We note Ma = |~u.~n|
a the directional Mach number. Let ~sn be the normal displacement velocity

of the boundary and Mbnd, a relative normal Mach number defined as:

Mbnd =
~u.~n− ~sn

a

The Mach number allows us to separate the subsonic regime Mbnd < 1 from the supersonic
regime Mbnd > 1. The values of ~sn are imposed by the flow regime and allow to solve a
Riemann problem at the boundary. At a permeable boundary, we identify four possible cases
presented on table 1.1.

supersonic regime subsonic regime

a)
Ωi

flow

t

C+
C0

C−

b)
Ωi

flow

t

C+

C0C−

Ωi

flow

c)

t

C−
C0
C+

Ωi

flow

d)

t

C−
C0 C+

Figure 1.3: Riemann problem for each boundary type

Supposing we are interested in modelling a portion of a passing fluid. The information
has to be propagated from inside the domain to outside (fig.1.3.a and fig.1.3.b). It is the so-
called outflow (outlet, outgoing) boundary type. On the opposite, an inflow boundary condition
(fig.1.3.c and fig.1.3.d) is defined as an information that propagates from outside toward the
inside of the domain.

Supersonic regime, |Mbnd| > 1

• Outflow boundary, λi > sn, for any i in {1, 2, 3, 4, 5}. At supersonic outflow (fig.1.3.a) all
eigenvalues are positive, they exit the computational domain and no physical conditions
have to be given, all boundary conditions need to be numerically defined by the interior
flow.

1.2. Finite Volume (FV) Method 11

• Inflow boundary, λi < sn, ∀i ∈ {1, 2, 3, 4, 5}. For a supersonic regime (fig.1.3.c) all eigen-
values are negative and consequently all five boundary conditions need to be physically
imposed.

Subsonic regime, |Mbnd| < 1

• Outflow boundary, λi > sn, for any i in {1, 2, 3, 4, 5}. At subsonic outflow (fig.1.3.b) the
normal is pointing toward the interior of the domain and so four eigenvalues are positive
and need to be defined as numerical boundary conditions (exit the domain). The fifth
eigenvalue is negative and need to be associated to a physical boundary condition (enter
the domain).

• Inflow boundary, λi < sn, ∀i ∈ {1, 2, 3, 4, 5}. For a subsonic inflow (fig.1.3.d) the first
eigenvalue (λ1 = ~u.n − a) is positive and the other four are negative. Therefore, four
physical boundary conditions have to be fixed, the fifth one has to be numerically com-
puted.

For the three dimensional Euler equations we centralise these boundary conditions in table
1.1.

Table 1.1: Boundary type and necessary physical boundary conditions for Euler

boundary type inflow outflow

regime supersonic subsonic supersonic subsonic

relative Mach number Mbnd < −1 −1 < Mbnd < 0 Mbnd > 1 0 < Mbnd < 1

number of boundary conditions 5 4 0 1

For the three dimensional Navier–Stokes equations we can refer to the study of L. Halpern
[51] and J. Nordstrom and M. Svard [78]. Halpern uses the Fourier transform techniques to set
artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. J.
Nordstrom and M. Svard propose a technique based on the energy method to find the necessary
number of boundary conditions, necessary for the well-posedness of the problem. We present
their results on the necessary physical conditions in table 1.2.

Table 1.2: Boundary type and necessary physical conditions for Navier–Stokes

boundary type inflow outflow

regime supersonic subsonic supersonic subsonic

relative Mach number Mbnd < −1 −1 < Mbnd < 0 Mbnd > 1 0 < Mbnd < 1

number of boundary conditions 5 5 4 4

In our study we refer to the outflow boundary condition as the transmission boundary
condition. They can be treated differently and so we can find them in the literature under
different names: open-end boundary condition, far-field boundary condition, radiation boundary
condition, transparent or non-reflecting boundary condition. For an inflow boundary we can
assume that we have a given velocity profile at the boundary. This leads to an inhomogeneous
Dirichlet Condition, which is also the inhomogeneous version of the no-slip condition.

When viscous fluxes are involved, the inflow condition is imposed as a Dirichlet condition,
since all conditions are of physical type. At the outflow we impose a zero normal at the interface.

b) Wall boundary

12 1.2. Finite Volume (FV) Method

Specific cases of mobile or mixed walls are differently treated, but not studied in this work.
Here, we treat only the solid fixed wall. When a boundary of the domain is a fixed wall,
the normal velocity is zero ~u · n, no mass or convective flux can penetrate the solid. There
is no information propagating from outside or inside the domain, but one characteristic, C0

has a positive sign. Two numerical boundary conditions and three physical ones need to be
imposed. In theory, since the velocity profile is linear close to the wall, we can discretise the
velocity gradient without any wall boundary conditions. The treatment is different according
to the nature of the fluid, inviscid or viscous. For an inviscid fluid coupled with a material wall
constituting a slip surface we impose the no-slip condition:

(~u− ~sw).~n = 0,

where ~sw indicates the displacement velocity of the boundary and ~n the unit normal vector.

For dissipative wave problems the procedure is considerably more complicated, a thermal
condition is added to take into account the temperature or the heat flux at the wall. Moreover,
most industrial applications depends on a high Reynolds number. The viscous terms are mul-
tiplied by the inverse of the Reynolds number and consequently the system will be dominated
by the convective terms. From this property we can deduce that using the same outflow and
inflow boundary and initial conditions for the Navier–Stokes equations as for the Euler system
of equations is a choice that will not degrade the solution. Of course, the viscosity will play an
important role at the wall boundary.

What about the definition of a numerical boundary condition? In most of the presented
cases, for the problem to be well-posed we need to numerically define a boundary condition.
The simplest way is to extrapolate it from the inside point to the next surface point.

In our simulations the boundary problem is intrinsically solved through the numerical fluxes
schemes. The boundary is always defined inside fictitious cells. At the beginning of each
iteration the conservative values at the boundary are either imposed as a Dirichlet condition or
computed from the closest neighbour at the boundary. The numerical schemes to compute the
convective fluxes are constructed so as to differentiate and treat the physical and the numerical
boundary conditions. The viscous flow is computed with a Dirichlet type boundary conditions
at the inflow (all conditions are physical table 1.2) and a zero normal to the boundary at the
outflow.

Let Ubnd = (ρbnd, (ρ~u)bnd, (ρE)bnd)
T be the unknown vector of conservative values at the

boundary. We separate the conditions in three types: i) reflective, ii) inflow, and iii) transmissive
boundary conditions.

i) The reflective boundary condition (see fig.1.4) is defined as:







ρbnd = ρngh
(ρ~u)bnd · ~n = −(ρ~u)ngh · ~n
(ρE)bnd = (ρE)ngh

,

where Ungh = (ρngh, (ρ~u)ngh, (ρE)ngh)
T is the vector of conservative values on the neigh-

bour cell and ~n the external unit normal vector. From the physically point of view we can
translate this boundary in a fixed, reflective impermeable wall.

ii) At inflow we impose a Dirichlet type boundary condition (left on fig.1.5), the value of U
on the boundary cell equals a given value:

Ubnd = Udir,

1.2. Finite Volume (FV) Method 13

Ungh

Ubnd

Ungh

Ubnd

Udir

Ubnd

x

y

Wall

Ω
Ungh

Ubnd

Ungh

Ubnd

Udir

Ubnd

x

y

Wall

Ω

Figure 1.4: 2D representation of a reflexive boundary condition

where Udir = (ρdir, (ρu)dir, (ρv)dir, (ρw)dir, (ρE)dir)
T is the vector of conservative values

arising from physical boundary conditions.

Udir Ubnd

Udir Ubnd

Udir Ubnd

x

y

Inflow

Ω

Ungh Ubnd

Ungh Ubnd

Ungh Ubnd

x

y

Outflow

Ω

Figure 1.5: 2D representation of a Dirichlet boundary condition (left) and a transmission
boundary condition (right).

For the Euler system of equations to be well-posed only the velocity vector and the density
are needed (see [85]).

iii) The simplest representation of a numerical transmissive boundary condition (right on
fig.1.5) is to suppose that the value of U on the limit equals the value of the neighbour
cell:

Ubnd = Ungh,

where U∗ is the vector of conservatives values U∗ = (ρ∗, (ρu)∗, (ρv)∗, (ρw)∗, (ρE)∗)T . This
boundary condition is enough for flows with small amplitude fluctuations near the bound-
ary. Unfortunately, it becomes insufficient for large amplitude disturbances at the bound-
ary. This phenomena appears especially for unsteady flows, for example in the case of
mixing layer. In this case, for a subsonic outflow only one physical condition must be
imposed: the value of the pressure p for a non-reflecting boundary. In our work, when
large amplitudes appear at the boundary we choose to absorb these amplitudes by adding
sponge regions (fringe regions, absorbing layers, buffer zones) to our computational do-
main. The sponge region absorbs the undesired waves, but increases the computational
cost. Other techniques can also be costly, and they are problem oriented. We can refer
to the literature [23, 51, 52, 54, 85] for many attempts to correctly model this kind of
boundary. T.J. Poinsot and S.K. Lele [85] conducted a study based on the Navier–Stokes
characteristic boundary conditions to identify the viscous conditions for viscous flows. In
2004, Tim Colonius [23] discussed on the evolution of these techniques and reviewed the
existing literature. Finding the proper transmission boundary remains an open question,
especially for viscous flows.

14 1.2. Finite Volume (FV) Method

Interface boundary conditions

Splitting the initial domain into several sub-domains adds interface boundaries which are
artificial permeable boundary conditions on the interface between two sub-domains. The inter-
face boundaries can be of several types, as presented on fig.1.6 and fig.1.7, depending on the
type of mesh: covered boundary when two sub-domains overlap and so the boundary of one is
entirely immersed in the neighbour sub-domain; non-coincident (partially or totally) adjacent
boundary when only the interfaces of two sets of cells belong to both sub-domains and they do
not necessarily match; coincident adjacent boundary where all grid nodes are coincident with
those of the neighbouring sub-domain. In our case the use of fictitious cells imposes a covered
boundary, an overlap, but the node grids can be coincident or non-coincident. A non-coincident
mesh implies passing interpolated values from on sub-domain to the neighbouring sub-domain.
The same technique on the same data in the right and left sub-domain is applied. For Carte-
sian meshes this approach is conservative if the interfaces are non-matching. For overlapping
domains, the fluxes are computed directly on the interface, possible without using the ghost
cells (for overlap greater than half stencil size).

Ω1 Ω2 Ω1 Ω2

Figure 1.6: 2D coincident interface boundary with coincident adjacent boundary (left) and
overlap boundary (right).

Ω1 Ω2 *

U1 ∈ Ω1

Ω1 Ω2

Figure 1.7: 2D partially (left) and totally (right) non-coincident interface boundary.

Lagrange polynomial

When dealing with non-coincident interface boundary a Lagrange polynomial method has
been chosen to find the necessary interpolated value to communicate from one sub-domain to
another. In each space direction the projection has the same order as the order of the space
discretisation thus avoiding different accuracy errors. For a second order space discretisation
method we use second order Lagrange polynomials in each direction as presented on fig.1.8.

1.2. Finite Volume (FV) Method 15

We present the main steps to find the conservative values to communicate at point (x1, y1) on

U1(x1, y1) ∈ Ω1

Ω2

∗U1

∗U(x1,y2j+1)

∗U(x1,y2j+2)

∗U(x1,y2j+3)

i+ 1 i+ 2 i+ 3

j + 1

j + 2

j + 3

Figure 1.8: Zoom over fig.1.7(right) to highlight the necessarily mesh points of Ω2 to
interpolate the value of U1(x1, y1) ∈ Ω1.

fig.1.8:

1. Find the necessary stencil point to compute the intermediate values U(x1,y2j+1)
, U(x1,y2j+2)

,

U(x1,y2j+3)
(blue on fig.1.8). Each of them is computed using the one dimensional second or-

der Lagrange interpolate formula, a linear combination of the Lagrange basis polynomials
associated with two down values and one upper value.

U(x1, y2∗) =
i+3
∑

k=i+1

U2(x2k, y
2
∗)lk(x

1),

where ∗ stands for j +1, j +2 and j +3, U2(x2k, y
2
∗) are the vectors of conservative values

in Ω2 computed at positions x2k, y
2
∗, and lk are the Lagrange basis polynomials defined as:

lk(x
1) =

∏

i+1≤m≤i+3,m 6=k

x1 − x2m
x2k − x2m

, i+ 1 ≤ k ≤ i+ 3.

2. Compute U1 as a Lagrange interpolation of points {(x1, y2j+1), (x
1, y2j+2), (x

1, y2j+3)}:

U1(x1, y1) =

j+3
∑

k=j+1

U(x1, y2k)lk(y
1).

We note that the same interpolation is used when non-coincident boundary in time appears in
the Schwarz Waveform Relaxation Method.

Periodic boundary conditions

Two types of periodic boundary can be defined: periodic by translation or periodic by
rotation. For periodic flows by translation, the boundary condition is actually an interface
condition and the treatment is consequently the same. For periodic flows by rotation we apply

16 1.2. Finite Volume (FV) Method

a rotation matrix to the interface condition, noted R(θ), of angle of periodicity θ. The rotation
matrix is defined following each axis as:

R(θ) = Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 ,

R(θ) = Ry(θ) =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 ,

R(θ) = Rz(θ) =





cosθ −sinθ 0
sinθ cosθ 0
0 0 1



 .

1.2.3 Development of the numerical Euler flux

A wide variety of techniques to evaluate the numerical schemes (both convective and diffu-
sive) can be found in literature. Because of their different behaviours and, as seen in section
1.2.2, different number of needed boundary conditions, we treat separately the convective fluxes
and the viscous fluxes. The aim of this section is to review some of the most popular approximate
schemes of the Euler flux, to highlight their advantages and drawbacks, and then to choose the
appropriate one for our applications. We choose a dimensional splitting or fractional method to
numerically solve the multi-dimensional Euler system, i.e., we solve a one-dimensional method
in each coordinate direction. The finite-volume technique will remain consistent, but there will
be some loss of precision in solving the discontinuities that are oblique to grid faces.

In the following, we shall only refer to the x-direction numerical scheme noting that the
y-direction and the z-direction are similarly solved. We shall focus on solving the Euler system
of equations (1.4) in x−direction which is of hyperbolic type with a finite volume method. We
solve the following Riemann problem associated to the Euler system of equations to find an
exact solution:







Ut + FEuler(U)x= 0,

U(x, 0) = U0(x)=

{

UL if x < x0,
UR if x > x0,

x ∈ [xL, xR] , (1.13)

where UL and UR are two vectors of constant values. Two different values for UL and UR imply
a discontinuity in x = x0. In practice, we consider that x is contained by the interval [xL, xR]
around the point x0. From a physical point of view, the Riemann problem associated to the
Euler systems of equations is a generalisation of the shock tube problem. A shock tube problem
consists in a tube containing two gazes with different properties (density, pressure, velocity. . .)
that are initially separated by a diaphragm. The sudden removal of the diaphragm at time
t = 0 creates a discontinuity between the two gases. The resulting waves propagate in the tube
and can be rarefaction waves (fig.1.9.b, fig.1.9.c), contact discontinuities (fig.1.9.d) or shock
discontinuities (fig.1.9.a). A shock wave is a transition layer that appears when the density
increases and the velocity decreases very suddenly. A rarefaction wave occurs where the fluid is
more rarefied as the density decreases. Contact discontinuities are surfaces that separate zones
of different density and temperature.

The values of the density and the internal energy change discontinuously across the contact
surface from the constant value at the left of the contact to the constant value at the right of
the contact.

We note λ1 < λ2 < ... < λm, the eigenvalues of the linearised Riemann problem of size
m, the length of the conservative vector of unknowns (m = 4 for a 2D problem, m = 5
for a 3D problem). There are m−waves associated to the characteristics of the eigenvectors

1.2. Finite Volume (FV) Method 17

x

t

UL
UR

x0

x

t

x

t

a)

x

t

UR
UL

x0

x

t

x

t

b)

x

t

UR
UL

x0

x

t

x

t

c)

x

t

URUL

x0

x

t

x

t

d)

Figure 1.9: Initial solutions and Riemann problem solutions on x− t plane: a) shock , b)
rarefaction shock, c) rarefaction wave, d) contact discontinuity.

K(i), i = 1, 2, ...,m. The solution is given by the different states that a wave can take before,
between and after the characteristics. UL is the solution on the left of the first characteristic,
UR is the solution on the right of the last characteristic corresponding to λm. We can express
these values as linear combinations of the eigenvectors:

UL =
m
∑

i=1

αiK
(i), UR =

m
∑

i=1

βiK
(i),

with αi and βi, i = 1, ..,m constant coefficients. The complete solution depends only on the
similarity variable x

t . We can express the solution of the Riemann problem for a given point
(x, t) as:

U(x, t) =

m
∑

i=I+1

αiK
(i) +

I
∑

i=1

βiK
(i),

where λI is the eigenvalue such that λI <
x
t < λI+1 and x− λit > 0 for each i < I.

When solving the 2D Euler system of equations we can observe three regions, separated by
the three associated characteristics. The first region is the left one, where the wave has the
same values as UL, the middle one or so-called the star region is denoted by U∗ and its value
depends on the results of emerging the two initial waves and the right region where the wave
has the values of UR.

It seems that the Euler system of equations can be solved easily by a Riemann solver,
but solving iteratively the exact Riemann problem can be very costly, especially in higher
dimension. At each step one should compute the eigenvalues, eigenvectors and characteristics.
In practice one uses approximate Riemann solvers and thus, computing numerical fluxes by
different techniques that can be classified following different criteria:

• the discretisation:

— uncentred schemes (upwind or downwind) depend on the direction of the wave prop-
agation: Godunov, Enquist-Osher, Roe, Rusanov, HLL flux of Harten, HLLC flux of
Toro, etc.

— centred or symmetric schemes are simpler and do not depend on the direction of the
wave: Godunov, Lax-Friedrichs, FORCE (First Order Centred Scheme) flux of Toro,
MUSCL, etc.

• the level of discretisation:

18 1.2. Finite Volume (FV) Method

— first level: flux vector splitting schemes (van Leer, Steger-Warming, Rusanov, etc.),

— high level: flux difference splitting or Godunov-type methods.

Only the most representative schemes in the literature are presented in this work: Godunov,
van Leer, HLLC, LLF and AUSM+−up that approximate the Riemann problem. As already
mentioned, only 1D analysis is presented since the fluxes are separated by directions and each
one can be solved similarly.

The Godunov Flux on the linearised system

Godunov proposed a first numerical scheme based on either the exact or the approximate
solutions of the Riemann problem that solves a non-linear system of equations. The solution is
considered as piecewise constant over each mesh cell at a fixed time. Godunov proposes then
to use the solution of the Riemann problem along the time axis to define the inter-cells fluxes.
System (1.13) is to be solved. The Euler equations are rewritten in conservative form, using
the solution of the local Riemann problem on each cell:

Un+1
i = Uni +

∆t

∆x
(FEuleri+1/2

− FEuleri−1/2
).

FEuleri+1/2
is the numerical flux in the x−direction defined on the left interface of the cell i as:

FEuleri+1/2
= FEuler(Ui+1/2(0)),

where Ui+1/2(0) is the exact solution Ui+1/2(x/t) of the Riemann problem in x/t = 0, the

time step ∆t must satisfy the condition ∆t ≤ ∆x
Sn
max

where Snmax represents the maximum velocity
of the wave found in the domain at time tn.

One can now define the CFL number as

cfl =
∆tSnmax

∆x
, 0 < cfl < 1. (1.14)

The CFL condition allows us to keep the consistency of the scheme through the limitation
of the time step ∆t such that no interaction between one wave issued at one interface and the
waves created at the adjacent interfaces is allowed. Ui+1/2(0) that can be easily obtained as

Ui+ 1
2
(x/t) =

I
∑

j=1

βjK
(j) +

m
∑

j=I+1

αjK
(j),

where Uni =
∑m

j=1 αjK
(j), Uni+1 =

∑m
j=1 βjK

(j) are given as a linear combination of the
eigenvectors and 1 ≤ I ≤ m is chosen such as λi ≤ 0 for i ≤ I and λi > 0 for i > I.

The discretisation method is the finite volume method and initially we only dispose of the
average values of the conservatives quantities on the cells. But now the values of the Euler
fluxes on each inter-cell or interface of the computational domain are required. We develop the
expressions of the velocity on the interfaces of the cell i

Ui− 1
2
(0) = Uni +

I
∑

j=1

(βj − αj)K(j),

Ui+ 1
2
(0) = Uni+1 −

I
∑

j=1

(βj − αj)K(j),

in a way that they can compute the value of the vector U on the interface i+ 1
2

Ui+ 1
2
(0) =

1

2
(Uni + Uni+1)−

1

2

I
∑

j=1

sign(λj)(βj − αj)K(j).

1.2. Finite Volume (FV) Method 19

One can then use these expressions and compute the numerical fluxes between two cells:

Fi+ 1
2
=

1

2
(Fni + Fni+1))−

1

2

m
∑

j=1

|λj |(βj − αj)K(j).

The van Leer numerical flux

In paper [96], van Leer proposes a definition of the flux in each direction as a function of
density, sound speed a and Mach numberMa. In the x-direction the convective flux is rewritten:

FEuler = FEuler(ρ, a,Ma) =













ρaMa

ρa2(M2
a + 1

γ)

0
0

ρa3M(12M
2
a + 1

γ−1)













=





fmas
fmom
fene



 ,

where Ma =
u
a and γ is the specific-heat ratio. We can decompose the Jacobian matrix as

A = A+ +A−, where A± =
∂F±

Euler

∂U
,

and

F±
Euler = ±

1

4
ρa(1±Ma)

2















1
2a
γ (

γ−1
2 Ma ± 1)

v
w

2a2

γ2−1
(γ−1

2 Ma ± 1) + 1
2(v

2 + w2)















.

The Mach number is defined on the cell interface as a sum of ratio of speed of different flow
regime (supersonic, subsonic):

Mai+1/2 =Ma
+
i +Ma

−
i+1,

where

M±
a =

{

±1
4(Ma ± 1)2 if |Ma| ≤ 1

1
2(Ma ± |M |) if |Ma| > 1

.

The stability condition using the van Leer schemes is given by:

cfl =
∆t

∆x
(|u|+ a) ≤ 2γ + |Ma|(3− γ)

γ + 3
. (1.15)

For an ideal gas, where γ = 1.4 we find cflmax = 1 for |Ma| = 1 and cflmin = 2γ
γ+3 ≈ 0.636...

for |Ma| = 0. The stability condition is more restrictive than the Godunov one, where the CFL
number is close to the unity. The scheme has better properties around Mach values of 1 and 0,
but the flux does not respect contact discontinuities. The van Leer method is part of a class of
methods called flux splitting method. The Flux Vector Splitting (FVS) approach is a technique
of distinguishing/ determining the direction of the wave, forward or backward. The resulting
splitting scheme combining the dimensional splitting with the finite volume approach may be
viewed as a predictor-corrector scheme.

The HLLC numerical flux

Harten, Lax and van Leer [56] propose another approach (HLL) to approximately solve
the Riemann problem that is very efficient, but correct only for hyperbolic systems of two
equations. The main assumption is to consider only two-wave configurations thus ignoring the
possible existence of intermediate waves. The assumption is possible when there is no contact

20 1.2. Finite Volume (FV) Method

discontinuity. E.F. Toro, M. Spruce and W. Spears [94] extend the procedure to larger systems
by restoring the missing contact surface. They call the new scheme HLLC where C stands for
Contact.

Recall the 1D Riemann problem (1.13) to solve:







Ut + FEuler(U)x= 0,

U(x, 0) = U0(x)=

{

UL if x < 0,
UR if x > 0,

(1.16)

where UL is the solution on the left of the first characteristic, UR is the solution on the right
of the last characteristic. We consider SL and SR the fastest signal velocities perturbing the
initial data states UL and UR, S

∗ the speed of the middle wave in the star-region.

The HLLC flux takes into account three wave patterns, namely the subsonic flow (found
for SL ≤ 0, SR ≥ 0), the right supersonic flow (SL ≥ 0) and the left supersonic flow (SR ≤ 0).
By applying the Rankine-Hugoniot conditions across each wave of speeds SL, S

∗, SR one can
rewrite the flux in function of the flow regime (subsonic, supersonic) as:

F hllcEuler
i+1

2

=















FL = FEuler(UL) if 0 ≤ SL,
F ∗
L = FL + SL(U

∗
L − UL) if SL ≤0 ≤ S∗,

F ∗
R = FR + SR(U

∗
R − UR) if S∗ ≤0 ≤ SR,

FR = FEuler(UR) if SR ≤0,

where

U∗
k = ρk(

Sk − uk
Sk − S∗)





1
S∗

Ek
ρk

+ (S∗ − uk)[S∗ + pk
ρk(Sk−uk)]



 for k = L,R.

We can observe that, the scheme allows the intrinsic computation of the unknown boundary
conditions. Multiple ways of providing wave speed estimates for the lower and upper bounds
of the wave speeds SL and SR are proposed by Toro in [93] and [94]. In our study we shall use
the expressions:

SL = min(uL − aL, uR − aR), SR = max(uL + aL, uR + aR).

The LLF numerical flux

LLF stands for local Lax–Friedrichs, but can also be found in the literature as the Rusanov
flux. At each interface of the cell a Riemann problem is solved. We first compute the wave speed
estimates SL and SR, but then only the upper bound for the absolute values of the characteristic
speeds S+ is considered.

S+ = max(SL, SR).

The inter-cell flux is given by:

FEuler
i+1

2

=
1

2
[FEuler(UR) + FEuler(UL)]− S+(UR − UL).

We note that the interval [UL, UR] is always non-empty. The expression of the inter-cell flux
is similar to the HLL one, but the computation is faster because the Rusanov scheme does not
involve computations of half-steps values.

1.2. Finite Volume (FV) Method 21

The AUSM+-up numerical flux

The Advection Upstream Splitting Method (AUSM), introduced by Liou and Steffen in
[70], is a hybrid splitting of flux-difference and flux-vector, benefiting of the accuracy and
the simplicity of the splitting methods. The AUSM is based on splitting the Euler flux into
convective and pressure fluxes:

FEuler(U) =













ρu
ρu2 + p
ρuv
ρuw

ρu(E + p)













=













ρu
ρu2

ρuv
ρuw
ρuH













+













0
p
0
0
0













= F c + F p,

GEuler(U) =













ρv
ρuv

ρv2 + p
ρvw

ρv(E + p)













=













ρv
ρuv
ρv2

ρvw
ρvH













+













0
0
p
0
0













= Gc +Gp,

HEuler(U) =













ρw
ρuw
ρvw

ρw2 + p
ρw(E + p)













=













ρw
ρuw
ρvw
ρw2

ρwH













+













0
0
0
p
0













= Hc +Hp.

The convective term in the x-direction (similar in the y and z− directions) is rewritten as
follows:

F cEuler = ρu













1
u
v
w
H













= ṁ ~F cEuler,

where ṁ = ρu, H is the enthalpy H = E + p
ρ . Therefore, the interface flux FEuler

i+1
2

is

computed as the sum between the convective and the pressure flux at the same interface:

FEuler
i+1

2

= F cEuler
i+1

2

+ F pEuler
i+1

2

= ṁi+ 1
2
[~F cEuler]i+ 1

2
++F pEuler

i+1
2

.

The definition of the convective flux gives the main steps of the algorithm. In further papers,
Liou [67, 68, 69] improves the original AUSM algorithm by adding important properties to the
definition of the convective flux. The later algorithm is designated as AUSM+-up [69] because
it incorporates both velocity and pressure terms into AUSM+ (Liou [67]) scheme, the improved
AUSM scheme to capture a stationary shock. The aim of AUSM+-up is to be uniformly valid
for all speed regimes.

AUSM+-up algorithm

The following steps are valid for any interface of the domain Ω, i + 1
2

noted
= 1

2 . The flux
computation is similar in each spatial direction. We shall only present its computation in the
x-direction.

1. Compute ṁ 1
2
= u 1

2
ρL

R
= a 1

2
Ma 1

2
ρ 1

2
where L and R are respectively the left and right

indexes of the cells containing a same interface, a is a non-zero constant propagation of
sound and Ma is the Mach number. The value of ρL

R
is different from the value at the

interface ρ 1
2
and will be defined below among all other terms.

22 1.2. Finite Volume (FV) Method

• a 1
2
= min(aR, aL)

where aL =
(a∗)2

max(a∗, |uL|)
, aR =

(a∗)2

max(a∗, |uR|)
, (a∗)2 =

2(γ − 1)

γ + 1
Ht, a

∗ is the

critical speed of sound evaluated in uL, Ht is the total enthalpy, Ht =
a2

γ − 1
+ 1

2u
2,

u = ~u · ~n with ~n the unit normal vector for multi-dimensional flows. In order to
properly scale the numerical dissipation with the flow speed we multiply, as in [69],
a 1

2
by a scaling factor fa (ã 1

2
= faa 1

2
).

fa(M0) = M0(2 − M0) ∈ [0, 1] where M0 = min(1,max(M̄2
a ,Ma

2
∞)) and M̄2

a =
u2L + u2R
2a21

2

.

• Ma 1
2
=M+

(4)(MaL) +M−
(4)(MaR)−

Kp

fa
max(1− σM̄2

a , 0)
pR − pL
ρ 1

2
a21

2

,

where ρ 1
2
= (ρL + ρR)/2, 0 ≤ Kp ≤ 1, σ ≤ 1 and

M±
(4)(Ma) =











1

2
(Ma ± |Ma|) if |Ma| ≥ 0,

±1

4
(Ma ± 1)2(1∓ 16β(±1

4
(Ma ± 1)2)) if |Ma| ≤ 0.

• Then, the mass fluxes are defined as

ṁ 1
2
= a 1

2
Ma 1

2

{

ρL if Ma 1
2
> 0,

ρR if Ma 1
2
≤ 0.

2. Keeping the same definition as for the mass fluxes computation, we define the pressure
fluxes as:

p 1
2
= P+

(5)(MaL)pL + P−
(5)(MaR)pR −KuP+

(5)P
−
(5)(ρL + ρR)(faa1/2)(uR − uL)

with 0 ≤ Ku ≤ 1 and

P±
(5)(Ma) =











1

Ma

1

2
(Ma ± |Ma|) if |Ma| ≥ 0,

±1

4
(Ma ± 1)2[(±2−Ma)∓ 16αMa(±

1

4
(Ma ± 1)2)] if |Ma| ≤ 0,

using the parameters: α =
3

16
(−4 + 5f2a) ∈

[

− 3

4
,
3

16

]

, β =
1

8
.

3. Finally, the flux becomes

F cEuler 1
2

= p 1
2
+ ·m 1

2

{

F cEulerL if ·m 1
2
> 0

F cEulerR if ·m 1
2
≤ 0

The basic scheme is obtained for fa = 1. The AUSM+-up was proven to be the best candidate
for our explicit and implicit applications and is the only one computed on GPU. In the latest
International Conference on Computational Fluid Dynamics (ICCFD8), Moguen and co [74]
propose another improvement on the AUSM+-up scheme adding inertia terms in the face velocity
expression of Godunov-type schemes. The resulting scheme is called AUSM-IT and allows full
Mach number range high quality calculations (especially in cases of Mach numbers smaller than
the unity that can impose difficulties for the AUSM+-up scheme).

In order to extend the schemes to second order we use a MUSCL method.

1.2. Finite Volume (FV) Method 23

Development of a second order numerical flux using the MUSCL scheme

All presented numerical schemes are of first order in space. In our study, we extend presented
numerical schemes to the second order schemes in space using the piecewise linear rebuilding
of the approximate solution introduced by van Leer in [95]. MUSCL stands for Monotone
Upstream centred Scheme for Conservative Laws or Variable Extrapolation approach and it
was used to compute the first high order numerical scheme based on the idea of increasing the
precision by increasing the interpolation degree of the unknowns.

Recall the conservative form of the Euler Equations:

Ut + FEuler(U)x +GEuler(U)y +HEuler(U)z = 0.

The second order, MUSCL approach for computing Euler fluxes is based on data recon-
struction and is achieved in three main steps. We only present the three steps for the reduced
1D system, since the flux computation is similar in each direction. The 1D conservative Euler
system is:

Ut + FEuler(U)x = 0.

MUSCL algorithm in three steps

1. Local Data Reconstruction
Let Uni be the data average value in cell Ii = [xi− 1

2
, xi+ 1

2
]. It is locally replaced by a

piece-wise linear function:

Ui(x) = Uni +
x− xi
∆x

∆i, x ∈ Ii,

where ∆i is a chosen slope vector of Ui(x) in cell Ii that indicates the variation of Ui vari-
able. The slope limiter prevents numerical oscillations around discontinuities or shocks,
but it can diminish the order of the scheme around these regions. Ui(x) has two ex-
treme points ULi = Ui(0) = Uni − 1

2∆i and URi = Ui(∆x) = Uni + 1
2∆i called boundary

extrapolated values.

2. Evolution of the solution ULi , U
R
i by half the full time step, ∆t

2 :

{

ŪLi = ULi + 1
2
∆t
∆x [FEuler(U

L
i)− FEuler(URi)]

ŪRi = URi + 1
2
∆t
∆x [FEuler(U

L
i)− FEuler(URi)].

3. Resolution of the Riemann problem







∂tUi + ∂xFEuler(Ui)= 0,

Ui(x, 0)=

{

ŪRi , x < 0,
ŪLi , x > 0,

x ∈ Ii.

The choice of the slope limiter must be done very carefully. Its value must be greater than or
equal to zero. Note that a limiter equal to zero leads to the loss of one order of accuracy and
that any of the proposed limiters (see below) works well for all problems.

Choice of ∆i. Define:

∆i+ 1
2
= Uni+1 − Uni and ∆i− 1

2
= Uni − Uni−1,

the interface slope vectors. A possible choice for the slope vector ∆i is

∆i =
1

2
(1− ω)∆i− 1

2
+

1

2
(1 + ω)∆i+ 1

2
, ω ∈ [−1, 1],

24 1.2. Finite Volume (FV) Method

but, some spurious oscillations can appear in the vicinity of strong gradients. One way
to deal with this problem is to use some Total Variation Diminishing (TVD) constraints. It
involves replacing the slopes ∆i by a limited slope ∆̄i:

∆̄i =

{

max[0,min(β∆i−1,∆i+1),min(∆i−1, β∆i+1)], ∆i+1 > 0,
min[0,max(β∆i−1,∆i+1),max(∆i−1, β∆i+1)], ∆i+1 < 0.

For particular values of the parameter β we get different limited slopes, already defined in
the literature:

• β = 1 reproduces the MINMOD (or MINBEE) flux limiter,

• β = 2 reproduces the SUPERBEE flux limiter.

Another way is to find the constant ξi so that ∆̄i = ξi∆i where, for example:

∆̄i =
N
∑

k=1

∆̄k
i (∆

k
i−1/2,∆

k
i+1/2).

This choice leads to a TVD region for ξ(r):

ξ(r) = 0 si r ≤ 0, 0 ≤ ξ(r) ≤ min(ξL(r), ξR(r)) si r > 0

∆̄i =















ξL(r) =
2βi−1/2r

1−ω+(1+ω)r ,

ξR(r) =
2βi+1/2

1−ω+(1+ω)r ,

r =
∆i−1/2

∆i+1/2
,

and βi−1/2 =
2

1+c , βi+1/2 =
2

1−c where c is the CFL or Courant number of the wave.
For

ξva(r) =

{

0, r ≤ 0,

min(r(1+r)
1+r2

, ξR(r)), r ≥ 0,

we obtain the VAN ALBADA limiter, which is less diffusive than other limiters (for example
MINMOD) and provide sharper results. We can find many other proposed slope limiters in the
literature like the Osher limiter (Chatkravathy and Osher, 1983), the van Leer limiter (van Leer,
1974), monotonized central (MC - van Leer, 1977) and others, but we will limit our analysis to
the presented ones as they seems to be the most common, and achieve good results.

1.2.4 Development of the numerical viscous flux

We recall the resulting system to solve on a Cartesian mesh found in section 1.2 with a finite
volume method, (1.10). For each cell Ωi:

d

dt
(Ui(t)) = −

1

νi

m
∑

j=1

ΨΓj (t) · nΓj .

Suppose that the 1D finite volume discretisation is as on fig.1.10, and let Fvis be the unidi-
rectional flux. In one dimension the system is equivalent to:

d

dt
(Ui(t)) = −

1

∆xi

(

Fvis(xi+ 1
2
)− Fvis(xi− 1

2
) + FEuler(xi+ 1

2
)− FEuler(xi− 1

2
)
)

.

We propose a classical scheme to compute the viscous flux Fvis = (0, τ, uτ + q)t with τ =

−2λ∂u
∂x

. We note Fvis(xi) =
1

∆xi

(

Fvis(xi+ 1
2
)− Fvis(xi− 1

2
)
)

.

1.3. Explicit and Implicit Time Schemes 25

| ∗ | ∗ | ∗ |
i-32

i-1

i-12

i

i+1
2

i+1

i+3
2

∆xi−1 ∆xi ∆xi+1

Figure 1.10: Finite Volumes 1D

The fluxes at interfaces are evaluated by central average from the neighbours cells, Fvis(xi− 1
2
) =

Fvis(xi−1) + Fvis(xi)

2
and Fvis(xi+ 1

2
) =

Fvis(xi) + Fvis(xi+1)

2
. Thus, the viscous part in cell Ωi

becomes:

Fvis(xi) =
Fvis(xi+1)− Fvis(xi−1)

2∆xi
.

For a 1D domain, if we apply this expression to Fvis(xi) = (0, τ, uτ+q)t(xi) and compute the
velocity gradient using a centred scheme we find the following expressions for the components
of U which have the stencils represented on 1.11.

τ(xi) ≃− 2λ

∂u

∂x
(xi+1)−

∂u

∂x
(xi−1)

2∆xi
≃ −2λ

u(xi+2)− u(xi)
∆xi+1

− u(xi)− u(xi−2)

∆xi−1

2∆xi
,

(uτ + q)(xi) ≃
−2λ

[

u(xi + 1)
u(xi+2)− u(xi)

∆xi+1
+ u(xi−1)

u(xi)− u(xi−2)

∆xi−1

]

2∆xi

+
q(xi+1)− q(xi−1)

2∆xi
.

τ(xi) :

i− 5
2 i− 3

2 i− 1
2 i+ 1

2 i+ 3
2 i+ 5

2

xi−2

∗
xi
∗

xi+2

∗

(uτ + q)(xi) :

i− 5
2 i− 3

2 i− 1
2 i+ 1

2 i+ 3
2 i+ 5

2

xi−2

∗
xi−1

∗
xi
∗

xi+1

∗
xi+2

∗

Figure 1.11: Stencils of the diffusive 1D flux

This approach is also used in elsA. The centred character of the scheme is ensured even on
the boundaries via the ghost cells. For higher dimensional problems, the computation of the
viscous fluxes follows the same reasoning in each spatial direction.

1.3 Explicit and Implicit Time Schemes

After the space discretisation, the unknown of the problem is the solution vector at each
cell of the dicretisation as a time function. The spatial discretisation leads to a system of
ordinary differential equations in time. The solution is either steady, not changing during the
time evolution, either unsteady or varying with the time. We divide the time axis in intervals
∆t and compute the field at instant tn. The time discretisation can be done explicitly or

26 1.3. Explicit and Implicit Time Schemes

implicitly. If the fluxes are computed at time tn, the integration method is called explicit and
it can be characterised by the rapidity of the integration of the system of equations on one
time step. The matrix of the unknown variables is a diagonal matrix, while the right-hand
side is dependent only on previous time flow. This leads to a trivial matrix inversion to find
the solution. However, in order to ensure the stability of the integration and convergence, the
time step value has to be small as it must verify the Courant-Friedrichs-Lewy (CFL) stability
condition. The CFL number is a dimensionless quantity close to the unit, but its value can
differ with the explicit scheme, as already seen in the previous sections. Explicit methods adapt
very well to unsteady cases, since the physical phenomena can vary even inside very small time
intervals. For steady cases, the computation may require a large number of time steps to reach
the steady-state solution corresponding to a physical time-independent problem.

If the fluxes are estimated at time tn+1 the integration method is called implicit. The
matrix to be inverted is not diagonal, but in most cases, it has a rather simple structure, such
as block tridiagonal. This discretisation ensures the stability for bigger CFL numbers, but
leads to the resolution of an algebraic system at each time step, which can be very expensive
in computational cost. This is compensated in many implicit methods, especially in linear
problems, by the fact that there is no limitation on the size of the time step. Implicit methods
adapt well especially to reach the steady-state cases.

To solve the algebraic systems, there exist two families of methods: direct and iterative.
A direct method is characterised by giving the solution in one step, as an iterative method
requires many iterative steps. Solving a non-linear system requires an iterative method. Many
accelerators of the iterative methods have been studied and we distinguish preconditioning and
multi-grid methods. We are interested in both steady and unsteady formulations. In the case
of a steady problem we introduce a fictitious time step (or pseudo time integration) and solve
the system as the previous unsteady formulation.

Let us denote the semi-discretised system in time of one ODE system as follows:

dU

dt
+ ψ(U) = 0 on Ω× [0, T],

where ψi, the i-th component of ψ is the sum of convective and diffusive fluxes of U .

1.3.1 First and Second order Explicit Methods

Let us consider the next one dimensional Cauchy problem:

{

∂tU(t, x)= ψ(t, U(t, x)) , 0 ≤ t ≤ T , x ∈ Ω
U(t0, x) = U0(x)

,

where ψ is the total flux and Ω = [a, b] the 1D domain of definition.

We divide the time axis in N intervals ∆t: 0 = t0 < t1 < .. < tN−1 < tN = T . We are
searching an approximation Un of U at the instant tn, 1 ≤ n ≤ N . In order to compute Un,
we choose two explicit discretisation methods: The First Order Forward Explicit Euler Method
and the Second order Runge Kutta Method.

First order Explicit Euler Method

Named after the Swiss mathematician Leonhard Euler who introduced it in his book Insti-
tutionum calculi integralis, 1768-1770, the Euler Method is the simplest, first-order numerical
method to solve an ODE. The Euler Method can be derived from the Taylor expansion:

U(tn) = U(tn−1) + ∆t∂tU(tn−1) +O(∆t2).

1.3. Explicit and Implicit Time Schemes 27

We drop the last term in the Taylor expansion and find the first order in time Forward Euler
Method :

Un = Un−1 +∆tψ(tn−1, Un−1).

The Forward Euler method is conditionally stable, under a CFL type condition which de-
pends on the numerical scheme that computes the fluxes. The Backward Euler Method is an
implicit method and it requires the knowledge of U at the instant tn+1. It will be treated in the
second chapter of this manuscript. The solutions provided with a first order numerical scheme
have a low accuracy. In order to develop a more stable approximation of U we use a higher
order numerical method.

Second order Runge Kutta Method

The Runge–Kutta (RK) methods are one step methods that can be either explicit or implicit
methods. In this work we will only study the second order explicit RK method also called the
explicit trapezoidal method, consistent with the presented Finite Volume scheme. A higher
order method can be more stable, but they are not more efficient, since they require a larger
amount of computations. The second order Runge–Kutta method is a composition of the Euler
Method limited to two time levels. It consists on the estimation of the middle of the integration
step. We consider Un+

1
2 the approximated solution of U at the instant tn+

1
2 computed by the

first order forward Euler method:

Un+
1
2 = Un +

∆t

2
ψ(t, Un),

U̇n+
1
2 = ψ(t+

∆t

2
, Un+

1
2),

followed by the rebuild of the complete integration based on this first approximation:

Un+1 = Un +∆tU̇n+
1
2 .

The RK methods are easy to operate with variable time steps. If we consider the evaluation
of ψ as a cost measure, we can notice that the cost of a second order RK method is twice the
first order Explicit Euler Method, but the error between the approximate solution and the exact
one is much smaller. The choice between the two methods is case oriented, and it depends on
the required accuracy of the solution. The explicit methods need to satisfy a stability condition,
yet, one can use the largest time step satisfying this conditions.

Stability limit for an explicit scheme

We distinguish three kind of stabilities: physical, mathematical and numerical. A physical
instability or chaos appears when a small variation inside initial data leads to unpredictable
phenomena. The mathematical stability can be seen as a sensibility inside an ill conditioned
system: a small variation inside the initial data or parameters leads to different results. The
third type of stability, the numerical stability, appears when one simulates phenomena that are
physically and mathematically stable, but because of some propagation error an unexpected
behaviour occurs. An error propagation can simply arise from the finite precision of computer
arithmetic that causes an algorithm to solve a perturbed problem.

To check the mathematical stability of the presented numerical schemes, a von Neumann
analysis should be conducted on both explicit Euler method and Runge Kutta method combined
with each presented numerical flux. The analysis is quite difficult and the stability conditions
can differ from one numerical scheme to another. We will refer to the work of Toro [93] and
Hirsch [57] for further details on the von Neumann analysis, and we will consider what seems to

28 1.3. Explicit and Implicit Time Schemes

be a practical stability condition. Moreover, we distinguish two mathematical stability criteria:
one issued from the Euler system of equations (the convective stability criteria), and one for
the diffusive flows. All resulting schemes are conditionally stable under conditions of Courant-
Friedrichs-Lewy (CFL) type.

As for example, for the convective CFL number, the expression found solving a 1D Euler
system of equations using the Godunov numerical scheme to compute the numerical fluxes (1.14)
is:

0 < cfl =
a∆tC
∆h

< 1,

where ∆h is the constant space step, a is the wave propagation speed and ∆tc the time
step. We can define the CFL as a ratio of two speeds: the wave propagations speed a and
the grid speed ∆tc

∆h imposed by the discretisation of the computational domain. In practice, we
shall impose the CFL number found by computing the Euler fluxes with a FVS (Flux Vector
Splitting) scheme, the van Leer numerical scheme (see (1.15)) which is also used by elsA to
compute the time step of the simulation:

0 < ∆tC = cfl
∆h

|U |+ a
< 1.

The diffusive stability criteria is computed on a centred explicit scheme using the von Neu-
mann method:

0 < ∆tD = cfl
(∆h)2

2

ρ

µ

Pr

γ
< 1,

where Pr is the Prandtl number, µ represents the laminar viscosity and ∆tD the time step.
The local time step in the explicit case is computed by joining together the results of both
convective and diffusive fluxes:

∆t = min(∆tC ,∆tD), (1.17)

for the same characteristic cell length, ∆h. In the 2D and 3D cases the same CFL condition
is asked to be satisfied in each direction, the global stability condition is obtained by minimizing
the directional stability conditions.

The studied implicit schemes are unconditionally stable, meaning there is no analytically
imposed restriction over the size of the time step. Yet, the solution must remain into the
physical bounds of the problem (kinetic energy for example) which adds another limit to the
time step. Thus, in our simulations, a similar relation to the CFL condition is used to ensure
numerical convergence.

1.3.2 Second order Implicit Backward Differentiation Methods

In this section we consider another kind of scheme to solve the Navier–Stokes (Euler) system
of equations: the implicit scheme. The chosen implicit scheme is a multi-step method, the second
order accuracy backward differentiation method (BDF). The scheme is unconditionally stable
for a steady case and it must have a fast convergence for very large time steps. For an unsteady
case, to ensure the numerical stability, the time step needs to be controlled, chosen carefully
and can be limited. The implicit scheme allows longer simulations and is particularly adapted
to the steady case. Compared to one-step methods, it usually requires fewer function evaluation
per step, but it is usually more expensive.

The Backward Differentiation Methods are numerical methods of integration based on the
backward differentiation formulas (BDF). The BDF scheme was first proposed by Curtiss and
Hirschfelder en 1951 in [27] as a scheme to solve stiff equations of any degree of accuracy.
The BDF gives an approximation of a time derivative tn+1 depending on its value at time
tn, by differentiating the polynomial that interpolates the past known values and to set the
derivative at tn+1 of the right term. They are linear multi-steps methods using the approximate

1.3. Explicit and Implicit Time Schemes 29

values Un, Un−1, .. of U , whose components are the approximated solutions in each node of the
discretised space domain. The general form of the k-order BDF method is:

k
∑

i=0

αiU
n−i = −∆tβ0ψ(Un),

where α0 = 1. For β0 = 0, the resulting scheme is explicit, otherwise it is implicit. The BDF
methods are stable up to order 6 (for discussions over the BDF methods and stability study see
[1]). In table 1.3, we give the coefficients of the BDF methods up to order 6 for a fixed time
step. Beyond sixth order, the absolute stability region of the resulting BDF methods is very
small and the methods are useless.

Table 1.3: Coefficients of BDF up to order 6

p k β0 α0 α1 α2 α3 α4 α5 α6

1 1 1 1 -1

2 2 2
3 1 −4

3
1
3

3 3 6
11 1 −18

11
9
11 − 2

11

4 4 12
25 1 −48

25
36
25 −16

25
3
25

5 5 60
137 1 −300

137
300
137 −200

137
75
137 − 12

137

6 6 60
147 1 −360

147
450
147 −400

147
225
147 − 72

147
10
147

The method is also called linear multi-step because, unlike the Runge-Kutta method, the
expression of U is linear in ψ (the non-linearity resides inside ψ). All BDF methods are implicit
methods. The first order BDF method is actually a one-step implicit method: the Backward
Euler Method or the Implicit Euler Method. We can notice that, for the method to be self
sufficient we need to know the solution for a number of steps. In the first order BDF method
only the value of U at instant t0 (the initial solution) is needed. For the scheme to be computed
at k−order, k initial values U0, U1, ..Uk−1 are required to be O(∆tk) accurate. To obtain these
values, an explicit method can be used. At each time step, a BDF method requires the solution
of a non-linear system of equations. In order to solve the non-linear system of equations a
Quasi- Newton method has been chosen at each time step.

Newton Method

In this work, we are interested in second order backward differentiation implicit scheme (see
the Phd thesis of Ouvrard [84] for another application of the second order BDF scheme on the
Navier-Stokes equations):

αn+1U
(n+1) + αnU

(n) + αn−1U
(n−1) +∆t(n)ψ(U (n+1)) = 0 (1.18)

with the coefficients:

αn+1 =
1 + 2τ

1 + τ
, αn = −1− τ, αn−1 =

τ2

1 + τ
,

and where ∆t(n) = tn+1−tn and τ =
∆t(n)

∆t(n−1)
, the ratio between the actual and the previous

time step. A Newton process implies the definition of the iterate Un+1 using the previous iterate

30 1.3. Explicit and Implicit Time Schemes

Un by linearising the system (1.18). To achieve the linearisation, we approximate the total flux
at instant tn+1 through a Taylor formula:

ψ(U (n+1)) = ψ(U (n)) +
dψ

dU
(U (n))(U (n+1) − U (n)) + o(U (n+1) − U (n)).

Using the new expression of the total flux the BDF scheme (1.18) becomes:

αn+1U
(n+1) + αnU

(n) + αn−1U
(n−1) +∆t(n)ψ(U (n))+

∆t(n)
dψ

dU
(U (n))(U (n+1) − U (n))) + αn+1U

(n) − αn+1U
(n) = 0,

and it can be rewritten under a linearised form for each node i as follows:

[αn+1 +∆t(n)
dψi
dUi

(U
(n)
i)](U (n+1) − U (n)) =−∆t(n)ψ(U

(n)
i)− αn+1U

(n)
i

− αnU (n)
i − αn−1U

(n−1)
i .

(1.19)

The Jacobian matrices dψi

dUi
(U

(n)
i) are of size N × N and computed with a second order

scheme for the convective flows. In order to reach a simple linear form we note:

R(U) = ψ(U
(n)
i) +

αn+1

∆t(n)
U

(n)
i +

αn

∆t(n)
U

(n)
i +

αn−1

∆t(n)
U

(n−1)
i ,

the explicit residual and J = dψi

dUi
(U

(n)
i), the Jacobian matrix. The linear system to solve

becomes:
(αn+1

∆t(n)
I + J

)

∆U = −R(U). (1.20)

The left hand side consists of the implicit operator and assembles the balance of the con-
vective and diffusive fluxes.

Newton Algorithm:

• Let η be the relative tolerance for the residuum norm;

• Choose U0, the initial solution;

• i := 0;

• Until convergence of Newton
(

||R(U i+1)|| < η||U0||
)

:

◦ solve
(

αn+1

∆t(n) I + J
)

∆U i = −R(U i) ⇔ call the Linear-Solver(J,R,∆U i),

◦ update the iterate U i+1 := U i +∆U i,

◦ i = i+ 1;

• Update the solution U = U i.

The Newton method needs to be combined with a fully linear solver, but the Jacobian
computation is often inconvenient or expensive to compute and store. None of the proposed
linear solvers (see below) requires the computation of Jacobian matrices. Only matrix vector
products and are computed at each iteration. Moreover, to avoid costly computations at each
iteration, each Jacobian matrix - vector product is approached by a finite difference scheme. In
our simulations the convergence is reached only for a given tolerance that does not exceed 1e-6.
The classical Newton method converges quadratically to the solution, but when approximative
Jacobians and iterative techniques are used, an Inexact Newton method is constructed and

1.3. Explicit and Implicit Time Schemes 31

degrades the convergence. Asymptotic quadratic convergence is achievable [60] and it depends
on the precision of the linear solver. During his PhD period, Remi Choquet [20] proves the
local and linear convergence of the Inexact Newton method combined with the MFGMRES
(FGMRES with restarts) linear solver.

Another remark is that the implicit schemes based on the lower-upper (LU) factorizations
are stable and robust in any space dimension, even for high speed flows (Mach ≤ 20) or transonic
flows (see [100]).

On approximative Jacobians

How do we choose the approximative expressions of the Jacobians? Based on what criteria?
If many researchers have approached the discussion over the convective Jacobians (for example
[93, 57]), there are little discussions in literature over the viscous Jacobians. To answer to these
questions, we start by computing the exact viscous Jacobians. In the previous paragraph we
have given a general formulation of the Newton Method applied to a BDF scheme. Let us
proceed to an in-depth analysis of the linearisation of the system (1.18). We treat first the
convective flux and second the diffusive fluxes. We rewrite the 2D system of Navier–Stokes
equations already discretised in time, (1.18), as:

αn+1U
(n+1) + αnU

(n) + αn−1U
(n−1) +∆t(n)

[

Fn+1
Euler(U

n+1)

+Gn+1
Euler(U

n+1) + Fn+1
vis (Un+1,∇Un+1) +Gn+1

vis (Un+1,∇Un+1)
]

ψ(U (n+1)) = 0
(1.21)

Let us explicit the linearisation steps for each component of the total flux.

Fn+1
Euler(U

n+1) = FnEuler(U
n) +

(

∂FEuler
∂U

)n

∆Un +O((∆Un)2)

= FnEuler +A∆Un +O((∆Un)2),

Gn+1
Euler(U

n+1) = GnEuler(U
n) +

(

∂GEuler
∂U

)n

∆Un +O((∆Un)2)

= GnEuler +B∆Un +O((∆Un)2),

Fn+1
vis (Un+1,∇Un+1) = Fnvis(U

n,∇Un) +
(

∂Fvis
∂U

)n

∆Un +

(

∂Fvis
∂Ux

)n

∆Unx

+

(

∂Fvis
∂Uy

)n

∆Uny +O((∆Un)2, (∆Unx)
2,∆Uny)

2)

= Fnvis +Av∆Un +Av∂x∆U
n
x +Av∂y∆U

n
y

+O((∆Un)2, (∆Unx)
2,∆Uny)

2),

Gn+1
vis (Un+1,∇Un+1) = Gnvis(U

n,∇Un) +
(

∂Gvis
∂U

)n

∆Un +

(

∂Gvis
∂Ux

)n

∆Unx

+

(

∂Gvis
∂Uy

)n

∆Uny +O((∆Un)2, (∆Unx)
2,∆Uny)

2)

= Gnvis +Bv∆Un +Bv
∂x∆U

n
x +Bv

∂y∆U
n
y

+O((∆Un)2, (∆Unx)
2,∆Uny)

2),

32 1.3. Explicit and Implicit Time Schemes

where we introduced the obvious notations:

FnEuler = FnEuler(U
n), A =

(

∂FEuler
∂U

)n

,

GnEuler = GnEuler(U
n), B =

(

∂GEuler
∂U

)n

,

Fnvis = Fnvis(U
n,∇Un), Av =

(

∂Fvis
∂U

)n

, Av∂x =

(

∂Fvis
∂Ux

)n

, Av∂y =

(

∂Fvis
∂Uy

)n

,

Gnvis = Gnvis(U
n,∇Un), Bv =

(

∂Gvis
∂U

)n

, Bv
∂x =

(

∂Gvis
∂Ux

)n

, Bv
∂y =

(

∂Gvis
∂Uy

)n

.

Or, the terms in O((∆Un)2) = O

((

∆t
∂U

∂t

)2)

= O(∆t2) with ∆t = tn+1 − tn can be

neglected for a Newton type linearisation. With these new notations, the system to solve can
be rewritten as in (1.22) where the unknowns are not only the conservative vector U at each
time step, but their derivatives as well:

αn+1∆U
n +∆t

∂

∂x

(

A∆Un +Av∆Un +Av∂x∆U
n
x +Av∂y∆U

n
y

)

+∆t
∂

∂y

(

B∆Un +Bv∆Un +Bv
∂x∆U

n
x +Bv

∂y∆U
n
y) = −∆tRn,

(1.22)

where Rn = FnEuler +GnEuler + Fnvis +Gnvis +
αn
∆t

U (n) +
αn−1

∆t
U (n−1).

The next step is the calculation of the exact expression of A,Av, Av∂x, A
v
∂y, B,B

v, Bv
∂x and

Bv
∂y. They are identified from the computation of the differentials of the viscous fluxes, Fvis +

Gvis. A detailed calculation of the differentials of viscous fluxes can be found in appendix A.
Once the expressions of the exact Jacobians have been found, we can discuss over the choice

of their approximations. We base our study on the similar reasoning of computing the Jacobians,
made by Beam and Warming [4] and further studied by Coakley [21, 22]. They propose two
simplifications in the expression of (1.22). We translate and adapt their algorithm steps to our
system of equations. First, they propose an equivalent expression of the Taylor approximations
for the viscous fluxes:

Fn+1
vis = Fnvis +Av∆Un +Av∂x∆U

n
x +Av∂y∆U

n
y +O((∆t)2),

= Fnvis +
(

Av +
∂

∂x
Av∂x

)

∆Un +
∂

∂x

(

Av∂y∆U
n
y

)

+Av∂y∆U
n
y +O((∆t)2)

Gn+1
vis = Gnvis +Bv∆Un +Bv

∂x∆U
n
x +Bv

∂y∆U
n
y +O((∆t)2),

= Gnvis +Bv
∂x∆U

n
x +

(

Bv +
∂

∂y
Bv
∂y

)

∆Un +
∂

∂y

(

Bv
∂y∆U

n
y

)

+O((∆t)2).

In what concerns the cross-derivative terms, Beam and Warming said about this kind of
treatment that encounter considerable difficulty in constructing efficient factored algorithm.

Based on the finite differences discretisation of a second order derivativeO(∆t2) = (∆t)2
∂2Fvis(U

n
y)

∂t
=

Fvis(U
n+1
y)−2Fvis(Uny)+Fvis(Un−1

y) andO(∆t2) = (∆t)2
∂2Gvis(U

n
x)

∂t
= Gvis(U

n+1
x)−2Gvis(Unx)+

Gvis(U
n−1
x), the cross derivatives can be calculated without loss accuracy from the previ-

ous known values, Fvis(U
n+1
x) − Fvis(U

n
x) = Fvis(U

n
x) − Fvis(U

n−1
x) + O(∆t2), Gvis(U

n+1
x) −

Gvis(U
n
x) = Gvis(U

n
x)−Gvis(Un−1

x) +O(∆t2) , it can even be advantageous to neglect them, so
to neglect the terms Av∂y∆U

n
y and Bv

∂x∆U
n
x for some calculations. Moreover, in their reasoning

the expression
∂

∂x

(

(A+Av +
∂

∂x
Av∂x)∆U

n
)

denotes
∂

∂x

(

A+Av +
∂

∂x
Av∂x

)

∆Un, meaning that

all second order spatial derivatives are also neglected.

1.3. Explicit and Implicit Time Schemes 33

Under its original form, the system (1.22) is not well posed since the number of unknowns
exceeds the number of equations. We use second order Finite Volume scheme to discretise
the Navier–Stokes system of equations. Assuming, locally, that the cross-derivatives and the
second order spatial derivatives are zero should not decrease the accuracy. Moreover, all the
assumptions of Beam and Warming are adopted in elsA and have proved their efficiency in
solving large systems of data in industrial codes. These approximative Jacobians are easier to
compute and will be preferred in our simulations. Let us give their expressions for modelling
the convective and diffusive fluxes:

A =









0 S
L 0 0

(

− e(γ − 1)− u2
)

S
L

(

u(1− γ)
)

S
L (1− γ)v SL (γ − 1)SL

−uv SL v∆y uSL 0

(h− e)(1− γ)uSL (1− γ)(u2 − h)SL (1− γ)uv SL γuSL









,

B =









0 0 S
L 0

−uv SL v SL + ρB uSL 0

(e(γ − 1)− v2)SL (1− γ)uSL (1− γ)v SL (γ − 1)SL
(h− z)(1− γ)v SL (1− γ)uv SL (1− γ)(v2 − h)SL γv SL









,

Av +
∂

∂x
Av∂x =















0 0 0 0

−4
3
S
L
µ
ρu

4
3
S
L
µ
ρ 0 0

−S
L
µ
ρv 0 S

L
µ
ρ 0

−
[

4
3u

2 + v2 + γ
Pr (E − 2e)

]

S
L
µ
ρ

[

4
3 −

γ
Pr

]

S
L
µ
ρu

[

1− γ
Pr

]

S
L
µ
ρv

γ
Pr

S
L
µ
ρ















,

Bv +
∂

∂y
Bv
∂y =















0 0 0 0

−S
L
µ
ρu

S
L
µ
ρ 0 0

−4
3
S
L
µ
ρv 0 4

3
S
L
µ
ρ 0

−
[

u+ 4
3v +

γ
Pr (E − 2e)

]

S
L
µ
ρ

[

1− γ
Pr

]

S
L
µ
ρu

[

4
3 −

γ
Pr

]

S
L
µ
ρv

γ
Pr

S
L
µ
ρ















,

where S denotes the surface of one cell (it has the same definition for a 3D computation), and

L the length of one cell in the chosen direction. For the x-direction we get
S

L
=

∆x∆y

∆x
= ∆y.

Excepted S and L, all symbols presented in the Jacobian definition have been already defined
in chapter II and can also be find in the nomenclature of this work. We note that we found (see
appendix A) exactly the same expressions of Av∂x and Bv

∂y.
Another possible Jacobian approximation is to replace the expression of viscous Jacobians

with a diagonal expression of its spectral radius. It can be seen as a smoother for solving stiff
problems.

Linear resolution

The construction of implicit schemes implies the solution of large linear systems of equations
for each iteration. The linear system is usually sparse or multi-diagonal by blocks. The resulting
linear system (1.20) can be written under the general form Ax = b, where x = ∆U it the

increment of the solution, b = −R(U) is the explicit residual and A =
(αn+1

∆t(n)
I + J

)

.

Since the size of the system is very large, and solving the system is the most costly part of
the computation, it is usually solved in an approximate way adapted to the form of the matrix.
In this thesis, three linear solvers have been studied: GMRES, Gauss Seidel and the Relaxation
method. We present briefly these three methods.

34 1.3. Explicit and Implicit Time Schemes

GMRES Method

The GMRES method or the generalised minimal residual method is a projection method
based on the projection of the approximated solution on Kn orthogonal to L = AKn, where
Kn is the n-th sub-space of Krylov with v1 = r0/||r0||. It searches an approximated solution
xn ∈ Kn of the exact solution of Ax = b that minimises the residual norm ||Axn − b||. The
approximated solution by GMRES is the unique vector x0+Kn that minimises J(x) = ||b−Ax||2.
Like other iterative methods, GMRES is often combined with accelerators to increase the speed
of convergence. In this work a flexible right preconditioned GMRES algorithm has been chosen
to be analysed. The main idea is to solve:

AM−1u = b u =Mx,

where M is the preconditioner, a positive symmetrical matrix that approximates A. The
difference between this algorithm and the right preconditioned GMRES algorithm is that the
right preconditioner can change at each step.

FGMRES algorithm:

• Define the initial residual r0 = b−Ax0 β = ||r0||2 and v1 = r0β;

• for j from 1 to n do:

◦ zj :=M−1
j vj ,

◦ w := Azj ,

◦ for i from 1 to j do:

· hi,j := (w, vi),

· w := w − hi,jvj ,
◦ hj+1,j = ||w||2 et vj+1 = w/hj+1,j ;

◦ Zn := [z1, .., zn]. Hm = {hi,j}1≤i≤j+1;1≤j≤m;

• yn = argminy||βe1 −Hmy||2, xn = x0 + Znyn;

• if yn satisfies the stopping criteria exit the iteration;

• else x0 = xn and the next iteration can begin.

The FGMRES algorithm is numerically sensitive and more costly than the Gauss-Seidel or
the relaxation ones. It can also lead to the stagnation of the residual norm. Because of these
reasons the Gauss-Seidel method and the Relaxation one have been preferred for the scalability
study.

Gauss-Seidel Method

This iterative method was developed to solve large sparse linear systems of equations. The
system to solve is:

Ax = b

We suppose that the invertible matrix A can be decomposed as a sum of three matrices: L
the upper triangular part of A, D its diagonal part and U the lower triangular part of A:

A = L+D + U .

1.3. Explicit and Implicit Time Schemes 35

The system to solve has the following form:

(L+D + U)x = b. (1.23)

Let us note M = L + D. Since D contains, by hypothesis, only non zeros elements on the
diagonal, det(M) 6= 0 so M is invertible. Its inverse is easy to build since M is defined as a
lower triangular matrix. We obtain an iterative method called the Gauss-Seidel method per
points that we can write under the notation:

(L+D)xk+1 = −Uxk + b, k ∈ N

and more precisely
xk+1 = −(L+D)−1Uxk + (L+D)−1b.

The matrix (L + D)−1U is called the Gauss-Seidel matrix per points. One advantage of
this method is that it only needs one vector to store. As we shall see later, the Gauss-Seidel
algorithm is equivalent to an alternating Schwarz domain decomposition algorithm.

Relaxation Method

We keep the same decomposition of A (= L+D + U) as for the Gauss-Seidel method. The
relaxation method consists in computing a series of approximated solutions of the exact system:

(L+D + U)x = b.

We consider a relaxation method with forward and backward sweeps through the domain:

(L+D)xp+ 1
2 = b− Uxp

(D + U)xp+1 = b− Lxp+ 1
2

,

where p is the number of relaxation cycles. The speed of convergence depends on the choice
of the number of relaxation cycles. Usually 2 cycles is a good choice. For a null initial solution
we have:

x0 = 0

(L+D)x 1
2 = b

(D + U)x1 = b− Lx 1
2

,

thus
(D + U)x1 = Dx 1

2

(L+D)D−1(D + U)x1 = b.

One cycle of the relaxation method with a null initialisation is equivalent to an approximate
LDU method.

Application to the 3D Navier–Stokes Equations

Let us recall the linearised system to solve, (1.20):

(αn+1

∆t(n)
I + J

)

∆U = −R(U).

Let A be the Jacobian matrix of the convective or Euler flux in the x−direction F (U) and
B the Jacobian matrix of the convective in the y−direction G(u), and C the Jacobian matrix
of the convective flow in the z−direction H(u), using the conservative variables. We define the
approximated positive and negative parts of these Jacobian as follows:

A± =
1

2
(A± |A|), B± =

1

2
(B ± |B|), C± =

1

2
(C ± |C|),

36 1.3. Explicit and Implicit Time Schemes

where E ∈ {A,B,C} is diagonalisable and |E| = M |Λ|M−1, M is an invertible matrix and Λ
is a diagonal matrix.

The Jacobian parts are constructed in such a way that the eigenvalues of the A+, B+ and C+

matrices are non-negative and those of A−, B− and C− matrices are non-positive. Let Av(U) be
the Jacobian matrix of the viscous flow in the x−direction F v(U), Bv(U) the Jacobian matrix
of the viscous flow in the y−direction Gv(U), and Cv(U) the Jacobian matrix of the viscous
flow in the z−direction Hv(U) using the conservative variables.

For the last part of this sections and for simplification purpose, we denote the index of the
3D cell Ωi,j,k by only Ω. Ω − 2x will denote Ωi−2,j,k and similarly Ω − 2y will denote Ωi,j−2,k

and Ω− 2z will denote Ωi,j,k−2. With these previous notations we rewrite the linear system to
solve as:

(αn+1

∆t(n)
I +AΩ +BΩ + CΩ +AvΩ +Bv

Ω + CvΩ

)

∆UΩ = −RΩ. (1.24)

We replace these Jacobians with the sum of their positive and negative parts. We write the

convective part by the following relation (upwind:
∂+

∂x
and downwind:

∂−

∂x
):

∂−

∂x
A+

Ω∆UΩ +
∂+

∂x
A−

Ω∆UΩ = (A+
Ω∆UΩ −A+

Ω−x∆UΩ−x)

+(A−
Ω+x∆UΩ+x −A−

Ω∆UΩ),

and similarly in the other directions:

∂−

∂y
B+

Ω∆UΩ +
∂+

∂y
B−

Ω∆UΩ = (B+
Ω∆UΩ −B+

Ω−y∆UΩ−y)

+(B−
Ω+y∆UΩ+y −B−

Ω∆UΩ),

∂−

∂z
C+
Ω∆UΩ +

∂+

∂z
C−
Ω∆UΩ = (C+

Ω∆UΩ − C+
Ω−z∆UΩ−z),

+(C−
Ω+z∆UΩ+z − C−

Ω∆UΩ).

The diffusive balance is treated in its original form, the approximate linearisation is evaluated
at cell centres as follows:

∂

∂x
AvΩ∆UΩ = 1

4

(

AvΩ−2x∆UΩ−2x − 2AvΩ∆UΩ +AvΩ+2x∆UΩ+2x

)

,

∂

∂y
Bv

Ω∆UΩ = 1
4

(

Bv
Ω−2y∆UΩ−2y − 2Bv

Ω∆UΩ +Bv
Ω+2y∆UΩ+2y

)

,

∂

∂z
CvΩ∆UΩ = 1

4

(

CvΩ−2z∆UΩ−2z − 2CvΩ∆UΩ + CvΩ+2z∆UΩ+2z

)

.

We then rewrite the system to solve:

∆t

4
(AvΩ−2x∆UΩ−2x +Bv

Ω−2y∆UΩ−2y + CvΩ−2z∆UΩ−2z)

+∆t(−A+
Ω−x∆UΩ−x −B+

Ω−y∆UΩ−y − C+
Ω−z∆UΩ−z)

+(αn+1I +∆t(A
+
Ω −A−

Ω +B+
Ω −B−

Ω + C+
Ω − C−

Ω −
1

2
AvΩ −

1

2
Bv

Ω −
1

2
CvΩ))∆UΩ

+∆t(A−
Ω+x∆UΩ+x +B−

Ω+y∆UΩ+y + C−
Ω+z∆UΩ+z)

+
∆t

4
(AvΩ+2x∆UΩ+2x +Bv

Ω+2y∆UΩ+2y + CvΩ+2z∆UΩ+2z)=−∆tRΩ.

(1.25)

We extract the diagonal part, DΩ, and approximate the values of |A|, |B| and |C| with the
spectral radius of each one of the Jacobian matrices. This approximation was proposed by
Yoon and Jameson [100] when they propose a new multigrid relaxation scheme, lower-upper

1.3. Explicit and Implicit Time Schemes 37

symmetric successive over-relaxation (LU−SSOR) scheme to solve the Euler and Navier–Stokes
equations.

DΩ = (αn+1I +∆t(A+
Ω −A−

Ω +B+
Ω −B−

Ω + C+
Ω − C−

Ω +
1

2
AvΩ +

1

2
Bv

Ω +
1

2
CvΩ))

= (αn+1I +∆t(|AΩ|+ |BΩ|+ |CΩ|+
1

2
AvΩ +

1

2
Bv

Ω +
1

2
CvΩ))

≈ (αn+1 +∆t(ρA + ρB + ρC +
1

2
ρAv +

1

2
ρBv +

1

2
ρCv))I

The spectral radius, ρ∗, is the maximum eigenvalue of a Jacobian matrix defined as:

ρA = max(u− a, u+ a), ρB = max(v − a, v + a), ρC = max(w − a, w + a),

ρAv = max(
4

3
µ, γ

µ

Pr
), ρBv = max(

4

3
µ, γ

µ

Pr
), ρCv = max(

4

3
µ, γ

µ

Pr
).

We make the following notations:

L = L+D, D = D, U = U +D,
and resume the problem to a LD

−1
U factorisation:

LD
−1

U∆Un = −R,
that we can solve within three steps:

1. Solve the L-Relaxation
L∆U

1
3 = −R,

where L = L+D is a lower triangular matrix.
The iterations are:

∆U
1
3
,0

Ω = −D−1R0
Ω,

∆U
1
3
,1

Ω = −D−1R1
Ω +D

−1(A+
Ω−x∆U

1
3
,0

Ω−x +B+
Ω−y∆U

1
3
,0

Ω−y + C+
Ω−z∆U

1
3
,0

Ω−z),

for instant k, 2 ≤ k ≤ n :

∆U
1
3
,k

Ω = −D−1RkΩ +D
−1[

1

4
(Av +Ω−2x ∆U

1
3
,k−1

Ω−2x +Bv
Ω−2y∆U

1
3
,k−1

Ω−2y + CvΩ−2z∆U
1
3
,k−1

Ω−2z)

+A+
Ω−x∆U

1
3
,k−1

Ω−x +B+
Ω−y∆U

1
3
,k−1

Ω−y + C+
Ω−z∆U

1
3
,k−1

Ω−z].

2. Solve the diagonal

D
−1∆U

2
3 = ∆U

1
3 ,

which is equivalent to:

∆U
2
3 = D∆U

1
3 .

3. Solve the U-relaxation
U∆Un = ∆U

2
3 ,

where U = U + D is an upper triangular matrix. The iterative resolution starts with the
last terms:

∆UnΩ = −D−1RnΩ,

∆Un−1
Ω = −D−1Rn−1

Ω −D
−1(A−

Ω+x∆U
2
3
,n

Ω+x +B−
Ω+y∆U

2
3
,n

Ω+y + C−
Ω+z∆U

2
3
,n

Ω+z),

for k < n− 1 we compute:

∆Uk−1
Ω = −D−1Rk−1

Ω −D
−1[A−

Ω+x∆U
2
3
,k

Ω+x +B−
Ω+y∆U

2
3
,k

Ω+y + C−
Ω+z∆U

2
3
,k

Ω+z

+1
4(A

v
Ω+2x∆U

2
3
,k

Ω+2x +Bv
Ω+2y∆U

2
3
,k

Ω+2y + CvΩ+2z∆U
2
3
,k

Ω+2z)].

The steps 1 and 3 can be solved directly by forward and backward substitution due to the
triangular form of matrices L+D and U +D.

38 1.3. Explicit and Implicit Time Schemes

Chapter 2

Schwarz based Domain
Decomposition Methods (DDMs)

Contents

2.1 Classical Schwarz domain decomposition methods 41

2.1.1 Alternating Schwarz Algorithm . 42

2.1.2 Parallel Schwarz Algorithm . 43

2.2 Schwarz Waveform Relaxation (SWR) Method 45

2.3 Adaptive Schwarz Waveform Relaxation (ASWR) Method 47

2.4 Schwarz Methods applied to implicit solvers 50

2.5 Transmission conditions on artificial boundaries 51

2.5.1 Dirichlet type boundary conditions . 54

2.5.2 Mixed Dirichlet/Robin boundary conditions 55

2.5.3 Robin (Fourier) Boundary Condition . 58

2.6 Convergence and Stopping criteria . 61

39

40

Parallel computation has opened a wide horizon for new precise and complex simulations in a
range of applications including traffic flow, weather predictions, seismic structures, astrophysics
and medicine. The main idea is to split large problems that model physical phenomena into
smaller sub-problems that can be treated in parallel. The splitting techniques are called domain
decomposition methods (DDMs), they are based on the Divide and Conquer principle and can
be seen as a parallelisation tool. DDM permits to simulate more and more complicated physical
phenomena modelled by partial differential equations as it allows the computation of a larger
size problem. For simulations that are already running it accelerates the process and gives a
solution faster.

The efficiency of a parallel computation depends directly on the chosen domain decompo-
sition method. An efficient DDM needs to respect several factors: the initial problem on a
complicated geometry has to be split into sub-problems on simpler geometries; the resulting
algorithm has to be easy to implement and to have a good parallel performance; the parallel
solution must equal the global solution. The necessity to fulfill of these three factors leads to the
elaboration of a large spectrum of domain decomposition algorithms that are usually focused
on the type of the problem, linear or non-linear, hyperbolic, parabolic or elliptic. For linear
systems, DDM can be seen as a preconditioner for Krylov subspace accelerator techniques.
For non-linear cases they can be seen as a preconditioner of the solution of the linear system.
Moreover, DDM allows modelling and coupling different physics in different sub-domains, for
example modelling the ocean coupled with the atmosphere [33, 7]. They allow coupling different
geometries, different discretisations, like Cartesian modelling with triangulation [8, 55]. We can
imagine different fluid behaviour described by the Navier–Stokes equations coupled with the
Euler equations [8, 55].

In the continuous attempt to elaborate more efficient parallel algorithms to compute the
numerical solution of a system of equations, three different types of parallelism can be identified
([11, 88]).

• Parallelism of the method [71], or methods that compute blocks of values simultaneously.
Two representative examples are the Shur complement method based on parallel local
factorisation of sub-blocks of matrices and the FETI (Finite Element Tearing and In-
terconnecting) method, an iterative substructuring method for solving linear system of
equations.

• Parallelism over the space or Schwarz based domain decompositions [87, 64] (described
below).

• Parallelism over the time [3, 63] also known as the parareal algorithm was introduced in
2001 by J.-L. Lions and al [63]. It is based on a predictor-corrector algorithm which uses a
sequentially computed coarse grid in time to predict (and then to correct) solutions. They
become initial solutions for fine grids in time sequentially solved inside one sub-domain,
but with parallel implementation of different sub-domains.

An efficient method could assemble elements from the three types. Usually, only space domain
decomposition method is used to provide high-performing algorithms in many fields of numerical
applications. In this study we will only consider the overlapping domains (fig.2.1, left) decompo-
sition method that includes Schwarz based decomposition and not the non-overlapping domain
decomposition (fig.2.1, right), referred in literature as sub-structuring or Schur complement
methods.

In this chapter we will first overview the classical Schwarz based domain decomposition
methods, that are space domain decomposition and, secondly the Schwarz Waveform Relaxation
(SWR) domain decomposition method based on [62] and developed in [40], a method that
includes the time in its decomposition. We will distinguish different domain decomposition
methods applied to explicit and implicit discretisations.

We state the main task of this work: the analysis and the improvement of SWR domain

2.1. Classical Schwarz domain decomposition methods 41

Ω

overlapping non-overlapping

Ω1 Ω2 Ω1 Ω2

Figure 2.1: Overlapping (left) and non-overlapping (right) decomposition of a domain Ω.

decomposition method. We propose and discuss a new way to improve the SWR domain
decomposition method.

2.1 Classical Schwarz domain decomposition methods

Many engineering problems can be formulated as boundary problems on complex geometries.
On their original form, these problems are difficult or costly to solve and they are not particularly
adapted to parallel computing.

In 1869, H.A. Schwarz [87] proposes a first domain decomposition for a global computation
on a complex geometry into an iterative one on simple geometries to solve the Laplace equation.
The goal of this decomposition is to reduce the problem on an unknown geometry into prob-
lems on simple geometries, possible to solve. Schwarz splits the global problem (fig.2.2, left)
into overlapping sub-problems and solves alternately each one of them by exchanging interface
conditions, thus the name of multiplicative or alternating Schwarz method. It was also the
first time that one managed to prove that the Laplace equation on a bounded domain with
Dirichlet boundary conditions admits a unique solution on arbitrary domains. Proofs already
existed for a rectangular domain (Fourier, 1807) or a circular domain (Poisson, 1815). Schwarz
proved the convergence of his method using the maximum principle, first for a composed domain
of a disk and a rectangle, then he extended it, adding other disks or rectangles to the initial
domain, obtaining more difficult configurations. He also proposed a physical device to prove
his method: a vacuum pump with two cylinders (fig.2.2, right). The alternative pump of the
cylinders produces a vacuum in the inner chamber. A more detailed background on the origins
of the alternating Schwarz method has recently been published by Gander and Wanner in a
conference article [47]. A general background on all Schwarz Methods can be found in [39] and
on overlapping methods in [13].

A century later, P.-L. Lions re-explores Schwarz idea and gives a parallel formulation for
the purpose of parallel computing, which is the basis of many domain decomposition methods.
He publishes a series of three papers titled ”On the Schwarz alternating method” [64, 65, 66]
where he conducts a mathematical investigation of the convergence properties of the Schwarz
alternating method for different linear and non-linear problems. In his first paper he proves the
convergence of the Schwarz alternating method for linear problems: the Laplace equation and
the Stokes equations, and non-linear monotone problems such as the Heat problem. He shows
that the Schwarz method to solve the Laplace problem is equivalent to a sequence of projections
in a Hilbert space and gives a completely different convergence proof using projections. Lions
combines the original method with a time discretisation, extends the method from two to more

42 2.1. Classical Schwarz domain decomposition methods

Figure 2.2: Schwarz first decomposition (left). Two level vacuum pump used to physically
interpret the alternating Schwarz method (right)

sub-domains and proposes several variants of the Schwarz method, among them the parallel
method. In the second article, [65], he continues the study giving convergence results of the
alternating method for uniformly elliptic equations, degenerate elliptic equations and parabolic
equations with overlapping and non-overlapping domains. The convergence proof is conducted
via the maximum principle or pure probabilistic using a stochastic interpretation. In the last
part of the article he offers some hint to optimise the domain distribution in order to accelerate
the convergence. In the third article, [66], Lions observes that applications can be severely
restricted by the necessity of overlapping sub-domains, and the computation is more expensive.
He then proposes a new non-overlapping algorithm by changing the Dirichlet communication
conditions into Robin communication conditions between two sub-domains. He uses the energy
estimates to prove that the new algorithm is convergent for an arbitrary number of sub-domains.
P.L. Lions papers can be seen as a consolidation of the properties of Schwarz algorithms, which
are considered robust and convergent indifferent to the type of equations considered.

We begin our analysis by solving the Cauchy problem associated to the 1D Navier–Stokes
system of equations and Dirichlet type boundary conditions:

Find U that satisfies







∂tU + ∂xFEuler(U) + ∂xFvis(U)= 0 in Ω ×[0, T],
U = U0 on Ω ×{0},
U = g on ∂Ω×[0, T],

(2.1)

where U is the unknown vector of conservative variable U = (ρ, ρu, ρE), U0 = (ρ0, (ρu)0,
(ρE)0) is the initial solution, Ω = [a, b] is the 1D domain, and [0, T] the duration of the
simulation. Let us split the original domain Ω into two overlapping sub-domains Ω1, and Ω2,
with interface Γ and denote Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω2 ∩ Ω1 respectively the boundaries of
Ω1 and Ω2 that intersect with the opposed sub-domain. We divide the time axis in N intervals
∆t: 0 = t0 < t1 < .. < tN−1 < tN = T . We are searching an approximation Uk of U at instant
tk, 1 ≤ k ≤ N . The chosen meshes are of two kinds: coincident and non-coincident. When
coincident meshes are used, the ghost cells receive their values from the internal cells of the
neighbour sub-domain. When the meshes are non-coincident, the values of the ghost cells are
found by quadratic interpolation within the neighbour internal cells.

2.1.1 Alternating Schwarz Algorithm

The main idea is to use a fixed point algorithm where, at each iteration, the boundary
conditions on Γ1 and Γ2 are updated. Their values are the traces of the opposed domain from
the previous iteration. The result is a two steps algorithm:

1. Choose the initial solution for each sub-domain;

2.1. Classical Schwarz domain decomposition methods 43

2. For k = 1, 2, ... solve







∂tU
k
1 + ∂xFEuler(U

k
1) + ∂xFvis(U

k
1)= 0 in Ω1,
Uk1= g on ∂Ω1\Γ1,

Uk1= Uk−1
2 on Γ1,







∂tU
k
2 + ∂xFEuler(U

k
2) + ∂xFvis(U

k
2)= 0 in Ω2,
Uk2= g on ∂Ω2\Γ2,
Uk2= Uk1 on Γ2.

If the boundary conditions are Robin type, the second step of the algorithm changes:

1. Choose the initial solution for each sub-domain,

2. For k = 1, 2, ... solve







∂tU
k
1 + ∂xFEuler(U

k
1) + ∂xFvis(U

k
1)= 0 in Ω1,

∂n1U
k
1 + λ1U

k
1= g on ∂Ω1\Γ1,

∂n1U
k
1 + λ1U

k
1= ∂n1U

k−1
2 + λ1U

k−1
2 on Γ1,







∂tU
k
2 + ∂xFEuler(U

k
2) + ∂xFvis(U

k
2)= 0 in Ω2,

∂n2U
k
2 + λ2U

k
2= g on ∂Ω2\Γ2,

∂n2U
k
2 + λ2U

k
2= ∂n2U

k
1 + λ2U

k
1 on Γ2.

The non-overlapping alternating Schwarz or, from a numerical point of view the non-
overlapping multiplicative Schwarz method, is equivalent to a block Gauss-Seidel splitting
method.

2.1.2 Parallel Schwarz Algorithm

Given Dirichlet type boundary conditions the Parallel Schwarz Algorithm is given by:

1. Choose the initial solution for each sub-domain,

2. For k = 1, 2, ... solve







∂tU
k
1 + ∂xFEuler(U

k
1) + ∂xFvis(U

k
1)= 0 in Ω1,
Uk1= g on ∂Ω1\Γ1,

Uk1= Uk−1
2 on Γ1,







∂tU
k
2 + ∂xFEuler(U

k
2) + ∂xFvis(U

k
2)= 0 in Ω2,
Uk2= g on ∂Ω2\Γ2,

Uk2= Uk−1
1 on Γ2,

We remark that the difference between alternating Schwarz method and the parallel Schwarz
method is the second transmission condition which uses an old iteration instead of the updated
one. For a one direction partitioning, the algorithm can be generalized as follows:

1. Choose the initial solution for each sub-domain,

2. For each time instant k = 1, 2, ...

• Solve for each cell i = 1, ...



















∂tU
k
i + ∂xFEuler(U

k
i) + ∂xFvis(U

k
i)= 0 in Ωi,
Uki = g on ∂Ωi\(Γileft ∪ Γiright),

Uki = Uk−1
i−1 on Γileft,

Uki = Uk−1
i+1 on Γiright,

44 2.1. Classical Schwarz domain decomposition methods

where Ωi−1 and Ωi+1 are the neighbours sub-domains of Ωi, Γileft = ∂Ωi∩ Ωi−1 and

Γiright = ∂Ωi ∩ Ωi+1.

The parallel Schwarz method for non-overlapping domains is equivalent to a block-Jacobi
splitting method. The above algorithms have good convergence properties if the overlapping
region is sufficiently large. The larger the overlap region, the faster the algorithm will converge.
In this work we study domain decomposition methods for overlapping sub-domains with minimal
overlapping region, which is the stencil size. Therefore, we also facilitate our tasks by choosing
the same overlapping interval. One can increase the overlap region for one sub-domain, or only
in one direction to obtain faster convergence. Because this technique is problem oriented, we
decided to fix the overlap region to the size of the stencil for each numerical scheme. Otherwise,
the overlap size equals the order of the numerical method in space. In this case, the first and
last cells of one sub-domain will always have the necessary values to be computed.

We remark that both algorithms can be used for parallel computing. The parallel compu-
tation of the alternating algorithm must be done in two steps using alternatively sub-domains
that do not touch each others and thus do not need to communicate. A technique to separate
the sub-domains is the use of black-red colouring: all sub-domains that do not communicate
have the same colour. This technique also avoids access and update conflicts when more than
two regions overlap. Other improved algorithms that accelerate the convergence of the Schwarz
methods have been proposed, such as the restrictive additive Schwarz algorithm and the two-
level additive Schwarz. Another significant improvement can be achieved by modifying the
transmission conditions. The resulting methods are called optimised Schwarz methods. The
drawbacks of the overlapping techniques are: the sensitivity to strong discontinuities of coeffi-
cients, and the duplicate work on overlapping regions that can lead to significant computational
cost for a large number of sub-domains. Moreover, it seems that they do not converge for all
type of PDEs, for example the indefinite Helmholtz equation ([35]).

Figure 2.3: Helicopter virtual model generated with chimera method at Onera

One way to solve time depending systems consists in discretising the equations uniformly
in time, then using decomposing techniques based on the presented Schwarz methods to solve
the resulting semi-discretised in time system. In practice, we are often working with large
computational domains, as on fig.2.3, where only a small part is highly interactive and a wide
region of the domain is close to equilibrium state. Usually, the sub-domains are balanced in
space so that each processor finishes the simulation at the same moment, and the computation is
done, on each sub-domain with the same time step (global time step). This means that the part
of the simulation domain which is not dominated by strong non-linearities is solved with a much
higher precision than is needed. Some sub-domains are over-solved. Moreover, communication
between sub-domains is synchronised at the end of each time step so a small amount of data (at
least twice the size of the overlapping region) needs to be exchanged at every time step, which

2.2. Schwarz Waveform Relaxation (SWR) Method 45

can also be very costly. The time step is global, and computed sequentially, but the sub-domain
close to equilibrium state converges in fewer iterations and it is less costly. Still, it has to wait
for the high reactive sub-domain to end in order to continue the simulation. The iteration in
time must be synchronised over all sub-domains, thus it proceeds only when each sub-domain
has converged, which can be very penalizing. To avoid this loss of efficiency and optimize
the computational cost, the time step should be computed locally and the distribution of flow
in sub-domains should take into consideration several factors: closeness to equilibrium region,
strong non-linearities region and time step influence. Another technical problem that can be
avoided computing locally the time step is the asynchronous work of the parallel processors in
use due to different latencies.

2.2 Schwarz Waveform Relaxation (SWR) Method

The Waveform Relaxation method or the Simple Dynamic Iteration scheme has first been
proposed by an electrical engineering group at the University of California, Lelarasmee et al
[62], in the context of integrated electrical simulations. The main idea is to use the relaxation
method to exploit the latency of the large-scale circuits. The circuit is partitioned into sub-
circuits, completed with artificial sources (as seen on fig.2.4) and independently compute each
one of them with adaptable time steps for the entire time interval.

Figure 2.4: An MOS dynamic shift register (left) and its decomposition (right).

{

dyn+1

dt = f(t, yn)
yn+1(0)= y0

, y : [0, T]→ R
d and yn is a vectorial sequence of y. (2.2)

{

dyn+1
1
dt = f(yn+1

1 , yn2 , y
n
3)

yn+1
1 (0)= y01

,

{

dyn+1
2
dt = f(yn2 , y

n+1
2 , yn3)

yn+1
2 (0)= y02

,

{

dyn+1
3
dt = f(yn1 , y

n
2 , y

n+1
3)

yn+1
3 (0)= y03 .

(2.3)

The discretised system to solve has the form of (2.2). When the circuit is partitioned
(fig.2.4, right), each unknown variable is assigned to an equation (represented on (2.3) for three
partitions) and each equation is solved as an independent system using either the Gauss-Seidel
or the Gauss-Jacobi relaxation. Inside one iteration of Gauss-Seidel, the waveform solution at
intermediate time steps is immediately used to update the neighbour solution. For Gauss-Jacobi,
the solution is updated at the end of each iteration. Based on simulations and experiments,
Lerasmee et al [62] noticed that, for a large circuit or for large time intervals the data storage
can become very large as well, and that a good initial guess can, considerably, accelerate the
convergence.

The obvious advantage of this method is not only that it allows the parallel computation
of smaller sub-systems, but also the use of different time steps for different sub-systems. The
method works very well for electrical circuits, where the system coupling systems is done nat-
urally and the coupling occurs only for short time intervals. It can be very slow in the case
of strong coupling between two systems. Several acceleration techniques exist, as for example
the multigrid or preconditioning method (see [11] for details or more references). Another im-
portant observation is that the convergence of the waveform relaxation approach slows down

46 2.2. Schwarz Waveform Relaxation (SWR) Method

when t increases toward the time interval limit. Thus, it is necessary to control the time win-
dow length. An idea is to impose the number and the length of time windows inside the time
interval of the simulation. But, this technique does not take into account the evolution of the
waveforms and a non-uniform repartition seems more adapted. Up to our knowledge, there is
no efficient algorithm able of automating the choice of the number of time windows and their
length, especially due to the large variety of the applications. Although, we can recall the effort
of Burrage and Dyke [12] where they concluded that the results using the proposed techniques
of adapting the time window are not conclusive, since it can result in better efficiency for several
particular cases, and less efficiency for other particular cases.

In 1994, in his technical report [5], M. Bjorhus analyses the dynamic iteration method and
gives a proof of its super-linear convergence. One year later he writes a second technical report
[6], on the Semi-discrete sub-domain iteration for hyperbolic systems, another similar tech-
nique to decouple systems of equations. He suggests, after decomposing the space domain, to
decompose the time into small intervals or windows and to solve each sub-problem over one
window, in parallel using an iterative method. He mentioned that the size of the window can
be variable, that a larger window can save computational cost, but also that the window length
can influence the convergence rate. In parallel, in 1995, Jeltsch and Pohl [58] extend a matrix
multi-splitting method (see [81]) with overlap for solving large systems of ordinary differential
equations which is equivalent to a waveform relaxation method for special set of parameters.
Motivated by the work of Bjorhus and the interesting algorithm on multi-splitting with overlap
proposed by Jeltsch and Pohl, M. Gander and A. Stuart [46] propose a multi-splitting formula-
tion on overlapping sub-domains combined with a waveform relaxation algorithm in space-time
for the heat equation. They prove linear convergence of the algorithm on an infinite time inter-
val and that the convergence rates remains robust for refined meshes. In the Proceedings of the
10th International Conference on Domain Decomposition, Gander [38] introduces the method
as the Overlapping Schwarz Waveform Relaxation method (SWR) and shows that the method
holds also for parabolic equations. He concluded with a very essential property of the SWR
algorithm: the super-linear convergence rates do not depend on the number of the sub-domains
and thus there is no coarse mesh needed to avoid deterioration of the algorithm. Since then,
the SWR method has been intensively studied and developed, mostly in the linear case by M.
Gander, L. Halpern and others [43, 40, 73, 49].

The main advantage of the SWR is that there is no need to exchange information at every
time step (as for the classical Schwarz decomposition), nor only at the end of the time compu-
tation (as in the case of the waveform relaxation methods, where we can loose the convergence
for large time intervals), but to exploit both methods using time windowing techniques that do
not degrade the solution and exchange less information between processors. The type of the
interface condition between two sub-domains influences the efficiency of the SWR method. We
can find many studies using classical interface conditions of Dirichlet type, but also optimised
SWR algorithms where the classical interface conditions are replaced by transparent boundary
conditions, approximations of the transparent boundary conditions, or Robin type boundary
conditions, see [43, 40, 73]. In the paper of V. Martin, [73], the influence of the the time window
lengths over linear systems is also discussed. SWR has also been extended to non-linear cases
thanks to the Newton scheme and successfully applied to the reactive transport equations in
the PhD. thesis of F. Haeberlein [49] and to the incompressible Navier–Stokes equations by
Audusse and al [2].

We can resume the SWR method in two main steps:

1. space discretisation;

2. waveform relaxation of the system (compute the system in parallel using different time
steps).

SWR algorithm converges linearly over long time intervals for diffusive problems and at least
linearly over short time intervals (see [53] for results of the convergence of SWR for parabolic

2.3. Adaptive Schwarz Waveform Relaxation (ASWR) Method 47

equations (super-linear convergence for finite time), of the optimized SWR for parabolic equa-
tions of for other types of PDEs).

Let us reconsider the same overlapping decomposition in two sub-domains as for the Schwarz
methods (fig.2.1, left). For the 1D Navier–Stokes time dependent problem and a decomposition
on two sub-domains, the SWR algorithm can be represented as follows:

1. Choose the initial solution for each sub-domain;

2. For k = 1, 2, ... solve















∂tU
k
1 + ∂xFEuler(U

k
1) + ∂xFvis(U

k
1)= 0 in Ω1×]0, T],
Uk1= U0 on Ω1 × {0},
Uk1= g on (∂Ω1\Γ1)× [0, T],

Uk1= Uk−1
2 on Γ1 × [0, T],















∂tU
k
2 + ∂xFEuler(U

k
2) + ∂xFvis(U

k
2)= 0 in Ω2×]0, T],
Uk2= U0 on Ω2 × {0},
Uk2= g on (∂Ω2\Γ2)× [0, T],

Uk2= Uk−1
1 on Γ2 × [0, T],

where u0 is the initial guess and g the boundary condition over the time interval.

In the following work, the windowing technique has been adopted: the entire time interval
[0, T] is divided in windows [0, T 1], [T 1, T 2], ..., [T l−1, T] that can have different lengths. The
length of one window is a problem oriented choice in such a way that the convergence rate is
not diminished. A good criterion for choosing the length of one window should depend on the
largest local time step. The algorithm must converge inside each window before passing to the
next one, involving iterations over the entire window, and not only over one time step (as for
example for the parallel Schwarz scheme). For a chosen time window, ∆T = αmax(∆t01,∆t

0
2)

where ∆t01 and ∆t02 are the time steps computed locally in Ω1, respectively Ω2, and α a chosen
parameter, one can illustrate the SWR iterations over one window, as on fig.2.5.

i i + 1

t11

t21

t31

t41

t51

t61

t01

t71

t12

t22

t32

t02

t42

t
7
1 = t

4
2 Chosen time window

t11

t21

t31

t41

t51

t61

t01

t71

t12

t22

t32

t02

t42

t
7
1 = t

4
2 Chosen time window

Figure 2.5: Possible configuration of the SWR classical iterations i and i+ 1 for a chosen time
window. Once the length of a time window is chosen, each sub-domain evolves with equal size

time steps.

2.3 Adaptive Schwarz Waveform Relaxation (ASWR) Method

Within the SWR iterative process, we propose two adaptive time stepping techniques to
improve the scheme consistency. There is no existing algorithm capable to predict the optimal

48 2.3. Adaptive Schwarz Waveform Relaxation (ASWR) Method

time window length. This one seems to differ from one particular case to another. We have
only few clues on how a time window should be chosen.

• Inside a time window, the errors are allowed to propagate in time and they are corrected
only after the end of one iteration over the entire time window. If the error is too large,
the correction will require many iterations and the algorithm will become inefficient.

• The time step should consider the length of the initial time step. About the initial time
steps we know that they are computed in such a way to satisfy a CFL type condition of
mathematical stability (for explicit schemes) or numerical stability (implicit schemes).

The whole idea of SWR is to take different time steps inside each sub-domain. This
leads to a non-coincident time discretisation and the need of an interpolation on the artifi-
cial boundary. In order to be consistent with a second order scheme in time and in space we
choose a quadratic interpolation. Thus, we get another clue over a time window length: it
should contain at least two time steps to enable the quadratic interpolation. Based on the
previous remarks we propose two constraints over the window length. For two sub-domains
a)∆T = αmin(∆t10,∆t

2
0) and b)∆T ≥ 2max(∆t10,∆t

2
0), thus α ≥ 2. Yet, we do not have any

information over the upper bound of α.

One level local adaptivity

Inside one time window, the entire Navier–Stokes system of equations, is to be solved com-
pletely locally. Then the stability condition can also be locally considered. Once the window
size is chosen, we propose to locally recompute a new time step and renew its computation after
each progression in time. The time-stepping technique depends then on the stability (mathe-
matical and numerical) and on the constraints α ≥ 2. This new flexibility (on fig.2.6) improves
the consistency of the scheme and renders automatic the discretisation of one time window.

i i + 1

t11

t21

t31

t41

t51

t01

t61

t12

t22

t02

t32

t
6
1 = t

3
2 Chosen time window

t11

t21

t31

t41

t51

t01

t61

t12

t22

t02

t32

t
6
1 = t

3
2 Chosen time window

Figure 2.6: Example of adaptive steps inside a time window for two iterations i and i+ 1.
Once the length of a time window is chosen, each sub-domain evolves with adaptive time

steps. Each time step is recomputed to satisfy a local stability criteria. Yet, the last time step
can be smaller to not exceed the window length. The time discretisation is then fixed for all

window iterations.

Two levels local adaptivity

Based on the same ideas of preserving local stability and consistence, we propose to auto-
matically adapt a second level inside the SWR algorithm. This time, by adaptivity we mean

2.3. Adaptive Schwarz Waveform Relaxation (ASWR) Method 49

that, for each SWR iteration, as we improve the coupling conditions we adapt the time step
to satisfy the CFL condition (for explicit schemes) and ensure stability of our method, thus
different time steps in each sub-domain, inside each time window and at each iteration. This
extension of the SWR flexibility can be represented as on fig.2.7.

Techniques of adapting space steps or local refinement are often used in order to correctly
discretise the geometry of the problem to solve. In what concerns the time dimension, local
time stepping is less used even though it results in efficiently allocating computational resources
and gives solutions more reliable. We refer to the recent article of M. Gander and L. Halpern
[41] for a survey over the research on time-stepping over the last two decades.

i i + 1

t11

t21

t31

t41

t51

t01

t61

t12

t22

t02

t32

t
6
1 = t

3
2 Chosen time window

t11

t21

t31

t41

t01

t51

t12

t22

t02

t32

t
5
1 = t

3
2 Chosen time window

Figure 2.7: Example of adaptive steps inside a time window and at each iteration, i and i+ 1.
Once the length of a time window is chosen, each sub-domain evolves with adaptive time steps.
Each time step is recomputed to satisfy a local stability criteria not only at the first iteration,
but at each Schwarz iteration. Thus, different time window discretisations at each iterations.

We investigate the effects of this improvement on the numerical (computational) stability.
Independently of the chosen numerical scheme, the time step needs a controlling criteria, a
criteria of acceptance in order to become efficient. For explicit schemes, the time step is chosen
in such a way to respect the continuous stability criteria depending on the CFL number. One
would want to impose a minimal length of the time step to reduce the numerical errors. It
means that the time step needs, not only to respect the physical modelling properties, but also
to minimise the computational errors. If the time step is chosen too small, a sub-domain may
be over-solved, numerical errors can appear due to round-off, unnecessary computational work
can be done. Otherwise, a too large time step can lead to inaccurate results. Adapting the time
step allows controlling the accuracy of the simulation and improves its efficiency.

We motivate our choice to locally recompute the time steps inside each window, but also
at each iteration by the improvement added to the solution from one iteration to another.
We iterate over one time window until the numerical convergence is achieved, by numerical
convergence we mean that the error between the solutions found at two consecutive iterations in
the end of one time window is smaller than a chosen tolerance. After each iteration we proceed
to the improvement of the interface condition in each sub-domain. An improved interface
condition could lead to a completely different necessary time step to accomplish the continuous
stability criteria (for explicit schemes) thus the necessity to locally recompute the time step.

Discussions

The explicit schemes are easy to implement and to parallelise, they give a solution low

50 2.4. Schwarz Methods applied to implicit solvers

cost consuming per time step and constant per iteration. But, the computation is limited in
time due to the extremely small time step required for stability reasons. It is the reason for
which they are inefficient for computations of steady problems. The local computation of the
time steps introduced by SWR schemes allows a time prolongation for more stiff cases. Yet,
the nature of the simulations requires the introduction of more complex approaches, such as
implicit schemes. The implicit schemes are very adaptable to the steady-state cases and stable
over a wide range of time steps, sometimes even unconditionally. In their original state they
are difficult to implement and parallelise, being very costly per time step. For unsteady cases
they can deteriorate the solution for large time steps. In the next section we shall apply the
SWR methods to the implicit classical schemes and discuss their efficiency.

Inside one sub-domain the time step is always computed locally.

2.4 Schwarz Methods applied to implicit solvers

Implicit schemes have been intensively used and studied especially for steady cases, they
are free of any stability bound, but often condemned for their large arithmetic operation counts
and thus for their high computational cost. Different from the classical Alternating Schwarz
method, the idea of preconditioning a non-linear system of equations with a Schwarz based
domain decomposition method was strictly introduced for parallel processing purpose [14]. The
implicit class of methods for solving non-linear systems are characterised by multi-level algo-
rithms. The domain decomposition techniques for the implicit solvers are defined by the level
of their application. We emphasize three main classes of decomposition methods, Newton-
Schwarz, Schwarz-Newton and SWR, and discuss about ways to improve their efficiency. In
this section, all algorithms are based on the same time discretisation (second order implicit
Backward Differentiation Formula), the non-linear problem is solved with the Newton method
and linear problems are solved directly ((L+D)D−1(D + U) factorisation).

The most basic way to solve a problem in parallel is to only use a partitioning technique.
The classical partitioning method for implicit solvers consists in applying a global Newton
linearisation, then dividing the linear system in several local overlapping subsystems that we
can solve in parallel. After one iteration we rebuild the global problem through Dirichlet
coupling conditions and we continue the Newton iterations. We call this kind of coupling an
explicit one, since no supposition on the coupling is made. This technique is equivalent to a
domain decomposition technique with only one iteration over each sub-domain.

Newton-Partitioning Algorithm:

• Semi-discretisation in time,

• Linearisation (Newton),

• Space partitioning,

⋆ Solve the local linear system.

The classical non-linear domain decomposition method consists in semi-discretising uni-
formly in time the system, in applying a global Newton linearisation, then dividing the linear
system in several local overlapping subsystems that we can solve in parallel. This algorithm
is referred to as the Newton-Schwarz algorithm and it was first introduced by Cai and co
[14, 18, 15, 59, 60] as a joining technique between the Newton-Krylov method and the Krylov-
Schwarz method. Their motivation was that in a Newton-Krylov method an ill-conditioned
Jacobian will require an unacceptable number of iterations and that the Krylov-Schwarz pre-
conditioning is locally introduced on each sub-domain and can adapt to the time-evolving ill-
conditioning of the linear system.

Newton-Schwarz Algorithm:

2.5. Transmission conditions on artificial boundaries 51

• Semi-discretisation in time,

• Linearisation (Newton),

• Space Schwarz DDM,

⋆ Solve the local linear system.

In some cases, one Schwarz iteration is sufficient to achieve convergence of Newton to the
solution of the problem and the algorithm is equivalent to the above Newton-Partitioning al-
gorithm presented in section 2.4. Space decomposition and linearisation are independent. The
next idea is to first do the decomposition and then solve in each sub-domain the non-linear sys-
tem. This algorithm was also introduced and intensively studied by Cai and co. [14, 16, 17, 72],
but using a different linear solver.

Schwarz-Newton Algorithm:

• Semi-discretisation in time,

• Space Schwarz DDM,

⋆ Solve the local non-linear system.

To achieve full speed-up performance, a SWR method is used, as it allows local space and
time stepping. The whole time interval of study is split into sub-intervals or time windows, then
the space is decomposed into sub-domains. For each time window the space-time Navier-Stokes
equations are solved in each sub-domain in parallel. Boundary conditions are transmitted at
the end of the time window.

SWR Algorithm:

• Schwarz DDM over time windows,

• For each sub-domain:

⋆ Semi-discretisation in time,

⋆ Solve the local linear system.

SWR uses time windowing techniques that do not degrade the solution and exchanges less
information between processors. After each iteration we proceed to the improvement of the
interface condition in each sub-domain. This can lead to a completely different time step to
satisfy either a stability criteria (for explicit schemes) or an accuracy bound, both based on the
CFL number, thus the necessity to locally recompute the time step which is an improvement of
the classical SWR algorithm. In this section we propose, within the SWR iterative process, an
adaptive time stepping technique to improve the scheme consistency, thus different time steps
in each sub-domain and inside each time window.

These methods are supposed to be independent of the type of equation that are applied
to, yet they do not necessary lead to good performance. Poor quality transmission conditions
between artificial boundaries can degrade the convergence. In the next section we discuss the
influence of the interface conditions on the convergence. We propose different ways of imple-
menting first order accuracy interface conditions (Robin type) and discuss over their efficiency
through different choices of parameters.

2.5 Transmission conditions on artificial boundaries

The initial and boundary conditions are given such that the overall accuracy of the solution
is not diminished. Usually, they are at least one-order lower accuracy than at inner points
(see [48] for mixed initial boundary value problems), but directly act on a very small amount of
points. A domain decomposition method introduces artificial boundaries and it is up to the user

52 2.5. Transmission conditions on artificial boundaries

to decide their type and order in such a way that the overall accuracy and the convergence are
not degraded. It is natural to think that more sub-domains involve more artificial boundaries
and lead to an increased number of points computed with lower accuracy and thus to low overall
accuracy and poor convergence.

The Dirichlet interface condition, meaning of zero order is quite easy to compute and pre-
ferred in most industrial codes. But, higher order boundary conditions can improve the conver-
gence for the same overlap or reach the same convergence for smaller overlap. In his third paper
on the Schwarz alternating method [66], P.L. Lions proposes a non-overlapping algorithm by
introducing the Robin type interface conditions instead of the Dirichlet type which he considers
restrictive as it needs some kind of overlap to work. It was the beginning of a wide research
attempt to improve convergences by improving the transmission conditions between artificial
boundaries in the domain decomposition field. The Robin condition, also known as the Fourier
condition or third type boundary condition (or impedance boundary conditions in the electro-
magnetic field) is a weighted linear combination of a Dirichlet and a Neumann condition. The
Dirichlet and Neumann conditions are considered as the first and the second type boundary
conditions. Using Robin type boundary condition improves convergence on many kinds of ap-
plications, but the great challenge is imposed by the difficulties to find the best Robin parameter
and generalise its expression. We refer to the literature for applications which uses Robin trans-
mission conditions, such as the advection-diffusion-reaction with non-overlapping sub-domains
[42], the Poisson equation for non-overlapping sub-domains with cross points [45], the Laplace
equation for overlapping sub-domains and coarse grid [29, 30]. Others have successfully tried
other techniques of high order transmission conditions like the absorbing boundary conditions
[73, 44, 52] to improve the convergence of linear shallow water equations, Laplace and Helmholtz
equations or advection-diffusion equation.

In our case the whole domain decomposition strategy is based on the use of overlapping
ghost cells (fictitious overlap) to conserve the physical boundary and the interface conditions
so that there would be no change inside the numerical algorithm. The boundary conditions
need to be handled carefully since they ensure the well posedness of a system of equations. If
the Dirichlet boundary condition fits very well our strategy, we wonder if Robin type interface
conditions can also be adapted to the use of ghost cells and how should we proceed to improve
convergence and reduce computational costs.

In this section we study the 1D Cauchy problem issued from the one dimensional Navier–
Stokes system of equations with Dirichlet and/or Robin boundary condition. We keep the same
notations as in the previous sections and we recall the 1D Navier–Stokes system of equations
defined on the domain Ω:











∂ρ
∂t +

∂ρu
∂x = 0 in Ω× [0, T],

∂ρu
∂t +

∂(ρu2+p)
∂x − ∂τ

∂x = 0 in Ω× [0, T],
∂ρE
∂t +

∂(u(ρE+p))
∂x − ∂(τu−q)

∂x = 0 in Ω× [0, T],

where the deformation tensor τ becomes τ = (−2λ)∂u∂x . The conservative vector U is re-
stricted to three components (ρ, ρu, ρE). We are mostly interested on the interface conditions
and data transfer between sub-domains. Therefore, to ensure the well posedness of the global
problem we impose first type or Dirichlet boundary condition on its physical boundaries and
we will change the artificial boundary conditions from first type to a mix between the first and
third (Robin) type conditions and to third type conditions.

Let us fix the space domain Ω to the interval [a, b] and [0, T] the time domain. The Cauchy
problem issued from the condensed form of the 1D Navier–Stokes equations (2.5) and Dirichlet

2.5. Transmission conditions on artificial boundaries 53

boundary condition has the following form:

Find U that satisfies







∂tU + ∂xFEuler(U) + ∂xFvis(U)= 0 in Ω ×[0, T],
U = U0 on Ω ×{0},
U = UD on ∂Ω×[0, T],

(2.4)

where FEuler is the convective flux and Fvis if the diffusive flux, defined in section 1.1.1. Let
us suppose that meshes are coincident. Given Dirichlet and Robin type boundary conditions a
generalised parallel Schwarz algorithm for two sub-domains can be structured as follow:

• split the original domain Ω into two overlapping sub-domains, Ω = Ω1 ∪ Ω2;

• denote Γ1 and Γ2 the fictitious layers which contain the interface boundaries;

• separate the Dirichlet and/or the Robin boundaries: Γ1 = {ΓD1 ,ΓR1 } and Γ2 = {ΓD2 ,ΓR2 }.
This separation is possible because of the chosen numerical scheme where the stencils have
different size for the computation of the convective (three points stencil) and diffusive
fluxes (five points stencils);

• Choose the initial solution;

• For k = 1, 2, ... solve























∂tU1 + ∂xFEuler(U1) + ∂xFvis(U1)= 0 in Ω1,
U1= UD on ∂Ω1 \ Γ1,

Uk1= Uk−1
2 on ΓD1 ,

∂Uk1
∂n1

+ λ1U
k
1=

∂Uk−1
2

∂n1
+ λ2U

k−1
2 on ΓR1 ,























∂tU2 + ∂xFEuler(U2) + ∂xFvis(U2)= 0 in Ω2,
U2= U0 on ∂Ω2 \ Γ2,

Uk2= Uk−1
1 on ΓD2 ,

∂Uk2
∂n2

+ λ2U
k
2=

∂Uk−1
1

∂n2
+ λ1U

k−1
1 on ΓR2 ,

(2.5)

where n1 (respectively n2) is the unit external normal to Ω1 (respectively Ω2), λ1, λ2 are
the Robin parameters left to define.

In particular, for Ω = [a, b] the main lines of the algorithm are the following:

• Ω = Ω1 ∪ Ω2 becomes [a, b] = [a, c + θ∆x] ∪ [c − θ∆x, b]. For a viscous flow we always
suppose an overlap θ of larger size than the stencil size. For a second order scheme 2 cells
play the role of ghost cells. If the overlap equals the stencil size we call it fictitious overlap
since its role is reduced to save values of local boundary conditions.

• denote Γ1 = {c+ (θ − 1)∆x, c+ θ∆x} and Γ2 = {c− θ∆x, c− (θ − 1)∆x}.
• separate the Dirichlet and/or the Robin boundaries For mixed boundary conditions, the

most exterior cells contains the Robin boundaries and the most interior ones the Dirichlet
condition.

• For k = 1, 2, ... solve (2.5).

The choice of this decomposition is motivated by our Finite Volume discretisation to solve
the Navier–Stokes system of equations. In section 1.2.3 we studied the Euler fluxes and gave
different numerical approach to find their value. We noticed that, independently of the chosen
scheme, the computation of the divergence of the convective flux FEuler(Ui) depends on the
known values in the previous cell. Actually, we must compute only first order derivatives

(FEuler)x =

(

∂ρu

∂x
,
∂(ρu2 + p)

∂x
,
∂u(ρE + p)

∂x

)t

,

54 2.5. Transmission conditions on artificial boundaries

for schemes that are at most second order accuracy. In order to compute the 1D diffusive flux

(Fvis)x =

(

0,
∂

∂x

(2

3

µ

Re

∂u

∂x

)

,
∂

∂x

(2

3

µ

Re
u
∂u

∂x
+ q

)

)t

,

second order derivatives are defined as in 1.2.4.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2

Figure 2.8: Two overlapping sub-domains with overlap of size θ = 2, the stencil size. The
ghost cells are represented by dashed lines.

We consider a = x1,− 1
2
< x1, 1

2
< x1, 3

2
< ... < x1,l− 1

2
= c + θ∆x the space discretisation of

Ω1 = [a, c+θ∆x] and c−θ∆x = x2,− 1
2
< x2, 1

2
< x2, 3

2
< ... < x2,m− 1

2
= b the space discretisation

of Ω2 = [c− θ∆x, b]. On fig.2.8 we have highlighted the interface between the two sub-domains.
When computing the first cell proper to the domain Ω2, U2,2 (we exclude the ghost cells), the
convective flux needs the value of U2,1, and the diffusive flux needs the value of U2,0 and U2,0.
When computing the last cell proper to the domain (not a ghost cell) Ω1, U1,l−3, the convective
flux needs the values of U1,l−1 and the diffusive flux the value of U1,l−2 and U1,l−1. In our
algorithm convective fluxes and diffusive fluxes are treated separately and independently.

2.5.1 Dirichlet type boundary conditions

The concept of Dirichlet boundary condition is identical to a fixed boundary condition. In
our case the concept is not exactly adopted, as values on the ghost cells are renewed after each
iteration, see for example the 1D case presented on fig.2.9. We suppose that all values proper
to one sub-domain are known (for t = 0 we give an initial solution) at time t = k. For minimal
overlap, in order to compute both the convective and the diffusive fluxes at time t = k+ 1, the
following exchange of data between the two sub-domains is sufficient:

Ω1:

{

Uk+1
1,l−2 = Uk2,2,

Uk+1
1,l−1 = Uk2,3,

Ω2:

{

Uk+1
2,0 = Uk1,l−4,

Uk+1
2,1 = Uk1,l−3.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

U1,l−4 U1,l−3

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2
U2,2 U2,3

Figure 2.9: Fictitious overlapping sub-domains. Fill out of Dirichlet conditions

Identical treatment is done for both convective and viscous fluxes. Moreover, to solve the
Euler equations one only needs one boundary condition, one ghost cell is sufficient to the

2.5. Transmission conditions on artificial boundaries 55

computation. The Dirichlet boundary type is the preferred one in the industrial codes due to
its simplicity and to its direct application to the Parallel Schwarz method. If the overlap is
larger than half the stencil size the Dirichlet boundary condition is similarly imposed. In the
figures 2.15, 2.16, 2.18, 2.20, this condition (b)) is denoted as Dirichlet-Dirichlet.

2.5.2 Mixed Dirichlet/Robin boundary conditions

The first idea of transmission boundary condition comes from the observation that only the
computation of the diffusive fluxes uses the most exterior ghost cells values. Thus, Robin type
transmission conditions can be used to ensure the C1 continuity of the diffusive solution. For
minimal overlap, we begin by filling out the closest ghost cell to the domain with Dirichlet
conditions (represented on fig.2.10).

Ω1 : Uk+1
1,l−2= Uk2,2,

Ω2 : Uk+1
2,1 = Uk1,l−3.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

U1,l−3

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2
U2,2

Figure 2.10: Fictitious overlapping sub-domains. Fill out of Dirichlet conditions

The next question is where should the Robin condition be imposed. We propose two different
ways.

a) A first idea is to suppose that the Robin boundary condition is fixed on the exact interface
between the two sub-domains. On fig.2.11 this is at the position x1,l−2− 1

2
= x1,l− 5

2
on Ω1 that

is coincident with the position x2,1+ 1
2
= x2, 3

2
on Ω2.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

U1,l−3

Robin condition

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2
U2,2

Figure 2.11: Case 1: Position of Robin boundary between two fictitious overlapping
sub-domains used to fill out U2,0 and U1,l−1. The first ghost cells are filled with a value arising

from Dirichlet type boundary condition.

Ω1 :
∂Uk

1,l− 5
2

∂n1
+λ1U

k
1,l− 5

2

=
∂Uk−1

2, 3
2

∂n1
+λ2U

k−1
2, 3

2

noted
= gk−1

2 ,

Ω2 :
∂Uk

2, 3
2

∂n2
+λ2U

k
2, 3

2

=
∂Uk−1

1,l− 5
2

∂n2
+λ1U

k−1
1,l− 5

2

noted
= gk−1

1 .

56 2.5. Transmission conditions on artificial boundaries

At convergence Uk = Uk−1 and ∂Uk

∂n = ∂Uk−1

∂n . Even though we have centred the Robin
interface on the common physical interface, the values to fill out are those of the most exte-
rior ghost cells. We propose then to approximate the value of the conservative vector with a
polynomial that crosses through three points on each sub-domain,

PΩ(x) = α0x
2 + α1x+ α2. (2.6)

Let us start with Ω1, the target domain, and Ω2 the source domain. We recall that, in this
case, the value to fill out is U1,l−1 (for simplicity we omit in the following the index k). When we
refer to this situation we call the sub-domain Ω1 the target and the sub-domain Ω2 the source
of the computation. In order to find the coefficients we impose that:







PΩ1(x1,l−3) = U1,l−3,
PΩ1(x1,l−2) = U1,l−2,
PΩ1(x1,l−1) = U1,l−1,

which is equivalent to a system of three equations with three unknowns α1,0, α1,1 and α1,2:







α1,0x
2
1,l−3 + α1,1x1,l−3 + α1,2 = U1,l−3,

α1,0x
2
1,l−2 + α1,1x1,l−2 + α1,2 = U1,l−2,

α1,0x
2
1,l−1 + α1,1x1,l−1 + α1,2 = U1,l−1.

We note
det
1

= (x1,l−3 − x1,l−2)(x1,l−2 − x1,l−1)(x1,l−3 − x1,l−1),

and, by solving the system of equations we obtain:















α1,0=
1

det1

[

U1,l−3(x1,l−2 − x1,l−1) + U1,l−2(x1,l−1 − x1,l−3) + U1,l−1(x1,l−3 − x1,l−2)
]

,

α1,1=
1

det1

[

U1,l−3(x
2
1,l−1 − x21,l−2) + U1,l−2(x

2
1,l−3 − x21,l−1) + U1,l−1(x

2
1,l−2 − x21,l−3)

]

,

α1,2=
1

det1

[

U1,l−3x1,l−2x1,l−1(x1,l−2 − x1,l−1) + U1,l−2x1,l−3x1,l−1(x1,l−1 − x1,l−3)

+U1,l−1x1,l−3x1,l−2(x1,l−3 − x1,l−2)
]

.

The objective is to compute the value of U1,l−1. On the source, to compute g2, we first
compute the polynomial PΩ2 with the following constraints:







PΩ2(x2,1) = U2,1,
PΩ2(x2,2) = U2,2,
PΩ2(x2,3) = U2,3,

which is equivalent to:







α2,0x
2
2,1 + α2,1x2,1 + α2,2 = U2,1,

α2,0x
2
2,2 + α2,1x2,2 + α2,2 = U2,2,

α2,0x
2
2,3 + α2,1x2,3 + α2,2 = U2,3.

We note det2 = (x2,1−x2,2)(x2,2−x2,3)(x2,1−x2,3) and, by solving in the same manner the
system of equations we obtain:















α2,0=
1

det2

[

U2,1(x2,2 − x2,3) + U2,2(x2,3 − x2,1) + U1,3(x2,1 − x2,2)
]

,

α2,1=
1

det2

[

U2,1(x
2
2,3 − x22,2) + U2,2(x

2
2,1 − x22,3) + U2,3(x

2
2,2 − x22,1)

]

,

α2,2=
1

det2

[

U2,1x2,2x2,3(x2,2 − x2,3) + U2,2x2,1x2,3(x2,1 − x2,3)
+U2,3x2,1x2,2(x2,1 − x2,2)

]

,

Once the coefficients are determined, we can compute g2 =
∂PΩ2

(x
2, 32

)

∂n1
+ λ2PΩ2(x2, 3

2
) and

∂PΩ1(x1,l− 5
2
)

∂n1
+ λ1PΩ1(x1,l− 5

2
) = g2.

2.5. Transmission conditions on artificial boundaries 57

For simplicity, we consider locally that the point x1,l− 5
2
= x2, 3

2
= 0. Then, the Robin

condition is simplified to: α1,1 + λ1α1,2 = α2,1 + λ2α2,2 which is equivalent to



















































1
det1

[

U1,l−3(x
2
1,l−1 − x21,l−2) + U1,l−2(x

2
1,l−3 − x21,l−1) + U1,l−1

(x21,l−2 − x21,l−3)
]

+ λ1
1

det1

[

U1,l−3x1,l−2x1,l−1(x1,l−2 − x1,l−1)

+U1,l−2x1,l−3x1,l−1(x1,l−1 − x1,l−3)
+U1,l−1x1,l−3x1,l−2(x1,l−3 − x1,l−2)

]

= 1
det2

[

U2,1(x
2
2,3 − x22,2) + U2,2(x

2
2,1 − x22,3) + U2,3(x

2
2,2 − x22,1)

]

+λ2
1

det2
[U2,1x2,2x2,3(x2,2 − x2,3) + U2,2x2,1x2,3(x2,1 − x2,3)

+U2,3x2,1x2,l−2(x2,1 − x2,2)].

We notice that, for matching meshes the position x1,l−3 equals x2,1, respectively x1,l−2 = x2,2
and x1,l−1 = x2,3. Then det1 = det2 = det. Before computing the Robin condition, we
suppose the closest ghost cells to the domain have already been filled by a Dirichlet condition,
thus U2,1 = U1,l−3 and U1,l−2 = U2,2. Moreover, for matching meshes and λ1 = λ2 we get
U1,l−1 = U2,3 which is a simple Dirichlet condition for one step schemes (Euler Explicit and
Runge Kutta). We can treat similarly the Robin condition on Ω2 and reach the same conclusion.

b) The next idea is to fix the Robin condition no longer on a common interface to both sub-
domains, but in the centre of the most exterior ghost cell of each sub-domain. This technique
will provide different positions for the Robin condition following the target (see fig.2.12) and
more important, the right term of the condition, the one computed by the source will no longer
use a value given by a Dirichlet condition.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

U1,l−3

Ω1 Robin condition

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2

Ω2 Robin condition

U2,2

Figure 2.12: Case 2: New position of Robin boundary for two fictitious overlapping
sub-domains in the centre of the ghost cells.

The values to fill out are still those of the most exterior ghost cells. When Ω1 is the
target we recall that the value to fill out is U1,l−1. Adopting the same technique of polynomial
approximation, the first polynomial is identical:

PΩ1(x) = α1,0x
2 + α1,1x+ α1,2,

with the coefficients described in the previous paragraph. On the source, the expression of
the polynomial changes, as the imposed conditions to find the polynomial change. We find

PΩ2(x) = α2,0x
2 + α2,1x+ α2,2,

such as






PΩ2(x2,1) = U2,2,
PΩ2(x2,2) = U2,3,
PΩ2(x2,3) = U2,4.

58 2.5. Transmission conditions on artificial boundaries

The system to solve is:







α2,0x
2
2,2 + α2,1x2,2 + α2,2 = U2,2,

α2,0x
2
2,3 + α2,1x2,3 + α2,2 = U2,3,

α2,0x
2
2,4 + α2,1x2,4 + α2,2 = U2,4.

We note det2 = (x2,2 − x2,3)(x2,3 − x2,4)(x2,2 − x2,4) and solve the system of equations to
find the coefficients:















α2,0=
1

det2

[

U2,2(x2,3 − x2,4) + U2,3(x2,4 − x2,2) + U1,4(x2,2 − x2,3)
]

,

α2,1=
1

det2

[

U2,2(x
2
2,4 − x22,3) + U2,3(x

2
2,2 − x22,4) + U2,4(x

2
2,3 − x22,2)

]

,

α2,2=
1

det2

[

U2,2x2,3x2,4(x2,3 − x2,4) + U2,3x2,2x2,4(x2,2 − x2,4)
+U2,4x2,2x2,3(x2,2 − x2,3)

]

.

The new Robin condition for Ω1 can be written as:

∂PΩ1(x1,l−1)

∂n1
+ λ1PΩ1(x1,l−1) =

∂PΩ2(x2,3)

∂n1
+ λ2PΩ2(x2,3)

noted
= g2.

Locally in Ω1, we consider that the point x1,l−1 = x2,3 = 0 and simplify the Robin condition
to α1,1 + λ1α1,2 = α2,1 + λ2α2,2 that we develop to



















































1
det1

[

U1,l−3(x
2
1,l−1 − x21,l−2) + U1,l−2(x

2
1,l−3 − x21,l−1) + U1,l−1

(x21,l−2 − x21,l−3)
]

+ λ1
1

det1

[

U1,l−3x1,l−2x1,l−1(x1,l−2 − x1,l−1)

+U1,l−2x1,l−3x1,l−1(x1,l−1 − x1,l−3)
+U1,l−1x1,l−3x1,l−2(x1,l−3 − x1,l−2)

]

= 1
det2

[

U2,2(x
2
2,4 − x22,3) + U2,3(x

2
2,2 − x22,4) + U2,4(x

2
2,3 − x22,2)

]

+λ2
1

det2
[U2,2x2,3x2,4(x2,3 − x2,4) + U2,3x2,2x2,4(x2,2 − x2,4)

+U2,4x2,2x2,3(x2,2 − x2,3)].

We notice that, for matching meshes the position x1,l−2 equals x2,2, respectively x1,l−1 = x2,3
and the equation can be simplified. In the figures 2.15, 2.16, 2.18, 2.20, this condition (b)) is
denoted as Dirichlet-Robin.

2.5.3 Robin (Fourier) Boundary Condition

We split this section into two parts. In the first part we continue the previous ideas and
work on minimal overlap to strictly fulfil the ghost cells. In the second part we reconsider
the possibility of a larger overlap and discuss the possibility of implementing a full Robin type
transmission condition instead of a simple Dirichlet type one.

1. Overlap of half stencil size

Another idea is to suppose, as in the case (a) that the Robin boundary condition is fixed on
the exact interface between the two sub-domains (represented on fig.2.13).



















∂Uk
1,l− 5

2

∂n1
+λ1U

k
1,l− 5

2

=
∂Uk−1

2, 3
2

∂n1
+λ2U

k−1
2, 3

2

noted
= gk−1

2 ,

∂Uk
2, 3

2

∂n2
+λ2U

k
2, 3

2

=
∂Uk−1

1,l− 5
2

∂n2
+λ1U

k−1
1,l− 5

2

noted
= gk−1

1 .

The same polynomial technique is considered to approximate the conservative vector:

PΩ(x) = α0x
2 + α1x+ α2. (2.7)

2.5. Transmission conditions on artificial boundaries 59

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1Ω1

Robin condition

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2

Figure 2.13: Case 3: Position of Robin boundary between two sub-domains. The Robin
boundary is imposed as in 2.11, but in this case all ghost cells are filled with values issued

from the Robin boundary condition.

This time we propose to impose the Robin condition on the common interface of two sub-
domains and to fill out both ghost cells with values issued from this polynomial approximate of
the Robin condition. In this case the convective flux and the diffusive flux are computed with
values issued from the Robin condition.
On the sub-domain Ω1, the values to fill out are U1,l−1 and U1,l−2. In order to find the coefficients
we impose that:











PΩ1(x1,l−3)= U1,l−4,
PΩ1(x1,l−2)= U1,l−3,

∂PΩ1
(x

1,l− 5
2
)

∂n1
+ λ1PΩ1(x1,l− 5

2
)= g2.

where we note g2 =
∂PΩ2

(x
2, 52

)

∂n1
+ λ2PΩ2(x2, 5

2
). The system to solve is equivalent to a system

of three equations with three unknowns α1,0, α1,1 and α1,2:











α1,0x
2
1,l−4 + α1,1x1,l−4 + α1,2= U1,l−4,

α1,0x
2
1,l−3 + α1,1x1,l−3 + α1,2= U1,l−3,

α1,0(x
2
1,l− 5

2

+ 2n1x1,l− 5
2
) + α1,1(λ1x1,l− 5

2
+ n1) + α1,2λ1= g2.

In order to simplify the calculations and without any lost of precision we can locally suppose
that x1,l− 5

2
is the origin of the axis. Then the system is simplified to







α1,0x
2
1,l−4 + α1,1x1,l−4 + α1,2= U1,l−4,

α1,0x
2
1,l−3 + α1,1x1,l−3 + α1,2= U1,l−3,

α1,1n1 + α1,2λ1= g2.

We note det1 = (x1,l−3 − x1,l−4) [n1(x1,l−3 + x1,l−4)− x1,l−3x1,l−4λ1], we solve the system
by a Cramer method and obtain:







α1,0=
1

det1

[

g2(x1,l−4 − x1,l−3) + U1,l−3(n1 − λ1x1,l−4) + U1,l−4(λ1x1,l−3 − n1)
]

,

α1,1=
1

det1

[

g2(x
2
1,l−3 − x21,l−4) + U1,l−3λ1x

2
1,l−4 − U1,l−4λ1x

2
1,l−3

]

,

α1,2=
1

det1

[

g2x1,l−3x1,l−4(x1,l−4 − x1,l−3)− U1,l−3n1x
2
1,l−4 + U1,l−4n1x

2
1,l−3

]

.

On the source Ω2 we impose:











∂PΩ2
(x

2, 32
)

∂n2
+ λ2PΩ2(x2, 3

2
)= g1,

PΩ2(x3,2)= U2,2,
PΩ2(x2,3)= U2,3,

60 2.5. Transmission conditions on artificial boundaries

where we note g1 =
∂PΩ1

(x
1,l− 5

2
)

∂n2
+ λ1PΩ1(x1,l− 5

2
). The system is equivalent to:











α2,0(x
2
2, 3

2

+ 2n2x2, 3
2
) + α2,1(λx2, 3

2
+ n2) + α2,2λ2 = U2,1,

α2,0x
2
2,2 + α2,1x2,2 + α2,2 = U2,2,

α2,0x
2
2,3 + α2,1x2,3 + α2,2 = U2,3,

We note det2 = (x2,3−x2,2) (n2(x2,3 + x2,2)− x2,2x2,3λ2) and we solve the system using the
same assumptions and obtain the following coefficients:







α2,0=
1

det2

[

g1(x2,2 − x2,3) + U2,2(λ2x1,3 − n2) + U2,3(n1 − λ2x2,2)
]

,

α2,1=
1

det2

[

g1(x
2
2,3 − x22,2)− U2,2λ2x

2
2,3 + U2,3λ2x

2
2,2

]

,

α2,2=
1

det2

[

g1x2,2x2,3(x2,2 − x2,3) + U2,2n2x
2
2,3 − U2,3n2x

2
2,2

]

/

We suppose that the unknowns ghost cells belong to the same polynomial as the Robin
condition and determine the needed values to compute both the convective and diffusive fluxes.
As it is numerically shown below (fig.2.17) this positioning of Robin condition does not work.
An alternative is to impose a first Robin condition on the exact interface and a second Robin
boundary condition between the two ghost cells with the same polynomial approximate. In the
figures 2.15, 2.16, 2.18, 2.20, this condition b) is denoted as Robin-Robin.

2. Overlap of size larger than half stencil size

Our overall parallel strategy is based on using domain decomposition methods adapted to
overlapping sub-domains, with minimal overlap of half stencil size. The cells that overlap exist
only to store boundary conditions and are never considered as part of the final solution. Some
researchers would even consider the use of ghost cells as a developer choice, independent of the
numerical method. For example, additional vectors could replace the use of ghost cells.

It is known that the larger the overlap the faster the convergence is attained. In our previous
discussions the Robin boundary condition is computed using an upwind or a downwind scheme.
To improve the accuracy, a minimal overlapping domains (not taking into account fictitious
cells) will allow the use of a centred scheme.

U1,l−5 U1,l−4 U1,l−3 U1,l−2 U1,l−1

Ω1

5
2

l − 5
2

7
2

l − 3
2

Ω1 Robin conditions

U2,0 U2,1 U2,2 U2,3 U2,4

Ω2

1
2

l − 9
2

Ω2 Robin conditions

3
2

l − 7
2

Figure 2.14: Case 4: Robin boundary conditions for two domains. Each cell ghost is filled out
from a different Robin boundary condition.

Then, the resulting system is well posed and have two distinct boundary conditions, as on

2.6. Convergence and Stopping criteria 61

fig.2.14.

On Ω1:























∂Uk
1,l− 5

2

∂n1
+ λ1U

k
1,l− 5

2

=
∂Uk−1

2, 5
2

∂n1
+ λ2U

k−1
2, 5

2

noted
= gk

2, 5
2

,

∂Uk
1,l− 3

2

∂n1
+ λ1U

k
1,l− 3

2

=
∂Uk−1

2, 7
2

∂n1
+ λ2U

k−1
2, 7

2

noted
= gk

2, 7
2

,

On Ω2:























∂Uk
2, 1

2

∂n2
+ λ2U

k
2, 1

2

=
∂Uk−1

1,l− 9
2

∂n2
+ λ1U

k−1
1,l− 9

2

noted
= gk

1,l− 9
2

,

∂Uk
2, 3

2

∂n2
+ λ2U

k
2, 3

2

=
∂Uk−1

1,l− 7
2

∂n2
+ λ1U

k−1
1,l− 7

2

noted
= gk

1,l− 7
2

.

The gradients can be approximated using a simple centred differencing scheme.

On Ω1:



















Uk1,l−2 − Uk1,l−3

xl−2 − xl−3
+ λ1

Uk1,l−2 + Uk1,l−3

2
= gk

2, 5
2

,

Uk1,l−1 − Uk1,l−2

xl−1 − xl−2
+ λ1

Uk1,l−1 + Uk1,l−2

2
= gk

2, 7
2

,

On Ω2:



















Uk2,0 − Uk2,1
x1 − x0

+ λ2
Uk2,1 + Uk2,0

2
= gk

1,l− 9
2

,

Uk2,1 − Uk2,2
x2 − x1

+ λ2
Uk2,2 + Uk2,1

2
= gk

1,l− 7
2

.

In two sequential steps all unknowns are found, firstly, the most interior ones Uk1,l−2 and

Uk2,1 and secondly Uk1,l−1 and Uk2,0.

On Ω1:















Uk1,l−2=
1

(0.5λ1(xl−2 −xl−3) + 1)

[

(xl−2 −xl−3)g
k
2, 5

2

−
(

0.5λ1(xl−2 −xl−3)− 1
)

Uk1,l−3

]

,

Uk1,l−1=
1

(0.5λ1(xl−1 −xl−2) + 1)

[

(xl−1 −xl−2)g
k
2, 7

2

−
(

0.5λ1(xl−1 −xl−2)− 1
)

Uk1,l−2

]

,

On Ω2:















Uk2,1 =
1

(0.5λ2(x2 − x1) + 1)

[

(x2 − x1)gk1,l− 7
2

−
(

0.5λ2(x2 − x1) + 1
)

Uk2,2

]

,

Uk2,0 =
1

(0.5λ2(x1 − x0) + 1)

[

(x1 − x0)gk1,l− 9
2

−
(

0.5λ2(x1 − x0) + 1
)

Uk2,1

]

.

The Dirichlet boundary conditions apply naturally to any size of the overlap. In what
concerns the mixed type boundary condition, we observe that only the second proposition
(Robin condition imposed in the centre of the ghost cells) can adapt to overlap larger than half
stencil size. In the figures 2.15, 2.16, 2.18, 2.20, this condition (b)) is denoted as Robin-Robin.

2.6 Convergence and Stopping criteria

Consider as example the resolution of the following system of equations (similar to the main
operation in an implicit Euler scheme).

{

ηu− ∂2xu= f in Ω = [a, b],
u= g on {a, b},

To study the efficiency of the presented transmission conditions, we split Ω in two sub-
domains Ω1 and Ω2, and solve the resulting system with a parallel Schwarz method. For
Dirichlet boundary type transmission condition the parallel Schwarz algorithm is the following:

62 2.6. Convergence and Stopping criteria

1. For k=,1,2,.., the Schwarz iteration index solve:







ηuk1 − ∂2xuk1= 0 in Ω1,
uk1= g on ∂Ω1\Γ1,

uk1= uk−1
2 on Γ1,







ηuk2 − ∂2xuk2= 0 in Ω2,
uk2= g on ∂Ω2\Γ2,

uk2= uk−1
1 on Γ2.

We solve the system of equations with a Finite Volume method, and use the same centred
numerical scheme as for the viscous fluxes in the Navier–Stokes system of equations, 1.2.4. The
time is discretised by a first order Euler Explicit scheme (see section 1.3.1). We have studied the
convergence rate for different type of boundary conditions. For all presented results, η equal 1,
the domain of definition is Ω = [0, 1], the initial solution is zero. We impose an inflow boundary
condition of g = 2 in {a} and transmissible boundary condition in {b}. For the numerical
simulation we have imposed a tolerance inside the Schwarz process of 10−10. Inside one sub-
domain the solution is not converged, we stop at two iterations. The reasons is that, we are
interest in implicit schemes, with inexact solvers which are stopped before convergence. Based
on the previous cases two scenarios are possible: decomposition with overlap of stencil size and
decomposition with overlap of larger size than the stencil size. We define Ω1 = [a, c+ θ∆x] and
Ω2 = [c − θ∆x, b], Γ1 = {c + (θ − 1)∆x, c+ θ∆x} and Γ2 = {c − θ∆x, c− (θ − 1)∆x} where θ
denotes the overlap size. In the first case we pose θ = 2, the size of half the stencils, and in the
second case θ = 3.

Overlap of stencil size

We distinguish three main types of transmission boundary conditions:

1. Dirichlet-Dirichlet: Dirichlet transmission condition (section 2.5.1) to compute both con-
vective and diffusive fluxes;

2. Dirichlet-Robin: Mixed Dirichlet/Robin transmission condition (section 2.5.2.b) to com-
pute the fluxes. The Robin condition is imposed in the centre of the more external ghost
cells;

3. Robin-Robin: Robin transmission condition (section 2.5.3.2) to compute both convective
and diffusive fluxes.

On fig.2.15 we can see the resulting convergence rate for the above transmission conditions.

2.6. Convergence and Stopping criteria 63

Figure 2.15: Convergence comparison for non-matching meshes. The L2 error stands for L2
error norm between the computed solution and the exact solution .

Figure 2.16: Convergence comparison. Dirichlet-Robin stands for both possibilities of
imposing the Robin boundary since they give identical results. Contrary as expected, for

non-matching meshes the solver with Dirichlet-Dirichlet boundary condition converges faster.

For matching cells, the mixed transmission condition improves the convergence rate and
diminishes the necessary number of Schwarz processes. But it is no longer the case for non-
matching meshes and our interest focused mainly on non-matching meshes, which adapt better
to applications and to SWR methods. On fig.2.16 we see that the Dirichlet-Dirichlet transmis-
sion condition is faster than the two others. The Robin-Robin transmission boundary condition
is expected to improve the convergence, but it is actually the worst case. We believe that it is
due to polynomial approximations. Moreover, this result stands for any Robin coefficient.

64 2.6. Convergence and Stopping criteria

Figure 2.17: Divergence results for two boundaries values arising of a Robin condition imposed
at the interface.

Overlap of larger size than the stencil size

In the second scenario we distinguish the following possibilities to impose the transmissive
conditions:

1. Dirichlet-Dirichlet: Dirichlet transmission condition (section 2.5.1) to compute both con-
vective and diffusive fluxes;

2. Dirichlet-Robin: Mixed Dirichlet/Robin transmission condition (section 2.5.2) to compute
the fluxes. The Robin condition is imposed in the centre of the most external ghost cells.
It seems impossible to impose a Robin condition in a common interface, especially for
non-matching meshes;

3. Robin-Robin: Robin transmission condition (section 2.5.3.2) to compute both convective
and diffusive fluxes.

On fig.2.18 and fig.2.20 we present the convergence comparisons for all three types of trans-
mission conditions for non-matching meshes. These tests confirm that an increased overlap
improves considerably the convergence rate and diminishes the necessary number of Schwarz
precesses for all types of transmission conditions. Moreover, the Robin-Robin transmission con-
dition is the more efficient one. The Dirichlet-Robin transmission condition gives similar results
to ones found with the Dirichlet-Dirichlet transmission condition. On fig.2.19 we can see the
optimal Robin coefficient for an overlap equal to 3 cells. This coefficient has been found at the
end of the Schwarz process and is equal to α 1√

min(∆x1,∆x2)
where ∆x1 and ∆x2 are the local

space steps. In this case the Robin coefficient equals: 1.05 ∗ 1√
0.03333

= 5.75.

On fig.2.21, fig.2.22 and fig.2.23 we compare results found with converged solutions in each
sub-domain. We suppose that the local solution is converged is a relative error becomes smaller
than 10−10. For non-matching meshes and overlap equal to half the stencil size (θ = 2), on
fig.2.21, the solution found with Dirichlet-Robin transmission conditions converges faster then
the solution found with Dirichlet-Dirichlet or Robin-Robin transmission conditions. The faster
convergence is obtained when the values of the ghost cells are given by one Robin transmission
condition imposed at the interface. In this last situation, for non-converged local solutions
(insufficient stopping criteria), the global solution diverges. For non-matching meshes and

2.6. Convergence and Stopping criteria 65

Figure 2.18: Convergence comparison for overlap θ = 3 cells, within the overlap, two cells are
used to impose the transmission conditions. The results have been found with an optimal

Robin coefficient.

Figure 2.19: Research for the optimal Robin coefficient for an overlap equal to 3 cells. The
research has been done for converged solution inside the Schwarz process.

overlap θ = 3 and θ = 4 cells, the solution found with Robin-Robin condition converges faster.
The cost to find a converged local solution is high and does not match our strategy for implicit
methods.

66 2.6. Convergence and Stopping criteria

Figure 2.20: Convergence comparison for overlap θ = 4 cells, within the overlap, two cells are
used to impose the transmission conditions. The results have been found with an optimal

Robin coefficient.

Figure 2.21: Convergence comparison for overlap θ = 2 cells and non-matching meshes. We
call Robin the solution found with a Robin condition imposed at the interface. The results

have been found with an optimal Robin coefficient.

2.6. Convergence and Stopping criteria 67

Figure 2.22: Convergence comparison for overlap θ = 3 cells and non-matching meshes. The
results have been found with an optimal Robin coefficient.

Figure 2.23: Convergence comparison for overlap θ = 4 cells and non-matching meshes. The
results have been found with an optimal Robin coefficient.

What about stopping criteria?

In what concerns the Navier–Stokes solver, several convergence criteria must be set. Issues
can arise from non-linear robustness (discretisation order, initial time step), choice of parame-
ters (convergence tolerance), Schwarz parameters (sub-domain number, overlap size, stopping
tolerance), from local and global strategy. What are the relative tolerances that determine the
convergence criteria for the problem? The choice of these variables must be done very carefully.
It is well known that the stopping criteria is very important as it may lead to inaccurate solutions

68 2.6. Convergence and Stopping criteria

when the iteration is stopped too soon and also to extra costs when a problem is over-solved.
In our Navier–Stokes computations, stopping criteria are based on residual norms, while other
authors use a stopping criteria based on error norms (as in the case of the Laplacian). More-
over, several stopping criteria are combined in order to ensure convergence, but also to avoid
infinite loops due to numerical errors. The error norm is usually more accurate, but requires
the knowledge of the exact solution, which is often not known (still as in the Laplacian case).
Different analyses based on numerical experiments have been made, especially to determine the
best stopping criteria for iterative solvers (for example, see [19]).

When can we say that the Schwarz process has converged? Since we are using the overlap
(fictitious or not), the first natural way to check the continuity of a global solution over more
than one domain is to check if the overlap region is the same, with a chosen tolerance to the
computed solution. This criteria seems efficient, it is reliable especially when Dirichlet interface
conditions are imposed. Actually, using a Dirichlet interface condition we are checking that the
values on the overlap region of one sub-domain at time tn are becoming identical to the values
in the overlap region, on the same sub-domain, but at time tn+1 which is a classical convergence
criteria. In the different cases of Robin interface condition, this criteria may be appropriate
or not, depending on the case (see section 2.5). But under this form, the computation of this
criteria is costly, since, at each iteration some communication between sub-domains is needed
to establish the leap between this overlap regions. Also, the tasks on each processor must be
finished before computing this variation.

Based on this same idea, we propose, as common stopping criteria the relative error (L∞)
between the actual solution and the previous one on the most exterior rows and columns of
each computational sub-domain (red on fig.2.24).

Figure 2.24: 2D Cartesian mesh. One can see a 2D computational domain Ω of size 7× 7 cells
and the fictitious overlap of stencil size two. In red we highlight the cells involved in the

convergence stopping criteria.

We suppose that we have achieved convergence when the solution on the internal boundary
of one domain ceases to change. In addition we also stop the iterations when the difference
between two relative errors is identical. We suppose then that the boundary condition cannot
be improved any more so the solution can not be improved for higher number of iterations.

On fig.2.25 and fig.2.26 we have plotted the convergence rate found to solve the previous 1D
problem for non-matching meshes and overlap equal to three space cells. We change the stopping

2.6. Convergence and Stopping criteria 69

criteria in the Schwarz process. We compare the L2 error norm (not always available) with our
proposed convergence test that checks the time evolution of the cells around the computational
domain (without the ghost cells). The proposed criteria is as efficient as the L2 error norm.

Figure 2.25: Dirichlet-Dirichlet convergence rate with the L2 error norm and the new stopping
criteria: L2 variation in time of the first and last cells of the domain without ghost cells.ariation in time of the first and last cells of the domain withou

Figure 2.26: Robin-Robin convergence rate with the L2 error norm and the new stopping
criteria: L2 variation in time of the first and last cells of the domain without ghost cells.

70 2.6. Convergence and Stopping criteria

Chapter 3

CFD Code organisation and
description

Contents

3.1 Code description and programming techniques 73

3.2 Parallelisation techniques . 77

3.2.1 Parallel computing inside loops (OpenMP) 78

3.2.2 Parallel computing via message passing (MPI) 80

3.2.3 Graphic Processor Unit (GPU) . 81

3.3 Parallelism efficiency evaluation . 87

71

72

Within Onera, missions such as research, construction and operation of the associated ex-
perimental facilities, technical analysis in the aeronautic field are department distributed and
correlated. Designing and manufacturing civil aircraft, military aircraft, helicopters, propulsion
systems, orbital systems, space transport, missile systems, defense systems, networked systems
and security systems are goals attained by the Onera researchers. Nevertheless, computation
codes, methods and tools are developed and constantly improved. We shortly present some of
the most pertinent Onera software for which our work is of use:

• CEDRE (http://cedre.onera.fr) is a multi-physics, multi-mesh, multi-model and multi-
method platform in the fields of energetics and propulsion developed since 90’s;

• Zebulon/Z-set (http://www.zset-software.com) is a finite element code for material -
oriented analysis software developed in collaboration with other academic partners (École
des Mines ParisTech (France), NW Numerics & Modelling, Inc (USA),...);

• elsA (http://elsa.onera.fr) is a platform for complex CFD simulations. The acro-nym
stands for “ensemble logiciel de simulation en Aérodynamique” and can be translated as
“software for Aerodynamic simulations”;

The elsA project ([32]) was started in 1997 by the Computational Fluid Dynamics and Aeroa-
coustics (DSNA) department. DSNA is still the main contributor in the constant evolution and
extension of the code, but nowadays other Onera departments constantly contribute to its
evolution: DAAP (Applied Aerodynamics), DMAE (Aerodynamics and Energetics Modelling),
DAFE (Fundamental and Experimental Aerodynamics), DEFA (Fundamental and Applied En-
ergetics), DMPH (Physics and Instrumentation). elsA’s object-oriented CFD library includes
a rich environment for modelling multi-disciplinary aerodynamic applications, complex exter-
nal and internal flow simulations. It deals with large scale problems, solves the compressible
Navier–Stokes equations in a cell centred finite volume formulation, uses turbulence models. To
simulate the fluid around a helicopter model in a wind tunnel, most code uses mesh reconstruc-
tion, but the Onera elsA code uses also a special technique, called the Chimera method that
allows meshes to move with the body. The platform uses the Python language as user interface
language, C++ and Fortran languages to translate object concepts and implement methods.

Let us recall that the main objective of our work is to prove the efficiency of new, improved
parallelisation techniques over the one already used in elsA (defined as Newton-Partitioning
Algorithm in the previous chapter), to build them in a modular form that allows a simple use and
integration within elsA or any other platform. The presented domain decomposition methods
are validated on simple cases and with no turbulence model. We expect good performance when
turbulence models and unstructured grids are used. The elsA industrial code should be able to
use the new modular code only through its Python interface and with no major modification.

In this chapter we discuss the means of parallel computing, how to understand, organize
and tune the parallel domain decomposition method, how to carefully exploit the computer’s
architecture and make sure that the algorithm is flexible and portable. We present the structure
and the main modules of the implemented code and briefly present the tools (OpenMP, MPI and
GPU CUDA) that enable the parallel computation, their evolution, advantages and limits. We
go from basic to advanced notions of computer hierarchy, discuss new functionalities and their
management. We describe techniques of efficiently parallel programming by message passing
(MPI), loops parallelisation (OpenMP) for numerical simulations. We introduce and aim to
render the GPU architecture comprehensible to the reader so he can appreciate its utility.
Example of applications are shown for different computer architecture. In the last section we
discuss ways of measuring parallel efficiency.

3.1. Code description and programming techniques 73

3.1 Code description and programming techniques

Our new code, like the elsA code, is built to satisfy software imperative qualities: efficiency,
usability (user-friendly), interoperability, flexibility (fast and easy integration of other numerical
methods), scalability (works for any volume of data), modularity (made of independent units
and modules that can be tested and modified separately), reusability (used for different tests or
purpose with only minor modifications) and economy (minimize the cost to build and solve).

To have a modular program driven by reusability, the Python language was chosen. Python
is an object oriented and structured programming language built to be accessible and highly
readable by users. It is a high-level language, allowing scripting language similar to Matlab
and it is flexible, with only few constraints (unlike strongly typed languages, such as C++).
Available on all types of platform (Unix, Windows and Mac OS), Python disposes of a wide
range of data structures (list, dictionaries, tuples, etc.), scientific and graphical libraries (numpy,
scipy, CGNS, mpi, vtk, matplotlib, etc.). It supports Fortran (f2py), C/C++ (API C, Cython,
etc.). Python is well adapted to large projects and seems to be ideal for our purpose, but it has
a major drawback: it is very slow, at least 30 times slower than C or Fortran. Therefore, it is
used as an interface and not to compute large data systems of equations. To do so, we use a
tool capable of translating Python scripts in C or making direct level API calls in the Python
interpreter, called Cython. Cython, (extension .pyx) is a derivative of the pyrex language, it
allows declaring C variables and calling C functions. It allows the compiler to generate C codes
thus speeding up the computation. The resulting code performance is comparable with the one
obtained with Fortran, C or C++. We use the C language (highly portable) for sections with
high CPU consumption (for loops over the entire mesh cells or interfaces), as it is a compiled
language that creates fast and efficient executable files and allows control over the memory
(dynamic memory allocations, recursive functions, pointers, etc.).

Each module can contain one or more C/Cython files. Let us take for example the module
Boundaries. Inside this module we can find descriptions of different boundary conditions. Let
us detail the files concerning the inflow boundary condition:

• Factory.pyx is a cython file which exists within each module, that extracts initial data
directly from the initial CGNS tree, whose detailed description is given on the next page,
and creates instances related to the CGNS tree description;

• CInflowBoundary.c is a C file containing the memory allocation needed to compute the
inflow boundary, updates of the boundary and deallocation of the temporary variables
and/or vectors of variables that are not needed any-more;

• CInflowBoundary.h is a C header file which contains the links to external or internal
libraries, the definition of the InflowBoundary structure (example: typedef struct{ Bound-
ary* pt base; double* initValues;} InflowBoundary;) and the prototypes of C functions
built in CInflowBoundary.c;

• CInflowBoundary.pxd contains prototypes of C functions that are shared with other
modules via cython. In other words it is used to render visible C functions in cython. We
note that not all C functions must be visible, some may only be used by other functions
locally declared and used in C;

• InflowBoundary.pyx is the cython file that will directly communicate with other mod-
ules, it contains the definition of the InflowBoundary class with directives to C functions;

74 3.1. Code description and programming techniques

CGNS Data Tree

In order to facilitate the manipulation of initial numerical data we use the CFD General
Notation System, called CGNS. This means that we transform and store all the information into
a data structure. CGNS is a notation introduced by NASA and Boeing in the aim to standardise
the CFD initial data and results, to facilitate the exchange across computed platform, between
sites and applications and to help building an aerodynamic archive. CGNS is based on HDF5
(Hierarchical Data Format) technology, a data model, library and file format that stores and
manages hierarchical data (XML documents, in-house data formats). HDF5 deals with massive
and complex data and supports parallel I/O (input/output) access. Moreover, visualisation
tools, such as tecplot, recognise CGNS data format. Thus, we adopted this idea and used
similar conventions for the storage of input and output data.

A CGNS tree is a collection of nodes, each node can contain references to other nodes called
children. A node is built as a Python sequence (list) that contains four entries: name, value,
node or child and type.

Name : string,
Value : numpy array,
Node : list of nodes,
Type : string.

Example:

• tree = [’ShockTube’, timeOut, [Subdomain1, Subdomain2], ’CGNSBase t’],

• Subdomain1 = [’Tube’, numpy.array([[6,1,1],[5,1,1]]), [Grid, Boundaries, InitSol, Grid-
Connectivity], ’Subdomain t’].

The field name of a node is a string that contains a key word to describe the simulation, usually
the name of the computational test. The field value is a N-dimensional array that can contain
different initial data (for example the origins of the computational domain, the size of a grid
via the number of vertices or cells, initial values on boundaries, interface size and coordinates,
initial solution, etc.). It is also possible for the field value to be empty (value = none, for
example the global domain that does not contain any interface). The field called node can be
an empty list, one child or a list of children. The type is a string that suggests the module or
class to which the described node belongs. By convention and for easier recognition, it ends
with t (for example: ’Subdomain t’, ’Grid t’, ’Boundary t’, etc.).

Code organisation

The entire Navier–Stokes code is structured in 12 modules as shown in fig.3.1. We briefly
describe each one of them.

Tools. This module is a collection of Python functions, tools that help building the initial tree
structure. Since there is no standard way of generating sub-domains from a global domain, we
choose to use the common approach consisting in first partitioning a domain in non-overlapping
sub-domains (of equal size if there are no other indications), and then use a procedure to add
overlap and/or ghost cells. The user is asked to define a list of parameters and a list of choices.
He sets the global physical domain by its origins and length, or, for different reasons (complex
geometries, avoid solid bodies, ask for different discretisations) sets main regions by their origins
and lengths. Furthermore, each region can be split into any number of sub-domains. Once the
sub-domains are created neighbours and boundaries are defined.

3
.1
.

C
o
d
e
d
escrip

tio
n
an

d
p
rog

ram
m
in
g
tech

n
iq
u
es

75

CGNS Data Tree

Case description

Execution script

Tools SplitBlock

Visualisation

Solvers

Fluxes

LinearAlgebra

Physics

Domain

Joins

Grids

Boundaries

Figure 3.1: Code organisation. Communication between structure modules (green) and Python files (yellow). Although
each module is constructed so as to work independently, the complete Navier–Stokes platform is a joint work. Once

the initial data tree is built, the main module is Solvers, containing all the solvers and in charge of all communications
between computing modules, directly (Fluxes, LinearAlgebra, Physics, Domain, Joins) and indirectly (Grids,

Boundaries). The detailed description of each module is given on pages 75 to 76.

76 3.1. Code description and programming techniques

SplitBlock is the only imported module of this code. It has been build inside Onera in the
90’s and used as a graph-partitioning for structured meshes into well space balanced sub-meshes.
It takes into account the number of available processors and assigns one or several sub-domains
to each processor. It can treat any type of boundary condition and decompose different levels
of multi-meshes. The user can choose which domain to split or not. This module is used
especially when matching meshes are used, for the scalability study and mostly in the case of
the 2D isentropic vortex. It can be seen and used as a complementary module to the module
Tools.

Visualisation. The solution is usually analysed under its primitive form. We use Paraview,
an open-source, multi-platform data analysis and visualisation application for a qualitative and
quantitative study of our solutions. In order to be readable by Paraview, the solution must
be saved under an adequate form, as a vtkStructuredGrid file. Between the large amount of
functionalities that are proposed by Paraview, we mostly use visualisation of reconstructed
global domain, sub-domains, extract regions of sub-domains. One can choose between the
visualisation of the density, the pressure, the acoustic pressure, the internal energy, the total
energy, the velocity (u, v or/and w) and the vorticity.

Solvers is the central module of this code and it contains the collection of all explicit and
implicit solvers described in the previous sections. It contains only cython files with classes that
describe the second order Runge Kutta and second order BDF parallel solvers for each of the
domain decomposition method presented on chapter II.

Fluxes. Inside this module one can find every definition and computation concerning the
convective and the viscous fluxes, first order (section 1.2.3: van Leer, Steger Warming, LLF,
HLLC, AUSM+-up) and second order MUSCL numerical scheme to compute the convective
fluxes and a second order numerical scheme to compute the viscous flux (see section 1.2.4).

LinearAlgebra. This module gathers three linear solvers: FGMRES (section 1.3.2), Gauss-
Seidel (section 1.3.2), LDU-relaxation (section 1.3.2). The computation of the LDU-relaxation
method is split into the computation of the spectral radius, different stages of relaxation: L-
relax, D-relax, U-relax, error verification for both Euler and Navier Stokes equations on coinci-
dent and non-coincident meshes and different types of boundary conditions.

Physics. This module is built as a collection of primitive operations, constant definitions and
memory allocations that are vital for the entire code. It contains the C/Cython declarations
and C memory allocations of a general conservative field U = (ρ, ρu, ρv, ρw, ρE); the constant
coefficients defined by the state law (cp, cv, γ, Pr, KT , Re, other coefficients can be added),
basic operations with conservatives fields issued of CBLAS operations (copy, deepcopy, sum,
extraction, multiplication or division of two conservative vectors,etc.). All constant coefficients
have the default values of a perfect gas, but their values can be set before calling the solver.
Conversions from primitive variables to conservative variables and from conservative variables
to primitive ones are also possible inside the Physics module.

Domains gathers all information and operations concerning one sub-domain: memory allo-
cations for flow variables, stock and update of the local solutions, computation of local time step
from a CFL condition, links to local grid (origins, steps, etc.), boundaries and interface com-
munications. The use of this module structure can be seen as a way of working and modifying
global variable.

3.2. Parallelisation techniques 77

Joins. To be able to exchange data on the interface, each sub-domain (one sub-domain per
process) must have a description of its interface. Joins is one of the largest module assembling
all interface descriptions: neighbor sub-domain identification numbers, list of nodes to com-
municate and to be communicated, etc. For non-coincident meshes time and space quadratic
interpolations are also defined in this module. The information of each transmission condition
(Dirichlet or Robin type) is contained by both the source and the target sub-domain through
their unique identification number.

Grids. Two kinds of Cartesian grid are defined (regular and irregular grid) and their charac-
teristics: grid dimension, grid size, grid shape, origins, cell coordinates, volumes.

Boundaries. Beside the previously described inflow boundary, outflow, non-reflecting and
reflecting boundary conditions are implemented (see section 1.2.2).

3.2 Parallelisation techniques

We begin this section by introducing two important notions often confused: process and
processor. A processor is a hardware containing a central processing unit (CPU) capable of
executing a program. A process is an instance of an application, a software concept, consisting
in one or more threads, an executable, a private memory (PM) and sometimes a shared memory
(SHM) (if needed by the system or by the developer). A tread or an active object is the smallest
sequence of programmed instructions that can be managed independently by a scheduler. We
can say about a program that it is executed in parallel if, at any time, more than one process,
instances of this program, are concurrently active. In the next section, if not otherwise specified,
we will consider that one process contains one thread.

Let us take a very popular example of one industrial application which illustrates the size
and duration of one simulation with one process. To forecast the weather on the whole global
atmosphere divided into cells of size 1 mile × 1 mile × 1 mile to a height of 10 miles (say 5×108

cells) over one day using 10-minute interval and supposing each calculation requires 200 flops, a
computer operating at 1 GFlops would take over 8 days. The scale of this example is considered
coarse, and can only provide an inaccurate picture of reality, and is too slow. A more advanced
computer would diminish this computational cost. A modern computer can operate from 2 to
2600 GFlops (1 GFlops = 109flops), based on hardware configuration. Moreover, the number of
floating operations per seconds is not the only factor to determine the speed of one simulation.
One should consider the response time, number of pipelines (set of data processing elements
connected in series), pipeline length, cache size, cache latency, number of registers and more.
The fastest single computer record was detained in 2013 by China’s Tianhe-2 with a record of
33.86 Petaflops (1024 floating point operations per seconds), but is of course unaffordable for
most research institutes.

The available solution to complete such simulations, driven by real-time computing, is par-
allel computing. The efficiency of parallelism depends on hardware, algorithms and software.
About hardware, the use of workstation networks to communicate between computers is proved
to be more interesting than the use of one advanced single-processor computer that is more rare
and expensive due to more complex architecture (NUMA architecture). If several computers
are connected to each other via local area networks (LAN), a network referred to as a computer
cluster is created. Computers within a cluster are referred to as nodes and the number of pro-
cesses inside one node is the same as the number of cores or CPUs. We differentiate two kind
of architectures: SIMD (single instruction, multiple data) and MIMD (multiple instruction,

78 3.2. Parallelisation techniques

multiple data). The SIMD device has a single unit devoted to control, but is typically per-
forming the same instruction in parallel on different data. The MIMD device contains several
decoder instructions which can either share the same RAM (shared memory MIMD) or access
a collection of computing units interconnected by a network (distributed memory MIMD). On
fig.3.2 one can see a typical memory model for n processes sharing the same global memory,
they can point to different memory parts (different addresses of one vector), but also on exactly
the same address.

Figure 3.2: Memory model for shared memory parallel programs. Pn processes containing
shared and private variables. Image source [26].

Our study first focuses on MIMD type architecture on which we differentiate two kinds of
parallel computing: message passing parallelisation and loop parallelisation. These concepts
are complementary to the programming languages and methods.

3.2.1 Parallel computing inside loops (OpenMP)

Inside loops, there are two possible automatic parallelisations using cyclic multi-threading
(two threads work concurrently on two consecutive data) or pipeline multi-threading (two
threads work concurrently on two blocks of consecutive data). OpenMP (Open Multi-Processing,
[83]) is a parallel programming model for shared memory, it consists in a set of directive-based
approaches. A program begins with a single thread of control called master thread. The calling
of an OpenMP instance creates new threads of execution that can individually invoke program
sub-parts without interfering with the other threads. The compiler is still the one responsible
for producing the final executable code and must be an OpenMP-compliant compiler (Intel,
Sun, gcc 4.0, etc.). When several threads share the same address, conflict and synchronisation
issues may appear and must be managed by the developer.

The concept may not be obvious, but using OpenMP attributes to parallelise loops is quite
simple. Let us consider the following example of a C program that computes a numerical Euler
flux using the AUSM+−up scheme. In C language the command # pragma omp parallel for is

3.2. Parallelisation techniques 79

telling the compiler to parallelise the first loop that occurs. If we do not specify the number of
threads we want to create (num threads(th number)), the compiler will try to create and use
all available threads.

. . .

pragma omp parallel for private(i) schedule(static ,10)

for (j = 0; j < ncj; j++) {

double rl,ul, vl, wl, aul , pl, hl, hlt , asl2 , asl , ahl;

double aint , Ml, Mr, Mb2 , t, M02 , M0, fa;

double Mp, Mm, Mint , mint , p5p , p5m , pint;

double qn, invRho , rhoint , alpha;

CfdField ptLi , ptRi;

for (i = 0; i < ninti; i++) {

/* ---------- Left state ---------*/

rl = (*ptLi.pt_rho);

invRho = 1./rl;

/* Direction component of the left flow speed */

ul = invRho *(* ptLi.pt_rhoU);

aul= fabs(ul);

vl = invRho *(* ptLi.pt_rhoV);

wl = invRho *(* ptLi.pt_rhoW);

/* Compute left pression number */

qn= 0.5*(ul*ul+vl*vl+wl*wl);

pl = eos ->gm1 *((* ptLi.pt_rhoE)-rl*qn);

/* Left enthalpy */

hl = ((* ptLi.pt_rhoE)+pl)*invRho;

hlt= hl + qn;

/* Left sound speed */

asl2= self ->tgm1ogp1*hlt;

asl = sqrt(asl2);

/* Numeric left sound speed */

ahl = asl2/Max(asl ,aul);

/* -------- Right state -----------*/

...

}

}

...

The command private(i) asks the compiler to make uninitialized copies of i with the same
type and name as the original variable. Otherwise, all variables defined after the line # pragma
omp parallel for are new local variables to each thread. One can also use a common variable to
each thread using the command shared(variable). schedule(static,m) is the default command
used to sequentially distribute equal-sized loop items (loop count/ number of threads), execute
m iterations (or less for the last series), then ask for another set of m. Other options are also
available: dynamic, guided, auto and runtime.

We use OpenMP only for loop parallelisation, but its concept goes beyond that; other
tasks (task farming technique) or sections can also be done in parallel. In the case of loops
parallelisation via OpenMP there is no need of a synchronisation command, an implicit barrier
is done at the end of the loop. Beside helping parallelising small parts of applications, the use of
OpenMP is very attractive because only small modifications of the sequential code are necessary,
the expression of parallelism is clear, the code size grows only modestly. An important remark
is that the amount of operations inside one thread must be much more important than the
amount of read data, otherwise the overhead of the data access (saturation of the memory bus)
may be greater than the cost of doing the work on one thread.

80 3.2. Parallelisation techniques

3.2.2 Parallel computing via message passing (MPI)

The MPI (Message Passing Interface, [75]) is a public library based on the Message Passing
concept. It provides an interface, independent of computer architecture, allowing communica-
tions between tasks for distributed memory processors, shared memory processors, networks
and workstations. The scientists implement and compile their codes as usual and link them
with the MPI library. The processors communicate among each other by sending and receiving
the so-called transmission conditions.

In our computation, each sub-domain is assigned to one and only one node (even if different
approaches are possible). The assignment is done inside the module Tools at the moment of
the sub-domain construction by adding a tree node containing a unique number equal to the
rank of one processor. Different levels of one algorithm (depending on the numerical scheme)
are computed locally by one processor. But, to coordinate the data exchanges and verify the
convergence behaviour, a global administration component has to be defined. The developer
must keep track of memory usage. Our strategy is to use as many non-blocking MPI commands
as possible to overlap message passing and computation. Even though we do our best to well-
balance the sub-domains and locally discretise in time, some processors may still finish one job
before another. When interface conditions must be transmitted from one processor to another,
the first one sends its data as soon as it is available and the second one receives it as soon as it
is available. These commands allow an overlap of tasks within the moment of a send and of a
receive of information, which is the best possible scenario.

MPI is supported by all programming languages (Fortran, C, C++, Python) and is known
for portability and performance when it is well used. For Python, several MPI libraries exist,
such as pyMPI and mpi4py. The mpi4py library, more efficient than pyMPI, was initialised
in 2006 by L.Dalcin. It is written in cython and enables distributed memory paralleling. Let
us take the following example of parallel cython code (identical to Python). First, we need to
initialize the MPI environment usingMPI.COMM WORLD. This sets all available processes
at start-up time and their communication context.

...

import mpi4py.MPI as MPI

/* -------- initialisation --------*/

comm = MPI.COMM_WORLD

// get internal process number

rank = comm.rank

// get number of available processes

nb_proc = comm.size

...

if rank == rankTarget:

buff = [numpy.empty(dim)]

/* set non -blocking receive */

rho = comm.Irecv([buff[0],MPI.DOUBLE],source=rankSource ,tag =2*

self.domSrc +8192* self.domTgt)

/* compute local time step */

dim = ssdom.wConservative [0]. dimension

dt ,mindt = ssdom.computeLocalTimeStep(self.eos ,dir=0,cflCoef ,

dimCellPh ,U)

dTMinLoc = min(mindt ,dTMinLoc)

if dim > 1 :

dt,mindt = ssbdom.computeLocalTimeStep(self.eos ,dir=1,cflCoef ,

dimCellPh ,V)

dTMinLoc = min(mindt ,dTMinLoc)

if dim > 2 :

3.2. Parallelisation techniques 81

dt ,mindt = ssdom.computeLocalTimeStep(self.eos , dir=1,cflCoef

,dimCellPh ,W)

dTMinLoc = min(mindt ,dTMinLoc)

/* wait for rho to be received */

MPI.Wait(rho)

solveBDF(initSol , rho , rhoU , rhoV , rhoW , rhoE)

[rho , rhoU , rhoV , rhoW , rhoE] = updateSolution (rho , rhoU , rhoV ,

rhoW , rhoE)

...

if rank != rankSource:

...

/* blocking synchronous send */

send_rho = comm.Ssend ([numpy.array(rho) ,MPI.DOUBLE],dest=

rankTarget ,tag=2* self.domSrc +8192* self.domTgt)

...

...

Suppose that we solve the Navier–Stokes system of equations on a bounded domain Ω split
into two overlapping sub-domains Ω1 and Ω2, and that Ω1 (source) sends an array to Ω2 (target).
We proceed as follows:

• the source sends a blocking synchronous mode array (comm.Ssend). It means that Ω1

begins sending a message (rho) even before checking if there is a matching process waiting
for an information (through tag matching). However, the send cannot complete until its
matching receive is found, and the receive operation has started to receive the message.
If both sending and receiving operations are blocking synchronous modes, the communi-
cation is also synchronous;

• the target receives the message in a non-blocking way (comm.Irecv). The system can
start writing data into the receive buffer. Meanwhile the target can continue working
(computing the local time step in the example) as long as it does not access this buffer.
When the receive data is needed, we make sure that the receive is finished using the
MPI Wait command, which also deallocates the receive buffer.

This choice of communication routines seems appropriate to our strategy as it allows overlap
between tasks. In the case of distributed memory parallelisation, the amount of operations
inside one process must be much more important than the communication between processes,
otherwise the overhead of the communication may be greater than the cost of doing the work
on one thread.

MPI is considered optimal for process level parallelism (private memory) and OpenMP for
loop-level parallelism (shared memory). Combining them, we construct a hybrid program on
multiple levels of parallelism and reduce computational cost. The presented approaches are suit-
able to hybrid approaches if one sub-domain is assigned to one processor (distributed memory
computing via MPI) and local loops are computed in parallel on shared memory (OpenMP).
The portability and the robustness of the parallel code should be comparable with those of the
sequential code.

3.2.3 Graphic Processor Unit (GPU)

Thanks to the game industry, recent graphical cards raise the computing capabilities, with
higher performance than classical CPUs (fig.3.3).

When Pixar introduced shaders in Renderman software in 1988 and in OpenGL library
version 1.4 in 2001, scientists began to use graphical cards to compute numerical simulations.
Programming with shaders is not well adapted to numerical simulations. NVIDIA with CUDA

82 3.2. Parallelisation techniques

Figure 3.3: The number of cores inside a CPU versus the number of cores inside a GPU.

([25]) and AMD with Radeon SDK, the leaders among GPU constructors, provided more flexible
tools for their GPUs. It was the Khronos group that later tried to unify the GPU programming
with OpenCL standard. Recently, PGI, NVIDIA and Cray proposed the OpenACC standard
and the OpenMP consortium proposed a new version of its standard, including some directive
to compute on GPU devices. None of them are available in current compilers. Nevertheless, a
first beta version of some popular compilers, such as CGG (https://gcc.gnu.org/wiki/openmp),
are implementing OpenACC and OpenMP 4.0 features to use GPU devices.

CUDA and OpenCL are parallel computing platforms, application programming interfaces
(APIs) usable with C and C++ language providing direct access to the memory of GPUs. They
can be seen as a extension of the C and C++ programming languages. Both of them dispose
of a Python interface: pyCUDA and pyCL. OpenCL was designed to work on all GPU cards:
AMD, NVIDIA, Intel, S3 Graphics, Matrox, Texas Instrument, etc. Although, the OpenCL
code is portable, for best performance, it must adapt to all architecture types, and so the
developer is faced with many options and ways to code memory allocations, transfers, etc.
Moreover, OpenCL is properly supported only by AMD; the NVIDIA support is concentrated
only on CUDA. We will especially refer to GPGPU (Global Purpose Graphic Processor Unit)
of NVIDIA and discuss programming with CUDA (Compute Unified Device Architecture), but
note that CUDA programming is similar to OpenCL and it can be ported over to OpenCL.

The NVIDIA GPUs architecture is referred to as SIMT (single instruction, multiple threads,
[25, 77]) and is closely related to SIMD and shared memory MIMD (OpenMP). In SIMD
architecture a single CPU devoted to control is capable to process in parallel elements of vectors.
The SIMT architecture is more flexible than SIMD as it can additionally run:

• a single instruction on multiple register sets: each thread contains multiple registers that
process different parts of an instruction;

• a single instruction on multiple addresses: parallel random access with memory (only
parallel random access with registers is possible on SIMD);

• a single instruction on multiple flow paths: conditional jumps for different threads.

In shared memory MIMD architecture, instructions of several threads can run in parallel.
SIMT is less flexible than shared memory MIMD. Inside a SIMT architecture local synchroni-
sation can be done inside a block; a global synchronisation must be manually implemented.

When a new architecture appears, a developer must re-evaluate, rethink the problem and
be able to appreciate its adaptivity to this architecture. The aim of this section is to render the

3.2. Parallelisation techniques 83

GPU architecture comprehensible to the reader so he can appreciate its utility. Through the
entire section, we highlight the advantages and the limits of this powerful parallel tool.

Hierarchy inside a GPGPU of NVIDIA

Different from a CPU architecture, a GPGPU contains three memories. The global memory
is used to communicate with the host (key word for CPU). The texture and the constant
memories contain constants initialised by the host. Only the texture and the constant memories
dispose of a cached memory. The host can access in read and write (R/W) mode any of the
three memories. The three memories are visible to all threads. The global memory can be
accessed by all threads in R/W mode, the texture and constant memories can be accessed by
threads only in read mode. The texture memory can be accessed in R/W mode through surface
objects thanks to the API.

The memory of a GPGPU, on fig.3.4, is structured in grids of blocks of threads. A grid
is a set of blocks that can be executed in parallel. A block of threads can have different
size and contains threads that cooperate with each other through shared memory and local
synchronisations. Each thread has a local memory, can access shared memory inside a block
and has access to the global memory. A very important remark is that, unlike inside a CPU,
where all threads can cooperate, the threads between two different GPU blocks do not cooperate
as they do not share the same shared memory. Moreover, a block is split in equal sized groups
of threads called warps (usually of 32 threads). The splitting is done in a consecutive way,
thread number 0 is inside the first warp. The separation into warps is not directly visible to the
developer, yet it will have a major impact on the computation as access to the global memory
is done by warps.

Let us summarise on the hierarchy inside a GPU : grids→blocks (→ warps)→threads. Each
grid and block can have one, two or three dimensions. Each block and thread have a unique id:
blockIdx.{x, y, z}, threadIdx.{x, y, z}.

The multiple levels of threads, memory, and synchronization are suited to the so called
fine-grained data parallelism. Inside one block, all threads work in parallel. Blocks can either
work in parallel or sequentially, depending on the GPU resources. Parallel sections of one
algorithm are executed on the device (key word for GPU) as kernels which run in parallel on
many threads. By default kernels are sequentially launched. Inside one block, threads can be
manually synchronized using the command syncthreads() that acts like a barrier. If threads
access memory in an uncoalesced manner the computation slows down. The access to the shared
memory must be coordinated, each warp should access continuous regions of the memory and
avoid bank conflicts. The cache memory is structured in memory banks. A memory bank is a
unit that is addressed consecutively in the total set of memory banks. When more than one
thread of the same warp access the same memory bank the computation is also slowed down.
Also, if two threads write at the same address a conflict occurs and the accesses will be serialised.

Definitely the most attractive property of the GPU is that it contains hundreds of cores
and millions of independent threads that can work in parallel (against a few on a CPU). For
example, one block can contain up to 1024 threads on a NVIDIA Tesla architecture. Similar
to OpenMP, a CUDA program runs on any number of processors. The execution of kernels on
the GPU and transfers from or to the GPU can be done in the same time. Also, the GPU is
cheap and available. A GPU can access data on the CPU via PCI-Express, but the access is
much more expensive than global memory accesses. Large packages of data, but less than 6 GB
should be copied to the GPU. The GPU must have enough work to do to become efficient and
needs explicit synchronization for data coherency.

To be able to efficiently program on GPU, one should avoid conditionals and loops in kernels.
Duplicating computations can be faster than to compute on one thread and broadcast the results
to the others. Communications are costly!

84 3.2. Parallelisation techniques

Figure 3.4: Memory model for shared-memory GPU. The host denotes the CPU, parallel
kernels are sequentially launched on device (GPU). The device contains several grids, each
grid is split in blocks of threads. A thread is the smallest active object able to execute an

instruction. Image source GPU summer courses [26].

High performance means exploiting all levels of parallelism and leads to the idea of com-
bining the three discussed architectures, thus the use of OpenMP, MPI and GPU (see one
possible configuration of combining all three architectures on fig.3.5). The communication be-
tween devices become the biggest issue in achieving performance. Multiple GPUs are possible,
the same host can access two or more GPUs, but the selection between GPUs must be manually
controlled. CUDA is message passing between CPU and GPU. CUDA and MPI are comple-
mentary, there is no major difference between a classical MPI on multiple CPUs and MPI
on GPUs. OpenMP+MPI+GPU adapts well to codes that compute large, disjoint problems
simultaneously.

The time spent to learn and implement on GPU is much higher than its equivalent on CPU.
Many researchers would consider that GPU programming is complicated and will not dare to
learn it. An alternative exists, the use of available GPU libraries. Based on the idea: do not
reinvent the wheel, developers propose freely the use of their optimized codes on GPU to solve
partial differential equations, systems of linear equations (dense or sparse), preconditioning of
large systems, computation of eigenvalues/singular values of matrices, partitioning large graphs,
non-linear systems, etc. A list of libraries and their main applications can be found in Appendix
B.

3.2. Parallelisation techniques 85

Figure 3.5: Possible architecture combining all levels of parallelism: OpenMP + MPI + GPU.
The communication is done by the networking inside clusters (MPI), each node parallelise
tasks between cores (OpenMP) and each core can parallelise kernels inside a GPU. Image

source GPU courses by CAPS.

Discussions on additional difficulties of GPU programming

Due to coalescence and bank conflict problems in the shared memory, an optimal imple-
mentation of stencils is a true challenge on the GPU device. The more compact the stencil, the
easier it is to avoid uncoalesced memory access. Moreover, computing structured meshes is eas-
ier than unstructured meshes. Because of these reasons the Navier–Stokes system of equations
is a challenge (see the PhD of M.Lefebvre [61] for applications to the Navier–Stokes equations).
We propose here a discussion on the implemented CUDA code to solve the Euler equations
using a mono-domain second order explicit Runge-Kutta method.

The last module added to the new code is the cudaGPU module. As mentioned in the
beginning of this section, the entire problem must be rethought. Thus, each presented module
was rebuilt and adapted to GPU with CUDA. The first step in developing an Euler solver on
GPU was to create a class of array methods that allocates GPU memory for an array of different
dimensions and lengths. We used cudaMalloc command for 1D arrays and cudaMallocPitch for
2D arrays. cudaMallocPitch is best for 2D memory allocations as it makes sure that the starting
address of each row in the 2D array (row-major) is a multiple of 2n (n depending on the compute
capability) and facilitates the shared memory access by warps. The data transfer between CPU
and GPU is made via cudaMemcpy2D or cudaMemcpy calls which are able to transfer data
between GPU devices if cudaMemcpyDeviceToDevice option is active, from CPU to GPU if
cudaMemcpyHostToDevice option is active and from GPU to CPU if cudaMemcpyDeviceToHost
option is active. Another tool file is constructed to define the number of available devices, the
devices names, their architecture, generation, available cores and capability.

Inside a CUDA file (present in each module), a kernel is recognized by the key word global
that precede its definition. Functions executed and accessed locally on the device are preceded
by the key word device . For a CPU to execute a kernel, it must first define its size (grid
size and block size) that can not exceed the maximum possible size on a GPU (see example of
kernel call below where dim3 denotes a structure of three integers).

86 3.2. Parallelisation techniques

__global__ myKernel(arguments)

{

. . .

}

void myCPU(arg)

{

dim3 threads(sizeGrid , sizeGrid , 1);

dim3 grids((nci+sizeGrid -1)/sizeGrid ,(ncj+sizeGrid -1)/sizeGrid ,1);

myKernel <float ><<<grid ,threads >>>(arguments);

...

}

We propose to briefly discuss on two steps inside the computation: the time step computation
and the solver computation.

1. Time step computation

In general, the time step inside a domain Ω (see 1.3.1 for details over the stability criteria)
is given by the following formula: ∆t = mini(∆tCi ,∆tDi), i ∈ Ω. For the Euler system
∆t = mini(∆tCi). A minimum over the entire velocity field must be computed. As seen below,
for one mesh cell, the minimum function is equivalent to the one on the CPU:

// --

template <typename K> __device__ K

gpu_compute_dt(int dir ,K gamma ,K mu, K Pr, K cfl , K dx, K rho , K rhoU ,

K rhoV , K rhoW , K rhoE)

{

K rho_i , u[3], p, a, dtC ,dtD;

rho_i = 1./rho;

u[0] = rho_i*rhoU;

u[1] = rho_i*rhoV;

u[2] = rho_i*rhoW;

p = (gamma -1.)*(rhoE -0.5* rho*(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]));

a = sqrt(gamma*p*rho_i);

dtC = cfl*dx/(fabs(u[dir])+a) ;

dtD = 0.5* cfl*dx*dx*rho*Pr/(mu*gamma);

return gpu_min(dtC ,dtD);

}

The execution of the minimum is visible only by the device and done by each active thread.
To find the global minimum, we use a parallel reduction, close to the one presented by D.
Negrut [76] in his GPU course. We present here the steps needed for an optimal, fully parallel
reduction. The entire code is presented in annexe C.

1. Implement a global GPU function (gpu reduce min) that reduces, for each two blocks, the
minimum of the known vector (computed with gpu compute dt). This first step reduces
the number of blocks to its half. By repeating this step we reduce the computation to one
block of minimum values.

2. Compute gpu warpReduce, a function that unrolls the last warp inside the last block.
As reduction proceeds, the number of active threads decreases (for tid < 32 we only
have one warp left). Unrolling the last warp avoids using the thread synchronisation

3.3. Parallelism efficiency evaluation 87

(syncthreads()) and saves useless work in all warps. This step is done also to avoid
uncoalesced access to the cache memory. The number of threads in a block is given at the
compile time (and they are power of 2 block size and limited at 1024 threads on Fermi)
and allows us to completely unroll the reduction. Yet, the developer should consider a
generalised formulation for different number of blocks.

When we compute a minimum over a 2-dimension vector, we choose a privileged direction
and similarly proceed. Note that parallel reductions are also used on CPU computation to
diminish costs, but on GPU its utilisation is vital.

Second order Runge Kutta method

We do not recall the numerical explicit Runge Kutta method, one can see 1.3.1 for details.
We discuss only the need to exploit the GPU shared memory. Let us recall the middle step in
the x-direction of the second order Runge Kutta method applied to the Euler Equations and
for one cell Ωi.

U
n+ 1

2
i = Uni +

∆t

2
(FnEuler

i+1
2

− FnEuler
i− 1

2

).

First, we compute the convective one order fluxes using an AUSM+−up scheme. To compute
FnEuler

i+1
2

we need to access the conservatives field in i and i+1. Then for the right part of the

Flux over a block of size blockSize∗blockSize we need to access a block of size (blockSize+1)∗
blockSize. So, one additional column has to be accessed on the global GPU memory (slower
than the access on the shared memory). Moreover conflicts of access and writing may appear.
We use then the shared memory to store the necessary values. Secondly, second order convective
flows are computed with a MUSCL scheme. This one requires the values of first order fluxes
for a 3 stencil size (i − 1, i and i + 1). A 2D array of size (blockSize + 2) ∗ blockSize must be
stored in the shared memory. In a similar way, to advance in time we need to use the shared
memory for a block of size (blockSize+1) ∗ blockSize. Dirichlet boundary conditions are most
adapted to GPU programming since there is no need to access any neighbour cell.

For unstructured meshes, more interaction between blocks, memory copies and used of the
shared memory is required.

3.3 Parallelism efficiency evaluation

We can see parallel computing only from a technical point of view, but the efficient way
is to develop a decomposition strategy on the initial mathematical problem. When parallel
computation is done one sub-domain is affected to one specific processor. This processor handles
both data (geometry, coefficients) and the computations. There are different ways of measuring
the performance of a parallel computation. From a strictly technical point of view we distinguish
three metrics: the latency or the time to execute one operation (measured in operations per
seconds), the bandwidth or the rate at which the operations are performed (measured in seconds
per operation) and the cost, equal to the product of the latency with the number of performed
operations. For a non-parallel process, instructions are sequentially computed and the entire
data is local, then these metrics give enough information. But, for parallel computing, processes
and processors need to access non-local data, they usually communicate among each other
by sending and receiving the so-called transmission conditions. Even though techniques that
synchronise the transfers exist, processors may need to wait for an information before being
able to proceed to another operation. Then, the global cost must contain the communication

88 3.3. Parallelism efficiency evaluation

cost:

CommunicationCost= frequency×(CommunicationTime-overlap).

The frequency is the number of communication operations per unit of work and it is usually
specific to an architecture and can be found in the computer specifications. The communication
time contains the time needed for the processor to initiate the transfer and the necessary time
for the data to travel in the communication path. Between the time of the transfer initiation and
the receive of information, one processor may keep performing other operations, this portion of
time is called overlap. For more details on communication measuring we refer to [26].

We focus on a global way to measure the effort to solve a problem in parallel. Meaning,
we consider that the total computational cost is the cost of reaching the convergence criteria in
each sub-domain added to the synchronisation and the communication cost:

cost = # iterations ×
∑

i

(cost of solving sub-domain i on processor i)

+ synchronisation cost + communication cost .

We can now define a tool to verify the performance for both the architecture and the
application developer called speedup. Assuming we use p processors, for a fixed problem the
speedup is defined:

speedup(p processors) =
cost(1 processor)

cost(p processors)
.

For the speedup to reach the maximum value p, the synchronisation and communication
costs must be very small and depend on the scaling efficiency of tasks. We introduce two basic
ways of measuring the scalability or the scaling efficiency, the weak scalability and the strong
scalability.

Weak Scaling

The size of each sub-domain is fixed and the number of processors involved in the paral-
lelisation increases. This means that, when p sub-domains are computed in parallel the size of
the global domain becomes p times the fixed size of a sub-domain, and therefore the space step
diminishes. We give the weak scaling efficiency formula:

t1
tp
× 100%,

where t1 is defined as the amount of time (cost) to complete a work unit with one processing
element, and tp is the amount of time to complete p identical work units with p processing
elements. Supposing that the physical size of the domain is [0, 1]× [0, 1], the size of the system
to solve is n × n (see fig.3.6), t1 is the amount of time to solve one system of size n × n with
the space steps ∆x = 1

n and ∆y = 1
n ; and tp is the amount of time needed to solve in parallel

p = px×py systems of size n×n, but with the space steps ∆x = 1
pxn

and ∆y = 1
pyn

. We achieve
full efficiency when t1 equals tp. It is the case where the cost of the exchange data between
the sub-domains can be neglected and when the diminishing space steps does not influence the
computation. It is the ideal case.

Strong Scaling

The second way to measure the scalability is the strong scaling. This time, the global
problem size is fixed and we increase the number of processing elements. We recall that in this
work only one sub-domain per processor is considered. When the number of processors increases

3.3. Parallelism efficiency evaluation 89

n× nn× nn× n

n× nn× n

n× n

Figure 3.6: Weak scaling. The global computational domain Ω is of size n× n. When on 4
(respectively 16) sub-domains are used to compute the same physical sub-domain, the mesh is

refined in such a way to result in equal sized sub-domains of size n× n.

the number of sub-domains increases and, this time, the size of a sub-domain diminishes. The
formula of the strong scaling efficiency is:

t1
p× tp

× 100%.

Let [0, 1] × [0, 1] be the physical size of the computation domain discretised in n × n cells
(see fig.3.7).

When p = px × py sub-domains are solved in parallel the size of one sub-domain equals
n
px
× n

py
and the space steps are ∆x = 1

n and ∆y = 1
n , the same space steps as when only one

processor is in use. The ideal case is when t1 equals p× tp and it happens when the amount of
time needed to solve one sub-domain is exactly 1

p the amount of time needed to solve the global
system. The sub-domain solver should converge in exactly the same number of iterations as the
global one and the number of data exchanges should be neglected.

The previous parallelisation efficiency evaluation can be directly applied to a distributed
memory architecture via MPI parallelisation, but can also be adapted to the shared memory
architecture. In our case, the loops are equal sized distributed, as in the strong scaling evalua-
tion.

90 3.3. Parallelism efficiency evaluation

n

4
× n

4

n

4
× n

4

n

4
× n

4

n

2
× n

2

n

2
× n

2

n× n

Figure 3.7: Strong scaling. The global computational domain Ω is of size n× n. When on 4
(respectively 16) sub-domains are used to compute the same physical sub-domain, the mesh

split in equal sized sub-domains.

Chapter 4

Numerical results and discussions

Contents

4.1 Comparisons of numerical convective fluxes schemes 92

4.1.1 1D shock tube problem . 92

4.1.2 2D Forward Facing Step . 98

4.2 Applications of Domain Decomposition techniques 105

4.2.1 GPU versus CPU . 105

4.2.2 Exact solution for Euler equations: 2D isentropic vortex 106

4.2.3 Sound generation in a 2D low-Reynolds mixing layer 113

4.3 Vortex shedding from rectangles . 117

91

92 4.1. Comparisons of numerical convective fluxes schemes

This chapter is dedicated to the validation of the presented methods. Firstly, validations and
comparisons of different numerical schemes to compute the Euler fluxes are conducted. Several
1D and 2D configurations with shocks are chosen to verify the sensibility of the numerical
schemes. The aim is to find, within the existing numerical schemes the ones suitable to our
applications.

Secondly, we validate the classical domain decomposition methods applied to explicit and
implicit 2D applications. Then, we focus on proving the robustness of the improved scheme on
different number of sub-domains. At Onera, the PC cluster Madmax contains over 1100 cores
within 75 nodes with a total of over 25To of storage and 2.5 To RAM and it is the cluster used
to compute our simulations. The Madmax nodes can have different capacities and number of
cores.

The first case is the isentropic vortex evolution based on Yee’s paper [99] and it is very inter-
esting for our applications since it provides an exact solution to the Euler system of equations.
Moreover, when dealing with simulations of aircraft trailing vortices, blade–vortex interaction
of helicopter rotors, rotor–stator interaction of turbo-shaft engines, aeroacoustic problems or
weather forecasting, many computational fluid dynamics researchers are faced with the problem
of numerical diffusion of vortices.

The second case is the sound generation in a 2D low Reynolds mixing layer, a very unsteady
and sensitive case and intensively studied in the aeroacoustic field.

The last case is the vortex shedding around rectangles. It is the closest case to real life
simulations. It has multiple applications [28, 9, 80, 92, 86] such as the aerodynamic drag
reduction for air-planes, road vehicle, damage predictions for inclined air-foils, ocean pipe line
or risers, off- shore platform supports, suspension bridges, steel towers or smoke stacks, etc.

4.1 Comparisons of numerical convective fluxes schemes

In order to compute the convective fluxes we have studied five different first order schemes:
Godunov Scheme, van Leer Scheme, AUSM+-up Scheme, HLLC Scheme, and LLF Scheme.
Each scheme has intensively been studied in literature [89, 34, 98, 74, 95, 96, 97, 56, 69, 68, 67,
70, 93, 94] and has proved its efficiency for sharp non-linear solution structures such as shocks
and discontinuities. To achieve second order accuracy the MUSCL strategy has been used. In
order to validate these schemes, we start by performing one dimensional cases on shock tube
problems presented by Toro in [93].

4.1.1 1D shock tube problem

In table 4.1 one can find the initial data for seven tests that we have chosen to study. For all
tests the spatial computational domain is [0, 1] and it is discretised with N = 100 cells. The fluid
is a perfect gas and the diaphragm that initially separates two gazes with different properties
is placed at x0. The sudden removal of the diaphragm at time t = 0 creates a discontinuity
between the two gazes. The resulting waves propagate in the tube and can be rarefaction waves,
contact discontinuities or shock discontinuities.

These tests allow us to check the correct implementation of the schemes, they provide
information about the robustness and the accuracy of approximate Riemann schemes. The
CFL number is fixed to 0.7 and the boundaries conditions are of transmission type. For each
test we can compute the exact solution by solving directly the associated Riemann problem. The
resulting quantities of interest that we compare are the density ρ, the velocity u, the pressure
p and the specific internal energy e.

The following results are obtained after solving the Euler equations with a first order Euler
Explicit scheme. All figures show a comparison between the computed solution of the quantities

4.1. Comparisons of numerical convective fluxes schemes 93

Table 4.1: Data of 1D test problems with exact solution

Left data Right data Diaphram position Stop Time

Test ρL uL pL ρR uR pR x0 timeOut

1 1.0 0. 1.0 0.125 0.0 0.1 0.3 0.25

2 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2

3 1.0 -2.0 0.4 1.0 2.0 0.4 0.5 0.15

4 1.0 0.0 1000.0 1.0 0.0 0.01 0.5 0.012

5 1.0 0.0 0.01 1.0 0.0 100.0 0.4 0.035

6 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.4 0.035

7 1.0 -19.59745 1000. 1.0 -19.59745 0.01 0.8 0.012

of interest at different output time units, presented on 4.1, and the exact solution, shown in
red.

The first test is the so-called Sod problem ([89]) and it is a common test for the accuracy of
Riemann based scheme. Its solution consists of three characteristics describing a left rarefaction,
a contact and a right shock. The second test is a modified version of the Sod problem. The
solution consists of a right shock wave, a right travelling contact wave and a left sonic rarefaction
wave. The third test is the so-called 123 problem ([31]) and it consists of two strong rarefactions
and a trivial stationary contact discontinuity.

Test 4 consists of a left rarefaction, a contact and a right shock wave, it is the left half of the
Woodward and Colella (see [98] for details) problem, called the Blast Wave Problem. The blast
wave problem is physically composed of a tube containing three gazes with different properties
that are initially separated by two diaphragms. Test 5 represents the right half of the blast
wave problem of Woodward and Colella and is made of a left shock, a contact discontinuity and
a right rarefaction. Test 6 is a combination of the resulting shocks of test 4 and 5. It solution
represents the collision of these two strong shocks and consists of a left facing shock, a right
travelling contact discontinuity and a right travelling shock wave.

Test 7 consists of a left rarefaction wave, a right-travelling shock wave and a stationary
contact discontinuity. It is an example of slowly-moving contact discontinuities adding another
difficulty to numerical methods.

Results are given on figures 4.1 to 4.7.
The Godunov solver deals with shocks directly, it has a very low numerical diffusivity and

is strictly conserving in mass, momentum and energy. In almost all cases, the results of the
Godunov scheme and the van Leer scheme are comparable and accurate. In test 7 (see fig.4.7)
we can notice that the Godunov scheme provides the most accurate solution. We can observe,
for all tests that the LLF scheme provides solutions that are more diffusive.

On fig.4.1 and fig.4.2 we can observe that the most robust solutions are found either using
the Godunov scheme or the HLLC scheme. We can say that the schemes are comparable, but
the HLLC scheme is very sensitive to discontinuities. It fails firstly for the test 3, then for test
5 and 7 where it leads to the apparition of vacuum values. We get a vacuum value when the
density is null and the total energy per unit becomes also zero (see [93] for more details). For
test 4 the HLLC scheme fails to capture the internal energy. On fig.4.6 we can observe that the
solution is far from the exact one. The AUSM+−up scheme is also very sensitive and it fails to
produce solutions to tests 4, 5 and 7. Fig.4.8 shows the results of all schemes for CFL number
equals to 0.6. In this case the AUSM+−up scheme provides the sharper solution, it resolves the
contacts more accurately than all others schemes. Similar results are found for CFL number
less than 0.6. For tests 4 and 5 the scheme fails even for small CFL number. The observed
behaviour of the AUSM+−up scheme is comparative with the one presented by Toro in [93] for
the same tests, but using the AUSM or Liou Steffen scheme.

Each scheme behaviour is typical of a first order scheme. We can observe that the corners
at the endpoints or the rarefaction wave are rounded, meaning that there are no spurious

94 4.1. Comparisons of numerical convective fluxes schemes

Figure 4.1: Test 1. Exact and approximated solutions for the Sod problem

Figure 4.2: Test 2. Exact and approximated solutions for the modified Sod problem

4.1. Comparisons of numerical convective fluxes schemes 95

Figure 4.3: Test 3. Exact and approximated solutions for the 123 problem

Figure 4.4: Exact and approximated solutions for test 4

96 4.1. Comparisons of numerical convective fluxes schemes

Figure 4.5: Exact and approximated solutions for test 5

Figure 4.6: Exact and approximated solutions for test 6

4.1. Comparisons of numerical convective fluxes schemes 97

Figure 4.7: Exact and approximated solutions for test 7

oscillations in the vicinity of the shocks. It seems that the shocks are more sharply resolved
when Godunov and van Leer schemes are used, the solution is more diffusive when splitting
methods are chosen. On fig.4.3 we can observe large errors for the specific internal energy.
It is explained by the close to zero values of density and pressure that are divided by their
ratio when computing the internal energy. The test 3 proves that all schemes are sensitive to
discontinuities and can easily fail to give a solution. The corresponding Mach number for the
test 4 (see fig.4.4) equals 198. It is a very strong wave, but most of the schemes still manage to
give a good solution.

In 1D cases, the Godunov and van Leer solvers prove to be very powerful. They tightly
solve shocks and contact discontinuities with a high resolution. The spatial size or the order
of accuracy should increase in order to get more exact solutions. We can already question the
performance of the HLLC and AUSM+−up for tests with discontinuities. Yet, we have observed
that the AUSM+−up gives accurate results for all tests where a solution is provided.

All presented results have been found solving the global system on one computational do-
main. No loss of accuracy has been noticed when the computational domain is divided into
overlapping sub-domains with overlap of length half of stencil size (necessary for the use of
ghost cells). The solution of the Euler/Navier–Stokes equations using the first order Euler Ex-
plicit scheme, or the second order Runge Kutta scheme computed on one global domain equals
the one computed on a partitioned domain with Dirichlet type transmission conditions.

Most of the presented numerical procedure have proved to be stable and monotonic without
leading to any spurious spatial oscillations. In addition, these procedures conserve mass and
momentum locally. At this moment the schemes are limited by the CFL condition, and implicit
temporal schemes that allow us to take larger time steps are studied in the next section.

98 4.1. Comparisons of numerical convective fluxes schemes

Figure 4.8: Exact and approximated solutions for test 7 with cfl= 0.6

4.1.2 2D Forward Facing Step

Shock capture can be very different between the one-dimensional and two-dimensional cases.
A well-known shock capturing test in two dimensions is the Forward Facing Step case. It is
the case of a flat-faced step in two-dimensional flow presented for the first time in 1968 by
Ashley F. Emery [34]. It became known when Woodward and Colella publish, in 1984 a very
detailed paper [98] on the analysis of numerical schemes and shock capturing where it is the
main example. For a long period researchers have used this test to prove the efficiency of their
schemes. We shall use it in order to validate the chosen Euler fluxes numerical schemes.

The geometry of the problem is presented on Fig.4.9. It is a wind tunnel of 1 length unit
wide and 3 length units long containing a step. The step is located at 20% of the left end of
the tunnel and 20% of the bottom end of the tunnel. The fluid is a perfect gas, γ = 1.4, the
initial solution is supposed constant (ρ, u, v, p)t = (1.4, 3., 0., 1.)t over the entire computational
domain. The initial flow is in the supersonic regime of Mach number value 3. The tunnel is
assumed to have infinite length or two-dimensional planar base flow and the flow is left to right
oriented. In order to simulate this case, inflow boundary condition has been imposed at the left
end and outflow boundary conditions at the right length. At the inflow the flow has the same
characteristics as the initial one. The outflow boundary condition is of transmissive type has
no effect on the computation, no spurious waves coming from the right are allowed to perturb
the fluid inside the tunnel. Along the other walls the fluid is reflecting, the applied boundary
conditions are reflective type.

The evolution of the solution leads to shock waves reflecting from the closed boundaries. A
rarefaction wave is developed at the corner of the step and hence is a singular point of the flow.
Woodward and Colella propose in [98] a particular treatment of this point to avoid possible
numerical errors generated in its vicinity. This special treatment will not be applied in this

4.1. Comparisons of numerical convective fluxes schemes 99

Figure 4.9: Wind tunnel with a step

work since it is a particular one and the goal of our tests is to validate the presented method in
the view of future use on more complicated configurations.

The computational domain has been partitioned into five sub-domains as on Fig.4.10 and
each sub-domain is solved in parallel on a different processor. The global domain size is 20 ×
50+4×(20×40) cells, the time step ∆t is computed in order to satisfy a stability criteria of CFL
number cfl = 0.2. In this section we present only results solving the Euler system of equations
using a second order Runge Kutta method combined with a second order MUSCL scheme. We
shall test the accuracy of the MUSCL scheme combined with each of the presented first order
numerical schemes to compute the Euler fluxes. In section 1.2.3 we have presented different
slope limiters for the MUSCL schemes. The Forward Facing Step solution develops strong
discontinuities that allows to test the sensitivity of each limiter one of them. An important
remark is that the computational domain is separated following the step, exactly where the
shock will appear. Therefore, our numerical schemes need to converge not only when numerical
errors are added by the singular point, but also need to manage the numerical errors due to the
communication between the sub-domains.

The flow trajectory is guided by the reflecting walls. Until up to time 4 the flow is unsteady,
two vortices appear just before the step and right after and a rarefaction wave is developed at
the corner.

Figure 4.10: Forward Facing Step. The computational Domain split into fictitious overlapping
sub-domains (overlap of half stencil size).

At time 4 we can already see the stabilised trajectory of the flow and by time 12 the flow

100 4.1. Comparisons of numerical convective fluxes schemes

becomes steady. We focus here on the unsteady flow where we can observe the shock evolution.
We show results for 1, 2, 3, and 4 units of time. The Euler fluxes are first computed using a
first order scheme. On each figure we outline thirty equally spaced contours for 1 to 6.5 that
will help us identifying the trajectory of the flow, the vortices and the shocks. The choice is
different from the one of Woodward and Colella who decided to adapt the distance between
the contours for each solution and so to always have the same number of contours. The choice
to fix the values of the contours for all computed solutions was established in order to observe
qualitatively the amount of artificial diffusion added by each numerical scheme. We shall still
be able to compare the solutions with those presented in [98].

The solutions seen in fig.4.11i to fig.4.8iv are computed with the first order scheme. On
figures 4.11i, 4.10ii, 4.9iii and 4.8iv one can see the approximated solutions at 4 units of time
using the Godunov, the van Leer, the AUSM+−up, respectively the LLF first order numerical
schemes to compute the Euler fluxes. We are comparing the general shape and the position of
the shocks. We can observe the evolution of the thinness of the shocks, when the flow is nearly
steady the shocks are very thin. The explanation comes from the fact that the jumps in the
shocks are better resolved and contours are focused at the same position.

We consider as reference the solution found with a fine uniform grid of size 100× 250 + 4×
(100×200) cells computed using a MUSCL scheme with the Van Albada type slope limiter. On
fig.4.6i and fig.4.5ii we can observe the solutions on a fine mesh using the AUSM+−up scheme
and the LLF scheme to compute the Euler fluxes. They are the only schemes able to give a
solution with a very small space step that introduce very large numerical errors. As before,
for all presented results the LLF scheme manages to give a solution, but it diffuses more than
all the others schemes. We can observe that the solution found with the AUSM+−up scheme
captures very well all features of the flow field and that the results compare very closely with
those presented by Woodward and Colella in [98]. The AUSM+−up scheme, on the fine mesh
shows the evidence of vortex sheet roll up. These details can be seen using others schemes only
for a more refined mesh.

We continue by computing the Euler fluxes using a second order MUSCL scheme with a Van
Albada and MinMod slope limiter combined with the Godunov, the van Leer, the AUSM+−up,
the LLF and the HLLC scheme.

(i) Approximated solution for 4 units of time obtained with a first order
Godunov flux scheme

4.1. Comparisons of numerical convective fluxes schemes 101

(ii) Approximated solution for 4 units of time obtained with a first order van
Leer flux scheme

(iii) Approximated solution for 4 units of time obtained with a first order
AUSM+

−up flux scheme

(iv) Approximated solution for 4 units of time obtained with a first order LLF
flux scheme

Figure 4.8: Approximated solution obtained with a first order scheme

102 4.1. Comparisons of numerical convective fluxes schemes

(i) Approximated solution for 4 units of time obtained with a MUSCL
scheme with MINMOD limiter and first order AUSM+

−up flux scheme

(ii) Approximated solution for 4 units of time obtained with a MUSCL
scheme with MINMOD limiter and first order van Leer flux scheme

(iii) Approximated solution for 4 units of time obtained with a MUSCL
scheme with MINMOD limiter and first order LLF flux scheme

Figure 4.7: Approximated solution obtained with a second order MUSCL scheme with
MINMOD limiter

4.1. Comparisons of numerical convective fluxes schemes 103

(i) Approximated solution for 4 units of time obtained with a MUSCL
scheme with Van Albada limiter and first order AUSM+

−up flux scheme

(ii) Approximated solution for 5 units of time obtained with a MUSCL
scheme with Van Albada limiter and first order AUSM+

−up flux scheme

(iii) Approximated solution for 4 units of time obtained with a MUSCL
scheme with Van Albada limiter and first order van Leer flux scheme

104 4.1. Comparisons of numerical convective fluxes schemes

(iv) Approximated solution for 4 units of time obtained with a MUSCL
scheme with Van Albada limiter and first order LLF flux scheme

Figure 4.5: Approximated solution obtained with a second order MUSCL scheme with Van
Albada limiter

(i) Fine grid approximated solution for 4 units of time obtained with a
MUSCL scheme with Van Albada slope limiter and first order

AUSM+
−up flux scheme

(ii) Fine grid approximated solution for 4 units of time obtained with a
MUSCL scheme with Van Albada slope limiter and first order LLF flux

scheme

Figure 4.5: Fine grid approximated solution obtained with a second order MUSCL scheme
with Van Albada limiter

4.2. Applications of Domain Decomposition techniques 105

4.2 Applications of Domain Decomposition techniques

In this section, we present and analyse numerical results with parallel techniques in four
different test cases.

First, the Euler system of equations is solved for a simple configuration on CPU and we
compare the results with those found using exactly the same second order algorithm, but on
GPUs (see section 3.2.3 for details on GPU implementation).

Secondly, we focus on MIMD architectures. Performance of the different parallel computing
strategies (using OpenMP, MPI) are compared: a) on the inviscid and viscous motion of a 2D
isolated vortex in an uniform free-stream, b) on the case of the sound generation in a 2D mixing
layer, and c) the vortex shedding from rectangles. Space discretisation is achieved with finite
volumes on Cartesian non-uniform grids. The sub-domains overlap region has either half stencil
size (θ = 1 for first order schemes and θ = 2 for second order schemes) or half stencil size plus
one. We use a second order projection method to exchange data in time and in space. All
implicit algorithms are second order in time and space. Common to all schemes is the second
order implicit BDF scheme. Whenever, in the following subsections, we talk about the Newton
scheme, we refer to the Newton-Partitioning algorithm presented in section parallel partitioning
implicit scheme. The linear solver inside the Newton process is solved in parallel inside sub-
domains. The cost is measured by total computational time or in the total number of iterations,
necessary to obtain a given level of accuracy.

4.2.1 GPU versus CPU

The aim of this test is to show that the performance of the presented methods can still be
improved. The methods can be accelerated using GPUs. GPUs can be used to solve a global
problem or a local one using a massive parallel architecture. We shall only solve a mono-domain
Euler system of equations with an explicit second order Runge Kutta method. The Euler fluxes
are computed using the MUSCL second order scheme with a Van Albada limiter. The first
order fluxes are computed with AUSM+-up Advection Upstream Splitting Method) scheme.
The advantage of the AUSM+-up, developed in [69], is that it was conceived to be uniformly
valid for all speed regimes. At this point, it is the only scheme that we have implemented on
the GPU.

We start by solving the global problem on a GPU (NVIDIA Corporation GF110 [Geforce
GTX 580] Compute Capability 2.0) with CUDA, launched from a CPU, and compare its com-
putational cost with one running on a CPU (7.8 GB, 2 Cores at 3.33GHz) with OpenMP.

The computational domain, on fig.4.6, is a tube of size Ω = [0., 10.]× [0., 20.]. We consider
that the tube is infinite in the x−direction (right outflow boundary condition). At the left side,

we impose an inflow velocity, u =
π

5
cos(y − 5), v = 0, at each time step. We consider that the

initial density and pressure are constants of unit size.

We impose a CFL stability condition equal to 0.5 and recompute the time step at each
instant. We stop the simulation after T = 100s. We increase the computational domain size
and show the ratio of the computation on a CPU with 2 cores (OpenMP with the computation
on CPU with one core combined with a GPU, on table 4.2. We show the total computational
cost and the cost of different steps of computation: the time step computation via a minimum
reduction, the computation of numerical convective fluxes (MUSCL + Van Albada + AUSM+-
up), the updates of the boundary and of the solution. We get different performance depending
on the step. It is due to the fine granularity and optimisation of each step.

106 4.2. Applications of Domain Decomposition techniques

Figure 4.6: Initial domain, Ω: physical size and boundaries.

Table 4.2: (CPU 2 Cores + OPENMP computational cost) / (CPU 1 Core + GPU
computational cost) for different steps of computation.

Grid Size Time Step computation 2D Fluxes Update Step Bnd Update Total

130x130 43.08 1.63 8.62 0.31 3.72
260x260 109.26 1.71 15.90 1.58 4.65
525x525 164.83 2.81 40.37 1.38 6.88
1050x1050 392.72 2.58 321.21 2.39 7.80

As can be seen there is a definite gain to be obtained on the CPU-GPU configuration.
The gain increases with the computational domain size. Computation on both configurations
are quite scalable. GPU code is portable on any NVIDIA GPUs using CUDA programming
model, though, it should be noted that performance on GPUs vary a great deal depending on
the GPU specifications. We remark that [Geforce GTX 580] is the first generation of GPUs
capable to compute 3D computations. A recent NVIDIA GPU, such as Kepler or Maxwell,
could improve the performance. Our implementation strategy was to intensively optimise codes
for both parallel or non-parallel solvers. Although, we consider that the previous results are
correct, we admit that comparing results with equivalent solvers is not the best strategy. GPU
and CPU optimisation strategies are not always similar.

4.2.2 Exact solution for Euler equations: 2D isentropic vortex

The second 2D test presented in this chapter is the Isentropic Vortex Evolution based on
Yee’s paper [99] in 1999, for which we will study the numerical diffusion of the presented
schemes. This test is a particularly interesting case for the Euler equations since it provides an
exact solution.

The computational domain is a square of size [−5., 5.]× [−5., 5.]. In the initial configuration
a vortex is placed in the middle of the domain. The mean flow density, velocity and pressure
(ρ∞, u∞, v∞, p∞) are considered to be free stream and the fluid a perfect gas, γ = 1.4, p

ργ = 1.
The values of the density and the pressure are fixed, ρ∞ = p∞ = 1. The vortex is convected
in a specified direction depending on the values of u∞ and v∞. In this particular example, the
results are obtained for a convected vortex in a diagonal direction (u∞, v∞) = (1, 1) with no
shock waves or turbulence. The initial condition equals the mean flow field plus an isentropic

4.2. Applications of Domain Decomposition techniques 107

vortex with no perturbation in entropy:

ρ = (T∞ + δT)
1

γ−1 = (1− (γ−1)β2

8γπ e1−(x2+y2))
1

γ−1

ρu= ρ(u∞ + δu) = ρ(1− β
2πe

1−(x2+y2)
2)

ρv= ρ(v∞ + δv) = ρ(1 + β
2πe

1−(x2+y2)
2)

p = ργ

e = p
γ−1 + 1

2ρ(u
2 + v2)

,

where β is the vortex strength. We suppose that the domain has infinite length and impose
periodic boundary conditions in both x and y direction. At the end of each cycle that lasts 10s
the vortex equals the initial solution.

Figure 4.7: Initial solution of the 2D Isentropic Vortex

The following accuracy study and estimation of computational costs are results on a con-
vective vortex with (u∞, v∞) = (1, 1). The overlap equals half the stencil size (θ = 2). We use
periodic boundary conditions and Dirichlet type coupling conditions. At the end of one cycle,
that lasts 10s, the vortex equals the initial solution.

Accuracy study

Let us begin with an accuracy study of the Euler equations computing L2 and L∞ slopes
of relative errors. First, let us fix the number of fictitious overlapping sub-domains to 2 × 2
and a common time step. We increase the global number of space cells from 40 × 40 cells to
60× 60 cells and 80× 80 cells. When a common time step is used, the adaptive SWR methods
are identical to the classical SWR method. We consider that we have converged when we reach
an error less than a tolerance equal to 1.e− 6 for both Newton and Schwarz stopping criteria.
The Schwarz stopping criteria is a L2 relative error of variations between overlap regions. We
suppose that the overlap region of two neighbour sub-domains should be coincident.

As can be seen in Fig.4.8, all presented methods are second order in time and close to second
order in space, depending on the Van Albada limiter chosen for the MUSCL scheme. Velocity,
pressure and energy errors behave similarly for all presented methods. The method denoted as
Newton in Fig.4.8 is the Newton-Schwarz method using only one Schwarz iteration, it only has
order one accuracy, it converges to a false solution showing that the Schwarz iterative procedure
is a good preconditioner for our scheme.

108 4.2. Applications of Domain Decomposition techniques

Figure 4.8: L2 error over density field

All implicit schemes are stable for large cfl number. A more relevant result to evaluate the
cost is the number of times the local linear system has to be solved for varying CFL number
and varying number of sub-domains.

Computational cost

The number of local linear solves is given by the product between the number of Newton
iterations and the number of Schwarz iterations and it is a good measure of the computational
cost. This cost is a linear function of the number of cells. On Table.4.3 are shown the average
number of local linear solves per time step for the Newton-Schwarz method, the Schwarz-Newton
method and for the SWR-Newton (SWR) method for an increasing number of sub-domains with
a fixed number of reduced size cells (weak scalability). The sub-domain size is fixed to 20× 20
points and the cfl number has the value 0.5. For the SWR-Newton scheme, we choose δt the
same time step on each sub-domain and ∆T = 5δt the time window. The Newton stopping
tolerance is set to 1e− 6. The Schwarz convergence tolerance is varying as shown on Table.4.3.

We solve implicitly, the system of Euler or Navier–Stokes equations using a Newton based
method and an approximated L+D+ U method to solve the resulting linear system. The size
of the linear system is fixed inside each sub-domain. Consequently, we can use the linear solver
as a first unit of measuring the weak scalability.

When varying the Schwarz convergence tolerance we observe an important decrease of the
number of linear solves when the SWR method is used to solve the system of equations. Between
the Schwarz tolerance set at 1.e − 6 and 1.e − 2 we gain a factor more than 3 when the SWR
method is used, but only a factor less than 2 when the Newton-Schwarz or the Schwarz-Newton
method is used. We can observe that, for the same tolerance, the number of linear solvers is
not constant thus the variation can be explained by the different space steps when increasing
the number of sub-domains.

On Table.4.3, the communication between 4 processors is done, using the SWR-Newton
scheme on an average of 18.6 times per time window. In order to reach the same time window
the Schwarz-Newton scheme communicates in average 35.45 times and the Newton-Schwarz
scheme communicates in average 250 times.

4.2. Applications of Domain Decomposition techniques 109

Table 4.3: Weak scaling of the schemes. Computational costs

Schwarz tol = 1.e-6 Schwarz tol= 1.e-3 Schwarz tol = 1.e-2

Scheme Iterations\Sub-domains 4 9 16 4 9 16 4 9 16

Newton-Schwarz Newton iterations 8.48 8.11 6.94 8.48 8.11 6.93 8.48 8.11 9.29

Newton-Schwarz Schwarz iterations 5.89 6.28 6.41 5.26 5.70 5.78 4.71 5.00 5.66

Newton-Schwarz Linear Solvers 50.00 51.02 44.51 44.64 46.33 40.15 39.89 40.63 52.62

Schwarz-Newton Newton iterations 3.07 2.72 2.28 5.00 4.18 3.28 5.93 4.90 5.31

Schwarz-Newton Schwarz iterations 7.09 7.49 7.15 3.55 4.0 4.0 2.46 3.0 3.0

Schwarz-Newton Linear Solvers 21.79 20.40 16.31 17.78 16.75 13.15 14.63 14.72 15.93

SWR Newton iterations 7.54 6.62 5.41 7.52 6.61 5.37 7.49 6.56 7.13

SWR Schwarz iterations 18.6 14.28 19.25 7.08 7.98 7.44 4.36 4.77 5.66

SWR Linear Solvers 140.6 95.3 104.28 53.28 52.78 39.99 32.75 31.43 40.40

On Table. 4.4 are shown the average number of local linear solves per time step for all
presented methods for an increasing number of sub-domains with a fixed global domain size
(strong scalability) of 120x120 cells.

Table 4.4: Strong scaling of the schemes. Computational costs

Schwarz tol = 1.e-6 Schwarz tol= 1.e-3 Schwarz tol = 1.e-2

Scheme Iterations\Sub-domains 4 9 16 4 9 16 4 9 16

Newton-Schwarz Newton iterations 6.04 6.05 6.06 6.04 6.05 6.06 6.04 6.05 6.06

Newton-Schwarz Schwarz iterations 6.27 6.56 6.73 5.77 5.89 6.23 4.80 5.01 5.22

Newton-Schwarz Linear Solvers 37.94 39.77 40.85 34.95 35.67 37.83 29.07 30.35 31.72

Schwarz-Newton Newton iterations 2.57 2.33 2.17 3.43 3.55 3.33 5.08 4.64 4.10

Schwarz-Newton Schwarz iterations 6.78 7.04 7.31 4.42 3.67 3.59 2.03 2.0 2.30

Schwarz-Newton Linear Solvers 17.46 16.43 15.90 14.75 12.64 11.98 10.35 9.28 9.46

SWR Newton iterations 6.20 5.57 5.31 6.18 5.54 5.27 6.12 5.48 5.21

SWR Schwarz iterations 17.28 18.60 19.01 10.57 8.81 7.23 3.70 4.00 4.27

SWR Linear Solvers 107.24 103.68 103.68 65.27 49.77 38.12 22.69 21.97 22.28

These two tables show the good strong and weak scalability of all considered methods. It
should be added that for large data problems, the communications between processors may be
costly, and this cost increases when GPUs are associated with CPUs. When GPUs computation
is involved the communication may be more expensive then the local computation.

The SWR method is ideal for clusters with high latencies.

One aim of this study is to find a method that converges independently of the number of
sub-domains for the same number of computations. In this particular case, all methods behave
well, the number of local linear solves even decreases compared to the increasing number of sub-
domains. Yet, the number of Schwarz iterations is large compared to the number of Newton
iterations. This is probably due to the poor Dirichlet type coupling conditions that we use
and could be corrected using higher order coupling conditions such as unsteady Robin type
conditions. However, our strategy to impose Robin type transmission conditions, presented in
section 2.5, is unstable for overlap of half the stencil size.

The adaptive time step SWRmethod converges to the solution in exactly the same way as the
fixed time step SWR method. The gain of the SWR method comes from the improved stability
of the scheme since the time step is recomputed at each iteration thus less communication
between the sub-domains as it appears that when the coupling conditions are improved, larger
times steps are usually needed. This also leads to less CPU memory when fewer coupling
conditions need to be stored.

110 4.2. Applications of Domain Decomposition techniques

Study of transmission conditions for overlap of size θ = 3

In the previous paragraph we have seen that, in order to achieve expected results, one does
not need to fully converge in the Schwarz process. Moreover, the implicit solver is an Inexact
Newton which we do not expect to fully converge. We propose then to check the influence of the
Dirichlet (Dirichlet type transmission conditions for both convective and diffusive fluxes) and
Robin (Robin type transmission conditions for both convective and diffusive fluxes) transmis-
sions conditions in the case of overlapping sub-domains with overlap θ = 3. We compare results
found on different configurations and number of equal sized sub-domains (two sub-domains and
four sub-domains) with Dirichlet and Robin type transmission conditions. We vary the Robin
coefficient which is supposed global (equal Robin coefficient in each sub-domain).

a) Two sub-domains

First, we split the global domain Ω = [−5, 5]× [−5, 5] in two sub-domains of equal size 1800
cells, and distribution: Ω1 = [−5,−2]× [−5., 5.] of size 30× 60 cells, and Ω2 = [0., 5.]× [−2., 5.]
of size 30×60 cells. We ask a precision of 1e−5 in the Newton convergence test and one of 1e−2
for the Schwarz process stopping criteria. Also, we replace the previous stopping criteria, based
on the relative error norm on the variation between overlapping cells with the one presented
in the section 2.6 based on the variation error of the extremes cells surrounding the meshes
(excepting the ghost cells).

The results for the classical schemes (Newton-Partitioning, Newton-Schwarz and Schwarz-
Newton) are shown on fig.4.9. We observe that the results found with the Robin type condition
are similar to those found with Dirichlet type condition and this for any Robin coefficient.
Although we have established that the classical partitioning Newton method converges to a
different solution of lower accuracy, we show its results since it is the cheaper one and can be
seen as the best scenario in terms of minimum number of linear solves.

Figure 4.9: Average number of linear solves per iterations for 2 non-matching sub-domains.

On fig.4.12 we can see the results found with the SWR methods. 0 Level SWR represents
the SWR method

4.2. Applications of Domain Decomposition techniques 111

Figure 4.10: Average number of linear solves per iterations for 2 non-matching sub-domains.
0LevelSWR represents the classical SWR method with fixed discretisation inside a time

window. 1LevelSWR is the one level adaptivity SWR method: the time steps inside a window
are locally computed at the first iteration. 2LevelSWR is the SWR method with two levels of

adaptivity: the time steps are locally computed at each time iterations.

For the SWR methods, the results can be seen on fig.4.12 and zoomed on fig.4.13. All three
presented methods: the classical SWR with fixed time step, the 1 level of adaptivity SWR and
the 2 level of adaptivity SWR (algorithms described in section 2.3) give similar results when the
Dirichlet transmission condition is used. When a Robin type transmissive condition is used, the
results are improved for all methods for Robin coefficients smaller than 1

min(∆x,∆y) (equal to

10 in this case). The classical SWR with fixed time step (the time step is fixed to the smallest
one and it is the same in each sub-domain) shows better results when Robin type transmission
conditions are imposed, for any Robin coefficient.

b) Four sub-domains

We split the global domain Ω = [−5, 5]× [−5, 5] in four sub-domains of equal size 1800 cells,
but unequal distribution: Ω11 = [−5,−2] × [−5, 0] of size 30 × 60 cells, Ω12 = [−2, 5] × [−5, 0]
of size 45 × 40 cells, Ω21 = [−5, 0] × [−5, 0] of size 30 × 60 cells, Ω11 = [0, 5] × [−5, 0] of size
45× 40 cells. We ask a precision of 1e− 5 in the Newton convergence test and one of 1e− 2 for
the Schwarz process stopping criteria. The stopping criteria is based on the variation error of
the extremes cells surrounding the meshes (excepting the ghost cells).

The results for the classical schemes are shown on fig.4.11. We observe that the results
found with the Robin type condition are at most as good as the results found with Dirichlet
type condition and this for any Robin coefficient.

For the SWR methods, the results can be seen on fig.4.12 and zoomed on fig.4.13. All three
SWR methods: the classical SWR with fixed time step, the 1 level of adaptivity SWR and the 2
levels of adaptivity SWR give similar results when the Dirichlet transmission condition is used.
When a Robin type transmissive condition is used, the results are improved for all methods
for Robin coefficients smaller than 1

min(∆x,∆y) (equal to 10). For the classical SWR with fixed

112 4.2. Applications of Domain Decomposition techniques

Figure 4.11: Average number of linear solves per iterations for 4 non-matching sub-domains.

Figure 4.12: Average number of linear solves per iterations for 4 non-matching sub-domains.

time step (the time step is fixed to the smallest one and it is the same in each sub-domain), the
results are improved for any Robin coefficient.

4.2. Applications of Domain Decomposition techniques 113

Figure 4.13: Average number of linear solves per iterations for 4 non-matching sub-domains.
Zoom of fig 4.12.

4.2.3 Sound generation in a 2D low-Reynolds mixing layer

Another case presented here if the case of a 2D low-Reynolds mixing layer where a high
precision scheme is required. It is studied especially focusing on the acoustic waves emitted by
the vortex pairings in a perturbed mixing layer.

Figure 4.14: Mixing Layer acoustic pressure field. Computational domain with sponge layer.

The flow configuration is the same as the one proposed by Colonius and al [24] consisting

114 4.2. Applications of Domain Decomposition techniques

Figure 4.15: Mixing Layer acoustic pressure field. Initial domain (zoom of the fig.4.14).

in a slightly perturbed hyperbolic tangential shape velocity profile

u = ū + 0.125 tanh(2y),

with ū = (u∞ + u−∞)/2 and u∞ = 0.5, u−∞ = 0.25, and ρ∞ = ρ−∞ = 1 and p∞ = p−∞ =
1/γ, respectively, with γ = 1.4. We fix the Reynolds number at 250 and add a sponge layer
as shown in Fig.4.14 to absorb the flow. This is a particularly sensitive case in acoustics and
phenomena are quite different within each sub-domain.

This is a particularly sensitive case in acoustics and it is an example of domains with regions
of high activity and regions close to equilibrium for which the use of adaptive time steps is quite
pertinent.

On fig.4.16, fig.4.17 and fig.4.19 we show the evolution of the solution found with the Navier–
Stokes solver. We show the vorticity and the acoustic pressure. We observe the appearance of
vortices, which ends rolling on themselves. In the last figure (fig.4.19) we can see the absorbing
effect of the sponge layer. The diffusion is entirely numerical due to the coarse mesh inside
the sponge region. On fig.4.17 we show the solution at instant t = 200 found with the Euler
solver. We observe some kind of perturbation that seems to appear from the outflow. We have
no explanation for this phenomena, but, it was observed by other researchers as well ([55]).

Figure 4.16: Mixing layer acoustic pressure field (top) and vorticity (bottom). Zoom over the
computational domain. Solution of the Navier–Stokes equations with and 1 level adaptive

SWR method. Plot at instant 100s.

4.2. Applications of Domain Decomposition techniques 115

Figure 4.17: Mixing layer acoustic pressure field (top) and vorticity (bottom). Zoom over the
computational domain. Solution of the Navier–Stokes equations with and 1 level adaptive

SWR method. Plot at instant 200s.

Figure 4.18: Mixing layer acoustic pressure field (top) and vorticity (bottom). Zoom over the
computational domain. Solution of the Euler equations with and 1 level adaptive SWR

method. Plot at instant 200s.

Figure 4.19: Mixing layer acoustic pressure field (top) and vorticity (bottom). Zoom over the
computational domain. Solution of the Navier–Stokes equations with and 1 level adaptive

SWR method. Plot at instant 400s.

Our results compare well with those obtained with an explicit third order Runge Kutta
Discontinuous Galerkin solver developed by L. Halpern, J. Ryan and M. Borrel in [55].

116 4.2. Applications of Domain Decomposition techniques

At the beginning of the simulations, for a large number of iterations any perturbation crosses
the sub-domains interfaces. The presented results are issued of simulations started at instant
t = 200s and ended at instant t = 300s. The perturbed solution was computed with an
explicit second order Runge-Kutta method. We have fixed the stopping criterion in the Newton
algorithm to a tolerance of 1.e− 4 and the stopping criterion of the Schwarz decomposition to
a tolerance of 1.e− 2, what we believe it gives an acceptable approximated solution.

The global domain is first separated in four regions, the interest fine region of size [0, 200]×
[−10, 10], a first sponge region [200, 400] × [−10, 10] and two extreme sponge regions of sizes
[−200,−10]× [0, 400] and [10, 200]× [0, 400]. The global domain was divided in 22 sub-domains:
18 sub-domains of equal size 107 × 21 cells in the middle region and 4 sponge sub-domains
with 107× 41 in the sponge area. In the sponge area, the space steps are computed following a
geometric progression from left to right and from the middle of the global domain to the bottom
and the top of it. Inside the fine sub-domains the space steps are of equal size. The sponge
sub-domains are chosen to be two times greater since their time steps will be greater than the
time steps in the fine region, the region of interest in our case.

The linear solves is no longer a good measure since sub-domains with different size have been
computed. In 4.5 we vary the time window length and show only the total computational time
cost for four methods: Newton-Schwarz, Schwarz-Newton, SWR with one level of adaptivity
and the SWR with two levels of accuracy.

Table 4.5: Global computational costs for Schwarz tol = 1.e-2 and Newton tol=1.e-4

∆T = 5δt

Scheme \cfl 0.5 1 2 5 10

Newton-Schwarz 333.56 167.65 116.45 24.20 18.79

Schwarz-Newton 129.97 76.07 89.41 26.76 10.45

1 Level-SWR 189.13 189.65 121.77 21.90 5.87

2 Level-SWR 189.82 191.08 121.54 21.86 5.12

SWR appears more efficient as soon as we increase either the cfl or the time window size.

On fig.4.6 we compare results found with overlap θ = 3 cells for a cfl stability criteria equal
to 1. We used the same four regions of computational domain (of global size 600 × 550) and
divide the domain in 14 sub-domains. In order to be coherent, the computation starts at time
instant t = 50s. Results are first found with a Dirichlet boundary condition and second with a
Robin boundary condition. The Robin coefficient was chosen equal to 1√

min(∆x,∆y)
= 0.82.

Table 4.6: Global computational costs for Schwarz tol = 1.e-2 and Newton tol=1.e-5 and for
1s of physical time.

∆T = 5δt

Scheme \Boundary Dirichlet Robin

Newton 467,21 474,72

Newton-Schwarz 1469,53 1448,45

Schwarz-Newton 454,82 501,03

0 Level-SWR 579,18 581,24

1 Level-SWR 374,17 369,35

2 Level-SWR 377,40 370,12

For this configuration, the computational cost found with the Robin boundary condition are
comparable with the ones found with the Dirichlet boundary condition.

4.3. Vortex shedding from rectangles 117

4.3 Vortex shedding from rectangles

This last test has the purpose of presenting numerical solutions for stiffer problems, proving
that the proposed schemes adapt well to more complicated configurations and work for high
number of sub-domains. Computations have been carried out for 2D time-depending laminar
flow around rectangles in infinite domains. The unsteady character of the flow and the vortex
shedding motion are making the numerical calculations very difficult. The numerical stability
condition must be very low (cfl=.2 for explicit methods and cfl=1 for implicit methods in our
computations).

We consider that the flow starts from rest. As vorticity diffuses out from the body surface
the boundary layer thickness until the flow separates. This phenomena appears almost instan-
taneously at the corners of the obstacle. Next, as the vorticity keeps diffusing, a pair of vortices
are formed and curl up on themselves. Next, an asymmetry develops and vortices of opposite
signs are shed alternatively. Von Karman was the first to analyse and interpret the vortex street
as an intrinsic property of wake structure.

The initial solution and inflow conditions are uniform, non-fluctuating velocity profile.
Transmissible boundary conditions are imposed in the bottom, top and the right boundaries of
the computational domain. Around the rectangle no-slip conditions are imposed. This condition
is ensured by a refined grid around the rectangular body.

Studies of flow past rectangular prisms have been made for a wide range of real life ap-
plications [28, 9, 80, 92, 86] like the aerodynamic drag reduction for air-planes, road vehicle,
damage predictions for inclined air-foils, ocean pipe line or risers, off-shore platform supports,
suspension bridges, steel towers or smoke stacks, etc. The need for this kind of simulations
in the case of aerodynamic drag reduction for air-planes is to ensure suitable periods of elapse
between air-crafts landings. Tests with moving rectangular micro-prism has been conducted
with the aim of energy harvesting microresonator based on the forces generated by the Karman
street around the bodies. In turbulent regime, due to the large frequency range of turbulence for
high Reynolds numbers, accurate resolutions are difficult to obtain with large eddy simulations,
ideally a direct numerical simulation should be used.

Different behaviours can be found for high or low Reynolds numbers, different size of bodies,
angle of attack.

Initial configuration. Let us fix the domain size at Ω = [0., 30.] × [−6., 6.] as on fig.4.20.
We add an unit rectangular solid of origin (4.,−0.5), centred in the vertical direction of the
domain. We fix a uniform initial solution of primitive variables (ρ0, u0, v0, p0).

Figure 4.20: Computational domain of size Ω = (0., 30.)× (−6., 6.). Centred in the vertical
direction we place a rectangle of unit size and coordinates Ωsolide = (4., 5.)× (−.5, .5).

118 4.3. Vortex shedding from rectangles











































ρ0 = 1. the initial density,
u0 = 1. the initial velocity in the x-direction,
v0 = 0. the initial velocity in the y-direction,

Ma = 0.33 the initial Mach number,
γ = 1.4 the ratio of specific heat for an ideal gas,

p0 = ρu2

γMa2
the initial pressure,

Re = 250 the Reynolds number.

At each time step we impose an inflow of equal values to the initial solution. We suppose
that the domain is infinite in the x direction. At right, top and bottom we impose transmissible
boundaries conditions. At the interfaces around the rectangle we impose no-slip conditions:
~u.n = 0 and ∇~u = 0.

For sharp-edged bodies numerical problems may appear at the corners, mathematical sin-
gularities yield physically inaccurate flow properties. From a numerical point of view these
singularities should be treated separately with a more precise numerical scheme than in the
rest of the domain. In our case we minimise as possible this phenomena using very fine meshes
around the body (represented on fig.4.21). Another sensibility is coming from the structured
meshes that force us to separate sub-domains in the corner of the rectangle and impose oscilla-
tions at artificial boundaries, another difficulty that the transmissible boundary condition must
solve. This problem could be solved for unstructured meshes.

Figure 4.21: Computational domain mesh. The mesh is more refined around the body because
of large flow oscillations in this region. We distinguish 8 different regions, each one of them

can become a sub-domain or be further partitioned in sub-domains.

Figures 4.22 to 4.25 shows the flow evolution in time from 2.94 seconds to 50 seconds. The
solution of the Navier–Stokes system of equations was built with a second order Runge Kutta
method. The time step was recomputed after each time update to satisfy a CFL number equal
to 0.2. We note that, for a CFL number greater the 0.2 the solution failed to converge due to
numerical instabilities, implicit methods are required.

On figure 4.22, we observe a separation of two opposite sign vorticity flows. Two vortices
are forming, but they do not seem to interact. Although the body is vertically centred, after few
more iterations one vortex (fig.4.23) becomes more important and dominates the other. The
two vortices separate and curl up on themselves. The phenomena is continuously reproduced
(fig.4.24 and fig.4.25) until we observe a stabilised phenomena where opposite vortices are
rolling one after another. We observe regions of concentrated vorticity. Moreover, the pressure
variation along the side walls of the body is much higher than the one along the bottom base
and top walls.

According to the initial mesh splitting, the computational domain is partitioned in 20 sub-
domains as following:

4.3. Vortex shedding from rectangles 119

Figure 4.22: Vorticity flow past a rectangle. Intermediary solution plotted after 1000
iterations, equivalent to the instant T = 2.94s of the simulation. Around the square, two

opposite vorticity sign flows are separated.

Figure 4.23: Vorticity flow past a rectangle. Intermediary solution at instant T = 14.20s
computed with an explicit second order Runge Kutta scheme. The bottom vortex increases

faster then the above one and starts rolling over this last one.

Figure 4.24: Vorticity flow past a rectangle. Intermediary solution at instant T = 29.41s
computed with an explicit second order Runge Kutta scheme. We observe four completely
separated vortices, a fifth one that is almost separated and two others that begin to curl on

themselves.

• Region 1 becomes Ω1 = [0., 4.]× [−6.,−0.5] of size 80× 120 cells;

• Region 2 becomes Ω2 = [4., 5.]× [−6.,−0.5] of size 40× 120 cells;

• Region 3 is split according to the x direction into 5 sub-domains ∪
3≤i≤7

Ωi = [5., 30.] ×

120 4.3. Vortex shedding from rectangles

Figure 4.25: Vorticity flow past a rectangle. Solution at final time T = 50s computed with an
explicit second order Runge Kutta scheme. Some vortices are leaving the domain, others are

stabilised and roll one after each other.

[−6.,−0.5] of total size 500× 110 cells;

• Region 4 becomes Ω8 = [0., 4.]× [−0.5, 0.5] of size 80× 40 cells;

• Region 5 is split according to the x direction into 5 sub-domains ∪9≤i≤13Ωi = [5., 30.] ×
[−0.5, 0.5] of total size 500× 30 cells;

• Region 6 becomes Ω14 = [0., 4.]× [0.5, 6.] of size 80× 120 cells;

• Region 7 becomes Ω15 = [4., 5.]× [0.5, 6.] of size 40× 120 cells;

• Region 8 is split according to the x direction into 5 sub-domains ∪
16≤i≤20

Ωi = [5., 30.] ×
[0.5, 6.] of total size 500× 110 cells.

We get a total of 149900 mesh cells, without counting the additional overlap and fictitious
overlap (ghost cells). Although, the sub-domain sizes are no longer equal, we decide to take
a look at the average number of linear solves for simulations with Dirichlet and Robin type
transmission conditions. We are interested in a general view over the computational cost and
more particular we are searching for the more expensive sub-domain. We discuss solutions of
the Navier–Stokes equations found with the second order implicit BDF. The convective fluxes
are computed with a second order MUSCL method combined with an AUSM+−up scheme and
a Van Albada limiter. The linear system is solved with the relaxation method in 2 iterations.
For each Schwarz process the relative tolerance is of 1e−3. We ask the Inexact Newton process
to stop when tolerance of 1e − 5. Based on previous discussions we consider that, for inexact
methods, there is no need to ask for a smaller tolerance.

For the classical parallel methods, Newton (or Newton-Schwarz with one Schwarz iteration),
Newton-Schwarz and Schwarz-Newton we plot the minimum (fig.4.28), maximum (fig.4.27) and
overall average number (fig.4.26) of linear solvers needed to compute one iteration. When the
partitioned Newton or Schwarz-Newton method is used, we get the expected result, the most
active sub-domains are those close to the bluff body and the less expensive are those far away
from the body. We have manually unbalanced the sub-domains to try to synchronise their tasks.
In what concerns the resolution with Robin transmission conditions, we can say only that for
Robin coefficients with values between 1√

min(∆x,∆y)
= 3.4 and 1

min(∆x,∆y) = 12.14 is slightly

more efficient or as efficient as the resolution with the Dirichlet type boundary condition. For
Schwarz-Newton method, the use of a Robin type transmission condition is less efficient for all
tested coefficients. Moreover, all sub-domains require the same number of linear solvers. In
this case the computational cost equals the computational cost of one of larger size sub-domain
(Ωi, 3 ≤ i ≤ 7 and 16 ≤ i ≤ 20) and the communication cost between sub-domains. One
would get a better result for well-balanced sub-domains. I believe that these better results for

4.3. Vortex shedding from rectangles 121

Figure 4.26: Average number of linear solves per time iteration and over all sub-domains.

Figure 4.27: Average number of linear solves per time iteration for the sub-domain 8 (right of
the rectangle). This sub-domain is the one that needs the biggest number of linear solves to
achieve the desired relative error. For the Newton-Schwarz method all sub-domains need the

same number of linear solves.

well-balanced sub-domains is due to the global character of the non-linear solver which is more
sensitive than the linear solver.

122 4.3. Vortex shedding from rectangles

Figure 4.28: Average number of linear solves per time iteration for the sub-domains 6, 12 and
19. Strangely, the less number of linear solvers is required not by the last columns of

sub-domains, as was expected, but the column before the last one. For the Newton-Schwarz
method all sub-domains need the same number of linear solves.

Figure 4.29: Average number of linear solves per time iteration and over all sub-domains.

The SWR methods were computed with the fixed time window of size 5 times the smallest
global time step, ∆T = 5δt. When Dirichlet type transmission conditions are used, there is no

4.3. Vortex shedding from rectangles 123

Figure 4.30: Average number of linear solves per time iteration for the sub-domain 8 (right of
the rectangle). As for the classical methods, the sub-domain 8 is the one that requires more

computations.

Figure 4.31: Average number of linear solves per time iteration for the sub-domains 6,12,19.
These sub-domains are the one requiring the smallest number of linear solvers at it is the same

for resolutions with Dirichlet or Robin type boundary transmissions.

difference between the two adaptive SWR methods and the one with fixed time disretisation.

124 4.3. Vortex shedding from rectangles

The SWR method with the same fix time step in each sub-domains gives the best results in
terms of number of linear solvers. The Robin transmission condition reduces the costs for the

same interval range

[

1√
min(∆x,∆y)

, 1
min(∆x,∆y)

]

of the Robin coefficient The Robin coefficient

λRobin from ∂u
∂n + λRobinu = g is globally computed.

Figure 4.32: Computational cost (in seconds) to achieve one second of flow evolution with
Newton-Schwarz scheme. We give results for different values of Robin coefficient.

Although, the average number of linear solves per iteration does not oscillate very much
with different Robin coefficient, when we take a look at the computational cost of one second
(fig.4.32, fig.4.33 and fig.4.34) we see that it can have a big impact. After having seen that the
Newton-Schwarz method has the highest number of linear solves we expect it to be the most
costly. Indeed, it is the result that we obtain on fig.4.32, it needs almost one hour to reach one
second. And this results get worse when Robin conditions are used, independently of the Robin
coefficient. Eventhough, the Robin condition reduces only slightly the number of linear solver
per iteration, when all these reductions are cumulated we obtain an important reduction of the
computational cost. The difference between the computational cost of a partitioned Newton
or Schwarz-Newton methods resolution with Dirichlet transmission conditions, and the same
methods with Robin transmission condition and best Robin coefficient increases in time.

In the 1 level and 2 levels of adaptivity, the SWR method is very expensive for a small
Robin coefficient (0.5 on the figure). They have the best cost reduction for Robin coefficients
in the interval [1√

min(∆x,∆y)
, 1
min(∆x,∆y)]. For a well chosen Robin coefficient the SWR method

is the cheapest one. The results of the SWR with 0 level of adaptivity, meaning with fixed
discretisation of each time window, and the same discretisation inside each sub-domain are
comparable with those obtained by a Schwarz- Newton method with an optimal Robin condition.
What happened? We have seen that the average number of linear solvers per iteration is smaller
than for the adaptive SWR methods. But, the local time step is the same in each sub-domain,
thus, each sub-domain computes 5 time steps (in this particular case) to reach the end of one
time window. In the case of 1 level adaptive SWR, the smallest sub-domain can compute 5 or
maybe even less time steps to reach the end of a time window, the largest sub-domain can also

4.3. Vortex shedding from rectangles 125

Figure 4.33: Computational cost (in seconds) to achieve one second of flow evolution with the
partitioning Newton scheme and the Schwarz-Newton scheme. We vary the Robin coefficient.

Figure 4.34: Computational cost (in seconds) to achieve one second of flow evolution with
different values of Robin coefficient. Simulations are computed with all three, fixed and

adaptive, SWR methods.

compute less than 5 time steps. And this is what happens when the CFL condition is locally
satisfied, the far away sub-domains from the solid body reach a time window in 2 to 3 time

126 4.3. Vortex shedding from rectangles

steps, instead of 5.

Nevertheless, the SWR methods, using any of the proposed boundary conditions reduce
the computational costs to half the costs of a classical Schwarz-Newton method and much
more over the of Newton-Schwarz method. This result is certainly due to the fewer number of
communications between the sub-domains, but also to the local adaptivity of the time step. For
this application, there is no difference between the 1 level and 2 level adaptive SWR methods.

The last simulation was conducted with the 104 sub-domains. The computational domain
was partitioned as:

• Region 1 is split according to the y−direction into 3 sub-domains ∪
1≤i≤3

Ωi = [0., 2.] ×
[−6.,−0.5] of total size 100× 150 cells;

• Region 2 is split according to the y−direction into 3 sub-domains ∪
4≤i≤6

Ωi = [2., 3.] ×
[−6.,−0.5] of tocal size 60× 150 cells;

• Region 3 is split into 13 × 3 sub-domains ∪
6≤i≤44

Ωi = [3., 30.] × [−6.,−0.5] of total size
814× 150 cells;

• Region 4 becomes Ω45 = [0., 2.]× [−0.5, 0.5] of size 100× 60 cells;

• Region 5 is split according to the x−direction into 13 sub-domains 4 ∪
6≤i≤59

Ωi = [3., 30.]×
[−0.5, 0.5] of total size 814× 50 cells;

• Region 6 is split according to the y−direction into 3 sub-domains ∪
60≤i≤62

= [0., 2.]×[0.5, 6.]

of size 100× 150 cells;

• Region 7 is split according to the y−direction into 3 sub-domains ∪
63≤i≤65

= [2., 3.]×[0.5, 6.]

of size 60× 150 cells;

• Region 8 is split into 13 × 3 sub-domains ∪
66≤i≤104

Ωi = [5., 30.] × [0.5, 6.] of total size

814× 150 cells.

The computational domain contains 347040 cell, without counting the fictitious ones. Since
a unit square is imposed closer to the inflow boundary, the vortices appear earlier. They can
be seen on fig.4.35 and fig.4.36. On table 4.7, we only present results issued from Dirichlet type
boundary condition. The time domain is fixed to [0, 10]. The time window inside the SWR
methods equals 5 times the smallest local time step. The results are consistent with the previous
shedding test. The SWR methods reduce consistently the computational cost. The results from
the two adaptive SWR methods are comparable and their computational cost is half the cost
of the initial partitioning scheme. The classical SWR method, with fixed time steps is rather
close to the Schwarz-Newton method in term of computational costs. The Newton -Schwarz
method, hardly, manages to give a result and it is very expensive. This test allows us to validate
the methods on large number of sub-domains, and show that the adaptive SWR methods are
efficient on large number of sub-domains of rather small sizes.

Table 4.7: Global computational costs for Schwarz tol = 1.e-2 and Newton tol=1.e-5 and for
10s of physical time.

∆T = 5δt

Scheme \Boundary Dirichlet

Newton 14055.04

Newton-Schwarz 78894.81

Schwarz-Newton 14246.54

0 Level-SWR 7994.34

1 Level-SWR 8004.53

2 Level-SWR 13040.13

4.3. Vortex shedding from rectangles 127

Figure 4.35: Vorticity flow past a rectangle. Solution at instant T = 10s computed with the 2
level SWR implicit scheme. The unit square is closer to the border, at position [2,−.5].

Figure 4.36: Vorticity flow past a rectangle. Solution at instant T = 20.5s computed with the
2 level SWR implicit scheme. The unit square is closer to the border, at position [2,−.5].

On table 4.8, we compare computational costs for simulations with Dirichlet and Robin type
transmission conditions. The simulation begins at instant t = 20 seconds and ends after 0.5
seconds.

Table 4.8: Global computational costs for Schwarz tol = 1.e-2 and Newton tol=1.e-5 and for
.5 seconds.

∆T = 5δt

Scheme \Boundary Dirichlet Robin (coeff= 1√
min(∆x,∆y)

) Robin (coeff= 1
min(∆x,∆y))

Newton 960.42 948.58 954.82

Newton-Schwarz 3184.07 14400.83 10320.02

Schwarz-Newton 982.15 981.82 984.57

0 Level-SWR 924.28 921.96 920.96

1 Level-SWR 562.59 576.24 528.18

2 Level-SWR 562.46 576.92 528.96

The last result presented in this work, on table 4.9, is found with the explicit Navier–Stokes
solver. We have compared the computational cost with the second order Runge Kutta method
and the SWR methods applied to the second order Runge Kutta method. The tolerance in
the Schwarz stopping criteria equals 1.e − 2. The computation begins at t = 20s and stops
at t = 20.5s. The transmission conditions are of Dirichlet type. The adaptive SWR methods
reduce almost by half the computational cost. The diminishing ratio is similar with the one

128 4.3. Vortex shedding from rectangles

found with the BDF method.

Table 4.9: Global computational costs with the second order explicit solvers for a duration of
0.5 seconds.

∆T = 5δt

RK2 3382.06

0 Level RK2 3168.98

1 Level RK2 1830.68

2 Level RK2 1832.12

To conclude in this chapter, the uniform flow simulations were used as applications to check
that the code is fully operational, to check the efficiency of classical methods and the one of
the improved domain decomposition methods. We were mostly interested in the analysis of
the impact of the SWR methods over the total computational cost. We observed that, in
simulations that apply to the SWR methods, the adaptive SWR methods consistently reduce
the computational cost. We mean simulations where the computational domain is split in sub-
domains with different level of activity, such as the mixing layer case or the vortex shedding
around rectangles. The case of the 2D isentropic vortex allowed us to study the accuracy and
the convergence of the SWR methods.

Conclusion and Perspectives

To reproduce and understand real-life fluid dynamics simulations, issued of phenomena more
and more complex, requires the treatment of an increased amount of data and higher numerical
precision. Although we dispose of a large variety of computer resources, architectures and
capabilities, the main issue remains the memory limit and huge computational costs. Numerical
algorithms that replicate phenomena with high fidelity are no longer sufficient. They must be
conceived to use and adapt to all existent hardware. During this three years period we were
interested in the parallel approach of a direct numerical simulation of compressible flows. A
CFD code was built to be easily incorporated in any industrial code, starting with the Onera’s
software elsA. We have studied the resolution of non-linear problems resulting from explicit and
implicit methods that discretise the Euler and the compressible Navier–Stokes equations. We
restrained ourselves to the study of the finite volume method applied to Cartesian meshes, often
used in CFD codes.

Everything should be made as simple as possible, but no simpler (Einstein). Our aim was an
easy and fast incorporation in any industrial code. It means that classical solvers must remain
as intact as possible. We needed to find methods that efficiently parallel compute a Navier–
Stokes solver with as little modification as possible. Inside elsA, the parallelisation is made
using partitioning methods, overlapping or non-overlapping sub-domains and communicate by
messages that are stored in fictitious mesh cells. It allows each proper cell (except fictitious
cells) to the domain to be computed with the same accuracy order as any interior cell. This
was our main strategy: use fictitious or ghost cells to fulfill physical and artificial boundary
conditions. Fictitious cells imply dealing with overlapping sub-domains. The Schwarz based
domain decomposition methods are well suited to parallel computing overlapping domains.
They were studied for both explicit and implicit numerical schemes in the second chapter
of this manuscript. When implicit schemes are used to solve the Navier–Stokes system of
equations (the second order BDF method), the algorithm can be seen as a three step algorithm:
i) discretisation in time, ii) solving the resulting non-linear system and iii) solving the resulting
linear system. Three different methods were immediately distinguished: partitioning Newton,
Newton-Schwarz and Schwarz-Newton. As their name suggest, they act on steps ii) and iii) of
the algorithm. The first one is used in elsA, the next two are popular algorithms, especially when
Krylov methods are used to solve the linear system of equations. A fourth method, discussed in
chapter II, is the SWR method and adds the time scale into the parallelisation. It decomposes
the global domain even before the beginning of the algorithm. First, the domain decomposition
is made and second, each sub-domain is solved in parallel with its local time discretisation, non-
linear and linear solver. Time windowing techniques were created to ensure stability over the
global domain. Our attention focused on this method and two more flexibilities were proposed.
The first one, called 1 level SWR, automatically computes local time steps at the first window
iterate. The second one, called 2 level SWR, automatically adapts local time steps inside each
window iterate.

Because of its flexibility, the SWR methods adapt to different computer resources. On
distributed memory (MPI) they are optimal, as sub-domains, located on different processors,
do not communicate at each time step, but only at the end of a time window. Sub-domains

129

130 4.3. Vortex shedding from rectangles

can be of different size and the SWR methods are still efficient. Locally, parallel techniques
(loop parallelisation with OpenMP) can be done on a maximum number of available processes.
In chapter III, we discussed the implementation of these methods on shared, distributed and
mixed memory. The GPU was the most recent notion of architecture. These many architectural
levels force the developer to review its algorithm before deciding on its portability. We have
implemented and illustrated a simple mono-domain second order Runge Kutta solver, working
on the Nvidia GPUs (CUDA programming). We were able to decide which one of the domain
decomposition method is most adapted to GPU programming. The communications between
CPU and GPU are the most expensive step of a multi-GPU implementation. The SWR methods
are built to minimise communications between sub-domains, thus they become very interesting
on multi-GPU.

Moreover, convergence can be improved in a simple way, by increasing the overlap, or, with
the use of higher order transmission conditions, such as Robin type transmission conditions. The
classical treatment of a Robin type boundary condition is with the weak variational formulation
of the problem. We decided to remain coherent with elsA’s discretisation strategy and, instead of
changing the integral formulation of the problem, we impose transmission conditions, resulting
from Robin conditions, inside fictitious cells.

In the last chapter, we presented results and validation of numerical Euler and Navier–Stokes
schemes and Schwarz based domain decomposition methods through systematic comparisons
of existing schemes. We simulated 2D multi-scale Euler and Navier-Stokes problems. The
results show that the SWR methods have the ability to treat large data systems without loss of
parallel efficiency. The SWR algorithms have proved themselves more efficient than the Newton-
Schwarz scheme. When the adaptivity is inefficient, the adaptive SWR methods are at least as
efficient as the classical SWR method. The efficiency of the classical SWR methods is at least
comparable to the one of the Schwarz-Newton method. If the application implies sub-domains
of different size and discretisations, the adaptive SWR methods are cheaper and more efficient.
The adaptive SWR with one level of adaptivity seems as efficient than the one with two levels of
adaptivity. They have similar computational efficiency and adds a new flexibility to the SWR
method.

The most important and novel contributions are: the adaptation of the SWR methods to
the Cartesian Euler/Navier–Stokes solver, and the new flexibilities of the SWR methods.

We remark that, when dealing with large cases, industry is more likely to retain simple and
slower techniques than complex and faster. Thus, research should focus more on automating
methods in order to become interesting for industrial applications.

Perspectives

We would like to acknowledge to the reader that much improvement is still possible and
that, through the spectrum of our acquired experience in this field and on recently published
work we identify and propose the next points.

The conclusion of this work can not be definitive, as there are at least three ways to im-
prove the SWR techniques. One is to keep optimizing the time space interface conditions, for
example by trying absorbing boundary conditions or other conditions that contain informations
depending on the time scale. In the recent International Conference of Domain Decomposition
Methods, in September 2013, Ong and co. (see [82]) presented another way to improve the
classical SWR method, which is also valid for the adaptive SWR algorithms. They propose to
implement each SWR iteration in parallel using the pipeline. In a few words, it means that
inside a window computation, once the first iteration produces enough interface conditions a
second iteration can begin before the end of the first one. Moreover, we have presented different
ways of adapting the time step, and it is usually dependent on a cfl number both for explicit
and implicit methods in order to ensure a numerical stability. This cfl number is fixed in the

4.3. Vortex shedding from rectangles 131

beginning of our simulation, another way would be to readapt this cfl number after each window
iteration. About the implementation, very little modifications are to be done to the existing
code. The use of SWR methods offers the possibility of using different discretisations in each
sub-domain (coupling structured with unstructured meshes) and even coupling Navier–Stokes
solvers with Euler solvers.

Using a multi-grid method or coarse grid correction (equivalent to a two-level multi-grid
method) could enhance the overall efficiency of the all overlapping domain decomposition meth-
ods.

Another next step of this study is to be completed with a 3D industrial code. This should
be easily done as the initial structure of each module is already created to support a third
dimension. A greater challenge code modification would be the implementation of a turbulent
model. We believe that it will be much simpler to integrate SWR techniques into the elsA
platform through the use of independent modules. Masking techniques and adaptation to
chimera methods are functionalities complementary to the existing ones.

Of course, the use of multi-GPUs can considerably improve the efficiency.

Appendix A

Computation of diffusive Jacobians

The aim of this annexe is to present the main steps in the calculation of the exact expres-
sion of the convective and diffusive Jacobians A,Av, Av∂x, A

v
∂y, B,B

v, Bv
∂x and Bv

∂y. They are
identified in the computation of the the differentials of the viscous fluxes, Fvis + Gvis. Let us
recall the expression of the viscous fluxes.

Fvis +Gvis =





0
−τ

−τ~u+ q



 ,

where τ = λ(∇ · ~u)I + 2µD is the diffusive tensor. To compute the differentials of the
diffusive fluxes we calculate first the differentials of ∇ · τ et ∇ · (τ~u− q). For the simplification
of the calculations we introduce another set of notations.

K(ρ, ρ~u, ρE) = K(ρ, ~U, Ẽ) = ∇ · τ = ∇ ·
[

λdiv(
~U
ρ)I + µ

(

∇(
~U
ρ) +∇T (

~U
ρ)

)]

,

R(ρ, ρ~u, ρE) = R(ρ, ~U, Ẽ) = ∇ · (τ~u− q) = ∇ ·
(

τ
~U
ρ + ρ

)

.

Differential of ∇ · τ (K)

We proceed to a Taylor development of K in (ρ+ δρ, ~U + δ~U, Ẽ + δẼ):

K(ρ+ δρ, ~U + δ~U, Ẽ + δẼ) = ∇ ·
[

λ∇ ·
(
~U + δ~U

ρ
(1− δρ

ρ
+O(δρ2)

)

I + µ
(

∇(
~U + δ~U

ρ
(1

− δρ

ρ
+O(δρ2)

)

+∇T
(
~U + δ~U

ρ
(1− δρ

ρ
+O(δρ2))

)

]

= K(ρ, ~U, Ẽ) +∇ ·
[

λdiv(
δ~U

ρ
− ~U

δρ

ρ2
)I + µ

(

∇(
δ~U

ρ
− ~U

δρ

ρ2
)

+∇T (
δ~U

ρ
− ~U

δρ

ρ2
)
)]

+∇ ·
[

O(δ~Uδρ) +O(δρ2)
]

.

The differential of K is the linear part from the Taylor development:

K ′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ) = ∇ ·
[

λ∇ · (δ
~U

ρ
− ~U

δρ

ρ2
)I + µ

(

∇(
δ~U

ρ
− ~U

δρ

ρ2
)

+∇T (
δ~U

ρ
− ~U

δρ

ρ2
)
)]

= ∇ · [τ ′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)].

(A.1)

133

134

Differential of ∇ · (τu− q) (R)

Similar to the differential of ∇ · τ we find the linear part of the development of R in (ρ +
δρ, ~U + δ~U, Ẽ + δẼ):

R(ρ, ~U, Ẽ) = ∇ ·
[(

λdiv(
~U

ρ
)I + µ(∇

(
~U

ρ
) +∇T (

~U

ρ
)
))
~U

ρ
+ k∇(

Ẽ

ρ
− ||

~U ||2
2ρ2

)
]

R(ρ+ δρ, ~U + δ~U, Ẽ + δẼ) = R(ρ, ~U, Ẽ) +∇ ·
[

(
δ~U

ρ
− ~U

δρ

ρ2
)
(

λdiv(
~U

ρ
)I + µ(∇(

~U

ρ
)

+∇T (
~U

ρ
))
)]

+∇ ·
{
~U

ρ

[

λdiv(
δ~U

ρ
− ~U

δρ

ρ2
)I + µ

(

∇(
δ~U

ρ
− ~U

δρ

ρ2
)

+∇T (
δ~U

ρ
− ~U

δρ

ρ2
)
)]

+ k∇
(δẼ

ρ
− Ẽ

ρ2
δρ− ||δ

~U ||2 + 2~Uδ~U

2ρ2

+
||~U ||2
ρ3

δρ
)}

+∇ · [O(δ~Uδρ+ δρ2 + δ~U2)].

We identify the linear part and find the differential of R:

R′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ) = ∇ ·
[

τ(ρ, ~U, Ẽ)(
δ~U

ρ
− ~U

δρ

ρ2
) + τ ′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)

~U

ρ

+ q′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)
]

.

(A.2)

Both differentials of R and K require the explicit calculation of τ ′.

Calculation of τ ′

We express τ in its matrix format:

τ=
1

ρ2







(−2λ)(ρ ∂
∂xU − U ∂

∂xρ) + λ(ρ ∂
∂yV − V ∂

∂yρ) µ(ρ ∂
∂yU − U ∂

∂yρ+ ρ ∂
∂xV − V ∂

∂xρ)

µ(ρ ∂
∂yU − U ∂

∂yρ+ ρ ∂
∂xV − V ∂

∂xρ) λ(ρ ∂
∂xU − U ∂

∂xρ) + (−2λ)(ρ ∂
∂yV − V ∂

∂yρ)






,

where U and V are the conservative velocities fields ρu and V = ρv. We compute all
coefficients of τ ′ from its expression given by A.1:

τ ′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)=

(

λ[∂∂x(
δU
ρ − U

δρ
ρ2
) + ∂

∂y (
δV
ρ − V

δρ
ρ2
)] 0

0 λ[∂∂x(
δU
ρ − U

δρ
ρ2
) + ∂

∂y (
δV
ρ − V

δρ
ρ2
)]

)

+µ

(

∂
∂x(

δU
ρ − U

δρ
ρ2
) ∂

∂y (
δU
ρ − U

δρ
ρ2
)

∂
∂x(

δV
ρ − V

δρ
ρ2
) ∂

∂y (
δV
ρ − V

δρ
ρ2
)

)

+µ

(

∂
∂x(

δU
ρ − U

δρ
ρ2
) ∂

∂x(
δV
ρ − V

δρ
ρ2
)

∂
∂y (

δU
ρ − U

δρ
ρ2
) ∂

∂y (
δV
ρ − V

δρ
ρ2
)

)

.

The first coefficient is τ ′11,

τ ′11 = λ[
∂

∂x
(
δU

ρ
− U δρ

ρ2
) +

∂

∂y
(
δV

ρ
− V δρ

ρ2
)] + 2µ

∂

∂x
(
δU

ρ
− U δρ

ρ2
)

=
−2λ
ρ2

[(2
U

ρ

∂

∂x
ρ− ∂

∂x
U)δρ− (

∂

∂x
ρ)δU + ρ

∂

∂x
δU − U ∂

∂x
δρ]

+
λ

ρ2
[(2
V

ρ

∂

∂y
ρ− ∂

∂y
V)δρ− (

∂

∂y
ρ)δV + ρ

∂

∂y
δV − V ∂

∂y
δρ]

135

and can be rewritten under the following matrix format:

τ ′11 = λ
ρ2











−4Uρ ∂
∂xρ+ 2 ∂

∂xU + 2Vρ
∂
∂yρ− ∂

∂yV

2 ∂
∂xρ

− ∂
∂yρ

0



















δρ
δU
δV

δẼ









+ λ
ρ2









2U
−2ρ
0
0

















∂
∂xδρ
∂
∂xδU
∂
∂xδV
∂
∂xδẼ









+ λ
ρ2









−V
0
ρ
0



















∂
∂y δρ
∂
∂y δU
∂
∂y δV
∂
∂y δẼ











.

The diffusive tensor is symmetric. We have τ ′12 = τ ′21 where

τ ′12 =
µ

ρ2
[

(2
U

ρ

∂

∂y
ρ− ∂

∂y
U)δρ− (

∂

∂y
ρ)δU + ρ

∂

∂y
δU − U ∂

∂y
δρ

]

+
µ

ρ2
[

(2
V

ρ

∂

∂x
ρ− ∂

∂x
V)δρ− (

∂

∂x
ρ)δV + ρ

∂

∂x
δV − V ∂

∂x
δρ

]

and can be rewritten as:

τ ′12 = µ
ρ2











2Uρ
∂
∂yρ− ∂

∂yU + 2Vρ
∂
∂xρ− ∂

∂xV

− ∂
∂yρ

− ∂
∂xρ
0



















δρ
δU
δV

δẼ









+ µ
ρ2









−V
0
ρ
0

















∂
∂xδρ
∂
∂xδU
∂
∂xδV
∂
∂xδẼ









+ µ
ρ2









−U
ρ
0
0



















∂
∂y δρ
∂
∂y δU
∂
∂y δV
∂
∂y δẼ











.

The last coefficient is τ ′22:

τ ′22 =
λ

ρ2
[

(2
U

ρ

∂

∂x
ρ− ∂

∂x
U)δρ− (

∂

∂x
ρ)δU + ρ

∂

∂x
δU − U ∂

∂x
δρ

]

+
−2λ
ρ2

[

(2
V

ρ

∂

∂y
ρ− ∂

∂y
V)δρ− (

∂

∂y
ρ)δV + ρ

∂

∂y
δV − V ∂

∂y
δρ

]

τ ′22 = λ
ρ2











2Uρ
∂
∂xρ− ∂

∂xU − 4Vρ
∂
∂yρ+ 2 ∂

∂yV

− ∂
∂xρ

2 ∂
∂yρ

0



















δρ
δU
δV

δẼ









+ λ
ρ2









−U
ρ
0
0

















∂
∂xδρ
∂
∂xδU
∂
∂xδV
∂
∂xδẼ









+ λ
ρ2









2V
0
−2ρ
0



















∂
∂y δρ
∂
∂y δU
∂
∂y δV
∂
∂y δẼ











.

The calculation of τ ′ provides us with the three firsts lines of the Jacobian matrix (the first
line is actually empty). To facilitate the computation, we change the notations, we build the
Jacobian matrix from K ′ and R′ and re-split it in a sum of directional Jacobian matrices (in x,

136

respectively y direction for a 2D computation):





0

K ′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)

R′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ)



 =
(∂

∂x
Av

)

· (δρ, δ~U, δẼ) +
(∂

∂x
Av∂x

)

.
∂

∂x
(δρ, δ~U, δẼ)

+
(∂

∂x
Av∂y

)

.
∂

∂y
(δρ, δ~U, δẼ) +

(∂

∂y
Bv

)

· (δρ, δ~U, δẼ)

+
(∂

∂y
Bv
∂x

)

.
∂

∂x
(δρ, δ~U, δẼ) +

(∂

∂y
Bv
∂y

)

.
∂

∂y
(δρ, δ~U, δẼ).

We can already give an intermediary expression of each one of them:

Av =
1

ρ2















0 0 0 0

λ(−4Uρ ∂
∂xρ+ 2 ∂

∂xU + 2Vρ
∂
∂yρ− ∂

∂yV) 2λ ∂
∂xρ −λ ∂

∂yρ 0

µ(2Uρ
∂
∂yρ− ∂

∂yU + 2Vρ
∂
∂xρ− ∂

∂xV) −µ ∂
∂yρ −µ ∂

∂xρ 0

Av41 Av42 Av43 Av44















,

Av∂x =
1

ρ2









0 0 0 0
2λU −2λρ 0 0
−µV 0 µρ 0
Av∂x41 Av∂x42 Av∂x43 Av∂x44









,

Av∂y =
1

ρ2









0 0 0 0
−λV 0 λρ 0
−µU µρ 0 0
Av∂y41 Av∂y42 Av∂y43 Av∂y44









,

Bv =
1

ρ2















0 0 0 0

µ(2Uρ
∂
∂yρ− ∂

∂yU + 2Vρ
∂
∂xρ− ∂

∂xV) −µ ∂
∂yρ −µ ∂

∂xρ 0

λ(2Uρ
∂
∂xρ− ∂

∂xU − 4Vρ
∂
∂yρ+ 2 ∂

∂yV) −λ ∂
∂xρ 2λ ∂

∂yρ 0

Bv
41 Bv

42 Bv
43 Bv

44















,

Bv
∂x =

1

ρ2









0 0 0 0
−µV 0 µρ 0
−λU λρ 0 0
Bv
∂x41 Bv

∂x42 Bv
∂x43 Bv

∂x44









,

Bv
∂y =

1

ρ2









0 0 0 0
−µU µρ 0 0
2λV 0 −2λρ 0
Bv
∂y41 Bv

∂y42 Bv
∂y43 Bv

∂y44









.

In order to find the missing coefficients we need to express the differential of q.

q(ρ, ~U, Ẽ) =k∇(
Ẽ

ρ
− ||

~U ||2
2ρ2

),

q(ρ+ δρ, ~U + δ~U, Ẽ + δẼ) =k∇(
Ẽ

ρ
−||

~U ||2
2ρ2

) +k∇(
δẼ

ρ
− Ẽ
ρ2
δρ−

~U.δ~U

ρ2
+
||~U ||2
ρ3

δρ)+O(δρ2)

= q(ρ, ~U, Ẽ) + q′(ρ, ~U, Ẽ) · (δρ, δ~U, δẼ) +O(δρ2).

137

We compute q′1 and q′2 and write their matrix form:

q′1 = k
∂

∂x
(
δẼ

ρ
− Ẽ δρ

ρ2
−
~Uδ~U

ρ2
+
||~U ||2
ρ3

δρ)

=
k

ρ2
{[

− ∂

∂x
Ẽ +

2Ẽ

ρ
(
∂

∂x
ρ) + 2

U

ρ

∂

∂x
U + 2

V

ρ

∂

∂x
V − 3(U2 + V 2)

ρ2
∂

∂x
ρ
]

δρ

+ (− ∂

∂x
U +

2U

ρ

∂

∂x
ρ)δU + (− ∂

∂x
V +

2V

ρ

∂

∂x
ρ)δV + (− ∂

∂x
ρ)δẼ

+ (
U2 + V 2

ρ
− Ẽ)

∂

∂x
δρ− U ∂

∂x
δU − V ∂

∂x
δV + ρ

∂

∂x
δẼ

}

,

q′1 =
k

ρ2











− ∂
∂xẼ + 2Ẽ

ρ (∂∂xρ) + 2Uρ
∂
∂xU + 2Vρ

∂
∂xV −

3(U2+V 2)
ρ2

∂
∂xρ

− ∂
∂xU + 2U

ρ
∂
∂xρ

− ∂
∂xV + 2V

ρ
∂
∂xρ

− ∂
∂xρ



















δρ
δU
δV

δẼ









+
k

ρ2









U2+V 2

ρ − Ẽ
−U
−V
ρ

















∂
∂xδρ
∂
∂xδU
∂
∂xδV
∂
∂xδẼ









,

we get a similar result in the y direction q′2 = k
∂

∂y

(δẼ

ρ
− Ẽ δρ

ρ2
−
~Uδ~U

ρ2
+
||~U ||2
ρ3

δρ
)

,

q′2 =
k

ρ2











−(∂∂y Ẽ − 2Ẽ
ρ

∂
∂yρ) + [2Uρ

∂
∂yU + 2Vρ

∂
∂yV −

3(U2+V 2)
ρ

∂
∂yρ]

− ∂
∂yU + 2U

ρ
∂
∂yρ

− ∂
∂yV + 2V

ρ
∂
∂yρ

− ∂
∂yρ



















δρ
δU
δV

δẼ









+
k

ρ2









U2+V 2

ρ − Ẽ
−U
−V
ρ



















∂
∂y δρ
∂
∂y δU
∂
∂y δV
∂
∂y δẼ











.

Computation of the last line of the Jacobian in x− direction:

Av41 = −U
ρ2
τ11 −

V

ρ2
τ12 +

U

ρ
τ ′11[0] +

V

ρ
τ ′12[0] + q′1[0]

=
1

ρ2
[(

3(−2λ− k)U
2

ρ2
+ 3(µ− k)V

2

ρ2
+ 2k

Ẽ

ρ

) ∂

∂x
ρ+ µ

UV

ρ2
∂

∂y
ρ

+ 2(k + 2λ)
U

ρ

∂

∂x
U − 2µ

V

ρ

∂

∂y
U + 2(k − µ)V

ρ

∂

∂x
V − 2λ

U

ρ

∂

∂y
V − k ∂

∂x
Ẽ
]

,

Av∂x41 =
U

ρ
τ ′11[0] +

V

ρ
τ ′12[0] + q′1[0] =

1

ρ2
(2λ+ k

ρ
U2 +

−µ+ k

ρ
V 2 − kẼ

)

,

Av∂y41 =
U

ρ
τ ′11[0] +

V

ρ
τ ′12[0] + q′1[0] =

λ

2ρ3
UV,

Av42 =
1

ρ
τ11 +

1

ρ
τ12 +

U

ρ
τ ′11[1] +

V

ρ
τ ′12[1] + q′1[1]

=
1

ρ2
[(

(2k − 8

3
µ)
U

ρ
− µV

ρ

) ∂

∂x
ρ+ (−µU

ρ
− 1

3
µ
V

ρ
)
∂

∂y
ρ

+ (−k + 4

3
µ)

∂

∂x
U + µ

∂

∂y
U + µ

∂

∂x
V − 2

3
µ
∂

∂y
V
]

,

138

Av∂x42 =
U

ρ
τ ′11[1] +

V

ρ
τ ′12[1] + q′1[1] =

1

ρ2
(−2λ− k)U,

Av∂y42 =
U

ρ
τ ′11[1] +

V

ρ
τ ′12[1] + q′1[1] =

µ

ρ2
V,

Av43 =
1

ρ
τ11 +

1

ρ
τ12 +

U

ρ
τ ′11[2] +

V

ρ
τ ′12[2] + q′1[2]

=
1

ρ2
[(

2(k − µ)V
ρ
− 4

3
µ
U

ρ

) ∂

∂x
ρ+ (−1

3
µ
U

ρ
+

2

3
µ
V

ρ
)
∂

∂y
ρ

+
4

3
µ
∂

∂x
U + µ

∂

∂y
U + (µ− k) ∂

∂x
V − 2

3
µ
∂

∂y
V
]

,

Av∂x43 =
U

ρ
τ ′11[2] +

V

ρ
τ ′12[2] + q′1[2] =

µ− k
ρ2

V,

Av∂y43 =
U

ρ
τ ′11[2] +

V

ρ
τ ′12[2] + q′1[2] =

λ

ρ2
U,

Av44 =
U

ρ
τ ′11[3] +

V

ρ
τ ′12[3] + q′1[3] = −

k

ρ2
∂

∂x
ρ,

Av∂x44 =
U

ρ
τ ′11[3] +

V

ρ
τ ′12[3] + q′1[3] =

k

ρ2
ρ,

Av∂y44 =
U

ρ
τ ′11[3] +

V

ρ
τ ′12[3] + q′1[3] = 0.

Computation of the last line of the Jacobian matrix in y−direction:

Bv
41 = −U

ρ2
τ21 −

V

ρ2
τ22 +

U

ρ
τ ′21[0] +

V

ρ
τ ′22[0] + q′2[0]

=
1

ρ2
[

µ
UV

ρ2
∂

∂x
ρ+

(

3(µ− k)U
2

ρ2
+ 3(−2λ− k)V

2

ρ2
+ 2k

Ẽ

ρ

) ∂

∂y
ρ

− 2λ
V

ρ

∂

∂x
U + 2(k − µ)U

ρ

∂

∂y
U − 2µ

U

ρ

∂

∂x
V + 2(k + 2λ)

V

ρ

∂

∂y
V − k ∂

∂y
Ẽ
]

,

Bv
∂x41 =

U

ρ
τ ′21[0] +

V

ρ
τ ′22[0] + q′2[0] = −

1

3

µ

ρ2
UV,

Bv
∂y41 =

U

ρ
τ ′21[0] +

V

ρ
τ ′22[0] + q′2[0] =

1

ρ2
(k − µ

ρ
U2 +

2λ+ k

ρ
V 2 − kẼ

)

,

Bv
42 =

1

ρ
τ21 +

1

ρ
τ22 +

U

ρ
τ ′21[1] +

V

ρ
τ ′22[1] + q′2[1]

=
1

ρ2
[

− µ

3
(
U

ρ
+
V

ρ
)
∂

∂x
ρ+

(

2(k − µ)U
ρ
− 4

3
µ
V

ρ

) ∂

∂y
ρ

− 2

3
µ
∂

∂x
U + (µ− k) ∂

∂y
U + µ

∂

∂x
V +

4

3
µ
∂

∂y
V
]

,

Bv
∂x42 =

U

ρ
τ ′21[1] +

V

ρ
τ ′22[1] + q′2[1] =

λ

ρ2
V,

Bv
∂y42 =

U

ρ
τ ′21[1] +

V

ρ
τ ′22[1] + q′2[1] =

µ− k
ρ2

U,

Bv
43 =

1

ρ
τ21 +

1

ρ
τ22 +

U

ρ
τ ′21[2] +

V

ρ
τ ′22[2] + q′2[2]

=
1

ρ2
[

(−1

3
µ
U

ρ
− µV

ρ
)
∂

∂x
ρ+

(

− µU
ρ
+ 2(k − 4

3
µ)
V

ρ

) ∂

∂y
ρ

− 4

3
µ
∂

∂x
U + µ

∂

∂y
U + µ

∂

∂x
V + (

4

3
µ− k) ∂

∂y
V
]

,

139

Bv
∂x43 =

U

ρ
τ ′21[2] +

V

ρ
τ ′22[2] + q′2[2] =

µ

ρ2
U,

Bv
∂y43 =

U

ρ
τ ′21[2] +

V

ρ
τ ′22[2] + q′2[2] =

−2λ− k
ρ2

V,

Bv
44 =

U

ρ
τ ′21[3] +

V

ρ
τ ′22[3] + q′2[3] = −

k

ρ2
∂

∂y
ρ,

Bv
∂x44 =

U

ρ
τ ′21[3] +

V

ρ
τ ′22[3] + q′2[3] = 0,

Bv
∂y44 =

U

ρ
τ ′21[3] +

V

ρ
τ ′22[3] + q′2[3] =

k

ρ2
ρ.

Calculation of the eigenvalues
Let J be a matrix of common form of Av, Av∂x, A

v
∂y, B

v, Bv
∂x and Bv

∂y:

J =









0 0 0 0
J21 J22 J23 0
J31 J32 J33 0
J41 J42 J43 J44









We search λ such us |J − λI| = 0. We find four different relations:

λ0 = 0,
λ1 = J44,

λ2 =
J22+J33−

√
∆

2 ,

λ3 =
J22+J33+

√
∆

2

where ∆ = J2
22 + J2

33 − 2J22J33 + 4J32J23. The numerical computation also requires the values
of ρJ , the spectral of the Jacobian matrix, ρJ = max(λ0, λ1, λ2, λ3).

For Av we have:

J22 = − µ
ρ2

4
3
∂
∂xρ, J23 =

µ
ρ2

2
3
∂
∂yρ, J32 = − µ

ρ2
∂
∂yρ, J33 = − µ

ρ2
∂
∂xρ, J44 = − k

ρ2
∂
∂xρ

and ∆ = J2
22 + J2

33 − 2J22J33 + 4J32J23 =
µ2

ρ4
[1

9
(
∂

∂x
ρ)2 − 8

3
(
∂

∂y
ρ)2

]

.

We note ∆ = µ2

ρ4
∆′ and find the following eigenvalues:



















λ0 = 0,

λ1 = − k
ρ2

∂
∂xρ,

λ2 =
µ
2ρ2

(−7
3
∂
∂xρ−

√
∆′),

λ3 =
µ
2ρ2

(−7
3
∂
∂xρ+

√
∆′).

For Av∂x we
find the following eigenvalues: λ0 = 0, λ1 =

k
ρ , λ2 =

7µ
3ρ , λ3 = 0.

For Av∂y all eigenvalues equal zero: λ0 = λ1 = λ2 = λ3 = 0.
Bv has the same form as J with:

J22 = − µ
ρ2

∂
∂yρ, J23 = − µ

ρ2
∂
∂xρ, J32 = − λ

ρ2
∂
∂xρ, J33 =

2λ
ρ2

∂
∂yρ, J44 = − k

ρ2
∂
∂yρ

and ∆ = µ2

ρ4

[

1
9(

∂
∂yρ)

2 − 8
3(

∂
∂xρ)

2
]

. We note ∆ = µ2

ρ4
∆′ and find the following eigenvalues:



















λ0 = 0,

λ1 = − k
ρ2

∂
∂yρ,

λ2 =
µ
2ρ2

(−7
3
∂
∂yρ−

√
∆′),

λ3 =
µ
2ρ2

(−7
3
∂
∂yρ+

√
∆′).

140

For Bv
∂x we find eigenvalues equal to zero: λ0 = λ1 = λ2 = λ3 = 0.

For Bv
∂y we find the following eigenvalues: λ0 = 0, λ1 =

k
ρ , λ2 =

4µ
3ρ , λ3 =

µ
ρ .

Appendix B

List of GPU libraries

LibGeoDecomp

• a library for geometric decomposition codes based on C++ templates,

• automatically parallelises regular 2D/3D grids,

• home page: http://www.libgeodecomp.org/.

MAGMA

• stands for Matrix Algebra on GPU and Multicore Architectures,

• it is based on C++ STL extensions,

• it is a hybrid library between LAPACK/ScaLAPACK and Tile Algorithms for sparse
linear algebra,

• works on CUDA, Intel Xeon Phi and OpenCL and has a multiGPU support,

• home page: http://icl.cs.utk.edu/magma.

Thrust

• stands for Standard Template Library for GPUs,

• contains functions to easy manipulate vectors on GPUs (reductions, sorting and other
operators),

• written in C++ it is based on CUDA, thus working only on NVIDIA GPUs.

• home page: http://thrust.github.io/.

CuSP and CUBLAS

• Cuda SPARSE was developed by NVIDIA on top of Thrust and works only for NVIDIA
GPUs,

• is able to solve direct methods for linear solver (QR factorisation, GMRES solver), pre-
conditioned Iterative methods, incomplete-LU factorisations, sparse matrix-vector multi-
plications,

• home page: https://github.com/cusplibrary.

ViennaCL

• free opensource sparse linear algebra library, it is an extension of Boost uBLAS library,

• it is written in C++ and works on multiple platforms: OpenMP, OpenCL, CUDA,

• has BLAS 1-3 support,

• home page: http://viennacl.sourceforge.net/.

141

142

Paralution

• open-source library for sparse linear algebra on multiple platforms (OpenMP, OpenCL,
CUDA),

• contains sparse iterative solvers (CR, CG, BICGStab, GMRES, IDR), multigrid (CMG,
AMG), Deflated PCG, Fixed-point iteration schemes, Mixed-precision schemes and fine-
grained parallel preconditioners based on splitting, ILU factorisation with levels, additive
Schwarz and approximate inverse.

• item home page: http://www.paralution.com/.

PETSc

• supports linear and non-linear PDE problems on structured and unstructured meshes,
Krylov methods: Conjugate Gradien, GMRES, CG-Squared, Bi-CG-stab, Transpose-free
QMR, etc., preconditioners: Block Jacobi, overlapping additive Schwarz ICC, ILU, LU,
etc.,

• supports MPI, GPU, can invoke CuSP and ViennaCL if needed,

• home page: http://www.mcs.anl.gov/petsc .

Trilinos

• it is a collection of packages for solving large-scale, complex multi-physics problems,

• supports basic linear algebra, preconditioners, iterative linear-solvers, direct linear solvers
(SuperLU, ScaLAPACK, MUMPS,...), non-linear solvers (NOX,...), eigensolvers, mesh
generation and adaptivity, partitioning, etc.,

• home page: http://trilinos.org/.

Appendix C

Example of CUDA programming.
Minimum reduction

We present here the entire code to compute a global minimum reduction inside a device. The
aim is to highlight the difficulties of programming on the GPU device, the need for a manual
treatment of each level of hierarchy. On GPU (CUDA language), the algorithm to compute the
time step inside one cell is equivalent to the one on CPU (Fortran/C/C++).

// --

template <typename K> __device__ K

gpu_compute_dt(int dir ,K gamma ,K mu, K Pr, K cfl , K dx, K rho , K rhoU , K

rhoV , K rhoW , K rhoE)

{

K rho_i , u[3], p, a, dtC ,dtD;

rho_i = 1./rho;

u[0] = rho_i*rhoU;

u[1] = rho_i*rhoV;

u[2] = rho_i*rhoW;

p = (gamma -1.)*(rhoE -0.5* rho*(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]));

a = sqrt(gamma*p*rho_i);

dtC = cfl*dx/(fabs(u[dir])+a) ;

dtD = 0.5* cfl*dx*dx*rho*Pr/(mu*gamma);

return gpu_min(dtC ,dtD);

}

The minimum reduction algorithm is necessary on the device (only optional on the host).
The reduction must be done inside each level of device hierarchy. We present the framework
set done by the host, then the kernel and local to device functions used to compute a minimum
over a 2D computational domain.

/* --

CPU program

compute the local time step for a 2D domain using a directional

treatment: */

template <> double

Zone <double >:: compute_reg_LocalTimeStep

(int nci ,int ncj ,int nck ,

143

144

int order , double dx , double dy ,

Array <double >& rho ,

Array <double >& rhoU , Array <double >& rhoV ,

Array <double >& rhoW , Array <double >& rhoE)

{

int nb_blockx = (nci +31)/32, nb_blocky = (ncj -2* order +15) /16;

int i,n=1,nb_block = nb_blockx*nb_blocky;

double* dt0 = new double [2* nb_block];

for (i=0;i<2* nb_block;i++)

dt0[i] = 100.;

int dimDt = 2* nb_block;

Array <double > min_dt(dimDt);

min_dt.setDataFromHost(dt0);

/* compute minimum time step

x direction

2D framwork set: set the size of grids and blocks inside the device

*/

dim3 threads (16 ,16 ,1); // 2D block

dim3 grid(nb_blockx ,nb_blocky , 1); // 2D grid

/* call of the kernel */

gpu_compute_reg_BlockTimeStep <double ,16>

<<<grid ,threads >>>(min_dt.getGpuData () ,0,

m_pt_eos ->getGamma (),

m_pt_eos ->getMu (), m_pt_eos ->getPr (),

m_cfl , order , nci , ncj , rho.stride ()/sizeof(double),

dx,

rho.getGpuData (), rhoU.getGpuData (),

rhoV.getGpuData (),rhoW.getGpuData (),

rhoE.getGpuData ());

/* y direction

call of the kernel */

gpu_compute_reg_BlockTimeStep <double ,16>

<<<grid ,threads >>>((min_dt.getGpuData ()+nb_block),

1, m_pt_eos ->getGamma (),

m_pt_eos ->getMu (), m_pt_eos ->getPr (),

m_cfl ,

order , nci , ncj , rho.stride ()/sizeof(double), dy,

rho.getGpuData (), rhoU.getGpuData (),

rhoV.getGpuData (),rhoW.getGpuData (),

rhoE.getGpuData ());

/* compute a 1D minimum reduction for an array containing the resulting

minimum array in the x direction concatenated

with the resulting minimum array in the y direction */

nb_block = 2* nb_block;

while (nb_block >512){

/* framwork set: set the size of grids and blocks inside the device

*/

nb_block = (nb_block +255) /256;

dim3 threads2 (256,1 ,1); // 1D block

dim3 grid2(nb_block ,1, 1); // 1D grid

/* call of the kernel */

gpu_reduce_min <double ,256><<<grid2 ,threads2 >>>(n,dimDt ,min_dt.

getGpuData (),min_dt.getGpuData ());

}

double* dtMins = new double[nb_block];

/* copy data from the device */

min_dt.getDataFromDevice(dtMins ,nb_block);

145

double minDt = dtMins [0];

for (unsigned i = 1; i < nb_block; ++i)

minDt = std::min(minDt , dtMins[i]);

delete [] dtMins;

return minDt;

}

}

/* --

Computation of the global time step using a 2D reduction method to

find the global minimum value

Generalisation for different block size */

template <typename K, int blockSize > __global__ void

gpu_compute_reg_BlockTimeStep(K* min_odt , int dir ,

K gamma , K mu , K Pr ,K cfl ,int order ,

int nx , int ny , int stride , K dx ,

K* rho , K* rhoU , K* rhoV , K* rhoW , K* rhoE

)

{

__shared__ K min_dt[blockSize*blockSize];

//each thread loads one element from global to shared memory

unsigned int tid = threadIdx.x + threadIdx.y*blockDim.x;

unsigned int i = threadIdx.x + blockSize *(blockIdx.x*2);

unsigned int j = (threadIdx.y+order) + blockDim.y*blockIdx.y;

unsigned int ind = i + j*stride;

min_dt[tid] = 1E6;

if (j < ny-order) {

K dt1 ,dt2;

// compute min dt in each of two directions

dt1 = (i > order -1 && i < nx -order) ?

gpu_compute_dt (dir ,gamma ,mu,Pr,cfl ,dx,

rho[ind],rhoU[ind],rhoV[ind],

rhoW[ind],rhoE[ind]) : min_dt[tid];

dt2 = (i+blockSize < nx -order) ?

gpu_compute_dt(dir ,gamma ,mu,Pr,cfl ,dx,

rho[ind+blockSize] ,rhoU[ind+blockSize],

rhoV[ind+blockSize],rhoW[ind+blockSize],

rhoE[ind+blockSize]) : min_dt[tid];

min_dt[tid] = gpu_min(min_dt[tid],dt1);

min_dt[tid] = gpu_min(min_dt[tid],dt2);

}

/* synchronisation inside a block */

__syncthreads ();

if (blockSize*blockSize >= 1024){

if (tid < 512)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +512]);

__syncthreads ();

}

if (blockSize*blockSize >= 512){

if (tid < 256)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +256]);

__syncthreads ();

}

if (blockSize*blockSize >= 256){

if (tid < 128)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +128]);

__syncthreads ();

}

if (blockSize*blockSize >= 128){

146

if (tid < 64)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid+ 64]);

__syncthreads ();

}

if (tid <32)

gpu_warpReduce <K,blockSize*blockSize >(min_dt , tid);

__syncthreads ();

if (tid ==0)

min_odt[blockIdx.x+blockIdx.y*gridDim.x] = min_dt [0];

}

/* ---

1D reduction

reduces the number of blocks to its half.

for each two blocks we reduce the minimum of the vector min_idt (

global memory) and save the result in min_odt (global memory)

the function take into account different block size depending on the

GPU generation

kernel function: accessible by the CPU */

template <typename K, int blockSize > __global__ void

gpu_reduce_min(unsigned int n, int dimDt , K* min_idt , K* min_odt)

{

__shared__ K min_dt[blockSize];

/* each thread loads one element from global to shared memory */

unsigned int tid = threadIdx.x;

unsigned int i = threadIdx.x + blockSize *(blockIdx.x*2);

min_dt[tid] = 1E6;

if (i<dimDt)

min_dt[tid] = (i+blockSize < dimDt) ? gpu_min(gpu_min(min_dt[tid],

min_idt[i]), min_idt[i+blockSize]):

gpu_min(min_dt[tid],min_idt[i]);

__syncthreads ();

if (blockSize >= 1024){

if (tid < 512)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +512]);

__syncthreads ();

}

if (blockSize >= 512){

if (tid < 256)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +256]);

__syncthreads ();

}

if (blockSize >= 256){

if (tid < 128)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid +128]);

__syncthreads ();

}

if (blockSize >= 128){

if (tid < 64)

min_dt[tid] = gpu_min(min_dt[tid],min_dt[tid+ 64]);

__syncthreads ();

}

if (tid <32) gpu_warpReduce <K,blockSize >(min_dt , tid);

if (tid ==0) min_odt[blockIdx.x] = min_dt [0];

}

147

/* ---

reduction of the last block -> reduction by warps -> unroll of the

last warp , a warp contains 32 threads

at the end of this reduction one thread will contain the minimum over

the entire block */

template <typename K, int blockSize > __device__ void

gpu_warpReduce(volatile K* min_dt , unsigned int tid)

{

if (blockSize >= 64)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid +32]);

if (blockSize >= 32)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid +16]);

if (blockSize >= 16)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid+ 8]);

if (blockSize >= 8)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid+ 4]);

if (blockSize >= 4)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid+ 2]);

if (blockSize >= 2)

min_dt[tid] = gpu_min(min_dt[tid], min_dt[tid+ 1]);

}

// classical minimum computation , necessary to compute minimum between

two values stored inside two different threads

// visible only by the device , can be done between float or double values

(K in {float , double })

template <typename K> __device__ K

gpu_min(K a, K b)

{

if (a>0 and b>0)

return (a<b ? a : b);

else

return 100;

}

148

Nomenclature

General Notations

Φ finite volume test function

Ψ total flux (convective and diffusive)

Ψconv total convective flux

Ψvis total viscous flux

ρ the mass density

τ the viscous tensor of constraints

⊤ the absolute temperature

~u = (u, v, w)t the velocity vector

D the deformation tensor

E the total energy per unit

e the internal energy per unit mass

FEuler convective or Euler flux in x direction

Fvis viscous or diffusive flux in x direction

GEuler convective or Euler flux in y direction

Gvis viscous or diffusive flux in y direction

HEuler convective or Euler flux in z direction

Hvis viscous or diffusive flux in z direction

p the fluid pressure

q the heat flux

u the x-component of velocity

U = (ρ, ρ~u, ρE) the vector of conservative values

v the y-component of velocity

w the z-component of velocity

Constants Symbols

γ the ratio of specific heats

λ the viscosity coefficient of the fluid

µ the viscosity coefficient of the fluid

149

150

cp constant pressure specific heat coefficient

cv constant volume specific heat coefficient

K⊤ the conductivity coefficient

Ma Mach number

Pr the Prandtl number (assumed to be constant)

rgas the ratio of the universal constant of perfect gases to the molar mass of the considered
gas

Re Reynolds number

Mesh related Symbols

Γ interface of one cell

νΩi volume of the cell Ωi

Ω arbitrary domain of definition

∂Ω boundary of Ω

i, j, l, k indexes

N number of non-overlapping cells

nΩi unit outer normal to the cell Ωi

T the time interval limit

t time instant

Bibliography

[1] Ascher, U.M., Petzold, L.R.: Computer Mthods for Ordinary Differential Equations ans
Differential-Algebraic Equations. Philadelphia, PA: SIAM Press (1998)

[2] Audusse, E., Dreyfuss, P., Merlet, B.: Optimized schwarz Waveform Relaxation for the
Primitive equations of the ocean. SIAM Journal on Scientific Computing pp. 2908–2936
(2010)

[3] Bal, G., Maday, Y.: A Parareal Time Discretization for Non-Linear PDE’s with Appli-
cation to the Pricing of an American Put. Lectures Notes in Computational Science and
Engineering 23, 189–202 (2002)

[4] Beam, R.M., Warming, R.: An Implicit Factored Scheme for the Compressible Navier–
Stokes Equations. AIAA Journal 16(4), 393–402 (1978)

[5] Bjorhus, M.: On dynamic iteration for delay differential equations. BIT Journal, Biosys-
tems and Information Technology 34(3), 325–336 (1994)

[6] Bjorhus, M.: Semi-discrete subdomain iteration for hyperbolic systems. The Norvegian
Institut of Technology (1995)

[7] Blayo, E., Halpern, L., Japhet, C.: Optimized Schwarz waveform relaxation algorithms
with nonconforming time discretization for coupling convection-diffusion problems with
discontinuous coefficients. Domain Decomposition Methods in Science ans Engineering
16, 267–274 (2007)

[8] Borrel, M., Halpern, L., Ryan, J.: Euler/Navier-Stokes couplings for multiscale aeroa-
coustic problems. AIAA Computational Fluid Dynamics pp. 427–433 (2011)

[9] Bouris, D., Bergeles, G.: 2D LES of vortex shedding from a square cylinder. Journal of
Wind Engineering and Industrial Aerodynamics 80, 31–46 (1999)

[10] Brezzi, F., Lions, J.L., Pironneau, O.: Analysis of a Chimera method. Comptes rendus
de l’Académie des sciences. Série 1, Mathématique 332(7), 655–660 (2001)

[11] Burrage, K.: Parallel methods for systems of ordinary differential equations. SIAM News
26(5) (1995)

[12] Burrage, K., Dyke, C.: On the performance of parallel waveform relaxations for differential
systems. Lexington International Conference on the Method of Lines (1995)

[13] Cai, X.: Overlapping domain decomposition methods. Advanced Topics in Computational
Partial Differential Equations pp. 57–95 (2003)

[14] Cai, X.C., Dryja, M.: Domain Decomposition Methods for Monotone Nonlinear Elliptic
Problems. Domain Decomposition Methods in Scientific and Engineering Computing 180,
21–27 (1994)

[15] Cai, X.C., Gropp, W., Keyes, D.E., Tidriri, M.: Newton-Krylov-Schwarz Methods in cfd.
Notes on Numerical Fluid Mechanics 47, 17–30 (1999)

[16] Cai, X.C., Keyes, D.E.: Nonlinearly Preconditioned Inexact Newton Algorithms. SIAM
Journal on Scientific Computing 24(1), 183–200 (2002)

151

152 Bibliography

[17] Cai, X.C., Keyes, D.E., Marcinkowski, L.: Non-linear additive Schwarz precondtioners
and application in computational fluid dynamics. International Journal for numerical
Methods in Fluids 40(12), 1463–1470 (2002)

[18] Cai, X.C., Keyes, D.E., Venkatakrishnan, V.: Newton-Krylov-Schwarz: An Implicit Solver
for cfd. Technical Report: Institute for Computer Applications in Science and Engineering
(1995)

[19] Chen, X., Phoon, K.: Some numerical experiences on convergence criteria for iterative
finite element solvers. Computers and Geotechnics 36, 1272–1284 (2009)

[20] Choquet, R.: Etude de la méthode de Newton -GMRES. Phd thesis, University de Rennes
I (1995)

[21] Coakley, T.: Numerical Method for gaz dynamics combining characteristic and conserva-
tion concepts. AIAA 14th Fluid and Plasma Dynamics Conference (1981)

[22] Coakley, T.: Implicit Upwind Methods for the Compressible Navier–Stokes Equations.
AIAA Journal 23(3), 374–380 (1985)

[23] Colonius, T.: Modeling Artificial Boundary Conditiond for Compressible Flow. Annu.
Rev. Fluid Mech. 36 (2004)

[24] Colonius, T., Lele, S.K., Moin, P.: Sound generation in a mixing layer. Journal of Fluid
Mechanics 330, 375–409 (1997)

[25] CUDA: Home page. http://www.nvidia.com/object/cuda home new.html. [Online]

[26] Culler, D., Singh, J., Gupta, A.: Parallel Computer Architecture. A Hardware / Software
Approach. The Morgan Kaufmann Series in CompuThe Morgan Kaufmann Series in
Computer Architecture and Designter Architecture and Design, Handcover (1998)

[27] Curtiss, C.F., Hirschfelder, J.O.: Integration of Stiff Equations. Proceedings of the Na-
tional Academy of Science of the Uniuted States of America 38(3), 235–243 (1952)

[28] Davis, R.W., Moore, E.F.: A numerical study of vortex shedding from rectangles. Journal
of Fluid Mechanics 116, 475–506 (1982)

[29] Dubois, O., Gander, M.J.: Convergence Behavior of a Two-Level Optimized Schwarz
Preconditioner. Lectures Notes in Computational Science and Engineering 70, 177–184
(2009)

[30] Dubois, O., Gander, M.J., Loisel, S., ST-Cyr, A., Szyld, D.B.: The optimized Schwarz
method with a coarse grid correction. SIAM Jurnal on Scientific Computing 34(1), 421–
458 (2012)

[31] Einfeldt, B., Munz, C., Roe, P., Sjogreen, B.: On godunov-type methods near low densi-
ties. Journal of Computational Physics 92(2), 273–295 (1991)

[32] elsA: Home page. http://elsa.onera.fr/. [Online]

[33] Eltgroth, P., Bolstad, J., Duffy, P., Mirin, A., Wang, H., Wehner, M.: Coupled Ocean/At-
mosphere Modeling on High-Performance Computing Systems. SIAM (1997)

[34] Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow prob-
lems. Journal of Computational Physics 2(3), 306–331 (1968)

[35] Ernst, O.G., Gander, M.J.: Why it is Difficult to Solve Helmholtz Problems with Clas-
sical Iterative Methods. Numerical Analysis of Multiscale Problems Lecture Notes in
Computational Science and Engineering 83, 325–363 (2012)

[36] Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of numerical
analysis (2006)

[37] Feireisl, E., Novotný, A., Petzeltová, H.: On the Existence of Globally De[U+FB01]ned
Weak Solutions to the Navier-Stokes Equations. Journal of Mathematical Fluid Mechanics
(2001)

Bibliography 153

[38] Gander, M.J.: Overlapping Schwarz Waveform Relaxation for Parabolic Problems. Pro-
ceedings of the 10th International Conference on Domain Decomposition, AMS, Contem-
porary Mathematics 218, 425–431 (1998)

[39] Gander, M.J.: Schwarz Methods over the Course of Time. ETNA 31, 228–255 (2008)

[40] Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advec-
tion reaction diffusion problems. SIAM Journal on Numerical Analysis 45(2), 666–697
(2007)

[41] Gander, M.J., Halpern, L.: Techniques for Locally Adaptive Timestepping Developed
over the Last Two Decades. Domain Decomposition Methods in Science and Engineering
XX, Lecture Notes in Computational Science and Engineering, Springer-Verlag (2012)

[42] Gander, M.J., Halpern, L., Kern, M.: A Schwarz Waveform Relaxation Method for
Advection-Diffusion-Reaction Problems with Discontinuous coefficients and non-Matching
Grids. Lectures Notes in Computational Science and Engineering 55, 283–290 (2007)

[43] Gander, M.J., Halpern, L., Nataf, F.: Optimal Convergence for Overlapping and Non-
Overlapping Schwarz Waveform Relaxation. Proceedings of the 11th International Con-
ference on Domain Decomposition pp. 27–36 (1999)

[44] Gander, M.J., Halpern, L., Nataf, F.: Optimized Schwarz Methods. Domain Decomposi-
tion Methods in Sciences and Engineering pp. 15–29 (2001)

[45] Gander, M.J., Kwok, F.: Best Robin parameters for optimized Schwarz methods at cross
points. SIAM Journal on Scientific Computing 34(4), 1849–1879 (2012)

[46] Gander, M.J., Stuart, A.M.: Space-Time Continuous Analysis of Waveform Relaxation
for the Heat equations. SIAM Journal on Scientific Computing 19(6), 2014–2031 (1998)

[47] Gander, M.J., Wanner, G.: The Origins of the Alternating Schwarz Method. Lecture
Notes in Computational Science and Engineering (2013)

[48] Gustafsson, B.: The Convergence Rate for Difference Approximations to Mixed initial
Boundary Value Problems. Mathematics of Computation 29(130), 396–406 (1975)

[49] Haeberlein, F.: Time-Space Domain Decomposition Methods for Reactive Transport Ap-
plied to CO2 Geological Storage. PhD Thesis, University Paris 13 (2011)

[50] Haeberlein, F., Halpern, L.: Optimized Schwarz waveform relaxation for nonlinear systems
of parabolic type. Proceedings of the 21 international conference on Domain Decomposi-
tion Methods (2012)

[51] Halpern, L.: Artificial Boundary Conditions for Incompletely Parabolic Perturbations of
Hyperbolic Systems. SIAM 22(5), 1256–1283 (1991)

[52] Halpern, L.: Absorbing Boundary Conditions and Optimized Schwarz Waveform Relax-
ation. Numerical Mathematics 43(1), 001–018 (2003)

[53] Halpern, L.: Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits. Pro-
ceedings of the Eighteenth International Conference of Domain Decomposition Methods,
Springer pp. 225–232 (2009)

[54] Halpern, L., Rauch, J.: Absorbing boundary conditions for diffusion equations. Numer.
Math. 71, 185–224 (1995)

[55] Halpern, L., Ryan, J., Borrel, M.: Domain decomposition vs. overset Chimera grid ap-
proaches for coupling CFD and CAA. ICCFD7 Proceedings (2012)

[56] Harten, A., D. Lax, P., Van Leer, B.: On Upwind Differencing and Godunov-Type
Schemes for Hyperbolic Conservation Laws. SIAM 25(1), 35–61 (1983)

[57] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 1. Funda-
mentals of Computational Fluid Dynamics. Elsevier (2006)

154 Bibliography

[58] Jeltsch, R., Pohl, B.: Waveform relaxation with overlapping splittings. SIAM Journal on
Numerical Analysis 16(1), 40–49 (1995)

[59] Keyes, D.E.: Domain decomposition in the mainstream of computational science. Pro-
ceedings of the 14 international conference on Domain Decomposition Methods (2002)

[60] Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches
and applications. Journal of Computational Physics 193(2), 357–397 (2004)

[61] Lefebvre, M.: Algorithmes sur GPU pour la simulation numérique en mécanique des
fluides. Phd thesis, Université de Paris XIII (2012)

[62] Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation
method for time-domain analysis of large scale integrated circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 1(3), 131–145 (1982)

[63] Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps pararéel.
C. R. Acad. Sci. Paris Série I Math 332, 661–668 (2001)

[64] Lions, P.L.: On the Schwarz alternating method I. In First International Symposium on
Domain Decomposition methods for Partial Differential Equations. SIAM (1988)

[65] Lions, P.L.: On the Schwarz alternating method II: Stochastic Interpretation and Order
Properties. SIAM (1989)

[66] Lions, P.L.: On the Schwarz alternating method III: A Variant for Nonoverlapping Sub-
domains. SIAM (1990)

[67] Liou, M.S.: A sequel to AUSM: AUSM+. Journal of Computational Physics 129(2),
364–382 (1996)

[68] Liou, M.S.: Ten years in the making - AUSM-family. AIAA-2001-2521 (2001)

[69] Liou, M.S.: A sequel to AUSM, part II: AUSM+-up for all speeds. Journal of Computa-
tional Physics 214(1), 137–170 (2006)

[70] Liou, M.S., Steffen, C.J.J.: A New Flux Splitting Scheme. Journal of Computational
Physics 107, 23–39 (1993)

[71] Magoulès, F., Roux, F.X.: Calcul scientifique parallèle. Dunod (2013)

[72] Marcinkowski, L., Cai, X.C.: Parallel Performance of Some Two-Level ASPIN Algorithms.
Lectures Notes in Computational Science and Engineering 40, 639–646 (2005)

[73] Martin, V.: Schwarz Waveform Relaxation Algorithms for the Linear Viscous Equatorial
ShallowWater Equations. SIAM Journal on Scientific Computing 31(5), 3595–3625 (2010)

[74] Moguen, Y., Delmas, S., Perrier, V., Bruel, P., Dick, E.: Intertia terms for all Mach num-
ber Godunov-type schemes: Behavior of unsteady solutions at low Mach number. Eighth
Intenrational Conference on Computational Fluis Dynamics, to be published (2014)

[75] MPI: Home page. http://www.open-mpi.org/. [Online]

[76] Negrut, D.: High Performance Computing for Engineering Applications. GPU Course
ME964, University of Winsconsin-Madison (2012)

[77] Nickolls John abd Buck, I., Garland, M.: Scalable Parallel Programming. Magazine queue
- GPU Computing 6(2), 40–53 (2008)

[78] Nordstrom, J., Svard, M.: Well-posed boundary conditions for the Navier–Stokes equa-
tions. SIAM Journal on numerical analysis 43(3), 1231–1255 (2006)

[79] Novotný, A., Stras̆kraba, I.: Introduction to the Mathematical Theory of Compressible
Flow. Oxford Lecture series in Mathematics and Applications (2004)

[80] Okajima, A., K., K.: Numerical study on aeroelastic instabilities of cylinders with a
circular and rectangular cross-section. Journal of Wind Engineering and Industrial Aero-
dynamics 46, 541–550 (1993)

Bibliography 155

[81] O’Leary, D., White, R.: Multi-Splittins of Matrices and Parallel Solution of Linear Sys-
tems. SIAM J. Alg. Disc. Meth. 6(4), 630–60 (1986)

[82] Ong, B., High, S., Kwok, F.: Pipeline Schwarz Waveform Relaxation. to be published
in the Proceedings of the 22 international conference on Domain Decomposition Methods
(2013)

[83] OpenMP: Home page. http://openmp.org/wp/. [Online]

[84] Ouvrard, H.: Simulation Numérique d’écoulements turbulents par les approches LES,
VMS-LES et hybride RANS/VMS-LES en maillage non-structurés. Phd thesis, University
Montpellier II (2010)

[85] Poinsot, T., Lele, S.: Boundary conditions for Direct Simulations of Compressible Viscous
Flow. Journal of Computational Physics 101(1), 104–129 (1992)

[86] Sanchez-Sanz, M., Belen, F., Velazquez, A.: Enery-Harvesting Microresonator Based on
the Forces Generated by the Karman Street Around a Rectangular Prism. Journal of
Microelectromechanical systems 18(2), 449–457 (2009)

[87] Schwarz, H.: Uber einige Abbildungsaufgaben. Ges. Math. Abh. 11, 65–83 (1869)

[88] Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition. Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press (1996)

[89] Sod, G.A.: A Survey of Several Finite Difference Methods for Systems of Nonlinear Hy-
perbolic Conservation Laws. Journal of Computational Physics 27(1), 1–31 (1978)

[90] Steger, J., Benek, J.: A 3-D Chimera Grid Embedding Technique. AIAA Paper 85 (1983)

[91] Steger, J., Dougherty, F., Benek, J.: A Chimera Grid Scheme. ASME Fluids Engineering
Conference, Houston 5 (1983)

[92] Stegger, N.: A Numerical investigation of the Flow Around Rectangular Cylinders. Phd
thesis, School of Mechanical and Materials Engineering, The University of Surrey, Guild-
ford, United Kingdom (1998)

[93] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag
Berlin Heidelberg (1999)

[94] Toro, E.F., Spruce, M., Spears, W.: Restoration of the Contact Surface in the HLL-
Riemann Solver. Shock Waves 4, 25–34 (1994)

[95] Van Leer, B.: Towards the Ultimate Conservative Difference Scheme; V. A Second-Order
Sequel to Godunov’s method. Communications in Computational Physics 32, 101–136
(1979)

[96] Van Leer, B.: Flux-Vector Splitting for the Euler Equations. In Proceeding of the 8th
International Conference on numerical Methods for Fluid Dynamics, Germany (1982)

[97] Van Leer, B.: Upwind and High-Resolution Methods for Compressible Flow: From Donor
Cell to Residual-Distribution Schemes. Communications in Computational Physics 1(2),
192–206 (2006)

[98] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with
strong shocks. Journal of Computational Physics 54(1), 115–173 (1984)

[99] Yee, H.C., Sandham, N.D., Djomehri, M.: Low-dissipative high-order shock-capturing
methods using characteristic-based filters. Journal of Computational Physics 150(1),
199–238 (1999)

[100] Yoon, S., Jameson, A.: An LU-SSOR Scheme for the Euler and Navier-Stokes Equations.
AIAA Journal (1986)

156 Bibliography

Méthode de décomposition de domaine avec adaptation de maillage en espace-
temps pour les équations d’Euler et de Navier–Stokes

Résumé

En mécanique des fluides, la simulation de phénomènes physiques de plus en plus complexes,
en particulier instationnaires, nécessite des systèmes d’équations à nombre très élevé de degrés de
liberté. Sous leurs formes originales, ces problèmes sont coûteux en temps CPU et ne permettent
pas de faire une simulation sur une grande échelle de temps. Une formulation implicite, similaire
à une méthode de Schwarz, avec une parallélisation simple par blocs et raccord explicite aux
interfaces ne suffit plus à la résolution d’un tel système. Des méthodes de décomposition des
domaines plus élaborées, adaptées aux nouvelles architectures, doivent être mises en place.

Cette étude a consisté à élaborer un code de mécanique des fluides, parallèle, capable
d’optimiser la convergence des méthodes du type Schwarz tout en améliorant la stabilité numérique
et en diminuant le temps de calcul de la simulation. Une première partie a été l’étude de schémas
numériques pour des problèmes stationnaires et instationnaires de type Euler et Navier–Stokes.
Deuxièmement, une méthode de décomposition de domaine adaptive en espace-temps, a été
proposée afin de profiter de l’échelle de temps caractéristique de la simulation dans chaque
sous-domaine. Une troisième étude a été concentrée sur les moyens existants qui permettent
de mettre en oeuvre ce code en parallèle (MPI, OPENMP, GPU). Des résultats numériques
montrent l’efficacité de la méthode.

Mots clés: mécanique des fluides numérique, équations d’Euler et de Navier–Stokes, méthode
de décomposition de domaine, méthode adaptative de relaxation d’ondes, calcul haute perfor-
mance, OpenMP, MPI, GPU

Adaptive Space-Time Domain Decomposition Methods for Euler and Navier–
Stokes Equations

Abstract

Numerical simulations of more and more complex fluid dynamics phenomena, especially
unsteady phenomena, require solving systems of equations with high degrees of freedom. Under
their original form, these aerodynamic multi-scale problems are difficult to solve, costly in CPU
time and do not allow simulations of large time scales. An implicit formulation, similar to the
Schwarz method, with a simple block parallelisation and explicit coupling is no longer sufficient.
More robust domain decomposition methods must be conceived so as to make use and adapt to
the most of existent hardware.

The main aim of this study was to build a parallel in space and in time CFD Finite Vol-
umes code for steady/unsteady problems modelled by Euler and Navier-Stokes equations based
on Schwarz method that improves consistency, accelerates convergence and decreases com-
putational cost. First, a study of discretisation and numerical schemes to solve steady and
unsteady Euler and Navier–Stokes problems has been conducted. Secondly, an adaptive time-
space domain decomposition method has been proposed, as it allows local time stepping in each
sub-domain. Thirdly, we have focused our study on the implementation of different parallel
computing strategies (OpenMP, MPI, GPU). Numerical results illustrate the efficiency of the
method.

Keywords: Computing Fluid Dynamic, Euler and Navier–Stokes equations, Domain De-
composition Method, Adaptive Schwarz Waveform Relaxation method, high performance com-
puting, OpenMP, MPI, GPU

