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Abstract

Over the last few years, there has been tremendous growth in digitizing collections of cultural
heritage documents. Thus, many challenges and open issues have been raised, such as information
retrieval in digital libraries or analyzing page content of historical books. Recently, an important
need has emerged which consists in designing a computer-aided characterization and categorization
tool, able to index or group historical digitized book pages according to several criteria, mainly
the layout structure and/or typographic/graphical characteristics of the historical document image
content.

Current systems for categorizing historical digitized book pages are based on several criteria,
such as the textual content. However, these systems for performing the historical document image
analysis tasks have poor performance due to many particularities of historical document images
(e.g. large variability of page layout, noise and degradation, page skew, complicated layout, random
alignment, specific fonts, presence of embellishments, variations in spacing between the characters,
words, lines, paragraphs and margins, overlapping object boundaries, superimposition of informa-
tion layers). Moreover, these systems are hindered by many issues related to the performance
of the optical character recognition and retrospective conversion tools. In addition, they require
burdensome and complex processing due to the mentioned particularities of historical document
images.

Thus, the work conducted in this thesis presents an automatic approach for characterization and
categorization of historical book pages. The proposed approach is applicable to a large variety
of ancient books. In addition, it does not assume a priori knowledge regarding document image
layout and content. It is based on the use of texture and graph algorithms to provide a rich
and holistic description of the layout and content of the analyzed book pages to characterize and
categorize historical book pages. The categorization is based on the characterization of the digitized
page content by texture, shape, geometric and topological descriptors. This characterization is
represented by a structural signature. More precisely, the categorization consists of two main
stages. The first stage is extracting homogeneous regions. Then, the second one is proposing a
graph-based page signature which is based on the extracted homogeneous regions, reflecting its
layout and content.

First, a bottom-up segmentation approach based on analyzing texture features which have been
extracted using a multi-scale analysis technique, has been performed for identifying homogeneous
regions. Given that there are significant degradations and no hypothesis concerning the layout,
the graphical properties or typographical parameters of historical document images, the use of
a texture-based approach has become an appropriate choice. Indeed, the proposed texture-based
approach addresses the needs for segmenting a page (i) under significant degradations and different
noise levels and types, (ii) without a priori knowledge regarding page layout and content.

Once, the homogeneous regions have been extracted, the second stage of the proposed approach
consists in constructing a structural representation (i.e. a graph-based signature). The graph
vertices correspond to the extracted homogeneous regions. Each vertex is described by texture,
shape, geometric and topological descriptors, characterizing the region. On the other hand, a set
of edges is built based on topological relationships connecting the different extracted homogeneous
regions.
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Abstract

Afterwards, by comparing the different obtained graph-based signatures using a graph-matching
paradigm, the similarities of digitized historical book page layout and/or content can be deduced.
Subsequently, book pages with similar layout and/or content can be categorized and grouped, and a
table of contents/summary of the analyzed digitized historical book can be provided automatically.

This structural signature combining the layout and content description, ensures the character-
ization of historical document image book. Thus, it provides several possible operational and
interesting options of categorization, indexing and retrieval of digitized resources. In addition, it
offers a structured multi-criteria access to large sets of cultural heritage documents, without us-
ing the optical character recognition and retrospective conversion tools and with as little a priori
knowledge as possible. Indeed, numerous signature-based applications (e.g. information retrieval in
digital libraries according to several criteria, page categorization) can be implemented for managing
effectively a corpus or collections of books.

In this dissertation, we have investigated how this structural signature ensures the design of a
computer-aided characterization and categorization approach, able to compare or group digitized
historical book pages according to several criteria, mainly the layout structure, graphical char-
acteristics or typographic properties of the historical document image content. To illustrate the
effectiveness of the proposed page signature, a detailed experimental evaluation has been conducted
in this work for assessing two possible categorization applications, unsupervised page classification
and page stream segmentation. In addition, the different steps of the proposed approach have been
evaluated on a large variety of historical document images.
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Résumé

Les récents progrès dans la numérisation des collections de documents patrimoniaux ont ravivé
de nouveaux défis afin de garantir une conservation durable et de fournir un accès plus large aux
documents anciens. En parallèle de la recherche d’information dans les bibliothèques numériques
ou l’analyse du contenu des pages numérisées dans les ouvrages anciens, la caractérisation et la
catégorisation des pages d’ouvrages anciens a connu récemment un regain d’intérêt. Les efforts
se concentrent autant sur le développement d’outils rapides et automatiques de caractérisation et
catégorisation des pages d’ouvrages anciens, capables de classer les pages d’un ouvrage numérisé en
fonction de plusieurs critères, notamment la structure des mises en page et/ou les caractéristiques
typographiques/graphiques du contenu de ces pages.

Les systèmes actuels de caractérisation et catégorisation des pages d’ouvrages numérisés s’appuient
sur plusieurs critères relatifs au contenu textuel. Cependant, des performances insatisfaisantes ont
été relevées en raison de divers problèmes, et qui sont liés aux particularités des documents anciens
(e.g. une grande variabilité de la mise en page, des niveaux différents de dégradation et bruit, le
défaut d’orientation, la complexité de la mise en page, des alignements non-conventionnels, les po-
lices de caractères spécifiques, la présence d’ornements, les variations de l’espacement entre les car-
actères, mots, lignes, paragraphes et marges, la superposition de plusieurs couches d’information).
En effet, leurs performances sont étroitement liées à celles des outils de reconnaissance optique
de caractères et rétro-conversion. En outre, le traitement de ce type de documents peut s’avérer
complexe et pénible en raison des particularités des documents anciens mentionnées ci-dessus,
et ce, sans connaissances a priori sur la structure des mises en page ou les caractéristiques ty-
pographiques/graphiques du contenu de ces pages.

Ainsi, dans le cadre de cette thèse, nous proposons une approche permettant la caractérisation
et la catégorisation automatiques des pages d’un ouvrage ancien. L’approche proposée se veut
indépendante de la structure et du contenu de l’ouvrage analysé. Le principal avantage de ce
travail réside dans le fait que l’approche s’affranchit des connaissances préalables, que ce soit con-
cernant le contenu du document ou sa structure. Elle est basée sur une analyse des descripteurs de
texture et une représentation structurelle en graphe afin de fournir une description riche permet-
tant une catégorisation à partir du contenu graphique (capturé par la texture) et des mises en page
(représentées par des graphes). En effet, cette catégorisation s’appuie sur la caractérisation du con-
tenu de la page numérisée à l’aide d’une analyse des descripteurs de texture, de forme, géométriques
et topologiques. Cette caractérisation est définie à l’aide d’une représentation structurelle. Dans
le détail, l’approche de catégorisation se décompose en deux étapes principales successives. La
première consiste à extraire des régions homogènes. La seconde vise à proposer une signature
structurelle à base de texture, sous la forme d’un graphe, construite à partir des régions homogènes
extraites et reflétant la structure de la page analysée. Cette signature assure la mise en œuvre de
nombreuses applications pour gérer efficacement un corpus ou des collections de livres patrimo-
niaux (e.g. la recherche d’information dans les bibliothèques numériques en fonction de plusieurs
critères, la catégorisation des pages d’un même ouvrage). En comparant les différentes signatures
structurelles par le biais de la distance d’édition entre graphes, les similitudes entre les pages d’un
même ouvrage en termes de leurs mises en page et/ou contenus peuvent être déduites. Ainsi de
suite, les pages ayant des mises en page et/ou contenus similaires peuvent être catégorisées, et un
résumé/une table des matières de l’ouvrage analysé peut être alors généré automatiquement.
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Résumé

En effet, une approche ascendante de segmentation exploitant des descripteurs de texture mesurés
à différentes échelles est tout d’abord proposée pour l’extraction des régions homogènes. Cette
approche est notamment guidée par (i) la nécessité de robustesse au bruit fréquemment présent
sur les images de documents anciens, (ii) le fait de pouvoir traiter des documents dont les mises
en page et caractéristiques typographiques sont variées et, a priori, inconnues.

Dès lors que les zones homogènes ont été extraites, la seconde étape de l’approche construit une
signature structurelle de la page (i.e. graphe). Les nœuds du graphe ainsi produits sont associés
aux zones homogènes et sont étiquetés par les attributs caractérisants les régions. Les arcs, quant
à eux, caractérisent les liens topologiques entre les différentes régions.

Cette signature structurelle associant représentation des éléments de contenu et description de la
mise en page, caractérise les pages de documents anciens numérisés à différents niveaux. Elle offre
ainsi plusieurs modalités de catégorisation et d’indexation permettant une navigation multi-critère
dans les corpus, et ce, sans reconnaissance et en ayant introduit aussi peu de connaissances a priori
que possible. Dans le cadre de cette thèse, nous avons notamment étudié comment la signature
produite par l’approche proposée pouvait être exploitée afin de comparer et catégoriser les pages
d’un même ouvrage. Pour illustrer l’efficacité de la signature proposée, une étude expérimentale
détaillée a été menée dans ce travail pour évaluer deux applications possibles de catégorisation
de pages d’un même ouvrage, la classification non supervisée de pages et la segmentation de flux
de pages d’un même ouvrage. En outre, les différentes étapes de l’approche proposée ont donné
lieu à des évaluations par le biais d’expérimentations menées sur un large corpus de documents
patrimoniaux.
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Notations

• I:I:I: input image

• W :W :W : width of an image

• H:H:H: height of an image

• S:S:S: size of an image

• E:E:E: structuring element of a morphology-based method

• ⊕:⊕:⊕: dilation operator

• 	:	:	: erosion operator

• ◦:◦:◦: opening operator

• •:•:•: closing operator

• de:de:de: distance between each k-NN pair of the extracted CCs in the docstrum algorithm

• Φe:Φe:Φe: angle of each edge in the docstrum algorithm

• PV = {p1, . . . , pn}:PV = {p1, . . . , pn}:PV = {p1, . . . , pn}: point set or generators of the Voronoi diagram

• d(p, q):d(p, q):d(p, q): distance between points p and q

• V (pi):V (pi):V (pi): Voronoi region

• V (PV ):V (PV ):V (PV ): Voronoi diagram

• F i:F i:F i: texture feature

• I(x, y):I(x, y):I(x, y): image pixel

• f(x, y):f(x, y):f(x, y): gray-level of image pixel

• µ:µ:µ: mean value

• µ4:µ4:µ4: fourth moment

• σ:σ:σ: standard deviation estimator

• kt:kt:kt: neighborhood size at image pixel I(x, y) such as the size of the analysis image is equal to
2kt × 2kt

• Akt(x, y):Akt(x, y):Akt(x, y): computed average for the windows of size 2kt×2kt to estimate the coarseness feature

• Ekt,h(x, y):Ekt,h(x, y):Ekt,h(x, y): difference between the average of pairs corresponding to pairs of non-overlapping
neighborhoods on opposite sides of the analyzed pixel in both the horizontal orientation

• Ekt,v(x, y):Ekt,v(x, y):Ekt,v(x, y): difference between the average of pairs corresponding to pairs of non-overlapping
neighborhoods on opposite sides of the analyzed pixel in both the vertical orientation

• Sbest:Sbest:Sbest: sequence for the estimation of the coarseness feature
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• HistD:HistD:HistD: histogram of local edge probabilities

• ∇H :∇H :∇H : horizontal mask for the estimation of the number of orientations

• ∇V :∇V :∇V : vertical mask for the estimation of the number of orientations

• |∆G|:|∆G|:|∆G|: magnitude for the edge detection

• θt:θt:θt: direction for the edge detection

• tHist:tHist:tHist: specified HistD threshold

• nb:nb:nb: number of the HistD bins

• Nθt(k):Nθt(k):Nθt(k): number of pixels for the estimation of the number of orientations

• np:np:np: number of histogram peaks

• Φp:Φp:Φp: p
th peak position of HistD

• wp:wp:wp: range of pth peak between valleys

• r:r:r: normalizing factor related to the quantized levels of Φh

• Φh:Φh:Φh: quantized direction code (cyclically in modulo 180◦)

• Ic(x, y):Ic(x, y):Ic(x, y): analyzed image pixel

• Ip(x, y):Ip(x, y):Ip(x, y): image pixels defined in the P circularly symmetric neighbors

• fc(x, y):fc(x, y):fc(x, y): gray-level of the analyzed image pixel Ic(x, y)

• fp(x, y):fp(x, y):fp(x, y): gray-level of the image pixel Ip(x, y)

• Pl:Pl:Pl: number of neighboring pixels in a circular set

• Rl:Rl:Rl: radius of a circular set

• nl:nl:nl: number of the unique rotation invariant local binary patterns

• HistPl,Rl :HistPl,Rl :HistPl,Rl : histogram of binary patterns

• LBPPl,Rl :LBPPl,Rl :LBPPl,Rl : LBP operator

• LBP riPl,Rl :LBP riPl,Rl :LBP riPl,Rl : rotation invariant LBP operator

• LBP u2
Pl,Rl

:LBP u2
Pl,Rl

:LBP u2
Pl,Rl

: uniform 2 LBP operator

• LBP riu2
Pl,Rl

:LBP riu2
Pl,Rl

:LBP riu2
Pl,Rl

: rotation invariant uniform 2 LBP operator

• Histg,l:Histg,l:Histg,l: histogram of run-lengths

• g:g:g: gray-level value bin

• Gl:Gl:Gl: number of gray-level bins

• l:l:l: run-length

• L:L:L: maximum run-length

• θr:θr:θr: scan direction of a GLRLM gray-level run
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• p(g, l):p(g, l):p(g, l): element of the GLRLM

• P (g, l):P (g, l):P (g, l): probability of a specific run-length

• I(x+ α, y + β):I(x+ α, y + β):I(x+ α, y + β): translation of the analysis window of an image I(x, y) by α and β pixels along
the horizontal and vertical axes, respectively, defined on the plane Ω

• RI(α,β)
(x,y) :R
I(α,β)
(x,y) :R
I(α,β)
(x,y) : auto-correlation function computed along the horizontal and vertical axes of the

analysis window of an image I

• FFT :FFT :FFT : fast Fourier transform

• (.)∗:(.)∗:(.)∗: complex conjugate

• (.)-1:(.)-1:(.)-1: inverse transform

• Θi:Θi:Θi: selected orientation

• Di:Di:Di: set of possible orientations

• RImin:RImin:RImin: minimum value of RI(x,y)(Θi)

• RImax:RImax:RImax: maximum values of RI(x,y)(Θi)

• R′I(x,y)(Θi):R
′I
(x,y)(Θi):R
′I
(x,y)(Θi): relative sum of the different values of the auto-correlation function

• θa:θa:θa: number of orientation values of the rose of directions

• Swidth:Swidth:Swidth: sequence for the estimation the mean stroke width

• TΘ
(α,0)(I(., .)):TΘ
(α,0)(I(., .)):TΘ
(α,0)(I(., .)): translation of the analysis window of an image I by α pixels along the axis of

the main angle of the rose of directions

• Sheight:Sheight:Sheight: sequence for the estimation the mean stroke height

• TΘ
(0,β)(I(., .)):TΘ
(0,β)(I(., .)):TΘ
(0,β)(I(., .)): translation of the analysis window of an image I by β pixels along the axis of

the main angle of the rose of directions

• θc:θc:θc: specified direction of the GLCM calculation

• dc:dc:dc: specified distance of the GLCM calculation

• pdc,θc(i, j):pdc,θc(i, j):pdc,θc(i, j): probability of the gray-level pair i and j defined in a specified direction θc and
separated by a particular distance of dc units

• fg:fg:fg: spatial frequency of the Gabor filter envelope

• θg:θg:θg: orientation of the Gabor filter envelope

• σg:σg:σg: space constant of the Gabor filter envelope

• IG(fg,θg )(x, y):IG(fg,θg )(x, y):IG(fg,θg )(x, y): Gabor filtered image of an image I(x, y)

• G(fg ,θg)(α, β):G(fg ,θg)(α, β):G(fg ,θg)(α, β): spatial frequency response of Gabor filter

• Ge(fg ,θg):Ge(fg ,θg):Ge(fg ,θg): spatial frequency response of the even-symmetric Gabor filter

• Go(fg ,θg):Go(fg ,θg):Go(fg ,θg): spatial frequency response of the odd-symmetric Gabor filter

• Mg:Mg:Mg: width of the Gabor filtered magnitude response
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• Ng:Ng:Ng: height of the Gabor filtered magnitude response

• gf :gf :gf : high-pass filter for 2D wavelet decomposition

• hf :hf :hf : low-pass filter for 2D wavelet decomposition

• Haar:Haar:Haar: 3-level Haar wavelet transform

• Db3:Db3:Db3: 3-level wavelet transform using 3-tap Daubechies filter

• Db4:Db4:Db4: 3-level wavelet transform using 4-tap Daubechies filter

• φ:φ:φ: 2D scaling function

• ψ:ψ:ψ: wavelet function

• J :J :J : scale of the discrete wavelet transform

• j:j:j: decomposition level of the discrete wavelet transform

• A2-J :A2-J :A2-J : approximation of the input image at 2-J resolution

• D(v)

2-j
:D

(v)

2-j
:D

(v)

2-j
: vertical detail components of the input image at 2-j resolution

• D(h)

2-j
:D

(h)

2-j
:D

(h)

2-j
: horizontal detail components of the input image at 2−j resolution

• D(d)

2-j
:D

(d)

2-j
:D

(d)

2-j
: diagonal detail components of the input image at 2-j resolution

• CAjk,l :CAjk,l :CAjk,l : approximation coefficients at 2-j resolution

• CD(s)j
k,l :C
D(s)j
k,l :C
D(s)j
k,l : detail coefficients at 2-j resolution

• (s)j:(s)j:(s)j: vertical, horizontal or diagonal detail components of the input image at 2-j resolution

• fs(x, y):fs(x, y):fs(x, y): pixel gray-level of a sub-band or sub-image from the 2D wavelet decomposition

• C(i, j):C(i, j):C(i, j): transform wavelet coefficient

• Sw:Sw:Sw: width of a sub-band in the wavelet domain

• Sh:Sh:Sh: height of a sub-band in the wavelet domain

• gfHaar:gfHaar:gfHaar: high-pass filter of the Haar wavelet transform

• hfHaar:hfHaar:hfHaar: low-pass filter of the Haar wavelet transform

• gfDb3:gfDb3:gfDb3: high-pass filter of the Db3 wavelet transform

• hfDb3:hfDb3:hfDb3: low-pass filter of the Db3 wavelet transform

• gfDb4:gfDb4:gfDb4: high-pass filter of the Db4 wavelet transform

• hfDb4:hfDb4:hfDb4: low-pass filter of the Db4 wavelet transform

• NfNfNf : number of extracted textural indices by applying multi-scale analysis

• V fV fV f : feature vector

• xixixi: element of the feature vector V f

xxx



• <<<: real

• xak:xak:xak: centroid of cluster a

• xbk:xbk:xbk: centroid of cluster b

• na:na:na: number of elements in cluster a

• nb:nb:nb: number of elements in cluster b

• k:k:k: number of clusters

• It:It:It: number of extracted Tamura indices

• Il:Il:Il: number of extracted LBP indices

• Ir:Ir:Ir: number of extracted GLRLM indices

• Ia:Ia:Ia: number of extracted auto-correlation indices

• Ic:Ic:Ic: number of extracted GLCM indices

• Ig:Ig:Ig: number of extracted Gabor indices

• Ih:Ih:Ih: number of extracted Haar indices

• Idb3:Idb3:Idb3: number of extracted Db3 indices

• Idb4:Idb4:Idb4: number of extracted Db4 indices

• IA
2-J

:IA
2-J

:IA
2-J

: number of extracted approximation sub-image indices

• I
D

(v)

2-j

:I
D

(v)

2-j

:I
D

(v)

2-j

: number of extracted vertical detail sub-image indices

• I
D

(h)

2-j

:I
D

(h)

2-j

:I
D

(h)

2-j

: number of extracted horizontal detail sub-image indices

• I
D

(d)

2-j

:I
D

(d)

2-j

:I
D

(d)

2-j

: number of extracted diagonal detail sub-image indices

• Nw:Nw:Nw: number of sliding windows

• nr:nr:nr: number of pixels of the sliding window

• M :M :M : number of foreground pixels

• ng:ng:ng: number of gray-levels

• nt:nt:nt: number of averages Akt(x, y) for the windows of size 2kt × 2kt

• .′:.′:.′: . minutes

• .′′:.′′:.′′: . seconds

• SED:SED:SED: squared Euclidean distance

• WED:WED:WED: weighted Euclidean distance

• SW :SW :SW : average silhouette width

• xi:xi:xi: cluster point

• SW (xi):SW (xi):SW (xi): silhouette width for each point xi
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• a(xi):a(xi):a(xi): compactness between xi and the other points in the same cluster

• b(xi):b(xi):b(xi): separation between xi and the closest cluster

• K(xi):K(xi):K(xi): cluster containing the point xi

• D(xi, xj):D(xi, xj):D(xi, xj): distance between two points xi and xj

• Kl:Kl:Kl: cluster that does not contain the point xi

• Nl:Nl:Nl: number of points in the cluster Kl

• N :N :N : number of points in the dataset

• J :J :J : Jaccard coefficient

• N11:N11:N11: number of pairs of data points which are clustered together in the clustering result and
ground-truth

• N10:N10:N10: number of pairs of data points which are clustered together in the clustering result but
not in the ground-truth

• N01:N01:N01: number of pairs of data points which are clustered together in the ground-truth but not
in the clustering result

• PPB:PPB:PPB: purity per block metric

• |.|:|.|:|.|: number of pixels in a given block

• B:B:B: set of result blocks

• bi:bi:bi: result block

• Gt:Gt:Gt: set of rectangular regions of the ground-truth

• gtj :gtj :gtj : pre-defined rectangular region of the ground-truth

• LB:LB:LB: set of labels obtained with the used pixel clustering technique

• lBi :lBi :lBi : label corresponding to the result block obtained with the used pixel clustering technique

• Mc:Mc:Mc: confusion matrix, error matrix or contingency table

• E:E:E: entropy

• PT :PT :PT : purity

• P :P :P : precision

• R:R:R: recall

• CA:CA:CA: classification accuracy rate

• F :F :F : F-score or F-measure

• c:c:c: set of classes in the dataset

• ci:ci:ci: dataset class

• Pri(cj):Pri(cj):Pri(cj): proportion of the data point class cj in the cluster i

xxxii



• Nd:Nd:Nd: number of the Mc diagonal elements which represent the all correctly assigned samples
to theirs classes

• No:No:No: number of the Mc elements, excluding those of its diagonal, along a column (clustering
outcomes) correspond to omission samples

• Nc:Nc:Nc: number of the Mc elements, excluding those of its diagonal, along a row (ground-truth
classes) correspond to commission samples

• n:n:n: order of the square confusion matrix Mc

• mpq:mpq:mpq: number of elements of class q assigned to cluster p

• Pi:Pi:Pi: precision of the cluster i

• Rj :Rj :Rj : recall of the class j

• Mmc:Mmc:Mmc: merge consensus matrix

• kopt:kopt:kopt: optimal number of clusters

• CDF (c):CDF (c):CDF (c): cumulative density function

• Ns:Ns:Ns: number of selected observations or samples

• 1:1:1: indicator or a characteristic function

• AUC:AUC:AUC: area under the cumulative density curve

• yi:yi:yi: current element of the CDF

• m:m:m: number of elements of the CDF

• ∆k:∆k:∆k: difference change between two consecutive elements k in the AUC

• MD:MD:MD: Mahalanobis distance

• S:S:S: covariance matrix

• .-D:.-D:.-D: .-dimensional

• Nf -D:Nf -D:Nf -D: Nf -dimensional

• GB:GB:GB: gigabytes

• MB:MB:MB: megabytes

• kest:kest:kest: estimated number of clusters

• kgt:kgt:kgt: number of clusters defined in the ground-truth

• Dk(kest, kgt):Dk(kest, kgt):Dk(kest, kgt): difference between the number of clusters vs. classes

• Imageb:Imageb:Imageb: binarized document image

• Imageref :Imageref :Imageref : refined pixel-labeled document image

• Imagemv:Imagemv:Imagemv: resulting document image derived from the application of the majority voting
technique

• Imagelmv:Imagelmv:Imagelmv: resulting document image derived from the application of the color layer separation
task
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• Imageblmv :Imageblmv :Imageblmv : binarized document image derived from the binarization of the resulting document
image of the application of the color layer separation task

• Imagel:Imagel:Imagel: binarized document image derived from the application of the logical NOT on the
Imageblmv

• Imageb,post:Imageb,post:Imageb,post: binarized post-processed document image

• Imagepost:Imagepost:Imagepost: post-processed pixel-labeled document image

• CCb:CCb:CCb: extracted CCs from the Imageb

• CCref :CCref :CCref : extracted CCs from the Imageref

• CCmv:CCmv:CCmv: extracted CCs from the Imagemv

• CCblmv :CCblmv :CCblmv : extracted CCs from the Imageblmv

• CCpost:CCpost:CCpost: extracted CCs from the Imagepost

• CCreppost:CCreppost:CCreppost: selected representative homogeneous regions from CCpost

• ImagehRLSA:ImagehRLSA:ImagehRLSA: resulting document image derived from the application of the RLSA algorithm on
the Imageblmv in the horizontal direction with the estimated horizontal run-length smoothing
value (Th)

• ImagevRLSA:ImagevRLSA:ImagevRLSA: resulting document image derived from the application of the RLSA algorithm
on the Imageblmv in the vertical direction with the estimated vertical run-length smoothing
value (Tv)

• CCi:CCi:CCi: number of the extracted CCpost

• SCCi :SCCi :SCCi : number of pixels belonging to the CCi

• SCCpost :SCCpost :SCCpost : total number of pixels of all extracted CCpost

• ED:ED:ED: Euclidean distance

• Vpf :Vpf :Vpf : Gabor feature vector of the selected foreground pixel

• V c
pf

:V c
pf

:V c
pf

: Gabor feature vector of the centroid of cluster belonging to the selected foreground pixel

• Th:Th:Th: estimated horizontal threshold ARLSA

• Tv:Tv:Tv: estimated vertical threshold ARLSA

• GMHw:GMHw:GMHw: global maximum of the histogram of the widths of the extracted CCs

• GMHh:GMHh:GMHh: global maximum of the histogram of the heights of the extracted CCs

• Tc:Tc:Tc: pre-defined threshold used to exclude the CCs corresponding to noise

• ch:ch:ch: pre-defined weight used for computing the horizontal threshold Th

• cv:cv:cv: pre-defined weight used for computing the vertical threshold Tv

• GGG : set of graphs

• G:G:G: graph

• Gv:Gv:Gv: graph vertices
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• Ge:Ge:Ge: graph edges

• vi:vi:vi: graph vertex

• ei:ei:ei: graph edge

• oi:oi:oi: elementary edit operation of GED

• c(.):c(.):c(.): cost function of an elementary edit operation oi

• d(G1, G2):d(G1, G2):d(G1, G2): computed GED, allowing to transform G1 to G2

• Γ(G1, G2):Γ(G1, G2):Γ(G1, G2): set of all edit operations o = (o1, . . . , ok, allowing to transform G1 to G2

• ε:ε:ε: dummy vertex or edge which is used to model insertion or deletion operations

• Ĝ:Ĝ:Ĝ: maximum common sub-graph of G1 and G2

• Ǧ:Ǧ:Ǧ: minimum common super-graph of G1 and G2

• D1:D1:D1: set of edit operations that are required to transform G1 to Ĝ

• D2:D2:D2: set of edit operations that are required to transform Ĝ to G2

• (x, y, u, v, e, f):(x, y, u, v, e, f):(x, y, u, v, e, f): 6-tuple of binary variables which is used to define an edit path between the
graphs G1 and G2

• |G|:|G|:|G|: number of vertices (Gv) in the graph G

• Av:Av:Av: finite or infinite attribute or label set for Gv

• Ae:Ae:Ae: finite or infinite attribute or label set for Ge

• av:av:av: vertex attribute of the graph G

• ae:ae:ae: edge attribute of the graph G

• Gµ:Gµ:Gµ: vertex labeling function which associates the attribute or label av to a vertex Giv

• Gν :Gν :Gν : edge labeling function which associates the attribute or label ae to a vertex Gie

• fv:fv:fv: substitution cost function of the labels of the substituted vertices

• fe:fe:fe: substitution cost function of the labels of the substituted edges

• gv:gv:gv: insertion/deletion cost function of the labels of the inserted/deleted vertex

• ge:ge:ge: insertion/deletion cost function of the labels of the inserted/deleted edge

• Gsv:Gsv:Gsv: source vertex of the graph G

• Gdv:Gdv:Gdv: destination vertex of the graph G

• NGsv :NGsv :NGsv : number of pixels of the source vertex (Gsv) of the graph G

• NGdv
:NGdv
:NGdv
: number of pixels of the destination vertex (Gdv) of the graph G

• ED
Gs,dv

:ED
Gs,dv

:ED
Gs,dv

: Euclidean distance between the two graph vertices (Gsv and Gdv)

• mji:mji:mji: spatial moment

• µji:µji:µji: central moment
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• νji:νji:νji: central normalized moment

• huk:huk:huk: Hu moment

• (x̄, ȳ):(x̄, ȳ):(x̄, ȳ): mass center

• F s,de :F s,de :F s,de : edge force

• ADx(s,d)
e :AD
x(s,d)
e :AD
x(s,d)
e : absolute difference between the two extracted region centroids (s and d) in the

x-axis

• ADy(s,d)
e :AD
y(s,d)
e :AD
y(s,d)
e : absolute difference between the two extracted region centroids (s and d) in the

y-axis

• The:The:The: edge threshold

• NHRs:NHRs:NHRs: number of the extracted homogeneous regions

• Wcre:Wcre:Wcre: creation weight of the vertex or edge in the built directed graph

• Wsub:Wsub:Wsub: substitution weight of the vertex or edge in the built directed graph

• Mg:Mg:Mg: distance matrix obtained by computing the dissimilarity between the compared graphs

• mg
i,j :mg
i,j :mg
i,j : element of the distance matrix obtained by computing the dissimilarity between the

compared graphs
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Glossary

• 9D-SPA:9D-SPA:9D-SPA: 9-direction spanning area algorithm

AAA

• AGNES:AGNES:AGNES: agglomerative nesting

• AIC:AIC:AIC: Akaike information criterion

• ANR:ANR:ANR: “agence nationale de la recherche Française”

• ARG:ARG:ARG: attributed relational graph

• ARLSA:ARLSA:ARLSA: adaptive run-length smearing algorithm

BBB

• BIC:BIC:BIC: Bayesian information criterion

• BH2M:BH2M:BH2M: Barcelona historical handwritten marriages database

• BHMD:BHMD:BHMD: Barcelona historical marriage database

• BLP:BLP:BLP: binary linear programming

• BnF:BnF:BnF: “bibliothèque nationale de France”

• BoVW:BoVW:BoVW: bag of visual words

• BoW:BoW:BoW: bag of words

CCC

• CAT:CAT:CAT: computer-assisted transcription

• CBIR:CBIR:CBIR: content-based image retrieval

• CC:CC:CC: connected component

• CCA:CCA:CCA: connected component analysis

• CCC:CCC:CCC: cubic clustering criterion

• CCl:CCl:CCl: consensus clustering

• CDI:CDI:CDI: contemporary document image

• CDIA:CDIA:CDIA: contemporary document image analysis

• CESR:CESR:CESR: “centre d’études supérieures de la Renaissance”

• CIIR:CIIR:CIIR: center for intelligent information retrieval

• CLARA:CLARA:CLARA: clustering large applications
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Glossary

• CLST:CLST:CLST: minimum square-error clustering

• CPU:CPU:CPU: central processing unit

• CRF:CRF:CRF: conditional random fields

• CRLA:CRLA:CRLA: constrained run-length algorithm

DDD

• DAS:DAS:DAS: international workshop on document analysis system

• Db2:Db2:Db2: wavelet transform using 2-tap Daubechies filter

• DHB:DHB:DHB: digitized historical book

• DI:DI:DI: document image

• DIA:DIA:DIA: document image analysis

• DIANA:DIANA:DIANA: divisive analysis clustering

• DIC:DIC:DIC: document image classification

• DIGIDOC:DIGIDOC:DIGIDOC: document image digitization with interactive description capability

• DIL:DIL:DIL: document image layout

• DILA:DILA:DILA: document image layout analysis

• DIU:DIU:DIU: document image understanding

• DL:DL:DL: digital library

• DLA:DLA:DLA: discriminative locality alignment

• DMLP:DMLP:DMLP: dynamic multi-layer perceptron

• DRR:DRR:DRR: international conference on document recognition and retrieval

• DTW:DTW:DTW: dynamic time warping

EEE

• EM:EM:EM: expectation-maximization algorithm

• EPF:EPF:EPF: enhanced position formalism

• ERC:ERC:ERC: European research council

FFF

• FBIM:FBIM:FBIM: feature-based interaction map

• FCBF:FCBF:FCBF: fast correlation-based filter

• FCM:FCM:FCM: fuzzy c-means clustering

• FFN:FFN:FFN: feed-forward network

• FP5:FP5:FP5: European fifth framework program for research

• FP7:FP7:FP7: European seventh framework program for research
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GGG

• GDOH:GDOH:GDOH: Gabor dominant orientation histogram

• GED:GED:GED: graph edit distance

• GEDI:GEDI:GEDI: ground-truthing environment for document images

• GF:GF:GF: Gabor filter

• GFD:GFD:GFD: generic Fourier descriptor

• GLCM:GLCM:GLCM: gray-level co-occurrence matrix

• GLNU:GLNU:GLNU: gray-level non-uniformity

• GLRLM:GLRLM:GLRLM: gray-level run-length matrix

• GMM:GMM:GMM: Gaussian mixture models

• GMRF:GMRF:GMRF: Gaussian Markov random fields

• GPGPU:GPGPU:GPGPU: general-purpose processing on graphics processing units

• GSDM:GSDM:GSDM: gradient spatial dependency matrix

• GUI:GUI:GUI: graphical user interface

HHH

• HAC:HAC:HAC: hierarchical agglomerative clustering

• HBR:HBR:HBR: historical book recognition

• HBR2013:HBR2013:HBR2013: historical book recognition competition 2013

• HD:HD:HD: historical document

• HDI:HDI:HDI: historical document image

• HDIA:HDIA:HDIA: historical document image analysis

• HDIAR:HDIAR:HDIAR: historical document image analysis and recognition

• HDIL:HDIL:HDIL: historical document image layout

• HDILA:HDILA:HDILA: historical document image layout analysis

• HDIU:HDIU:HDIU: historical document image understanding

• HGRE:HGRE:HGRE: high gray-level emphasis

• HIP:HIP:HIP: international workshop on historical document imaging and processing

• HMM:HMM:HMM: hidden Markov models

• HNLA:HNLA:HNLA: historical newspaper layout analysis

• HSV:HSV:HSV: hue, saturation and value space

III

• i2S:i2S:i2S: innovative, imaging, solutions
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Glossary

• IA:IA:IA: image analysis

• ICL:ICL:ICL: integrated completed likelihood

• ICDAR:ICDAR:ICDAR: international conference on document analysis and recognition

• ICFHR:ICFHR:ICFHR: international conference on frontiers in handwriting recognition

• ICPR:ICPR:ICPR: international conference on pattern recognition

• ILP:ILP:ILP: integer linear programming

• IMPACT:IMPACT:IMPACT: improving access to text

• IOWC:IOWC:IOWC: Indian ocean world centre

• IPA:IPA:IPA: image patches analysis

• ISRI:ISRI:ISRI: information science research institute

• IST:IST:IST: information society technologies program

• IT:IT:IT: information technology

• IUT:IUT:IUT: institute of technology

KKK

• kNN:kNN:kNN: k nearest neighbor

LLL

• L3i:L3i:L3i: “laboratoire informatique, image et interaction”

• LaBRI:LaBRI:LaBRI: “laboratoire Bordelais de recherche en informatique”

• LBP:LBP:LBP: local binary patterns

• LGRE:LGRE:LGRE: low gray-level emphasis

• LI:LI:LI: “laboratoire informatique”

• LITIS:LITIS:LITIS: “laboratoire d’informatique, du traitement de l’information et des systèmes”

• LRE:LRE:LRE: long-run emphasis

• LRHGE:LRHGE:LRHGE: long-run high gray-level emphasis

• LRLGE:LRLGE:LRLGE: long-run low gray-level emphasis

MMM

• MDA:MDA:MDA: multi-linear discriminant analysis

• MDL:MDL:MDL: minimum description length

• MDS:MDS:MDS: multi-dimensional scaling

• MLP:MLP:MLP: multi-layer perceptron

• MRF:MRF:MRF: Markov random fields

• MST:MST:MST: minimum spanning tree
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NNN

• NN:NN:NN: nearest neighbor

• NNS:NNS:NNS: nearest neighbor search algorithm

• NSF:NSF:NSF: national science foundation

OOO

• OCR:OCR:OCR: optical character recognition

• OFR:OFR:OFR: optical font recognition

PPP

• PAM:PAM:PAM: partitioning around medoids

• PCA:PCA:PCA: principle component analysis

• PGA:PGA:PGA: pairwise geometric attributes

• PPCM:PPCM:PPCM: percentage of correctly classified pixels measure

RRR

• RGB:RGB:RGB: red, green and blue color space

• RLF:RLF:RLF: relative location features

• RLNU:RLNU:RLNU: run-length non-uniformity

• RLSA:RLSA:RLSA: run-length smearing algorithm

• RLSO:RLSO:RLSO: run-length smoothing with OR

• ROC:ROC:ROC: receiver operating characteristic

• RPC:RPC:RPC: run percentage

• RXYC:RXYC:RXYC: recursive XY-CUT

SSS

• SAGE:SAGE:SAGE: “systèmes avancés en génie électrique”

• SAR:SAR:SAR: simultaneous auto-regressive model

• SDIP:SDIP:SDIP: sparse discriminative information preservation

• SED:SED:SED: squared Euclidean distance

• SIFT:SIFT:SIFT: scale-invariant feature transform

• SIMD:SIMD:SIMD: single instruction, multiple data

• SOM:SOM:SOM: self-organizing maps

• SP:SP:SP: steerable pyramid

• SRE:SRE:SRE: short-run emphasis

• SRHGE:SRHGE:SRHGE: short-run high gray-level emphasis
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Glossary

• SRLGE:SRLGE:SRLGE: short-run low gray-level emphasis

• SVM:SVM:SVM: support vector machine

TTT

• TCS:TCS:TCS: texture co-occurrence spectrum

UUU

• UBP:UBP:UBP: unique bit pattern matrix

VVV

• VLP:VLP:VLP: visual language processing

WWW

• WED:WED:WED: weighted Euclidean distance
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This chapter introduces the context, challenges and overview of this work,
and the key contributions and organization of this dissertation.
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Chapter 1. Introduction

Since the early 1990s, libraries and museums have conducted large digitization campaigns with
cultural heritage documents and scientific resources for ensuring restoration and lasting preservation
of historical collections and promoting worldwide accessibility to cultural patrimony which requires
to be protected from further deterioration and damages caused by repetitive handling [7]. Due
to the huge amount of numeric high quality reproductions induced by the rapid growth of digital
libraries worldwide, many challenges and open issues have been raised and have already spawned
novel approaches and rigorous techniques of mass management. These solutions are designed to
optimize the accessibility and navigability of huge mass and ever-increasing amount of available
document images (DIs) (i.e. an easier browsing). Providing a reliable document interpretation
system and developing an efficient content-based image retrieval (CBIR) tool which are oriented to
historical document images (HDIs), are the prime necessities that have been pointed out to tackle
the issues of large amount of data.

Recently, raising interest to document image analysis (DIA) and historical DIA has been gen-
erated, since it helps to reach the objective of ensuring the indexing and retrieval of digitized
resources and offering a structured access to large sets of cultural heritage documents [8]. Indeed,
an important need has emerged which consists in designing a computer-aided characterization and
categorization tool, able to index or group digitized historical book (DHB) pages according to sev-
eral criteria, mainly the layout structure and/or typographic/graphical characteristics of the HDI
content.

This dissertation presents a number of studies and methods that address these challenges. The
context (cf. Section 1.1), challenges (cf. Section 1.2) and overview (cf. Section 1.3) of this work,
and the key contributions (cf. Section 1.4) and organization (cf. Section 1.5) of this dissertation,
are presented in the following.

1.1. Context of this work

My thesis work has been carried out with the support of the French national research agency
(ANR)1 and the collaboration of many French research laboratories, “laboratoire informatique,
image et interaction” (L3i)-University of La Rochelle2, “laboratoire d’informatique, du traitement de
l’information et des systèmes” (LITIS)-University of Rouen3, “laboratoire Bordelais de recherche en
informatique” (LaBRI)-University of Bordeaux I4, “laboratoire d’informatique en image et systèmes
d’information” (LIRIS)-INSA Lyon5 and “laboratoire informatique” (LI)-University of Tours6, in
partnership with the French national library “bibliothèque nationale de France” (BnF) 7 and two
industry partners, Arkhênum8 and innovative, imaging, solutions (i2S)9. We are working on a
project named DIGIDOC (document image digitization with interactive description capability)10.

The DIGIDOC project aims mainly to simplify and improve the archiving, processing, comparison
and indexing of DHBs. Specifically, its goal is to develop tools for analyzing HDIs throughout the
acquisition process, from scanning the document to knowledge representation and management of
HDI content. Moreover, the ultimate goal of the DIGIDOC project is developing relevant ways
of interacting with scanners by assisting the digitization operator to adjust automatically the best
set of parameters (e.g. resolution, lightening, color calibration), detecting errors in the digitization

1http://www.agence-nationale-recherche.fr/en/
2http://l3i.univ-larochelle.fr/
3http://litis.insa-rouen.fr/
4http://www.labri.fr/
5https://liris.cnrs.fr/?set_language=fr
6http://li.univ-tours.fr/
7http://www.bnf.fr/fr/acc/x.accueil.html
8http://www.arkhenum.fr/
9http://www.i2s.fr/

10The DIGIDOC project is referenced under “ANR-10-CORD-0020”.
For more details, http://www.agence-nationale-recherche.fr/en/anr-funded-project/?tx_lwmsuivibilan_

pi2[CODE]=ANR-10-CORD-0020
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1.2. Challenges of this work

process (e.g. blur, skewed, folded pages), providing an appropriate assistance for document indexing
(e.g. by recognizing automatically page types or breaks in a sequence of pages), etc. Indeed, there
is an absolute need to design “smart” digitizers which can limit manual intervention and perform
easy and high quality digitization of DIs [9]. Therefore, to achieve better interaction with scanners,
we need to design a computer-aided categorization tool, able to index or categorize DHB pages
according to several criteria, mainly the layout structure, graphical properties or typographical
characteristics of the HDI content.

In this work, we are interested in tackling the fundamental problem of the DHB content character-
ization and DHB page categorization, with the goal of optimizing the accessibility and navigability
of huge mass of HDIs. We have to find an alternative to the contemporary DIA tools which are
mainly based on a priori knowledge of the layout and content of DIs to segment and characterize
the analyzed DIs. Beyond this point, based on strong a priori knowledge, the contemporary DIA
approaches are not effective if they are extended to be applied to a broader range of complex and
degraded DIs such as the HDIs. Thus, the key task in this work is to show that it is possible to
ensure automatic and relevant characterization and categorization of DHB pages without manual
inspection or a priori knowledge regarding DI layout and content and with taking into consideration
the particularities of HDIs.

1.2. Challenges of this work

Supported by the fact that pages of the same book usually present strong similarities in the orga-
nization of the HDI information (i.e. layout) and in the graphical and typographical features (i.e.
content) throughout the DHB pages under consideration, our goal is to propose an approach that is
used on an entire book instead of processing each page individually, for the segmentation and anal-
ysis of DHB content, and characterization and categorization of DHB pages. The aimed approach
should not require a priori knowledge of the layout, typographical parameters or graphical proper-
ties of the analyzed DHB pages. It can extract automatically low-level features for discriminating
the different classes of the foreground layers, through the analysis of the similarity and repetition
information which is deduced from many DHB pages. Then, we aim to determine a region or
group of pixels which share similar properties or characteristics on the basis of which they are
grouped. These characteristics may be based on the localization of pixels and their surroundings,
color, intensity or texture. In this work, we will focus only on texture-based features.

Recently, the issues of DIA have been considered as texture segmentation and classification [6].
It is commonly agreed that texture analysis plays a fundamental role for historical DIA and un-
derstanding since it has been considered as a consistent choice for meeting the need to segment
a page layout under significant degradation levels and different noise types. Kise [5] stated that
the analysis of pages with constrained layouts (e.g. rectangular, Manhattan) and clean DIs has
almost been solved while historical DIA is still an open problem due to their particularities (e.g.
noise and degradation, presence of handwriting, overlapping layouts, great variability of the page
layout). He also precised that the most relevant methods used to analyze pages with unconstrained
layouts and overlapping layers, are based on signal properties of page components by investigating
texture-based features and techniques. Hence, texture-based methods address the challenges of the
existing state-of-the-art ones and those initially dedicated to contemporary DIs. Given that there
are significant degradations and no hypothesis concerning the HDI layout, the graphical properties
or typographical parameters of the analyzed HDI, such as the type of script or handwriting (e.g.
machine-print or printed, hand-print or manuscript, cursive), font size and type, scanning resolu-
tion, DI size, language, alphabet, etc., the use of texture analysis techniques for HDI has become
an appropriate choice. In addition, it has been shown that texture-based approaches work effec-
tively with no a priori knowledge about the layout, content, typography, font and graphic styles,
scanning resolution, DI size, etc. It has also been shown that they have good performance even for
handwritten text. The use of a texture-based approach has been shown to be effective with skewed
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Chapter 1. Introduction

and degraded images.
In order to ensure a distinction between different text fonts and various kinds of graphics, three

assumptions are made [10]. First, the textual regions in a digitized DI are considered as textured
areas, while its non-text content is considered as regions with different textures. Secondly, text
with a different font is distinguishable. Finally, different types of graphics can be also separated.
Thus, in this work various aspects of texture features have been explored in HDIs to assist the
analysis of their content by characterizing a HDI through a set of homogeneous regions. Therefore,
a data-driven or bottom-up strategy of analysis has been adopted in this work which is based on
low-level data mining of pixels (e.g. texture, position, shape, geometry). This strategy investigates
the texture and topology-based pixel properties (the spatial distribution of gray-levels) to determine
the homogeneous or similar content regions in the analyzed HDI.

• First, faced with a large diversity of texture-based methods, few questions arise. Which
texture methods are firstly well suited for segmenting graphical regions from textual ones,
discriminating text in a variety of situations of different fonts and scales and separating differ-
ent types of graphics ? Then, which texture approaches represent a constructive compromise
between the performance (i.e. segmentation quality) and computational cost (i.e. memory
requirements, processing time, numerical complexity and texture vector dimensionality) ?
It is well-known that the success or failure of texture-based segmentation method tightly
depends on the type of the extracted and used texture features. Thus, an experimental eval-
uation and benchmarking of a number of commonly and widely used texture approaches have
been firstly conducted on a large corpus of HDIs, to have satisfactory and clear answers to
the above questions. This work has shown the effectiveness of the different texture analysis
approaches in the field of historical DIA.

• Given that there is a wide variety of DHB layouts and contents, having significant degradation
levels and different noise types, proposing an approach that does not require any a priori
knowledge, to characterize automatically DHB pages, is not a straightforward task. However,
based on the hypothesis that some similarities of HDI content type can be deduced from
many book pages and based on the assumption that a DI content type can be repeated
on many pages of the same book [11, 12], a framework that works effectively at the entire
book scale, instead of processing each book page individually, is proposed in this work. The
proposed framework ensures the pixel-based characterization of the content of an entire DHB.
It is automatic and it can be adapted to all kinds of books. It is independent of DI layout,
typeface, font size, orientation, DI size, digitizing resolution and intensity, etc. It is also robust
in the case of different kinds and levels of noise and degradation present in HDIs. Moreover,
it does not require any manual inspection or a priori knowledge regarding DI content and
structure or layout.

• A raising interest is noticeable recently to the use of statistical and structural pattern recog-
nition tools to retrieve objects and classify them [13]. In DIA, the statistical and structural
approaches are broadly applied for DI representation [14, 15]. A DI is represented by a feature
vector in a statistical approach, while in a structural one a data structure (e.g. graph, tree) is
used to model objects and their relationships in a DI. Therefore, by combining several points
related to texture and topology-based segmentation methods and structural representation
approaches that have been reported separately in the literature particularly on synthetic,
medical and natural images, a structural signature based on texture, for each DHB page
is proposed in this work. The proposed DHB page signature is characterized with a set of
extracted homogeneous or similar content regions defined by similar texture, shape and ge-
ometric attributes and their topology. It does not assume a priori knowledge regarding the
layout and content of the analyzed DHB pages, and hence, it is applicable to a large variety
of ancient books. It integrates varying low-level features (i.e. texture, shape, geometric and
topological descriptors) characterizing the different HDI content components (i.e. different
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1.3. Overview of this work

text fonts or graphic regions) on the one hand, and structural information describing the HDI
layout on the other hand. This rich and holistic representation of the layout and content of
the analyzed DHB page can be adapted to the user preferences and specified criteria through
the extracted varying levels of information (e.g. by selecting only the information character-
izing the HDI layout and/or content or by retrieving any useful information available for a
subsequent use). It provides a topological signature of DHB page according to several criteria,
mainly the layout structure and/or typographic/graphical characteristics of the HDI content.

• Finally, using the obtained signatures which are modeled in the form of graphs, the simi-
larities of DHB page structure or layout and/or content can be deduced. To categorize and
group DHB pages with similar layout and/or content, the obtained graph-based DHB page
signatures can be compared using a graph dissimilarity. Then, the evaluation of the proposed
page signature has been carried out based on computing a distance matrix, whose elements
represent the dissimilarity between the compared graphs. Indeed, the DHB pages can be
compared by categorizing the designed signatures which model the layout and content of
DHB pages. In fact, DHB pages with similar layout and/or content can be grouped.

1.3. Overview of this work

The work conducted in this thesis proposes an automatic and relevant characterization and catego-
rization approach of DHB pages. The proposed approach is independent of the layout and content
of the analyzed DHB pages (i.e. it does not assume a priori knowledge regarding DI content and
structure), and hence, it is applicable to a large variety of DHBs. It is based on the use of texture
and structural information to provide a rich and holistic description of the layout and content
of the analyzed DHB pages. The categorization is based on the characterization of the digitized
page content by analyzing varying low-level of information (i.e. texture, shape, geometric and
topological descriptors). More precisely, the signature-based characterization approach consists of
two main stages. The first stage consists in extracting homogeneous regions. Then, the second
one is proposing a graph-based page signature which is based on the extracted homogeneous re-
gions, reflecting its layout and content. This signature ensures the implementation of numerous
applications for managing effectively a corpus or collections of books (e.g. information retrieval in
digital libraries according to several criteria or page categorization). To illustrate the effectiveness
of the proposed page signature, a detailed experimental evaluation has been conducted in this work
for assessing two possible signature-based applications for DHB page categorization, unsupervised
page classification and page stream segmentation.

1. The characterization approach of DHB pages is based on identifying the different DI content
components or blocks to characterize the DI layout and content and to define a page repre-
sentation for each digitized page. The identification of the different DI content components
or blocks is processed by extracting a set of regions of homogeneous texture or similar groups
of pixels sharing some visual characteristics with their topological relationships. This would
help modeling the layout structure, separating text from non-text regions, partitioning or
categorizing pre-localized text blocks into columns, headings, paragraphs, lines, words, notes
(head-notes and foot-notes) and abstracts, etc. Our goal is to extract as automatically as
possible varying low-level features that segment DHB pages or a collection of DHBs into
spatially disjoint homogeneous regions or similar content regions, without formulating a hy-
pothesis concerning the DI structure or layout (e.g. column layout), typographical parameters
(e.g. font size and type) or graphical properties (e.g. presence of embellishments) of the DI.

2. By characterizing each DHB page with a set of regions of homogeneous texture with varying
low-level features, a structural signature, is designed for each DHB page. The proposed page
signature integrates varying low-level features characterizing the different DI content compo-
nents or blocks (i.e. text or graphic regions) on the one hand, and structural information
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Chapter 1. Introduction

describing the DI structure or layout on the other hand. This rich and holistic representation
of the layout and content of the analyzed DHB page can be adapted to the user preferences
and specified criteria through the extracted varying levels of information (by selecting only
the information characterizing the HDI content and/or structure or by retrieving any use-
ful information available for a subsequent use). The extracted varying low-level information
corresponds to the extracted (i) texture features to characterize the DI typographical and
graphical characteristics, (ii) shape, geometric and topological features to describe the shape
and spatial relationships of the extracted components of DI contents and (iii) structural
information to take into consideration the page layout or structure.

3. The proposed page signature allows the implementation of several applications for managing
effectively a corpus or collections of DHBs. To name a few, we may underline the following
applications based on the defined page signature in this work:

• Recognizing the analyzed page type to ensure an automatic adjustment of the quality
of the page scanning process with respect to the page signature and subsequent use (i.e.
designing a “smart” or “intelligent” scanner),

• Modeling a computer-aided categorization tool, able to index, compare or classify DHB
pages or DHBs according to several criteria (e.g. HDI layout and/or content) or to
retrieve pages which have particular layout and/or content (e.g. empty or cover DHB
pages),

• Identifying specific pages, such as the transition pages in a DHB (e.g. title pages of
chapter) which require a particular indexing process, to generate automatically a table
of contents/summary of the analyzed DHB (cf. Figure 1.1),

• Retrieving pages in a DHB that match specific criteria defined by a user (e.g. pages
having particular layout and/or content),

• Detecting pages having scanning failure occurring during the digitization process (e.g.
blur, skewed, folded pages), etc.

Figure 1.1.: Example of a table of contents/summary of an analyzed DHB to generate using the
proposed DHB page signature.
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1.4. Contributions of this dissertation

Among the numerous possible applications of the proposed DHB page signature (e.g. struc-
ture the whole HDIs corpus, index, retrieve, compare or group HDIs), a thorough evaluation
has been conducted in this work for assessing two possible signature-based applications:

a) Unsupervised DHB page classification to group or gather similar layout and/or content
DHB pages,

b) DHB page stream segmentation to generate automatically a table of content/summary
of the analyzed DHB.

This evaluation has been carried out based on:

• Computation of graph edit distances (GEDs) between the different graph-based DHB
page signatures, that can be used to retrieve similar pages in a HDI database query tool,

• DHB page categorization by analyzing the computed GEDs between the different graph-
based DHB page signatures.

The assessment of the other potential applications of the proposed DHB page signature, cited
earlier, will be among our future prospects.

Thus, the four main tasks describing the two analyzed and evaluated applications of the
proposed DHB page signature are (cf. Figure 1.3):

a) Extraction and analysis of descriptors per region

b) Generation of a structural signature (graph-based) per DHB page

c) Computation of GEDs between page signatures

d) Categorization of page signatures

• Unsupervised DHB page classification (cf. Figure 1.2(a))

• DHB page stream segmentation (cf. Figure 1.2(b))

1.4. Contributions of this dissertation

This section summarizes the contributions of this dissertation, whereas the detailed contributions
(along with the experiments and evaluations necessary to assess their performance) are discussed
in the rest of the chapters of this dissertation.

1.4.1. Contributions

The main contributions of this dissertation are summarized in the following.

1. The first contribution of this work is presenting an experimental evaluation and benchmarking
of a number of commonly and widely used texture features which have been conducted on a
large corpus of HDIs for the purpose of determining the performance of each texture-based
feature set according to the DI content, i.e. segmenting graphical regions from textual ones
on the one hand, and discriminating text in a variety of situations of different fonts and
scales on the other hand. To provide a qualitative measure of which texture-based feature
sets are most appropriate for this task, nine texture-based feature sets (Tamura, local binary
patterns (LBP), gray-level run-length matrix (GLRLM), auto-correlation function, gray-level
co-occurrence matrix (GLCM), Gabor filters (GFs), 3-level Haar wavelet transform (Haar),
3-level wavelet transform using 3-tap Daubechies filter (Db3) and 3-level wavelet transform
using 4-tap Daubechies filter (Db4)) have been investigated and assessed on 1100 pages of
historical documents by using a classical texture-based pixel-labeling scheme for comparing
texture features. The results reported in this work provide a useful benchmark in terms
of performance, texture vector dimensionality, memory requirements, processing time and
complexity for current and future research efforts in historical DIA. This work has also shown
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the effectiveness of the different texture analysis approaches in the field of historical DIA,
without formulating a hypothesis concerning the HDI layout (e.g. column layout) or its
content (e.g. font size and type).

2. Then, the second contribution lies in the automatic analysis of characteristics of DHB pages
(regarding their layout and/or content) to find homogeneous regions (i.e. graphic and textual
regions) by analyzing texture features on an entire DHB instead of processing each page
individually, with no assumption concerning the DHB page structure or layout (e.g. column
layout), typographical or graphical properties (e.g. font size and type) of the DHB pages.
Our goal is to provide a rich and holistic description of the layout and content of the analyzed
book pages. Thus, a pixel-based characterization framework of the content of an entire book is
proposed in this work, that can be seen as a first step towards to ensuring a simplified and user-
friendly navigation on historical collections and cultural patrimony. Even if the typographical
or graphical features are not known in advance, the texture information (e.g. typographical
and graphical properties) which is often repeated and recurrently present in many DHB pages,
can be deduced by exploiting the regularities of the associated textures through the whole
DHB pages. So, in a first step, a clustering of texture features which are extracted from a sub-
sampling in the entire DHB aims at identifying the texture information that is present in DHB
pages. The clustering method that is applied has the ability to determine automatically the
number of clusters or homogeneous regions. This knowledge is then used in a second step to
segment each DHB page individually. Thus, a pixel-labeling framework which automatically
analyzes texture descriptors by involving a multi-resolution/multi-scale approach to label
pixels sharing similar textural characteristics (i.e. typographical and graphical properties) is
presented as the second contribution of this work. The proposed pixel-labeling framework
has been evaluated on a large variety of DHBs and achieved interesting results.

3. The third contribution of this work is proposing a structural DHB page signature to char-
acterize DHB page structure or layout and/or content. This structural signature is designed
for each DHB page, based on the set of the extracted regions of homogeneous texture (repre-
senting different DI content components or blocks) with their topological relationships, using
a complete directed attributed graph. Where the graph vertices correspond to the extracted
regions of homogeneous texture, and a set of edges is built based on topological relationships
connecting the different vertices. The characterization of the extracted regions of homo-
geneous texture is based on varying low-level features (i.e. texture, shape, geometric and
topological descriptors).

4. Finally, the last contribution of this work consists in illustrating the potential of the proposed
graph-based signature by evaluating two possible signature-based applications, unsupervised
page classification and page stream segmentation for DHB page categorization. To catego-
rize and group DHB pages with similar layout and/or content, the obtained graph-based
DHB page signatures can be compared using a graph dissimilarity. In our experiments, we
use an approximate GED. The GED is used to measure the (dis)similarity between the ob-
tained graph-based DHB page signatures [13]. The GED deals with the computation of the
minimum-cost sequence of the basic graph editing operations (e.g. substitution, deletion and
insertion of vertices or edges) to transform a graph to another one. The GED has to be set
up based on the costs of the elementary edit operations (substitution, deletion and insertion).
These costs are functions of the label of vertices/edges. Then, the evaluation of the proposed
page signature has been carried out based on computing a distance matrix, whose elements
represent the dissimilarity between the compared graphs. Indeed, the DHB pages can be
compared by categorizing the designed signatures which model the layout and content of
DHB pages. In fact, DHB pages with similar layout and/or content can be grouped. In this
regard, a simple integrated user-centered graphical user interface (GUI) tool is designed for
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the identification of the transition or similar layout and/or content pages in the DHB under
consideration according to the user requirements.

In order to test the performance of the different proposed approaches in this work, detailed
experimental evaluations on a large variety of DHBs and HDIs has been carried out. The evaluation
has shown promising results in both accuracy and robustness.

1.4.2. List of publications

This dissertation has led to the following communications:

1.4.2.1. Journal papers

1. M. Mehri, P. Héroux, P. Gomez-Krämer and R. Mullot, Texture Feature Benchmarking
and Evaluation for Historical Document Image Analysis. Pattern Analysis and Machine
Intelligence, IEEE, 2015 [submitted].

2. M. Mehri, P. Gomez-Krämer, P. Héroux, A. Boucher and R. Mullot, A Texture-based Pixel
Labeling Approach for Historical Books. Pattern Analysis and Applications, Springer-Verlag,
pages 1-40, 2015.

1.4.2.2. International conference papers

1. M. Mehri, P. Héroux, J. Lerouge, P. Gomez-Krämer and R. Mullot, A Structural Signature
Based on Texture for Digitized Historical Book Page Categorization. International Confer-
ence on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 2015 [accepted].

2. M. Mehri, P. Gomez-Krämer, P. Héroux, M. Coustaty, J. Lerouge and R. Mullot, A Bottom-
up Method Using Texture Features and a Graph-based Representation for Lettrine Recog-
nition and Classification. International Conference on Document Analysis and Recognition
(ICDAR), Tunis, Tunisia, 2015 [accepted].

3. M. Mehri, P. Héroux, N. Sliti, P. Gomez-Krämer, N. E. B. Amara and R. Mullot, Extraction
of Homogeneous Regions in Historical Document Images. In Proceedings of the 10th Inter-
national Conference on Computer Vision Theory and Applications (VISAPP), SciTePress,
Berlin, Germany, 2015.

4. M. Mehri, N. Sliti, P. Héroux, P. Gomez-Krämer, N. E. B. Amara and R. Mullot, Use of
SLIC superpixels for ancient document image enhancement and segmentation. In Proceedings
of the 22nd Document Recognition and Retrieval (DRR), Part of the IS&T/SPIE 27th Annual
Symposium on Electronic Imaging, SPIE, San Francisco, CA, USA, 2015.

5. M. Mehri, M. Mhiri, P. Héroux, P. Gomez-Krämer, M. A. Mahjoub and R. Mullot, Per-
formance Evaluation and Benchmarking of Six Texture-based Feature Sets for Segmenting
Historical Documents. In Proceedings of the 22nd International Conference on Pattern Recog-
nition (ICPR), IEEE, pages 2885-2890, Stockholm, Sweden, 2014.

6. M. Mehri, P. Gomez-Krämer, P. Héroux, A. Boucher and R. Mullot, A Pixel Labeling
Framework for Comparing Texture Features: Application to Digitized Ancient Books. In
Proceedings of the 3rd International Conference on Pattern Recognition Applications and
Methods (ICPRAM), SciTePress, pages 553-560, Angers, France, 2014.

7. M. Mehri, P. Héroux, P. Gomez-Krämer, A. Boucher and R. Mullot, A Pixel Labeling
Approach for Historical Digitized Books. In Proceedings of the 12th International Conference
on Document Analysis and Recognition (ICDAR), IEEE, pages 817-821, Washington, DC,
USA, 2013.
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8. M. Mehri, P. Gomez-Krämer, P. Héroux and R. Mullot, Old document image segmentation
using the autocorrelation function and multiresolution analysis. In Proceedings of the 20th

Document Recognition and Retrieval (DRR), Part of the IS&T/SPIE 25th Annual Symposium
on Electronic Imaging, SPIE, San Francisco, CA, USA, 2013.

1.4.2.3. International workshop papers

1. M. Mehri, N. Nayef, P. Héroux, P. Gomez-Krämer and R. Mullot, A Learning Texture-
based Method for Enhancement and Segmentation of Historical Document Images. 3rd Inter-
national Workshop on Historical Document Imaging and Processing (HIP), Tunis, Tunisia,
2015 [submitted].

2. M. Mehri, V. C. Kieu, M. Mhiri, P. Héroux, P. Gomez-Krämer, M. A. Mahjoub and R.
Mullot, Robustness Assessment of Texture Features for the Segmentation of Ancient Doc-
uments. In Proceedings of the 11th International workshop on Document Analysis System
(DAS), IEEE, pages 293-297, Tours, France, 2014.

3. M. Mehri, P. Gomez-Krämer, P. Héroux, A. Boucher and R. Mullot, Texture Feature Eval-
uation for Segmentation of Historical Document Images. In Proceedings of the 2nd Interna-
tional Workshop on Historical Document Imaging and Processing (HIP), ACM, pages 102-109,
Washington, DC, USA, 2013.

1.4.2.4. National conference papers

1. M. Mehri, M. Mhiri, P. Gomez-Krämer, P. Héroux, M. A. Mahjoub and R. Mullot, Étude
comparative de trois ensembles de descripteurs de texture pour la segmentation de documents
anciens. In Proceedings of the 8th “Colloque International Francophone sur l’Écrit et le
Document” (CIFED), pages 41-56, Nancy, France, 2014.

2. M. Mehri, V. C. Kieu, M. Mhiri, P. Héroux, P. Gomez-Krämer, M. A. Mahjoub and R.
Mullot, Évaluation de la robustesse des descripteurs de texture pour la segmentation d’images
de documents anciens. In Proceedings of the 8th “Colloque International Francophone sur
l’Écrit et le Document” (CIFED), pages 25-40, Nancy, France, 2014.

3. V. C. Kieu, M. Mehri, V. Rabeux, N. Journet and M. Visani, Génération d’images semi-
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In Proceedings of the 8th “Colloque International Francophone sur l’Écrit et le Document”
(CIFED), pages 199-214, Nancy, France, 2014.

1.4.2.5. National communications at scientific congresses without proceedings

1. M. Mehri, P. Héroux, P. Gomez-Krämer and R. Mullot, A structural method based on
texture for ancient document image analysis. ICDAR 2015 Doctoral Consortium, Tunis,
Tunisia, 2015 [accepted].

2. M. Mehri, P. Héroux, P. Gomez-Krämer and R. Mullot, Historical document image analysis:
a structural approach based on texture. Biennial Meeting of the French Research Group in
Written Communication (GRCE), Paris, France, 2015.

3. M. Mehri, P. Gomez-Krämer, P. Héroux, A. Boucher and R. Mullot, Old document im-
age segmentation using the autocorrelation function and multiresolution analysis. Biennial
Meeting of the French Research Group in Written Communication (GRCE), Paris, France,
2012.
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1.5. Organization of this dissertation

The rest of this dissertation is organized as six chapters:

• Chapter 2 reviews the research projects related to digital libraries and historical DIA.

• Chapter 3 outlines the related works on DIA and different texture-based methods proposed
in the literature with a particular focus on those related to DIA and historical DIA.

• Chapter 4 presents an experimental evaluation and benchmarking of a number of commonly
and widely used texture features which have been conducted on a large corpus of HDIs.

• Chapter 5 presents a texture-based pixel-labeling framework for DHBs.

• Chapter 6 presents a structural signature based on texture used for DHB page characteriza-
tion.

• Chapter 7 presents two applications of the proposed signature for DHB page categorization
in the context of DIGIDOC project.

• Chapter 8 summarizes some conclusions about the work presented in this dissertation and
possible future directions of the work.
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Figure 1.2.: Illustration of the two assessed applications of the proposed signature in this work: DHB page stream segmentation and unsupervised
DHB page classification. Figure (a) illustrates the application of the proposed signature for unsupervised DHB page classification. DHB
pages containing only text regions are illustrated on the first line, while DHB pages containing graphic and text regions are depicted in
the second line. Figure (b) illustrates the application of the proposed signature for DHB page stream segmentation. By identifying the
transition pages in a DHB which may correspond to the title pages of each chapter, a table of content/summary of the analyzed DHB
is automatically generated.
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This chapter reviews the research projects related to digital libraries and
historical document image analysis. A number of initiatives have taken
place to conduct large digitization programs with cultural heritage docu-
ments. Thus, new specific issues and challenges concerning the preservation
and reproduction of historical collections have recently been addressed. The
objectives and scope of this research work are given at the end of the chap-
ter.
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Chapter 2. Digital libraries and challenges

2.1. Introduction

The development of the Internet and electronic publishing, the prospects offered by the standard-
ization of documentary techniques and broadcast media and the increased storage capacity and
transmission rates, raise questions and pose specific challenges concerning the preservation and
reproduction of historical collections. Thus, in order to guarantee a lasting preservation of histor-
ical collections and to provide a world-wide access to material which needs to be protected from
too frequent handling, libraries have conducted large digitization programs with cultural heritage
documents.

The idea of conducting strategies of digitization programs with cultural heritage documents has
emerged since the early 1960s. The primary goals of these digitization programs which were related
to the tremendous growth and spread of the Internet technologies, were not clearly identified (e.g.
providing digital copies of historical documents, sharing databases of DIs between many libraries,
designing a computer-assistance tool for textual data handling). Nevertheless, the significant dig-
itization programs date to the 1970s, whose primary objectives were to preserve the historical
collections and reproduce searchable, browseable and available on-line DI databases. From the
1990s onwards, new technologies have revolutionized the world of librarianship and printing thanks
to the technological breakthrough and political decisions [16]. The European1 and American2 min-
istries of culture support digitization programs and encourage the development of digital libraries
which offer new services such as on-line consulting of HDIs, fragile books and rare collections, etc.
The French digital library Gallica3, the British library4 and the John F. Kennedy library5 have
been established for the purpose of preserving and exploiting this cultural heritage, and managing,
promoting and developing digital supports of the cultural patrimony.

A number of initiatives have been taken to preserve and exploit the cultural heritage. For instance,
the European library6 is an on-line portal which provides quick, easy and open access to the
collections of the 48 national libraries of Europe for research community world-wide. DELOS is
a network of excellence on digital libraries, funded by the European commission7. Its primary
objective consists in ensuring world-wide access to networked virtual libraries, by providing access
to HDI collections residing in traditional libraries, museums, archives, universities, governmental
agencies, specialized organizations and individuals around the world. In addition, it ensures the
coordination and support of the efforts of the major European research teams working in digital
library fields8. A complementary initiative of the DELOS activities which is called “DL.org -
Digital Library Interoperability, Best Practices & Modelling Foundations” was set. Its primary
goal is ensuring a focused approach to future great achievement in digital library related areas by
forging strong links with the library and information science community, spanning educationalists,
students, practitioners, researchers in book history, computer scientists, historians, librarians, end-
users and decision makers9.

At the industry sector level, numerous projects are in development to offer world-wide access
to larger document collections and create global virtual libraries. The most well-known project
is the “Google books library project” (previously known as the “Google print library project”)10

which has the objective to conduct a digitization and content indexing program of more than 15
million books of cultural heritage with the help of several libraries. It was initiated by the Google’s
partner program to offer the service of “Google books” (previously known as “Google book search”

1http://www.culture.gouv.fr/culture/mrt/numerisation/
2http://www.archives.gov/digitization/
3http://gallica.bnf.fr
4http://www.bl.uk
5http://www.jfklibrary.org/
6http://www.theeuropeanlibrary.org/tel4/
7http://ec.europa.eu/index_en.htm
8http://delos.info/
9http://www.dlorg.eu/

10https://www.google.com/googlebooks/library/
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and “Google print”). This service provides an access to the full text of books and magazines that
Google has scanned. The text in scanned DIs is automatically converted to editable text by optical
character recognition (OCR) and stored afterwards in digital databases. This both ensures the
access to the meaning of words in the pages, and easy and quick search for occurrences of words in
the text.

The increasing interest in digital libraries of Google and recently of other leaders and large firms
(e.g. Microsoft, IBM, Yahoo, Amazon) proves the major success and effervescence of digital libraries
and their rapid growth world-wide, and it poses new specific challenges concerning the preservation
and reproduction of historical collections to reinforce its leadership position [17, 18, 19]. There
has been an increase in special needs for information retrieval in digital libraries to optimize the
exploitation of heritage documents [7, 20, 8]. As a matter of fact, this chapter introduces the
challenges and goals of different research projects related to digital libraries and historical DIA, to
meet the need to reinforce the enrichment and exploitation of heritage documents.

The remainder of this chapter is organized as follows: Section 2.2 presents a brief description
of the main issues related to HDI indexing, with a particular focus on those related to OCR.
Section 2.3 reviews the research projects related to digital libraries and HDI analysis. New specific
issues and challenges concerning the preservation and reproduction of historical collections and the
objectives and scope of this research work are presented in Section 2.4.

2.2. Towards historical document image indexing

One issue of particular concern is to provide a computer-based access and analysis of cultural
heritage documents, searchable and browseable HDI databases, and an automatic indexing, linking
and retrieval semantic-based systems of HDIs. As a consequence, there is a rapidly emerging need
for an automatic conversion of text in digitized HDIs to editable text by the OCR. Since the early
2000’s, investments in digitization must be accompanied by OCR to have access to full text content
[21]. This ensures an automatic HDI indexing by textual content. In addition, this can also be
useful in other contexts, such as the production of e-books, genealogy analysis, etc. For instance,
the BnF has conducted many mass digitization projects in order to give access to its collection. The
textual contents of the HDIs of the digital library of the BnF, Gallica, have been indexed by using
OCR softwares since 2006 (i.e. textual transcriptions). OCR softwares have become more and more
holistic, complex and sophisticated systems, and they do not only focus on solving a particular sub-
task in restricted environments. They are composed of several modules dedicated to the analysis
and recognition of the different page components. As a matter of fact, the OCR performance has
been called into question for the OCR software inability to deal effectively with HDIs due to the
HDI particularities (e.g. noise and degradation, presence of handwriting, overlapping layouts, great
variability of page layout). Indeed, few errors such as the missed text components, can occur in OCR
outputs due to the complexity of the OCR architecture and processing chain and the accumulation
of errors at different levels in the OCR processing (i.e. pre-processing such as the binarization step,
segmentation task or character/symbol recognition phase) [22, 23]. Few error examples of missed
text/graphic components are illustrated in Figure 2.1. Therefore, manual corrections are required
to ensure a high quality transcription. When the estimated word recognition rate is lower than
85%, manual corrections are recommended for the transcribed documents. Nevertheless, manual
corrections are considered as expensive and exhausting tasks. In addition, the performance of the
developed OCR softwares is highly dependent on the quality and particularities of the involved
HDIs. And that is precisely why an automatic OCR verification phase should be integrated before
the stage of HDI indexing by textual content. In fact, Salah et al. have recently proposed a texture-
based approach for the detection of missed text components to control the OCR results from the
Gallica collections [24].

The information science research institute (ISRI) which is a research and development unit of
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(a) (b) (c)

Figure 2.1.: Illustration of the labeled masks detected by an OCR software [24]. Figure (a) shows an
example of a missing section in the OCR output. Figure (b) depicts few error examples
of missing words, sentences and graphical elements in the OCR output. Figure (c)
illustrates few error instances of missing words in the OCR output. A red bounding
box represents a recognized word by the OCR, while a green one represents a detected
graphical element by OCR.

the University of Nevada11, has conducted an annual “OCR technology assessment” program for
benchmarking the OCR systems [25, 26, 27]. Its mission focuses on developing:

• New metrics of recognition performance,

• Measures of print quality,

• DI enhancement methods,

• Characterization of document analysis techniques.

The ISRI evaluated the OCR systems using a test data which is composed of five test samples
(e.g. business letter samples, administrative document samples selected from the U.S. department
of energy, magazine samples, English and Spanish newspaper samples). Few criteria were defined
to evaluate the OCR systems under consideration (e.g. character accuracy, word accuracy, sentence
accuracy, confidence score, accuracy character class, automatic textual block detection, document
block labeling, accuracy document block labeling, document quality, resolution impact). The result
of this benchmarking work consists in determining 280 degradation parameters. These parameters
have been categorized as follows [22]:

• Imaging defects (e.g. heavy/light print, heavy and light print, stray marks, curved base-
lines),

• Similar symbols (e.g. similar vertical symbols, other similar symbols),

• Punctuation (e.g. commas, periods, quotation marks, special symbols),

11http://www.expervision.com/testimonial-world-leading-and-champion-ocr/

annual-test-of-ocr-accuracy-by-us-department-of-energy-doe-university-of-nevada-las-vegas-unlv
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• Typography (e.g. italics and spacing, underlining, shaded backgrounds, unusual typefaces,
very large/small print).

In the context of the digitization programs developed to establish digital libraries, it is obviously
necessary to take account of the quality of the original historical documents and all HDI processing
stages, from the acquisition, the textual content transcription to the OCR verification, indexing
and digital library integration steps. There are many factors that can affect OCR output quality:

• Characteristics of the digitized books or documents (e.g. textual content, typography, illus-
trations, presence of mathematical formulas) and edition (e.g. publisher, publication date),
etc.

• Characteristics of paper, print and preservation quality, ink, inking, font size and type, etc.

• Characteristics of digitization (e.g. digitization quality, scanner type and parameters).

It is worth noting that the current efforts to build up a relevant OCR system are certainly
planned to recognize typed text or words. According to [28], all DI components that are not purely
textual ones, can disrupt the OCR processing, such as images, tables, mathematical and chemical
formulas, numbers, hieroglyphics, handwritten annotations, graphics, etc. Moreover, depending on
the composition of the text and textual structure (e.g. paragraph arrangement, font type and size,
columns, text direction, text color), the OCR processing difficulty varies considerably. Other factors
concerning the digitized ancient books or HDIs make the OCR processing task difficult and complex,
such as languages and alphabets (e.g. accents, word length, number of languages, alphabets and
scripts), references and quotations, punctuation, etc. On the other side, factors concerning the book
edition and digitization properties (e.g. paper quality, printing defects, degradation, black borders
of DIs, darker areas in the binding margins, flat scan by opening pair of pages, noise generated by
the scanner roller and sensor, contrast/brightness level, curvature, compression, dynamic DI) have
a major impact on the performance of the OCR and retrospective conversion tools.

As a consequence, a numerous research directions of studying the cultural heritage, various studies
and different contributions achieved on distinct sub-fields and tasks related to the issues surrounding
historical DIA (e.g. pre-processing, enhancement, restoration, graphics recognition, HDI layout
analysis, HDI analysis and recognition, HDI understanding) in order to ease the effective functioning
of an OCR software and improve its performance for HDI indexing.

2.3. Research projects dedicated to historical document image analysis

To meet the need to reinforce the enrichment and exploitation of heritage documents in addition
to make it electronically available for access via the Internet, many research projects have been
set up with the support of public funding provided by the European and American governments.
The main goals of these projects are to provide a computer-based access and analysis of cultural
heritage documents, searchable and browseable HDI databases and an automatic indexing, linking
and retrieval semantic-based systems of HDIs. Some works have been proposed to deal with the
whole HDIs or DHBs [1], while others have been focused on investigating and analyzing parts of
HDIs such as the graphic images (e.g. illustrations, drop caps [29]) or text, styles/fonts, handwritten
annotations [30].

Nevertheless, the rapid growth of digital libraries has become a serious hindrance to promote wide
efficiency and effectiveness in the management of this cultural heritage resources (i.e. quick and
relevant access to the information contained therein) due to the huge amount of digital high quality
reproductions of fragile books and the large mass of digital copies of rare collections. Moreover,
a lack of comprehensive and strategic management tools has become an obstacle to optimizing
the exploitation of heritage documents [7, 20, 8]. In fact, finding reliable systems for the in-
terpretation of HDIs has been a topic of major interest for many libraries and the prime issue
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of research in the DIA community. There has been an increase in special needs for informa-
tion retrieval in digital libraries and historical DIA. Numerous research projects (e.g. 5CofM12,
HisDoc13, HisDoc2.014, IOW15, MEMORIAL16, DocExplore17, Europeana18, Europeana Newspa-
pers19, DEBORA20, Philectre [31], BVH21, BAMBI22, MADONNE23, NaviDoMass24, DMOS25,
METAe26, PlaIR27, Bovary28, Passe-Partout29, GRAPHEM30, Word spotting: indexing handwrit-
ten manuscripts31, Culture, inheritance and creation32) deal with the digitization, enrichment and
exploitation of European and American ancient heritage resources. A summary table of several
research projects dedicated to historical DIA, describing briefly their target objectives, the tasks
to carry out and the used datasets and showing their results, are presented in Table 2.2.

For instance, the European project DEBORA aims to develop networked libraries by improving
accessibility to the 16th century books of Italy, France and Portugal [9, 32]. One of the main interests
of the MEMORIAL project is to develop a digital document workbench ensuring the creation of
distributed virtual archives of printed HDIs from former Nazi concentration camp museums across
Europe [33]. Europeana is a research project funded by the European comission7 aiming to digitize
historical newspapers to make them available for open access for research community world-wide.
One of the aims of DocExplore is to construct a historical DIA framework which provides computer-
based access and analysis of historical manuscripts. The aim of the HisDoc project is to design
generic processing approaches and tools for historical manuscripts which are independent of the
scripting language [34]. As part of the BAMBI project, a set of specific processing tasks have been
developed for the recognition of handwritten scripts and the localization of textual information
and drop caps (i.e. a drop cap is an ornamental letter that was widely used in books over time
to represent the first letter at the beginning of a paragraph or a chapter) [29] and to determine
document structure (columns, rows and paragraphs), particularly for medieval documents [35,
36, 37]. The aim of the MADONNE project is to develop a toolkit that can be used to index
heritage documents and categorize book pages [38]. One of the main interests of the Philectre
project is to explore and review the contribution of the computerized and electronic techniques,
the computer technology and the image processing tools to the researchers in literary sciences,
especially geneticists and medievalists. In this context, Lecolinet et al. [31] proposed an interactive
system devoted to the visualization and the editing of hypermedia documents from literary material
including DIs and structured text. This system integrates many DIA modules for manuscript
transcription and structured textual representation of HDIs.

A limited number of standard public datasets of HDIs and their associated ground-truths is used in
the context of different research projects to handle HDIs [39]. A number of HDI datasets are freely

12http://dag.cvc.uab.es/projects/five-centuries-of-marriages
13https://diuf.unifr.ch/main/hisdoc/
14https://diuf.unifr.ch/main/hisdoc/hisdoc2
15http://indianoceanworldcentre.com/Team_9
16http://www.primaresearch.org/projects/MEMORIAL
17http://www.docexplore.eu
18http://www.europeana.eu
19http://www.europeana-newspapers.eu/
20http://cordis.europa.eu/libraries/en/projects/debora.html
21http://www.bvh.univ-tours.fr/presentation_en.asp
22http://www.ilc.cnr.it/viewpage.php/sez=ricerca/id=97/vers=ing
23http://madonne.univ-lr.fr
24http://navidomass.univ-lr.fr
25http://www.irisa.fr/ra2001/imadoc/fonde_grammaires_mn.html
26http://meta-e.aib.uni-linz.ac.at/
27http://www.plair.org/doku.php
28http://www.bovary.fr/
29http://www3.unil.ch/BCUTodai/app/todaiGetIntro.do?uri=todaiInfo&page=todaiLogo.html
30http://liris.cnrs.fr/graphem/
31http://ciir.cs.umass.edu/irdemo/hw-demo/wordspot_retr.html
32http://cluster13.ens-lyon.fr/
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available for historical handwriting recognition and word spotting (e.g. IAM-HistDB33, George
Washington34 35 [40], Parzival36 [41, 42, 43], Saint Gall37, RODRIGO38 [44], ESPOSALLES39

[45], Barcelona historical handwritten marriages (BH2M)40 [46], Montesquieu’s and Flaubert’s
manuscripts41 [47, 48, 30], Vesalius’s manuscripts42 [49]).

The George Washington dataset34 contains 20 pages from two writers. The Parzival dataset36

is a multi-writer historical database and contains 47 pages. The RODRIGO dataset38 is a single
writer database and contains 853 pages. The ESPOSALLES database39 contains two types of page
parts from the marriage license book which was written between 1617 and 1619 by a single writer.
The first part of pages, contains 1747 licenses on 173 pages. The second one which is called index,
is composed of pages of 29 text pages. The BH2M dataset40 consists of 174 images of manuscripts
from the 17th century. Those datasets are being used in the context of different research projects to
deal with handwritten documents of inheritance by developing innovative techniques and proposing
different approaches. In the context of historical graphical image analysis, the BCU Lausanne43

which is a library at the University of Lausanne, proposed a dataset of 100 images of the ornaments
of the 18th century collected from old books [50]. This dataset ensure the comparison of the used
printing equipment. In the context of NaviDoMass project, 4000 drop cap images from the 16th

and 17th centuries 44 have been collected for graphical part indexing in historical heritage [51]. It
is obviously necessary to note the unavailability or lack of a standard public large dataset of HDIs
and its associated ground-truth. Moreover, most available datasets contain only handwritten HDIs.

Few datasets of HDIs used in the context of different research projects are summarized in Table
2.1.

Table 2.1.: Datasets dedicated to historical DIA.

Dataset Category Number
of pages

Project Use cases

George
Washington34

[52, 40]

-Two writers
-18th century
-English language
-Longhand script
-Ink on paper

20 -HisDoc
-HisDoc2.0
-Word spotting:
indexing
handwritten
manuscripts

Handwritten
historical
document
analysis and
characterization

Parzival36

[41, 42, 43]
-Three writers
-13th century
-Medieval
German language
-Gothic script
-Ink on
parchment

47 -HisDoc
-HisDoc2.0

-Handwritten
historical
document
analysis and
characterization
-HDI layout
analysis

33http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/
34http://memory.loc.gov/ammem/gwhtml/gwhome.html
35http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/washington-database
36http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/parzival-database
37http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/saint-gall-database
38https://www.prhlt.upv.es/page/projects/multimodal/idoc/rodrigo
39http://dag.cvc.uab.es/the-esposalles-database
40http://dag.cvc.uab.es/the-historical-marriages-database
41http://www.bovary.fr/folios_liste.php?type=f&id=4&mxm=0101030105&recueil=1&page=25&nb=24
42http://www.bvh.univ-tours.fr/Consult/index.asp?numfiche=56&url=/resrecherche.asp?ordre=

titre-motclef=andre%20vesale-bvh=BVH-epistemon=Epistemon
43http://www.bcu-lausanne.ch/english-speaking/
44http://navidomass.univ-lr.fr/ressources.html
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Table 2.1 – continued from previous page

Dataset Category Number
of pages

Project Use cases

Saint Gall37

[53, 34, 54, 55,
56, 57, 4, 58]

-Single writer
-9th century
-Latin language
-Carolingian
script
-Ink on
parchment

60 -HisDoc
-HisDoc2.0

-Handwritten
historical
document
analysis and
characterization
-HDI layout
analysis

RODRIGO38 [44] Single writer 853 HisDoc Handwritten
historical
document
analysis and
characterization

ESPOSALLES39

[45]
Marriage license
book which was
written between
1617 and 1619 by
a single writer

202 5CofM -Handwritten
historical
document
analysis and
characterization
-HDI layout
analysis

BH2M40 [46] Manuscripts from
the 17th century

174 5CofM -Handwritten
historical
document
analysis and
characterization
-HDI layout
analysis

Montesquieu’s
and Flaubert’s
manuscripts41

[47, 48, 30]

Handwritten
HDIs from the
18th and 19th

centuries

500 -Culture,
inheritance and
creation
-GRAPHEM
-MADONNE
-Bovary

Handwritten
historical
document
analysis and
characterization

Not mentioned
[50]

Images of the
ornaments of the
18th century
collected from old
books from the
BCU Lausanne43

100 Not mentioned Graphical part
indexing in
historical
heritage

Not mentioned42

[51]
Drop cap images
from the 16th and
17th centuries

4000 NaviDoMass Graphical part
indexing in
historical
heritage
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Table 2.1 – continued from previous page

Dataset Category Number
of pages

Project Use cases

Vesalius’s
manuscripts42

[49]

Rare DHBs 85 -BVH
-MADONNE

-Graphical part
indexing in
historical
heritage
-HDI layout
analysis
-Historical
collection
modeling and
representation

Not mentioned
[59, 60]

Damaged
military form
pages of the 19th

century

88, 745 DMOS HDI layout
analysis

IAM-HistDB33 -Parzival36

-Saint Gall37

-George
Washington35

-74 hand-
written
historical
manuscript
images
-60
medieval
manuscript
pages
-20 pages
from the
George
Washington
papers

-HisDoc
-HisDoc2.0

-Handwritten
historical
document
analysis and
characterization
-HDI layout
analysis

These projects have addressed very specific issues in the field of historical DIA [20, 8]:

• Handwritten historical DIA and characterization,

• Graphical part indexing in historical heritage,

• HDI layout analysis,

• Historical collection modeling and representation.

To further illustrate the specific main research themes, issues and dedicated services to historical
DIA, the following is an outline of a categorization of few European and American research projects
according to their goals and contributions.

2.3.1. Handwritten historical document analysis and characterization

In addition to the search and index of historical handwritten collections [52] and the word spot-
ting and retrieval for HDIs [40] which are still open issues, other challenging issues have been
presented such as handwriting recognition analysis [54], writer characterization and identification
[61], handwriting classification [30], etc.
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2.3.1.1. Culture, inheritance and creation

“Culture, inheritance and creation” is a French project carried out in collaboration with literary
partners. It has investigated a digitized corpus of handwritten HDIs from the 18th and 19th centuries
(cf. Figure 2.2) [30]. The aim of this work is to identify the authors of some of these manuscripts and
to characterize and group together manuscripts written by the same author. Ancient handwritten
manuscripts of some famous French authors (Montesquieu and Flaubert) were evaluated since the
particularities of handwritten HDIs have been covered (i.e. they contain multi-writer annotations
or corrections and characterized by background noise and degradation such as background spots,
delocalized folds, etc.).

Figure 2.2.: Examples of ancient manuscripts collected from the French digital library Gallica3:
Montesquieu’s autograph “De l’Esprit des Lois” (1789) and Montesquieu’s secretary
(1780) [30].

2.3.1.2. GRAPHEM

GRAPHEM is another multi-disciplinary research project whose main goal is the automatic analysis
of medieval writings to support palaeography experts in analyzing manuscripts which is a highly
complex work that demands painstaking attention to detail. The project aims to firstly investigate
and analyze the evolution of writing forms and secondly to develop efficient and automatic methods
enabling accessing to manuscript contents based on word image similarity (i.e. word spotting and
word retrieval). Eglin et al. [62] proposed several methods for handwritten content analysis,
handwriting grapheme decomposition, grapheme analysis and classification etc. The developed
algorithms can significantly help to transcript historical manuscripts and identify writing styles
or writers [63]. Figure 2.3 illustrates segments of medieval manuscripts used in the GRAPHEM
project.

2.3.1.3. Bovary

In the context of the MADONNE project and particularly the Bovary project45, a French manuscript
digitisation project dealing with Flaubert’s manuscripts41 (cf. Figure 2.4), Nicolas et al. [47, 48]
proposed to enrich historical manuscripts by presenting an approach for segmenting and analyzing
Flaubert’s handwritten manuscript layout. They proposed a set of tools to help historians to char-
acterize Flaubert’s layout style and provide an on-line, structured access and browsing capabilities
to an hyper-textual edition of “Madame Bovary” draft sets.

45http://www.bovary.fr/
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Figure 2.3.: Examples of segments of medieval manuscripts used in the GRAPHEM project [62, 63].

Figure 2.4.: Examples of Flaubert’s manuscripts41 collected in the context of the Bovary project
[47, 48].

2.3.1.4. Word spotting: indexing handwritten manuscripts

A project on indexing handwritten historical manuscripts46 has been developed by Rath et al.
[52, 40] and supported by the center for intelligent information retrieval (CIIR) at the University of
Massachusetts Amherst47 and the national science foundation (NSF)48. They have used a part of
the George Washington collection34 at the library of Congress49 (cf. Figure 2.5). Figure 2.6 shows
two screen shots of the Web-based retrieval system interface50 proposed by Rath et al. [52, 40] for
handwritten text and line retrieval from the George Washington collection.

2.3.1.5. 5CofM

The 5CofM project is a Spanish research project. It is supported by the European research council
advanced grant (ERC Advanced Grant)51, and it is funded under the European seventh frame-
work program for research (FP7)52. The main objective of 5CofM consists in extracting all the
substantive information on five centuries of marriages contained in marriage license books (called
Llibres d’Esposalles)53, conserved at the archives of the cathedral of Barcelona, to produce a digital
database which called the Barcelona historical marriage database (BHMD). The marriage register

46http://ciir.cs.umass.edu/irdemo/hw-demo/
47http://ciir.cs.umass.edu/
48http://www.nsf.gov/
49http://www.loc.gov/
50http://ciir.cs.umass.edu/irdemo/hw-demo/
51http://erc.europa.eu/advanced-grants
52http://ec.europa.eu/research/fp7/index_en.cfm
53http://dag.cvc.uab.es/5cofm-ground-truth
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Figure 2.5.: Segment of digitized scanned manuscript document from the George Washington
collection34 [52, 40].

(a) (b)

Figure 2.6.: Screen shots of the Web-based retrieval system interface proposed by Rath et al. [52, 40]
for handwritten text and line retrieval from the George Washington collection34. Figure
(a) illustrates a screen shot of a ranked list of pages from 1000 handwritten page images
in response to the “has” word, while Figure (b) shows a screen shot of the retrieved
lines of handwritten HDIs in response to an input of a “has been” word query.

collection consists of 244 books containing approximately 600, 000 unions celebrated between 1451
and 1905. It contains information concerning the recorded marriages and their corresponding fees
paid according to the social status of the families. Two examples of marriage register collection
pages can be seen in Figure 2.7. Figure 2.7(a) illustrates an index of marriage register collection
book, while Figure 2.7(b) shows an instance of a marriage license. Two benchmarking databases
(the ESPOSALLES and BH2M databases) are freely available to evaluate the most challenging
tasks of a knowledge extraction and analysis process for automatic recognition and annotation of
historical manuscripts such as word spotting [46] and HDI layout analysis [64, 65, 66], etc. The
ESPOSALLES database39 for handwriting recognition [45]. The BH2M database40 for HDI layout
analysis [64] and word spotting [67]. In the context of the 5CofM project, Fernández-Mota et
al. [66, 46] proposed new approaches for handwritten text line segmentation and sequential word
spotting in historical handwritten documents.
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(a) Index (b) Marriage license

Figure 2.7.: Examples of marriage register collection pages from the Llibres d’Esposalles (archives
of Barcelona cathedral)53 [45, 46]. Figure (a) illustrates an example of an index of
marriage register collection book, while Figure (b) shows an example of a marriage
license.

2.3.2. Graphical part indexing in historical heritage

Most of the research projects addressed the issues related to text in HDIs for indexing and retrieval
[1]. However, other studies examined historical graphical images such as the drop caps [29]. HDIs
often contain graphical features represented by drop caps (cf. Figure 2.8). Drop caps were widely
present in DHBs of the 15th and 16th centuries. They occur at the beginning of a chapter or
paragraph. Other terms are often used to define a drop cap such as lettrine, drop capital or
ornamental letter. A drop cap is usually represented by two main layers: a letter or initial and a
drawing painted in the background. Analyzing drop caps ensures the indexing of the DHBs of the
beginning of the printing period. Another interest of investigating and examining the drop caps
in HDIs is to enrich semantically them by adding meta-data or semantic annotations. Thus, the
drop caps can be described, classified and compared using the obtained signatures, and historical
documents can subsequently be dated historically, authenticated or characterized by identifying
differences between the analyzed drop caps. Other uses include developing relevant drop cap CBIR
systems. The idea consists in providing a lettrine image query to the developed lettrine CBIR
system, that will retrieve within a database all similar lettrines. There are several other needs
expressed by the historian community. For instance, by analyzing drop caps the font, color or
alphabet that characterizes the printer can also be deduced and investigated. In other cases,
analyzing drop caps allows grouping the alphabet used in the drop caps, studying the wear of
buffers used to print the drop caps, investigating the drawing painted in drop cap background and
examining the progress of the used printing techniques, etc. The analysis of drop caps is considered
complex, since there is a large variety and wide range of drop cap models, and they contain a lot
of information (e.g. texture, letter, decorated background). In the context of the MADONNE and
NaviDoMass projects, a number of studies have been carried out to extract specific parts from
these complex graphic images and to compute signatures for indexing historical graphical images.

Figure 2.8.: Example of a drop cap [29].

Several research projects dealing with ancient illustration and ornament image datasets have been
conducted [68]:
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• The Fleuron project54 has the objectives to provide a database of images of the ornaments to
compare them and to investigate the pattern recurrence from one publisher to another, etc.

• The Môriane project55 ensures the analysis of counterfeit ornaments used by printers of the
18th century [69].

• The Passe-Partout project developed a software which is called TODAI56, ensuring an auto-
mated search of a digitized ornament image from an ornament database by employing visual
extraction and selection criteria without using textual description through keywords [70].

Nevertheless, the MADONNE, NaviDoMass and BVH projects appear to be the most recent,
effective and successful research projects in the field of graphical part indexing.

2.3.2.1. MADONNE

The aim of the MADONNE project consists in developing a toolkit that can be used to index
heritage documents and categorize book pages [38]. It is the result of fruitful cooperation be-
tween many French research laboratories between 2003 and 2006. Among the objectives of the
MADONNE project is to develop a CBIR system for ancient graphical drop caps. Uttama et al.
[29] examined drop caps from historical heritage images and introduced a drop cap segmentation
method based on a combination of different texture features. A signature is afterwards assigned
to a drop cap in order to design a CBIR system. A screen shot of the drop cap retrieval system
interface proposed in the context of the MADONNE project is illustrated in Figure 2.9.

Figure 2.9.: Screen shot of the drop cap retrieval system interface proposed in the context of the
MADONNE project [29].

2.3.2.2. NaviDoMass

The primary goal of the French research project NaviDoMass is to develop robust pattern recog-
nition and analysis techniques supporting the particularities of HDIs (e.g. large variability of page

54https://apps.atilf.fr/fleuron2/
55http://www.enssib.fr/bibliotheque-numerique/notices/1510-le-projet-moriane
56http://www3.unil.ch/BCUTodai/app/Todai.do
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layout, noise, degradation) ensuring rigorous description, classification and indexing of HDI col-
lections by their content. In the context of the NaviDoMass project, Jouili et al. [15] proposed
a structural-based framework to handle graphical images of HDIs (e.g. drop caps). They evalu-
ated their approach on more than 4000 drop cap images44 (cf. Figure 2.10), collected from the
“Centre d’Études Supérieures de la Renaissance” (CESR)57. The CESR is a library, a training and
research center. It ensures the access to a rich library of rare Renaissance books (i.e. from the
16th and 17th centuries) and support the efforts of the French research teams to work in various
Renaissance-related areas. Coustaty et al. [51] proposed an approach for the extraction of drop
cap letters by decomposing the information contained in the analyzed drop caps into several layers
(i.e. segmenting the letter and the elements from its background) to characterize them by using a
relevant signature.

Figure 2.10.: Examples of the drop caps collected from the CESR57 [15].

2.3.2.3. BVH

The BVH project is a French project aiming to create a rich humanistic virtual library which
provides a public Web-portal accessibility to more than 85 rare DHBs which were collected from
the CESR, regardless barriers of time and place [49]. Providing a networked virtual library will
enable anyone from their home, school or office to access the knowledge contained in the digital
historical collections. In addition, the goal of the BVH project is to index these books in order to
ensure new powerful technological capabilities that enable users to search among titles, authors,
dates and other different queries relative to the digitized books to retrieve a particular book or
book element (e.g. graphical or textual parts). Many kinds of graphics other than the drop caps,
can be analyzed and retrieved. For instance, different ornaments (cf. Figure 2.11 58) and portraits
(cf. Figure 2.12 59) were collected in the context of the BVH project to be analyzed. A Web-based
retrieval system interface60 of different kinds of graphics was proposed in the context of the BVH
project61. An example of a search query of the medical illustrations in the Vesalius’s manuscripts42

in the Web-based retrieval system interface62 is illustrated in Figure 2.14.

2.3.3. Historical document image layout analysis

HDI layout analysis consists in dividing a document page according to the nature of the extracted
structure, such as separate text from non-text regions or partition text into columns, text blocks,
lines, words, etc. It deals with the segmentation of a DI into homogeneous regions or zones which
have similar properties to ensure coarse-level understanding of documents [71]. Specific challenges
and open issues concerning HDI layout analysis have been posed and raised to deal with documents
from the 15th, 16th and 17th centuries in a number of research projects. By analyzing the layout or

57http://cesr.univ-tours.fr/
58http://www.bvh.univ-tours.fr/typographie.asp?offset=0
59http://www.bvh.univ-tours.fr/img_portrait.asp
60http://www.bvh.univ-tours.fr/Dionis/recherche_avancee.asp
61http://www.bvh.univ-tours.fr/Dionis/resultat.asp?auteur=VESALE%20Andr%E9&intraoper=Et&

extraoper=Et&tri=Titre
62http://www.bvh.univ-tours.fr/Dionis/recherche_avancee.asp
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Figure 2.11.: Example of ornaments collected in the context of the BVH project58.

Figure 2.12.: Example of portraits collected in the context of the BVH project59.

Figure 2.13.: Examples of different medical illustrations in the Vesalius’s manuscripts collected in
the context of the BVH project61.
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Figure 2.14.: Screen shot of the Web-based retrieval system interface of the medical illustrations in
the Vesalius’s manuscripts collected in the context of the BVH project62.

structure of a DI, valuable information can be extracted and analyzed helping better description,
understanding, browsing and indexing of the document content. Moreover, analyzing the DI layout
or structure helps to investigate or examine the elements of layout, and subsequently it is possible
to develop relevant CBIR systems capable to compare specific blocks yielded by the layout analysis
and to design historical DIA and HDI recognition tools.

2.3.3.1. DEBORA

The DEBORA project is an European multi-disciplinary project which proposes a complete pro-
cessing chain for retrospective conversion, analysis, indexing, retrieval and compression of digitized
Renaissance books [32]. By extracting the meta-data related to the physical layout by means of
connected component (CC) analysis technique and afterwards compressing images, the DEBORA
project has been shown a suitable support for indexing, transmission, editing and annotation. The
compression of book pages is based on an accurate segmentation of their content into different
information layers, and it is adapted to the particularities of each extracted homogeneous region.
It allows fast querying, navigation and downloading of required components of the logical struc-
ture and the physical layout of book pages. It is carried out by defining an appropriate electronic
compressed file format adapted to the book page representation to improve access and browsing.
In addition, to assist experts in manual transcription of Renaissance books, a computer-assisted
transcription (CAT) was proposed in the context of the DEBORA project. The proposed CAT is
able to transcribe all printed documents, regardless the used typography, language or alphabet [9].
A screen shot of the compressed file browser proposed in the context of the DEBORA project is
illustrated in Figure 2.15.

2.3.3.2. BVH

In the context of the BVH project, an interactive HDI layout analysis and segmentation tool which
is called AGORA63, was developed to manage book content description. AGORA is a user-driven
annotation tool which performs HDI layout analysis to index DHBs by extracting and structuring
meta-data of indexing. In this context, Ramel et al. [72] evaluated various traditional methods used
for segmentation of historical printed documents. They highlighted the limits of the traditional
methods to segment HDIs. Thus, they proposed a hybrid segmentation algorithm based on CC
analysis technique for the user-driven page layout analysis of historical printed books. The proposed
algorithm used two maps, a shape map for foreground information analysis based on the CC analysis

63http://www.rfai.li.univ-tours.fr/PagesPerso/jyramel/gb/work1.html
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Figure 2.15.: Screen shot of the compressed file browser proposed in the context of the DEBORA
project [32].

technique and a background map for white area analysis. Then, the classification of the extracted
blocks by using the CC analysis technique was built according to scenarios defined by the user.
With the use of simple descriptors (e.g. spatial position of the extracted blocks in the analyzed
page, neighborhood relationships between the identified blocks, shape, block contents), the user
can define many indexing scenarios corresponding to the selected book pages. Once the different
indexing scenarios have been validated, they will be applied to the remaining of the book pages to
index. An important use of the AGORA software is the automatic extraction and labeling of the
graphical regions. For instance, when a user is interested in acquiring all drop caps in one or more
ancient books to build an extensive database of drop caps, the following scenario can be defined
(cf. Figure 2.16):

• The entity of the request is a drop cap,

• The entity query is always located in the 20% left of the image,

• The width/height ratio of the entity query is between 0.75 and 1.25,

• The closest right neighbor of the entity query is text.

Other uses of the AGORA software are, the extraction of the table of contents and the transcription
of text blocks. Screen shots of the GUI of the AGORA software developed in the context of the
BVH project are illustrated in Figures 2.16 and 2.17.

2.3.3.3. DMOS

A generic recognition method of 2-D structures was proposed in the context of the DMOS project.
The proposed recognition method has been applied on many application domains (e.g. tennis court
detection in videos, musical scores, mathematical formulas) among which HDI layout analysis
[59, 60]. The HDIs processed by the DMOS project are very specific (old civil status registers
and military forms of the 19th century). They must have a strong, stable structure and especially
describable by a set of rules defined by an expert user. In the context of the DMOS project, a
software which is called FormuRead, was developed to extract automatically structure from quite
damaged military forms of the 19th century, found in French archives. FormuRead64 was evaluated

64http://www.irisa.fr/intuidoc/index.php?option=com_content&view=article&id=72&Itemid=111&lang=en
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Figure 2.16.: Screen shot of the GUI of the AGORA software for the definition of indexing scenarios
and the output result of the fusion of the CCs, developed in the context of the BVH
project. An instance of a scenario to acquire all drop caps in one or more ancient
books to build an extensive database of drop caps is illustrated by “the entity of the
request is a drop cap, it is always located in the 20% left of the image, its width/height
ratio is between 0.75 and 1.25, and its closest right neighbor is text”63.

Figure 2.17.: Screen shot of the GUI of the AGORA software for the definition of indexing scenarios
and the output result of the fusion of the CCs, developed in the context of the BVH
project63.

on 88, 745 military form pages of the 19th century. These military forms were collected from 140
registers of the archives of Mayenne65 between 1878 and 1900 and 73 registers of the archives of
Yvelines66 between 1878 and 1885 (cf. Figure 2.18(a)). The evaluations have shown that the
proposed recognition system has excellent structure extraction capabilities (cf. Figure 2.18(b)).
Nevertheless, Coüasnon [59] stated that the military form analysis is an interesting example showing
the difficulties and challenges for archive document recognition. Other interests which have followed

65http://www.lamayenne.fr/fr/Archives53/Archives-en-ligne
66http://archives.yvelines.fr/article.php?laref=1
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the military form analysis have been pursued, such as making an automatic access to military form
pages by handwritten content recognition (i.e. retrieve the right documents according to a textual
request on the last name) after locating precisely the handwritten last name cell. Moreover, a
DIA platform for managing all annotations was proposed to make handwritten archive documents
accessible to public [73].

(a)

(b)

Figure 2.18.: Structure extraction of military form pages of the 19th century with the FormuRead
software which was developed in the context of the DMOS project. Figure (a) il-
lustrates few examples of military form pages of the 19th century. Figure (b) shows
the result of the structure extraction of a military form page using the FormuRead
software [59, 60].

2.3.3.4. METAe

The METAe project, in partnership with the BnF, was funded by the European Commission under
the information society technologies (IST) program through the European fifth framework program
(FP5) for research67. The idea behind the METAe project is to develop a set of tools able to digitize
and analyze books (cf. Figure 2.19) and journals (cf. Figure 2.20) with a minimum of effort and
a maximum of automation and effectiveness [74]. In this context, the German company, CCS68

developed a software program known as DocWorks which offers an automated and structured
conversion of printed ancient documents of the 19th and 20th centuries into digital formats. For
easy access and searchability, DocWorks ensures the automatic recognition and description of the
physical and logical document or book structure through the generation of image meta-data and
character recognition using OCR. It can recognize specific fields (e.g. page numbers, titles, font
sizes, page footnotes)

67http://cordis.europa.eu/fp5/home.html
68http://content-conversion.com/?lang=en
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Figure 2.19.: Screen shot of the result of an automatic recognition of a book structure with the
DocWorks software, developed in the context of the METAe project68.

Figure 2.20.: Screen shot of the result of an automatic identification of different articles on a news-
paper page with the DocWorks software, developed in the context of the METAe
project68.

2.3.3.5. PlaIR

PlaIR is a co-funded research project by the European union through the European regional devel-
opment fund. The objective of the PlaIR project consists in developing a platform for indexing and
searching of multi-domain and multi-purpose information from a set of digital library resources.
By pooling a set of digital library resources and a number of software tools for automatic or semi-
automatic analysis of these resources, the PlaIR project has been evaluated on the four following
areas of application, health, engineering, law and scanned printed heritage archives. In the context
of the scanned printed heritage archives, the main challenges are:

• Digitization of the archives of the “Journal of Rouen” newspapers from the years 1768 to
1848 (cf. Figure 2.21),

• Automatic identification of different articles on a newspaper page [75],

• Development of a efficient OCR engine based on the crowd sourcing technique, etc.

The PlaIR project proposes an on-line research and consultation application which is called
PIVAJ, to offer a world-wide access to the digitized archives of the “Journal of Rouen” newspapers
(cf. Figure 2.22) [76].
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Figure 2.21.: Example of a newspaper page of the digitized archives of the “Journal of Rouen”
newspapers used in the PlaIR project27.

Figure 2.22.: Screen shot of the on-line research and consultation application which is called PIVAJ
and developed in the context of the PlaIR project27.

2.3.3.6. HisDoc

The HisDoc project is a Swiss research project dedicated to palaeographical analysis studies by
proposing several methods for text localization, script discrimination and scribe identification in
historical manuscripts. It has been supported by the Swiss national science foundation projects69.
For historical manuscripts, a complete system for HDI layout analysis (cf. Figure 2.23(a)), hand-
written text recognition (cf. Figure 2.23(b)) and information retrieval (cf. Figure 2.23(c)) was
proposed in the context of the HisDoc project. The HisDoc research project is based on three
distinct modules which are tightly linked70 (cf. Figure 2.23) [34]:

1. Historical DIA:
The first module which is called historical DIA, involved two steps (cf. Figure 2.23(a)) [53, 56]:

• HDI enhancement by modeling, understanding and eliminating the noise and degrada-
tion,

• HDI layout analysis by describing and characterizing the layout and content of HDIs.

2. Handwritten text recognition :
The goal of the second module is to produce a fully automatic and robust segmentation and
transcription system of text line images (cf. Figure 2.23(b)) [55, 54, 57, 4].

69http://www.snf.ch/en/Pages/default.aspx
70https://diuf.unifr.ch/main/hisdoc/
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3. Information retrieval :
Finally, the third module has the main goal of implementing a search engine for noisy tran-
scriptions provided by the second module of automatic handwritten text recognition (cf.
Figure 2.23(c)) [77, 78].

(a) (b) (c)

Figure 2.23.: Illustration of the three complementary modules of the HisDoc project. Figures (a),
(b) and (c) show the HDI layout analysis, handwritten text recognition and informa-
tion retrieval modules, respectively70 [34].

In the context of the HisDoc project, Fischer et al. [54] proposed an approach for automated
reading of historical handwriting based on layout analysis and handwriting recognition modules.
They have evaluated their system on the medieval Parzival database36 (cf. Figure 2.25), and
the proposed approach has achieved promising results [41, 42, 43]. The Parzival database which
includes 47 pages, is a part of the IAM-HistDB33. The IAM-HistDB is a collection of datasets that
contains handwritten historical manuscript images and is freely available. Two other datasets in the
context of the HisDoc project have public access for evaluating handwriting recognition systems:
the Saint Gall37 and the George Washington35 databases which consists of 60 medieval manuscript
pages and 20 pages from the George Washington papers34, respectively. The provided datasets in
the context of the HisDoc project are all annotated, and the ground-truth contains both line-level
and word-level transcriptions which were generated using the ground-truthing editor, known as
DivaDia71.

(a) (b) (c)

Figure 2.24.: Page examples of the three datasets freely available as parts of the IAM-HistDB
in the context of the HisDoc project33 Figures (a), (b) and (c) show three page
examples of the medieval Parzival36, Saint Gall37 and George Washington35 databases,
respectively.

71https://diuf.unifr.ch/main/hisdoc/divadia
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(a) (b)

Figure 2.25.: Evaluation of the automated reading of historical handwritings based on the layout
analysis and handwriting recognition modules by means of the developed ground-
truthing editor, known as DivaDia71 in the context of the HisDoc project33 [41, 42,
43]. Figures (a) and (b) depict an original DI collected from the medieval Parzival
database36 and its defined ground-truth, respectively.

2.3.3.7. 5CofM

In the context of the 5CofM project (cf. Section 2.3.1.5), the page segmentation step is an important
task to retrieve textual information from huge data collections. Thus, Cruz-Fernández and Ramos-
Terrades [64] proposed a document segmentation method based on relative location features (RLF)
to segment structured HDIs collected from the 5CofM dataset53. This corpus is composed of highly
structured pages. Each page contains a variable number of marriage license records and each
marriage license record has three classes: the family name, record body and paid tax (cf. Figure
2.26). Cruz-Fernández and Ramos-Terrades [64] worked on segmenting these three classes. The
experiment was performed on 512 pages of 5CofM database (volume 208) and they obtained good
detection results of each of the three classes. In this same context, Álvaro et al. [65] defined a
bi-dimensional extension of stochastic context-free grammars for page segmentation of structured
documents. Moreover, Fernández-Mota et al. [66] proposed a graph-based approach for segmenting
touching lines in historical handwritten documents. High performance was obtained comparing
other state-of-the-art methods even the DIs contain skewed, multi-oriented, touching or overlapping
lines. An illustration of the qualitative results of line segmentation obtained in the context of the
5CofM project is depicted in Figure 2.26.

Figure 2.26.: Illustration of the defined ground-truth showing the document structure of 5CofM
database (volume 208) for document segmentation used in the context of the 5CofM
project [64].
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Figure 2.27.: Screen shot of the qualitative results of line segmentation obtained in the context of
the 5CofM project [66].

2.3.4. Historical collection modeling and representation

It has been observed that some similarities of DI content type and a strong homogeneity of DI
structure or layout can be easily deduced from many book pages or historical collections [11, 12].
This has led to a raising interest to provide innovative solutions related to extracting, modeling
and representing knowledge in the context of large collections of data. Some encouraging efforts
are noticeable in the context of the MADONNE and IOW research projects. The main goals of
these initiatives is to identify the similarities concerning the collection structure by generating a
relevant model summarizing each analyzed book and to categorize the book pages on the one hand
and to determine the “social networks” linking historical collections and exploring the relationships
among manuscripts and to characterize the interactions over the centuries and among the writers
and cultures on the other hand.

2.3.4.1. MADONNE

In the context of the MADONNE project (cf. Section 2.3.2.1), Journet et al. [1] proposed an
unsupervised texture-based approach for DHB content pixel-labeling. It was based on an unsuper-
vised clustering technique using texture features which were extracted and analyzed from the pixel
content of six pages of the same book by means of multi-scale approach. To assign the same label to
pixels of six book pages which share similar textural characteristics, the clustering was performed
on all extracted texture features of pixels of six book pages. The extracted texture descriptors were
clustered and pixels were separated into two different content clusters, graphics and text. Then,
the obtained pixel-labeling (graphics/text) was used as a basis for comparing the book pages and
to group them into homogeneous classes. Figure 2.28 shows the interest of this simple approach
by considering the number of pixels of drawing and text as a criterion to categorize or classify
the book pages [79]. This classification is considered as the first step in a work of indexing HDIs,
and subsequently it can help to characterize and identify the similarities concerning the collection
structure (e.g. layout, typography) by generating a relevant model summarizing each analyzed
book.
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Figure 2.28.: Categorization of the book pages according to its content in the context of the
MADONNE project [79].

2.3.4.2. IOW

The IOW project is an international and multi-disciplinary program of collaborative research which
was funded by the social sciences and humanities research council of Canada (SSHRC)72. It aims
to study and analyze the history of human-environment interaction in the Indian ocean world by
exploring the relationships among manuscripts and identifying the interactions over the centuries
and among the writers and cultures, after processing and understanding ancient manuscripts. The
Synchromedia Lab73 was involved in the IOW project for technical analysis of the collected docu-
ments (i.e. document enhancement, analysis and mining). Small collection of original manuscripts
which was collected from the archives of the Indian ocean world centre (IOWC)74 were digitized
using multi-spectral imaging to acquire rich digital formats. Then, by automatically extracting
data from the digitized documents, a dataset of multi-spectral HDIs was created, and text was
transliterated and retrieved (cf. Figure 2.29).

In the context of the IOW project, Cheriet et al. [80] proposed a data-driven network-oriented
analysis framework of historical manuscripts based on the visual language processing (VLP) for
pattern analysis. The VLP is composed of three main levels:

• The lowest level focuses on automatic enhancement and restoration of ancient documents,

• The second one deals with the transliteration,

• The highest level copes with the analysis of the relationships between the extracted document
components in the form of a network.

The VLP combines the visual class (images and manuscripts) and conceptual class (phrases and
manuscripts) to determine and characterize the “social networks” linking ancient manuscripts (from
the low-level relations of patches, excerpts, etc. to the high-level relations of manuscripts, collec-
tions, writers, etc.).

72http://www.sshrc-crsh.gc.ca/home-accueil-eng.aspx
73http://www.synchromedia.ca/node/336
74http://indianoceanworldcentre.com/archives
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(a) (b)

Figure 2.29.: Illustrations of transliteration and transcription of historical manuscripts in the con-
text of the IOW project15. Figure (a) illustrates the result of historical manuscript
enhancement. Figure (b) shows the result of an automatic transliteration and tran-
scription chain of historical manuscripts.

2.4. Achievements and open issues

Different research directions of studying the cultural heritage, various studies and different contri-
butions achieved on distinct sub-fields and tasks related to the issues surrounding historical DIA
including, pre-processing, enhancement, restoration, character recognition, graphics recognition,
HDI layout analysis, HDI analysis and recognition, HDI understanding, etc. have been proposed
in many specialized conferences and workshops (e.g. international conference on document anal-
ysis and recognition (ICDAR), international workshop on document analysis system (DAS), in-
ternational conference on document recognition and retrieval (DRR), international workshop on
historical document imaging and processing (HIP), international conference on frontiers in hand-
writing recognition (ICFHR), international conference on pattern recognition (ICPR)), as well in
contests (e.g. historical document layout analysis, historical newspaper layout analysis (HNLA)
and historical book recognition (HBR)) and journals (e.g. IJDAR, PR, PRL, PAA, PAMI, SMC).

However, Cheriet et al. [80] and Ogier [20, 8] stated that there is neither a generic method nor a
unique solution to address all the issues and questions relating to processing HDIs. Cheriet et al.
[80] highlighted the need to evaluate the proposed solutions on a large and varied amount of HDIs
to prove their generality (i.e. to avoid bias introduced when performing the assessment on a small
corpus). It is worth noting that by combining various algorithms and proposing multi-level and
multi-stage frameworks, the exploitation of heritage documents will be optimized. Moreover, the
high need of automation of DIA fields fulfills the requirements of optimization and supports the
large international digitization programs with cultural heritage documents [74]. There has been
an increase in special needs for information retrieval in digital libraries and HDI layout analysis
[7, 20, 8]. Furthermore, a lack of comprehensive and strategic management tools has become an
obstacle to optimizing the exploitation of heritage documents and to addressing the huge amount
of HDIs. Indeed, many issues are still persistent and remain open such as [32]:

• High size of HDI files for the storage of HDIs,

• Lack of a standard file format exchange suitable for transmission,

• Lack of a common or standalone file format suited to HDI or DHB description and represen-
tation,
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• Lack of relevant data compression techniques for faster remote access,

• Limited querying possibilities, etc.

Nevertheless, Ogier [20, 8] categorized the main open issues related to digital libraries and his-
torical DIA into five classes:

1. Content characterization :
The issues related to the content characterization can be mainly linked to find the relevant
signature for the indexing process. The defined signature is tightly dependent on the informa-
tion to characterize the user requirements, subsequent use, etc. These signatures have been
defined to deal with layout, handwritten or graphic indexing issues:

• Layout-based :
For layout characterization, spatial signatures are defined after a segmentation stage to
discriminate between the different classes of the foreground and background layers of a
digitized document. For instance, Qureshi et al. [81] proposed an approach for symbol
spotting using a graph representation of graphical documents (cf. Figure 2.30).

• Handwritten :
A set of approaches have been developed for handwritten script recognition, authenti-
cation, transcription and textual information localization in handwritten HDIs. Those
approaches defined some signatures by combining textural and/or spatial features. For
instance, Wang et al. [82] proposed a coarse-to-fine word spotting approach for historical
handwritten documents based on graph embedding and graph edit distance (GED) (cf.
Figure 2.31).

• Graphic:
A number of content-based characterization approaches have been developed in the
context of graphic indexing. Those approaches are based on extracting several image
and structural features. The image features are extracted from the analyzed image as a
signature computed on the entire image and based on color, texture and/or shape. The
structural features are deduced from a physical or logical layout analysis. Jouili et al.
[83] proposed a structural representation in the form of a graph for historical graphical
DIs. Based on the resulting graph-based representations, they assessed their approach
to categorize drop caps (cf. Figure 2.32).

2. Scale resistance :
The need to evaluate the proposed solutions in historical DIA research fields on a large and
varied amount of HDIs to prove their generality and efficiency (i.e. to avoid bias introduced
when performing the assessment on a small corpus and when using a limited number of
samples in the learning database) and to demonstrate their scale resistance due to the large
variability of representations which is considered as one of the particularities of the HDIs.
The idea consists in using relevant and generic features which better meet the needs of users
for representing the class of objects to be indexed or recognized. For instance, Salmon et al.
[84] combined shape descriptors based on a behavior study in order to improve the recognition
rate of drop caps extracted from archival documents.

3. Management of large mass of digital rare collections:
By using a statistical and/or structural description to represent and characterize an object,
a signature can be generated. This signature can help to retrieve an object or a part of an
object in a database. In the context of dealing with a large mass of digital rare collections,
it is not trivial to perform an exhaustive and sequential comparison of the query with all
objects in the database due to the high computational complexity requirements. Thus, many
studies have been proposed to structure the feature space and/or graph space by using various
strategies depending on the type of the description used in the signature generation step. For
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instance, Tabbone and Zuwala [85] proposed a combined filtering and indexing mechanism
that retrieves in an efficient way the most similar symbols in graphical documents to a given
input query. It is also important to emphasize that a raising interest is noticeable recently to
the unification of structural and statistical pattern recognition tools to retrieve objects and
classify them [13, 14]. In the context of the NaviDoMass project, Jouili et al. [15] proposed a
structural-based framework for the drop cap clustering based on a graph-matching task. They
proposed a structural representation for drop caps and compared the proposed approach with
a statistical representation based on the generic Fourier descriptor (GFD).

4. User interaction :
Extracting a detailed description of the HDI content suited to the users’ needs has become
a major issue. Thus, a raising interest to the development of GUIs has been generated in
order to respond swiftly to the users’ requirements. Using these developed GUIs, the users
can interactively define historical DIA scenarios according to their needs and expectations by
proposing simple and editable scenarios. For instance, AGORA is a user-driven interactive
annotation tool which performs HDI layout analysis to index DHBs by extracting and struc-
turing meta-data of indexing [72]. Furthermore, another point has emerged to strengthen and
foster user interaction by providing an interactive user interface that allows a user to modify
the potential results provided by an automatic system in the case of incremental learning.

5. Knowledge modeling :
Recently, a set of open issues related to knowledge modeling have been tackled by the his-
torical DIA community. The different open issues related to the knowledge generation and
representation or modeling can help to:

• Recreate the past by getting an overview of historical context,

• Understand the interactions among various actors (e.g. centuries or epochs, writers,
cultures),

• Characterize the chronology and geography in historical events unfolding (e.g. constitu-
tion of new social classes).

Various historical, social and political studies have evolved to characterize the dynamics
of population distribution and the expansion of a population in the context of the 5CofM
project, to determine the “social networks” linking historical collections and exploring the
relationships among manuscripts and to identify the interactions over the centuries and among
the writers and cultures in the context of IOW project, etc. Recently, researchers have
addressed a challenge to build a database and ontology of facts extracted from HDIs for an
intelligent information extraction, relevant summarization or knowledge discovery [86, 87].

It is worth noting that the research community is continuing to investigate and provide efficient
functionalities suited to the users’ needs such as easy image browser, relevant content-based re-
trieval, automatic computer-based access and analysis of DHBs, efficient computer-aided book or
book page categorization tool, etc. For instance, Liang et al. [88] presented a generic framework
which is called EMMEL, for historical manuscript image and data processing, visualization and
analysis. The proposed framework provides a flexible description of the content of a historical
manuscript and its meta-data on the one hand, media information enrichment (e.g. video, flash
component) to the manuscript or a specific region of the manuscript. Grana et al. [89] proposed
a complete system for analyzing automatically old documents and creating hyper linking between
different epochs. The proposed system ensures a content enrichment of historical manuscripts with
renovated contents. The augmentation or enrichment of cultural heritage documents with multi-
media details is still challenging due to the high demand for automatic annotation and analysis of
the digitized DIs with very little user intervention. By extracting images and keywords contained
in their captions from DHBs, similar images from the Web were retrieved. Subsequently, the DHB
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contents were enriched with new related contents. This enrichment ensures for example the com-
parison of how a historical site or an ancient monument described or illustrated in a DHB hundreds
of years ago with how it is nowadays. In addition, it helps the user to find contemporary content
connected (i.e. pictorial material from the Web) to the extracted components from the analyzed
DHBs.

Nevertheless, these functionalities require a fine description and a high interpretation of book
content. Thus, many approaches have been proposed to develop automatic tools for computer-
assisted extraction of meta-data or signatures. These meta-data represent the content and/or
structure of HDIs or part of them. The extraction of meta-data or signature definition are important
issues for digital library development because they contribute to develop the different sub-fields and
tasks related to the issues surrounding historical DIA such as word or graphic spotting, etc. In this
context, LeBourgeois et al. [9] considered the meta-data extraction as a crucial task, since they
suggested to design “intelligent” digitizers which can limit manual intervention and perform easy
and high quality digitization of HDIs. The quality digitization of HDIs is adapted to the specificities
of the digitized HDI content and structure, the user requirements (e.g. specified kind of information
to extract and characterize), subsequent use of the digitized HDI or extracted HDI component,
etc. Thus, in the context of our research project, DIGIDOC, we aim to design a computer-aided
categorization tool, able to index or group digitized book pages according to several criteria, mainly
the layout structure, graphical properties or typographical characteristics of the HDI content (cf.
Section 1.1 in Chapter 1).

Figure 2.30.: Symbol spotting using a graph representation of graphical documents [81].

Figure 2.31.: A coarse-to-fine word spotting approach for historical handwritten documents based
on the graph embedding and graph edit distance [82].
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Figure 2.32.: Hyper-graph-based navigation on a drop cap database [15, 83].
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Table 2.2.: A summary of the research projects dedicated to historical DIA.

Project Goal Task Dataset Tool Result

A- Handwritten historical DIA and characterization

Culture,
inheritance
and creation32

Handwriting
classification [30]

-Identify the authors of a
digitized corpus of
handwritten HDIs from the
18th and 19th centuries,
-Characterize and group
together manuscripts written
by the same author.

Montesquieu’s
and Flaubert’s
manuscripts41

Texture features Ancient handwritten
manuscripts of some famous
French authors were evaluated
since the particularities of
handwritten HDIs have been
covered (i.e. they contain
multi-writer annotations or
corrections and characterized by
background noise and
degradation such as background
spots, delocalized folds, etc.).

GRAPHEM30 Automatic analysis of
medieval writings
[62, 63]

-Support palaeography
experts in analyzing
manuscripts,
-Investigate and analyze the
evolution of writing forms,
-Develop efficient and
automatic methods enabling
accessing to manuscript
contents based on word
image similarity (i.e. word
spotting and word retrieval).

Montesquieu’s
and Flaubert’s
manuscripts41

-Feature
extraction,
-Codebook,
-Genetic
algorithm,
-Graph coloring,
etc.

Numerous methods were
proposed for handwritten
content analysis, handwriting
grapheme decomposition,
grapheme analysis and
classification etc. The developed
algorithms can significantly help
to transcript historical
manuscripts and identify writing
styles or writers.

Bovary28 Historical manuscript
enrichment [47, 48]

-Characterize Flaubert’s
layout style,
-Provide an on-line,
structured access and
browsing capabilities to an
hyper-textual edition of
“Madame Bovary” draft sets.

Flaubert’s
manuscripts41

-Bi-scale feature
vector based on
the pixel density
measurement,
-Hidden Markov
models (HMM),
etc.

Several solutions were proposed
to ensure the segmentation of
different page parts (e.g. words
or parts of words) and the
extraction of text lines or other
objects of higher level (e.g. text
blocks).
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Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

Word
spotting:
indexing
handwritten
manuscripts31

Handwritten text and
line retrieval [52, 40]

Word spotting for searching
and indexing historical
handwritten collections.

George
Washington34

-Dynamic time
warping (DTW),
-Feature
extraction,
-K-means and
agglomerative
clustering
technique, etc.

A Web-based retrieval system
was developed for handwritten
text.

5CofM12 Generation of a digital
library of five centuries
of marriages contained
in marriage license
books [45, 46, 67, 66]

-Word spotting,
-Handwriting recognition.

-ESPOSALLES
database39

-BH2M
database40

-Graph,
-Feature
extraction,
-Structural
information, etc.

Numerous approaches for
handwritten text line
segmentation, handwriting
recognition and sequential word
spotting in historical
handwritten documents were
proposed.

B- Graphical part indexing in historical heritage

MADONNE23 Development of a
toolkit to index
heritage documents
and categorize book
pages [90, 29, 84]

-Decompose the information
contained in lettrines into
several layers to segment
lettrines,
-Design a lettrine CBIR
system based on lettrine
signature.

A lettrine
dataset which is
collected from
the CESR57

Texture features Texture-based signatures were
produced for lettrine indexing

NaviDoMass24 Development of robust
pattern recognition and
analysis techniques
supporting the
particularities of HDIs
(e.g. large variability of
page layout, noise,
degradation) [15, 51]

-Access to a rich library of
rare Renaissance books,
-Description, classification
and indexing of HDI
collections by their content.

Gray-scale
lettrine images
from the 16th

and 17th

centuries42

-Texture features,
-Graph-based
signature,
-Ontology, etc.

-A structural-based framework
to handle lettrine images was
developed,
-Generic solutions were
proposed for lettrine indexing,
recognition and classification.
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Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

BVH21 Creation of a
humanistic virtual
library [49]

-Provide a public Web-portal
accessibility to DHBs
regardless barriers of time
and place,
-Index DHBs to ensure
powerful new technological
capabilities that enable users
to search among titles,
authors, dates and other
different queries relative to
the digitized books to
retrieve a particular book or
book element (e.g. graphical
or textual parts).

85 rare DHBs
which were
collected from
the CESR57

CC analysis
technique

-A Web-based retrieval system
interface of different kinds of
graphics was proposed,
-AGORA software was
developed for the extraction and
labeling of the graphical regions.

C- HDI layout analysis

DEBORA20 Development of
networked libraries by
improving accessibility
to the 16th century
books of Italy, France
and Portugal [9, 32]

-Indexing, transmission,
editing and annotation of
book pages,
-Compression of book pages
for fast querying, navigation
and downloading of required
components of the logical
structure and the physical
layout of book pages.

Books from the
16th century

CC analysis
technique

-A complete processing chain
was proposed for retrospective
conversion, analysis, indexing,
retrieval and compression of
digitized Renaissance books,
-A CAT was proposed to assist
experts in manual transcription
of Renaissance books. It is able
to transcribe all printed
documents regardless the
typography and the language or
alphabet used
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Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

BVH21 Management of book
content description [72]

-Index DHBs by extracting
and structuring meta-data,
-Extract table of contents or
graphics,
-Transcript the textual blocks

85 rare DHBs
(Vesalius’s
manuscripts42)
which were
collected from
the CESR57

CC analysis
technique

An interactive HDI layout
analysis and segmentation tool
which is called AGORA63, was
developed. AGORA is a
user-driven annotation tool
which performs HDI layout
analysis.

DMOS25 Development of generic
document recognition
method [73, 59, 60]

-Make handwritten archives
documents accessible to
public with a generic system
of DIA,
-Extract automatically
structure from quite
damaged military forms of
the 19th century, found in
French archives,
-Provide an automatic access
to military form pages by
handwritten content
recognition (i.e. retrieve the
right documents according to
a textual request on the last
name) after locating precisely
the handwritten last name
cell.

88, 745 old civil
status registers
and military
forms of the
19th century

-EPF,
-Parser, etc.

-A generic recognition method
of 2-D structures was proposed,
-The FormuRead software was
developed to extract
automatically structure from
quite damaged military forms of
the 19th century, found in
French archives,
-A platform for managing all
annotations produced by DIA
was proposed to make
handwritten archives documents
accessible to public.

49



C
h

a
p

ter
2
.

D
ig

ita
l

lib
raries

a
n

d
ch

a
llen

g
es

Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

METAe26 Development of a set of
tools able to digitize
and analyze books and
journals with a
minimum of effort and
a maximum of
automation and
effectiveness [74]

-Provide an automated and
structured conversion of
printed ancient documents of
the 19th and 20th centuries
into digital formats,
-Recognize and characterize
of the physical and logical
document or book structure
through the generation of
image meta-data and
character recognition using
OCR,
-recognize specific fields such
as page numbers, titles, size
of fonts, page footnotes, etc.

Printed ancient
documents of
the 19th and
20th centuries

Structural
meta-data

A software program known as
DocWorks was developed. It
offers an automated and
structured conversion of printed
ancient documents of the 19th

and 20th centuries into digital
formats. For easy access and
searchability, DocWorks ensures
the automatic recognition and
description of the physical and
logical document or book
structure through the
generation of image meta-data
and character recognition using
OCR. It can recognize specific
fields such as page numbers,
titles, size of fonts, page
footnotes, etc.

PlaIR27 Development of a
platform for indexing
and searching of
multi-domain and
multi-purpose
information from a set
of digital library
resources [75]

Automatic or semi-automatic
analysis of digital library
resources

Archives of the
“Journal of
Rouen”
newspapers
from the years
1768 to 1848

Conditional
random field
(CRF) model

An on-line research and
consultation application which
is called PIVAJ, was developed
to offer a world-wide access to
the digitized archives of the
Journal of Rouen
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Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

-HisDoc13

-HisDoc2.014
Text localization, script
discrimination and
scribe identification in
historical manuscripts
[41, 42, 43, 34, 53, 56,
55, 54, 57, 4, 77, 78]

-Historical DIA: HDI
enhancement by modeling,
understanding and
eliminating the noise and
degradation and HDI layout
analysis by describing and
characterizing the layout and
content of HDIs,
-Handwritten text
recognition: produce a fully
automatic and robust
segmentation and
transcription system of text
line images,
-Information retrieval:
implement a search engine
for transcriptions.

IAM-HistDB33 -HMM,
-Dynamic
multi-layer
perceptron
(MLP),
-Support vector
machine (SVM),
-Gaussian
mixture models
(GMM),
-Color and
texture feature
extraction,
-Pixel
neighborhood,
-Adapted greedy
forward selection
and genetic
selection, etc.

A complete system for HDI
layout analysis, handwritten
text recognition and information
retrieval was proposed.

5CofM12 Retrieval of textual
information from huge
data collections
[64, 65, 66]

-Structured document
segmentation,
-Segmentation of touching
lines in historical
handwritten documents.

5CofM
dataset53

-RLF features,
-Graph,
-Bi-dimensional
extension of
stochastic
context-free
grammars, etc.

-Good structured document
segmentation results were
obtained,
-High performance for
segmenting touching lines in
historical handwritten
documents was obtained
comparing other state-of-the-art
methods even the DIs contain
skewed, multi-oriented, touching
or overlapping lines.
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Table 2.2 – continued from previous page

Project Goal Task Dataset Tool Result

D- Historical collection modeling and representation

MADONNE23 HDI indexing [79, 1] -Identify the similarities
concerning the collection
structure by generating a
relevant model summarizing
each analyzed book,
-Categorize the book pages.

A number of
DHB pages
(Vesalius’s
manuscripts42)
collected from
the CESR57

Texture features A pixel-based classification
approach was proposed as the
first step in a work of indexing
HDIs. It can help to
characterize and identify the
similarities concerning the
collection structure (e.g. layout,
typography) by generating a
relevant model summarizing
each analyzed book.

IOW15 Study and analyis of
the history of
human-environment
interaction in the
Indian ocean world [80]

-Process and understand
ancient manuscripts,
-Determine the “social
networks” linking historical
collections and exploring the
relationships among
manuscripts,
-Characterize the interactions
over the centuries and among
the writers and cultures.

Small collection
of original
manuscripts
collected from
the IOWC
archives74

-Multi-spectral
imaging,
-Spatial, spectral,
sparse and
graph-based
representations of
visual objects,
-Directed
graphical models,
HMM, undirected
random fields
and spatial
relations models,
-VLP, etc.

A data-driven network-oriented
analysis framework of historical
manuscripts based on the VLP
for pattern analysis was
proposed. It combines the visual
class (images and manuscripts)
and conceptual class (phrases
and manuscripts) to determine
and characterize the “social
networks” linking ancient
manuscripts (from the low-level
relations of patches, excerpts,
etc. to the high-level relations of
manuscripts, collections, writers,
etc.).

5
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This chapter outlines related works on document image analysis, by firstly
detailing the classical approaches. Then, the texture-based methods pro-
posed in the literature are described, with a particular focus on those related
to document image analysis and historical document image analysis.
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3.1. Introduction

From the 1980 onwards, several surveys and comparative studies of the basic concepts and tech-
niques concerning the two areas of document processing: DIA and DI understanding have been
discussed [91, 92]. Tang et al. [91] stated that a DI has two structures: geometric/layout struc-
ture and logical structure. By extracting the geometric or layout structure from a DI, the DIA
techniques are involved. When the geometric structure is mapped into the logical one, the DI
understanding approaches are examined. In this work, we are only interested in the DIA issues.

DIA has been a thriving topic of major interest of many researchers and one of the most explored
fields in image analysis. Nagy [71] summarized the different studies and contributions achieved on
different sub-fields and tasks of DIA (e.g. pre-processing, character recognition, page decomposi-
tion, graphics recognition). DIA consists in dividing a DI layout according to the nature of the
extracted structure such as separate text from non-text regions or partition text into columns, text
blocks, lines, words, etc. It starts by segmenting a DI in order to find and classify homogeneous
regions or zones, such as graphic and textual regions [6]. Finding graphic regions can be used
to segment and analyze the graphical part in historical heritage such as the drop caps [29], while
determining text zones can be used as a pre-processing stage for character recognition [93], text
line extraction [94], handwriting recognition [54], etc.

Beyond this point, this chapter outlines the related works on DIA. The remainder of this chapter
is organized as follows: Section 3.2 presents a brief description of the main basic concepts and
techniques, challenges, issues related to DIA. Section 3.3 reviews related works on the segmentation,
characterization and analysis of the block contents of the DI. The classical and texture-based
methods proposed in the literature are described, with a particular focus on those related to DIA
and historical DIA. Our discussion and conclusions are presented in Section 3.4.

3.2. Definitions and challenges

Several DIA studies have been conducted and reported in the literature in order to characterize
the DI layout with the result of structuring it into three different levels [92, 95]:

• Physical level :
The physical level specifies both the typography and document organization. The typography
arranges the information style (e.g. fonts, colors, lines, frames) and the form layout (e.g.
line spacing and alignment). The document organization sets the layout of all the visual
elements (e.g. characters, words, lines, blocks, columns, non-text regions) contained in a DI
and the topological or spatial relationships between those elements (e.g. hierarchy, inclusion,
neighborhood position).

• Intermediate functional level :
The intermediate functional level represents a physical interpreted one which ensures the
recognition of the logical structure. This logical structure is obtained by recognizing the role
of each component of the physical structure based on a priori knowledge on the typography,
layout, etc.

• Logical level :
The logical level aims to interpret and recognize the different parts that compose a DI and
specify the logical relationship between them. The recognition of logical structure is neces-
sarily guided by a model from either the physical structure or functional structure.

In this work, we focus only on the first level, i.e. the physical level. In the literature, different
DIA approaches have been presented for segmenting, characterizing and analyzing the extracted
block contents from the DI layouts. Kise [5] categorized the DI layouts into four classes (cf. Figure
3.1):
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• Rectangular layout :
A DI has a rectangular layout, when all its components are circumscribed by non-overlapping
rectangles and when the sides of its components are parallel or perpendicular to the DI borders
(cf. Figure 3.1(a)).

• Manhattan layout :
A DI has a Manhattan layout, when its components can be circumscribed by overlapping (i.e.
having concave shapes) and non-overlapping rectangles and when the sides of its components
are parallel or perpendicular to the DI borders (cf. Figure 3.1(b)). The rectangular layout is
a particular case of the Manhattan one. Newspapers are classic examples of the Manhattan
layout.

• Non-Manhattan layout :
A DI has a non-Manhattan layout, when its components can be circumscribed by non-
overlapping regions and when the sides of its components are neither parallel nor perpen-
dicular (i.e. slant sides) to the DI borders (cf. Figure 3.1(c)). Magazines with larger figures
and pictures are typical examples of the non-Manhattan layout.

• Overlapping layout :
A DI has an overlapping layout, when DI blocks or components intersect each other (i.e.
superimposition of information layers), when pixels of one DI component are adjacent to
those of others or when there is no clear distinction between the foreground and background
pixels (cf. Figure 3.1(d)). Modern publications such as advertisement or historical documents
are standard examples of the overlapping layout.

(a) Rectangular (b) Manhattan (c) Non-Manhattan (d) Overlapping

Figure 3.1.: Four classes of DI layouts: rectangular, Manhattan, non-Manhattan and overlapping
[5].

Several scientific works in contemporary DIA have described several relevant approaches enabling
multiple forms of indexing based on content analysis of DIs. For instance, the text in scanned DIs
is automatically converted to editable text by OCR and stored afterwards in digital databases.
This would both ensure access to the meaning of words in the pages, and easy and quick search for
occurrences of words in the text. In this context one can also mention the retrospective conversion
tools allowing the access to DI layout on the one hand, and indexing illustrations or pictures
contained in DIs on the other hand. Thus, current systems for categorizing digitized DIs are
based on several criteria, such as the textual content by applying OCR or by using the interest
point detection approach. For instance, Augereau et al. [96] classified industrial DIs by combining
visual and textual features. The visual features were extracted with the bag of words (BoW)
technique, while the visual ones were extracted with the bag of visual words (BoVW) approach.
Bouguelia et al. [97] presented a learning approach for a DI classification task in an industrial
context. They used a BoW representation of DI to classify administrative DIs by their topics.
The analyzed DI was firstly processed by an OCR. Then, it was represented as a BoW which is
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a sparse feature-vector containing the occurrence counts of words in the analyzed DI. Klein et al.
[98] presented smartFIX as a document analysis and understanding system developed during the
“Adaptive READ”1 research project. The proposed system integrates the DCAdmin module (i.e. a
graphical interface for the training of a classification component which is called mindaccess) which
helps to supervise the learning of semantics of DI content in order to classify the medical bills and
prescriptions with significantly similar content. At the industry sector level, several information
technology (IT) service companies, particularly those involved in DIA fields (e.g. ITESOFT2,
A2IA3), offer many services and toolkits dedicated to DI classification. For example, the A2IA
company developed the “A2IA Document Reader”4 software to classify all types of paper document
and incoming mail, regardless of their structure or content. The developed tool proceeds with the
extraction of all occurrences of searched keywords. It is adapted to all kinds of script (e.g. machine-
print, hand-print, cursive). Moreover, Google sponsored an OCR engine which is called Tesseract,
able to extract and recognize automatically text through layout analysis and image recognition
modules.

Nevertheless, the transposition of these tools for historical DIA, that are dedicated initially for
contemporary DIA, is not straightforward. Grana et al. [89] stated that, despite the OCR-based
methods have yielded reliable results for contemporary DIA, analyzing the HDIs by separating
textual regions from the graphical ones is still more challenging. Indeed, these tools for performing
the historical DIA tasks have poor performance due to many particularities of HDIs. Kise [5] stated
that DIA of pages with constrained layouts (e.g. rectangular, Manhattan) and clean DIs has almost
been solved while historical DIA is still an open problem due to their particularities.

HDIs have the following particularities:

• Properties:

– Large variability of page layout,

– Complicated and complex page layout (e.g. several columns with irregular sizes, dense
printing, irregular spacing, marginal notes),

– Random alignment,

– Use of specific and multiple fonts and illustration styles,

– Large variability of editorial style and logical structure,

– Presence of embellishments,

– Irregular spacings (e.g. between characters, words, lines, paragraphs or margins),

– Overlapping object boundaries,

– Varying text column widths,

– Interspersed graphics,

– Frequent use of different kinds of graphics (e.g. ornaments, drop caps, frames, embel-
lishments, portraits),

– Graphical illustrations and their legends in different and variable locations,

– Text in different orientations,

– Presence of location indicators (e.g. line numbers, page numbers, catchwords),

• Life cycle :

1http://www.dfki.de/pas/kmc/adread-e.html
2http://www.itesoft.co.uk/
3http://www.a2ia.com/en
4http://www.a2ia.com/en/document-classification
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– Noise and degradation caused by copying, scanning or aging (e.g. yellow pages, ink
stains, mold or moisture, faded out ink, uneven lighting due to folded, corrugated parch-
ment or papyrus),

– Superimposition of information layers (e.g. stamps, handwritten notes at the margins,
noise, back-to-front interference, ink that was bleeding through, historical spelling vari-
ants),

• Digitization :

– Page skew,

– Scanning defects (e.g. curvature, light),

– Presence of black borders, etc.

Figure 3.2 illustrates some particularities of HDIs, such as the superimposition of information
layers (e.g. stamps, handwritten notes, noise, back-to-front interference, page skew) which were
collected from the French digital library Gallica3 [99, 8].

Moreover, the OCR-based and contemporary DIA methods are hindered by many issues related
to the OCR and retrospective conversion performance. In addition, they require burdensome and
complex processing due to the mentioned particularities of HDIs. Indeed, this way of using several
criteria for the textual content to categorize DHB pages is beyond the scope of this work. This points
to the need for further reflection on finding an automatic and parameter-free feature-based tool,
able to index or group DHB pages according to several criteria, mainly the layout structure and/or
typographic/graphical characteristics of the HDI content. This tool should be independent of the
layout and content of the analyzed DHB pages (e.g. HDI layout, typeface, font size, orientation,
digitizing resolution) and applicable to a large variety of DHBs. Moreover, we need to refine the
focus on extracting and analyzing optimal features (other than textual-based features), to provide
a rich and holistic description of the layout and content of the analyzed DHB pages.

Thus, processing this kind of document is not a straightforward task and usually includes several
stages: pre-processing, analysis, characterization and recognition [100]. For the problem of histori-
cal DIA, the main challenge is to analyze HDIs and to characterize their layouts and contents under
significant degradation levels and different noise types and with no a priori knowledge about the
layout, content, typography, font styles, scanning resolution or DI size, etc.

Kise [5] stated that several criteria can be used to categorize the state-of-the-art methods for page
segmentation in DIA. He defined three criteria which are:

• Object to be analyzed (i.e. foreground or background):
When documents are printed in black and white, it is trivial to distinguish between the
foreground and background. Indeed, it is usually considered that the black parts in documents
printed in black and white correspond to the document foreground (e.g. characters, figures),
while the white parts represent the document background. Nevertheless, it is not so simple to
separate the foreground from the background when documents are not printed in black and
white (i.e. both the foreground and the background can have similar colors when documents
are printed in color) or for DIs with overlapping layout (i.e. background of a page component
can be considered as the foreground of another page component). Analyzing either the
foreground or background of a DI consists in analyzing the different components that belong
to either the foreground or background. Kise [5] confirmed that foreground/background
separation is a non-trivial task particularity for gray-level and color DIs and for DIs with
overlapping layout. Thus, he pointed out that the choice of the appropriate analysis primitives
is crucial.

• Primitive of analysis (i.e. pixels, superpixels, CCs, etc.):
Analyzing either the foreground or background of a DI is processed by investigating their
respective primitives. A primitive is an element of a DI that belongs to either the foreground
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Figure 3.2.: Illustration of some particularities of HDIs, such as the superimposition of information
layers (e.g. stamps, handwritten notes, noise, back-to-front interference, page skew)
collected from the French digital library Gallica3.

or background. Pixels, superpixels and CCs are the most used primitives in both foreground
and background analysis.

– Pixel is the smallest manageable element of a DI.

– Superpixel becomes a consistent alternative of using a rigid structure of pixel grid.
Indeed, a superpixel is a set of pixels sharing similar characteristics (e.g. texture cues,
contour, color) into a significant polygon-shaped region.

– CC is an important primitive when documents are binary images and DIs with non-
overlapping layout. A CC is defined according to the basic concept of graph theory
which is the connectivity. The connectivity illustrates the interconnections of pixels
in images to their neighbors. In general, 8-connectivity is used for black pixels, while
4-connectivity is often employed for while pixels to avoid the crossing connections.

For analyzing DIs with overlapping layout, the most fundamental and used primitive is pixel,
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while for gray-level and color DIs, the superpixel approach has been recently investigated and
examined. The CC analysis technique can be used in the case of gray-level and color DIs,
when the results of the conversion of gray-level and color DIs to binary ones still reasonable.

• Strategy of analysis (i.e. bottom-up, top-down and hybrid):
There are three categories of analysis strategies [92, 95]:

– Data-driven or bottom-up strategies of analysis:
They do not include (or little) knowledge of a document model (cf. Figure 3.3(a)). Those
strategies of analysis are based on low-level data mining of pixels (e.g. color, position).
For example, the run-length smearing algorithm (RLSA), also known as the constrained
run-length algorithm (CRLA), studies the spaces between black pixels in order to link
neighboring black areas [101, 102]. O’Gorman [103] proposes a method for page layout
analysis based on the extracted CCs and the nearest neighbor (NN) clustering of page
components. There are certain limitations of this category of analysis strategy: firstly,
the proposed methods in this category of analysis strategies are based on the definition
of complex criteria and rules. Secondly, they are sensitive to noise and not robust to
slanted texts. Thus, they are suitable for DIs whose areas are clearly demarcated and
rectangular. Furthermore, the pertinence of this category of analysis strategy depends
on the particular layout and idiosyncrasies of DIs.

– Model-driven or top-down strategies of analysis:
They are guided by a document model (cf. Figure 3.3(b)). Often used for well-defined
and invariant structured DIs, those strategies of analysis are based on strong a priori
knowledge to guide the segmentation and recognition. For instance, the recursive XY-
CUT (RXYC) algorithm consists in computing the horizontal and vertical projection
profiles (i.e. corresponding to the sum of the pixels along the horizontal and vertical
axes) and iteratively splitting them into smaller ranges until a condition about hollow
projections or valleys in the projection profile histograms (corresponding to inter-line
white spaces) has been satisfied. This requires the definition of criteria for cutting
(and possibly fusion). In addition, it assumes that the input DIs are not skewed [104].
Although the model-driven analysis strategies are generally faster, they are not well-
adapted to complex layout and skewed DIs.

– Hybrid or mixed strategies of analysis:
They combine data-driven and model-driven strategies of analysis (cf. Figure 3.3(c)). A
split-and-merge strategy is an example of a strategy of analysis [105]. Kida et al. [106]
proposed to segment an image by a sequence of horizontal and vertical projections, then
they used connectivity analysis for document recognition system for office automation.
Chen et al. [107] proposed a method based on whitespace rectangle extraction and group-
ing to form text lines and afterwards text blocks. The proposed method proceeded by
analyzing the extracted foreground CCs and filtering the gaps between the horizontally
adjacent CCs. Lazzara et al. [108] discriminate text from non-text regions by analyzing
the extracted foreground CCs and using the object alignment and morphological algo-
rithms. By combining tools from data-driven and model-driven strategies of analysis,
hybrid approaches combine the high speed of the model-driven methods with the robust-
ness of the data-driven ones. They can deal with a wide variety of DIs and cope with
complicated page segmentation problems, but many parameters and thresholds must be
adjusted.

The standard flowchart of an analysis strategy is often represented in the form of a sequential
process that goes from one level to another (cf. Figure 3.3) [95].
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(a) Data-driven or bottom-up (b) Model-driven or top-down

(c) Hybrid

Figure 3.3.: Three categories of analysis strategies: the data-driven or bottom-up, model-driven or
top-down and hybrid.

3.3. Related works

In the literature, different algorithms have been presented for the segmentation, characterization
and analysis of the block contents of the DI physical layout. Okun and Pietikäinen [6] classified
the methods developed for DIA into two categories: texture and non-texture-based. They analyzed
the existing texture-based methods for document analysis and briefly compared them to the non-
texture-based ones. Texture-based approaches consider a document as a set of different textured
classes while the non-texture-based ones involve different image processing techniques, such as CC
analysis [103], split-and-merge algorithm [105], etc.

Kise [5] categorized the existing DIA algorithms into two classes: the methods dealing with
non-overlapping layout and those dealing with overlapping layout. Then, the DIA algorithms
dealing with non-overlapping layout can also be divided into two categories: foreground analysis
and background analysis methods. The foreground analysis methods can also be classified into three
sub-categories: projection-based, smearing-based and CC-based methods. Among the background
analysis algorithms, we cite, for example, the shape-directed covers [109, 110], white tiles [111],
Voronoi diagram [112, 113], white space analysis [114], etc. In this work, we are interested in
foreground analysis methods and particularly in DIA for page segmentation. Those methods may
be divided into two types: the classical approaches which are based on image analysis tools and
strong a priori knowledge and those based on texture analysis descriptors [18, 95].

3.3.1. Classical approaches

The classical DIA approaches are devoted to contemporary DIs and are significantly widespread
in the literature because those methods are based on a strong a priori knowledge such as the
repetitiveness of document structure in a corpus. This family of document structure analysis and
page segmentation methods combine image analysis tools and strong a priori knowledge.
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3.3.1.1. Categories of classical approaches

The usual way of presenting these approaches is to classify them into three categories [5]: the
projection-based, smearing-based and CC-based methods.

1. Projection-based methods
The projection-based methods analyze the projection profiles of a DI. Figure 3.4 illustrates
an example of the horizontal projection profile of a text black in a DI. By analyzing the
horizontal (resp. vertical) projection profiles, the length of horizontal (resp. vertical) gaps
below the horizontal threshold τh (vertical threshold τv) can identify the horizontal (resp.
vertical) borders of different page components and subsequently ensure DIA. Indeed, blocks
of a DI can be split vertically (resp. horizontally) by determining the vertical (resp. horizontal)
cuts which correspond to wider gaps of horizontal (resp. vertical) projection profiles.

Figure 3.4.: Illustration of the horizontal projection profile of a text black in a DI [5].

• RXYC is a top-down DI segmentation technique that decomposes a DI recursively into a
set of rectangular blocks [104]. It detects and separates all rectangular blocks separated
by white spaces. The idea is to recursively apply the same algorithm to an area to
obtain two regions, while a condition about hollow projections is not satisfied (selecting
the widest cut first, until no cut wider than a certain minimum threshold is reached. It
consists in analyzing the horizontal and vertical projection profiles of the whole DI by
summing up all the pixels in a line to the sides of the DI. Then, by generating the white
space density graph from the produced projection profiles and extracting the peaks from
them, the cuts of the DI can be defined and DI can be segmented into rectangular blocks.
The RXYC algorithm is well-suited to printed DIs (e.g. newspapers) where the document
is well-structured and divided into rectangular blocks. However, this algorithm is not
well-adapted to varied, complicated and complex DI layout or if the DIs are skewed. An
example of the application of the RXYC algorithm is illustrated in Figure 3.5. The final
segmentation result of the application of the RXYC algorithm on a contemporary DI
shows few errors (e.g. regions are split, and lines are merged with footnotes) (cf. Figure
3.5(e)) 5.

• Syntactic segmentation is a top-down method based on X-Y tree representation for
extracting alternating horizontal and vertical projection profiles from nested sub-blocks
of scanned page images for syntactic segmentation and labeling of digitized pages from
technical journals (cf. Figure 3.6) [115]. The proposed method has the advantage of
backtracking to correct mistakes. It is only applied on families of technical DIs that
share the same layout conventions (e.g. IBM Journal of Research, Development and
IEEE Transactions on PAMI).

• White streams is a top-down method proposed by Pavlidis and Zhou [105] for page
segmentation and classification (cf. Figure 3.7). It is based on the detection and analysis

5www.cs.utoronto.ca/~klaven/ttpres/ltc-pres.ppt
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(a) (b) (c)

(d) (e)

Figure 3.5.: Illustrative example of the application of the RXYC method for page segmentation.
Figure (a) illustrates the horizontal and vertical projection profiles. Figure (b) depicts
the identification of the hollow projections or valleys in the projection profile histograms
(corresponding to inter-line white spaces) produced by the horizontal projection profile.
Figure (c) shows the selection of the hollow projections by eliminating those narrower
than some threshold. Figure (d) presents the selection of the widest cut and the
application of the same algorithm to the two new obtained regions. Figure (e) shows
the final segmentation result5.

of large areas of white spaces. These white spaces form a continuous stream by extract-
ing, analyzing and grouping the physical properties (the white margins, white inter-line,
white inter-character space, etc.). The proposed algorithm is particularly well-suited to
DIs that contain rectangular and clearly demarcated blocks (e.g. newspapers, technical
documents).

• Hough transform is a bottom-up technique that is applied on the extracted CCs for
text string separation from mixed text/graphic images [116] and textual image analysis
[117]. The Hough transform is considered as a generalization of the projection profile
method of detecting document skew. The Hough technique is applied for text string
separation from mixed text/graphic images (cf. Figure 3.8) [116]. The proposed algo-
rithm is based on the CC extraction and Hough transform application to group together
the extracted CCs into logical character strings by using simple heuristics based on the
text string characteristics. It is relatively independent of text font styles, sizes and
orientations. Moreover, it adapts to changes in text characteristics within the DI. Nev-
ertheless, its performance depends on the conformity of the provided constraints and
defined heuristics on the analyzed DI characteristics.

2. Smearing-based methods
Unlike the projection-based methods which investigate the white spaces (i.e. gaps) between
the DI components, the smearing-based ones extract, examine and fill the space within each
DI components. The morphology-based and RLSA methods are two representative techniques
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Figure 3.6.: Illustration of the application of the method based on X-Y tree representation for syn-
tactic segmentation of a title page from the IBM Journal of Research and Development
[115].

Figure 3.7.: Illustration of the application of the algorithm of white streams for page segmentation
and classification [105]. The dotted lines mark the boundaries of the final column
blocks. The labels are obtained by the classification process in the second stage.

of the smearing-based methods.

• Morphology-based methods are pixel-based bottom-up methods which are mainly
used to identify text lines when their directions and the layout structure are known
in advance. A series of morphological operations is applied to obtain an efficient and
reliable segmentation [118, 119]. The morphology-based methods are based on using two
fundamental operations of mathematical morphology which are the dilation and erosion.

– Dilation : I ⊕ E =
⋃
a∈E

Ia sets out to dilate the foreground of I by the defined

amount in E.

– Erosion : I 	 E =
⋂
a∈E

I−a sets out to erode the foreground of I by the defined

amount in E.
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(a) (b) (c)

Figure 3.8.: Illustrative example of the application of the Hough technique for text string separation
from mixed text/graphic images. Figure (a) illustrates the original image. Figure (b)
depicts the extraction of the CCs. Figure (c) shows the output result after a text string
separation task [116].

where I is an input image, E is a structuring element and Ia is the translation of I along
the pixel vector a. ⊕ and 	 denote the dilation and erosion operators.

Based on these two fundamental operations of mathematical morphology, two other
operations are deduced which are the opening and closing.

– Opening : I ◦ E = (I 	 E)⊕ I is aimed at removing small objects respecting E.

– Closing : I • E = (I ⊕ E)	 I is aimed at filling small gaps respecting E.

where ◦ and • denote the opening and closing operators. An illustrative example of the
application of the closing operation with a 5 × 5 rectangular structuring element on a
HDI is shown in Figure 3.9. We can see that characters are erased while gaps are filled
in graphic blocks, and few noise pixels are removed (cf. Figure 3.9(e)). The obtained
result (cf. Figure 3.9(d)) demonstrate that by using an isotropic structuring element,
text lines and blocks can not be grouped and afterwards it is not a straightforward task
to identify text lines and blocks effectively. However, the skewed DIs can be analyzed
with the morphology-based methods when the structuring element is isotropic.

Bloomberg [118] segmented DIs into text and halftone components using multi-resolution
morphology. He suggested to adapt the use of the fundamental operation of mathemat-
ical morphology according to the content type. Since the distance between pixels in
halftones is smaller than that between characters, the closing operation is applied on
halftones to fill the gaps in their pixels and obtain large blobs representing part of
halftones, while the opening is applied after on text blocks to erase characters. Thus, by
using relatively large structuring elements, large blobs are obtained and are considered
as seeds helping to guide the identification of pictures (cf. Figure 3.10(c)). To overcome
the limitation of the computational burden of a morphology-based method (caused by
using large structuring elements), Bloomberg [118] used the multi-resolution morphol-
ogy which is called the threshold reduction by applying it many times and varying the
threshold value on each step (cf. Figure 3.10(b)). The threshold reduction consists in
converting 2× 2 pixels into one pixel using a threshold deducing from the sum of 2× 2
pixel values. Bukhari et al. [119] proposed improvements to the text/halftone segmen-
tation algorithm described by Bloomberg [118] by making it a general text and non-text
image segmentation approach where non-text components (e.g. halftones, drawings,
maps, graphs) (cf. Figure 3.10). They proposed to introduce a task based on hole-filling
step in the Bloomberg’s algorithm [118] and they showed accurate non-text mask for
drawing type components (cf. Figure 3.10(h)).
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(a) (b) (c)

(d) (e)

Figure 3.9.: Illustration of the application of the closing operation with a 5×5 rectangular structur-
ing element on a HDI. Figure (a) illustrates the original HDI. Figure (b) illustrates the
binarized HDI. Figure (c) shows a zoomed region of Figure (b). Figure (d) depicts the
result of the application of the closing operation with a 5 × 5 rectangular structuring
element on a HDI. Figure (e) shows a zoomed region of Figure (d).

• RLSA is a top-down algorithm which works on binary DIs where white pixels are
represented by 0’s while black ones by 1’s [101, 102]. It processes by converting a binary
sequence x into y according to the following rules:

a) 0’s in x are converted to 1’s in y if Nad ≤ ts, where Nad and ts are the number of
adjacent 0’s and the pre-defined threshold.

b) 1’s in x remain unchanged in y.

This step is called a run-length smearing. The RLSA studies the spaces between black
pixels in order to link together neighboring black areas, respecting the condition that
the black areas are separated by less or equal to ts white pixels. The RLSA is con-
sidered as a special case of morphology-based methods (i.e. closing operation with an
horizontal structuring element 1× ts represents the horizontal smearing). In the RLSA,
the run-length smearing step is applied both row-wise (horizontally) to the DI using
the horizontal pre-defined threshold tsh and column-wise (vertically) to the DI using
the vertical pre-defined threshold tsv. This yields two bitmaps which are afterwards
combined using a logical AND operation. The RLSA is considered as a pre-processing
task of text/graphic separation, categorization of pre-localized text blocks (e.g. columns,
headings, paragraphs, lines, words, notes), optical font recognition (OFR), etc. It is very
simple to implement and use. It is possible to obtain a separation of text in characters,
words, lines or paragraphs, etc., depending on the chosen horizontal and vertical thresh-
old values. Figure 3.11 depicts an illustrative example of the application of the RLSA
on a HDI.
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(a) Input image (b) Sub-sampled (16× 1)

image by the threshold

reduction operation

(c) Seed image (d) Halftone mask image

(e) Input image (f) Sub-sampled (16× 1)

image by the threshold

reduction operation followed

by hole-filling operation

(g) Seed image (h) Non-text mask image

Figure 3.10.: Snapshots of the original Bloomberg’s [118] and the modified text and non-text im-
age segmentation algorithms based on the use of the multi-resolution morphology
technique proposed by Bukhari et al. [119].

(a) Input image (b) Horizontally smeared image (c) Vertically smeared image (d) Merged image

Figure 3.11.: Illustrative example of the application of the RLSA on a HDI. The original image
illustrated in Figure (a) is transformed into horizontally smeared (cf. Figure (b))
and vertically smeared (cf. Figure (c)) images. Then, the RLSA takes the results of
applying the logical AND operation between the horizontally and vertically merged
images to generate Figure (d).

The original image illustrated in Figure 3.11(a) is transformed into horizontally smeared
(cf. Figure 3.11(b)) and vertically smeared (cf. Figure 3.11(c)) images. Then, the RLSA
takes the results of applying the logical AND operation between the horizontally and
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vertically merged images to generate Figure 3.11(d), where the horizontal tsh and vertical
tsv pre-defined thresholds are equal to W

20 and H
25 , respectively (W and H represent the

width and height of a DI, respectively). Similar to the case of the RXYC, the RLSA
is well-adapted to DIs with specific layout/structure and when the DI contents are
not so varied and it also assumes that the skew has been already corrected. One of
the major drawback of the RLSA is that determining the appropriate horizontal and
vertical threshold values is a crucial task and high performance in DI segmentation is
dependent on these threshold values. As can be seen in Figure 3.11(d), the drop cap is
combined with the text block on the right-hand side. In our case, the use of the RLSA
is no longer relevant due to the particularities of HDIs such as the presence of irregular
spacings (e.g. between characters, words, lines, paragraphs, margins).

3. Connected component-based methods
The CC-based methods are mainly bottom-up approaches which aim to characterize and
represent the DI structure among the extracted CCs. There are several CC analysis methods
but we just focus and briefly outline the minimum spanning tree (MST), docstrum algorithm
and Delaunay triangulation.

• Minimum spanning tree (MST) is defined as a the tree structure that connects all
the extracted CCs in the form of a graph [120]. The extracted CCs represent the graph
nodes and they are connected using vertices or edges. The edges are built between the
centroids of the extracted CCs by associating on each edge the computed Euclidean
distance between the two CCs and by respecting the minimum sum of distance of edges
(cf. Figure 3.12). The greedy and Kruskal’s algorithms are usually used to built the

(a) Input image (b) Connected centroids of the extracted

CCs by the MST

Figure 3.12.: Illustrative example of the application of the MST on vertical text lines [120].

MSTs [121]. For instance, the Kruskal’s algorithm processes by determining the edge
having the minimum distance among all possible edges between the CCs and deleting it
afterwards from the set of all possible edges. The next step consists in selecting the next
edge whose distance is the minimum among the remaining edges with respecting the
following rule: the tree structure remains unchangeable after introducing the selected
edge. Otherwise, the edge is not recovered and the next one is retrieved. Finally, the
resultant tree representing the MST is obtained when there is no more remaining edge
and DI components can be extracted as sub-trees of the MST [122]. The DI component
extraction is based on formulating an assumption about the distance between the ex-
tracted CCs in the same DI component which is supposed smaller than that between the
extracted CCs in the different DI components. Thus, by defining a threshold based on
the distance between the extracted CCs, the DI segmentation is processed by selecting
the edges linking the different DI components and subsequently deleting them. Simon
et al. [123] proposed a bottom-up method for DI layout analysis based on Kruskal’s al-
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gorithm in the MST technique (cf. Figure 3.13). The proposed method does not require
any preliminary separation of the DI components. Nevertheless, it does assume that the
text lines of the DI are horizontal. In addition, a skew correction is needed if the DI is
scanned with very little skew. Another limitation of the MST technique can be deduced
which consists of the possibility to miss edges on the neighboring CCs in the selection
and deletion process of edges.

(a) Input image (b) Segmented image

Figure 3.13.: Illustrative example of the application of the MST to extract DI components [123].

• Docstrum or document spectrum is a bottom-up algorithm proposed by O’Gorman
[103] for DI layout analysis based on the NN clustering of the extracted CCs. After a
noise removal step, the CCs are classified into two groups: the first group represents the
characters of the dominant font size and the second one contains characters in titles and
section headings. In this context, a character size ratio factor is pre-defined. Then, the
k nearest neighbor (kNN) clustering technique is used, where the nodes represent the
extracted CCs, and the edges denote the kNNs from each CC (cf. Figure 3.14(b)).

The proposed algorithm dispenses with the hypothesis that the distance between the
extracted CCs in the same DI component is smaller than that between the extracted CCs
in the different DI components. In addition, it seeks to prescind from the limits inherent
in the MST algorithm by introducing statistical information about the characteristics of
the extracted CCs in the stage of the edge deletion and selection.

Statistical information is deduced by computing a histogram of distance and angle of
each CC from its kNNs which is called docstrum (i.e. two-dimensional (2-D) plot (de,
Φe), where de is the distance between each kNN pair of the extracted CCs and Φe is the
angle of each edge) (cf. Figure 3.14(d)). Based on the computed docstrum, different
measures can be calculated such as the peak of the angle histogram (cf. Figure 3.14(e)).
Clear peaks can be deduced from the docstrum at 0◦ and ±90◦ which correspond to
angles of edges in text line and between text lines, respectively. Thus, by identifying
the highest peak of angle distribution, the dominant skew in the DI is estimated. Two
other measures are also deduced for DI segmentation: the within-line and between-line
spacing which are estimated from the distance distribution of edges (cf. Figure 3.14(f))
close and perpendicular to the estimated skew angle, respectively.

Firstly, the extracted CCs are merged based on the estimated skew angle and within-
line spacing. Then, text blocks are identified by grouping text line and based on the
angles of text lines and distances between text lines (cf. Figure 3.14(i)). To find page
components (cf. Figure 3.14(k)), other measures can be determined to adjust parameters
of merging the extracted CCs such as the inter-character distance and inter-text line
distance. The inter-character distance and inter-text line distance correspond to the
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peak with the smallest distance and the peak with the largest distance, respectively.
The main disadvantage of the docstrum algorithm is that it supposes that the different
deduced measures are globally estimated (i.e. several DI components can have different
values of measures). Thus, an additional processing is required to handle with the
measure space and subsequently to find possible clusters of measures for similar DI
components. In addition, setting the appropriate value of k in the kNN clustering
technique depends on the layout of the analyzed DI. Thus, if the pre-defined value of
k is larger than the appropriate value, spurious edges can be generated in the kNN
graph that can significantly falsify the estimation of the measures of within-line and
between-line spacing. On the other hand, if the pre-defined value of k is smaller than
the appropriate value, the estimation of between-text lines would be inaccurate (i.e.
edges between text lines will be missing).

• Delaunay triangulation is a bottom-up method proposed by Kise et al. [124] to
overcome the limitation of the docstrum algorithm on the defining of the appropriate
value of k on the kNN clustering technique. They proposed a particular representation
that optimize the construction of edges between the neighboring CCs which is called the
Delaunay triangulation (cf. Figure 3.15). The generation of the Delaunay triangulation
is based on the construction of the Voronoi diagram. The Voronoi diagram V (PV ) is
obtained from a point set PV = {p1, . . . , pn} which is called generators and a set of
Voronoi regions V (P ) = {V (p1), . . . , (pn)}. A Voronoi region V (pi) of a point pi is
defined as:

V (pi) = {p|d(p, pi) ≤ d(p, pj), ∀j 6= i} (3.1)

where d(p, q) represents the distance between points p and q.

The Voronoi edges are generated by finding the boundaries of Voronoi regions. Thus,
the nodes of the Delaunay triangulation represent the point set of the Voronoi diagram,
while Delaunay triangulation edges are built between pairs of generators whose Voronoi
regions share a Voronoi edge. The generation of the Voronoi diagram and subsequently
the Delaunay triangulation is processed by taking the centroids of the extracted CCs
as generators in order to obtain the area Voronoi diagram. The area Voronoi diagram
is built based on a set of non-overlapping regions deduced from the extracted CCs
G = {g1, . . . , gn}. Indeed, the Voronoi diagram V (G) = {V (g1), . . . , (gn)} is constructed,
where a Voronoi region is defined as:

V (gi) = {p|d(p, gi) ≤ d(p, gj), ∀j 6= i} (3.2)

where d(p, gi) = min
q∈gi

d(p, q) represents the distance between a point p and a CC.

An illustrative example of the application of the area Voronoi diagram for text line
extraction is presented in Figure 3.16. The point Voronoi diagram (cf. Figure 3.16(c)) is
obtained by considering the points of the extracted CCs and taking samples on borders
of the extracted CCs as generators (cf. Figure 3.17). Thus, the area Voronoi diagram
is generated (cf. Figure 3.16(d)) after deleting the edges lying between the same CCs.
The Delaunay triangulation (cf. Figure 3.16(e)) consists of a dual graph of the Voronoi
diagram obtained by connecting the different generated regions by the area Voronoi
diagram which share the same Voronoi edge respecting the following distance associated
with edges: d(gi, gj) = min

pi∈gi,pj∈gj
d(pi, pj), where pi and pj are sampling points of gi

and gj , respectively. Kise et al. [124] proposed a bottom-up DI segmentation algorithm
based on the Delaunay triangulation (cf. Figure 3.17). They proposed to select edges
that connects the different DI components based on the area ratio of the extracted CCs
connected by an edge and the angle of an edge to generate the Delaunay triangulation
(cf. Figure 3.17(b)). Then, by selecting reliable seeds which correspond to parts of text
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(a) Input image (b) 5-NNs of CCs (c) 5-NN overlays of CCs

(d) Docstrum (e) NN angle histogram (f) NN distance histogram

(g) Input image (h) Overlays of text lines (i) Text line identification

(j) Input image (k) Extracted text block of a

journal title page

Figure 3.14.: Illustrative example of the application of the docstrum algorithm on a portion of a
table of contents image [103].

lines (cf. Figure 3.17(c)), full text lines can be formed and merged to obtain text blocks
based on the text line orientation, length and distance.

3.3.1.2. A short review of classical approaches for historical document image analysis

We have described some representative methods of classical approaches for DIA. For this category
of methods, many more algorithms have proposed. The classical methods presented in the literature
address various issues and have many limitations in the case of historical DIA.

A well-researched survey dedicated to text line segmentation of HDIs was presented by Likforman-
Sulem et al. [94]. Most of the existing approaches are based on connectivity features, RXYC [104],
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Figure 3.15.: Illustration of a point Voronoi diagram and its corresponding Delaunay triangulation
[5].

(a) Input image (b) Sample points (c) Point Voronoi diagram

(d) Area Voronoi diagram (e) Delaunay triangulation (f) Extracted text lines

Figure 3.16.: Illustrative example of the application of the area Voronoi diagram and the Delaunay
triangulation for text line extraction [124].

(a) Input image (b) Delaunay triangulation (c) Seeds (d) Extracted text lines

Figure 3.17.: Illustrative example of the Delaunay triangulation for text line extraction from tilted
non-rectangular DIs [124].

RLSA [101, 102] and Hough techniques [125] which are suitable for clear lines. These approaches
require thresholds to define inter-line or inter-block distances and adjustments for character align-
ment and line justification. In addition, a pre-processing phase is necessary to remove background
noise (superfluous information appearing from the verso) and non-textual regions.
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• Projection-based methods
He and Downton [126] proposed a top-down method based on RXYC approach by alternating
projections along the X and Y axes. Few thresholds were defined to estimate inter-line or
inter-block distances. The proposed method can only be applied to printed documents (which
are assumed to have regular distances) or well-separated handwritten lines.

• Smearing-based methods
Nikolaou et al. [127] proposed adaptive RLSA and skeleton segmentation paths for text line,
word and character segmentation of historical and degraded machine-printed DIs. They de-
fined several thresholds and rules in the used segmentation techniques. Even the proposed
algorithm worked efficiently for a wide variety of degraded DIs, Nikolaou et al. [127] sug-
gested to introduce a dewarping algorithm to improve the overall performance of the proposed
approach, particularly for DIs whose text is warped and/or skewed.

• Connected component-based methods
For instance, Beläıd and Ouwayed [128] proposed a multi-oriented text line extraction ap-
proach of ancient Arabic DIs based on image meshing technique, energy distribution of Co-
hen’s class and CC analysis techniques. They defined a few rules depending on the orientations
presented in their DIs. Malleron et al. [129] proposed a dedicated text line segmentation ap-
proach for author’s draft handwritings (i.e. 19th century handwriting DIs). With formulating
a hypothesis that text lines skews can be random and irregular, text line detection is pro-
cessed by enhancing text line structure using Hough transform and a clustering of CCs to find
text line boundaries. Nevertheless, the knowledge of page layout style is necessary to classify
corpus DIs and to choose algorithms and decision values for lines and snippets extraction.
The proposed algorithm was based on CC analysis, neighborhood-fan computation, corner
and borders detection, line orientation estimation, line construction and post-processing.

Without a given model of the layout for medieval manuscripts, LeBourgeois et al. [9] proposed
a data-driven layout segmentation approach based on the extracted CCs. Their method
required several parameters, estimated thresholds determined by the user and stored in the
model, and it also required several pre-processing steps: a binarization step, an image noise
reduction filter and the frame removal task based on mathematical morphology [130, 131, 132].
To localize the main body of the text from Arabic manuscripts, they also estimated the average
size of text symbols by computing the average size of all CCs. Then, they computed a text
probability value for each extracted CC. Finally, they estimated an automatic threshold for
each profile (horizontal and vertical) obtained from the entire image. They considered their
algorithm to be a useful tool to detect the main body of a text, even for Latin manuscripts,
but it did not work with large annotation areas in the margins.

• Hybrid methods
Gatos et al. [133] proposed a segmentation method of historical handwritten documents into
text zones and text lines. For text zone detection, vertical rule lines were detected based on
using a fuzzy RLSA [134]. On the other hand, vertical white runs and the extracted CCs were
afterwards investigated for text line segmentation. In addition, an enhancement of an existing
approach based on Hough transform was proposed to analyze vertical connected characters.
Thresholds and heuristics were defined for detection of vertical text zones based on vertical
rules lines and vertical white runs.

In the context of the Philectre project, André et al. extracted drop caps and text regions
from the foreground layer of the analyzed document using edge detection for dark regions
(i.e. low mean gray level) followed by a thresholding phase that takes into account the local
and global adjacent neighboring pixels [135]. Secondly, they used a vertical and horizontal
projection phase based on a few thresholds (average height and line spacing) and specified
rules for the extraction of columns and lines. Finally, they performed a CC labeling based on
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a defined projection interval. This approach was based on a knowledge-acquisition phase to
determine the relevant characteristics of a sample set of HDIs.

LeBourgeois and Emptoz [9, 32], as part of the European project DEBORA, analyzed and
segmented ancient books using morphology, texture and a bottom-up model. They succeeded
in segmenting the physical layout except for some errors which appeared when there were
lines of text that were touching, due to a lack of a priori knowledge and the highly complex
layout of the document. They separated text from non-text regions by combining texture,
component shapes and alignments. The recognition of drop caps and strips was based on an a
priori model designed using information about size, location, surrounding neighborhoods, etc.
Ramel et al. [72] evaluated various traditional methods used for segmentation of historical
printed DIs. They highlighted the limits of the traditional methods to segment HDIs. Thus,
they proposed a hybrid segmentation algorithm based on CCs for user-driven page layout
analysis of historical printed books. The proposed algorithm used two maps: a shape map
for foreground information analysis based on CC analysis technique and a background map
for white area analysis. Then, the classification of the extracted blocks by using CC analysis
technique, was built according to scenarios defined by the user.

3.3.1.3. Discussion

The classical methods used for DIA in the literature are summarized in Table 3.1 by detailing their
primitives and strategies and by showing their pros and cons. Nevertheless, the question of finding
the best algorithm among them is important. Thus, several research activities have been carried
out to answer to this question. For instance, many DI segmentation contests have been performed
since 2001 as competitions in biannual ICDAR conferences [136, 137]. These competitions have
been performed to compare the performance of classical methods using digitized DIs from commonly
occurring publications (e.g. newspapers). Antonacopoulos et al. [136, 137] stated that there is still
a considerable need to develop robust and versatile algorithms that deal with complex DI layout.

Another research activity has recently emerged which consists in publishing benchmarking and
comparative studies of the existing DIA algorithms. This second trend of research activities is
of greatest interest to research DIA community. Several works have been tackled the DI layout
analysis and particularly DI segmentation, exploiting different rules on the page structure and
based on strong a priori knowledge. For instance, Mao et al. [92] detailed a literature survey of
classical DI layout analysis algorithms. They analyzed past works on document physical layout
representations and analysis on the one hand, and document logical structure representations and
analysis on the other hand. Afterwards, they summarized the limitations of classical approaches.
They concluded that formal models for DIs are required to deal with an appropriate level of
complexity for a given class of DIs, to estimate model parameters, to analyze and synthesize DIs
and to generate synthetic DIs. In addition, they outlined the importance of having relevant physical
layout analysis to handle with the logical one. Moreover, the use of a set of objective evaluation
criteria is significantly important for quantitative performance evaluation.

Beyond this point, Shafait et al. [138] proposed a performance evaluation and benchmarking
of six page segmentation algorithms: RXYC [139], RLSA [101, 102], white space analysis [114],
constrained text-line finding [110], docstrum [103] and Voronoi [112]. They concluded that the
best algorithm must be determined based on the constraints of the analyzed DIs. For instance,
the docstrum and Voronoi algorithms are not the best choices when there is no skew and if the DI
layout is rectangular or Manhattan.

Moreover, Mao and Kanungo [140] proposed a performance evaluation methodology for evaluating
page segmentation algorithms: RXYC [139], docstrum [103] and Voronoi [112]. They concluded
that the performance indices of the Voronoi and Docstrum segmentation algorithms are not signif-
icantly different from each other. They outlined that the RXYC algorithm is a bad choice if the
analyzed DIs have large skew angles and/or large noise blocks. In addition, they stated that the
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Voronoi algorithm is a better choice than either the Docstrum or RXYC algorithm for segmen-
tation of DIs with lines separating zones. Moreover, the RXYC algorithm is the best one among
the surveyed algorithms in terms of the computational cost (i.e. processing time). Nevertheless,
it is worth noting that for computational time and memory requirement, the size of the analyzed
DIs is considered as an important element to be taken into consideration (e.g. projection and
smearing-based algorithms).

An important conclusion of the different surveyed classical DIA algorithms is that they are based
on strong a priori knowledge such as the repetitiveness of document structure in a corpus (i.e.
blocks shape, uniformity in horizontal and/or vertical spacings and/or assumptions about textual
and graphical characteristics such as font size, etc.) There are certain limitations of this family
of DIA methods: Firstly, several parameters and thresholds must be adjusted. Secondly, those
methods are sensitive to noise and not robust to slanted texts. Other main drawbacks of those
approaches are their dependence on the font size, character space, character size, inter-character
spacing, document orientation and line and column space, etc. Furthermore, the performance
of this family of DIA approaches depends on the particular layout and document idiosyncrasies
(e.g. Manhattan layouts). Indeed, HDIs do not have strict layout rules. Thus, a real need of
segmentation algorithms exists which should be invariant to layout inconsistencies, irregularities,
etc. Thus, those methods are not well-adapted to degraded and complex layout DIs. Then, for
complex and degraded HDIs, it is a difficult task to set empirical rules, domain specific constraints
and thresholds. This family of DIA methods are devoted to contemporary DIs [71, 72]. Therefore,
based on strong a priori knowledge, the classical approaches are not effective for complex and
degraded HDIs.

Table 3.1.: Classical DIA methods reviewed by Kise [5].

Ref. Tool Primitive
or Repre-
sentation

Strategy Advantage / Disadvantage

A- Foreground-based analysis methods

1- Projection-based methods

[104] RXYC Projection
profile

Top-down (−)Well-suited to printed DIs (e.g.
newspapers) where the document is
well-structured and divided into
rectangular blocks
(−)Not well-adapted to varied,
complicated and complex DI layout or if
the DIs are skewed or have overlapping
layout

[105] White
streams

Projection
profile

Top-down (−)Well-suited to documents that contain
rectangular and clearly demarcated blocks
(e.g. newspapers, technical documents)
(−)Not well-adapted if the DIs have
overlapping layout

[115] Syntactic
segmenta-
tion

Projection
profile

Top-down (+)Backtracking to correct mistakes
(−)Only applied on families of technical
documents that share the same layout
conventions (e.g. IBM Journal of
Research, Development and IEEE
Transactions on PAMI)
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Table 3.1 – continued from previous page

Ref. Tool Primitive
or Repre-
sentation

Strategy Advantage / Disadvantage

(−)Not well-adapted if the DIs are skewed
or have overlapping layout

[116,
117]

Hough
transform

Hough
domain
representa-
tion

Bottom-up (+)Relatively independent of text font
styles, sizes and orientations
(+)Adaptive to changes in text
characteristics within the DI
(−)Not well-adapted if the DIs have
overlapping layout
(−)Performance dependance on the
conformity of the provided constraints and
defined heuristics on the analyzed DI
characteristics

2- Smearing-based methods

[101] RLSA Smeared
pattern

Top-down (+)Very simple to implement and use
(−)Not well-adapted if the DIs have
overlapping layout
(−)Performance and result dependance on
the chosen horizontal and vertical
threshold values
(−)Use of a post-processing step for
text/graphic separation, categorization of
pre-localized text blocks, etc.

[118,
119]

Morphology Pixel Bottom-up (−)Not well-adapted if the DIs have
overlapping layout
(−)Definition of the appropriate structural
element
(−)Skewed DIs can be analyzed with
morphology-based methods when the
structural element is isotropic
(−)Computational burden
(−)Use of the multi-resolution morphology
to overcome the limitation of the
computational burden
(−)Use of varied threshold values in the
multi-resolution morphology

3- Connected component-based methods

[103] Docstrum kNN Bottom-up (+)No assumption concerning the distance
between the extracted CCs in the same DI
component
(+)Introduction of statistical information
about the characteristics of the extracted
CCs in the stage of the edge deletion and
selection
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Table 3.1 – continued from previous page

Ref. Tool Primitive
or Repre-
sentation

Strategy Advantage / Disadvantage

(−)Pre-definition of a character size ratio
factor
(−)Global estimation of the different
measures used in the stage of the edge
deletion and selection
(−)Requirement for an additional
processing to handle with the measure
space and subsequently to find possible
clusters of measures for similar DI
components
(−)Dependance of the appropriate value of
k in the kNN clustering technique on the
layout of the analyzed DI

[120,
122,
123]

MST MST Bottom-up (+)No need of a preliminary separation of
the DI components
(−)Based on formulating an assumption
about the distance between the extracted
CCs in the same DI component which is
supposed smaller than that between the
extracted CCs in the different DI
components
(−)Assumption that the text lines of the
DI are horizontal
(−)Requirement for a skew correction step
if the DI is scanned with very little skew
(−)Possibility to miss edges on the
neighboring CCs in the selection and
deletion process of edges

[124] Delaunay
triangula-
tion

Delaunay
triangula-
tion

Bottom-up (+)Relatively able to extract text lines
independently of layout and skew
(+)No need to pre-define the appropriate
value of k on the kNN clustering technique
(+)Fast
(−)Pre-defined parameters for the
construction of the Delaunay triangulation
(−)Limitations to extract text lines with
only a local evidence

B- Background-based analysis methods

[109,
110]

Shape-
directed
covers

Maximal
empty
rectangles

Top-down (+)Neither prior knowledge of the symbol
set nor heuristics
(+)Fast and easier to implement than
prior methods
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Table 3.1 – continued from previous page

Ref. Tool Primitive
or Repre-
sentation

Strategy Advantage / Disadvantage

(+)Versatile and adapted to
multiple-typeface English text and
single-typeface Greek, Tibetan, Swedish,
chess notation and typeset mathematics
(−)Pre-defined aspect ratios and limits for
the selection of white rectangles
(−)Need of decision tree to train and
estimate the probability that a given white
space rectangle is part of the page
background
(−)Need of a deskewing step
(−)Only well-adapted if the DIs have
Manhattan layout

[111] White tiles White tiles Top-down (+)Well suited to complex layouts
(+)Flexible and fast
(+)No need for skew detection and
correction
(−)Use of a pre-defined threshold to
concatenate white runs fo the smearing
task
(−)Based on formulating an assumption
about the required size of printed regions
of any given type (text, graphics, line-art,
etc.) is the largest possible one
(−)Is not rotation invariant
(−)Determination of merging white tile
parameter upon a possible range of skew
angle

[112,
113]

Voronoi
diagram

Voronoi
edges

Top-down (+)Use of a rotation invariant
representation
(+)Dynamically adapted to local
variations in the size, orientation and
distance of components within a DI
(+)Well-adapted to obtain the candidates
of boundaries of DI components from DIs
with non-Manhattan layout and a skew
(−)Pre-defined parameters and thresholds
for the construction of the Voronoi
diagram
(−)Based on formulating assumptions
about body text regions (i.e., dominant
and uniform)
(−)Possibility to a over-segmentation of
figures, tables and halftones as well as
titles with larger fonts, headers and footers
with wider inter-word gaps
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3.3.2. Texture-based approaches

The ultimate objective of texture-based method is to provide a meaningful image segmentation
by extracting textural features and analyzing the produced feature space [141, 142]. By using
texture analysis methods, a partition of the analyzed image into regions will be generated. The
obtained regions have homogeneous characteristics and similar properties with respect to the ex-
tracted features. In this context, texture analysis methods have been classified into three categories
[142, 143]:

• Region-based approaches are used to identify uniform, similar or homogeneous textured
regions.

• Boundary-based approaches are used to analyze the differences in texture in adjacent or
neighborhood surrounding regions.

• Hybrid approaches combine the region and boundary-based algorithms.

It is widely believed that extracting and analyzing texture features on images is still relevant for
many applications in image processing and pattern recognition fields [144]. Wechsler [141] stipu-
lated that texture analysis approaches play a fundamental role for many applications in the image
processing and patterns recognition fields. Yet, texture has been remained a relevant processing
tool for the analysis of many types of images. Texture is considered by Haralick [145] as an im-
portant characteristic for the analysis of many kinds of images. In spite of there is not a precise
definition of texture, many applications in the areas of biomedical image processing, industrial
automation, remote sensing, DIA, etc. have benefited of the proposed texture-based algorithms
in the literature. A most common definition of texture has been proposed as a set of basic local
patterns repeated respecting a periodic arrangement and specific direction over some image region
(cf. Figure 3.18) [146, 147]. Pratt et al. [144] stated that such definition of texture is more appro-
priate to deterministic kinds of texture (e.g. line arrays, checkerboards, hexagonal tilings). Julesz
[148] considered texture as a set of visual and homogeneous characteristics of surface which can be
evaluated qualitatively by the human visual system through the visual primitives. Latter, a general
definition of texture is given as a measure of the variation in intensity, measuring properties such
as smoothness, coarseness and regularity [149].

Figure 3.18.: Illustrative example of four kinds of texture.

3.3.2.1. Categories of texture-based approaches in image analysis

By referring to the formal definitions of texture, two different texture-based approaches which are
called statistical and structural, give rise due to their particularities of texture (i.e. stochastic
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or repetitive structure of texture) [141]. Julesz [10] characterized the statistical and structural
approaches as perceptual and cognitive, respectively. Pickett [146] considered the statistical ap-
proaches as “impressionistic” ones since they help to characterize texture as being coarse or fine,
while the structural approaches are considered as “delibrate” ones because they involve arrange-
ment analysis and they are more complicated. Haralick [145] surveyed the statistical and struc-
tural approaches investigated in the image processing field. The texture features extracted from
the auto-correlation function, optical transforms, digital transforms, textural edginess, structuring
element, gray tone co-occurrence, run-lengths and auto-regressive models are considered as statis-
tical approaches. Some structural approaches based on more complex primitives than gray tone
(e.g. Zucker’s model [150]) was presented in this survey. Haralick [145] concluded that the statis-
tical techniques can be applied to the structural primitives to generate some structural-statistical
generalizations.

Different categorizations and classifications of texture-based methods have been presented in
the literature. Toyoda and Hasegawa [151] classified texture-based approaches into two kinds:
local (e.g. Gaussian Markov random fields (GMRF) [152], local binary patterns (LBP) [153])
and frequency methods (e.g. wavelet transform [154], Gabor filters (GFs) [155]). Feddaoui and
Hamrouni [156] categorized texture analysis methods into three approaches: structural, statistical
and spatio-frequency. Zhang and Tan [157], and Reed and DuBuf [142] classified the invariant
texture texture analysis methods into three categories:

1. Feature-based methods
The feature-based methods are used by extracting textural characteristics which are relatively
constant in homogeneous and similar content regions. Operator-based (e.g. texture energy
measures formulated by Laws [158]), statistic-based (e.g. gray-level co-occurrence matrix
(GLCM), Tamura [159]) and transform-domain (e.g. power spectrum peaks, shape of the
power spectrum [160]) are considered as the derivatives of feature-based methods.

2. Model-based methods
The model-based methods have been introduced to model and characterize texture by us-
ing the coefficients of probability model or linear combination of a set of basis functions.
The fractal models, stochastic models (e.g. Markov model) and decision-theoretic techniques
(e.g. simultaneous auto-regressive model (SAR) [161]) are few kinds of model-based methods.
Wold-like model [162], multi-channel GFs, steerable pyramid (SP) [163] and wavelet trans-
form are considered as model-based methods by Zhang and Tan [157] while spatial/spatial-
frequency techniques as sub-class of model-based methods by Reed and DuBuf [142].

3. Structural methods
The structural methods consider texture as many textural elements which are called texels,
arranged according spatial organization rules (e.g. perimeter and compactness [164], invariant
histogram [165], topological texture descriptors such as Hough transform [166], morphological
decomposition [167]).

3.3.2.2. Categories of texture-based approaches in document image analysis

Okun and Pietikäinen [6] classified texture-based layout analysis approaches into two categories:
“Group 1” and “Group 2”. A summary table of these reviewed texture-based methods, describing
briefly their algorithms, parameters, inputs and outputs, and showing their pros and cons, are
presented in Table 3.3. The first class of texture-based methods “Group 1” is firstly processed by
extracting document regions using smearing techniques in most approaches. Then, each region is
classified according to the extracted textural features. This category of methods has the disadvan-
tage that its performance depends on the quality of the region extraction phase. The second class
of methods “Group 2” is processed by extracting textural features from a given analysis window
of (M ×M) pixel size, where M < max(W,H), and W and H are the width and height of the
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analyzed DI, respectively. The analysis window technique can be performed by two ways, pixel-wise
or block-wise [168, 143]. The first one which is called pixel-wise, is applied by considering many
overlapping sliding windows in such a way that a DI is analyzed pixel by pixel so that each pixel had
its proper class label while the second way which is called block-wise, is performed in such a way
as the analyzed document is partitioned into many non-overlapping windows so that each window
had its proper class label. The use of the overlapping windows ensures an accurate localization of
region boundaries, although this is paid for with longer computation time. Then, the document
regions can be obtained by applying a window/pixel classification and relaxation/post-processing
step. A post-processing task is often essential for this category of texture-based methods to merge
pixels or windows into larger regions or blocks. Since the “Group 2” of texture-based methods
has been considered as a local processing technique, Okun and Pietikäinen [6] stipulated that this
class of methods is more robust to different document layouts and/or DI skew than the “Group 1”.
They pointed out that the main problems of texture-based methods for document layout analysis
are closely linked to the extraction of small text components inside graphics and the big character
detection. The big characters are often localized in document titles, document headings or drop
caps while text contents which are embedded in graphics, are typically located in charts or plots.
Secondly, they also underlined an important issue of using texture-based methods which consists of
their quite high computational complexity. Moreover, their processing time depends on the image
sizes (and resolution) due to the use of pixel-based computation, large DI size and high complexity
of texture analysis approaches.

On the other side, Cote and Albu [3] classified the most widely used texture-based methods
by the DIA community into two categories, the statistical and spectral methods. The statistical
approaches investigate the spatial distribution of gray-levels within a region of interest while the
spectral ones describe texture by frequency descriptors obtained by computing the response of
an image to a given filter bank. Cote and Albu [3] reported that most spectral approaches do
not require nor a binarization step neither a prior region segmentation. On the other side, the
statistical approaches are categorized into two classes, those proposed for textural description of
pre-segmented regions of DIs and other methods for document segmentation or pre-processing. The
former approaches require binarized images in most cases and work on pre-segmented homogeneous
blocks. For example, Wang and Srihari [169] extracted statistical features based on black-white
pair run-lengths and black-white-black combination run-lengths from pre-segmented homogeneous
blocks in binarized newspaper images. Chetverikov et al. [170] introduced the feature-based inter-
action map (FBIM) for classifying already partitioned homogeneous zones in text or non-text. Eglin
and Gagneux [171] extracted several statistical features (e.g. entropy, directional compactness, vis-
ibility) for categorizing pre-localized text blocks into headings, paragraphs, notes (head-notes and
foot-notes) and abstracts, etc. from scientific DIs. They proved that textural properties are appro-
priate to typography characterization of text fonts. For characterization of functional blocks in DIs
(i.e. labeling of pre-segmented text lines), Allier et al. [172] proposed a texture-based approach
by combining several features (e.g. black/white transitions, entropy, compactness index in a given
direction, tiling, histogram entropy, eccentricity). The latter approaches for document segmenta-
tion or pre-processing do not need prior region segmentation or a priori knowledge about layout or
content. For example, Payne et al. [173] [174] used the texture co-occurrence spectrum technique
(TCS) to classify regions into text, image, etc. from binarized DIs. For text/textured-background
separation, Chen used the sequential directional energy of pixels as texture features by applying the
coarse-to-fine segmentation technique (i.e. from coarse block classification into text, background
or boundary regions to pixel-level segmentation). For segmenting DI contents into text, graph,
table and picture, Kim and Kim [175] analyzed six standard GLCM features. Journet et al. [1]
extracted three auto-correlation features which were derived from the rose of directions and two
frequency attributes by using a multi-scale analysis for classifying HDI pixels into text, graphics
and background. The first frequency descriptor computes the ink/paper transitions obtained by
performing the average per-line sum of the difference between pixel intensity value and its left
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neighbor. The frequency second attribute calculates the white spaces obtained by performing the
RXYC algorithm and computing the mean of the average per-line and per-column sums of pixel
intensities over an analyzed area. Then, by using the clustering large applications (CLARA) [176],
an unsupervised clustering algorithm, the extracted texture descriptors were clustered and pixels
were separated into different content clusters (cf. Figure 3.19). 83% and 92% mean good classi-
fication rates were noted for the graphical and text pixels, respectively with 180 minutes in total
per document as time required to process a page (feature extraction and pixel-clustering tasks).

Figure 3.19.: Result examples of Journet et al.’s [1] texture-based approach for pixel-labeling of
historical book content.

In our view, texture feature extraction and analysis methods may be categorized into five classes
according to the properties or characteristics of the extracted textural features [177, 178]:

1. Statistical methods
The statistical methods are used to analyze the spatial distribution of gray levels by comput-
ing local indices in the image and deriving a set of statistics from the distribution of the local
features. The statistical methods have the advantage of being simple to implement and their
effectiveness is proved. The auto-correlation function [145, 179], GLCM [180] and gray-level
run-length matrix (GLRLM) [181] are three standard statistical methods. By computing
some indices on the GLCM [182], the texture regularity and repetitiveness are characterized.
Caponetti et al. [183] proposed a document page segmentation method using a neuro-fuzzy
methodology on statistical features. Another approach was proposed by Journet et al. [1]
that is devoted to HDI segmentation based on extracting and analyzing texture features. The
extracted texture features are based on frequencies and the auto-correlation function. This
method gives good information on the principal orientations and periodicities of the texture
allowing to characterize the content of images without any assumption on the image struc-
ture or properties. Although their results are promising, their algorithm is computationally
expensive because it is carried out for each pixel and the size of the analysis window is a
critical parameter that is difficult to determine. Uttama et al. [29] introduced a drop cap
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segmentation method based a combination of different texture analysis approaches (GLCM
[180], auto-correlation function [1], etc.)

2. Geometric methods
The geometric methods are used to describe intricate patterns and to retrieve and describe
texture primitives by characterizing the notion of a texton. Texture primitives may be ex-
tracted using a difference-of-Gaussian filter, for example [184]. Those methods attempt to
characterize the primitives and find rules governing their spatial organization. Among the
classics of geometric methods, moment-based texture segmentation is one of the well-known
methods. Anyway, moment-based texture segmentation is not sufficient to discriminate all
types of texture and the algorithm needs a non-linear transformation of the images [185].

3. Model-based methods
The model-based methods are used to compute a parametric generative model based on the
intensity distribution of texture primitives. A widely used class of the model-based methods
are the probabilistic models. The conditional random fields (CRF) [186], Markov random
fields (MRF) [48], Gaussian Markov random fields (GMRF) [152], fractals [187] and LBP
[153], etc. are the most commonly used tools based on probabilistic models. This category of
texture-based segmentation methods is complex to implement. There are many difficulties in
the learning phase and a long computation time is required. The MRF are perfectly adapted
to DIs with high variability in terms of the layout and the quality of the scanned document
which yields good performance in handwritten DIs. However, the MRF are not robust since
the learning phase is only valid for one type of document at a time. The fractal dimensions
compute measures of texture roughness and repeatability of a pattern. They are considered
as a useful tool for image segmentation when the image characteristics tend to be predictable
and repetitive and in which the objects to segment tend to be irregular or different from the
background.

4. Spectral methods
The spectral methods are used to investigate the overall frequency content of an analyzed im-
age. The most widely used spectral methods in indexing and segmentation of natural images:
GFs [188, 189], Fourier transform [190] and wavelet transform [154, 190]. For instance, the
unsupervised texture segmentation algorithm [189] is used to segment an input image into
regions of homogeneous texture based on a bank of GFs. GFs have the advantage of reducing
the computational complexity and are suitable for document texture analysis. One of the
limitations of such an algorithm based on a fixed set of GFs is that many parameters must
be fixed [191]. Another frequency algorithm combined the wavelet and the Fourier transform
to index image databases [190]. Although the proposed algorithm is faster and more robust
than the separate use of the discrete Fourier and wavelet transforms, the computation time
is directly dependent on the level of wavelet decomposition. Qiao et al. [192] combined the
kernel-based methods and a Gabor wavelet to segment DIs scanned from popular newspapers
and journals. They confirmed that the multi-scale analysis of an image is ensured and the
multi-orientation properties of an image is deduced, but the effectiveness and computational
complexity of the proposed algorithm is no longer preserved and a proper post-processing
is needed to improve the segmentation result. Another frequency method was proposed to
extract three classes (text, background and graphics) from postal images based on six features
derived from wavelet transforms [193]. Even if the proposed algorithm has a good recognition
rate, one of the features must be adjusted manually and the efficiency (computation time) of
the algorithm is limited.

5. Hybrid methods
The hybrid methods combine different kinds of texture features and other types of descriptors
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(e.g. shape, color, topological or spatial descriptors) to address a general issue in image
segmentation and analysis.

3.3.2.3. A short review of texture-based approaches for document image analysis

One of the pioneering texture-based work in DIA is a text zone localization method proposed
by Jain and Bhattacharjee [189]. This approach considers the text in a document as a textured
region, while the non-text contents (e.g. blank spaces, graphics, pictures) are considered as regions
with different textures. The use of texture is not limited to text/non-text region separation, but
it is extended to font characterization using geometric descriptors [101, 102], statistical features
[194] or generic techniques [170]. Another application of texture in DIA was proposed for skew
angle detection [195]. In context of the characterization and classification of printed text, Eglin
et al. [194] considered text regions as a set of little symbols or graphics repeated according to a
specific spatial organization which generates a “macroscopic” impression of texture. They defined
a text character as an elementary entity of texture. Thus, the character disposition, frequency, font
and language in text regions represent the visual characteristics of texture. Statistical features,
such as the entropy and compactness, histogram of density variation were extracted to provide a
characteristic signature of text. Allier et al. [172] adapted the definition of texture as a set of
properties such as fineness, coarseness, smoothness, etc. which can be used for physical layout
segmentation of DIs. They considered texture as a suitable measure for the analysis of the DI
physical layout and its block content. For characterization of functional blocks in DIs (i.e. labeling
of pre-segmented text lines), various texture-based methods (e.g. black/white transitions, entropy,
compactness index in a given direction, tiling, histogram entropy, eccentricity) were combined.

Okun and Pietikäinen [6] assumed that text regions have different texture features from non-text
ones. Indeed, text areas contain text lines sharing similar characteristics (e.g. approximately similar
orientation, inter-character, inter-line spacings). This means that text regions are considered as
regular and periodic textures while non-text ones are characterized by irregular textural properties.
Thus, in this study, three assumptions are made to ensure a differentiation between various text
fonts and numerous types of graphics [10, 189, 194]. First, textual regions in a digitized DI are
considered as textured areas, while its non-text content is considered as regions with different
textures. Secondly, text with a different font is also distinguishable. Finally, different types of
graphics can be perceived as different textures (e.g. drop cap, embellishment, frame, illumination,
engraving, stamp, sketch).

Latter, a variety of approaches for characterizing image texture have been investigated in many
fields of DIA. They have been used for many DIA applications such image binarization [196], char-
acter recognition [197, 198], script and language identification [199, 200], writer identification and
verification [201, 202, 203], handwriting classification [30], font recognition [204, 205], printer identi-
fication [206, 207], watermarking [208], geometric rectification of warped DIs [209, 210], generating
paper texture [211], text/non-text separation in a DI [2], line separation [134], DI segmentation
[173, 212, 192], document classification and retrieval [213, 214, 215], etc. For instance, Nourbakhsh
et al. [2] proposed an automatic method for separating text from non-text elements in a complex
gray-scale DI (cf. Figure 3.20).

The texture-based methods used with HDIs in the literature are summarized in Table 3.2 by
detailing their algorithms, parameters, inputs and outputs, and showing their pros and cons.

3.3.2.4. Discussion

Several limitations of statistical and spectral texture-based approaches were presented in [3]. Firstly,
most approaches reported in the literature rely on binarized images and require prior region seg-
mentation (i.e. they work on pre-segmented homogeneous blocks) or background/foreground sep-
aration. Secondly, most approaches assume rectangular shapes for all document elements. Thus,
using a texture-pixel-based approach is considered as an interesting alternative to be adapted to
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(a) Original image (b) Output image

Figure 3.20.: Result examples of a texture-based approach for pixel-labeling of HDIs proposed by
Chen et al. [4].

shape flexibility [1, 216]. Then, few spectral and statistical approaches methods have been con-
ducted in the literature for processing the whole digitized DI since the most existing approaches
focus on a specific document element, for example the characterization or analysis of graphic images
such as drop caps [29] or a particular segmentation or classification task such as text localization
[217]. Finally, most texture-based works in DIA reported mainly visual or qualitative results by
using statistical or spectral approaches. Cote and Albu [3] confirmed that conducting qualitative
and quantitative evaluations is essential for analyzing texture-based approaches used in DIA.

The two most encountered spectral methods in literature are the multi-channel GFs [218] and
wavelets [217]. Jain et al. [188] used a bank of 20 GFs for text/graphic separation on scanned
newspaper images. For classifying large blocks into background, photograph, text and graphics,
Li and Gray [219] investigated two textural features extracted from the distribution of wavelet
coefficients. Nevertheless, the research DIA community is continuing to investigate new texture
descriptors. Recently, Cote and Albu [3] proposed a low-dimensional texture-based feature descrip-
tor that explored the response sparseness of the input DI to the Leung-Malik filter bank based on
the multi-scale and contextual techniques [220]. The Leung-Malik filter bank includes many types
of filters such as Gaussian derivative, Gaussian and Laplacien of Gaussian filters. The sparseness
has been introduced to reduce the dimensionality of the analyzed textural vectors. The proposed
approach was used to classify individual pixels of color business DIs into four fundamental classes
(text, image, graphics and background) with 83.36% overall pixel classification accuracy (cf. Figure
3.21) and 82 minutes in total per document as time required to process a page (feature extraction
and pixel classification tasks).

It is worth noting that finding the best texture-based algorithm is quite hard to address a general
issue in DIA. Hence, many researchers have addressed the issues of combining different kinds of
texture features to perform a particular DIA task. For instance, Qiao et al. [192] combined the
Gabor wavelets and kernel-based methods for DI segmentation. Benjlaiel et al. [221] proposed
to combine Gabor, Fourier and invariant moment features to analyze principal orientations in the
annotation region for multi-oriented handwritten annotations extraction from scanned DIs. Eglin et
al. [30] used the results of the auto-correlation features in order to compute the Gabor descriptors
for handwriting classification in ancient manuscripts. Said et al. [199] presented a global method
for handwriting identification based on the use of GFs and GLCMs. Shahabi and Rahmati [202]
proposed a method for writer identification of handwritten DIs by combining the Gabor and co-
occurrence features.

On the other hand, combining texture features with other kinds of features (e.g. shape, color,
topological descriptors) has been demonstrated significantly relevant. For instance, Pardeshi et al.
[222] extracted directional multi-resolution and spatial information by combining different kinds
of features for automatic handwritten Indian scripts identification. They extracted several fea-
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Figure 3.21.: Result examples of a texture-based approach for pixel classification of business DIs
proposed by Cote and Albu [3].

tures from the Radon transform, discrete wavelet transform, statistical filter and discrete cosine
transform. Maximum accuracies of 98% and 96% were achieved for bi-script and tri-scipt, respec-
tively. Seuret et al. [223] proposed a method for discriminating printed content from handwritten
annotations at pixel level. They extracted from the foreground pixels and their neighbors several
features (mean luminosity, luminosity variance, smoothness, gradient density, arithmetic operators,
shannon’s entropy, histogram moments, edge detectors, GLCM, side histogram and run-length).
Chen et al. [4] proposed a physical structure detection method for historical handwritten DIs by
classifying and labeling each pixel as periphery, background, text block or decoration. Without any
assumption of specific topologies and shapes, coordinates, color and texture features (e.g. color
variance, smoothness, Laplacian, LBP, Gabor dominant orientation histogram (GDOH)) were used
for classification. A 96.10% of mean accuracy was achieved (cf. Figure 3.22).

(a) Ground-truth (b) Segmentation results (c) Pixel-labeling errors

Figure 3.22.: Result examples of a texture-based approach for pixel-labeling of HDIs proposed by
Chen et al. [4].

Nevertheless, a feature selection step is often required to select relevant features and remove
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redundant ones. For example, Wei et al. [58] proposed a hybrid feature selection method for
historical DIA by using adapted greedy forward selection and genetic selection in a cascading way.
They concluded that the proposed feature selection method selected significantly less features and
lower error rates (i.e. 7.97% of mean error rate was noted) were obtained than in the case of
using all features. In addition, they noted that some texture features (e.g. gradient, Laplacian and
LBP) were frequently selected. Moreover, Tao et al. [224] presented a feature selection based on
the dimension reduction technique which is called sparse discriminative information preservation
(SDIP) for Chinese character font categorization, after applying the LBP operator.

3.4. Conclusion

Antonacopoulos et al. [39] pointed out the significant need for robust and accurate DIA methods
that deal with the idiosyncrasies of HDIs. Thus, since 2011 and in the context of ICDAR and HIP,
many competitions (e.g. historical document layout analysis, HNLA, HBR) have been organized for
the purpose of providing an objective comparative evaluation of the different submitted methods
[39, 225, 226]. This kind of competitions has other objectives such as analyzing the performance
of each submitted method on a representative dataset in different scenarios (from the scenario of
segmenting, labeling and recognizing regions to the text localization and recognition scenario). The
submitted methods are based on CC analysis, horizontal and vertical separators for text line and
region extraction. There are certain limitations of these methods: firstly, several restrictions on
the extracted CC properties (e.g. extracted CCs are filtered out according to the size and spacing
values). Secondly, those methods are sensitive to severe page curl or arbitrary warping. Finally,
these methods require a number of pre-processing tasks (e.g. local or global binarization algorithm,
skew correction step, page border removal phase).

In addition, Crasson and Fekete [227] highlighted the real need for automatic processing of digi-
tized HDIs (HDI layout analysis and text/non-text separation) to facilitate the analysis and nav-
igation in the corpus of ancient manuscripts. Moreover, Kise [5] stated that the analysis of pages
with constrained layouts (e.g. rectangular, Manhattan) and clean DIs has almost been solved while
historical DIA is still an open problem due to their particularities (e.g. noise and degradation, pres-
ence of handwriting, overlapping layouts, great variability of page layout). He also precised that the
most relevant methods used to analyze pages with overlapping or unconstrained layouts are based
on signal properties of page components by investigating texture-based features and techniques.
Hence, texture-based methods address the challenges of the existing state-of-the-art ones. The use
of texture-based methods for DIA has been shown to be effective with skewed and degraded images
[228]. Thus, in this work we explore various aspects of the texture features in HDIs to assist the
analysis of DIs by characterizing a DI layout through a set of homogeneous regions. Given that
there are significant degradations and no hypothesis concerning the layout, the graphical properties
or typographical parameters of the analyzed HDI, the use of texture analysis techniques for HDI
has become an appropriate choice.
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Table 3.2.: Texture-based methods used with HDIs in the literature.

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

1- Statistical methods

[89,
229]

Auto-
correlation
function

-Entire color high
resolution
digitized images
(manuscripts and
printed)
-Italian

Illustrations -Size of the
analysis squared
block
-Size of the
squared
structural
element
-Factor of the
down-scale
-SVM kernel
parameters

Automatic layout analysis and
content enrichment of DHBs
and illustration segmentation in
HDIs using local
auto-correlation features.
First, the RXYC algorithm with
a pre-processing phase of
binarization and morphological
closure were performed to
extract the main regions from
the page and ensure the
geometric layout analysis.
Then, each region was divided
in small squared blocks, and the
auto-correlation features were
computed on each block. The
lauto-correlation features were
deduced from a directional
histogram obtained from the
projections of the
auto-correlation matrix along
the vertical and horizontal
directions in order to identify
the repeating pattern of the
texture. To segment text and
illustration of digitized old
documents, a supervised
learning approach using a
texture feature based on the
auto-correlation function was
performed on the extracted
regions. The proposed approach
aimed at detecting the repeating
patterns of text regions and
differentiate them from pictorial
elements. Text, images and
their associated captions were
extracted using a SVM classifier
trained on the extracted texture
features. A 308-dimensional
feature vector for each block
was constructed. To enrich the
manuscripts with new related
contents, extracted images and
keywords contained in their
captions were used to retrieve
similar images from the Web.

-Effective on several historical
datasets
-Outperformed the state-of-the-art
methods in presence of challenging
documents with a large variety of
pictorial elements

-Not parameter-free
-Requirement for a training task
-Need for a pre-processing task for
geometric layout analysis (the
main regions were extracted from
the page using the RXYC
algorithm)
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

[169] Run-lengths Binary image
digitized at 100
or 200 dpi

Rectangular
regions
classified as
titles,
paragraphs, line
drawings or
pictures

-Smearing white
and black
thresholds
-Three
parameters of
merging process
-Column gap
width
-Weight and
threshold vector
used for the
classification
algorithm
-Ratio
parameter used
for the
classification
algorithm

Statistical features based on
black-white pair run-lengths and
black-white-black combination
run-lengths were extracted from
pre-segmented homogeneous
blocks in newspaper images.
RLSA and XY-CUT algorithms
were used to segment a
document into homogeneous
regions as pre-processing task
for extracting texture features.

Quite fast -Based on strong a priori
knowledge
-Not parameter-free
-Use of RLSA and XY-CUT
algorithms to segment a document
as a pre-processing step

[230] -Auto-
correlation
function
-Rose of
directions
-Multi-scale
analysis

-Entire binary,
gray-scale or
color pages
(manuscripts)
-German and
Latin

Identified text
regions in ancient
manuscripts

-Number of SVM
classes
-SVM kernel
parameters
-Sizes of the
analysis windows

Text recognition in ancient
manuscripts was carried out by
firstly extracting the
auto-correlation features using a
multi-scale technique. Then, the
classification task was
performed with SVM.
Three auto-correlation features
proposed by Journet et al. [1]
were extracted by applying
three scales by means of
overlapping sliding windows.
Shifted copies of the proposed
textural features proposed by
Journet et al. [1] such that the
main orientation is at 0◦ has
been introduced to ensure the
comparison of different roses of
directions and the invariance to
skewed text lines. Two logical
classes were defined: a class for
regular text and another class
containing all other regions such
as background, initials or
headlines.

-Tolerant towards varying
character sizes, skewed text blocks
and faded-out ink
-Working on non-rectangular and
unstructured layouts although
rectangular sliding analysis
windows are selected
-Applied to pages that are
different in writing style and line
spacing
-High performance obtained for
the new introduced
auto-correlation based features
compared to the ones proposed by
Journet et al. [1] and local
projection profiles algorithm

Use of a learning phase

[231] Statistical
indexes from
pixel mask

-Binary drop caps
(printed)
-French and Latin

Classified drop
caps

-Size of the
analysis mask
-Number of
clusters

Drop cap indexing by using four
classes recognition system.
A quantization task was firstly
applied on the original image to
obtain three gray-levels image.

High recognition rate for most of
styles and especially for the black
style of the analyzed drop caps

Dimension of the representation
space is quite high (i.e. it is equal
to 729)
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Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

Then, three textural descriptors
(rank, frequency and tf-idf
associated with frequency) were
extracted by scanning an image
using a 2× 3 image mask and
used thereafter to compare drop
caps with the nearest neighbor
classifier.

2- Geometric methods

[47,
48]

Bi-scale feature
vector based on
the pixel
density
measurement
and HMM

-Entire binary
pages or parts of
pages
(manuscript
drafts set of
“Madame
Bovary”)
-French

Words (or parts
of words) and
deletions

-Parameters of
the Gaussian
mixtures
-Number of the
connected
neighbors
-Size of the
analysis region
-Interline space
-Number of the
states to separate
words

For the segmentation of
Flaubert’s manuscripts into
their elementary parts (text
lines, erasures, punctuation
marks, interlinear annotations,
marginal annotations, etc.),
relevant signatures were
computed. These signatures
were generated by constructing
bi-scale feature vectors based on
the pixel density measurement
and HMM.

-Good results for separating words
(or parts of words) and deletions
compared to those obtained by
using the approaches based on the
CC level analysis
-Pixel-level approach which
ensures segmenting different page
parts which are connected together
-Possibility to extract text lines or
other objects of higher level (e.g.
text blocks) by applying few label
merging rules

-Adapting to manuscripts which
are characterized by some typical
layout rules (e.g. an important
text body occupying 2

3 of the
page, the presence of erasures and
a marginal area with some text
annotations)
-Working on binary images
-Parameters of the Gaussian
mixtures when modeling and
learning the probability densities
through the manually labeled
images using the
expectation–maximization (EM)
algorithm
-Size of the analysis region (5× 5
pixels) was set for the extraction
of pixel densities to ensure the
extraction of small page elements
such as the diacritics
-Need to know the interline spaces
to ensure good segmentation of
text lines and text block detection
-Only qualitative results obtained
on few images of full page of
handwriting or parts of pages from
the Bovary database were
presented
-Dependency of the quality of
segmentation on the merging
strategy and choice of the
extracted features

[232] Logarithmic
base of
histogram
entropy

-Entire color
typed pages
(Nabuco’s
bequest) digitized
at 200 dpi
-Latin

High quality
monochromatic
DIs

Two
multiplicative
factors for
entropy rule
definition

An entropy-based segmentation
algorithm was proposed for
back-to-front noise reduction of
documents written on both
sides.
The segmentation process was
used to generate high quality
gray-scale or monochromatic
images for improving OCR
performance.

-With the use of a fidelity index,
the segmented images can be
evaluated quantitatively
-Experiments were conducted on a
large corpus of HDIs (i.e. 500
samples from Nabuco’s bequest)

Empirical definition of two
multiplicative factors for entropy
ranges and rules
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

An image quality measure which
is called a fidelity index, was
defined to choose the best
logarithmic base of histogram
entropy when generating the
different threshold values.

[233] Histogram
entropy

-Entire color
typed pages
(Nabuco’s
bequest) digitized
at 200 dpi
-Latin

High quality
monochromatic
DIs

Two
multiplicative
factors for
entropy rule
definition

An entropy-based segmentation
algorithm was proposed for
back-to-front noise reduction of
documents written on both
sides.
The segmentation process was
used to generate high quality
gray-scale or monochromatic
images for ensuring an
automatic transcription of
HDIs. By analyzing the most
frequent color belonging to the
image background, an initial
threshold value was set to
compute the histogram entropy
of the image and determine the
limit values of the two
multiplicative factors for
entropy rule definition.

Promising results in terms of the
OCR hit rates and visual
inspection of monochromatic
images quality

-Empirical definition of two
multiplicative factors for entropy
ranges and rules
-Experiments were only conducted
on a set of 40 samples from
Nabuco’s bequest

3- Model-based methods

[51] Meyer-based
decomposition

-Binary,
gray-scale or
color drop caps
(printed)
digitized at 300
dpi
-French and Latin

Letters extracted
from drop caps

-Parameters of
the Meyer
decomposition
-Size of the mask
for Zipf modeling
-Number of
selected
gray-levels for the
Zipf law

Decomposition of the
information of drop caps into
several layers (i.e. segmenting
the letter and the elements from
its background) to characterize
them by using a relevant
signature. The extraction of the
letter was based on the Meyer
decomposition (layer
segmentation) and Zipf
modeling. A Meyer
decomposition was used to filter
out the noise and to extract the
spatial frequencies of drop cap
images, to segment them into
separate layers (shape layer,
texture layer and noise layer).
Then, the Zipf law on the
gray-levels of the shape layer
ensured the detection of large
homogeneous areas which
correspond to the letter.

-Automatically adaptable to the
constraint of the color of drop cap
letter (black or white)
-Robust toward noise variations
-Reduction of dimensionality of
textural vector by using the Zipf
law

-Requirement for physical
segmentation at a drop cap level
as a pre-processing step
-Failed in the cases of very
degraded images, where the letter
is composed of many CCs
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[234] LBP operator -Machine printed
document pages
(archives of
Portuguese HDIs)
-Portuguese

Labeled regions:
background
(white or black),
text and graphics

-Number of
models
-Number of
neighboring
pixels in a
circular set with
pre-defined radius

Text localization in HDIs by
building three basic reference
models (background, text and
image).
By analyzing the extracted
textural features and thereafter
by measuring model responses,
blocks were labeled and
classified. The textural features
were extracted from a partition
of a DI into logical grids with
fixed size disjoint window.

-Easiness of adaptation to
document complexity by adding
many more reference models
-High values were obtained to
localize text regions for the
classification accuracy metrics:
88.60% and 93.61% of precision by
using the LBP and variance
features, respectively

-Not parameter-free
-Block re-labeling with
hierarchical multi-resolution
analysis using pre-defined rules

[235] Zipf law -Gray-scale
graphics and drop
caps (printed)
-French and Latin

Similar drop caps
responses to a
request drop cap

-Size of the mask
used as the pixel
neighborhood
-k classes of the
k-means
quantization task
-Number of
slopes in the Zipf
plot
-Distance used in
the indexing step
(the Hamming
distance in the
parameter space)

Indexing drop caps by analyzing
the Zipf law.
The Zipf law builds a model to
characterize the distribution of
patterns occurring in the drop
caps. Then, three meaningful
values associated to the Zipf
plot were automatically
extracted representing three
splitting points in the Zipf curve
segment. Finally, each drop cap
image was represented by the
three extracted features.

Simple and efficient -Need to restrict the number of
perceived patterns and to have a
relevant model by considering a
smaller pixel neighborhood (i.e.
4-connectivity) and using a
clustering algorithm of the
gray-levels in k classes
-Requirement to apply a histogram
normalization filter on the images
to ensure better use of the image
spectrum

[236] -Fractal
dimensions
-Points of
interest

-Entire gray-scale
or color pages
(printed)
digitized at 300
dpi
-Arabic and Latin

Retrieved image
which
corresponds to
the image request

Number of
clusters

Categorization and matching of
HDIs based on the fractal
dimensions and points of
interest by using the
scale-invariant feature transform
(SIFT).

-Experiments were carried out on
1000 images
-Fast approach due to the use of
points of interest

-Not sufficiently efficient on high
degraded HDIs
-Need to apply a denoising step by
using a Gaussian filter which can
lead to a loss of relevant
information
-Use of a suitable filter to remove
noise in HDIs which depends on
the degradation/noise level

4- Spectral methods

[1] GFs -Entire gray-scale
or color book
page (printed)
digitized at 300
dpi
-French and Latin

Pixels of book
content labeled
as graphics, text
or background

-Size of the
analysis windows
-Number of
pre-defined
Gabor
frequencies and
orientations
-Number of
clusters

Detection of the text whatever
its orientation.

-Without formulating an
assumption on document layout or
content
-CLARA was applied as a
sampling-based clustering method
which has the advantage to deal
with large datasets
-No need to create training data
and train a model (i.e. pixel
features were clustered into
homogeneous regions)
-Optimal joint localization
properties of the Gabor features in
both the spatial and frequency
domains

-High cost of processing time and
memory resources
-Need to pre-define the number of
clusters for the clustering step and
to assign label to each resulting
cluster
-Application of the clustering task
on all pixel book pages (i.e.
foreground and background pixels)
-Dependency of the clustering
performance on the selected
samples used on the CLARA
clustering algorithm (i.e. trade-off
of efficiency) -Pre-defined Gabor
parameters (orientations and
spatial frequencies)91
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

[237] GFs -Collected binary,
gray-scale or
color character
images and pages
of word set
(printed)
-Portuguese

Classified
characters

-Gabor wavelet
direction
-Wavelet
orientation
-Frequency of GF
banks

OCR based on oriented features
extracted using GFs (12 wavelet
directions were considered, from
0◦ to 180◦).
By considering sets of character
images and combining their
dominant oriented graphical
features which were extracted
from the GF banks, the fuzzy
membership functions were
generated. Then, the
classification of new character
images can be processed.
Besides the Gabor features, the
image aspect ratios for the
characters were also extracted
and analyzed.

-Algorithm suited for handwritten
recognition in HDIs
-88% of mean character
recognition rate
-Use of the fuzzy classification
improves the recognition rate
results by providing larger
tolerance
-Large test set (i.e. 8034
characters) was used in the
experiments which consisted of 20
pages acquired with variable
scanning conditions (e.g. skewing
and paper see-through, with both
non-italic and italic text)
-Optimal joint localization
properties of the Gabor features in
both the spatial and frequency
domains

-Need for a training step with
collected character image samples
-Pre-set Gabor parameters
(orientations and spatial
frequencies)

[238] GFs -Entire binary or
gray-scale pages
(printed
periodicals)
-Arabic

Nets -Number of
Gabor
orientations
-Size of the
structural
element for
erosion
-Minimal net
length
-Filter or
selection
threshold

Extraction of different types of
nets (e.g. slightly erased lines or
lines with inclinations and
curvatures) from binarized DIs.
Two GFs were applied to the
binary image, one with the
orientation 0◦ to detect
horizontal nets and another one
with 90◦ to segment vertical
nets. Many post-processing
steps were introduced after
exploring GFs (e.g. erosion CC
analysis).

-High performance to detect nets
tainted with white areas, nets
overlapping with text (nets that
touch with text areas) and nets
with a high inclination degree or
with curvature
-25% and 22% of gain in the
impurity rate
(under-segmentation) and
incompleteness rate
(over-segmentation), respectively,
compared to the existing approach
-Less sensitive to nets quality
degradations and noise
(discontinuous, with burrs or
partially erased nets)
-Optimal joint localization
properties of the Gabor features in
both the spatial and frequency
domains

-Use of the Niblack adaptive
binarization algorithm
-Based on a priori knowledge
-Parametrization of GFs
(orientations and spatial
frequencies)
-Use of several post-processing
steps (e.g. morphological
operators as a classical filtering
technique and CC analysis
technique)
-Inability to identify certain types
of real nets (e.g. strongly erased or
too short nets) and some classes of
counterfeit nets (tears, linear
marks due to the digitization)
-High execution time

[239] GFs -Image patches
-Arabic, Chinese
and Cyrillic

Identified text
blocks

-Spatial
frequencies and
direction of GFs
-Size of the image
patches
-Dimensionality
of the tensor
subspace

Text block identification from
HDIs based on the image
patches analysis (IPA) and the
Gabor feature extraction.
Firstly, DIs were partitioned
into small patches without
overlapping. Subsequently,
positive and negative patches
were selected to compose an
active training set.

-Use of MDA guarantees a
significant gain in computation
time, memory and performance
-Selection of useful features
provides satisfactory identification
results
-Capture of local texture features
of each patch and the global
information of the training data
due to the use of IPA

-Pre-defined Gabor parameters
(orientations and spatial
frequencies)
-Requirement for a supervised
learning phase
-Need to resize the images and to
select region of interest to reduce
noise pixels on the edges of the
image
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-Number of
iterations for the
multi-linear
discriminant
analysis (MDA)
-Number of trees
for the random
forest classifier

Then, the Gabor features were
extracted on each patch to
characterize the analyzed text
blocks. The MDA was applied
to reduce the dimensionality of
the data. Finally, a random
forest classifier was learned on
the selected Gabor features
after selecting automatically the
informative features.

-Optimal joint localization
properties of the Gabor features in
both the spatial and frequency
domains
-Use of the random forest classifier
was simple, easily paralleled and
relatively robust to outliers and
noise (i.e. it gives useful internal
estimates of error, strength,
correlation and variable
importance)
-Good evaluation on Chinese,
Arabic and Cyrillic document
scripts

[240] GFs -Entire color
ancient
manuscripts
-Arabic

Detected main
text area

-Spatial
frequencies and
direction of GFs
-Connectivity of
the refinement
step
-Constant defined
on the distance
computation of
the refinement
step
-Coarse binary
mask in GF
computation to
approximate the
rectangular shape
of the main text
area

A learning-free approach to
detect the main text area from
side-notes in ancient
manuscripts based on
coarse-to-fine scheme. First, a
coarse segmentation of the main
text area was processed by using
GFs. Then, the segmentation
was refined by formulating the
problem as an energy
minimization task and achieving
the minimum using graph cuts.

-Promising results in terms of
segmentation quality (i.e.
98.84% of mean F-measure was
noted on 38 HDIs) and time
performance (i.e. 01′ 13′′ per
page on average)
-Learning-free approach and
does not include a local
refinement step

-Pre-defined Gabor parameters
(orientations and spatial
frequencies)
-Experiments were only
conducted on a set of 38 HDIs
-Requirement for refinement
segmentation step
-Use of a coarse binary mask in
GF computation to approximate
the rectangular shape of the
main text area
-Use of a training phase

[241] -Multi-scale
shape
decomposition
-Curvelet
Transform

-Text regions
(gray-scale or
color
manuscripts)
-French

Image with a
similar writing
style to the
original request
image

No parameter Writer classification based on
curvelet features in relation to
the two discriminative shapes
properties (curvature and
orientation).
Curvature and orientation
descriptors were extracted from
the curvelets to generate a
compact signature for each
writing. Then, a similarity
measure was defined to compare
two handwriting samples by
retrieving images from the
database that have a similar
writing style to the original
request.

-Adaptability to different
manuscripts corpus characterized
with different writing styles and
shapes properties
-78% and 89% of precision on the
whole Middle-Ages and humanistic
database, respectively

More difficult to separate Medieval
handwriting styles
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

[242] -Wavelet
transform
-Multi-scale
analysis

-Entire gray-scale
or color pages
(printed and
manuscripts)
-Arabic, Latin
and Hebrew

Blocks of
historical pages
clustered as
graphics, text or
background

-Number of
wavelet
decomposition
levels
-Size of the
analyzed block
-Size of the
analysis windows
-Number of
clusters

Text/graphics/background
separation to characterize
images of HDIs for a possible
physical segmentation and
different types of alphabet
segmentation (Arabic, Latin and
Hebrew) were processed by
extracting the wavelet features
(with three decomposition
levels) from each selected page
block.
A multi-scale analysis technique
was applied to each analyzed
block by selecting concentric
and non-overlapping windows
for the wavelet feature
extraction. Through the reliefF
algorithm and the factor
analysis technique, irrelevant
and redundant features were
eliminated. Finally, the k-means
algorithm was applied on the
selected wavelet features to
cluster page blocks.

Selection of relevant wavelet
features to reduce the storage
space and to increase the
clustering performance

-Experiments were carried out on
limited corpus resources (i.e.
twenty HDIs)
-No quantitative evaluation (i.e.
they only gave visual results)
-User intervention is necessary to
set the number of clusters when
using the k-means algorithm for
page block clustering

[243] SP transform -Entire complex
multi-lingual
multi-script pages
(degraded binary,
gray-scale or
color official
administrative
documents)
-French and
Arabic

Regions classified
into text
(machine-printed
or handwritten)
and non-text
(images, graphics,
drawings or
paintings)

-Smearing
parameter
settings for
document mask
generation
-Number of
clusters
-Number of scales
and directions of
the SPs

Segmentation of complex
multi-lingual multi-script
documents: separation
text/graphics and extraction of
graphics, tables and text lines.
The SP features were extracted
to locate and classify regions
into text (machine-printed or
handwritten) and non-text
(images, graphics, drawings or
paintings) from noise-infected,
deformed, multi-lingual and
multi-script DIs. The textural
features were extracted from
pre-segmented regions which
were obtained by applying the
morphological operators (e.g.
merging characters to obtain
text regions).

-Handling multi-script documents
-Invariant to skew, rotation and
translation
-Working fairly well on different
kinds of documents
-Adapted to complex layout
characterized by different kinds of
clutters

-Use of the Otsu’s global
thresholding for document
binarization
-Use of the morphological
operators for document denoising
-Failed to locate text blocks that
are not well separated from the
background or are connected to
graphics
-Classification failed when some
words or text blocks have size and
shape similar to graphics ones
(e.g. titles with large font size)
-Not parameter-free
-Need for spatial-domain
implementation

[244] 1-level wavelet
transform using
3-tap
Daubechies
filter

-Entire color
pages
(manuscripts)
-Arabic

Blocks classified
into background,
text or graphics

-Number of
clusters
-Size of the
analysis block

Foreground/background
separation and text/graphics
segmentation.
By applying the multi-scale
analysis technique using the
1-level/3-tap Daubechies
wavelet transform on the luma
information of blocks of 32× 32
pixels, an image for the
background and another one for
the foreground were produced.

Encouraging results for
background/foreground separation

-Not parameter-free
-Segmentation in several successive
stages which led to segmentation
errors in each step
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-Number of
neighboring
pixels
-Size of the
analysis window
for relaxation
phase

Then, by extracting statistical
features extracted from the
1-level/3-tap Daubechies
wavelet transform of the luma
information of foreground blocks
of 32× 32 pixels, analyzing the
extracted features using the
fuzzy C-means algorithm and
introducing a relaxation step as
a post-processing step, the
discrimination of the foreground
layers of the document,
particularly of two classes: text
and graphics was achieved.

-Introduction of a
relaxation/post-processing step for
refinement of the
background/foreground
segmentation results
-Unsatisfactory results of
segmenting graphics due to the
high complexity of DIs

5- Hybrid methods

[1] -Frequency
attributes
-Auto-
correlation
function
-Rose of
directions
-Multi-scale
analysis

-Entire gray-scale
or color book
page (printed)
digitized at 300
dpi
-French and Latin

Pixels of book
content labeled
as graphics, text
or background

-Size of the
analysis windows
-Number of
clusters

For separation of page elements
using textural descriptors, three
auto-correlation features were
extracted which were derived
from the rose of directions and
two frequency attributes by
using a multi-scale analysis for
classifying HDI pixels into text,
graphics and background. Then,
by using the CLARA clustering
algorithm, the extracted texture
descriptors were clustered and
pixels were separated into
different content clusters.

-83% and 92% were noted as mean
good classification rates for the
graphics and text pixels,
respectively
-Without formulating an
assumption on document layout or
content
-CLARA was applied as a
sampling-based clustering method
which has the advantage to deal
with large datasets
-No need to create training data
and train a model (i.e. pixel
features were clustered into
homogeneous regions)

-High cost of processing time and
memory resources
-Need to pre-define the number of
clusters for the clustering step and
to assign label to each resulting
cluster
-Application of the clustering task
on all pixel book pages (i.e.
foreground and background pixels)
-Dependency of the clustering
performance on the selected
samples used on the CLARA
clustering algorithm (i.e. trade-off
of efficiency)

[4] -Gabor
dominant
orientation
histogram
(GDOH)
-Rotation
invariant
uniform LBP
operators

-Entire gray-scale
or color pages
(handwritten
historical
manuscripts)
-Latin, German
and English

Pixels of HDIs
labeled as
periphery,
background, text
block or
decoration

-Number of
Gabor
orientations
-Number of
neighboring
pixels in a
circular set with
pre-defined radius
-Size of the
analysis window
-Scale factor of
the analyzed
image at each
level in the
pyramidal
approach
-Number of levels
in the pyramidal
approach

A physical structure detection
method for historical
handwritten DIs was proposed
by classifying and labeling each
pixel as periphery, background,
text block or decoration.
Without any assumption of
specific topologies and shapes,
coordinates, color and texture
features (e.g. color variance,
smoothness, Laplacian, LBP,
GDOH) were used for
classification. Then, the FCBF
algorithm was applied to select
relevant features and remove
redundant ones and to reduce
the feature size without
degrading the classification
accuracy. Finally, the
segmentation results were
refined by a smoothing
post-processing task.

-Without formulating any
assumption of specific topologies
and shapes
-High performance of HDI
segmentation by combining
coordinates, color and texture
features
-Effective and robust to changes of
writing style, page layout and
noise on HDIs

-Not parameter-free
-Segmentation at several levels in
the used pyramidal approach
which led to segmentation errors
-Use of feature selection and
post-processing steps
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Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

-Number of
clusters at each
level in the
pyramidal
approach
-Fixed threshold
to measure the
predominant
correlation for
the FCBF
algorithm
-Pre-defined
threshold value
which
corresponds to
the number of
text line pixels in
the neighborhood
of the analyzed
pixel in the
post-processing
task

[29] -Co-occurrence
-Run-length
matrices
-Auto-
correlation
function
-Wold
decomposition

Gray-scale drop
caps (printed)

-Drop caps
retrieved
according to an
input of a query
drop cap
-French and Latin

-Range of the
GLCM distance
and direction
values
-Size of the
sliding window
for the global
segmentation
-Ratio of the
analyzed small
blocks by the
entire image into
small blocks for
the local
segmentation
-Number of
clusters
-Distance used
(the
Bhattacharyya
distance) in the
drop cap retrieval
step

By extracting several texture
image features (GLCM,
run-length matrices,
auto-correlation function and
Wold decomposition) on a
sliding window at segmented
areas of interest of drop caps,
signatures were computed for
drop cap indexing.
Firstly, a global segmentation
was applied by using the GLCM
and the average of its uniformity
to partition of a drop cap into
homogeneous regions and
texture regions were generated
after applying a binary
threshold. Secondly, a local
segmentation was performed to
investigate the coarseness and
fineness of texture by
optimizing the theoretical
auto-correlation function to the
modeled one derived from the
Wold decomposition and
extracting textural features
from the GLCM and the
run-length matrices.

-Wold decomposition ensures a
good interpretation of a texture as
a combination of multiple signals
and description of the fineness and
coarseness of texture
-Experiments were conducted in
344 gray-scale drop cap images

-Need to apply a binary threshold
to the extracted GLCM uniformity
for segmenting drop caps into
homogeneous and texture regions
-Numbers of clusters are known in
advance
-Requirement for a morphological
operation to reduce noise and
eliminate small regions from the
segmented regions of each layer
-No quantitative evaluation of the
segmentation rate due to the lack
of the ground-truth of drop caps
-No criteria to measure the
performance of the proposed drop
cap retrieval system
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Afterwards, the k-means
clustering algorithm was
performed to provide final
segmentation by assuming the
numbers of clusters were known
in advance. Then, the MST and
pairwise geometric attributes
(PGA) were applied for the
drop cap signature generation
by considering the three
segmented layers (i.e.
homogeneous, texture and
contour layers). Finally, for
drop cap retrieval from the
database by using a query drop
cap, the Bhattacharyya distance
was used.

[30] -Hermite
transform
-Gabor
transform

-Binary,
gray-scale or
color text regions
(manuscripts)
-French

A list of images
that were ordered
according to their
similarity with
the query which
was the income of
characterized and
classified
handwritings

-Length of the
Krawtchouk
filters
-Parameters of
the Hermite
filters (the
maximum
derivatives of
order D (or
polynomial
degree) and scale)
-Translation
value
-Size of the
analysis window
-Number of
selected salient
handwriting
directions
extracted from
the rose of
directions and
the Gabor scales

Writing enhancement,
background noise, text/drawing
separation and handwritten
patterns characterization with
orientation features in ancient
manuscripts using the Hermite
and GFs.
For noise reduction, the Hermite
filters analyzed the image in the
frequency domain. After noise
reduction, the image was
reconstructed and GFs were
parametrized to detect relevant
handwriting orientations using
the analysis of the rose of
directions. A signature for each
analyzed handwritten image was
produced based on the
computation of the Gabor
features. Finally, a similarity
measure was defined to compare
different samples.

-No need for segmenting text in
characters, graphemes or to
localize it precisely (i.e.
segmentation-free)
-Analysis of both global feature
and local shape properties (texture
properties of handwriting and
local oriented variations along
pattern contours)
-91% of correct classification with
the correct class as first response
-Two handwriting extracts of
different sizes (and also of different
writing sizes) can be compared
-Optimal joint localization
properties of the Gabor features in
both the spatial and frequency
domains

-Assumptions had to be made to
distinguish handwritings on the
front side from the noise on the
background (threshold value used
on the Hermite Filters depended
on the original contrast)
-Size of the localization window for
noise reduction step can affect the
selection of the frequency range
used for the Hermite filter analysis
-Use of orientation features will
not be relevant if the background
is textured too much and if it
contains too many oriented noisy
strokes or when the samples
contain very badly written texts
with too many irregularities (i.e.
non-constancy of a same writer)
-Need for a normalized text
density with nor empty areas
neither noisy strokes line regions
in the analyzed handwriting blocks
(i.e. text contains quantitatively
significant handwritten patterns
that are estimated by two extreme
entropy values)
-Dependency of performance on
the quality of the noise reduction
step
-Pre-defined Gabor parameters
(orientations and spatial
frequencies)
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

[64] -GFs
-CRF
-RLF (relative
location
features)

-Entire color
pages
(handwritten
historical
manuscripts (the
5CofM2
database))
-Old Catalan

Document blocks
classified into
three classes

-Number of
pre-defined
Gabor
frequencies and
orientations
-Number of
clusters

Document segmentation method
based on the RLF to segment
structured HDIs collected from
the 5CofM2 dataset into three
classes: the family name, the
record body and the paid tax.
The RLF technique included in
the CRF framework and
combined with Gabor features,
was used to segment text
regions into three classes.

Good results for segmenting text
regions and detecting of each of
the three classes

-Not parameter-free
-Pixel-level approach (i.e., high
execution time)
-Applicable to structured DIs
-Requirement for a training task
and a testing step
-Fixed thresholds to configure the
CRF on the training datasets
-Need for graph cut algorithm to
perform energy minimization of
the CRF

[57] -GFs
-Rotation
invariant
uniform LBP
operators

-Entire gray-scale
or color pages
(handwritten
historical
manuscripts)
-Latin, German
and English

Text lines -Number of
Gabor
orientations
-Number of
neighboring
pixels in a
circular set with
pre-defined radius
-Size of the
analysis window
-Scale factor of
the analyzed
image at each
level in the
pyramidal
approach
-Number of levels
in the pyramidal
approach
-Number of
clusters at each
level in the
pyramidal
approach
-Fixed threshold
to measure the
predominant
correlation for
the fast
correlation-based
filter (FCBF)
algorithm
-Pre-defined
threshold value
which
corresponds to
the number of
text line pixels in
the neighborhood
of the analyzed
pixel in the
post-processing
task

A text line segmentation
algorithm applicable to color
historical manuscripts was
proposed based on
topographical, color and texture
features.
GFs and rotation invariant
uniform LBP operators were
used in a pyramidal approach to
classify pixels into: text,
background, decoration and out
of page. For text line
segmentation, a modified FCBF
algorithm was proposed to
remove automatically redundant
and irrelevant features before
applying a support vector
machine (SVM) classifier.
Finally, after text line
segmentation a post-processing
task was applied to refine the
results of labeling pixels into
two classes: text line and
non-text line.

-Modular algorithm allowing the
evaluation of different features and
classifiers
-No need for script-specific
knowledge
-Applicable to color HDIs
-Robust and adapted to different
writing styles, page layouts, etc.

-Not parameter-free
-Segmentation at several levels in
the used pyramidal approach
which led to segmentation errors
-Requirement for a training task
and a testing step
-Use of feature selection and
post-processing steps
-Need for a pre-processing task to
remove noise on the borders of
text lines (i.e. sensitive to noise)
and another post-processing step
to validate pixels on the borders of
text lines
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

[84] -Compactness
-Elliptic degree
-Angular
signature
-Generic Fourier
descriptors
-R-signature
-Fourier–Mellin
-Moments of
Zernike

-Drop caps
(printed)
-French and Latin

Recognized drop
caps

-Number of
clusters
-Pre-set threshold
for angular
signature
extraction

By assigning to the extracted
descriptors a recognition map
and defining automatically a
descriptor measure for each
cluster of samples, the
characterization of a learning
set can be built. Then, by
combining several descriptors,
the recognition rate of drop
caps extracted from archival
documents was improved.

-Fast feature extraction task
-Improvement of the recognition
rate by combining different
features

-Requirement for a classical
algorithm of binarization, based
on an entropy criterion calculated
on the gray-level histogram for the
extraction of object and
background clusters
-Need to apply the dilation and
erosion steps to clean the region
-Requirement for a set of rules and
measures (size, compactness, etc.)
to extract the drop cap

[172] -Black/white
transitions
-Entropy
-Compactness
-Tiling
-Histogram
entropy
-Eccentricity
-Number of
CCs, etc.

-Segmented and
pre-labeled text
lines from binary
or gray-scale DIs
(archives of
Savoie and
scientific
journals)
-French

Classified layout
elements (e.g.
capital letters,
italic text)

-SVM kernel
parameters
-Tiling surface
-Pixel density
limit

Characterization and
classification of segmented and
pre-labeled text lines from DIs
by extracting textural features
and investigating discriminant
power using SVM classifiers.

100% recognition rate of
homogeneous blocks written in
bold, italic, capital letters, etc.

-Requirement for physical
segmentation at a line level as a
pre-processing step
-Need for a number of support
vectors for the learning phase
which is equal to the number of
input patterns

[211] -Histogram
entropy
-Statistical
moments

-Entire color
typed pages
(Nabuco’s
bequest) digitized
at 200 dpi
-Latin

Regenerated
documents with
similar texture to
the original
documents

-Two
multiplicative
factors for
entropy rule
definition
-Number of lines
-Number of
neighbor pixels
-Multiplicative
value for texture
generation rules

Generating paper texture of
HDIs by applying firstly an
entropy-based algorithm to
segment the image of document
into the image of the paper
background and the printing of
the document. Then, to
generate the texture of the
paper, statistical moments were
computed to fill in the gaps
from the printing, yielding a
blank sheet of paper with
similar texture to the original
document.

Satisfactory results of document
regeneration from the texture
produced with added ink

-Empirical definition of two
multiplicative factors for entropy
ranges and rules
-Experiments were only conducted
on a set of 50 samples from
Nabuco’s bequest
-Pre-defined number of neighbor
pixels and multiplicative value for
texture generation rules which
were experimentally determined

[245] -Circular
statistics
description of a
directional
histogram
-Color
histograms (red,
green and blue
color space
(RGB), and
enhanced hue,
saturation and
value space
(HSV))

-Entire color high
resolution
digitized images
(manuscripts)
-Italian

Classified pixels,
blocks and
regions

-Number of text
lines to analyze
the texture
within the square
block
-Size of the
analysis window
-Rate of the
analysis window
overlap

Automatic manuscript layout
segmentation and extraction of
valuable pictures from the
decorated pages by combining
several categories of texture
features.
The directional histogram
feature was computed using a
polar representation of the
auto-correlation matrix for text
segmentation.

-Automatic extraction of valuable
pictures from the decorated pages
by means of visual cues,
independently by the layout
-Use of the GSDM reduces the
training requirements of learning
algorithms both in terms of the
number of samples and the
computational time, without
impacting on the classification
performance

-Use of a learning phase
-Extraction of an important
number of features for each block
which led a high-dimensionality of
the feature space (i.e.
1028-dimensional feature vector)
-Requirement for few
post-processing steps or relaxation
labeling tasks (e.g. filling isolated
blocks to force a neighborhood
consistency or removing smallest
blobs when using the CC analysis
technique)
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Table 3.2 – continued from previous page

Ref. Tool Input/Language Output Parameter Description Advantage Disadvantage

-Gradient
spatial
dependency
matrix (GSDM)

-Range of the
distance and
direction values
of GSDM

Then, a proposed textural
feature, namely GSDM, aimed
at detecting the correlations
between the gradient directions
by means of visual cues, was
computed for image areas
extraction. RGB histogram and
enhanced HSV histogram as
color features or visual
descriptors were extracted from
the pictorial regions of the page
to distinguish the semantic
content of the different
decorative parts. Finally, a
clustering-based embedding
process was afterward used to
reduce the training requirements
of learning algorithms, and to
classify and separate feature
vectors which were extracted for
each pictorial block (i.e.
pictures and decorations).

-Classification of blocks produced
a precision of 85.8% by using a
clustering-based embedding
approach and by combining the
RGB histogram, enhanced HSV
histogram and GSDM descriptors

[246] -Run-lengths
(horizontal and
vertical)
-CRF

-Entire pages
(degraded
newspapers
archives)
-French

Pixels classified
into different
functional entities
(e.g. titles and
sub-titles,
graphical
separators, text
lines, columns

-Quantization
feature functions
-Optimization
algorithms
-Number of
neighbors in the
horizontal
window

Structure extraction from old
newspapers by defining an
horizontal CRF model dedicated
to pixel labeling.
Each pixel was characterized by
its horizontal and vertical
run-lengths. Then, the
contextual features between
labels have been introduced into
the CRF model as template to
take into account the horizontal
dependencies of the label and
each computed run-length and
to give afterward quantized
feature functions.

Good results for text line
extraction task and particularly
for curved/degraded text lines.

-Use of a learning phase
-Use of multiple quantization
feature functions as a
pre-processing step to provide
discrete observations extracted
from the whole image to the CRF
-Use of multiple optimization
algorithms when the CRF model is
trained
-Dependency of the number of
features on the observation set size
and the number of feature
templates
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Table 3.3.: Texture-based methods reviewed for document layout analysis by Okun and Pietikäinen [6].
Ref. Tool Input Output Parameter Description Advantage Disadvantage
[173] TCS Binary or

gray-scale
image

Rectangular
blocks

None Co-occurrence of pixel values were extracted within a window
centered at each pixel and analyzed by the nearest neighbor to
classify regions into text, image, etc.

-Parameter-free
-Adapted to both binary
and gray-scale images

Specific to extract
rectangular blocks

[174] Laws masks Gray-scale
image

Labeled
bitmap

Number of the
stationary
hidden Markov
models (HMM)

By using HMM based texture analysis, one model for each
texture type was produced and trained for
text/textured-background separation.
From block-based to pixel-based segmentation, the extracted
textural features were accurately analyzed.

High
performance in
text extraction
from complex
textured
background

Computationally expensive
in memory and processing
time

[189] GFs Gray-scale
image
digitized at
75 dpi

Bounding
boxes
placed
around
detected
rectangular
regions for
text blocks
or labeled
bitmap

-Spatial
frequencies
-Orientations
-Number of
clusters, etc.

Gabor features were extracted and clustered to separate text
from halftone pictures. By detecting the CCs and finding the
bounding boxes of the rectangular regions, text pixels were
clustered into larger regions.

-Skew insensitive
-Optimal joint localization
properties of the Gabor
features in both the spatial
and frequency domains

-High computationally
expensive in memory and
processing time
-Pre-defined Gabor
parameters (orientations
and spatial frequencies)

[247] White tiles Binary
image

Array of
classified
white tiles

Four
pre-defined
parameters
related to white
tile
computation

Segmentation and classification of an image using white tiles
and texture features.
The texture features were extracted from the segmented white
tiles (e.g. number and area of white tiles).

-Robust for complex shaped
regions
-Skew insensitive

Deal only with binary
images

[248] Texture
masks

Gray-scale
image
digitized at
100 dpi

Bounding
boxes
placed
around
detected
regions

-Number of
pixel samples
-Two global
thresholds when
applying a
binarization
task

Selection of a set of texture masks that minimized the
classification error when segmenting halftones, background
and line-drawing regions was applied by using a neural
network approach in the training step.
Clustering and post-processing tasks were applied on the
extracted texture features for separating text from
line-drawing regions.

Discriminant power of the
extracted attributes to
separate text of different
languages based on the
connectivity analysis
technique

Slow due to the important
size of the training set

[249] Structured
wavelet
packet
analysis

Gray-scale
image
digitized at
200 or 300
dpi

Labeled set
of windows

-Number of
window pixels
-Shift pixel
between the
adjacent
windows

Low-order moments of wavelet packet components were used
as texture features by adopting a multi-scale technique with a
soft classification approach.

Robust to unconstrained
document layout and page
skew

Requirement for extra tasks
to obtain larger regions
from the classified windows
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This chapter presents an experimental evaluation and benchmarking of a
number of commonly and widely used texture features which have been
conducted on a large corpus of historical document images.
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Chapter 4. A texture feature benchmarking for historical document image analysis

4.1. Introduction

It is commonly agreed that texture analysis plays a fundamental role for HDI analysis and under-
standing since it has been considered as a consistent choice for meeting the need to segment a page
layout under significant degradations and different noise levels and types. In addition, it has been
shown that texture-based approaches work effectively with no a priori knowledge about the layout,
content, typography, font styles, scanning resolution, image size of the document etc. It has also
been proved that they have good performance even for skewed images and handwritten text. How-
ever, faced with a large diversity of the texture-based methods, few questions arise. Which texture
methods are firstly well suited for segmenting graphical regions from textual ones, discriminating
text in a variety of situations of different fonts and scales and separating different types of graphics
? Then, which texture approaches represent a constructive compromise between the performance
(i.e. segmentation quality) and computational cost (i.e. memory requirements, processing time,
numerical complexity and texture vector dimensionality) ? It is well-known that the success or
failure of texture-based segmentation method tightly depends on the type of the extracted and
used texture features. Thus, an experimental evaluation and benchmarking of a number of com-
monly and widely used texture approaches have been firstly conducted on a large corpus of HDIs
to have satisfactory and clear answers to the above questions. Thus, in this chapter, an experi-
mental evaluation of a number of commonly and widely used texture features has been conducted
on a large corpus of HDIs for the purpose of determining the performance of each texture-based
feature set according to the document content, i.e. segmenting graphical regions from textual ones
on the one hand and discriminating text in a variety of situations of different fonts and scales on
the other hand. To provide a qualitative measure of which texture-based feature sets are most
appropriate for this task, nine texture-based feature sets (Tamura, local binary patterns (LBP),
gray-level run-length matrix (GLRLM), auto-correlation function, gray-level co-occurrence matrix
(GLCM), Gabor filters (GFs), 3-level Haar wavelet transform, 3-level wavelet transform using 3-tap
Daubechies filter and 3-level wavelet transform using 4-tap Daubechies filter) have been investi-
gated and assessed on 1100 pages of historical documents by using a classical texture-based pixel
labeling scheme for comparing the texture features. The results reported in this chapter provide
a useful benchmark in terms of performance, texture vector dimensionality, memory requirements,
processing time and complexity for current and future research efforts in HDI analysis.

The remainder of this chapter is organized as follows: Section 4.2 reviews the different surveys
and comparisons of texture-based techniques proposed in the literature, with a particular focus on
those related to DIA and HDIA. Section 4.3 presents a brief description of the different texture-
based feature sets evaluated in this work. In Sections 4.4 and 4.5, we outline the experimental
protocol by describing the experimental corpus, the defined ground-truth and the used pixel labeling
scheme for comparing the texture features. In addition, we discuss the obtained performance of
texture feature analysis experiments by computing several clustering and classification metrics for
an evaluation of accuracy. Qualitative results are also given to demonstrate the performance of each
texture-based feature set, along with the computational cost (i.e. resources in terms of the memory
requirements, complexity and time consumption considerations and texture vector dimensionality).
Our discussion and conclusions are presented in Sections 4.6 and 4.7, respectively.

4.2. A short review of surveys and comparisons of texture-based
techniques

Numerous surveys and comparisons of texture-based techniques have been proposed for image
segmentation and analysis in the literature a few years ago. For example, Weszka et al. [250]
compared different texture analysis methods based on the Fourier power spectrum, second-order
gray-level statistics and first-order statistics of gray-level differences for terrain classification. They
concluded that the first and second order statistics perform significantly better than the spectral
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approaches. A well-researched survey and complete overview of recent texture segmentation and
feature extraction techniques for unsupervised applications was presented in [142], including GFs,
GLCM, fractals, etc. They concluded that texture-based methods have distinct applications, i.e.
some model-based texture methods are suitable for stochastic textures, while some spectral-based
texture methods (e.g. GFs) are adequate for stochastic and structural textures. However, they did
not present a quantitative comparison of the surveyed texture-based methods since they stated that
is a demanding and time-consuming task. Few limited studies attempted to present quantitative
comparisons of texture-based algorithms [250, 158, 251, 252]. Myint et al. [253] compared the
effectiveness of the wavelets, fractals, auto-correlation and GLCM for urban mapping using high
spatial resolution remote-sensing images. They concluded that the auto-correlation and GLCM
approaches are relatively effective when compared to the fractal ones. They also proved that the
wavelet transform approach is the most accurate of the four investigated approaches. Chang et al.
[254] compared three different sets of texture features: GLCM, Law’s texture energy and Gabor
multi-channel filtering for segmentation of homogeneous regions of real scene images. Subsequently,
they compared three clustering techniques for segmentation of homogeneous regions (fuzzy c-means
clustering (FCM), minimum square-error clustering (CLST) and split-and-merge) based on the
computed texture feature values. They concluded that the choice of a clustering technique influences
the texture segmentation results. Moreover, they proved that the Gabor approach with the CLST
technique has the best performance.

However, there are limited comparative studies of texture-based methods in the most explored
DIA fields. For instance, Busch et al. [200] evaluated a number of commonly used textures fea-
tures, including the GLCM, Gabor energy and a number of wavelet features by extracting energy,
logarithmic mean deviation, logarithmic co-occurrence and scale co-occurrence for determining the
script of a DI. Experimental results showed that the logarithmic co-occurrence features give the
lowest overall classification error rate, while the GLCM descriptors give the highest overall classi-
fication error rate. A few comparative studies of Gabor and co-occurrence features for script and
language identification [199] and DI segmentation [173] have been proposed. More comparisons can
be found concerning Gabor and gradient features for character recognition [197, 198]. Nourbakhsh
et al. [2] evaluated two texture-based approaches (GFs and log-polar wavelets) for separating
text/non-text in DIs. Baâti et al. [255] compared three texture-based approaches (GFs, GLCM
and wavelets) for Arabic/Latin and printed/handwritten script differentiation. They concluded
that the GLCM outperformed the Gabor and wavelets approaches. He et al. [201] evaluated three
approaches based on GFs, discrete wavelet transform and contourlet for handwriting-based writer
identification. For Arabic font recognition, GFs, GLCM, wavelet transform using 2-tap Daubechies
filter (Db2) wavelet and SP transform were compared in [256]. An outperformance of SP transform
was obtained with a high recognition rate approximately equal to 99%.

Okun and Pietikäinen [6] presented a survey of seven texture-based methods to review the progress
achieved for DI layout analysis. The seven analyzed texture-based methods are based on the
following texture features: run-lengths [169], multi-channel GFs [189], TCS [173], white tiles [247],
texture masks [248], structured wavelet packet analysis [249] and laws masks [174]. The reviewed
methods were evaluated on magazines and newspapers (gray-scale or binary images). The majority
of texture-based methods used within this survey assumed that the image backgrounds of the
analyzed DIs are white with the exception of that used by Chen [174] which aimed to separate text
from textured background. A summary table of these reviewed texture-based methods, describing
briefly their algorithms, parameters, inputs and outputs, and showing their pros and cons, are
presented in Table 3.3.

In spite of invaluable number of different texture-based studies and contributions has been
achieved on different sub-fields and tasks of pattern recognition, there is a very limited number
of comparative studies of texture-based approaches in the fields of DIA and particularly historical
DIA. Those texture-based approaches have been reported as relevant and dedicated to a specific
application and fine-tuned to a particular dataset. Thus, the interest to texture-based algorithms

105



Chapter 4. A texture feature benchmarking for historical document image analysis

is increasing continuously for historical DIA. Indeed, during the last two decades, several texture-
based feature sets have been investigated and demonstrated robust when they have been extracted
and analyzed from degraded and unconstrained DIs [228]. It has also been proved that these
methods work effectively with no a priori knowledge [1]. Nevertheless, the question of how these
texture-based algorithms are compared with each other has not been properly addressed for his-
torical DIA. This is mostly due to the unavailability or lack of a standard public dataset of HDIs
and its associated ground-truth [39].

Faced with such diversity of texture-based methods, few questions arise. Which texture features
are firstly well suited for segmenting graphical regions from textual ones, discriminating text in a
variety of situations of different fonts and scales and separating different types of graphics ? Then,
which texture features represent a constructive compromise between the performance (i.e. segmen-
tation quality) and the computational cost (i.e. memory requirements, processing time, numerical
complexity and texture vector dimensionality) ? It is well-known that the success or failure of
texture-based segmentation method tightly depends on the type of the extracted and used texture
features. Our choice of the different texture-based feature sets to investigate and compare (Tamura,
LBP, GLRLM, auto-correlation, GLCM, Gabor and wavelets), basically statistical, frequency and
model-based methods, is justified by the following reasons: Firstly, we have made a comparative
study about selecting the texture feature category which ensures the best trade-off between the
best performance, the reduced number of parameter settings and thresholds and the lowest compu-
tation time (cf. Table 3.2). Secondly, the extraction of these texture features needs less parameter
settings. Indeed, without hypothesis on either the DI layout or content, the choice of numerous
appropriate thresholds and parameters is a very difficult task. Then, the texture descriptors such
as the Tamura [214], LBP [234], GLRLM [215], auto-correlation [1], GLCM [175], Gabor [257] and
wavelet [249] features have been widely investigated for a long time in independent experiments
in order to extract texture features and segment and characterize DIs or part of them. In addi-
tion, they have been proved relevant and robust to noise, unconstrained DI layout, page skew, etc.
The Gabor and wavelet-based approaches have been known to be relevant and are widely used for
many fields of DIA even they seem high resource-consuming ones. Nevertheless, the GLCM and
GLRLM approaches are identified as the best choices when the numerical complexity is taken into
account. Moreover, the LBP-based approach has been known to be a model-based approach which
is characterized by a low computational complexity which has been used recently for segmentation
of historical machine printed DIs [234]. Besides, the Tamura features which have been known to be
a classical ones, they have the advantage to guarantee that the space generated from them is per-
ceptual uniform. Finally, the high performance of segmenting HDIs based on the auto-correlation
function [245, 1, 230, 229, 89], leads us to investigate and analyze the auto-correlation features.

4.3. Texture features

The texture-based feature sets which have been assessed in this work are extracted from the Tamura,
LBP, GLRLM, auto-correlation, GLCM, GFs and three wavelet-based (Haar, Db3 and Db4) ap-
proaches. The following provides a brief description of the different extracted texture features.
Nevertheless, in Appendix B and particularly in Section B.1, an exhaustive and detailed review of
the different analyzed texture features has been carried. First, for each set of texture descriptors
a state-of-the-art related to the parametrization of the used texture features in the most explored
fields in image analysis and pattern recognition, with a particular focus on those related to sub-
fields and tasks of DIA and historical DIA, is briefly presented. Then, a detailed review of the
texture features and their parameters is discussed. Finally, we conclude by detailing and justifying
the techniques and parameters used in our study based on work published in the literature and
after performing several experiments to choose the best configuration of the pre-defined thresholds
and parameters. The different analyzed texture features in this work are summarized in Table 4.1.
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4.3.1. Tamura

The first set of texture features investigated in this work is the Tamura descriptors. Tamura et al.
[159] proposed to extract textural features corresponding to human visual perception. They defined
six basic texture descriptors, namely coarseness, contrast, directionality, line-likeness, regularity
and roughness. They proved that the three first textural features (i.e. coarseness, contrast and
directionality) consistently outperformed others for global descriptions of textures both separately
and in combinations for image segmentation and classification issues.

Recently, the Tamura descriptors have been extracted to assist DIA. Keysers et al. [214] com-
pared several texture features, including the Tamura texture features histogram, relational invariant
feature histogram, run-length histogram, distribution of connected components, etc. for DI zone
classification. They concluded that the Tamura features are the single best ones but they have
high demand in computational time (i.e. more than 100 times slower to compute than the most
other extracted descriptors). Mouats et al. [258, 259] introduced the Tamura descriptors into their
Gabor-based segmentation of HDIs method to improve the obtained results.

Four Tamura descriptors are extracted in this work, namely:

• Coarseness (cf. equation B.4),

• Contrast (cf. equation B.5),

• Number of orientations (cf. equation B.11),

• Directionality (cf. equation B.12).

In Appendix B and particularly in Section B.1.1, a detailed description of the different extracted
Tamura features has been carried.

4.3.2. LBP

The second set of texture features investigated in this work is the LBP descriptors. The LBP
operator is one of the most explored local image descriptor for texture analysis which has mainly
used for describing local texture properties of gray-scale images. It has been introduced to measure
pure and original property of the texture spectrum by Wang and He [260]. They proposed a texture
analysis pattern based on a texture unit. LBP is a two-level version of the texture spectrum method.
Later, it was popularized by Ojala et al. [261] and Harwood et al. [262] to analyze texture
characteristics for texture classification. Ojala and Pietikäinen [263] presented an unsupervised
texture segmentation method based on examining the LBP distributions.

LBP is obtained by locally thresholding texture and their combinations with local gray-scale
measures. It represents each analyzed image pixel with a binary pattern based on the difference
between its gray-level value and its circular neighborhood with specified radius Rl. If the gray-level
value difference between the analyzed pixel Ic(x, y) and its Pl neighboring pixels Ip∈[0,Pl−1](x, y),
is greater than or equal to zero, the LBP value is set to 1, otherwise is set to 0. In this work, a
rotation invariant uniform 2 LBP operator which is labeled LBP riu2

Pl,Rl
, is used. For describing an

image with LBP riu2
Pl,Rl

, a histogram of binary patterns HistPl,Rl of Pl+2 bins is produced. Each bin
provides an estimation of the probability to find the corresponding pattern in the analyzed image.

Recently, the LBP operator has gained great attention of many researchers in the DIA fields. Dua
et al. [264] extracted the LBP wavelet domain for off-line and text-independent writer identification.
Lutf et al. [265] proposed a LBP-based approach for writer identification using off-line Arabic
handwriting. They computed the LBP histogram to extract handwriting features for each diacritic
after retrieving all diacritics from the input image. Ferrer et al. [266] proposed an algorithm
based on the LBP orientation for printed script identification. Since Nicolaou et al. [204, 205]
worked on binary images as inputs, they presented an approach based on appropriate redundant
oriented binary LBP operator for Arabic font recognition. Bhowmik and Kar [234] compared the
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rotation invariant uniform LBP operator with the variance measure for segmentation of historical
machine printed DIs. They concluded that the LBP operator outperforms the variance measure
for separating graphic regions from text ones.

Jiang et al. [206] used the LBPPl=8,Rl=1 operator for printer identification. They generated
59-dimensional histogram (a feature vector composed of 58 uniform patterns and 1 single non-
uniform pattern) from the LBP operator for each analyzed gray-scale pixel of a DI. Bertolini et
al. [203] extracted the LBP features from the LBP u2

Pl=8,Rl=2 operator for writer identification
and verification. They proved that the used LBP operator which produces a feature vector of 59
components for each analyzed pixel, is fast and accurate. Nicolaou et al. [204, 205] introduced a
redundant oriented LBP (Pl = 8, Rl = 3) for Arabic font recognition. They extracted 327 redundant
LBP features, including 255 bins from the LBP histogram, 36 rotation invariant features, 8 rotation
phase features, 14 edge features, 5 beta-function features and 9 sample-count features. Bhowmik
and Kar [234] localized text in HDIs by extracting LBPPl,Rl , LBP

ri
Pl,Rl

and LBP riu2
Pl,Rl

features. They
used three LBP operators by setting Rl equal to 1, 2 and 3 and Pl equal to 8, 16 and 24, respectively.
But, they considered only Pl equal to 8 during the binary pattern computation. They concluded
that the LBPPl,Rl model outperforms slightly the two other models LBP riPl,Rl and LBP riu2

Pl,Rl
. But,

in the most cases, the obtained results of the three models are relatively similar.
In this work, we set Pl and Rl equal to 8 and 1, respectively. Thus, for each image pixel Ic(x, y),

LBP riu2
8,Rl

(Ic(x, y)) produces 10 HistPl,Rl . The number of the uniform and non-uniform patterns are

9 and 28, respectively, to ensure better discrimination of spatial patterns. Indeed, 10 LBP riu2
Pl=8,Rl=1

descriptors are extracted. The LBP riu2
Pl=8,Rl=1 feature vector consists of 10 terms of the probability

to find the corresponding pattern in the analyzed image. The nine first descriptors correspond to
the nine HistPl=8,Rl=1 bins which represent the uniform patterns (cf. equation B.18), while the
last one represent the last HistPl=8,Rl=1 bin which characterizes all the non-uniform patterns (cf.
equation B.19). Therefore, the LBP riu2

Pl,Rl
features are:

• Heights of the uniform bins of the HistPl=8,Rl=1 (cf. equation B.18),

• Height of the non-uniform bin of the HistPl=8,Rl=1 (cf. equation B.19).

In Appendix B and particularly in Section B.1.2, a detailed review of the LBP operator and LBP
features has been carried.

4.3.3. GLRLM

The third set of texture features investigated in this work is the GLRLM descriptors. The GLRLM
descriptors are extracted by applying the run-length method. The run-length method has been
extensively studied in a wide array of fields for analysis of images and particularly for pattern
recognition and texture classification [267]. It has been introduced by Galloway et al. [181] to
classify a set of terrain samples by extracting various run-length features from several GLRLM.

For a given image, an element of the GLRLM p(g, l) is defined as the number of runs with pixels
of gray-level g and run-length l. A gray-level run g is a sequence in a scan direction of a set of
consecutive and collinear image pixels with identical gray-level value. The length of the run l is the
number of image pixels in the run. A GLRLM is computed for runs having any given direction.
Usually, the four scan directions have been used: θr = {0◦, 45◦, 90◦, 135◦} (i.e. horizontal, vertical,
diagonal and anti-diagonal directions). For the GLRLM, the dimension of g is equal to Gl which
corresponds to the maximum gray-level (i.e. number of gray-level bins). On the other hand, the
dimension of l is equal to L which corresponds to the maximum run-length. Afterwards, a 2-D
run-length histogram (Histg,l) is produced for each scan direction, such one axis represented the
run-length and the other axis illustrates the gray-level value or gray-level value bin. Histg,l is a
histogram of run-lengths.

Although the poor performance of using the run-length or GLRLM features obtained by Weska et
al. [250], and Conners and Harlow [268] compared to classical texture features (GLCM, gray-level
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difference and the power spectrum features), the run-length methods have been recently applied
to meet the need for DI segmentation or DIA, etc. Seuret et al. [223] proposed a method for
discriminating printed content from handwritten annotations at pixel level. They extracted the
run-length features in four directions θr = {0◦, 45◦, 90◦, 135◦} to estimate the width of a stroke in a
given direction. Stamatopoulos et al. [269] used the run-length method for the page frame detection
from double page DIs. They detected the vertical and horizontal zones of the two pages based on
the vertical and horizontal white run projections, respectively. Nikolaou et al. [127] proposed
an adaptive RLSA for the text line, word and character segmentation of historical and degraded
machine-printed DIs. Although the proposed algorithm has been proved to work efficiently for a
wide variety of degraded DIs, several thresholds were defined in the used segmentation techniques.
Shi and Govindaraju [134] used a fuzzy run-length approach for the line separation in complex
handwritten DIs including postal parcel images and historical handwritten DIs. Keysers et al.
[214] proposed an accurate system for the classification of DIs based on the run-length feature
extraction. The extracted features were used to classify text/non-text DI zones. Gordo et al.
[215] used the multi-scale binarizing run-length histograms for the large-scale DI retrieval and
classification. They worked on binary images as inputs, they quantized the lengths of the runs in
logarithmic scale by defining 9 intervals for each quantized level (i.e. black and white gray-levels).
Then, four run-length histograms were computed in horizontal, vertical, diagonal and anti-diagonal
directions for each extracted region using spatial pyramids. The four run-length histograms were
concatenated to characterize the extracted regions by a region descriptor of length 72 = 4 directions
× 2 quantized levels × 9 quantized intervals. The extracted descriptors have been proved that they
work efficiently and do not require a priori knowledge of the DI layout, model, content or any
kind of layout analysis. Dinstein and Shapira [270] extracted textural features based on the run-
length histograms from groups of characters for the ancient Hebraic handwriting identification. The
horizontal and vertical directions were selected to compute the run-length histograms. Then, the
average dissimilarity between histograms of each writer was defined. Experiments yielded satisfying
results. Another algorithm based on the run-length features was proposed for the handwriting
identification on medieval DIs [271]. Uttama et al. [29] examined drop caps from historical heritage
images and introduced a drop cap segmentation method based on a combination of different texture
features extracted from the GLCM, GLRLM, auto-correlation function and Wold decomposition.
Three run-length descriptors were extracted, including long-run emphasis (LRE), run percentage
(RPC) and gray-level distribution.

In this work, for each analyzed foreground pixel, four 2-D run-length histograms (Histg,l) are
produced for each scan direction θr = {0◦, 45◦, 90◦, 135◦}, i.e. horizontal, vertical, diagonal and
anti-diagonal directions. For each 2-D run-length histograms Histg,l, a feature vector of 11 terms
of GLRLM indices is computed. The 11 texture features based on gray-level run-lengths and
particularly the 2-D run-length histogram (Histg,l) are introduced by Galloway et al. [181] to
capture the coarseness of a texture in a specific direction:

• Short-run emphasis (SRE) (cf. equation B.21),

• Long-run emphasis (LRE) (cf. equation B.22),

• Low gray-level emphasis (LGRE) (cf. equation B.23),

• High gray-level emphasis (HGRE) (cf. equation B.24),

• Gray-level non-uniformity (GLNU) (cf. equation B.25),

• Run-length non-uniformity (RLNU) (cf. equation B.26),

• Run percentage (RPC) (cf. equation B.27),

• Short-run low gray-level emphasis (SRLGE) (cf. equation B.28),
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• Long-run high gray-level emphasis (LRHGE) (cf. equation B.29),

• Short-run high gray-level emphasis (SRHGE) (cf. equation B.30),

• Long-run low gray-level emphasis (LRLGE) (cf. equation B.31).

In Appendix B and particularly in Section B.1.3, a detailed description of the different extracted
GLRLM features has been carried.

4.3.4. Auto-correlation

The fourth set of texture features investigated in this work is the auto-correlation descriptors.
The auto-correlation features are extracted from a non-parametric tool which consists of the auto-
correlation function. The auto-correlation function which is a 2-D function, is defined as a similarity
measure between a dataset and a shifted copy of the data. It is used to find periodic patterns and
similar patterns through a number of extracted auto-correlation features [145, 179].

The auto-correlation descriptors highlight interesting information on the principal orientations
and periodicities of texture allowing characterizing the content of DIs without any assumption
on the page layout, content, DI typographical or graphical characteristics. The use of the auto-
correlation function is not new for the DIA community. Numerous studies have identified a number
of auto-correlation features for segmenting HDIs and contemporary DIs [30, 1, 230, 245, 272, 229,
89]. Eglin et al. [30] determined the number of bank of GFs by selecting the relevant directions
which were deduced from the rose of directions, to select interesting patterns for the noise reduction
and classification of handwritings in ancient manuscripts. For historical DIA, Journet et al. [1]
defined three auto-correlation features which few ones were derived from the rose of directions. The
extracted features computed over the neighborhood of each pixel (foreground and background), were
as follows: the main orientation of the rose of directions, the intensity value of the auto-correlation
function for the main orientation and the variance in the intensities of the rose of directions,
except for the main orientation. Grana et al. [245] used the auto-correlation matrix to distinguish
between textual and pictorial regions in historical manuscripts. Garz and Sablatnig [230] presented
a multi-scale texture-based approach for text region recognition in ancient manuscripts. They
extracted the three auto-correlation features proposed firstly by Journet et al. [1] by applying
three scales by means of overlapping sliding windows. Ouji et al. [272] introduced two other
texture attributes (i.e. mean stroke width and height of an image), also in relation to the auto-
correlation function for contemporary DI segmentation. For geometric layout analysis of HDIs,
Coppi et al. [229] extracted the main regions from the page using the RXYC algorithm, then each
region was divided in small squared blocks, and the local auto-correlation features were computed
on each block and classified using a SVM classifier. The local auto-correlation features were deduced
from a directional histogram obtained from the projections of the auto-correlation matrix along
the vertical and horizontal directions in order to identify the repeating pattern of the texture. A
308-dimensional feature vector for each block was constructed.

Five auto-correlation features are extracted in this work [1, 272]:

• Main orientation of the rose of directions (cf. equation B.35),

• Intensity of the auto-correlation function for the main orientation (cf. equation B.36),

• Variance of the intensities of the rose of directions (cf. equation B.37),

• Mean stroke width along specific directions (cf. Algorithm 8),

• Mean stroke height along specific directions (cf. Algorithm 9).

where the rose of directions which is a derivative of the auto-correlation function, is deduced from
the auto-correlation function [273].

In Appendix B and particularly in Section B.1.4, a detailed description of the different extracted
auto-correlation features has been carried.
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4.3.5. GLCM

The fifth set of texture features investigated in this work is the GLCM or co-occurrence attributes
[180]. The GLCM or co-occurrence matrix is a classic of statistical texture-based segmentation
methods. The GLCM is an estimate of the second order probability density function of image
pixels. This matrix determines the probability of occurrence of pixel pairs according to their gray-
levels and distance by considering the spatial relationship of pixels in the image.

A GLCM element is the probability of the gray-level pairs defined in a specified direction θc and
separated by a particular distance of dc units. The co-occurrence descriptors are then statistics
computed from the GLCM. They provide second order statistical information of neighboring pixels
of an image. Multi-distance and multi-direction can be applied to extract a large number of GLCM
descriptors. Usually, the co-occurrence matrices are generated for a small range of distance values
dc = {1, 2} and typically for the directions θc = {0◦, 45◦, 90◦, 135◦} [200].

A number of other works based on the GLCM feature extraction and analysis have also been
proposed in order to segment and classify the content of DIs [274, 275]. More methods based on
the GLCM feature analysis have been proposed in the literature for identifying script and language
from DIs [276, 200]. For Arabic font recognition, the GLCM with dc = 4 for 4 orientations
θc = {0◦, 45◦, 90◦, 135◦} were used in [256]. Usually, the co-occurrence matrices are generated for a
small range of distance values dc = {1, 2} and typically for the directions θc = {0◦, 45◦, 90◦, 135◦}
[200]. A survey of DI segmentation methods using texture analysis presented different methods
for segmenting DIs [173]. A texture analysis approach based on the assembly of nth order co-
occurrence information within a processing window was also proposed. This study stated that the
GLCM approach is the best one in terms of processing time and complexity. For segmenting DI
contents into text, graph, table and picture, Kim and Kim [175] analyzed six standard GLCM
features (entropy, contrast, energy, uniformity, diagonal moment and homogeneity) in the entropy
image.

In this work, from the computed co-occurrence matrices, eight GLCM features are extracted for
two distances dc = {1, 2} [274, 200]:

• Maximum entry in the GLCM or maximum probability (cf. equation B.43),

• Correlation metric (cf. equation B.44),

• Energy or angular second moment (cf. equation B.45),

• Entropy (cf. equation B.46),

• Inertia or contrast (cf. equation B.47),

• Local homogeneity (cf. equation B.48),

• Cluster shade (cf. equation B.49),

• Cluster prominence (cf. equation B.50).

In addition to the 16 co-occurrence features (eight for each distance), two other descriptors are
computed (mean value (cf. equation B.51) and standard deviation (cf. equation B.52) of the
energy) for the two combined distances [275]. The 18 extracted GLCM features have been shown
to perform well for script identification in [200].

In Appendix B and particularly in Section B.1.5, a detailed description of the different extracted
GLCM features has been carried.
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4.3.6. Gabor

The sixth set of texture features investigated in this work is the Gabor descriptors. The Gabor
features are extracted using the multi-channel Gabor filtering technique. The original Gabor ele-
mentary functions have been firstly proposed by Gabor [277]. The multi-channel Gabor filtering is
inspired by the multi-channel filtering theory which has been first investigated by Campbell and
Robson [278] for the visual information processing of the human visual system. Daugman [279]
modeled the visual information processing of the human visual system by the 2-D multi-channel
Gabor functions which are local spatial band-pass filters. The main idea of the multi-channel filter-
ing technique is to exploit the differences in dominant sizes and orientations of different textures by
decomposing the original image into several filtered images with limited spectral information. The
2-D Gabor functions have the advantage to have the conjoint resolution information in both the
2-D spatial and Fourier domains. The filtered images are proceeded by tuning the analyzed image
to combinations of frequency and orientation in a narrow range which are referred to channels
and interpreted as band-pass filters. By applying a bank of GFs, the specified channels cover the
spatial-frequency domain.

A 2-D GF is a linear selective band-pass filter, dependent on two parameters (spatial frequency
fg and orientation θg) which characterize the specified channel. It consists of a Gaussian kernel
function modulated by a sinusoidal plane wave. The spatial frequency f determines the distance
from the Gaussian centers to the origin while the orientation θg specifies the angle from the hor-
izontal axis (i.e. α-axis to the Gaussian centers). The multi-channel Gabor filtering approach is
inherently multi-resolutional which are close relatives of the wavelet transform [218].

Texture features generated by GFs have been increasingly considered and applied to DIA. During
the last two decades, Gabor-based analysis approaches have been proposed for biometric identifica-
tion based on handwriting [280, 156, 281], writer identification [282], handwritten word recognition
[283], character recognition [284], font recognition [285], script identification [286, 287], signature
recognition [288], palm print recognition [289], degraded DI binarization [290], etc. Zhu et al. [285]
proposed a texture-analysis-based algorithm for automatic font recognition by extracting the Ga-
bor features. They noted a 99, 1% of mean recognition rate. Ma and Doermann [257] proposed a
GF-based multi-class classifier in order to identify scripts, and font faces and styles. A binarization
method based on Gabor filter bank for ancient degraded DIs was proposed in [290]. A GF bank
with four orientations (0, π/4, π/2 and 3π/4) weighted by the dominant foreground script slant
angle of the DI and one selected frequency was used to determine more efficiently the foreground
information.

Nevertheless, numerous approaches have been sought for text segmentation and extraction from
digital DIs using the Gabor descriptors [189, 291, 292, 191]. Several studies have been conducted in
the literature for page layout analysis using the multi-channel GFs [293, 257, 294], while few ones
have explored GFs for HDI segmentation. For instance, Ribeiro et al. [237] proposed an optical
character recognition (OCR) system for HDI analysis and recognition by applying fuzzy methods
on aligned oriented features extracted using GFs in the training step. Vieux and Domenger [216]
proposed a pixel-based classification approach to separate text from other classes (e.g. illustrations
and background) by using a bank of GFs at five scales (1,

√
2, 2, 2

√
2 and 4) and six orientations

(k π6 , k ∈ {0, . . . , 5}). Their approach was evaluated on a public dataset containing magazines and
technical journals. They found 86%, 82.7% and 53.7% of F-measure for segmenting background,
text and graphic pixels, respectively. Jain et al. [248] showed the effectiveness of applying a multi-
channel Gabor filtering-based texture segmentation approach for segmentation and classification of
DIs. They chose the five following spatial frequencies: 4

√
2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2. Charrada
and Ben Amara [238] extracted nets from ancient Arab periodicals by exploring GFs. Zhong and
Cheriet [239] used the dimensionally reduced multi-channel GFs for text block identification on
image patches from HDIs. They extracted 28 GFs from image patches in their experiments, where
7 spatial frequencies (

√
2, 2
√

2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2) and 4 orientation angles (0,
π/4, π/2 and 3π/4) were pre-defined. Cruz-Fernández and Ramos-Terrades [64] computed a 36-
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dimensional Gabor feature vector for each analyzed pixel using 9 orientations (0, 2π/9, 4π/9, 6π/9,
8π/9, 10π/9, 12π/9, 14π/9 and 16π/9) and 4 spatial frequencies (an overlapping degree of 0.5 in the
frequency domain with the highest frequency is equal to 0.35) for structured HDI segmentation. For
Arabic font recognition, 16 Gabor channels were computed with 4 frequencies fg = {8, 16, 32, 64}
and 4 orientations θg = {0◦, 45◦, 90◦, 135◦} in [256]. A learning-free approach to detect the main
text area from side-notes in ancient manuscripts based on coarse-to-fine scheme [240]. A coarse
segmentation of the main text area was processed by using GFs. The proposed approach achieved
promising results in terms of segmentation quality (i.e. 98.84% of mean F-measure was noted on
38 HDIs) and time performance (i.e. 01′ 13′′ per page on average). The four directions (0, π/4,
π/2 and 3π/4) are widely used in the literature [189, 248, 285, 257].

In this work, the magnitude response of the output of Gabor functions is investigated. The
magnitude of the output is important if the specified GF matched the particular texture, otherwise
low response to the specified GF corresponds to poor match of the dominant texture properties
of the analyzed image to the set of the spatial-frequency components of the fixed GF [295]. 24
GFs are applied (6 different spatial frequencies fg={2

√
2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2} and
4 different orientations θg={0, π/4, π/2 and 3π/4}) (cf. Figure B.18). The space of GF is set
constant σg = σx = σy = 1. When convolving an image with 24 Gabor channels (obtained by
using 6 different spatial frequencies and 4 different orientations), 24 Gabor filtered images are
produced. In this work, 24 responses of filtered images or Gabor responses are generated. Finally,
by convoluting the analyzed whole DI at each specified channel defined by a pair of orientation and
frequency, the Gabor features are extracted from the magnitudes of the Gabor filtered images. The
extracted Gabor features represent the statistical distribution of the Gabor magnitude response.
They consist of two simple statistics:

• Mean value of the Gabor filtered magnitude response corresponding to all pixels defined in
the analyzed sliding window of the filtered image (cf. equation B.54),

• Standard deviation of the Gabor filtered magnitude response corresponding to all pixels
defined in the analyzed sliding window of the filtered image (cf. equation B.55).

In Appendix B and particularly in Section B.1.6, a detailed description of the different extracted
Gabor features has been carried.

4.3.7. Wavelet

The last set of textural features examined in this work is the wavelet descriptors. Mallat [154]
investigated the application of the wavelets as multi-resolution representations to data compres-
sion in image coding, texture discrimination and fractal analysis. The wavelet features which are
extracted from the wavelet transform provide interesting insight on the statistical characteristics
of the analyzed image. The wavelet features represent consistent properties in the localization of
the frequency space and multi-resolution.

A 2-D wavelet transform ensures the localization in both the scale (frequency) domain via dilations
and in the time domain via translations of the mother wavelet. A 2-D wavelet transform represents
an image with both the spatial and frequency characteristics. The objective of a 2-D wavelet
transform is to decompose an image into low and high frequency sub-band images (i.e. to filter out
several frequencies range). The 2-D J-level wavelet transform decomposes a discrete input image

I(x, y) into 4 sub-bands and it produces 3J + 1 sub-images (A2-J , {D
(v)

2-j
, D

(h)

2-j
, D

(d)

2-j
}j=1,2,...,J). J

represents the scale of the discrete wavelet transform. j denotes the decomposition level of the
discrete wavelet transform such as j = 1, 2, . . . , J . A2-J is the approximation of the input image

I(x, y) at 2-J resolution. D
(v)

2-j
, D

(h)

2-j
and D

(d)

2-j
are 3 detail components of the input image I(x, y)

at 2-j resolution. The wavelet coefficients in D
(v)

2-j
, D

(h)

2-j
and D

(d)

2-j
illustrate the vertical, horizontal

and diagonal high frequencies, respectively.
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Recently, a lot of studies of applying the wavelet transform have been reported for many fields
of DIA. The wavelet transform has been very effective for DI pre-processing [296], watermarking
[208], handwriting-based writer identification [201], script identification [200, 255], text localization
[217, 297], page segmentation [212], printer discrimination [207], etc. Maatouk et al. [208] showed
that the 3-level decomposition with the Db2 and Db3 family provided the best performance for the
watermarking of HDIs. Kricha et al. [296] proposed a denoising step by applying a thresholding
technique in the coefficients of wavelet sub-bands to reduce the noise in the background of HDIs.
Furukawa [207] used the bi-orthogonal spline 2 wavelet transform for discriminating printers based
on contours qualities of printed characters. For script recognition, Busch et al. [200] evaluated a
number of wavelet features based on energy, logarithmic mean deviation, logarithmic co-occurrence
and scale co-occurrence. Baâti et al. [255] used the energy of 12-level bi-orthogonal wavelet co-
efficients for script identification. Hiremath and Shivashankar [298] also extracted features from
the co-occurrence histograms of wavelet decomposed images for script identification. They con-
cluded that the Haar wavelet yields the best classification results. Manthalkar et al. [299] also
computed the rotation and scale invariant texture features using the discrete wavelet packet trans-
form for script identification. They evaluated two wavelet families (bi-orthogonal and Daubechies)
and they concluded that the bi-orthogonal wavelet outperforms the Daubechies ones (i.e. 83.07%
and 80.89% of overall correct classification for the bi-orthogonal and Daubechies wavelets, respec-
tively). Pardeshi et al. [222] extracted the directional multi-resolution information based on the
Daubechies9 wavelet transform to automatically identify automatic handwritten Indian scripts.
For the handwriting-based writer identification, He et al. [201] used the 3-level wavelet transform
using a 4-tap Daubechies filter. Many studies applied the 3-level wavelet transform by using a
3-tap Daubechies filter to identify Arabic font [300, 301, 302, 303]. Gazzah and Ben Amara [304]
explored the 2-D discrete wavelet transform based on a lifting scheme for writer identification
(off-line Arabic handwriting). They compared 9 wavelet families, including the three following
Daubechies wavelets (Daubechies2, Daubechies3 and Daubechies5), 4 Cohen-Daubechies-Feauveau
wavelets, lazy wavelet transform and Symlet wavelets. They reported that the different evaluated
wavelets give similar results (equal to 95%). He et al. [305] compared GFs with a wavelet approach
based on the generalized Gaussian density for the off-line handwriting-based writer identification.
They showed that the proposed approach based on the wavelet transform performs better than the
traditional 2-D GFs and it is better in terms of processing time. Ding et al. [306] used the 3-level
spline2 wavelet transform on the normalized image of a single Chinese character for the character
independent font recognition. Zhang et al. [307] performed a statistical analysis on the stroke
patterns obtained from the wavelet decomposed sub-images using a 2-tap Symlet filter for the italic
font recognition. For Arabic font recognition, the wavelet energy (i.e. sum of square of the detailed
wavelet transform coefficients) was extracted from the Daubechies2 wavelet transform in [256]. An-
gadi and Kodabagi [308] extracted texture features (the zone wise wavelet energy features, vertical
run statistical features of the wavelet coefficients and wavelet logarithmic mean deviation) from
the wavelet transform for the word level script identification of text in the low resolution display
board images. For multi-font Arabic character analysis and the extraction and classification of
the handwritten shapes from ancient manuscripts, derivative forms of the wavelet transforms (e.g.
ridgelet, curvelet and contourlet transforms) have been used [309, 241]. These specific wavelets
offer the best trade-off between local and global features for handwritten recognition.

For page segmentation, Gupta et al. [212] studied the energy distribution over different scales of
the orthonormal wavelet decomposition. Li and Gray [219] investigated the distribution character-
istics of the wavelet coefficients of the 1-level Haar transform for DI segmentation. They noted that
the results produced by the two longer wavelet filters (4-tap Daubechies and 8-tap Daubechies) are
similar while the Haar transform has the best localization property since its filter is the shortest
and it has the least processing time. They extracted two features related to the pattern distribu-
tion of the wavelet coefficients using the Haar wavelet transform instead of computing moments
of the wavelet coefficients as features. The first descriptor defines the rate of fit goodness of the
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distribution of the wavelet coefficients in high frequency bands to the Laplacien distribution. Then,
the second feature determines the concentration rate of the wavelet coefficients in high frequency
bands at few discrete values. They noted a 4.1% of average classification error rate. Kumar et al.
[310, 217] compared the Haar discrete wavelet transform and matched wavelet for text extraction
and DI segmentation. Liang and Chen [297] suggested to use the Haar discrete wavelet transform
for the text region extraction from the static images or video sequences. They showed an average
error rate close to 1.42%. Acharyya and Kundu [311] presented a multi-scale analysis method based
on the wavelet scale-space features using a 8-tap filter for the text segmentation in DIs. Nourbakhsh
et al. [2] used the log-polar wavelet energy signatures for the text localization and extraction from
the complex gray-scale DIs. Jin and Tang [312] proposed an approach to determine the positions
of the text areas in the complex-background images using the wavelet decomposition. Etemad et
al. [249] presented an algorithm based on the pyramidal wavelet transform and wavelet packet tree
using the Daubechies filters for the segmentation of unstructured DIs. A wavelet-based technique
has been proposed for the reference line extraction from gray-level background DIs in [313]. For the
text/non-text segmentation in DIs, Deivalakshmi et al. [314] extracted the wavelet-based GLCM
features. The evaluated wavelet transforms are: Haar, Db4, Db25, Symlet8, Coilflet3 and Coilflet5.
The Coilflet5 wavelet transform used in their algorithm outperforms the five other investigated
wavelets. An average classification rate equal to 92.97% has been obtained with using the Coilflet5
filter. Kricha and Ben Amara [242] explored the correlation between the different sub-bands of the
same decomposition level and the auto-correlation of each sub-band in the wavelet transform for
the text/graphic separation in HDIs and the discrimination of the different alphabet kinds (Ara-
bic, Latin and Hebrew). They computed the 1-order and 2-order statistics performed from the
correlation function of each analysis window. Subsequently, they took into consideration only the
mean and standard deviation of the auto-correlation of the approximation sub-band obtained from
the 3-level decomposition of the wavelet transform and performed at four different sizes of analysis
windows in order to adopt a multi-scale approach.

The Haar and Daubechies wavelets are the most used ones since they have been proved to work
effectively in many applications. The Haar wavelet transform is the fastest among all wavelets since
its coefficients are either 1 or −1. Thus, they are the less complex, simplest and most widely used
wavelets, while the Daubechies ones are characterized by the fractal structures [297, 315].

Therefore, in this work the wavelet features are extracted from the 2-D 3-level discrete stationary
wavelet transform with a limited number of taps (3-level wavelet transform using Haar filter (Haar),
3-level wavelet transform using 3-tap Daubechies filter (Db3) and 3-level wavelet transform using

4-tap Daubechies filter (Db4)) (cf. Figure B.21). Therefore, 10 sub-bands (A2-3 , D
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In our experiments, in order to reduce the number of the wavelet coefficients, two simple statistics

deduced from the wavelet transform coefficients for each sub-band are extracted to form feature
vector of 20 terms (10 sub-bands). They represent the statistical distribution of the wavelet coef-
ficients. The two simple statistics:

• Mean value of the wavelet transform coefficients for each sub-band defined in the analyzed
sliding window of the image (cf. equation B.60),

• Standard deviation of the wavelet transform coefficients for each sub-band defined in the
analyzed sliding window of the image (cf. equation B.61).

In Appendix B and particularly in Section B.1.7, a detailed review of the wavelet features has
been carried.

4.4. Experimental protocol

We have experimented the nine texture-based feature sets on a wide variety of HDIs and on different
HDI content types for assessing the discriminating power of the extracted features. In this section,
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a brief description of the main phases of a proposed classical pixel-labeling scheme for comparing
texture features is presented. Subsequently, the performance of each texture-based feature set is
detailed after describing our experimental corpus and its associated ground-truth and presenting
the used accuracy metrics for the performance evaluation.

4.4.1. Pixel-labeling scheme for comparing texture features

The texture feature extraction has the objective to reduce information in DI content to a set
of descriptive textural features. The extraction of textural descriptors helps to describe the DI
layout and content by analyzing the texture feature space computed from the extracted textural
characteristics of DI content (i.e. by mapping the differences in the spatial structures of each
digitized DI into differences in gray-level value for each page). However, different results are shown
according to the specified extracted kind of texture used for segmenting or characterizing the DI
layout on the one hand, and the DI content on the other hand. Therefore, in this work our
goal is determining the performance of each texture feature set according to the DI content and
providing an additional insight into the computational cost (i.e. memory requirements, processing
time, numerical complexity and texture vector dimensionality) of each analyzed texture feature set.
However, there is a real need for a generic and standard framework that permits a fair comparison
of texture features. For this purpose, a standard pixel-labeling scheme for comparing texture
features is proposed in this work (cf. Figure 4.1). This scheme is considered as the support of this
comparative study or benchmarking of the nine different texture-based feature sets.

Since our objective is to find regions with similar textural content from DIs characterized by a
wide variety of contents, layouts and shapes, we opt for a pixel-based approach due to its advantage
to overcome the limits and constraints of region and boundary-based approaches (cf. Section 3.3.2)
[3]. Baird et al. [316] reported that analyzing the DI content by classifying individual pixels, not
regions, has the advantage to get away from the dependence on the arbitrariness and restrictive-
ness of the limited families of region shapes. They proposed a pixel-based classification approach
based on investigating 26 textural features, all extracted from the luminosity channel (e.g. region
luminosity average, line luminosity average, line average difference, line luminosity average differ-
ence, line luminosity max difference, revised distance to max-difference pair, revised distance to
max-difference pixel). The DI pixels were classified into machine-printed text, handwritten text,
photographs or blank space. They reported a low per-pixel accuracy equal to 62.4%. Seuret et al.
[223] proposed a method for discriminating the printed content from handwritten annotations at
pixel level. They extracted from the foreground pixels and their neighbors several features (mean
luminosity, luminosity variance, smoothness, gradient density, arithmetic operators, shannon’s en-
tropy, histogram moments, edge detectors, GLCM, side histogram and run-length). The foreground
and background pixels are separated with the Sauvola’s binarization algorithm [317]. A method
for selecting the optimal window size for each feature was afterwards introduced. Then, the multi-
layer perceptron (MLP) technique was applied on the computed features to classify the foreground
pixels. Finally, a post-processing step was introduced to corrects the typical mis-classifications
by removing outliers based on several heuristics. A 96.10% of mean accuracy was noted. Vieux
and Domenger [216] proposed an hierarchical clustering model to learn and classify pixels in DIs
(magazines and technical journals). They extracted the Gabor features to separate text from il-
lustrations or other pre-defined classes. They concluded that by using a pixel-based approach,
the performance is independent of the accuracy of pre-processing steps such as the binarization or
segmentation. For DI segmentation, Vil’kin et al. [318] extracted 26 texture features (e.g. mean
brightness feature, several textural descriptors computed from the GLCM) from various positions
(i.e. tiles, a small block inside a large one and small overlapping blocks) and different sizes of DI
blocks. They compared subsequently four supervised classification algorithms. They noted 85%,
86% and 86% of rates of correctly classified pixels for the three variants of arrangement of blocks
(i.e. tiles, a small block inside a large one and small overlapping blocks), respectively. Nevertheless,
they pointed out that the use of small overlapping blocks led to more accurate segmentation at the
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cost of the processing time. Journet et al. [1] proposed a pixel-based method by using a multi-scale
analysis (i.e. textural descriptors were extracted from pixels of the gray-level DIs at four different
sizes: (32× 32), (64× 64), (128× 128) and (256× 256)) for the pixel-clustering of HDI content
into text, graphics or background. Each pixel was characterized by five textural features computed
at four different scales (20 indices).

Kise [5] proposed a general processing flow which has been described by the following four tasks:

1. Pre-processing step such as noise reduction,

2. Texture feature extraction from each pixel of an input gray-scale or color image,

3. Classification of generated textural feature vectors,

4. Post-processing stage.

In order to analyze and evaluate the different texture-based feature sets, a generic, standard or
classical pixel-labeling scheme for comparing texture features is proposed in our experiments (cf.
Figure 4.1).

Figure 4.1.: Pixel-labeling scheme for comparing texture features.

The pixel-labeling scheme for comparing texture features is conceptualized by three modular
processes:

1. Pre-processing and foreground pixel selection (cf. Section 4.4.1.1),

2. Texture feature extraction (cf. Section 4.4.1.2),

3. Pixel-clustering and labeling (cf. Section 4.4.1.3).

In this work, we are not looking for an accurate segmentation, but to find regions with similar
textural content as easily, quickly and automatically as possible. It has been largely proved that
the proposed texture tools are relevant for DIA and characterization. But, it can neither segment a
DI into graphics, paragraphs, etc. nor characterize its structure (e.g. columns, rows, paragraphs).
The region segmentation and classification tasks can be carried at the end after introducing a post-
processing phase by taking into consideration the topological or spatial relationships (e.g. hierarchy,
inclusion, neighborhood position). The proposed pixel-labeling scheme for comparing texture fea-
tures has the possibility to be extended for consequent DI processing such as region segmentation
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and classification, by introducing a standard post-processing method (e.g. morphological cleaning
approach, multi-scale majority voting technique). Nevertheless, in this study our goal is to find
the best texture feature sets for discriminating the textual regions from graphical ones and sepa-
rating different text fonts without taking into account the spatial relationships between pixels, i.e.
without introducing a post-processing stage [319].

In addition, due to a possible bias produced by performing a classification task, this step is not
included in this work by applying a training phase through supervised machine learning tools (i.e.
by using a set of training pixels with corresponding known labels, a pixel classification model can be
applied). Therefore, the pixel classification and post-processing tasks are beyond the scope of this
comparative study. Nevertheless, if we produce a relevant pixel-labeled DI, homogeneous regions
will be identified by the page segmentation stage and will be labeled according to the content
type by the region classification stage. Indeed, the pixel-labeling task is necessary for further
data processing by different techniques since it provides the basis for all subsequent segmentation,
analysis, classification and recognition processes such the OCR, DI segmentation, DI classification,
DI layout analysis, etc. Indeed, the pixel-labeling phase is considered as the first major step in a
pixel-based DIA workflow after the image pre-processing/enhancement.

4.4.1.1. Pre-processing and foreground pixel selection

First, a HDI is fed as input and is read as a gray-scale image. The extraction of texture information
is processed on gray-scale DIs without introducing a binarization task. A binarization step is
avoided because it causes a loss of information specifically the textural information. Then, to
deal with pixels at image borders when computing texture features on the whole image, a border
replication step is introduced.

In this work, our goal is to have an overview of the page content by finding homogeneous regions
with similar textural content as easily, quickly and automatically as possible rather than a fine
characterization. Thus, in order to reduce data cardinality and obtain a significant gain in the
computation time and used memory, the texture descriptors are extracted only on the selected
foreground pixels. It is worth noting that the foreground texture is more interesting to categorize
the type of DI content.

Therefore, the textural descriptors are extracted only on the selected foreground pixels. The
foreground pixel selection step is performed using a standard parameter-free binarization method,
the Otsu’s method, to retrieve only those pixels representing information of the foreground (noise,
text, graphics, etc.) [320]. However, using of the Otsu’s method is beyond the scope of this
work, it has provided good results [200]. They used the Otsu’s method to segment and extract
the text regions from a DI. Shijian and Tan binarized DIs using the Otsu’s global thresholding
method to retrieve the character pixels and subsequently identify the scripts and languages of
noisy and degraded DIs [321]. Several comparative studies of the segmentation text/background
or binarization methods for degraded HDIs have been reviewed [322, 323]. These studies do not
agree on the best method and none has been shown to be perfect and suitable for HDIs, even local
binarization approaches. Using a global thresholding approach, the Otsu’s method provides an
adequate and fast means of binarization to retrieve only the foreground pixels and extract texture
features from only the selected foreground pixels.

As an example, for a full historical page document (1965× 2750 pixels), scanned at 300 dpi, the
number of the selected foreground pixels is equal to 26086. Thus, the rate of the selected foreground
pixels is over 1

200 of a DI pixels.

4.4.1.2. Texture feature extraction and multi-scale analysis

The texture feature extraction is performed using the pixel-wise technique, i.e. by using analysis
windows of varying sizes in order to adopt a multi-resolution/multi-scale approach (cf. Section
3.3.2.4). The pixel-wise technique is chosen since it gives more reliable values and ensures more
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accurate determination of texture boundary, however it has a high demand in memory and com-
putational time. Using a multi-scale approach in DIA [324, 325, 326, 327] and pyramid methods in
image processing [328, 329], rich information (e.g. gray-level distribution) can be produced since
we can perceive differently textural characteristics at varying scales.

Typically, the sizes of sliding windows vary from (16× 16) to (256× 256) in the existing pixel-
based methods using a multi-scale analysis. However, the computation time is highly dependent on
the resolution, size of the analyzed DI and number of the selected foreground pixels. As a matter
of fact, in this work the sizes of sliding windows vary only from (16× 16) to (128× 128), because
beyond the (128× 128) size the step of the texture feature extraction would be both costly and
time-consuming. In addition, using a large size of a sliding window misleads an observation with
coarse texture expression. Hence, the optimal size of each sliding windows determined respect-
ing a constructive compromise between the computation time and pixel-labeling quality (reliable
measurement and texture boundary).

In this work, the textural descriptors are only extracted from the selected foreground pixels of
the gray-scale DIs at four different sizes of rectangular overlapping processing windows: ((16× 16),
(32× 32), (64× 64) and (128× 128)) to adopt a multi-scale approach. Figure 4.2 illustrates an
example of the four different pre-defined sizes of sliding windows: (16× 16), (32× 32), (64× 64)
and (128× 128), and it shows that each window provides additional information on the textural
properties.

(b) (c) (d) (e) (f)(a)

Figure 4.2.: Example of four different sizes of sliding windows. Figure (a) shows the original image
with a selected pixel position. Figure (b) depicts an image zoom. Figures (c), (d), (e)
and (f) illustrate (16× 16), (32× 32), (64× 64) and (128× 128) windows.

In this work, texture features are computed for analysis windows of four different sizes in order
to adopt a multi-scale approach. The sliding window is shifted horizontally and vertically to scan
the entire image. Therefore, a feature vector is computed on a foreground pixel-per-pixel basis.
Each pixel is represented by scalar features, determined according to a small region bounded by
contour of the analyzed sliding window. The analyzed sliding window is centered on that pixel.
Subsequently, the extracted textural indices for the selected foreground pixels are aggregated into
the Nf -dimensional (Nf -D) array on pixel-by-pixel basis, where Nf represents the number of
extracted textural indices by applying multi-scale analysis.

4.4.1.3. Pixel-clustering and labeling

Since the texture feature extraction phase has been performed, we need to characterize the content
of HDIs. The goal of this step is to structure the texture feature space within a hierarchical or
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partitioning clustering technique in order to group pixels sharing similar characteristics and to
identify and characterize unlabeled data (obtained from the texture feature extraction phase). The
partition and analysis task of the set of unlabeled data into groups or clusters is necessary to segment
the analyzed DI into regions which have homogeneous characteristics and similar properties with
respect to the extracted texture features. This task is considered as a feature space structuring
technique. Section A.1 in Appendix A presents briefly the different feature space structuring
techniques proposed in the literature. The different feature space structuring techniques that have
been used with HDIs are summarized in Table A.1. For instance, Nguyen et al. focused their study
on specific graphics called drop caps and particularly on the extraction of shapes in these graphics,
as part of an attempt to provide wider access to historical collections [330]. They found interesting
classification results which were obtained by performing the hierarchical agglomerative clustering
(HAC) algorithm on the stroke features of drop caps.

Since we opt for an unsupervised pixel-labeling scheme for comparing texture features, in this
work we just need an unsupervised clustering step to group pixels sharing similar characteristics.
Two conventional clustering techniques, k-means [331] and HAC [332], are chosen in the proposed
pixel-labeling scheme for comparing texture features.

The k-means algorithm partitions the data samples into k clusters by using the squared Euclidean
distance (SED) [333]. The SED(x) of two multi-variate vectors x = (x1, x2, . . . , xNf )T and y =
(y1, y2, . . . , yNf )T is defined as:

SED(x, y) =
Nf∑
i=0

(yi − xi)2 (4.1)

where Nf denotes the number of extracted textural indices per each selected foreground pixel by
applying multi-scale analysis.

The HAC algorithm process consists in successively merging pairs of existing clusters where at
each cluster grouping step, the choice of cluster pairs depends on the smallest distance, i.e. clusters
are grouped if the intra-cluster inertia is minimal. Lai et al. [334] stated that the distance computed
by the Ward method [335] gave the best results with the HAC method for content-based indexing
of large image databases. Thus, the linkage between clusters is performed using the Ward criterion
along with the weighted Euclidean distance (WED(a, b)) in the HAC algorithm [333]. The WED
is defined as:

WED(a, b) =

√√√√√
nanb

Nf∑
k=1

1
Nf ‖xak − xbk‖

na + nb
(4.2)

where xak =

na∑
i=1

xai

na
(resp. xbk =

nb∑
i=1

xbi

nb
) is the centroid of cluster a (resp. b) and na (resp. nb) is the

number of elements in cluster a (resp. b). Nf is the number of the vector features. The greater
the WED (equation 4.2) between two clusters, corresponding to two different kinds of texture, the
better the discrimination of the textural characteristics. The texture feature vectors computed at
the selected foreground pixels are not identical and generate k clusters in the Nf -D feature space.

Therefore, in this work each pixel is automatically assigned to one of a number of possible clusters
according to the contents of its feature vector by applying the HAC algorithm on the normalized
textural features and setting the maximum number of homogeneous and similar content regions
equal to the one defined in the ground-truth. The texture feature vectors are normalized to zero
mean and unit standard deviation in order to avoid a domination of the higher numerical range of
a few features. By partitioning texture-based feature vector sets into compact and well-separated
clusters in the feature space, individual pixels are labeled without taking into account the spatial
coordinates which lead to the application of the pixel-clustering and labeling steps, producing a
pixel-labeled image as output. As a matter of fact, the spatial information is also not integrated
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in the pixel-labeling scheme for comparing texture features, to avoid bias caused by introducing
a refinement pixel-labeling phase with taking into consideration the topological relationships of
pixels. In addition, the number of homogeneous and similar content regions has been set to the
one defined in the ground-truth when performing the two conventional clustering techniques, k-
means and HAC, in the pixel-labeling scheme for comparing texture features. The aim is to
avoid inconsistencies and bias in assessments caused by estimating automatically the number of
homogeneous and similar content regions and subsequently to ensure an objective understanding
of the behavior of the evaluated texture feature sets.

4.4.2. Corpus and preparation of ground-truth

Although the issues of the realistic dataset availability and broadband access to researchers for the
performance evaluation of contemporary DIs have been discussed and solved by Antonacopoulos
et al. [336], representative datasets of HDIs are still hard to collect from several libraries. Then,
defining the associated ground-truth of HDI corpus is still not a straightforward task due to their
characteristics (e.g. page skew, superimposition of information layers, such as stamps, handwritten
notes, noise, back-to-front interference). These characteristics complicate the definition of the
appropriate and objective ground-truth, the characterization or segmentation of HDIs and make
the processing of this kind of DIs a difficult task (cf. Figure 3.2).

Antonacopoulos et al. [336] considered a dataset as a good one if it is realistic (i.e. it must
composed of real digitized DIs), comprehensive (i.e. it must well characterized and detailed for
ensuring in-depth evaluation) and flexibly structured (i.e. to facilitate a selection of sub-sets with
specific conditions). Thus, in our experiments, we focus on real scanned HDIs. The characteristics
of our experimental corpus of HDIs are primarily: strong heterogeneity, with differences in layout,
typography, illustration style, historic fonts, complex layouts (e.g. dense printing, irregular spacing,
varying text column widths, marginal notes), ink shining through and historical spelling variants,
etc. In addition to this specificity, the issues affecting DI layout analysis, such as the degradation
properties (e.g. yellow pages, ink stains, back-to-front interference) and scanning defects (e.g.
defects of curvature and light) are adequately covered.

The first experimental corpus used in this work which is called the “DIGIDOC-Texture dataset”,
contains 1000 ground-truthed one-page HDIs which have been collected from Gallica3, encompass-
ing six centuries (1200-1900) of French history. The HDIs of the “DIGIDOC-Texture dataset” have
been selected from several printed monographs and manuscripts across a variety of disciplines, such
as novels, law texts, educational books (e.g. history, geography, nature) and xylographic booklets,
to provide a broader range of HDI contents. They are gray-scale/color DIs which have been dig-
itized at 300/400 dpi and saved in the TIFF format which provides a high resolution of digitized
images.

The “DIGIDOC-Texture dataset” has been structured into four categories of real scanned HDIs
differentiated by their content (cf. Figure 4.3), reflecting the challenges of this work to determine
which texture features can be more adequate for segmenting the graphical regions from textual
ones on the one hand, and discriminating text in a variety of situations of different fonts and scales
on the other hand. The “DIGIDOC-Texture dataset” includes a sufficient number of images with
both simple and complex layouts for each category of HDIs which have been ground-truthed to
ensure a better understanding of the behavior of the evaluated texture feature sets. It is composed
of:

• 250 pages containing graphics and one text font (cf. Figure 4.3(a)),

• 250 pages containing graphics and text with two different fonts (cf. Figure 4.3(b)),

• 250 pages containing only two fonts (cf. Figure 4.3(c)),

• 250 pages containing only three fonts (cf. Figure 4.3(d)).
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(a) Graphics and one text

font

(b) Graphics and text with

two different fonts

(c) Only two fonts (d) Only three fonts

Figure 4.3.: HDI examples of the “DIGIDOC-Texture dataset” which have been collected from
Gallica3.

As part of the improving access to text (IMPACT)1 project (an EU FP7 research project) and
in the context of ICDAR conference and HIP workshop (2011 and 2013), 100 images were selected
for historical document layout analysis and HBR competitions [39, 225]. This dataset (called in
this work the “HBR2013 dataset”) which is used in different ICDAR competitions, has firstly the
drawback to be limited (i.e. it contains only 100 pages and the ground-truth is not provided for all
images (only six pages)). Secondly, it had been selected as it has as little as possible artifacts (e.g.
severe page curl, arbitrary warping) to overcome the use of a separate image enhancement step be-
fore the DI layout analysis task. In addition, these competitions are related to HDI layout analysis
and not to an end-to-end workflow. In addition, the “HBR2013 dataset” is composed of several
binary images. Moreover, few images had been digitized at low resolution, that might potentially
introduce a bias in the texture feature extraction and analysis tasks (cf. Figure 4.4(a)). Moreover,
few images of the “HBR2013 dataset” have copyright notices at bottom of pages which may in-
troduce an artificial information, thereafter inducing segmentation and characterization errors (cf.
Figure 4.4(b)).

To study the scalability of the nine evaluated texture-based feature sets in a “public” dataset,
experiments have been also carried out on the “HBR2013 dataset” which have been provided
in the context ICDAR/HIP-HBR, a competition on the HBR, by the “Centre of competence in
digitisation”2 IMPACT research team. The “HBR2013 dataset” is composed of 100 binary, gray-
scale or color HDIs which have been digitized at 150/300 dpi. We have structured the “HBR2013
dataset” into nine different categories differentiated by their content (cf. Figure 4.5):

• 03 pages containing only one font (cf. Figure 4.5(a)),

• 17 pages containing only two fonts (cf. Figure 4.5(b)),

• 09 pages containing graphics and text with two different fonts (cf. Figure 4.5(c)),

• 20 pages containing only three fonts (cf. Figure 4.5(d)),

• 06 pages containing graphics and text with three different fonts (cf. Figure 4.5(e)),

• 11 pages containing only four fonts (cf. Figure 4.5(f)),

• 15 pages containing graphics and text with four different fonts (cf. Figure 4.5(g)),

• 05 pages containing only five fonts (cf. Figure 4.5(h)),

1http://impact-project.eu
2http://digitisation.eu
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(a) Binary images

(b) Copyright notices

Figure 4.4.: Illustration of the limitations of the “HBR2013 dataset”. Figure (a) shows few examples
of binary images, while Figure (b) depicts few images of the “HBR2013 dataset” which
have copyright notices at bottom of pages (zoomed regions on the copyright notices at
bottom of pages are also illustrated).

• 14 pages containing graphics and text with five different fonts (cf. Figure 4.5(i)).

Both for the DIGIDOC-Texture and HBR2013 datasets, the ground-truth for HDIs has been
manually outlined using rectangular regions drawn around each selected zone. The regions have
been ground-truthed by zoning each content type (i.e. each rectangular region has been classified
into text or graphics). Different labels for regions with different fonts have been also defined for
evaluating the performance of texture feature to separate various text fonts. Ground-truth has been
performed using the ground-truthing editor, ground-truthing environment for document images
(GEDI)3, a public domain DI annotation tool that labels spatial boundaries of regions [337]. By
specifying rectangular regions on a DI and assigning them to one of the many pre-defined content
types, GEDI generates an XML schema representing the location on the page, height, width and
label of each region (cf. Figure 4.6). The ground-truth has not been provided for all images of the
“HBR2013 dataset” by the IMPACT research team (i.e. only six pages). Thus, the ground-truth
of the “HBR2013 dataset” has been also carried out by using the GEDI tool.

4.4.3. Accuracy metrics for performance evaluation

Reed and DuBuf [142] stated that the fundamental questions of comparing texture-based methods
are linked to how a comparative study can be carried out properly and how to evaluate their
performance quantitatively. They classified the typical evaluation criteria into two categories:
based on direct feature statistics and based on boundary accuracy after the segmentation task.
In this work, we are not focus on an accurate pixel-based segmentation. We have narrowed our

3http://gedigroundtruth.sourceforge.net/
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(a) Only one font (b) Only two fonts (c) Two fonts and graphics (d) Only three fonts

(e) Three fonts and graphics (f) Only four fonts (g) Four fonts and graphics (h) Only five fonts

(i) Five fonts and graphics

Figure 4.5.: HDI examples of the “HBR2013 dataset”.

focus to the use of the extracted low-level features to find homogeneous or similar content regions
defined by similar textural indices and not on the basis of the state-of-the-art methods of grouping
pixels according to the spatial relationships of pixels. Thus, we evaluate quantitatively the different
analyzed texture features by computing various feature statistics which consists of the clustering and
classification accuracy metrics. Section A.2 in Appendix A presents briefly the different clustering
and classification accuracy metrics proposed in the literature. They are summarized in Table A.3.

The use of a set of objective evaluation criteria for a variety of DIA applications is considered as
an open research topic [136]. Several DIA researchers have suggested initiating novel segmentation
accuracy metrics. For instance, Yanikoglu and Vincent [338] suggested a complete environment
which is called “Pink Panther”, for creating automatically the segmentation ground-truth files and
benchmarking different page segmentation algorithms. The segmentation quality of an algorithm is
evaluated by comparing the segmentation output of the analyzed DI, described as a set of regions,
to the corresponding previously created ground-truth through the error map. The error maps are
used to quantify several kinds of errors (e.g. mis-classifications, splitting and merging of regions)
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Figure 4.6.: Example of a pixel-labeling result. Figure (a) illustrates an original DI. Figure (b)
shows final result of pixel-labeling task by analyzing the Gabor features. Figure (c)
depicts a cluster representing the text, while Figure (d) shows a cluster representing
the graphics. Figure (e) illustrates the associated ground-truth.

and to ensure a clear representation of all the errors associated with each pixel regardless the DI
complexity.

Baird et al. [316] pointed out the zoning methodology problems and reported three accuracy
metrics (per-pixel accuracy, per-page inventory accuracy and subjective segmentation quality) for
a pixel-based approach evaluation. The per-pixel accuracy measures the fraction of all pixels in the
DI that are correctly classified (i.e. pixels whose class label matches the pre-defined class in the
ground-truth labels of the specified zones). The per-page inventory accuracy determines for each
content class, the fraction of each page area that is classified as that class. Therefore, this metric
analyzes the performance of queries for every content class by computing the precision and recall
scores. The subjective segmentation quality provides a subjective assessment of the classification
quality by using one of the following expressions: “good”, “fair” or “poor”. Baird et al. [316]
reported that using rectangles in zoning can affect the per-pixel accuracy score due to the fact
that some content can not be described by rectangular zones (e.g. handwritten regions) and due
to the arbitrariness and inconsistency in zoning. Thus, they used the raw pixel-count data for
determining what kind of errors the classifier encountered relative to the ground-truth particularly
for the handwritten content. They also noted that using rectangles in zoning has an influence in
computing the per-page inventory accuracy since the information of page layout is not included.

Vil’kin et al. [318] emphasized that the accuracy criterion and the set of test images for the
clustering, classification and segmentation issues are in tremendous growth and continuous devel-
opment. To compare the classification results of their proposed algorithm for DI segmentation, two
criteria were used: percentage of correctly classified pixels measure (PPCM) and another criterion
used on the ICDAR page segmentation competition 2007 which is called MatchScore [136]. The
latter metric has the advantage to take into account the errors of small area. Silva [339] proposed
two metrics: the completeness and purity, to evaluate the DIA performance applied specifically to
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tables. The Jaccard coefficient (J) was used in the evaluation of a proposed pixel-based algorithm
proposed by Hebert et al. [246] for the structure extraction from old newspapers. In their evalua-
tion, the J metric measures a ratio between the number of correctly labeled pixels and the sum of
pixels defined in the ground-truth. Ge et al. [340] evaluated their segmentation algorithm based
on the detection and extraction of the salient objects in the images using the J metric.

The lack of the appropriate quantitative measures for the segmentation quality and the difficulty
in defining criteria for specific application-dependent segmentation, are the shortcomings that limit
researchers in an objective unsupervised evaluation of their results. For instance, the J metric is
not suitable for assessing the accuracy of the proposed pixel-labeling scheme for comparing texture
features because our work focuses on using the extracted low-level features to find homogeneous
or similar content regions defined by similar textural indices. Given this objective, an external
evaluation metric, the purity per block metric (PPB(B,Gt)) is defined in this work which evaluates
the accuracy of a segmentation approach in terms of matching regions between the ground-truth
and pixel-labeling regions. PPB(B,Gt) is based on spatial overlaps of the ground-truth rectangle
and the clustering result. It is defined as:

PPB(B,Gt) =
1

|Gt|
∑
j

1

|
{
bi ∈ gtj

}
|
Cj (4.3)

where
Cj = max

1≤k≤kopt
(|bi, (bi ∈ gtj) ∧ (lBi = k)|) (4.4)

where B = {b1, b2, ..., bi, ..., bn} and Gt =
{
gt1, g

t
2, ..., g

t
j , ..., g

t
m

}
are the sets of result blocks and

rectangular regions of the ground-truth, respectively. LB = {lB1 , lB2 , ..., lBi , ..., lBn} corresponds to
a set of labels obtained with the used pixel-clustering technique. bi, g

t
j and lBi denote the result

block, pre-defined rectangular region of the ground-truth and label corresponding to the result
block obtained with the used pixel-clustering technique, respectively. |.| is the number of pixels in
a given block.

First, to evaluate quantitatively the different obtained results, the following clustering accuracy
measures are computed in this work, silhouette width (SW ), Jaccard coefficient (J) and purity per
block (PPB).

• The silhouette width index (SW) measures the level of compactness and separation by
analyzing the distribution of the observations into clusters [341].

• The Jaccard coefficient (J) is used to assess the similarity between the distributions of the
observations in the clustering result and ground-truth. It represents the ratio of the number
of pairs of data points which are clustered similarly in the clustering result and ground-truth
[342].

• The purity per block (PPB) evaluates the pixel-labeling accuracy in terms of matching
regions. It is based on spatial overlaps of the ground-truth rectangle and the pixel-labeling
result to estimate the homogeneity/purity level per region.

Then, in order to provide an additional analysis and comparison with the computed clustering
accuracy metrics and get an insight into the classification accuracy, a confusion matrix, error matrix
or contingency table (Mc) is computed [343, 344]. From the Mc, several per-pixel classification
accuracy metrics, including precision (P ), recall (R), classification accuracy rate (CA) and F-score
or F-measure (F ) are performed in this work.

• The precision metric (P) corresponds to the proportion of the predicted cases that are
correctly matched to the benchmark classifications. It is considered as a means of assessing
the classification.
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• The recall measure (R) indicates the proportion of real cases that are correctly predicted.
It is considered a way to improve the classification.

• The classification accuracy rate (CA) metric corresponds to the ratio of the true classified
predicted pixels and the total number of pixels.

• The F-measure (F) can be computed as a score resulting from the combination of the
P and R accuracies by using a harmonic mean. It assesses both the homogeneity and the
completeness criteria of a clustering result [345, 346, 347, 348, 349].

A detailed review of the used clustering and classification accuracy measures to evaluate the
different extracted sets of texture feature has been conducted in Section A.2 and particularly in
Appendix A.

4.5. Experiments and results

To analyze and evaluate the robustness of the nine investigated texture feature sets and provide
additional insights into their classification accuracy and computational cost (i.e. memory require-
ments, processing time, numerical complexity and texture vector dimensionality), an informative
benchmark of the performance and computational cost of each texture-based feature set is given
in this section. Qualitative and numerical experiments are presented to demonstrate each texture-
based feature set performance. Finally, based on the experimental results and observations, few
recommendations about the choice of texture features which are firstly well suited for segmenting
graphical regions from textual ones, discriminating text in a variety of situations of different fonts
and scales and separating different types of graphics. Then, which texture features represent a con-
structive compromise between the pixel-labeling quality and computational cost. Finally, another
set of experiments has been performed by using two different algorithms (k-means and HAC) in the
pixel-clustering task (cf. Figure 4.1, Section 4.4.1.3) in order to compare their performance and to
determine which one is more appropriate. As a consequence, we have divided the experiments into
two parts:

1. Benchmarking of the nine extracted sets of texture feature based on using the HAC algorithm
in the pixel-clustering step of the pixel-labeling scheme for comparing texture features (cf.
Section 4.5.1).

2. Performance evaluation of the two different algorithms (k-means and HAC) in the pixel-
clustering task of the pixel-labeling scheme for comparing texture features (cf. Section 4.5.2).

4.5.1. Benchmarking

The first experiment in this work proposes a comparative study of the nine investigated texture-
based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4),
previously presented in Section 4.3 and detailed in Appendix B and particularly in Section B.1,
using the proposed pixel-labeling scheme for comparing texture features (cf. Figure 4.1). First,
we detail the computational cost by providing an additional insight into the computation time and
complexity of each texture-based feature set is given (cf. Section 4.5.1.1). Qualitative and numerical
experiments on the two datasets, DIGIDOC-Texture and HBR2013, are also given to demonstrate
each texture-based feature set performance in Sections 4.5.1.2 and 4.5.1.3, respectively. A detailed
analysis of the errors has been presented to show the limitations of a number of texture-based
feature sets.
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4.5.1.1. Computational cost

The benchmarking of the nine investigated texture-based approaches in this work has been run
on a SGI Altix ICE 8200 cluster (1 central processing unit (CPU) and 2 gigabytes (GB) allocated
memory on a Quad-Core X5355@2.66GHz running Linux), without a very determined effort to
achieve an optimized implementation of the investigated texture-based features. Analyzing the
nine sets of texture descriptors from the DIGIDOC-Texture and HBR2013 datasets gives a total of
12150 analyzed DIs (1000 + 250 + 100 images × 9 different texture-based approaches). The “Two
fonts and graphics” category of our HDI corpus is analyzed twice. First, every font in the text has
a different label in the ground-truth and the clustering is performed by setting the number of types
of content regions equal to 3 (graphics and text with two different fonts). Second, all fonts in the
text have the same label in the ground-truth and the clustering is performed by setting the number
of types of content regions equal to 2 (graphics and text). This distribution indicates out which
texture features can be more suitable for segmenting a DI containing two text fonts and graphics
into two/three classes, i.e. separating two different text fonts when a DI contains graphics.

The scalar features are extracted separately from the nine texture-based feature sets (Tamura,
LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4) using four different slid-
ing window sizes. Extracting each texture-based feature set by using a sliding window gives (cf.
Sections 4.3 and B.1 and Table 4.4):

• 16 Tamura indices (4 Tamura indices × 4 sliding window sizes for a multi-scale analysis):
a 16-D feature vector which corresponds to the results of Tamura attribute extraction is
assigned to every selected foreground pixel from the analyzed digitized DI.

• 40 LBP indices (10 LBP riu2
Pl=8,Rl=1 indices × 4 sliding window sizes): a 40-D feature vector

is generated for each selected foreground pixel.

• 176 GLRLM indices (44 GLRM indices × 4 sliding window sizes): 11 GLRLM indices are
extracted for each scan direction. Thus, a total of 44 GLRM indices for four selected scan
directions. A 176-D feature vector is generated for each selected foreground pixel.

• 20 Auto-correlation indices (5 auto-correlation indices × 4 sliding window sizes): a 20-D
feature vector which corresponds to the results of the auto-correlation attribute extraction,
is associated to every selected foreground pixel from the digitized DI.

• 72 GLCM indices (18 GLCM indices × 4 sliding window sizes): first, 16 GLCM features
are extracted for two pre-defined distances (8 indices for each distance). In addition to the 16
extracted GLCM features, 2 other descriptors are computed for the two combined distances.
Therefore, a 72-D feature vector which corresponds to the results of the GLCM attribute
extraction, is associated to every selected foreground pixel from the digitized DI.

• 192 Gabor indices (48 Gabor indices × 4 sliding window sizes): when convolving a DI
with 24 Gabor channels (obtained by using 6 different spatial frequencies and 4 different
orientations), 24 responses of filtered images or Gabor responses are generated. A feature
vector (with dimension 48 to represent 24 channels) is produced per foreground pixel based
on the computed mean and standard deviation of the magnitude response of the transformed
analyzed image by the selective GF. Thus, a total of 48 Gabor indices are extracted from each
selected foreground pixel defined in the analyzed sliding window. A 192-D feature vector is
subsequently formed.

• 80 Haar indices (20 Haar indices × 4 sliding window sizes): 2 indices for each Haar wavelet
sub-band are extracted to form feature vector of 20 terms (10 sub-bands). Therefore, a 80-D
feature vector is formed.
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• 80 Db3 indices (20 Db3 indices × 4 sliding window sizes): 2 indices for each Db3 wavelet
sub-band are extracted to form feature vector of 20 terms (10 sub-bands). Therefore, a 80-D
feature vector is formed.

• 80 Db4 indices (20 Db4 indices × 4 sliding window sizes): 2 indices for each Db4 wavelet
sub-band are extracted to form feature vector of 20 terms (10 sub-bands). Therefore, a 80-D
feature vector is formed.

Nevertheless, there is awareness that maybe there are redundant and non-relevant indices when
extracting each set of texture features with multi-scale analysis. As a matter of fact, a feature
selection step can help select relevant features and remove redundant ones. However, in this work we
are interested in raising issues related only to how these texture-based sets are compared with each
other. We avoid bias caused by introducing a feature selection task, such as the methods based on
the dimension reduction technique. Moreover, few rules and heuristics can usually be deduced when
applying a feature selection task on the extracted texture features from a HDI/DHB. For instance,
Abedi et al. [350] proposed a hybrid heuristic/random strategy for searching the optimal solution,
based on evolutionary algorithms and heuristic methods. As a consequence, these deduced rules
and heuristics can not be applied on another HDI/DHB due to the large variability of HDI/DHB
contents. Hence, it is quite certain that a feature selection task can not be adapted to all kinds of
HDIs/DHBs since the texture indices can have different ranges from a HDI/DHB to another one.
Thus, a feature selection step has been avoided in this work.

Table 4.1.: A summary of the analyzed texture features in this work.

Features Description

A- Tamura

Coarseness
(cf. equation (B.4))

This feature illustrates the scale and repetition rates of
texture. Specifically, it measures the largest size at which a
texture exists.

Contrast
(cf. equation (B.5))

This descriptor measures the dynamic range of gray-levels
in an image with taking into consideration the distribution
polarization of black and white pixels.

Number of orientations
(cf. equation (B.11))

This feature describes the local edge density and
distribution of a texture.

Directionality
(cf. equation (B.12))

This descriptor provides an insight into the global texture
property over a region by measuring the total degree of
texture directionality.

B- LBP

Heights of the uniform bins of
the histogram of binary patterns
(cf. equation B.18)

These features represent the uniform patterns.

Height of the non-uniform bin of
the histogram of binary patterns
(cf. equation B.19)

This descriptor characterizes all the non-uniform patterns.

C- GLRLM

Short-run emphasis (SRE)
(cf. equation B.21)

This metric ensures the characterization of fine-grained
textures by emphasizing short runs.

Long-run emphasis (LRE)
(cf. equation B.22)

This feature helps to characterize textures with large
homogeneous areas or coarse textures by emphasizing long
runs.
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Table 4.1 – continued from previous page

Features Description

Low gray-level emphasis (LGRE)
(cf. equation B.23)

This measure is orthogonal to SRE (cf. equation B.21) and
it provides an insight of the dominance of many runs of low
gray-level value in the analyzed texture.

High gray-level emphasis
(HGRE)
(cf. equation B.24)

This measure is orthogonal to LRE (cf. equation B.22) and
it provides information on the dominance of many runs of
high gray-level value in the analyzed texture.

Gray-level non-uniformity
(GLNU)
(cf. equation B.25)

This metric is focused on detecting the gray-level outliers
from the histogram.

Run-length non-uniformity
(RLNU)
(cf. equation B.26)

This metric is an indicator of few run-length outliers which
are dominating the histogram.

Run percentage (RPC)
(cf. equation B.27)

This metric gives a glimpse into the overall histogram
homogeneity. The maximum RPC value corresponds to the
case where all runs are equal to the unity length regardless
of the gray-level values.

Short-run low gray-level
emphasis (SRLGE)
(cf. equation B.28)

This measure is a combination of the two metrics: SRE (cf.
equation B.21) and LGRE (cf. equation B.23) which
estimates the dominance of many short runs of low
gray-level value.

Long-run high gray-level
emphasis (LRHGE)
(cf. equation B.29)

This feature is the complementary metric to SRLGE (cf.
equation B.28). It characterizes the combination of long
high gray-level value runs.

Short-run high gray-level
emphasis (SRHGE)
(cf. equation B.30)

This measure is both orthogonal to SRLGE (cf. equation
B.28) and LRHGE (cf. equation B.29). It carries out the
domination of short runs with high intensity gray-levels in
the analyzed texture.

Long-run low gray-level emphasis
(LRLGE)
(cf. equation B.31)

This feature is the complementary metric to SRHGE (cf.
equation B.30). It allows to characterize long runs with
low intensity gray-levels in the analyzed texture.

D- Auto-correlation

Main angle of the rose of
directions
(cf. equation (B.35))

This metric ensures the characterization of the main
orientation of a texture.

Intensity of the auto-correlation
function for the main orientation
(cf. equation (B.36))

This feature helps to characterize the anisotropy of a
texture.

Variance of the intensities of the
rose of directions
(cf. equation (B.37))

This measure provides an insight of the overall shape of the
rose of directions.

Mean stroke width along specific
directions
(cf. Algorithm 8)

This measure estimates the mean stroke width along
specific directions.

Mean stroke height along specific
directions
(cf. Algorithm 9)

This metric corresponds to the estimation of mean stroke
height along specific directions.
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Table 4.1 – continued from previous page

Features Description

E- GLCM

Maximum probability
(cf. equation (B.43))

This metric ensures the record of the highest GLCM
element. High values of GLCM element will occurred if one
combination of pixels dominates pixel pairs.

Correlation metric
(cf. equation (B.44))

This feature helps to measure the gray-level linear
dependence between pixels at the specified positions
relative to each other. It has a large value when the values
are uniformly distributed in the GLCM and a low value
otherwise.

Energy
(cf. equation (B.45))

This measure which has also been called angular second
moment, provides an insight of image homogeneity. It has
low value when the probabilities of the gray-level pairs
have very similar values and a high value otherwise.

Entropy
(cf. equation (B.46))

This metric characterizes the energy values for pixel
combinations. It measures the disorder or randomness of
the GLCM. Inhomogeneous texture have low first order
entropy, while a homogeneous texture has a high entropy.

Contrast
(cf. equation (B.47))

This metric which has also been called inertia, corresponds
to a measure of the contrast by computing a difference
moment of the GLCM and it estimates the contrast or it
quantifies local variation present in the analyzed image.

Local homogeneity
(cf. equation (B.48))

This measure has also been called inverse difference
moment. It is higher when we find the same pair of pixels
which is in the case that the gray-level is uniform or when
there is a spatial periodicity.

Cluster shade
(cf. equation (B.49))

This metric corresponds to a measure of the gray-level
distribution around the mean, with a high ability to
discriminate the third order. It measures the skewness of
the GLCM (i.e. lack of symmetry). When it is high, the
analyzed image is not symmetric.

Cluster prominence
(cf. equation (B.50))

This metric corresponds to a measure of the gray-level
distribution around the mean, with a high ability to
discriminate the fourth order. It also measures the
skewness of the GLCM.

Energy mean
(cf. equation (B.51))

This metric corresponds to the mean of the energy feature
computed from the two distance values dc = 1, 2.

Energy standard deviation
(cf. equation (B.52))

This metric corresponds to the standard deviation of the
energy feature computed from the two distance values
dc = 1, 2. It characterizes the uniformity of the texture
when varying the specified distance.

F- Gabor

Mean of the Gabor filtered
magnitude responses
(cf. equation (B.54))

This feature characterizes the average of the Gabor filtered
magnitude response corresponding to all pixels defined in
the analyzed sliding window of the filtered image. This
descriptor quantifies how the dominant texture properties
of the analyzed image match to the set of spatial-frequency
components of the fixed GF.
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Table 4.1 – continued from previous page

Features Description

Standard deviation of the Gabor
filtered magnitude response
(cf. equation (B.55))

This descriptor determines how much the dispersion from
the computed mean of the Gabor filtered magnitude
response exists.

G- Wavelet (Haar, Db3 and Db4)

Mean of the wavelet transform
coefficients
(cf. equation (B.60))

This feature characterizes the average of the wavelet
transform coefficients for each sub-band defined in the
analyzed sliding window of the image. This descriptor
represents the average of 2-D signal in various frequency
bands.

Standard deviation of the
wavelet transform coefficients
(cf. equation (B.61))

This descriptor determines how much the dispersion from
the computed mean of wavelet transform coefficients exists.

It is worth noting that the code implemented for the texture feature analysis task is not optimized
in this work. An optimization process by using the single instruction, multiple data (SIMD) paral-
lelization on different general-purpose processing on graphics processing units (GPGPU) graphics
cards is especially necessary to quickly assess the nine investigated texture feature sets and have
better computational cost.

An additional insight into the computational cost (i.e. memory requirements, processing time,
numerical complexity and texture vector dimensionality) is provided in Table 4.4. The processing
time depends highly on the resolution, size of the input image and number of the selected foreground
pixels. An example of a full page document scanned at 300 dpi (1965×2750 pixels) is illustrated in
Table 4.4. The highest time required to process a page (1965× 2750 pixels) is obtained when using
the wavelet approaches while the lowest one is obtained when using the GLCM descriptors (i.e. it
is reduced to only 14 seconds). The computation time of each texture feature sets is in concordance
with the complexity. We can see that the Db4-based approach has the highest complexity while the
lowest one is noted for the GLCM-based approach (cf. Table 4.4). Therefore, this study states the
GLCM-based approach as the best one in terms of processing time and complexity. However, the
GLCM and Gabor-based approaches are the highest memory-consuming (i.e. more than 587MB
used memory). We note that even the three investigated wavelets consume a similar amount of
memory, they have different computation times. The Haar-based approach is the best one among
the three investigated wavelets in terms of the computational cost. This confirms that the Haar
wavelet transform is the fastest among the examined wavelets (cf. Section 4.3.7). However, the
auto-correlation and LBP-based approach have similar computational cost, they have different
feature dimensions (i.e. dimension of the LBP feature vector is the double of the auto-correlation
one). Nevertheless, we observe the increase of the feature dimension of the Gabor and GLRLM-
based approaches (i.e. Gabor and GLRLM signatures correspond to a set of vectors composed of
192 and 176 numerical values, respectively).

4.5.1.2. Qualitative results

A visual comparison of the resulting images using the proposed pixel-labeling scheme for comparing
the nine investigated texture-based feature sets on the “DIGIDOC-Texture dataset” is illustrated
in Figures 4.8, 4.9, 4.10, 4.11 and 4.12. On the other side, the resulting images of using the
proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “HBR2013 dataset” are depicted in Figures 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19. Since the
process is unsupervised, the colors attributed to text or graphics may differ from one DI to another.

Measures of accuracy metrics are presented at the bottom of each image in Figures 4.8, 4.9, 4.10,
4.11, 4.12, 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19.
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By visual inspection of the obtained pixel-labeled HDIs, we note that most of the investigated
texture-based approaches provide satisfying results particularly in distinguishing the textual regions
from the graphical ones. We also observe that the Gabor-based approach performs considerably
better in segmenting documents containing only textual regions with distinct fonts.

1. “DIGIDOC-Texture dataset”
Figures 4.8, 4.9, 4.10, 4.11 and 4.12 illustrate few examples of resulting images of the proposed
pixel-labeling scheme for comparing the nine investigated texture-based feature sets on the
“One font and graphics”, “Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only
two fonts” and “Only three fonts” categories of HDIs from the “DIGIDOC-Texture dataset”,
respectively. The “Two fonts and graphics∗” category of HDIs represents the case when every
font in the text has a distinct label in the ground-truth and the clustering is performed by
setting the number of types of content regions equal to 3 (graphics and text with two different
fonts). On the other side, the “Two fonts and graphics∗∗” category of HDIs represents the
case when all fonts in the text have the same label in the ground-truth and the clustering is
performed by setting the number of types of content regions equal to 2 (graphics and text).
This distribution points out which texture features can be more adequate for segmenting
documents containing two text fonts and graphics into two/three classes, i.e. separating two
distinct text fonts when the HDIs contain graphics.

In Figure 4.8, where the analyzed HDI has a complex layout and contains one text font and
graphics, the results given by analyzing the nine investigated texture-based feature sets on
the proposed pixel-labeling scheme are relatively similar and satisfying in distinguishing the
textual regions from the graphical ones when comparing visually the segmentation results.
The pixel-labeling results of the nine extracted texture feature sets show a significant dis-
criminating power for separating text (single font) and graphic regions. Nevertheless, by
comparing the visual results given by analyzing the nine investigated texture-based feature
sets on the proposed pixel-labeling scheme, we note that the graphic regions (green) are more
homogeneous when using Gabor features (cf. Figure 4.8(f)) than when using the other tex-
ture features. However, the Gabor features have more difficulty separating textual regions
(blue) when they are too spatially close to the graphical ones (i.e. textual regions which are
spatially close to the graphic ones have been mis-labeled). On the other hand, in Figure 4.9,
where the HDI under consideration contains two fonts and graphics, the nine investigated sets
of texture features can not separate properly textual regions with different sizes and fonts.
By analyzing the most sets of texture features for the “Two fonts and graphics∗” category of
HDIs, two clusters are produced for graphic regions by discriminating the noise on the HDI
borders. This points out that the texture features have also more difficulty segmenting two
distinct text fonts when the involved HDI contains graphics.

We also observe that the wavelet-based approaches and more specifically Db3 and Db4,
perform slightly similarly to the Gabor one (cf. Figure 4.7) and particularly in the case of
HDIs containing graphics and text (cf. Figure 4.8). In certain cases however, the Gabor-based
approach confuses the uppercase text and the graphical components (cf. Figures 4.7(a) and
4.7(b)) unlike the wavelet-based approach (cf. Figures 4.7(e) and 4.7(f)). This confusion can
be explained by the limitations of the Gabor approach to separate spatially close distinct kinds
of information (i.e. the vertical/horizontal spacing is too small). Indeed, the Gabor features
are extracted for a specified range of frequency and direction values. Thus, the performance
of the Gabor approach depends directly on the layout document. However, when using the
Gabor primitives, we can see that distinct kinds of graphics can be discriminated (cf. Figures
4.7(c) and 4.7(d)).

Then, by analyzing the visual results of the “Two fonts and graphics∗∗” category of HDIs
(cf. Figure 4.10), we observe that the GLCM descriptors are much better for segmenting
text and graphic regions (cf. Figure 4.10(e)). Moreover, we conclude that the investigated
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Figure 4.7.: Examples of resulting images of the proposed pixel-labeling scheme using the Gabor and
Db4 features on the “Two fonts and graphics∗∗” category of HDIs from the “DIGIDOC-
Texture dataset”. Figures (a), (b), (c) and (d) show four resulting image examples
of the “Two fonts and graphics∗∗” category of HDIs from the “DIGIDOC-Texture
dataset” using the Gabor features on the proposed pixel-labeling scheme. Figures
(e), (f), (g) and (h) illustrate four resulting image examples of the “Two fonts and
graphics∗∗” category of HDIs from the “DIGIDOC-Texture dataset” using the Gabor
features on the proposed pixel-labeling scheme. Since the process is unsupervised, the
colors attributed to text or graphics may differ from one DI to another.

texture feature are more suitable for segmenting documents containing two text fonts and
graphics into two classes. This may raise questions about the importance of using recursive
clustering methods in order to ensure the distinction between distinct text fonts and various
graphic types. In a HDI example from “DIGIDOC-Texture dataset” which contains only two
fonts, we observe that the GLCM-based (cf. Figure 4.11(e)) and Gabor-based (cf. Figure
4.11(f)) approaches provide the best visual results by distinguishing two different text fonts
(handwritten notes in the margins and printed text). Finally, we demonstrate that the Gabor

features are the best in segregating three different fonts, text with Sf1 size font (red), text with

Sf2 6= Sf1 size font (blue) and italic (green) fonts in Figure 4.12(f). This may be confirmed
by the frequent use of the Gabor descriptors mainly to identify script and language and
for character and font recognition in the literature [285, 281], since the Gabor features are
known to be sensitive to the stroke width. On the other side, for the other texture features
including the three investigated kinds of wavelets (cf. Figures 4.12(g), 4.12(h) and 4.12(i)),
the outcomes are poorer in segregating three different fonts.
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(a) Tamura
SW = 0.54 J = 0.86
PPB = 0.91 F = 0.96

(b) LBP
SW = 0.42 J = 0.78
PPB = 0.89 F = 0.94

(c) GLRLM
SW = 0.40 J = 0.73
PPB = 0.87 F = 0.92

(d) Auto-correlation
SW = 0.72 J = 0.88
PPB = 0.92 F = 0.97

(e) GLCM
SW = 0.69 J = 0.82
PPB = 0.90 F = 0.95

(f) Gabor
SW = 0.42 J = 0.87
PPB = 0.94 F = 0.96

(g) Haar
SW = 0.61 J = 0.86
PPB = 0.94 F = 0.96

(h) Db3
SW = 0.66 J = 0.81
PPB = 0.94 F = 0.95

(i) Db4
SW = 0.61 J = 0.88
PPB = 0.92 F = 0.97

Figure 4.8.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “One font and graphics” category of HDIs from the “DIGIDOC-Texture dataset”. Since the process is unsupervised, the
colors attributed to text or graphics may differ from one DI to another.
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(a) Tamura
SW = 0.26 J = 0.46
PPB = 0.85 F = 0.57

(b) LBP
SW = 0.75 J = 0.46
PPB = 0.89 F = 0.69

(c) GLRLM
SW = 0.68 J = 0.46
PPB = 0.89 F = 0.52

(d) Auto-correlation
SW = 0.62 J = 0.47
PPB = 0.85 F = 0.54

(e) GLCM
SW = 0.39 J = 0.48
PPB = 0.93 F = 0.70

(f) Gabor
SW = 0.36 J = 0.47
PPB = 0.95 F = 0.72

(g) Haar
SW = 0.59 J = 0.46
PPB = 0.87 F = 0.53

(h) Db3
SW = 0.60 J = 0.48
PPB = 0.93 F = 0.69

(i) Db4
SW = 0.59 J = 0.47
PPB = 0.90 F = 0.52

Figure 4.9.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Two fonts and graphics∗” category of HDIs from the “DIGIDOC-Texture dataset”. “Two fonts and graphics∗” represents
the case when every font in the text has a different label in the ground truth, and the clustering is performed by setting the number of
types of content regions to 3 (graphics and two different text fonts). Since the process is unsupervised, the colors attributed to text or
graphics may differ from one DI to another.
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(a) Tamura
SW = 0.27 J = 0.97
PPB = 0.88 F = 0.89

(b) LBP
SW = 0.81 J = 0.99
PPB = 0.94 F = 0.90

(c) GLRLM
SW = 0.68 J = 0.99
PPB = 0.89 F = 0.91

(d) Auto-correlation
SW = 0.74 J = 0.99
PPB = 0.92 F = 0.81

(e) GLCM
SW = 0.60 J = 0.99
PPB = 0.96 F = 0.98

(f) Gabor
SW = 0.43 J = 0.85
PPB = 0.95 F = 0.89

(g) Haar
SW = 0.66 J = 0.89
PPB = 0.92 F = 0.90

(h) Db3
SW = 0.82 J = 0.98
PPB = 0.97 F = 0.97

(i) Db4
SW = 0.67 J = 0.89
PPB = 0.95 F = 0.91

Figure 4.10.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets
on the “Two fonts and graphics∗∗” category of HDIs from the “DIGIDOC-Texture dataset”. “Two fonts and graphics∗∗”
represents the case when all fonts in the text have the same label in the ground truth, and the clustering is performed by setting the
number of types of content regions equal to 2 (graphics and text). Since the process is unsupervised, the colors attributed to text or
graphics may differ from one DI to another.
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(a) Tamura
SW = 0.27 J = 0.91
PPB = 0.85 F = 0.90

(b) LBP
SW = 0.94 J = 0.80
PPB = 0.92 F = 0.69

(c) GLRLM
SW = 0.99 J = 0.79
PPB = 0.92 F = 0.66

(d) Auto-correlation
SW = 0.72 J = 0.88
PPB = 0.83 F = 0.88

(e) GLCM
SW = 0.62 J = 0.99
PPB = 0.99 F = 0.99

(f) Gabor
SW = 0.41 J = 0.99
PPB = 0.99 F = 0.99

(g) Haar
SW = 0.60 J = 0.90
PPB = 0.92 F = 0.89

(h) Db3
SW = 0.54 J = 0.90
PPB = 0.93 F = 0.91

(i) Db4
SW = 0.50 J = 0.89
PPB = 0.96 F = 0.91

Figure 4.11.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Only two fonts” category of HDIs from the “DIGIDOC-Texture dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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(a) Tamura
SW = 0.44 J = 0.42
PPB = 0.75 F = 0.55

(b) LBP
SW = 0.12 J = 0.60
PPB = 0.74 F = 0.70

(c) GLRLM
SW = 0.02 J = 0.35
PPB = 0.79 F = 0.38

(d) Auto-correlation
SW = −0.13 J = 0.46
PPB = 0.76 F = 0.54

(e) GLCM
SW = 0.05 J = 0.33
PPB = 0.69 F = 0.61

(f) Gabor
SW = 0.36 J = 1.00
PPB = 1.00 F = 1.00

(g) Haar
SW = 0.11 J = 0.46
PPB = 0.72 F = 0.69

(h) Db3
SW = 0.13 J = 0.37
PPB = 0.61 F = 0.53

(i) Db4
SW = 0.16 J = 0.55
PPB = 0.75 F = 0.64

Figure 4.12.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Only three fonts” category of HDIs from the “DIGIDOC-Texture dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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2. “HBR2013 dataset”
Figures 4.14, {4.15, 4.16}, 4.17, {4.18 and 4.19} illustrate few examples the resulting images of
the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature
sets on the “Only two fonts”, “Two fonts and graphics”, “Only three fonts” and “Three fonts
and graphics” categories of HDIs from the “HBR2013 dataset”, respectively.

In the case of a HDI containing only textual regions with two different fonts (cf. Figure 4.14),
we observe that the Gabor features are the best in segregating two different fonts, i.e. we
distinguish two different text fonts, text with Sf1 size font (green) and text with Sf2 ≤ S

f
1 size

font (blue) (cf. Figure 4.14(f)). On the other side, the other investigated texture features
have not borne the desired goal of segregating two different fonts. This strengthens our
previous results obtained for the “DIGIDOC-Texture dataset” and confirms our assumption
that the Gabor descriptors are the most suitable for font segmentation, since they are known
to be sensitive to the stroke width. In figure 4.15, we see that the auto-correlation, Gabor
and the three investigated wavelet-based approaches produce two clusters for graphic regions
by discriminating many orientations that are present to different extents in graphic blocks.
This confirms that these descriptors generally provide the main orientation of a texture.
Moreover, this strengthens our previous observations deduced when analyzing the “Two fonts
and graphics” category of HDIs in the “DIGIDOC-Texture dataset” the that these features
have also more difficulty segmenting two distinct text fonts when the documents also contain
graphics. We conclude that most investigated texture feature sets can not separate properly
textual regions with different sizes and fonts and particularly when the documents also contain
graphics. A suitable alternative is to use recursive clustering methods in order to ensure the
distinction between distinct text fonts and various graphic types when the documents under
consideration are complex and contains graphics and various kinds of fonts. Similarly, in
Figure 4.16 all investigated sets of texture features can not separate properly textual regions
with different sizes and fonts and particularly when the documents also contain graphics.
When analyzing the Gabor and the three investigated wavelets, two clusters are produced
for the graphic regions by discriminating the horizontal nets from the vertical black borders
(noise generated during the digitization process) which should constitute a class on its own
(cf. Figures 4.16(f), 4.16(g), 4.16(h) and 4.16(i)). This may raise questions about the defined
ground-truth which is to a certain extent subjective and should consider the noise pixels in
an another ground-truth class different of the already defined ones. Nevertheless, defining a
pixel-based ground-truth in HDIs with taking account the noise pixels is not a straightforward
task. In Figure 4.17, we observe that all investigated texture features even the Gabor features
have failed to separate text fonts when the analyzed HDI contains only three different text
fonts. This may be explained by the fact that the analyzed HDI has a copyright notice at the
bottom of the page. This copyright notice has introduced an artificial texture information
and subsequently a bias in the texture feature extraction and analysis tasks. This point
confirms our previous observation concerning the drawback of the “HBR2013 dataset” which
it does not seem neither very realistic/representative nor appropriate in view of meeting the
need to analyze properly texture features (cf. Figure 4.13). For instance, an example of a
resulting image of the proposed Gabor-based pixel-labeling scheme applied on a HDI from
the “HBR2013 dataset” illustrating the identification of the vertical black borders and the
copyright notice at the bottom of the page as a class (green) on its own and the two different
text fonts (blue) together in an another class (cf. Figure 4.13(a)). We note that the results
would be better if the copyright notices at the bottom of pages under consideration should be
either considered and labeled in an another ground-truth class different of the already defined
ones or removed from the involved pages. Two examples of the “Three fonts and graphics”
category of “HBR2013 dataset” HDIs are illustrated in Figures 4.18 and 4.19, respectively.
The first example of the “Three fonts and graphics” category of “HBR2013 dataset” HDIs (cf.
Figure 4.18) shows that the Gabor features give the best results in terms of the homogeneity
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of the textual region content (cf. Figure 4.18(f)). A cluster representing the uppercase-text
font (blue) is clearly identified when analyzing the Gabor features on Figure 4.18(f). However,
a slight confusion is also observed between the pixels of the uppercase-text font (blue) and the
graphical regions (green) (cf. Figure 4.18(f)). The pixel-labeling results by analyzing the Db3
wavelet features (cf. Figure 4.18(h)) are similar to those obtained by analyzing the Gabor
descriptors when the HDI contains three fonts and graphics (cf. Figure 4.18(f)). By visual
inspection of the second example of the “Three fonts and graphics” category of “HBR2013
dataset” HDIs, we observe a slight outperformance of the pixel-labeling results in terms of
the homogeneity of the textual region content for the auto-correlation, Gabor and the three
investigated wavelets features (cf. Figures 4.19(d), 4.19(f), 4.19(g), 4.19(h) and 4.19(i)). The
three different text fonts are grouped in one class while the graphical regions are distributed
into three classes according to the orientation of the graphical content. This strengthens
our previous observations that there is a clear need for first discriminating text from graphic
regions and then separating the different text fonts by means of recursive clustering methods.

(a) “Only two fonts” (b) “Only three fonts”

(c) “Three fonts and graphics” (d) “Four fonts and graphics”

Figure 4.13.: Examples of resulting images of the proposed Gabor-based pixel-labeling scheme,
illustrating few drawbacks of using the “HBR2013 dataset” for analyzing texture
features.
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(a) Tamura
J = 0.44 PPB = 0.90
F = 0.57 CA = 0.60

(b) LBP
J = 0.43 PPB = 0.89
F = 0.74 CA = 0.68

(c) GLRLM
J = 0.37 PPB = 0.74
F = 0.58 CA = 0.55

(d) Auto-correlation
J = 0.43 PPB = 0.92
F = 0.61 CA = 0.52

(e) GLCM
J = 0.49 PPB = 0.85
F = 0.76 CA = 0.77

(f) Gabor
J = 1 PPB = 1
F = 1 CA = 1

(g) Haar
J = 0.38 PPB = 0.84
F = 0.54 CA = 0.57

(h) Db3
J = 0.46 PPB = 0.94
F = 0.57 CA = 0.47

(i) Db4
J = 0.46 PPB = 0.92
F = 0.51 CA = 0.45

Figure 4.14.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Only two fonts” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors attributed
to text or graphics may differ from one DI to another.
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(a) Tamura
J = 0.41 PPB = 0.61
F = 0.57 CA = 0.62

(b) LBP
J = 0.42 PPB = 0.69
F = 0.58 CA = 0.46

(c) GLRLM
J = 0.36 PPB = 0.62
F = 0.53 CA = 0.57

(d) Auto-correlation
J = 0.50 PPB = 0.85
F = 0.52 CA = 0.68

(e) GLCM
J = 0.53 PPB = 0.73
F = 0.61 CA = 0.71

(f) Gabor
J = 0.74 PPB = 0.97
F = 0.58 CA = 0.74

(g) Haar
J = 0.55 PPB = 0.88
F = 0.53 CA = 0.70

(h) Db3
J = 0.52 PPB = 0.87
F = 0.52 CA = 0.70

(i) Db4
J = 0.73 PPB = 0.95
F = 0.59 CA = 0.80

Figure 4.15.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Two fonts and graphics” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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(a) Tamura
J = 0.47 PPB = 0.80
F = 0.41 CA = 0.28

(b) LBP
J = 0.68 PPB = 1
F = 0.30 CA = 0.81

(c) GLRLM
J = 0.68 PPB = 0.99
F = 0.35 CA = 0.81

(d) Auto-correlation
J = 0.42 PPB = 0.68
F = 0.48 CA = 0.53

(e) GLCM
J = 0.46 PPB = 0.73
F = 0.52 CA = 0.62

(f) Gabor
J = 0.76 PPB = 1
F = 0.62 CA = 0.87

(g) Haar
J = 0.77 PPB = 0.95
F = 0.61 CA = 0.87

(h) Db3
J = 0.77 PPB = 0.95
F = 0.62 CA = 0.87

(i) Db4
J = 0.77 PPB = 0.95
F = 0.62 CA = 0.87

Figure 4.16.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Two fonts and graphics” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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(a) Tamura
J = 0.46 PPB = 0.58
F = 0.41 CA = 0.45

(b) LBP
J = 0.52 PPB = 0.76
F = 0.41 CA = 0.66

(c) GLRLM
J = 0.85 PPB = 1
F = 0.32 CA = 0.92

(d) Auto-correlation
J = 0.42 PPB = 0.61
F = 0.39 CA = 0.49

(e) GLCM
J = 0.85 PPB = 0.99
F = 0.34 CA = 0.92

(f) Gabor
J = 0.83 PPB = 0.99
F = 0.57 CA = 0.91

(g) Haar
J = 0.85 PPB = 0.99
F = 0.34 CA = 0.92

(h) Db3
J = 0.47 PPB = 0.61
F = 0.44 CA = 0.56

(i) Db4
J = 0.85 PPB = 0.99
F = 0.35 CA = 0.92

Figure 4.17.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Only three fonts” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors attributed
to text or graphics may differ from one DI to another.
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(a) Tamura
J = 0.20 PPB = 0.57
F = 0.35 CA = 0.27

(b) LBP
J = 0.39 PPB = 0.79
F = 0.49 CA = 0.56

(c) GLRLM
J = 0.41 PPB = 0.78
F = 0.48 CA = 0.63

(d) Auto-correlation
J = 0.42 PPB = 0.66
F = 0.55 CA = 0.64

(e) GLCM
J = 0.52 PPB = 0.80
F = 0.58 CA = 0.52

(f) Gabor
J = 0.65 PPB = 0.97
F = 0.71 CA = 0.60

(g) Haar
J = 0.46 PPB = 0.73
F = 0.56 CA = 0.69

(h) Db3
J = 0.45 PPB = 0.86
F = 0.48 CA = 0.56

(i) Db4
J = 0.49 PPB = 0.81
F = 0.61 CA = 0.64

Figure 4.18.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Three fonts and graphics” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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(a) Tamura
J = 0.31 PPB = 0.58
F = 0.40 CA = 0.45

(b) LBP
J = 0.42 PPB = 0.79
F = 0.48 CA = 0.39

(c) GLRLM
J = 0.37 PPB = 0.72
F = 0.40 CA = 0.55

(d) Auto-correlation
J = 0.59 PPB = 0.95
F = 0.42 CA = 0.74

(e) GLCM
J = 0.36 PPB = 0.80
F = 0.42 CA = 0.41

(f) Gabor
J = 0.64 PPB = 0.96
F = 0.44 CA = 0.77

(g) Haar
J = 0.58 PPB = 0.93
F = 0.40 CA = 0.66

(h) Db3
J = 0.58 PPB = 0.92
F = 0.39 CA = 0.66

(i) Db4
J = 0.63 PPB = 0.96
F = 0.43 CA = 0.76

Figure 4.19.: Examples of resulting images of the proposed pixel-labeling scheme for comparing the nine investigated texture-based feature sets on
the “Three fonts and graphics” category of HDIs from the “HBR2013 dataset”. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one DI to another.
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4.5.1.3. Performance evaluation

This way of comparing visually the effectiveness of a texture-based approach is inherently a sub-
jective evaluation. Therefore, finding appropriate quantitative accuracy metrics is required first to
evaluate the performance of the obtained results of the proposed pixel-labeling scheme for com-
paring the nine investigated texture feature sets. Then, it is necessary to assess quantitatively the
results of the proposed pixel-labeling scheme for comparing the nine investigated texture feature
sets in order to have a conclusion of which texture methods are firstly well suited for segmenting
graphical regions from textual ones and discriminating text in a variety of situations of different
fonts and scales ? As a consequence, in this work several clustering and classification accuracy
measures are computed, silhouette width index (SW ), Jaccard coefficient (J), purity per block
(PPB), F-measure (F ) and classification accuracy rate (CA), to evaluate quantitatively the ob-
tained results of the proposed pixel-labeling scheme for comparing the nine investigated texture
feature sets (cf. Section 4.4.3). The higher the values, the better the results. We will limit ourselves
here therefore to calculate the SW metric only for the “DIGIDOC-Texture dataset” because its
computation is very time-consuming process.

In Tables 4.2, 4.6, 4.7 and 4.8, there are two “Overall” values. The “Overall∗” value is obtained
by averaging all the respective column values except the value of “Two fonts and graphics∗∗”. The
“Overall∗∗” value is obtained by averaging all the respective column values except the value of
“Two fonts and graphics∗”. The “Two fonts and graphics∗” value represents the case when every
font in the text has a distinct label in the ground-truth and the clustering is performed by setting
the number of types of content regions equal to 3 (graphics and text with two different fonts).
The “Two fonts and graphics∗∗” value represents the case when all fonts in the text have the same
label in the ground-truth and the clustering is performed by setting the number of types of content
regions equal to 2 (graphics and text). This distribution points out which texture features can be
more adequate for segmenting documents containing two text fonts and graphics into two/three
classes, i.e. separating two distinct text fonts when the documents contain graphics.

The comparison results produced by using the nine texture-based feature sets in the proposed
pixel-labeling scheme on the two datasets, the DIGIDOC-Texture and HBR2013 datasets, are
presented in Tables 4.2 and 4.3, respectively.

1. “DIGIDOC-Texture dataset”
In Table 4.2, the computed clustering and classification accuracy values are congruent and
very promising. However, we note a slight difference in the performance of the SW average
and slight variability in the ranking of the different investigated texture-based feature sets
when computing the SW metric. This can be explained by the progressive merge process
of the HAC algorithm used in the proposed pixel-labeling scheme for comparing the nine
investigated texture-based feature sets, where in higher levels in the hierarchy, two distant
data points can be merged together and yet still belong to the same cluster after cutting
the dendrogram. This causes a slightly lower value of the SW . This justification can be
strengthened by the particularity of the SW as internal or unsupervised accuracy cluster-
ing evaluation which investigates the coherence of a clustering solution by measuring how
observations are close to the cluster center and how clusters are well-separated.

We observe that the best average performances for most of the computed evaluation met-
rics are obtained by the Gabor features (75%(J), 93%(PPB), 76%(F ) and 78%(CA) for
“Overall∗”, and 80%(J), 94%(PPB), 81%(F ) and 82%(CA) for “Overall∗∗”). When using
“Two fonts and graphics∗∗” in computing “Overall∗∗”, we observe that the performance of the
extracted Gabor descriptors is much better when using “Two fonts and graphics∗” in com-
puting “Overall∗”, i.e. overall performance gains of 5%(J), 1%(PPB), 5%(F ) and 4%(CA)
are noted. This strengthens our previous observations in Section 4.5.1.2 that there is a clear
need for first discriminating text from graphic regions and then separating the different text
fonts by means of recursive clustering methods to have better performance. Here, it can be
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observed that the result of employing the Gabor features yields a better output than the eight
other extracted textural features for almost all evaluation accuracy metrics without taking
into consideration the spatial relationships of pixels. We note that the best results of mean
F values are obtained by the Gabor features for almost HDI categories of the “DIGIDOC-
Texture dataset” (88%, 67%, 89%, 84% and 64% for the “One font and graphics”, “Two fonts
and graphics∗”, “Two fonts and graphics∗∗”, “Only two fonts” and “Only three fonts” HDI
categories, respectively). Similarly, the best results of mean PPB values are observed when
analyzing the Gabor features (96%, 93%, 98%, 94% and 88% for the “One font and graphics”,
“Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only two fonts” and “Only three
fonts” categories, respectively). This can be explained by the optimal localization properties
of GFs to capture information in both the spatial and frequency domains from the analyzed
HDIs (i.e. GFs are inherently multi-resolutional).

We note that the second best performance is obtained for almost all HDI categories of the
“DIGIDOC-Texture dataset” when using one of three investigated kinds of wavelet features
on the proposed pixel-labeling scheme. This can be justified by the consistent properties of
the wavelet features in the localization of the frequency space and multi-resolution. When
using the Db4 features, 84%, 63%, 89%, 76% and 59% of F values are noted for the “One
font and graphics”, “Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only two fonts”
and “Only three fonts” categories, respectively. Low values of performance difference of the
computed evaluation metrics between the used Gabor and wavelet features on the proposed
pixel-labeling scheme when HDIs containing graphics and text (F difference values of 4%,
4% and 0% for the “One font and graphics”, “Two fonts and graphics∗” and “Two fonts
and graphics∗∗” HDI categories, respectively) compared to the case when HDIs containing
only text (F difference values of 8% and 5% for the “Only two fonts” and “Only three fonts”
HDI categories, respectively). We conclude that the Gabor-based approach performs con-
siderably better than the wavelet one if the analyzed HDI contains only text. Nevertheless,
the values of the computed accuracy metrics are low with the “Only three fonts” category
(0.31(SW ), 60%(J), 88%(PPB), 64%(F ) and 68%(CA) are noted when using the Gabor-
based approach) comparing with the “One font and graphics” (difference values of 0.21(SW ),
28%(J), 8%(PPB), 24%(F ) and 19%(CA)). As a consequence, the Gabor-based approach
performs significantly better than the other investigated features specifically when the in-
volved HDI contains two different text fonts or graphics and text. This strengthens our
previous observations obtained when analyzing visually the results and confirms our assump-
tion that the Gabor descriptors are the most suitable for font segmentation, since they are
known to be sensitive to the stroke width.

We also observe that the performance values of the computed accuracy metrics for almost all
HDI categories of the “DIGIDOC-Texture dataset” when using the auto-correlation descrip-
tors are close to those when using the Gabor and wavelet features (82%, 59%, 83%, 72% and
61% of F values are noted for the “One font and graphics”, “Two fonts and graphics∗”, “Two
fonts and graphics∗∗”, “Only two fonts” and “Only three fonts” HDI categories, respectively).
This can be justified that the auto-correlation attributes mainly provide an interesting in-
formation about the main orientation of a texture which can be relevant for discriminating
between the different classes of the foreground layers.

Overall, the worst performances are mainly obtained when using the GLRLM features on the
proposed pixel-labeling scheme. We have found that the GLRLM features gave the worst
overall performances for most of the computed evaluation metrics (60%(J), 82%(PPB) and
53%(F ) for “Overall∗” category, and 67%(J), 85%(PPB) and 57%(F ) for “Overall∗∗”). This
can be justified by the fact that these features are so simple and they can not provide ad-
equate information needs to characterize a texture, neither an information concerning the
main orientation of a texture for discriminating graphical regions from the textual ones, nor
an indice about the stroke properties for text font segmentation. For HDIs containing only
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distinct fonts, we observe that the lowest values of the computed clustering and classifica-
tion accuracy metrics are divided among multiple texture-based feature sets (e.g. Tamura,
GLRLM and GLCM descriptors). Therefore, we conclude that the Tamura, GLRLM and
GLCM features are not adequate for separating different text fonts even when they are the
lowest time-consuming.

2. “HBR2013 dataset”
In Table 4.3, we observe that calculating the overall accuracy metrics on the “HBR2013
dataset” confirms the results obtained by using the “DIGIDOC-Texture dataset”. The Gabor-
based approach is the best one (overall values of 53%(J), 91%(PPB), 51%(F ) and 59%(CA)
are noted). However, we note a significant drop in performance of the 22%(J), 2%(PPB),
25%(F ) and 19%(CA) when applying the proposed pixel-labeling scheme for comparing
the nine investigated texture-based feature sets on the “HBR2013 dataset” comparing the
“DIGIDOC-Texture dataset”. This can be justified by the produced bias in the texture fea-
ture extraction and analysis tasks due to the drawbacks of the “HBR2013 dataset” which
it does not seem neither very realistic/representative nor appropriate in view of meeting the
need to analyze properly texture features (e.g. binary HDIs, low resolution digitization, pres-
ence of copyright notices in many pages). Moreover, the “HBR2013 dataset” is complex
since the values of the number of types of content regions defined in the ground-truth are
distributed across the [2, 6] range. Unlike the “HBR2013 dataset”, the values of the number
of types of content regions defined in the ground-truth of the “DIGIDOC-Texture dataset”
is equal to either 2 or 3. In addition, as we mentioned before that there is a clear need for
first discriminating text from graphic regions and then separating the different text fonts by
means of recursive clustering methods to have better performance. Thus, the performance
of the results depends on the values of the number of types of content regions defined in the
ground-truth. The smaller values of the number of types of content regions defined in the
ground-truth represent higher efficiency. We note that the performance decreases since the
number of text fonts increases (75%, 52%, 44% and 41% of J for the “Only two fonts”, “Only
three fonts”, “Only four fonts” and “Only five fonts” HDIs categories).

We note that the second best performance is obtained for almost all HDI categories of the
“HBR2013 dataset” when using one of three investigated kinds of wavelet features on the
proposed pixel-labeling scheme (74%, 52%, 39% and 41% of J for the “Only two fonts”, “Only
three fonts”, “Only four fonts” and “Only five fonts” HDIs categories). The results obtained
with the “HBR2013 dataset” strengthen our previous observations with the “DIGIDOC-
Texture dataset”.

We observe that the worst performances are mainly obtained when using the Tamura and
GLRLM features on the proposed pixel-labeling scheme. When using the Tamura features,
90%, 81%, 78% and 70% of PPB values are noted for the “Only two fonts”, “Two fonts and
graphics”, “Only three fonts” and “Three fonts and graphics” categories of the “DIGIDOC-
Texture dataset”, respectively. On the other side, when using the GLRLM features, 50%,
42%, 37%, 37%, 29%, 29%, 22% and 29% of F values are noted for the “Only two fonts”,
“Two fonts and graphics”, “Only three fonts”, “Three fonts and graphics”, “Only four fonts”,
“Four fonts and graphics”, “Only five fonts”, “Five fonts and graphics” categories of the
“DIGIDOC-Texture dataset”, respectively. The worst overall performances for most of the
computed evaluation metrics are noted when using the Tamura features on the proposed
pixel-labeling scheme (47%(J), 71%(PPB) and 39%(CA)).
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Table 4.2.: Evaluation of the analyzed textural features on the “DIGIDOC-Texture dataset”. Clustering and classification accuracy measures are computed:
silhouette width (SW ), Jaccard coefficient (J), purity per block (PPB), F-measure (F ) and classification accuracy (CA). The higher the values, the
better the results. The values which are quoted in red and green colors, are considered as the lowest and highest, respectively.

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

One font
and graphics

SW 0.39 0.57 0.70 0.54 0.46 0.51 0.56 0.58 0.57

J 0.73 0.73 0.70 0.79 0.79 0.88 0.84 0.85 0.87

PPB 0.90 0.91 0.92 0.91 0.92 0.96 0.95 0.95 0.95

F 0.74 0.74 0.64 0.82 0.78 0.88 0.82 0.84 0.84

CA 0.69 0.73 0.66 0.85 0.71 0.87 0.74 0.78 0.77

Two fonts
and
graphics∗

SW 0.16 0.37 0.28 0.27 0.30 0.43 0.38 0.41 0.40

J 0.59 0.58 0.55 0.61 0.60 0.70 0.65 0.65 0.67

PPB 0.86 0.83 0.80 0.83 0.86 0.93 0.89 0.88 0.91

F 0.55 0.60 0.52 0.59 0.61 0.67 0.63 0.62 0.63

CA 0.63 0.66 0.64 0.70 0.68 0.75 0.73 0.74 0.76

Two fonts
and
graphics∗∗

SW 0.27 0.59 0.54 0.52 0.47 0.48 0.53 0.56 0.54

J 0.90 0.93 0.85 0.89 0.94 0.91 0.91 0.95 0.92

PPB 0.93 0.93 0.89 0.90 0.94 0.98 0.96 0.96 0.97

F 0.79 0.81 0.69 0.83 0.84 0.89 0.87 0.89 0.89

CA 0.81 0.82 0.74 0.84 0.85 0.89 0.87 0.90 0.90

Only two
fonts

SW 0.23 0.37 0.66 0.27 0.25 0.39 0.30 0.31 0.30

J 0.65 0.62 0.66 0.71 0.60 0.82 0.69 0.65 0.70

PPB 0.87 0.85 0.87 0.84 0.82 0.94 0.88 0.85 0.88

F 0.59 0.69 0.55 0.72 0.70 0.84 0.74 0.73 0.76

CA 0.52 0.67 0.61 0.78 0.67 0.82 0.76 0.75 0.78
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Table 4.2 – continued from previous page

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

Only three
fonts

SW 0.16 0.19 0.14 0.07 0.15 0.31 0.18 0.22 0.19

J 0.51 0.46 0.47 0.61 0.46 0.60 0.50 0.48 0.52

PPB 0.84 0.74 0.70 0.77 0.74 0.88 0.78 0.76 0.79

F 0.43 0.54 0.41 0.61 0.60 0.64 0.56 0.57 0.59

CA 0.41 0.57 0.47 0.62 0.65 0.68 0.61 0.61 0.64

Overall∗Overall∗Overall∗

SWSWSW 0.240.240.24 0.380.380.38 0.450.450.45 0.290.290.29 0.290.290.29 0.410.410.41 0.360.360.36 0.380.380.38 0.370.370.37

JJJ 0.620.620.62 0.600.600.60 0.600.600.60 0.680.680.68 0.610.610.61 0.750.750.75 0.670.670.67 0.660.660.66 0.690.690.69

PPBPPBPPB 0.870.870.87 0.830.830.83 0.820.820.82 0.840.840.84 0.840.840.84 0.930.930.93 0.880.880.88 0.860.860.86 0.880.880.88

FFF 0.580.580.58 0.640.640.64 0.530.530.53 0.690.690.69 0.670.670.67 0.760.760.76 0.690.690.69 0.690.690.69 0.710.710.71

CACACA 0.560.560.56 0.660.660.66 0.600.600.60 0.740.740.74 0.680.680.68 0.780.780.78 0.710.710.71 0.720.720.72 0.740.740.74

Overall∗∗Overall∗∗Overall∗∗

SWSWSW 0.260.260.26 0.430.430.43 0.510.510.51 0.350.350.35 0.330.330.33 0.420.420.42 0.390.390.39 0.420.420.42 0.400.400.40

JJJ 0.700.700.70 0.690.690.69 0.670.670.67 0.750.750.75 0.700.700.70 0.800.800.80 0.740.740.74 0.730.730.73 0.750.750.75

PPBPPBPPB 0.890.890.89 0.860.860.86 0.850.850.85 0.860.860.86 0.860.860.86 0.940.940.94 0.890.890.89 0.880.880.88 0.900.900.90

FFF 0.640.640.64 0.700.700.70 0.570.570.57 0.750.750.75 0.730.730.73 0.810.810.81 0.750.750.75 0.760.760.76 0.770.770.77

CACACA 0.610.610.61 0.700.700.70 0.620.620.62 0.770.770.77 0.720.720.72 0.820.820.82 0.750.750.75 0.760.760.76 0.770.770.77
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Table 4.3.: Evaluation of the analyzed textural features on the “HBR2013 dataset”. Clustering and classification accuracy measures are computed: Jaccard
coefficient (J), purity per block (PPB), F-measure (F ) and classification accuracy (CA). The higher the values, the better the results. The values
which are quoted in red and green colors, are considered as the lowest and highest, respectively.

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

Only two
fonts

J 0.75 0.71 0.83 0.80 0.74 0.75 0.73 0.71 0.74

PPB 0.90 0.92 0.96 0.95 0.92 0.94 0.91 0.92 0.92

F 0.54 0.55 0.50 0.53 0.56 0.59 0.56 0.57 0.56

CA 0.73 0.62 0.70 0.65 0.63 0.64 0.68 0.75 0.71

Two fonts
and graphics

J 0.60 0.68 0.75 0.66 0.55 0.63 0.68 0.61 0.71

PPB 0.81 0.91 0.91 0.84 0.82 0.92 0.88 0.88 0.90

F 0.50 0.43 0.42 0.53 0.54 0.55 0.60 0.58 0.62

CA 0.46 0.66 0.49 0.71 0.56 0.69 0.79 0.71 0.78

Only three
fonts

J 0.53 0.53 0.65 0.58 0.59 0.52 0.52 0.51 0.52

PPB 0.78 0.83 0.87 0.80 0.87 0.87 0.83 0.83 0.83

F 0.39 0.41 0.37 0.42 0.40 0.53 0.43 0.42 0.43

CA 0.34 0.46 0.60 0.47 0.57 0.48 0.44 0.46 0.45

Three fonts
and graphics

J 0.42 0.43 0.41 0.49 0.46 0.58 0.49 0.53 0.54

PPB 0.70 0.81 0.80 0.82 0.84 0.95 0.86 0.89 0.91

F 0.37 0.40 0.37 0.41 0.44 0.53 0.41 0.41 0.42

CA 0.33 0.48 0.52 0.61 0.50 0.64 0.59 0.62 0.65

Only four
fonts

J 0.48 0.41 0.46 0.46 0.44 0.44 0.39 0.40 0.39

PPB 0.77 0.76 0.76 0.72 0.85 0.90 0.73 0.74 0.75

F 0.32 0.32 0.29 0.41 0.34 0.43 0.37 0.39 0.37

CA 0.37 0.42 0.37 0.45 0.43 0.55 0.47 0.46 0.40153
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Table 4.3 – continued from previous page

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

Four fonts
and graphics

J 0.38 0.36 0.41 0.37 0.43 0.46 0.40 0.38 0.40

PPB 0.64 0.77 0.76 0.67 0.81 0.90 0.79 0.78 0.79

F 0.33 0.29 0.29 0.37 0.38 0.44 0.41 0.41 0.43

CA 0.31 0.42 0.40 0.45 0.45 0.58 0.50 0.48 0.51

Only five
fonts

J 0.28 0.36 0.40 0.33 0.44 0.41 0.41 0.34 0.41

PPB 0.52 0.69 0.77 0.59 0.86 0.89 0.85 0.73 0.87

F 0.30 0.24 0.22 0.30 0.31 0.45 0.29 0.32 0.30

CA 0.28 0.39 0.49 0.31 0.37 0.58 0.46 0.42 0.45

Five fonts
and graphics

J 0.29 0.29 0.26 0.31 0.40 0.42 0.33 0.36 0.39

PPB 0.59 0.64 0.56 0.61 0.75 0.88 0.68 0.66 0.70

F 0.29 0.31 0.29 0.39 0.39 0.55 0.41 0.44 0.44

CA 0.31 0.39 0.33 0.35 0.46 0.55 0.44 0.44 0.50

OverallOverallOverall

JJJ 0.470.470.47 0.470.470.47 0.520.520.52 0.500.500.50 0.510.510.51 0.530.530.53 0.490.490.49 0.480.480.48 0.510.510.51

PPBPPBPPB 0.710.710.71 0.790.790.79 0.800.800.80 0.750.750.75 0.840.840.84 0.910.910.91 0.820.820.82 0.800.800.80 0.830.830.83

FFF 0.380.380.38 0.370.370.37 0.340.340.34 0.420.420.42 0.420.420.42 0.510.510.51 0.430.430.43 0.440.440.44 0.450.450.45

CACACA 0.390.390.39 0.480.480.48 0.490.490.49 0.500.500.50 0.500.500.50 0.590.590.59 0.540.540.54 0.540.540.54 0.560.560.56
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4.5. Experiments and results

4.5.1.4. Recommendations

Based on the experimental results and observations (cf. Section 4.5.1, few recommendations have
been deduced about the choice of the used texture feature set. These recommendations are based
on analyzing texture features without formulating a hypothesis concerning the HDI layout (e.g.
column layout) or its content (e.g. font size and type) and respecting a constructive compromise
between the pixel-labeling quality, performance evaluation (cf. Sections 4.5.1.2 and 4.5.1.3) and
computational cost (cf. Table 4.5).

• The performances of the Tamura, LBP and GLRLM-based approaches are less satisfactory
particularly for HDIs containing only text, compared to the other investigated texture-based
approaches even the numerical complexity is sufficiently adequate.

• The GLCM-based approach should be a good choice for HDIs containing graphics and single
text font as it is fast and easy to use. Indeed, the lowest time required to process a page
is obtained when using the GLCM descriptors. Nevertheless, the GLCM features are not
adequate for separating different text fonts even when it is the lowest time-consuming.

• The auto-correlation approach is an effective and efficient texture-based one, particularly for
HDIs containing graphics and text.

• The auto-correlation and GLCM features perform considerably better when the HDI under
consideration containing graphics and text than only text.

• The computational cost of using the auto-correlation and LBP features is similar. However,
the auto-correlation-based approach performs considerably better than the LBP one when
comparing their pixel-labeling quality and computed accuracy metrics.

• The wavelet-based approach is more suitable for distinguishing textual regions from graphical
ones. However, when the numerical complexity is taken into account, the wavelet-based
approach is the highest resource-consuming one.

• The two kinds of wavelet features, Db3 and Db4, perform better than the Haar ones for all
kinds of HDI content. The counterpart for the robustness of using the Db4 and Db3 features
is a higher computing time.

• The Gabor-based approach performs considerably better in segmenting HDIs containing only
textual regions with distinct fonts.

• The best performing kind of texture features is the Gabor ones for all types of HDI content.
The Gabor-based approach yields a better output than the eight other extracted textural
features for almost all evaluation accuracy metrics without taking into consideration the spa-
tial relationships of pixels. Nevertheless, the feature dimension of the Gabor-based approach
is relatively high. This requires a relatively higher computing time and a lot of computer
memory (i.e. quite resource-consuming).

• When the numerical complexity and performance evaluation are taken into account by com-
paring the two best investigated texture-based approaches (i.e. the Gabor and wavelet-based
approaches), the Gabor one would be the better choice for segmenting graphical regions from
textual ones on the one hand, and discriminating text in a variety of situations of different
fonts and scales on the other hand, without formulating a hypothesis concerning the HDI
layout (e.g. column layout) or its content (e.g. font size and type).
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Table 4.4.: Computational cost of the texture feature analysis task (i.e. memory requirements, processing time, numerical complexity and texture vector dimen-
sionality): an example of HDI (1965× 2750 pixels). The values which are quoted in red and green colors, are considered as the lowest and highest,
respectively.

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

Running time 01′14′′ 02′24′′ 00′32′′ 02′33′′ 00′14′′ 06′05′′ 29′17′′ 37′53′′ 42′21′′

Used memory ≈94 MB ≈53 MB ≈82 MB ≈48 MB ≈587 MB ≈552 MB ≈61 MB ≈61 MB ≈63 MB

Complexity O(Mnt2
2k) O(MP2P ) O(Mθrnr) O(M(θaNw log2Nw)) O(Mdcn

2
g) O(fgθg(S2 log2 S)) O(M(4JN2

w log2Nw)) O(M(6JN2
w log2Nw)) O(M(8JN2

w log2Nw))

Texture
vector size

16 = It ×Nw 40 = Il ×Nw 176 = Ir ×Nw 20 = Ia ×Nw 72 = Ic ×Nw 192 = Ig ×Nw 80 = Ih ×Nw 80 = Idb3 ×Nw 80 = Idb4 ×Nw

Number of
the texture
indices

It = 4 Il = 10 Ir = 11θr = 44 Ia = 5 Ic = 8dc + 2 = 18 Ig = 2fgθg = 48

Ih =
2IA

2-J
+2I

D
(v)

2-1

+

· · ·+2I
D

(v)

2-j

+· · ·+

2I
D

(v)

2-J

+2I
D

(h)

2-1

+

· · ·+2I
D

(h)

2-j

+· · ·+

2I
D

(h)

2-J

+2I
D

(d)

2-1

+

· · · + 2I
D

(d)

2-j

+

· · · + 2I
D

(d)

2-J

= 20

Idb3 =
2IA

2-J
+2I

D
(v)

2-1

+

· · ·+2I
D

(v)

2-j

+· · ·+

2I
D

(v)

2-J

+2I
D

(h)

2-1

+

· · ·+2I
D

(h)

2-j

+· · ·+

2I
D

(h)

2-J

+2I
D

(d)

2-1

+

· · · + 2I
D

(d)

2-j

+

· · · + 2I
D

(d)

2-J

= 20

Idb4 =
2IA

2-J
+2I

D
(v)

2-1

+

· · ·+2I
D

(v)

2-j

+· · ·+

2I
D

(v)

2-J

+2I
D

(h)

2-1

+

· · ·+2I
D

(h)

2-j

+· · ·+

2I
D

(h)

2-J

+2I
D

(d)

2-1

+

· · · + 2I
D

(d)

2-j

+

· · · + 2I
D

(d)

2-J

= 20

Table 4.5.: Performance evaluation and benchmarking issues of nine investigated texture-based feature sets in this work for segmenting HDIs. The case contents
which are quoted in red and green colors, respectively, are considered as the worst and best, respectively.

Tamura LBP GLRLM Auto-
correlation

GLCM Gabor Haar Db3 Db4

Dimensionality ++++++ ++++++ – ++++++ + – + + +

Complexity + + ++++++ + ++++++ + – – – – –

Used memory + + + ++++++ – – + + +

PerformancePerformancePerformance

One font and graphics – – – + + ++++++ + ++++++ ++++++

Two fonts and graphics∗ – – – + + ++++++ + + +

Two fonts and graphics∗∗ – – – + + ++++++ + ++++++ ++++++

Only two fonts – – – – – – – – +++ – – –

Only three fonts – – – – – – – – +++ – – –
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4.5. Experiments and results

In Table 4.4, It, Il, Ir, Ia, Ic, Ig, Ih, Idb3 and Idb4 denote number of extracted Tamura, LBP,
GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4 features, respectively. IA

2-J
, I

D
(v)

2-j

,

I
D

(h)

2-j

and I
D

(d)

2-j

denote the number of extracted approximation and detail sub-images features. Nw

is the number of sliding windows. In this work, Nw is equal to 4. M is the number of foreground
pixels. S = W × H is the dimension or size of the input image. W and H denote the effective
width and height of the analyzed image. ng is the number of gray-levels, i.e. 255 gray-levels. nt
is the number of averages Akt(x, y) for the windows of size 2kt × 2kt , i.e. 3 averages computed
around each selected pixel for the windows of size 2kt × 2kt , where kt = {0, 1, 2}. P is the number
of LBP neighboring pixels, i.e. 8 pixels in the neighbor set. θr is the number of angle direction
values specified when computing the GLRLM. In this work, θr is equal to 4 directions of angle
(i.e. θr = {0◦, 45◦, 90◦, 135◦}). nr is the number of pixels of the sliding window. θa is the possible
number of orientation values of the rose of directions (i.e. 179 orientation values). dc is the GLCM
particular distance defined in the probability of the gray-level pairs. In this work, dc is equal to 2.
fg and θg are spatial frequency and orientation of Gabor filters, respectively. In the experiment,
the scale of wavelet decomposition J is 3 levels (i.e. from first, second and third scale). “MB”
means megabytes.

4.5.2. HAC vs. k-means is used in the pixel-clustering task

Another set of experiments has been performed by using two different algorithms, k-means and
HAC, in the pixel-clustering task of the pixel-labeling scheme for comparing texture features (cf.
Figure 4.1, Section 4.4.1.3) in order to compare their performance and to determine which clustering
algorithm is more appropriate. To evaluate the two different algorithms, k-means and HAC, we
have deliberately limited this comparative study to only the results of few texture features. As we
previously have proved that the auto-correlation and Gabor-based approaches are the two effective
and efficient texture-based ones (cf. Section 4.5.1.4), the results of the auto-correlation and Gabor-
based approaches have been compared, using the two different algorithms, k-means and HAC, in
this section.

4.5.2.1. Qualitative results

Figures 4.20 and 4.21 illustrate the different resulting HDIs of the pixel-labeling of the extracted
auto-correlation and Gabor features using the HAC and k-means algorithms applied on examples
of the “one font and graphics”, “Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only two
fonts” and “Only three fonts” categories. Measures of F are presented at the bottom of each image
in Figures 4.20 and 4.21.

When analyzing visually the overall results, our previous observations concerning the outperfor-
mance of the Gabor features comparing the auto-correlation ones have been strengthened even if
we change the clustering algorithm. Nevertheless, we observe that the pixel-labeling results for the
extracted auto-correlation and Gabor features obtained with the HAC algorithm are quite different
from those with the k-means one. The results of the pixel-labeling of the extracted texture features
using the HAC and k-means algorithms vary depending on the used texture descriptors and the
content and/or layout of the analyzed HDIs. For example, when using the Gabor features, the
pixel-labeling results with both the HAC and k-means algorithms are similar in the cases of the
analyzed HDI containing one font and graphics, two fonts and graphics where all fonts in the text
have the same label in the ground-truth, and only two fonts. However, when using the Gabor
features, the pixel-labeling results with the HAC algorithm are better than the k-means one in the
case of the analyzed HDI containing only three fonts. The pixel-labeling results for the extracted
Gabor features obtained with the HAC algorithm show a much greater discriminating power for
discriminating three different text fonts (cf. Figure 4.21(f)). Nevertheless, we note that the k-
means algorithm performs better than the HAC when using the Gabor features in the case of the

157



Chapter 4. A texture feature benchmarking for historical document image analysis

analyzed HDI containing two fonts and graphics where every font in the text has a different label
in the ground-truth. As a matter of fact, the pixel-labeling results for the extracted Gabor features
obtained with the k-means algorithm show a much greater discriminating power for separating two
distinct fonts when the HDI under consideration contains graphics and two different text fonts (cf.
Figure 4.20(h)).

On the other side, when using the auto-correlation features, the pixel-labeling results with the
HAC algorithm performs better than with the k-means one in the cases of the analyzed HDI
containing one font and graphics, two fonts and graphics where every font in the text has a different
label in the ground-truth, and only two fonts. However, the k-means algorithm shows better results
than the HAC when using the auto-correlation features in the cases of the analyzed HDI containing
two fonts and graphics where all fonts in the text have the same label in the ground-truth, and
only three fonts.

We conclude that there is a variability in the visual results when using the HAC and k-means
algorithms in the pixel-clustering task of the pixel-labeling scheme for comparing texture features.
This variability in the obtained visual results can be explained by the specificity of each clustering
algorithm (e.g. distance as a metric of cluster scatter, initial partitions). Moreover, it can be
justified by the dynamic range of the extracted texture attributes which can differ depending on
the content and/or layout of the HDI under consideration.

4.5.2.2. Analysis of some examples

In Appendix B and particularly in Section B.2, the confusion matrices and pixel-clustering results
given by the HAC and k-means algorithms in the pixel-clustering task of the proposed Gabor-based
pixel-labeling scheme on the “DIGIDOC-Texture dataset” are illustrated. Figures B.23, B.24 and
B.25 illustrate the confusion matrices and resulting HDIs of the pixel-labeling of the extracted
Gabor features using the HAC and k-means algorithms applied on examples of the “Two fonts
and graphics∗∗”, “Only two fonts” and “Only three fonts” categories of the “DIGIDOC-Texture
dataset”.

Two examples of confusion matrix computation and pixel-labeling results obtained using the HAC
algorithm with the Gabor descriptors are shown in Figures 4.22 and 4.23. Figures 4.22 and 4.23
illustrate the confusion matrices and resulting HDIs of the pixel-labeling of the extracted Gabor
features using the HAC and k-means algorithms applied on examples of the “one font and graphics”
and “Two fonts and graphics∗”. The elements of the confusion matrix represent the foreground
pixels.

− The first example (cf. Figure 4.22) presents two confusion matrices and pixel-clustering
results with the Gabor descriptors using the HAC and k-means algorithms of a document containing
graphics and single text font. The first confusion matrix and pixel-clustering results using the HAC
algorithm of a document containing graphics (blue) and single text font (green) is represented on
the left. Precision is considered to be a means of assessing the classification while recall is considered
as a way of improving the classification. In this example, the graphical pixels are classified with
88%(P ) and 98%(R), while for textual ones we find 94%(P ) and 71%(R). Hence, the graphic class
has a lower precision and a higher recall. Thus, we show that the extracted Gabor descriptors
with the HAC algorithm tend to miss more textual pixels than graphical ones (71%(R) for text
class). Moreover, we show that these descriptors are more appropriate for the segmentation and
characterization of graphic regions (high recall) than textual regions, but they label text pixels as
belonging to the graphical class (low precision), i.e. the extracted descriptors produced an over-
segmentation of the graphic regions. In this example, we obtain with the Gabor descriptors using
the HAC algorithm 96%(PPB), 90%(CA), 91%(P ), 84%(R) and 88%(F ). On the other side, the
second confusion matrix and pixel-clustering results using the k-means algorithm of a document
containing graphics (green) and single text font (blue) is represented on the right. Similarly, we
note that the extracted Gabor descriptors with the k-means algorithm tend to miss more text
pixels than graphic pixels (46%(R) for text class). We obtain with the Gabor descriptors using the
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k-means algorithm 92%(PPB), 73%(CA), 82%(P ), 73%(R) and 77%(F ). Thus, we conclude that
the pixel-labeling results for the extracted Gabor features obtained with the HAC algorithm show
a much greater discriminating power for separating text (single font) and graphic regions.

− The second example (cf. Figure 4.23) presents two confusion matrices and pixel-clustering
results with the Gabor descriptors using the HAC and k-means algorithms of a document containing
graphics and text with two different fonts. The first confusion matrix and pixel-clustering results
using the HAC algorithm of a document containing graphics (green) and text with two different

fonts (“Font 1”: text with Sf1 size font (red) and “Font 2”: text with Sf2 ≥ S
f
1 size font (blue)) is

represented on the left. In this example, the “Font 1” textual pixels are classified with 99.3%(P ) and
99.9%(R), while for the “Font 2” textual pixels the values are 100%(P ) and 100%(R). On the other
side, the graphical pixels are classified with 100%(P ) and 87%(R). Hence, the “Font 2” textual
pixels class have a higher recall and a lower precision. Thus, we note that the extracted Gabor
descriptors are more relevant for the segmentation and characterization of textual regions having
higher size font (high recall) than textual regions having lower size font, but they label the pixel
of textual regions having lower size font as belonging to the graphic class (low precision), i.e. the
extracted Gabor descriptors with the HAC algorithm produce an over-segmentation of the textual
regions having lower size font. So this confirms our hypothesis that the Gabor attributes provide
better results for distinguishing different text fonts if the HDI under consideration contains only
text. Moreover, we confirm the limitations of the Gabor approach to separate spatially close distinct
kinds of information (i.e. the vertical/horizontal spacing is too small). In this example, we obtain
with the Gabor descriptors using the HAC algorithm 98%(PPB), 99%(CA), 99%(P ), 95%(R) and
97%(F ). On the other side, the second confusion matrix and pixel-clustering results using the
k-means algorithm of a document containing graphics and text with two different fonts. The first
confusion matrix and pixel-clustering results using the HAC algorithm of a document containing
graphics (blue) and text with two different fonts (“Font 1”: text with Sf1 size font (green) and

“Font 2”: text with Sf2 ≥ Sf1 size font (red)) is represented on the right. Similarly, we note that
the extracted Gabor descriptors with the k-means algorithm produce an over-segmentation of the
textual regions having lower size font. We obtain with the Gabor descriptors using the k-means
algorithm 98%(PPB), 98%(CA), 98%(P ), 93%(R) and 96%(F ). Thus, we conclude that the pixel-
labeling results for the extracted Gabor features obtained with the HAC algorithm show a quite
relatively similar discriminating power for separating text (two fonts) and graphic regions.

In order to get a better idea of how the extracted Gabor features are structured for each example,
Euclidean distances (ED) between each pair of mean cluster feature values are illustrated at the
bottom of the confusion matrix. The Euclidean distance (ED(x, y)) of two multivariate vectors
x = (x1, x2, . . . , xNf )T and y = (y1, y2, . . . , yNf )T is defined as:

ED(x, y) =

√√√√ Nf∑
i=0

(yi − xi)2 =
√
SED(x, y) (4.5)

A high distance (dAB = 1.43) when using the HAC algorithm is noted for the first example for a
document containing graphics and single text font (cf. Figure 4.22(a)), while a low one (dCD = 1.04)
when using the k-means algorithm (cf. Figure 4.22(b)). This strengthens our previous observations
and confirms our assumption that the pixel-clustering results for the extracted Gabor features
obtained with the HAC algorithm show a much greater discriminating power for separating text
(single font) and graphic regions. Nevertheless, for the second example for a document containing
graphics and two text fonts the distances between each text font and graphic classes when using
the HAC algorithm (cf. Figure 4.23(a), dAB = 2.48 and dAC = 2.10) and those when using the k-
means algorithm (cf. Figure 4.23(b), dCD = 2.08 and dCE = 2.49) are relatively similar. Moreover,
the distances between two text font classes when using the HAC algorithm (cf. Figure 4.23(a),
dBC = 1.51) and those when using the k-means algorithm (cf. Figure 4.23(b), dDE = 1.53) are
quite similar. Therefore, we observe through the analysis of some HDI examples that if the HDI
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under consideration contains graphics and two text fonts, the use of either the HAC algorithm or
the k-means one in the pixel-clustering task of the proposed Gabor-based pixel-labeling scheme
leads quite similar pixel-labeling results.

4.5.2.3. Quantitative results

By comparing the two clustering methods, k-means and HAC, on the auto-correlation and Gabor-
based pixel-labeling approaches, higher performances are obtained by using the HAC algorithm (cf.
Tables 4.6 and 4.7 and Figure 4.20 and 4.21).

The comparison results given by the two clustering algorithms, HAC vs. k-means, and the two
texture-based feature sets, the auto-correlation vs. Gabor features, in the proposed pixel-labeling
scheme on the DIGIDOC-Texture dataset, are presented in Tables 4.6 and 4.7, respectively. Table
4.8 shows the differences in the computed clustering and classification accuracy measures when
using the HAC and k-means clustering algorithms and the two texture-based feature sets, the auto-
correlation and Gabor in the proposed pixel-labeling scheme on the “DIGIDOC-Texture dataset”.
Several clustering and classification accuracy measures are computed, J , PPB, P , R, F and CA,
to evaluate quantitatively the obtained results given by the HAC vs. k-means clustering algorithms
in the pixel-clustering task of the proposed pixel-labeling scheme, with the auto-correlation and
Gabor features on the “DIGIDOC-Texture dataset”.

1. Auto-correlation features:
We observe that the two best average performances with using the auto-correlation features
for most of the computed evaluation metrics are obtained for the “One font and graphics”
and “Two fonts and graphics∗∗” categories of the “DIGIDOC-Texture dataset” for the HAC
(91%(PPB), 83%(P ), 81%(R), 82%(F ) and 85%(CA) for the “One font and graphics” HDI
category, and 90%(PPB), 84%(P ), 83%(R), 83%(F ) and 84%(CA) for the “Two fonts and
graphics∗∗”), and k-means (84%(PPB), 80%(P ), 78%(R), 78%(F ) and 79%(CA) for the “One
font and graphics” HDI category, and 90%(PPB), 83%(P ), 82%(R), 82%(F ) and 83%(CA)
for the “Two fonts and graphics∗∗”) clustering algorithms.

We note the two worst average performances with using the auto-correlation features for
most of the computed evaluation metrics are obtained for the “Two fonts and graphics∗” and
“only three fonts” categories of the “DIGIDOC-Texture dataset” for the HAC (83%(PPB),
59%(P ), 60%(R), 59%(F ) and 70%(CA) for the “Two fonts and graphics∗” HDI category, and
77%(PPB), 63%(P ), 61%(R), 61%(F ) and 62%(CA) for the “only three fonts”), and k-means
(79%(PPB), 59%(P ), 59%(R), 59%(F ) and 66%(CA) for the “Two fonts and graphics∗” HDI
category, and 69%(PPB), 56%(P ), 54%(R), 55%(F ) and 61%(CA) for the “only three fonts”)
clustering algorithms.

When using “Two fonts and graphics∗∗” in computing “Overall∗∗”, we also observe that
the performance of the extracted auto-correlation descriptors is much better then when
using “Two fonts and graphics∗” in computing “Overall∗”, i.e. overall performance gains
of 2%(PPB), 6%(P ), 5%(R), 6%(F ) and 3%(CA) when using the HAC algorithm, and
3%(PPB), 6%(P ), 5%(R), 5%(F ) and 5%(CA) when using the k-means algorithm are noted.
With the HAC algorithm, the overall results when using the auto-correlation features are quite
encouraging since we obtain 84%(PPB), 70%(P ), 69%(R), 69%(F ) and 74%(CA) in com-
puting “Overall∗”, and 86%(PPB), 76%(P ), 74%(R), 75%(F ) and 77%(CA) in computing
“Overall∗∗”. On the other side, with the k-means algorithm, the overall results when using
the auto-correlation features are also quite satisfying since we obtain 78%(PPB), 68%(P ),
65%(R), 66%(F ) and 70%(CA) in computing “Overall∗”, and 81%(PPB), 74%(P ), 70%(R),
71%(F ) and 75%(CA) in computing “Overall∗∗”.

Thus, we state that the pixel-labeling results for the extracted auto-correlation features ob-
tained with the HAC algorithm show a much greater discriminating power for separating
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text (single font) and graphic regions than for distinguishing graphics and two or more text
fonts or documents containing only three fonts. This can be explained by the fact that the
auto-correlation attributes generally provide the main orientation of a texture (horizontal ori-
entation for textual regions, while many orientations are present to different extents in graphic
blocks). Thus, the auto-correlation descriptors behave better on text/graphic discrimination
than on text fonts separation.

2. Gabor features:
Similarly, we observe that the two best average performances with using the Gabor features
for most of the computed evaluation metrics are obtained for the “One font and graphics”
and “Two fonts and graphics∗∗” categories of the “DIGIDOC-Texture dataset” for the HAC
(96%(PPB), 90%(P ), 86%(R), 88%(F ) and 87%(CA) for the “One font and graphics” HDI
category, and 98%(PPB), 91%(P ), 88%(R), 89%(F ) and 89%(CA) for the “Two fonts and
graphics∗∗”), and k-means (94%(PPB), 91%(P ), 83%(R), 86%(F ) and 86%(CA) for the “One
font and graphics” HDI category, and 95%(PPB), 88%(P ), 84%(R), 86%(F ) and 86%(CA)
for the “Two fonts and graphics∗∗”) clustering algorithms.

We note the worst average performances with using the Gabor features for most of the com-
puted evaluation metrics are obtained for the “only three fonts” category of the “DIGIDOC-
Texture dataset” for the HAC (88%(PPB), 67%(P ), 62%(R), 64%(F ) and 68%(CA)), and
k-means (85%(PPB), 65%(P ), 60%(R), 62%(F ) and 66%(CA)) clustering algorithms.

Moreover, we observe that the performances with using the Gabor features for the “Two fonts
and graphics∗” and “Only two fonts” categories of the “DIGIDOC-Texture dataset” are quite
good for both the HAC (93%(PPB), 70%(P ), 66%(R), 67%(F ) and 75%(CA) for the “Two
fonts and graphics∗” HDI category, and 94%(PPB), 89%(P ), 81%(R), 84%(F ) and 82%(CA)
for the “Only two fonts”) and k-means (89%(PPB), 68%(P ), 64%(R), 65%(F ) and 73%(CA)
for the “Two fonts and graphics∗” HDI category, and 89%(PPB), 84%(P ), 73%(R), 77%(F )
and 75%(CA) for the “Only two fonts”) algorithms compared to the results obtained with
the Gabor features.

Therefore, we note that the Gabor features perform slightly better for both the HAC and k-
means algorithms when the HDI under consideration contains a single text font and graphics
or in the case of the analyzed HDI containing two fonts and graphics where all fonts in the text
have the same label in the ground-truth, than when documents contains only three fonts or
two fonts and graphics where every font in the text has a different label in the ground-truth.
However, the overall results given by the Gabor features with both the HAC and k-means
algorithms are better than of using the auto-correlation features on the pixel-clustering task
of the proposed texture-based pixel-labeling scheme, particularly for the “Two fonts and
graphics∗”, “Only two fonts”, and “Only three fonts” categories of the “DIGIDOC-Texture
dataset”. This strengthens our previous results and confirms our assumption that the Gabor
descriptors are more suitable for font segmentation, since they are known to be sensitive to
the stroke width.

When using “Two fonts and graphics∗∗” in computing “Overall∗∗”, we also observe that
the performance of the extracted Gabor descriptors is much better then when using “Two
fonts and graphics∗” in computing “Overall∗”, i.e. overall performance gains of 1%(PPB),
5%(P ), 5%(R), 5%(F ) and 4%(CA) when using the HAC algorithm, and 2%(PPB), 5%(P ),
5%(R), 5%(F ) and 4%(CA) when using the k-means algorithm are noted. With the HAC
algorithm, the overall results when using the Gabor features are encouraging since we ob-
tain 93%(PPB), 79%(P ), 74%(R), 76%(F ) and 78%(CA) in computing “Overall∗”, and
94%(PPB), 84%(P ), 79%(R), 81%(F ) and 82%(CA) in computing “Overall∗∗”. On the
other side, with the k-means algorithm, the overall results when using the Gabor features are
also quite satisfying since we obtain 89%(PPB), 77%(P ), 70%(R), 73%(F ) and 75%(CA) in
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computing “Overall∗”, and 91%(PPB), 82%(P ), 75%(R), 78%(F ) and 79%(CA) in comput-
ing “Overall∗∗”.

3. Gabor vs. auto-correlation features and HAC vs. k-means clustering algorithms:
In Table 4.8, we note the performance differences in the computed accuracy metrics when us-
ing the HAC and k-means clustering algorithms with the auto-correlation and Gabor features.
Overall, the difference values between the results using the HAC and k-means clustering algo-
rithms are positive. The overall performance gains when using the HAC and k-means cluster-
ing algorithms for the Gabor features are: 8%(J), 5.2%(PPB), 1.9%(P ), 3.7%(R), 2.8%(F )
and 3.3%(CA) for “Overall∗”, and 7.5%(J), 4.4%(PPB), 1.9%(P ), 3.8%(R), 2.8%(F ) and
2.3%(CA) for “Overall∗∗”. On the other side, the overall performance gains when using
the HAC and k-means clustering algorithms for the auto-correlation features are: 6.5%(J),
3.7%(PPB), 2.0%(P ), 3.8%(R), 3.1%(F ) and 2.6%(CA) for “Overall∗”, and 6.7%(J), while
3.5%(PPB), 2.3%(P ), 4.2%(R), 3.4%(F ) and 2.8%(CA) are noted for “Overall∗∗”. As a con-
sequence, with the two kinds of texture features, the auto-correlation and Gabor, using the
two clustering algorithms indicates that better results are obtained with the HAC technique
than with the k-means algorithm.

4.6. Discussion

We have evaluated both qualitatively and quantitatively the effectiveness of the extracted texture-
based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4)
in the discrimination of the foreground layers of a HDI, particularly of text and graphics. By com-
paring the performance results of the experimental corpus containing two datasets, the “DIGIDOC-
Texture dataset” and “HBR2013 dataset”, we conclude that the scalability of the nine evaluated
texture-based feature sets has proved for both datasets, even if the “HBR2013 dataset” presents
few limitations (e.g. binary HDIs, low resolution digitization, presence of copyright notices in many
pages).

Nevertheless, the fundamental question is if these texture-based feature sets have been compared
properly or not. We should point out that the main technological bottleneck is the definition of an
accurate and objective ground-truth. Antonacopoulos et al. [136] stated that a direct comparison
between several algorithms is tough and critical task for a variety of DIA applications due to the
need for a realistic data and the high requirement for an adequate ground-truth as well as the use
of a set of objective evaluation criteria. However, it is still hard to determine fairly the different
HDI content types. An important issue can also be outlined which consists of the difficulty to take
into account the noisy foreground cluster when defining the ground-truth in the case of degraded
HDIs. An and Baird [351] stipulated that the pixel-wise classifiers rely on the accuracy of ground-
truth annotations. Since the defined ground-truth is not a pixel-based one (i.e. it is defined by
spatial boundaries of regions with labels). This highlights the need for a pixel-based ground-truth.
This issue has been also reported by Kumar et al. [217] who outlined that the use of a zone-level
ground-truth might have an influence on the accuracy of pixel-level approach and particularly the
R measure.

In this work, the noise pixels have not been considered when defining our ground-truth. Never-
theless, to our knowledge there really is no defined pixel-based ground-truth of HDIs which takes
account the noise pixels. It is not a straightforward task to define appropriate and objective ground-
truth due to the characteristics of HDIs (e.g. page skew, superimposition of information layers, such
as stamps, handwritten notes, noise, back-to-front interference). The first aspect of future work will
be to use a new computer-aided ground-truthing environment editor for creating and manipulating
automatically meta-data corresponding to regions of interest on HDIs under consideration (i.e. to
generate a pixel-based ground-truth including the noise pixels).

It is worth noting that there is awareness that many factors (e.g. binary HDIs, low resolution
digitization, presence of copyright notices in many pages, defined ground-truth, number of classes
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defined in the ground-truth, used pixel-labeling scheme for comparing texture, type of used pre-
processing stage, kind of used feature extraction technique) can influence the comparative study
and experimental evaluation of a number of commonly and widely used texture features conducted
in this chapter. Our goal in this chapter is to analyze properly texture features by raising issues re-
lated only to how these texture-based sets are compared with each other. We have planned to avoid
all unnecessary biases caused by introducing a feature selection task, such as the methods based
on the dimension reduction technique or a post-processing step by integrating a post-processing
phase by taking into consideration the topological or spatial relationships (e.g. hierarchy, inclu-
sion, neighborhood position). In addition, based on a review of the literature and after performing
several experiments to choose the best configuration of the different techniques, we have made a
first reasonable attempt as much as possible to carry out a properly and appropriate comparative
study on HDIs by using a standard pixel-labeling scheme for evaluating and benchmarking tex-
ture features. We are interested in determining which texture methods are firstly well suited for
segmenting graphical regions from textual ones, discriminating text in a variety of situations of dif-
ferent fonts and scales and secondly in finding a constructive compromise between the performance
and computational cost.

4.7. Conclusion

This chapter has presented an experimental evaluation and benchmarking of a number of com-
monly and widely used texture features. This comparative study has been conducted on a large
corpus of HDIs for the purpose of determining the performance of each texture-based feature set
according to the DI content, i.e. segmenting graphical regions from textual ones on the one hand,
and discriminating text in a variety of situations of different fonts and scales on the other hand.
The experimental corpus (1100 pages of historical documents) is composed of two datasets, the
“DIGIDOC-Texture dataset” and “HBR2013 dataset”. We have proved the scalability of nine eval-
uated texture-based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar,
Db3 and Db4) for both datasets. Thus, a standard pixel-labeling scheme for evaluating and bench-
marking texture features has been proposed in this chapter to compare nine texture-based feature
sets.

This work has shown the effectiveness of the texture analysis approaches for historical DIA.
Based on our experiments, we conclude that the auto-correlation, Gabor and Db4 features are the
best choices for discriminating textual regions from graphical ones without taking into account the
spatial relationships between pixels. However, when the numerical complexity and pixel-labeling
performance are taken into account, the Gabor approach would be the better choice. Furthermore,
the Gabor approach is a good choice for segmenting HDIs containing only textual regions with dif-
ferent fonts. 76%, 80% and 76% classification accuracy values are noted when the auto-correlation,
Gabor and Db4 are used in the proposed pixel-labeling scheme for evaluating and benchmarking
texture features, respectively. The results reported in this work provide a useful benchmark in
terms of performance evaluation, texture vector dimensionality, memory requirements, processing
time and complexity for current and future research efforts in historical DIA.
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Figure 4.20.: Examples of resulting images of the clustering of the extracted texture features (auto-
correlation and Gabor) from the “DIGIDOC-Texture dataset” (“One font and
graphics”, “Two fonts and graphics∗” and “Two fonts and graphics∗∗”) using the
HAC and k-means algorithms. The HAC and k-means algorithms are used with the
normalized textural features by setting the maximum k clusters to that defined in the
defined ground-truth. Figures (a), (b), (c) and (d) illustrate the different resulting
HDIs of the clustering of the extracted auto-correlation and Gabor features using the
HAC and k-means algorithms applied on an example of the “One font and graphics”
category. Figures (e), (f), (g) and (h) illustrate the different resulting HDIs of the
clustering of the extracted auto-correlation and Gabor features using the HAC and k-
means algorithms applied on an example of the “Two fonts and graphics∗” category.
Figures (i), (j), (k) and (l) illustrate the different resulting HDIs of the clustering
of the extracted auto-correlation and Gabor features using the HAC and k-means
algorithms applied on an example of the “Two fonts and graphics∗∗” category. Since
the process is unsupervised, the colors attributed to text or graphics may differ from
one DI to another.
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Figure 4.21.: Examples of resulting images of the clustering of the extracted texture features (auto-
correlation and Gabor) from the “DIGIDOC-Texture dataset” (“Only two
fonts” and “Only three fonts”) using the HAC and k-means algorithms. The HAC
and k-means algorithms are used with the normalized textural features by setting the
maximum k clusters to that defined in the defined ground-truth. Figures (a), (b), (c)
and (d) illustrate the different resulting HDIs of the clustering of the extracted auto-
correlation and Gabor features using the HAC and k-means algorithms applied on an
example of the “Only two fonts” category. Figures (e), (f), (g) and (h) illustrate the
different resulting HDIs of the clustering of the extracted auto-correlation and Gabor
features using the HAC and k-means algorithms applied on an example of the “Only
three fonts” category. Since the process is unsupervised, the colors attributed to text
or graphics may differ from one DI to another.

165



Chapter 4. A texture feature benchmarking for historical document image analysis

Confusion matrix

HAC k-means

Ground-truth

Graphic Text

C
lu

st
e
ri

n
g

o
u

tc
o
m

e
s Cluster

A
264596 33647 Ö 0.88

Cluster
B

4565 84125 Ö 0.94

×

0.98
×

0.71

Ground-truth

Graphic Text

C
lu

st
e
ri

n
g

o
u

tc
o
m

e
s Cluster

C
195602 102641 Ö 0.65

Cluster
D

336 88354 Ö 0.99

×

0.99
×

0.46
dAB = 1.43 dCD = 1.04

Pixel-labeling result

O
n

e
fo

n
t

a
n

d
g
ra

p
h

ic
s

(a) HAC
PPB = 0.96 CA = 0.90
P = 0.91 R = 0.84 F = 0.88

(b) k-means
PPB = 0.92 CA = 0.73
P = 0.82 R = 0.73 F = 0.77

Figure 4.22.: Examples of confusion matrix computation and pixel-labeling results of a document
from the “DIGIDOC-Texture dataset”, containing graphics and single text font “One
font and graphics”, obtained using the HAC and k-means algorithms and by setting
the maximum number of clusters to 2. Figure (a) represents the pixel-labeling result
of a document containing graphics (blue) and single text font (green) using the HAC
algorithm. Figure (b) the pixel-labeling result of a document containing graphics
(green) and single text font (blue) using the k-means algorithm.
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Figure 4.23.: Examples of confusion matrix computation and pixel-labeling results of a document
from the “DIGIDOC-Texture dataset”, containing graphics and two different text fonts
“Two fonts and graphics∗”, obtained using the HAC and k-means algorithms and
by setting the maximum number of clusters to 3. Figure (a) represents the pixel-
labeling result of a document containing graphics (green) and two different text fonts
(blue and red) using the HAC algorithm. Figure (b) the pixel-labeling result of a
document containing graphics (blue) and two different text fonts (green and red)
using the k-means algorithm.
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Table 4.6.: Evaluation of the extracted auto-correlation features by clustering and classification accuracy measures on the “DIGIDOC-Texture
dataset” using the HAC and k-means algorithms: Jaccard coefficient (J), purity per block metric (PPB), precision (P ), recall (R),
F-measure (F ) and classification accuracy (CA). µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher the
mean values, the better the results. The “Overall∗” value is obtained by averaging all the respective column values except the value of
“Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two
fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font in the text has a different label in the ground-truth,
and the clustering is performed by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts
and graphics∗∗” represents the case when all fonts in the text have the same label in the ground-truth, and the clustering is performed
by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

H
A
C

One font and graphics 0.79 0.17 0.91 0.08 0.83 0.16 0.81 0.17 0.82 0.16 0.85 0.21

Two fonts and graphics∗ 0.61 0.17 0.83 0.09 0.59 0.11 0.60 0.12 0.59 0.11 0.70 0.19

Two fonts and graphics∗∗ 0.70 0.17 0.90 0.07 0.84 0.15 0.83 0.16 0.83 0.14 0.84 0.19

Only two fonts 0.71 0.18 0.84 0.11 0.73 0.16 0.72 0.17 0.72 0.15 0.78 0.23

Only three fonts 0.61 0.19 0.77 0.10 0.63 0.13 0.61 0.13 0.61 0.12 0.62 0.25

Overall∗Overall∗Overall∗ 0.680.680.68 0.180.180.18 0.840.840.84 0.100.100.10 0.700.700.70 0.140.140.14 0.690.690.69 0.150.150.15 0.690.690.69 0.140.140.14 0.740.740.74 0.220.220.22

Overall∗∗Overall∗∗Overall∗∗ 0.700.700.70 0.180.180.18 0.860.860.86 0.090.090.09 0.760.760.76 0.150.150.15 0.740.740.74 0.160.160.16 0.750.750.75 0.140.140.14 0.770.770.77 0.220.220.22

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

k
-m

e
a
n
s

One font and graphics 0.69 0.18 0.84 0.13 0.80 0.15 0.78 0.18 0.78 0.16 0.79 0.19

Two fonts and graphics∗ 0.54 0.15 0.79 0.11 0.59 0.10 0.59 0.11 0.59 0.10 0.66 0.16

Two fonts and graphics∗∗ 0.65 0.16 0.90 0.08 0.83 0.14 0.82 0.16 0.82 0.14 0.83 0.16

Only two fonts 0.66 0.18 0.81 0.13 0.75 0.16 0.69 0.16 0.71 0.15 0.75 0.19

Only three fonts 0.51 0.17 0.69 0.12 0.56 0.11 0.54 0.11 0.55 0.10 0.61 0.18

Overall∗Overall∗Overall∗ 0.600.600.60 0.170.170.17 0.780.780.78 0.120.120.12 0.680.680.68 0.130.130.13 0.650.650.65 0.140.140.14 0.660.660.66 0.130.130.13 0.700.700.70 0.180.180.18

Overall∗∗Overall∗∗Overall∗∗ 0.630.630.63 0.170.170.17 0.810.810.81 0.120.120.12 0.740.740.74 0.140.140.14 0.700.700.70 0.150.150.15 0.710.710.71 0.140.140.14 0.750.750.75 0.180.180.18
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Table 4.7.: Evaluation of the extracted Gabor features by clustering and classification accuracy measures on the “DIGIDOC-Texture dataset”
using the HAC and k-means algorithms: Jaccard coefficient (J), purity per block metric (PPB), precision (P ), recall (R), F-measure
(F ) and classification accuracy (CA). µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher the mean values,
the better the results. The “Overall∗” value is obtained by averaging all the respective column values except the value of “Two fonts
and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two fonts and
graphics∗”. “Two fonts and graphics∗” represents the case when every font in the text has a different label in the ground-truth, and the
clustering is performed by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts and
graphics∗∗” represents the case when all fonts in the text have the same label in the ground-truth, and the clustering is performed by
setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

H
A
C

One font and graphics 0.88 0.18 0.96 0.06 0.90 0.16 0.86 0.19 0.88 0.17 0.87 0.25

Two fonts and graphics∗ 0.70 0.16 0.93 0.06 0.70 0.16 0.66 0.13 0.67 0.14 0.75 0.18

Two fonts and graphics∗∗ 0.81 0.16 0.98 0.04 0.91 0.13 0.88 0.16 0.89 0.14 0.89 0.21

Only two fonts 0.82 0.22 0.94 0.09 0.89 0.15 0.81 0.22 0.84 0.18 0.82 0.25

Only three fonts 0.60 0.19 0.88 0.09 0.67 0.17 0.62 0.18 0.64 0.17 0.68 0.19

Overall∗Overall∗Overall∗ 0.750.750.75 0.190.190.19 0.930.930.93 0.080.080.08 0.790.790.79 0.160.160.16 0.740.740.74 0.180.180.18 0.760.760.76 0.170.170.17 0.780.780.78 0.220.220.22

Overall∗∗Overall∗∗Overall∗∗ 0.780.780.78 0.190.190.19 0.940.940.94 0.070.070.07 0.840.840.84 0.150.150.15 0.790.790.79 0.190.190.19 0.810.810.81 0.170.170.17 0.820.820.82 0.230.230.23

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

k
-m

e
a
n
s

One font and graphics 0.82 0.20 0.94 0.08 0.91 0.13 0.83 0.19 0.86 0.16 0.86 0.20

Two fonts and graphics∗ 0.65 0.17 0.89 0.08 0.68 0.15 0.64 0.13 0.65 0.13 0.73 0.17

Two fonts and graphics∗∗ 0.75 0.18 0.95 0.06 0.88 0.14 0.84 0.17 0.86 0.15 0.86 0.18

Only two fonts 0.70 0.23 0.89 0.11 0.84 0.15 0.73 0.21 0.77 0.18 0.75 0.23

Only three fonts 0.56 0.19 0.85 0.10 0.65 0.17 0.60 0.17 0.62 0.16 0.66 0.17

Overall∗Overall∗Overall∗ 0.680.680.68 0.200.200.20 0.890.890.89 0.090.090.09 0.770.770.77 0.150.150.15 0.700.700.70 0.170.170.17 0.730.730.73 0.160.160.16 0.750.750.75 0.190.190.19

Overall∗∗Overall∗∗Overall∗∗ 0.710.710.71 0.200.200.20 0.910.910.91 0.090.090.09 0.820.820.82 0.150.150.15 0.750.750.75 0.180.180.18 0.780.780.78 0.160.160.16 0.790.790.79 0.190.190.19
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Table 4.8.: Differences in the computed clustering and classification accuracy measures when using the HAC and k-means algorithms in the auto-
correlation and Gabor-based pixel-labeling scheme on the “DIGIDOC-Texture dataset”: Jaccard coefficient (J), purity per block
metric (PPB), precision (P ), recall (R), F-measure (F ) and classification accuracy (CA). The “Overall∗” value is obtained by averaging
all the respective column values except the value of “Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the
respective column values except the value of “Two fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font
in the text has a different label in the ground-truth, and the clustering is performed by setting the number of types of content regions to
3 (graphics and two different text fonts). “Two fonts and graphics∗∗” represents the case when all fonts in the text have the same label
in the ground-truth, and the clustering is performed by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.098 0.064 0.027 0.037 0.032 0.057

Two fonts and graphics∗ 0.064 0.035 0.005 0.004 0.006 0.043

Two fonts and graphics∗∗ 0.045 0.003 0.006 0.009 0.008 0.003

Only two fonts 0.057 0.026 -0.022 0.034 0.006 0.027

Only three fonts 0.101 0.085 0.065 0.073 0.067 0.006

Overall∗Overall∗Overall∗ 0.0800.0800.080 0.0520.0520.052 0.0190.0190.019 0.0370.0370.037 0.0280.0280.028 0.0330.0330.033

Overall∗∗Overall∗∗Overall∗∗ 0.0750.0750.075 0.0440.0440.044 0.0190.0190.019 0.0380.0380.038 0.0280.0280.028 0.0230.0230.023

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

G
a
b
o
r

One font and graphics 0.060 0.028 -0.004 0.028 0.016 0.002

Two fonts and graphics∗ 0.049 0.038 0.020 0.022 0.022 0.018

Two fonts and graphics∗∗ 0.058 0.029 0.031 0.038 0.035 0.025

Only two fonts 0.111 0.047 0.044 0.085 0.067 0.071

Only three fonts 0.040 0.035 0.021 0.018 0.020 0.014

Overall∗Overall∗Overall∗ 0.0650.0650.065 0.0370.0370.037 0.0200.0200.020 0.0380.0380.038 0.0310.0310.031 0.0260.0260.026

Overall∗∗Overall∗∗Overall∗∗ 0.0670.0670.067 0.0350.0350.035 0.0230.0230.023 0.0420.0420.042 0.0340.0340.034 0.0280.0280.028
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This chapter presents a framework to investigate the use of texture as a
tool for determining automatically the number of content types (different
text fonts and graphic regions) in a digitized historical book and segmenting
its contents by extracting and analyzing texture features independently of
the layout of the pages. The proposed framework is parameter-free and
applicable to a large variety of ancient of books. It does not assume a
priori information regarding document image layout and content.
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Chapter 5. A texture-based pixel-labeling framework for digitized historical books

5.1. Introduction

Over the last few years, there has been tremendous growth in the automatic processing of digitized
HDIs. In fact, finding reliable systems for the interpretation of HDIs has been a topic of major
interest for many libraries and the prime issue of research in the historical DIA community. One
important challenge is to refine well-known approaches based on strong a priori knowledge (e.g.
DI content, layout, typography, font size and type, scanning resolution, DI size). Nevertheless, a
texture analysis approach has consistently been chosen to segment a page layout when information
is lacking on DI layout and content.

For this purpose, we propose to characterize digitized pages of ancient books with a set of regions of
homogeneous texture and their topological relationships that helps modeling the layout structure,
separating text from non-text regions, partitioning or categorizing pre-localized text blocks into
columns, headings, paragraphs, lines, words, notes (head-notes and foot-notes) and abstracts, etc.
Our goal is to extract as automatically as possible textural features that segment an ancient book
or a collection of HDIs into spatially disjoint homogeneous regions or similar content regions and
characterize its content according to a topological representation of homogeneous regions, without
formulating a hypothesis concerning the DI structure or layout (e.g. column layout), typographical
parameters (e.g. font size and type) or graphical properties of the analyzed DI.

Recently, the issues of DIA have been considered as texture segmentation and classification [6].
Moreover, some similarities of HDI content type have been deduced from many book pages [11, 12].
In addition, based on the assumption that texture can characterize a HDI content type which is
usually repeated on many pages of the same book, we propose a framework that works on entire
book scale instead of processing each page individually. Thus, in this chapter by combining several
points related to texture-based segmentation that have been reported separately in the literature
particularly on synthetic, medical and natural images, we attempt to represent a book page using
a set of homogeneous blocks defined by similar texture attributes and their topology. Indeed, a
pixel-labeling framework for DHBs is proposed in this chapter. The proposed framework ensures
the pixel-based characterization of the content of an entire book by extracting and analyzing the
texture information from each page. It is automatic, parameter-free and can be adapted to all
kinds of books. It is independent of DI layout, typeface, font size, orientation, image size, digitizing
resolution and intensity, etc. It is also insensitive to noise. Moreover, it does not require any manual
inspection or a priori knowledge regarding DI content and structure or layout.

The originality of our contribution lies in the automatic analysis of some characteristics of book
pages (regarding their layout and/or content) to find the number of book content types (i.e. by
identifying graphic and textual regions) by extracting and clustering texture features on an entire
book instead of processing each page individually, with no assumption concerning the book page
structure or layout (e.g. column layout), typographical characteristics or graphical properties (e.g.
font size and type) of the digitized book pages. Indeed, even if the typographical or graphical
features are not known in advance, they can be captured by exploiting the regularities of the
associated textures through the whole book pages. So, in a first step, a clustering of texture
features which are extracted from a sub-sampling in the entire book aims at identifying the texture
information that is present in book pages. The clustering method that is applied has the ability
to determine automatically the number of clusters or book content types. This knowledge is then
used in a second step to segment each book page individually.

The remainder of this chapter is structured as follows: Section 5.2 reviews related works on
texture-based approaches for DHBs. In Section 5.3, the proposed framework for the characterization
of the content of an entire book by extracting and analyzing the texture information from each page
is described. In Section 5.4, we outline the experimental protocol by describing the experimental
corpus, the defined ground-truth and the used clustering and classification metrics for an evaluation
of accuracy. Then, to evaluate the performance of the proposed framework, several clustering and
classification metrics are computed and discussed. Qualitative results are also given to demonstrate
its performance. Our discussion and conclusions are presented in Sections 5.5 and 5.6, respectively.
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5.2. A short review of texture-based approaches for digitized historical
books

A few texture-based segmentation approaches used with HDIs have been developed. To our knowl-
edge, the only non-supervised texture-based approach used with DHBs was proposed by Journet et
al. [1] It was based on an unsupervised clustering technique using extracted texture features which
were computed from six pages of the same book. To assign the same label to pixels of six book pages
which share similar textural characteristics, the clustering was performed on all extracted texture
features of pixels of six book pages. They extracted two different kinds of texture descriptors for
each pixel: three auto-correlation features which were derived from the rose of directions and two
frequency attributes by using a multi-scale analysis for classifying HDI pixels into text, graphics
and background. The first frequency descriptor computes the ink/paper transitions obtained by
performing the average per-line sum of the difference between the pixel intensity value and its left
neighbor. The frequency second attribute calculates the white spaces obtained by performing the
RXYC algorithm and computing the mean of the average per-line and per-column sums of pixel
intensities over an analyzed area. Then, by using the CLARA algorithm, an unsupervised clus-
tering algorithm, the extracted texture descriptors were clustered and pixels were separated into
different content clusters. Moreover, the number of book content types was assumed to be known
in advance. They noted 83% and 92% mean good classification rates for the graphical and text
pixels, respectively with 180 minutes in total per HDI as time required to process a page (feature
extraction and pixel-clustering tasks) [3].

However the Journet et al.’s texture-based approach [1] yields good results on HDIs containing
several textural classes (e.g. text, graphics, background), one main disadvantage is that there is
a need of user intervention for setting the number of expected clusters, as a consequent of using
a classical unsupervised clustering. Then, the most serious disadvantages of their approach is its
high computational cost caused by the texture feature extraction step which was processed on all
page pixels (i.e. foreground and background pixels). Finally, to assign the same label to pixels
of six book pages which shares similar textural characteristics, the clustering approach was only
performed on six pages of the same book instead of all book pages which can lead assigning different
labels to each resulting cluster of two different sets of six pages of the same book (characterizing
by similar textural properties).

Thus, in this chapter a texture-based pixel-labeling framework is proposed for the segmentation
and characterization of DHB content which addresses the challenges of the existing state-of-the-art
methods [1].

5.3. Proposed texture-based pixel-labeling framework

For the segmentation and characterization of DHB content, our goal is to determine a region
or group of pixels which share similar properties or characteristics on the basis of which they are
grouped. These characteristics may be based on the localization of the pixels and their surroundings,
color, intensity or texture. In this chapter, we will focus only on texture-based features. The
use of a texture-based approach in this work has been shown to be effective with skewed and
degraded images [228]. We propose a framework which automatically extracts texture descriptors
and involves a multi-resolution/multi-scale approach. This approach can characterize the content
of DHB. In particular, it can discriminate between the different classes of the foreground layers of a
digitized DI based on texture descriptors. The extraction of texture-based features helps to describe
the DI layout and structure by analyzing the texture feature space computed from DHB content,
i.e. by mapping the differences in the spatial structures of digitized DIs into differences in gray
value for each page. Texture features are automatically extracted from the analyzed DI at several
resolutions. The extracted features are then used in a parameter-free unsupervised clustering
approach to determine the number of book content types that are defined by similar textural
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Chapter 5. A texture-based pixel-labeling framework for digitized historical books

descriptors. The proposed framework is pixel-based and does not require a priori knowledge of
the DI layout, typographical parameters or graphical properties of the analyzed DI. Moreover, the
number of homogeneous or similar content regions do not need to be known in advance as it is
automatically determined. Thus, this framework is automatic, parameter-free and applicable to a
large variety of DHBs. It is independent of DI layout, typeface, font size, orientation, digitizing
resolution, etc. Moreover, it does not require any manual inspection.

The originality of this framework lies in the texture feature analysis that is used to find the
number of book content types by utilizing a clustering approach on an entire book instead of
processing each page individually. The proposed framework is supported by the fact that pages of
the same book usually present strong similarities in the organization of the DI information (i.e.
book page layout or structure) and in the graphical (e.g. embellishment, engraving, pictures) and
typographical (e.g. font size and type) features throughout the DHB pages. Indeed, the texture
information (e.g. typographical or graphical properties) which is often repeated and recurrently
present in many book pages, can be deduced by exploiting the regularities of the associated textures
through the whole book pages. Thus, a clustering step is performed on texture features which are
extracted from a sub-sampling in the entire book aims at identifying these book characteristics
which are then used to help to characterize each page image.

The proposed framework starts with a texture feature extraction step. Secondly, a number of
foreground pixels from pages of the same book are selected randomly, and their textural descriptors
are subsequently extracted in order to estimate the number of homogeneous or similar content
regions in the book. The estimated number of book content types in the samples of foreground
pixels is automatically determined (cf. block 2, Figure 5.1). Finally, the textural features for each
page are used in a clustering approach by taking into account the estimation of the number of book
content types (cf. block 1, Figure 5.1).

Figure 5.1.: Flowchart of the proposed texture-based pixel-labeling framework of DHB content.

Figure 5.1 illustrates the four main tasks of the proposed framework. Block 2 on Figure 5.1 is used
to estimate the number of different book content types from the extracted textural features analyzed
in the whole book. Block 1 on Figure 5.1 integrates an unsupervised task which automatically labels
content pixels with the same cluster identifier as used with the book content in order to characterize
the page foreground pixels of the digitized book (cf. block 3, Figure 5.1).

Figure 5.2 illustrates the detailed schematic block representation of the proposed texture-based
pixel-labeling framework of DHB content.
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Figure 5.2.: Detailed schematic block representation of the proposed texture-based pixel-labeling
framework of DHB content.

The proposed texture-based pixel-labeling framework of DHB content consists of the following
four tasks:

1. Pre-processing and foreground pixel selection (cf. Section 4.4.1.1),

2. Texture feature extraction (cf. Section 4.4.1.2),

3. Estimation of the number of book content types (cf. Section 5.3.1),

4. Pixel-clustering and labeling (cf. Section 5.3.2).

The two first stages of the proposed texture-based pixel-labeling framework of DHB content, the
pre-processing and foreground pixel selection, and the texture feature extraction have been previ-
ously described in Sections 4.4.1.1 and 4.4.1.2, respectively. These tasks aim to provide textural
indices in the form of a set of features from the analyzed image to represent and characterize its
content. Then, the next framework task consists in structuring the texture feature space within a
hierarchical or partitioning clustering technique in order to group pixels sharing similar character-
istics to identify and characterize similar regions or groups of pixels.

5.3.1. Estimation of the number of book content types

As already seen on the framework figure (cf. Figure 5.1), our objective is to find the number
of book content types defined by similar texture features. So at this stage (cf. block 2, Figure
5.1) we need to use a clustering algorithm to partition the analyzed document into regions with
similar properties or characteristics as deduced from the analysis of the extracted texture features
presented in Section 4.4.1.2. With the help of the consensus clustering (CCl) technique (cf. Section
5.3.1.2), we automatically estimate the number of clusters from a number of samples of foreground
pixels to determine the number of book content types defined by similar texture indices in a DHB.
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5.3.1.1. Related works

For a certain class of hard clustering algorithms and particularly conventional clustering techniques
[352, 353, 354, 355], the number of clusters in a dataset must be specified. Several types of methods
can be used to estimate the correct number of clusters. The elbow method analyzes the percentage
of variance explained as a function of the number of clusters [356]. The gap statistic evaluates the
change in within-cluster dispersion [357]. Another set of techniques used to estimate the number
of clusters is the information criteria approach [358], including Akaike information criterion (AIC)
[359], Bayesian information criterion (BIC) [360] and integrated completed likelihood (ICL) [361].
Moreover, the a priori theory may be handled as a non-statistical technique for determining the
number of clusters [362]. A theoretical approach using non-parametric information to choose the
number of clusters based on distortion has been presented [363]. Some authors proposed a clus-
tering methodology based on the cover coefficient concept that determines the number of clusters
within a document database and relates indexing and clustering analytically [364]. Others defined
the optimal number of clusters on the basis of the minimum description length (MDL) principle
computed from the kernel matrix [365]. Furthermore, a visual diagnostic tool for choosing the
number of clusters has been proposed [366]. Additionally, a link-based cluster ensemble framework
was used to select the correct number of clusters after evaluating the clustering result of a variety
of functional methods based on both internal and external criteria [367]. The cubic clustering
criterion (CCC) is a measure of within-cluster homogeneity relative to between-cluster heterogene-
ity. The appropriate number of clusters is indicated by a peak in the CCC [368]. Ray and Turi
[369] determined the number of clusters for color image segmentation in a clustering algorithm
by finding the minimum of the intra-cluster and inter-cluster distance. An approach to determine
the cluster boundaries in the hierarchical clustering based on within-class variance and between-
class variance has been reported in [370]. Another technique has been proposed for the analysis
of changes in silhouette values computed from clusters built by using the k-means algorithm and
an optimization technique such as genetic algorithms [371]. Moreover, the v-fold cross-validation
applied to a clustering algorithm, was performed for a range of numbers of clusters in the k-means
or EM clustering [372]. Then, depending on the average distance of the observations (in the cross-
validation or testing samples) from their cluster centers (for the k-means clustering), the number
of clusters was estimated. Otherwise, by varying all combinations of the number of clusters, dis-
tance measures and clustering methods, the changes in various clustering evaluation indices can be
examined [373]. Kryszczuk and Hurley [374] proposed a framework for the estimation of the num-
bers of clusters based on the decision-level fusion technique of multiple clustering validity indices.
They proved that no single clustering validity indice consistently outperforms others, particularly
for high-dimensional datasets. Bolshakova and Azuaje [375] proposed a weighed voting technique
based on three clustering algorithms and two cluster validation indices to improve the prediction
of the number of clusters.

Several clustering evaluation metrics for the estimation of the number of clusters and the crite-
ria used to select the optimal number of clusters are summarized in Appendix A and particularly
in Section A.3 (cf. Table A.4). For example, the maximum value of the Krzanowski-Lai index,
Calinski-Harabasz index, silhouette width index and CCC are taken as indicating the correct num-
ber of clusters in the dataset, while the minimum value of C-index, Davies-Bouldin index, SDindex
and SDbw validity index denote the correct number of clusters. Then, the criteria used to select
the optimal number of clusters for the Hartigan index and Scott index is the maximum difference
between hierarchy levels of the index [376].

5.3.1.2. Consensus clustering

Previous work identified a number of approaches for determining the correct number of clusters in
a dataset [356]. Simpson et al. [377] have recently proposed an effective method, known as the CCl
technique, to estimate the optimal number of clusters in biological data. Thus, we use the CCl in
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this work to estimate the number of book content types (i.e. the number of similar texture-content
types).

The CCl technique consists in performing a consensus matrix by iterating multiple runs of clus-
tering algorithms with random and re-sampled clustering options [378]. Thus, the consensus matrix
analyzes the consistency of the clustering result from five different clustering algorithms: AGNES,
DIANA, PAM, k-means and HAC (cf. Appendix A and particularly Section A.1). So, by weighting
the different clustering methods in order to mitigate extremes in the consensus values that can re-
sult from the sensitivity of some algorithms, a merge consensus matrix is performed which ensures
the stability of the obtained clusters. Finally, the optimal number of clusters corresponds to the
largest change in area under the cumulative density curve for the merge consensus matrix. It has
been shown that the hierarchical clustering methods are highly sensitive to outliers while the parti-
tioning ones are relatively insensitive. Simpson et al. [377] therefore used a merged CCl technique
by applying a weighted averaging of the clustering result to estimate the number of clusters.

Thus, the number of clusters in a set of randomly selected foreground pixels is estimated from a
few randomly selected pages of a book using the CCl method. This method is only used for a set
of randomly selected foreground pixels of a few pages selected randomly from the same book. Due
to memory constraints and long computational time of the CCl method, we first test it on a set
of 1000 and 2000 randomly selected foreground pixels from few pages selected randomly from the
same book.

Variations in clustering for both the hierarchical clustering and partitioning methods can be taken
into consideration by associating non-uniform weights. With this approach, prior information is
introduced into the clustering process by assigning higher weights to the most robust clustering
methods. Thus, by weighting different clustering methods, extremes are mitigated in consensus
values that can be created by the sensitivity of some algorithms, meaning that outliers can be dealt
with differently within datasets, thus improving the quality of classification. So a weight of 1

8 is
assigned to each hierarchical clustering method (AGNES, DIANA and HAC), and a higher weight
of 1

4 is assigned to each partitioning clustering algorithm (PAM and k-means) [377]. By using this
merge CCl technique, the consensus matrices are the results deduced from clustering experiments
using different algorithms and/or conditions. The merging of clustering result between different
methods provides an averaged clustering robustness, i.e. a merge consensus matrix Mmc. Hence,
the optimal number of clusters kopt in a dataset can be estimated by finding the value of k computed
from the merge consensus matrix Mmc across a range [2, 10] of possible values of k. The cumulative
density function (CDF (c)) is computed on the unique elements of the merge consensus matrix
Mmc sorted in descending order and defined over the range c = [0, 1]. Thus, the CDF (c) is defined
using equation 5.1.

CDF (c) =

∑
i<j

1M(i,j)≤c

Ns(Ns−1)
2

(5.1)

where Ns is the number of selected observations or samples and 1 is an indicator or a characteristic
function defined on a set Mmc(i, j) ≤ c.

The area under the cumulative density curve (AUC) is then computed from the CDF (cf. equation
5.1) of the consensus matrix across a range [2, 10] of possible values of k using equation 5.2.

AUC =
m∑
i=2

[yi − yi−1]CDF (yi) (5.2)

where yi is the current element of the CDF and m is the number of elements of the CDF .

Finally, the optimal number of clusters kopt corresponds to the largest change (∆k) in the AUC,
where ∆k denotes the difference change between two consecutive elements k in the AUC(cf. equa-
tion 5.2).
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5.3.2. Pixel-clustering and labeling

Since the feature extraction phase and the task of the estimation of the optimal number of homo-
geneous or similar texture content types (kopt) have been performed, we need to characterize the
content of an entire book and to find the kopt book content types defined by similar texture indices
in a whole book. The goal of the third task of the proposed framework (cf. block 1, Figure 5.1) is
to structure the texture feature space within a hierarchical or partitioning clustering technique in
order to group pixels sharing similar characteristics to identify and characterize similar regions or
groups of pixels.

5.3.2.1. Pixel-clustering

In this work, we opt for a standard and reliable hard clustering algorithm, given its optimal trade-
off between low complexity, accuracy of the results, reduced number of parameter settings and the
requirement for a clustering technique. This stage (cf. block 1, Figure 5.1) consists in grouping
automatically the pixels into kopt clusters representing homogeneous or similar texture-content
regions. Since the main purpose of the CCl technique is to compare, visualize and evaluate the
repeatability of the results of clustering experiments, and given the high demand in terms of memory
and computational time of the CCl algorithm, we perform the HAC algorithm on the computed
texture features without taking into account the spatial coordinates to search and extract similar
texture-content pixels for each digitized book page (i.e. by grouping foreground pixels having
similar page content type). The HAC algorithm process has been previously detailed in Chapter 4
and particularly Section 4.4.1.3.

The texture feature vectors are normalized to zero mean and unit standard deviation in order
to avoid a domination of the higher numerical range of a few features. By setting the maximum
number of book content types to the kopt which is estimated with the CCl method, the adapted
HAC algorithm with the Ward criterion can be applied to the normalized textural features of the
randomly selected samples of a book. This task is essential for finding the kopt book content types
defined by similar texture indices in the whole book. Finally, we obtain kopt clusters for randomly
selected foreground samples of a book, i.e. kopt clusters of selected texture vectors computed from
a few pages of a book, representing kopt similar content types.

5.3.2.2. Pixel-labeling

This phase deals with labeling clusters or groups of pixels with respect to the results of the pixel-
clustering phase. The idea of this task (cf. block 1, Figure 5.1) is to assign a label to each cluster
of pixels which shares similar textural characteristics to the cluster obtained from the selected
foreground samples of the book pages (cf. block 2, Figure 5.1).

Journet et al. [1] performed the clustering stage using CLARA which is suitable for large scale
databases, in the extracted texture features computed from six pages of the same book. Then,
if two pixels of two different HDIs have the same cluster label, they belonged to the same class.
However, this technique is characterized by a long processing time and memory complexity.

In this work, an unsupervised task is integrated that automatically labels content pixels with
the same cluster identifier as the book content. For the same book, each cluster (represented by
a given color) represents a similar or homogeneous region. Thus, by applying the HAC algorithm,
we group foreground pixels having similar page content type (i.e. sharing similar texture indices)
defined by similar texture indices. Then, we perform the nearest neighbor search algorithm (NNS)
[379] in order to assign the same label to each similar cluster extracted from the digitized book.
The NNS is used between each texture feature vector with each digitized page of the same book
and the kopt clusters of the selected samples of a book in order to find the texture feature vector
closest to the cluster of the selected foreground samples of a book, i.e. by selecting the minimum
distance.
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The NNS is used with the Mahalanobis distance to assign the same label for each similar cluster
extracted from a digitized book [380]. The Mahalanobis distance (MD) can be defined as a measure
of dissimilarity between two vectors. The MD takes into account dataset correlations and is
particularly suited to arbitrarily shaped clusters. The MD is computed of each texture feature
vector for each digitized page of the same book from the reference sample defined by each cluster of
the selected foreground samples of a book. The Mahalanobis distance MD(x, y) of two multivariate
vectors x = (x1, x2, . . . , xNf )T and y = (y1, y2, . . . , yNf )T of the same distribution Nf with the
covariance matrix S, is defined as:

MD(x, y) =
√
‖(x− y)TS-1(x− y)‖ (5.3)

Since the clustering and labeling phases of the proposed texture-based pixel-labeling framework
of DHB content have been performed, the foreground pixel in the digitized book are characterized
(cf. block 3, Figure 5.1).

5.4. Experiments and results

The following is a set of experiments on a large variety of DHBs and HDIs which is detailed to
evaluate the performance of the proposed framework and validate our choice of the used techniques
on each step of the proposed texture-based pixel-labeling framework of DHB content. A second
experimental corpus of HDIs is selected to assess the different phases of the proposed pixel-labeling
framework (cf. Section 5.4.1). We have evaluated both qualitatively and quantitatively the effec-
tiveness of the extracted texture-based feature sets in Chapter 4. We have proved that the auto-
correlation approach is an effective and efficient texture-based one, particularly for HDIs containing
graphics and text (cf. Section 4.5.1.4). In addition, we have noted that the Gabor-based approach
performs considerably better in segmenting HDIs containing only textual regions with distinct fonts
(cf. Chapter 4 and particularly Section 4.5.1.4). As a consequence, the auto-correlation and Gabor
features are chosen to be assessed on the proposed texture-based pixel-labeling framework of DHB
content in this section. Several clustering accuracy metrics and classification accuracy rates are
computed to evaluate the performance of the proposed framework using the auto-correlation and
Gabor features.

Since, the auto-correlation approach has shown, faster than the Gabor one (cf. Section 4.5.1.1),
the different phases of the proposed pixel-labeling framework of DHB content (cf. blocks 1 and
2, Figure 5.1) have been evaluated using the auto-correlation features, in order to evaluate the
robustness of the proposed framework and provide additional insights into its classification accuracy
(cf. Section 5.4.2). Moreover, the pixel-labeling results of the proposed framework have been
assessed using the Gabor features in Section 5.4.3.

5.4.1. Experimental protocol

The experimental corpus which is called “DIGIDOC-Framework dataset”, is composed of 316 pages
which are selected from 13 books in two categories: 7 printed monographs and 6 manuscripts. The
“DIGIDOC-Framework dataset” encompasses five centuries of French history (1200-1700). For
each category, three kinds of content are selected:

• 100 pages containing graphics and a single text font (“One font and graphics”):

– 50 gray-scale manuscript pages (1201-1300)1

– 50 color printed pages (1473)2

• 106 pages containing graphics and text with two different fonts (“Two fonts and graphics”):

1http://gallica.bnf.fr/ark:/12148/btv1b90075392/f1.planchecontact.r=.langFR
2http://gallica.bnf.fr/ark:/12148/bpt6k8400870/f11.planchecontact.r=.langFR
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– 50 manuscript pages: 25 gray-scale pages (1601-1700)3, 15 gray-scale pages (1301-1500)4

and 10 gray-scale pages (1201-1300)5

– 56 printed pages: 4 gray-scale pages (1598)6, 9 gray-scale pages (1594)7, 4 gray-scale
pages (1591)8, 6 gray-scale pages (1599)9, 5 gray-scale pages (1594)10 and 28 gray-scale
pages (1711)11

• 110 pages containing only two fonts (“Only two fonts”):

– 50 gray-scale manuscript pages (1601-1700)12

– 60 printed pages: 30 gray-scale pages (1594)13, 10 gray-scale pages (1591)14 and 20
gray-scale pages (1599)15

Some examples of the “DIGIDOC-Framework dataset” are shown in Figure 5.3 used to evaluate
the performance of the proposed framework and validate our choice of the used techniques on
each step of the proposed framework. The “DIGIDOC-Framework dataset” is composed of gray-
scale/color HDIs which are digitized at 300/400 dpi and saved in the TIFF format which provides
a high resolution of digitized images.

5.4.2. Evaluation and results using the auto-correlation features

Historically, we have started exploring the auto-correlation features in this work. As a matter of
fact, in this section the different phases of the proposed pixel-labeling framework of DHB content
(cf. blocks 1 and 2, Figure 5.1) have been evaluated using the auto-correlation features, in order
to evaluate the robustness of the proposed framework and provide additional insights into its
classification accuracy. The evaluation of the different phases of the proposed framework (cf.
blocks 1 and 2, Figure 5.1, Sections 5.3.1 and 5.3.2) is described in this section: the estimation
of the number of book content types (cf. Section 5.3.1), pixel-clustering (cf. Section 5.3.2.1) and
pixel-labeling (cf. Section 5.3.2.2). Several clustering accuracy metrics and classification accuracy
rates are computed to assess the different phases of the framework and subsequently to evaluate
its performance.

5.4.2.1. Evaluation of the estimation of the number of book content types

The estimated number of book content types is obtained using the merge CCl method with the
extracted features of a number of selected foreground pixels chosen randomly from the pages of a
book (cf. block 2, Figure 5.2, Section 5.3.1).

An example of ∆k is shown in Figure 5.4(b). In this experiment, kopt is equal to 3 and is estimated
from the peak in ∆k values of the merge curve.

Table 5.1 shows 10 examples of the estimation of the number of book content types. These
examples illustrate 10 estimations computed from 2 different books containing graphics and single
text font using CCl and different clustering techniques. For each set of 1000 randomly selected
foreground pixels from 10 pages also selected randomly from the same book, we compare the

3http://gallica.bnf.fr/ark:/12148/btv1b9058103r/f1.planchecontact.r=.langFR
4http://gallica.bnf.fr/ark:/12148/btv1b9060828s/f1.planchecontact.r=.langFR
5http://gallica.bnf.fr/ark:/12148/btv1b90620381/f1.planchecontact.r=.langFR
6http://gallica.bnf.fr/ark:/12148/bpt6k1315662/f3.planchecontact.r=.langFR
7http://gallica.bnf.fr/ark:/12148/bpt6k1316726/f5.planchecontact.r=.langFR
8http://gallica.bnf.fr/ark:/12148/bpt6k132056f/f3.planchecontact.r=.langFR
9http://gallica.bnf.fr/ark:/12148/bpt6k132093p/f5.planchecontact.r=.langFR

10http://gallica.bnf.fr/ark:/12148/bpt6k1347518/f1.planchecontact.r=.langFR
11http://gallica.bnf.fr/ark:/12148/bpt6k840383d/f1.planchecontact.r=.langFR
12http://gallica.bnf.fr/ark:/12148/btv1b9058220m/f1.planchecontact.r=.langFR
13http://gallica.bnf.fr/ark:/12148/bpt6k1316726/f5.planchecontact.r=.langFR
14http://gallica.bnf.fr/ark:/12148/bpt6k132056f/f3.planchecontact.r=.langFR
15http://gallica.bnf.fr/ark:/12148/bpt6k132093p/f5.planchecontact.r=.langFR
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(a) Manuscript-One font and graphics (b) Printed-One font and graphics

(c) Manuscript-Two fonts and graphics (d) Printed-Two fonts and graphics

(e) Manuscript-Only two fonts (f) Printed-Only two fonts

Figure 5.3.: Examples of HDIs from the “DIGIDOC-Framework dataset” for the evaluation of the
proposed pixel-labeling framework of DHB content.

estimated number of book content types using five clustering methods and the merge CCl technique
with the number of clusters set in the defined ground-truth. For most of these estimations, carried
out using the two partitioning clustering methods (PAM and k-means), the estimated number of
clusters is similar to that set in the defined ground-truth. However, there is a slight variability in
the number of clusters estimated by the three hierarchical clustering methods: AGNES, DIANA
and HAC. This may be explained by the presence of noise in the analyzed HDIs which can have
an impact on the estimated number of book content types. Although a slight variability in the
estimated number of book content types is observed when the merge CCl technique is used, the
results are relatively consistent since noise and degradation information are taken into consideration.
Noise and degradation information can be considered as particular textured areas, i.e. characterized
by different texture features vectors and which can subsequently constitute a separate cluster. In
addition, the results estimate using the PAM method are relatively similar to those obtained with
the merge CCl technique and also the number of clusters defined in the ground-truth. Thus, this
confirms our hypothesis that the partitioning clustering methods are relatively robust and justifies
the higher weight of 1

4 assigned to each partitioning clustering algorithm (PAM and k-means).

1. 1000 vs. 2000 pixels are used in the CCl technique

181



Chapter 5. A texture-based pixel-labeling framework for digitized historical books

Number of clusters (k)

AU
C

0.4

0.6

0.8

1.0

2 3 4 5 6 7 8 9 10

●

●

●

●

●

●

●

●

●

AGNES
DIANA
HAC
k−means
Merge
PAM

● ● ●

(a)

Number of clusters (k)

∆k

0.0

0.5

1.0

2 3 4 5 6 7 8 9 10

●

●
●

●
●

●
●

● ●

AGNES
DIANA
HAC
k−means
Merge
PAM

● ● ●

(b)

Figure 5.4.: Illustration of the estimation of the number of book content types using the CCl
method. Figure (a) illustrates a plot of AUC for the consensus matrix for each cluster-
ing experiment against number of clusters k. Figure (b) depicts a plot of ∆k changes in
AUC for the consensus matrix for each clustering experiment against number of clusters
k. Using the three hierarchical clustering methods: AGNES, DIANA and HAC give
an estimate of 2 as the optimal number of clusters, while an estimate of 3 is obtained
with k-means, PAM and Merge (the orange curve representing the merge CCl peaked
at k = 3).

To analyze the robustness of the estimation obtained with the merge CCl technique in the
proposed framework, the number of selected foreground pixels introduced as input is varied.
Table 5.1 shows the evaluation of the estimation of the number of homogeneous or similar
content regions for an analysis 10 sets of 2000 randomly selected pixels from the same 2
different DHBs. The results are in agreement with the number of clusters defined in the
ground-truth. We conclude that the effectiveness of the merge CCl technique depends on
the number of observations. The higher the number of observations, i.e. the number of
randomly selected foreground pixels, the better the estimation results. Nevertheless, when
numerical complexity is taken into account, a high number of observations requires 16 times
the computation time to obtain half of the observations.

2. Merge CCl technique vs. internal clustering evaluation measures
The changes in various clustering evaluation indices are then analyzed for a range of numbers
of clusters, and computed from the analysis of the extracted texture features of the selected
pixels chosen randomly from pages of a book. For each category of book (“Printed-One
font and graphics”, “Manuscript-One font and graphics”, “Printed-Two fonts and graphics”,
“Manuscript-Two fonts and graphics”, “Printed-Only two fonts” and “Manuscript-Only two
fonts”), the adapted HAC algorithm with the Ward criterion is used for a range of number
of clusters after choosing a random selection of a number of foreground pixels from pages of
a single book.

A plot is made of the changes in different clustering evaluation measures over a range of
numbers of clusters [2, 10]. The results of changes in 9 different internal clustering evaluation
measures (silhouette width index, Davies-Bouldin index, Dunn index, Calinski-Harabasz in-
dex, Hartigan index, Krzanowski-Lai index, weighted inter-intra measure and homogeneity
and separation indices), over a range of numbers of clusters [2, 10] are presented in Figure
5.5. For example, the maximum value of the silhouette width index, the Dunn index, the
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Table 5.1.: Examples of the estimation of the number of book content types by analyzing 10 sets
of 1000 and 2000 randomly selected pixels from 2 different DHBs containing graphics
and single text font with the merge CCl and different clustering techniques.

10
00

p
ix
el
s

10
00

p
ix
el
s

10
00

p
ix
el
s

Set numberSet numberSet number

20
00

p
ix
el
s

20
00

p
ix
el
s

20
00

p
ix
el
s

Set numberSet numberSet number

Book 1Book 1Book 1 Book 2Book 2Book 2 Book 1Book 1Book 1 Book 2Book 2Book 2

1st1st1st 2nd2nd2nd 3rd3rd3rd 4th4th4th 5th5th5th 6th6th6th 7th7th7th 8th8th8th 9th9th9th 10th10th10th 1st1st1st 2nd2nd2nd 3rd3rd3rd 4th4th4th 5th5th5th 6th6th6th 7th7th7th 8th8th8th 9th9th9th 10th10th10th

AGNESAGNESAGNES 2 2 2 2 2 6 4 6 4 5 5 3 2 3 2 5 4 6 4 5

DIANADIANADIANA 2 4 2 2 2 3 3 2 2 3 2 2 2 2 2 3 2 3 2 3

HACHACHAC 2 3 2 3 2 3 3 3 3 4 2 3 2 2 2 4 2 3 3 4

k-meansk-meansk-means 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3

PAMPAMPAM 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2

MergeMergeMerge 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

Ground-truthGround-truthGround-truth 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Krzanowski-Lai index, the Calinski-Harabasz index and the homogeneity and separation in-
dices are taken to indicate the correct number of clusters in the data, whereas the minimum
value of Davies-Bouldin index and the weighted inter-intra measure. On the other hand, the
criteria used to select the optimal number of clusters for the Hartigan index is the maximum
difference between the hierarchy levels of the index. Figure 5.5 shows that selecting the best
number of clusters for each category of book is different for each cluster validation measure
and the changes in 9 different internal clustering evaluation measures are not stable. For
example, the “Manuscript-Two fonts and graphics” category (cf. pink curve in Figure 5.5)
gives 2, 2, 2, 2, 2, 2, 4, 2 and 2 as the optimal number of clusters estimated by the sil-
houette width index, Davies-Bouldin index, Dunn index, Calinski-Harabasz index, Hartigan
index, Krzanowski-Lai index, weighted inter-intra measure, homogeneity indice and separa-
tion measure, respectively. On the other hand, for the “Printed-Only two fonts” category
(cf. magenta curve in Figure 5.5), we obtain 3, 2, 2, 2, 2, 2, 4, 2 and 4 as the optimal
number of clusters estimated by the silhouette width index, Davies-Bouldin index, Dunn
index, Calinski-Harabasz index, Hartigan index, Krzanowski-Lai index, weighted inter-intra
measure, homogeneity indice and separation measure, respectively. Unfortunately, there is
no agreement between the unsupervised validity indices that provide a satisfactory solution
for the estimation of the number of clusters. Thus, we conclude that by varying all combina-
tions of the number of clusters, the changes in various clustering evaluation indices are not
consistent. Indeed, a large number of clustering evaluation indices have been proposed in the
literature [381]. Therefore, due to the large variety of cluster structures and the specificity
of each clustering accuracy measure, there is no clustering evaluation index which provides
a satisfactory solution. Kryszczuk and Hurley claimed that no single clustering evaluation
measure can always outperform the others for the estimation of the number of clusters [374].

In the following tests, the results of the estimated number of book content types are compared
using the merge CCl method and various internal clustering evaluation measures. For each
estimation approach the sum of the differences between the number of book content types
defined in the ground-truth and the estimated number of book content types is computed in
order to quantify the difference between the number of clusters vs. classes. The lower the
value for the difference between the number of clusters vs. classes, the better the results. The
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Figure 5.5.: Determination of the optimal number of homogeneous and similar content regions from
the results of changes in various internal clustering evaluation indices, over to a range of
numbers of clusters and computed from the extracted textural features of the selected
foreground pixels chosen randomly from pages of a book. Nine different clustering eval-
uation measures (silhouette width index, Davies-Bouldin index, Dunn index, Calinski-
Harabasz index, Hartigan index, Krzanowski-Lai index, weighted inter-intra measure
and homogeneity and separation indices) are made over a range of numbers of clus-
ters [2, 10] and compared for each category of book (“Printed-One font and graphics”,
“Manuscript-One font and graphics”, “Printed-Two fonts and graphics”, “Manuscript-
Two fonts and graphics”, “Printed-Only two fonts” and “Manuscript-Only two fonts”).

difference between the number of clusters vs. classes (Dk(kest, kgt)) is defined as:

Dk(kest, kgt) =
∑
i

|kigt − kiopt| (5.4)

where kest is the estimated number of clusters, kgt is the number of clusters defined in the
ground-truth, and i represents the ith execution of the CCl algorithm on the selected fore-
ground pixels from the digitized book.

Figure 5.6 represents for each category of book the difference between the number of clus-
ters vs. classes (Dk) for the CCl method and 21 different internal clustering evaluation
measures (Krzanowski-Lai index [382], Hartigan index [383], Calinski-Harabasz index [384],
Cubic Clustering Criterion [368], Scott index [385], Marriot index [386], TraceCovW index
[387], TraceW index [387], Friedman index [388], Rubin index [389], C-index [390], Davies-
Bouldin index [391], silhouette width index [341], Ratkowsky index [392], Ball index [393],
PtBiserial index [394], Frey index [395], McClain index [396], Dunn index [397], SDindex [398]
and SDbw validity index [399]) (cf. Table A.4).

Furthermore, Dk is presented for the CCl technique and the unsupervised evaluation measures
for all categories. The lowest differences between the number of clusters vs. classes for all

184



5.4. Experiments and results

of the “DIGIDOC-Framework dataset” are 17, 17 and 16 computed using respectively the
CCl, Frey index and McClain index, respectively. Figure 5.6 shows a null value for the
difference between the number of clusters vs. classes for the Frey index and the McClain
index for the printed “One font and graphics” document category but this increases for the
other categories. The CCl method provides good results for all categories of the “DIGIDOC-
Framework dataset”, as shown in Figure 5.6. The different experiments detailed in this section
prove that the merge CCl technique provides good results by comparing its estimation of
the optimal number of clusters with the ground-truth and the internal clustering evaluation
indices. However, the CCl method is relatively long so is not particularly effective for a very
large dataset.
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Figure 5.6.: Evaluation of the estimation of the number of book content types by using the CCl
method vs. various internal clustering evaluation measures: the estimated number of
book content types is computed from 21 different internal clustering evaluation mea-
sures (Krzanowski-Lai index, Hartigan index, Calinski-Harabasz index, Cubic Cluster-
ing Criterion, Scott index, Marriot index, TraceCovW index, TraceW index, Friedman
index, Rubin index, C-index, Davies-Bouldin index, silhouette width index, Ratkowsky
index, Ball index, PtBiserial index, Frey index, McClain index, Dunn index, SDindex
and SDbw validity index) and are compared with the estimated number using the CCl
method for each category of DHB (“Manuscript-One font and graphics”, “Printed-
One font and graphics”, “Manuscript-Two fonts and graphics”, “Printed-Two fonts
and graphics”, “Manuscript-Only two fonts” and “Printed-Only two fonts”). The dif-
ference between the number of clusters vs. classes for all the “DIGIDOC-Framework
dataset” is also shown. The lower the difference between the number of clusters vs.
classes, the better the results.

5.4.2.2. Evaluation of the pixel-clustering phase

The next evaluation step consists in assessing the clustering method, i.e. the adapted HAC algo-
rithm with the Ward criterion, used for the pixel-clustering task of the proposed framework (cf.
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block 1 on Figure 5.1, Section 5.3.2.1).
Indeed, the clustering results obtained after analyzing the extracted texture features are en-

couraging and indicate many interesting perspectives (cf. Section 4.5.1.2). The same proposed
clustering approach is therefore used on the “DIGIDOC-Framework dataset” of DHB pages. The
pixel-clustering results with the HDIs obtained using the HAC algorithm are illustrated in Figure
5.10. The results obtained with the “DIGIDOC-Framework dataset” strengthen our previous ob-
servations (cf. Section 4.5.1.2). Thus, we confirm that the clustering task used with the extracted
texture features have a much greater discriminating power for separating text (single font) and
graphic regions (cf. Figures 5.10(a) and 5.10(b)) than for distinguishing documents containing
graphics and two or more text fonts (cf. Figure 5.10(c)). The results also confirm that it is more
difficult to separate two text fonts (cf. Figure 5.10(e)).

5.4.2.3. Evaluation of the pixel-labeling phase

Pixel-labeling (cf. block 1 on Figure 5.1, Section 5.3.2.2) is used to determine and assign the
same cluster identifier to each similar cluster extracted from the digitized book. This step of the
framework uses the NNS technique. This technique is used between each texture feature vector of
each digitized page of the same book and the kopt clusters of the selected foreground samples of
a book in order to find the closest texture feature vector to the cluster of the selected foreground
samples of a book, i.e. by selecting the minimum Mahalanobis distance (MD). In order to validate
this task, the MD is compared with the Euclidean distance (ED) [400] when the NNS technique
is used.

The results of this pixel-labeling step using the ED and MD are illustrated in Figures 5.11 and
5.12, respectively. The success of the pixel-labeling framework is demonstrated by visual inspection
of the segmented documents (cf. Figures 5.11 and 5.12). The proposed framework gives better
results with the MD-based approach (cf. Figures 5.12) and finds homogeneous regions in the
content of digitized ancient books, i.e. for example on Figure 5.12(a) the graphic regions (green)
and textual regions (blue) are similarly labeled in two different pages of the same book. It is
clear from the four figures 5.12(b), 5.12(a), 5.12(d) and 5.12(c) that the HDIs are segmented into
graphic regions which correspond to an ornament and a drop cap and textual regions. For the
printed “Two fonts and graphics” document category in Figure 5.12(d), the proposed approach
distinguishes two different fonts, the normal (blue) and uppercase (green) fonts. On the other
hand, Figure 5.12(e) shows that for the manuscript “Only two fonts” document category, the
proposed approach discriminates between the noise on the HDI borders and the textual regions
and separates textual regions with different sizes and fonts, italic and uppercase. However, Figure
5.12(f) suggests that for the printed “Only two fonts” document category, the proposed approach
can not discriminate between the normal and uppercase fonts when the MD is used.

1. Purity per block metric (PPB)

Since our goal in this chapter is to find homogeneous or similar content regions defined by
similar textural indices (i.e. we are not interested in an accurate pixel-based segmentation),
the purity per block metric (PPB) (cf. equation 4.3), is computed in this section to validate
and evaluate a set of experiments.

• Euclidean distance (ED) vs. Mahalanobis distance (MD) is used in the NNS
technique

The results of PPB (cf. equation 4.3) are presented in Table 5.2 when the ED and the MD
are used in the pixel-labeling task (cf. block 1 on Figure 5.1, Section 5.3.2.2) and after setting
the number of randomly selected pixels from 10 pages selected randomly from the same book
to 1000 (cf. block 2 on Figure 5.1, Section 5.3.1). We obtain 87%±0.04 and 85%±0.04 mean
PPB when using the ED and MD distances are used in the pixel-labeling task, respectively.
The overall results are quite satisfying, especially for the manuscript category which, contains
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textual (one or two fonts) and non-textual regions. The mean PPB when using the ED and
MD are 91% and 92%, respectively, for the manuscript “One font and graphics” document
category. It can be assumed that manuscripts contain graphic regions that are more compact
and homogeneous than printed documents. 94% and 90% mean PPB are obtained with the
ED and the MD, respectively, for the category of printed documents containing only two text
fonts. The high mean PPB obtained for the printed “Only two fonts” document category
(cf. Figure 5.12(f)) does not signify a good segmentation of the document content according
to different types of content regions, i.e. different text font. However, it does give an idea
about the level of region homogeneity. Hence, further analysis is required with numerous
clustering and classification evaluation metrics.

By comparing the average values of PPB for different document categories, a higher mean
PPB is obtained for pages containing graphics and single text font when using the ED
and the MD. This suggests that the extracted texture features can distinguish textual and
graphical regions. When using the ED, an overall higher value of PPB is observed for printed
documents than when using the MD for manuscripts. However, a higher standard deviation
of PPB is observed when using the ED compared to the MD. Thus, the comparative
analysis of the two distances (ED and MD) demonstrates that the synthesis of PPB values
for different document categories gives different results depending on the context (text vs.
graphics, manuscript vs. printed document). The analysis of PPB is not sufficient and
an additional comparative synthesis is needed, with numerous clustering and classification
evaluation accuracies. Nevertheless, if we compare the visual results when using the ED (cf.
Figure 5.11) and the MD (cf. Figure 5.12), it is clear that the best results are obtained with
the MD.

Table 5.2.: Purity per block metric (PPB) results of the proposed pixel-labeling framework for
DHB content. µ and σ are the mean and standard deviation values of PPB, respectively.
The higher the mean values, the better the results. “?”: NNS with the Euclidean
distance (ED); “??”: NNS with the Mahalanobis distance (MD).

Document categoryDocument categoryDocument category Document contentDocument contentDocument content µ?(PPB)µ?(PPB)µ?(PPB) σ?(PPB)σ?(PPB)σ?(PPB) µ??(PPB)µ??(PPB)µ??(PPB) σ??(PPB)σ??(PPB)σ??(PPB)

Manuscript

One font and graphics 0.91 0.05 0.92 0.01

Two fonts and graphics 0.90 0.07 0.88 0.04

Only two fonts 0.81 0.09 0.85 0.05

OverallOverallOverall 0.870.870.87 0.070.070.07 0.880.880.88 0.030.030.03

Printed

One font and graphics 0.88 0.14 0.77 0.05

Two fonts and graphics 0.82 0.07 0.76 0.04

Only two fonts 0.94 0.05 0.90 0.08

OverallOverallOverall 0.880.880.88 0.090.090.09 0.810.810.81 0.030.030.03

OverallOverallOverall 0.870.870.87 0.080.080.08 0.850.850.85 0.040.040.04

• 1000 vs. 2000 pixels are used in the CCl technique

Since the use of the Mahalanobis distance (MD) in the proposed framework is validated using
the NNS technique in the pixel-labeling task (cf. block 1 on Figure 5.1, Section 5.3.2.2),
we will assess in this section the pixel-labeling results with a variable number of selected
pixels introduced as input in the estimation of the number of book content types and similar
content regions (cf. block 2 on Figure 5.2, Section 5.3.1). Thus, the difference in PPB
accuracy metric is computed for the results of the pixel-labeling task by setting the number
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of randomly selected pixels to 1000 and 2000 in the framework phase: the estimation of
the number of book content types (cf. block 2 on Figure 5.2, Section 5.3.1). On average,
a similar level of pixel-labeling is obtained when 1000 vs. 2000 pixels are used in the CCl
technique (cf. Table 5.3 and Figure 5.13) with an overall difference of 4%. We conclude
that the fixed number of randomly selected pixels introduced in the estimation of the number
of book content types and similar content regions does not have a negative impact on the
results of the pixel-labeling phase of the proposed framework. Thus, we can limit the number
of randomly selected pixels for this estimation to 1000.

Table 5.3.: Difference in PPB for pixel-labeling when 1000 vs. 2000 pixels are used in the CCl
technique.

Document categoryDocument categoryDocument category Document contentDocument contentDocument content PPBPPBPPB

Manuscript

One font and graphics 0.01

Two fonts and graphics 0.06

Only two fonts 0.12

OverallOverallOverall 0.06

Printed

One font and graphics 0.01

Two fonts and graphics 0.02

Only two fonts 0.05

OverallOverallOverall 0.030.030.03

OverallOverallOverall 0.040.040.04

2. Other clustering evaluation accuracies
An additional analysis with different internal and external clustering evaluation indices is
needed in order to evaluate the proposed approach, to validate the external evaluation met-
ric, the purity per block measure (PPB) (cf. equation 4.3) and the choice of computed
distance. In this context, 12 clustering evaluation indices are computed: five internal (Davies-
Bouldin index [391], Dunn index [397], Calinski-Harabasz index [384], Hartigan index [383]
and Krzanowski-Lai index [382]) and seven external (Rand index [401], adjusted Rand index
[402], mutual information measure [403], adjusted mutual information measure [404], J [342],
FM [405] and PPB (cf. equation 4.3)). The higher the mean values, the better the results
(except the Davies-Bouldin index, where lower mean values are better). Numerous clustering
evaluation indices are computed using the results of the pixel-labeling phase of the proposed
framework with the two distances, ED and MD.

Figure 5.7 shows that the best clustering results are obtained with the most computed
evaluation accuracy metrics obtained for the manuscript “One font and graphics” docu-
ment category when using the ED and MD. J and FM are congruent when using MD
in pixel-labeling for the following categories of book: “Manuscript-One font and graphics”,
“Manuscript-Two fonts and graphics”, “Printed-Two fonts and graphics”, “Manuscript-Only
two fonts”, “Printed-Only two fonts” and “Overall”. However, the results obtained using
the two computed distances vary and this is observed with the other evaluation accuracy
metrics. Moreover, the second best result is obtained for the manuscript “Only two fonts”
document category with the following six accuracy clustering metrics: Davies-Bouldin index,
Calinski-Harabasz index, Rand index, J , FM and PPB. This may be explained by the fact
that texture features discriminate between the noise in the HDI and the textual regions (cf.
Figure 5.12(e)). Three measures (adjusted Rand index, mutual information measure and
adjusted mutual information measure) give the second best clustering result for the printed

188



5.4. Experiments and results

“Two fonts and graphics” document category (cf. Figure 5.12(d)). We can confirm that
the probability and information theory based accuracies are relatively concordant. The J ,
FM and rand index show that the lowest values are obtained for the manuscript “Two fonts
and graphics” document category. On the other hand, the lowest outcomes for both the
PPB and Davies-Bouldin indices are observed in the printed “Two fonts and graphics” doc-
ument category. The three probability and information theory based accuracies (adjusted
Rand index, mutual information measure and adjusted mutual information measure) and the
Calinski-Harabasz index, the Hartigan index and the Krzanowski-Lai index, suggest that the
printed “Only two fonts” document category has the lowest outcomes (cf. Figure 5.12(f)). It
should remembered that the various supervised and unsupervised measures do not evaluate
and assess the same aspects. We conclude that the results of the PPB values are relatively
similar to those of the various computed internal and external clustering evaluation indices.
The best clustering results are obtained for the manuscript “One font and graphics” docu-
ment category with the different clustering evaluation metrics. This strengthens our previous
results and confirms our assumption that the texture attributes generally provide the main
orientation of a texture (horizontal orientation for textual regions, although there are many
orientations that are present to different extents in graphic blocks). The slight variability in
the ranking of clustering performance using numerous internal and external clustering mea-
sures together with ED or MD can be explained by the specificity of each clustering accuracy
measure. For instance, the information and probabilistic theoretical measures compare the
distribution of samples in the clustering result and ground-truth by computing the variation
in mutual information.

3. Classification accuracy metrics

To ensure that each pixel is classified correctly and to provide additional insight into the
classification accuracy, the confusion matrix for each document category is used to compute
five measures of classification accuracy: purity (PT ), entropy (E), precision (P ), recall (R)
and classification accuracy rate (CA) (cf. Appendix A and particularly Section A.2.2). To
evaluate documents containing two fonts and graphics (cf. Figures 5.12(c) and 5.12(d)) using
clustering and classification accuracy metrics, all fonts in the text have the same label in the
ground-truth. Tables 5.4 and Figure 5.8 shows the results of these five classification accuracy
measures obtained using the ED and MD in the pixel-labeling task.

We conclude from Tables 5.4 and Figure 5.8 that the results obtained by the numerous com-
puted clustering evaluation measures are coherent with the different classification accuracy
results since a considerable improvement in pixel-labeling is obtained when using the MD,
with overall gains of 6%(P ), 10%(R) and 14%(CA). However, we observe slight drops in the
average of 1%(PT ) and 0.5%(E). This can be explained by the particular inconsistency of
the two classification accuracy metrics which can not indicate precisely the level of accuracy
of the results. The best classification for manuscripts containing one font and graphics, espe-
cially when using the MD in pixel-labeling (i.e. we note gains of 1%(PT ), 0.5%(E), 21%(P ),
20%(R) and 20%(CA)). However, relatively low classification accuracy metrics (58%(P ),
51%(R) and 75%(CA)) are seen for the printed “One font and graphics” document category.
This low values are unexpected for this category since we have demonstrated a PPB of 77%
(cf. Table 5.2) without taking into account the spatial relationships. This may raise questions
about the defined ground-truth which is to a certain extent subjective. Figure 5.9 indicates
the difference between the ground-truth (cf. Figure 5.9(e)) and the clustering results (cf.
Figure 5.9(c,d)). The ground-truth is defined by considering the drop caps as graphic regions
while the small letters at the beginning of each text line are considered as text regions (cf.
Figure 5.9(e)). Nevertheless, the results of pixel-labeling show that the textural character-
istics of each small letter at the beginning of each text line is different from the other text
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Figure 5.7.: Evaluation of the proposed pixel-labeling framework to DHB content by internal and
external clustering accuracy measures performed with the ED and MD in the pixel-
labeling task. 12 clustering evaluation indices are used: five internal (Davies-Bouldin
index, Dunn index, Calinski-Harabasz index, Hartigan index and Krzanowski-Lai in-
dex) and seven external (Rand index, adjusted Rand index, mutual information mea-
sure, adjusted mutual information measure, Jaccard coefficient, Fowlkes-Mallows index
and purity per block measure). The higher the mean values, the better the results (ex-
cept the Davies-Bouldin, where lower mean values are better).

content (cf. Figure 5.9(c,d)). Thus, to deal with this classic problem, it might be possible
to refine the definition of the ground-truth, by taking account of many users’ impressions
of the ground-truth under consideration. Our previous conclusions on the difficulty of the
extracted auto-correlation attributes to separate two or more text fonts (cf. Figure 5.12(f)),
are demonstrated by computing quantitative clustering accuracy, including external and in-
ternal measures. Moreover, calculating the classification accuracy metrics confirms that the
extracted auto-correlation indices can not discriminate between two different fonts in par-
ticular, italic and normal fonts (cf. Figure 5.12(f)). Nevertheless, a slight improvement is
observed for classification accuracy measures with manuscripts containing only two fonts char-
acterized by different sizes (cf. Figure 5.12(e)). This confirms our assumption that texture
features mainly provide the major orientation of the information, i.e. the main orientation
of the italic font is different from the uppercase one. However, satisfying results are obtained
for the printed “Two fonts and graphics” documents (cf. Figure 5.12(d)). Figure 5.12(d)
shows the good results obtained for the segmentation of different kinds of information in the
content of printed documents containing graphics (red) and two different fonts: italics (blue)
and uppercase (green) fonts. Figure 5.12(c) shows that it is not possible to distinguish two
different fonts characterized by different sizes, although the proposed framework separates the
graphic (blue), noise (red) and text (green) regions. The high values for mean P , mean R and
mean CA for the printed “Two fonts and graphics” documents indicate that the proposed
pixel-labeling framework tends to mis-classify fewer pixels than for the “Two fonts and graph-
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ics” manuscripts and indicates that the quality of segmentation and classification depends
on the characteristic information content of the analyzed documents. We obtain 73%(P ),
72%(R) and 75%(CA) for “Two fonts and graphics” manuscripts and 83%(P ), 82%(R) and
82%(CA) for printed documents. This confirms our assumption that the manuscripts contain
graphic regions that are more compact and homogeneous than the printed documents. The
overall results are quite encouraging since we obtain 70%(P ), 70%(R) and 79%(CA) for a
large variety of ancient books that have many of the particularities of HDIs. These results are
based on the extracted texture features, without taking into account the topological or spatial
relationships and with no hypothesis concerning the document layout or the typographical
parameters of the document. High values are obtained for the classification accuracy metrics
(75%(P ), 78%(R) and 82%(CA)) with the manuscript category compared to printed docu-
ments, i.e. difference values of 7%(PT ), 0.30%(E), 11%(P ), 17% (R) and 6%(CA). This can
be justified by the fact that manuscripts are characterized by a particular style which gen-
erates structured textural features, i.e. manuscripts contain drawing regions that are more
compact and homogeneous than the printed documents.

Figure 5.8.: Evaluation of the proposed pixel-labeling framework for DHB content using classi-
fication accuracy measures with the ED and MD in the pixel-labeling task. Five
classification evaluation indices: PT , E, P , R, F and CA. The higher the mean values
are, the better the results (except E, where lower mean values are better).

5.4.2.4. Discussion

In Section 5.4.2, we have demonstrated both qualitatively and quantitatively the effectiveness of
the extracted auto-correlation features performed on the proposed texture-based pixel-labeling
framework for DHB content. The auto-correlation-based pixel-labeling framework provides a good
discrimination of the foreground layers of DHB pages, particularly between text and graphics. This
strengthens and confirms our previous results obtained in Chapter 4 (cf. Section 4.5.1.4) that the
auto-correlation descriptors can distinguish textual from graphic regions of an analyzed HDI.
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(a) (b)

(c)

(d) (e)

Figure 5.9.: The pixel-labeling result vs. ground-truth. Figure (a) illustrates an original gray-scale
image. Figure (b) shows the final result of the pixel-labeling task. Figure (c) shows a
cluster representing the graphics, while Figure (d) illustrates a cluster representing the
text. Figure (e) shows the associated ground-truth.

Concerning the overall results obtained with the proposed auto-correlation-based pixel-labeling
framework of DHB content, 85%(PPB), 79%(CA), 70%(P ) and 70%(R) are noted with a low
processing time and memory complexity. The proposed framework has the advantage that it is
performed in the absence of a hypothesis concerning the document layout (physical structure) or
the typographical parameters of the document (logical structure). In this framework, the number
of book content types is automatically determined using the CCl technique on randomly selected
pixels from ten book pages without taking into account the spatial attributes. This approach is
based on book page analysis using the CCl and NNS techniques to find similarities between the
textural characteristics of the HDI content. In the proposed framework, there is no post-processing
of the segmented documents. The results will be improved if a new task is introduced for the use
of spatial relationships among the selected pixels.

5.4.3. Evaluation and results using the Gabor features

In order to evaluate the robustness of the proposed texture-based pixel-labeling framework for DHB
content on the “DIGIDOC-Framework dataset”, we have also assessed it using the Gabor features.
This section aims at illustrating the framework genericity with respect to the used texture feature
set. As a consequence, our goal is to compare the pixel-labeling results given by the proposed
texture-based framework when using two different kinds of texture features, the auto-correlation
and Gabor descriptors. We compare the pixel-labeling results obtained by performing the proposed
auto-correlation-based pixel-labeling framework for DHB content on the “DIGIDOC-Framework
dataset” (1000 pixels is introduced into the CCl technique and the MD is used in the pixel-
labeling task) with those obtained when replacing the auto-correlation features by the Gabor ones
and leaving all other setting parameters unchanged. Qualitative and numerical experiments are
given to demonstrate the performance of the Gabor-based pixel-labeling framework for DHB content
in Sections 5.4.3.1 and 5.4.3.2, respectively.
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5.4.3.1. Qualitative results

The results of the pixel-labeling step by introducing 1000 pixels into the CCl technique and using
theMD in the pixel-labeling task are illustrated in Figures 5.14. For the manuscript “Two fonts and
graphics” document category in Figure 5.14(c), the proposed Gabor-based framework distinguishes

graphics (red) and text with two different fonts (“Font 1”: text with Sf1 size font (blue) and “Font

2”: text with Sf2 ≤ Sf1 size font (green)). For the manuscript “One font and graphics” document
category in Figure 5.14(a), the proposed Gabor-based framework discriminates graphics (green)
and one text font (blue). We observe that by comparing the two pixel-labeling results using the
auto-correlation (cf. Figure 5.12(a)) and Gabor (cf. Figure 5.14(a)) features, we obtain more
homogeneous regions when using the Gabor feature in the proposed texture-based framework for
the manuscript “One font and graphics” document category. However, contrarily to the obtained
results when using the auto-correlation features (cf. Figure 5.12(e)), our Gabor-based framework
discriminates only between the noise on the DI borders (blue) and the textual regions (green)
and can not separate textual regions with different sizes and fonts, italic and uppercase for the
manuscript “Only two fonts” category (cf. Figure 5.14(e)). This can be justified by the mis-
estimation of the number of clusters by means of the CCl technique. On the other side, for
the printed “Only two fonts” category, the Gabor-based framework (cf. Figure 5.14(f)) performs
better than the auto-correlation-based framework (cf. Figure 5.14(f)) for separating two text fonts,
italic (blue and green) and uppercase (red) fonts. Nevertheless, the pixel-labeling results of the
Gabor-based framework for the “One font and graphics” (cf. Figure 5.14(b)) and “Two fonts and
graphics” (cf. Figure 5.14(d)) printed documents are less satisfactory than those obtained with the
auto-correlation-based framework (cf. Figures 5.12(b) and 5.12(d)). This can be justified by either
the limitations of the Gabor features to separate spatially close various kinds of information or
the mis-estimation of the number of clusters by means of the CCl technique. Hence, the proposed
pixel-labeling framework using the Gabor features is more sensitive to the estimation of the number
of clusters by means of the CCl technique than the auto-correlation ones. This can be explained by
the range changes in Gabor attribute indices regarding the DHB page layout and/or content, and
this can subsequently affect the pixel-labeling results particularly when selecting randomly 1000
foreground pixels from few pages selected randomly from the same book under consideration.

5.4.3.2. Quantitative results

In order to evaluate the robustness of the proposed framework and provide additional insights into
its classification accuracy, we have assessed the pixel-labeling results of the proposed Gabor-based
framework. Tables 5.5 present the performance of the proposed Gabor-based framework performed
with the MD in the pixel-labeling task by computing several clustering and classification accuracy
metrics (J , FM , PPB, PT , E, P , R, F and CA). We conclude from Tables 5.5 and Figures 5.14
that the pixel-labeling results obtained by the numerous computed clustering and classification
evaluation measures are coherent with the different classification accuracy results when using the
Gabor features on the proposed texture-based framework and by introducing 1000 pixels into the
CCl technique and using the MD in the pixel-labeling task. A slight decline in the Gabor-based
pixel-labeling results is observed compared to those obtained with the auto-correlation features,
with overall drops of 1%(E), 1%(P ), 5%(R), 2%(CA) and 4%(F ). This strengthens our previous
observations that the Gabor features fail to separate spatially close various kinds of information due
to the range changes in Gabor attribute indices regarding the DHB page layout and/or content (i.e.
the pixel-labeling results depend on the Gabor attribute indices of the random selection of 1000
foreground pixels from few pages selected randomly from the same book under consideration).
Nevertheless, we note a slight improvement of the purity and homogeneity of the regions, with
gains of 2%(PPB), 4%(PT ). We note that when using the Gabor features on the texture-based
pixel-labeling framework leads to more homogeneous and pure regions than when using the auto-
correlation features on it. We obtain 94%(PPB), 71%(P ), 69%(R), 82%(CA) and 69%(F ) for
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manuscripts and 84%(PPB), 66%(P ), 60%(R), 72%(CA) and 63%(F ) for printed documents.
Similarly to the pixel-labeling results deduced from the auto-correlation-based framework, we state
a considerable outperformance of the pixel-labeling results using the Gabor features for manuscripts
compared to the printed documents (i.e. gains of 10%(PPB), 5%(P ), 9%(R), 10%(CA) and
6%(F )). This confirms our previous assumption deduced when using the auto-correlation features
on the proposed framework that the manuscripts contain graphic regions that are more compact
and homogeneous than the printed documents. The best pixel-labeling performance is noted for
the manuscript “One font and graphics” document category (97%(P ), 95%(R), 97%(CA) and
96%(F )). On the other side, we note that for the other document categories of the “DIGIDOC-
Framework dataset” similar performances are observed (about 60%(F )). Therefore, we also confirm
that the Gabor-based framework has good ability to separate graphics from text regions due to the
particularities of the manuscript style which generates structured textural features.

5.5. Discussion

We note that overall the auto-correlation-based framework performs slightly better than the Gabor
one. The pixel-labeling results depend on the estimation of the number of clusters using the
CCl technique, the selectivity to the book layout and/or content (i.e. layout structure, text vs.
graphics) and also book characteristics (e.g. manuscript vs. printed). Further work needs to be
done in combining various kinds of texture descriptors in order to construct an optimal texture-
based feature set.

The overall results of the proposed texture-based pixel-labeling framework of DHB content are
quite satisfying. However, it is possible to speculate that if we integrate several kinds of post-
processing techniques, we will have better results than those reported in this chapter. It is important
to be noted that we do not assume knowledge about the font size, scanning resolution, column
layout, orientation, etc. of the analyzed DI.

Supported by the fact that pages of the same book usually present strong similarities in the
organization of the HDI information (i.e. layout) and in the graphical and typographical features
(i.e. content) throughout the DHB pages, our objective is to propose an approach that is used on
an entire book instead of processing each page individually, for characterization and categorization
of DHB pages and the segmentation and analysis of DHB content. Nevertheless, it is also important
to point out that the front page of an ancient book is usually different in design, style, layout and
content from other book pages. If an unsupervised clustering is performed over all book pages,
how can the typical features appearing on first page only gain enough weight to appear as an
independent cluster against the features from all other book pages. In future research, this point
will be discussed to present a convenient solution assigning specific processing to the front page of
a book.

The techniques and parameters used in the proposed texture-based pixel-labeling framework of
DHB content, i.e. the clustering method, the standard non-parametric binarization method used to
retrieve only pixels representing the information in the foreground, the sizes of the sliding windows
for the multi-scale approach, the number of selected pixels introduced as input in the estimation
of the number of book content types, the distance used in the NNS technique, are selected based
on work published in the literature and after performing several experiments to choose the best
configuration of the different techniques in the proposed framework. Moreover, a constructive
compromise between computation time and pixel-labeling quality is respected.

5.6. Conclusion

This chapter proposes a generic framework for a texture-based pixel-labeling of DHB content
with no hypothesis concerning the document layout or the typographical parameters (i.e. ty-
pographic/graphical characteristics) of the document. The aim of this framework is to group pixels
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having similar DHB page content type within the content of DHBs by extracting and analyzing
texture features independently of the layout of the pages. It is therefore applicable to a large variety
of books. The proposed framework is based on a feature vector that is composed of texture indices.
Texture features are extracted from the different areas of a page and at several resolutions. The
robustness of the extracted features is used in a parameter-free unsupervised clustering method
which is performed to determine the number of book content types (i.e. defined by similar texture
indices). Moreover, the number of book content types does not need to be known in advance as it
is automatically determined.

The proposed framework has been evaluated on the “DIGIDOC-Framework dataset” which is
composed of 316 pages of HDIs. We conclude that texture features provide a good discrimination
of the foreground layers of DHB pages, particularly between text and graphics. 85% purity per block
accuracy and 79% classification accuracy are obtained for the auto-correlation-based framework,
while 89% purity per block accuracy and 77% classification accuracy are noted for the Gabor-based
framework.
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Chapter 5. A texture-based pixel-labeling framework for digitized historical books

(a) Manuscript-One font and graphics (b) Printed-One font and graphics

(c) Manuscript-Two fonts and graphics (d) Printed-Two fonts and graphics

(e) Manuscript-Only two fonts (f) Printed-Only two fonts

Figure 5.10.: Examples of resulting images of the pixel-clustering task used with the auto-
correlation features on the “DIGIDOC-Framework dataset”. Since the pixel-
labeling task is not processed, the colors attributed to text or graphics may differ
from one DI to another.
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(a) Manuscript-One font and graphics
PPB = 0.91 P = 0.74 R = 0.72 CA = 0.74

(b) Printed-One font and graphics
PPB = 0.88 P = 0.51 R = 0.42 CA = 0.22

(c) Manuscript-Two fonts and graphics
PPB = 0.90 P = 0.75 R = 0.69 CA = 0.80

(d) Printed-Two fonts and graphics
PPB = 0.82 P = 0.70 R = 0.70 CA = 0.66

(e) Manuscript-Only two fonts
PPB = 0.81 P = 0.66 R = 0.57 CA = 0.78

(f) Printed-Only two fonts
PPB = 0.94 P = 0.51 R = 0.52 CA = 0.73

Figure 5.11.: Examples of resulting images of the proposed auto-correlation-based pixel-labeling
framework for DHB content on the “DIGIDOC-Framework dataset”, performed
by introducing 1000 pixels into the CCl technique and using the ED in the pixel-
labeling task. For the same book, each cluster (represented by a given color) repre-
sents a similar or homogeneous region. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one book to another.
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(a) Manuscript-One font and graphics
PPB = 0.92 P = 0.95 R = 0.92 CA = 0.94

(b) Printed-One font and graphics
PPB = 0.77 P = 0.58 R = 0.51 CA = 0.75

(c) Manuscript-Two fonts and graphics
PPB = 0.88 P = 0.73 R = 0.72 CA = 0.75

(d) Printed-Two fonts and graphics
PPB = 0.76 P = 0.83 R = 0.82 CA = 0.82

(e) Manuscript-Only two fonts
PPB = 0.85 P = 0.57 R = 0.70 CA = 0.77

(f) Printed-Only two fonts
PPB = 0.90 P = 0.52 R = 0.50 CA = 0.72

Figure 5.12.: Examples of resulting images of the proposed auto-correlation-based pixel-labeling
framework for DHB content on the “DIGIDOC-Framework dataset”, performed
by introducing 1000 pixels into the CCl technique and using the MD in the pixel-
labeling task. For the same book, each cluster (represented by a given color) repre-
sents a similar or homogeneous region. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one book to another.
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(a) Manuscript-One font and graphics
PPB = 0.91

(b) Printed-One font and graphics
PPB = 0.76

(c) Manuscript-Two fonts and graphics
PPB = 0.82

(d) Printed-Two fonts and graphics
PPB = 0.74

(e) Manuscript-Only two fonts
PPB = 0.78

(f) Printed-Only two fonts
PPB = 0.80

Figure 5.13.: Examples of resulting images of the proposed auto-correlation-based pixel-labeling
framework for DHB content on the “DIGIDOC-Framework dataset”, performed
by introducing 2000 pixels into the CCl technique and using the MD in the pixel-
labeling task. For the same book, each cluster (represented by a given color) repre-
sents a similar or homogeneous region. Since the process is unsupervised, the colors
attributed to text or graphics may differ from one book to another.
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(a) Manuscript-One font and graphics
PPB = 0.91 P = 0.97 R = 0.95 CA = 0.97

(b) Printed-One font and graphics
PPB = 0.78 P = 0.68 R = 0.60 CA = 0.82

(c) Manuscript-Two fonts and graphics
PPB = 0.95 P = 0.65 R = 0.61 CA = 0.73

(d) Printed-Two fonts and graphics
PPB = 0.92 P = 0.62 R = 0.64 CA = 0.62

(e) Manuscript-Only two fonts
PPB = 0.97 P = 0.50 R = 0.50 CA = 0.76

(f) Printed-Only two fonts
PPB = 0.83 P = 0.67 R = 0.57 CA = 0.71

Figure 5.14.: Examples of resulting images of the proposed Gabor-based pixel-labeling framework
for DHB content on the “DIGIDOC-Framework dataset”, performed by intro-
ducing 1000 pixels into the CCl technique and using the MD in the pixel-labeling
task. For the same book, each cluster (represented by a given color) represents a sim-
ilar or homogeneous region. Since the process is unsupervised, the colors attributed
to text or graphics may differ from one book to another.
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Table 5.4.: Quantitative assessment with numerous classification accuracy metrics of the proposed auto-correlation-based framework performed
by introducing 1000 pixels into the CCl technique and using the ED and MD in the pixel-labeling task: purity (PT ), entropy (E),
precision (P ), recall (R), F-measure (F ) and classification accuracy (CA). µ(.) and σ(.) are the mean and standard deviation of (.),
respectively. The higher the mean values, the better the results (except E, where lower mean values are better). For documents
containing two fonts and graphics (cf. Figures 5.12(c) and 5.12(d)), all fonts in the text have the same label in the ground-truth.

Document categoryDocument categoryDocument category Document contentDocument contentDocument content µ(PT )µ(PT )µ(PT ) σ(PT )σ(PT )σ(PT ) µ(E)µ(E)µ(E) σ(E)σ(E)σ(E) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F )

E
D

E
D

E
D

Manuscript

One font and graphics 0.92 0.02 0.36 0.11 0.74 0.38 0.72 0.38 0.74 0.39 0.73 0.38

Two fonts and graphics 0.87 0.07 0.49 0.16 0.75 0.19 0.69 0.16 0.80 0.10 0.72 0.17

Only two fonts 0.80 0.07 0.67 0.16 0.66 0.26 0.57 0.10 0.78 0.09 0.61 0.14

OverallOverallOverall 0.860.860.86 0.050.050.05 0.510.510.51 0.140.140.14 0.720.720.72 0.280.280.28 0.660.660.66 0.210.210.21 0.770.770.77 0.190.190.19 0.670.670.67 0.240.240.24

Printed

One font and graphics 0.82 0.24 0.39 0.53 0.51 0.07 0.42 0.06 0.22 0.27 0.46 0.06

Two fonts and graphics 0.81 0.07 0.60 0.09 0.70 0.17 0.70 0.18 0.66 0.20 0.70 0.17

Only two fonts 0.98 0.01 0.09 0.05 0.51 0.03 0.52 0.03 0.73 0.18 0.51 0.03

OverallOverallOverall 0.870.870.87 0.110.110.11 0.360.360.36 0.220.220.22 0.570.570.57 0.090.090.09 0.550.550.55 0.090.090.09 0.540.540.54 0.220.220.22 0.560.560.56 0.090.090.09

OverallOverallOverall 0.860.860.86 0.080.080.08 0.430.430.43 0.180.180.18 0.640.640.64 0.180.180.18 0.600.600.60 0.150.150.15 0.650.650.65 0.200.200.20 0.620.620.62 0.160.160.16

Document categoryDocument categoryDocument category Document contentDocument contentDocument content µ(PT )µ(PT )µ(PT ) σ(PT )σ(PT )σ(PT ) µ(E)µ(E)µ(E) σ(E)σ(E)σ(E) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F )

M
D

M
D

M
D

Manuscript

One font and graphics 0.93 0.01 0.31 0.06 0.95 0.02 0.92 0.02 0.94 0.01 0.93 0.02

Two fonts and graphics 0.76 0.18 0.61 0.34 0.73 0.15 0.72 0.14 0.75 0.17 0.72 0.14

Only two fonts 0.98 0.01 0.08 0.08 0.57 0.20 0.70 0.30 0.77 0.39 0.63 0.24

OverallOverallOverall 0.890.890.89 0.070.070.07 0.330.330.33 0.160.160.16 0.750.750.75 0.120.120.12 0.780.780.78 0.150.150.15 0.820.820.82 0.190.190.19 0.760.760.76 0.130.130.13

Printed

One font and graphics 0.75 0.05 0.79 0.07 0.58 0.24 0.51 0.02 0.75 0.06 0.54 0.04

Two fonts and graphics 0.82 0.05 0.57 0.13 0.83 0.03 0.82 0.06 0.82 0.05 0.82 0.04

Only two fonts 0.85 0.07 0.54 0.17 0.52 0.13 0.50 0.13 0.72 0.14 0.51 0.13

OverallOverallOverall 0.810.810.81 0.060.060.06 0.630.630.63 0.120.120.12 0.640.640.64 0.130.130.13 0.610.610.61 0.070.070.07 0.760.760.76 0.080.080.08 0.620.620.62 0.090.090.09

OverallOverallOverall 0.850.850.85 0.060.060.06 0.480.480.48 0.140.140.14 0.700.700.70 0.120.120.12 0.700.700.70 0.130.130.13 0.790.790.79 0.130.130.13 0.700.700.70 0.120.120.12
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Table 5.5.: Quantitative assessment with numerous clustering and classification accuracy metrics of the proposed Gabor-based framework
performed by introducing the 1000 pixels into the CCl technique and using the MD in the pixel-labeling task: Jaccard coefficient
(J), Fowlkes-Mallows index (FM), purity per block measure (PPB), purity (PT ), entropy (E), precision (P ), recall (R), F-measure (F )
and classification accuracy (CA). µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher the mean values,
the better the results (except E, where lower mean values are better). For documents containing two fonts and graphics (cf. Figures
5.14(c) and 5.14(d)), all fonts in the text have the same label in the ground-truth.

Document categoryDocument categoryDocument category Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(FM)µ(FM)µ(FM) σ(FM)σ(FM)σ(FM) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB)

M
D

M
D

M
D

Manuscript

One font and graphics 0.95 0.03 0.94 0.02 0.91 0.05

Two fonts and graphics 0.63 0.19 0.76 0.15 0.95 0.04

Only two fonts 0.87 0.09 0.93 0.05 0.97 0.04

OverallOverallOverall 0.820.820.82 0.100.100.10 0.880.880.88 0.070.070.07 0.940.940.94 0.040.040.04

Printed

One font and graphics 0.76 0.20 0.86 0.12 0.78 0.11

Two fonts and graphics 0.58 0.13 0.74 0.09 0.92 0.06

Only two fonts 0.57 0.14 0.72 0.12 0.83 0.07

OverallOverallOverall 0.640.640.64 0.160.160.16 0.770.770.77 0.110.110.11 0.840.840.84 0.080.080.08

OverallOverallOverall 0.730.730.73 0.130.130.13 0.830.830.83 0.090.090.09 0.890.890.89 0.060.060.06

Document categoryDocument categoryDocument category Document contentDocument contentDocument content µ(PT )µ(PT )µ(PT ) σ(PT )σ(PT )σ(PT ) µ(E)µ(E)µ(E) σ(E)σ(E)σ(E) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F )

M
D

M
D

M
D

Manuscript

One font and graphics 0.97 0.02 0.19 0.07 0.97 0.01 0.95 0.03 0.97 0.02 0.96 0.02

Two fonts and graphics 0.95 0.06 0.19 0.24 0.65 0.17 0.61 0.22 0.73 0.24 0.62 0.19

Only two fonts 0.99 0.02 0.05 0.08 0.50 0.01 0.50 0.07 0.76 0.35 0.50 0.04

OverallOverallOverall 0.970.970.97 0.030.030.03 0.140.140.14 0.130.130.13 0.710.710.71 0.060.060.06 0.690.690.69 0.110.110.11 0.820.820.82 0.200.200.20 0.690.690.69 0.080.080.08

Printed

One font and graphics 0.82 0.18 0.47 0.41 0.68 0.19 0.60 0.16 0.82 0.18 0.62 0.13

Two fonts and graphics 0.85 0.10 0.37 0.23 0.62 0.12 0.64 0.15 0.62 0.12 0.67 0.23

Only two fonts 0.77 0.11 0.71 0.20 0.67 0.16 0.57 0.10 0.71 0.14 0.60 0.10

OverallOverallOverall 0.810.810.81 0.130.130.13 0.520.520.52 0.280.280.28 0.660.660.66 0.160.160.16 0.600.600.60 0.140.140.14 0.720.720.72 0.150.150.15 0.630.630.63 0.150.150.15

OverallOverallOverall 0.890.890.89 0.080.080.08 0.330.330.33 0.210.210.21 0.690.690.69 0.110.110.11 0.650.650.65 0.130.130.13 0.770.770.77 0.180.180.18 0.660.660.66 0.120.120.12
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This chapter presents a structural signature based on texture, used for digi-
tized historical book page characterization. The proposed signature is based
on varying low-level features (i.e. texture, shape, geometric and topological
descriptors) and a structural signature. It provides a topological signature
of digitized historical book page according to several criteria, mainly the
layout structure and/or typographic/graphical characteristics of the histor-
ical document image content.
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Chapter 6. A structural signature based on texture for book page characterization

6.1. Introduction

The work conducted in this chapter proposes an automatic characterization approach of DHB
pages. The characterization of a DHB page content is based on topological description involving
texture, shape and geometric features of elements of content. This characterization is embedded in
what we call a structural signature of a HDI. Generating a structural signature for each analyzed
DHB page is carried out in three stages: the first step consists in refining the obtained pixel-labeling
results (cf. Section 5.3.2.2, block 1, Figure 5.1) by taking into account the topological or spatial
relationships between pixels, the second one aims to extract homogeneous regions and the third
one is generating a structural signature of the page layout and content.

First, to refine the pixel-labeling results, the topological relationship between the selected fore-
ground pixels is introduced by integrating a multi-scale analysis of the topological relationship
between pixels.

Secondly, the homogeneous region extraction is performed by combining several points related
to texture-based and classical segmentation methods, that have been reported separately in the
literature. The extraction of homogeneous regions is based on texture features, multi-scale analysis,
an adaptive run-length smoothing algorithm (ARLSA), CC analysis technique and majority voting
approach.

Finally, having extracted homogeneous regions, the topological relationships between regions in
each page are used to construct a texture-based structural signature in the form of a graph. The
obtained signature defines both the spatial organization of the extracted homogeneous texture
regions and the different attributes that characterize those regions.

The proposed DHB page signature extraction process is independent of the layout and content
of the analyzed DHB pages, and hence, it is applicable to a large variety of HDIs. Indeed, it does
not assume a priori knowledge regarding page content and structure.

The remainder of this chapter is organized as follows: Section 6.2 reviews the different tech-
niques, used to ensure an automatic characterization approach of DHB pages based on structural
signatures, with a particular focus on those related to DIA and HDIA. Section 6.3 presents the
proposed approach to generate a structural signature for DHB page characterization. In Section
6.4, we discuss the obtained performance of each step of the proposed structural signature for DHB
page characterization by computing several accuracy metrics. Qualitative results are also given
to demonstrate the performance of the proposed approach. Our discussion and conclusions are
presented in Sections 6.5 and 6.6, respectively.

6.2. Related works

This section reviews the different techniques, used to ensure an automatic characterization approach
of DHB pages based on structural representations, with a particular focus on those related to DIA
and HDIA. First, within this succinct review, the related works on the post-processing approaches
for DI segmentation refinement are discussed in Section 6.2.1. Then, various approaches for region
extraction are described briefly in Section 6.2.2. Finally, a short review of the proposed topological
representation formalisms in pattern recognition fields is presented in Section 6.2.3.

6.2.1. Post-processing approaches for segmentation refinement

For the segmentation result refinement, many researchers have introduced the topological or spatial
relationships between pixels which have not been considered when the extracted texture features
have been analyzed (i.e. the extracted texture features used in the pixel-clustering task). The
introduction of the topological or spatial relationships between pixels as a supplementary task has
the advantage to deal with the non-smoothed boundaries due to the texture feature extraction
from small pre-defined windows [406]. Based on Chang and Kuo [406], the use of a post-processing
labeling task is justified by the two following reasons. Firstly, by using a post-processing labeling
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step (e.g. median filtering and morphology-based approaches), the topological or spatial relation-
ships between pixels are integrated which have not been considered when texture features have
been analyzed. Secondly, Chang and Kuo [406] confirmed that the texture feature extraction task
from small pre-defined windows is not a relevant choice since this technique can generate non-
smoothed boundaries. Thus, by introducing the topological or spatial relationships between pixels,
the segmentation quality or performance would be improved since the variation produced by the
pre-defined sizes of analysis windows can be reduced.

Several methods have been proposed for the segmentation result refinement. For instance, Kumar
et al. [217] used the MRF technique as a post-processing task to exploit contextual information
for the refinement of text extraction and DI segmentation after analyzing the wavelet features.
Etemad et al. [407] performed a weighted majority voting technique in the decision integration
scheme in order to identify text, images and graphical areas from DIs after investigating the wavelet
packets technique. Chang and Kuo [406] applied the median filters to smooth the wavelet-based
segmentation results. For DI segmentation, Jain et al. [188] introduced the CC analysis technique
to obtain smoothed text rectangular blocks after analyzing the Gabor features. The morphological
dilation operators were applied to connected isolated text edges which were extracted by the discrete
wavelet transform for text localization [297]. For a multi-scale segmentation of unstructured DI
pages, Etemad et al. [249] applied the morphological operations (closing operations) on the image
regions after analyzing the wavelet-based features in order to eliminate noise or outliers from the
segmented regions. Palfray et al. [408] integrated the majority voting technique in order to refine
the MRF-based segmentation of ancient newspapers. Charrada and Ben Amara [238] combined
several morphological operations (e.g. erosion) and the CC analysis technique as a post-processing
phase after using GFs for the extraction of different kinds of nets, such as slightly erased lines or
lines with inclinations and curvatures from printed ancient periodicals.

6.2.2. Classical approaches for region extraction

The proposed approaches for homogeneous region extraction have been highly varied in pattern
recognition fields. They depend on the type and complexity of the analyzed patterns. For instance,
Rais et al. [409] categorized the approaches used for textual region extraction into four different
categories. The first class of approaches used for text detection and localization is based on using
stroke information which ensure the analysis of the intrinsic properties of text. The second class
uses an edge-based approach to detect and localize textual regions, by analyzing strength, density or
distribution information from edges. The edge-based methods are fast and have good performance
if they have high contrast differences between the text and background. The third class is based on
CC analysis technique. The use of CC analysis technique ensures the identification of homogeneous
regions after filtering the non-text CCs based on defined geometrical constraints. Rais et al. [409]
stated that the CC analysis methods are robust to font size, but are sensitive to noise. The
last class of approaches used for text detection and localization is based on investigating texture
features. By assuming that text regions are characterized by specific texture patterns, the analysis
of texture descriptors able to segregate textual regions from the background. Rais et al. [409]
asserted that the texture-based methods are insensitive to noise and low-quality images, but they
are time consuming. Gatos et al. [410] categorized the algorithms for page segmentation and
region extraction into three classes: those based on the smearing and labeling regions, the image
profiling in various directions and texture information. They stated that all proposed techniques
in the literature can not achieve interesting results for automatic page segmentation and analysis
of newspaper pages due the particularities of newspaper pages (i.e. haphazard layout of newspaper
articles and their close contact). Thus, they proposed to adapt the classical methods of page
segmentation and to combine them by presenting a complete system based on gradual extraction
of page components for automatic newspaper archive page analysis.

In the literature, the issue of analyzing and segmenting HDIs has been tackled by using the
classical approaches based on strong a priori knowledge (e.g. RLSA, CC analysis, projection
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profiles, morphology). These classical methods presented in the literature which are mainly designed
for particular contemporary DIs, address various issues and have many limitations in the case of
complex and varied DI corpus and HDIs (cf. Section 3.3.1.2). Thus, researchers specialized in DIA
have recently addressed many challenges based on few innovative aspects to adapt the proposed
classical approaches based on strong a priori knowledge for historical DIA. The most popular among
these classical approaches for the case of DIs and particularly HDIs, are those based on data-driven
or bottom-up strategies of analysis, such as morphology-based, CC analysis and RLSA techniques.
These data-driven or bottom-up techniques have been used for DI segmentation for the goal of
identifying homogeneous or similar content regions. For instance, Kim and Kim [175] segmented
DIs and classified the extracted regions (text, picture, table and graph) using principle component
analysis (PCA) algorithm based on analyzing texture features extracted from the GLCM and using
the closing operation. Usually, these techniques use heuristic thresholds or rules to determine values
of the smoothing values, spatial relationships of the extracted CCs or the structuring element size.

However, many methods have been proposed to estimate automatically these thresholds or rules
used for extracting homogeneous or similar content regions in DIs. For instance, Papamarkos et al.
[411] proposed an unsupervised technique to estimate the proper values of the smoothing variables
by calculating the distributions of the black and white run-lengths. The proposed method is based
on determining the global maximums of the histogram of horizontal and vertical black run-lengths
to estimate the mean character length and height, respectively. Sun [412] proposed a modified
version of the RLSA, known as selective CRLA, for Manhattan and non-Manhattan layout DI
segmentation. The proposed selective CRLA was performed on a labeled DI after using a CC
labeling algorithm [413]. The labeled DI which is derived from the input DI, was used to assign
certain labels to the foreground CCs according to their size. Three labels were defined according
to the heights of the foreground CCs for text region extraction.

Konidaris et al. [414] used run-length smoothing in the horizontal and vertical directions for
word segmentation in historical machine-printed DIs. By using dynamic parameters which depend
on the average character height (i.e. the horizontal run-length threshold is experimentally defined
as 50% of the average character height, while the vertical run-length threshold is experimentally
defined as 10% of the average character height), the RLSA is adapted to segmenting historical
machine-printed DIs into words. The average character height was estimated by computing the
maximum value of the histogram with the heights of the CCs of random selected pixels. To group
homogeneous textual regions in historical and degraded machine-printed DIs, Nikolaou et al. [127]
proposed to combine the CC analysis technique with an adaptive RLSA to overcome the drawbacks
of the original RLSA (e.g. grouping inhomogeneous regions or different slanted text lines) [101, 102].
The proposed ARLSA is adapted to DIs containing characters with variable font size (i.e. it can
segment large and small characters). The several thresholds and rules used in their approach was
defined according to the geometric properties of neighboring CCs.

Rais et al. [409] proposed an accurate text detection and localization method in images based on
stroke information and the adaptive RLSA proposed by Nikolaou et al. [127]. Ferilli et al. [415]
used a variant of RLSA which is called run-length smoothing with OR (RLSO) for non-Manhattan
document segmentation [416]. The RLSO was processed by using the OR logical operator instead
of the AND, to identify irregular CCs. The OR logical operator was applied between the horizontal
and vertical smoothing resulting DI, carried out row-wise and column-wise with specified thresholds,
respectively. The horizontal and vertical thresholds were defined based on the spacing distribution
in the analyzed DI by determining the peaks from the cumulative histogram of run-lengths (i.e. the
most prominent peak corresponds to the most frequent spacings in the analyzed DI or homogeneous
spacings deduced from different DI components). Ferilli et al. [415] concluded that the proposed
approach gives a satisfactory results when documents are not complex and they are characterized by
a uniform text font size. Arora et al. [417] proposed a method for Manhattan DI segmentation using
dynamic thresholds and identification of each region type by combining the RLSA and recursive
top-down technique (i.e. projection profiles). The proposed method recursively divided the DI
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into hierarchy of homogeneous regions based on investigating the projection profiles after using
binarization task, noise removal step and the RLSA to first isolate the headings of the analyzed DI.
The threshold values are automatically defined according to the geometric layout of the analyzed
DI (i.e. physical structure and geometric location of DI regions) by computing distances between
horizontal histograms of DI regions. The identification of region types was processed on the basis
of several rules deduced from horizontal and vertical histogram values.

Gatos et al. [410] combined the RLSA and CC analysis technique to distinguish text and im-
age/drawing regions in old newspaper articles. First, they used the CC analysis technique to assign
to every foreground pixel a value according to the height of the box of its connected area for text-tile
block separation. Then, the DI was converted to gray-scale and every pixel was classified to either
normal text or title according to its gray-scale value. Finally, they proposed a method for text
block extraction that is based on the RLSA with adaptive parameters. Gatos et al. [133] proposed
a segmentation method of historical handwritten DIs into text zones and text lines. For text zone
detection, vertical rule lines were detected based on using a fuzzy RLSA [134]. The fuzzy RLSA
was used to partition complex handwritten and historical handwritten DIs into textual regions in
terms of text words or text lines on the one hand, and graphical regions on the other hand. A fuzzy
run-length measure was proceeded for every pixel of the analyzed DI by tracing a background run
starting from a background pixel along two directions, to its left and right (this is for horizontal
runs, otherwise the up and down directions for vertical runs). On the other hand, vertical white
runs and the extracted CCs were afterwards investigated for text line segmentation. LeBourgeois
et al. [9] proposed a data-driven layout segmentation approach based on the extracted CCs. To
localize the main body of the text from Arabic manuscripts, they also estimated the average size
of text symbols by computing the average size of all CCs. Then, they computed a text probabil-
ity value for each extracted CC. Finally, they estimated an automatic threshold for each profile
(horizontal and vertical) obtained from the entire image to detect the main body of a text. Ramel
et al. [72] evaluated various traditional methods used for segmentation of historical printed DIs.
They highlighted the limits of the traditional methods to segment HDIs. Thus, they proposed
a hybrid segmentation algorithm based on CCs for user-driven page layout analysis of historical
printed books.

6.2.3. Topological representation formalisms in pattern recognition fields

To provide an additional structured semantic to the extracted low-level features, the relationships
between different objects in images are mainly analyzed. Since a data-driven or bottom-up strat-
egy of analysis has been adopted in this work which is based on low-level data mining of pixels
(e.g. texture, position, shape, geometry), we will be focusing on spatial or topological represen-
tation formalisms in pattern recognition fields. The characterization of the spatial relationships
between objects in images provides a structured semantic that strengthens the low-level techniques
of visual content image representation. Brunet et al. [418] proposed to describe the spatial rela-
tionships between objects contained in images for bridging the gap between low-level or pixel-based
descriptors and semantic information. They stated that describing the topological or spatial rela-
tionships ensures the integration of strength semantic and enrichment of low-level image processing
techniques.

Characterizing and categorizing DIs in the context of DIA is firstly faced by the following chal-
lenging fundamental notion of pattern recognition fields: the notion of similarity and distance
between two objects or patterns. The similarity measurement is mainly based on the definition and
selection of descriptors characterizing the patterns under consideration in the similarity estimation.
These descriptors consist of measures, attributes or primitives extracted from the analyzed objects
or patterns. They should be relevant to characterize the analyzed objects or patterns by constitut-
ing and structuring the feature space in which the similarity estimation will be performed. Then,
by measuring mathematically the distance differences between the descriptors of the two analyzed
objects or patterns, their degree of similarity can be deduced. Indeed, a pattern “A” is similar
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to a pattern “B” if the distances between their descriptors are “small”. In fact, in the context of
CBIR systems, the idea consists in providing an image query to a developed CBIR system that
will retrieves within a database all images similar to the defined one in the query according to a
pre-set criterion, based on computing the differences between the image low-level or pixel-based
descriptors.

Nevertheless, it is worth noting that the choice of low-level or pixel-based descriptors and distance
types has a significant impact when computing the differences between the pattern descriptors to
deduce their degree of similarity. Moreover, finding adequate representation formalisms which are
able to model the main characteristics of the pattern under consideration, is a crucial task in
pattern recognition. These representation formalisms can be of different natures: spatial, temporal
or conceptual, etc. Hudelot et al. [419] stated that image interpretation is a complex task. The
existing state-of-the-art approaches for image interpretation are mainly based on strong a priori
knowledge, and they are dependent on the image type, complexity, etc. The image interpretation
approaches proposed in the literature has been often criticized for not being generic and the high
requirement for adequate a priori knowledge acquisition and representation. However, it has been
established that the spatial relations between object structures in images play a crucial role for
image interpretation and structure recognition. Moreover, they are less prone to variability and
complexity of objects in images than the intrinsic characteristics of objects. In addition, they are
able to handle with similar appearance objects in images. Nevertheless, when a fine description
of spatial relationships is required, it should be probably more appropriate to use the geometric
approaches that have the advantage of the image transformation invariance.

Brunet et al. [418] categorized the topological or spatial representation formalisms into two
classes: implicit and explicit approaches.

• Implicit approaches:
The implicit approaches produce an overall representation of the existing spatial relationships
between all objects in the analyzed image. They are well suited to specific applications, where
the goal of image interpretation consists in looking for a spatial configuration of particular
objects is required, such as in the fields of face recognition (after face detection task) or
medical imaging. Examples of implicit approaches include strings (or 2-D-string such as 2-D
C-string [420], 2-D-S-tree [421], etc.), trees [422], graphs (e.g. adjacency or neighborhood-
based inference strategy [423]), etc. For this kind of topological representation formalisms, an
inference with respect to the information contained in the representation model is required
to deduct all the spatial relationships between objects. In addition, none of these implicit
approaches proposes a solution to avoid the complete reconstruction when adding or removing
an object in images.

• Explicit approaches:
On the other side, the explicit approaches produce a detailed structural representation where
all the spatial relationships between objects are characterized. They are well suited to more
dynamic scenarios where the parts of images or even simply interest objects can be defined
by the user. In addition, they are more appropriate for CBIR tools in collections of different
types of images, where the use scenarios vary and content may be enriched (e.g. Web images,
personal photo albums). Examples of explicit approaches include matrices (e.g. unique bit
pattern (UBP) matrix [424]), n-uplet lists (e.g. 9-direction spanning area (9D-SPA) [425]),
signature files [426], bin-trees [427], etc. For this kind of topological representation formalisms,
there are no inferences pertaining to deduct the spatial relationships between all objects in
images.

Nevertheless, Brunet et al. [418] stated that the most explicit approaches proposed in the lit-
erature describing the spatial relationships between pairs of objects in images can be represented
by an attributed relational graph (ARG) [428]. Thus, by using the ARG formalism, the similarity
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between two images can be computed and subsequently the graph or sub-graph-matching can also
be approached.

In our view at an operational level, the topological or spatial representation formalisms integrate
a range of topics related to knowledge management process from high-level using ontology towards
low-level using image segmentation. In fact, they can be classified into several categories: ontology,
statistical and structural representations.

6.2.3.1. Spatial ontology representation

Spatial ontology is considered as a conceptual representation used to model spatial or topological
relationships between objects in images and subsequently to produce a knowledge-base of extracted
regions. Clementini and Laurini [429] stated that using spatial ontology is required to deal with
multiple geometric representations and contextual information. The use of spatial ontology con-
tributes to reducing the semantic gap between the low-level data and thesaurus semantics.

For instance, De La Heras [430] proposed a knowledge-based model for visual understanding
of architectural drawing documents. The proposed model is based on an ontological definition
of the domain and real data to perform contextual reasoning and detect semantic inconsistencies
within the data. Three main tasks are performed to construct this model: First, symbols from
the architectural drawing documents are detected. Then, the structural relations between these
symbols are extracted. Finally, the modeling of the knowledge that permits the extraction of the
semantics is performed using an ontological definition of the domain and real data. De La Heras
[430] stated that the ontological definition was nor a straightforward step neither a fast task due
to the multiple inconsistencies found in the architectural drawing document database.

Coustaty et al. [431] introduced an ontology-based approach on images of drop-caps to deduce
automatically semantic information from pixel data. A drop cap is described by a set of extracted
regions. The regions were extracted by segmenting a drop cap into main shapes using automatic
image processing algorithms proposed in [432, 15]. In fact, the proposed ontology is developed on
the basis of a number of low-level features (e.g. area, eccentricity, color) computed from extracted
image regions of drop caps and their spatial relationships (e.g. spatial position such as the center
of the image or near the sides). In addition, it combined the knowledge of historians using semantic
information describing the drop cap content. The goal of the proposed ontology consists in deducing
an automatic annotation of semantics of a region using low-level features.

Hudelot et al. [433, 419] proposed an ontology of spatial relations enriched by fuzzy represen-
tations of concepts, in order to guide image interpretation and recognize the structures that it
contains. The recognition of the structures in images is based on structural information on the
spatial arrangement of these structures. The fuzzy representations of concepts ensure the defini-
tion of the structure semantics (i.e. the semantics of the spatial relations) and characterize the
relation between these concepts (which are often expressed in linguistic terms) and the low-level
information that can be extracted from images. The goals of the fuzzy spatial relation ontology
consist in deducing spatial reasoning operations in the images and guiding image interpretation
tasks (e.g. localization of objects, segmentation, recognition).

However, the importance of semantics in images has been highlighted in different domains and
a growing interest in spatial ontology representation can be observed due the generecity of all
concepts that are included in an ontology, modeling complex spatial relations with ontology is still
an open question. In addition, semantics can vary a lot depending on the context. Moreover, it is
quite difficult to define the proper semantics and the associated fuzzy representation [433, 419].

6.2.3.2. Statistical and structural representations

Two major families of approaches related to feature representation have been reported in pattern
recognition literature, statistical and structural representation approaches. Particularly for DI
representation, the statistical and structural approaches are broadly applied [14, 15].
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1. Statistical representations
In a statistical representation, each pattern is represented by a Nf -D feature vector. Indeed, a
feature vector (V f ) is considered as a point in a real (<) feature vector space of Nf dimensions

(i.e. V f = (x1, . . . , xNf ) ∈ <Nf
). Then, a pattern is characterized by Nf -D feature vector.

For example, if our goal is extracting color characteristics of an image, a multi-dimensional
histogram of the distribution of color in an image which is called color histogram. The color
histogram is performed to characterize a colorimetric space of representation of the colors in
three dimensions called space RGB (red, green and blue color space) [434]. A color histogram
of an image is a vector with Nf elements (x1, . . . , xi, . . . , xNf ), where xi denotes the number
of pixels having the color i. As shown in Figure 6.1(b), the color histogram of the image
in Figure 6.1(a) is represented with three colors (red, green and blue). Indeed, the feature
vector V f = (11113, 8281, 10048) characterizes the image in Figure 6.1(a), based on color
descriptors.

(a) Original image (b) Color histogram

Figure 6.1.: Example of a statistical representation of a pattern using a feature vector based on
color descriptors (V = (11113, 8281, 10048)).

Then, a pattern classification task can be processed using a clustering technique on the
computed feature vectors. The idea consists in dividing the Nf -D space into disjoint regions
in such a way that each region represent a different class pattern. Jain et al. [149] summarized
and compared some of the well-known statistical approaches used in various stages of a pattern
recognition system. We have already used in Chapters 4 and 5 statistical representations to
group pixels sharing similar texture characteristics.

It is worth noting that the use of feature vectors as statistical representations has several
significant advantages. The different forms of distances between vectors and a set of mathe-
matical tools or notions available in a vector space (e.g. computing the sum, product, mean,
median, center) can be exploited and investigated in a feature vector space. In addition,
a large number of clustering techniques, neural networks and decision theoretic methods
with low computational complexity of algorithms that can use feature vectors in the case
of statistical pattern recognition. Nevertheless, the use of feature vectors as statistical rep-
resentations has numerous drawbacks. Mainly, in pattern recognition application, similar
pre-defined sizes of vectors is usually needed, regardless the nature, size and complexity of
the analyzed patterns. Moreover, with using feature vectors as statistical representations, the
spatial, topological or binary relationships between the different components of the analyzed
patterns that might exist, can not be characterized or described. Hence, separate values of
features are only considered in a statistical approach [14].

2. Structural representations
According to the Canadian psychologist Donald Olding Hebb, the human cognitive system
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perceives better the “distributed” nature of a representation than a holistic one of a pattern,
due the distributed nature of neural representations [435]. The idea consists in using a
specific spatial representation which is called “distributed” representation, that many cells of
the nervous system can participate for learning and recognition. Extrapolating on this idea,
the use of a structural approach based on decomposing a pattern into a number of distinct
entities or simple separate components, is important for pattern recognition fields.

In a structural approach, each pattern is represented by a structure. The objective of a
structural approach consists in defining a generic structural representation ensuring the char-
acterization of the distinct simple entities composing a pattern and the spatial or topological
relationships between them. Among the most important and best known of structural repre-
sentations in pattern recognition fields, we mention as examples hyper-graphs, graphs, trees
and strings. The various kinds of data structures referred to as trees and strings are algorith-
mically considered as special cases of graphs [436, 437, 438, 439]. Hyper-graphs, graphs, trees
and strings are considered as useful symbolic data structures or structural representations
used in pattern recognition fields (cf. Figure 6.2):

• An hyper-graph is considered as the most general formalism of structural represen-
tations in pattern recognition. It is a generalization of a graph in which an edge can
connect two or more vertices (cf. Figure 6.2(a)).

• A graph (G) is a well-known formalism of a structural representation in pattern recogni-
tion. It describes a complex pattern through the different elementary entities composing
it (i.e. graph vertices or nodes) and the relational properties between them (i.e. graph
edges). Hence, it is composed of a finite set of vertices or nodes, connected by a set of
edges (cf. Figure 6.2(b)). Vertices or nodes (Gv) represent distinct simple entities com-
posing a complex pattern under consideration. Edges (Ge) represent the relationships
between each two entities or parts of the analyzed pattern, where each edge connects two
nodes in the graph G (i.e. Ge = (Gsv, G

d
v), such that both Gsv and Gdv are two vertices

that belong to the set Gv).

• A tree is a graph in which any two vertices are connected by exactly one path (cf. Figure
6.2(c)).

• A string is a tree whose vertices are connected to at most two other vertices, i.e.
sequence of vertices (cf. Figure 6.2(d)).

(a) Hyper-graph (b) Graph (c) Tree (d) String

Figure 6.2.: Kinds of structural representations.

A structural approach has more developed representational capabilities than a statistical
one, since a feature vector can be modeled using a structural representation but not vice
versa (i.e. a vector can be represented by a graph in which nodes or vertices correspond to
feature vector elements). The above mentioned limitations of using statistical representations
with feature vectors, mainly the size constraint and lacking ability of integrating potential
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relationships between distinct simple entities composing a pattern, can be overcome by using
graph-based representations. Note that these potential relationships between distinct simple
entities composing a pattern can be of different natures (i.e. spatial, temporal or conceptual).
Indeed, symbolic data can be integrated by means of edges in a structural representation
to model spatial or topological relationships between distinct simple entities composing a
complex pattern. In addition, the numbers of vertices and edges are neither limited nor pre-
defined, and it can be adapted to the size and the complexity of each individual pattern under
consideration. Moreover, two structural representations or graphs with different numbers of
vertices and edges can be compared. Conversely, when using statistical representations with
feature vectors in comparing two patterns, feature vectors defined in the same dimensional
vector space are usually required [14].

However, the significant increase of the complexity of many algorithms using graph-based
representations is considered one serious limitation of using graphs compared to statistical
representations using feature vectors. For instance, the comparison of two feature vectors
takes linear time with respect to the length of the two vectors, while the comparison of two
graphs for isomorphism takes exponential time (cf. Section B.8) [440, 441, 439]. But, thanks
to the improvement of computer capacities, structural representations have become more and
more popular, and they have been intensively used in different fields of pattern recognition
and machine vision [441]. For instance, graphs have been studied with emerging interest in
the fields of bio-informatics and chemo-informatics [438, 442, 443, 444, 445]. Graph-based
representations have proven to be flexible in a wide range of image types [83]. Hence, there is
a growing interest in using graph-based representations in many applications of image recog-
nition and classification, thanks to the inherent flexibility, generality and ability of graphs to
represent both properties of entities and their potential spatial or topological relationships
[446, 447, 448]. Recently, several graph-based applications have been developed on different
fields, such as chemistry, Web and image-related tasks like image classification and retrieval
[449]. A number of works based on structural approach have been proposed for fingerprint
classification [450, 451] and diatom identification [452, 453]. Another field of research where
graphs have been recently investigated and examined to detect network anomalies and predict
abnormal events [454, 455, 456].

The use of the structural representations or graphs is not new for the DIA community. Nu-
merous studies based on graphs have been proposed for different kinds of DIs (e.g. HDIs,
contemporary DIs, graphical DIs such as maps, flowcharts, electrical, architectural and engi-
neering drawings). Some studies looked at the whole DI, while others examined predefined
part of them, such as the graphical images (e.g. drop caps [15, 83], symbols [81]) or the
textual parts (e.g. characters [457], words [82]). These research studies have been proposed
for various DIA tasks (e.g. segmentation, indexing, spotting, retrieval, recognition, analysis).
For instance, graph-based structures have been used for graphical symbol [458, 459] and char-
acter [460, 461] recognition. Moreover, graphs have found widespread applications in Web
documents [462, 463, 464].

In the context of the NaviDoMass project, Jouili et al. [15] proposed a structural-based
framework for drop cap clustering based on a graph-matching task. They proposed a graph-
based representation for drop caps, and they compared their proposed representation with a
statistical one based on the generic Fourier descriptor (GFD). They concluded that the results
provided from the use of the GFD are the lower ones, and the structural-based representation
is more appropriate to handle images of drop caps than the statistical one.

In literature, many research studies investigated graph-based structures to represent an image
with a graph [465, 466, 467]. For instance, in Figure 6.3(c), an image (cf. Figure 6.3(a)) is
represented by a graph based on region-based segmentation approach (cf. Figure 6.3(b)). In
a graph-based representation, vertices (Gv) and their attributes (Av), describe the segmented
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regions, while edges (Ge) and their attributes (Ae) describes the interrelationships between
the Gv. When additional information is integrated in Gv and/or Ge, the designed graph is
considered as attributed. This information is called attributes (Av and/or Ae). The attributes
can be numeric and/or symbolic labels (i.e. scalar values characterizing the segmented regions
and their interrelationships) or more complex descriptions such as strings or feature vectors.
A brief review of the basic definitions and concepts of graphs is presented in Appendix B and
particularly in Section B.8.

(a) Original image (b) Segmented image (c) Graph

Figure 6.3.: Example of a structural representation of a pattern using a graph.

6.3. Proposed structural signature for digitized historical book page
characterization

Figure 6.9 illustrates the detailed schematic block diagram of the proposed structural signature for
DHB page characterization. First, to refine the pixel-labeling results, the topological relationship
between the selected foreground pixels is introduced by integrating a spatial multi-scale analysis
of majority votes. Secondly, the homogeneous region extraction is processed by combining sev-
eral points related to texture-based and classical segmentation methods, that have been reported
separately in the literature. The extraction of homogeneous regions is based on texture features,
multi-scale analysis, an ARLSA, CC analysis technique and majority voting approach. Finally,
having extracted homogeneous regions, the topological relationships between regions in each page
are used to construct a texture-based structural signature in the form of a graph. The obtained
signature defines both the spatial organization of the extracted homogeneous texture regions and
the different attributes that characterize those regions.

6.3.1. Pixel-labeling refinement

The pixel-labeling task consists in labeling independently each foreground pixel based on analyzing
texture features on different sizes of sliding windows. Nevertheless, due particularly to the presence
of noise, the foreground pixels will be prone to incorrect labeling. However, based on the fact that
the neighboring pixels have higher probability to belong to the same page content type, the mis-
labeling errors can be corrected (i.e. the neighboring pixels should have the same label, except for
the pixels belonging to different page content types.). As a matter of fact, a refinement task of the
pixel-labeling results can improve significantly the overall results.

Thus, to refine the pixel-labeling results (cf. Figure 6.4(b), Section 5.3.2.2, block 1, Figure
5.1), a first step called “pixel-labeling refinement”, is introduced in the proposed algorithm of
homogeneous region extraction from HDIs by taking into consideration the topological or spatial
relationships between the selected foreground pixels and integrating the spatial multi-scale analysis
of majority votes. First, the Euclidean distance (ED) between each computed Gabor feature vector
of the selected foreground pixel (Vpf ), and the Gabor feature vector of the centroid of the cluster
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belonging to it (V c
pf

) is calculated (the centroid of the cluster is computed regarding the extracted
Gabor features and not regarding the spatial descriptors). Then, the foreground pixels are sorted
in descending order according to the computed ED values in such a way that the first processed
foreground pixel is the one that has a higher ED value. The higher the value of the computed
ED, the higher probability that the foreground pixel is improperly labeled, since it is far from the
centroid of the cluster it belongs to. Thus, the first processed foreground pixels are those that have
high values of ED by using the multi-scale majority voting technique. By performing the spatial
multi-scale approach in the majority voting technique, small isolated groups of mis-labeled pixels
will be labeled correctly. For each selected foreground pixel, the pixels defined at each size of sliding
windows are categorized and summed according to the label. Then, the maximum value among the
cluster labels for the different pre-defined sizes of sliding windows is selected. Indeed, a local decision
on the label of each selected foreground pixel is taken using the maximum number or majority of
pixel labels which is performed at the same four pre-defined sizes of sliding windows in the texture
feature extraction step (i.e. (16× 16), (32× 32), (64× 64) and (128× 128)). Afterwards, the next
processed foreground pixel is one that has a smaller ED value than the former one. The labels
of foreground pixels are updated on each run of the multi-scale majority voting technique on each
foreground pixel to ensure a relevant refinement of the pixel-labeling results. Since the “pixel-
labeling refinement” step of the proposed algorithm of homogeneous region extraction from HDIs
has been performed, a refined pixel-labeled DI is obtained (cf. Figure 6.4(c)). Figure 6.4 illustrates
the resulting DI derived from the “pixel-labeling refinement” step of the proposed algorithm of
homogeneous region extraction from HDIs.

The “pixel-labeling refinement” step of the proposed algorithm of homogeneous region extraction
from HDIs is defined according to the algorithm 1. Some steps in the algorithm 1 are shown in
red color. This coloring is meant to highlight the main computation steps related to the proposed
algorithm for refinement of pixel-labeling results.

Figure 6.5 illustrates the intermediate resulting DIs derived from the “pixel-labeling refinement”
step of the proposed algorithm of homogeneous region extraction from HDIs (cf. Figure 6.9) with
the spatial multi-scale majority voting technique. We note that the small isolated groups of pixels
(blue) have been relabeled as graphical pixels (green).

6.3.2. Post-processing

As already seen on the proposed algorithm of homogeneous region extraction from HDIs (cf. Figure
6.9), our goal is to find homogeneous regions defined by common characteristics or similar texture
features as easily, quickly and automatically as possible. We need to identify few groups of pixels
sharing common characteristics or similar textural properties at this stage in order to extract
homogeneous regions (i.e. to partition text into columns or text blocks, and to identify the graphical
regions).

So since the “pixel-labeling refinement” step of the proposed algorithm of homogeneous region
extraction from HDIs has been performed, our output data consists of a refined pixel-labeled DI
(Imageref , cf. Section 6.3.1, Figure 6.6(c)). Thus, the goal of the post-processing step consists
in grouping pixels which share common characteristics or similar textural properties from the
Imageref to find homogeneous regions from HDIs. The post-processing task is conceptualized by
three modular processes:

1. Connected component extraction and labeling (cf. Section 6.3.2.1),

2. Color layer separation (cf. Section 6.3.2.2),

3. Adaptive run-length smearing algorithm (cf. Section 6.3.2.3).

Figures 6.6 and 6.7 illustrate the intermediate results of the different tasks performed to extract
homogeneous regions from HDIs.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.4.: Illustration of the resulting DI derived from the “pixel-labeling refinement” step of
the proposed algorithm of homogeneous region extraction from HDIs, using the auto-
correlation features. Figures (a) and (e) show an example of HDI (as an input) and a
zoomed region of (a), respectively. Figures (b) and (f) illustrate the pixel-labeled DI
of the analysis of the extracted Gabor features (graphical regions (green) and textual
regions (blue)) and a zoomed region of (b), respectively (cf. Section 5.3.2.2, block 1,
Figure 5.1). Figures (c) and (g) depict the outputs of the resulting DI derived from
the “pixel-labeling refinement” step of the proposed algorithm of homogeneous region
extraction from HDIs and a zoomed region of (c), respectively. Figure (d) illustrates
the selected region (shown with a red color rectangle) of the cropped image (e).

6.3.2.1. Connected component extraction and labeling

We aim in this step to extract and label CCs from the DI under consideration. The labeling of the
extracted CCs is performed by retrieving the label of the most represented pixels. A binarization
step is firstly performed using a standard parameter-free binarization method, the Otsu’s method,
on the DI under consideration (cf. Figure 6.6(a)) to obtain a binarized DI (Imageb, cf. Figure
6.6(b)) and subsequently to retrieve the CCs. Then, the majority voting technique is applied on
each extracted CC from the Imageb by computing the maximum number or majority of pixel labels
belonging to the localized CC on the Imageref (cf. Section 6.3.1, Figure 6.6(c)). Using the majority
voting technique ensures the labeling of the extracted CCs (CCb) from the Imageb. Therefore,
the extracted CCb from the Imageb are labeled according to the obtained refined pixel-labeling
results in the “pixel-labeling refinement” step of the proposed algorithm of homogeneous region
extraction from HDIs (Imageref , cf. Section 6.3.1, Figure 6.6(c)). The resulting DI derived from
the labeling task of the CCb according to the obtained refined pixel-labeling results in the “pixel-
labeling refinement” step of the proposed algorithm of homogeneous region extraction from HDIs
(Imageref , cf. Section 6.3.1, Figure 6.6(c)) by using the majority voting technique is illustrated in
Figure 6.6(d). Since the CCb are labeled according to the Imageref , a pixel-labeled DI is produced
(Imagemv).
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Algorithm 1 Refinement of pixel-labeling results

1: i ← 1
2: while i ≤M do
3: Compute the ED(i) between Vpf and V c

pf
4: i ← i + 1

5: Sort the foreground pixels in descending order according to the computed ED
6: Determine the number maximum of clusters kmax

7: i ← 1
8: while i ≤ M do
9: k ← 1

10: while k ≤ kmax do
11: acck ← 0
12: j ← 1
13: while j ≤ Nw do
14: l ← 1
15: while l ≤ number of pixels in Nw do
16: if label(l) = label(k) then
17: acck ← acck + 1

18: l ← l + 1

19: j ← j + 1

20: k ← k + 1

21: newLabel ← label(max
k

(acck ))

22: if label(i) 6= newLabel then
23: Update the label: label(i)← newLabel
24: else
25: Keep the same label: label(i)

26: i ← i + 1

where M and Nw denote the number of foreground pixels and number of sliding windows, respec-
tively.

6.3.2.2. Color layer separation

The color layer separation task ensures the classification of the extracted CCs (CCmv) from the
Imagemv according to their labels (i.e. content type). When the CCmv are separated according to
their labels, the issues caused by the complex, dense and overlapping document layout of HDIs when
grouping pixels will be overcome. The color layer separation task is performed on the Imagemv
to split the CCmv according to their labels (i.e. color). Therefore, a DI containing only single
color CCs is generated for each color layer. For instance, in the example illustrated in Figure 6.6,
there are two colors representing separately the graphical (blue) and textual (green) CCs in Figures
6.6(e) and 6.6(i), respectively.

6.3.2.3. Adaptive run-length smearing algorithm

The determination of homogeneous regions is based on identifying the largest CCs. As a conse-
quence, by replacing a sequence of background pixels with foreground ones and afterwards grouping
pixels which share common characteristics or similar textural properties from the refined pixel-
labeled DI, the extraction and identification of homogeneous regions will be more accurate and
relevant. Indeed, the idea of this step is to fill automatically the space within each CC to partition
text into columns or text blocks on the one hand, and to identify the graphical regions on the other
hand.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6.5.: Illustration of the intermediate resulting DIs derived from the “pixel-labeling refine-
ment” step of the proposed algorithm of homogeneous region extraction from HDIs
with the spatial multi-scale majority voting technique and the auto-correlation fea-
tures. Figures (a), (f) and (k) illustrate an example of HDI (as an input), a pixel-
labeled DI and a refined pixel-labeled DI, respectively. The selected spatial position of
the cropped images is shown with a red color circle in (a). Figure (f) depicts a refined
pixel-labeled DI (the resulting DI derived from the “pixel-labeling refinement” step of
the proposed algorithm of homogeneous region extraction from HDIs). Figures (b),
(g) and (l) show (16× 16) windows of an input DI, a pixel-labeled DI and a refined
pixel-labeled DI, respectively. Figures (c), (h) and (m) show (32× 32) windows of an
input DI, a pixel-labeled DI and a refined pixel-labeled DI, respectively. Figures (d),
(i) and (n) show (64× 64) windows of an input DI, a pixel-labeled DI and a refined
pixel-labeled DI, respectively. Figures (e), (j) and (o) show (128× 128) windows of an
input DI, a pixel-labeled DI and a refined pixel-labeled DI, respectively.

So an adaptive RLSA (ARLSA) is proposed in this work which is a modified version of the
state-of-the-art RLSA [102]. The RLSA studies the spaces between black pixels in order to link
neighboring black areas by applying the run-length smearing both horizontally and vertically by
means of a logical AND operation. It operates by replacing a horizontal (vertical, respectively)
sequence of background pixels with foreground ones if the number of background pixels in the
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horizontal (vertical, respectively) sequence is smaller or equal to a pre-defined horizontal threshold
(Th) (vertical threshold (Tv), respectively). In this work, the proposed ARLSA applies the run-
length smearing both horizontally and vertically by means of a logical OR operation. The idea
of the proposed ARLSA which is based on character size, consists in determining low values of
horizontal and vertical thresholds to identify the inter-character and inter-line spaces, respectively.
In addition, the proposed ARLSA determines automatically the horizontal (Th) and vertical (Tv)
thresholds which correspond to the run-length smoothing values. The quality of the RLSA results
depends on setting the proper thresholds. Setting specific values to the thresholds is a delicate
issue since it must be adapted to the peculiar DI layout features. Indeed, too high threshold values
can wrongly merge different content blocks of the analyzed DI, while too low ones can produce an
over-segmented DI. Therefore, we propose a technique for determining automatically the proper
values of Th and Tv.

To obtain the proper values of Th and Tv, the two histograms of the widths and heights of the
extracted CCs are examined, respectively. These two histograms gives the distributions of the
widths and heights of the extracted CCs from a HDI. The estimation of the horizontal threshold
(Th) (vertical threshold (Tv), respectively) is based on the determination of the global maximum
of the histogram of the widths of the extracted CCs (GMHw) (heights of the extracted CCs
(GMHh), respectively). The GMHw (GMHh, respectively) gives mainly information about the
mean character length (height, respectively). Nevertheless, due particularly to the characteristics
of HDIs linked to the presence of noise and degradation caused by copying, scanning and aging
(staining, mold or moisture and faded out ink and uneven lighting due to folded and corrugated
parchment or papyrus, etc.), the two estimated global maximums of the two histograms of the
widths and heights of the extracted CCs correspond usually to the width and height of noise CCs.
Thus, we need to exclude the CCs corresponding to noise by defining a rule when analyzing these
two histograms. Indeed, to link horizontally (vertically, respectively) neighboring black areas, if
the global maximum of the histogram of the widths of the extracted CCs (GMHw) (heights of the
extracted CCs (GMHh), respectively) is smaller to a pre-defined threshold (Tc), GMHw is equal
to Tc (GMHh is equal to Tc, respectively), otherwise Th (Tv, respectively) is equal to ch ×GMHw

(cv × GMHh, respectively). Where ch, cv and Tc have been experimentally determined, and they
are equal to 1.1, 1.5 and 10, respectively. Tc corresponds to the pre-defined threshold which
characterizes the CCs corresponding to noise. Tc is used to exclude the CCs corresponding to
noise. ch and cv are the pre-defined weights for determining the horizontal and vertical thresholds
Th and Tv, respectively. The estimation of the horizontal and vertical run-length smoothing values
(Th and Tv) are defined according to the two algorithms 2 and 3, respectively. Some steps in
the two algorithms 2 and 3 are shown in red color. This coloring is meant to highlight the main
computation steps related to the proposed algorithms for estimation of horizontal and vertical
run-length smoothing values.

Algorithm 2 Estimation of horizontal run-length smoothing value

1: function Estimation of Th(GMHw ,Tc)
2: if GMHw ≥ Tc then
3: Th ← ch ×GMHw

4: else
5: Th ← Tc

6: return Th

Once the horizontal and vertical run-length smoothing values (Th and Tv) are estimated automat-
ically according to the DI content (i.e. particularly the distributions of the widths and heights of
the extracted CCs of the binarized DI), the proposed ARLSA is applied on each binarized resulting
DI derived from the color layer separation task. A binarizing step is performed on each resulting DI
of the color layer separation task (Imagelmv) by using the Otsu’s algorithm, to generate a binarized
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Algorithm 3 Estimation of vertical run-length smoothing value

1: function Estimation of Tv (GMHh ,Tc)
2: if GMHh ≥ Tc then
3: Tv ← cv ×GMHh

4: else
5: Tv ← Tc

6: return Tv

resulting DI of the color layer separation task (Imageblmv). The proposed ARLSA operates by

taking the logical OR of the horizontally (ImagehRLSA, cf. Figure 6.6(f) (6.6(j), respectively)) and
vertically (ImagevRLSA, cf. Figure 6.6(g) (6.6(k), respectively)) merged images of each resulting
DI of the color layer separation task to generate Figure 6.6(h) (6.6(l), respectively). The proposed
ARLSA is defined according to the algorithm 4. After applying the proposed ARLSA (cf. 4) on each
binarized resulting DI of the color layer separation task (Imageblmv), the logical NOT is performed
on each resulting DI to merge the different resulting DIs derived from the application of the ARLSA
task (cf. Figures 6.6(h) and 6.6(l)) with the logical OR. Since the merge process with the logical
OR of the different resulting DIs derived from the application of the ARLSA task (cf. Figures
6.6(h) and 6.6(l)) has been performed, a binarized post-processed DI is generated (Imageb,post, cf.
Figure 6.7(a)) in which the neighboring black areas are linked by applying the run-length smearing
both horizontally and vertically. The labeling step of the extracted CCs (CCpost) from the resulting
DI derived from the application of the merge process with the logical OR (Imageb,post, cf. Figure
6.7(a)), is performed by taking into account the deduced labels from Figure 6.6(d) (Imagemv). In-
deed, the post-processed pixel-labeled DI (Imagepost, cf. Figure 6.7(b)) is obtained by labeling the
CCpost according to the deduced labels from Figure 6.6(d) (Imagemv) and by using the majority
voting technique. Some steps in the algorithm 4 are shown in red color. This coloring is meant to
highlight the main computation steps related to the proposed ARLSA.

Algorithm 4 Adaptive run-length smearing algorithm

1: Extract the CCblmv
from the Imageblmv

2: Estimate the Th value
3: Estimate the Tv value
4: Generate the Imageh

RLSA by performing the RLSA on the Imageblmv
in the horizontal direc-

tion using Th

5: Generate the Imagev
RLSA by performing the RLSA on the Imageblmv

in the vertical direction
using Tv

6: Apply the logical OR of the Imageh
ARLSA and Imagev

ARLSA

6.3.3. Homogeneous region extraction

Finally, the homogeneous or similar content regions are extracted and labeled by extracting the
CCpost from the Imagepost (cf. Figure 6.7(b)) in order to identify few groups of pixels sharing
common characteristics or similar textural properties (i.e. text is partitioned into columns or
paragraphs, and graphical regions are localized) (cf. Figure 6.7(c)). To define an extracted region,
a bounding box covering all the pixels belonging to the extracted CC is used (i.e. a contour tracking
of the shape of the extracted CC is carried out to identify the bounding box from each component).
Then, the colors of the external contours of the defined bounding box is drawn according to the
label deduced from the resulting DI of using the majority voting technique (cf. Figure 6.6(d)).

However, as already mentioned, due particularly to the characteristics of HDIs linked to the pres-
ence of noise and degradation, many extracted CCs correspond usually to noise (cf. Figures 6.8(d)
and 6.8(e)). Indeed, if we take into consideration all the extracted CCpost from the post-processed
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pixel-labeled DI (Imagepost), many non-significant CCs can be extracted and subsequently irrel-
evant regions with small sizes can be identified (cf. Figures 6.8(d) and 6.8(e)). Thus, a selection
of only the most representative homogeneous regions or CCs (CCreppost) from the extracted CCpost
in the post-processed pixel-labeled DI (Imagepost, cf. Figure 6.8(c)) is required. This step is nec-
essary to ignore small isolated CCs corresponding to noise regions as possible for the subsequent
processing steps. Figure 6.8 illustrates the significant role of the CC selection step to retrieve
only the representative homogeneous regions. We note that the small isolated CCs have not been
retrieved (cf. Figures 6.8(f) and 6.8(g)). The idea of the selection of representative CCs consists
in retrieving only significant or representative homogeneous regions by ignoring small isolated CCs
which have sizes lower than 5% of the total number of pixels of all extracted CCpost (SCCpost) in
the post-processed pixel-labeled DI (Imagepost, cf. Figure 6.8(c)). The selection of representative
information in terms of number of pixels is based on respecting a constructive compromise between
having representative CCs and ignoring many CCs which correspond to noise and that complicate
subsequent processing steps. The task of the selection of representative homogeneous regions or
CCs (CCreppost) from the extracted CCpost in the post-processed pixel-labeled DI (Imagepost, cf.
Figure 6.8(c)) is defined according to the algorithm 6. This step ensures both the size reduction
of the proposed graph-based signatures and the speeding up their handling by graph algorithms
whose computational complexity is exponential in the number of vertices of the involved graphs.

Figure 6.10 illustrates the detailed schematic block representation of the proposed algorithm
of homogeneous region extraction from HDIs. The proposed algorithm of homogeneous region
extraction from HDIs is defined according to the algorithm 5. Some steps in the two algorithms
5 and 6 are shown in red color. This coloring is meant to highlight the main computation steps
related to the proposed algorithms for extraction of homogeneous regions from HDIs and selection
of representative CCs.

Algorithm 5 Extraction of homogeneous regions from HDIs

1: Extract the CCb from the binarized Imageb
2: Generate the Imagemv by performing the majority voting technique (CCb ,Imageref )
3: Apply the color layer separation technique on the Imagemv

4: Determine the number of different labels lmax

5: Extract the CCmv from the Imagemv

6: l ← 1
7: while l ≤ lmax do
8: Retrieve the CC l

mv from the Imagemv

9: Generate the Image l
mv corresponding to the retrieved CC l

mv

10: Generate the Imageblmv
by binarizing the Image l

mv

11: Generate the resulting DI Imageblmv
derived from the application of the proposed ARLSA

12: Generate the Image l by applying the logical NOT on the Imageblmv

13: Imageb,post ← Imageb,post OR Image l

14: l ← l + 1

15: Extract the CCpost from the Imageb,post
16: Select the representative CC rep

post from the CCpost

17: Generate the Imagepost by performing the majority voting technique (CC rep
post ,Imagemv )

18: Extract and label homogeneous regions from the Imagepost

where CCreppost denote the selected representative homogeneous regions from CCpost.

220



6.3. Proposed structural signature for digitized historical book page characterization

Algorithm 6 Selection of representative CCs

1: Sort the extracted CCpost by the number of pixels and by descending order
2: pacc1 ← 0
3: i ← 1
4: while i ≤ NCCs do
5: pacc1 ← SCC i

6: i ← i + 1

7: T 1
CCs ← 0.95× pacc1

8: T 2
CCs ← 0.05× pacc1

9: Keep the largest extracted CC (CC 1 ) having as size SCC 1

10: pacc2 ← SCC 1

11: j ← 2
12: while j ≤ NCCs & j ≥ 2 do
13: if ((SCC j ≥ T 2

CCs AND SCC j + SCC j+1 ≥ T 1
CCs) OR (pacc2 ≤ T 1

CCs)) then
14: pacc2 ← pacc2 + SCC j

15: Keep the CC j

16: j ← j + 1

where NCCs and SCCi denote the number of the extracted CCpost and the number of pixels be-
longing to the CCi, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.6.: Illustration of the first intermediate results of the different tasks performed for homoge-
neous region extraction from HDIs, using the Gabor features. Figure (a) illustrates the
original HDI. Figure (b) illustrates the binarized HDI of Figure (a). Figure (c) shows
the resulting DI derived from the “pixel-labeling refinement” step. Figure (d) shows
the resulting DI derived from labeling the extracted CCs from the binarized DI ac-
cording to the obtained refined pixel-labeling results in the “pixel-labeling refinement”
step by using the majority voting technique. Figures (e) and (i) are the two resulting
binarized DIs of the color layer separation task, illustrating separately the graphical
(blue) and textual (green) CCs, respectively. Figures (f) and (g) show the resulting DIs
of the application of the run-length smearing both horizontally and vertically on the
resulting binarized DI representing the graphical regions (cf. Figure (e)), respectively.
Figures (j) and (k) show the resulting DIs of the application of the run-length smearing
both horizontally and vertically on the resulting binarized DI representing the textual
regions (cf. Figure (i)), respectively. Figure (h) ((l), respectively) is the resulting DI of
merging the two resulting DIs of applying the run-length smearing both horizontally
and vertically on each resulting binarized image of the color layer separation task (cf.
Figures (f) and (g)) (cf. Figures (j) and (k), respectively) by using the logical OR.
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(a) (b) (c)

Figure 6.7.: Illustration of the second intermediate results of the different tasks performed for ho-
mogeneous region extraction from HDIs, using the Gabor features. Figure (a) is the
resulting DI of merging the two resulting DIs of applying ARLSA on each resulting
binarized DI of the color layer separation task by using the logical OR (cf. Figures
6.6(h) and 6.6(l), respectively). Figure (b) shows the resulting DI of labeling the ex-
tracted CCs from Figure (a) with taking into consideration the labels of the extracted
CCs from Figure 6.6(d) (i.e. the refined pixel-labeling results in the “pixel-labeling
refinement” step by using the majority voting technique). Figure (c) illustrates the
output of the proposed algorithm of homogeneous region extraction from HDIs.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.8.: Illustration of the resulting DIs derived from the proposed algorithm of homogeneous
region extraction from HDIs, using the Gabor features. Figure (a) shows an example
of HDI (as an input). Figure (b) illustrates the pixel-labeled DI (as an output of the
analysis of the extracted Gabor features (graphical regions (blue) and textual regions
(green)) (cf. Section 5.3.2.2, block 1, Figure 5.1). Figure (c) depicts the outputs of the
resulting DI derived from the “pixel-labeling refinement” step of the proposed algorithm
of homogeneous region extraction from HDIs. Figures (d) and (f) show the resulting
DIs derived from the step of extracting and labeling the extracted CCs to identify the
homogeneous regions without and with the CC selection task, respectively. Figures
(e) and (g) illustrate the resulting DIs derived from the step of homogeneous region
extraction without and with the CC selection task, respectively.
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Figure 6.9.: Flowchart of the proposed structural signature for DHB page characterization.225
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Figure 6.10.: Detailed schematic block representation of the proposed algorithm of homogeneous
region extraction step.

6.3.4. Structural signature generation

Since the representative homogeneous regions have been extracted and identified, a signature is
needed to define a set of regions of homogeneous texture and their topological relationships. By
characterizing each digitized page of ancient book with a set of regions of homogeneous texture and
their topological relationships, a signature can be designed for each DHB page. The obtained DHB
page signatures help deducing the similarities of DHB page structure or layout and/or content.
Indeed, the DHB pages can be compared by categorizing the designed signatures which model the
layout and content of DHB pages. Thus, DHB pages with similar layout and/or content can be
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grouped. Figure 6.11 provides an example of objectives of the use of a structural signature (i.e.
finding pages in a DHB which contain similar content component or a group of patterns).

Figure 6.11.: Example of objectives of the use of a structural signature (i.e. finding pages in a DHB
which contain similar content component or a group of patterns).

Leveraging on the numerous advantages offered by using a structural representation instead a
statistical or ontology ones mentioned in Section 6.2.3.2, in this work a structural representation is
used in the form of a complete directed attributed graph to generate a page signature (cf. Section
B.8 for more details about the basic concepts of graphs). For notational convenience complete
directed attributed graphs are simply referred to as graphs in the rest of this dissertation. From
the extracted homogeneous regions, a complete graph was built, where vertices (Gv) correspond to
the extracted homogeneous regions. Each vertex is described by varying low-level information (i.e.
texture, shape, geometric and topological descriptors). A 238-D feature vector is generated for each
vertex, describing and characterizing the extracted homogeneous region (i.e. 192 Gabor attributes
and 46 shape, geometric and topological descriptors). First, 192 mean Gabor features are retrieved
from the extracted Gabor features of the pixels contained in the extracted homogeneous region. In
addition to the 192 Gabor features, 46 shape, geometric and topological descriptors are computed
from each extracted homogeneous region. Among the computed vertex attributes, several kinds
of moments are calculated. The most commonly used moments are the regular (central and nor-
malized central) and Hu moments which have been proposed as features to characterize patterns
in classification and recognition applications [468]. Ten spatial moments (mji), seven central mo-
ments (µji), seven normalized central moments (νji) and seven Hu moments (huk) are computed
to characterize the shape of the extracted homogeneous regions. In Appendix B and particularly
in Section B.7, an exhaustive and detailed review of the different used moment attributes has been
carried for generation of structural page representations.

Besides moments used to describe the shape of the extracted regions, geometric and topological
descriptors are also computed such as the contour area of the extracted region, topological position
of the extracted region centroid in the x-axis, etc. The list of the vertex attributes (Av) is detailed
in Table 6.1.
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Then, a set of edges (Ge) is built based on topological relationships connecting the different

vertices. An edge is built between two vertices, if F s,de ≥ The, where F s,de and The denote the
edge force and threshold, respectively. The idea of using the edge force (F s,de ) when generating
the graph-based signature is to emphasize on the most representative, largest and spatially closest
regions. F s,de characterizes the gravitation force between two graph vertices: source (Gsv) and
destination (Gdv). It is deduced from Newton’s law of universal gravitation which states that
every mass attracts another one by a force pointing along the line intersecting both their centers.
The universal gravitation force is directly proportional to the product of the two masses and
inversely proportional to the square of the distance between them. However, the edge force (F s,de )
is proportional to the number of pixels of the destination vertex of the built graph (Gdv), and it
is inversely proportional to the square of the Euclidean distance (ED

Gs,dv
) between the two graph

vertices: Gsv and Gdv. The F s,de models the interaction existence and level between two extracted
representative homogeneous regions (i.e. there is an interaction between two small regions only if
they are close to each other, and a large region can have multiple interactions with more distant
regions). It is computed as:

F s,de =
NGdv

(ED
Gs,dv

)2
(6.1)

where NGdv
denotes the number of pixels of the destination vertex (Gdv) of the built directed graph.

ED
Gs,dv

denotes the Euclidean distance between the two graph vertices: source (Gsv) and destination

(Gdv).

Besides the edge force (F s,de , cf. equation 6.1) used to characterize the topological relationships
between two extracted regions, two other descriptors are also computed: the absolute differences

between the two extracted region centroids in the x and y-axis (AD
x(s,d)
e and AD

y(s,d)
e ). The list of

the edge attributes (Ae) is detailed in Table 6.1. The edge threshold (The) has been experimentally
determined, and it is equal to 0.1. The proposed structural signature is defined according to the
algorithm 7.

Table 6.1.: Vertex and edge attributes of a structural signature.

Id.Id.Id. AttributeAttributeAttribute

V
e
rt
e
x

A- Topological, geometric and shape attributes

Av1 Topological position of the extracted region centroid in the x-axis

Av2 Topological position of the extracted region centroid in the y-axis

Av3 Number of pixels of the extracted region

Av4 Contour area of the extracted region

Av5 Contour perimeter of the extracted region

Av6 Topological position of the bounding rectangle of the pixel set of the extracted
region in the x-axis

Av7 Topological position of the bounding rectangle of the pixel set of the extracted
region in the y-axis

Av8 Height of the bounding rectangle of the pixel set of the extracted region

Av9 Width of the bounding rectangle of the pixel set of the extracted region

Av10 Area of the bounding rectangle of the pixel set of the extracted region

Av11 Ratio of the height to width of the bounding rectangle of the pixel set of the
extracted region

Av12 Ratio of the height of the bounding rectangle of the pixel set of the extracted
region to the height of the analyzed HDI
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Table 6.1 – continued from previous page

Id.Id.Id. AttributeAttributeAttribute

Av13 Ratio of the width of the bounding rectangle of the pixel set of the extracted
region to the width of the analyzed HDI

Av14 Gray-level average of the pixels of the extracted region

Av15 Gray-level standard deviation of the pixels of the extracted region

Av16→25 10 spatial moments

Av26→32 7 central moments

Av33→39 7 central normalized moments

Av40→46 7 Hu moments

B- Texture attributes

Av47→238 192 Gabor indices

E
d
g
e Ae1 Absolute difference between the two extracted region centroids in the x-axis

Ae2 Absolute difference between the two extracted region centroids in the y-axis

Ae3 Edge force

Figure 6.12 shows the significant role of the selection step of representative homogeneous regions
to generate relevant structural signatures for DHB page characterization.

6.4. Experiments and results

To evaluate the performance of the proposed signature-based approach for DHB page characteri-
zation, we present in this section qualitative and quantitative evaluation of the different steps of
its extraction:

• “Pixel-labeling refinement” (cf. Sections 6.3.1, B.3 and 6.4.2),

• “Post-processing” (cf. Sections 6.3.2, B.4 and 6.4.3),

• “Homogeneous region extraction” (cf. Sections 6.3.3, B.5 and 6.4.4),

• “Structural signature generation” (cf. Sections 6.3.4, B.6 and 6.4.5).

6.4.1. Experimental corpus and accuracy metrics for performance evaluation

The “DIGIDOC-Texture dataset” which is described in Chapter 4 and particularly in Section 4.4.2 is
used in this chapter as an experimental corpus. The evaluation using the different accuracy metrics
is processed in a similar way to the one used for the experimental evaluation and benchmarking
of texture features which has been previously discussed in Chapter 4 and particularly in Section
4.5.1.3. There are two “Overall” values, “Overall∗” and “Overall∗∗” in Tables 6.2, 6.3, 6.4, 6.5,
6.6 and 6.7. The “Overall∗” value is obtained by averaging all the respective column values except
the value of “Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the
respective column values except the value of “Two fonts and graphics∗”. The “Two fonts and
graphics∗” value represents the case when every font in the text has a distinct label in the ground-
truth and the clustering is performed by setting the number of types of content regions equal to
3 (graphics and text with two different fonts). The “Two fonts and graphics∗∗” value represents
the case when all fonts in the text have the same label in the ground-truth and the clustering is
performed by setting the number of types of content regions equal to 2 (graphics and text). This
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Algorithm 7 Generation of a structural signature

1: i← 1
2: while i ≤ NHRs do
3: Compute the 192 mean values of the Gabor indices of the foreground pixels located on i
4: Add the 192 mean values of the Gabor indices as vertex attributes
5: Compute the 46 shape, geometric and topological indices of i
6: Add the 46 shape, geometric and topological indices as vertex attributes
7: i← i+ 1

8: s← 1
9: while s ≤ NHRs do

10: d← s+ 1
11: while d ≤ NHRs do
12: if F s,de ≥ The then
13: Define an edge between s and d
14: Add the value of F s,de as the first edge attribute

15: Compute AD
x(s,d)
e

16: Add the value of AD
x(s,d)
e as the second edge attribute

17: Compute AD
y(s,d)
e

18: Add the value of AD
y(s,d)
e as the third edge attribute

19: d← d+ 1

20: s← s+ 1

where NHRs denotes the number of the extracted homogeneous regions or graph vertices. AD
x(s,d)
e

and AD
y(s,d)
e denote the absolute difference between the two extracted region centroids (s and d)

in the x and y-axis, respectively.

distribution points out which texture features can be more adequate for segmenting documents
containing two text fonts and graphics into two/three classes, i.e. separating two distinct text
fonts when the documents contain graphics.

First, to evaluate quantitatively the different obtained results of the “Pixel-labeling refinement”
and “Post-processing” steps, the following clustering and classification accuracy measures (J , PPB,
P , R, F and CA) which have been previously detailed in Chapter 4 and particularly in Section
4.4.3.

On the other side, three per-pixel accuracy metrics, the area precision (PAR), area recall (RAR)
and Jaccard index (JAR), are computed for evaluating the extracted homogeneous regions [469].
Assume the number of foreground pixels defined in the area i of the bounding box of the result
block is |Bi

r| and the number of foreground pixels defined in the area i of the bounding box of the
ground-truth is |Bi

gt|.

• The area precision computes the overlaying ratio of the number of foreground pixels defined
in the area of Bi

r by the one defined in the area of Bi
gt. It is given by:

P iAR(Bi
r, B

i
gt) =

|Bi
r ∩Bi

gt|
|Bi

r|
(6.2)

• The area recall calculates the covering ratio of the number of foreground pixels defined in
the area of Bi

gt by the one defined in the area of Bi
r. It is given by:

RiAR(Bi
r, B

i
gt) =

|Bi
r ∩Bi

gt|
|Bi

gt|
(6.3)
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• The Jaccard index measures the overlap ratio between the number of foreground pixels
defined in the two areas Bi

r and Bi
gt. It is given by:

J iAR(Bi
r, B

i
gt) =

|Bi
r ∩Bi

gt|
|Bi

r ∪Bi
gt|

(6.4)

6.4.2. Pixel-labeling refinement

In this section, qualitative and quantitative results are given to illustrate the potential to intro-
duce the “Pixel-labeling refinement” step into the auto-correlation and Gabor-based pixel-labeling
schemes. Figures 6.13, 6.14, B.26, B.27 and B.28 illustrate the qualitative results of introducing the
“Pixel-labeling refinement” step into the auto-correlation and Gabor-based pixel-labeling schemes,
in “One font and graphics”, “Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only two
fonts” and “Only three fonts” HDIs from the “DIGIDOC-Texture dataset”, respectively.

In Figure B.27 illustrating an “One font and graphics” HDI from the “DIGIDOC-Texture dataset”,
we note that when comparing the two results of the “Pixel-labeling” step using that the auto-
correlation and Gabor features without introducing the “Pixel-labeling refinement” step, the auto-
correlation-based approach performs better than the Gabor one in discriminating graphic (green)
and text (blue) regions (cf. Figure B.27(a)). The Gabor features have more difficulty separat-
ing textual regions (blue) when they are too spatially close to the graphical ones (i.e. textual
regions which are spatially close to the graphic ones have been mis-labeled) (cf. Figure B.27(c)).
Furthermore, by comparing visually the auto-correlation and Gabor-based pixel-labeling results
of introducing the “Pixel-labeling refinement” step into the texture-based pixel-labeling scheme,
illustrated in HDIs from the “DIGIDOC-Texture dataset”, we observe that HDI content regions
are visibly becoming more homogeneous especially when using the auto-correlation features (cf.
Figures 6.13(b) and 6.14(b)). However, we note that the Gabor feature analysis does not require
the “Pixel-labeling refinement” step, since there is a no visually improvement difference between
the cases of without and with the “Pixel-labeling refinement” step (cf. Figures 6.13(d) and 6.14(d)).
This confirms that introducing the spatial or topographical relationship between pixels by using the
spatial multi-scale analysis of majority votes into the texture-based pixel-labeling scheme can im-
prove significantly the performance depending on the quality of the initial pixel-labeling results (i.e.
without taking into consideration the topographical relationships of pixels and their labels). Nev-
ertheless, we note that the mis-labeling errors of the pixel-labeling produced in Figure 6.13(c) have
not been rectified by introducing the spatial or topographical relationship between pixels by means
of the spatial multi-scale analysis of majority votes into the texture-based pixel-labeling scheme
Figure (cf. Figure 6.13(d)). This is due to the inherent pixel-labeling errors in the “Pixel-labeling”
step produced when only analyzing the auto-correlation features. These errors can be avoided
if the texture and topographical features are analyzed simultaneously (cf. Figure 6.13(c)). Other
qualitative results are given to demonstrate the performance of the “Pixel-labeling refinement” step
in Appendix B and particularly in Section B.3.

To demonstrate the robustness of the “Pixel-labeling refinement” step and provide additional
insights into its classification accuracy, numerous clustering accuracy metrics and classification
accuracy rates (J , PPB, P , R, F and CA) are computed. Table 6.2 presents the quantitative
assessment of the “pixel-labeling refinement” step using the results of the auto-correlation and
Gabor-based pixel-labeling schemes with the “DIGIDOC-Texture dataset”. Table 6.3 presents the
difference values in the computed clustering and classification accuracy measures when introducing
the “Pixel-labeling refinement” step and without it into the auto-correlation and Gabor-based
pixel-labeling schemes using the “DIGIDOC-Texture dataset”.

We observe that the two best average performances for most of the computed evaluation met-
rics are obtained for the “One font and graphics” and “Two fonts and graphics∗∗” categories of
the “DIGIDOC-Texture dataset” with using the auto-correlation (95%(PPB), 86%(P ), 86%(R),
85%(F ) and 91%(CA) for the “One font and graphics” HDI category, and 94%(PPB), 87%(P ),

231



Chapter 6. A structural signature based on texture for book page characterization

86%(R), 86%(F ) and 87%(CA) for the “Two fonts and graphics∗∗”) and Gabor (96%(PPB),
90%(P ), 86%(R), 88%(F ) and 88%(CA) for the “One font and graphics” HDI category, and
98%(PPB), 91%(P ), 88%(R), 89%(F ) and 89%(CA) for the “Two fonts and graphics∗∗”) fea-
tures. On the other side, we observe that the worst average performances for most of the computed
evaluation metrics are obtained for the “Only three fonts” category of the “DIGIDOC-Texture
dataset” with using the auto-correlation (87%(PPB), 58%(P ), 63%(R), 60%(F ) and 74%(CA))
and Gabor (88%(PPB), 67%(P ), 62%(R), 64%(F ) and 68%(CA)) features. As a consequence, we
note that the ranking of the different categories of the “DIGIDOC-Texture dataset” obtained when
introducing the “Pixel-labeling refinement” step into the auto-correlation and Gabor-based pixel-
labeling schemes is similar to the one obtained without the “Pixel-labeling refinement” step (i.e.
without taking into consideration the topographical relationships of pixels and their labels). We ob-
serve that the overall average performances by the auto-correlation (79%(J), 91%(PPB), 71%(P ),
73%(R), 71%(F ) and 82%(CA) for “Overall∗”, and 80%(J), 92%(PPB), 76%(P ), 78%(R), 77%(F )
and 88%(CA) for “Overall∗∗”) and Gabor (75%(J), 93%(PPB), 79%(P ), 74%(R), 76%(F ) and
79%(CA) for “Overall∗”, and 78%(J), 94%(PPB), 84%(P ), 79%(R), 81%(F ) and 82%(CA) for
“Overall∗∗”) features.

Furthermore, we conclude from Table 6.3 that we have a significant overall gain in performance
when introducing the “Pixel-labeling refinement” step into the auto-correlation-based pixel-labeling
scheme (gains of 11.1%(J), 7.3%(PPB), 1.3%(P ), 4.6%(R), 2.8%(F ) and 8%(CA) for “Overall∗”,
and 9.8%(J), 6.3%(PPB), 0.9%(P ), 4.1%(R), 2.4%(F ) and 6.4%(CA) for “Overall∗∗”). On the
other side, there is a no significant gain in the case of introducing the “Pixel-labeling refinement”
step into the Gabor-based pixel-labeling scheme. The quantitative assessment strengthens our
previous visual observations that introducing the spatial or topographical relationship between
pixels by using the spatial multi-scale analysis of majority votes into the texture-based pixel-
labeling scheme can improve significantly the performance depending on the quality of the initial
pixel-labeling results (i.e. without taking into consideration the topographical relationships of
pixels and their labels).

6.4.3. Post-processing

To show the potential to introduce the “Post-processing” step after the “Pixel-labeling refinement”
task, into the auto-correlation and Gabor-based pixel-labeling schemes, the performance of the
“Post-processing” step has been discussed in this section. Figures 6.15, 6.16, B.29, B.30 and B.31
illustrate the qualitative results of introducing the “Post-processing” step after the “Pixel-labeling
refinement” task, into the auto-correlation and Gabor-based pixel-labeling schemes, in “One font
and graphics”, “Two fonts and graphics∗”, “Two fonts and graphics∗∗”, “Only two fonts” and “Only
three fonts” HDIs from the “DIGIDOC-Texture dataset”, respectively.

By comparing visually the two results of introducing the “Post-processing” step after the “Pixel-
labeling refinement” task, into the auto-correlation and Gabor-based pixel-labeling schemes, illus-
trated in HDIs from the “DIGIDOC-Texture dataset”, we observe that HDI content regions are
visibly becoming more homogeneous for both the auto-correlation and Gabor features (cf. Figures
6.15(b), 6.16(b), 6.15(d) and 6.16(d)). Furthermore, we note that based on the Gabor features in
the texture-based pixel-labeling scheme, the “Post-processing” step ensure the discrimination be-
tween graphic and text regions (cf. Figures 6.16(d) and B.29(d)) and the segmentation of different
text fonts (cf. Figures B.30(d) and B.31(d)). We observe that by means of the “Post-processing”
step the pixel-labeling results are good, i.e. there is no mis-labeled pixels, and pure and homoge-
neous regions are generated. Nevertheless, we note that the mis-labeling errors of the pixel-labeling
produced in Figure 6.15(c) have not been rectified by introducing the “Post-processing” step into
the texture-based pixel-labeling scheme Figure (cf. Figure 6.15(d)). This also due to the inherent
pixel-labeling errors in the “Pixel-labeling” step produced when only analyzing the auto-correlation
features (cf. Figure 6.13(c)). Other qualitative results are given to demonstrate the performance
of the “Post-processing” step in Appendix B and particularly in Section B.4.
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To demonstrate the robustness of the “Post-processing” step and provide additional insights into
its classification accuracy, numerous clustering accuracy metrics and classification accuracy rates
(J , PPB, P , R, F and CA) are computed. Table 6.4 presents the quantitative assessment of the
“Post-processing” step using the results of the “Pixel-labeling refinement” task performed on the
auto-correlation and Gabor-based pixel-labeling schemes with the “DIGIDOC-Texture dataset”.
Table 6.5 presents the difference values in the computed clustering and classification accuracy
measures when introducing the “Post-processing” step and without it on the results of the “Pixel-
labeling refinement” task into the auto-correlation and Gabor-based pixel-labeling schemes using
the “DIGIDOC-Texture dataset”.

We observe that the two best average performances for most of the computed evaluation met-
rics are obtained for the “One font and graphics” and “Two fonts and graphics∗∗” categories of
the “DIGIDOC-Texture dataset” with using the auto-correlation (99%(PPB), 78%(P ), 75%(R),
76%(F ) and 92%(CA) for the “One font and graphics” HDI category, and 99%(PPB), 85%(P ),
83%(R), 84%(F ) and 91%(CA) for the “Two fonts and graphics∗∗”) and Gabor (96%(PPB),
82%(P ), 80%(R), 81%(F ) and 93%(CA) for the “One font and graphics” HDI category, and
99%(PPB), 90%(P ), 88%(R), 89%(F ) and 89%(CA) for the “Two fonts and graphics∗∗”) fea-
tures. On the other side, we observe that the worst average performances for most of the computed
evaluation metrics are obtained for the “Only three fonts” category of the “DIGIDOC-Texture
dataset” with using the auto-correlation (92%(PPB), 56%(P ), 54%(R), 54%(F ) and 78%(CA))
and Gabor (89%(PPB), 64%(P ), 62%(R), 62%(F ) and 71%(CA)) features. As a consequence, we
note that the ranking of the different categories of the “DIGIDOC-Texture dataset” obtained when
introducing the “Post-processing” step using the results of the “Pixel-labeling refinement” task
into the auto-correlation and Gabor-based pixel-labeling schemes is similar to the one obtained
without the “Post-processing” step. We observe that the overall average performances by the auto-
correlation (85%(J), 96%(PPB), 69%(P ), 67%(R), 67%(F ) and 87%(CA) for “Overall∗”, and
85%(J), 97%(PPB), 73%(P ), 71%(R), 72%(F ) and 87%(CA) for “Overall∗∗”) and Gabor (80%(J),
94%(PPB), 73%(P ), 71%(R), 72%(F ) and 83%(CA) for “Overall∗”, and 81%(J), 95%(PPB),
79%(P ), 77%(R), 78%(F ) and 85%(CA) for “Overall∗∗”) features.

Furthermore, we conclude from Table 6.5 that we have a slight gain in computing the J and
PPB accuracy metrics, while a slight drop in calculating the P , R, F and CA evaluation measures
when introducing the “Post-processing” step after the “Pixel-labeling refinement” task into the
auto-correlation and Gabor-based pixel-labeling schemes. This slight variability when computing
the different evaluation metrics can be explained that using rectangles in zoning the ground-truth
can affect some per-pixel accuracy metrics for a quantitative assessment. Indeed, the background
pixels are retained with the foreground ones when introducing the “Post-processing” step which is
based on filling automatically the space within each CC.

6.4.4. Homogeneous region extraction

This section presents an assessment of the “Homogeneous region extraction” step, performed after
the “Post-processing” task on the auto-correlation and Gabor-based pixel-labeling schemes. Figures
6.17, 6.18, B.32, B.33 and B.34 illustrate the qualitative results of the “Homogeneous region extrac-
tion” step, performed after the “Post-processing” task on the auto-correlation and Gabor-based
pixel-labeling schemes, in “One font and graphics”, “Two fonts and graphics∗”, “Two fonts and
graphics∗∗”, “Only two fonts” and “Only three fonts” HDIs from the “DIGIDOC-Texture dataset”,
respectively.

We observe that homogeneous regions are correctly extracted depending on the results of the
“Post-processing” task, by comparing visually the results of the “Homogeneous region extraction”
step, performed after the “Post-processing” task on the auto-correlation and Gabor-based pixel-
labeling schemes, illustrated in HDIs from the “DIGIDOC-Texture dataset”. For instance, in Fig-
ures 6.17(b) and 6.17(d), a green bounding box is drawn (i.e. green color attributed to the drawn
bounding box represents a graphic regions) to cover all the pixels belonging to the extracted CC
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which corresponds to the noise information on the borders of the analyzed HDI. On the other
side, for an “One font and graphics” HDI, we note that the “Homogeneous region extraction”
step gives satisfying results, since we exactly extracted and distinguish two representative regions
with different contents, graphic (green) and text (red) regions (cf. Figures 6.18(b) and 6.18(d)).
Other qualitative results are given to demonstrate the performance of the “Homogeneous region
extraction” step in Appendix B and particularly in Section B.5.

Afterwards, three accuracy metrics (PAR, RAR and JAR) are computed to evaluate the perfor-
mance of the “Homogeneous region extraction” step. Table 6.6 presents quantitative assessment
of the “Homogeneous region extraction” step performed after the “Post-processing” task on the
auto-correlation and Gabor-based pixel-labeling schemes using the “DIGIDOC-Texture dataset”.
Table 6.7 presents the difference values in the computed accuracy metrics for the evaluation of
the “Homogeneous region extraction” step performed after the “Post-processing” task between the
auto-correlation and Gabor-based pixel-labeling schemes using the “DIGIDOC-Texture dataset”.
The computed accuracy metrics values are quite encouraging since we observe that the overall av-
erage performances by the auto-correlation (94%(PAR), 81%(RAR) and 78%(JAR) for “Overall∗”,
and 94%(PAR), 80%(RAR) and 77%(JAR) for “Overall∗∗”) and Gabor (94%(PAR), 80%(RAR) and
78%(JAR) for “Overall∗”, and 94%(PAR), 80%(RAR) and 77%(JAR)) features. Hence, we note
that we have a higher precision and a lower recall when extracting homogeneous regions from
HDIs. Therefore, we conclude that the proposed method gives satisfying and perfectible results
in extracting correctly homogeneous regions from HDIs. However, there is at least 20% of fore-
ground pixels which are not retrieved by our algorithm of homogeneous region extraction. This can
be justified by the selection step of representative homogeneous regions used to generate relevant
structural signatures for HDI characterization.

Similar to the previous steps (“Pixel-labeling refinement” and “Post-processing”) of the proposed
method used to generate a structural signature for DHB page characterization ( Section 6.4.2 and
6.4.3), we observe that the two best average performances for most of the computed evaluation
metrics are obtained for the “One font and graphics” and “Only two fonts” categories of the
“DIGIDOC-Texture dataset” with using the auto-correlation 96%(PAR), 90%(RAR) and 88%(JAR)
for the “One font and graphics” HDI category, and 97%(PAR), 80%(RAR) and 79%(JAR) for the
“Only two fonts”) and Gabor (97%(PAR), 90%(RAR) and 88%(JAR) for the “One font and graph-
ics” HDI category, and 97%(PAR), 79%(RAR) and 78%(JAR) for the “Only two fonts”) features.
On the other side, we observe that the worst average performances for most of the computed evalu-
ation metrics are obtained for the “Only three fonts” category of the “DIGIDOC-Texture dataset”
with using the auto-correlation (91%(PAR), 73%(RAR) and 69%(JAR)) and Gabor (92%(PAR),
73%(RAR) and 68%(JAR)) features. We can state that the “Pixel-labeling” step constitutes a key
task toward having good performance for HDI segmentation and characterization.

Furthermore, we conclude from Table 6.7 that by comparing several evaluation accuracy metrics
to assess the “Homogeneous region extraction” step performed after the “Post-processing” task be-
tween the auto-correlation and Gabor-based pixel-labeling schemes using the “DIGIDOC-Texture
dataset”, we have no a significant difference between the two Gabor and auto-correlation-based ap-
proaches (PAR difference values of 0.4% and 0.6% for “Overall∗” and “Overall∗∗”). This straightens
our previous observation concerning the influence of using rectangles in zoning the ground-truth
to compute several per-pixel accuracy metrics for a quantitative assessment of the “Homogeneous
region extraction” step. Moreover, the use of a selection step of representative homogeneous regions
which is performed to generate relevant structural signatures for HDI characterization can have an
impact in assessing the performance of the “Homogeneous region extraction” step.

6.4.5. Structural signature generation

Figures 6.19, 6.20, B.35, B.36 and B.37 illustrate the qualitative results of the “Structural signature
generation” step, performed after the “Homogeneous region extraction” task on the auto-correlation
and Gabor-based pixel-labeling schemes, in “One font and graphics”, “Two fonts and graphics∗”,
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“Two fonts and graphics∗∗”, “Only two fonts” and “Only three fonts” HDIs from the “DIGIDOC-
Texture dataset”, respectively. In Figures 6.19 and 6.20, we can see different oriented arrows
are drawn to model the interaction existence between two extracted representative homogeneous
regions. In Appendix B and particularly in Section B.6, other visual results of the “Structural
signature generation” step, performed after the “Homogeneous region extraction” task on the auto-
correlation and Gabor-based pixel-labeling schemes are illustrated.

The quantitative assessment of the “Structural signature generation” step will be among the next
chapter to illustrate the effectiveness of the proposed page signature (cf. Chapter 7).

6.5. Discussion

An automatic characterization method of DHB pages is proposed in this chapter. However, the
performance of the proposed method is strongly dependent on the quality of the initial pixel-labeling
results due to the pipeline/building-block of the proposed automatic characterization approach of
DHB pages.

To illustrate the performance of the proposed method for DHB page characterization by means
of a structural representation, a detailed experimental evaluation has been conducted through a
quantitative assessment of the different steps of the proposed approach used is presented. Nev-
ertheless, the fundamental question is if the proposed method has been assessed properly or not.
Indeed, we observe a slight variability when computing the different evaluation metrics. As a result,
we can state that the influence of using rectangles in zoning the ground-truth to compute several
per-pixel accuracy metrics is significant for a thorough quantitative assessment of the different
steps of the proposed method. Baird et al. pointed out the zoning methodology problems and
reported three accuracy metrics (per-pixel accuracy, per-page inventory accuracy and subjective
segmentation quality) for a pixel-based approach evaluation [470, 471, 316]. They reported that
using rectangles in zoning can affect the per-pixel accuracy score due to the fact that some content
can not be described by rectangular zones (e.g. handwritten regions) and due to the arbitrariness
and inconsistency in zoning. They also noted that using rectangles in zoning has an influence to
compute the per-page inventory accuracy since the information of page layout is not included. This
confirms questions about the defined ground-truth which is to a certain extent subjective and it is
difficult to acquire a pixel-based ground-truth. Further work is needed to solve this issue even it is
worth noting that it is a straightforward task to define a pixel-based ground-truth. Our future work
will focusing on analyzing four other state-of-the-art ground-truthing tools, TrueViz1, WebGT2,
Aletheia3 and Divadia71 for more reliable performance evaluations.

6.6. Conclusion

Throughout this chapter, a description of an automatic characterization approach of DHB pages is
proposed. The DHB page characterization is based on texture, shape, geometry and topographical
descriptors. The characterization is embedded in what we call a structural signature of DI. Gen-
erating a structural signature for each analyzed DHB page is carried out in three stages. The first
step consists in refining the obtained pixel-labeling results by taking into account the topological or
spatial relationships between pixels. The second one aims to extract homogeneous regions. Finally,
the third one is generating a structural signature of the page layout and content.

The extraction of homogeneous regions is based on texture features, multi-scale analysis, an
ARLSA, CC analysis technique and majority voting approach. Having extracted homogeneous
regions, the topological relationships between regions in each page are used to construct a texture-
based structural signature in the form of a graph. The obtained signature defines both the spatial

1http://www.kanungo.com/software/software.html#trueviz
2http://win-web.cs.bgu.ac.il/
3http://www.primaresearch.org/tools
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organization of the extracted homogeneous texture regions and the different attributes that char-
acterize those regions. The proposed characterization approach of DHB pages gives encouraging
results since 77% of Jaccard index is noted when we have evaluated the extracted homogeneous
regions.

The proposed DHB page signature extraction process is independent of the layout and content
of the analyzed DHB pages, and hence, it is applicable to a large variety of HDIs. Indeed, it does
not assume a priori knowledge regarding page content and structure.

Supported by the fact that the proposed page signature provides a topological signature of a DHB
page under consideration characterizing mainly the layout structure and/or typographic/graphical
characteristics of the HDI content, several signature-based applications for managing effectively a
corpus or collections of DHBs or HDIs should be implemented. These applications will illustrate
the potential of the proposed page signature to index, gather, compare, categorize or group DHB
pages according to several criteria, mainly the layout structure and/or typographic/graphical char-
acteristics of the HDI content. The assessment of few potential applications of the proposed DHB
page signature is presented in the next chapter (cf. Chapter 7).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.12.: Illustration of two examples of structural signatures for DHB page characterization.
Figures (a,d) and (g,j) show the resulting DIs derived from the step of extracting and
labeling the extracted CCs to identify the homogeneous regions without and with
the CC selection task, respectively. Figures (b,e) and (h,k) illustrate the resulting
DIs derived from the step of homogeneous region extraction without and with the
CC selection task, respectively. Figures (c,f) and (i,l) show the generated structural
signatures for DHB page characterization without and with the CC selection task,
respectively.
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Auto-correlation

“Pixel-labeling” + “Pixel-labeling refinement”

(a) PPB = 0.95 CA = 0.93
P = 0.92 R = 0.93 F = 0.93

(b) PPB = 0.97 CA = 0.95
P = 0.94 R = 0.96 F = 0.95

Gabor

“Pixel-labeling” + “Pixel-labeling refinement”

(c) PPB = 0.99 CA = 0.87
P = 0.88 R = 0.88 F = 0.88

(d) PPB = 0.99 CA = 0.86
P = 0.88 R = 0.88 F = 0.88

Figure 6.13.: Examples of introducing the “Pixel-labeling refinement” step into the auto-
correlation and Gabor-based pixel-labeling scheme, illustrated in an “One font
and graphics” HDI from the “DIGIDOC-Texture dataset”.
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Auto-correlation

“Pixel-labeling” + “Pixel-labeling refinement”

(a) PPB = 0.93 CA = 0.88
P = 0.60 R = 0.65 F = 0.62

(b) PPB = 0.99 CA = 0.97
P = 0.66 R = 0.66 F = 0.66

Gabor

“Pixel-labeling” + “Pixel-labeling refinement”

(c) PPB = 0.86 CA = 0.77
P = 0.53 R = 0.66 F = 0.58

(d) PPB = 0.86 CA = 0.78
P = 0.53 R = 0.66 F = 0.59

Figure 6.14.: Examples of introducing the “Pixel-labeling refinement” step into the auto-
correlation and Gabor-based pixel-labeling scheme, illustrated in a “Two fonts
and graphics∗” HDI from the “DIGIDOC-Texture dataset”.
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Auto-correlation

+ “Pixel-labeling refinement” + “Post-processing”

(a) PPB = 0.97 CA = 0.95
P = 0.94 R = 0.96 F = 0.95

(b) PPB = 0.99 CA = 0.99
P = 0.99 R = 0.99 F = 0.99

Gabor

+ “Pixel-labeling refinement” + “Post-processing”

(c) PPB = 0.99 CA = 0.86
P = 0.88 R = 0.88 F = 0.88

(d) PPB = 0.99 CA = 0.87
P = 0.88 R = 0.88 F = 0.88

Figure 6.15.: Examples of introducing the “Post-processing” step after the “Pixel-labeling refine-
ment” task, into the auto-correlation and Gabor-based pixel-labeling scheme, illus-
trated in an “One font and graphics” HDI from the “DIGIDOC-Texture dataset”.
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Auto-correlation

+ “Pixel-labeling refinement” + “Post-processing”

(a) PPB = 0.99 CA = 0.97
P = 0.66 R = 0.66 F = 0.66

(b) PPB = 1.00 CA = 1.00
P = 0.67 R = 0.67 F = 0.67

Gabor

+ “Pixel-labeling refinement” + “Post-processing”

(c) PPB = 0.86 CA = 0.78
P = 0.53 R = 0.66 F = 0.59

(d) PPB = 1.00 CA = 1.00
P = 0.67 R = 0.67 F = 0.67

Figure 6.16.: Examples of introducing the “Post-processing” after the “Pixel-labeling refine-
ment” task, into the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in a “Two fonts and graphics∗” HDI from the “DIGIDOC-Texture
dataset”.
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Auto-correlation

+ “Post-processing” + “Homogeneous region extraction”

(a) (b)

Gabor

+ “Post-processing” + “Homogeneous region extraction”

(c) (d)

Figure 6.17.: Examples of visual results of the “Homogeneous region extraction” step, per-
formed after the “Post-processing” task on the auto-correlation and Gabor-based
pixel-labeling scheme, illustrated in an “One font and graphics” HDI from the
“DIGIDOC-Texture dataset”.
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Auto-correlation

+ “Post-processing” + “Homogeneous region extraction”

(a) (b)

Gabor

+ “Post-processing” + “Homogeneous region extraction”

(c) (d)

Figure 6.18.: Examples of visual results of the “Homogeneous region extraction” step, per-
formed after the “Post-processing” task on the auto-correlation and Gabor-based
pixel-labeling scheme, illustrated in a “Two fonts and graphics∗” HDI from the
“DIGIDOC-Texture dataset”.
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Input

(a)

Auto-correlation Gabor

(b) (c)

Figure 6.19.: Examples of visual results of the Structural signature generation step, performed
after the “Homogeneous region extraction” task on the auto-correlation and Gabor-
based pixel-labeling scheme, illustrated in an “One font and graphics” HDI from
the “DIGIDOC-Texture dataset”.
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Input

(a)

Auto-correlation Gabor

(b) (c)

Figure 6.20.: Examples of visual results of the Structural signature generation step, performed
after the “Homogeneous region extraction” task on the auto-correlation and Gabor-
based pixel-labeling scheme, illustrated in a “Two fonts and graphics∗” HDI from
the “DIGIDOC-Texture dataset”.
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Table 6.2.: Quantitative assessment of the “Pixel-labeling refinement” step using the results of the auto-correlation and Gabor-based pixel-
labeling scheme with the “DIGIDOC-Texture dataset” by clustering and classification accuracy measures: Jaccard coefficient (J),
purity per block metric (PPB), precision (P ), recall (R), F-measure (F ) and classification accuracy (CA). µ(.) and σ(.) are the mean and
standard deviation of (.), respectively. The higher the mean values, the better the results. The “Overall∗” value is obtained by averaging
all the respective column values except the value of “Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the
respective column values except the value of “Two fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font
in the text has a different label in the ground-truth, and the clustering is performed by setting the number of types of content regions to
3 (graphics and two different text fonts). “Two fonts and graphics∗∗” represents the case when all fonts in the text have the same label
in the ground-truth, and the clustering is performed by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.88 0.15 0.95 0.06 0.86 0.18 0.86 0.18 0.85 0.18 0.91 0.17

Two fonts and graphics∗ 0.74 0.18 0.91 0.07 0.64 0.12 0.65 0.15 0.64 0.13 0.80 0.19

Two fonts and graphics∗∗ 0.78 0.17 0.94 0.06 0.87 0.17 0.86 0.17 0.86 0.16 0.87 0.20

Only two fonts 0.82 0.17 0.92 0.08 0.75 0.19 0.80 0.19 0.77 0.18 0.82 0.25

Only three fonts 0.73 0.19 0.87 0.09 0.58 0.14 0.63 0.15 0.60 0.13 0.74 0.26

Overall∗Overall∗Overall∗ 0.790.790.79 0.170.170.17 0.910.910.91 0.080.080.08 0.710.710.71 0.160.160.16 0.730.730.73 0.170.170.17 0.710.710.71 0.150.150.15 0.820.820.82 0.220.220.22

Overall∗∗Overall∗∗Overall∗∗ 0.800.800.80 0.170.170.17 0.920.920.92 0.070.070.07 0.760.760.76 0.170.170.17 0.780.780.78 0.170.170.17 0.770.770.77 0.160.160.16 0.840.840.84 0.220.220.22

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

G
a
b
o
r

One font and graphics 0.88 0.18 0.96 0.06 0.90 0.16 0.86 0.19 0.88 0.17 0.88 0.23

Two fonts and graphics∗ 0.70 0.16 0.93 0.06 0.70 0.16 0.66 0.13 0.67 0.14 0.75 0.17

Two fonts and graphics∗∗ 0.81 0.16 0.98 0.04 0.91 0.13 0.88 0.16 0.89 0.14 0.89 0.21

Only two fonts 0.82 0.22 0.94 0.09 0.89 0.15 0.81 0.22 0.84 0.19 0.83 0.24

Only three fonts 0.60 0.19 0.88 0.09 0.67 0.17 0.62 0.18 0.64 0.17 0.68 0.19

Overall∗Overall∗Overall∗ 0.750.750.75 0.190.190.19 0.930.930.93 0.080.080.08 0.790.790.79 0.160.160.16 0.740.740.74 0.180.180.18 0.760.760.76 0.170.170.17 0.790.790.79 0.210.210.21

Overall∗∗Overall∗∗Overall∗∗ 0.780.780.78 0.190.190.19 0.940.940.94 0.070.070.07 0.840.840.84 0.150.150.15 0.790.790.79 0.190.190.19 0.810.810.81 0.170.170.17 0.820.820.82 0.220.220.22
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Table 6.3.: Difference values in the computed clustering and classification accuracy measures when introducing the “Pixel-labeling refinement”
step and without it into the auto-correlation and Gabor-based pixel-labeling scheme using the “DIGIDOC-Texture dataset”:
Jaccard coefficient (J), purity per block metric (PPB), precision (P ), recall (R), F-measure (F ) and classification accuracy (CA).
The “Overall∗” value is obtained by averaging all the respective column values except the value of “Two fonts and graphics∗∗”. The
“Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two fonts and graphics∗”. “Two fonts
and graphics∗” represents the case when every font in the text has a different label in the ground-truth, and the clustering is performed
by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts and graphics∗∗” represents the
case when all fonts in the text have the same label in the ground-truth, and the clustering is performed by setting the number of types
of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.08800 0.04610 0.02770 0.0415 0.03380 0.06430

Two fonts and graphics∗ 0.12990 0.07990 0.04560 0.05220 0.04840 0.09530

Two fonts and graphics∗∗ 0.07690 0.04120 0.02990 0.03250 0.03150 0.03380

Only two fonts 0.10290 0.07580 0.02830 0.07810 0.04940 0.04210

Only three fonts 0.12440 0.09050 -0.04860 0.01560 -0.01800 0.11830

Overall∗Overall∗Overall∗ 0.111300.111300.11130 0.073080.073080.07308 0.013250.013250.01325 0.046850.046850.04685 0.028400.028400.02840 0.080000.080000.08000

Overall∗∗Overall∗∗Overall∗∗ 0.098050.098050.09805 0.063400.063400.06340 0.009330.009330.00933 0.041930.041930.04193 0.024170.024170.02417 0.064630.064630.06463

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

G
a
b
o
r

One font and graphics -0.00110 -0.00070 0.00020 -0.00210 -0.00100 0.01730

Two fonts and graphics∗ 0.00080 -0.00030 -0.00040 -0.00020 -0.00040 0.00270

Two fonts and graphics∗∗ -0.00020 -0.00050 0.00020 -0.00020 0.00000 0.00000

Only two fonts 0.00030 0.00010 0.00010 -0.00170 -0.00080 0.00380

Only three fonts 0.00030 0.00010 -0.00010 -0.00230 -0.00110 0.00370

Overall∗Overall∗Overall∗ 0.000080.000080.00008 -0.00020-0.00020-0.00020 -0.00005-0.00005-0.00005 -0.00157-0.00157-0.00157 -0.00083-0.00083-0.00083 0.006870.006870.00687

Overall∗∗Overall∗∗Overall∗∗ -0.00018-0.00018-0.00018 -0.00025-0.00025-0.00025 0.000100.000100.00010 -0.00157-0.00157-0.00157 -0.00073-0.00073-0.00073 0.006200.006200.00620
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Table 6.4.: Quantitative assessment of the “Post-processing” step using the results of the “Pixel-labeling refinement” task performed on the
auto-correlation and Gabor-based pixel-labeling scheme with the “DIGIDOC-Texture dataset” by clustering and classification
accuracy measures: Jaccard coefficient (J), purity per block metric (PPB), precision (P ), recall (R), F-measure (F ) and classification
accuracy (CA). µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher the mean values, the better the results.
The “Overall∗” value is obtained by averaging all the respective column values except the value of “Two fonts and graphics∗∗”. The
“Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two fonts and graphics∗”. “Two fonts
and graphics∗” represents the case when every font in the text has a different label in the ground-truth, and the clustering is performed
by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts and graphics∗∗” represents the
case when all fonts in the text have the same label in the ground-truth, and the clustering is performed by setting the number of types
of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.90 0.16 0.99 0.02 0.78 0.24 0.75 0.28 0.76 0.26 0.92 0.17

Two fonts and graphics∗ 0.87 0.17 0.98 0.04 0.66 0.18 0.65 0.20 0.65 0.19 0.88 0.19

Two fonts and graphics∗∗ 0.83 0.18 0.99 0.03 0.85 0.21 0.83 0.24 0.84 0.22 0.91 0.17

Only two fonts 0.87 0.18 0.96 0.08 0.75 0.23 0.73 0.26 0.74 0.24 0.89 0.20

Only three fonts 0.78 0.20 0.92 0.10 0.56 0.18 0.54 0.23 0.54 0.21 0.78 0.26

Overall∗Overall∗Overall∗ 0.850.850.85 0.180.180.18 0.960.960.96 0.060.060.06 0.690.690.69 0.210.210.21 0.670.670.67 0.240.240.24 0.670.670.67 0.230.230.23 0.870.870.87 0.200.200.20

Overall∗∗Overall∗∗Overall∗∗ 0.850.850.85 0.180.180.18 0.970.970.97 0.060.060.06 0.730.730.73 0.210.210.21 0.710.710.71 0.250.250.25 0.720.720.72 0.230.230.23 0.870.870.87 0.200.200.20

Document contentDocument contentDocument content µ(J)µ(J)µ(J) σ(J)σ(J)σ(J) µ(PPB)µ(PPB)µ(PPB) σ(PPB)σ(PPB)σ(PPB) µ(P )µ(P )µ(P ) σ(P )σ(P )σ(P ) µ(R)µ(R)µ(R) σ(R)σ(R)σ(R) µ(F )µ(F )µ(F ) σ(F )σ(F )σ(F ) µ(CA)µ(CA)µ(CA) σ(CA)σ(CA)σ(CA)

G
a
b
o
r

One font and graphics 0.90 0.15 0.99 0.03 0.82 0.22 0.80 0.25 0.81 0.24 0.93 0.16

Two fonts and graphics∗ 0.80 0.17 0.97 0.06 0.66 0.16 0.64 0.15 0.65 0.15 0.83 0.19

Two fonts and graphics∗∗ 0.84 0.18 0.99 0.04 0.90 0.16 0.88 0.18 0.89 0.17 0.89 0.21

Only two fonts 0.84 0.21 0.93 0.11 0.81 0.25 0.80 0.24 0.80 0.24 0.87 0.21

Only three fonts 0.64 0.21 0.89 0.10 0.64 0.19 0.62 0.19 0.62 0.19 0.71 0.20

Overall∗Overall∗Overall∗ 0.800.800.80 0.190.190.19 0.940.940.94 0.070.070.07 0.730.730.73 0.210.210.21 0.710.710.71 0.210.210.21 0.720.720.72 0.200.200.20 0.830.830.83 0.190.190.19

Overall∗∗Overall∗∗Overall∗∗ 0.810.810.81 0.190.190.19 0.950.950.95 0.070.070.07 0.790.790.79 0.210.210.21 0.770.770.77 0.220.220.22 0.780.780.78 0.210.210.21 0.850.850.85 0.190.190.19
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Table 6.5.: Difference values in the computed clustering and classification accuracy measures when introducing the “Post-processing” step and
without it into the results of the “Pixel-labeling refinement” task into the auto-correlation and Gabor-based pixel-labeling scheme
using the “DIGIDOC-Texture dataset”: Jaccard coefficient (J), purity per block metric (PPB), precision (P ), recall (R), F-measure
(F ) and classification accuracy (CA). The “Overall∗” value is obtained by averaging all the respective column values except the value of
“Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two
fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font in the text has a different label in the ground-truth,
and the clustering is performed by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts
and graphics∗∗” represents the case when all fonts in the text have the same label in the ground-truth, and the clustering is performed
by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.0189 0.0412 -0.0799 -0.1082 -0.0929 0.0012

Two fonts and graphics∗ 0.1269 0.0744 0.0249 -0.0012 0.0126 0.0821

Two fonts and graphics∗∗ 0.0589 0.042 -0.0115 -0.0272 -0.0187 0.0339

Only two fonts 0.0492 0.0458 -0.0047 -0.064 -0.0296 0.0647

Only three fonts 0.0515 0.0539 -0.0241 -0.0857 -0.0594 0.0445

Overall∗Overall∗Overall∗ 0.061630.061630.06163 0.053830.053830.05383 -0.02095-0.02095-0.02095 -0.06477-0.06477-0.06477 -0.04232-0.04232-0.04232 0.048130.048130.04813

Overall∗∗Overall∗∗Overall∗∗ 0.044630.044630.04463 0.045730.045730.04573 -0.03005-0.03005-0.03005 -0.07128-0.07128-0.07128 -0.05015-0.05015-0.05015 0.036070.036070.03607

Document contentDocument contentDocument content JJJ PPBPPBPPB PPP RRR FFF CACACA

G
a
b
o
r

One font and graphics 0.0227 0.03 -0.0798 -0.0592 -0.0684 0.0423

Two fonts and graphics∗ 0.1037 0.03 -0.0319 -0.016 -0.0242 0.0832

Two fonts and graphics∗∗ 0.0315 0.0058 -0.0117 0.0032 -0.004 0.0047

Only two fonts 0.0288 -0.0025 -0.077 -0.0116 -0.0408 0.0389

Only three fonts 0.0365 0.0018 -0.0278 -0.0022 -0.0151 0.0262

Overall∗Overall∗Overall∗ 0.047920.047920.04792 0.015350.015350.01535 -0.05413-0.05413-0.05413 -0.02225-0.02225-0.02225 -0.03713-0.03713-0.03713 0.047650.047650.04765

Overall∗∗Overall∗∗Overall∗∗ 0.029880.029880.02988 0.008200.008200.00820 -0.04908-0.04908-0.04908 -0.01745-0.01745-0.01745 -0.03208-0.03208-0.03208 0.028030.028030.02803
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Table 6.6.: Quantitative assessment of the “Homogeneous region extraction” step performed after the “Post-processing” task on on the auto-
correlation and Gabor-based pixel-labeling scheme using the “DIGIDOC-Texture dataset” by computing three accuracy metrics:
precision (PAR), recall (RAR) and Jaccard index (J). µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher
the mean values, the better the results. The “Overall∗” value is obtained by averaging all the respective column values except the value
of “Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the respective column values except the value of “Two
fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font in the text has a different label in the ground-truth,
and the clustering is performed by setting the number of types of content regions to 3 (graphics and two different text fonts). “Two fonts
and graphics∗∗” represents the case when all fonts in the text have the same label in the ground-truth, and the clustering is performed
by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(PAR)µ(PAR)µ(PAR) σ(PAR)σ(PAR)σ(PAR) µ(RAR)µ(RAR)µ(RAR) σ(RAR)σ(RAR)σ(RAR) µ(JAR)µ(JAR)µ(JAR) σ(JAR)σ(JAR)σ(JAR)

A
u
to

-c
o
rr
e
la
ti
o
n

One font and graphics 0.96 0.12 0.90 0.20 0.88 0.23

Two fonts and graphics∗ 0.92 0.14 0.78 0.21 0.76 0.23

Two fonts and graphics∗∗ 0.91 0.15 0.75 0.23 0.72 0.25

Only two fonts 0.97 0.09 0.80 0.25 0.79 0.27

Only three fonts 0.91 0.17 0.73 0.29 0.69 0.31

Overall∗Overall∗Overall∗ 0.940.940.94 0.130.130.13 0.810.810.81 0.240.240.24 0.780.780.78 0.260.260.26

Overall∗∗Overall∗∗Overall∗∗ 0.940.940.94 0.130.130.13 0.800.800.80 0.240.240.24 0.770.770.77 0.260.260.26

Document contentDocument contentDocument content µ(PAR)µ(PAR)µ(PAR) σ(PAR)σ(PAR)σ(PAR) µ(RAR)µ(RAR)µ(RAR) σ(RAR)σ(RAR)σ(RAR) µ(JAR)µ(JAR)µ(JAR) σ(JAR)σ(JAR)σ(JAR)

G
a
b
o
r

One font and graphics 0.97 0.11 0.90 0.19 0.88 0.22

Two fonts and graphics∗ 0.91 0.16 0.78 0.20 0.75 0.22

Two fonts and graphics∗∗ 0.91 0.15 0.77 0.20 0.74 0.22

Only two fonts 0.97 0.09 0.79 0.25 0.78 0.26

Only three fonts 0.92 0.13 0.73 0.25 0.68 0.28

Overall∗Overall∗Overall∗ 0.940.940.94 0.120.120.12 0.800.800.80 0.220.220.22 0.780.780.78 0.240.240.24

Overall∗∗Overall∗∗Overall∗∗ 0.940.940.94 0.120.120.12 0.800.800.80 0.220.220.22 0.770.770.77 0.250.250.25
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Table 6.7.: Difference values in the computed accuracy metrics for the evaluation of the “Homogeneous region extraction” step performed
after the “Post-processing” task between the auto-correlation and Gabor-based pixel-labeling scheme using the “DIGIDOC-Texture
dataset”: precision (PAR), recall (RAR) and Jaccard index (J). The “Overall∗” value is obtained by averaging all the respective column
values except the value of “Two fonts and graphics∗∗”. The “Overall∗∗” value is obtained by averaging all the respective column values
except the value of “Two fonts and graphics∗”. “Two fonts and graphics∗” represents the case when every font in the text has a different
label in the ground-truth, and the clustering is performed by setting the number of types of content regions to 3 (graphics and two
different text fonts). “Two fonts and graphics∗∗” represents the case when all fonts in the text have the same label in the ground-truth,
and the clustering is performed by setting the number of types of content regions equal to 2 (graphics and text).

Document contentDocument contentDocument content µ(PAR)µ(PAR)µ(PAR) µ(RAR)µ(RAR)µ(RAR) µ(JAR)µ(JAR)µ(JAR)

G
a
b

o
r-

A
u

to
-c

o
rr

e
la

ti
o
n One font and graphics 0.00628 0.00008 0.00530

Two fonts and graphics∗ -0.00147 -0.00402 -0.00164

Two fonts and graphics∗∗ 0.00357 0.01774 0.02021

Only two fonts -0.00057 -0.00935 -0.00063

Only three fonts 0.01548 -0.00464 -0.00720

Overall∗Overall∗Overall∗ 0.004930.004930.00493 -0.00448-0.00448-0.00448 -0.00247-0.00247-0.00247

Overall∗∗Overall∗∗Overall∗∗ 0.006190.006190.00619 0.000950.000950.00095 0.002990.002990.00299
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This chapter presents few applications of the proposed structural signa-
ture based on texture of digitized historical book pages in the context of
DIGIDOC project. The proposed page signature is able to index, compare
or categorize digitized historical book pages according to several criteria,
mainly the layout structure and/or typographic/graphical characteristics of
the historical document image content.
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Chapter 7. Application to DIGIDOC project: a structural signature for book page categorization

7.1. Introduction

Over the last few years, there has been tremendous growth in digitizing collections of cultural
heritage documents. Thus, many challenges and open issues have been raised, such as information
retrieval in digital libraries or analyzing page content of DHBs. The work presented in Chapter
6 proposes a structural signature based on texture, used for DHB page characterization. The
proposed page signature integrates varying low-level features characterizing the different DI content
components or blocks (i.e. text or graphic regions) on the one hand, and structural information
describing the DI structure or layout on the other hand. This rich and holistic representation of the
layout and content of the analyzed DHB page can be adapted to the user preferences and specified
criteria through the extracted varying levels of information (e.g. by selecting only the information
characterizing the HDI content and/or structure or by retrieving any useful information available
for the subsequent use). The extracted varying low-level information corresponds to the extracted
(i) texture features to characterize the DI typographical and graphical characteristics, (ii) shape,
geometric and topological features to describe the shape and spatial relationships of the extracted
components of DI contents and (iii) structural information to take into consideration the page
layout or structure.

On the other side, our goal in the context of the DIGIDOC project is to develop tools for analyzing
HDIs throughout the acquisition process, from scanning the document to knowledge representation
and management of HDI content. Moreover, the ultimate goal of the DIGIDOC project is devel-
oping relevant ways of interacting with scanners by assisting the digitization operator to adjust
automatically the best set of parameters (e.g. resolution, lightening, color calibration), detecting
errors in the digitization process (e.g. blur, skewed or folded pages), providing appropriate assis-
tance for document indexing (e.g. by recognizing automatically page types or breaks in a sequence
of pages), etc. There is an absolute need to design “smart” digitizers which can limit manual
intervention and perform easy and high quality digitization of DIs [9]. Therefore, to achieve better
interaction with scanners, we need to design a computer-aided categorization tool, able to index
or categorize DHB pages according to several criteria, mainly the layout structure, graphical prop-
erties or typographical characteristics of the HDI content. Thus, the key task in this work is to
prove that it is possible to ensure automatic and relevant characterization and categorization of
DHB pages without manual inspection or a priori knowledge regarding DI layout and content and
with taking into consideration the particularities of HDIs.

As a matter of fact, the proposed page signature will be the data provided to a smart scanner to
index or categorize DHB pages according to several criteria, mainly the layout structure, graphical
properties or typographical characteristics of the HDI content. The DHB page categorization will
be based on analyzing the different obtained signatures during the scanning process. To categorize
and group DHB pages with similar layout and/or content, the obtained graph-based DHB page
signature can be compared using a graph dissimilarity. Then, the evaluation of the proposed page
signature has been carried out based on computing a distance matrix, whose elements represent
the dissimilarity between the compared graphs. Indeed, the DHB pages can be compared by
categorizing the designed signatures which model the layout and content of DHB pages. Figure 7.1
provides an overview of the context and an example of signature-based applications (i.e. finding
pages in a DHB which contain similar content component or a group of patterns). In this work,
we focus on investigating all the elements of the proposed graph-based signature to group DHB
pages with similar layout and/or content. Nevertheless, it is worth noting that it is also possible to
extend the scope of using the proposed graph-based signature to find pages in a DHB which contain
similar content component or a group of patterns by means of sub-graph isomorphism paradigm.

Indeed, to deduce the similarities of DHB page structure or layout and/or content and sub-
sequently to categorize and group DHB pages with similar layout and/or content, the proposed
graph-based signature should be compared using a graph-matching paradigm and particularly the
graph edit distance (GED) approach. The GED is used to measure the (dis)similarity between the
proposed graph-based signatures and subsequently to group and categorize the pages that have
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Figure 7.1.: Overview of the context and an example of signature-based applications (i.e. finding
pages in a DHB which contain similar content component or a group of patterns).

similar content and/or structure [472].
Thus, based on the proposed structural signature, few applications for automatic categorization

approach of DHB pages in the context of the DIGIDOC project are presented in this chapter. These
applications help to manage effectively a corpus or collections of DHBs. As mentioned earlier (cf.
Section 1.3), numerous applications based on the defined page signature can be proposed:

• Designing a smart or intelligent scanner by adapting or adjusting automatically the quality
of the HDI scanning process with respect to the obtained page representations of DHB pages
which can be classified according to several criteria (e.g. HDI content and/or structure,
subsequent use). This would help ensuring an automatic adjustment of the digitization quality
of historical collections with respect to the HDI content, layout and subsequent use,

• Modeling a computer-aided categorization tool, able to index, group or classify DHB pages
according to several criteria, mainly the layout structure or typographic characteristics of the
HDI content,

• Comparing the different DHBs according to several criteria, mainly the layout or content of
their pages,

• Providing a DHB summary after determining the transition pages in a DHB which may
correspond to the title pages of each chapter for example (cf. Figure 1.1),

• Retrieving pages in a DHB which have particular layout and/or content,

• Finding pages in a DHB that match specific criteria defined by a user,

• Detecting the scanning failure occurring during the digitization process (e.g. curvature, light),

• Collecting the empty or cover DHB pages, etc.
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Among the numerous possible applications of the proposed DHB page signature mentioned above
(e.g. structure the whole HDIs corpus, index, retrieve, compare or group HDIs), a thorough
evaluation has been conducted in this work for assessing two possible signature-based applications:

1. Unsupervised DHB page classification to group or gather similar layout and/or content DHB
pages,

2. DHB page stream segmentation to generate automatically a table of content/summary of the
analyzed DHB.

Figure 7.2 illustrates the two analyzed and evaluated categorization applications of the proposed
DHB page signature, unsupervised page classification and page stream segmentation.

Figure 7.2.: Illustration of the two analyzed and evaluated categorization applications of the
proposed DHB page signature, unsupervised page classification and page stream
segmentation.

As a consequence, in this chapter we detail these two applications of the proposed page signature
along with the experiments and evaluations necessary to assess their performance. This evaluation
has been carried out based on:

• Computation of GEDs between the different graph-based DHB page signatures, that can be
used to retrieve similar pages in a HDI database query tool.

• DHB page categorization by analyzing the computed GEDs between the different graph-based
DHB page signatures.

The assessment of the other applications of the proposed DHB page signature, cited earlier, will
be among our future prospects.
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The two analyzed and evaluated applications are independent of the layout and content of the
analyzed DHB pages, and hence, they are applicable to a large variety of DHBs. Indeed, our
proposed approach does not assume a priori knowledge regarding HDI content and structure. In
order to test the performance of the proposed signature, a detailed experimental evaluation on a
large variety of HDIs has been carried out in two different signature-based applications.

Therefore, based on the work presented in the previous chapters (cf. Chpaters 4, 5 and 6), a
texture-based structural signature for characterization and categorization of DHB pages is illus-
trated in Figure 7.3.
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Figure 7.3.: Detailed schematic block diagram of the proposed texture-based structural signature
for characterization and categorization of DHB pages.

First, Chapter 4 states that Gabor-based approach performs considerably better in segmenting
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HDIs. Then, Chapter 5 presents a framework to investigate the use of texture as a tool for de-
termining automatically the number of book content types in a DHB and segmenting its contents
by extracting and analyzing texture features independently of the layout of the pages. Finally,
Chapter 6 proposes a structural signature based on Gabor features, used for DHB page characteri-
zation. The proposed signature is based on varying low-level features (i.e. Gabor, shape, geometric
and topological descriptors) and a structural signature. Therefore, by integrating the Gabor-based
signature presented in Chapter 6 after the proposed Gabor-based pixel-labeling framework pre-
sented in Chapter 5, a structural signature based on Gabor features of DHB page is analyzed and
evaluated in this chapter. This signature is defined according to several criteria, mainly the layout
structure and/or typographic/graphical characteristics of the content of the DBH into considera-
tion. This chapter illustrates the potential of the proposed signature by evaluating two possible
signature-based applications, unsupervised page classification and page stream segmentation for
DHB page categorization.

Therefore, the work presented in this dissertation consists of a complete system which can be
divided into two parts:

1. DHB page characterization :
The first part of this work is used to generate the graph-based signature for DHB page
characterization, is composed of the following seven tasks:

a) Pre-processing and Gabor feature extraction (Step 1, cf. Sections 4.4.1.1 and 4.4.1.2),

b) Estimation of the number of DHB content types (Step 2, cf. Section 5.3.1.2),

c) Pixel-clustering and labeling (Step 3, cf. Section 5.3.2),

d) Pixel-labeling refinement (Step 4, cf. Section 6.3.1),

e) Post-processing (Step 5, cf. Section 6.3.2),

f) Extraction of representative homogeneous regions (Step 6, cf. Section 6.3.3),

g) Generation of a structural signature per page (Step 7, cf. Section 6.3.4).

2. DHB page categorization :
Since the characterization of the DHB page layout and content is performed using the pro-
posed graph-based signature, the categorization task of the DHB pages can be carried out by
comparing the different graph-based signatures. A thorough evaluation has been conducted
in this work for assessing two signature-based applications:

a) Unsupervised DHB page classification (cf. Section 7.4.1),

b) DHB page stream segmentation (cf. Section 7.5).

Figure 7.4 illustrates the detailed schematic block diagram of the proposed approach used to
generate the graph-based signature for DHB page characterization.

The remainder of this chapter is organized as follows: Section 7.2 reviews the different techniques
and algorithms of graph-matching paradigms. In Section 7.3, the used GED computation by means
of a binary linear programming (BLP) is described briefly. Section 7.4 presents two applications
of the proposed DHB page signature for DHB page categorization, unsupervised DHB page clas-
sification (cf. Section 7.4.1) and DHB page stream segmentation (cf. Section 7.4.2). In Section
7.5.1, we discuss the obtained performance of each application of the proposed structural signature
for DHB page categorization by computing several accuracy metrics. Moreover, to evaluate the
performance of the proposed signature-based approach for DHB page characterization on a DHB of
322 ground truthed one-page HDIs, qualitative and quantitative evaluation of the different steps of
its extraction are presented. In addition, qualitative results using the designed GUI tool for DHB
page categorization are also given to demonstrate the performance of the proposed DHB page
categorization. Our discussion and conclusions are presented in Sections 7.6 and 7.7, respectively.
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Figure 7.4.: Detailed schematic block diagram of the proposed approach used to generate the graph-
based signature for DHB page characterization.

7.2. Related works

Since the goal of this chapter is to illustrate the effectiveness of the proposed graph-based page
signature by assessing possible signature-based applications of DHB page categorization, graph-
matching paradigm is obviously required to compare the involved signatures. As a matter of fact,
this section reviews the different techniques and methods used to solve graph-matching paradigms,
with a particular focus on those related to GED computation.

7.2.1. Graph-matching paradigm

In the last decades, graph usage has grown significantly due to the inherent flexibility and generality
of graph structures and the numerous advantages over other topological representation formalisms
in pattern recognition fields previously detailed in Chapter 6 (cf. Section 6.2.3) comparing other
spatial representation formalisms. Indeed, due to the fact that graphs ensures the modeling of
different types of data, graph-based applications on several pattern recognition fields have been
developed. Critical to this intensive emergence of graph use are the huge volume of graph data
which have become available and the open issues related to the development of effective and efficient
methods to perform graph mining [473, 474, 475], graph clustering [476, 477] and graph classification
[478, 479, 480].

Nevertheless, it is well-known that computing the dis(similarity) measure among graphs is consid-
ered as the crucial crossroad of these different graph-based applications and particularly for machine
learning issues. Usually, the graph-matching issue is addressed by computing the dis(similarity)
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measure between pairs of graphs. The graph-matching algorithms are based on computing the dis-
tance between two graphs. The lower the distance values, the more the graphs can be considered
similar.

Silva et al. [481] confirmed that graph-matching is still a highly complex open issue related to
the use of the exact or inexact “approximate” graph-matching approaches. He stated that the
complexity of the exact graph-matching approaches has not been solved yet, contrary to the sub-
graph-matching or approximate graph-matching which are NP-complete problems [482, 483]. As
a consequence, the graph-matching issue is tackled in different ways by many researchers. Unfor-
tunately, there is no generic solution capable of addressing efficiently this issue. A large number
of algorithms have been proposed in the literature in this respect. The state-of-the-art methods
addressing the computation of the dis(similarity) measure among graphs can be categorized into
two classes:

1. Embedding-based methods
The embedding-based methods are processed by projecting the input graphs into real vector
space. The idea of these methods consists in embedding a part of a graph into a vector feature
space, for example a numerical vector. These methods have the advantage of benefiting
from the access to the rich repository of algorithmic tools for pattern recognition (i.e. the
distance computation used for vector representations). Moreover, they ensures the reduction
of the computation of a distance between two graphs to a distance between two vector (i.e.
linear complexity). Thus, they are computationally effective, since they do not require a
complete matching process. The ultimate objective of these methods is to integrate the graph
structure into a computationally efficient and mathematically convenient feature vector which
is not a straightforward task. As a matter of fact, they might affect the effectiveness of the
graph-matching process. On the other hand, the issue of determining the adequate vector
representations for graphs is absolutely a non-trivial task due to the representational power of
graphs which is clearly higher than that of feature vectors (i.e. a supplementary off-line time
is required for database indexing) [439]. Indeed, a loss of information can be induced due to
the mis-representation of the relational properties in vector space, when the projection of the
input graphs into vector space is performed using a vector representation (i.e. non-bijectivity
between the graph and vector spaces). The embedding-based methods can also be classified
into two categories:

a) Based on implicit projection
Among the embedding-based methods based on implicit projection, we mention as exam-
ples methods based on using graph kernels [484, 485, 486]. The graph kernel methods are
used for classification, transformation and clustering of vector space embedded graphs,
etc. A number of graph kernels have been designed which can be classified into four kinds:
diffusion, convolution, walk and other additional kernel methods [487, 488, 489, 490, 439].

i. Convolution kernels
The convolution kernels are processed by inferring the similarity of complex patterns
from the similarity of their components. The ANOVA kernel [491] or graphlet kernel
[492] are two standard statistical convolution kernels.

ii. Diffusion kernels
The Diffusion kernels are processed by defining a base similarity measure which is
used to construct a valid kernel matrix. This base similarity measure is needed to
repeatedly fulfill the condition of symmetry. It can be defined for any kind of objects
[493].

iii. Walk Kernel methods
The walk Kernel methods are based on the analysis of random walks in graphs by
measuring the similarity of two graphs. The similarity of two graphs is defined by
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the number of random walks in both graphs that have all or some labels in common
[444].

iv. Other additional kernels
These other additional kernels are based on identifying identical sub-structures in
two graphs, such as common sub-graphs, sub-trees and cycles [494, 495].

The high representational power of graphs and large repository of algorithmic tools
available for feature vector representations of objects are considered two main advantages
of using the graph kernel methods. Nevertheless, these kernels can only be used in specific
applications and kinds of graphs.

b) Based on explicit projection
The embedding-based methods based on explicit projection are based on computing a
feature vector for each graph. The vector features can be deduced from the appearance
frequencies of a specific sub-structure [496, 497, 498] or from a spectral analysis of graphs
[499, 448, 500].

i. Methods based on the appearance frequencies of a specific sub-structure
The embedding methods based on the appearance frequencies of a specific sub-
structure focus mainly on the sub-graph extraction task. For instance, Barbu et
al. [497] proposed for the clustering of DI. The DI representation is deduced by
counting the occurrences of structural patterns. The pattern lexicon is constituted
of the frequent sub-graphs in the structural representations of DIs. One of the major
drawbacks of this approach is that as the constituted pattern lexicon is specific for
a DI dataset, it must be regenerated in order to represent DIs from another dataset.
Sidère et al. [498] proposed a vector representation of graphs based on pattern
frequency, by integrating labeling information, to classify symbols and letters. Nev-
ertheless, these methods require an off-line time for database indexing. In addition,
the performance of the proposed approaches depends on the choice of parameters,
such as the size of lexicon which must be specified in advance.

ii. Spectral methods
The spectral methods are based on the following observation, first, the eigen-values
and eigenvectors of the adjacency or Laplacian matrix of a graph are known to be
invariant to vertex permutations. Hence, if two graphs are isomorphic (cf. Section
B.8), their structural matrices will have the same eigen-decomposition. As a con-
sequence, by means of the eigen-decomposition, the underlying graphs can be rep-
resented and compared with some features derived from their eigen-decomposition.
The main disadvantage of the spectral methods is, that they are sensitive to few
structural errors, such as missing or spurious vertices [501].

2. Matching-based methods
The matching-based methods are based on determining the similarity between two graphs
by computing and quantifying the “best” matching between them. There are several types
of matching algorithms used to compute and quantify the “best” matching between them.
Recently, numerous research studies have focused on proposing efficient and effective graph-
matching algorithms [441, 502]. A huge number of algorithms have been proposed in the
literature to reduce the computation and complexity requirements to search the most similar
graph or sub-graph [440, 441]. These algorithms can be categorized according to the kinds of
constraints that must be respected or relaxed (e.g. determining the maximum common sub-
graph and/or minimum common sub-graph has been used to deduce a graph distance metric
[503, 504, 505]). On the other side, the graph-matching algorithms can be classified into
two categories, based on exact isomorphism and error-tolerant graph-matching algorithms
(cf. Section B.8). Indeed, in the real world issues the involved data for graph-matching
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paradigm are potentially biased information which can affect the labels and/or topology of the
structural representations under consideration. As a consequence, the error-tolerant graph-
matching issues have gained a great attention of many researchers in the pattern recognition
and analysis fields. A graph-matching algorithm is called error-tolerant one if few matching
approximations can be made on the topology and/or attributes. The adjacency matrix eigen-
decomposition [506, 507] and graduated assignment methods [508, 509] are two examples of
error-tolerant graph-matching algorithms. The major drawback of these algorithms is that
many critical conditions must be satisfied and numerous heuristics should be established (e.g.
(i) The pair of graphs to be matched must be nearly isomorphic; (ii) The eigen-values of the
adjacency matrix of each graph have to be single and isolated enough to each other). Another
well-known example of error-tolerant graph-matching algorithms is the GED [472].

7.2.2. Graph edit distance

The GED which corresponds to the minimum cost associated to an error correcting graph-matching,
has been intensively investigated since it is on the crossroad of different pattern recognition and
computer vision fields. It is used to measure the (dis)similarity between graphs [13]. Hence, in
this work the GED approach is well suited to analyze and evaluate the different signature-based
applications for DHB page categorization (i.e. the obtained graph-based DHB page signatures can
be compared using a graph dissimilarity by means of GED).

The GED deals with the computation of the minimum-cost sequence of the basic graph editing
operations (e.g. substitution, deletion and insertion of vertices or edges) to transform a graph to
another one. The GED has to be set up based on the costs of the elementary edit operations
(substitution, deletion and insertion). These costs are functions of the label of vertices/edges. In
Appendix B and particularly in Section B.8, a detailed description of the GED approach has been
carried. The major advantage of the GED is its generality to be arbitrarily applied to attributed
graphs and to any type of graphs, including hyper-graphs. Moreover, there are neither critical
conditions/restrictions to be satisfied nor heuristic information to be established [472]. GED has
be mainly used to address various issues related to graph classification [478, 479, 480]. However,
the main disadvantage of GED is its computational complexity which is exponential in the number
of vertices of the involved graphs. As a consequence, GED is only effective and efficient for graphs
of small size. Nevertheless, to tackle this issue, several fast suboptimal algorithms have been
proposed to tackle the efficiency limitation of GED by proposing solutions which are designed to
enable quick calculation of GEDs [510, 511, 512, 513, 514, 515, 516]. Other optimal methods have
also been proposed for the efficient computation of GED [517, 518]. Zeng et al. [519] stated that
the GED computation is a NP-hard approach. Indeed, using exact approaches when computing
GED for large graphs is prohibitively difficult (i.e. exact approaches to compute GED are effective
for small graphs). Hence, approximate approaches by means of upper and lower bounds of the
exact GED computation have become the best alternative when computing exact GED for large
graphs. Numerous surveys of GED approaches have been proposed in the literature [441, 520, 521].
Consequently, GED approaches can be classified into two categories, exact and approximate/inexact
approaches.

7.2.2.1. Exact approaches

The first category of the GED approaches is based on exact computation of GED. A∗ is certainly the
most well-known algorithm, used to compute exactly GED [522]. It is based on the exploration of
the tree of solutions. Each node in this tree represents the partial edition of the involved graph. On
the other side, a tree leaf represents an edit path which transforms one of the input graph into the
other one. The exploration of the tree is based on developing relevant methods for the estimation
of GED. Indeed, the estimation of GED consists in determining the sum of the cost associated
to the partial edit cost and the cost of the remaining path which is given by a heuristic. An
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optimal path from the root node to the leaf one is identified based on the following statement: the
estimation of the future cost is lower than or equal to the real cost. Nevertheless, if the estimation
of the future cost is set to zero the whole tree of solutions will be explored (i.e. the smaller the
difference between the estimation and real future cost, the fewer nodes will be explored). On the
other side, by computing the real cost for the remaining edit path, an exponential time is required.
The A∗-based methods proposed in the literature differ depending on the defined heuristics for the
future cost estimation [517, 523]. These heuristics have been established to find an optimal trade-off
between the approximation quality and computation time. Another well-known algorithm based on
a binary linear programming (BLP) approach was proposed to compute exactly GED [524, 480].
For instance, Justice and Hero [480] proposed a BLP formulation of the GED for unweighted,
undirected graphs. Their method aims to determine the permutation matrix which minimizes the
cost of transforming a graph to another one.

7.2.2.2. Approximate approaches

Since the exact computation of GED is only effective and efficient for graphs of small size. Indeed,
the computational complexity of the exact computation of GED is exponential in the number of
vertices of the involved graphs. Meanwhile, considerable efforts have been undertaken to propose
numerous computations of approximations in polynomial time. As an example, Justice and Hero
[480] proposed a lower and upper bounds of the exact GED which can be computed in O(n7) and
O(n3), respectively. Riesen and Bunke [513] used a cost matrix for vertex substitution, insertion or
deletion to determine the vertex assignment by applying the Munkres’ algorithm [525]. The vertex
assignment ensures the inference of an edit path which transforms one graph into another one and
whose associated cost is an upper bound of the exact GED. Their method has a complexity of
O((n1 + n2)3) in n1 and n2 which denote the number of vertices of the two involved graphs.

Other approximate approaches are derived from the exact ones. For instance, Neuhaus et al.
[514] proposed two simple and effective approximations of a standard GED by using A∗-based
algorithm to sub-optimally compute GED in a faster way. The first approximation which is called
A∗-Beamsearch, is based on pruning the tree of solutions by limiting the number of concurrent
partial solutions to the p most promising ones. The parameter p which defines the number of
concurrent partial solutions to keep, is determined by finding an optimal trade-off between the
approximation quality and combinatorial cost. The first approximation provides a valid edit path
and its associated cost by setting an upper bound of the exact GED. Nevertheless, the identified
edit path can be not the optimal one (i.e. an optimal edit path may be filtered off and removed
in the earlier steps of the algorithm). The second approximation which is called A∗-Pathlength, is
based on providing a higher exploration priority to long partial edit paths in order to have a prompt
access to a leaf vertex. Riesen et al. [526] improved their proposed approximate GED, previously
published in [513], by means of genetic algorithms and vertex assignments for search procedure.
The vertex assignment are computed using bipartite graph-matching approach as an initialization
step for a genetic algorithm. The bipartite graph-matching approach derives an edit path from any
vertex assignment and subsequently computes its cost [513]. Another recent approximate GED
approach based on Hausdorff matching was proposed by Fischer et al. [523]. It integrates in the
A∗-based algorithm a heuristic based on a modified Hausdorff distance. The modified Hausdorff
distance has a time complexity of O(n1 × n2) in n1 and n2 which denote the number of vertices of
the two involved graphs.

Other kind of approximate GED approaches has been proposed based on probabilistic framework
[515, 527]. For instance, Myers et al. [515] proposed a framework for comparing and matching
corrupted relational graphs by means of Bayesian GED. They modeled the probability distribution
for structural errors in vertex assignments. The objective is to find the vertex assignment that
maximizes the a posteriori probability considering vertex attributes. Nevertheless, this kind of ap-
proximate GED approaches can neither define bounded heuristics, nor exploit the use of algorithms
to prune the tree of solutions by efficiently prioritize its exploration in the A∗-based algorithm.
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7.3. Graph edit distance using an optimized binary linear programming

It is important to underline that the proposed characterization approach of DHB pages by means of
a graph-based signature (including the definition of the node and edge labels of the obtained graph-
based signature after extracting the representative homogeneous regions), forms an integral part of
our concrete contribution. On the other side, an approximate GED approach has been performed
using an optimized formulation of binary linear programming (BLP) by means of the GEM++1

tool for comparing the different DHB page signatures. The GEM++ tool was proposed by the
LITIS and LI laboratories for solving graph-matching paradigm using an optimized formulation of
BLP by means of a lower bound of the exact GED to model approximate GED paradigm [528].

A BLP is a derivative of integer linear programming (ILP) where the variables are binary. Indeed,
a set of binary variables is used to define an edit path between the graphs G1 and G2 formulated in
a BLP problem to find an edit path on graph G1 to make it isomorphic to the graph G2 by means
of GED. In Appendix B and particularly in Section B.8, a brief review of the basic definitions
and concepts related to graphs and a detailed description of a standard GED approach have been
carried. To compute the GED between the graphs G1 and G2, an edit path is defined by a set of
binary variables on graph G1 to make it isomorphic to the graph G2. Three types of elementary
edit operation are defined when using GED approach to match the two graphs G1 and G2:

1. The substitution of the label of a vertex (resp. an edge) of G1 with the label of a vertex
(resp. an edge) of G2,

2. The deletion of a vertex (resp. an edge) from G1,

3. The insertion of a vertex (resp. an edge) of G2 in G1.

To find the best admissible edit path between the graphs G1 and G2, an overall cost can be
deduced. This overall cost must be minimized by means of an objective function defined by a set of
binary variables on graph G1 to make it isomorphic to the graph G2. Afterwards, our goal is to find
the optimal solution that minimizes the objective function and respects several constraints. This
can be expressed in terms of a BLP problem which is used to model approximate GED paradigm.

Few domain and linear inequality constraints must be respected to have admissible edit path
solutions of the defined BLP that minimizes the objective function (cf. equation B.88) applied on
the graph G1 to make it isomorphic to the graph G2. A solution is considered as admissible if
and only if the defined domain constraints (cf. equations (B.89) and (B.90)) and linear inequality
constraints (cf. equations (B.82), (B.83), (B.84), (B.85), (B.86) and (B.87) in Table B.5), related to
the involved edit path solution are respected (cf. Appendix B and particularly Section B.9.2). An
admissible edit path solution of the optimized BLP that minimizes the objective function applied
on the graph G1 to make it isomorphic to the graph G2, is given based on the optimized BLP
formulation of GED which is illustrated in Table B.6.

In this work, an approximate GED approach is used to provide sub-optimal solutions with un-
bounded errors. Indeed, a lower bound solution of the minimization problem is obtained by using
a continuous relaxation of the optimized BLP formulation (i.e. the constraints remain unchanged
while the variables used when setting the domain constraints are defined in the continuous space
[0, 1]). The continuous relaxation is considered as an heuristic used to compute an approximation
of the optimal objective value in conjunction with a branch-and-cut algorithm when exploring the
tree of solutions. This ensure the reduction of the number of explored solutions in the tree of
solutions and subsequently the computational complexity.

Finally, to solve the optimized BLP formulation of GED (cf. Table B.6) and determine an
admissible edit path solution, a dedicated mathematical solver which is called Gurobi2, is used
based on a branch-and-cut algorithm in conjunction with a continuous relaxation. Indeed, the used

1http://litis-ilpiso.univ-rouen.fr/ILPIso/gem++.html
2http://www.gurobi.com/

264

http://litis-ilpiso.univ-rouen.fr/ILPIso/gem++.html
http://www.gurobi.com/


7.4. Categorization of digitized historical book pages

solver finds the best admissible edit path solution in terms of the optimized BLP that minimizes
the objective function applied on the graph G1 to make it isomorphic to the graph G2. The
used approximate GED in this work has a polynomial time complexity. Nevertheless, the size of
the graphs under consideration remains a significant problem for time complexity. Therefore, a
limited number of vertices in the involved graphs is still necessary to have reduced computational
complexity of the proposed GED approach.

In Appendix B and particularly in Section B.9, a detailed description of how an overall cost can
be deduced by using a BLP and applying an edit path on graph G1 to make it isomorphic to the
graph G2.

7.4. Categorization of digitized historical book pages

To categorize and group DHB pages with similar layout and/or content, the obtained graph-based
DHB page signature can be compared using a graph dissimilarity. In our experiments, we use a
graph dissimilarity tool (cf. Section 7.3) which provides an approximation of a standard GED. The
assessment of other potential graph dissimilarity approaches, cited earlier, will be among our future
prospects, since in this work the computational complexity of the approximate GED is reduced.
Indeed, we have a limited number of vertices in the obtained graphs (i.e. up to 11 vertices).

The approximate GED is used to measure the (dis)similarity between the obtained graph-based
DHB page signatures [13]. The approximate GED deals with the computation of the minimum-cost
sequence of the basic graph editing operations (e.g. substitution, deletion and insertion of vertices
or edges) to transform a graph to another one. The approximate GED has to be set up based on
the costs of the elementary edit operations (substitution, deletion and insertion). These costs are
functions of the label of vertices/edges. The weight of each feature composing the label has been
set after a statistical analysis of the feature variations in order to give the same importance to
texture features and shape/geometric/topological descriptors (cf. Table 7.1). Same weight of each
feature composing the label are assigned to the deletion and insertion graph editing operations,
since these two basic graph editing operations are reversible.

Table 7.1.: Assigned weights to the basic graph editing operations (substitution, deletion and in-
sertion) for the vertex and edge attributes of the proposed structural signature.

WeightWeightWeight

Id.Id.Id. AttributeAttributeAttribute SubstitutionSubstitutionSubstitution Deletion/insertionDeletion/insertionDeletion/insertion

V
e
rt
e
x Av1→46 Topological, geometric and shape

attributes

1
46 σAv1→46

1
46 σAv1→46

Av47→238 Texture attributes
1

192 σAv47→238
0

E
d
g
e

Ae1 Absolute difference between the
two extracted region centroids in
the x-axis

1 1

Ae2 Absolute difference between the
two extracted region centroids in
the y-axis

1 1

Ae3 Edge force 1 0

Therefore, the evaluation of the proposed page signature has been carried out based on firstly
computing a distance matrix, whose elements represent the dissimilarity between the compared
graphs. The dissimilarity corresponds to the GED, normalized with respect to the graph size.
Indeed, for a fixed number of edit operations needed to transform one graph into another, the
dissimilarity is higher if the graphs are small, and lower if the involved edit operations only affect
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a tiny portion of a large graph. Then, by analyzing the elements of the resulting distance matrix
(Mg), two following applications are targeted, unsupervised page classification and page stream
segmentation.

7.4.1. Unsupervised page classification

Firstly, an unsupervised classification task using the HAC algorithm, is performed on all elements of
Mg (mg

i,j). Since we deal with an unsupervised classification task, we aim to separate the involved
DHB pages into 2 clusters (i.e. to group pages by type of layout and/or content to separate the
most common or frequent pages which have similar layout and/or content from those that have
particular layout and/or content). One cluster representing frequent pages having similar layout
and/or content and the other one illustrating pages having particular layout and/or content.

7.4.2. Page stream segmentation

Secondly, by only analyzing the mg
i,i+1 elements of Mg, the different pairs of the successive DHB

pages can be grouped or retrieved according to a pre-defined threshold GED value. This task aims
to retrieve the transition pages in the involved DHB (i.e. identify different series of successive pages
having distinct layout and/or content). It is worth noting that this task is considerably important,
since it can detect pages having scanning failure occurring during the digitization process (e.g.
blur, skewed or folded pages). Moreover, by identifying these transition pages (e.g. title pages of
chapter), a particular indexing process can be carried out to assist a user in generating a table of
contents/summary (i.e. DHB page stream segmentation).

7.5. Experiments and results

In this section, the experimental protocol is firstly described. Then, qualitative results and an
assessment of the different steps of the proposed approach used to generate this signature are
presented. Subsequently, an analysis of the obtained results is discussed. Afterwards, a thorough
evaluation has been conducted for assessing two possible signature-based applications, unsupervised
book page classification and book page stream segmentation, to illustrate the potential of the
proposed signature.

7.5.1. Experimental protocol

Since the proposed structural signature based on texture for book page characterization and cate-
gorization is used on an entire book (i.e. all pages of the DHB under consideration), our experi-
mental corpus in this chapter contains one DHB (a printed monograph which is dated 1596, titled
“Il mondo nuovo, del sig. Giov. Giorgini da Jesi” and written in Italian) which is composed of 322
ground-truthed one-page color HDIs3. The analyzed DHB has been collected from Gallica3, and
its pages have been digitized at 300 dpi and saved in the TIFF format. The analyzed DHB consists
of 81 pages containing graphical and textual regions (i.e. pages that have particular layout and/or
content) and 241 pages containing only textual regions (i.e. the most common or frequent pages
that have similar layout and/or content).

Due to the constraints of the timelines for submitting this dissertation, the proposed signature
for DHB page categorization has been analyzed and evaluated on one DHB. Nevertheless, the
assessment of the proposed DHB page signature will be completed by extending our experiments
to nine other DHBs which is already ongoing work, i.e. 4372 gray-scale/color manuscript/printed
pages which encompass six centuries of French history (1201-1822) are currently being investigated.

3http://gallica.bnf.fr/ark:/12148/bpt6k132294p/f5.planchecontact.r=.langFR

266

http://gallica.bnf.fr/ark:/12148/bpt6k132294p/f5.planchecontact.r=.langFR


7.5. Experiments and results

7.5.2. Characterization of digitized historical book pages

To evaluate the performance of the proposed signature-based approach for DHB page characteri-
zation, qualitative and quantitative evaluation of the different steps of its extraction are presented
in Figure 7.5 and Table 7.2, respectively.

(a) Input 1 (b) Step 7(Output 1) (c) Input 3 (d) Step 7(Output 3)

(e) Input 4 (f) Step 7(Output 4) (g) Input 2 (h) Step 7(Output 2)

Figure 7.5.: Illustration of the resulting HDIs derived from the proposed approach for DHB page
characterization using the proposed graph-based signature.

Table 7.2.: Evaluation of the different steps of the proposed approach for DHB page
characterization.

Step 3Step 3Step 3 Step 4Step 4Step 4 Step 5Step 5Step 5

CACACA
µµµ 0.977 0.983 0.987
σσσ 0.066 0.085 0.076

Step 6Step 6Step 6

JARJARJAR
µµµ 0.952
σσσ 0.174

The success of the proposed approach is demonstrated by visual inspection of the segmented
HDIs (i.e. homogeneous regions are determined by identifying the graphic regions (blue) and
textual regions (green)). Then, the pixel-based classification accuracy (CA) is computed to evaluate
quantitatively the obtained results of the following steps of the proposed approach for DHB page
characterization: the pixel-clustering and labeling step (Step 3), the pixel-labeling refinement step
(Step 4) and the post-processing step (Step 5). Another accuracy metric is calculated, the Jaccard
index (JAR), for assessing the step of extraction of representative homogeneous regions (Step 6)
[469]. µ(.) and σ(.) are the mean and standard deviation of (.), respectively. The higher the mean
values, the better the results. High performances of the computed accuracy metrics are obtained
for the different steps of the proposed signature-based approach (i.e. more than 95%). Moreover,
a slight gain in the average value of CA is obtained from one step to the next, in order to achieve
the aim of identifying homogeneous regions with an average value of JAR equal to 95%.
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7.5.3. Categorization of digitized historical book pages

A GUI tool for characterization and categorization of DHB pages is designed in this work to
illustrate graphically the performance of different signature-based applications (e.g. unsupervised
DHB page classification and DHB page stream segmentation). It has been developed using the
C++ language, openCV library and Qt development environment.

First, we can see in Figure 7.6(a) the separation of the DHB pages into 2 clusters. One cluster
representing frequent pages having similar layout and/or content and the other one illustrating
pages having particular layout and/or content. Each cluster is represented in a separate line. In
our experiments and particularly in the DHB on which the evaluation has been performed, we
note that the clustering achieves a distinction between pages having similar layout and/or content
(i.e. double columns of text), and those having particular layout and/or content (i.e. textual and
graphical regions).

Second, we can see in Figure 7.6(b) the different detected transition DHB pages. Only DHB pages
having GEDs above a pre-defined threshold GED value are retrieved. The shaded DHB pages are
considered as non-transition pages, while the DHB pages with red borders are considered as the
transition pages (i.e. they have layout and/or content that differ from the following page). Using
the developed computer-aided tool for characterization and categorization of DHB pages in this
work, users are able to vary the threshold GED in order to increase or decrease the number of
transition pages. The proposed tool for characterization and categorization of DHB pages provides
an integrated user-centered GUI which is specifically engineered to make it easy the identification
of the transition pages in the DHB under consideration according to the user requirements.

In Appendix B and particularly in Section B.10, other screen shots of the designed computer-aided
tool are illustrated for characterization and categorization of DHB pages.

7.5.3.1. Unsupervised page classification

To get an insight into the classification accuracy, a confusion matrix is computed (cf. Table 7.3).
The confusion matrix illustrates one cluster containing the most common pages in the involved
DHB (i.e. pages containing only text) on the one hand, and those considered as particular pages
in the involved DHB (i.e. pages containing text and graphics) on the other hand. The following
classification accuracy measures are computed: precision (P ), recall (R), F-measure (F ) and clas-
sification accuracy (CA). Pi and Rj denote the individual cluster precision and recall, respectively.
For the cluster representing the most common pages in the involved DHB (i.e. pages contain-
ing only text), 91%(P ) and 94%(R) are obtained. On the other side, for the cluster representing
the pages that have particular layout and/or content (i.e. pages containing text and graphics),
we find 85%(P ) and 77%(R). Thus, we show that the proposed approach tends to miss-classify
more the pages containing textual and graphical regions than those containing only textual regions,
due to the complexity of the layout and content of the particular DHB pages (cf. Figure 7.5(g)).
Nevertheless, the overall result is quite encouraging, since we obtain 87%(F ) and 90%(CA). This
confirms that the proposed signature ensures the unsupervised DHB page classification according
to the DHB page layout and content.

Table 7.3.: Evaluation of the proposed signature for unsupervised DHB page classification.
Ground-truthGround-truthGround-truth
Class 1Class 1Class 1 Class 2Class 2Class 2

ClusteringClusteringClustering Cluster 1Cluster 1Cluster 1 69 12 Ö P1 = 0.85P1 = 0.85P1 = 0.85
outcomesoutcomesoutcomes Cluster 2Cluster 2Cluster 2 20 221 Ö P2 = 0.91P2 = 0.91P2 = 0.91

×

R1 = 0.77R1 = 0.77R1 = 0.77
×

R2 = 0.94R2 = 0.94R2 = 0.94
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(a) Unsupervised page classification

(b) Page stream segmentation

Figure 7.6.: Screen shots illustrating graphically the performance of the two analyzed and evaluated
signature-based applications.

7.5.3.2. Page stream segmentation

By analyzing the mg
i,i+1 elements of the normalized distance matrix Mg, the different pairs of the

successive DHB pages can be grouped according to different GED values. As a matter of fact,
the pairs of the successive DHB pages that have lower GED values, have certainly similar layout
and/or content (i.e. non-transition pages). On the other side, the other pairs that have higher
GED values correspond to pages have different layout and/or content (i.e. transition pages such
as the title pages of chapter). By analyzing the composition of the involved DHB, 102 pairs of the
successive DHB pages are identified as pairs of transition pages. From these pairs, 128 DHB pages
are considered as transition pages. By drawing the histogram of the computed GED values between
each pair of successive DHB Pages (cf. Figure 7.7), on peak is showed with lower values of GED
(i.e. the lower the GED value, the more similar the pages in terms of layout and content). This
histogram peak corresponds to the number of detected pairs of successive DHB Pages which have
similar layout and/or content (i.e. double columns of text) and can be identified as non-transition
pages according to the obtained GED value. Thus, this confirms that the proposed graph-based
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signature used for page stream segmentation is robust and relevant.

Figure 7.7.: Histogram of the computed GED values between each pair of successive DHB Pages
for DHB page stream segmentation.

Figure 7.8 illustrates the ROC curve by varying the GED threshold values illustrating the good
performance of the proposed signature for the identification of the transition DHB pages. This
strengthens our previous results and confirms that the proposed signature ensures the identification
of the transition pages in a DHB such as the title pages of chapter and subsequently it allows the
DHB page stream segmentation.
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Figure 7.8.: Evaluation of the proposed page signature for DHB page stream segmentation.

7.6. Discussion

The first aspect of future work will be to use the proposed signature on a larger corpus. This study
is ongoing and will evaluate the signature more adequately, with more convincing experimental
results.

Then, we will assess other possible applications of the proposed graph-based signature:
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• Finding pages in a DHB or HDI corpus which contain a particular content component or
a group of patterns that match specific criteria defined by a user (i.e. investigating the
sub-graph isomorphism paradigm).

• Retrieving similar pages in a HDI corpus query tool by establishing a ranking based on the
computed GEDs between the corpus pages and the query page. This ranking can be adjusted
automatically according to the weights of each category of the computed features in the cost
of the edit operations when performing the GED. This will ensure that either the layout
structure (e.g. topological, geometric and shape attributes) or the typographic/graphical
characteristics of content (e.g. texture attributes) of the HDIs under consideration can be
highlighted.

• Detecting the scanning failure occurring during the digitization process (e.g. curvature, light)
to ensure effective computed-aided quality control of the digitization.

Furthermore, we will investigate a finer unsupervised book page classification with different values
of the number of clusters. We also intend to analyze the impact of different feature weighting
schemes in the cost of the edit operations when computing the GED. In addition, further work
also needs to compare the results given by using the approximate GED computed on the involved
graph-based DHB page signatures with other state-of-the-art graph dissimilarity techniques.

Finally, improvements can be made regarding the designed GUI tool for characterization and
categorization of DHB pages. In particular, advanced human-computer interaction techniques can
be introduced to optimize the way in which the users interact with scanners during the digitization
process.

7.7. Conclusion

Since the ultimate goal of the DIGIDOC project is developing relevant ways of interacting with
scanners by assisting the digitization operator to adjust automatically the best set of parameters
(e.g. resolution, lightening, color calibration), detecting errors in the digitization process (e.g.
blur, skewed or folded pages), providing appropriate assistance for document indexing (e.g. by
recognizing automatically page types or breaks in a sequence of pages), etc., a simple GUI tool
for characterization and categorization of DHB pages is designed. The designed tool proposes an
integrated user-centered GUI which is specifically engineered to make it easy the identification of
the transition or similar layout and/or content pages in the DHB under consideration according to
the user requirements. The GUI tool is based on a generic graph-based signature for DHB page
characterization and categorization.

The proposed graph-based signature is generated for each DHB page based on characterizing
each DHB page with a set of homogeneous texture regions with varying low-level features. The
proposed structural signature ensures the characterization of the DHB page layout and content.
In addition, this signature guarantees the implementation of numerous applications for managing
effectively a corpus or collections of books (e.g. information retrieval in digital libraries according to
several criteria or page categorization). As a consequence, by comparing the different graph-based
signatures, the DHB pages with similar layout and/or content pages can be grouped. A thorough
evaluation has been conducted in this work for assessing two possible applications of the proposed
signature, unsupervised book page classification and book page stream segmentation, and it has
achieved promising results.

The proposed signature ensures firstly a relevant unsupervised DHB page classification according
to the DHB page layout and content. 90% classification accuracy is noted for the first signature-
based application, unsupervised DHB page classification. Then, the proposed signature has the
ability to identify the transition pages in a DHB such as the title pages of chapter and subsequently
it allows the DHB page stream segmentation. Encouraging results are observed for the second
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signature-based application, DHB page stream segmentation. Hence, a table of contents/summary
of the DHB under consideration has been automatically generated by detecting different or dis-
similar pages. This will ensure fast and easy navigation on historical collections on the one hand
and effective computed-aided quality control of the digitization (e.g. detecting the scanning failure
occurring during the digitization process) on the other hand.

272
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this dissertation and possible future directions in historical document image
analysis.

Contents

8.1 Conclusions and contributions . . 274

8.1.1 Conclusions . . . . . . . . . . . . 274

8.1.2 Contributions . . . . . . . . . . . 275

8.2 Future perspectives . . . . . . . . 276

Chapter 8.

Conclusions and future perspectives

273



Chapter 8. Conclusions and future perspectives

Throughout this dissertation, several methods and a number of studies for historical DIA and
DHB page characterization have been presented. This chapter summarizes the work presented in
this dissertation by revisiting the contributions, strengths and weaknesses. Finally, an overview of
the future research possibilities in the area of historical DIA is discussed.

8.1. Conclusions and contributions

This section briefly summarizes the conclusions and contributions of this dissertation.

8.1.1. Conclusions

In this dissertation, we have presented six chapters.

1. First, we have summarized the research projects related to digital libraries and historical DIA
in Chapter 2.

2. Then, we have detailed related works on DIA in Chapter 3, by reviewing the classical and
texture-based approaches, with a particular focus on those related to historical DIA.

3. Chapter 4 has presented an experimental evaluation and benchmarking of nine evaluated
texture-based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar,
Db3 and Db4). This comparative study has been conducted on a large corpus of HDIs for
the purpose of determining the performance of each texture-based feature set according to
the DI content, i.e. segmenting graphical regions from textual ones on the one hand, and
discriminating text in a variety of situations of different fonts and scales on the other hand.
Using a standard pixel-labeling scheme for evaluating and benchmarking texture features, we
have shown the scalability for two datasets, the “DIGIDOC-Texture dataset” and “HBR2013
dataset” (1100 pages of historical documents). This work has shown the effectiveness of the
texture analysis approaches for historical DIA. Based on our experiments, we conclude that
the auto-correlation, Gabor and Db4 features are the best choices for discriminating textual
regions from graphical ones without taking into account the spatial relationships between
pixels. However, when the numerical complexity and pixel-labeling performance are taken into
account, the Gabor approach would be the better choice. Furthermore, the Gabor approach
is a good choice for segmenting HDIs containing only textual regions with different fonts.
76%, 80% and 76% classification accuracy values are noted when the auto-correlation, Gabor
and Db4 are used in the proposed pixel-labeling scheme for evaluating and benchmarking
texture features, respectively. The results reported in this chapter provide a useful benchmark
in terms of performance evaluation, texture vector dimensionality, memory requirements,
processing time and complexity for current and future research efforts in historical DIA.

4. Chapter 5 has proposed a generic framework for a texture-based pixel-labeling framework of
DHB content with no hypothesis concerning the document layout or the typographic/graphical
characteristics of the document. The aim of this framework is to group pixels having similar
DHB page content type within the content of DHBs by extracting and analyzing texture
features independently of the layout of the pages. It is therefore applicable to a large variety
of books. The proposed framework is based on a feature vector that is composed of texture
indices. Texture features are extracted from the different areas of a page and at several res-
olutions. The robustness of the extracted features is used in a parameter-free unsupervised
clustering method which is performed to determine the number of book content types (i.e.
defined by similar texture indices). Moreover, the number of book content types does not
need to be known in advance as it is automatically determined. The proposed framework
has been evaluated on the “DIGIDOC-Framework dataset” which is composed of 316 pages
of HDIs. We conclude that texture features provide a good discrimination of the foreground
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layers of DHB pages, particularly between text and graphics. 85% purity per block accuracy
and 79% classification accuracy are obtained for the auto-correlation-based framework, while
89% purity per block accuracy and 77% classification accuracy are noted for the Gabor-based
framework.

5. Chapter 6 has described an automatic characterization approach of DHB pages. The charac-
terization is embedded in what we call a structural signature of DI. Generating a structural
signature for each analyzed DHB page is carried out in three stages: the first step consists in
refining the obtained pixel-labeling results by taking into account the topological or spatial
relationships between pixels, the second one aims to extract homogeneous regions and the
third one is generating a graph-based signature of the page content and structure. The pro-
posed signature does not assume a priori knowledge regarding page layout and content, and
hence, it is applicable to a large variety of ancient books. By integrating varying low-level
features (e.g. texture) characterizing the different page components (different text fonts and
graphic regions) on the one hand, and structural information describing the page layout on
the other hand, the proposed signature provides a rich and holistic description of the layout
and content of the analyzed book pages. The proposed characterization approach of DHB
pages gives encouraging results since 77% of Jaccard index is noted when we have evaluated
the extracted homogeneous regions.

6. Chapter 7 has illustrated the effectiveness of the proposed page signature. By conducting
a thorough experimental evaluation in the context of the DIGIDOC project, two possible
signature-based applications, unsupervised page classification and page stream segmentation,
have been assessed with the aim of managing effectively a corpus or collections of books.
Hence, by comparing the different graph-based signatures, the involved DHB pages with sim-
ilar layout and/or content pages can be grouped. As a consequence, the proposed signature
ensures firstly a relevant unsupervised DHB page classification according to the DHB page
layout and content. 90% classification accuracy is noted for the first signature-based applica-
tion, unsupervised DHB page classification. Then, the proposed signature has also the ability
to identify the transition pages in a DHB such as the title pages of chapter, and subsequently
it allows the DHB page stream segmentation. Encouraging results are observed for the second
signature-based application, DHB page stream segmentation. To illustrate the potential of
the proposed graph-based signature, a simple GUI tool for characterization and categoriza-
tion of DHB pages is designed. The designed tool proposes a simple integrated user-centered
GUI which is specifically engineered to make it easy the identification of the transition or
similar layout and/or content pages in the DHB under consideration according to the user
requirements.

8.1.2. Contributions

This dissertation has made a number of contributions towards the goal of designing a computer-
aided characterization and categorization tool of HDIs, able to index or group DHB pages according
to several criteria, mainly the layout structure and/or typographic/graphical characteristics of the
HDI content. Key contributions of this work are:

1. Presenting an experimental evaluation and benchmarking of a number of commonly and
widely used texture features which have been conducted on a large corpus of HDIs for the
purpose of determining the performance of each texture-based feature set according to the DI
content, i.e. segmenting graphical regions from textual ones on the one hand, and discrimi-
nating text in a variety of situations of different fonts and scales on the other hand.

2. Proposing a texture-based pixel-labeling framework that is used on an entire book instead of
processing each page individually, for the segmentation and analysis of DHB content. The
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proposed framework is supported by the fact that pages of the same book usually present
strong similarities in the organization of the HDI information (i.e. layout) and in the graphical
and typographical features (i.e. content) throughout the DHB pages under consideration.

3. Defining a structural representation based on texture which is called a graph-based signature,
for DHB page characterization. The proposed signature is based on varying low-level features
(i.e. texture, shape, geometric and topological descriptors) and a structural signature. It
provides a topological signature of digitized historical book page according to several criteria,
mainly the layout structure and/or typographic/graphical characteristics of the HDI content.

4. Illustrating the effectiveness of the proposed page signature by firstly conducting a detailed
experimental evaluation for assessing two possible signature-based applications, unsupervised
page classification and page stream segmentation, secondly by designing a simple integrated
user-centered GUI which is specifically engineered to make it easy the identification of the
transition or similar layout and/or content pages in the DHB under consideration according
to the user requirements.

8.2. Future perspectives

There are many directions to proceed in the work presented in this dissertation.

The first aspect of future work will be to use the proposed methods and studies in this dissertation
on a larger database. This is ongoing and will evaluate the different studies and proposed methods
more adequately with more convincing experimental results in order to help improve their scalabil-
ity. We will then study and combine statistical, geometric, model-based and spectral texture-based
features in order to refine the segmentation and ensure a distinction between different text fonts
and various graphic types.

Historical DIA is still an open issue for both supervised and unsupervised methods due to the
variability of the contents and/or layouts of historical documents. As for the supervised methods,
feature learning or representation learning [529] will be investigated for pixel-classification in future
research. This helps in dealing with retrieving relevant features or representations from raw data.
In addition, a feature selection step (e.g. dimension reduction technique) can also be integrated to
select relevant features and remove redundant ones.

Concerning the proposed approach for texture feature extraction based on multi-scale analysis,
we propose to introduce the superpixel approach [530, 531] into the texture feature analysis step.
The superpixel approach becomes a consistent alternative of using a rigid structure of pixel grid,
i.e. it is faster, it has a lighter memory consumption, and it is more interesting to compute image
features on each superpixel center than on each image pixel.

In order to assess the robustness of the proposed texture-based approaches, images of historical
documents under numerous degradation models will be generated and image enhancement algo-
rithms (e.g. non-local means filtering [532] and total variation [533]) will be integrated. This study
will show the robustness of texture feature extraction for segmentation in the case of noise and the
uselessness of a denoising step.

In this work, a generic signature for DHB page characterization and categorization has been
evaluated on two possible applications, unsupervised book page classification and book page stream
segmentation, with no hypothesis concerning page layout and content. Then, we will assess other
possible applications of the proposed graph-based signature:
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• Finding pages in a DHB or HDI corpus which contain a particular content component or
a group of patterns that match specific criteria defined by a user (i.e. investigating the
sub-graph isomorphism paradigm).

• Retrieving similar pages in a HDI corpus query tool by establishing a ranking based on the
computed GEDs between the corpus pages and the query page. This ranking can be adjusted
automatically according to the weights of each category of the computed features in the cost
of the edit operations when performing the GED. This will ensure that either the layout
structure (e.g. topological, geometric and shape attributes) or the typographic/graphical
characteristics of content (e.g. texture attributes) of the HDIs under consideration can be
highlighted.

• Detecting the scanning failure occurring during the digitization process (e.g. curvature, light)
to ensure effective computed-aided quality control of the digitization.

Furthermore, we will investigate a finer unsupervised book page classification with different values
of the number of clusters. We also intend to analyze the impact of different feature weighting
schemes in the cost of the edit operations when computing the GED. In addition, further work
also needs to compare the results given by using the approximate GED computed on the involved
graph-based DHB page signatures with other state-of-the-art graph dissimilarity techniques.

In addition, we will then focus on demonstrating the robustness of the proposed solutions and
provide additional insights into their accuracies by investigating and analyzing parts of historical
document images (e.g. handwritten annotations) or graphic images (e.g. illustrations and drop
caps).

Moreover, improvements can be made regarding the designed GUI tool for characterization and
categorization of DHB pages. In particular, advanced human-computer interaction techniques can
be introduced to optimize the way in which the users interact with scanners during the digitization
process.

Finally, a public annotated dataset of HDIs will be available soon to initiate collaborative research
but a larger pixel-based ground-truth is needed to be more subjective and fully representative of
the diversity of HDIs, to train algorithms and to evaluate research works related to historical DIA.
Our future work will also focusing on analyzing four other state-of-the-art ground-truthing tools,
TrueViz1, WebGT2, Aletheia3 and Divadia71 for more reliable performance evaluations.
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Appendix A. Related works

A.1. Feature space structuring methods in the literature

The feature space structuring methods aim to partition and analyze the set of unlabeled data into
groups or clusters. They involve two phases:

• Clustering phase or unsupervised classification partitions a set of unlabeled data into ho-
mogeneous groups or clusters. Samples of each cluster share common characteristics which
usually correspond to proximity criteria, defined by introducing measures of distance between
clusters and samples.

• Classification phase classifies a new object according to a set of pre-defined classes.

Clustering algorithms can be classified into two categories:

• Hard clustering methods distribute data into different clusters, where each data point
belongs to exactly one cluster.

• Fuzzy clustering methods consider that the allocation of data points to clusters is not
binary, i.e. each data point may belong to more than one cluster with a set of membership
levels. One of the most widely used fuzzy clustering algorithms is the FCM method [534].

In this work, we are interested in the hard clustering algorithms since many parameters must be
specified in the case of the fuzzy clustering methods. Several standard hard clustering methods
have been proposed in the literature. Hard clustering methods are divided into five categories [535]:

• Partitioning methods (e.g. k-means clustering (k-means) [331], partitioning around medoids
(PAM) [176], Clustering large applications (CLARA) [176]) distribute the dataset according
to the proximities of feature space deducted from the content of the analyzed image.

• Hierarchical methods (e.g. agglomerative nesting (AGNES) [176], divisive analysis cluster-
ing (DIANA) [176], hierarchical agglomerative clustering (HAC) [332]) are widely used data
analysis tools that produce a hierarchy of clusters based on a measure of similarity between
groups of data points.

• Density-based methods (e.g. DBSCAN [536], OPTICS [537], expectation-maximization
(EM) algorithm [538]) are designed to reveal clusters of arbitrary shapes based on the local
densities of a point set after introducing the appropriate values of the input parameters
(neighborhood radius, etc.).

• Grid-based methods (e.g. STING [539], WaveCluster [540]) quantize the space into a finite
number of cells without taking into consideration data density and distribution and then
perform clustering operations (neighborhood cells, etc.) on the quantized space.

• Neural network-based methods (e.g. self-organizing maps (SOM) [541], feed-forward
network (FFN) [542]) partition data into similar sub-sets with the help of an artificial neural
network [543].

The different feature space structuring techniques that have been used with HDIs are summarized
in Table A.1.

282



A
.1.

F
eatu

re
sp

ace
stru

ctu
rin

g
m

eth
o
d

s
in

th
e

literatu
re

Table A.1.: Clustering algorithms used with HDIs in the literature.

Ref. Data kind Algorithm
class/Number of
clusters

Clustering
algorithm

Description

[1] Entire books (printed) -Unsupervised
-The number of clusters
was assumed to be
known in advance

CLARA The non-supervised clustering technique was applied on extracted texture features which were computed from six
pages of the same book.

[4,
57]

Entire gray-scale or
color pages
(handwritten historical
manuscripts)

-Supervised
-The algorithm required
knowing the number of
classes in advance

SVM A physical structure detection method for historical handwritten DIs was proposed by classifying and labeling each
pixel as periphery, background, text block or decoration using SVM.

[89,
229]

Entire color high
resolution digitized
images (manuscripts
and printed)

-Supervised
-The number of clusters
was assumed to be
known in advance

SVM and radial
basis function
as kernel

Text, images and their associated captions were extracted using a SVM classifier trained on the extracted texture
features.

[29] Drop caps (printed) -Unsupervised
-The number of clusters
was assumed to be
known in advance

k-means The clustering technique was used on computed texture descriptors.

[53,
55]

Entire gray-scale or
color pages
(handwritten historical
manuscripts)

-Supervised Dynamic MLP
(DMLP)

Multi-resolution physical layout analysis and segmentation of medieval manuscripts with three analysis levels using a
series of images with increasing resolution. The classification on each level was performed by DMLP classifier on the
pixel color features and pixel positions extracted from the scaled HDIs. A manual annotation was needed for
producing a training set.

[56] Entire gray-scale or
color pages
(handwritten historical
manuscripts)

-Supervised
-The algorithm required
knowing the number of
classes in advance
(k = 4)

SVM, MLP and
Gaussian
mixture models
(GMM)

Comparison between three classifiers based on SVM, MLP and GMM was firstly performed to detect physical
structure of HDIs. Pixels were classified into 4 classes: periphery, background, text or decoration, in the first
classification level. Then, the three evaluated classifiers were combined together to ensure a vote for the pixel label in
order to further improve the pixel-labeling results. They concluded that both SVM and MLP classifiers had better
performance than GMM.

[245] Entire pages
(manuscripts)

-Supervised
-The number of clusters
was assumed to be
known in advance

SVM and radial
basis function
as kernel

A manually given annotated training dataset and a radial basis function were used with an embedding procedure for
SVM classification.

[275] Entire pages
(MadiaTeam document
database)

-Unsupervised
-The algorithm required
knowing the number of
classes in advance
(k = 3)

k-means Grouping same content blocks using the k-means clustering. The three defined classes present in documents were,
text, graphics and space.

[237] Collected character
images and pages of
word set (printed)

Fuzzy methods Fuzzy
membership
functions was
built from fuzzy
logic and fuzzy
set theory

OCR based on training step with collected character image examples with the help of fuzzy membership function.

[238] Entire pages (printed
periodicals)

-Unsupervised
-The number of clusters
was assumed to be
known in advance

k-means The k-means algorithm was used to separate text, background and image.

[239] Image patches -Supervised
-The number of clusters
was assumed to be
known in advance

Random forest
classifier

The supervised learning technique was used on computed texture descriptors obtained by using dimensionally reduced
multi-channel GFs for selecting informative features.
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Table A.1 – continued from previous page

Ref. Data kind Algorithm
class/Number of
clusters

Clustering
algorithm

Description

[242] Entire pages (printed
and manuscripts)

-Unsupervised
-The algorithm required
knowing the number of
classes in advance
(k = 3)

k-means Text, background and image were separated using the k-means algorithm.

.
[541]

Printed book
(Gutenberg Bible)

-Supervised
-Each pixel was
classified into one class
out of four in the
testing step

FFN and SOM The SOM algorithm was trained to generate a set of test vectors that was used in the FFN algorithm.

[330] Drop caps (printed) -Unsupervised
-The number of clusters
was determined
automatically

HAC
(inconsistency
criterion)

The HAC algorithm was used on texture features to classify the drop caps strokes.

[243] Entire pages (degraded
official administrative
documents)

-Unsupervised
-The number of clusters
was assumed to be
known in advance

k-means Segmentation of complex multi-lingual multi-script documents: separation text/graphics and extraction of graphs,
tables and text lines.

[244] Entire pages
(manuscripts)

-Unsupervised
-The algorithm required
knowing the number of
classes in advance

FCM Text/graphics segmentation using the FCM algorithm.
The clustering approach generated classes based on the sum of squared deviations inter-class and intra-class.

[544] Ancient books (printed
and manuscripts) and
archival materials

-Supervised (training
and self-learning stages)

Not mentioned Segmentation, recognition and transcription of text in a set of digital images referring to pages of ancient manuscripts
or printed books.

[545] Entire pages
(manuscripts)

-Unsupervised
-The initial parameters
of the EM were
estimated by the
k-means algorithm

k-means and
EM

Text extraction algorithm from degraded documents on the basis of the probabilistic models.

[546] Text documents -Unsupervised Bayes criteria The Font classification step was performed on fractal descriptors which were calculated from extracted local text
zones.

[547] Entire pages (color
manuscripts)

-Unsupervised
-The user intervened in
the initialization step
by defining the different
samples of colors for
each class and the
number of classes

Serialization of
the k-means
algorithm

Serialized classifier was applied for adaptive color image segmentation for digitized ancient manuscripts.
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A.2. Clustering and classification accuracy metrics in the literature

The performance evaluation idea consists of quantifying how the clusters given by a clustering
technique are different from the classes defined in the ground-truth, as shown in Figure A.1.

: Class 1
: Class 2
: Class 3

Ground-truth

Cluster 1
Cluster 2

Cluster 3

Figure A.1.: Clustering result vs. ground-truth.

A.2.1. Clustering accuracy metrics

First, to evaluate a segmentation/classification approach, several clustering accuracy metrics have
been proposed [340, 548, 549]. General segmentation method evaluation surveys have been pre-
sented in the literature [340, 548, 549]. The clustering accuracy metrics are classified into two kinds
[550, 551, 334] (cf. Table A.3):

A.2.1.1. Internal or unsupervised measures

The internal or unsupervised measures evaluate the clustering quality by considering only the
intrinsic information concerning the distribution of the observations into different clusters (e.g.
silhouette width index (SW ) [341], Dunn index [397], Davies-Bouldin index [391], compactness
[535], homogeneity [552]). They often assess the clustering result based on the two criteria: the
compactness and separation. The compactness measures how closely the points in a cluster are,
while the separation quantifies how separate different clusters are. For example, the SW measures
the level of compactness and separation by analyzing the distribution of the observations into
clusters. The silhouette width SW (xi) for each point xi estimates how much xi belongs to its
cluster. It is computed as follows:

SW (xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(A.1)

where a(xi) and b(xi) represent the compactness between xi and the other points in the same cluster
and the separation between xi and the closest cluster, respectively. a(xi) is obtained by computing
the average distance between xi and the other points in the same cluster. On the other hand, b(xi)
is given by calculating the average distance between xi and the points in another cluster that does
not contain the point xi and which is the closest to xi. a(xi) and b(xi) are computed as follows:

a(xi) =
1

|K(xi)|−1

∑
xj∈K(xi),xj 6=xi

D(xi, xj) (A.2)
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where K(xi) represents the cluster containing the point xi. D(xi, xj) is the distance between two
points xi and xj .

b(xi) = min
Kl 6=K(xi)

{D(xi,Kl)} (A.3)

where Kl is the cluster that does not contain the point xi. D(xi,Kl) is defined as:

D(xi,Kl) =
1

Nl

∑
xj∈Kl

D(xi, xj) (A.4)

where Nl is the number of points in the cluster Kl.

Finally, to evaluate the quality of the clustering result, the average silhouette width of all points
in the dataset (SW ). The higher the values, the better the results. SW is defined as:

SW =
1

N

∑
xi∈X

SW (xi) (A.5)

where N is the number of points in the dataset.

A.2.1.2. External or supervised measures

The external or supervised measures compare the distributions of the observations in the clustering
result and ground-truth (e.g. rand index [401], Jaccard coefficient (J) [342], Fowlkes-Mallows index
[405]). They often compare the clustering result with the ground-truth using the two following
criteria: the homogeneity and completeness. The homogeneity criterion of a clustering result is
satisfied if all obtained clusters contain only points of a single class. On the other hand, the
completeness criterion is satisfied if all points which belong to a single class of the ground-truth
are assigned to a single cluster. For example, the J is used to assess the similarity between the
distributions of the observations in the clustering result and ground-truth. It represents the ratio
of the number of pairs of data points which are clustered similarly in the clustering result and
ground-truth. The value of the J ranges between [0, 1]. The higher the values, the better the
results. J is defined as:

J =
N11

N11 +N10 +N01
(A.6)

where N11, N10 and N01 represent the number of pairs of data points which are clustered together in
the clustering result and ground-truth which are clustered together in the clustering result but not
in the ground-truth and which are clustered together in the ground-truth but not in the clustering
result, respectively.

A.2.2. Classification accuracy metrics

Then, in order to provide an additional analysis and comparison with the computed clustering
accuracy metrics and get an insight into the classification accuracy, a confusion matrix, error matrix
or contingency table (Mc) is computed [343, 344]. From the Mc, several classification accuracy
metrics are deduced, including entropy (E), purity (PT ), precision (P ), recall (R), classification
accuracy rate (CA) and F-score or F-measure (F ) (cf. Table A.3) [345, 346, 347, 348, 349]. These
accuracy metrics are related to how representative the clusters are of classes and help to determine
classes which are not able to segregate groups of data and give an insight into the confusion and
misclassification rates. They help us to determine how good the clustering is and compare the
cluster memberships with the class ones [348]. As evaluation clustering criterion, we assume that
preference will be given to higher PT , P , R, CA and F and to lower E.

Let the set of classes in the dataset be c = {c1, c2, ..., ci, ..., ck}. Pri(cj) is the proportion of the
data point class cj in the cluster i.
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The PT of a cluster corresponds to the ratio of the largest class of pixels assigned to this cluster
with respect to the overall cluster size. It is computed with:

PT = max
j

(Pri(cj)) (A.7)

The E evaluates the confusion level through the Mc from the class distribution of misclassified
pixels. It is defined as follows:

E = −
k∑
j=1

Pri(cj) log2(Pri(cj)) (A.8)

In this work, the Mc columns correspond to the reference data, assumed as our defined ground-
truth, and the Mc rows correspond to the clustering result. The diagonal elements of the Mc

represent the all correctly assigned samples to theirs classes. Therefore, an absolutely correct clus-
tering will result in a diagonal matrix. The elements of the Mc, excluding those of its diagonal,
along a column (clustering outcomes) correspond to the omission samples, i.e. the reference el-
ements from one class are assigned to another one. On the other hand, the elements of the Mc,
excluding those of its diagonal, along a row (ground-truth classes) correspond to the commission
samples, i.e. in the opposite case where the samples of a class assigned to it by mistake.

First, we define Nd as the number of the Mc diagonal elements which represent the all correctly
assigned samples to theirs classes. Then, No denotes the number of the Mc elements, excluding
those of its diagonal, along a column (clustering outcomes) correspond to omission samples. Finally,
Nc represents the number of the Mc elements, excluding those of its diagonal, along a row (ground-
truth classes) correspond to commission samples.

Thus, the P is given by:

P =
Nd

Nd +Nc
(A.9)

The R is defined as:

R =
Nd

Nd +No
(A.10)

The CA is calculated by:

CA =
Nd

Nd +No +Nc
(A.11)

For example, we have the following square confusion matrix Mc of n order (cf. equation A.12),
whose coefficients mpq represent the number of elements of class q assigned to cluster p.

Mc =



m11 m12 m13 . . . m1i . . . m1n

m21 m22 m23 . . . m2i . . . m2n

m31 m32 m33 . . . m3i . . . m3n

...

mi1 mi2 mi3 . . . mii . . . min

...

mn1 mn2 mn3 . . . mni . . . mnn


(A.12)

Thus, the PT is considered as a weighted sum of individual cluster purities:

PT =

∑n
i=1(PTi

∑n
q=1miq)∑n

p,q=1mpq
(A.13)
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where

PTi =
1∑n

q=1miq
max

1≤q≤n
(miq)

Likewise, the E is formulated as follows:

E =

∑n
i=1(Ei

∑n
q=1miq)∑n

p,q=1mpq
(A.14)

where

Ei = −[
n∑
q=1

miq∑n
q=1miq

log2(
miq∑n
q=1miq

)]

The computation of the P and R is illustrated in Table A.2.

Table A.2.: Confusion Matrix.
Ground-truth

Class 1 Class 2 Class 3 . . . Class i . . . Class n

C
lu

st
e
ri

n
g

o
u

tc
o
m

e
s Cluster 1 m11 m12 m13 . . . m1i . . . m1n Ö P1

Cluster 2 m21 m22 m23 m2i m2n Ö P2

Cluster 3 m31 m32 m33 m3i m3n Ö P3

. . . Ö . . .
Cluster i mi1 mi2 mi3 mii min Ö Pi

. . . Ö . . .
Cluster n mn1 mn2 mn3 . . . mni . . . mnn Ö Pn

×

R1

×

R2

×

R3

×

. . .
×

Ri

×

. . .
×

Rn

Since the used pixel-based clustering technique is unsupervised, the cluster label attributed by
the clustering technique may be different from our specified ground-truth. Thus, we manage the
correspondence between the cluster label and ground-truth to compute the Mc and calculate after-
wards the different classification accuracy metrics. If the lines of the confusion matrix are switched
or interchanged that the cluster i corresponds to the class j, it is then possible to define Pi and Rj ,
the precision of the cluster i and the recall of the class j, respectively. For a class “Class j”, the
individual cluster precision (Pi) assesses the rate of pixels assigned and classified as “Class j” which
do not belong to “Class j” as defined in the ground-truth. On the other hand, the individual cluster
recall (Rj) evaluates the percentage of the pixels, labeled “Cluster i” in the ground-truth which
have been omitted by using the proposed pixel-labeling scheme for comparing texture features, i.e.
they have not been classified as “Class j”.

Therefore, the P metric corresponds to the proportion of the predicted cases that are correctly
matched to the benchmark classifications. It is considered as a means of assessing the classification.
The P is given by:

P =
1

n

n∑
i=1

Pi =
1

n

n∑
i=1

P (i, j) =
1

n

n∑
i=1

mij∑n
q=1miq

(A.15)

The R measure indicates the proportion of real cases that are correctly predicted. It is considered
a way to improve the classification. The R is given by:

R =
1

n

n∑
j=1

Rj =
1

n

n∑
j=1

R(i, j) =
1

n

n∑
j=1

mij∑n
p=1mpj

(A.16)

The CA metric corresponds to the ratio of the true classified predicted pixels and the total number
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of pixels. The CA is given by:

CA =

∑n
p=1mpp∑n
p,q=1mpq

(A.17)

Finally, the F-measure (F ) can be computed as a score resulting from the combination of the P
and R accuracies by using a harmonic mean. It assesses both the homogeneity and the completeness
criteria of a clustering result. The F is given by:

F =
2 P R

P +R
(A.18)

The different clustering and classification accuracy metrics proposed in the literature for perfor-
mance evaluation are summarized in Table A.3.
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Table A.3.: Clustering and classification accuracy metrics in the literature.

Index Description

A- Internal or unsupervised clustering accuracy metrics

Compactness [535] This measure is used to evaluate the variance of the proximity matrix of clusters samples.

Separation [535] This index quantifies the distance between two different clusters using the three following approaches: distance between the closest member of the clusters,
distance between the most distant members and distance between the clusters centers.

Silhouette width index [341] This index measures the level of compactness and separation by analyzing the distribution of the observations into clusters.

Dunn index [397] This index is used to compute the ratio of the minimal inter-cluster distance to the maximal intra-cluster one in order to determine the dense and well-separated
clusters.

Davies-Bouldin index [391] This metric is used to calculate the ratio of the sum of within-cluster scatter to between-cluster separation.

Homogeneity [552] This metric uses the average similarity between cluster members with respect to clustering.

Separation [552] This index defines the separation of a clustering as the average dissimilarity between two clusters.

Cubic Clustering Criterion [368] This metric quantifies the deviation of the clusters from the distribution by computing the within-cluster of the sum-of-squares and cross-products matrix of data.

Krzanowski-Lai index [382] This index evaluates the between- and within-cluster sums of squares of the partition.

Hartigan index [383] This metric is performed using the within-group dispersion matrix for data clustered into k clusters.

Calinski-Harabasz index [384] This accuracy is performed based on the within-group dispersion of clusters by computing the cluster centers.

Scott index [385] This index is evaluated by performing the ratio of the sum-of-squares within the clusters to the sum-of-squares and cross-products matrix of data.

Marriot index [386] This metric evaluates the within-cluster sums-of-squares of the partition by examining the effect of adding a single point into a data set.

TraceCovW index [387] This index is computed using the covariance of the within-cluster of the sum-of-squares and cross-products matrix of data.

TraceW index [387] This index is computed by evaluating the within-cluster of the sum-of-squares and cross-products matrix of data.

Friedman index [388] This index which is known as the index of coincidence, is used to explore the structure of heterogeneous multivariate data based on the non-singular linear
transformations.

Rubin index [389] This metric is based on the computation of the within-cluster matrix.

C-index [390] This index is based on the within-cluster dissimilarities.

Ratkowsky index [392] This accuracy is quantified by computing the sum-of-squares between the clusters.

Ball index [393] This index is computed based on the average distance between cluster members and their respective cluster centroids.

PtBiserial index [394] This index is performed using the within- and between- cluster distances.

Frey index [395] This index is based on the computation of the ratio of the difference scores from two successive levels in the hierarchy of the applied hierarchical algorithm.

McClain index [396] This metric considers the ratio of the average within-cluster distance by the number of cluster distances.

SDindex [398] This index explores the concepts of the average scattering for clusters and separation between clusters.

SDbw validity index [399] This accuracy defines the criteria of compactness and separation between clusters.

Weighted inter-intra measure
[553]

This accuracy is used to compare the homogeneity of data to its separation.
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Table A.3 – continued from previous page

Index Description

Huberts Γ statistic [554] The aim of this metric is to find the degree of match between a given clustering scheme and its proximity matrix.

B- External or supervised clustering accuracy metrics

Rand index [401] This index quantifies the similarity between the distributions of the observations in the clustering result and the benchmark classifications.

Jaccard coefficient [342] This coefficient is used to assess the similarity between the distributions of the observations in the clustering result and in the ground-truth.

Fowlkes-Mallows index [405] This metric compares the distributions of the observations in the clustering result and in the ground-truth by measuring the probability that a pair of
observations is classified together in both the clustering solution and the ground-truth class.

Adjusted Rand index [402] This measure is a similar form of the Rand index which is adjusted in order to attenuate the role of the chance grouping of cluster members by providing a
correction for chance agreement.

Mutual information measure
[403]

This metric quantifies the shared information between the distribution of a clustering and a ground-truth classification.

Adjusted mutual information
measure [404]

This measure is considered as a variation of mutual information measure which corrects the effect of agreement of cluster members.

Mirkin metric [555] This metric performs afterward the Hamming distance between the distributions of observations in the clustering result and in the ground-truth.

V-measure [556] This measure is an external entropy based cluster evaluation accuracy which explicitly quantifies the degree of satisfaction of homogeneity and completeness
criteria.

C- Classification accuracy metrics related to the confusion matrix

Precision [347] This accuracy corresponds to the proportion of predicted cases that are correctly matched to the benchmark classifications. It is considered as a means of
assessing the classification.

Recall [347] This measure indicates the proportion of the real cases that are correctly predicted. It is considered a way to improve the classification.

F-measure [347, 557] This measure is considered as a score resulting from the combination of the precision and recall accuracies by using a harmonic mean. It assesses both the
homogeneity and the completeness criteria of a clustering result.

Classification accuracy [558] This measure denotes the quotient of true classified cluster members and the total number of data observations.

Entropy [559] This index evaluates the confusion level through the confusion matrix from the class distribution of misclassified pixels.

Purity [559] The purity of a cluster corresponds to the ratio of the largest class of pixels assigned to this cluster with respect to the overall cluster size.
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A.3. Clustering evaluation or validity indices for the estimation of the number of clusters in the literature

Table A.4.: Clustering evaluation or validity indices for the estimation of the number of clusters in the literature.

Index Optimal number of clusters Description

Silhouette width index [341] Maximum value of the index This index measures the level of compactness and separation by analyzing the distribution of the observations into clusters.

Dunn index [397] Maximum value of the index This index computes the ratio of the minimal inter-cluster distance to the maximal intra-cluster one in order to determine the
dense and well-separated clusters.

Davies-Bouldin index [391] Minimum value of the index This metric calculates the ratio of the sum of within-cluster scatter to between-cluster separation.

Cubic Clustering Criterion [368] Maximum value of the index This metric quantifies the deviation of the clusters from the distribution by computing the within-cluster of the sum-of-squares
and cross-products matrix of data.

Krzanowski-Lai index [382] Maximum value of the index This index evaluates the between- and within-cluster sums of squares of the partition.

Hartigan index [383] Maximum difference between
hierarchy levels of the index

This metric is performed by using the within-group dispersion matrix for data clustered into k clusters.

Calinski-Harabasz index [384] Maximum value of the index This accuracy is performed based on the within-group dispersion of clusters by computing the cluster centers.

Scott index [385] Maximum difference between
hierarchy levels of the index

This index is evaluated by performing the ratio of the sum-of-squares within the clusters to the sum-of-squares and
cross-products matrix of data.

Marriot index [386] Maximum value of second
differences between levels of the
index

This metric evaluates the within-cluster sums-of-squares of the partition by examining the effect of adding a single point into a
data set.

TraceCovW index [387] Maximum difference between
hierarchy levels of the index

This index is computed by using the covariance of the within-cluster of the sum-of-squares and cross-products matrix of data.

TraceW index [387] Maximum value of absolute
second differences between
levels of the index

This index is computed by evaluating the within-cluster of the sum-of-squares and cross-products matrix of data.

Friedman index [388] Maximum difference between
hierarchy levels of the index

This index which is known as the index of coincidence, explores the structure of heterogeneous multivariate data based on the
non-singular linear transformations.

Rubin index [389] Minimum value of second
differences between levels of the
index

This metric is based on the computation of the within-cluster matrix.

C-index [390] Minimum value of the index This index is based on the within-cluster dissimilarities.

Ratkowsky index [392] Maximum value of the index This accuracy is quantified by computing the sum-of-squares between the clusters.

Ball index [393] Maximum difference between
hierarchy levels of the index

This index is computed based on the average distance between cluster members and their respective cluster centroids.

PtBiserial index [394] Maximum value of the index This index is performed by using the within- and between- cluster distances.

Frey index [395] The cluster level before that
index value < 1

This index is based on the computation of the ratio of the difference scores from two successive levels in the hierarchy of the
applied hierarchical algorithm.

McClain index [396] Minimum value of the index This metric considers the ratio of the average within-cluster distance by the number of cluster distances.

SDindex [398] Minimum value of the index This index explores the concepts of the average scattering for clusters and separation between clusters.

SDbw validity index [399] Minimum value of the index This accuracy defines the criteria of compactness and separation between clusters.
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B.1. A summary of the analyzed texture features in this work

This section presents an exhaustive and detailed review of the different analyzed texture features
which have been carried in this work. First, for each set of texture descriptors a state-of-the-art
related to the parametrization of the used texture features in the most explored fields in image
analysis and pattern recognition, with a particular focus on those related to sub-fields and tasks
of DIA and historical DIA, is briefly presented. Then, a detailed review of the texture features
and their parameters is discussed. Finally, we conclude by detailing and justifying the techniques
and parameters used in our study based on work published in the literature and after performing
several experiments to choose the best configuration of the pre-defined thresholds and parameters

B.1.1. Tamura features

The first set of texture features investigated in this work is the Tamura descriptors.

B.1.1.1. Generalities and related works

Tamura et al. [159] proposed to extract textural features corresponding to human visual perception.
They defined six basic texture descriptors, namely coarseness, contrast, directionality, line-likeness,
regularity and roughness. They proved that the three first textural features (i.e. coarseness,
contrast and directionality) consistently outperformed others for global descriptions of textures
both separately and in combinations for image segmentation and classification issues.

The Tamura features have mainly been used in computer vision applications, such as content-
based image retrieval [560, 561, 562]. Paulhac et al. [563] used the texture attributes as statistical
measures for characterizing the image contrast. The texture descriptors were extracted from several
resolutions, based on the Tamura descriptors for real 3-D ultra-sound images. Zhang et al. [564]
showed that the Tamura features are efficient and robust to locate the license plates after retrieving
the candidate horizontal regions of license plate by applying the run-length technique. Recently,
the Tamura descriptors have been extracted to assist DIA. Keysers et al. [214] compared several
texture features, including the Tamura texture features histogram, relational invariant feature his-
togram, run-length histogram, distribution of connected components, etc. for DI zone classification.
They concluded that the Tamura features are the single best ones but they have high demand in
computational time (i.e. more than 100 times slower to compute than the most other extracted
descriptors). Mouats et al. [258, 259] introduced the Tamura descriptors in their Gabor-based
segmentation of HDIs method to improve the obtained results.

B.1.1.2. Tamura Features

Four Tamura descriptors are extracted in this work, namely:

• Coarseness (cf. equation B.4),

• Contrast (cf. equation B.5),

• Number of orientations (cf. equation B.11),

• Directionality (cf. equation B.12).

The following details the four extracted Tamura descriptors.

1. Coarseness
The coarseness feature is considered by Tamura et al. [159] as the most fundamental texture
feature. It illustrates the scale and repetition rates of texture. Specifically, the coarseness
feature measures the largest size at which a texture exists. For instance, when two images
differ only in scale, the magnified one is coarser (cf. Figure B.1). Moreover, when two images
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have different structures, the bigger its pattern size and/or less its patterns are repeated, the
coarser texture (cf. Figure B.2). Measures of coarseness are presented at the bottom of each
image in Figures B.1 and B.2.

(a) F(1) = 24.34 (b) F(1) = 6.97 (c) F(1) = 39.19 

Figure B.1.: Illustration of the texture coarseness on an example of a scaled drop cap. Figures
(a),(b) and (c) are the original image, its reduced one (SI ÷ 2) and its magnified one
(SI × 2), respectively, where SI is the size of the original image.

zzzzzzzz
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zzzzzzzz
zzzzzzzz

zzzzzzzzz

zzzzzzzzz

zzzzzzzzz

(a) F(1) = 23.33 (b) F(1) = 44.50

(c) F(1) = 27.75 (d) F(1) = 44.45

Figure B.2.: Illustration of the texture coarseness on two images having different structures. Figures
{(a) and (c)} are the original images, and Figures {(b) and (d)} are their edited versions
with large pattern size and less repeated pattern, respectively.

The coarseness is firstly computed by taking the average Akt(x, y) at every image pixel I(x, y)
over the neighborhood of size 2kt × 2kt according to the following equation:

Akt(x, y) =

x+2kt−1−1∑
i=x−2kt−1

y+2kt−1−1∑
j=y−2kt−1

f(i, j)

22kt
(B.1)

where f(x, y) represents the gray-level of image pixel I(x, y) and kt ∈ [1, L] where 2L ≤
min(W,H), W and H denote the effective width and height of the analyzed image.
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Secondly, at each pixel the differences Ekt,h(x, y) and Ekt,v(x, y) between the average of pairs
corresponding to pairs of non-overlapping neighborhoods on opposite sides of the analyzed
pixel in both the horizontal and vertical orientations, respectively, are computed as:

Ekt,h(x, y) = |Akt(x+ 2kt−1, y)−Akt(x− 2kt−1, y)| (B.2)

Ekt,v(x, y) = |Akt(x, y + 2kt−1)−Akt(x, y − 2kt−1)| (B.3)

Thirdly, the best size Sbest(x, y) = 2kt is defined according to the specified kt which maximized
E = Emax = max1≤kt≤L(Ekt,h(x, y), Ekt,v(x, y)) in either the horizontal direction or vertical
one.

Finally, the coarseness measure is defined as the average of Sbest over the analyzed image
according to the equation B.4.

F (1) =
1

WH

W−1∑
x=0

H−1∑
y=0

Sbest(x, y) (B.4)

2. Contrast
The contrast feature measures the dynamic range of gray-levels in an image with taking
into consideration the distribution polarization of black and white pixels (i.e. black-to-white
mapping) (cf. Figure B.3).

(a) Original image (b) Black-to-white mapping

Figure B.3.: Illustration of the black-to-white mapping to estimate the dynamic range of gray-
levels for contrast adjustment. Figure (a) is the original image. Figure (b) represents
the black-to-white mapping to estimate the dynamic range of gray-levels for contrast
adjustment.

The contrast is given by the equation B.5.

F (2) =
σ2

(µ4)
1
4

(B.5)

where µ4 is the fourth moment and σ represents the standard deviation estimator.

3. Number of orientations
By building the histogram of local edge probabilities HistD, global texture features such as
long lines and simple curves can be characterized (cf. Figure B.4).

Two 3×3 masks are firstly applied horizontally ∇H (cf. equation B.6) and vertically ∇V (cf.
equation B.7):
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(a) (b) (c) (d) (e)

Figure B.4.: Illustration of few edge kinds for building the histogram of local edge probabilities.
Figures (a), (b), (c), (d) and (e) represent vertical, horizontal, 45◦, 135◦ and non-
directional edges.

∇H =

 1 1 1

0 0 0

−1 −1 −1

 (B.6) ∇V =

−1 0 1

−1 0 1

−1 0 1

 (B.7)

Then, image edges can be detected by extracting magnitude |∆G| (cf. equation B.8) and
direction θt (cf. equation B.9) at each pixel.

|∆G|= |∇V |+|∇H |
2

(B.8)

θt = tan-1 ∇V
∇H

+
π

2
(B.9)

Therefore, HistD is produced by quantifying θt and counting all pixels respecting the following
condition: |∆G|≥ tHist. tHist and nb are the specified HistD threshold and the number of
the HistD bins which are set to 12 and 16, respectively (cf. Figure B.5). HistD is defined to
be:

HistD(l) =
Nθt(l)

nb−1∑
i=0

Nθt(i)

(B.10)

where l = 0, 1, . . . , nb − 1. Nθt(l) is the number of pixels at which (2l−1)Π
2nb

≤ θt < (2l+1)
2nb

.

(a) Original image (b) Histogram of local edge probabilities

Figure B.5.: Illustration of the histogram of local edge probabilities. Figure (a) is the original
image. Figure (b) represents the histogram of local edge probabilities corresponding
to the original image.

Therefore, the number of orientations describes the local edge density and distribution which
is given by extracting salient histogram peaks (i.e. local histogram maxima) after computing
the difference vector between two successive histogram bins, according to the equation B.11.
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F (3) =
∑
k

[ argmax
0≤k≤nb−1

(
∂HistD(k)

∂k
= 0)] (B.11)

4. Directionality
The directionality feature provides an insight into the global texture property over a region
by measuring the total degree of texture directionality. It is computed by using a histogram
of local edge probabilities HistD against their directional angle (cf. Figure B.6).

Hist 
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Figure B.6.: Illustration of the computation of the directionality feature from the histogram of local
edge probabilities.

By quantifying the sharpness of HistD peaks, the texture directionality is measured by sum-
ming the second moments around each peak according to the equation B.12 .

F (4) = 1− r np
np∑
p

∑
Φh∈wp

(Φh − Φp)
2HistD(Φh) (B.12)

where np, Φp, wp, r and Φh represent the number of histogram peaks which was set by Tamura
et al. [159] to 2, the pth peak position of HistD, the range of pth peak between valleys, the
normalizing factor related to the quantized levels of Φh and the quantized direction code
(cyclically in modulo 180◦), respectively.

B.1.2. LBP features

The second set of texture features investigated in this work is the LBP descriptors.

B.1.2.1. Generalities

The LBP descriptors are extracted from the LBP operator. The LBP operator is one of the
most explored local image descriptor for texture analysis which has mainly used for describing
local texture properties of gray-scale images. It has been introduced to measure pure and original
property of the texture spectrum by Wang and He [260]. They proposed a texture analysis pattern
based on a texture unit. LBP is a two-level version of the texture spectrum method. Later, it was
popularized by Ojala et al. [261] and Harwood et al. [262] to analyze texture characteristics for
texture classification. Ojala and Pietikäinen [263] presented an unsupervised texture segmentation
method based on examining the LBP distributions.

LBP is obtained by locally thresholding texture and their combinations with local gray-scale
measures. It represents each analyzed image pixel with a binary pattern based on the difference
between its gray-level value and its circular neighborhood with specified radius Rl. If the gray-level
value difference between the analyzed pixel Ic(x, y) and its Pl neighboring pixels Ip∈[0,Pl−1](x, y),
is greater than or equal to zero, the LBP value is set to 1, otherwise is set to 0 (cf. Figure
B.7(a)). Thus, the resistance to the intensity value of pixels in gray-scale format is ensured.
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If the coordinates of the analyzed pixel are (0, 0), then the coordinates of Ip(x, y) are given by

(−Rl sin(2Πp
Pl

), Rl cos(2Πp
Pl

)). The interpolation is applied when the gray-level values of neighbors
mismatches to an image pixel integer value. Then, by multiplying the binary elements with a
binomial coefficient, the LBP value 0 ≤ LBPPl,Rl(Ic(x, y)) ≤ 2Pl is produced which corresponds
to the value of the LBP feature vector. The LBP operator LBPPl,Rl is defined according to the
following equation:

LBPPl,Rl(Ic(x, y)) =

Pl−1∑
p=0

s(fp(x, y)− fc(x, y))2p (B.13)

where

s(z) =

{
1, if z ≥ 0,

0, z < 0 otherwise.
(B.14)

where Pl is the number of neighboring pixels in a circular set. fp∈[0,Pl−1](x, y) corresponds to the
gray-level values of equally spaced pixels from Ic(x, y) on a circle of radius Rl which builds the
Pl circularly symmetric neighbors Ip∈[0,Pl−1](x, y). fc(x, y) and fp(x, y) represent the gray-levels of
the analyzed image pixel Ic(x, y) and image pixel Ip(x, y), respectively (cf. Figure B.7).

(a) Computation of the LBPPl=8,Rl=1 code

(b) LBPPl=12,Rl=2.5 (c) LBPPl=16,Rl=4

Figure B.7.: Illustration of the process of calculating the LBP operator LBPPl,Rl . Figure (a) shows
an example of the computation of the LBPPl=8,Rl=1 code. Figures (b) and (c) illustrate
two different circularly symmetric gray-level neighborhood sets around a central black
pixel for different (LBPPl=12,Rl=2.5 and LBPPl=16,Rl=4) [234].

By taking into account Pl pixels in the neighbor set when computing a basic LBPPl,Rl operator,
2Pl different binary patterns are obtained. The obtained 2Pl binary patterns are not rotationally
invariant. Thereby, by performing a circular bit-wise right-shift on the p-bit binary pattern and
selecting the minimum value of Pl − 1 bit-wise right-shift operations on the binary pattern (i.e.
assigning a unique identifier to each rotation invariant LBP), nl unique rotation invariant LBP are
produced to remove the effect of rotation. Indeed, the quantification of the occurrence statistics
of the individual rotation invariant patterns corresponding to the image micro-features is ensured.
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The rotation invariant LBP operator LBP riPl,Rl is defined according to the following equation:

LBP riPl,Rl(Ic(x, y)) = min
0≤i≤Pl−1

{ROR(LBPPl,Rl(Ic(x, y), i))} (B.15)

where ROR(., i) represents a circular bit-wise right-shift on the Pl-bit binary pattern i times.
Noting that the obtained LBP feature vector is non-uniform, Ojala et al. [153] proposed an

efficient multi-scale approach based on uniform LBP for gray-scale and rotation invariant texture
classification. They proved that the basic 3 × 3 LBP operator provides better performance by
extracting the uniform and non-uniform patterns from it. A pattern is considered as a uniform, if
the number of spatial transitions (bit-wise 0/1 changes) in the pattern are less than or equal to 2.
Therefore, the rotation invariant uniform 2 LBP operator is labeled “riu2”. Formally, the rotation
invariant uniform 2 LBP operator LBP riu2

Pl,Rl
is defined according to the following equation:

LBP riu2
Pl,Rl

(Ic(x, y)) =


Pl−1∑
p=0

s(gp − gc), if U(LBPPl,Rl(Ic(x, y))) ≤ 2,

Pl + 1, otherwise.

(B.16)

where

U(LBPPl,Rl(Ic(x, y))) = |s(gPl−1 − gc)− s(g0 − gc)|+
Pl−1∑
p=1
|s(gp − gc)− s(gp−1 − gc)| (B.17)

Figures B.8(b) and B.8(c) illustrate the results of the application of the LBPPl=8,Rl=1 and
LBP riu2

Pl=8,Rl=1 operators on a drop cap, respectively. We can note that the LBP riu2
Pl=8,Rl=1 oper-

ator provides better performance than the LBPPl=8,Rl=1 one (i.e. visually, there is a discernible
difference to the naked eye with the two output images since we can see the different shapes and
patterns in the output image of the application of the LBP riu2

Pl=8,Rl=1 operator).

(a) Input image (b) Output image of
LBPPl=8,Rl=1

(c) Output image of
LBP riu2Pl=8,Rl=1

Figure B.8.: Illustration of the application of the LBPPl=8,Rl=1 and LBP riu2
Pl=8,Rl=1 operators on a

drop cap image.

Thus, by using the rotation invariant uniform 2 LBP operator (LBP riu2
Pl,Rl

), Pl + 1 uniform binary
patterns are produced in a circularly symmetric neighbor set of Pl pixels. Each uniform binary
pattern are labeled differently (i.e. a unique label is assigned to each uniform binary pattern
corresponding to the number of “1” bits in the pattern (0→ Pl)), while the non-uniform patterns
are grouped in the “miscellaneous” label Pl+1. Hence, by using the LBP riu2

Pl,Rl
operator as gray-scale

invariant measure of texture characteristics of an image, the distribution of the binary patterns for
the whole analyzed image is described by computing the histogram of binary patterns HistPl,Rl .
Ojala et al. [153] proved that the uniform patterns are frequently dominant in the distribution of
the binary patterns compared to non-uniform ones. Therefore, non-uniform weights are assigned
to the uniform and non-uniform patterns (i.e. a higher weight is assigned to the uniform patterns
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and all the non-uniform patterns are grouped into single bin of HistPl,Rl) which ensure better
discrimination of spatial patterns. Thus, each uniform pattern is associated to a separate single
HistPl,Rl bin while all the non-uniform patterns are assigned to another single HistPl,Rl bin.

For describing an image with LBP riu2
Pl,Rl

, a histogram of binary patterns HistPl,Rl of Pl + 2 bins
is produced. Each bin provides an estimation of the probability to find the corresponding pattern
in the analyzed image. For example, with Pl = 8 for each image pixel Ic(x, y), LBP8,Rl(Ic(x, y)),
LBP ri8,Rl

(Ic(x, y)) and LBP riu2
8,Rl

(Ic(x, y)) produce 256 unique binary patterns, 36 unique rotation
invariant LBP and 10 HistPl,Rl bins, respectively (cf. Figure B.9). The number of the uniform
and non-uniform patterns are 9 and 28, respectively.

Figure B.9.: Representation of the drop cap image (cf. Figure B.8(b)) with the different histograms
of binary patterns HistPl=8,Rl=1 corresponding to LBPPl=8,Rl=1, LBP u2

Pl=8,Rl=1,

LBP riPl=8,Rl=1 and LBP riu2
Pl=8,Rl=1.

B.1.2.2. State-of-the-art related to LBP parametrization

Low computational complexity, invariance to changes in the average intensity value of the central
pixels comparing to its neighbors and ability to characterize fine texture details, make the LBP
operator as one of the most widely used textural approach. LBP has been studied in a large variety
of pattern recognition fields and has been successfully used by researchers in various contexts (e.g.
medicine [565], face recognition [566], biometric [567]). More recently, the LBP operator has gained
great attention of many researchers in the DIA fields. Dua et al. [264] extracted the LBP wavelet
domain for off-line and text-independent writer identification. Lutf et al. [265] proposed a LBP-
based approach for writer identification using off-line Arabic handwriting. They computed the LBP
histogram to extract handwriting features for each diacritic after retrieving all diacritics from the
input image. Ferrer et al. [266] proposed an algorithm based on the LBP orientation for printed
script identification. Since Nicolaou et al. [204, 205] worked on binary images as inputs, they
presented an approach based on appropriate redundant oriented binary LBP operator for Arabic
font recognition. Bhowmik and Kar [234] compared the rotation invariant uniform LBP operator
with the variance measure for segmentation of historical machine printed DIs. They concluded that
the LBP operator outperforms the variance measure for separating graphic regions from text ones.

Jiang et al. [206] used the LBPPl=8,Rl=1 operator for printer identification. They generated
59-dimensional histogram (a feature vector composed of 58 uniform patterns and 1 single non-
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uniform pattern) from the LBP operator for each analyzed gray-scale pixel of a DI. Bertolini et
al. [203] extracted the LBP features from the LBP u2

Pl=8,Rl=2 operator for writer identification
and verification. They proved that the used LBP operator which produces a feature vector of 59
components for each analyzed pixel, is fast and accurate. Nicolaou et al. [204, 205] introduced a
redundant oriented LBP (Pl = 8, Rl = 3) for Arabic font recognition. They extracted 327 redundant
LBP features, including 255 bins from the LBP histogram, 36 rotation invariant features, 8 rotation
phase features, 14 edge features, 5 beta-function features and 9 sample-count features. Bhowmik
and Kar [234] localized text in HDIs by extracting LBPPl,Rl , LBP

ri
Pl,Rl

and LBP riu2
Pl,Rl

features. They
used three LBP operators by setting Rl equal to 1, 2 and 3 and Pl equal to 8, 16 and 24, respectively.
But, they considered only Pl equal to 8 during the binary pattern computation. They concluded
that the LBPPl,Rl model outperforms slightly the two other models LBP riPl,Rl and LBP riu2

Pl,Rl
. But,

in the most cases, the obtained results of the three models are relatively similar.

B.1.2.3. LBP features

In this work, LBP riu2
Pl=8,Rl=1 is applied and 10 HistPl,Rl bins is produced for each analyzed pixel to

ensure better discrimination of spatial patterns. Indeed, 10 LBP riu2
Pl=8,Rl=1 descriptors are extracted.

The LBP riu2
Pl=8,Rl=1 feature vector consists of 10 terms of the probability to find the corresponding

pattern in the analyzed image. The nine first descriptors correspond to the nine HistPl=8,Rl=1

bins which represent the uniform patterns (cf. equation B.18), while the last one represent the last
HistPl=8,Rl=1 bin which characterizes all the non-uniform patterns (cf. equation B.19).

1. Heights of the uniform bins of the histogram of binary patterns
The first nine LBP descriptors correspond to the uniform bins which characterize the uniform
patterns of the analyzed DI region. They are obtained from the nine first HistPl=8,Rl=1.
Hence, the first nine LBP descriptors are defined by:

F (i=1→Pl+1) = HistPl,Rl(i) (B.18)

2. Height of the non-uniform bin of the histogram of binary patterns
The last LBP descriptor represents the last HistPl=8,Rl=1 bin which characterizes all the
non-uniform patterns. Hence, the last LBP descriptor is defined to be:

F (i=Pl+2) = HistPl,Rl(i = Pl + 2) (B.19)

B.1.3. GLRLM features

The third set of texture features investigated in this work is the GLRLM descriptors.

B.1.3.1. Generalities

The GLRLM descriptors are extracted by applying the run-length method. The run-length method
has been extensively studied in a wide array of fields for analysis of images and particularly for
pattern recognition and texture classification [267]. It has been introduced by Galloway et al. [181]
to classify a set of terrain samples by extracting various run-length features from several GLRLM.

For a given image, an element of the GLRLM p(g, l) is defined as the number of runs with pixels
of gray-level g and run-length l. A gray-level run g is a sequence in a scan direction of a set of
consecutive and collinear image pixels with identical gray-level value. The length of the run l is the
number of image pixels in the run. A GLRLM is computed for runs having any given direction.
Usually, the four scan directions have been used: θr = {0◦, 45◦, 90◦, 135◦} (i.e. horizontal, vertical,
diagonal and anti-diagonal directions). For the GLRLM, the dimension of g is equal to Gl which
corresponds to the maximum gray-level (i.e. number of gray-level bins). On the other hand, the
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dimension of l is equal to L which corresponds to the maximum run-length. An example of the
process of calculating the GLRLM for runs having horizontal direction is presented in Figure B.10.

1 1 2 2 1 1

3 3 1 1 2 2

1 1 2 3 1 1

3 1 2 2 1 1

1 1 3 2 2 2

2 3 1 1 2 2

0°

1 2 3 4 5 6

1 1 8 0 0 0 0

2 2 4 1 0 0 0

3 4 1 0 0 0 0

g
l

Figure B.10.: Illustration of the process of calculating the GLRLM for runs having horizontal di-
rection (i.e. 0◦ direction).

In order to reduce the effect of noise and intensity fluctuations and overcome the problem of
density representations, a step of quantization of gray-levels values is required. Thus, a gray-
level run is considered as a contiguous sequence of image pixels defined in a scan direction, where
pixel intensity gray-levels are defined in a certain range. For example, in the case of a gray-scale
image which has 256 gray-levels, if a quantization of gray-levels values step in 16 gray-scale bins is
introduced, the gray-level intensities of pixels will be ranged from 0 to 15, 16 to 31, 32 to 47, . . ., 239
to 255. Afterwards, a 2-D run-length histogram (Histg,l) is produced for each scan direction, such
one axis represented the run-length and the other axis illustrates the gray-level value or gray-level
value bin (cf. Figure B.11). Histg,l is a histogram of run-lengths. Therefore, since the Histg,l is
normalized, the probability of a specific run-length P (g, l) can be defined according to the following
equation:

Gl−1∑
g=0

L∑
l=1

P (g, l) = 1 (B.20)

where Gl is the number of gray-level bins (i.e. number of bins into which the image has been
quantized) g is the gray-level value bin, L is the maximum run-length, and l is the run-length.

Figure B.11.: Illustration of the histogram of run-lengths Histg,l.

B.1.3.2. State-of-the-art related to GLRLM parametrization

The run-length method has been widely investigated in the analysis of biomedical images. For
instance, Prasad and Sowmya [568] extracted textural features based on the GLRLM, GLCM,
gray-level difference method and moments of gray-level histogram of a local area, for the analysis
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of the human organs or tissues. Later, the run-length features were extracted for the recognition
of the license plates [564]. The run-length technique was used to detect the horizontal regions of
license plate. Although the poor performance of using the run-length or GLRLM features obtained
by Weska et al. [250], and Conners and Harlow [268] comparing to classical texture features
(GLCM, gray-level difference and the power spectrum features), the run-length methods have been
recently applied to meet the need for DI segmentation or DIA, etc. Seuret et al. [223] proposed
a method for discriminating printed content from handwritten annotations at pixel level. They
extracted the run-length features in four directions θr = {0◦, 45◦, 90◦, 135◦} to estimate the width
of a stroke in a given direction. Stamatopoulos et al. [269] used the run-length method for the
page frame detection from double page DIs. They detected the vertical and horizontal zones of
the two pages based on the vertical and horizontal white run projections, respectively. Nikolaou
et al. [127] proposed an adaptive RLSA for the text line, word and character segmentation of
historical and degraded machine-printed DIs. Although the proposed algorithm has been proved
to work efficiently for a wide variety of degraded DIs, several thresholds were defined in the used
segmentation techniques. Shi and Govindaraju [134] used a fuzzy run-length approach for the line
separation in complex handwritten DIs including postal parcel images and historical handwritten
DIs. Keysers et al. [214] proposed an accurate system for the classification of DIs based on the
run-length feature extraction. The extracted features were used to classify text/non-text DI zones.
Gordo et al. [215] used the multi-scale binarizing run-length histograms for the large-scale DI
retrieval and classification. They worked on binary images as inputs, they quantized the lengths of
the runs in logarithmic scale by defining 9 intervals for each quantized level (i.e. black and white
gray-levels). Then, four run-length histograms were computed in horizontal, vertical, diagonal
and anti-diagonal directions for each extracted region using spatial pyramids. The four run-length
histograms were concatenated to characterize the extracted regions by a region descriptor of length
72 = 4 directions × 2 quantized levels × 9 quantized intervals. The extracted descriptors have
been proved that they work efficiently and do not require a priori knowledge of the DI layout,
model, content or any kind of layout analysis. Dinstein and Shapira [270] extracted textural
features based on the run-length histograms from groups of characters for the ancient Hebraic
handwriting identification. The horizontal and vertical directions were selected to compute the run-
length histograms. Then, the average dissimilarity between histograms of each writer was defined.
Experiments yielded satisfying results. Another algorithm based on the run-length features was
proposed for the handwriting identification on medieval DIs [271]. Uttama et al. [29] examined
drop caps from historical heritage images and introduced a drop cap segmentation method based
on a combination of different texture features extracted from the GLCM, GLRLM, auto-correlation
function and Wold decomposition. Three run-length descriptors were extracted, including long-run
emphasis (LRE), run percentage (RPC) and gray-level distribution.

B.1.3.3. GLRLM features

Galloway et al. [181] described a set of 11 texture features based on gray-level run-lengths and
particularily the 2-D run-length histogram (Histg,l), to capture the coarseness of a texture in a
specific direction:

• Short-run emphasis (SRE) (cf. equation B.21),

• Long-run emphasis (LRE) (cf. equation B.22),

• Low gray-level emphasis (LGRE) (cf. equation B.23),

• High gray-level emphasis (HGRE) (cf. equation B.24),

• Gray-level non-uniformity (GLNU) (cf. equation B.25),

• Run-length non-uniformity (RLNU) (cf. equation B.26),
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• Run percentage (RPC) (cf. equation B.27),

• Short-run low gray-level emphasis (SRLGE) (cf. equation B.28),

• Long-run high gray-level emphasis (LRHGE) (cf. equation B.29),

• Short-run high gray-level emphasis (SRHGE) (cf. equation B.30),

• Long-run low gray-level emphasis (LRLGE) (cf. equation B.31).

In this work, for each analyzed foreground pixel four 2-D run-length histograms (Histg,l) are
produced for each scan direction θr = {0◦, 45◦, 90◦, 135◦}, i.e. horizontal, vertical, diagonal and
anti-diagonal directions. For each Histg,l, a feature vector of 11 terms of GLRLM indices is
computed.

1. Short-run emphasis (SRE)
SRE ensures the characterization of fine-grained textures by emphasizing short runs. SRE is
defined by:

F (1) =
Gl−1∑
g=0

L∑
l=1

P (g, l)

l2
(B.21)

2. Long-run emphasis (LRE)
LRE helps to characterize textures with large homogeneous areas or coarse textures by em-
phasizing long runs. LRE is defined by:

F (2) =

Gl−1∑
g=0

L∑
l=1

P (g, l)l2 (B.22)

3. Low gray-level emphasis (LGRE)
LGRE is orthogonal to SRE (cf. equation B.21) and it provides an insight of the dominance
of many runs of low gray-level value in the analyzed texture. LGRE is defined by:

F (3) =
Gl−1∑
g=0

L∑
l=1

P (g, l)

(g + 1)2
(B.23)

4. High gray-level emphasis (HGRE)
HGRE is orthogonal to LRE (cf. equation B.22) and it provides information on the dominance
of many runs of high gray-level value in the analyzed texture. HGRE is defined by:

F (4) =
Gl−1∑
g=0

L∑
l=1

P (g, l)(g + 1)2 (B.24)

5. Gray-level non-uniformity (GLNU)
GLNU is focused on detecting the gray-level outliers from the histogram. GLNU is defined
by:

F (5) =
L∑
l=1

[
Gl−1∑
g=0

P (g, l)]2 (B.25)

6. Run-length non-uniformity (RLNU)
RLNU is an indicator of few run-length outliers which are dominating the histogram. RLNU
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is defined by:

F (6) =
Gl−1∑
g=0

[
L∑
l=1

P (g, l)]2 (B.26)

7. Run percentage (RPC)
RPC gives a glimpse into the overall histogram homogeneity. The maximum RPC value
corresponds to the case where all runs are equal to the unity length regardless of the gray-
level values. RPC is defined by:

F (7) =
Gl−1∑
g=0

L∑
l=1

1

P (g, l)l
(B.27)

8. Short-run low gray-level emphasis (SRLGE)
SRLGE is a combination of the two metrics: SRE (cf. equation B.21) and LGRE (cf. equation
B.23) which estimates the dominance of many short runs of low gray-level value. SRLGE is
defined by:

F (8) =

Gl−1∑
g=0

L∑
l=1

P (g, l)

l2(g + 1)2
(B.28)

9. Long-run high gray-level emphasis (LRHGE)
LRHGE is the complementary metric to SRLGE (cf. equation B.28). It characterizes the
combination of long high gray-level value runs. LRHGE is defined by:

F (9) =

Gl−1∑
g=0

L∑
l=1

P (g, l)l2(g + 1)2 (B.29)

10. Short-run high gray-level emphasis (SRHGE)
SRHGE is both orthogonal to SRLGE (cf. equation B.28) and LRHGE (cf. equation B.29).
It carries out the domination of short runs with high intensity gray-levels in the analyzed
texture. SRHGE is defined by:

F (10) =
Gl−1∑
g=0

L∑
l=1

P (g, l)(g + 1)2

l2
(B.30)

11. Long-run low gray-level emphasis (LRLGE)
LRLGE is the complementary metric to SRHGE (cf. equation B.30). It allows to characterize
long runs with low intensity gray-levels in the analyzed texture. LRLGE is defined by:

F (11) =
Gl−1∑
g=0

L∑
l=1

P (g, l)l2

(g + 1)2
(B.31)

B.1.4. Auto-correlation features

The fourth set of texture features investigated in this work is the auto-correlation descriptors.

B.1.4.1. Generalities

The auto-correlation features are extracted from a non-parametric tool which consists of the auto-
correlation function. The auto-correlation function which is a 2-D function, is defined as a similarity
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measure between a dataset and a shifted copy of the data. It is used to find periodic patterns
and similar patterns through a number of extracted auto-correlation features [145, 179]. The auto-
correlation function which is computed along the horizontal and vertical axes of the analysis window
of an image I, is defined according to the following equation:

(B.32)
R
I(α,β)
(x,y) =

∑
α∈Ω

∑
β∈Ω

I(x, y)I(x+ α, y + β)

= FFT -1 [FFT [I(x, y)]FFT ∗ [I(x, y)]]

where I(x + α, y + β) is the translation of the analysis window of an image I(x, y) by α and β
pixels along the horizontal and vertical axes, respectively, defined on the plane Ω. FFT , (.)∗ and
(.)-1 denote the fast Fourier transform, complex conjugate and inverse transform, respectively.

An example of the application of the auto-correlation function on a HDI is presented on Figure
B.12.

(a) Original image (b) Output image of the application of the auto-correlation
function

Figure B.12.: Illustration of the application of the auto-correlation function on a HDI.

B.1.4.2. State-of-the-art related to auto-correlation parametrization

The auto-correlation function has extensively been investigated for texture analysis. For instance,
Brown and Shvaytser [569] used the projective distortion of the auto-correlation function for deter-
mining local surface orientation. It has also been used by Heilbronner [570] for the analysis of the
fabric and fine-grained materials, segmentation of the grain shapes and determination of the grain
sizes. Lin et al. [571] characterized regular texture by computing periodicity based on extracting
the auto-correlation primitives. By determining the location of peaks in the auto-correlation func-
tion applied on the gray-scale regular texture images, they determined if a texture image has or not
a regular structure. Toyoda and Hasegawa [151] classified textures based on the extended higher
order local auto-correlation features.

By analyzing the auto-correlation results, a rose of directions can be produced. The rose of di-
rections which is a derivative of the auto-correlation function, is deduced from the auto-correlation
function [273]. It is a polar diagram derived from the analysis of the auto-correlation results and
reveals the significant orientations of the texture in the analyzed image block. It highlights interest-
ing information concerning the principal orientations and periodicities of the texture, characterizing
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the content of images without any assumption about page structure and its characteristics. The
rose of directions has recently been used with HDIs [30, 1, 230]. In order to identify the main ori-
entation of the analyzed image, the rose of directions is computed for each orientation by summing
up the different values of the auto-correlation function (cf. equation B.32):

RI(x,y)(Θi) =
∑
Di

R
I(α,β)
(x,y) (B.33)

where Θi ∈ [0, 180] is the selected orientation of the set of possible orientations Di which is repre-
sented by a straight line passing through (x, y) and the angle Θi.

The rose of directions is normalized in one of the above studies in order to select only the relative
variations of all contributions for each direction [1]. The relative sum R

′I
(x,y)(Θi) is defined as:

R
′I
(x,y)(Θi) =

RI(x,y)(Θi)−RImin
RImax −RImin

(B.34)

where RImax 6= RImin, RImin and RImax represent the minimum and maximum values of RI(x,y)(Θi),

respectively, both of which are computed on the analysis window of an image I(x, y).

To illustrate the performance of the rose of directions in discriminating between textual and
graphical regions in a DI and to determine the main orientation of a texture, Figure B.13 shows
the rose of directions obtained with four different textures. As can be seen, the shape of the rose
of directions is different for each type of texture. We note that for textual regions, the shape
of the rose of directions depends on the orientation of the text and the main information. The
horizontal orientation (0◦ and 180◦) is clearly identifiable. On the other hand for drawing, the rose
of directions is deformed.

(f)(e) (g) (h)

(a) (b) (c) (d)

Figure B.13.: Examples of the rose of directions. Figures {(a), (b), (c) and (d)} are the original
images, and Figures {(e), (f), (g) and (h)} represent their respective roses of direc-
tions. For textual regions such as in Figure (c), the shape of the rose depends on
the orientation of the text and the main information. The horizontal orientation (0◦

and 180◦) is clearly identifiable in Figure (g). For drawing in Figure (d), the rose of
directions is deformed (cf. Figure (h)).

308



B.1. A summary of the analyzed texture features in this work

The various forms and shapes of the rose of directions which are obtained from the variety of
textures contained in ancient gray-scale DIs do not help us to define a template of the rose of
directions for each type of texture. Nevertheless, computing the rose helps us to extract significant
and relevant indices for texture features. Journet et al. [1] defined texture features related to the
orientation deduced from the rose of directions in order to analyze the digitized DI and to describe
its content.

The use of the auto-correlation function is not new for the DIA community. Numerous studies
have identified a number of auto-correlation features for segmenting HDIs and contemporary DIs
[30, 1, 230, 245, 272, 229, 89]. Eglin et al. [30] determined the number of bank of GFs by selecting
the relevant directions which were deduced from the rose of directions, to select interesting patterns
for the noise reduction and classification of handwritings in ancient manuscripts. For historical DIA,
Journet et al. [1] defined three auto-correlation features which few ones were derived from the rose
of directions. The extracted features computed over the neighborhood of each pixel (foreground
and background), were as follows: the main orientation of the rose of directions, the intensity value
of the auto-correlation function for the main orientation and the variance in the intensities of the
rose of directions, except for the main orientation. Grana et al. [245] used the auto-correlation
matrix to distinguish between textual and pictorial regions in historical manuscripts. Garz and
Sablatnig [230] presented a multi-scale texture-based approach for text region recognition in ancient
manuscripts. They extracted the three auto-correlation features proposed firstly by Journet et al.
[1] by applying three scales by means of overlapping sliding windows. Ouji et al. [272] introduced
two other texture attributes (i.e. mean stroke width and height of an image), also in relation to
the auto-correlation function for contemporary DI segmentation. For geometric layout analysis of
HDIs, Coppi et al. [229] extracted the main regions from the page using the RXYC algorithm,
then each region was divided in small squared blocks, and the local auto-correlation features were
computed on each block and classified using a SVM classifier. The local auto-correlation features
were deduced from a directional histogram obtained from the projections of the auto-correlation
matrix along the vertical and horizontal directions in order to identify the repeating pattern of the
texture. A 308-D feature vector for each block was constructed.

B.1.4.3. Auto-correlation features

The auto-correlation descriptors highlight interesting information on the principal orientations and
periodicities of texture allowing characterizing the content of DIs without any assumption on the
page layout, content, DI typographical or graphical characteristics. Thus, five auto-correlation
features are extracted in this work [1, 272]:

• Main orientation of the rose of directions (cf. equation B.35),

• Intensity of the auto-correlation function for the main orientation (cf. equation B.36),

• Variance of the intensities of the rose of directions (cf. equation B.37),

• Mean stroke width along specific directions (cf. Algorithm 8),

• Mean stroke height along specific directions (cf. Algorithm 9).

The following details the five extracted auto-correlation descriptors.

1. Main angle of the rose of directions

The first texture feature F
(1)
(x,y) corresponds to the main angle of the rose of directions extracted

from its maximal intensity (Figure B.14). It is normalized by the deviation from the horizontal
angle in order to avoid handling circular data. It is given by:

F
(1)
(x,y) =

∥∥∥∥∥180− argmax
Θi∈[0,180]

(R
′I
(x,y)(Θi))

∥∥∥∥∥ (B.35)
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(f)(e)

(c) (d)

α°
α°

Figure B.14.: Examples of the main angle of the rose of directions extracted from its maximal
intensity. {(c) and (d)} are the original images and {(e) and (f)} are their rose of
directions, respectively. The main orientation on the rose of directions corresponds
to the direction of the information contained in the analyzed image.

2. Intensity of the auto-correlation function for the main orientation

The second texture feature F
(2)
(x,y) corresponds to the intensity of the auto-correlation function

for the main orientation (cf. equation B.35) which is computed on the non-normalized value
of the auto-correlation function (cf. equation B.33). This feature evaluates the anisotropy
of an image I(x, y) since the rose of directions associates the gray-level of pixels in a specific
direction. It is computed as:

F
(2)
(x,y) = RI(x,y)( argmax

Θi∈[0,180]
(R
′I
(x,y)(Θi))) (B.36)

3. Variance of the intensities of the rose of directions

The third texture index F
(3)
(x,y) characterizes the overall shape of the rose of directions. F

(3)
(x,y)

is the variance of the rose intensities, except for the orientation of maximal intensity. A

low F
(3)
(x,y) means that the main orientation is significantly more prevalent than the other

orientations. However, a high variance signifies that the rose is deformed and that there are
a large number of orientations that are present to different extents (graphic blocks) (Figure
B.15). Hence, the third texture descriptor is defined by:

F
(3)
(x,y) = σ2(R

′I
(x,y)(Θi)) (B.37)

where Θi ∈ [0, 180] \{argmaxΘi∈[0,180](R
′I
(x,y)(Θi))} and σ represents the standard deviation

estimator. The standard deviation estimator σ is computed as:

σ2 =
1

θa − 1

θa∑
i=1

(R
′I
(x,y)(Θi))

2 − θa
θa − 1

(µ)2 (B.38)

where µ and θa are the mean value and the 179 orientation values, respectively.

In addition to the three texture features that are associated with the orientation of the auto-
correlation function, we compute two other texture attributes which were first introduced
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(i) (j)

(g) (h)

Variance is low

Variance is high

Figure B.15.: Examples of the variance of the intensities of the rose of directions. {(g) and (i)}
are the original images and {(h) and (j)} are their rose of directions, respectively.
The variance of intensities for the roses is high for graphic regions and low for text
regions.

by Ouji et al. [272] and seem to be relevant for contemporary DIs and specifically with
typographic characteristic characterization and chromatic/achromatic decomposition. The
two texture descriptors are also related to the auto-correlation function through the mean
stroke width and height of an image [272]. Ouji et al. computed these features in the
horizontal and vertical directions [272]. In this work, we compute the mean stroke width and
height along the axis of the main angle of the rose of directions to accurately estimate the
main stroke thickness along specific directions.

4. Mean stroke width along specific directions
The next texture index corresponds to the estimation of mean stroke width along specific

directions F
(4)
(x,y). It is deduced from a derivative of the auto-correlation function along the

axis of the main angle of the rose of directions Θ (cf. equation B.35) if Θ ∈ [10, 80] (cf.
equation B.39), otherwise the mean stroke width is estimated along the horizontal axis (cf.
equation B.40). If the growth rate of the sequence Swidth (cf. equations B.39 and B.40) is
lower than 10%, we estimate the mean stroke width, otherwise we continue to compute the
sequence Swidth until we reach the horizontal borders of the sliding window. Swidth is defined
to be:

Swidth =
∑

Θ∈[10,80]

|I(x, y)− TΘ
(α,0)(I(

y

|tan(Θ)|
, y))| (B.39)

Swidth =
∑

Θ∈[0,9]∪[81,180]

|I(x, y)− TΘ
(α,0)(I(x, y))| (B.40)

where TΘ
(α,0)(I(., .)) is the translation of the analysis window of an image I by α pixels along

the axis of the main angle of the rose of directions Θ = F
(1)
(x,y).
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5. Mean stroke height along specific directions
The computation of the last texture attribute is similar to that of the fourth texture index

F
(4)
(x,y). F

(5)
(x,y) is an estimation of the mean stroke height computed along the axis of the main

angle of the rose of directions Θ (cf. equation B.35) if Θ ∈ [10, 80] (cf. equation B.41),
otherwise the mean stroke height is estimated along the vertical axis (cf. equation B.42). If
the growth rate of the sequence Sheight defined in equations B.41 and B.42 is lower than 10%,
the mean stroke height is estimated, otherwise we continue to compute the sequence Sheight

until we reach the vertical borders of the analyzed sliding window. Sheight is defined to be:

Sheight =
∑

Θ∈[10,80]

|I(x, y)− TΘ
(0,β)(I(x, x |tan(Θ)|))| (B.41)

Sheight =
∑

Θ∈[0,9]∪[81,180]

|I(x, y)− TΘ
(0,β)(I(x, y))| (B.42)

where TΘ
(0,β)(I(., .)) is the translation of the analysis window of an image I by β pixels along

the axis of the main angle of the rose of directions Θ = F
(1)
(x,y).

Figure B.16 illustrates the mean stroke width and height differences of two fonts (normal
and bold text characters) along the axis of the main angle of the rose of directions. The

estimation of mean stroke width (resp. height) along specific directions F
(4)
(x,y) (resp. F

(5)
(x,y)) is

defined according to the algorithm 8 (resp. 9). Some steps in the two algorithms are shown
in red color (algorithms 8 and 9). This coloring is meant to highlight the main computation
steps related to the particular angle ranges of the rose of directions used to estimate mean
stroke width and height along specific directions.

NN
Width

α°

(a) (b) (c)

Height

Figure B.16.: Estimation of the mean stroke width and height along specific directions. Figures
{(a) and (b)} are the original images, and Figure (c) shows their rose of directions.
Figure (a) depicts a normal text character, while Figure (b) illustrates a bold text
character. As the main orientation of the rose of directions is oblique (cf. Figure
(c)), the mean stroke width and height are estimated along the oblique axis.
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Algorithm 8 Estimation of mean stroke width along specific directions
1: pacc ← 0
2: if 10 ≤ Θ ≤ 80 then
3: strokeWidth ← 1
4: while strokeWidth < imageWidth do
5: acc ← 0
6: y ← 0
7: while y < imageHeight do
8: tacc ← 0
9: x ← 0

10: tx ←
⌈

y
|tan(Θ)|

⌉
− strokeWidth

11: while x < imageWidth do
12: tacc ← tacc + |I (x , y)− I (tx , y)|
13: x ← x + 1

14: acc ← acc + tacc
15: y ← y + 1

16: if pacc 6= 0 then
17: seqWidth ← acc−pacc

pacc
18: if seqWidth ≤ 0.1 then
19: return strokeWidth
20: pacc ← acc
21: strokeWidth ← strokeWidth + 1

22: return strokeWidth
23: else
24: strokeWidth ← 1
25: while strokeWidth < imageWidth do
26: acc ← 0
27: y ← 0
28: while y < imageHeight do
29: tacc ← 0
30: x ← 0
31: while x < imageWidth do
32: tx ← x − strokeWidth
33: tacc ← tacc + |I (x , y)− I (tx , y)|
34: x ← x + 1

35: acc ← acc + tacc
36: y ← y + 1

37: if pacc 6= 0 then
38: seqWidth ← acc−pacc

pacc
39: if seqWidth ≤ 0.1 then
40: return strokeWidth
41: pacc ← acc
42: strokeWidth ← strokeWidth + 1

43: return strokeWidth

313



Appendix B. Detailed description of some parts of the work presented in this dissertation

Algorithm 9 Estimation of mean stroke height along specific directions
1: pacc ← 0
2: if 10 ≤ Θ ≤ 80 then
3: strokeHeight ← 1
4: while strokeHeight < imageHeight do
5: acc ← 0
6: y ← 0
7: while y < imageHeight do
8: tacc ← 0
9: x ← 0

10: while x < imageWidth do
11: ty ← dx|tan(Θ)|e − strokeHeight
12: tacc ← tacc + |I (x , y)− I (x , ty)|
13: x ← x + 1

14: acc ← acc + tacc
15: y ← y + 1

16: if pacc 6= 0 then
17: seqHeight ← acc−pacc

pacc
18: if seqHeight ≤ 0.1 then
19: return strokeHeight

20: pacc ← acc
21: strokeHeight ← strokeHeight + 1

22: return strokeHeight
23: else
24: strokeHeight ← 1
25: while strokeHeight < imageHeight do
26: acc ← 0
27: y ← 0
28: while y < imageHeight do
29: tacc ← 0
30: x ← 0
31: ty ← y − strokeHeight
32: while x < imageWidth do
33: tacc ← tacc + |I (x , y)− I (x , ty)|
34: x ← x + 1

35: acc ← acc + tacc
36: y ← y + 1

37: if pacc 6= 0 then
38: seqHeight ← acc−pacc

pacc
39: if seqHeight ≤ 0.1 then
40: return strokeHeight

41: pacc ← acc
42: strokeHeight ← strokeHeight + 1

43: return strokeHeight
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B.1.5. GLCM features

The fifth set of texture features investigated in this work is the GLCM or co-occurrence attributes
[180].

B.1.5.1. Generalities

The GLCM or co-occurrence matrix is a classic of statistical texture-based segmentation methods.
The GLCM is an estimate of the second order probability density function of image pixels. This
matrix determines the probability of occurrence of pixel pairs according to their gray-levels and
distance by considering the spatial relationship of pixels in the image.

A GLCM element is the probability of the gray-level pairs defined in a specified direction θc and
separated by a particular distance of dc units (cf. Figure B.17). The co-occurrence descriptors
are then statistics computed from the GLCM. They provide second order statistical information
of neighboring pixels of an image. Multi-distance and multi-direction can be applied to extract a
large number of GLCM descriptors.

1 4 4 3

4 2 3 2

1 2 1 4

1 2 2 3

1 2 3 4

1 0 2 0 2

2 1 1 2 0

3 0 1 0 0

4 0 1 1 1

0°

45°

1 2 3 4

1 0 2 1 0

2 1 1 0 0

3 0 0 0 1

4 0 2 1 0

0°

45°
90°135°

Figure B.17.: Illustration of the process of calculating the GLCM for the 0◦ and 45◦ directions.

B.1.5.2. State-of-the-art related to GLCM parametrization

Fourteen textural features extracted of the GLCM have initially been introduced by Haralick et
al. [180] for texture discrimination of natural and satellite images which are widely known as
the statistical Haralick features. The GLCM matrix was firstly used for the segmentation and
representation of textures in images [572, 573]. Later, the use of the GLCM has been widespread
in other fields of pattern recognition. For instance, in medicine the GLCM was computed from
computed tomography images and several features were extracted for disease diagnostic [574].
Another example of using the GLCM was presented by Eleyan and Demirel [575]. They evaluated
two methods of extracting feature vector from the GLCM for face recognition and classification.
They stated that using the GLCM directly as the feature vector outperforms the feature vector
containing the extracted Haralick features. A survey of DI segmentation methods using texture
analysis presented different methods for segmenting DIs [173]. A novel texture analysis approach
based on the assembly of nth order co-occurrence information within a processing window was also
proposed. This study stated that the GLCM approach is the best one in terms of processing time
and complexity. For segmenting DI contents into text, graph, table and picture, Kim and Kim [175]
analyzed six standard GLCM features (entropy, contrast, energy, uniformity, diagonal moment and
homogeneity) in the entropy image.

A number of other works based on the GLCM feature extraction and analysis have also been
proposed in order to segment and classify the content of DIs [274, 275]. More methods based on
the GLCM feature analysis have been proposed in the literature for identifying script and language
from DIs [276, 200]. For Arabic font recognition, the GLCM with dc = 4 for 4 orientations
θc = {0◦, 45◦, 90◦, 135◦} were used in [256]. Usually, the co-occurrence matrices are generated for a
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small range of distance values dc = {1, 2} and typically for the directions θc = {0◦, 45◦, 90◦, 135◦}
[200].

B.1.5.3. GLCM features

In this work, from the computed co-occurrence matrices, eight GLCM features are extracted for
two distances dc = {1, 2} [274, 200]:

• Maximum entry in the GLCM or maximum probability (cf. equation B.43),

• Correlation metric (cf. equation B.44),

• Energy or angular second moment (cf. equation B.45),

• Entropy (cf. equation B.46),

• Inertia or contrast (cf. equation B.47),

• Local homogeneity (cf. equation B.48),

• Cluster shade (cf. equation B.49),

• Cluster prominence (cf. equation B.50).

In addition to the 16 co-occurrence features (eight for each distance), two other descriptors are
computed (mean value (cf. equation B.51) and standard deviation (cf. equation B.52) of the
energy) for the two combined distances [275]. The 18 extracted GLCM features have been shown
to perform well for script identification in [200]. However, Haralick et al. [180] noted that it is
hard to determine the textural characteristics and explain the accurate significance of each GLCM
feature, the following extracted GLCM features in this work are meaningful:

1. Maximum probability
This metric ensures the record of the highest GLCM element. High values of GLCM element
will occurred if one combination of pixels dominates pixel pairs. It is given by:

F
(1)
dc

= max
i,j

{
p(dc,θc)(i, j)

}
(B.43)

where pdc,θc(i, j) is the probability of the gray-level pair i and j defined in a specified direction
θc and separated by a particular distance of dc units.

2. Correlation metric
This feature helps to measure the gray-level linear dependence between pixels at the specified
positions relative to each other. It has a large value when the values are uniformly distributed
in the GLCM and a low value otherwise. It is computed as:

F
(2)
dc

=
255∑
i=0

255∑
j=0

(i− µr)(j − µc)p(dc,θc)(i, j)

σrσc
(B.44)

where

pr(i) =
255∑
i=0

pdc,θc(i, j) pc(j) =
255∑
j=0

pdc,θc(i, j)

µr =
255∑
i=0

pr(i) µc =
255∑
j=0

pc(j)

σ2
r =

255∑
i=0

i2pr(i)− µ2
r σ2

c =
255∑
j=0

j2pc(j)− µ2
c
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3. Energy
This measure which has also been called angular second moment, provides an insight of image
homogeneity. It has low value when the probabilities of the gray-level pairs have very similar
values and a high value otherwise. It is defined by:

F
(3)
dc

=

255∑
k=0

D(k) (B.45)

where D(k) =
∑

0≤i≤255 0≤j≤255
|i−j|=k

pdc,θc(i, j)

4. Entropy
This metric characterizes the energy values for pixel combinations. It measures the disorder
or randomness of the GLCM. Inhomogeneous texture have low first order entropy, while a
homogeneous texture has a high entropy. It is defined by:

F
(4)
dc

= −
255∑
k=0

D(k) log2D(k) (B.46)

5. Contrast
This metric which has also been called inertia, corresponds to a measure of the contrast by
computing a difference moment of the GLCM and it estimates the contrast or it quantifies
local variation present in the analyzed image. It is defined by:

F
(5)
dc

=

255∑
k=0

k2D(k) (B.47)

6. Local homogeneity
This measure has also been called inverse difference moment. It is higher when we find the
same pair of pixels which is in the case that the gray-level is uniform or when there is a spatial
periodicity. It is defined by:

F
(6)
dc

=
255∑
k=0

D(k)

1 + k2
(B.48)

7. Cluster shade
This metric corresponds to a measure of the gray-level distribution around the mean, with
a high ability to discriminate the third order. It measures the skewness of the GLCM (i.e.
lack of symmetry). When it is high, the analyzed image is not symmetric. It is defined by:

F
(7)
dc

=

255∑
i=0

255∑
j=0

(i−Mr + j −Mc)
3p(dc,θc)(i, j) (B.49)

8. Cluster prominence
This metric corresponds to a measure of the gray-level distribution around the mean, with a
high ability to discriminate the fourth order. It also measures the skewness of the GLCM. It
is defined by:

F
(8)
dc

=

255∑
i=0

255∑
j=0

(i−Mr + j −Mc)
4p(dc,θc)(i, j) (B.50)
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9. Energy mean
This metric corresponds to the mean of the energy feature computed from the two distance
values dc = 1, 2. It is computed as:

F
(17)
dc=1,2 =

510∑
k=0

kD(k) (B.51)

10. Energy standard deviation
This metric corresponds to the standard deviation of the energy feature computed from the
two distance values dc = 1, 2. It characterizes the uniformity of the texture when varying the
specified distance. It is computed as:

F
(18)
dc=1,2 =

√√√√ 510∑
k=0

(k − F (13)
dc=1,2)2D(k) (B.52)

B.1.6. Gabor features

The sixth set of texture features investigated in this work is the Gabor descriptors.

B.1.6.1. Generalities

The Gabor features are extracted using the multi-channel Gabor filtering technique. The orig-
inal Gabor elementary functions have been firstly proposed by Gabor [277]. The multi-channel
Gabor filtering is inspired by the multi-channel filtering theory which has been first investigated
by Campbell and Robson [278] for the visual information processing of the human visual system.
Daugman [279] modeled the visual information processing of the human visual system by the 2-D
multi-channel Gabor functions which are local spatial band-pass filters. The main idea of the
multi-channel filtering technique is to exploit the differences in dominant sizes and orientations
of different textures by decomposing the original image into several filtered images with limited
spectral information. The 2-D Gabor functions have the advantage to have the conjoint resolution
information in both the 2-D spatial and Fourier domains. The filtered images are proceeded by
tuning the analyzed image to combinations of frequency and orientation in a narrow range which are
referred to channels and interpreted as band-pass filters. By applying a bank of GFs, the specified
channels cover the spatial-frequency domain. Ursani et al. [576] presented an empirical comparison
between texture features based on the discrete Fourier transform and GFs for texture recognition
and retrieval. They proved that analyzing the Gabor features in image datasets containing noisy
and rotated variants of texture performs better than analyzing the Fourier descriptors for texture
recognition and retrieval. Hence, GFs have been shown to have good performance, due to its opti-
mal localization properties to capture information in both the spatial and frequency domains from
the analyzed images, as opposed to the Fourier transform.

A 2-D GF is a linear selective band-pass filter, dependent on two parameters (spatial frequency
fg and orientation θg) which characterize the specified channel. It consists of a Gaussian kernel
function modulated by a sinusoidal plane wave. The spatial frequency f determines the distance
from the Gaussian centers to the origin while the orientation θg specifies the angle from the hor-
izontal axis (i.e. α-axis to the Gaussian centers). The multi-channel Gabor filtering approach is
inherently multi-resolutional which is a close relative of the wavelet transform [218].

The Gabor transform of an image I(x, y) is:

IG(fg,θg )(x, y) =
∑
α∈Ω

∑
β∈Ω

I(x+ α, y + β) G(fg ,θg)(α, β) (B.53)

where fg and θg are the spatial frequency and orientation of the Gabor filter envelope.
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G(fg ,θg)(α, β) =
√

[Ge(fg ,θg)(α, β)]2 + [Go(fg ,θg)(α, β)]2

Ge(fg ,θg) =
H1(fg ,θg)(α, β) +H2(fg ,θg)(α, β)

2

Go(fg ,θg) =
H1(fg ,θg)(α, β) +H2(fg ,θg)(α, β)

2j

H1(fg ,θg)(α, β) = exp{−2πσ2
g [(α− fg cos θg)

2 + (β − fg sin θg)
2]}

H2(fg ,θg)(α, β) = exp{−2πσ2
g [(α+ fg cos θg)

2 + (β − fg sin θg)
2]}

j2 = −1

where Ge(fg ,θg) and Go(fg ,θg) denote the spatial frequency responses of the even- and odd- symmetric
GF. σg denotes the space constant of the Gabor filter envelope.

An illustrative example of the real parts, imaginary parts and magnitudes of 24 GFs (6 dif-
ferent spatial frequencies fg={2

√
2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2} and 4 different orientations
θg={0, π/4, π/2 and 3π/4}) is presented in Figure B.18.

(a) Real parts of GFs (b) Imaginary parts of GFs

(c) Magnitudes of GFs

Figure B.18.: Illustration of the real parts, imaginary parts and magnitudes of GFs (6 different
spatial frequencies fg={2

√
2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2} and 4 different orien-
tations θg={0, π/4, π/2 and 3π/4}).
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B.1.6.2. State-of-the-art related to Gabor parametrization

Texture features generated by GFs have been increasingly considered and applied to DIA. During
the last two decades, Gabor-based analysis approaches have been proposed for biometric identifica-
tion based on handwriting [280, 156, 281], writer identification [282], handwritten word recognition
[283], character recognition [284], font recognition [285], script identification [286, 287], signature
recognition [288], palm print recognition [289], degraded DI binarization [290], etc. Zhu et al. [285]
proposed a texture-analysis-based algorithm for automatic font recognition by extracting the Ga-
bor features. They noted a 99, 1% of mean recognition rate. Ma and Doermann [257] proposed a
GF-based multi-class classifier in order to identify scripts, and font faces and styles. A binarization
method based on Gabor filter bank for ancient degraded DIs was proposed in [290]. A GF bank
with four orientations (0, π/4, π/2 and 3π/4) weighted by the dominant foreground script slant
angle of the DI and one selected frequency was used to determine more efficiently the foreground
information.

Nevertheless, numerous approaches have been sought for text segmentation and extraction from
digital DIs using the Gabor descriptors [189, 291, 292, 191]. Several studies have been conducted in
the literature for page layout analysis using the multi-channel GFs [293, 257, 294], while few ones
have explored GFs for HDI segmentation. For instance, Ribeiro et al. [237] proposed an optical
character recognition (OCR) system for HDI analysis and recognition by applying fuzzy methods
on aligned oriented features extracted using GFs in the training step. Vieux and Domenger [216]
proposed a pixel-based classification approach to separate text from other classes (e.g. illustrations
and background) by using a bank of GFs at five scales (1,

√
2, 2, 2

√
2 and 4) and six orientations

(k π6 , k ∈ {0, . . . , 5}). Their approach was evaluated on a public dataset containing magazines and
technical journals. They found 86%, 82.7% and 53.7% of F-measure for segmenting background,
text and graphic pixels, respectively. Jain et al. [248] showed the effectiveness of applying a multi-
channel Gabor filtering-based texture segmentation approach for segmentation and classification of
DIs. They chose the five following spatial frequencies: 4

√
2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2. Charrada
and Ben Amara [238] extracted nets from ancient Arab periodicals by exploring GFs. Zhong and
Cheriet [239] used the dimensionally reduced multi-channel GFs for text block identification on
image patches from HDIs. They extracted 28 GFs from image patches in their experiments, where
7 spatial frequencies (

√
2, 2
√

2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2) and 4 orientation angles (0,
π/4, π/2 and 3π/4) were pre-defined. Cruz-Fernández and Ramos-Terrades [64] computed a 36-D
Gabor feature vector for each analyzed pixel using 9 orientations (0, 2π/9, 4π/9, 6π/9, 8π/9, 10π/9,
12π/9, 14π/9 and 16π/9) and 4 spatial frequencies (an overlapping degree of 0.5 in the frequency
domain with the highest frequency is equal to 0.35) for structured HDI segmentation. For Arabic
font recognition, 16 Gabor channels were computed with 4 frequencies fg = {8, 16, 32, 64} and 4
orientations θg = {0◦, 45◦, 90◦, 135◦} in [256]. A learning-free approach to detect the main text area
from side-notes in ancient manuscripts based on coarse-to-fine scheme [240]. A coarse segmentation
of the main text area was processed by using GFs. The proposed approach achieved promising
results in terms of segmentation quality (i.e. 98.84% of mean F-measure was noted on 38 HDIs)
and time performance (i.e. 01′ 13′′ per page on average). The four directions (0, π/4, π/2 and
3π/4) are widely used in the literature [189, 248, 285, 257].

Designing the proper channels in order to generate filters tuned to several different frequencies and
orientations has been illustrated as the crucial issue in using GFs for texture characterization. Dunn
et al. [577, 578] suggested an automatic approach for finding the optimal channels for discriminating
different textures, but the computational complexity is very high. Bianconi and Fernández [579]
evaluated the impact of the GF parameters on texture classification. They reported that an increase
of the number of frequencies and orientations has an insignificant influence on texture classification
performance. But, they confirmed that the best performance of texture classification is conditioned
by the design of the convenient Gabor channels. Clausi and Jernigan [580] presented a comparative
study of different techniques used to extract the Gabor descriptors for texture discrimination. They
showed that the magnitude response outperforms the other different evaluated methods, such as
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using only the real component, etc. Arivazhagan et al. [581] introduced the rotation invariant
features by computing the mean and variance of the Gabor filtered image for texture classification.

B.1.6.3. Gabor features

In this work, the magnitude response of the output of Gabor functions is investigated. The mag-
nitude of the output is important if the specified GF matched the particular texture, otherwise
low response to the specified GF corresponds to poor match of the dominant texture properties
of the analyzed image to the set of the spatial-frequency components of the fixed GF [295]. 24
GFs are applied (6 different spatial frequencies fg={2

√
2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2} and 4
different orientations θg={0, π/4, π/2 and 3π/4}) (cf. Figure B.18). The space of GF is set con-
stant σg = σx = σy = 1. When convolving an image with 24 Gabor channels (obtained by using
6 different spatial frequencies and 4 different orientations), 24 Gabor filtered images are produced
(cf. Figure B.19). In this work, 24 responses of filtered images or Gabor responses are generated
(cf. Figure B.19(d)).

(a) Input image (b) Real parts of the 24 Gabor filtered images

(c) Imaginary parts of the 24 Gabor filtered images (d) Magnitudes of the 24 Gabor filtered images

Figure B.19.: Illustration of the real parts, imaginary parts and magnitudes of 24 Ga-
bor filtered images obtained after applying 24 GFs (6 different spatial fre-
quencies fg={2

√
2, 4
√

2, 8
√

2, 16
√

2, 32
√

2 and 64
√

2} and 4 different orientations
θg={0, π/4, π/2 and 3π/4}) on a drop cap image.

Finally, by convoluting the analyzed whole DI at each specified channel defined by a pair of orien-
tation and frequency, the Gabor features are extracted from the magnitudes of the Gabor filtered
images (cf. Figure B.19(d)). The extracted Gabor features represent the statistical distribution of
the Gabor magnitude response. They consist of two simple statistics: the mean value (cf. equa-
tion B.54) and standard deviation (cf. equation B.55) of the Gabor filtered magnitude response
corresponding to all pixels defined in the analyzed sliding window of the filtered image.
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1. Mean of the Gabor filtered magnitude response
This feature characterizes the average of the Gabor filtered magnitude response corresponding
to all pixels defined in the analyzed sliding window of the filtered image. This descriptor
quantifies how the dominant texture properties of the analyzed image match to the set of
spatial-frequency components of the fixed GF. It is given by:

F
(1)
(fg ,θg) =

Mg∑
x=1

Ng∑
y=1

IG(fg,θg)
(x, y)

Mg Ng
(B.54)

where Mg and Ng denote the width and height of the Gabor filtered magnitude response,
respectively.

2. Standard deviation of the Gabor filtered magnitude response
This descriptor determines how much the dispersion from the computed mean of the Gabor
filtered magnitude response exists. It is given by:

F
(2)
(fg ,θg) =

Mg∑
x=1

Ng∑
y=1

[IG(fg,θg
(x, y)− F (1)

(fg ,θg)]
2

Mg Ng
(B.55)

B.1.7. Wavelet features

The last set of textural features examined in this work is the wavelet descriptors.

B.1.7.1. Generalities

Mallat [154] investigated the application of the wavelets as multi-resolution representations to
data compression in image coding, texture discrimination and fractal analysis. The wavelet fea-
tures which are extracted from the wavelet transform provide interesting insight on the statistical
characteristics of the analyzed image. The wavelet features represent consistent properties in the
localization of the frequency space and multi-resolution.

A 2-D wavelet transform ensures the localization in both the scale (frequency) domain via dilations
and in the time domain via translations of the mother wavelet. A 2-D wavelet transform represents
an image with both the spatial and frequency characteristics. The 2-D wavelet decomposition is
processed by using a high-pass filter gf , a low-pass filter hf and a 2-D scaling function φ and by
assuming the three following wavelet functions:



ψ(I)(x, y) = φ(x)ψ(y) = 2
∑
k,l

g(I)(k, l)φ(2x− k, 2y − l)

ψ(II)(x, y) = ψ(x)φ(y) = 2
∑
k,l

g(II)(k, l)φ(2x− k, 2y − l)

ψ(III)(x, y) = ψ(x)ψ(y) = 2
∑
k,l

g(III)(k, l)φ(2x− k, 2y − l)

(B.56)

where ψ denote a wavelet function.
g(I)(k, l) = hf (k)gf (l)

g(II)(k, l) = gf (k)hf (l)

g(III)(k, l) = gf (k)gf (l)

(B.57)
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The objective of a 2-D wavelet transform is to decompose an image into low and high frequency
sub-band images (i.e. to filter out several frequencies range). The 2-D J-level wavelet transform
decomposes a discrete input image I(x, y) into 4 sub-bands and it produces 3J + 1 sub-images:

A2-J , {D
(v)

2-j
, D

(h)

2-j
, D

(d)

2-j
}j=1,2,...,J

where J represents the scale of the discrete wavelet transform. j denotes the decomposition level of
the discrete wavelet transform such as j = 1, 2, . . . , J . A2-J is the approximation of the input image

I(x, y) at 2-J resolution. D
(v)

2-j
, D

(h)

2-j
and D

(d)

2-j
are 3 detail components of the input image I(x, y)

at 2-j resolution. The wavelet coefficients in D
(v)

2-j
, D

(h)

2-j
and D

(d)

2-j
illustrate the vertical, horizontal

and diagonal high frequencies, respectively (cf. Figure B.20).
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(a) Filter bank structure of the 2-D wavelet decomposition
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gfgf(2)hfgf(2)

(b) 2-D 2-level wavelet transform

Figure B.20.: Illustration of the 2-D wavelet decomposition.
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The approximation (cf. equation B.58) and detail (cf. equation B.59) coefficients are computed
according to the following equations:

CAjk,l =

∫ +∞

−∞
2jφ(2jx− k, 2jy − l)fs(x, y)dxdy (B.58)

C
D(s)j
k,l =

∫ +∞

−∞
2jψ(s)(2jx− k, 2jy − l)fs(x, y)dxdy (B.59)

where (s)j denotes the vertical, horizontal or diagonal detail components of the input image I(x, y)
at 2-j resolution. fs(x, y) represents the pixel gray-level of a sub-band or sub-image from the 2-D
wavelet decomposition.

B.1.7.2. State-of-the-art related to wavelet parametrization

First, the wavelet transform has been developing as one of the most powerful processors in various
applications of signal and image processing (e.g. compression, enhancement, analysis, classification,
detection and recognition) [582, 583]. For instance, Lee [584] proposed a family of 2-D Gabor
wavelets based on the Daubechies wavelet transform for a complete image representation. There
has been a large number of wavelets for both continuous and discrete analysis. Coiflet, Morlet,
complex Morlet, Mexican Hat, Symlet, B-spline bi-orthogonal, derivative of Gaussian, complex
Gaussian, discrete approximation of Meyer, Shannon, frequency B-spline, Paul, Haar, Daubechies
and Cohen-Daubechies-Feauveau are examples of wavelet families. The choice of the family wavelet
is dictated by the nature of the application and image characteristics. The different wavelet families
vary according to several properties. To name a few, the wavelet support in time and frequency,
wavelet symmetry or anti-symmetry, regularity wavelet, existence or not of a scaling function, etc.
The number of taps denotes the number of coefficients in the wavelet filter. For instance, Haar,
Db3 and Db4 wavelets have 2, 6 and 8 taps, respectively.

Even if the wavelet transform is computationally expensive (i.e. it is carried out by a large
combination of filter parameters), it has been proved to be a promising alternative of many texture
approaches such as GFs for many fields of computer vision and pattern recognition [585]. For
texture-based image retrieval, the wavelet-based approaches have been proposed [143, 585, 315].
Ben Abdeljelil et al. [586] designed a compactly supported orthonormal wavelet for image denoising
and compression. The Haar wavelets have been applied for biomedical image segmentation [587].
Traina et al. [588] proposed an application allowing to index and retrieve medical images based on
the wavelet features. Boukhris et al. [583] extracted textural features from the Daubechies wavelet
transform for the artificial human face recognition. Myint et al. [589] evaluated four different
wavelet decomposition procedures which were performed up to 3 levels to digitally classify urban
land use and land cover categories using high resolution images. Svensson et al. [590] evaluated
several 2-D wavelet filters, such as Daubechies wavelets, for the estimation of differences in textures
of pharmaceutical tablets. Moesa et al. [370] used the discrete wavelet transform to smooth the
noise in the gene expression dataset.

Since the wavelet transform has been an attractive tool and has provided interesting results for
image characterization, several wavelet derivatives have been designed to improve the performance
of texture segmentation and classification. For instance, Van de Wouwer et al. [591] introduced two
feature sets: the wavelet histogram signatures and wavelet co-occurrence signatures generated from
the discrete wavelet transform for a statistical characterization of textures. Laine and Fan [592]
introduced a generalization of orthonormal and compactly supported wavelets, namely the wavelet
packets, for a texture characterization at multiple scales. Unser [593] proposed a fast approach based
on discrete wavelet frames for texture classification and segmentation. Etemad and Chellappa [594]
proposed a class separability measure as a wavelet feature based on the wavelet packet trees for
texture classification. Chang and Kuo [406] applied a tree-structured wavelet transform for texture
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classification and segmentation. Another application of the wavelet transform for texture analysis
consisted of extracting other texture descriptors, such as the LBP features from the sub-bands
resulting from the wavelet transform [595].

In a growing number of areas, the wavelet-based methods have been investigated more and more.
Recently, a lot of studies of applying the wavelet transform have been reported for many fields
of DIA. The wavelet transform has been very effective for DI pre-processing [296], watermarking
[208], handwriting-based writer identification [201], script identification [200, 255], text localization
[217, 297], page segmentation [212], printer discrimination [207], etc. Maatouk et al. [208] showed
that the 3-level decomposition with the Db2 and Db3 family provided the best performance for the
watermarking of HDIs. Kricha et al. [296] proposed a denoising step by applying a thresholding
technique in the coefficients of wavelet sub-bands to reduce the noise in the background of HDIs.
Furukawa [207] used the bi-orthogonal spline 2 wavelet transform for discriminating printers based
on contours qualities of printed characters. For script recognition, Busch et al. [200] evaluated a
number of wavelet features based on energy, logarithmic mean deviation, logarithmic co-occurrence
and scale co-occurrence. Baâti et al. [255] used the energy of 12-level bi-orthogonal wavelet co-
efficients for script identification. Hiremath and Shivashankar [298] also extracted features from
the co-occurrence histograms of wavelet decomposed images for script identification. They con-
cluded that the Haar wavelet yields the best classification results. Manthalkar et al. [299] also
computed the rotation and scale invariant texture features using the discrete wavelet packet trans-
form for script identification. They evaluated two wavelet families (bi-orthogonal and Daubechies)
and they concluded that the bi-orthogonal wavelet outperforms the Daubechies ones (i.e. 83.07%
and 80.89% of overall correct classification for the bi-orthogonal and Daubechies wavelets, respec-
tively). Pardeshi et al. [222] extracted the directional multi-resolution information based on the
Daubechies9 wavelet transform to automatically identify automatic handwritten Indian scripts.
For the handwriting-based writer identification, He et al. [201] used the 3-level wavelet transform
using a 4-tap Daubechies filter. Many studies applied the 3-level wavelet transform by using a 3-tap
Daubechies filter to identify Arabic font [300, 301, 302, 303]. Gazzah and Ben Amara [304] ex-
plored the 2-D discrete wavelet transform based on a lifting scheme for writer identification (off-line
Arabic handwriting). They compared 9 wavelet families, including the three following Daubechies
wavelets (Daubechies2, Daubechies3 and Daubechies5), 4 Cohen-Daubechies-Feauveau wavelets,
lazy wavelet transform and Symlet wavelets. They reported that the different evaluated wavelets
give similar results (equal to 95%). He et al. [305] compared GFs with a novel wavelet approach
based on the generalized Gaussian density for the off-line handwriting-based writer identification.
They showed that the proposed approach based on the wavelet transform performs better than
the traditional 2-D GFs and it is better in terms of the processing time. Ding et al. [306] used
the 3-level spline2 wavelet transform on the normalized image of a single Chinese character for the
character independent font recognition. Zhang et al. [307] performed a statistical analysis on the
stroke patterns obtained from the wavelet decomposed sub-images using a 2-tap Symlet filter for
the italic font recognition. For Arabic font recognition, the wavelet energy (i.e. sum of square of the
detailed wavelet transform coefficients) was extracted from the Daubechies2 wavelet transform in
[256]. Angadi and Kodabagi [308] extracted texture features (the zone wise wavelet energy features,
vertical run statistical features of the wavelet coefficients and wavelet logarithmic mean deviation)
from the wavelet transform for the word level script identification of text in the low resolution dis-
play board images. For multi-font Arabic character analysis and the extraction and classification of
the handwritten shapes from ancient manuscripts, derivative forms of the wavelet transforms (e.g.
ridgelet, curvelet and contourlet transforms) have been used [309, 241]. These specific wavelets
offer the best trade-off between local and global features for handwritten recognition.

For page segmentation, Gupta et al. [212] studied the energy distribution over different scales of
the orthonormal wavelet decomposition. Li and Gray [219] investigated the distribution character-
istics of the wavelet coefficients of the 1-level Haar transform for DI segmentation. They noted that
the results produced by the two longer wavelet filters (4-tap Daubechies and 8-tap Daubechies) are
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similar while the Haar transform has the best localization property since its filter is the shortest
and it has the least processing time. They extracted two novel features related to the pattern distri-
bution of the wavelet coefficients using the Haar wavelet transform instead of computing moments
of the wavelet coefficients as features. The first descriptor defines the rate of fit goodness of the
distribution of the wavelet coefficients in high frequency bands to the Laplacien distribution. Then,
the second feature determines the concentration rate of the wavelet coefficients in high frequency
bands at few discrete values. They noted a 4.1% of average classification error rate. Kumar et al.
[310, 217] compared the Haar discrete wavelet transform and matched wavelet for text extraction
and DI segmentation. Liang and Chen [297] suggested to use the Haar discrete wavelet transform for
the text region extraction from the static images or video sequences. They showed an average error
rate close to 1.42%. Acharyya and Kundu [311] presented a multi-scale analysis method based on
the wavelet scale-space features using a 8-tap filter for the text segmentation in DIs. Nourbakhsh et
al. [2] used the log-polar wavelet energy signatures for the text localization and extraction from the
complex gray-scale DIs. Jin and Tang [312] proposed a novel approach to determine the positions
of the text areas in the complex-background images using the wavelet decomposition. Etemad et
al. [249] presented an algorithm based on the pyramidal wavelet transform and wavelet packet tree
using the Daubechies filters for the segmentation of unstructured DIs. A wavelet-based technique
has been proposed for the reference line extraction from gray-level background DIs in [313]. For the
text/non-text segmentation in DIs, Deivalakshmi et al. [314] extracted the wavelet-based GLCM
features. The evaluated wavelet transforms are: Haar, Db4, Db25, Symlet8, Coilflet3 and Coilflet5.
The Coilflet5 wavelet transform used in their algorithm outperforms the five other investigated
wavelets. An average classification rate equal to 92.97% has been obtained with using the Coilflet5
filter. Kricha and Ben Amara [242] explored the correlation between the different sub-bands of the
same decomposition level and the auto-correlation of each sub-band in the wavelet transform for
the text/graphic separation in HDIs and the discrimination of the different alphabet kinds (Ara-
bic, Latin and Hebrew). They computed the 1-order and 2-order statistics performed from the
correlation function of each analysis window. Subsequently, they took into consideration only the
mean and standard deviation of the auto-correlation of the approximation sub-band obtained from
the 3-level decomposition of the wavelet transform and performed at four different sizes of analysis
windows in order to adopt a multi-scale approach.

The Haar and Daubechies wavelets are the most used ones since they have been proved to work
effectively in many applications. The Haar wavelet transform is the fastest among all wavelets since
its coefficients are either 1 or −1. Thus, they are the less complex, simplest and most widely used
wavelets, while the Daubechies ones are characterized by the fractal structures [297, 315]. Albuz et
al. [596] computed the sum of squares of the wavelet coefficients of each sub-band for their image
retrieval system. Myint et al. [589] computed four feature measures (log energy, Shannon’s index,
entropy and angular second moment) for the texture characterization of the urban land use and land
cover classes. Nevertheless, the 1-order and 2-order statistics of the sub-band coefficients, such as
the mean, energy and standard deviation of the wavelet coefficients, are the most commonly used
features for the texture classification and segmentation issues [591]. Sheikholeslami et al. [597]
extracted the mean and variance of the wavelet coefficients to characterize the image contrast.
Laine and Fan [592] extracted the energy and entropy metrics for each wavelet packet for the
characterization of textures in images. Busch et al. [598] proposed a logarithmic quantization
of the wavelet coefficients to improve the texture classification performance. Myint et al. [253]
demonstrated that the classification accuracy decreased when the wavelet decomposition level is
high for the urban spatial feature discrimination. Angadi and Kodabagi [308] stated that the
wavelet coefficients are the most suitable for the representation of textures in images. Kautsky et
al. [599] reported that the wavelet transforms with an important number of taps are more suitable
for the images without neither sharp edges nor many details. They concluded that the shorter
wavelets (i.e. with a limited number of taps) perform better on the images which are characterized
by a dominance of high-frequency information.
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B.1.7.3. Wavelet features

In this work, the wavelet features are extracted from the 2-D 3-level discrete stationary wavelet
transform with a limited number of taps (3-level wavelet transform using Haar filter (Haar), 3-level
wavelet transform using 3-tap Daubechies filter (Db3) and 3-level wavelet transform using 4-tap

Daubechies filter (Db4)) (cf. Figure B.21). Therefore, 10 sub-bands (A2-3 , D
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) are generated (cf. Figure B.22).

(a) Haar

(b) Db3 (c) Db4

Figure B.21.: Illustration of the application of 2-D 3-level discrete stationary wavelet transforms
(Haar, Db3 and Db4) on a drop cap image.

In our experiments, in order to reduce the number of the wavelet coefficients, two simple statistics
deduced from the wavelet transform coefficients for each sub-band are extracted to form feature
vector of 20 terms (10 sub-bands). They represent the statistical distribution of the wavelet co-
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Figure B.22.: Illustration of the 2-D 3-level wavelet transform.

efficients. The two simple statistics: the mean value (cf. equation B.60) and standard deviation
(cf. equation B.61) of the wavelet transform coefficients for each sub-band defined in the analyzed
sliding window of the image, are extracted.

1. Mean of the wavelet transform coefficients
This feature characterizes the average of the wavelet transform coefficients for each sub-band
defined in the analyzed sliding window of the image. This descriptor represents the average
of 2-D signal in various frequency bands. It is computed as:

F (1) =

Sw∑
i=0

Sh∑
j=1

C(i, j)

Sw Sh
(B.60)

where C(i, j) is the transform wavelet coefficient. Sw and Sh are the width and height of a
sub-band in the wavelet domain, respectively.

328



B.1. A summary of the analyzed texture features in this work

2. Standard deviation of the wavelet transform coefficients
This descriptor determines how much the dispersion from the computed mean of wavelet
transform coefficients exists. It is computed as:

F (2) =

Sw∑
i=0

Sh∑
j=1

[C(i, j)− F (1)]2

Sw Sh
(B.61)

Three kinds of wavelet transform are assessed in this work, 3-level wavelet transform using Haar
filter (Haar), 3-level wavelet transform using 3-tap Daubechies filter (Db3) and 3-level wavelet
transform using 4-tap Daubechies filter (Db4).

1. Haar
The Haar wavelet employs a low-pass filter hfHaar and a high-pass filter gfHaar.
where

hfHaar = [
√

2,
√

2] (B.62)

gfHaar = [−
√

2,
√

2] (B.63)

2. Db3
The Db3 wavelet employs a low-pass filter hfDb3 and a high-pass filter gfDb3.
where

hfDb3 = [0.0352,−0.0854,−0.1350, 0.4598, 0.8068, 0.3326] (B.64)

gfDb3 = [−0.3326, 0.8068,−0.4598,−0.1350, 0.0854, 0.0352] (B.65)

3. Db4
The Db4 wavelet employs a low-pass filter hfDb4 and a high-pass filter gfDb4.
where

hfDb4 = [−0.0105, 0.0328, 0.0308,−0.1870,−0.0279, 0.6308, 0.7148, 0.2303] (B.66)

gfDb4 = [−0.2303, 0.7148,−0.6308,−0.0279, 0.1870, 0.0308,−0.0328,−0.0105] (B.67)
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B.2. Visual results of using HAC vs. k-means in the pixel-clustering
task of the proposed Gabor-based pixel-labeling scheme on the
“DIGIDOC-Texture dataset”
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(a) HAC
PPB = 0.98 CA = 0.80
P = 0.89 R = 0.57 F = 0.70

(b) k-means
PPB = 0.83 CA = 0.68
P = 0.80 R = 0.54 F = 0.65

Figure B.23.: Examples of confusion matrix computation and pixel-labeling results of a document
from the “DIGIDOC-Texture dataset”, containing graphics and two different text
fonts “Two fonts and graphics∗∗”, obtained using the HAC and k-means algo-
rithms, and by setting the maximum number of clusters to 2. Figure (a) represents
the pixel-labeling result of a document containing graphics (green) and two different
text fonts (blue and red) using the HAC algorithm. Figure (b) the pixel-labeling
result of a document containing graphics (blue) and two different text fonts (green
and red) using the k-means algorithm.
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Figure B.24.: Examples of confusion matrix computation and pixel-labeling results of a document
from the “DIGIDOC-Texture dataset”, containing text with two different fonts “Only
two fonts”, obtained using the HAC and k-means algorithms, and by setting the
maximum number of clusters to 2. Figure (a) represents the pixel-labeling result
of a document containing text with two different fonts, uppercase (blue) and italic
(green) using the HAC algorithm. Figure (b) the pixel-labeling result of a document
containing text with two different fonts, uppercase (green) and italic (blue) using the
k-means algorithm.
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Figure B.25.: Examples of confusion matrix computation and pixel-labeling results of a document
from the “DIGIDOC-Texture dataset”, containing text with three different fonts
“Only three fonts”, obtained using the HAC and k-means algorithms, and by set-
ting the maximum number of clusters to 3. Figure (a) represents the pixel-labeling
result of a document containing text three two different fonts, normal (green), upper-
case (blue) and italic (red) using the HAC algorithm. Figure (b) the pixel-labeling
result of a document containing text with three different fonts, normal (red), upper-
case (blue) and italic (gree) using the k-means algorithm.
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B.3. Visual results of introducing vs. not introducing the
“Pixel-labeling refinement” step into the auto-correlation and
Gabor-based pixel-labeling scheme, illustrated in the
“DIGIDOC-Texture dataset”

Auto-correlation

“Pixel-labeling” + “Pixel-labeling refinement”

(a) PPB = 0.94 CA = 0.82
P = 0.63 R = 0.90 F = 0.74

(b) PPB = 0.95 CA = 0.81
P = 0.60 R = 0.90 F = 0.72

Gabor

“Pixel-labeling” + “Pixel-labeling refinement”

(c) PPB = 0.97 CA = 0.97
P = 0.94 R = 0.98 F = 0.96

(d) PPB = 0.94 CA = 0.97
P = 0.94 R = 0.98 F = 0.96

Figure B.26.: Examples of introducing the “Pixel-labeling refinement” step into the auto-
correlation and Gabor-based pixel-labeling scheme, illustrated in a “Two fonts
and graphics∗∗” HDI from the “DIGIDOC-Texture dataset”.
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Auto-correlation

“Pixel-labeling” + “Pixel-labeling refinement”

(a) PPB = 0.66 CA = 0.47
P = 0.69 R = 0.56 F = 0.62

(b) PPB = 0.77 CA = 0.36
P = 0.65 R = 0.56 F = 0.60

Gabor

“Pixel-labeling” + “Pixel-labeling refinement”

(c) PPB = 0.99 CA = 0.99
P = 0.96 R = 0.99 F = 0.98

(d) PPB = 0.99 CA = 0.99
P = 0.96 R = 0.99 F = 0.98

Figure B.27.: Examples of introducing the “Pixel-labeling refinement” step into the auto-
correlation and Gabor-based pixel-labeling scheme, illustrated in an “Only two
fonts” HDI from the “DIGIDOC-Texture dataset”.

334



B.3. Visual results of introducing vs. not introducing the “Pixel-labeling refinement” step

Auto-correlation

“Pixel-labeling” + “Pixel-labeling refinement”

(a) PPB = 0.78 CA = 0.57
P = 0.57 R = 0.57 F = 0.57

(b) PPB = 0.85 CA = 0.59
P = 0.60 R = 0.55 F = 0.58

Gabor

“Pixel-labeling” + “Pixel-labeling refinement”

(c) PPB = 0.99 CA = 0.99
P = 0.99 R = 0.99 F = 0.99

(d) PPB = 0.99 CA = 0.99
P = 0.99 R = 0.99 F = 0.99

Figure B.28.: Examples of introducing the “Pixel-labeling refinement” step into the auto-
correlation and Gabor-based pixel-labeling scheme, illustrated in an “Only three
fonts” HDI from the “DIGIDOC-Texture dataset”.
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B.4. Visual results of introducing vs. not introducing the
“Post-processing” step after the “Pixel-labeling refinement” task,
into the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in the “DIGIDOC-Texture dataset”

Auto-correlation

+ “Pixel-labeling refinement” + “Post-processing”

(a) PPB = 0.95 CA = 0.81
P = 0.60 R = 0.90 F = 0.72

(b) PPB = 1.00 CA = 0.76
P = 0.50 R = 0.38 F = 0.43

Gabor

+ “Pixel-labeling refinement” + “Post-processing”

(c) PPB = 0.94 CA = 0.97
P = 0.94 R = 0.98 F = 0.96

(d) PPB = 1.00 CA = 1.00
P = 1.00 R = 1.00 F = 1.00

Figure B.29.: Examples of introducing the “Post-processing” step after the “Pixel-labeling re-
finement” task, into the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in a “Two fonts and graphics∗∗” HDI from the “DIGIDOC-Texture
dataset”.
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Auto-correlation

+ “Pixel-labeling refinement” + “Post-processing”

(a) PPB = 0.77 CA = 0.36
P = 0.65 R = 0.56 F = 0.60

(b) PPB = 0.82 CA = 0.31
P = 0.62 R = 0.56 F = 0.59

Gabor

+ “Pixel-labeling refinement” + “Post-processing”

(c) PPB = 0.99 CA = 0.99
P = 0.96 R = 0.99 F = 0.98

(d) PPB = 1.00 CA = 1.00
P = 1.00 R = 1.00 F = 1.00

Figure B.30.: Examples of introducing the “Post-processing” step after the “Pixel-labeling re-
finement” task, into the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in an “Only two fonts” HDI from the “DIGIDOC-Texture dataset”.

337



Appendix B. Detailed description of some parts of the work presented in this dissertation

Auto-correlation

+ “Pixel-labeling refinement” + “Post-processing”

(a) PPB = 0.85 CA = 0.59
P = 0.60 R = 0.55 F = 0.58

(b) PPB = 0.91 CA = 0.63
P = 0.51 R = 0.57 F = 0.60

Gabor

+ “Pixel-labeling refinement” + “Post-processing”

(c) PPB = 0.99 CA = 0.99
P = 0.99 R = 0.99 F = 0.99

(d) PPB = 1.00 CA = 1.00
P = 1.00 R = 1.00 F = 1.00

Figure B.31.: Examples of introducing the “Post-processing” step after the “Pixel-labeling re-
finement” task, into the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in an “Only three fonts” HDI from the “DIGIDOC-Texture dataset”.
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B.5. Visual results of the “Homogeneous region extraction” step,
performed after the “Post-processing” task on the
auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in the “DIGIDOC-Texture dataset”

Auto-correlation

+ “Post-processing” + “Homogeneous region extraction”

(a) (b)

Gabor

+ “Post-processing” + “Homogeneous region extraction”

(c) (d)

Figure B.32.: Examples of visual results of the “Homogeneous region extraction” step, per-
formed after the “Post-processing” task on the auto-correlation and Gabor-based
pixel-labeling scheme, illustrated in a “Two fonts and graphics∗∗” HDI from the
“DIGIDOC-Texture dataset”.
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Auto-correlation

+ “Post-processing” + “Homogeneous region extraction”

(a) (b)

Gabor

+ “Post-processing” + “Homogeneous region extraction”

(c) (d)

Figure B.33.: Examples of visual results of the “Homogeneous region extraction” task, per-
formed after the “Post-processing” step on the auto-correlation and Gabor-based
pixel-labeling scheme, illustrated in an “Only two fonts” HDI from the “DIGIDOC-
Texture dataset”.
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Auto-correlation

+ “Post-processing” + “Homogeneous region extraction”

(a) (b)

Gabor

+ “Post-processing” + “Homogeneous region extraction”

(c) (d)

Figure B.34.: Examples of visual results of the “Homogeneous region extraction” task, per-
formed after the “Post-processing” step on the auto-correlation and Gabor-
based pixel-labeling scheme, illustrated in an “Only three fonts” HDI from the
“DIGIDOC-Texture dataset”.
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B.6. Visual results of the “Structural signature generation” step,
performed after the “Homogeneous region extraction” task on
the auto-correlation and Gabor-based pixel-labeling scheme,
illustrated in the “DIGIDOC-Texture dataset”

Input

(a)

Auto-correlation Gabor

(b) (c)

Figure B.35.: Examples of visual results of the Structural signature generation step, performed
after the “Homogeneous region extraction” task on the auto-correlation and Ga-
bor-based pixel-labeling scheme, illustrated in a “Two fonts and graphics∗∗” HDI
from the “DIGIDOC-Texture dataset”.
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Auto-correlation Gabor

(b) (c)

Figure B.36.: Examples of visual results of the Structural signature generation step, performed
after the “Homogeneous region extraction” task on the auto-correlation and Ga-
bor-based pixel-labeling scheme, illustrated in an “Only two fonts” HDI from the
“DIGIDOC-Texture dataset”.
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Input

(a)

Auto-correlation Gabor

(b) (c)

Figure B.37.: Examples of visual results of the Structural signature generation step, performed
after the “Homogeneous region extraction” task on the auto-correlation and Ga-
bor-based pixel-labeling scheme, illustrated in an “Only three fonts” HDI from
the “DIGIDOC-Texture dataset”.
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B.7. A summary of the used moment attributes in this work

Among the computed vertex attributes, several kinds of moments are calculated. The most com-
monly moments are the regular (central and normalized central) and Hu moments which have been
proposed as features to characterize patterns in classification and recognition applications [468].
Ten spatial moments (mji), seven central moments (µji), seven normalized central moments (νji)
and seven Hu moments (huk) are computed to characterize the shape of the extracted homogeneous
regions.

B.7.1. Spatial moments

The ten spatial moments (mji) which correspond to the Av16→25 vertex attributes (m00, m10, m01,
m20, m11, m02, m30, m21, m12 and m03), are computed as:

mji =
∑
x

∑
y

I(x, y)xjyi (B.68)

B.7.2. Central moments

The seven central moments (µji) which correspond to the Av26→32 vertex attributes (µ20, µ11, µ02,
µ30, µ21, µ12 and µ03), are computed as:

µji =
∑
x

∑
y

I(x, y)(x− x̄)j(y − ȳ)i (B.69)

where (x̄, ȳ) is the mass center:

x̄ =
m10

m00
and ȳ =

m01

m00
(B.70)

B.7.3. Normalized central moments

The seven normalized central moments (νji) which correspond to the Av33→39 vertex attributes (ν20,
ν11, ν02, ν30, ν21, ν12 and ν03), are computed as:

νji =
µji

m
((i+j)/2)+1
00

(B.71)

B.7.4. Hu moments

The seven Hu moments (huk), where k ∈ [0, 6] (introduced by Hu [600]) which correspond to the
Av40→46 vertex attributes (hu0, hu1, hu2, hu3, hu4, hu5 and hu6), are computed as:

hu0 = ν20 + ν02

hu1 = (ν20 − ν02)2 + 4ν2
11

hu2 = (ν30 − 3ν12)2 + (3ν21 − ν03)2

hu3 = (ν30 + ν12)2 + (ν21 + ν03)2

hu4 = (ν30 − 3ν12)(ν30 + ν12)[(ν30 + ν12)2 − 3(ν21 + ν03)2]

+ (3ν21 − ν03)(ν21 + ν03)[3(ν30 + ν12)2 − (ν21 + ν03)2]

hu5 = (ν20 − ν02)[(ν30 + ν12)2 − (ν21 + ν03)2] + 4ν11(ν30 + ν12)(ν21 + ν03)

hu6 = (3ν21 − ν03)(ν21 + ν03)[3(ν30 + ν12)2 − (ν21 + ν03)2]

− (ν30 − 3ν12)(ν21 + ν03)[3(ν30 + ν12)2 − (ν21 + ν03)2]

(B.72)
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B.8. Introduction to graphs and basic concepts

This section introduces a brief review of the basic definitions and concepts related to graphs.

Graph

A graph (G) is a well-known formalism of a structural representation in pattern recog-
nition. It is composed of a finite set of vertices or nodes, connected by a set of edges
(cf. Figure 6.2(b)). Vertices or nodes (Gv) represent distinct simple entities composing
a complex pattern under consideration. Edges (Ge) represent the relationships between
each two entities or parts of the analyzed pattern, where each edge connects two nodes
in the graph G (i.e. Ge = (Gsv, G

d
v), such that both Gsv and Gdv are two vertices that

belong to the set Gv). The graph size |G| refers to the number of vertices (Gv) in the
graph G.

• G = (Gv, Ge) is a graph.

• Gv is a set of vertices or nodes.

• Ge is a set of edges that Ge ⊆ Gv ×Gv.

Simple graph

A graph G is said to be a simple when G is without loops (i.e. an edge that connects
a vertex to itself) or multi-edges (i.e. more than one edge connecting two vertices).

Multi-graph

A graph G is said to be a multi-graph when G has several edges that may connect the
same two vertices.

Directed graph

A graph G is said to be a directed when a direction is assigned to each edge of the set
Ge. In fact, the edges G1

e = (Gsv, G
d
v) and G2

e = (Gdv, G
s
v) are different. Otherwise, G is

said to be a undirected.

Graph isomorphism

Two graphs G = (Gv, Ge) and G′ = (G′v, G
′
e) are isomorphic (i.e. G ' G′), if and only

there exists a bijective mapping f : Gv → G′v, where

(Gv, G
′
v) ∈ Ge ⇔ (f(Gv), f(G′v)) ∈ G′e
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Attributed graph

A graph G is said to be a attributed when:

• G is a four-tuple G = (Gv, Ge, Gµ, Gν).

• Gµ : Gv → Av is the vertex labeling function which associates the attribute or
label av to a vertex Giv.

• Gν : Ge → Ae is the edge labeling function which associates the attribute or label
ae to a vertex Gie.

• Av denotes a finite or infinite attribute or label set for Gv.

• Ae denotes a finite or infinite attribute or label set for Ge.

• Av and/or Ae can be either continuous (∈ <), discrete value or any combination
of numeric and symbolic values.

Graph edit distance

The graph edit distance is a function d(., .) that:

d : G × G → <+

(G1, G2) 7→ d(G1, G2) = min
o=(o1,...,ok)∈Γ(G1,G2)

k∑
i=1

c(oi)

where

• G1 = (G1
v, G

1
e, G

1
µ, G

1
ν) and G2 = (G2

v, G
2
e, G

2
µ, G

2
ν) are two graphs from the set G .

• Γ(G1, G2) is the set of all edit operations o = (o1, . . . , ok), allowing to transform
G1 into G2.

• c(.) is a cost function on an elementary edit operation oi.

Elementary edit operation

An elementary edit operation oi is one of:

• Vertex substitution: v1 → v2

• Edge substitution: e1 → e2

• Vertex deletion: v1 → ε

• Edge deletion: e1 → ε

• Vertex insertion: ε→ v2

• Edge insertion: ε→ e2

where

• v1 ∈ G1
v, v

2 ∈ G2
v, e

1 ∈ G1
e and e2 ∈ G2

e.

• ε is a dummy vertex or edge which is used to model insertion or deletion operations.
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Cost function

A cost function c(.) on an elementary edit operation oi must satisfy the following
criteria:

• c(v1 → v2) ≤ c(v1 → v) + c(v → v2)

• c(e1 → e2) ≤ c(e1 → e) + c(e→ e2)

• c(v1 → ε) ≤ c(v1 → v) + c(v → ε)

• c(e1 → ε) ≤ c(e1 → e) + c(e→ ε)

• c(ε→ v2) ≤ c(ε→ v) + c(v → v2)

• c(ε→ e2) ≤ c(ε→ e) + c(e→ e2)

Moreover, the cost functions have to be defined in a symmetric manner to guarantee
the symmetry property of the graph edit distance (i.e. d(G1, G2) = d(G2, G1)). Indeed,
the following criteria have to be satisfied by checking the same cost for the reverse edit
path:

• c(v1 → v2) = c(v2 → v1)

• c(e1 → e2) = c(e2 → e1)

• c(v1 → ε) = c(ε→ v1)

• c(e1 → ε) = c(ε→ e1)

Only the paths corresponding to matchings between the compared graphs provided that
all vertices (resp. edges) for each graph are either matched to a vertex (resp. edge) from
the other graph (i.e. substitution or one-to-one mapping) or matched to a dummy vertex
(resp. edge) (i.e. deletion/zero-to-one mapping or insertion/one-to-zero mapping), are
selected.

These mappings define the graph edit distance by computing the minimum value among
the costs associated to edit paths. Topological constraints must be respected when
computing the graph edit distance for inexact graph-matching that if two edges are
matched, their end vertices have to be matched also.
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Graph edit distance between unlabeled graphs

A graph edit distance between unlabeled graphs is computed based on the identity
property (i.e. d(G1, G2) = 0 ⇒ G1 = G2). Indeed, the following statements can be
deduced:

• The substitution costs are equal to zero.

• The insertion and deletion costs are set to a constant.

The minimum cost edit path to transform G1 into G2 is computed based on the edit
operations defined in D1 ∪ D2 that any vertex deletion is preceded by the deletion of
connected edges, and that any edge insertion is preceded by the insertion of end vertices.
where

• D1 is a set of edit operations that are required to transform G1 to Ĝ.

• D2 is a set of edit operations that are required to transform Ĝ to G2.

• Ĝ is a maximum common sub-graph of G1 and G2.

If all edit operations from D2 are first applied, G1 is first transformed into Ǧ. Then,
edit operations from D1 transform Ǧ into G2, where Ǧ denotes a minimum common
super-graph of G1 and G2.

Ǧ is a super-graph of G1 and G2 if G1 and G2 are both sub-graphs of Ǧ.

Graph edit distance between attributed graphs

A graph edit distance between attributed graphs is computed based on the edit
costs which are generally defined as functions of vertices (resp. edges) labels.

• The substitution costs are defined as a function of the labels of the substituted
vertices (resp. edges):{

c(v1 → v2) = c(v2 → v1) = fv(G
1
µ(v1), G2

µ(v2))

c(e1 → e2) = c(e2 → e1) = fe(G
1
ν(e1), G2

ν(e2))

where fv and fe denote the substitution cost function of the labels of the substi-
tuted vertices and edges, respectively.

• The insertion/deletion costs are defined according to the label of the in-
serted/deleted vertex (resp. edge):{

c(v1 → ε) = c(ε→ v1) = gv(Gµ)

c(e1 → ε) = c(ε→ e1) = ge(Gν)

where gv and ge denote the insertion/deletion cost function of the labels of the
inserted/deleted vertex and edge, respectively.
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B.9. Graph edit distance using a binary linear programming

This section introduces a brief review of the used graph edit distance (GED) by means of a binary
linear programming (BLP). In this work, a binary linear programming (BLP) is used to model the
GED paradigm. An approximate GED approach is used based on a lower bound of the exact GED
provided by the relaxation of the BLP formulation.

B.9.1. Binary linear programming

A binary linear programming (BLP) is a derivative of integer linear programming (ILP) where the
variables are binary. A general form of a BLP is defined by the following optimization problem:


Objective function: min

x
cᵀx

Linear constraint: subject to Ax ≤ b
Domain constraint: with x ∈ Zn

(B.73)

where c ∈ <n, A ∈ <n×m and b ∈ <m are data used to solve the optimization problem. A solution
of this optimization problem is a vector x of n binary variables. If this optimization problem has
admissible solutions, the optimal solution is the one that minimizes the objective function and
respects the two constraints defined (B.73).

B.9.2. Modeling graph edit distance with binary linear programming

Since our goal is compute the GED between two attributed directed graphs G1 = (G1
v, G

1
e, G

1
µ, G

1
ν)

and G2 = (G2
v, G

2
e, G

2
µ, G

2
ν) (cf. Chapter B and particularly Section B.8), in this work GED

paradigm is formulated as a BLP. The formulations in this section is given for simple directed
graphs. Nevertheless, these formulations can also be applied relatively simply to multi-graph and/or
undirected graphs. In Appendix B and particularly in Section B.8, a detailed description of the
GED and its three types of elementary edit operation used to match the two graphs G1 and G2:

1. The substitution of the label of a vertex (resp. an edge) of G1 with the label of a vertex
(resp. an edge) of G2,

2. The deletion of a vertex (resp. an edge) from G1,

3. The insertion of a vertex (resp. an edge) of G2 in G1.

For each type of elementary edit operation, a set of binary variables which is used to define an
edit path between the graphs G1 and G2 by means of a 6-tuple (x, y, u, v, e, f). Table B.1 presents
the defined set of binary variables for each type of edit operation corresponding to a BLP used to
model the GED paradigm. Then, cost functions which depend on the labels of vertices and edges,
are defined for each type of elementary edit operation in order to evaluate the cost of an edit path.
Table B.2 presents the defined cost functions for each type of elementary edit operation.

Table B.1.: A set of binary variables for each type of edit operation corresponding to a BLP used
to model the GED paradigm.

Type Id. Binary variable

S
u

b
st

it
u

ti
on Vertex x ∀(i, k) ∈ G1

v ×G2
v, xi,k =

{
1, if i is substituted with k,

0, otherwise.

Edge y ∀(ij, kl) ∈ G1
e ×G2

e, yij,kl =

{
1, if ij is substituted with kl,

0, otherwise.
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Table B.1 – continued from previous page

Type Id. Binary variable

D
el

et
io

n
Vertex u ∀i ∈ G1

v, ui =

{
1, if i is deleted from G1

v,

0, otherwise.

Edge e ∀ij ∈ G1
e, eij =

{
1, if ij is deleted from G1

v,

0, otherwise.

In
se

rt
io

n

Vertex v ∀k ∈ G2
v, vk =

{
1, if k is inserted in G1

v,

0, otherwise.

Edge f ∀kl ∈ G2
e, fkl =

{
1, if kl is inserted in G1

v,

0, otherwise.

Table B.2.: The defined cost functions for each type of elementary edit operation corresponding to
a BLP used to model the GED paradigm.

Type Id. Binary
variable

Model Target Cost Description

S
u

b
st

it
u

ti
on

Vertex x xi,k i k c(i→ k) ∀(i, k) ∈ G1
v ×G2

v, substituting
the vertex i with k

Edge y yij,kl ij kl c(ij → kl) ∀(ij, kl) ∈ G1
e ×G2

e, substituting
the edge ij with kl

D
el

et
io

n Vertex u ui i ∅ c(i→ ε) ∀i ∈ G1
v, deleting the vertex i

from the graph G1

Edge e eij ij ∅ c(ij → ε) ∀ij ∈ G1
e, deleting the edge ij

from the graph G1

In
se

rt
io

n

Vertex v vk ∅ k c(ε→ k) ∀k ∈ G2
v, inserting the vertex k

in the graph G1

Edge f fkl ∅ kl c(ε→ kl) ∀kl ∈ G2
e, inserting the edge kl

in the graph G1

Afterwards, to compute the GED between the graphsG1 andG2, an overall cost can be deduced by
applying an edit path defined with the 6-tuple (x, y, u, v, e, f) on graph G1 to make it isomorphic to
the graph G2. Nevertheless, this overall cost must be minimized by means of the following objective
function:

min
x,y,u,v,e,f



∑
i∈G1

v

∑
k∈G2

v

c(i→ k) xi,k +
∑
ij∈G1

e

∑
kl∈G2

e

c(ij → kl) yij,kl

+
∑
i∈G1

v

c(i→ ε) ui +
∑
ij∈G1

e

c(ij → ε) eij

+
∑
k∈G2

v

c(ε→ k) vk +
∑
kl∈G2

kl

c(ε→ kl) fkl


(B.74)

Subsequently, few linear constraints must be respected to have admissible edit path solutions
of the BLP that minimizes the objective function applied on the 6-tuple (x, y, u, v, e, f) on the
graph G1 to make it isomorphic to the graph G2 (cf. equation B.74). A solution is considered as
admissible if and only if the following linear constraints related to the involved edit path solution
are respected:

351



Appendix B. Detailed description of some parts of the work presented in this dissertation

1. Vertex matching constraints: The edit path solution provides an one-to-one mapping
(i.e. vertex substitution) between two sub-sets of the G1 and G2 vertices. The remaining
vertices are either deleted or inserted (i.e. vertex deletion/insertion). As a consequence, two
linear vertex matching constraints can be deduced: (i) each vertex of the graph G1 is either
matched to exactly one vertex of the graph G2 or deleted from the graph G1 (cf. equation
B.75) and (ii) each vertex of the graph G2 is either matched to exactly one vertex of the
graph G1 or inserted in the graph G1 (cf. equation B.76).

2. Edge matching constraints: The edit path solution provides an one-to-one mapping (i.e.
edge substitution) between two sub-sets of the G1 and G2 edges. The remaining edges are
either deleted or inserted (i.e. edge deletion/insertion). Similarly to the deduced two linear
vertex matching constraints, two linear vertex matching constraints can be defined: (i) each
edge of the graph G1 is either matched to exactly one edge of the graph G2 or deleted from
the graph G1 (cf. equation B.77) and (ii) each edge of the graph G2 is either matched to
exactly one edge of the graph G1 or inserted in the graph G1 (cf. equation B.78).

3. Topological constraints: The edit path solution provides a consistent vertice and edge
matchings (i.e. graph topology is respected). Indeed, the following statement can be deduced:
an edge ij ∈ G1

e can be matched to an edge kl ∈ G2
e only if the source vertices i ∈ G1

v and
k ∈ G2

v on the one hand, and the destination vertices j ∈ G1
v and l ∈ G2

v on the other hand,
are respectively matched. As a matter of fact, two linear topological matching constraints
can be defined: (i) ij and kl can be matched only if their source vertices are matched (cf.
equation B.79) and (ii) ij and kl can be matched only if their destination vertices are matched
(cf. equation B.80).

Table B.3.: A defined set of linear constraints to guarantee an admissible edit path solution corre-
sponding to a BLP used to model the GED paradigm.

Constraint
type

Equation Description

Vertex matching
∀i ∈ G1

v,
∑
k∈G2

v

xi,k + ui = 1 (B.75)

Each vertex of the graph G1

is either matched to exactly
one vertex of the graph G2 or
deleted from the graph G1.

∀k ∈ G2
v,
∑
i∈G1

v

xi,k + vk = 1 (B.76)

Each vertex of the graph G2

is either matched to exactly
one vertex of the graph G1 or
inserted in the graph G1.

Edge matching
∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl + eij = 1 (B.77)

Each edge of the graph G1 is
either matched to exactly one
edge of the graph G2 or
deleted from the graph G1.

∀kl ∈ G2
e,
∑
ij∈G1

e

yij,kl + fkl = 1 (B.78)

Each edge of the graph G2 is
either matched to exactly one
edge of the graph G1 or
inserted in the graph G1.
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Table B.3 – continued from previous page

Constraint
type

Equation Description

Topological
∀(ij, kl) ∈ G1

e ×G2
e, yij,kl ≤ xi,k (B.79)

ij and kl can be matched
only if their source vertices
are matched.

∀(ij, kl) ∈ G1
e ×G2

e, yij,kl ≤ xj,l (B.80)
ij and kl can be matched
only if their destination
vertices are matched.

Finally, the domain constraints are defined to ensure that the edit path solution is binary as
follows: 

∀(i, k) ∈ G1
v ×G2

v, xi,k ∈ {0, 1}
∀(ij, kl) ∈ G1

e ×G2
e, yij,kl ∈ {0, 1}

∀i ∈ G1
v, ui ∈ {0, 1}

∀k ∈ G2
v, vk ∈ {0, 1}

∀ij ∈ G1
e, eij ∈ {0, 1}

∀kl ∈ G2
e, fkl ∈ {0, 1}

(B.81)

Therefore, based on the defined objective function (cf. equation B.74), domain (cf. equations
B.81) and linear (cf. Table B.3) constraints, an admissible edit path solution of the BLP that
minimizes the objective function applied on the graph G1 to make it isomorphic to the graph G2, is
given based on the BLP formulation of GED which is illustrated in Table B.4. The BLP formulation
of GED has:

• |G1
v|+|G2

v|+|G1
e|+|G2

e|+|G1
v||G2

v|+|G1
e||G2

e| variables,

• |G1
v|+|G2

v|+|G1
e|+|G2

e|+2|G1
e||G2

e| constraints without taking into consideration the domain
constraints (cf. equations (B.81), (B.81), (B.81), (B.81), (B.81) and (B.81)).

Table B.4.: BLP formulation of the GED paradigm.

BLP id Value

Objective function

min
x,y,u,v,e,f



∑
i∈G1

v

∑
k∈G2

v

c(i→ k) xi,k +
∑
ij∈G1

e

∑
kl∈G2

e

c(ij → kl) yij,kl

+
∑
i∈G1

v

c(i→ ε) ui +
∑
ij∈G1

e

c(ij → ε) eij

+
∑
k∈G2

v

c(ε→ k) vk +
∑
kl∈G2

kl

c(ε→ kl) fkl



Linear constraints

∀i ∈ G1
v,
∑
k∈G2

v

xi,k + ui = 1
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Table B.4 – continued from previous page

BLP id Value

∀k ∈ G2
v,
∑
i∈G1

v

xi,k + vk = 1

∀ij ∈ G1
e,
∑
kl∈G2

e

yij,kl + eij = 1

∀kl ∈ G2
e,
∑
ij∈G1

e

yij,kl + fkl = 1

∀(ij, kl) ∈ G1
e ×G2

e, yij,kl ≤ xi,k

∀(ij, kl) ∈ G1
e ×G2

e, yij,kl ≤ xj,l

Domain constraints

∀(i, k) ∈ G1
v ×G2

v, xi,k ∈ {0, 1}

∀(ij, kl) ∈ G1
e ×G2

e, yij,kl ∈ {0, 1}

∀i ∈ G1
v, ui ∈ {0, 1}

∀k ∈ G2
v, vk ∈ {0, 1}

∀ij ∈ G1
e, eij ∈ {0, 1}

∀kl ∈ G2
e, fkl ∈ {0, 1}

B.9.3. Optimized binary linear programming formulation for modeling graph edit
distance

In this section, an optimized BLP formulation for modeling GED with less variables and constraints
than those used in Section B.9.2. This optimized BLP formulation depends on the size/density of
the graphs into consideration. Based on the BLP formulation of GED (cf. Table B.4), the following
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variables, u, v, e and e, are unnecessary and greatly increase the computational time. As a matter
of fact, the following equations (B.75), (B.76), (B.77) and (B.78), are transformed into linear
inequality constraints (cf. Table B.5). Then, the topological constraints (cf. equations (B.79) and
(B.80)) which have been previously presented in Section B.9.2, can be expressed mathematically in
a different way to have clear and precise information, without adversely affecting the binary edit
path solutions (cf. equations (B.86) and (B.87)).

Table B.5.: A defined set of linear inequality constraints to guarantee an admissible edit path solu-
tion corresponding to an optimized BLP formulation used to model the GED paradigm.

Constraint
type

Equation Description

Vertex matching
∀i ∈ G1

v,
∑
k∈G2

v

xi,k ≤ 1 (B.82)

Each vertex of the graph G1

is either matched to exactly
one vertex of the graph G2 or
deleted from the graph G1.

∀k ∈ G2
v,
∑
i∈G1

v

xi,k ≤ 1 (B.83)

Each vertex of the graph G2

is either matched to exactly
one vertex of the graph G1 or
inserted in the graph G1.

Edge matching
∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl ≤ 1 (B.84)

Each edge of the graph G1 is
either matched to exactly one
edge of the graph G2 or
deleted from the graph G1.

∀kl ∈ G2
e,
∑
ij∈G1

e

yij,kl ≤ 1 (B.85)

Each edge of the graph G2 is
either matched to exactly one
edge of the graph G1 or
inserted in the graph G1.

Topological

∀k ∈ G2
v∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl ≤ xi,k

(B.86)

Provided an edge ij ∈ G1
e

and a vertex k ∈ G2
v, there is

at most one edge incident
away from k that can be
matched with ij.

∀l ∈ G2
v∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl ≤ xj,l

(B.87)

Provided an edge ij ∈ G1
e

and a vertex l ∈ G2
v, there is

at most one edge incident
towards l that can be
matched with ij.
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Adterwards, by replacing the u, v, e and e variables by their expressions which are deduced from
the equations (B.75), (B.76), (B.77) and (B.78), respectively, in the objective function (B.74), a
new formulation of an objective function is given by

min
x,y,u,v,e,f



∑
i∈G1

v

∑
k∈G2

v

c(i→ k) xi,k +
∑
ij∈G1

e

∑
kl∈G2

e

c(ij → kl) yij,kl

+
∑
i∈G1

v

c(i→ ε) ui +
∑
ij∈G1

e

c(ij → ε) eij

+
∑
k∈G2

v

c(ε→ k) vk +
∑
kl∈G2

kl

c(ε→ kl) fkl



= min
x,y



∑
i∈G1

v

∑
k∈G2

v

c(i→ k) xi,k +
∑
ij∈G1

e

∑
kl∈G2

e

c(ij → kl) yij,kl

+
∑
i∈G1

v

c(i→ ε) (1−
∑
k∈G2

v

xi,k) +
∑
ij∈G1

e

c(ij → ε) (1−
∑
kl∈G2

e

yij,kl)

+
∑
k∈G2

v

c(ε→ k) (1−
∑
i∈G1

v

xi,k) +
∑
kl∈G2

kl

c(ε→ kl) (1−
∑
ij∈G1

e

yij,kl)



= min
x,y



∑
i∈G1

v

∑
k∈G2

v

(c(i→ k)− c(i→ ε)− c(ε→ k)) xi,k

+
∑
ij∈G1

e

∑
kl∈G2

e

(c(ij → kl)− c(ij → ε)− c(ε→ kl)) yij,kl

+
∑
i∈G1

v

c(i→ ε) +
∑
k∈G2

v

c(ε→ k) +
∑
ij∈G1

e

c(ij → ε) +
∑
kl∈G2

kl

c(ε→ kl)



(B.88)

Therefore, based on the defined objective function (cf. equation B.88), domain constraints (cf.
equations (B.89) and (B.90)) and linear inequality constraints (cf. equations (B.82), (B.83), (B.84),
(B.85), (B.86) and (B.87) in Table B.5), an admissible edit path solution of the optimized BLP
that minimizes the objective function applied on the graph G1 to make it isomorphic to the graph
G2, is given based on the optimized BLP formulation of GED which is illustrated in Table B.6.
The optimized BLP formulation of GED has:

• |G1
v||G2

v|+|G1
e||G2

e| variables,

• |G1
v|+|G2

v|+|G1
e|+|G2

e|+|G1
v||G2

e|+|G2
v||G1

e| constraints without taking into consideration the
domain constraints (cf. equations (B.89) and (B.90)).

where |G1
v| and |G2

v| denote the number of vertices of the two graphs G1 and G2, respectively. |G1
e|

and |G2
e| denote the number of edges of the two graphs G1 and G2, respectively.
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Table B.6.: Optimized BLP formulation of the GED paradigm.

BLP id Value

Objective function

min
x,y



∑
i∈G1

v

∑
k∈G2

v

(c(i→ k)− c(i→ ε)− c(ε→ k)) xi,k

+
∑
ij∈G1

e

∑
kl∈G2

e

(c(ij → kl)− c(ij → ε)− c(ε→ kl)) yij,kl

+
∑
i∈G1

v

c(i→ ε) +
∑
k∈G2

v

c(ε→ k) +
∑
ij∈G1

e

c(ij → ε) +
∑
kl∈G2

kl

c(ε→ kl)



Linear inequality
constraints

∀i ∈ G1
v,
∑
k∈G2

v

xi,k ≤ 1

∀k ∈ G2
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∑
i∈G1

v

xi,k ≤ 1

∀ij ∈ G1
e,
∑
kl∈G2

e

yij,kl ≤ 1

∀kl ∈ G2
e,
∑
ij∈G1

e

yij,kl ≤ 1

∀k ∈ G2
v∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl ≤ xi,k

∀l ∈ G2
v∀ij ∈ G1

e,
∑
kl∈G2

e

yij,kl ≤ xj,l

Domain constraints ∀(i, k) ∈ G1
v ×G2

v, xi,k ∈ {0, 1} (B.89)

∀(ij, kl) ∈ G1
e ×G2

e, yij,kl ∈ {0, 1} (B.90)
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B.10. Computer-aided tool for characterization and categorization of historical book pages

Figure B.38.: GUI Screen shot illustrating the uploading of pages from a DHB directory.

3
58



B
.1

0
.

C
om

p
u

ter-aid
ed

to
ol

fo
r

ch
aracterization

an
d

categorization
of

h
istorical

b
o
ok

p
ages

Figure B.39.: GUI Screen shot illustrating the deduced dendrogram from applying an unsupervised classification task (HAC algorithm) which is
performed on the obtained distance matrix by computing the dissimilarity between the compared graph-based signatures.
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issertationFigure B.40.: GUI Screen shot illustrating the unsupervised classification of the uploaded DHB pages using the HAC algorithm by setting the

maximum number of book page types to 2. It shows the separation of the DHB pages into 2 clusters. One cluster representing
pages containing only textual regions, and the other one illustrating pages containing textual and graphical regions. Each cluster is
represented in a separate line.
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Figure B.41.: GUI Screen shot illustrating an obtained summary of the analyzed DHB. It shows the different detected transition DHB pages. Only
DHB pages having GEDs above a pre-defined threshold GED value are retrieved. The shaded DHB pages are considered as non-
transition pages, while the DHB pages with red borders are considered as the transition pages (i.e. they have layout and/or content
that differ from the following page).
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Figure B.43.: GUI Screen shot illustrating an example of the obtained structural signature of a DHB page (containing only text which is presented
in two columns).
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Figure B.45.: GUI Screen shot illustrating an example of the obtained structural signature of a DHB page (containing graphics and text which is
presented in two columns).
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Colloque International Francophone sur l’Ecrit et le Document, 2004.

380



Bibliography

[228] V. C. Kieu, M. Mehri, V. Rabeux, N. Journet, and M. Visani, “Génération d’images
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THESIS presented by Maroua MEHRI

Title:

Historical document image analysis: a structural approach based on texture

Abstract:
Over the last few years, there has been tremendous growth in digitizing collections of cultural heritage documents. Thus, many challenges and

open issues have been raised, such as information retrieval in digital libraries or analyzing page content of historical books. Recently, an important
need has emerged which consists in designing a computer-aided characterization and categorization tool, able to index or group historical digitized
book pages according to several criteria, mainly the layout structure and/or typographic/graphical characteristics of the historical document image
content.

Current systems for categorizing historical digitized book pages are based on several criteria, such as the textual content. However, these systems
for performing the historical document image analysis tasks have poor performance due to many particularities of historical document images (e.g.
large variability of page layout, noise and degradation, page skew, complicated layout, random alignment, specific fonts, presence of embellishments,
variations in spacing between the characters, words, lines, paragraphs and margins, overlapping object boundaries, superimposition of information
layers). Moreover, these systems are hindered by many issues related to the performance of the optical character recognition and retrospective
conversion tools. In addition, they require burdensome and complex processing due to the mentioned particularities of historical document images.

Thus, the work conducted in this thesis presents an automatic approach for characterization and categorization of historical book pages. The
proposed approach is applicable to a large variety of ancient books. In addition, it does not assume a priori knowledge regarding document image
layout and content. It is based on the use of texture and graph algorithms to provide a rich and holistic description of the layout and content of the
analyzed book pages to characterize and categorize historical book pages. The categorization is based on the characterization of the digitized page
content by texture, shape, geometric and topological descriptors. This characterization is represented by a structural signature. More precisely, the
signature-based characterization approach consists of two main stages. The first stage is extracting homogeneous regions. Then, the second one is
proposing a graph-based page signature which is based on the extracted homogeneous regions, reflecting its layout and content.

Afterwards, by comparing the different obtained graph-based signatures using a graph-matching paradigm, the similarities of digitized historical
book page layout and/or content can be deduced. Subsequently, book pages with similar layout and/or content can be categorized and grouped, and
a table of contents/summary of the analyzed digitized historical book can be provided automatically.

As a consequence, numerous signature-based applications (e.g. information retrieval in digital libraries according to several criteria, page catego-
rization) can be implemented for managing effectively a corpus or collections of books. To illustrate the effectiveness of the proposed page signature, a
detailed experimental evaluation has been conducted in this work for assessing two possible categorization applications, unsupervised page classification
and page stream segmentation. In addition, the different steps of the proposed approach have been evaluated on a large variety of historical document
images.

Keywords: Digital libraries, Historical document image analysis, Segmentation, Categorization, Texture, Graph-based sig-
nature.

THÈSE présentée par Maroua MEHRI

Titre :

Analyse d’images de documents patrimoniaux : une approche structurelle à base de texture

Résumé :
Les récents progrès dans la numérisation des collections de documents patrimoniaux ont ravivé de nouveaux défis afin de garantir une conservation

durable et de fournir un accès plus large aux documents anciens. En parallèle de la recherche d’information dans les bibliothèques numériques
ou l’analyse du contenu des pages numérisées dans les ouvrages anciens, la caractérisation et la catégorisation des pages d’ouvrages anciens a
connu récemment un regain d’intérêt. Les efforts se concentrent autant sur le développement d’outils rapides et automatiques de caractérisation
et catégorisation des pages d’ouvrages anciens, capables de classer les pages d’un ouvrage numérisé en fonction de plusieurs critères, notamment la
structure des mises en page et/ou les caractéristiques typographiques/graphiques du contenu de ces pages.

Les systèmes actuels de caractérisation et catégorisation des pages d’ouvrages numérisés s’appuient sur plusieurs critères relatifs au contenu textuel.
Cependant, des performances insatisfaisantes ont été relevées en raison de divers problèmes, et qui sont liés aux particularités des documents anciens
(e.g. une grande variabilité de la mise en page, des niveaux différents de dégradation et bruit, le défaut d’orientation, la complexité de la mise en page,
des alignements non-conventionnels, les polices de caractères spécifiques, la présence d’ornements, les variations de l’espacement entre les caractères,
mots, lignes, paragraphes et marges, la superposition de plusieurs couches d’information). En effet, leurs performances sont étroitement liées à celles
des outils de reconnaissance optique de caractères et rétro-conversion. En outre, le traitement de ce type de documents peut s’avérer complexe et
pénible en raison des particularités des documents anciens mentionnées ci-dessus, et ce, sans connaissances a priori sur la structure des mises en page
ou les caractéristiques typographiques/graphiques du contenu de ces pages.

Ainsi, dans le cadre de cette thèse, nous proposons une approche permettant la caractérisation et la catégorisation automatiques des pages d’un
ouvrage ancien. L’approche proposée se veut indépendante de la structure et du contenu de l’ouvrage analysé. Le principal avantage de ce travail réside
dans le fait que l’approche s’affranchit des connaissances préalables, que ce soit concernant le contenu du document ou sa structure. Elle est basée sur
une analyse des descripteurs de texture et une représentation structurelle en graphe afin de fournir une description riche permettant une catégorisation
à partir du contenu graphique (capturé par la texture) et des mises en page (représentées par des graphes). En effet, cette catégorisation s’appuie
sur la caractérisation du contenu de la page numérisée à l’aide d’une analyse des descripteurs de texture, de forme, géométriques et topologiques.
Cette caractérisation est définie à l’aide d’une représentation structurelle. Dans le détail, l’approche de catégorisation se décompose en deux étapes
principales successives. La première consiste à extraire des régions homogènes. La seconde vise à proposer une signature structurelle à base de texture,
sous la forme d’un graphe, construite à partir des régions homogènes extraites et reflétant la structure de la page analysée. Cette signature assure
la mise en œuvre de nombreuses applications pour gérer efficacement un corpus ou des collections de livres patrimoniaux (par exemple, la recherche
d’information dans les bibliothèques numériques en fonction de plusieurs critères, ou la catégorisation des pages d’un même ouvrage). En comparant
les différentes signatures structurelles par le biais de la distance d’édition entre graphes, les similitudes entre les pages d’un même ouvrage en termes
de leurs mises en page et/ou contenus peuvent être déduites. Ainsi de suite, les pages ayant des mises en page et/ou contenus similaires peuvent
être catégorisées, et un résumé/une table des matières de l’ouvrage analysé peut être alors généré automatiquement. Pour illustrer l’efficacité de la
signature proposée, une étude expérimentale détaillée a été menée dans ce travail pour évaluer deux applications possibles de catégorisation de pages
d’un même ouvrage, la classification non supervisée de pages et la segmentation de flux de pages d’un même ouvrage. En outre, les différentes étapes
de l’approche proposée ont donné lieu à des évaluations par le biais d’expérimentations menées sur un large corpus de documents patrimoniaux.

Mots clés : Bibliothèques numériques, Analyse d’images de documents patrimoniaux, Segmentation, Catégorisation, Texture,
Représentation structurelle à base de graphe.
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