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Résumé 

Le	but	de	 ce	 travail	de	doctorat	est	d’évaluer	 la	possibilité	

d’utiliser	Haslea	ostrearia	et	la	marennine	en	ostréiculture.	

Les	 objectifs	 de	 ce	 projet	 sont	 :	 (1)	 l'évaluation	 du	

comportement	 alimentaire	 de	 l'huître	 creuse	 Crassostrea	

gigas	sur	des	cellules	d’H.	ostrearia	de	différentes	tailles	et	

les	 conséquences	 potentielles	 sur	 les	 populations	 algales;	

(2)	 la	 caractérisation	du	verdissement	par	 la	marennine	et	

ses	 conséquences	 sur	 la	 physiologie	 de	 C.	 gigas.	 (3)	 les	

conséquences	 du	 verdissement	 sur	 les	 traits	

comportementaux,	 physiologiques	 et	 biochimiques	 de	

plusieurs	 espèces	 de	 bivalves;	 (4)	 l'utilisation	 conjuguée	

d’H.	 ostrearia	 avec	 d'autres	 microalgues	 d’importance	 en	

aquaculture.	

Nos	 résultats	 suggèrent	 que	 la	 taille	 des	 cellules	 affecte	

considérablement	 le	 processus	 de	 selection	 d’H.	 ostrearia	

par	l’huître.	Cette	étude	démontre	également	que	la	forme	

extracellulaire	 de	 la	 marenninne	 contribue	

significativement	 au	verdissement	dans	 les	mucocytes	des	

branchies.	Mis	à	part	le	verdissement	des	organes	palléaux	

des	bivalves,	une	concentration	modérée	de	marennine	(2	

mg	 L
-1
)	 affecte	 les	 performances	 comportementales,	

physiologiques	 et	 biochimiques	 des	 bivalves.	 Néanmoins,	

ces	 effets	 pourraient	 être	 compensés	 par	 ses	 activités	

biologiques	 comme	 agent	 antibactérien	 naturel	 et	 source	

d’alimentation	mixte	d’algues	en	conchyliculture.		

	

Mots	clés	

Haslea	ostrearia,	marennine,	bivalves,	conchyliculture	

	

Summary 

This	 Ph.D.	 thesis	 focuses	 on	 several	 assessments	 to	

achieve	the	optimum	benefit	of	utilization	of	marennine	

in	 the	 field	 of	 aquaculture.	 The	 study	 covers:	 (1)	 the	

assessment	 in	 feeding	 behavior	 of	 the	 Pacific	 oyster	

Crassostrea	gigas	 on	different	sizes	of	Haslea	ostrearia	

and	 its	ecological	consequence;	 (2)	 the	characterization	

of	 the	greening	by	marennine	and	 its	consequences	on	

some	 physiological	 traits	 of	 on	 C.	 gigas.	 (3)	 the	

consequence	 of	 greening	 by	marennine	 on	 behavioral,	

physiological	 and	biochemical	 traits	 of	 bivalves;	 (4)	 the	

utilization	 of	 H.	 ostrearia	 and	 marennine	 in	 a	

combination	 diet	 with	 other	 microalgae	 relevant	 to	

aquaculture.	

Our	 results	 suggest	 that	 cell	 size	 impacts	 considerably	

the	 selection	 process	 of	 H.	 ostrearia	 by	 oyster.	 This	

study	 also	demonstrates	 that	 the	 extracellular	 form	 of	

marennine	 contributes	 significantly	 to	 the	 greening	 in	

the	 mucocytes	 of	 the	 gills.	 Apart	 from	 greening	 the	

pallial	 organs	 of	 bivalves,	marennine	 (2	 mg	 L
-1
)	 affects	

the	 behavioural,	 physiological	 and	 biochemical	

performance.	 Nevertheless,	 these	 effects	 can	 be	

compensated	for	 its	biological	activities	such	as	natural	

antibacterial	 agent	 and	 use	 as	 a	 mixed	 algal	 diet	 for	

bivalve	aquaculture.		
	

Mots	clés	

Haslea	ostrearia,	marennine,	bivalves,	aquaculture	
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RÉSUMÉ 

 
 

 
Le phénomène du verdissement des huîtres a été décrit dès le XVIIème siècle. Il a 

rapidement été démontré que la diatomée Haslea ostrearia était responsable de ce 

phénomène du fait de sa capacité à synthétiser un pigment bleu-vert nommé marennine. Ce 

phénomène est avantageux pour l'industrie ostréicole française, la coloration verte des 

branchies des huîtres par la marennine augmentant leur prix de vente. Par ailleurs, il a été 

suggéré que ce pigment pourrait être utilisé en tant qu’agent antipathogène naturel en 

écloserie et en ostréiculture, en raison de ses activités antibactériennes et antivirales 

démontrées in vitro. Néanmoins, cette proposition requiert de plus amples investigations 

qui ont déterminé mon sujet de thèse.  

 Dans le cadre de mon doctorat, plusieurs études ont été effectuées pour évaluer la 

possibilité d’utiliser H. ostrearia et la marennine en ostréiculture. Ces études ont porté sur : 

(1) L'évaluation du comportement alimentaire de l'huître creuse Crassostrea gigas sur des 

cellules d’H. ostrearia de différentes tailles et les conséquences potentielles sur les 

populations algales; (2) La caractérisation du verdissement par la marennine et ses 

conséquences sur la physiologie de C. gigas. (3) Les conséquences du verdissement sur les 

traits comportementaux, physiologiques et biochimiques de plusieurs espèces de bivalves; 

(4) L’utilisation conjuguée d’H. ostrearia avec d’autres microalgues pertinentes en 

aquaculture dans le régime alimentaire.  

 Premièrement, nous avons cherché à déterminer si la taille des cellules d’H. 

ostrearia peut affecter leur sélection au niveau des organes palléaux de C. gigas. Ce travail 

a montré que C. gigas rejette “préférentiellement”les grandes cellules d’H. ostrearia. 

Comme conséquence, le processus de tri pourrait avoir une certaine importance écologique, 

à la fois dans les milieux naturels et en aquaculture, en particulier dans les claires. Ainsi, 

notre étude suggère que le rejet préférentiel des cellules de grande taille dans les 

pseudofèces pourrait favoriser le développement et / ou la maintenance des sous-
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populations de grande taille d’H. ostrearia, les cellules rejetées dans les pseudofèces étant 

douées de reviviscence. 

 Deuxièmement, des expériences complémentaires ont été effectuées pour mieux 

comprendre le mécanisme du verdissement ainsi que son influence sur le comportement 

alimentaire de C. gigas. Nos résultats ont montré que le verdissement des organes palléaux 

d'huîtres a été majoritairement causé par la forme extracellulaire du pigment, tandis que la 

contribution de la forme intracellulaire ingérée en même temps que les cellules d’H. 

ostrearia reste minoritaire. En outre, le verdissement par la marennine a été identifié dans 

les mucocytes des branchies, qui semblent être le site de fixation de ce pigment. Enfin, le 

verdissement peut diminuer de manière significative le taux de filtration et le taux 

d'ingestion, tandis qu’aucune différence n'a été observée en termes de production de 

pseudofèces chez l’huître. 

 Troisièmement, nous avons évalué l'effet de la marennine sur les traits 

comportementaux, physiologiques et biochimiques de deux espèces de bivalves 

commercialement importants, la moule bleue Mytilus edulis et l'huître américaine 

Crassostrea virginica. Notre étude a montré que la concentration en marennine dans les 

branchies des deux espèces est positivement corrélée à la concentration de marennine 

dissoute dans le milieu. Une réponse comportementale a été détectée en présence de la 

concentration de marennine la plus élevée (2 mg L-1), les deux espèces présentant un degré 

d’ouverture de valve réduite par rapport aux groupes témoins. La marennine à 2 mg L-1 a 

diminué de manière significative le potentiel de croissance (SFG) de 58% et 85% chez M. 

edulis et C. virginica respectivement. Le processus du verdissement a eu chez M. edulis un 

effet sur la concentration en acides gras totaux contenus dans la glande digestive, ce qui 

suggère que la marennine a un impact sur l'accumulation de réserves d'énergie chez ce 

bivalve. En ce qui concerne les lipides polaires, le verdissement a augmenté la 

concentration en acides gras insaturés dans les branchies de C. virginica. Cette 

augmentation peut indiquer un mécanisme de régulation antagoniste des effets de la 

marennine. 

 Enfin, nous avons évalué l’impact de l'effet allélopathique d’H. ostrearia en co-

cultures, de façon à identifier les espèces d'algues résistantes ou sensibles à la marennine 
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d’être utilisées conjointement en aquaculture. Nos résultats ont montré que l'inhibition de la 

croissance des microalgues en présence d’H. ostrearia et de la marennine variait selon les 

espèces. S. costatum, C. calcitrans et T. lutea étaient significativement plus sensibles, 

tandis que T. suecica et P. tricornutum semblaient être plus résistantes. Cette étude a 

confirmé que la marennine libérée dans le milieu de culture agit comme un composé 

allélochimique, pouvant expliquer la domination occasionnelle d’H. ostrearia et la 

diminution de population d’espèces algales sensibles dans les claires, mais également qu’il 

existe des espèces indifférentes déjà largement utilisées en aquaculture. 

 Cette étude de doctorat permet de mieux comprendre le mécanisme du 

verdissement des bivalves causés par la marennine, ainsi que ses conséquences biologiques 

sur les individus. En outre, notre étude fournit des informations sur l’utilisation potentielle 

de la marennine comme agent anti pathogène naturel en conchyliculture. Néanmoins, des 

études plus approfondies devraient être effectuées en particulier sur l'efficacité de ce 

pigment par rapport aux autres anti pathogènes naturels. 
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ABSTRACT 

 
 
 Oyster greening phenomenon was firstly described in the seventeenth century and 

was considered as a natural phenomenon. Nevertheless, recent findings have confirmed 

that the diatom Haslea ostrearia was responsible for the greening as this diatom able to 

synthesize the blue-green pigment designated as marennine. This phenomenon has been 

advantageous for the French oyster industry since the green coloration in oysters’ pallial 

organs by marennine can increase their market price. Moreover, apart from marennine’ 

coloring action, it is hypothesized that this pigment could potentially be used as natural 

antipathogen sources in hatchery and oyster farming, due to their antibacterial and antiviral 

activities, which has been demonstrated in vitro at the laboratory scale. Nonetheless, 

several assessments need to be conducted to achieve the optimum benefit of utilization of 

marennine in the field of aquaculture.  

 In the context of my Ph.D. study, several studies have been conducted to assess the 

possibility of utilization of H. ostrearia and marennine in the field of oyster aquaculture. 

Thus, this Ph.D. thesis focuses on: (1) The assessment in feeding behavior of the Pacific 

oyster Crassostrea gigas on different sizes of H. ostrearia and its ecological consequence; 

(2) The consequence of greening by marennine on behavioral, physiological and 

biochemical traits of bivalve; (3) The utilization of H. ostrearia and marennine in 

combination diet with other microalgae relevant to aquaculture. (4) The characterization of 

the greening by marennine and its consequences on physiological traits of on C. gigas. 

 Firstly, we would like to determine if cell size might affect algal selection on pallial 

organs of C. gigas. This work showed that C. gigas selectively rejects larger cells of H. 

ostrearia. As consequence, the sorting process could have some ecological significance, 

both in natural environments and in aquaculture, especially in oyster ponds. In addition, our 

study suggests that the preferential rejection of large-size cells in pseudofaeces could 

favour the development and/or the maintenance of sub-populations of large-size Haslea, 

given that H. ostrearia cells rejected in pseudofaeces have a revival capacity that is not 

altered by pre-ingestive processing. 
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 Secondly, complementary experiments were conducted to understand better the 

mechanism of greening and its influence on feeding behavior of C. gigas. Our findings 

showed that the greening in pallial organs of oyster was significantly caused by the 

extracellular form of pigment, compared to the intracellular form in Haslea’s cell. In 

addition, greening by marennine was identified in the mucocyte of the gills, indicate that 

mucocyte as the site of marennine fixation. Moreover, greening by marennine significantly 

decreased the clearance rate (CR) as a consequence of its fixation on oyster gills. However, 

the CR of oyster recovers to normal state after 7 days of exposure, suggesting that oyster is 

able to depurate the effect of marennine. 

 Thirdly, we would like to evaluate the effect of marennine on the behavioral, 

physiological and biochemical traits of two commercially important bivalve species, the 

blue mussel Mytilus edulis and the eastern oyster Crassostrea virginica. Our study showed 

that the concentration of marennine found on the gills of both species was positively 

correlated to the concentration of dissolved marennine in the water medium. However, a 

behavioral response was detected at the higher marennine concentration (2.0 mg L-1), with 

both species displaying curtailed valve opening compared to control groups. Marennine at 

2.0 mg L-1 significantly decreased scope for growth by 58% and 85% for M. edulis and C. 

virginica, respectively. The greening process had effect on total fatty acids contained in the 

digestive gland but only restricted to mussel, suggesting that marennine interferes the 

accumulation of energy reserves in this bivalve. In addition, with respect to polar lipids, 

greening by marennine effectively increased the concentration of unsaturated fatty acids in 

the gills of C. virginica only. This increase may indicate a regulatory mechanism 

counteracting marennine. 

 Lastly, we would like to assess the allelopathic effect of H. ostrearia in realistic 

conditions of microalgae co-cultures, to identify which algal species relevant for 

aquaculture are either sensitive or resistant to H. ostrearia and its supernatant containing 

marennine. Our findings showed that inhibition of growth of microalgae due to the 

presence of H. ostrearia and marennine was species-dependent. S. costatum, C. calcitrans 

and T. lutea were significantly more sensitive, whereas T. suecica and P. tricornutum 

appeared to be more resistant. This study confirmed that marennine released into the 
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culture medium can act as an allelochemical compound, thus explaining the dominance of 

H. ostrearia and the loss of sensitive algae in oyster ponds, but also that some species are 

insensitive, which allows co-culturing and use in a mixed algal diet in aquaculture. 

 This Ph.D. study provides a better insight about the greening mechanism of 

bivalves caused by marennnine, as well as its biological consequences on bivalves. 

Moreover, our study provides information about the assessment on the putative utilization 

of marennine as natural antipathogen agent particularly in bivalve aquaculture. 

Nevertheless, further studies should be carried out, particularly on the efficiency of 

marennine compared to other natural antipathogen. 
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1 CHAPTER I: GENERAL INTRODUCTION 

1.1 Shellfish culture development worldwide: problems and challenges 

With the current demographic issue of expanding world population, it is recognized 

that the use of marine resources derived from capture fishing nearly reached its maximum 

(FAO 2014). Therefore, aquaculture is one of the alternatives to facilitate the harvesting of 

seafood and may rapidly become a necessity to support market demand.  

One of the major parts in today’s aquaculture is conchyliculture, meaning the 

breeding of shellfishes. Indeed, bivalve aquaculture represents 22.8% of world aquaculture 

production with approximately 11.5% of the global total revenue in 2012 (FAO 2014). 

Production from this sector has increased rapidly over the last decades, from 1 million tons 

in 1950 to 15.2 million tons in 2012, placing the bivalve’s culture on the second rank in the 

global aquaculture production with 7 million tons on the world market (FAO 2014).  

Bivalves present several advantages for aquaculture. For instance, they are filter-

feeding animal that feeds directly in the aquatic environment. In contrary to fish 

aquaculture there is no need to provide additional food source, therefore during the 

growing phase at the sea, the cost of food is nearly absent. In addition, the rearing 

techniques used are relatively simple and inexpensive in terms of labor. 

In France, conchyliculture has existed since the middle ages, explaining the current 

wide diversity of breeding techniques (Lucas 2012). Ostreiculture is one of the major types 

of shellfish culture in France. The native Ostrea edulis was the first species to be cultured 

since the 17th century using former salt marshes (evaporation ponds for salt production) in 

the Marennes region (Grelon 1978). Juvenile oysters were placed in ponds (“claires”) for 

approximately 4 or 5 years before the sale. At the turn of the 19th century, the flat oyster 

culture was well developed, especially in the Bay of Arcachon with the maximum 

production of 20,000 metric tons per year (Buestel et al. 2009). However, production of flat 

oyster was interrupted by the massive unexplained mortalities after 1920, which led to their 

extinction in both the Arcachon and Marennes region. During this period of time, the 

Portuguese cupped oyster Crassostrea angulata replaced the endemic flat oysters until its 
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production gradually decreased nearly to the point of extinction in France due to the 

iridovirus outbreak in 1996 (Buestel et al. 2009). Subsequently, massive introductions of 

the Pacific oyster Crassostrea gigas were conducted as a resurrection plan to overcome the 

crisis. This species was well established and demonstrated fast growth and thus production 

increased rapidly. Today, France is considered as the major oyster producer in Europe with 

the total production of 116,000 metric tonnes (FAO 2008). 

 The development of aquaculture, as well as the problems and challenges found in 

this, quite varies depending on the country. To date, eutrophication of the coastal 

environment due to aquaculture activity is one of the crucial challenges in applying 

sustainable aquaculture. Bivalve suspension feeders produce faeces and pseudofaeces, with 

high organic content through their biodeposition process. The potential impact of 

biodeposition associated with suspended bivalve aquaculture on benthic biogeochemical 

and biological parameters has been numerously studied. The first study of the impact of 

shellfish farming on the ecosystem was carried out by Dahlbäck and Gunnarsson (1981). 

These authors noted a link between increased sedimentation rates, accumulation of organic 

matter and greater sulfate reduction and sulphide accumulation under shellfish farm of 

Mytilus edulis in Sweden relative to the control site. In addition to this, (Chamberlain et al. 

2001) it was observed that suspended mussel farm activity in southwest Ireland resulted in 

elevated levels of organic carbon which reduced macrobenthic infaunal diversity within a 

radius of 40 m around the farm. However, most studies on organic enrichment of seabed 

and alteration on benthic communities due to shellfish farming have concluded that the 

effect is much less than that caused by finfish farming (e.g. salmon) (Crawford et al. 2003). 

Recent studies show that alteration on the benthic environment and benthic communities 

could be influenced by type and intensity of farming (Mckindsey et al. 2011).  

 Another significant issue faced by shellfish culture is the loss of stock through 

disease or pathogen infections. There are several examples of the negative impact of 

disease outbreaks and mass mortality on the production and trade. To date, bivalve summer 

mortality was mostly reported not only in France (e.g. Thau lagoon and Marennes-Oléron 

Bay, in French Mediterranean coast and Atlantic coast, respectively) (Pernet et al. 2010; 

Dégremont 2011), but also in Ireland and the Channel Islands (Lynch et al. 2011; Martenot 
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et al. 2011) as well as several cases in Australia and New Zealand (Zippel and Kaspar, 

unpublished results). Specifically in France, C. gigas’ mortality affects any stage of 

production, including larvae, juveniles or adults, regardless of the farming technique. 

Recent findings suggest that both herpesvirus OsHV-1 and Vibrio splendidus are strongly 

associated with oyster bivalve mass mortality (Dégremont 2011). 

 To avoid detrimental economic losses due to disease outbreak, antimicrobial drugs 

(hereafter named, AMDs) are commonly supplied to the animals as food additives, 

immersions or injections (Rico et al. 2013). In addition, AMDs can also be applied as 

prophylactic (by preventing diseases before they occur), therapeutics (by treating sick 

animals or growth booster) (Rico et al. 2013). Nonetheless, utilization of AMDs is 

becoming more restricted since many studies observed the side effects for both 

environment and public health safety. For instance, the drawbacks of using massive 

amounts of antibiotics have resulted in the development of resistant bacteria strains 

(Miranda and Zemelman 2002; Seyfried et al. 2010) and the presence of residual AMDs in 

the muscle of commercialized fish, which subsequently has potential consequences on 

human health (Cabello 2006b). Vaccination may be viewed as the most effective option to 

control fish and shellfish diseases, but yet, it remains considerably expensive and pathogen-

specific (Sakai 1999; Evans et al. 2004; Harikrishnan et al. 2011). Therefore, some of the 

proposed solutions are the use of prospective natural antibiotics (e.g. plant, macro- and 

microalgae extracts) (Lee et al. 2009; Citarasu 2010; Sasidharan et al. 2010; Gastineau et 

al. 2012b; Gastineau et al. 2012c; Fleurence et al. 2012; García-Bueno et al. 2014; Reverter 

et al. 2014) or probiotics (beneficial microbial strains) to support sustainable aquaculture 

practices (Mohapatra et al. 2013). Moreover, recent trends show that there is an increasing 

awareness in consuming organic and environmentally friendly food. Thus, the limitation or 

replacement of chemical products in aquaculture by using natural treatments could enhance 

the consumption of aquaculture products.  

 Recently, several studies demonstrate that microalgae produce secondary 

metabolites that inhibit deleterious pathogens in aquaculture (Desbois et al. 2008, 2009; Vo 

et al. 2011; Molina-Cárdenas et al. 2014). Among microalgae, H. ostrearia is a pennate 

diatom able to synthesize and excrete water-soluble blue pigment marennine, which could 



	 4	

potentially be used in aquaculture as natural antipathogen (Gastineau et al. 2012c, 2014c). 

The purified form of marennine significantly inhibits the growth of bacteria (e.g Vibrio 

aesturianus and V. splendidus) that contributed to the summer mortality events in France 

(Gastineau et al. 2012c). Both antibacterial and antiviral activities observed in vitro, could 

lead to the potential development of H. ostrearia and marennine with maximum benefit to 

the oyster industry, and more widely to aquaculture. Therefore, it’s essential to 

understand the interaction in ecophysiological context between the bivalves and H. 

ostrearia as well as its marennine pigment. Within the framework of my Ph.D., several 

experiments were performed to understand this interaction and more specific objective of 

the study will be explained on the later section (part: research objectives). 

 

 

1.2 Oyster’s greening phenomenon by Haslea ostrearia and marennine 

Greening of oysters is a natural phenomenon that was first described by Sprat 

(1669). He observed that oysters from the Tolesbury ponds presented a green coloration on 

their gills. Several hypotheses were made to explain this greening. For instance, the role of 

grass, plants and mosses grown on the shores of the ponds that could be ingested by oyster 

were hypothesized as the cause of greening. Another hypothesis was the presence of 

metallic ions or the presence of pollutants as zinc or copper in the pond’s water or sediment 

that can contribute to gills coloration in the oyster. Afterwards, first experimental work was 

conducted by Gaillon (1820) who observed that the greening in oyster might be related to 

the presence of microscopic organism. However, this hypothesis was still in debate until 

Bory de Saint Vincent (1824) argued that the greening was caused by the diatom named 

Navicula ostrearia in “psychodiaire” kingdom, which contained all organisms whose 

position is unclear neither animal or plant. Afterwards, Simonsen (1974) with scanning 

electron microscopy facilities confirmed this result and also changed the “blue navicula” 

from the genus Navicula to Haslea. More recently, it has been experimentally confirmed 

that H. ostrearia is consumed and ingested by oysters (Barillé et al. 1994a; Piveteau 1999; 
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Cognie et al. 2001a). This diatom is able to synthesize the water-soluble blue pigment 

known as marennine (Lankester 1886), derived from the Marennes-Oléron area. Indeed, the 

greening occurs when H. ostrearia proliferates, becoming dominant and releasing 

marennine into the seawater. As a consequence, the oyster ponds become dark-green and 

the oysters, through their feeding, fix the pigment and their gills turn green (Fig. 1-1). In 

addition, the role of marennine in the oyster greening process has also been demonstrated 

through laboratory experiment using either the culture supernatant of H. ostrearia (Ranson 

1927; Neuville and Daste 1979), or a solution of purified marennine (Pouvreau 2006). 

To date, “green-oyster” is mainly produced on the Atlantic Coast of France, e.g. Marennes-

Oléron Bay and Bourgneuf Bay, as two of the most important sites of shellfish culture. In 

their production, greening is carried out during the refining process, in which the oysters 

are placed in particular ponds or ‘claires’ containing microalgae, to mature and fatten 

oyster. On the economic perspective, the green oysters are advantageous for the producers’ 

income due to their higher price comparatively to ordinary oyster. The price of green 

oysters is approximately 20% higher than the other due to the unpredictability of greening 

phenomenon and the organoleptic modification on their taste (Piveteau 1999). Most 

importantly, recent studies have shown that the purified forms of marennine have 

antioxidant properties (Pouvreau et al. 2008), anti-pathogen properties (Gastineau et al. 

2012b, c) and could have an effect in outcompeting other diatoms (e.g Haslea crucigera, 

Nitzschia closterium and Skeletonema costatum) in oyster ponds (Pouvreau et al. 2007a). 
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Figure 1-1. Pacific oyster C. gigas in control (A) and with marennine exposure (B) 
 

 

For decades, literature has shown that the natural greening phenomenon has not only 

been restricted in French oyster ponds but was also described in Great-Britain (Sprat 1669), 

Denmark (Petersen 1916) and the United-States (Ryder 1884; Mitchell and Barney 1918). 

Suggesting that Haslea genus with ‘marennine-like’ pigment is distributed elsewhere. 

Indeed, recent finding has shown that other species from the genus of Haslea, apart from 

the one in France, are able to color bivalve’s gills and have also demonstrated some of the 

biological activities (Gastineau et al. 2012b). Thus, any studies related to this phenomenon 

will contribute significantly to the valorization of the pigment in many fields, but mainly in 

shellfish aquaculture. 

 

 

1.3 Haslea ostrearia: Biological and Ecological Characteristics 

 Diatoms are unicellular, eukaryotic organisms characterized by their yellow-brown 

pigmentation and their siliceous cell walls forming two valves fitting together, namely 

epitheca and hypotheca  (Round et al. 1990). Thus, they are classified as algae, division 

Bacillariophyta. Among the diatoms, H. ostrearia has a peculiarity in producing blue 

pigment so-called marennine. This diatom species has a fusiform siliceous frustule 

characterized by bilateral symmetry form as pennate, from the family of Bacillariophyceae 
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(Fig. 1-2). Furthermore, H. osteraria has two raphes and central furrow which is the 

character of diatom from the family of Naviculaceae. Several studies have observed the 

ultrastructure of the frustule by scanning electron microscopy (SEM) (Neuville and Daste 

1979). Previous observation revealed that dimension of H. ostrearia can vary between 60 

to 120 µm for its trans-apical axis (length) and 6 to 12 µm on its anti-apical axis (depth) 

(Robert 1983a). In addition, another in vitro observation showed that the maximum and 

minimum length of Haslea's cell could reach 140 µm and 36 µm, respectively (Neuville 

and Daste 1978). In contrast, another study showed that cultured cell could be maintained 

until a minimum size of 17 µm, from the maximum size of 138 µm of initial cell’s size 

(Davidovich et al. 2009). 

  

 

 

Figure 1-2. Scheme of H. ostrearia on pigmented state, taken from the front view of 
biometric calculation (adapted from (Gastineau et al. 2014a)). D: Dimension of transapical 

axis; C: Size of chloroplasts; P/2: Dimension of the apical pigmented area. 
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 Haslea's cell has a central nucleus whose visibility depends on the cell’s stage of 

development. Robert et al. (1983) described that the anterior view shows the two parietal 

chloroplasts, adjacent to the nucleus. Furthermore, two vacuoles are distributed along the 

axis on both sides of the core whereas the cytoplasm is reduced around the core along the 

vacuoles and chloroplasts, as the widest at the apex of the cell (Nassiri et al. 1998). The 

presence of lipids is evident in the cytoplasm depending of the cell's growth stage. The 

marennine is located at the cytoplasmic vesicular complex, which accumulates mainly on 

the apex of the cell (Nassiri et al. 1998). The same authors also demonstrated that the 

vesicles involved in pigment production cycle. 

 The complete taxonomy of H. ostrearia is showed as follows (Simonsen 1974): 

  Division  : Bacillariophyta 

  Class   : Bacillariophyceae 

  Sub-class   : Bacillariophycidae 

  Ordo   : Naviculales 

  Sub-ordo  : Naviculineae 

  Family   : Naviculaceae 

  Genus   : Haslea 

  Species   : Haslea ostrearia 

  

 Like many other diatoms, H. ostrearia undergoes the mitotic cell division. When 

mitosis occurs, one of the two valves of the frustule from the parent cell is received by each 

daughter cell. This inherited valve is used as the outer valve, and concomitantly, the 

daughter cell synthesizes a new inner valve. Therefore, one of the daughter cells is identical 

in size to the parental cell, and the other is smaller. This phenomenon leads to a reduction 

in the average cell size of the population and to its vanishment, known as MacDonald and 

Pfitzer’s rule (Pfitzer 1869; Macdonald 1869) (Fig. 1-3A). In H. ostrearia, the cell’s size 

reduction in apical length as a consequence of binary division can be around 4 µm per 

month (Davidovich et al. 2009). Nevertheless, this vegetative reproduction can be 

counteracted in the natural environment by a phase of sexual reproduction. This phase 

occurs when zygotes turn into auxospores, which expand and form initial cells that recover 



	 9	

the maximum specific cell size. Unlike the centric diatoms that are oogamous, producing 

small motile male gametes and large non-motile female gametes (Sims et al. 2006), the 

pennate diatom is aplanogamous which means it does not release flagellate gametes 

(Chepurnov et al. 2004) (Fig. 1-3B). 

 

  

 

 

Figure 1-3. Reproduction in centric (A) and pennate diatom (B). A: MacDonald-Pfitzer 
scheme for cell size reduction, and the restitution of large cell size via auxosporulation, for 
a generic centric diatom. B: Diagrammatic representation of life cycle in pennate diatom 

Haslea ostrearia. Ba) an initial cell, (Bb-Be) vegetative cells passing through mitotic cycles, 
(Bf) pairing of gametangia, (Bg) gametogenesis, (Bh) zygotes, (Bi-Bj) formation of 

auxospore; n and 2n, haplontic and diplontic phases (cell length range: e.g. 20-95 µm). 
Adapted from Haberman (http://www.seagrant.umn.edu) and (Gastineau et al. 2014b). 

 
 

Sexual reproduction in H. ostrearia can be triggered by short photoperiod at low 

irradiance conditions and sexual compatibility between pairs of clones (Neuville and Daste 

1979; Davidovich et al. 2009; Mouget et al. 2009). Additionally, the cardinal points, which 

is the size threshold of H. ostrearia to be able to conduct sexual reproduction, has been 

successfully determined at approximately 68 µm (Davidovich et al. 2009). Same authors 

observed that the largest Haslea’s cell produced by the auxosporulation from this threshold 

size was around 140 µm. Another factor that could provoke the auxosporulation is the light 
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quality, such as the presence of the red part of Photosynthetically Active Radiation (PAR) 

spectra (Mouget et al. 2009).  

Haslea ostrearia is considered as thychopelagic species as it exists in benthic, 

planktonic and occasionally in both epiphytic (associated with plants) and epilithic 

(associated with stone and other hard substrates), living in both warm and tropical waters 

(Round et al. 1990). Some studies have revealed that H. ostrearia is capable of tolerating a 

wide range of salinity and is compatible to withstand high ultraviolet exposure, such as that 

in the artificial seawater oyster ponds (claire) characterized by their low turbidity and 

shallow depth (Neuville and Daste 1978; Mouget et al. 1999a). In addition, this microalgae 

is also able to adapt to high irradiance level (Mouget et al. 1999a) and change in light 

quality (Mouget et al. 2004), which may explain the seasonal dominance of this species in 

the ponds. Several authors also revealed that H. ostrearia possesse defense mechanisms 

against stress caused by ultraviolet at similar exposures to those experienced in oyster 

ponds (Rech et al. 2005). Despite its nature as an obligate photoautotroph, H. ostrearia 

could either exhibit photoheterotrophy or photomixotrophy. The former means that H. 

ostrearia depends on light for most of its energy and principally on organic compounds 

from the environment for its carbon. Whereas the latter means that H. ostrearia can also 

use a mix of different sources of energy such as nitrogen and carbon organic substances, 

instead of having a single trophic mode (Neuville and Daste 1978; Robert et al. 1982). 

Similar to other diatoms, two pathways for inorganic carbon assimilation exist in H. 

ostrearia: First, the Calvin-Benson cycle that is associated to the RuBPC and the PEPCK 

(Tremblin and Robert 2001) and second, the β-carboxylation pathway that is associated to 

anhydrase carbonic activity, (Rech et al. 2008). The first pathways are strongly correlated 

with the pigment accumulation in the cell as the carbon fixation rate and the enzyme 

activity of RuBPC and PEPCK decreased concomitantly with the accumulation of 

marennine (Tremblin and Robert 2001). Whereas the second strongly depends on the 

irradiance during the growth as the carbonic anhydrase activity is higher under low 

irradiance (Rech et al. 2008).  

Biochemical composition of H. ostrearia has been previously described in Robert et 

al. (1983). The authors demonstrated that the carbohydrate and proteins are stable during 
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the ageing of the cultures with the average of 50 and 200 mg 10−9 cells, respectively. 

However, lipid composition can vary as a function of the culture phase (exponential or 

stationary), which range between 60 and 200 mg 10−9 cells (Robert 1983b). At this range of 

concentration, proportions of fatty acids, glycolipids and neutral lipids are similar to those 

of other diatoms (Groth-Nard 1994). Nevertheless, Joux-Arab et al. (2000) demonstrated 

that there is no significant difference in lipid content on the different size of H. ostrearia. 

The most important lipids in plastid membranes such as galactolipids are similar to other 

pennate diatoms, indicated by more C18/C16 forms of both mono- and 

digalactosyldiacylglycerols (MGDG and DGDG, respectively), yet significantly different 

from the centric diatoms, which are mainly composed C20/C16 (Dodson et al. 2013). In H. 

ostrearia, the fatty acids (FAs) composition and their position of stereospecific numbering 

(sn) can be influenced by temperature. For instance, at 20°C, the eicosapentaenoic acid 

(EPA; C20:5) at sn-1 position and C16 FAs at sn-2 position of MGDG and DGDG are 

abundant. However, at 30°C, no EPA or other C20 FAs are observed, but rather higher 

percentages of C18 FAs at sn-1 (Dodson et al. 2014). 

For many decades, H. ostrearia was believed to be the only diatom that is able to 

synthesize blue pigment on its apical axis. Nevertheless, recent findings showed that 

another species of the genus Haslea with ‘marennine-like’ pigment have been discovered 

worldwide. For instance, Haslea karadagensis, which is native to the shores of the Natural 

Reserve of Karadag in Ukraine, is characterized by the blue-grey apices (Gastineau et al. 

2012a). Another species with ‘marennine-like’ pigment was also discovered from La 

Gomera (Canary Islands) and from Boulouris (French Mediterranean Sea). Revealed to be 

new species, they were named as Haslea silbo sp. Inedit and Haslea provincialis sp. Inedit, 

respectively (Gastineau 2011; Gastineau et al. 2014c). More recently, another species has 

been newly discovered from the tropic region at Seribu Islands (Java Sea, Indonesia), 

suggesting that the genus Haslea is cosmopolite. Distribution of Haslea ostrearia and the 

occurrence of the greening phenomenon in oyster are described in Fig. 1-4. 

 

  



	 12	

 

Figure 1-4. Distribution of the blue diatom H. ostrearia according to the literature. Each 
black dot indicates a site where the presence of H. ostrearia was assessed from observation 

of diatom with blue apices, or deduced from the occurrence of green oysters. Map is 
adapted and modified from (Gastineau et al. 2014a). 

 

 

1.4 The nature of marennine and its function as potentially developed natural anti-

pathogen in aquaculture 

 
 To date, many studies have been conducted on the valorization of marennine 

pigment for various purposes. However, the exact molecular structure of this pigment 

remains controversial as different hypotheses were proposed for its chemical nature, yet 

none have been established. For instance, a metallic salt (Lankester 1886; Mitchell and 

Barney 1918), carotenoid (Ranson 1937), chlorophyll degradation product (Moreau 1967; 

Neuville and Daste 1978; Robert 1983b), anthocyanin (Neuville and Daste 1972) or 

phycobilin-like molecule (Ryder 1884). Until then, a method was developed by Pouvreau 

et al. (2006a) to extract and to purify marennine by using ultrafiltration and anion-exchange 

chromatography (Fig. 1-5). Thus, according to its biophysical and chemical characteristics, 

marennine is hypothesized as a polyphenolic compound. It exists in two forms: the 
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intracellular form (IMn), which accumulates in the cytoplasm to the apical axis of the cell 

(Fig. 1-2), and the extracellular form (EMn) that is released by the cell to the external 

environment (Ranson 1927; Neuville and Daste 1978). These two forms can be 

distinguished by their spectral characteristics (UV-visible spectrophotometry, Raman 

spectroscopy) and their molecular weight where the extracellular form is much lighter than 

the intracellular one (0.9 and 10.7 kDa, respectively) (Pouvreau et al. 2006a).   

 The observation of the ultrastructure of blue cells demonstrated the abundance of 

vesicles with 5 µm of diameter in the cytoplasm along with the accumulation of marennine, 

which suggests that this pigment is synthesized or stored in these vesicles (Nassiri et al. 

1998). Nevertheless, similar to its nature, the determination of marennine’s production 

remains controversial as well. For instance, several authors suggest that the glucosamine-

type biogenic substance controls the production of this pigment (Ranson 1927; Ranson 

1937; Moreau 1970). On the other side, another authors suggest that the pigment 

production is influenced either by the excess of certain minerals or as a consequence of 

vitamins, nitrate or iron deficit in the presence of light (Neuville and Daste 1978; Robert et 

al. 1983). Light is claimed to be one of the factors that regulates the synthesis of 

marennine. This was first demonstrated by Moreau (1970) which shows that low irradiance 

favors pigment production. In contrast, other authors claim that the increase of pigment 

synthesis is associated with the increase of the photoperiod, light intensity or type of light 

(Neuville and Daste 1978; Tremblin and Robert 2001; Mouget et al. 2005). In spite of this, 

the hypotheses that the synthesis of marennine as a response to deficiencies or light stress 

is not fully admitted by other authors (Mouget et al. 1999a; Robert et al. 2002). 
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Figure 1-5. Schematic representation of extraction and purification process of intra- and 
extracellular marennine. Crude Extract (CE); BlueWater (BW); UF < 30 (permeate from 30 

kDa cut-off UltraFiltration); UF-30-3 (retentate from 3 kDa cut-off UltraFiltration); AE-
800 (fractions eluted at 800mmolL−1 by Anion-Exchange chromatography); Pure 
Intracellular Marennine (IMn); Pure Extracellular Marennine (EMn); Marennine 

concentration in the permeate at the time t (CPt ). Adapted from (Pouvreau et al. 2006a). 
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 Recent findings show that H. ostrearia present several biological activities. From 

the ecological perspective, marennine plays a significant role in photosynthesis, acting as a 

physical barrier by modifying light quality and intensity as it passes through the water 

column (Mouget et al. 1999a; Tremblin et al. 2000). Chemically, marennine contributes to 

the domination of H. ostrearia in oyster ponds through allelopathic interaction, by 

outcompeting other species (Pouvreau et al. 2007a). The unpurified marennine or ‘crude 

extract’ displays antiviral, antibacterial and antiproliferative activities (Bergé et al. 1999; 

Carbonnelle et al. 1999; Turcotte 2013 in press.). On the other hand, purified marennine 

demonstrates antibacterial and antiviral properties against detrimental pathogen in 

aquaculture, such as Vibrio aesturianus and V. splendidus (Gastineau et al. 2012c). 

Therefore, marennine could be considered a potentially valuable natural antipathogen to 

overcome the disease problem in the field of aquaculture. Nevertheless, several studies 

need to be conducted to achieve this goal, such as its effect on cultured species, 

improvement on extraction and purification method and the assessment on the nature of 

marennine itself. 

  

 

1.5 Filter feeding bivalves and their role in ecosystem 

Bivalves, including oysters (Family Ostreidae), mussels (Family Mytiloidea) as 

well as scallops (Family Pectinidae), obtain their food through filter feeding as a 

fundamental component of pelagic-benthic coupling. This process is considerably essential 

in order to understand the potential role of bivalves in the aquatic ecosystem. Filter-feeding 

can be defined as a type of suspension feeding in which particles are removed from water 

current by filtering or feeding upon particles suspended in water (Wong et al. 2003). 

Moreover, filter feeding in bivalves involves the filtration of seston from the water column 

that can be divided into organic and inorganic fractions. Bacteria, phytoplankton, organic 

detritus, micro/mesozooplankton can be categorized as organic fractions. Whereas 

inorganic fractions can include mineral, silt, sand or grains.  
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Indeed, various influences of bivalve suspension feeder on aquatic ecosystems have 

been well described in many studies (Berg and Newell 1986; Newell 1988, 2004; Dame 

1993, 2011; Newell and Shumway 1993). For instance, bivalves are able to deplete and to 

modify the phytoplankton composition in coastal oceans by filtering large volumes of 

water and by selectively feeding on them (Prins et al. 1998). More importantly, from an 

aquaculture perspective, their ability to exploit naturally occurring phytoplankton at the 

base of the food chain is advantageous, thus the need for external feed input can be avoided 

(Crawford et al. 2003; Hamoutene et al. 2015). Therefore, bivalve aquaculture is favorable 

because, instead of resulting additional nutrient loading, they provide a transfer of nutrients 

from water column particles to benthic sediments in biodeposits, a rapid nutrient cycling 

when dissolved inorganic nutrients are released into the overlying water, and a removal of 

a portion of those nutrients when shellfish are harvested (Dumbauld et al. 2009). A 

simplified conceptual diagram on the mode of bivalve benthic-pelagic interaction in 

bivalve culture ecosystem is provided in Fig. 1-6 (Langdon and Newell 1996; Cognie 

2001). In this model, if the problem of interaction between bivalve suspension feeders and 

microalgae is often considered from the trophic point of view, microalgae is the vital 

component since they are the main source of food for the bivalves (Asmus and Asmus 

1991). In addition, the possibility of feedback mechanisms between the populations of 

benthic suspension feeders and populations of the primary level is also taken into account. 

This feedback mechanism may facilitate the nutrient enrichment in the pelagic 

compartment by relying on the dissolved excretion of bivalves and mineralization of their 

biodeposit (Asmus and Asmus 1991; Newell 2004). Additionally, the nutrient regeneration 

by bivalves throughout dissolved excretion can later be used by the microalgae (Prins and 

Smaal 1990, 1994). 
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Figure 1-6. Simplified diagram describing the relation between bivalves suspension feeder 
and suspended particulate matter (SPM) in a model shellfish culture ecosystem (adapted 
from (Cognie 2001)). POM and PIM are the particulate organic matter and particulate 

inorganic matter, respectively. 
 
 
 Further explanation regarding bivalve-suspension particulate matter interaction and 

filter feeding process are briefly described in the section below (part: mechanism of filter 

feeding in bivalve). 

   

   

1.5.1 Crassostrea gigas, Crassostrea virginica and Mytilus edulis as species model 

1.5.1.1 Crassostrea gigas  
 
 The Pacific oyster Crassostrea gigas (Thunberg 1793) is a bivalve species native to 

the region of Japan and it has been introduced worldwide for aquaculture purposes 

(Orensanz et al. 2001). Taxonomical status of C. gigas is well established as follows 

(www.marinespecies.org): 
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 Phylum  : Mollusca 

 Class  : Bivalvia 

 Subclass : Pteriomorphia 

 Order  : Ostreoida 

 Family  : Ostreidae 

 Genus  : Crassostrea  

 Species  : Crassostrea gigas 

 A distinction between bivalves species can be made based on phenotypic characters 

or simply distinguished by their shell morphology. Oyster C. gigas has an irregular 

elongated shell that is variable in size. The upper valve is moderately convex, unlike the 

lower valve that is quite deep and cup shaped. One of these valves is usually cemented to a 

hard substratum. Both valves present radial ribs, which start from the umbo. The valves 

usually whitish in color, and sometimes display purple streaks and spots. Full 

morphological description on the shell of C. gigas is well described in World Register of 

Marine Species (WoRMS). 

    

 

1.5.1.2 Crassostrea virginica 

  
 The American Eastern oyster Crassostrea virginica (Gmelin, 1791) is the keystone 

species in most estuaries along the Atlantic and Gulf coasts. This species belongs to the 

same family of Ostreidae, than the Pacific oyster C. gigas. The Eastern oysters’ distribution 

ranges from the gulf of St. Lawrence (Canada) to the Gulf of Mexico, the Carribean and the 

coasts of Brazil as well as Argentina. This species has been introduced to British Columbia 

(Canada), the west coast of the United States, Hawai, Australia, Japan and the United 

Kingdom (Haye 2006; FAO 2006). 

 Morphologically, C. virginica is almost similar to C. gigas. Its valves are 

asymmetrical with the left valve generally thicker and more deeply cupped than the right. 

No gap is present between the two halves when the valves are closed. Eastern oyster settles 
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on the left valve leaving the right valve always on top (Galtsoff 1964). Variation in the 

shell shape and thickness may differ depending on the type of environment in which the 

oyster grows. For instance, on hard substrates, umbones are curved and pointing toward the 

posterior and shells are thicker. Whereas, in silty environments or on reefs, umbones grow 

generally straight, but shells are more fragile than those growing on hard substrates 

(Stanley and Sellers 1986). 

 

1.5.1.3  Mytilus edulis 

 
 Mytilus edulis is commonly known as the edible blue mussel or blue mussel. The 

native region of this species is difficult to identify due to the presence of similar species 

and subspecies. Nevertheless, the blue mussel’ native distribution is thought to span the 

North of Atlantic from Cape Hatteras, North Carolina to Newfoundland, Iceland, northern 

Norway and southern White Sea to the Bay of Biscay at the French-Spanish border. 

Additionally, this species has been introduced to various places including West of Canada, 

Chile, Australia and New Zealand. The taxonomy of blue mussel is described as follow 

(Turgeon et al. 1998): 

 

 Phylum  : Mollusca 

 Class  : Bivalvia 

 Subclass : Pteriomorphia 

 Order  : Mytiloida 

 Family  : Mytilidae 

 Genus  : Mytilus 

 Species  : Mytilus edulis 

 

 The two shell valves of M. edulis are similar in size, and are roughly triangular in 

shape. Two valves are hinged together by means of a ligament. The interior part of the shell 

is a white pearl color with a broad border of purple or sometimes dark blue, named the 
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pallial line. The foot part of mussel secretes a byssus, which is a bundle of tough threads of 

tanned protein. The mussel uses these threads as mooring lines to attach itself to the 

substrate and to other mussels. 

  

 

1.5.2 General anatomy in relation with the context of study 

1.5.2.1 Gills in bivalves suspension feeder 
 

In general, gills first appear at the pediveliger larval stage. Their structural and 

functional complexity increases until the juvenile stage has been reached. The development 

of gills has led to a new insight of the evolution on gills’ structure, including the 

phylogenetic relationship among the bivalve taxa (Cannuel and Beninger 2006; Beninger 

and Decottignies 2008; Cannuel et al. 2009).  Mussels M. edulis for instance, have the 

simplest gill structure which is the homorhabdic filibranch type (Fig. 1-7a). This 

homorhabdic means that the lamellibranch gill filaments are arranged in a flat, uniform 

series. Scallops have a similar gill type but the gill filaments are differentiated into 

principal and ordinary filaments, thus the gill type is termed heterorhabdic filibranch (Fig. 

1-7b).  

In contrast, for the pseudolamellibranch type such as the oysters, the surface area of the gill 

filaments is increased by folds of plicae (Figure 1-7b and d). In the context of my PhD 

study, the particle processing in bivalves will be specifically dicussed only for the two 

types of gills: homorhabdic filibranch (the blue mussel M. edulis), plicate heterorhabdic 

pseudolamellibranch (the Eastern oyster C. virginica and the Pacific oyster C. gigas). 
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Figure 1-7. Transverse sections through the demibranchs of the principal gill types in 
different groups of bivalve. (a) Homorhabdic filibranch (e.g. Mussels). Ordinary filaments 

(OF) connected by interlamellar junctions (ILJ). (b) Heterorhabdic filibranch (e.g. 
Scallops). Principal filaments (PF) and OF, joined by ILJ and ciliated spurs (S). (c) 

Homorhabdic eulamellibranch (e.g. Clams). OF joined by interfilament junctions (IFJ). O: 
ostia. (d) Heterorhabdic pseudolamellibranch (e.g. Oysters). Principal filaments and 

ordinary filaments, joined by ILJ and IFJ. AS, abfrontl surface; FS, frontal surface. Pictures 
are derived from (Dufour and Beninger 2001). 
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1.5.2.1.1 Cilia on bivalve’s gills and their role 
 

 It has long been known that the cilia on bivalve’s gills are differentiated and 

functionally specialized (Dufour and Beninger 2001). These cilia create water current 

across the gills and capture the suspended particles in the water column and then transport 

them to the mouth and labial palps. To date, several types of cilia have been well 

recognized. In this subsection, different types of cilia are described with the example from 

one of the species model used in my thesis (e.g. C. gigas). 

 

1.5.2.1.2 Lateral cilia  
 
 Lateral cilia originated from each side median part of the filaments. They create the 

beating water current across the gill. This current is directed from the inhalant to the 

exhalant cavity through the ostia (Fig. 1-8b). 

 

1.5.2.1.3 Latero-frontal cilia 
 
 Latero-frontal cirri are situated on both sides of the interfilament space (Fig. 1-8b). 

These cilia beat in the opposite direction of the lateral cilia (Atkins 1937a). Latero-frontal 

cirri that are formed by the complex assemblage of individual cilia with feather shape have 

a significant role in particle capture (Riisgård 1988; Beninger et al. 1997b). 

 

1.5.2.1.4 Cilia pro-latero-frontal 
 

These cilia are around 5 µm in size and are arranged in a band adjacent to the end 

face of latero-frontal cilia of all filaments (Atkins 1937a) (Fig. 1-8b). 

   

 

 

 

 



	 23	

1.5.2.1.5 Frontal Cilia 
 

 On the ordinary filaments, the frontal cilia can be divided into two types (Atkins 

1937a; Barillé et al. 1994a): 1) The median frontal cilia, which form a wide ciliary channel 

at the center of frontal region in each filament and beating towards the ventral tract located 

at the end of the gills; 2) The marginal frontal cilia, which are more spaced simple cilia that 

frame median ciliary pathway on both side of median frontal cilia. They are beating 

dorsally to the dorsal tracts (Fig. 1-8a and b). 

  

1.5.2.2 Gill’s membrane lipid as stress biomarkers 
 

 The membrane lipid bilayer structured a barrier for cells and the inside’s subcellular 

organelles. Therefore, its physical characteristics are a keystone to describe the membrane 

structure and function (Parish 2013). Membrane fluidity is strongly correlated with the 

lateral movement of the constituent lipids and embedded proteins. Recent studies have 

revealed that the ectotherms, such as bivalves, can counteract the effect of reduced 

temperature or increase pressure by remodeling their membrane phospholipid, a process 

known as homeoviscous adaptation (Hulbert 2007; Pernet et al. 2007, 2008). This 

biochemical adaptation can be achieved by the changing of FAs, especially those which 

constitute polar lipids (PL) in the gills (Parish 2013). For instance, hard clams in Atlantic 

Canada increased the level of unsaturation of FAs in their gills when the temperature 

decreased (Parent et al. 2008). A similar result is also given by Hall et al. (2002) who 

observed a strong relationship between fluidity and PUFA 20:5ω3 in gill membranes of P. 

magellanicus following a 10°C temperature decrease. Remodelling membrane can be an 

adaptation response to stress due to temperature rising, as already observed in mussels and 

oysters (Pernet et al. 2007, 2008, 2010). Further explanation on gill’s lipid membrane 

remodeling in relation to marennine exposure will be discussed in chapter 3. 
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Figure 1-8. (a) Scheme of two plicated gills in oyster C. gigas and C. 

virginica, containing ordinary (fo) and principal filaments (fp). (b) Scheme 
of two ordinary filaments from the frontal view. cf: cilia frontal; cfma= 
cilia frontal marginal; cfme = cilia frontal median; fo, fp, ft = ordinary 

filament, principal filament, transition filament; Black thick arrow indicates 
ciliary current towards dorsal tracts; White thick arrow indicates ciliary 

current towards ventral tracts. Pictures adapted from Cognie 2001. 
 
 



	 25	

1.5.2.3 Labial palps 
 
 In an oyster, two pairs of labial palps are situated at the antero-ventral end of 

oyster’s body, and slightly below the oral hood mantle (Fig. 1-9). Each pair of palps 

consists of one internal and external palp in which each of them has a smooth and ridge 

face, provided with the tracts and ridges inclined towards the mouth. The trough formed by 

the fusion between one external palp with its internal equivalent is called the oral-lateral 

trough and connects the mouth to the dorsal tracts via gill-palps basal junctions (Ward et al. 

1994). Each of these two junctions accepts the material from one internal and one external 

dorsal tract. The material from the median dorsal groove is directed either to one or to the 

other two junctions. The mantle is fused at its antero-ventral end to form a hood over the 

anterior part that protects the mouth from direct contact with mantle cavity. Moreover, the 

two external palps converge above the mouth where they form the outer lip, while the two 

inner palps are reunited under the mouth of an inner lip (Fig. 1-9). 

  

 
Figure 1-9. Anatomy of labial palps and the mouth area of oyster C. gigas and  

C. virginica. Picture adapted from Cognie (2001) and Galtsoff (1964). 
 

 
 In mussels, the inner surface of each palp faces the gill, and is folded into numerous 

ridges that carry ciliary tracts and mucocytes. The outer surfaces of the palps are smooth, 

and between the inner and outer surfaces, there is muscular-connective tissue. In mussels, 
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for instance, Mytilus chilensis, the palps may reach posteriorly for about one-third of the 

muscular-connective tissue. Different from oysters, the homorhabdic filibranch gills in 

mussels capture particles moving ventrally into the ventral gill particle groove, regardless 

of the particle concentrations. Then, they proceed anteriorly embedded in a viscous mucus 

cord towards the labial palps (Beninger and St-Jean 1997). Unlike the dorsal tract in 

oysters, the dorsal tract of mussels is not involved in particle accumulation and 

transportion. Thus, no selection takes place on the gills due to the simplicity of unplicated 

gills in mussels (Ward et al. 1998a). The outer and inner palps enclose the anterior gill 

region (Fig. 1-10); the outer demibranch is applied to the ridged surface of the outer palp 

and the inner demibranch to the ridged inner palp surface. 

  

 

Figure 1-10. Scheme of the gill, labial palps and mouth in Mytilus edulis. AL = ascending 
lamella of gill; DL = descending lamella; M = mouth; RIP = ridged surface of inner palp; 
ROP = ridged surface of outer palp; SIP = smooth surface of inner palp; SOP = smooth 

surface of outer palp. Picture is adapted from Beninger and St-Jean (1997). 
 
 

 In general, labial palps have a main function of continually remove material from 

the food tracts on the gills to avoid gill saturation (clogging). Palps can act as a transit place 

when particles that are going to be processed are abundant. They hold the filtered material 

away from the mouth and deposit it as pseudofaeces, thus the animal can continue to filter 

and ingest at an optimum rate (Gosling 2015). The rejected materials in the form of 

pseudofaeces are carried along rejection tracts on the mantle to the inhalant opening. 
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Afterward, the pseudofaeces are regularly ejected through this opening. When the ingestive 

capacity is not exceeded or not yet overly saturated, particles from the gill move along 

acceptance tracts on the labial palps towards the mouth. 

 

 

1.5.2.4 Stomach and digestive glands 
 
 When particles reach the mouth, they are transported by ciliary movement in the 

mouth that leads them into the oesophagus. This ciliary movement helps to drive the 

material to the stomach. This mechanism can be achieved by the release of acid- and 

neutral-mucopolysaccharide in mucocyte from cilia epithelium, which directly 

communicates mouth with stomach (Beninger et al. 1991). Bivalves generally have a large 

and oval-shaped stomach that lies completely embedded in the digestive gland (Fig. 1-11). 

It has been known that the stomach in bivalves is very complex, but typically the stomach 

in the species model used has been described (Purchon 1977). For instance, in 

Lamellibranch, the stomach has a sac form in which the oesophagus penetrates anteriorly 

and after the intestine comes out, accompanied by the crystalline style. This crystalline 

style, which is a semi-transparent gelatinous rod, originates in a style sac at the posterior 

extremity of the stomach. Furthermore, this style projects forward and dorsally across the 

cavity of the stomach to rest against the gastric shield, a thickened area of the stomach 

wall. A study revealed that the length of style is correlated with shell length, c.a. 50-60% of 

shell length (Alyakrinskaya 2001). The same author also demonstrated that the length of 

the style varies depending on the season, for instance, in spring when the food intake is 

high it has the maximum length.  

 The digestive gland is brown or black and consists of tubules that connect to the 

stomach by several ciliated ducts. This part is the main site of extra- and intracellular 

digestion, involving a wide variety of digestive enzymes such as esterases and acid-alkaline 

phosphatases. Moreover, the digestive gland plays a significant role in the storage of 

metabolic reserves, with a typical storage of large amount of neutral lipids (NL). This 

storage can be used as an energy source during the process of gametogenesis (Pernet et al. 
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2010) and during periods of physiological stress (Pernet et al. 2007, 2010; Rocchetta et al. 

2014; Fokina et al. 2014, 2015). Moreover, fatty acids (FAs) in digestive glands can also be 

used as trophic markers (FATM) in the pelagic-benthic environment (Bergé and Barnathan 

2005; Parrish 2013). The FATM concept is based on the observation that marine primary 

producers deposit certain FA patterns that may be conservatively transferred through 

aquatic food webs. And for this reasons, bivalves can be recognized as primary consumers. 

There are some specific FAs, groups of FAs and FA ratios that serve as FATM such as 

diatoms, flagellates, macroalgae and bacteria. For instance, high concentrations of 20:5(n–

3) and 16:1(n–7), a ratio of 16:1(n–7)/16:0 close to 1 and the presence of C16 

polyunsaturated fatty acids (PUFAs), mainly 16:4(n–1), are diatom markers (Kelly and 

Scheibling 2012). In contrast, FA composition of cyanobacteria is generally dominated by 

16:0 and 14:0, with lower concentrations of 18:0, 16:1n-9, and 18:1n-9. In addition, FA 

biosynthesis in heterotrophic bacteria produces odd-numbered (e.g. 15:0, 17:0) and 

branched FAs (e.g. 15:1, 17:1), and iso- and anteiso-branched saturated fatty acids (SFAs) 

(Dalsgaard et al. 2003). These FAs, along with 16:1n-7 and 18:1n- 7, are typically 

dominant in bacterial FA composition and are used as tracers for the contribution of 

heterotrophic bacteria to sediments. On the other hand, principal indicators of 

dinoflagellates are 18:4(n–3) and 22:6(n–6), while 18:2(n–6), 20:4(n–6) and 22:6(n–3) are 

indicative of heterotrophic flagellates and ciliates (Bergé and Barnathan 2005; Kelly and 

Scheibling 2012). Fatty acids 22:6(n–3) and 18:1(n–9) are abundant in lipids of 

zooplankton and thus provide an indicator of carnivorous organisms (Silina and Zhukova 

2007a, b). Further explanation concerning the effect of environmental stress on NL as the 

energetic reserve and also on FAs in NL as FATM in bivalve will be linked to chapter 4. 
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Figure 1-11. The digestive system of Eastern oyster C. virginica. Picture is adapted from 
Gosling (2015). 

  
  
  

 
1.5.3 Mechanisms of suspension feeding in bivalve 

1.5.3.1 Filtration and Clearance rate  
 

 As suspension feeders, bivalves filter the water to obtain organic and inorganic 

matter from the particles suspended in water. Two processes are recognized: 1) the 

filtration or pumping rate (FR), defined as the volume of water passing through the gills in 

a unit of time; 2) the clearance rate (CR), defined as the number of particles cleared from a 

certain amount of volume of water per unit of time. Thus, all particles presented to the gill 

area are cleared from suspension (Bayne et al. 1993; Riisgård 2001). Several definitions 

have been made on the definition of CR. For instance, Bayne et al. (1987), Macdonald and 

Ward (1994), and Bacon et al. (1998) defined CR as the volume of water cleared of 

particles >2 µm per unit of time. Moreover, CR could be defined as the volume of water 
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cleared of all 100% efficiently-retained particles per unit of time (Petersen et al. 2004). To 

date, CR can be measured by using several methods, such as the static, flow-through and 

the biodeposition method.  In the context of my Ph.D. study, only two methods are used in 

CR estimation: the static and flow-through methods.  

 Estimation of CR by the static method is based on measuring of the clearance of 

particles in suspension in a closed chamber. In this method, CR can be measured by 

monitoring the reduction in the particle concentration as a function of time with the 

following equation (Coughlan 1969): 

 

CR = (V / t) ln (C0 / Ct)   (1) 

 

Where V is the volume of water and t is the incubation time. C0 and Ct are the initial and 

final particle concentrations in the closed chambers. This static method has been widely 

applied in many laboratories. However, several shortcomings associated with the closed 

system also have been in debate. For instance, the accumulation of excretory products, 

reduction in oxygen concentration and the reduction of particle concentration, can alter 

normal filtration behavior (Riisgård 2001).  

 Shortcomings in the static method have been overcome by using the second 

method, which is the flow-through chamber (FTC) method. In this method, CR can be 

estimated by using this following equation:  

 

CR = Fl x ((Ci-Co) / Ci)   (2) 

 

Where Fl is the flow rate (volume of water flowing through the chamber per unit of time); 

Ci and Co are the particle concentrations at inlet and outlet of the chamber, respectively. 

However, several assumptions need to be established: 1) is that the particles must be 100% 

efficiently retained by the gills to reduce underestimation of CR measurement (Riisgård 

2001; Filgueira et al. 2006). 2) The suspension of particles is assumed to pass the bivalves’ 

inhalant opening once, to ensure that the particle concentration around the opening remains 

constant. 
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 FR and CR can be varied within an individual, species, and population. This 

variation can be due to the endogenous and exogenous factors, which are correlated to each 

other (Bayne et al. 1987, 1993). One of the endogenous factors that can influence the CR is 

the bivalve size. As larger gills are associated with larger individuals, amounts of water can 

be facilitated and thus offer a larger area to capture suspended particles. Previous studies 

have revealed that gross gill area is positively correlated with FR and CR (Meyhöfer 1985; 

Meyhöfer et al. 1985). In contrast, Winter (1973) observed that reduction in the rate of 

increased filtration activity in larger animals.  This can be due to the reduced activity of 

cilia in old specimen’s gills, because the relative growth rate of the gill also decreases, as a 

bivalve grows either larger or heavier (Foster-Smith 1975). Therefore, filtration activity of 

bivalves associated with its length and tissue weight, can be standardized by using the 

allometric equation (Bayne 1976; Cranford et al. 2011):  

 

FR = aW
b or FR = aL

b
   (3) 

 

Where W is the dry body weight (g); L is the shell length (mm); a and b are the constant 

and a weight (or length) exponent, respectively. Positive relationships between FR (or CR) 

and shell weight (or length) have been demonstrated for many species of bivalves (Bayne, 

1976; James et al., 2001). In contrast, the weight (or length) exponent (b) generally 

decreases as the animal’s size increases (Cranford et al. 2011). This could be explained by 

the relationship between the gill area, or possibly the area of the gill ostia, and the dry 

weight (or length) of the animal (Foster-Smith 1975; Bayne 1976). Further explanation 

regarding the standardization of FR and CR and their relationship with bivalve’s shell 

length and tissue weight is discussed in (Cranford et al. 2011). Another factor that can 

influence FR and CR is the physiological status (Denis et al. 1999). So, it is not surprising 

that larger bivalves have a lower CR comparatively to the smaller one when its 

reproductive state is active. As gametes development and ripening demand a lot of energy 

(Bayne et al. 1999) that energy is moved into reproduction.  

 The exogenous factors that mostly affects a bivalve’s FR and CR are particle or 

food concentration, quality and size (Bayne L et al. 1993; Defossez and Hawkins 1997; 
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Ward and Shumway 2004).  For instance, FR and CR of M. edulis increase, when particle 

concentration increases until particle concentration (Phaedactylum tricornutum) reaches 

around 700 µL-1 (Foster-Smith 1975). In contrast, another study from Riisgård (2001) 

showed that the same species fed on Rhodomonas baltica filtered maximally at lower cell 

concentration, which is around 3–10 cells µL-1. In addition, the particle quality factor, FR 

and CR in M. chilensis can be higher when the organic and chlorophyll content is also high 

(Velasco and Navarro 2002). A similar case is also exhibited in C. gigas where a decrease 

in organic matter in the food results in the decrease in the CR (Ward et al. 1998b).  

 Other exogenous factors that can affect bivalve CR are the temperature, salinity, 

current regime and the presence of biotoxin as well as chemical pollutants. The effect of 

temperature on bivalve’s CR has been well studied (Bayne 1976; Kittner and Riisgård 

2005; Pernet et al. 2007; Comeau et al. 2012). A study conducted by Comeau et al. (2008) 

on C. virginica showed 50% at 9°C to 100% reduction in CR at 0°C. While same authors 

observed CR ranged from 100% at 19°C to 17% at 0° (Fig. 1-12). Several studies have 

shown that the salinity can influence the CR. For instance, higher CR was observed in the 

Chilean scallop Argopecten purpuratus at a higher range of salinity (27-30 psu) 

comparatively to lower one (18-24 psu) (Navarro and Gonzalez 1998). Furthermore, 

another study on the effect of different salinities (10, 15, 25 and 35 psu) on CR was 

conducted by Mcfarland et al. (2013) on the Eastern oyster C. virgnica and the green 

mussel Perna viridis. These authors observed that at salinities of 25 and 35 psu, green 

mussel CR were approximately double that of oysters. In addition, unlike the oysters, green 

mussel CR decreased by an order of magnitude at salinities of 10 and 15 psu. 
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Figure 1-12. (A) Mean and (B) maximum clearance rate (CR) as a function of species 
(Mytilus edulis, Crassostrea virginica) and temperature (0, 4 and 9°C). Error bars represent 
one standard error of the mean. Different letters indicate significant differences (p < 0.05). 

Picture is adapted from Comeau et al. (2008). 
  
 
 

More recently, Riisgård et al. (2013, 2014) studied the effect of salinity on CR of M. edulis 

that was collected from two different sites (the brackish Great Belt-Denmark and the low-

saline Central Baltic Sea). The authors observed that the lack of Great Belt mussels to 

completely adjust to 5 psu, in contrast to the ease of Baltic Sea mussels to adjust back and 

forth between 6.5 and 20 psu, suggests that different genotypes of mussels in those sites 

may play a significant role in CR-salinity adaptation. On the other side, current water flow 
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can also influence the CR in bivalves. For example, Sobral and Widdows (2000) observed 

a maximum CR of 2.5 L h-1 per individual at current velocities up to 8 cm s-1 in the clam 

Ruditapes decussatus. However, this CR declined with increasing current speed, especially 

above 17 cm s-1. Moreover, the effect of flow speed on CR can vary both between and even 

within species. For instance, on the infaunal cockle Cerastoderma edule, CR was not 

significantly affected by changes in current speed between 5 and 35 cm s-1 (Widdows and 

Navarro 2007). 

 Other factors that can affect the CR in bivalves are the presence of pollutants such 

as metals, biotoxins and chemical exudates from microalgae. Generally, negative impacts 

on bivalves’ CR due to the presence of pollutants and metals have been observed in many 

studies (Mubiana and Blust 2007; Fernández et al. 2010; Tsangaris et al. 2010; Montes et 

al. 2012). Other studies showed that the biotoxin from microalgae such as dinoflagellates 

could alter bivalve’s CR. For example, Navarro and Contreras (2010) showed that CR of 

M. chilensis exposed to toxic dinoflagellate Alexandrium catanella was significantly lower 

than those of controls. However, CR increased on the third day of the experiment 

suggesting that the bivalves possess a depuration mechanism (Fig. 1-13). Another study 

showed no effect of toxic alga Karenia brevis on clam Mercenaria mercenaria (Echevarria 

et al. 2012). In addition, responses of bivalve species’ CR to the different biotoxins of 

harmful algae were species-specific, and this can also be influenced by the characteristics 

of the toxic microalgae (Hégaret et al. 2007). Most of the studies came up with the negative 

impact of biotoxin on CR, but most of the toxins used were the Paralytic Shellfish Toxin 

(PST) type. Indeed, non-toxic chemical exudates from the microalgae can also influence 

the CR in bivalves but the study on this is still scarce. In contrast to the biotoxin, chemical 

exudates from the diatom Chaetoceros muelleri increased the CR of scallop Placopecten 

magellanicus (Ward 1992). In the context of my Ph.D., the influence of marennine as a 

non-PST substance will be studied on different bivalve species. The part of this work will 

be presented in Chapter 4. 
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Figure 1-13. Clearance rate of M. chilensis exposed to a contaminated and a control diet. 
Values are means ± SE. Pictures adapted from Navarro and Contreras (2010). 

 
 

1.5.3.2 Particle retention 
  
 Retention or the particle capture can be defined as the process by which a 

suspended particle in the current water is flowing through the gill and diverted to the end of 

the frontal surface of filaments. This mechanism is previously suggested as the 

consequence of the presence of cilia latero-frontal, which play a significant role in 

capturing the particles (Atkins 1937b). This idea is supported by additional studies which 

showed that the efficiencies in capturing particles (RE) vary between bivalve species in 

function of the size of their latero-frontal cilia (Møhlenberg and Riisgård 1978; Jørgensen 

et al. 1984; Riisgård 1988). Also, it was observed that RE could be higher in small particles 

for the bivalve species with a large size of latero-frontal cilia comparatively to those with 

small or nonexistent cilia (Silverman et al. 1995, 1997). 

 Early studies of particle retention by bivalves showed that particles below 1 µm to 2 

µm were passed through the gills, while particles larger than 3 µm were normally retained 

at a higher percentage (Jørgensen 1990). Later on, literature suggested that the RE may be 

either species or habitat specific. Most of the studies suggest that RE increases with particle 
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size to an upper threshold and that at the start of this threshold (>7 µm), the RE becomes 

species specific (Ward and Shumway 2004). Indeed, similar to filtration, RE is influenced 

by endogenous (bivalve size) and exogenous factors which are previously described in the 

section above. 

  

1.5.3.3 Particle transport and selection: pre-ingestive and post-ingestive selection 
 
 Captured particles are transported with conveyor-belt style, to the frontal surface of 

the gills by the mucociliary process. Afterward, they are further transported on the ventral 

or dorsal ciliated tract of the gills which functionning appears to be species specific (Ward 

and Shumway 2004). For instance, in M. edulis, particles are transported in the ventral tract 

to the labial palps and fewer particles are transported along the dorsal tracts regardless to 

their concentration (Ward 1996). On the other hand, in C. gigas and C. virginica, due to 

their plicated gills form, the particles are transported via both the dorsal tract and ventral 

tract towards the labial palps (Beninger and St-Jean 1997; Ward et al. 1998a, b). 

 Once captured by the gills, particles will be sorted by the pre-ingestive selection 

mechanism, a process where the gills can preferentially reject particles in the form of 

pseudofaeces while preferentially ingesting the others (Newell and Jordan 1983). This 

selection can be influenced by macroscopic factors (e.g. gill and filament types) and 

microscopic factors (e.g. sensory detection and decisional behavior by individual or groups 

of cilia) (Beninger et al. 2004; 2008a, b). Generally, in heterorhabdic gill type, either 

filibranch (scallop) or pseudolamellibranch (oyster) gills are able to select particle based on 

its quality (Ward et al. 1998a; Cognie et al. 2003a; Beninger et al. 2004, 2008a, b). For 

instance, in C. virginica and C. gigas, particles in both gill’s ventral and dorsal tract are 

transported to the labial palps. Yet, those in the ventral tract are of lesser trophic 

importance and thus more likely to be rejected as pseudofaeces prior to ingestion but may 

be re-sorted on the palps (Ward et al. 1997, 1998a). Indeed, in pseudolamellibranch, labial 

palps are involved in the selection process by being the only organs that can sort particles 

greater in size than the opening of the principal oyster filament (Cognie et al. 2003a). 
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Selection by labial palps was also confirmed by Beninger et al. (2008b) who observed that 

these organs perform particle selection but are restricted to its concentration. In contrast, 

bivalves with homorhabdic (one type of filament) gills are not capable of particle selection 

on the gill. Video endoscopy experiments have demonstrated that the sorting in the blue 

mussel M. edulis only occurs on the labial palps (Beninger and St-Jean 1997; Ward et al. 

1998a).  

The mechanism of selection is at least partially influenced by interactions between 

lectins, a group of carbohydrate-binding proteins, in the gill mucus and food particles 

(Pales Espinosa et al. 2009). To date, same authors observed specific microalgal-binding 

lectins in the mucus produced by feeding organs in the mussel M. edulis (Pales Espinosa et 

al. 2010a, b) and in the oyster C. virginica (Pales Espinosa et al. 2009). More recently, 

Rosa et al. (2013) suggest that the physico-chemical surface properties of particles (e.g. 

charge and wettability), may also contribute to the particle selection process. 

In bivalves, production of pseudofeces is integral to the selectivity process that allows 

rejection of less nutritious particles. Thus, this mechanism improves the overall content of 

material being ingested and assimilated (e.g. to compensate for the poor quality seston in 

the natural environment) and prevents particle overloading during the ingestion processes 

(Beninger et al. 1991; Macdonald and Ward 1994; Bacon et al. 1998). Three mechanisms 

of pseudofeces rejection have been grouped at four main bivalve gill systems (Beninger et 

al. 1997a; Beninger and St-Jean 1997). This includes most bivalves with homorhabdic 

filibranch gills and all bivalves with eulamellibranch gills that have pallial transport of 

pseudofeces with vertical elevation achieved via composite cilia (Beninger et al. 1997a, b; 

Beninger and St-Jean 1997). 
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Table 1-1. Summary of particle processing on the pallial organs of different gill types. 
Cited and modified from Beninger in Gosling (2015). 

 Function 
Gill type Species Gill Labial palp Mantle 

Homorhabdic 
filibranch 

Mytilus edulis Indiscriminate 
transport, ventral 
tract only 

Qualitative 
selection and 
pseudofaeces 
rejection; 
ingestion 
volume control 

Pseudofaeces 
rejection 

Heterorhabdic 
filibranch 

Placopecten 

magellanicus, 
Pecten maximus 

Preferential 
positive selection 
(dorsal tracts); 
ingestion volume 
control and 
preferential 
negative 
selection (ventral 
tracts) 

Qualitative 
selection and 
pseudofaeces 
rejection 

No rejection 
function; 
pseudofaeces 
expelled from 
ventral margin 
by shell 
adduction 

Eulamellibranch Spisula 

solidissima, Mya 

arenaria 

Indiscriminate 
transport; ventral 
tracts only 

Qualitative 
selection and 
pseudofaeces 
rejection; 
ingestion 
volume control 

Pseudofaeces 
rejection 

Pseudolamellibranch Crassostrea 

virginica, 

Crassostrea 

gigas, Ostrea 

edulis 

Preferential 
positive selection 
for particles 
smaller than 
principal 
filament tracts 
(dorsal tracts); 
ingestion volume 
control and 
initial negative 
selection (ventral 
tracts) 

Qualitative 
selection and 
pseudofaeces 
rejection; 
ingestion 
volume control 

Pseudofaeces 
rejection 
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In the Pseudolamellibranch, the mechanism of pallial transport is similar but 

vertical elevation is achieved via mantle ridges (Beninger and Veniot 1999). In contrast, for 

the scallops with heterorhabdic filibranch gills, pseudofeces is rejected via valve pulsing 

(or clapping) (Beninger et al. 1999). The rate of pseudofeces production for most bivalves 

increases with increasing particle concentration (Shumway et al. 1985; Bayne et al. 1993; 

Bacon et al. 1998). However, the ingestion and rejection of material on the gills depends on 

both particle concentration and gut fullness. When the gill is overloaded with particles or 

when the ingestive capacity is exceeded, more material is rejected (Ward et al. 1998a). A 

brief summary of the selection process at different groups of the gill is given in Table I-1.  

 Studies concerning the post-ingestive selection are still scarce. An early study by 

Shumway et al. (1985) showed that the flagellate Chroomonas salina is preferentially 

digested over the two other microalgae (Phaedactylum tricornutum and Prorocentrum 

minimum) in C. virginica, suggesting the post-ingestive selection in this bivalve. Same 

authors also demonstrated that selection was most likely based on qualitative factors since 

the phytoplankton species used were of similar size. More recent study confirms that the 

post-ingestive selection can be based on the particle quality as the one who lives and has 

higher organic content resulting in an increase in digestive efficiency (Brillant and 

MacDonald 2002, 2003). 

 

1.5.3.4 Scope for Growth (SFG) and Dynamic Energy Budget (DEB) as energy 
budgeting model in bivalve 

 

 It is necessary to make growth prediction tools in bivalve species considering their 

important economic role in aquaculture. To date, two main approaches have been applied 

to model bivalve growth: the Scope for Growth (SFG) and the Dynamic Energy Budget 

(DEB). The SFG model is based on an energy balance, where energy available to growth 

and reproduction is calculated from the difference between energy absorbed from the food 

and the energy lost due to respiration and excretion (Smaal and Widdows 1994). A Positive 

value in SFG means that the organism has energy available for growth and reproduction 

that is manifest as an increase in body weight. In contrast, a negative balance in SFG will 
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result in a decrease body weight as a consequence of the utilization of reserves. DEB 

models allow describing the individual in terms of two state variables, structural body and 

reserves (van der Meer 2006). This describes the energy flow through organisms from 

assimilation to allocation to growth, reproduction and maintenance. Thus, in DEB, all 

energetic processes in an organism are functions of its state (e.g. age, size, sex, nutritional 

status, etc.) and the environment (food density, temperature, etc.) (Nisbet et al. 2000).  

 Indeed, distinctions can be made between SFG and DEB models. The conceptual 

difference between the two models is that SFG models assume assimilated energy is 

immediately available for respiration and excretion while the remainder is used for growth 

or stored as reserves. Thus, SFG models assume that energy from catabolism is lost. 

However, this assumption is not entirely correct since the energy from catabolism that has 

been reinvested in the anabolic process of growth actually stays in the organism instead of 

being subsequently lost so that the energy is still in balance. On the other side, DEB models 

assume that the assimilated energy is directly stored in reserves, which in turn are utilized 

to sustain other metabolic processes (Nisbet et al. 2000; van der Meer 2006). Additionally, 

an important assumption in the DEB model is the κ-rule where a fixed proportion of κ of 

the available energy is allocated to somatic maintenance (as the priority) and growth, 

whereas the remaining 1-κ is allocated to maturation and reproduction for juveniles and 

adults, respectively (Fig. 1-14) (Nisbet et al. 2000; Barillé et al. 2011).  

 Indeed both SFG and DEB models have advantages and disadvantages. The SFG 

model has been widely used due to its simplicity to empirically estimate growth through 

the measurement of organism physiological processes, which are relatively easy to 

measure. However, this model violates the energy conservation rules by presenting the 

energy imbalance assumption. This disadvantage is not present in the DEB model, which 

assumes common physiological processes across species and life stages. Nevertheless, the 

shortcoming of DEB is to estimate the basic parameter sets for different species (van der 

Meer 2006; Pouvreau et al. 2006b). In spite of the disadvantages of these models, SFG and 

DEB have been successfully applied in estimating individual bivalve growth (SFG: (Grant 

and Bacher 1998; Hawkins et al. 2002; Brigolin et al. 2009). More recently, Filgueira et al. 

(2011) observed that both models performed well in M. edulis in different ecosystems by 
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adjusting the half-saturation coefficient of food ingestion function term, Xk, as a common 

parameter in both models related to feeding behavior. The authors suggest that the 

connection of two models via calibration of Xk indicates the importance of feeding behavior 

and local trophic conditions for bivalve growth performance. 

  

 

 

Figure 1-14. Scheme of the scope for growth (SFG) and dynamic energy budget (DEB) 
models for the Pacific oyster Crassostrea gigas. Forcing variables are shown in the ellipsis 
while state variables are in the grey boxes. Picture was modified from Barillé et al. (2011).  
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 For decades, bivalves have been used as a biological indicator of environmental 

stress (Smaal and Widdows 1994; Widdows et al. 2002; Dame 2011). Among the 

physiological parameters in bivalves, scope for growth (SFG), is considered to be an 

advantageous tool to measure the impact of environmental stress such as, salinity, 

temperature and the presence of pollution as well as toxic substances from microalgae 

(Widdows and Johnson 1988; Widdows et al. 2002; Pernet et al. 2007, 2008; Navarro and 

Contreras 2010). For instance, a decrease in SFG was observed in blue mussel M. edulis 

exposed to oil and copper contaminants (Widdows and Johnson 1988; Smaal and Widdows 

1994; Widdows et al. 2002; Mubiana and Blust 2007). A similar pattern was also observed 

for bivalves that were exposed to toxic dinoflagellate species where the SFG is 

significantly decline due to the presence of toxic substance in their diet (Li et al. 2002; 

Hégaret et al. 2007; Navarro and Contreras 2010; Manfrin et al. 2012; Navarro et al. 2014). 

However, to our knowledge, only a few studies have observed some of the effects of non-

toxic organic compounds (non-PST) on cellular responses of bivalves but not on their 

physiological traits (Hégaret and Wikfors 2005a, b; Ford et al. 2008). Therefore, it is 

interesting to assess whether a non-PST compound, the pigment marennine, synthesized by 

the pennate diatom H. ostrearia (Gaillon) Simonsen, known as a non-toxic species, can 

affect bivalves, other than greening gills. Integrated response of species model to 

marennine will be further explained in chapter 4.    

 

1.6 Research objectives  

 The main objectives of my Ph.D. research are: 1) to determine the role of size in 

pre-ingestive selection process in oyster C. gigas as a consequence of the presence of H. 

ostrearia in artificial seawater ponds (chapter 2); 2) To understand the mechanism of the 

greening phenomenon in bivalves by marennine and its interaction with bivalve’s pallial 

organs (chapter 3). 3) To determine the consequence of greening by marennine on the 

integrative response of two bivalve M. edulis and C. virginica (chapter 4); 4) To understand 
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the allelopathic interaction between Haslea ostrearia and other microalgae species relevant 

in aquaculture, and to assess the feasibility of co-culture of H. ostrearia and other 

microalgae to get the maximum benefit of biological activities of marennine in the field of 

aquaculture (chapter 5).  

 

Chapter 2: Role of size in pre-ingestive selection of Haslea ostrearia in Crassostrea 

gigas  

 To date, many studies have been conducted regarding the mechanism of pre-

ingestive selection in bivalve, involving the pallial organs and ciliation and their interaction 

with the particles. However, the determinant factor influencing pre-ingestive selection in 

bivalve remains unclear. Among all factors proposed, earlier studies demonstrated that 

particle size was the first criterion to determine food selection (Atkins 1937b) yet its role 

remains inconsistent. Several studies repeatedly reported that there is no role of size in pre-

ingestive selection (Newell and Jordan 1983; Newell 1988; Chretiennot-Dinet et al. 1991; 

Macdonald and Ward 1994; Bougrier et al. 1997). In contrast, other studies have displayed 

that bivalves can sort particles based on their size (Ballantine and Morton 1956; Miura and 

Yamashiro 1990; Cognie et al. 2003b; Mafra et al. 2009a). In this chapter, different sizes of 

H. ostrearia with identical biochemical properties, as a consequence of its asexual 

reproduction in artificial oyster ponds, were used to determine the effect of size on the 

mechanism of pre-ingestive selection. This study is considerably important due to recent 

discoveries on biological activities from marennine, a water-soluble blue pigment produced 

by H. ostrearia, particularly as an antipathogen in aquaculture. Therefore, understanding 

the mechanisms of the pre-ingestive selection of this microalga in oysters will give an idea 

on its uptake of marennine. The experiment regarding this study was held at the laboratory 

of MMS, Université de Nantes, France, by using a flow through chamber system. 

Furthermore, in vivo observations were conducted by using video-endoscopy and scanning 

electron microscopy. The results from this study have been submitted in Journal of Marine 

Biology. 
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Chapter 3: Greening of bivalve by Haslea ostrearia 

 The greening phenomenon of oysters has long been a known phenomenon in France 

that was achieved by refining the oyster in artificial seawater ponds containing microalgae 

(Sprat 1669; Gaillon 1820). The first greening experiment was conducted by placing the 

‘normal’ oyster during 24 to 36 h into the green medium obtained from the artificial ponds 

that contain high-density H. ostrearia. In addition, greening can also be achieved by using 

green medium from the ponds without the presence of the cell (Ranson 1927). Greening 

experiments were subsequently conducted by placing the oysters into the axenic culture 

medium of H. ostrearia in which was added an aqueous extract of the cells of this same 

culture during 10 h (Neuville and Daste 1972). This study implied that the greening was 

affected by the direct adsorption of marennine pigment from the medium at the gills of 

oysters. More recently, as the method of extraction and purification of marennine 

developed, Pouvreau (2006) performed another experiment by placing the oysters into the 

pigment with the purified form. He observed that both intra- and extracellular purified form 

of marennine (IMn and EMn, respectively) were able to color the gills of the bivalve. 

Furthermore, within the similar exposure time, the latter showed stronger ability in coloring 

the gills comparatively to the other, suggesting the EMn is the main form of pigment that 

binds within the gills. Nevertheless, comprehension of the cellular mechanisms involved in 

the greening on bivalve gill's tissue has not been determined and remains unclear.  

In this chapter, several questions were proposed to give a better insight in 

understanding the mechanism of bivalve greening by marennine and its consequence on 

bivalve’s feeding behavior. First, can the greening only be realized by the presence of H. 

ostrearia and its EMn or by simply using the culture supernatant of H. ostrearia or crude 

extract without the presence of the cells? Secondly, can the greening be realized solely by 

the mechanism of ingestion of the cell of H. ostrearia without the presence of their 

extracellular form? Thirdly, can the fixation of marennine on the gills only be realized by 

bivalve’s active filtration or it can be achieved passively. Fourthly, where exactly is 

marennine fixed in the gills? Lastly, does the marennine fixation affect the mechanism of 

filtration in bivalves? 
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 The experiment concerning this study was conducted in the laboratory of MMS 

Université du Maine and Université de Nantes, France as well as ISMER-UQAR, Canada. 

Results from this study will be presented in the short communication Journal of 

Aquaculture. 

 

Chapter 4: Consequence of greening by marennine on the integrative response of 

bivalve 

Recent studies have demonstrated that purified marennine presents biological 

activities, such as allelopathic, antioxidant, antiproliferative, antimicrobial and antiviral 

properties (Pouvreau et al. 2007b, 2008; Gastineau et al. 2012b, c, 2014c). In addition, 

several species producing “marennine-like” pigment from the same genus Haslea were 

recently discovered elsewhere in the world (Gastineau et al. 2012b, 2014c), which leads to 

the potential development of this pigment in the field of aquaculture worldwide, as well as 

for shellfish culture in particular. However, the effect of marennine itself on bivalves has 

never been documented. An earlier study by Piveteau (1999) demonstrated that the oysters 

fed with H. ostrearia in artificial seawater ponds grow slower compared to those fed with 

S. costatum in a long period of time (e.g. 8 weeks). Yet, the reason for the delay of growth 

in oysters remains unclear either due to the poor quality of Haslea given or by the 

biological activity from the marennine released into the ponds. 

 In this chapter, the impact of excreted and purified marennine on the behavioral, 

physiological and biochemical characteristics of two commercially important bivalves 

species (the eastern oyster C. virginica and the blue mussel M. edulis) was studied. Here, 

several hypotheses were tested to answer the following questions. First, in short-term, does 

the presence of extracellular marennine (EMn) in the water column affect valve activity of 

bivalves? Secondly, does the tissues greened by EMn have a long term affect by 

influencing the physiological (e.g. clearance rates, oxygen consumption, absorption 

efficiency and scope for growth) and biochemical characteristics (composition of fatty 

acids in bivalve’s tissue) of bivalves? To answer these questions, an experiment was 

conducted in the Research Station Aquicole de Pointe-aux-Pères from Institut des Sciences 
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de la Mer (ISMER)-l’Université du Québec à Rimouski, Canada. Valve activity, as the 

short-term response, was measured in vivo by using Hall sensor. In addition, the 

physiological rate was measured by using the static chamber at the station while 

biochemical analysis was performed in ISMER. The result from this study has been 

submitted to Journal of Aquaculture. 

 

Chapter 5: Allelopathic effect of Haslea ostrearia on other microalgae relevant to 

aquaculture  

 The pennate diatom Haslea ostrearia can co-occur with other phytoplankton in 

artificial oyster ponds. This diatom has the particular feature of synthesizing and excreting 

the water-soluble blue pigment marennine, which gives added value to the bivalve 

Crassostrea gigas in French oyster industry. An earlier study revealed that marennine 

accumulated in the cell of H. ostrearia was positively correlated with nutrient deficiency 

and light intensity (Neuville and Daste 1978; Robert et al. 1983; Mouget et al. 1999, 2004, 

2005; Rech et al. 2008). Additionally, previous studies have presumed that the presence of 

H. ostrearia and marennine can affect the co-occurring phytoplankton in oyster ponds 

through allelopathic interaction (Moreau 1970; Neuville and Daste 1978; Turpin et al. 

1999). Until then, Pouvreau et al. (2007) confirmed this allelopathic interaction by using 

the purified form of marennine.  

 In this chapter, the allelopathic effect of H. ostrearia and marennine produced in 

realistic conditions by microalgae co-culturing methods was assessed to determine the 

sensitivity of algal species that are typically used in aquaculture and possible diet 

combinations are discussed. In addition, microalgae co-cultures were maintained with the 

semi-continuous mode in order to avoid possible bias from nutrient and light limitations. 

The experiment concerning this study was conducted at the laboratory of MMS Université 

du Maine, France. The result from this study was accepted in Journal of Applied 

Phycology. 
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2 CHAPTER 2: ROLE OF SIZE IN PRE-INGESTIVE SELECTION 
OF HASLEA OSTREARIA IN CRASSOSTREA GIGAS 

 
SUMMARY 
 
 

The first article, entitled “Passive selection by the oyster Crassostrea gigas on the 

blue diatom Haslea ostrearia”, was co-authored by myself and by Priscilla Decottignies, 

Laurent Barillé, Romain Gastineau, Boris Jacquette, Amandine Figiel, Michèle Morançais, 

Réjean Tremblay, Jean-Luc Mouget, and Bruno Cognie. This article will be submitted in 

the Journal of Marine Biology in July 2015. As the first author, my contribution to this 

article was the execution of experiments, laboratory and data analysis as well as writing for 

the manuscript preparation. Bruno Cognie provided the original idea and assisted in the 

method development. All of the co-authors participated in this work. Results of this work 

was presented as poster presentation in the International Elsevier conference of 

Aquaculture 2013: To the next 40 years of sustainable global aquaculture in Las Palmas, 

Gran Canaria, 3 to 7 November 2013, and national workshop of BiogenOuest in St. Malo, 

France, 3 April 2014.  
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Abstract 

 
Recently, the blue pigment "marennine" produced by the pennate diatom Haslea ostrearia 

has revealed promising biological activities, in particular on pathogens of the oyster 

Crassostrea gigas. However, preingestive selection is identified as a feeding mechanism of 

oysters that may influence their uptake of microalgal metabolites. Therefore, we examined 

the role of microalgal cell size in the selective feeding of pacific oysters. Individual flow-

through chambers were used to deliver to oysters mixtures containing H. ostrearia of 

varying cell length. Inflow, outflow and pseudofaeces samples were collected from the 

individual chambers during oyster feeding, while video endoscopy was used to sample 

material at the dorsal and ventral particle tracts. Visual counts of H. ostrearia cells were 

done on these samples and showed that the pseudofaeces contained larger cells than 
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ambient medium. In contrast, the proportions in pseudofaeces were identical to those in 

ventral tracts. In addition, video-endoscopy observations and imaging by scanning electron 

microscopy of gill and labial palps revealed that only those larger H. ostreria orientated 

dorso-ventrally could enter the principal filaments and then access to dorsal acceptance 

tract. These results show that for particle with only one axis that can exceed the width of 

the principal filaments, the selection at oysters' gill is passive and based on particle size. 

Given the crucial role of cell size in the life cycle of diatoms, the impact of this process on 

their population dynamic should be studied over a larger range of species. 

Keywords: Crassostrea gigas, Haslea ostrearia, marennine, microalgal cell size, oyster, 
preingestive selection 
 

2.1 Introduction 

Suspension-feeding bivalves constitute the dominant trophic group in estuarine 

ecosystems, and their feeding mode may affect deeply nutrient recycling, seston dynamic 

and benthic food web (Prins et al. 1991; Asmus and Asmus 1991; Dame 1993; Ward and 

Shumway 2004). In these environments, suspension-feeders have to cope with broad 

fluctuations in both the quantity and quality of suspended particulate matter (Armstrong 

1958; Berg and Newell 1986; Fegley et al. 1992; Barillé et al. 1997). It is thus not 

surprising to find an abundant literature concerning the response of suspension-feeding 

bivalves to seston fluctuations, in particular concerning physiological variables related to 

feeding, as clearance rate, retention efficiencies and pre-ingestive selection (Jørgensen 

1990; Riisgård 2001; Riisgård and Larsen 2001; Ward and Shumway 2004).  

Recent progress has been made on the understanding of the pallial organs and 

ciliation involved in pre-ingestive selection (Beninger and St-Jean 1997; Beninger et al. 

1997; Ward et al. 1997; Cognie et al. 2003). Despite numerous studies, the criterion upon 

which bivalves rely on sorting particles remains unknown. Many particle characteristics 

have been identified as selection cues, namely size (Hughes 1975; Shumway et al. 1985; 

Defossez and Hawkins 1997), organic content (Bacon et al. 1998; Beninger et al. 2008a) or 
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surface properties (Ward and Targett 1989; Pales Espinosa et al. 2007, 2010a; Beninger et 

al. 2008b; Rosa et al. 2013). 

Particle size was the first criterion used by early researchers examining food selection 

(Yonge 1926; Atkins 1937b) but its role remains relatively inconsistent, and no influence 

of particle size on pre-ingestive selection was repeatedly reported (Newell and Jordan 

1983; Newell 1988; Chretiennot-Dinet et al. 1991; Macdonald and Ward 1994; Bougrier et 

al. 1997). On the opposite, numerous studies have demonstrated that bivalves can sort 

particles against their size (Ballantine and Morton 1956; Miura and Yamashiro 1990; 

Cognie et al. 2003; Mafra et al. 2009a). It may be argued, however, that the particles 

involved in most of these studies differed in more than one of their properties. For 

example, Hughes (1975) observed a size-dependent selection of particles by Abra alba, but 

noted a relation between particle size and food value. Cognie et al. (2001) rejected the role 

of particle size in selection by Crassostrea gigas, but used different algal species. To our 

knowledge, very few studies have unambiguously supported the idea that bivalves could 

use size criterion to discriminate particles. A preferential size-dependent rejection of larger 

particles was observed in C. virginica (Tamburri and Zimmer-Faust 1996) and in Mytilus 

edulis, Ruditapes philippinarum and Tapes decussatus (Defossez and Hawkins 1997). 

Nevertheless, the particles used in these studies were artificial: polystyrene or borosilicate 

glass particles for the former, and silica particles for the latter. However, more recently, 

using contrasting sized clones of a toxic diatom, Mafra et al. (2009b) have indisputably 

demonstrated the role of size in the selection performed on C. virginica gills. 

A well-known feature of diatom biology is the MacDonald-Pfitzer rule (Pfitzer 1869; 

Macdonald 1869; Round et al. 1990). During vegetative growth and mitotic divisions, one 

of the daughter cell is smaller than the mother cell, and the mean cell size of a population 

decreases, a phenomenon that usually leads to the loss of monoclonal cultures in the 

laboratory. This phenomenon, unique to diatoms and especially crucial in most pennate 

species, can be compensated for when a critical threshold size is reached, and sexual 

reproduction and auxosporulation can occur.  In diatoms, auxosporulation results in initial 

cells, which restore cells with specific maximum length (Amato 2010; Gastineau et al. 

2014b). As a consequence of these biological traits, cells of a same species, but of different 
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size, are often found together in the natural environment (Mann 1988; Potapova and 

Snoeijs 1997; Mann et al. 1999). This phenomenon is expected to affect the kinetics of 

diatom selection and diatom metabolite uptake by bivalves through its impact on their 

feeding processes, namely clearance rate, pre-ingestive selection and absorption efficiency. 

Indeed, Mafra et al. (2009b) have recently demonstrated that the ability of C. virginica to 

sort particles against their size could affect its uptake of the neurotoxin domoic acid from 

Pseudo-nitzschia multiseries. Studying this specific size-dependent sorting mechanism 

would be of crucial interest in understanding and modelling the transfer of a bioproduct 

from algal cells to suspension-feeding bivalves. The marine diatom Haslea ostrearia is 

known to produce marennine, a polyphenolic water-soluble blue pigment (Pouvreau et al. 

2006a), responsible for the "greening" of the tissues of numerous marine invertebrates and 

in particular the gills of bivalves (Ranson 1927; Robert 1983; Turpin et al. 2001; Gastineau 

et al. 2014a). It has also been shown that H. ostrearia can be used as feed for the oyster C. 

gigas (Barillé et al 1994). Although H. ostrearia has long been recognized as the only 

greening agent of cultured oysters in France, other species from the same genus and 

producing “marennine-like” pigments were discovered elsewhere in the world (Gastineau 

et al. 2012a, 2014b, 2015). These authors have also revealed that marennine-like pigments 

have antibacterial and antifungal activities, in particular against pathogens of the oyster C. 

gigas (Gastineau et al. 2012b, 2012c). 

In the present work, cultures of H. ostrearia differing according to their mean cell 

length were used to feed the oyster C. gigas, to investigate if cell size may affect algal 

selection on pallial organs (gills and labial palps). For feeding experiments, different 

methods were used, endoscope-directed in vivo sampling and naturally occurring particles 

(diatom cells) of different sizes, and Scanning Electron Microscopy (SEM) to provide 

images of the close relation between the microalgal clones and the structures and ciliation 

of pallial organs involved in the sorting processes. Different clones of H. ostrearia being 

used, the ecological implications of oyster selection on some biological traits of this diatom 

species, e.g., the reproductive cycle and population structure, will be discussed. 
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2.2 Materials and methods 

2.2.1 Algal culture 

 Haslea ostrearia populations used in this study were obtained from the Nantes 

Culture Collection [NCC; temperature: 14°C; light/dark cycle: 14/10 h; light intensity: 100 

µmol photon m-2 s-1; ES1/3 medium, Provasoli (1968)], Faculté des Sciences et des 

Techniques, Université de Nantes (France). The three strains presented similar biochemical 

composition (Joux-Arab et al. 2000). Sixty-liter mass cultures were performed in 

polyethylene bags filled with underground seawater (Cognie et al. 2001b) supplemented 

with an enrichment solution (nitrogen, phosphorus, and silicon) (Turpin et al. 2001a). The 

different populations were then mixed at equivalent concentrations (around 3 106 cells L-1) 

and offered to the bivalves. 

  

 

2.2.2 Oyster sampling and maintenance 

 Adult oysters of Crassostrea gigas were collected in the intertidal zone of 

Bourgneuf Bay (France) (46-47° N, 1-2° W). After immediate transfer to the laboratory 

and removal of shell epibionts, they were placed for two minutes in a 0.1% hypochlorite 

solution to eliminate parasitic polychetes of the genus Polydora. The oysters were then 

thoroughly washed, maintained in filtered (Millipore 0.45 µm) seawater and oxygenated.  

  

 

2.2.3 Ecophysiological experiments 

 Two series of experiments were run on different periods, one with oysters feeding 

on three algal cell sizes (condition A), the other, on two algal cell sizes (condition B). After 

24 hours of acclimation prior to experimental conditions (A or B, Table 2-1), oysters were 

randomly chosen and placed in a flow-through experimental system, as described in Barillé 

et al. (2003). The mean flow rate for each individual tray was 10 L h-1 at 16°C. Two trays 



	 53	

containing an empty shell were used as sedimentation controls. After one hour of oyster 

acclimation, the collection of seawater samples at the outflow of the experimental trays was 

performed every 15 minutes, during one hour. Pseudofaeces were collected at the end of 

the observations. The samples (outflow seawater and pseudofaeces) were fixed with acetic 

Lugol’s solution and cell counts were performed by means of light microscopy using 

“Nageotte” type hematimetric units. For each sample, a minimum of 300 cells was counted. 

  

Table 2-1. Experimental conditions (mean ± SE). 

 POM (mg.L-1) Cell concentration (106 cells.L-1) Cell size (length in µm)  

Condition A 2.5 ± 0.1 3.1 ± 0.2  Ho50: 50.2 ± 1.4 

Ho75: 74.9 ± 2.2 

Ho95: 95.2 ± 1.8 

Condition B 1.9 ± 0.1 3.0 ± 0.3  Ho-small: 37.5 ± 5.2 

Ho-large: 99.4 ± 2.2 

Note: Ho = H. ostrearia 
 

2.2.3.1 Sample preparation for Scanning Electron Microscopy (SEM) 

Oysters intended for SEM observations were placed in flow-through trays and fed 

with the same mixture as in experimental condition A (Table 2-1). Once pseudofaeces 

appeared, the oysters were collected, shucked and immediately fixed in a 2.5% hypertonic 

glutaraldehyde solution in sodium cacodylate buffer 0.1 M (Beninger et al. 1995). The 

collection-fixation step was performed within 30 s to limit stress-related mucus production 

and preserve the functional stage of the animal. After fixation (for at least 48 h), 

individuals were partially dehydrated in successive alcohol baths at increasing 

concentrations (up to 70%). At this stage, the oysters were dissected using a dissection 

microscope and microsurgical instruments. The samples were subsequently totally 

dehydrated in a 100% anhydrous alcohol bath and dried with CO2 using a critical point 
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apparatus. The samples were then plated with gold-palladium alloy and observed under a 

scanning electron microscope with field effect (JEOL 5400). To estimate the tissue 

contraction of the samples during SEM preparation, additional measurements were 

conducted with a dissecting microscope on live individuals still on the half shell. 

 

2.2.3.2 Video endoscopy directed sampling 

This sampling was conducted concomitantly to ecophysiological measurements 

described above, following the procedure described in Cognie et al. (2003). At least 24 h 

before the sampling, a small aperture was milled in the shells to prevent damage of the 

optical insertion tube (OIT) when the oyster valves closed. Specimens were placed in flow-

through trays and fed the same mixture as in experimental condition A (Table 2-2). 

Sampling was performed every 15 min in both dorsal and ventral particle grooves (using a 

micropipette) and at the inflow and outflow of the trays. After one hour of observation, 

pseudofaeces were recovered. The samples (outflow seawater, pseudofaeces, and ventral 

and dorsal grooves samples) were treated and analyzed as described above (section 2.2.3). 

 

 

2.2.4 Data analysis 

All statistical analysis were performed by using XLstat software. The percentages 

of the different cell sizes were compared, in the different samples, using the Kruskal-Wallis 

test (Conover 1999). Hypotheses tested in the experimental condition B are described in 

Table 2-2. 
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Table 2-2. Experimental hypotheses tested in condition B 
H0 Proportions not significantly different at sampling 

sites 
No selection by the pallial organs 

H1 Proportions significantly different at sampling sites Selection by the pallial organs 

H1a Proportions significantly different in water and at 
ventral and/or dorsal tracts 

Selection at gill 

H1b Proportions significantly different in ventral tracts 
and pseudofaeces 

Selection at labial palps 

H1c H1a and H1b accepted Selection at gill and labial palps 

 

2.3 Results 

2.3.1 Condition A: oysters' feeding on three algal cell sizes + SEM observations 

The heterorhabdic gill of C. gigas is composed of plicae and troughs corresponding 

respectively to the locations of ordinary and principal filaments (Fig. 2-1A and B). The 

latter were difficult to observe due to their position deep between each plica and the 

contraction effect induced by the preparation for SEM study. In vivo observations showed 

that the plicae were 200 to 250 µm wide, and the ordinary filaments between 35 and 40 

µm. In addition, ordinary filaments located in the apical part of the plicae (or apical 

filaments) were approximately 45 µm wide. The same measurements, when performed 

using SEM, showed that plicae were only 120 to 140 µm wide (Fig. 2-1A), ordinary 

filaments 18 to 26 µm wide (Fig. 2-1B) and apical filaments 25 and 30 µm wide (Fig. 2-1A 

and D). Principal filaments were no longer visible and too deeply positioned in troughs to 

allow measurements (Fig. 2-1B and C). Thus, due to preparation for SEM, the dimensions 

of contracted gill plicae correspond to ca. 50% of that observed in vivo. 

Cells of the three distinct algal populations were always observed mixed, whether 

free or in aggregates of mucus, regardless of the structure involved. No cell population was 

isolated in a ciliary tract. Haslea cells were observed on the gill surface without 

preferential orientation (Fig. 2-1B, C, and D). However, the cells distinguished at the 

bottom of the principal filaments were always orientated according to the longitudinal axis 

of the gill filaments (¥ Fig. 2-1E). Haslea cells transported dorsoventrally along the gill 
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surface reached the ventral grooves (Fig. 2-1E). They were then transported toward the 

anterior part of the pallial cavity in mucous aggregates (not shown), before being processed 

by the ridged inner surfaces of the labial palps. Aggregates of mucus and cells of the three 

H. ostrearia populations were observed on these surfaces (Fig. 2-1F, G, and H). 

A dimensional gap between the size of the three H. ostrearia populations and that 

of the gill and labial palps structures was apparent. A Ho95 cell overlapped more than two 

apical filaments (Fig. 2-1D) and more than three ordinary filaments (*Fig. 2-1E). 

Regarding labial palps, cells of the smallest population were equivalent in size to the width 

of a plica.  

SEM studies of the structures and ultrastructures of the pallial organs involved in C. 

gigas feeding were associated with ecophysiological measurements. The mixture of the 

three H. ostrearia populations represented a food ration of 2.5 mg L-1 of total seston 

containing an organic fraction of around 50% (Table 2-1). Microscopic measurements of 

frustule lengths showed that the three H. ostrearia populations were significantly different 

in size (Table 2-1; ANOVA, P < 0.001). 
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Figure 2-1. Scanning electron microscopy studies of the gill and labial palps of 
Crassostrea gigas fed with three different-sized populations of Haslea ostrearia 

pf 
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Ant., anterior part; Post., posterior part; Vent., ventral part; Dors., dorsal part; of, ordinary filament; 
pf, principal filament; vg, ventral groove; f, frontal cilia; p, plicae; g, grooves; c, cilia. 
A: Frontal view of the gill showing differentiation between the principal filaments (pf) and the 
plicae constituted of ordinary (of) and apical (af) filaments. Scale bar, 100 µm. B: Detail of plicae 
for a Haslea ostrearia cell (length, 75 µm) in the main direction of the filaments. Scale bar, 10 µm. 
C: Ciliation of an ordinary filament conveying a Haslea ostrearia cell (length, 50 µm). lf, 
laterofrontal cirri; f, frontal cilia. Scale bar, 10 µm. D: Detail of plicae showing a Haslea ostrearia 
cell (length, 95 µm) lying across more than one apical filament (af). Scale bar, 10 µm. E: Side view 
of the gill and ventral groove (vg). Arrows indicate main particle transport. Scale bar, 100 µm. F: 
Ridged surface of a labial palp. og, oral groove; me, marginal edge. H, area corresponding to 
figures H. Scale bar, 1 mm. G: Detail of a ridged labial palp surface covered with an aggregate of 

mucus (∗) containing the three cell sizes of Haslea ostrearia. Scale bar, 100 µm. H: Detail of the 
ridged labial palp surface, with cells of the three different-sized populations of Haslea ostrearia. 
Scale bar, 100 µm. 

 
The proportions of the three populations were the same at the inflow and outflow of 

individual tanks (Table 2-3; χ2 test, p > 0.05), indicating that they were retained with the 

same efficiency on gills. The proportions of the three populations at the inflow, however, 

were significantly different from those in the pseudofaeces (Table 2-3; χ2 test, p ≤ 0.05), 

indicating preferential pre-ingestive rejection of the two larger cell populations. 

 

Table 2-3. Comparison of the proportions of the three Haslea ostrearia populations at 
sampling sites in condition A 

Mean proportions of the three populations (%)  χ2 test (vs inflow) 

 Ho50 Ho75 Ho95  χ2 observed p 

Inflow 40 31 29  - - 
Outflow 38 32 30  0.09 N.S. 
Pseudofaeces 21 40 39  8.95 * 

Note : *, p ≤ 0.05; N.S., not significant. 
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2.3.2 Condition B: oysters' feeding on two algal cell sizes + video-endoscopy directed 

sampling 

The mixture of the two H. ostrearia populations represented a food ration of 1.9 mg 

L-1 of total seston containing an organic fraction of around 50% (Table 2-1). Biometry 

applied to frustule lengths showed that the two H. ostrearia populations were significantly 

different (ANOVA, p < 0.001). During the video-endoscopy directed sampling oysters 

showed no perturbation of their feeding behavior. 

The proportions of the two size populations were the same in the inflow and 

outflow of individual tanks (Fig. 2-2), indicating that both populations were retained with 

the same efficiency on gills (p > 0.05). The Kruskal-Wallis test, however, clearly leads to 

rejection of null hypothesis Ho and acceptance of H1: selection occurred on the pallial 

organs.  

 

 

Figure 2-2. Mean percentages of Haslea ostrearia small (black bars) and large cells (white 
bars) in each sampling sites: inflow, outflow, pseudofaeces, dorsal tract and ventral tract. 
Error bars represent the 95 % confidence interval of the mean. Error bars with different 

lower case letters are significantly different. 
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A significant difference was observed between the proportions of the two H. 

ostrearia populations in inflow, ventral grooves, and dorsal tracts, thus allowing 

acceptance of H1a: selection occurred on the gills (p < 0.05). There was no significant 

difference between the proportion of cells in the pseudofaeces and at ventral grooves. The 

experimental hypothesis may, therefore, be rejected: H1b and H1c: no selection was 

performed by the labial palps. 

 
 

2.4 Discussion 

In the present study, cells were retained with the same efficiency when oysters were 

fed with mixed suspensions containing H. ostrearia of varying cell length. Previous studies 

demonstrated that in bivalves, retention efficiency varies with particle size and 

concentration. In C. gigas, Barillé et al. (1993) showed that particles above 6 µm ESD 

(equivalent spherical diameter) were retained with 100 % efficiency, at the total seston 

concentration used in our study (1.9 or 2.5 mg L-1). This maximal retention efficiency 

threshold is slightly under the size of the smallest H. ostrearia cells fed to the oysters (Ho-

small, 6.3 ± 0.1 mean ESD ± SE), indicating that the cells of the three populations were 

retained with 100 % efficiency. 

From both experiments, we demonstrated that the size of H. ostrearia cells is an 

essential criterion influencing the pre-ingestive selection in C. gigas. Oysters preferentially 

rejected in pseudofaeces the larger H. ostrearia cells (Ho-large or Ho75 and Ho95) when 

offered in mixed suspensions with the smaller ones (Ho-small or Ho50). In oysters, pre-

ingestive sorting ability has been related to the presence of antagonistic ciliary tracts on the 

surface of the ordinary filaments composing plicae (Atkins 1937b; Ribelin and Collier 

1977; Ward et al. 1994, 1998b). Particles transported by the median frontal cilia of 

ordinary filaments are directed towards the ventral grooves in which they are conveyed 

within an aggregate of mucus for a further preferential rejection. Conversely, particles 

transported by the marginal frontal cilia on both sides of the median frontal cilia are 
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directed towards the dorsal grooves and then conveyed to the mouth as a mucus 

suspension. Figures 2-1B-E show the dimensional relation between the size of the three H. 

ostrearia populations and that of the gill structures likely to perform particle sorting. Thus, 

for large cells with a naviculoid shape, such as those used in our study, bidirectional 

particle transport by ordinary filaments would seem difficult to achieve, even if they were 

directed according to the longitudinal axis of the filaments. 

Another mechanism that could account for selection at gill level relates to the 

differentiation of heterorhabdic gills into principal and ordinary filaments (Atkins 1937b; 

Ward et al. 1994, 1998a; Beninger and St-Jean 1997). In bivalves possessing such a gill 

type, pre-ingestive sorting may be performed using principal filaments for the material to 

be ingested and ordinary filaments for the material to be rejected. Our SEM and video-

endoscopy observations showed that the cells of the larger populations were present in the 

troughs containing principal filaments but were always orientated dorso-ventrally. These 

qualitative data confirm that passive selection related to particle size may operate on the 

gill, as suggested by Ward and Shumway (2004) and previously observed in C. virginica 

by Mafra et al. (2009b). 

Particles transported in dorsal grooves and those conveyed with mucus aggregates 

in ventral grooves are directed towards the ridged surfaces of the labial palps (Ward 1996). 

In bivalves with homorhabdic gills, the labial palps are considered to be the main site for 

sorting and regulating the quantity of particles ingested. In bivalves with heterorhabdic 

gills, the palps were supposed to play a secondary role in these two functions and to serve 

mainly to reject the non-ingested material as pseudofaeces (Beninger and St-Jean 1997; 

Ward et al. 1998a). The differentiation of heterorhabdic gills into two types of filaments 

allows these two functions to be performed before the material reaches the palps. In 

addition, recent studies demonstrated that labial palps may also sort algal cells on the basis 

of their chemical properties (Cognie et al. 2003; Beninger et al. 2008a, b; Mafra et al. 

2009b). In the present study, using H. ostrearia cells of contrasting size, we observed 

selection at oyster gills but not at labial palps, suggesting that particle size did not affect in 

the same way the selective ability of these two pallial organs. 
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State of knowledge concerning size criterion in selection on oyster pallial organs 

may be clarified and summarized in Table 2-4. Particle dimensions (length, width, height) 

should be considered as a physical constraint affecting access to principal filaments (PF) 

and consequently selective ability at the oyster gill. Particles with all dimensions smaller 

than the PF width can access freely to principal filaments troughs and their selection may 

occur at gill and/or labial palps. On the opposite, particles with all dimensions greater than 

PF width are unable to enter principal filaments and selection at gill is not possible. For 

particles with only one dimension greater than PF width, the access to principal filaments is 

limited to particles dorso-ventrally orientated. The selection at gill is passive or mechanical 

and a secondary selection at labial palps is possible. 

 

 

Table 2-4. Role of particle size in selection at oyster pallial organs.  

Particle dimensions Access to principal filaments 
Selection 

At gill At labial palps 

All axes < PF width Free Possible Possible 

All axes > PF width Not possible Not possible Possible 

1 axis > PF width Limited Passive Possible 

Note : PF = principal filament 

 

2.5 Conclusion 

The demonstration that C. gigas selectively rejects larger cells of H. ostrearia could 

have some ecological significance, both in natural environments and in aquaculture, 

especially in oyster ponds. Indeed, in estuarine and coastal waters, oysters feed selectively 

on pennate diatoms, which constitute an important food source in intertidal areas with large 

mud flats (Cognie et al. 2001b). Considering the stock of cultivated and wild oysters, the 

sorting process evidenced in the present work may affect the structure of the microalgal 
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populations in the vicinity of oyster beds. Our study suggests that the preferential rejection 

of large-size cells in pseudofaeces could favour the development and/or the maintenance of 

sub-populations of large-size Haslea, given that H. ostrearia cells rejected in pseudofaeces 

have a revival capacity that is not altered by pre-ingestive processing (Barillé and Cognie 

2000). Furthermore, as many pennate diatoms, sexually competent cells of H. ostrearia can 

carry out auxosporulation to compensate for the size reduction associated to vegetative 

divisions, only when cell size decreases to 65-70 µm, which represents 50% of the 

maximum cell length of the species (Neuville and Daste 1979; Davidovich et al. 2009; 

Mouget et al 2009). Therefore, this study shows that C. gigas preferentially ingests 

sexually mature cells and rejects immature ones, which could modify H. ostrearia cell size 

distribution and population dynamics in oyster ponds. The importance of this predation 

pressure on the life cycle of H. ostrearia in oyster ponds remains to be assessed, however, 

especially considering the importance of marennine in the greening process, but also 

regarding its many biological activities (e.g., antibacterial) that could be exploited in 

aquaculture. 
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3 CHAPTER 3: GREENING OF BIVALVE BY HASLEA OSTREARIA   

 
SUMMARY 
 
 

The second article, entitled “Integrative study on greening Pacific oyster 

Crassostrea gigas by marennine produced by Haslea ostrearia”, was co-authored by 

myself and by Ikha Safitri, Bruno Cognie, Priscilla Decottignies, Romain Gastineau, 

Michèle Morançais, Eko Windarto, Réjean Tremblay and Jean-Luc Mouget. This article 

will be submitted in Journal of Aquaculture. As the first author, my contribution to this 

article was the execution of experiments, laboratory and data analysis as well as writing for 

the manuscript preparation. Jean-Luc Mouget, Bruno Cognie, Priscilla Decottignies and 

Michèle Morançais provided the original idea and assisted in the method development. All 

of the co-authors participated in this work. Several results obtained form this work was 

presented as oral presentation in International Conference of Physiomar 2014 in La Serena, 

Chile, 3 to 6 November 2014. 
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Abstract 

The oyster greening phenomenon due to the fixation of marennine, the blue-green pigment 

produced by Haslea ostrearia, gives added value to the French oyster industry. 

Additionally, in vitro studies have shown that the pigment displays antibacterial activities, 

which could be advantageous in the field of aquaculture. Nevertheless, the mechanism of 

greening in oyster pallial organs, as well as its consequence on oyster’s feeding behavior, 

remains poorly documented. The present study was thus performed to evaluate (1) the 

greening mechanism in the gills of oyster Crassostrea gigas (2) marennine effects on the 
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clearance rate of oyster (3) oyster recovery from marennine exposure. Firstly, the greening 

experiment was conducted to understand the mechanism of marennine fixation on oyster 

pallial organs. Concomitantly, another feeding experiment was conducted where clearance 

rate (CR) was measured on control and marennine exposed oysters. Both groups of oysters 

were fed simultaneously by a culture of Skeletonema costatum, which is commonly used in 

the oyster refining process. We demonstrated that the extracellular form of marennine 

significantly contributed to the greening compared to the intracellular form. Fixation of 

marennine is likely to be visible in the mucocyte of the gills. Furthermore, marennine 

significantly decreased CR by 51% with respect to control (p < 0.05) as a consequence of 

its fixation on oyster gills. However, the CR of oyster recovers to normal state after 7 days 

of exposure, suggesting that oyster is able to depurate the effect of marennine. However, on 

a longer-term (weeks), influence of marennine on the growth performance of the bivalves 

should be further studied, for any possible use of marennine as nutraceutical in aquaculture.

  

Keywords: Crassostrea gigas, Haslea ostrearia, marennine, clearance rate 

 

3.1 Introduction 

Oyster greening in the South-West of France is a seasonal phenomenon that occurs 

mainly in spring and autumn in oyster ponds. It is due to the proliferation of the diatom 

Haslea ostrearia, which can outcompete other microalgae that co-exist in the ponds. 

Indeed, H. ostrearia becomes recurrently dominant, possibly through the mechanism of 

allelopathy, by releasing its blue water-soluble pigment, marennine (Moreau 1970; 

Neuville and Daste 1978; Turpin et al. 1999; Pouvreau et al. 2007). Previous studies have 

shown that marennine concentration in oyster pond seawater can reach 3.4 mg L-1 (Turpin 

et al. 2001). During the greening, marennine released into the ponds is filtered by the 

oysters and fixed on the gills, giving them a specific green color. The oyster greening is 

considered to be important as this phenomenon contributes economically to the French 
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oyster industry. Moreover, potential exploitation of marennine as a natural anti pathogen 

agent draws attention since the extraction and purification methods were developed, and 

antimicrobial activities demonstrated in vitro (Pouvreau et al. 2006; Gastineau et al. 2012). 

However, to achieve the maximum benefit of the application of marennine in 

conchyliculture, it is necessary to determine the effects of this pigment on the response 

traits of oyster. 

        The direct role of marennine in oyster greening has been previously demonstrated 

in the laboratory, by using either the supernatant (hereafter named as ‘crude extract’) of H. 

ostrearia culture (Carazzi 1897; Neuville and Daste 1972; Ranson 1927) or the purified 

form (Pouvreau 2006). In oyster ponds, however, it is not known whether the pigment 

transfer to gills is only caused either by the simple filtration of seawater and the 

extracellular form of marennine (EMn) contained in H. ostrearia supernatant, or if it is 

closely related to the ingestion by the oyster of H. ostrearia cells containing Intracellular 

form of marennine (IMn). Moreover, despite that the oyster C. gigas is able to ingest H. 

ostrearia (Barillé et al. 1994; Piveteau 1999) and both purified forms of marennine, EMn 

and IMn, are able to color oyster gills (Pouvreau 2006), information on the cellular 

mechanisms involved in the greening of oyster gill’s tissue remains unclear, as well as 

possible consequences of the greening on oyster physiological state is not yet documented. 

        Among all physiological indicators in bivalves, the clearance rate (CR) is 

considered as a reliable physiological parameter and its fluctuation describes the impacts of 

chemical stress, including microalgae exudates, on the organism at the whole body level 

(Bricelj et al. 2001; Ishida et al. 2004; Echevarria et al. 2012). Moreover, CR reflects the 

activity of filtering surfaces, particularly gills (Jorgensen 1990). Therefore, CR in 

suspension feeder can be used as an indicator of short- and long-term effect of chemical 

substances. 

        The aim of the present study was to give better insight on the greening phenomenon 

of oysters and determine the mechanisms of interaction between marennine and oyster 

gills. Several questions were thus addressed in this study regarding the greening process 

and its consequences. First, does the greening in presence of H. ostrearia occur due to the 

IMn or EMn? Secondly, does the greening occur actively through the feeding activity, or 
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passively by retention at the gill level?  Thirdly, is there possible loss of color or depuration 

('degreening') performed by the oyster with time? Fourthly, where and how does the 

marennine fix on the gills of oyster? Finally, does marennine fixed on gills modify oyster 

behaviour (e.g., at the CR level)? 

 

3.2 Materials and methods 

3.2.1 Culture of microalgae and maintenance of oysters 

Juvenile and adult oysters with different shell lengths (mean ± SE, n= 16, 6.0 ± 1.2 

cm and 10.1 ± 1.5 cm, respectively) were collected from Bourgneuf Bay (46° 59′ 19′′ N/2° 

14′ 14′′ W), West of France, in June 2013. Shell epibionts were removed manually, by 

placing animals in a sodium hypochlorite solution for 2 minutes in order to eliminate shell 

borers such as Polydora sp. The cleaned individuals were then rinsed several times and 

were maintained in aquaria filled with oxygenated filtered seawater for 96 h prior to the 

experiments. 

        The microalgae strains used in this experiment were H. ostrearia (NCC-148.7) and 

S. costatum (NCC-53) obtained from NNC (Nantes Culture Collection, Université de 

Nantes). These two species were grown under non-axenic conditions in sterilized conical 

flasks, containing a medium of artificial seawater (ASW) (Mouget et al., 2009) at 16 °C ± 

1°C, with an irradiance of 100 µmol photon m-2
 s-1 (Li-Cor quantum meter), and in a 

photoperiod light/dark of 14h / 10h (Philips TLD 36 watt/965 Fluorescent tubes). 

 
 
3.2.2 Experimental design 

3.2.2.1 Greening experiment 
 

The greening experiment was conducted by placing the juvenile and adult oysters in 

an experimental chamber containing 1 L of filtered seawater (Instant Ocean®: NaCl, 

Na2SO4, KCl, NaHCO3) with temperature and salinity of 16°C and 35 psu, respectively. 
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Greening was conducted in four different treatments as described in Fig. 3-1 (A, B, C and 

D). Culture of H. ostrearia maintained in an ASW medium during 3 weeks (cell densities 

between 30,000 and 120,000 cell mL-1) was used for all treatments (B, C and D) except for 

control where S. costatum with the same range of cell concentration were given. As for 

treatment B (Fig. 3-1B), oysters were maintained in the experimental chamber containing 

cells of H. ostrearia and their culture supernatant or crude extract of EMn (final 

concentration: 5 mg L-1). On the other hand, in the treatment C (Fig. 3-1C), the medium 

only contained the crude extract of EMn, without any presence of cells. This was obtained 

by filtering the crude extract through a GF/ filter F (Millipore). The last treatment (Fig. 3-

1D) represents the medium containing H. ostrearia cells only. This was prepared 

extemporanously by gentle centrifugation of H. ostrearia culture in order to eliminate the 

supernatant, which contained the extracellular form of marennine. After having discarded 

the supernatant, H. ostrearia cells (pellet) were resuspended in a fresh medium, and placed 

into the experimental chambers containing oyster for 6h, (short 'feeding period') to limit 

possible release of EMn by algae. The observation on the greening effect was determined 

every 24 hours since the oysters maintained at the experimental chamber during 96 hours 

and up to 12 weeks for treatment A, B and C. Whereas for the treatment D, the medium 

was re-newed daily after 6 hours during the 12 weeks of the experiment to determine the 

possible accumulative effect of intracellular marennine in the gills of oyster. 

 

 

Figure 3-1. Scheme of greening experiment in vitro. Oysters were maintained in the 
chamber containing A) filtered artificial seawater (0.2 µm); B) culture of Haslea ostrearia 

with EMn; C) crude extract of EMn without H. ostrearia cells; D) filtered artificial 
seawater containing H. ostrearia cells only without any presence of EMn.  
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3.2.2.2 Feeding experiment 

Experiment 1: short-term effect of marennine 

 Two groups of juvenile C. gigas (n=8, for each control and treatment group) were 

provided. One group was exposed to crude extract of EMn and the other group as control 

(here after named “green-oyster” and “normal-oyster”, respectively). Green-oysters were 

prepared by exposing them to EMn crude extract (with final concentration 5 mg L-1) 96 h 

prior to the feeding experiment. CR was quantified using a flow through chamber system, 

which was composed of ten individual chambers, equipped with a flow meter and a 

dispatcher (Barillé et al. 2006). Two chambers were provided as sediment chambers that 

contained only oyster shell. Flows in the individual chambers were controlled using valves 

fitted at their entrance. In each chamber, two partitions were provided to limit the 

turbulence on biodeposit suspended matter. Both groups of oysters were then fed with 

cultures of Skeletonema costatum (300 L in scobalith) with a final concentration of 30,000 

cell mL-1. To simulate particulate inorganic matter (PIM), silt (kaolinite BS1, AGS) was 

added to the algal mixtures, because it is well ingested by oyster comparatively to other 

clays (Sornin et al. 1988). Sampling at the outflow of the individual chamber was 

conducted in 20 minute intervals during one hour after all oysters were sufficiently 

acclimated. Samples were then analyzed using a particle counter multisizer (Beckman 

Coulter Counter Z2, Mississauga, ON, Canada). 

 

Experiment 2: long-term effect of marennine 

 To determine the possible mechanism of depuration ('degreening'), the two groups 

of oysters, as stated above, were re-placed into seawater medium and fed with the same 

diet. CR in both control and treatment groups was measured by using static chamber. Two 

chambers were used as sediment control chambers as stated above. Furthermore, 

experimental conditions and sampling were performed as previously described in 

experiment 1. 

 



	 76	

Physiological measurements 

 CR is defined as the volume of water cleared of suspended particles per unit of time 

(Macdonald and Ward 1994). In experiment I, by using flow through chamber system, we 

assumed that the particles were 100% retained on oyster gills. CR (L h-1) was calculated as 

follows:  

 

CR = F x [(inflow – outflow) x inflow
-1

]   (1) 

 

Where F is the flow rate of water through the chambers (L h-1).  

In experiment 2, CR was measured in a static system and was calculated as follows: 

 

CR = (V / t) ln (C0 / Ct)    (2) 

 

Where V is the volume of water and t is the incubation time. C0 and Ct are the initial and 

final particle concentrations in the closed chambers.  

Calculated CR was then standardized to the individual’s equivalent of 1 g dry 

weight (Bayne et al. 1987; Barillé et al. 1997). This standardization was done by applying 

the allometric coefficient (b = 0.65), determined by (Shpigel et al. 1992) for C. gigas, as 

follows: 

Ys = (1 / Wex)
b
 Yex     (3) 

Where Ys corresponds to the physiological rate for an animal of standard weight, Yex is the 

value of experiment and Wex is the weight of oysters used in the experiment. 

 

3.2.2.3 Histology sample preparation 
 

 Preliminary experiments to observe green gills using in toto staining and classic 

histological method were unsuccessful due to the leaching of marennine, thus unabling the 

determination of which part of gills marennine was fixed. In this study, the frozen section 

technique was used in order to observe the fixation of marennine on oyster gills. Briefly, 

fresh gills (n=3) were dissected from the oyster shell and immediately immersed in 3 to 30 
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kDa ultra-filtered EMn (e.g. final concentration, 500 mg L-1) for 24 h until they turn green. 

Gills with marennine were then fixed in 10% formaldehyde for 10 days prior to the 

sectioning process. Marennine fixation was evaluated in vitro in cryostat section and 

sections (40 µm) were cut along the antero-posterior axis of the gills with a pre-frozen 

cryostat (MICROM International GmbH) at -28°C prior to observation under microscope 

with 100 magnifications (Keyence VHX-2000E). 

 

3.2.2.4 Marennine quantification 
 

 The concentration of extracellular marennine (EMn) was calculated by filtering the 

crude extract with Millipore filter (0.22 µm) prior to the measurement with a 

spectrophotometer. Afterwards, the absorbance of crude extract was measured by UV-

visible spectrophotometry (PerkinElmer Lambda 25), and the concentration was 

determined as described in Robert et al. (2002). The concentration of EMn [C] (mg L-1) 

was calculated according to the following formula:  

 

 
    [C]  =        

 

 

Where A max   is the absorbance at the peak wavelength in red region, ελmax is the specific 

extinction coefficient at the peak wavelength, and l is the cuvette path length. 

 Because no method to quantify marennine fixed on the gills has been developped 

yet, two methods of estimation were used, one qualitative and one quantitative. In the 

former, the amount of marennine fixed in oyster gills was expressed as a greening intensity 

with the scoring method (Fig. 3-2). Briefly, the scoring method was applied by establishing 

the greening scale in by using DigitalColor Meter application in Mac. The scale was made 

based on the red green blue (RGB) ratio obtained by applying the maximum aperture on 

the area of interest from the captured image in control and treatments, which will give the 

numerical value. The control scale (0) was represented by the color of gills of the oysters in 

 
 A λmax 
 
ɛ λmax x l 
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control, whereas the maximum scale (10) was represented by the maximum of green 

coloration by marennine. In the latter, frozen gills were defrosted on ice, blotted on 

absorbent paper and the wet mass determined. Marennine in the gills was extracted using 

urea (CO(NH2)2) 8M after grounding with an Ultraturax tissue tearor (BIOSPEC, Inc) at 

maximum speed in a 15 mL Falcon tube. Ground tissue with urea was then centrifuged at 

7800 rpm for 10 min and the absorbance of the supernatant measured by UV-visible 

spectrophotometry (UV-6300 PC double beam, VWR). The marennine concentration was 

measured using the same formula as described above (Eq. 4). Furthermore, marennine 

concentration fixed in the gills was obtained by removing the absorbance of gill tissue 

alone from the control by using a calibration curve.   

 

 

 
 
 
 

 
 
0 1 2 3 4 5 6 7 8 9 10 

 
 
 
 
 

 
3.2.3 Statistical analyses 

All data was analyzed using JMP Pro 11 statistical software (©SAS Institut Inc.). 

Normality and homogeneity tests were used prior to statistical analyses by Shapiro-Wilk 

and Levene’s test, respectively. Scores obtained in the greening experiment were analyzed 

by using one-way ANOVAs. In contrast, two-way ANOVAs were performed to determine 

differences in CR between different groups of treatment (normal- vs green-oyster) and also 

group of time (week). Where differences were detected, Tukey-HSD multiple comparison 

tests were used to determine which means was significantly different. 

 

Figure 3-2. Scale of greening intensity used to estimate marennine in oyster 
gills qualitatively. 
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3.3 Results 

3.3.1 Greening experiment 

Qualitative measurements showed that the greening occurred in most of the 

treatments except the control where the H. ostrearia and the crude extract of EMn was 

absent (Fig. 3-3A). Strong greening intensity in C. gigas’s gills was visually observed 

when the oysters were exposed to H. ostrearia concomitantly with marennine and 

marennine’s crude extract only (Fig. 3-3B&C). In contrast, weak coloration appeared on 

the oysters fed only by the cells of H. ostrearia without any presence of marennine’s crude 

extract (Fig. 3-3D). Statistical analysis showed that greening intensity appeared to be 

significant between treatment and control (ANOVA: F3, 37 = 13.67, p < 0.0001). Tukey-

HSD post-hoc analysis showed that greening intensity in the treatment B and C were 

significantly different compared to the control (p < 0.0001 and p < 0.0005, respectively). In 

contrast, no significant difference in greening intensity was observed between D and 

control (p > 0.05). However, greening in oysters fed with H. ostrearia cells were only 

approximately four times lower compared to those are exposed to crude extract of 

marennine and the combination between the cells and crude extract (p = 0.0026 and p = 

0.0004, respectively). Last, it has been observed that after the exposure to H. ostrearia 

supernatant and the greening, oyster gills kept the green color for at least 3 months. 
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Figure 3-3. Effect of oyster treatments on the coloration of gills. A) Oyster fed with S. 

costatum as control; B) oyster exposed to H. ostrearia and EMn containing supernatant; C) 
oyster exposed to EMn containing supernatant; and D) oyster exposed to H. ostrearia’s cell 

only. Scale bar correspond to 1 cm. 
 

 

We observed that the greening in all treatments was time exposure dependent. This 

was confirmed by the significant relationship between greening intensity and time of 

exposure (Fig. 3-4A). A strong relationship was observed between the greening intensity 

for all treatments (B, C and D) and the time exposure (r = 0.89, 0. 90 and 0.85, 

respectively). In addition, linear regression showed that a significant relationship was 

obtained between the EMn concentration obtained by qualitative method and those are 

obtained by urea-extraction method (Fig. 3-4B). 

 



	 81	

 
 

Figure 3-4. Greening intensity in function of (A) time exposure and concentration of EMn 
obtained by urea-extraction method (B). 

 
 
 

3.3.2 Feeding experiment 

In the present study, the body mass (g DW) ranged from 0.58 to 1.03 for normal-

oyster (mean: 0.81 ± 0.19, n = 14), and from 0.62 to 1.35 for green-oyster (mean: 0.92 ± 

0.31, n = 14). Additionally, no significant difference in oyster weight was observed 

between normal- and green-oysters (F1, 14 = 2.55, p = 0.132). 
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In terms of physiological rates, CR of oysters with green gills was significantly 

reduced by 51% compared to the control after a short exposure to marennine (start of the 

experiment, day 0) (Fig. 3-5; F1, 30 = 7.45, p = 0.015). However, on a longer term, this 

initial reduction by marennine had leveled off at day 7, CR of green-gill oysters reaching 

rates similar to those observed in control (Fig. 5; F1, 30 = 3.43, p = 0.173). 

 

 

 
 

Figure 3-5. CR of oysters exposed to marennine (green) compared to control. Values are 
mean ± standard error (n= 8). 

 

 

3.3.3 Histological experiment 

 Histological analysis showed that marennine was fixed in oyster gills regardless of 

passive and active filtration by oyster. Histological cut by cryostat microtome demonstrated 

that EMn penetrated not only outside but also inside of the gills’ ordinary filament (Fig. 3-

6A, B). However, marennine appeared likely to be preferentially fixed at the mucocytes of 

ordinary filaments since higher greening intensity was observed in this region (Fig. 3-6B, 

indicated by arrow). 
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Figure 3-6. Histological observation on longitudinal section of oyster C. gigas gill that 
previously immersed in highly concentrated semi-purified EMn (A and B). A) Marennine 
penetrating the oyster gills, red rectangle indicates magnified region with higher greening 
intensity. B) Magnified gills region with marennine fixation on the mucocytes of the gill’s 

ordinary filament. fs = frontal surface; as = abfrontal surface; of = ordinary filament. 
 

3.4 Discussion 

This study addressed several points regarding the interactions between marennine 

and gills of oysters, in particular concerning the form of marennine that is preferentially 

fixed in gills, which is likely the extracellular one (EMn). This phenomenon changes with 

time of exposure, and as a consequence, can result in an increase of color intensity. 

Moreover, the capacity of EMn to fix to, and to color oyster gills appeared stronger and 

faster as compared to the IMn through the ingestion of H. ostrearia cells, and an 
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hypothetical internal transfer to gills. Indeed, a lower greening intensity was caused by IMn 

through ingestion of cells, and it appeared much slower and requires approximately 2.16 

107 cells of H. ostrearia during 3 months of experiment. Our results are in agreement with 

Pouvreau (2006) who observed the stronger ability of EMn in coloring oyster gills even 

though the pigments used in these experiments were the purified forms of EMn and IMn, 

with shorter period of experiment. Considering low ability of IMn in coloring oyster gills, 

we hypothesize that EMn mainly undergoes the greening in the natural environment. 

Although experiments were designed to specifically prevent or limit contact between gills 

and algal supernatant containing EMn, involment of EMn cannot be fully dissmissed. By 

reducing the 'feeding period', thus the time of possible exposure to EMn, however, our 

result leads to hypothesis that the pigment transfer mainly occurs by filtration of seawater 

containing EMn by the oyster. 

For this study, a method for estimating the quantity of marennine fixed on the gills 

needed to be developed, and two methods were used, one qualitative and the other 

quantitative. A significant relationship between the two methods was observed, but the 

extraction protocol of marennine from oyster gills allowed recuperating approximately 

10% of marennine given into the medium, suggesting a mechanism of strong binding of 

marennine on gills, and a quantitative method still to be improved. The long-term 

persistence of the green color on gills is likely a consequence of the strong attachment of 

marennine in gill tissue. However, it is likely that a lower concentration of marennine on 

the gills can be considered logical since marennine could also be fixed in other organs apart 

from gills (e.g. labial palps and mantle). 

Apart from the greening itself, marennine can have some impact on physiological 

traits in bivalves, for instance the CR, but its mechanism of action is poorly documented, in 

contrast with other algal molecules or toxins, for instance, for Paralyctic Shellfish Toxin 

(PST)-like produced by toxic dinoflagellates. Indeed, such decrease in CR is also observed 

with this type of toxin (Hégaret et al. 2007; Mafra et al. 2009; Navarro and Contreras 2010; 

Manfrin et al. 2012; Jauffrais et al. 2012). Marennine significantly reduced the CR of 

oyster approximately by half of CR in the control group. However, this reduction of CR on 

the short-term by marennine was followed by a recovery at day 7 after the exposure, 
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indicating that the organisms acclimate to, or 'depurate' marennine within this period of 

time. Indeed, mechanism of depuration in bivalves has been documented and it is likely 

that the rate of depuration depends on the type of chemical or biotoxin and also the species 

(Corrêa et al. 2007, 2012; Love et al. 2010; Navarro and Contreras 2010; Luna-Acosta et 

al. 2011; Medhioub et al. 2012; Phuvasate et al. 2012). For instance, Navarro and Contreras 

(2010) observed that the depuration in Mytilus chilensis exposed to the toxic dinoflagellate 

Alexandrium catenella occurred within 3 days after the exposition. On the other hand, 

recovery from the toxic Alexandrium ostenfeldii in C. gigas was complete within 7 days 

after exposure (Medhioub et al. 2012). 

        Histological study to better understand the greening mechanism in oyster is also 

little documented. In the present study, we used the frozen section technique and 

demonstrated with in toto method that marennine is fixed in oyster gill by penetration 

throughout the gill filaments. Furthermore, in toto method used in histological analysis 

suggests that pigment fixation can occurr passively without any filtration activity by the 

bivalve. Our results were in agreement with earlier histological study of the greening in 

Ostrea edulis and O. angulata, which demonstrated that marennine was mainly fixed in 

pallial organs of these two bivalves (Carazzi 1897). Furthermore, it seems that marennine 

is fixed more intensively on the mucocytes of the gills. In the heterorhabdic gills of 

pseudolamellibranchs such as C. gigas and C. virginica, mucocytes can be divided into two 

types, the acid mucopolysaccharide (AMPS) and the neutral mucopolysaccharide (NMPS) 

secretion type (Beninger and Dufour 1996; Dufour and Beninger 2001). Due to the 

leaching when using the classic histological method, it was not possible to identify in 

which type of mucocyte marennine was mainly fixed. 

        In the present study, it is likely that EMn perturbs the feeding behavior of oyster C. 

gigas in addition to coloring the gills. Recently, purified EMn has been shown to affect CR 

and scope for growth in eastern oyster C. virginica and blue mussel M. edulis (Prasetiya et 

al. 2015, submitted) suggesting that marennine can be considered as a disturbing bioactive 

compounds in oysters. Nevertheless, in public health perspective, marennine can be 

considered as unharmful substance since the green oyster has been consumed for centuries 

and no deleterious effect was reported (Gastineau et al. 2012). In addition, detrimental 
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effects of marennine could be largely compensated for by the numerous beneficial factors 

especially as the natural anti pathogens, and also by the higher market value of green 

oysters. 

 

 

3.5 Conclusion 

 The present study demonstrates that the greening of oysters occurred through the 

pigment transfer, which associated with the solubility of marennine in the medium. The 

marennine that is released by H. ostrearia can be fixed in oyster’s gills either actively by 

filtration activity or passively by direct contact with the gill. The extracellular form has 

stronger ability in coloring oyster gill. In addition, marennine-pallial organ interaction is a 

complex process and histological observation demonstrated that the mucocyte of the gills 

appeared to be the main site of fixation. This pigment fixation on the gills of oyster is likely 

to be persistent. As physiological consequence, marennine fixation on the gills significantly 

reduces the clearance rate of oyster. However, the oyster C. gigas is able to compensate for 

the effect of marennine within 7 days after exposure. It is noteworthy to test a longer and 

higher exposure of marennine to determine whether effect increase in time and type of 

pigment and whether oyster can still recover thereafter. Last but not least, the efficiency of 

marennine as a natural antipathogen agent merits further investigation to achieve the 

maximum benefit particularly in aquaculture perspective.  
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4 CHAPTER 4: CONSEQUENCES OF GREENING BY 
MARENNINE ON THE INTEGRATIVE RESPONSE OF BIVALVE 

 
 
 
SUMMARY 
 
 

The third article, entitled “Effect of marennine produced by the blue diatom Haslea 

ostrearia on behavioral, physiological and biochemical traits of Mytilus edulis and 

Crassostrea virginica”, was co-authored by myself and by Luc Comeau, Romain 

Gastineau, Priscilla Decottignies, Bruno Cognie, Michéle Morançais, François Turcotte, 

Jean-Luc Mouget and Réjean Tremblay. This article was submitted in Journal of 

Aquaculture in September 2015. As the first author, my contribution to this article was the 

execution of experiments, laboratory and data analysis as well as writing for the manuscript 

preparation. Jean-Luc Mouget, Réjean Tremblay, and Bruno Cognie provided the original 

idea and assisted in the method development. All of the co-authors participated in this 

work. Results of this work was presented as oral presentation in both International 

Conference of Physiomar 2014 in La Serena, Chile, 3 to 6 November 2014, and the 

International Elsevier Conference of Aquaculture 2015: Cutting edge science in 

aquaculture, in Montpellier, France, 23-26 August 2015. 
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Abstract 

 
Haslea ostrearia is a marine diatom that synthesizes and releases marennine, a water-

soluble blue-green pigment responsible for the greening of the gills and labial palps of 

bivalves. The present study evaluated the effect of different marennine concentrations (0, 

0.5, 1.0 and 2.0 mg L-1) on the behavior (valve opening), physiology (clearance rates, 

oxygen consumption, assimilation efficiency and scope for growth) and biochemistry (fatty 
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acid composition of neutral and polar lipids) of two commercially important bivalves, the 

blue mussel Mytilus edulis and the eastern oyster Crassostrea virginica. Under short-term 

(<1 day) exposure, the concentration of marennine found on the gills of both species was 

positively correlated to the concentration of dissolved marennine in the water medium.  

However, a behavioral response was detected at the higher marennine concentration (2.0 

mg L-1) and both species displayed curtailed valve opening compared to control groups. 

Under longer-term (8 weeks) exposure, marennine (at 2 mg L-1) significantly decreased 

scope for growth by 58% and 85% (ANOVA; F3, 31 = 3.39, p = 0.034 and F3, 31 = 3.08, p = 

0.044) for M. edulis and C. virginica respectively. The greening process had an effect on 

total fatty acids contained in the digestive gland of mussels only, suggesting that marennine 

interferes with the accumulation of energy reserves in this bivalve. In the polar lipids of the 

gills, greening increased the concentration of unsaturated fatty acids in the gills of C. 

virginica but not M. edulis, suggesting for oyster a possible regulatory mechanism 

counteracting marennine effect.  

Keywords: Crassostrea virginica, fatty acid composition, Haslea ostrearia, marennine, 
Mytilus edulis, scope for growth, valve activity  
 

4.1 Introduction 

Molluscan bivalves acquire food and oxygen by filtering water across their gills. 

Water movement inside the shell is ensured by gill ciliary motion, triggered by an active 

mechanism responding to the presence of a dissolved chemical or particulate matter in 

water. The most visible behavior associated to filtration or ventilation is the opening of the 

valves, whereas the closing of valves may signal satiation (Morton, 1973; Bayne, 1998; 

Cranford, 2001) or protection of soft tissues (Ait Ayad et al., 2011; Ait Fdil et al., 2006; 

Gainey and Shumway, 1988; Hégaret et al., 2007; Katticaran and Salih, 1992).  For 

example, previous work has shown that toxic microalgae producing the paralytic shellfish 

toxin (PST) can alter bivalve behavior, physiology, and cellular activity (Bricelj et al., 

2005). Toxic dinoflagellates in particular can result in valve closure and lowered filtration 

rate, oxygen consumption, absorption efficiency and Scope for Growth (SFG) (Bardouil et 
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al., 1993; Bricelj et al., 1996; Hégaret et al., 2011,2007; Navarro and Contreras, 2010). 

However, little attention has been given to the effects of non-toxic organic compounds on 

bivalves. Moreover, the few studies on this topic focus exclusively on non-PST compounds 

produced by dinoflagellates and the effect that these compounds have on bivalve 

hemocytes (Ford et al., 2008; Hégaret and Wikfors, 2005).    

The aim of the present study was to assess whether a non-PST compound can affect 

behavioral, physiological and biochemical traits of bivalves. Specifically, the study focuses 

on the effects of marennine, a water-soluble blue pigment that is excreted by the non-toxic 

pennate diatom Haslea ostrearia (Gaillon) Simonsen. Marennine binds preferentially to the 

gills and labial palps of bivalves (Robert, 1975) and is responsible for the greening of 

Pacific oysters Crassostrea gigas. This natural phenomenon, which occurs erratically in 

oyster ponds on the French Atlantic Coast, increases the economic value of cultured oysters 

due to the organoleptic modification in green oysters. Moreover, marennine has 

antibacterial and antiviral properties and therefore acts as a natural protective agent against 

pathogens (Gastineau et al., 2014, 2012a, 2012b; Pouvreau et al., 2008, 2007). 

Interestingly, several species from the same genus Haslea produce “marennine-like” 

pigments in other parts of the world (Gastineau et al., 2014, 2012a). Hence, there are 

potential worldwide applications of marennine in shellfish aquaculture.  

With respect to response variables, our study focused on valve movement, scope for 

growth (SFG) and the buildup of energy reserves. SFG represents the energy absorbed 

during feeding subtracted by the energy lost through respiration and excretion (Gilek et al., 

1992; Widdows and Johnson, 1988). SFG is sensitive to environmental stressor such as 

salinity, temperature and toxic substances (Navarro and Contreras, 2010; Pernet et al., 

2008, 2007; Widdows and Johnson, 1988; Widdows et al., 2002). Regarding energy, 

ectotherm animals such as bivalves have the capacity to remodel their lipid membranes to 

maintain fluidity in response to temperature or environmental changes (Hulbert and Else, 

1999; Hulbert, 2007; Pernet et al., 2007; Parent et al., 2008; Parrish, 2013). Recent works 

(Parent et al., 2008; Parrish, 2013; Pernet et al., 2008, 2007) suggest that the fatty acid 

composition of neutral (NL) and polar (PL) lipids is indicative of acclimation. In particular 

NL represent energetic reserves that support metabolism and growth of organisms, while 
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PL constitute membrane structure where its fluidity may change due to the enlargement or 

reduction in unsaturated fatty acid content (Bergé and Barnathan, 2005; Fokina et al., 2015, 

2014). Responses to marennine were investigated using two commercially important 

bivalves, the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. First, 

we tested the hypothesis that dissolved extracellular marennine affects the valve opening of 

bivalves. We then examined whether greened oysters had different physiological (clearance 

rates, oxygen consumption, assimilation efficiency and scope for growth) and biochemical 

characteristics (tissues fatty acids composition). We predicted that responses would be 

marennine dose-dependent. 

 

4.2 Materials and methods 

4.2.1 Animals and diet preparation 

Juveniles (aquaculture spat) of mussels (M. edulis) and oysters (C. virginica) were 

obtained from shellfish aquaculture leases in Prince Edwards Island, Canada (46°25.963 N; 

62°39.914 W). Water temperature at the time of collection (end of August 2014) was 16°C 

and salinity was 29 ppt. Animals were immediately transported to the Station Aquicole de 

Pointe-aux-Pères (Institut des Sciences de la Mer, Rimouski, Canada). Upon arrival, 128 

individuals of both species (mean shell length = 28.8 ± 0.7 mm for mussels and 25.9 ± 0.9 

mm for oysters) were numbered with bee tags and acclimated to laboratory conditions for 

30 days prior to starting the experiment. The two species were equally distributed in two 

300 L maintenance tanks with light aeration, salinity of 29 ppt, temperature of 16°C and 

natural photoperiod. Animals were continuously fed with Pavlova lutheri, Tisochrysis lutea 

and Chaetoceros muelleri at 1:1:1 equivalent volume and a daily ration of 40 cells µL. 

Algae were sampled two times during the experiment for fatty acid analysis (Table 4-1). 
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Table 4-1. Fatty acid composition of microalgal species used in the diet for mussels and 
oysters. Values are mean ± standard srror. 

Variable Chaetoceros gracilis  

(CHGRA) 
Tisochrysis lutea 

(TISO) 
Pavlova lutheri 

(PLUTH) 

Fatty acid composition (mol %)    
14:0 0.00 ± 0.00 15.74 ± 0.96 9.93 ± 0.48 
15:0 0.82 ± 0.07 0.58 ± 0.02 0.45 ± 0.01 
16:0 29.37 ± 1.31 18.63 ± 0.32 19.87 ± 0.40 
17:0 0.25 ± 0.02 0.59 ± 0.05 0.44 ± 0.02 

18:0 2.02 ± 0.02 2.86 ± 0.18 2.71 ± 0.10 
20:0 0.14 ± 0.00 0.87 ± 0.17 0.59 ± 0.04 
21:0 0.00 ± 0.00 0.28 ± 0.27 0.28 ± 0.27 
22:0 0.21 ± 0.01 1.60 ± 0.38 0.96 ± 0.07 
24:0 0.17 ± 0.07 1.26 ± 0.28 0.49 ± 0.48 
    
Σ SFA 33.11 ± 1.42 42.40 ± 0.81 35.71 ± 0.12 
14:1 0.07 ± 0.00 0.54 ± 0.09 0.00 ± 0.00 
16:1 29.81 ± 0.35 7.19 ± 0.89 20.21 ± 0.40 
17:1 0.00 ± 0.00 0.81 ± 0.05 0.00 ± 0.00 

18:1 n-9c 2.69 ± 0.27 12.60 ± 0.06 2.31 ± 0.16 
18:1 n-9t 2.40 ± 0.28 0.00 ± 0.00 0.00 ± 0.00 
18:1 n-7 0.03 ± 0.00 3.08 ± 0.04 2.94 ± 0.03 
20:1 0.22 ± 0.01 0.82 ± 0.14 0.64 ± 0.02 
22:1 n-9 0.08 ± 0.00 0.76 ± 0.13 0.51 ± 0.03 
22:1 n-11 0.02 ± 0.00 0.77 ± 0.14 0.53 ± 0.04 
24:1 0.15 ± 0.00 0.55 ± 0.10 0.43 ± 0.02 
    
Σ MUFA 35.48 ± 0.19 27.14 ± 0.33 27.56 ± 0.41 
18:3 n-3 0.53 ± 0.05 3.93 ± 0.21 1.14 ± 0.01 

18:3 n-6 2.72 ± 0.15 1.57 ± 0.09 0.55 ± 0.50 
18:4 n-3 3.01 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 
18:2 n-6c 2.50 ± 0.09 2.47 ± 2.40 1.16 ± 0.04 
18:2 n-6t 0.48 ± 0.05 1.04 ± 0.34 0.61 ± 0.05 
20:4 n-6 5.84 ± 0.07 0.93 ± 0.09 0.90 ± 0.02 
20:5 n-3 9.67 ± 0.30 4.51 ± 0.41 20.36 ± 0.48 
20:3 n-6 0.67 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 
20:3 n-3 0.11 ± 0.01 0.80 ± 0.16 0.00 ± 0.00 
20:2 0.13 ± 0.02 0.71 ± 0.15 0.60 ± 0.03 
22:6 n-3 4.34 ± 0.31 12.77 ± 1.53 9.92 ± 0.05 

22:2 0.15 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 
22:5 n-3 1.27 ± 0.01 1.72 ± 0.03 1.49 ± 0.02 
    
Σ PUFA 31.41 ± 1.23 30.46 ± 1.15 36.72 ± 0.28 
Total fatty acids (µg g-1) 185.11 ± 15.70 36.56 ± 10.75 34.40 ± 5.42 
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4.2.2 Marennine extraction and purification 

H. ostrearia was produced in 100 L photobioreactors as described in Gastineau et 

al. (2014) and extracellular marennine was extracted and purified as described in Pouvreau 

et al. (2006). Briefly, 1 µm-filtered culture supernatant of H. ostrearia was passed through 

a two-step ultrafiltration process (30 and 3 kDa) with cartridges fitted with regenerated 

cellulose spiral membranes (Prep/Scale Spiral Wound TFF-6 0.54 m2 Emd Millipore). At 

the end of filtration, the retentate was collected and the pigment was then separated by 

anion-exchange chromatography on a 100 mL column of DEAE sepharose fast flow media 

using an ÄKTAFPLC system and a XK50 column (GE Lifesciences). Finally, the EMn 

collected was then dialyzed, freeze-dried and stored in the dark at -20°C until use. 

 

 

4.2.3 Behavioral response to marennine 

 Valve opening was closely monitored during a short-term (17.5h) exposure to 

marennine. The experiment simultaneously tested four marennine concentrations (0, 0.5, 

1.0 and 2.0 mg L-1) and included 8 individuals per species per concentration. The holding 

chambers were cylindrical forms of jars containing 1 L of filtered seawater corresponding 

to different concentrations of marennine. Valve measurement was started following the 

transfer of animals into the jars. Valve opening was measured using a valvometry system 

described in (Comeau et al., 2012). A coated Hall element sensor (HW-300a, Asahi Kasei, 

Japan) was attached to one of the valve at the maximum distance from the hinge. A small 

magnet (4.8 mm diameter x 0.8 mm height) was then attached to the other valve, right 

below the Hall sensor. The magnet weight was 0.1 g, while the Hall element was 0.5 g. The 

magnetic field (flux density) between the sensor and magnet was a function of the gap 

between the two valves. The magnetic field in the form of output voltage (µV) was 

acquired by strain recording devices (DC 104R, Tokyo Sokki Kenkyujo Co., Japan). 

Voltage measurements were recorded once every minute. At the end of the experiment, 

voltage values were converted into absolute valve openings by applying conversion 

algorithms specific to each sensor assembly. Precisely, the adductor muscle was severed, 
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and small calibration wedges were manoeuvred between the two valves at the point farthest 

from the hinge. Wedge height was 1−6 mm. The relationship between voltage and valve 

opening in mm were non-linear and strong. To control for the influence of animal size, 

valve opening data were converted from millimetres to angles (θ in degrees) using the 

following equation (Wilson et al., 2005): 

 

θ = 2 arcsin (0.5 W/ SH)  

 

Where W is the valve opening (mm) and SH (mm) is the mussel or oyster shell height. 

Additionally, the proportion of time the valves of the animals were open in the study 

population was calculated on an hour-per-hour basis and was expressed as valve open (%): 

 

Valve open (%) =  (nvalve opening / ntotal recording time) X 100 

  

Where nvalve opening is the total number of individuals with valves open during a 1-h period of 

measurement and ntotal recording time is the total number of individuals. A value of 100% means 

that the valves of all individuals were open during the 1-h period of measurement and 0% 

means that no individuals had their valves open during this time. Results were compiled 

separately for two consecutive 6-h phases, an acclimation phase (0−6 h) and a post-

acclimation (6−12 h) phase.  

 

At the end of the behavioral response experiment, individuals were measured for shell 

height, weighed and dissected.  Gills were sampled and preserved at -80°C until 

biochemical analyses. 

 

 

4.2.4 Physiological and biochemical response to marennine 

Eight individuals from each species were held in water containing either 0 (control), 

0.5, 1.0 or 2.0 mg of marennine per liter of water (i.e., 8 individuals × 4 marennine 
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concentrations = 32 individuals per species). Following the 16-h treatment period, all 

individuals were transferred into maintenance tanks for 8 weeks, after which time 

physiological measurement were realized (see 2.4.1). Individuals were ultimately sacrificed 

and the total wet mass of tissue was estimated. The digestive gland and gills were isolated.  

Gills were divided into two sections, one for the measurement of marennine concentration 

(see 2.4.2) and the other for the lipid analysis (see 2.4.3). Tissues were preserved at -80°C 

until biochemical analyses. 

 

4.2.4.1 Physiological measurements 
 

 Physiological measurements were conducted over 5 days on individuals randomly 

sampled from the maintenance tanks. Ten chambers filled with 1 µm-filtered and UV 

treated seawater were used simultaneously, which allowed measuring eight animals and 

two controls (empty shell). Animals that remained closed in the chamber were excluded 

from physiological analysis. Physiological rates were converted to mass-specific rates 

equivalent to animals of 1·g dry mass using weight exponents (Pernet et al. 2007). 

 Clearance rate (CR), defined as the volume of water cleared of suspended particles 

per unit time, was measured using a static system (Pernet et al., 2008, 2007). Animals were 

placed in 1.3 L metabolic chambers for 1 h before measurements started, then provided 

with Tisochrysis lutea at an initial concentration of 40 cells µL-1. Mixing was promoted by 

fine bubble aeration around the wall of the metabolic chamber to minimize the 

resuspension of feces. Food particles were counted every 15 min during 60 min of 

measurement using an electronic particle counter (Beckman Coulter Counter Z2, 

Mississauga, ON, Canada). The instrument was fitted with a 100-µm aperture tube and was 

set to measure particles in the size range of 5–19 µm which are known to be efficiently 

retained by mussels and oysters (Ward and Shumway, 2004). The greatest difference 

between two consecutive measurements was used to calculate CR as described in Gilek et 

al. (1992). CR (L h-1) was then used in conjunction with the algal biomass (mg mL-1) to 

estimate the amount of ingested energy, assuming that the energy content of the diet was 

23.5 J mg-1 (Widdows and Johnson, 1988).  
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Oxygen consumption was determined by individually placing the same individuals 

above in 0.85 L metabolic chambers. The water within these chambers was continually 

mixed using magnetic stirrers and animals were acclimated for 60 min prior to 

measurements. The rate of oxygen uptake was determined by sealing the metabolic 

chambers and measuring the decrease in dissolved oxygen using a YSI (5331) 

polarographic electrode coupled to a YSI micro-oxymeter (Yellow Springs, OH, USA). 

The output signal was monitored continuously on a chart recorder until there was a 20% 

decrease in oxygen saturation. Respiration was then expressed as ml O2 g-1 tissue wet 

weight h-1 and then converted into energy equivalents using the conversion factor 1 ml O2 = 

20.33 J (Widdows and Johnson, 1988). 

Following oxygen uptake measurements, all animals were transported individually 

into 1 L buckets that were placed into the maintenance tank and continuously fed with 

Tisochrysis lutea at 40 cells µL. After 24 h, feces from each individual were collected using 

a pipette. Assimilation, defined as the product of ingested energy and absorption efficiency 

(Widdows and Johnson, 1988), was estimated from the Conover ratio (Conover, 1966). 

Thus, food and faecal samples were filtered onto pre-combusted pre-weighed 25 mm GF/F 

filters, rinsed with isotonic ammonium formate (3.2%), dried at 70°C for 24 h, cooled to 

room temperature in a desiccator, and then re-weighed. Afterwards, filters were combusted 

for 4 h at 450°C, cooled to room temperature in a desiccator, and finally re-weighed. This 

procedure provided estimates of the organic and inorganic fractions contained in the food 

and faeces.  

Scope for growth (SFG), or the energy available for growth, provides a quantitative 

assessment of the energy status of the bivalves as well as insight into individual 

physiological parameters that affect changes in growth rate (Widdows and Johnson, 1988). 

SFG was estimated by subtracting the energy lost through respiration and excretion from 

the energy obtained by food assimilation (Widdows and Johnson 1988).  
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4.2.4.2 Estimation of marennine concentration in the gills 
 
 Frozen gills were defrosted on ice, blotted on absorbent paper and the wet mass 

determined. Marennine in the gills was extracted using urea (CO(NH2)2) 8M after 

grounding with an Ultraturax tissue tearor (BIOSPEC, Inc) at maximum speed in a 15 mL 

Falcon tube. Ground tissue with urea was then centrifuged at 7800 rpm for 10 min and the 

absorbance of the supernatant measured by UV-visible spectrophotometry (UV-6300 PC 

double beam, VWR). The concentration of marennine, C (mg L-1), was calculated 

according to the following formula:  

 

    [C]  =        

 

Where Aλmax is the maximum absorbance at the peak of wavelength in the red region (674 

nm), ελmax is the specific extinction coefficient at the maximum wavelength, and l is the 

cuvette path length (Robert et al. 2002). Marennine concentration fixed in the gills was 

obtained by removing the absorbance of gill tissue from the control using a calibration 

curve. 

 

4.2.4.3 Lipid analysis 
 

Lipid analysis was performed on 100 mg wet mass of gill or digestive gland from 

mussels and oysters that were exposed to 0 and 2 mg L-1 of marennine and also on 

triplicate samples of 5 mL of each microalgae species culture used to feed the animals. 

Microalgae were filtered on pre-combusted 25 mm GF/F filters and second triplicates were 

sampled for dry mass determination. All lipid samples were stored in lipid-free amber glass 

vials with TeflonTM-lined caps under nitrogen in 1 mL dichloromethane at -80°C until lipid 

analyses. Lipids were extracted according to Folch et al. (1957). For bivalve samples, 

extracts were separated into neutral lipids (including triglycerides and sterols) and polar 

lipids (including mainly phospholipids) on silica gel hydrated with 6% water (Marty et al., 

1992; Pernet et al., 2008, 2007). No neutral and polar fraction separation were applied for 

microalgae used as bivalve diet. Only the neutral fraction of digestive gland and the polar 

A λmax 
ɛ λmax x l 
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fraction of gills were analyzed. The internal standard, 19:0 was added and fatty acid methyl 

esters (FAME) were prepared using 2% H2SO4 in methanol (Lepage and Roy, 1984). The 

neutral fraction was purified on an activated silica gel with 1 mL of hexane:ethyl acetate 

(v/v) to eliminate free sterols. FA composition was analyzed in the full scan mode (ionic 

range: 50–650 m/z) on a Polaris Q ion trap coupled to a multichannel gas chromatograph 

Trace GC ultra (Thermo Scientific) equipped with an autosampler model Triplus, a PTV 

injector and a mass detector model ITQ900 (Thermo Scientific). The separation was 

performed with an Omegawax 250 (Supelco) capillary column with high purity helium as a 

carrier gas. Data were treated using Xcalibur v.2.1 software (Thermo Scientific). FAME 

were identified and quantified using known standards (Supelco 37 Component FAME Mix 

and menhaden oil; Supleco), and were further confirmed by mass spectrometry (Xcalibur 

v.2.1 software).  

 

 

4.2.5 Statistical analyses 

 Analyses of variance (ANOVA) were realized using JMP Pro 11. Normality and 

homoscedasticity were tested by Kolmogorov-Smirnov and Levene test, respectively. One-

way ANOVAs were performed to determine differences in valve opening and 

physiological rates between different groups of marennine exposition. Where differences 

were detected, Tukey-HSD multiple comparison tests were used to determine which means 

were significantly different. 

 Multivariate analyses on total FA composition were conducted using permutational 

multivariate analysis of variance (PERMANOVA) using PRIMER version 6.1.15 with 

PERMANOVA+ (Anderson et al., 2005) based on Bray-Curtis dissimilarities with two 

sources of variation: marennine concentration and species of bivalves. Homogeneity was 

evaluated using the permutation analysis of multivariate dispersion (PERMDISP) routine. 

When a PERMANOVA was significant, pair-wise multiple comparison tests were used. 

Variations in percentage of FA composition were visualized using non-metric 

multidimensional scaling (nMDS) ordination based on dissimilarities between samples 
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after standardization of data. Similarity of percentage (SIMPER) analysis was performed 

on untransformed data to identify FAs that contributed the most dissimilarity between 

treatments. Afterwards, these FA were further analyzed by t-test for the two treatment 

groups. Similar statistical treatments were also applied to compare sum of saturated fatty 

acids (SFAs), mono-unsaturated fatty acids (MUFAs), poly-unsaturated fatty acids 

(PUFAs), essential fatty acids (EFAs) and the unsaturation index (UI) in the polar lipids. 

4.3 Results 

4.3.1 Behavioural responses to marennine 

The valve gaping activity of control individuals were carefully inspected to gauge 

acclimation in holding chambers.  Acclimation was arbitrary set at 6 hours based on the 

frequency/amplitude of micro-closures, i.e., shell closures of a relatively short duration.  

For instance, Fig. 4-1A shows the micro-closures displayed by a control mussel.  Micro-

closures were frequent (~ 15 times h-1) within the first 2.5 hrs but then gradually decreased 

after 4.5 hrs (< 10 times h-1); in the post-acclimation phase (Fig. 4-1B), micro-closures 

were not as frequent (< 5 times h-1). Similarly, in oysters, micro-closure amplitude 

generally declined sharply after 2.5 hrs and remained stable thereafter (Fig. 4-1C, D). 

 It was found that mussels initially responded to marennine (Fig. 4-2A, C; F3, 31 = 

4.68, p = 0.010). Specifically, during the acclimation phase, the highest marennine 

concentration (2.0 mg L-1) curtailed significantly absolute valve gaping by 44% on average 

(Tukey: p = 0.011). Similarly, during the acclimation phase, the same marennine 

concentration sometimes resulted in complete valve closures. The proportion of the 

population with opened valves fell significantly from 100% (control) to 95% (marennine 

2.0 mg L-1) (Tukey: p = 0.028). These effects of marennine on mussel behavior were no 

longer present in the post-acclimation phase (p >0.3) (Fig. 4-2E, G).	

In oysters, marennine had a delayed effect on behavior. During the acclimation 

phase no significant effect of marennine was observed, both in terms of valve opening (Fig. 

4-2B, F3, 31 = 2.37, p = 0.089) and percent of the population with opened valves  (Fig. 4-
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2D, F3, 31 = 1.29, p = 0.296). However, significant differences were detected during post-

acclimation (Fig. 4-2F, F3, 31 = 4.87, p = 0.009 and Fig. 4-2H, F3, 31 = 3.14, p = 0.039). 

Marennine at higher concentration (2 mg L-1) reduced 62% of valve gaping (Tukey-HSD, p 

= 0.006). Furthermore, the proportion of the population with open valves also fell 

significantly from 100% (control) to 41% (marennine 2.0 mg L-1) (Tukey: p = 0.002). 

As expected a positive correlation was found between the concentration of 

marennine in the water and the concentration of marennine measured in the gill tissues of 

mussels (ρ = 0.71, p = 0.0001) and oysters (ρ = 0.44, p = 0.025) (Fig. 4-3A). Surprisingly 

valve opening in both mussels and oysters was negatively correlated with marennine 

concentration in the gill (ρ = -0.57, p = 0.001 and ρ = -0.43, p = 0.021, respectively) (Fig. 

4-3B). 

 

 

Figure 4-1. Valve movements recorded for M. edulis (A,B) and C. virginica (C,D) in 
acclimation (A,C) and post-acclimation phase (B,D) under control condition. Shell valve 
movement data obtained from a single animal as an example of a typical set of results. 
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Figure 4-2. Mean of valve gaping (°) and percentage of time valve open (%) of M. edulis 

(A,C,E,G) and C. virginica (B,D,F,H) in different time frame of experiment and under 
different concentration of marennine exposure.  Values are mean ± standard error. Error 
bars represent the 95% confidence interval of the mean. Error bars with different lower 

case letters are significantly different. 
  

0.0 0.5 1.0 2.0
0

5

10

15
M. edulis_0-6h

a,b
a a

b

A

V
al

ve
 o

pe
ni

ng
 (

°)

0.0 0.5 1.0 2.0
0

20

40

60

80

100

M. edulis_0-6h

a a a a

a a a
b

C

V
al

ve
 o

pe
n 

(%
)

0 0.5 1.0 2.0
0

5

10

15
M. edulis_°6-12h

a
a

a

a

E

V
al

ve
 o

pe
ni

ng
 (

°)

0 0.5 1.0 2.0
0

20

40

60

80

100

M. edulis_%6-12h

a a a a

G a a a a

[EMn] (mg L-1)

V
al

ve
 o

pe
n 

(%
)

0.0 0.5 1.0 2.0
0

1

2

3

4

5 C. virginica_0-6h 

a

a

a

a

B

0.0 0.5 1.0 2.0
0

20

40

60

80

100 C. virginica_0-6h 
a

a

a

a

D

0 0.5 1.0 2.0
0

2

4

6

8 C. virginica_6-12h 

a

a,b

a,b

b

F

0 0.5 1.0 2.0
0

20

40

60

80

100
C. virginica_%6-12h 

a
a,b

b,c
b,c

H

[EMn] (mg L-1)

M. edulis C. virginica



	 105	

 

Figure 4-3. Pooled marennine concentration that fixed on the gills of animals as function 
of marennine concentration on the medium and valve gaping. Coefficient Spearman 

correlation for mussel and oyster for A were ρ = 0.71 and ρ = 0.44, respectively. Whereas 
for B were ρ = -0.57 and ρ = -0.43 for mussel and oyster, respectively. 

 

 

 

4.3.2 Physiological responses to marennine 

In oysters oxygen consumption was significantly affected by marennine (F3, 31 = 

2.42, p = 0.029). Oysters exposed to 2 mg L-1 displayed 31.8% lower oxygen uptake 

comparatively to those in the control group (Tukey; p = 0.023) (Fig. 4-4B). In mussels 

however no significant effect of marennine on oxygen consumption was observed (p > 

0.05). 

 Marennine significantly affected CR in mussels and oysters (Fig. 4-4C, D; F3, 31 = 

3.22, p = 0.041; F3, 31 = 1.22, p = 0.029, respectively). Posthoc analysis demonstrated that  

marennine at 2 mg L-1 lowered CR of mussels by 56% on average compared to the control 

group (Fig. 4-4C, Tukey; p = 0.026). On the other hand, oyster with 2 mg L-1 of marennine 

cleared less particles per unit of time compared to the control group (Fig. 4-4D, Tukey; p = 

0.031).  

Marennine had no detectable effect on food absorption rates (Fig. 4-4E,F). 

Nevertheless, it seems that marennine negatively impacted energy available for growth or 

the SFG. Marennine significantly affects mussel and oyster’s SFG (Fig. 4-4G, H; F3, 31 = 

3.39, p = 0.034 and F3, 31 = 3.08, p = 0.044, respectively). Mussels and oysters exposed to 2 

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.05

0.10

0.15

0.20 C. virginica 

M. edulis

R2 = 0.661

R2 = 0.797

A

EMn (mg L-1)

E
M

n
  
g
-1

 w
e
t 
w

e
ig

h
t

0 5 10 15
0.00

0.05

0.10

0.15

0.20
C. virginica 

M. edulis

R2= 0.166

R2= -0.793

B

Valve opening (°)



	 106	

mg L-1 of marennine had 58 and 85% lower SFG compared to the control group (Tukey; p 

= 0.023 and p = 0.044). These outcomes were presumably related to energy intake, given 

positive correlations between SFG and CR (Pearson correlation; r = 0.997 and r = 0.988 for 

mussel and oyster, respectively). A negative correlation was observed between the SFG 

and the concentration of EMn that was fixed on the gills, but it was only significant in 

oysters (r = -0.629). 
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Figure 4-4. Physiological rates of M. edulis (A,C,E,G) and  C. virginica (B,D,F,H) 
exposed to different concentration of marennine exposure.  Values are mean ± standard 

error. Error bars represent the 95 % confidence interval of the mean. Error bars with 
different lower case letters are significantly different. 
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4.3.3 Biochemical responses to marennine 

4.3.3.1 Fatty acids composition of digestive gland neutral lipids 
 

FAs in neutral lipids (NL) in the digestive glands were measured to evaluate the 

effect of marennine on energetic reserves accumulation. After 8 weeks of exposure to 

marennine, it was found that the FA composition of the NL in the digestive glands of both 

species differed significantly between marennine exposed and control groups (Table 4-2, 

P(perm) = 0.031 and P(perm) = 0.009 for mussel and oyster, respectively). SIMPER analysis 

showed that the 18:3 n-6 and 20:5 n-3 contents explained most of the FA composition 

differences in both species. An effect of marennine on total FAs concentration accumulated 

in the digestive glands was detected in mussels only.  Specifically, total FAs concentrations 

in NL were significantly lower in mussels exposed to marennine compared to a control 

group (t-test; p = 0.014). Decreasing total FAs concentration in NL of digestive glands 

were correlated to decreasing CR in mussels exposed to marennine (r = 0.54, p = 0.046). 

Moreover, the decrease in CR seemed to be observed for all microalgae species in the diet, 

as no difference in fatty acid profiles was observed in the NL of digestive glands between 

the marennine exposed and the control group of mussels. However, there was no 

significant difference (p > 0.05) in total FAs in the NL of oyster’s digestive glands even 

though the CR was significantly affected by the marennine treatment. 
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Table 4-2. Characteristics of the fatty acids of the neutral lipids (NL, energetic reserves) of 
digestive glands (DG) and the polar lipids (PL, membrane composition) of gills of mussels 
Mytilus edulis and Crassostrea virginica in both control (0) and after 8 weeks (8) exposure 

to marennine. Values are mean ± standard error.  

Variable Mussel Oyster 
DG (NL) Gills (PL) DG (NL) Gills (PL) 

0 8 0 8 0 8 0 8 
12:0 0.59±0.5 0.50±0.4 0.00±0.0 0.25±0.2 1.22±1.1 0.00±0.0 1.70±1.2 0.61±0.4 
14:0 7.60±1.3 6.49±2.3 3.02±0.9 2.95±0.4 13.0±1.0 8.93±0.7 7.36±0.8 3.09±0.2 
15:0 0.66±0.2 0.00±0.0 0.48±0.2 0.33±0.2 0.00±0.0 0.74±0.4 0.00±0.0 0.24±0.2 
16:0 10.4±1.5 5.93±0.6 3.85±1.0 3.85±0.4 10.13±0.9 12.43±1.2 4.38±0.6 3.94±0.2 
17:0 1.05±0.3 0.35±0.3 1.83±0.4 1.51±0.1 0.82±0.5 2.55±0.5 3.44±0.3 1.73±0.1 
18:0 1.75±0.1 1.77±0.4 2.03±0.4 2.66±0.1 1.86±0.2 2.06±0.1 3.61±0.4 2.81±0.1 
20:0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
21:0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
22:0 0.34±0.1 2.83±1.4 0.13±0.0 0.15±0.0 0.66±0.2 0.30±0.1 0.06±0.0 0.07±0.0 
23:0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
24:0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
         
ΣSFA 22.44±1.8 17.9±2.5 11.34±0.6 11.70±0.5 27.73±0.4 27.01±0.4 20.56±0.4 12.49±0.1 
14:1 0.14±0.10 0.00±0.0 0.28±0.2 0.00±0.0 0.00±0.0 0.00±0.0 0.55±0.4 0.27±0.2 
15:1 0.20±0.1 0.00±0.0 0.77±0.6 2.51±1.2 0.00±0.0 0.00±0.0 1.61±1.1 0.64±0.5 
16:1 13.11±1.1 9.11±2.6 4.81±0.8 4.42±0.3 11.39±0.7 8.63±0.5 4.18±1.1 4.36±0.1 
17:1 3.59±1.1 6.46±1.9 31.83±2.3 30.55±1.5 6.00±1.5 5.25±1.1 22.03±0.6 24.22±1.9 
18:1 n-9 4.83±1.0 1.77±0.6 1.23±0.3 0.75±0.2 6.38±0.7 9.04±0.7 0.50±0.2 1.24±0.1 
20:1 n-9 4.23±0.7 2.84±1.8 7.99±1.5 9.94±0.4 0.00±0.0 2.08±0.9 6.66±0.2 4.37±0.1 
22:1 n-9 0.00±0.0 0.92±0.8 0.00±0.0 0.00±0.0 0.00±0.0 1.22±0.8 0.00±0.0 0.21±0.2 
24:1 n-9 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
         
ΣMUFA 26.09±1.6 21.1±1.7 46.9±1.3 48.2±1.3 23.76±0.5 26.22±0.5 35.52±0.9 35.31±0.8 
18:2 n-6 5.16±1.2 3.11±1.8 2.97±1.2 5.01±0.5 1.26±1.1 2.48±1.2 0.00±0.0 3.35±0.9 
18:3 n-3 1.75±0.7 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.32±0.3 0.00±0.0 0.00±0.0 
18:3 n-6 6.88±2.9 22.4±8.6 8.11±3.1 4.95±0.5 16.04±3.1 7.38±1.3 14.05±2.0 5.47±0.7 
18:4 n-3 3.73±0.6 1.58±0.9 3.72±0.7 3.25±0.3 2.97±1.4 3.91±0.9 0.89±0.6 2.99±0.1 
20:2 0.79±0.3 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
20:3 n-3 0.51±0.5 0.00±0.0 2.52±1.7 8.70±1.8 0.00±0.0 0.00±0.0 3.33±2.3 11.91±0.4 
20:3 n-6 0.30±0.2 0.00±0.0 0.88±0.4 1.16±0.4 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 
20:4 n-6 2.75±0.7 6.59±1.8 0.00±0.0 0.00±0.0 3.36±1.1 2.95±0.9 0.00±0.0 2.77±1.8 
20:5 n-3 15.04±1.9 14.2±3.0 7.97±1.3 7.39±0.4 12.79±2.0 13.77±0.4 11.41±0.4 9.59±0.3 
22:6 n-3 14.57±1.3 12.5±2.5 14.97±1.9 9.68±0.5 12.08±1.9 15.33±1.0 14.24±0.8 15.42±0.7 
22:2 0.00±0.0 0.57±0.4 0.62±0.4 0.00±0.0 0.00±0.0 0.63±0.6 0.00±0.0 0.30±0.2 
         
ΣPUFA 51.47±2.1 61.0±3.7 41.75±0.6 40.14±0.4 48.50±0.7 46.77±0.6 43.93±0.9 51.80±0.6 
         
ΣEFA 29.6±3.2 27.3±5.9 23.56±3.7 17.07±0.9 24.87±4.2 29.73±2.1 25.65±1.2 25.31±1.3 
         
Unsaturation 
index 

254.8±7.0 273.7±15 233.1±10 210.6±4.5 236.2±13 242.6±5.4 233.7±6.3 258.42±5.9 
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4.3.3.2 Fatty acids composition of gill polar lipids 
 

The unsaturation index, which is the number of double bonds per 100 molecules of 

FAs, was compared the FA composition in the lipid polar fraction (PL) of gills to 

determine the potential effect of marennine exposure. An increase of the unsaturation index 

in the marennine exposed group was observed but only in oyster’s gills (two sample t-test; 

p = 0.017) (Fig. 4-5B). Pairwise correlation was performed using groups of FAs as 

explanatory variables and the unsaturation index as the response variable. We observed that 

the unsaturation index of PL was variably correlated with PUFA in oyster’s and mussel’s 

gills (r = 0.936, p < 0.001 and r = 0.355, p = 0.003, respectively). In polar lipids of oyster’s 

gills, both the 18:2 n-6, 20:3 n-3 and 22:6 n-3 were positively correlated (r = 0.598, 0.674 

and 0.576, respectively) with the unsaturation index, whereas the 18:3 n-6 was negatively 

correlated (r = -0.622) with the same index.  

A significant difference in FAs composition of PL was observed between control 

and the marennine exposed group in both mussel’s and oyster’s gills (p = 0.003 and p = 

0.005, for mussel and oyster, respectively). SIMPER analysis showed that the difference 

between control and marennine exposed groups could be explained by five FAs, such as 

the 18:2 n-6, 18:3 n-6, 20:3 n-3, 20:5 n-3 and 22:6 n-3 (Table 4-2, Fig. 4-6A,B). In oysters 

gills treated to marennine, the percentage value of 18:2 n-6 and 20:3 n-3 in PL significantly 

increased over controls by 33.5 and 72% (t-test; p = 0.011 and p = 0.040, respectively); in 

contrast, the percentage of 18:3 n-6 declined by 61.1%  (t-test; p < 0.001). In mussel’s gills, 

a similar tendency was observed for the 22:6 n-3. The percentage value of this particular 

FA in marennine-treated mussels gills declined by 35.3% in the PL compared to the control 

group (t-test; p = 0.017). 
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Figure 4-5. Unsaturation index of polar lipids in M. edulis (A) and  C. virginica (B) 
exposed to different concentration of marennine exposure. Values are mean ± standard 

error. Error bars represent the 95 % confidence interval of the mean. Error bars with 
different lower case letters are significantly different. 
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Figure 4-6. Variations in the proportions of selected fatty acid classes in polar lipid (gills) 
fraction of M. edulis (A) and C. virginica (B) with different exposition to marennine (solid 

bars indicate control group while shaded bars indicate EMn-exposed group). Values are 
mean ± standard error. Error bars represent the 95 % confidence interval of the mean (ns: 

not significant; *: p < 0.05). 
  

4.4 Discussion 

The aim of this study was to determine the effects of excreted and purified 

marennine on two commercially important bivalve species, M. edulis and C. virginica.  To 

the best of our knowledge, no other study has yet reported how a non-PST bioactive 

compound such marennine can influence bivalve behaviour, physiological rate, and 

biochemical state of cell membranes. In our study, it was found that the two bivalve species 

generally were impacted by this compound and exhibited similar responses to marennine, 

which is summarized and discussed below. 

 

4.4.1 Behavioural responses to marennine 

Marennine (2.0 mg L-1) impacted the behaviour of both M. edulis and C. virginica.  

The most striking effect was related to absolute valve opening, measured in degree angles 

using a high frequency valvometry system.  Marennine lowered valve opening by 44 - 

62%.  In M. edulis this effect was immediate but transient, lasting < 6 hours, whereas in C. 
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virginica the effect was delayed by several hours. It was also found that marennine 

marginally but significantly lowered the proportion of the population with opened valves, 

reducing this proportion from 100% (control) to 95% (M. edulis) and 41% (C. virginica) 

(marennine 2.0 mg L-1). The underlying reason(s) for the bivalves closing their valves, 

sometimes completely, in response to marennine is unclear. However, the earlier effect of 

marennine on valve opening of M. edulis can be explained by their higher CR compared to 

C. virginica. It is noteworthy that valve opening was negatively correlated with the 

concentration of marennine on the gill, suggesting that the behaviour response is somehow 

related to the progressive accumulation of marennine in the feeding apparatus. Overall it 

seems marennine causes moderate behavioural effects when compared to bioactive 

compounds related to harmful algae. For instance, Hégaret et al. (2007) reported that M. 

edulis remains open while C. virginica closed their shell for most of the time when exposed 

to harmful algal. In other studies valvometry was applied to measure the sensitivity of 

bivalves to the presence of chemical substances such as cadmium or the PSP biotoxin 

(Nagai et al., 2006; Tran et al., 2003). Marennine on the other hand is completely distinct 

from metal compounds or the PSP toxin since the consumption of green oysters has never 

been associated to specific human disorders. Moreover, recent findings suggest that 

marennine could be applied broadly in aquaculture, since it has antibacterial properties 

against detrimental pathogens (Gastineau et al., 2014, 2012b). In summary, our results 

showed that marennine has significant but moderate effects on the valve opening of M. 

edulis and C. virginica. 

 

 

4.4.2 Physiological responses to marennine 

The few studies concerning bivalves and natural toxic substances report various 

effects on CR, pseudofaeces production, and scope for growth (Basti et al., 2013; Hégaret 

et al., 2007; Jauffrais et al., 2012; Navarro and Contreras, 2010). This previous work is 

mostly related to PST produced by dinoflagellates.  Physiological responses to natural 

bioactive compounds such as marennine have never been reported. Firstly, our study 
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demonstrated that marennine fixes to the gills for a long period of time (ca. 8 weeks in this 

study). Secondly, our study indicated that marennine has a significant effect on some of the 

measured physiological rates. Specifically, marennine lowered SFG by 58% (M. edulis) 

and 85% (C. virginica). This impact on SFG was mainly due to curtailed oxygen 

consumption and CR in marennine-exposed groups. Thus it seems that marennine affects 

the mechanism of oxygen uptake on gills of bivalves. The parallel impact on CR was 

particularly striking, with marennine (2 mg L-1) reducing CR by 56% (M. edulis) and 78% 

(C. virginica). Such inhibition of oxygen uptake, filtration activity and SFG has been 

previously observed in studies involving toxic algae (Bricelj and Shumway, 1998; and Li et 

al., 2002; Navarro and Contreras, 2010). For instance, Li et al. (2002) observed lower SFG 

in the manila clam Ruditapes phillippinarum and the green-lipped mussel Perna viridis that 

were exposed to Alexandrium fundyense. We conclude that marennine, a non-PST 

bioactive compound, has similar inhibitory effects on the growth of M. edulis and C. 

virginica.    

 

 

4.4.3 Biochemical responses to marennine 

We provide the first evidence that brief marennine exposures (16 h) affects 

physiological and biochemical traits of bivalves for an extended period of time (8 weeks). 

Over such time bivalves are known to allocate part of their energy retrieved from either 

feeding or energetic reserves. Here we report an augmented depletion of energetic reserves 

in the digestive gland, which was evidenced by a decrease (-67.58%) in total FAs of NL 

contained in the digestive glands of M. edulis exposed to marennine (2 mg L-1). A similar 

trend was found in C. virginica but with less magnitude (8%) and without significant value. 

The recorded drop in total FAs was presumably related to corresponding reductions in CR 

(food intake) observed in the marennine-exposed animals. This interpretation is 

corroborated by a strong correlation between CR and SFG in M. edulis (r2 = 0.997). 

Decrease in total FAs in NL is related to SFAs, PUFAs and SFA/PUFA ratio. Overall it 

seems marennine induces stress and depletes energetic reserves accumulated in the 
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digestive gland of bivalves.  A similar outcome was previously demonstrated in oyster 

larvae (C. gigas and C. virginica) subjected to bacterial infection (Genard et al., 2013, 

2011).  

 We also found that marennine alters the unsaturation index of membrane 

phospholipids in the gills of both species. M. edulis and C. virginica changed the FA 

composition of their gills’ membrane (polar fraction), affecting probably their membrane 

fluidity, in response to marennine exposition. This structural modification, which in oysters 

significantly increased the unsaturation index of gill membranes, may have related to the 

observed reduction in oxygen consumption. In mussel and oyster a relationship between 

unsaturation index of gills’ PL and metabolic rate have been already demonstrated (Pernet 

et al. 2007). A closer examination revealed that the augmented unsaturation index was 

mainly due to an increase of several PUFAs in the gills PL. Membrane alteration in 

bivalves as a response to environmental stress has been previously documented (Genard et 

al., 2013; Parent et al., 2008; Pernet et al., 2008, 2007; Rochetta et al., 2014). The different 

amounts of PUFAs found in animals exposed to marennine and control animals may reflect 

differences in their capacity for selective incorporation of dietary PUFAs into membrane 

lipids. For instance, long-chain PUFAs are essential for sustaining optimal growth in 

bivalves (De Moreno et al., 1976). Moreover, while animal cells are capable of 

synthesizing de novo SFAs and MUFAs, the limited or absence of biosynthesis of major 

highly PUFAs is unlikely due to deficient activity of specific enzymes, like elongases and 

desaturases (Glencross, 2009). The FAs composition of lipids contained in bivalve tissues 

generally reflect the combined influences of the dietary regime and selective incorporation 

or elimination of FAs (Delaunay et al., 1993). In our study, however, it is improbable that 

the reported differences in PUFAs reflect the dietary regime since all experimental animals 

were maintained under the same conditions throughout the experiment. Thus, the 

differences in FA composition are likely due to the impact of marennine on the gills. 
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4.4.4 Marennine and greening consequences in bivalves: advantageous or 

detrimental 

 Despite its unknown chemical nature, marennine-colored oysters have been 

consumed for centuries and no specific human disorders have been reported. More 

recently, studies have suggested that marennine and greened-oyster could be considered as 

healthy food (Gastineau et al., 2014; Pouvreau et al., 2008). From a shellfish aquaculture 

perspective, supplementing the diets with H. ostrearia, which produces marennine, could 

be advantageous due to the ease of digestibility of the microalgae (Barillé et al., 1994; 

Cognie et al., 2001) and perhaps more importantly to its properties as a natural antibiotic or 

bacteriostatic agent (Gastineau et al., 2014, 2012b). For instance, Gastineau et al. (2012b) 

reported that a purified form of marennine inhibited the growth of bacterial pathogens that 

contribute to the mass mortality of oyster in Europe such as Vibrio aestuarianus and Vibrio 

splendidus. Unpurified marennine was found to improve the survival rate of scallop 

(Placopecten magellanicus) and M. edulis larvae by more than 60% and 90%, respectively 

(Turcotte et al. 2015, unpublished data). The same investigators noted that crude extract of 

marennine inhibited the growth of V. splendidus by as much as 20 to 30% in terms of total 

number of bacteria. By contrast, our work shows that marennine has detrimental effects on 

bivalves themselves, namely by hampering their feeding process and reducing their SFG. 

Overall it seems that such detrimental effects would be largely compensated by the 

numerous beneficial factors listed above, and also by the high market value of greened-

oysters. 

 

4.5 Conclusion 

This study provides the first detailed assessment of how bivalves respond to 

marennine, a natural pigment produced by H. ostrearia. Specifically, the impact of purified 

extracellular marennine on juvenile M. edulis and C. virginica was characterized from 

behavioral, physiological and biochemical standpoints.  It was found that marennine (2.0 

mg L-1) reduces valve opening, oxygen consumption, CR and SFG.  Marennine also 
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changes the unsaturation index in membrane phospholipids. These results enhance our 

understanding of marennine and particularly the consequence of greening bivalves.  From 

an aquaculture perspective, the efficiency of marennine as a natural antipathogen agent 

merits further investigation. 
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5 CHAPTER 5: ALLELOPATHIC EFFECT OF HASLEA 

OSTREARIA ON OTHER MICROALGAE RELEVANT TO 
AQUACULTURE 

 
SUMMARY 
 
 

The fourth article, entitled “Allelopathy can affect co-culturing Haslea ostrearia 

with other microalgae relevant to aquaculture”, was co-authored by myself and by Ita 

Widowati, Ikha Safitri, Bruno Cognie, Priscilla Decottignies, Romain Gastineau, Michèle 

Morançais, Eko Windarto, Réjean Tremblay, and Jean-Luc Mouget. This article was 

submitted in the Journal of Applied Phycology in May 2015. As the first author, my 

contribution to this article was the execution of experiments, laboratory and data analysis 

as well as writing for the manuscript preparation. Jean-Luc Mouget, Bruno Cognie, and 

Michèle Morançais provided the original idea and assisted in the method development. All 

of the co-authors participated in this work. Result of this work was presented as poster 

presentation in the International Elsevier conference of Aquaculture 2015: Cutting edge 

science in aquaculture, in Montpellier, France, 23-26 August 2015. 
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Abstract 

Haslea ostrearia is a marine diatom known to produce marennine, a water-soluble blue-

green pigment responsible for the greening of oysters in ponds along the French Atlantic 

coast. This phenomenon occurs seasonally when H. ostrearia blooms in oyster ponds and it 

increases the economic value of cultured oysters. From an ecological perspective, H. 
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ostrearia blooms are accompanied by a decrease in the abundance of other microalgae, 

suggesting that this diatom produces allelochemicals. Recent studies showed that purified 

marennine has other biological activities, antioxidant, antibacterial and antiviral which 

could be used in aquaculture to promote this pigment as a natural antipathogen agent. One 

important issue regarding the possible use of H. ostrearia in aquaculture as a mixed algal 

diet, however, is the importance of marennine allelopathy. In this study, we investigated 

the allelopathic effect of H. ostrearia on the growth of five microalgal species relevant to 

aquaculture: Chaetoceros calcitrans, Skeletonema costatum, Phaeodactylum tricornutum, 

Tetraselmis suecica and Tisochrysis lutea. Allelopathic tests were realized in realistic 

conditions by co-culturing these microalgae with H. ostrearia in batch and in semi-

continuous mode, based on initial biovolume ratios. Our findings showed that inhibition of 

the growth of microalgae due to the presence of H. ostrearia and marennine was species-

dependent. S. costatum, C. calcitrans and T. lutea were significantly more sensitive, 

whereas T. suecica and P. tricornutum appeared to be more resistant. Growth irradiance 

significantly influenced the allelophatic effect against the sensitive species S. costatum, H. 

ostrearia production of marennine increasing with irradiance. This study confirmed that 

marennine released into the culture medium possibly acts as an allelochemical compound, 

thus explaining the dominance of H. ostrearia and the loss of sensitive algae in oyster 

ponds, but also that some species are insensitive, which allows co-culturing and use in a 

mixed algal diet in aquaculture.  

Keywords: allelopathy, aquaculture, Haslea ostrearia, marennine, microalgae  

 
 

5.1 Introduction 

Autotrophic micro-organisms are subjected to important competition phenomenon 

for resources, such as light and nutrients, which can superimpose with chemical 

interactions with toxins or allelopathic compounds (e.g., Legrand et al. 2003; Leflaive and 

Ten-Hage 2007). In general, allelopathy is defined as a toxicological interaction between 
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an ‘emitter’ and its direct competitors or predators, the ‘target organisms’ (Leflaive and 

Ten-Hage 2007). The emitter organism produces and releases metabolites that cause a 

variety of negative effects, for instance growth inhibition, cell lysis, loss of motility and 

even death of the target organisms (Arzul et al. 1999; Inderjit and Duke 2003; Tillman et 

al. 2007; Tang and Gobler 2011). In an aquatic ecological context, allelopathic interactions 

play important roles in species successions and occurrence of blooms (Keating 1977; 

Takano et al. 2003). Like many phytoplankters, diatoms produce allelochemical and 

toxigenic compounds (e.g., Sharp et al. 1979; Yamasaki et al. 2007; Ianora and Miralto 

2010), among which polyunsaturated fatty acids (PUFAs) (Jüttner 2001), and 

polyunsaturated aldehydes (PUAs) (Adolph et al. 2003; Jüttner 2005; Ribalet et al. 2007, 

2009). These compounds can have negative effects on bacteria (Desbois et al. 2008, 2009), 

phytoplankton competitors from different taxonomic groups, including diatoms (Sharp et 

al. 1979; Casotti et al. 2005; Yamasaki et al. 2007), and also grazers (Jüttner 2001, 2005; 

Pohnert et al. 2002). 

The pennate diatom Haslea ostrearia can co-occur with other phytoplankton in 

oyster fattening ponds along the West coast of France. This diatom has the particular 

feature of synthesizing and excreting the water-soluble blue pigment marennine, 

responsible for the greening of oysters, an erratic and hardly controlled phenomenon, 

which gives added value to the bivalve Crassostrea gigas in French oyster industry. 

Previous works hypothesized that marennine accumulation in cells was correlated with an 

unfavorable environment, such as nutrient deficiency (Neuville and Daste 1978; Robert 

1983). This could be, however, the transient result of cell division slow down, as it was 

further observed that light was an important factor for both growth and marennine 

production (Mouget et al. 1999, 2004, 2005; Rech et al. 2008). The presence of H. 

ostrearia and marennine in oyster ponds may have an impact on co-occurring 

phytoplankton. Indeed, during the greening process in oyster ponds, a bloom of H. 

ostrearia is observed, concomitant with a significant decrease in phytoplankton, 

particularly Skeletonema costatum and Nitzschia closterium populations, and some authors 

suggested that the dominancy of H. ostrearia could occur by allelopathic interactions 

(Moreau 1970; Neuville and Daste 1978; Turpin 1999). This was confirmed by Pouvreau et 
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al. (2007), who showed that the purified form of marennine could act as an allelopathic 

compound, affecting algal growth and development of some diatom species, not only 

directly by contact, but also indirectly through a shading effect in the water column 

(absorption in the red part of the spectrum). Thus, the persistency as well as the erratic 

dominance of H. ostrearia in oyster ponds could be explained by possible allelopathic 

interactions with co-occurring microalgae. 

Apart from allelopathic property, it has been demonstrated that purified marennine 

presents other biological activities, for instance antioxidant (Pouvreau et al. 2008), 

antibacterial, antiviral and antiproliferative (Gastineau et al. 2012c). Some of these 

biological activities could be of great importance in the field of aquaculture. For instance, 

in vitro study showed that purified forms of marennine significantly inhibited the 

development of Vibrio splendidus and Vibrio aestuarianus, which are likely important 

pathogens contributing to summer mass mortality of oysters in European region and 

worldwide (Gastineau et al. 2012c, 2014). Both antibacterial and antiviral activities 

observed in vitro, could lead to potential development of H. ostrearia and marennine with 

maximum benefit to the oyster industry, and more widely to sustainable aquaculture. 

Indeed, conventional methods for controlling microbial pathogens in aquaculture by use of 

chemical disinfectants and antimicrobial drugs have led to antibiotic-resistant bacterial 

strains that may cause significant decrease in animal production (Alderman and Hastings 

1998; Cabello 2006). Therefore, in recent aquaculture development, utilization of natural 

antibiotics becomes progressively favored as a feasible method in management practices 

for disease prevention in bivalve hatcheries (Van den Bogaard and Stobberingh 2000; De et 

al. 2014). Hence, H. ostrearia and marennine could reveal good candidates for use as 

natural protector in shellfish larviculture, a very susceptible stage to pathogenic bacteria 

and viruses in mass mortality events (Paillard et al. 2004).  

 The present study focuses on the assessment of the allelopathic effect of H. 

ostrearia in realistic conditions of microalgal co-cultures, to identify which algal species 

relevant for aquaculture are either sensitive or resistant to H. ostrearia and its supernatant 

containing marennine. The hypothesized source of allelopathy, marennine in solution in the 

growth medium, was measured throughout the body of H. ostrearia cultures and filtered 
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culture supernatants. Growth kinetics and allelopathic tests were conducted on several 

microalgae species commonly used in aquaculture as feed of C. gigas, or in hatcheries, and 

possible diet combinations are discussed. To circumvent any bias on allelopathic effect 

resulting from possible competition or nutrient and light limitations, cultures were 

maintained at low cell density using a semi-continuous mode. 

 
 

5.2 Materials and methods 

 
5.2.1 Culture conditions 

Six marine microalgal strains relevant for aquaculture were used in this work. 

Haslea ostrearia (NCC-148.7), Skeletonema costatum (NCC-53), Pheaodactylum 

tricornutum (NCC-18), were obtained from the Nantes Culture Collection (NCC), 

Tetraselmis suecica, Chaetoceros calcitrans, and Tisochrysis lutea, were provided by 

IFREMER-Nantes. All species were cultured under non-axenic conditions in sterilized 500 

mL Erlenmeyer flasks, containing 250 mL of artificial seawater medium (Mouget et al. 

2009) at 16°C ± 1°C. Cultures were grown at irradiance of 100 µmol photon m-2 s-1 

provided by Philips TLD 36 watt/965 fluorescent tubes or a high-intensity discharge lamp 

(Osram HQI T, 400 W). Irradiance was measured with a Li-Cor LI-189 quantum meter and 

a 2 π Li-Cor Q21284 quantum sensor, in a 14h / 10h light/dark cycle.  

 

 

5.2.2 Experimental set up 

All series of experiments encompassed the measurement of the cellular volume of 

the different species of microalgae. The rationale was to consider possible allelopathic 

effects in function of both cell volume ratios and cell concentrations. For each target 

species, allelophatic effects were inferred from difference in growth rates and kinetics 
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between monospecific cultures (controls) and co-cultures with H. ostrearia, and from 

marennine concentration in the culture medium. 

 

5.2.2.1 Biovolume measurement of microalgae 
 

The aim of this measurement was to estimate the cell volume of each microalgal 

species, and to start allelophatic experiments (co-cultures) using a same volume of biomass 

(see Table 5-1). The purpose of using a same volume of biomass was to remove bias 

resulting from differences in biomass initial value (inoculums) when species were co-

cultured (i.e., same initial biovolume, but different initial cell concentration). Calculations 

of surface area and biovolume of the different species of microalgae were performed 

according to the method of Hillebrand et al. (1999). The ratios between the biovolumes of 

H. ostrearia and those of other microalgae tested are presented in Table 1. Biovolume 

measurement was conducted when cells were in the exponential phase of growth. A light 

microscope (Zeiss Axiostar Plus) with magnification of 400-1000 x depending on the 

species, was directly connected to a camera (AxioCam iCc1) and computer. ImageJ 

software was used to measure the length, width and height of microalgal cells. 
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Table 5-1. Mean cell growth rate, cell biovolume and cell surface area during the 
exponential growth phase of several microalgae in semi-continuously cultivated mono-

specific culture. Cell biovolume for each species was calculated based on geometric shape 
for cell biovolume in Hillebrand et al. (1999). 

Species Exponential

growth rate 

(day-1) 

Cell 

biovolume 

(µm3) 

 

 

Cell 

surface 

area (µm2) 

Shape model of 

biovolume used 

Biovolume 

ratio 

H. ostrearia 0.51 ± 0.03 758 ± 11  765 ± 7 Prism on elliptic base 1 

T. suecica 0.44 ± 0.02 382 ± 17  155 ± 6 Prolate spheroid 2 

P. tricornutum 0.41 ± 0.01 80 ± 2  117 ± 2 Half-elliptic prism 9 

T. lutea 0.75 ± 0.04 58 ± 5  64 ± 4 Prolate spheroid 13 

S. costatum 0.29 ± 0.02 29 ± 0  81 ± 1 Cylinder + 2 half spheres 27 

C. calcitrans 0.22 ± 0.01 17 ± 1  40 ± 1 Half-elliptic prism 44 

Note: values are means ± Standard Error. Mean growth rates are the average of the rates in 
exponential phase in each dilution cycles (n = 4) at each replicate of species (n = 3). Cell biovolume 
for each species was calculated at the exponential phase (n = 40).  
 
 

5.2.2.2 Allelopathic test of Haslea ostrearia on microalgae tested 

 
Algal cultures were conducted in batch to identify the beginning and the range of 

the exponential phase for all species tested and in semi-continuous modes to maintain the 

culture in exponential growth at low cell density. The semi-continuous mode of culture 

minimizes the competition for nutrients and light, which possibly occurred when cells are 

maintained in batch culture. For each species, cells were acclimated to their growth 

conditions for at least one week, and maintained in exponential growth phase by dilution 

with fresh medium every 4 days. Approximately 75% of culture total volume at the 4th day 

was discarded, and fresh medium was added to the remaining 25% to complete to the initial 

volume (250 mL). The cell concentration and the cell biovolume for each microalga were 

determined every 2 days in batch mode, every 4 days in semi-continuous mode, during 12 

to 16 days (at least 3 consecutive dilution cycles). On each sampling day, samples were 

gently stirred in the Erlenmeyer prior to cell counting to avoid aggregates. Furthermore, 
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cell growth was monitored by measuring cell densities with Nageotte or Neubauer counting 

chambers. Growth rate was calculated as µ (day-1) using eq. 1: 

 

    µ =       (1) 

 

where N1 and N2 represent cell density at the start and the end of each growth period, and 

d1 and d2 are the time of measurement. 

 Tests for the allelopathic effect were performed in sterile Erlenmeyers containing 

H. ostrearia (final cell density, 5 103 cells mL-1), and T. lutea, T. suecica, C. calcitrans, S. 

costatum or P. tricornutum (final cell density varying according to the species, to reach the 

same total biovolume as H. ostrearia) (see biovolume ratio, Table 1). To estimate the effect 

of allelopathy of H. ostrearia and supernatant containing marennine, the percent inhibition 

(I%) was calculated as percent difference in growth rate of the treatment relative to control 

(eq. 2): 

 

 

  Percent inhibition (I%) =   x 100    (2) 

 

Where µc and µt represent the growth rate controls (mono-specific culture) and treatments 

(co-culture) at the exponential phase, respectively. 

 

5.2.2.3 Effect of light intensity on marennine production and allelopathic activity 
 

This series of experiments were run using one sensitive microalgal species, S. 

costatum, evidenced as previously described. Co-cultures of microalgae (H. ostrearia and 

the target species) were prepared according to the biovolume ratio method, and grown at 

different irradiances: 20, 100 and 500 µmol photon m-2 s-1 representing low (limiting), 

medium and high (saturating) light, respectively. For each co-culture, marennine 

ln N2 - ln N1 

 
     d2 - d1 

µc – µt 

 
   µc  
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concentration was determined as described below. For each algal species, cell density, 

growth rate and percent inhibition were determined as described above. 

 

5.2.2.4 Estimation of marennine concentration  
 

The concentration of extracellular marennine (EMn) present in each sample was 

calculated at the end of the growth period (at t = 12th day and at each dilution cycle or 4th 

day, for batch and semi-continuous culture, respectively). Co-culture supernatants were 

filtered on Millipore filter (0.22 µm) prior to the measurement. Afterwards, the absorbance 

of the supernatant was measured by UV-visible spectrophotometry (PerkinElmer Lambda 

25), and the concentration was determined as described in Robert et al. (2002). The 

concentration (C) of EMn (g L-1) was calculated according to the following formula (eq. 3):  

 

 

    [C]  =        (3)  

 

Where Aλmax is the absorbance at the peak wavelength in red region (674 nm), ελmax is the 

specific extinction coefficient at the peak wavelength, and l is the cuvette path length. 

 

5.2.2.5 Statistical analyses 
 

All data were analyzed using the software SigmaPlot version 12.0 for Windows. 

Prior to statistical analyses, normality and homogeneity of data were checked using 

Shapiro-Wilk and Kolmogorov-Smirnov test, respectively. All statistical analyses were 

performed at a maximum significance level of 5% by one-way analyses of variance 

(ANOVA) followed by Tukey-HSD posthoc multicomparison test. In addition, analysis of 

co-variance (ANCOVA) was performed to test the effect of different light levels and 

marennine concentrations on allelophatic activity of H. ostrearia on the most sensitive 

target microalgal species. 

A λmax 

 
ɛ λmax x l 
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5.3 Results 

5.3.1 Biovolume and growth kinetics of Haslea ostrearia and microalgae tested  

 Microalgal biovolume allows estimating the relative importance of co-cultured 

algae in a global biomass. For a single cell, the variation in cell biovolume corresponds to 

the different shape and size (length, width, and depth) (Table 5-1). Based on the calculation 

of the length of transapical axis of the microalgae tested, they can be classified into two 

classes, P. tricornutum and T. suecica representing the large class (mean transapical axis: 

22.3 ± 0.3 µm and 12.6 ± 0.2 µm, respectively), whereas S. costatum (4.4 ± 0.1 µm), C. 

calcitrans (4.5 ± 0.1 µm), and T. lutea (5.1 ± 0.1 µm) as the small class. The determination 

of cell biovolumes, using the standard geometric shapes by Hildebrand et al. (1999), 

showed that H. ostrearia had the highest average cell biovolume followed by T. suecica, P. 

tricornutum, T. lutea, S. costatum, and C. calcitrans (Table 5-1). For the allelopathy tests 

with co-cultures in batch and in semi-continuous mode, experiments were run taking into 

account the cell biovolume ratios, to set a same initial total biovolume for each species.   

During growth kinetics in batch mode, P. tricornutum and T. lutea showed the 

highest cell concentration (702 104 cell mL-1 and 650 104 cell mL-1, respectively) by the 

end of the growth phase (t = 12), whereas H. ostrearia had the lowest value (13 104 cell 

mL-1, Fig. 5-1A). Variation was also observed in terms of total biovolume (µL) (ANOVA: 

F5, 18 = 1821.1, p < 0.0001). Biovolume of P. tricornutum was significantly higher than 

other species (Tukey HSD: p < 0.0001) whereas S. costatum had the lowest. As to H. 

ostrearia, it showed the lowest cell concentration, but a significantly higher total 

biovolume than the two other diatoms, S. costatum and C. calcitrans (Tukey HSD: p < 

0.0001 and p = 0.0004, respectively) (Fig. 5-1B).  
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Figure 5-1. Growth kinetics of different species of microalgae cultivated in batch (A, B) 
and semi-continuous (C, D) mode, expressed as cell concentration (A, C) (104 cell mL-1), 

and total biovolume (B,D) (µL). Values are mean ± standard error (n = 3). 

 

 Semi-continuous cultures were conducted subsequently to batch cultures by dilution 

of algal suspensions every 4 days to maintain cells in exponential growth phase at low cell 

density. Each microalga cultivated in a semi-continuous system showed a stabilization of 

growth, with only slight differences in cell concentration on the 4th day for each dilution 

(Fig. 5-1C). Variation occurred in terms of total biovolume (ANOVA: F5, 54 = 132.8, p < 

0.001), where P. tricornutum has significantly higher total biovolume than other 
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microalgae (Tukey HSD: p < 0.0001) (Fig. 5-1D). Furthermore, T. lutea showed the 

highest average growth rate whereas C. calcitrans exhibited the lowest value  (0.75 d-1 and 

0.22 d-1, respectively) (ANOVA: F5, 54 = 500.1, p < 0.001). For each species, no significant 

difference was observed in terms of cell density, total biovolume and growth rate in all 

cycles of dilution (p > 0.05) illustrating that the semi-continuous mode was stable (Figs. 5-

1C, D).   

 
 
 
5.3.2 Growth inhibition in co-culture of Haslea ostrearia with different microalgae 

At the beginning of allelopathic co-culture experiments, the initial cell 

concentration of H. ostrearia in each flask was 5000 cell mL-1, while the cell number of 

target species was different according to cell biovolume ratios. Allelopathic test kinetics 

showed variations in cell concentration (not shown) and in total biovolume of the target 

species, in response to the presence of H. ostrearia when they were co-cultured (Figs. 5-2A 

and B, batch and semi-continuous mode of culture, respectively). For algae co-cultured in a 

semi-continuous mode, pooled mean from the three consecutive cycles of dilution showed 

that H. ostrearia significantly hampered the growth rate of all species tested as compared 

to the respective controls (ANOVA: F15, 54 = 366.1, p < 0.001). The decrease in growth 

rate, expressed as the percent inhibition (I%), was the highest for C. calcitrans (79.4 ± 

5.5%) and S. costatum (74.2 ± 2.5%) then followed by T. lutea (52.1 ± 1.8%), and the 

lowest for T. suecica (37.2 ± 3.6%) and P. tricornutum (29.5 ± 1.9 %) (p < 0.05) (Fig. 5-

3A). Pearson correlation showed that the size of microalgae influenced the allelopathy 

interaction in co-culture. Percent inhibition of target species tested was negatively 

correlated with their cell biovolume and also their cell surface area (r = -0.727 and -0.754, 

respectively) (Fig. 5-4A, B). The percent inhibition was positively correlated with the cell 

surface area to volume ratio (r = 0.776) (Fig. 5-4C). 
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Figure 5-2. Growth kinetics of different microalgae co-cultured in allelopathic tests in 
batch (A) and semi-continuous (B) mode. Values are means ± standard error (n = 3) of total 

biovolumes (µL). 
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Figure 5-3. Percent inhibition (I%) of target algae (A) and concentration of extracellular 
marennine (EMn, mg L-1) (B) in co-cultures with Haslea ostrearia. Values are means ± 

standard error (n = 3) obtained from three consecutive cycles of dilutions. Different letters 
indicate significant differences. CC = Chaetoceros calcitrans; SC = Skeletonema costatum; 
PT = Phaeodactylum tricornutum; TS =Tetraselmis suecica; TL = Tisochrysis lutea; HO = 

Haslea ostrearia. 
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Figure 5-4. Percent inhibition (I%) of microalgal target species tested in co-culture with 

Haslea ostrearia as a function of their respective cell biovolume (A), cell surface area (B), 
surface to volume ratio (C), and of marennine concentration measured at the end of the 

cycles of dilution (D). Data points are means ± standard error (n = 3). Pearson correlation 
showed strong negative correlation between (I%) and cell biovolume (r = -0.731), total 

surface area (r = -0.778), yet positive correlation was observed between percent inhibition 
and the total surface volume ratio (r = 0.774) and marennine concentration in co-culture of 

microalgal target species tested (r = 0.775). 
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present work, a posteriori quantification of EMn concentration in the supernatants was 

conducted every 4 days, at the end of each dilution cycle yet during the exponential growth 

phase. For all co-cultures, the EMn concentration was not significantly different between 

all three cycles of dilution (p > 0.05). The highest EMn concentration was observed in the 

co-culture of S. costatum, C. calcitrans, or T. suecica + H. ostrearia (maximum value of 

1.04 ± 0.25 mg L-1, mean ± SE, n=3) and the lowest in the co-culture of P. tricornutum or 

T. lueta + H. ostrearia (maximum value of 0.49 ± 0.10 mg L-1, mean ± SE, n=3) (Fig. 5-

3B). 

 Significant relationship was observed between concentration of EMn and the 

percent inhibition (I%) in target species tested. Pearson correlation showed that I% was 

positively correlated with the amount of EMn released into the medium (r = 0.775) (Fig. 5-

4D). In contrast, negative relationship was observed between EMn concentration and the 

growth rate of microalgae tested in co-culture (r = -0.750), suggesting that a higher 

decrease in growth rate of the target microalgae resulted from a higher EMn released in the 

culture (data not shown).  

 A complementary experiment was conducted with the sensitive species S. costatum 

to test the hypothesis that growth inhibition was not the direct consequence of the presence 

of H. ostrearia cells in the co-culture. Actively growing S. costatum was subcultured at low 

density (initial cell concentration, 37 104 cell mL-1) with a mixture of fresh medium and H. 

ostrearia culture supernatant, in proportions (100/0, 70/30 and 30/70 v/v), which 

corresponded to 0.0, 3.6 and 8.4 mg L-1 of marennine, respectively. In comparison with the 

control (no marennine, 100% fresh medium), the growth of S. costatum decreased 

significantly when exposed to marennine-containing supernatant, percent inhibition I% 

increasing with time, and proportion of supernantant or marennine concentration (Fig. 5-5). 

 

 

5.3.4 Effect of irradiance level on allelopathic activity of Haslea ostrearia 

In this series of experiments, S. costatum was again chosen as the vulnerable 

species to determine whether irradiance level may influence the allelopathic activity of H. 
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ostrearia. For monospecific batch and semi-continuous cultures, the growth rate of S. 

costatum increased significantly with irradiance (p < 0.05) (Table 5-2). As for H. ostrearia, 

both in semi-continuous mode and in batch mode, however, the growth rate of H. ostrearia 

at low irradiance was significantly lower compared to medium and high irradiance, but no 

significant difference was observed between the last two levels of irradiance (p > 0.05).   

 

Table 5-2. Mean cell growth rate (d-1) during the exponential growth phase of mono- and 
co-cultured (allelopathy) microalgae (Mo. and Al., respectively), in batch and semi-

continuous mode, under different irradiances.  

Parameters Type of culture Species Irradiance (µmol photon m-2 s-1) 

20 100 500 

Growth rate (day-1) Mo. Batch Ho 0.21 ± 0.03 0.53 ± 0.06 0.59 ± 0.05 
  Sc 0.14 ± 0.20 0.21 ± 0.04 0.40 ± 0.01 
 Mo. Semi-continuous Ho 0.36 ± 0.00 0.52 ± 0.01 0.57 ± 0.03 
  Sc 0.16 ± 0.00 0.23 ± 0.01 0.41 ± 0.01 
 Al. Batch Ho 0.20 ± 0.03 0.55 ± 0.01 0.58 ± 0.01 
  Sc -0.03 ± 0.00 -0.08 ± 0.01 -0.11 ± 0.01 

 Al. Semi-continuous Ho 0.37 ± 0.01 0.51 ± 0.03 0.57 ± 0.02 
  Sc -0.07 ± 0.03 -0.16 ± 0.06 -0.15 ± 0.02 
      

[EMn] (mg L-1) Al. Batch - 5.15 ± 0.53 8.43 ± 1.68 11.03 ± 0.33 
 Al. Semi-continuous - 0.57 ± 0.03 0.99 ± 0.20 1.43 ± 0.40 
      

Percent Inhibition 
(I%) 

Al. Batch Sc 60.87 ± 0.72 87.66 ± 0.41 89.57 ± 0.26 

 Al. Semi-continuous Sc 61.99 ± 0.73 74.22 ± 2.48 82.10 ± 4.19 

Note: EMn concentration (mg L-1) and percent inhibition (I%) were measured at the end of 
allelopathy experiment and at each cycle of dilution in batch and semi-continuous culture, 
repectively. Values are means ± standard error (n = 3) obtained from three consecutive cycles of 
dilutions. 
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Figure 5-5. Percent inhibition of Skeletonema costatum grown for 4 days at low density 
(initial cell concentration, 37 104 cell mL-1) in a mixture of fresh medium and H. ostrearia 
culture supernatant (100/0, 70/30 and 30/70 v/v, which corresponded to 0.0, 3.6 and 8.4 mg 

L-1 of marennine, respectively). Values are means ± standard error (n = 3).  
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Figure 5-6. Marennine concentration (mg L-1 or µg 10-4 cells) in co-cultures of 
Skeletonema costatum with Haslea ostrearia at different irradiances as a function of H. 

ostrearia growth rate (A), irradiance level (B). H. ostrearia cell density (C), and percent 
inhibition I% (D). Filled symbols indicate marennine production per unit volume, empty 

symbols indicate marennine production per cell. Data points are means ± Standard Error (n 
= 3). Pearson correlation for A, B, C and D in marennine production per unit volume are r 
= 0.314, 0.931, 0.724 and 0.876, respectively. Pearson's correlation coefficient values for 

A, B, C and D in marennine production per cell are r = 0.440, 0.959, 0.507 and 0.794, 
respectively. 
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5-2). The decrease in S. costatum cell concentration and growth rate at all irradiances was 

concominant with an increase in I%. At low irradiance I% was significantly lower than at 

medium and high irradiance (p = 0.012 and 0.011, respectively). Furthermore, I% increased 

with EMn concentration (Table 5-2). Pooled data from all cycles of dilution showed that 

EMn concentration at medium and high irradiance levels in co-culture was significantly 

higher than at low irradiance (p < 0.05). It appeared that EMn concentration in the medium 

was not correlated significantly with H. ostrearia growth rate (r = 0.314, Fig. 5-6A) but 

with irradiance (r = 0.931), cell density (r = 0.724) and percent inhibition (r = 0.876) (Figs 

5-6B, C and D, respectively). Furthermore, a good relation was observed between EMn 

production per day and EMn production per cell in function of the irradiance level, in both 

batch and semi-continuous co-cultures (Figs 5-7A and B, respectively). 
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Figure 5-7. Relationship between production of marennine per day and per cell for 
monospecific cultures of Haslea ostrearia grown at different irradiances in batch (A) and 

semi-continuous mode (B). Data points are means ± standard error (n = 3). Pearson's 
correlation coefficient values between production of marennine per day or per cell and 

irradiance are r = 0.915 and 0.875 in batch culture, r = 0.959 and 0.956 in semi-continuous 
culture, respectively. 
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5.4 Discussion 

Green oysters (known as ‘vertes de claires’ in France) contribute to the economy 

and the standing local oyster production in Marennes-Oléron and Bourgneuf Bay. The 

importance of H. ostrearia and marennine as greening agent in oyster-fattening ponds has 

long been recognized (Gaillon 1820; Lankester 1886). It has also been demonstrated that 

H. ostrearia as a mono-specific algal diet can sustain the growth of the oyster C. gigas for 

8 weeks (Piveteau 1999; Cognie 2001), and that it is well digested with almost 90% of 

digestibility (Barillé et al. 1994). Moreover, recent findings on marennine biological 

activities have awoken interest as a possible natural antibiotic compound for aquaculture 

(Gastineau et al. 2012c, 2014), but also demonstrated it has allelopathic activity on some 

diatoms usually encountered in oyster ponds (Pouvreau et al. 2007). Thus for potential 

industrial applications in aquaculture or larviculture, it has become important to determine 

the possible allelopathic pressure of H. ostrearia cultures on other microalgae in realistic 

conditions. For this reason, in the present work, H. ostrearia cultures or raw supernatants 

were tested, in contrast to purified pigments in Pouvreau et al. (2007). As a consequence, 

any inhibitory effect observed in co-culturing the blue Haslea with aquaculture relevant 

algae could be interpreted as a true allelopathic effect, either due to marennine or another 

compound released in the supernatant, or to a competition between phytoplankton species, 

or cell-to-cell interactions (effets of contact). However, competition for light and nutrients 

was highly minimized, as co-cultures were grown in a semi-continuous mode and 

maintained in exponential phase at low cell density. Moreover, effects of contact 

interactions should have been rare, if not unlikely, H. ostrearia behaving like a benthic 

species, whereas most of the target microalgae are rather pelagic, and Haslea culture 

supernatants (not containing cells) have been shown to exert allelopathic pressure. 
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5.4.1 Allelopathic effect of Haslea ostrearia on the growth of co-cultured algae 

 
Allelopathic effect of H. ostrearia on the growth of other microalgal species has 

already been demonstrated in the laboratory, both using pigmented supernatants of H. 

ostrearia cultures (crude extracts, Neuville and Daste 1978; Robert and Turpin 1993) and 

purified marennine solutions (Pouvreau et al. 2007). Moreover, the growth of H. ostrearia 

can itself be inhibited by marennine, at concentrations ranging ca. 30-50 mg L-1, depending 

on the form used, either purified pigment (Pouvreau et al. 2007) or crude extract (Robert 

and Turpin 1993), respectively. Crude extracts thus correspond to marennine produced and 

excreted by H. ostrearia, and accumulated in the growth medium. In the present study, the 

allelopathic effect of H. ostrearia presumably caused by the release of marennine was 

investigated by co-culturing this species with other microalgae commonly used in 

aquaculture as bivalve feeds, thus by testing the allelopathic effect of H. ostrearia culture 

supernatants. Our in vivo experiments showed that for a same initial biovolume of H. 

ostrearia and under stable environmental conditions, without light or nutrient limitation 

(cells maintained in exponential growth at low cell concentration, using a semi-continuous 

mode of culture), the diatom H. ostrearia triggered a reduction in cell concentration of 

some target species, and that the magnitude of this impact was species-dependent. For 

instance, C. calcitrans and S. costatum were significantly inhibited by H. ostrearia and 

marennine. Their growth rate was negatively affected when cultured in presence of H. 

ostrearia cells and marennine concentration ranging from 0.7 to 1 mg L-1, with percent 

inhibition (I%) of more than 70%. Thus, these two microalgae can be considered as highly 

susceptible species, a result in accordance with Pouvreau et al. (2007), who observed that 

S. costatum was inhibited by marennine concentration less than 2 mg L-1 (purified 

pigment). Although less susceptible, the haptophyte T. lutea is also a species, which growth 

was slowed down in the presence of H. ostrearia. Interestingly, a lower relative growth 

was also observed for H. ostrearia when co-cultured with T. lutea, suggesting that there is 

an inhibition caused by a allelopathic substance released by T. lutea, as previously 

observed, for instance using C. gracilis, C. muelleri, and Nitzschia closterium (Sun et al. 

2012).  
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 In contrast, P. tricornutum and T. suecica were less affected, as confirmed by an 

increase in cell concentrations and total biovolume despite the presence of H. ostrearia and 

marennine. Among target species tested, P. tricornutum and T. suecica exhibited certain 

tolerance, displaying an increase of cell concentrations and total biovolume despite 

allelopathy exposure, although their cell numbers in the treatment were still lower than 

those in controls. Moreover, these two microalgae outcompete H. ostrearia not only in 

terms of cell concentration but also of the total biovolume. The present work, however, 

cannot allow concluding about the intrinsic insensitiveness of P. tricornutum and              

T. suecica, as experiments were not designed to study specifically their response to change 

in marennine concentration. Indeed, previous studies demonstrated that biotic factors such 

as changes in cell concentration or dilution rates, can modulate allelopathic effects between 

species (Sharp et al. 1979; Tillmann et al. 2007, 2008; Lyczkowski and Karp-Boss 2014).  

 Susceptibility or insensitiveness of the target species could be related to their cell 

biovolume, as the largest species P. tricornutum and T. suecica were less sensitive to 

marennine than the smallest ones (Fig. 5-4A). Additionally, our study revealed that the 

susceptibility of target species to allelopathy was also influenced by the cell surface area as 

it is negatively correlated to percent inhibition (I%) (Fig. 5-4B). Marennine allelopathic 

effect is linearly correlated to surface area-volume (SA/V) ratio as I% in target species 

increased with SA/V ratio (Fig. 5-4C), which could reflect interactions at the cell 

membrane level. Indeed, our results are in coherence with the previous work by 

Lyczkowski and Karp-Boss (2014) who observed the negative relationship between cell 

size and allelochemical impact of Alexandrium fundyense on Thalassiosira cf. gravida. 

These authors suggested that the toxicity of allelochemicals was biovolume- or biosurface-

dependent, meaning that large cells would need to absorb a greater amount of 

allelochemical compound to be as inhibited as smaller species, which could present higher 

flux of allelochemicals inside the cells. In other words, small cells would tend to 

accumulate more allelochemicals or toxins per unit volume due to a higher flux rate 

(Ribalet et al. 2007). Thus, these mechanisms could explain why, in our study, microalgae 

that have a smaller cell biovolume were significantly more vulnerable to marennine 
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although the initial total biovolume for both microalgae species at the beginning of their 

growth kinetics in co-culture were the same.  

 The alleopathic effect could also be influenced by the biomass of target species, 

which is also related to their growth rate. In our study, we observed that the percent 

inhibition I% due to allelochemical released was negatively correlated with the growth rate 

of target species (r = -0.890). This result is in coherence with previous works, where the 

growth rate of target species had significant role in susceptibility to allelochemical. For 

instance, Tillmann (2003) observed that the lytic activity of Prymnesium parvum decreased 

when increasing the cell concentration and growth rate of target organisms. 

 If a lower susceptibility to allelopathic compounds in large cells could be related to 

a lower surface-volume ratio, in some species, resistance against allelochemical 

compounds could also be related to the structure and properties of cell wall, which could 

represent an impermeable barrier. For instance, the resistance of P. tricornutum to 

allelochemicals has been reported where this microalga can outcompete Thalassiosira 

pseudonana (Sharp et al. 1979). Additionally, Vasconcelos and Leal (2008) also 

demonstrated that the allelopathic exudates could promote the growth of P. tricornutum. 

Ribalet et al. (2007) hypothesize that membrane characteristics and cell wall properties 

may have a role in cell vulnerability to allelochemical compounds. This would be a 

possible explanation why among large cells, P. tricornutum was less sensitive to marennine 

than T. lutea since the diatom has a more highly structured cell wall as compared to the 

haptophyte T. lutea (Johansen 1991; Bartual et al. 2008; Tesson et al. 2009). 

 

 

5.4.2 Marennine allelopathic effect on vulnerable species is function of irradiance 

This series of experiments was based on the hypothesis that H. ostrearia cultured at 

different irradiances could generate different allelopathic effects, depending on marennine 

production and accumulation at cell apices (intracellular marennine, IMn), and excretion in 

the growth medium (EMn). Our study showed that H. ostrearia growth rate increased with 

irradiance, a result in concordance with a previous work by Mouget et al. (1999), where H. 
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ostrearia specific growth rate was high and almost constant from 100 to more than 750 

µmol photons m-2 s-1. These authors also observed that at high irradiance, H. ostrearia cells 

displayed a reduction in size of the chloroplasts and an increase of marennine accumulation 

at the apices (IMn), a result confirmed by Rech et al. (2008), which showed that IMn 

increased with irradiance. In the present study, we observed that H. ostrearia produces and 

releases more marennine (EMn) at high irradiances (100 and 500 µmol photons m-2 s-1), as 

compared to low irradiance (20 µmol photons m-2 s-1). Furthermore, a good relation was 

observed between growth irradiance and EMn production per day and EMn per cell, which 

might influence allelopathic susceptibility of the target species. Indeed, this demonstrated 

that change in irradiance level can modulate marennine concentration in the medium, and 

significantly influence H. ostrearia allelopathic pressure on sensitive co-cultured 

microalgae. 

Marennine allelopathic effect varied with irradiance and thus with concentration, S. 

costatum co-cultured with H. ostrearia being significantly more inhibited at high 

irradiance, as compared to co-culture at low irradiance. Thus, light plays a significant role 

in allelochemical production by H. ostrearia, which consequently inhibited the growth of 

S. costatum despite non-limiting nutrient and light conditions. This result illustrates that 

light is possibly an important abiotic factor on allelopathy, not only because of possible 

photo-oxidation and degradation of allelochemicals, as hypothesized by Granéli and 

Hansen (2006), but also because of its direct influence on photosynthesis (e.g., Figueredo 

et al. 2007), growth and relative cell concentrations of emitter and target species, and the 

production of allelochemical compound (this study). 

 

 
 
5.4.3 Chemical warfare between algae and ecological importance of marennine 

When greening occurs in oyster ponds, H. ostrearia blooms and produces huge 

amount of marennine, a phenomenon that is accompanied by the decrease in abundance of 

other microalgal species (Robert 1983; Turpin 1999). Turpin (1999) observed that 

concentration of marennine in oyster ponds during a bloom of H. ostrearia might reach 5 
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mg L-1. This concentration is considerably high to inhibit the growth of S. costatum and 

other sensitive species (Pouvreau et al. 2007; this study), thus participating in the decline of 

their abundance (Robert 1983; Turpin 1999). Consequently, marennine released in oyster 

ponds is likely able to participate in the dominance of H. ostrearia, thus changing the 

community structure of microalgae through allelochemical mediation in such closed 

ecosystems. 

 Greening of marine invertebrates possibly due to blooms of H. ostrearia does not 

occur in oyster ponds in West of France only. It has been observed spontaneously 

elsewhere, in Great Britain (Sprat 1667), Denmark (Petersen 1916), United States (Mitchell 

and Barney 1918), Canada (Medcof 1945), and Australia (Gastineau et al. 2014). 

Moreover, recent findings revealed that other species of pennate diatoms from the genus 

Haslea that produce a blue pigment have been reported from different places in the world, 

for instance H. karadagensis in the Black Sea (Gastineau et al. 2012a), H. provincialis 

from the Mediterranean Sea (Gastineau et al. 2015), H. silbo sp. inedit from the Canary 

Islands, (Gastineau et al. 2014). Thus different species of blue Haslea produce “marennine-

like” pigments, which can interact with bivalves (Gastineau et al. 2012b) in the same way 

as purified marennine or Haslea culture supernatants, and the resulting greening of marine 

invertebrates elsewhere in the world could probably be linked to as many allelopathic 

phenomenons and competition between phytoplankton. 

  
 
 
5.4.4 Co-culture of Haslea ostrearia with aquaculture relevant microalgae: why and 

how? 

 
In aquaculture, massive use of conventional antimicrobials for disease control and 

growth promotion in animals increases the selective pressure exerted on the microbial 

communities and favors the natural emergence of bacterial resistance (Alderman and 

Hastings 1998; Van den Bogaard and Stobberingh 2000; Cabello 2006). For biohazard 

control and health management consideration, the utilization of H. ostrearia as oyster feed 

could be advantageous since marennine produced during algal growth could act as natural 
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antibiotics or bacteriostatic agent. Indeed, confirming previous studies on the biological 

properties observed using H. ostrearia supernatants (e.g., Carbonnelle et al. 1999; Bergé et 

al. 1999), Gastineau et al. (2012b, 2012c, 2014) showed that purified marennine inhibited 

the growth of bacterial pathogens such as V. aestuarianus and V. splendidus. For 

larviculture, considering that the cell size of H. ostrearia is overly large for larvae, 

supernatant containing extracellular marennine could be added to a diet consisting in 

resilient species of microalgae, in order to benefit from marennine protecting properties. In 

contrast, for adult stages H. ostrearia could be provided, either as the sole source of feed, 

or alongside robust species for an optimization of the feeding. Hence, aside being a 

“greening agent,” H. ostrearia could act as a nutraceutical, a feed with several benefits 

regarding animal health. 

 As a feed source, H. ostrearia has been used as a mono-specific diet to sustain the 

growth of C. gigas for weeks (Piveteau 1999; Cognie 2001), with almost 90% of 

digestibility (Barillé et al. 1994). Although the specific nutritional value of H. ostrearia for 

aquaculture is not yet documented like other diatoms, it has been shown that this diatom is 

a good source of eicosapentaenoic acid (EPA, 20:5n-3), with a relative proportion of total 

fatty acids of 12.2% (Dunstan et al. 1994), and 14.5% (Groth-Nard 1994). These authors 

showed that other main fatty acids in H. ostrearia are 16:0 (20.4 and 21.3%, respectively), 

16.1 (28.6 and 29.9), and 16:3 (10.6 and 15.1%). The diatom H. ostrearia could thus be 

used as an unique source of feeding for animals, depending on their growth phase. 

However, several studies conducted over the last decades on the alternative feeding of 

oysters, especially on their larval stage in which they are considerably vulnerable to 

pathogens, emphasized the idea that a mixed diet composed of several microalgal species 

gave better results than a monospecific diet (Guedes and Malcata 2012; Becker 2004). An 

explanation is that microalgae vary significantly in their nutritional value (Enright et al. 

1986; Brown et al. 1997). For instance, the haptophyte T. lutea is a rich source of 

docosahexaenoic acid (DHA, 22:6n-3), which represents 8-10% of total fatty acids, while 

diatoms are a good source of eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid 

(AA, 20:4n-6) (Volkman et al. 1989; Dunstan et al. 1994). However, utilization of T. lutea 

as monospecific diet seems not sufficient to optimize growth and survival, particularly for 
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bivalves’ larvae (Da Costa et al. 2015; Marshall et al. 2010; Pernet and Tremblay 2004; 

Pernet et al. 2005).  In our study, the allelopathic tests showed that T. suecica was one of 

the most tolerant species to marennine. However, we demonstrated also that diatoms rich in 

EPA and AA are susceptible to marennine and others sources of these essential fatty acids 

will need to be identified. One possibility could be a mixed diet composed of H. ostrearia 

and T. suecica, but such suggestion needs to be validated by nutritional study. 

 

5.5 Conclusion 

The present study shows that H. ostrearia can influence growth of microalgae 

species relevant for aquaculture possibly through allelopathic interactions in co-culture 

system. The magnitude of this allelopathic-like effect is species-dependent, S. costatum, C. 

calcitrans and T. lutea revealed as vulnerable species, whereas P. tricornutum and T. 

suecica were more resistant. The study also distinctly showed that the supernatants 

produced in realistic conditions of co-cultures of H. ostrearia with another species acted as 

an allelochemical mixture with marennine concentrations lower than ca. 1 mg L-1. These 

values are consistent with those observed in oyster ponds where oysters are fattened and 

greened, which could explain the domination of H. ostrearia in these ponds. Regarding a 

putative exploitation in aquaculture of marennine antibacterial properties, a mixture of H. 

ostrearia and insensitive species such as P. tricornutum and T. suecica is recommended to 

circumvent allelopathic interactions between phytoplankton used as feed for animals. 
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6 GENERAL CONCLUSION 

Among global aquaculture production, molluscs are the second fastest growing 

sector with approximately 11.5% of world aquaculture’s total revenue in 2012 (FAO 2014). 

However, this widespread growth of aquaculture co-occurred with the intensive use of a 

wide range of chemicals like antimicrobial drugs (Cabello 2006b). The use of antimicrobial 

drugs (AMDs) has been considered a common strategy to avoid disease outbreak, which 

later may cause economic losses. Despite the fact that efficiency of AMDs in eliminating 

pathogens has been evidenced (Defoirdt et al. 2007), their utilization has been restricted 

because of their potential side-effects on the health of fish, terrestrial animals, human 

beings and aquatic environments in general (Alderman and Hastings 1998; Miranda and 

Zemelman 2002; Cabello 2006a; Maas et al. 2007; Cabello et al. 2013). Additionally, in the 

new era of sustainable aquaculture, the usage of chemical product either in food product or 

in antibiotics should be limited or even be avoided. Thus, use of probiotics and natural 

antibiotics has been considered as a prospective solution in supporting sustainable 

aquaculture practices (Lee et al. 2009; Citarasu 2010; Sasidharan et al. 2010; Gastineau et 

al. 2012b, c; Fleurence et al. 2012; Mohapatra et al. 2013; De et al. 2014; García-Bueno et 

al. 2014; Reverter et al. 2014). 

The interest of using marine organisms as potential natural prophylactics in 

aquaculture has increased during the past few years. Microalgae have been considered as 

prospective resources due to their bioactive compounds, which can inhibit pathogens in 

fish and shellfish aquaculture (Desbois et al. 2008, 2009; Vo et al. 2011; Molina-Cárdenas 

et al. 2014). Among microalgae, H. ostrearia is a pennate diatom able to synthesize and 

excrete water-soluble blue pigment, marennine, which could potentially be used in 

aquaculture as a natural antipathogen (Gastineau et al. 2012c, 2014c). In vitro study 

revealed that both the intracellular- (IMn) and extracellular-form (EMn) of marennine are 

able to inhibit the growth of V. aestuarianus, V. splendidus and the proliferation of 

herpesvirus OsHV-1 (Gastineau et al. 2012c, 2014d), the oyster pathogen causing the 

major casualties in France and worldwide. Another advantage of this type of microalga is 

the biodiversity and spreading of H. ostrearia-like diatoms. Indeed, recent studies have 
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revealed that several species from the genus Haslea produce ‘marennine-like’ pigment and 

that they exist worldwide (Fig. I-4). Preliminary studies unveiled the similar biological 

activities displayed by the pigment of one of these species (Gastineau et al. 2012b). 

Therefore, studies on the blue diatoms from the genus Haslea are likely to be developed to 

obtain the maximum benefit for local shellfish industry specifically and to aquaculture in 

general. Nevertheless, several investigations need to be conducted prior to the development 

of the blue Haslea species and marennine-like pigments in shellfish culture. 

In the second chapter, it has been clearly demonstrated that the size of H. ostrearia, 

regardless of its biochemical properties, plays a crucial role in the process of pre-ingestive 

selection. Indeed, in vitro and in vivo sampling revealed that H. ostrearia cells with the 

largest sizes were preferentially rejected as pseudofaeces due to their impossibility to enter 

the principal filaments. As a consequence, the preferential rejection of large-size cells 

could change the structure of microalgal populations in the oyster ponds. Rejected large-

size cells in pseudofaeces could also favour the development and/or the maintenance of 

their sub-populations, specifically with their revival capacity after the preingestive process 

(Barillé and Cognie 2000). Furthermore, this study also revealed that the oyster 

preferentially ingests sexually mature cells over the immature ones, which could modify H. 

ostrearia cell size distribution and population dynamics in the oyster ponds. Indeed, this 

selective feeding process showed that only small-size and mature cells might be processed 

to the next feeding stage. Therefore, the importance of this predation pressure on the life 

cycle of H. ostrearia in oyster ponds remains to be assessed, especially considering the 

importance of marennine in the greening process, but also regarding its many biological 

activities (e.g., antibacterial) that could be exploited in aquaculture.  

To better understand the greening process in oyster, in chapter 3, it has been 

demonstrated that the greening of oysters occurred through pigment fixation, which results 

from the solubility of marennine in the medium. The EMn released from H. ostrearia, 

regardless its purity, can be fixed in oyster’s gills either by active (through mechanism of 

filtration) or passive (direct contact with oyster gill) mechanisms. Experiments confirmed 

the previous study by Pouvreau (2006) that the EMn is the main form of the pigment 

contributing to the greening process. Histological observation showed that the EMn 
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appeared to be fixed on the mucocytes of the gills and this fixation persisted for months. 

Possible ecophysiological impacts of EMn fixation on the gills of juvenile oysters have 

also been assessed. It has been showed that after short-term exposure, EMn fixation on the 

gills affects oyster feeding behavior, such as the clearance rate (CR). However, the CR of 

C. gigas recovered at a similar state with the control in less that 7 days after exposure to 

marennine, suggesting that the oysters are able to depurate or compensate for the adverse 

effect of marennine. Regarding toxicity of a compound, depuration mechanism has already 

been evidenced in bivalves and this process appeared to be species-specific and depending 

on the type of biotoxin or chemical substance as well as time of depuration (Smith et al. 

2001; Boisson et al. 2003; Corrêa et al. 2007, 2012; Love et al. 2010; Navarro and 

Contreras 2010; Luna-Acosta et al. 2011; Phuvasate et al. 2012).  

As stated in a previous chapter, in order to obtain the optimum benefit from 

marennine pigment, a holistic approach needs to be conducted. Following the preliminary 

results obtained on C. gigas, similar investigations were conducted on other bivalve 

species. Therefore, the aim of the study in chapter 4 is to determine the consequences of the 

greening on functionnal traits of other bivalve species than oyster C. gigas. Thus, in 

chapter 4 we demonstrated for the very first time the impact of purified EMn on juvenile 

M. edulis and C. virginica’s behavioral, physiological and biochemical characteristics. 

EMn fixed on the gills affected valve activity, with a stronger impact on oysters compared 

to mussels. After long-term exposure, SFG of both animals treated with EMn was 

significantly lower comparatively to control. Deterioration of SFG was mainly caused by 

the lower CR in EMn-exposed oysters and mussels. In addition, biochemical analysis 

revealed that EMn might increase unsaturation index on the gills membrane by changing 

PUFA concentration and FAs’ composition, but only in oysters. For mussels, a decrease in 

total FAs in lipid neutral fraction as an energetic reserve indicator was observed after EMn 

fixation. These results suggest that the persistency of EMn fixation on bivalve’s gills could 

also interfere with their biological performances to different extents. Moreover, these 

results will also improve our understanding about the impact of marennine and the 

greening consequences on the physiology of juvenile bivalves, and could possibly be 

extended to other bivalve species at different stages. Additionally, it should be kept in mind 
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that the concentration with the most significant effect on the parameters was 2 mg L-1 and 

that at lower concentrations, effects are unlikely to be observed. Thus, EMn with 

approximately 1 mg L-1 or lower concentrations could be used to take the benefit from the 

antibacterial properties without any detrimental effect on oyster or mussel performance. 

Indeed, EMn at this concentration has been shown to inhibit the growth of V. aestuarianus 

(Gastineau et al. 2012c). 

Finally, to have an insight on the suitability of H. ostrearia and marennine in 

aquaculture despite some formerly described allelopathic properties on other micro algae 

(Pouvreau et al. 2007), experiments of co-cultivation were conducted. In the last chapter, 

studies were designed to identify which algal species known for their relevance in 

aquaculture were either sensitive or resistant to H. ostrearia and its supernatant containing 

marennine. Here, it has been demonstrated that H. ostrearia influences the growth of other 

species through allelopathic interactions in co-culture system. The magnitude of this 

allelopathic effect is species-specific, S. costatum, C. calcitrans and T. lutea revealed to be 

vulnerable species, whereas P. tricornutum and T. suecica were more resistant. 

Additionally, it has also been showed that supernatants containing marennine could act as 

an allelochemical mixture, possibly explaining the domination of H. ostrearia in oyster 

ponds. A suitable diet to be proposed to aquaculturists could therefore be a mixture of H. 

ostrearia and the insensitive species mentioned above, in order to benefit both from the 

antipathogenic effects of marennine and the nutritional properties of the other species.  

A holistic point of view of all these works is provided in Figure 6-1. In regards to 

the results obtained during this thesis, several considerations could be made on the 

suitability of H. ostrearia and marennine in supporting bivalve’s culture. However, it shall 

be kept in mind that the cell sizes considerably impact the digestibility of H. ostrearia by 

oyster specifically or by other species of bivalves. Therefore, a further study in which stage 

of development of bivalve, H. ostrearia and marennine will be used should be conducted. 

Additionally, even though at a certain concentration (for example 2 mg L-1) EMn affects 

behavioural, physiological and biochemical performance, utilization of this pigment as a 

natural antibacterial agent seems possible to achieve bivalve sustainable culture, thus 

avoiding conventional methods for controlling microbial pathogens by use of disinfectants 
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and antimicrobial drugs, which have led to antibiotic-resistant bacterial strains and global 

health problems. 

  

  

 

 

Figure 6-1. Scheme of holistic approach in utilization of H. ostrearia and marennine in 
bivalve’s diets and their consequences on different aspect of studies. +) preferential 

selection on smaller Haslea ostrearia cell size; -) preferential rejection on larger size of   
H. ostrearia. 
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Abstract: In diatoms, the main photosynthetic pigments are chlorophylls a and 

c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom 

Haslea ostrearia has long been known for producing, in addition to these 

generic pigments, a water-soluble blue pigment, marennine. This pigment is 

responsible for the greening of oysters in western France, and presents different 

biological activities: allelopathic, antioxidant, antibacterial, antiviral, 

antiproliferative. A method to extract and purify marennine has been 

developed, but its chemical structure could hitherto not be resolved. For 

decades, H. ostrearia was the only organism known to produce marennine, and 

was considered worldwide in distribution. Our knowledge about H. ostrearia-

like diatom biodiversity recently increased with the discovery of several new 

species of blue diatoms, the recently described H. karadagensis, and H. silbo 

sp. inedit. and H. provincialis sp. inedit., to be characterized soon. These blue 

diatoms produce different marennine-like pigments, which belong to the same 
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chemical family and present similar biological activities. Aside from being a 

potential source of natural blue pigments, H. ostrearia-like diatoms thus 

present a added-value potential that deserves to be exploited. 

Keywords: aquaculture; biological activities; cosmetics and food industry; 

Haslea ostrearia-like diatoms; marennine-like blue pigments 

 

1. Introduction 

Seas and oceans cover more than 70% of the surface of the Earth, water mainly 

transmits and scatters blue wavelengths, and absorbs in the red part of the solar light 

spectrum, which makes astronauts say our planet is blue. In or under the sea, however, the 

blue color is scarcely distributed, as it can be observed only in a few organisms like the 

blue jellyfish Cyanea lamarckii, the blue coral Heliopora coerulea, the blue sea star 

Linckia laevigata, the giant clam Tridacna maxima, the mantle of which is commonly 

bright blue, and some species of surgeonfish from the genus Acanthurus, all being sorts of 

emblematic species. Micro-organisms appear better providers of blue color, as blue 

pigments have been evidenced long ago among bacteria, but first in terrestrial species. For 

instance in Proteobacteria, Pseudomonas aeruginosa produces pyocyanin [1, 2], a blue 

pigment that possesses antibiotic activities [3], and Pantoea agglomerans has recently been 

shown to produce a novel ‘deep blue’ pigment [4]. The study of marine bacteria started and 

expanded later, but a few species are known today to synthesize blue pigments [5]. For 

example, glaukothalin is produced by different species from the genus Rheinheimera [6, 7], 

and indigoidine is encountered in a strain of the marine bacteria genus Phaeobacter, in 

which it plays a role in the colonization of surfaces [8]. It is worth noting that indigoidine is 

also encountered in the terrestrial plant pathogen Erwinia chrysanthemi [9], in which this 

blue pigment seems to be partly responsible for its pathogenicity [10]. 

Regarding photosynthetic organisms, blue pigments can be observed in prokaryote as 

well as in eukaryote species. Formerly known as 'blue algae', cyanobacteria have specific 

accessory protein-pigment complexes, the phycobiliproteins, some of them, phycocyanin 

and allophycocyanin having a blue color, because they absorb orange and/or red light [11]. 

Phycobiliproteins were discovered in the 19th century, phycocyanin being first described in 

a strain of Oscillaria sp. [12], allophycocyanin in the red macroalga Porphyra vulgaris 

[13]. The partial protein nature of these two molecules was suggested by Mölisch [14], in 

the line of his work on phycoerythrine [15]. Kylin [16] further demonstrated that each 
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molecule was a complex of a chromophore [phycobilin] covalently bound to a protein. 

Phycocyanin and allophycocyanin are not restricted to cyanobacteria, as they have been 

evidenced in two groups of photosynthetic eukaryotes, Rhodophyta and Glaucophyta. 

Members of another group, the Cryptophyta, contain only one of these two blue pigments, 

phycocyanin [e.g., 17]. Until very recently, only two other photosynthetic eukaryotes, both 

members of the Heterokontophyta, were known to produce blue pigments, the recently 

discovered Aurearena cruciata (Aurearenophyceae) in its senescent stage [18], and the 

long-known pennate diatom Haslea ostrearia (Bacillariophyceae), during its exponential 

phase of growth and ageing [19]. H. ostrearia, the ‘blue navicula’, produces the specific 

pigment marennine, responsible for the ’greening’ of oysters.  

An explanation why the color blue is relatively seldom in organisms and organic 

molecules could be related to the biophysical processes required to absorb light, red or 

yellow wavelengths carrying less energy than blue ones. If the color is not stemming from 

metal centers, it is usually the excitation of delocalized electrons from their molecular 

orbital ground state π to the excited state π* which makes a molecule appear colored. One 

double bond alone is usually not sufficient as it absorbs light in the UV range. Only the 

conjugation of several double bonds broadens the energy range of the different π orbitals, 

reducing the energy gap between the highest π and the lowest π* orbital. More than ten 

conjugated double bonds are necessary to reduce the energy gap to absorb red light [20], so 

that the molecule appears blue, and this is a rather seldom constellation. Similar 

considerations count for aromatic rings, where usually adjacent groups can reduce the 

absorption energy, but hardly into the red region.    

In this review, we focus on the diatom H. ostrearia, its blue pigment marennine, and 

their many interactions with oysters. We present a historical perspective of our knowledge 

of marennine complemented by some new insights, regarding its chemical nature, 

characterization, and biological properties. We also present data about H. karadagensis, the 

second species of blue diatoms recently discovered in the Black Sea, and H. provincialis 

sp. inedit. and H. silbo sp. inedit., two newly blue diatom species discovered in the 

Mediterranean Sea and the Canary Islands, respectively [21]. At least one of the blue 

pigments produced by these new species (H. karadagensis) is different from marennine but 

all belong to the same chemical family. Finally, we address the unexpected biodiversity of 

blue diatoms, and the added-value potential of marennine-like pigments, in aquaculture, 

cosmetics, food and health industry.  
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Figure 1. Haslea ostrearia in optical microscopy. 

 

2. The marennine-oyster connection: trademark of Haslea ostrearia 

In the following, we will refer to blue pigments in diatoms as ‘marennine’ when 

produced by H. ostrearia, and as ‘marennine-like pigments’, when produced by another 

species of blue diatoms (Figure 1). Indeed, no other name can be provided in accordance 

with the IUPAC standards, as the chemical structures of these pigments are unresolved yet. 
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Marennine is the gallicized version of ‘marennin’, proposed by Lankester [22], in reference 

to Marennes-Oléron, a region of Western France where oysters have been farmed for 

centuries, especially renowned for producing ‘green oysters’. In the Marennes-Oléron Bay, 

as well as in Bourgneuf Bay, oysters are matured and fattened in old salt marshes, the so-

called ‘claires’. In these shallow and nutrient-rich ponds, phytoplankton proliferates and 

may feed oysters whose size rapidly increases and organoleptic properties improve. The 

duration of the fattening period and the density of the oysters in the ponds are regulated 

according to specific standards for the bivalves to be commercialized as ‘fines de claires’. 

In these ponds, H. ostrearia may become dominant year after year, producing large 

amounts of marennine, which are released to the seawater. It adheres to oyster gills, a 

phenomenon that increases palatability and therefore market value of the bivalves (red 

label ‘fines de claires vertes’).  
 

 

2.1. The greening of oysters, signature of the diatom Haslea ostrearia 

As a biological model, green oysters provoked questioning and wondering for centuries. 

The earliest notification known is ‘The history of the generation and ordering green 

oysters, commonly called Colchester-oysters’, by Thomas Sprat, by the end of the 17th 

century [23]. Thomas Sprat was an Anglican bishop of Rochester, famous for his ‘History 

of the Royal Society of London’, in which he included this article on the green oysters of 

Colchester. He mentioned that oysters from the Tolesbury ponds could present a green 

color during summer, a phenomenon he suspected resulting from the actions of sun and 

earth, leading to a green coloration of pond bottom, before oyster gills turn green. The 

same environmental causal factors, along with the brackishness of waters, were addressed 

150 years later [24]. Other hypotheses, not referring to environmental issues, ascribed the 

greening to a disease similar to obesity [25], or to ‘liver malfunction’ [26]. The role of 

grass, plants and mosses grown on the shores of the ponds and possibly ingested by oysters 

or some kind of Priestley's green matter was also hypothesized [27-29]. In line with these 

speculations, some authors suspected that the water of ponds, and consequently oysters, 

could be colored by pigments originating from green macroalgae [30]. Finally, some 

authors estimated that greening could result from the presence of specific metallic ions in 

pond sediments [31], or from unusual interactions with copper [32, 33], a metal long-

known for inducing changes in color in oysters [34]. Indeed, such unusual color may 

represent a real turn-off, possibly reflecting the presence of pollutants as zinc or copper 
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[35-37]. In France, however, green oysters are gastronomically famous and more expensive 

than ordinary oysters. Moreover, from a historical perspective, green oysters have always 

been culinarily celebrated in this country [38-40], even being considered a dish fit for a 

king, at the very least one of the Sun King, Louis XIV's favorite meals [41]. 

The first experimental work on green oysters was reported by Benjamin Gaillon [42], an 

officer of French Customs during the Restauration and the early July Monarchy. Gaillon 

worked in the town of Dieppe [Normandy] and dedicated his free-time to life sciences, 

with a special interest in green oysters, common at that time in Dieppe area. Gaillon 

sampled green oysters, scrapped their shells and made microscopic examinations. He 

observed small motile organisms with ‘green’ color, not blue like H. ostrearia cells, 

possibly because of the limits of his microscope device. Gaillon hypothesized these motile 

organisms could be responsible for the greening of oysters, and considered they were 

animals, which he called Vibrio ostrearius, based on the classification of worms by 

Bruguière [43]. Controversially but not impartially, Goubeau de la Bilennerie [24] argued 

that the greening exclusively depended on environmental factors and oyster farmers’ know-

how, a phenomenon thus appearing more acceptable for oyster consumers. Indeed, a 

possible impact of Gaillon’s theory on consumers and green oyster sales was of some 

concern for Goubeau de la Bilennerie, president of the court in Marennes [for a full study, 

see 44]. 

Figure 2. Greening effect of marennine on bivalves.  [a] Pacific oyster; [b] 

Scallop; [c] Cockle; [d] Clam. 
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2.2. Haslea ostrearia, a very singular diatom  

The topic of green oysters involved Gaillon in a second controversy, with Jean-Baptiste 

Bory de Saint-Vincent, botanist, explorer, and Dragoons cavalry officer during the 

Napoleonic wars. Whereas Gaillon advocated for an animal nature of V. ostrearius, Bory 

de Saint Vincent classified it alongside with diatoms into his 'psychodiaire' reign, which 

contained all organisms whose position between animal and plant was unclear. Bory [45] 
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thus proposed the name Navicula ostrearia, which remained for 150 years. Taking profit 

from scanning electron microscopy facilities, Simonsen [46] transferred the 'blue navicula' 

from the genus Navicula to Haslea, a new genus he created for this purpose, based on 

specific morphological features of the frustule, and he used H. ostrearia as the type-

species. By doing so, Simonsen acknowledged G.R. Hasle for her considerable work on 

phytoplankton in general, and on diatoms in particular.  

Haslea ostrearia is a tychopelagic diatom [47] - an organism that can be benthic or 

epiphyte - but also planktonic [48]. H. ostrearia is euryhalin [49, 50], and can develop in 

high light environments [51]. Thus this diatom seems well adapted to oyster ponds, 

characterized by shallow and nutrient-rich water, where it mainly proliferates in Autumn 

and Spring, and can outcompete other microalgae [47, 52]. Marennine produced during H. 

ostrearia blooms is released into the seawater, and the ponds turn green. In such ponds, 

oysters can become green in a few days, by exhibiting light to dark green gills (Figure 2a). 

This phenomenon is not restricted to oyster ponds in Western France, as it can happen 

spontaneously elsewhere, in Great-Britain [23], Denmark [53], the United States [36, 54], 

Canada, Australia, etc. It is worth noting that naturally, the greening happens in peculiar 

environments, usually protected bays, with quiet waters and fresh water inlets. The 

greening is not limited to oysters, as it also occurs in other invertebrates, polychaetes, 

crabs, littorina, mussels [55], sea anemones [42], scallops, clams and cockles (Figure 2b-d). 

If greening invertebrates is not the blue diatoms' raison d'être, it is as least their signature.  

3. Historical perspective on marennine studies 

3.1 First hypotheses regarding the chemical nature of marennine 

For more than hundred years, the presence of such intriguing and unusual blue pigment 

inside unicellular algae has been a fruitful matter for contradictive theories and 

inconclusive experimentation. The hypothesis of a metallic salt was early proposed and 

rapidly rejected [22, 26, 35, 36, 56]. Then there was the 'pigment connection', with 

hypotheses successively relating marennine to carotenoids [57], or to chlorophylls [32, 47, 

55, 57, 59, 60, 61], possibly resulting from their degradation. Other authors linked 

marennine with cyanobacterial pigments, thus suggesting a protein nature for this water 

soluble molecule [54, 62, 63] or proposed it could be an anthocyanin, with respect to stress 

and pigment accumulation in cells [64]. Finally, recent advances related marennine to a 

mixture of different macromolecules [65], or to a polymer possibly of polyphenolic nature 

[66]. It has been shown that marennine exists in two slightly different forms, intracellular 
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and extracellular [67], and that for both forms the color changes with pH, from blue (acidic 

pH) to green (basic pH) [66]. 

3.2 Biosynthesis of marennine: when, where, why, and how it happens 

Although the work of Pouvreau et al. [66] represents the most achieved investigation on 

marennine characterization so far, the exact structure of marennine is still unknown, and 

the description of its biosynthesis pathway a far-off goal. It is also unclear when marennine 

synthesis is triggered in the cell. There is a consensus on the stimulating effect of high light 

conditions and long photoperiods [49, 68-70] with just a few authors advocating the 

opposite theory [71]. An impact of the light quality, with a positive effect of blue 

wavelength, has been evidenced [19, 68, 70]. Some authors suggested that marennine 

production could be influenced by organic substances like glucosamines [57, 71], or result 

from salt-induced stress [32, 49, 58, 59], or nutrient deficiencies, e.g., iron, vitamins [47, 

49]. In the line of the ‘nutrient deficiency hypothesis’, it has also been suggested that 

marennine synthesis could result from, or be enhanced by the senescence of cells [72]. It is 

worth noting that this could be the result of an apparent and transient accumulation inside 

the cells, due to a reduced division rate, rather than an increase in production yield. 

Furthermore, it has been shown that H. ostrearia cultures in exponential growth phase 

release marennine continuously in the medium [19], but the mechanisms responsible for 

the release of marennine out of the cell, and the factors that control this release are not 

determined yet. However, according to Nassiri et al. [73], marennine is accumulated in 

vesicles at the apex of the cells and excreted by exocytosis. A sort of secretory vesicles 

containing marennine (a few µm in diameter) can be observed in contact with cells in 

active growth in Petri dishes [unpublished]. These vesicles attach to the cells during their 

erratic movements, then they detach from the cells, further float for a few minutes, before 

they finally collapse and release marennine in the medium.  

There is no consensus on a possible relation between marennine production and 

photosynthetic pigment content, some authors having observed a negative correlation [32, 

49, 60, 61, 71], others no correlation [19, 47, 74, 75]. A striking feature associated with 

marennine production and accumulation in the cell apices is the reduction in size of 

chloroplasts [32, 49, 55, 71, 76- 81], possibly related with a decrease in photosynthetic 

activity [74]. However, the plastid size change could also reflect the decrease of the cellular 

content of major photosynthetic pigments (chlorophylls a and c, fucoxanthin), when 

growth irradiance increases [51], a common photoacclimation response in phytoplankton. 

Moreover, the impact of this size modification on the organisation and stability of 

thylakoids remains uncertain, as observations were contradictory [61, 73].  
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Regarding the autecology of H. ostrearia in oyster ponds, a few authors hypothesized a 

correlation between the accumulation of marennine in the cells and a change in algal 

behaviour, switching from the planktonic to the benthic stage, together with changes in its 

metabolism [47, 57, 71], blue cells of H. ostrearia becoming able to assimilate reduced 

forms of nitrogen and carbon [52]. Moreover, the many biological activities displayed by 

marennine and marennine-like pigments [see below] could explain why these specific 

pigments represent a competitive advantage for the blue diatoms. 

3.3 First attempts regarding production, extraction, and purification processes 

A series of engineering- and process-oriented works were conducted at the end of the 

90’s dealing with bioprocessing issues of H. ostrearia production and marennine release 

and extraction with photobioreactors and membrane separations [82, 83]. Vandanjon et al. 

[84] proposed a method to produce a large amount of extracellular marennine (EMn) by 

simultaneous concentration and desalting of the pigment released into the culture medium 

(Blue Water) using a 3 kDa cut-off ultrafiltration membrane. The resulting permeate 

contained EMn and a mixture of several components in a large range of molecular weights, 

as only a 3 kDa cut-off membrane was used. Thus this experimental approach did not allow 

obtaining very pure pigment. On the other hand, the aim of this work was mainly to 

concentrate a large amount of marennine for developing potential industrial applications, 

which did not require absolutely pure product.  

Then, in order to increase the recovery of the intracellular marennine (IMn), a 

continuous-flow-high-pressure disrupter was evaluated [85]. Cells were partly broken from 

30 MPa, but a pressure of 100 MPa (1 cycle) was required to obtain optimal pigment 

release. The latter was directly linked to the physical cell breakage dependent upon the 

applied pressure and the number of disintegration cycles. Granulometric analyses by laser 

diffraction (0.04–2000 µm) revealed a size reduction of cell fragments when increasing 

these two operating parameters.  

In view of optimizing both production rates in photobioreactors and extraction yields of 

marennine, Vandanjon et al. [84] studied the effects of shear stress on H. ostrearia cells 

due to circulation in pumps and valves of the production or harvesting systems. For the 

pumps, it was shown that shear stress was dependent on the type of pump, but that 

mechanical shear could have different effects even if the pumps and the number or 

frequency of loops were the same. In throttling valves, the aim was to correlate the effect of 

shear to a parameter related to the inner geometry of the valve and to operating conditions. 

An overall parameter was then evaluated, i.e., the pressure drop coefficient Kv which 

integrates both the type of valve and its opening degree. As a consequence, the modeling of 
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the shear effects was conceivable, basic descriptive data used so far (type of pump, 

geometry or opening degree of the valve, etc.) being completed and partially substituted by 

quantitative parameters (rotating velocity, capacity, or internal leakage for the pumps, Kv 

coefficient for the valves).  

A new photobioreactor coupled with an ultrafiltration system [immersed membranes] 

was investigated for the continuous culture of H. ostrearia in order to improve marennine 

production and recovery [86]. The system, with a simple design, was particularly 

interesting, because energetic costs were minimized, and the cells were not submitted to 

any shear stress due to pumping or circulation. The photobioreactor was of cylindrical type, 

a membrane module was placed at the bottom of the reactor and the hydrostatic pressure 

was used as driving force both for the permeation and periodical backflushing steps. The 

production of biomass and marennine was stable for a three-week period, with marennine 

concentration three times higher than in a conventional batch photobioreactor.  

A last study dedicated to bioprocessing aimed to compare the pigment productivity 

obtained with two types of photobioreactors [87]. In the first process, cells were free and 

recycled in a photobioreactor combined with a membrane ultrafiltration equipment 

(external loop). In the second system, cells were entrapped in a tubular agar gel layer in a 

photobioreactor of original design. The influence of nitrate concentration and renewal rate 

was examined. Experiments, conducted on long term periods (up to 40 days) without any 

external contamination revealed that marennine productivities of more than 5–7 mg 109 

cell−1 d−1 could be reached with both bioreactors. The advantages and drawbacks of each 

process design were also discussed.  

Marennine is insoluble in all organic solvents, and first attempts to extract it from algal 

biomass were made using various aqueous solvents, e.g., pure distilled or tap water, or 

bicarbonate or phosphate buffers. Regarding purification, Robert et al. [19] published a 

purification procedure in which intracellular marennine (IMn) was extracted using organic 

solvent and water mixtures and further solubilized in 500 mmol L-1 K2SO4 at 80°C. This 

method obviously increased the possibility of obtaining denaturated pigment and was not 

convenient to produce large amounts of IMn. More recently, Pouvreau et al. [67] 

developed a new method for the extraction and purification of both forms of marennine 

(Figure 3). EMn and IMn were selectively extracted from Blue Water (blue-coloured 

culture medium) and algal pellet, respectively, and were then purified by a three-step semi-

preparative procedure using two ultrafiltration steps and one anion-exchange 

chromatography step. This method was easily applicable to a large production system. 

Finally, after dialysis, UV-Visible-photodiode array analysis showed that EMn and IMn 
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were not contaminated, suggesting that these compounds reached the degree of purity 

required for further biochemical investigations. 

Figure 3. Purification process of marennine and marennine-like pigments. 
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3.4 Marennine structure: what’s new? 

In the line of the preliminary characterization achieved by Pouvreau et al. [66], a series 

of experiments are currently conducted to increase our knowledge about the chemical 

structure of marennine, mainly using nuclear magnetic resonance (NMR) techniques. All 

current NMR experiments have been carried out on a Bruker Avance 400 MHz 

spectrometer equipped with a 5 mm BBFO+ probehead. Samples of EMn, purified as 

described in Pouvreau et al. [66] were dissolved in 0.5 mL of 25 mM phosphate buffer in 

D2O with 40 mM NaN3 at pD 6.6 (corresponding to pH 7.0) to a concentration of 2.4 mM. 

A 1H-13C HSQC was acquired with 64 repetitions and 800 increments in the indirect 

dimension, applying the echo-antiecho scheme, until a maximal t1 of 24.8 ms. A 1H 

TOCSY with 90 ms DIPSI-2 mixing was acquired using 16 repetitions and 800 increments 

in the indirect dimension until a maximal t1 of 106 ms.   

The standard one-dimensional 1H spectrum of EMn shows signal groups without any 

resolved individual signals (top of Figure 4a). Marennine is, thus, a macromolecule with a 

relatively complex structure. 1H diffusion spectra [diff] [“DOSY”] reveal a diffusion 

coefficient of about 10-10 m2/s for both EMn and IMn, consistent with the mass in the 10 

kDa range determined by mass spectrometry [66]. The high signal at 3.58 ppm is identified 

as impurity.  

Figure 4.  [2DNMR]. [a] 1H-13C HSQC of the extracellular form of marennine 

(EMn) in deuterated phosphate buffer. On top the corresponding 1D 1H 

spectrum. The lines separate areas of carbons with – among others – two 

hydrogen atoms and with one or three hydrogens, as determined by an 

additional edited HSQC with lower resolution and signal-to-noise ratio. [b] 

Generic pyranose. [c] Ring region of a 1H-1H TOCSY of EMn with 90 ms 

mixing time. The strong 1H signal at 3.65 ppm stems from an impurity. 
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A [partial] resolution of signals can only be achieved by two-dimensional [2D] NMR. 

The correlation signals in a 1H-13C HSQC spectrum identify chemical groups by a 

combination of the hydrogen and carbon chemical shifts. An edited HSQC allows, in 

addition, determining the number of hydrogen atoms attached to a carbon by the sign of the 

signal. The sensitivity is however lower. We have acquired an HSQC (Figure 4a) and an 

edited HSQC of EMn (not shown). Three groups of signals can be seen in the HSQC 

spectrum, the most striking being in the chemical shift ranges of 60 – 75 ppm in the 13C 

dimension and 3.5 – 4.5 ppm [1H]. This chemical shift distribution matches – among others 

– the ring carbons (C2 – C5 in the case of a pyranose) and hydrogens of saccharides. This 

is supported by a small group of signals in the relatively unusual chemical shift region of 

95 – 105 ppm [13C] and 4.3–5.8 ppm [1H] characteristic of anomeric carbons [C1] and 

aldose hydrogens. According to the edited HSQC, these signals belong to a carbon bound 

to one hydrogen atom. Only some signals with relatively small carbon shifts correspond to 

carbons bound to two hydrogens, corresponding to a CH2OH group [C6; also C1 in some 
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furanoses]. According to the chemical shifts of both hydrogen and carbon atoms, the 

anomeric signals can further be divided into a group attributable to carbohydrates in the α 

[97 – 102 ppm] × [4.9 – 5.7 ppm] and the β form [usually 103 – 106 ppm, here lower] × 

[4.3 – 4.8 ppm]. The interpretation of the HSQC spectrum is confirmed by 1H-1H 

correlation experiments. Figure 4b displays the ring region of the TOCSY spectrum and 

shows spectral overlap typical for polysaccharides in the non-anomeric ring proton region 

(Figure 4c). Cross-peaks of H2 to α-anomeric hydrogen signals H1 are weak even after 

relatively long mixing time (90 ms), because the equatorial-axial J-coupling is weak [88]. 

The fact that marennine consists to a large extent of glycosidic elements suggests a 

connection to the main energy storage compound of diatoms, chrysolaminarin, in particular 

under consideration of the large amount of marennine produced by H. ostrearia. The 

spectra are however more complex than that of chrysolaminarin [89]. Moreover, there is a 

large number of signals in the aliphatic region at about [10 – 40 ppm] × [1.0 – 2.5 ppm]. 

The CH3 and CH2 areas are separated by their chemical shifts and the edited version of the 

HSQC. A particular high 13CH2 signal has a chemical shift of 28 ppm; it is well visible 

already in the 1D 1H spectrum at 1.22 ppm. Diffusion experiments [DOSY] confirm that 

this signal comes from the macromolecule and not from an impurity. It could indicate the 

presence of longer CH2 chains. Such a unit would however conflict with the general 

hydrophilic character of marennine. Steroids are an aglycone substance group that could 

explain the general dispersion of aliphatic signals.  

In a previous study using primarily biochemical tests on various potential substance 

groups [66], a glycosidic digestion test on sugars had been negative. It is however possible 

that the other chemical groups compromised the detection by this method. On the other 

hand, it was concluded that marennine was a substance with polyphenolic or similar rings, 

but signals from the aromatic region in the HSQC spectrum are too weak to detect any 

correlation under the present experimental conditions (see also section 5). The Folin-

Ciocalteu and the Prussian Blue tests on polyphenols might have been positive due to these 

few groups, while NMR identifies the scaffold of the macromolecule. This also counts for 

the chromophore. Whatever its nature is, polyphenolic or a different type, it is well possible 

that it constitutes only a small part of the molecule, which does not become apparent on the 

first impression from the principal NMR signals of this molecule. Pouvreau et al. [66] also 

report the elemental composition of marennine, where, remarkably, oxygen constitutes 

about 50% of the molecular mass. This result, since then confirmed using different samples 

of purified marennine [unpublished data], is consistent with a polyphenol but also with a 

glycoside. 
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4. Mass production of Halsea ostrearia: there is many a slip from cup to lip 

Fundamental research regarding the characterization of marennine-like pigments can be 

sustained by algal production at the laboratory scale, but mass production of H. ostrearia is 

a prerequisite before achieving any added value at the industrial scale. Therefore different 

attempts were made to grow this peculiar diatom. According to the literature, H. ostrearia 

has been cultivated mostly at the laboratory scale (< 100 L), but also at a semi-pilot scale 

(up to 10 m3) [90], or using photobioreactors (< 7 L) [86]. At a larger scale, H. ostrearia 

was grown industrially for several years under indoor controlled conditions to produce 

marennine, mainly for the intensive greening of oysters [knowledge transfer from U. de 

Nantes to SOPROMA, Bouin, France]; however this production unit ceased its activity 

about 7 years ago for economic reasons. In fact, the only structures for the mass production 

of H. ostrearia that have ever been fully operational are oyster ponds. Unfortunately, 

blooms of H. ostrearia in these ponds [and as a consequence the greening of oysters] 

remain erratic and non-controllable. So far, production units of H. ostrearia are still to be 

developed, taking into account the specificities of benthic microalgae, that use tank surface 

to grow and generally tend to form biofilm, which makes them difficult to grow in 

conventional culture systems designed for suspended microalgae. Since the technology to 

produce massive algal biofilms is not readily available, a simple photobioreactor could be 

designed in order to maximise H. ostrearia productivity and, mostly, excretion of 

marennine. Some relevant traits of H. ostrearia autecology must be considered to design 

the culture system: growth is characterized by a settlement on the marine floor, where 

maximal biomass (as far as 350 000 cells L-1) is obtained in conditions of shallow waters 

(as in the oyster ponds) and high light intensity [47]. Marennine is then released in the 

water, with concentration ranging between 2 to 5 mg L-1 [90].  

With this goal but also these constraints in mind, a photobioreactor (PBR) dedicated to 

the production of H. ostrearia and marennine has been devised. This simple PBR was 

designed in order to obtain large quantities of marennine to further study its biological 

activities and chemical structure. Also, it was designed in a simple manner so that it could 

be easily set-up by end-users, in laboratories as well as in hatcheries. Flat bottom 

polyethylene circular tanks of 200 L were used (diameter: 122 cm), covered by acrylic 

glass with light supplied from above by T5-5000K high-output fluorescent tubes (General 

Electric) at about 25 cm from the cover. A drain was installed at the lowest point of the 

tank, allowing water sampling and harvesting. Pre-filtered air (0.22 µm) was supplied to 

the dead space inside the tank through the cover to keep a positive pressure inside the tank, 

preventing contamination from the outside and purging air heated by the proximity of the 
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light source. The proximity of the air source relative to the water surface also generated a 

slight agitation at the surface, thus ensuring a slow but constant water movement in the 

tank and providing nutrient renewal to the cells.  

The study was conducted at the Université du Québec à Rimouski (UQAR) Station 

Aquicole at Pointe-au-Père (Québec, Canada), with the use of two PBRs. Algal production 

was carried out using the NCC-136 strain of H. ostrearia isolated from Bourgneuf Bay 

[France] and provided by the Nantes Culture Collection (NCC). Cells were grown in a 

semi-continuous mode in sterilized seawater enriched with F/2 [91] and 30 mg L-1 silicates. 

Culture was initiated in 500 mL Erlenmeyer flasks filled with 200 mL seawater, and then 

transferred to 2.8 L Erlenmeyer flasks filled with 2 L seawater. Growth irradiance was 125 

µmol photons m-2 s-1 and room temperature was maintained at 20˚C. Two of these 2 L 

flasks were then used to inoculate one PBR with approximately 2000 cells mL-1. To 

minimize light attenuation by the water column (<10 cm), tanks were half filled with 100 L 

filtered (1 µm) natural seawater (salinity 28) supplemented with commercial nutrients (f/2 

and silicate from Fritz) and ultrafiltered at 50 kDa (Romicon, KOCH Membrane, 

Wilmington, Massachusetts, USA). The irradiance level was 180 µmol photons m-2 s-1 

(PAR Radiometer, Macam, Q201), measured under the light source at the bottom of the 

empty tank. Light intensity decreased in a linear way to reach 100 µmol photons m-2 s-1 at 

the border of the PBR (Figure 5a). Room temperature was kept at 16˚C by an air-

conditioner, for a maximal water temperature of 19.5˚C. Both rooms were kept in a 14/10h 

light/dark cycle. Two cultures were run in separate PBRs, under the same conditions. 

Marennine concentration was determined on the cell-free culture water (syringe-filtered on 

0.22 µm) by optical absorption according to the Beer-Lambert law. Optical density (OD) 

was measured at 677 nm in a 10 cm cell by means of a Cary 100 Bio UV-Visible 

spectrophotometer (Agilent Technologies, Mississauga, Ontario, Canada), using the 

specific extinction coefficient for EMn following Pouvreau et al. [92]. Optimal algal 

biomasses in the tanks, based on cells and biofilm appearance, were obtained after 12 days 

of culture growth, like in pre-culture realized in smaller volumes (confirmed with Nageotte 

counting chambers). Marennine release into the medium started after 10 days of growth 

(Figure 5b), which corresponds to the end of the exponential phase. Marennine production 

was relatively constant between day 10 and day 33, with a production rate of about 0.3 mg 

L-1 d-1. Maximal extracellular concentration obtained was about 6.2 mg L-1 in both PBRs.  

Figure 5. [a] Photography of the two PBR's used in this experiment. [b] 

Marennine concentration (mg L-1) in the PBR, measured 
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spectrophotometrically on the culture medium.  Values are means of 

concentrations obtained in each PBR (n=2). 

Different culture methods were tried in the past by different authors, with estimated 

marennine productivities ranging from 3 to 100 mg L-1 [86, 87, 90, 93-96]. However, 

according to these authors, these values were obtained using a cytophotometric method and 

a calibration curve established with unpurified marennine, and not referring to a published 

extinction coefficient [63], which is more an estimation of marennine production in a 

culture rather than a true quantification of the pigment [66]. In the literature, there is no 

quantification of marennine production in natural environments or in a culture that uses the 

molar extinction coefficient determined on purified marennine by Pouvreau et al. [66]. 

Therefore, a direct comparison of our results with other results in the literature is difficult.   

Figure 6. Haslea karadagensis in optical microscopy. 
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5. Marennine-like pigments and Haslea ostrearia-like diatoms: expanding families 

Over the past two centuries, diatoms with blue tips, or marine invertebrates with greened 

gills were reported from almost all seas and oceans, which made Navicula or Haslea 

ostrearia considered as unique and cosmopolitan species [97, 98], and marennine a specific 

curiosity. Indeed, all blue diatoms observed were ascribed to N. or H. ostrearia, with the 

possible exception of a sample collected in Honduras, identified as N. fusiformis var. 

ostrearia by Grunow [99]. The biodiversity of blue diatoms has recently been unravelled, 

with the collection of phytoplankton samples in different countries and continents, and 

their examination using various and complementary methods, i.e., biometry of natural 

populations, morphometry of the frustules, molecular markers, reproductive compatibility, 

UV-visible spectrophotometry. The first novelty came from the shores of the Black Sea in 

the Crimea peninsula (Ukraine), with a second species of blue diatom characterized and 

named Haslea karadagensis [97]. Despite a global similarity with H. ostrearia when 

observed in light microscopy, stria density of the frustule, rbcL and ITS markers, and the 

inability to interbreed [97, 100], constitute as many evidences that the two species are 

different. Another major difference that allows distinguishing between the two species 

concerns their pigments, as blue apices in H. karadagensis appear darker than in H. 

ostrearia (Figure 6). Both pigments exhibit a comparable and reversible bathochromic shift 

when pH increases, but different λmax (Figures 7 and 8). Furthermore, UV-visible 



	 205	

spectrophotometry shows that the pigment produced by H. karadagensis presents two 

isobestic points when pH varies from 2 to 12 (Figures 7 and 8), in comparison with only 

one in marennine [66]. Regarding biological properties, both pigments demonstrated a 

greening effect on bivalves, and as detailed below, antibacterial, antiviral and antifungal 

activities [98, 101].  

Figure 7. Absorption spectra of purified intracellular marennine from H. 

ostrearia depending on the pH (ranging from 2 to 12). Inset: position of the 

peak of absorption in the visible part of the spectrum. 

 

More samples of blue diatoms were obtained from the Canary Islands (La Gomera), and 

the Mediterranean Sea (French coast, between Toulon and Nice). Investigated by the same 

complementary approaches, these samples proved to be two new species of blue diatoms. 

They were named Haslea silbo sp. inedit. and Haslea provincialis sp. inedit., respectively 

[21]. They are currently being characterized. Both species produce a blue pigment, which is 

highly similar if not identical to marennine, as evidenced by UV-visible spectrophotometry 

(not shown), and Raman spectrometry (Figure 9). Both techniques did not allow 

discriminating between intracellular and extracellular forms of these pigments, in contrast 

to marennine. However, these two techniques could be less suited for going further in the 

study of these pigments. For instance, Raman spectroscopy showed that the pigment 

purified from a supernatant (extracellular form) of H. provincialis sp. inedit. displays a 
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spectral signature similar to IMn, but the NMR spectra appear to be more distinctive. 

Figure 10 [1H NMR] a compares the 1H NMR spectra of the extracellular form of the 

pigment from H. provincialis sp. inedit. with EMn and IMn from H. ostrearia. All three 

spectra show a general similarity in the represented signal groups, which manifests that the 

molecules belong to the same substance class. There are, as already seen in the 1H-13C 

correlation spectrum of EMn, essentially an important signal group at 3.4 to 5.4 ppm, 

assigned to sugar ring hydrogens, and the signals in the aliphatic region between 0.8 and 

2.4 ppm. There are only weak signals in the aromatic region. However, there are 

differences in the details. Most strikingly, both extracellular forms contain a strong CH2 

signal at 1.22 ppm discussed in paragraph 3.4.1. Furthermore, the intracellular form of 

marennine appears to contain less anomeric protons in alpha conformation (4.9 – 5.7 ppm). 

These preliminary result appeal for a more thorough study of the marennine-like pigments 

produced by the different species of blue diatoms, which constitute an original family of 

natural blue pigments. 

Figure 8. Absorption spectra of purified intracellular pigment from H. 

karadagensis depending on the pH (ranging from 2 to 12). Inset: position of the 

peak of absorption in the visible part of the spectrum. 

 

6. Biological functions of marennine-like pigments 

During a bloom of H. ostrearia in an oyster pond, the quantity of marennine released 

into the environment should represent a high ‘cost of production’, which raises a question 
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about the advantages that the species may retrieve from this peculiar biosynthesis pathway. 

More generally, the ecological significance of marennine-like pigments remains to be 

considered, especially in regard of the amount of pigment produced during the diatom life 

cycle. As presented above, historically, a wealth of information is available on marennine, 

but concerning the diatom H. ostrearia itself, information about the biological function of 

this specific blue pigment is scarce and inconclusive. The longest known and most obvious 

biological effect of marennine is the greening of oysters. Experimentally, oysters placed in 

either a suspension of H. ostrearia or a green supernatant of a culture, turn green within a 

few hours [55, 72, 78, 98, 102, 103], but little is known about the mechanism. Some 

authors suggested there might be interaction between marennine and some proteins in the 

gills [36], especially in some specialized secreting cells [22, 36]. In oyster gills in vivo, it is 

possible that marennine binds and precipitates proteins like tannins, as observed in vitro 

[unpublished data]. A tannin-binding protein effect would be in agreement with the 

suggested polyphenolic nature of marennine proposed by Pouvreau et al. [66]. Regarding 

H. ostrearia itself, Schubert et al. [104] showed that marennine did not play any role in 

light capture and photochemical activity; however, it could indirectly influence 

photosynthesis by absorbing in the red part of the spectrum, with peaks at 672 and 677 nm 

for the intracellular and the extracellular forms of the purified pigment (neutral pH), 

respectively [66], and at 669 nm for raw supernatants of H. ostrearia cultures [19]. 

Marennine could thus be considered a photoprotective molecule at high irradiance levels 

[104], or a factor able to modify the light spectrum in the water column when accumulated 

in the medium [68, 92]. 

Figure 9. Raman spectra obtained in vivo on the blue pigments contained in the 

apices of different strains of blue diatoms. Noticeable differences can be seen 

between the pigment of H. karadagensis and the others in the 1240 cm-1 to 

1420 cm-1 region.   
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6.1 Marennine, weapon of chemical warfare  

Aside this shading effect, it was shown that marennine has antioxidant activity [105], 

that it can afford some protection against metals such as copper [106], and act directly as 

an allelochemical by inhibiting the growth of some algal species encountered in oyster 

ponds and modifying inter-specific competition among phytoplankton [49, 92]. These 

results have been reinforced by co-cultivation experiments of H. ostrearia with other 

species, which underlined the sensitivity of centric species like Skeletonema costatum, 

Chaetoceros calcitrans, C. gracilis, (all species abundantly used in aquaculture), as well as 

the insensitivity of others like Pavlova lutheri (not shown). This could explain the 

occasional dominance of H. ostrearia in oyster ponds, concomitant with an almost 

elimination of other diatom species [47, 71, 90], thus revealing the importance of chemical 

ecology in marine phytoplankton and environments [107]. A few authors hypothesized that 

H. ostrearia could itself be affected by marennine, a sort of autotoxin associated with 

pathological processes [32, 49, 71]. However, it was further demonstrated that H. ostrearia 

was rather tolerant to marennine [92]. 

Figure 10. [1H NMR]. 1H 1D NMR spectra of the intracellular form (IMn) of 

marennine from Haslea ostrearia (bottom, green), the extracellular form (EMn) 
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of marennine (middle, blue), and the extracellular form of the marennine-like 

pigment from Haslea provincialis sp inedit. (top, red), all dissolved in D2O. 

The signal at 4.7 ppm stems from residual HDO, the signal at 3.64 ppm in the 

extracellular marennine partly stems from an impurity. 

 

Last but not least, preliminary works conducted on H. ostrearia aqueous extracts, thus 

containing marennine, displayed antiviral, anticoagulant [108] or antiproliferative 

properties [109]. These activities have been recently confirmed using purified marennine, 



	 210	

which exhibited antibacteria, antivirus, and antiproliferative activites [101], or using the 

pigment synthesized by H. karadagensis, the pigment of which demonstrated antifungi, 

antibacteria, and antiviral activities [98]. Hence, aside the greening action, marennine and 

marennine-like pigments could be especially useful in prophylaxis in the context of oyster 

farming, due to their antibacterial and antiviral activities. 

Figure 11. Growth of Vibrio splendidus after 3 h in contact with marennine. V. 

splendidus was grown in modified marine media overnight. Cells were washed 

and then incubated for 3 h in 0, 0.1, 1.0, 10, 100, or 1000 µg mL-1 marennine. 

Cells were washed in sterile water and brought to an optical density of 0.5 

before the 3 h incubation. Cells were then added to fresh marine media in a 96 

well plate and growth kinetics were done for 48 h with measurements every 30 

min.  Inset: maximum growth rates expressed in function of the control (100%) 

with marennine concentrations. 
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6.2 Marennine-like pigments, magic potion for oysters? 

In the last decades, it has been observed that the cultivated Pacific oyster Crassostrea 

gigas presents massive and recurrent summer mortalities, this being of great concern for 

oyster industry all over the world. In France, for instance, bacteria such as Vibrio 

aestuarianus [110], V. splendidus [111], and viruses belonging to the Malacoherpesviridae, 

like the ostreid herpesvirus OsHV-1, distantly related to other members of the 

Herpesviridae [112] are frequently associated to, if not responsible for these severe summer 

mortality events.  

Marennine-like pigments displayed antibacterial activities against three marine bacteria, 

V. aestuarianus, Pseudoalteromonas elyakowii, Polaribacter irgensii [98, 101]. In a first 

attempt to explain the mechanism of action of the antibacterial activity exhibited by 

marennine-like pigments, Tardy-Laporte et al. [113] demonstrated, using 2H solid-state 

NMR on intact Escherichia coli, that the extracellular form of the pigment produced by H. 

provincialis sp. inedit. perturbs the bacteria membranes, unlike the intracellular form. More 

specifically, their results suggest that the pigment released in the medium exerts its 

antibiotic action by interacting with the lipopolysaccharides on the bacterium’s surface, 

thus rigidifying the outer membrane.  

In the line of this membrane-mediated inhibition effect, a series of experiments were 

conducted with V. splendidus cells incubated for 3 h with different concentrations of EMn 

(0.1 µg mL-1 to 1.0 mg mL-1), then washed and resuspended in fresh marine medium, for 

48 h. The highest the marennine concentration, the highest the inhibition of the growth 

(Figure 11). The effective concentration reducing bacteria growth rate by 50%, EC50, was 

2.89 µg mL-1, a value in the range of many anti-bacterial marine compounds described so 

far [114]. 

Regarding antiviral activities, due to a lack of a suitable bivalve cell line for culturing 

oyster herpes virus, a heterologous model using fibroblastic Vero cells and human HSV-1 

was chosen in some studies, to investigate the effect of antiviral activity [115]. It has been 

shown that marennine intracellular and extracellular forms exhibited antiviral activity 

against the HSV-1 herpes virus [101], with 50 % antiviral effective concentration (EC50) 

values of 24.0 and 27.0 µg mL-1, respectively [for a multiplicity of infection (MOI) of 

0.001 ID50/cells]. The blue grey pigment produced by H. karadagensis presents similar 

antiviral activity [98], with the extracellular form being more active than the intracellular 

form (EC50 of 23 µg mL-1 and 62 µg mL-1, respectively). Both intracellular forms of the 

pigments present a relative cytotoxicity against the fibroblastic Vero cells, not observed 

with their extracellular counterparts. This underlines the need for further experiments 
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regarding a possible toxicity, and the mode of action of marennine-like pigments. A 

sulfated polysaccharide, naviculan, was isolated from Navicula directa, a diatom collected 

from deep-sea water in Toyama Bay, Japan [116]. This compound was shown to inhibit 

HSV-1 and HSV-2 (half maximal inhibitory concentration, IC50 = 7–14 µg mL-1) by 

interfering with the early stages of viral replication, most likely affecting viral adhesion and 

penetration into host cells. Very few other biologically active secondary metabolites have 

been reported from diatoms [117, 118], and except for a few studies [98, 101, 108], little is 

known about the antiviral activity of diatom extracts or compounds. The selection of 

antiviral marine compounds for aquaculture environments being a possible solution to 

control viral disease transmission [119], a possible valorisation of the biological activities 

of marennine-like pigments as probiotics would constitute a new and promising field of 

research.  

The fact that marennine-like pigments seem to have the potential to inhibit growth of 

pathogenic marine bacteria and virus replication, is of special interest for oyster producers, 

as bivalves lack antibody-mediated humoral immunity, but possess an innate immune 

system. Experiments are in progress to test the hypothesis hat marennine in solution or 

present on gills could protect oysters from these pathogens in realistic in vivo conditions.  

7. Do marennine-like pigments present a real added-value potential?  

At the industrial scale, marennine is solely exploited in aquaculture for the greening of 

oysters, thus as a natural blue-green colorant. The main source of natural blue colorants is 

indigo dye, extracted from different species of higher plants. For food market, however, 

there is a lack of available natural blue pigment alternatives compared to red, orange, and 

yellow natural colorants [120]. More simple to produce and less expensive to use, some of 

the synthetic blue colorants used in food chemistry have to face alleged or assessed 

reputations of harmfulness, some of them possibly encountering commercial restrictions or 

banishment soon (e.g. Patent Blue V E131). Presently, the use of marine blue dye in food 

industry is restricted to phycocyanin, mainly produced by cyanobacteria but also some 

Rhodophyta [121]. Phycocyanin is a food colorant, which is known in Japan under the 

name of ‘Lina-Blue’, and it is mainly used in ice-creams or drink preparations. In this 

context, marennine is also a natural blue pigment, which could complete the source of 

marine blue dyes available for the food industry, and it presents some merits but also a few 

flaws. People have consumed green oysters for centuries, without any disease or 

anaphylactic reactions recorded, which should suggest that this pigment is non-toxic, at 

least considering a standard food intake. Marennine is produced by a marine microalga, 

which augurs well for an environmental-friendly production system. It is water soluble, and 
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its extraction process does not require massive use of solvents. However, the structure of 

marennine is still unknown, and because marennine exhibits a wide range of biological 

activities, its possible cytotoxicity and its stability as a pigment have to be carefully tested 

before considering a possible use in cosmetology. Indeed, before turning to reality in 

Europe, and in France especially, this type of application will be submitted to a previous 

acceptance by the regulation authority. For example, the use of ‘pure marennine’ as a food 

colorant would indeed require nutritional and toxicity studies on the rat, and cellular tests 

to demonstrate the pure molecule has no mutagenic properties. These necessary steps 

represent a strong restriction before the use of marennine as food additive. An alternative 

way, already applied for the up-grading of phycocyanin and phycoerythrin, would be to 

promote the use of aqueous extracts enriched in pigment for their colorant properties. 

Generally, this application is authorized, at least for the phycocyanin extract, and appears 

to be realistic from an economic point of view regarding cosmetics, but this would remain a 

more crippling problem for any development towards food and health industry 

Illustrating the added-value potential some microalgae in cosmetic industry, some 

companies such as LVMH group and Daniel Jouvance have invested in their own 

microalgal production units. Indeed, some microalgae (e.g., Chlorella, Odontella, 

Tetraselmis, Dunaliella, Emiliania, Noctiluca) are established in the skin care market. 

Microalgae extracts are mainly found as skin care products, e.g., anti-aging, emollient or 

moisturizing, and also sunscreen products. Preliminary experiments were conducted to 

study possible photo-protective and anti-inflammatory effects of marennine. The photo-

protective potential was thus studied, to determine sun protection factor (SFP) and UVA 

protection factor (PF-UVA) of marennine, using an in vitro method. An O/W emulsion 

placebo was prepared in the laboratory as previously described [122]. Marennine was 

incorporated into the formulation components at 10% (w/w) in order to study the potential 

biological properties. Thirty milligrams of product exactly weighed were spread on 

polymethylmetacrylate (PMMA) plates over the whole surface (25 cm²) using a cot-coated 

finger (15 mg remain on the finger cot). SPF and PF-UVA of the creams were measured in 

vitro. Three plates were prepared for each product to be tested and 9 measures were 

performed on each plate. Transmission measurements between 320 and 400 nm were 

carried out using a spectrophotometer equipped with an integrating sphere (UV 

Transmittance Analyzer UV1000S, Labsphere, North Sutton, US). The calculations use the 

following equations for SPF and PF-UVA: 
                   400         400 

SPF = Σ EλSλdλ/ Σ EλSλΤλdλ  

                   290         290 
          400                          400 
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FP-UVA = Σ EλSλdλ/ Σ EλSλΤλdλ  

           320   320 

where El is CIE erythemal spectral effectiveness, Sl is solar spectral irradiance and Tl is 

spectral transmittance of the sample [123, 124]. Emulsions containing 10% (w/w) 

marennine exhibited SPF (1.28 ± 0.05) and PF-UVA (1.24 ± 0.04) values (means ± SD, 

n=3), which demonstrate that marennine could not be considered a molecule interesting 

enough in the domain of the topical photo-protection. 

The determination of a possible anti-inflammatory effect of marennine incorporated into 

a cream formulated in the laboratory was carried out using a test with Phorbol-12-

Myristate-13-Acetate (PMA). Introduction of mouse ear edema was based on the method 

of Carlson et al. with some modifications [125-127]. Firstly, the thickness of the mouse 

ears was measured using a model micrometer gauge (Oditest®, Kroeplin, Schlüchtern, 

Germany). 10 mL of preparation with marennine or 0.1% (w/w) butyrate hydrocortisone-

based lotion (Locoïd®, Astellas Pharma – Levallois-Perret, France) were applied using a 

ripette genix electro dispenser (Fisher scientific, Illkirch, France), on the mice's right ears, 

twice at 5 min intervals. 10 mL of placebo emulsion were applied according to the same 

protocol, on the mice's left ears. Thirty minutes later, 10 mL of a hydro-alcoholic solution 

of Phorbol-12-Myristate-13-Acetate (250 mg/mL) were then applied on each ear, in order 

to cause an edema. After 3.5 h, the thickness of the ears was once again determined using 

the Oditest®. Five mice were used for each product tested. The cream containing 10% 

(w/w) marennine demonstrated a moderate anti-inflammatory effect, with an edema 

inhibition of 62.5%, as compared to 100% for the control butyrate d’hydrocortisone (0.1% 

w/w). These preliminary experiments show that marennine can hardly be considered as a 

potential UV filter, but it could be valorised in soothing creams. It might be interesting to 

explore potential applications in the management of atopic skin or rosacea, for example. 

7. Conclusion  

Aquaculture still represents the most immediate and ‘natural’ valorisation segment of 

marennine and marennine-like pigments, due to the greening of bivalves. Aside this 

colouring action, it is hypothesized that marennine-like pigments could act as natural 

prophylactic agents in hatchery and oyster farming, due to their antibacterial and antiviral 

activities, which were demonstrated in vitro at the laboratory scale. Together with a 

possible use as natural blue colorants for cosmetics, provided they are inexpensive to 

produce, stable in the formulations, and safe for use, the many biological activities 
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evidenced so far represent a new research avenue, and a great potential of valorisation for 

the marennine-like pigments.  
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